
 Analogue quantum simulating

a bilayer Hubbard system

or

a monolayer Hubbard system

with reservoir

-

thermodynamics, entropy

 and spin correlations

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jens Samland

aus

Berlin-Neukölln

Bonn 2022



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Michael Köhl

2. Gutachter: Prof. Dr. Martin Weitz

Tag der Promotion:  19.10.2022

Erscheinungsjahr: 2022



gewidmet
Miriam Machill

Italien, Portugal, Rumänien, Indien, Ukraine.
Analysis auf Mannigfaltigkeiten, theoretische Quantenfeldtheorie,

experimentelle Quanten-Vielteilchenphysik.
Göttingen, Rostock, München, Amsterdam, Bonn.

Ein Zuhause. Diese Arbeit ist für Dich.

Ich danke Laura Nagelschmidt, René Heyse, Roxanne Pretzsch, meinen Freunden in Göttingen, Karlsruhe 
und Berlin und meinem Vater und meiner Mutter.





Abstract

The high controllability of analogue quantum simulators using ultracold atoms in optical
lattices pushes forward the frontiers in the experimental investigation of the fermionic Hub-
bard model. The bilayer Hubbard model is a step beyond the two-dimensional Hubbard
model that extends the latter by incorporating a coupling between two two-dimensional
Hubbard systems. This is also a step forward in the idea of analogue quantum simulate
real materials such as the copper oxide high temperature superconductors which possess
a coupled layer structure. This thesis is dedicated to the experimental implementation of
an analogue quantum simulator for a bilayer Hubbard system with cold atoms in optical
mono- and bi-chromatic lattices.
The measurement of competing magnetic order in the bilayer Hubbard system is a result of
the work during the course of this thesis. This measurement requires a high controllability
of the system which goes along with a precise calibration and fundamental characterisa-
tion of the implemented bilayer Hubbard system. Here, the calibration of the interaction
strength by means of a comparison between data and theoretical predictions becomes pos-
sible through one major outcome of this thesis. This is a method to compute interacting
Wannier functions in an optical superlattice. A further major outcome of this thesis is the
measurement of thermodynamics, density fluctuations and entropy in the bilayer system
considered as a monolayer Hubbard system with reservoir. Further outcomes of this thesis
for a fundamental characterisation of the bilayer Hubbard system are:

1. The characterisation of the Hubbard band insulator.

2. The computation of the potential map for an optical bi-chromatic superlattice.

3. The calibration of the optical bi-chromatic superlattice by comparing experimental
data to theoretical predictions. Here, the band projection position operator method
to compute non-interacting Wannier functions in a superlattice was successfully im-
plemented in this thesis. The latter are the starting point for the newly developed
method to compute interacting Wannier functions.
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CHAPTER 1

Introduction

1.1 Analogue quantum simulations

Analogue quantum simulation is the approach to simulate real, complex many body quan-
tum systems like a solid with a more controllable real (analogue) quantum system [147] in
order to gain insight and to understand the properties and behaviour of the former. This
concept is attributed to Richard Feynman who discussed it in his seminal lecture ”Simu-
lating Physics with Computers” in 1982 [52]. Analogue quantum simulation of many body
quantum systems offers two fundamental advantages compared to the simulation with a
classical computer. First, the dimension of the Hilbert space of a many body quantum
system increases exponentially with the number N of particles dN where d is the sin-
gle particle Hilbert space. Thus, classical computation of such systems is very limited.
Second, the classical computation of fermionic many body quantum systems suffers from
the sign problem which hinders the calculation at decreasing temperatures and increasing
particle numbers [45]. In contrast, the analogue quantum simulation offers the possibility
to experimentally observe fundamental, quantum mechanical principles and to investi-
gate complex, strongly correlated bosonic and fermionic many body quantum systems.
Analogue quantum simulators have been built in the last decades on several experimen-
tal platforms. This includes ions in magnetic traps [17][109], Rydberg atoms [151] [112],
photonic systems, cold molecules [16] and cold, neutral atoms [18].
The analogue quantum simulation with cold, neutral atoms bases on the principle of light-
matter interaction. In the presence of (laser) light, the electronic structure in the atoms is
modified which is referred to as light shift of the electronic energy levels. In the framework
of a two level system this light shift is given by [86]

VLS = ±~Γ2

8∆

I(r)

Isat
, (1.1)

where, ~, Γ, ∆, I and Isat are the reduced Planck constant, the decay rate of the upper
level, the detuning of the laser light from the atomic resonance, the light’s intensity and

1



1 Introduction

the saturation intensity, respectively. Furthermore, the “+”-sign in Eq. 1.1 captures the
light shift of the ground state energy level while the “-”-sign describes the light shift of the
excited state. Thus, neutral atoms feel a potential in the presence of light which is referred
to as dipole potential. In turn, a light intensity gradient ∇I(r) acts as a dipole force whose
sign depends of the detuning ∆ and on the atom’s internal state, i.e. if the atom is in the
ground or in an excited state.1 In cold atom experiments, the atoms are typically prepared
in the ground state. Hence, exposed to far red-detuned laser light (∆ < 0 and |∆| � ΩR

2),
atoms are attracted to the highest intensity while in the presence of blue-detuned laser
light (∆ > 0 with ∆ � ΩR) they are expelled from the laser light. As an example, for
potassium atoms with a main transition wavelength of 766 nm between the 4s2S1/2 and
the 4s2P3/2 state, laser beams at 1064 nm and 532 nm produces attractive and repulsive
potentials for the atoms, respectively. Besides this, the used laser beams have typically a
Gaussian profile and therefore exhibit an intensity gradient in radial direction. Thus, in
a red-detuned Gaussian beam where the intensity is highest along the beam axis, atoms
are trapped in radial direction in the beam center. Moreover, in longitudinal direction, an
intensity gradient can be created by focussing the laser beam. So the atoms are confined
in all directions in the beam focus.

A periodic potential for atoms can be produced by an optical standing wave which is
referred to as optical lattice. Such an optical standing wave is commonly generated by
e.g. retro-reflecting a Gaussian laser beam. In the case of a red-detuned optical lattice,
the atoms thus arrange periodically at the light intensity maxima of the standing wave.
The periodic arrangement of the atoms in the optical lattice leads to the name “optical
crystal”due to the similarity between the periodic optical lattice potential for atoms and
the periodic lattice potential for electrons from the atomic nuclei in a solid. In this regard,
analogue quantum simulation with cold, neutral atoms in optical lattices can be used to
simulate solids.

The success of neutral atom analogue quantum simulators in the last two decades bases
strongly on the creation of such optical crystals. Nowadays, temperatures and kinetic
behaviour of the atomic ensemble in the optical crystal can be adjusted, two-particle in-
teraction strengths can be tuned over a wide range employing Feshbach resonances and
one, two or three dimensional optical crystal potentials can be created and almost arbi-
trarily shaped. Moreover, the system’s behaviour can be observed on a single lattice site
level and the occupation of a lattice site with a single or two atoms can be distinguished.
All this allows for precisely determining the dependence of individual system properties
on single parameters. In real solids, the most prominent example of correlated fermionic
systems in a periodic potential, such precise determination is often hindered by impurities
in the material and high costs for the production of several probes with different parameter
settings. The investigation of the behaviour of correlated electrons in solids can therefore
be endorsed by neutral atom analogue quantum simulators.

1This is in contrast to the scattering force which light exerts on atoms when its frequency is close to the
resonance of the atomic transition, i.e. ∆ ≈ 0. This scattering force saturates for strong intensity and
decreases with 1/∆2 while the dipole force does not saturate and only decreases with 1/∆.

2Here, ΩR is the Rabi frequency in the two level picture.
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1.2 Analogue quantum simulating the Hubbard model

1.2 Analogue quantum simulating the Hubbard model

In fact, the creation of optical crystals realises the paradigmatic Hubbard model for solids
in an analogue quantum simulator (Fig. 2.1 left). The Hubbard model was introduced
by John Hubbard [76] in 1964. Transition metal monoxides like FeO, NiO, CoO were
first linked to this model [121] since both, the materials and the model, exhibit an an-
tiferromagnetic ordered Mott insulating (AFM) phase (Fig. 1.1, AFM). In subsequent
decades, the Hubbard model in two dimensions (Fig. 2.1 left) was employed for copper
oxide compounds which consist out of separated CuO2 layers (cf. upper plane in Fig. 2.1
right). Additionally to a Mott insulating- and an antiferromagnetic ordered phase [72],
these compounds exhibit a high temperature superconducting (SC) phase (Fig. 1.1, SC)
[11]. Here, initiated by Anderson, the hope has been that the rather simple Hubbard
model also contains the essential features needed for high temperature superconductivity.
To date, the emergence of this phase is not yet fully understood [2] and it is only believed
that super exchange interactions are responsible for high temperature superconductivity
in doped materials like the cuprates (Fig. 2.1 right) [3][92].3 In contrast, it is known, that
in conventional or s-wave (S=0, l=0) superconductors, superconductivity arises due to the
phonon intermediated electron-electron interactions.4

Various phases in the Hubbard model (Fig. 1.1) were already created and investigated
with cold atoms in optical lattices. At half-filling and sufficient low temperatures an an-
tiferromagnetic, Mott-insulating (AFM) state which remains stable even for small doping
forms. This phase was observed for example in [30][66]. However, at larger doping and
high temperatures the system crosses over into a normal metallic state. This cross-over
into a metallic state was likewise observed in [30][66]. By lowering the temperature, the
metallic state crosses over into a so-called strange metal and, at even lower temperatures,
a pseudo gap regime opens up. This regime is characterized by a suppression of the spec-
tral weight [43].5 The pseudo gap was experimentally confirmed in [43]. Below the critical
superconducting temperature, the phase diagram exhibits two regions (“doms”) of super-
conducting states. One is on the hole doped and one on the electron doped side. D-wave
pairing, a possible mechanism for d-wave superconductivity on the hole doped side [33],
was theoretically analysed for a two-layer Hubbard model in [23] and theoretically studied
in the context of cold fermions in an optical lattice in [75][116][118]. In an experiment,
however, the required low temperature for these phases could not be reached so far.

In the last decade, the creation and investigation of different phases in the Hubbard
model with cold atoms in optical lattices went also along with the experimental implemen-
tation of extensions of the simple Hubbard model and of different underlying geometries.
For example, a honeycomb lattice geometry as in layered graphene was realized with cold
atoms e.g. in [94][119]. A triangular lattice which exhibits a frustrated antiferromagnetic
phase was realised for example in [130][155]. A so-called Lieb lattice is important due to

3High temperature superconductivity is also referred to as unconventional or d-wave (S=0,l=2) super-
conductivity and was likewise observed in other layered materials like CoO2 [145].

4Typical elements which exhibit a conventional or s-wave superconducting phase are Al, Nb and Pb
[41]. Copper, cobalt and nickel oxides in contrast possess an unconventional or d-wave superconducting
phases [145]. p-wave (S=1,l=1) superconductivity occurs for example in Sr2RuO4 [98].

5The spectral weight is the integrated induced conductivity over a range of applied frequencies [106].
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1 Introduction

Figure 1.1: Schematic phase diagram for cuprates. At half-filling and low tempera-
tures the ground state is antiferromagnetic (AFM). This state persists for small hole and
electron doping. For higher doping, however, at high temperatures the AFM state crosses
over into a metallic state. For decreasing temperatures, the metal becomes a strange
metal before a pseudo gap opens. At even lower temperatures, a superconducting region
(”dome”) arises on the hole- as well as on the electron-doped side. While the supercon-
ducting state is of d-wave type on the hole doped side, the electron doped side reveals a
s-wave superconducting phase. The figure is taken from [146].

its similarity to the CuO2 planes in high temperature superconductors. In this model, in
addition to a common square Hubbard model (Fig. 2.1 left), lattice sites are added to
the middle of each link between two sites of the square model. These sites thus represent
the oxygen atoms in the CuO2 planes (Fig. 2.1 right). The Lieb lattice was investigated
with cold atoms in optical lattices for example in [61][53]. Beside the geometry, extensions
to the simple Hubbard model were investigated. One of them is the Periodic Ander-
son Model (PAM) that includes more than one energy band [124]. Moreover, non-local
interactions [148] or next-nearest neighbour tunnelling [102] was taken into account to
explain measurements on analogue quantum simulators with cold atoms. Considerably,
if next-nearest neighbour tunnelling (along the diagonals) in a square Hubbard model is
included, the particle-hole symmetry breaks. This is especially also the case for the high
temperature superconducting cuprates which can be directly seen from the asymmetry of
the phase diagram (Fig. 1.1) [134].

This work describes the first implementation of a bilayer square Hubbard model with cold
atoms in optical lattices. The bilayer model extends the simple two-dimensional Hubbard
model by coupling two Hubbard planes to each other (Fig. 2.4 left). This is a step towards
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1.2 Analogue quantum simulating the Hubbard model

a more realistic analogue quantum simulation of real copper oxides in which neighbouring
CuO2 are also coupled to each other (Fig. 2.1). The bilayer Hubbard model was theoret-
ically studied in [80][129][63]. A bilayer Hubbard system was simultaneously to this work
implemented in [85].

Thesis structure

In this thesis, I detail the experimental implementation of our bilayer Hubbard system
and two main measurements on it, namely spin correlations and thermodynamics in the
bilayer Hubbard system. I structured the thesis in five chapters:

After the introduction in this chapter, I first introduce the mono- and bilayer Hubbard
model in chapter 2. Its characteristics and the current state of the art in building analogue
quantum simulators for this model is the precondition to be able to built an analogue quan-
tum simulator for the bilayer Hubbard system. Second, I detail the computation of non-
interacting Wannier functions employing the band projection position operator method
and elaborate the method to compute interacting Wannier functions which was developed
during this thesis. This is required in order to be able to quantify if the implemented
bilayer Hubbard system behaves as theoretically expected.

In chapter 3, I describe the experimental setup which we used to implement the analogue
quantum simulator for the bilayer system. During the course of this thesis, we extended
this setup by one vertical and one horizontal optical, bi-chromatic superlattice. The ver-
tical superlattice was used for the implementation of the bilayer system.

Chapter 4 presents all measurements: first (chapter 4.1), on the calibration of the vertical
superlattice. Here, the theory of Wannier functions from chapter 2 is employed. Second
(4.2), on the implementation and characterisation of the bilayer system. Third (4.3), on
the first main result, namely spin correlation measurements in the bilayer Hubbard sys-
tem. And finally (4.4), the second main result, thermodynamics in the bilayer Hubbard
system.

Chapter 5 gives the outlook which also summaries the main calibration results of the
horizontal optical superlattice. This lattice will be used in the future to implement the
Rice-Mele model.
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During the course of this thesis, the article
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tices J. Samland and M. Köhl
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CHAPTER 2

Theory

The last chapter gave an introduction to the concept of analogue quantum simulators.
Chapter three will describe the experimental setup with which an analogue quantum
simulator for a bilayer Hubbard system was implemented during this thesis. This chapter
details, on the one hand, the fundamentals of the mono- and bilayer Hubbard model,
especially their phase diagrams. A precise knowledge of the monolayer Hubbard model
phase diagram is required as it provides the general, partly subtle properties and features
of the Hubbard model which were exploited during the implementation of the bilayer
Hubbard system. For example, how is the interaction strength to be set to create a
Hubbard Mott insulator. Moreover, the phase diagram of the bilayer Hubbard model is
described since it was partially measured during this thesis for the first time. On the other
hand, the second main section elaborates the theory of Wannier functions in superlattices
which is important to calibrate the optical superlattice used to create the bilayer Hubbard
system. A method to compute interacting Wannier functions was developed in the course
of this thesis and is discussed. This enables to validate the measured interaction strength
with theory. The theory of Wannier functions in this chapter is used in chapter four where
the calibration and implementation of the bilayer Hubbard system is described.

2.1 Hubbard model

This chapter introduces first to the monolayer Hubbard model, refers to the development of
analogue quantum simulators for the Hubbard model in the last two decades and elucidates
the monolayer Hubbard model phase diagram. Next, the bilayer Hubbard model and its
phase diagram are introduced.

2.1.1 Introduction

The Hubbard model describes interacting quantum particles on a lattice (Fig. 2.1 left).
Its Hamiltonian in second quantisation reads [76][121][58]

7



2 Theory

HHub = −t
∑
〈i,j,〉,σ

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

ñi,↑ñi,↓ −
∑
i

µi,σñi,σ. (2.1)

The first term of the right hand side is governed by the tunnelling amplitude t. Further-
more, it contains the annihilation operator ĉi,σ and its complex conjugated, the creation

operator, ĉ†i,σ. The annihilation operator destroys a particle on lattice site i with spin

σ while the creation operator creates one. The consecutive application of ĉ†i,σ ĉj,σ onto a
state thus describes a particle being destroyed at j and created at i which is interpreted
as tunnelling or “hopping” of the particle from j to i. The tunnelling strength is given by
the overlap integral tij =

∫
w†i (z)[−~2∇2/(2m)]wj(z) dz. Here, wi(z) and wj(z) describe

the Wannier functions (cf. Fig. 2.9) of localised particles at site i and j, respectively. For
a homogenous system, tij = t is site-independent. The angled brackets 〈i, j, 〉 in Eq. 2.1
indicate that the sum runs only over pairs of lattice indices i, j with i = j ± 1, so nearest
neighbour lattice sites. The Hamiltonian is hence a good approximation for systems where
the overlap between Wannier functions from next nearest neighbour sites is negligible. By
describing the tunnelling of particles between adjacent lattice sites, the first term in Eq.
2.1 takes the role of the kinetic energy in the Hamiltonian. Its negative sign indicates that
an increase of the tunnelling strength t and, hence, delocalisation of the particles, leads
to a reduction of the total energy.
The second term in Eq. 2.1 represents the interaction energy of particles on the lat-
tice. Beside the on-site interaction parameter U , it contains the number operator ñi,σ =

ĉ†i,σ ĉi,σ − 1/2 which counts the number of particles of the respective spin σ on lattice
site i. For fermions ñi,σ + 1/2 = 0, 1 for each spin due to Pauli’s exclusion principle.
The consecutive application of the number operators for each spin ñi,↑ñi,↓ in Eq. 2.1 is
non-zero only if two particles with different spin occupy the same lattice site i. Then,
the interaction energy is increased by the amount of the interaction strength U . In the
pseudo potential approximation [18] U = g

∫
|w(z)|4dz with g = 4π~2as/m. Here, w(z) is

again the Wannier function and as and m denote the scattering length and the particle
mass, respectively [86]. Summing over all lattice sites i yields the total interaction energy
that contributes to Eq. 2.1. In the simplest version of the Hubbard model the interac-
tion between two particles is fully on-site meaning that only particles which occupy the
same lattice site interact with each other. This is reflected by the same index i in the
term n̂i,↑n̂i,↓. The model can be extended to nearest-neighbour interactions [5] yielding
Uij = g

∫
wi(z)

2wj(z)
2dz [148].

The third term in Eq. 2.1 accounts for a possible varying potential energy between dif-
ferent sites in the lattice. Here, µi,σ is the local chemical potential and n̂i,σ the number
operator for site i and spin σ. In general, µi,σ is spin dependent indicated by its index
σ. When realising the Hubbard model with cold atoms in optical lattices, the underlying
potential is, however, spin independent (µi,σ = µi). But, it has a underlying Gaussian
energy landscape due to the Gaussian lattice laser beams (Fig. 4.12 right).1 Thus, the
local chemical potential µi is site-dependent and determined by the Gaussian potential

1Magnetic field gradients across the optical lattice can be additionally used in order to evoke a spin
dependent potential.
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2.1 Hubbard model

which can be approximated by an harmonic potential close to the beam center. This
yields µi = µ0 − Vharm(r) [86] employing the local density approximation (LDA).
In general, the parameters t and U have to be on the same order of magnitude and both
have to be smaller than the temperature of the system t, U < T . Otherwise higher bands
become populated (PAM model, see introduction) and the single band Hubbard approxi-
mation becomes inaccurate. The Hubbard model serves for modelling single copper oxide
layers in copper oxide compounds that exhibit high temperature superconductivity (cf.
Fig. 2.1 left and right).

Figure 2.1: Left Monolayer Hubbard model. Fermionic particles in two different spin states
(red and blue) are confined to a lattice structure. Tunnelling between neighbouring lattice
sites is governed by the tunnelling amplitude t. Due to Pauli’s exclusion principle each site
can only be occupied by one fermion of each spin. Two fermions of different spins interact
with each other with strength U if they are on the same lattice site. Right HgBa2CuO4+δ

high temperature superconducting material. Two copper oxide layers are separated but
coupled across a layer with Ba and Hg. Each individual CuO2 layer has a square lattice
structure similar to the square Hubbard model. Due to the oxygen atoms on the links
between two respective Cu atoms in the CuO2 planes, however, the Lieb lattice better
reflects the actual structure of the CuO2 planes than a simple squared Hubbard model.
The bilayer Hubbard model takes into account the coupling between the two CuO2 layers.
The figure is taken from [8].

Experimental realisation of the Hubbard model with cold atoms
First experimental realisations of the Bose-Hubbard model with cold bosons in optical
lattices [78] were made in three dimensions [67] and one dimension [143]. Realisations of
the three dimensional Fermi-Hubbard model were achieved a little later [136] due to more
intricate cooling of fermions caused by Pauli blocking.2 With the successful implemen-
tation of quantum gas microscopes for bosons, the two-dimensional Bose-Hubbard model
on a single site level could be investigated [7][139][6]. The study of the two-dimensional
Fermi-Hubbard model on a single lattice site level using quantum gas microscopes followed

2Pauli blocking was experimentally observed in a cold atom experiment with optical lattices in [117].
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again a few years later [29][70][120]. These experiments, however, suffered from parity pro-
jection. During fluorescence imaging of the fermionic atoms in the optical lattices light
assisted collisions occurred and atoms on doubly occupied lattice sites were lost. Thus,
only the parity of the occupation could be detected. The parity projection could be cir-
cumvented later in [117]. Other analogous quantum simulators were able to distinguish
between empty, singly and doubly occupied sites or spin up and spin down states earlier,
but had an imaging resolution slightly below the point spread function of a single lattice
site [39]. For the simulation of the Fermi-Hubbard model the light element 6Li and rela-
tively heavy element 40K were mostly in use. While the dynamics with 6Li atoms are much
faster and due to easier cooling the Hubbard regime t, U < T can be reached easier, 40K
exhibits a richer hyperfine structure in the ground state for implementing spin-dependent
potentials and spin-orbit coupling [30].

The experimental realisations of the Hubbard model were also achieved using optical
tweezers. While optical lattices provide hundreds of lattice sites where atoms are loaded
in, optical tweezers, in contrast, were employed to follow a bottom-up approach [9]. Here,
single lattice sites can be subsequently connected to each other one by one enabling to form
a large number of possible distinct, one and two-dimensional structures. By combining
these optical tweezers with quantum gas microscopes the behaviour in two [114] to tens
of lattice sites can be studied accurately [141].

2.1.2 Phase diagram of the Hubbard model

The properties of a fermionic gas in a lattice described by the Fermi-Hubbard model (Eq.
2.1) are determined by the parameters t, U and µ as well as by the temperature of the gas
T . Depending on the parameter, the gas exhibits distinct phases which cross over in each
other or undergo a phase transition when changing the parameters (Fig. 2.2).

2.1.2.1 Atomic and non-interacting limit

In the two limiting cases t→ 0 (atomic limit) and U → 0 (non-interacting), the Hubbard
Hamiltonian in Eq. 2.1 can be solved and studied analytically for a homogenous system,
i.e. µ = 0 and the third term in Eq. 2.1 becomes zero.

Atomic limit
In the atomic limit, t = 0 and µ = 0, Eq. 2.1 reduces to the second term on the right
hand side and the total energy equals the interaction energy. Then, in the Fock basis, the
Hamiltonian is diagonal. Fock states with occupation numbers 0, 1, e.g. |1, 1, 1, 1, 1, ...〉,
have a total energy of E = 0. In contrast, Fock states with double occupations, e.g.
|1, 2, 1, 1, 1, ...〉 possess energies of E = U . Here, a double occupation refers to an occupa-
tion of a lattice site with a spin up and a spin down particle and Pauli’s exclusion principle
forbids an occupation of a lattice site with more than two fermions. The state with double
occupation is separated in energy from the state without double occupation by U . This
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2.1 Hubbard model

Figure 2.2: Schematic phase diagram of the Hubbard model as a function of tem-
perature and interaction strength. For high temperatures a metallic state (correlated
Fermi liquid CFL) is present. For increasingly strong repulsive interactions a smooth cross
over from the metallic to a paramagnetic Mott insulating (MI,PM) state happens. For
temperatures below the super exchange energy, a second order phase transition from the
Mott insulator to an antiferromagnetic phase (AFM) with long range spin correlation in
three dimensions exists. On the attractive side, the metallic state crosses over to a state
with preformed pairs (normal fluid NF) for increasing attractive interactions. At temper-
atures below the super exchange energy a second order phase transition occurs. If the
interaction are strongly attractive in this case, the preformed pairs form a Bose-Einstein
condensate (BEC) of repulsively interacting hardcore bosons. For smaller attraction, the
BEC crosses over in BCS pairs. This figure is taken from [146].

leads to two Hubbard bands, a lower and upper one (Fig. 2.3 left).3

In the atomic limit and for strong, repulsive interaction, U → ∞, (Fig. 2.2, right side)
states with double occupation lie in the upper Hubbard band and are energetically un-
favourable for temperatures kBT < U . Then, at half filling, i.e. with in average one
fermion per lattice site n = 1, the ground state of the system tends to become a Mott
insulator (MI) (cf. Fig. 2.2). In an ideal Mott insulator each lattice site is exactly occu-
pied by one particle and reads in the Fock basis |1, 1, 1, ...〉. This Mott state is insulating
since the transport of a conducting particle implicates double occupation when tunnelling
to an already occupied site. This in turn would require an additional amount of energy U
to occupy a state in the upper Hubbard band. Nickel oxide is a Mott insulator [111]. In
cold atom experiments first Mott insulators were induced with bosonic atoms in three [67],
two [6] and one [143] dimension. With fermionic atoms, Mott insulators were produced a

3For finite t, the band width of each Hubbard band in one spatial dimension is given by the dispersion
relation εq = −2tcos(aq) yielding a band width of W = 4t.
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Figure 2.3: Left The upper and lower Hubbard band. Both are separated by the interaction
strength U . For finite t, the bandwidth in one dimension is 4t and in two dimensions 8t
where t is the tunnelling amplitude. Right Eigenenergies of the singlet, triplet and the
D+/− state as a function of the ratio U/t. The spacing between the singlet and triplet
state corresponds to the super exchange energy.

little later in three [136] and two [39] dimensions. The observation of a two-dimensional
Mott insulator on a single lattice site level was achieved for example in [66][30]. A key
feature of the Mott insulator is a vanishing compressibility κ [49]. The compressibility
was measured in [39] and a vanishing κ = 0 was observed for strong interactions U/t ≈ 12.
For intermediate interactions, U/t ≈ 8, the compressibility is strongly reduced. Another
feature of a Mott insulator is a Mott gap in the spectral function where excitations are
hindered due to the interaction strength U .
In the atomic limit and for strong, attractive interactions, U → −∞, (Fig. 2.2, left side)
double occupation becomes favourable for temperatures kBT < |U |. In this case preformed
pairs form [146]. They consist of two fermions with one fermion in the spin up and one in
the spin down state. Hence, the pair’s total spin is zero and the pairs behave like hardcore
bosons with nearest-neighbour repulsive interaction among each other [107]. This leads to
charge density waves (CDW) in the regime of strong attractive interactions [73].

Non-interacting limit
The non-interacting (tight-binding) limit, U = 0 and µ = 0 in Eq. 2.1, corresponds
to the center of the phase diagram (Fig. 2.2). In this case, double occupancies in the
lattice are energetically equivalent to single occupations or to empty sites. This leads to
an equal probability of all occupations. Moreover, since U = 0, there is only a single
Hubbard band. For unity filling (2 particles per site) the system enters a band insulating
state where all energy states in the single Hubbard band are occupied and tunnelling
between sites is suppressed by Pauli blocking. For smaller filling, however, the Hubbard
band is only partially filled and tunnelling between sites is not hindered. This leads to
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a metallic state which is compressible and exhibits a gapless excitation spectrum [66] in
contrast to the Mott and band insulator. The Hubbard Hamiltonian in Eq. 2.1 in the
non-interacting limit is analytically solvable like its counterpart in the atomic limit t = 0.
Considering a homogenous system with µ = 0, the second and third term on the right
hand side of Eq. 2.1 drop out. In real space the resulting kinetic Hamiltonian is not
diagonal due to the ci and cj referring to different lattice sites. By Fourier transforming

c†i,σ
F−→ 1/

√
N
∑

l e
iqlc†i,σ =: c†q,σ, however, HHub can be diagonalised resulting in HHub =

−2t
∑

q,σ cos(aq)n̂q,σ in momentum space in one dimension. Here, q, a are the quasi
momentum and lattice constant, respectively. The dispersion relation of the Hubbard
Hamiltonian εq = −2tcos(aq) thus corresponds to the ground band in a band structure
calculation from the time-independent Schrödinger equation with a periodic potential (Fig.
2.6 left). The Hubbard Hamiltonian therefore reflects a single band approximation which
remains valid as long as the Hubbard parameter are smaller than the band gap between
the ground and first excited Bloch band, i.e. t, U, kBT < Eband2 − Eband1. Otherwise
corrections have to be made to account for atoms in higher bands (PAM model) [107].
For a square lattice in two dimensions, the dispersion relation can be simply expanded
because both dimensions are independent from each other. Hence, εq = −2t[cos(aqx) +
cos(aqy)] in two dimensions [134]. The shape of the Fermi surface in two dimensions thus
changes from circular (low filling) over diamond (half filling) to square (unity filling) when
increasing the filling in the two-dimensional lattice. In the half filled case, the Fermi
surface is perfectly nested with the nesting vector Q = (π, π). Experimentally, the Fermi
surface was measured in a three dimensional optical lattice [87].

2.1.2.2 Between the limiting cases, repulsive side

Between the limiting cases U → 0 and t → 0, for U > 0, (Fig. 2.2), a smooth cross over
from the metallic state or Fermi liquid to a Mott insulating state occurs with increasing
repulsive interaction strength. In this regime, the Hamiltonian HHub (Eq. 2.1) is not
analytically solvable even in the homogeneous system, i.e. µ = 0. High temperature se-
ries expansions and determinant quantum Monte Carlo methods can be employed in this
case as done for this thesis (Fig. 4.14). Experiments with cold atoms in optical lattices
elucidated this cross over experimentally for bosons and fermions in three [6][136], two
[139][30][66] and one [143] dimension. Even if the behaviour for a large system is analyt-
ically intractable in this regime, important insights can be gained by analytically solving
Eq. 2.1 for only two sites. Thus, the effect of tunnelling as well as on-site interactions can
be taken into account. The matrix representation of HHub for two sites reads [42]

H2sites
Hub =


0 0 0 0
0 U 0 −2t
0 0 U 0
0 −2t 0 0

 (2.2)

within the basis which comprises a singlet and triplet state s/t = 1/
√

2(|↑, ↓〉 ∓ |↓, ↑〉) as
well as two states with doubly occupation D+/− = 1/

√
2(|↑↓, 0〉±|0, ↓↑〉). Here, the triplet

state with energy Etriplet = 0 and the D− state with energy ED− = U are eigenstates.
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The other two eigenstates are linear combinations of the singlet and D+ state. For strong
repulsive interactions, the energy of the ground state is approximated by −4t2/U (Fig. 2.3
right). The energy of the second lowest lying triplet state is 0 [121]. The energy difference
between both states therefore amounts to J = −4t2/U . This quantity is called the super
exchange energy. In cold atom experiments it could be precisely determined and controlled
in [148] and in a Floquet system in [42]. Furthermore and essentially, due to the dominant
singlet part in the ground state, the latter is anti-ferromagnetic ordered contrarily to the
higher lying triplet state. This implicates that a system which is cooled from a temper-
ature kBT > 4t2/U to kBT < 4t2/U passes a second order phase transition in the spin
sector from the paramagnetic Mott insulator discussed above to an anti-ferromagnetically
ordered Mott insulator on the repulsive side of the phase diagram (Fig. 2.2). Experi-
mentally, the two site Hubbard model was studied using cold atoms in optical tweezers
[114][12]. A dimerised two-dimensional lattice which is effectively the realisation of many
separated two site Hubbard models was furthermore studied in [65]. In these systems
short range correlations between two spins on two adjacent sites were detected. Short
range correlations in a common two-dimensional square lattice were studied in [37].
Likewise as in the two site Hubbard model, a phase transition from a paramagnetic Mott
insulator to an anti-ferromagnetic ordered Mott insulator occurs in a lattice at tempera-
tures kBT < 4t2/U . According to the Mermin-Wagner-Hohenberg theorem, this second
order phase transition reveals anti-ferromagnetically long range order below the critical
temperature. In three dimensions this critical Néel temperature is finite with a maximum
at TN = 0.36t whereas in two dimensions the second order phase transition occurs only
at zero temperature where quantum fluctuations diminish [146]. In the low temperature
regime, mean-field theory, high temperature series expansions (HTSE) and determinant
quantum Monte Carlo (DQMC) methods can be employed to compare theoretical pre-
dictions with experimental results from analogue quantum simulators. With DQMC,
quantum states on 4×4, 8×8 or 16×16-site square lattice structures are commonly com-
puted [26]. At very low temperatures, however, computational simulations of fermionic
lattice models away from half-filling fail due to the sign problem [146]. In cold atom ex-
periments with fermions in optical lattices, anti-ferromagnetic correlations were observed
in two dimensions [47]. The observation of an anti-ferromagnet with singe site resolution
using a quantum gas microscope was achieved in [72][28][120][101][21]. Anti-ferromagnetic
correlations in Hubbard chains were detected in [19].

Heisenberg spin model
For strong repulsive interactions where tunnelling is strongly suppressed, the Hubbard
model is simplified to the Heisenberg spin model HHei = J

∑
〈i,j〉

~Si~Sj which, in turn, sim-
plifies to the Ising model HIsing = J

∑
〈i,j〉 S

z
i S

z
j when considering only one direction [125].

These models describe individual spins on a lattice with nearest neighbour spin-spin cou-
pling where the parameter J denotes the coupling strength. For J > 0 the ground state is
anti-ferromagnetically ordered and for J < 0 ferromagnetically. An important connection
to the Hubbard model can be made by comparing the energy states of both models: The
two site Heisenberg model has one lowest singlet state with energy −3J/4 and a degen-
erated triplet state with energy J/4. The two site Hubbard model has two levels with
energies −4t2/U and 0. Thus, J = −4t2/U which is just the super exchange energy [121].

14
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In cold atom experiments, Ising spin chains were studied with spinless bosons in a tilted
optical lattice in [140]. The computational simulation of spins on more than two sites is
usually performed using the method of Young tableaux [131] which was done for four sites
in [153].

2.1.2.3 Between the limiting cases, attractive side

On the attractive side of the phase diagram (Fig. 2.2) and for finite t, the ground state
is increasingly dominated by doubly occupancies for increasing attractive interactions. In
a lattice, above the critical temperature kBT > 4t2/U and for temperatures kBT < U ,
preformed pairs form an incoherent normal fluid phase which is referred to as pseudo-gap
regime [146]. This regime exhibits a reduced density of states at the Fermi energy [22].
By reducing the temperature to below kBT < 4t2/U at strong attractive interactions,
a quantum phase transition in three dimensions to a Bose Einstein condensate (BEC) of
strongly bound fermionic pairs occurs. This condensation was observed with cold atoms in
a three dimensional trap in [79][157]. In a three dimensional optical lattice, Bose Einstein
condensation of fermionic pairs was seen by detecting interference peaks [33]. These peaks
signal long range order which, in turn, indicates superfluidity. Furthermore, transport and
expansion of fermions in three dimensional optical lattices as a function of the attractive
interaction strength were studied in [144][137] and [69], respectively.

For decreasing attractive interactions below the critical temperature kBT < 4t2/U the
pairing energy decreases and a cross over from a BEC type to a Bardeen Cooper Schrieffer
(BCS) type superfluid at small attractive interactions occurs [126]. Experimentally, this
pairing energy was measured in a three dimensional trap without an optical lattice for
different interaction strengths by radio frequency spectroscopy [31]. Here, the observation
of an energy gap in the low energy excitation spectrum revealed the superfluid regime
at sufficient low temperatures. The low energy excitation spectrum was likewise investi-
gated in [142] establishing photoemission spectroscopy in cold atom experiments. With
the improvement to angle-resolved photoemission spectroscopy (APRES) within a quan-
tum gas microscope the single particle spectrum for attractively interacting fermions in a
two-dimensional lattice could be experimentally measured [22]. APRES is widely used in
solid state physics. Theoretically, the two-dimensional case was studied in [133][110][118].
4 Moreover, the second order pair correlation function was examined in [25] to study the
pairing behaviour as a function of the interaction strength and of the filling.

