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Abstract 

Antiretroviral therapy (ART) effectively suppresses HIV replication in people 

living with HIV (PLWH), but treatment is lifelong due to the persistence of 

long-lived, latently infected resting CD4+ T cells. During the early course of 

infection, HIV integrates into the genome of CD4+ T cells (provirus) and 

establishes a reservoir of latently infected cells. These latently infected cells 

contain a transcriptionally silent provirus that can evade ART, resist 

immune-mediated clearance and are a significant challenge in achieving a 

cure for HIV infection. One strategy toward eliminating HIV latency is the 

activation of HIV viral production by latency reversal agents (LRAs) to 

induce virus-mediated cytolysis or clearance through immune recognition in 

the presence of ART (often called "shock and kill"). A range of 

pharmacological and immunological interventions have been investigated 

to eliminate latency and purge the HIV latent reservoir, including epigenetic 

modifiers such as the histone deacetylase inhibitor romidepsin and 

compounds that work through the NF-κB pathway such as agonists of 

retinoic acid-inducible gene I (RIG-I). However, the shock and kill strategy 

has demonstrated limited efficacy both in vitro and in clinical trials based on 

lack of specificity, toxicity issues, inability to directly target the CD4+ T cells 

and the failure to reduce reservoir size. One approach to overcome some 

of these limitations is using nano-engineered particle delivery systems to 

encapsulate and deliver LRAs to latently infected T cells, which possess 

several advantages over more traditional drug delivery methods and could 

potentially increase potency and reduce toxicity. We developed two different 

nanocarrier solutions to encapsulate two distinct LRAs; romidepsin (a small 

hydrophobic molecule) and 5'triphosphate double-stranded RNA (a nucleic 

acid RIG-I agonist).  

In this thesis, first, we fabricated thiolated Poly (methacrylic acid) (PMASH) 

particles using the Layer-by-Layer (LbL) assembly technique with varying 

sizes, from 100 nm to 1 μm. In addition, we surface-functionalized the 

negatively charged PMASH particles to neutral (PMASH-PEG) and positive 
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surface charge (PMASH-PLL). Using these platforms, we investigated the 

influence of surface charge and size in particle association and 

internalization in T cells and within physiological mixtures of primary human 

blood immune cells (human whole blood and PBMC) using flow cytometry 

and confocal microscopy. We demonstrated that negatively charged PMASH

particles are more readily associated with T cells than neutral PMASH-PEG 

and positively charged PMASH-PLL. Furthermore, smaller negatively 

charged particles (400 nm) were preferentially internalized in T cells 

compared to larger particles. In contrast, we found that PMASH-PEG and 

PMASH-PLL 400 nm particles were highly associated with T cells in human 

PBMC mix culture. Interestingly, in human whole blood, 400 nm particles 

were taken up by monocytes and DCs irrespective of their surface charge. 

We then utilized the PMASH particle drug delivery system to encapsulate 

romidepsin (RMDLNPs) and investigated their potency to reactive HIV 

latency and cytotoxic effects compared to romidepsin free drug formulation 

in cell line models of HIV latency. We successfully delivered RMDLNPs to 

a latently infected T cell line and demonstrated enhanced potency to reverse 

HIV latency with reduced toxicity. 

Finally, we optimized a delivery carrier platform for a RIG-I agonist using 

ethylenediamine modified bovine glycogen (BGEDA) nanoparticles. This 

RNA/glycogen complex was able to induce type I interferon (IFN-I) in 

primary CD4+ T cells and reversed HIV latency in a cell line model of HIV 

latency.  

In summary, these data illustrate the potential use of nano-engineered 

particles in HIV shock and kill strategies and demonstrate the capacity of 

nanoparticle drug delivery systems to enhance the future of HIV cure. 
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Chapter 1: Introduction and Literature 

review 

1.1 INTRODUCTION 

"Progress in scientific research rarely follows a straight path. Generally, it 

entails many unexpected meanderings, with a mix of good and bad ideas, 

good and bad luck. The discovery of the human immunodeficiency virus as 

the cause of AIDS did not avoid this pattern". Robert C. Gallo (1). 

1.2 THE GLOBAL HIV PANDEMIC 

The human immunodeficiency virus (HIV) continues to be the cause of a 

devastating global health crisis, causing significant morbidity and mortality 

following the recognition of acquired immunodeficiency syndrome (AIDS) 

(2). Since the start of the epidemic in 1981, worldwide, an estimated 78.7 

million have contracted HIV infection, and approximately 38 million people 

have died of HIV-related illnesses, with a majority of them concentrated in 

Eastern and Southern Africa (3). According to the UNIAIDS Global report, 

in 2020 there were 1.5 [1.1-2.1] million new infections globally compared to 

2.1 [1.8-24] million in 2015, and 0.68 [0.48-1.0] million HIV-related deaths 

compared to 1.1 [0.94-1.3] million in 2015 (4). This is mainly attributed to 

the advent of ART, an essential player in preventing HIV transmission and 

progression of HIV to AIDS. As of 2020, 73 % [56 %-88 %] of people living 

with HIV (PLWH) globally were accessing life-saving antiretroviral therapy 

(ART) compared to 50 % in 2015 (4). Despite ART substantially reducing 

HIV-related morbidity and mortality, ART is not curative, and treatment is 

lifelong. In addition,  access to ART can be difficult, particularly in high 

burden regions and is a great financial burden with an estimated cost to 

treat all PLWH with ART to reach 30 billion US dollars by 2030 (5). 

Therefore, there is great interest in developing a strategy to cure HIV 

infection so PLWH can cease ART. 
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1.3 HIV: STRUCTURE AND REPLICATION CYCLE 

1.3.1 Structure 

The core of the HIV virion consists of two identical single-stranded positive 

sense ribonucleic acid molecules (ssRNA), and an enzyme called reverse 

transcriptase (RT) that converts viral RNA to Deoxyribonucleic DNA (6) 

(Figure 1.1). The HIV particle has a 120 nm diameter and is surrounded by 

a lipid bilayer (7, 8). The viral particle membrane contains non-covalently 

bound trimers of the viral glycoprotein gp 120 and the transmembrane 

spanning gp 41 glycoprotein (9). The virus membrane and the matrix protein 

enclose the capsid composed of polymers of the core antigen (p24). The 

viral capsid is composed of two copies of the HIV RNA, nucleoprotein and 

reverse transcriptase enzymes such as integrase (IN), reverse transcriptase 

(RT) and protease (PR), which are required for reverse transcription (10).  

The 9.8 kb genome of HIV contains nine open reading frames (ORFs) that 

produce 15 proteins classified into structural and regulatory proteins 

expressed during the HIV life cycle (11). In the direction 5′ to 3′ (Figure 1.2), 

the gag gene Pr55gag encodes the proteins of the outer core membrane 

matrix protein (MA) p17, which is implicated in the nuclear import of the HIV 

pre-integration complex (12, 13); capsid protein (CA) p24, nucleocapsid 

protein (NC) p7 and p6 gag protein which participate in late steps of the HIV 

replication cycle, specifically virion budding (14). The pol gene encodes a 

variety of viral enzymes including, protease (PR), reverse transcriptase 

(RT), RNAse H and Integrase (IN) (15). The envelope glycoprotein (Env) 

encodes two envelope glycoproteins located on the outer surface (SU) 

membrane, gp 120 and the transmembrane (TM) protein, gp 41, collectively 

enable viral fusion into the host cell (16). 

HIV encodes two regulatory proteins; the transactivation protein Tat, and 

RNA splicing regulator Rev, which is essential for HIV gene expression and 

nuclear export. In addition HIV encodes four accessory genes, viral protein 

R (Vpr), negative factor (Nef), viral protein U (Vpu) and viral infectivity factor 

(Vif), which are involved in pathogenicity and promoting the ideal 

environment for viral replication (17–19). Flanking the genome at the  5' and 

3' ends are the  long terminal repeats (LTRs)   which are  a consequence of 

reverse transcription and are identical sequence of HIV DNA (11). In an 
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integrated provirus, they are products formed through reverse transcription 

and are located on each side of the HIV genome (20). The LTR region is 

further divided into three distinct regions,  the U3, R and U5 segments, 

where HIV transcription initiates from the promotor region in the R section 

of the 5'LTR and terminates at the polyadenylation (PolyA) signal in the R 

region of the 3'LTR (21, 22). 

Figure 1.1 HIV virion.   

HIV is an envelope virus of approximately 120 nm in diameter. The plasma 

membrane is surrounded by envelope protein, consisting of an outer 

glycoprotein (gp) 120 and a transmembrane domain gp 41. HIV contains a 

core protected by a lipid bilayer shield (matrix, MA) and a capsid protein, 

and includes several host proteins, the positive-sense ssRNA genome and 

various proteins such as Vif, Vpr,  Nef and enzymes such as protease, 

integrase, and reverse transcriptase (11).  

Created with biorender.com 
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Figure 1.2 HIV genomic structure  

The HIV genome structure varies in size between 119-207 bp (23). The HIV 

genome contains 15 open reading ORFs that can produce proteins 

translated from spliced mRNA and unspliced mRNA to liberate the protein 

into their functional units. Created with biorender.com 

1.3.2 Replication cycle 

HIV predominantly targets CD4+ T cells but can infect other cell types that 

express CD4, including monocytes, macrophages and dendritic cells (DCs) 

(24). The first step of the HIV life cycle begins upon adhesion of the virus to 

the host cell, which is mediated by the binding of the viral gp 120 envelope 

protein to the host cell receptor CD4 (25, 26). This induces a conformational 

change in gp 120, enabling the co-receptor binding domain to bind to the 

cellular chemokine C-C motif receptors 5 (CCR5) or C-X-C motif receptor 

type 4 (CXCR4), and subsequently, gp 41 leads to fusion of the viral 

membrane with the cellular membrane and the viral core is deposited in the 

cytoplasm (27) (Figure 1.3). Once in the cytoplasm, the core houses and 

the single-stranded viral RNA genome are reverse transcribed by the viral 

protein reverse transcriptase to form double-strand (ds) DNA (28). The 

conversion to dsDNA leads to the pre-integration complex (PIC) assembly, 

which then moves from the cytoplasm to the nucleus (29, 30). The PIC is 

imported into the host cell nucleus, where the viral DNA (provirus) is 

integrated into the host genome by the action of the viral Integrase protein 

(31). The irreversible integration of HIV DNA into a host cell chromosome is 

facilitated with a strong preference for sites in introns of transcriptionally 

active genes (32–34).  

The HIV DNA genome is flanked at both ends by the LTR sequences. The 

5'LTR region contains many protein binding sites such as negative 

regulatory elements, modulating HIV transcription by utilising it as landing 

pads to host transcription factors. The HIV LTR contains two direct nuclear 

factor-kB (NF-kB), the nuclear factor of activated T cells (NFAT) and three 

repeats of specificity protein 1 (SP-1) and TATA box, which are required to 

trigger transcription (35). Tat recruits viral and cellular transcriptional factors 

on the LTR to upregulate the transcription of the HIV genome. Following 
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integration, transcription can be actively silenced (in a resting CD4+ T cell) 

or proceeds efficiently (in an activated CD4+ T cell) (36, 37). Once the viral 

transcription is efficiently initiated, this results in messenger RNA synthesis 

(mRNA) (38). 

There are two NF-kB and three SP1 binding sites positioned in the enhancer 

region and the core promoter region of the LTR, respectively (36). 

Availability of transcriptional factors (TFs) to bind to these sites is critical for 

efficient transcriptional initiation from the viral promoter (37, 39). In the 

absence of the viral regulatory protein Tat, transcriptional elongation is 

inefficient (40). However, interactions between TFs at the HIV LTR produce 

a low level of transcription events, which can proceed to completion and 

produce full-length transcripts from the HIV genome (41, 42). The HIV 

regulatory protein Tat, encoded by the tat gene, is essential for virion 

production in natural HIV infection and influences the balance between 

productive and latent infection after HIV DNA integrates into the host cell 

chromosome. The regulatory Rev protein encoded by the rev gene exports 

unspliced or singly-spliced viral mRNAs from the nucleus into the cytoplasm 

before it undergoes complete splicing (43). As the levels of complete viral 

transcripts start to increase, Tat and Rev levels gradually accumulate, 

creating a powerful positive feedback loop with Tat that facilitates efficient 

transcriptional elongation at the LTR, in the process positively regulating it 

is own production (44). In the early transcription phase, the 9.8 kb HIV 

transcript is spliced, resulting in a 1.8 kb fragment class of unspliced (US) 

or single spliced (SS) mRNA and transported back to the cytoplasm, where 

structural proteins of new virions are synthesised (45, 46). Herein, only part 

of HIV transcripts is completely processed as Rev facilitates the export of 

intron-containing mRNA out of the nucleus by associating with the Rev 

Responsive Element (RRE) (47). Moreover, the coordinated actions of the 

two regulatory proteins, Tat and Rev, are essential for successfully 

expressing the structural and envelope proteins required to assemble viral 

particles (48, 49).  

The formation of new viral particles is a stepwise process: These mRNAs 

lead to the translation of viral Gag, Gag-Pol polyprotein (US RNA), Env (SS 

RNA) structural polyproteins and multiple spliced RNA encoding additional 
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regulatory proteins forming the virus capsid (45, 50, 51). This immature 

particle migrates towards the plasma membrane with two copies of full-

length ssRNA and buds of the cell generating new immature virions. The 

large precursor molecules (Gag-Polyprotein) are then cleaved by the HIV 

protease, resulting in new infectious viral particles, which bud through the 

host cell membrane (52, 53). 

1.4 ANTIRETROVIRAL THERAPY (ART) 

HIV replication can be effectively inhibited with ART and has decreased 

overall mortality among PLWH (54). ART treats HIV and consists of at least 

two or three antiviral agents that target viral enzymes or proteins required 

for HIV replication (55). Multiple antiretrovirals are now available, targeting 

different steps in the virus life cycle (56) (Figure 1.3). Currently, there are 

several classes of antiretroviral drugs classified based on their molecular 

targets including, nucleoside reverse transcriptase inhibitors (NRTIs), non- 

nucleoside reverse transcriptase inhibitors (NNRTIs), co-receptor 

antagonists, fusion inhibitors, integrase inhibitors and protease inhibitors 

(Figure 1.3). Recent new antiretrovirals progressing through clinical 

development include long-acting injectables and broadly neutralising 

antibodies (57, 58). 
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Figure 1.3 HIV replication cycle and site of action of antiretroviral 

therapy  

The life cycle of HIV infection mainly consists of nine stages: (1) binding, (2) 

fusion, (3) reverse transcription, (4) integration, (5) transcription, (6) 

translation, (7) assembly, (8)  budding and (9) release and maturation of 

virion.  The virus glycoprotein envelope gp 160 binds to the cellular receptor 

CD4 and evokes a conformational change, exposing a co-receptor binding 

domain of gp 120.  This is followed by binding to either CCR5 or CXCR4, 

inducing another conformational change enabling the viral and cellular 

membranes fusion. HIV deposits its core in the cytoplasm where there is 

uncoating, and then the RNA is reverse transcribed to DNA to form the pre-

integration complex (59). The PIC translocates to the nucleus and with the 

help of viral integrase. Following HIV integration into the host genome, HIV 

utilises the cellular machinery to initiate transcription, and viral RNAs are 

exported to the cytoplasm and translated into protein. Finally, maturation 

occurs, allowing the viral RNA and proteins to assemble at the surface and 

bud off the cell membrane forming a new virion (60). Antiretroviral therapy 

targets multiple steps of the HIV life cycle, including attachment, fusion, 

reverse transcriptase, integration, maturation, and formation of complete 

infectious virions. Created with biorender.com 
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1.5 HIV PERSISTENCE IN PLWH ON ART 

 Following ART initiation, rapid decay in plasma viral load is usually 

observed (61, 62). These phases of viral RNA decay are classified into three 

phases (Figure 1.4). The first decay phase is rapid and lasts between 1-2 

days, and is related to the death of productively infected activated CD4+ T 

cells with a short life span (63, 64). The second decay phase shows another 

infected cell population that are resistant to viral cytopathic effect, such as 

macrophages with a life span of 1-4 weeks (65). The third phase 

corresponds to a constant phase caused by the stable pool of latently 

infected cells with a lifespan of approximately 39 weeks. During this phase, 

occasional viremic episodes, known as viral blips, are observed in PLWH 

on ART (66). Although prolonged ART treatment, residual low-level viremia 

ranging from 1 to 5 copies/ml with an overall median viral load of 3.1 

copies/ml can be detected in >80% of participants using ultrasensitive RT-

PCR assays (67). However, as soon as ART is stopped, the virus rapidly 

rebounds within 2-3 weeks (68–70). This is because HIV can persist in 

PLWH on ART in multiple forms. 

Figure 1.4 Dynamics of HIV RNA in the context of ART and treatment 

interruption in PLWH.  
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In PLWH on ART, there are three phases of viremia decay. The first rapid 

phase is the death of productively infected CD4+ T cells that die quickly 

after infection, and the second phase is the decay of cells that are more 

resistant to viral cytopathic effects, such as macrophages. The third phase 

refers to the stable pool of latently infected cells, which viremia reaches a 

level below the limit of detection and are estimated to have a half-life of 3.7 

years.  In the context of treatment interruption, the rapid viral rebound is 

observed and can reseed plasma viremia within 2-3 weeks. Although, 

several PLWH have shown transiently elevated HIV RNA levels which are 

known as blips.  

(Figure taken from (71)). 

1.6 HIV LATENCY  

Latently infected cells are defined as cells harbouring an intact HIV proviral 

genome that is transcriptionally silent.  HIV can establish a state of latent 

infection in PLWH on suppressive ART, which is unaffected by therapy nor 

immune system (viral cytopathic effect and CTL recognition) and 

characterised by the detection of integrated HIV DNA but minimal or no cell-

associated HIV RNA, proteins or free virions (72–77). This pool of latently 

infected cells or viral reservoirs is sufficient to refuel viral replication if ART 

fails or is interrupted (78). Latently infected cells are located in peripheral 

blood and distinct tissue compartments (79–83). However, peripheral blood 

is thought to harbour a smaller share of HIV reservoir than tissues (84).  HIV 

DNA can be found in all CD4+ T cells populations (79), but the differentiated 

memory populations, including central memory (TCM), transitional memory 

(TTM), and effector memory (TEM), are considered to support HIV infection 

and harbour more viral DNA (79, 85, 86). The latent reservoir is established 

very soon following initial infection (87). Early initiation of ART seems not to 

prevent the formation of HIV reservoirs but can reduce the frequency of 

infected cells (88–90). The vast majority of integrated HIV DNA within the 

CD4+ T cell reservoir is defective, whereby the provirus contains large 

internal deletions of genes or lethal mutations (91–93). It is estimated that 

at least 90 % of proviruses are defective (94). Thus traditional quantitive 

PCR (qPCR) based measures of the reservoir, which estimate the reservoir 
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to be 100-10,000 copies/million CD4+ T cells, likely present a significant 

overestimation of the replication-competent reservoir (95). 

Furthermore, not all proviruses are inducible, whereby stimulus can be 

applied to the latently infected cell leading to virus production (96, 97). 

Indeed some proviruses require multiple rounds of maximal T cell 

stimulation in vitro to produce HIV RNA and protein (97). Thus, the true size 

of the inducible replication-competent reservoir (where viral rebound 

emerges from in the absence of ART) is more likely 1-10 per million CD4+ 

T cells in the blood (69, 98). This estimation may be higher in tissue (97). 

Therefore, it is these cells that represent the primary barrier to curing HIV. 

1.7 PATHWAYS TO THE ESTABLISHMENT OF HIV LATENCY 

Despite being the primary HIV reservoir in PLWH on ART, resting CD4+ T 

cells that have not received activating stimuli and have not entered cell cycle 

G (1b) are poorly permissive to HIV infection in vitro (99). In addition, CCR5 

is highly expressed on activated CD4+ T cells but poorly expressed on 

resting cells, hindering the first step of viral infection of these cells.

It has been demonstrated in several studies that in vitro infection of resting 

CD4+ T cells are achievable with the use of chemokines (99–101), and it 

was also determined that direct infection of resting cells in vivo is efficient 

(102–104), which might be explained by the chemokines microenvironment 

within lymphoid tissues. It is currently hypothesised that there are two ways 

wherein HIV can establish latency: post-activation and pre-activation 

latency (Figure 1.5). Infection of an activated CD4+ T cell at the time of 

transition to a resting state in the absence of cell death induced by viral 

replication and infection of an activated CD4+ T cell and reversion to 

quiescence state may offer a narrow window of opportunity that permits HIV 

silencing and persistence of the infected cell (Post-activation latency) 

(Figure 1.5) (74, 76, 105, 106). The role of cytokines in promoting post-

activation latency, such as transforming growth factor-beta (TGF-β), 

interleukin 8 (IL-8) and interleukin (IL-10), has been demonstrated in in vitro

experiments. Additionally, immune checkpoint molecules such as PD-1 

diminish T cell activation, subsequently favour HIV latency (107, 108).  

Alternatively, direct infection of a resting CD4+ T cell results in integration of 
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the genome but does not lead to productive infection (pre-activation HIV 

latency) (109, 110). In vitro, direct infection of resting CD4+ T cells appears 

to be inefficient due to the presence of multiple blocks to the viral life cycle 

and a consequence of inefficient reverse transcription and integration (109, 

111, 112). Inhibition of viral replication may occur through several pathways, 

including; (a) mutation in the HIV genome (113, 114), (b) transcriptional 

interference (115–117), (c) remodelling of chromatin structure (118, 119), 

(d) epigenetic silencing, (e) presence of negative transcriptional factors TFs 

(120, 121), (f) absence of positive transcriptional factors (122) and (g) 

issues with RNA processing and transport (123, 124). Altogether, these 

mechanisms may occur individually or in multiple combinations to suppress 

HIV transcription. However, multiple lines of evidence demonstrated that 

pre-treating resting CD4+ T cells with soluble factors such as chemokine C-

C motif ligand 19 (CCL19) or chemokine C-C motif ligand 20 (CCL20) 

enhance direct latent infection (Figure 5) (125, 126). CCL19 and CCL20 are 

believed to increase the susceptibility of resting CD4+ T cells to latent 

infection by modifying the actin cytoskeleton, thus increasing nuclear entry 

and integration of the viral DNA (125). Similarly, interleukin 7 (IL-7), and 

interleukin 15 (IL-15) are   cytokines also involved in T cell development and 

homeostasis, inactivating the restriction factor SAMHD1, thus increasing the 

susceptibility of resting CD4+ T cells to HIV infection (127, 128). In addition, 

cell-cell contact of resting CD4+ T cells and antigen-presenting cell (APCs) 

such as dendritic cells (DCs), mDCs and CD14+ monocytes favour latency 

establishment (129, 130), suggesting that cell-cell interaction alter the 

transcription network of CD4+ T cells to establish a pro-latency environment 

in a cell-specific manner (131). 
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Figure 1.5 Formation of HIV latency in CD4+ T cells 

The establishment of HIV latency mainly occurs in two major forms. Post 

activation latency refers to a phenomenon by which HIV infects activated 

CD4+ T cells that can revert to the quiescent state harbouring HIV provirus 

that is unable to produce viral proteins (latently infected CD4+ T cell). 

Alternatively, in the absence of T cell activation, resting CD4+ T cells may 

be directly infected with HIV  in the presence of chemokine, dendritic cells, 

and monocytes. Infected resting CD4+ T cells harbour viral DNA but fail to 

express viral proteins termed pre-activation latency. (Figure adapted from 

(132)). Created with Biorender.com

1.8 MAINTENANCE OF HIV LATENCY IN RESTING CD4+ T CELLS 

Once the virus is integrated into resting CD4+ T cells, multiple factors and 

different mechanisms effectively contribute to the maintenance of HIV 

latency, which involves a diverse range of cellular processes. (Figure 1.6).  

First, the site of integration is likely important because it can affect the 

transcriptional state of a latently infected cell. Provirus integration in latently 

infected cells usually favours actively transcribed regions of the host DNA 

(133, 134). Transcription of the HIV genome can be disrupted by the 

transcriptional activity of the surrounding cellular genes, a phenomenon that 

may promote the formation of latency and is known as transcriptional 

interference (135). Transcriptional interference involves promoter occlusion, 

where the provirus integrates downstream of the host gene in the same 

transcriptional orientation (116, 136). This effect may result in the 

displacement of constitutively expressed transcriptional factors such as Sp-
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1 that bind to the HIV LTR and are essential for viral gene expression (116). 

In addition, another mechanism of transcriptional interference is referred to 

as convergent transcription. It occurs when the provirus integrates into the 

opposite orientation relative to the host gene causing the collision of RNA 

Polymerase II (RNAPII) from the host and viral promoters, leading to the 

early arrest of transcription (137). Additionally, convergent transcription may 

also occur when both strands of viral DNA are elongated and ultimately lead 

to the silencing of viral transcription or translation through RNA interference 

(138, 139). 

The 5′LTR of HIV contains multiple binding sites for cellular transcription 

factors, including NF-κB, nuclear factor of activated T cells (NFAT), Sp1, 

and AP1. These key cellular factors can either promote or repress 

transcription of the provirus. Additionally,  in resting cells, NF-κB and NFAT 

are sequestered in the cytoplasm (and cannot promote HIV transcription in 

the nucleus) but undergo nuclear translocation following appropriate cellular 

activation. Both NFAT and NF-κB can bind to κB sites in the HIV LTR (140, 

141). Therefore, the absence of these factors leads to minimal HIV gene 

expression. 

Another critical factor in the regulation of latency is the control of 

transcriptional elongation by the HIV Transactivator Tat and positive 

transcription elongation Factor b (P-TEFb) Tat- P-TEFb complex. The HIV 

Transactivator Tat protein is produced early in the HIV replication cycle and 

plays a significant role in the elongation phase of transcription (142). During 

the earlier initiation phase, RNA Polymerase II and host transcriptional 

factors, including NF-κB and P-TEFb), are recruited to the HIV LTR 

promoter region to initiate transcription, the complex pauses early after 

initiation and Tat is crucial to the continuation of transcriptional elongation 

(143–145).  The absence of Tat would naturally limit the efficiency of 

expression of the stalled RNA polymerase II at the viral promoter, as this 

would severely incapacitate the recruitment of P-TEFb to the HIV LTR (146, 

147). P-TEFb is an essential co-factor for transcription in the cell, and its 

subunits Cyclin T1 and CDK9 are stringently modulated. In resting cells, the 

active form of P-TEFb is present at a minimum: Cyclin T1 protein levels are 

low in resting CD4+ T cells due to microRNAs (miRNA)-mediated 
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translational repression of Cyclin T1 mRNA (148, 149). While 

phosphorylation of Thr-186 in the T-loop of CDK9 is required for its activity 

and is inhibited in resting cells (150, 151). Both where shown experimentally 

in an in vitro based system (152). Although not confirmed in resting CD4+ T 

cells derived from PLWH on ART, there are generally low levels of 7SK RNA 

and HEXIM1 in latently infected cell models (152–154), hence the previous 

suggestion that sequestration of P-TEFb in an inactive complex with 

HEXIM1 (inhibitor of CDK9 kinase activity) and 7SK snRNA (forming the 

7SK snRNP complex) as a contributor to the regulation of latency may not 

be relevant (155). 

MicroRNAs (miRNAs) have also been implicated in promoting HIV latency 

(156). Several binding sites for cellular miRNA have been elucidated on the 

3' region of HIV RNA (157). Finally, in latently infected cells, there is nuclear 

retention of transcripts and transport that may impose or restrict HIV gene 

expression in latently infected cells (123).  

Collectively, a better understanding of these factors and other mechanisms 

that support the initiation and regulation of HIV transcription and target them 

therapeutically is needed.  
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Figure 1.6 Mechanisms that maintain HIV latency in resting CD4+ T 

cells 

Multiple blocks exist in CD4+ T cells that lead to the maintenance of HIV 

latency. These blocks include 1. Site of integration 2. epigenetic silencing of 

transcription 3. Lack of cellular transcription factors.  

4. Incomplete elongation of the viral transcript. 5. Nuclear retention of the 

transcript. 6. MicroRNAs. TCR, T cell receptor. 

(Figure taken from (158)). 

1.9 CELLULAR HIV RESERVOIR FOR HIV PERSISTENCE  

HIV preferentially targets CD4+ T cells but potentially can infect other cell 

types that express CD4, such as macrophages, monocytes and DCs (159–

161).  Among CD4+ T cells, a wide range of subsets contribute differently to 

the immune response (161). These cells are characterised by their effector 

functions, anatomical locations and longevity, which may present them as 

an ideal host for HIV persistence (162, 163) (Figure 1.7). Cells of the 

myeloid lineage are also known to be infected by HIV, and together with 

lymphoid cells, have the capacity to migrate throughout the body, facilitating 
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the widespread of the virus to various anatomical compartments, either 

harbouring latent or productive HIV (164). 

1.9.1 T cell reservoir 

HIV was initially shown to persist in a latent form in a subset of memory T 

cells including, including central memory (TCM), effector memory (TEM), 

transitional memory (TTM), terminally differentiated (TTD) and naïve (TN) 

CD4+ T cells (86, 165, 166). Subsequent papers showed persistence in T 

cell subsets, including TCM and TTM cells (79, 167).Another subset of cells 

in the memory lineage is the immature human stem cell-like memory T cells 

(TSCM), which have also been shown to support replication-competent virus 

in PLWH on ART (85) (Figure 1.7). Furthermore, TSCM cells are long-lived 

and capable of spreading the provirus to other types of memory T cells and 

with the potential of self-renewal and differentiation upon stimulation (85).  

Recently, other CD4+ T cells subsets including, TH1, TH17 and TH22 subsets 

of  T helper cells and a significant class of the peripheral gamma delta t cells 

known as Vγ9Vδ2+ T cells, have been shown to harbour HIV latent infection 

in PLWH on ART (168, 169). Moreover, resting regulatory CD4+ T cells 

(Tregs) identified as (HLA-DR−CD69−CD25hiFoxP3+CD4+ T cells) was also 

found to contribute to the proviral reservoir (170).  

On the other hand, tissue-resident memory CD4+ T cells (TRM) are 

enormously distributed around the body and may exhibit potential tissue-

specific reservoirs of latent HIV infection (84, 171–173). However, this 

potential reservoir remains poorly studied as the majority of sampling for 

latently infected cells has been done in the circulating lymphocyte 

compartments (174, 175). Given that the diversity of cell types and anatomic 

compartments harbouring HIV provirus, it is unlikely a single intervention or 

modalities will be sufficient to eradicate or reduce the HIV from the body in 

all possible reservoir compartments. 

1.10 T CELL PROLIFERATION AND IT IS ROLE IN MAINTAINING THE 

HIV RESERVOIR 

In addition to long-lived infected cells, HIV can also persist through cellular 

proliferation, although the driver for proliferation remains unclear (176, 177). 
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Evidence of the proliferation of infected CD4+ T cells came from studies that 

analysed HIV integration sites within a given subject (178). These studies 

showed that a large pool of infected CD4+ T cells has identical integration 

sites (178–181). TCM and TTM are considered a key HIV reservoir in PLWH 

on ART and are thought to be primarily maintained through antigen driven 

expansion and homeostatic proliferation respectively as evidenced by 

identical sequences and integration sites of the virus in multiple cells (85, 

182). The TEM subset has also been demonstrated to contain clonally 

expanded HIV provirus (183, 184). Whether the site of integration is an 

essential driver of proliferation and cell survival, or proliferation is due to the 

low-level antigen-driven proliferation or cytokine-mediated homeostatic 

proliferation remains unclear. 

1.11 MONOCYTES, MACROPHAGES, AND DENDRITIC CELLS 

COMPARTMENTS (NON- T CELL RESERVOIR) 

Although memory CD4+ T cells are a long-term cellular reservoir for HIV, 

they are not the only cells that may contain latent proviruses. Macrophages, 

dendritic cells (DCs), and tissue macrophages, such as microglial cells, are 

part of the viral reservoir (84, 173, 185). Cells of the myeloid lineage, 

including monocytes, macrophages, and, DCs are susceptible to HIV 

infection, but the virion production frequency in these cells is far lower than 

in activated T cells (161, 186). Monocytes and macrophages that reside in 

the gastrointestinal tract, brain and lungs have been shown to contain HIV 

DNA in PLWH on ART, but it is still unclear whether these cells harbour the 

replication-competent virus and represent a stable-long term latent reservoir 

(187–193). Macrophages play an essential role in the innate immune 

system, engulfing infected or dead cells through the phagocytosis 

mechanism (194). It is not certain whether the HIV detected in these 

samples in macrophages is due to receptor-mediated infection, phagocytic 

mediated infection or residual DNA from engulfed infected T cells  (186). 

Follicular dendritic cells (FDCs) are not permissive for HIV infection (195). 

However, it has been proposed that FDCs can retain HIV in immune 

complexes by expressing virions on their surface in the presence of ART. 

These virions potentially may remain infectious for several months (196–
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198), while peripheral blood DCs seems to be less likely to harbour any form 

of HIV (199, 200). 

1.12 ANATOMICAL TISSUE SITES OF THE HIV RESERVOIR 

Latently infected cells are found in peripheral blood as well as distinct tissue 

compartments (81). However, the majority of studies of the HIV reservoir 

under suppressive ART have been in peripheral blood CD4+ T cells. The 

blood harbours only 2 % of total lymphocytes, as most T cells reside in 

lymphoid tissue (201, 202). Several studies in human and non-human 

primates (NHP) have extensively highlighted the importance of lymphoid 

tissue as a potential sanctuary reservoir for HIV persistence, suggesting a 

consequence of the limited access of ART, cytotoxic CD8+ T cells or cellular 

proliferation (84, 203–206). In addition, CD4+ T cells subsets in lymph nodes 

(LNs) differ phenotypically and functionally compared to blood. In particular, 

follicular helper T cells (TFH) are enriched in LNs and harbour replication-

competent provirus despite the presence of ART, suggesting that lymphoid 

tissue play a crucial role in HIV persistence (198, 207, 208). 

The gut-associated lymphoid tissues (GALT) is known as the largest 

immune organ in the body and is considered to also serve as the primary 

source of residual viremia in PLWH on ART, given its high concentration of 

HIV target cells and its role as a site of initial HIV exposure and early 

infection (209–212). Given this early establishment of infection, the wide 

distribution of GALT and its essential role in immune function, substantial 

evidence has suggested this compartment poses important sites of virus 

persistence on ART (83, 212–214). GALT is the largest component of the 

lymphoid system (85 % of lymphoid tissue) and is made up of four 

compartments: the tonsils; Peyer's patches (PPs), located in the small 

intestine; lymphoid follicles (lymphoid aggregates) in the stomach and small 

intestine and lymphoid cell in the lamina propria (LP), located beneath the 

intestinal epithelium (215). 

Several clinical observations have shown ongoing detection of HIV RNA 

and DNA from the rectum of PLWH on ART (83, 216, 217). Evidence of HIV 

persistence on ART and adaptation in different tissues was demonstrated 

in an early study, where gut biopsies of PLWH on ART revealed 
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compartmentalisation of viral diversity in the gut (212, 218). Additionally, 

another study estimated that the gut harbours 1.2 x 109 infected CD4+ T 

cells (213). These studies may reflect HIV adaptation within various tissues, 

suggesting that the GALT is an essential source of persistent viral infection 

(188, 212, 219, 220). However, these reservoirs have been challenging to 

study, and the full extent of these putative ongoing foci of HIV replication is 

poorly understood. In addition, HIV DNA has also been detected in PLWH 

on ART in non-lymphoid tissue, including skin, bone marrow, liver, thymus, 

genital tract, liver and the central nervous system (CNS) (217, 221, 222). 

Thus, HIV persists in different cell types within distinct anatomical 

compartments, and these studies highlight the importance of targeting sites 

other than peripheral blood in cure strategies. 

Figure 1.7 Potential cellular and tissue sites for HIV persistence 

In addition to cellular compartments that exhibit HIV latent reservoirs such 

as CD4+ memory T cells subsets, macrophages, the lymphoid tissue, gut-

associated lymphoid tissue, and the central nervous system (CNS) are also 

potential anatomical reservoirs that may represent a source of residual 
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viremia in PLWH on suppressive ART. Tissue sites, lymphoid nodes and 

CNS represent significant sanctuary sites for ART  to penetrate, which 

results in the persistence of HIV during ART therapy. TNA= Naïve T cells, 

TSCM= Stem memory T cells, TCM= Central memory T cells, TTM=Transitional 

memory T cells, TEM= Effector memory T cells, TTD= Terminally 

differentiated T cells, TMM= Migratory memory T cells, γδT= Gamma Delta 

T cells, TH= Helper T cells, TFH= T follicular helper cells. 

(Figure taken from (223)). 

1.13 MODELS OF LATENT INFECTION 

In PLWH on long term ART, the frequencies of latently infected CD4+ T cells 

are low (1 in 106) and compromise an exceedingly infrequent proportion of 

total CD4+ T cells (224). In addition, this minor population of latently infected 

cells do not have distinct phenotypic markers that can distinguish them from 

uninfected cells. Interestingly, the majority of latently infected cells contain 

a provirus that is defective (97, 225). Only a median of ~1 in 106 CD4+ T 

cells harbours an intact HIV provirus that can be activated following a 

single round of maximal in vitro stimulation (74). This low frequency of 

infected cells poses a substantial challenge to studying HIV latency in 

samples from PLWH. While ex vivo samples are invaluable for 

investigating HIV latency and examining drug compounds that could be 

used to purge latently infected cells in PLWH, multiple in vitro models have 

been successfully established to investigate the molecular mechanisms that 

contribute to the establishment and maintenance of HIV latency (226). 

These models can facilitate the screening for different pharmacological and 

immunological interventions aimed at depleting latently infected cells (227–

230). While T cell line models of latency have been useful in studying HIV 

latency and screening compounds that reactivate the latent provirus, they 

do not entirely replicate HIV infection in vivo (231). Immortalised T cell line 

models are limited by their clonal and cycling nature, which means that the 

viral integration site is similar in all cells (179). In such a setting, many 

groups have designed primary cellular models that recapitulate the 

generation of latently infected cells in vivo to study latency and evaluate 

anti-latency compounds in vitro. 
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1.13.1 Primary cell models of HIV latency 

While no one model perfectly replicates latently infected cells, each model 

system attempts to mirror the in vivo conditions to create a cell system that 

will permit the latently infected cells to be manipulated in culture (76, 101, 

145, 232–236). These models systems offer several advantages over ex 

vivo samples regarding their availability, ease of access, frequent infection, 

known proviral sequence, and integration site. A variety of primary T cell 

models of HIV latency are currently established using freshly isolated CD4+

T cells from healthy donors infected with HIV or HIV derived vectors followed 

by the transition of infected cells to a resting state to establish HIV latency 

in memory CD4+ cells (232). This modelling of latent infection contains one 

or more aspects of latency. The model developed by Sahu et al. and 

colleagues models post-activation latency (234). This model involved CD4+

T cell infection after activation through T cell receptor (TCR) and co-culture 

with brain-tumour feeder cell line H80, allowing the transition back to the 

resting state. The major problem is that most CD4+ T cells die soon after 

activation if not continuously cultured in the presence of specific cytokines 

(such as IL-2, IL-7) or anti-apoptotic proteins (such as Bcl-2) (237, 238). 

However,  IL-2 and IL-7 have been implicated in the reactivation of latent 

HIV (237, 238). Alessandra Marini et al developed a model that relies on 

latently infected primary CD4+ T cells activated in response to stimulation 

with Monocyte-derived dendritic cells (MDDC) (239). Interestingly addition 

of low doses of IL-7 did not induce cell activation and proliferation or viral 

reactivation.   Another model uses activated CD4+ T cells transduced with a 

lentiviral vector expressing the Bcl-2 gene enabling cells to increase their 

survival and allowing time for more cells to transition to a memory state with 

integrated HIV (236, 240). The expression level of Bcl-2 in these cells is 

similar to that in freshly isolated CD4+ T cells, and thus cells can 

continuously be cultured for several weeks without exogenous cytokines 

(236). 

