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Abstract 

Worldwide, rare genetic disorders affect more than 6.2% of the population. The long 

diagnostic process is often called the ‘diagnostic odyssey.’ With the recent advances in 

computer vision, many next-generation phenotyping (NGP) approaches such as DeepGestalt 

have shown a strong ability to differentiate rare disorders and are widely used by clinicians 

in clinics. However, the current NGP approaches for rare disorders still have limitations on 

three aspects: current approaches do not support ultra-rare and novel disorders; no publicly 

available dataset; lack of automatic diagnostic pipeline that integrates exome and facial 

analysis. Therefore, we proposed GestaltMatcher, GestaltMatcher Database (GMDB), and 

Prioritization of Exome Data by Image Analysis (PEDIA) to tackle the current difficulties. 

We first developed GestaltMatcher as an extension to DeepGestalt to support ultra-rare and 

novel disorders. GestaltMatcher first encoded the frontal image into a 320-dimensional 

Facial Phenotype Descriptor (FDP). We further formed a Clinical Face Phenotype Space by 

the FDPs and quantified the facial syndromic similarities among the patients by calculating 

the cosine distance between two FDPs in the space. This approach can support ultra-rare 

disorders and novel diseases and analyze the patients’ similarities to explore the novel gene-

phenotype relationship. 

To solve the problem of lacking a public medical image dataset, we proposed GMDB to host 

the medical images curated from the publication and the consented patients. GMDB is an 

open-access medical image database to the research community for deep learning purposes 

and reference material for clinician-scientists to easily see the medical images.  

In order to support the facial phenotyping approach in the automatic exome diagnosis, the 

PEDIA approach was proposed to integrate facial analysis into the exome prioritization 

pipeline. We further showed GeneTalk platform as an example of implementing the PEDIA 

approach into an existed variant analysis platform. 

In the end, we envision that GestaltMatcher, GMDB, and PEDIA can be integrated into a 

diagnostic platform and further connected with the patient match platforms such as 

MatchMaker Exchange to enable global collaboration and further improve the diagnosis of 

rare Mendelian disorders. 
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Chapter 1 Introduction 

This thesis aims to develop the next-generation phenotyping (NGP) approach based on facial 

image analysis to improve the diagnosis of patients with rare Mendelian disorders. It 

contains five topics: (1) the introduction to next-generation phenotyping approaches, (2) 

overcoming the limits of rare disease matching using facial phenotypic descriptor, (3) 

GestaltMatcher database, (4) prioritization of exome data by image analysis (PEDIA), and 

(5) the future of next-generation phenotyping. These topics drove the NGP technology from 

proof of concept to the application in clinical settings that help clinicians diagnose patients 

with rare disorders and further explore the unknown genotype-phenotype relationship. This 

cumulative thesis comprises three published studies and one not yet published work. 

1.1 Motivations 

Diagnosing a patient with a rare disorder is difficult due to the vast search space and the lack 

of advanced computer-assisted approaches. To date, there are more than 8000 rare 

Mendelian disorders. The large search space results in a challenging and long journey to 

identify the correct diagnosis that is frequently called diagnostic odyssey. Another reason is 

the lack of advanced computer-assisted approaches. Back to 15 years ago, there was no 

machine-readable language that could describe and analyze phenotypic features. Hence, 

making the diagnosis relied heavily on the clinician’s experience. In 2008, Peter Robinson 

invented Human Phenotype Ontology (HPO) to describe the clinical phenotypic features, 

and the HPO terms became the global standard for the phenotypic description (Robinson et 

al. 2008). Numerous computational approaches have been developed based on HPO terms 

(Köhler et al. 2009; Bauer et al. 2012; Smedley et al. 2015; Cipriani et al. 2020). However, 

these tools suffered from the information lost during the conversion to HPO terms. For 

example, for the facial dysmorphic features with no HPO terms to describe, the clinicians 

always refer to them as “characteristic faces.” Hence, more advanced approaches to preserve 

the information are still required. 
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Figure 1: Next-generation phenotyping tool diagnoses patients by facial image.  The 
deep convolutional networks (DCNN) were trained on patients with facial dysmorphism. By 
passing the patient photo into the networks, we can obtain the similarity scores as the 
possibilities to the syndromes trained in the networks. This patient has Coffin-Siris 
syndrome, and after passing this patient into the network, Coffin-Siris syndrome has the 
highest similarity score. The patients’ photos in this figure are taken from the publications 
(Hoyer et al. 2012; Kline et al. 2018). 

With the rapid development of computer vision and machine learning, a considerable 

number of next-generation phenotyping (NGP) approaches have emerged for analyzing rare 

genetic disorders by using two-dimensional frontal facial images (Ferry et al. 2014; Kuru et 

al. 2014; Cerrolaza et al. 2016; K. Wang and Luo 2016; Dudding-Byth et al. 2017; Shukla 

et al. 2017; Liehr et al. 2018; Gurovich et al. 2019; van der Donk et al. 2019; Porras et al. 

2021; Hong et al. 2021). Ferry et al. proposed a clinical face phenotype space that converted 

frontal faces into a phenotype space by training on more than 1,000 photos with eight 

syndromes in 2014 (Ferry et al. 2014). Later in 2019, FDNA published the facial analysis 

framework, DeepGestalt (Figure 1), in Nature Medicine that trained the deep convolutional 

neural networks on 17,000 patients with more than 200 syndromes (Gurovich et al. 2019). 

This tool was launched in the Face2Gene platform (https://www.face2gene.com) and is 

already widely used by thousands of clinicians in their daily diagnostic routines. These 

approaches opened the door to enable frontal images analysis to aid the diagnosis. 
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However, the current approaches struggled in the three different aspects: algorithms, data 

resources, and application for variant prioritization. 

Limitations to the current NGP approaches: Although NGP technology such as 

DeepGestalt is compelling, it still encounters three significant limitations: (1) no support for 

ultra-rare disorders, (2) difficulty to be scaled, and (3) no explanation to patients’ similarity. 

The reason is that DeepGestalt trains the networks in a supervised manner, and it will be 

difficult to include an ultra-rare disorder in the networks when there are only very few photos 

for this disorder available. Moreover, we have to retrain and re-evaluate the networks that 

require lots of time and effort to include new disorders. In the end, it cannot quantify the 

similarities between patients or between syndromes that are crucial to answering the lumper 

and splitter question (McKusick 1969; Oti, Huynen, and Brunner 2008). 

To overcome these limitations, my colleagues and I published these two works, “The 

Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance 

Suggests Advanced Applications for AI-Driven Facial Phenotyping,” (Marbach et al. 2019), 

and “GestaltMatcher facilitates rare disease matching using facial phenotype descriptors,” 

(T.-C. Hsieh et al. 2022). These two publications will be introduced in Chapter 3 and Chapter 

4. 

Limited publicly available image resources: Even though we have seen significant 

progress in the next-generation phenotyping technology in the last decade, we still cannot 

overlook the fundamental problem of lacking a high-quality public dataset in this research 

field. When we talk about the boost of image recognition, most people might mention 

ImageNet (Jia Deng et al. 2009). This publicly available database contains over one million 

images and one thousand classes. Based on this dataset, the “ImageNet Large Scale Visual 

Recognition Challenge” has become an essential annual benchmarking competition since 

2010 (Russakovsky et al. 2014). Numerous classical architectures have emerged in this 

competition. Moreover, for the face recognition task, many public face datasets such as 

Labeled Faces in the Wild (LFW), CASIA-WebFace, and VGGFace pushed the face 

recognition technology forward (Huang et al. 2007; Yi et al. 2014; Parkhi, Vedaldi, and 

Zisserman 2015). Therefore, the requirement of many images, cleanliness of the dataset, and 

public availability are the key factors to push computer vision research. 
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However, we have none of the three factors mentioned above in this facial dysmorphology 

analysis of rare disorders. The two most well-known databases are London Medical 

Database (Winter and Baraitser 1987) and Face2Gene. The London Medical Database is 

also called LMD as an abbreviation. Although LMD was an essential resource for clinicians 

and NGP technology, people now often question its outdated resource, and many syndromes 

in the database are based on differential diagnoses. The Face2Gene database contains more 

than 30,000 patients with around 1,500 disorders. The patients are contributed by the 

clinicians who used the platform. It means that it requires data curation, and it is not able to 

be shared due to legal restrictions. 

Moreover, none of these two is publicly available. The lacking of data not only raises the 

threshold to enter this research field, but we can hardly benchmark the methods proposed 

by different research teams. Hence, a facial dysmorphology version of ImageNet or LFW is 

an urgent need to push this field to the next level. 

For this purpose, we developed the GestaltMatcher Database (https://gestaltmatcher.org), a 

collection of medical images curated by medical experts, and it is accessible to the scientific 

community. This work will be presented in Chapter 5. 

Lacking facial phenotyping application for variant prioritization: Several published 

works have shown the power of NGP tools to reduce the search space of candidate genes. It 

provides tremendous help for clinicians to decide the genes selected in the gene panel. 

However, as the cost of whole-exome sequencing is continuously dropping, there is a need 

to efficiently and automatically integrate the facial analysis into the variant prioritization 

pipeline. That is, in practice, the clinicians need this kind of automatic pipeline for the 

diagnostic workup. Therefore, we develop the PEDIA approach in “PEDIA: Prioritization 

of Exome Data by Image Analysis” (T. C. Hsieh et al. 2019) to enable the automatic 

diagnostic pipeline that integrates facial image analysis, clinical feature analysis, and exome 

sequencing analysis. 

https://gestaltmatcher.org/
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1.2 Contributions 

This thesis contains my seven published works. These publications are essential works in 

my doctoral period for the facial analysis of rare disorders. In this thesis, I only presented 

and discussed three publications (Marbach et al. 2019; T.-C. Hsieh et al. 2022; T. C. Hsieh 

et al. 2019) because these three already included the other four publications (Jean T. Pantel 

et al. 2018; Knaus et al. 2018; L. Guo et al. 2021; Ebstein et al. 2021).  

Chapter 2 introduces the recent next-generation phenotyping approaches. I took DeepGestalt 

as an example to demonstrate the whole facial analysis framework: face cropping, network 

architecture, training procedure, and benchmarking. 

The first current difficulty on the algorithmic level is addressed in Chapter 3 and Chapter 4. 

Chapter 3 presents the proof of concept of matching two patients with the novel disease by 

the facial features extracted from the DeepGestalt model (Marbach et al. 2019). Later in 

Chapter 4, I will introduce the solution with more detail and experiments that we conducted 

in the publication, “GestaltMatcher facilitates rare disease matching using facial phenotype 

descriptors” (T.-C. Hsieh et al. 2022). GestaltMatcher is an extension of DeepGestalt. In this 

work, we used the same network architecture as in DeepGestalt. We constructed a Clinical 

Face Phenotype Space (CFPS) using facial phenotypic descriptors extracted from the feature 

layer. The cosine distance in the CFPS quantified the similarity between two patients. By 

this approach, we are no longer limited to the syndromes with enough images and are 

flexible to the novel diseases. With the similarities among the patients, we can investigate 

the facial gestalt with the underlying molecular mechanism or disease pathway. 

Moreover, as GestaltMatcher can match patients with a similar phenotype, it can be used as 

a facial image version of GeneMatcher (Sobreira et al. 2015), which helps clinicians find 

the second patient of ultra-rare disorders. We envision integrating GestaltMatcher into the 

Matchmaker Exchange platform (Philippakis et al. 2015) to enhance phenotypic matching. 

To solve the lack of publicly available image resources, we developed GestaltMatcher 

Database (https://gestaltmatcher.org), and I will introduce this database in Chapter 5. Until 

January of 2021, it contained over 9,173 images with 620 different disorders. More than 30 

https://gestaltmatcher.org/
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clinician-scientists from different countries have curated patient data from the publications 

or the patients with proper consent. Most importantly, this database is available for the 

research community. We believe this database can enable global collaboration and 

accelerate the process of data collection and curation. It was a not yet published work. 

Chapter 6 will introduce “PEDIA: Prioritization of Exome Data by Image Analysis,” 

published in Genetics in Medicine in 2019 (T. C. Hsieh et al. 2019). This work demonstrated 

how we integrated analysis from three different kinds of patient data: facial photo (facial 

phenotype), HPO terms (clinical description), and exome sequencing data (molecular data). 

This analysis pipeline was already implemented in the University Hospital of Bonn and can 

be considered an example of a standard diagnostic pipeline in the future. 

In the end, I discussed the current status of NGP approaches, the problems not addressed in 

this thesis, such as the con-founder analysis. I also proposed possible future works to 

strengthen NGP approaches and synthesize frontal images with facial dysmorphism to 

analyze rare Mendelian disorders. 

1.3 List of publications 

• Hsieh, Tzung-Chien, Aviram Bar-Haim, Shahida Moosa, Nadja Ehmke, Karen W. 

Gripp, Jean Tori Pantel, Magdalena Danyel, et al. 2022. “GestaltMatcher Facilitates 

Rare Disease Matching Using Facial Phenotype Descriptors.” Nature Genetics, 

February. https://doi.org/10.1038/s41588-021-01010-x. 

• Ebstein, Frédéric, Sébastien Küry, Victoria Most, Cory Rosenfelt, …, Tzung-Chien 

Hsieh, et al. 2021. “De Novo Variants in the PSMC3 Proteasome AAA-ATPase 

Subunit Gene Cause Neurodevelopmental Disorders Associated with Type I 

Interferonopathies.” medRxiv. 

• Guo, Lily, Jiyeon Park, Edward Yi, Elaine Marchi, Yana Kibalnyk, Anastassia 

Voronova, Tzung-Chien Hsieh, Peter M. Krawitz, and Gholson J. Lyon. 2021. 

“KBG Syndrome: Prospective Videoconferencing and Use of AI-Driven Facial 

Phenotyping in 25 New Patients.” medRxiv. 

https://doi.org/10.1038/s41588-021-01010-x
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Chapter 2 Background and related works 

2.1 Next-generation phenotyping approaches 

With the advance of computer vision in the last decade, face recognition technology has 

enabled the disorder prediction by analyzing two-dimensional facial images (Ferry et al. 

2014; Kuru et al. 2014; Cerrolaza et al. 2016; K. Wang and Luo 2016; Dudding-Byth et al. 

2017; Shukla et al. 2017; Liehr et al. 2018; Gurovich et al. 2019; van der Donk et al. 2019; 

Porras et al. 2021; Hong et al. 2021). One of the essential studies at the beginning of the 

computer vision trend was the work published by Ferry and his colleagues in 2014. They 

proposed Clinical Face Phenotype Space (CFPS) formed by the feature vectors encoded by 

the model trained on 1,363 photos with eight different syndromes (Ferry et al. 2014). 

Since then, face recognition technologies were improved significantly and were the core of 

the deep learning revolution in computer vision. DeepFace (Taigman et al. 2014) 

demonstrated, for the first time, human-level performance in identity verification on the 

Labeled Faces in the Wild dataset (Huang et al. 2007). As a result, the face recognition 

system trained on CCTV images was utilized to match patients with one of ten syndromic 

disorders with intellectual disability (Dudding-Byth et al. 2017). In addition, the facial 

recognition model from healthy individuals can also be integrated with the CFPS as a hybrid 

model, and it was proven able to discriminate the facial gestalt of three novel disease-causing 

genes (van der Donk et al. 2019).  

Although many novel approaches were proposed after Ferry’s work, the scale of the training 

dataset and the number of disorders did not increase so much until DeepGestalt was 

published in 2019 (Gurovich et al. 2019). DeepGestalt is the facial analysis framework 

proposed by FDNA Inc. that trained the deep convolutional neural networks on over 17,000 

facial photos representing more than 200 disorders. DeepGestalt was considered the current 

state-of-the-art facial analysis approach, and the training dataset was the most extensive 

collection. This approach was already launched in the Face2Gene platform 
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(https://www.face2gene.com) and used by clinicians in their daily diagnostic routine. In this 

thesis, I took DeepGestalt as an example of the facial analysis framework and will introduce 

how DeepGestalt works in this chapter. 

2.2 DeepGestalt: facial phenotyping framework 

2.2.1 Face datasets 

The training procedure requires two different kinds of datasets. The first is the dataset of 

healthy faces used for training, and the second is the patients with genetic disorders. 

Precisely, the genetic disorders should be the disorders with facial dysmorphism. Here I 

used “genetic disorders” as the disorders with facial dysmorphism to make it short. 

The first dataset is used to train the networks to learn general facial features. There are many 

publicly available face datasets such as Labeled Faces in the Wild (LFW), CASIA-WebFace, 

CelebFaces+, VGGFace, MS-Celeb-1M, VGGFace2 (Huang et al. 2007; Yi et al. 2014; Sun, 

Wang, and Tang 2014; Parkhi, Vedaldi, and Zisserman 2015; Y. Guo et al. 2016; Cao et al. 

2017). In DeepGestalt, they used CASIA-WebFace as the dataset for the face recognition 

task. So I also took it as an example for the following parts. As there are many more up-to-

date and larger datasets compared to CASIA-WebFace, a benchmark of using different face 

datasets for this step is needed in the future. 

The second dataset is for fine-tuning the networks to learn facial dysmorphic features. There 

were two datasets used in this thesis, the Face2Gene dataset and the GMDB dataset. The 

Face2Gene dataset is a private dataset owned by FDNA Inc., and it contains more than 

38,000 facial photos with around 1,300 disorders. GMDB dataset is a publicly accessible 

dataset first introduced in GestaltMatcher publication (T.-C. Hsieh et al. 2022). More than 

30 clinician-scientists from different countries have curated patient data from the 

publications or the patients with proper consent. As the result of international collaboration, 

it contained over 5,000 images with 500 different disorders until September of 2021. These 

two datasets serve different purposes. Face2Gene dataset is more extensive than the GMDB 

dataset, almost by a factor of eight. Therefore, the Face2Gene dataset is more suitable for 

https://www.face2gene.com/
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developing new methods or for use in production. However, it is a private dataset that only 

FDNA could access. The research community cannot reproduce the proposed methods and 

benefit from this dataset. Hence, we proposed the GMDB dataset mainly curated from 

medical publications. It could be used as a public benchmark dataset and accessible to the 

research community. 

