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Summary

The amplification of an external signal is a key step in direction sensing of biological
cells, a process that contributes significantly in the regulation of cell shape. This thesis
is concerned with a simple model for cell polarization as a response to a time-depending
signal, which was previously proposed in [51].

The model consists of a bulk-surface reaction-diffusion system of partial differential
equations for different variants of a protein on the cell surface and interior respectively.
The coupling is by a nonlinear Robin-type boundary condition for the bulk variable and a
corresponding source term on the cell surface. We study solutions of this model in certain
parameter regimes in which several reaction rates on the membrane as well as the diffusion
coefficient within the cell are large.

It turns out that in suitable scaling limits solutions converge to solutions of some
obstacle type problems. A distinguishing feature of these limiting problems is the presence
of a term that depends in a non-local way on the support of the solution itself and makes
the analysis quite challenging.

First, we justify the well-posedness of these obstacle type problems. Moreover, we
show an L1-contraction property of solutions, by means of which, we further prove that
the steady states are globally stable. It is worth pointing out that, this first part of the
thesis complements to a certain extent the analysis in [51] while it also provides a more
advanced insight on the limiting problems through this innovative L1-contraction property.

In the second part of this thesis, we investigate qualitative properties of the free bound-
ary. We conclude that there are necessary and sufficient conditions for the initial data that
imply continuity of the support at t = 0. If one of these assumptions fail, then jumps of
the support take place. We provide a complete characterization of the jumps for a large
class of initial data as well. The continuity results concerning the set {u(·, t) > 0} can be
further improved by imposing some additional assumptions on the initial data. In fact,
restricting our analysis to the case of the unit sphere, we prove global in time continuity
for the support of the solution.

The latter part of this thesis allows for a better understanding of the evolution of the
special non-local term that is involved in these limiting problems and depends on the set
{u(·, t) > 0}, which can be useful for future analysis.
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Introduction

1.1 Outline

This thesis is concerned with the study of a simplified, yet realistic model that contributes
to the composite process of cell polarization. More specifically, we consider a minimal
model for cell polarization as a response to an external chemical signal. In the following
sections of this introductory chapter, we elucidate in depth how the the ability of cells to
react in external signals forwards the regulation of their shape.

The model under investigation belongs to the broad family of reaction-diffusion sys-
tems. In principle, such systems arise naturally in the mathematical description of a large
number of real-life phenomena, spread through chemistry, physics (neutron diffusion the-
ory), geology, ecology and biology. Reaction-diffusion systems are especially appealing to
study not only due to their importance in applications, for instance collective phenomena
in life sciences, but also because they give rise to a rich variety of complex behaviours, such
as pattern formation.

To be more precise, the model that we consider in this thesis (cf. (1.3.1)-(1.3.4)) is
associated with the class of bulk-surface partial differential equations (PDEs) that appears
in a variety of different applications and has attracted quite some attention over the last
years, see for example [13], [41],[48], [58] and the references therein for applications to cell
biology. In particular, we consider a bulk-surface reaction-diffusion system of equations
for different variants of a protein on the outer plasma membrane and in the cytosol. The
cytosolic volume of a cell is represented by a bounded, connected, open domain Ω ⊂ R3

and the cell membrane by the boundary of Ω that is assumed to be a smooth surface Γ.
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Chapter 1. Introduction

It is worth noticing that, coupled bulk-surface systems are not covered by the standard
theory of reaction-diffusion systems.

The most striking feature of this particular model is that for an appropriate choice of
parameters, it is possible to approximate the model by a specific class of free boundary
problems, namely obstacle problems. In this thesis we study various features of these
obstacle type problems, filling several gaps in the literature. For a certain part of this
analysis, the answer had previously been known for the corresponding stationary model
[51], and we extend these results to the evolutionary case.

In this introductory chapter we will lay the foundation for these results and discuss the
necessary background, and we will give a more detailed description of the results in the
following chapters and appendices.

The aim in Section 1.2 is to familiarize non-expert readers with all the necessary biolog-
ical setting that underlines the present analysis. More specifically, in Subsection 1.2.1 we
begin with the description of cell polarization, a process which is principally tightly asso-
ciated with the symmetry breaking in cells. We further provide briefly various stimuli that
are capable of initiating the polarity of cells, emphasizing especially on the chemical ones.
To highlight the contribution of polarization in a large number of biological processes, we
discuss the well known example of wound healing.