Another HIV latency model created by the Lewin laboratory involves direct 

infection of resting CD4+ T cells treated with chemokines such as CCL19 

(101). Pre-treatment of non-permissive resting CD4+ T cells before infection 

increases the efficiency of  HIV infection in resting CD4+ T cells leading to 
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more latently infected cells. In addition, the Lewin laboratory has also shown 

that culturing resting CD4+ T cells in the presence of CD14+ monocytes or 

myeloid dendritic cells (mDCs) exhibited a substantial increase in the 

frequency of HIV-DNA and enhanced the latent infection in nonproliferating 

memory CD4+ T cell (129). 

1.13.2 T cell lines models of HIV latency 

In vitro immortalised T cell lines have been extensively relied on to 

investigate the mechanism of HIV latency establishment and the screening 

of repurposed drugs in reactivation of HIV transcription (241–243). The main 

advantage of these systems is that they are easy to maintain for a long time 

with higher transfection efficiency than primary T cell model systems (244). 

On the other hand, immortalised T cell lines consciously proliferate, making 

them fundamentally different from quiescent resting CD4+ T cells in the G0 

state (245). There are several cell line models harbouring stably integrated 

latent full-length or HIV LTR with reporter gene including ACH2 (246), U1 

(247), J89EGFP cells (248) and various J-Lat clones (249). These latently 

infected cell lines differ in (i) the parental cell line (ACH2: A3.01 subclone of 

CEM T cells; U1: U937 pro-monocytic cells; J89EGFP and J-Lats: Jurkat T 

cells), (ii) the site of viral integration and (iii) the replication capacity of the 

provirus (ACH2 and U1 harbour replication-competent virus mutated in Tat 

and TAR respectively (113, 114), while J89EGFP contains wild type 

replication-competent virus and J-Lat cells harbour replication-defective 

virus). This thesis will focus exclusively on the J-Lat T cell line model of 

latency. 

The J-Lat T cell line series is one of the most heavily used transformed cell 

line models in HIV research. The J-Lat T cell line is a latently infected Jurkat 

T cell containing integrated HIV DNA that is transcriptionally silent (a small 

amount of HIV RNA can be measured but little to no viral protein) but can 

be activated upon treatment with various stimuli (249). HIV reactivation can 

be quantified through the detection of a reporter fluorescent protein using 

flow cytometry. Several clones on J-Lat-T cell lines mostly contain the full-

length provirus (e.g., J-Lat 10.6 cells), with a frameshift in env and GFP in 

place of the Nef coding sequence that expresses GFP upon activation. The 
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second form of the J-Lat cells line contains a single integrated copy of the 

HIV LTR (LTR-Tat-IRES-GFP) driving the expression of the viral Tat- and 

green fluorescent protein (GFP) genes. Translation of GFP is provided by 

an internal ribosomal entry site (IRES) leading to LTR-Tat-IRES-GFP (249). 

Following reactivation of the J-Lat A2 clone, only part of the HIV (Tat) 

activates the HIV LTR promoter and subsequently drives GFP expression. 

Although all J Lat clones are derived from Jurkat cells, these cell lines may 

have different sensitivity to different activating stimuli and latency-reversing 

agents (115, 232). Suggesting that a better understanding of the 

accumulation of latently infected cells with different integration sites of the  

HIV provirus is warranted (179).  

1.14 MEASURING HIV PERSISTENCE ON ART 

 A cure for HIV infection remains elusive due to the persistence of intact 

replication-competent HIV provirus in PLWH on ART. The intact replication-

competent provirus is identified based on whether the integrated provirus 

can produce infectious particles following reactivation (97). However, there 

are significant challenges in measuring the HIV reservoir because of 

heterogeneity in the provirus sequence composition in latently infected cells 

in vivo, with most proviral sequences being replication-defective (250). The 

frequency of latently infected cells carrying replication-competent provirus 

in PLWH on ART was estimated to be 1 in 106 resting CD4+ T cells in 

peripheral blood (73, 251). However, the total number of these cells could 

be much higher (95, 97). In addition, quantifying precisely the frequency of 

latently infected cells has been challenging due to the lack of a specific 

biomarker and the ability to discriminate between intact and defective 

viruses (158). Investigators debate the best way to measure HIV 

persistence on ART as different assays have been used to quantify the 

frequency of intact, replication-competent provirus or the number of latently 

infected cells containing an intact provirus sequence (96, 158, 173, 252).  

PCR based assays, including quantitive real-time PCR (q-RT-PCR) or 

digital droplet PCR (ddPCR), are designed to quantify viral RNA and DNA 

from CD4+ T cells. The DNA qPCR assays were characterised to quantify 

integrated HIV DNA, and a number of these assays can quantify 
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unintegrated HIV DNA (proviral 2-LTR circle DNA) (253–258). A worthy note 

here; these assays directly measure provirus but do not provide information 

about their inducibility (259). These assays approach depends on targeting 

conserved regions of HIV genes,  gag, the LTR, or pol (257). PCR-based 

assays have also been used to measure the HIV proviral DNA in CD4+ T 

cells from the gut-associated lymphoid tissue (GALT), where HIV replication 

persists in PLWH on ART (95, 212, 213, 260). However, it is often 

challenging to perform comparative analysis on DNA measurements across 

different assays (assay design and performance), individual (proviral 

genetic information heterogeneity) and different extraction efficiencies on 

tissue samples (261). 

1.14.1 Direct measurement of the HIV genome 

Digital droplet PCR assays of HIV DNA has also been established, and 

overall, they are relative to qPCR with greater precision due to the limited 

dilution format of the assay and tolerance for primer or probe mismatch 

(262–264).  Additionally, as mentioned above, most of these DNA PCR 

assays are designed to detect a conserved region inside the HIV provirus 

region; they also detect unintegrated 2-LTR circle DNA, though this 

unintegrated form is less frequent and their stability in PLWH on 

suppressive ART is not apparent (95, 251, 265). Based on this notion, 

assays for integrated HIV DNA have been developed that target the Alu 

short interspersed element (a common repeat element disperse through the 

human genome) within the host genome to guarantee the exclusion of 

unintegrated HIV DNA (266, 267). This assay includes one primer that 

targets the Alu element and a second primer that targets the HIV gag, 

followed by a second-round nested PCR for the HIV LTR resulting in the 

detection of integrated HIV DNA (256, 267).  A major caveat with all DNA 

PCR-based assays (qPCR and ddPCR) is overestimating total or integrated 

HIV DNA due to their failure to distinguish between defective, intact or 

replication-competent viral sequences (95, 97). To some extent, to 

overcome such limitations, several groups have developed near full-length 

HIV genome sequencing assays and provided critical insights into the HIV 

reservoir (94, 97, 225, 268). In addition, sequencing and mapping of HIV 
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integration sites have also provided information about the importance of 

clonal expansion in HIV reservoir dynamic maintenance to develop new 

cure strategies for HIV infection (180, 181, 269–271). 

1.14.2 Measurement of the basal or inducible reservoir expression 

An alternative approach that measures the basal or inducible HIV reservoir 

expression has been proposed to estimate the size of the reservoir. This 

culture method involves using highly sensitive PCR methods that are now 

employed to quantify the level of HIV RNA from cells (Cell-associated RNA, 

CA) or cell supernatant (Cell-free RNA, CF) (272). These PCR assays 

measure the inducible transcription status of the latent reservoir following 

activation in CA or CF from resting or total CD4+ T cells samples of virally 

suppressed PLWH on ART, indicating the frequency of infected cells 

capable of producing viral RNA (273–277). However, while the 

quantification of transcriptional competency may reflect the capacity to 

generate viral RNA, it does not assess the ability of a provirus to produce 

viral particles. In addition, quantification of CA-RNA can also overestimate 

the HIV latent reservoir as it detects defective HIV genome that can be 

partially or entirely transcribed (277, 278). 

1.14.3 Measurement of intact provirus 

Most DNA-PCR assays use primers and probes designed to bind to a highly 

conserved proviral region that is defective or mutated in regions external of 

the assay amplicon, resulting in failing to exclude many defective proviruses 

(95, 225). Recently, Bruner et al. developed a high-throughput DNA assay, 

the intact proviral DNA (IPDA), that can distinguish intact and defective 

proviruses (279). This innovative approach is based on ddPCR multiplex 

technology, which enables estimates of intact proviral DNA by using primers 

that bind to regions of the virus that commonly contain hypermutation or 

large deletions. Using this novel detection method, it was found that 

approximately 10 % of all proviruses were intact(279). In the following study 

by Gaebler et al., the percentage of proviruses called intact by the IPDA 

probes that were truly intact by near-full-length sequencing varied from 9.1 

% to 96 % (280). In addition, recently, Peluso et al. used combined IPDA 

and bioinformatics analysis to estimate the rate of change of intact and 
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defective proviruses from PLWH on ART (281). This study demonstrated 

that intact and defective proviruses have different decay rates, with intact 

viruses decaying more rapidly than defective proviruses and showing a 

faster decline in PLWH with higher CD4+ T cell nadirs (281). 

Recently, a limited dilution single-cell RNA-PCR assay has been developed 

to provide insights into the frequency of HIV ca-RNA expressing cells  (275). 

In the tat/rev induced limiting dilution assay (TILDA) assay, CD4+ T cells 

from PLWH are stimulated with PMA/Ionomycin, and the levels of tat/rev 

multiply spliced RNA are measured using RT-qPCR. An important 

advantage of TILDA is that it does not require virus amplification, and only 

a small quantity of samples is needed for the measurement. In addition, the 

TILDA assay reduces reservoir frequency overestimation by assaying 

multiply spliced HIV RNA because multiply spliced HIV RNA is less likely to 

arise from non-intact proviruses (275, 282, 283). The quantitative viral 

outgrowth assay (QVOA) was the first to characterise the frequency of 

latently infected cells.  QVOA identifies the frequency of resting CD4+ T cells 

from PLWH on ART that harbour replication-competent proviral sequences 

using a single round of T cell activation. (73, 74, 91, 173). Isolated resting 

CD4+ T cells are plated in serial dilution format before being stimulated with 

the mitogen phytohemagglutinin (PHA) or with anti-CD3 plus anti-CD28 

antibodies in the presence of irradiated allogeneic peripheral blood 

mononuclear cells (PBMC). Following T cell activation, the viruses released 

from these cells are expanded in CD4+ lymphoblasts from HIV-negative 

donors and detected after 2–3 weeks by an ELISA assay for HIV p24 

antigen in the supernatant (173, 284). This assay quantifies individual 

latently infected cells that release a replication-competent virus, and the 

frequency of latently infected cells are expressed in terms of infectious units 

per million (IUPM) resting CD4+ T cells. However, The QVOA assay usually 

detects released virus particles capable of robust replication following a 

single round of T cell activation; therefore, it only provides an estimate of 

viral quantity following strong T cell activation. Furthermore, a number of 

studies have demonstrated that the second round of mitogen stimulation of 

wells negative for viral outgrowth resulted in the activation of some intact 
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but previously non-induced proviruses, increasing the number of proviruses 

detected using QVOA (97, 250). 

1.15 WHY DO WE NEED A CURE FOR HIV INFECTION? 

Latently infected CD4+ T cells are the foremost hurdle to eliminating HIV 

infection in PLWH on ART (79). Despite the great success of ART in 

reducing mortality and morbidity, treatment is not curative and thus lifelong 

(158, 285). Furthermore, limited accessibility to ART remains a burden, 

particularly in low-income countries that carry a disproportionate burden of 

HIV infection. For those who have access to the treatment, stigma, 

associated health risks such as kidney, cardiovascular and bone diseases, 

and an inordinate economic burden for individuals and health care systems 

exist (286). Therefore, there is an urgent need to develop a cure that aims 

to eliminate or reduce the latent reservoir that could lead to the cure or 

lifelong remission of HIV infection. 

1.16 HIV CURE STRATEGIES 

HIV cure traditionally is defined as the complete elimination of HIV from the 

body. However, it is now excepted that there may be two different outcomes 

of cure strategies including; I) sterilising cure, where there is complete 

eradication of infected cells, and II) functional cure (also called HIV 

remission), where HIV persists at a low level off ART but causes no adverse 

events and cannot be transmitted. Strategies can be divided into those that 

target the virus directly and those that target the immune system. 

Accumulation of knowledge over the last two decades of the molecular and 

cellular factors influencing this silent form of HIV infection has facilitated a 

range of potential approaches to cure HIV. 

1.16.1 Gene therapy 

Numerous potential strategies have been implemented to cure HIV 

infection. Gene therapy approaches have been pursued to mediate the 

knockdown of the co-receptor CCR5 or directly target the HIV genome. Zinc 

finger nucleases (ZFNs) has been investigated in vitro for HIV 

inactivation(287, 288). In a clinical trial (NCT00842634), a single dose of 
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ZFN CCR5-modified autologous CD4+ T cells was administrated to PLWH 

on ART. The approach was well-tolerated and long-term persistence of the 

modified cells after engraftment was observed, thus preserving a pool of 

cells refractory to HIV infection (289). In addition, clustered regularly 

interspaced short palindromic repeats paired with CRISPR associated 

protein-9 nuclease system (CRISPR/CAS-9)  has been investigated to 

generate a knock-out of CCR5 or a CCR5Δ32 mutation in host cells, to 

induce resistance to infection with CCR5-tropic HIV. However, the achieved 

percentage of CCR5 disruption was insufficient to induce HIV remission 

(290). However, each of these curative strategies appeared to have 

limitations and challenges, such as the optimal route of delivery and concern 

of emergence of CXCR4-utilising viruses (291–293). 

1.16.2 Deep silencing latency (Block and Lock) 

One functional cure strategy of HIV infection is a permeant silencing of HIV 

gene expression, also known as ’Block and Lock’. Unlike the shock and kill 

approach, this strategy focuses on rendering permanent silencing of the 

integrated provirus in the infected cell. The HIV Tat inhibitor Didehydro-

cortistatin A (dCA) was found to bind Tat and effectively disrupted the 

Tat/TAR axis, resulting in restriction of HIV transcription and replication 

(294). dcA effectively suppresses HIV transcription in vitro by blocking the 

TAR binding domain of Tat (295, 296). Studies with ex vivo CD4+ T cells 

from PLWH on ART with dcA have shown restriction of viral reactivation and 

delayed viral rebound following ART cessation in animal models (297). 

Alternatively, targeting host factors has also been proposed to reinforce 

deep latency. Targeting of DEAD-box protein 3 and 5 (DDX3/5) splicing 

factors, up frameshift (UPF) proteins, involved in HIV post-transcriptional 

processing, including inhibitors of mTOR, cardiotonic steroids, and Serine 

and arginine-rich (SR) proteins, have been shown to inhibit HIV latency 

reversal and lead to a block in translation (298–303). 

1.16.3 Therapeutic HIV vaccines 

 Therapeutic HIV vaccines are mainly designed to induce HIV-specific 

immune responses that can control the virus in the absence of ART (304). 
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Ideally, a robust vaccine would enhance long-term immunity and control 

residual viremia (< 20 copies/ML) when treatment is interrupted 

(305).  Nevertheless, the exceptional ability of HIV to escape the immune 

system based on the genetically diverse envelope and variable protein 

products have made it challenging to achieve an efficient therapeutic 

vaccine. Several methods have been applied in the therapeutic vaccine, 

including mRNA, nanoparticles, native-like envelope trimers, viral vectors, 

among other vaccine strategies, to achieve a durable, efficient immune 

response against HIV (306). These strategies have shown promise in 

animal models and limited progress in human phase I and II clinical studies 

(307–311). Given that these strategies were not the focus of this thesis, we 

will not cover them in detail. A pharmacological and immunological 

compound used to reactivate HIV latency was the main focus of this thesis. 

1.16.4 Activation of HIV latency 

Alternatively, a widely addressed approach to achieve HIV remission is the 

so-called "shock and kill" (Figure 1.8). This approach seeks to reverse HIV 

latent infection through various pharmacological agents (latency-reversing 

agents). Induction of HIV transcription and translation will ultimately lead to 

the production of infectious viruses - the ’shock‘. This is followed by 

recognition and clearance of the shocked cell by a rejuvenated immune 

response or death of the infected cell through HIV cytopathic effects – the 

‘kill’ (272, 312). 
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Figure 1.8 Shock and Kill.  

This paradigm proposes to combine a latency-reversing agent to reactivate 

HIV transcription or virion production (312) with immune effectors such as 

CD8+ cytotoxic T lymphocytes or NK cells, to induce cytolysis and eliminate 

HIV infected cells. Importantly, this is done under the protection of ART to 

prevent de novo infection. 

1.17 LATENCY-REVERSAL AGENTS (LRAS) 

Latency reversal agents (LRAs) are molecules that can reverse HIV latency 

by activating virus transcription and production so that the infected cell will 

be susceptible to immune-mediated killing or virus-induced apoptosis (312). 

This is done in the presence of suppressive ART so that newly produced 

virions cannot infect uninfected cells. Many compounds with a range of 

different mechanisms of action have been investigated in vitro to reverse 

latency (313). Early attempts at reversing HIV latency that reached clinical 

trials used global T cell activators; IL-2 and IL-7 with or without IFN-γ were 

administrated while participants maintained on ART to prevent de novo

infection from occurring in bystander T cells (314–318). Additionally, two 

subsequent trials assessed the response to anti-CD3 mAb, muromonab-

CD3 (OKT3), followed by IL-2 (319, 320). Both studies outcomes showed a 

lack of efficacy, and severe adverse effects were reported in the OKT3 trials. 

Several classes of latency-reversing agents have been investigated in vitro,

and some have been tested in clinical trials. These include histone 

deacetylase inhibitors (HDACi) (321, 322), bromodomain and extra terminal 

domain inhibitors (BETi), protein kinase C (PKC) agonists, toll-like receptor-

7 agonists (323), mitogen-activated protein kinase  (MAPK) agonists and 
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unclassified compounds such as the anti-alcoholism drug disulfiram (324–

326). These LRAs can reactivate HIV in latent cell line models and CD4+ T 

cells isolated from PLHW on ART (327). Various interventions have 

appeared promising and reached human clinical trials, but the results have 

thus far shown an inability of the candidate therapeutically to reduce the 

frequency of infected cells (106, 320, 326).  

1.17.1 LRAs for HIV cure 

HIV propagation in latently infected cells depends on many host 

transcriptional factors , including NF-κB, NFAT and the cyclin T1 component 

of P-TEFb (328).  A promising lead in this line is the PKC (329) activator 

bryostatin, which is a macro-cyclic lactone (330, 331). It has been shown 

that bryostatin promotes activation of the canonical NF-κB signalling 

pathway via translocation of the two functional units P50 and P65 to the 

nucleus at the NF-κB in the HIV LTR, which is optimal for mRNA viral 

transcription from the HIV LTR, subsequently reactivating the HIV provirus 

(331–333). However, two studies have reported bryostatin association with 

adverse effects, including severe myalgia and nausea in patients with 

advanced renal cell carcinoma (RCC)  (334, 335). In addition,  dose 

limitation is considered a major concern to reduce the toxicity caused by a 

systematic release of cytokines (336, 337). An in vitro study investigated the 

impact of LRAs on HIV antigen expression. The study elaborates the effect 

of two classes of LRA, the histone deacetylase inhibitors, romidepsin and 

PKC activator, bryostatin on MHC-1 expression; romidepsin transiently 

reduced MHC-1 expression and relatively bryostatin increases T cell 

activation and T cell proliferation (338). Importantly, these effects were only 

observed promptly. In addition, combination treatment with romidepsin and 

bryostatin was shown to affect primary HIV-specific CD8+ T cells, which 

failed to eliminate autologous resting CD4+ T cells that had been reactivated 

with these agents (332). 

Prostratin is another anti-HIV latency candidate that has been described to 

reactivate HIV transcription via PKC signalling (339).  Prostratin has been 

shown to strongly stimulate HIV LTR transcription in in vitro models of HIV 
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latency  (339, 340) and resting CD4+ T cells and activating the transcription 

factor NF-κB (341). 

Ingenol is another promising candidate that showed potential reactivation 

activity of HIV gene expression at the viral mRNA level through the 

activation of the canonical NF-κB pathway (342). The combination of this 

agent with the bromodomain and extra-terminal inhibitor (BETi), JQ1, 

showed synergetic reactivation, releasing infectious viruses to levels similar 

to the positive control (227). Ingenols also showed clinical safety and 

tolerability (328, 343), whereas it has been demonstrated that bryostatin and 

prostratin significantly decrease PBMC and CD8+ T cells survival upon 

administration in a dose-dependent manner 10 nM and 300 nM, respectively 

(337, 338). Nevertheless, the author suggested it is difficult to determine in 

vitro doses that reflect clinically relevant effects for these compounds. An 

Ingenol derivative (Ingenol-3-hexanoate, Ingenol B) induced HIV gene 

expression in vitro and ex vivo in CD4+ T cells from PLWH on ART (328). 

Similarly, another Ingenol derivative, ingenol-3-angelate (PEP005), has 

been shown to effectively enhance HIV gene transcription in vitro and ex 

vivo (344). Interestingly, both compounds (Ingenol B and PEP005) have 

shown additive synergism effect with JQ1 in boosting HIV transcription. 

An alternative to PKC activators is represented by tetraethyl thiuram 

disulphide disulfiram (disulfiram), a drug approved for the treatment of 

alcoholism (345). In the first clinical trial of disulfiram in PLWH on ART, 

disulfiram was administered for 14 days. The drug was well tolerated but did 

not change the levels of plasma HIV RNA or affect HIV DNA levels (346).  

A dose-escalation study (500 mg, 1000 mg, and 2000 mg) of short-term 

administration of disulfiram on PLWH on ART disulfiram showed that 

administration of all doses increases cell-associated unspliced HIV RNA 

during and after treatment. Disulfiram treatment of all doses was well 

tolerated among participants (326). However, in both studies, no change in 

the size of the reservoir was observed. 

Recently, a new class of latency-reversing agent have gained much 

attention due to their multifactorial effects on the HIV reservoir. SMAC 

mimetics (SMs) are characterised by acting through the non-canonical NF-

kB pathway activation and induction of apoptosis. SMs target several cellular 
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inhibitors of apoptosis factors including, baculoviral IAP repeat (BIR) 2 

(BIRC2, also known as a cellular inhibitor of apoptosis; cIAP1/ BIRC2) and 

X-linked inhibitor of apoptosis protein (XIAP), (also known as a cellular 

inhibitor of apoptosis protein 3 (cIAP3) and baculoviral IAP repeat-

containing protein 4 (BIRC4) (347, 348). Thus,  aside from their capacity to 

reverse latency, SMs also act as pro-apoptotic compounds, a class of drugs 

that has become the focus of intense study for their ability to kill latently 

infected cells  (313). Additionally, SMs compounds alone or combined with 

other LRAs have shown promising results in reversing latency and induced 

apoptosis selectively in HIV-infected (but not uninfected) central memory 

CD4+ T cells isolated from PLWH on ART (349–352). 

1.17.2 Epigenetic modulation agents 

1. Histone Deacetylase inhibitors (HDACis) (Vorinostat, 

Panobinostat and Romidepsin) 

HDACis increase histone acetylation, which leads to a change in chromatin 

structure, allowing for increased access of transcription factors to their 

target DNA sequences (353). HDAC are classified based on their structure 

homology (354) (355). Class I HDACs (HDAC1,2,3 and 8), class II HDACs 

(HDAC4,5,6,7,9 and10) and the class IV HDAC (HDAC11) are all zinc-

dependent, whereas class III deacetylases (SIRT1-7) are nicotinamide 

adenine dinucleotide (NAD+ dependent) (356). Among these groups, only 

class I HDACs (HDAC 1, HDAC 2, HDAC 3) are localised at the integrated 

HIV LTR, as demonstrated by chromatin immunoprecipitation (ChIP) assays 

(357).  

Pharmacologically, HDAC inhibitors can be classified as members of five 

classes of compounds: (I) hydroxamic acids (hydroxamates); (II) short-chain 

fatty (aliphatic) acids; (III) benzamides; (IV) cyclic tetrapeptides; and (V) 

sirtuin inhibitors including the pan-inhibitor nicotinamide and the specific 

SIRT1 and SIRT2 inhibitors sirtinol and cambinol, respectively (358). 

Vorinostat (359) (Zolinza, Merck) is a potent pan-HDAC inhibitor and is 

approved for the treatment of relapsed or refractory cutaneous T cell 
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lymphoma (360). In humans, vorinostat acts on class I, II and IV HDACs, 

increasing histone acetylation and, therefore, upregulating the cellular 

transcription of HIV in CD4+ T cells (272, 361, 362). 

In an early study, a single dose of vorinostat administrated to PLWH on ART 

resulted in a nearly five-fold increase in HIV transcription measured by cell-

associated unspliced (CA-US) HIV RNA (272). A single-arm, proof of 

concept study of 20 PLWH study participants on ART received 400mg of 

vorinostat that led to a significant increase in HIV transcription as measured 

by (CA-US) HIV RNA in CD4+ cells after 8 hours of drug exposure (361). 

Interestingly, in another study of vorinostat, when administrated on multiple 

doses three days a week for eight weeks, there was only a minimal increase 

in HIV gene expression (363). Furthermore, a recent study of 2 years 

extended follow up of 20 PLWH demonstrated no long-term adverse effects, 

that US-RNA returned to baseline levels, and there were no significant 

changes in the number of T cell subsets (CD4+ and CD8+) although the ratio 

of CD4+ to CD8+T cells were significantly higher at 24 months. In addition,  

total HIV DNA, plasma HIV RNA and CA-US HIV RNA remain unchanged 

over time (362). This study may highlight that administration of vorinostat 

may require more frequent doses for a more extended period (362). 

Panobinostat (364) is a potent non-selective HDAC. In a phase I/II clinical 

trial (NCT01680094), PLWH study participants on ART received oral 

panobinostat 20 mg three times per week every other week for 8 weeks. 

The study demonstrated a significant increase in plasma viremia levels and 

cell-associated unspliced HIV RNA in total CD4+ cells. Side effects were 

well-tolerated, but no cohort-wide reduction in the total or integrated HIV 

DNA levels was observed. Furthermore, viral rebound occurred (median 

time 17 days) in all participants undergoing an analytical treatment 

interruption (365). 

Romidepsin (RMD, FK228) is a bicyclic depsipeptide antibiotic HDACi with 

antineoplastic activity known for its high toxicity profile (366, 367). RMD is a 

small prodrug molecule (MW = 540.7) and is activated inside the cell by 

glutathione (GSH) (368). RMD has been shown to reactivate HIV 

expression in latently infected cells in vitro and ex vivo CD4+ T cells from 

PLWH on ART (369). 
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In PLWH on ART, romidepsin was administrated at 5mg/m2 IV over 14 days, 

confirming the drug's bioactivity in vivo, which safely increased HIV 

transcription measured by cell-associated HIV RNA without blunting T cell-

mediated immune responses. However, no significant reservoir depletion 

was observed (370). In contrast, in a randomised controlled placebo trial, 

43 PLWH on ART-treated with RMD showed that RMD infusions were safe 

but did not increase plasma viremia or unspliced CA-RNA despite the 

increased histone acetylation (371). In a recent trial, RMD administration to 

PLWH on ART effectively activated HIV transcription from peripheral CD4+ 

T cells (372). Interestingly, the viremia induced by RMD contained few 

defective mutations and low genetic diversity (373). Importantly, this study 

highlighted the consideration for the complex and variable composition of 

the different viral reservoirs in cure strategies and the role of cellular 

proliferation and cellular clonal expansion in enhancing HIV persistence.  

2. Histone Deacetylase Inhibitors Adverse effects AEs 

To date, all HDACi are non-specific drugs for HIV infection and have off-

target effects and generate adverse reactions, inhibiting their 

pharmacologic potency (374, 375). Toxicity and tolerability are essential 

considerations in LRAs screening and moving towards the clinical setting. 

Although agents administrated at clinically accepted doses may still 

influence T cell viability that could compromise HIV specific T cell function 

to eliminate reactivated HIV infected cells. 

HDACi can have a range of non-specific off-target effects, in addition to the 

induction of transcription of the latent HIV genome. In one study, three 

HDACis had a negative impact on the effector and functions of CTL due to 

T cell exhaustion (376). In a recent ex vivo study, Reardon et al. showed 

that vorinostat upregulated gene expression in resting CD4+ T cells in a 

dose-dependent manner and demonstrated that increased VOR dose 

appeared to downregulate T cell function (377).  

In addition, combination treatment with HDACi romidepsin and PKC agonist 

bryostatin was shown to affect primary HIV specific CD8+ T cells, which 
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failed to eliminate autologous HIV-infected resting CD4+ T cells that had 

been reactivated with these agents (374). 

The effects of such LRAs on the viral reservoir size are likely to be 

influenced by host immune responses in addition to the impact of these 

drugs on innate and adaptive immune systems (378). In addition to adverse 

effects on immune function, HDAC inhibition can also modulate the 

transcriptional activity of all cells, including innate and adaptive immune 

cells. For instance, it has been reported that HDACis showed a high level of 

toxicity to activated T cells and CD8+ T cells clones. In contrast, these 

effects were limited in resting CD4+ T cells (376). 

In a recent study, analysis of results in which 15 individuals received 12 

dosages of panobinostat identified a significant impact on both T cell 

activation status and regulatory T cell suppressive marker expression also 

showed decreased level of monocytic responsive to inflammatory stimuli 

(338). Altogether, these results suggest that it might be challenging to 

eliminate HDACi toxicity in an ordinary drug formulation. Immunomodulatory 

LRA  

1.17.3 Cytokines and cytosolic pattern recognition receptor (PPR) 

agonist 

Interleukin-7 (IL-7) plays an essential role in the early development and 

maintenance of human T cell function through it is γ-chain cytokine receptor 

family (IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) (379). Several studies have 

focused on the ability of IL-7 to induce viral outgrowth in resting CD4+ T 

cells. These studies showed conflicting results in activation of HIV latency 

or promoting HIV persistence during ART (323, 380–383). 

Earlier work done by Jones et al. has provided a proof-of-concept that the 

IL-15 super agonist (ALT-803 and IL-15SA) can reverse HIV latency and 

sensitised previously reactivated cells for HIV-specific CD8+ T cell 

recognition in CD4+ T cells from PLWH on ART (384). In another study, 

autologous CTL clones were used as bio detectors for CD4+ T cells from 

PLWH on ART undergone latency reversal with ALT-803 and IL-15SA 

(385). Although a reduction in total HIV DNA was observed, no reduction in 

the inducible intact reservoir was measured by QVOA (385).
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PPR agonist 

Toll-like receptor (TLR) agonists are microbial-sensing proteins of the 

PRRs, which are involved in the non-specific recognition of pathogen-

associated molecular patterns (PAMPs) by innate immune system cells, 

including CD4+ T cells macrophages DCs, neutrophils, NK cells, and 

fibroblasts (386–388). Once PAMPs bind to the corresponding TLR, the 

signalling pathways downstream from these TLRs recruit specific 

intracellular adaptor proteins such as TIR-domain-containing adaptor 

protein inducing beta interferon, IFN-β (TRIF) or myeloid differentiation 

primary response protein 88 (myD88). This will lead to initiate signalling 

pathways culminating in activation of NF-κB, MAP kinases, and IRFs that 

control the transcription of genes encoding type I interferon (IFN I), 

chemokines and other inflammatory cytokines to create an anti-viral state 

(389, 390). Multiple TLR agonists are being investigated as LRAs to 

reactivate HIV transcription, including TLR2, TLR3, TLR7 and TLR9.  

A recent in vitro study investigated the latency reversal activity of several 

TLR agonist panels in a latently infected human microglia cell line (hµglia) 

using a single-round HIV. Challenging these cells with a panel of TLRs 

agonists (TLR1,2,3,4,5 and 6 agonists) demonstrated the capability of TLR3 

to reactivate HIV latency, while other TLRs (1,2,4,5 and 6) showed weaker 

reactivation in the hµglia /HIV cell line. Interestingly, apart from the level of 

TLRs potency among this panel, TLR3 agonist-induced latency reversal by 

activation of the interferon regulatory factor 3 (IRF3) transcriptional factor 

cascade while other TLRs target NF-κB induction pathway. However, 

results showed a distinct activation profile of TLR agonists in latently 

infected monocyte cell lines (391). TLRs are present and serve significant 

roles in subsets of CD4+ T cells, constituting a significant part of the HIV 

reservoir. An ex vivo study demonstrated TLR1-2 agonist ability to 

reactivate HIV latency through the cooperation of NF-kB, NFAT and AP-1 

signalling pathways (392).  

The TLR7 agonists are among the well-studied TLRs ligands that induce 

HIV RNA and active HIV-specific cytotoxic CD8+ T cells in PBMC isolated 

from PLWH on ART (393). Studies of TLR7 agonists (GS-986 and GS-9620) 

have shown in vivo viral reactivation and reduction of viral reservoir size 
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both in blood and tissue in simian immunodeficiency virus (SIV) infected 

rhesus macaque (RM) on ART (323). However, the subsequent studies 

failed to produce similar results showing viral reactivation in SIV-infected or 

simian-human immunodeficiency virus (SHIV)  RM nor PLWH (394–398).  

The TLR7 agonist GS-9620 (Vesatolimod) was recently investigated in a 

phase 1b, randomized, double-blind, placebo-controlled study; only isolated 

and modest induction of HIV RNA was observed (399).  

The TLR9 agonist, MGN1703 which stimulates IFN I from pDCs, was also 

advanced to clinical trials. In a preclinical evaluation study of TLR9 agonist 

MGN1703, peripheral blood mononuclear cells were isolated from aviremic 

PLWH on ART and treated with MGN1703 resulting in enhanced levels of 

HIV transcription and induction of the potent antiviral activity of NK cells 

mediated suppression of HIV infection (400). 

 A recent phase I clinical trial (TEACH, NCT02443935) involved 15 PLWH 

on ART. This trial provided a unique opportunity to investigate whether the 

antiviral immune response can be induced and/or viral transcription 

reactivated following administration of single drug molecule TLR9 agonist 

(MGN1703) for four weeks (401). This study showed TLR9 agonists might 

exhibit dual characteristics by activating HIV transcription and enhancing 

cytotoxic NK cell activation and specific- HIV CD8+ T cells. 

Retinoic acid-inducible gene I RIG-I agonist 

RIG-I is a cytosolic pattern recognition receptor of the cytoplasmatic DEAD-

box dsRNA helicase family (RIG-I like receptors, RLRs) that detects non-

self RNA as a pathogen-associated molecular pattern (402). It has been 

shown to activate IFN I and NF-kB signalling pathways following RIG-I 

activation.  There is an increased interest in harnessing the potential of RIG-

I activation to purge the latent reservoir. However, whether RIG-I agonist 

treatment can disrupt HIV latency and induce preferential apoptosis of 

latently infected cells in vitro and ex vivo has been controversial. Li et al. 

showed that pharmacological stimulation of the RIG-I pathway using 

acitretin (RIG-I agonist, FDA approved for the management of psoriasis) in 

the latently infected TZM-bl cell line or primary CD4+ T cells from PLWH on 

ART, induced RIG-I expression and increased HIV transcription, but also 
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RIG-I signalling selectively induced IFN-mediated apoptosis of HIV-positive 

cells (133). In contrast, Garcia-Vidal et al. and  Palermo et al. found that 

acitretin mediated stimulation of RIG-I expression but failed to induce potent 

HIV reactivation and lacked selective cell death of HIV- positive cells in the 

latently infected J-Lat T cell line or primary CD4+ T cells from PLWH on ART 

(403, 404).  The discrepancies between acitretin efficacy and outcome 

obtained from those two studies may be attributed to differences in a cell 

culture setting and virus strains used. Recently Indra Sarabia et al, showed 

that RIG-I agonist (dsRNA) reactivated latent HIV through the mitochondrial 

antiviral signalling (MAVS) protein (405). The study stressed the central role 

of MAVS in mediating signalling from RIG-I and reversing HIV latency. 

1.18 COMBINATION LRA APPROACHES  

Considering the vast array of known factors or blocks that maintain HIV 

latency, a combination approach of LRA classes that synergistically target 

different latency pathways may be required for efficient activation of HIV 

gene expression in infected resting CD4+ T cells and also limit LRA toxicity 

by using smaller doses of each agent (406). 

For example, Laird et al. compared two LRAs combinations (bryostatin-1 + 

romidepsin and bryostatin + JQ1 inhibitor) (338). These results showed a 

significant synergetic effect in reactivating  HIV latency following 

combination LRAs treatment in the same system without the release of 

proinflammatory cytokines by resting CD4+ T cells. However, the synergetic 

effect of LRA may impair primary HIV-specific CD8+ T cells and cause 

immune suppression. 

Interestingly, an innate immune agonist (cGAS-STING agonist) combined 

with the HDACi resminostat amplified viral reactivation and induced specific 

death of HIV-infected cells in the J-Lat T cell line and ACH2 cells (404). 

However, this magnitude of reactivation and immune response against 

latently infected cells was not observed ex vivo. Importantly, these studies 

highlighted the therapeutic potential in synergising innate immune agonists 

with other LRA classes (e.g. HDACi) or immunotherapeutic modalities such 

as PD-1 immune checkpoint blockade (ICB) reinvigorating T cell effector 

function and cytotoxic activity (407, 408). 



40   Chapter Chapter 1:: Introduction and Literature review 

Collectively, these observations suggested that LRAs may exhibit several 

effects on innate and adaptive immune responses. In addition, not all LRAs 

within the same pharmacological class have the same detrimental effects 

directly on infected cells, such as affecting antigen processing or 

presentation or on HIV-specific CD8+ T cells. Moreover, in the shock and kill 

strategy, early studies highlighted the need to reactivate all cells harbouring 

HIV integrated DNA without triggering a systematic inflammatory response 

(314, 318). We aim to investigate possible approaches to overcome these 

unwanted effects, including reducing or eliminating hazardous systematic 

effects using a nanoparticle drug delivery platform. 

1.19 NANOMEDICINE MEDIATED DRUG DELIVERY 

Nanomedicine has raised tremendous attention in biomedical research 

towards therapeutic development based on smart delivery nanoparticles 

(409–411). The current development of nano-therapeutics focuses on 

designing and engineering nano- carrier systems for drug and vaccine 

delivery (412–415). However, recently it has become clear that engineered 

nanoparticle systems often lack in-depth characterisation towards their 

interaction with immune cells (416).  

In recent years nanotechnology-based drug delivery systems have received 

tremendous interest and showed remarkable ability to overcome an 

anatomical and physiological barrier in animal models and deliver the 

therapeutic agents at the site of systemic diseases such as blood cancer 

and HIV (417–420). Particle-based delivery has several potential 

advantages compared to free drug formulations, owing to its power to load 

and protect various payloads, sustained kinetic release, improved drug 

pharmacokinetics and biodistribution. In addition, the ability to navigate to a 

specific organ or cell increase nanomedicines efficiency and reduce off-

target related toxicity effects (410, 411, 417, 421). A significant advance in 

nanocarrier drug delivery using a nanoscale particle system is their ability 

to encapsulate efficiently different types of therapeutic payloads. A second 

significant advance has been made by understanding mechanisms that 

govern cellular binding, internalisation and trafficking of particles at the 

plasma membrane (422–424). 



Chapter Chapter 1: Introduction and Literature review 41 

1.19.1 T cell-targeting nanoparticles drug delivery systems  

Nanoscale drug delivery vehicles are available in various forms and 

materials, e.g., nanoparticles, nanoshells, liposomes, carbon nanotubes 

and dendrimers (Figure 1.9). A major common advantage of these systems 

is the flexibility in tuning their physicochemical properties such as size, 

shape, rigidity, surface chemistry, stability and structure, which are key 

factors that impact cellular uptake, biodistribution patterns, and clearance 

(425). 

