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Abstract

In recent years, analysing the long-time behaviour of stochastic processes has received increasing
interest. Firstly, efficient sampling of a given probability measure is an important task that arises
in various fields such as Bayesian statistics or computational physics. Markov Chain Monte Carlo
(MCMC) algorithms form a powerful class of sampling methods for which guarantees for fast
mixing are of particular interest, especially for intractable target measures. Secondly, one would
like to better understand the convergence behaviour of stochastic processes which have their
origin in modelling phenomena in physics and are used in deep learning, among others.

In this thesis, we focus on specific high-dimensional problems. We are interested in sampling
target measures of mean-field particle type consisting of a unary potential that is in general not
strongly convex and of a pairwise interaction potential. Correspondingly, we consider a system
of many particles moving according to an external confining force and a pairwise interaction
force. Further, we address the connection between processes of mean-field particle type and
their corresponding McKean-Vlasov process, where only one particle is considered and whose
moves are determined by a nonlinear stochastic differential equation (SDE) with an external
force and a distribution-dependent interaction force. We are interested in quantitative estimates
between the laws of these two types of processes.

The thesis covers three projects. In the first part, we analyse the behaviour of the unadjusted
Hamiltonian Monte Carlo (uHMC) algorithm which forms an MCMC method that samples
approximately a given target measure. For a target measure of mean-field type, contraction in
Wasserstein distance with dimension-free rates is established under certain conditions on the
unary part and the interaction part of the mean-field potential. Furthermore, error estimates
between the target measure and the measure sampled by uHMC are provided.

In the second part, we investigate nonlinear stochastic differential equations without confine-
ment and their corresponding mean-field particle systems. To show contraction in Wasserstein
distance, the so-called sticky coupling is established for nonlinear SDEs and a novel class of
nonlinear one-dimensional SDEs with a sticky boundary behaviour at zero is introduced. For
these equations, existence and uniqueness of a weak solution are proven and a phase transition
from a unique to several invariant probability measures is analysed. Provided a unique invariant
probability measure exists and contraction towards this measure holds, we deduce contraction in
Wasserstein distance for the nonlinear SDE without confinement. Further, we establish uniform
in time propagation of chaos estimates for the corresponding particle system.

In the final part, we study the long-time behaviour of diffusions given by the second-order
Langevin dynamics with distribution-dependent forces. Global contraction in Wasserstein dis-
tance with dimension-free rates is shown via a coupling approach and a carefully constructed
distance function. In addition, we analyse the optimal order of the contraction rates for the
classical second-order Langevin dynamics with a strongly convex potential. Finally, we provide
uniform in time propagation of chaos bounds for the corresponding mean-field particle system.
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Introduction

Obtaining quantitative estimates for the long-time behaviour of stochastic processes is a relevant
issue occurring in many applications. Firstly, we are interested in getting guarantees for fast
mixing of Markov Chain Monte Carlo (MCMC) methods which form a powerful class of sampling
algorithms. In particular, efficient sampling of given intractable probability distribution is of
great interest. Secondly, we want to better understand the convergence behaviour of stochastic
processes that describe phenomena, for instance, in physics and are determined by stochastic
differential equations.

In this PhD thesis, we study the Hamiltonian Monte Carlo (HMC) algorithm for mean-field
models and two specific types of stochastic differential equations (SDEs) of McKean-Vlasov type
and investigate their long-time behaviour using coupling methods as an analytic tool. The thesis
covers three projects.

In the first project, we consider unadjusted HMC (uHMC) for mean-field models using the
velocity Verlet discretisation of the Hamiltonian dynamics given by d

dtq
i
t = pi

⌊t⌋h
− h

2∇iU(q⌊t⌋h
)

d
dtp

i
t = −1

2(∇iU(q⌊t⌋h
) +∇iU(q⌈t⌉h

)),
i = 1, . . . , n, (1.1)

where the mean-field potential U : Rnd → R is given by U(x) =
∑n

i=1(V (xi)+ ϵ
n

∑n
j=1W (xi−xj))

and ⌊t⌋h and ⌈t⌉h denote the floor and ceiling function, respectively, with respect to the discreti-
sation parameter h > 0. Using a particlewise coupling and a complementary particlewise metric,
we establish dimension-free contraction bounds in L1 Wasserstein distance. These bounds hold
for unary potentials V including non-strongly convex functions provided the interaction param-
eter ϵ, the discretisation parameter h and the duration time of each uHMC step are sufficiently
small. Moreover, we establish strong accuracy bounds for uHMC applied to mean-field models
and derive quantitative error bounds between the target measure and the measure sampled using
uHMC.

In the second project, we study nonlinear unconfined SDEs of McKean-Vlasov type on Rd

given by
dXt =

( ∫
Rd
b(Xt − x)µt(dx)

)
dt+ dBt, µt = Law(Xt), (1.2)

where (Bt)t≥0 is a d-dimensional Brownian motion and the force b : Rd → Rd consists of a linear
function and a bounded, Lipschitz continuous perturbation. We introduce a sticky coupling
for nonlinear SDEs of McKean-Vlasov type and establish conditions under which contraction
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in Wasserstein distance holds. For this, we show that the distance process of the two copies of
the coupling is controlled by the solution to a one-dimensional nonlinear equation with a sticky
boundary at 0 given by

drt =
(
b̃(rt) +

∫
Rd
g(y)Pt(dy)

)
dt+ 21(0,∞)(rt)dWt, Pt = Law(rt), (1.3)

where (Wt)t≥0 is a one-dimensional Brownian motion, b̃ is a Lipschitz continuous function and g
is a bounded measurable function. For this novel class of SDEs, we prove existence and unique-
ness in law of a weak solution. Further, we exhibit a phase transition for its invariant probability
measures. In the case of a unique invariant probability measure, we establish conditions un-
der which convergence to the invariant measure holds. Eventually, we show uniform in time
propagation of chaos for the mean-field particle system corresponding to (1.2).

In the third project, we consider the Langevin dynamics with nonlinear interactions of
McKean-Vlasov type given by{

dXt = Ytdt
dYt = (−γYt + ub(Xt) + u

∫
Rd b̃(Xt, x)µx

t (dx))dt+
√

2γudBt, µx
t = Law(Xt),

(1.4)

where (Bt)t≥0 is a d-dimensional Brownian motion, and where the confinement force b : Rd → Rd

and the interaction force b̃ : R2d → Rd are Lipschitz continuous functions. We prove global
contraction in Wasserstein distance under certain assumptions on b, b̃, the friction coefficient
γ > 0 and the inverse mass u > 0 via a specifically designed distance function and a carefully
aligned coupling approach. This distance is equivalent to the Euclidean distance and combines
optimally two contraction results for large and small distances. In addition, we provide uniform
in time propagation of chaos bounds for the corresponding particle systems.

Before we step into the details of the three projects, we introduce some notations and recall
basic definitions and known facts. First, we define a distance between two probability measures
and the notion of contraction in Wasserstein distance. In Section 1.2, we introduce the basic idea
of Markov Chain Monte Carlo methods and define HMC. In Section 1.3, we present Langevin
diffusions, before we recall some coupling techniques in Section 1.4 and present known contrac-
tion results for MCMC methods and SDEs in Section 1.5. Finally, we introduce nonlinear SDEs
and establish the concept of propagation of chaos in Section 1.6. The references are directly
provided in the respective sections.

1.1 Wasserstein distance and contraction

1.1.1 Wasserstein distance

Let (X, d) be some Polish space endowed with the Borel σ-algebra B(X). Often, we consider
X = Rd and the Euclidean distance d(x, y) = |x− y| for all x, y ∈ Rd. The set of all probability
measures on X is denoted by P(X). To define the distance between two probability distributions
µ, ν ∈ P(X), we first introduce the notion of a coupling between two probability measures. We
call γ ∈ P(X× X) a coupling of the measures µ and ν if

γ(A× X) = µ(A) and γ(X×B) = ν(B) for any A,B ∈ B(X).

2



1.1. WASSERSTEIN DISTANCE AND CONTRACTION

The set of all couplings of µ and ν is denoted by Π(µ, ν). We say that the coupling is realised
by random variables X,Y : Ω → X defined on a common probability space (Ω,A, P ) such that
(X,Y ) ∼ γ.

Let ρ : X × X → [0,∞) be a metric on X that can differ from d. Fix p ∈ [0,∞). We define
the Lp Wasserstein distance with respect to ρ on the set

Pp
ρ (X) =

{
µ ∈ P(X) :

∫
Rd
ρ(x, y)pµ(dx) <∞ for some y ∈ X

}
(1.5)

by

Wp
ρ (µ, ν) = inf

γ∈Π(µ,ν)

( ∫
X×X

ρ(x, y)pγ(dxdy)
)1/p

= inf
X∼µ,Y ∼ν

E[ρ(X,Y )p]1/p. (1.6)

In the case ρ = d, we write Wp and Pp. It holds that (Pp(X),Wp) defines a Polish space, and
if a sequence of measures (µn)n∈N in Pp(X) converges to a measure µ ∈ Pp(X), then µn → µ
weakly, see [192, Theorem 6.9]. Note that if ρ and d are equivalent, then Pp = Pp

ρ . For p = 1,
W1

ρ is called Kantorovich distance, and the exponent is often omitted for simplicity. We remark
that the Kantorovich distance is often defined for a more general function ρ which only forms a
semimetric, i.e. ρ satisfies ρ(x, y) = ρ(y, x) for all x, y ∈ X and ρ(x, y) = 0 if and only if x = y.
In that case, Wρ defines a semimetric on the space Pρ(X).

The Wasserstein distance with respect to d can easily be modified by considering a function
f : [0,∞) → [0,∞) that is non-decreasing, concave and satisfies f(0) = 0 and f ′(0) > 0.
Then, f ◦ d defines again a metric and the corresponding Kantorovich distance is given by
Wf (µ, ν) = infγ∈Π(µ,ν)

∫
X×X(f ◦ d)(x, y)γ(dxdy).

The total variation distance (TV distance) forms a prominent example for the Kantorovich
distance, where the underlying distance is given by ρ(x, y) = 1{x ̸=y}. We denote the TV distance
of two probability measure µ, ν ∈ P(X) by

∥µ− ν∥TV =Wρ(µ, ν) = inf
X∼µ,Y ∼ν

P [X ̸= Y ].

We refer to [131, Chapter 4.2] for a detailed study on the TV distance.
We note that (1.6) represents a special case of the optimal transport problem where a general

cost function c : X×X→ [0,∞) is considered instead of the metric ρ. In the Monge formulation,
a map T : X→ X is searched that minimises

∫
c(x, T (x))µ(dx) under the constraint ν = µ◦T−1,

whereas in the less restrictive Kantorovich formulation, a coupling γ ∈ Π(µ, ν) is searched that
minimises

∫
c(x, y)γ(dxdy).

The presented definitions and statements on the Wasserstein distance are taken from [192,
Chapter 6].

1.1.2 Contraction in Wasserstein distance

Using the previously introduced distances for probability measures we are interested in the long-
time behaviour of a given process. Next, we define the Markov transition function and introduce
the concept of contraction in Wasserstein distance for a given transition function.

Let I = N or I = R+ be an index set. We denote by (pt)t∈I a time-homogeneous transition
function on (X,B(X)), which is a collection of probability kernels pt : X×B(X)→ [0, 1] satisfying
p0(x, ·) = δx and pspt = ps+t for all s, t ∈ I, where (pspt)(x,A) =

∫
X ps(x,dy)pt(y,A) for all

x ∈ X and A ∈ B(X). We write µpt(dx) =
∫
X pt(y,dx)µ(dy) for all probability measures

3
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µ and (ptf)(x) =
∫
X pt(x, dy)f(y) for all functions f : X → R. Given a transition function

(pt)t∈I and a filtration (Ft)t∈I on a probability space (Ω,A, P ), a stochastic process (Xt)t∈I

on (Ω,A, P ) with values in X is called an (Ft)-Markov process with transition function (pt)t∈I

if and only if (Xt)t∈I is Ft-adapted and it holds that P [Xt ∈ A|Fs] = pt−s(Xs, A) P -almost
surely for all s, t ∈ I with s ≤ t and for all A ∈ B(X). Given a transition function (pt)t∈I and
a probability measure ν ∈ P(X), there exists a unique probability measure Pν on the product
space (Ωcan,Acan) such that (Xt)t∈I , Xt(ω) = ω(t) is a Markov process on (Ωcan,Acan, Pν)
with transition function (pt)t∈I and Pν ◦ X−1

0 = ν, where Ωcan = XI = {ω : I → X} is the
product space and Acan = σ(Xt : t ∈ I) is the product σ-algebra on Ωcan. This result holds as a
consequence of Kolmogorov’s extension theorem [123]. Moreover, we assume that the transition
function (pt)t∈I is Feller, which means that for all functions f ∈ Cb(X) it holds that ptf ∈ Cb(X),
where Cb(X) denotes the set of continuous and bounded functions f : X→ R. The Feller property
implies existence of a strong Markov process (Xt)t∈I with càdlàg paths (right continuous paths
with left limits), cf. [123, Theorem 21.27].

For 1 ≤ p < ∞, we say contraction in Lp Wasserstein distance with respect to the metric
ρ : X× X→ [0,∞) holds if there exists a constant c > 0 such that

Wp
ρ (νpt, ηpt) ≤ e−ctWp

ρ (ν, η) for all probability measures ν, η ∈ Pp
ρ (X) and t ∈ I. (1.7)

The constant c is called contraction rate. Inequalities of this form, which were first studied by
Dobrushin in [66] and which are also known as Dobrushin uniqueness condition in statistical
mechanics, give results on the long-time behaviour of the Markov process corresponding to
(pt)t∈I . Motivated by the concept of Ricci curvature bounds on Riemannian manifolds (cf.
[9, 193]), the contraction rate is alternatively called Ricci–Wasserstein curvature or Wasserstein
curvature with respect to ρ [117, 162, 180].

The issue of showing contraction in Wasserstein distance (1.7) is addressed in Section 1.4.
Next, we present several consequences of (1.7). In the following, we assume that ρ is equivalent to
d, i.e. there exist C1, C2 > 0 such that C1ρ(x, y) ≤ d(x, y) ≤ C2ρ(x, y). As a direct consequence
of contraction in Lp Wasserstein distance it holds:

Theorem 1.1 (Existence of a unique invariant measure and geometric ergodicity). There exists
a unique invariant measure µ of (pt)t∈I in Pp(X) and for every initial distribution ν ∈ Pp(X),
νpt converges to µ, i.e.

Wp
ρ (νpt, µ) ≤ e−ctWp

ρ (ν, µ), and Wp(νpt, µ) ≤Me−ctWp(ν, µ),

where M = C2/C1.

Proof. Since (Pp(X),Wp) defines a Polish space the result holds by Banach fixed point theorem,
[198, Chapter IV. 7].

To present another consequence, let us assume for a moment that I = N and let (Xn)n∈N be
a Markov chain with transition function (pn)n∈N, which admits a unique invariant probability
measure µ. As we see in more detail in the next section on MCMC methods, one is often
interested in approximating quantities of the form

∫
fdµ for some observable f : X → R and

some target measure µ on X. Then, conversely, the Markov chain (Xn)n∈N is constructed such
that µ is its unique invariant probability measure and the ergodic averages of the Markov chain
converge to the desired quantity, i.e,

n−1
n∑

i=1
f(Xi)→

∫
X
fdµ for n→∞.

4



1.1. WASSERSTEIN DISTANCE AND CONTRACTION

If (1.7) holds, we deduce quantitative bounds on the bias of the ergodic averages. This analysis
is based on work by Joulin and Ollivier [118].

Corollary 1.2. Let g : X→ R be a Lipschitz continuous function with respect to ρ with Lipschitz
constant ∥g∥Lip(ρ) given by

∥g∥Lip(ρ) = sup{|g(x)− g(y)|/ρ(x, y) : x, y ∈ X}.

Then for any n ∈ N and x ∈ X,
∣∣∣Ex

[
n−1

n∑
i=1

g(Xi)
]
−
∫
X
gdµ

∣∣∣ ≤ c−1∥g∥Lip(ρ)

∫
X
ρ(x, y)µ(dy),

Varx

[
n−1

n∑
i=1

g(Xi)
]
≤ 1

2(1− e−c)n∥g∥
2
Lip(ρ)

∫
X

∫
X
ρ(y, z)2pn(x,dy)pn(x,dz),

where Ex and Varx denote the expectation and the variance given the Markov chain (Xn)n∈N
started in x.

A proof is given in [118].
We note that more consequences result from (1.7) such as bounds on the L2(µ) spectral gap,

see [48, 105], and concentration inequalities, see e.g. [118]. Furthermore, the results can be
transferred to similar statements if ρ only constitutes a semimetric, i.e. the triangle inequality
is not satisfied, see [201, Section 0.2].

1.1.3 Exponential decay in f-divergence and mixing time

Besides contraction in Wasserstein distance, there are further possibilities to control the long-
time behaviour of stochastic processes. For this reason, we introduce another quantity to measure
the difference between two probability measures µ, ν ∈ P(X), which was first studied by Rényi
[171] and further developed by Csiszár [58] and Morimoto [154]. Assume that ν is absolutely
continuous with respect to µ, ν ≪ µ, and denote by ρ = dν

dµ the Radon-Nikodym density. Let
f : (0,∞)→ R be a convex function with f(1) = 0 and we extend f to 0 by f(0) = limt↓0 f(t),
which is well-defined by convexity of f but can be infinite. The f -divergence of µ with respect
to ν is given by

Df (ν|µ) =
∫
X
f(ρ(x))dµ(x). (1.8)

For f(t) = (t − 1)2, Df (ν|µ) = χ2(ν|µ) denotes the χ2-divergence, whereas for f(t) = t log(t),
Df (ν|µ) = H(ν|µ) denotes the relative entropy or Kullback-Leibler divergence (KL divergence).
For f(t) = |t− 1|/2, we recover the total variation distance, ∥µ− ν∥TV. The definition and the
notation of the f -divergence are based on [84].

The f -divergence can be used to analyse the long-time behaviour of stochastic processes. As
in the previous subsection, let I = R+ or I = N and let (pt)t∈I denote a transition function
of a time-homogeneous Markov process on (X,B(X)) with invariant probability measure µ. For
any probability measures ν ∈ P(X), t → Df (νpt|µ) is a non-increasing function [171]. For the
relative entropy this result is known as H-theorem in statistical physics.

We remark that the χ2-divergence and the relative entropy control the TV distance, i.e.
∥µ − ν∥TV ≤ (1/2)χ2(ν|µ)1/2 by Jensen’s inequality and ∥µ − ν∥TV ≤ (H(ν|µ)/2)1/2 for any

5
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probability measure µ, ν ∈ P(X). The latter bound is known as Pinsker’s inequality, see e.g.
[191, Section 22]. Therefore if contraction holds for the transition semigroup (pt)t∈I in χ2-
divergence or relative entropy with rate c > 0, exponential decay can be deduced for the TV
distance with rate c/2, i.e

∥νpt − µ∥T V ≤ (1/2)
√
χ2(νpt|µ) ≤ (1/2)e−ct/2

√
χ2(ν|µ) and

∥νpt − µ∥T V ≤
√
H(νpt|µ)/2 ≤ e−ct/2

√
H(ν|µ)/2, respectively.

We remark that common analytic tools to obtain exponential decay in χ2-divergence and relative
entropy are given by functional inequalities such as the Logarithmic Sobolev inequality and the
Poincaré inequality, see e.g. [179]. The estimates are obtained by differentiating the f -divergence
in time and bound its derivative by the f -divergence itself by applying either the Poincaré
inequality or the Logarithmic Sobolev inequality which provide a bound on the χ2-divergence and
the relative entropy, respectively. We note that in addition, if the Logarithmic Sobolev inequality
holds, then Talagrand’s inequality is satisfied, which bounds the L2 Wasserstein distance by the
relative entropy and exponential decay in Wasserstein distance holds [163], i.e

W2(νpt, µ) ≤
√

2H(νpt|µ) ≤ e−ct/2
√

2H(ν|µ).

Here, we do not focus on the techniques relying on functional inequalities and further references
can be found in Appendix B and Appendix C, where the results via analytic tools for the
respective framework are discussed.

Finally, we briefly turn our attention to the TV distance and introduce the mixing time. To
that end, we assume that the transition function (pt)t∈I has a unique invariant probability dis-
tribution µ and we introduce the time it takes for the distance between the invariant probability
distribution µ and the distribution δxpt of the process started in x ∈ X to become smaller than
a given value. For a set K ∈ B(X) and t ∈ I, we denote the maximal total variation distance to
equilibrium at time t for the Markov process (pt)t∈I started in K by

d(t,K) = sup
x∈K
∥pt(x, ·)− µ∥TV.

Fix ϵ > 0. The ϵ-mixing time of the Markov process with starting point in K is defined by

tmix(ϵ,K) = inf{t ∈ I : d(t,K) ≤ ϵ}.

We write tmix(ϵ) for the global ϵ-mixing time tmix(ϵ,X). A common choice is ϵ = 1/4. Since
for all K ∈ B(X), d(t,K) is non-increasing in t, it holds that d(t,K) ≤ ϵ for all t ≥ tmix(ϵ,K).
The definition of the mixing time is stated, for instance, in [131, Chapter 4], where also a
comprehensive study on mixing times to analyse the long-time behaviour of Markov chains is
given.

1.2 Markov Chain Monte Carlo methods

In this section, we introduce the Markov Chain Monte Carlo (MCMC) methods which form a
class of sampling algorithms going back to [147, 107].

In many applications, one aims to generate samples from a probability distribution µ on
some space (X,B(X)) and to approximately compute quantities of the form µ(f) =

∫
fdµ. For a

6
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probability measure µ on R, a direct sampling method is given by the generalised inverse of the
cumulative distribution function F . This method is easy to implement if F−1 is accessible. Then
for U ∼ Unif(0, 1), the random variable X = F−1(U) is distributed according to µ. However,
exact sampling is often not possible due to the complexity of µ, the high-dimensionality of the
state space or since µ is only known up to a multiplicative constant. This motivates us to
consider other sampling methods.

The MCMC method simulates a time-homogeneous Markov chain (Xn, P ) with a transition
kernel π that leaves the target measure µ invariant, i.e. µπ = µ. More precisely, it holds that
µ(B) =

∫
Rd µ(dx)π(x,B) for all B ∈ B(Rd).

If the Markov chain is reversible, i.e. if its transition kernel π satisfies the detailed balance
condition

µ(dx)π(x,dy) = µ(dy)π(y,dx), (1.9)

it follows directly that π leaves the target measure µ invariant since by Fubini’s theorem for all
B ∈ B(Rd),

µ(B) =
∫

B
µ(dx) =

∫
B

∫
Rd
µ(dx)π(x, dy) =

∫
Rd

∫
B
µ(dy)π(y,dx) =

∫
Rd
µ(dy)π(y,B).

Under appropriate ergodic properties for the transition kernel π, one can expect for large
n ∈ N, that the law of Xn gives a good approximation for the target measure µ and that the
integral µ(f) can approximately be computed by ergodic averages, i.e.

µ(f) ≈ 1
m

b+m−1∑
i=b

f(Xi),

where b denotes the burn-in time. In simulations, one is often interested in choosing b and m
sufficiently large so that the law of the Markov chain after b steps is sufficiently close to the
invariant measure µ in an appropriate sense and that the ergodic average involving m steps of
the Markov chain builds a good approximation of the quantity of interest.

Before we introduce the Metropolis-Hastings method, which is probably the most well-known
MCMC method, let us note that in some MCMC methods the transition kernel leaves the target
measure only approximately invariant, i.e. µ ≈ µπ in an appropriate sense. Hence, the law of
Xn does not directly approximate µ and an additional error term occurs. In certain cases, this
bias can be uniformly controlled for all steps m ∈ N, as for uHMC in Appendix A.3 and for
more general inexact MCMC methods in [73].

1.2.1 Metropolis-Hastings method

Next, we state the Metropolis-Hastings algorithm which forms the origin of the MCMC methods
and which was introduced by Metropolis and his co-authors in [147] and further developed by
Hastings in [107]. The basic idea of this method lies in adapting a given proposal transition
kernel p(x,dy) such that the detailed balance condition is satisfied for the new transition kernel π.
This modification is implemented by rejecting the proposal with an appropriate probability. We
assume that the proposal kernel p(x,dy) is absolutely continuous with respect to the Lebesgue
measure on Rd,

p(x, dy) = p(x, y)dy,

7
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where p(x, y) is a strictly positive density. A move from x to y that is proposed accordingly to
p(x, dy) is accepted with probability

α(x, y) = min
(
1, µ(y)p(y, x)
µ(x)p(x, y)

)
.

Otherwise the move is rejected and the Markov chain stays at x. This transition rule is encoded
in the transition kernel π given by

π(x,dy) = α(x, y)p(x,dy) + r(x)δx(dy),

where the rejection probability from x to a new state is given by

r(x) =
∫
Rd

(1− α(x, y))p(x,dy).

For the transition kernel π the detailed balance condition holds, since

µ(dx)π(x,dy) = µ(dx)α(x, y)p(x,dy) + µ(dx)r(x)δx(dy)
= min(µ(dx)p(x,dy), µ(dy)p(y,dx)) + µ(dy)r(y)δy(dx) = µ(dy)π(y,dx),

and hence µπ = µ. The crucial advantage of this method is that it is sufficient to know the target
measure only up to a multiplicative constant as this constant is cancelled out in the acceptance
probability α.

Algorithm 1.2.1 Metropolis-Hastings algorithm
Require: proposal transition kernel p(x,dy), initial probability measure ν(dx), acceptance

probability α(x, y) corresponding to the desired target measure µ(dx)
1: n← 0, sample X0 ∼ ν;
2: while Markov chain has not terminated do
3: sample Yn+1 ∼ p(Xn, ·);
4: sample Un+1 ∼ Unif[0, 1];
5: if Un+1 ≤ α(Xn,Yn+1) then
6: Xn+1 ← Yn+1;
7: else
8: Xn+1 ← Yn;
9: end if

10: n← n+ 1;
11: end while
12: return X0,X1, ... Markov chain with initial law ν and invariant measure µ

If the proposal kernel p(x, dy) describes a random walk, the algorithm is called Random
Walk Metropolis (RWM). A common choice for the proposal transition kernel p(x,dy) is given
by the normal distribution centred at x with density p(x, y) = 1/(2π)d/2 exp(−|x − y|2/2). In
that case, states close to x are more likely to be chosen than states far away, and the acceptance
probability simplifies to α(x, y) = min(1, µ(y)/µ(x)), since p(x, y) = p(y, x). As stated later in
Section 1.4, RWM exhibits a diffusive behaviour and displays slow convergence to the target
measure, especially in a high dimensional setting, see [173].

Therefore, it is reasonable to look for a more sophisticated proposal transition kernel that
exploits certain information of the target distribution if it is accessible. If, for instance, the
gradient of the potential is known, the Hamiltonian Monte Carlo algorithm which is the object
of the next section can be considered.

8
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1.2.2 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo, which was first established as Hybrid Monte Carlo, is a sampling
method that relies on the Hamiltonian dynamics. It was originally developed to perform simu-
lations for Lattice Quantum Chromodynamics [69]. In the ’90s, Neal exploited the method for
statistical computing [155].

Consider a twice differentiable function U : Rd → R satisfying
∫
Rd exp(−U(x))dx <∞. Let

µ be a probability measure on Rd of the form

µ(dx) = Z−1 exp(−U(x))dx, (1.10)

where Z =
∫
Rd exp(−U(x))dx is the normalising constant. The Hamiltonian is defined by

H(x, v) = U(x) + |v|2/2, where U corresponds to the potential energy and |v|2/2 to the kinetic
energy. Here, we omit an additional mass matrix M appearing often in the kinetic energy. To
sample µ, we construct a Markov chain on Rd using the Hamiltonian dynamics given by d

dtqt = ∂H(qt,pt)
∂pt

= pt

d
dtpt = −∂H(qt,pt)

∂qt
= −∇U(qt)

(1.11)

with initial condition (q0, p0) = (x, v) ∈ R2d. The transition step of exact HMC is given by
X(x) = qT (x, ξ), where ξ ∼ N (0, Id) is a standard normally distributed random variable and
T > 0 is the duration time. The transition kernel π for the time-homogeneous Markov chain
corresponding to exact HMC is given by

π(x,A) = P [qT (x, ξ) ∈ A] for x ∈ Rd, A ∈ B(Rd). (1.12)

We note that the Hamiltonian dynamics given by (1.11) preserves the Hamiltonian, i.e. dH/dt =
0 and it is symplectic and volume preserving [156]. Moreover, the Hamiltonian flow φt = (qt, pt)
forms a deterministic Markov process on R2d with transition function (pt)t≥0, that satisfies the
generalised detailed balance condition (cf. [84, Section 9])

(µ⊗N (0, Id))(dxdv)pt((x, v), dydu) = (µ⊗N (0, Id))(dydu)pt(S−1(y, u), S−1(dxdv)), (1.13)

where pt((x, v), ·) = δφt(x,v) and S : R2d → R2d is a measurable transformation given by S(x, v) =
(x,−v) for (x, v) ∈ R2d. More precisely, generalised reversibility

φ−t(x, v) = S(φt(S(x, v))) (1.14)

holds for the Hamiltonian flow and therefore (1.13) is satisfied. These properties of the Hamil-
tonian dynamics imply that the transition kernel of the Markov chain of exact HMC leaves the
target measure µ invariant, i.e. µ = µπ, cf. [156].

Unfortunately, the Hamiltonian dynamics is numerically not exactly solvable. An imple-
mentable discretisation of the Hamiltonian dynamics is given by the velocity Verlet integrator,{ d

dt q̃t = p̃⌊t⌋h
− h

2∇U(q̃⌊t⌋h
)

d
dt p̃t = −1

2(∇U(q̃⌊t⌋h
+∇U(q̃⌈t⌉h

))

with (q̃0, p̃0) = (x, v) ∈ R2d, where h > 0 is the discretisation parameter and

⌊t⌋h = sup{s ∈ hZ : s ≤ t} and ⌈t⌉h = inf{s ∈ hZ : s ≥ t}. (1.15)

9
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This discretisation scheme which is also called Leapfrog method is volume preserving and satisfies
generalised reversibility (1.14), see [156, Section 5.2.3]. The transition step of unadjusted HMC
(uHMC) is given by x → Xh(x) = q̃T (x, ξ) with ξ ∼ N (0, Id). Analogously to exact HMC, the
transition kernel for the time-homogeneous Markov chain induced by unadjusted HMC is given
by πh(x,A) = P [q̃T (x, ξ) ∈ A] for x ∈ Rd, A ∈ B(Rd). We note that in general µπh ̸= µ, since
the velocity Verlet integrator does not preserve the Hamiltonian operator. Under appropriate
conditions on U , T and h, πh leaves µ asymptotically invariant and the invariant measure
corresponding to πh is close to µ in an appropriate sense, see Appendix A.

A numerically implementable HMC method that leaves the target measure µ invariant is
attained by taking πh as a proposal kernel and adding a Metropolis adjustment step. The
acceptance probability is given by

α(x, q̃T (x, ξ)) = min
(
1,

exp(−U(q̃T (x, ξ))− |p̃T (x,ξ)|2
2 )

exp(−U(x)− |ξ|2
2 )

)
= min

(
1, exp(−H(q̃T (x, ξ), p̃T (x, ξ))

exp(−H(x, ξ))
)
,

since ξ ∼ N (0, Id) and since (x,−ξ) = (q̃T (y,−u), p̃T (y,−u)) for (y, u) = (q̃T (x, ξ), p̃T (x, ξ)) by
symmetry of the Hamiltonian dynamics and of the discretisation scheme. The transition step
of Metropolis adjusted HMC (MaHMC) is given by x → X̃h(x) = q̃T (x, ξ)1A(x) + x1A(x)c for
ξ ∼ N (0, Id), where the event A(x) is given by

A(x) = {U ≤ exp(H(x, ξ)−H(q̃T (x, ξ), p̃T (x, ξ))} with U ∼ Unif[0, 1].

The transition kernel for the time-homogeneous Markov chain induced by MaHMC is defined
by π̃h(x,A) = P [X̃h(x) ∈ A] = P [{q̃T (x, ξ) ∈ A} ∩ A(x)] + (1− P [A(x)])δx(A).

The definitions and statements are based on the work [156] and on the lecture notes [27].
Results on the behaviour of uHMC and MaHMC are postponed to Section 1.5.

Algorithm 1.2.2 Unadjusted HMC/ Metropolis adjusted HMC
Require: initial probability measure ν, duration time T > 0, discretisation parameter h > 0

such that T/h ∈ N, ∇U corresponding to the desired target measure µ
1: n← 0, sample X0 ∼ ν, K ← T/h;
2: while Markov chain has not terminated do
3: sample ξ ∼ N (0, Id), q0 ← Xn, p0 ← ξ;
4: for k = 1, . . . ,K do
5: qk ← qk−1 + hpk−1 − h2

2 ∇U(qk−1);
6: pk ← pk−1 − h

2 (∇U(qk−1) +∇U(qk));
7: end for
8: Xn+1 ← qK ; {for uHMC}

Yn+1 ← qK , implement line 4-9 of Algorithm 1.2.1; {for MaHMC}
9: n← n+ 1;

10: end while
11: return X0,X1, ... Markov chain with initial law ν

To complete the description of HMC, let us mention further variants of HMC. Instead of
updating the full velocity component in each step, a partial velocity randomisation can be
considered [113]. In this case, the initial velocity for the Hamiltonian dynamics in each HMC
step is given by y = δy′+

√
1− δ2ξ for some δ ∈ (0, 1), where ξ ∼ N (0, Id) and y′ is the velocity of

10
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the previous step at time T . If the duration time T is not a fixed constant but an exponentially
distributed random variable, we refer to the method as randomised HMC. The corresponding
Markov process leaves the measure µ ⊗N (0, Id) invariant, see [34]. If additionally the velocity
is only updated partially, i.e. only a few randomly selected components are updated, we obtain
the so-called Andersen dynamics, see [8] and [30] for a recent analysis of this dynamics. We
remark that both the randomised HMC and the Andersen dynamics are part of the broader
class of Piecewise Deterministic Markov Processes (PDMPs). These processes are characterised
by a deterministic flow, a jump or event rate and a transition kernel, determining the transition
at the event, cf. [62]. They form a very interesting and promising class of processes and we
refer, for instance, to [19, 35, 76] for more details on various PDMPs.

1.3 Stochastic Differential Equations

In this section, we consider diffusions on Rd. We introduce the Langevin dynamics and its
overdamped version and give the connection between them. We follow mainly the work of
Pavliotis [165, Chapter 4 and 6]. We remark that we are particularly interested in the long-time
behaviour of the Langevin diffusions, as the Langevin dynamics can be used to generate samples
for given probability measures on Rd of the form (1.10).

Given x ∈ Rd and a d-dimensional standard Brownian motion (Bt)t≥0, we consider the
solution (Xt)t≥0 of the first-order stochastic differential equation given by

dXt = −∇U(Xt)dt+
√

2dBt, X0 = x. (1.16)

A unique strong solution exists under mild conditions on the drift, e.g. if ∇U is Lipschitz
continuous, see e.g. [172, Chapter 9] and [161, Chapter 5.2]. That means that there exists a
stochastic process with continuous sample paths, X0 = x, and

Xt = X0 −
∫ t

0
∇U(Xs)ds+

√
2Bt for t ≥ 0.

The solution (Xt)t≥0 is called overdamped Langevin diffusion.
Let ν0 be some probability measure on Rd of the form ν0(dx) = ρ0(x)dx for some probability

density function ρ0. If X0 is distributed according to ν0, we remark that for each t ≥ 0 the
probability density function ρt(x) of Xt solves the corresponding Fokker-Planck equation

∂tρt(x) = ∇ · (∇U(x)ρt(x)) + ∆ρt(x), (1.17)

see e.g. [165, Section 4.5]. The corresponding generator of the diffusion process (Xt)t≥0 is given
by

L = −∇U(x) · ∇+ ∆. (1.18)

Under appropriate conditions on the potential U , the Markov process with generator L is ergodic
and the probability measure µ, given in (1.10), is the invariant distribution. In particular, µ
is the unique invariant measure if U is a smooth potential satisfying lim|x|→∞ U(x) = +∞ and
e−U(x) ∈ L1(Rd), see [165, Proposition 4.2].

A common numerically realisable approximation of (1.23) is given by the unadjusted Langevin
algorithm (ULA) which uses the Euler discretisation with discretisation parameter h > 0 of
(1.16) given by

Xk = Xk−1 + h∇U(Xk−1) +
√

2hξk,

11
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where (ξk)k∈N is a sequence of independent normally distributed random variables, cf. [164,
175, 59, 77]. This method with fixed step size h generates a Markov chain (Xk)k≥0 on Rd

that leaves the target measure µ only approximately invariant. Therefore, often an adaptive
sequence for the step size (hk)k∈N with hk → 0 as k → ∞ is considered [77, 78]. Alternatively,
the implementation of an additional Metropolis-Hastings step produces the Metropolis-adjusted
Langevin algorithm (MALA), whose corresponding transition kernel leaves the target measure
invariant [175, 81, 79, 177].

Next, we consider the classical Langevin dynamics, whose origin goes back to modelling the
evolution of a particle in statistical physics that is characterised by a position and a velocity
component and undergoes damping and external forces [88, 126]. As for the Hamiltonian dy-
namics, an extended state space Rd × Rd is considered and the diffusion consists of a position
(Xt) and a velocity (Yt) which are driven by the stochastic differential equation

{
dXt = Ytdt
dYt = −γYtdt− u∇U(Xt)dt+

√
2γudBt,

(X0, Y0) = (x, y), (1.19)

where the constant γ ∈ (0,∞) corresponds to friction, u ∈ (0,∞) to the inverse of the mass of
the particle and (x, y) ∈ R2d is the initial condition. As for the overdamped Langevin diffusion,
a solution exists under appropriate mild assumptions on U , i.e. if ∇U is Lipschitz continuous,
see e.g. [172, Chapter 9.2]. The generator of the Markov process (Xt, Yt)t≥0 is given by

L = y · ∇x − u∇xU · ∇y + γ(−y∇y + u∆y). (1.20)

Let ρ0(x, y) be a probability density function on R2d and let ν0 be the probability measure on
R2d of the form ν0(dxdy) = ρ0(x, y)dxdy. If (X0, Y0) is distributed according to ν0, then the
probability density function ρt(x, y) corresponding to the diffusion process (Xt, Yt)t≥0 solves the
kinetic Fokker-Planck equation given by

∂tρt(x, y) = −y · ∇xρt(x, y) + u∇xU(x) · ∇yρt(x, y) + γ(∇y · (yρt(x, y)) + u∆yρt(x, y)).

We note that the overdamped Langevin dynamics (1.16) is obtained by taking the limit γ →∞
in (1.19). Under appropriate assumptions on U , e.g., if U is a smooth potential satisfying
lim|x|→∞ U(x) = +∞ and e−U(x) ∈ L1(Rd), the diffusion (Xt, Yt)t≥0 with generator given in
(1.20) is ergodic and the Boltzmann-Gibbs measure µ⊗N (0, uId) with µ given in (1.10) is the
unique invariant measure, see [165, Proposition 6.1].

As for the overdamped dynamics, this property is used to generate samples via discretised
versions of the dynamics, see e.g. [37, 55, 60, 128, 153]. Often, the dynamics is split into the
classical velocity Verlet integrator approximating the Hamiltonian dynamics and in the Ornstein-
Uhlenbeck process and the steps are successively implemented. The generator L is decomposed
in L = LA + LB + LO with

LA = y · ∇x, LB = −∇xU · ∇y and LO = −γy · ∇y + γ∆y,

where u = 1 is assumed for simplicity. Let h > 0 be the discretisation step and define δ = e−hγ/2.
Making use of the decomposition, the sampling scheme referred as OBABO algorithm is given

12
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by

ỹ0 = δy0 +
√

1− δ2ξ (O)
y1/2 = ỹ0 − (h/2)∇U(x0) (B)
x1 = x0 + hy1/2 (A)
ỹ1 = y1/2 − (h/2)∇U(x1) (B)

y1 = δỹ1 +
√

1− δ2ξ′, (O)

where ξ, ξ′ ∼ N (0, Id) are two independent random variables. This second order scheme sat-
isfies generalised reversibility (1.14) and the generalised detailed balance condition (1.13) with
transformation map S(x, v) = (x,−v) for (x, v) ∈ R2d. If we consider the scheme O(BAB)kO
where the steps BAB are k-times repeated for some k ∈ N, we directly recover uHMC for δ = 0
with step size h and duration length T = hk. For δ > 0, we obtain uHMC with partial velocity
randomisation.

Finally, let us introduce a class of diffusions on R where the diffusion parameter of the
corresponding SDE is not constant and which exhibits a sticky behaviour at 0. Consider the
solution (Xt)t≥0 of the stochastic differential equation with sticky boundary at 0 given by

dXt = b(Xt)dt+ 1{Xt>0}dWt, (1.21)

where b : R → R is a Lipschitz continuous function and (Wt)t≥0 is a one-dimensional standard
Brownian motion. Existence and uniqueness in law of weak solutions to (1.21) is investigated in
e.g. [196, 197]. Sticky diffusions play an important role in analysing sticky couplings, see [87].
A variant of these diffusions is of particular interest in the second work given in Appendix B.
An overview of the development of the sticky diffusions first studied by Feller [92] is given in
[166] and we refer to the references given in Appendix B.

1.4 Couplings and contraction results

In this section, we address the question of how contraction in Wasserstein distance (1.7) can be
established via couplings. Further, we describe direct coupling approaches for solutions to SDEs
and exact HMC and show how these approaches are exploited to prove (1.7).

A coupling of two stochastic processes ((Xt), P ) and ((Yt), P ′) both with state space X is
given by a process ((X̄t, Ȳt), P̄ ) with state space X×X such that the laws of (X̄t)t∈I and (Ȳt)t∈I

under P̄ coincide with laws of (Xt)t∈I under P and (Yt)t∈I under P ′, respectively. We say that
the coupling is Markovian iff the process ((X̄t, Ȳt), P̄ ) is a right-continuous strong Markov
process, cf. [84, Definition 3.23]. We note that a coupling of two strong Markov processes is
not Markovian in general. For time-discrete processes, the coupling is Markovian if the process
satisfies the Markov property. In the time-continuous case, the coupling is Markovian if the
transition semi-group is Feller and the process is right-continuous [176, Chapter III.2.8].

Given two Markov chains (Xn)n∈N and (Yn)n∈N with transition kernels π and π′ on (X,B(X)),
the transition kernel π̄ on (X× X,B(X)⊗ B(X)) is called a coupling of π and π′ if the measure
π̄((x, y),dx′dy′) is a coupling of the measures π(x,dx′) and π(y,dy′) for all x, y ∈ X. If γ is a
coupling of two probability measures ν and η on X, the canonical Markov chain ((Xn,Yn), Pγ)
with transition kernel π̄ and initial distribution γ is a Markovian coupling of the Markov chains
π and π′ and initial distributions ν and η, respectively.
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To give the strategy to prove (1.7) via couplings, we focus first on time-discrete Markov
processes with one-step transition kernel π. The basic idea relies on finding a suitable coupling
and a distance function ρ : X× X→ [0,∞) such that the generator L̄ = π̄ − I associated to the
coupling transition kernel π̄ of two copies of π satisfies

L̄ρ(x, y) ≤ −cρ(x, y) for all x, y ∈ X. (1.22)

Then,

Wρ(νπ, ηπ) ≤ EX̄0∼ν,Ȳ0∼η[ρ(X̄1, Ȳ1)] ≤ (1− c)EX̄0∼ν,Ȳ0∼η[ρ(X̄0, Ȳ0)] for all ν, η ∈ P(X).

Taking the infimum over all couplings γ of ν and η yields contraction in Wasserstein distance
(1.7). To show contraction for a time-continuous Markov process, one is interested in aligning
a Markovian coupling of two copies of the time-continuous Markov process with different initial
conditions and a distance function ρ such that a similar equation as (1.22) can be proven, where
L̄ is replaced by the generator of the time-continuous coupling process.

The idea of combining coupling and distance function is explored by Mu-Fa Chen and Feng-
Yu Wang [49, 50] to obtain bounds for the spectral gap. Hairer, Mattingly and Scheutzow
[104, 103, 102] and Eberle [83] used this ansatz to get contraction in Wasserstein distance.
In particular, Harris type theorems are established in [104, 103, 102], which give contraction
in Wasserstein distance by combining a local minorisation condition and a global Lyapunov
condition. Eberle applied the interplay of coupling and distance to optimise the contraction rate
for diffusions. The coupling and the distance construction of [83] are presented for specific SDEs
in the next subsection.

1.4.1 Couplings and contraction results for first order SDEs

We consider the stochastic differential equation

dXt = b(Xt)dt+
√

2dBt, X0 = x, (1.23)

where b : Rd → Rd is a locally Lipschitz continuous function and (Bt)t≥0 is a d-dimensional
standard Brownian motion. We remark that there exists a unique strong solution (Xt)t≥0 of
(1.23) for a given x ∈ Rd and a given standard Brownian motion (Bt)t≥0.

In the first instance, we impose for the function b : Rd → Rd:

Assumption 1.1. There exists κ > 0 such that

⟨b(x)− b(y), x− y⟩ ≤ −κ|x− y|2 for all x, y ∈ Rd.

We note that Assumption 1.1 is satisfied for b = −∇U where U ∈ C2(Rd) is some κ-strongly
convex potential.

Let (x, y) ∈ R2d and let (Bt)t≥0 be a d-dimensional standard Brownian motion. We define
the synchronous coupling of two solutions of (1.23) as a diffusion process (Xt, Yt)t≥0 on R2d

solving the the stochastic differential equation given by{
dXt = b(Xt)dt+

√
2dBt X0 = x,

dYt = b(Yt)dt+
√

2dBt, Y0 = y.

14



1.4. COUPLINGS AND CONTRACTION RESULTS

Figure 1.1: Synchronous coupling of two diffusions on R given by the SDE dXt = −Xtdt + dBt with
different initial values.

Note that both copies (Xt)t≥0 and (Yt)t≥0 are solutions of (1.23) with different initial conditions
and are driven by the same noise, see Figure 1.1.

We note that the process (Xt − Yt)t≥0 has a t-continuous sample path. By Assumption 1.1,
it holds that

d|Xt − Yt|2 = 2⟨Xt − Yt, b(Xt)− b(Yt)⟩dt ≤ −2κ|Xt − Yt|2dt,

and hence, |Xt − Yt|2 ≤ e−2κt|x− y|2 for all t ≥ 0. Therefore, for all 1 ≤ p <∞ it holds that

Wp(δxpt, δypt) ≤ e−κtWp(δx, δy) for all x, y ∈ Rd and t ≥ 0.

We also obtain contraction for the purely deterministic dynamics when the Brownian motion
is absent since Assumption 1.1 yields a global contractivity condition. Further, the contraction
rate κ is independent of the dimension d and is often understood as a lower curvature bound.

If Assumption 1.1 is not globally satisfied, it is still possible to prove global contraction in
Wasserstein distance by exploiting the noise and using a carefully constructed distance function.
Here, we consider the reflection coupling introduced by Lindvall and Rogers in [133]. The
reflection coupling or mirror coupling of two solutions of (1.23) is a diffusion process (Xt, Yt)t≥0
on R2d solving the stochastic differential equation given by

dXt = b(Xt)dt+
√

2dBt, X0 = x,

dYt =
{
b(Yt)dt+

√
2(Id − 2ete

T
t )dBt, if t < τ

b(Yt)dt+
√

2dBt, if t ≥ τ
Y0 = y,

(1.24)

where x, y ∈ Rd, (Bt)t≥0 is a d-dimensional standard Brownian motion (Bt)t≥0 and τ = inf{t ≥
0 : Xt = Yt} denotes the coupling time. For t < τ , the process et is given by et = (Xt−Yt)/|Xt−
Yt|. In particular, for each time t < τ the Brownian motion is reflected at the hyperplane with
normal vector et. This coupling given by (1.24) defines indeed a coupling for (1.23), since∫ t

0(Id − 2ese
T
s )dBs is a standard Brownian motion by Levy’s characterisation [172, Chapter 4,

Theorem 3.6]. The difference process satisfies for t < τ ,

d(Xt − Yt) = (b(Xt)− b(Yt))dt+
√

8ete
T
t dBt. (1.25)

Instead of Assumption 1.1, we impose the weaker condition:

15



1. INTRODUCTION

Assumption 1.2. There exist κ > 0, L > 0 and R > 0 such that

⟨b(x)− b(y), x− y⟩ ≤ (−κ1{|x−y|≥R} + L1{|x−y|<R})|x− y|2 for all x, y ∈ Rd.

If there exists U ∈ C2(Rd) such that b = ∇U , this condition corresponds to U being strongly
convex outside a Euclidean ball. The assumption is satisfied for instance for a double-well
potential.

Then, under Assumption 1.2 the reflection coupling combined with a modified distance
function gives contraction in average. Consider a non-decreasing, concave function f : [0,∞)→
[0,∞) which is C1 and satisfies f(0) = 0. For rt = |Xt−Yt|, we obtain by (1.25), Assumption 1.2
and by Ito’s formula,

df(rt) ≤ f ′(rt)(−κ1{rt≥R} + L1{rt<R})rtdt+
√

2f ′(rt)2dWt + 4f ′′(rt)dt for t < τ,

where Wt =
∫ t

0 es
T dBs is a one-dimensional Brownian motion by Levy’s characterisation. If

there exists a non-decreasing, concave f satisfying

f ′(r)(−κ1{r≥R} + L1{r<R})r + 4f ′′(r) ≤ −cf(r) (1.26)

for some constant c > 0, we can deduce contraction in L1 Wasserstein distance with respect
to the distance function ρ : Rd × Rd → [0,∞) given by ρ(x, y) = f(|x − y|) for all x, y ∈ Rd.
Condition (1.26) is satisfied for

f(r) =
∫ r

0
g(s)φ(s)ds, where

φ(r) = exp(−L(r ∧R)2/8), Φ(r) =
∫ r

0
φ(s)ds, g(r) = 1− 1

2

∫ r∧R

0

Φ(s)
φ(s) ds

/∫ R

0

Φ(s)
φ(s) ds.

Then, by (1.26) for the above constructed function f ,

d
dtE[f(rt)] ≤ −cE[f(rt)]

with rate c = min(κRφ(R)/2(
∫ R

0 g(s)φ(s)ds)−1, 2(
∫ R

0 Φ(s)φ(s)−1ds)−1) and hence by Grönwall’s
inequality

Wρ(δxpt, δypt) ≤ E[f(|Xt − Yt|)] ≤ e−ctE[f(|X0 − Y0|)].

Taking the infimum over all couplings yields contraction in L1 Wasserstein distance with respect
to ρ. Since f satisfies

rφ(R)/2 = rf ′(R) ≤ f(r) ≤ Φ(r) ≤ r for any r ∈ R+,

we obtain contraction in L1 Wasserstein distance with respect to the Euclidean distance,

W(δxpt, δypt) ≤Me−ctW(δx, δy) for all t ≥ 0 and x, y ∈ Rd,

where M = 2φ(R)−1 = 2 exp(LR2/2).

Alternatively, there exist constants c̃, a,M1, R1 ∈ (0,∞) and a concave function f̃ : [0,∞)→
[0,∞) such that f̃ is C1, satisfies f̃(0) = 0, limr↓0 f̃(r) = a, limr↓0 f̃

′(r) = 1, f ′(r) = 1/M1 for
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Figure 1.2: Reflection coupling of two diffusions on R given by the SDE dXt = −4Xt(Xt − 1)dt + dBt

with different initial values.

all r ≥ R1 and f̃ solves (1.26). This function has the advantage that we can deduce additionally
bounds in TV distance of the form

∥δxpt, δypt∥T V ≤ e−c̃t(a+W(δx, δy))/a for all t ≥ 0 and x, y ∈ Rd.

The above calculations rely on [83, 84] where Eberle obtained contraction in Wasserstein
distance and TV distance using a reflection coupling and a distance involving a carefully con-
structed concave function. The technique using couplings and concave functions is captured in
different frameworks in subsequent works, see e.g. [31, 85].

1.4.2 Coupling and contraction for SDEs with degenerate noise

Next, we exhibit contraction for explicit SDEs with degenerate noise applying a synchronous
coupling. We consider the Langevin dynamics (1.19), where the potential U is κ-strongly convex
and has a Lipschitz continuous gradient, i.e. ∇U satisfies Assumption 1.1 and there exists
L ∈ (0,∞) such that |∇U(x) − ∇U(y)| ≤ L|x − y| for all x, y ∈ Rd. This framework is also
studied in detail in [181], see Appendix C. Since this case gives insight into the order of the
contraction rate, the main calculations and the contraction results are provided here.

Given x, y, x′, y′ ∈ Rd, a d-dimensional standard Brownian motion (Bt)t≥0 and γ, u > 0, we
consider the synchronous coupling (Xt, Yt, X

′
t, Y

′
t )t≥0 of (1.4) given by{

dXt = Ytdt
dYt = (−γYt − u∇U(Xt))dt+

√
2γudBt,

(X0, Y0) = (x, y),

{
dX ′

t = Y ′
t dt

dY ′
t = (−γY ′

t − u∇U(X ′
t))dt+

√
2γudBt,

(X ′
0, Y

′
0) = (x′, y′).

Under the above condition on U , there exists a unique strong solution (Xt, Yt)t≥0. We refer to
Figure 1.3 for an illustration of the coupling.

Since U is κ-strongly convex with Lipschitz continuous gradients, there exists a positive
definite matrix K ∈ Rd×d with smallest eigenvalue κ > 0 and a convex function G : Rd → Rd

17
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Figure 1.3: Synchronous coupling of two Langevin diffusions on R2.

with a Lipschitz continuous gradient such that

U(x) = (x · (Kx))/2 +G(x). (1.27)

Note that this splitting is not unique and a natural choice is given by K = κId. As we see in
later computations, we are particularly interested in a splitting, where the Lipschitz constant
LG of the gradient of G is minimised.

The convexity and the Lipschitz continuous gradient of G, i.e.

⟨∇G(x)−∇G(x′), x− x′⟩ ≥ 0 and |∇G(x)−∇G(x′)| ≤ LG|x− x′| for all x, x′ ∈ Rd,

imply co-coercivity of G (see [157, Theorem 2.1.5]),

|∇G(x)−∇G(x′)|2 ≤ LG⟨∇G(x)−∇G(x′), x− x′⟩ for all x, x′ ∈ Rd.

Let (Zt,Wt)t≥0 = (Xt−X ′
t, Yt−Y ′

t )t≥0 denote the difference process and let A,B,C ∈ Rd×d

be positive definite matrices of the form

A = γ−2uK + (1/2)(1− 2λ)2Id, B = (1/2)(1− 2λ)γ−1Id and C = γ−2Id

with λ = min(1/8, κuγ−2/2). We consider the function ρ : R2d × R2d → [0,∞) given by

ρ((x, y), (x′, y′)) = ((x− x′) · (A(x− x′)) + (x− x′) · (B(y − y′)) + (y − y′) · (C(y − y′))1/2

= (γ−2u(x− x′) · (K(x− x′)) + (1/2)|(1− λ)(x− x′) + γ−1(y − y′)|2

+ (1/2)γ−2|y − y′)|2)1/2

for all (x, y), (x′, y′) ∈ R2d, which defines a metric that is equivalent to the Euclidean distance
d((x, y), (x′, y′)) = |(x, y)− (x′, y′)|, i.e. there exists C1, C2 ∈ (0,∞) such that

C1d((x, y), (x′, y′)) ≤ ρ((x, y), (x′, y′)) ≤ C2d((x, y), (x′, y′)) for all (x, y), (x′, y′) ∈ R2d.
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Then by Ito’s formula, Young’s inequality and co-coercivity of G, it holds that for ρ2
t =

ρ((Xt, Yt), (X ′
t, Y

′
t ))2

d
dtρ

2
t ≤ 2Wt · (AZt) + 2Wt · (BWt)− 2Zt · (B(uKZt − u(∇G(Xt)−∇G(X ′

t))))

− 2Wt · (CWt)−Wt · (C(uKZt − u(∇G(Xt)−∇G(X ′
t))))

≤ −(1− 2λ)γ−1uZt · (KZt)− ((1− 2λ)γ−1u+ LGu
2γ−3)Zt · (∇G(Xt)−∇G(X ′

t))
− 2λγ(2Zt · (BZt) +Wt · (CWt)).

If LGuγ
−2 ≤ 3/4, we obtain

d
dtρ

2
t ≤ −2cρ2

t ,

where c = λγ, since −(1− 4λ)γ−1uZt · (KZt) ≤ −γ−1u(κ/2)|Zt|2 ≤ −λγ|Zt|2 by the definition
of λ. Then by Grönwall’s inequality, ρt ≤ e−ctρ0 for all t ≥ 0. Therefore, if LGuγ

−2 ≤ 3/4, it
holds that for all 1 ≤ p <∞

Wp
ρ (µt, νt) ≤ e−ctWp

ρ (δ(x,y), δ(x′,y′)) for all (x, y), (x′, y′) ∈ R2d and t ≥ 0,

where µt = Law(Xt, Yt) and νt = Law(X ′
t, Y

′
t ). By the equivalence of ρ and d, we obtain

Wp(µt, νt) ≤Me−ctWp(δ(x,y), δ(x′,y′)) for all (x, y), (x′, y′) ∈ R2d and t ≥ 0,

where M = C2/C1.

A study of the contraction for Langevin dynamics in the above framework is also given in
[60, 152] using a synchronous coupling approach and a different distance function. If U is not
strongly convex, the analysis becomes more involved and we need to make use of the noise
which is only present in the velocity component. In [85], a new coupling is established yielding
local contraction for small distances in an appropriate distance. This approach combined with
a semimetric involving a Lyapunov function yields a contraction result for strongly convex
potentials outside a Euclidean ball. Another approach relying on a novel distance function is
presented in Appendix C.

1.4.3 Coupling and contraction for exact HMC

Next, we present the synchronous coupling construction for exact HMC and its impact on
obtaining contraction. The computations rely on [31, Lemma 3.4]. Given (x, y) ∈ R2d and
ξ ∼ N (0, Id), the synchronous coupling of two transition kernels π(x, ·) and π(y, ·) is given by
the transition step (X(x, y),Y(x, y)) satisfying

X(x, y) = qt(x, ξ) and Y(x, y) = qt(y, ξ).

The difference process (zt, wt)t≥0 = (qt(x, ξ)− qt(y, ξ), pt(x, ξ)− pt(y, ξ))t≥0 is given by{ d
dtzt = wt

d
dtwt = −(∇U(qt(x, ξ))−∇U(qt(y, ξ)).
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We suppose that U is twice differentiable and ∇U satisfies Assumption 1.1 and is Lipschitz
continuous with Lipschitz constant L. Note that κ ≤ L. Then for (a(t), b(t)) = (|zt|2, 2zt ·wt) it
holds that { d

dta(t) = b(t) a(0) = |z0|2 = |x− y|2,
d
dtb(t) = −2κa(t) + β(t) b(0) = 0,

where β(t) = −(∇U(qt(x, ξ)) − ∇U(qt(y, ξ)) · zt + 2κa(t) + 2|wt|2 ≤ 2|wt|2. The initial value
problem is solved by

a(t) ≤ cos(
√

2κt)a(0) +
∫ t

0
(2κ)−1/2 sin(

√
2κ(t− r))β(r)dr.

By Taylor expansion and if Lt2 ≤ 1, it holds that cos(
√

2κt) ≤ 1−κt2 +(1/6)κ2t4 ≤ 1−(5/6)κt2,
and (2κ)−1/2 sin(

√
2κ(t− r)) ≤ (t− r). To bound β(r) ≤ |wr|2, we note that

max
s≤t
|zs − z0| ≤ max

s≤t

∫ s

0

∫ u

0
|∇U(qr(x, ξ))−∇U(qr(y, ξ)|drdu

≤ Lt2

2 max
s≤t
|zs| ≤

Lt2

2 max
s≤t

(|zs − z0|+ |z0|).

For Lt2 ≤ 1, maxs≤t |zs − z0| ≤ Lt2|z0|, and hence, maxs≤t |zs| ≤ (1 + Lt2)|z0|. Then,

max
s≤r
|ws| ≤ max

s≤r

∫ s

0
|∇U(qu(x, ξ))−∇U(qu(y, ξ)|du ≤ Lrmax

s≤r
|zs| ≤ Lr(1 + Lr2)|z0|.

Hence, if Lt2 ≤ min(1, κ/L) = κ/L, then

a(t) ≤ (1− (5/6)κt2)|z0|2 +
∫ t

0

(
(t− r)2(Lr(1 + Lr2)|z0|)2

)
dr

≤ (1− (5/6)κt2)|z0|2 + (1/6)t4(L(1 + Lt2)2|z0|2 ≤ (1− (5/6)κt2)|z0|2.

Therefore, we obtain for LT 2 ≤ κ/L

|X(x, y)−Y(x, y)| ≤ (1− (1/12)κT 2)|x− y|.

and for all 1 ≤ p <∞ and m ∈ N

Wp(δxπ
m, δyπ

m) ≤ e−cmWp(δx, δy) with c = (1/12)κT 2,

see Figure 1.4 illustrating the synchronous coupling and the contraction.
If Assumption 1.1 is relaxed to a more general assumption, the analysis of the convergence

behaviour becomes more involved. If Assumption 1.2 is supposed, contraction in an L1 Wasser-
stein distance is shown for exact HMC and local contraction is proven for MaHMC in [31] by
applying a new coupling approach. Contraction in an L1 Wasserstein distance for the uHMC is
covered in Appendix A.