2.1.2.4 Particle-hole symmetry

The Hubbard model exhibits the important so-called particle hole symmetry (PHS) [134].
To discuss this, the third term of Eq. 2.1 is first rewritten as [58]

4In two dimensions, a Berezinskii–Kosterlitz–Thouless (BKT) transition from a normal to a superfluid
phase occurs at finite temperatures only away from half-filling.
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∑
i,σ

µi,σñi,σ = µ
∑
i,σ

ñi,σ + h
∑
i

(ñi,↑ − ñi,↓). (2.3)

This equation emphasizes two contributions to the Hubbard Hamiltonian. The first term
on the right hand side accounts for a variation in the total density which is adjusted by
the chemical potential µ. Here, µi,σ = µ is assumed to be site and spin independent. The
second term accounts for a spin-imbalance between the spin up ñi,↑ and spin down ñi,↓
populations which is adjusted by the effective (magnetic) Zeeman potential h.

Furthermore, the particle hole transformation is given by

ci,↑ → ci,↑ (2.4)

ci,↓ → (−1)(ix+iy)c†i,↓. (2.5)

It transforms the Hubbard Hamiltonian (Eq. 2.1) by swapping the sign of the interac-
tion strength U → −U and exchanging the parameters µ ↔ h in Eq. 2.3. Thus, due to
U → −U , the attractive and repulsive side of the phase diagram (Fig. 2.2) are related
to each other by this transformation. The exchange of µ ↔ h, however, causes that a
doping away from half-filling translates to a spin-imbalance on the other side of the phase
diagram. So, at half-filling and in a spin-balanced system for example, the transformation
translates a Mott insulator (anti-ferromagnetically order state) on the repulsive side of the
phase diagram to preformed pairs (charge density wave) on the attractive side [73]. For
theoretical calculations the particle hole transformation can be employed in order to sim-
ulate the Hubbard model on the attractive side and deduce its behaviour on the repulsive
side where the sign problem hinders the computation in the low temperature regime [22].
In cold atom experiments the particle hole transformation was experimentally verified in
[58]. As mentioned, the cuprates does not exhibit the particle-hole symmetry as reflected
in their non-symmetric phase diagram (Fig. 1.1). To account for this in cold atoms gas
experiments, the Lieb lattice can be employed or next-nearest neighbour tunnelling can
be included.

2.1.3 Bilayer Hubbard model

The bilayer Hubbard model extends the monolayer Hubbard model by a second layer
which is coupled to the first one (Fig. 2.4 left). Its Hamiltonian reads [135][20]

ĤbiHub =− t
∑
〈i,j,〉,l,σ

(ĉ†i,l,σ ĉj,l,σ + ĉ†j,l,σ ĉi,l,σ)

− t⊥
∑
i,σ

(ĉ†i,1,σ ĉi,2,σ + ĉ†i,2,σ ĉi,1,σ)

+ U
∑
i,l

ñi,l,↑ñi,l,↓ −
∑
i,l,σ

µlñi,l,σ.

(2.6)
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As in the monolayer Hubbard Hamiltonian (Eq. 2.1), t, U, µ denote the intra-plane tun-
nelling amplitude, the on-site interaction strength and the chemical potential, respectively.
The new quantity is the inter-plane tunnelling amplitude t⊥ governs the second term on
the right hand side of Eq. 2.6. It describes the tunnelling strength across the two planes
of the bilayer system. The index l = 1, 2 denotes the respective plane. The chemical po-
tential µl is plane dependent such that the filling of each plane can be adjusted separately.
The meaning of the other variables is described for Eq. 2.1.

In the non-interacting limit, U = 0, and for µl = 0 the last two terms in Eq. 2.6 vanish.
In this case the dispersion relation reads

ε±(qx, qy) = ±t⊥ + 2t[cos(qx) + cos(qy)]. (2.7)

For t⊥ = 0, this reduces to the dispersion relation of the two-dimensional Hubbard model.
For t⊥ 6= 0, however, a bonding (-) and an anti-bonding (+) band exist with a band width
of 8t each (cf. Fig. 2.3 left). Thus, a metallic state constitutes between t⊥ = 0− 4t where
both bands still overlap. In contrast, above t⊥ = 4t a band insulating state forms due to a
completely filled lower bonding band which is separated from the anti-bonding band. At
half-filling both bands are perfectly nested by the vector Q = (π, π).
For infinite, repulsive interactions U → ∞ the bilayer Hubbard model reduces to the bi-
layer Heisenberg model. The latter exhibits a quantum phase transition at t⊥ = 1.588t
from an intra-plane anti-ferromagnetically ordered state in both planes at small t⊥ to a
band insulating state of inter-layer singlet bonds at high t⊥ [132].
In order to study the phase diagram of the bilayer Hubbard model (Fig. 2.4 right) includ-
ing repulsive interactions and varying t⊥/t, different theoretical methods where employed,
e.g. cluster dynamical mean field theory [80] or determinant Quantum Monte Carlo meth-
ods [63][129]. While [80] predicted a large metallic phase for small to intermediate U , the
phase diagram of [63] exhibits a metallic phase only in the non-interacting limit and in
[129] a metallic phase does not arise at all.

The cross-over between an intra-plane anti-ferromagnetically ordered state in both planes
at low ratios t⊥/t and a band insulating state of inter-layer singlet bonds at high t⊥/t was
measured during this thesis for the first time for different interaction strengths (Fig. 4.27
right).

2.2 Wannier functions in a superlattice

The realization of the bilayer Hubbard model (Sec. 2.1.3), with cold atoms using two
mono- and one bi-chromatic optical lattice as described in this thesis requires a precise
calibration of the lattices. The calibration methods which were used throughout this thesis
base in general on the comparison between measurements and theoretical predictions of
atoms in the optical lattice system.
In this chapter the theory of localized particles in a mono- or bichromatic lattice po-
tential is elucidated enabling for the theoretical predictions. In Sec. 2.2.1 the general
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Figure 2.4: Left Bilayer Hubbard model (cf. Fig. 2.1 for the monolayer Hubbard model).
The additional tunnelling parameter t⊥ couples the upper and lower plane. Right Phase
diagram of the bilayer Hubbard model as a function of t⊥/t (y-axis) and U/t (x-axis).
At strong inter-plane coupling t⊥/t � 1, a band insulating (BI) state is present with
individual singlet bonds between the layers. In contrast, at small inter-plane coupling,
intra-layer antiferromagnetic (AFM) spin correlations reveal. A metallic state persists
only in the non-interacting case. There, at values t⊥/t < 4, the two Hubbard bands with
width W = 8 t (cf. Fig. 2.3 left) overlap which give rise to a metallic state. The cross
over between the BI and AFM is smooth. In the limit of strong repulsive interactions, the
Hubbard model reduces to the Heisenberg model where a phase transition from a BI to
an AFM happens at t⊥/t = 1.588. The figure is taken from [63].

superlattice potential is discussed. Subsequently, the computation of Wannier functions
in this potential is presented (Sec. 2.2.2). The Wannier functions are employed thereafter
to calculate the Hubbard parameters t, t⊥ and U (Sec. 2.2.3). Finally, in Sec. 2.2.4,
the discussion is extended from non-interacting Wannier functions to interacting Wannier
functions. This enables to match experimental measurements of the interactions strength
in the superlattice with theoretical expectations.

2.2.1 Superlattice potential and band structure

A general superlattice potential in one spatial dimension can be written as [84]

Vsl(z) = −Vlcos2(klz − φ) + Vscos2(ksz). (2.8)

Here, Vl and Vs are the lattice depths of the “long” and “short” lattice with wavelength
λl and λs, respectively. In the following, for explanation and plotting purposes, the wave-
lengths are chosen to be λl = 1064 nm and λs = 532 nm. Furthermore, Vl and Vs are given
by the light shift (Eq. 1.1). The long lattice has a wave number of kl = 2π/λl and the
short lattice of ks = 2π/λs. The phase φ shifts the long lattice with respect to the short
lattice. The sign -/+ of the individual potentials arises due to the red-/ blue-detuning of
the 1064 nm / 532 nm lattice laser with respect to the main optical resonance at 766 nm
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in potassium.
The parameters Vl, Vs and φ affects the depth and shape of the superlattice (Fig. 2.5).
For Vs = 0, the superlattice turns into a monochromatic lattice potential. A change of
the long lattice depth Vl then changes the height of this monochromatic lattice (Fig. 2.5
left). A change in the phase φ moves the monochromatic potential along the spatial x-axis.
Such a monochromatic lattice is used as two-dimensional, lattice in the experimental setup
(Fig.3.10).
In a superlattice configuration (Vl 6= 0, Vs 6= 0) with φ = 0, an increasing short lattice
depth Vs leads to a change in the barrier height (Fig. 2.5 center). For larger short lattice
depths the double well center barrier increases. Simultaneously, the two potential minima
move outwards with respect to the center barrier. A configuration with φ = 0 as shown in
Fig. 2.5 is called “symmetric superlattice configuration” or “superlattice at the symmetry
point”. An increase of the long lattice depth Vl (not shown in Fig. 2.5) increases the depth
of the whole lattice. In this case, the potential minima move inwards, i.e. towards the
center barrier.
The superlattice phase φ induces a tilt between two adjacent sites in the superlattice (Fig.
2.5 right). The phase period is π/2, meaning that the symmetric superlattice configura-
tion reveals periodically for φ ∈ z · π/2 with z ∈ Z. The potential minima, however, shift
continuously along the spatial x-axis if the superlattice phase is varied from one to another
symmetric configuration. The latter effect only occurs when the phase φ goes into the long
lattice potential in Eq. 2.8, i.e. kl · z − φ. Contrarily, if the phase goes into the short
lattice potential, the potential minima do not shift. A so-called Thouless pump makes use
of this continuous shift [96]. The configuration at φ = π/4 is called antisymmetric.

Figure 2.5: Superlattice potential. Left For vanishing short lattice potential, the superlat-
tice turns into a monochromatic optical lattice whose depth depends on the amplitude Vl.
Center An increase of the short lattice amplitude Vs in a symmetric superlattice configu-
ration φ = 0 leads to a higher barrier. The double well center barrier height changes while
the potential minima moves with respect to the center barrier. Right A change in the
superlattice phase tilts the superlattice potential. The symmetric configuration reveals
for φ ∈ z · π/2 with z ∈ Z but with a spatial displacement of the entire lattice along the
x-axis.
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Eigenenergies and eigenfunctions in the superlattice
In the superlattice potential, eigenenergies and eigenfunctions for non-interacting, massful
particles are computed from the superlattice Hamiltonian

Ĥsl = Ĥkin
sl + Ĥpot

sl = − ~2

2m
∂2
z + Vsl, (2.9)

where m is the particle mass, ~ is the reduced Planck’s constant and ∂2
z is the second spatial

derivative with respect to the coordinate z. As in the case of a monochromatic lattice [86],
the superlattice potential breaks the continuous translational symmetry but preserves a
discrete one which is, in real space, the translation of the potential by the long lattice
constant al. In Fourier space, according to Bloch’s theorem, the discrete translational
symmetry manifests such that only plane waves that differ by the reciprocal lattice vector
G = 2π/al contribute to individual eigenfunctions of Ĥsl. The eigenfunctions which are
referred to as Bloch functions can therefore be written as

ψq(z) =
∑
l

ulq(z) · ei(q+Gl)z. (2.10)

Here, q is the lattice momentum which is the conserved quantity according to Noether’s
theorem and the functions ulq(z) have the same spatial period as the superlattice. The

determination of the eigenfunctions ψq(z) of Ĥsl thus reduces to the computation of the
elements ulq(z). The latter can be interpreted as weights of the plane waves with wave

number q + lG which contribute to the Bloch wave ψq(z). In order to obtain ulq(z),

the matrix elements exp(i(q +Gl)z)∗Ĥslexp(i(q′ +Gl′)z) are calculated and the resulting
matrix5 [84]

Ĥll′ =

(
2Vs −

Vl
2

)
· 1 +



. . .

(q − 4)2 −Vl
4
e2iφ Vs 0 0

−Vl
4
e−2iφ (q − 2)2 −Vl

4
e2iφ Vs 0

Vs −Vl
4
e−2iφ q2 −Vl

4
e2iφ Vs

0 Vs −Vl
4
e−2iφ (q + 2)2 −Vl

4
e2iφ

0 0 Vs −Vl
4
e−2iφ (q + 4)2

. . .


(2.11)

is diagonalized. The lattice depths Vl and Vs are given in units of the recoil energy
Erec = ~2k2

2m . Due to the discrete translational symmetry, the lattice momentum q is
restricted to values

q ∈
[
π

al

(
−1 +

2

L

)
+ k · 2π

alL
,
π

al

]
(2.12)

5In order to compute the matrix elements, Euler’s formular to rewrite the superlattice potential Vsl(z) in
terms of exp-functions as well as the equality

∫
dz exp(i(n−m)z) = δnm is employed.
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2.2 Wannier functions in a superlattice

with k = 0, 1.... Here, L represents the number of double wells in the superlattice [14].
The diagonalization of Ĥ ll′ and computation of its eigenvectors uq(z) and eigenvalues vEq
is numerically performed in this thesis with the python method eigh from the scipy.linalg
library for q±2m with m ∈ [−10, 10]. The eigenvalues are also referred to as eigenenergies.

Figure 2.6: Bandstructure in a monochromatic lattice. Left Band structure of the first
three bands in a shallow lattice with depth of Vl = 6 Erec and lattice constant al. This
lattice configuration is used to create a two-dimensional Hubbard system (Sec. 4.2.2). The
band energy depends strongly on the lattice momentum q. The width of the first band
is given by four times the tunnelling amplitude. Right Band structure of a deep lattice.
Such lattice configurations are used e.g. to freeze the motion in a lattice or calibrate the
lattice depth. The bands are flattened and each well can be approximated by the harmonic
oscillator potential. The first three harmonic oscillator levels are depicted for comparison.

For a shallow, monochromatic lattice with depth of Vl = 6 Erec and lattice constant al,
as it is used for the two-dimensional lattice in the experimental setup (Fig.3.10), the
eigenenergies strongly depend on the lattice momentum q (Fig. 2.6 left). This leads
to so-called energy bands (Fig. 2.6 left, shaded regions) which together form the band
structure. The bands are separated due to the periodic potential and a transition between
two of them can only occur if the lattice momentum q is conserved. This results from the
calculation of the matrix elements Ĥ ll′ . Throughout this thesis, the bands are numbered
starting from the 0th band which is the ground band. The first excited band is called 1st

band etc.. The band width of the ground band is given by ∆band = 4t which is equivalent
to the band width in the non-interacting Hubbard model (Fig. 2.3 left).
In contrast, for a deep, monochromatic lattice with depth of 200 Erec and lattice constant
al, the bands are flattened and the gaps between the bands are increased compared to
the shallow lattice (Fig. 2.6 right). The deep lattice can be approximated by a harmonic
oscillator potential with [86]
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VharO(z) =
m

2
ω2

harOz
2 with ωharO = 2

√
Vl
Ez1064

rec

~
. (2.13)

Here, m, ωharO, Vl and Ez1064
rec are the mass of the particle in the harmonic potential,

the angular harmonic oscillator frequency and the lattice depth in units of its recoil ener-
gies Ez1064

rec , respectively. The eigenenergies of the harmonic oscillator potential are given
by En = ~ω(n + 1/2) (Fig. 2.6 right). For higher bands the discrepancy between the
eigenenergies of the harmonic oscillator potential and the monochromatic lattice potential
increases. The band structure of a monochromatic lattice will be compared to experimen-
tal data at a later point in order to calibrate the lattice depth of each lattice via lattice
modulation spectroscopy (Sec. 4.1.1).

In contrast to the band structure of the monochromatic lattice, the band structure in a
superlattice consists of pairs of bands (Fig. 2.7 left). Again, for large lattice depths of
Vl = 120 Erec and Vs = 20 Erec in the symmetric configuration, the bands are flattened
out. The formation of pairs of bands in the band structure becomes clearer by considering
the band energy as a function of the short lattice depth (Fig. 2.7 center). By increasing
the latter, the bands that belong to a pair approximate each other. In the limit for large,
short lattice depths, the superlattice transforms into a monochromatic lattice and the two
bands of each pair transform to a single band. This cross over from two into a single band
can also be understood in terms of the Brioullin zone. The Brioullin zone is the primitive
cell of the reciprocal lattice and, hence, in one dimension for a monochromatic lattice with
short lattice constant as, it contains lattice momenta q ∈ [−π/as, π/as]. Contrarily, in
a superlattice, the Brioullin zone contains lattice momenta q ∈ [−π/al, π/al] (Eq. 2.12)
where the long lattice constant al = 2 · as. Thus, the Brioullin zone of the superlattice
has a width half of the Brioullin zone of the monochromatic lattice with short lattice
constant as. In the limit when the superlattice transforms to a monochromatic lattice for
an increasing short lattice depth, the picture of unfolding the Brioullin zone of the su-
perlattice to the Brioullin zone of the monochromatic lattice can be stressed. Conversely,
starting from a monochromatic lattice with short lattice constant as and turning on the
second lattice with long lattice constant al such that a superlattice forms, the picture of
folding the larger Brioullin zone of the monochromatic lattice into the Brioullin zone of
the superlattice can be drawn. This can be seen as the origin of the two bands of one pair
arising from folding the band at the edge of the superlattice Brioullin zone where q = π/al.

The phenomenon of “avoided crossing” of energy bands in a superlattice becomes visible
when considering the band energy as a function of the superlattice phase φ (Fig. 2.7 right).
The energy gap between the ground and first excited band first increases as a function of
φ up to 0.16. The band energy of the 2nd excited band, however, decreases in this range.
This would lead to a crossing of the energy bands of the first and second excited band.
In order to avoid this crossing, however, the energies start to de- and increase again for
phases φ > 0.16. The same happens at higher phases with the 2nd and 3rd as well as with
the 3rd and 4th band.
With the definitions of the superlattice potential as in Eq. 2.8 and the phase factor in
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2.2 Wannier functions in a superlattice

Figure 2.7: Bandstructure in a bi-chromatic lattice. Left First six energy bands in a deep,
symmetric superlattice with Vl = 120 Erec and Vs = 20 Erec. The energy bands are flat and
arises as pairs. Center For increasing short lattice depths Vs, the two energy bands within
one pair approximate each other. In the limit of high Vs, the superlattice approaches a
monochromatic lattice the two bands goes over into a single band. Right Avoided crossing
of energy bands as a function of the superlattice phase.

the Hamiltonian Eq. 2.11 the superlattice’s periodicity in phase matches the periodicity
of the band structure.

2.2.2 Non-interacting, maximally-localised Wannier functions

Bloch waves ψnq (z) in band n and with lattice momentum q given by Eq. 2.10 extend over
the whole lattice. Numerically, they are computed by inserting the eigenvectors uq(z) from
Ĥ ll′ in Eq. 2.10. In order to gain a more intuitive understanding of physical processes
of particles in a super- or monochromatic lattice, however, it is convenient to work with
functions localized to individual lattice sites. One possibility to achieve this is to Fourier
transform the set of orthonormal Bloch functions to a complete, orthonormal set of so-
called Wannier functions wn(z − all). Here, n is the band index and l is the index of the
lth well of the lattice or lth double well in case of a superlattice. Therefore,

wnl (z − all) =
1√
L

π/al∑
q=−π/al

e−iqallψnq (z). (2.14)

This set of localized Wannier functions, however, is not unique. Multiplying the set of
Bloch functions by a complex phase factor ψnq (z)→ eiφ(n,q) · ψnq (z) gives a different, com-
plete set of Bloch functions and, hence, a different set of Wannier functions. The chosen
gauge of φ(n, q) of the Bloch waves determines thereby the spread of the resulting individ-
ual Wannier functions while keeping their center modulo the lattice site index unchanged
[99]. Thus, in order to define a unique set of Wannier functions an additional condition (a
gauge) to the Wannier functions is required. One plausible gauge is the one which leads
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to the Wannier functions with minimum spatial spread or, in other words, maximally-
localized Wannier functions. The idea of how the spread of Wannier functions can be
minimized by the correct gauge is pictorially described in [14]: Considering a Wannier
function localized at lattice site l, then, its spread is minimized by choosing the phase
φ(n, q) of the Bloch functions in band n such that all Bloch functions for different q con-
structively interfere at site l. A straightforward ansatz to compute the set of maximally
localized Wannier functions is the band projection position operator (BPPO) method [82].
The equivalence between the Wannier functions resulting from this BPPO ansatz and the
Wannier functions with minimum spread due to the correct gauge from the definition in
Eq. 2.14 was demonstrated in [99]. The BPPO ansatz was applied to a superlattice in [108].

The BPPO approach employs the projection operator P̂n =
∑

q |n, q〉 〈n, q| onto band n.
Here, |n, q〉 is the Dirac notation for the Bloch function ψnq (z) and its complex conjugated

is denoted as 〈n, q|. The projected position operator follows as x̂proj
n = P̂nx̂nP̂n [82]. The

maximally localized Wannier functions |n, l〉 in band n at lattice site l are defined as
eigenstates of this band projected position operator x̂proj

n |n, l〉 = l · al |n, l〉. In order to
explicitly compute the Wannier functions, the matrix elements χnn

′
qq′ = 〈n, q| x̂proj

n |n′, q′〉
are first calculated. They read for two involved bands n and n′ [14]

χnn
′

qq′ = ale
i·al
2

(q−q′)

·
[
δqq′ ·

(
L− 1

2
+ (−1)m−m

′ i

2π(m−m′)

)
(unq )∗ · un′q′

+ (1− δqq′) ·
i

al(q − q′)
(unq )∗ · un′q′

+ (1− δqq′ − δmm′) · (−1)m−m
′ · i

2π(m−m′) + al(q − q′)
(unq )∗ · un′q′

]
,

(2.15)

Here, the unq ’s are the eigenvectors of the matrix Ĥ ll′ (Eq. 2.11), the index m takes
values m ∈ [−10, 10] throughout this thesis to limit the needed computation time for
diagonalization6 and the lattice momentum q ∈ [π/al(−1 + 2/L) + k · 2π

alL
, π/al] with

k = 0, 1, .... Again, the number L corresponds to the number of double wells in the
considered superlattice [14]. The diagonalization of the resulting matrix with elements
given by Eq. 2.15 leads to a basis transformation from n, q → l,m. The new index
m represents the mth localized state within the lth double well. This localized state is
constructed by

blm(z) =
∑
n,q

χn,ql,m · ψ
n
q (z). (2.16)

6Theoretically, all bands form a complete basis set of orthonormal function which are needed to compute
Wannier function with minimum spread. The restriction to m ∈ [−10, 10] and, thus, 21 bands is,
however, sufficient here to calculate the Hubbard parameters and compare them with experimental
measurements.

24



2.2 Wannier functions in a superlattice

Hence, the elements of the eigenvectors χn,ql,m for fixed l,m represents the weights for the
corresponding Bloch functions with lattice momentum q in band n.
For two bands, i.e. n, n′ ∈ {1, 2} in Eq. 2.15, the resulting matrix 2.15 is a two-by-two
block matrix and has dimensions of (2 × Nq) × (2 × Nq) where Nq denotes the number
of possible q states in the superlattice. Here, Nq is given by the width of the interval
[π/al(−1 + 2/L), π/al] divided by the spacing 2π/(alL). Consequently, the basis trans-
formation n, q → l,m leads to two localized states with index m ∈ {1, 2} per each of the
eleven double wells. Thus, there is one localised state in the left and one in the right well
(Fig. 2.8 left). The offset of both states is here set to the ground state energy in the
superlattice where the bands are considered to be flat.7

For four bands, i.e. {1, 2, 3, 4} in Eq. 2.15, it yields a four-by-four block matrix and, conse-
quently, four localized states arises with index m = 1, .., 4. Their offset is set to the energy
of the 1st excited, flat band in the superlattice (Fig. 2.8 left). The four eigenvectors of
these four localized states (Eq. 2.16) have four corresponding eigenvalues (Fig. 2.8 center,
inset). These eigenvalues correspond to the center of mass of the corresponding localized
states [14]. Thus, two eigenvalues are located in the left and two in the right well of the
corresponding double well.
All eigenvalues of the diagonalized matrix in Eq. 2.15 together appear in eleven groups
since the superlattice is formed by L = 11 double wells (Fig. 2.8 center).

Taking more than two bands into account in Eq. 2.16 in order to compute localized states,
has to be treated with caution. If the superlattice phase is for example set to φ = 0.2 rad,
mixing of the two lowest bands leads to two localized states in the lower well of the double
well which are both, however, not centred in the well (Fig. 2.8 right). The reason for
that can be understood considering the band structure of the superlattice (Fig. 2.7 right).
In the symmetric configuration, i.e. φ = 0, the two lowest energy levels arises as a pair.
Here, both levels have a similar energy. Consequently, mixing of these bands is suitable
and leads to well localized states (Fig. 2.8 center). For a phase of φ = 0.2 rad, however,
the 1st and 2nd excited band are close to each other while the ground band has a much
lower energy (Fig. 2.7 right). Thus, in order to obtain localized states, the lowest band
needs to be treated alone while the 1st and 2nd excited band are mixed. In this thesis, the
calculations for the calibration of the superlattice was restricted to a single or two bands.
The mixing of more bands as discussed in this section for four bands is primarily per-
formed in order to demonstrate the construction of higher band Wannier functions. The
latter is needed e.g. in the context of the lattice depth calibration via lattice modulation
spectroscopy (Sec. 4.1.1). Here, excitations from the ground to e.g. the second excited
state are enforced and matrix transition elements can be computed by using the ground
state and second excited state Wannier functions.

The localized states from Eq. 2.16 are used to finally construct Wannier functions. The
Wannier functions in the left/right well of the lth double well are given by a weighted

7Considering only a single band n = n′ in Eq. 2.15 leads to a single localized state with m = 1 in each
double well. This state is spread over the entire double well and therefore inappropriate to describe
physical processes between the two wells of one double well at least in the symmetric superlattice
configuration.
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Figure 2.8: Eigenfunctions/-values of the band projected position operator x̂projn . Left
Localized states constructed by Eq. 2.16 with two (lower two localized states) and four
(upper four states) bands i.e. n, n′ = 1, 2 or 1, 2, 3, 4 in Eq. 2.15. Center Eigenvalues
of the diagonalized matrix with entries χnn

′
qq′ for L = 11 double wells in the superlattice

and four bands. They form eleven groups with four elements each. Each eigenvalue
corresponds to the center of mass of the corresponding localized state. Right Localized
states in a tilted superlattice. Taking two bands into account leads to two non-centred
localized states in the lower band. In the upper band the third localized state from the
left cannot be assigned to one of the two wells since it is centred around the double well’s
barrier.

superposition of the m/2 left/right localized states blm(z). The weight for each localized
state is determined by the eigenvector element ηmm′ of the projected Hamiltonian [84]

H
L/R
mm′ =

∑
n,q

εnq (χn,ql,m)∗χn,ql,m. (2.17)

The Hamiltonian HL/R projects the localised states onto the left and right well, respec-
tively, setting m,m′ ∈ [1, .., N/2] for the left and m,m′ ∈ (N/2, .., N ] for the right well.
Here, N is the number of mixed bands.

The Wannier functions are then computed by [84]

WL/R(z − all) =
∑
n,q

∑
mm′

ηmm′χ
nq
lmψ

n
q (z). (2.18)

If the superlattice is in symmetric configuration, two band can be taken into account in
Eq. 2.15. Consequently, the left/right ground state Wannier function corresponds to the
left/right localized state blm(z), respectively (Fig. 2.9 left). Furthermore, the left/right
1st excited Wannier functions arise using four bands and are superimposed from the two
localized states blm(z) in each well respectively (Fig. 2.9 left). The latter have weights
from Eq. 2.17.
In a tilted superlattice with a phase of φ = 0.2 rad, the ground band is well separated from
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2.2 Wannier functions in a superlattice

the 1st and 2nd excited band (Fig. 2.9 center, lower dashed line). Moreover, in contrast
to the symmetric case, the ground band energy is much lower than the potential energy
of the upper, right well. A strongly localized, centred, ground energy Wannier function
in the lower well constitutes therefore by considering only the ground band. Mixing the
1st and 2nd excited band in Eq. 2.16, whose energies are both above the potential energy
of the upper, right well minimum, leads to a localized Wannier function in the left and
right well, respectively (Fig. 2.9 center). Here, the energy offset of the two latter Wannier
functions is set to be the average of the energy levels of the 1st and 2nd band.
In the antisymmetric superlattice configuration, i.e. φ = π/4, the energy levels are well
separated (cf. Fig. 2.7 right). Thus, the first three Wannier functions are constructed
using only the first, second and third band, respectively (Fig. 2.9 right). Furthermore,
due to the deep lattice, the Wannier functions can be approximated by harmonic oscillator
wave functions (Fig. 2.9 right) since the deep potential well can be regarded as a harmonic
oscillator potential. The offset of the harmonic oscillator wave functions is here set to the
respective oscillator level.

Figure 2.9: Wannier functions. Left Ground and 1st excited state Wannier functions in the
left and right well in a symmetric superlattice. The two ground state Wannier functions are
computed using two bands whereas the 1st excited state Wannier functions are computed
using four bands. Center The ground state Wannier function in the tilted superlattice
is computed using a single band since the ground state energy is lower than the potential
energy of the upper well. The 1st excited state Wannier functions are computed by mixing
the 1st and 2nd band. Right Wannier functions in the antisymmetric configuration. Each
computed from the single corresponding band. For comparison the harmonic oscillator
potential and its wave functions are computed.

The restriction to a finite number of considered bands in order to obtain localized Wannier
functions does not allow to obtain maximally localized Wannier functions which reveal
from the full basis set of localized functions blm(z) in Eq. 2.16. The intricacy of mixing
the correct bands and due to an increasing computation time when taking higher bands
into account, however, prompt to restrict the calculations throughout this thesis to one or
two bands. It will be shown in chapter four and five that quantities basing on these single
or two band Wannier functions well match with the experimental data.
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2.2.3 Derivation of Hubbard parameters using Wannier functions

The numerical determination of Wannier functions in each well of a double well from Eq.
2.18 (Fig. 2.9) opens the possibility to determine secondary quantities like the Hubbard
parameters, namely the tunnelling amplitude t, interaction strength U and on-site energy
E.

The on-site energy E of a particle in one well of the double well is intuitively given in
terms of Wannier functions in the left or right well WL/R and simultaneously expressed
by the BPPO eigenfunctions respectively as [64][84]

E
L/R
onsite =

∫
W ∗L/R(z) · Vsl(z) ·WL/R(z)dz =

∑
n,q

∑
mm′

η∗mηm′ε
n
q (χnqlm)∗χnqlm′ . (2.19)

Here, Vsl(z) is the superlattice potential, m,m′ ∈ [1, ..., Nb/2] to compute the on-site en-
ergy of the left and m,m′ ∈ (Nb/2, ..., Nb] to compute the on-site energy of the right well
of the double well and εnq is the band energy of the corresponding band n with lattice
momentum q. Furthermore, the χnqlm are the eigenvector elements from Eq. 2.15 and the
ηm′ are the eigenvector elements of the projected Hamiltonian.

The tunnelling amplitude t is determined by the overlap between the two ground state
Wannier functions in neighbouring wells. Hence,

tin/out =

∫
W ∗L/R(z)

[
−~2

2m
∇2 + Vsl(z)

]
WR/L(z)dz =

∑
n,q

∑
mm′

η∗mηm′ε
n
q (χnqlm)∗χnqlm′ .

(2.20)

In contrast to the computation of the on-site energy in terms of the BPPO eigenfunctions,
for the tunnelling between two wells m is in [1, ..., Nb/2] while m′ is in (Nb/2, ..., Nb]. Thus,
m runs over the localized states in the left and m′ over the localized states in the right
well. In order to compute the tunnelling out of a double well m and m′ change their role.

The interaction strength U between two particles on the same site is given by

UL/R =
4π~2asc
m

∫
|WL/R(z)|4dz. (2.21)

Here, asc is the scattering length between two particles which is given in [24] for one, two
and three dimension.

The superlattice configuration affects the Wannier functions and, hence, the deduced Hub-
bard parameter (Fig. 2.10). For example, at a constant long lattice depth of Vl = 120 Erec,
an increasing short lattice depth leads to an increasing barrier height. This causes steeper
slopes in the potential (Fig. 2.5 center) and the Wannier functions become compressed
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(Fig. 2.10 left, inset). In turn, the overlap between the two Wannier functions at neigh-
bouring sites is diminished and the tunnelling amplitude decreases exponentially (Fig.
2.10 left, blue curve and lower x-axis). Contrarily, for increasing long and constant short
lattice depth, the two wells in the double well slowly approximate each other and the
tunnelling amplitude therefore increases (Fig. 2.10 left, red curve and upper x-axis).
The on-site energy behaves opposite (Fig. 2.10 center). For constant long and an increas-
ing short lattice depth the ground state energy increases due to the anti-confinement of
this lattice (blue curve). Here, the anti-confinement manifests in the “+” sign of Vs in the
superlattice potential (Eq. 2.8). In contrast, an increasing long lattice depth at constant
short lattice depth leads to a decreasing on-site energy to larger negative values due to a
stronger confinement.
Finally, in the exemplary case of attractive interactions, i.e. that the scattering length
asc < 0, an increasing short lattice depth increases the center barrier and compresses the
Wannier functions which, in turn, increases the absolute value of the interaction energy
(Fig. 2.10 right). An increasing long lattice depth at constant short lattice depth in con-
trast reduces the compressional effect of the center barrier leading to broadened Wannier
function and, hence, to a smaller interaction energy.8

The affects on the Hubbard parameters is here discussed for a symmetric superlattice, the
argumentation, however, remains valid also for superlattice configurations away from the
symmetry point.

Figure 2.10: Effect of the two lattice depths of the long and short lattice on the Hubbard
parameters and on the Wannier functions. Left inset An increase of the short lattice
depth leads to compressed Wannier functions. Left Tunnelling amplitude as function
of the long (red curve, upper x-axis) and short (blue curve, lower x-axis) lattice depth.
Center On-site energy as function of the long (red curve, upper x-axis) and short (blue
curve, lower x-axis) lattice depth. Right Interactions energy as function of the long
(red curve, upper x-axis) and short (blue curve, lower x-axis) lattice depth for attractive
interaction with scattering length smaller zero.

8In the symmetric superlattice, two particles in the double well would split for repulsive interactions such
that both particle occupy the left and right well. This would lead to a vanishing on-site interaction
energy.
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2.2.4 Interacting Wannier functions

The derivation of maximally localized Wannier functions from the BPPO bases on a
Hamiltonian for non-interacting single particles in a superlattice (Sec. 2.2.2). The re-
sulting Wannier functions therefore describe non-interacting particles. Eq. 2.21 in turn
employs these Wannier functions in order to compute the on-site interaction energy be-
tween them. The on-site interactions, however, modify the Wannier functions which then
in turn changes the on-site interaction energy. Qualitative speaking, repulsive interaction
broaden the Wannier functions while attractive interaction narrow them. The reason be-
hind is that for example for repulsive interaction, the scattering length is positive and,
hence, the interaction strength U greater than zero. Consequently, a broadened Wannier
function reduces the interaction strength. The effect of interactions on Wannier functions
was studied in [93][89][156]. A self-consistent approach was used in [156] in order to com-
pute interacting Wannier functions in a Bose-Hubbard model. The self-consistent equation
is here deduced from a variational approach by which the single-band ground state energy
of the Wannier function is minimized. In the Mott-insulating regime the ground state
reads |n0, n0, ..., n0〉 with n0 being the number of particles per site. The self-consistent
equation is then simplified to [156]

∑
j

µj
N0

W (z − zj) = H0W (z) + g0(n0 − 1)|W (z)|2W (z) + 2g0n0

∑
rj 6=0

|W (z − zj)|2W (z)

(2.22)

Furthermore, in [156], the Wannier function is expanded in terms of single particle Wannier
functions as

W (z − zj) =
M∑
n=1

(cnwn(z − zj−1) + bnwn(z − zj) + cnwn(z − zj+1). (2.23)

In this thesis simplification are made to Eq. 2.22 in order to compute interacting Wannier
functions for fermions in a superlattice. For bosons in the deep Mott-insulating regime each
lattice site is occupied by an integer number of bosons. For fermions in the band insulating
regime each lattice site is likewise occupied by an integer number with |n0, n0, ..., n0〉 where
n0 = 2. Moreover, for deep lattices, the Wannier functions are well localized to one lattice
site. This simplifies Eq. 2.22 in two ways: While the sum on the left side of 2.22 reduces
to a single term, namely the Wannier function at site j, the third term on the right side
of Eq. 2.22 vanishes. Thus, the simplified equation reads

µj
N0

W (z − zj) = H0W (z) + g0(n0 − 1)|W (z)|2W (z). (2.24)

The considered Wannier function in Eq. 2.23 is also simplified. On the one hand, for deep
lattices it is again suitable to restrict to localized Wannier functions such that in Eq. 2.23
the terms cn = 0. On the other hand, by using only the ground band Wannier function
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2.2 Wannier functions in a superlattice

the sum on the right hand side in Eq. 2.23 reduces to a single Wannier function. Thus,
W (z−zi) = bnw(z−zi) and w(z−zi) is chosen to be the non-interacting Wannier function
from Eq. 2.18 (Fig. 2.9).