Cellular uptake of nanoparticles is different from that of free drug 

formulations. Therefore, nanocarriers are designed to overcome barriers in 

endocytosis. Nanoparticulate systems with encapsulated drugs can be 

internalized either by non-specific endocytosis or receptor-mediated 

endocytosis (426). Nanotechnology can also facilitate receptor-mediated 

endocytosis through particle surface modification with a specific ligand that 

can allow enhanced binding to target cells that overexpress its receptor 

(285, 414, 427–429). 

T cells are one of the adaptive immune system arms that respond to T cell 

receptor (TCR) recognition of their specific antigen presented by APC on 

MHC-II (CD4) or MHC-I (CD8) (430). T cells are susceptible to many 

diseases, including blood cancers (e.g., acute lymphoblastic leukemia and 

T cell Lymphoma) and viral infections (e.g. HIV and HTLV-1), making them 

attractive targets for therapeutics and prevention approaches (312, 431–

433). Consequently, this has led to the development of T cell-based 

immunotherapy to tackle diseases or boost T cell responses to diseased or 

infected cells (408).  
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Figure 1.9 Potential nanoparticle drug delivery platforms.  

Nanoparticles can be broadly subdivided into three main classes: lipid-

based, polymer-based, and inorganic nanoparticles. Lipid-based 

nanoparticles include liposomes (aqueous core) or micelles (hydrophobic 

core). Polymer-based nanoparticles include cationic polymer-based 

particles or micelles, or capsules made from hydrophobic polymer (red) 

combined with an amphiphilic coating (blue). Inorganic nanoparticles 

include gold and iron oxide spheres. The diversity of nanoparticle types 

available is far beyond the basic categories depicted here. Nanoparticles 

share common features such as drug loading capacity, specificity 

multifunctionality, biocompatibility and improved drug stability. 
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1.19.2 Nanostructured drug delivery system for improving latency 

reversal  

In the context of HIV infection, the efficacy of LRAs is impaired by the 

systematic toxicity induced by the cytotoxic effect of these compounds 

(Table 1.1) (375, 434). Nanoengineered particles-based delivery of LRAs to 

T cells may circumvent these unwanted effects. However, safe delivery of 

particles remains a major technological challenge, primarily due to the non-

phagocytic nature of CD4+ T cells. Therefore, the first step to overcome 

cellular barriers and improve LRA delivery of nanoengineered particles is to 

study their interaction with the cell membrane. The negatively charged 

plasma membrane surrounding a living cell forms a boundary between the 

cytosolic and external microenvironment and provides structural support to 

the cell (423, 435). In particular, non-phagocytic T cells strictly control 

charged molecule intake from the extracellular environment (423). However, 

particle adsorption onto the membrane and subsequent internalization 

depends on particle size and surface charge (436, 437). Small soluble 

molecules with a molecular weight below 1 KDa (e.g. medical drugs) pass 

quickly through passive diffusion, whereas polar molecules require energy-

dependent or membrane modelling (438). Micropinocytosis is an 

intracellular uptake mechanism of particles > 200 nm that relies on 

membrane ruffling and results from actin polymerisation (439, 440). These 

rearrangements are induced by growth factors and mitogens such as 

phorbol esters (441). Another uptake mechanism that has played an 

essential role in receptor-mediated endocytosis is clathrin-dependent 

endocytosis, where larger molecules (< 200 nm) use this pathway for 

cellular uptake (442, 443). Several studies have shown that clathrin-

mediated uptake of nanoparticles < 90 nm in diameter is possible (364, 416, 

442, 444). The surface charge of particles is another critical parameter that 

influences particle uptake and may have a dominant effect over particle size 

(445, 446). In general, particles carrying positive charge (cationic) often 

have a higher association rate than negatively charged and neutral particles 

of similar dimension with the negatively charged cell membrane (anionic) 

through electrostatic interaction of an electrical potential gradient (53, 445, 

447–449). However, particles may acquire different identities when 



44   Chapter Chapter 1:: Introduction and Literature review 

interacting with biological fluids such as blood and cell culture media. In 

biological fluids, the surface charge may change drastically by the 

adsorption of biomolecules, including proteins biological molecules, to form 

a protein corona (449–453). This new biological identity of nanoparticles can 

significantly alter the behaviour and fate of their interaction with cells. 

Therefore, studying the fundamental influence of nanoparticle 

physiochemical properties (size and surface charge) in interaction with T 

cells in physiologically relevant of in vitro and ex vivo experimental models 

is critical for developing efficient delivery of LRA loaded nanoparticles. 

1.19.3 Potential drug delivery system as carrier for LRAs 

The most well-investigated particle systems are Poly (lactic-co-glycolic acid) 

(PLGA) and lipid-based and have attracted considerable attention due to 

their biocompatibility, delivery of multiple drugs and sustained cargo release 

(454–456). In reactivation, the latent HIV proviral PLGA nanoparticles 

loaded with an HIV protease inhibitor (nelfinavir) were targeted to CD4+ T 

cells in PBMCs culture. This nanoformulation reversed latency and inhibited 

de novo infection (455). A similar effect was observed when  PLGA-PEG 

particles were used to target delivery of SAHA and nelfinavir to latently 

infected CD4+ T cells. In a proof-of-concept study for nanoparticle 

encapsulation of LRAs, lipid nanoparticles incorporating the PKC agonist 

bryostatin, HDACi sodium butyrate and supplemented nelfinavir were 

delivered into a range of latently infected cell lines and primary cells (455). 

The authors showed significant binding/uptake of the nanoparticle in various 

cell lines, including macrophage (positive control), Hela and CEM (as these 

cell lines have endocytosis characters), and the nanoparticles also reversed 

latency in J-Lat cells and resting CD4+ T cells. However, this prototype 

nanoparticle system lacked specificity to target resting CD4+ T cells. In 

another study, Jones RB et al. showed targeted drug delivery lipid 

nanoparticles linked to antigen recognition which would localize payload 

release to the site of antigen expression in CD8+ T cells (457). 

In a recent study, Cao et al. synthesized hybrid lipid-coated PLGA 

nanocarriers loaded with diverse LRAs. These lipid-coated nanocarriers 

could selectively activate CD4+ T cells in vitro and in non-human primate 
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PBMCs as well as targeted murine lymph nodes with substantially reduced 

toxicity (458). 

Nanoparticle delivery of shock/ pro-apoptotic compounds or kill agents 

would require developing a biodegradable, efficient, highly specific, stable, 

and multifunctional particle system that can maximally activate HIV gene 

expression in latent reservoirs with minimal off-target effects and lead to 

clearance of infected cells. 

Table 1.1 Summary of nanoparticle delivery platforms used to improve 

the delivery of molecules and macromolecules to tackle HIV infection 

Nanostructure 

class 

Nanoparticle 

(NP) 

        Application Reference

Polymer-based Poloxamer-

based NP 

Delivery of ART to T 

cells 

(459, 460)

Copolymer-

based 

PLGA/Pluronic 

NP 

Delivery of ART (461) 

Polymer-based PLGA Delivery of LRA to T 

cells 

(462) 

Copolymer 

based 

PLGA/PEG NP Co-delivery of ART and 

LRAs to T cells 

(463) 

Lipid-based Lipid NP Targeted Co-delivery of 

ART and LRA to lymph 

nodes 

(464) 

Lipid-based Lipid NP Targeted delivery of LRA 

to lymph nodes 

(458) 

Lipid-based Lipid NP Delivery of LRA to T 

cells 

(457) 

Hybrid lipid and 

polymer-based 

Lipid-coated 

PLGA NP 

Co-delivery of LRAs to T 

cells 

(465) 

Inorganic-based Gold Delivery of CRISPR-

Cas9 components to T 

cells 

(466) 
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Nanostructure 

class 

Nanoparticle 

(NP) 

        Application Reference

Inorganic-based Metallic NP (Iron 

oxide) 

Targeted delivery of 

nanoART and LRA 

formulations to the brain 

(467) 

1.20 POLYMERIC NANOCARRIERS 

Polymeric nanostructured materials have played an important role in 

different biomedical applications, such as therapeutic drug delivery, 

diagnostic, and imaging applications (468, 469). Non-biodegradable 

polymeric nanoparticles, such as, polyacrylamide (PAM), 

polymethylmethacrylate (PMMA) and polystyrene (PS), have been used for 

drug delivery systems; however, significant toxicity and detrimental health 

consequences from non-biodegradable polymers have been observed 

(470). Therefore, biodegradable polymers (able to integrate with biological 

systems without eliciting an immune response) have attracted considerable 

interest over recent years due to their properties and biocompatibility for in 

vivo diagnosis and treatment of diseases (471). The unique features of 

smart polymeric-based nanostructured systems such as stability, tunable 

size, porosity, shape and surface charge, their mechanical strength and 

non-immunogenic properties enable them to meet the needs of different 

targeted biomedical applications (469, 470, 472–474). Different type of 

natural and synthetic polymer nanoparticles play a vital role in a targeted 

drug delivery system (475–477). Ideally nanoparticles prepared from natural 

or synthetic polymeric materials are inexpensive, have easy accessibility, 

bio-decomposition properties, and are easily modified. Reactive groups  

present on polymers such as amines, thiols and carboxylic groups, can be 

linked to fluorophore tags, drugs, or other synthetic materials endowing 

advantageous properties of different polymers (478–480). There are various 

types of polymers and are classified based on their origin or structural 

backbone (481). Based on origin, polymers are classified into either natural 

or synthetic polymers. 
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1.20.1 Natural and synthetic polymers nanoparticles 

There are numerous types of natural polymers nanoparticles, and they are 

classified mainly into polysaccharide (polymeric carbohydrates) and 

protein-based polymers (469, 482, 483). On the other hand, synthetic 

polymer-based nanoparticles are classified into biodegradable such as 

phosphorous based, polyester and polyamides and non-biodegradable 

such as cellulose derivatives and acrylic based polymers (484). Herein we 

will focus on acrylic and polysaccharide-based nanoparticles. 

1.20.2 Layer-by layer poly(methacrylic acid) engineered nanoparticle 

delivery system 

Several nanoparticles drug delivery systems have been utilised to improve 

the delivery of ART and LRAs (Table 2.1). However, the most promising 

system to fulfil the above-mentioned needs is the layer-by-layer (L-bL) 

technique, which is applied to generate nanocapsules or core-shell particles 

by layered polymers on a silica template (485, 486). The LbL technique 

allows for better tailor-made nanoparticle generation due to its flexibility in 

size, composition, drug loading, surface charge and surface functionality 

(487, 488). In particular, layering poly(methacrylic acid) containing activated 

thiol moieties (PMASH) generates biologically interesting nanoparticles as 

these are stable under physiological conditions but degradable in the 

intracellular reductive endosomal environment (487, 489, 490). PMASH

nanoparticles are fabricated from a mesoporous silica core that can be 

loaded with a drug and subsequently layered with alternatively negatively 

charged PMASH and positively charged poly(vinylpyrrolidone) (PVPON) at 

pH 4. At this pH, the two polyelectrolytes form stable multilayers that can be 

crosslinked through disulphide bonds, after which the PVPON is washed off 

at physiological pH to create negatively charged PMASH nanoparticles 

(491). 

Recent applications of PMASH nanoparticles for drug delivery systems have 

included controlled drug delivery of stimuli-responsive carriers in the field of 

nanomedicine (491). The versatility of the PMASH nanoparticle system is 

compatible for encapsulation of different cargo types, including water-

soluble and insoluble drugs, which have all successfully been adsorbed into 
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the mesoporous silica core, resulting in delivery into the same intracellular 

compartment (487, 492). An important advantage of the PMASH

nanoparticles is the capacity to encapsulate a larger drug load due to large 

mesopores of 15 to 30 nm, resulting in efficient loading capacity for 

hydrophobic and hydrophilic drugs (492). In addition, the size of  PMASH

particles can be controlled in contrast to other particle systems by varying 

the size of the template (493, 494). The mesoporous silica core can be 

generated at different sizes by varying solvent, synthesis temperature, and 

silica source, resulting in cores ranging from ~100 nm up to 2 μm (495).  

Multifunctional properties of PMASH nanoparticles could play an essential 

role in targeted delivery and combinational therapy. It has been 

demonstrated that sub 500 nm-sized huA33 mAb-coated nanoparticles can 

bind with specificity to the A33 antigen that presents on almost all colorectal 

cancer cells (496). Nevertheless, toxicological considerations, chemical 

stability, specificity and a convenient biodistribution are still areas for 

improvement.  

1.20.3 Bovine Glycogen nanoparticles (BG-NP) 

In general, glycogen NP can be synthesised from different biological 

sources such as bovine liver (BG), rabbit liver (RG) and oysters (OG) (482, 

497). Soft bovine glycogen nanoparticles (BG-NP)  are a promising delivery 

system that efficiently encapsulates nucleic acid (418, 498). The 

advantages of soft glycogen NP over other synthetic and natural polymers 

(Table 1.1) are their tunable size, degradability, and lack of toxicity at high 

concentrations (418). The hyperbranched BG- NPs are a favourable non-

viral gene delivery system because they have endo-lysosomotropic 

properties allowing for cytosolic localisation and endosomal escape. 

Second, they can deliver multiple copies of nucleic acid encoding genes and 

finally, they have reduced cytotoxicity (418, 499, 500). BG-NP surface 

charge can be easily modified to incorporate different therapeutic and 

targeting molecules. For intracellular delivery of nucleic acids, the otherwise 

neutrally charged BG-NP are modified with ethylenediamine (EDA) to 

generate a positive surface-charge (BGEDA-NP) (418). BGEDA engineered 

NP have previously been used to deliver small nucleic acids (such as 
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siRNA) in vivo, which make them a better candidate to deliver nucleic acid-

based therapeutic into T cells due to (i) their smaller size and (ii) 

endoplasmic delivery of payload which are critical factors for efficient 

translation of RNA based therapies to T cells (418, 501). 

1.21 HYPOTHESIS 

We hypothesise that the delivery of nanoparticles loaded with latency-

reversing agents (LRAs) will lead to efficient uptake in CD4+ T cells and 

reverse HIV latency with enhanced potency and reduced toxicity. To 

investigate this hypothesis, we will utilize PMASH particles loaded with the 

hydrophobic LRA romidepsin and glycogen particles encapsulating an RNA 

RIG-I agonist ligand. PMASH particles were chosen because they can 

encapsulate hydrophobic drugs efficiently and have tunable physiochemical 

characteristics that allow for varying pore size and volume, surface area, 

and surface modification. Glycogen particles were chosen for their ability to 

complex with RNA and a range of other properties, including 

biocompatibility, stability during circulation against serum proteins, 

adequate cellular uptake, and early endosomal escape. All of which are 

crucial elements for the efficient delivery of RNA molecules into T cells. We 

addressed the hypothesis through the following aims. 

1.22 AIMS 

1. To identify an optimal nanoparticle (NP) that can encapsulate a 

hydrophobic drug and that can be taken up by CD4+ T cells 

2. To deliver NPs loaded with latency-reversing agents (LRAs) to HIV-

infected CD4+ T cells to enhance both potency and specificity 

To optimize nanoparticle delivery of a nucleic acid-based RIG-I agonist to 

HIV-infected CD4+ T cells and determine the effects of RIG-I signalling on 

HIV latency. 
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2 Materials and Methods 

Section one, “Material”, compiles tables listing all materials including 

reagents, buffers, labware, equipment and software’s used to acquire, 

analyse, and present the data. Section two, “Methods”, describes 

procedures and protocols. 

2.1 SECTION ONE- MATERIAL 

This section compiles tables listing all materials, including reagents, buffers, 

labware, types of equipment and software’s used to acquire, analyse, and 

present the data. 

Table 2.1 Chemicals, buffers, cell culture media, reagents, and 

pharmaceutical compounds

Name Manufacture Cat no 

MS 1 µM particles Sigma-Aldrich (St. 

Louis, Missouri) 

89904 

Poly (methacrylic acid) Polysciences 

(Warrington, 

Pennsylvania) 

00578-50 

Pyridine dithioethylamine Shanghai Speed 

Chemicals 

(Shanghai, China) 

FB52790 

Dithiothreitol (DTT) Sigma Aldrich (St. 

Louis, Missouri) 

3483-12-3 

MOPS buffer Chem Supply1 Chem 

Supply 

DMTMM Chem Supply Chem 

Supply 

Sodium acetate NaOAc 

buffer 

Chem Supply Chem 

Supply 
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Name Manufacture Cat no 

Chloramine T CaT Sigma Aldrich (St. 

Louis, Missouri) 

402869 

Poly(N-vinylpyrrolidone) 

PVPON 

Sigma Aldrich (St. 

Louis, Missouri) 

PVP40 

2-(N morpholino) 

ethanesulfonic acid) MES 

Chem Supply Chem 

Supply 

Milli-Q water Millipore 

Corporation 

(Burlington, 

Massachusetts) 

Millipore 

Milli-Q plus 

185 

purification 

system 

Tetraethyl orthosilicate 

(TEOS) 

Sigma-Aldrich (St. 

Louis, Missouri) 

131903 

Poly (acrylic acid) Sigma-Aldrich (St. 

Louis, Missouri) 

9003-01-4 

Cetyltrimethylammonium 

bromide (CTAB) 

Sigma-Aldrich (St. 

Louis, Missouri) 

57-09-0 

Cetyltrimethylammonium 

tosylate (CTAT) 

Sigma-Aldrich (St. 

Louis, Missouri) 

138-32-9 

Ammonium hydroxide Sigma-Aldrich (St. 

Louis, Missouri) 

221228 

(3-aminopropyl) 

triethoxysilane (APTES, 

99%) 

Sigma-Aldrich (St. 

Louis, Missouri) 

440-140 

Ethanol (EtOH) Sigma-Aldrich (St. 

Louis, Missouri) 

Chem 

supply 

Triethanolamine Sigma-Aldrich (St. 

Louis, Missouri) 

90279 

5,5′-dithiobis-2-nitrobenzoic Sigma-Aldrich (St. 

Louis, Missouri) 

D218200 

mPEG5K-b-PLKC50 Alamanda polymers 

(Huntsville, 

Alabama) 

599393 
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Name Manufacture Cat no 

PLKC50/250 Alamanda polymers 

(Huntsville, 

Alabama) 

26124-78-7 

Romidepsin (FK228, 

Depsipeptide) 

Jomar life research 

(Victoria, Australia) 

S3020 

dimethyl sulfoxide (DMSO) Sigma Aldrich (St. 

Louis, Missouri) 

D2650 

phorbol ester phorbol 

myristate acetate, PMA 

Sigma-Aldrich (St. 

Louis, Missouri) 

P1585-1MG 

Ionomycin Sigma-Aldrich (St. 

Louis, Missouri) 

I3909-1ML 

Phytohaemagglutinin, PHA Sigma-Aldrich (St. 

Louis, Missouri) 

R30852701 

Human IFN alpha 2a 

Recombinant Protein 

Life Technologies 

(Victoria, Australia) 

111011 

Boc-D-glutamic acid 1-benzyl 

ester 

Sigma-Aldrich (St. 

Louis, Missouri) 

34404-30-3 

Potassium phosphate 

monobasic 

Sigma- Aldrich (St. 

Louis, Missouri) 

7778-77-0 

Hydrochloric acid Thermo Fisher 

(Victoria, Australia) 

7647 

Methanol Chem-supply Chem-

supply 

RPMI 1640 Life Technologies 

(Victoria, Australia) 

21870092 

Gibco Dulbecco’s Modified 

Eagle Medium (DMEM) 

Life Technologies 

(Carlsband, CA) 

11960069 

Penicillin Life Technologies 

(Carlsbad, CA) 

10378016 

Streptomycin Life Technologies 

(Carlsbad, CA 

10378016 
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Name Manufacture Cat no 

L-glutamine Life Technologies 

(Carlsband, CA) 

10378016 

Blasticidin InvivoGen (San 

Diego, CA) 

ant-bl-05 

Zeocin InvivoGen (San 

Diego, California) 

ant-zn-05 

Fetal bovine serum (FBS) Interpath (Victoria, 

Australia) 

AUFBS/PG 

Ficoll-Paque Plus GE Healthcare 

Pharmacia 

(Champaign, Illinois)

17-1440-02 

Pancoll human density PanBiotech 

(Kaohsiung, 

Taiwan) 

P04-60500 

BD 10x Pharm Lyse buffer BD Biosciences 

(San Jose, CA) 

(BD 555899)

Stabilizing Fixative BD Biosciences 

(San Jose, CA) 

338036 

10% Tris-borate-EDTA (TBE) Life Technologies 

(Carlsband, CA) 

EC6365BOX

Phosphate buffer saline PBS Gibco (Victoria, 

Australia) 

10010023 

Dulbecco’s Phosphate buffer 

saline D-PBS 

Gibco (Victoria, 

Australia) 

141190144 

DNA loading buffer Thermo Fisher 

(Victoria, Australia) 

10816015 

3p dsRNA (RIG-I agonist) Martin Schlee lab 

(Bonn, Germany) 

Martin 

Schlee lab 

dsRNA (control ligand) Martin Schlee lab 

(Bonn, Germany) 

Martin 

Schlee lab 

Lipofectamine 2000 

Transfection Reagent 

Life Technologies 

(Carlsband, CA) 

11668019 
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Name Manufacture Cat no 

Sendai virus Charles River 

(Victoria, Australia) 

PI-1, SV 

(1) Chem supply indicate where reagents were supplied by the Department of 

Chemical Engineering at the University Of Melbourne 

Table 2.2 Laboratory plasticware 

Name Manufacture 

Chamber furnace Jetlow (Victoria, 

Australia) 

Micro cuvette ZEN0040, Malvern 

Instruments 

(Malvern, UK) 

Capillary cell DTS1070, Malvern 

Instruments 

(Malvern, UK) 

Vacuette blood collection 

tubes (Heparin K2 EDTA) 

Greiner Bio-One 

(Kremsmunster, 

Austria) 

Falcon 50ml Conical 

Polypropylene Tube 

In Vitro 

Technologies 

(Victoria, Australia)

Falcon 15 ml Conical 

Polypropylene Centrifuge 

Tube 

In Vitro 

Technologies 

(Victoria, Australia)

96well Tissue Culture plate, 

round bottom 

Interpath (Victoria, 

Australia) 

μ-Slide 8 Well ibiTreat DKSH Australia 

pty (Victoria, 

Australia) 

CryoGen tubes 2 mL Bio sigma (Cona, 

Italy) 

Formvar carbon-coated grid 

EMSFCF400-NI-UC

ProSciTech (QLD, 

Australia 
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Table 2.3 Equipment and software 

Platform Manufacture Facility 

Apogee A50-

Microflow 

cytometer 

Apogee Flow 

Systems (Northwood, 

UK) 

Materials Characterisation and 

Fabrication Platform 

Zetasizer (Nano-

ZS) 

Malvern Analytical 

(Malvern, UK) 

Materials Characterisation and 

Fabrication Platform 

Nano Sight NS400 Malvern Analytical 

(Malvern, UK) 

Materials Characterisation and 

Fabrication Platform

LSR Fortessa II 

flow cytometry 

BD Biosciences (San 

Jose, CA) 

Doherty Institute Flow Facility 

Confocal 

microscopy Nikon 

A1R 

Nikon, (Victoria, 

Australia) 

Materials Characterisation and 

Fabrication Platform

Transmission 

electronic 

microscopy TEM 

FEI Tecnai TF20 

(Hillsboro, Oregon) 

Materials Characterisation and 

Fabrication Platform 

High-performance 

chromatography 

(HPLC) 

Shimadzu 

Prominence (Victoria, 

Australia) 

Bio21 Molecular Science and 

Biotechnology institute 

Microplate 

luminometer reader

FLUOstar Omega, 

BMG LABTECH 

Lewin group laboratory2 

Electrophoresis 

system 

Bio-rad (Hercules, 

California) 

Lewin group laboratory 

Automated cell 

isolation-

autoMACS 

Miltenyi Biotec 

(Galdbach) 

Lewin group laboratory 

Image J National Institute of 

Health (Bethesda, 

Maryland) 

Open-source software 

FCS express De Novo software 

(Los Angeles, CA) 

Lewin group laboratory2 licence 

FlowJo v10 (Ashland, 

Oregon) 

Lewin group laboratory2 licence 

GraphPad prism GraphPad (San 

Diego, CA) 

Lewin group laboratory2 licence 
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Platform Manufacture Facility 

Origin Viewer Origin Lab 

(Northampton, 

Massachusetts) 

Open-source software 

(1) Equipment or software’s licence provided by Lewin group laboratory 

Table 2.4 Cell lines 

Cell type Manufacture Catalogue number 

THP-1 dual reporter cell InvivoGen (Hennigsdorf) thpd-nfis 

HEK-Blue IFN-α/β InvivoGen (Hennigsdorf,) Hkb-ifnab 

Jurkat cell line NIH AIDS Reference Reagent 

Program (Bethesda, 

Maryland) 

ARP-177 

J-Lat A2 NIH AIDS Reference Reagent 

Program (Bethesda, Maryland

ARP-9854 

J-Lat 10.6 NIH AIDS Reference Reagent 

Program (Bethesda, 

Maryland) 

ARP-9849 

TZM-bl NIH AIDS Reference Reagent 

Program (Bethesda, 

Maryland) 

ARP-8129 

Table 2.5 Primary antibodies and stains 

Antibody/Reagent Manufacture Cat no 

Anti-human CD69 G46-6. BUV395 BD Biosciences (San 

Jose, CA) 

564364 

Anti-human CD25 MA-25. PE-CY7 BD Biosciences (San 

Jose, CA) 

341009 

Anti-human HLA-DR L243. FITC Pharmingen (Lahore, 

Pakistan) 

S101618 

Anti-human HLA-DR L243. PB BD Biosciences (San 

Jose, CA) 

307633 

Anti-human CD4 RPA-T4. FITC BD Biosciences (San 

Jose, CA) 

555346 
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Antibody/Reagent Manufacture Cat no 

Anti-human CD3 HIT3A. PE BD Biosciences (San 

Jose, CA) 

555340 

Anti-human CD3 UCHT1. Brilliant 

Violet-510 

BD Biosciences (San 

Jose, CA) 

563109 

Anti-human CD56 B159. AF488 BD Biosciences (San 

Jose, CA) 

557699 

Anti-human CD19 HIB19. PE BD Biosciences (San 

Jose, CA) 

561741 

Anti-human CD66B G10FS. 

PE/Dazzle-594 

BioLegand (San Diego, 

CA) 

305122 

Anti-human CD14 M5E2. Brilliant 

Violet-785 

BioLegand (San Diego, 

A) 

301840 

Anti-human CD8 OKT-8 ATCC (Manassas, 

Virginia) 

CRL-8014 

Anti-human CD11b OKM-1 ATCC (Manassas, 

Virginia) 

CRL-8026 

Anti-human CD14 FMC-17 Flinders Medical Centre, 

Adelaide, AUS 

- 

Anti-human CD16 3G8 Steinman Lab and Assoc. 

Prof. Anthony 

Jaworowski 

- 

Anti-human CD19 FMC63 Heidi Zola, Flinders 

Medical Centre 

(Adelaide, Australia) 

- 

glycophorin-A 107MN ATCC (Manassas, 

Virginia) 

HB-8162 

Mouse IgG Isotype control MOPC-

21. PE 

BD Biosciences (San 

Jose, CA) 

555749 

Goat anti-mouse IgG microbeads Miltenyi Biotech 

(Galdbach, Germany) 

130-048-

401 

Alexa Flour 488 C5 Maleimide Thermofisher Scientific 

(Victoria, Australia) 

A10254 

Alexa Flour 647 C2 Maleimide Thermofisher Scientific 

(Victoria, Australia) 

A20347 
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Antibody/Reagent Manufacture Cat no 

Hoechst 33342 solution Thermo Fisher Scientific 

(Victoria, Australia) 

62249 

1,1’-Dioctadecyl-3,3,3’,3’-

Tetramethylindocarbocyanine 

Perchlorate (DiI) stain

Thermo Fisher Scientific 

(Victoria, Australia) 

D3911 

Propidium iodide-cell viability Invitrogen (Waltham, 

Massachusetts) 

37670 

Annexin V. Pacific blue BioLegand (San Diego, 

CA) 

640918

Annexin V buffer Invitrogen (Waltham, 

Massachusetts) 

V13246 

CellTitre-Glo viability assay kit Promega (Victoria, 

Australia) 

G7570 

SYBR Gold Thermo Fisher Scientific 

(Victoria, Australia) 

S11494 

QUANTI-Luc Jomar Life Research 

(Victoria, Australia) 

rep-qlc2 

QUANTI-Blue Jomar Life Research 

(Victoria, Australia) 

rep-qbs 

2.2 SECTION TWO-METHODS 

This section compiles all protocols and procedures performed at the Lewin 

and Caruso laboratories. 

2.2.1 Synthesis and preparation of mesoporous silica (MS) particles  

This procedure was performed at the Department of Chemical Engineering, 

Caruso Nanoengineering Group. 

Three sizes of primary MS particles were used; 100 nm, 400 nm, and 800 

nm in diameter were synthesised in-house (502). Polyelectrolyte-surfactant 

complexes were used as a template to synthesise the MS particles of 400 

nm and 800 nm (503, 504). Cetyltrimethylammonium bromide (CTAB) (1.1 

g) (Table 2.1) was dissolved in 50 mL Milli-Q water with continuous stirring.  

Poly (acrylic acid) (PAA, MW ∼ 250 kDa, 35 weight % (wt %) solution in 

water) (Table 2.1) was added to CTAB solution under a vigorous stirring 
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condition at room temperature for 20 minutes to obtain a clear solution. A 

3.5 mL of ammonium hydroxide solution (25 %) (Table 2.1) was added to 

the above mixture with vigorous stirring for 20 minutes, yielding a milky 

suspension. Subsequently, a 4.46 mL solution of tetraethyl orthosilicate 

(TEOS) (Table 2.1) was added to the above solution, followed by continuous 

stirring for 15 minutes. Then, the mixture was placed into a Teflon-sealed 

autoclave at 100 ◦C for 48 hours. The mesopores silica particles were 

washed twice with Milli-Q water and ethanol, then dried at 80 °C. Finally, to 

purify the formed MS, particles were placed in a chamber furnace (Table 

2.2) and calcinated at 550°C in the air at 823 K for 30 hours.  

100 nm MS particles were fabricated in accordance with a previously 

published method (505). 960 mg of cetyltrimethylammonium tosylate 

(CTAT) (Table 1), and 174 mg triethanolamine (Table 2.1) were suspended 

in 50 mL milli-Q water at 80 °C. Then, 7.8 mL of TEOS (Table 2.1) solution 

was added, and the mixture was stirred under vigorous conditions at 80 °C. 

After 2 hours, the mixture was transferred to a Teflon-sealed autoclave at 

80 ◦C. After 48 hours, the resulting MS particles were twice with milli-Q water 

and ethanol, dried at 80 °C, and calcined at 550 °C in the air for 6 to remove 

any organic materials. 

Finally, the primary MS particles of 1 µm in diameter were purchased from 

Sigma Aldrich (Table 2.1). On the basis of synthesised MS particles, 

transmission electron microscopy (TEM) was used to characterise the size 

and surface morphology of particles. TEM evaluation of the prepared MS 

supraparticles revealed the spherical morphology of the particles with a 

corresponding diameter of each particle of 100 nm, 400 nm, 800 nm and 

1µm (Figure 2.1) 
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Figure 2.1 Characterisation of size and surface morphology of 

different mesoporous silica (MS) particles.

TEM images were performed to visualise the primary 100 nm, 400 nm, 800 

nm, and 1 µm MS particles to confirm particles size and spherical shape.  

2.2.2 Thiolated Poly (methacrylic acid) (PMAPDA) synthesis and 

reagent preparation  

Poly (methacrylic acid) (PMA) (Table 2.1) was synthesised from PMA 

solution and cystamine dihydrochloride via carbodiimide coupling as 

described previously (487). PMASHPDA was synthesised by introducing the 

thiol (PDA) functionality. The functionalisation with cystamine 

dihydrochloride was performed in PBS. Dithiothreitol (DTT), 4-(4,6-

dimethoxy-1,3,5-triazin-2-yl)-4 methylmorpholinium chloride (DMTMM) (20 

gL-1) (Table 2.1) was added to PMA solution and stirred for 15 minutes at 

room temperature. PDA (20 gL-1) was added to the above mixture and 

incubated overnight under moderate stirring conditions to obtain 

PMASHPDA. The resulting polymer was purified by dialysis against Milli-Q 

water for 3 days with at least 6 times water exchange. Finally, the product 

was recovered via freeze-drying. The thiol content in the resulting polymer 

was characterised using 5,5′-dithiobis-2-nitrobenzoic acid (Table 2.1) via 

carbodiimide coupling, which corresponded to 12.9 mol % thiol groups 

modification. 

1H NMR: δH (400 MHz; D2O): PMAPDA: 0.5–1.25 (CH3), 1.25–2.2 

(CH2 backbone), 2.65–3 (S–CH2), 3.2–3.5 (NH–CH2), 7.0–7.3, 7.5–7.9, 

8.25–8.4 (CH pyridine).

A stock solution of poly(N-vinylpyrrolidone) (PVPON) (Table 2.1.1) (50 mg 

mL-1) was prepared in 10 mM sodium acetate buffer NaOAc (pH 4) (Table 

2.1). For sequential disposition, PMAPDA was synthesised by amide bond 

formation between the carboxyl groups of thiolated poly (methacrylic acid) 

(PMA) (Table 2.1) and the amine groups of pyridine dithioethylamine (PDA) 

(Table 2.1). Activation of thiol groups to generate PMASH was achieved by 

dissolving PMAPDA in 100 mg/mL into 0.5M solution of 1,4-Dithiothreitol 

(DTT) (Table 2.1) at pH 8, followed by thermo mixing for 15 mins at 37°C, 
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800rpm. A 1:25 dilution of the 100 mg/mL PMASH into 50mM sodium acetate 

buffer NaOAc (Table 2.1) at pH 4 was performed to generate the final 

solution for layering. 

2.2.3 Layer by layer assembly of PMASH nanoengineered particles  

PMASH nanoengineered particles were synthesised using Layer-by-Layer 

assembly of a biopolymer via hydrogen-bonding multilayer particles 

assembly (489). This method is based on the alternate deposition of 

polymers containing a hydrogen bond acceptor and a hydrogen-bond donor. 

Herein, we synthesised various particles sizes ranging from 100 nm to 1 µm 

and with different surface charges, including negative (PMASH), neutral 

(PEGylated, PMASH-PEG) and positive (Poly-L-lysine, PMASH -PLL). 

The layering procedure of MS cores included four subsequent layers of 

PMASH (donor, MW 15 kDa) and PVPON (Acceptor, MW 55 kDa) polymers 

(Table 2.1). After resuspension in 50µl of NaOAc pH 4, 50µl of 4mg/mL 

PVPON (Table 1) was added and incubated for 10 minutes at room 

temperature (RT), then washed three times in NaOAc to remove excess 

polyelectrolyte. The cores were then resuspended in 50µl NaOAc and 

incubated with 50µl 4mg/mL PMASH (Table 2.1). This process was repeated 

until eight bilayers were formed, ending with a final layer of PMASH. Finally, 

particles were washed three times with NaOAc and discarded the 

supernatant before cross-linking PMASH layers. To ensure an equal spread 

of the polymers across the cores, samples were vortexed immediately 

before and after the addition of 50 µl PVPON or PMASH.  

2.2.4 Cross-linking procedure for PMASH particles 

Following the final washing steps to stabilise the PMASH particles of 

PMASH particles, 500 µl (2.7 mM) of chloramine T (CaT) solution (Table 

2.1) was added and vortexed for 1 minute to induce cross-linking of thiol 

groups (487). The layered particles (core shells) were then slowly brought 

up to physiological pH by washing twice in 2-(N-morpholino) ethane sulfonic 

acid buffer (MES) (Table 2.1), pH 6, and three times in phosphate buffer 

saline (PBS) (Table 2.1) pH 7.4 (Table 2.1) to expel the PVPON from the 
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shell. The particles were stored in 200 µL of PBS before surface 

functionalisation. 

2.2.5 Surface modification 

One-step surface modification between the PMASH particles surface and the 

modifier was used to tailor the particles surface chemistry. We used 

chemical conjugation treatment of Methoxy-poly (ethylene glycol)-block-

poly (L-lysine hydrochloride) (mPEG5K-b-PLKC50, MW = 1000 Da and 

8200 Da) (Table 2.1) for a neutral charge (PMASH-PEG) and Poly-L-

lysine hydrochloride PLKC50/250 (MW = 41000 Da) (Table 2.1) for a 

positive charge (PMASH-PLL). Synthetic mPEG5K-b-PLKC50 or 

PLKC50/250 were prepared in a 10 mg/mL concentration in milli-Q water. 

200 μL of mPEG5K-b-PLKC50 or PLKC50/250 solutions were added to 

PMASH particles (5 mg) to form an electrostatic interaction with the PMASH

particles negative charged shell. Samples were incubated at room 

temperature (22 ◦C) under mild stirring conditions for 1 hour, followed by 

washing three times in PBS. Finally, particles were resuspended in 100 μL 

PBS before fluorophore labelling of particles. 

2.2.6 PMASH particles labelling 

To fluorescently label the particles for visualisation, we used Alexa Flour 

488 C5 Maleimide (AF488) and Alexa Flour 647 C2 Maleimide (AF647) 

(Table 2.5). 5 μL (1 mg mL-1) of AF488 or AF647 were added to 5 mg of 

particles suspension in PBS. Samples were first incubated at room 

temperature under mild stirring conditions, followed by incubation at 4◦C. 

After 24 hours, the excess dye was removed by washing three times with 

PBS and particles were stored in PBS at 4◦C until used. 

2.2.7 Characterisation of PMASH, PMASH-PEG and PMASH-PLL 

nanoengineered particles 

PMASH particles size may be adjusted depending on the size of the silica 

core. To determine the size and particles intensity, dynamic light scattering 

(DLS) (Table 2.3) (particles size > 100 nm) and nanoparticles tracking 

analysis (NTA) (Table 2.3) (particles ≤ 100 nm) were used. The particles 
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morphology of MS-100 nm, MS-400 nm, MS-800 nm and MS-1 μm were 

further characterised using transmission electron microscopy (TEM) (Table 

2.3) using the previously described method (502). The TEM samples were 

prepared by placing 2 μL of diluted (1:1000 in Milli-Q) 100 nm, 400 nm, 800 

nm and 1 μm MS particles on Formvr carbon-coated grids (Table 2.2). The 

TEM images were acquired immediately using an FEI Tecnai TF20 

instrument at an operation voltage of 120 kV under liquid nitrogen cooling. 

Characterization of each layer was not performed, only the final product was 

characterized. 

2.2.8 Dynamic light scattering (DLS), zeta potential and 

polydispersity index (PDI) measurements 

The particles hydrodynamic diameter, zeta potential, and PDI were 

measured using a Zetasizer (Nano-ZS) Nano-ZS instrument (Table 2.3). For 

size distribution and PDI measurements, 1 mL of diluted particle (i.e., 

PMASH, PMASH -PEG and PMASH -PLL) solution (1:1000 dilution in Milli-Q 

water) (Table 1) was analysed in a micro cuvette (Table 2.2). We used 

Zetasizer (Nano-ZS) Nano-ZS instrument (Table 2.2). The measurements 

were performed using a standard operating procedure with automatic 

attenuation and measurement position.  

The microelectrophoresis technique measured particle zeta potential before 

and after polymer layering to confirm particle surface charge. To measure 

particles zeta potential, 1 mL of particle dispersion (1:1000 dilution in Milli-

Q water) was introduced into a folded capillary cell (Table 2.2), and 

measurements were performed similarly. 