1.5 Summary of existing contraction results

In this section, we give an overview and comparison of existing contraction and complexity
results. We begin with summarising and comparing the results for overdamped Langevin dif-
fusions, classical Langevin diffusions and exact HMC before we state results for numerically
implementable sampling algorithms.
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Figure 1.4: Two synchronously coupled HMC chains (Xm)m≥0 and (Ym)m≥0 on R for a quadratic
potential. Left: Evolution in time of the two Markov chains. Right top: Difference of the two Hamiltonian
flows (qt(x, ξ) − qt(y, ξ), pt(x, ξ) − pt(y, ξ)) in R2. Right bottom: Difference of the two corresponding
Markov chains (Xm −Ym)m≥0.

1.5.1 Analysis and comparison of results given in Section 1.4

By Section 1.4.1, contraction for the overdamped Langevin dynamics with b = u∇U holds with
contraction rate κ for κ-strongly convex potentials U (i.e. ∇U satisfies Assumption 1.1). An
additional inverse mass u is considered in the SDE which is chosen to be of order O(L−1) to
guarantee that the drift is of order O(1). Hence, the contraction rate is of order O(K−1) where
K = L/κ denotes the condition number. The contraction rate coincides with the contraction
rate obtained via functional inequalities, cf. [11, Theorem 9.7.2]. If the potential U is only
κ-strongly convex outside a Euclidean ball with radius R and has an L-Lipschitz lower bounded
gradient (see Assumption 1.2), contraction holds with a rate that is upper bounded by κ and a
quantity depending on L and R.

For the Langevin dynamics with quadratic potentials satisfying Assumption 1.1, we deduce
from Section 1.4.2 that contraction holds for any friction coefficient γ > 0 with contraction rate
c = γ/8 ∧ κuγ−1/2, which fits in with the spectral gap obtained in [165, Chapter 6.3] up to a
constant. Then, for γ = 2

√
κu the contraction rate is optimised and given by c =

√
κu/4. If

an additional convex perturbation is considered as in Section 1.4.2, the additional constraint
LGuγ

−2 ≤ 3/4 appears where LG denotes the Lipschitz constant of gradient of the convex
perturbation. If LG > 3κ, the rate is optimised for γ =

√
3LGu/4 and is of order O(κ

√
u/
√
LG).

In particular if LG is of the same order as the Lipschitz constant L of ∇U , the rate is of the same
order as in the work by Dalalyan and Riou-Durand [60]. If LG ≤ 3κ, we obtain a contraction
rate of order O(

√
κu) for γ = 2

√
κu as for the quadratic potentials. This rate corresponds with

the rate of the contraction result in L2 norm obtained in [40]. To ensure that the drift is of order
O(1) as in the overdamped case, we suppose u ∈ O(1/L). Then the rate is of order O(K−1/2)
for LG ≤ 3κ and of order O(K−1) for LG > 3κ, respectively.

If Assumption 1.2 is supposed instead of Assumption 1.1, contraction is established in [85]
by aligning a coupling approach and a semimetric based on a Lyapunov function. The approach
is further developed in Appendix C observing a contraction rate that depends on κ, LG, γ and
R, but is independent of the dimension, see Section 2.3 for an outlook of the results.

By Section 1.4.3, we obtain a contraction rate of order O(K−2) for exact HMC if T is of
order O(

√
κ/L). In [27, Section 5], the constraint on T is improved to LT 2 ≤ 1/4 leading to a

21



1. INTRODUCTION

Dynamics rate constraint for rate
overdamped LD O(κu) u ∈ O(1/L) O(K−1)
LD (if LG ≤ 3κ) O((γ/4) ∧ (κuγ−1)) LGuγ

−2 ≤ 3/4 γ = 2
√
κu, O(K−1/2)

u ∈ O(1/L)
LD (if LG > 3κ) O((γ/4) ∧ (κuγ−1)) LGuγ

−2 ≤ 3/4 γ = 2
√
LGu/3, O(K−1)

u ∈ O(1/L)
HMC [Section 1.4.3] O(κT 2) LT 2 ≤ (κ/L) T ∈ O(

√
κ/L) O(K−2)

HMC [27, Thm 5.4] O(κT 2) LT 2 ≤ 1/4 T ∈ O(1/
√
L) O(K−1)

Table 1.1: Contraction rates for contraction in Wasserstein distance of overdamped and classical
Langevin diffusions (LD) and of HMC for κ-strongly convex potential with L-Lipschitz continuous gradi-
ents.

contraction rate of order O(K−1).

1.5.2 Results of numerically implementable sampling methods

Next, we focus on the contraction and complexity results for numerically implementable sampling
algorithms.

First, let us mention the optimal scaling limits which are an often considered technique to
accomplish a non-asymptotic analysis of MCMC methods in high dimensions. For this purpose,
a target measure of product form µ(dx) ∝

∏n
i=1 exp(−U(xi))dx on Rnd is considered where

U : Rd → R satisfies sufficient regularity conditions, and the optimal choice of the free parameters
in the sampling algorithm is studied for n→∞ to balance the computational cost and to make
acceptable moves. Although this approach is not further discussed in the thesis, we review some
known results for completeness. First introduced in [173], Gelman, Gilks and Roberts showed
that in the Random Walk Metropolis the step size should be chosen of order O(n−1) to obtain
an average acceptance probability of O(1). For MALA, the optimal order for the step size
improves to O(n−1/3), cf. [174, 168]. For Metropolis adjusted HMC, a discretisation step h of
order O(n−1/4) leads to an average acceptance probability of O(1), cf. [17].

Furthermore, one is interested in non-asymptotic bounds of the error between the distribu-
tion obtained by running the sampling algorithm and the target measure µ. In the following,
we assume that the potential U : Rd → R of the target measure µ(dx) ∝ exp(−U(x))dx is dif-
ferentiable, κ-strongly convex and has an L-Lipschitz continuous gradient. As before, K = L/κ
denotes the condition number. Given M0 ∈ R+, we say that an initial measure µ0 has a M0-warm
start if

sup
B∈B(Rd)

µ0(B)
µ(B) = M0

and the constant M0 does not scale with the condition number K or the dimension d. Under
a warm start, RWM has an ϵ-mixing in TV distance of order O(dK2) [81]. For MALA, [199]
proved that given ϵ > 0 an ϵ-mixing in TV distance occurs in O(Kd1/2) steps with step size
scaling with h ∝ (L

√
d)−1. These upper bounds improve previous results given in [56, 127] and

are of the same order in the condition number K and the dimension d as the lower bounds. For
Metropolis adjusted HMC, ϵ-mixing occurs in O(d2/3K) steps, cf. [52]. In all three results, terms
of logarithmic order in K, d and ϵ are omitted and the proofs rely on conductance techniques
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Method ϵ-mixing #gradient evaluations step size
RWM [81] dK2 — h ∝ (dLK)−1

MALA [199] d1/2K d1/2K h ∝ (L
√
d)−1

MaHMC [52] d2/3K d11/12K h ∝ (Ld7/6)−1/2

ULA [59] dK2/ϵ2 dK2/ϵ2 h ∝ (LKd2ϵ−2)−1

Table 1.2: Upper bounds on ϵ-mixing in TV distance starting from a warm start. Here, logarithmic
factors are omitted.

which measure the bottleneck ratio of a Markov process in equilibrium and which give lower
and upper bounds on the mixing time, cf. [131, 47].

Focusing on unadjusted sampling algorithms, Dalalyan [59] proved that for a warm start
ULA achieves an ϵ-approximation of the target measure in total variation distance in O(dK2/ϵ2)
steps where the logarithmic dependences are omitted. By [78], the same order of steps lead to
an ϵ-approximation in L2 Wasserstein distance. In [55], an ϵ-approximation in L2 Wasserstein
distance is shown in O(

√
dK/ϵ) steps for a discretisation scheme of Langevin diffusion. In

Appendix A, contraction in Wasserstein distance and complexity bounds for uHMC are provided
without assuming a warm start and further improved for the strongly convex case in [27, Section
5]. If the duration time satisfies LT 2 ≤ 1/4, contraction is shown with rate κT 2/4, which leads
in combination with the restriction on the duration time to a rate of order O(K−1) as in the
exact case. Then complexity bounds for uHMC are obtained by applying the following general
triangle trick, cf. [141]. If contraction in Wasserstein distance with respect to some distance ρ
is satisfied for uHMC, it holds for the target measure µ and the invariant probability measures
µh of uHMC that

Wρ(µ, µh) ≤ Wρ(µπ, µπh) +Wρ(µπh, µhπh) ≤ Wρ(µπ, µπh) + (1− c)Wρ(µ, µh), (1.28)

which implies

Wρ(µ, µh) ≤ c−1Wρ(µπ, µπh).

Note that the unique existence of µh holds by the contraction result. Therefore, the distance
between µ and µh can be bounded from above by estimating the strong accuracy of the sampling
algorithm. In the case of strongly convex potentials with bounded third derivatives,W1(µπ, µπh)
is of order O(h2d). Then given ϵ > 0 and h of order O(d−1/2), an ϵ-approximation in Wasserstein
distance of the target measure can be achieved by O(d1/2 log(d/ϵ)) gradient evaluations if the
Wasserstein distance between the initial measure and the target measure is of order O(d). In
[28], for given ϵ > 0, it is shown that an ϵ-mixing of uHMC to its invariant measure is of order
O(log(d/ϵ)) by applying the bounds in Wasserstein distance and a one-shot coupling. Hence,
an ϵ-approximation of the invariant measure of uHMC is obtained in O(h−1 log(d/ϵ)) gradient
evaluations. An ϵ-approximation of the target measure is achieved in O(d3/4ϵ−1/2 log(d/ϵ))
gradient evaluations provided the discretisation step h is chosen of order O(d−3/4ϵ1/2). This
idea of estimating the complexity via the triangle trick is further developed for general inexact
sampling algorithms in [73]. For ULA, the Wasserstein distance between the target measure
and the invariant measure of ULA is of order O(hd). For h chosen of order O(d−1), an ϵ-
approximation to the target measure can be achieved in O(d log(d/ϵ)) gradient evaluations.
For frameworks satisfying Assumption 1.2 instead of Assumption 1.1, we refer for uHMC to
Section 2.1, where the results of Appendix A are summarised, and to [73, Example 15] for ULA.
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1.6 Propagation of chaos

1.6.1 Introduction to propagation of chaos

In this section, we introduce the phenomenon propagation of chaos and describe the connection
between solutions of nonlinear stochastic differential equations given bydX̄t =

(
b(X̄t) +

∫
Rd b̃(X̄t, x)µ̄t(dx)

)
dt+

√
2dBt, µ̄t = Law(X̄t),

X̄0 = x̄
(1.29)

with x̄ ∈ Rd and d-dimensional standard Brownian motion (Bt)t≥0, and the mean-field particle
system ({Xi,N

t }Ni=1)t≥0 with N ∈ N particles determined bydXi,N
t =

(
b(Xi,N

t ) +N−1∑N
j=1 b̃(X

i,N
t , Xj,N

t )
)
dt+

√
2dBi

t,

Xi,N
0 = xi,

i = 1, . . . , N, (1.30)

where {xi}Ni=1 ∈ RNd and {(Bt)t≥0}Ni=1 are N independent d-dimensional standard Brownian
motion. Here, b : Rd → Rd and b̃ : R2d → Rd are two locally Lipschitz continuous functions.

The notion propagation of chaos was formed by Kac, who was originally interested in de-
scribing mathematical rigorously the connection between the Boltzmann equation modelling a
large system of interacting gas particles and the nonlinear Liouville equation [120]. Making
use of the idea of linking particle systems with nonlinear equations, McKean studied a class
of diffusions, which are unrelated to the Boltzmann theory, and observed that under specific
assumptions the law of the particle system can be approximated by the law of the nonlinear
equation in an appropriate sense [144].

Here, we concentrate on SDEs given by (1.29) and (1.30), where the drift consists of a con-
fining force b and of a pairwise interaction force b̃. We remark that (1.29) forms the probabilistic
description of the Fokker-Planck equation given by

∂tρt(x) = −∇x ·
(
b(x)ρt(x) +

∫
Rd
b̃(x, u)µ̄t(du)ρt(x)

)
+ ∆xρt(x),

where ρt denotes the time-dependent density function corresponding to the law µ̄t(dx) of X̄t.
We note that given x̄0 ∈ Rd and a d-dimensional standard Brownian motion (Bt)t≥0 existence
of a unique strong solution to (1.29) holds by [146, Theorem 2.2].

There are several ways to characterise propagation of chaos rigorously, see [45, Section 2.3]
for an overview of different definitions. Here, we focus on describing the connection between
(1.29) and (1.30) via probabilistic techniques and we follow the definition of chaos given in [45,
Section 2.3.1], where a coupling between a solution to the mean-field model with N particles and
N i.i.d. solutions to the nonlinear SDE (1.29) is considered and the trajectories of the coupling
are compared.

Definition 1.3 (Propagation of chaos). Let ρ denote a distance on Rd, let p ∈ [1,∞) and
T ∈ (0,∞]. We say that propagation of chaos holds if for all N ∈ N, there exist a coupling
({Xi,N

t }Ni=1, {X̄t}Ni=1)0≤t≤T of a mean-field particle system ({Xi,N
t }Ni=1)0≤t≤T driven by (1.30)

with law µN
t = Law({Xt}Ni=1) and of N independent processes ({X̄t}Ni=1)0≤t≤T driven by (1.29)

with law µ̄t = Law(X̄i
t) for all i = 1, ..., N and a constant C(N,T ) > 0 depending on N and T

24



1.6. PROPAGATION OF CHAOS

with C(N,T ) → 0 as N →∞, such that

N−1
N∑

i=1
E[sup

t≤T
ρ(Xi,N

t , X̄i
t)p] ≤ C(N,T ) (pathwise formulation) (1.31)

or

N−1
N∑

i=1
sup
t≤T

E[ρ(Xi,N
t , X̄i

t)p] ≤ C(N,T ). (pointwise formulation) (1.32)

We say uniform in time propagation of chaos holds if C(N,T ) is independent of T and (1.31),
respectively (1.32), holds for all T ∈ (0,∞].

We note that (1.31) implies (1.32), and (1.32) implies

sup
t≤T
Wp

ρ (µN
t , µ̄

⊗N
t ) ≤ C(N,T ) → 0 as N →∞.

1.6.2 Propagation of chaos results

Next, we present some known propagation of chaos results. The difference of the trajectories of
the particle system given by (1.30) with N copies of the process driven by the nonlinear SDE
(1.29) was first studied by McKean [144] and Sznitman [187] by applying coupling methods. We
adapt this propagation of chaos result with a fixed time-horizon presented in [45, Theorem 3.1]
to the mean-field particle system given in (1.30).

Theorem 1.4 (Finite time propagation of chaos - McKean). Let b : Rd → Rd and b̃ : Rd →
Rd be Lipschitz continuous functions and let b̃ be bounded. Fix N ∈ N. Let {(Bi

t)t≥0}Ni=1 be
N independent d-dimensional standard Brownian motions. Let ({X̄i

t}Ni=1, {X
i,N
t }Ni=1)t≥0 be the

synchronous coupling of the mean-field particle system and N copies of the nonlinear stochastic
differential equation, solvingdX̄i

t =
(
b(X̄i

t) +
∫
Rd b̃(X̄i

t − x)µ̄t(dx)
)
dt+

√
2dBi

t, µ̄t = Law(X̄i
t)

dXi,N
t =

(
b(Xi,N

t ) +N−1∑N
j=1 b̃(X

i,N
t −Xj,N

t )
)
dt+

√
2dBi

t

(1.33)

for i = 1, . . . N . Then for any T > 0, propagation of chaos holds in the pathwise sense, i.e.
there exists C(N,T ) > 0 such that

N−1
N∑

i=1
E[sup

t≤T
|Xi,N

t − X̄i
t |2] ≤ C(N,T ).

The constant C(N,T ) is of order O(N−1) and grows exponentially fast in T .

The original proof of this theorem by McKean is given in [144], see also [187] for an alternative
proof. Extensions of McKean’s finite propagation of chaos bounds are provided by Sznitman
[187] and Méléard [146]. Relaxations of the Lipschitz condition of the drift including more
singular drifts are addressed for instance in [23, 119, 159, 160]. In [108, 148, 149], uniform in
time propagation of chaos estimates are established via analytic techniques.

Using probabilistic tools, uniform in time propagation of chaos estimates are established by
Malrieu in [137] for the following framework:
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Theorem 1.5 (Uniform in time propagation of chaos). Fix N ∈ N. Let the confining force b be
of the form b = −∇V for some potential V ∈ C2(Rd), locally Lipschitz continuous and satisfy
Assumption 1.1, i.e. V is a κ-strongly convex confinement potential. Let the interaction force
b̃ be of the form b̃(x, y) = −∇W (x − y) for some potential W ∈ C2(Rd) that is symmetric and
convex. Moreover, ∇W is locally Lipschitz continuous and there exists q ≥ 1 such that ∇W has
polynomial growth of order q. Let ({X̄i

t}Ni=1, {X
i,N
t }Ni=1)t≥0 be the solution to the synchronous

coupling (1.33), where the initial law µ̄0 has bounded moments of order 2q. Then, there exists a
constant C > 0, depending on κ, such that

sup
t≥0

N−1
N∑

i=1
E[|Xi,N

t − X̄i
t |2] ≤ CN−1.

A proof is given in [45, Section 3.1.3] and relies on a synchronous coupling, on applying the
strong convexity of V and the convexity of W and on a uniform second moment bound for the
law µ̄t. Extensions to non-strongly convex confinement potentials are studied in [44]. In [75], a
coupling approach involving a reflection coupling is applied to prove uniform in time propagation
of chaos for non-strongly convex confinement potentials.

Let us generalise the idea of [75] how uniform in time propagation of chaos can be es-
tablished if uniform in time second moment bounds hold for the solution to the nonlinear
SDE (1.29) and if contraction in an L1 Wasserstein distance holds for the mean-field parti-
cle system (1.30) with Lipschitz continuous interaction force b̃. We assume that there ex-
ists a coupling ({Xi,N

t }Ni=1, {Y
i,N

t }Ni=1)t≥0 of two solutions to (1.30) and a distance function
ρN : RNd × RNd → [0,∞) of the form ρN ({xi}Ni=1, {yi}Ni=1) = N−1∑N

i=1 f(|xi − yi|) for some
increasing, concave function f with f(0) = 0 and f ′(0) = 1 such that

dρN ({Xi,N
t }Ni=1, {Y

i,N
t }Ni=1) ≤ −cρN ({Xi,N

t }Ni=1, {Y
i,N

t }Ni=1)dt+ dMt,

where c > 0 is a positive constant independent of N and (Mt)t≥0 is some martingale. Following
the proof approach of Section 1.4.1, it holds that

WρN (µN
t , ν

N
t ) ≤ e−ctWρN (µ⊗N

0 , ν⊗N
0 ),

where Xi
0 ∼ µ0 and Y i

0 ∼ ν0 for all i = 1, . . . , N and µN
t = Law({Xi

t}Ni=1) and νN
t =

Law({Y i
t }Ni=1). In this case, we can establish uniform in time propagation of chaos by con-

sidering the same coupling approach for a mean-field particle system ({Xi,N
t }Ni=1)t≥0 and N

i.i.d. copies of solutions ({X̄i
t}Ni=1)t≥0 to (1.29). Then,

dρN ({Xi,N
t }Ni=1, {X̄i

t}Ni=1) ≤ −cρN ({Xi,N
t }Ni=1, {X̄i

t}Ni=1)dt+N−1
N∑

i=1
Ai

tdt+ dMt, (1.34)

where (Mt)t≥0 is some martingale and (Ai
t)t≥0 (i = 1, . . . , N) are adapted stochastic processes

satisfying

Ai
t ≤

∣∣∣ ∫
Rd
b̃(X̄i

t , x)µ̄t(dx)−N−1
N∑

i=1
b̃(X̄i

t , X̄
j
t )
∣∣∣.

Given X̄i
t , we note that X̄j

t (j ̸= i) are i.i.d. random variables with law µ̄t. Then,

E
[
b̃(X̄i

t , X̄
j
t )|X̄i

t

]
=
∫
Rd
b̃(X̄i

t , x)µ̄t(dx)
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and

E
[
|
∫
Rd
b̃(X̄i

t , x)µ̄t(dx)−N−1
N∑

i=1
b̃(X̄i

t , X̄
j
t )|2

∣∣∣X̄i
t

]
= N − 1

N2 Varµ̄t(b̃(X̄i
t , ·)) + 1

N2E
[
|
∫
Rd
b̃(X̄i

t , x)µ̄t(dx)− b̃(X̄i
t , X̄

i
t)|2

∣∣∣X̄i
t

]
+ 2
N2

N∑
j=1,j ̸=i

E
[
|
∫
Rd
b̃(X̄i

t , x)µ̄t(dx)− b̃(X̄i
t , X̄

j
t )| · |

∫
Rd
b̃(X̄i

t , x)µ̄t(dx)− b̃(X̄i
t , X̄

i
t)|
∣∣∣X̄i

t

]
.

Hence, by Lipschitz continuity of b̃ and Young’s inequality,

E
[
|
∫
Rd
b̃(X̄i

t , x)µ̄t(dx)−N−1
N∑

i=1
b̃(X̄i

t , X̄
j
t )|2

]

≤
4∥b̃∥2Lip
N

∫
Rd
|x|2µ̄t(dx) +

4∥b̃∥2Lip
N2

∫
Rd
|x|2µ̄t(dx) +

8∥b̃∥2Lip
N

∫
Rd
|x|2µ̄t(dx).

Then by Jensen’s inequality and the uniform in time second moment bound of the solution to
(1.29), there exists C > 0 such that

E[Ai
t] ≤

4∥b̃∥Lip
N1/2

( ∫
Rd
|x|2µ̄t(dx)

)1/2
≤ CN−1/2.

Taking expectation in (1.34), inserting the upper bound and applying Grönwall’s inequality
yields

E[ρN ({Xi,N
t }Ni=1, {X̄i

t}Ni=1)] ≤ e−ctE[ρ({Xi,N
0 }

N
i=1, {X̄i

0}Ni=1)] + CN−1/2c−1.

If for some probability measure µ0 on Rd with finite second moment Xi,N
0 , X̄i

0 ∼ µ0 for all
i = 1, . . . , N ,

N−1
N∑

i=1
sup
t≥0

E[f(|Xi,N
t − X̄i

t |)] ≤ CN−1/2c−1

and hence uniform in time propagation of chaos holds in the pointwise sense.

This approach to show propagation of chaos is based on the results of [75]. Note that
compared to the calculations in [75], the process Ai

t is controlled differently and the assumption
b̃(x, y) = b̂(x − y) with b̂(0) = 0 for some Lipschitz continuous function b̂ is not required here.
A modification of the stated calculations is applied in [181], see Appendix C. The statements
of this section up to and including the propagation of chaos result by Malrieu are based on the
recent reviews [45, 46], where a detailed summary of the historical development and statements
of propagation of chaos is given, see also the references therein.

1.6.3 Application to Deep Learning

The concept of propagation of chaos is applicable in the analysis of training a one-hidden layer
neural network. We are interested in finding a function f : Rd−1 → R such that for given input
data z = (z1, . . . , zd−1) ∈ Rd−1 and output data y ∈ R, f(z) provides a good approximation of
y. In the case of a one-hidden layer neural network, we consider f to be of the form f(z) =
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1
N

∑N
i=1 βi,Nϕ(αN,i ·z), where N represents the number of neurons in the hidden layer, ϕ : R→ R

is a bounded, continuous, non-constant activation function. A typical example for ϕ is the
sigmoid function ϕ(r) = 1/(1 + e−r) [178]. We are looking for optimal parameters αN,i ∈ Rd−1

and βi,N ∈ R, i = 1, .., N . More precisely, we are intersted in solving the non-convex optimisation
problem

min
αi,N ,βi,N

{∫
R×Rd−1

∣∣∣y − 1
N

N∑
i=1

βi,Nϕ(αi,N · z)
∣∣∣2ν(dydz)

}
,

where ν is the measure with compact support of the data (y, z) ∈ R × Rd−1. We denote
by µN = 1

N

∑N
i=1 δβi,N ,αi,N

the empirical law of the parameters and we rewrite f to f(z) =∫
Rd βϕ(α · z)µN (dβdα) =

∫
Rd φ(x, z)µN (dx), where x = (α, β) and φ(x, z) = βϕ(α · z). Then,

instead of the non-convex minimisation problem on the finite dimensional parameter space, we
consider the minimisation problem over probability distributions on Rd

µ̄ = argminµ

{∫
Rd
|y −

∫
Rd
φ(x, z)µ(dx)|2ν(dydz) +H(µ|N (0, Id))

}
,

where an additional regulariser H(µ|N (0, Id)) is considered, which is given by the relative en-
tropy with respect the normal distribution N (0, Id). By [114], this is a convex minimisation
problem and the minimiser is given by

µ̄(dx) ∝ exp
(
− 1

2 |x|
2 −

∫
Rd

2φ(x, z)
(
− y +

∫
Rd
φ(x̃, z)µ̄(dx̃)

)
ν(dydz)

)
dx.

We note that µ̄ is an invariant probability measure of the nonlinear SDE (1.29) with

b(x) = −x− 2
∫
Rd
∇xφ(x, z)yν(dydz) and b̃(x, x̄) = 2

∫
Rd
∇xφ(x, z)∇x̄φ(x̄, z)ν(dydz).

Further, we observe that given data points (y, z) = (y, (z1, . . . zd−1)) ∈ Rd distributed according
to ν, the Euler discretisation of the mean-field particle system (1.30) given by

Xi
k+1 = Xi

k − h
(
Xi

k + 2∇xφ(Xi
k, z)y −

1
N

N∑
j=1

2∇xφ(Xi
k, z)∇xφ(Xj

k, z)
)

+
√

2hξk+1

with step size h > 0 and ξk ∼ N (0, Id) provides a sampling algorithm of the distribution of
the parameters Xi,N = (βi,N , αi,N ). Therefore, if uniform in time propagation of chaos bounds,
quantitative bounds on the contraction behaviour of the nonlinear SDE and error bounds on the
disretisation scheme are given, we obtain quantitative estimates for the sampling behaviour.

The description of the application to deep learning relies on [114], see also [145, 178] for
further information.
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2

Outline of Projects

2.1 Outline of Project A

In the first project, we establish contraction with dimension-free rates for unadjusted HMC for
mean-field models using a particlewise coupling approach. The results were distributed as a
research article on the online-portal ArXiv:

N. Bou-Rabee and K. Schuh. Convergence of unadjusted Hamiltonian Monte Carlo
for mean-field models, ArXiv preprint 2009.08735, September 2020.

The article is a joint work with Nawaf Bou-Rabee (Rutgers University Camden). Appendix A
contains the article as stated on the online portal ArXiv. This subsection presents the main
subject and results of the article. The precise statements, proofs and the context of the existing
literature are given in Appendix A.

We consider the unadjusted Hamiltonian Monte Carlo method to sample the probability
distribution µ(dx) ∝ exp(−U(x))dx on Rnd where the twice differentiable potential U : Rnd → R
is of mean-field particle type given by

U(x) =
n∑

i=1

(
V (xi) + ϵ

n

n∑
j=1

W (xi − xj)
)
.

The function V denotes the unary potential, W the pairwise interaction potential and the
positive constant ϵ > 0 the interaction parameter. The parameter n corresponds to the number
of particles and d to the dimension of one particle. Generating samples of the desired measure µ
plays an essential role in understanding statistical properties of high-dimensional models which
have applications in many areas such as chemical physics, material science and deep learning.

Unadjusted HMC generates a Markov chain on Rnd where the transition step of one uHMC
step is given by X′(x) = qT (x, ξ), where qT (x, ξ) denotes the position at duration time T > 0 of
the velocity Verlet discretisation scheme of the Hamiltonian dynamics, d

dtq
i
t = pi

⌊t⌋h
− h

2∇Ui(q⌊t⌋h
)

d
dtp

i
t = −1

2(∇iU(q⌊t⌋h
) +∇iU(q⌈t⌉h

)),
i = 1, . . . , n

with initial value (x, ξ) ∈ R2nd, where ξ ∼ N (0, Ind) is a standard normally distributed random
variable. The functions ⌊·⌋h and ⌈·⌉h are given in (1.15). Its transition kernel πh is given by
πh(x,A) = P [X′(x) ∈ A] for any x ∈ Rnd and any A ∈ B(Rnd).
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We recall that compared to the Metropolis adjusted HMC introduced in Section 1.2.2, uHMC
omits the acceptance-rejection step leaving the target measure only approximately invariant.
Therefore, besides studying the long-time behaviour of uHMC and verifying the existence of a
unique invariant measure µh of uHMC, one is interested in controlling the difference between
the target measure and µh in an appropriate sense.

We impose the following conditions for the unary potential V : Rd → R and the interaction
potential W : Rd → R:

Assumption 2.1. It holds V (0) = 0, V (x) ≥ 0 for all x ∈ Rd, and V is strongly convex outside
a Euclidean ball, i.e. there exist K ∈ (0,∞) and R ∈ [0,∞) such that

(x− y) · (∇V (x)−∇V (y)) ≥ K|x− y|2 for all x, y ∈ Rd such that |x− y| ≥ R.

Further, V and W have bounded second and third derivatives, i.e. there exist L, L̃, LH , L̃H ∈
[0,∞) such that

sup ∥∇2V ∥ ≤ L, sup ∥∇2W∥ ≤ L̃, sup ∥∇3V ∥ ≤ LH and sup ∥∇3W∥ ≤ L̃H .

In Appendix A, we consider a particlewise coupling approach that adapts ideas of the cou-
pling approach of [31]. The coupling transition step (X(x, y),Y(x, y)) defined by X(x, y) =
qT (x, ξ) and Y(x, y) = qT (y, η) is characterised by the pair of random variables (ξ, η) defined on
a common probability space satisfying Law(ξ) = Law(η) = N (0, Ind). For the particlewise con-
struction we consider ξ ∼ N (0, Ind) and construct ηi for each i = 1, . . . , n separately. Namely,
if the distance |xi − yi| is large, we consider a synchronous coupling ηi = ξi. If the distance is
small, we set ηi = ξi + γ(xi − yi) for some 0 < γ < T−1 with maximal probability. Otherwise,
we apply a reflection coupling, ηi = ξi − 2(ei · ξi)ei with ei = (xi − yi)/|xi − yi| if |xi − yi| > 0.
Indeed, this construction satisfies Law(ξ) = Law(η) = N (0, Ind) and defines a coupling of two
uHMC transition steps.

We remark that for a large distance |xi − yi| the strong convexity property of the unary po-
tential leads to contraction for the i-th component of the transition step provided the interaction
is sufficiently small. The definition of the coupling for small distances is motivated by the free
dynamics when U ≡ 0. In this case, it holds that |Xi(x, y)−Yi(x, y)| = |xi − yi + T (ξi − ηi)| =
|xi − yi||1− Tγ| with maximal probability. By the boundedness of the second derivatives of V
and W , which corresponds to the Lipschitz continuity of the gradients of V and W , the deviation
from the free dynamics can be bounded in terms of L and L̃ and contraction is obtained for this
choice of ξi and ηi.

Corresponding to the coupling, a concave function f is aligned that puts more weight on a
decrease in distance than an increase. This function in combination with the contraction for
ηi = ξi+γ(xi−yi) compensates for the missing contraction in the case when a reflection coupling
occurs. Then, we establish contraction on average of one HMC transition step with respect to
the l1-distance ρ(x, y) =

∑n
i=1 f(|xi − yi|), i.e.

E
[ n∑

i=1
f(|Xi(x, y)−Yi(x, y)|)

]
≤ (1− c)

n∑
i=1

f(|xi − yi|) for all x, y ∈ Rnd,

provided the duration time T and the discretisation step h are sufficiently small and the inter-
action parameter ϵ is sufficiently small compared to the convexity parameter K of the unary
potential. From that we can deduce existence of a unique invariant measure µh of uHMC and
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exponential contraction to the measure µh in L1 Wasserstein distance with respect to ρ, i.e. for
all initial distributions ν on Rd,

Wρ(νπh
m, µh) ≤ e−cmWρ(ν, µh) for any m ∈ N.

We remark that the constraints on T , h and ϵ are independent of the number of particles and
depend only on L, K and R.

Via the synchronous coupling, we verify that the L1 Wasserstein distance with respect to ρ
of the distribution after an exact and an unadjusted HMC step is of order O(h2). Applying this
strong accuracy bound of the velocity Verlet integrator, the contraction result and the triangle
trick (1.28), we establish bounds in an L1 Wasserstein distance between the target measure µ
and the invariant measure µh of the uHMC. This bound provides quantitative estimates for the
discretisation step and for the number of HMC steps needed to reach the target distribution in
L1 Wasserstein distance up to a given error ε.

Additionally, given an observable g ∈ C1
b (Rnd), we are interested in quantitative bounds

between µ(g) =
∫
Rnd g(x)µ(dx) and the estimator Am,bg = 1

m

∑m+b−1
k=b g(Xk), where b denotes

the burn-in time and m denotes the number of steps of the Markov chain considered for the
ergodic average. Using the contraction result and the strong accuracy bounds, we bound the
bias of the estimator by

|Eν [Am,bg]− µ(g)| ≤ 1
m

max
i
∥∇ig∥∞M

e−cb

1− e−c
Wl1(ν, µh) + h2 max

i
∥∇ig∥∞C, (2.1)

where ν is the initial distribution of the Markov chain and M is a constant relating the distance ρ
and the distance l1 given by l1(x, y) =

∑n
i=1 |xi−yi|. The distanceWl1(ν, µh) between the initial

distribution and the invariant measure of uHMC is often of order n. Similarly, the constant C
is linear in n. Hence, if g is an intensive observable of the form g(x) = 1

n

∑n
i=1 g̃(xi) for some

g̃ ∈ C1
b (Rd), the bias can be bounded from above in (2.1) by a given constant ε > 0 by choosing

m, b sufficiently large and h sufficiently small. This choice is independent of the number of
particles n.

Contribution by the author of the thesis: The idea of studying HMC applied to mean-
field models was given to me by my advisor Andreas Eberle. The theoretical contraction result
was established by me. Initially, I obtained error bounds for uHMC via an inductive argument
leading to similar bounds with the same dependence on the discretisation parameter as presented
in the paper. My co-author, Nawaf Bou-Rabee, brought up the idea of directly using the triangle
inequality trick given in (1.28) which shortens the proof and is presented in the current version
of the paper. The technical details, the numerical simulations and the writing were done by me
getting advice and assistance from Nawaf Bou-Rabee.

2.2 Outline of Project B

In the second project, we establish conditions under which contraction for solutions of non-
linear SDEs of McKean-Vlasov type using a sticky coupling holds, and we study nonlinear
one-dimensional sticky SDEs. The results have been distributed through a research article on
the online-portal ArXiv:
A. Durmus, A. Eberle, A. Guillin and K. Schuh. Sticky nonlinear SDEs and
convergence of McKean-Vlasov equations without confinement, ArXiv preprint
2201.07652, January 2022.
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The article is a joint work with Alain Durmus (Université Paris-Saclay), Andreas Eberle
(University of Bonn) and Arnaud Guillin (Université Blaise Pascal). The work is presented in
Appendix B as given on the online portal ArXiv. This subsection presents the main subject of
the article. The precise statements, proofs and a survey of the existing literature are given in
Appendix B.

We are interested in the long-time behaviour of the solution (X̄t)t≥0 of the nonlinear stochas-
tic differential equation of McKean-Vlasov type without confinement given by

dX̄t =
( ∫

Rd
b(X̄t − x)µt(dx)

)
dt+ dBt, µt = Law(X̄t), (2.2)

where (Bt)t≥0 is a d-dimensional standard Brownian motion and b : Rd → Rd is a Lipschitz
continuous drift function.

We establish a new coupling approach for nonlinear SDEs to prove contraction for the process
(X̄t)t≥0. Before we introduce the coupling and state the main results, we specify the conditions
we impose on the nonlinear SDE:

Assumption 2.2. The function b : Rd → Rd is Lipschitz continuous and anti-symmetric.
Further, there exist a constant L ∈ (0,∞), a bounded function γ : Rd → Rd and a Lipschitz
continuous function κ : [0,∞)→ R such that

b(x) = −Lx+ γ(x)

and the following three conditions are satisfied for x, x̄, y ∈ Rd:

⟨x− y, γ(x− x̄)− γ(y − x̄)⟩ ≤ κ(|x− y|)|x− y|2, lim sup
r→∞

(κ(r)− L) < 0, and

∥γ∥∞ ≤ C(L,κ),

where the constant C(L,κ) ∈ (0,∞) depends on L and κ. Moreover, the initial distribution µ0
has bounded fourth moments and is centred, i.e.

∫
Rd xµ(dx) = 0.

We note that the condition on the initial distribution combined with the anti-symmetric drift
implies that the solution of (2.2) is centred for all t ≥ 0. This is crucial to guarantee convergence
to equilibrium.

To analyse the long-time behaviour of the process (X̄t)t≥0, a sticky coupling of two solutions
of (2.2) with different initial conditions is constructed in the following way: If the two solutions
coincide, the noise is synchronised in the nonlinear SDE and otherwise, a reflection coupling
is considered. We note that compared to the SDE analysed in Section 1.4.1, the drifts of the
two copies of the SDEs do not coincide when the solutions coincide, since their laws differ in
general. Therefore, the solutions are driven apart again after they are coupled and this coupling
construction leads to a sticky behaviour of the two solutions. We observe that the distance
process of the two solutions is controlled by a process (rt)t≥0 solving the following nonlinear
SDE on R with a sticky boundary at zero

drt = b̄(rt)dt+ aP [rt > 0]dt+ 21(0,∞)(rt)dWt,

where (Wt)t≥0 is a one-dimensional standard Brownian motion, b̄(r) = (κ(r) − L)r and a =
2∥γ∥∞. This SDE belongs to a new class of nonlinear SDEs with sticky boundary at zero, which
is analysed carefully. In particular, existence of a solution and uniqueness in law are shown
by considering a family of solutions {(rn,m

t )t≥0}n,m∈N of approximating SDEs and by taking

32



2.2. OUTLINE OF PROJECT B

the limit in two steps. More precisely, the nonlinear drift term aP [rt > 0] and the diffusion
term 21(0,∞)(rt) are approximated in two steps. Further, we detect that the SDE exhibits a
phase transition. More precisely, if a is sufficiently small compared to b̄ and the nonlinear term
contributes only a little to the drift, the Dirac measure at zero is the unique invariant measure.
In this case, if we start outside equilibrium, we notice that if time evolves, more mass gets
stuck at zero and we establish exponential convergence to equilibrium for the one-dimensional
nonlinear sticky SDE. As in Section 1.4.1, the proof relies on a concave function f that is aligned
to the drift of the nonlinear sticky SDE and causes a decrease of the process to have a larger
impact than an increase. In particular, we prove

E[f(rt)] ≤ e−ctf(r0),

where the rate c depends on b̃ and a. Then, using the contraction result for the solution of
the one-dimensional nonlinear sticky SDE which bounds the difference process of the sticky
coupling from above and using that the distance function ρ(x, y) = f(|x − y|) is equivalent to
the Euclidean distance, we can deduce contraction in L1 Wasserstein distance for the nonlinear
unconfined SDE, i.e.

W1(µt, νt) ≤Me−ctW1(µ0, ν0),

where µt and νt are the laws of the two copies of the coupling and the contraction rate c and
the constant M depend on L, γ through a and b̃.

Additionally, we establish uniform in time propagation of chaos bounds for the corresponding
mean-field particle system given by

dXi
t = 1

N

N∑
j=1

b(Xi
t −X

j
t )dt+ dBi

t, i = 1, ..., N. (2.3)

with i.i.d. initial values X1
0 , . . . X

N
0 and N independent d-dimensional standard Brownian mo-

tions {(Bi
t)t≥0}Ni=1. We consider a componentwise sticky coupling of the mean-field system

(2.3) with N particles and of N copies of (2.2) and observe analogously that the component-
wise difference process is controlled by the process ({ri

t}Ni=1)t≥0 solving a system of N sticky
one-dimensional SDEs. For this system of sticky SDEs, we prove existence and uniqueness
analogously. Then in the same spirit as in the nonlinear case, the observation that the compo-
nentwise difference process is controlled by the process ({ri

t}Ni=1)t≥0 is used to provide uniform
in time propagation of chaos estimates for the mean-field system.

Finally, we transfer the sticky coupling approach for nonlinear confined SDEs on Rd to SDEs
on the one-dimensional torus T = R/(2π) and establish bounds on the contraction rate for the
Kuramoto model, where the drift b is of the form b(z) = −k sin(z) for some k ∈ R.

Contribution by the author of the thesis: My co-authors, Alain Durmus, Arnaud Guillin
and Andreas Eberle, conceived of the idea to study the long-time behaviour of unconfined
nonlinear SDEs of McKean-Vlasov type via a sticky coupling. We developed the main theory
together during several research visits. Afterwards, I worked out the technical details getting
advice and support from my co-authors. In particular, the details of the analysis of sticky
nonlinear SDEs were elaborated by myself getting assistance from my co-authors. The main
body of the paper and the proofs are written by me assisted by Alain Durmus and Andreas
Eberle.
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2.3 Outline of Project C

In the third project, we study the long-time behaviour of the classical Langevin dynamics and
the Langevin dynamics with distribution-dependent forces. The results are summarised in a
research article that is available on the online-portal ArXiv:

K. Schuh. Global contractivity for Langevin dynamics with distribution-dependent
forces and uniform in time propagation of chaos, ArXiv preprint arXiv:2206.03082,
June 2022.

The work is presented in Appendix C as it is stated on the online portal ArXiv. Here,
the main subject and the results of the article are summarised. Precise statements, proofs and
references to linked literature are given in Appendix C.

Given a probability measure µ̄0 on R2d and a d-dimensional Brownian motion (Bt)t≥0, we
consider the diffusion (X̄t, Ȳt)t≥0, which is given as a solution to the Langevin dynamics with
nonlinear McKean-Vlasov interactions of the form{

dX̄t = Ȳtdt
dȲt = (−γȲt + ub(X̄t) + u

∫
Rd b̃(X̄t, z)µ̄X

t (dz))dt+
√

2γudBt,
(X̄0, Ȳ0) ∼ µ̄0, (2.4)

where µ̄x
t is the marginal distribution in the first component of µt = Law(X̄t, Ȳt), γ, u > 0 are

positive constants and b : Rd → Rd and b̃ : R2d → Rd are two Lipschitz continuous functions. We
are interested in the long-time behaviour of solutions to (2.4) and of the classical Langevin diffu-
sion given by (2.4) with interaction force satisfying b̃ ≡ 0. We impose the following assumption
on the external force b : Rd → Rd and the interaction force b̃ : R2d → Rd:

Assumption 2.3. The function b : Rd → Rd is Lipschitz continuous and there exist a positive
definite matrix K ∈ Rd×d with smallest eigenvalue κ > 0 and largest eigenvalue LK , a positive
constant R ≥ 0 and a Lipschitz continuous function g : Rd → Rd such that

b(x) = −Kx+ g(x) for all x ∈ Rd and
(g(x)− g(y)) · (x− y) ≤ 0 for all x, y ∈ Rd such that |x− y| ≥ R

(2.5)

and the Lipschitz constant Lg of g satisfies

Lguγ
−2 <

κ

2Lg
.

The function b̃ : R2d → Rd is Lipschitz continuous with Lipschitz constant L̃ satisfying

L̃ ≤ C(κ,LK ,R,Lg ,u,γ),

where C(κ,LK ,R,Lg ,u,γ) is an explicit constant depending on κ, LK , R, Lg, u and γ.

Note that (2.5) is equivalent to Assumption 1.2. Hence, b is not restricted to gradients of
strongly convex potentials. But it includes gradients of potentials that are only strongly convex
outside a Euclidean ball with a radius depending on R. Moreover, the constraints on Lg and L̃
in Assumption 2.3 are independent of the dimension d.

In this work, global contractivity is shown by combining two contraction results with respect
to two different metrics for large and small distances and by exploiting a carefully aligned
coupling approach. Let (X̄t, Ȳt, X̄

′
t, Ȳ

′
t )t≥0 be the coupling of (X̄t, Ȳt)t≥0 and (X̄ ′

t, Ȳ
′

t )t≥0 which
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2.3. OUTLINE OF PROJECT C

are both driven by (2.4) with two Brownian motions such that the noise is either synchronised
or reflected at a certain hyperplane. On the one hand, we consider the process rl(t) = ((X̄t −
X̄ ′

t) ·(A(X̄t−X̄ ′
t))+(X̄t−X̄ ′

t) ·(B(Ȳt− Ȳ ′
t ))+(Ȳt− Ȳ ′

t ) ·(C(Ȳt− Ȳ ′
t )))1/2 which relies on a twisted

2-norm structure and where A,B,C ∈ Rd×d are positive definite matrices depending on γ, u and
K. If rl(t) is sufficiently large and hence either |X̄t−X̄ ′

t| or |Ȳt− Ȳ ′
t | is large, either the condition

Assumption 2.3 or the damping term in (2.4) leads to contraction for the process rl(t). On the
other hand, the distance process rs(t) = α|X̄t− X̄ ′

t|+ |X̄t− X̄ ′
t +γ−1(Ȳt− Ȳ ′

t )| is considered with
α > 0 depending on γ, u, LK and Lg. In that case, the coupling approach of [85] is used, where a
synchronous coupling is considered for X̄t− X̄ ′

t +γ−1(Ȳt− Ȳ ′
t ) = 0 since in that case contraction

is observed for the first part of rs(t) and the second part vanishes. Otherwise a reflection
coupling is considered, which returns the process to the hyperplane X̄t− X̄ ′

t + γ−1(Ȳt− Ȳ ′
t ) = 0.

Then, contraction is shown by exploiting this coupling and a concave function f that leads to
contraction for f(rs(t)) in a similar way as in Section 1.4.1 if the process rs(t) is sufficiently
small.

The two processes rl(t) and rs(t) are glued together to ρt = f(rs(t) ∧ (DK + ϵrl(t))) where
DK , ϵ are positive constants such that one can make use of the contraction result for f(rs(t)) for
small distances and the contraction result for rl(t) for large distances. We refer to Figure C.2 in
Appendix C sketching the construction of ρ. Since ρ finally defines a metric that is equivalent
to the Euclidean distance, we deduce contraction in Wasserstein distance, i.e.

W1(µ̄t, ν̄t) ≤Me−ctW1(µ̄0, ν̄0),

where µ̄t and ν̄t are the laws of (X̄t, Ȳt)t≥0 and (X̄ ′
t, Ȳ

′
t )t≥0, respectively, and the constant c is

a dimension-free contraction constant depending on κ, Lg, γ and R. The constant M is the
quotient of the constants determining the equivalence between ρ and the Euclidean distance.
This result holds provided Lguγ

−2 < κ/(2Lg) is satisfied and L̃ is sufficiently small.
In particular for R = 0, the metric ρ reduces to rl and global contraction with rate c =

min(γ/16, κuγ−1/4−L3
gu

2γ−3/2) is established. If the external force is additionally of gradient
type and b̃ = 0, we obtain the framework considered in Section 1.4.2. Then, the use of the
co-coercivity property relaxes the restriction on γ to L2

gγu ≤ 3/4 and gives contraction in an Lp

Wasserstein distance for 1 ≤ p <∞ with improved contraction rate c = min(γ/8, κuγ−1/2).
Moreover, for fixed N ∈ N, we consider the corresponding particle system with N particles

given bydXi
t = Y i

t dt
dY i

t =
(
− γY i

t + ub(Xi
t) + uN−1∑N

j=1 b̃(Xi
t , X

j
t )
)
dt+

√
2γudBi

t,
i = 1, ..., N, (2.6)

with (Xi
0, Y

i
0 ) ∼ µ0 for i = 1, . . . , N for some probability measure µ0 on R2d. Applying a com-

ponentwise version of the coupling and an averaged l1 distance of the form ρN ((x, y), (x̄, ȳ)) =
N−1∑N

i=1 ρ((xi, yi), (x̄i, ȳi)) for (x, y), (x̄, ȳ) ∈ R2Nd, we prove propagation of chaos for the
corresponding particle system, i.e. there exists a constant C ∈ [0,∞) such that for any N ∈ N,

sup
t≥0
Wl1N

(µ̄⊗N
t , µN

t ) ≤ CN−1/2, (2.7)

where l1N ((x, y), (x′, y′)) = N−1∑N
i=1(|x− x′|+ |y − y′|). Here, µ̄⊗N

t denotes the product law of
N copies (X̄t, Ȳt) driven by (2.4) with initial distribution µ̄0 = µ0, and µN

t denotes the law of
(Xi

t , Y
i

t )N
i=1 driven by (2.6) with initial distribution µN

0 = µ⊗N
0 . The constant C depends on the
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contraction rate c, on properties of the drift and on the second moment of the initial distribution
µ0.

Eventually, we adapt the construction of the distance function to study certain unconfined
dynamics (b ≡ 0), where the interaction force is of the form

b̃(x, y) = K̃(x− y) + g̃(x, y) for all x, y ∈ Rd,

where K̃ ∈ Rd×d is a positive definite matrix with smallest eigenvalue κ̃ and g̃ : Rd → Rd is an
anti-symmetric Lipschitz continuous function with Lipschitz constant Lg̃ satisfying Lg̃ ≤ κ̃/8.
Then using a synchronous coupling, contraction in an L1 and L2 Wasserstein distance is shown
and uniform in time propagation of chaos bounds are provided for the corresponding recentred
mean-field particle system.
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Conclusion

The thesis addressed the long-time behaviour of specific types of stochastic differential equations
and Markov Chain Monte Carlo methods. Understanding especially the behaviour for high-
dimensional frameworks and for invariant probability measures that are not log-concave is of
wide interest since sampling of high-dimensional probability measures has many applications
in various areas. Therefore, finding a sampling algorithm that produces good samples in a
reasonable number of steps and that is additionally numerically implementable is an important
task. Furthermore, stochastic processes are used to describe dynamics appearing, for instance,
in physics and biology, and therefore, understanding their long-time behaviour is of relevance.

In this work, we concentrated on the mean-field particle model, where the potential of the
target measure consists of a unary potential for each particle, that is not necessarily strongly
convex, and of pairwise weak interaction potentials having Lipschitz continuous gradients. Cor-
respondingly, we considered the dynamics of many particles moving according to an external
force and a pairwise interaction force. We studied three stochastic processes in detail. First,
we looked at the unadjusted Hamiltonian Monte Carlo method applied to mean-field models,
which forms a numerically implementable sampling algorithm. Second, we studied first-order
unconfined SDEs with McKean-Vlasov interaction forces. Finally, we investigated the Langevin
dynamics forming a second-order SDE with McKean-Vlasov interactions. For the two latter pro-
cesses, we were particularly interested in the corresponding nonlinear SDE and the connection
between the nonlinear SDE and the mean-field particle system.

In all three projects, we established conditions under which we proved contraction in an L1

Wasserstein distance with dimension-free rates via a coupling approach. More precisely, if (pt)t∈I

denotes the transition functions corresponding either to the time-discrete HMC method (I = N)
or to the time-continuous nonlinear diffusions (I = R+), then for any two initial distributions µ
and ν satisfying the conditions imposed in the respective framework, we showed

W1(µpt, νpt) ≤Me−ctW1(µ, ν) for all t ∈ I,

where the contraction rate c is dimension-free and M is a constant measuring the distance
between the Euclidean distance and the distance function which is specifically aligned to the
coupling approach. If we consider uHMC applied to the mean-field particle model with n
particles, the l1-distance is taken instead of the Euclidean distance.

In the following, let us highlight the precise contributions of the three individual projects:

Contribution of Project A: As mentioned above, our first contribution is the global con-
traction result in an L1 Wasserstein distance for unadjusted HMC to its invariant measure with
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dimension-free rates. Since we considered a particlewise distance and a complementary parti-
clewise coupling, the rate c and the constant M are independent of the number of particles.
Furthermore, we established a bound on the distance between the invariant measure of uHMC
and the desired target measure by establishing strong accuracy bounds for each uHMC step
and using a triangle inequality trick. Combining the bound of the distance between the two
probability measures and the contraction result for uHMC, we deduced a quantitative estimate
of the number of uHMC steps needed to sample a probability measure whose difference in L1

Wasserstein distance to the target measure is smaller than a given constant. We observed that
the discretisation parameter of order O((dn)−1/2), where n denotes the number of particles and
d is the dimension of each particle, guarantees that this bound does not degenerate. For this
estimate, a warm start for the initial distribution is not required. Further, for the mean-field
particle models, we showed that given an intensive observable such as the energy per particle, we
can choose the discretisation parameter h and the number of steps independent of the number
of particles to prove that the bias of the ergodic average is smaller than a given value. We
supported the theoretical contraction result with numerical simulations.

Contribution of Project B: The contribution of the second work is threefold. Firstly,
we established a contraction result in Wasserstein distance for nonlinear unconfined SDEs of
McKean-Vlasov type, where the interaction force consists of a linear part and a bounded Lip-
schitz continuous function. The proof approach was based on introducing a sticky coupling for
the nonlinear unconfined SDEs.

Secondly, in the analysis of the sticky coupling, we dealt with a class of one-dimensional
nonlinear SDEs with a sticky boundary behaviour at 0. For this novel class of SDEs, we studied
existence of a weak solution and uniqueness in law and established a result that provides a
comparison between two solutions of one-dimensional nonlinear sticky SDEs with the same
initial conditions and different drift functions. Additionally, we exhibited a phase transition
for the appearance of multiple invariant probability measures and provided criteria for when a
unique invariant measure exists and when the process converges to it in Wasserstein distance.

Thirdly, using a particlewise adaptation of the sticky coupling we gave uniform in time
propagation of chaos bounds for the corresponding mean-field particle system.

Contribution of Project C: In the third project, we established a new approach to prove
contraction in L1 Wasserstein distance for the second-order Langevin dynamics. The proof relied
on a novel construction of the underlying distance function that combines contraction results for
different areas with respect to different distances and on aligning the coupling corresponding to
the different areas. Via this construction, we improved existing contraction results by proving
global contraction with dimension-free rates for non-strongly convex potentials. The results are
further carried over to more general forces of non-gradient type. Additionally, this approach
is applicable to provide contraction also for Langevin dynamics with nonlinear McKean-Vlasov
interaction and to establish uniform in time propagation of chaos bounds for the corresponding
particle system using a particlewise adaptation of the coupling and the distance function. More-
over, using the considered distance function for large distances, we proved global contraction
in Lp Wasserstein distance (1 ≤ p < ∞) with a contraction rate of order O(

√
κ) for κ-strongly

convex potentials, for which the deviation of a quadratic potential is of order O(κ). Finally, the
approach is used to provide contraction in Wasserstein distance for certain unconfined Langevin
dynamics with McKean-Vlasov interaction forces that form a small perturbation of a linear
function.
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Summarising the contributions of the individual project, on the one hand, this thesis gives
a clear picture under which conditions contraction in L1 Wasserstein distance holds for certain
scenarios (i.e. for uHMC, the Langevin dynamics and nonlinear unconfined first-order SDEs).
On the other hand, it also provides a couple of tools and techniques that may be relevant for
the analysis of related problems.

First, the error bound analysis presented in the first project, where the difference between
the invariant measure of the unadjusted measure and the true target measure is compared to
the one-step error of the unadjusted method using a triangle trick and the contraction result,
does not require a warm start for the initial distribution. Further, it provides a tool to analyse
other unadjusted sampling methods (see also [73]).

The sticky coupling approach introduced in [87] and applied to nonlinear SDE in the second
project provides an important tool to analyse and compare the long-time behaviour of SDEs
with different drift and for which it is not guaranteed that the realisations stay together after
they are coupled.

Eventually, the idea of combining two metrics, for which only partial contraction results are
known, and constructing a new distance function as in the third project, can be transferred
to other scenarios to obtain global contractivity there. We stress that this distance function
benefits from avoiding a Lyapunov function in its construction and yields global contraction
with dimension-free rates.

Outlook and open questions: Let us conclude by stating and discussing several questions
and open problems that have arisen in the development of the thesis and which may be object
of future research work.

In the first project, we focused mainly on the dimension-dependence in the choice of the
discretisation parameter and the number of steps needed to obtain a good sample. Additionally,
we are interested in working out the precise dependence on the condition number for strongly
convex potentials. Particularly, we want to know how the optimal dependence on the condition
number of uHMC compares with the dependence on the condition number of other sampling
methods.

In addition, similarly to the nonlinear SDEs, one can ask whether we can make sense of a
nonlinear HMC method and state analogously contraction bounds for the nonlinear HMC and
uniform in time propagation of chaos results for HMC for mean-field models. In this case, target
measures that are invariant to the transition kernel of nonlinear HMC can be approximated by
uHMC applied to mean-field models. Indeed, we can prove propagation of chaos bounds which
will be studied in detail in a future work.

It is essential in our analysis of nonlinear unconfined first order SDEs via sticky couplings that
for the interaction forces the perturbation of the linear part is restricted to bounded Lipschitz
continuous functions. Since the bound on the perturbation function is quite restrictive, it is
of interest whether the contraction and propagation of chaos results can be extended to more
general interaction forces.

For the one-dimensional nonlinear sticky SDE, we observed a phase transition from the
existence of a unique invariant measure to the existence of multiple invariant measures. In the
case of multiple invariant measures, we are interested in understanding better the behaviour of
the nonlinear sticky SDE.

In the third project, for the classical Langevin dynamics, we established the contraction result
in Wasserstein distance with a rate of order O(

√
κ) for certain κ-strongly convex potentials

that are not quadratic but form a small perturbation of a quadratic function. Since in [40]
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the order O(
√
κ) for the optimal rate is proven for contraction in L2 distance for all strongly

convex potential via a Poincaré-type inequality, the natural question of whether using a coupling
approach allows relaxing the assumption on the potential and obtaining a rate of the same order
for general strongly convex potentials arises. This does not seem possible with the construction
of the distance function considered here. Therefore, we wonder whether and how the distance
function must be modified to obtain the desired order for the contraction rate.

Additionally, in our approach for both the strongly convex case and the more general case,
there are restrictions on γ, which do not allow to take γ → 0. Since for the quadratic potential
the conditions disappear, we wonder whether it is possible to get rid of the constraint on γ and
to obtain a contraction result in Wasserstein distance for the underdamped case via a coupling
approach.

Last but not least, all results in our projects are restricted to Lipschitz continuous inter-
action forces. This restriction is an essential condition for the coupling approaches considered
here. Since the interaction potentials in mean-field models are often singular in practice (as the
Coulomb potential and the Newtonian potential), the question arises whether the condition on
the Lipschitz condition of the interaction force can be removed, and whether and under which
conditions contraction and uniform in time propagation of chaos bounds can still be shown via
a coupling approach.
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[35] Alexandre Bouchard-Côté, Sebastian J. Vollmer, and Arnaud Doucet. The bouncy particle
sampler: a nonreversible rejection-free Markov chain Monte Carlo method. J. Amer.
Statist. Assoc., 113(522):855–867, 2018.

[36] F. Bouchut and J. Dolbeault. On long time asymptotics of the Vlasov-Fokker-Planck
equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian
potentials. Differential Integral Equations, 8(3):487–514, 1995.

[37] Giovanni Bussi and Michele Parrinello. Accurate sampling using Langevin dynamics. Phys.
Rev. E, 75:056707, May 2007.

[38] Cédric M. Campos and J. M. Sanz-Serna. Extra chance generalized hybrid Monte Carlo.
J. Comput. Phys., 281:365–374, 2015.

[39] Eric Cancès, Frédéric Legoll, and Gabriel Stoltz. Theoretical and numerical comparison
of some sampling methods for molecular dynamics. M2AN Math. Model. Numer. Anal.,
41(2):351–389, 2007.

[40] Yu Cao, Jianfeng Lu, and Lihan Wang. On explicit L2-convergence rate estimate for
underdamped Langevin dynamics. arXiv preprint arXiv:1908.04746v4, 2019.

[41] J. A. Carrillo, R. S. Gvalani, G. A. Pavliotis, and A. Schlichting. Long-time behaviour
and phase transitions for the McKean-Vlasov equation on the torus. Arch. Ration. Mech.
Anal., 235(1):635–690, 2020.
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Közl., 8:85–108, 1963.

44



BIBLIOGRAPHY

[59] Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and
log-concave densities. J. R. Stat. Soc. Ser. B. Stat. Methodol., 79(3):651–676, 2017.

[60] Arnak S. Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using
kinetic Langevin diffusions. Bernoulli, 26(3):1956–1988, 2020.

[61] Masoumeh Dashti and Andrew M. Stuart. The Bayesian approach to inverse problems.
In Handbook of uncertainty quantification. Vol. 1, 2, 3, pages 311–428. Springer, Cham,
2017.

[62] M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondiffusion
stochastic models. J. Roy. Statist. Soc. Ser. B, 46(3):353–388, 1984. With discussion.

[63] François Delarue and Alvin Tse. Uniform in time weak propagation of chaos on the torus.
arXiv preprint arXiv:2104.14973, 2021.

[64] Matias G. Delgadino, Rishabh S. Gvalani, and Grigorios A. Pavliotis. On the diffusive-
mean field limit for weakly interacting diffusions exhibiting phase transitions. Arch. Ration.
Mech. Anal., 241(1):91–148, 2021.

[65] George Deligiannidis, Alexandre Bouchard-Côté, and Arnaud Doucet. Exponential ergod-
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57(2):1032–1057, 2021.

[107] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57(1):97–109, 1970.
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[182] Christof Schütte. Conformational dynamics: Modeling, Theory, Algorithm, and Applica-
tion to Biomolecules. Habilitation, Free University Berlin, 1999.