Following the idea that the total energy Etot = Ekin + Eonsite + U is minimum for the
correct interacting Wannier function at a given interaction strength, the on-site energy
(Eq. 2.19), the interaction energy (Eq. 2.21) and the kinetic energy

Ekin =

∫
W ∗(z)

[
− ~2

2m
∂2
z

]
W (z)dz (2.25)

are computed in a first loop cycle for the non-interacting Wannier function. The to-
tal energy is then determined as the sum of these three values. In a second cycle, the
non-interacting Wannier function is inserted into the simplified Eq. 2.24 leading to a
perturbation of the initial non-interacting Wannier function in terms of the interaction
strength g0. The total energy for this perturbed function is subsequently determined and
the perturbed function is inserted into Eq. 2.24. By repeating this self-consistent ap-
proach, the Wannier function with minimum total energy can be constructed giving the
final interacting Wannier function. The parameters Ekin, U,Eonsite as a function of the
iteration shows the expected behaviour recalling that for attractive interactions, the Wan-
nier function is expected to become compressed compared to the initial, non-interacting
Wannier function and that for repulsive interactions the Wannier function is expected to
be broadened. Concretely, on the one hand for attractive interactions (red curves, left
y-axis), a more and more compressed Wannier function throughout the iterations reduces
its on-site energy stepwise because the potential energy is minimum in the center of the
well (Fig. 2.11 left). The negative interaction energy deceases likewise (Fig. 2.11 center).
In contrast, the kinetic energy increases due to a stronger curvature of the compressed
Wannier function (Fig. 2.11 right) and holds up against the implosion of the Wannier
function. On the other hand, for repulsive interactions (blue curves, right y-axis), the
step-by-step broadening of the initial, non-interaction Wannier function throughout the
iterations leads to an increasing on-site energy (Fig. 2.11 left), while the interaction energy
as well as the kinetic energy decreases (Fig. 2.11 center/right).

As a result of counter-interacting effects of the kinetic, interaction and on-site energy, the
total energy Etot = Ekin +Eonsite +U exhibits a minimum in the attractive and repulsive
case (Fig. 2.12 left, attractive (red curve, left y-axis) / repulsive (blue curve, right y-axis)).
As intuitively expected, the final repulsively interacting Wannier function with minimum
total energy (Fig. 2.12 center) is broadened while the attractively interacting Wannier
function (Fig. 2.12 right) is narrowed compared to the initial non-interacting Wannier
function.

Experimental interaction strength measurements between two particles in a superlattice
can thus be compared to theoretical prediction using either non-interacting or interacting
Wannier functions. The theoretical calculations, however, bases on one dimensional Wan-
nier functions. In order to account for this difference, the scattering length is adapted
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Figure 2.11: Left on-site, center interaction and right kinetic energy of the ground band
Wannier functions with attractive (red curves, left y-axis) and repulsive (blue curves,
right y-axis) interactions as a function of the iteration step. The Wannier functions are
iteratively modified using Eq. 2.22 in order to find the interacting Wannier function.

Figure 2.12: Left total energy of the ground band Wannier functions with attractive (red
curves, left y-axis) and repulsive (blue curves, right y-axis) interactions as a function of the
iteration step.Center Non-interacting and broadened Wannier function due to repulsive
interactions. Right Non-interacting and narrowed Wannier function due to attractive
interactions.

according to [24].
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CHAPTER 3

Experimental setup

The concept of highly controllable analogue quantum simulators to simulate complex quan-
tum many body systems, e.g. copper oxide compounds, was presented in chapter one.
Subsequent, the monolayer Hubbard model as a minimum model for copper oxide layers
in such compounds was reviewed in chapter two and the discussion was extended to the
bilayer Hubbard model for two coupled layers. In this chapter the experimental setup is
described which was used and extended to build an analogue quantum simulator for a
bilayer Hubbard system. The characterisation of this bilayer Hubbard system is presented
in the beginning of the following chapter four “Results”.

The structure of the current chapter orients towards the experimental cycle which typi-
cally ended by absorption imaging of the atoms in various optical lattice settings. The
typical cycle started with the generation of a quantum degenerated Fermi gas of fermionic
potassium atoms in a magneto-optical trap (MOT) and in a subsequent Ioffe-Pritchard
trap. Both are detailed in this chapter. Then, the atoms were commonly loaded into differ-
ent optical lattices whose setups are likewise presented here. Furthermore, high intensity
absorption imaging of the trapped atoms is elucidated and the setup for the generation of
magnetic Feshbach fields as well as for tomography, radio frequency spectroscopy and the
digital mirror device are discussed.

In total, the experimental setup to implement a quantum simulator for a bilayer Hub-
bard system comprised three separated optical tables, ten laser systems, four computers
for controlling and simultaneous data evaluation as well as electronics for the generation
of radio frequency and microwave pulses. Furthermore, a water cooling facility for coils,
temperature monitoring and air conditioning were supervised.
From the three optical tables one was intended for the setup of all laser systems. It is
referred to as “laser table”. The second accommodated the actual experiment and is
therefore referred to as “experiment table”. The third, smaller optical table was used
for additional laser systems for which the main laser table did not offer enough room.
The laser systems included the lasers itself as well as optical setups for laser frequency
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3 Experimental setup

stabilisation, offset locking and laser intensity control. The light was guided to the exper-
iment table via optical fibres, where the actual experiment with the magneto optical trap,
transport stage, Ioffe-Pritchard trap, Feshbach coils, glass cell and magnetic shielding were
located. Moreover, the beam path setups for two dipole traps, five optical lattice beams,
one digital mirror device as well as three cameras were positioned on this table.
Furthermore, the experiment was controlled with an iRobo industrial PC from IPC2U.
This computer comprised two digital (PCI-DIO64 from Viewport) and two analogue cards
whose output could be set by a software on the so called “control PC”. The digital cards
were needed for binary operations like switching on/off a shutter or a Mosfet. In contrast,
analogue operations like the setting of a laser beam intensity required an analogue card
output. The industrial PC was synchronized to a 10 MHz DDS clock which, in turn, re-
ceived its clock signal from GPS. Beside the control of the main experiment cycle which
usually took 60 s, the control of individual devices via python scripts and home built soft-
ware was required. This comprised the generation and control of radio frequency and
microwave pulses and sweeps as well as real-time feedback loops and temperature moni-
toring. Other main tasks were real-time image reading and further image evaluation.

3.1 Cooling to quantum degeneracy

In the experiment the fermionic potassium 40K was used. 40K exhibits a versatile hy-
perfine structure in the ground state in contrast to fermionic lithium 6Li. Moreover, the
heavier mass of potassium compared to lithium causes slower dynamics in optical lattices
[30]. 40K has a natural abundance of 0.0117% and is stable compared to experimen-
tal relevant time scales. The vapour pressure at a temperature T = 293 K amounts to
pvap = 1.3× 10−8 mbar. The enriched 40K potassium source was vapoured into the cham-
ber of the magneto optical trap (Sec. 3.1.2). The electronic structure of potassium reads
1s22s2p63s2p64s1. The D2 line in bosonic 39K (Fig. 3.1, left) and in fermionic 40K (Fig.
3.1, right) was mainly employed for example for imaging. The wavelength of this transi-
tion is λD2 ≈ 766 nm which corresponds to a frequency of νD2 ≈ 391 THz. The life time of
the 2P3/2 state is 26(5) ns with a natural linewidth of 6.035(11) MHz. The Doppler tem-
perature of the D2 line is TDop = 145 µK. The saturation intensity is Isat = 1.75 mWcm−2

[100]. Bosonic 39K potassium was used for spectroscopy locking due to its high natural
abundance of about 93%.

3.1.1 Laser system

The laser system (Fig. 3.2) used for the magneto-optical trap, absorption imaging and
optical pumping consisted of two lasers. A cooling laser which is referred to as “cooler”
and a repumping laser referred to as “repumper” . Both lasers were employed in order to
trap and efficiently cool the 40K atoms in the magneto optical trap (MOT) and prepare
them for the mechanical transport from the MOT to the subsequent Ioffe-Pritchard trap
(Sec. 3.1.2). The cooler was used for absorption imaging (Sec. 3.2).
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3.1 Cooling to quantum degeneracy

Figure 3.1: Hyperfine structure in potassium 39K (left) and 40K (right). The
level scheme of the 2P1/2 state is not depicted. The 2S1/2 ↔2P3/2 D2 transition was
used throughout this thesis. In the experiment, the fermionic 40K was used. Moreover,
repumping and cooling laser transition used for the magneto optical (MOT) trap and
imaging. For the MOT both lasers were red-detuned from the respective resonance by
−30 MHz.

Repumper
The repumper was a DLC DLpro from Toptica which is an external cavity diode laser
(Fig. 3.2). Its output laser frequency was adjusted to drive the 42S1/2, F = 7/2 to
42P3/2, F = 9/2 transition in the fermionic potassium isotope 40K (Fig. 3.1 right). Thus,
atoms that cycled in the cooling transition and fell into the dark 42S1/2, F = 7/2 state
were recycled with the repumper to the cooling cycle by driving these atoms back to
the 42P3/2, F = 9/2 state from where they fell to the 42S1/2, F = 9/2 state. The re-
pumping laser had a linear output polarisation which was adjusted with a λ/2 wave plate
to match the input polarisation of the subsequent tapered amplifier (TA). The output
power of the latter was 1.1 W. An optical isolator after the TA protected the TA from
back reflections of the high power laser light at the following optical elements. After the
isolator, the repumper light was split. One arm was used for optical pumping and the
second one to stabilize its frequency. For frequency stabilisation a Doppler free satura-
tion spectroscopy lock method was employed [55]. Since the bosonic potassium isotope
39K was used for spectroscopy in the cell (high natural abundance) the output laser fre-
quency of the repumper had to be shifted to the D2-line in 39K instead of driving the
42S1/2, F = 7/2 to 42P3/2, F = 9/2 transition in 40K as in the experiment for the MOT
(cf. Fig. 3.1 left/right). An acoustic optical modulator (AOM) in double pass configura-
tion was employed for this purpose after the cube. Passing twice through the λ/4 wave
plate in the double pass configuration led to a total rotation of the light’s polarisation by
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Figure 3.2: Laser table. The optical setups for the repumping and cooling laser to drive
the repumping and cooling transitions in 40K (cf. Fig. 3.1). The setup comprised optical
paths for Doppler free spectroscopy locking, offset locking, the magneto optical trap,
optical pumping and imaging.

90 ◦. Thus, on the return path the light was reflected at the cube towards the electro-
optical modulator (EOM). The latter produced side bands before the light passed twice
the spectroscopy cell. Finally, the light was sent onto a photodiode. The latter routed the
converted electronic signal to the lock box. The produced Pound-Drewer-Hall signal [15]
served to lock the repumping laser frequency onto the D2-line in 39K. In the optical paths
used for the experiment, the repumper frequency, however, was therefore stabilized at the
42S1/2, F = 7/2↔ 42P3/2, F = 9/2 transition in 40K.

Cooler
The cooler comprised a Verdi V10 laser and a MBR 110 Ti:Sapphire system (TiSa)
both from Coherent. The Verdi pumped the TiSa laser at a wavelength of 532 nm. The
Ti:Sapphire crystal in the TiSa laser ring resonator subsequently down converted this light
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3.1 Cooling to quantum degeneracy

to around 766 nm. The output frequency of the Ti:Sa was fine adjusted with the etalon.
The cooler was employed in order to drive the 42S1/2, F = 9/2↔ 42P3/2, F = 11/2 tran-
sition in 40K at a wavelength of around 766 nm (Fig. 3.1 right). The output power of the
Ti:Sa was about 1 W. Most of this power was sent through an optical fibre to the MOT
while about 100 mW were used for optical pumping, absorption imaging and the offset
lock with which the cooler was frequency locked to the frequency stabilised repumper
(Fig. 3.2). In this optical path, after the fibre output coupler, the weak cooler beam
was first partitioned with a beam splitting plate. The part for the offset lock was then
overlapped with a weak repumper beam yielding a beat note. An offset lock photodiode
converted the beat note to an electronic signal which was mixed with an adjustable set
frequency from a local oscillator. A similar offset locking scheme as in [138] was used.
Furthermore, the locked cooler frequency could be controlled via the experimental control
sequence by adjusting the set frequency of the local oscillator. This control was necessary
for changing the cooler light’s frequency in order to either trap atoms in the MOT or
performing absorption imaging of the atoms in the science cell at different magnetic field
strengths.

3.1.2 Magneto optical trap, transport and Ioffe-Pritchard trap

The magneto optical trap (MOT) bases on the principle of the scattering force of near-
resonant laser light onto particles in a trapping magnetic quadrupole field [55]. The
trapping field was produced by a pair of coils in anti Helmholtz configuration. A power
supply EA PS 3016-20B delivered the power. Water cooling of the coils was not needed.
The cooling and repumping laser beams were first overlapped and then split into three
pairs of opposite travelling beams and directed onto the MOT center. Respective circu-
lar polarisation was achieved using quarter wave plates. In order to capture the potas-
sium atoms in the trap center at around room temperature both lasers were blue de-
tuned by 30 MHz to the cooling 42S1/2, F = 9/2 ↔ 42P3/2, F = 11/2 and repumping
42S1/2, F = 7/2 ↔ 42P3/2, F = 9/2 transition in 40K, respectively (Fig. 3.1 right). Driv-
ing the cooling transition with the cooler led to a population of the dark 42S1/2, F = 7/2
state with atoms. In order to not loose these atoms from the MOT, the repumper drove
them back to the 42P3/2, F = 9/2 state from which they fell again into the cooling cycle.
A colder atomic sample in the MOT was obtained by creating a so called dark MOT [81].
The dark MOT was temporary and not spatially as in [81]. Using only little repumping
light caused that atoms remained longer in the dark 42S1/2, F = 7/2 state and, thus, could
not be heated by the strong cooling light and many transition cycles. After loading this
dark MOT, the repumper was switched off and the power of the cooling light was shortly
increased. This compressed the atomic sample in the MOT due to an increased “restoring
force” and prepare the atoms for the transport from the MOT cell to the science cell
through the thin differential pumping tube. 1× 108 atoms at a temperature of about
600 µK were roughly trapped after loading.
The transport of the atoms in the magnetic field minimum in the trap center of the trans-
port coils required that the atoms occupy low-field seeking mF states. During the MOT
phase, however, low and high field seeking states were occupied. Thus, atoms in high field
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seeking states with mF < 0 would have escaped from the magnetic field minimum in the
trap center. To avoid this the compressing MOT light and quadrupole magnetic field at
the end of the MOT phase were rapidly turned off and a homogenous magnetic field was
ramped up simultaneously. This defined a quantisation axis. Cooler and repumper light
were subsequently employed to optically pump (cf. 3.2 for opt. path) the atoms into the
low field seeking states with mF > 0. After preparing most of the atoms in the upper
mF > 0 states of the F = 9/2 manifold the homogenous field was switched off again. A
magnetic field with a gradient of 80 G/cm was ramped up in 500 µs at the same time by
discharging three large capacitors of 4.7 mF through the transport coils. This fastness was
needed to prevent atoms to escape from the trap center. A power supply EA-PS 9040-510
then increased this gradient to 300 G/cm and the atoms were transported to the science
cell through the differential pumping tube (Fig. 3.3, box in the center). There, the current
through the transport coils was diminished and the atoms were loaded from the trap of
the transport coils into the Ioffe-Pritchard trap (Fig. 3.3).1 The pressure in the science
cell was about 10× 10−11 mbar such that collisions with background atoms were kept rare
with respect to the trapping time.

The Ioffe-Pritchard trap consisted of the Ioffe bars as well as of the Pinch and compensation
coils. The Ioffe bars induced a radially quadrupole field with increasing magnetic field
strength in radial direction and zero field along the x-axis. Atoms in low field seeking
mF > 0 states were therefore trapped in the center. Due to the absence of a finite
field along x, however, these atoms could spontaneously undergo transitions to high field
seeking mF -states and escape from the trap (Majorana losses). To circumvent this, the
Pinch coils induced a finite field with quadratic shape along this axis [55] where the atoms
were trapped in the minimum. The current through the Ioffe bars were driven by a 6690A
power supply from Agilent. For the pinch and offset coils a EA-PS 9040-510 from Lambda
was used. The coils were water cooled (Sec. 3.4.2).

In order to cool the atoms in the Ioffe trap after the transport, magnetic evaporation was
performed. The principle of every evaporative cooling technique bases on removing the
hottest atoms in a trap. Then, after thermalisation the remaining atoms have lower tem-
perature. For magnetic evaporative cooling the magnetic field dependence of the Zeeman
splitting in the electronic structure of atoms is employed to address and remove the hottest
atoms. Since the magnetic field in the Pritchard trap increases with radius, the Zeeman
splitting likewise does (Fig. 3.4 left). Furthermore, the hottest atoms have highest kinetic
energy and are therefore predominately located in outer regions of the trap. In contrast,
colder atoms do not possess enough kinetic energy to reach these regions. Thus, hotter and
colder atoms can be discriminated by the Zeeman splitting and independently addressed
and removed using radio- or microwaves.

In the experiment, the potassium atoms in the Ioffe trap occupied the low-field seeking
states with mF > 0 in the lowest 42S1/2F = 9/2 manifold. Radio frequencies as well as
microwaves could be used to transfer the atoms either to a mF < 0 state in the lowest
F = 9/2 manifold (radio frequencies) or to the mF > 0 states in the F = 7/2 manifold

1More information can be found in [57][51].
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3.1 Cooling to quantum degeneracy

Figure 3.3: Ioffe-Pritchard trap, Feshbach coils, offset coils around the science
cell. The coordinate system defines the lab system. Atoms are transported from the
magneto optical trap to the science cell where they are trapped in a Ioffe-Pritchard trap.
After cooling by magnetic evaporation they are loaded into the dipole trap. The Feshbach
coils generate the magnetic field for controlling the scattering length between two atoms
(Sec. 3.4). The compensation coils were used to compensate an in-plane magnetic field
gradient evoked by the fast Feshbach coils. This illustration is taken from [38].

(microwave frequencies). All these states are high field seeking states such that atoms in
these states escape from the trap. Microwaves were used. Therefore, it had to be taken
into account that the F = 7/2 manifold has a negative Landé g-factor and is, hence,
ordered inversely. This means that, in a magnetic field and in contrast to the F = 9/2
manifold, the mF > 0 states have lower energy than the mF < 0 states in the F = 7/2
manifold (Fig. 3.4 left). The difference between the positive mF states of the F = 9/2 and
positive mF states of the F = 7/2 manifold thus decreases with increasing field strength
in the outer regions. For addressing hot atoms an initial low frequency microwave at
1.2 GHz was therefore used and its frequency was slowly increased to 1.27 GHz to address
and remove colder atoms (Fig. 3.4 right).

The microwave was generated by a direct digital synthesiser (DDS) board which could be
controlled over an interface at the experiment control computer. A 100 W amplifier was
used to amplify the generated microwave. The evaporation takes 17 s. In the end stage
of this evaporation, however, microwaves were not suitable any more to further reduce
the temperature. Due to the offset field of the Ioffe trap along x the order of the internal
states changed [57]. Thus, the coldest atoms were suddenly addressed by the microwave.
To circumvent this, radio frequencies were used instead of microwaves to swap the inter-
nal state of the hottest atoms in the F = 9/2 manifold to high field seeking mF < 0 states.

After evaporation the atoms were imaged via x-imaging (Sec. 3.2.2), and the atom number
as well as the temperature were extracted. It usually resulted in about 107 atoms at a
temperature of about 3 µK.2

2More information can be found in [57].
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Figure 3.4: Left Zeeman splitting of the 42S1/2F = 9/2 and F = 7/2 manifold in fermionic
40K potassium (cf. Fig. 3.1). The F = 7/2 state has a negative Landé-g factor. The
four lowest Zeeman levels of the F = 9/2 were used in order to create spin mixtures (Sec.
4.2.1.1), for tomography and for singles/doubles discrimination (Fig. 3.15). Right Mag-
netic evaporation scheme. The Zeeman splitting depends on the magnetic field strength
which becomes stronger further away from the center of the Ioffe-Pritchard trap. Hence,
the Zeeman splitting is reduced there due to a negative Landé-g-factor of the F = 7/2
state. Starting with low microwave frequencies to change the internal state of hot atoms in
the outer region of the trap from a low F = 9/2,mF > 0 a to high F = 7/2,mF > 0 field
seeking state evaporates the hottest atoms. Increasing the microwave frequency slowly
evaporates colder atoms closer to the trap center.

3.1.3 Dipole trap

In order to reach the quantum regime the fermionic potassium atoms were loaded from the
magnetic Ioffe-Pritchard trap into a dipole trap after magnetic evaporation. A seed laser
with a distributed feedback (DFB) diode provided linearly polarized light with an output
power of about 20 mW after a polarising maintaining output fibre. This light was sent to a
noise generator which broadened the linewidth[59]. A broad linewidth going along with a
small coherence length of the laser light was preferable in order to avoid any interferences
in the glass cell at the location of the atoms.3 After passing the noise generator the light
was amplified by a Koheras Boostik 10 W fibre laser amplifier from NKT photonics. The
output of the amplifier was split into two beams with a power of roughly 2 W each (Fig.
3.5 left). The two beams for two separated dipole traps were necessary in order to let
the dipole beams cross roughly perpendicularly at the location of the atoms and, thus,
setting up a trap with sufficient confinement in all directions. The horizontal dipole trap

3Such interferences can arise when the dipole trap light with sufficient coherence length reflects at the
inner, non-coated side of the glass cell.
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is referred to as Dth while the second dipole trap as “dimple”.4 After splitting the output,
both beams were sent through a respective acoustic optical modulator (AOM) and coupled
into a fibre. The coupled light was then sent to the experimental table. The AOMs served
to control the power of the respective beam. In order to achieve power control, two photo-
diodes on the experimental table were installed. They measured some residual light in the
optical path from each respective dipole beam and sent a corresponding converted voltage
to an respective PID control unit. The PID, in turn, compared the received voltage with
a control voltage which could be set by the experimental control sequence and feedbacked
the error signal to the AOM controller which regularised the AOM by adjusting the radio
frequency power.56

In the Dth optical path on the experimental table, a cylindrical telescope strongly widened
the vertical Dth beam radius (Fig. 3.10). This enabled to focus the beam with the
f=250 mm lens just before the glass cell down to a waist of wDth

z ≈ 20 µm in z direction at
the location of the atoms. The resulting strong confinement for the atoms in z direction
was needed in order to hold the atoms in the trap against gravity. The waist in y direction
was wDth

y = 143 µm. The vertical Rayleigh range in x direction was xDth
R,z = 1.2 cm owing to

the small waist in z direction. The Dth beam at the location of the atoms could be imaged
with the Baseler camera (Fig. 3.10). The Dth was shown onto the atoms under a small
horizontal angle with respect to the x-axis. This prevented interferences due to back re-
flections. The Dth was likewise detuned with respect to the x lattice to avoid interferences.

The Dth beam was aligned onto the atoms manually using a mirror mount with Piezo
adjusters in the optical path (Fig. 3.10). The voltage for the Piezo electric elements was
provided by a Piezo controller from Thorlabs. In the vertical direction the Dth position
was additionally stabilised using a feedback loop. The feedback relied on an error signal
which was obtained from the discrepancy of the vertical set position of the Dth and the
measured vertical position using the Baseler camera (Fig. 3.10) in each experiment cycle.
The optimum vertical position resulted from a thermometry measurement in the dipole
trap after evaporative cooling (Sec. 4.2.1.2). The measured temperature depended on the
relative position of the Dth with respect to the center of the Ioffe-Pritchard trap. Setting
the Dth slightly below the Ioffe trap center yielded the lowest temperatures.

The second dipole trap, the dimple, had, in contrast to the Dth, a nearly round shape with
waists of about (wx,wy)=(119 µm, 148 µm). It was shown onto the atoms under an angle
of 45◦ with respect to the z axis and perpendicular to the Dth (Fig. 3.7). This confined
the atoms tightly in the x direction along which the DTh had its long Rayleigh range.
Evaporative cooling in the crossed dipole trap was performed by lowering the dipole beam
power (Sec. 4.2.1.2).

4For the strongly focussed dipole traps with waists of about 20− 200 µm and Rayleigh ranges of several
milli- up to centimetres, atoms are usually only weakly confined along the beam axis. To confine them
in all directions a second dipole trap is therefore needed which shines perpendicularly to the first dipole
trap beam onto the atoms.

5The set voltage in the experimental control sequence was calibrated by measuring the power of each
beam for different set voltages with a power meter.

6A new AOM controller box was installed during this thesis.
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3.2 Imaging

The atoms could be imaged in all three directions, i.e. x,y and z (Fig. 3.3) using three
different cameras. Cooler light was used as imaging light for all cameras. The optical
path setup on the laser table for providing imaging light is depicted in Fig. 3.2. Here,
an AOM was inserted into the optical path after splitting some cooler light for the offset
lock after the cooler output fibre. With this AOM, light could be sent either in the low
field (LF) or high field (HF) imaging path by switching on/off the AOM. While the low
field path was sent to the combining beam splitter directly (Fig. 3.2), the high field path
comprised a second AOM in double pass configuration. With this AOM the imaging light
frequency could be changed while preserving the beam direction. This was needed if the
light’s frequency had to be adapted to the D2 resonance which depended on the magnetic
(high) field. The optical paths of low and high field imaging were recombined at the beam
splitter and sent to the x-,y- and z-imaging polarisation maintaining optical fibre respec-
tively (Fig. 3.2).
Since absorption imaging required very short imaging light pulses a special, house build
AOM controller was employed for x,y, and z-imaging respectively. This digital laser in-
tensity control (DLIC) unit enabled to regulate the AOM on a 10 µs scale.

3.2.1 z-imaging

Imaging setup
The z-imaging setup (Fig. 3.5 right) allowed for high-resolution in-situ absorption imaging
of the atoms. The collimated, polarisation cleaned imaging beam after the fibre output
coupler was first enlarged using a telescope. With a quarter wave plate circular polarisation
of the light was achieved in order to drive the σ− transition during absorption imaging.
Then, by a combination of a f=350 mm achromatic doublet lens and a f=8 mm aspherical
lens the atoms were illuminated by a collimated beam. The aspherical lens had a high
numerical aperture of NA=0.5. It was held by a non-magnetic mount on the inner side of
the cell. After the atom plane in the center of the glass cell, a second equivalent aspherical
lens was likewise attached to the upper, inner cell wall. Using a doublet lens with focal
length of f=200 mm thereafter led to a theoretical magnification of Mtheo = 25. In the
focus of the f=200 mm lens closer to the z-camera a fast kinetic mask was installed. It
was used to operate the camera in the fast kinetic mode. A quarter wave plate changed
the polarisation of the imaging light again and, hence, prevented that reflected light from
the CCD chip interact with the atoms [105]. Finally, a retarder shifted the image onto the
CCD chip which was protected from stray light and DMD light by a D2 transition line
filter at 767 nm.

The z-imaging CCD camera was an iXon+ Ultra888 from Andor with a quantum efficiency
of 94%. Its pixel size was 13 µm. In the experiment the fast kinetic mode was enabled and
the whole CCD chip was divided into three parts each of size 1024 × 512. This allowed
for taking three images in a fast sequence. While the first and second image were taken
to image the atoms, e.g. to separately image singly and doubly occupied sites or spin
up/spin down singles in the optical lattice, the third image was taken as a “bright” image
with only the light on but without any atoms. Additionally, “dark” images with no light
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Figure 3.5: Left. Optical setup of the two dipole traps, Dth and dimple. The intensity of
the beams was controlled with acoustic optical modulators. Each beam was fibre coupled
and guided to the experimental table. Right. Optical setup of the vertical z-imaging
path which allowed for in-situ, high-resolution imaging (see Fig. 3.3 and Fig. 3.10 for lab
coordinate system).

were taken separately once in a while in a run of 1000 images. The averaged dark image
thereby measured the noise from e.g. stray light and electronic noise and was subtracted
from each of the other three images respectively.

Imaged densities
The optical densities were calculated from the three images after subtracting the averaged
dark image. In general, the optical density of the atomic ensemble is connected to the
recorded intensity distribution on the CCD camera chip by the high intensity corrected
Lambert-Beer law[48]

OD(x,y) = σ(I) · n(x,y) = −α · ln
(
Iaft(x,y)

Ibef(x,y)

)
+
Ibef(x,y)− Iaft(x,y)

Isat
. (3.1)

Here, Ibef and Iaft are the intensities before and after the atomic ensemble, n(x, y) is the
integrated column density over the line of sight which is the z direction for z-imaging
and σ(I) is the cross section for the D2 transition in 40K. This cross section is intensity
dependent which becomes relevant for high imaging intensities
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σ(I) =
σ0

I +
(

2∆
Γ

)2
+ I/Isat

. (3.2)

Here, σ0 = 3λ2/(2π) is the resonant cross section, ∆ is the detuning from resonance and
Isat = ~ω0Γ/(2σ0) is the saturation intensity for this transition. The intensity before
the atoms Ibef could not be measured in the experiment. Instead the bright image with
no atoms was employed for this purpose. The factor α = Ieff

sat/Isat was a high intensity
correction factor that resulted from the experimentally determined cross section and sat-
uration intensity. The measured intensity on each camera pixel was related to the number
of electronic counts in this pixel by the quantum efficiency of the camera. The quantum
efficiency was experimentally determined in [48]. Here, further information about the cal-
ibration of the iXon camera are described.

z-camera focussing
For focusing the z-camera onto the atoms in the object plane (Fig. 3.5 right), the modu-
lation transfer function (MTF) was computed by measuring density fluctuations in in-situ
images of a single atom plane[38].7 In Fourier space, the observed density fluctuations
yielded from the product of the density fluctuations in real space in the atom (object)
plane times the Fourier transformed point spread function

δnimage(~k) ≈ δnatomPlane(~k) · F(PSF). (3.3)

Then, the MTF yielded from

MTF(k) ≈ const. ·
√
〈|δnimage(~k)|2〉. (3.4)

A correlated atomic ensemble was here ensured by heating the atoms in the two-dimensional
lattice so that the spectrum of the density fluctuations becomes constant. uation simpli-
fies. The MTF was nearly constant in a disk around the zero frequency component in the
correct image plane, see [38], while away from the focussed position of the iXon z-camera
inhomogeneities revealed. The point spread function could be deduced from the measured
MTF yielding a FWHM of the PSF of about 2.6 µm.8

z-camera magnification
The magnification of the z-imaging could be determined experimentally via density density
correlations (Eq. 4.12 and Fig. 4.11). In that section, the procedure to infer the absolute
and relative angles of the two in-plane lattices from the measurement of density density
correlations is elucidated. In addition, the magnification of the imaging system could be

7In principle, one would use the point spread function (PSF) from a point like object in the object plane to
focus onto the object plane. The PSF, however, is directly accessible only in a quantum gas microscope
with single site resolution. Therefore, the MTF was employed here.

8More information can be found in [38].
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deduced considering the distance between the measured dips ddip in the autocorrelation
function. The observed distance depends on the time of flight tTOF and the length of one
CCD pixel on the camera chip. Here, the length in the image plane is lCCDpx=̂lCCDpx

imagePlane =

13 µm and in the object plane (Fig. 3.5 right) it is lCCDpx
objPlane. The distance is then

ddip =
1

lCCDpx
objPlane

· 2π~tTOF

ma
. (3.5)

Here, m is the atomic mass of potassium and a is the lattice spacing. The magnification is
then just the ratio between the pixel size in the image and in the object plane. It yielded
Mmeas = lCCDpx

imPlane/l
CCDpx
objPlane ≈ 23. This is a little smaller than the theoretically expected

magnification of Mtheo = 25. A rigorous derivation can be found in [38].

3.2.2 x- and y-imaging

x-imaging
The x-camera (Fig. 3.10) was mainly used to image the atoms in the Ioffe-Pritchard
trap and determine the atom number as well as the temperature. An Apogee U-Series
camera was installed for this purpose. The numerical aperture of the imaging lens was
only NA=0.03. The resolution was 16 µm due to limiting optical access. This forbid to
resolve the atomic density distribution in-situ where the size of the atom cloud was on the
order of tens of micrometer. To extract information though the Ioffe-Pritchard trap was
switched off and the atoms were imaged after time of flight. From the imaged momentum
distribution the atom number and temperature could be inferred. The fast kinetic mode
of the camera was used to avoid low variations in the imaging light between the atom and
the bright images. More information are provided in [57].

y-imaging
The y-camera (Fig. 3.10) was an Andor iXon 897 Ultra. It was mainly employed to
determine the number and temperature of the atoms in the dipole trap after evaporative
cooling (cf. thermometry in Sec. 4.2.1.2). A better optical access than in the x direction
enabled a resolution of about 6 µm. The magnification was about 2.6. In-situ imaging,
however, was not feasible. The desired information was inferred from the momentum
distribution after time of flight as in x-imaging. As for the two other cameras the fast
kinetic mode was used.

3.3 Lattices

3.3.1 Bi-chromatic, vertical z-superlattice

The vertical optical z superlattice included an infrared and a green monochromatic optical
lattice with wavelengths of 1064 nm and 532 nm, respectively.
For the 1064 nm lattice, two different laser sources were employed. One of them which is
referred to as “small Mephisto” was used for an antisymmetric superlattice configuration
in which initially only every second plane in the vertical 532 nm lattice was loaded (Sec.
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4.2.1.3). The other source is referred to as “big Mephisto” and was used in the bilayer con-
figuration. There, superlattice phases around the symmetric configuration were needed.
Using a single laser source for the 1064 nm lattice was not feasible due to a limited range
of the offset lock of the vertical superlattice. This prevented to tune the superlattice phase
between the symmetric and antisymmetric configuration. The names “small” and “big”
Mephisto originates from their respective laser source. While the big Mephisto refers to
a 20 W version of the diode-pumped, solid-state Nd:YAG Mephisto laser from Coherent,
the small Mephisto refers to a 0.5 W version.

Setup laser table
The big Mephisto laser beam was first sent through an optical isolator and subsequently
beam shaped (Fig. 3.6). The power was then split. One arm guided the light to the y
lattice fibre, before which a tiny portion was branched off for the offset lock. The y lattice
branch included a shutter and an AOM for intensity control. The second arm guided the
light to the z1064 lattice fibre. On a beam splitting cube, the light from the big Mephisto
was combined with the light from the small Mephisto to enable to switch between symmet-
ric and antisymmetric superlattice configurations as described above. The light intensity
of both beams could thereafter be controlled via a shared AOM. The linear polarisation of
both beams, however, was perpendicular to each other due to the polarising beam splitting
cube. In order to align both polarisations for fibre coupling into the same polarisation
maintaining fibre a λ/2 wave plate was employed. It was mounted on a shutter and in-
serted into the beam path when the small Mephisto laser was on but taken off when the
big Mephisto’s light was on. Thus, it turned only the small Mephisto beam’s polarisation
by 90◦ aligning it parallel to the polarisation of the big Mephisto laser beam. The optical
fibre guided the light to the experimental table.
The 532 nm laser was a diode-pumped, solid-state Neodymium Vanadate laser Verdi V10
from Coherent (Fig. 3.6). After branching off light for the offset lock, the high power laser
beam was sent to the experimental table through a corresponding optical high power fibre.

Setup experiment table
On the experimental table (Fig. 3.7) the linear polarisation of the outgoing 532 nm laser
beam was first rotated with a λ/2 wave plate such that the two beams after the polarising
beam splitting cube had a balanced power. Then, a second λ/2 wave plate in the lower
beam path rotated the linear polarisation of the lower beam by 90◦ in order to align it in
parallel to the polarisation of the upper beam. Hence, interference of both beams at the
coincidence spot in the glass cell became possible and an optical lattice formed there. By
independently adjusting the upper and lower mirror behind the cube and, thus, changing
the direction of the respective beam the coincidence spot could be manually set. This
enabled the alignment of the lattice onto the place where the atoms were held in the
combined (Dth plus dimple) dipole trap. While turning the mirrors had an impact onto
the coincidence spot in the xy plane its z position remained unchanged. The angle by
which the upper and lower beam encounter the atom plane was Θz = 14.5◦. This yielded
a lattice spacing for the green z lattice of [38]
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Figure 3.6: Laser setup for the vertical z superlattice and the y lattice. The z1064
lattice comprised two lasers, the “small” and “big” Mephisto. The green z532 laser was
locked onto the big Mephisto via a frequency offset lock.

az532 =
λz

2sin(Θz)
= 1.06(1) µm (3.6)

The waist of the 532 nm laser at the coincidence spot was about 115 µm.