2.2.9 Nanoparticles tracking analysis (NTA) measurement 

The hydrodynamic diameter of 100 nm nanoparticles was analysed via the 

nanoparticle tracking analysis (NTA) technique; 1 mL of diluted nanoparticle 

solution (1:2000) in Milli-Q water was analysed using Malvern Nano Sight 

NS400 instrument (Table 2.3) fitted with a 405 nm laser (65 mW output). 
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2.2.10 Particles counting 

Particle counting for 400 nm, 800 nm and 1 µm of PMASH, PMASH-PEG 

and PMASH-PLL particles was performed using an Apogee A50-Microflow 

cytometer (Table 2.3). Particle counting for PMASH-100 nm, PMASH-PEG-

100 nm and PMASH-PLL- 100 nm nanoparticles could not be accurately 

performed by flow cytometry due to their small size. Instead, the 

concentration of these particles was determined via nanoparticle tracking 

analysis performed on a Malvern Nano Sight NS400 instrument (Table 2.3) 

fitted with a 405 nm laser (65 mW output). 

2.2.11 Pharmaceutical compounds and formulations 

The following pharmaceuticals were dissolved in dimethyl sulfoxide (DMSO) 

(Table 2.1.1) to make stock concentrations stored at -80˚C: 10mM 

romidepsin (RMD; FK228) (Table 2.1) and 1mM PMA (Table 2.1). The 

following compounds were reconstituted in DMSO and stored at -20˚C: 

1mg/ml phytohaemagglutinin (PHA) (Table 2.1) and 1mM Ionomycin 

(IONO) (Table 2.1). Interleukin-2 (IL-2) was constituted in PBS and stored 

at -20 ˚C. 

2.2.12 Cell culture and latently infected cell lines 

The human monocyte cell line THP-1 dual reporter (506, 507), human T 

lymphocyte cell line Jurkat (508), J-Lat A2 clone (249, 509) and J-Lat 10.6 

clone (249) (Table 2.4) were cultured in RPMI 1640 based cell culture media 

plus 10% heat-inactivated fetal bovine serum (FBS) (Table 2.1), 

supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM 

L-glutamine (Table 2.1) (RF10). TZM-bl reporter cell line (510) and HEK-

Blue IFN-α/β reporter cell line (511) (Table 2.4) were cultured in Dulbecco’s 

modified eagle medium (DMEM10) (Table 2.1) supplemented with glucose 

(4.5 g/L) 10 % FBS, 100 U/ml penicillin, 100 μg/ml streptomycin and 2 mM 

L-glutamine (Table 2.1). In addition, HEK-Blue IFN-α/β reporter cells were 

supplemented with antibiotic resistance 30 μg/mL and 100 μg/mL of 

blasticidin and zeocin, respectively (Table 2.1). All cells were maintained in 

a humidified 37˚C and 5 % CO2 humidified atmosphere. 
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2.2.13 Ethics statement 

The Human Research Ethics and Integrity committee from the University of 

Melbourne (Ethics ID:1443071) approved the use of blood samples packs 

from healthy volunteers. Adult donors blood was obtained from the Red 

Cross Blood Transfusion Service, and all provided written informed consent 

for the use of their blood products for the research purpose. 

2.2.14 Study participant-Healthy human donor blood collection 

After obtaining informed consent per the Department of Chemical 

Engineering, Blood was collected from healthy donors, The University of 

Melbourne Human ethics approval 1750753.2. Blood was collected in 

Vacuette blood collection tubes containing NH Sodium Heparin K2 EDTA 

as an anti-coagulant (Table 2.2). Tubes were inverted 5 times to mix with 

anti-coagulant. Total blood count was performed, and blood was examined 

within 1 hour of collection. 

2.2.15 Isolation of peripheral blood mononuclear cells (PBMC) from 

whole blood 

The peripheral blood mononuclear cells (PBMCs) were isolated from whole 

blood from healthy donors as previously described (101) using Ficoll-Paque 

(Table 2.1) density separation. Whole blood was diluted in an equal volume 

of PBS and layered over Ficoll-Paque. The samples then underwent density 

gradient centrifugation at 800xg for 20 minutes at room temperature. The 

PBMC layer was collected, resuspended in cold PBS, and then subjected 

to centrifugation at 500xg for 10 minutes at 4˚C. The pellet was 

resuspended in cold PBS and pelleted at 300xg, and the above step 

repeated at 200xg. Finally, the pelleted cells were resuspended in 10 % fetal 

calf serum RPMI 1640 media (Table 2.1) and spun down at 500xg for 2 

minutes. Isolated PBMC were counted per donor, recorded, used 

immediately or stored in liquid nitrogen until used. 

2.2.16 Isolation of total CD4+ T cells from PBMC 

PBMCs were isolated from healthy volunteers buffy obtained from the 

Australian Red Cross Blood Bank as previously early described. Total CD4+
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T cells were isolated using negative bead depletion as previously published 

(101), isolated PBMC were added to a total depletion cocktail compromised 

for human cell surface markers using a monoclonal antibody cocktail 

targeting as follow;  anti αCD8 (OKT-8 hybridoma); αCD11b (OKM-1 

hybridoma); αCD14 (FMC-17 hybridoma); αCD16 (3G8 hybridoma); 

glycophorin-A (Gly A) (107MN hybridoma,); CD19 (FMC-63 hybridoma,) 

(Table 2.5). Goat anti-mouse IgG microbeads (Table 2.5) were added, and 

an autoMACS (Table 2.3) was then used for magnetic bead depletion. T cell 

purity was assessed using CD4-FITC (Table 2.5) and CD3-PE (Table 5) 

staining, followed by analysis on the Fortessa II (Table 2.3). Purity 

percentage was analysed using FlowJo software (Table 2.3) and ranged 

between 96-98 %. Isolated cells were used immediately or frozen in freezing 

media (90 % FBS + 10 % DMSO) and stored in liquid nitrogen until further 

used. 

2.2.17 In vitro PMASH particle association studies 

Total CD4+ T cells were thawed in a 42 C◦ in a water bath, 1 mL warm (37 

◦C) heat-inactivated FBS (Table 2.1) was added dropwise manner to thawed 

cells and transferred into a 15 mL falcon tube (Table 2.2). Cryovials were 

washed with 1ml of warm RF10, added dropwise to the 15 mL Falcon tube, 

and further toped to 13 mL with RF10 media. The tube was inverted carefully 

8 times, and cells were spun down for 7 minutes at 400xg at room 

temperature. The supernatant was discarded, and the pellet was 

resuspended in 13 mL of warm (37 ◦C) PD and washed again. The pellet 

was resuspended in a warm (37 ◦C) RF10 medium, and the number of cells 

in each donor (15 mL tube) was counted using a haemocytometer. For 

particle association study, cells were seeded at a concentration of 8.5x106 

cells/mL in RF10 + 3U/ML IL-2. The next day, Jurkat cell line and primary 

CD4+ T cells were harvested and reseeded in a 96-well U bottom plate 

(Table 2.2) at a density of 0.2 X 10^6 cells per 100 μL in RF10. The positive 

control cell line, TZM-bl, were seeded at the same concentration in a 96-

well flat plate (Table 2.2) in DMEM10 (Table 2.1). Cells were treated with 

AF488 (Table 2.5) fluorescent labelled 400 nm, 800 nm or 1 μm of PMASH, 

PMASH-PEG and PMASH-PLL particles, at a ratio of 200:1- particles: cells 
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for 24 hours at 37°C, CO2 humidified atmosphere. Subsequently, cells were 

washed three times with PBS buffer to remove free particles from the 

medium. Particles-cells was association analysed after gating on single 

cells and analysing AF488 signals by flow cytometry (Table 2.3). Data were 

analysed using FlowJo V10.4 and GraphPad prism 8 (Table 2.3). 

2.2.18 In vitro confocal laser scanning microscopy image analysis 

(CLSM) quantification  

To obtain quantitive data on particles association (binding and 

internalisation) in T cells, we employed a confocal laser scanning 

microscopy image analysis (CLSM)-based approach coupled with ImageJ® 

software (Table 3.2) to distinguish between bound and internalised 

particles. TZM-bl cell line, Jurkat cell line and primary CD4+ T cells were 

treated as previously described. Cells were washed three times with PBS 

buffer to remove free particles from the medium, then stained with 1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate (DiI) stain 

(1:1000 dilution) (membrane) and Hoechst 33342 (1:100 dilution) (nucleus) 

(Table 5.2) to localise associated particles. Cells were fixed with 1 % 

paraformaldehyde for 15 mins and rinsed twice in PBS before transferring 

100 μL in duplicate 8 wells microscopic chamber (Table 2.2). Cells were 

imaged by Nikon A1R confocal microscopy using 20× and 63× oil immersion 

objectives (Table 2.3). To scan conditions and acquire images for quantitive 

analysis, we divided each well into four quadrants to quantify all possible 

ROI events. Quantification of positive cells for surface-bound particles 

or/and internalised particles was carried out through blind-randomised ROI 

scanning of each condition (Figure 2.2 A). Field view images of scanned 

ROI were taken, and particles localisation within the cells were analysed as 

shown in the representative slice (Figure 2.2 B). Particle–cell interactions 

(binding and internalisation) were quantitated using ImageJ software (512) 

(Table 2.3) by stepping through z-stacks and counting the percentage of 

cells containing AF488-labelled particles at the surface or inside the cell. 

The quantification strategy we employed in this study based on (i) the 

presence of one particle or aggregates within the cell, was counted as an 

internalisation positive cell , (ii) a cell with one particle internalised and 
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another adhered to the membrane would also count as an internalised 

positive cell . In contrast, a cell with only particles adhered to the surface 

will count as a binding  positive cell  (>1500 cells per condition). (Figure 2.2 

C).  

Figure 2.2 Quantification and localisation of associated particles with 

T cells 
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A) Cells were plated on confocal chambers, and while acquisition, we 

divided each well into four quadrants to further collect images of the region 

of interest (ROI) and capture 3D-Z stack images to localised associated 

particles. B) Representative confocal images showing staining for the 

membrane (DiI, red), nucleus (DAPI, blue) and PMASH 400 nm particles (AF 

488, green). C) representative images displaying a field of view and Z stack 

to localise bound and internalised particles into primary CD4+ T cells. Scale 

bar: A. 4 µm. B, 10 µm.

2.2.19 Particles association with human whole blood and PBMC 

We investigated 400 nm negatively charged PMASH, neutral PMASH-PEG 

and positive PMASH-PLL particles interaction with cells using fresh human 

whole blood and PBMC as previously described (513). Whole blood from 

healthy volunteers (obtained with informed consent) was collected into 

tubes containing NH Sodium Heparin K2 EDTA as an anti-coagulant. 200 

μL of fresh blood per well were seeded into a 96-well U bottom plate (Table 

2.2), and 10 X 106 fluorescent labelled AF647 particles were added to the 

blood and incubated at 37 ◦C, 5% CO2 humidified atmosphere for 1 hour. 

PBMC were isolated as described above and treated similarly.  

Following incubation, particles interaction with cells was terminated by 

placing the samples on ice. Samples were diluted into H2O BD 10 X Pharm 

lysate buffer (Table 2.1) was added to samples to lysate red blood cells, 

vortexed for 5 seconds, incubated on ice for 15 min, and washed twice with 

PBS. Whole blood and PBMC were phenotyped with a panel of anti-human 

antibodies fluorophores for 1 hour on ice to identify different cell subsets. 

Cells were surface stained for CD3 BV 510, CD14 BV785, CD56 AF488, 

Human leukocyte antigen - DR isotype (HLA-DR) Pacific Blue, CD19 PE 

and CD66b PE/Dazzle 594 (Table 2.5). Samples were washed three times 

with FACS Wash Buffer (1x PBS containing 1% bovine serum albumin 

(Table 2.1), resuspended in 200 μL stabilising fixative buffer (Table 2.1) and 

analysed by flow cytometry (Fortessa II, Table 1.3). Gated populations of 

single cells were analysed for association with particles using FCS Express 

version 9 (Table 2.3), and percentage cells associated with particles (% 

Association) summarised using GraphPad Prism 8 (Table 2.3). 
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2.2.20 Viability assay (propidium Iodide) 

Jurkat and primary CD4+ T cells (0.2 X 10^6 in 0.2 mL) were seeded in 96 

wells U bottom plate, and then all cells were treated with different sizes and 

surface charge NPs (400 nm, 800 nm and 1µm, PMASH, PMASH-PEG and 

PMASH-PLL) particles in a ratio of 200: 1 NPs: cell and incubated at 37◦ C 

and 5% CO2 humidified environment for 24 hours. Cells were washed three 

times with PD to remove free particles, followed by PI staining (0.25 µg/ml) 

(Table 2.5) and analysed immediately using LSR Fortessa II. Viable cells 

(PI-) and dead cells (PI+) populations were analysed using FCS Express 

version 9. 

2.2.21 Cellular activation 

To examine whether PMASH particles 400 and 100 nm induce T cell 

activation in CD4+ T cells at different time points: 12 h, 24 hours and 48 

hours. T cells activation was assessed by quantifying the expression of 

activation antigens (activation markers); CD25, CD69 and HLA-DR using 

flow cytometry analysis. 

A day before the experiment, CD4+ T cells were thawed as previously 

described. CD4+ T cells were platted at 3 X 105 per well in a 96-well U 

bottom plate. Cells were stimulated with PHA/IL-2 (Table 2.1) or exposed to 

PMASH 100 nm and 400 nm particles for 12 hours, 24 hours, 48 hours and 

72 hours and incubated in a 37 °C incubator with 5% CO2 humidified 

atmosphere. Cells were harvested by centrifugation at 400xg for 5 minutes 

and washed twice with cold PD at study termination. Cellular stained for 

activation markers following the manufacturer’s suggested protocol, with 

minor changes in the concentration (optimal antibodies concentration were 

standardised). Cells were surface stained for CD69 G46-6 (Table 2.1.5), 

CD25 M-A25 (Table 2.5) and HLA-DR L243 (Table 2.5) and incubated on 

ice. After 30 minutes of incubation, cells were washed twice with cold PD 

before being stained with live/dead cell viability stain PI for 10 minutes on 

ice. After washing off the unbound antibodies, the expression level of 

activation markers was assessed immediately using LSR Fortessa II and 

data were processed using FCS Express 9. 
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2.2.22 Encapsulation of romidepsin (RMD) into mesoporous silica (MS) 

template  

The hydrophobic romidepsin (FK228, Depsipeptide, RMD) (Table 2.1) was 

loaded in the 100 nm and 400 nm MS particles using the previously reported 

method (492). Approximately 6 mg of MS particles were dispersed in 0.5 

mL of DMSO solution containing 0.5 mg ml-1 of RMD, and the mixture was 

shaken at room temperature (22 ◦C) for 6 hours. After centrifugation of 

particles at 3500xg for 3.5 min and 3000xg for 2 min for 100 nm and 400 

nm particles, respectively, and removing the supernatant, the RMD loaded 

MS particles were dried in a vacuum desiccator to remove the DMSO. The 

RMD loaded MS particles were then processed to RMD loaded PMASH NPs 

(RMDLNP) fabrication following the above-described method in sections 

2.2.3 and 2.2.4.

The encapsulation efficiency (EE %) and drug loading percentage (DL%) of 

NPs were calculated by Equations (1) and (2) 

(1) ������������� ���������� % (��%) =
�����

��
� 100

Where M0 is the total amount of RMD (mg) added to the particles and Mn 

is the amount of free RMD found in the supernatant 

(2) Drug loading (DL %) =
������ �� ���� ����� ���� ��������� (��)

������ �� ��������� ����� (��)
� 100

Measuring of the remining drug in solution post nanoparticle incubation is a 

good surrogates for drug encapsulation. However, does not account for the 

fraction of RMD stuck on the outside of the MS core particles. 

2.2.23 Drug release study 

The release kinetics of RMD loaded into PMASH particles depressed 400 nm 

RMDLNP in 100 μL pH 7.3 PBS were monitored in the presence or absence 

of physiological concentration of 5 mM glutathione (GSH) at 37 ◦C, 5% CO2

humidified atmosphere. 90 μL of each sample was collected at 0 min, 30 

min, and each hour up to eight hours, and daily up to six days to determine 

the cumulative-released dose by high-performance chromatography 

(HPLC) (Table 2.3, detailed in “Instrumentation section”). 
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2.2.24 Determination of drug loading and release kinetic of romidepsin 

400 nm PMASH loaded particles (RMDLNP) using HPLC 

Instrumentation 

HPLC was performed using a Shimadzu Prominence LC system equipped 

with a SIL20A-HT autosampler, CTO-20A column oven and SPD-M20A 

photodiode array detector. The chromatography was performed using an 

ACE Excel 5 SuperC18 analytical column (150 x 4.6 mm). Data was 

collected using LabSolutions software version 5.97 SP1 from Shimadzu. For 

all chromatographic experiments, the mobile phase consisted of acetonitrile 

– potassium phosphate buffer (Table 2.1) (0.03 M, pH 3) in a 27:73 

volumetric ratio, consistent with a chromatographic assay that was 

previously developed for romidepsin (514). The mobile phase was used at 

a flow rate of 1.0 mL/min, and the experiments were performed at room 

temperature.  

Calibration curve 

To determine the concentration of RMD in the supernatant following drug 

loading or when released from particles, a calibration curve was prepared 

by a similar method as reported previously (515). Boc-D-glutamic acid 1-

benzyl ester (Table 2.1) was used as the internal standard (IS) and 

dissolved at a concentration of 100 µg/mL. The stock solution was prepared 

by first dissolving the IS in pure methanol, then adding MilliQ-water to 

reduce the methanol (Table 2.1) content to 2% by volume. This stock 

solution was stored at room temperature because precipitates were 

observed after thawing a frozen stock solution. RMD was dissolved at 10 

mM in dimethyl sulfoxide (Table 2.1). Solutions containing 50 µg/mL I.S., 

but different concentrations of romidepsin: 0.5, 5, 50, 100, 250, 400 and 500 

µg/mL, were prepared by serial dilution. These samples were run in triplicate 

with HPLC in isocratic mode, using a run time of 120 minutes. A 

concentration of 50 ng/mL RMD was observed to be the limit of detection. 

RMD and the IS had retention times of around 45 and 75 minutes, 

respectively. Chromatograms were plotted in Origin software (version 

2019b), using the absorption at a wavelength of 215 nm as a function of 
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time. The area under the curve (AUC) of both the romidepsin and IS peaks 

was determined using the ‘Peak Analyzer’ user interface in Origin’s 

‘Analysis’ menu. The interactive modes of this user interface were used to 

select the relevant peaks manually. The ratio’s AUCRMD/AUCI.S. were 

calculated for all measurements. The average ratio’s (with standard 

deviation) were plotted as a function of the known concentration of 

romidepsin in the samples. Using the ‘Linear Fit’ in the ‘Analysis’ menu of 

Origin, Linear regression of the data points gave a good (R2 = 0.99) linear 

fit through the seven data points (see Figure 2.3), with equation y = 

0.06895x – 0.01007. 

Figure 2.3 Calibration curve obtained from HPLC-runs with the 

romidepsin (RMD) / IS (Internal standard).  

Peak area ratio as a function of the concentration of romidepsin in the 

samples (IS was constant at 50 µg/mL). Error bars represent the standard 

deviations from three separate measurements. 

3. Determination of the romidepsin concentration in supernatant 

samples 

The calibration curve (see above) was used to determine the unknown 

concentration of romidepsin in supernatant samples following the drug 

loading of nanoparticles. The supernatant samples were taken at time 
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points of 6 hours and 24 hours after loading nanoparticles with sizes of 100 

nm and 400 nm with RMD. Since the drug loading was performed in DMSO, 

the samples were diluted four times or six times with MilliQ-water and spiked 

with 50 µg/mL IS prior to the HPLC runs. After the HPLC runs, the 

absorbance at 215 nm was plotted as a function of time (see Figure 2.4 for 

representative example), and the areas of the RMD and IS peaks were 

determined using Origin software as described above. The areas of the 

romidepsin peaks were multiplied with the dilution factor (4 or 6) to 

compensate for the dilution as mentioned earlier step. Subsequently, the 

area ratios of AUCRMD/AUCI.S. were calculated and used (as ‘y') to solve the 

equation y = 0.06895x – 0.01007 for x, thereby resulting in the concentration 

of the romidepsin (in µg/mL) that was present in the supernatant samples. 

Two of these samples were run in triplicate to determine the typical standard 

deviation of these measurements, which was ~ 2 µg/mL. 

Figure 2.4 Chromatogram of a supernatant sample that was obtained 

six hours after loading nanoparticles of 100 nm in size.  

Before the HPLC run, the sample was diluted fourfold and spiked with IS at 

50 µg/mL. The peaks correspond to dimethyl sulfoxide (~ 5 min.), 

romidepsin (~ 40 min.), and IS (~ 75 min). 
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4. The release kinetics of romidepsin from 400 nm PMASH loaded 

particles RMDLNP 

The calibration curve (Figure 2.3) was used to determine the unknown 

concentration of RMD while being released from nanoparticles. The drug 

release was studied in PBS for nanoparticles in the presence and absence 

of 5 mM glutathione, and samples were taken at multiple time points. Before 

the HPLC runs, the samples were diluted two times with MilliQ-water and 

spiked with 50 µg/mL IS. Whereas for previous runs (Figure 2.3), injection 

volumes of 20 µL were used, larger injection volumes were used in this 

series because of the anticipated lower concentrations of romidepsin in the 

samples, up to a maximum of 100 µL. After the HPLC runs, the absorbance 

at 215 nm was plotted as a function of time. For the four samples in which 

romidepsin was observed (see Figure 2.5 as an example), the areas of the 

romidepsin and IS peaks were determined using Origin software as 

described previously. The areas of the romidepsin peaks were multiplied by 

two to account for the dilution step. Subsequently, the area ratios of 

AUCRMD/AUCI.S. were calculated and used (as 'y') to solve the equation y = 

0.06895x – 0.01007 for x, thereby resulting in the concentration of 

romidepsin (in µg/mL) that is present in the samples obtained during the 

drug release experiment. 

Figure 2.5 Chromatogram of a sample that was obtained four days 

after starting the romidepsin release experiment.  
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Before the HPLC run, the sample was diluted twice and spiked with IS at 50 

µg/mL. The peaks correspond to glutathione (~ 5 min.), romidepsin (~ 50 

min), and IS (~ 80 min). 

2.2.25 2.2.25 Efficacy and cytotoxicity of RMD loaded particles in J-Lat 

cells A2 cells

Efficacy of formulations was measured simultaneously with the cytotoxicity 

study using propidium iodide (PI) cell viability assay and percentage of GFP 

cells measured by flow cytometry to indicate formulations reactivation 

potency.  

J-Lat Tat-IRES-GFP (Table 2.4) were seeded at a concentration of 0.2 ×106

per well in a 96-well U bottom culture plate. Cells were maintained in RF10 

cell culture media as described earlier and incubated at 37°C and 5% CO2

humidified atmosphere. Cells were treated with free drug RMD or RMDLNP-

formulations at different concentrations for continuous incubation of 48 

hours and 72 hours or 4 hours pulse-wash treatment, followed by 48-and 

72 hours continuous incubation. At the specified time, cells were washed 

three times with PBS to wash off free RMD or remove unbound RMDLNPs. 

Cells were incubated with viability PI cell stain for 15 minutes at room 

temperature. Cells were taken to flow cytometry analysis immediately. Flow 

cytometry analysis was performed on a BD Fortessa II, and data were 

analysed using FlowJo V10.2 and FCS express. 

2.2.26 Efficacy of RMD loaded particles in J-Lat 10.6 cells 

J-Lat 10.6 containing full-length HIV provirus (Table 2.4) were seeded at a 

concentration of 0.2 ×106 per well in a 96-well U bottom culture plate. Cells 

were maintained in RF10 cell culture media as described earlier and 

incubated at 37°C and 5% CO2 humidified atmosphere. Cells were treated 

with free drug RMD or RMDLNP-formulations at different concentrations for 

continuous incubation of 48 hours, 72 hours and 96 hours or 4 hours pulse-

wash treatment, followed by 48 hours, 72 hours and 96 h continuous 

incubation. At the specified time points, cells were washed three times with 

PBS to wash off free RMD or remove unbound RMDLNPs, and a 50 μL 

aliquot was taken for CellTitre-Glo luciferase (Table 2.5) cytotoxicity assay. 
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For reactivation assay, cells were fixed with 1% paraformaldehyde for 15 

mins and rinsed twice in PBS before resuspending in 100 μL FACS WASH 

(PD + 1% FBS), transferred into FCAS tube and stored at 4 ◦C and protected 

from light until analysed on LSR Fortessa II (Table 2.3). Data were analysed 

using FCS Express 9 (Table 2.3). 

2.2.27 Cytotoxicity assay 

Cytotoxicity of free drug RMD and RMD loaded particles were tested using 

CellTitre-Glo cytotoxicity assay. The collected 50 ul of J-Lat 10.6 lysate 

containing approximately 50,000 cells were incubated with CellTitre-Glo 

luminescent cytotoxicity assay reaction buffer following the manufacturer's 

protocol (Table 2.5). After 10 minutes of incubation at room temperature, 

cells viability was immediately analysed. The colourimetric results were 

quantified using a microplate luminometer reader (Table 2.3) with an 

optimised gain setting for each condition. 

2.2.28 Glycogen oxidation 

100 mg of glycogen (corresponding to 0.6 mmol of glucose monomers) from 

bovine liver (Table 2.1) was dissolved into 5mL of 0.6 M acetic buffer (Table 

2.1) (pH 5.5) with stirring in the dark. For 15 % glycogen modification, 20 

mg of sodium periodate NaIO4 (Table 2.1) was added to the above solution 

and incubated in the dark at 4◦C for 2 hours under continuous stirring 

conditions. To obtain 15 % modification, the added amount of NaIO4 added 

was calculated using the following formula,  

������ =  ������ ∙ ������

Where: 

������ =
������������ % ∙  �������� ��������

100

M = molar mass 

m = mass of substance (in grams) 

n = number of moles of substance 
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2.2.29 Reductive amination 

27.8 mg of ethylenediamine (EDA) (Table 2.1), followed by 27.8 mg of 

sodium cyanoborohydride NaBH3CN (Table 2.1), was dissolved in the 

above solution. The pH was adjusted to 5.5, and then the solution was 

incubated overnight under continuous stirring conditions. The amount of 

ethylenediamine EDA and sodium cyanoborohydride NaBH3CN added to 

the oxidated glycogen was calculated using the following equations, 

Weight of EDA =  �������� = 10 ∙ ������) 

Weight of NaBH3CN = (���� = 5 ∙ ������) 

Where  

M = molar mass 

m = mass of substance (in grams) 

n = number of moles of substance 

2.2.30 Purification 

The final 15 % EDA modified glycogen product was purified by dialysis (tube 

size14 kDa MWCO) against Milli-Q water for 3 days (6 times water change) 

and then freeze-dried. 

2.2.31 Yield 

80 % degree of substitution of modified glycogen (BG-EDA) was determined 

by Nuclear Magnetic Resonance (NMR): 1H NMR (400 MHz, D2O, 78 C) d 

(ppm): 5.316 (s, 0.8H, H1-4), 5.11 (s, 0.05H, H1-4ʹ), 4.99 (s, 0.1H, H1-6ʹ), 

4.91 (s, 0.04H. H1-6), 4.16e3.44 (m, 11H, H2, H3, H4ʹ, H5), 3.38 (t, J ¼ 8 

Hz, 0.1H, H4), 3.26e2.41 (m, 1.65H, HA, HB).  

2.2.32 Fabrication of glycogen-ethylenediamine (BG-EDA) 

nanoparticles (NPs) 

Glycogen (100 mg, corresponding to 0.6 mmol of glucose monomers) from 

bovine liver (bovine glycogen BG) was dissolved in 5mL of 0.6M acetic 

buffer (pH 5.5) (Table 2.1) with stirring to ensure proper dissolving (vortex 

and sonicate if necessary). Sodium periodate (26 mg, 0.12 mmol) (Table 

2.1) was added and reacted in the dark. After two h, 36 mg of 

ethylenediamine (Table 2.1) (EDA; 0.6 mmol) was added, followed by ten 
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eq. of sodium cyanoborohydride to 76 mg of sodium periodate (1.2 mmol) 

(Table 2.1), and the mixture was stirred overnight. The product was purified 

by dialysis (tube size 10 kDa) against Milli-Q water for three days (6 times 

changed) and freeze-dried. 

2.2.33 Synthesis of 5'triphosphate double-strand RNA 

The 3p dsRNA, RIG-I agonist (RIG-I A) [ sequence: Sense Oligo (5′-

TTGTAATACGACTCACTATAGGGACGCTGACCCAGAAGATCTACTAG

AAATAGTAGATCTTCTGGGTCAGCGTCCC3′) and dsRNA, Control ligand 

(Ctr ligand) antisense oligo 

(5′GGGACGCTGACCCAGAAGATCTACTATTTCTAGTAGATCTTCTGGG

TCAGCGTCCCTATAGTGAGTCGTATTACAA-3′) (516) (Table 2.1) was 

generously synthesised and provided by the laboratory of prof. Martin 

Schlee at the  Universitätsklinikum Bonn, Germany (516).  

2.2.34 Complexation of BG-EDA-3p dsRNA complexes for in vitro

investigation 

The modified bovine glycogen NPs, BG-EDA was synthesised as described 

above. The synthesised was diluted into Dulbecco's phosphate buffer saline 

(D-PBS) (ph. 7.2, 30 mM) (Table 2.1) to a final concentration of 10 mg mL-

1. This stock was further diluted to 0.5 mg mL-1 in PBS and rapidly mixed 

with either 3p dsRNA (RIG- A) or dsRNA (Ctr ligand) at different weight 

(w/w) ratios BG-EDA: 3p/dsRNA between 1:1 6: 1, incubated at room 

temperature for 15 min. The formed complexes were further diluted into 

RF10 media and used immediately. 

2.2.35 BG-EDA -3p/dsRNA complexes characterisation 

BG-EDA-3p/dsRNA constructs were mixed with OH-RNA as detailed above. 

The construct was monitored using 10 % tris-borate-EDTA (TBE) 

polyacrylamide gel electrophoresis (Table 2.1). Samples were prepared as 

follows: 500 ng/μL was mixed with BG-EDA at weight ratios (w/w 5: 1 and 6: 

1). The prepared samples were allowed to equilibrate for 15 min at room 

temperature, and 2 µl of nucleic acid loading buffer (Table 2.1) was added 

to each sample. Then, 10 µl of each sample was loaded onto the gel and 
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ran in protein gel electrophoresis chamber for 30 min at 90 V. dsRNA 

retardation was evaluated by staining the gel with SYBR Gold reagent 

(Table 2.5) for 25 min and imaged using a digital ChemiDoc XRS þ Imaging 

System (Table 3). 

2.2.36 THP-1-Dual NF-κB and type I IFN reporter cell line assay 

THP-1-Dual cells stably express A nuclear factor κB (NF-κB)–inducible 

secreted alkaline phosphatase (SEAP) gene and an IFN regulatory factor 

(IRF) inducible Lucia luciferase reporters (517), (Table 2.4). Cells were 

seeded at 2 X 105 cells per well in a 96-well U bottom plate. Cells were then 

incubated with 500 ng/mL BGEDA-RIG-I A, BGEDA-Ctr ligand, BGEDA only, 

RIG-I A, Ctr ligand, or transfected with lipofectamine 2000 (Table 2.1) as a 

positive control. The supernatant was collected after 24 hours and 48 hours 

to measure SEAP (NF-κB activity) and luciferase (IRF activity). QUANTI-

Luc (Table 2.5) was used to detect the level of luciferase by adding to culture 

supernatant and reading immediately with a microplate luminometer reader 

at a 0.1-s reading time. QUANTI-Blue (Table 2.5) was used to detect the 

level of secreted embryonic alkaline phosphatase (SEAP) by adding to 

culture supernatant and incubating for 1-3 hours and reading with a 

microplate luminometer reader at 619 nm. 

2.2.37 Stimulation and quantification of type IFN in human PBMC and 

primary CD4+ T cells using HEK-Blue-α/β reporter assay 

Thawed primary CD4+ T cells were seeded at 3 X 105 cells per well in a 96-

well U bottom plate. Cells were activated for 2 days, then human PBMC and 

primary CD4+ T cells were challenged with BGEDA-RIG-I A, BGEDA-Ctr ligand 

or transfected with Sendai virus (Table 2.1) as the positive control for 1 and 

3 days. The day after, HEK-Blue-α/β (518) (Table 2.4) were plated at 5 X 

104 cells per well in a 96-well flat-bottom plate (Table 2.2). The following 

day, supernatant from stimulated and SeV infected cells (or control cells) 

was added, and a standard curve was generated in parallel by serial 

dilutions of Human IFN-α2a recombinant protein (Table 2.1) added in 

complete DMEM10 media. Post 16-20 h of incubation, 50 μL of HEK-Blue 

IFN-α/β supernatants was added to 150 μL of Quanti-blue substrates (Table 
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2.5) and incubated at 37°C, CO2 humidified environment for 15-30 min. 

Absorbance was measured at 619 nm using a microplate luminometer 

reader. The standard curves were used to provide semiquantitative 

analyses of the IFN concentrations produced by the stimulated cells. 

2.2.38 Quantification of apoptosis by flow cytometry assay 

In order to study cell death in primary CD4+ T cells, annexin V (AxV, Table 

2.5) and propidium iodide (PI, Table 2.5) double staining have been used in 

flowcytometric analyses. AxV signal (AxV+/PI-) provides a sensitive method 

for detecting early apoptosis, while PI signal (AxV-/PI+) corresponds to late 

apoptosis or necrotic, apoptotic cells. Cells were harvested, washed twice 

with AxV buffer (Table 2.1). cells were stained with AxV (1:100 dilution) and 

PI (1:2000 dilution) and incubated on ice for 10 minutes with protection from 

light. Cell death kinetics was measured immediately using an LSR Fortessa 

II. The proportion of AxV-/PI- AxV+/P-, AxV-/PI+ or AxV+/PI+ cell population 

were analysed using FCS Express 9. 

2.2.39 Statistical analysis 

All statistical analyses were performed using GraphPad Prism software 

version 9, in which two-tailed, unpaired T test was used to compare 

experiments. The small sample size precluded the use of non-parametric 

tests. Therefore, parametric unpaired T tests were used. A P-value below 

0.05 was considered significant, were used throughout. 
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3 The role of size and surface charge 

in cellular uptake of nanoparticles by 

CD4+ T cells for the elimination of 

HIV latency 

3.1 INTRODUCTION 

One promising nanoengineered particle system is the thiolated poly 

(methacrylic acid)  mesoporous core-shell particle system, generated using 

the layer-by-layer (LbL) assembly technique (487). Synthesis of colloidal 

nanostructured materials using the LbL technique to fabricate shell 

materials involves the layered deposition of interacting polymers poly 

(methacrylic acid) (PMA) and polyvinylpyrrolidone (PVPON) on silica core 

template, representing a stable and highly versatile approach to formulate 

particles (487). PMA can be modified with thiol groups (PMASH) to allow 

cross-linking by disulphide linkages between PMASH layers (487, 492). 

The physicochemical properties of PMASH particles, including size and 

surface charge, are essential parameters that can influence their 

internalisation into mammalian cells and improve delivery efficacy (446).  

Additionally, these properties can significantly modulate the fate of 

nanoparticles in vivo as they face multiple potential sites of clearance by 

immune cells (513, 519–521). There have been limited in vitro and ex vivo

studies on the uptake of PMASH particles in T cells (513). To assess PMASH

particle biodistribution in T cells, precise quantification of how particles and 

target cells interact is pivotal. However, there is currently no appropriate 

assay to quantify these interactions, including accurate measurement of 

cellular uptake of nanoparticle systems. The analytical techniques 

employed to measure nanoparticle association with cells are quite diverse 

and broad (522–524). This includes imaging flow cytometry (525, 526), laser 



84  Chapter 3: The role of size and surface charge in cellular uptake of nanoparticles by CD4+ T cells 

for the elimination of HIV latency 

scanning microscopy (526), inductively-coupled mass spectrometry (ICP-

MS) (527), mass cytometry(528), and flow cytometry (453, 529, 530).  

Based on these observations, we hypothesised that the size and surface 

charge of PMASH particles would influence association with T cells. To test 

this hypothesis, we fabricated PMASH particles using the LbL technique with 

varying sizes, from 100 nm to 1 μm. In addition, particles were surface 

modified to neutral or positive charge using poly (ethylene glycol) (PEG) and 

poly-L-lysine (PLL), respectively. The interactions of particles with T cells 

were examined and quantified using confocal laser microscopy combined 

with image analysis software ImageJ (512). Additionally, to compare the 

effect of charge, we studied different particles (400 nm of PMASH, PMASH-

PEG and PMASH-PLL) and their distribution ex vivo and assessed their 

association pattern with immune cells in human peripheral blood 

mononuclear (PBMC) and whole blood. 

3.2 RESULTS  

3.2.1 Synthesis and characterisation of different sizes and charges of 

a PMASH engineered particle delivery system 

We synthesised varying sizes (100 nm, 400 nm, 800 nm and 1 µm) of 

PMASH particles via the deposition of thiolated PMASH and PVPON onto 

mesoporous silica (MS) particles to form PMA-based core-shell particles. 

The interaction between thiolated PMASH and PVPON promoted hydrogen 

bonding. Controlled oxidation of thiol groups (pH 4.0) allowed for bridging 

disulphide linkages in the PMASH. Altering the solution pH to 7.0 induced 

the release of PVPON, resulting in negatively charged PMASH particles that 

were held together via biodegradable disulphide bridges. Degradation of 

PMASH particles was facilitated in the presence of a physiological 

concentration of thiol group oxidation agents (Glutathione, GSH) through 

cleavage of the disulphide bonds (490) (Figure 3.1).  

To systematically modulate the surface charge of PMASH particles to 

neutral, we electrostatically incorporated onto the negatively charged 

PMASH shell methoxy-poly (ethylene glycol)-block-poly-L-

lysine hydrochloride (mPEG5K-b-PLKC50) that contained a poly-L-lysine 
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hydrochloride section and non-reactive poly (ethylene glycol) (PEG) section 

(PMASH-PEG). Separately, PMASH particles were coated by the positively 

charged synthetic poly amino acid poly-L-lysine hydrochloride 

(PLKC50/250) to form positive surface charged particles (PMASH-PLL) 

(Figure 3.1). The successful PEGylation and PLL coating of PMASH particles 

were confirmed using dynamic light scattering (DLS) analysis and zeta 

potential measurements. The physicochemical properties were determined 

as the size by intensity and Z average of the engineered particles by DLS. 

The polydispersity index (PDI) and the resulting Zeta potential 

measurement of the particles are shown in Table 3.1. DLS measurement of 

the synthesised PMASH particles (~ 431 nm) and functionalised PMASH-PEG 

(~ 436 nm) and PMASH-PLL (~ 441 nm) particles were almost all 

monodispersed with a single size distribution as shown in Figure 3.2 C. 

These results confirm that we had produced a single sized homogeneous 

nanoparticle. The surface charge of PMASH-PEG and PMASH-PLL particles 

was assessed and showed a neutral and positive zeta potential, 

respectively (Figure 3.2). These data indicate that both particles were 

successfully coated with PEG and PLL.  

Figure 3.1 Schematic illustration of layer-by-layer (LbL) synthesis and 

surface modification of PMASH particles

PMASH nanoparticles were synthesised by the layering of interacting 

polymers PMASH and PVPON over mesoporous silica. The PMASH layers 



86  Chapter 3: The role of size and surface charge in cellular uptake of nanoparticles by CD4+ T cells 

for the elimination of HIV latency 

were crossed-linked at pH 4.0 via disulphide bonds between thiol groups 

present on the PMASH molecules. Finally, PVPON layers were removed to 

form the final product of PMASH particles. Deposition of the copolymers 

mPEGG5-PLKC5 block and PLKC50/250 polymers onto the particle surface 

to induce neutral and positive charge, respectively. Fluorescent labelling of 

nanoparticles was performed by binding the dye to amine groups on the 

surface of particles. 

Table 3.1 Physiochemical characterisation of multilayered PMASH, 

PMASH-PEG and PMASH-PLL particles measured by DLS and zeta 

potential.  