52



BIBLIOGRAPHY

[183] A. V. Skorokhod. Stochastic Equations for Diffusion Processes in a Bounded Region.
Theory of Probability & Its Applications, 6(3):264–274, 1961.

[184] A. V. Skorokhod. Stochastic Equations for Diffusion Processes in a Bounded Region. II.
Theory of Probability & Its Applications, 7(1):3–23, 1962.

[185] Gabriel Stoltz. Some Mathematical Methods for Molecular and Multiscale Simulation. PhD
thesis, Ecole Nationale des Ponts et Chaussées, 2007.

[186] Daniel W. Stroock and S. R. S. Varadhan. Diffusion processes with boundary conditions.
Comm. Pure Appl. Math., 24:147–225, 1971.

[187] Alain-Sol Sznitman. Topics in propagation of chaos. In École d’Été de Probabilités de
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Convergence of unadjusted HMC for
mean-field particle models

Nawaf Bou-Rabee and Katharina Schuh, Convergence of unadjusted Hamiltonian Monte Carlo
for mean-field models. ArXiv e-print 2009.08735, September 2020.1

Abstract

We present dimension-free convergence and discretization error bounds for the unadjusted
Hamiltonian Monte Carlo algorithm applied to high-dimensional probability distributions of
mean-field type. These bounds require the discretization step to be sufficiently small, but do
not require strong convexity of either the unary or pairwise potential terms present in the
mean-field model. To handle high dimensionality, our proof uses a particlewise coupling that is
contractive in a complementary particlewise metric.

Key words: Hamiltonian Monte Carlo, coupling, convergence to equilibrium, mean-field mod-
els.
Mathematics Subject Classification: Primary 60J05; secondary 65P10, 65C05.

A.1 Introduction

Markov Chain Monte Carlo (MCMC) methods are used to sample from a target probability
distribution of the form µ(dx) ∝ exp(−U(x))dx. The simplest methods (e.g., Gibbs and random
walk Metropolis) display random walk behavior which slow their convergence to equilibrium.
This slow convergence motivates the Hamiltonian Monte Carlo (HMC) method, first established
in [69], which offers the potential to converge faster, particularly in high dimension [156, 96, 17,
54, 70].

The convergence properties of HMC have received increasing interest. Ergodicity was proven
in [182, 39, 185]. By drift/minorization conditions, geometric ergodicity was demonstrated in
[34, 135, 80]. In [31, 139, 53], the convergence behavior is analyzed for a strongly convex po-
tential U and explicit bounds on convergence rates are obtained using a synchronous coupling

1The authors would like to thank Andreas Eberle for his insights and advice during the development of this
work. N. B.-R. was supported by the National Science Foundation under Grant No. DMS-1816378 and the
Alexander von Humboldt Foundation. K. S. was supported by Bonn International Graduate School of Mathemat-
ics. Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des Bundes
und der Länder - GZ 2047/1, Projekt-ID 390685813.
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approach. In [31], contraction bounds were obtained for more general potentials U by developing
a coupling tailored to HMC. However, these convergence bounds deteriorate in high dimension
for mean-field models (see, in particular, (A.11) for the precise form of these contraction bounds
for high-dimensional mean-field models). Therefore, a new approach is needed to obtain con-
vergence bounds for non-strongly convex potentials of mean-field type that are dimension-free,
i.e., independent of the number of particles in the mean-field model.

Mean-field models play an important role in understanding statistical properties of high-di-
mensional systems. This connection was introduced by Kac in [120] as propagation of chaos and
has been investigated amongst others in [143, 187, 146], for very recent related work on second-
order mean-field Langevin dynamics see [98, 100]. A key component in Kac’s program was to
establish bounds on relaxation times of many-body dynamical systems that are dimension-free,
see Section 1.4 of [148] for a fuller discussion.

The behavior of HMC in high-dimensional mean-field models is also relevant, at least con-
ceptually, to molecular dynamics (MD), see [6] and [94], or [130] for a mathematical perspective.
MD involves the time integration of high-dimensional Hamiltonian dynamics often coupled to a
heat or pressure bath [6, 94]. The corresponding process typically admits a stationary distribu-
tion. Time discretization introduces an error in the numerically sampled stationary distribution.
In general, one might hope that this discretization error is dimension-free for ergodic averages
of measurable functions (“observables”) that are intensive (e.g., energy per particle) as opposed
to extensive (e.g., total energy). A key contribution of this paper is to demonstrate that this
is indeed the case for particles with weak mean-field interactions (see Theorem A.13 and Re-
mark A.14).

In this paper, we consider high-dimensional mean-field models, where the potential U :
Rdn → R is a function of the form

U(x) =
n∑

i=1

(
V (xi) + ϵ

n

n∑
j=1
j ̸=i

W (xi − xj)
)
.

Here, V : Rd → R and W : Rd → R are twice differentiable functions, ϵ is a real constant
and x = (x1, ..., xn) where xi ∈ Rd represents the position of the i-th particle. Usually, d is a
small fixed number that represents the dimension per particle, whereas the number n of particles
is large. We call the unary potential V the confinement potential per particle and the pairwise
potential W the interaction potential. While we focus on mean-field U with pairwise interactions
in this paper, our results can be readily extended to potentials U with more general mean-field
interactions (see Remark A.1).

In its simplest form, every HMC step uses the Hamiltonian dynamics (qt(x, v), pt(x, v)) of the
mean-field particle system with unit masses defined as the solution to the ordinary differential
equations

d
dtq

i
t = pi

t

d
dtp

i
t = −∇iU(qt) = −∇V (qi

t)−
ϵ

n

n∑
j=1
j ̸=i

(
∇W (qi

t − q
j
t )−∇W (qj

t − qi
t)
)
,

(A.1)

for i = 1, ..., n with initial value (q0, p0) = (x, v). The transition step of the Markov chain in
Rdn corresponding to HMC is given by

X(x) = qT (x, ξ),
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where the initial velocity ξ ∼ N (0, Idn) is sampled independently per HMC step, and the inte-
gration time T > 0 is a fixed constant, determining the duration of the Hamiltonian dynamics
per HMC step. The corresponding Markov chain is known as exact HMC because it uses the
exact Hamiltonian dynamics and therefore, leaves invariant the target measure µ, cf. [33].

Generally, the choice of the duration T has a large impact on the performance per HMC
step. If T is too small, we obtain a highly correlated chain indicative of random walk behavior.
Whereas, if T is chosen too large, due to periodicities and near-periodicities, qT (x, v) can realize
U-turns even as the computational cost of the algorithm increases. This issue was observed
by Mackenzie in [136], and motivated duration randomization [156, 39, 34] and the No-U-Turn
sampler [112]. In contraction bounds for HMC, this issue leads to conditions that limit the
duration T of the Hamiltonian dynamics, e.g., for U stronlgy convex LT 2 ≤ constant where L
is the Lipschitz constant of ∇U [53]. As we discuss more below, non-convexity of U leads to
additional restrictions on the duration T .

Since the Hamiltonian dynamics cannot be simulated exactly in general, a numerical version
of these dynamics comes into play to approximate the exact dynamics, and normally, the velocity
Verlet algorithm is used, cf. [134, 33]. The numerical version contains an additional parameter,
the discretization step h > 0 satisfying T ∈ hZ. Note that in the numerical version of HMC
without adjusting the algorithm by an additional acceptance-rejection step (see e.g. [156, 33]),
the corresponding Markov chain does not exactly preserve the target measure. This chain is
called unadjusted HMC. In this article we focus on unadjusted HMC because both from the
viewpoint of theory and practice the acceptance-rejection step in adjusted HMC may lead to
difficulties in high dimension. Indeed, in the product case (when ϵ = 0), a dimension-dependent
time step size (h ∝ n−1/4) is needed to ensure that the acceptance rate in adjusted HMC is
bounded away from zero as n ↑ ∞, cf. [17, 101]. Further, as far as we know only a local
contraction result for adjusted HMC is known (see Remark A.5). We stress that both adjusted
and unadjusted HMC are implementable on a computer, whereas exact HMC is not.

The main result of this paper gives dimension-free convergence bounds for unadjusted HMC
applied to mean-field models, i.e., bounds that are independent of the number of particles in
the mean-field model. Our proof is motivated by the coupling approach in [31], but with a
new ‘particlewise’ coupling and a complementary particlewise metric. We now state a simplified
version of our main result, which holds in the special case of exact HMC where h = 0.

We assume that ∇V and ∇W are Lipschitz continuous with Lipschitz constants L and L̃,
respectively. Further, we assume that V is K-strongly convex outside a Euclidean ball of radius
R, but possibly non-convex inside this ball. Let π(x, dy) be the transition kernel of exact HMC,
and let Wℓ1 denote the Kantorovich/L1-Wasserstein distance on Rdn based on an ℓ1-metric
ℓ1(x, y) =

∑n
i=1 |xi − yi|. Then for any two probability measures η and ν on Rdn, we show that

Wℓ1(ηπm, νπm) ≤Me−cmWℓ1(η, ν). (A.2)

Here, M = exp
(

5
2

(
1 + 4R

T

√
L+K

K

))
and the contraction rate c is of the form

c = 1
156KT

2 exp
(
− 10R

T

√
L+K

K

)
.

This bound holds provided the duration T and the interaction parameter ϵ are sufficiently small,

57



APPENDIX A. CONVERGENCE OF UNADJUSTED HMC FOR MEAN-FIELD MODELS

i.e.,
5
3LT

2 ≤ min
(1

4 ,
3K
10L,

3K
256 · 5 · 26LR2(L+K)

)
, and

|ϵ|L̃ < min
(K

6 ,
1
2
( K

36 · 149
)2(

T + 8R

√
L+K

K

)2
exp

(
− 40R

T

√
L+K

K

))
.

Note that both the contraction rate c and the conditions above are dimension-free, i.e., inde-
pendent of the number n of particles. A restriction on the strength of interactions ϵ cannot be
avoided because for large values of ϵ multiple invariant measures and phase transition phenom-
ena can occur, which typically leads to an exponential deterioration in the rate of convergence
as the number of particles tends to infinity [158, 187, 189]. Roughly speaking, the factor LR2

appearing in the condition on T measures the degree of non-convexity of U and excludes the
possibility of high energy barriers. To obtain this result, we first show contraction for a modified
Wasserstein distance that is based on a specially designed particlewise metric ρ on Rdn, i.e. ,
Wρ(ηπm, νπm) ≤ e−cmWρ(η, ν), and by using that ρ is equivalent to ℓ1, we obtain (A.2). From
this result we deduce a quantitative bound for the number m of steps required to approximate
the target measure µ up to a given error ϵ̃, i.e., Wℓ1(ηπm, µ) ≤ ϵ̃. This bound may depend log-
arithmically on the number n of particles through the distance between the initial distribution
and the target measure. Finally, we show quantitative dimension-free bounds on the bias for
ergodic averages of intensive observables of the form f(x) = 1

n

∑
i f̂(xi).

For unadjusted HMC, we show the same contraction result provided the discretization step h
is chosen small enough and deduce that there exists a unique invariant measure µh of unadjusted
HMC. Since unadjusted HMC does not exactly preserve the target measure µ, we prove that
Wℓ1(µ, µh) = O(h2n) provided enough regularity for U is assumed, i.e., V and W are three
times differentiable and have bounded third derivatives. If less regularity is assumed, i.e., V
and W are only twice differentiable, an O(hn) bound is obtained. Invariant measure accuracy
of numerical approximations for related second-order measure preserving dynamics has been
extensively investigated in the literature [175, 140, 188, 141, 21, 32, 129, 1, 2], but according
to our knowledge, it is new to obtain bounds on Wl1 with a precise dimension dependence
(see Corollary A.9). Durmus and Eberle [73], using partially the same approach, generalize
these results on invariant measure accuracy to a broader class of both models and inexact (or
unadjusted) MCMC methods.

Other work on HMC in high dimension

The study of the behavior of HMC as dimensionality increases is carried out in other settings,
too. For example, in Bayesian inference problems with a large number of observations where the
posterior itself is not necessarily high-dimensional. In this setting, sampling the posterior directly
using HMC is computationally intractable, which motivates stochastic gradient HMC [51], the
zig-zag process [19] and the bouncy particle sampler [65]. In [194], an ADMM-type splitting
of the posterior in conjunction with a split Gibbs sampler are proposed, and a dimension-free
convergence rate for the split Gibbs sampler is obtained.

Considering the truncation of infinite dimensional probability distributions having a density
with respect to a Gaussian reference measure leads to another class of high-dimensional target
measures, which arises for instance in path integral MD, cf. [124, 22, 169], and statistical inverse
problems, cf. [61]. Dimension-free convergence bounds are obtained for the Metropolis adjusted
Langevin Algorithm [82] and for preconditioned Crank Nicholson (pCN) [105]. Moreover, pre-
conditioned HMC was introduced in [16]. The convergence of pHMC was analyzed under strong
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convexity using a synchronous coupling [167], and by using a two-scale coupling, dimension-free
convergence bounds are obtained for semi-discrete pHMC applied to potential energies that are
not necessarily globally strongly convex [29].

Another standard approach to analyze convergence properties in high dimension is optimal
scaling of MCMC, see [173, 174, 18, 70]. This theory of optimal scaling provides a general way
to tune the time step size in HMC [101, 17].

While our object of study is the simplest version of HMC applied to mean-field models, there
are other variants of HMC available including one that uses a general reversible approximation
of the Hamiltonian dynamics [91], HMC with partial randomization of momentum [113, 5],
preconditioned HMC using a position dependent mass matrix [96], and adjusted HMC with
delayed rejection [38].

Outline

The rest of the paper is organized as follows. In Appendix A.2, we state the considered framework
before presenting our main results in Appendix A.3. In Appendix A.4, estimates used to prove
the main results are stated. Finally, Appendix A.5 and Appendix A.6 contain the proofs.

A.2 Preliminaries

We first give the definition of unadjusted HMC applied to mean-field models and state assump-
tions for the mean-field model before constructing the particlewise coupling used to obtain the
contraction result in the next section.

A.2.1 Hamiltonian Monte Carlo Method

Consider a function U ∈ C2(Rdn) of the form

U(x) =
n∑

i=1

(
V (xi) + ϵ

n

n∑
j=1
j ̸=i

W (xi − xj)
)

(A.3)

such that
∫

exp(−U(x))dx <∞ holds. Assuming all particles have unit masses, the correspond-
ing Hamiltonian is defined by H(x, v) = U(x) + 1

2 |v|
2 for x, v ∈ Rdn. The HMC method is an

MCMC method for sampling from a ‘target’ probability distribution

µ(dx) = Z−1 exp(−U(x))dx, (A.4)

on Rdn with normalizing constant Z =
∫

exp(−U(x))dx. In particular, the HMC method gen-
erates a Markov chain on Rdn.

Since (A.1) is not exactly solvable, a discretized version is considered. Here, we consider
the velocity Verlet integrator with discretization step h > 0, cf. [33]. The numerical solution
produced by the velocity Verlet integrator is interpolated by the flow (qt(x, v), pt(x, v)) of the
ODE

d
dtq

i
t = pi

⌊t⌋h
− h

2∇iU(q⌊t⌋h
), d

dtp
i
t = −1

2(∇iU(q⌊t⌋h
) +∇iU(q⌈t⌉h

)) (A.5)

with initial condition (q0, p0) = (x, v) where

⌊t⌋h = max{s ∈ hZ : s ≤ t}, ⌈t⌉h = min{s ∈ hZ : s ≥ t},
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and where ∇iU : Rdn → Rd is the gradient in the xi-th direction, i.e., ∂U
∂xi . The transition step

of unadjusted HMC is given by x 7→ Xh(x) where Xh(x) = qT (x, ξ), T/h ∈ Z for h > 0 and
ξ ∼ N (0, Idn) is a random variable, where N (0, Idn) denotes the centered normal distribution on
Rdn with covariance given by the dn× dn identity matrix. The transition kernel of the Markov
chain on Rdn induced by the unadjusted HMC algorithm is denoted by πh(x,B) = P [Xh(x) ∈ B].

If h > 0 is fixed, we write the abbreviation ⌊t⌋ and ⌈t⌉ instead of ⌊t⌋h and ⌈t⌉h and omit
the h dependence in Xh(x). For h = 0 we consider the solution (qt(x, ξ), pt(x, ξ)) of (A.1)
and obtain exact HMC with transition step X(x) := X0(x) = qT (x, ξ) and transition kernel
π(x,B) := π0(x,B). As the Hamiltonian is not preserved by the numerical flow with h > 0,
unadjusted HMC does not preserve the target measure µ. Therefore, after we study conver-
gence of unadjusted HMC, we then bound the error between exact and unadjusted HMC in
Appendix A.3.

A.2.2 Mean-field particle model

Let U : Rdn → R be a potential function of the form (A.3) where V : Rd → R and W : Rd → R
are twice continuously differentiable functions such that

∫
exp(−U(x))µ(dx) <∞. Without loss

of generality we assume that ϵ is a non-negative constant. Otherwise we change the sign of the
interaction potential W . The following conditions are imposed on the functions V and W for
proving the contraction results for exact HMC.

Assumption A.1. V has a global minimum at 0, V (0) = 0 and V (x) ≥ 0 for all x ∈ Rd.

Assumption A.2. V has bounded second derivatives, i.e., L := sup ∥∇2V ∥ <∞.

Assumption A.3. V is strongly convex outside a Euclidean ball: There exists K ∈ (0,∞) and
R ∈ [0,∞) such that for all x, y ∈ Rd with |x − y| ≥ R,

(x − y) · (∇V (x)−∇V (y)) ≥ K|x − y|2.

Assumption A.4. W has bounded second derivatives, i.e., L̃ := sup ∥∇2W∥ <∞.

We note that Assumption A.1 is stated for simplicity, since Assumption A.3 implies that V
has a local minimum and so Assumption A.1 can always be obtained by adjusting the coordinate
system appropriately and adding a constant to V . Since V is a unary confinement potential
per particle and W is a pairwise interaction potential, note that the strong convexity constant
K, the Lipschitz constants L, L̃ and the radius R are dimension-free, i.e., independent of the
number of particles. By Assumption A.1, Assumption A.2 and Assumption A.4,

|∇V (x)| = |∇V (x)−∇V (0)| ≤ L|x|, and (A.6)
|∇W (x − y)−∇W (y − x)| ≤ 2L̃|x − y| ≤ 2L̃(|x|+ |y|) (A.7)

for all x, y ∈ Rd. From (A.6) and Assumption A.3, it follows that K is smaller than L,

K/L ≤ 1. (A.8)

Further, we deduce from Assumption A.2 and Assumption A.3 that for all x, y ∈ Rd,

(x − y) · (∇V (x)−∇V (y)) ≥ K|x − y|2 − Ĉ (A.9)

with Ĉ := R2(L+K) and so V is asymptotically strongly convex.

60



A.2. PRELIMINARIES

Remark A.1. In this work, we focus on a pairwise mean-field interaction energy W . However,
the results can be readily extended to the situation where the Hessian of the mean-field potential
U satisfies:

L = sup
1≤i≤dn
x∈Rdn

∣∣∣∣∣∂2U

∂x2
i

(x)
∣∣∣∣∣ , L̃ = sup

1≤i<j≤dn
x∈Rdn

∣∣∣∣∣ ∂2U

∂xi∂xj
(x)
∣∣∣∣∣ (A.10)

and the parameter L̃ scales like 1/n as n → ∞ which corresponds to the standard mean-field
limit [158, 187, 189, 75].

For proving discretization error bounds, we suppose additionally for the confinement poten-
tial V and for the interaction potential W :

Assumption A.5. V is three times differentiable and has bounded third derivatives, i.e., LH :=
sup ∥∇3V ∥ <∞.

Assumption A.6. W is three times differentiable and has bounded third derivatives, i.e., L̃H =
sup ∥∇3W∥ <∞.

This additional regularity gives a better order in the error bounds between exact HMC and
unadjusted HMC, see Theorem A.8.

Possible interaction potentials meeting Assumption A.4 and Assumption A.6 are the Morse
potential [195] and the harmonic (or linear) bonding potential [7, Section 7.4.1.1], which are
both used to model interactions between particles in molecular dynamics.
Remark A.2. Let us note that by (A.7) and (A.9) it holds for the potential U that

(x− y) · (∇U(x)−∇U(y)) =
n∑

i=1

(
(xi − yi) · (∇V (xi)−∇V (yi))

+ ϵ

n

∑
j ̸=i

(xi − yi) · (∇W (xi − xj)−∇W (yi − yj)−∇W (xj − xi) +∇W (yj − yi))
)

≥ K|x− y|2 − n(K + L)R2 − 2ϵL̃
n

∑
i

∑
j ̸=i

|xi − yi − (xj − yj)||xi − yi|

≥ (K − 4ϵL̃)|x− y|2 − n(K + L)R2.

Hence, the potential U is strongly convex if R = 0 and K − 4ϵL̃ > 0 holds. Moreover, a similar
calculation shows that∇U is globally Lipschitz continuous with an effective Lipschitz constant of
L+4ϵL̃. In this case, [31, Theorem 2.1] and [139, Theorem 1] have already shown contraction for
exact HMC with the dimension-free rate c = (1/2)(K−4ϵL̃)T 2 if (L+4ϵL̃)T 2 ≤ (K−4ϵL̃)/(L+
4ϵL̃) holds. Recently, the latter condition on T has been improved to (L+ 4ϵL̃)T 2 ≤ (1/4), cf.
[53, Theorem 3]. Whereas, if R > 0, then the potential U is only asymptotically strongly convex
provided K − 4ϵL̃ > 0, and in this case,

(x− y) · (∇U(x)−∇U(y)) ≥ ((K − 4ϵL̃)/2)|x− y|2

for all |x − y| ≥ Rn = R
√

2n(L+K)/(K − 4ϵL̃). Thus, by [31, Theorem 2.3] we obtain the
following contraction rate for exact HMC

cn = (1/10) min(1, (1/4)(K − 4ϵL̃)T 2(1 + (Rn/T ))e−Rn/(2T ))e−2Rn/T (A.11)
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f(r)

r

Figure A.1: Under an increasing concave distance function f , a decrease in r has a larger impact
on f(r) than an increase in r, i.e., f(r)− f(r −∆) ≥ f(r + ∆)− f(r) for r,∆ > 0.

provided (L+4ϵL̃)T 2 ≤ min(1/4, (K−4ϵL̃)/(L+4ϵL̃), 1/(26(L+4ϵL̃)R2
n)) holds. The condition

on T is dependent on the number n of particles and the rate cn decreases exponentially fast in
the number of particles. This dimension dependence motivates the particlewise coupling stated
next.

A.2.3 Construction of coupling

We establish a coupling between the transition probabilities πh(x, ·) and πh(y, ·) of unadjusted
HMC with discretization step h for two states x, y ∈ Rdn. The key idea for the coupling is to
locally couple the velocity randomizations, i.e., for the i-th particles in each component of the
coupling separately and independently of the other particles. A particlewise coupling approach
was used before in [83, 75] and enables us here to show a dimension-free contraction rate, i.e. a
rate that does not depend on the number n of particles. The idea for the construction for the
i-th particles in each component of the coupling is adapted from [31], see also [85]. The coupling
transition step for unadjusted HMC is given by

X(x, y) = qT (x, ξ) and Y(x, y) = qT (y, η) (A.12)

with qT defined in (A.5) and where ξ and η are the corresponding velocity refreshments for the
position x and y given in the following way: Let ξ ∈ Rdn be a normally distributed random
variable. Let Ui ∼ Unif[0, 1] be independent uniformly distributed random variables that are
independent of ξ. Let γ be a constant that is specified later. If |xi − yi| ≥ R̃, where R̃ is a
positive constant specified later, we apply a synchronous coupling for the i-th particle by setting
ηi = ξi. If |xi − yi| < R̃, the i-th velocity refreshment of y is given by

ηi :=

ξi + γzi if Ui ≤ φ0,1(ei·ξi+γ|zi|)
φ0,1(ei·ξi) ,

ξi − 2(ei · ξi)ei otherwise,
(A.13)

where φ0,1 denotes the density of the standard normal distribution, zi = xi−yi, and ei = zi/|zi|
if |zi| ̸= 0. If |zi| = 0, ei is some arbitrary unit vector. If we consider the free dynamics, i.e.,
U ≡ 0, then the first case in (A.13) leads to a decrease in the difference of the positions in
the i-th component provided the duration T is sufficiently small, i.e., |Xi(x, y) − Yi(x, y)| =
|xi − yi||1− Tγ|. When U does not vanish, we obtain contractivity of this coupling in a metric
equivalent to the standard ℓ1 metric that involves a concave distance function, see Figure A.1.

We note that each of the components ηi are normally distributed random variables by [31,
Section 2.3] and that the components ηi are independent by the independent particlewise con-
struction. This implies η ∼ N (0, Idn), which is sufficient to verify that the constructed transition
step given by (A.12) is a coupling of the transition probabilities πh(x, ·) and πh(y, ·).
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Figure A.2: Coupling of HMC applied to mean-field models with n = 10 particles. The confinement
potential is the potential of a Gaussian mixture distribution in the left plot and of a banana-shaped
distribution in the right plot. The projection to one particle of the Markov chain is plotted on the contour
graph of the potentials and connected by a linear interpolation; the inset shows the mean distance between
the two components of the coupling on a log-scale.

Figure A.3: Evolution of the mean distance 1
n

∑n
i=1 |Xi

k−Yi
k| between the two components of the coupling

for HMC after k steps with n ∈ {1, 10, 100} particles.

A.2.4 Numerical simulations

We next present a numerical illustration of some properties of the particlewise coupling which
supports the main results for unadjusted HMC stated in the next section.

We simulate the coupling for mean-field potentials with non-strongly convex confinement
potential to illustrate the coupling and to support our theoretical results stated in the next
subsection.

We consider two mean-field models with two different confinement potentials. The first
potential is the negative logarithm of a Gaussian mixture distribution. Here, we take a mixture of
20 two-dimensional Gaussian distributions whose means are independent uniformly distributed
random variables on the rectangle [0, 10]× [0, 10] and whose covariance matrices are the identity
matrix, cf. [132, 125, 31]. The second confinement potential is the negative logarithm of a
banana-shaped distribution. In particular, V : R2 → R is given by the Rosenbrock function
V (x) = (1− x1)2 + 10(x2 − (x1)2)2, cf. [31].

For the interaction between particle i and j, we take the function W (xi−xj) = (1/2)|xi−xj |2
and ϵ = 0.01 in Figure A.2 and Figure A.3. In Figure A.4, we vary ϵ and W , as indicated in the
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Figure A.4: Evolution of the mean distance 1
n

∑n
i=1 |Xi

k−Yi
k| between the two components of the coupling

for HMC after k steps with n = 10 particles for various interaction parameters ϵ. This figure suggests
that the particlewise coupling does not converge if the interaction is too large.

legend.
The plots in Figure A.2 show realizations of the coupling with T = 1, γ = 1 and n =

10. The evolution of a selected particle of the coupling is drawn on a contour plot of the
confinement potential. To visualize the order of the projected points they are connected by linear
interpolation. The evolution of the distance function 1

n

∑n
i=1 |Xi

k−Yi
k| is given in the inset. Here,

Xi
k and Yi

k are the positions of the i-th particles of the two realizations of the coupling after k
HMC steps of duration T = 1. The simulation terminates when the distance is smaller than ϵ̃ =
10−5. Figure A.3 shows the sample average of the mean distance 1

n

∑n
i=1 |Xi

k −Yi
k| for different

numbers n ∈ {1, 10, 100} of particles. For n ∈ {1, 10} we sampled the mean distance a hundred
times and for n = 100 thirty times, since the statistical error is smaller for n large. We observe
that the mean distance decreases exponentially fast after a short time, which reflects a factor M
appearing in the bounds in Corollary A.7 given below, and that the rate is dimension-free, i.e.,
independent of the number of particles. In Figure A.4, the impact of the size of the interaction
parameter ϵ is illustrated. We observe that for small attractive and repulsive interaction the
mean coupling distance appears to converge to zero, whereas for larger interaction, particularly
for large repulsive interaction (corresponding to W (xi−yi) = −(1/2)|xi−yi|2) this convergence
is not observed.

A.3 Main results

A.3.1 Dimension-free contraction rate for unadjusted HMC

To prove contraction for unadjusted HMC, we introduce a modified distance function. Define

R̃ := 8R
√

(L+K)/K, (A.14)

γ := min(T−1, R̃−1/4), (A.15)
R1 := (5/4)(R̃+ 2T ). (A.16)

Note that the constants are dimension-free, i.e. independent of the number of particles. Let
f : R+ → R+ be given by

f(r) :=
∫ r

0
exp(−min(R1, s)/T )ds. (A.17)
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This function is concave and strictly increasing with f(0) = 0 and f ′(0) = 1. We define a metric
ρ : Rdn × Rdn → [0,∞) by

ρ(x, y) :=
n∑

i=1
f(|xi − yi|). (A.18)

This definition is motivated by [83] where it was introduced to obtain optimal contraction rates
for weakly interacting diffusions. This metric is equivalent to the ℓ1-metric,

ℓ1(x, y) :=
∑

i

|xi − yi|. (A.19)

More precisely, since rf ′(r) ≤ f(r) ≤ r,

ρ(x, y) ≤ ℓ1(x, y) ≤Mρ(x, y), with (A.20)
M = f ′(R1)−1 = exp((5/4)(R̃/T + 2)). (A.21)

The following theorem gives a contraction result for unadjusted HMC with respect to the
metric ρ.

Theorem A.3 (Global contractivity for unadjusted HMC). Suppose that Assumption A.1,
Assumption A.2, Assumption A.3 and Assumption A.4 hold. Let R̃, γ, R1 and f be given as in
(A.14), (A.15), (A.16) and (A.17). Let T ∈ (0,∞) and h1 ∈ [0,∞) satisfy

L(T + h1)2 ≤ 3
5 min

(1
4 ,

3K
10L,

3
256 · 5LR̃2

)
, (A.22)

h1 ≤
KT

525L+ 235K . (A.23)

Let ϵ ∈ [0,∞) satisfy

ϵL̃ < min
(K

6 ,
1
2
(K(R̃+ T )

36 · 149
)2

exp
(
− 5R̃

T

))
. (A.24)

Then for all x, y ∈ Rdn and for any h ∈ [0, h1] such that h = 0 or T/h ∈ N,

E
[
ρ(X(x, y),Y(x, y))

]
≤ (1− c)ρ(x, y)

with contraction rate

c = 1
156KT

2 exp
(
− 5R̃

4T
)
. (A.25)

A proof is given in Appendix A.6.1.
Remark A.4. The parameter c is dimension-free, i.e., independent of the number of particles,
which is an improvement compared to the contraction rate given in (A.11) obtained by applying
[31, Theorem 2.3]. However, it might depend implicitly on the number of degrees of freedom
per particle d through the parameter R̃.

Further, note that the contraction result holds only if the interaction parameter ϵ is suffi-
ciently small. For larger ϵ, contraction with a dimension-free contraction rate is not guaranteed,
as illustrated in Figure A.4.
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Remark A.5. For adjusted HMC one can show local contraction by precisely bounding the effect
of the accept-reject step. The case is considered for a general potential in [31]. In the mean-field
model for a large number n of particles, an analogous local contraction result for adjusted HMC
is only obtained for a restrictive choice of h. In particular, using the estimate for the rejection
probability of [31, Theorem 3.8] the discretization step h has to be chosen of order O(n−2).
Remark A.6. Theorem A.3 holds in particular for the product case with ϵ = 0. As the interaction
terms vanish and some calculations simplify in that case, the condition in T becomes L(T+h1)2 ≤
min(1/4,K/L, 1/(256LR̃2)) as in [31], the condition in h1 relaxes to h1 ≤ 4KT/(165L) and the
contraction rate improves to cprod = (1/39)KT 2 exp(−5R̃/(4T )). If V is a quadratic function,
the mean-field model can be treated as a perturbation of the product model and the difference
|Xprod(x, y)−Yprod(x, y)− (X(x, y)−Y(x, y))| of a coupling between to copies of the product
model and two copies of the mean-field model can be bounded in terms of ϵL̃

∑n
i=1 |xi−yi|. This

term can be controlled for sufficiently small ϵ by the obtained contraction for the product case.
See Appendix A.7 for the complete argument.

A.3.2 Quantitative bounds for distance to the target measure

We deduce from Theorem A.3 global contractivity of the transition kernel πh(x, dy) with respect
to the Kantorovich distance based on ρ

Wρ(ν, η) = inf
ω∈Γ(ν,η)

∫
ρ(x, y)ω(dxdy)

on probability measures ν, η on Rdn, where Γ(ν, η) denotes the set of all couplings of ν and η.
Since the metric ρ is equivalent to the ℓ1-distance ℓ1 on (Rd)n given in (A.19), contractivity with
respect to Wρ yields a quantitative bound on the Kantorovich distance based on ℓ1 on (Rd)n,

Wℓ1(νπh
m, µh) := inf

ω∈Γ(νπh
m,µh)

∫ n∑
i=1
|xi − yi|ω(dxdy)

between the law after m HMC steps with initial distribution ν and invariant measure µh.

Corollary A.7. Suppose that Assumption A.1, Assumption A.2, Assumption A.3 and Assump-
tion A.4 hold. Let T ∈ (0,∞) and h1 ∈ [0,∞) satisfy (A.22) and (A.23). Let ϵ ∈ [0,∞) satisfy
(A.24). Then, for any m ∈ N, for any probability measures ν, η on Rdn, and for any h ∈ [0, h1]
such that h = 0 or T/h ∈ N,

Wρ(νπh
m, ηπh

m) ≤ e−cmWρ(ν, η), (A.26)
Wℓ1(νπh

m, ηπh
m) ≤Me−cmWℓ1(ν, η) (A.27)

with c given by (A.25) and M given by (A.21). Further, there exists a unique invariant probability
measure µh on Rdn for the transition kernel πh of unadjusted HMC and

Wℓ1(νπh
m, µh) ≤Me−cmWℓ1(ν, µh). (A.28)

Thus, for any constant ϵ̃ ∈ (0,∞) and for any initial probability distribution ν the Kantorovich
distance ∆(m) =Wℓ1(νπh

m, µh) satisfies ∆(m) ≤ ϵ̃ provided

m ≥ 1
c

(5
2 + 5R̃

4T + log
(∆(0)

ϵ̃

))
. (A.29)
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A proof is given in Appendix A.6.2. We note that we obtain the same bound as in (A.27) and
(A.28) for the Kantorovich distance with respect to the ℓ1-distance averaged over all particles,
ℓ̃1(x, y) = 1

n

∑
i |xi − yi|. Then, the term ∆(0)/ϵ̃ in (A.29) differs by a factor 1/n. In this case,

if we consider for example a product measure as initial distribution, the bound in terms of this
metric does not depend logarthmically on the number of particles.

To give quantitative results of the accuracy of unadjusted HMC with respect to the target
measure µ, we bound the strong accuracy of velocity Verlet. The exact dynamics started in
(x, ξ) with h = 0 is denoted by (qs(x, ξ), ps(x, ξ)) and the position of the dynamics started in
(x, ξ) with h > 0 is denoted by (q̃s(x, ξ), p̃s(x, ξ)).

Theorem A.8 (Strong accuracy of velocity Verlet). Suppose that Assumption A.1, Assump-
tion A.2 and Assumption A.4 hold. Let T ∈ (0,∞) satisfy (L + 4ϵL̃)T 2 ≤ (1/4). For x ∈ Rdn,
for any h ∈ (0,∞) with T/h ∈ N and k ∈ N with kh ≤ T , it holds

Eξ∼N (0,Idn)
[∑

i

|qi
kh(x, ξ)− q̃i

kh(x, ξ)|
]
≤ hC2

(
d1/2n+

∑
i

|xi|
)

(A.30)

with C2 depending on L, L̃, ϵ and T . If additionally Assumption A.5 and Assumption A.6 are
supposed, then for x ∈ Rdn, for any h > 0 with T/h ∈ N and k ∈ N with kh ≤ T ,

Eξ∼N (0,Idn)
[∑

i

|qi
kh(x, ξ)− q̃i

kh(x, ξ)|
]
≤ h2C̃2

(
dn+

∑
i

|xi|+
∑

i

|xi|2
)

(A.31)

with C̃2 depending on L, L̃, ϵ, LH , L̃H and T .

A proof is given in Appendix A.6.2.
We obtain a bound on the difference between the invariant measure µh and the target measure

µ, by using the contraction result of Theorem A.3 and by applying a triangle inequality trick,
which is mentioned in [141, Remark 6.3] and has been used in many other works. In particular,
it holds

Wρ(µ, µh) =Wρ(µπ, µhπh) ≤ Wρ(µπ, µπh) +Wρ(µπh, µhπh)
≤ Wρ(µπ, µπh) + (1− c)Wρ(µ, µh).

Hence, by (A.20)

Wℓ1(µ, µh) ≤Mc−1Wℓ1(µπ, µπh) ≤Mc−1Ex∼µ, ξ∼N (0,Idn)
[∑

i

|qi
kh(x, ξ)− q̃i

kh(x, ξ)|
]

with M given in (A.21). Inserting (A.30), respectively (A.31), yields the following result.

Corollary A.9 (Asymptotic Bias). Suppose that Assumption A.1, Assumption A.2, Assump-
tion A.3 and Assumption A.4 hold. Let T and h1 satisfy (A.22). Let ϵ satisfy (A.24). Let C2
and C̃2 be as in Theorem A.8. Then for h ∈ (0, h1] with T/h ∈ N,

Wℓ1(µ, µh) ≤ hc−1MC2
(
d1/2n+

∫
Rnd

∑
i

|xi|µ(dx)
)

with c given by (A.25) and M given by (A.21). If additionally Assumption A.5 and Assump-
tion A.6 are assumed, then for h ∈ (0, h1] with T/h ∈ N,

Wℓ1(µ, µh) ≤ h2c−1MC̃2
(
dn+

∫
Rnd

∑
i

|xi|µ(dx) +
∫
Rnd

∑
i

|xi|2µ(dx)
)
.
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Note that the bound in Corollary A.9 is linear in the number n of particles.
For unadjusted HMC, Corollary A.7 gives exponential convergence to the invariant measure

µh. In the next theorem, we give a bound on the number of steps to reach the target measure
µ up to a given error.

Theorem A.10 (Complexity Guarantee). Suppose that Assumption A.1, Assumption A.2, As-
sumption A.3 and Assumption A.4 hold. Let T ∈ (0,∞) and h1 ∈ (0,∞) satisfy (A.22)
and (A.23) . Let ϵ ∈ [0,∞) satisfy (A.24). Let ν be a probability measure on Rdn, and let
∆(m) =Wℓ1(νπh

m, µ) denote the Kantorovich distance with respect to ℓ1 to the target probabil-
ity measure µ after m steps with initial distribution ν. For some ϵ̃ ∈ (0,∞), let m ∈ N be such
that

m ≥ 1
c

(5
2 + 5R

4T + log
(2Wℓ1(µh, ν)

ϵ̃

)+)
(A.32)

with c given by (A.25). Then, there exists h2 such that for h ∈ (0,min(h1, h2)] with T/h ∈ Z,

∆(m) ≤ ϵ̃ (A.33)

where for fixed K, L, L̃, ϵ, R and T , h−1
2 is of order O(ϵ̃−1(d1/2n +

∫ ∑
i |xi|µ(dx))). If addi-

tionally Assumption A.5 and Assumption A.6 are assumed, then there exists h̃2 such that for
h ∈ (0,min(h1, h̃2)] with T/h ∈ Z, (A.33) holds, where for fixed K, L, L̃, LH , L̃H , ϵ, R and T ,
h̃−1

2 is of order O(ϵ̃−1/2((nd)1/2 +
√∫ ∑

i |xi|µ(dx) +
√∫ ∑

i |xi|2µ(dx))).

A proof is given in Appendix A.6.2. If we consider the averaged distance ℓ̃1 instead of ℓ1,
the argument in the logarithmic term in (A.32) changes by a factor 1/n and the logarithmic
dependence on n in h2 and h̃2 vanishes.
Remark A.11. We note that h−1 is O(n1/2) in Theorem A.10 and hence it grows sublinear in n.
Further, the constant C̃2 obtained in the proof of Theorem A.8 is O(T−1). For the numerical
method ULA, which forms a special case of unadjusted HMC with h = T (see [156, Section 5.2]),
we obtain that h−1 = T−1 has to be chosen of order O(n), which corresponds to the results in
[73, Example 18].
Remark A.12. From Theorem A.10, note that the number of evaluations of the gradient ∇U(x)
in each step of duration T is O(n1/2) for fixed K, L, L̃, ϵ, T , R, d and h. If we assume that
the computation of the gradient in one step is O(n), then the overall complexity of unadjusted
HMC is O(n3/2).

A.3.3 Dimension-free bounds for ergodic averages of intensive observables

Next, we define the ergodic averages Am,bg, which approximate µ(g) =
∫
g(x)µ(dx), by

Am,bg := 1
m

b+m−1∑
i=b

g(Xi), (A.34)

for some function g : Rdn → R and for b,m ∈ N, where (Xn) is the Markov chain given by
unadjusted HMC. The parameter b corresponds to the burn-in time. Here, we consider bounded
and continuously differentiable observables, i.e., g ∈ C1

b (Rdn). Quantitative bounds on the bias
of the ergodic averages follow by the exponential convergence in the Kantorovich distance with
respect to the ℓ1 metric given in (A.19) and the bound on the accuracy of unadjusted HMC.
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Theorem A.13 (Bias of Ergodic Averages). Let g ∈ C1
b (Rdn) with maxi ∥∇ig∥∞ <∞. Suppose

that Assumption A.1, Assumption A.2, Assumption A.3 and Assumption A.4 hold. Let T ∈
(0,∞) and h1 ∈ [0,∞) satisfy (A.22) and (A.23). Let ϵ ∈ [0,∞) satisfy (A.24). Let ν be a
probability measure on Rdn. Let C2 and C̃2 be given as in Theorem A.8, and let c be given as in
(A.11). Then for h ∈ [0, h1] such that h = 0 or T/h ∈ N,

|Eν [Am,bg]− µ(g)| ≤ 1
m

max
i
∥∇ig∥∞

e−cb

1− e−c
Wℓ1(ν, µh) + hmax

i
∥∇ig∥∞C3,

where C3 = exp(5
4(2 + R̃/T ))c−1C2

(
d1/2n +

∫ ∑
i |xi|µ(dx)

)
. If additionally Assumption A.5

and Assumption A.6 are supposed, then

|Eν [Am,bg]− µ(g)| ≤ 1
m

max
i
∥∇ig∥∞

e−cb

1− e−c
Wℓ1(ν, µh) + h2 max

i
∥∇ig∥∞C̃3,

where C̃3 = exp(5
4(2 + R̃/T ))c−1C̃2

(
dn+

∫ ∑
i |xi|µ(dx) +

∫ ∑
i |xi|2µ(dx)

)
.

A proof is given in Appendix A.6.3.
Remark A.14. We note that provided maxi ∥∇ig∥∞ isO(1/n) the bound of the bias of the ergodic
averages is independent of the number n of particles. Hence for intensive observables of the form
g(x) = 1

n

∑
i ĝ(xi) where ĝ ∈ C1

b (Rd) with ∥∇ĝ∥∞ <∞, Theorem A.13 gives quantitative bounds
on the bias of their ergodic averages which are dimension-free, i.e., independent of the number n
of particles. Whereas, for extensive observables, where maxi ∥∇ig∥∞ is O(1), the bound depends
on the number n of particles.

A.4 Estimates for the Hamiltonian dynamics

A.4.1 Deviation from free dynamics

Here we apply the Lipschitz conditions in Assumption A.2 and Assumption A.4 to obtain bounds
on how far the dynamics in (A.5) deviates from the free dynamics, U ≡ 0. To obtain these
bounds, we assume in the following that t, h ∈ [0,∞) are such that t/h ∈ N for h > 0 and such
that

(L+ 4ϵL̃)(t2 + th) ≤ 1. (A.35)

This condition essentially states that the duration of the Hamiltonian dynamics in (A.5) is small
with respect to the fastest characteristic time-scale of the mean-field particle system represented
by

√
sup ∥HessU∥ ≤

√
L+ 4ϵL̃ (see Remark A.2). This bound follows from Assumption A.2

and Assumption A.4. The i-th component of the solution to (A.5) is denoted by (xi
s, v

i
s).

Lemma A.15. Let x, v ∈ Rdn. Then for i ∈ {1, ..., n},

max
s≤t
|xi

s| ≤ (1 + (L+ 2ϵL̃)(t2 + th)) max(|xi|, |xi + tvi|) (A.36)

+ 2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|xj
s|,

max
s≤t
|vi

s| ≤ |vi|+ (L+ 2ϵL̃)t(1 + (L+ 2ϵL̃)(t2 + th)) max(|xi|, |xi + tvi|)) (A.37)

+ 2ϵL̃t
n

(1 + (L+ 2ϵL̃)(t2 + th)) max
s≤t

∑
j ̸=i

|xj
s|.
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Moreover,

max
s≤t

∑
i

|xi
s| ≤ (1 + (L+ 4ϵL̃)(t2 + th))

∑
i

max(|xi|, |xi + tvi|), (A.38)

max
s≤t

∑
i

|vi
s| ≤ (L+ 4ϵL̃)t(1 + (L+ 4ϵL̃)(t2 + th))

∑
i

max(|xi|, |xi + tvi|) +
∑

i

|vi|. (A.39)

A proof of Lemma A.15 is provided in Appendix A.5.
Let two processes (xs, vs), (ys, us) with initial values (x, v) and (y, u) be driven by the

Hamiltonian dynamics in (A.5). We set (zs, ws) := (xs − ys, vs − us). Since (xs, vs) and (ys, us)
depend on (x, v) and (y, u), respectively, (zs, ws) depends on (x, v, y, u). By (A.5), the dynamics
of the i-th component of (zs, ws) is given by

d
dtz

i
t = wi

⌊t⌋ − (h/2)(∇iU(x⌊t⌋)−∇iU(y⌊t⌋))

d
dtw

i
t = (1/2)(−∇iU(x⌊t⌋)−∇iU(x⌈t⌉) +∇iU(y⌊t⌋) +∇iU(y⌈t⌉)).

(A.40)

Next, we bound the distance between the process (zi
s, w

i
s) and the process given by the free

dynamics, where U ≡ 0. As the particlewise coupling in Appendix A.2.3 is designed with
respect to the free dynamics, this bound plays an important role in proving the contraction
results of Appendix A.3. It explains why the particlewise coupling works when the distance
between i-th particles is small, i.e., when |xi − yi| < R̃, and when the duration T and the time
step h are small, i.e., when (A.35) is assumed.

Lemma A.16. Let x, y, v, u ∈ Rdn. Then for all i ∈ {1, ..., n},

max
s≤t
|zi

s − zi − swi| ≤ (L+ 2ϵL̃)(t2 + th) max(|zi + twi|, |zi|) (A.41)

+ 2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|zj
s |,

max
s≤t
|zi

s| ≤ (1 + (L+ 2ϵL̃)(t2 + th)) max(|zi + twi|, |zi|) (A.42)

+ 2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|zj
s |,

max
s≤t
|wi

s − wi| ≤ (L+ 2ϵL̃)t(1 + (L+ 2ϵL̃)(t2 + th)) max(|zi + twi|, |zi|)) (A.43)

+ 2ϵL̃t
n

(1 + (L+ 2ϵL̃)(t2 + th)) max
s≤t

∑
j ̸=i

|zj
s |,

max
s≤t
|wi

s| ≤ |wi|+ (L+ 2ϵL̃)t(1 + (L+ 2ϵL̃)(t2 + th)) max(|zi + twi|, |zi|)) (A.44)

+ 2ϵL̃t
n

(1 + (L+ 2ϵL̃)(t2 + th)) max
s≤t

∑
j ̸=i

|zj
s |.

Moreover,

max
s≤t

∑
i

|zi
s| ≤ (1 + (L+ 4ϵL̃)(t2 + th))

∑
i

max(|zi + twi|, |zi|), (A.45)

max
s≤t

∑
i

|wi
s| ≤ (L+ 4ϵL̃)t(1 + (L+ 4ϵL̃)(t2 + th))

∑
i

max(|zi + twi|, |zi|) +
∑

i

|wi|. (A.46)

A proof of Lemma A.16 is provided in Appendix A.5.
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A.4.2 Bounds in region of strong convexity

Next, we obtain a bound for the difference between the positions of the i-th particles provided
that |xi − yi| > R̃ and vi = ui. We assume that

(L+ 4ϵL̃)(t2 + th) ≤ min
( κ

L+ 4ϵL̃
,

1
4
)
, (A.47)

where κ is given by

κ := K − 3ϵL̃. (A.48)

Further, we assume that

h ≤ Kt

525L+ 235K . (A.49)

Lemma A.17. Suppose that Assumption A.1, Assumption A.2, Assumption A.3 and Assump-
tion A.4 hold. Let ϵ ∈ [0,∞) be such that ϵL̃ < K/6 holds. Let R̃ be given in (A.14). Let
t, h ∈ [0,∞) be such that h = 0 or t/h ∈ N, and such that (A.47) and (A.49) holds. Then, for
all x, y, v, u ∈ Rdn and i ∈ {1, ..., n} such that |xi − yi| ≥ R̃ and vi = ui,

|xi
t − yi

t|2 ≤
(
1− 1

4κt
2
)
|xi − yi|2 + 2ϵL̃t

2

n2

(
max
s≤t

∑
j ̸=i

|xj
s − yj

s|
)2
. (A.50)

A proof of Lemma A.17 is given in Appendix A.5.

A.5 Proofs of results from Section A.4

Before stating the proofs of Appendix A.4, note that by (A.6) and (A.7) for all x, y ∈ Rdn,

|∇iU(x)| ≤ L|xi|+ 2ϵL̃
n

∑
j ̸=i

|xi − xj | ≤ (L+ 2ϵL̃)|xi|+ 2ϵL̃
n

∑
j ̸=i

|xj |, (A.51)

and by Assumption A.2 and Assumption A.4

|∇iU(x)−∇iU(y)| ≤ (L+ 2ϵL̃)|xi − yi|+ 2ϵL̃
n

∑
j ̸=i

|xj − yj |. (A.52)

Further by (A.9) and (A.7), it holds for all x, y ∈ Rdn,

−(xi − yi) · (∇iU(x)−∇iU(y)) ≤ −(K − 2ϵL̃)|xi − yi|2 + 2ϵL̃|xi − yi| 1
n

∑
j ̸=i

|xj − yj |+ Ĉ

≤ −κ|xi − yi|2 + ϵL̃
( 1
n

∑
j ̸=i

|xj − yj |
)2

+ Ĉ. (A.53)

It follows from the definition (A.14) of R̃ and the condition ϵL̃ < K/6, which is assumed in
Lemma A.17, that for all x, y ∈ Rd with |x − y| ≥ R̃,

Ĉ = R2(L+K) < 1
64K|x − y|2 ≤ 1

32κ|x − y|2. (A.54)
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Proof of Lemma A.15. Fix x, v ∈ Rdn. Let s ≤ t. We have from (A.5)

xi
s − xi − svi =

∫ s

0

∫ ⌊r⌋

0

(
− 1

2∇iU(x⌊u⌋)−
1
2∇iU(x⌈u⌉)

)
du dr −

∫ s

0

h

2∇iU(x⌊r⌋)dr.

We apply (A.51) to obtain

|xi
s − xi − svi| ≤ (L+ 2ϵL̃)(t2 + th)

2 max
r≤t

(|xi
r − xi − rvi|+ |xi + rvi|)

+ 2ϵL̃(t2 + th)
2n max

r≤t

∑
j ̸=i

|xj
r|.

Invoking condition (A.35), we get

max
s≤t
|xi

s − xi − svi| ≤ (L+ 2ϵL̃)(t2 + th) max
s≤t
|xi + svi|+ 2ϵL̃(t2 + th)

n
max
s≤t

∑
j ̸=i

|xj
s|

= (L+ 2ϵL̃)(t2 + th) max(|xi|, |xi + tvi|) + 2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|xj
s|.

By applying the triangle inequality, (A.36) is obtained. From (A.5) and (A.51), we have

|vi
s − vi| ≤

∫ s

0
max
u≤t
|∇iU(xu)|dr ≤ (L+ 2ϵL̃)tmax

u≤t
|xi

u|+
2ϵL̃t
n

max
u≤t

∑
j ̸=i

|xj
u|. (A.55)

We insert (A.36) in (A.55) to obtain

|vi
s − vi| ≤ (L+ 2ϵL̃)t(1 + (L+ 2ϵL̃)(t2 + th)) max(|xi|, |xi + tvi|)

+ 2ϵL̃t
n

(1 + (L+ 2ϵL̃)(t2 + th)) max
u≤t

∑
j ̸=i

|xj
u|.

By applying the triangle inequality, (A.37) is obtained. Equation (A.38) and (A.39) follow by
considering the sum over all particles, i.e., by (A.5) we have∑

i

|xi
s − xi − svi| ≤

∫ s

0

∫ r

0

1
2
∑

i

|∇iU(x⌊u⌋) +∇iU(x⌈u⌉)|dudr + h

2

∫ s

0

∑
i

|∇iU(x⌊r⌋)|dr

≤ (L+ 4ϵL̃)(t2 + th)
2 max

r≤t

(∑
i

|xi
r|
)

and hence analogous to the estimate obtained for the i-th particle,

max
s≤t

∑
i

|xi
s − xi − svi| ≤ (L+ 4ϵL̃)(t2 + th) max

r≤t

∑
i

|xi + rvi|

≤ (L+ 4ϵL̃)(t2 + th)
∑

i

max(|xi|, |xi + tvi|).

By applying the triangle inequality, (A.38) is obtained. By (A.5) and (A.38),∑
i

|vi
s − vi| ≤ (L+ 4ϵL̃)tmax

r≤t

(∑
i

|xi
r|
)

≤ (L+ 4ϵL̃)t(1 + (L+ 4ϵL̃)(t2 + th))
∑

i

max(|xi|, |xi + tvi|),

and (A.39) is obtained by the triangle inequality.

72



A.5. PROOFS OF RESULTS FROM SECTION A.4

Proof of Lemma A.16. By (A.52) and (A.40),

|zi
s − zi − swi|

≤
∫ s

0

∫ r

0
max
v≤t
| − ∇iU(xv) +∇iU(yv)|du dr + h

2

∫ s

0
max
v≤t
| − ∇iU(xv) +∇iU(yv)|dr

≤ (L+ 2ϵL̃)(t2 + th)
2 max

r≤t
|zi

r|+
2ϵL̃(t2 + th)

2n max
r≤t

∑
j ̸=i

|zj
r |.

Hence, we obtain similar to the previous proof

max
s≤t
|zi

s − zi − swi| ≤ (L+ 2ϵL̃)(t2 + th) max(|zi|, |zi + twi|) + 2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|zj
s |,

which gives (A.41). Then (A.42) is obtained by applying triangle inequality. Next, we consider

|wi
s − wi| ≤ 1

2

∫ s

0
(| − ∇iU(x⌊r⌋) +∇iU(y⌊r⌋)|+ | − ∇iU(x⌈r⌉) +∇iU(y⌈r⌉)|)dr

≤ (L+ 2ϵL̃)tmax
r≤t
|zi

r|+
2ϵL̃t
n

max
r≤t

∑
j ̸=i

|zj
r |,

where we again used (A.52) and (A.40). Hence, we obtain by (A.42),

max
s≤t
|wi

s − wi| ≤ (L+ 2ϵL̃)t(1 + (L+ 2ϵL̃)(t2 + th)) max(|zi|, |zi + twi|)

+ 2ϵL̃t
n

(1 + (L+ 2ϵL̃)(t2 + th)) max
s≤t

∑
j ̸=i

|zj
s |,

which gives (A.43) and (A.44). Estimates (A.45) and (A.46) hold similarly by considering the
sum over all particles instead of considering only the i-th particle.

Proof of Lemma A.17. As before, write (zs, ws) = (xs− ys, vs−us) whose dynamics is given by
(A.40). Then, z0 = x−y and wi

0 = 0 since the velocities of the i-th component are synchronized.
Define ai(t) = |zi

t|2 and bi(t) = 2zi
t · wi

t. We set up an initial value problem of the two
deterministic processes ai(t) and bi(t) and solve it to obtain the required bound for ai(t). By
(A.40), we have

d
dta

i(t) = bi(t) + 2zi
t · (wi

⌊t⌋ − w
i
t)− hzi

t · (∇iU(x⌊t⌋)−∇iU(y⌊t⌋)) = bi(t) + δi(t)

d
dtb

i(t) = −zi
t · (∇iU(x⌊t⌋)−∇iU(y⌊t⌋) +∇iU(x⌈t⌉)−∇iU(y⌈t⌉))

+ 2wi
t · wi

⌊t⌋ − hw
i
t · (∇iU(x⌊t⌋)−∇iU(y⌊t⌋))

= −zi
⌊t⌋ · (∇iU(x⌊t⌋)−∇iU(y⌊t⌋))− zi

⌈t⌉ · (∇iU(x⌈t⌉)−∇iU(y⌈t⌉))

+ 2|wi
t|2 − 2κ|zi

t|2 + κ(|zi
⌊t⌋|

2 + |zi
⌈t⌉|

2) + εi(t)
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where εi(t) = εi
1(t) + εi

2(t) + εi
3(t) + εi

4(t) and

δi(t) = zi
t · (2(wi

⌊t⌋ − w
i
t)− h(∇iU(x⌊t⌋)−∇iU(y⌊t⌋)))

εi
1(t) = −(zi

t − zi
⌊t⌋) · (∇iU(x⌊t⌋)−∇iU(y⌊t⌋))

εi
2(t) = −(zi

t − zi
⌈t⌉) · (∇iU(x⌈t⌉)−∇iU(y⌈t⌉))

εi
3(t) = wi

t · (2(wi
⌊t⌋ − w

i
t)− h(∇iU(x⌊t⌋)−∇iU(y⌊t⌋)))

εi
4(t) = κ(2|zi

t|2 − |zi
⌊t⌋|

2 − |zi
⌈t⌉|

2).

By (A.53) the derivative of bi(t) is bounded by

d
dtb

i(t) ≤ −2κ|zi
t|2 + ϵL̃

n2

(∑
j ̸=i

|zj
⌊t⌋|
)2

+ ϵL̃

n2

(∑
j ̸=i

|zj
⌈t⌉|
)2

+ 2|wi
t|2 + εi(t) + 2Ĉ.

The previous estimate leads to an initial value problem of the form

d
dta

i(t) = bi(t) + δi(t), ai(0) = |zi
0|2,

d
dtb

i(t) = −2κai(t) + βi(t) + εi(t), bi(0) = 0,

where

βi(t) ≤ ϵL̃

n2

(∑
j ̸=i

|zj
⌊t⌋|
)2

+ ϵL̃

n2

(∑
j ̸=i

|zj
⌈t⌉|
)2

+ 2|wi
t|2 + 2Ĉ. (A.56)

Note that when h = 0, εi(t) = δi(t) = 0. By variation of parameters, ai(t) can be written as

ai(t) = cos(
√

2κ t)|zi
0|2 +

∫ t

0
cos(
√

2κ(t− r))δi(r)dr

+
∫ t

0

1√
2κ

sin(
√

2κ(t− r))(βi(r) + εi(r))dr.
(A.57)

Taylor’s integral formula, i.e., cos(
√

2κ t) = 1 − κt2 + (1/6)
∫ t

0(t − s)3 cos(
√

2κ s)(2κ)2ds ≤
1− κt2 + κ2t4/6, and the fact that by (A.47) and (A.8) κ2t4 ≤ (L+ 2ϵL̃)2t4 ≤ κt2 yield

cos(
√

2κt) ≤ 1− (5/6)κt2. (A.58)

Further, we get by (A.47) and (A.8)

κt2 ≤ (L+ 2ϵL̃)t2 ≤ 1 ≤ π2/2, and so t ≤ (π/
√

2κ). (A.59)

Therefore, sin(
√

2κ(t− r)) ≥ 0 for all r ∈ [0, t]. Further,

1√
2κ

sin(
√

2κ(t− r)) ≤ (t− r). (A.60)

Inserting (A.58) and (A.60) in (A.57) yields

ai(t) ≤ (1− (5/6)κt2)|zi
0|2 +

∫ t

0
|δi(r)|dr +

∫ t

0
(t− r)(|βi(r)|+ |εi(r)|)dr. (A.61)
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For βi(t), we note that by (A.56), (A.44) with wi = 0 and (A.47),

|βi(t)| ≤ 2
(
(L+ 2ϵL̃)t54 |z

i
0|+

2ϵL̃t
n

5
4 max

s≤t

∑
j ̸=i

|zj
s |
)2

+ 2ϵL̃
n2

(
max
s≤t

∑
j ̸=i

|zj
s |
)2

+ 2Ĉ

≤ 25
4 (L+ 2ϵL̃)2t2|zi

0|2 +
(
25ϵ

2L̃2t2

n2 + 2ϵL̃
n2

)(
max
s≤t

∑
j ̸=i

|zj
s |
)2

+ 2Ĉ. (A.62)

Note that by (A.8), (A.47) and since by assumption ϵL̃ < K/6,

ϵL̃(t2 + th) ≤ (1/10)(K + 4ϵL̃)(t2 + th) ≤ (1/10)(L+ 4ϵL̃)(t2 + th) ≤ 40−1. (A.63)

Hence, by (A.62) we obtain for the integral containing βi(t) in (A.61)∫ t

0
(t− r)|βi(r)|dr

≤
∫ t

0
(t− r)

(25
4 r

2(L+ 2ϵL̃)2|zi
0|2 +

(
25r

2ϵ2L̃2

n2 + 2ϵL̃
n2

)(
max
s≤t

∑
j ̸=i

|zj
s |
)2

+ 2Ĉ
)
dr

≤ 25
48 t

4(L+ 2ϵL̃)2|zi
0|2 +

( 25
12 · 40 + 1

)ϵL̃t2
n2

(
max
s≤t

∑
j ̸=i

|zj
s |
)2

+ Ĉt2, (A.64)

where the last step follows by (A.63).
Next, we bound δi(t) and εi(t). To bound δi(t) and εi

3(t), we note that by (A.40) and (A.52),

|wi
⌊t⌋ − w

i
t| ≤

∣∣∣ ∫ t

⌊t⌋

d
dsw

i
sds
∣∣∣ ≤ h

2 |∇iU(x⌊t⌋) +∇iU(x⌈t⌉)− (∇iU(y⌊t⌋) +∇iU(y⌈t⌉))|

≤ h
(
(L+ 2ϵL̃)zi,∗

t + 2ϵL̃
n

max
s≤t

∑
j ̸=i

|zj
s |
)

where zi,∗
t = maxs≤t |zi

s|. Hence, by (A.52), (A.42) with wi = 0 and (A.47),

|2(wi
⌊t⌋ − w

i
t)− h(∇iU(x⌊t⌋)−∇iU(y⌊t⌋))| ≤ 3h

(
(L+ 2ϵL̃)zi,∗

t + 2ϵL̃
n

max
s≤t

∑
j ̸=i

|zj
s |
)

≤ 3h
(5

4(L+ 2ϵL̃)|zi
0|+

5
2
ϵL̃

n
max
s≤t

∑
j ̸=i

|zj
s |
)
. (A.65)

Hence by (A.65) and (A.42) with wi = 0, and then by (A.63) and (A.47),

max
s≤t
|δi(s)| ≤ 3h

(5
4 |z

i
0|+

2ϵL̃(t2 + th)
n

max
s≤t

∑
j ̸=i

|zj
s |
)(5

4(L+ 2ϵL̃)|zi
0|+

5
2
ϵL̃

n
max
s≤t

∑
j ̸=i

|zj
s |
)

≤ 3h
(25

16(L+ 2ϵL̃)|zi
0|2 + 15

4 ϵL̃|z
i
0|

1
n

max
s≤t

∑
j ̸=i

|zj
s |+

ϵL̃

8n max
s≤t

(∑
j ̸=i

|zj
s |
)2)

(A.66)

≤ h
(75L

16 + 15ϵL̃
)
|zi

0|2 + h
6ϵL̃
n2 max

s≤t

(∑
j ̸=i

|zj
s |
)2
, (A.67)
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Note that Young’s product inequality is used in (A.66) to bound the cross term. Similarly, by
(A.65), (A.42) with wi = 0, (A.44) with wi = 0 and (A.63),

max
s≤t
|εi

3(s)| t2 ≤ 3h t2
(5

4(L+ 2ϵL̃)t|zi
0|+

5
4
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n
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|zj
s |
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·
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4(L+ 2ϵL̃)|zi
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2
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+ 25
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s |
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64 |zi
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|zj
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. (A.69)

Note that Young’s product inequality is used to bound the cross term in (A.68).