Polarization in response to some external chemical signal motivates the directional
movement of the cell in the surrounding environment. This ability of the cells to migrate is
of great importance and pertains to the more wide and compound process of chemotaxis.
In Subsection 1.2.2 we provide insight on this concept, with the example of the social
amoeba Dictyostelium discoideum being the most suitable for serving this purpose. To
conclude this first part of the introduction, we present in Subsection 1.2.3 the evolution of
mathematical modeling of cell polarity throughout the years and we summarize the critical
features that respective models must possess. Starting from Turing, most of the content
of this subsection is an exposition of well-known modeling treatments in the literature.

Section 1.3 introduces the particular model for cell polarization that we investigate
in this thesis and constitutes the origin of our analysis. Here we provide an in depth
description of the bulk-surface reaction-diffusion system of partial differential equations
and its components, in accordance with the notions from cell biology described earlier.
The stationary solutions of this model have been studied in [51]. It is proven that in
suitable scaling limits, steady states converge to solutions of elliptic obstacle type problems.
The first part of the present thesis, complements this work by considering the full time-
dependent problem. Hence, in the following Subsection 1.3.1 we address the evolutionary
obstacle problems that we obtain in the respective limits and which later motivated our
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1.1. Outline

first publication [44]. This is a joint work with Barbara Niethammer, Matthias Röger
and Juan J. L. Velázquez and has appeared in the SIAM Journal on Mathematical
Analysis. We outline this work in Chapter 3 while a thorough derivation of these results
can be found in Appendix A.

The parabolic obstacle type problems that we obtain in the limit belong to the broad
class of free boundary problems. In Section 1.4 we clarify this correlation, providing alter-
native formulations of the classical obstacle problem and justifying the in between equiv-
alence. Furthermore, since we mostly address these problems as non-local free boundary
problems, we explain in Subsection 1.4.1 the reasoning behind this characterization.

In the remaining part of this thesis, namely Chapter 4 and Chapter 5, we focus our
attention on the non-local free boundary problem that we obtain in the case of infinite
cytosolic diffusivity, described in Subsection 1.3.1. Although we prove in [44] that the
problem is well-posed, these results imply only the global existence and uniqueness of
solutions to (1.3.1.1)-(1.3.1.3) with the non-local term α ∈ L∞(0, T ) without providing
much insight about the evolution of the support of the solution. The difficulties that we
addressed throughout our former work due to the lack of regularity of the set {u(·, t) > 0}
as well as of the functional α(t) inspired the second part of this thesis.

To be more precise, the remaining part is related to the qualitative properties of the
free boundary and the relevant introduction to that topic is described in Section 1.5 and its
follow-up Subsection 1.5.1. In the beginning we mention several prominent results in the
literature of regularity of the free boundary for the classical parabolic obstacle problem.
Yet, the particular structure of our limit obstacle problem, owing to the fact that the term
α(t) depends in a non-local way on the support of the solution, does not allow us to employ
already well known techniques in our analysis. Therefore, in this section we describe the
necessary and sufficient conditions that are required in order to derive regularity results
similar to the ones obtained for the classical obstacle problem.

Section 1.5 serves as an introduction to our latest publication [46] which is a joint
work with Barbara Niethammer, Matthias Röger, Juan J. L. Velázquez and thus far can
be found in the arXiv. We summarize the corresponding results in Chapter 4 while
a rigorous exposition is presented in Appendix B. In Subsection 1.5.1, we address our
ongoing work (cf. [45]) which can be considered as a sequel of [46]. A detailed description
of the framework as well as of the respective results are given in Chapter 5.

At the very end of this introductory chapter, we also provide an overview of the structure
of this thesis, cf. Section 1.6 and we further highlight the novelty of our research in the
field compared with previous work.
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Chapter 1. Introduction

1.2 The biological framework

1.2.1 Cell polarization

Cell polarization is in many instances a dynamic, time-dependent process and the term
itself pertains to the asymmetric cell shape due to reorganization of several chemicals, some
of them attached to the cell membrane and others contained in the cytoplasm. Roughly
speaking, polarized patterns are described by the property in which heterogeneous distri-
butions of chemical substances emerge in polarized cells, in contrast to their former existent
uniform distribution before polarization occurs.

In [58], the authors address several causes of symmetry breaking in cells that lead
to polarization. Although the onset of polarity is often induced by cells’ response to
extracellular chemical sources, other non-chemical factors are also essential in the regulation
of cell shape. A noteworthy example of such non-chemical cues that enable cells to polarize
is membrane tension. This particular physical stimulus is correlated to the spontaneous
polarization of, especially elongated, cells. In principle, cells can polarize in response to
chemical, electrical, mechanical, or other physical stimuli.