Particles were measured in Milli-Q water for size and Z potential 

measurement. There was a slight increase in size measurements of PMASH-

PEG and PMASH-PLL compared to PMASH particles. ND not determined. 

Data represent ± standard deviation (SD) from two independently 

formulated batches and three independent measurements. 

Particle Surface 

modified 

Coating material 

(polymer outer 

layer) 

Size 

(d.nm) 

Polydispersity 

Indexa

Zeta potential 

(mV)b

PMASH 100 nm No PMASH 119 ND -37 

PMASH 400 nm No PMASH 428 0.08 ± 0.01 -38 

PMASH 800 nm No PMASH 814 0.2 ± 0.7 -38 

PMASH 1 µm No PMASH 1026 0.3 ± 0.04 -40 

PMASH-PEG 100 

nm 

Yes mPEG5K-b-

PLKC50 

122 ND +6 

PMASH-PEG 400 

nm 

Yes mPEG5K-b-

PLKC50 

429 0.4 ± 0.2 +4 

PMASH-PEG 800 

nm 

Yes mPEG5K-b-

PLKC50 

822 0.2 ± 0.1 +7 

PMASH-PEG 1 µm Yes mPEG5K-b-

PLKC50 

1038 0.4 ± 0.05 +10 

PMASH-PLL 100 nm Yes PLKC50/250) 121 ND +29 

PMASH-PLL 400 nm Yes PLKC50/250 434 0.3 ± 0.7 +26 

PMASH-PLL 800 nm Yes PLKC50/250 826 0.6 ± 0.3 +23 

PMASH-PLL 1 µm Yes PLKC50/250 1049 0.5 ± 0.01 +27 
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Figure 3.2 Characterisation of PMASH, PMASH-PEG and PMASH-PLL 

particles. 

A) Size distribution of PMASH, PMASH-PEG and PMASH-PLL particles were 

measured by dynamic light scatter (DLS). B) Representative graph of the 

average size distribution and concentration of monodispersed PMASH 100 

nm particles measured by nanoparticle tracking analysis (particles ≤ 100 

nm) capturing three videos of 60 seconds per measurement with a camera 

focus of -15 to +15 and camera lever 11. The red curve represents the 

standard deviation obtained from multiple measurements. The blue 

numbers indicate the mean of nanoparticles size in the sample. C) 

Representative graphic of size measurement of PMASH [red, 431 nm], 

PMASH-PEG [green, 436 nm] and PMASH-PLL [blue, 441 nm] as measured 

by DLS. D) Zeta potential of the dispersed particles surface charge using 

micro electrophoresis. E) Representative graph of the Zeta potentials for 

PMASH [Red, -36 mV], PMASH-PEG [Blue,+4 mV] and PMASH-PLL [Green, 



88  Chapter 3: The role of size and surface charge in cellular uptake of nanoparticles by CD4+ T cells 

for the elimination of HIV latency 

+32 mV] measured by micro electrophoresis. Error bars indicate ± standard 

error of the mean from seven independently formulated batches [except 100 

nm, two independent batches] and three independent measurements. 

(SEM; N = 2 and 7). 

3.2.2 Size and surface charge properties of untargeted PMASH

particles influence interaction with T cells 

We next focused on the effect of size and surface charge on association 

with T cells. Fluorescent labelled (Alexa Fluor 488; AF488) particles of 400 

nm, 800 nm and 1 μm in diameter carrying three distinctly different surface 

charges (negative, PMASH; neutral, PMASH-PEG; and positive, PMASH-PLL) 

were incubated at a 200:1 ratio of particles to cells with the TZM-bl cell line, 

Jurkat T cell line and primary CD4+ T cells for 24 hours (Figure 3.3 A). The 

TZM-bl is a HeLa cell line with strong endocytic properties and was used as 

a positive control.  We incubated particles with cells for 24 hours to minimize 

the effects of cellular proliferation. Additionally, we wanted to eliminate the 

possibility of particles recycling after binding or internalisation as the 

turnover time of most mammalian cells is greater than 24 hours (531). 

Evidence of particle-cell association was quantified using flow cytometry 

(the term  particles association referred to particles that are bound to the 

cell membrane and internalized particles). The gating strategy was applied 

to discriminate cells, single cells and cells that are positive for particles (AF 

488) (Figure 3.3 B).  

Irrespective of the size and surface charge, all particles are associated 

highly with the TZM-bl cell line [mean = upper range 88.4 % and lower range 

58%] (Figure 3.4 A). In addition, we observed a reduction in association of 

800 nm PMASH-PLL  [mean = 39%] (Figure 3.4 A), which we theorised might 

be due to particle aggregation. We observed a higher association of 

particles with the TZM-bl cell line, which may be explained by their endocytic 

properties and the fact that they are adherent, allowing for enhanced uptake 

as particles tend to settle on the cell surface due to gravity. 
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Figure 3.3 Effect of size and surface charge on particle association 

with cells. 

 (A) Schematic illustration showing the cell line of interest (TZM-bl cell line, 

Jurkat cell line or primary CD4+ T cells) co-incubated with AF488-labelled 

400 nm, 800 nm or 1 μm, PMASH, PMASH-PEG or PMASH-PLL particles (NP-

AF488). Cells were exposed to particles in a ratio of 200:1 particle: cell for 

24 hours at 37°C before particles association to cells were examined by flow 

cytometry. (B) representative flow cytometry plots showing gating strategy 

for identifying single cells associated with AF488 labelled particles. 

In contrast, in both T cell models, i.e., Jurkat cells and primary CD4+ T cells, 

we observed different patterns of association. In the Jurkat T cell line, 

irrespective of size, negatively charged PMASH particles were highly 

associated with cells compared to their counterparts of PMASH-PEG and 

PMASH-PLL (Figure 3.4 B). Irrespective of surface charge, we observed that 

400 nm particles showed a similar or higher association with Jurkat cells 

compared to larger particles of 800 nm and 1 μm particles (Figure 3.4 B). 

We also observed that the smaller 400 nm PMASH particles were highly 

bound to cells (mean = 94.4 %) compared to other particle sizes of PMASH, 

PMASH-PEG and PMASH-PLL (Figure 3.4 B). Interestingly, we observed 

substantially increased association of 400 nm negatively charged PMASH

particles (mean = 94.4 %) compared to 400 nm neutral PMASH-PEG [mean 



90  Chapter 3: The role of size and surface charge in cellular uptake of nanoparticles by CD4+ T cells 

for the elimination of HIV latency 

= 66.2 % , p = 0.0501, unpaired t test] or 400 nm positive PMASH-PLL [mean 

= 62.1 %, p = 0.081, unpaired t test] (Figure 3.4 B). 

In primary CD4+ T cells, we observed a similar trend of association. 

Negatively charged PMASH particles were highly associated with cells 

compared to PMASH-PEG and PMASH-PLL (Figure 3.4 C). Overall, in CD4+

T cells, size also mattered. The smaller size 400 nm PMASH particles had 

the strongest association to cells (mean = 72.1 %) than PMASH-PEG [mean 

= 35.7 %, p = 0.0247, unpaired t test] and PMASH-PLL [mean = 31%, p 

0.0358, unpaired t test] (Figure 3.4 C). 

In summary, size and surface charge mattered for the PMASH nanoparticle 

drug delivery system to associate with T cells. In both T cell models, the 

negatively charged PMASH particles 400 nm showed greater association 

than neutral and positively charged particles of the same size. 

Figure 3.4 Quantification of association between different PMASH

particles and TZM-bl, Jurkat cell lines and primary CD4+ T cells.  

Three different sized particles, 400 nm, 800 nm and 1 μm and three different 

charges negative PMASH [red], neutral PMASH-PEG [black] and positive 

PMASH-PLL [pink] were assessed using flow cytometry as described in 

Figure 3. The percentage of nanoparticles associated with a cell is shown 

for A) TZMbl cells, B) Jurkat cells, and C) primary CD4+ T cells. All data are 

shown as the mean ± standard error of the mean of three independent 

experiments (SEM; N = 3). All P values were determined using a two-tailed, 

unpaired T test: *P<0.05 **P<0.01, and ns=not significant.  Only comparison 

with PMASH 400 nm particles is shown. 
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3.2.3 Quantification of untargeted PMASH, PMASH-PEG and PMASH-

PLL particles with T cells using Confocal Laser Scanning Microscopy 

image analysis (CLSM) 

Disulphide-stabilised PMASH particles rely on intracellular reductive 

enzymes to oxidise the disulphide bonds on the particle shell and deliver 

loaded cargo into targeted cells (489, 490). Non-phagocytic T cells strictly 

control the entry of molecules (e.g. proteins and nanoparticles) from the 

extracellular environment (423). One mechanism that plays an essential 

role in receptor-mediated endocytosis is clathrin-dependent endocytosis. 

Smaller molecules (up to 300 nm) use this pathway for cellular uptake (532). 

In addition, particle size and the surface charge may also influence the 

uptake into T cells. We previously showed that 400 nm negatively charged 

PMASH particles exhibited a higher association with T-cells compared to 

other sizes or neutral and positively charged particles (Figure 3.5 A-C).  

To confirm these findings, we next employed a confocal laser scanning 

microscopy image analysis (CLSM)-based approach coupled with ImageJ® 

software to distinguish between bound and internalised particles associated 

with T cells. In addition, multiple Z stacks images were taken to examine the 

presence of associated particles on the cell surface or within cells 

We first quantified particle internalisation in an adherent cell line with 

endocytic properties (TZM-bl cell line) and T cells (Jurkat cell line and 

primary CD4+ T cells).  In the TZM-bl cell line, the confocal microscopy 

image data indicated that a mean value of 90% of cells were associated with 

particles irrespective of size and surface charge (Figure 3.5 A). The smaller 

sized particles (i.e., 400 nm PMASH, PMASH-PEG and PMASH-PLL) showed 

a slight decrease in internalisation events [mean = 73 %, 70 % and 65 %, 

respectively] compared to the larger particles (i.e., internalisation of PMASH, 

PMASH-PEG and PMASH-PLL for 800 nm with a mean value of   81 %, 79 % 

and 72 %; and for 1 μm were 79 %, 77 % and 85 %, respectively (Figure 

3.5 A). These observations reflect that the endocytic properties of the TZM-

bl cell line. Additionally, the endosomal recycling pathway is likely 

dependent on particle size, where smaller particle sizes may recycle back 

to the host membrane. This phenomenon may likely contribute to the 
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underestimation of internalized smaller particles compared to larger 

particles (533).  

In contrast, assessment of particle association with the non-phagocytic 

Jurkat T cell line revealed that irrespective of size, PMASH particles were 

more highly associated with Jurkat cells compared to PMASH-PEG and 

PMASH-PLL particles (Figure 3.5 B). Further to this, the 400 nm PMASH

particles showed the greatest internalization with a mean value of 24 % 

compared to negligible internalisation of 800 nm and 1 μm PMASH particles 

[p = 0.0126 and 0.0129 respectively, unpaired t test] (Figure 3.5 B). 

Interestingly, 400nm PMASH particles exhibit higher internalisation 

percentage with a mean value of 24 % compared to 400nm PMASH-PEG 

(mean = 4 %) [p = 0.0438, unpaired t test] and 400 nm PMASH-PLL (mean 

= 4 %) [p = 0.0465, unpaired t test] (Figure 3.5 B). 

A similar trend of particle association was observed in non-phagocytic 

isolated CD4+ T cells. All sizes of PMASH particles are highly bound to CD4+

T cells compared to their counterparts of PMASH-PEG and PMASH-PLL 

(Figure 3.5 C). In addition, a mean value of 12.3 % of 400 nm PMASH

particles internalized in CD4+ T cells, while 800 nm and 1 μm of PMASH-

PEG and PMASH-PLL never entered cells (Figure 3.5 C). remarkably, we 

observed reasonable efficient internalization of 400 nm PMASH particles 

(mean= 12.3 %) into CD4+ T cells compared to 400 nm particles of PMASH-

PEG and PMASH-PLL (3 % and 2 % respectively) [p = 0.0239 and 0.0191 

respectively, unpaired t test] (Figure 3.5 C).  

Finally, we identified aggregation of PMASH-PLL and, to a lesser degree, 

PMASH-PEG particles, compared to PMASH, which showed negligible 

aggregation (Figure 3.5 D). Aggregation may abrogate the internalization of 

particles into cells, or decrease association, as we observed earlier in the 

association study (Figure 3.4 B-C). Aggregation of these particles may only 

occur under the specific experimental setting we used (i.e., cell culture 

serum and/or incubation time), given the previously calculated dispersion 

data (Table 3.1) showing well-dispersed particles in MilliQ-water. 

Taken together, quantification of particle association (percentage of cells 

have one or more membrane bound particles and/or internalized particle) 

with Jurkat and primary CD4+ T cells by flow cytometry and confocal 
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microscopy suggested that smaller, negatively charged particles were 

internalised more efficiently than particles of neutral (PMASH-PEG) or 

positive (PMASH-PLL) charge (Table 3.2). 

Figure 3.5 Negatively charged 400 nm PMASH particles are internalised 

into T cells.

A) Percentage of associated particles with the TZM-bl cell line, B) Jurkat cell 

line, and C) primary CD4+ T cells. Columns represent the percentage of 

cells with surface-bound particles (black) and those with internalised 

particles (red) as calculated by confocal microscopy with representative 

images. D) Representative confocal images of primary CD4+ T cells treated 

with particles showing minimal aggregation of PMASH 400 nm particles (left) 

compared to PMASH-PEG particles (middle) and PMASH-PLL (right). All data 

are shown as the mean ± standard error of the mean (SEM; N = 3). All P 

values were determined using a two-tailed, unpaired T test: *P<0.05, 

**P<0.001. NS = not significant. (1500 cells counted per condition). 

Representative confocal microscopy images of corresponding cells 

(Bottom) showing cell membrane (red), nucleus (blue) and associated 

particles (green). Scale bar: 10 µm. 
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3.2.4 Evaluation of particle association with isolated peripheral blood 

mononuclear cells.  

We next aimed to understand particle uptake, association and 

biodistribution of untargeted PMASH particles in complex and diverse cell 

population subsets. Examining the association of nanoparticles drug 

delivery systems in such multi-cell systems is required for the systematic 

administration of nanomedicine. 

First, we collected peripheral blood samples from 5 healthy donors, and 

peripheral blood mononuclear cells (PBMC) were isolated from heparinised 

blood using Ficoll-paque density gradients (Materials and Methods) (Figure 

3.6 A). To identify different immune cell subsets in PBMC samples, cells 

were immunolabeled with fluorescently-conjugated antibodies against CD3, 

CD14, HLA-DR, CD56 and CD19 and samples were analysed on the same 

day using flow cytometry. To determine the biodistribution of particles 

among cell subsets, T cells were identified as CD3+CD14-, monocytes CD3-

CD14+, and CD3-CD14- cells were further gated for natural killer cells (NK) 

CD56+CD19-, B cells CD56-CD19+ and finally dendritic cells (DC) HLA-DR+

CD56- (Figure 3.6 B). Immune profiling analysis data revealed the frequency 

of cell population to be approximately (mean) 65 % T cells, 12 % monocytes, 

7 % NK cells, 3 % B cells and 3 % DC (Figure 3.6 C) (Table 3.3).  

With negatively charged PMASH particles, association with phagocytic 

monocytes was high (mean = 97 %) (Figure 3.7 A). In contrast and as 

expected, association with T cells and DC (mean of 50 %) and with NK cells 

and B cells was lower at 36 % and 64 %, respectively (Figure 3.7 A). PMASH-

PEG and PMASH-PLL particles were preferentially associated with T cells 

and monocytes (mean = 84 % and 80 % and 8 5% and 78 % respectively) 

compared with DC, NK cells and B cells (Figure 3.7 B-C). Notably, PMASH-

PEG particles were significantly more associated with T cells compared to 

NK cells and B cells [p = 0.0021 and 0.0335 respectively, unpaired t-test] 

(Figure 3.7 B), while PMASH-PLL particles were even more specific in their 

preference for T cells compared to DC, NK cells and B cells [p = 0.01, 

0.0001, and 0.0001 respectively, unpaired t test] (Figure 3.7 C). 

In these experimental settings, we concluded that in non-phagocytic cell 

populations, both neutral charged PMASH-PEG and positively charged 
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PMASH-PLL associate more efficiently with T cells compared to negatively 

charged PMASH particles (Table 3.3). In addition, the phagocytic properties 

of antigen-presenting cells (APC) such as monocytes likely leads to 

significant association due to uptake and may play a role in the clearance 

of particles. 

Figure 3.6 Biodistribution of PMASH 400 nm particles in human PBMC 

A) blood was collected from healthy donors, and human PBMC were 

isolated by Ficoll density gradient centrifugation. PBMCs were exposed to 

particles for 1 hour at 37 ◦C. To characterise immune cell subsets, PBMC 

were immunolabeled with antibodies specific for CD3, CD14 (Monocytes), 

HLA-DR (DC), CD56 (NK), CD19 (B cells). B) Representative gating 

strategy for CD3+CD14- T cells, CD3-CD14+ monocytes, HLA-DR+ CD56- 

dendritic cells (DC), CD56+CD19-  Natural killer cells (NK) and CD56-CD19+

B cells. C) The percentage of cell subsets in PBMC from 5 healthy donors. 

All values represent the mean ± standard error of the mean (SEM =2). 
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Figure 3.7 PMASH particles are preferentially associated with antigen-

presenting cells in human PBMC. 

Particles were co-incubated with human PBMC  for 1 hour at 37 ◦C at a 

concentration of 10 x 107 particles. The percentage of AF647 positive cells 

were determined for different cell subset and shown with A) PMASH. B) 

PMASH-PEG. C) PMASH-PLL particles. All data are shown as the mean ± 

standard error of the mean (SEM; N = 5). All P values were determined 

using two-tailed T test: *P<0.05, **P<0.01 and ****P<0.0001. NS = not 

significant. 

3.2.5 Evaluation of particle association with cells in whole human 

blood. 

One of the most significant challenges of nanomedicine in the clinical setting 

is achieving targeted drug delivery to a specific organ or tissue. Human 

whole blood contains a plethora of cell types, including white blood cells 

(WBCs), such as neutrophils, B cells, monocytes, T cells, DCs and NK cells, 

that potentially endocytose or phagocytose targeted particles. Additionally, 

human blood compromises the complexity of different plasma proteins (445, 

534). Therefore, we next assessed the association of particles in the 

presence of blood components and the particle association rate with human 

blood. 

Briefly, whole blood samples were collected in a heparin-anticoagulant tube 

from 5 healthy donors. Fresh 200 µl of whole blood was incubated with 400 

nm PMASH, PMASH-PEG and PMASH-PLL with particles for 1 hour at 37 ◦C  

and particle association with cells was analysed using flow cytometry 
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(Figure 3.8 A). To identify different cell subsets, cells were harvested and 

immunolabelled against six separate immune cells populations; neutrophil, 

T cells, monocytes, natural killer (NK), B cells and dendritic cells (DC), as 

shown in the representative gating strategy we applied (Figure 3.8 B). 

Immune profiling analysis revealed the frequency of cell populations; a 

mean value of 17 % of whole blood were granulocytes, with 97% of this 

population neutrophils (Figure 3.8 C). Furthermore, the percentage of 

lymphocytes and monocytes cell populations were [mean = 62 %] T cells, 

[mean = 9 %] monocytes, [mean = 5 %] NK cells, [mean = 9 %] B cells and 

[mean = 8 %] DC (Figure 3.8 C) (Table 3.4).  

3.2.6 The surface charge of particles does not influence particles 

association in human whole blood 

To assess whether we can observe a similar association pattern with the 

immune cells we observed in PBMC,  we examined the association pattern 

of 400 nm PMASH, PMASH-PEG and PMASH-PLL particles in human whole 

blood. Association data analysis showed that human blood phagocytic cell 

subsets, neutrophils, monocytes and Dcs were highly associated with all 

particle types, i.e., PMASH, PMASH-PEG and PMASH-PLL (Figure 3.9 A-C) 

(Table 3.4). Monocytes had the strongest association with particles 

compared to DCs and neutrophil cells, suggesting that surface charge may 

not influence particles clearance by phagocytic cells. Furthermore, we 

observed that T cells and NK cells had a negligible association with all 

particle types.  We also found that all particles had a similar level of 

association with T cells. PMASH particles highly associated with monocytes 

and B cells [p = 0.0005 and 0.0167 respectively, unpaired t test] compared 

to T cells  (Figure 3.9 A-C), while PMASH-PEG and PMASH-PLL particles 

displayed greater association with neutrophils, monocytes, DC, and B cells 

compared to T cells [p = 0.0050, 0.0001, 0.0313 and 0.0311 respectively, 

unpaired t-test] and [p = 0.0057, 0.0001, 0.0236 and 0.0087 respectively, 

unpaired t test] (Figure 3.9 B-C). Overall, these findings indicate that 

association is primarily driven by the phagocytic uptake of particles, 

irrespective of particles surface charge. 
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Figure 3.8 Biodistribution of PMASH, PMASH-PEG and  PMASH-PLL 400 

nm particles in whole human blood.  

A) Blood was collected from 5 healthy donors and exposed to particles for 

1 hour at 37 ◦C. To characterise different immune cell subsets, mixed human 

blood cell populations were immunolabelled with fluorescent-coupled 

antibodies specific for CD66b, CD3, CD 14 (Monocytes), HLA-DR (DC), 

CD56 (NK), CD19 (B cells). B) the representative gating strategy was 

applied as follow; CDD66+, CD3+CD14- T cells, CD3-CD14+ monocytes, 

HLA-DR+ dendritic cells (DC), CD56+CD19-  Natural killer cells (NK) and 

CD56-CD19+ B cells. C) Cell subsets distribution of human whole from 5 

healthy donors. All values represent the mean ± standard error of the mean 

(SEM) 
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Figure 3.9 400 nm PMASH, PMASH-PEG and PMASH-PLL particles are 

taken up by phagocytic blood cells.

Fresh heparin-anticoagulated whole blood was treated with AF647 labelled 

negative PMASH,  neutral PMASH-PEG and positive PMASH-PLL for 1 hour 

at 37 ◦C. Association with primary immune cells was analysed by flow 

cytometry and represented as a percentage of cells positive for AF647 

within ease. The percentage of AF647 positive cells were determined for 

different cell subsets and shown with A) PMASH, B) PMASH-PEG. C) PMASH-

PLL particles.  All data are shown as the mean ± standard error of the mean 

(SEM; N = 5). All P values were determined using  two-tailed T test: *P<0.05, 

**P<0.001, ***P<0.0005 and ****P<0.0001. NS = not significant. 

3.2.7 3.2.7 Analysis of toxicity effects of PMASH, PMASH-PEG, and 

PMASH-PLL particles on T cells 

Engineered nanoparticles represent a toxicological challenge; the 

interaction of particles with the cell membrane may disrupt the integrity and 

functionality of cellular membranes in a size and surface charge-dependent 

manner (535, 536). In order to understand whether 400 nm or 800 nm 

PMASH, PMASH-PEG, and PMASH-PLL particles are toxic to cells, we used 

a flow cytometer-based cell death assay. In this assay, we determined 

apoptosis (Annexin V staining) versus necrosis (PI). Representative plots of 

the gating strategy for analysis of cell viability are shown in Figure 3.10 A.  

Toxicity data analysis in Figure 3.10 B-C demonstrated that 400 nm and 800 

nm particles independent of surface charge had no appreciable toxic effect 
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to Jurkat cells, while all particles induced negligible toxic effect to primary 

CD4+ cells compared to mock-treated cells. 

Figure 3.10 Percentage cell viability measured by PI and Annexin V 

assay relative to mock-treated cells.  

A) representative gating strategy was used to discriminate Annexin+  V 

(AxV)/ PI+ cells. Analysis was performed on the cells shown in the scatter 

histograms comparing forward scatter vs side scatter (FSC-A/SSC-A) and 

PI vs Annexin V of cells alone (mock), untreated cells (live-Annexin V/PI), 

live and dead cells, dead cells and cells exposed to particles. B) Jurkat cells 

and C) primary CD4+ T cells. Cells were treated with PMASH, PMASH-PEG 

and PMASH-PLL in a 200:1 particle: cell ratio for 24 hours at 37 °C. All data 

are shown as the mean ± standard error of the mean (SEM; N = 4). All P 

values were determined using a two-tailed T test: *P<0.05 and **P<0.001. 

Only statistically significant comparisons are shown.

Jurkat T Primary CD4+ T 
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3.2.8 3.2.8 PMASH particles induced transient CD69 and CD25 

activation in CD4+ T cells 

Using flow cytometry and confocal microscopy analysis, we demonstrated 

that smaller negatively charged particles are highly associated with T cells. 

Therefore, we choose 400 nm PMASH as the optimal particle to further 

investigate. It is a worthy note that in the association studies, the fluorescent 

signal from 100 nm particles was undetectable under the settings and 

concentration we used. However, because of the attractive size of the 100 

nm PMASH particles and their potential to internalize into T cells efficiently, 

we decided to examine their effect on cellular activation markers (416).  

Next, we tested the effect of 100 nm and 400 nm PMASH particles on T cell 

activation in primary CD4+ T cells using flow cytometry. We included the 100 

nm particles. 

To measure the effect of particles and the kinetics of T cell activation, we 

analysed the surface expression level of different surrogate cell membrane 

markers of  CD4+ T cell, i.e., CD69, CD25 and HLA-DR, over time. CD69 

(Cluster of Differentiation 69) is a classical early activation marker and is a 

vital regulator of the immune response through it is role in cytotoxic functions 

as well as T cell migration and retention (537, 538). Interleukin-2 receptor α 

(CD25) is a component of the IL-2 receptor and is upregulated during T cell 

activation and promotes T cell proliferation and the development of 

regulatory T cells (Treg) (539, 540). Human leukocyte antigen-antigen D 

(HLA-DR) is a T cell late activation marker and plays a central role in the 

immune response to foreign antigens (541, 542). 

CD4+ T cells were exposed to PMASH 100 nm and 400 nm particles over 

time-course (i.e., 12, 24, 48 and 72 hours). Cells were harvested periodically 

for flow cytometry analysis. We analysed the expression of activation 

markers and the frequencies of CD69+, CD25+ and HLA-DR+ cells as shown 

in representative Figure 3.11 A. The percentage of T cells positive for 

activation markers were compared to those induced by the "positive control" 

phytohemagglutinin (PHA), or untreated cells is reported. In general, 

particles induced a transient expression of CD69 and CD25 on CD4+ T cells 

(Figure 3.11 B-C). 
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Figure 3.11 Expression of cell surface activation markers within CD4+ 

T cells following incubation with nanoparticles.  

A) gating strategy for flow cytometric analysis of in vitro stimulation of CD4+

T cells. The percentage expression of B) CD69, C) CD25, and D) HLA-DR 

following different stimuli over time is shown. All data are shown as the 

mean ± standard error of the mean (SEM; N = 3). All P values were 

determined using a two-tailed T test: *P<0.05 and ****P<0.0001. PHA =20 

ng mL-1. 

Following incubation with both sized particles, we observed sustained 

expression of CD25+ cells and transient expression of CD69 over time 

(Figure 3.11 C). In addition, cells exposed to particles showed no change in 

HLA-DR expression at 48 and 72 hours. In conclusion, at earlier time points 

(12 hours and 24 hours), cells treated with particles expressed the highest 

level of CD96 and CD25 compared to later time points (48 hours and 72 

hours). We saw no difference between 100 and 400 nm. 
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Table 3.2 Interaction of nanoparticles with Jurkat cell line and primary 

CD4+ T cells 

NP type Associationa Bindingb Internalizationc

Jurkat 

cell line 

CD4+ T cells Jurkat 

cell 

line 

CD4+ 

T 

cells 

Jurkat 

cell 

line 

CD4+ T 

cells 

PMASH 400 nm 94 % 83 % 60 % 48 % 23 % 17 % 

PMASH 800 nm 73 % 61 % 72 % 88 % 1 % Not 

detected 

PMASH 1 µm 73 % 72 % 72 % 71 % 1 % Not 

detected 

PMASH-PEG 400 

nm

66 % 30 % 59 % 52 % 5 % 3 % 

PMASH-PEG 800 

nm

62 % 37 % 30 % 32 % 3 % 3 % 

PMASH-PEG 1 µm 67 % 39 % 39 % 37 % 4 % 1 % 

PMASH-PLL 400 

nm 

62 % 32 % 64 % 35 % 3 % 3 % 

PMASH-PLL 800 

nm 

40 % 31 % 41 % 36 % 3 % 2 % 

PMASH-PLL 1 µm 50 % 29 % 42 % 37 % 4 % 1 % 

(a)Association percentage refers to  cells that have one or more particles 

absorb to extracellular membrane or subsequent internalization into cell. (b) 

binding  percentage refers to  cells that have one or more particles absorb 

to extracellular membrane. (c) Internalization refers to percentage of cells 

that have one or more particles internalized (crossed the extracellular 

membrane). 

Table 3.3 Biodistribution of PMASH 400 nm particles in human PBMC 

NP type Association of cell Subset with NPs
T cells Monocytes DC Nk cells B cells

PMASH 400 nm 55 % 96 % 56 % 36 % 64 % 

PMASH-PEG 400 nm 89 % 81 % 48 % 25 % 44 %

PMASH-PLL 400 nm 92 % 79 % 39 % 14 % 27 %
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Association percentage refers to  cells that have one or more particles 

absorb to extracellular membrane or subsequent internalization into cell. 

Table 3.4 Biodistribution of PMASH 400 nm particles in human whole 

blood 

NP type Association of cell Subset with NPs
Neutrophils T cells Monocytes DC Nk cells B cells

PMASH 400 nm 52 % 18 % 84 % 56 % 17 % 44 % 

PMASH-PEG 400 

nm

49 % 20 % 95 % 61 % 18 % 40 % 

PMASH-PLL 400 nm 65 % 21 % 96 % 58 % 15 % 50 % 

Association percentage refers to  cells that have one or more particles 

absorb to extracellular membrane or subsequent internalization into cell. 

3.2.9 Discussion 

Although our knowledge regarding the influence of physicochemical 

properties of nanoengineered particles in association with cells has 

significantly advanced in the past decade (536, 543, 544), at present, there 

is a lack of data on the impact of physicochemical properties on 

functionalized polymer-based nanoparticles coming into contact with T cells. 

Cellular uptake, cell viability and cytotoxicity, and phenotypic and activation 

marker expression are unknown (416, 545, 546).  Moreover, nanoparticles 

are exogenous synthetic structures that indeed may have 

immunomodulatory effects and subsequently face clearance upon 

interaction with immune cells (i.e. APC) (544), therefore studying particle-T 

cell interaction in in vitro monoculture settings may not represent the 

environment clinically (547–549). 

We showed that negatively charged PMASH is highly associated with T cells 

compared to neutral PMASH-PEG and PMASH-PLL. In particular, we found 

that PMASH particles parameters such as size and charge are the main 

features affecting intracellular uptake. Smaller (i.e., 400 nm) and negatively 

charged (i.e., PMASH) particles were preferentially internalised in T cells 

compared to larger (i.e., 800 nm and 1 µm) and neutral and positive charged 

(i.e., PMASH-PEG and PMASH-PLL) nanoparticles (Figure 3.5 A-C). These 
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results suggest that the size and surface charge of PMASH particles plays 

an important role in interaction with T cells.  

One possible explanation for these findings is the possibility that protein 

corona, the collection of biological proteins that collect on the surface of the 

PMASH particle shell, increases particle-cell binding, and consequently, the 

smaller size accelerates internalisation. This phenomenon has been shown 

in many studies. For example, specific proteins in the biomolecular corona 

were previously identified as crucial factors for nanoparticle association with 

cells (531). In contrast, the presence of PEG and PLL groups on PMASH-

PEG and PMASH-PLL are known to drastically reduce the adsorption of 

protein corona on the particle surface (470, 550, 551). An additional 

explanation is that surface charge alters the T cell membrane. Specifically, 

the T cell surface marker CD4+ contains a thiol group (-SH) (552, 553) that 

may form a covalent attachment with reactive disulphides present on the 

PMASH shell, facilitating particle adsorption into the membrane mimicking 

HIV entry into CD4+ T cells (554). While the presence of PEG and PLL 

layers (PMASH-PEG and PMASH-PLL) on the top of the PMASH layer are 

likely to inhibit the interaction of thiol groups that present of the PMASH with 

the host membrane.  Alternatively, several studies have shown that reactive 

disulphides can react with the transferrin receptor (TfRC, CD71) and will 

covalently bind to the thiol group present on the receptor leading to transport 

across the cellular membrane (555–557).  Of note, to further support this 

hypothesis, TfRC usually cycles between the plasma membrane and the 

endosomal compartment and is upregulated following T cell activation (558–

560). This observation supports our findings on T cell activation, where we 

observed a transient upregulation of CD69 and CD25 in CD4+ T cells 

following exposure to negatively charged PMASH 400 nm (Figure 3.11 B-C). 

One possible way to test this hypothesis is by blocking the TfRC receptor 

(anti-TfRC antibody or TfRC knock out CD4+ T cells) before exposing cells 

to PMASH particles. Furthermore, PMASH-PEG and PMASH-PLL appeared to 

aggregate under the specific experimental setting we used (i.e., cell culture 

serum and/or incubation time) (Figure 3.5 D). Aggregation usually refers to 

the irreversible adherence of particles, leading to large and irregular particle 

clusters (561). When introduced to a complex biological media containing 
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proteins, electrolytes and lipids, particles are subjected to a range of forces, 

which determine their biological behaviour and colloidal stability in such an 

environment. Therefore, investigating the factors that influence particles 

colloidal stability when exposed to biological media is warranted to develop 

effective and safe nanomedicine. Future work is needed to delineate which 

endocytosis pathway PMASH 400 nm particles use to internalize. It would be 

interesting to investigate whether the cell can internalise PMASH particles 

using different endocytic pathways, given that the physiochemical 

parameters (size and surface charge)  may direct particles internalisation to 

a subset of these pathways.  

Next, we screened 400 nm PMASH, PMASH-PEG and PMASH-PLL particles 

and assessed their interaction with immune cells in human PBMC and 

whole blood. In human PBMC, we found 400 nm particles highly associated 

with monocytes and DCs (Figure 3.7 A-C). Particles association result was 

expected and agreed with previous reports (449, 562, 563) as these cells 

have a classical phagocytotic function and are triggered once they 

encounter foreign bodies. Interestingly, we found that PMASH-PEG and 

PMASH-PLL 400 nm particles were also highly associated with T cells 

(Figure 3.7 B-C).  This finding was different from our flow cytometry and 

confocal microscopy association data and could be due to the difference in 

how particles behave in isolated CD4+ T cells compared to a homogeneous 

mix of immune cell subsets in PBMC. 

In contrast, in human whole blood, all particles, regardless of surface 

charge, are associated preferentially with neutrophils, monocytes and DCs 

(Figure 3.9 A-C). We also found that all particles had approximately 20% 

association with T cells in human whole blood, regardless of the charge. 

These findings support the potential use of all particles (i.e., 400 nm PMASH, 

PMASH-PEG and PMASH-PLL) in vivo to target T cells. A notable observation 

of our PBMC association with particles experiment was the large variability 

across various human donors, reflecting the diversity of the human 

population. In examining the association of particles with human whole 

blood and PBMC, at least two of five donors displayed exceptionally high 

association of their T cells, DCs and B cells with PMASH, PMASH-PEG, 

PMASH-PLL particles. 
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In contrast, the remaining displayed a lesser amount of association (Figure 

3.7 A-C). In human whole blood, we observed a similar effect of particles 

association with neutrophils, monocytes, and DC cells population with 

PMASH, DC association with PMASH-PEG and PMASH-PLL particles (Figure 

3.9 A-C). These observations highlight the need for studies in biologically 

relevant conditions when evaluating bio-nano interactions. 

PEGylation of nanoparticles involves adding a protective coating of 

polyethylene glycol (PEG). PEGylated nanoparticles become hydrophilic 

and attain near-zero zeta potential, thus inhibiting the attachment of 

opsonins; as a result, nanoparticle PEGylation can increase particles in the 

circulation, avoiding immune recognition subsequent clearance by APC 

cells (449, 564–566). The PEGylation technique has been widely used in 

different nanoparticle drug delivery systems and is often called “stealth” 

because it can escape immune system surveillance (325, 567, 568). In our 

experiments, neutrally charged PMASH-PEG did not recapitulate the 

protective effect of PEGylation when examined with either human PBMC or 

whole blood (Figure 3.7 B and Figure 3.9 B). Several explanations are to be 

considered here. First, the size of the coated PMASH particle can influence 

particles clearance by immune cells (opsonisation) (436, 453, 534, 547, 

569, 570). Recently, Yi Ju et al. showed that the association of the particle 

with monocytes and B cells in PBMC culture was more prominent with the 

decreased particle size (453). Second, the length and concentration of 

coated PEG is also crucial factor in achieving stealth properties (563, 571, 

572). PEGylating brush regimes are mostly preferred to improve the stealth 

properties and pharmacokinetics of nanoparticles because, in this regime, 

the interaction of the particles with neighbouring molecules is less, and 

particles diffuse faster through tissue than other used regimes (553, 573, 

574). Veronese et al. and others highlighted that PEG configuration and 

sufficient coating on the nanoparticle surface is crucial to prevent immune 

recognition (436, 575, 576). In addition to different regimes, Suk et al. and 

others summarised the effect of PEG content, mainly the molecular weight 

(MW), nanoparticles core properties and grafting density are the main 

parameters affecting PEG configuration on the surface of the nanoparticle 

in order to evade immune detection (553, 566, 575, 577, 578). These 
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observations reflect that the stealthiness introduced into PMASH particles 

must be proportionately designed and sufficiently cover the surface of 

PMASH particles to provide complete protection against opsonization and 

subsequent uptake by phagocytic immune cells.  

It is important to note that PEG is an exogenous material that can induce an 

anti-PEG immune response against nano-materials and lead to particle 

clearance by antibody-mediated opsonization (416, 579). Although 

PEGylated drugs and nanomedicines have been approved for safe use in 

humans by the USA Food and Drug Administration (FDA), the 

administration of PEGylated particles or drugs may lead to the induction of 

anti-PEG antibodies (anti-PEG immunoglobulin M (IgM)) and lead to 

immune recognition and clearance of the particle (576, 580, 581). Due to 

this phenomenon, we think PMASH-PEG may have triggered an 

immunogenic response that led to their rapid clearance by phagocytic cells 

in human whole blood and PBMC. This hypothesis can be further tested by 

depleting the anti-PEG function in whole blood by depleting the 

immunoglobin fraction (582). 

We also examined whether the physicochemical properties of nanoparticles 

can induce a specific biological response in T cells. Specifically, 

nanoparticles could induce cytotoxicity, apoptosis, or activation through the 

change in expression of surface receptors. Several studies have confirmed 

that nanoparticles can trigger toxicity by injuring the plasma membrane 

(583–585). To this end, understanding the modest toxicity we observed in 

CD4+ T cells caused by particles (in particular PMASH and PMASH-PLL) 

could be related to the higher association of PMASH particles and higher 

aggregation of positively charged particles with PMASH-PLL. The results 

also suggest no clear, direct correlation between particle size and surface 

charge and induced cytotoxicity. In contrast, we did not observe a significant 

drop in viability in Jurkat cells treated with particles, and this may be 

primarily because Jurkat cells are immortalized cell lines and inherently 

more resistant to apoptosis. 

We investigated the impact of prototype PMASH 100 nm and 400 nm 

particles exposure on activating CD4+ T cell surface markers (CD69, CD25 

and HLA-DR).  Particle exposure to primary CD4+ T cells at a ratio of 200:1 
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particles: cells for 24 hours induced transiently increased expression of 

CD69 and sustained upregulation of CD25. Our data suggest that the effect 

is due to the direct interaction between particles and cells. In support of this 

hypothesis, we observed an increase in expression of activation markers at 

the earlier time points (12 hours and 24 hours) compared to later time points 

(Figure 3.11 B-C). It would be interesting to study a similar response in 

human PBMC and assess whether APCs affect the expression of these 

markers. 