To bound εi
1(t), εi

2(t) and εi
4(t), we note that by (A.40) and (A.52),

|zi
⌊t⌋ − z

i
t| =

∣∣∣ ∫ t
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d
dsz

i
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where wi,∗
t = maxs≤t |wi

s|. Similarly,
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⌈t⌉ − z

i
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Hence, by applying (A.70), (A.71) and (A.52) in the first step, and (A.42) and (A.44) with
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wi = 0 in the second step,

max
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(|εi
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Note that Young’s product inequality is used to bound the cross term in the third step and
(A.47) and (A.63) are used in the last step. For εi

4(t), we obtain by (A.70) and (A.71),
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(A.74)

where (A.73) follows by (A.42) with wi = 0 and (A.44) with wi = 0 and since by (A.8) κ ≤
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(L + 2ϵL̃). Note that Young’s product inequality is used to bound the cross term in the third
step.

Therefore, by (A.67), (A.69), (A.72) and (A.74),∫ t
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(A.75)

where we used ϵL̃ < K/6 in (A.75). We note that by (A.49), (A.8) and since by assumption
ϵL̃ < K/6,

h
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64 L+ 235
64 K

)
≤ Kt

64 ≤
κt

32 (A.76)

and

h
237
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32
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525L+ 235K ≤
1
2 t. (A.77)

Therefore, by (A.75), (A.76) and (A.77)∫ t

0

(
(t− r)|εi(r)|+ |δi(r)|

)
dr ≤ t2

( κ
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Inserting (A.64) and (A.78) in (A.61) and applying (A.47) yields,
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By (A.54), we obtain for x, y ∈ Rdn with |xi − yi| > R̃,
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as required.
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A.6 Proofs of main results

A.6.1 Proof of main contraction result

For the proof of Theorem A.3, we write Ri and ri for ri(x, y) = |xi − yi| and Ri(x, y) =
|Xi(x, y) − Yi(x, y)| for fixed x, y ∈ Rdn. Further, we write ri

s = |qi
s(x, ξ) − qi

s(y, η)| for the
distance between the two positions at time s satisfying (A.5) where ξ, η are the velocities coupled
using the construction given in Appendix A.2.3. Further, we denote z = x− y and w = ξ − η.

Proof of Theorem A.3. Note that (A.22), (A.24) and (A.48) imply

κ ≥ (1/2)K and L+ 4ϵL̃ ≤ L+ (2K/3) ≤ (5/3)L. (A.79)

Hence, we obtain by (A.22)

(L+ 4ϵL̃)(T + h1)2 ≤ min
(1

4 ,
κ

L+ 4ϵL̃
,

1
256(L+ 4ϵL̃)R̃2

)
. (A.80)

Moreover, the following inequalities are satisfied,

γT ≤ 1, (A.81)
(L+ 4ϵL̃)(T + h) ≤ γ/4, (A.82)

γR̃ ≤ 1/4, (A.83)
exp(T−1(R1 − R̃)) ≥ 12. (A.84)

Inequalities (A.81) and (A.83) follow by (A.15), (A.82) follows by (A.15) and (A.80), and the
inequality (A.84) follows by (A.16).

We first prove a bound on E[f(Ri) − f(ri)] for each particle i similarly to the strategy to
bound E[f(R)− f(r)] in [31, Proof of Theorem 2.4]. We split the calculation of this expectation
in two cases depending on the applied coupling.

Case 1: ri = |xi − yi| ≥ R̃. In this case, the initial velocities of the i-th particles are
synchronized, i.e., wi = 0. By concavity of the function f , by Lemma A.17 and since

√
1− a ≤ 1− a/2 for a ∈ [0, 1), (A.85)

we obtain

E[f(Ri)− f(ri)] ≤ f ′(ri)E[Ri − ri]

≤ f ′(ri)
(
− 1

8κT
2
)
ri + f ′(ri)

√
2ϵL̃T

n
E
[

max
s≤T

∑
j ̸=i

rj
s

]
. (A.86)

Case 2: ri = |xi − yi| < R̃. In this case, since the distance between the i-th particles
is smaller than R̃, the initial velocities of the i-th particles satisfy wi = −γzi with maximal
possible probability and otherwise a reflection is applied. These disjoint possibilities motivate
splitting the expectation E[f(Ri)− f(ri)] as follows

E[f(Ri)− f(ri)] = E[f(Ri)− f(ri), {wi = −γzi}]
+ E[f(R1 ∧Ri)− f(ri), {wi ̸= −γzi}]
+ E[f(Ri)− f(R1 ∧Ri), {wi ̸= −γzi}] = I + II + III.
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First, we bound the probability P[wi ̸= −γzi], which equals the total variation distance
between a standard normal distribution with zero mean and a normal distribution with mean
γzi and unit variance, cf. Lemma 4.4 of [29]. Note using the coupling characterization of the
TV distance, this representation shows that the coupling ξi − ηi = −γzi holds with maximal
probability. By (A.83),

P[wi ̸= −γzi] =
∫ γ|zi|/2
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1
10 . (A.87)

Next, we bound I, II and III. For I, we note that on the set {wi = −γzi}, by (A.41) and
(A.82)
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Hence by concavity of f and by (A.87),

I ≤ −f ′(ri)3
4γTr
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To bound II, note that by (A.17) for r, s ≤ R1,

f(s)− f(r) =
∫ s

r
e−t/T dt = T (e−r/T − e−s/T ) ≤ Te−r/T = Tf ′(r).

Therefore, by (A.87)

II ≤ Tf ′(ri)P[wi ̸= −γzi] ≤ Tf ′(ri) γr
i

√
2π

<
2
5γTr

if ′(ri). (A.89)

where we used the bound 1/
√

2π < 2/5. For III, we get by concavity of f

III ≤ f ′(R1)E[(Ri −R1)+, {wi ̸= −γzi}]. (A.90)

If wi ̸= −γzi, then wi = 2(ei · ξi)ei with ei = zi/|zi| and hence |zi + Twi| = |ri + 2Tei · ξi|. This
computation and (A.42) yield

Ri ≤ (1 + (L+ 2ϵL̃)(T 2 + Th)) max(|ri + 2Tei · ξi|, ri) + 2ϵL̃(T 2 + Th)
n

max
s≤T

∑
j ̸=i
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s.
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Hence by (A.80) and since (5/4)ri −R1 ≤ (5/4)R̃−R1 ≤ 0,

E[(Ri −R1)+, {wi ̸= −ziγ}]
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For the first term, where only the i-th particle is involved, we follow the calculations in the proof
of [31, Theorem 2.4],
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Hence by (A.84), (A.90), (A.91) and (A.92),
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We combine the bounds on I, II and III in (A.88), (A.89) and (A.93) respectively, to obtain for
ri ≤ R̃,

E[f(Ri)− f(ri)] ≤ −f ′(ri)27
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Next, we combine (A.86) and (A.94) and sum over i to obtain

E
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(A.95)
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To bound the expectation in the last term of (A.95) we note that when wj ̸= −γzj , then
wj = 2(ej · ξj)ej with ej = zj/|zj |, and hence by (A.83),
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Then we obtain by (A.45), by (A.80), and since by (A.81) for wj = −γzj , |zj + Twj | ≤ |zj |,
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where last step holds by (A.96) and (A.81). Hence inserting (A.97) in (A.95),
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(A.98)

Since by (A.82) κT 2 ≤ Tγ/4, the minimum in (A.98) is attained at 1
8κT

2. Since (A.8), (A.80)
and (A.24) imply (A.63) with t = T , it holds (13/6)ϵL̃(T 2 + Th) ≤ 13/6
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and it holds by (A.16) that
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f(rj) (A.100)
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where we used that f(rj) ≥ rjf ′(rj) and exp(−R1/T ) ≤ f ′(ri) ≤ 1. Hence,

E
[∑

i

(f(Ri)− f(ri))
]
≤ −1

8κT
2 5
4
(R̃
T

+ 2
)

exp
(
− 5R̃

4T
)

exp
(
− 5

2
)∑

i

f(ri)

+
√

2ϵL̃T 45
16 exp

(5
2
)

exp
(5R̃

4T
)∑

i

f(ri)

≤ − 1
78κT

2 exp
(
− 5R̃

4T
)∑

i

f(ri),

where the last step holds by (A.24).

A.6.2 Proofs of results from Section A.3.2

Proof of Corollary A.7. This proof works analogously to the proof of [31, Corollary 2.6] and
uses essentially [31, Lemma 6.1]. By Theorem A.3, the contractivity condition

E[ρ(X(x, y),Y(x, y))] ≤ e−cρ(x, y) (A.101)

is satisfied for the coupling (X(x, y),Y(x, y)). Let ν, η be probability measures on Rdn and
let ω be an arbitrary coupling of ν and η. By [31, Lemma 6.1], there exists a Markov chain
(Xm,Ym)m≥0 on a probability space (Ω̃, Ã, P̃ ) such that (X0,Y0) ∼ ω, (Xm), (Ym) are Markov
chains each having transition kernel πh and initial distributions ν and η, respectively, and
Mm = ecmρ(Xm,Ym) is a non-negative supermartingale. Then, for all m ∈ N,

Wρ(νπh
m, ηπh

m) ≤ E[ρ(Xm,Ym)] ≤ e−cmE[ρ(X0,Y0)] = e−cm
∫
ρdω.

Since ω is chosen arbitrary, we take the infimum over all couplings ω ∈ Γ(ν, η) and obtain (A.26).
The bound (A.27) follows by (A.20). The existence of a unique probability measure µh on Rdn

holds by (A.27) and by Banach fixed-point theorem, cf. [84, Theorem 3.9]. Since µhπh
m = µh

for all m, ∆(m) ≤ eR1/T e−cm∆(0). Hence, for a given ϵ̃ > 0, ∆(m) ≤ ϵ̃ holds for (A.29) by
(A.16).

Proof of Theorem A.8. This proof uses essentially standard numerical analysis techniques and
a priori estimates given in Lemma A.15. Fix x, ξ ∈ Rdn. Denote by (xs, vs) = (qs(x, ξ), ps(x, ξ))
the Hamiltonian dynamics driven by (A.1). Set xi

k := qi
kh(x, ξ), x̃i

k := q̃i
kh(x, ξ), vi

k := pi
kh(x, ξ)

and ṽi
k := p̃i

kh(x, ξ). By (A.1) and (A.5), it holds

|xi
k+1 − x̃i

k+1| ≤ |xi
k − x̃i

k|+ h|vi
k − ṽi

k|+
∣∣∣ ∫ (k+1)h

kh

∫ u

kh

(
∇iU(xr)−∇iU(x̃k)

)
drdu

∣∣∣,
|vi

k+1 − ṽi
k+1| ≤ |vi

k − ṽi
k|+

∣∣∣ ∫ (k+1)h

kh

(1
2∇iU(x̃k)−∇iU(xu) + 1

2∇iU(x̃k+1)
)
du
∣∣∣.
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By (A.52) and (A.5),∑
i

∣∣∣∇iU(xr)−∇iU(x̃k)
∣∣∣ ≤∑

i

∣∣∣∇iU(xr)−∇iU(xk)
∣∣∣+∑

i

∣∣∣∇iU(xk)−∇iU(x̃k)
∣∣∣

≤
∑

i

∣∣∣ ∫ r

kh
vs · ∇∇iU(xs)ds

∣∣∣+ (L+ 4ϵL̃)
∑

i

|xi
k − x̃i

k|

≤
∑

i

∣∣∣ ∫ r

kh
(L+ 4ϵL̃)vi

sds
∣∣∣+ (L+ 4ϵL̃)

∑
i

|xi
k − x̃i

k|

≤
∑

i

(L+ 4ϵL̃)
(
h
(21

16 |v
i
0|+

5
4(L+ 4ϵL̃)T |xi

0|
)

+ |xi
k − x̃i

k|
)
,

where (A.39) and (L+ 4ϵL̃)T 2 ≤ (1/4) is used in the last step. Analogously,

∑
i

(
−∇iU(xu) + 1

2∇iU(x̃k) + 1
2∇iU(x̃k+1)

)
≤
∑

i

(L+ 4ϵL̃)
(
h
(21

16 |v
i
0|+

5
4(L+ 4ϵL̃)T |xi

0|
)

+ 1
2 |x

i
k − x̃i

k|+
1
2 |x

i
k+1 − x̃i

k+1|
)
. (A.102)

Then for any initial position x ∈ Rdn,

E
[∑

i

|xi
k+1 − x̃i

k+1|
]
≤
(
1 + h2(L+ 4ϵL̃)

2
)
E
[∑

i

|xi
k − x̃i

k|
]

+ hE
[∑

i

|vi
k − ṽi

k|
]

+ h3

2 M1,

and
E
[∑

i

|vi
k+1 − ṽi

k+1|
]
≤ E

[∑
i

|vi
k − ṽi

k|
]

+ h2M1

+ (L+ 4ϵL̃)h
2

(
E
[∑

i

|xi
k+1 − x̃i

k+1|
]

+ E
[∑

i

|xi
k − x̃i

k|
]) (A.103)

with M1 := Eξ∼N (0,Idn)[
∑

i(L + 4ϵL̃)(21
16 |ξ

i| + 5
4(L + 4ϵL̃)T |xi|)]. Set ak := E[

∑
i |xi

k − x̃i
k|] and

bk := E[
∑

i |vi
k − ṽi

k|]. The goal is to bound ak from above using the discrete Gronwall lemma
[89, Proposition 3.2]. Note that this sequence (ak, bk) with a0 = b0 = 0 satisfies

ak+1 ≤ (1 + (L+ 4ϵL̃)h2/2)ak + hbk + (h3M1/2)
bk+1 ≤ bk + h2M1 + ((L+ 4ϵL̃)h/2)(ak+1 + ak).

We deduce for bk+1

bk+1 ≤ (L+ 4ϵL̃)h
k∑

l=1
al + (L+ 4ϵL̃)h

2 ak+1 + (k + 1)h2M1.

Inserting this estimate in ak+1 yields

ak+1 ≤ (1 + (L+ 4ϵL̃)h2)ak + (kh3M1 + h3M1/2) + (L+ 4ϵL̃)h2
k−1∑
l=1

al. (A.104)
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Note that the sequence (ãk) satisfying

ãk+1 = (1 + (L+ 4ϵL̃)h2)ãk + (k + (1/2))h3M1 + (L+ 4ϵL̃)h2
k−1∑
l=1

ãl (A.105)

is an upper bound of the sequence (ak), i.e. ak ≤ ãk. Moreover, it holds ãk ≤ ãk+1. Hence,

ãk+1 ≤ (1 + (L+ 4ϵL̃)kh2)ãk + (k + 1/2)h3M1 ≤ (1 + (L+ 4ϵL̃)Th)ãk + Th2M1.

Applying the discrete Grönwall lemma to ãk yields for all k ≤ (T/h),

ak ≤ ãk ≤
1

(L+ 4ϵL̃)T

(
(1 + (L+ 4ϵL̃)hT )k − 1

)
ThM1

≤ hexp((L+ 4ϵL̃)T 2)− 1
(L+ 4ϵL̃)

M1 ≤ h
exp(1/4)− 1

(L+ 4ϵL̃)
M1, (A.106)

where we applied (L+ 4ϵL̃)T 2 ≥ 1/4 in the last step.
Hence, there exists a constant C2 depending on L, L̃, ϵ and T such that for all k ∈ N with

kh ≤ T and for any initial value x ∈ Rdn,

E
[∑

i

|xi
k − x̃i

k|
]
≤ h · C2

(
d1/2n+

∑
i

|xi|
)

and so (A.30) holds. Note that the term d1/2n comes from E[
∑
|ξi|] since ξi ∼ N (0, Id).

If we assume additionally Assumption A.5 and Assumption A.6, then we can instead of
(A.102) bound using (A.51) and the trapezoidal rule,∣∣∣ ∫ (k+1)h

kh

∑
i

(
−∇iU(xu) + 1

2∇iU(x̃k) + 1
2∇iU(x̃k+1)

)
du
∣∣∣

≤
∣∣∣ ∫ (k+1)h

kh

∑
i

(
−∇iU(xu) + 1

2∇iU(xk) + 1
2∇iU(xk+1)

)
du
∣∣∣

+ h

2
∑

i

(L+ 4ϵL̃)(|xk − x̃k|+ |xk+1 − x̃k+1|)

≤ h

2
∑

i

(L+ 4ϵL̃)(|xi
k − x̃i

k|+ |xi
k+1 − x̃i

k+1|) + h3

12
∑

i

sup
u∈[kh,(k+1)h]

∣∣∣ d2

du2∇iU(xu)
∣∣∣. (A.107)

The last term is bounded using (A.5), (A.51), Assumption A.5 and Assumption A.6 by

∑
i

sup
u∈[kh,(k+1)h]

∣∣∣ d2

du2∇iU(xu)
∣∣∣ ≤∑

i

(LH + 8ϵL̃H) max
s≤T
|vi

s|2 +
∑

i

(L+ 4ϵL̃)2 max
s≤T
|xi

s|.

Since we can bound
∑

i maxs≤T |vi
s|2 and

∑
i maxs≤T |xi

s| by Lemma A.15 and Young’s product
inequality in terms of

∑
i |ξi|,

∑
i |ξi|2,

∑
i |xi| and

∑
i |xi|2, we can bound the last term in

(A.107) after taking expectation over ξ ∼ N (0, Idn) by a constant h3M2 where M2 is a constant
depending on L, L̃, LH , L̃H , ϵ, d, n,

∑
i |xi| and

∑
i |xi|2. More precisely, the dependence of M2

is linear in nd,
∑

i |xi| and
∑

i |xi|2. Replacing h2M1 in (A.103) by h3M2 leads to the fact that
ak in (A.106) is bounded from above by ak+1 ≤ h2(exp(1/(4k))− 1)/(L+ 4ϵL̃)(M2 +M1/(2T )).
Hence, there exists a constant C̃2 of order O(T−1) depending on L, L̃, ϵ, LH and L̃H such that
for all k ∈ N with kh ≤ T and for any initial value x ∈ Rdn (A.31) holds, which concludes the
proof.
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Proof of Theorem A.10. Let ν be an arbitrary probability measure on Rdn. Recall that by
Corollary A.7, it holds Wℓ1(µhπh

m, νπh
m) ≤ exp((5/4)(2 + (R̃/T ))) exp(−cm)Wℓ1(µh, ν). By

(A.20) and Corollary A.7,

∆(m) :=Wℓ1(µ, νπh
m) ≤ Wℓ1(µ, µh) +Wℓ1(µh, νπh

m) ≤ I + II, where

I = exp
(5

4
(
2 + R̃

T

))
Wρ(µ, µh)

II = exp
(5

4
(
2 + R̃

T

)
− cm

)
Wℓ1(µh, ν).

For m chosen as in (A.32), II ≤ ϵ̃/2. To obtain I ≤ ϵ̃/2, we use the results of Corollary A.9. Then
there exists h2 such that for h ≤ min(h1, h2), I ≤ ϵ̃/2 holds. In particular, we choose h−1

2 =
2C2(d1/2n+

∫ ∑
i |xi|µ(dx))/(cϵ̃). Hence, for fixed L, L̃, ϵ, K, R, T , h−1

2 is of order O(ϵ̃−1(d1/2n+∫ ∑
i |xi|µ(dx))). If additionally Assumption A.5 and Assumption A.6 are assumed, then for

h ≤ min(h1, h̃2) where h̃−1
2 = (2C̃2(dn +

∫ ∑
i |xi|µ(dx) +

∫ ∑
i |xi|2µ(dx))/(cϵ̃))1/2, I ≤ ϵ̃/2

holds. Note that h̃−1
2 is for fixed L, L̃, LH , L̃H , ϵ, K, R, T of order O(ϵ̃−1/2((nd)1/2 +

(
∫ ∑

i |xi|µ(dx))1/2 + (
∫ ∑

i |xi|2µ(dx))1/2)).
Let us finally remark that

∑
|xi|µ(dx) =

∫
|x1|µ(dx) and

∫ ∑
i |xi|2µ(dx) are finite. This

holds, since by Assumption A.3 and Assumption A.4 exp(−U(x)) can be bounded from above by
a density function of a Gaussian product measure which has finite first and second moments.

A.6.3 Proofs of results from Section A.3.3

Proof of Theorem A.13. The proof follows [84, Proof of Theorem 3.17]. It holds for m, b ∈ N by
(A.34),

Eν [Am,bg] = 1
m

b+m−1∑
k=b

(νπh
k)(g).

For all g ∈ C1
b (Rnd) with maxl∈{1,...,n} ∥∇lg∥ ≤ ∞,

|g(x)− g(y)| =
n∑

i=1
|g(x1, ..., xi, yi+1, ..., yn)− g(x1, ..., xi−1, yi, ..., yn)|

≤ max
l
∥∇lg∥

n∑
i=1
|(x1, ..., xi, yi+1, ..., yn)− (x1, ..., xi−1, yi, ..., yn)|

= max
l
∥∇lg∥

n∑
i=1
|xi − yi|.

Then for all k ∈ N and for all couplings ω ∈ Γ(νπk
h, µ),

|(νπk
h)(g)− µ(g)| ≤ max

l
∥∇lg∥

∫ n∑
i=1
|xi − yi|ω(dxdy).
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Hence by the triangle inequality, by (A.28) and by (A.20),

|Eν [Am,bg]− µ(g)|

≤ 1
m

b+m−1∑
k=b

|(νπh
k)(g)− µ(g)| ≤ 1

m

b+m−1∑
k=b

max
i
∥∇ig∥∞Wℓ1(νπh

k, µ)

≤ 1
m

b+m−1∑
k=b

max
i
∥∇ig∥∞Wℓ1(νπh

k, µh) + max
i
∥∇ig∥∞Wℓ1(µh, µ)

≤ 1
m

b+m−1∑
k=b

max
i
∥∇ig∥∞Me−ckWℓ1(ν, µh) + max

i
∥∇ig∥∞Wℓ1(µh, µ)

≤ 1
m

max
i
∥∇ig∥∞M

e−cb

1− e−c
Wℓ1(ν, µh) + max

i
∥∇ig∥∞Wℓ1(µh, µ)

with M = exp(5
4(2 + R̃

T )). Applying Corollary A.9 yields the result.

A.7 Appendix: Perturbation of the product model

If the confinement potential is a quadratic potential, i.e., V (x) = K/2|x|2 for all x ∈ Rd,
the mean-field model can be treated as a perturbation of the product model. Given x, y ∈
Rdn we consider the synchronous coupling of four transition kernels πh(x, ·), πh(y, ·), πprod

h (x, ·)
and πprod

h (y, ·), where πh(x, ·) and πh(y, ·) denote the two transition kernels with a mean-field
interaction, i.e., ϵ > 0, and πprod

h (x, ·) and πprod
h (y, ·) are transition kernels of the product model,

i.e., ϵ = 0. Then the coupling HMC step is given by

X(x, y) = qT (x, ξ), Y(x, y) = qT (y, ξ),
Xprod(x, y) = q̂T (x, ξ), Yprod(x, y) = q̂T (y, ξ),

where ξ ∼ N (0, Idn) and q̂T denotes the position component of the Hamiltonian dynamics given
by (A.5) for the product model.

Theorem A.18. Suppose that V (x) = (K/2)|x|2 for all x ∈ Rd and Assumption A.4 hold. Let
T ∈ (0,∞), h1 ∈ [0,∞) and ϵ ∈ (0,∞) satisfy

(K + 4ϵ)(T 2 + Th1) ≤ 1. (A.108)

Then for any h ∈ [0, h1] such that h = 0 or T/h ∈ N and any x, y ∈ Rdn,

n∑
i=1
|Xi(x, y)−Yi(x, y)− (Xi,prod(x, y)−Yi,prod(x, y))| ≤ 8ϵL̃(T 2 + Th)

n∑
i=1
|xi − yi|.

Proof. Fix x, y, v ∈ Rd. For t ∈ [0, T ], we write xi
t = qi

t(x, v) and yi
t = qi

t(y, v) for the i-th
position component of the solution to (A.5) with initial values (x, v) and (y, v), respectively,
and with potential U(x) =

∑n
i=1((K/2)|xi|+ ϵn−1∑n

j=1,j ̸=iW (xi − xj)). Analogously, we write
x̂i

t = q̂i
t(x, v) and ŷi

t = q̂i
t(y, v) for the i-th position component of the solution to (A.5) with

initial values (x, v) and (y, v), respectively, and with potential Û(x) =
∑n

i=1(K/2)|xi|. We set
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zi
t = xi

t − yi
t and ẑi

t = x̂i
t − ŷi

t for all i = 1, . . . , n and t ∈ [0, T ]. By (A.5) and Assumption A.4 it
holds for t ∈ [0, T ],

max
s≤t

n∑
i=1
|zi

s − ẑi
s|

= max
s≤t

n∑
i=1

∣∣∣ ∫ s

0

∫ r

0

(
− 1

2(∇iU(xi
⌊u⌋)−∇iU(yi

⌊u⌋) +∇iU(xi
⌈u⌉)−∇iU(yi

⌈u⌉))

+ 1
2(∇iÛ(x̂i

⌊u⌋)−∇iÛ(ŷi
⌊u⌋) +∇iÛ(x̂i

⌈u⌉)−∇iÛ(ŷi
⌈u⌉))

)
dudr

− h

2

∫ s

0

(
∇iU(xi

⌊u⌋)−∇iU(yi
⌊u⌋)− (∇iÛ(x̂i

⌊u⌋)−∇iÛ(ŷi
⌊u⌋))

)
du
∣∣∣

≤ K

2 (t2 + th) max
s≤t

n∑
i=1
|zi

s − ẑi
s|+ 2ϵL̃(t2 + th) max

s≤t

n∑
i=1
|zi

s|. (A.109)

By (A.108) and (A.45),

max
s≤t

n∑
i=1
|zi

s − ẑi
s| ≤ 4ϵL̃(t2 + th) max

s≤t

n∑
i=1
|zi

s| ≤ 8ϵL̃(t2 + th)
n∑

i=1
|xi − yi|.

Thus, the result holds for t = T .

We note that the step (A.109) uses crucially that the third derivative of V vanishes.
As some calculations simplify in the product case with quadratic confinement potential,

(A.50) in Lemma A.17 holds for all i = 1, . . . , n provided K(t2 + th) ≤ 1/4 and h ≤ (4/165)t is
satisfied. Hence by (A.85),

n∑
i=1
|Xi,prod(x, y)−Yi,prod(x, y)| ≤ (1− (1/8)KT 2)

n∑
i=1
|xi − yi|

for K(T 2 + Th) ≤ 1/4 and h ≤ (4/165)T . Combining the contraction result for the product
model with the perturbation result yields the following consequence.

Corollary A.19. Suppose that V (x) = (K/2)|x|2 for all x ∈ Rd and Assumption A.4 hold. Let
T ∈ (0,∞), h1 ∈ (0,∞) and ϵ ∈ (0,∞) satisfy

K(T 2 + Th1) ≤ 1/4, h ≤ (4/165)T, and
ϵL̃ ≤ K/256. (A.110)

Then, for any h ∈ [0, h1] such that h = 0 or T/h ∈ N and for any x, y ∈ Rdn

n∑
i=1
|Xi(x, y)−Yi(x, y)| ≤ (1−KT 2/16)

n∑
i=1
|xi − yi|,

and for any two probability measures ν and η on Rdn and any m ∈ N,

Wl1(νπm
h , ηπ

m
h ) ≤ e−KT 2m/16Wl1(ν, η).
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Proof. The result is a direct consequence of the contraction result and Theorem A.18, i.e.,
n∑

i=1
|Xi(x, y)−Yi(x, y)| ≤

n∑
i=1
|Xi,prod(x, y)−Yi,prod(x, y)|

+
n∑

i=1
|Xi(x, y)−Yi(x, y)− (Xi,prod(x, y)−Yi,prod(x, y))|

≤ (1−KT 2/8)
n∑

i=1
|xi − yi|+ (8ϵL̃(T 2 + Th)

n∑
i=1
|xi − yi|

≤ (1−KT 2/16)
n∑

i=1
|xi − yi|,

where the last step follows by (A.110). The second bound in Corollary A.19 holds in the same
line as the proof of Corollary A.7.
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Appendix B

Sticky nonlinear SDEs and
convergence of McKean-Vlasov
equations without confinement

Alain Durmus, Andreas Eberle, Arnaud Guillin and Katharina Schuh, Sticky nonlinear SDEs
and convergence of McKean-Vlasov equations without confinement. ArXiv e-print 2201.07652,
January 2022.1

Abstract

We develop a new approach to study the long time behaviour of solutions to nonlinear stochastic
differential equations in the sense of McKean, as well as propagation of chaos for the correspond-
ing mean-field particle system approximations. Our approach is based on a sticky coupling be-
tween two solutions to the equation. We show that the distance process between the two copies
is dominated by a solution to a one-dimensional nonlinear stochastic differential equation with
a sticky boundary at zero. This new class of equations is then analyzed carefully. In particular,
we show that the dominating equation has a phase transition. In the regime where the Dirac
measure at zero is the only invariant probability measure, we prove exponential convergence to
equilibrium both for the one-dimensional equation, and for the original nonlinear SDE. Simi-
larly, propagation of chaos is shown by a componentwise sticky coupling and comparison with a
system of one dimensional nonlinear SDEs with sticky boundaries at zero. The approach applies
to equations without confinement potential and to interaction terms that are not of gradient
type.
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APPENDIX B. STICKY NONLINEAR SDES AND CONVERGENCE OF
MCKEAN-VLASOV EQUATIONS

B.1 Introduction

The main objective of this paper is to study and quantify convergence to equilibrium for McKean-
Vlasov type nonlinear stochastic differential equations of the form

dX̄t =
[∫

Rd
b(X̄t − x)dµ̄t(x)

]
dt+ dBt , µ̄t = Law(X̄t) , (B.1)

where (Bt)t≥0 is a d-dimensional standard Brownian motion and b : Rd → Rd is a Lipschitz
continuous function. This nonlinear SDE is the probabilistic counterpart of the Fokker-Planck
equation

∂

∂t
ut = ∇ ·

[
(1/2)∇ut − (b ∗ ut)ut

]
, (B.2)

which describes the time evolution of the density ut of µ̄t with respect to the Lebesgue measure
on Rd. Moreover, we also study uniform in time propagation of chaos for the approximating
mean-field interacting particle systems

dXi,N
t = 1

N

N∑
j=1

b(Xi,N
t −Xj,N

t )dt+ dBi
t , i ∈ {1, . . . , N} , (B.3)

with i.i.d. initial values X1,N
0 , . . . , XN,N

0 , and driven by independent d-dimensional Brownian
motions {(Bi

t)t≥0}Ni=1. Our results are based on a new probabilistic approach relying on sticky
couplings and comparison with solutions to a class of nonlinear stochastic differential equations
on the real interval [0,∞) with a sticky boundary at 0. The study of this type of equations
carried out below might also be of independent interest.

The equations (B.1) and (B.2) have been studied in many works. Often a slightly different
setup is considered, where the interaction b is assumed to be of gradient type, i.e., b = −∇W for
an interaction potential function W : Rd → R, and an additional confinement potential function
V : Rd → R satisfying lim|x|→∞ V (x) = ∞ is included in the equations. The corresponding
Fokker-Planck equation

∂

∂t
ut = ∇ ·

[
(1/2)∇ut + (∇V +∇W ∗ ut)ut

]
, (B.4)

occurs for example in the modelling of granular media, see [190, 13] and the references therein.
Existence and uniqueness of solutions to (B.1), (B.2) and (B.4) have been studied intensively.
Introductions to this topic can be found for example in [95, 143, 146, 187], while recent results
have been established in [150, 106]. Under appropriate conditions, it can be shown that the
solutions converge to a unique stationary distribution at some given rate, see e.g. [42, 43, 25, 86,
75, 98]. In the case without confinement considered here, convergence to equilibrium of (µ̄t)t≥0
defined by (B.1) can only be expected for centered solutions, or after recentering around the
center of mass of µ̄t. It has first been analyzed in [42, 43] by an analytic approach and under
the assumption that b = −∇W for a convex function W . In particular, exponential convergence
to equilibrium has been established under the strong convexity assumption Hess(W ) ≥ ρ Id
for some ρ > 0, and polynomial convergence in the case where W is only degenerately strictly
convex. Similar results and some extensions have been derived in [138, 44] using a probabilistic
approach.
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Our first contribution aims at complementing these results, and extending them to non-
convex interaction potentials and interaction functions that are not of gradient type. More
precisely, suppose that

b(x) = −Lx+ γ(x) , x ∈ Rd , (B.5)

where L ∈ (0,∞) is a positive real constant, and γ : Rd → Rd is a bounded function. Then
we give conditions on γ ensuring exponential convergence of centered solutions to (B.1) to a
unique stationary distribution in the standard L1 Wasserstein metric. More generally, we show
in Theorem B.1 that under these conditions there exist constants M, c ∈ (0,∞) that depend
only on L and γ such that if (µ̄t)t≥0 and (ν̄t)t≥0 are the marginal distributions of two solutions
of (B.1), then for all t ≥ 0,

W1(µ̄t, ν̄t) ≤Me−ctW1(µ̄0, ν̄0) .

Using a coupling approach, related results have been derived in the previous works [86, 75]
for the case where an additional confinement term is included in the equations. However, the
arguments in these works rely on treating the equation with confinement and interaction term as
a perturbation of the corresponding equation without interaction term, which has good ergodic
properties. In the unconfined case this approach does not work, since the equation without
interaction is transient and hence does not admit an invariant probability measure. Therefore,
we have to develop a new approach for analyzing the equation without confinement.

Our approach is based on sticky couplings, an idea first developed in [87] to control the total
variation distance between the marginal distributions of two non degenerate diffusion processes
with identical noise but different drift coefficients. Since two solutions of (B.1) differ only in
their drifts, we can indeed couple them using a sticky coupling in the sense of [87]. It can then be
shown that the coupling distance process can be controlled by the solution (rt)t≥0 of a nonlinear
SDE on [0,∞) with a sticky boundary at 0 of the form

drt = [b̃(rt) + aP(rt > 0)]dt+ 21(0,∞)(rt)dWt , (B.6)

Here b̃ is a real-valued function on [0,∞) satisfying b̃(0) = 0, a is a positive constant, and
(Wt)t≥0 is a one-dimensional standard Brownian motion. Solutions to SDEs with diffusion
coefficient r 7→ 1(0,∞)(r), as in (B.6), have a sticky boundary at 0, i.e., if the drift at 0 is
strictly positive, then the set of all time points t ∈ [0,∞) such that rt = 0 is a fractal set
with strictly positive Lebesgue measure that does not contain any open interval. Sticky SDEs
have attracted wide interest, starting from [92, 93] in the one-dimensional case. Multivariate
extensions have been considered in [115, 196, 197] building upon results obtained in [142, 183,
184], while corresponding martingale problems have been investigated in [186]. Note that in
general no strong solution for this class of SDEs exists as illustrated in [57]. We refer to [90, 12]
and the references therein for recent contributions on this topic. Note, however, that in contrast
to standard sticky SDEs, the equation (B.6) is nonlinear in the sense of McKean. We are not
aware of previous studies of such nonlinear sticky equations, which seems to be a very interesting
topic on its own.

Intuitively, one would expect that as time evolves, more mass gets stuck at 0, i.e., P(rt > 0)
decreases. As a consequence, the drift at 0 in Equation (B.6) decreases, which again forces even
more mass to get stuck at 0. Therefore, one could hope that P(rt = 0) converges to 1 as t→∞.
On the other hand, if a is too large then the drift at 0 might be too strong so that not all of
the mass gets stuck at 0 eventually. This indicates that there might be a phase transition for
the nonlinear sticky SDE depending on the size of the constant a compared to b̃. In Section
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B.3, we prove rigorously that this intuition is correct. Under appropriate conditions on b̃, we
show at first that existence and uniqueness in law holds for solutions of (B.6). Then we prove
that for a sufficiently small, the Dirac measure at 0 is the unique invariant probability measure,
and geometric ergodicity holds. As a consequence, under corresponding assumptions, the sticky
coupling approach yields exponential convergence to equilibrium for the original nonlinear SDE
(B.1). On the other hand, we prove the existence of multiple invariant probability measures for
(B.6) if the smallness condition on a is not satisfied. Our results for (B.1) can also be adapted
to deal with nonlinear SDEs over the torus T = R/(2πZ), as considered in [64]. As an example,
we discuss the application to the Kuramoto model for which a more explicit analysis is available
[3, 14, 15, 41].

Finally, in addition to studying the long-time behaviour of the nonlinear SDE (B.1), we are
also interested in establishing propagation of chaos for the mean-field particle system approx-
imation (B.3). The propagation of chaos phenomenon first introduced by Kac [120] describes
the convergence of the empirical measure of the mean-field particle system (B.3) to the solution
(B.1). More precisely, in [187, 146] it has been shown under weak assumptions on W that for
i.i.d. initial laws, the random variables Xi,N

t , i ∈ {1, . . . , N}, become asymptotically indepen-
dent as N → ∞, and the common law µN

t of each of these random variables converges to µ̄t.
However, the original results are only valid uniformly over a finite time horizon. Quantifying the
convergence uniformly for all times t ∈ R+ is an important issue. The case with a confinement
potential has been studied for example in [75], see also the references therein. Again, the case
when there is only interaction is more difficult. Malrieu [138] seems the first to consider the case
without confinement. By applying a synchronous coupling, he proved uniform in time propaga-
tion of chaos for strongly convex interaction potentials. Later on, assuming that the interaction
potential is loosing strict convexity only in a finite number of points (e.g., W (x) = |x|3), Cat-
tiaux, Guillin and Malrieu [44] have shown uniform in time propagation of chaos with a rate
getting worse with the degeneracy in convexity. In a very recent work, Delarue and Tse [63]
prove uniform in time weak propagation of chaos (i.e., observable by observable) on the torus
via Lions derivative methods. Remarkably, their results are not limited to the unique invariant
measure case.

Our contribution is in the same vein using probabilistic tools in place of analytic ones. We
endow the space RNd consisting of N particle configurations x = (xi)N

i=1 with the semi-metric
l1 ◦ π, where

l1(x, y) = 1
N

∑N

i=1

∣∣∣xi − yi
∣∣∣ (B.7)

is a normalized l1-distance between configurations x, y ∈ RNd, and

π(x, y) =
((

xi − 1
N

∑N

j=1
xj
)N

i=1
,

(
yi − 1

N

∑N

j=1
yj
)N

i=1

)
, (B.8)

is a projection from RNd × RNd to the subspace HN × HN , where

HN = {x ∈ RNd :
∑N

i=1
xi = 0} . (B.9)

LetWl1◦π denote the L1 Wasserstein semimetric on probability measures on RNd corresponding
to the cost function l1 ◦ π. Then under assumptions stated below, we prove uniform in time
propagation of chaos for the mean-field particle system in the following sense: Suppose that
(X1,N

t , . . . , XN,N
t )t≥0 is a solution of (B.3) such that X1,N

0 , . . . , XN,N
0 are i.i.d. with distribution
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µ̄0 having finite second moment. Let νN
t denote the joint law of the random variables Xi,N

t ,
i ∈ {1, . . . N}, and let µ̄t denote the law of the solution of (B.1) with initial law µ̄0. Then there
exists a constant C ∈ [0,∞) such that for any N ∈ N,

sup
t≥0
Wl1◦π(µ̄⊗N

t , νN
t ) ≤ CN−1/2 . (B.10)

The proof is based on a componentwise sticky coupling, and a comparison of the coupling
difference process with a system of one-dimensional sticky nonlinear SDEs.

The paper is organised as follows. In Appendix B.2, we state our main results regarding
the long-time behaviour of (B.1). The main results on one-dimensional nonlinear SDEs with a
sticky boundary at zero are stated in Section B.3. Sections B.4 and B.5 contain the corresponding
results on uniform (in time) propagation of chaos and mean-field systems of sticky SDEs. All
the proofs are given in Appendix B.6. In Appendix B.7, we carry the results over to nonlinear
sticky SDEs over T and consider the application to the Kuramoto model.

Notation The Euclidean norm on Rd is denoted by | · |. For x ∈ R, we write x+ = max(0, x).
For some space X, which here is either Rd, RNd or R+, we denote its Borel σ-algebra by B(X).
The space of all probability measures on (X,B(X)) is denoted by P(X). Let µ, ν ∈ P(X). A
coupling ξ of µ and ν is a probability measure on (X × X,B(X) ⊗ B(X)) with marginals µ and
ν. Γ(µ, ν) denotes the set of all couplings of µ and ν. The L1 Wasserstein distance with respect
to a distance function d : X× X→ R+ is defined by

Wd(µ, ν) = inf
ξ∈Γ(µ,ν)

∫
X×X

d(x, y)ξ(dxdy) .

We write W1 if the underlying distance function is the Euclidean distance.
We denote by C(R+,X) the set of continuous functions from R+ to X, and by C2(R+,X) the

set of twice continuously differentiable functions.
Consider a probability space (Ω,A, P ) and a measurable function r : Ω → C(R+,X). Then

P = P ◦ r−1 denotes the law on C(R+,X), and Pt = P ◦ rt
−1 the marginal law on X at time t.

B.2 Long-time behaviour of McKean-Vlasov diffusions

We establish our results regarding (B.1) and (B.3) under the following assumption on b.

Assumption B.1. The function b : Rd → Rd is Lipschitz continuous and anti-symmetric, i.e.,
b(z) = −b(−z), and there exist L ∈ (0,∞), a function γ : Rd → Rd and a Lipschitz continuous
function κ : [0,∞)→ R such that

b(z) = −Lz + γ(z) for all z ∈ Rd , (B.11)

and the following conditions are satisfied for all x, x̃, y ∈ Rd:

⟨x− y, γ(x− x̃)− γ(y − x̃)⟩ ≤ κ(|x− y|)|x− y|2 , (B.12)

and

lim sup
r→∞

(κ(r)− L) < 0 . (B.13)
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Let b̄(r) = (κ(r)− L)r. If (B.13) holds, then there exist R0, R1 ≥ 0 such that for

b̄(r) < 0 , for any r ≥ R0 , (B.14)
b̄(r)/r ≤ −4/[R1(R1 −R0)] , for any r ≥ R1 . (B.15)

In addition, we assume

Assumption B.2.

∥γ∥∞ ≤
(
4
∫ R1

0
exp

(1
2

∫ s

0
b̄(r)+dr

)
ds
)−1

.

We consider the following condition on the initial distribution.

Assumption B.3. The initial distribution µ0 satisfies
∫
Rd ∥x∥4 µ0(dx) < +∞ and∫

Rd xµ0(dx) = 0.

Note that under conditions Assumption B.1 and Assumption B.3, unique strong solutions
(X̄t)t≥0 and ({Xi,N

t }Ni=1)t≥0 exist for (B.1) and (B.3), see e.g. [44, Theorem 2.6]. In addition,
note that since b is assumed to be anti-symmetric, by an easy localisation argument, we get
that dE[X̄t]/dt = E[b ∗ µt(X̄t)] = 0 and dE[N−1∑N

i=1X
i,N
t ]/dt = 0. Thus, if X̄0 and {Xi,N

0 }Ni=1
have distribution µ0 and µ⊗N

0 , respectively, with µ0 satisfying Assumption B.3, then it holds
E[X̄t] = 0 and E[N−1∑N

i=1X
i,N
t ] = 0 for all t ≥ 0.

Suppose f : R+ → R+ is an increasing, concave function vanishing at zero. Then d(x, y) =
f(|x − y|) defines a distance. The corresponding L1 Wasserstein distance is denoted by Wf .
Note that in the case f(t) = t for any t ≥ 0, Wf is simply W1.

Theorem B.1 (Contraction for nonlinear SDE). Assume Assumption B.1. Let µ̄0, ν̄0 be prob-
ability measures on (Rd,B(Rd)) satisfying Assumption B.3. For any t ≥ 0, let µ̄t and ν̄t denote
the laws of X̄t and Ȳt where (X̄s)s≥0 and (Ȳs)s≥0 are solutions of (B.1) with initial distribution
µ̄0 and ν̄0, respectively. Then, for all t ≥ 0,

Wf (µ̄t, ν̄t) ≤ e−c̃tWf (µ̄0, ν̄0) and W1(µ̄t, ν̄t) ≤M1e−c̃tW1(µ̄0, ν̄0) , (B.16)

where the function f is defined by (B.37) and the constants c̃ and M1 are given by

c̃−1 = 2
∫ R1

0

∫ s

0
exp

(1
2

∫ s

r
b̄(u)+ du

)
drds , (B.17)

M1 = 2 exp
(1

2

∫ R0

0
b̄(s)+ds

)
. (B.18)

Proof. The proof is postponed to Appendix B.6.2.

The construction and definition of the underlying distance function f(|x− y|) mentioned in
Theorem B.1 is based on the one introduced by [83].

To prove Theorem B.1 we use a coupling (X̄t, Ȳt)t≥0 of two copies of solutions to the nonlinear
stochastic differential equation (B.1) with different initial conditions. The coupling (X̄t, Ȳt)t≥0
will be defined as the weak limit of a family of couplings (X̄δ

t , Ȳ
δ

t )t≥0, parametrized by δ > 0.
Roughly, this family is mixture of synchronous and reflection couplings and can be described
as follows. For δ > 0, (X̄δ

t , Ȳ
δ

t )t≥0 behaves like a reflection coupling if |X̄δ
t − Ȳ δ

t | ≥ δ, and like
a synchronous coupling if |X̄δ

t − Ȳ δ
t | = 0. For |X̄δ

t − Ȳ δ
t | ∈ (0, δ) we take an interpolation of
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synchronous and reflection coupling. We argue that the family of couplings {(X̄δ
t , Ȳ

δ
t )t≥0 : δ > 0}

is tight and that a subsequence {(X̄δn
t , Ȳ δn

t )t≥0 : n ∈ N} converges to a limit (X̄t, Ȳt)t≥0. This
limit is a coupling which we call the sticky coupling associated to (B.1).

To carry out the construction rigorously, we take two Lipschitz continuous functions rcδ, scδ :
R+ → [0, 1] for δ > 0 such that

rcδ(0) = 0 , rcδ(r) = 1 for r ≥ δ , rcδ(r) > 0 for r > 0 and rcδ(r)2 + scδ(r)2 = 1 for r ≥ 0 .
(B.19)

Further, we assume that there exists ϵ0 > 0 such that for any δ ≤ ϵ0, rcδ satisfies

rcδ(r) ≥ ∥γ∥Lip
2∥γ∥∞

r for any r ∈ (0, δ) , (B.20)

where ∥γ∥Lip <∞ denotes the Lipschitz norm of γ. This assumption is satisfied for example if
rcδ(r) = sin((π/2δ)r)1r<δ + 1r≥δ and scδ(r) = cos((π/2δ)r)1r<δ with δ ≤ ϵ0 = 2∥γ∥∞/∥γ∥Lip.

Let (B1
t )t≥0 and (B2

t )t≥0 be two d-dimensional Brownian motions. We define the coupling
(X̄δ

t , Ȳ
δ

t )t≥0 as a process in R2d satisfying the following nonlinear stochastic differential equation

dX̄δ
t = b ∗ µ̄δ

t (X̄δ
t )dt+ rcδ(r̄δ

t )dB1
t + scδ(r̄δ

t )dB2
t , µ̄δ

t = Law(X̄δ
t ) ,

dȲ δ
t = b ∗ ν̄δ

t (Ȳ δ
t )dt+ rcδ(r̄δ

t )(Id−2ēδ
t (ēδ

t )T )dB1
t + scδ(r̄δ

t )dB2
t , ν̄δ

t = Law(Ȳ δ
t )

(B.21)

with initial condition (X̄δ
0 , Ȳ

δ
0 ) = (x0, y0). Here we set Z̄δ

t = X̄δ
t − Ȳ δ

t , r̄δ
t = |Z̄δ

t | and ēδ
t = Z̄δ

t /r̄
δ
t

if r̄δ
t ̸= 0. For r̄δ

t = 0, ēδ
t is some arbitrary unit vector, whose exact choice is irrelevant since

rcδ(0) = 0.

Theorem B.2. Assume Assumption B.1. Let µ̄0 and ν̄0 be probability measures on (Rd,B(Rd))
satisfying Assumption B.3. Then, (X̄t, Ȳt)t≥0 is a subsequential limit in distribution as δ → 0 of
{(X̄δ

t , Ȳ
δ

t )t≥0 : δ > 0} where (X̄t)t≥0 and (Ȳt)t≥0 are solutions of (B.1) with initial distribution
µ̄0 and ν̄0. Further, there exists a process (rt)t≥0 defined on the same probability space as
(X̄t, Ȳt)t≥0 satisfying for any t ≥ 0, |X̄t − Ȳt| ≤ rt almost surely and which is a weak solution of

drt = (b̄(rt) + 2∥γ∥∞P(rt > 0))dt+ 21(0,∞)(rt)dW̃t , (B.22)

where (W̃t)t≥0 is a one-dimensional Brownian motion.

Proof. The proof is postponed to Appendix B.6.2.

Therefore, next we study sticky nonlinear SDEs given by (B.6).

B.3 Nonlinear SDEs with sticky boundaries

Consider nonlinear SDEs with a sticky boundary at 0 of the form

drt = (b̃(rt) + Pt(g))dt+ 21(0,∞)(rt)dWt , Pt = Law(rt) , (B.23)

where b̃ : [0,∞)→ R is some continuous function and Pt(g) =
∫
R+
g(r)Pt(dr) for some measur-

able function g : [0,∞)→ R.
In this section we establish existence, uniqueness in law and comparison results for solutions

of (B.6). Consider a filtered probability space (Ω,A, (Ft)t≥0, P ) and a probability measure µ
on R+. We call an (Ft)t≥0 adapted process (rt,Wt)t≥0 a weak solution of (B.23) with initial
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distribution µ if the following holds: µ = P ◦ r−1
0 , the process (Wt)t≥0 is a one-dimensional

(Ft)t≥0 Brownian motion w.r.t. P , the process (rt)t≥0 is non-negative and continuous, and
satisfies almost-surely

rt − r0 =
∫ t

0

(
b̃(rs) + Ps(g)

)
ds+

∫ t

0
2 · 1(0,∞)(rs)dWs , for t ∈ R+ .

Note that the sticky nonlinear SDE given in (B.6) is a special case of (B.23) with g(r) =
a1(0,∞)(r) since P(rt > 0) =

∫
R+

1(0,∞)(y)Pt(dy) with Pt = P ◦ r−1
t .

B.3.1 Existence, uniqueness in law, and a comparison result

Let W = C(R+,R) be the space of continuous functions endowed with the topology of uniform
convergence on compact sets, and let B(W) be the corresponding Borel σ-algebra. Suppose
(rt,Wt)t≥0 is a solution of (B.23) on (Ω,A, P ), then we denote by P = P ◦ r−1 its law on
(W,B(W)). We say that uniqueness in law holds for (B.23) if for any two solutions (r1

t )t≥0 and
(r2

t )t≥0 of (B.23) with the same initial law, the distributions of (r1
t )t≥0 and (r2

t )t≥0 on (W,B(W))
are equal.

We impose the following assumptions on b̃, g and the initial condition µ:
Assumption B.4. b̃ is a Lipschitz continuous function with Lipschitz constant L̃ and b̃(0) = 0.
Assumption B.5. g is a left-continuous, non-negative, non-decreasing and bounded function.
Assumption B.6. There exists p > 2 such that the p-th order moment of the law µ is finite.

Note that for (B.6), the condition Assumption B.5 is satisfied if a is a positive constant. It
follows from Assumption B.4 and Assumption B.5 that there is a constant C <∞ such that for
all r ∈ R+, the following linear growth condition holds,

b̃(r) + sup
p∈P(R+)

p(g) ≤ C(1 + |r|) . (B.24)

In order to get a solution to (B.23) on R+ we extend the function b̃ to R by setting b̃(r) = 0 for
r < 0. Note that any solution (rt)t≥0 with initial distribution supported on R+ satisfies almost
surely rt ≥ 0 for all t ≥ 0. This follows from Ito-Tanaka formula applied to F (r) = 1(−∞,0)(r)r,
cf. [172, Chapter 6, Theorem 1.1]. Indeed

1(−∞,0)(rt)rt =
∫ t

0
1(−∞,0)(rs)drs −

1
2ℓ

0
t (r)

=
∫ t

0
1(−∞,0)(rs)(b̃(rs) + Ps(g))ds+

∫ t

0
1(−∞,0)21(0,∞)(rs)dWs −

1
2ℓ

0
t (r)

=
∫ t

0
1(−∞,0)Ps(g)ds > 0 ,

where ℓ0t (r) is the local time at 0, which vanishes, since d[r]s = 1(0,∞)(rs)ds.
Existence and uniqueness in law of (B.23) is a direct consequence of a stronger result that

we now introduce. To study existence and uniqueness and to compare two solutions of (B.23)
with different drifts, we establish existence of a synchronous coupling of two copies of (B.23),

drt = (b̃(rt) + Pt(g))dt+ 21(0,∞)(rt)dWt ,

dst = (b̂(st) + P̂t(h))dt+ 21(0,∞)(st)dWt , Law(r0, s0) = η ,
(B.25)

where Pt = P ◦ r−1
t , P̂t = P ◦ s−1

t , (Wt)t≥0 is a Brownian motion and where η ∈ Γ(µ, ν) for
µ, ν ∈ P(R+).
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Theorem B.3. Suppose that (b̃, g) and (b̂, h) satisfy Assumption B.4 and Assumption B.5. Let
η ∈ Γ(µ, ν) where the probability measures µ and ν on R+ satisfy Assumption B.6. Then there
exists a weak solution (rt, st)t≥0 of the sticky stochastic differential equation (B.25) with initial
distribution η defined on a probability space (Ω,A, P ) with values in (W×W,B(W)⊗B(W)). If
additionally,

b̃(r) ≤ b̂(r) and g(r) ≤ h(r) for any r ∈ R+, and
P [r0 ≤ s0] = 1,

then P [rt ≤ st for all t ≥ 0] = 1.

Proof. The proof is postponed to Appendix B.6.3.

Remark B.4. We note that by the comparison result we can deduce uniqueness in law for the
solution of (B.23).

B.3.2 Invariant measures and phase transition

Under the following conditions on the drift function b̃ we exhibit a phase transition phenomenon
for the model (B.6).

Theorem B.5. Suppose Assumption B.4 holds and lim supr→∞(r−1b̃(r)) < 0. Then, the Dirac
measure at 0, δ0, is an invariant probability measure for (B.6). If there exists p ∈ (0, 1) solving

(2/a) = (1− p)I(a, p) (B.26)

with

I(a, p) =
∫ ∞

0
exp

(1
2apx+ 1

2

∫ x

0
b̃(r)dr

)
dx , (B.27)

then the probability measure π on [0,∞) given by

π(dx) ∝ 1
Z

( 2
ap
δ0(dx) + exp

(1
2apx+ 1

2

∫ x

0
b̃(r)dr

)
λ(0,∞)(dx)

)
(B.28)

is another invariant probability measure for (B.6).

Proof. The proof is postponed to Appendix B.6.3.

In our next result we specify a necessary and sufficient condition for the existence of a solution
of (B.26).

Proposition B.6. Suppose that b̃(r) in (B.6) is of the form b̃(r) = −L̃r with constant a L̃ > 0.
If a/

√
L̃ > 2/

√
π, then there exists a unique p̂ solving (B.27). In particular, the Dirac measure

δ0 and the measure π given in (B.28) with p̂ are invariant measures for (B.6). On the other
hand, if a/

√
L̃ ≤ 2/

√
π, then there exists no p̂ solving (B.27).

Proof. The proof is postponed to Appendix B.6.3.
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B.3.3 Convergence for sticky nonlinear SDEs

Under Assumption B.4 and the following additional assumption we establish geometric con-
vergence in Wasserstein distance for the marginal law of the solution rt of (B.6) to the Dirac
measure at 0:

Assumption B.7. It holds lim supr→∞(r−1b̃(r)) < 0 and a ≤ (2
∫ R̃1

0 exp
(1

2
∫ s

0 b̃(u)+du
)
ds)−1

with R̃0, R̃1 defined by

R̃0 = inf{s ∈ R+ : b̃(r) ≤ 0 ∀r ≥ s} and (B.29)

R̃1 = inf{s ≥ R̃0 : −s
r

(s− R̃0)b̃(r) ≥ 4 ∀r ≥ s} . (B.30)

Theorem B.7. Suppose Assumption B.4 and Assumption B.7 holds. Then, the Dirac measure
at 0, δ0, is the unique invariant probability measure of (B.6). Moreover if (rs)s≥0 is a solution
of (B.6) with r0 distributed with respect to an arbitrary probability measure µ on (R+,B(R+)),
it holds for all t ≥ 0,

E[f(rt)] ≤ e−ctE[f(r0)] , (B.31)

where f and c are given by (B.37) and (B.36) with a and b̃ given in (B.6) and R̃0 and R̃1 given
in (B.29) and (B.30).

Proof. The proof is postponed to Appendix B.6.3.

B.4 Uniform in time propagation of chaos

To prove uniform in time propagation of chaos, we consider the L1 Wasserstein distance with
respect to the cost function f̄N ◦ π : RNd × RNd → R+ with π given in (B.8), and f̄N given by

f̄N ((xi,N )N
i=1, (yi,N )N

i=1) = 1
N

N∑
i=1

f
(∣∣∣xi − yi

∣∣∣) , (B.32)

with f : R+ → R+ defined in (B.37). This distance is denoted by Wf,N . Note that f̄N is
equivalent to l1 defined in (B.7).

We note that since π defines a projection from RNd to the hyperplane HN ⊂ RNd given in
(B.9), for µ̂ and ν̂ on HN , Wf,N (µ̂, ν̂) coincides with the Wasserstein distance given by

Ŵf,N (µ̂, ν̂) = inf
ξ∈Γ(µ̂,ν̂)

∫
HN ×HN

f̄N (x, y)ξ(dxdy) (B.33)

and Wl1◦π(µ̂, ν̂) = Ŵl1(µ̂, ν̂), where f̄N and l1 are given in (B.32) and (B.7), respectively, and
where Ŵl1(µ̂, ν̂) is defined as in (B.33) with respect to the distance l1.

Theorem B.8 (Uniform in time propagation of chaos). Let N ∈ N and assume Assumption B.1.
Let µ̄0 and ν0 be probability measures on (Rd,B(Rd)) satisfying Assumption B.3. For t ≥
0, denote by µ̄t and νN

t the law of X̄t and {Xi,N
t }Ni=1 where (X̄s)s≥0 and ({Xi,N

s }Ni=1)s≥0 are
solutions of (B.1) and (B.3), respectively, with initial distributions µ̄0 and ν⊗N

0 . Then for all
t ≥ 0,

Wf,N (µ̄⊗N
t , νN

t ) ≤ e−c̃tWf,N (µ̄⊗N
0 , ν⊗N

0 ) + C̃c̃−1N−1/2 ,

Wl1◦π(µ̄⊗N
t , νN

t ) ≤M1e−c̃tWl1◦π(µ̄⊗N
0 , ν⊗N

0 ) +M1C̃c̃
−1N−1/2 ,
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where f is defined by (B.37), M1 by (B.18), c̃ by (B.17) and C̃ is a finite constant depending on
∥γ∥∞, L and the second moment of µ̄0 and given in (B.77).