2.2.2 Face detection and alignment 

The images collected from medical publications or the photos taken directly from patients 

usually have different face sizes, poses, occlusions, and lightening, so face detection and 

alignment are crucial preprocessing steps. Face detection detects the face in the given image, 

and face alignment is to rotate or scale the image to the desired angle and size. We can obtain 

the faces less influenced by the pose and image size by these two steps. As face detection is 

a crucial step in face recognition, many approaches can detect and align the faces (Huang et 

al. 2012; Li et al. 2015; K. Zhang et al. 2016; Jiankang Deng, Guo, Ververas, et al. 2020). 

Face detection for our task is more straightforward than most face detection benchmarking, 

and we can obtain high-quality face crops with most of the existing tools. Because the source 

code of face detection and alignment methods described in DeepGestalt were not open to 

the public, instead of the unpublic resource, I introduced how we utilized RetinaFace 

(Jiankang Deng, Guo, Ververas, et al. 2020) to crop the face below. The source code of 

RetinaFace can be found in the official Git repository 

(https://github.com/serengil/retinaface). 

RetinaFace can detect the bounding box of the face and the five facial landmarks: right eye, 

left eye, nose, right end of the mouth, and the left end of the mouth. The shape of the 

network’s input layer is (100, 100), so we have to use the bounding box and facial landmarks 

to perform the scaling and alignment. We first rotate the image to let the two eyes 

horizontally aligned and then scale the image into (100, 100). Moreover, DeepGestalt takes 

a grayscale image as input, so we later convert the image into a grayscale image. The final 

step can be optional when using different architectures with different input shapes. 
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2.2.3 Training procedure 

As briefly introduced in Section 2.2.1, we utilized transfer learning for training the 

DeepGestalt model. We first trained the networks on CASIA-WebFace that contains only 

healthy individuals to learn the general facial features, and later trained the same networks 

with the weights preserved from previous steps on the Face2Gene dataset to learn the facial 

dysmorphic features. The networks used in DeepGestalt are similar to the networks 

introduced in the CASIA-WebFace publication (Yi et al. 2014). 

The architecture is shown in Table 1. DeepGestalt network consists of ten convolutional 

layers with batch normalization (BN) and ReLU for embedding the input features. After 

every Conv-BN-ReLU layer, a max-pooling layer is applied for reducing the spatial size 

while increasing the semantic representation. The classifier part of the network consists of 

a fully connected linear layer with dropout (0.5). 

Because there are two steps in DeepGestalt training, it results in two different output sizes 

of fully-connected layer and softmax. The size depends on the training dataset. When we 

use the CASIA-WebFace to train the normal face recognition model, the output size is 10575 

that is the number of classes in CASIA-WebFace. When using the Face2Gene dataset as a 

training dataset, the output size is 299. 299 is the number of syndromes we used for training 

in Chapter 4. This number will change when we include more syndromes in the training set 

or remove syndrome from the training set. 

During inference, the facial region crop is forward passed through a deep convolutional 

network (CNN), and finally, we obtain the final prediction for the input face image. The 

DeepGestalt paper (Gurovich et al. 2019) also introduced using different face regions as 

input and aggregated the final prediction. They proved that this aggregated method gained 

higher accuracy than only using the whole face as input. I will not introduce this aggregated 

method in the following sections. Therefore, we can consider the DeepGestalt in this thesis 

only takes the whole face as input. 
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Table 1. The architecture of DeepGestalt. In the fully-connected layer and softmax, the 
output size equals the training dataset classes. The number of classes in CASIA-WebFace 
is 10575, and the number of classes in the Face2Gene dataset is 299. The classes in the 
Face2Gene dataset can vary from time to time. 

Name Size Output size 
Conv-1 3x3/1 100x100x32 
Conv-2 3x3/1 100x100x64 

Max-pooling 2x2/2 50x50x64 
Conv-3 3x3/1 50x50x64 
Conv-4 3x3/1 50x50x128 

Max-pooling 2x2/2 25x25x128 
Conv-5 3x3/1 25x25x96 
Conv-6 3x3/1 25x25x192 

Max-pooling 2x2/2 13x13x192 
Conv-7 3x3/1 13x13x128 
Conv-8 3x3/1 13x13x256 

Max-pool 2x2/2 7x7x256 
Conv-9 3x3/1 7x7x160 
Conv-10 3x3/1 7x7x320 

Average-pooling 7x7/1 1x1x320 
Dropout (50%)  1x1x320 

FC  105751 (299)2 
Softmax  105751 (299)2 

 

  

 

1 The number of classes in CASIA-WebFace dataset. 
2 The number of classes in Face2Gene dataset. 
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2.2.4 Evaluation on Face2Gene and GMDB datasets 

To evaluate the performance of DeepGestalt, I first trained and tested on the Face2Gene 

dataset. The training dataset consisted of 19,950 images from 299 different disorders, and 

the test dataset consisted of 2,669 images. Because the Face2Gene dataset is not open to the 

public, I later applied the same training and testing on the GMDB dataset. The version of 

the GMDB dataset is the same as the one published in the GestaltMatcher study (T.-C. Hsieh 

et al. 2022). The training dataset contained 3,438 images from 139 disorders, and the test 

dataset contained 360 images. 

The top-k accuracy is used to evaluate the performance. For each test image, the output is a 

list of gestalt scores that indicate the disorders’ possibility. After sorting the list by gestalt 

scores in descending order, we can obtain a list of suggested syndromes. The disorder with 

a higher rank has a higher possibility of the correct diagnosis. If the correct diagnosis is 

among the top-k ranks, we called it a top-k match. The examples of the top-k match are 

shown in Figure 2. The performance can be benchmarked by averaging each syndrome’s 

top-k accuracy (percent of test images with correct matches within the top-k) to avoid biasing 

predictions toward the major class. 

The top-k accuracy (k = 1, 5, 10, and 30) is reported in Table 2. When using the Face2Gene 

dataset as the training set, the top-1 accuracy was 35.94%, and the top-10 accuracy was 

63.91%. On the GMDB dataset, the top-1 and top-10 accuracy was 25.13% and 59.79%, 

respectively. 

Table 2: Performance comparison between training on Face2Gene and GMDB 

datasets. 

Model Classes 
Training 

images 

Test 

images 
Top-1 Top-5 Top-10 Top-30 

Face2Gene 299 19,950 2,669 35.94% 52.45% 63.91% 78.13% 

GMDB 139 3,438 360 25.13% 47.23% 59.79% 77.26% 
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Figure 2: Screenshot of suggested syndromes in Face2Gene. By sorting gestalt scores in 
descending order, we can obtain a list of suggested syndromes. This list shows the top-10 
syndromes. Suppose the correct diagnosis of this patient is Coffin-Siris syndrome which is 
at the first rank. Then we call it a top-1 match. It will also contribute to any k larger than 
one. Take Rett Syndrome for the correct diagnosis as another example. The rank of Rett 
Syndrome is at eighth place, so we can call it a top-10 match. We usually take 1, 5, 10, 30 
for the value of k. 
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2.3 Discussion 

This chapter introduced the next-generation phenotyping approach, such as DeepGestalt, by 

presenting the network architecture and the benchmarking on Face2Gene and GMDB 

datasets. It is noted that the accuracy of the Face2Gene dataset was not comparable to the 

results reported in the original DeepGestalt publication because the training and testing sets 

were different. Moreover, the model was trained on the whole face as an example that is 

different from the DeepGestalt method introduced in the original publication. They first 

cropped the face into different face regions and later aggregated the prediction results. 

Besides, we should not directly compare the performance between training on Face2Gene 

and GMDB datasets because the numbers of the syndrome and test sets were different. 

However, even though the classes of Face2Gene were two times that of GMDB, the 

performance of Face2Gene was still higher than GMDB. It indicates that the model trained 

on a more extensive and diverse dataset performs better because the Face2Gene dataset is 

approximately seven to eight times larger than the GMDB dataset. 

Although the results reported in the previous section were hard to compare to the original 

work, we could still gain hints for further improvement from both data and method 

perspectives. The current publicly available dataset to the scientific community is still too 

small compared to the private Face2Gene dataset, and it is a considerable concern for the 

further development of next-generation phenotyping approaches. Hence, the collection of 

images for the scientific community is an urgent need. 

In addition, most of the syndromes in the Face2Gene dataset are the common ones among 

rare disorders. The speed of collecting data would become more and more difficult and slow 

due to the rareness of the data. So it is crucial that the method should support ultra-rare 

disorders and novel diseases. The following two chapters will tackle this problem. 

In the end, the architecture used in DeepGestalt is from a study presented in 2014, and it 

might be needed to update the network architecture or the way of aggregating the different 

face regions. This topic will be further discussed in Section 7.1. 
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Chapter 3 The discovery of a novel phenotype by 

AI-driven facial phenotyping 

3.1 Summary 

This study is the proof of concept of how to utilize NGP tools to explore the novel gene-

phenotype association. We introduced a novel phenotype presented in two unrelated patients 

caused by a de novo mutation in LEMD2. These two patients shared the same de novo 

disease-causing mutation and were initially matched by GeneMatcher. This phenotype was 

later named Marbach-Rustad progeroid syndrome (MIM: 619322). 

These two patients were first analyzed by DeepGestalt (Face2Gene), and both gestalt scores 

of suggested syndromes provided by DeepGestalt were very similar. That provided a hint 

that these two patients had a similar facial phenotype. However, DeepGestalt can only 

recognize the disorder trained in the model and quantify the similarity between patient and 

disorder. Hence, to prove these two patients had the same novel disorder, we utilized 

FaceNet (Schroff, Kalenichenko, and Philbin 2015) to obtain the facial embedding of each 

photo and compare it to the other 265 patients with 66 monogenic disorders in the PEDIA 

cohort. We found that the pairwise distance between these two patients was significantly 

smaller than the random pairwise comparison of the other 265 patients. We then concluded 

that these two patients shared similar facial gestalt and suggested LEMD2 can link to this 

novel disease. 

This work was already published in the Americal Journal of Human Genetics in 2019 with 

the title ‘The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid 

Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping’ (Marbach 

et al. 2019). I am one of the co-authors and performed the facial analysis in this study. 

With this study’s inspiration, instead of using FaceNet trained on healthy persons only, we 

would like to take DeepGestalt trained on patients with facial dysmorphism as a better 

encoder to convert images to feature vectors. Therefore, in the next chapter, we will 
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introduce the GestaltMatcher approach (T.-C. Hsieh et al. 2022) that tackles the limitation 

to ultra-rare disorders and novel diseases. 

3.2 DeepGestalt analysis 

The two patients analyzed in this study were initially presented in two different university 

hospitals (Bologna, Italy and Oslo, Norway). The German group later diagnosed the first 

individual in Cologne. The same de novo disease-causing mutation c.1436C>T, (p. 

Ser479Phe) in LEMD2 was first identified independently on these two patients. Later, both 

groups found each other by the match with GeneMatcher (Sobreira et al. 2015). These two 

patients both presented similar progeria-like appearances. The frontal images of both 

patients are shown in Figure 3. 

 

Figure 3: Facial phenotypes of individuals 1 (left) and 2 (right). Individual 1 is shown at 
the ages of 16 years (upper panel) and 3 years (lower panel); individual 2 is shown at the 
ages of 10 years and 2 years (upper and lower panel, respectively). 
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In 2017, the German group analyzed frontal images of individual #1 by Face2Gene 

(Gurovich et al. 2019) and found that the well-established nuclear envelopathy HGPS was 

listed among the most likely diagnoses. Later, the image analysis of individual #2 had 

similar results. We were intrigued by the DeepGestalt results. We then contacted Face2Gene 

and obtained the vector of similarity scores for each patient. Each vector had 216 syndromes 

similarity scores indicating the similarities to 216 syndromes trained in DeepGestalt. Both 

individuals’ DeepGestalt similarity scores vectors are shown on a radar plot in Figure 4A. 

The figure shows the high overlap of the similarity scores and also suggests that the novel 

phenotype presented in both patients might be related to progeria-like syndromes such as 

HGPS. 

 

 

Figure 4: Similarity analysis of two LEMD2 patients. A: Overlap of DeepGestalt 
similarity scores of patients#1 (blue) and #2 (red) to other disorders. The computed facial 
similarity of each patient to the indicated disorders is visualized as colored areas extending 
outward on the radicular axes, and purple color indicates overlap. B: A dendrogram is used 
to visualize the computed phenotypic “distance” of patients #1 and #2 in a sample containing 
265 individuals with 66 different syndromes. The close-up shows both patients are in close 
proximity to each other, as well as to patients with progeroid disorders (HGPS, PYCR1-
related autosomal recessive cutis laxa). 
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3.3 FaceNet analysis 

Because the genetic disorder of individuals #1 and #2 was previously unknown, we further 

investigated the similarity between both cases in an unsupervised way. To do this, we 

wanted to measure the similarity between the two cases and compare to the patients with 

other disorders to see whether the two patients are more similar compared to the others. 

To compare with the patients with other syndromes, we selected a cohort of 265 individuals 

from the PEDIA cohort (T. C. Hsieh et al. 2019). We are also interested in comparing the 

two patients to the patient with progeroid-related syndromes such as HGPS and PYCR1-

related autosomal recessive cutis laxa. Therefore, these 265 patients have 66 different 

monogenic syndromes with facial dysmorphism, including 22 LMNA and 11 PYCR1 

patients. 

We used FaceNet (Schroff, Kalenichenko, and Philbin 2015) to measure the similarities 

among patients. FaceNet was initially trained on healthy individuals to perform the intra-

person recognition task, and each photo was encoded by the pre-trained FaceNet model 

(version 20170512-110547) into a 128-dimensional embedding vector. We measured the 

patient similarity by calculating the Euclidean distance between two vectors and 

hypothesized that individuals with the same disorder are smaller than those between 

individuals with different disorders. We found that individuals #1 and #2 were almost the 

most similar among 34,980 random pairwise comparisons and were much more similar than 

most individuals inside other disease entities, including some related individuals (Figure 5).  

We further performed the clustering analysis to prove that these two patients were more 

similar to other progeroid-related syndromes. Figure 4B shows that the two LEMD2 were 

the most similar patients to each other compared to LMNA and PYCR1 patients. Therefore, 

we concluded that there two LEMD2 patients presented a novel phenotype similar to 

progeroid-related syndromes and suggested that LEMD2 could link to this new phenotype. 
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Figure 5: Histogram of the pairwise distances among all cohort cases. Comparisons of 
the same disease entity were used for adding a red blend to the respective bins according to 
their proportion. At the left side of the distribution, where the two individuals with the 
LEMD2 mutation are also posed, the percentage of pairs with the same disease-causing gene 
increases. 

3.4 Discussion 

This study presented an example of linking LEMD2 to a novel disorder related to progeroid 

syndrome. Although DeepGestalt can point to a similar syndrome to a patient’s phenotype, 

DeepGestalt cannot identify the novel phenotype. Moreover, DeepGestalt cannot measure 

the similarity between two patients. It is crucial that the NGP approaches can support ultra-

rare diseases and novel disorders because these disorders are more and more common in the 

diagnostic workup. 

We showed that the deep learning approach such as FaceNet initially trained on healthy 

individuals for intra-person verification could quantify the similarities among patients. It is 

a proof-of-concept study that moves from the classification method to the clustering 

approach. The next chapter will introduce GestaltMatcher developed based on this study and 

a more comprehensive analysis of this patient matching analysis. 
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Chapter 4 GestaltMatcher facilitates rare disease 

matching using facial phenotype descriptors 

4.1 Summary 

The previous chapter showed an example of identifying a novel phenotype by matching two 

unrelated patients with the facial feature vectors. Inspired by the previous chapter, we 

developed the GestaltMatcher approach to enable matching patients with the same facial 

phenotype. GestlatMatcher can be seen as an extension of DeepGestalt (Gurovich et al. 2019) 

that aims to overcome the following three limitations: (1) not able to support ultra-rare 

syndrome; (2) cannot support novel disorder; (3) cannot measure the similarities among 

patients. 

This work first introduced the three limitations listed above to the current NGP approaches, 

such as DeepGestalt. We then presented GestaltMatcher that uses the DCNN trained on 

patients as an image encoder to convert facial photos into 320-dimensional feature vectors, 

and the vectors were referred to as Facial Phenotype Descriptors (FPDs). The Clinical Face 

Phenotype Space was formed by the FPDs, and the cosine distance in this space can further 

measure the patients’ facial syndromic similarities. 

We then proved that with GestaltMatcher, we could support the 299 syndromes trained in 

the model and additional 816 ultra-rare syndromes that the model has not seen before, 

indicating that GestaltMatcher can support the ultra-rare and novel disorders. Moreover, we 

validated GestaltMatcher on the 15 recent publications that utilized GeneMatcher (Sobreira 

et al. 2015) to match the patients who presented facial dysmorphism to show that 

GestaltMatcher can be seen as the facial image version of GeneMatcher. We further proved 

that GestaltMatcher could distinguish the disorders under the same phenotypic series. In the 

end, we also presented GestaltMatcher as a tool for clinician-scientists to diagnose patients 

and match patients with an unknown diagnosis. In the end, we envision GestaltMatcher can 
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be connected to the MatchMaker Exchange platform (Philippakis et al. 2015) to provide the 

matching by facial images. 

The following sections will present the GestaltMatcher approach, and it is already published 

in Nature Genetics in 2022 with the title ‘GestaltMatcher facilitates rare disease matching 

using facial phenotype descriptors’ (T.-C. Hsieh et al. 2022). I am one of the co-first authors 

in this work, and I conducted the data analysis and wrote the manuscript. I am also 

responsible for organizing the entire project and communicating among the clinicians-

scientists, from collecting the patient data to analyzing the phenotypes. In the following 

sections, the Method section (Section 4.6) is presented after the Discussion section (Section 

4.5) to keep the same order of the paragraph as presented in the original publication. The 

supplementary materials can be found in Appendix A.1. 