The ability to engineer nanoparticles with tunable physicochemical 

properties is increasingly important. Here we demonstrate that the size and 

charge of PMASH particles (i.e., PMASH, PMASH-PEG and PMASH-PLL) can 

influence their association with primary CD4+ T cells. The smaller 400 nm 

PMASH particles were efficiently taken up by primary CD4+ T cells. In 

contrast, 400 nm PMASH-PEG and PMASH-PLL demonstrated increased 

association with T cells in human PBMC. Notably, the effect of 

physicochemical properties was not distinct when we evaluated CD4+ T 

cells in human whole blood. Therefore, the influence of size and surface 

charge on particle internalization warrants further quantification. Studies 

should be performed in both human PBMC and whole blood as these 

particles may display different characteristics in relation to cellular uptake in 

the presence of protein corona. In subsequent chapters in this thesis, we 

expanded these findings and explored the role of 400 nm PMASH particles 

to effectively deliver small pharmacological molecules (LRAs) to CD4+ T 

cells. In addition, the relative distribution of immunocyte subsets obtained 

from the respective immune profiling analysis found in PBMC and whole 

blood (figure 3.6 C and 3.8 C, respectively) vary considerably from donor to 

donor. Therefore, further studies are warranted since understanding the 

source of intra-donor variability may unlock clinically relevant principles of 

how immune cells response to particles varies from donor to donor in ex 

vivo models or in vivo of humanized animal models. 

3.2.10 Conclusion 

In summary, we fabricated, functionalised, and characterised 

nanoengineered PMASH particles of different sizes and charges using the 
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Layer-by-Layer assembly technique. Particles were grouped by (a) size 

(i.e., 100 nm, 400 nm, 800 nm and 1 µm) and (b) surface charge (i.e., 

negative PMASH, neutral PMASH-PEG and positive PMASH-PLL). To 

investigate the influence of particle size and surface charge on the 

association of particles with T cells, we developed a confocal microscopy-

based quantification method to determine the level of particle uptake in the 

Jurkat T cell line and primary CD4+ T cells. Next, we characterised their 

interaction with T cell line, primary CD4+ cells, human PBMC and human 

whole blood. Further, we studied the biological response of particles with a 

T cell line and primary CD4+ T cells. We found that smaller and negatively 

charged PMASH particles efficiently internalized in Jurkat cells and primary 

CD4+ T cells. In primary CD4+ T cells, particles had only a limited biological 

effect on toxicity and some modest short-lived T cell activation. We aim to 

encapsulate the hydrophobic drug romidepsin into these particles to target 

latently infected CD4+ T cells selectively. 
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4 Delivery of romidepsin loaded 

particles to latently infected T cell 

line models 

4.1 INTRODUCTION 

Antiretroviral therapy (ART) effectively suppresses HIV replication in people 

living with HIV (PLWH), but treatment is lifelong. The persistence of long-

lived, latently infected resting CD4+ T cells is a significant challenge in 

achieving a cure for HIV infection (74, 79, 80, 586). During the early course 

of infection, HIV integrates into the genome of CD4+ T cells (provirus) and 

establishes a reservoir of latently infected cells (74, 145, 233). These 

latently infected cells contain a transcriptionally silent provirus that can 

evade ART and resist immune-mediated clearance. One strategy toward 

eliminating HIV latency is the activation of HIV viral production by latency 

reversal agents (LRAs) to induce virus-mediated cytolysis or clearance 

through immune recognition in the presence of ART (often called "shock 

and kill") (272, 312). However, the shock and kill strategy has had limited 

progress in clinical trials, given the off-target effects of most LRAs and the 

failure to reduce reservoir size (61, 375, 587). Several hypotheses have 

been suggested to contribute significantly to these limitations. Many LRAs 

can have toxic effects (e.g., romidepsin) as they are not specific to HIV. 

Additionally, current LRAs are probably may not be sufficiently potent to 

induce cell death (312, 313, 588, 589). Other evidence suggests that latently 

infected cells may be primed to survive through the expression of pro-

survival proteins such as B-Cell Lymphoma-2 (Bcl-2) (590, 591).   

While the frequencies of latently infected cells are low in vivo, multiple in 

vitro models have been successfully established to investigate the 

molecular mechanisms that contribute to the establishment and 

maintenance of HIV latency. These models can facilitate the screening for 

different pharmacological and immunological interventions aimed at 
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depleting latently infected cells (227–230). In vitro cell line models of HIV 

latency, including the J-Lat T cell line, are latently infected Jurkat T cell 

containing integrated HIV DNA but is transcriptionally silent (provirus) and 

could be transcriptionally activated upon treatment with a various stimulus 

(249). HIV transcription can be quantified through the detection of GFP 

using flow cytometry. 

Several pharmacological and immunological interventions have been 

investigated to eliminate latency and purge the HIV latent reservoir (61, 313, 

589, 592). The HDACi romidepsin (RMD) is well characterised and 

approved for the management of cutaneous T cell lymphoma (593, 594). 

RMD is a prodrug; its activity occurs only after internalisation into a host cell 

(595). However, in vitro and in vivo studies have demonstrated that RMD is 

not specific for HIV, has off-target effects, and lacks sufficient potency to 

eliminate latently infected CD4+ T cells from PLWH on ART (118, 357, 369, 

370). We hypothesised that we could overcome these limitations by using a 

nano-engineered particle delivery system loaded with RMD to increase 

potency and reduce toxicity to latently infected T cells. This approach 

possesses several advantages over more traditional drug delivery methods 

(410, 565, 596). Specifically, nano-engineered particles can protect the 

encapsulated drug from degradation, increase drug solubility and 

bioavailability, and have sustained slow release kinetics (416, 597–599). 

However, a growing body of studies have reported on the use of nano-

engineered carriers for HDACi inhibitors, and most of those studies originate 

from the field of oncology (458, 463, 599–601). Primarily, there are two 

strategies for targeting delivery, passive targeting, and active targeting. 

Furthermore, various approaches have been proposed on controlled drug 

release at the targeted site. In one study, Denis et al. developed a pH-

responsive vorinostat-polymer conjugate nanoparticle, thus achieving 

enhanced intratumor accumulation and drug controlled release (601). In 

another study, Kuai et al. reported a self-assembly peptide- panobinostat 

loaded nanoparticles that were able to activate HIV latency in vitro

moderately (37). However, none of these studies has investigated the 

potential to deliver the HDACi RMD in the nano-engineered drug delivery 

formulation to T cells. Therefore, here we utilised RMD loaded nanoparticles 
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(RMDLNPs) and evaluated the PMASH particle drug delivery system. We 

hypothesised that RMDLNPs would have greater potency to reactive HIV 

latency and reduced cytotoxic effects in various models of HIV latency. We 

used the PMASH delivery system given our earlier work showing increased 

uptake of these specific particles by resting CD4+ T cells (chapter 3). 

4.2 RESULTS 

4.2.1 Development and characterisation of 100 nm and 400 PMASH

particles loaded with the HDAC inhibitor romidepsin (RMDLNP) 

First, we assessed the hydrophobic LRA  RMD loading capacity into PMASH 

particle prototypes that we have evaluated previously (i.e., 100 nm and 400 

nm negatively charged PMASH particles). It is important to note that we could 

not quantify the association of 100 nm nanoparticles with resting T cells due 

to a higher detection limit related to particle size. In general, most flow 

cytometers have a detection limit of particles in a size range between 200 

nm and 500 nm (602–604).  Thus, based on our quantitive data (chapter 3) 

and previously published reports (416, 441, 598, 605, 606), we found that 

smaller particles (in our study, i.e. 400 nm) compared to larger particles (in 

our study, i.e. 800 nm and 1 μm) were internalised more efficiently in T cells.  

We, therefore, decided to include 100 nm nanoparticles in our panel and 

examined the effects on drug payload capability and delivery efficiency 

using a functional assay read-out.  Therefore, in this study, we focused on 

the effects of encapsulating the HDACi RMD into PMASH 100 nm and 400 

nm particles compared to free RMD. Furthermore, we assessed their 

potency in stimulating the expression of latent HIV and cytotoxicity using 

two latently infected cell lines (J-Lat A2 and J-Lat 10.6 T cells). 

To construct PMASH loaded RMD particles, we employed the MS sphere 

templating approach (Figure 4.1). Mesoporous silica (MS) particles are an 

attractive templating system for high loading capability, adaptability, and 

physical protection to the cargo. The unique MS structure facilitates 

effective loading and delivery of hydrophobic drugs because of its tunable 

particle size, porosity and controlled release of the drugs (492). In addition, 

the pores within the MS serves as a reservoir and entrap loaded 
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hydrophobic drug molecules and release them when particles are 

intracellularly localised. 

The RMD loaded MS particles were prepared by a modified encapsulation 

method, as previously reported by Wang et al. (492). To visually confirm the 

successful loading of hydrophobic drugs, the hydrophobic dye 1,1' -

dioctadecyl-3,3,3’,3' -tetramethindoocarbocyanine perchlorate (DiI) was 

first encapsulated into MS particles in parallel. In brief, 5 mg of 100 nm and 

400 nm MS particles were co-dissolved separately into a solution of RMD,  

DiI dye or vehicle control dimethyl sulfoxide (DMSO) for six hours (Figure 

4.1-i). Then, the suspension of MS particles loaded with RMD and DiI were 

centrifugated to collect free RMD for HPLC analysis of drug loading and 

encapsulation efficiency (DL wt % and EE wt %) and to remove free DiI. The 

dried loaded MS particles were coated subsequently with four layers of 

polyvinylpyrrolidone (PVPON) and thiolated poly (methacrylic) acid (PMASH) 

to form stable disulphide cross-linked PMASH loaded particles (Figure 4.1-ii) 

(detailed PMASH particles synthesis is presented in Chapters 2 and 3). We 

used confocal microscopy to visualise DiI loaded particles to demonstrate 

successful loading, as shown in Figure 4.1-iii. Subsequently, the RMD 

loaded PMASH particle shells were fluorescently labelled with Alexa Flour- 

Maleimide 647 (AF647) by conjugation with thiol residues on PMASH (Figure 

4.1- iv). Finally, the disulphide bonded PMASH particles were degraded and 

released their payload through intracellular reductive enzymes (glutathione 

GSH) by cleavage of disulphide bonds after particle internalisation (Figure 

4.1-v).  

After successfully synthesising PMASH 100 nm and 400 nm RMD loaded 

particles, we next compared them to unloaded particles and explored the 

characteristics of particle size, polydispersity index (PDI) and surface 

charge (Table 4.1, Figure 4.2 A-E). To measure the size distribution of 

PMASH loaded particles, the nanoparticles tracking (NTA) technique was 

used for 100 nm RMDLNPs, and dynamic light scattering (DLS) was used 

for 400 nm RMDLNPs  (Figure 4.2 A-B). NTA provides a precise size 

distribution and concentration profiles for small particles (<200 nm), 

overcoming inherent disadvantages in other optical techniques such as 

DLS. Both PMASH 100 nm and 400 nm RMDLNPs showed a distributed size 
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of particles with diameters of 123 nm and 426 nm, respectively. The PDI 

was 0.2 (Table 4.1, Figure 4.2 C).  

Of note, we observed that PMASH 400 nm RMDLNPs tended to show minor 

aggregation. The particle aggregation was likely caused by the presence of 

residual hydrophobic RMD on the outer surface of the MS. This particle 

aggregation did not affect the overall particle size distribution and behaviour 

with brief sonication before polymer layering.  Furthermore, the particle size 

distribution of RMDLNP compared to unloaded particles was not 

significantly different.  In terms of surface charge, the Zeta potential of all 

particles was measured using the micro electrophoresis technique (Figure 

4.2 D-E). All particles exhibited a negative surface charge approximately 

between -31 mV and -38 mV (Figure 4.2). However, we observed a slight 

shift in 100 nm RMDLNPs compared to unloaded particles (from -31 mV to 

-37 mV) (Figure 4.2). Both size and zeta potential data suggested the proper 

and successful construction of  RMDLNPs.  

Further characterisation was carried out to quantify drug loading (DL wt %) 

and verify encapsulation efficiency (EE %) in PMASH 100 nm and 400 nm 

RMDLNP. We used high-performance liquid chromatography (HPLC) using 

a previously reported method (492). An initial 10 weight % (wt %) was noted, 

following the input of the hydrophobic drug RMD in 100 nm and 400 nm MS 

particles the DL wt % of  0.014   and 1.7  respectively (Table 4. 1, Figure 

4.3). EE % of RMD was 0.14 % and 17 % in 100 nm and 400 nm MS, 

respectively (Table 4.1). This was similar to previous reports using other 

hydrophobic drugs, such as Thiocoraline encapsulated in 400 nm MS (492). 

However, the EE % in 100 nm MS compared to 400 nm MS particles was 

lower because the size of the pores of 100 nm MS was smaller (range of 5-

15 nm) compared to 400 nm (range of 10-40 nm) as previously reported by 

Yutiam Ma et al. (493). Therefore, the larger pores in the 400 nm MS enable 

higher payload capacity, an essential property for using nanoparticle drug 

delivery systems.  
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Figure 4.1 Schematic illustration of the HDACi romidepsin (RMD) 

encapsulation into PMASH particles via mesoporous silica (MS).   

Physical encapsulation of RMD in 100 nm and 400 nm  MS spheres. (i) Drug 

molecules and 1,1' -dioctadecyl-3,3,3’,3' -tetramethindoocarbocyanine 

perchlorate (DiI) dye loading; encapsulation of RMD and DiI dye (positive 

control for loading hydrophobic drugs) into 100 nm and 400 nm MS sphere 

supraparticles (493, 503) with pore diameter size range from 5-15 nm and 

10-40 nm respectively(503); (ii) Layer-by-Layer (Lb-L) assembly of 

multilayer PMASH shell on the surface of the loaded MS particles 

(RMDLNP). Characterisation of loading dye into a particle (iii) 

Representative confocal image demonstrates loaded dye into a PMASH 400 

nm particle. (iv) RMDLNPs were labelled with Alexa fluor 647 (AF 647) for 

detection. (v) Payload was released when particles were exposed to 

intracellular Glutathione (GSH), a natural reducing agent. Scale bar 10 μm. 
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Table 4.1 Physical properties of RMDLNP formulations. EE, 

encapsulation efficiency; n.d. not determined 

Particlea Size 
(d.nm) b

PDIc Zeta 
potenti

al 
(mV)c

Drug 
input 

(wt %) 

Drug 
loading 
(wt %)d

EE 
(%)e

Time to 
release 

50% 
(hours) 

NP 
conc

. 
(mg/
mL) 

Load
ed 

RMD 
conc. 
(µg/
mL) 

PMASH

100 nm 

RMDLNP 

123 ± 5 n.d. -31 10 0.014 0.14 n.d 5 7 

PMASH

100 nm 

Unloaded 

119 ± 2 n.d. -37 

PMASH

400 nm 

RMDLNP

426 ± 9 0.2 ± 

0.10

-38 10 1.7 17 24 5 85 

PMASH 

400 nm 

Unloaded 

428 ± 3 0.08 

± 

0.01 

-38 

a: Samples were diluted (1:1000) in MilliQ water and assessed for size, 

polydispersity index (PDI) independent measurement, zeta potential and 

encapsulation efficiency (EE). For at least three batches assessed 

independently. The mean or mean ±SEM is shown; b: Size of particles is 

shown as the mean ± standard error of the mean (SEM; N ≥ 3); c: PDI- 

polydispersity index independent; d: Data represent the mean of two 

independently formulated batches; e: EE is the ratio of the actual loaded 

drug (wt %) to the drug input (wt %) expressed as a percentage. 
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Figure 4.2 Characterisation of size and surface charge after sequential 

layering of romidepsin loaded PMASH 100 nm and 400 nm RMDLNP.  

A) Representative graphic of the size distribution of monodispersed 100 nm 

RMDLNP using nanoparticle tracking analysis NTA (Particles ≤ 100 nm). 

The red curve represents the standard deviation obtained from multiple 

measurements. The NTA measurement showed a mean nanoparticle size 

of 133 nm. B) Histogram of the size distribution of 400 nm RMDLNP using 

dynamic light scattering (DLS). DLS showed a mean particle size 

distribution of 438 nm. C) Size characterisation of unloaded PMASH 100 nm 

and 400 nm and RMDLNP showing drug loading did not impact the size of 

the loaded particles. D) Histogram representing the size measurement of 

100 nm and 400 nm RMDLNP. E) Zeta potential corresponding to PMASH

100 nm and 400 nm RMDLNP were obtained by micro electrophoresis 

technique confirming negative surface charge of particles.  For all column 

graphs, the mean ± standard error of the mean from two (100 nm particles) 
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and four (400 nm particles) independent formulated batches (SEM; N ≥ 4) 

is shown. 

4.2.2 Romidepsin release study from PMASH particles 

The PMASH particles are stabilised via disulphide linkages that are present 

on the outer shell (490). One significant advantage of the PMASH particles 

system is that particles are well stabilised in oxidative environments (such 

as the bloodstream), and particle degradation occurs at reductive conditions 

close to those within the live cells (487, 489). Intracellular degradation of 

particles occurs through the cleavage of the disulphide bond by the natural 

presence of the reductive enzyme glutathione (GSH), which leads to the 

release of cargo intracellularly (Figure 4.1 V) (607). RMDLNP were 

dissolved in phosphate buffer saline (PBS) solution in the presence or 

absence of a similar physiological concentration of GSH (5 mM). Figure 3 

illustrates the RMD release kinetics from the 400 nm PMASH particles in a 

reductive environment. To quantify the released drug from particles, we 

employed HPLC (Figure 4.3 A). In the absence of GSH, we found negligible 

drug release from 400 nm PMASH particles [0.7 %] after 3 hours, indicating 

the high stability of PMASH particles and no drug leakage from the 

mesoporous silica (Figure 4.3 B). In contrast, in the presence of 5 mM GSH, 

2.1 % of RMD were released from 400 nm PMASH particles within the initial 

first hour, and the amount of released drug was double after 3 hours [4.2 %] 

(Figure 4.3 B). 

Interestingly, 5 % of the encapsulated drug was released at 24 hours, 

indicating a controlled and slow burst-release profile of the PMASH particle 

system. We did not observe drug release beyond the first 24 hours and up 

to 96 hours (Figure 4.3 B). This may have been caused by the hydrophobic 

nature of RMD, which may have required a  longer time to detach from the 

pores and be released into the cell. 
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Figure 4.3 The cumulative release profile of romidepsin from 400 nm 

PMASH particles in the presence of a glutathione (GSH) reductive 

environment and 37 ◦C. 

A) representative chromatogram using High-performance liquid 

chromatography (HPLC) of 400 nm RMDLNP was obtained four days after 

starting the romidepsin release experiment. Before the HPLC run, the 

sample was diluted twice and spiked with internal standard (IS) at 50 µg/mL. 

The peaks correspond to glutathione (~ 5 min.), romidepsin (~ 50 min), and 

IS (~ 80 min). B) The percentage of drugs released was measured by HPLC. 

The cumulative release percentage of RMD as a free drug in the presence 

of GSH reductive environment (red) and in the absence of GSH (PBS 

solution) (black). All data from one experiment (n=1). 

4.2.3 Efficacy of RMD loaded PMASH 100 nm and 400 nm RMDLNPs on 

reactivation of HIV latency in the J-Lat A2 cell line 

To investigate the potency and toxicity profile of RMD loaded PMASH 100 

nm and 400 nm RMDLNPs and RMD free drug on the activation of the HIV-

LTR, we used the latent cell line model J-Lat A2. The J-Lat A2 cells line 

contains a single integrated copy of the HIV LTR driving the expression of 

the viral Tat- and green fluorescent protein (GFP) genes. Translation of GFP 

is provided by an internal ribosomal entry site (IRES) leading to LTR-Tat-

IRES-GFP (249). Given that GFP expression is under the control of the HIV 

LTR, activation of the LTR can be quantified in GFP+ cells using flow 

cytometry. Additionally, we simultaneously assessed toxicity by Propidium 

Iodide (live/dead staining, PI) staining. PI live/dead staining was selected as 

we could not use commonly used fixative amine-reactive live/dead dyes 
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because PMASH particles shells contain free thiol groups (490). As a result, 

an amine-reactive dye will stain the PMASH particles, resulting in false-

positive dead cells.  

J-Lat A2 cells were exposed to RMDLNPs (400 and 100 nm in diameter) 

and the reactivation potency and toxicity profile compared to free RMD. 

RMD free drug formulations were chosen to represent the minimal and 

maximal matched dose encapsulated in RMDLNPs formulations (Table 

4.1). There is usually a trade-off between potency and toxicity with free 

RMD, which was previously reported as toxic at a concentration greater than 

20 nM (376, 434, 608, 609). We used a combination of phorbol 12-myristate 

13-acetate (PMA) and the calcium ionophore ionomycin (Iono) as a positive 

control, which robustly activates the LTR in this cell line (595). Finally, to 

determine whether RMD leaked from the RMDLNPs prior to intracellular 

delivery, we incubated RMDLNPs in cell culture media for ~ 2 days and then 

centrifuged the RMDLNPs suspension and incubated fresh J-Lat A2 cells 

with the supernatant (sup RMDLNP). 

The RMDLNPs, free drug and controls were incubated in two conditions: (a) 

continuous exposure for 48- and 72- hours (continuous- treatment) or (b) for 

4 hours followed by a washing step and media replacement, followed by 48 

hours and 72 hours incubation (pulse- treatment) as previously reported 

(369) (Figure 4.4 A). We proposed 48- and 72-hours hours treatment to 

allow time for particles to engage with cells, internalize, and release their 

cargo into the cytosol resulting in reactivating HIV LTR and the lag time. We 

proposed 48- and 72-hours hours treatment to allow time for particles to 

engage with cells, internalize, and release its cargo into the cytosol resulting 

in reactivating HIV LTR”. In addition we choose the 4 hours exposure time 

because the terminal half-life of RMD in vivo is approximately 3 hours (376, 

610, 611). The harvested cells were stained with PI and analysed by flow 

cytometry immediately. For the flow analysis, cells were gated on the 

forward scatter area (FSC-A), and side scatter area (SSC-A) to locate J-Lat 

cells. We then gated on forward scatter Height (FSC-H) versus forward 

scatter area (FSC-A) to exclude doublets. Next, cells were gated for PI and 

forward scattered area (FSC-A) to exclude dead cells (PI+). Finally, live cells 
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(PI-, %viability) were gated versus GFP to determine PI-GFP+ populations 

(Figure 4.4 B).  

In the pulse-treated cells, as predicted, after 48 hours, the RMDLNPs did 

not show induction of GFP expression compared to DMSO (Figure 4.5 A). 

This is likely because RMDLNPs required more than 4 hours to internalise 

efficiently in T cells. We did not observe an increase in GFP expression at 

any concentration using 100 nm RMLNPs or supernatant from either the 

400 nm or 100 nm particles. In contrast, free RMD showed a dose-

dependent effect on potency and toxicity. Treatment with 2.5 and 10 nM 

resulted in over 45 % and 80 % GFP+ cells [p = 0.0202, and 0.0025 

unpaired t test] respectively compared to DMSO. (Figure 4.5 A). In cells 

treated with both RMD 2.5 nM and 10 nm, we observed viability of 77 % and 

44 % [p = 0.1567 and 0.0217, unpaired t test], respectively compared to 

DMSO (Figure 4.5 B). This data is consistent with other studies 

demonstrating that free RMD is strongly linked to toxicity in vitro (434, 609, 

612). Using the pulse treatment, at 72 hours, we observed a small increase 

of GFP+ cells [12 %] in cells treated with PMASH 400 nm RMDLNPs 

compared to DMSO (Figure 4.5C). This delayed increase in GFP at the later 

time point suggested slow drug release from these particles. Cell viability 

was decreased compared to DMSO treated cells (Figure 4.5 C).  In cells 

treated with 2.5 nM and 10 nM RMD, we observed an increase in GFP+ cells 

of 71 % and 86 % [p = 0.0002 ,0.0001, unpaired t test], respectively 

compared to DMSO (Figure 4.5 C). A similar relationship between efficacy 

and cytotoxicity was observed for cells treated with free RMD (Figure 4.5 

C). These observations of the accumulated effect of cell toxicity align with 

the effect of continuous exposure of RMD in vitro reported by Jones et al. 

and Zhao et al. (376, 434). 

In sharp contrast, following continuous exposure for 48 h of 400 nm 

RMDLNPs to cells at the highest ratio (particle: cell ratio of 800:1), we 

observed significant GFP expression, reaching 70 % [p = 0.0002, unpaired 

t test compared to DMSO] (Figure 4.6 A). This high response rate was likely 

due to the longer time for exposure of particles to cells and slower release 

of encapsulated RMD from silica pores.  Cell viability was reduced by the 

potent activation in cells treated with 400 nm RMDLNPs (Figure 4.6 B). Cells 
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treated with free RMD at 10 nM compared to 2.5 nM and DMSO showed 

increased GFP expression following 48 and 72 hours continues-treatment 

(Figure 4.6 A and C). As expected, a high cytotoxicity effect was observed 

after 72 hours of continuous treatment (Figure 4.6 B and D), consistent with 

other studies that reported RMD EC50 of 4.5 ± 1.0 nM (369). Interestingly, 

at a concentration of 400: and 800:1 particle: cells, of 400 RMDLNPs, we 

observed an increase of GFP expression, reaching mean values of 62 % 

and 22 % GFP+ cells [p = 0.0098, p = 0.0096 unpaired t test], respectively 

compared to DMSO (Figure 4.6 C).  

After 72 hours of continuous treatment, 100 nm RMDLNPs induced GFP 

expression in 18 % of cells (Figure 4.6 C). The reduced potency of 100 nm 

RMDLNP is likely due to a reduced capacity to encapsulate a high payload 

of RMD due to the smaller pore size. This interpretation is supported by our 

earlier reports of lower encapsulation efficiency and loading capacity in 100 

nm particles compared to 400 nm particles (Table 4.1).  A similar 

relationship between efficacy and cytotoxicity was observed for cells treated 

with RMDLNPs (Figure 4.6 D). 

In conclusion, these data demonstrate that, for continuous treatment of J-

Lat A2, 400 nm RMDLNP formulation showed equivalent potency of 

activation of the LTR, but vastly reduced toxicity compared to free RMD.   
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Figure 4.4 Efficacy of RMD loaded PMASH 100 nm and 400 nm 

RMDLNPs to activate the HIV-LTR in the J-Lat A2 cell line.   

A) Schematic illustration of the method used. In brief, J-Lat A2 cells were 

treated (using pulsed or continuous treatment) with either free RMD (2.5 nM 

and 10 nM) or PMASH RMDLNPs (100 nm and 400 nm) for 24 hours or 72 

hours. B) Toxicity and expression of GFP were quantified using flow 

cytometry. Representative flow cytometry plots and gating strategy for PI- 

(live) and GFP+ (activated) is shown. 
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Figure 4.5 PMASH 100 nm and 400 nm RMDLNPs administered as a 

pulse did not increase LTR activation in J-Lat A2 cells.   

A) Percentage of GFP+ cells and B) viability from cells treated with free RMD 

formulations (2.5 nM or 10 nM) and RMD formulated PMASH particles 

RMDLNP (100 nm and 400 nm) for 48 hours. C) a percentage of GFP+ cells 

and D) viability using the same conditions but after 72 hours of treatment. 

All data are shown as the mean ± standard error of the mean from three 

independent experiments (SEM; N = 3). All P values were determined using 

two-tailed, unpaired t-tests: *P<0.05, **P<0.001, ***P<0.0005 and 

****P<0.0001. 
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Figure 4.6 PMASH 100 nm and 400 nm RMDLNPs administered 

continuously potently increased LTR activation but with no toxicity in 

J-Lat A2 cells.  

A) Percentage of GFP+ cells and B) viability from cells treated with free RMD 

formulations (2.5 nM or 10 nM) and RMD formulated PMASH particles 

RMDLNP (100 nm and 400 nm) for 48 hours. C) a percentage of GFP+ cells 

and D) viability using the same conditions but after 72 hours of treatment. 

All data are shown as the mean ± standard error of the mean from three 

independent experiments (SEM; N = 3). All P values were determined using 

two-tailed, unpaired T-test: *P<0.05, **P<0.001, ***P<0.0005 and 

****P<0.0001. 
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Figure 4.7 Effect of RMD free drug and PMASH  RMDLNPs on activation 

of the LTR in J-Lat 10.6 cells.   

A) Schematic illustration of the method used. In brief, J-Lat A2 cells were 

pulse-treated with free RMD (2.5 nM and 10 nM) for 4 hours, and cells were 

washed and then cultured for 48, 72 and 96 hours. In separate experiments, 

free RMD formulation (2.5 nM and 10 nM) or PMASH RMDLNPs (100 nm 

and 400 nm) were incubated continuously for 24 hours or 72 hours. Cell 

viability was measured using a cell titre glow luciferase-based assay B) 

Representative gating strategy for GFP+ cells is shown. 

4.2.4 RMD loaded PMASH 400 nm particles RMDLNP reactivate HIV 

latency with reduced toxicity in J-Lat 10.6 cells 

Next, to examine whether RMDLNPs can stimulate HIV latency beyond the 

minimal promoter system (i.e., J-Lat A2 T cells), we utilised the J-Lat 10.6 

cell line. The J-Lat 10.6 T cells contain a stably integrated full-length HIV 

provirus (10.6 strain) where green fluorescent protein (GFP) replaces the 

Nef coding sequence and a frameshift in env that express GFP upon 

activation of the HIV LTR (249, 613, 614). The percentage of GFP+ cells 

was measured by flow cytometry and used to assess the potency of free 

RMD and RMDLNPs (i.e., PMASH 100 nm and 400 nm).  These experiments 
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were required to be performed in physical containment level 3 (PC3) 

laboratories which necessitated the use of paraformaldehyde to fix cells, 

thus precluding the use of live/dead PI staining. To this end, the cytotoxicity 

of the compounds was determined by monitoring metabolic activity based 

on the quantification of present ATP. In this model of latent infection, we 

mimicked similar experimental settings and conditions we used in the J-Lats 

A2 cells, but we introduced additional time points (i.e., 96 hours) to 

investigate the slow-release kinetics of RMD from RMDLNPs.  To minimise 

the cytotoxic effect of free RMD in J-Lat T cells, we used a 4-hour pulse 

treatment with free RMD, followed by extended cell culture for 48, 72 and 

96 hours (h) (Figure 4.7 A). Of note, we did not perform pulse treatment with 

RMDLNPs as we previously demonstrated that particles required a longer 

time of exposure (longer than 4 hours of exposure to cells) to be able to 

localise intracellularly and release the encapsulated drug (Figure 4.5 A and 

C). To quantify potency, samples were harvested, and GFP expression was 

analysed by flow cytometry. As previously, we gated on FSC-A and SSC-A 

to identify live J-Lat cells, then gated on FSC-H versus FSC-A to exclude 

doublet cells. Finally, we quantified the proportion of live cells expressing 

GFP (Figure 4.7 B). 

Following a 4-hours pulse of free RMD free formulation treated cells, at 48 

hours, we observed only modest reactivation of HIV with the highest 

concentration of 10 nM (mean = 8.9 % GFP+ cells) [p = 0.0028, compared 

to DMSO, unpaired t test]. In contrast, the positive control of PMA/Iono 

increased  GFP+ cells with a mean value of 83.7 % [p = 0.0001 unpaired t-

test, compared to DMSO] (Figure 4.8 A, left).  When cytotoxicity was 

determined under identical conditions, all tested compounds showed no 

toxic effect other than DMSO vehicle negative control (Figure 4.8 A, right). 

In the extended culture of 72 hours and 96 hours-pulse treated cells, we 

observed a slight decrease of GFP+ cells (mean = 6 % at 72 h and 5.4 % at 

96 h) in cells treated with free RMD (10 nM) compared to the 48 hours-pulse 

treated cells (Figure 4.8 B and C, left). GFP expression in cells treated with 

the positive control PMA/Iono induced an increase in GFP+ cells, which 

plateau at 72 hours, mean = 83.75 %, [p =  0.0001 unpaired t test] (Figure 

4.8 B, left).  
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Cell viability of 400 nm RMDLNPs treated cells remained similar to DMSO 

negative control cells (Figure 4.8 C and D, right). However, we observed a 

slight increase in ATP activity in cells treated with the PMA/Iono positive 

control. We speculated this could have resulted from the proliferation of cells 

induced by PMA/Iono (615, 616). Pulsed treatment with free RMD induced 

a lower frequency of GFP+ cells.   

Next, we assessed the latency reversal and toxicity of free RMD and 

RMDLNPs following continuous treatment of J-Lat 10.6 cells. Interestingly, 

400 nm RMDLNPs induced a dose-response reactivation of HIV latency in 

cells treated with 200:1, 400:1 and 800:1 particles to cells, with 11.75 %, 29 

% and 53 % GFP+ cells observed respectively, [p = 0.0241, 0.0363 and 

0.0013 unpaired t-test compared to DMSO treated cells] (Figure 4.9 A, left). 

Interestingly, with the 400 nm RMDLNP at a ratio of 800 : 1 compared to 2.5 

nM and 10 nM free RMD, we showed significantly higher potency in 

reactivation of HIV latency, with a mean value 53 %, 16 % and 22 % GFP+

cells,  [p = 0.0065 and 0.253 unpaired t test]  (Figure 4.9 A, left).  

Importantly, the cytotoxicity effect of 400 nm RMDLNPs formulation (800 : 

1) were significantly lower, [p = 0.0041 and 0.0001 unpaired t test], 

compared to 2.5 nM and 10 nM respectively (Figure 4. 9 A, right). Cells 

treated with 400 nm RMDLNPs did not show a decrease in viability over 

time (48, 72 and 96 hours),  while the lowest concentration RMD free drug 

formulation (2.5 nM) showed a decrease in cell viability at 48, 72 and 96 

hours (55 %, 15 % and 6 % respectively, [p = 0.011, p<0.001 and p<0.001 

respectively, unpaired t test] over time compared to the DMSO treated cells 

(Figure 4.9 A, B, and C left).  

We also quantified the change in GFP expression over time in J-Lat 10.6 T 

cells for 96 hours. We observed that GFP expression for PMA/Iono, free 

RMD and RMDLNPs reached a maximum or plateau at 48 hours of drug 

exposure (Figure 4.9 A, left). The positive control PMA/Iono induced 

expression of GFP to a mean value of 82 %, [p<0.001 unpaired t test], 

followed by 400 nm RMDLNP at a ratio of 800: 1 to a mean value of 53 % 

of GFP+ cells [p = 0.0013, unpaired t test] (Figure 4.9 A, left). The 400 nm 

RMDLNPs induced a concentration-dependent expression of GFP ranging 

from 6 % to 53 % of cells (ratio of particle: cell, 200:1, 400:1 and 800:1) 
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(Figure 4.9 A-C). After 48, 72 and 96 hours, in cells treated with free RMD 

at 10 nM, we observed a slight increase in GFP+ cells with a mean value of 

22 %, 25 % and 29 %, respectively (Figure 4.9, A, B and C, right).  

Overall, these data demonstrated the ability of RMD loaded PMASH 400 nm 

particles  RMDLNPs to induce greater reactivation of HIV latency while 

avoiding toxicity in J-Lat 10.6 cells. 
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Figure 4.8 Free RMD induced modest activation of HIV latency from J-

Lat 10.6 cells.

A) GFP expression as a surrogate for HIV reactivation and cell viability is 

shown in J-Lat 10.6 cells in the presence of free RMD (2.5 nM and 10 nM) 

pulsed for 4 hours and then incubated for 48; B) 72 and C) 96 hours. All 

data are shown as the mean ± standard error of the mean from three 

independent experiments (SEM; N = 3). All P values were determined using 

two-tailed, unpaired T-test: *P<0.05, **P<0.001, ***P<0.0005 and 

****P<0.0001. 
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Figure 4.9 PMASH 400 nm RMDLNPs enhanced latent HIV reactivation 

and reduced cytotoxicity in JLat 10.6 cells.   

A) Free RMD or PMASH 100 nm and 400 nm RMDLNPs were incubated with 

J-Lat 10.6 cells, and GFP expression as a surrogate for HIV reactivation or 

cell viability was quantified after 48; B) 72, and C) 96 hours. All data are 

shown as the mean ± standard error of the mean (SEM; N = 4). All P values 

were determined using unpaired two-tailed, unpaired T test: *P<0.05, 

**P<0.001, ***P<0.0005 and ****P<0.0001.  
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4.3 DISCUSSION 

A major obstacle to eliminating latently infected cells through the shock and 

kill strategy is balancing LRA potency and toxicity. Besides a cytotoxic effect 

on CD4+ T cells, several LRAs (e.g. the HDACi RMD) showed cytotoxicity 

on HIV-specific CD8+ T cells resulting in exhaustion and impaired function 

(374, 376, 611, 617). Ultimately, this is not acceptable given that an efficient 

HIV-specific immune response is also needed to eliminate infected cells. 

Nanoparticles have shown great promise in successfully delivering 

pharmacological therapeutics that target endogenous immune cells while 

limiting exposure of the drug systemically (410, 416, 417, 455, 597, 618). 

Here we demonstrated that delivery of RMD by nanoparticles could not only 

enhance its potency in reversing latency but can also dramatically reduce 

toxicity in a latently infected cell line. Whether these findings can be 

translated to primary cells remains to be determined. 

We successfully encapsulated the HDACi RMD, a drug of limited solubility 

(458), into 100 nm and 400 nm MS particles, then formulated multilayer 

PMASH RMD loaded particles (PMASH 100 nm and 400 nm RMDLNP). We 

showed that RMD loaded PMASH particles (400 nm RMDLNPs) can 

sufficiently reactivate HIV gene expression in latently infected cell lines (J-

Lat A2 and J-Lat 10.6 T cells) without a significant drop in cell viability. First, 

this work is potentially relevant to strategies to encapsulate other 

hydrophobic drugs. Second, we did not observe an effect when cells were 

pulse-treated with 400 nm RMDLNPs. We propose that 4 hours was 

insufficient for particles to internalise, degrade and release their cargo in J-

Lat A2 T cells. Future work should include an assessment of the 

internalisation kinetics of RMDLNP into T cells. Several studies have 

reported the interaction of unloaded and PMASH particles with cells over time 

(453, 492, 619). However, these studies were either limited to quantification 

of association (not internalisation) or using a specific cell type (Hela cells 

and phagocytic cells), which are different from T cells, which are non-

phagocytic cells.  

When we continuously exposed 400nm RMDLNPs and free RMD to J-Lat 

A2 cells, both formulations activated LTR expression to similar levels seen 

with the positive control PMA/Iono. However, the cytotoxicity of these 
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formulations was moderate in comparison to DMSO treated cells. These 

findings are in agreement with a recent study that examined RMD combined 

with negatively charged dendrimer nanoparticles and the impact on J89GFP 

T cells after 48 hours treatment (608). Although we only assessed these 

formulations in cell lines, it is important to note that we previously 

investigated the toxicity of unloaded PMASH particles in primary T cells and 

found minimal toxicity after 24 and 48 hours of treatment, except for 800 nm 

PMASH-PLL particles (Chapter 3).  Clinical translatability will be different as 

these RMD loaded particles must be targeted to CD4+ T cells which will 

adapt different association kinetics. In addition, our in vitro experiment 

design  cannot predict the association kinetics with T cells in vivo.

Future work will need to prioritise the assessment of these novel reagents 

in primary T cells. 

Using 400 nm RMDLNP, we were able to uncouple the potency of HIV 

reactivation and cytotoxicity in the J-Lat 10.6 cell line.  There may be several 

potential explanations for this finding, extrapolating from previous work 

using different cells (mainly cancer cell lines) and nanoparticle systems. 