Proof. The proof is postponed to Appendix B.6.4.

Remark B.9. Denote by µN
t and νN

t the distribution of {Xi,N
t }Ni=1 and {Y i,N

t }Ni=1 where the
two processes ({Xi,N

s }Ni=1)s≥0 and ({Y i,N
s }Ni=1)s≥0 are solutions of (B.3) with initial probability

distributions µN
0 , ν

N
0 ∈ P(RNd), respectively, with finite forth moment. An easy inspection and

adaptation of the proof of Theorem B.8 show that if Assumption B.1 holds, then

Wf,N (µN
t , ν

N
t ) ≤ e−c̃tWf,N (µ⊗N

0 , ν⊗N
0 ) , Wl1◦π(µN

t , ν
N
t ) ≤ 2M1e−c̃tWl1◦π(µ⊗N

0 , ν⊗N
0 ) ,

where f , c̃ and M1 are defined as in Theorem B.8.

B.5 System of N sticky SDEs

Consider a systerm of N one-dimensional SDEs with sticky boundaries at 0 given by

dri
t =

(
b̃(ri

t) + 1
N

N∑
j=1

g(rj
t )
)
dt+ 21(0,∞)(ri

t)dW i
t , i = 1, . . . , N. (B.34)

The results on existence, uniqueness and the comparison theorem for solutions of sticky nonlinear
SDEs mostly carry directly over to a solution of (B.34) and are applied to prove propagation of
chaos in Theorem B.8.

Let µ be a probability distribution on R+. For N ∈ N, ({ri
t,W

i
t }Ni=1)t≥0 is a weak solution

on the filtered probability space (Ω,A, (Ft)t≥0, P ) of (B.34) with initial distribution µ⊗N if
the following hold: µ⊗N = P ◦ ({r0}Ni=1)−1, ({Wt}Ni=1)t≥0 is a N -dimensional (Ft)t≥0 Brownian
motion w.r.t. P , the process (ri

t)t≥0 is non-negative, continuous and satisfies almost surely for
any i ∈ {1, . . . , N} and t ∈ R+,

ri
t − ri

0 =
∫ t

0

(
b̃(ri

s) + 1
N

N∑
j=1

g(rj
s)
)
ds+

∫ t

0
21(0,∞)(ri

s)dW i
s .

To show existence and uniqueness in law of a weak solution ({ri
t,W

i
t }Ni=1)t≥0, we suppose

Assumption B.4 and Assumption B.5 for b̃ and g.
It follows that there exists a constant C < ∞ such that for all {ri}Ni=1 ∈ RN

+ , it holds∑N
i=1 |b̃(ri)|+ |g(ri)| ≤ C(1 +

∑N
i=1 |ri|), and a possible solution ({ri

t}Ni=1)t≥0 is non-explosive. If
the initial distribution is supported on RN

+ , then in the same line as for the nonlinear SDE in
Appendix B.3.1, the solution ({ri

t}Ni=1)t≥0 satisfies ri
t > 0 almost surely for any i = 1, . . . , N and

t ≥ 0 by Assumption B.4 and Assumption B.5.
Existence and uniqueness in law of (B.34) is a direct consequence of a stronger result that

we now introduce. To study existence and uniqueness and to compare two solutions of (B.34)
with different drifts, we establish existence of a synchronous coupling of two copies of (B.34),

dri
t =

(
b̃(ri

t) + 1
N

N∑
j=1

g(rj
t )
)
dt+ 21(0,∞)(ri

t)dW i
t ,

dsi
t =

(
b̂(si

t) + 1
N

N∑
j=1

h(sj
t )
)
dt+ 21(0,∞)(si

t)dW i
t ,

Law(ri
0, s

i
0) = η ,

for i ∈ {1, . . . , N} (B.35)
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where ({W i
t }Ni=1)t≥0 are N i.i.d.1-dimensional Brownian motions and where η ∈ Γ(µ, ν) for

µ, ν ∈ P(R+).
Let WN = C(R+,RN ) be the space of continuous functions from R+ to RN endowed with the

topology of uniform convergence on compact sets, and let B(WN ) denote its Borel σ-Algebra.

Theorem B.10. Assume that (b̃, g) and (b̂, h) satisfy Assumption B.4 and Assumption B.5. Let
η ∈ Γ(µ, ν) where µ and ν are the probability measure on R+ satisfying Assumption B.6. Then
there exists a weak solution ({ri

t, s
i
t}Ni=1)t≥0 of the sticky stochastic differential equation (B.35)

with initial distribution η⊗N defined on a probability space (Ω,A, P ) with values in WN ×WN .
If additionally,

b̃(r) ≤ b̂(r) and g(r) ≤ h(r) , for any r ∈ R+ ,

P [ri
0 ≤ si

0 for all i = 1, . . . , N ] = 1 ,

then P [ri
t ≤ si

t for all t ≥ 0 and i = 1, . . . , N ] = 1.

Proof. The proof is postponed to Appendix B.6.5.

Remark B.11. We note that by the comparison result we can deduce uniqueness in law for the
solution of (B.34).

B.6 Proofs

B.6.1 Definition of the metrics

In Theorem B.1, Theorem B.7 and Theorem B.8 we consider Wasserstein distances based on a
carefully designed concave function f : R+ → R+ that we now define. In addition we derive
useful properties of this function that will be used in our proofs of Theorem B.1, Theorem B.8
and Theorem B.7. Let a ∈ R+ and b̃ : R+ → R be such that Assumption B.7 is satisfied with
R̃0 and R̃1 defined in (B.29). We define

φ(r) = exp
(
−
∫ r

0
{b̃(s)+/2}ds

)
, Φ(r) =

∫ r

0
φ(s)ds , and

g(r) = 1− c

2

∫ r∧R̃1

0
{Φ(s)/φ(s)}ds− a

2

∫ r∧R̃1

0
{1/φ(s)}ds ,

where

c =
(

2
∫ R̃1

0
{Φ(s)/φ(s)}ds

)−1

, (B.36)

and R̃1 is given in (B.30). It holds φ(r) = φ(R̃0) for r ≥ R̃0 with R̃0 given in (B.29), g(r) =
g(R̃1) ∈ [1/2, 3/4] for r ≥ R̃1 and g(r) ∈ [1/2, 1] for all r ∈ R+ by (B.36) and Assumption B.7.
We define the increasing function f : [0,∞)→ [0,∞) by

f(t) =
∫ t

0
φ(r)g(r)dr . (B.37)

Note that f is concave, since φ and g are decreasing. Since for all r ∈ R+

φ(R̃0)r/2 ≤ Φ(r)/2 ≤ f(r) ≤ Φ(r) ≤ r , (B.38)
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(x, y) 7→ f(|x− y|) defines a distance on Rd equivalent to the Euclidean distance on Rd.
Moreover, f satisfies

2f ′′(0) = −b̃(0)+ − a = −a , (B.39)

and

2f ′′(r) ≤ 2f ′′(0)− f ′(r)b̃(r)− cf(r) , for all r ∈ R+\{R̃1} . (B.40)

Indeed by construction of f , f ′′(r) = −b̃(r)+f
′(r)/2 − cΦ(r)/2 − a/2 for 0 ≤ r < R̃1 and so

(B.40) holds for 0 ≤ r < R̃1 by (B.38). To show (B.40) for r > R̃1 note that f ′′(r) = 0 and
f ′(r) ≥ φ(R̃0)/2 hold for r > R̃1. Hence, by the definition (B.30) of R̃1, for r > R̃1,

f ′′(r) + f ′(r)b̃(r)/2 ≤ φ(R̃0)b̃(r)/4 ≤ −(R̃1(R̃1 − R̃0))−1φ(R̃0)r . (B.41)

Since φ(r) = φ(R̃0) for r ≥ R̃0, it holds Φ(r) = Φ(R̃0) + (r − R̃0)φ(R̃0) for r ≥ R̃0. Further, it
holds Φ(R0) ≥ R̃0φ(R̃0) since φ is decreasing for r ≤ R̃0. Hence,

r

R̃1
= (r − R̃1)(Φ(R̃0) + (R̃1 − R̃0)φ(R̃0))

R̃1Φ(R̃1)
+ 1 ≥ (r − R̃1)R̃1φ(R̃0)

R̃1Φ(R̃1)
+ 1 = Φ(r)

Φ(R̃1)
. (B.42)

Furthermore, we have

∫ R̃1

R̃0
{Φ(s)/φ(s)}ds =

∫ R̃1

R̃0

Φ(R̃0) + (s− R̃0)φ(R̃0)
φ(R̃0)

ds

= (R̃1 − R̃0)Φ(R̃0)
φ(R̃0)

+ 1
2(R̃1 − R̃0)2 ≥ 1

2(R̃1 − R̃0)Φ(R̃1)
φ(R̃0)

. (B.43)

We insert (B.42) and (B.43) in (B.41) and use (B.36) to obtain

f ′′(r) + f ′(r)b̃(r)/2 ≤ −Φ(r)Φ(R̃1)−1(R̃1 − R̃0)−1φ(R̃0) (B.44)

≤ − Φ(r)
2
∫ R̃1

R̃0
{Φ(s)/φ(s)}ds

≤ −cf(r)
2 − cΦ(r)

2 . (B.45)

By Assumption B.7 and (B.36), we get

−cΦ(r)
2 ≤ − Φ(R̃1)

4
∫ R̃1

0 {Φ(s)/φ(s)}ds
≤ − 1

4
∫ R̃1

0 {1/φ(s)}ds
≤ −a2 = f ′′(0) .

Combining this estimate with (B.44) gives (B.40) for r > R̃1.

B.6.2 Proof of Appendix B.2

Proof of Theorem B.1

Proof of Theorem B.1. We consider the process (X̄t, Ȳt, rt)t≥0 defined in Theorem B.2 and sat-
isfying |X̄t− Ȳt| ≤ rt for any t ≥ 0, and (rt)t≥0 is a weak solution of (B.22). Set a = 2∥γ∥∞ and
b̃(r) = b̄(r). With this notation, Assumption B.1 and Assumption B.2 imply Assumption B.7
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and R̃0 = R0 and R̃1 = R1 by (B.14), (B.15), (B.29) and (B.30). By Ito-Tanaka formula, cf.
[172, Chapter 6, Theorem 1.1], using that f ′ is absolutely continuous, we have,

df(rt) ≤ f ′(rt)(b̄(rt) + 2∥γ∥∞P(rt > 0))dt+ 2f ′′(rt)1(0,∞)(rt)dt
+ f ′(rt)21(0,∞)(rt)dWt .

Taking expectation we obtain by (B.39) and (B.40)

d
dtE[f(rt)] ≤ E[f ′(rt)b̃(rt)+ + 2(f ′′(rt)− f ′′(0))] + E[(a+ 2f ′′(0))1rt>0] ≤ −c̃E[f(rt)] ,

where c̃ is given by (B.17). Therefore by Grönwall’s lemma,

E[f(|X̄t − Ȳt|)] ≤ E[f(rt)] ≤ e−c̃tE[f(r0)] = e−c̃tE[f(|X̄0 − Ȳ0|)] .

Hence, it holds

Wf (µ̄t, ν̄t) ≤ E[f(|X̄t − Ȳt|)] ≤ e−c̃t
∫
Rd×Rd

f(|x− y|)ξ(dxdy)

for an arbitrary coupling ξ ∈ Γ(µ0, ν0). Taking the infimum over all couplings ξ ∈ Γ(µ0, ν0), we
obtain the first inequality of (B.16). By (B.38), we get the second inequality of (B.16).

Proof of Theorem B.2

Note that the nonlinear SDE (B.21) has Lipschitz continuous coefficients. The existence and the
uniqueness of the coupling (X̄δ

t , Ȳ
δ

t )t≥0 follows from [146, Theorem 2.2]. By Levy’s characteri-
zation, (X̄δ

t , Ȳ
δ

t )t≥0 is indeed a coupling of two copies of solutions of (B.1). Further, we remark
that W δ

t =
∫ t

0(ēδ
s)T dB1

s is a one-dimensional Brownian motion. In the next step, we analyse
|X̄δ

t − Ȳ δ
t |.

Lemma B.12. Suppose that the conditions Assumption B.1 and Assumption B.3 are satisfied.
Then, it holds for any ϵ < ϵ0, where ϵ0 is given by (B.20), setting r̄δ

t = |X̄δ
t − Ȳ δ

t |

dr̄δ
t =

(
− Lr̄δ

t +
〈
ēδ

t ,

∫
R

∫
Rd
γ(X̄δ

t − x)− γ(Ȳ δ
t − y)µδ

t (dx)νδ
t (dy)

〉)
dt+ 2rcδ(r̄δ

t )dW δ
t (B.46)

≤
(
b̄(r̄δ

t ) + 2∥γ∥∞
∫
Rd

∫
Rd

rcϵ(|x− y|)µ̄δ
t (dx)ν̄δ

t (dy)
)
dt+ 2rcδ(r̄δ

t )dW δ
t , (B.47)

almost surely for all t ≥ 0, where µ̄δ
t and ν̄δ

t are the laws of X̄δ
t and Ȳ δ

t , respectively.

Proof. Using (B.21), Assumption B.1 and Assumption B.3, the stochastic differential equation
of the process ((r̄δ

t )2)t≥0 is given by

d((r̄δ
t )2) = 2

〈
Zδ

t ,−LZδ
t +

∫
Rd

∫
Rd
γ(X̄δ

t − x)− γ(Ȳ δ
t − y)µ̄δ

t (dx)ν̄δ
t (dy)

〉
dt

+ 4rcδ(r̄δ
t )2dt+ 4rcδ(r̄δ

t )⟨Zδ
t , e

δ
t ⟩dW δ

t .

For ε > 0 we define as in [87, Lemma 8] a C2 approximation of the square root by

Sε(r) =
{

(−1/8)ε−3/2r2 + (3/4)ε−1/2r + (3/8)ε1/2 for r < ε
√
r otherwise .

104



B.6. PROOFS

Then, by Ito’s formula,

dSε((r̄δ
t )2) = S′

ε((r̄δ
t )2)d(r̄δ

t )2 + 1
2S

′′
ε ((r̄δ

t )2)d[(r̄δ)2]t

= 2S′
ε((r̄δ

t )2)
〈
Zδ

t ,−LZδ
t +

∫
Rd

∫
Rd
γ(X̄δ

t − x)− γ(Ȳ δ
t − y)µ̄δ

t (dx)ν̄δ
t (dy)

〉
dt

+ S′
ε((r̄δ

t )2)4rcδ(r̄δ
t )2dt+ S′

ε((r̄δ
t )2)4rcδ(r̄δ

t )⟨Zδ
t , e

δ
t ⟩dW δ

t + 8S′′
ε ((r̄δ

t )2)(rcδ(r̄δ
t ))2(r̄δ

t )2dt .

We take the limit ε → 0. Then limε→0 S
′
ε(r) = (1/2)r−1/2 and limε→0 S

′′
ε (r) = −(1/4)r−3/2 for

r > 0. Since sup0≤r≤ε |S′
ε(r)| ≲ ε−1/2, sup0≤r≤ϵ |S′′

ε̄ (r)| ≲ ε̄−3/2 and rcδ is Lipschitz continuous
with rcδ(0) = 0, we apply Lebesgue’s dominated convergence theorem to show convergence for
the integrals with respect to time t. More precisely, we note that the integrand (4S′

ε((r̄δ
t )2) +

8S′′
ε ((r̄δ

t )2))rcδ(r̄δ
t ))2(r̄δ

t )2 is dominated by 3ε1/2∥rcδ∥Lip. For any ε < ε0 for fixed ε0 > 0, the
integrand 2S′

ε((r̄δ
t )2)⟨Zδ

t ,−LZδ
t +

∫
Rd

∫
Rd(γ(X̄δ

t − x)− γ(Ȳ δ
t − y))µ̄δ

t (dx)ν̄δ
t (dy)⟩ is dominated by

(3/2)(Lmax(ε(1/2)
0 , r̄δ

t ) + 2∥γ∥∞).
For the stochastic integral it holds |S′

ε((r̄δ
t )2)4rcδ(r̄δ

t )r̄δ
t | ≤ 3. Hence, the stochastic integral

converges along a subsequence almost surely, to
∫ t

0 2rcδ(r̄δ
s)dW δ

s , see [172, Chapter 4, Theorem
2.12]. Hence, we obtain (B.46). By Assumption B.1 and (B.20), we obtain for ϵ < ϵ0〈

ēδ
t ,

∫
Rd

∫
Rd

(γ(X̄δ
t − x)− γ(Ȳ δ

t − y))µδ
t (dx)νδ

t (dy)
〉

≤
〈
ēδ

t ,

∫
Rd

∫
Rd

(γ(X̄δ
t − x)− γ(Ȳ δ

t − x) + γ(Ȳ δ
t − x)− γ(Ȳ δ

t − y))µδ
t (dx)νδ

t (dy)
〉

≤ κ(r̄δ
t )r̄δ

t +
∫
Rd

∫
Rd

2∥γ∥∞rcϵ(|x− y|)µδ
t (dx)νδ

t (dy) ,

and hence (B.47) holds.

We define a one-dimensional process (rδ,ϵ
t )t≥0 by

drδ,ϵ
t =

(
b̄(rδ,ϵ

t ) + 2∥γ∥∞
∫
R+

rcϵ(u)P δ,ϵ
t (du)

)
dt+ 2rcδ(rδ,ϵ

t )dW δ
t (B.48)

with initial condition rδ,ϵ
0 = r̄δ

0, P δ,ϵ
t = Law(rδ,ϵ

t ) and W δ
t =

∫ t
0(ēδ

s)T dB1
s . This process will allow

us to control the distance of X̄δ
t and Ȳ δ

t .
By [146, Theorem 2.2], under Assumption B.1 and Assumption B.3,

(U δ,ϵ
t )t≥0 = (X̄δ

t , Ȳ
δ

t , r
δ,ϵ
t )t≥0 exists and is unique, where (X̄δ

t , Ȳ
δ

t )t≥0 solves uniquely (B.21),
(r̄δ

t )t≥0 and (rδ,ϵ
t )t≥0 solve uniquely (B.46) and (B.48), respectively, with W δ

t =
∫ t

0(ēδ
s)T dB1

s .

Lemma B.13. Assume Assumption B.1 and Assumption B.3. Then, |X̄δ
t − Ȳ δ

t | = r̄δ
t ≤ rδ,ϵ

t ,
almost surely for all t and ϵ < ϵ0.

Proof. Note that (r̄δ
t )t≥0 and (rδ,ϵ

t )t≥0 have the same initial distribution and are driven by the
same noise. Since the drift of (r̄δ

t )t≥0 is smaller than the drift of (rδ,ϵ
t )t≥0 for ϵ < ϵ0, the result

follows by Lemma B.14.

Proof of Theorem B.2. We consider the nonlinear process (U δ,ϵ
t )t≥0 = (X̄δ

t , Ȳ
δ

t , r
δ,ϵ
t )t≥0 on R2d+1

for each ϵ, δ > 0. We denote by Pδ,ϵ the law of U δ,ϵ on the space C(R+,R2d+1). We define by
X,Y : C(R+,R2d+1) → C(R+,Rd) and r : C(R+,R2d+1) → C(R+,R) the canonical projections
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onto the first d components, onto the second d components and onto the last component, re-
spectively. By Assumption B.1 and Assumption B.3 following the same line as the proof of
Lemma B.15, see (B.56), it holds for each T > 0

E[|U δ,ϵ
t2 − U

δ,ϵ
t1 |

4] ≤ C|t2 − t1|2 for t1, t2 ∈ [0, T ] , (B.49)

for some constant C depending on T , L, ∥γ∥Lip, ∥γ∥∞ and on the fourth moment of µ0 and ν0.
As in Lemma B.15 the law Pδ,ϵ

T of (U δ,ϵ
t )0≤t≤T on C([0, T ],R2d+1) is tight for each T > 0 by [121,

Corollary 14.9] and for each ϵ > 0 there exists a subsequence δn → 0 such that (Pδn,ϵ
T )n∈N on

C([0, T ],R2d+1) converge to a measure Pϵ
T on C([0, T ],R2d+1). By a diagonalization argument

and since {Pϵ
T : T ≥ 0} is a consistent family, cf. [121, Theorem 5.16], there exists a probability

measure Pϵ on C(R+,R2d+1) such that for all ϵ there exists a subsequence δn such that (Pδn,ϵ)n∈N
converges along this subsequence to Pϵ. As in the proof of Lemma B.16 we repeat this argument
for the family of measures (Pϵ)ϵ>0. Hence, there exists a subsequence ϵm → 0 such that (Pϵm)m∈N
converges to a measure P. Let (X̄t, Ȳt, rt)t≥0 be some process on R2d+1 with distribution P on
(Ω̄, F̄ , P̄ ).

Since (X̄δ
t )t≥0 and (Ȳ δ

t )t≥0 are solutions of (B.1) which are unique in law, we have that for
any ϵ, δ > 0, Pδ,ϵ ◦X−1 = P ◦X−1 and Pδ,ϵ ◦Y−1 = P ◦Y−1. And therefore (X̄t)t≥0 and (Ȳt)t≥0
are solutions of (B.1) as well with the same initial condition. Hence P ◦ (X,Y)−1 is a coupling
of two copies of (B.1).

Similarly to the proof of Lemma B.15 and Lemma B.16 there exist an extended probability
space and a one-dimensional Brownian motion (Wt)t≥0 such that (rt,Wt)t≥0 is a solution to

drt = (b̄(rt) + 2∥γ∥∞P(rt > 0))dt+ 21(0,∞)(rt)dWt .

In addition, the statement of Lemma B.13 carries over to the limiting process (rt)t≥0, i.e.,
|X̄t − Ȳt| ≤ rt for all t ≥ 0, since by the weak convergence along the subsequences (δn)n∈N and
(ϵm)m∈N and the Portmanteau theorem, P (|X̄t − Ȳt| ≤ rt) ≥ lim supm→∞ lim supn→∞ P (|X̄δn

t −
Ȳ δn

t | ≤ r
δn,ϵm
t ) = 1.

B.6.3 Proof of Appendix B.3

Proof of Theorem B.3

We show Theorem B.3 via a family of stochastic differential equations, indexed by n,m ∈ N,
with Lipschitz continuous coefficients,

drn,m
t = (b̃(rn,m

t ) + Pn,m
t (gm))dt+ 2θn(rn,m

t )dWt

dsn,m
t = (b̂(sn,m

t ) + P̂t
n,m(hm))dt+ 2θn(sn,m

t )dWt , Law(rn,m
0 , sn,m

0 ) = ηn,m ,
(B.50)

where Pn,m
t = Law(rn,m

t ), P̂n,m
t = Law(sn,m

t ), Pn,m
t (gm) =

∫
R+
gm(r)Pn,m

t (dx) and P̂n,m
t (hm) =∫

R+
hm(r)P̂n,m

t (dx) for some measurable functions (gm)m∈N and (hm)m∈N, and where ηn,m ∈
Γ(µn,m, νn,m) for µn,m, νn,m ∈ P(R+). We identify the weak limit for n → ∞ as solution of a
family of stochastic differential equations, indexed by m ∈ N, given by

drm
t = (b̃(rm

t ) + Pm
t (gm))dt+ 21(0,∞)(rm

t )dWt

dsm
t = (b̂(sm

t ) + P̂t
m(hm))dt+ 21(0,∞)(sm

t )dWt , Law(rm
0 , s

m
0 ) = ηm .

(B.51)
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with Pm
t = Law(rm

t ) and P̂m
t = Law(sm

t ), and where ηm ∈ Γ(µm, νm) for µm, νm ∈ P(R+).
Taking the limit m → ∞, we show in the next step that the solution of (B.51) converges to a
solution of (B.25).

We assume for (gm)m∈N, (hm)m∈N, (θn)n∈N and the initial distributions:
Assumption B.8. (gm)m∈N and (hm)m∈N are sequences of non-decreasing non-negative uni-
formly bounded Lipschitz continuous functions such that for all r ≥ 0, gm(r) ≤ gm+1(r) and
hm(r) ≤ hm+1(r) and limm→+∞ gm(r) = g(r) and limm→+∞ hm(r) = h(r) where g, h are left-
continuous non-negative non-decreasing bounded functions. In addition, there exists Km < ∞
for any m such that for all r, s ∈ R

|gm(r)− gm(s)| ≤ Km|r − s| and |hm(r)− hm(s)| ≤ Km|r − s| .

Assumption B.9. (θn)n∈N is a sequence of Lipschitz continuous functions from R+ to [0, 1]
with θn(0) = 0, θn(r) = 1 for all r ≥ 1/n and θn(r) > 0 for all r > 0.
Assumption B.10. (µn,m)m,n∈N, (νn,m)m,n∈N, (µm)m∈N, (νm)m∈N are families of probability
distributions on R+ and (ηn,m)n,m∈N, (ηm)m∈N families of probability distributions on R2

+ such
that for any n,m ∈ N ηn,m ∈ Γ(µn,m, νn,m) and ηm ∈ Γ(µm, νm) and for any m ∈ N, (ηn,m)n∈N
converges weakly to ηm and (ηm)m∈N converges weakly to η. Further, the p-th order moments
of (µn,m)n,m∈N, (νn,m)n,m∈N, (µm)m∈N and (νm)m∈N are uniformly bounded for p > 2 given in
Assumption B.6.

Note that by Assumption B.8 for any non-decreasing sequence (um)m∈N, which converges
to u ∈ R+, gm(um) and hm(um) converge to g(u) and h(u), respectively. More precisely, it
holds for for all m ∈ N, gm(um) − g(u) ≤ 0 and for m ≥ n, gm(um) ≥ gm(un) and therefore,
limm→∞ gm(un) − g(u) ≥ limn→∞ limm→∞ = limn→∞ g(un) − g(u) = 0 by left-continuity of
g. Hence, limm→∞ gm(um) − g(u) = 0 and analogously limm→∞ hm(um) − h(u) = 0. By
Assumption B.8, Γ = max(∥h∥∞, ∥g∥∞) is a uniform upper bound of (gm)m∈N and (hm)m∈N.

Consider a probability space (Ω0,A0, Q) and a one-dimensional Brownian motion (Wt)t≥0.
Under Assumption B.8, Assumption B.9 and Assumption B.10, for all m,n ∈ N, there exists
random variables rn,m, sn,m : Ω0 → W for each n,m such that (rn,m

t , sn,m
t )t≥0 is a unique

strong solution to (B.50) associated to (Wt)t≥0 by [146, Theorem 2.2]. We denote by Pn,m =
Q ◦ (rn,m, sn,m)−1 the corresponding distribution on W×W.

Before studying the two limits n,m→∞ and proving Theorem B.3, we state a modification
of the comparison theorem by Ikeda and Watanabe to compare two solutions of (B.50), cf. [116,
Section VI, Theorem 1.1].
Lemma B.14. Let (rn,m

t , sn,m
t )t≥0 be a solution of (B.50) for fixed n,m ∈ N. Assume As-

sumption B.4, Assumption B.8 and Assumption B.9. If Q[rn,m
0 ≤ sn,m

0 ] = 1, b̃(r) ≤ b̂(r) and
gm(r) ≤ hm(r) for any r ∈ R+, then

Q[rn,m
t ≤ sn,m

t for all t ≥ 0] = 1 . (B.52)

Proof. For simplicity, we drop the dependence on n,m in (rn,m
t ) and (sn,m

t ). Denote by ρ the
Lipschitz constant of θn. Let (ak)k∈N be a decreasing sequence, 1 > a1 > a2 > . . . > ak > . . . > 0,
such that

∫ 1
a1
ρ−2x−1dx = 1,

∫ a1
a2
ρ−2x−1dx = 2,. . .,

∫ ak−1
ak

ρ−2x−1dx = k. We choose a sequence
Ψk(u), k = 1, 2, . . ., of continuous functions such that its support is contained in (ak, ak−1),∫ ak−1

ak
Ψk(u)du = 1 and 0 ≤ Ψk(u) ≤ 2/k · ρ−2u−2. Such a function exists. We set

φk(x) =
{∫ x

0 dy
∫ y

0 Ψk(u)du if x ≥ 0,
0 if x < 0 .
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Note that for any k ∈ N, φk ∈ C2(R+), |φ′
k(x)| ≤ 1, φk(x)→ x+ as k ↑ ∞ and φ′

k(x) ↑ 1(0,∞)(x).
Applying Ito’s formula to φk(rt − st), we obtain

φk(rt − st) = φk(r0 − s0) + I1(k) + I2(k) + I3(k) ,

where

I1(k) =
∫ t

0
φ′

k(ru − su)[θn(ru)− θn(su)]dBu ,

I2(k) =
∫ t

0
φ′

k(ru − su)[b(ru)− b̂(su) + Pu(gm)− P̂u(hm)]du ,

I3(k) = 1
2

∫ t

0
φ′′

k(ru − su)[θn(ru)− θn(su)]2du ,

with Pu = Q ◦ r−1
u and P̂u = Q ◦ s−1

u . It holds by boundedness and Lipschitz continuity of θn

E[I1(k)] = 0 , and E[I3(k)] ≤ 1
2E
[ ∫ t

0
φ′′

k(ru − su)ρ2|ru − su|2du
]
≤ t

k
.

We note that by Assumption B.8 E[(gm(ru)− hm(su))1ru−su<0] ≤ 0 and

E[(gm(ru)− hm(su))1ru−su≥0] ≤ E[(gm(ru)− gm(su) + gm(su)− hm(su))1ru−su≥0]
≤ E[(gm(ru)− gm(su))1ru−su≥0]
≤ KmE[|ru − su|1ru−su≥0] (B.53)

by Lipschitz continuity of gm, by gm(r) ≤ hm(r) and since gm and hm are non-decreasing. Hence
for I2, we obtain

I2(k) =
∫ t

0
φ′

k(ru − su)[b̃(ru)− b̂(ru) + b̂(ru)− b̂(su)]du

+
∫ t

0
φ′

k(ru − su)
(
E[(gm(ru)− hm(su))1ru−su≥0] + E[(gm(ru)− hm(su))1ru−su<0]

)
du

≤
∫ t

0
φ′

k(ru − su)L̃|ru − su|du+
∫ t

0
φ′

k(ru − su)KmE[|ru − su|1ru−su≥0]du .

Taking the limit k →∞ and using that E[r0 − s0] = 0, we obtain

E[(rt − st)+] ≤ L̃E
[ ∫ t

0
(ru − su)+du

]
+KmE

[ ∫ t

0
1(0,∞)(ru − su)E[(ru − su)+]du

]
, (B.54)

by the monotone convergence theorem and since (φ′
k)k∈N is a monotone increasing sequence

which converges pointwise to 1(0,∞)(x). Assume there exists t∗ = inf{t ≥ 0 : E[(rt − st)+] >
0} < ∞. Then,

∫ t∗

0 E[(ru − su)+]du > 0 or
∫ t∗

0 E[1(0,∞)(ru − su)]E[(ru − su)+]du > 0. By
definition of t∗, E[(ru− su)+] = 0 for all u < t∗ and hence both terms are zero. This contradicts
the definition of t∗. Hence, (B.52) holds.

Next, we show that the distribution of the solution of (B.50) converges as n→∞.

Lemma B.15. Assume that b̃, b̂, g and h satisfy Assumption B.4 and Assumption B.5. Let
η ∈ Γ(µ, ν) where the probability measures µ and ν on R+ satisfy Assumption B.6. Assume
that (gm)m∈N, (hm)m∈N, (θn)n∈N, (µn,m)m,n∈N, (νn,m)m,n∈N and (ηn,m)m,n∈N satisfy condition
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Assumption B.8, Assumption B.10 and Assumption B.9. Then for any m ∈ N, there exists a
random variable (rm, sm) defined on some probability space (Ωm,Am, Pm) with values in W×W,
such that (rm

t , s
m
t )t≥0 is a weak solution of the stochastic differential equation (B.51). More

precisely, for all m ∈ N the sequence of laws Q◦(rn,m, sn,m)−1 converges weakly to the distribution
Pm ◦ (rm, sm)−1. If additionally,

b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) , for any r ∈ R+ and
Q[rn,m

0 ≤ sn,m
0 ] = 1 for any n,m ∈ N,

then Pm[rm
t ≤ sm

t for all t ≥ 0] = 1.

Proof. Fix m ∈ N. The proof is divided in three parts. First we show tightness of the sequences
of probability measures. Then we identify the limit of the sequence of stochastic processes.
Finally, we compare the two limiting processes.
Tightness: We show that the sequence of probability measures (Pn,m)n∈N on (W×W,B(W)⊗
B(W)) is tight by applying Kolmogorov’s continuity theorem. Consider p > 2 such that the p-th
moment in Assumption B.6 and Assumption B.10 are uniformly bounded. Fix T > 0. Then the
p-th moment of rn,m

t for t < T can be bounded using Ito’s formula,

d|rn,m
t |p ≤ p|rn,m

t |p−2⟨rn,m
t , (b̃(rn,m

t ) + Pn,m
t (gm))⟩dt+ 2θn(rn,m

t )p|rn,m
t |p−2rn,m

t dWt

+ p(p− 1)|rn,m
t |p−22θn(rn

t )2dt

≤ p
(
|rn,m

t |pL̃+ Γ|rn,m
t |p−1 + 2(p− 1)|rn,m

t |p−2
)
dt+ 2θn(rn,m

t )p(rn,m
t )p−1dWt

≤ p
(
L̃+ Γ + 2(p− 1)

)
|rn,m

t |pdt+ p(Γ + 2(p− 1))dt+ 2θn(rn,m
t )p(rn,m

t )p−1dWt ,

where Γ = max(∥g∥∞, ∥h∥∞). Taking expectation yields
d
dtE[|rn,m

t |p] ≤ p
(
L̃+ Γ + 2(p− 1)

)
E|rn,m

t |p + p(Γ + 2(p− 1)) .

Then by Gronwall’s lemma

sup
t∈[0,T ]

E[|rn,m
t |p] ≤ ep(L̃+Γ+2(p−1))T (E[|rn,m

0 |p] + Tp(Γ + 2(p− 1))) < Cp <∞ , (B.55)

where Cp depends on T and the p-th moment of the initial distribution, which is finite by
Assumption B.9. Similarly, it holds supt∈[0,T ] E[|sn,m

t |p] < Cp for t ≤ T . Using this moment
bound, it holds for all t1, t2 ∈ [0, T ] by Assumption B.4, Assumption B.8 and Assumption B.9,

E[|rn,m
t2 − rn,m

t1 |
p] ≤ C1(p)

(
E[|
∫ t2

t1
b̃(rn,m

u ) + Pn,m
u (gm)du|p] + E[|

∫ t2

t1
2θn(rn,m

u )dWu|p]
)

≤ C2(p)
((

E
[ L̃p

|t2 − t1|

∫ t2

t1
|rn,m

u |pdu
]

+ Γp
)
|t2 − t1|p + E[|

∫ t2

t1
2θn(rn,m

u )du|p/2]
)

≤ C2(p)
(( L̃p

|t2 − t1|

∫ t2

t1
E[|rn,m

u |p]du+ Γp
)
|t2 − t1|p + 2p/2|t2 − t1|p/2

)
≤ C3(p, T, L̃,Γ, Cp)|t2 − t1|p/2 ,

where Ci(·) are constants depending on the stated argument and which are independent of n,m.
Note that in the second step, we used Burkholder-Davis-Gundy inequality, see [170, Chapter
IV, Theorem 48]. It holds similarly, E[|sn,m

t2 − sn,m
t1 |

p] ≤ C3(p, T, L̃,Γ, Cp)|t2 − t1|p/2. Hence,

E[|(rn,m
t2 , sn,m

t2 )− (rn,m
t1 , sn,m

t1 )|p] ≤ C4(p, T, L̃,Γ, Cp)|t2 − t1|p/2 (B.56)
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for all t1, t2 ∈ [0, T ]. Hence, by Kolmogorov’s continuity criterion, cf. [121, Corollary 14.9], there
exists a constant C̃ depending on p and γ such that

E
[
[(rn,m, sn,m)]pγ

]
≤ C̃ · C4(p, T, L̃,Γ, Cp) , (B.57)

where [·]pγ is given by [x]γ = supt1,t2∈[0,T ]
|x(t1)−x(t2)|

|t1−t2|γ and (rn,m
t , sn,m

t )n∈N,t≥0 is tight in
C([0, T ],R2). Hence, for each T > 0 there exists a subsequence nk → ∞ and a probability
measure Pm

T on C([0, T ],R2). Since {Pm
T }T is a consistent family, there exists by [121, Theorem

5.16] a probability measure Pm on (W ×W,B(W) ⊗ B(W)) such that there is a subsequence
(nk)k∈N such that Pnk,m converges along this subsequence to Pm. Note that here we can take
by a diagonalization argument the same subsequence (nk)k∈N for all m.

Characterization of the limit measure: In the following we drop for simplicity the
index k in the subsequence. Denote by (rt, st)(ω) = ω(t) the canonical process on W×W. Since
Pn,m◦(r0, s0)−1 = ηn,m converges weakly to ηm by Assumption B.10, it holds Pm◦(r0, s0)−1 = ηm.
We define the maps Mn,m, Nn,m : W×W→W by

Mn,m
t = rt − r0 −

∫ t

0
(b̃(ru) + Pn

u (gm))du and Nn,m
t = st − s0 −

∫ t

0
(b̂(su) + P̂n

u (hm))du ,

where Pn
u = Pn,m ◦ (ru)−1 and P̂n

u = Pn,m ◦ (su)−1. For each m,n ∈ N, (Mn,m
t ,Ft,Pn,m) and

(Nn,m
t ,Ft,Pn,m) are martingales with respect to the canonical filtration Ft = σ((ru, su)0≤u≤t)

by Ito’s formula and the moment estimate (B.55). Further the family (Mn,m
t ,Pn,m)n∈N,t≥0

and (Nn,m
t ,Pn,m)n∈N,t≥0 are uniformly integrable by Lipschitz continuity of b̃ and b̂ and by

boundedness of gm and hm. Further, the mappings Mn,m and Nn,m are continuous in W. We
show that Pn,m ◦ (r, s,Mn,m, Nn,m)−1 converges weakly to Pm ◦ (r, s,Mm, Nm)−1 as n → ∞,
where

Mm
t = rt − r0 −

∫ t

0
(b̃(ru) + Pu(gm))du and Nm

t = st − s0 −
∫ t

0
(b̂(su) + P̂u(hm))du ,

(B.58)

with Pu = Pm ◦r−1
u and P̂u = Pm ◦s−1

u . To show weak convergence to Pm ◦ (r, s,Mm, Nm)−1, we
note that (Mm, Nm) is continuous in W and we consider for a Lipschitz continuous and bounded
function G : W→ R,∣∣∣∣∫

W
G(ω)dPn,m ◦ (Mn,m)−1(ω)−

∫
W
G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣
≤
∣∣∣∣∫

W
G(ω)dPn,m ◦ (Mn,m)−1(ω)−

∫
W
G(ω)dPn,m ◦ (Mm)−1(ω)

∣∣∣∣
+
∣∣∣∣∫

W
G(ω)dPn,m ◦ (Mm)−1(ω)−

∫
W
G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣ .
The second term converges to 0 as n→∞, since (Mm) is continuous. For the first term it holds∣∣∣∣∫

W
G(ω)dPn,m ◦ (Mn,m)−1(ω)−

∫
W
G(ω)dPn,m ◦ (Mm)−1(ω)

∣∣∣∣
=
∣∣∣∣∫

W
(G ◦Mn,m)(ω)dPn,m(ω)−

∫
W

(G ◦Mm)(ω)dPn,m(ω)
∣∣∣∣

≤ ∥G∥Lip sup
ω∈W

dW(Mn,m(ω),Mm(ω)) ,
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where dW(f, g) =
∑∞

k=1 supt∈[0,k] 2−k|f(t)− g(t)|. This term converges to 0 for n→∞, since for
all T > 0 and ω ∈W, for n→∞

sup
t∈[0,T ]

|Mn,m
t (ω)−Mm

t (ω)| ≤
∫ T

0

∣∣∣(Pn,m ◦ r−1
s )(gm)− (Pm ◦ r−1

s )(gm)
∣∣∣ ds→ 0 ,

by Lebesgue dominated convergence theorem, since g is bounded. Hence,∣∣∣∣∫
W
G(ω)dPn,m ◦ (Mn,m)−1(ω)−

∫
W
G(ω)dPm ◦ (Mm)−1(ω)

∣∣∣∣→ 0 for n→∞,

and similarly for (Nn,m), and therefore by the Portmanteau theorem [123, Theorem 13.16], weak
convergence of Pn,m ◦ (r, s,Mn,m, Nn,m)−1 to Pm ◦ (r, s,Mm, Nm)−1 holds.

Let G : W → R+ be a Fs-measurable, bounded, non-negative function. By uniformly
integrability of (Mn,m

t ,Pn,m)n∈N,t≥0, for any s ≤ t,

Em[G(Mm
t −Mm

s )] = Em[G(
∫ t

s
(b̃(ru) + Pu(gm))du)]

= lim
n→∞

En,m[G(
∫ t

s
(b̃(ru) + Pn

u (gm))du)]

= lim
n→∞

En,m[G(Mn,m
t −Mn,m

s )] = 0 ,

(B.59)

and analogously for (Nn,m
t )t≥0 and hence, (Mm

t ,Ft,Pm) and (Nm
t ,Ft,Pm) are continuous mar-

tingales. The quadratic variation ([(Mm, Nm)]t) exists Pm-almost surely. To complete the
identification of the limit, it suffices to note that the quadratic variation is given by

[Mm] = 4
∫ ·

0
1(0,∞)(ru)du Pm-almost surely,

[Nm] = 4
∫ ·

0
1(0,∞)(su)du Pm-almost surely, and

[Mm, Nm] = 4
∫ ·

0
1(0,∞)(ru)1(0,∞)(su)du Pm-almost surely,

(B.60)

which holds following the computations in the proof of [87, Theorem 22]. We show that ((Mm
t )2−

4
∫ t

0 1(0,∞)rudu) is a sub- and a supermartingale and hence a martingale using a monotone class
argument by noting first that for any bounded continuous and non-negative function G : W→
R+,

Em[G(Mm
t )2] = lim

n→∞
En,m[G(Mn,m

t )2] (B.61)

holds using uniform integrability of ((Mn,m
t )2,Pn,m)n∈N,t≥0 which holds similarly as above. Note

that

Em
[
G

∫ t

s
1(0,∞)(ru)du

]
≤ lim

ϵ↓0
lim inf
n→∞

En,m
[
G

∫ t

s
1(ϵ,∞)(ru)du

]
(B.62)

holds by lower semicontinuity of ω →
∫ ·

0 1(ϵ,∞)(ωs)ds for each ϵ > 0, Fatou’s lemma and the
Portmanteau theorem. For any fixed ϵ > 0,

lim inf
n→∞

En,m
[
G

(∫ t

s
θn(ru)2du−

∫ t

s
1(ϵ,∞)(ru)du

)]
. (B.63)
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Then by (B.61), (B.62) and (B.63)

Em
[
G

(
(Mm

t )2 − (Mm
s )2 − 4

∫ t

s
1(0,∞)(ru)du

)]
≥ lim

ϵ↓0
lim inf
n→∞

En,m
[
G

(
(Mn,m

t )2 − (Mn,m
s )2 − 4

∫ t

s
θn(ru)2du

)]
= 0

and by a monotone class argument, cf. [170, Chapter 1, Theorem 8],
((Mm

t )2 − 4
∫ t

0 1(0,∞)(ru)du,Pm) is a submartingale. To show that it is also a supermartingale
we note that ((Mm

t )2 − 4t,Pm) is a supermartingale by (B.61). By the uniqueness of the Doob-
Meyer decomposition, cf. [170, Chapter 3, Theorem 8], t → [Mm]t − 4t is Pm-almost surely
decreasing. Note further, that (rt,Ft,Pm) is a continuous semimartingale with [r] = [Mm].
Then by Ito-Tanaka formula, cf. [172, Chapter 6, Theorem 1.1],∫ t

0
1{0}(ru)d[Mm]u =

∫ t

0
1{0}(ru)d[r]u =

∫ t

0
1{0}(y)ℓyt (r)dy = 0 ,

where ℓyt (r) is the local time of r in y. Therefore, for any 0 ≤ s < t,

[Mm]t − [Mm]s =
∫ t

0
1(0,∞)(ru)d[Mm]u ≤ 4

∫ t

0
1(0,∞)(ru)du

and hence, for any Fs-measurable, bounded, non-negative function G : W→ R+,

Em
[
G((Mm

t )2 − (Mm
s )2 − 4

∫ t

s
1(0,∞)(ru)du)

]
≤ 0 .

As before, by a monotone class argument, ((Mm
t )2−4

∫ t
0 1(0,∞)(ru)du,Pm) is a supermartingale,

and hence a martingale.
Hence, we obtain the quadratic variation [Mm]t given in (B.60). The other characterizations

in (B.60) follow by analogous arguments. Then by a martingale representation theorem, see
[116, Chapter II, Theorem 7.1], we conclude, that there are a probability space (Ωm,Am, Pm)
and a Brownian motion motion W and random variables (rm, sm) on this space such that
Pm ◦ (rm, sm)−1 = Pm ◦ (rm, sm)−1 and such that (rm, sm,W ) is a weak solution of (B.51).
Finally, note that we have weak convergence of Q ◦ (rn,m, sn,m)−1 to Pm ◦ (rm, sm)−1 not only
along a subsequence since the characterization of the limit holds for any subsequence (nk)k∈N.

Comparison of two solutions: To show Pm[rm
t ≤ sm

t for all t ≥ 0] = 1 we note that
by Lemma B.14, Q[rn

t ≤ sn
t for all t ≥ 0] = 1. The monotonicity carries over to the limit by

the Portmanteau theorem for closed sets, since we have weak convergence of Pn,m ◦ (r, s)−1 to
Pm ◦ (r, s)−1.

We show in the next step that the distribution of the solution of (B.51) converges as m→∞.
For each m ∈ N let (Ωm,Am, Pm) be a probability space and random variables rm, sm : Ωm →W
such that (rm

t , s
m
t )t≥0 is a solution of (B.51). Let Pm = Pm◦(rm, sm)−1 denote the law on W×W.

Lemma B.16. Assume that (b̃, g) and (b̂, h) satisfy Assumption B.4 and Assumption B.5. Let
η ∈ Γ(µ, ν) where the probability measures µ and ν on R+ satisfy Assumption B.6. Assume that
(gm)m∈N, (hm)m∈N, (µm)m∈N, (νm)m∈N and (ηm)m∈N satisfy conditions Assumption B.8 and
Assumption B.10. Then there exists a random variable (r, s) defined on some probability space
(Ω,A, P ) with values in W×W, such that (rt, st)t≥0 is a weak solution of the sticky stochastic
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differential equation (B.25). Furthermore, the sequence of laws Pm◦(rm, sm)−1 converges weakly
to the law P ◦ (r, s)−1. If additionally,

b̃(r) ≤ b̂(r) , g(r) ≤ h(r) and gm(r) ≤ hm(r) for any r ∈ R+, and
Pm[rm

0 ≤ sm
0 ] = 1 for any m ∈ N

then P [rt ≤ st for all t ≥ 0] = 1.

Proof. The proof is structured as the proof of Lemma B.15. First analogously to the proof of
(B.55) we show under Assumption B.4, Assumption B.8 and Assumption B.10,

sup
t∈[0,T ]

E[|rm
t |p] <∞ . (B.64)

Tightness of the sequence of probability measures (Pm)m∈N on (W ×W,B(W) ⊗ B(W)) holds
adapting the steps of the proof of Lemma B.15 to (B.51). Note that (B.55) and (B.56) hold
analogously for (rm

t , s
m
t )m∈N by Assumption B.4, Assumption B.8 and Assumption B.10. Hence

by Kolmogorov’s continuity criterion, cf. [121, Corollary 14.9], we can deduce that there exists
a probability measure P on (W ×W,B(W) ⊗ B(W)) such that there is a subsequence (mk)k∈N
along which Pmk converge towards P. To characterize the limit, we first note that by Skorokhod
representation theorem, cf. [20, Chapter 1, Theorem 6.7], without loss of generality we can
assume that (rm, sm) are defined on a common probability space (Ω,A, P ) with expectation
E and converge almost surely to (r, s) with distribution P. By Assumption B.8, Pm

t (gm) =
E[gm(rm

t )] and the monotone convergence theorem, Pm
t (gm) converges to Pt(g) for any t ≥ 0.

Then, by Lebesgue convergence theorem it holds almost surely for all t ≥ 0

lim
m→∞

∫ t

0

(
b̃(rm

t ) + Pm
u (gm)

)
du =

∫ t

0

(
b̃(rt) + Pu(g)

)
du , (B.65)

where Pm
u = P ◦ (rm

u )−1 and Pu = P ◦ (ru)−1. A similar statement holds for (st)t≥0.
Consider the mappings Mm, Nm : W × W → W given by (B.58). Then for all m ∈

N, (Mm
t ,Ft,Pm) and (Nm

t ,Ft,Pm) are martingales with respect to the canonical filtration
Ft = σ((ru, su)0≤u≤t). Further the family (Mm

t ,Pm)m∈N,t≥0 and (Nm
t ,Pm)m∈N,t≥0 are uni-

formly integrable by (B.64). In the same line as in the proof of Lemma B.15 and by (B.65),
Pm ◦ (r, s,Mm, Nm) converges weakly to P ◦ (r, s,M,N) where

Mt = rt − r0 −
∫ t

0
(b̃(ru) + Pu(g))du and Nt = st − s0 −

∫ t

0
(b̂(su) + P̂u(h))du .

Let G : W→ R+ be a Fs-measurable bounded, non-negative function. By uniform integrability,
for any s ≤ t,

E[G(Mt −Ms)] = E[G(
∫ t

s
(b̃(ru) + Pu(g))du)] = lim

m→∞
Em[G(

∫ t

s
(b̃(ru) + Pu(gm))du)]

= lim
m→∞

Em[G(Mm
t −Mm

s )] = 0 ,

and analogously for (Nt)t≥0. Hence, (Mt,Ft,P) and (Nt,Ft,P) are martingales. Further, the
quadratic variation ([(M,N)]t) exists P-almost surely and is given by (B.60) P-almost surely,
which holds following the computations in the proof of Lemma B.15. As in Lemma B.15, we
conclude by a martingale representation theorem that there are a probability space (Ω,A, P ) and
a Brownian motionW and random variables (r, s) on this space such that P ◦(r, s)−1 = P◦(r, s)−1
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and such that (r, s,W ) is a weak solution of (B.25). Note that the limit identification holds for all
subsequences (mk)k∈N and hence Pm ◦ (rm, sm)−1 converges weakly to P ◦ (r, s)−1 for m→∞.
The monotonicity Pm[rm

t ≤ sm
t for all t ≥ 0] = 1 carries over to the limit by Portmanteau

theorem, since Pm ◦ (r, s)−1 converges weakly to P ◦ (r, s)−1.

Proof of Theorem B.3. The proof is a direct consequence of Lemma B.15 and Lemma B.16.

Proof of Theorem B.5

Proof of Theorem B.5. Note that the Dirac at 0, δ0, is by definition an invariant measure of
(rt)t≥0 solving (B.6). Assume that the process starts from an invariant probability measure π,
hence P(rt > 0) = p = π((0,∞)) for any t ≥ 0. Note that for p = 0 the drift vanishes. If the
initial measure is the Dirac measure in 0, δ0, then the diffusion coefficient disappears. Hence,
Law(rt) = δ0 for any t ≥ 0. It remains to investigate the case p ̸= 0. Here, we are in the regime
of [87, Lemma 24] where an invariant measure is of the form (B.28). Since p = P(rt > 0), the
invariant measure π satisfies additionally the necessary condition

p = π((0,∞)) = I(a, p)
2/(ap) + I(a, p) (B.66)

with I(a, p) given in (B.27). For p ̸= 0, this expression is equivalent to (B.26).

Proof of Proposition B.6. By Theorem B.5, it suffices to study the solutions of (B.26). By
(B.27) and since b̃(r) = −L̃r, it holds for Î(a, p) = (1− p)I(a, p),

Î(a, p) =
(√π

2 +
∫ ap√

2L̃

0
exp(−x2/2)dx

)√ 2
L̃

exp
(a2p2

4L̃

)
(1− p) . (B.67)

In the case a/
√
L̃ ≤ 2/

√
π, Î(a, 0) =

√
π/L̃ by (B.67). Further, by 1+x ≤ ex and a/

√
L̃ ≤ 2/

√
π,

(√π

2 +
∫ ap√

2L̃

0
e− x2

2 dx
)
(1− p)e

a2p2
4L̃ ≤

√
π

2
(
1 +

√
2
π

∫ ap√
2L

0
e− x2

2 dx
)
e−pe

p2
π

≤
√
π

2
(
1 + 2p

π

)
e−pe

p2
π ≤

√
π

2 ep( 3
π

−1) <

√
π

2

for p ∈ (0, 1]. Hence, Î(a, p) < Î(a, 0) by (B.67). Therefore, Î(a, p) < Î(a, 0) ≤ 2
a for all p ∈ (0, 1]

and so δ0 is the unique invariant probability measure for a/
√
L̃ ≤ 2/

√
π.

To show that for a/
√
L̃ > 2/

√
π, there exists a unique p solving (B.26), we note that Î(a, p)

is continuous with Î(a, 0) > 2/a and Î(a, 1) = 0. By the mean value theorem, there exists at
least one p ∈ (0, 1) satisfying (B.26). In the following we drop the dependence on a in I(a, p)
and Î(a, p). We show uniqueness of the solution p by contradiction. Assume that p1 < p2 are
the two smallest solutions of (B.26). Hence, it holds either Î ′(p1) < 0 or Î ′(p) = 0 for p1. Note
that the derivative is given by

Î ′(pi) = −I(pi) + (1− pi)I ′(pi) = −I(pi) + (1− pi)
(
pi
a2

2L̃
I(pi) + a

L̃

)
= − 2

a(1− pi)
+ (1− pi)

a

L̃

( pi

1− pi
+ 1

)
= − 2

a(1− pi)
+ a

L̃
. (B.68)
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Then, for p2 > p1, it holds

Î ′(p2) = − 2
a(1− p2) + a

L̃
< − 2

a(1− p1) + a

L̃
= Î ′(p1) ≤ 0 .

If Î ′(p1) < 0, it holds Î ′(p2) < 0 which contradicts that p1 and p2 are the two smallest solutions.
In the second case, when Î ′(p1) = 0, we note that the second derivative of Î(p) at p1 is given by

Î ′′(p1) = −2I ′(p1) + (1− p1)I ′′(p1)

=
(
− 2 + (1− p1)a

2p1

2L̃

)(
I(p1)a

2p1

2L̃
+ a

L̃

)
+ (1− p1)I(p1) a

2

2L̃

=
(
− 2 + (1− p1)a

2p1

2L̃

) a

L̃(1− p1)
+ a

L̃
= − a

L̃(1− p1)
< 0 .

Hence, in this case there is a maximum at p1, which contradicts that p1 is the smallest solution.
Thus, there exists a unique solution p1 of (B.26) for a/

√
L̃ > 2/

√
π.

Proof of Theorem B.7

Proof of Theorem B.7. To show (B.31) we extend the function f to a concave function on R
by setting f(x) = x for x < 0. Note that f is continuously differentiable and f ′ is absolutely
continuous and bounded. Using Ito-Tanaka formula, c.f. [172, Chapter 6, Theorem 1.1] we
obtain

df(rt) = f ′(rt)(b̃(rt) + aP(rt > 0))dt+ 2f ′′(rt)1(0,∞)(rt)dt+ dMt ,

where Mt = 2
∫ t

0 f
′(rs)1(0,∞)(rs)dBs is a martingale. Taking expectation, we get

d

dt
E[f(rt)] = E[f ′(rt)(b̃(rt) + aP(rt > 0))] + 2E[f ′′(rt)1(0,∞)(rt)]

= E[f ′(rt)b̃(rt) + 2(f ′′(rt)− f ′′(0))] + E[af ′(rt) + 2f ′′(0)]P(rt > 0)
≤ −cE[f(rt)] ,

where the last step holds by (B.39) and (B.40). By applying Gronwall’s lemma, we obtain
(B.31).

B.6.4 Proof of Appendix B.4

To show Theorem B.8, we first give a uniform in time bound for the second moment of the
process (X̄t)t≥0 solving (B.1).

Lemma B.17. Let (X̄t)t≥0 be a solution of (B.1) with E[|X̄0|2] <∞. Assume Assumption B.1.
Then there exists C ∈ (0,∞) depending on d, W and the second moment of X̄0 such that

C = sup
t≥0

E[|X̄t|2] <∞ . (B.69)
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Proof of Lemma B.17. By Ito’s formula, it holds
1
2d|X̄t|2 = ⟨X̄t, b ∗ µ̄t(X̄t)⟩dt+ X̄T

t dBt + 1
2d dt .

Taking expectation and using symmetry, we get
d
dtE[|X̄t|2] = E[⟨X̄t − X̃t, b(X̄t − X̃t⟩] + d

= −E[⟨X̄t − X̃t, L(X̄t − X̃t)− γ(X̄t − X̃t)⟩1|X̄t−X̃t|>R0
]

− E[⟨X̄t − X̃t, L(X̄t − X̃t)− γ(X̄t − X̃t)⟩1|X̄t−X̃t|≤R0
] + d

≤ E[|X̄t|2(−2L+ κ(|X̄t − X̃t|)1|X̄t−X̃t|>R0
)] + ∥γ∥∞R0 + d .

Hence by definition (B.14) of R0 and by Gronwall’s lemma we obtain the result (B.69).

Let N ∈ N. We construct a sticky coupling of N i.i.d. realizations of solutions ({X̄i
t}Ni=1)t≥0 to

(B.1) and of the solution ({Y i
t }Ni=1)t≥0 to the mean field particle system (B.3). Then, we consider

a weak limit for δ → 0 of Markovian couplings which are constructed similar as in Appendix B.2.
Let rcδ, scδ satisfy (B.19) and (B.20). The coupling ({X̄i,δ

t , Y i,δ}Ni=1)t≥0 is defined as process in
R2Nd satisfying a system of SDEs given by

dX̄i,δ
t = b ∗ µ̄δ

t (X̄i,δ
t )dt+ rcδ(r̃i,δ

t )dBi,1
t + scδ(r̃i,δ

t )dBi,2
t

dY i,δ
t = 1

N

N∑
j=1

b(Y i,δ
t − Y j,δ

t )dt+ rcδ(r̃i,δ
t )(Id−2ẽi,δ

t (ẽi,δ
t )T )dBi,1

t + scδ(r̃i,δ
t )dBi,2

t ,
(B.70)

where Law({X̄i,δ
0 , Y i,0

0 }Ni=1) = µ̄⊗N
0 ⊗ ν⊗N

0 , and where ({Bi,1
t }Ni=1)t≥0, ({Bi,2

t }Ni=1)t≥0 are i.i.d. d-
dimensional standard Brownian motions. We set X̃i,δ

t = X̄i,δ
t − 1

N

∑N
j=1 X̄

j,δ
t , Ỹ i,δ

t = Y i,δ
t −

1
N

∑N
j=1 Y

j,δ
t , Z̃i,δ

t = X̃i,δ
t − Ỹ

i,δ
t , r̃i,δ

t = |Z̃i,δ
t | and ẽi,δ

t = Z̃i,δ
t /r̃i,δ

t for r̃i,δ
t ̸= 0. The value ẽi,δ

t for
r̃i,δ

t = 0 is irrelevant as rci,δ(0) = 0. By Levy’s characterization ({X̄i,δ
t , Y i,δ

t }Ni=1)t≥0 is indeed a
coupling of (B.1) and (B.3). Existence and uniqueness of the coupling given in (B.70) hold by
[146, Theorem 2.2]. In the next step we analyse r̃i,δ

t .
Lemma B.18. Assume Assumption B.1 holds. Then, for ϵ < ϵ0, where ϵ0 is given in (B.20),
and for any i ∈ {1, . . . , N}, it holds almost surely,

dr̃i,δ
t = −Lr̃i,δ

t dt+ ⟨ẽi,δ
t ,

1
N

N∑
j=1

γ(X̃i,δ
t − X̃

j,δ
t )− γ(Ỹ i,δ

t − Ỹ j,δ
t )⟩dt

+ 2
√

1 + 1
N

rcδ(r̃i,δ
t )dW i,δ

t +
〈
ẽi,δ

t ,Θi,δ
t + 1

N

N∑
k=1

Θk,δ
t

〉
dt (B.71)

≤
(
b̄(r̃i,δ

t ) + 2∥γ∥∞
1
N

N∑
j=1

rcϵ(r̃j,δ
t )
)
dt+ 2

√
1 + 1

N
rcδ(r̃i,δ

t )dW i,δ
t

+
(
Ai,δ

t + 1
N

N∑
k=1

Ak,δ
t

)
dt .

with Θi,δ
t = b ∗ µ̄δ

t (X̄i,δ
t )− 1

N

∑N
j=1 b(X̄

i,δ
t − X̄

j,δ
t ) and

Ai,δ
t =

∣∣∣Θi,δ
t

∣∣∣ =
∣∣∣b ∗ µ̄δ

t (X̄i,δ
t )− 1

N

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )
∣∣∣ (B.72)
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and where ({W i,δ
t }Ni=1)t≥0 are N one-dimensional Brownian motions given by

W i,δ
t =

√
N

N + 1

∫ t

0
(ẽi,δ

s )T dBi,1
s + 1

N

N∑
j=1

∫ t

0
(ẽj,δ

s )T dBj,1
s

 , i = 1, . . . , N. (B.73)

Proof. By (B.70) and since γ is anti-symmetric, it holds by Ito’s formula for any i ∈ {1, . . . , N},

d(r̃i,δ
t )2 = −2L(r̃i,δ

t )2dt+ 2⟨Z̃i,δ
t ,

1
N

N∑
j=1

γ(X̃i,δ
t − X̃

j,δ
t )− γ(Ỹ i,δ

t − Ỹ j,δ
t )⟩dt

+ 4
(
1 + 1

N

)
rcδ(r̃i,δ

t )2dt+ 4
√

1 + 1
N

rcδ(r̃i,δ
t )⟨Z̃i,δ

t , ẽi,δ
t ⟩dW

i,δ
t

+ 2⟨Z̃i,δ
t , b ∗ µ̄δ

t (X̄i,δ
t )− 1

N

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )⟩dt

+ 2⟨Z̃i,δ
t ,− 1

N

N∑
k=1

(
b ∗ µ̄δ

t (X̄k,δ
t )− 1

N

N∑
j=1

b(X̄k,δ
t − X̄j,δ

t )
)
⟩dt .

where ({W i
t }Ni=1)t≥0 are N i.i.d.one-dimensional Brownian motions given by (B.73). Note that

the prefactor (N/(N+1))1/2 ensures that the quadratic variation satisfies [W i]t = t for t ≥ 0, and
hence ({W i

t }Ni=1)t≥0 are Brownian motions. This definition of ({W i
t }Ni=1)t≥0 leads to (1+1/N)1/2

in the diffusion term of the SDE. Applying the C2 approximation of the square root used in the
proof of Lemma B.12 and taking ε → 0 in the approximation yields the stochastic differential
equations of ({r̃i,δ

t }Ni=1)t≥0. We obtain its upper bound for ϵ < ϵ0 by Assumption B.1 and (B.20)
similarly to the proof of Lemma B.12.