In the present thesis, we focus our attention in polarization which is influenced only
by chemical factors. For cell polarity occurring from the coupling of both mechanical and
chemical cues, see for instance [38], [73]. Cell polarization in response to some external
chemical stimulus has a fundamental contribution in numerous biological processes, such
as migration, development and organization of eukaryotic cells [58]. A prominent exam-
ple that illustrates the role of cell polarization and its regulation is tissue repair (wound
healing).

Tissues are composed of coordinated cells that form a particular shape with a specific
structure and organisation. The ability of a tissue to maintain its shape and structure
throughout the lifespan of an organism, as well as to withstand and overcome damage, is
of vital importance [27]. In the general case of wounded skin, the repairing process (known
as re-epithelialisation) is driven by multiple polarized cell behaviours. It has been shown
that a proliferating ring forms surrounding the damaged area but away from the wound
edge. Within this ring, cell division is increased and oriented towards the wound in order
to replenish the lost population of cells [55]. Simultaneously, to restore the initial stratified
architecture of the skin, cells rearrange, proliferate, flatten, elongate and migrate in the
direction of injury [cf. [27],[55],[61]].

4



1.2.2. The concept of chemotaxis

1.2.2 The concept of chemotaxis

Throughout the process of wound healing, the ability of cells to not only polarize but
also migrate, plays a significant role in driving gap closure after injury and re-establishing
tissue integrity and architecture. Actually, in a wide variety of biological processes, cells
have developed the capacity to polarize in response to extracellular chemical sources and
then migrate toward chemo-attractants or away from chemorepellants [40]. This process is
referred to as chemotaxis and tissue repair constitutes only one among a myriad biological
functions, in which chemotaxis is critical.

Cells respond to continuously changing environmental conditions by means of receptors
which are embedded in the cell membrane. Many eukaryotic cells can detect both the
magnitude and direction of external signals, due to plasma membrane receptors. In case a
spatially nonuniform extracellular signal is detected, the term taxis refers to the directional
motion of the cells, either up or down the gradient of the signal. Whenever this signal is
a diffusible molecule, the directed motion of cells is called chemotaxis [12].

As indicated in [12], the concept of chemotaxis can be comprised of three interdepen-
dent processes, namely direction sensing, polarization and random motility. The term
direction sensing concerns the mechanism by which chemical gradients are detected and
amplified, providing an internal compass for the cell. During the process of polarization,
the cell establishes its asymmetric shape with a well-defined front and back, a state that is
prerequisite for organizing the machinery that powers cell motility in the direction of the
polarity axis without an external stimulus. This axis is often referred to as the long-axis
of the cell. In the absence of an external signal, cells can extend random pseudopodia and
‘diffuse’ locally, a process known as random motility.

The link between the former mentioned processes can be described briefly as follows.
The step of direction sensing proceeds by the transduction of a signal by receptors on the
plasma membrane and its adaption by intracellular signaling cascades, which involve the
activation and deactivation of specific proteins and the translation of possibly shallow gra-
dients in the outer signal to large amplitude intracellular gradients in protein distributions.
Once such polarity of the cell in form a of a spatial asymmetry in chemical concentrations
has been established, changes in cell shape and the movement of the cell in the surrounding
environment can be initiated (cf. [44]).

One striking and well-studied example over the years is the chemotaxis of the social
amoeba Dictyostelium discoideum which belongs to a wide range of eukaryotic cells that
are capable of moving individually, contributing particularly to many biological functions.
For instance, fibroblasts, responsible for the process of tissue repair, are also included in
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Chapter 1. Introduction

the same selection of cells.

Dictyostelium amoebae, upon starvation, initiate the spontaneous production of spe-
cific chemo-attractant centers that spread spatially as reaction-diffusion travelling chemical
waves. The amoebae, in the surrounding area of these initiation centers, sense the chemo-
attractant and direct their chemotactic movements towards them. Near these centers,
Dictyostelium amoebae rotate around a spontaneously formed hole, where the cell density
increases locally to form aggregates. The developmental program of the amoebae culmi-
nates with the formation of terminally differentiated fruiting bodies [cf. [14], [36], [68]].