First, RMD is a small prodrug molecule (MW = 540.7) and is activated inside 

the cell by glutathione (GSH) (368). This characteristic can facilitate cell 

uptake by simple diffusion (73, 74); therefore, RMD cytotoxicity is dose-

dependent (370, 593, 612, 620). In contrast, when RMD is encapsulated 

into PMASH particles, RMDLNPs, energy-dependent cell internalisation is 

needed while the drug is within the MS. This will prevent accumulative 

exposure of the drug intracellularly. Therefore, the sustained and slow drug 

release kinetic property of PMASH particles (492, 621) probably contributes 

to the reduced cytotoxic effect of RMD,  compared to free RMD, where 

cytotoxicity increased over time. Second, free RMD is transported 

intracellularly via an influx transporter, the organic anion transporter, OATP2 

and OATP3 and clearance of intracellular RMD (Efflux) by the 

permeability glycoprotein (p-glycoprotein) (593, 622, 623). In contrast, 

RMDLNPs formulation, to the best of our knowledge, most likely undergoes 

endocytosis, although the exact pathway of uptake of PMASH particles in T 

cells remains unknown. However, given the size of these 400 nm particles, 

internalisation is likely to occur through non-specific macro-pinocytosis 
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(416, 440, 534, 624). Third, the intracellular trafficking of free RMD is distinct 

from PMASH  RMDLNPs. Intracellular trafficking of free RMD is believed to 

occur via p-glycoprotein, but the exact mechanism of cellular entry remains 

poorly defined (368). In contrast, PMASH RMDLNP is believed to traffic 

through the endosomal pathway, then accumulate in the cytosol, where the 

release of the encapsulated RMD occurs (490, 492). Off note, endosomal 

escape strategies have been utilized in increasing therapeutic efficiency. In 

particular, if nanoparticle or loaded cargo are entrapped in acidic endosomal 

compartments, degraded in lysosomes or recycled back to the cell 

membrane,  the therapeutic can be rendered completely ineffective (625, 

626). Manipulation of the host cell biology, using small molecules for 

example, or the design of more effective delivery systems that can achieve 

endosomal escape represents an opportunity for boosting endosomal 

escape and delivery efficiency (500, 626, 627). Finally, prior studies have 

shown that RMD toxicity is highly dependent on mitochondrial engagement 

and activation of the intrinsic apoptosis pathway (366, 628, 629). It is 

possible that internalised RMDLNPs release RMD in a  different cellular 

compartment, bypassing the mitochondria-mediated apoptosis pathway.

Further studies are necessary to investigate the molecular mechanism 

involved in the intracellular trafficking of RMDLNPs and the location of the 

release of RMD within cellular compartments. This could potentially be done 

by labelling the RMD with a fluorochrome and examining intracellular target 

engagement and resident time of labelled RMD (630, 631). Additionally, 

assessing mitochondrial activity in the presence of both formulations could 

pave the way to understand the molecular mechanism of action. 

We also observed different GFP expression (activation) and cytotoxicity 

patterns between J-Lat A2 T cells and J-Lat 10.6 T cells when treated with 

free RMD and RMDLNPs formulations. Although both cell lines are derived 

from Jurkat cells, these cell lines may have different sensitivity to the HDACi 

RMD. There may be several explanations for this variation. First, both cell 

lines are distinct clones with the LTR integrated at different sites. J-Lat A2 

cells harbour a minimal HIV minigenome feedback construct containing 

LTR-Tat-IRES-GFP virus (similar to H2 and A10 clone), while J-Lat 10.6 

cells harbour the full-length HIV (HIV-R7-E−GFP) construct. Following 
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reactivation of the J-Lat A2 clone, only part of the HIV (Tat) activates the 

HIV LTR promoter and subsequently drives GFP expression. Whereas the 

J-Lat 10.6 clone contains full-length HIV that is heavily repressed by DNA 

methylation (249, 632, 633). Second, provirus integration in latently infected 

cells usually occurs at the site of heterochromatin (249). Thus different 

integration sites in latently infected cell lines (J-Lat A2 and 10.6 clones) will 

have different surrounding chromatin structures and could also account for 

the difference in activation observed with RMD (179, 634). Finally and 

importantly, these differential effects on HIV activation of epigenetic 

transcription may not be surprising since the chromatin structure of the LTR 

can differ for the proviruses integrated into one cell line or another (137, 

635, 636). 

Although we have made an exciting discovery using PMASH particles to 

uncouple potency and toxicity, an important caveat in this study is that we 

did not evaluate primary T cells or CD4+ T cells from people living with HIV 

(PLWH) ex vivo (322, 637, 638). In PLWH on ART, the frequency of latently 

infected CD4+ T cells in blood is low, and only a small fraction of latently 

infected CD4+ T cells contain intact replication-competent provirus (97). 

Furthermore, the virus will be integrated into a range of locations and with 

different epigenetic environments. However, we showed that in two diverse 

cell lines, 400 nm RMDLNPs could reverse HIV latency with reduced 

cytotoxicity. Further studies will be needed to investigate the potential effect 

of these particles in reversing latency in CD4+T cells from PLWH ex vivo.  

4.4 CONCLUSION 

In summary, we showed in two models of HIV latency that PMASH 400 nm 

RMDLNP particles compared to free RMD induced more potent reactivation 

of the LTR with reduced toxicity. However, although our results are 

promising, the mechanism of our RMDLNPs reactivation and the use of 

more physiological models such as latently infected primary cells or in vivo

models should be studied. Finally, these data illustrate the potential use of 

nano-engineered drug delivery systems to enhance latency reversal 

strategies.
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5 Nanoparticles delivery of 

5`triphosphate RNA to tackle HIV 

latency 

5.1 INTRODUCTION 

One strategy toward eliminating HIV latency is the activation of HIV viral 

production by latency reversal agents (LRAs) to induce virus-mediated 

cytolysis or clearance through immune recognition in the presence of ART 

(often called "shock and kill") (272, 312). However, although there is 

evidence of latency reversal in clinical trials of LRA, no studies in people 

with HIV have yet shown a decrease in the reservoir (61, 375, 587). 

Therefore, more potent and less toxic LRAs are still needed and almost 

certainly need to be combined with immunotherapeutic agents or pro-

apoptotic drugs (95, 588, 639–642). 

Innate immune responses have been appreciated to play an essential role 

in the pathogenesis of HIV infection and shaping the adaptive immune 

response (313, 643–646). Innate immune signalling pathways are activated 

by pattern recognition receptors (PRRs) and can be exploited to treat viral 

infection (313, 647, 648). Recently, Gayo et al. have demonstrated that 

exposure of conventional dendritic cells (cDCs) from elite controlers (EC) to 

HIV infection effectively mounted cell-intrinsic type I interferon (IFN) 

secretion and enhanced HIV-specific CD8+ T cells responses (649). 

Retinoic acid-inducible gene I (RIG-I) is a cytosolic DexD/H box RNA 

helicase and belongs to the PRR family (650–653) that can sense 

cytoplasmatic 5` triphosphorylated double-stranded RNA (ds RNA).  Upon 

recognising pathogenic RNA, RIG-I  induces a  signalling cascade leading 

to phosphorylation of IFN regulatory factors 3 and 7 (IRF3/7) and induction 

of a type I IFN dominated antiviral response (648, 654). These responses 

can also lead to apoptosis (655, 656).  
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Following virus attachment and entry into the cell,  the HIV genome 

consisting of two identical copies of positive-strand ssRNA is placed into the 

cell cytoplasm along with the viral capsid. During reverse transcription, RIG-

I senses both monomeric and dimeric forms of HIV dsRNA (657, 658). 

However, HIV infection evades RIG-I signalling by sequestration and 

degradation (658), resulting in lower RIG-I protein expression levels in CD4+

T cells compared to healthy individuals from people living with HIV (659). In 

addition, HIV infection has developed strategies to circumvent immune 

surveillance and manipulates antiviral immune response (660, 661). 

Following the HIV replication cycle,  abortive HIV RNA, which contains a 

5’cap structure and a polyadenylated (poly-A) tail that is released following 

transcription and translation of provirus, is a poor pathogen-associated 

molecular pattern (PAMP) for RIG-I recognition  (646, 657, 662).  

Synthetic RIG-I agonist ligand is a 5'triphosphate double-strand RNA (3p 

dsRNA) (3p dsRNA, 21 nucleotides (nt) base pair RNA stretch) that was 

generated by in vitro transcription reaction (IVT) (516, 650). RIG-I agonists 

could potentially act as latency reversal agents through activation of p300 

acetyltransferase and the non-canonical NF-kB pathway, which could lead 

to the stimulation of HIV transcription and promote apoptosis of reactivated 

cells through the induction of type I IFN (663, 664). Despite RIG-I agonists 

promising latency reversal and antiviral activities, its efficacy in activating 

antiviral innate immunity, its activity is hindered by its poor delivery to target 

cells (136). Several barriers include serum nuclease degradation and poor 

delivery of highly hydrophilic dsRNA through membranes into the cytosol, 

where RIG-I is localized (665, 666).  

One major challenge for delivering nucleic acid to CD4+ T cells is the fact 

that CD4+ T-cells are not phagocytic. Soft glycogen nanoparticles (NP)  are 

a promising delivery system capable of efficiently encapsulating nucleic 

acids (418, 498). The advantages of soft glycogen NP over other synthetic 

and natural polymers are their tunable size, degradability, and lack of 

toxicity at high concentrations (418). Glycogen NP can be synthesised from 

different biological sources such as bovine liver (BG), rabbit liver (RG) and 

oysters (OG) (482, 497). The hyperbranched BG glycogen NPs are a 

favourable non-viral gene delivery system because they have endo-
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lysosomolytic properties allowing for cytosolic localisation and endosomal 

escape. Second, they can deliver multiple copies of oligonucleotides and 

finally, they have reduced cytotoxicity (418, 499, 500). 

Our aim in the chapter was to develop a novel strategy for delivering a RIG-

I agonist into a T cell. We used ethylenediamine BGEDA NP to deliver 5' 

triphosphate double-stranded RNA (3p dsRNA) to T cells. We evaluated 

RIG-I activity by quantifying interferon stimulating genes (ISG) and the 

secretion of type I IFN and NF-κB activation in THP-1 cell line, primary CD4+

T cells and human peripheral blood mononuclear cells (PBMC). Finally, we 

assessed the effects of this RIG-I agonist on the induction of HIV expression 

in latently infected  J-Lat A2 cell lines. 

5.2 RESULTS 

5.2.1 Synthesis of the cationic bovine glycogen (BG) nanoparticle 

(NP) RIG-I agonist for in vitro delivery 

To deliver a synthetic RIG-I agonist (RIG-I A) to T cells, we first evaluated 

the ability of  BG NP to form a stable complex with 3p dsRNA, a previously 

described method (418). We used dsRNA (21 nt in length) (5'OH-RNA)  as 

a negative control ligand (Ctr ligand) because this construct lacks a 

triphosphate group, as previously reported (516, 667). BG NPs were 

synthesised as previously described (418). To construct BG NP/RIG-I A and 

BG NP/Ctr ligand complexes, we used the positively charged 

ethylenediamine modified BG (BGEDA) NP to facilitate electrostatic 

interaction with 3p-dsRNA (418). Throughout this study, we will represent 

5'-3p dsRNA' as RIG-I A and 'dsRNA, 5'OH-RNA' as Ctr (control) ligand for 

ease of terminology. 

The cationic BG particles were incubated with the synthetic RIG-I A or the 

Ctr ligand for 15 minutes, allowed to equilibrate and form an electrostatic 

interaction between the NP and nucleic acid (Figure 5.1 A). To deliver BGEDA 

3p/dsRNA into T cells, fine control over the complexations is necessary 

because rapid aggregation can be driven by the electrostatic interaction 

between the attached BGEDA and dsRNA molecule complex. To determine 

the optimal ratio needed to fully complex dsRNA and BGEDA NP, we used a 

different ratio as a weight per weight ratio (W/W) of the anionic charged 
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dsRNA and cationic charged BGEDA NPs. Formation of the BGEDA-RIG-I A 

and BGEDA-Ctr ligand complexes was assessed by agarose gel 

electrophoresis. Retardation of migration was examined at escalating ratios 

of BGEDA to 3p-dsRNA and using naked dsRNA and BGEDA as a negative 

control indicating unbound dsRNA.  

As shown in (Figure 5.1 B), the migration of 3pdsRNA was completely 

retarded at W/W ratios of 4:1 BGEDA-RIG-I A and BGEDA-Ctr ligand. 

Complete NP and dsRNA complexation was achieved for both BGEDA-RIG-

I A and BGEDA-Ctr ligand at a ratio of 5:1 and 6:1, respectively (Figure 5.1 

B). This result is consistent with previous results from Wojnilowicz et al., 

who used BGEDA NP conjugated with siRNA (418). Considering that one 

molecule of BGEDA can bind five molecules of dsRNA (418), we concluded 

that ratios from 6:1 would be optimal for subsequent investigations. 

We further characterised the size and surface charge of BGEDA NP alone,  

BGEDA-RIG-I A and BGEDA-Ctr ligand constructs (ratio 6:1) using DLS (size) 

and micro electrophoresis (surface charge) techniques. As expected, BG 

NP alone showed a mean hydrodynamic diameter of 12 nm (polydispersity 

index, PDI of 0.126), while BGEDA-RIG-I A and BGEDA-Ctr ligand showed an 

increase in size with a mean hydrodynamic diameter of 20 nm (PDI of 0.196) 

and 17 nm (PDI of 0.247), respectively (Table 5.1) (Figure 5.2 A). The 

increase in size observed in BGEDA-RIG-I A and BGEDA-Ctr ligand further 

confirmed the complexation and, importantly, indicated no aggregation. 

Although we did not observe aggregation at the higher w/w ratio tested (6:1), 

Wojnilowicz et al. observed a dramatic increase in size (800 nm-900 nm) 

when BGEDA NPs were mixed with siRNA at a higher w/w ratio (7:1) (418). 

Aggregation was most likely induced by free BGEDA NPs. In addition to size, 

zeta potential (Ƶ) measurement of BGEDA (naked particles) decreased from 

+19mV to slightly positive values of +7 and +6 at BGEDA-RIG-I A and BGEDA-

Ctr ligand, respectively (Figure 5.2 B, Table 5.1), indicating the 

complexation of dsRNA to BGEDA NP was due to the electrostatic interaction 

between cationic BGEDA NP and anionic 3p/dsRNA. 
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Figure 5.1 Complexation of ethylenediamine modified bovine 

glycogen-3p-dsRNA (RIG-I agonist)/dsRNA (Ctr ligand) constructs.  

A) Schematic of glycogen/3p-dsRNA and dsRNA formation, (i) mixing of 3p-

dsRNA with bovine glycogen nanoparticles (BG NP) at the optimised w/w 

ratio; (ii) formation of glycogen-3p/dsRNA constructs with controlled size 

and surface charge. Green circles in the glycogen structure indicate amino 

functionalities. B) Agarose gel electrophoresis used to evaluate the degree 
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of nucleic acid complexation formed at 5:1 AND 6:1, particle-to-3p-dsRNA 

w/w ratios: BGEDA-3p-dsRNA (RIG-I agonist) and BGEDA-dsRNA (Ctr 

ligand). Schematic (A) adapted from Wojnilowicz et al. (418). 

Table 5.1 Physicochemical properties (size and zeta-potential) of 

ethylenediamine (EDA) modified glycogen nanoparticles from bovine 

liver BGEDA, BGEDA-RIG-I A and BGEDA-Ctr ligand. 

Particle/Construct Size  

(d.nm) 

PDI Zeta 

potential 

(mV) 

EDA 

modification 

(%) 

BGEDA 12 ± 6 0.126 19.5 ±5 15.5 

BGEDA-RIG-I A 20 ± 10 0.196 7 ±2 15.5 

BGEDA-Ctr ligand 17 ± 10 0.247 6 ±3 15.5 

Hydrodynamic diameter determined by dynamic light scattering (DLS); zeta 

potential determined by micro electrophoresis; PDI = polydispersity index. 

Data represent mean ± standard deviation (SD) from two independently 

formulated batches and three independent measurements of each batch. 
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Figure 5.2 Characterisation of size and surface charge of 

nanoengineered BGEDA-RIG-I agonist and BGEDA-Ctr ligand constructs.  

A) Column graph showing hydrodynamic diameter measurement of BGEDA 

(Blue), BGEDA-RIG-I agonist complex (BGEDA-RIG-I A, Green), and BGEDA-

control ligand complex (BGEDA-Ctr ligand, Red) constructs at determined 6:1 

w/w ratio (left) and a representative graph of dynamic light scattering (DLS) 

showing the size of the NP (right). B) The zeta-potential of BGEDA, BGEDA-

RIG-I agonist, and BGEDA-Ctr ligand constructs at determined 6:1 w/w ratio 

(left) and a representative graph of microelectrophoresis showing the zeta 

measurement of each construct. All column graphs are presented as the 

mean ± standard deviation (SD) of two independently formulated batches 

and three independent measurements. 

5.2.2 Endosomolytic BGEDA loaded RIG-I agonists trigger the IFN I and 

NF-κB pathways  in the undifferentiated  THP-1 monocyte dual reporter 

cell line  

Synthetic RIG-I agonist ligands have been shown to trigger the release of 

type I IFN in T cells mediated by interferon regulatory factor 3/7/9 (IRF3/7/9) 

and the activation of interferon-stimulated genes (ISGs) and NF-κB 

signalling (133, 668–670). We first investigated the delivery and activity of 

BGEDA-RIG-I A and BGEDA-Ctr ligand in the THP-1 monocyte dual reporter 

cell line. THP-1 cell line is a monocytic cell line that contains an integrated 

copy of a secreted luciferase (Lucia) gene reporter driven by the expression 

of interferon stimulating genes 54 (ISG54), a known target gene of the 

transcriptional factor for IRF9; and an NF-κB inducible secreted alkaline 

phosphate (SEAP) (Figure 5.3 A) (507). BGEDA NPs conjugated with RIG-IA 

(BGEDA- RIG-I A) were used to examine RIG-I agonist dependent 

expression of type 1 interferon (IFN I) (ISG54-Luci) and NF-κB signalling 

(NF-κB-SEAP) (Figure 5.3 A). Additionally, we used Lipofectamine 2000 

transfection (a commercial lipid-based transfection agent used primarily for 

in vitro nucleic acid transfections) as a positive control. To test the 

inducibility of ISG54-luciferase in THP-1 dual cells, we titrated recombinant 

human interferon-alpha subtype (rhIFN-α) on THP-1 cells. The rhIFN-α 
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subtype is classified as an intermediate/strong ISG54 (IFN I) inducer (671, 

672).  

In the classical model of IFN I activation, rhIFN-α first binds to the interferon-

alpha and beta receptor subunit 1 IFNAR1 and IFNAR2 receptors to form a 

high-affinity ternary complex that induces a signalling cascade initiated 

through the activation of Janus kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2) 

followed by phosphorylation and recruitment of signal transducer and 

activator of transcription 1 and 2 (STAT1) and (STAT2) transcription factors 

(673, 674). STAT1 and STAT2 subsequently trimerise with IRF9 to form the 

transcription factor interferon-stimulated growth factor-3 (ISGF3) complex. 

Once this complex is formed, ISGF3 translocates to the nucleus and binds 

to interferon-stimulated response elements (ISREs), resulting in the 

activation of ISGs (671, 675, 676). In THP-1 cells treated with rhIFN-α, we 

observed an increase in ISG54-Luci activity at increased concentrations 

post 24 hours and 48 hours (Figure 5.3 B), confirming the biological potency 

of rhIFN-α in inducing IFN I in THP-1 cells.   

Next, THP-1 cells were challenged with (500 ng/mL) BGEDA-RIG-I A, BGEDA-

Ctr ligand or an equal amount of RIG-I A and ctr ligand transfected with 

lipofectamine 2000. Additionally, to validate the importance of BGEDA NP 

delivery to enhance RIG-I agonist activity, free RIG-I A, Ctr ligand and 

BGEDA NP were used as controls. Induction of ISG54-Luci and NF-κB-SEAP 

were analysed post 24 hours and 48 hours post-treatment. Free RIG-I A or 

Ctr ligand (that was not conjugated with NP or Lipofectamine) or BGEDA did 

not induce expression of ISG54-Luci compared to untreated cells after 24 

hours and 48 h incubation (Figure 5.4 A-D). This result is potentially 

consistent with poor cytosolic bioavailability. Transfection of RIG-I A by 

lipofectamine induced potent ISG54-Luci activity at both 24 hours and 48 

hours compared to untreated cells (mean fold change induction after 24 

hours and 48 hours was 152 and 22 respectively) (Figure 5.4 A-D). In 

contrast, modest activity was observed in lipofectamine-Ctr ligand 

transfected cells (mean fold change induction after 24 hours and 48 hours 

was 5 and 6 respectively) (Figure 5.4 A-D). 

BGEDA NP delivery of RIG-I A (BGEDA-RIG-I A) show enhanced ISG54-Luci 

induction in THP-1 cells compared to untreated cells (mean fold change 
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after 24 hours and 48 hours was 45 and 8-fold respectively) (Figure 5.4 A-

B). Additionally, no activity was observed in cells treated with BGEDA-Ctr 

ligand compared to untreated cells (mean fold change induction post 24 

hours and 48 hours was 1.1 and 2.1 respectively) (Figure 5.4 C-D), 

confirming that 5' triphosphate specifically activated RIG-I signalling (650). 

We did observe some non-specific activity in cells transfected with 

lipofectamine and the Ctrl as well as BGEDA-Ctr ligand (mean fold change 

compared to untreated cells was 2.3 and 2.1 respectively), suggesting that 

dsRNA can also bind and stimulate RIG-I in vitro (650, 651, 677–679).  

It is well documented that RIG-I activation also stimulates the non-canonical 

NF-κB pathway (645, 680). In cells treated with free RIG-I A, Ctr ligand or 

BGEDA, we observed a modest increase in induction of NF-κB-SEAP 

compared to untreated cells (mean fold change increase after 24 hours was 

6.6 and 5.2 respectively and after 48 hours was 2.2, 1.2 and 3.3 

respectively) (Figure 5.5 A-D). In addition, transfection of RIG-I A by 

lipofectamine induced non-specific NF-κB-SEAP activity compared to 

untreated controls (mean fold change at 24 hours and 48 hours was 13.8 

and 9.4 respectively) (Figure 5.5 A-D). A modest increase was also seen at 

24 hours only with transfection of Ctrl by lipofectamine (mean fold increase 

at 24 hours and 48 hours was 1.2 and 1 respectively) (Figure 5.5 A-D). 

Schlee et al. and Schmidt et al. reported that double-stranded RNA 

molecules that do not possess a 5′-triphosphate end might exhibit very low 

and uncontrolled RIG-I stimulation (653, 681). Indeed, the presence of 5' 

triphosphate end in RIG-I A supports the interaction of the dsRNA lysine 

residues in the RNA binding cleft of the C-terminal domain of RIG-I (668, 

682, 683).  

Delivery of BGEDA-RIG-I A in THP-1 cells showed increased production of 

NF-κB in THP-1 cells compared to untreated cells (mean fold increase at 24 

hours and 48 hours was 7.6 and 11 respectively) (Figure 5.5 A-B). Extended 

incubation of BGEDA-RIG-I A to 48 hours resulted in comparable NF-κB 

induction over the delivery of RIG-I A with Lipofectamine (Figure 5.5 C-D).  

In summary, these data showed that delivery of RIG-I A either via BGEDA or 

lipofectamine to THP-1 dual cell reporter enhanced ISG54-Luci and NF-κB-

SEAP activity compared to a Ctr ligand. Importantly, these data 
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demonstrated the capacity of BGEDA-RIG-I A to stimulate RIG-I activation 

and subsequently stimulate IFN I and NF-κB pathways in the THP-1 dual 

monocyte cells.  

Figure 5.3 Evaluation of the activity of BGEDA-RIG-I A in 

undifferentiated THP-1 dual reporter cell line. 

A) Schematic representation of the methods used. In brief, the THP-1 dual 

reporter cell line was treated with BGEDA-RIG-I A and BGEDA-Ctr ligand and 

interferon-stimulated gene (ISGs) and nuclear factor-κB (NF-κB) were 

quantified in the supernatant. THP1-Dual cells were incubated with 

increasing concentrations of recombinant human IFN-α (rhIFN- α)  (U/mL), 

and after 24 hours B) and C) 48 hours. ISG activation was assessed by 

measuring Lucia luciferase activity (ISG54-Luci) in the supernatant. All data 

are presented as column graphs, and the means of biological duplicates ± 

standard error of the mean is shown from three independent experiments 

(SEM; N = 3). 
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Figure 5.4 BGEDA delivery of a RIG-I agonist-induced ISG54 in an 

undifferentiated THP-1 cell line.  

Undifferentiated THP-1 dual cells were incubated with BGEDA-RIG-I A (500 

ng/mL), BGEDA-Ctr ligand (500 ng/mL), lipofectamine-RIG-I A (500 ng/mL),  

or lipofectamine-Ctr ligand (500 ng/mL). ISG54 activation was assessed by 

measuring the levels of secreted Lucia luciferase in the supernatant after 

24 hours (h), A) or 48 hours, C). The fold change of ISG54 was calculated 

in relation to the respective mock sample of each experiment after 24 hours, 

B) or 48 hours, D).  The levels of Lucia luciferase were determined by 

measuring the relative light units (RLU) in a luminometer. Three 

independent experiments were performed. All data are shown as column 

graphs, and the mean ± standard error of the mean is shown from three 

independent experiments (SEM; N = 3). Due to the high differences in the 

overall induction values achieved in the three experiments (biological 
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variation), only the means of biological duplicates ± SEM is shown.  

Comparisons were performed using two-tailed unpaired t-tests, no 

comparisons were significant [p values were found > 0.05]. 

Figure 5.5 BGEDA delivery of RIG-I agonist triggers NF-κB signalling in 

an undifferentiated THP-1 cell line.  

Undifferentiated THP-1 dual cells were stimulated with BGEDA-RIG-I A (500 

ng/mL), BGEDA-Ctr ligand (500 ng/mL), lipofectamine-RIG-I A (500 ng/mL),  

or lipofectamine-Ctr ligand (500 ng/mL). A) Post 24 hours (h) treatment, NF-

κB activation was quantified as the levels of secreted embryonic alkaline 

phosphate (SEAP) in the supernatant after 24 hours, A) or 48 hours, C). 

The fold change of SEAP  was calculated in relation to the respective mock 

sample of each experiment after 24 hours, B) or 48 hours, D).  The levels of 
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SEAP were determined by reading the optical density (O.D) at 619 nm. 

Three independent experiments were performed. All data are presented as 

a column graph, and the means of biological duplicates ± standard error of 

the mean is shown from three independent experiments (SEM; N = 3). Due 

to the high differences in the overall induction values achieved in the three 

experiments (biological variation), only the means of biological duplicates ± 

SEM is shown. Comparisons were performed using a two-tailed unpaired t-

test, no comparisons were significant [p values were found > 0.05].

5.2.3 BGEDA NP delivery of RIG-I agonist triggers IFN-α  in activated 

primary CD4+ T cells and human peripheral blood mononuclear cells

(PBMCs)  

Next, we investigated the potential to leverage BGEDA NP for RIG-I A 

delivery to primary CD4+ T cells and PBMC. First, we evaluated the ability 

of BGEDA-RIG-I A to enhance bioactive IFN-α secretion in activated primary 

CD4+ T cells and PBMC. Primary CD4+ T cells were activated for 2 days, 

then PBMC and primary CD4+ T cells were incubated with BGEDA-RIG-I A, 

BGEDA-Ctr ligand or infected with Sendai virus as a positive control (Figure 

5.6 A). Sendai virus is well characterized as a potent inducer of  RIG-I 

activation and IFN I production upon infection (160, 684, 685). To measure 

bioactive IFN-α activity, supernatants were harvested at day 1 and day 3 

post-treatment, and the supernatant was incubated with the HEK-Blue 

reporter cells (IFN-α/β reporter cell line) (686, 687) and the colour quantified 

by SEAP activity (Figure 5.6 A).   

The IFN-α/β reporter HEK 293 cell line (HEK-Blue) was generated by the 

stable introduction of genes (STAT2 and IRF9) that respond to IFN I into the 

human embryonic kidney (HEK) 293 cells. This IFN I response 

demonstrates an active IFN I signalling pathway, where the other five 

interferon receptor signalling genes (IFNAR1, IFNAR2, JAK1, TYK2 and 

STAT2) are naturally expressed (688).  Stimulation of HEK-Blue cells with 

rhIFN-α stimulated the ISG54 pathway and subsequently induced the 

secretion of SEAP. Therefore, to validate the inducibility of ISG54-SEAP in 

HEK-Blue cells,  we titrated rhIFN-α on these cells and assessed activity 

after 24 hours (Figure 5.6 B) (688). It has been previously demonstrated 
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that RIG-I overexpression in HEK-Blue cells is essential for producing IFNs 

following RIG-I agonist stimulation (689). In this notion, to confirm that the 

IFN promoter activity in HEK blue cells was due to IFNs produced from 

targeted cells (i.e., CD4+ T cells and PBMC) and not from stimulus applied 

to the targeted cells, we challenged HEK blue cells with different stimuli, 

including, SeV, BGEDA-RIG-I A and BGEDA-Ctr ligand and IFN-α-SEAP 

activity were analysed. The data show that SeV, RIG-A, and Ctrl conjugated 

NP did not activate the IFN promotor in HEK blue cells (Figure 5.6 C). Thus, 

this data indicates that if we see an IFN-I upregulation, it can only be 

produced from the targeted cells exposed to the stimulus and not the 

stimulus itself. 

Unconjugated ligands, RIG-I A or Ctr ligand, not bound to NP or naked 

BGEDA did not induce IFN-α-SEAP in CD4+ T cells compared to untreated 

cells post day 1 and day 3 treatment (Figure 5.7 A-B). Interestingly, delivery 

of BGEDA-RIG-I A enhanced IFN-α-SEAP production in CD4+ T cells post 

day 1 day 3 post-treatment compared to untreated cells (mean fold change 

enhancement at days 1, and 3 was 6.4 and 24 respectively, [p = 0.211, p 

<0.001, respectively, unpaired t test] (Figure 5.7 A-B). In addition, we 

observed a significant increase in IFN-α-SEAP production in cells treated 

with BGEDA-RIG-I A at day 3 post-treatment compared to day 1 [p = 0.025, 

unpaired t test] (Figure 5.7 A-B). In contrast, the BGEDA-Ctr ligand (dsRNA 

lacking a 5’-triphosphate modification) did not induce expression at either 

day 1 or day 3 (Figure 5.7 A-B). These findings again demonstrate the 

importance of the  5’-triphosphate end of dsRNA for RIG-I activation (650, 

681). Furthermore, we observed a significant enhancement in IFN-α-SEAP 

production in cells treated with BGEDA-RIG-I A compared to BGEDA-Ctr ligand 

at day 3 post-treatment [p = 0.0021, unpaired t test] (Figure 5.7 A-B), which 

was not observed with free RIG-I-A. 

Next, we wanted to examine whether the stimulation of human PBMC with 

BGEDA-RIG-I A can induce IFN-α production. Results were largely similar to 

those obtained in activated CD4+ T cells.  At day 1 post-treatment, BGEDA-

RIG-I A activation enhanced IFN-α-SEAP production compared to untreated 

cells (mean fold increase = 4.9) (Figure 5.7 C-D). In addition, we observed 

some non-specific IFN-α-SEAP activity in cells treated with BGEDA-Ctr ligand 
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(Figure 5.7 C-D). Interestingly, in cells treated with BGEDA-RIG-I A, we 

observed an increase in IFN-α-SEAP production on day 3 compared to day 

1 (4.2-fold change increase, [p = 0.0230, unpaired t test] (Figure 5.7 C-D), 

suggesting some accumulation of the 3p-dsRNA which would be released 

from BGEDA NP over time. Alternatively, this may be due to an effect on 

bystander immune cells other than T cells (PBMC). This alteration in the 

induction of IFN-α in BGEDA-RIG-I A could lead to another hypothesis that 

the up-regulation ISG54 signalling pathway was strongly dependent upon 

bystander PBMC as isolated CD4+ T cells were moderately sensitive to this 

modulation. Alternatively, non-specific uptake of BGEDA-Ctr ligand by 

monocytes and plasmacytoid dendritic cells (pDCs) amplified the induction 

of IFN-α in BGEDA-Ctr ligand treated cells (690). 

Figure 5.6 Evaluation of the activity of BGEDA-RIG-I A in primary CD4+ 

T cells and human Peripheral blood mononuclear cells (PBMC) using 

HEK-Blue IFN-α  /β assay.  

A) Schematic representation of the method used. In brief, activated CD4+ T 

cells and human PBMC were incubated with either BGEDA-RIG-I A or BGEDA-
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Ctr ligand for 1 and 3 days. After 24 hours, the type I IFN-SEAP reporter 

was quantified in the supernatant, and cell viability and apoptosis were 

quantified by flow cytometry using antibodies to annexin-V (AxV) and 

propidium iodide (PI). B) IFNα-SEAP production following titration of rhIFN-

α in HEK-Blue cells and measurement after 16-24 hours. Data are 

presented as a column graph, and the means of biological duplicates ± 

standard error of the mean is shown from three independent experiments 

(SEM; N = 3). C) response of HEK-Blue IFN-α /β cells to direct treatment 

with rhIFN-α, SeV, BGEDA-RIG-I A and BGEDA-Ctr ligand. Data are presented 

as a column graph, and the means of biological duplicates are shown from 

one experiment (N = 1). 

Figure 5.7 BGEDA delivery of a RIG-I agonist induces IFN-α gene 

expression in primary CD4+ T cells and human PBMC.

A) Levels of secreted IFN-α were measured using the HEK-Blue SEAP 

assay after- 1 and 3-days treatment of activated CD4+ T cells with the 

indicated formulation. B) Fold change induction of IFN-α-SEAP in primary 

CD4+ T cells. C) Levels of secreted IFN-α were measured using HEK-Blue 

SEAP assay after 1- and 3-days treatment of PBMC with the indicated 

formulation. D) Fold change induction of IFN-α-SEAP in PBMC. All data are 
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presented as a column graph, and the means of biological duplicates ± 

standard error of the mean is shown from five independent experiments 

(SEM; N = 5). All P values were determined using two-tailed, unpaired T 

test: *P<0.05, **P<0.001, ***P<0.0005 and ****P<0.0001. 

5.2.4 NP delivery of RIG-I A did not trigger cell death in primary CD4+

T cells 

We next hypothesized that transcriptional activation of type I IFN will 

increase cellular apoptosis in BGEDA-RIG-I A treated cells given prior reports 

(670, 691).  To confirm this, we quantified apoptosis (percentage of 

annexin+ V cells (% AxV+, early apoptosis) and propidium iodide cells (% 

PI+ late apoptosis) in activated CD4+ T cells treated with SeV, BGEDA-RIG-I 

A or BGEDA-Ctr ligand using flow cytometry (Figure 5.6 A). Where induction 

of IFN-α was observed,  we found that BGEDA-RIG-I A or BGEDA-Ctr ligand 

did not induce early apoptotic cells (% AxV+/PI-) or late apoptotic cells (% 

AxV+/PI+) after one and three days of treatment compared to the control 

(Figure 5.8 A-B). However, in cells treated with SeV, we observed an 

increase in early apoptotic and late apoptotic cells (AxV+/PI- and AxV+/PI+) 

compared to the control (Figure 5.8 A-B). Previous reports have shown that 

activation of RIG-I signalling induced preferential apoptosis in several 

cancer cells, while antigen-presenting cells are more resistant to RIG-I-

mediated apoptosis (692–695). 

Collectively, these data demonstrate that BGEDA NP delivery of synthetic 

RIG-I A can induce the production of type I IFN (ISG54) and NF-κB in THP-

1 cells and IFN-α in primary CD4+ T cells and human PBMC but did not elicit 

cell death in primary CD4+ T cells. 
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Figure 5.8 BGEDA delivery of RIG-I agonist did not induce cell death in 

activated CD4+ T cells.  

A) Representative flow cytometry dot plots and analysis of cell viability and 

apoptosis in CD4+ T-cells using annexin-V (AxV) and propidium iodide (PI) 

staining after treatment with indicated formulation for B) one day (Day 1) 

and C) three days (Day 3). Early and late apoptotic cell populations was 

evaluated by annexin V (AxV) and Propidium iodide (PI) staining, 

respectively. Numbers indicate the percentage (%) of each cell population 

expressing the relevant marker. All data are presented as stacked column 

graphs, and the means of technical replicates ± standard error of the mean 

is shown from three independent experiments (SEM; N = 5). Comparisons 

were performed using a two-tailed unpaired t-test; no comparisons were 

significant, i.e., all p values were  > 0.05, except day 1 SeV treated cell [p 

values were found > 0.0485]. 

5.2.5 BGEDA-RIG-I A induces HIV latency reactivation in vitro without 

affecting cell death in the J-Lat A2 cell line 

Since we observed that delivery of BGEDA-RIG-I A can stimulate and activate 

type I IFN and NF-κB pathways in THP-1 derived monocyte cells, we 

hypothesised that BGEDA-RIG-I A could also reverse HIV latency and may 

also potentially promote immunogenic clearance of latently infected cells 
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through the associated-cellular response to 3p-dsRNA via induction of NF-

κB and type I IFN.  Therefore, we investigated the effects of BGEDA-RIG-I A 

to reverse HIV latency and induce cell death in the J-Lat A2 T cell line. The 

J-Lat A2 harbours a single integrated provirus that consists of the HIV 

promoter LTR driving the expression of a cassette consisting of the viral Tat- 

gene and green fluorescent protein (GFP) (249). Given that GFP expression 

is under the control of the HIV LTR, activation of the LTR can be quantified 

by the expression of GFP. Cell death was quantified by staining with PI and 

using flow cytometry. Briefly, J-Lat A2 cells were treated for 48 hours with 

20 nM BGEDA-RIG-I A or BGEDA-Ctr ligand, phosphate buffer saline (PBS, 

vehicle control) or a combination of phorbol 12-myristate 13-acetate (PMA) 

and the calcium ionophore ionomycin (Iono) as positive control stimulus 

(PMA/Iono). The harvested cells were stained with propidium iodide (PI, 

viability staining), and both PI and GFP were quantified by flow cytometry. 

For the flow analysis strategy, cells were gated on forward scatter area 

(FSC-A) against side scatter area (SSC-A) to locate J-Lat cells, then forward 

scatter Height (FSC-H) versus forward scatter area (FSC-A) to exclude 

doublets. Next, cells were gated for PI and forward scattered area (FSC-A) 

to exclude dead cells (PI+). Finally, live cells (PI -, % viability) were gated 

versus GFP to determine GFP+ populations (Figure 5.9 A). 

Interestingly, in this model, BGEDA-RIG-I A compared to PBS- or BBGEDA-

Ctr ligand treated cells activated HIV expression. However, we did not 

observe a change in viability between different treatments (Figure 5.9 B). 

The effect of BGEDA-RIG-I A on J-Lat A2 cells was modest (an increase of 7 

% GFP+ cells) compared to the positive control PMA/Iono (an increase of 

80% of GFP+ cells). Importantly, naked RIG-I A, Ctr ligand or BGEDA alone 

did not show reactivation activity compared to PBS control (Figure 5.8 B). 

These results indicate that BGEDA-RIG-I A at the concentration used showed 

modest activation of HIV latency in the J-Lat A 2 T cell line. 
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Figure 5.9 BGEDA-RIG-I A can modestly activate the HIV-LTR in the  J-

Lat A2 T cell line.  

A) Representative flow cytometry plots of gating strategy for PI- population 

(Live) and activated cells for GFP+ cells. B) The proportion of GFP+-positive 

cells in the viable cell population (left) and the proportion of viable cells 

based on propidium iodide staining (right).  All data are presented as a 

column graph, and the means of technical duplicates are shown from one 

experiment (N=1).  