4.2 Abstract 

Many monogenic disorders cause a characteristic facial morphology. Artificial intelligence 

can support physicians in recognizing these patterns by associating facial phenotypes with 

the underlying syndrome through training on thousands of patient photographs. However, 

this “supervised” approach means that diagnoses are only possible if the disorder was part 

of the training set. To improve recognition of ultra-rare disorders, we developed 

GestaltMatcher, an encoder for portraits that is based on a deep convolutional neural 

network. Photographs of 17,560 patients with 1,115 rare disorders were used to define a 

Clinical Face Phenotype Space, in which distances between cases define syndromic 

similarity. Here we show that patients can be matched to others with the same molecular 

diagnosis even when the disorder was not included in the training set. Together with 

mutation data, GestaltMatcher could not only accelerate the clinical diagnosis of patients 

with ultra-rare disorders and facial dysmorphism but also enable the delineation of novel 

phenotypes. 
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4.3 Introduction 

Rare genetic disorders affect more than 6.2% of the global population (Ferreira 2019). 

Because genetic disorders are rare and diverse, accurate clinical diagnosis is a time-

consuming and challenging process, often referred to as the “diagnostic odyssey” (Baird et 

al. 1988), and all informative clinical features have to be taken into consideration. A large 

fraction of patients, particularly those with neurodevelopmental disorders, exhibit 

craniofacial abnormalities (Hart and Hart 2009). If the facial phenotype (“gestalt”) is highly 

recognizable, such as in Down syndrome, it may also play an important role in establishing 

the diagnosis. Sometimes the gestalt is so characteristic or distinct that it reduces the search 

space of candidate genes or can be used to delineate novel phenotype-gene associations 

(Marbach et al. 2019). However, the ability to recognize these syndromic disorders relies 

heavily on the clinician’s experience. Reaching a diagnosis is very challenging if the 

clinician has not previously seen a patient with an ultra-rare disorder or if the patient presents 

with a novel disorder, both of which are increasingly common scenarios. 

With the rapid development of machine learning and computer vision, a considerable 

number of next-generation phenotyping tools have emerged that can analyze facial 

dysmorphology using two-dimensional (2D) portraits of patients (Ferry et al. 2014; Kuru et 

al. 2014; Cerrolaza et al. 2016; K. Wang and Luo 2016; Dudding-Byth et al. 2017; Shukla 

et al. 2017; Liehr et al. 2018; Gurovich et al. 2019; van der Donk et al. 2019). These tools 

can aid in the diagnosis of patients with facial dysmorphism by matching their facial 

phenotype with that of known disorders. In 2014, Ferry et al. proposed using a clinical face 

phenotype space (CFPS) formed by facial features extracted from images to perform 

syndrome classification; the system in that study was trained on photos of more than 1,500 

controls and 1,300 patients with eight different syndromes (Ferry et al. 2014). Since then, 

facial recognition technologies have improved significantly and constitute the core of the 

deep-learning revolution in computer vision (Taigman et al. 2014; Huang et al. 2007). The 

current state-of-the-art framework for syndrome classification, DeepGestalt (Face2Gene, 

FDNA Inc, USA), has been trained on more than 20,000 patients and currently achieves 

high accuracy in identifying the correct syndrome for roughly 300 syndromes (Gurovich et 

al. 2019; Jean Tori Pantel et al. 2020). DeepGestalt has also demonstrated a strong ability to 



40 GestaltMatcher facilitates rare disease matching using facial phenotype descriptors 

 

separate specific syndromes and subtypes, surpassing human experts’ performance 

(Gurovich et al. 2019). Hence, pediatricians and geneticists increasingly use such next-

generation phenotyping tools for differential diagnostics in patients with facial 

dysmorphism. However, most existing tools, including DeepGestalt, need to be trained on 

large numbers of photographs and are therefore limited to syndromes with images of at least 

seven different patients. The number of submissions to diagnostic databases of pathogenic 

variants, such as ClinVar (Landrum et al. 2018), has become a good surrogate for the 

prevalence of rare disorders. When submissions to ClinVar of disease genes with pathogenic 

mutations are plotted in decreasing order, most of the supported syndromes are on the left, 

indicating relatively high prevalence (Figure 6). For instance, Cornelia de Lange syndrome 

(CdLS), which has been modeled by multiple tools (Ferry et al. 2014; Gurovich et al. 2019), 

is caused by mutations in NIPBL, SMC1A, or HDAC8, as well as in other genes, and has 

been linked to hundreds of reported mutations. However, more than half of the genes in 

ClinVar have fewer than ten submissions each (Figure 6). As a result, most phenotypes have 

not been modeled because sufficient data are lacking. Thus, the need to train on large 

numbers of photographs is a major limitation for the identification of ultra-rare syndromes. 

A second limitation of classifiers such as DeepGestalt is that their end-to-end, offline-trained 

architecture does not support new syndromes without additional modifications. In order to 

model a new syndrome in a deep convolutional neural network (DCNN), the developer has 

to go through six separate steps (Appendix A.1 Supplementary Fig. 1), including collecting 

images of the new syndrome, changing the classification head (which is the last layer of the 

DCNN), retraining the network, and more. In addition, the model cannot be used to quantify 

similarities among undiagnosed patients, which is crucial in the delineation of novel 

syndromes. 

A third shortcoming of current approaches is that they are not able to contribute to the 

longstanding discussion within the nosology of genetic diseases about distinguishability. 

Syndromic differences have been hard to measure objectively (McKusick 1969), and 

decisions to “split” syndromes into separate entities on the basis of perceived differences or 

to “lump” syndromes together on the basis of similarities have been made subjectively. 
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Current tools are unable to quantify the similarities between syndromes in a way that could 

shed light on the underlying molecular mechanisms and guide classification. 

 

Figure 6: Subsets of disorders supported by DeepGestalt and GestaltMatcher.  The 
lower x-axis shows examples of disease genes, and the upper x-axis is the cumulative 
number of genes. The y-axis shows the number of pathogenic submissions in ClinVar for 
each gene. The numbers on the curve indicate the number of submissions for each of the 
indicated genes. Most of the rare disorders that DeepGestalt supports have relatively high 
prevalence based on their ClinVar submissions, e.g., Cornelia de Lange syndrome (CdLS) 
is caused by a mutation in NIPBL, SMC1A, or HDAC8 (yellow), among other genes. Disease 
genes such as PACS1 (gray) cause highly distinctive phenotypes but are ultra-rare, 
representing the limit of what current technology can achieve. The first novel disease that 
was characterized by GestaltMatcher is caused by mutations in LEMD2 (red). A candidate 
disease gene associated with a characteristic phenotype that can be identified by 
GestaltMatcher is PSMC3. 

Our objective is to improve phenotypic decision support for rare disorders. Here we describe 

GestaltMatcher, an innovative approach that uses an image encoder to convert all features 

of a facial image into a vector of numbers. The encoder can also be thought of as the 

penultimate layer of a DCNN that was trained on known syndromes, such as DeepGestalt. 

The vectors resulting from the encoder are then used to build a CFPS for matching a patient’s 

photo to a gallery of portraits of solved or unsolved cases. The distance between cases in the 

CFPS quantifies the similarities between the faces, thereby matching patients with known 
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syndromes or identifying similarities between multiple patients with unknown disorders and 

thereby helping to define new syndromes. Because GestaltMatcher quantifies similarities 

between faces in this way, it addresses all three of the limitations described above: (1) it can 

identify “closest matches” among patients with known or unknown disorders, regardless of 

prevalence; (2) it does not need new architecture or training to incorporate new syndromes; 

and (3) it creates a search space to explore similarity of facial gestalts based on mutation 

data, which can point to shared molecular pathways of phenotypically similar disorders. 

4.4 Results 

Overview. The feature encoder of GestaltMatcher computes a Facial Phenotype Descriptor 

(FPD) for each portrait image (Figure 7a). Each FPD can be thought of as one coordinate in 

the CFPS (Figure 7b). The distances between the FPDs in the CFPS form the basis for 

syndrome classification, delineation of novel phenotypes, and patient clustering. All 

benchmarking results described in this section, as well as those available through the web 

service, are based on data from Face2Gene (F2G). The F2G dataset was used to construct a 

CFPS consisting of 26,152 images from 17,560 individuals who had been diagnosed with a 

total of 1,115 different syndromes, each supported by at least two cases. We divided the 

dataset into two categories: the rare dataset consisting of 816 ultra-rare and novel syndromes, 

representing syndromes that we aim to identify, and the frequent set, consisting of 299 

syndromes already identified by DeepGestalt. The latter set of known syndromes was also 

used to train the encoder. Each category was further split into a gallery (90% of each 

syndrome) and a test set (the remaining 10% of each syndrome) (see Methods for details). 

The performance of the three use cases described below, that is matching patients with 

diagnosed or undiagnosed individuals, and quantifying syndromic similarity, depends on the 

composition of the training set and the gallery. 

Because F2G data cannot be shared, we also compiled the GestaltMatcher database (GMDB), 

consisting of 4,306 images from 3,693 individuals with 257 different syndromes. This 

second data set is based on 902 publications and additional unpublished cases for which we 

obtained consent for sharing. All findings described in this section that are based on the F2G 
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data can be reproduced qualitatively on the GMDB data; results obtained with the GMDB 

data are included in Appendix A.1 Supplementary Information. 

 

 

Figure 7: Concept of GestaltMatcher.  a, Architecture of a deep convolutional neural 
network consisting of an encoder and a classifier. Facial dysmorphic features of 299 frequent 
syndromes were used for supervised learning. The last fully connected layer in the feature 
encoder was taken as a Facial Phenotype Descriptor (FPD), which forms a point in the 
Clinical Face Phenotype Space (CFPS). b, In the CFPS, the distance between each patient’s 
FPD can be considered as a measure of similarity of their facial phenotypic features. The 
distances can be further used for classifying ultra-rare disorders or matching patients with 
novel phenotypes. Take the input image shown in the figure as an example: the patient’s 
ultra-rare disease, which is caused by mutations in LEMD2, was not in the classifier, but 
was matched with another patient with the same ultra-rare disorder in the CFPS (Marbach 
et al. 2019). 

4.4.1 Training with dysmorphic images improves the performance. 

To investigate the importance of using a syndromic features encoder rather than a normal 

facial features encoder, we compared FPDs that are based on the same architecture but 

trained on different data. The first encoder, which we refer to as Enc-healthy, was only 
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trained on data from healthy individuals in CASIA-WebFace (Yi et al. 2014). The second 

encoder, which we refer to as Enc-F2G, was first trained on the faces of healthy individuals 

and then fine-tuned by training on dysmorphic faces from the gallery of patients with 

frequent syndromes. All images were encoded separately for each encoder. We then 

evaluated the performance of the encoders on test sets of syndromes from the frequent set 

and from the rare set. The performance metric was the percentage of test cases (with known 

diagnosis) for which an FPD with the matching disorder was within the k closest diagnoses 

in the CFPS (the top-k accuracy). The features created by Enc-F2G performed better in the 

matching process than those created with Enc-healthy (Table 3). The features created by 

Enc-F2G improved the accuracy of matching within the top-10 closest images from 31.46% 

to 49.12% for the frequent category and from 21.77% to 29.56% for the rare syndromes, 

which do not overlap with the frequent syndromes. This emphasizes the importance of 

training the encoder on data from faces with dysmorphic phenotypes and not only on healthy 

faces. The larger relative improvement of 56% on the frequent test set versus 36% for the 

rare set could possibly be explained as Enc-F2G being better suited to encode syndromes of 

the frequent set because it was previously trained on these disorders. Likewise, for some of 

the 816 novel disorders, the characteristic features were not yet optimally represented by 

Enc-F2G because features of these disorders were not part of the training set.  

The same trend of improvement by fine-tuning on a diverse but smaller set of syndromic 

photos is also seen with the public GMDB dataset (Enc-GMDB vs. Enc-F2G in Appendix 

A.1 Supplementary Table 1). These results suggest that an encoder that is fine-tuned on as 

many syndromic faces as possible, such as DeepGestalt, is a better fit for the task of 

syndrome classification than one trained only on healthy faces. Moreover, for rare 

syndromes not previously seen by the encoder, DeepGestalt’s FPD provides a better 

generalization or clustering than the FPD encoded by CASIA. 
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Table 3: Performance comparison between classification and clustering with 
different encoders on sets of known disorders. 

Test set Model 
Images Supported 

syndromes 
Null top-1 
accuracy Top-1 Top-5 Top-10 Top-30 

Gallery Test 

F2G-frequent Enc-F2G (softmax) - 2,669 299 0.33% 35.94% 52.45% 63.91% 78.13% 

F2G-frequent  Enc-F2G 19,950 2,669 299 0.33% 21.06% 39.62% 49.12% 67.98% 

F2G-frequent  Enc-healthy 19,950 2,669 299 0.33% 10.69% 23.69% 31.46% 50.80% 

F2G-rare Enc-F2G  2,348.8 1,183.3 816 0.12% 13.66% 23.62% 29.56% 40.94% 

F2G-rare Enc-healthy 2,348.8 1,183.3 816 0.12% 9.46% 16.87% 21.77% 31.77% 

F2G-frequent Enc-F2G 22,298a 2,669 1,115c 0.09% 20.15% 37.81% 46.85% 64.21% 

F2G-frequent Enc-healthy 22,298a 2,669 1,115c 0. 09% 9.70% 22.51% 29.80% 48.24% 

F2G-rare Enc-F2G  22,298.8b 1,183.3 1,115c 0. 09% 7.07% 14.19% 17.67% 24.41% 

F2G-rare Enc-healthy 22,298.8b 1,183.3 1,115c 0. 09% 4.02% 8.84% 11.73% 16.61% 

The deep convolutional neural networks of Enc-F2G (softmax), Enc-F2G, and Enc-healthy have the same 
architecture. Training of Enc-F2G (softmax) and Enc-F2G was initiated with CASIA-WebFace and further 
fine-tuned on photos of patients in the Face2Gene frequent set. The Enc-F2G (softmax) model is the same as 
Enc-F2G, but using the softmax values of the layer instead of cosine distances between the FPDs in the CFPS. 
For the top-1 to top-30 columns, the best performance in each set is boldfaced. The numbers of images and 
syndromes in the rare set are averaged over ten splits. Enc-F2G outperformed Enc-healthy on both types of 
syndromes, showing the importance of fine-tuning on patient photos for learning facial dysmorphic features. 
The top-10 accuracy of Enc-F2G only drops by 2.27 percentage points (from 49.12% to 46.85%) after 
increasing the number of cases in the gallery and almost quadrupling the number of supported syndromes from 
299 to 1,115. 

a Number of images in the frequent gallery + rare gallery. 
b Average of ten splits in the frequent gallery + rare gallery. 
c Number of syndromes in the frequent gallery + rare gallery. 

 

4.4.2 Syndromic diversity improves matching with novel phenotypes 

Earlier definitions of the FPD were mainly based on training a network with a small selection 

of common and highly characteristic syndromes (Ferry et al. 2014; Dudding-Byth et al. 

2017). In principle, we could train GestaltMatcher’s encoder on all 1,115 different 

syndromes in our dataset. However, most of the facial phenotypes that have recently been 

linked to a gene are either ultra-rare or less distinctive, and using a very unbalanced training 

set with many ultra-rare disorders linked to only few cases may add noise without substantial 

additional benefit. We therefore analyzed the influence of the number of syndromes on the 
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encoder’s fine-tuning by incrementally increasing their number starting with the most 

frequent ones. Due to the imbalance in prevalence among the disorders added each time, the 

improvement could be affected by the additional number of training subjects. Therefore, we 

used the same number of subjects for each syndrome. In this section, the test set consists 

only of disorders from the rare set that the encoder has not seen. The training procedure and 

averaging of the readout is described in detail in the Methods. 

When we increased the number of training syndromes, the accuracy increased (Figure 8). In 

general, the performance was also higher when more individuals per syndrome were used 

for training. Particularly when more than 50 syndromes are used, the curve for training with 

20 subjects/syndrome was above the curve for 10 subjects/syndrome, and so on. The same 

trend is also shown in the public GMDB dataset (Appendix A.1 Supplementary Figs. 2 and 

3). 

Moreover, using double the number of syndromes is better than using double the number of 

subjects for most of the combinations (Appendix A.1 Supplementary Fig. 4), and the effect 

of doubling the number of syndromes used for training is greater when the base sample size 

is larger than 1,200 subjects (Figure 9 and Appendix A.1 Supplementary Fig. 5). Both of 

these findings suggest that increasing the syndromic diversity in the training set improves 

the performance for novel disorders. However, in the real-world scenario, the numbers of 

subjects per syndrome are not imbalanced. Therefore, we also tested the effect of syndromes 

with fewer cases and found that they contributed only marginally to the performance 

(Appendix A.1 Supplementary Note and Figure 10). In the following section, the Enc-F2G 

encoder is based on the 299 previously described syndromes. 
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Figure 8: Influence of the number of syndromes included in model training. The x-axis 
is the number of syndromes used in model training. The y-axis shows the average top-10 
accuracy of testing images in the rare set. Each line uses the same number of subjects per 
syndrome, which is shown in the key. For each point, we train the models five times with 
five different splits and average the results. The null accuracy (the expected value if the 
encoder returned random predictions) is 1.2% (10/816). 
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Figure 9: Performance improvement of double syndromes and double subjects when 
using different base sample sizes with Face2Gene models and the Face2Gene rare set. 
Base sample size is calculated by the number of subjects multiplied by the number of 
syndromes. For example, the point of 40 subjects and 10 syndromes has sample size of 400, 
and it equals both the point of 10 subjects and 40 syndromes and the point of 20 subjects 
and 20 syndromes. ΔTop-10 accuracy is the difference of accuracy between the double 
syndromes or subjects and the base point, and is calculated based on Figure 8. Take the two 
points annotated in the figure as two examples. The base point is 10 subjects and 40 
syndromes with sample size 400. The upper indicated point is subtracting the point of 10 
subjects and 40 syndromes from the point of 10 subjects and 80 syndromes in Figure 8. The 
lower point is subtracting the point of 10 subjects and 40 syndromes from the point of 20 
subjects and 40 syndromes in Figure 8. In this graph, doubling the number of syndromes 
always improves top-10 accuracy more than doubling the number of subjects, particularly 
at larger base sample sizes. Thus, adding more syndromes is more effective than adding 
more subjects when enlarging the training set. 
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Figure 10: Influence of the number of syndromes included in model training. The x-
axis is the number of syndromes used in model training. The left y-axis shows the average 
top-10 accuracy for five models, and the error bars show the standard deviation over five 
models. The right y-axis is the cumulative number of subjects in the training syndromes. 
Each point is the average of testing five different models with different data splits. The null 
accuracy is 1.23% (10/816). 