Next, we state a bound for (B.72).

Lemma B.19. Under the same assumption as in Lemma B.20, it holds for any i = 1, . . . , N

E
[
|Ai,δ

t |2
]
≤ C1N

−1 and E
[
Ai,δ

t

]
≤ C2N

−1/2 ,

where Ai,δ
t is given in (B.72) and C1 and C2 are constants depending on ∥γ∥∞, L and C given

in Lemma B.17.

Proof. By Assumption B.3, it holds E[|X̄i,δ
0 |2] <∞ for i = 1, . . . , N . Note that given X̄i,δ

t , X̄j,δ
t

are i.i.d.with law µ̄δ
t for all j ̸= i. Hence,

E[b(X̄i,δ
t − X̄

j,δ
t )|X̄i,δ

t ] = b ∗ µ̄δ
t (X̄i,δ

t ) .

Since γ is anti-symmetric, b(0) = 0, and we have

E
[
|b ∗ µ̄δ

t (X̄i,δ
t )− 1

N − 1

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )|2

∣∣∣X̄i,δ
t

]

= E
[
| 1
N − 1

N∑
j=1

E[b(X̄i,δ
t − X̄

j,δ
t )|X̄i,δ

t ]− 1
N − 1

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )|2

∣∣∣X̄i,δ
t

]
= 1
N − 1Varµ̄δ

t
(b(X̄i,δ

t − ·)) .
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By (B.11), Assumption B.1, Assumption B.3 and Lemma B.17, we obtain

Varµ̄δ
t
(b(X̄i,δ

t − ·)) =
∫
Rd

∣∣∣(− L(X̄i,δ
t − x) +

∫
Rd
L(X̄i,δ

t − x̃)µ̄δ
t (dx̃)

)
+
(
γ(X̄i,δ

t − x)−
∫
Rd
γ(X̃i,δ

t − x̃)µ̄δ
t (dx̃)

)∣∣∣2µ̄δ
t (dx)

=
∫
Rd

∣∣∣Lx+
(
γ(X̄i,δ

t − x)−
∫
Rd
γ(X̃i,δ

t − x̃)µ̄δ
t (dx̃)

)∣∣∣2µ̄δ
t (dx)

≤ 2L2
∫
Rd
|x|2µ̄δ

t (dx) + 8∥γ∥2∞ ≤ 2L2C2 + 8∥γ∥2∞ .

By the Cauchy-Schwarz inequality, we have

E[(Ai,δ
t )2] ≤ 2E

[
|b ∗ µ̄t(X̄i,δ

t )− 1
N − 1

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )|2

]

+ 2
( 1
N − 1 −

1
N

)2
E
[
|

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )|2

]

≤ 2 1
N − 1E[Varµ̄δ

t
(b(X̄i,δ

t − ·))] + 1
N2(N − 1)E

[ N∑
j=1
|b(Xi,δ

t −X
j,δ
t )|2

]
≤ 4L2

N − 1C + 16∥γ∥2∞
N − 1 + 1

N2

(
8CL2 + 4∥γ∥2∞

)
≤ N−1C1 <∞ ,

where C1 depends on ∥γ∥∞, L and the second moment bound C. Similarly, it holds

E[Ai,δ
t ] ≤ E

[
|b ∗ µ̄δ

t (X̄i,δ
t )− 1

N − 1

N∑
j=1

b(X̄i,δ
t − X̄

j,δ
t )|

]

+
( 1
N − 1 −

1
N

) N∑
j=1

E
[
|b(X̄i,δ

t − X̄
j,δ
t )|

]

≤
√

2L√
N − 1

C1/2 +
√

8∥γ∥∞√
N − 1

+ 1
N

(√
2C1/2L+ ∥γ∥∞

)
≤ N−1/2C2 <∞ ,

where C2 = 2LC1/2 + 4∥γ∥∞ + (
√

2C1/2 + ∥γ∥∞).

To control ({r̃i,δ
t }Ni=1)t≥0, we consider ({ri,δ,ϵ

t }Ni=1)t≥0 given as solution of

dri,δ,ϵ
t = b̄(ri,δ,ϵ

t )dt+ 1
N

N∑
j=1

2∥γ∥∞rcϵ(rj,δ,ϵ
t )dt+

(
Ai,δ

t + 1
N

N∑
k=1

Ak,δ
t

)
dt

+ 2
√

1 + 1
N

rcδ(ri,δ,ϵ
t )dW i,δ

t

(B.74)

with initial condition ri,δ,ϵ
0 = r̃i,δ

0 for all i = 1, . . . , N , Ai,δ
t given in (B.72) and W i,δ

t given in
(B.73).
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By [146, Theorem 2.2], under Assumption B.1 and Assumption B.3, ({U i,δ,ϵ
t }Ni=1)t≥0 =

({X̄i,δ
t , Y i,δ

t , ri,δ,ϵ
t }Ni=1)t≥0 exists and is unique, where ({X̄i,δ

t , Ȳ i,δ
t }Ni=1)t≥0 solves uniquely (B.70),

({r̄iδ
t }Ni=1)t≥0 and ({ri,δ,ϵ

t }i=1N)t≥0 solve uniquely (B.71) and (B.74), respectively, with
({W i,δ

t }Ni=1)t≥0 given by (B.73).

Lemma B.20. Assume Assumption B.1 and Assumption B.3. Then for any i = 1, . . . , N ,
|X̄i,δ

t − Y
i,δ

t − 1
N

∑
j(X̄j,δ

t − Y
j,δ

t )| = r̃i,δ
t ≤ r

i,δ,ϵ
t , almost surely for all t ≥ 0 and ϵ < ϵ0.

Proof. Note, that both processes ({r̃i,δ
t }Ni=1)t≥0 and ({ri,δ,ϵ

t }Ni=1)t≥0 have the same initial condi-
tion and are driven by the same noise. Since the drift for ({ri,δ,ϵ

t }Ni=1)t≥0 is larger than the drift
for ({r̃i,δ

t }Ni=1)t≥0 for ϵ < ϵ0 by (B.20), we can conclude r̃i,δ
t ≤ ri,δ,ϵ

t almost surely for all t ≥ 0,
ϵ < ϵ0 and i = 1, . . . N by Lemma B.21.

Proof of Theorem B.8. Consider the process ({U i,δ,ϵ
t }Ni=1)t≥0 = ({X̄i,δ

t , Y i,δ
t , ri,δ,ϵ

t }Ni=1)t≥0 on
RN(2d+1) for each ϵ, δ > 0. We denote by Pδ,ϵ the law of {U δ,ϵ}Ni=1 on C(R+,RN(2d+1)). We define
the canonical projections X,Y, r onto the first Nd, second Nd and last N components.

By Assumption B.1 and Assumption B.3 it holds in the same line as in the proof of
Lemma B.22 for each T > 0

E[|{U i,δ,ϵ
t2 − U i,δ,ϵ

t1 }
N
i=1|4] ≤ C|t2 − t1|2 for t1, t2 ∈ [0, T ], (B.75)

for some constant C depending on T , L, ∥γ∥Lip, ∥γ∥∞, N and on the fourth moment of µ0 and
ν0. Note that we used here that the additional drift terms (Ai,δ

t )t≥0 occurring in the SDE of
({ri,δ,ϵ

t }Ni=1)t≥0 are Lipschitz continuous in ({X̄i,δ
t }Ni=1)t≥0. Then as in the proofs of Lemma B.22

and Lemma B.23, Pδ,ϵ is tight and converges weakly along a subsequence to a measure P by
Kolmogorov’s continuity criterion, cf. [121, Corollary 14.9].

As in Lemma B.22 the law Pδ,ϵ
T of ({U i,δ,ϵ

t }Ni=1)0≤t≤T on C([0, T ],RN(2d+1)) is tight for each
T > 0 by [121, Corollary 14.9] and for each ϵ > 0 there exists a subsequence δn → 0 such
that (Pδn,ϵ

T )n∈N on C([0, T ],RN(2d+1)) converge to a measure Pϵ
T on C([0, T ],RN(2d+1)). By a

diagonalization argument and since {Pϵ
T : T ≥ 0} is a consistent family, cf. [121, Theorem

5.16], there exists a probability measure Pϵ on C(R+,RN(2d+1)) such that for all ϵ there exists a
subsequence δn such that (Pδn,ϵ)n∈N converges along this subsequence to Pϵ. As in the proof of
Lemma B.23 we repeat this argument for the family of measures (Pϵ)ϵ>0. Hence, there exists a
subsequence ϵm → 0 such that (Pϵm)m∈N converges to a measure P. Let ({X̄i

t , Y
i

t , r
i
t}Ni=1)t≥0 be

some process on RN(2d+1) with distribution P on (Ω̄, F̄ , P̄ ).
Since ({X̄i,δ

t }Ni=1)t≥0 and ({Y i,δ
t }Ni=1)t≥0 are solutions that are unique in law, we have that

for any δ, ϵ > 0, Pδ,ϵ ◦X−1 = P◦X−1 and Pδ,ϵ ◦Y−1 = P◦Y−1. Hence, P◦(X,Y)−1 is a coupling
of (B.1) and (B.3).

Similarly to the proof of Lemma B.22 and Lemma B.23 there exist an extended under-
lying probability space and N i.i.d.one-dimensional Brownian motion ({W i

t }Ni=1)t≥0 such that
({ri

t,W
i
t }Ni=1)t≥0 is a solution of

dri
t = b̄(ri

t)dt+ 1
N

N∑
j=1

2∥γ∥∞1(0,∞)(r
j
t )dt+

(
Ai

t + 1
N

N∑
k=1

Ak
t

)
dt

+ 2
√

1 + 1
N
1(0,∞)(ri

t)dW i
t ,

where Ai
t = |b ∗ µ̄t(X̄i

t)− 1
N

∑N
j=1 b(X̄i

t − X̄
j
t )|.
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In addition, the statement of Lemma B.20 carries over to the limiting process ({ri
t}Ni=1)t≥0,

since by the weak convergence along the subsequences (δn)n∈N and (ϵm)m∈N and the Portmanteau
theorem, P (|X̃i

t − Ỹ i
t | ≤ ri

t for i = 1, . . . , N) ≥ lim supm→∞ lim supn→∞ P (|X̃i,δn
t − Ỹ i,δn

t | ≤
ri,δn,ϵm

t for i = 1, . . . , N) = 1, where X̃i
t = X̄i

t − (1/N)
∑N

j=1 X̄
j
t and Ỹ i

t = X̄i
t − (1/N)

∑N
j=1 Ȳ

j
t

for all t ≥ 0 and i = 1, . . . , N .
Using Ito-Tanaka formula, c.f. [172, Chapter 6, Theorem 1.1], and f ′ is absolutely continuous,

we obtain for f defined in (B.37) with b̃(r) = (κ(r)− L)r and a = 2∥γ∥∞,

d
( 1
N

N∑
i=1

f(ri
t)
)

= 1
N

N∑
i=1

(
b̄(ri

t)f ′(ri
t) + f ′′(ri

t)2
N + 1
N

1(0,∞)(ri
t)
)
dt

+ 1
N2

N∑
i=1

N∑
j=1

2f ′(ri
t)∥γ∥∞1(0,∞)(r

j
t )dt

+ 1
N

N∑
i=1

f ′(ri
t)2
√

1 + 1
N
1(0,∞)(ri

t)dW i
t + 1

N

N∑
i=1

f ′(ri
t)
(
Ai

t + 1
N

N∑
k=1

Ak
t

)
dt .

Taking expectation, we get using f ′(r) ≤ 1 for all r ≥ 0,

d
dtE

[ 1
N

N∑
i=1

f(ri
t)
]
≤ 1
N

N∑
i=1

{
E
[
b̄(ri

t)f ′(ri
t) + 2N + 1

N
(f ′′(ri

t)− f ′′(0))
]

+ E
[
2
(
∥γ∥∞ + N + 1

N
f ′′(0)

)
1(0,∞)(ri

t)
]

+ E
[
2Ai

t

]}
.

(B.76)

By (B.39) and (B.40), the first two terms are bounded by −c̃ 1
N

∑
i f(ri

t) with c̃ given in (B.17).
By Lemma B.19 the last term in (B.76) is bounded by

2E[Ai
t] ≤ C̃N−1/2 ,

where

C̃ = 2C2 = 4LC1/2 + 8∥γ∥∞ + 2(
√

2C1/2L+ ∥γ∥∞) . (B.77)

Hence, we obtain

d

dt
E
[ 1
N

∑
i

f(ri
t)
]
≤ −c̃ 1

N

∑
i

E[f(ri
t)] + C̃N−1/2

for t ≥ 0 which leads by Grönwall’s lemma to

E
[ 1
N

∑
i

f(ri
t)
]
≤ e−c̃tE

[ 1
N

∑
i

f(ri
0)
]

+ 1
c̃
C̃N−1/2 .

For an arbitrary coupling ξ ∈ Γ(µ̄⊗N
0 , ν⊗N

0 ), we have

Wf,N ((µ̄t)⊗N , νN
t ) ≤ e−c̃t

∫
R2Nd

1
N

N∑
i=1

f

∣∣∣∣∣∣xi − yi − 1
N

N∑
j=1

(xj − yj)

∣∣∣∣∣∣
 ξ(dxdy) + C̃

c̃N1/2 ,

as E[f(ri
0)] ≤

∫
R2Nd

1
N

∑N
i=1 f(|xi − yi − 1

N

∑N
j=1(xj − yj)|)ξ(dxdy). Taking the infimum over all

couplings ξ ∈ Γ(µ̄⊗N
0 , ν⊗

0 ) gives the first bound. By (B.38), the second bound follows.
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B.6.5 Proof of Appendix B.5

As for the nonlinear case we show Theorem B.10 via a family of stochastic differential equations,
with Lipschitz continuous coefficients,

dri,n,m
t =

(
b̃(ri,n,m

t ) + 1
N

N∑
j=1

gm(rj,n,m
t )

)
dt+ 2θn(ri,n,m

t )dW i
t

dsi,n,m
t =

(
b̂(si,n,m

t ) + 1
N

N∑
j=1

hm(sj,n,m
t )

)
dt+ 2θn(si,n,m

t )dW i
t

Law(ri,n,m
0 , si,n,m

0 ) = ηn,m , i ∈ {1, . . . , N} ,

(B.78)

where ηn,m ∈ Γ(µn,m, νn,m). Under Assumption B.4, Assumption B.5, Assumption B.8, As-
sumption B.9 and Assumption B.10 we identify the weak limit of ({ri,n,m

t , si,n,m
t }Ni=1,n,m∈N)t≥0

solving (B.78) for n→∞ by ({ri,m
t , si,m

t }Ni=1,m∈N)t≥0 solving the family of SDEs given by

dri,m
t =

(
b̃(ri,m

t ) + 1
N

N∑
j=1

gm(rj,m
t )

)
dt+ 21(0,∞)(r

i,m
t )dW i

t ,

dsi,m
t =

(
b̂(si,m

t ) + 1
N

N∑
j=1

hm(sj,m
t )

)
dt+ 21(0,∞)(s

i,m
t )dW i

t ,

Law(ri,m
0 , si,m

0 ) = ηm , i ∈ {1, . . . , N} ,

(B.79)

where ηm ∈ Γ(µm, νm).
Taking the limit m → ∞, we obtain (B.35) as the weak limit of (B.79). In the case g(r) =

1(0,∞)(r), we can choose gm = θm.
Consider a probability space (Ω0,A0, Q) and N i.i.d.1-dimensional Brownian motions

({W i
t }Ni=1)t≥0. Note that under Assumption B.4–Assumption B.10, there are random variables

{ri,n,m}Ni=1, {si,n,m}Ni=1 : Ω0 → WN for each n,m such that ({ri,n,m, si,n,m}Ni=1) is a unique
solution to (B.78) by [146, Theorem 2.2]. We denote by Pn,m = Q ◦ ({ri,n,m, si,n,m}Ni=1)−1 the
law on WN ×WN .

Before taking the two limits and proving Theorem B.10, we introduce a modification of Ikeda
and Watanabe’s comparison theorem, to compare two solutions of (B.78), cf. [116, Section VI,
Theorem 1.1].

Lemma B.21. Suppose a solution ({ri,n,m
t , si,n,m

t }Ni=1)t≥0 of (B.78) is given for fixed n,m ∈ N.
Assume Assumption B.8 for gm and hm, Assumption B.4 for b̃ and b̂, Assumption B.9 for θn.
If Q[ri,n,m

0 ≤ si,n,m
0 for all i = 1, . . . , N ] = 1, b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) for any r ∈ R+,

then

Q[ri,n,m
t ≤ si,n,m

t for all t ≥ 0 and i = 1, . . . , N ] = 1

Proof. The proof is similar for each component i = 1, . . . , N to the proof of Lemma B.14. It
holds for the interaction part similarly to (B.53) using the properties of gm and hm,

1
N

N∑
j=1

(gm(rj,n,m
t )− hm(sj,n,m

t )) ≤ Km
1
N

N∑
j=1
|rj,n,m

t − sj,n,m
t |1(0,∞)(r

j,n,m
t − sj,n,m

t ) .
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Hence, we obtain analogously to (B.54),

E[(ri,n,m
t − si,n,m

t )+] ≤ L̃E
[ ∫ t

0
(ri,n,m

u − si,n,m
u )+du

]
+KmE

[ ∫ t

0

1
N

N∑
j=1

(rj,n,m
u − sj,n,m

u )+du
]

for all i = 1, . . . , N . Assume t∗ = inf{t ≥ 0 : E[(ri,n,m
t − si,n,m

t )+] > 0 for some i} < ∞.
Then, there exists i ∈ {1, . . . , N} such that

∫ t∗

0 E[(ri,n,m
u − si,n,m

u )+]du > 0. But, by definition
of t∗, for all i, u < t∗, E[(ri,n,m

u − si,n,m
u )+] = 0. This contradicts the definition of t∗. Hence,

Q[ri,n,m
t ≤ si,n,m

t for all i, t ≥ 0] = 1.

In the next step, we prove that the distribution of the solution of (B.78) converges as n→∞.

Lemma B.22. Assume that Assumption B.4 and Assumption B.5 is satisfied for (b̃, g) and
(b̂, h). Further, let (θn)n∈N, (gm)m∈N, (hm)m∈N, (µn,m)n,m∈N, (νn,m)n,m∈N and (ηn,m)n,m∈N be
such that Assumption B.8, Assumption B.9 and Assumption B.10 hold. Let m ∈ N. Then there
exists a random variable ({ri,m, si,m}Ni=1) defined on some probability space (Ωm,Am, Pm) with
values in WN ×WN such that ({ri,m

t , si,m
t }Ni=1)t≥0 is a weak solution of (B.79). Moreover, the

laws Q ◦ ({ri,n,m, si,n,m}Ni=1)−1 converge weakly to Pm ◦ ({ri,m, si,m}Ni=1)−1. If in addition,

b̃(r) ≤ b̂(r) and gm(r) ≤ hm(r) for any r ∈ R+,

Q[ri,n,m
0 ≤ si,n,m

0 ] = 1 for any n ∈ N, i = 1, . . . , N,

then Pm[ri,m
t ≤ si,m

t for all t ≥ 0 and i ∈ {1, . . . , N}] = 1.

Proof. Fix m ∈ N. The proof is divided in three parts and is similar to the proof of Lemma B.15.
First we show tightness of the sequences of probability measures. Then we identify the limit of
the sequence of stochastic processes. Finally, we compare the two limiting processes.

Tightness: We show analogously as in the proof of Lemma B.15 that the sequence of prob-
ability measures (Pn,m)n∈N on (WN ×WN ,B(WN )⊗B(WN )) is tight by applying Kolmogorov’s
continuity theorem. We consider p > 2 such that the p-th moment in Assumption B.10 are
uniformly bounded. Fix T > 0. Then the p-th moment of ri,n,m

t and si,n,m
t for t < T is bounded

using Ito’s formula,

d|ri,n,m
t |p ≤ p|ri,n,m

t |p−2⟨ri,n,m
t , (b̃(ri,n,m

t ) + 1
N

N∑
j=1

gm(rj,n,m
t ))⟩dt

+ 2θn(ri,n,m
t )p|rn,m

t |p−2ri,n,m
t dW i

t + p(p− 1)|ri,n,m
t |p−22θn(ri,n,m

t )2dt

≤ p
(
|ri,n,m

t |pL̃+ Γ|ri,n,m
t |p−1 + 2(p− 1)|ri,n,m

t |p−2
)
dt+ 2θn(ri,n,m

t )p(ri,n,m
t )p−1dW i

t

≤ p
(
L̃+ Γ + 2(p− 1)

)
|ri,n,m

t |pdt+ p(Γ + 2(p− 1))dt+ 2θn(ri,n,m
t )p(rn,m

t )p−1dW i
t .

Taking expectation yields

d
dtE[|ri,n,m

t |p] ≤ p
(
L+ Γ + 2(p− 1)

)
E|ri,n,m

t |p + p(Γ + 2(p− 1)) .

Then by Gronwall’s lemma

sup
t∈[0,T ]

E[|ri,n,m
t |p] ≤ ep(L+Γ+2(p−1))T (E[|ri,n,m

0 |p] + Tp(Γ + 2(p− 1))) < Cp <∞ , (B.80)
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where Cp depends on T and the p-th moment of the initial distribution, which is by assumption
finite. Similarly, it holds supt∈[0,T ] E[|si,n,m

t |p] < Cp for t ≤ T . Using these moment bounds, it
holds for all t1, t2 ∈ [0, T ] by Assumption B.4, Assumption B.8 and Assumption B.9,

E[|ri,n,m
t2 − ri,n,m

t1 |p]

≤ C1(p)
(
E[|
∫ t2

t1
b̃(ri,n,m

u ) + 1
N

N∑
j=1

gm(rj,n,m
t )du|p] + E[|

∫ t2

t1
2θn(ri,n,m

u )dW i
u|p]

)

≤ C2(p)
((

E
[ L̃p

|t2 − t1|

∫ t2

t1
|ri,n,m

u |pdu
]

+ Γp
)
|t2 − t1|p + E[|

∫ t2

t1
2θn(ri,n,m

u )du|p/2]
)

≤ C2(p)
(( L̃p

|t2 − t1|

∫ t2

t1
E[|ri,n,m

u |p]du+ Γp
)
|t2 − t1|p + 2p/2|t2 − t1|p/2

)
≤ C3(p, T, L̃,Γ, Cp)|t2 − t1|p/2 ,

where Ck(·) are constants depending on the stated arguments, but independent of n,m. Note
that in the second step, we use Burkholder-Davis-Gundy inequality, see [170, Chapter IV, The-
orem 48]. It holds similarly, E[|si,n,m

t2 − si,n,m
t1 |p] ≤ C3(p, T, L̃,Γ, Cp)|t2 − t1|p/2. Hence,

E[|({ri,n,m
t2 , si,n,m

t2 }Ni=1)− ({ri,n,m
t1 , si,n,m

t1 }Ni=1)|p]

≤ C4(p,N)(
N∑

i=1
(E[|ri,n,m

t2 − ri,n,m
t1 |p] + E[|si,n,m

t2 − si,n,m
t1 |p]))

≤ C5(p,N, T, L̃,Γ, Cp)|t2 − t1|p/2

for all t1, t2 ∈ [0, T ]. Hence, by Kolmogorov’s continuity criterion, cf. [121, Corollary 14.9], there
exists a constant C̃ depending on p and γ such that

E
[
[({ri,n,m, si,n,m}Ni=1)]pγ

]
≤ C̃ · C5(p,N, T, L̃,Γ, Cp) . (B.81)

where [·]pγ is defined by [x]γ = supt1,t2∈[0,T ]
|x(t1)−x(t2)|

|t1−t2|γ and ({ri,n,m
t , si,n,m

t }Ni=1)n∈N,t≥0 is tight in
C([0, T ],R2N ). Hence, for each T > 0 there exists a subsequence nk → ∞ and a probability
measure PT on C([0, T ],R2N ). Since {Pm

T }T is a consistent family, there exists by [121, Theorem
5.16] a probability measure Pm on (WN ×WN ,B(WN ) ⊗ B(WN )) such that Pnk,m converges
weakly to Pm. Note that we can take here the same subsequence (nk) for all m using a diago-
nalization argument.
Characterization of the limit measure: Denote by ({ri

t, si
t}Ni=1) = ω(t) the canonical process

on WN ×WN . To characterize the measure Pm we first note that Pm ◦ (ri
0, si

0)−1 = ηm for all
i ∈ {1, . . . , N}, since Pn,m(ri

0, si
0)−1 = ηn,m converges weakly to ηm by assumption. We define

maps M i,m, N i,m : WN ×WN →W by

M i,m
t = ri

t − ri
0 −

∫ t

0

(
b̃(ri

u) + 1
N

N∑
j=1

gm(rj
u)
)
du , and

N i,m
t = si

t − si
0 −

∫ t

0

(
b̂(si

u) + 1
N

N∑
j=1

hm(sj
u)
)
du .

(B.82)

For each n,m ∈ N and i = 1, . . . , N , (M i,m
t ,Ft,Pn,m) is a martingale with respect to the filtration

Ft = σ((rj
u, sj

u) : j = 1, . . . , N, 0 ≤ u ≤ t). Note that the families ({M i,m
t }Ni=1,Pn,m)n∈N,t≥0 and

({N i,m
t }Ni=1,Pn,m)n∈N,t≥0 are uniformly integrable.
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Since the mappings M i,m and N i,m are continuous in W, Pn,m ◦ ({ri, si,M i,m, N i,m}Ni=1)−1

converges weakly to Pm ◦ ({ri, si,M i,m, N i,m}Ni=1)−1 by the continuous mapping theorem. Then
applying the same argument as in (B.59), (Mm,i

t ,Ft,Pm) and (Nm,i
t ,Ft,Pm) are continuous

martingales for all i = 1, . . . , N and the quadratic variation ([{M i,m, N i,m}Ni=1]t)t≥0 exists Pm-
almost surely. To complete the identification of the limit, it suffices to identify the quadratic
variation. Similar to the computations in the proof of Lemma B.15, it holds

[M i,m] = 4
∫ ·

0
1(0,∞)(ri

u)du Pm-almost surely,

[N i,m] = 4
∫ ·

0
1(0,∞)(si

u)du Pm-almost surely, and

[M i,m, N i,m] = 4
∫ ·

0
1(0,∞)(ri

u)1(0,∞)(si
u)du Pm-almost surely,

(B.83)

Further, [M i,m,M j,m]t = [N i,m, N j,m]t = [M i,m, N j,m]t = 0 Pn,m-almost surely for i ̸= j and
(M i,m

t M j,m
t ,Pn,m), (N i,m

t N j,m
t ,Pn,m) and (M i,m

t N j,m
t ,Pn,m) are martingales. For any bounded,

continuous non-negative function G : W→ R, it holds

Em[G(M i,m
t M j,m

t −M i,m
s M j,m

s )] = lim
n→∞

En,m[G(M i,m
t M j,m

t −M i,m
s M j,m

s )] = 0 ,

respectively, Em[G(N i,m
t N j,m

t −N i,m
s N j,m

s )] = 0 and Em[G(M i,m
t N j,m

t −M i,m
s N j,m

s )] = 0. Then

[M i,m,M j,m] = [N i,m, N j,m] = [M i,m, N j,m] = 0 Pm-almost surely, for all i ̸= j . (B.84)

Then by a martingale representation theorem, cf. [116, Chapter II, Theorem 7.1], there is a
probability space (Ωm,Am, Pm) and a Brownian motion {W i}Ni=1 and random variables
({ri,m, si,m}Ni=1) on this space, such that it holds Pm ◦ ({ri,m, si,m}Ni=1)−1 = Pm ◦ ({ri, si}Ni=1)−1

and such that ({ri,m, si,m,W i}Ni=1) is a weak solution of (B.79).
Comparison of two solutions: To show Pm[ri,m

t ≤ si,m
t for all t ≥ 0 and i = 1, . . . , N ] = 1

it suffices to note that Pn,m[ri,n,m
t ≤ si,n,m

t for all t ≥ 0 and i = 1, . . . , N ] = 1, which holds
by Lemma B.21, carries over to the limit by the Portmanteau theorem, since we have weak
convergence of Pn,m ◦ ({ri, si}Ni=1)−1 to Pm ◦ ({ri, si}Ni=1)−1.

In the next step we show that the distribution of the solution of (B.79) converges as
m → ∞. Consider a probability space (Ωm,Am, Pm) for each m ∈ N and random variables
{ri,m}Ni=1, {si,m}Ni=1 : Ωm → WN such that ({ri,m

t , si,m
t }Ni=1)t≥0 is a solution to (B.79). Denote

by Pm = Pm ◦ ({ri,m, si,m}Ni=1)−1 the law on WN ×WN .

Lemma B.23. Assume that Assumption B.4 and Assumption B.5 is satisfied for (b̃, g) and
(b̂, h). Let η ∈ Γ(µ, ν) where the probability measures µ and ν on R+ satisfy Assumption B.6.
Further, let (gm)m∈N, (hm)m∈N, (µm)m∈N, (νm)m∈N and (ηm)m∈N be such that Assumption B.8
and Assumption B.10 hold. Then there exists a random variable ({ri, si}Ni=1) defined on some
probability space (Ω,A, P ) with values in WN ×WN such that ({ri

t, s
i
t}Ni=1) is a weak solution of

(B.35). Moreover, the laws Pm ◦ ({ri,m, si,m}Ni=1)−1 converge weakly to P ◦ ({ri, si}Ni=1)−1. If in
addition,

b̃(r) ≤ b̂(r), g(r) ≤ h(r), and gm(r) ≤ hm(r) for any r ∈ R+, and
Pm[ri,m

0 ≤ si,m
0 for all t ≥ 0 and i ∈ {1, . . . , N}] = 1 for any m ∈ N,

then P [ri
t ≤ si

t for all t ≥ 0 and i ∈ {1, . . . , N}] = 1.
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Proof. The proof is structured as the proof of Lemma B.22. Tightness of the sequence of proba-
bility measures (Pm)m∈N on (WN ×WN ,B(WN )⊗B(WN )) holds adapting the steps of the proof
of Lemma B.22 to (B.79). Note that (B.80) and (B.81) hold analogously for ({ri,m

t , si,m
t }Ni=1)

by Assumption B.4, Assumption B.8 and Assumption B.10. Hence by Kolmogorov’s continuity
criterion, cf. [121, Corollary 14.9], we can deduce that there exists a probability measure P
on (WN ×WN ,B(WN ) ⊗ B(WN )) such that there is a subsequence (mk)k∈N along which Pmk

converge towards P.
To characterize the limit, we first note that by Skorokhod representation theorem, cf. [20,

Chapter 1, Theorem 6.7], without loss of generality we can assume that ({ri,m, si,m}Ni=1) are
defined on a common probability space (Ω,A, P ) with expectation E and converge almost surely
to ({ri, si}Ni=1) with distribution P. Then, by Assumption B.8 and Lebesgue convergence theorem
it holds almost surely for all t ≥ 0,

lim
m→∞

∫ t

0
b̃(ri,m

t ) + 1
N

N∑
j=1

gm(rj,m
u )du =

∫ t

0
b̃(ri

t) + 1
N

N∑
j=1

gm(rj
u)du . (B.85)

Consider the mappings M i,m, N i,m : WN×WN×P(WN×WN )→W defined by (B.82) Then for
all m ∈ N and i = 1, . . . , N , (M i,m

t ,Ft,Pm) and (N i,m
t ,Ft,Pm) are martingales with respect to

the canonical filtration Ft = σ(({ri
u, si

u}Ni=1)0≤u≤t). Further the family ({M i,m
t }Ni=1,Pm)m∈N,t≥0

and ({N i,m
t }Ni=1,Pm)m∈N,t≥0 are uniformly integrable. In the same line as weak convergence is

shown in the proof of Lemma B.15 and by (B.85), Pm ◦ ({ri, si,M i,m, N i,m}Ni=1)−1 converges
weakly to P ◦ ({ri, si,M i, N i}Ni=1)−1 where

M i
t = ri

t − ri
0 −

∫ t

0

(
b̃(ri

u) + 1
N

N∑
j=1

g(rj
u)
)
du , and

N i
t = si

t − si
0 −

∫ t

0

(
b̂(si

u) + 1
N

N∑
j=1

h(sj
u)
)
du .

Then ({M i
t}Ni=1,Ft,P) and ({N i

t}Ni=1,Ft,P) are continuous martingales using the same argument
as in (B.59). Further, the quadratic variation ([{M i

t , N
i
t}Ni=1]t)t≥0 exists P-almost surely and is

given by (B.83) and (B.84) P-almost surely, which holds following the computations in the
proof of Lemma B.15 and Lemma B.22. As in Lemma B.22, we conclude by a martingale
representation theorem that there are a probability space (Ω,A, P ) and a Brownian motion
{W i}Ni=1 and random variables ({ri}Ni=1, {si}Ni=1) on this space such that P ◦({ri, si}Ni=1)−1 = P◦
({ri, si}Ni=1)−1 and such that ({ri, si,W i}Ni=1) is a weak solution of (B.25). By the Portmanteau
theorem the monotonicity carries over to the limit, since Pm ◦ ({ri, si}Ni=1)−1 converges weakly
to P ◦ ({ri, si}Ni=1)−1.

Proof of Theorem B.10. The proof is a direct consequence of Lemma B.22 and Lemma B.23.

B.7 Appendix

B.7.1 Kuramoto model

Lower bounds on the contraction rate can also be shown for nonlinear SDEs on the one-
dimensional torus using the same approach. Here, we consider the Kuramoto model given
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by

dXt = −k
[∫

T
sin(Xt − x)dµt(x)

]
dt+ dBt (B.86)

on the torus T = R/(2πZ).

Theorem B.24. Let µt and νt be laws of Xt and Yt where (Xs)s≥0 and (Ys)s≥0 are two solutions
of (B.86) with initial distributions µ0 and ν0 on (T,B(T)), respectively. If

4k
∫ π

0
exp(2k − 2k cos(r/2))dr ≤ 1 (B.87)

holds, then for all t ≥ 0,

Wf̃ (µt, νt) ≤ e−cTtWf̃ (µ0, ν0) and W1(µt, νt) ≤ 2 exp(2k)e−cTtW1(µ0, ν0) ,

where

cT = 1/(2
∫ π

0

∫ r

0
exp[2k(cos(r/2)− cos(s/2))]dsdr) (B.88)

and f̃ is a concave, increasing function given in (B.92).

In [64, Appendix A], a contraction result is stated for a general drift using a similar approach.
We prove Theorem B.24 via a sticky coupling approach. In the same line as in Appendix B.2

the coupling (Xt, Yt)t≥0 is defined as the weak limit of Markovian couplings {(Xδ
t , Y

δ
t )t≥0 : δ > 0}

on T× T = R/(2πZ)× R/(2πZ) given by

dXδ
t = −k

[∫
T

sin(Xδ
t − x)dµδ

t (x)
]

dt+ rcδ(r̄δ
t )dB1

t + scδ(r̄δ
t )dB2

t

dY δ
t = −k

[∫
T

sin(Y δ
t − x)dνδ

t (x)
]

dt− rcδ(r̄δ
t )dB1

t + scδ(r̄δ
t )dB2

t ,

(B.89)

where r̄δ
t = dT(Xδ

t , Y
δ

t ) with dT(·, ·) defined by

dT(x, y) =
{

(|x− y| mod 2π) if (|x− y| mod 2π) ≤ π ,
(2π − |x− y| mod 2π) otherwise .

(B.90)

The functions rcδ, scδ are given by (B.19) and satisfy that there exists ϵ0 > 0 such that rcδ(r) ≥
r/2 for any 0 ≤ r ≤ δ ≤ ϵ0.

Theorem B.25. Assume (B.87). Let µ0 and ν0 be probability measures on (T,B(T)) having
finite forth moment. Then, (Xt, Yt)t≥0 is a subsequential limit in distribution as δ → 0 of
{(Xδ

t , Y
δ

t )t≥0 : δ > 0}, where (Xt)t≥0 and (Yt)t≥0 are solutions of (B.86) with initial distribu-
tions µ0 and ν0, respectively. Further, there exists a process (rt)t≥0 satisfying for any t ≥ 0,
dT(Xt, Yt) ≤ rt almost surely, and which is a weak solution of

drt = (2k sin(rt/2) + 2kP(rt))dt+ 21(0,π](rt)dWt − 2dℓπt , (B.91)

where (Wt)t≥0 is a one-dimensional Brownian motion on T and ℓπ is the local time at π.
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Proof. The proof works analogously to the proof of Theorem B.2 stated in Appendix B.6.2. It
holds similarly to Lemma B.12 by Meyer-Tanaka’s formula, cf. [172, Chapter 6, Theorem 1.1],
and using (B.90),

r̄δ
t − r̄δ

0 =
∫ t

0
sgn(Xδ

t − Y δ
t )(−k)et

[∫
T

sin(Xδ
t − x)dµt(x)−

∫
T

sin(Y δ
t − x)dνt(x)

]
dt

+
∫ t

0
sgn(Xδ

t − Y δ
t )2rcδ(r̄δ

t )etdB1
t +

∫
R

2rcδ(r̄δ
t )2ℓat (δ0 − δπ)(da) ,

where sgn(x) = 1(0,π](x)−1(π,2π](x), (ℓat )t≥0 is the local time at a associated with (Xδ
t −Y δ

t )t≥0
and et = (Xδ

t − Y δ
t )/dT(Xδ

t , Y
δ

t ) for r̄δ
t ̸= 0. For r̄δ

t = 0, et is some arbitrary unit vector. For
any a the support of ℓat as a function of t is a subset of the set of t such that rt = a [121,
Theorem 19.1], hence 1(0,π](rt)ℓ0t = 0 almost surely and so the term involving the local time
reduces to −2ℓπt . Further, we note that Wt =

∫ t
0 sgn(Xδ

t − Y δ
t )etdB1

t is a Brownian motion. As
in Lemma B.12, it holds for the process (r̄δ

t )t≥0 for ϵ < ϵ0 with ϵ0 given by (B.20),

dr̄δ
t ≤ (2k sin(r̄δ

t /2) + 2kEx∼µδ
t ,y∼νδ

t
(rcϵ(dT(x, y))))dt+ 2rcδ(r̄δ

t )dWt − 2dℓπt ,

where we used the properties of rcδ and

(x− y) · (sin(x− x̃)− sin(y − x̃)) ≤ 2 sin(|x− y|/2)|x− y|

for any x, y, x̃ ∈ T. Consider (rδ,ϵ
t )t≥0 given by

drδ,ϵ
t = (2k sin(rδ,ϵ

t /2) + 2k
∫ π

0
rcϵ(u)dP δ,ϵ

t (u))dt+ 2rcδ(rδ,ϵ
t )dWt − 2dℓπt ,

where P δ,ϵ
t is the law of rδ,ϵ

t . Then as in Lemma B.13, for the processes (r̄δ
t )t≥0 and (rδ,ϵ

t )t≥0
with the same initial condition and driven by the same noise it holds r̄δ

t ≤ r
δ,ϵ
t almost surely for

every t and ϵ < ϵ0.
Consider the process (U δ,ϵ

t )t≥0 = (Xδ
t , Y

δ
t , r

δ,ϵ
t )t≥0 on T2 × [0, π] for each ϵ, δ > 0. We define

by X,Y : C(R+,T2 × [0, π])→ C(R+,T) and r : C(R+,T2 × [0, π])→ C(R+, [0, π]) the canonical
projections onto the first component, onto the second component and onto the last component,
respectively. Analogously to the proof of Theorem B.2, the law Pδ,ϵ of the process (U δ,ϵ

t )t≥0
converges along a subsequence (δk, ϵk)k∈N to a probability measure P. Let (Xt, Yt, rt)t≥0 be
some process on T2 × [0, π] with distribution P on (Ω̄, F̄ , P̄ ). Since (Xδ

t )t≥0 and (Y δ
t )t≥0 are

solutions of (B.86) which are unique in law, we have that for any ϵ, δ > 0, Pδ,ϵ ◦X−1 = P ◦X−1

and Pδ,ϵ ◦Y−1 = P◦Y−1. And therefore (Xt)t≥0 and (Yt)t≥0 are solutions of (B.86) as well with
the same initial condition. Hence P ◦ (X,Y)−1 is a coupling of two copies of (B.86).

Further, the monotonicity r̄δ
t ≤ rδ,ϵ

t carries over to the limit by the Portmanteau theorem.
Finally, similarly to the proof of Lemma B.15 and Lemma B.16 there exist an extended proba-
bility space and a one-dimensional Brownian motion (Wt)t≥0 such that (rt,Wt)t≥0 is a solution
to (B.97).

Proof of Theorem B.24. Similarly to (B.37) we consider a function f̃ on [0, π] defined by

f̃(t) =
∫ t

0
φ̃(r)g̃(r)dr , (B.92)
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where

φ̃(r) = exp{2k(cos(r/2)− 1)} , Φ̃(r) =
∫ r

0
φ̃(s)ds ,

g̃(r) = 1− cT
2

∫ r

0
{Φ̃(s)/φ̃(s)}ds− k

∫ r

0
{1/φ̃(s)}ds ,

cT =
(

2
∫ π

0
{Φ̃(s)/φ̃(s)}ds

)−1
.

Then for k satisfying (B.87), g̃(r) ∈ [1/2, 1] and f̃ is a concave function satisfying similarly to
(B.38)

exp(−2k)/2r ≤ f̃ ≤ Φ̃(r) ≤ r (B.93)

and
f̃ ′′(0) = −k
2(f̃ ′′(r)− f̃ ′′(0)) ≤ −2k sin(r/2)f̃ ′(r)− cTf̃(r) for all r ∈ [0, π] .

(B.94)

By Ito’s formula it holds

df̃(rt) = f̃ ′(rt)(2k sin(r/2) + 2kP(rt > 0))dt+ 2f̃ ′(rt)1(0,π](rt)dWt − 2f̃ ′(rt)dℓπt
+ 2f̃ ′′(rt)1(0,π](rt)dt .

Taking expectation and using that the term involving the local time is negative, we obtain
d
dtE[f̃(rt)] ≤ E[2(f̃ ′′(rt)− f ′′(0)) + f̃ ′(rt)2k sin(rt/2)] + (2f̃ ′′(0) + 2k)P(rt > 0)

≤ −cTE[f̃(rt)] ,

where the last step holds by (B.94). Then

E[f̃(dT(X̄t, Ȳt))] ≤ E[f̃(rt)] ≤ e−cTtE[f̃(r0)] = e−cTtE[f̃(dT(X̄0, Ȳ0))] , (B.95)

provided (B.87) holds. Thus

Wf̃ (µt, νt) ≤ e−cTtWf̃ (µ0, ν0) ,

and by (B.93)

W1(µt, νt) ≤ 2 exp(2k)e−cTtW1(µ0, ν0) .

Remark B.26. Let us finally remark that we can relax the condition (B.87) and we can obtain
contraction with a modified contraction rate cT for all k < k0, where k0 is given by

k0

∫ π

0
exp(2k0 − 2k0 cos(r/2))dr = 1 . (B.96)

More precisely, set ζ = 1−k
∫ π

0 exp(2k−2k cos(r/2))dr and cT = ζ
(∫ π

0 {Φ̃(s)/φ̃(s)}ds
)−1

. Then,
g̃(r) ∈ [ζ/2, 1] and ζ exp(−2k)/2r ≤ f̃(r) ≤ r. Following the previous computations, we obtain

W1(µt, νt) ≤ 2 exp(2k)/ζe−cTtW1(µ0, ν0) ,

where for k close to k0, the contraction rate becomes small and the prefactor 2 exp(2k)/ζ ex-
plodes.
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B.7.2 Sticky nonlinear SDEs on bounded state space

In the same line as in Theorem B.3, existence, uniqueness in law and comparison results hold
for solutions to the sticky SDE on [0, π] given by

drt = (b̃(rt) + 2kP(rt > 0))dt+ 21(0,π)(rt)dWt − 2dℓπt , (B.97)

where k ∈ R+ and ℓπ is the local time at π.
The analysis of invariant measures and phase transitions can be easily adapted to the case

of the sticky SDE on [0, π] given by (B.97).

Theorem B.27. Let (rt)t≥0 be a solution of (B.97) with drift b̃ satisfying Assumption B.4.
Then, the Dirac measure at zero, δ0, is an invariant probability measure on [0, π] for (B.97). If
there exists p ∈ (0, 1) solving (1/k) = (1− p)I(k, p) where

I(k, p) =
∫ π

0
exp

(
kpx+ 1

2

∫ x

0
b̃(r)dr

)
dx ,

then the probability measure π on [0, π] given by

π(dx) ∝ 1
kp
δ0(dx) + exp

(
kpx+ 1

2

∫ x

0
b̃(r)dr

)
λ(0,π)(dx) (B.98)

is another invariant probability measure for (B.97).

Proof of Theorem B.27. The proof works analogously to the proof of Theorem B.5 for sticky
SDEs on R+. Note that here the condition (B.66) transforms for p ∈ (0, 1] to

p = π((0, π)) = I(k, p)
1/(kp) + I(k, p) ⇔ (1− p)I(k, p) = 1/k .

Example B.28. Consider a solution (rt)t≥0 of (B.97) with drift b̃(r) = 2k sin(r/2). Consider a
solution p ∈ (0, 1] solving 1/k = (1− p)I(k, p) with

I(k, p) =
∫ π

0
exp

(
kpx+

∫ x

0
k sin(r/2)dr

)
dx =

∫ π

0
exp

(
kpx+ 2k − 2k cos(x/2)

)
dx .

Then by Theorem B.27, the Dirac measure at zero, δ0 and the probability measure

π(dx) ∝ 1
kp
δ0(dx) + exp(kpx+ 2k − 2k cos(x/2))λ(0,π)(dx) (B.99)

are invariant probability measures for (B.97). We specify a necessary and sufficient condition for
the existence of a solution p satisfying 1/k = (1−p)I(k, p). We define Î(k, p) = (1−p)I(k, p). We
first consider the case 1/k < Î(k, 0) =

∫ π
0 exp(2k−2k cos(x/2))dx. Then since 1/k > Î(k, 1) = 0

and by the mean value theorem there exists a p solving 1/k = Î(k, p) and therefore there exist
multiple invariant distributions for (B.99). On the other hand, if 1/k > Î(k, 0) =

∫ π
0 exp(2k −

2k cos(x/2))dx, since π ≤
∫ π

0 exp(2k − 2k cos(x/2))dx and for k < 1/π, it holds

d
dp Î(k, p) = −I(k, p) + (1− p)

∫ π

0
kx exp(kpx+ 2k − 2k cos(x/2))dx

=
∫ π

0
((1− p)kx− 1) exp(kpx+ 2k − 2k cos(x/2))dx ≤ 0 ,

there is no p satisfying (B.99).

129



APPENDIX B. STICKY NONLINEAR SDES AND CONVERGENCE OF
MCKEAN-VLASOV EQUATIONS

Remark B.29. The contraction result given in Theorem B.7 carries over to the sticky diffusion
(rt) given by (B.97) on [0, π] with b̃(r) = 2k sin(r/2). If (B.87) holds, then for t ≥ 0, (B.31) holds
with f̃ defined in (B.92) and cT defined in (B.88) using (B.95). Moreover by Remark B.26, we
can deduce that if (B.96) holds, the Dirac measure at zero, δ0, is the unique invariant measure
and contraction towards δ0 holds.
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Appendix C

Global contractivity for Langevin
dynamics with
distribution-dependent forces and
uniform in time propagation of chaos

Katharina Schuh, Global contractivity for Langevin dynamics with distribution-dependent forces
and uniform in time propagation of chaos. ArXiv e-print arXiv:2206.03082, June 2022.1
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C.1 Introduction

In this paper, we are interested in the long-time behaviour of the Langevin diffusion (Xt, Yt)t≥0
of McKean-Vlasov type on R2d given by the stochastic differential equation{

dX̄t = Ȳtdt
dȲt = (ub(X̄t) + u

∫
Rd b̃(X̄t, z)µ̄x

t (dz)− γȲt)dt+
√

2γudBt, µ̄x
t = Law(X̄t),

(C.1)

where b : Rd → Rd and b̃ : R2d → Rd are two Lipschitz continuous functions, u, γ > 0 are two
positive constants and (Bt)t≥0 is a d-dimensional standard Brownian motion. The functions b
and b̃ denote the external force and the interaction force, respectively. If b̃ ≡ 0, (C.1) corresponds
to the classical Langevin dynamics, which is also of particular interest and whose long-time
behaviour will separately be studied in detail. Existence of a solution and uniqueness in law
hold provided the initial conditions have bounded second moments and b and b̃ are Lipschitz
continuous [146, Theorem 2.2].

Equation (C.1) is the probabilistic description of the Vlasov-Fokker-Planck equation given
by

∂tft(x, y) = ∇y ·
[
γ∇yft(x, y)+γyft(x, y)+u

(
b(x)+

∫
Rd
b̃(x, z)µ̄x

t (dz)
)
µ̄t(x, y)

]
−u∇x ·[yft(x, y)],

(C.2)
where ft is the time dependent density function on R2d and µ̄x

t is the marginal distribution in
the first component of µ̄t(dxdy) = ft(x, y)dxdy. The solution (ft)t≥0 of (C.2) describes the
density function of the process (X̄t, Ȳt)t≥0 which moves according to (C.1). Often, b and b̃ are of
the form b(x) = −∇V(x) and b̃(x, x′) = −∇xW(x, x′) for all x, x′ ∈ Rd and for some functions
V ∈ C1(Rd) and W ∈ C1(R2d), which are called confinement potential and interaction potential,
respectively.

Besides the long-time behaviour of (C.1), we study the mean-field particle system corre-
sponding to (C.1) with N ∈ N particles which is given by{

dXi,N
t = Y i,N

t dt
dY i,N

t = (ub(Xi,N
t ) +N−1∑N

j=1 ub̃(X
i,N
t , Xj,N

t )− γY i,N
t )dt+

√
2γudBi

t, i = 1, ..., N.
(C.3)

We are interested in establish conditions on b and b̃ such that for all t ≥ 0 for N → ∞ the
law of the particles converges to the law of (X̄t, Ȳt). This phenomenon was stated under the
name propagation of chaos and was first introduced by Kac for the Boltzmann equation in [120].
For finite time horizon, bounds on the difference between the law of the particle system and
the law of N independent solutions to (C.1) are established by McKean [143] provided b and b̃
are Lipschitz continuous and bounded. This result is further developed in e.g. [187, 146], see
[45, 46] for a overview and the references therein.

The equations (C.1), (C.2), (C.3) and its variants have various applications in physics. If
b̃ ≡ 0, the solution of (C.1) can be interpreted as a particle having a position X̄t and a velocity Ȳt

and which moves according to the external force. The constant γ > 0 corresponds to the friction
parameter and u > 0 denotes the inverse of the mass per particle. Equation (C.3) describes
many particles whose moves are additionally determined by pairwise interactions given by the
interaction force. Equation (C.2) describes the limit distribution as the number of particles
tends to infinity.

In the deep learning community, Langevin dynamics with a mean-field interaction provide
a tool to prove trainability of neural networks [145, 178]. Algorithms using Langevin dynamics
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have a better long-time behaviour compared to the overdamped Langevin dynamics [55, 60],
which forms a degenerated special case of the Langevin dynamics, where the limit for γ to
infinity is taken [165, Section 6.5.1]. Therefore, nonlinear Langevin dynamics became recently
popular for training networks as the Generative Adversarial Network (GAN) [122].

If b̃ ≡ 0 and b = ∇V, then under some mild conditions on V the unique invariant measure is
given by the Boltzmann-Gibbs distribution

µ∞(dx dy) ∝ exp(−V(x)− |y|2/(2u)),

see e.g. [165, Proposition 6.1]. Otherwise, i.e., if b is not of gradient-type or b̃ ̸= 0, it is often
not clear if uniqueness of an invariant probability measure holds (see [71]) and how fast the
marginal law of a solution of (C.1) converges towards it.

Getting a clear picture of the long-time behaviour of processes given by stochastic differential
equations with and without nonlinear forces of McKean-Vlasov type is of wide interest and the
objective of many works. For the overdamped Langevin dynamics forming a first-order equa-
tion, the long-time behaviour is studied using both analytic approaches as functional inequalities
(e.g. [11, 24]) and probabilistic approaches as coupling techniques. Via a reflection coupling,
Eberle [83] established contraction in L1 Wasserstein distance with respect to a carefully aligned
distance function with explicit rates for locally non-convex potentials. For the dynamics with
an additional nonlinear drift term, which appears to model for example granular media (see
[13]), exponential convergence rates have been investigated for uniformly convex potentials in
[42] using gradient flow structure, Logarithmic Sobolev inequalities and transportation cost in-
equalities (see [43, 137, 44] for relaxations to certain non-uniformly convex potentials). Further,
[137, 44] provide uniform in time propagation of chaos estimates for the corresponding particle
system. Based on a coupling approach consisting of a mixture of a synchronous and a reflec-
tion coupling, uniform in time propagation of chaos is shown in [75] for possibly non strongly
convex confinement potentials and possibly non-convex interaction potentials. For the uncon-
fined dynamics (i.e., b = 0) exponential convergence is studied in [44, 25] for convex interaction
potentials applying analytic tools. If the convexity assumption on the interaction potential is
removed, exponential convergence and propagation of chaos can still be established for uncon-
fined overdamped Langevin dynamics via a sticky coupling approach (see [74]) for a class of
interaction forces that split in a linear term and a perturbation part.

Proving contraction rates for second-order SDEs given by (C.1) is more delicate as addi-
tionally one has to deal with the hypoellipticity of the diffusion. In the case of the classical
Langevin dynamics with a gradient-type force, i.e., when b = ∇V and b̃ ≡ 0 hold, exponential
convergence is studied in e.g. [4, 67, 68, 109, 111, 110, 191] using analytic methods including
the Witten Laplacian, semigroups, functional inequalities and hypocoercivity. To our knowl-
edge, the best-known contraction rate is obtained for κ-strongly convex potentials V in [40],
where contraction in L2 distance is shown with a rate of order O(

√
κ) via a Poincaré type in-

equality. Harris type theorems, involving a Lyapunov drift condition, provide a probabilistic
technique to analyse the long-time behaviour of Langevin dynamics, see [10, 200, 140, 188].
An alternative powerful probabilistic approach, which provides quantitative rates, is based on
couplings. Via a synchronous coupling approach, Dalalyan and Riou-Durand [60] showed con-
traction in Wasserstein distance with rate of order O(κ/

√
L) for κ-strongly convex potentials

with L-Lipschitz continuous gradients if Lγ−2u ≤ 1 holds. In [85], Eberle, Guillin and Zimmer
introduced a coupling for the Langevin dynamics including non-convex confinement potentials
and showed exponential convergence with explicit rates. There, contraction is shown in a spe-
cific L1 Wasserstein distance with respect to a semimetric involving a Lyapunov function. More
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precisely, for large distances, a synchronous coupling is considered and the Lyapunov function in
the semimetric yields contraction. For small distances, the noise is synchronized on a line, where
contraction for the position is observed, and reflected otherwise to force the dynamics to return
to that line. Combining the results of the different areas, contraction in average is obtained
for a carefully aligned semimetric. Due to the Lyapunov function, the contraction rate depends
on the dimension and the semimetric is not applicable for nonlinear Langevin dynamics, which
suggests getting rid of the Lyapunov function and treating the area of large distances differently.

To get results on the long-time behaviour for nonlinear Langevin diffusions given by (C.1),
we have to handle both the difficulties coming from the nonlinearity and the hypoellipticity of
the equation. Beginning with the analytic approaches, let us mention the work by Villani [191],
where the hypocoercivity is extended to the framework on the torus with small interactions,
see also the work by Bouchut and Dolbeault [36]. Using a free energy approach, convergence
to equilibrium is studied in [72] for specific non-convex confining potentials and convex polyno-
mial interaction potentials. Applying functional inequalities for mean-field models, established
in [99] to prove convergence to equilibrium in weighted Sobolev norm, Monmarché and Guillin
proved propagation of chaos for (C.3) in [151, 100]. There, they considered both strongly con-
vex confinement potentials and more general confinement potentials and attractive interaction
potentials with at most quadratic growth.

Coupling techniques are also employed in the study of the nonlinear dynamics (C.1). In [26],
convergence to equilibrium is shown via a synchronous coupling for small Lipschitz interactions
and a quadratic-like friction term. The combination of the coupling approach of [85] and a
Lyapunov function is used in [122] to prove exponential contraction in the case of certain small
mean-field potentials of non-convolution-type. There, the results are applied to the numerical
discretized version of the dynamics corresponding to the Hamiltonian Stochastic Gradient De-
scent, and the connection to the analysis of deep neural networks is drawn, see [114] for further
references on the connection to deep learning. Very closely related to this work is the recent
preprint [97] by Guillin, Le Bris and Monmarché, which has been prepared independently in
parallel. They considered non-globally convex confinement potentials and Lipschitz continuous
even interaction potentials and extended the approach by [85]. More precisely, they modified
the semimetric by a sophisticated Lyapunov function to treat the nonlinear Langevin dynamics
and to obtain propagation of chaos bounds. The main differences between this work and [97] are
that here we include forces that are not necessarily of gradient type and that we establish global
contractivity with dimension-free rates by constructing a novel distance function and modifying
the coupling approach of [85] appropriately. In particular, we consider two separate metrics rl

and rs for large and small distances instead of a semimetric involving a Lyapunov function and
establish contraction for both metrics separately. For small distances we make use of the results
by [85], whereas for large distances we consider a twisted 2-norm structure for the metric rl of
the form (x · (Ax) + x · (By) + y · (Cy) with positive definite matrices A,B,C ∈ Rd×d. This
structure is similar to the structure appearing in the Lyapunov function in [140, 188] and to the
norm used in e.g. [4] to prove contraction for certain strongly convex potentials.

Then, our first main contribution is a global contraction result in Wasserstein distance with
respect to a distance ρ that is carefully glued of rs and rl and that is equivalent to the Euclidean
distance. More precisely, we impose b to be a sum of a linear function −Kx, where K ∈ Rd×d is
a positive definite matrix with smallest eigenvalue κ, and a certain Lipschitz continuous function
g(x) with Lipschitz constant Lg which is such that b includes gradients of asymptotically strongly
convex potentials. If the friction parameter γ is sufficiently large, i.e., γ2 > 2L2

gu/κ, and if the
Lipschitz constant L̃ of the interaction force b̃ is sufficiently small, we prove for two probability
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measures µ̄0 and ν̄0 on R2d with finite second moment,

Wρ(µ̄t, ν̄t) ≤ e−ctWρ(µ̄0, ν̄0), and W1(µ̄t, ν̄t) ≤M1e
−ctW1(µ̄0, ν̄0), (C.4)

where µ̄t and ν̄t are the laws of the solutions (X̄t, Ȳt) and (X̄ ′
t, Ȳ

′
t ) to (C.1) with initial distribution

µ̄0 and ν̄0, respectively. The dimension-free constants c and M1 depend on κ, γ, u, on the largest
eigenvalue of K and on properties of g. Note that the additional constant M1 in the second
bound measures the difference between the distance ρ and the Euclidean distance.

These bounds are established using a modification of the coupling introduced in [85], which
is a synchronous coupling for large distances and mainly a reflection coupling for small dis-
tances except on one line the noise is synchronized. In this work, we adjust the transition from
synchronous coupling for large distances to reflection coupling for small distances to suit the
underlying distance function. Namely, the synchronous coupling is applied when rl is considered
and the coupling approach of [85] when rs is considered.

This approach which does not rely on a Lyapunov function has the advantage that the upper
bound in (C.4) depends only on the Wasserstein distance between the two initial distributions
and is independent of the two distributions themselves (cf. [85, 122, 97]). Further, the metric
rl is chosen such that the rate of the contraction result for large distances is optimized up to
a constant. We emphasize that these bounds give also global contractivity for the classical
Langevin dynamics and improve the result obtained in [85].