The 1064 nm infrared lattice was combined with the 532 nm beam at the beam splitting
cube. With two Piezo controlled mirrors before the cube, the two 1064 nm beams after
the cube could be aligned in parallel to the two 532 nm beams. The lattice constant of
the resulting z1064 lattice was az1064 = 2az532. It formed at the same spot as the 532 nm
lattice. The glass plate in the upper beam path induced a different optical path length for
the upper 1064 nm and 532 nm beam. This, in turn, introduced a phase difference between
both lattices at the coincidence spot. By rotating this glass plate the light path through
the glass could be varied and, hence, the relative phase between the lattices roughly ad-
justed.
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Figure 3.7: Z superlattice setup on the experimental table. At the beam splitting
cube the z532 and z1064 monochromatic laser beams were combined. Moreover, each
individual beam was first split and subsequently superimposed at the location of the
atoms in the science glass cell (cf. Fig. 3.3 and Fig. 3.10). This way, both beams form
each a monochromatic optical lattice at the coincidence spot of the atoms, respectively.
Together they form a superlattice whose phase can roughly be adjusted with the glass
plate.

Offsetlock
In order to build the superlattice with a precisely adjustable superlattice phase the vertical
green lattice was locked onto the infrared lattice via an offset lock (Fig. 3.8). By locking
the Verdi onto the big Mephisto laser the high stability performance of the latter with
a spectral line width of about 1 kHz and a frequency stability of 1 MHz/min could be
exploited. In contrast, the Verdi laser possessed a linewidth of less than 5 MHz. For
the offset lock, fibre coupled light from the big Mephisto was sent into a periodically
poled lithium niobate (PPLN) crystal. There, its frequency was doubled by non-linear
up-conversion which yielded 532 nm laser light (Fig. 3.6). The latter was then guided to
the Verdi laser table. After the output coupler it was combined with branched 532 nm
light from the Verdi laser on a beam splitter. The superimposed beam was finally directed
onto an ultrafast photodiode (PD) DXM30AF from Thorlabs (Fig. 3.8). This photodiode
converted the optical into an electronic beat note and sent it to a HMC 264 mixer from
analog. The second (LO) port of the mixer was connected to a voltage controlled oscillator
(VCO) HMC 733 from analog. This VCO could be tuned in a range of 10 − 20 GHz
providing a supply voltage Vctr

zlock of 0 − 10 V. The mixer amplified the VCO signal and
frequency-doubled it before mixing it with the electrical beat note. The resulting sum
frequency was cut with a following 780 MHz low pass filter. The difference frequency
which was in the MHz rather than in the GHz regime was subsequently amplified with
a low-noise and a high-gain amplifier.9 The signal was then split into two arms. One

9In order to tune the superlattice phase of the z superlattice over a sufficient tuning range, high frequency
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arm was delayed and both were recombined in a second mixer which provided the typical
error signal of the offset lock [138]. This error signal was finally input into a PID lock box
after an additional high pass filter. The proportional and the integrated error signal were
used for feedback to two independently Piezo controlled mirrors in the cavity of the Verdi
laser. In this way, a mode jump free range of up to 7 GHz could be achieved by optimising
the temperature and current of the big Mephisto as well as of the Verdi laser. The ramp
speed of about 155 MHz/ms was optimized for long sweeps. Detailed information about
the offset lock can be found in [59].

Figure 3.8: Offset lock electronic setup to stabilise the relative phase between
the z532 and z1064 monochromatic optical lattice. The beat note of the two lasers
was mixed with the signal of the local oscillator (LO), filtered and split into two arms. One
arm was delayed and by recombining them thereafter, an error signal for locking could be
generated.

The depth of each monochromatic, vertical lattice was calibrated (Sec. 4.1.1) as well as
the superlattice phase (Sec. 4.1.3).

3.3.2 Bi-chromatic, in-plane x-superlattice

Like the z superlattice, the x superlattice consisted of an infrared and a green monochro-
matic optical lattice with wavelengths of 1064 nm and 532 nm, respectively. The lattice
spacing ax1064/x532 = λx1064/x532/2, however, amounted to half of the respective wave-
length in contrast to the lattice spacing of the two vertical z lattices whose spacing is
given by Eq. 3.6. The superlattice was partially rebuilt during this thesis. A first setup
is described in [84]. The setup was modified thereafter in order to implement Floquet

components in the Gigahertz range were needed due to the large vertical lattice spacing (Eq. 3.6).
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systems.

Setup laser table
The 532 nm light was produced by frequency doubling 1064 nm light. A Mephisto Mopa
55 W laser from Coherent provided the necessary power of 1064 nm light (Fig. 3.9). From
this beam, a tiny portion was first branched off for the offset lock. Subsequently, the beam
was slightly focussed by a lens with long focal length in order to match the waist to the
spatial mode of the frequency doubling cavity. The latter was a monolithic bow tie cavity
and set up in [83]. For a stable operation of the cavity a Hänsch-Couillaud lock was im-
plemented [71]. Therefore, some out coupled, frequency-doubled light from the entrance
mirror was circularly polarized by a quarter wave plate, split at a beam splitting cube
and sent onto two photodiodes. The high power, frequency-doubled 532 nm beam at the
out couple mirror of the cavity was first shaped using a telescope and then sent through
an AOM for intensity regulation. A big shutter with high heat capacity was employed in
the beam path. Overheating of this shutter due to the intense laser light could thus be
avoided. The fibre guided the light to the experimental table.
A Koheras ADJUSTIK Y10 fibre laser and amplifier from NKT photonics provided the
1064 nm light for the x1064 lattice (Fig. 3.9, amplifier out). About 4 W were used. Again,
as for the frequency doubled 1064 nm light from the Mephisto MOPA, a tiny portion of
light was first branched off for the offset lock, while the high power beam was sent into
an AOM in double pass configuration. This enabled to change the frequency of the laser
light very rapidly by changing the driving frequency of the AOM. The beam direction,
however, was not effected by this and the subsequent fibre coupling efficiency remained
constant. To improve the fibre coupling efficiency a lens with long focal length focussed
the beam onto the polarisation maintaining fibre and matched the spatial mode of beam
and fibre.

Setup experiment table
The infrared x1064 beam on the experimental table after out coupling from the fibre was
shaped with a telescope, polarisation cleaned and sent through an optical isolator (Fig.
3.10). The isolator was important since by retro-reflecting the laser beam on the other
side of the science cell to form an optical lattice the back reflected beam had high power.
Without the isolator this high power beam could have passed the optical fibre back into
the fibre amplifier and would have destroyed the latter. After the optical isolator a tiny
portion of light was branched off to be shown onto a calibrated photodiode for intensity
stabilisation. This was achieved by a PID loop that generated an error signal comparing
the photodiode signal with a set voltage from the experimental control and fed it back
to the AOM controller of the double pass AOM (Fig. 3.9). The x1064 lattice beam then
passed three optics which were used to combine it with the other beams on the path
to the glass cell, i.e. the Dth, x532 and x-imaging beam. First, the x1064 beam path
was overlapped with the Dth beam path on a polarising beam splitting cube. Second, the
x532 beam path was combined to the former with a dichroic mirror. While this mirror was
reflecting 1064 nm light, 532 nm light was transmitted. Another dichroic mirror was finally
used to overlap the imaging light path for x-imaging light at a wavelength of 766 nm onto
the three other optical paths. Just before the science cell, a 250 mm lens then focussed
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Figure 3.9: Laser setup of the horizontal x superlattice. 532 nm light was generated
by frequency-doubling 1064 nm light from a 55 W laser in a bow tie cavity. A fibre laser
provided likewise 1064 nm light and was locked onto the 55 W laser via a frequency offset
lock. Both, the frequency doubled 532 nm light after the cavity and the 1064 nm light
from the stabilised fibre laser were used to implement a frequency stabilised superlattice
in x direction.

the Dth and lattice beams to the spot of the atoms in the cell. A second 250 mm lens
on the other side of the cell collimated the beams. The imaging light was separated from
the three other beams by a dichroic mirror. However, little light from these three beams
passed the dichroic mirror and all beams could be observed on the Baseler camera (Fig.
3.10). A retro-reflecting mirror was installed to create the optical lattices at 1064 nm and
532 nm by inducing a standing wave. Since the Dth beam formed a small angle with
respect to the lattice beams, the Dth light was not retro reflected at the retro mirror, thus
preventing the formation of a standing wave.

The setup of the x532 beam path after out coupling comprised the same important op-
tical elements as the path of the x1064 beam, i.e. an isolator, photodiode for intensity
stabilisation and a telescope for beam shaping (Fig. 3.10). The telescope consisted of a
cylindrical and a round telescope such that the horizontal and vertical beam waist could
be adjusted independently. On the one hand a strongly focussed beam enabled to obtain
higher 532 nm lattice depths while on the other hand, a tight focussing went along with
a strong curvature of the underlying potential. The x532 beam waists were chosen such
that lattice depths of up to 25 Erec could be set. Simultaneously, the waist of the x532
beam in y direction was closely matched to the waist of the round 1064 nm lattice beam
yielding about wx532

y ≈ wx1064
y ≈ 140 µm.

Setup offset lock
For the offset lock of both x lattice lasers, the two 1064 nm laser beams were overlapped
on a beam splitter and sent onto a photodiode (Fig. 3.9 and Fig. 3.11 left). It converted
the optical into an electronic beat note. The beat note was subsequently mixed with the
signal from a local oscillator (LO) in a mixer ZX05-10H-S+. A direct digital synthesiser
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Figure 3.10: Optical setup on the experimental table for the horizontal dipole
trap, all in-plane lattices and x- and y-imaging (cf. Fig. 3.3 lab coordinates). For
the vertical lattices, z-imaging and the dimple dipole trap see Fig. 3.7.

(DDS) AD9914 board generated the LO signal. It was connected to a Rasberry Pi which,
in turn, read frequency settings from the experimental control PC via a python script. An
upper and lower frequency could be set this way. Moreover, frequency ramps between the
two set frequencies were adjustable and could be triggered via a 5 V signal. After mixing,
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the high frequency component of the combined signal was cut with a low pass filter (Fig.
3.11 left). Then, the signal was split into two arms. Using a short radio frequency cable in
the second arm the signal there was phase delayed and both arms were recombined again
in a mixer. The delay line produced a phase difference between the signals in both arms.
This, after recombining the two lines, resulted in a voltage whose amplitude depended on
the phase difference and, furthermore, on the DDS set frequency. Hence, by scanning the
DDS set frequency, an error signal with a cosine shape with several zero crossings could be
produced [138]. The error signal was finally sent into a PID lock box and the integration
(I) part was fed back into the fast wavelength modulation port of the Koheras ADJUSTIK
Y10 fibre laser from NKT photonics.

Figure 3.11: Left Offset lock electronic setup to stabilise the relative phase between the
x532 and x1064 monochromatic optical lattice. Right PID Error signal when sweeping
the DDS frequency (see right figure) by 75 MHz in 500 µs. This fast ramp was required to
induce non-adiabatic transitions e.g. in the measurement of Rabi oscillations.

A change in the offset lock DDS frequency ∆ν evoked a change in the superlattice phase
φ by ∆φ = 2π∆νL/c. Here, L is the spatial distance between the science cell and the
retro reflecting mirror which was estimated to be 50 cm (Fig. 3.10). Therefore, in order
to be able to sweep between the symmetric and antisymmetric superlattice configuration
corresponding to ∆φ = π/4, an offset lock frequency range of about 75 MHz was required.
A sweep over this range could be achieved without a delock of the laser down to a sweep
time of 500 µs (Fig. 3.11 right, error signal). This was required in order to induce non-
adiabatic Landau-Zener sweeps between the antisymmetric and symmetric superlattice
configuration in the horizontal x superlattice.

Superlattice phase stabilisation
The superlattice phase was stabilised against temperature, pressure and humidity fluctu-
ations in the room. All three parameters changed the reflective index of the air between
the glass cell and the retro-reflecting mirror in the x lattice optical path which, in turn,
changed the optical path lengths for both x lattices differently. Thus, the relative phase
between the x1064 and x532 lattice became unstable. In order to limit the resulting phase
fluctuations, a sensor close to the retro reflecting mirror recorded the three parameters.
The noticed change in each parameter was then converted to a required change in the
DDS set frequency to maintain the current superlattice phase with the offset lock. This
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way, a phase stability of ±1 MHz over several days could be reached. In [150], the same
three parameters were considered when stabilising the superlattice phase there.

Lattice alignment
The alignment of both monochromatic, optical x lattices were performed independently.
The forward beams could be aligned roughly using the Baseler camera. Fine adjustment
was achieved by observing the atomic cloud in the red- and blue- detuned potential re-
spectively. While the blue-detuned 532 nm beam cut a passage though the atom cloud,
the 1064 nm beam attracted the atom cloud such that the beam center coincided with
the center of the atom cloud. This could be used to center the beam to the z-camera
frame. The two retro-reflected beams were aligned by maximising the ellipticity of the
atom cloud. The calibration of the lattice depth was similar to the depth calibration of
the z superlattice (Sec. 4.1.1).

3.3.3 Monochromatic, in-plane y-lattice

The power for the monochromatic 1064 nm y lattice was provided by the big 20 W Mephisto
(Fig. 3.6). The intensity was regulated via an AOM. A fibre coupling efficiency up to
more than 90% could be reached. After guiding the light to the experimental table, the
y lattice was induced by retro-reflection (Fig. 3.10). Due to the relative long distance
between the aligning mirrors and the location of the atoms, the y lattice was the most
unstable compared to the other lattices. The linear polarisation of the y lattice light was
perpendicular to the x lattice light in order to avoid interferences.
The angle between both lattices was inferred from density-density correlations in time of
flight (Fig. 4.11 right). The alignment of the y lattice beam with respect to the z-camera
was achieved by observing the in-situ density profile of the atoms which were attracted
to the center of the red-detuned y lattice beam. The retro reflected beam was aligned by
measuring the waist and ellipticity of the atom cloud in the trap. For best alignment, the
cloud size in x direction became smallest when the forward and reflected beams overlapped
perfectly.

3.4 Feshbach resonances and coils

3.4.1 Feshbach resonances in potassium 40K

Interactions between two fermionic atoms in cold atom experiments are described in terms
of Feshbach resonances in a two channel picture (Fig. 3.12 left). The two channels, each de-
scribing a van-der-Waals potential, have discrete possible energy levels. The open channel
lies energetically below the closed channel. For r →∞, both atoms are in the continuum
of the open channel with energy E = 0. Here, the closed channel with energy E > 0 is
inaccessible. By approaching each other the continuum of the open channel has a finite
energy splitting δFB to a discrete energy level of the closed channel and the latter is,
hence, still inaccessible. The splitting, however, can be tuned by a magnetic field such
that δFB = 0 becomes zero. Then the levels of both channels coincide which leads to the
resonant formation of bound states in the closed channel between atoms with different
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magnetic moments at the center of the Feshbach resonance.10 Furthermore, at magnetic
fields around the Feshbach resonance, the kind of interaction in the bound state depends
on the magnetic field strength with respect to the resonance field. Considering the two
channel picture, if the level of the closed channel lies above (below) the level of the open
channel, the two atoms interact repulsively (attractively) with each other. Thus, in con-
clusion, by changing a magnetic Feshbach field across a resonance, the interactions in cold
atom experiments can be tuned between repulsive and attractive [32][18][123].

A general Feshbach resonance in terms of the s-wave scattering amplitude asc
11 can be

described by

asc(B) = a0
sc

(
1− δFB

B −B0

)
. (3.7)

Here, B is the magnetic field, a0
sc is the background scattering length which corresponds

to the energy level of the last bound energy level in the open channel, B0 is the magnetic
field at which the scattering length diverges, i.e. the location of the center of the Feshbach
resonance, and δFB is the width of the resonance [32]. In the presence of two Feshbach
resonances, an analytical model for overlapping Feshbach resonances was deployed in [77].

The Feshbach resonances for potassium mixtures of |F = 9/2,mF = −9/2↔ −7/2〉 and
|F = 9/2,mF = −9/2↔ −5/2〉 in the 42S1/2 ground state lies around 200 G (Fig. 3.12
right). Furthermore, the two resonances |mF = −7/2↔ −5/2〉, |mF = −7/2↔ −3/2〉
and |mF = −5/2↔ −3/2〉 in the F = 9/2 manifold were employed in order to set the
interaction strength between two atoms in the dipole trap and in the optical lattice as well
as for tomography (Sec. 3.5.3) and single doubles discrimination (Sec. 3.5.4).
The interaction strength U between two cold atoms was computed following Eq. 2.21
where the scattering length asc from Eq. 3.7 was inserted.

3.4.2 Feshbach coil system

The experimental setup to induce a Feshbach magnetic field comprised two pairs of coils
(Fig. 3.3). The two large, green coils with a radius of 17.5 cm are referred to as slow
Feshbach coils, whereas the rectangular red coil pair is referred to as fast Feshbach coils.
The name originated from their respective inductances. The slow Feshbach coils have a
relatively large inductance of 2.3 mH per coil. Thus, the induced magnetic field can only
be ramped and changed slowly. This Helmholtz coil pair was used for large, homogeneous
magnetic offset fields around the |F = 9/2,mF = −9/2〉 ↔ |F = 9/2,mF = −7/2〉 Fesh-
bach resonance at 202 G. A power supply from Delta provided the voltage and current for
the slow Feshbach coils. In contrast, the fast Feshbach coils have an inductance of about

10The energy of bound states was experimentally measured in [35]. A coherent coupling between separated
atoms and molecules using a Feshbach resonance was studied in [44].

11In cold atom experiments, only s-wave scattering is relevant.
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Figure 3.12: Left. Channel picture of low-energy, two body collisions. The energy dif-
ference δFB between levels of the open and closed channel can be tuned via a magnetic
Feshbach field. Depending on the magnetic field with respect to the resonance field, at-
tractive and repulsive interactions between two particles can be adjusted. Right The
mF = −9/2↔ −7/2 and mF = −9/2↔ −5/2 Feshbach resonances in potassium 40K.

40 µH per coil [57]. They were employed to rapidly change the magnetic field (Sec. 4.2.4).

Water cooling circuit
The coils of the Ioffe-Pritchard trap as well as the slow Feshbach coils were water cooled
in the inner which was necessary due to the high currents of up to 300 A. 6 ◦C house
water was used for the primary circuit (Fig. 3.13). A Pentair Multi Evo 3-40M water
pump increased the pressure in the house water pipe just before it entered the 10 kW heat
exchanger Neslab System 1 from ThermoFisher. The closed, secondary water circuit was
connected to this heat exchanger on the other side. It conducted the water through the
coils. A second Pentair Multi Evo 3-40M pump increased the pressure in the secondary
water circuit. Additional filters in this circuit were installed to clean the water from dust
particles before entering the coils. Thus, impurities did not settle inside them. In contrast
to the other coils the fast Feshbach coils were not water cooled. This limited the electric
current through the coils as well as the time duration for holding a magnetic field with
this coil pair. In order to protect all coils against overheating, temperature sensors were
installed. With the use of an interlock system which compared the measured temperatures
to given set values the respective power supplies could be shut down if a coil pair started
to overheat.

Current stabilisation
A current stabilisation scheme for the slow Feshbach coils was required in order to mini-
mize noise in the induced large, homogenous magnetic offset field. The setup is illustrated
in [38]. The current stabilisation scheme comprised two feedback loops for slow and fast
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Figure 3.13: Water cooling circuit for the coil system (Fig. 3.3). 6 ◦ house water
served as primary circuit in a heat exchanger. Water in the secondary circuit cooled the
coils. Air dehumidifier stabilise the humidity level in the room.

field changes respectively.
The slow regulation was achieved by a PID control loop onto the Delta power supply for
the slow Feshbach coils. A current transducer measured the current through the coils after
an on/off switching Mosfet and provided a process voltage for comparison to a set voltage.
Here, the set voltage could be adjusted by the experimental control and the resulting error
signal was sent to a PID that passed it back to the power supply [57]. With this regulation
loop, however, 50 Hz noise from the main power line could not be diminished. This was
especially hindering single plane resolution (Sec. 3.5.3).
To overcome this drawback, a fast regulation based on an active load instead of a PID
feedback loop was additionally installed. Here, a small portion from the current for the
slow Feshbach coils was branched off and sent through the active load. Furthermore, a
second current transducer measured the current directly before the coils and sent the pro-
cess voltage to the active load as control signal. Depending on this control signal, the
resistance of the active load was changed and more/less current was bypassed around the
coils to regulate the current through them. The noise with this fast regulation could be
lower by a factor of about 3.5 compared to the regulation with only the slow feedback loop.
Magnetic field stabilities of about 1.2× 10−5 could be reached [38]. This, however, could
still not completely suppress the 50 Hz noise enough for tomography and a synchronisation
of the experiment to the power line was implemented (Sec. 3.5.3).

Besides, the current regulation, the atoms in the glass cell were shielded from magnetic
stray fields in the surrounding by a µ metal box with high magnetic permeability.
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3.5 Density and spin discrimination in a single two-dimensional lattice plane

3.5.1 Zeeman splitting

For radio frequency swaps, tomography of single atom planes and singles/doubles or spin-
up/spin-down discrimination the four lowest mF -states of the |F = 9/2〉 manifold were
employed (Fig. 3.4 left). Their dependence on the magnetic field is given by (in units of
Hz)

νZee =
1

h
Bz(gJµBmJ + gIµNmI) (3.8)

Here, for potassium, gJ = 1 + (g40K − 1) · (J(J + 1) − L(L + 1) + S(S + 1)/(2J(J + 1)))
and gI = µ40K/(µNI40K) are the g-factors of the electron and the potassium nucleus, µB

and µ40K are the Bohr magneton and magnetic moment of the nucleus and mJ, mI are the
quantum numbers of the total angular momentum and the nucleus. Furthermore, I40K = 4
and µ40K = 2.00229421.12

3.5.2 Radio frequency swaps

Radio frequency (rf) swaps were used to change the internal mF -state of all atoms in the
cloud at the same time. They were used to produce a spin mixture for efficient evaporative
cooling (Sec. 4.2.1.1) and change the interaction strength. Furthermore, in a sequence of rf
swaps and additional sweeps, they were used for tomography (Sec. 3.5.3), singles/doubles
(Sec. 3.5.4) and spin up/spin down (Sec. 3.5.5) state detection.

The radio frequency swaps were generated by a direct digital synthesiser (DDS) board. The
latter was initialized by the experimental control loading a list of all frequency settings, i.e.
center frequencies and sweep widths of each swap, onto the DDS board in the beginning
of each experimental cycle. The individual swaps were then triggered by a second signal
from the control during the cycle. Each swap had a sweep width of 175 MHz around the
transition center frequency and a time duration of 2 ms. The large frequency range and
relatively long sweep duration avoided non-adiabatic transitions during the Landau-Zener
sweep. The transition center frequencies for the transition between adjacent mF -states,
i.e. |mF = −9/2↔ −7/2〉, |mF = −7/2↔ −5/2〉 and |mF = −5/2↔ −3/2〉, could be
computed from the Zeeman splitting (Sec. 3.5.1). Swap efficiencies of 0.9985% were
reached by rounding the sharp edges of the pulse amplitude in time [38].

3.5.3 Tomography

Tomography enabled to resolve the single atom planes in the stack of six planes by em-
ploying a combination of a magnetic field gradient and a radio frequency sweep. Within
the six planes (Fig. 4.10), the second plane from the right exhibited the best combination
of high atom number and cold temperature (N=5000, T/t=1.6 with t = 224 Hz being the

12S,L and J are the spin, angular and total angular momentum of the electron.
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3.5 Density and spin discrimination in a single two-dimensional lattice plane

tunnelling amplitude). The detection of a single plane enabled the direct measurement
of densities within a single atom layer avoiding an integration of the density along the
imaging direction (line of sight).

Magnetic field
A vertical magnetic field gradient caused a different Zeeman splitting between the internal
states of the atoms in different layers in the vertical z lattice. Using a narrow rf pulse, the
mF -state of atoms in a single plane could hence be swapped without addressing atoms in
other planes. The addressed, swapped plane could furthermore be imaged to obtain the
densities in this layer. In order to evoke a sufficient difference in the Zeeman splitting
across adjacent planes a strong magnetic field gradient was required. The fast Feshbach
coils were used for this purpose. Since these coils were not water-cooled the electric cur-
rent as well as the time of high gradient was strongly limited. A maximum magnetic field
gradient of Bz = 3.33(5) mGµm−1 could be hold for about 40 ms. This enabled a separa-
tion between adjacent atom planes in the green vertical 532 nm lattice of about 1200 Hz.
In addition to the strong vertical magnetic field gradient, a homogeneous magnetic off-
set field of about 213.8 G was induced using the slow Feshbach coils. At this field
strength the on-site interaction shift difference equalled zero ∆U = U37 − U57 = 0.
Here, U37 is the interaction strength between two spins on the same lattice site in the
two-dimensional in-plane lattice with |↑, ↓〉 = |mF = −3/2〉 , |mF = −7/2〉. Equivalently,
U57 is the interaction strength between two spins on the same lattice site with |↑, ↓〉 =
|mF = −5/2〉 , |mF = −7/2〉. Thus, an rf pulse can transfer singles and doubles in the
same plane even-handedly due to ∆U = U37 − U57 = 0 (Fig. 3.14 left). To exploit the
necessary condition (∆U = 0) the initial |mF = −9/2,−7/2〉 spin mixture was stepwise
transferred to a |mF = −3/2,−7/2〉 spin mixture (Fig. 3.15) before the rf sweep was ap-
plied.

Radio frequency sweep
The radio frequency pulse to transfer the atoms in a single plane from |mF = −3/2〉 to
|mF = −5/2〉 (Fig. 3.15, “tomography”), had a shape [38]

Pslic(t) = Aslic(t)sin(2πνslict). (3.9)

with

Aslic(t) = A0
slic

5∑
n=1

snsin

(
(2n− 1)πt

tpulse

)
(3.10)

where

tpulse = 7.5 ms, s1 = 0.0956, s2 = −0.091, s3 = 0.0483, s4 = −0.005, s5 = 0.002

The amplitude Aslic(t) is time dependent (Fig. 3.14 center). Furthermore, the frequency
νslic in Eq. 3.9 corresponds to the mF = −3/2↔ mF = −5/2 transition frequency around
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52 MHz. It can be computed from Eq. 3.8. A0
slic in Eq. 3.10 was calibrated such that

the sweep induced a π rotation on the Bloch sphere around the u-axis [38]. An arbitrary
function generator AWG 33600A from Keysight generated the pulse. More information
can be found in [38].

Figure 3.14: Left Necessary condition for tomography of singly and doubly occupied lattice
sites (Fig. 3.15). Only if U73 = U75, the internal state of both, singles and doubles, in a
single plane can equally be changed. Center Tomography rf pulse which was generated
with an arbitrary function generator. Right Synchronisation of the experiment to the
power line in order to reduce magnetic field fluctuations while the tomography pulse was
sent.

Synchronisation of the experiment cycle to the power line
The current stabilisation of the slow Feshbach coils (Sec. 3.4.2) did not suppress the 50 Hz
noise from the power line completely. This noise on the current led to fluctuations in
the magnetic offset field at a rate of 50 Hz and, therefore, in the Zeeman splitting of the
internal states of the atoms. In turn, with a fixed νslic between different experimental
cycles, detection noise from other planes hindered a sharp resolution of a single plane. To
overcome this problem the time at which the tomography pulse was sent was synchronised
to the 50 Hz noise of the power line. The experiment was therefore interrupted just before
the tomography pulse by switching off the 10 MHz clock. At the following rising edge
of the digitalised 50 Hz noise (Fig. 3.14 right), the experiment was continued and after
an additional waiting time tWait the tomography pulse was sent. Thus, the pulse always
coincided with the maximum of the sinusoidally fluctuating magnetic field at which the
slope is zero and, thus, most stable. With the synchronisation to the power line and a
pulse width of 500 Hz single planes could be resolved where the detected atom number in
between two adjacent planes was negligible.13

3.5.4 Singly/Doubly site occupation discrimination

The discrimination between singly (singles) and doubly (doubles) occupied lattice sites in
the two-dimensional in-plane lattice in a single shot was achieved by swapping the internal
mF -state of one of the two atoms forming a double (Fig. 3.15).

13In Fig. 4.10 each second plane was emptied before tomography such that the planes are well separated
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3.5 Density and spin discrimination in a single two-dimensional lattice plane

Figure 3.15: Detection scheme for singly and doubly occupied lattice sites. Mi-
crowave shelving (Sec. 3.5.6) was employed for separately imaging single and double
occupations.

After the preparation for tomography (also referred to as slicing) and the tomography
pulse (Fig. 3.15), the atoms were prepared for singles/doubles separation. Therefore,
the atoms in the single plane which occupied the |mF = −5/2 > state after slicing were
brought into the |mF = −9/2 > state while all other atoms in the |mF = −7/2 > state
were transferred to the |mF = −5/2 > state. Hence, singles in the single plane occupied
the |mF = −9/2 > state while doubles were in the |↑, ↓〉 = |mF = −5/2,mF = −9/2〉
state before the singles/doubles separation (SD) pulse was sent. The interaction shift
was thus U59. The SD pulse then transferred the “spin down” states in doubles from
|↓〉 = |mF = −9/2〉 into |mF = −7/2〉. This changed the interaction shift to U57. The
absolute difference between both shifts |U59−U57|/h = νsinglesTo7−νdoublesTo7 equalled the
frequency difference between transferring singles and doubles to the |↓〉 = |mF = −7/2〉
state. At a magnetic field of about 212 G this difference was about 1.8 kHz which deter-
mined the required SD pulse width to separate doubles from singles.

SD pulse shape
The same dual channel arbitrary function generator (AWG) from Keysight which gener-
ated the tomography pulse was employed to generate the SD separation pulse. The second
channel was used for this purpose. The pulse properties, i.e. amplitude, center frequency
etc. were set in a python script and sent to the AWG at the beginning of each experimen-
tal cycle. The SD pulse was implemented with a time dependent amplitude ASD(t) and
frequency νSD + δSD(t) [38]

PSD(t) = ASD(t)cos(2πt(νSD + δSD(t))) (3.11)

with

even with a tomography pulse width of up to 1200 Hz.
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ASD(t) = A0
SD1/cosh

[
5.5

(
2t

TSD
− 1

)]
(3.12)

and

δSD(t) =
δ0

SD

2
tanh

[
5.5

(
2t

TSD
− 1

)]
(3.13)

Here, νSD is the center frequency of the SD pulse which depended on the magnetic field
and δ0

SD is its width in frequency space. For a splitting between singles and doubles
νsinglesTo7 − νdoublesTo7 = 1.8 kHz, this width was usually set to 1.2 kHz. Furthermore,
TSD = 3 ms was the duration of the pulse whose amplitude and frequency is time dependent
(Fig. 3.16). Transfer efficiencies of of 1.003(8) were reached [38].

Figure 3.16: Amplitude and frequency of the singles/doubles separation pulse in time.

3.5.5 Spin state discrimination

Instead of discriminating between singles and doubles (Sec. 3.5.4), the detection scheme
could be modified in order to discriminate between a spin up and a spin down state (Fig.
3.17)
During this sequence, atoms were swapped to the |↑, ↓〉 = |mF = −3/2,mF = −9/2〉 states
and, thus, doubles were lost due to spin exchanging collisions. Moreover, the scheme
comprised two tomography pulses: One to swap single atoms from mF = −3/2 to mF =
−5/2 and one to swap singles from mF = −7/2 to mF = −9/2. Spin down atoms in
mF = −9/2 and spin up atoms in mF = −5/2 could thus imaged separately (Sec. 3.5.6).

3.5.6 Microwave shelving and imaging

The separated imaging of either singles/doubles or two spin states required the interme-
diate transfer and storage of one spin state in the |F = 7/2〉 manifold. This was achieved
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Figure 3.17: Detection scheme for “spin-up” and “spin-down” atoms in a single
plane after tomography. Atoms on doubly occupied sites escaped from the optical
lattice trap during “spin-up” and “spin-down” detection due to spin exchanging colli-
sions from |mF = −3/2,mF = −9/2〉 to |mF = −5/2,mF = −7/2〉 in the preparation of
tomography (slicing).

with two microwave sweeps giving this method its name “microwave shelving”. Trans-
ferring one spin state of a doubly occupied site to the |F = 7/2〉 manifold, however, led
to the loss of the double due to spin exchanging collisions. Therefore, atoms on singly
occupied sites were brought into the |F = 7/2,mF = −7/2〉 state instead (Fig. 3.15 or
Fig. 3.17). For spin state discrimination the spin down state in |↓〉 = |mF = −9/2〉 was
microwave shelved to the |F = 7/2,mF = −7/2〉 manifold. After this first microwave, a
radio frequency swap (Sec. 3.5.2) transferred the residing atoms in the |mF = −7/2〉 to
the lowest |mF = −9/2〉 state where they were imaged via z-imaging (Sec. 3.2.1). A
second microwave subsequently transferred the atoms from the upper |F = 7/2〉 manifold
back into the |F = 9/2,mF = −9/2〉 state where a second image was taken. The storing
of one spin state in the |F = 7/2〉 manifold prevented off-resonant imaging of atoms in the
|mF = −7/2〉 state.
The microwave was generated by a direct digital synthesiser (DDS) AD9956 board and
amplified before sending it to the microwave antenna close to the glass cell. The DDS
board could be initialised and controlled via a Rasperry pi with a Browser interface or
a python-script. The microwave center frequency was 1.822 GHz. The sweep width in
frequency space was 2 MHz. The micro wave duration was 10 ms.

3.6 Digital mirror device

The digital mirror device (DMD) was employed to shape and/or compensate the underly-
ing harmonic potential in the trap which was caused by the Gaussian lattice laser beams
(Sec. 4.2.2.1 and Sec. 4.2.3). The DMD setup comprised a laser system, the DMD itself
including a Rasperry pi to control the DMD and the optical path on the experimental table.
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Laser system and optical setup on the experimental table
The laser system consisted out of a Titan Sapphire ring laser Matisse C from Sirah and a
Verdi V18 from Coherent which pumped the Ti:Sa crystal at a wavelength of 532 nm. The
Matisse C ring laser was adjusted to provide light of wavelength around 735 nm. A power
of up 2 W of 735 nm light was used. The output wavelength was blue-detuned with respect
to the main D2 transition in potassium 40K at 766 nm and, hence, this blue-detuned light
could be used to compensate the red-detuned 1064 nm light from the lattice lasers. The
output beam of the Matisse C ring laser was beam shaped, sent through an AOM for
intensity control and fibre coupled to guide it to the experimental table (Fig. 3.18). Here,
the DMD light was again shaped with a telescope and sent onto the DMD. In a 4f-setup
thereafter spatial frequencies could be cut from the DMD light in the Fourier plane using
an aperture. At a first cube some DMD light was then branched off and sent onto a Thor-
labs camera which is referred to as “lower Thorlabs camera”. This enabled to monitor
and characterise the beam before it entered the glass cell.14 At the last beam splitting
cube, the DMD light was finally combined with the z-imaging light path to conduct the
light to the glass cell (cf. Fig. 3.5 right).

Figure 3.18: Optical setup of the DMD path. The path is combined with the z-imaging
path (Fig. 3.5 right) at the beam splitting cube before the glass cell (Fig. 3.7).