4.4.3 Comparing performance between GestaltMatcher and DeepGestalt 

To validate the GestaltMatcher approach for the first use case (matching to known 

syndromes), we first worked with the 323 images of patients with 91 syndromes from the 

London Medical Database (LMD) (Winter and Baraitser 1987) that were already used for 

benchmarking the performance of DeepGestalt (Gurovich et al. 2019). When using the 

frequent gallery, which contains syndromes that DeepGestalt currently supports, 

GestaltMatcher achieved 64.30% and 86.59% accuracy within the top-10 and top-30 ranks, 

respectively, which was lower than the 81.28% top-10 accuracy and 88.34% top-30 accuracy 

achieved by DeepGestalt with a Enc-F2G softmax approach (Appendix A.1 Supplementary 

Tables 2 and 3). However, when we used the gallery of all 1,115 syndromes for 
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GestaltMatcher (frequent + rare), which is a search space that is roughly four times larger, 

the top-10 and top-30 dropped by only 2.40 percentage points and 5.17 percentage points, 

respectively (Appendix A.1 Supplementary Table 2). Moreover, we performed the same 

evaluation on the F2G-frequent test set and the GMDB-frequent test set and obtained similar 

results. When the number of syndromes in the gallery was increased from 299 to 1,115, the 

top-10 and top-30 also dropped slightly, by 2.27 and 3.77 percentage points, for the F2G-

frequent test set (Table 3). The results with the GMDB-frequent test set also dropped only 

slightly while supporting more than twice the number of syndromes (Appendix A.1 

Supplementary Table 1). These results indicate that the GestaltMatcher clustering approach 

is highly scalable and robust to adding new disorders, without the limitations of a 

classification approach. 

4.4.4 Matching undiagnosed patients from unrelated families 

In the second use case, we envision GestaltMatcher as a phenotypic complement to 

GeneMatcher (Sobreira et al. 2015). To prove that we can match patients from unrelated 

families who have the same disease by using only their facial photos, we selected syndromes 

from 15 recent GeneMatcher publications with titles containing the phrase “facial 

dysmorphism” (Stankiewicz et al. 2017; Morimoto et al. 2018; Tanaka et al. 2016; Weiss et 

al. 2016; Balak et al. 2019; Harms et al. 2017; Jansen et al. 2019; Au et al. 2015; Diets et al. 

2019; Marbach et al. 2019; Santiago-Sim et al. 2017; Olson et al. 2018; Stephen et al. 2018; 

Kanca et al. 2019; Stevens et al. 2016). In contrast to the benchmarking of the previous 

section, the gallery now consists of individuals with rare syndromes to simulate undiagnosed 

cases and, as a consequence, ranks refer to individuals and not disorders. For the evaluation, 

we still have to reveal in the end whether or not an individual from the gallery is a match for 

a test case, and non-matching cases can harm the performance more when matching to 

individuals rather than disorders. For instance, if the first matching individual is at rank 30, 

but the 29 non-matching individuals with higher similarity to the test case together have 

only four non-matching disorders, then this match would contribute to the top-5 accuracy in 

matching on disorders, as in the previous section, but to the top-30 accuracy in matching to 

individuals, as in this section. Only the top-1 accuracy remains the same in both benchmarks. 
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Table 4: Matching of novel phenotypes on a GeneMatcher validation set. 

Gene 
Total families 

(subjects) 

Connected families (subjects)a 

Top-10 Top-30 

BPTF (Stankiewicz et al. 2017) 6 (6) 0 (0) 2 (2) 

CCDC47(Morimoto et al. 2018) 4 (4) 0 (0) 0 (0) 

CHAMP1(Tanaka et al. 2016) 4 (4) 2 (2) 4 (4) 

CHD4 (Weiss et al. 2016) 3 (3) 0 (0) 0 (0) 

DDX6 (Balak et al. 2019) 4 (4) 4 (4) 4 (4) 

EBF3 (Harms et al. 2017) 6 (7) 0 (0) 0 (0) 

FBXO11 (Jansen et al. 2019) 17 (17) 5 (5) 9 (9) 

HNRNPK(Au et al. 2015) 3 (3) 3 (3) 3 (3) 

KDM3B (Diets et al. 2019) 9 (9) 0 (0) 2 (3) 

LEMD2 (Marbach et al. 2019) 2 (2) 2 (2) 2 (2) 

OTUD6B(Santiago-Sim et al. 
2017) 

4 (9) 3 (4) 3 (6) 

PACS2(Olson et al. 2018) 6 (6) 0 (0) 2 (2) 

TMEM94 (Stephen et al. 2018) 6 (10) 5 (8) 6 (10) 

WDR37(Kanca et al. 2019) 4 (4) 2 (2) 3 (3) 

ZNF148(Stevens et al. 2016) 3 (3) 0 (0) 0 (0) 

Total 79 (91) 26 (30) 40 (48) 

Average - 32.91% (32.97%) 50.63% (52.75%) 

In the discovery mode for novel phenotypes (second use case), all cases in the gallery are without diagnosis. 
For the performance readout, only the correct disease gene of a match is revealed. As an example, for 
individuals of the TMEM94 study (shown in bold in the table), eight out of ten subjects had an image from 
another family within the top-10 rank, and five of the six families had at least one subject from another family 
in their top-10 rank. All subjects and families matched within the top 30. This table is based on the ranks from 
the similarity matrices in Figure 11 and Appendix A.1 Supplementary Figure 6. The accuracy of connected 
subjects corresponds to the accuracy of using Enc-F2G on the F2G-rare test set (shown in Table 3), but in 
discovery mode in a gallery of almost the same size as F2G rare gallery set. 

a Number of families (subjects) matched by a photo from another family in the top-10 or top-30 rank. 
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Figure 11: Pairwise ranks of individuals with mutations in TMEM94. Each label 
consists of family numbering and subject numbering, which are the same as in the original 
publication (Stephen et al. 2018). For example, F-2-7 means the seventh subject in the 
second family. Each column is the result of testing the image indicated at the bottom of the 
column. The number in the box is the rank to the corresponding image in the gallery. The 
fourth column starting from the left is the result of testing F-2-5, and the fourth row from 
the bottom shows that F-1-1 has a rank of 2 for F-2-5. In the fifth to seventh rows from the 
bottom are the ranks from family 2, which is the same family that F-2-5 is from. 
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Figure 12: Comparison of the pairwise distance distribution between subjects in the 
same family and subjects in different families with the same disease-causing gene. The 
median distance between affected individuals from the same family is 0.522, and the median 
distance between individuals from different families is 0.823. In the box plots, the center 
line indicates the median values, and the bottom and top edge of the box are the first (25%) 
and the third (75%) quartiles. The whiskers extend the data points outside the 1st to the 3rd 
quartiles. The total number of data points (n) for the same family is 28, and n is 928 for the 
different families. 

In this scenario, we matched 30 of 91 subjects and connected 26 of 79 families when using 

the top-10 criterion (Table 4, Figure 11 and Appendix A.1 Supplementary Fig. 6). When 

using the top-30 rank, 48 of 91 subjects were matched, and 40 of 79 families were connected. 

Enc-healthy, which is trained only with healthy individuals, matched only 40 out of 91 

subjects and connected 34 out of 79 families using the top-30 rank (Appendix A.1 

Supplementary Table 4). Hence, using the encoder trained with facial dysmorphic 

individuals improves the matching considerably. 

As an example, in a study of TMEM94 (Stephen et al. 2018), eight of the ten photos in six 

different families were matched, and five of six families were connected within the top-10 

rank. When the three test images in family 2 (F-2-5, F-2-7, F-2-9) were tested, the other five 

families were among those in the top-30 rank (Figure 11). The youngest brother, F-2-5, 

matched families 1, 3, 5, and 6, and one sister, F-2-7, matched families 1, 4, and 6. Another 
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sister, F-2-9, matched families 1, 4, 5, and 6. The six families were recruited at five different 

institutes in India, Qatar, the United States (NIH Undiagnosed Diseases Network), and 

Switzerland, indicating that GestaltMatcher can also connect patients of different ancestries. 

However, a more systematic analysis of pairwise distances still revealed considerably 

smaller distances between subjects with de novo mutations and their affected family 

members than between these subjects and unrelated individuals (Figure 12). This reflects 

similarities in the nonclinical features of the face, which is also higher within the same 

ancestry group and is a known confounding factor for the GestaltMatcher approach. 

However, it is a bias that can be attenuated (Alvi, Zisserman, and Nellåker 2019) and will 

also diminish over time when more diverse training data become available (Lumaka et al. 

2017). 

4.4.5 GestaltMatcher and human experts agree on distinctiveness 

We hypothesized that some of the ultra-rare disorders that were linked to their disease-

causing genes early on, such as Schuurs-Hoeijmakers syndrome in 2012 (Schuurs-

Hoeijmakers et al. 2012), have particularly distinctive facial phenotypes. To systematically 

analyze the dependence of disease-gene discovery on the distinctiveness of a facial gestalt, 

we asked three expert dysmorphologists (S. Moosa, N.E., and K.W.G.) to grade 299 

syndromes on a scale from 1 to 3. The more easily they could distinguish the diseases, and 

the more characteristic of the disease they deemed the facial features, the higher the score. 

All three dysmorphologists agreed on the same score for 195/299 syndromes, yielding a 

concordance of 65.2%. We then selected 50 syndromes as a test set and trained the model 

with the remaining 249 syndromes. We analyzed the correlation of the mean of the 

distinctiveness score from human experts with the top-10 accuracy that GestaltMatcher 

achieves for these syndromes without having been trained on them (Figure 13a and 

Appendix A.1 Supplementary Table 5). The Spearman’s rank correlation coefficient was 

0.400 (P = 0.004), indicating a clear positive correlation between distinctiveness score and 

top-10 accuracy. Syndromes with a higher average score tended to perform better, with 

Schuurs-Hoeijmakers syndrome being among the best-performing syndromes in 

GestaltMatcher. The analysis on 20 selected syndromes from the GMDB dataset also 
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showed a positive correlation between distinctiveness score and top-5 accuracy (Appendix 

A.1 Supplementary Fig. 7 and Supplementary Table 6). 

The correlation for GestaltMatcher accuracy and disease prevalence was not significant 

(P = 0.130; Figure 13b). This also means that ultra-rare disorders share a similar distribution 

of distinctiveness with more common ones, which is important for estimates about the 

performance of GestaltMatcher on novel phenotypes in the real world. 

 

Figure 13: Correlation among syndrome prevalence, distinctiveness score, and top-10 
accuracy. a, Distribution of top-10 accuracy and distinctiveness score. The Spearman rank 
correlation coefficient was 0.400 (P = 0.004). b, Distribution of top-10 accuracy and 
prevalence. The Spearman rank correlation coefficient was –0.217 (P = 0.130) The details 
of each syndrome can be found in Appendix A.1 Supplementary Table 5 using the syndrome 
ID shown in the figure; syndrome 5 is Schuurs-Hoeijmakers syndrome. The y-axis shows 
the average top-10 accuracy of the experiments over 100 iterations. 

4.4.6 Characterization of phenotypes in the CFPS 

When syndromologists cannot find a molecular cause for a patient’s phenotype in 

diagnostic-grade genes after extensive work-up in the lab, it becomes a research case, and 

they may compare the patient’s condition to known disorders. For example, a potentially 

novel phenotype could be described as “syndrome XY–like” to build a case group for further 

molecular analysis through genome sequencing. In GestaltMatcher, this is the third use case, 

and such comparisons can be supported by cluster analysis in the CFPS with the cosine 

distance as a similarity metric (Appendix A.1 Supplementary Table 7). 

a b
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If a novel disease gene has been identified and the similarities of the patients to known 

phenotypes outweigh the differences, OMIM groups them into a phenotypic series. On the 

gene or protein level, such phenotypic series often correspond to molecular-pathway 

diseases, such as GPI-anchor deficiencies for hyperphosphatasia with mental retardation 

syndrome (HPMRS) or cohesinopathies for CdLS. For our cluster analysis, we sampled 

individuals in our database with subtypes of four large phenotypic series and found high 

intersyndrome separability in addition to considerable intrasyndrome substructure in 

Noonan syndrome, CdLS, Kabuki syndrome, and mucopolysaccharidosis. A t-SNE (van der 

Maaten and Hinton 2008) projection of the FPDs into two dimensions yielded the best 

visualization results (Figure 14). Although any projection into a smaller dimensionality 

might cause a loss of information, the clusters are still clearly visible for the 743 individuals 

sampled from these four phenotypic series. This observation provides further evidence that 

characteristic phenotypic features are encoded in the FPDs. 

 

Figure 14: Hierarchical clustering of four phenotypic series, Kabuki syndrome, 
Noonan syndrome, mucopolysaccharidosis, and Cornelia de Lange syndrome, using a 
t-SNE projection of the Facial Phenotype Descriptors. 

To demonstrate the separability of syndromes with facial dysmorphism, we also used t-SNE 

to project 4,353 images of the ten syndromes from the frequent set with the largest number 

of subjects and 872 images of ten non-distinct syndromes (syndromes without facial 

dysmorphism) into 2D space. In addition, we calculated the Silhouette index (Rousseeuw 

1987) for both of these datasets. The FPDs of the frequent syndromes showed ten clear 

clusters of subjects, but the t-SNE projection of subjects with non-distinct syndromes created 
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no clear clusters (Figure 15). Moreover, the Silhouette index of the frequent syndromes (0.11) 

was higher than that of the non-distinct syndromes (–0.005); the negative Silhouette index 

indicates poor separation of the non-distinct syndromes. 

 

Figure 15: t-SNE visualization of Facial Phenotype Descriptors of (a) ten syndromes 
with and (b) ten syndromes without facial dysmorphism. 

4.4.7 GestaltMatcher as a tool for clinician scientists 

The transition of a research case to a diagnostic case is best described by the process of 

matching undiagnosed and unrelated patients in the CFPS who share a molecular 

abnormality until statistical significance is reached. We illustrate this process for the novel 

disease gene PSMC3 in a demonstration on the GestaltMatcher web service (Figure 16, 

www.gestaltmatcher.org). Ebstein et al. (Ebstein et al. 2021) report 22 patients with a 

neurodevelopmental disorder of heterogeneous dysmorphism that is caused by de novo 

missense mutations in PSMC3, which encodes a proteasome 26S subunit. Although not all 

PSMC3 patients have the same facial phenotype, the proximity of two unrelated patients in 

the CFPS who share the same de novo PSMC3 mutation is exceptional. Their distance is 

a

b

https://www.gestaltmatcher.org/
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comparable to the pairwise distances of patients with the recurring missense mutation 

R203W in PACS1, which is the only known cause of Schuurs-Hoeijmakers syndrome. On 

the one hand, the high distinctiveness of these two PSMC3 cases with the same mutation 

allows direct matching by phenotype. On the other hand, the pairwise similarities of 12 out 

of 22 patients in the CFPS for which portraits were available also hints that the protein 

domains have more than one function. The previously described scalability of 

GestaltMatcher makes an exploration of such similarities in the CFPS possible for any 

number of cases as soon as they have been added to the gallery of undiagnosed patients. 

 

Figure 16: Screenshot of the GestaltMatcher web service. Users can upload a patient 
photo to match against patients in the selected categories and can also visualize the 
clustering of patients by t-SNE. Access can be requested from www.gestaltmatcher.org. If 
the category DeepGestalt is selected, only cases with one of the frequent 299 diagnoses that 
DeepGestalt supports populate the gallery. If category Ultra-rare is chosen, the gallery is 
populated by cases with one of the 816 diagnoses not supported by DeepGestalt. The 
category of Undiagnosed Patients is suitable for a research setting if no match with a known 
disorder could be made (see, e.g., PSMC3 in the online demo). 
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4.5 Discussion 

GestaltMatcher’s ability to match previously unseen syndromes, that is, those for which no 

patient is included in the training set, distinguishes it from other approaches. Matching of 

unseen syndromes is not only of importance for identifying ultra-rare disorders but can also 

be useful for the discovery of novel diseases. Thus, GestaltMatcher could also speed up the 

process of delineating new disorders. 

Importantly, GestaltMatcher provides the flexibility to easily scale up the number of 

supported syndromes or the number of unsolved cases without substantial loss in 

performance. The LMD validation analysis revealed that the use of the softmax approach, 

that is, classification based on the values of the last layer representing disorders, 

outperformed GestaltMatcher. However, the GestaltMatcher encoder, that is, clustering in 

the CFPS with values of the penultimate layer representing features, demonstrated high 

scalability by yielding similar performance when the number of supported syndromes was 

increased from 299 to 1,115. Furthermore, the distinctiveness of a syndrome correlated with 

the performance (Figure 13a), whereas syndrome prevalence did not (Figure 13b). Thus, 

GestaltMatcher can match a syndrome with a distinguishable facial gestalt even if it is of 

extremely low prevalence. This enables us to avoid the long development flow currently 

required to support and discover novel syndromes (Appendix A.1 Supplementary Fig. 1). 

Instead, matching can be offered instantly for all unsolved cases with available frontal 

images, as long as consent has been provided for inclusion in the tool. If the gallery is 

populated by cases with a disease-causing mutation in a diagnostic-grade gene, we consider 

this a diagnostic work-up. In contrast, if the gallery is populated by further undiagnosed 

cases, it is a use case comparable to GeneMatcher.  