5.3 DISCUSSION 

Although several of the currently available LRAs can activate HIV 

transcription in people with HIV on ART in vivo, none are able to reduce the 

HIV reservoir (61, 696–699). New classes of immunomodulatory LRAs have 

been explored recently as innate immune agonists. These include TLR7 and 

TLR9 agonists (393, 400, 401). However, RIG-I agonists could also 

potentially play a role. The RIG-I ligand targets the cytosolic pattern 

recognition receptor (PPR) RIG-I-like helicases (RLH) (403, 587, 663, 700). 

RNA therapeutics targeting the immunoreceptor RIG-I have been explored 

extensively in oncology as an anti-cancer therapy to stimulate the induction 

of an antiviral response program through the production of type I IFN and 
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NF-κB (680, 701–706). However, delivering RNA as a  RIG-I agonist in T 

cells is challenging because of biological barriers, including the negative 

charge of RNA, nuclease degradation, and poor intracellular bioavailability 

(418, 707–709). While there has been extensive work for developing non-

viral carriers for RNA based therapy, including lipid-based nanoparticles, 

polyplexes and polymer-based particles, to name a few, there has been a 

minimal investigation into a delivery system that could specifically target T 

cells (416, 710, 711). In addition, there have only been limited studies 

exploring delivery systems for an RNA RIG-I agonist ligand that have 

utilised commercial in vitro lipid-based transfection agents or 

polyethyleneimine (PEI). However, neither of these approaches are 

specifically optimised for delivery of 3p-dsRNA delivery nor targeted to T 

cells (695, 712–716). While RIG-I agonists have been developed to treat 

malignancies, they are now being considered potential LRA and 

immunotherapeutic interventions to reactivate HIV latency from CD4+ T cells 

from PLWH ex vivo while also creating an immunostimulatory milieu that 

induces preferential apoptosis in latently infected cells (133, 403, 404, 664, 

700). 

RIG-I agonist (RIG-I A) conjugated with functionalised bovine glycogen 

(BGEDA-RIG-I A) NP induced ISG54 and NF-κB in THP-1 derived monocyte 

dual reporter cell lines. Additionally, we also observed secretion of IFN-α in 

primary CD4+ T cells and PBMC treated with BGEDA-RIG-I A. 

Interestingly, BGEDA-RIG-I A also reactivated HIV latency in the J-Lat A 2 

cell line. It is well-documented that the IFN I and innate immune NF-κB 

signalling pathway share many areas of cross-regulation and expression 

(668, 717). In addition, it was found that RIG-I can activate the NF-κB 

signalling pathway during respiratory syncytial virus (RSV) infection via the 

upstream canonical IkBa- NF-κB pathway (718, 719). Accordingly, evidence 

supports the hypothesis that BGEDA-RIG-I A acts by enhancing the RIG-I 

signalling cascades in J-Lat A2 cells, which subsequently induced both IFN 

I and canonical NF-κB pathway, resulting in driving HIV expression. 

However, this hypothesis must be addressed and investigated in future 

experiments. In addition, further studies are needed to dissect whether IFN 

pathway I or NF-κB signalling mediated HIV transcription in J-Lat A2 cells.  
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Recently Indra Sarabia et al., showed RIG-I agonist can reactivate HIV 

latency in J-Lat cells through the full length MAVS (405). Prior interest in the 

role of RIG-I agonists and HIV latency reversal has focused on the small 

molecule acitretin, an FDA approved drug for the management of psoriasis, 

with mixed results. In 2016, Li et al. showed that acitretin in the latently 

infected TZM-bl cell line or primary CD4+ T cells from PLWH on ART 

induced RIG-I expression and increased HIV transcription, but also RIG-I 

signalling selectively induced IFN-mediated apoptosis of HIV-positive cells 

(133). In contrast, Garcia-Vidal et al. and  Palermo et al. found that acitretin 

mediated stimulation of RIG-I expression but failed to induce potent HIV 

reactivation and lacked selective cell death of HIV- positive cells in the 

latently infected J-Lat T cell line or primary CD4+ T cells from PLWH on ART 

(403, 404).  The discrepancies between acitretin efficacy and outcome 

obtained from those two studies may be attributed to differences in cells and 

virus strains used. Despite the initial reports of acitretin in 2016, it is 

interesting that this work has never been repeated or confirmed by another 

group. Our findings are consistent with Garcia-Vidal et al. and Palermo et 

al.,  where we showed in a J-Lat cell line only modest latency reversal and 

no selective cell death. One explanation for this outcome is that RIG-I 

agonist treatment of the J-Lat cell line exhibited no or little expression of 

IFN-α and RIG-I, respectively (155).  

Interestingly, low or no expression of RIG-I was observed across multiple 

HIV infected cell lines, including U1, ACH2 and 8E5 (155), suggesting that 

these cell lines might not be a suitable model for investigating RIG-I activity. 

While many PRRs share common signalling molecules, the resultant innate 

immune response's molecular phenotype (e.g., cytokine profile) can vary 

significantly between PRRs (663, 720). Interestingly, a combination of a 

similar innate immune agonist (cGAS-STING agonist) with the HDACi 

resminostat amplified viral reactivation and induced specific death of HIV-

infected cells in the J-Lat T cell line and ACH2 cells (404). However, this 

magnitude of HIV reactivation and death of latently infected cells was not 

observed using cells from PWH on ART ex vivo. Importantly, these studies 

highlighted the therapeutic potential in synergising innate immune agonists 

with other LRA classes (e.g., HDACi). Another approach could be 
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combining a RIG-I agonist with other immunotherapeutic modalities such as 

PD-1 immune checkpoint blockade (ICB), reinvigorating T cell effector 

function and cytotoxic activity (407, 408). In addition, we and others have 

shown that anti-PD1 and other ICBs can also reverse HIV latency (107, 721, 

722).  

Although further work is needed to determine if the type 1 IFN pathway or 

NF-κB or both are driving latency reversal, we believe that induction of IFN 

might be playing a role here. Supporting this hypothesis, others have shown 

that the amount of IFN I induced by cytosolic PPR agonists correlates with 

the level of HIV reactivation using either a TLR7 agonist in non-human 

primates and acitretin in patient cells ex vivo respectively, of latently infected 

cells in vivo (393, 396, 723). In addition, Another potential mechanism by 

which TLR-7 agonists can reactivate latent HIV is through the induction of 

TNFα (723). Our laboratory has also shown that type I interferons 

(specifically rhIFN-α ) can inhibit the establishment of latency in vitro but 

also reversed HIV latency in CD4+ T cells from PLWH on ART ex vivo

through phosphorylation of STAT5 (724). Taken together, an RNA RIG-I 

agonist alone or in combination with other LRAs could be a potential LRA 

candidate that works on multiple pathways to reactivate HIV latency. Further 

work is still needed to determine if an RNA RIG-I agonist can also mediate 

the selective killing of latently infected cells. 

We also demonstrated that BGEDA-RIG-I A can trigger RIG-I signalling and 

downstream immunostimulatory effects (Type I IFN, ISGs and NF-κB) in the 

THP-1 cell line activated primary CD4+ T cells and PBMC. Importantly 

BGEDA-RIG-I A delivery in activated primary CD4+ T induced the secretion 

of IFN-α/ß, but BGEDA-Ctr ligand did not induce activity. To the best of our 

knowledge, this is the first-time delivery of 3p-dsRNA using a nanoparticles-

based delivery system that has been reported in primary CD4+ T cells and 

PBMC.   

Despite our exciting and novel findings, these experiments have a number 

of potential limitations. First, further experiments will be required to confirm 

whether BGEDA-RIG-I A can indeed reverse HIV latency. We have only 

performed this experiment once. Other HIV latency models need to be 

explored, including CD4+ T cells or monocytes from PLWH on suppressive 
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ART, which may have different susceptibility to BGEDA-RIG-I A. Second, the 

impact of RIG-I induction on IFN I or NF-κB on the HIV LTR needs to be 

explored. One way to pin down this mechanism would be to knock out 

various proteins of the RIG-I signalling pathway and determine latency 

reversal potential by BGEDA-RIG-I A. Alternatively, through inhibiting IFN I 

or NF-κB signalling. 

In addition, whether RIG-I activation induces T cell activation remains 

unknown. We were also unable to determine the level of  binding and 

internalisation of BGEDA particles with T cells. This was due the limit of 

detection of small size nanoparticles (≤ 100 nm) which renders particles 

undisguisable from background using conventional flow cytometry or 

confocal microscopy (725). However, given the significant biological effects 

that we observed, we suspect there was some degree of binding and 

internalisation. Additional work will be required to quantify the interaction of 

BGEDA and BGEDA-RIG-I A with T cells using flow cytometry and confocal 

microscopy. In addition, whether BGEDA could elicit an immune response in 

vitro or in vivo and the potential to develop nanoparticles-specific antibodies 

remains unknown. Consequently this will result in accelerated clearance of 

nanoparticles by phagocytic immune cells and contributes to the change in 

the pharmacokinetic profile of subsequent doses of BGEDA.  Therefore, it is 

crucial to evaluate the undesirable immunostimulatory potential effects of 

BGEDA and the subsequent formation of BGEDA antibodies. Finally, we did 

not evaluate the capacity of BGEDA-RIG-I A to enhance the RIG-I signalling 

pathway by quantification of RIG-I protein expression. 

5.4 CONCLUSION 

In summary, this study demonstrated for the first time that BG nanoparticles 

can efficiently deliver an RNA RIG-I agonist, 3p-dsRNA, to primary CD4+ T 

cells. Additionally, this novel complex could potentially reverse HIV latency, 

but further experiments will be needed with different models of HIV latency 

and using the BG-RIG-I-A alone and in combination with other LRAs. 
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6 Integrated Discussion 

6.1 SUMMARY OF WORK OUTLINED IN THIS THESIS 

Antiretroviral therapy (ART) effectively suppresses HIV replication in people 

living with HIV (PLWH), but treatment is lifelong. The persistence of a 

reservoir of long-lived and proliferating latently infected resting CD4+ T cells 

that carry replication-competent provirus is a significant challenge in 

achieving a cure for HIV infection (74, 79, 80, 586). These latently infected 

cells contain a transcriptionally silent provirus that can evade ART and resist 

immune-mediated clearance. One strategy toward eliminating HIV latency 

is the activation of HIV viral production by latency reversal agents (LRAs) in 

the presence of ART to induce virus-mediated cytolysis or clearance 

through immune recognition (often called “shock and kill”) (272, 312).  

Several pharmacological and immunotherapeutic compounds that harbour 

LRA activity, including epigenetic regulators (for example, the histone 

deacetylase inhibitor romidepsin, RMD) and pattern recognition 

receptors(PPRs) agonists (for example, toll-like receptors (TLR), TLR2, 

TLR7 and TLR9,) are now being extensively explored clinically as 

therapeutics to eliminate latency and purge the HIV latent reservoir (323, 

393, 663, 723, 726). While RMD and RIG-I A are promising classes of LRA, 

to date, these compounds have not shown clear success in reducing the 

reservoir, potentially due to limited potency, cytotoxicity profile and/or 

inadequate delivery to latently infected CD4+ T cells (61, 133, 375, 403, 588, 

727, 728). Thus, there is a need for safe and effective delivery strategies for 

LRA compounds to specifically target latently infected T cells. 

One approach to address this limitation is using nano-engineered particle 

delivery systems loaded with LRA, which possess several advantages over 

more traditional drug delivery methods (410, 565, 596). Nano-engineered 

particles-based drug delivery of LRAs to T cells can potentially protect the 

encapsulated cargo from degradation, increase drug solubility and 

bioavailability, and enhance intercellular delivery (416, 597–599). Several 
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studies have utilised nano-engineered carriers to improve the delivery of 

different classes of LRAs with substantially reduced therapeutic related 

toxicity (417, 458, 600). However, safe delivery of particles remains a major 

technological challenge, primarily due to the non-phagocytic nature of  T 

cells. 

In this thesis, we outlined the importance of nano-engineered drug delivery 

systems to deliver small hydrophobic molecules and nucleic acid-based 

therapeutics to T cells. To do so, we designed specific nano-engineered 

particles solutions to deliver both RMD and RNA RIG-I A into T cells. Due 

to the different requirements for hydrophobic drug and nucleic acid 

therapeutics delivery, we required two different solutions. First, we utilised 

the PMASH particle drug delivery platform to encapsulate and deliver the 

hydrophobic RMD (RMD-NPs). We demonstrated that this delivery 

mechanism enhances the potency of reactivation of HIV latency and also 

reduces cytotoxicity in cell line models of HIV latency. Second, we utilised 

the endosomatic ethylenediamine (EDA) functionalised bovine glycogen-

based nanoparticles (BGEDA NP) to deliver RNA RIG-I agonist and 

demonstrated that this approach directly stimulated the innate immune 

system and also activated HIV latency in vitro. 

Collectively, these results have demonstrated proof-of-principal that nano-

engineered particles can provide a drug delivery platform for hydrophobic 

LRA, immunomodulators, and oligonucleotide compounds and could 

provide a foundation for future novel HIV latency purging strategies. We 

propose that future directions should include targeting PMASH RMD- and 

BGEDA-RIG-I agonist NP specifically to CD4+ T cells, investigating the 

potential synergism of RMD- and BGEDA-RIG-I agonist NP to boost HIV 

transcription and killing of HIV-infected cells and evaluating the 

biodistribution of these particles in vivo. 

6.1.1 Determination of optimal factors for nanoparticles uptake by 

CD4+ T cells for the elimination of HIV latency 

6.1.2  Size and surface charge matter 

Fundamental knowledge on the best nano-engineered particle design (size 

and surface charge) for drug delivery to T cells is lacking. In tandem, to help 
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gain such fundamental knowledge, a reliable assay that can quantify and 

compare the association (binding and uptake) of different particle designs 

with T cells is also needed. 

T cells are susceptible to many diseases, including blood cancers (e.g., 

acute lymphoblastic leukemia and T cell Lymphoma) and viral infections 

(e.g. HIV and HTLV-1), making them an important target for therapeutics 

(312, 431–433). In the context of HIV infection, the experimental  LRAs have 

been shown to induce HIV gene expression in latently infected T cells (312). 

However, the efficacy of LRAs is impaired by the systematic toxicity induced 

by the non-specific activity of these compounds (375, 434). Nano-

engineered particles-based delivery of LRAs to T cells may circumvent 

these unwanted effects. However, safe delivery of particles and 

encapsulated cargo remains a major technological challenge, primarily due 

to the non-phagocytic nature of CD4+ T cells. 

The negatively charged plasma membrane surrounding a living cell forms a 

boundary between the cytosolic and external microenvironment and 

provides structural support to the cell (423, 435). Non-phagocytic T cells 

strictly control charged molecule intake from the extracellular environment 

(423). Small soluble molecules with a molecular weight below 1 KDa (e.g. 

medical drugs) pass quickly through passive diffusion, whereas larger 

molecules (> 1 KDa) require energy-dependent or membrane modelling to 

cross the cell membrane (438, 557). Micropinocytosis is an intracellular 

uptake mechanism used by T cells for particles > 200 nm that relies on 

membrane ruffling and results from actin polymerisation (439, 440). Another 

uptake mechanism in T cells that has played an essential role in receptor-

mediated endocytosis is clathrin-dependent endocytosis, where smaller 

molecules < 200 nm use this pathway for cellular uptake (442, 443). 

Therefore, the surface charge of particles is another critical parameter that 

influences particles uptake and may have a dominant effect over 

nanoparticles size (445, 446). Studying the fundamental influence of 

nanoparticles physiochemical properties (size and surface charge) in 

interaction with T cells is critical for developing an efficient, smart-drug 

delivery nanoparticle system. Importantly, we found that nanoparticle size 
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and surface charge are two critical parameters for determining intracellular 

uptake. 

We showed that negatively charged PMASH more readily associated with T 

cells compared to neutral PMASH-PEG and positively charged PMASH-PLL. 

Further, smaller and negatively charged particles (400 nm) were 

preferentially internalised in T cells compared to larger particles. With 

respect to size, 40 nm BGEDA-RIG-I A nanoparticles triggered RIG-I 

signalling and downstream immunostimulatory effects (Type I IFN and NF-

κB) in T cells. These biological effects, we assumed, are the result of 

efficient internalization of BGEDA-RIG-I A into T cells. Overall, these results 

suggest that particle size and surface charge play an essential role in 

interaction with T cells. An important caveat is that PMASH and glycogen 

nanoparticles delivery systems are two different platforms; each system 

offers several opportunities to address the limitations such as poor aqueous 

solubility and low bioavailability of hydrophobic and nucleic acid-based 

therapeutics. However, we argue that connecting the right therapeutic 

candidate to the right platform is crucial for nanomedicine design. In 

addition, nanoparticle delivery platforms differ in their ability to carry large 

payloads and their interactions with immune cells, allowing for the 

appropriate selection of carriers to treat patient-specific disease conditions. 

Particles may acquire different identities when interacting with biological 

fluids such as blood and cell culture media. In biological fluids, the surface 

charge may change drastically by the adsorption of biomolecules, including 

protein abundance and other plasma components, to form the protein 

corona (449–453). This new biological identity of nanoparticles can 

significantly alter the behaviour and fate of their interaction with cells. In 

addition, material composition and surface charge can negatively affect 

nanoparticles fate by provoking the immune system to launch an attack on 

nanoparticles (449, 729). Therefore, we extended this study by investigating 

the influence of surface charge in nanoparticles interaction with immune 

cells in human whole blood and PBMC. In addition, as PMASH particles drug 

delivery systems progress towards clinical use as a nanocarrier for LRA 

delivery, the ability to engineer PMASH particles with defined biological 

properties is essential. Again, we described the charge as a fundamental 
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physiochemical property of functionalised PMASH particles (PMASH-PEG 

and PMASH-PLL) that dictates their interaction with distinct primary cell 

subsets in human whole blood and PBMC. In contrast to association results 

from monoculture CD4+ T cells, 400 nm PMASH-PEG and PMASH-PLL 

demonstrated increased association with  T cells in a mixed culture of 

human whole blood and PBMC. 

Ultimately, the goal of any drug delivery system is to provide the therapeutic 

amount of drug to the specific organ or cell in the body to promptly achieve 

and maintain the desired drug concentration (730). A significant advance in 

nanocarrier drug delivery using a nanoscale mesoporous particle system is 

their ability to efficiently encapsulate different therapeutic payloads due to 

their tunable mesopore size. Thus, in addition to particle size, pore 

morphology and size are other factors in designing an efficient drug 

reservoir for both the accessibility of in-coming hydrophobic drugs into 

mesoporous silica (MS) particles and the release of already-loaded drugs 

(731, 732). Ideally, the pore size should be larger than the in-coming drug 

molecules to host the drug inside the pore space for drug loading. For 

example, Fujiwara et al. demonstrated that MS pore size was crucial for the 

encapsulation and release of  DNA-based therapeutics (733). Jia et al. have 

investigated the encapsulation and release of the hydrophobic paclitaxel 

drug delivery system based on MS particles with a pore size range from 3 - 

10 nm. They have found that the larger the pore size, the higher drug loading 

content, the faster release rate and the higher in vitro anti-cancer activity 

(734–736). 

Given the advantages of smaller particle size in uptake, we hypothesised 

that 100 nm PMASH particles would perform better compared to the larger 

sized particles. Interestingly, this turned out to not be the case. Drug content 

and encapsulation efficiency were higher in the 400 nm MS particles than 

100 nm MS core. In addition, we did not observe reactivation activity in 

latently infected cells treated with 100 nm RMD loaded PMASH

nanoparticles, whereas cells treated with 400 nm RMD loaded PMASH

particles showed potent reactivation activity. These results are in line with 

other published reports about the influences of pore size on the in vivo 

activity of anti-cancer drugs (735–738). Although a high level of cellular 
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uptake is the prerequisite for intracellular drug delivery, high drug loading is 

also critical for efficient activity. Our data demonstrated that smaller particles 

(100 nm) might offer high cellular uptake but poor intracellular drug delivery 

due to the confinement effect of limited loading capacity within MS pores. In 

efforts to design an optimal particle delivery system for hydrophobic drugs, 

we suggest that the balance between particle size and appropriate pore size 

of MS particles is quite an essential subject to achieve for efficient drug 

delivery to T cells. 

In summary, the smaller PMASH (400 nm) and BGEDA particles enabled 

cargo delivery to T cells, suggesting that nanoparticles can be an effective 

vehicle to deliver hydrophobic drugs and nucleic acid to T cells. Although 

clearly, a balance must be struck between size for uptake and size for 

optimal drug loading. In addition, this knowledge can be used in the rational 

design of future nanomedicines that most safely and effectively deliver 

LRAs targeting latently infected CD4+ T cells.  

6.2 FUTUER WORK 

6.2.1 Customisation of PMASH RMD-NP and BGEDA-RIG-I A 

nanoparticles for targeted drug delivery  

This thesis demonstrated that RMD or RNA RIG-I agonist delivery using 

PMASH 400 nm (RMD-NP) and BGEDA particles ( BGEDA-RIG-I agonist) 

nanoformulations to latently infected  T cells stimulated latent HIV gene 

expression with minimal toxicity. However, these remain non-specific 

particles with the likelihood of delivery to a range of non-T cell targets. 

Moving forward, the next major innovation will be to enable cell-specific 

targeting, with the expectation of further reductions in off-target effects and 

increased therapeutic efficiency. 

The viral reservoir is usually defined as a cell type or anatomical site where 

replication-competent provirus can persist for a prolonged period in people 

living with HIV (PLWH) on suppressive ART (84). HIV persistence can be 

primarily found in various compartments, including the blood, lymphatic 

system (lymph nodes, gut-associated lymphoid tissues GALT), and central 

nervous system (CNS) (171, 189, 212). A minimally toxic approach to 

eliminate the HIV reservoir would be to target latently infected cells 
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selectively. To date, no preferential gene expression signature can be used 

to distinguish latently infected cells from their healthy counterparts nor cells 

harbouring replication-competent or defective provirus. However, published 

reports have been proposed that defective proviruses can produce viral 

proteins that can cause chronic immune activation, which may play a role in 

HIV pathogenesis (283, 739–741). 

Although it remains challenging to identify and target all HIV reservoir cells, 

the ability of targeted nanocarriers to navigate and deliver LRA to sites 

enriched for latently infected cells could potentially increase their 

therapeutic index and enhance the potency of the shock and kill approach.  

Therefore, ultimately the beneficial attribute of nanoparticle drug delivery 

system is to alter biodistribution and pharmacokinetics (PK) and provide 

efficacy and accurate payload targeting HIV cellular and anatomical 

reservoirs. To this end, the underlying rationale for cloaking PMASH and 

BGEDA particles with targeted molecules (active targeting) specifically to T 

cells or targeted organs is two-fold: (i) targeted PMASH particles increase 

efficacy accuracy and attain payload concentration in sheltered viral 

reservoirs through enhanced particles-cell interaction, and (ii) reduced off-

target effects of loaded cargo. A vast number of cellular active targeting 

delivery strategies have been tested through the attachment of high-affinity 

ligands such as peptides, carbohydrates, aptamers, monoclonal antibodies, 

antibodies fragments or proteins on the surface of nanocarrier for specific 

homing and uptake by targeted cells (417, 742–749). However, target 

receptor efficacy may vary with the specificity of that receptor to the intended 

target population and affinity or avidity when linked to nanocarriers (750). In 

addition, the physicochemical properties of nanocarriers may also affect 

targeting. For example, Cao et al. have shown that neutral or positively 

charged lipid nanoparticles conjugated with anti-CD4+ T antibody had a high 

level of non-specific binding to CD4+ T cells compared to negatively charged 

particles, which hindered receptor-mediated targeting (746).  

The most commonly chosen receptors to date are general lymphocyte T cell 

surface markers, i.e., CD3, CD4, CD7, and CD8 (456, 751–754) 

(extensively addressed in (416)). An alternative targeting strategy could be 

to use antibodies targeting other cellular markers that are enriched for 
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latently infected cells, including the immune checkpoint molecules, 

programmed death protein 1 (PD-1), or CD2 and CD30 (79, 197, 755–759). 

In particular, targeting RMD loaded particles to PD-1 high expressing cells 

could have multiple beneficial outcomes, including latency reversal due to 

RMD (370, 760) and PD-1 blockade (107). However, this strategy must be 

considered cautiously, as general targeting to all T cell subsets expressing 

PD-1 can result in dose-limiting toxicities (761, 762).  

Several studies have shown that conjugating nanocarriers (loaded or 

unloaded) with an active T cell targeting molecule increases the particle-cell 

interaction with T cell populations in monoculture in the complex 

environment of a mixed population of primary human blood cells or in vivo 

compared to untargeted nanocarriers (526, 599, 746, 752, 763, 764). For 

example, Glass et al. showed selective targeting of caveosphere 

nanoparticles to CCR5 enhanced caveosphere internalisation by CD4+ T 

cells compared to untargeted caveosphere nanoparticles in mixed cell 

culture (765). 

In the context of HIV remission, targeting RMD loaded PMASH particles and 

BGEDA-RIG-I A to blood circulating and tissue-resident CD4+ T cells will 

enable specific delivery of cargo to sanctuary sites such as lymphoid tissues 

and lymphatic organs where vast numbers of latently infected CD4+ T cells 

reside and are considered to be drug-free zones and safe havenfor HIV (84, 

171, 204, 212, 416, 766–769). In a study targeting the latent reservoir in 

blood circulated CD4+ T cells,  Kovochich et al. utilised CD4+ T cell-targeted 

polymer nanoparticles incorporating a potent protein kinase C agonist 

(PKC) (770), bryostatin and the HIV protease inhibitor, nelfinavir (771). Their 

bryostatin-nelfinavir nanoformulation selectively activated latently infected 

CD4+ T cells in PBMC culture and inhibited viral spread (455). As we 

mentioned earlier, LRA loaded nanocarriers targeting lymph nodes, 

including secondary lymphatic tissues, is of interest in eradicating the HIV 

reservoir in remote sites. These targeted interventions would substantially 

reduce systematic related therapeutic toxicity and indeed achieve sufficient 

concentration at targeted sites. In addition, lymph nodes harbour a 

significant fraction of the total immune cells in the body, making this site of 

interest for targeted immunomodulatory therapy (171). Several 
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immunomodulatory interventions have been used to directly act on naïve T 

cells to modify the adaptive immune response by regulating their activation, 

function and differentiation upon antigen recognition (197, 416, 742, 772, 

773).  

Active targeting delivery to the lymph node paracortex compartment (T cell 

zone) can be achieved via intramuscular injection or via targeting of the 

peripheral node addressin (PNAd) on the capillary wall, followed by diffusion 

of the delivered nanocarrier into the lymph node mimicking the natural 

homing process of T cells into the lymph node (Extravasation) (742). 

Alternatively, smaller nanocarriers (10 nm - 100 nm in diameter) exit the 

blood circulation to the lymph nodes through the walls of high endothelial 

venules, owing to the low pressure inside the lymphatic vessel lumen 

(passive targeting) (465, 742, 774, 775). However, the nanocarriers must 

overcome physiological barriers before a subsequent uptake by the 

lymphatic system where the shape, size and surface charge of the 

nanocarrier matters (742, 776–778).  In a study using PMASH capsules, 

Koker et al. showed that in the absence of antibody conjugation, 

polyethylene glycol (PEG) functionalised poly- (methacrylic acid) (PMA)-

based nanoparticles efficiently targeted the T cell zone in the draining lymph 

nodes following subcutaneous administration (775). In another in vivo study 

using untargeted BGEDA-siRNA and BGEDA-PEG-siRNA, both 

nanoformulations showed high liver uptake and poor accumulation in the 

spleen following intravenous administration, suggesting that macrophages 

captured most particles (418). In a recent study, Cao et al. have shown 

conjugation of an anti-CD4-monoclonal antibody to negatively charged lipid-

coated poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with 

ingenol-3-angelate (Ing3A) selectively activated CD4+ T cells from macaque 

PBMCs over untargeted nanoparticles. Overall, nanoparticles that are 

surface decorated with targeting ligand showed enhanced co-localisation 

with their targeted cells or site (456, 752, 779, 780). 

In summary, targeting HIV reservoirs within blood circulating CD4+ T cells 

and lymph node-resident T cells presents a major technological challenge 

in engineering a stealth nanoparticles system that can enhance 
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nanocarriers interaction with T cells and maintain higher affinity to surface 

decorated targeted ligands in the complex in vivo environment. 

6.2.2 Combination, synergism, and scalable therapy using PMASH

RMD-NP and BGEDA-RIG-I A nanocarriers to eliminate the total latent 

HIV reservoir 

In the context of the shock and kill strategy, the inability of single LRAs to 

clear and reduce the latent HIV reservoir in clinical trials suggested that LRA 

monotherapy is not sufficient to reduce the latent reservoir (313, 375, 781, 

782), with an estimated only 5 % of latently infected cells being activated 

(465). In addition, published studies showed that interval dosing of certain 

LRAs induced higher HIV expression, while sequential treatment rounds 

yielded new virions (326, 783, 784). Given that multiple cellular mechanisms 

suppress viral reactivation in latently infected cells and that transcriptional 

activity of cellular and tissue reservoirs is stochastic (158, 231, 781, 782, 

785), it is unlikely that a single intervention will significantly impact the latent 

reservoir(158, 782). Therefore, the most effective way to reverse latency 

would be to hit distinct regulatory pathways involved in maintaining HIV 

latency using a combination of multiple mechanistic interventions. Several 

studies have demonstrated the effect of synergism using LRA combination 

therapy ex vivo (227, 338, 344, 458, 786, 787). Preclinical studies have 

shown the synergy of LRA combinations with several compounds working 

together to reactivate latent HIV reservoirs by maximising potency and 

minimising toxicity (227, 313, 609, 781, 788, 789). However, neurotoxicity 

has been reported in clinical trials when disulfiram combined with vorinostat, 

highlighting caution in using dual LRA therapies (790).  

RIG-I agonists are postulated to involve the modulation of the nuclear factor-

kB (NF-κB) and type I interferon (IFN I) signalling (668, 680), which 

stimulates HIV transcription and potentially arming the innate immune 

defence (133, 791). The HDACi RMD is an epigenetic regulator that targets 

class I HDACs (593) and has reversed latency in vitro and in vivo (362, 365, 

375, 784). Given that loading RMD into PMASH particles showed effective 

delivery and reduced RMD cytotoxic effect, we hypothesise that 

combination with a RIG-I agonist could represent an excellent strategy to 
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amplify the induction of HIV expression and potentially selective elimination 

of the latent reservoir by boosting HIV specific CD8+ T cells with strong 

effector function from naïve T cells through the induction of IFN I and pro-

inflammatory cytokines. 

HIV encodes a range of regulatory proteins with pro and anti-apoptotic 

qualities, including gp 120, Tat, Nef, Vpr, and HIV protease (590, 792). 

However, evidence suggests that latently infected cells are resistant to 

apoptosis (313, 639, 793). When HIV reactivation and replication occur, 

several HIV-encoded proteins such as HIV protease, Vpr, Nef and Tat 

downmodulate pro-apoptotic proteins (such as Bak, FasL, Bax, and 

caspase 8) or upregulate endogenous apoptosis inhibitory proteins (such

as Bcl-2, c-FLIP and caspase 10) (590, 591, 792, 794–797); this shift in 

apoptotic balance enables an HIV-infected cell to survive and actively 

produce more virions (313). Presumably, the fact that the expression of 

these viral proteins may indeed enhance cell survivability (for example, 

upregulation of Bcl-2 expression), or the latently infected cells naturally have 

a high level of Bcl-2 may contribute to allowing the reservoir to persist 

following reactivation. In this regard, we argue this could well be responsible 

for the inability of LRAs to eliminate the latently infected cells.  Therefore, 

we suggest that innate immune-boosting strategies could be used 

simultaneously with LRA to support LRA function by stimulating the pro-

apoptotic pathways and improving the killing of latently infected cells. In 

particular, modulation of several elements of the apoptosis regulatory 

network, including the pro-apoptotic proteins Caspase 8 and 

Bcl-2-associated X protein (Bax) and the anti-apoptotic protein Bcl-2. 

Our approach would lend itself well to this two-step strategy that can lead to 

reactivation and killing HIV infected cells by combining the potential of 

epigenetic reprogramming (RMD) and stimulation of innate immunity (RIG-

I agonist). The rationale for adding RIG-I agonist is two-fold: (i) an additive 

effect of HIV proviral reactivation following chromatin relaxation driven in an 

NF-κB- dependent fashion (ii) drive reactivated cells to apoptosis either by 

induction of viral pro-apoptotic proteins, sensing the produced HIV RNA 

resulting in an IFN I mediated antiviral response and priming the infected 

cells to be on the precipice of apoptosis. The first step, adding RMD, leads 
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to a more ‘open’ chromatin conformation, favouring transcription factor 

binding and gene transcription and subsequently reactivating HIV proviral 

expression, viral pro-apoptotic proteins, and HIV RNA. In the second step, 

we add the RIG-I agonist to amplify the magnitude of latency reversal and 

induce cell death. It is worthy to note, the combination of the HDACi related 

compound LAQ824 with RIG-I agonist decreased mitochondria membrane 

permeability, leading to an increase in the production of reactive oxygen 

species (ROS), activation of caspase cascade and degradation of Bcl-2 

anti-apoptotic protein in melanoma cells (798), suggesting this combination 

could also improve the shock and kill strategy.  

Thus, we propose that the HDACi RMD paired with the immunostimulatory 

RIG-I agonist could lead to synergistic reactivation and preferential killing of 

HIV-infected cells. 

6.2.3 The importance of animal studies for the development of LRA 

nanocarriers to eliminate HIV latency 

Nanoparticle drug delivery platforms have emerged as suitable carriers to 

overcome the pharmacokinetic limitations associated with free drug 

formulations. Although nanoparticles are emerging as a powerful strategy 

to deliver cargo in vitro and ex vivo, substantial challenges are still present 

that can severely limit site-specific in vivo bioavailability. The assessment of 

bio-nano interaction in vitro and ex vivo can provide some information on 

how nanoparticles interact in the complex biological microenvironment. 

Animal studies are essential for the development of therapeutics before 

being approved for human use. Such models usually involve small animals 

with mice and rat models most commonly used for biodistribution and 

efficacy and safety studies.  Therefore, the use of animal models must be 

explored to facilitate the understanding of biological barriers, in vivo

behaviour of nanoparticles, drug release kinetics, potency and lymphatic 

uptake following systematic administration. In addition, it is well established 

that a portion of blood circulating nanoparticles are non-specifically taken 

up by monocytes, dendritic cells, and liver-resident macrophages (Kupffer 

cells) (799–801). As we discussed earlier, tuning innovative design features 

such as size, surface charge and targeted molecules within the nanocarriers 
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for proper negotiation of nanocarrier-cell interaction will help provide details 

for future efforts in the rational design of T cell-targeted nanoparticle drug 

delivery systems. 

The ultimate goal of HIV research is to design a strategy to eliminate the 

latent reservoir to achieve a cure for HIV. Given that lymph nodes and gut-

associated lymphoid tissues play a crucial role in HIV persistence (207, 

212), in vitro studies may not represent the complex environment and the 

nature of interactions between immune cells in vivo. In addition, the 

inconsistency in multiple HIV latency model systems and ex vivo studies 

could yield misleading outcomes (232). Therefore, in vivo model systems 

may reflect a robust model to characterise HIV persistence and further 

evaluate LRA nanoformulations for eliminating the HIV latent reservoir. 

Furthermore, a small animal model can also provide insights into whether 

other parameters, such as sex and age, may be relevant biological variables 

(802, 803). 

Several humanised mice models have been developed to study HIV 

replication and latency (418, 544, 804–807). Humanised mice are 

immunodeficient mice engrafted with human immune cells or tissues, 

allowing them to be infected with HIV (808, 809). In addition, mice models 

allow for investigating nanocarrier biosafety, biodistribution and residual 

accumulation in systemic host filtration organs (liver, spleen, lungs and 

kidney), which are essential parameters for proper risk assessment of 

nanocarriers in defining their therapeutic effects in vivo (810, 811). Thus, 

we propose that further research should be undertaken to study the 

biodynamic of PMASH RMDLNP and bovine glycogen BGEDA-RIG-I agonist 

in uninfected and  HIV-infected humanized mice with the goal to understand 

the impact on the latent reservoir. 

6.2.4 Crossing of the physiological barrier by nanoparticles 

One of the biggest challenges in nanoparticle drug delivery systems for 

clinical translation is crossing physiological and biological barriers, such as 

mucosal barriers and their impact on nanoparticle biodistribution and 

encapsulated drug delivery. Once administered, nanoparticle-based 

therapeutics should be in a concentration that achieves full efficacy with no 
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associated side effects. In this line, various nanoparticles drug delivery 

systems are being investigated for different routes of administration such as 

parenteral, including intravenous (IV) and intramuscular (IM), oral, topical or 

nasal routes (812). The vast majority of the investigations dealing with drug 

delivery applications of nanoparticles focus on the IM and IV administration, 

albeit the oral route is the preferred and the most widely used due to its non-

invasive nature and patient compliance. Even with these clear advantages, 

the oral route presents some limitations in administering specific molecules, 

including inadequate intestinal absorption, poor stability to the aggressive 

gastrointestinal conditions or solubility issues (e.g., peptides, antibiotics).  

The IM route achieves a direct administration of therapeutic agents deep 

into the muscle to obtain local or systematic effects (812).  On the other 

hand, the IV route delivery is defined as an injection or infusion method of 

drug (nanocarrier-based drug) administration into the vein to achieve the 

systematic effect of the encapsulated drug. This route of administration is 

suitable for formulations that cannot be injected into muscles or absorbed 

by the gastrointestinal tract (813). The IV route provides a safe 

instantaneous response and complete encapsulated drugs bioavailability 

because of the direct exposure in the systematic circulation (814). 

Importantly, direct administration into a vein overcomes the issue of first-

pass metabolism (815). However, most nanoparticles-based therapies 

administrated through the IV route displayed passive liver and kidney 

targeting (816). Transdermal nanoparticle drug delivery modes (TDDs) are 

being investigated to circumvent hepatic nanoparticle encapsulated drug 

accumulation (817–819). In addition, optimising the administration route can 

improve encapsulated drug pharmacodynamic and alter its fate and efficacy 

in vivo. For instance, IV administration of PLGA nanocarriers primarily 

accumulated in the liver and spleen, whereas when these nanocarriers are 

subcutaneously or intranodal administrated, they are highly accumulated in 

local lymph nodes (820). Furthermore, a targeted T cell zone in the lymph 

node paracortex compartment can be achieved via IM administration 

targeting PNAd on the capillary wall (742, 776). These alternate 

administration routes enable NPs to reach the lymphatic system prior to the 

systemic circulation, which could be beneficial in targeting the HIV reservoir 
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while eliminating the non-specific distribution of nanocarrier encapsulated 

LRA.  

6.2.5 Suggestions for future work 

In summary, we proposed these further experiments; targeted delivery of 

RMD-LNPs specifically to CD4+ T cells by conjugating targeting molecules 

such as CD2 and investigating the efficacy of RMD-LNPs in reversing HIV 

latency in latently infected CD4+ T cells from PLWH on ART.  Finally, 

examine the potential synergism between RMD-LNPs and BG-EDA-RIG-I 

agonist. 

6.3 CONCLUDING REMARKS 

In conclusion, as progress toward creating a functional cure against HIV 

continues, we have optimised two solutions to encapsulate hydrophobic and 

nucleic acid therapeutics to target the latent HIV reservoir. We show that 

RMD loaded PMASH particles and bovine glycogen incorporated RIG-I 

agonist particles can effectively target T cells, deliver cargo, and reverse 

HIV latency in a range of cell line models. This thesis thus advances our 

understanding of the delivery of therapeutics to T cells and provides a novel 

new approach to further optimise the potency and selective delivery of LRAs 

to latently infected cells with the overall goal of eliminating the HIV reservoir.
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