Digital mirror device
The digital mirror device was a DLP LightCrafter 6500 from Texas Instruments. It pos-
sessed an array of 1920 × 1080 micro mirrors where each of them was controllable by an
on/off voltage. The size of the total array was about 14.5 × 8.2 mm. Each square mirror
had a length of 7.56 µm. A DLPC900 control board set each individual mirror voltage. In
the on-state the voltage led to a tilt of the respective mirror by 12 ◦ with respect to the

14A second Thorlabs camera referred to as “upper Thorlabs camera” was installed behind the glass cell.
Here, “lower” and “upper” refer to the level on the optical table.
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array surface. The off-state mirrors were parallel to the surface. Hence, all mirrors in the
on-state reflected the incoming Gaussian beam stemming from the Matisse C laser under
a defined direction and the so “shaped” blue- detuned DMD beam was used to shape
the underlying potential at the location of the atoms. Furthermore, the mirrors could be
switched between on/off at a rate of up to 9500 Hz which enabled a rapid change of the
mirror setting (= displayed pattern) on the DMD.15

The displayed patterns were loaded onto the DMD as bitmaps via a Rasperry Pi. Each
pixel in the bitmap had a value 0 or 1 and corresponded to one micro mirror on the
DMD, thereby setting its state to off/on, respectively. The bitmap was created with a
python program. Exemplarily, the necessary steps to configure the DMD with the goal to
compensate the underlying potential from the Gaussian lattice beams are outlined in the
following. This was used for example to create a band insulator (Sec. 4.2.3).
First, the resulting potential landscape from the Gaussian lattice beams at the location of
the atoms was deduced using the measured waists (Sec. 4.2.2.1) and powers (Sec. 4.1.1)
of the lattice beams.
Second, the small, circular area of DMD mirrors (all and only in on-state) which reflects
the DMD beam onto the trapping potential center was determined. Therefore, the atoms
were held in a two-dimensional lattice (Sec. 4.2.2.2) and a thin beam out of the whole
DMD beam which was created by reflection from the small, circular area of DMD mirrors
in the on-state was shone onto the atoms. Due to the blue-detuning of the DMD light
the atoms avoided the spot where the thin beam hit the cloud which produced a hole in
the atomic cloud. By iteratively using other mirrors on the DMD for the circular area the
one which reflects the DMD beam towards the center of the atomic cloud could be found.
The latter coincided with the center of the trapping potential.
Third, after determining the “center mirror” the power of the DMD beam was calibrated
using the lower Thorlabs camera. In order to do so, all DMD mirrors were set to on such
that the whole Gaussian beam was reflected on the DMD surface into the further optical
path and the light intensity was measured spatially resolved with the camera at a defined
voltage in the experimental control. This yielded the calibration between light intensity
and set voltage.
Forth, the thus calibrated beam intensity was converted to a resulting blue-detuned po-
tential. By scaling up this potential such that it slightly exceeded the potential of the
lattice beams everywhere the scaling factor was inferred by which the set voltage had to
be multiplied to provide sufficient DMD intensity for compensation.
Fifth, the scaled intensity pattern was error diffused with an algorithm. The latter con-
verted the scaled intensity pattern to the binary map. In this map, the algorithm set
pixels to zero in order to reduce the number of reflecting DMD mirrors. Thus, the local
intensity of the DMD beam was not remitted after the DMD such that the remaining local
intensity pattern after the DMD equalled the necessary intensity for compensation of the
Gaussian beams.
In general, this procedure allowed for arbitrary pattern generation as long as the available
intensity from the Matisse C was sufficient everywhere. The point spread function of the
optical path reduced the maximum achievable intensity. Furthermore, interferences due

15In [54] fast switching was employed in the attempt to implement a Floquet system.
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to dust in the optical path led to disorder in the compensated potential. This disorder
was analysed in [54].
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CHAPTER 4

Results and discussion

The last chapter detailed the experimental setup which was used and extended to build
the analogue quantum simulator for a bilayer Hubbard system. Moreover, chapter two
elaborated the computation of Wannier functions used for the calculation of the bilayer
Hubbard parameters, namely the tunnelling amplitude t⊥ between the two atom layers in
the bilayer Hubbard system and the interaction strength U in the vertical z superlattice.
In this chapter, in the first section (Sec.4.1), the calibration of the vertical z superlat-
tice (Sec.3.3.1) and of the Hubbard parameters is presented. This calibration based on
the comparison of the experimental results with theoretical predictions employing non-
interacting and interacting Wannier functions. The latter are computed by the method
developed in this thesis (Sec.2.2).
In the second section (4.2), the implementation steps of the bilayer Hubbard model with
the experimental setup presented in chapter 3 are detailed and accompanied by a quanti-
tative analysis. Thereby, the discussion follows the experimental control sequence steps.
This implementation makes use of the calibrated Hubbard parameters from the first sec-
tion of this chapter (Sec.4.1).
In Sec. 4.3, the spin correlation measurements on the bilayer Hubbard system are pre-
sented. This includes the comparison to existing theoretical predictions of spin correlations
in a bilayer Hubbard system based on a Determinant Quantum Monte Carlo method.
In Sec. 4.4, results on thermodynamics are finally discussed.

4.1 Calibrating the superlattice and bilayer Hubbard parameter

4.1.1 Superlattice depth calibration

The amplitude or depth of the short z532 and long z1064 optical lattice (cf. Vs and Vl in
Eq. 2.8) at the location of the atoms was calibrated employing lattice modulation spec-
troscopy [56][88]. Both lattice depths were calibrated separately rather than employing
the lattice modulation to the superlattice as described in [97]. The method is discussed in
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the following for the z532 lattice. Modulation spectroscopy of the z1064 lattice, however,
was performed similarly.
Starting from cold atoms in a |−9/2,−7/2〉 spin mixture confined in the dipole trap, the
z532 lattice laser power was ramped up within 2 s to a finite value. This slow ramp guaran-
teed that the atoms were adiabatically loaded to the ground band of the one dimensional
z532 lattice potential. The power of the z532 lattice laser beam was subsequently modu-
lated for 100 ms employing the acoustic optical modulator (AOM) in the z532 lattice laser
setup (Fig. 3.6).1 The lattice modulation with amplitude Amod around V0 (Fig. 4.1 left)
can be described by

V(t) = V0 + Amod · cos(νmodt).

Here, νmod is the lattice modulation frequency. For small Amod, the transition amplitude
for atoms from the ground state of the optical lattice to excited states can be inferred
from perturbation theory to first order as [27]

T0n
qq′ = δqq′

∫
ψnq′(z)V(z)ψ0

q (z)dz. (4.1)

Here, δqq′ states that the lattice momentum is preserved during the excitation. For a deep
lattice, in which lattice modulation was performed, excitations to bands with index n mod
2 = 1 are strongly suppressed due to a vanishing integral in Eq. 4.1. For example, the
ratio of the transition strength between the levels 0 ↔ 1 and 0 ↔ 2 yielded T01/T02 =
0.0003 (Fig. 4.1).2 After the modulation the z532 lattice laser power was adiabatically
diminished to zero within 1 ms. The adiabaticity ensured that the lattice momentum
of the afore confined atoms in the ground and excited bands of the optical lattice was
conservatively mapped to free space momentum[18]. Relieved from the confining potential,
the atom cloud expanded in free space for a time of flight of 10 ms before absorption
imaging was performed. The so-obtained, momentum-resolved optical density was plotted
against the modulation frequency (Fig. 4.1 right). The theoretically predicted band
transition frequencies for a specific lattice depth (Fig. 4.1 left) was then matched with the
observed resonances which yielded the conversion factor between laser beam power and
lattice units, i.e. recoil energies.3 So, the lattice depth was calibrated.
For both z lattices the theoretically predicted transitions were set to the high frequency
edge of the observed resonance (Fig. 4.1 right) in order to determine the conversion
factor. The high frequency edge is connected to the lattice depth in the trap center where
the lattice is deepest and the energy gap Eex − Egr between excited and ground band is
largest. This spatial dependence was caused by the underlying harmonic confinement of

1An arbitrary function generator WW1071 from Tabor Electronics created the sinusoidal modulation
signal and sent it to the AOM controller. The latter in turn mixed it with the 80 MHz AOM driving
frequency and routed it to the AOM.

2This calculation bases on the Wannier functions of the three lowest energy bands (Fig. 2.9) in the
antisymmetric superlattice configuration.

3In Fig. 4.1 the the obtained optical density is additionally momentum-resolved (x-axis) for different
lattice modulation frequencies (y-axis).
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the Gaussian lattice laser beams.
The increment of the modulation frequency steps of 0.25 kHz (Fig. 4.1 right, y-axis) leads
to an uncertainty of the optical lattice depth. For both, the z532 and z1064 lattice the
error is about 0.5% of the lattice depth. This error is propagated to the error of the
Hubbard parameters t and U .

Figure 4.1: Lattice modulation spectroscopy of the z532 lattice. Left Lattice configuration
with involved Wannier functions from the BPPO method using two bands (Sec. 2.2.2).
The relative transition amplitude T01/T02 = 0.0003 shows that the transition amplitude
of the 0-1 transition is strongly suppressed compared to the 0-2 transition. The energy
difference between the ground and second band is ∆ = 42.125 kHz. This corresponds to
the frequency in the right figure. Right Spectroscopy signal. The optical density mea-
sured with absorption imaging after time of flight as a function of the lattice modulation
frequency νmod (y-axis) and of the lattice momentum k (x-axis). At resonance the atoms
are excited to the second band and move rapidly out of the field of view of the z-camera
during time of flight.

4.1.2 Superlattice symmetry point calibration

The symmetry point of the z superlattice was experimentally determined via a measure-
ment of singly and doubly occupancies as a function of the z superlattice offset lock voltage
Vctr

zlock in the VCO (Fig. 3.8) and, hence, the superlattice phase.

The control sequence (Fig. 4.2 left) started with a |−9/2,−7/2〉 spin mixture of atoms
which was loaded into the two-dimensional in-plane lattice formed by the x1064 and y1064
lattice (Fig. 3.10). Tunnelling in z direction was frozen out setting the z532 lattice depth to
120 Erec. Tunnelling within the plane was likewise suppressed setting both in-plane lattice
depths to 30 Erec. Subsequently, the z1064 lattice was ramped up to 200 Erec within 50 ms
while the phase was set to the antisymmetric lattice configuration.4 Thus, the atoms were

4As discussed in Sec. 3.3.1 the antisymmetric configuration could not be achieved with the big Mephisto
for the z1064 and the z532 lattice. Here, this term refers to the most asymmetric configuration which
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loaded adiabatically into the ground state of the resulting, isolated antisymmetric double
wells in z direction (Fig. 4.2 left upper row). The double well barrier was then ramped
down in two steps within 50 ms and 10 ms to a final varying value between 15−23 Erec. In
between the two ramps a radio frequency swap changed the spin mixture to |−9/2,−5/2〉
in order to induce repulsive on-site interactions at a magnetic field of 207 G. Ramping the
superlattice phase subsequently in 200 ms resulted in a specific final configuration. The
singly and doubly occupancies after equilibration in the double wells were then frozen by
ramping up the z532 lattice again to 120 Erec and diminishing the z1064 lattice to zero
within 1 ms. After performing second plane evaporation in order to empty the same well
in each double well across all planes (Sec. 4.1.6), remaining singly and doubly occupancies
were distinguished via singles/doubles separation (Sec. 3.5.4). Tomography was not used
in this measurement leading to an integrated number of detected atoms along the line of
sight in z direction.

In order to deduce the symmetry point from the number of single and double occupancies
as a function of the final superlattice phase (after the 200 ms phase ramp) the obtained
data were fit by the theoretical calculation of a double well system (Fig. 4.2 right). Here,
the occupancies resulted from the consideration of both, a single and two fermions in
a double well, respectively. The Hamiltonian for a single fermion in a double well as a
function of the detuning ∆ is given by Eq. 4.3. There, the off diagonals are set to the
tunnelling amplitude t between the two wells. The Hamiltonian for two fermions in a
doubles well is given by [12][42]

HDW =


U + 2∆ −t −t 0
−t 0 0 −t
−t 0 0 −t
0 −t −t U − 2∆

 , (4.2)

where U, t and ∆ are the on-site interaction strength, tunnelling amplitude and the off-
set between the lowest energy states in each well of the double well, respectively. The
four basis states are |↑↓, 0〉, |↑, ↓〉, |↓, ↑〉 and |0, ↑↓〉. The probability of finding a dou-
ble occupancy after evaporating the second well in terms of these eigenvectors is given
by pd

DW = Ad| |↑↓, 0〉 |2/ηd. Here, Ad, ηd is the amplitude and detection efficiency of
doubles, respectively.5 In contrast, a singly occupied site was measured when a dou-
ble split into two singles during the phase ramp or when the double well was already
initially filled by only one fermion and this fermion occupied the well which was not
emptied during second plane evaporation. The probability for a singly occupancy was
thus psDW = As| |·, 0〉 |2 + A2s(| |↑, ↓〉 |2 + | |↓, ↑〉 |2)/ηs. Here, As was the single amplitude
and |·, 0〉 was one of the two eigenvectors describing one fermion in a double well. In
order to fit the theoretical probabilities to the measured singly and doubly occupancies,
three other free fit parameter were included: 1. ∆ in Eq. 4.2 yielding the conversion factor

could be achieved employing the big Mephisto and is used in the following for shortness. Since the
small Mephisto is only used for second plane evaporation any confusion is prevented.

5The doubles amplitude Ad scales the measured number of doubly occupancies to a density which can
be compared to the calculations. The scaling is necessary since tomography was not used.
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between Vctr
zlock and the detuning, 2. the interaction strength U and 3. the symmetry point.

Figure 4.2: Determination of the symmetry point. Left Main steps of the experimental
sequence. Right Experimental data and fit for one and/or two fermions in one well of a
double well as a function of the superlattice phase.

By fitting the theory to the data, the symmetry point could routinely be found. This
method, however, was not suitable to precisely determine the conversion factor between
the z superlattice offset lock voltage Vctr

zlock and ∆ in Eq. 4.2 or equivalent the superlattice
phase φ in Eq. 2.8, due to the large number of free fit parameters, i.e. As, Ad etc..

4.1.3 Superlattice phase calibration

The measurement of Rabi oscillations for different z superlattice offset lock voltages Vctr
zlock

(Sec. 3.3.1, offset lock), enabled the determination of the conversion factor between Vctr
zlock

and ∆ which describes the offset energy between the two levels in a general two level
system. Therefore, the predicted dependence of the effective Rabi frequency on ∆ from
the two level system was fit to the measured effective Rabi frequency. In order to verify
that the so obtained ∆ matched the theoretical expected ∆ which results from a phase
φ 6= 0 in the definition of the superlattice potential in Eq. 2.8, the measured effective Rabi
frequencies were compared to Rabi frequencies yielded from a theoretical calculation with
the BPPO method in Sec. 2.2.2.

The general two level system
A general two level system with detuning is described by the Hamiltonian [86]

H2lev =

(
−∆ ΩR

ΩR ∆

)
(4.3)

with ΩR and ∆ being the common Rabi frequency and the detuning from resonance,
respectively. The double well is an application of this general two level system (Fig. 4.3
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left). The ansatz to solve this problem is |ψ(t)〉 = (Cg(t)exp(−iωgt), Ce(t)exp(−iωet)) in
the basis {(1, 0), (0, 1)}. Here, ωg = Eg/~ and ωe = Ee/~ are the angular frequencies
corresponding to the lower (Eg) and upper (Ee) energy level, respectively. Starting with
a system where only the lower energy level is populated, the upper energy level can be
populated by a Landau-Zener sweep. The time evolution of the population of this upper
level is given by

|Ce(t)|2 =
Ω2

R

(Ωeff
R )2
· sin

(
Ωeff

R t

2

)
. (4.4)

Here, the effective Rabi frequency is defined as

Ωeff
R :=

√
Ω2

R + ∆2 (4.5)

and includes the detuning 2∆ = ~(ωe − ωg). The occupation of the lower energy level
oscillates with a time shift of π/2 compared to Eq. 4.4. Eq. 4.5 states the expected
dependence of the Rabi frequency on the detuning 2∆.

Experimental sequence to induce Rabi oscillations
The experimental sequence (Fig. 4.3 right) to induce Rabi oscillations in isolated double
wells along the z direction started with a polarized atomic gas in the |mF = −9/2〉 state
which was initially loaded in a two-dimensional lattice plane.6 Tunnelling between planes
was suppressed setting the vertical z532 lattice to 120 Erec. Tunnelling within each plane
was frozen out setting the in-plane lattices to 30 Erec. Starting from this situation the
vertical z1064 lattice was ramped up adiabatically in 50 ms to 120 Erec while the phase
was kept at a specific but constant value. This value was scanned across different mea-
surement runs. The slow ramp up of the z1064 lattice depth of 50 ms guaranteed a loading
into the ground state of each of the so formed isolated double wells. In order to induce
Rabi oscillations between the lowest and first excited energy level in each double well, the
first excited state was populated via a Landau-Zener sweep. The latter was performed by
diabatically ramping down the z532 lattice within 100 µs to a depth between 13− 20 Erec.
This effectively diabatically converted two separated wells into a connected double well.
The diabaticity of the ramp was fulfilled as the considered lattice configurations exhibit
a maximum energy gap between the two lowest energy levels of 1.6 kHz compared to the
100 µs ramp time. For all lattice configurations the Rabi oscillation frequency was in a
measurable range concerning a minimum sampling rate of 100 µs. The sampling rate was
limited by the minimum length of one time step in the experimental sequence control.
After a free Rabi oscillation time tR ∈ [0...2.5 ms], the z1064 lattice was diminished to zero
while the z532 lattice was simultaneously increased to 120 Erec in 1 ms to freeze the motion.
Each second layer was subsequently emptied using the second plane evaporation technique
(Sec. 4.1.6). This enabled to make the oscillations visible as atoms were only detected
- after second plane evaporation - when they were located in the not-emptied well after tR.

6A similar ansatz was set up in [12].
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Figure 4.3: Induced Rabi oscillations in isolated double wells. Left A double well as
application of the general two level system. Right The main experimental sequence steps
to induce Rabi oscillations.

Analysis of the effective Rabi oscillations
The number of atoms in the not-emptied well as a function of the evolution time tR for a
symmetric superlattice configuration oscillated (Fig. 4.4 left). Determining the frequency
of this oscillations from a fit to the atom number of the entire cloud, however, led to an
imprecise result for the Rabi frequency. The underlying potential of the Gaussian shaped
lattice laser beams led to an increase of the lattice depth and barrier height of each double
well towards the trap center and, in turn, to a decrease of the Rabi oscillation frequency
there. An evaluation of the entire image therefore averaged over different frequencies. In
order to avoid this, all images of one measurement were sectioned and the time evolution
of the atom number in each section were fit using a damped sinusoidal function

fdampSine(t) = A · e−t/τcos (πνt+ φ) + const.

Here, A, τ, ν, φ and const. are the amplitude, decay time, frequency, phase and offset, re-
spectively.
One reason for the decay of the bare oscillations was the averaging over several planes
during absorption imaging. Performing radio frequency tomography in order to select a
single plane would not necessarily have led to an improvement due to atom number fluc-
tuations. However, the decay was small and 5 oscillations were clearly visible (Fig. 4.4
left).
Subsequently, the z superlattice offset lock voltage Vctr

zlock and, hence, the superlattice
phase was scanned around the symmetry point and the Rabi oscillation measurement was
performed for each phase. The extracted oscillation frequency was then plotted versus the
phase in units of Vctr

zlock (Fig. 4.4 right). The data points were fitted using the theoret-
ical predicted dependence of the effective Rabi frequency on the detuning from the two
level system (Eq. 4.5). The extracted fit parameter exemplary for the lattice depth of
Vz532 = 13 Erec were ΩR = 1692(2) Hz and ∆ = 384(6) Hz/V. The angular point of the
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parabola is at 5.89(2) V. T

Theoretically expected effective Rabi frequencies
In the experiment, the superlattice phase can be tuned in units of the offset lock voltage. In
order to compare the experimentally determined effective Rabi frequency with theoretical
calculations, the conversion factor from Vctr

zlock in units of Volts to superlattice phase in
radians is needed (Fig. 4.4 right, cf. upper and lower x-axis). This factor was obtained as
follows:
First, the parabola with ΩR = 1692(2) Hz and ∆ = 384(6) Hz/V was plotted versus the
Vctr

zlock in units of Volts.
Second, the function Ωeff

R = (Ω2
R + (cVToPh ·∆)2)1/2 with the above mentioned parameter

values was plotted versus the theoretical superlattice phase (Fig. 4.4 right, lower x-axis).
Third, the conversion factor cVToPh that minimizes the mean squared error between both
parabola were found. It yielded cVToPh = 36.82 and, hence, 1 V=̂1/36.82 ≈ 0.027rad.7

Figure 4.4: Effective Rabi oscillation frequency in the z superlattice. Left Bare Rabi
oscillations in the symmetric superlattice configuration. Right Measurement and theory
from the BPPO method of the effective Rabi oscillation frequency.

This conversion factor was used to compare the measured data to theoretical expected
effective Rabi frequencies from the BPPO method using two bands (Fig. 4.4 right, shaded
region). The y-error of the data points is given by the uncertainty of the sinusoidal fit
of the bare Rabi oscillations. The data points are shifted such that the angular point
of the parabola is at zero Volt. The theory band originate from the uncertainties in the
z532 and z1064 lattice depths determined by parametric heating to be σVlat = 0.5% of
the total depth (Sec. 4.1.1) as well as from the uncertainty of the symmetry point and
∆ determined by the angular point and curvature of the parabola. The theory coincided

7Note that the phase difference between the symmetric and antisymmetric superlattice configuration is
π/4 ≈ 0.785.
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with the data points within the errorbars. The data points for phases further away from
the symmetry point, however, stick to the lower edge of the theory band. A phase shift
of the superlattice phase during the Rabi oscillation measurement might be caused by an
error in the determination of the conversion factor cVToPh. The upper bound for the error
of the conversion factor was estimated to be 5%.

4.1.4 Superlattice phase stability

The phase stability of the vertical z superlattice could be inferred from the Rabi oscillation
measurement (Fig. 4.4 right). Here, the measured effective Rabi frequency coincided with
the theoretical predictions from the BPPO method for all phases. Thus, for the time of
the measurement which was about four hours the superlattice phase did not fluctuated
more than 0.004− 0.005 rad which is approximately the width of the theory band.

4.1.5 Calibration of the Hubbard tunnelling parameter t

Rabi oscillations as induced and measured with the experimental sequence (Sec. 4.1.3)
take place when a system undergoes periodic transitions between two states. From this
measurement the tunnelling amplitude t in the Hubbard Hamiltonian Eq. 2.1 can be de-
duced. It describes the transition strength between the two states |L, 0〉 and |0, R〉 where
a particle occupies either the left or right well of the double well. Taking into account
that the Rabi oscillation cycle is defined as the forth and back transition between the two
involved states while tunnelling describes only the transition in forward direction, t could
be inferred from the Rabi oscillation measurement as teff = Ωeff

R /2. Here, teff includes the
detuning ∆ between the two wells.
As shown in Sec. 4.1.3 the effective Rabi frequency and, hence, the effective tunnelling
amplitude as a function of the superlattice phase matched the theoretical predictions from
the BPPO method. The dependence of the effective tunnelling amplitude on the double
well depth and double well barrier height was subsequently experimentally tested and
compared to the theoretical predictions (Fig. 4.5). The data were taken for two z1064
lattice depths of Vz1064 = 120 and 210 Erec and three different z532 lattice depths, respec-
tively. The phase was set to the symmetric superlattice configuration. Again, the y error
yielded from the uncertainty of the damped sinusoidal fit to the oscillations. The theory
band yielded from the uncertainty in the two lattice depths of the z532 and z1064 lattice
in parametric heating and the uncertainty in the symmetry point.

4.1.6 Second plane emptying

In the Rabi oscillation measurement, it was required to empty (evaporate) each second
plane in the vertical stack of two-dimensional lattice planes before detection (Fig. 3.15).
Thus, the oscillatory behaviour of the atom number in all not-emptied planes (sites) with-
out explicitly resolving these planes (sites) can be observed.8

8Here, the term ”sites” relates to the double well with two sites. This is the point of view of a single
connection between the two planes in vertical direction. Actually, there are many of these double well
which together form the ”plane”.
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Figure 4.5: Tunnelling frequencies at the symmetry point of the vertical z superlattice.
Data points are deduced from Rabi oscillation measurements. Theoretical predictions are
made using non-interacting Wannier functions from the BPPO method. The broadened
theory bands originate from the uncertainty of the z532 and z1064 lattice depths as well
as the one of the symmetry point.

Experimentally, second plane emptying was achieved in several steps. First, the in-plane
lattice was ramped to 60 Erec and the z532 lattice to 120 Erec to suppress tunnelling in all
directions. Thus, the atomic distribution was frozen for tomography, singles/doubles or
spin up/spin down discrimination and imaging. In this configuration each plane of the
vertical lattice was usually filled. For second plane emptying, the z1064 lattice was ramped
up additionally after freezing and before tomography to 28 Erec using the small Mephisto
(Sec. 3.6). Thus, the z superlattice was prepared in its antisymmetric configuration.9 In
turn, two filled adjacent planes in the z532 lattice were again coupled into a double well
in the superlattice. At the same time tunnelling within and between the double wells
was negligible due to the double well’s antisymmetric configuration. In this setting, the
red-detuned in-plane lattice was ramped down to 30 Erec and the blue-detuned z532 lattice
was diminished to 0 Erec. Thus, atoms in the upper well of the antisymmetric double well
were pushed into the continuum of the underlying potential from the Gaussian lattice laser
beams. Contrarily, atoms in the lower well occupied the ground state of the single wells
after diminishing the z532 lattice to 0 Erec. In order to pull the atoms in the continuum
out of the trap, a magnetic field gradient in z direction was switched on using the fast
Feshbach coils.10 Due to the gravity, the atoms finally left the trap.

The second plane emptying, however, exhibited a spin dependency. That means that one
spin component could leave the trap already at smaller applied vertical magnetic field
gradients than the other spin component. For the Rabi oscillation measurement this was

9The small Mephisto laser light frequency was adjusted such that the superlattice phase of the resulting
z superlattice was antisymmetric.

10Here, a gradient of 7 G/cm in the opposite direction compensated gravity.
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not hindering since a spin polarised gas was used there. When creating the bilayer system,
however, second plane evaporation was switched off and the tomography signal had to be
optimized to minimize detection noise from neighbouring planes.

4.1.7 Calibration of the Hubbard interaction strength U

After calibrating the Hubbard tunnelling amplitude t⊥ (Fig. 4.5), the on-site interaction
strength U (Eq. 2.21) in the vertical superlattice was calibrated. Therefore, measured
interaction strengths in isolated double wells along the z direction were compared to the-
oretical predictions.

On the experimental side, a |−9/2,−7/2〉 spin mixture was first loaded into the two-
dimensional in-plane lattice whose depth was set to 60 Erec. At this time step, the z532
lattice with a depth of 120 Erec suppressed vertical tunnelling to neighbouring planes.
Then, the z1064 lattice was ramped up within 50 ms to either 150 Erec or 200 Erec while the
z532 lattice was simultaneously decreased to 17, 25 or 34 Erec. The phase of the resulting
superlattice was set to 0.135 rad. As in the bilayer experimental control sequence (Sec.
4.2.4), the magnetic field was subsequently ramped from initially 207 G to 195 G. In order
to not loose atoms when crossing the |−9/2,−7/2〉 Feshbach resonance at 202 G, the spin
mixture was swapped to |−9/2,−5/2〉 just before the magnetic field ramp. Then, at
195 G, radio frequency spectroscopy was employed (Sec. 3.5.4) to measure the interaction
strength U in the respective superlattice configuration. In fact, only a relative interaction
strength difference ∆U = U95 − U97 could be measured by radio frequency spectroscopy
when transferring atoms on doubly occupied lattice sites from a |↓, ↑〉 = |−9/2,−5/2〉 to
|−9/2,−7/2〉 mixture.

For the evaluation, the atom number in the |mF = −7/2〉 state served as spectroscopy
signal. The latter exhibited two peaks (Fig. 4.6 right upper). One peak arose if atoms on
singly occupied lattice sites in the |mF = −5/2〉 state were transferred into the |mF = −7/2〉
state (right peak). The corresponding frequency is thereby determined by the Zeeman
splitting at 195 G between the two involved states. The other peak signalled that the atom
in the |mF = −5/2〉 state on a doubly occupied site was transferred to the |mF = −7/2〉
state (left peak). The radio frequency of the doubles peak is shifted with respect to
the transfer frequency for atoms on singly occupied sites just by the relative interaction
strength ∆U = U95 − U97. In order to determine ∆U accurately, both peaks were each
fitted by a Gaussian envelop and the distance between the two Gaussian functions was
determined.

The measured relative interaction strength ∆U decreases with increasing short lattice
depth Vz532 for the two considered long lattice depths Vz1064 (Fig. 4.6 left). This be-
haviour is expected since, qualitatively speaking, an increasing Vz532 compresses the Wan-
nier functions more and more. Thus, at 195 G where U97 > U95, the Wannier functions for
|−9/2,−7/2〉 are more compressed as the ones for |−9/2,−5/2〉 and, hence, the relative
interaction strength increases in its absolute value (Fig. 4.6 left). The dependence on
the long lattice depth is rather small. Counter-intuitively, for stronger Vz532, the relative
interaction strength |∆U | at Vz1064 = 200 Erec lies below |∆U | in the case Vz1064 = 150 Erec.

The measured interaction strengths were compared to theoretical predictions. In a first
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Figure 4.6: Relative interaction strength ∆U in the z superlattice. Left The relative
interaction strength was measured via radio frequency spectroscopy in isolated double wells
along the z direction. The theoretical relative interaction strength was calculated using
non-interacting Wannier functions. Due to the strong repulsively interacting fermions in
the isolated double well, however, non-interacting Wannier functions were inappropriate
to predict the measured ∆U . A formalism to compute interacting Wannier functions was
therefore developed in this thesis (Sec. 2.2.4). Computing ∆U with these interacting
Wannier functions leads to a match of theory with data within the errorbars. Right
Spectroscopy signal of doubles and singles. The frequency spacing of both peaks yields
∆U .

run, non-interacting Wannier functions from the BPPO method were used (Sec. 2.2.2)
to deduce the relative interaction strength ∆U following Eq. 2.21 (Fig. 4.6 left, weakly
shaded bands). The discrepancy between the theory and the experimental data is rather
large. This can be attributed to the strong repulsive interactions at 195 G. Thus, non-
interacting Wannier functions are inappropriate to infer ∆U in the lattice. Instead, inter-
acting Wannier functions were employed to infer ∆U . As exemplified in the theory, the
interacting Wannier functions are whose which have minimum total energy (Fig. 4.7 left,
also cf. Fig. 2.11). Furthermore, since the relative interaction strength ∆U = U95 − U97

was measured, interacting Wannier functions for a spin mixture of |↓, ↑〉 = |−9/2,−5/2〉
and |−9/2,−7/2〉 were first separately calculated. At the magnetic field of 195 G, both
spin mixtures interact repulsively (cf. Fig. 3.12 right for Feshbach resonances) and, hence,
broadened interacting Wannier functions are expected compared to the non-interacting
case (Fig. 4.7 center). Then, the relative interactions strength results from the difference
of the absolute interaction strengths U95 − U97 of the respective Wannier function with
lowest energy (Fig. 4.7 right, dashed lines).

The ∆U = U95 − U97 is subsequently computed for experimentally relevant superlattice
configurations and compared to the measured data (Fig. 4.6 left, intensely shaded re-
gions). The theoretical predictions thereby coincides with the experimentally ∆U within
the errorbars for both z1064 lattice depth Vz1064 = 150 Erec or 200 Erec.

The developed method for interacting Wannier functions in the course of this thesis thus
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Figure 4.7: Left Total energy of the iteratively (x-axis) determined interacting Wannier
functions for the two different spin mixtures |−9/2,−5/2〉 and |−9/2,−7/2〉. The mini-
mum total energy in both cases is marked with crosses, respectively. Center Interacting
Wannier functions for |−9/2,−5/2〉 and |−9/2,−7/2〉 with minimum total energy. Both
are broadened compared to the non-interacting Wannier function as expected for a mag-
netic field of 195 G. Right Interaction term as a function of the iteration for both cases
|−9/2,−5/2〉 and |−9/2,−7/2〉. The interaction strength at the crosses is the one where
the total energy is lowest (left figure). The difference yields ∆U = U95 − U97.

allows for a precise prediction of the measured interaction strength in the vertical z super-
lattice.

4.2 Implementing an analogue quantum simulator for a bilayer Hubbard
system

In Sec. 4.1 the superlattice and Hubbard parameter calibration was detailed. In this
section, the creation of a bilayer Hubbard system is presented step by step following the
main experimental control sequence. Necessary measurements for the characterisation of
the interim prepared system are also discussed. The first step deals with the loading of
the atomic gas from the Ioffe-Pritchard trap into the dipole trap, where the system was
initially adjusted in order to create the bilayer Hubbard system. That comprised the
creation of a 50:50 spin mixture, the adjustment of the interactions, evaporative cooling
and the loading into the vertical lattice. Thereafter, the creation of the two-dimensional
in-plane lattice and its loading with atoms is detailed. This also includes the discussion
of the application of the digital mirror device in order to create a band insulator. The
splitting of the band insulator into two coupled planes and an analysis of the singles
and doubles in these two planes is furthermore explained. The section is completed by a
discussion of the compressibility of the bilayer system.

4.2.1 An interacting, 50:50 spin mixtured atomic gas in two dimensions

4.2.1.1 Loading an atomic gas into the dipole trap, setting two-particle interactions and
adjusting a balanced population over the two lowest hyperfine states

The atomic gas in the Ioffe-Pritchard trap (Sec. 3.1.2) was transferred to the horizontal
dipole trap (DTh) (Sec. 3.1.3) by ramping up the DTh power within 600 ms and subse-
quently ramping down the current through the Ioffe bars in 800 ms (Fig. 4.8). The initial
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y and z trap frequency in the DTh after the ramp were (ωy, ωz) = (142, 1982 Hz). In
the x-direction the atoms were only weakly confined (see Fig. 3.3 and Fig. 3.10 for the
laboratory coordinates). The Rayleigh range of the DTh was zDTh

R (y, z) = (60, 0.5 mm).
At this time step, the atoms occupied all positive mF states in the lowest hyperfine man-
ifold |F = 9/2,mF > 0〉. This was necessary in order to trap them in the magnetic field
minimum in the center of the Ioffe-Pritchard trap. In quantum simulators with cold, neu-
tral atoms, however, these mF states are commonly exploited to simulate the spins in a
fermionic ensemble. In order to follow this idea, the atoms were therefore transferred into
the two lowest mF states, i.e. |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 (Fig.
3.4). Thus, simulating the spins |↓〉 and |↑〉, respectively. For a better experimental con-
trol in preparing this two component spin mixture, all atoms were transferred into the
lowest |F = 9/2,mF = −9/2〉 hyperfine state at first instance yielding a “polarized” gas.
This was achieved by sweeping the residual magnetic field from the pinch and offset coils
of the Ioffe-Prichard trap over the hyperfine resonances while a fixed radio frequency was
shone onto the atoms. Then, the current through the slow Feshbach coils was ramped up to
around 240 G within 500 ms (Sec. 3.4.2) and the current through the offset and Pinch coils
of the Ioffe trap was simultaneously diminished to zero. Ramping up the magnetic “Fesh-
bach field” with the slow Feshbach coils adiabatically changed the quantisation axis from
the lab x-axis to the lab z-axis (Fig. 3.3). Subsequently, two Landau-Zener sweeps were
used to adjust the desired spin balance with 50% of the atoms in the |F = 9/2,mF = −9/2〉
and 50% in the |F = 9/2,mF = −7/2〉 hyperfine state.11 The two Landau-Zener sweeps
were optimized according to the sweep rate and the number of sweeps.12 The sweep rate
of each sweep determined the probability for a non-adiabatic transition between the two
eigenstates of the underlying two level system in the rotating frame and, hence, the balance
of the two bare states.13 Experimentally, the rate was optimized by scanning the sweep
width with a constant sweep time of 2 ms (Fig. 4.9 left). Furthermore, due to the two
employed sweeps, the dependence was quadratic (Fig. 4.9 left, red curve). In contrast,
for a single sweep, the dependence would have been linear (blue curve). The stability
of this spin balancing between several experimental realisations could be improved using
two sweeps due to a vanishing slope at the maximum of the parabola.14 The dependence
on the number of pulses is mathematically illustrated in [153]. A spin mixing ratio of
N−9/2/N−7/2 = 0.995(10) was achieved.

The dimple dipole trap (DTdimple) (Fig. 3.7) was ramped up within 100 ms next (Fig.
4.8). This confined the atoms in the direction of the rather long Rayleigh range of the

11A two component spin mixture also enabled to include interactions in the quantum simulation of the
electron gas by means of Feshbach resonances (Sec. 3.4.1). The Feshbach resonance for the two lowest
energy states |F = 9/2,mF = −9/2〉 and |F = 9/2,mF = −7/2〉 is depicted in Fig. 3.12 right.

12A balance spin mixture is also required for efficient evaporative cooling in the dipole trap since the
prepared polarized gas in the |F = 9/2,mF = −9/2〉 hyperfine state did not thermalise due to Pauli
blocking.

13A too high sweep rate led to more non-adiabatic transitions which resulted in an overpopulation of the
ground state while a too small sweep rate led to an adiabatic transfer from the polarized gas in the
|F = 9/2,mF = −9/2〉 state to a polarized gas in the |F = 9/2,mF = −7/2〉 state[86].

14Three pulses, however, which caused a cubic dependence with a saddle point could not experimentally
improve the stability.
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Figure 4.8: Experimental sequence for loading and evaporatively cooling the atomic gas in
a dipole trap and subsequently loading it into a one dimensional vertical optical lattice.
Two spin mixing pulses were used to obtain a 50:50 spin mixture. The occupation of only
each second plane of the vertical z532 lattice was achieved by first loading the atoms in
the vertical z1064 lattice with lattice constant az1064 = 2az532 and subsequently transfer
them into the vertical z532 lattice (cf. Fig. 4.10).

DTh along the x-axis.

4.2.1.2 Evaporatively cooling the 50:50 spin mixed atomic gas in the dipole trap and
measuring the atom number and temperature

The balanced two spin component atomic gas was cooled by slowly lowering the power
of both dipole beams within 4.7 s and, thus, evaporatively cool the atoms at attractive
interactions at a magnetic field of 204 G (Fig. 4.8). The final trap frequencies in the
dipole trap after evaporative cooling were (νx, νy, νz) = (27.4, 35, 339)Hz. In order to
extract the atom number and temperature of the cooled atomic gas, absorption imaging
was performed at first instance employing the y-camera (Sec. 3.2.2 and Fig. 3.10). Due
to the limited resolution of this camera, however, in-situ imaging of the atom cloud in
the dipole trap was not possible. The atoms were therefore released from the trap by
switching off the dipole beams and could expand during a time of flight for 10 ms. Then,
absorption imaging was performed (Sec. 3.2) and the so-obtained images were fit by the
theory of an harmonically trapped, ideal Fermi gas. In this case, the temperature of the
gas is given by [86][51]

T

TF
= (6Li(−Z))−1/3 (4.6)
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and the atom number by

N = −
(

kBT

~ω̄

)3

Li3(−Z). (4.7)

Here, TF = EF /kB is the Fermi temperature which is connected to the Fermi energy EF
by the Boltzmann constant kB. Furthermore, Z, Li and ω̄ = (ωxωyωz)

1/3 are the fugacity
as a fit parameter, the polylogarithmic function and the averaged trap frequency, respec-
tively. The Fermi energy is provided by EF = (6N)1/3~ω̄. Typically, 60(5)k atoms at
temperatures of around T/TF = 0.09(1) remained in the dipole trap after the evaporative
cooling process.