GestaltMatcher’s framework also allows us to abstract the encoding of a dataset away from 

the classification task. For example, one can evaluate both phenotypic series and pleiotropic 

genes within a single CFPS, or obtain the most-similar patients for each of the matched 

syndromes, with minor computational cost (i.e., in real time). Furthermore, the 

GestaltMatcher framework computes the similarity between each of the test set images 

across the entire dataset of images. This similarity can be computed using different metrics, 
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e.g., cosine or Euclidean distance. The results are then aggregated according to the chosen 

configuration. For example, image similarity can be aggregated at the patient level or the 

syndrome level. Furthermore, the dataset can be filtered according to different parameters 

(such as ancestry, disease-causing genes, or age) to further customize the evaluation. 

One of the key features of GestaltMatcher is the ability to match patients and quantify their 

syndromic similarity. Clinician scientists often face two different tasks in their daily practice: 

(1) Assessing whether the patient’s phenotype is specific for a known disorder. If, for 

example, a variant of unclear clinical significance is found in a diagnostic-grade gene, a 

match in GestaltMatcher would be considered as supporting evidence for the pathogenicity 

(Richards et al. 2015; Tavtigian et al. 2018). (2) Assessing whether the phenotypic similarity 

of an unsolved case to other individuals also lacking a diagnosis is high enough to form a 

case group that can be further analyzed. This could, for example, result in the identification 

of potentially deleterious variants in a novel disease gene and would represent the 

phenotypic complement to existing matching approaches on the molecular level. Several 

online platforms, such as GeneMatcher, MyGene2 (https://mygene2.org/MyGene2), and 

Matchmaker Exchange (Philippakis et al. 2015), already allow physicians to look for similar 

patients based on sequencing information, and over the past few years these platforms have 

enabled the matching of thousands of patients. However, automated facial matching 

technology has not yet been included in any of these platforms, although phenotypic data, 

for example encoded in HPO terms, are usually exchanged after contact has been established. 

Since its first proof of concept, in which GestaltMatcher was used to identify two unrelated 

patients from different countries with the same novel disease caused by the same de novo 

mutation in LEMD2 (Marbach et al. 2019), our approach has successfully been applied to 

other ultra-rare disorders (Figure 6). We matched 40 of 79 different families in 15 

GeneMatcher publications by top-30 rank (Figure 11 and Appendix A.1 Supplementary Fig. 

6), and 11 candidate genes are currently under evaluation. This result shows the power and 

potential of GestaltMatcher to identify novel syndromes. Although the number of 

individuals and the diversity of their phenotypes will affect the performance, cases with a 

high syndromic similarity will remain matchable due to the high dimensionality of the CFPS. 



4.6 Methods 61 

 

We therefore hope that GestaltMatcher will be readily integrated into other matching 

platforms to aid in determining which phenotypes should be grouped together into a 

syndrome or phenotypic series, as well as linking individual patients to a molecular 

diagnosis. 

4.6 Methods 

4.6.1 Study approval 

This study is governed by the approval of the following Institutional Review Boards: 

Charité–Universitätsmedizin Berlin, Germany (EA2/190/16); UKB Universitätsklinikum 

Bonn, Germany (Lfd.Nr.386/17). The authors have obtained written informed consent from 

the patients or their guardians, including permission to publish photographs. 

4.6.2 Face2Gene datasets 

We collected images of individuals with clinically or molecularly confirmed diagnoses from 

the Face2Gene database (https://www.face2gene.com). Extracted, deidentified data were 

used to remove poor-quality or duplicated images from the dataset without viewing the 

photos. After removing images of insufficient quality, the dataset consisted of 26,152 images 

from 17,560 individuals with a total of 1,115 syndromes (Appendix A.1 Supplementary 

Table 8). 

GestaltMatcher was designed to distinguish syndromes with different properties. We 

separated syndromes by the number of affected individuals and whether they had already 

been learned by the DeepGestalt model. Figure 17 provides an overview of how the dataset 

was divided. The current DeepGestalt approach requires at least seven subjects to learn a 

novel syndrome. We first used this threshold to separate the syndromes into “frequent” and 

“rare” syndromes. The objective of our study was to improve phenotypic decision support 

for “rare disorders”. However, frequent syndromes that are not associated with facial 

dysmorphic features cannot be modeled by DeepGestalt. We therefore further selected 299 

frequent syndromes that possess characteristic facial dysmorphism recognized by 
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DeepGestalt to use as “frequent syndromes”. The frequent syndromes were used to validate 

syndrome prediction and the separability of subtypes of a phenotypic series because these 

syndromes are known to have facial dysmorphic features that are well recognized by the 

DeepGestalt encoder. For rare syndromes, we sought to demonstrate that GestaltMatcher 

could predict a syndrome even if facial images were publicly available for only a few 

subjects. It is noteworthy that, for more than half of all known disease-causing genes, fewer 

than ten cases with pathogenic variants have been submitted to ClinVar (Figure 6). Of the 

1,115 syndromes in the entire dataset, 299 were frequent and 816 were rare. DeepGestalt 

cannot yet be applied to ‘rare’ syndromes category. 

 

Figure 17: Overview of Face2Gene data categorization in GestaltMatcher. The data 
were first divided by the number of subjects in each syndrome. Syndromes with more than 
six subjects were denoted frequent syndromes, and those with six or fewer as rare 
syndromes. Frequent syndromes were also recognized by DeepGestalt. Each category was 
further divided into a gallery and a test set. For each frequent syndrome, 90% of subjects 
were assigned to the gallery and used for model training; the remaining 10% of subjects 
were kept for validating the model training and were sampled in the test set. We performed 
10-fold cross-validation on rare syndromes. In each syndrome, 90% of subjects were 
assigned to the gallery and 10% of subjects were assigned to the test set. 

We further divided each of these two datasets into a gallery and a test set. The gallery is the 

set of subjects that we intend to match, given a subject from the test set. First, 90% of 

subjects with each frequent syndrome were used to train the models, and the remaining 10% 
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of subjects were used to validate the DeepGestalt training; the 90% then became the frequent 

gallery and the 10% were assigned to the frequent test set. For the rare dataset, we performed 

10-fold cross-validation. In each syndrome, 90% and 10% of subjects were assigned to the 

gallery and test set, respectively. The test sets were designed to have the same distribution 

of distinctiveness as the training sets. 

Matching only within a dataset would not represent a real-world scenario. Therefore, the 

galleries of the two datasets were later combined into a unified gallery that was used to 

search for matched patients. 

Please note that the threshold of seven subjects to divide the dataset into frequent and rare 

is to compare GestaltMatcher to DeepGestalt, which both use the same training data. We 

could adjust this threshold higher or even remove this threshold in the future. 

4.6.3 GMDB datasets 

We collected images of individuals with clinically or molecularly confirmed diagnoses from 

publications and individuals that gave appropriate informed consent for the purpose of this 

study. This dataset can be used as a public training and test set for benchmarking and is 

available at GestaltMatcher Database (www.gestaltmatcher.org). 

https://www.gestaltmatcher.org/
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Figure 18: Venn diagram of numbers of syndromes in the Face2Gene and GMDB 
datasets. 

At the time of the data freeze on 9 June 2021, the dataset consisted of 4,306 images of 3,693 

individuals with a total of 257 syndromes from 902 publications (Appendix A.1 

Supplementary Table 8). Six of the 3,693 individuals have not yet been published, but 

appropriate consent has been obtained. For a fair comparison with the Face2Gene dataset, 

we performed the data separation in the same way. The dataset was first split by the same 

threshold (seven subjects) into frequent and rare datasets, giving 139 syndromes in the 

frequent dataset and 118 syndromes in the rare set. Both datasets were also later separated 

into gallery and test sets. The data split is shown in Appendix A.1 Supplementary Figure 8. 

Of the 3,693 individuals in GMDB, 963 are also in the Face2Gene dataset. To use the 

GMDB rare set as the test set for both the GMDB frequent set and the Face2Gene frequent 

set, we made sure that no syndrome was in both the GMDB rare set and the Face2Gene 

frequent set (Figure 18). 

4.6.4 DeepGestalt encoder 

The preprocessing pipeline of DeepGestalt includes point detection, facial alignment 

(frontalization), and facial region cropping. During inference, a facial region crop is forward 

passed through a deep convolutional network (DCNN) and ultimately gives the final 
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prediction of the input face image. The DeepGestalt network consists of ten convolutional 

layers (Conv) with batch normalization (BN) and a rectified linear activation unit (ReLU) 

to embed the input features. After every Conv-BN-ReLU layer, a max pooling layer is 

applied to decrease spatial size while increasing the semantic representation. The classifier 

part of the network consists of a fully connected linear layer with dropout (0.5). In this study, 

we considered the DeepGestalt architecture as an encoder–classification composition, 

pipelined during inference. We chose the last fully connected layer before the softmax 

classification as the facial feature representation (facial phenotype descriptor, FPD), 

resulting in a vector of size 320. 

DeepGestalt was first trained on images of healthy individuals from CASIA-WebFace (Yi 

et al. 2014), and later fine-tuned on a dataset with patient images (Face2Gene or GMDB). 

The encoder without fine-tuning on patient images was called Enc-healthy. The encoder 

later trained on 299 frequent syndromes in the Face2Gene dataset was named Enc-F2G. The 

encoder trained on 139 frequent syndromes in GMDB was named Enc-GMDB. In the 

following sections, we have several encoders trained on different subsets of the Face2Gene 

and GMDB datasets. The summary of all the encoders used in this study is shown in 

Appendix A.1 Supplementary Table 9. To compare GestaltMatcher and DeepGestalt, we 

employed a model that uses softmax for predicting syndromes, which we called “Enc-F2G 

(softmax)”. This model is the same as Enc-F2G; the only difference is that Enc-F2G 

(softmax) used softmax in the last layer for prediction, as in DeepGestalt, and Enc-F2G used 

the cosine distance of FPDs for prediction. 

Our first hypothesis was that images of patients with the same molecularly diagnosed 

syndromes or within the same phenotypic series, and who also share similar facial 

phenotypes, can be encoded into similar feature vectors under some set of metrics. Moreover, 

we hypothesized that DeepGestalt’s specific design choice of using a predefined, offline-

trained, linear classifier could be replaced by other classification “heads”, for example, k-

nearest neighbors using cosine distance, which we used for GestaltMatcher. 
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4.6.5 Descriptor projection: Clinical Face Phenotype Space 

Each image was encoded by the DeepGestalt encoder, resulting in a 320-dimensional FPD. 

These FPDs were further used to form a 320-dimensional space called the Clinical Face 

Phenotype Space (CFPS), with each FPD a point located in the CFPS, as shown in Figure 7. 

The similarity between two images is quantified by the cosine distance between them in the 

CFPS. The smaller the distance, the greater the similarity between the two images. Therefore, 

clusters of subjects in the CFPS can represent patients with the same syndrome, similarities 

among different disorders, or the substructure under a phenotypic series. 

4.6.6 Evaluation 

To evaluate GestaltMatcher, we took the images in the test set as input and positioned them 

in the CFPS defined by the images of the gallery. We calculated the cosine distance between 

each of the test set images (for which the diagnoses were known in this proof-of-concept 

study) and all of the gallery images. Then, for each test image, if an image from another 

individual with the same disorder in the gallery was among the top-k nearest neighbors, we 

called it a top-k match. We then benchmarked the performance by averaging the top-k 

accuracy (percent of test images with correct matches within the top k) of each syndrome to 

avoid biasing predictions toward the major class. We further compared the accuracy of each 

syndrome in the frequent and rare syndrome subsets to investigate whether GestaltMatcher 

can extend DeepGestalt to support more syndromes. To compare its performance on 

predicting syndromes with that of DeepGestalt, we first performed image aggregation on 

the syndrome level before calculating top-k accuracy, so that only the nearest image of each 

syndrome was taken into account. 

4.6.7 London Medical Dataset validation analysis 

We compiled 323 images of patients diagnosed with 91 frequent syndromes from the LMD 

publication test set (Winter and Baraitser 1987; Gurovich et al. 2019) and used this as the 

validation set for frequent syndromes. We first evaluated the validation set using softmax, 

which is a DeepGestalt method. To compare the performance with that of GestaltMatcher, 

we evaluated the performance of GestaltMatcher on two different galleries: a gallery of 
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frequent syndromes consisting of 19,950 images of patients with 299 syndromes, and a 

unified gallery consisting of 22,298 images of patients with 1,115 syndromes. We then 

reported the top-k accuracy and compared the results of these three settings (DeepGestalt 

with softmax, GestaltMatcher with the frequent gallery, and GestaltMatcher with the unified 

gallery). 

4.6.8 Rare syndromes analysis 

To understand the potential for matching rare syndromes, we trained an encoder, denoted 

Enc-F2G-rare, on 467 out of 816 rare syndromes with more than two and fewer than seven 

subjects. Ninety percent of the subjects were used to train Enc-F2G-rare and were later 

assigned to the gallery. The remaining 10% of subjects were assigned to the test set. We 

then compared the performance of Enc-F2G-rare and Enc-F2G using both cosine distance 

and the softmax classifier. 

4.6.9 Matching undiagnosed patients from unrelated families 

We selected 15 articles published from 2015 to 2019 in which GeneMatcher was used to 

establish an association between a gene and a novel phenotype with facial dysmorphism in 

patients from unrelated families. In total, these studies contained 108 photos of 91 subjects 

from 79 families. The details are shown in Table 4. The 15 genes were not among the 

Face2Gene frequent syndromes, so we can consider them each as a novel phenotype to the 

model. We performed leave-one-out cross-validation on this dataset; that is, we kept one 

photo as the test set, and we assigned the rest of the photos to a gallery of 3,533 photos with 

816 rare syndromes to simulate the distribution of patients with unknown diagnosis. We 

then evaluated the performance by top-1 to top-30 rank. If a photo of another subject with 

the same disease-causing gene from an unrelated family was among the top-k rank, we called 

it a match. 

Moreover, we used top-k rank to measure how many unrelated families were connected. If 

one unrelated family was among the test photo's top-k rank, the families were considered to 

be connected at that rank. How many families were matched to at least one unrelated family 

was also represented. When using the GeneMatcher data, we did not perform syndrome 
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aggregation because aggregation cannot be performed if the syndrome is not known. Instead, 

we matched patients rather than predicting disorders. 

4.6.10 Syndrome facial distinctiveness score 

To evaluate the importance of the facial gestalt for clinical diagnosis of the patient, we asked 

three dysmorphologists (co-authors S. Moosa, N.E., and K.W.G.) to score the usefulness of 

each syndrome’s facial gestalt for establishing a diagnosis. Three levels were established:  

1. Facial gestalt can be supportive in establishing the clinical diagnosis. 

2. Facial gestalt is important in establishing the clinical diagnosis, but diagnosis cannot 

be made without additional clinical features. 

3. Facial gestalt is a cardinal symptom, and a visual or clinical diagnosis is possible 

from the facial phenotype alone. 

We then averaged the grades from the three dysmorphologists for each syndrome. 

4.6.11 Syndrome prevalence 

The prevalence of each syndrome was collected from Orphanet (www.orpha.net). Birth 

prevalence was used when the actual prevalence was missing. If only the number of cases 

or families was available, we calculated the prevalence by summing the numbers of all cases 

or families and dividing by the global population, using 7.8 billion for the global population 

and a family size of ten for each family (Nguengang Wakap et al. 2020). 

4.6.12 Unseen syndromes correlation analysis 

To investigate the influence of prevalence and distinctiveness score on the performance of 

novel syndromes with facial dysmorphism, we selected 50 frequent syndromes and kept 

them out of the training set. The 50 syndromes were selected to have evenly distributed 

distinctiveness scores and prevalence distribution; the distributions are shown in Appendix 

A.1 Supplementary Figure 9 and Supplementary Table 5. The encoder (Enc-F2G-exclude-

50) was trained on 90% of the subjects from the other 249 frequent syndromes. In addition, 
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we performed random downsampling to remove the confounding effect of prevalence. For 

each iteration, we randomly downsampled each syndrome by assigning five subjects to the 

gallery and one subject to the test set. We then averaged the top-10 accuracy of 100 

iterations. We calculated Spearman rank correlation coefficients for the following two pairs 

of data: between top-10 accuracy and the syndrome’s distinctiveness score, and between 

top-10 accuracy and the prevalence of syndromes collected from Orphanet. 

The same analysis was also performed on the GMDB dataset. We selected 20 syndromes 

from GMDB-frequent instead of 50 syndromes because the GMDB dataset is smaller than 

the Face2Gene dataset, and we trained the Enc-GMDB-exclude-20 on the remaining 119 

frequent syndromes. The details of the 20 selected syndromes and the results are reported in 

Appendix A.1 Supplementary Table 6. Please note that we report the top-5 accuracy in the 

GMDB dataset instead of top-10 accuracy because of the smaller number of syndromes in 

the gallery. 

4.6.13 Analysis of number of training syndromes and subjects 

In this analysis, we evaluated the influence of training with additional syndromes and 

subjects to the novel disorders. To avoid an imbalance among the syndromes, we used the 

same number of subjects for each syndrome. We first used four different settings for the 

number of subjects: 10, 20, 40, and 80. However, some syndromes have fewer subjects than 

the four settings used for training: for 10, 20, 40, and 80 subjects, there are 242, 156, 84, and 

40 syndromes. We then defined the ordering of syndromes we added each time. To add the 

same syndromes for the four numbers of subjects each time, we first sorted syndromes with 

the number of subjects in descending order. To avoid bias due to having specific disorders 

added at each position, we then performed random sorting five times within each of the 

intervals [1, 40], [41, 80], [81, 150], and [151, 240] to generate five different lists of 

syndromes. Thus, the ordering from common disorders to rare disorders was by interval 

rather than by syndrome. For example, Kabuki syndrome might be in the 9th position in the 

first list, but in the 20th position in the second list, but in each randomly sorted list Kabuki 

syndrome is in the first interval. 



70 GestaltMatcher facilitates rare disease matching using facial phenotype descriptors 

 

For each of five different lists of training syndromes, we performed the same training 

described as follows. We first trained X number of syndromes with ten subjects, where X = 

10 to 240, incremented at an interval of ten syndromes. As mentioned above, there are only 

156 syndromes with more than 20 subjects. Thus, we trained syndromes with 20 subjects 

with X = 10 to 150 syndromes with the same increment of ten syndromes. We performed 

the same process for 40 and 80 subjects, with maximums of 80 and 40, respectively. 