Moreover, using the ansatz for large distances, we contribute to the analysis of the optimal
contraction rate for strongly convex potentials and improve the results of [60]. If the drift
corresponds to a κ-strongly convex potential, we can split V in a linear part x ·(Kx), where K is
a positive definite matrix with smallest eigenvalue κ, and a convex function G with LG Lipschitz
continuous gradients. We prove contraction in Wasserstein distance with respect to a distance
function of the same form as rl with rate c = γ/2 min(1/4, κuγ−2) provided LGuγ

−2 ≤ 3/4
holds. If the perturbation G is sufficiently small, i.e., LG ≤ 3κ, we obtain for optimized γ a rate
of order O(

√
κ), that coincides with the order given in the L2 contraction result in [40], and

otherwise we obtain a rate of the same order as in [60].
Finally, applying a componentwise version of the preceding coupling we establish a uniform

in time propagation of chaos bound for the corresponding particle system (C.3), i.e., we show
for a probability measure µ0 on R2d with finite second moment,

W1,ℓ1
N

(µ̄⊗N
t , µN

t ) ≤ C1c
−1N−1/2,

where µN
t is the law of the particles driven by (C.3) with initial distribution µN

0 = µ⊗N
0 and

µ̄⊗N
t is the product law of N independent solutions to (C.1) with initial distribution µ0. Here,
C1 is a constant depending on κ, γ, u, d, on properties of g, and on the second moment of µ0.
The normalized ℓ1-distance ℓ1N is given by

ℓ1N ((x, y), (x̄, ȳ)) = N−1
N∑

i=1
(|xi − x̄i|+ |yi − ȳi|), for all x, y, x̄, ȳ ∈ RNd, (C.5)

where | · | denotes the Euclidean metric.
Eventually, we note that the construction of the metric for large distance can be applied to

prove contraction to specific unconfined cases, where b ≡ 0 and b̃ is a small perturbation of a
linear force.

135



APPENDIX C. GLOBAL CONTRACTIVITY FOR LANGEVIN DYNAMICS

Notation: For some space X, which is here either R2d or R2Nd, we denote its Borel σ-algebra by
B(X). The space of all probability measures on (X,B(X)) is denoted by P(X). Let µ, ν ∈ P(X).
A coupling ω of µ and ν is a probability measure on (X×X,B(X)⊗B(X)) with marginals µ and
ν. The Lp Wasserstein distance with respect to a distance function d : X×X→ R is defined by

Wp,d(µ, ν) = inf
ω∈Π(µ,ν)

( ∫
X×X

d(x, y)pω(dxdy)
)1/p

,

where Π(µ, ν) denotes the set of all couplings of µ and ν. We writeWp if the underlying distance
function is the Euclidean distance.

Outline of the paper: In Appendix C.2, we state the contraction results for the classi-
cal Langevin dynamics and give an informal construction of the coupling and the metric. In
Appendix C.3, we state the framework and the contraction results for Langevin dynamics of
McKean-Vlasov type before defining rigorously the metric and the coupling approach in Ap-
pendix C.4. Uniform in time propagation of chaos is established in Appendix C.5. The proofs
are postponed to Appendix C.6.

C.2 Contraction for classical Langevin dynamics

C.2.1 Contraction for Langevin dynamics with strongly convex confinement
potential

First, we consider the Langevin dynamics without a non-linear drift and with confinement
potential V given by the stochastic differential equation{

dXt = Ytdt,
dYt = (−γYt − u∇V(Xt))dt+

√
2γudBt,

(C.6)

with initial condition (X0, Y0) = (x, y) ∈ R2d and with d-dimensional standard Brownian motion
(Bt)t≥0. We impose for V ∈ C2(Rd):

Assumption C.1. There exist a positive definite matrix K ∈ Rd×d with smallest eigenvalue
κ > 0 and a convex function G : Rd → R with LG-Lipschitz continuous gradients, i.e.,

⟨∇G(x)−∇G(x̄), x− x̄⟩ ≥ 0 and (C.7)
|∇G(x)−∇G(x̄)| ≤ LG|x− x̄| for all x, x̄ ∈ Rd,

such that

V(x) = x · (Kx)/2 +G(x) for any x ∈ Rd.

We note that Assumption C.1 is satisfied for all κ-strongly convex functions V with LV -
Lipschitz continuous gradients, i.e.,

⟨∇V(x)−∇V(y), x− y⟩ ≥ κ|x− y|2 and
|∇V(x)−∇V(y)| ≤ LV |x− y| for all x, y ∈ Rd.

Note that the splitting of V in K and G is in general not unique. A natural choice is given by
K = κId and G(x) = V(x) − (κ/2)|x|2, where Id is the d × d identity matrix. As we see later,
we often want a splitting of V such that the Lipschitz constant LG is minimized.
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We establish a global contraction result for (C.6) in Lp Wasserstein distance with respect to
the distance function r : R2d × R2d → [0,∞) given by

r((x, y), (x̄, ȳ)) = γ−2u(x− x̄) · (K(x− x̄)) + 1
2 |(1− 2λ)(x− x̄) + γ−1(y − ȳ)|2 + 1

2γ
−2|y − ȳ|2

(C.8)

for (x, y), (x̄, ȳ) ∈ R2d with

λ = min(1/8, κuγ−2). (C.9)

Theorem C.1 (Contractivity for strongly convex potentials). For t ≥ 0, let µt and νt be the law
at time t of the processes (Xt, Yt) and (X ′

t, Y
′

t ), respectively, where (Xs, Ys)s≥0 and (X ′
s, Y

′
s )s≥0

are solutions to (C.6) with initial distributions µ0 and ν0 on R2d, respectively. Suppose Assump-
tion C.1 holds and

LGuγ
−2 ≤ 3/4. (C.10)

Then, for any 1 ≤ p <∞

Wp,r(µt, νt) ≤ e−ctWp,r(µ0, ν0) and Wp(µt, νt) ≤Me−ctWp(µ0, ν0),

where the contraction rate c is given by

c = γλ = min(γ/8, κuγ−1/2). (C.11)

The constant M is given by

M =
√

max(uLK + γ2, 3/2) max(1/(uκ), 2), (C.12)

where LK denotes the largest eigenvalue of K.

Proof. The proof is based on a synchronous coupling and is postponed to Appendix C.6.1.

Remark C.2. If V is a quadratic function, then LG = 0 and the restriction on γ vanishes. In
this case, the L2 spectral gap of the corresponding generator is given by

cgap = (1−
√

(1− 4κuγ−2)+)(γ/2),

cf., [165, Section 6.3]. More precisely, cgap = γ/2 if 4κuγ−2 ≥ 1, and κuγ−1 ≤ cgap ≤ 2κuγ−1 if
4κuγ−2 < 1. Hence, the contraction rate is of the same order as the spectral gap. In particular
for γ = 2

√
κu the optimal contraction rate c =

√
κu/8 is obtained. If LG ≤ 3κ, γ = 2

√
κu

satisfies condition (C.10) and yields the optimal contraction rate of order O(
√
κ). Otherwise,

for γ =
√

(4/3)LGu the contraction rate is optimized and of order O(κ/
√
LG).

C.2.2 Framework for classical Langevin dynamics with general external forces

Next, we consider the classical Langevin dynamics (Xt, Yt)t≥0 with a general external drift given
by the stochastic differential equation{

dXt = Ytdt,
dYt = (−γYt + ub(Xt))dt+

√
2γudBt,

(C.13)

with initial condition (X0, Y0) = (x, y) ∈ R2d.
We impose the following assumption on the force b:
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Assumption C.2. The function b : Rd → Rd is Lipschitz continuous and there exist a positive
definite matrix K ∈ Rd×d with smallest eigenvalue κ ∈ (0,∞) and largest eigenvalue LK ∈
(0,∞), a constant R ∈ [0,∞) and a function g : Rd → Rd with Lipschitz constant Lg ∈ (0,∞)
such that

b(x) = −Kx+ g(x) for all x ∈ Rd, (C.14)

and

⟨g(x)− g(x̄), x− x̄⟩ ≤ 0 for all x, x̄ ∈ Rd such that |x− x̄| ≥ R. (C.15)

Remark C.3. Suppose that b = −∇V where V is a potential function with a LV -Lipschitz
continuous gradient and that is k-strongly convex outside a Euclidean ball of radius R̃, i.e.,

⟨∇V(x)−∇V(x̄), x− x̄⟩ ≥ k|x− x̄|2 for all x, x̄ ∈ Rd such that |x|, |x̄| ≥ R̃.

Note that∇V can be split in∇V(x) = kx+h(x) where h : Rd → Rd is an Lh-Lipschitz continuous
function with Lh ≤ LV + k and ⟨h(x)− h(x̄), x− x̄⟩ ≥ 0 for all x, x̄ ∈ Rd such that |x|, |x̄| ≥ R̃.
Then for l ≤ 1

2 min(1, Lh
k ), b = −∇V satisfies Assumption C.2 with Lg ≤ LV + (1 − l)k,

κ = (1− l)k ≥ max(1
2k, k −

Lh
2 ) and R = 2R̃Lh

lk .
Example C.4 (Double-well potential). For β > 0, we consider the double-well potential V ∈
C1(R) defined by

V(x) =

β
(

|x|4
4 −

|x|2
2

)
for |x| ≤ 2,

β
(

3|x|2
2 − 4

)
for |x| > 2.

(C.16)

This potential has a Lipschitz continuous gradient and is strongly convex with convexity constant
k = 3β outside a Euclidean ball with radius R̃ = 2. We consider the splitting −∇V(x) =
−κx+ g(x) with κ = (2/3)k = 2β and

g(x) =
{
−β(x3 − 3x) for |x| ≤ 2,
−βx for |x| > 2.

Then, the function g is Lipschitz continuous with Lipschitz constant Lg = 9β and (C.15) is
satisfied for sufficiently large R.

C.2.3 Construction of the metric and the coupling

We provide an informal construction of the coupling and the complementary metric. Given
two Brownian motions (Bt)t≥0, (B′

t)t≥0 and (x, y), (x′, y′) ∈ R2d, let ((Xt, Yt), (X ′
t, Y

′
t ))t≥0 be an

arbitrary coupling of two solutions to (C.13). It holds for the difference process (Zt,Wt)t≥0 =
(Xt −X ′

t, Yt − Y ′
t )t≥0,{

dZt = Wt

dWt = (−γWt + ub(Xt)− ub(X ′
t))dt+

√
2γud(Bt −B′

t).

Adapting the idea of the coupling construction from [85], the process (Zt, Qt)t≥0 = (Zt, Zt +
γ−1Wt)t≥0 satisfies the stochastic differential equation{

dZt = −γZtdt+ γQtdt
dQt = γ−1u(b(Xt)− b(X ′

t))dt+
√

2γ−1ud(Bt −B′
t).

(C.17)
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As in [85], we apply a synchronous coupling for Qt = 0, since in this case the first equation
of (C.17) is contractive and the absence of the noise ensures that the dynamics is not driven
away from this area by random fluctuations. Apart from Qt = 0, we want to apply a reflection
coupling, which guarantees that the dynamics returns to the line Qt = 0. Note that this
construction leads to a coupling that is sticky on the hyperplane {((x, y), (x′, y′)) ∈ R4d : x −
x′ + γ−1(y − y′) = 0}. However, since it is technically hard to construct this sticky coupling,
we consider approximations of the coupling, which are rigorously stated in Appendix C.4.2 and
which suffice for our purpose. Similarly as in [85], we show for rs(t) = α|Zt| + |Qt| < R1 with
appropriately chosen constants α, R1 that there exists a concave increasing function f depending
on α and R1 such that f(rs(t)) is contractive on average. Note that the application of a concave
function has the effect that a decrease in rs has a larger impact than an increase in rs.

On the other hand, if the difference process (Zt,Wt)t≥0 is sufficiently far away from the
origin, we obtain under Assumption C.2 for the force b contractivity for the process rl(t) =
(γ−2uZt · (KZt) + (1/2)|(1 − 2τ)Zt + γ−1Wt|2 + (1/2)|γ−1Wt|2)1/2, where τ > 0 is a constant
depending on κ, γ, u and Lg. More precisely, we obtain local contractivity with contraction rate
γτ for rl(t)2 > R for some R > 0 depending on R, κ, γ, u and Lg. The process rl(t) is designed
such that the local contraction rate is optimized up to some constant, see Lemma C.19.

We construct a metric which is globally contractive on average using the previously estab-
lished coupling. The key idea lies in combining rs and rl in such a way, that the two local
contraction results imply global contractivity in the new metric. Note that for simplicity, we
write rl and rs both for the norm rl(z, w) (respectively rs(z, w)) of (z, w) ∈ R2d and for the
distance rl((x, y), (x′, y′)) (respectively rs((x, y), (x′, y′))) of (x, y), (x′, y′) ∈ R2d.

As we see in Appendix C.6.2, the lower boundR in the contraction result for large distances is
fixed due to the dependence on the drift assumptions, whereas the upper bound R1 in the result
for small distances is flexible with the drawback that the contraction rate gets smaller for larger
R1. To benefit from the local contraction results, we want for all (z, w) ∈ R2d that rs(z, w) ≤ R1
or rl(z, w)2 ≥ R holds, which we achieve by choosing R1 sufficiently large. We construct a
continuous transition between rs and rl by considering rs ∧ (DK + ϵrl), where the constant ϵ
satisfies 2ϵrl ≤ rs and the constant DK is given such that rs(z, w)∧(DK+ϵrl(z, w)) = rs(z, w) for
(z, w) with rl(z, w)2 ≤ R. Then, we set R1 such that rs(z, w)∧(DK +ϵrl(z, w)) = DK +ϵrl(z, w)
for (z, w) with rs(z, w) ≤ R1 is guaranteed.

In particular, in this construction the level set rs(z, w) − ϵrl(z, w) = DK is optimally en-
compassed by the level set rs(z, w) = R1 and rl(z, w)2 = R, as illustrated in Figure C.1,
and rs(z, w) ≤ R1 or rl(z, w)2 ≥ R is ensured. We define the metric ρ((x, y), (x′, y′)) =
f(rs((x, y), (x′, y′)) ∧ {DK + ϵrl((x, y), (x′, y′))}). As illustrated in Figure C.2, we obtain f(rs)
for small distances and f(DK + ϵrl((x, y), (x′, y′))) for large distances. A detailed rigorous con-
struction and a proof showing that ρ defines a metric are given in Appendix C.4.

C.2.4 A global contraction result for the classical Langevin dynamics with
general external force

We establish the main contraction result for the classical Langevin dynamics given by (C.13).

Theorem C.5. For t ≥ 0, let µt and νt be the law at time t of the processes (Xt, Yt) and (X ′
t, Y

′
t ),

respectively, where (Xs, Ys)s≥0 and (X ′
s, Y

′
s )s≥0 are solutions to (C.13) with initial distributions

µ0 and ν0 on R2d, respectively. Suppose Assumption C.2 holds and

Lguγ
−2 <

κ

2Lg
. (C.18)
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Figure C.1: Level sets of the metrics rl and rs.

Figure C.2: Sketch of the metric construction f((ϵrl + DK) ∧ rs). Here the metric is evaluated
for z = −γ−1w (i.e., along the dashed line in Figure C.1).
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Then,

W1,ρ(µt, νt) ≤ e−ctW1,ρ(µ0, ν0) and W1(µt, νt) ≤M1e
−ctW1(µ0, ν0),

where the distance ρ is defined precisely in (C.35) below and the contraction rate c is given by

c = γ exp(−Λ) min
((LK + Lg)uγ−2

4 Λ1/2,
1
8Λ1/2,

τE

2
)

with (C.19)

Λ = LK + Lg

4 R2
1, and, (C.20)

τ := min(1/8, γ−2uκ/2− γ−4L2
gu

2), and, (C.21)

E := 1
6 min

(
1,

√
κγ√

8u(LK + Lg)
,

√
κu

2 γ−1, 2(LK + Lg)uγ−2
)
. (C.22)

The constants R1 satisfies

2
3 min(1, 2(LK + Lg)uγ−2)

√
8u1{R>0} + LguR2

τγ2 ≤ R1

≤ 4 max
(√8(LK + Lg)u

γ
√
κ

, 1
)√8u1{R>0} + LguR2

τγ2 ,

(C.23)

and is explicitly stated in (C.38). The constant M1 is given by

M1 = max(2(LK + Lg)uγ−1 + γ, 1)1
2 exp(Λ) max

(
3, 3γ2

2(LK + Lg)u
)

max(
√

2/(κu), 2). (C.24)

Proof. The proof is postponed to Appendix C.6.2.

Remark C.6. Compared to the contraction result obtained in [85, Theorem 2.3], global contrac-
tivity in Wasserstein distance is obtained with rate c given in (C.19) which is independent of
the dimension d.

Remark C.7 (Kinetic behaviour). If γ is chosen such that κuγ−2, Lguγ
−2 and LKuγ

−2 are
fixed and further LKR

2 and LgR
2 are fixed, we obtain similarly to [85, Corollary 2.9] that the

contraction rate is of order Ω(R−1).

Remark C.8. If R = 0, the metric ρ defined in (C.35) reduces to ρ((x, y), (x̄, ȳ)) = (γ−2(x −
x̄) · (K(x− x̄)) + (1/2)|(1− 2τ)(x− x̄) + γ−1(y − ȳ)|2 + (1/2)|γ−1(y − ȳ)|2)1/2 and the coupling
given in Appendix C.4.2 becomes the synchronous coupling. This metric differs from r defined
in (C.8) by the constant τ , since here the drift b is not necessarily of gradient-type and we can
not make use of the co-coercivity property as in the proof of Theorem C.1. Following the proof
given in Appendix C.6.2, we obtain contraction in L1 Wasserstein distance, with contraction rate
c = min(γ/16, κγ−1/4− 8γ−3L2

gu
2). We remark that the constant E vanishes in the contraction

rate, which measures the difference between the two metrics that are considered in general for
ρ. If Lg ≤

√
2κ, the contraction rate is maximized for γ = u1/2(2κ + (4κ2 − 8L2

g)1/2)1/2 and
satisfies c = u1/2(2κ+ (4κ2 − 8L2

g)1/2)1/2/16, i.e., in this case the rate is of order O(
√
κ).

Example C.9 (Double-well potential). For the model given in Example C.4, we obtain contraction
with respect to the designed Wasserstein distance if γ > 9

√
β is satisfied.
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C.3 Contraction for nonlinear Langevin dynamics of McKean-
Vlasov type

Consider the Langevin dynamics of McKean-Vlasov type given in (C.1). We require Assump-
tion C.2 for the function b : Rd → Rd. For the function b̃ : R2d → Rd we impose:

Assumption C.3. The function b̃ : R2d → Rd is L̃-Lipschitz continuous.

Example C.10 (Quadratic interaction potential). Consider b̃(x, y) = ky with k ∈ R. Then
L̃ = |k| and b̃ corresponds to the interaction potential W(x, y) = −kx · y. This potential is
attractive for k > 0 and repulsive for k < 0.
Example C.11 (Mollified Coulomb, Newtonian and logarithmic potentials). The gradients of the
Coulomb potential and of the Newtonian potential, which describe charged and self-gravitating
particles [36], are not Lipschitz continuous. However, the gradient of a mollified version (see
[97]) given by

W(x, y) = k̃

(|x− y|p + qp)1/p
for p ≥ 2, q ∈ R+ and k̃ ∈ R

satisfies Assumption C.3, since ∥Hess W∥ <∞, and therefore ∇xW is Lipschitz continuous. In
the same line, the gradient of the mollified version of the logarithmic potential given by

W(x, y) = −2 log((|x− y|p + qp)1/p) for p ≥ 2, q ∈ R+

satisfies Assumption C.3.
Under the above conditions, we establish contraction in an L1 Wasserstein distance.

Theorem C.12 (Contraction for nonlinear Langevin dynamics). Let µ̄0 and ν̄0 be two probability
distributions on R2d with finite second moment. For t ≥ 0, let µ̄t and ν̄t be the law at time t of the
processes (X̄t, Ȳt) and (X̄ ′

t, Ȳ
′

t ), respectively, where (X̄s, Ȳs)s≥0 and (X̄ ′
s, Ȳ

′
s )s≥0 are solutions to

(C.1) with initial distribution µ̄0 and ν̄0, respectively. Suppose Assumption C.2, Assumption C.3
and (C.18) hold. Let L̃ satisfy

L̃ ≤ exp(−Λ) min
{γτ

12

√
κ

u
min(1, 2(LK + Lg)uγ−2), LK + Lg

4
}
, (C.25)

where Λ and τ are given in (C.20) and (C.21), respectively. Then

W1,ρ(µ̄t, ν̄t) ≤ e−c̄tW1,ρ(µ̄0, ν̄0) and W1(µ̄t, ν̄t) ≤M1e
−c̄tW1(µ̄0, ν̄0),

where the distance ρ is given in (C.35) and c̄ = c/2 with c given in (C.19). The constant M1
is given in (C.24). Moreover, there exists a unique invariant probability measure µ̄∞ for (C.1)
and convergence in L1 Wasserstein distance to µ̄∞ holds.

Proof. The proof is based on the coupling approach and the metric construction given in Ap-
pendix C.4.1 and Appendix C.4.2, respectively, and is postponed to Appendix C.6.2.

Remark C.13. In comparison to [97, Theorem 3.1], global contractivity is established with a
contraction rate and a restriction on the Lipschitz constant L̃ that are independent of the
dimension d.
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Remark C.14. Compared to the contraction result in Theorem C.5 for classical Langevin dynam-
ics, the contraction rate deteriorates by a factor of 2 to compensate for the nonlinear interaction
terms.

If R = 0, (C.25) reduces to L̃ ≤ τγ
√
κ/u/8 and contraction holds with rate c̄ = min(γ/32,

κuγ−1/8 − L2
gu

2γ−3/2) by Lemma C.19 and (C.67). If Lg ≤
√

2κ, the contraction rate is
maximized for γ =

√
u(2κ + (4κ2 − 8L2

g)1/2)1/2 yielding c̄ =
√
u(2κ + (4κ2 − 8L2

g)1/2)1/2/32. If
the drift is additionally of gradient-type, we can adapt the proof of Theorem C.1 and use the
co-coercivity property to obtain a contraction rate of order O(

√
κ) for Lg ≤ 3κ and a rate of

order O(κ/
√
Lg) for Lg > 3κ.

Remark C.15. The contraction results can be extended to unconfined Langevin dynamics. Con-
sider b ≡ 0 and b̃ : R2d → Rd given by b̃(x, y) = −K̃(x−y)+g̃(x−y) where K̃ ∈ Rd×d is a positive
definite matrix with smallest eigenvalue κ̃ and where g̃ : Rd → Rd is an anti-symmetric, Lg̃-
Lipschitz continuous function g̃ : Rd → Rd. If Lg̃ ≤ (γ/2)

√
κ̃/umin(1/8, κ̃uγ−2/2), contraction

in an L1 Wasserstein distance can be shown via a synchronous coupling approach. The underly-
ing distance function in the Wasserstein distance is based on a similar twisted 2-norm structure
as the distance rl given in (C.26). We note that the conditions on Lg and L̃ are combined in
the restrictive condition on Lg̃, which implies Lg̃ ≤ κ̃/8 and which gives only contraction for
small perturbations of linear interaction forces. A detailed analysis of the unconfined dynamics
is given in Appendix C.7.

C.4 Metric and coupling

C.4.1 Metric construction

For both the classical Langevin dynamics and the nonlinear Langevin dynamics, i.e., when
Assumption C.2 holds, we consider the metrics rl, rs : R2d × R2d → [0,∞) given by

rl((x, y), (x̄, ȳ))2 := u

γ2 (x− x̄) · (K(x− x̄)) + (1− 2τ)2

2 |x− x̄|2 + γ−1(1− 2τ)(x− x̄)(y − ȳ)

+ γ−2|y − ȳ|2

= γ−2u(x− x̄) · (K(x− x̄)) + 1
2 |(1− 2τ)(x− x̄) + γ−1(y − ȳ)|2 + 1

2γ
−2|y − ȳ|2,

(C.26)
and

rs((x, y), (x̄, ȳ)) := α|x− x̄|+ |x− x̄+ γ−1(y − ȳ)|, (C.27)

for (x, y), (x̄, ȳ) ∈ R2d, where the constants τ and α are given by (C.21) and

α := 2(LK + Lg)uγ−2, (C.28)

respectively. Next, we state the rigorous construction of the metric ρ : R2d × R2d → [0,∞),
that is applied in Theorem C.5 and Theorem C.12, and that is glued together of rl and rs

in an appropriate way. Note that rl and rs are equivalent metrics. More precisely, for all
(x, y), (x̄, ȳ) ∈ R2d it holds 2ϵrl((x, y), (x̄, ȳ)) ≤ rs((x, y), (x̄, ȳ)) with

ϵ = (1/2) min(1, (2/3)α/(
√
LKuγ

−1), α). (C.29)
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Indeed, for (z, w) = (x− x̄, y − ȳ)

r2
l ((x, y), (x̄, ȳ)) ≤ LKγ

−2u|z|2 + 1
2 |z + γ−1w|2 + 2τ |z||z + γw|+ 2τ2|z|2 + 1

2 |γ
−1w|2 and

r2
s((x, y), (x̄, ȳ)) ≥ 1

2(α|z|+ |z + γ−1w|)2 + 1
2 min(α2, 1)γ−2|w|2

≥ α2

2 |z|
2 + α|z||z + γ−1w|+ 1

2 |z + γ−1w|2 + 1
2 min(1, α2)γ−2|w|2,

and

4ϵ2 ≤ min
( α2

2(LKuγ−2 + 2τLKuγ−2/2) , 1, α
2
)
≤ min

( α2

2(LKuγ−2 + 2τ2) , 1,
α

2τ , α
2
)
,

since α > κγ−2 and τ ≤ min(1/8, LKγ
−2u/2) by (C.28) and (C.21). Further, for all

(x, y), (x̄, ȳ) ∈ R2d it holds Ers((x, y), (x̄, ȳ)) ≤ rl((x, y), (x̄, ȳ)) with

E = min(
√
κuγ−1/(

√
8α), 1/2), (C.30)

since

rl(t)
rs(t) ≥

(κuγ−2|Z̄t|2 + (1/2)|(1− 2τ)Z̄t + γ−1W̄t|2

2(a+ 2τ)2|Z̄t|2 + 2|(1− 2τ)Z̄t + γ−1W̄t|2
)1/2

≥ min
(√κuγ−1
√

8α
,

1
2
)
.

Define

∆((x, y), (x̄, ȳ)) := rs((x, y), (x̄, ȳ))− ϵrl((x, y), (x̄, ȳ)) (C.31)

for (x, y), (x̄, ȳ) ∈ R2d and

DK := sup
((x,y),(x̄,ȳ))∈R4d:(x−x̄,y−ȳ)∈K

∆((x, y), (x̄, ȳ)), (C.32)

where the compact set K ⊂ R2d is given by

K := {(z, w) ∈ R2d : γ−2uz · (Kz) + (1/2)|(1− 2τ)z + γ−1w|2 + (1/2)|γ−1w|2 ≤ R}. (C.33)

with

R = (1/τ)(8u1{R>0} + LguR
2)γ−2. (C.34)

We define the metric ρ : R2d × R2d → [0,∞) by

ρ((x, y), (x̄, ȳ)) := f((∆((x, y), (x̄, ȳ)) ∧DK) + ϵrl((x, y), (x̄, ȳ))) (C.35)

for (x, y), (x̄, ȳ) ∈ R2d, where ∆ and DK are given in (C.31) and (C.32). The function f is an
increasing concave function defined by

f(r) :=
∫ r

0
ϕ(s)ψ(s)ds, (C.36)

where

ϕ(s) := exp
(
− αγ2

4u
(s ∧R1)2

2
)
, Φ(s) =

∫ s

0
ϕ(x)dx,

ψ(s) := 1− ĉ

2γu
−1
∫ s∧R1

0
Φ(x)ϕ(x)−1dx, ĉ = 1

u−1γ
∫ R1

0 Φ(s)ϕ(s)−1ds
,

(C.37)
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and where R1 is given by

R1 := sup
((x,y),(x̄,ȳ)):∆((x,y),(x̄,ȳ))≤DK

rs(((x, y), (x̄, ȳ))). (C.38)

The construction of the function f is adapted from [83]. Since ψ(s) ∈ [1/2, 1], it holds for r ≥ 0

f ′(R1)r = (ϕ(R1)/2)r ≤ Φ(r)/2 ≤ f(r) ≤ Φ(r) ≤ r. (C.39)

Note that the constant R1 is finite and R1 ≤ sup∆((x,y),(x̄,ȳ))≤DK 2∆((x, y), (x̄, ȳ)) ≤ 2DK
holds, since ∆((x, y), (x̄, ȳ)) = rs((x, y), (x̄, ȳ)) − ϵrl((x, y), (x̄, ȳ)) ≥ (1/2)rs((x, y), (x̄, ȳ)) for
any (x, y), (x̄, ȳ) ∈ R2d by (C.29). Hence, ĉ given in (C.37) and f are well-defined. Further,

R1 ≤ 2DK ≤ 2 sup
((x,y),(x̄,ȳ))∈R4d:(x−x̄,y−ȳ)∈K

(E−1 − 2ϵ)rl((x, y), (x̄, ȳ)) ≤ 2(E−1 − 2ϵ)
√
R.

The constant R1 is also bounded from below by

R1 ≥ sup
((x,y),(x̄,ȳ)):∆((x,y),(x̄,ȳ))≤DK

2ϵrl(((x, y), (x̄, ȳ))) ≥ 2ϵ
√
R,

since ∆((x, y), (x̄, ȳ)) ≤ DK for all (x, y), (x̄, ȳ) ∈ R2d such that rl((x, y), (x̄, ȳ))2 = R. By
(C.34), (C.29), (C.30), the two bounds on R1 imply the relation (C.23) of R and R1 given in
Theorem C.5.

By this construction for the metric ρ, it holds (∆((x, y), (x̄, ȳ)) ∧DK) + ϵrl((x, y), (x̄, ȳ)) =
rs((x, y), (x̄, ȳ)) for ∆((x, y), (x̄, ȳ)) ≤ DK, and in particular for rl((x, y), (x̄, ȳ))2 ≤ R. Further,
(∆((x, y), (x̄, ȳ)) ∧ DK) + ϵrl((x, y), (x̄, ȳ)) = DK + ϵrl((x, y), (x̄, ȳ)) for ∆((x, y), (x̄, ȳ)) > DK
and in particular for rs((x, y), (x̄, ȳ)) > R1.

If R = 0, then K = {(0, 0)} and hence DK = R1 = 0 and f(r) = r. In this case, we can omit
the factor ϵ in (C.35) and (C.46) and set ρ((x, y), (x̄, ȳ)) = rl((x, y), (x̄, ȳ)) for simplicity.

Lemma C.16. The function ρ given in (C.35) defines a metric on R2d and is equivalent to the
Euclidean distance on R2d.

Proof. Symmetry and positive definiteness holds directly. Hence, ρ is a semimetric. To prove
the triangle inequality, we note that for (x, y), (x̄, ȳ), (x̂, ŷ) ∈ R2d,

(∆((x, y), (x̄, ȳ)) ∧DK) + ϵrl((x, y), (x̄, ȳ))
= rs((x, y), (x̄, ȳ)) ∧ (DK + ϵrl((x, y), (x̄, ȳ)))
≤ (rs((x, y), (x̂, ŷ)) + rs((x̂, ŷ), (x̄, ȳ))) ∧ (DK + ϵrl((x, y), (x̂, ŷ)) + ϵrl((x̂, ŷ), (x̄, ȳ)))
≤ (rs((x, y), (x̂, ŷ)) + rs((x̂, ŷ), (x̄, ȳ))) ∧ (DK + ϵrl((x, y), (x̂, ŷ)) +DK + ϵrl((x̂, ŷ), (x̄, ȳ)))
∧ (DK + ϵrl((x, y), (x̂, ŷ)) + (1/2)rs((x̂, ŷ), (x̄, ȳ)))
∧ (DK + (1/2)rs((x, y), (x̂, ŷ)) + ϵrl((x̂, ŷ), (x̄, ȳ)))
≤ (∆((x, y), (x̄, ȳ)) ∧DK) + ϵrl((x, y), (x̄, ȳ)) + (∆((x, y), (x̂, ŷ)) ∧DK) + ϵrl((x̂, ŷ), (x̄, ȳ)),

since rl and rs are metrics on R2d and ϵrl((x, y), (x̄, ȳ)) ≤ (1/2)rs((x, y), (x̄, ȳ)). Since f
given in (C.36) is a concave function, ρ((x, y), (x̄, ȳ)) ≤ ρ((x, y), (x̂, ŷ)) + ρ((x̂, ŷ), (x̄, ȳ)) for
(x, y), (x̄, ȳ), (x̂, ŷ) ∈ R2d. Hence, ρ defines a metric.

Further, it holds for all (x, y), (x̄, ȳ) ∈ R2d,

∆((x, y), (x̄, ȳ)) ∧DK + ϵrl((x, y), (x̄, ȳ)) ≤ rs((x, y), (x̄, ȳ))
≤ max(α+ 1, γ−1)(|x− x̄|+ |y − ȳ|)
≤ max(α+ 1, γ−1)

√
2|(x, y)− (x̄, ȳ)|.

(C.40)
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and

∆((x, y), (x̄, ȳ)) ∧DK + ϵrl((x, y), (x̄, ȳ)) ≥ ϵrl((x, y), (x̄, ȳ))

≥ ϵ(κuγ−2|x− x̄|2 + 1
2γ

−2|y − ȳ|2)1/2

≥ ϵγ−1 min(
√
κu, 1/

√
2)|(x, y)− (x̄, ȳ)|

≥ ϵγ−1 min(
√
κu/2, 1/2)(|x− x̄|+ |y − ȳ|).

(C.41)

Then, by (C.39),

C1|(x, y)− (x̄, ȳ)| ≤ ρ((x, y), (x̄, ȳ)) ≤ C2|(x, y)− (x̄, ȳ)| (C.42)

with C1 = f ′(R1)ϵγ−1 min(
√
κu, 1/

√
2) and C2 =

√
2 max(α+ 1, γ−1).

C.4.2 Coupling for Langevin dynamics

To prove Theorem C.5 and Theorem C.12 we construct a coupling of two solutions to (C.1).
The construction is partially adapted from the coupling approach introduced in [85]. Recall that
b̃ ≡ 0 in Theorem C.5.

Let ξ be a positive constant, which we take finally to the limit ξ → 0. Let (Brc
t )t≥0 and

(Bsc
t )t≥0 be two independent d-dimensional Brownian motions and let µ̄0, ν̄0 be two probability

measures on R2d. The coupling ((X̄t, Ȳt), (X̄ ′
t, Ȳ

′
t ))t≥0 of two copies of solutions to (C.1) is a

solution to the SDE on R2d × R2d given by
dX̄t = Ȳtdt
dȲt = (−γȲt + ub(X̄t) + u

∫
Rd b̃(X̄t, z)µ̄x

t (dz))dt+
√

2γusc(Zt,Wt)dBsc
t

+
√

2γurc(Zt,Wt)dBrc
t

dX̄ ′
t = Ȳ ′

t dt
dȲ ′

t = (−γȲ ′
t + ub(X̄ ′

t) + u
∫
Rd b̃(X̄ ′

t, z)ν̄x
t (dz))dt+

√
2γusc(Zt,Wt)dBsc

t

+
√

2γurc(Zt,Wt)(Id−2ete
T
t )dBrc

t ,

(X̄0, Ȳ0) ∼ µ̄0, (X̄ ′
0, Ȳ

′
0) ∼ ν̄0,

(C.43)

where µ̄x
t = Law(X̄t) and ν̄x

t = Law(X̄ ′
t). Further, Zt = X̄t−X̄ ′

t, Wt = Ȳt− Ȳ ′
t , Qt = Zt +γ−1Wt

and et = Qt/|Qt| if Qt ̸= 0 and et = 0 otherwise. The functions rc, sc : R2d → [0, 1) are Lipschitz
continuous and satisfy rc2 + sc2 ≡ 1 and

rc(z, w) = 0 if |z + γ−1w| = 0 or (rs(z, w))− ϵ(rl(z, w)) ≥ DK + ξ · 1{DK>0},

rc(z, w) = 1 if |z + γ−1w| ≥ ξ and (rs(z, w))− ϵ(rl(z, w)) ≤ DK and DK > 0
(C.44)

for (z, w) ∈ R2d, where ϵ is given in (C.29). Analogously to (C.26) and (C.27), rl(z, w)2 =
γ−2uz · (Kz) + (1/2)|(1− 2τ)z + γ−1w|2 + (1/2)γ−2|w|2 and rs(z, w) = α|z|+ |z + γ−1w|.

We note that by Levy’s characterization, for any solution to (C.74) the processes

Bt :=
∫ t

0
sc(Zs,Ws)dBsc

s +
∫ t

0
rc(Zs,Ws)dBrc

s and

B̃t :=
∫ t

0
sc(Zs,Ws)dBsc

s +
∫ t

0
rc(Zs,Ws)(Id−eses

T )dBrc
s
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are d-dimensional Brownian motions. Therefore, (C.74) defines a coupling between two solutions
to (C.1). The constructed coupling denotes a reflection coupling for rc ≡ 1 and sc ≡ 0 and a
synchronous coupling for sc ≡ 1 and rc ≡ 0. Note that we obtain a synchronous coupling if
DK = 0.

The processes (Zt)t≥0, (Wt)t≥0 and (Qt)t≥0 satisfy the following SDEs:

dZt = Wtdt = (Qt − γZt)dt,

dWt = −γWtdt+ u
(
b(X̄t)− b(X̄ ′

t) +
∫
Rd
b̃(X̄t, z)µ̄x

t (dz)−
∫
Rd
b̃(X̄ ′

t, z̃)ν̄x
t (dz̃)

)
dt

+
√

8γurc(Zt,Wt)etet
T dBrc

t ,

dQt = γ−1u
(
b(X̄t)− b(X̄ ′

t) +
∫
Rd
b̃(X̄t, z)µ̄x

t (dz)−
∫
Rd
b̃(X̄ ′

t, z̃)ν̄x
t (dz̃)

)
dt

+
√

8γ−1urc(Zt,Wt)etet
T dBrc

t .

(C.45)

If Qt = 0, we note that Zt is contractive, which we exploit in the proof of Lemma C.20.

C.5 Uniform in time propagation of chaos

We provide uniform in time propagation of chaos bounds for the mean-field particle system
corresponding to the nonlinear Langevin dynamics of McKean-Vlasov type.

Fix N ∈ N. We consider the metric ρN : R2Nd × R2Nd → [0,∞) given by

ρN ((x, y), (x̄, ȳ)) := N−1
N∑

i=1
ρ((xi, yi), (x̄i, ȳi)) for ((x, y), (x̄, ȳ)) ∈ R2Nd × R2Nd, (C.46)

where ρ is given in (C.35). Since ρ is a metric on R2d×R2d by Lemma C.16, ρN defines a metric
on R2Nd × R2Nd. By (C.40) and (C.41), ρN is equivalent to l1N given in (C.5), i.e.,

C1/
√

2ℓ1N ((x, y), (x̄, ȳ)) ≤ ρN ((x, y), (x̄, ȳ)) ≤ C2/
√

2ℓ1N ((x, y), (x̄, ȳ)) (C.47)

with C1 = exp(−Λ) min(1, 2(LK + Lg)uγ−2)/3γ−1 min(
√
κu, 1/

√
2) and C2 =

√
2 max(2(LK +

Lg)uγ−2 + 1, γ−1).
For t ≥ 0, we denote by µ̄t the law of the process (X̄t, Ȳt), where (X̄s, Ȳs)s≥0 is a solution

to (C.1) with initial distribution µ̄0. We denote by µN
t the law of {Xi,N

t , Y i,N
t }Ni=1, where

({Xi,N
s , Y i,N

s }Ni=1)s≥0 is a solution to (C.3) with initial distribution µN
0 = µ⊗N

0 .

Theorem C.17 (Propagation of chaos for Langevin dynamics). Suppose Assumption C.2 and
Assumption C.3 hold. Let µ̄0 and µ0 be two probability distributions on R2d with finite second
moment. Suppose that (C.18) holds. If L̃ satisfies (C.25), then

W1,ρN (µ̄⊗N
t , µN

t ) ≤ e−c̃tW1,ρN (µ̄⊗N
0 , µN

0 ) + C1c̃
−1N−1/2 and

W1,ℓ1
N

(µ̄⊗N
t , µN

t ) ≤M1e
−c̃tW1,ℓ1

N
(µ̄⊗N

0 , µN
0 ) +M2C1c̃

−1N−1/2,

where the distance ρN is defined in (C.46) and c̃ = c/2 with c given in (C.19). The constant C1
depends on γ, d, u, R, κ, Lg, L̃ and on the second moment of µ̄0. The constants M1 and is
given in (C.24) and (C.48) and M2 is given by

M2 = 3 exp(Λ) max
(
1, γ2

2(LK + Lg)u
)
γmax(

√
2/(κu), 2). (C.48)
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Proof. The proof is postponed to Appendix C.6.3.

Remark C.18. For t ≥ 0, let µN
t and νN

t be the law of {Xi,N
t , Y i,N

t }Ni=1 and {X ′
t
i,N , Y ′

t
i,N}Ni=1

where the processes ({Xi,N
s , Y i,N

s }Ni=1)s≥0 and ({X ′
s
i,N , Y ′

s
i,N}Ni=1)s≥0 are solutions to (C.3) with

initial distributions µN
0 and νN

0 , respectively. An easy adaptation of the proof of Theorem C.17
shows that if Assumption C.2, Assumption C.3, (C.18) and (C.25) hold, then

W1,ρN (µN
t , ν

N
t ) ≤ e−c̃tW1,ρN (µN

0 , ν
N
0 ) and W1,ℓ1

N
(µN

t , ν
N
t ) ≤M1e

−c̃tW1,ℓ1
N

(µN
0 , ν

N
0 ),

where ρN and M1 are given in (C.46), and (C.24), respectively, and c̃ = c/2 with c given in
(C.19). To adapt the proof, a coupling between two copies of N particle systems is applied
which is constructed in the same line as (C.74).

C.6 Proofs

C.6.1 Proof of Section C.2.1

Proof of Theorem C.1. Given a d-dimensional standard Brownian motion on (Bt)t≥0 and
(x, y), (x′, y′) ∈ R2d, we consider the synchronous coupling ((Xt, Yt), (X ′

t, Y
′

t ))t≥0 of two copies
of solutions to (C.6) on R2d × R2d given by{

dXt = Ytdt
dYt = (−γYt − u∇V(Xt))dt+

√
2γudBt, (X0, Y0) = (x, y){

dX ′
t = Y ′

t dt
dY ′

t = (−γY ′
t − u∇V(X ′

t))dt+
√

2γudBt, (X ′
0, Y

′
0) = (x′, y′).

(C.49)

Then, the difference process (Zt,Wt)t≥0 = (Xt −X ′
t, Yt − Y ′

t )t≥0 satisfies{
dZt = Wtdt
dWt = (−γWt − uKZt − u(∇G(Xt)−∇G(X ′

t)))dt.

We note that since by Assumption C.1, G is continuously differentiable, convex and has LG-
Lipschitz continuous gradients, G is co-coercive (see e.g. [157, Theorem 2.1.5]), i.e., it holds

|∇G(x)−∇G(x′)|2 ≤ LG(∇G(x)−∇G(x′)) · (x− x′) for all x, x′ ∈ Rd. (C.50)

Let A,B,C ∈ Rd×d be positive definite matrices given by

A = γ−2uK + (1/2)(1− 2λ)2Id, B = (1− 2λ)γ−1Id, C = γ−2Id,

where λ is given in (C.9) and Id is the d×d identity matrix. Then by Ito’s formula and Young’s
inequality, we obtain

d
dt(Zt · (AZt) + Zt · (BWt) +Wt · (CWt))

= 2Wt · (AZt) +Wt · (BWt) + Zt · (B(−γWt − uKZt − u(∇G(Xt)−∇G(X ′
t))))

+ 2Wt · (C(−γWt − uKZt − u(∇G(Xt)−∇G(X ′
t))))

≤ −uγ−1(1− 2λ)Zt · (KZt)− (1− 2λ)γ−1uZt(∇G(Xt)−∇G(X ′
t))

+ γ−3u2|∇G(Xt)−∇G(X ′
t)|2 + Zt · ((2A− γB − 2uKC)Wt) + ((1− 2λ)γ−1 − γ−1)|Wt|2.

(C.51)
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By (C.50), (C.9) and (C.10), it holds

−(1− 2λ)γ−1uZt · (∇G(Xt)−∇G(X ′
t)) + γ−3u2|∇G(Xt)−∇G(X ′

t)|2

≤ −((1− 2λ)γ−1u− γ−3LGu
2)Zt(∇G(Xt)−∇G(X ′

t)) ≤ 0.
(C.52)

Further by (C.9), it holds

−uγ−1(1− 4λ)Zt · (KZt) ≤ −u(γ−1/2)Zt · (KZt) ≤ −u(γ−1/2)κ|Zt|2

≤ −λγ|Zt|2 ≤ −λγ(1− 2λ)2|Zt|2

and hence, −uγ−1(1 − 2λ)Zt · (KZt) ≤ −2γλZt · (AZt). Set r(t) = r((Xt, Yt), (X ′
t, Y

′
t )) with r

defined in (C.8). Then by (C.51) and (C.52), we obtain

d
dtr(t)

2 = d
dt(Zt · (AZt) + Zt · (BWt) +Wt · (CWt))

≤ −2λγ(Zt · (AZt) + Zt · (BWt) +Wt · (CWt)) = −2λγr(t)2.

Taking the square root and applying Grönwall’s inequality yields

r(t) ≤ e−ctr(0)

with c given in (C.11). Then for all p ≥ 1 it holds

Wp,r(µt, νt) ≤ E[r(t)p]1/p ≤ e−ctE[r(0)p]1/p.

We take the infimum over all couplings γ ∈ Π(µ0, ν0) and obtain the first bound. For the second
bound we note that for any (x, y), (x′, y′) ∈ R2d

√
min(uγ−2κ, γ−2/2)(|x− x′|2 + |y − y′|2)1/2 ≤ r((x, y), (x′, y′))

≤
√

max(uγ−2LK + 1, 3/2γ−2)(|x− x′|2 + |y − y′|2)1/2.

Hence, the second bound in Theorem C.1 holds with M given in (C.12).

C.6.2 Proofs of Section C.2.4 and Section C.3

To show Theorem C.12, we prove two local contraction results using the coupling defined
in (C.43). We write rl(t) = rl((X̄t, Ȳt), (X̄ ′

t, Ȳ
′

t )), rs(t) = rs((X̄t, Ȳt), (X̄ ′
t, Ȳ

′
t )) and ∆(t) =

∆((X̄t, Ȳt), (X̄ ′
t, Ȳ

′
t )).

Lemma C.19. Suppose Assumption C.2, Assumption C.3 and (C.18) hold.
Let ((X̄s, Ȳs), (X̄ ′

s, Ȳ
′

s ))s≥0 be a solution to (C.43). Then for t ≥ 0 with ∆(t) ≥ DK, it holds

drl(t) ≤ −c1rl(t)dt+ |(1− 2τ)Zt + 2γ−1Wt|
2γrl(t)

L̃u(E[|Zt|] + |Zt|)dt

+
√

8γ−1urc(Zt,Wt)
(1− 2τ)Zt + 2γ−1Wt

2rl(t)
· etet

T dBt,

(C.53)

where c1 = τγ/2 with τ given in (C.21).
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Proof. Let A,B,C ∈ Rd×d be positive definite matrices given by

A = γ−2uK + (1/2)(1− 2τ)2Id, B = (1− 2τ)γ−1Id, and C = γ−2Id, (C.54)

where τ is given by (C.21) and Id is the d× d identity matrix. By (C.45) and Ito’s formula, it
holds

d(Zt · (AZt) + Zt · (BWt) +Wt · (CWt))

≤ 2(AZt) ·Wtdt+
(
Wt · (BWt)− γ(BZt) ·Wt − u(BZt) · (KZt)

)
dt

+
(
− 2γWt · (CWt)− 2u(CWt) · (KZt) + 2γ−2Lgu|Wt||Zt|

)
dt

+ Lgu(1− 2τ)γ−1|Zt|2 · 1{|Zt|<R}dt+ |BZt + 2CWt|L̃u(E[|Zt|] + |Zt|)dt
+ γ−28γurc(Zt,Wt)2dt+

√
8γurc(Zt,Wt)(BZt + 2CWt) · etet

T dBt

≤ Zt · ((−uBK + γ−1uL2
gC)Zt)dt+ Zt · (2A− γB − 2uKC)Wtdt

+ ((1− 2τ)γ−1 − γ−1)|Wt|2dt
+ (1− 2τ)γ−1uLg|Zt|21{|Zt|<R}dt+ |(1− 2τ)γ−1Zt + 2γ−2Wt|L̃u(E[|Zt|] + |Zt|)dt
+ 8γ−1u(rc(Zt,Wt))2dt+

√
8γurc(Zt,Wt)((1− 2τ)γ−1Zt + 2γ−1Wt) · etet

T dBt

≤ −2τγ(Zt · (AZt) + Zt · (BWt) +Wt · (CWt))dt
+ (1− 2τ)γ−1uLg|Zt|21{|Zt|<R}dt+ |(1− 2τ)γ−1Zt + 2γ−2Wt|L̃u(E[|Zt|] + |Zt|)dt
+ 8γ−1u(rc(Zt,Wt))2dt+

√
8γurc(Zt,Wt)((1− 2τ)γ−1Zt + 2γ−1Wt) · etet

T dBt,

where we used (C.21) in the last step. More precisely, the definition of τ implies for all z ∈ Rd,

z · ((−(1− 4τ)γ−1uK + γ−3L2
gu

2Id)z) ≤ (−(1/2)κuγ−1 + γ−3L2
gu

2)|z|2

≤ (−τγ)|z|2 ≤ (−τγ(1− 2τ)2)|z|2.
(C.55)

Note that rl(t)2 = Zt · (AZt) + Zt · (BWt) +Wt · (CWt). Then,

drl(t)2 ≤ −2τγrl(t)2dt+ γ−1(1− 2τ)Lgu|Zt|21{|Zt|<R}dt
+ γ−1|(1− 2τ)Zt + 2γ−1Wt|L̃u(E[|Zt|] + |Zt|)dt

+ 8γ−1urc(Zt,Wt)2dt+
√

8γ−1urc(Zt,Wt)((1− 2τ)Zt + 2γ−1Wt) · etet
T dBt.

Since ∆(t) ≥ DK, it holds rl(t)2 ≥ R by (C.32) and (C.33). By (C.44), rc(Zt,Wt)2 ≤ 1{R>0},
and hence, by (C.34)

−τγrl(t)2 + γ−1(1− 2τ)Lgu|Zt|21{|Zt|<R} + 8γ−1urc(Zt,Wt)2

≤ −τγR+ LguR
2γ−1 + 8γ−1u1{R>0} ≤ 0.

We obtain by Ito’s formula and since the second derivative of the square root is negative,

drl(t) ≤ (2rl(t))−1drl(t)2

≤ −c1rl(t)dt+ γ−1|(1− 2τ)Zt + 2γ−1Wt|(2rl(t))−1L̃u(E[|Zt|] + |Zt|)dt

+
√

8γ−1rc(Zt,Wt)(2rl(t))−1((1− 2τ)Zt + 2γ−1Wt) · etet
T dBt,

which concludes the proof.
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Lemma C.20. Suppose Assumption C.2 and Assumption C.3 hold. Fix ξ > 0.
Let ((X̄s, Ȳs), (X̄ ′

s, Ȳ
′

s ))s≥0 be a solution to (C.43). Let rs be given by (C.27) with α given in
(C.28). Then for t ≥ 0 with ∆(t) < DK, it holds

df(rs(t)) ≤ −c2f(rs(t))dt+ γ−1L̃u(E[|Zt|] + |Zt|)dt−
γα

4 f ′(R1)|Zt|dt+ (1 + α)ξγdt+ dMt,

where f is given in (C.36), (Mt)t≥0 is a martingale and c2 is given by

c2 := min
( 2
γ
∫ R1

0 Φ(s)ϕ(s)−1ds
,
γ

8
R1ϕ(R1)
Φ(R1)

)
. (C.56)

Proof. The proof is an adaptation of the proof of [85, Lemma 3.1]. First, we note that, (Zt)t≥0
given in (C.45) is almost surely continuously differentiable with derivative dZt/dt = −γZt +γQt

and hence t→ |Zt| is almost surely absolutely continuous with
d
dt |Zt| =

Zt

|Zt|
· (−γZt + γQt) for a.e. t such that Zt ̸= 0 and

d
dt |Zt| ≤ γ|Qt| for a.e. t such that Zt = 0.

and therefore
d
dt |Zt| ≤ −γ|Zt|+ γ|Qt| for a.e. t ≥ 0. (C.57)

By Ito’s formula and by Assumption C.2 and Assumption C.3, we obtain for |Qt|,

d|Qt| = γ−1uet ·
(
b(X̄t)− b(X̄ ′

t) +
∫
Rd
b̃(X̄t, z)µ̄x

t (dz)−
∫
Rd
b̃(X̄ ′

t, z̃)ν̄x
t (dz̃)

)
dt

+
√

8γ−1urc(Zt,Wt)et
T dBt

≤ γ−1u(LK + Lg + L̃)|Zt|dt+ γ−1L̃uE[|Zt|]dt+
√

8γ−1urc(Zt,Wt)et
T dBrc

t .

Note that there is no Ito correction term, since ∂2
q/|q||q| = 0 for q ̸= 0 and rc = 0 for Qt = 0.

Combining this bound with (C.57) yields for rs(t),

drs(t) ≤
(
((LK + Lg)uγ−2 − α)γ|Zt|+ αγ|Qt|+ γ−1L̃u(E[|Zt|] + |Zt|)

)
dt

+
√

8γ−1urc(Zt,Wt)et
T dBrc

t .

By Ito’s formula,

df(rs(t)) ≤ f ′(rs(t))
(
((LK + Lg)uγ−2 − α)γ|Zt|+ αγ|Qt|+ γ−1L̃u(E[|Zt|] + |Zt|)

)
dt

+ f ′(rs(t))
√

8γ−1urc(Zt,Wt)et
T dBrc

t + f ′′(rs(t))4γ−1urc(Zt,Wt)2dt.

Case 1: Consider ∆(t) < DK and |Qt| > ξ, then rc(Zt,Wt) = 1 and rs(t) < R1. Hence, we
obtain

df(rs(t)) ≤ f ′(rs(t))αγrs(t)dt+ f ′′(rs(t))4γ−1udt+ γ−1L̃u(E[|Zt|] + |Zt|)dt

− αγ

2 |Zt|f ′(rs(t))dt+ dMt

≤ −2ĉf(rs(t))dt+ γ−1L̃u(E[|Zt|] + |Zt|)dt−
αγ

2 |Zt|f ′(R1)dt+ dMt

≤ −c2f(rs(t))dt+ γ−1L̃u(E[|Zt|] + |Zt|)dt−
αγ

2 |Zt|f ′(R1)dt+ dMt,
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where (Mt)t≥0 is a martingale and ĉ is given in (C.37). Note that the second step holds since
by (C.36) and (C.39),

f ′(r)αγr + f ′′(r)4γ−1u ≤ −2ĉf(r) for all r ∈ [0, R1). (C.58)

Case 2: Consider ∆(t) < DK and |Qt| ≤ ξ, then α|Zt| = rs(t)− |Qt| ≥ rs(t)− ξ. We note that

((LK + Lg)uγ−2 − α)|Zt|+ α|Qt| ≤ −
1
2rs(t) + (1 + α)ξ.

Since the second derivative of f is negative and ψ(s) ∈ [1/2, 1], it holds

df(rs(t)) ≤ −γ2 rs(t)f ′(rs(t))dt+ (1 + α)γξdt+ γ−1uL̃(E[|Zt|] + |Zt|)dt+ dMt

≤ −γ8 inf
r≤R1

rϕ(r)
Φ(r) f(rs(t))dt− γ

4f
′(R1)α|Zt|dt+ (1 + α)γξdt

+ γ−1L̃u(E[|Zt|] + |Zt|)dt+ dMt

≤ −γ8
R1ϕ(R1)
Φ(R1) f(rs(t))dt− γα

4 f ′(R1)|Zt|dt+ (1 + α)γξdt

+ γ−1L̃u(E[|Zt|] + |Zt|)dt+ dMt.

(C.59)

Combining the two cases, we obtain the result with c2 given in (C.56).

Proof of Theorem C.17. To prove contraction, we consider the coupling ((X̄t, Ȳt), (X̄ ′
t, Ȳ

′
t ))t≥0

given in (C.43) and combine the results of Lemma C.19 and Lemma C.20. We abbreviate
ρ(t) = f((∆(t) ∧DK) + ϵrl(t)). We distinguish two cases:
Case 1: Consider ∆(t) < DK. Then rs(t) ≤ R1 and ρ(t) = f(rs(t)). By Lemma C.20, it holds
for ξ > 0

dρ(t) = df(rs(t))

≤ −c2f(rs(t))dt+ γ−1L̃u(E[|Zt|] + |Zt|)dt−
αγ

4 f ′(R1)|Zt|dt+ (1 + α)γξdt+ dMt

≤ −c2f(rs(t))dt+ γ−1L̃uE[|Zt|]dt−
αγ

8 f ′(R1)|Zt|dt+ (1 + α)γξdt+ dMt, (C.60)

where c2 is given by (C.56) and (Mt)t≥0 is a martingale. The second step holds by (C.25).
Case 2: Consider ∆(t) ≥ DK. We obtain by Lemma C.19,

drl(t) ≤ −c1rl(t)dt+ |(1− 2τ)Zt + 2γ−1Wt|
2γrl(t)

L̃u(E[|Zt|] + |Zt|)dt

+
√

8γ−1urc(Zt,Wt)
(1− 2τ)Zt + 2γ−1Wt

2rl(t)
· etet

T dBt,

where c1 is given in Lemma C.19. Note that d
dxf(DK + ϵx) = ϵf ′(DK + ϵx). Further, since

f(DK + ϵx) is a concave function, d2

dx2 f(DK + ϵx) is negative. By Ito’s formula, we obtain

dρ(t) = df(DK + ϵrl(t))

≤ ϵf ′(DK + ϵrl(t))
(
− c1rl(t) + |(1− 2τ)Zt + 2γ−1Wt|

2γrl(t)
L̃u(E[|Zt|] + |Zt|)

)
dt+ dM̃t,

(C.61)

152



C.6. PROOFS

where M̃t is a martingale given by

M̃t =
∫ t

0

ϵf ′(DK + ϵrl(s))
2rl(s)

√
8γ−1urc(Zs,Ws)((1− 2τ)Zs + 2γ−1Ws) · eses

T dBs. (C.62)

We split the first term of (C.61) and bound each part applying (C.39),

−ϵf
′(DK + ϵrl(t))

2 c1rl(t) ≤ −
{

inf
q≥0

f ′(q)q
f(q)

} ϵc1rl(t)
2(DK + ϵrl(t))

ρ(t) ≤ −f ′(R1) ϵc1rl(t)
2(DK + ϵrl(t))

ρ(t)

(C.63)

and

−ϵf
′(DK + ϵrl(t))

2 c1rl(t) ≤ −f ′(R1)ϵc1
2 rl(t). (C.64)

We note that since ∆(t) > DK it holds,

rl(t)
DK + ϵrl(t)

≥ rl(t)
rs(t) ≥ E , (C.65)

where E is given in (C.30). Hence, we obtain for the first term of (C.61), by (C.63), (C.64) and
(C.65)

−ϵf ′(DK + ϵrl(t))c1rl(t)2 ≤ −f ′(R1)c1ϵE
2 ρ(t)− f ′(R1)c1ϵ

2 rl(t). (C.66)

For the second term of (C.61), we note

ϵf ′(DK + ϵrl(t))
|(1− 2τ)Zt + 2γ−1Wt|

2γrl(t)

≤ ϵ

2γ

√
(1− 2τ)2|Zt|2 + 4(1− 2τ)γ−1Zt ·Wt + 4γ−2|Wt|2

(1/2)(1− 2τ)2|Zt|2 + (1− 2τ)γ−1Zt ·Wt + γ−2|Wt|2
≤ ϵ

γ
. (C.67)

Combining (C.66) and (C.67) yields,

dρ(t) ≤ −f ′(R1)c1ϵE
2 ρ(t)dt− f ′(R1)c1ϵ

2 rl(t)dt+ ϵγ−1L̃u(E[|Zt|] + |Zt|)dt+ dM̃t.

≤ −f ′(R1)c1ϵE
2 ρ(t)dt− f ′(R1)c1ϵ

2

√
κuγ−2|Zt|dt+ 1

2γ
−1L̃u(E[|Zt|] + |Zt|)dt+ dM̃t,

(C.68)

where rl(t) ≥
√
κuγ−2|Zt| and 2ϵ ≤ 1 are applied and where (M̃t)t≥0 is given in (C.62).