Figure 4.9: Loading and evaporatively cooling a 50:50 spin mixed atomic gas in
a dipole trap. Left Ratio between the population of the two lowest hyperfine states
N−9/2/N−7/2 as a function of the sweep width of the first spin mixing sweep. The sweep
duration was fixed to 2 ms. The parabola (red curve) resulted from two subsequent Landau
Zener sweeps where as the linear curve from only a single spin mixing sweep (blue curve).
Using two sweeps resulted in a vanishing slope at the ratio close to one. This, in turn,
guaranteed a more stable ratio among different experimental realisations. Right Summed
optical density from absorption imaging for thermometry of the atomic gas in the dipole
trap. The density was fitted employing the theory of the harmonically trapped ideal Fermi
gas and the atom number and temperature was extracted. The blue curve is a Gaussian
fit to the data showing that the atomic distribution was in a quantum regime were the
tails of the Gaussian fit did not well describe the distribution.
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4.2.1.3 Loading the 50:50 spin mixed atomic gas in every second layer of the vertical z532
lattice

While the power of the dipole trap was further reduced, the z1064 lattice was ramped
up within 200 ms (Fig. 4.8). Thus, by continuing the evaporation, the atoms were adia-
batically loaded from the dipole trap into the one dimensional vertical z1064 lattice with
lattice constant az1064 ≈ 2 µm. Here, only five neighboured lattice sites (also referred to
as “atom planes”15) of the z1064 lattice were in total populated with atoms (Fig. 4.10, cf.
Vz1064 and the data points). This was due to the strong confinement of the atoms in the
vertical direction in the DTh dipole trap before. After the loading of the z1064 lattice,
the atoms were transferred from the z1064 into the vertical z532 lattice by ramping up the
latter in 3.25 s and simultaneously diminishing the z1064 lattice to zero (Fig. 4.8). This
transfer enabled to populate only every second plane in the vertical z532 lattice (Fig. 4.10,
cf. Vz532 and the data points) since az532 = az1064/2. During the up- and down-ramp of
both individual lattices the phase of the resulting superlattice was hold in antisymmetric
configuration using the small Mephisto (Fig. 3.6).1617

The magnetic field gradient present during tomography which is how the data were
taken in Fig. 4.10 (Sec. 3.5.3) could be extracted by matching the data with the simu-
lated lattice (Fig. 4.10). Therefore, the radio frequency of the slicing pulse (Eq. 3.9) was
first translated into the corresponding magnetic field value (Fig. 3.4). Then, the magnetic
field value at a given point in space z was translated into a distance z in micrometer. With
this, it yielded ∇B = 3.2994 mGµm−1 which matched the calibration in [38].
Furthermore, the atom number and temperature of the atomic gas that populated every
second plane could be optimised by adjusting the power of the dimple dipole trap. Con-
cretely, the dimple dipole power during the ramp up of the repulsive z532 lattice (Fig. 4.8)
determined the atom number while the dimple dipole power after the z532 ramp governed
the evaporative cooling process in the z532 lattice and, hence, the temperature of the gas
in the vertical lattice.

4.2.2 Loading the gas in a two-dimensional, in-plane optical lattice

4.2.2.1 A two-dimensional optical lattice from two retro-reflected Gaussian laser beams

In the theory section ideal lattices were considered. The experimental realisation of a
lattice structure employing retro-reflected Gaussian laser beams, however, required to
take two additional aspects into account.
On the one hand, the retro reflection of the beam in order to create a standing wave
exhibited losses. Thus, the forward and reflected beam had different powers which led to
a running wave component besides the periodic structure. This running wave component
effectively caused an offset R in the lattice potential [105]

15In the vertical lattice, atoms formed two-dimensional layers within each of the vertical lattice sites
16The data from Fig. 4.10 were taken by first loading the z1064 and subsequently the z532 lattice as

described above. They represent one spin state measured with tomography (Sec. 3.5.3).
17Populating only every second site improved the detection of the atoms residing on this site by reducing

the signal from atoms on neighbouring sites during tomography.
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Figure 4.10: Populating each second lattice site of the vertical z532 lattice with atoms.
Converting the tomography pulse frequency (Sec. 3.5.3) to the corresponding magnetic
field value and the latter to the real space coordinate z, the upper and lower axis can be
related to each other. This allows for a validation of the magnetic field gradient during
tomography since the detected planes and the wells of the lattice should coincide.

V off
lat = ∓s

(
R+ cos2(kx/yz)

)
R =

(1±√γ)2

4
√
γ

. (4.8)

Here, γ is the factor by which the power of the reflected lattice beam is reduced compared
to the forward beam due to transmission and reflection losses of the optical components in
the retro beam path. For both in-plane lattices γ ≈ 0.8. The upper/lower sign are related
to the case of a red-/blue detuned lattice with respect to the main optical transition.
Moreover, s is the depth of the lattice in units of the recoil energy.
On the other hand, the radial profile of the Gaussian laser beam led to a decreasing lattice
depth away from the beam axis and, thus, to a variation of the ground state energy in the
periodic potential as a function of the radial distance. Taking both effects into account
yielded the actual lattice potential caused by a single retro-reflected Gaussian laser beam
with an imbalanced power between the forward and reflected beam [105]

V exp
lat = V off

lat + V ge
lat = −(±sR+

√
s)exp

−2

(
x · sin (Θx

lat) + y · cos
(
Θy

lat

)
w

)2
 . (4.9)

Here, w is the waist of the Gaussian lattice laser beam and Θi
lat describes the angle be-

tween the beam axis i and the i-th lab coordinate (cf. Fig. 3.10). The determination
of both parameters was required to precisely know the lattice potential and is therefore
discussed in the following.
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Inferring the Gaussian laser beam waist at the location of the trapped atomic
cloud from a measurement of the trap frequency
The waist w of the Gaussian lattice laser beam at the location of the atomic cloud which
goes into the exponent in Eq. 4.9 was inferred from a measurement of the trapping
frequency [104]. Therefore, a spin-polarized gas was initially loaded into the x- or y-
lattice depending on which trap frequency was measured. The respective lattice depth was
set to 6 Erec in both cases and, hence, the motion of the atomic cloud was predominately
restricted to the radial direction of the respective lattice laser beam (Fig. 3.10). Contrarily,
in the longitudinal direction of the beam, a lattice formed by retro-reflection so that for
short time scales the motion along this direction was suppressed. Subsequently, a magnetic
field gradient was applied to displace the atoms in radial direction away from the beam
axis. This gradient was abruptly switched off after 110 ms which led to an oscillatory
behaviour of the atomic cloud’s center of mass in radial direction over time (Fig. 4.11
left). Absorption imaging was used to image the atomic gas in the trap. Furthermore, for
small displacements away from the beam axis, the radial Gaussian profile of the lattice
laser beam was approximated by a harmonic potential Vhar and, hence, the waist of the
Gaussian lattice laser beam was inferred from the measured trapping frequency ωtrp by
the relation

w =

√
2Vhar

mω2
trp

. (4.10)

Here, m is the mass of a particle in the trap. Using a small number of atoms in the atomic
cloud ensured to stay in the harmonic approximation of the Gaussian profile.
After fitting the oscillations and extracting the frequency for the x- and y-lattice respec-
tively, typical trap frequencies were about ωx

trp = 19.1(3) Hz and ωy
trp = 26.7(3) Hz. The

inferred beam waists were hence about wy
x1064 = 169(1) µm and wx

y1064 = 161(1) µm. Here,
wyx1064 is the waist of the x1064 lattice laser beam at the location of the atoms in y-
direction.

Inferring the angles of the Gaussian lattice laser beams with respect to the
lab coordinate system from a density density correlation measurement

Without single site resolution in z imaging, the angles Θ
x/y
lat between the x- and y-lattice

laser beams and the lab frame could not inferred from a simple in-situ image. There-
fore, they were determined by an autocorrelation analysis of the measured density after
releasing the atoms from the lattice, letting them expand for a time of flight and perform
absorption imaging to record the density[38][1][149].

Experimentally, starting with atoms loaded into a three dimensional lattice with lattice
vectors #»a = i · ax1064 + j · ay1064 + k · az532, where an is the lattice constant in the re-
spective direction and i, j, k are integer numbers, the motion of the atoms in the lattice
was frozen after thermalisation by setting the lattice depths to Vx1064 = Vy1064 = 60 Erec

and Vz532 = 120 Erec. The in-plane lattice was then abruptly switched off by switching off
the acoustic optical modulators of the x- and y-lattice power control (Fig. 3.9 and 3.6).
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Figure 4.11: Left Trap frequency measurement. The oscillating center of mass of the
atomic cloud is plotted against the oscillation time. A damped sinusoidal fit was used to
extract the trapping frequency from which the beam waist could be inferred (Eq. 4.10).
Right Density-density correlation measurement. From the detected dips (yellow points)
in the autocorrelation function, the lattice angles Θi

lat could be inferred. Moreover, the
magnification of the z-imaging system could be deduced (Sec. 3.5).

This projected the atoms in the lattice onto free space. After a time of flight, the atoms
were then absorption imaged. The z532 lattice was lowered but kept on a lower constant
value during time of flight of Vz532 = 10 Erec. This ensured that the atoms predominantly
spread within their initial plane and stayed within the depth of focus of the z-camera.

Theoretically, the autocorrelation function (Fig. 4.11 right) is defined as C(x, y, tTOF) =
ρ̂(x, tTOF)ρ̂(y, tTOF) where ρ̂(x, tTOF) is the density operator at position x after a time of
flight tTOF. Employing the Wiener-Khinchin theorem, the autocorrelation function is re-
lated to the inverse Fourier transform of the spectrum of the density and could therefore be
computed by C(x, y, tTOF) = F−1[|F(ρ)|2]. Here, ρ is the measured density from absorp-
tion imaging after time of flight. The so-obtained autocorrelation function exhibits dips at
integer multiples of the reciprocal lattice vector

#»

b of the lattice vectors #»a x1064/y1064/z532

(Fig. 4.11 right). The dips are positioned at [38]

#»v dip =
2π~tTOF

m
(i · bx + j · by + k · bz) (4.11)

=
2π~tTOF

m

(
i · ay × az
ax · (ay × az)

+ j · az × ax
ay · (az × ax)

+ k · ax × ay
az · (ax × ay)

)
(4.12)

Again, i, j, k are integers. Furthermore, the time of flight tTOF enters linearly in Eq. 4.12
and, thus, the dips in the autocorrelation function spread linearly in time (Fig. 4.11 right).
Besides, due to the finite resolution of the z-camera the measured autocorrelation function
was convolved with the point spread function of the imaging system. This, however, just
reduced the dip height but preserved the dip position. The convolved autocorrelation
function reads [38]
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Ccor(x, y, tTOF) =
F−1[|F(ρ)|2]

F−1[|F(ρ)|2]
, (4.13)

where ρ is the averaged density over the different experimental realisations. By deter-

mining the dip positions, the angles Θ
x/y
lat between the x- and y-lattice laser beams and

the lab frame was inferred (see (Fig. 4.11 right)). It yielded Θx
lat = −5.33(27)◦ and

Θy
lat = −0.91(11)◦ respectively. The two-dimensional lattice is thus slightly twisted com-

pared to a rectangular lattice.

Using both results, i.e. the determined waists wy
x1064, wx

y1064, wx
z1064/z532 from a trap

frequency measurement and the lattice angles from the density-density correlation analysis,

Θ
x/y
lat , the real lattice potential caused by the retro-reflected Gaussian lattice laser beams

was computed using Eq. 4.9. The potential of the individual beams thereby added up
to form the total underlying potential (Fig. 4.12 right).18 Thus, in fact, in a cold atom
analogue quantum simulator with optical lattices, the system is not homogeneous. The
parameter µ in the Hubbard model (Eq. 2.1) can account for this.

4.2.2.2 Loading the atomic gas into the two-dimensional, in-plane lattice

The x- and y-lattice were ramped up simultaneously to 6 Erec within 500 ms to adiabat-
ically load the two-dimensional atomic gases in each second, vertical z532 lattice plane
into the two-dimensional in-plane lattice (Fig. 4.12 left). In this shallow lattice the atoms
could efficiently redistribute [13] (cf. Fig. 2.6, for band structure). After loading the
atomic cloud into the in-plane lattice, the cloud’s typical diameter was about 60−100 µm.
This corresponded to roughly 8.000 occupied lattice sites for a lattice with lattice constant
ax1064 = ay1064 = 532 nm. The diameter of the atomic cloud was thus roughly half of the
x and y Gaussian laser beam waists with wyx1064 = 169 µm and wxy1064 = 161 µm. As a con-
sequence, the variation of the underlying potential led to a variation of the atomic density.
The latter increased towards the trap center where the potential was minimum. Theoret-
ically, this density variation could be inferred from the underlying potential V exp

lat (r) using
the local density approximation [86]. Partitioning the potential in small regions and fixing
the local Fermi energy to be EF (r) = E0

F − V
exp

lat (r), the local atomic density resulted
directly from the local underlying potential (Fig. 4.13 left (right), doubles (singles), com-
pare to Fig. 4.12 right). Here, E0

F is the Fermi energy in the trap center.

The in-plane lattice depth was usually set to 6 Erec and the z532 lattice to 120 Erec. After
adiabatic loading into the lattice, the atomic motion was frozen by increasing the in-plane
lattice to 60 Erec. The discrimination of singly and doubly occupation was subsequently
achieved using the singles/doubles detection sequence (Sec. 3.15).

18The figure 4.12 right is not true to scale since in reality the periodic structure on top of the underlying
potential had a much smaller period.
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Figure 4.12: Left Main experimental sequence (part 2) in order to create the bilayer Hub-
bard system. Right A real optical lattice with underlying potential due to the Gaussian
lattice laser beams (not true to scale).

Figure 4.13: In-situ absorption image of doubly (left) and singly (right) occupied lattice
sites in a single plane of the two-dimensional, in-plane lattice using tomography and rf
spectroscopy (Fig. 3.15). While doubles predominately form in the trap center at min-
imum potential the singles exhibit a peak density at half-filling. The 400 Hz line is the
iso-potential line of underlying potential due to the Gaussian lattice laser beams.

4.2.2.3 Inferring the temperature of the atomic cloud in the in-plane lattice and overall
detection efficiencies from the equation of state

In general, the equation of state (EoS) determines the occupation as a function of the
chemical potential. Furthermore, the EoS depends on the temperature. Thus, by fitting
the theoretical EoS to a measured EoS yielded from the distribution of the atoms in the
two-dimensional in-plane lattice (Fig. 4.13), the temperature of the atoms can be ex-

88



4.2 Implementing an analogue quantum simulator for a bilayer Hubbard system

tracted. In cold atom experiments, the equation of state was first measured in [74] and in
two dimensions in [40].

Non-interacting fermions
For a non-interacting Fermi gas, the EoS19 is given by the Fermi-Dirac statistics fFD =
1/(exp[(ε−µ)/(kBT )] + 1). Furthermore, for uncorrelated fermions with two internal spin
states |↑〉 and |↓〉 the expectation value factorises 〈n↑n↓〉 = 〈n↑〉〈n↓〉 and if the system is
spin balanced, it holds 〈n↑〉 = 〈n↓〉 = n/2. Thus, the number of doubly occupied sites in
a non-interacting, spin balanced atomic cloud on a lattice as a function of the chemical
potential can be computed by [38]

nD = 〈n↑n↓〉 = 〈n↑〉2. (4.14)

Moreover, for the total number density which is directly yielded from the Fermi-Dirac
statistics, it holds n = (nS + nD), where nS is the number of singles. Thus, nS can
be inferred from the total density and the number of doubly occupied sites. In turn,
the equation of state for the ideal Fermi gas, i.e. n, nD and nS as a function of the
chemical potential µ can be deduced (Fig. 4.14 left, shaded bands). While the number of
doubles continuously increase with increasing chemical potential towards the trap center,
the number of singles exhibits a maximum at a vanishing chemical potential µ = 0. At
this point, the number of spin up/down singly occupied, doubly occupied and empty sites
is equal, nS,↑ = nS,↓ = nD = nempty = 1/4. The lattice is hence half-filled at µ = 0 with
one fermion per lattice site in average. Furthermore, for an evaporatively cooled Fermi
gas with Fermi temperature of TF ≈ 4 kHz and a typical ratio of T/TF = 0.1 (cf. Sec.
4.2.1.2), the temperature is about 20 − 30 nK. The distribution of singly occupied sites
widen symmetrically around half-filling for higher temperatures (Fig. 4.14 left). At the
same time the distribution of the doubles flattens. Thus, the band insulator regime in
which most of the lattice sites are occupied by two fermions moves to higher chemical
potentials for increasing temperature.
Experimentally, the EoS was obtained from the imaged density distributions of doubles
and singles (Fig. 4.13) by radially averaging them respectively and plotting them against
the local chemical potential µ(r) (Fig. 4.14 left (data points)). Here, the local chemical
potential was inferred from the underlying Gaussian potential of the lattice laser beams
given by Eq. 4.9 employing again the local density approximation µloc(r) = µ0 − V exp

lat .
The measured EoS, however, had to be scaled by the detection efficiencies for singles and
doubles ηS/D (Fig. 4.14 left) in order to match the predictions

nmeas
S/D = ηS/D · ntheo

S/D . (4.15)

Here, the detection efficiency for singly occupied sites ηS could be straightforwardly com-
puted knowing that at half-filling the singles density should be maximum and reach

19The equation of state for a non-interacting Fermi gas was needed for the Master’s project of Janek Fleper
during this thesis
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nhalf-fill
S = 0.25. Using ηS to match the maximum of the theoretical distribution with

the maximum of the data, the temperature could subsequently deduced by matching the
width of the theoretical curve to the measured singles distribution width. Having deter-
mined the temperature from the singles distribution and knowing that the temperature
of the doubles had to be the same as for the singles, the shape of the doubles curve was
fixed and the detection efficiency of the doubles ηD could be computed matching again the
theoretical doubles distribution to the measured one. Typically detection efficiencies were
ηS ≈ 0.8 and ηD ≈ 0.5. The latter value originated because only one atom on a doubly
occupied site were detected (cf. Fig. 3.15).
The fitting of the theoretically predicted EoS to the measured EoS thus enabled to measure
the temperature of the atomic cloud in the two-dimensional lattice as well as to deduce
the detection efficiencies ηS/D.

Interacting fermions
In the discussion of the equation of state for non-interacting fermions the dependence of
the singles and doubles distribution on the temperature was elucidated and the role of
detection efficiencies ηS/D were discussed. During the loading of the atomic cloud into the
two-dimensional lattice in the main experimental sequence for the creation of the bilayer
Hubbard system, however, attractive on-site interactions of U ≈ −0.4 t for a |−9/2,−7/2〉
spin mixture at a magnetic field of B = 207 G were realised. The attractive interac-
tions were required for efficient thermalisation in the lattice. The doubles and singles
distributions were again recorded from a single plane via tomography, singles/doubles dis-
crimination and absorption imaging and radially averaged (Fig. 4.14 right, data points).
In order to extract the temperature and detection efficiencies of this weakly interacting
fermionic gas, Determined quantum Monte Carlo (DQMC) theory for the theoretically
predicted EoS were employed and fit to the experimental data (Fig. 4.14 right). This
was implemented in [38][105]. Interactions changed the distributions as follows: For in-
creasing attractive interactions the slope of the doubles distribution around half-filling
increases. Thus, the metallic region shrinks while the band insulating regime widen. The
singles distribution becomes flatter for increasing attractive interactions showing the on-
going disappearance of singly occupied sites at large attractive interactions. At increasing
repulsive interactions the effects are inverted.

Typical temperatures of T/t = 1.7 in units of the tunnelling element t were achieved (Fig.
4.14 right, here T/t = 1.9). The determined detection efficiencies were needed to precisely
determine the singles and doubles densities in the bilayer Hubbard system.

4.2.3 Producing a Hubbard band insulator in the two-dimensional lattice

The analogue quantum simulator for the bilayer Hubbard system was meant to be imple-
mented by splitting a monolayer into two coupled layers. The splitting process thereby
should be performed by ramping up the barrier in a z superlattice configuration from zero
to a finite value. A large mono-layered band insulator region with a maximised fraction of
doubly occupied sites was desired before splitting in order to obtain a large area, bilayer
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Figure 4.14: Left Equation of state of the ideal Fermi gas in a two-dimensional lattice.
Doubly (blue curve) and singly (red curve) occupied sites as a function of the chemical
potential µ. At large negative µ a vacuum state with filling close to zero is present. For
increasing µ the system enters first a metallic and then a band insulating regime. All
these states coexist beside each other in the two-dimensional atomic gas in the in-plane
lattice with underlying Gaussian potential (Fig. 4.13). Additionally, the effect of the
scaling factors between the measured and theoretical curves for singles (ηS) and doubles
(ηD) are emphasised. Right Equation of state for interacting particles. The theory was
taken from DQMC calculations yielding the ensemble properties of the atomic gas in the
two-dimensional lattice.

system close to half-filling, i.e. with one particle per site in average.

Experimental realisation of the band insulator
The digital mirror device (DMD) and DMD laser (Sec. 3.6)20 was employed in order to
produce the large area band insulator with filling close to one. This approach pursued
the concept of entropy cooling in [13]. A similar approach is described in [34]. The DMD
shaped the DMD laser beam such that the latter compensated the underlying Gaussian
potential from the lattice laser beams and created a two level potential at the location of
the atoms (Fig. 4.16 right, inset, red line). The inner region had a low potential level
and served as a low entropy region. The size of this region was 500 Hz where 500 Hz is
the iso-potential line of the underlying Gaussian lattice laser potential without DMD. The
corresponding diameter of this region in real space was roughly 30 µm. The size of the
inner region was optimised such that the doubles fraction remained high across the entire
inner region. In contrast, the outer region with high potential level served as entropy
reservoir. The size of the outer region was set to 3500 Hz. At this size, the power of the
Gaussian DMD laser beam was still sufficient to compensate the lattice laser potential.

20DMD laser: For a short and clear discussion, the blue-detuned Gaussian laser beam shown on the DMD
and shaped by the latter for the purpose of shaping the underlying potential at the location of the
atoms is denoted as DMD laser in this section.
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By the redistribution of the atom across the two regions, entropy flowed from the inner to
the outer region and a large, low-entropy band insulator formed in the inner.

The DMD laser power was ramped up simultaneously to the ramp up of the in-plane lattice
in order to produce the band insulator (Fig. 4.12). The DMD ramp was the only addi-
tional step compared to Sec. 4.2.2.2 where atoms were loaded into the two-dimensional
lattice. Hence, from the beginning of the ramp on, the atoms were exposed to the underly-
ing two step potential rather than to the underlying Gaussian potential. The ramp of the
DMD laser was set to an exponential with negative coefficient. In contrast, the in-plane
lattice ramp was sinusoidal. This led to a higher doubles fraction in the inner region due
to a delayed increase between the two level. After the 500 ms ramp up and an additional
100 ms time for further thermalisation, the atomic motion was frozen by ramping up the
in-plane lattice to 60 Erec within 1 ms. This scheme produced a high quality band insulator
with large doubles and low singles fraction (Fig. 4.15). An average filling of n = 0.96(2)
with an average singles density of ns = 0.1(2) was obtained. In order to compute the
filling and the densities, the detection efficiencies for doubly and singly occupied lattice
sites were determined as described in the last section without DMD. The number of atoms
in the band insulator were roughly N = 8100(200). The shape of the band insulator was
elliptic mostly due to the elliptic shape of the z532 lattice laser beam.
Furthermore, in the region of the potential step at 500 Hz, the fraction of singly occupied
sites increased (Fig. 4.15 right). Therefore, the further evaluation and characterisation of
the band insulator was performed only up to 400 Hz (Fig. 4.15, blue line).

Figure 4.15: Doubly (left) and singly (right) occupied lattice sites in the two step potential
(Fig. 4.16 right, inset). The doubles fraction in the inner 400 Hz region is close to one
and strongly increased compared to the lattice loading without DMD (Fig. 4.13, same
scale in both figures!). Thus, splitting this band insulator region into two coupled planes
in a bilayer system led to a filling close to n = 1/2, i.e. one particle per lattice site in the
bilayer in average.
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Characterisation of the band insulator
The temperature was no longer a well defined characteristic of the band insulator since the
equation of state could not be fit to the distribution (Fig. 4.15). The single site entropy
and singles density were therefore employed in order to characterise the band insulator.
The single site entropy was computed as in [36]

s = −kB

∑
i

pilog(pi) (4.16)

where, pi is the probability of the respective state i with i = {↑↓, ↑, ↓, 0} and kB is Boltz-
mann’s constant. Furthermore, the probabilities could be directly deduced from the mea-
sured densities for singles (nS) and doubles (nD) p↑↓ = nD, p↑ = p↓ = nS (spin balanced
case) and p0 = 1− 2nS − nD [37][36].

Both, the entropy per site s and the singles density nS did not vary drastically over the
band insulator region within the errorbars (Fig. 4.16 left). More concrete, for the site
entropy, it yielded values of s = 0.054 kB and for the singles density of 12% to 15%. In the
evaluation, averaging for too small radii r < 50 Hz became inappropriate due to a small
number of lattice sites within this region. Moreover, the entropy per site and the singles
density were measured as a function of the DMD laser power (Fig. 4.16 right). Increasing
the latter compared to the needed compensation power led to an overcompensation in
the center of the trap as well as to an outer region whose potential increased towards
the border of the inner region forming a “wall” (Fig. 4.16 right, inset, blue dotted line).
The resulting site entropy as well as the singles density monotonically increased for higher
DMD powers, i.e. for overcompensation. A reason for that could be that the entropy flow
was interrupted by the raising “wall” at the border of the inner region during thermalisa-
tion. This, in turn, would led to more singly occupied sites in the inner region and, hence,
to an increase of the site entropy. The compensation power was PDMD = 5a.u. (Fig. 4.16
right).

Finally, the stability of the band insulator in time was investigated (Fig. 4.17 left). A
linear increase of the entropy per site and of the singles density was observed in time.
This corresponded to a heating rate of ∆s = 0.093(1)kB/s. Light assisted collisions by
the DMD laser light were one reason for this high heating rate when comparing it to [34].
Such collisions could be reduced when changing the frequency of the DMD laser (Fig. 4.17
right21). At around 729 nm and 732 nm a decreased number of doubles was measured while
the singles number slightly increase. The DMD light was finally set to around 727 nm to
minimize the heating rate of the atoms in the trap.

The compensation of the potential in the inner region went along with potential disorder.
Dust and other impurities on the optical elements in the path of the DMD laser beam led to
interferences in the atom plane and, thus, to non-negligible variations of the compensated
potential. The DMD disorder was characterised in the Master’s thesis of Janek Fleper.

21Here, the trapped atoms were hold in the superlattice configuration for 400 ms while they were exposed
to the DMD light
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Figure 4.16: Left Entropy per site s and singles density nS in the band insulator as a
function of the radius away from the trap center. The radius is provided in units of Hertz
as in the underlying potenial. Both quantities were relatively independent from the trap
radius which yielded a high quality band insulator across the whole region. Right Entropy
per site s and singles density nS in the band insulator as a function of the compensation
power of the DMD. Both quantities increases when overcompensating of the trapping
potential (see inset).

Figure 4.17: Left Entropy per site s and singles density nS in the band insulator as a
function of the holding time in the band insulator. This yielded a heating rate of ∆s =
0.093(1)kB/s. The heating rate can be reduced by changing the DMD wavelength and,
thus, avoid light assisted collisions (right figure). Right Singles and doubles in the band
insulator as a function of the DMD wave length. At certain wavelength undesired light
assisted collisions becomes stronger and doubles are lost.

4.2.4 Splitting the Hubbard band insulator to obtain a quantum simulator for a
coupled bilayer Hubbard system

So far, the band insulator was prepared in the vertical z532 lattice (Fig. 4.12 left). With
the intention to split the band insulator (Fig. 4.15) in order to initialise the bilayer Hub-
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4.2 Implementing an analogue quantum simulator for a bilayer Hubbard system

bard system by ramping up the z532 lattice in a symmetric superlattice configuration, the
atoms were first reload into the vertical z1064 lattice (Fig. 4.20 left). A lattice depth
of 120 Erec was chosen for the z1064 lattice. The ramp time was set to 100 ms. The
z532 lattice was diminished to zero simultaneously to the ramp up of the z1064 lattice.
The reload process was performed in a frozen in-plane lattice at 60 Erec. The in-plane
lattice was decreased to 6 Erec thereafter. At this lattice depth the tunnelling rate in
the monochromatic, two-dimensional, in-plane lattice was 224 Hz. Two additional lattice
depths of sxy = 5, 7 Erec were employed for spin correlations measurements (Sec. 4.3.3).
This varied the in-plane tunnelling rate between txy = 174 − 290 Hz. The DMD was
ramped up simultaneously to the ramp down of the in-plane lattice. An additional “wall”
around the inner region in this second DMD pattern prevented a backflow of entropy from
the reservoir to the inner (Fig. 4.18 left). The size of the inner and outer region was the

Figure 4.18: Left Second DMD potential with walls. The walls prevent the backflow
from entropy into the low entropy center region. The slope of the walls to the inner
was limited by the point spread function of the optical path. Right Contrast M =
maxOD(n−9/2−n−7/2)−minOD(n−9/2−n−7/2) of the spin wave image (Fig. 4.19). For a
vanishing vertical magnetic field gradient I = 2.8a.u., the contrast remained high in time
since the relative phase (see text) between atoms in different two-dimensional planes was
stable. Dephasing at a finite vertical gradient across different planes contrarily led to a
washing out of the spin spiral and, hence, the contrast for larger free evolution times, e.g.
at i = 2.9a.u..

same as in the loading pattern of the band insulator, i.e. 500 Hz and 3500 Hz. The barrier
height was set to hwall = 8000 Hz and its width to wwall = 500 Hz. The barrier shape
was optimized in order to minimize the amount of doubles breaking into two singles on
different sites in the border area of the inner region (Fig. 4.18 left, shaded regions). This
effect was visible when the in-plane lattice depth was decreased and in-plane tunnelling
has been starting while diffusion of the atoms away from the band insulator region was
not inhibited by a strong repulsive DMD potential at the same time. The slope of the
barrier in the inner region was hereby restricted due to the point spread function of the
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DMD laser path. A slope to about 1 kHz/site could be reached (Fig. 4.18 left). The inner
region up to 500 Hz was not compensated with DMD light during the second pattern. The
band insulator was hence exposed to the underlying Gaussian potential of the lattice laser
beams. Furthermore, a smaller inner region of 450 Hz in the second DMD pattern was
tried out following the idea to compress the band insulator after initial loading and, hence,
enhance the doubles fraction. This, however, did not show the desired effect.

While the DMD laser was ramped up and the in-plane lattice ramped down to 6 Erec,
the superlattice phase was ramped to the desired configuration (Fig. 4.20 left). Since
the vertical z532 lattice was switched off at this time and the atoms were confined in
the monochromatic, vertical z1064 lattice rather than in the superlattice, they were not
exposed to the phase change. The superlattice phase could be set in a range of around
φsl = 0.18 rad.

Adjusting the magnetic field and interaction strength during splitting
So far, the atoms were exposed to a magnetic field of 207 G which led to small attractive
on-site interactions of U = −0.4 txy. This field was generated by the slow Feshbach coils
(Fig. 3.3). The attractive interactions were required for efficient loading of the band
insulator and thermalisation. For the splitting of the band insulator into two coupled
planes, however, and creating a Mott insulator with mostly singly occupied sites in the
bilayer system, strong repulsive on-site interactions were required before the splitting pro-
cess (Fig. 2.2). Such strong repulsion was accessible in a potassium |mF = −9/2,−7/2〉
spin mixture at a magnetic field of around 195 G. Similar interaction strengths were also
used in [40]. A change in the magnetic field from 207 G to 195 G, however, made it nec-
essary to occasionally swap from the initial |mF = −9/2,−7/2〉 to a |mF = −9/2,−5/2〉
hyperfine spin mixture. Otherwise, high loss rates would have been occurred due to too
high interactions when crossing the |mF = −9/2,−7/2〉 Feshbach resonance at 202 G (Fig.
3.12 right). Therefore, a first radio frequency sweep swapped the internal hyperfine state
of the |mF = −7/2〉 population to the |mF = −5/2〉 hyperfine state. The magnetic field
was subsequently decreased to 190 G within 1.1 ms. For this fast change of the magnetic
field, the fast Feshbach coils were employed due to their small inductance [57]. A second
radio frequency sweep then swapped back the population from the |mF = −5/2〉 to the
|mF = −7/2〉 state. Finally, the magnetic field was adjusted at 195 G with the help of the
slow Feshbach coils.

Cancellation of residual magnetic field gradients
Residual, in-plane as well as vertical magnetic field gradients during pre-splitting/splitting
(Fig.4.20 left/right) were cancelled using the modified Ramsey technique [153][48] (Fig.
4.24).
The residual vertical gradient was mainly evoked by the slow Feshbach coils. The fast
Feshbach coils in Anti-Helmholtz configuration were employed to cancel this vertical gra-
dient (Fig. 3.3). An H-bridge enabled to switch the sign of the fast Feshbach gradient
and, hence, producing a gradient of same strength but opposite direction to any residual
field gradient from the slow Feshbach coils. In order to find the compensating gradient
with the Fast Feshbach coils, the offset coils were first used to evoke a small in-plane
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magnetic field gradient. A π/2-pulse then transferred the atoms residing in the two lowest
hyperfine states |mF = −9/2〉 and |mF = −7/2〉 into the equatorial plane of the Bloch
sphere. Subsequently, the current through the fast Feshbach coils and, thus, the gradi-
ent strength was scanned and the atoms were exposed to the resulting vertical gradient
∇Bslow −∇Bfast for a varying free evolution time. A second π/2-pulse finally transferred
the atoms back to the |mF = −9/2〉 and |mF = −7/2〉 hyperfine states according to their
current phase on the Bloch sphere (Fig. 4.24). After freezing the in-plane lattice, both
hyperfine states were imaged using the detection scheme in Sec. 3.17. Then, the contrast
Msp = maxOD(n−9/2 − n−7/2) −minOD(n−9/2 − n−7/2) was computed.22 This revealed
spin waves (Fig. 4.19) since the in-plane gradient from the offset coils evoked that the
atoms accumulated a different amount of phase during the free evolution time depending
on the local gradient strength (Fig. 4.24).

Figure 4.19: Spin waves for three different free evolution times tfreeEvol = 50, 100, 150 ms
with increasing spin wave vector ~k (from left to right).

The spin wave vector ~k increased with longer evolution times (Fig. 4.19).23 More impor-
tant for gradient cancellation, however, was the fact that the spin wave remained visible
for all times only for a vanishing vertical magnetic field gradient. For a non-negligible ver-
tical gradient the atoms across different, two-dimensional planes accumulated a different
amount of phase which led to a washing-out of the contrast. The contrast was therefore
evaluated for different fast Feshbach currents and times (Fig. 4.18 right). The current
at which the contrast remained highest for all times then signalled a vanishing, vertical
magnetic field gradient [153]24. The upper limit for the remaining vertical gradient was
3.5 µGµm−1.
The residual, in-plane gradient was cancelled by scanning the current through the offset
coils. At vanishing in-plane gradient, the spin wave ~k-vector had zero length for all times.

The bilayer quantum simulator
Having established a magnetic field of 195 G to induce strong repulsive interactions with
negligible residual magnetic field gradients, the vertical z532 lattice was ramped up adi-

22OD denotes here the optical density.
23The absolute value of the spin wave ~k-vector increases up to the π-point where it gets Bragg-reflected

at the edge of the two-dimensional Brioullin zone (Fig. 4.25).
24Fig. 4.19 corresponds to the time evolution at vanishing vertical gradient, i.e. I = 2.8a.u..
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abatically to split the band insulator into two coupled layers (Fig. 4.20 right). The
sinusoidal ramp of the z532 lattice was divided into two parts. Each took 35 ms. First, it
was ramped to 9 Erec and subsequently continued to a desired value. For the spin corre-
lation measurements these values ranged from 13 Erec to 28 Erec. The z1064 lattice depth
was set to 120 Erec. This yielded vertical tunnelling rates between t⊥ = 35−830 Hz. With
an in-plane tunnelling rate of txy = 174 Hz at 7 Erec tunnelling ratios of t⊥/txy = 0.2−4.75
could hence be adjusted in the bilayer quantum simulator. Furthermore, with an interac-
tion strength of U = 0.9 kHz (Fig. 4.22 right) in a Vz1064 = 120 Erec, Vz532 = 13 Erec super-
lattice configuration, U/txy = 5.2. This led to a super exchange energy of 4t2/U = 135 Hz
(Fig. 2.3).