For each setting (number of subjects, number of syndromes), we had five models. We then 

encoded the photos separately with each model and tested them on the rare syndromes, 

which had not been seen by the models. In the end, we averaged the performance by the five 

models and report the average as the top-10 accuracy for each setting in Figure 8. We also 

used the models described above to encode the GMDB dataset, tested them with the GMDB 

rare set, and report the results in Appendix A.1 Supplementary Figure 2. 

Because the GMDB dataset is smaller than Face2Gene dataset, we were not able to use the 

same number of subjects and syndromes to perform the analysis. For the GMDB dataset, we 

used 10, 20, 40 for the number of subjects, and syndrome intervals of [1, 10], [11, 40], and 

[41, 80]. The results of training on GMDB and testing of the GMDB rare set are shown in 

Appendix A.1 Supplementary Figure 3. 

We next wanted to compare two scenarios: double the number of training syndromes and 

double the number of training subjects. For example, we first set training on ten subjects for 

each of ten syndromes as the base setting, then compared this performance to training ten 

subjects for each of 20 syndromes (double syndromes) and training 20 subjects for each of 

ten syndromes (double subjects). The base setting had 100 subjects in total. Double 

syndromes and double subjects each had 200 subjects. This comparison allows us to 

understand the different influence of adding more syndromes and adding more subjects. The 

results are shown in Figure 9 and Appendix A.1 Supplementary Figures 4 and 5. 
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4.8 Code availability 

GestaltMatcher can be subdivided into its algorithmic part, data that are required to train the 

neural network and a service that can be used for matching patients. The project’s landing 

page www.gestaltmatcher.org redirects to separate pages for each category. The web service 

for matching patients is based on Enc-F2G and is accessible for health care professionals. 

Parts of this service are proprietary and cannot be shared. However, the architecture of the 

CNN, as well as the code for evaluation, is available under a creative commons license.  

4.9 Data availability 

The data that support the findings of this study are divided into two groups, non-sharable 

data (F2G) and sharable data (OMIM, CASIA-WebFace, GMDB). F2G data are from 

Face2Gene users and cannot be shared in order to protect patient privacy. OMIM data can 

be downloaded at https://omim.org/downloads. CASIA-WebFace and GMDB are available 

for non-commercial, research, and educational purposes, and subject to controlled access. 

For CASIA-WebFace, user conditions are available at 

http://www.cbsr.ia.ac.cn/english/casia-webFace/casia-webfAce_AgreEmeNtS.pdf, and 

requests should be sent to cbsr-request@authenmetric.com. For GMDB, please contact 

info@gestaltmatcher.org and specify which analyses you intend to perform. The board of 

https://www.gestaltmatcher.org/
http://www.cbsr.ia.ac.cn/english/casia-webFace/casia-webfAce_AgreEmeNtS.pdf
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GestaltMatcher will check and respond within ten business days whether your request is 

compatible with the user conditions. 
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Chapter 5 GestaltMatcher Database: medical 

imaging data for deep learning on rare disorders 

5.1 Introduction 

The next-generation phenotyping (NGP) technology has rapidly progressed in the last 

decade. NGP applications such as Face2Gene or GestaltMatcher are increasingly used by 

geneticists and pediatricians in the diagnostic workup of patients with facial dysmorphism 

(Gurovich et al. 2019; T.-C. Hsieh et al. 2022). The high performance of these tools is 

achieved by extending deep convolutional neural networks (DCNNs) that were developed 

for related but non-clinical tasks, such as, e.g., intra-person face verification (Yi et al. 2014). 

Training such a network complemented by an additional layer, which can address the 

medical classification problem, becomes feasible after knowledge transfer with much fewer 

data (Gurovich et al. 2019; T.-C. Hsieh et al. 2022). However, despite the increasing interest 

and technological advances, properly labeled training data is currently the biggest bottleneck 

in developing NGP applications (Hennekam and Biesecker 2012). 

Furthermore, the existing data are often siloed, so curation is often done repeatedly (Nellåker 

et al. 2019). In addition, one of the key challenges in collecting data is that curation usually 

needs to be done by clinicians and not computer scientists. Hence, each research group will 

spend tremendous effort and time collecting their datasets from publication or their patients, 

raising the threshold for entering this research field. The non-transparency and non-

shareability of data also increase the difficulty in benchmarking the methods proposed by 

different research teams that delay the development of novel approaches. 

Human and artificial neural networks used in a professional context in Medical Genetics 

need to be trained on image data for pattern recognition. For residents in syndromology, 

there is no simple way to get exposure to, e.g., many characteristic portraits of dysmorphic 

patients at a glance. For the dysmorphology analysis of rare disorders, London Medical 
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Database (LMD) (Winter and Baraitser 1987) is one of the most well-known databases. 

LMD was an essential resource for clinicians and NGP technology, but people now often 

question its outdated resource, and many syndromes in the database are based on differential 

diagnoses only. 

To solve the problem of lacking a public medical image dataset, Minerva & Me has been 

proposed in 2019 to enable global collaboration on patient data (Nellåker et al. 2019). 

However, Minerva & Me is currently not publicly available. Hence, the requirement for 

collecting and sharing medical images is still urgent to be solved. 

In addition, patient recruitment is usually time-consuming due to acquiring a consent form 

signed by the patient or their guardian. A faster and easier way for the patient recruiting 

process is needed. 

Therefore we designed GestaltMatcher DB, a web framework that addresses the needs of 

human syndromologist first and yields data curation as a by-product. We also implemented 

infinitive scrolling to display photos collections to make medical imaging data from the 

scientific literature explorable. Besides, the electrical consent allows the patient to easily 

sign the document with the link provided by the clinicians. With this incentive, we could 

curate hundreds of case reports with a community-driven effort in a short time. 

Currently, GestaltMatcher DB focuses on medical imaging data of patients with rare 

monogenic diseases and is currently mainly populated by but not limited to photos of facial 

portraits. Additional data under curation are X-rays documenting skeletal malformations and 

photos of the fundus of the eye documenting retinal diseases. By that means, GestaltMatcher 

DB provides training data not only for detecting a typical facial gestalt but also for 

characteristic phenotypes of the bone or the retina. 

5.2 Methods 

We first built an online platform by Ruby on Rails to allow users to input the images and 

other patient data. For the back-end, we set up a database by MySQL to store the patient 

data. We asked five medical students to collect and curate the patients from the publications, 
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and we later involved the other around 30 clinician-scientists as the beta user to contribute 

the patients from their papers or their unpublished patients with proper consent.  

The patient data has the following categories: general information, publication or consent, 

group, files (images and documents), phenotypic information, and genomic information.  

The database schema is shown in Figure 19. 

General information includes patient label, sex, ethnicity, and note. The patient label is the 

name that the clinician can use to identify the patient, and the actual name is not allowed for 

the patient to protect the patient's privacy. We encourage the clinicians to fill up sex and 

ethnicity to analyze the confounder effect. 

Ethical, Legal, and Social Aspects (ELSA) include the PubMed ID, DOI, the numbering 

used in the publication, and the corresponding author of the publication. When the patient 

is not published yet, consent from the patient in paper or electric form is required. With this 

information, we can source back to the patient described in the original paper and handle 

legal issues such as reusing the images for another publication. 

Group is the patient group where clinicians or the patient’s family can contact each other. 

For example, Sirius e.V. is a patient group for Smith Magenis Syndrom (https://smith-

magenis.de/). Another patient group is the Kontaktgruppe "Eltern kleinwüchsiger Kinder" 

(http://www.kleinwuchs-elterngruppe.de/). When the patient is recruited from the patient 

group, we will create the patient, set the group_id in the patient, and send the electronic 

consent form by an invitation link to the patient or the patient’s guardian. 

Images have several types: frontal photo, profile, limbs, hand X-ray, and funduscopy image. 

The age of when the photo was taken is recorded. Moreover, we ask the clinician to grade 

how well this medical photography can contribute to the diagnosis based on the 

dysmorphism. There are three levels: significant, supportive, not supportive. 

Documents include medical reports and lab results that curators or clinicians can review. 

However, the actual name or any identifier that can be traced back to the patient should be 

removed. 

https://smith-magenis.de/
https://smith-magenis.de/
http://www.kleinwuchs-elterngruppe.de/
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Phenotypic information contains disorder and clinical descriptions. The disorders are 

based on the disorder list from OMIM. The clinician can choose whether the disorder is 

Differentially diagnosed, Clinically diagnosed, or Molecularly diagnosed. We use HPO 

terms for the clinical description, and the clinician can select whether the HPO term is 

present or absent. 

Genomic information contains gene and disease-causing mutation, and the clinician can 

specify the gene that is diagnosed as the disease-causing gene. When the disease-causing 

mutation is known, we store the mutation in the HGVS code and the zygosity. 

 

Figure 19: GMDB database schema. 

5.3 Online platform and database 

The GestaltMatcher Database (GMDB) is hosted physically in the university hospital of 

Bonn and guarded by Arbeitsgemeinschaft für Gen-Diagnostik e.V. (AGD) that is a non-

profit organization for the genome research. The status of GMDB will be reported together 

with other genome research talks in the annual meeting. All the AGD members have free 
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access to GMDB. Until January 2022, we collected 5925 patients with 9173 images from 

1702 publications, and the patients covered 620 rare disorders. 

5.3.1 GUI for patient data annotation 

Users can input the patient data such as general information, publication, phenotypic and 

genomic data. Here we take a patient curated from the publication (Goldenberg et al. 2016) 

as an example.  

Figure 20 shows the patient curated by Prof. Shahida Moosa. The information listed in the 

ELSA region, such as the PubMed ID, DOI allows us to trace back to the original publication. 

Moreover, this patient has two photos listed in the original publication, and here we have 

one frontal image and one profile image in GMDB (Figure 21). The corresponding age when 

the photo was taken is also stored. The score column is for the distinctiveness score with 

three categories (supportive, important, and key).  

 

Figure 20: Patient information in GMDB. 

In the end, the phenotypic and molecular information is stored, as shown in Figure 22. 

OMIM ID is used to identify disorders, and we present the HPO terms for the clinical 

features. The molecular information stores the information from the genetic testing. The 
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disease-causing gene of this patient is ANKRD11, and it is diagnosed by microarray. If the 

mutation information is given, it could be stored in the form of the HGVS code.  

 

Figure 21: Patient photos in GMDB. The images are from the publication (Goldenberg 
et al. 2016). 

 

Figure 22: Phenotypic and genomic information in GMDB. 
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5.3.2 Digital consent for easier patient recruitment 

When the patient is not published yet, we require consent from patients for using their data. 

If the clinicians already had the consent from patients in paper form, they can upload the 

consent after scanning the consent. However, it is usually time-consuming to acquire 

consent in paper form because the clinician does not frequently meet with patients. We 

provided the digital consent that allows the patient to sign the consent on their page to 

smooth this recruiting process. We first created a new patient in GMDB, and there will be 

an invitation link shown at the top of the patient’s page (Figure 23). We then sent this link 

to the patient, and the patient can sign the document directly on the webpage (Figure 24). In 

this way, we can also recruit the patients from the patient group on the internet. 

 

Figure 23: Patient invitation link. The patient can access the patient’s page by the link.  
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Figure 24: Digital consent. 
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5.3.3 Visualize patients in gallery view 

The first usage of this platform is the alternative and the up-to-date online resources to LMD. 

The gallery view of patient images in the platform provides the visualization of all the 

images of the particular query (gene, disorder, phenotypic series, or PMID). The clinician 

can see and learn the dysmorphism quickly by the gallery view (Figure 25). 

 

Figure 25: Gallery view in GMDB. Patient images are blocked to protect privacy.  

5.3.4 Training data for next-generation phenotyping 

The second usage of this platform is that the patient data can be used as a resource for 

developing next-generation phenotyping. We exported each photo with the following 

information, frontal image, image_id, patient_id, and disorder_id for the first version of the 

release. The disorder_id can be treated as the label for training and testing. The current 

release can be found in the download section on the platform (Figure 26). The benchmarking 

of the GMDB dataset is shown in Table 5. It can be used to reproduce the GestaltMatcher 

publication results and develop the NGP approach with more advanced architecture. 
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Figure 26: Download section of GMDB dataset. 

 

Table 5: Benchmarking on GMDB dataset. 

Test set Model Gallery Test Top-1 Top-5 Top-10 Top-30 

GMDB-frequent Softmax  360 25.13 47.23 59.79 77.26 

GMDB-frequent Enc-GMDB 3438 360 19.87 39.78 53.37 74.29 

GMDB-frequent Enc-healthy 3438 360 16.86 35.52 44.18 65.00 

GMDB-rare Enc-GMDB 369.2 138.8 15.13 34.76 46.15 68.51 

GMDB-rare Enc-healthy 369.2 138.8 12.18 29.03 40.36 61.46 

GMDB-frequent Enc-GMDB 3812 360 18.97 38.76 51.05 69.83 

GMDB-frequent Enc-healthy 3812 360 15.18 34.72 42.53 62.37 

GMDB-rare Enc-GMDB 3807.2 138.8 8.28 15.03 20.21 34.51 

GMDB-rare Enc-healthy 3807.2 138.8 6.61 13.33 16.60 28.13 

5.4 Discussion 

In GestaltMatcher Database (GMDB), we implemented the platform for users to upload 

patient data such as general information, publication, images, phenotypic and genomic data. 

This database can be seen as an up-to-date LMD that enables clinicians to check and learn 
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the dysmorphism of a disorder by the gallery view. Moreover, the images and patient data 

can be exported as the resource for developing the next-generation phenotyping approaches. 

The size and the cleanliness of the dataset are the key factors to push computer vision 

research forward. However, like most of the research groups who would like to develop the 

next-generation phenotyping approaches for facial dysmorphism, we encountered 

tremendous difficulties in data curation at the beginning. In the PEDIA study (T. C. Hsieh 

et al. 2019), we collected the patient metadata (HPO terms, gene, and disorder) and frontal 

photos from publication by storing them in the Face2Gene platform. The user interface of 

Face2Gene provided the convenience of data curation. However, Face2Gene is a 

commercial platform that is not open to the research community. It is tough to reuse the data, 

and therefore, it is not beneficial to the entire research community. 

In addition to the internal curators, our user interface enables the external users to contribute 

the patient data. That facilitates global collaboration. 

Moreover, with images, HPO terms, and genomic data in GMDB, it can not only connect 

with many next-generation phenotyping approaches such as GestaltMatcher or PEDIA in 

the back-end but also connect with GeneMatcher (Sobreira et al. 2015), MatchMaker 

Exchange (Philippakis et al. 2015) or MyGene2 to strengthen the patient match network. 

We believe this form of data curation can be a good example for the global collaboration of 

medical images dataset. 
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Chapter 6 Prioritization of exome data by image 

analysis 

6.1 Summary 

In the previous chapters, we introduced NGP technology that helped reduce the search space 

to diagnose the patient by facial analysis. Although this kind of tool, such as Face2Gene, is 

already widely used by thousands of clinicians in their daily diagnostic workup, there are 

still several limitations in the diagnostic process. To diagnose the patient with a rare genetic 

disorder, we need to identify the disease-causing mutations. In the past, clinicians performed 

gene panels to analyze the variants among the selected genes. Face2Gene could suggest a 

shortlist of candidate disorders, but clinicians should convert the disorder to a gene by 

themselves. Moreover, in recent years, exome sequencing has been more commonly used in 

the diagnostic setting. Hence, the automatic workflow that combines facial analysis and 

variant analysis is vital for the current diagnostic process. 

On the other hand, the existed variant prioritization tools only integrate the feature analysis 

that analyzes Human Phenotype Ontology (HPO) with variant analysis. However, in most 

cases, the “facial gestalt” presented in certain diseases that cannot be described by HPO 

terminology was only referred to as “characteristic.” Therefore, the approaches that could 

capture the facial gestalt were also needed for the current variant prioritization pipeline.  

We then proposed this work, Prioritization of Exome Data by Image Analysis (PEDIA), to 

integrate the facial analysis, feature analysis, and variant analysis into an automatic variant 

prioritization pipeline. Sections 6.2 to 6.7 will present the work “PEDIA: prioritization of 

exome data by image analysis” published in Genetics in Medicine in 2019 (T. C. Hsieh et 

al. 2019). Section 6.8 will futher introduce how to implement this approach to an existing 

variants analysis platform. 
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6.2 Abstract 

Purpose: 

Phenotype information is crucial for the interpretation of genomic variants. So far it has only 

been accessible for bioinformatics workflows after encoding into clinical terms by expert 

dysmorphologists. 

Methods: 

Here, we introduce an approach driven by artificial intelligence that uses portrait 

photographs for the interpretation of clinical exome data. We measured the value added by 

computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 

individuals with 105 different monogenic disorders. For each case in the cohort we compiled 

frontal photos, clinical features, and the disease-causing variants, and simulated multiple 

exomes of different ethnic backgrounds. 

Results: 

The additional use of similarity scores from computer-assisted analysis of frontal photos 

improved the top 1 accuracy rate by more than 20–89% and the top 10 accuracy rate by more 

than 5–99% for the disease-causing gene. 

Conclusion: 

Image analysis by deep-learning algorithms can be used to quantify the phenotypic 

similarity (PP4 criterion of the American College of Medical Genetics and Genomics 

guidelines) and to advance the performance of bioinformatics pipelines for exome analysis. 

6.3 Introduction 

Worldwide, more than half a million children born per year have a rare genetic disorder that 

is suitable for diagnostic evaluation by exome sequencing. This test’s unprecedented 

diagnostic yield is contrasted by the time requirement for variant interpretation. Making 

phenotypic information—the observable, clinical presentation—computer-readable is key 

to solving this problem and important for providing clinicians with a much-needed tool for 

diagnosing genetic syndromes (Biesecker and Green 2014). 
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To date, the most advanced exome prioritization algorithms combine deleteriousness scores 

for variants with semantic similarity searches of the clinical description of a patient 

(Pengelly et al. 2017). The Human Phenotype Ontology (HPO) has become the lingua franca 

for this purpose (Robinson et al. 2008). However, a facial gestalt for which no term exists 

and that is simply described as "characteristic" for a certain disease is not suitable for these 

computational approaches. 