Combining (C.60) and (C.68), taking expectation and ξ → 0, yields

d
dtE[ρ(t)] ≤ −min

(
c2, f

′(R1)c1ϵE
2
)
E[ρ(t)]−min

(
f ′(R1)αγ8 , f ′(R1)c1ϵ

2

√
κuγ−2

)
E[|Zt|]

+ γ−1L̃uE[|Zt|]

≤ −min
(
c2, f

′(R1)c1ϵE
2
)
E[ρ(t)],

where we used (C.25) and (C.28) in the second step. By applying Grönwall’s inequality, we
obtain

W1,ρ(µ̄t, ν̄t) ≤ E[ρ(t)] ≤ e−c3tE[ρ(0)]
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with

c3 = min
( 2
γ
∫ R1

0 Φ(s)ϕ(s)−1ds
,
γ

8
R1ϕ(R1)
Φ(R1) , f ′(R1)γτ ϵE4

)
. (C.69)

The term ϵE is bounded from below by E given in (C.22). For the first two arguments in the
minimum we note that∫ R1

0

∫ s

0
exp

(
− αγ2

4u
r2

2
)
dr exp

(αγ2

4u
s2

2
)
ds ≤

√
π

2
(αγ2

4u
)−1/2 ∫ R1

0
exp

(αγ2

4u
s2

2
)
ds

≤
√
π

2
(αγ2

4u
)−1/2

2
(αγ2

4u R1
)−1

exp
(αγ2

4u
R2

1
2
)
≤ 4

(αγ2

4u
)−1(αγ2

4u
R2

1
2
)−1/2

exp
(αγ2

4u
R2

1
2
)

(C.70)

since
∫ x

0 exp(r2/2)dr ≤ 2x−1 exp(x2/2), and

R1ϕ(R1)
Φ(R1) ≥

R1 exp(−αγ2

4u
R2

1
2 )√

π
2 (αγ2

4u )−1/2
= 2√

π

(αγ2

4u
R2

1
2
)1/2

exp
(
− αγ2

4u
R2

1
2
)

≥
(αγ2

4u
R2

1
2
)1/2

exp
(
− αγ2

4u
R2

1
2
)
. (C.71)

Hence, W1,ρ(µ̄t, ν̄t) ≤ E[ρ(t)] ≤ e−c̄tE[ρ(0)] with c given by

c̄ = γ exp(−Λ) min
((LK + Lg)uγ−2

4 Λ1/2,
1
8Λ1/2,

τE

4
)

(C.72)

with Λ, τ and E given in (C.20), (C.21) and (C.22). Taking the infimum over all couplings
ω ∈ Π(µ̄0, ν̄0) concludes the proof of the first result.

By (C.42), the second result holds with M1 = C2/C1 given by (C.24).

Proof of Theorem C.5. Theorem C.5 forms a special case of Theorem C.12. We obtain analo-
gously to Lemma C.19 for ∆(t) ≥ DK,

drl(t) ≤ −c1rl(t)dt+
√

8γ−1urc(Zt,Wt)(rl(t)−1/2)((1− 2τ)Zt + 2γ−1Wt) · etet
T dBt,

where c1 = τγ/2 with τ given in (C.21). Similarly as in Lemma C.20, we get for ∆(t) < DK
using L̃ = 0

df(rs(t)) ≤ −c2f(rs(t))dt+ (1 + α)ξγdt+ dMt,

where Mt is a martingale, α is defined in (C.28), f is defined in (C.36) and c2 is given in (C.56).
Combining the two local contraction results as in the proof of Theorem C.12 gives the desired
result with contraction rate

c = min
( 2
u−1γ

∫ R1
0 Φ(s)ϕ(s)−1ds

,
γ

8
R1ϕ(R1)
Φ(R1) , f ′(R1)γτ ϵE2

)
. (C.73)

Note that the last two terms in the minimum differ by a factor of 2 from the last two terms in
(C.69), as the first terms in (C.61) and (C.59) are not split up to compensate for the interaction
term as in the nonlinear term.
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C.6.3 Proof of Section C.5

Fix N ∈ N. To show propagation in chaos in Theorem C.17 we construct in the same line as in
Appendix C.4.2 a coupling between a solution to (C.3) and N copies of solutions to (C.1). We fix
a positive constant ξ, which we take in the end to the limit ξ → 0. Let {(Bi,rc)t≥0 : i = 1, . . . , N}
and {(Bi,sc)t≥0 : i = 1, . . . , N} be 2N independent d-dimensional Brownian motions and let µ0
and µ̄0 be two probability measures on R2d. The coupling ({(X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )}Ni=1)t≥0 is a

solution to the SDE on R2Nd × R2Nd given by
dX̄i

t = Ȳ i
t dt

dȲ i
t = (−γȲ i

t + ub(X̄i
t) + u

∫
Rd b̃(X̄i

t , z)µ̄x
t (dz))dt+

√
2γusc(Zi

t ,W
i
t )dBi,sc

t

+
√

2γurc(Zi
t ,W

i
t )dBi,rc

t
dXi

t = Y i
t dt

dY i
t = (−γY i

t + ub(Xi
t) + uN−1∑N

j=1 b̃(Xi
t , X

j
t ))dt+

√
2γusc(Zi

t ,W
i
t )dBi,sc

t

+
√

2γurc(Zi
t ,W

i
t )(Id−2ei

te
i
t
T )dBi,rc

t

(X̄i
0, Ȳ

i
0 ) ∼ µ̄0, (Xi

0, Y
i

0 ) ∼ µ0

(C.74)

for i = 1, ..., N , where µ̄x
t = Law(X̄i

t) for all i. Further, Zi
t = X̄i

t − Xi
t , W i

t = Ȳ i
t − Y i

t ,
Qi

t = Zi
t + γ−1W i

t , and ei
t = Qi

t/|Qi
t| if Qi

t ̸= 0 and ei
t = 0 if Qi

t = 0. As in Appendix C.4.2, the
functions rc, sc : R2d → [0, 1) are Lipschitz continuous and satisfy rc2 + sc2 ≡ 1 and (C.44). We
note that by Levy’s characterization, for any solution of (C.74) the processes

Bi
t :=

∫ t

0
sc(Zi

s,W
i
s)dBi,sc

s +
∫ t

0
rc(Zi

s,W
i
s)dBi,rc

s

B̃i
t :=

∫ t

0
sc(Zi

s,W
i
s)dBi,sc

s +
∫ t

0
rc(Zi

s,W
i
s)(Id−ei

se
i
s
T )dBi,rc

s

are d-dimensional Brownian motions. Therefore, (C.74) defines a coupling between N copies
of solutions to (C.1) and a solution to (C.3). The processes ({Zi

t}Ni=1)t≥0, ({W i
t }Ni=1)t≥0 and

({Qi
t}Ni=1)t≥0 satisfy the stochastic differential equations given by

dZi
t = W i

t dt = (Qi
t − γZi

t)dt

dW i
t =

(
− γW i

t + u
(
b(X̄i

t)− b(Xi
t) +

∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)−N−1

N∑
j=1

b̃(Xi
t , X

j
t )
))

dt

+
√

8γurc(Zi
t ,W

i
t )ei

te
i
t
T dBi,rc

t

dQi
t = γ−1u

(
b(X̄i

t)− b(Xi
t) +

∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)−N−1

N∑
j=1

b̃(Xi
t , X

j
t )
)
dt

+
√

8γ−1urc(Zi
t ,W

i
t )ei

te
i
t
T dBi,rc

t ,

(C.75)

for all i = 1, ..., N .
The proof of Theorem C.17 relies on three auxiliary lemmata. We abbreviate ri

l(t) =
rl((X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )), ri

s(t) = rs((X̄i
t , Ȳ

i
t ), (Xi

t , Y
i

t )) and ∆i(t) = ∆((X̄i
t , Ȳ

i
t ), (Xi

t , Y
i

t )).

Lemma C.21. Suppose Assumption C.2 and Assumption C.3 hold. Suppose that (C.18) holds.
Let τ > 0 be given by (C.21). Let ({(X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )}Ni=1)t≥0 be a solution to (C.74). Then for
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i ∈ {1, . . . , N} with ∆i(t) ≥ DK, it holds

dri
l(t) ≤ −c1r

i
l(t)dt+ |(1− 2τ)Zi

t + 2γ−1W i
t |

2γri
l(t)

u
(
L̃N−1

N∑
j=1

(|Zj
t |+ |Zi

t |) +Ai
t

)
dt

+
√

2γ−1rc(Zi
t ,W

i
t )(1− 2τ)Zi

t + 2γ−1W i
t

ri
l(t)

· ei
te

i
t
T dBi

t,

(C.76)

where c1 = τγ/2 and {Ai
t}Ni=1 is given by

Ai
t :=

∣∣∣ ∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)−N−1

N∑
j=1

b̃(X̄i
t , X̄

j
t )
∣∣∣ with µ̄x

t = Law(X̄i
t). (C.77)

Proof. By Ito’s formula, it holds for ({Zi
t ,W

i
t }Ni=1)t≥0 = ({X̄i

t −Xi
t , Ȳ

i
t − Y i

t }Ni=1)t≥0,
dZi

t = W i
t dt

dW i
t = (−γW i

t + u(b(X̄i
t)− b(Xi

t) +N−1∑N
j=1(b̃(X̄i

t , X̄
j
t )− b̃(Xi

t , X
j
t )) + Ãi

t))dt
+
√

8γurc(Zi
t ,W

i
t )ei

te
i
t
T dBi

t,

where

Ãi
t :=

( ∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)−N−1

N∑
j=1

b̃(X̄i
t , X̄

j
t )
)

with µ̄x
t = Law(X̄i

t)

for all i = 1, ..., N . Hence, by Ito’s formula it holds for the positive matrices A,B,C given in
(C.54),

d(Zi
t · (AZi

t) + Zi
t · (BW i

t ) +W i
t · (CW i

t ))

≤ 2(AZi
t) ·W i

t dt+
(
W i

t · (BW i
t )− (BZi

t) · (γW i
t + uKZi

t)
)
dt

+
(
− 2γW i

t · (CW i
t )− 2u(CW i

t ) · (KZi
t) + 2Lgu|C1/2W i

t ||C1/2Zi
t |
)
dt

+ |BZi
t + 2CW i

t |u
(
L̃N−1

N∑
j=1

(|Zj
t |+ |Zi

t |) +Ai
t

)
dt+ Lgu(1− 2τ)γ−1|Zi

t |2 · 1{|Zi
t |<R}dt

+ γ−28γurc(Zi
t ,W

i
t )2dt+

√
8γurc(Zi

t ,W
i
t )(BZi

t + CW i
t ) · ei

te
i
t
T dBi

t

≤ Zi
t · ((−uKB + γ−1L2

gu
2C)Zi

t)dt+ Zi
t · ((2A− γB − 2uKC)W i

t )dt
+W i

t · ((B − γC)W i
t )dt

+ |BZi
t + 2CW i

t |u
(
L̃N−1

N∑
j=1

(|Zj
t |+ |Zi

t |) +Ai
t

)
dt+ (1− 2τ)γ−1Lg|Zi

t |2 · 1{|Zi
t |<R}dt

+ 8γ−1u(rc(Zi
t ,W

i
t ))2dt+

√
8γurc(Zi

t ,W
i
t )(BZi

t + 2CW i
t ) · ei

te
i
t
T dBi

t

with {Ai
t}Ni=1 given by (C.77). By (C.21) and (C.55),

dri
l(t)2 = d(Zi

t · (AZi
t) + Zi

t · (BW i
t ) +W i

t · (CW i
t ))

≤ −2τγri
l(t)2dt+ |(1− 2τ)Zi

t + 2γ−1W i
t |
u

γ

(
L̃N−1

N∑
j=1

(|Zj
t |+ |Zi

t |) +Ai
t

)
dt

+ 8γ−1urc(Zi
t ,W

i
t )2dt+ γ−1(1− 2τ)Lgu|Zi

t |2 · 1{|Zi
t |<R}dt

+
√

8γ−1urc(Zi
t ,W

i
t )((1− 2τ)Zi

t + 2γ−1W i
t ) · ei

te
i
t
T dBi

t.
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Since ∆i(t) ≥ DK, it holds ri
l(t)2 > R by (C.32) and (C.33). By (C.34) and (C.44),

−τγri
l(t)2 + γ−1(1− 2τ)Lgu|Zi

t |21{|Zi
t |<R} + 8γ−1urc(Zi

t ,W
i
t )2

≤ −τγR+ LguR
2γ−1 + 8γ−1u1{R>0} ≤ 0.

By Ito’s formula and since the second derivative of the square root is negative,

dri
l(t) ≤ (2ri

l(t))−1dri
l(t)2

≤ −c1r
i
l(t)dt+ |(1− 2τ)Zi

t + 2γ−1W i
t |

2γri
l(t)

u
(
L̃N−1

N∑
j=1

(|Zj
t |+ |Zi

t |) +Ai
t

)
dt

+
√

2γ−1rc(Zi
t ,W

i
t )ri

l(t)−1((1− 2τ)Zi
t + 2γ−1W i

t ) · ei
te

i
t
T dBi

t,

which concludes the proof.

Lemma C.22. Suppose Assumption C.2 and Assumption C.3 hold. Let ({X̄i
t , Ȳ

i
t , X

i
t , Y

i
t }Ni=1)t≥0

be a solution to (C.74). Let rs be given in (C.27) with α defined in (C.28). If ∆i(t) < DK with
DK given in (C.32), it holds

df(ri
s(t)) ≤ −c2f(ri

s(t))dt+ γ−1L̃uN−1
N∑

j=1
(|Zj

t |+ |Zi
t |)dt−

αγ

4 f ′(R1)|Zi
t |dt

+ γ−1u
∣∣∣ ∫

Rd
b̃(X̄i

t , z)µ̄t(dz)−N−1
N∑

j=1
b̃(X̄i

t , X̄
j
t )
∣∣∣dt+ (1 + α)γξdt+ dM i

t ,

where f is given in (C.36), (M i
t )t≥0 is a martingale and c2 is given in (C.56).

Proof. The proof works similarly as the proof of Lemma C.20. First, note that for all i, (Zi
t)t≥0

is almost surely continuously differentiable with derivative dZi/dt = −γZi + γQi and hence
t→ |Zi

t | is almost surely absolutely continuous with

d
dt |Z

i
t | =

Zi
t

|Zi
t |
· (−γZi

t + γQi
t) for a.e. t such that Zi

t ̸= 0 and

d
dt |Z

i
t | ≤ γ|Qi

t| for a.e. t such that Zi
t = 0.

and therefore
d
dt |Z

i
t | ≤ −γ|Zi

t |+ γ|Qi
t| for a.e. t ≥ 0. (C.78)

By Ito’s formula and by Assumption C.2 and Assumption C.3, we obtain for |Qi
t|,

d|Qi
t| = γ−1uei

t ·
(
b(X̄i

t)− b(Xi
t) +

∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)−N−1

N∑
j=1

b̃(Xi
t , X

j
t )
)
dt

+
√

8γ−1urc(Zi
t ,W

i
t )ei

t
T dBi

t

≤ γ−1u(LK + Lg)|Zi
t |dt+ γ−1u(Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |))dt

+
√

8γ−1urc(Zi
t ,W

i
t )ei

t
T dBi,rc

t ,

157



APPENDIX C. GLOBAL CONTRACTIVITY FOR LANGEVIN DYNAMICS

where Ai
t is given by (C.77). Note that there is no Ito correction term, since ∂2

q/|q||q| = 0 for
q ̸= 0 and rc = 0 for Qt = 0. Combining this bound and (C.78) yields for f(ri

s(t)) by Ito’s
formula,

df(ri
s(t)) = f ′(ri

s(t))
(
((LK + Lg)uγ−2 − α)γ|Zi

t |+ αγ|Qi
t|

+ γ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
))

dt

+ f ′(ri
s(t))

√
8γ−1urc(Zi

t ,W
i
t )(ei

t)T dBi,rc
t + f ′′(ri

s(t))4γ−1urc(Zi
t ,W

i
t )2dt.

Case 1: Consider ∆i(t) < DK and |Qi
t| > ξ, then rc(Zi

t ,W
i
t ) = 1 and ri

s(t) < R1. Hence, by
(C.58) we obtain

df(ri
s(t)) ≤ f ′(ri

s(t))αγri
s(t)dt+ f ′′(ri

s(t))4γ−1udt+ γ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt

− f ′(R1)1
2γα|Z

i
t |dt+ dM i

t

≤ −2ĉf(ri
s(t))dt+ γ−1u

(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt− f ′(R1)γα2 |Z

i
t |dt+ dM i

t

≤ −c2f(ri
s(t))dt+ γ−1u

(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt− f ′(R1)γα2 |Z

i
t |dt+ dM i

t .

Case 2: Consider ∆i(t) < DK and |Qi
t| ≤ ξ, then α|Zi

t | = ri
s(t)− |Qi

t| ≥ ri
s(t)− ξ. We note that

((LK + Lg)uγ−2 − α)|Zi
t |+ α|Qi

t| ≤ −
1
2r

i
s(t) + (1 + α)ξ.

Since the second derivative of f is negative and ψ(s) ∈ [1/2, 1], it holds

df(ri
s(t)) ≤ −γ2 r

i
s(t)f ′(rs(t))dt+ (1 + α)γξdt+ γ−1u

(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt+ dM i

t

≤ −γ8 inf
r≤R1

rϕ(r)
Φ(r) f(ri

s(t))dt− γα

4 |Z
i
t |f ′(R1)dt+ (1 + α)γξdt

+ γ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt+ dM i

t

≤ −γ8
R1ϕ(R1)
Φ(R1) f(ri

s(t))dt− γα

4 |Z
i
t |f ′(R1)dt+ (1 + α)γξdt

+ γ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt+ dM i

t .

Combining the two cases, we obtain the result by using the definition of c2 given in (C.56).

Lemma C.23. (Moment control for Langevin dynamics) Suppose that Assumption C.2 and
Assumption C.3 hold. Suppose that (C.18) and (C.25) hold. Let (X̄t, Ȳt)t≥0 be a solution to
(C.1) with E[|X̄0|2 + |Ȳ0|2] ≤ ∞. Then there exists a finite constant C2 > 0 such that

sup
t≥0

E[|X̄t|2] ≤ C2.

158



C.6. PROOFS

The constant C2 depends on γ, E[|X̄0|2 + |Ȳ0|2], d, R, κ, Lg, u and L̃.

Proof. We adapt the proof idea from [75, Lemma 8]. By Ito’s formula, by Assumption C.2 and
by Assumption C.3, it holds

d(γ−2uX̄t · (KX̄t) + 1
2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1

2γ
−2|Ȳt|2)

≤
(
2γ−2uX̄t · (KȲt) + (1− 2τ)2X̄t · Ȳt + γ−1(1− 2τ)|Ȳt|2

)
dt

+ γ−1(1− 2τ)
(
− uX̄t · (KX̄t)− γX̄t · Ȳt

)
dt+ 2γ−2

(
− u(KȲt) · X̄t + Lg|Ȳt||X̄t| − γ|Ȳt|2

)
dt

+ u

γ
|(1− 2τ)X̄t + 2γ−1Ȳt|

(
L̃(E[|X̄t|] + |Xt|) + |b̃(0, 0)|

)
dt

+ (1− 2τ)γ−1u(Lg|X̄t|2 + |g(0)||X̄t|)1{|X̄t|<R}dt+ 2γ−2u|Ȳt||g(0)|dt+ 2γ−1uddt

+
√

2γ−1u((1− 2τ)X̄t + 2γ−1Ȳt)dBt

≤ −γ−1u(1− 2τ)X̄t · (KX̄t)− 2τγ(γ−2|Ȳt|2 + (1− 2τ)γ−1X̄t · Ȳt) + γ−3u2L2
g|X̄t|2

+ u

γ
|(1− 2τ)X̄t + 2γ−1Ȳt|(L̃(E[|X̄t|] + |Xt|) + |b̃(0, 0)|)dt

+ (1− 2τ)γ−1u(Lg|X̄t|2 + |g(0)||X̄t|)1{|X̄t|<R}dt

+ 2γ−2u|Ȳt||g(0)|dt+ 2γ−1uddt+
√

2γ−1u((1− 2τ)X̄t + 2γ−1Ȳt)dBt

Taking expectation, we obtain

d
dtE[γ−2uX̄t · (KX̄t) + 1

2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2]

≤ −γ−1u(1− 2τ)E[X̄t · (KX̄t)] + γ−3u2L2
gE[|X̄t|2]

− 2τγ
(
γ−2E[|Ȳt|2] + (1− 2τ)γ−1E[X̄t · Ȳt]

)
+ (1− 2τ)γ−1u(LgR

2 +R|g(0)|) + 2γ−1ud

+ uγ−1E
[
|(1− 2τ)X̄t + 2γ−1Ȳt|

(
L̃(E[|Xt|] + |Xt|) + |b̃(0, 0)|

)]
+ 2γ−2uE[|Ȳt|]|g(0)|.

We note that by (C.25) and by Young’s inequality,

γ−1E[|(1− 2τ)X̄t + 2γ−1Ȳt|u(L̃(E[|X̄t|] + |X̄t|) + |b̃(0, 0)|)]

≤ τ
√
κu

8 E[|(1− 2τ)X̄t + 2γ−1Ȳt|(E[|X̄t|] + |X̄t|)] + γ−1uE[|(1− 2τ)X̄t + 2γ−1Ȳt|]|b̃(0, 0)|

≤ τγ

4
(
κuγ−2E[|X̄t|2] + 1

4E[|(1− 2τ)X̄t + 2γ−1Ȳt|2]
)

+ τγ

4
1
4E[|(1− 2τ)X̄t + 2γ−1Ȳt|2]

+ 4u2

τγ3 |b̃(0, 0)|2

≤ τγ

2
(
κuγ−2E[|X̄t|2] + 1

2E[|(1− 2τ)X̄t + γ−1Ȳt|2] + 1
2E[|γ−1Ȳt|2]

)
+ 4u2

τγ3 |b̃(0, 0)|2

and

2γ−2uE[|Ȳt|]|g(0)| ≤ τγ

2
1
2E[|γ−1Ȳt|2] + 4u2

τγ3 |g(0)|2.
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Then by (C.55),

d
dtE

[
γ−2uX̄t · (KX̄t) + 1

2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]

≤ −2τγE
[
γ−2uX̄t · (KX̄t) + 1

2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]

+ (1− 2τ)γ−1uLgR
2

+ 2γ−1ud+ τγ
(
κγ−2E[|X̄t|2] + 1

2E[|(1− 2τ)X̄t + γ−1Ȳt|2 + |γ−1Ȳt|2]
)

+ 4τ−1γ−3u2(|b̃(0, 0)|2 + |g(0)|2)

≤ −τγE
[
γ−2uX̄t · (KX̄t) + 1

2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]

+ (1− 2τ)γ−1LguR
2

+ 2γ−1ud+ 4τ−1γ−3u2(|b̃(0, 0)|2 + |g(0)|2).

By Grönwall’s inequality, there exists a constant C such that

sup
t≥0

E
[
γ−2uX̄t · (KX̄t) + 1

2 |(1− 2τ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]
≤ C <∞.

Thus, we obtain the result for C2 = C/(κuγ−2).

Proof of Theorem C.17. To prove uniform in time propagation of chaos, we consider the coupling
({(X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )}Ni=1)t≥0 given in (C.74) and combine the results of Lemma C.21 and

Lemma C.22. The second moment control given in Lemma C.23 will be essential to bound
the terms involving the non-linearity. We write here ri

s(t) = ri
s((X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )), ri

l(t) =
ri

l((X̄i
t , Ȳ

i
t ), (Xi

t , Y
i

t )), ∆i(t) = ri
s(t)− ϵri

l(t) and ρi(t) = f((∆i(t)∧DK) + ϵri
l(t)). We distinguish

two cases for all particles i = 1, ..., N :
Case 1: Consider ∆i(t) < DK. Then ρi(t) = f(ri

s(t)), and by Lemma C.22 it holds for ξ > 0

dρi(t) = df(ri
s(t)) ≤ −c2f(ri

s(t))dt+ γ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt− αγ

4 f ′(R1)|Zi
t |dt

+ (1 + α)γξdt+ dM i
t

≤ −c2f(ri
s(t))dt+ γ−1u

(
Ai

t +N−1
N∑

j=1
L̃|Zj

t |
)
dt− αγ

8 f ′(R1)|Zi
t |dt+ (1 + α)γξdt+ dM i

t ,

(C.79)

where Ai
t is given in (C.77) and c2 is given by (C.56). Note the last step holds by (C.25).

Case 2: Consider ∆i(t) ≥ DK. We obtain by Lemma C.21,

dri
l(t) ≤ −c1r

i
l(t)dt+ |(1− 2τ)Zi

t + 2γ−2W i
t |

2γri
l(t)

u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt

+
√

2γ−1urc(Zi
t ,W

i
t )ri

l(t)−1((1− 2τ)Zi
t + 2γ−1W i

t ) · ei
te

i
t
T dBi

t

with c1 given in Lemma C.21. Note that d
dxf(DK+ϵx) = ϵf ′(DK+ϵx). Further, since f(DK+ϵx)
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is a concave function, d2

dx2 f(DK + ϵx) is negative. By Ito’s formula, we obtain

dρi(t) = df(DK + ϵri
l(t))

≤ ϵf ′(DK + ϵri
l(t))

(
− c1r

i
l(t)2 + |(1− 2τ)Zi

t + 2γ−1W i
t |

2γri
l(t)

u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
))

dt

+ ϵf ′(DK + ϵri
l(t))

ri
l(t)

√
2γ−1urc(Zi

t ,W
i
t )((1− 2τ)Zi

t + 2γ−1W i
t ) · ei

te
i
t
T dBi

t.

By (C.66) and (C.67), which holds in the same line as in the proof of Theorem C.12, it holds

dρi(t) ≤ −f ′(R1)c1ϵ

2 min
(√κuγ−1
√

8α
,

1
2
)
ρi(t)dt− f ′(R1)c1ϵ

2

√
κuγ−2|Zi

t |dt

+ 2ϵγ−1u
(
Ai

t +N−1
N∑

j=1
L̃(|Zj

t |+ |Zi
t |)
)
dt+ dM i

t ,

(C.80)

where ({M i
t}Ni=1)t≥0 is some martingale.

Combining (C.79) and (C.80), taking expectations and summing over i = 1, . . . , N yields

d
dtE

[
N−1

N∑
i=1

ρi(t)
]

≤ −min
(
c2, f

′(R1)c1ϵ

2 min
(√κuγ−1
√

8α
,

1
2
))

E
[
N−1

N∑
i=1

ρi(t)
]

+ γ−1uE
[
N−1

N∑
i=1

Ai
t

]

−min
(
f ′(R1)γα8 , f ′(R1)c1ϵ

2

√
κuγ−2

)
E
[
N−1

N∑
i=1
|Zi

t |
]

+ L̃uγ−1E
[
N−1

N∑
i=1
|Zi

t |
]

≤ −min
(
c2, f

′(R1)c1ϵ

4 min
(√κuγ−1
√

8α
,

1
2
))

E
[
N−1

N∑
i=1

ρi(t)
]

+ γ−1uE
[
N−1

N∑
i=1

Ai
t

]
,

(C.81)

where we used 2ϵ ≤ 1 for the last term and (C.25).
To bound E[Ai

t], we note that given X̄i
t , X̄

j
t , j ̸= i are identically and independent distributed

with law µ̄x
t and

E[b̃(X̄i
t , X̄

j
t )|X̄i

t ] =
∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz). (C.82)

Hence,

E
[
|
∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)− 1

N

N∑
j=1

b̃(X̄i
t , X̄

j
t )|2

∣∣∣X̄i
t

]
= N − 1

N2 Varµ̄x
t
(b̃(X̄i

t , ·)) + 1
N2E

[
|
∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)− b̃(X̄i

t , X̄
i
t)|2

∣∣∣X̄i
t

]
+ 2
N2

N∑
j=1,j ̸=i

E
[
|
∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)− b̃(X̄i

t , X̄
j
t )| · |

∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)− b̃(X̄i

t , X̄
i
t)|
∣∣∣X̄i

t

]
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By Assumption C.3, Cauchy inequality and Young’s inequality

E
[∣∣∣ ∫

Rd
b̃(X̄i

t , z)µ̄x
t (dz)− 1

N

N∑
j=1

b̃(X̄i
t , X̄

j
t )
∣∣∣2] ≤ 4L̃2

N

∫
Rd
|x|2µ̄x

t (dx) + 4L̃2

N2

∫
Rd
|x|2µ̄x

t (dx)

+ 8L̃2

N

∫
Rd
|x|2µ̄x

t (dx).
(C.83)

Then, by Jensen’s inequality

E[Ai
t] ≤

4L̃
N1/2

( ∫
Rd
|x|2µ̄x

t (dx)
)1/2

.

By Lemma C.23, there exists a finite constant C1 such that for N ≥ 2 and all i = 1, ..., N ,

sup
t≥0

E[Ai
t] ≤ γu−1C1N

−1/2. (C.84)

Note that C1 depends on γ, E[|X̄0|2 + |Ȳ0|2], d, u, R, κ, Lg and L̃. Inserting the bound for E[Ai
t]

in (C.81) yields

d
dtE

[
N−1

N∑
i=1

ρi(t)
]
≤ −min

(
c2, f

′(R1)c1ϵ

2 min
(√κuγ−1
√

8α
,

1
2
))

E
[
N−1

N∑
i=1

ρi(t)
]

+ C1
N1/2 .

Applying Grönwall’s inequality and (C.70) and (C.71) yields

W1,ρN (µ̄⊗N
t , µN

t ) ≤ E
[
N−1

N∑
i=1

ρi(t)
]
≤ e−c̃tE

[
N−1

N∑
i=1

ρi(0)
]

+ C1N
−1/2c̃−1.

with c̃ given in (C.72). Taking the infimum over all couplings ω ∈ Π(µ̄⊗
0 , µ

N
0 ) concludes the

proof of the first result.
The second bound holds by (C.47) with M1 given in (C.24) and M2 =

√
2/C1 given in

(C.48).

C.7 Appendix: Unconfined nonlinear Langevin dynamics

C.7.1 Contraction for unconfined nonlinear Langevin dynamics

Consider the unconfined nonlinear Langevin dynamics given by{
dX̄t = Ȳtdt
dȲt = (−γȲt + u

∫
Rd b̃(X̄t, z)µ̄x

t (dz))dt+
√

2γudBt, (X̄0, Ȳ0) ∼ µ̄0,
(C.85)

where γ, u > 0, µ̄0 is a probability measure on R2d, µ̄x
t = Law(X̄t) and (Bt)t≥0 is a d-dimensional

standard Brownian motion. We impose for the function b̃ and for the initial distribution:

Assumption C.4. The function b̃ : R2d → Rd is Lipschitz continuous, and there exist a function
g̃ : Rd → Rd and a positive definite matrix K̃ ∈ Rd×d with smallest eigenvalue κ̃ ∈ (0,∞) and
largest eigenvalue LK̃ ∈ (0,∞) such that

b̃(x, y) = −K̃(x− y) + g̃(x− y) for all x, y ∈ Rd,

and g̃ is Lipschitz continuous with Lipschitz constant Lg̃ ∈ (0,∞) and anti-symmetric, i.e.,
g̃(−z) = −g̃(z) for all z ∈ Rd.
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Assumption C.5. Let µ̄0 ∈ P(R2d) satisfy
∫
R2d |(x, y)|2µ̄0(dxdy) <∞ and

∫
R2d(x, y)µ̄0(dxdy) =

0.

By Assumption C.4, it holds d
dtE[(Xt, Yt)] = E[(Yt,−γYt)] and hence by Assumption C.5

E[(Xt, Yt)] = 0 for all t ≥ 0. Note that this observation is crucial in our analysis, since in
general convergence to equilibrium can not be guaranteed for the unconfined dynamics unless
the solution is centered or a recentering of the center of mass is considered.

We establish contraction in Wasserstein distance with respect to the distance function r̃ :
R2d × R2d → [0,∞) given by

r̃((x, y), (x̄, ȳ))2 = γ−2u(x− x̄) · (K̃(x− x̄)) + 1
2 |(1− 2σ)(x− x̄) + γ−1(y − ȳ)|2

+ 1
2γ

−2|y − ȳ|2,
(C.86)

for (x, y), (x̄, ȳ) ∈ R2d where σ is given by

σ = min(1/8, κ̃uγ−2/2). (C.87)

Theorem C.24 (Contraction for nonlinear unconfined Langevin dynamics in L2 and L1 Wasser-
stein distance). Suppose Assumption C.4 holds. Let µ̄0 and ν̄0 be two probability distributions
on R2d satisfying Assumption C.5. For t ≥ 0, let µ̄t and ν̄t be the law of the processes (X̄t, Ȳt)
and (X̄ ′

t, Ȳ
′

t ), respectively, where (X̄s, Ȳs)s≥0 and (X̄ ′
s, Ȳ

′
s )s≥0 are solutions to (C.85) with initial

distribution µ̄0 and ν̄0, respectively. If

Lg̃ ≤
√
κ̃/u(γ/2) min(1/8, κ̃uγ−2/2), (C.88)

then

W2,r̃(µ̄t, ν̄t) ≤ e−ĉtW2,r̃(µ̄0, ν̄0) and W2(µ̄t, ν̄t) ≤M3e
−ĉtW2(µ̄0, ν̄0), (C.89)

where r̃ is defined in (C.86) and where the contraction rate ĉ is given by

ĉ = min(γ/16, κ̃γ−1/4). (C.90)

The constant M3 is given by

M3 = max(
√
LK̃u+ γ2,

√
3/2) max(

√
(κ̃u)−1,

√
2). (C.91)

Moreover, there exists a unique invariant probability measure µ̄∞ for (C.85) and convergence in
L2 Wasserstein distance to µ̄∞ holds.

If

Lg̃ ≤
√
κ̃/u(γ/4) min(1/8, κ̃γ−2/2), (C.92)

then

W1,r̃(µ̄t, ν̄t) ≤ e−ĉtW1,r̃(µ̄0, ν̄0) and W1(µ̄t, ν̄t) ≤M3e
−ĉtW1(µ̄0, ν̄0) (C.93)

and convergence in L1 Wasserstein distance to µ̄∞ holds.

Proof. The proof uses a synchronous coupling and is postponed to Appendix C.7.3.
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Remark C.25. Note that (C.89) implies directly a bound in Lp Wasserstein distance for 1 ≤ p <
2, i.e., by Jensen’s inequality it holds Wp(µ̄t, ν̄t) ≤ W2(µ̄t, ν̄t) ≤ M0M3e

−ĉtWp(µ̄0, ν̄0), where
M0 = W2(µ̄0, ν̄0)/Wp(µ̄0, ν̄0). The additional constant M0 is finite by Assumption C.5, but
it might be very large. Here, contraction in L1 Wasserstein distance is stated separately and
(C.93) is proven directly.
Remark C.26. By (C.88) and (C.92), it holds Lg̃ ≤ κ̃/8 and Lg̃ ≤ κ̃/16, respectively. Hence, con-
traction is proven for b̃ being a small perturbation of a linear function. Further, the contraction
rate is maximized for γ = 2

√
κ̃u.

Remark C.27. Note that the underlying distance r̃ is defined similarly as rl in (C.26) and
coincides with ρ defined in (C.35) if K̃ = K, σ = τ and K = {(0, 0)}. Moreover, r̃ is equivalent
to the Euclidean distance on R2d, i.e.,

min(κ̃u/2, 1/4)γ−2(|x− x̄|+ |y − ȳ|)2 ≤ min(κ̃u, 1/2)γ−2|(x, y)− (x̄, ȳ)|2 ≤ r̃((x, y), (x̄, ȳ))2

≤ max(LK̃uγ
−2 + 1, (3/2)γ−2)|(x, y)− (x̄, ȳ)|2

≤ max(LK̃uγ
−2 + 1, (3/2)γ−2)(|x− x̄|+ |y − ȳ|)2.

(C.94)

C.7.2 Uniform in time propagation of chaos in the unconfined case

Next, we establish uniform in time propagation of chaos bounds for the unconfined Langevin
dynamics. Fix N ∈ N. We consider the functions ρ̂N , ρ̃N : R2Nd × R2Nd → [0,∞) given by

ρ̂N ((x, y), (x̄, ȳ))2 := N−1
N∑

i=1
r̃(π(x, y), π(x̄, ȳ))2, and (C.95)

ρ̃N ((x, y), (x̄, ȳ)) := N−1
N∑

i=1
r̃(π(x, y), π(x̄, ȳ)) for all x, y, x̄, ȳ ∈ RNd, (C.96)

where r̃ is given in (C.86) and π : R2Nd → R2Nd is given by

π(x, y) =
(
xi −N−1

N∑
j=1

xj , yi −N−1
N∑

j=1
yj
)N

i=1
for (x, y) ∈ R2Nd. (C.97)

The function π defines a projection from R2Nd to the hyperplane HN = {(x, y) ∈ R2Nd :
(
∑

i x
i,
∑

i y
i) = 0}. We note that distances ρ̂N and ρ̃N are equivalent to ℓ̃pN given by

ℓ̃pN ((x, y), (x̄, ȳ)) = ℓpN (π(x, y), π(x̄, ȳ)), for all x, y, x̄, ȳ ∈ RNd, (C.98)

with p = 1 and p = 2, respectively.

Theorem C.28 (Propagation of chaos for unconfined Langevin dynamics in L2 and L1 Wasser-
stein distance). Suppose Assumption C.4 holds. Let µ̄0 and µ0 be two probability distribu-
tions on R2d satisfying Assumption C.5. For t ≥ 0, let µ̄t be the law of the process (X̄t, Ȳt),
where (X̄s, Ȳs)s≥0 is a solution to (C.85) with initial distribution µ̄0. Let µN

t be the law of
{Xi,N

t , Y i,N
t }Ni=1, where ({Xi,N

s , Y i,N
s }Ni=1)s≥0 is a solution to (C.3) with b = 0 and with initial

distribution µN
0 = µ⊗N

0 . If Lg̃ satisfies (C.88), then

W2,ρ̂N
(µ̄⊗N

t , µN
t ) ≤ e−ĉ/2tW2,ρ̂N

(µ̄⊗N
0 , µN

0 ) + ĉ−1/2C3N
−1/2 and

W2,ℓ̃2
N

(µ̄N
t , µ

N
t ) ≤

√
2M3e

−ĉ/2tW2,ℓ̃2
N

(µ̄N
0 , µ

N
0 ) +M4ĉ

−1/2C3N
−1/2,
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where ĉ, l̃2N and M3 are given in (C.90), (C.98) and (C.91), respectively. The constant M4 is
given by

M4 = γmax(
√

2/κ̃, 2). (C.99)

and C3 is a positive constant depending on γ, d, κ̃, LK̃ , Lg̃, u and on the second moment of µ̄0.
If Lg̃ satisfies (C.92), then

W1,ρ̃N (µ̄⊗N
t , µN

t ) ≤ e−ĉtW1,ρ̃N (µ̄⊗N
0 , µN

0 ) + ĉ−1C4N
−1/2 and

W1,ℓ̃1
N

(µ̄⊗N
t , µN

t ) ≤
√

2M3e
−ĉtW1,ℓ̃1

N
(µ̄⊗N

0 , µN
0 ) +M4ĉ

−1C4N
−1/2,

where C4 is a positive constant depending on γ, d, κ̃, LK̃ , Lg̃, u and on the second moment of
µ̄0.

Proof. The proof is postponed to Appendix C.7.3.

Remark C.29. For t ≥ 0, let µN
t and νN

t denote the law of {Xi,N
t , Y i,N

t }Ni=1 and {X ′
t
i,N , Y ′

t
i,N}Ni=1,

where the processes ({Xi,N
s , Y i,N

s }Ni=1)s≥0 and ({X ′
s
i,N , Y ′

s
i,N}Ni=1)s≥0 are solutions to (C.3) with

initial distributions µN
0 and νN

0 , respectively, and for which Assumption C.4 is supposed. An
easy adaptation of the proof of Theorem C.17 shows that if (C.88) holds, then

W2,ρ̂N
(µN

t , ν
N
t ) ≤ e−ĉtW2,ρ̂N

(µN
0 , ν

N
0 ) and W2,ℓ̃2

N
(µN

t , ν
N
t ) ≤

√
2M3e

−ĉtW2,ℓ̃2
N

(µN
0 , ν

N
0 ),

and if (C.92) holds, then

W1,ρ̃N (µN
t , ν

N
t ) ≤ e−ĉtW1,ρ̃N (µN

0 , ν
N
0 ) and W1,ℓ̃1

N
(µN

t , ν
N
t ) ≤

√
2M3e

−ĉtW1,ℓ̃1
N

(µN
0 , ν

N
0 ),

where ĉ and M3 are given in (C.90) and (C.91), respectively. For the proof, a coupling of two
copies of N particle systems is constructed in the same line as (C.108). As it will clarify by an
inspection of the proof of Theorem C.17, we can obtain a slightly better contraction rate in L2

Wasserstein distance for the particle system compared to the rate in the propagation of chaos
result.

C.7.3 Proof of Section C.7.1 and Section C.7.2

Proof of Theorem C.24. Given two probability measures µ̄0, ν̄0 on R2d and a d-dimensional
Brownian motion (Bt)t≥0, we consider the synchronous coupling ((X̄t, Ȳt), (X̄ ′

t, Ȳ
′

t ))t≥0 of two
copies of solutions to (C.85) on R2d × R2d given by{

dX̄t = Ȳtdt
dȲt = (−γȲt + u

∫
Rd b̃(X̄t, z)µ̄x

t (dz))dt+
√

2γudBt, (X̄0, Ȳ0) ∼ µ̄0,{
dX̄ ′

t = Ȳ ′
t dt

dȲ ′
t = (−γȲ ′

t + u
∫
Rd b̃(X̄ ′

t, z̃)ν̄x
t (dz̃))dt+

√
2γudBt, (X̄ ′

0, Ȳ
′

0) ∼ ν̄0,

(C.100)

where µ̄x
t = Law(X̄t), ν̄x

t = Law(X̄ ′
t). We set Z̃t = X̄t−X̄ ′

t and W̃t = Ȳt−Ȳ ′
t . By Assumption C.4

the process (Z̃t, W̃t)t≥0 satisfies
dZ̃t = W̃tdt
dW̃t = (−γW̃t + u

∫
Rd b̃(X̄t, z)µ̄x

t (dz)− u
∫
Rd b̃(X̄ ′

t, z̃)ν̄x
t (dz̃))dt

= (−γW̃t − uK̃Z̃t + u
∫
Rd g̃(X̄t − z)µ̄t(dz)− u

∫
Rd g̃(X̄ ′

t − z̃)ν̄t(dz̃))dt,
(C.101)
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where we used that E[Z̃t] = 0, which holds by Assumption C.4 and Assumption C.5. Let
Ã, B̃, C̃ ∈ Rd×d be positive definite matrices given by

Ã = γ−2uK̃ + (1/2)(1− 2σ)2Id, B̃ = (1− 2σ)γ−1Id, and C̃ = γ−2Id, (C.102)

where σ is given by (C.87). Then, by Ito’s formula,

d
dt(Z̃t · (ÃZ̃t) + Z̃t · (B̃W̃t) + W̃t · (C̃W̃t))

≤ 2(ÃZ̃t) · W̃tdt+ (W̃t · (B̃W̃t)− (BZ̃t) · (γW̃t + uK̃Z̃t))dt− 2(C̃W̃t) · (γW̃t + uK̃Z̃t)dt
+ Lg̃u|B̃Z̃t + 2C̃W̃t|(|Z̃t|+ E[|Z̃t|])dt
≤ Z̃t · ((−uK̃B̃)Z̃t) + Z̃t · (2Ã− γB̃ − 2uK̃C̃)W̃t + W̃t · ((B̃ − γC̃)W̃t)

+ Lg̃u|B̃Z̃t + 2C̃W̃t|(|Z̃t|+ E[|Z̃t|])
≤ −2σγ(Z̃t · (ÃZ̃t) + Z̃t · (B̃W̃t) + W̃t · (C̃W̃t)) + Lg̃u|B̃Z̃t + 2C̃W̃t|(|Z̃t|+ E[|Z̃t|]),

where we applied (C.87) in the last step More precisely, it holds for all z ∈ Rd

z · ((−uK̃(1− 4σ)γ−1)z) ≤ −(κ̃u/2)γ−1|z|2 ≤ −γσ|z|2 ≤ −γσ(1− 2σ)2|z|2 (C.103)

and therefore z · ((−uK̃(1− 2σ)γ−1)z) ≤ −2γσ(κ̃uγ−2 + (1/2)(1− 2σ)2)|z|2.
Then for r̃(t) = r̃((X̄t, Ȳt), (X̄ ′

t, Ȳ
′

t )) = (Z̃t · (ÃZ̃t) + Z̃t · (B̃W̃t) + W̃t · (C̃W̃t))1/2 given in
(C.86),

dr̃(t)2 ≤ −2σγr̃(t)2dt+ Lg̃uγ
−1|(1− 2σ)Z̃t + 2γ−1W̃t|(|Z̃t|+ E[|Z̃t|])dt. (C.104)

By taking expectation, it holds

d
dtE[r̃(t)2] ≤ −2σγE[r̃(t)2] + Lg̃uγ

−1E[|(1− 2σ)Z̃t + 2γ−1W̃t|(|Z̃t|+ E[|Z̃t|])]. (C.105)

By (C.88), (C.87) and Young’s inequality, we obtain for the last term

Lg̃uγ
−1E[|(1− 2σ)Z̃t + 2γ−1W̃t|(|Z̃t|+ E[|Z̃t|])]

≤ σ
√
κ̃u

2 E[|(1− 2σ)Z̃t + 2γ−1W̃t|(|Z̃t|+ E[|Z̃t|]]

≤ σγ
(
κ̃uγ−2E[|Z̃t|2] + 1

4E[|(1− 2σ)Z̃t + 2γ−1W̃t|2]
)

≤ σγ
(
κ̃uγ−2E[|Z̃t|2] + 1

2E[|(1− 2σ)Z̃t + γ−1W̃t|2] + 1
2E[|W̃t|2]

)
≤ σγE[r̃(t)2].

(C.106)

By inserting this bound in (C.105), we obtain by Grönwall’s inequality,

W2,r̃(µ̄t, ν̄t)2 ≤ E[r̃(t)2] ≤ e−2ĉtE[r̃(0)2]

with ĉ given in (C.90). By taking the square root and the infimum over all couplings ω ∈
Π(µ̄0, ν̄0), we obtain the first result in L2 Wasserstein distance. The second bound holds by
(C.94) with M3 given by (C.91). To obtain contraction in L1 Wasserstein distance, we take the
square root in (C.104),

dr̃(t) ≤ −σγr̃(t)dt+ Lg̃uγ
−1 |(1− 2σ)Z̃t + 2γ−1W̃t|

2r̃(t) (|Z̃t|+ E[|Z̃t|])dt

≤ −σγr̃(t)dt+ Lg̃uγ
−1(|Z̃t|+ E[|Z̃t|])dt,
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where the last step holds by

|(1− 2σ)Z̃t + 2γ−1W̃t|
2r̃(t)

≤ 1
2
( (1− 2σ)2|Z̃t|2 + 4(1− 2σ)γ−1Z̃t · W̃t + 4γ−2|W̃t|2

(κ̃uγ−2 + (1/2)(1− 2σ)2)|Z̃t|2 + (1− 2σ)γ−1Z̃t · W̃t + γ−2|W̃t|2
)1/2

≤ 1.
(C.107)

Taking expectation and applying (C.92) we obtain

d
dtE[r̃(t)] ≤ −σγE[r̃(t)] + 2Lg̃uγ

−1E[|Z̃t|] ≤ −σγE[r̃(t)] + σγ

2 E[
√
κ̃uγ−2|Z̃t|] ≤ −

σγ

2 E[r̃(t)].

Hence by Grönwall’s inequality,

W1,r̃(µ̄t, ν̄t) ≤ e−ĉtE[r̃(0)],

where ĉ is given in (C.90). Taking the infimum over all couplings ω ∈ Π(µ̄0, ν̄0), we obtain the
first bound in L1 Wasserstein distance. The second bound follows by (C.94) with M3 given in
(C.91).

To prove Theorem C.28, we establish a second moment bound of the solution to the nonlinear
unconfined Langevin equation.

Lemma C.30 (Moment control for unconfined Langevin dynamics). Suppose that Assump-
tion C.4 and (C.88) hold. Let (X̄t, Ȳt)t≥0 be a solution to (C.85) with initial distribution satis-
fying Assumption C.5. Then there exists a finite constant C5 > 0 such that

sup
t≥0

E[|X̄t|2] ≤ C5.

The constant C5 depends on γ, d, κ̃, Lg̃, u and on the second moment of the initial distribution.

Proof. As in the proof of Lemma C.23, we adapt the proof idea from [75, Lemma 8]. First, we
note that by Assumption C.4 and Assumption C.5, E[X̄t] = E[Ȳt] = 0 for all t ≥ 0, since by
anti-symmetry of g̃

d
dtE[X̄t] = E[Ȳt],

d
dtE[Ȳt] = −γE[Ȳt],

and E[X̄0] = E[Ȳ0] = 0. Hence, X̄t ·E[X̄t] = Ȳt ·E[X̄t] = 0. Further, we bound |Ex∼µ̄t [g̃(X̄t, x)]| ≤
Lg̃(|X̄t|+ E[|X̄t|]). By Ito’s formula and Assumption C.4, it holds for σ ∈ (0, 1/2),

d(γ−2uX̄t · (K̃X̄t) + (1/2)|(1− 2σ)X̄t + γ−1Ȳt|2 + (1/2)γ−2|Ȳt|2)
≤ (2γ−2uX̄t · (K̃Ȳt) + (1− 2σ)2X̄t · Ȳt)dt+ (1− 2σ)γ−1(|Ȳt|2 − X̄t · (uK̃X̄t)− γX̄t · Ȳt)dt
+ γ−2(−2γ|Ȳt|2 − 2(uK̃Ȳ )t · X̄t)dt+ Lg̃u|(1− 2σ)γ−1X̄t + 2γ−2Ȳt|(|X̄t|+ E[|X̄t|])dt

+ 2γ−1uddt+
√

2γ−1u((1− 2σ)X̄t + 2γ−1Ȳt)dBt

≤ −(1− 2σ)γ−1uX̄t · (K̃X̄t)dt− 2σγ((1− 2σ)γ−1X̄t · Ȳt + γ−2|Ȳt|2)dt+ 2γ−1uddt

+ Lg̃u|(1− 2σ)γ−1X̄t + 2γ−2Ȳt|(|X̄t|+ E[|X̄t|])dt+
√

2γ−1u((1− 2σ)X̄t + 2γ−1Ȳt)dBt.
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Then by (C.103) we obtain after taking expectation

d
dtE[γ−2uX̄t · (K̃X̄t) + 1

2 |(1− 2σ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2]

≤ −2σγE[γ−2uX̄t · (K̃X̄t) + 1
2 |(1− 2σ)X̄t + γ−1Ȳt|2 + 1

2γ
−2|Ȳt|2] + 2γ−1ud

+ Lg̃uγ
−1E[|(1− 2σ)X̄t + 2γ−1Ȳt|(|X̄t|+ E[|X̄t|])].

By (C.88) and Young’s inequality, we bound the last term similarly as (C.106) by

Lg̃uγ
−1E[|(1− 2σ)X̄t + 2γ−1Ȳt|(|X̄t|+ E[|X̄t|])]

≤ σγ
(
κ̃uγ−2E[|X̄t|2] + 1

2E[|(1− 2σ)X̄t + γ−1Ȳt|2] + 1
2E[Ȳt|2]

)
.

Hence,

d
dtE

[
γ−2uX̄t · (K̃X̄t) + 1

2 |(1− 2σ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]

≤ −σγE
[
γ−2uX̄t · (K̃X̄t) + 1

2 |(1− 2σ)X̄t + γ−1Ȳt|2 + 1
2γ

−2|Ȳt|2
]

+ 2γ−1ud.

Then by Grönwall’s inequality, there exists a constant C such that

sup
t≥0

E[γ−2uX̄t · (K̃X̄t)
1
2 |(1− 2σ)X̄t + γ−1Ȳt|2 + 1

2γ
−2|Ȳt|2] ≤ C <∞

and we obtain the result for C5 = C/(κ̃γ−2u).

Proof of Theorem C.28. We consider a synchronous coupling approach of solutions to (C.85)
and (C.3) with b ≡ 0. Fix N ∈ N. Let {(Bi

t)t≥0}Ni=1 be N independent d-dimensional
Brownian motions and let µ0 and µ̄0 be two probability measrues on R2d. The coupling
({(X̄i

t , Ȳ
i

t ), (Xi
t , Y

i
t )}Ni=1)t≥0 of N copies of a solution to (C.85) and a solution to (C.3) with

b ≡ 0 is given on R2Nd × R2Nd by{
dX̄i

t = Ȳ i
t dt

dȲ i
t = (−γȲ i

t + u
∫
Rd b̃(X̄i

t , z)µ̄x
t (dz))dt+

√
2γudBi

t, (X̄i
0, Ȳ

i
0 ) ∼ µ̄0,{

dXi
t = Y i

t dt
dY i

t = (−γY i
t + uN−1∑N

j=1 b̃(Xi
t , X

j
t ))dt+

√
2γudBi

t, (Xi
0, Y

i
0 ) ∼ µ0

(C.108)

for i = 1, ..., N , where µ̄x
t = Law(X̄i

t) for all i. For simplicity, we omitted the parameter N in
the index of (Xi

t , Y
i

t ) in the particle model. We set Z̃i
t = X̄i

t −Xi
t − N−1∑N

j=1(X̄j
t −X

j
t ) and

W̃ i
t = Ȳ i

t −Y i
t −N−1∑N

j=1(Ȳ j
t −Y

j
t ). By Assumption C.4, the process ({Z̃i

t , W̃
i
t }Ni=1)t≥0 satisfies

dZ̃i
t = W̃ i

t dt
dW̃ i

t = −γW̃ i
t dt+ u

( ∫
Rd b̃(X̄i

t , z)µ̄x
t (dz)−N−1∑N

j=1
∫
Rd b̃(X̄j

t , z̃)µ̄x
t (dz̃)

−N−1∑N
j=1 b̃(Xi

t , X
j
t ) +N−2∑N

j,k=1 b̃(X
j
t , X

k
t )
)
dt

= −γW̃ i
t dt+ u

(
− K̃Z̃i

t +N−1∑N
j=1(g̃(X̄i

t − X̄
j
t )− g̃(Xi

t −X
j
t ))

+Ãi
t +N−1∑N

j=1 Ã
j
t

)
dt,

(C.109)

168



C.7. APPENDIX: UNCONFINED NONLINEAR LANGEVIN DYNAMICS

where Ãk
t =

∫
Rd b̃(X̄k

t , z)µ̄x
t (dz)−N−1∑N

j=1 b̃(X̄k
t , X̄

j
t ) for all k = 1, ..., N . Hence, for the positive

definite matrices Ã, B̃, C̃ given in (C.102), we obtain for i = 1, ..., N ,

d(Z̃i
t · (ÃZ̃i

t) + Z̃i
t · (B̃W̃ i

t ) + W̃ i
t · (C̃W̃ i

t )
≤ 2Z̃i

t · (ÃW̃ i
t )dt+ (W̃ i

t · (B̃W̃ i
t )− γZ̃i

t · (B̃W̃ i
t )− (B̃Z̃i

t) · (uK̃W̃ i
t ))dt

+ (C̃W i
t ) · (−2γW i

t − 2uK̃Z̃i
t)dt

+ |B̃Z̃i
t + 2C̃W̃ i

t |u
(
Lg̃N

−1
N∑

j=1
(|Z̃j

t |+ |Z̃i
t |) +Ai

t +N−1
N∑

i=j

Aj
t

)
dt

≤
(
− (uK̃Z̃i

t) · (B̃Z̃i
t) + Z̃i

t · ((2Ã− γB̃ − 2uK̃C̃)W̃ i
t ) + W̃ i

t · ((B̃ − 2γC̃)W̃ i
t )
)
dt

+ |B̃Z̃i
t + 2C̃W̃ i

t |u
(
Lg̃N

−1
N∑

j=1
(|Z̃j

t |+ |Z̃i
t |) +Ai

t +N−1
N∑

i=j

Aj
t

)
dt,

where Ak
t = |

∫
Rd b̃(X̄k

t , z)µ̄x
t (dz) − N−1∑N

j=1 b̃(X̄k
t , X̄

j
t )| for all k = 1, ..., N . Then by (C.104)

for r̃i(t) = r̃((X̄i
t , Ȳ

i
t ), (Xi

t , Y
i

t ))

dr̃i(t)2 = d(Z̃i
t · (ÃZ̃i

t) + Z̃i
t · (B̃W̃ i

t ) + W̃ i
t · (C̃W̃ i

t ))

≤ −2σγr̃i(t)2dt+ γ−1|(1− 2σ)Z̃i
t + 2γ−1W̃ i

t |
(
Lg̃N

−1
N∑

j=1
(|Z̃j

t |+ |Z̃i
t |) +Ai

t +N−1
N∑

i=j

Aj
t

)
dt

(C.110)
and hence, for ρ̂t := ρ̂N ((Xt, Yt), (X̄t, Ȳt)) given in (C.95),

dρ̂t ≤ −2σγρ̂tdt+ u

γ
N−1

N∑
i=1

(
|(1− 2σ)Z̃i

t + 2γ−1W̃ i
t |

(
Lg̃N

−1
N∑

j=1
(|Z̃j

t |+ |Z̃i
t |) +Ai

t +N−1
N∑

j=1
Aj

t

))
dt.

(C.111)

For the last term, we obtain by (C.88) and Young’s inequality

Lg̃uγ
−1 1
N2

N∑
i,j=1
|(1− 2σ)Z̃i

t + 2γ−1W̃ i
t |(|Z̃

j
t |+ |Z̃i

t |) ≤ σγρ̂t

similarly as in (C.106) and

u

γ

1
N2

N∑
i,j=1
|(1− 2σ)Z̃i

t + 2γ−1W̃ i
t |(Ai

t +Aj
t )

≤ σγ

2
1
N

N∑
i=1

(1
4 |(1− 2σ)Z̃i

t + 2γ−1W̃ i
t |2
)

+ 8u2

γ3σ

1
N

N∑
i=1

(Ai
t)2

≤ σγ

2 ρ̂t + 8
γ3σ

1
N

N∑
i=1

(Ai
t)2.

Inserting these estimates in (C.111) and taking expectation yields

d
dtE[ρ̂t] ≤ −

σγ

2 E[ρ̂t] + 8
γ3σ

1
N

N∑
i=1

E[(Ai
t)2].
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We bound E[Ai
t
2] similar as in the proof of Theorem C.17. Note that by Assumption C.4, b̃ is

Lipschitz continuous with a Lipschitz constant which is bounded from above by LK̃ +Lg̃. Hence,
(C.82) and (C.83) hold here with LK̃ + Lg̃ instead of L̃. Then,

E[Ai
t
2] ≤ E

[∣∣∣ ∫
Rd
b̃(X̄i

t , z)µ̄x
t (dz)− 1

N

∑
j=1

b̃(X̄i
t , X̄

j
t )
∣∣∣2] ≤ 16(LK̃ + Lg̃)2

N

∫
Rd
|x|2µ̄t(dx).

By Lemma C.30, there exists a constant C6 depending on γ, E[|X̄0|2 + |Ȳ0|2], d, κ̃, LK̃ , Lg̃, u
such that for N ≥ 2 and i = 1, ..., N ,

sup
t≥0

E[Ai
t
2] ≤ C6N

−1.

Hence,

d
dtE[ρ̂2

t ] ≤ −2σγE[ρ̂2
0] + C2

3N
−1/2,

where C2
3 = 8u2

σγ3C6. By Grönwall’s inequality,

W2,ρ̂N
(Law(X1

t , ..., X
N
t ), (µ̄t)⊗N )2 ≤ E[ρ̂2

t ] ≤ e−ĉtE[ρ̂2
0] + ĉ−1C2

3N
−1

with ĉ given in (C.90). By taking the infimum over all couplings ω ∈ Π(µN
0 , µ̄

⊗N
0 ), we obtain

the first result in L2 Wasserstein distance. The second bound holds by (C.94) with M3 and M4
given by (C.91) and (C.99), respectively. To obtain the bound in L1 Wasserstein distance, we
note that by (C.110)

dr̃i(t) = 1
2ri(t)dr̃i(t)2

≤ −σγr̃i(t)dt+ |(1− 2σ)Z̃i
t + 2γ−1W̃ i

t |
2γr̃i(t) u

(Lg̃

N

∑
j

(|Z̃j
t |+ |Z̃i

t |) +Ai
t + 1

N

N∑
j=1

Aj
t

)
dt

≤ −σγr̃i(t)dt+ γ−1u
(Lg̃

N

∑
j

(|Z̃j
t |+ |Z̃i

t |) +Ai
t + 1

N

N∑
j=1

Aj
t

)
dt,

where the last step holds by (C.107). By summing over i and taking expectation, we obtain by
(C.92) for ρ̃t := ρ̃N ((Xt, Yt), (X̄t, Ȳt)) given in (C.96),

d
dtE[ρ̃t] ≤ −σγ/2E[ρ̃t] + γ−1uN−1

N∑
i=1

E[Ai
t].

By Assumption C.4 and Lemma C.30, there exists a constant C4 depending on γ, E[|X̄0|2+|Ȳ0|2],
d, κ̃, LK̃ , u and Lg̃ such that

sup
t≥0

E[Ai
t] ≤ C4γN

−1/2

similarly as in (C.84). Hence,

d
dtE[ρ̃t] ≤ −

σγ

2 E[ρ̃t] + C4N
−1/2.

170
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By Grönwall’s inequality,

W1,ρ̃N (µ̄⊗N
t , µN

t ) ≤ E[ρ̃t] ≤ e−ĉtE[ρ̃0] + ĉ−1C4N
−1/2

for ĉ given in (C.90). Taking the infimum over all couplings ω ∈ Π(µ̄⊗N
0 , µN

0 ), we obtain the first
result in L1 Wasserstein distance. The second bound holds by (C.94) with M3 and M4 given in
(C.91) and (C.99).

171