After the splitting (Fig. 4.20 right) the in-plane motion in the bilayered quantum simulator
was frozen within 0.1 ms by ramping up the in-plane lattice to 60 Erec. The coupling of the
two planes was subsequently suppressed by ramping the z532 lattice to 120 Erec also within
0.1 ms. This effectively produced two independent planes. The z1064 lattice as well as the
DMD power were finally diminished to zero. The quantum simulator was hence frozen in
all directions and the equilibrated bi-layered Hubbard system could be studied in terms of
singly and doubly occupation as well as in terms of correlations between both spin species.

4.2.5 The underlying potential across the quantum simulator

The employed bi-chromatic lattice in the quantum simulator for the bilayer system im-
plied important consequences for the underlying potential. The potential from a single
Gaussian laser beams was discussed in Sec. 4.2.2.1. The potential from two superimposed
Gaussian laser beams for a bi chromatic lattice differed from this theoretical description.
Especially, in the monochromatic case, the inserted lattice depth s in recoil energies in Eq.
4.9 yielded the actual lattice depth (Fig. 2.5 left). In contrast, in a bi-chromatic lattice
with different lattice constants where a red- and a blue detuned lattice were superimposed,
the effective lattice depth of the superlattice did not correspond to the simple sum of both
monochromatic lattice depths (Fig. 2.5 center). Furthermore, this effective lattice depth
depended on the superlattice phase φ (Fig. 2.5 right). For example, for atoms loaded
into the lower well of a double well, the ground state energy decreases closer to the anti-
symmetric lattice configuration while the maximum of the superlattice potential is nearly
independent from the superlattice phase. The effective lattice depth therefore increases for
phases closer to the antisymmetric configuration. This phase effect as well as the effective
lattice depth in a bi-chromatic lattice had to be taken into account when computing the
underlying potential in a bi-chromatic lattice.
In order to do so, the running wave contribution (Eq. 4.8) which is ∝ sR and the contri-
bution from a varying ground state energy which is ∝

√
s (Eq. 4.9) were separately com-

puted. Therefore, either sz532/z1064 or
√
sz532/z1064 with their corresponding anti-confining

pre-factors R and the superlattice phase φ were inserted into the one dimensional super-
lattice potential (Eq. 2.8). This yielded the effective lattice depth for each contribution.
Here, the superlattice phase away from the antisymmetry point induced an offset of the
superlattice potential compared to the antisymmetry case. This offset was added to the
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Figure 4.20: Left Main experimental sequence in order to create the bilayer Hubbard
system (part 3). The atoms were reloaded from the vertical z532 to the z1064 lattice in
a deep in-plane lattice at 60 Erec. The superlattice phase was prepared while the z532
lattice was switched off. Right Main experimental sequence in order to create the bilayer
Hubbard system (part 4). The z532 lattice was finally ramped up in the symmetric
configuration and split the band insulator into two coupled layers (the bilayer Hubbard
system) (Fig. 2.4 left). The motion was subsequently frozen in all directions by ramping
up the lattice depths. This allowed for detection of either singles/doubles (Fig. 3.15) or
spin up/spin down (Fig. 3.17).

effective potential depth accounting for the phase depending lattice depth (cf. Fig. 2.5
right). The overall depth was then multiplied with the Gaussian envelop of the respective
contribution and both contributions were summed as in Eq. 4.9 in order to obtain the
underlying potential in a bi-chromatic superlattice.
Furthermore, the above explained procedure to compute the underlying potential of the
superlattice required one simplification: In Eq. 4.9 the beam waist determined the shape
of the Gaussian envelop. In a bi-chromatic superlattice, however, there are the two beams
waists from the z532 and z1064 lattice. For the running wave contribution, the anti-
confining prefactor Rz532 = 0 and, thus, there, the beam waist from the z1064 lattice
determined the shape of the Gaussian envelop. Contrarily, in the ground state energy
variation term, the dominating contribution came from the z532 lattice and its waist
entered the Gaussian envelop. This simplification led to an error of maximum 0.8% in
the underlying potential if the new bi-chromatic potential simulation at the best matching
phase was compared to the theory of two, monochromatic lattices with independent waists
where the phase could not be adjusted.

The described approach for the theoretical calculation of the underlying potential in a
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bi-chromatic lattice was verified with experimental data. Usually, the theoretical calcula-
tions are employed in order to compare measured trap frequencies with predictions. From
this in turn, the lattice laser beam waists corresponding to the trap frequencies can be
inferred (Eq. 4.10). However, these waists were known from the monochromatic theory
for each single lattice laser beam. Thus, the simulation of the underlying potential in
a bi-chromatic lattice could be proofed by comparing measured trap frequencies in the
superlattice with theoretical expected trap frequencies from the newly developed simula-
tion for bi-chromatic lattices using the known waists of each single beam. Since for the
vertical z superlattice trap frequency data were not available, trap frequency data of the
horizontal x superlattice were compared to a corresponding simulation of the x superlat-
tice (Fig. 4.21 left). The x1064 lattice depth was here set to 16 Erec while the x532 lattice
depth was varied. The theory bands results from the uncertainty of the lattice laser beam
waists ±1 µm (cf. paragraph below Eq. 4.10). The errorbars of the experimental data
are to small for the large y scale in the plot. For the two intermediate phases the theory
coincides with the experimental data. For phases lower than φ = 1/3 ·π/4, however, there
is a discrepancy. One reason for that is the afore mentioned simplification of the theory
using only the waist of one of the two beams.
The translation from the x superlattice to the z superlattice potential was achieved by
including only a single additional term. This took into account the different lattice con-
stants and therefore the different effective lattice depths of the z lattices compared to the
x lattices. All other parameters like the anti-confining prefactor R were simply exchanged.
The simulation of the potential in the z superlattice is therefore straightforwardly trans-
lated from the x superlattice and, having proofed the simulation of the x superlattice with
experimental data, a possible systematic error for the z superlattice is avoided.

Figure 4.21: Left Trap frequency measurement in the horizontal x superlattice. Using
these data, the correct calculation of the superlattice potential can be verified. Right
Relative potential differences between relevant lattice configuration in the bilayer system
as a function of (effectively) the distance from the center of the trap (see Fig. 4.15). For
example the difference between the two underlying potentials resulting from Vz532 = 13 Erec

or Vz532 = 28 Erec is small compared to the size of the bilayer system.

With the newly developed theory for the underlying potential in a superlattice configu-
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ration in hands, the corresponding DMD potential could be calculated in order to com-
pensate the underlying potential in the inner region of the bilayer quantum simulator for
all different superlattice configurations (Fig. 4.18 left). For spin correlation measure-
ments, however, where e.g. the z532 lattice depth during splitting was varied in the range
13− 28 Erec, the center was not compensated. This reduced the negative effect of disorder
in the compensated potential induced by the DMD light. The simulation of the potential
in the z superlattice was therefore used in order to determine the change in the under-
lying potential for these different superlattice configurations and, thus, enabling to value
the error made without compensation and possible improvements (Fig. 4.21 right). The
relevant measure here is the relative change between two underlying potentials since an
overall energy offset between both has no physical effect. In other words, the minimum of
two potentials, e.g. resulting from lattice depths of z532 = 13 Erec and 28 Erec, can first
separately be set to zero and both potentials can be subtracted from each other thereafter
to obtain the relative change.
It yielded a linear increase of the absolute, relative difference up to 40 Hz at a radius of
400 Hz for the two superlattice configurations with φ = 0 and z532 = 13 Erec or 28 Erec

(Fig. 4.21 right, dark red line). This increase corresponds roughly to 1 Hz/site which
suggests that the effect of the change of the underlying potential for different z532 lattice
depths is minor. The effect is even smaller for a change in the superlattice phase (Fig.
4.21 right, blue and pink line). As in the case of different z532 lattice depths, the absolute
potential bias here increases linearly with radius.
In conclusion, the relative change between different underlying potentials might be minor.
Avoiding potential disorder due to interferences from the DMD by simply not compensat-
ing the inner region with the DMD might therefore be advantageous.

4.2.6 Singly and doubly occupancies in both planes of the bilayer system

In the last section, the splitting process of the Hubbard band insulator into a coupled
bilayer Hubbard system close to half-filling was detailed. In order to qualitatively and
quantitatively validate the bilayer quantum simulator, singles and doubles densities in
both planes depending on the superlattice phase were experimentally measured and com-
pared with theoretical predictions from a simulation of one and two fermions in a double
well.
The theoretical treatment of one particle in a tilted double well is governed by the Hamil-
tonian

HDW
1part =

(
−∆ t
t ∆

)
(4.17)

Here, t describes the tunnelling matrix element between both wells and 2∆ defines the
difference between the two potential minima of both sites in the double well (Eq. 4.3). The
two eigenstates of the system |U〉 and |L〉 describe the particle being in the upper or lower
well of the double well. Since the double well is aligned vertically along the z direction
in the experiment (Fig. 4.22 left, insets) the notation “upper” and “lower” well does not
relate to the energy of the corresponding well but rather to the position in z direction.
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Thus, for negative detuning, e.g. the upper well has a lower ground state energy than
the lower well (Fig. 4.22 left, left inset). The expected occupation probabilities of the
upper/lower well by a single particle in the double well is more probable if the occupied
well has a lower energy (Fig. 4.22 left, gray solid/dashed line). Both probabilities, which
usually approximate one for large, absolute detuning |∆| were multiplied by the singles
density in the band insulator, i.e. ns = 0.1(2) (cf. Fig. 4.15). This is reasonable since for
large |∆|, the probability to find a single particle in a double well after splitting the band
insulator was expected to just correspond to this singles density in the band insulator.
This assumed that in-plane tunnelling between different double wells was suppressed after
splitting.
The theoretical treatment of two fermions with different spins in a tilted double well fol-
lows Eq. 4.2. It has the four basis states |↑↓, 0〉, |↑, ↓〉, |↓, ↑〉 and |0, ↑↓〉. They describe
the occupation of the upper and lower well, |U,L〉, by the two spins ↑, ↓. Here, the first
and last state describe two fermions occupying both either the upper or lower well which
gives rise to double occupation (Fig. 4.22 left, light blue line). This probability decreases
strongly towards the symmetric configuration of the double well where, for repulsive in-
teractions, it becomes favourable for the two fermions to split and occupy different sites.
The probability for two fermions occupying both the lower well as a function of detuning
is obtained by mirroring the probability to occupy the upper well at ∆ = 0 Hz. Further-
more, the probability for the |↓, ↑〉 state as a function of the detuning is symmetric around
∆ = 0 Hz (Fig. 4.22 left, pink, dashdotted line). The sum of this curve and its mirrored
distribution (pink, dotted) describes the probability of singly occupation in either the up-
per or the lower plane as a function of the detuning (Fig. 4.22 left, pink, solid line).

However, the data exhibit a further subtlety which had to be taken into account when
matching the theory to them (Fig. 4.22 right). In the band insulator, the singles density
is nS = 0.1. Thus, splitting the band insulator while suppressing the in-plane tunnelling
led to 10% double wells which were occupied by only a single particle. These singles are
referred to as “single singles” in the following. The single singles preferentially occupy
the energetically lower lying well. For negative detuning, this is the upper well while for
positive detuning it is the lower well (Fig. 4.22 left, insets). Measuring singles in the lower
well for negative detuning thus leads to a measurement of less singles because all single
singles preferentially occupy the upper well. Hence, these double wells are measured as
empty which would not be the case if all double wells were filled with two particles instead.
Hence, the probability for singles in each plane (pink, solid line) needs to be subtracted
by the probability of a single particle in the double well residing in the upper well (gray
solid line). This yields a slightly diminished probability to detect singles (Fig. 4.22 left).
Moreover, in order to fit the theory to the data, all curves are scaled by their correspond-
ing detection efficiency (Eq. 4.15). In addition, the measured singles densities are reduced
by the factor 1− 2nS which is due to those double wells which are empty from the begin-
ning on as well as those in which only a single particle is located (cf. Fig. 4.22 left to right).

For the theory it requires to set the tunnelling amplitude t, the on-site interaction strength
U and the scaling between the offset lock control voltage and the double well detuning
parameter ∆. All three parameters were independently calibrated before. Thus, using
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Figure 4.22: Left Theoretically expected singly (solid, pink curve) and doubly (blue curve)
occupancies in a double well as a function of the detuning ∆ (see text for further expla-
nation). Right Measured data (from a single run) and the corresponding composited
theoretically expected singly and doubly occupations in many separated double wells as
a function of the detuning. This measurement independently validated the calibration
measurements of t, U and ∆ in chapter4.1. Error bars are taken from an equivalent mea-
surement with five averages. Because of the simultaneous fit of the theory to singles and
doubles in both planes, however, the error bars are estimated to be small.

these calibrated parameters, the singles/doubles measurement in both planes is also a
double check for these calibrations. The superlattice configuration in this measurement
was set to Vz1064 = 120 Erec and Vz532 = 15 Erec. Hence, the tunnelling amplitude is
t = 582 Hz employing the two-band band projection operator method. The tunnelling
calibration via Rabi oscillations is in accordance to this value (Fig. 4.5). The double
well fit here verifies this value within the errorbars (Fig. 4.22 right). Furthermore, the
calibration of the superlattice phase yielded ∆ = 384(6) Hz (Fig. 4.4 right). The ∆ from
the double well fit, however, resulted in ∆ = 345 Hz. For the latter value, the theoretical
curve in the calibration coincided with the data within the error bars in contrast to the
afore determined ∆ = 384(6) Hz (cf. Fig. 4.22 right, inset with Fig. 4.4 right). Thus, the
true scaling between the superlattice phase and the offset lock control voltage was rather
about ∆ = 345(6) Hz. Finally, the interaction strength U = 900 Hz coincides with DQMC
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calculations and the measurement (Fig.4.29 left).
In conclusion, the implemented bilayer Hubbard system is therefore highly controllable
having calibrated and verified all parameters in two independent measurements.

4.2.7 Determinant quantum Monte Carlo simulations

Throughout this thesis many experimentally determined properties of the bilayer Hub-
bard system were counter-checked with Determinant quantum Monte Carlo (DQMC) sim-
ulations. Therefore, the quantum simulation toolbox QUEST was employed [26]. This
toolbox was written in FORTRAN. The simulated bilayer Hubbard system had usually a
size of 8 × 8. The interaction strength, tunnelling amplitude, temperature and chemical
potential were varied in such simulations.

4.2.8 Compressibility of the bilayer Hubbard system

The isothermal compressibility of the bilayer Hubbard system was measured in order to
study the bilayer system’s insulating nature. The compressibility of a monolayer Hubbard
system was experimentally studied with cold atoms in [40][49]. The isothermal compress-
ibility is defined as

κ =
1

n2

∂n

∂µ
. (4.18)

In order to measure κ in the bilayer Hubbard system, an in-plane magnetic field gradient
was applied. The small offset coils (Fig. 3.3) were used for this purpose. The gradient
strength was |∇B| = 24.8 µG/µm. It was ramped up during splitting in 70 ms (Fig. 4.20
right) and hold thereafter for 1 s in the thermalised bilayer system. The in-plane lattice was
set to 7 Erec during this time. Singles and doubles in one of the two coupled planes were
subsequently imaged in a frozen lattice employing the singles/doubles detection scheme
(Fig. 3.15). Then, the total density was deduced from this (Fig. 4.23 left). Moreover, the
magnetic field gradient across the planes induced an in-plane varying chemical potential
µ ranging between [−1.5 t, 1.5 t] in the considered region (Fig. 4.23 left). The latter was
inferred using the local density approximation. By plotting the so-obtained averaged total
density along the iso-potential lines as a function of the chemical potential, the slope de-
termined the compressibility κ (Fig. 4.23 center). This was performed for different ratios
t⊥/t and the measured compressibility was compared to Determinant Quantum Monte
Carlo predictions (Fig.4.23 right). The data points (blue) thereby coincided within the
errorbars with the theoretically expected compressibility in the bilayer Hubbard system
(red points). The errorbars in the DQMC simulation originated from a temperature range
between kBT = 1.0− 1.4 t.
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Figure 4.23: Left Image of the total density n in one of the two coupled planes in the
bilayer system when a magnetic field gradient is applied. The local chemical potential
can be computed employing the local density approximation (coloured iso-potential lines).
Center The averaged density along the iso-potential lines as a function of the chemical
potential. The slopes ∂n/∂µ are computed from a linear fit. Exemplarily, the data for the
tunnelling ratio t⊥/t = 4.02, 4.76 are shown. Right. The compressibility in the bilayer
Hubbard system deduced from the calculated slopes ∂n/∂µ for all measured ratios t⊥/t.
The data coincides within the errorbars with the theoretically expected compressibility
from a DQMC simulation.

4.3 Spin correlations in the bilayer system

In chapter 4.2, the implementation of the bilayer Hubbard system in the experimental
setup (Sec. 3) was detailed. In this section, spin correlation measurements on the bilayer
Hubbard system are discussed and the results are compared to theoretical predictions (Fig.
2.4, phase diagram). This enables to measure the cross over from an anti-ferromagnetically
ordered Mott insulating state to a band insulating state with singlet bounds across the
two layers.

4.3.1 Intralayer spin correlations

4.3.1.1 Introduction

Intralayer spin correlations in the bilayer Hubbard system are quantified throughout this
thesis in terms of the spin structure factor [26]

S(q) =
1

N

∑
i,j

e−i~q ~ri,jCzi,j (4.19)

at ~q = 0 and ~q = (π, π). In general, the spin structure factor is the Fourier transform
of the spin correlator Czi,j = 〈ŜzŜzj 〉 − 〈Ŝzi 〉〈Ŝzj 〉. Here, each correlator Czi,j correlates

the z component of the spin operator Ŝzi on lattice site i to the z component of spin
operator Ŝzj on-site j. Furthermore, in a spin balanced system with nS,↑ = nS,↓, the

correlator simplifies to Czi,j = 〈Ŝzi Ŝzj 〉 because the z component on each individual lattice

site i averages to zero.25 The spin structure factor at ~q = 0 is referred to as uniform

25Throughout this thesis, spin correlation measurements were performed in spin balanced systems.
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or static structure factor. The spin structure factor at ~q = (π, π) is called staggered
structure factor. The uniform structure factor, uniformly weights all correlators Czi,j with

e−i·0·~ri,j = 1 independent from the distance di,j between the sites i and j. In contrast, for
~q = (π, π), the prefactor e−i~q~ri,j alternates in a staggered fashion as (−1)di,j between lattice
sites. By explicitly writing out the sum in Eq. 4.19 for antiferromagnetic correlations and
the case ~q = 0 further insight can be gained [47]

S~q=0 = +|C0,0| − 4|C0,1|+ 4|C1,1| − ... (4.20)

The first term on the right hand side C0,0 describes on-site correlations. This term is also
referred to as “local moment” and can be related to the singles density in an homogenous,
spin balanced system [154]

C0,0 =
〈nS,i,↑〉+ 〈nS,i,↓〉

4
. (4.21)

The second term on the right hand side in Eq. 4.20 amounts the nearest neighbour cor-
relations. The prefactor accounts for the four nearest neighbours of each lattice site on
a two-dimensional square lattice. Importantly, this term has a negative sign for antifer-
romagnetic correlations and therefore reduces the static structure factor compared to the
local moment (Eq. 4.20). Contrarily, the third term has again a positive sign and, thus,
increases the uniform structure factor. It takes into account the correlations between site
i and its four next nearest neighbours on a two-dimensional square lattice. Since nearest
neighbour correlations are commonly larger than next nearest neighbour correlations and
the following terms in Eq. 4.20, nearest neighbour correlations in the two-dimensional
Hubbard system can be detected by observing a reduced uniform structure factor with
respect to the local moment.

The staggered structure factor in contrast to the uniform structure factor exhibits only
positive signs for antiferromagnetic correlations

Sq=π = +|C0,0|+ 4|C0,1|+ 4|C1,1|+ ... (4.22)

Thus, in the presence of antiferromagnetic spin correlations it lies above the local moment.
Furthermore, for only nearest neighbour correlations the uniform and staggered structure
factor are equally distanced from the local moment in opposite direction, i.e. while the
uniform structure factor lies below the local moment, the staggered structure factor lies
above it. An unequal offset between both structure factors and the local moment respec-
tively is therefore an indication for correlations beyond nearest neighbours since then |C1,1|
adds positively in both structure factors, compare Eq. 4.20 with 4.22.

In the measurements throughout this thesis, spin correlations in the bilayer Hubbard
system were detected by taking absorption images of both spin components in one of the
two layers (Fig. 3.17) and in-situ z-imaging (Sec. 3.2.1). This imaging setup does not
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4.3 Spin correlations in the bilayer system

allow to resolve the occupation of a single lattice site. Rather, the point spread function
has a FWHM of 2.6 µm (Sec. 3.2.1) which corresponds to about five lattice sites in the in-
plane lattice. The calculation of the uniform structure factor Eq. 4.20 from the measured
spin up/down densities was therefore hindered. In fact, each correlator resulted from the
measured singles density deconvolved with the imaging point spread function (PSF) [26]

Cz,meas
r,r+d =

∑
i,j

PSF(r − ri)PSF(r + d− rj)Cz,actual
i,j . (4.23)

Here, d is the distance between the correlated spins at two positions r and r + d in the
absorption image. By integrating the correlations over a distance d which is large compared
to the PSF, the measured, integrated uniform structure factor however differs from the
actual, integrated uniform structure factor only by a prefactor

Sactual
q=0 = s2

pxa
2
l · Smeas

q=0 . (4.24)

Here, spx is the pixel size of the CCD z-camera (Sec. 3.2.1) and al is the lattice constant.
Thus, even without single site resolution the integrated true uniform structure factor can
be deduced by multiplying a scaling factor to the measured integrated uniform structure
factor.
In contrast, the staggered structure factor (Eq. 4.22) can only be measured in our setup
by a manipulation of the local spin orientations before imaging. A modified Ramsey
type sequence for the manipulation was therefore implemented [153][152]. The staggered
structure factor is widely used to quantify antiferromagnetic spin correlations in condensed
matter systems.

4.3.1.2 Modified Ramsey sequence

The modified Ramsey sequence was embedded into the main experimental sequence to flip
the spins in the frozen lattice before detection (Fig. 3.17) in a staggered fashion (−1)i+j .
Here, i and j are integers indicating the i-th and j-th lattice site in x- and y-direction of
the two-dimensional lattice, respectively. Thus, potential antiferromagnetic correlations
are unwound to ferromagnetic correlations which enabled the measurement of the stag-
gered structure factor (Eq. 4.24). So, by switching on/off the modified Ramsey sequence
part in the main experimental control sequence, the staggered/uniform structure factor
could be measured independently.
The modified Ramsey sequence consists of three building blocks (Fig. 4.24): A first π/2
pulse, a free evolution time tfreeEvol in which the atoms in the two-dimensional lattice
were exposed to a magnetic field with an in-plane gradient and a second π/2 pulse. For
the calibration of each of the three steps, a spin polarised atomic Fermi gas on a two-
dimensional lattice was initially prepared (Fig. 4.24 left, lower row). Thus, for calibration
of the modified Ramsey sequence, the three steps were performed in the order as specified
above. In the main experiment sequence, however, the modified Ramsey sequence was
meant to detect expected antiferromagnetic correlations in the bilayer Hubbard system26

26At low enough temperatures antiferromagnetic correlations are expected, see phase diagram of the
monolayer Hubbard model for repulsive interactions (Fig. 2.2).
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by unwinding the anti-ferromagnet (Fig. 4.24 right, lower corner) to a ferromagnet (left,
lower corner) and, hence, the order of the steps was effectively inverted.

Figure 4.24: Modified Ramsey sequence in three steps. First column a first π/2
pulse transfers atoms from the lower hyperfine state into a superposition state. Second
column during a free evolution time tfreeEvol, the atoms in the two-dimensional lattice are
exposed to a magnetic in-plane gradient along the lattice diagonal and, thus, rotate in the
equatorial plane according to the local field strength. Third column a second π/2 pulse
mapped the spins back into the measurement z basis depending on their current phase.
Starting with a ferromagnet, then, if tfreeEvol is chosen such that atoms on adjacent sites
acquire a phase difference of π (as shown in the center figure), the second π/2 pulse pro-
duces an anti-ferromagnet. Vice versa, an anti-ferromagnet is unwound to a ferromagnet.
The latter effect is employed to measure the staggered structure factor.

For the calibration of the first π/2 pulse, a spin polarised gas in the lower |↓〉 = |mF = −9/2〉
state was initially loaded into a three dimensional lattice. The first π/2 pulse then trans-
ferred the atoms from this state into a superposition state |ψ〉 = 1/

√
2(|↑〉 + |↓〉) on the

equatorial plane (Fig. 4.24 first column) where |↑〉 = |mF = −7/2〉. This pulse had a
shape of [153]

Aπ/2(t) = A0
π/2e

−4ln2
(t−t0)

2

σ2
π/2 . (4.25)

The FWHM of the pulse was σπ/2 = 50 µs. The amplitude A0
π/2 was calibrated such that

half of the atoms were transferred from the initial |mF = −9/2〉 state to the |mF = −7/2〉
state.27 The π/2 pulse frequency was scanned over the transition resonance at which the

27A scan of the amplitude resulted in a sin2(ΩRt) dependence of the population of the initial |mF = −9/2〉
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transfer was maximum (Fig. 4.25 left).
The second π/2 pulse was subsequently calibrated by switching off the first one and fol-
lowing the same procedure as for the latter.
As a final step the magnetic field was adjusted. Having transferred all atoms into the
superposition state with the first π/2 pulse (Fig. 4.24 left) a magnetic field with an in-
plane gradient was applied across the two-dimensional lattice for a free evolution time
tfreeEvol. During this time, the magnetic moments on each site rotated in the equatorial
plane according to the local magnetic field strength. The gradient direction was adjusted
such that it coincided with one lattice diagonal (Fig. 4.24 center). The gradient strength
was calibrated such that the magnetic moments on adjacent lattice sites accumulated a
relative phase difference of π during the free evolution time tfreeEvol (Fig. 4.25 right). This
special point in time is called the π point. In order to find it, tfreeEvol was first varied from
zero up to the 2π point at around tfreeEvol = 0.25 s. At this point, adjacent lattice sites
accumulated a relative phase difference of 2π. Thus, the magnetic moments were aligned
relative to each other as initially at tfreeEvol = 0. A second π/2 pulse after tfreeEvol = 0.25 s
therefore again revealed the spin polarised gas (Fig. 4.24 left). However, for all other
times tfreeEvol ∈ (0, 2π), the initial spin polarised gas is transduced to a spin wave by the
modified Ramsey sequence (Fig. 4.25 right, insets). Here, the spin wave is visible in the
contrast Msp = (n↑ − n↓)/(n↑ + n↓) between the spin up and spin down densities and

characterised by the wave vector ~ksp (cf. Fig. 4.19). The latter was extracted from a
two-dimensional Fourier transformation to the contrast.

For small free evolution times tfreeEvol or close to the 2π point, the arising spin wave has
a long wave length and, hence, the amplitude of the corresponding wave vector is small
(Fig. 4.25 right). For times tfreeEvol in between, the extracted amplitudes of the wave
vector ~ksp first linearly increase up to the π-point and then linearly decrease again (Fig.

4.25 right). The amplitude of ~ksp first increased for small times and, after the π point, de-

creased again. The ~ksp for times close to the π point could not be resolved in the contrast

images due to the limiting imaging resolution. Thus, the length of ~ksp was interpolated
for times around the π point and the latter was inferred from the intersection of the two
linear interpolations (Fig. 4.25 right)28. Thus, the time at which spins on adjacent lattice
sites acquired a phase difference of π was determined.

A digital laser intensity control (DLIC) unit was employed in order to generate both short
π/2 pulses. Furthermore, the SU(2) symmetry of our experimental implementation of the
Hubbard model was verified for the modified Ramsey sequence by switching on/off the
first π/2 pulse of the modified Ramsey sequence and observing the same amount of spin

state and of the transferred population to the |mF = −7/2〉 state, where ΩR is the Rabi frequency. The
amplitude Aπ/2(t) was obtained by taking the amplitude where an equal amount of spin up and spin
down atoms were measured. More details can be found in [153].

28The description of the ~ksp is commonly done in reciprocal space. Starting at tfreeEvol = 0 the length of
|~ksp| = 0. Then, for increasing tfreeEvol |~ksp| increases while at the π point it just reaches one corner of

the first Brioullin zone. For even larger tfreeEvol, ~ksp is Bragg-reflected at the edge and decreases again
to the center of the first Brioullin zone. It hits the center, however, only if the magnetic field gradient
is well aligned along the diagonal of the two-dimensional lattice. Otherwise it passes the center and
gets again Bragg reflected as soon as it reaches an edge of the first Brioullin zone.
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Figure 4.25: Calibration of the modified Ramsey sequence. Left Measured and
normalised spin up and spin down densities as a function of the π/2 pulse frequency.
At resonance and at the correct amplitude, half of the atoms in the lower |mF = −9/2〉
state is transferred to the |mF = −7/2〉 state. Right Calibration of the free evolution
time tfreeEvol. For small tfreeEvol the spin wave vector is short. It increases towards the π
point before it decreases again to zero towards the 2π point. The spin wave for tfreeEvol

close to the π point cannot be resolved without single site resolution. Therefore, linear
interpolation is exploited to find the time tfreeEvol = tπ at which atoms on adjacent sites
acquire a phase difference of π (referred to as π point). The insets illustrates a possible
spin wave.

correlations in both cases.
In conclusion, with the modified Ramsey sequence, the lack of single site resolution of the
z-imaging setup could be circumvented by interpolating to the π point and the uniform
and staggered structure factor could hence be computed for spin correlation analysis (Sec.
4.3.1).

4.3.1.3 Intralayer correlations as function of t⊥/t

The uniform (blue) and staggered29 (red) spin structure factor was measured in the bilayer
Hubbard system for different ratios between the inter- and intra-layer tunnelling t⊥/t (Fig.
4.26 left). Additionally, the local moment (Eq. 4.21) was determined. DQMC calculations
of the respective quantities were performed on a homogenous lattice with 8×8 lattice sites
per layer for a filling of n = 0.4, a temperature kBT = 1.0−1.4 t and interaction strengths
between U = 2− 8 t (Fig. 4.26 left, shaded regions).

A smooth crossover from an anti ferromagnetically ordered state for small t⊥/t to a band
insulating state with vanishing intra-layer anti-ferromagnetic spin correlations at high
t⊥/t is expected to occur in a bilayer Hubbard system around t⊥/t ≈ 3 at U = 8t (Fig.

29Here, the modified Ramsey sequence was switched on for the measurement of the staggered structure
factor (Fig. 4.24).

110



4.3 Spin correlations in the bilayer system

Figure 4.26: Spin correlations in the bilayer system. Left Uniform structure factor,
staggered structure factor and local moment in one of the two layers as a function of t⊥/t.
Both, the uniform and staggered structure factor are equally spaced from the local moment
at low t⊥/t showing nearest neighbour antiferromagnetic spin correlations. For large t⊥/t,
both approach the local moment indicating vanishing off-site correlations. Shaded regions
are from Determinant Quantum Monte Carlo calculations for kBT = 1.0−1.4 t, U = 2−8 t
and n = 0.4. Right Interlayer antiferromagnetic spin correlations as a function of t⊥/t.
They increase with t⊥/t indicating the formation of singlet bonds across the two planes.

2.4 right). At small t⊥/t, the uniform and staggered structure factor are equally spaced
around the local moment (Fig. 4.26 left). This indicates intra-layer nearest neighbour
antiferromagnetic spin correlations (Sec. 4.3.1.1). In contrast, for t⊥/t ≈ 5, both, the
uniform and staggered structure factor approach the local moment which implies that anti-
ferromagnetic order within the two-dimensional layers vanishes. Theoretically, this can be
seen by Eq. 4.20 and Eq. 4.22 that are only equal to the local moment if all higher order
correlations are zero. In conclusion, the intra-layer nearest neighbour antiferromagnetic
spin correlations smoothly diminish by increasing the interlayer tunnelling with respect to
the intra-layer tunnelling amplitude (Fig. 4.26 left).
Furthermore, the local moment decreases smoothly with increasing ratio t⊥/t. This is due
to an increasing effect of quantum disorder, namely an increasing band width compared
to the interaction strength U [135].

4.3.2 Interlayer spin correlations

At high t⊥/t, a band insulating state is predicted with interlayer antiferromagnetic spin
correlations (Fig. 2.4 right). The detection of these correlations in the experimentally
realised bilayer Hubbard system based on the measurement of singlet triplet oscillations
(STO) in the vertical double wells of the bilayer system. In fact, the STO measurement
allows to quantify the excess of singlets compared to the triplet states which are present
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in the double wells. This, in turn, quantifies the amount of spin correlations. The latter
are proportional to the excess singlets. In contrast, for an equal number of singlets and
each of the triplet states |t0〉, |t+〉 and |t−〉, it was shown in [154] that antiferromagnetic
correlations are not present in the system. A similar detection scheme for antiferromag-
netic correlations was employed in [65].

Singlet triplet oscillations
In general, oscillations between the singlet state |s〉 = 1/

√
2(|↑, ↓〉 − |↓, ↑〉) and the triplet

state |t0〉 = 1/
√

2(|↑, ↓〉+|↓, ↑〉) in a double well can be evoked by inducing a spin dependent
energy difference between the two wells of the double well. Then, the two states |↑, ↓〉 and
|↓, ↑〉 have different energies. In turn, they accumulate a different amount of phase when
evolving in time and the singlet state can go over into a triplet state and vice versa. In
the experiment, an energy difference between the two wells of the vertical double well was
accomplished by applying a magnetic field gradient ∇zB parallel to the double well. The
time evolution of an initial singlet state |ψ(t)〉 in the double well then reads [154]

|ψ(t)〉 =
1√
2

(
e−i(∆E↑−∆E↓)t/(2~) |↑, ↓〉 − ei(∆E↑−∆E↓)t/(2~) |↓, ↑〉

)
(4.26)

with ∆E↑ ∝ ∇zB. Here it becomes visible that, if the accumulated phase amounts to
(∆E↑ −∆E↓)t/~ = n · π with n mod 2=1, the singlet state goes over into a triplet state
and vice versa. Hence, during a free evolution, a periodic oscillation between the singlet
and |t0〉 triplet state is induced.

The vertical magnetic field gradient ∇zB was induced across the bilayer Hubbard system.
Before the atomic motion in the system was frozen by ramping the in-plane lattice to
30 Erec within 500 µs and subsequently the vertical z532 lattice to 36 Erec within 100 µs.
The fast Feshbach coils were then employed to generate the vertical magnetic gradient.
The current through the coils were ramped up within 1 ms, hold for 20 ms and subsequently
ramped down again within 1 ms. Instead of varying the time t (Eq. 4.26) to evoke STO, the
magnetic field gradient strength was varied during the 20 ms holding time. This reduced
noise from magnetic field fluctuations. After ramping down the magnetic gradient, the
induced STO were made visible by merging the frozen double wells into single wells (Fig.
4.27 left). Doing so, a singlet state which is present in a double well before merging, is
mapped onto a doubly occupancy of the lowest energy level in the single well (Fig. 4.27 left,
upper row). In contrast, a triplet state which is present in the double well before merging
is mapped onto a state with one atom in the ground and one in a higher lying vibrational
state of the single well (Fig. 4.27 left, lower row). The occupation of a higher lying level
is necessary in order to preserve the antisymmetry of the overall fermionic wave function.
With singles doubles spectroscopy, the two outcomes after merging (detection of a double
or a single in the ground band) could be distinguished employing the interaction shift.
Thus, from the measured number of doubles, the amount of singlets with antiferromagnetic
order before merging could be inferred.
For small t⊥/t, inter-plane spin correlations are not expected to occur and, thus, excess
singlets should not be present. This coincides with the measured oscillation amplitude of
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Figure 4.27: Left Detection scheme for interlayer correlations. When merging a double well
into a single well by diminishing the short vertical z532 lattice to zero, singlet bonds merge
into the ground state of the single site. This is the doubly occupation of the lowest energy
level (upper row). In contrast, the triplet state merge such than one atom ends up in a
excited vibrational state to maintain the antisymmetry of the wave function (lower row).
Thus, the number of doubly occupied sites is a measure for anti-ferromagnetically ordered
singlet states before merging and, hence, quantifies inter-plane spin correlations. Right
Singlet-triplet oscillations (STO). With increasing ratio t⊥/t, the number of singlets across
the two planes exceeds more and more the number of triplet states and the amplitude of
STO increases.

doubles when scanning the magnetic field gradient strength (Fig. 4.27 right, blue line). In
contrast, for large t⊥/t, the number of excess singlets across the two planes is high and,
hence, the number of doubles after merging shows oscillations with high amplitude when
varying the magnetic gradient strength (Fig. 4.27 right, red line).