Beyond language, capturing indicative patterns through deep-learning approaches has 

recently gained attention in assessing facial dysmorphism (Ferry et al. 2014; Gurovich et al. 

2019). Artificial neural networks measure the similarities of patient photos to hundreds of 

disease entities. We hypothesized that results of this next-generation phenotyping tool could 

be used similarly to deleteriousness scores on the molecular level. This would enable us to 

transition from the dichotomous PP4 criterion “matching phenotype” in the American 

College of Medical Genetics and Genomics (ACMG) guidelines for variant interpretation to 

a quantifiable one (Richards et al. 2015; Tavtigian et al. 2018). 

We therefore developed an approach to interpret sequence variants integrating results from 

the next-generation phenotyping tool DeepGestalt. By this means the clinical presentation 

of an individual is not only assessed by a human expert clinician, but also by using an 

artificial intelligence approach on the basis of frontal photographs. In short, we call this 

approach prioritization of exome data by image analysis (PEDIA). 

6.4 Materials and methods 

We compiled a cohort comprising 679 individuals with frontal facial photographs and 

clinical features documented in HPO terminology (Robinson et al. 2008). The diagnoses of 

all individuals have previously been confirmed molecularly and are suitable for analysis by 

exome sequencing. In total, the cohort covers 105 different monogenic syndromes linked to 

181 different genes. Of the individuals in this cohort, 446 were published and 233 have not 

been previously reported (see PMID column in Supplementary Table 1 of Appendix A.2). 

The study was approved by the ethics committees of the Charité–Universitätsmedizin Berlin 

and of the University Hospital Bonn. Written informed consent was given by the patients or 
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their guardians, including permission to publish photographs. Easy to understand, 

transparent information with both text and illustrations about the pattern recognition in our 

algorithm that processes personal data in the form of 2D portrait photographs can be found 

at https://www.pedia-study.org/documents. Through technical and organizational measures 

(privacy by design), we process the photos and the data obtained from them in the least 

identifiable manner necessary for achieving the purpose. This respects the data minimization 

principle of data being adequate, relevant, and limited. 

In addition to the PEDIA data set, we analyzed a subset of the DeepGestalt study. By 

removing disorders that are confirmed by tests other than exome sequencing, such as Down 

syndrome (Supplementary Table 2 of Appendix A.2), we ended up with 260 of 329 cases 

from the DeepGestalt set (Gurovich et al. 2019). 

The facial images were analyzed with DeepGestalt, a deep convolutional neural network 

trained on more than 17,000 patient images (Gurovich et al. 2019). The results of this 

analysis are gestalt scores that quantify the similarity to 216 different rare phenotypes per 

individual. These vectors can also be used to identify duplicates in the DeepGestalt training 

set and test set without the need to access the original photos. To avoid overfitting, we 

excluded all cases of the PEDIA cohort from a DeepGestalt model that we used for 

benchmarking. It is noteworthy that the version of DeepGestalt available at Face2Gene will 

not yield the same results when photos of the PEDIA cohort are reanalyzed because it is 

built as a framework that aims to learn from every solved case. 
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Figure 27: Prioritization of exome data by image analysis (PEDIA): cohort and 
classification approach. (a) Clinical features, facial photograph, and pathogenic variant of 
one individual of the PEDIA cohort. In total the cohort consists of 679 cases with monogenic 
disorders that are suitable for a diagnostic workup by exome sequencing. (b) Clinical 
features, images, and exome variants were evaluated separately and integrated to a single 
score by a machine learning approach. The disease-causing gene is shown at the top of the 
list. 
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In addition to the image analysis, we performed semantic similarity searches with the 

annotated HPO terms by three different tools: Feature Match (FDNA), Phenomizer, and 

Bayesian Ontology Querying for Accurate Comparisons (BOQA) (Köhler et al. 2009; Bauer 

et al. 2012). HPO terms for all published cases as well as the clinical notes in the electronic 

health records were independently extracted by two data curators. All terms that did not 

occur in both lists were revisited by a third curator (see Figure 27a and Supplementary Table 

1 of Appendix A.2). The similarity scores from image analysis as well as semantic similarity 

searches were mapped to genes by mim2gene and morbidmap from (McKusick-Nathans 

Institute of Genetic Medicine, Johns Hopkins Universrity 2019). If there were several 

syndromes linked to a gene, the highest gestalt and feature scores were selected for this gene. 

Exome sequencing data was not available for the vast majority of cases. Therefore, we 

spiked in the disease-causing variant of each case into randomly selected exomes of healthy 

individuals of different ethnicities from the 1000 Genomes Project (1000 Genomes Project 

Consortium et al. 2015). All sequence variants were then filtered as described by Wright et 

al. and scored for deleteriousness with CADD (Kircher et al. 2014; Wright et al. 2018). Per 

gene, the variant with the highest CADD score was used, regardless of the genotype. This 

heuristic was chosen to maximize the sensitivity also for compound heterozygous cases 

where the second hit in a recessive disease gene achieves only a relatively low CADD score. 

For each case this procedure resulted in a table with rows for genes and the five different 

scores in the columns (Figure 27b). All five scores per line as well as the Boolean label 

disease gene “true” or “false” (i.e., the vector) were used to train a classifier that yields a 

single value per gene, the PEDIA score, that can be used for prioritization (Figure 27b). A 

detailed description of preprocessing and filtering, as well as all the annotated data, can be 

found in our code repository. 

We used a support vector machine (SVM) to prioritize the genes based on the five scores 

for each case. To benchmark our approach, we performed tenfold cross-validation. First, we 

split the PEDIA cohort into ten groups, ensuring that a certain disease gene was included 

only in one of ten groups. By this means, we avoided overfitting, in case the same disease-

causing variant occurred in two different individuals (Supplementary Fig. 1 of Appendix 

A.2). We used a linear kernel on the five scores to train the SVM and selected the 
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hyperparameter C in the range from 2-6 to 212 by performing internal fivefold cross-

validation on the training set. The C with the highest top 1 accuracy was selected for training 

a linear SVM. We further benchmarked the performance of each case in the test set with this 

model. The distance of each gene to the hyperplane—defined as the PEDIA score—was 

used to rank the genes for the case. If the disease-causing gene was at the first position, we 

called it a top 1 match, or if it was among the first ten genes, we considered it a top 10 match. 

For the 260 cases from the DeepGestalt publication test set, where exome diagnostics would 

be applicable, we randomly selected cases from the PEDIA cohort with the same diagnosis 

and added the CADD and the feature scores per case (see column C in Supplemental Table 

1 of Appendix A.2). The cases in the PEDIA cohort with the same pathogenic variant as 

already assigned to the DeepGestalt test set were removed from the training set. Then we 

trained the classifier on the PEDIA cohort and tested it on the DeepGestalt publication test 

set. The experiment was repeated ten times with random selection. By this means we studied 

how the publicly available portraits of the DeepGestalt test set would improve the 

performance when used in exome analysis with the PEDIA approach. However, it has to be 

emphasized that both approaches solve different multiclass classification problems (MCPs), 

the first tool operating on phenotypes and the second on genes. The difficulty of the task is 

not only characterized by the number of classes and the distinguishability of the different 

entities but also by the information available for the classification. For both MCPs the 

maximum number of classes can be estimated from OMIM by querying with the HPO term 

“abnormal facial shape”, yielding around 700 disorders and genes with disease-causing 

variants. As there is additional and nonredundant information available from the molecular 

level for PEDIA, it achieves better top 1 and top 10 accuracies. 

6.5 Results 

The performance of a prioritization tool can be assessed by the proportion of cases for which 

the correct diagnosis or disease gene is placed at the first position or among the first ten 

suggestions (top 1 and top 10 accuracy). The composition of the test set has an influence on 

the accuracy because some disease phenotypes are easier to recognize, and some gene 

variants are more readily identified as deleterious. The setup of the PEDIA cohort, which is 
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comprehensively documented in the Supplementary Appendix A.2, therefore aims at 

emulating the whole spectrum of cases that could be analyzed with DeepGestalt and 

diagnosed by exome sequencing. 

When only CADD scores are used for variant ranking, the disease-causing gene is in the top 

10 in less than 45% of all tested cases. The top 10 accuracy increases up to 63–94%, when 

different semantic similarity scores based on HPO feature annotations are included 

(Supplementary Table 3 of Appendix A.2). 

The additional information from frontal photos of cases pushes the correct disease gene to 

the top 10 in 99% of all PEDIA cases (Figure 28a). Particularly striking is the performance 

gain for the top 1 accuracy rate from 36–74% without DeepGestalt scores to 86–89% 

including the scores from image analysis (Supplementary Table 3 of Appendix A.2). 

The distribution of the PEDIA scores does not differ using exomes with different ethnic 

backgrounds (Supplementary Fig. 2 of Appendix A.2). 

Although the top 10 accuracies of DeepGestalt scoring on the phenotype level and PEDIA 

scoring on the gene level cannot be compared directly, both approaches operate on a similar 

number of classes (Figure 28). Adding suitable molecular information to 260 cases from the 

DeepGestalt publication test set confirms our results in the PEDIA cohort by achieving a 

top 10 accuracy rate of 99% (Supplementary Table 2 of Appendix A.2). 

The value of a frontal photograph is demonstrated by a case with Coffin–Siris syndrome 

(shown in Figure 27): the characteristic facial features are relatively mild, so the correct 

diagnosis is only listed as the third suggestion by DeepGestalt. Among all the variants 

encountered in the exome, the disease-causing gene ARID1B would only achieve rank 27, 

if scored by the molecular information alone. However, combined with the phenotypic 

information, the PEDIA approach lists this gene as the first candidate (Figure 28b). 

Although the diagnosis of the illustrated case could be molecularly confirmed by a directed 

single-gene test in other instances where the facial gestalt is more indicative, syndromic 

disorders often puzzle clinicians due to their high phenotypic variability. In the Deciphering 

Developmental Disorders (DDD) project many syndromes were diagnosed only after exome 
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sequencing (Deciphering Developmental Disorders Study 2017). Still, the top 10 accuracy 

rate of 49% that DeepGestalt can achieve for phenotypes linked to genes is impressive 

(Figure 28a). The contribution from the different sources of evidence to the PEDIA score is 

also reflected by the relative weight of the deleteriousness of the pathogenic variant (0.44), 

all feature-based scores combined (0.25), and the results from image analysis by 

DeepGestalt (0.31) that can be derived from a linear SVM model. The information contained 

in a frontal photograph of a patient therefore goes beyond what clinical terms can capture. 

The top 1 and top 10 accuracies are reported for all combinations of scores in the 

Supplementary Table 3 of Appendix A.2. 
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Figure 28: Performance readout and visualization of test results for a representative 
prioritization of exome data by image analysis (PEDIA) case. (a) For each case the 
exome variants are ordered according to four different scoring approaches, solely by a 
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molecular deleteriousness score (CADD), by a score from image analysis (DeepGestalt), by 
a combination of a molecular deleteriousness score and a clinical feature–based semantic 
similarity score (CADD+Phenomizer), or the PEDIA score that includes all three levels of 
evidence. The sensitivity of the prioritization approach depends on the number of genes that 
are considered in an ordered list. The top 1 and top 10 accuracy rates correspond to the 
intersection of the curves at maximum rank 1 and 10. Note that for benchmarking 
DeepGestalt on the gene level, syndrome similarity scores first have to be mapped to the 
gene level, resulting in a lower performance compared with the readout on a phenotype 
level, due to heterogeneity. The area under the curve is largest for PEDIA scoring. (b) The 
disease-causing gene of the case depicted in Figure 27 achieves the highest PEDIA score 
and molecularly confirms the diagnosis of Coffin–Siris syndrome. Other genes associated 
with similar phenotypes, such as Nicolaides–Baraitser syndrome, also achieved high scores 
for gestalt but not for variant deleteriousness. 

6.6 Discussion 

The guidelines for variant classification in the laboratory follow a qualitative heuristic that 

combines distinct types of evidence (functional, population, phenotype, etc.). Interestingly, 

it is also compatible with Bayesian statistics (Tavtigian et al. 2018) and the advantage of 

such a framework is that continuous evidence types can be integrated into the classification 

system. While in silico predictions about a variant’s pathogenicity have a relatively long 

history in bioinformatics and machine learning, the quantification of phenotypic raw data 

such as facial images with artificial intelligence systems has just begun: the PEDIA approach 

uses scores from DeepGestalt for gene prioritization in combination with quantitative scores 

from the molecular level in Mendelian disorders identifiable by exome sequencing. 

Interestingly, the ethnicity, which affects the number of variant calls or the deleterious 

variant load, had minor influence on the performance of PEDIA. Although the total number 

of variants detected by reference-guided sequencing in individuals of African descent is 

considerably higher than in individuals of European or Asian descent, the distribution of the 

CADD scores for rare variants is comparable (Supplementary Figs. 3, 4 of Appendix A.2). 

That means the rank that a gene achieves due to the molecular score and the corresponding 

scores from the phenotypic information is hardly affected by the background population 

(Supplementary Fig. 2 of Appendix A.2). 
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With regard to the routine use in the laboratory we have learned three important lessons 

from specific subgroups or cases achieving lower PEDIA ranks: 

1. Although DeepGestalt, the convolutional neural network used for image analysis, has 

been pretrained on real-world uncontrolled 2D images, patient photographs that were not 

frontal, of low resolution, had poor lightening and contrast, or contained artifacts such as 

glasses, yielded lower gestalt scores for the searched disorder. In one use case envisioned 

for PEDIA, the human expert in the lab will only receive the similarity scores from 

DeepGestalt, but not the original photograph. In this setting it is not clear whether low scores 

originate from a low-quality photograph or whether there is little dysmorphic signal 

indicative of a syndromic disorder. This potential problem could be addressed by providing 

gestalt scores from additional photographs. 

2. Particularly rare diseases or recently described disorders, for which the classifier’s 

representation is based on a smaller training set, show a lower performance, even if 

experienced dysmorphologists would consider them highly distinguishable. In a recent 

publication by Duddin-Byth et al. the machine learning approach showed the lowest 

accuracy for the disorder with the smallest number of training cases; however, so did humans 

(Dudding-Byth et al. 2017). 

3. Disease-causing variants in genes that interact in a molecular pathway often result in 

highly similar phenotypes that are organized as series in OMIM and modeled as a single 

entity by DeepGestalt. Often there are subtle gene-specific differences in the gestalt and 

modeling the entire phenotypic series by a single class is not the theoretical optimum 

achievable with more cases (Jean T. Pantel et al. 2018; Knaus et al. 2018). This will 

especially diminish the performance of genes less frequently mutated in a molecular 

pathway. This is exemplified in the PEDIA cohort by Hyperphosphatasia with Mental 

Retardation Syndrome (HPMRS), where the least frequently mutated gene, PGAP2, shows 

the lowest performance. Likewise, this applies to microdeletion syndromes that can also be 

caused by pathogenic variants in single genes, such as Smith–Magenis syndrome, or an 

atypical clinical presentation with Kabuki syndrome (see e.g., case IDs 246245 and 204233 

in Supplementary Table 1 of Appendix A.2) (Badalato et al. 2017). 
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It is noteworthy that these shortcomings are mainly due to the limited training data for these 

particular genes and that they will most likely be overcome by more molecularly confirmed 

cases. DeepGestalt and PEDIA are therefore built as frameworks that will be improved 

continuously with additional data. In general, the use of artificial intelligence in medical 

sciences raises new or exacerbates existing ethical and legal issues as repositories of 

combined genotype and phenotype data become crucial for the machine learning community 

(Hallowell, Parker, and Nellåker 2019; Mascalzoni et al. 2019). Sharing portrait photos of 

individuals with rare diseases can be accomplished within the scope of even the most 

elaborate data privacy laws, such as the European Union General Data Protection Regulation 

2016/679 (GDPR). The GDPR not only ensures the protection of individuals, but also the 

free movement of personal data, inter alia, for scientific research purposes (Bentzen and 

Høstmælingen 2019). 

The interpretation of genetic variants is greatly facilitated by sequencing additional family 

members. Analogously, we hypothesize that the signal-to-noise ratio of next-generation 

phenotyping technologies can further be improved by including unaffected siblings or 

parents in the analysis. 

We include and strive to include a wide variety of ethnicities, but European backgrounds 

are currently best represented, leading to best performance for this population. As the data 

set expands further, the algorithm will improve for currently underrepresented ethnicities. 

Assistance with diagnosis of rare genetic disorders is highly valuable to clinicians, and by 

extension to the patients themselves and their families. Especially in inconclusive cases with 

findings of unknown clinical significance, additional evidence from computer-assisted 

analysis of medical imaging data could be a decisive factor (Wright et al. 2018). 

In conclusion, the PEDIA study documents that exome variant interpretation benefits from 

computer-assisted image analysis of facial photographs. By including similarity scores from 

DeepGestalt, we improved the top 10 accuracy rate significantly compared with state-of-

the-art algorithms. Artificial intelligence–driven pattern recognition of frontal facial patient 

photographs is therefore an example of next-generation phenotyping technology that has 
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proven its clinical value for the interpretation of next-generation sequencing data 

(Hennekam and Biesecker 2012). 

6.7 Code availability 

All training data as well as the classifier are available at https://github.com/PEDIA-

Charite/PEDIA-workflow. The trained PEDIA model is provided as a service that is ready 

to use at https://pedia-study.org. 

6.8 PEDIA in variants analysis platform 

In the previous section, we introduced how PEDIA improved the exome diagnosis. As the 

first method, which integrates facial analysis into exome data analysis, we also implemented 

the PEDIA platform, a web platform for clinicians, and REST API for developers to 

integrate into their existing variants analysis platform. This section will introduce the PEDIA 

platform and demonstrate integrating the PEDIA workflow into GeneTalk 

(https://www.gene-talk.de), a variant analysis platform. 

6.8.1 PEDIA platform 

PEDIA workflow takes five scores as input, and Face2Gene generates the gestalt and feature 

match scores. Although we could use Phenomizer and Boqa for the feature analysis, there 

is no local version of DeepGestalt for facial analysis. So we need to send the photo to 

Face2Gene and obtain the gestalt scores. Therefore, we developed the PEDIA platform 

(www.pedia-study.org) to enable users to analyze their patients' exome data with the PEDIA 

scores. The PEDIA platform is an online platform that provides a VCF viewer for reviewing 

variants, PEDIA scores, and other annotations from external databases. 

We developed the PEDIA API to receive data from Face2Gene and perform the PEDIA 

service. As an example of integrating the PEDIA service into the variants analysis platform, 

we launched the PEDIA service in the PEDIA platform and integrated it with Face2Gene 

LAB. The whole workflow is shown in Figure 29. The user first uploads the patient's HPO 
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terms and facial photo to Face2Gene, and later uploads a VCF file of exome data or sends 

the sample to the University hospital of Bonn (UKB). Once the exome data is finished, UKB 

will upload the VCF file. In the end, the user submits the data to the PEDIA platform. Once 

the PEDIA analysis is finished, the user can visualize the PEDIA results on the PEDIA 

platform (Figure 30 and Figure 31). 

In addition to visualizing PEDIA scores in a Manhattan plot and a list of genes, users can 

review the variants with PEDIA scores and CADD scores in a VCF viewer (Figure 32). The 

user can significantly narrow the search space by sorting PEDIA scores and clinical 

significance in the VCF viewer. After pressing the review button of a variant, the user can 

review the variant with more detail from external annotation databases such as ClinVar, 

Ensembl, ExAC, gnomAD, and Mutation Taster. Once the disease-causing mutation is 

found, the user can select the variant classification on the variant's page (Figure 33). The 

classification will be stored in the database and later submitted to ClinVar. These steps are 

the classical way to diagnose a patient with exome data, and the PEDIA platform is an 

example of how variants analysis platform integrates with PEDIA analysis. 

Figure 29: The flowchart of PEDIA platform. 
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Figure 30: PEDIA Manhattan plot in PEDIA platform. 

 

Figure 31: List of genes with PEDIA scores in the PEDIA platform. 



100 Prioritization of exome data by image analysis 

 

 

Figure 32: Variants sorted by clinical significance in VCF viewer. 

 

Figure 33: Variant annotation from external databases. 
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6.8.2 PEDIA in GeneTalk 

The other online variants analysis platform can also use PEDIA API. Here we take GeneTalk 

(https://www.gene-talk.de) as an example. To obtain the gestalt score without uploading the 

patient to the Face2Gene website, Face2Gene developed PhenoBot, a widget that can run 

facial analysis on any platform. PhenoBot can be easily embedded as a browser plugin into 

any online platform. With PhenoBot, the user can upload the patient's photo to it, and the 

results will be shown in the widget after analysis. The online platform will obtain the results 

in JSON format to perform any other downstream analysis such as the PEDIA pipeline. The 

screenshot of PhenoBot is shown in Figure 34. PEDIA API and PhenoBot were integrated 

into GeneTalk (Kamphans and Krawitz 2012), demonstrating how a variants analysis 

platform obtains the gestalt scores and deploys PEDIA service. After submitting the photo 

and HPO terms to the PEDIA platform, GeneTalk will receive the PEDIA results that can 

be used to prioritize the variants in GeneTalk (Figure 35 and Figure 36). 

 

Figure 34: PhenoBot in GeneTalk. 
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Using PEDIA API requires data transmitted to the server hosted in the University hospital 

of Bonn that might violate the data protection policy in some hospitals. To avoid the data 

transfer outside the hospital, we released the PEDIA workflow in a docker image 

(https://hub.docker.com/repository/docker/la60312/pedia). Therefore, the developer can 

deploy the PEDIA workflow locally in their server without sending data to the PEDIA 

platform. 

 

 

 

Figure 35: PEDIA Manhattan plot in GeneTalk. 
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Figure 36: List of genes with PEDIA scores in GeneTalk. 
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Chapter 7 Discussion and the future of next-

generation phenotyping 

The previous chapters introduced how to utilize the current next-generation phenotyping to 

analyze rare genetic disorders. Although we have seen that the NGP approaches can be used 

in the daily diagnosing workup and exploring the novel gene-phenotype association, further 

improvement to the existing approach is still needed. Because the network architecture used 

in the previous chapters is all based on the work published in 2014, updating the 

architectures to a more advanced one might improve the performance. Besides, the methods 

for aggregating the models trained by different facial crops or training splits were not well 

studied yet. The following sections will first introduce the possible improvements by 

updating the DeepGestalt method. 

Moreover, most of the current databases are biased in ethnicity and age. The majority of the 

patients collected are from Caucasians, and the photos are taken at a younger age. The model 

trained on the biased dataset might influence prediction performance (Lumaka et al. 2017). 

Hence, the algorithm for removing bias while training on a biased dataset is an urgent need. 

In addition to improving the algorithm, enlarging the currently available dataset is also an 

important issue. It is difficult to collect data because of the rareness of disorders and patients’ 

concerns. Patients might be deterred due to privacy leaking or data abuse, not to mention we 

are collecting the frontal images that are easily recognizing the identity. To tackle this 

difficulty, many researchers have utilized generative adversarial networks (GANs) to 

synthesize medical images. Therefore, the synthesis of faces with facial dysmorphism by 

GANs could be one solution to enlarging the training dataset for the deep learning approach.  

In the end, with the experience of COVID-19, global collaboration becomes more and more 

critical. It not only helps ease the pandemic, but will also contribute to the rare disorders. 

The most well-known global collaboration platform, MatchMaker Exchange (Philippakis et 

al. 2015), integrated several patient databases that enable clinicians to find similar patients 
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worldwide. However, this kind of platform only focuses on genomic data such as the 

disease-causing mutations, and the automatic matching by medical images is not yet 

integrated into the matching databases. In addition, looking for a way to share the de-

identified medical images across different sites is also very important to tackle data rareness. 

I envision that these further improvements could strengthen the NGP approaches for 

diagnosing rare disorders. 

7.1 Modernizing DeepGestalt approach 

To make a fair comparison to DeepGestalt, the network architecture and the pre-trained 

dataset, CASIA-WebFace, used in this thesis are the same as the one introduced in the study 

presented in 2014 (Yi et al. 2014). Since then, lots of approaches have been proposed with 

different architectures and loss functions (Schroff, Kalenichenko, and Philbin 2015; W. Liu 

et al. 2017; H. Wang et al. 2018; Jiankang Deng et al. 2019; Jiankang Deng, Guo, Liu, et al. 

2020; Jiankang Deng et al. 2021). In addition to the architecture, many face datasets were 

proposed after CASIA-WebFace, such as IMDB-WIKI, VGGFace2, FairFace (Rothe, 

Timofte, and Van Gool 2018; Cao et al. 2017; Kärkkäinen and Joo 2021). Therefore, it will 

be necessary to benchmark the performance with different pre-trained datasets and 

architectures combinations.  

Moreover, the original DeepGestalt publication proposed a method that aggregates the 

results from different facial regions. For simplifying the experiment setting, only the whole 

face was taken into analysis in GestaltMatcher. The aggregation of the different facial 

regions was not yet well discussed. For example, we can concatenate the feature vectors 

derived from different facial regions and calculate the cosine distance to quantify the 

similarity. Besides, we found that the results sometimes differed among different models. 

So the same method can also be applied to the feature vectors generated from different 

models to stabilize the prediction. 

In the end, some facial regions that DeepGestalt was not analyzing are sometimes crucial 

for making the diagnosis. For example, the patients with Waardenburg syndrome (MIM: 

193500) present white forelock, and this feature is one of the hints for clinicians to make 
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Waardenburg syndrome the diagnosis. However, this kind of hair feature is not yet included 

in the DeepGestalt. Additionally, the profile image is sometimes also vital for clinicians to 

diagnose. Therefore, the facial cropper that can include more regions such as hair or profile 

would be helpful for future NGP approaches. 

7.2 Bias removal 

The next-generation phenotyping technology for syndromology, such as GestaltMatcher, 

has enabled matching patients with ultra-rare phenotypes by the facial representations 

learned from thousands of patient photos. However, the currently available patient photos 

are unbalanced in ethnicity and age. For example, most of the photos are from Caucasians 

and taken at an early age. It results in biased models when training on an unbalanced dataset. 

The model might learn the ethnicity instead of facial dysmorphic features to classify the 

disorders. Therefore, I will demonstrate how to remove these biases when training on an 

unbalanced dataset. 

To prove the method can remove the ethnic bias while training on an unbalanced dataset, I 

first collected an unbalanced dataset on purpose. The dataset contained 167 images of 

Cornelia de Lange syndrome (CdLS) and 199 images of Williams-Beuren syndrome (WBS). 

In CdLS, 142 of 167 images were European, and the rest 25 images were Non-European. 

The ethnic distribution in WBS was the opposite. Only 25 images were European, and the 

rest 174 images were Non-European. The dataset was further divided into an unbalanced 

training set and a balanced test set. The training set contained 117 European of CdLS and 

149 Non-European of WBS. The test set had a balanced distribution between European and 

Non-European. Both categories in CdLS and WBS had 25 images (Table 6). In this way, the 

training set was biased on ethnicity while the test set was balanced. I later utilized deep 

convolutional neural networks for training a model on images, and the joint learning and 

unlearning (JLU) technique proposed by Alvi et al. was used to remove the ethnicity bias 

during the model training (Alvi, Zisserman, and Nellåker 2019). 

Figure 37 shows the results before and after applying JLU. The results before applying JLU 

was taken as the baseline because I want to prove that the results are improved after applying 
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JLU. In CdLS, the accuracy of Non-European was 84% that is lower than European (100%). 

In WBS, the accuracy of European was 80% that is lower than Non-European (96%). We 

can see that the classes not included in the training performed worse than the classes in the 

training set. However, after applying JLU, the accuracies of European and Non-European 

were balanced. European CdLS had 96%, and Non-European CdLS had 100%. In WBS, 

both European and Non-European had 96%. 

Table 6: Ethnicity distribution in training and test set. 

  European Non-European 

Training set 
CdLS 117 0 

WBS 0 149 

Test set 
CdLS 25 25 

WBS 25 25 

 

Moreover, t-SNE (van der Maaten and Hinton 2008) was used to visualize the distribution 

of patients in a two-dimensional space by projecting the features extracted from the layer 

before softmax. In Figure 38, we can see that the patients can be easily separated by ethnicity 

(European and Non-European). However, after applying JLU, we could no longer separate 

the patients by ethnicity. 

The results proved that the adversarial networks such as JLU unlearned the bias and better 

generalized facial dysmorphic features. With this method, we could improve the disease 

classification on the patients of the minority class in this society. However, the results were 

only based on two disorders. More data with labels such as sex, age, and ethnicity is needed 

for further comprehensive analysis. 
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Figure 37: Results of baseline and after applied JLU. a) The baseline results. b) The 
results after applying JLU.  

 

Figure 38: t-SNE visualization of baseline and after applied JLU. a) The baseline results. 
b) The results after applying JLU. Both figures contain the 100 patients in the test set (CdLS: 
50 and WBS: 50). 
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7.3 Synthesizing faces with facial dysmorphism 

Although we proposed GestaltMatcher DB and will dedicate collecting medical images, a 

large and balanced dataset is still challenging to acquire. As discussed in the previous 

section, the majority of data with rare disorders is from Caucasian patients and at a younger 

age. Despite the algorithm for bias removal, the lack of balanced data is a significant 

problem. Moreover, data sharing is a big concern to the patients. Patients are worried about 

privacy leaking and the abuse of their data, especially to the frontal images that easily 

recognize the actual identity. Therefore, synthesizing the face with a rare genetic disorder 

given by the chosen configuration (age and ethnicity) that cannot be traced back to the 

original patient is essential to tackle the issue of data rareness. 

With the rapid development of generative adversarial networks (GANs), GANs have shown 

their capability to generate fake faces that are hard to distinguish from real faces and 

synthesize the images with the given style (Goodfellow et al. 2014; Mescheder, Nowozin, 

and Geiger 2017; Z. Zhang, Song, and Qi 2017; Karras et al. 2018, 2020). Beyond normal 

image generation, synthesizing medical images has become a hot topic in recent years. 

GANs have been utilized on the synthesis of retinal images (Costa et al. 2018; Zhao et al. 

2018; Y.-C. Liu et al. 2019; Diaz-Pinto et al. 2019), skin lesions (Izadi et al. 2018; Bissoto 

et al. 2018; Ali, Mohamed, and Mahdy 2019; Bissoto, Valle, and Avila 2021), chest 

radiographs (Chuquicusma et al. 2018; Han et al. 2020, 2021; DuMont Schütte et al. 2021), 

and many other types of medical images. Hence, we envision that GANs can be utilized to 

synthesize faces with facial dysmorphism. 

The frontal images from the GMDB can be taken as the training data. As a proof of concept, 

we will start with synthesizing the face with a chosen disorder such as Kabuki syndrome 

(MIM: 147920) or Cornelia de Lange syndrome (MIM: 122470). Moving forward, age, sex, 

and ethnicity will be considered. In the end, the model can generate the face with a specific 

disorder, age, sex, and ethnicity, and the dysmorphologists will validate the simulated faces 

to evaluate the performance. 

The capability to simulate the characteristic facial gestalt of a genetic disorder is also 

important besides its value of augmenting and enlarging the training set. Facial portraits are 
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still the best teaching material for students and residents in medical genetics. However, since 

individuals are re-identifiable by their faces, many patients no longer consent to publish their 

photos. Therefore, this simulation approach is also of interest for the education of the next 

generation of physicians. 

7.4 Enabling global collaboration  

With the experience of COVID-19, global collaboration is more and more critical for public 

health (Jit et al. 2021; Moshtagh, Mirlashari, and Amiri 2021; Cai, Fry, and Wagner 2021; 

Vervoort, Ma, and Luc 2021). It is not only crucial for the pandemic, especially for the rare 

disorders, because there is sometimes only one patient with an ultra-rare disorder. For 

facilitating the diagnosis of rare disorders, many online platforms host the data collected 

worldwide, such as GeneMatcher, MatchMaker Exchange, MyGene2, and ClinVar 

(Sobreira et al. 2015; Philippakis et al. 2015; Chong et al. 2016; Landrum et al. 2018, 2020). 

However, most of these platforms focus on genomic data such as disease-causing mutations, 

and the phenotypic information is mainly collected in the form of HPO terminology. 

Although MyGene2 supports uploading photos, there is no automatic matching by facial 

photo analysis. The Minerva Initiative has been proposed to enable the collaboration on 

identifiable data such as facial images (Nellåker et al. 2019), but it is currently unavailable. 

Therefore, it is crucial to support patient matching by facial photo analysis and connect 

medical image databases such as GMDB to other databases. 

To begin with, GMDB can first collaborate with the institutions in Germany to continue the 

development of a database for Next-Generation Phenotyping that includes medical images 

and the relevant molecular information so that it is compliant with the German and European 

regulations on general data protection. With the experience of the TRANSLATE-NAMSE 

project (https://translate-namse.charite.de), GMDB has established connections with ten 

German university hospitals (Charité, Bonn, Heidelberg, Munich, Tuebingen, Essen, 

Bochum, Luebeck, Dresden, and Hamburg). The TRANSLATE-NAMSE project has 

collected more than one thousand patients with exome sequencing data and facial photos in 

the last three years. Over the next few years, many innovative concepts from TRANSLATE-
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NAMSE will also be used within genomDE and the Modellvorhaben Genomsequenzierung. 

In the end, I anticipate GMDB as a German-based rare disorders database with medical 

images and sequencing data that can also be a valuable contribution on the international 

level. 

In addition to sharing the data directly, the decentralized learning method such as swarm 

learning could be considered as a solution to facilitate global collaboration (Warnat-

Herresthal et al. 2021). Abiding the legal regulation is usually the most challenging task 

when collaborating among different institutes. This decentralized way that avoids 

transferring the medical data can train the model on the data in different sites locally and 

only transfer the model. The scientists in different hospitals would be more willing to join 

the network since it could enable collaboration and avoid the time-consuming paperwork to 

allow others to access their data. 

In the end, the collaborations on both data and algorithm levels still have lots of room to 

improve. I hope GMDB could become a German-based rare disorder database and further 

connect with other patient platforms such as MatchMaker Exchange to enhance the 

diagnosis of rare disorders globally. 

  



112 Conclusion 

 

Chapter 8 Conclusion 

This thesis presented how GestaltMatcher, GMDB, and PEDIA tackle the current limitations 

on the algorithm, dataset, and availability for clinical diagnostic settings. We showed that 

GestaltMatcher could support ultra-rare disorders and novel diseases and analyze the 

patients’ similarities to explore the novel gene-phenotype relationship. Moreover, the 

medical images in GMDB could be the open-access resource to the research community for 

deep learning purposes and the easy-visualized reference material for clinician-scientists. In 

addition, PEDIA integrated the facial analysis into the exome prioritization pipeline and can 

be easily integrated into the existing variants analysis platform. In the end, we envision that 

both GestaltMatcher and GMDB can be integrated into the patient match platforms to enable 

global collaboration and further improve the diagnosis of rare Mendelian disorders. 
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Appendix 

A.1 Supplementary information of GestaltMatcher 

Please find the Supplementary Information and Supplementary Table 8 in the following 

links from the journal. 

• Supplementary Information: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-01010-

x/MediaObjects/41588_2021_1010_MOESM1_ESM.pdf 

• Supplementary Table 8: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-01010-

x/MediaObjects/41588_2021_1010_MOESM4_ESM.xlsx 

A.2 Supplementary information of PEDIA 

Please find the Supplementary Materials and Supplementary Table 1 in the following links 

from the journal. 

• Supplementary Material: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41436-019-0566-

2/MediaObjects/41436_2019_566_MOESM1_ESM.pdf 

• Supplementary Table 1: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41436-019-0566-
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