Interlayer correlator
The interlayer spin correlations can be deduced from the measured number of doubles. The
maximum number of measured doubles during the oscillation (Fig. 4.27 right) corresponds
to the number of singlet states. Contrarily, the minimum number of measured doubles
corresponds to the number of |t0〉 triplet state. The transverse spin correlator can be
deduced from the measured number of singlet and triplet states by [65]

−〈Ŝxi Ŝxi+1〉 − 〈Ŝ
y
i Ŝ

y
i+1〉 =

nS − nT
2

(4.27)

Furthermore, since the state is SU(2) symmetric, i.e. 〈ŜliŜlj〉 is equal for l = x, y, z, the
spin correlator in the z basis can be written as
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Czinter = −nS − nT
4

. (4.28)

A rigorous derivation of Eq. 4.28 is provided in [154]. In order to determine nS and nT
in Eq. 4.28 from the data more reliable, a sinusoidal -function to the oscillation of the
number of doubles were performed for each t⊥/t and the amplitude was extracted (Fig.
4.27 right). The resulting interlayer correlations (Eq. 4.28) increases with increasing ratio
t⊥/t which is in accordance with the theoretical predictions (Fig. 2.4 right). At very
low t⊥/t, the measured inter-plane correlations are slightly higher than expected from the
theory. Here, the fit to the oscillations becomes inappropriate and a smaller amplitude is
likewise possible within the errorbars (Fig. 4.27 right). For the highest t⊥/t, the measured
correlations are slightly higher than expected from the DQMC theory.
The comparison of intra- and inter-layer correlations emphasises the cross over between
the intra-layer nearest neighbour spin correlations at small t⊥/t and the anti ferromagnetic
correlations across the two planes for high t⊥/t (Fig. 4.26 left and right).

4.3.3 Spin correlations for varying ratios U/t

The theoretically expected phase diagram for a bilayer Hubbard system shows that, de-
pending on the ratio U/t, a smooth cross over from intra-layer correlations at small t⊥/t
to interlayer correlations (band insulating phase) at large t⊥/t exists (Fig. 2.4 right).
In order to experimentally observe this cross over for varying ratios U/t, the intra-plane
tunnelling amplitude t was varied between 174 Hz− 290 Hz by changing the in-plane lat-
tice depth between 5 − 7 Erec. Furthermore, the cross over was quantified by the spin
correlation ratio

Rcorr =
Czintra

Czintra + Czinter

. (4.29)

Here, Czintra = 2(Sπ − C0,0) quantifies the intra-layer correlations by subtracting the local
moment from the staggered spin structure factor and taking a factor of two for the two
planes into account (cf. Sec. 4.3.1). For pure intra-layer correlations at low t⊥/t, the ratio
Rcorr approaches one, while for pure interlayer correlations at high t⊥/t it vanishes. At
around t⊥/t ≈ 2.5, the ratio becomes 1/2, Rcorr ≈ 0.5, which indicates the smooth cross
over from an anti-ferromagnetically ordered state for smaller t⊥/t to a band insulating
state at higher t⊥/t (Fig. 4.28, dark gray points). The error on Rcorr was rather large,
reaching up to 17%.
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Figure 4.28: Experimentally measured parts of the bilayer Hubbard phase diagram (cf. Fig.
2.4 right). The ratio between intra- and inter-plane correlations was defined to indicate
the smooth cross over.

4.4 Thermodynamics in the bilayer Hubbard system considered as monolayer
Hubbard system with reservoir

4.4.1 A bilayer as a monolayer Hubbard system with reservoir

The bilayer Hubbard system can be considered as a monolayer Hubbard system with reser-
voir. In this sense, the chemical potential in the monolayer Hubbard system is tuned by
changing the potential difference between the two layers. Technically, this is achieved by
varying the phase of the vertical superlattice with the offset lock control voltage Vctr

zlock.
In Sec. 4.2.6, singles and doubles in both layers were measured as a function of Vctr

zlock

to test the behaviour of the bilayer system (Fig. 4.22). Here, predictions from a simula-
tion of a double well was compared to the data. This double-checked the calibration of
the Hubbard parameters. Namely, 1. the tunnelling amplitude (Fig. 4.5) which yielded
t⊥ = 590 Hz for a Vz1064 = 120 Erec, Vz532 = 15 Erec lattice configuration, 2. the super-
lattice phase (Fig. 4.4) which yielded ∆ = 345 Hz and 3. the interaction strength with
900 Hz. Thus, this data set shows the expected behaviour and is therefore appropriate
to deduce and probe thermodynamics, entropies and density fluctuations in the bilayer
Hubbard system regarded as a monolayer Hubbard system with reservoir.

4.4.2 Equation of state, compressibility and the bilayer system temperature

The equation of state in a two-dimensional lattice system describes the number of singly
and doubly occupied lattice sites as a function of the chemical potential (cf. Fig. 4.14).
Thus, usually, by employing the local density approximation, the equation of state can
be determined from a single absorption-image of singles and doubles in a two-dimensional
optical lattice with underlying Gaussian potential [40]. In contrast, the equation of state
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is also directly provided by a measurement of singles and doubles in one (or both) of
the two planes of the bilayer system as a function of the superlattice phase without local
density approximation (Fig. 4.29 left). This effectively tunes the chemical potential in
each individual plane. The sign of the potential, however, is inverted in both planes,
i.e. µplane1 = −µplane2. Hence, the singles/doubles distribution of the second plane can
be simply mirrored at the symmetry point of the superlattice (Fig. 4.29 left, round and
square data points).

Figure 4.29: Left Equation of state given by the measured number of singles and doubles
in each of the two planes of the bilayer Hubbard system as a function of the z superlattice
phase. By fitting the data with DQMC theory, the temperature in each layer could be
extracted. Since the temperature is an intensive property, the temperature of the whole
bilayer Hubbard system could be determined this way. The errorbars in this measurement
yielded from an equivalent measurement with five averages and amount to nD,err = ±0.01
and nS,err = ±0.02. Center Number of doubles as a function of the filling. Right
Compressibility as a function of the filling. It exhibits a dip around half filling indicating
the reduced compressibility in the Mott regime. In the pure monolayer Hubbard model,
the doubles and compressibility as a function of the filling was measured in [40].

The obtained distribution was fitted with Determinant quantum Monte Carlo (DQMC)
theory. Here, the tunnelling amplitude in the 7 Erec in-plane lattice was set to t = 174 Hz.
It yielded a temperature of T = 1.16 t in the bilayer Hubbard system. This lies in the
temperature range which was independently inferred from spin correlation thermometry
(Fig.4.26). There, DQMC data were calculated for temperatures T = 1.0 t− 1.4 t. Hence,
this measurement can confirm the temperature range and specify it to be T = 1.16 t.
Furthermore, in each of the two planes, the number of doubles as a function of the filling is
expected to increase at half filling if the interactions are repulsive. Below half filling, due
to the repulsion, it is energetically favourable to avoid doubly occupation which, however,
is not possible any more above half filling (Fig. 4.29 center).
The avoiding of doubly occupancies goes along with a decreased compressibility κ = ∂n/∂µ
around half filling (Fig. 4.29 right). There, it costs energy to produce doubles by further
increasing the chemical potential. To compute the compressibility, the numerical differen-
tiation in each data point was obtained by first interpolating the total density data and
subsequently calculate the slope in each data point xi by (yi+1− yi−1)/(xi+1−xi−1). The
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y error originates from a calculation of the standard deviation between the so-obtained
numerical differentiation and of the left and right numerical derivative, i.e. the slope be-
tween neighboured data points (yi+1 − yi)/(xi+1 − xi). The compressibility in the bilayer
Hubbard system close to half-filling was also measured applying an in-plane magnetic field
gradient (Sec. 4.23). Both measurements coincide with DQMC data at half-filling within
the errorbars (Fig. 4.30 c). In a pure monolayer Hubbard model, the compressibility was
determined in [40].

The ratio t⊥/t

Figure 4.30: a The spacing between the lower and upper energy level in the double well ∆
depends on the superlattice phase. However, this ∆ depends on the lattice configuration
and, so, on the ratios t⊥/t = 0.6, 1.2, 3.3. b Doubles as a function of the filling, c com-
pressibility and d pressure for all three ratios t⊥/t. t⊥/t = 3.3 was analysed before (Fig.
4.29).

The bilayer Hubbard system extends the monolayer Hubbard system by the coupling
between two planes. This coupling is governed by the inter-plane tunnelling amplitude t⊥
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(Eq. 2.6). The affect of t⊥ onto the equation of state if the bilayer Hubbard system is
considered as monolayer Hubbard system with reservoir is studied.

In fact, a variation of t⊥ results in a different change of the potential difference between
the two planes ∆ if ∆ is varied (Fig. 4.30 a). More concrete, for an increasing short lattice
depth and, thus, decreasing ratios t⊥/t, the potential difference ∆ increases faster for small
superlattice phases. This difference, however, is small. For example, in a superlattice con-
figuration with V1064 = 120 Erec at a superlattice phase of 0.03 rad, the difference in ∆/2
in the case of t⊥/t = 0.6 and t⊥/t = 3.3 is only 6% (Fig. 4.30 a). It is therefore expected
that the equation of state does not show a strong dependence on t⊥/t. In order to test
this, the three cases t⊥/t = 0.6, 1.2, 3.3 were studied. The case t⊥/t = 3.3 was already
analysed before (Fig. 4.29). In the two other cases, the doubles as a function of the filling
(Fig. 4.30 b), the compressibility (Fig. 4.30 c) and the pressure (Fig. 4.30 d) show a
similar behaviour and a clear difference is not visible within the errorbars. It can further
be noted, that in all three cases, the compressibility at the half-filling point matches the
predictions from DQMC calculations (Fig. 4.30 c, half-filling at vertical dashed line).

4.4.3 Local and thermodynamic density fluctuations

Besides the compressibility, the local and thermodynamic density fluctuations were anal-
ysed for varying superlattice phases. The data set with t⊥/t = 3.3 was used. For a pure
monolayer Hubbard model, both quantities were determined in [46]. There, the local den-
sity approximation was required which is not the case in the following analysis.

The local (on-site) density fluctuations δn2/n = 〈n̂2
i 〉 − 〈n̂i〉2 were deduced from the

measured singles and doubles. Using the anti-commutation relations and the fact that the
system is spin-balanced, i.e. 〈n̂i,↑〉 = 〈n̂i,↓〉, they are given by [46]

δn2 = 2 · 〈n̂i,↑〉 − 4 · 〈n̂i,↑〉2 + 2 · 〈n̂i,↑n̂i,↓〉. (4.30)

Evaluating the data, the local density fluctuations decrease with increasing total density
up to half-filling and then remain nearly constant close to zero (Fig. 4.31 left). For com-
parison, the local density fluctuations of a non-interacting Fermi gas as a function of the
filling follow a binomial distribution for each spin state δn2/n = 1 − n/2 (Fig. 4.31 left,
dashed line). Here, sites are occupied by zero, one or two fermions with different spins
due to Pauli’s exclusion principle. In contrast, for an infinite strong repulsively interacting
Fermi gas, doubly occupancies are suppressed and, hence, up to half-filling, the local den-
sity fluctuations as a function of the filling are described by δn2/n = 1−n (Fig. 4.31 left,
solid line). This means, that either zero or one fermion occupies a site. Beyond half-filling,
it yields δn2/n = 3−n− 2/n from Eq. 4.30 and 〈n̂i,↑n̂i,↓〉 = n− 1. The measured data for
t⊥/t = 3.3 with U = 900 Hz (=̂5.17 t) are close to the infinite interacting case up to half
filling (Fig. 4.31 left). Beyond half-filling, the data do not show the expected behaviour
of an re-increase of the local density fluctuations in the metallic state.
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4.4 Thermodynamics in the bilayer Hubbard system considered as monolayer Hubbard
system with reservoir

The thermodynamic density fluctuations δN2/N follow from the measured compressibility
κ and density n [46]

δN2

N
=
κkBT

n
= Sden(q = 0). (4.31)

Here, the temperature of the gas is set to T = 1.16 t which was inferred from the equa-
tion of state (Fig. 4.29 left). Furthermore, the thermodynamic density fluctuations are
described by the density structure factor at zero momentum Sden(q = 0). This structure
factor decreases monotonically with increasing density n (Fig. 4.31 center).

Figure 4.31: Left On-site fluctuation in the upper and lower plane of the bilayer Hubbard
system. The gray, dashed (solid) line shows the expected on-site fluctuations for the non-
interacting (infinite, repulsively interacting) Fermi gas. The interaction in the bilayer
system is U = 5.1t. Center Density structure factor Sden(q = 0) in the upper and lower
plane. For better comparison to the measured on-site fluctuations, the gray dashed and
solid line are taken from the left plot. Right Non-local density fluctuations. The on-site
fluctuations (left plot) are higher than Sden(q = 0) (center plot) for low fillings. This
indicates a suppression of non-local fluctuations around half-filling.

The local (Fig. 4.31 left) and thermodynamic (Fig. 4.31 center) density fluctuations
exhibit a discrepancy for low densities n. The local fluctuation dissipation theorem which
connects the thermodynamic compressibility with the local fluctuations is thus violated
[46]. This, in turn, suggests non-local (off-site) density correlations. In order to quantify
them, the fluctuation dissipation theorem for a lattice system is split into the local δn2

and non-local contribution of the density fluctuations to the compressibility[46]

κ =
1

a2kBT

δn2 +
∑
j 6=i
〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉

 . (4.32)

The measured off-site density correlations (Fig. 4.31 right) show a suppression around
half filling. This is in accordance with Eq. 4.32, since for a localized state like the Mott
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4 Results and discussion

insulator around half filling, the expectation value in Eq. 4.32 factorises 〈n̂in̂j〉) = 〈n̂i〉〈n̂j〉
and, hence, the contribution from non-local density fluctuations is zero. In contrast, in
the metallic state at higher fillings, the non-local density fluctuations are not negligible.

4.4.4 Pressure and entropy

The pressure p(µ, T ) in the bilayer Hubbard system considered as monolayer Hubbard
system with reservoir can be deduced from the equation of state (Fig. 4.29 left) by
integration [37]

p(µ, T ) =
1

a2

∫ µ

−∞
n(µ′, T )dµ′. (4.33)

Here, for the numerical integration, the smoothed interpolating function of the total den-
sity was used as for the numerical differentiation (Eq. 4.18). Furthermore, the discrete
integration was performed by summing over integrands (ni+1 + ni)/2/(µi+1 − µi) where
i ∈ [minµ, ...,maxµ]. The error in the pressure results from the uncertainty in the total
density. In order to deduce the latter, the uncertainty of singly and doubly occupied sites
was first measured to be ns,err = ±0.02 and nd,err = ±0.01. The uncertainty of the total
density then results from the sum nt,err = ns,err + nd,err = ±0.03. The pressure increases
monotonically with density (Fig. 4.32 left). In a pure monolayer Hubbard system, the
pressure was determined in [37].

Figure 4.32: Left pressure and Right site entropy in the bilayer Hubbard system as a
function of the filling for the upper and lower plane

The site entropy s results from the four possible occupation probabilities {↑↓, ↑, ↓, 0} of a
single lattice site [37]

s = −kB [p↑↓ln(p↑↓) + p↑ln(p↑) + p↓ln(p↓) + p0ln(p0))] . (4.34)
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4.4 Thermodynamics in the bilayer Hubbard system considered as monolayer Hubbard
system with reservoir

It can be directly computed from the measured singles and doubles distributions with
nD = n↑↓, nS = p↑ = p↓ and n0 = 1 − 2nS − nD. The entropy increases with increasing
chemical potential and exhibits a maximum around half-filling (Fig. 4.32 right). For pure
a monolayer Hubbard system, the entropy was determined in [37].

Comment
The thermodynamics, density fluctuations and entropy in the monolayer Hubbard system
with reservoir which were discussed throughout this chapter can be further analysed with
regard to the ratio t⊥/t. This especially includes the comparison of the results to Determi-
nant Quantum Monte Carlo calculations for a bilayer Hubbard system. This is subject of
the article in preparation Thermodynamics, density fluctuations and entropy in a bilayer
Hubbard system using cold atoms.
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CHAPTER 5

Outlook

5.1 Bilayer Hubbard model

5.1.1 First-order correlation function in a bilayer Hubbard system

Measuring the equation of state in the bilayer Hubbard system (Sec. 4.4.2) allowed for
the determination of the temperature in both planes. This verified the measured temper-
ature via spin correlation thermometry in only one of the two planes. Furthermore, the
compressibility κ and the pressure p could be inferred from the equation of state. In a
possible next step, the temperature in the implemented bilayer Hubbard system could be
varied by smooth modulation of the in-plane lattice. Thus, the thermodynamic entropy
in the system

s = a2 dp

dT

∣∣∣∣
µ=const.

(5.1)

could be deduced by: 1. determining the equation of state for each temperature, 2. deduc-
ing the pressure from it and 3. performing numerical differentiation of the pressure with
respect to the temperature at constant chemical potential (Eq. 5.1). In a pure monolayer
Hubbard system, the thermodynamic entropy was determined in [46].

In a further step, the thermodynamic entropy could be used with the determined com-
pressibility and pressure to calculate the kinetic energy

Ekin = sT + µn− pa2 − UnD. (5.2)

In turn, the kinetic energy on lattice site i is related to the first-order correlation function
G(1)(1) = −1/4Ekin,i and, hence, correlations between a single lattice site and its sur-
rounding would be measurable [46]. Moreover, the mutual information determined by the
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5 Outlook

discrepancy between the thermodynamic entropy and the averaged entropy per site (Fig.
4.32 right) can be inferred for the bilayer system. For a monolayer Hubbard system, this
was likewise measured in [46].

5.1.2 Particle-hole symmetry and pair correlations in a bilayer system

In addition to the variation of the temperature in the bilayer system, the interaction
strength U could be varied employing the Feshbach field. Moreover, a spin imbalance,
i.e. a magnetisation, could be introduced. Both together, would enable to check the
particle-hole transformation (Sec. 2.1.2.4) in the bilayer Hubbard system if attractive
and repulsive interactions were implemented. In a pure monolayer Hubbard system the
particle-hole transformation was tested in [58].

The implementation of attractive interactions in the bilayer Hubbard system would also
allow for the measurement of the Pauli blocking- and interacting part of the pair correlation
function [25]. Employing the fluctuation-dissipation theorem, both parts are connected to
the static density structure factor by

∫ [
g

(2)
↑↑ (r) + g

(2)
↑↓ (r)− 2

]
d2r = 2

(
κT

n2
− 1

n

)
. (5.3)

In a pure monolayer Hubbard system both parts of the pair correlation function were
measured in [25].

5.2 Implementation of the Rice-Mele model

The Rice-Mele model describes a “dimerized” lattice with a unit cell of two sub-lattice
sites A and B (Fig. 5.1 left). These sub-lattice sites are coupled by a tunnelling amplitude
tin while neighbouring unit cells are coupled by a tunnelling amplitude tout. The Rice-Mele
Hamiltonian reads [128][96]

HRM = −
∑
j

(
tinâ

†
j b̂j + toutb̂

†
j+1âj + h.c.

)
+

∆

2

∑
m

(
â†j âj − b̂

†
j b̂j

)
. (5.4)

Here, â†j (âj) is the creation (annihilation) operator of a particle on sub-lattice site A of

the j-th lattice site and b̂†j (b̂j) on sub-lattice site B of the j-th lattice site, respectively.
The hermitian conjugated is abbreviated by h.c.. ∆ denotes the offset energy between
the sub-lattice sites A and B. For ∆ = 0, the Rice-Mele Hamiltonian is equivalent to the
Su-Schrieffer-Heeger (SSH) model which is discussed in the following.
The fundamental interest in the SSH model lies in the fact that it exhibits the basic features
of topological materials [10]. While in the case tin > tout (Fig. 5.1), a topological trivial
band insulator state reveals with a winding number of zero, the model exhibits a topolog-
ical insulating state with winding number equal to one for tin < tout [86]. Furthermore,
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5.2 Implementation of the Rice-Mele model

due to the two different tunnelling amplitudes tin and tout, the band structure possesses

an upper and lower energy band E
upp/low
q = ±

√
t2out + t2in + 2touttincos(qal). Here, q is the

quasi momentum and al is the lattice constant of the long lattice (e.g. 1064 nm).
In cold atom experiments the SSH Hamiltonian was established employing an optical su-
perlattice in [4][96][115].

Figure 5.1: Left Su-Schrieffer-Heeger (SSH) model in one spatial dimension. It comprises
the two tunnelling amplitudes tin and tout and the on-site interaction U . The model
can be realised in cold atom experiments by loading atoms into an optical superlattice.
Furthermore, by changing the superlattice phase a tilt between both sites A and B can be
adjusted (Fig. 2.5). Right Effective Rabi frequency Ωeff

R = 2teff in isolated double wells
of the x superlattice as a function of the x superlattice phase. A similar measurement
was performed to calibrate the phase in the vertical z superlattice (Fig. 4.4). Here,
for the x superlattice, away from the symmetry point, the measured Rabi oscillation
frequencies deviated from the theoretical one obtained by a two-band BPPO calculation.
Phase fluctuations during the measurement might be a reason. The vertical dashed lines
show the determined symmetry point of the superlattice before and after the oscillation
measurement.

In order to realise the SSH model with the experimental setup (Sec. 3) and probe aspects of
the model in the future, the in-plane x superlattice was newly set up and calibrated during
this thesis (Sec. 3.3.2).1 The calibration comprised similar methods to the calibration of
the vertical z superlattice in order to realise the bilayer system (Sec. 4.1). However,
different experimental challenges emerged during the implementation. Main calibration
results are briefly provided in the following subsections.

1The main optics of the superlattice setup already exists [122] but had partly to be exchanged.

125



5 Outlook

5.2.1 Depth-, tunnelling- and interaction strength calibration in the x superlattice

For the complete calibration of the x superlattice, the monochromatic x1064 and x532
lattice, which together formed the x superlattice, were first aligned individually onto the
atoms in the dipole trap (Fig. 3.10). Subsequent, the depth of both lattices were indepen-
dently calibrated by lattice modulation spectroscopy (Sec. 4.1.1). The calibrated lattice
lasers were then locked onto each other using the x superlattice offset lock (Sec. 3.11).
This resulted in a fixed relative phase between both lattices which could be tuned by
tuning the DDS frequency (Fig. 3.11). It yielded a DDS frequency difference of 75 MHz
to tune the x superlattice from its symmetric to its antisymmetric configuration.

Tunnelling calibration via Rabi oscillations
The tunnelling amplitude tin of the x superlattice (Fig. 5.1 left) was calibrated via Rabi
oscillations as in the case of the z superlattice (cf. Fig. 4.4 right).2 In order to measure
these oscillations, the x1064 lattice depth was set to 15 Erec and the atoms were initially
loaded into this lattice. Then, the x532 lattice was adiabatically ramped up within 35 ms
in the antisymmetric superlattice configuration (Fig. 5.2 left). Here, the x532 lattice depth
was varied between 11 − 13 Erec among different measurements. At these lattice depths,
on the one hand, the effective Rabi frequency (Eq. 4.5) was still in a measurable range
- even 1 MHz away from the symmetry point.34 On the other hand, tunnelling between
unit cells, tout (Fig. 5.1 left), was still sufficient small compared to intra-cell tunnelling tin
and could be neglected. After loading the atoms into the antisymmetric superlattice, the
Rabi oscillations were induced by non-adiabatically sweeping the superlattice phase within
400 µs from the antisymmetric to the symmetric configuration (Fig. 5.2 second from left).
After a free evolution time tRabi the phase was then swept back non-adiabatically to the
antisymmetric configuration such that the left sub-site A in each unit cell was again low
and the right sub-site B again up (Fig. 5.2 third from left). By the second non-adiabatic
sweep, atoms in the right well were projected onto the excited state in the antisymmetric
configuration and atoms in the left well projected onto the ground state. The x1064 lat-
tice was subsequently non-adiabatically ramped up to 40 Erec (Fig. 5.2 right). This led
to a population of the 1st excited energy level by atoms in the resulting antisymmetric
superlattice. The first excited band is just below the upper right well in this configuration.
Both lattices were finally switched off for band-mapping within 1 ms and the atoms were
imaged after time of flight (TOF) of 6 ms. Hence, atoms which occupied the left sub-lattice
site A at the end of tRabi and after the projection the ground state of the antisymmetric
superlattice, populated the first Brioullin zone after TOF. In contrast, atoms in the 1st

excited energy level after projection populated the second Brioullin zone after TOF. Thus,
the site occupation at time tRabi of the left or right sub-lattice site could be distinguished
and Rabi oscillations became measurable.

The theoretical predicted dependence of the Rabi frequency onto the x superlattice phase

2Compare Sec. 4.1.5 for the tunnelling amplitude calibration of the vertical z superlattice.
3Here, the range is limited by the minimum duration of one time step in the experimental control (analogue

cards) which is 100 µs. Thus, frequencies much larger than 1 kHz suffered from enough raster.
4To the antisymmetric configuration it was 75 MHz.
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5.2 Implementation of the Rice-Mele model

Figure 5.2: Detection scheme for the Rabi oscillation measurement From left to
right: 1. Atoms were loaded into the antisymmetric x superlattice with lattice depth
x1064=15 Erec,x532=11−13 Erec. 2. The phase was non-adiabatically swept to around the
symmetry point and hold there for the Rabi oscillation time tRabi. 3. The phase was non-
adiabatically swept back to the antisymmetry point. 4. The lattice depth was increased
to x1064=40 Erec,x532=11− 13 Erec to populate the 2nd excited band. For sublattice site
discrimination between site A and B, lattice modulation was performed.

could so far not be reproduced in the measurement at phases further away from the sym-
metry point (Fig. 5.1 right). Phase fluctuations and drifts probably disturbed the mea-
surement. In order to quantify these phase drifts, the symmetry point was measured right
before and after the Rabi oscillation measurement (Fig. 5.1, vertical dashed lines). The
determined drift was less than 5× 10−4 rad, but the measured symmetry point differed by
1.9× 10−3 rad from the angular point of the fit which should also give the symmetry point.

Figure 5.3: Tunnelling amplitude tin (Fig. 5.1 left) as a function of the barrier height (cf.
Fig. 2.5 center). The theory bands base on a calculation with non-interacting Wannier
functions from the BPPO method. Uncertainties in the lattice depth and phase are taken
into account. A similar measurement was performed for the z superlattice (Fig. 4.5).

In contrast, at the symmetry point, the measured Rabi frequency matched the theoretical
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predictions from a two-band BPPO method calculation for varying x532 lattice depths
(Fig. 5.3). The theoretical bands arise due to errorbars in the x1064 lattice depth which
was set to ±0.5%, as for the z lattice (Sec. 4.1.1).

X superlattice phase calibration
The superlattice phase was calibrated by slightly modifying the above control sequence
to measure Rabi oscillations. Therefore, tRabi was set to the minimum of 100 µs (Fig. 5.2
second). During this time, atoms started to tunnel for the first time from the initially occu-
pied sublattice site A to B around the symmetry point. By immediately, non-adiabatically
ramping back the phase to the antisymmetric case thereafter (Fig. 5.2 third), further tun-
nelling was suppressed. This led to a population of the second Brioullin zone after TOF
only very close to the symmetry point and, hence, a depopulation of the first Brioullin
zone there. The integrated atom number in the first Brioullin zone thus exhibited a dip
around the symmetry point. Consequently, the minimum of this dip pointed the symmet-
ric superlattice case.

Superlattice phase stability
The superlattice phase of the calibrated x superlattice was subject to phase fluctuations on
the order of 1 MHz around the symmetry point although it was actively stabilised against
temperature, pressure and humidity by measuring all three quantities in the room and
correct the DDS frequency to that effect. Phase drifts on the 15 min time scale could
be tracked by the phase calibration method (cf. paragraph before). Since this method
required about 10-15 data points to reliably resolve the minimum of the dip in the signal,
phase drifts between subsequent experimental cycles on the minute timescale could how-
ever not be resolved. An interferometer was set up for this purpose during the writing of
this thesis from Janek Fleper. Similar approaches to stabilise an optical superlattice are
described in [150].

Interaction strength U calibration
The interaction strength U in the x superlattice was calibrated by radio frequency spec-
troscopy of atoms in the superlattice and comparing it to predictions. This was also
performed for the vertical z superlattice (Sec. 4.1.7). In the x superlattice, the x1064
lattice depth was set to 60 Erec and the x532 lattice depth to 12 Erec and 18 Erec while
the superlattice phase was varied from the anti-symmetric configuration to phases close to
the symmetry point (0.05 rad) (Fig. 5.4, cf. to Fig. 4.6 left). The measurement of U for
phases < 0.05 rad had to be treated with caution since the Wannier functions then start
to delocalise over the entire double well.

As for the vertical z superlattice, non-interacting and interacting Wannier functions were
both separately employed to theoretically predict the relative interaction strength ∆U =
U95 − U97. The predicted ∆U using non-interacting Wannier functions thereby differ by
roughly a factor of two from the data. This corresponds to about 1800 Hz. In contrast, the
predicted ∆U using interacting Wannier functions differs only by 200 Hz. By increasing
the short lattice depth from 12 Erec → 17 Erec and 18 Erec → 25 Erec, the predictions for
∆U using interacting Wannier functions even match the data within the errorbars. One
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5.2 Implementation of the Rice-Mele model

reason for that might be that the calibration of the lattice depth of the short lattice is to
imprecise. Consequently, the calibrated lattice depth might be higher than assumed. This
could probably, however, not explain the whole discrepancy.

Figure 5.4: Calibration of the interactions strength U in the horizontal x superlattice (Sec.
3.3.2). The superlattice phase was varied and U was measured via SD separation (Sec.
3.5.4). The theoretical calculation was performed with non-interacting and interacting
Wannier functions (Fig. 2.12). While the discrepancy between data and predictions from
non-interacting Wannier functions is about 1800 Hz, interacting Wannier functions are off
from the data by only 200 Hz. The interacting theory even matches data if the short
lattice depth is changed from 12 Erec → 17 Erec and from 18 Erec → 25 Erec, respectively.
One possible reason might be an improvable calibration method of the short lattice depth
which, however, cannot explain the entire 200 Hz.

Site discrimination
In the measurement of Rabi oscillations, site distinction between A and B (Fig. 5.1 left)
was achieved using time of flight. This resulted in the population of the first and second
Brioullin zone. For future experiments it might be valuable to discriminate between the
occupation of the left or right site in the horizontal x superlattice in-situ, i.e. while the
atoms are trapped in the superlattice. A technique was therefore developed at the end of
this thesis.5 In contrast to the z superlattice, gravity did not pull the atoms out of the
confinement of the Gaussian lattice beams. To overcome this limitation in the horizontal x
superlattice, atoms were first routinely transferred into the upper wells of an antisymmet-
ric superlattice (Fig. 5.2 right). Then, lattice modulation was performed. This transferred
the atoms from the 1st excited energy level into the continuum were they got lost. This
emptying of sublattice site B had an efficiency of about 85%. In contrast, only 6% of the

5In the vertical z superlattice, the occupation of the upper/lower plane could be distinguished by plane
evaporation (Sec. 4.1.6). Here, atoms in the plane with higher offset energy in the antisymmetric z
superlattice could not be hold by the underlying potential against gravity and the atoms escaped from
the trap as desired and without the need to pull these atoms out of the upper plane.
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atoms residing on sublattice site A left the trap due to the lattice modulation.

5.2.2 Outlook: Floquet systems and edge state detection

In the near future, the calibrated x superlattice can be employed to establish a Floquet
driven system by means of the periodic modulation of the offset energy ∆ between adjacent
sublattice sites A and B (Fig. 5.1 left). A similar setup with cold atoms in a superlattice
was implemented in [42].
One route to implement a modulation of ∆ is to employ an arbitrary function generator
(AWG). The latter was set up at the end of this thesis. It provides the driving frequency
of about 80 MHz for the acoustic optical modulator (AOM) in the double pass configura-
tion in the x superlattice laser setup (Fig. 3.9). Additionally, it modulates this driving
frequency at a desired Floquet frequency in the tens of Kilohertz regime with a Floquet
amplitude of up to 2 MHz. The x1064 light’s frequency is thus modulated in the AOM at
the Floquet frequency by twice the Floquet amplitude. In turn, the relative phase between
the x1064 and x532 lattice is modulated67 and, so, the offset energy ∆ between adjacent
sublattice sites A and B. Floquet systems in cold atom experiments were also studied in
[95][64] and theoretically in [60][50].

One route for preparing the atoms in the superlattice for Floquet driving of two atoms in a
double well is to create a band insulator first and then split the latter to a Mott insulator.
This was likewise done in the vertical z superlattice to create the bilayer Hubbard system
(Sec. 4.2.3). There, the vertical z532 lattice was ramped up in the symmetric configura-
tion which split the band insulator into two coupled single-layer Mott insulators. Here,
for the x superlattice, the atoms can be first prepared in the x1064 lattice and the x532
lattice is ramped up in the symmetric configuration thereafter to split the single plane
band insulator into a single plane Mott insulator with half lattice spacing.
Having prepared a Mott insulator, two further measurements might be performed to test
the superlattice and verify the successful implementation of a Floquet system. Prelimi-
narily, both measurements are discussed in the following:
1. To test the superlattice control, the phase is varied around the symmetry point and
the number of singles and doubles are detected as a function of the phase. A similar mea-
surement was performed in the z superlattice (Fig. 4.22). This measurement might be
appropriate to recheck the phase dependence which could not be satisfactorily reproduce
with Rabi oscillations (Fig. 5.1 right).
2. The successful implementation of the Floquet driven system can be tested by measuring
singles and doubles as a function of the interaction strength U at the symmetry point of
the superlattice (Fig. 5.5 right). Here, for attractive interactions doubles are energetically

6In this regime, the band width of the electronic lock does not allow for correction of the fast modulation
- as desired.

7Instead of using the AWG to drive the AOM, a voltage controlled oscillator (VCO) was likewise set
up at the end of this thesis. The AWG had the disadvantage that the signal length of the uploaded,
arbitrary wave function was limited by the internal storage. This could be circumvented by using the
VCO which, however, exhibits long term drifts.
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favourable while for repulsive interactions doubles split into two singles. By successfully
Floquet driving the system, the tunnelling amplitudes tin, tout are modified compared to
the non-driven case and, hence, the distribution of singles and doubles changes between
both cases signalling that the Floquet driving works. A similar measurement was per-
formed in [42].

Figure 5.5: Left Singly and doubly occupied lattice sites in the x superlattice as a function
of the superlattice phase. In this preliminary result, tomography was not employed and
singles and doubles were measured in the total atom cloud across several planes. Therefore,
the atom number is given in arbitrary units and the plotted lines are just a guide to
the eyes.Right Singles and doubles in the symmetric x superlattice as a function of the
interaction strength. From attractive to repulsive interactions the two atoms on a doubly
occupied site tend to separate into both wells of the double well. This measurement can
be used to verify successful Floquet driving (see text).

With the successful implementation of Floquet driving, it becomes possible among other
things to control the super exchange interaction and swap its sign [103]. Thus, e.g. a back
and forth switching between an antiferromagnet and a ferromagnet could be implemented
for system temperatures below the super exchange energy.

Furthermore and beside the implementation of a Floquet system, the x superlattice to-
gether with the digital mirror device enables the implementation and detection of edge
states [90][68][113]. Such edge states were measured in cold atom experiments in [62][127][91].
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[9] Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and An-
toine Browaeys. “An atom-by-atom assembler of defect-free arbitrary two-dimensional
atomic arrays”. In: Science 354.6315 (Nov. 25, 2016), pp. 1021–1023.

[10] Navketan Batra and Goutam Sheet. “Understanding Basic Concepts of Topological
Insulators Through Su-Schrieffer-Heeger (SSH) Model”. In: Resonance 25.6 (June
2020), pp. 765–786. arXiv: 1906.08435[cond-mat].

[11] J G Bednorz. “Possible High Tc Superconductivity in the Ba - La- Cu- 0 System”.
In: (), p. 5.

133

http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1103/PhysRevA.70.013603
http://dx.doi.org/10.1088/0953-8984/16/24/R02
http://dx.doi.org/10.1088/0953-8984/16/24/R02
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1038/nphys2790
https://arxiv.org/abs/1212.0572 [cond-mat, physics:quant-ph]
https://arxiv.org/abs/1212.0572 [cond-mat, physics:quant-ph]
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1073/pnas.1301989110
http://dx.doi.org/10.1073/pnas.1301989110
http://dx.doi.org/10.1126/science.aah3778
http://dx.doi.org/10.1126/science.aah3778
http://dx.doi.org/10.1007/s12045-020-0995-x
http://dx.doi.org/10.1007/s12045-020-0995-x
https://arxiv.org/abs/1906.08435 [cond-mat]


Bibliography

[12] Andrea Bergschneider. “Strong correlations in few-fermion systems”. PhD thesis.
Ruperto-Carola Universität Heidelberg, 2017.
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