1.2.3 On the mathematical modeling of polarization

Concentration of chemical substances that differ by only ∼ 2% across the cell body can
be sufficient in order for cells to initiate their directed motion [76]. Since cell polariza-
tion is essential for the process of chemotaxis, a question that is naturally raised is what
mechanism drives relatively weak chemical gradients to yield large spatial changes of the
concentrations of chemicals at the cellular level. This is a basic issue that polarization
models must address and several modeling treatments of varying complexity have been
suggested to analyze the spatial and temporal processes associated with the polarity of
cells.

The spark that initiated the development of a significant number of models used to
describe cell polarization over the past years is pattern formation theory. Turing, whose
name is synonymous with this theory due to his seminal work in [72], discovered the pos-
sibility of generating patterns by the interaction of two substances, driven by diffusion
instability. More specifically, Turing suggested that under certain conditions, chemicals
with different diffusion rates can interact in such a way as to produce spatially heteroge-
neous stable patterns starting from a homogeneous, uniform initial state. In his work, it
is further indicated that no pattern formation occurs in the absence of diffusion.

Turing derived his innovative theory by more abstract mathematical considerations.
However, it can be shown, see [[40], [47]], that his principle postulates the generation of
stable inhomogeneous patterns by means of a self-enhanced local production of an activator
that also regulates the production of a long-range inhibitor. Gierer and Meinhardt managed
to adapt this idea in [25], providing one of the first modeling treatments of cell polarization,
the concept of which, is correlated to the theory of biological pattern formation for the
first time.

Their theory relied on the interaction between a short range activator and a long range
inhibitor which leads to pattern formation from an almost homogenous initial condition. In

6



1.2.3. On the mathematical modeling of polarization

particular, they proposed a minimal, yet molecularly plausible model of reaction-diffusion
type, which consists of local activation for the amplification of a small external chemical
signal and long-range inhibition in order to prevent the activation from spreading through-
out the whole domain unchecked. Since signal amplification is the key element in the
process of direction sensing which contributes to the establishment of polarized patterns
in cells, the model in [25] was considered suitable for the description of cell polarization.

The former modeling idea fueled the curiosity of many developmental biologists who
tried to explain how polarity of cells is formed in the following years. Shortly they dis-
covered though, that there is a lack of practicability in the model suggested in [25]. This
stems from the fact that the main underlying theory, influenced by Turing, predicted the
formation of only stable activation patterns. Such a feature cannot serve efficiently the
process of gradient sensing in cells and by extension cell polarization, since the continuously
changing environment of cells requires for a signaling machinery capable of readjustment.

The need of destabilizing the polarized patterns once they had been generated in cells,
motivated Meinhardt to revisit the proposed activator-inhibitor model. To this end, he
introduced in [47] a second inhibitor to the system that acts locally with a longer activation
time. The upgraded mechanism that he suggested, widely known as local excitation-global
inhibition (LEGI), accounts for one of the most popular models for cell polarization and led
to a proliferation of more comprehensive models which yield the specific chemical patterns
associated to cell polarization [cf.[12], [40], [53]].

Numerous mathematical models proposed for cell polarity, have been motivated by
small GTPase biology. GTP-binding proteins (GTPases) run a continuous cycle between
activation/deactivation and membrane-attachment/membrane detachment, that is quite
widespread in diverse families of GTPases. The particular ability of activated GTPase
proteins to localize in parts of the membrane, contributes significantly in the regulation
of cell shape [50], for instance in the budding of yeast [54] and in the formation of micro-
domains in continuous membranes [56], [71] .

Typically polarization is achieved by the combination of an internal pattern forming
system, a response to an external signal, usually from the outer cell membrane, that imposes
some directional preference to the pattern and the amplification of small concentration
differences through transport processes and interacting networks both within the cell and
on the cell membrane. We focus on a minimal model for the amplification step that has
been proposed in [51].

7



Chapter 1. Introduction

1.3 A bulk-surface reaction-diffusion system

This section includes parts of the introduction of the paper [44], written jointly by
Barbara Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

The proposed bio-chemical model consists of a system of PDEs, motivated by the GTPase
cycle model presented in [59, 60]. We consider a protein that can be in an active or an
inactive state, where the inactive protein moreover can be bound to the cell membrane or be
in a cytosolic state, i.e. contained in the cells interior. We denote the surface concentration
of the active and incative form by u and v, respectively, and the volume concentration
of the inactive cytosolic state by w. The model has only a few ingredients. It accounts
for lateral diffusion on the cell membrane, for diffusion inside the cell, for activation and
deactivation processes on the cell membrane and for attachment to and detachment from
the cell membrane.

More specifically, our model contains three types of activation processes of the proteins
which all take place on the cell membrane. First there is an intrinsic activation with rate
a1. Second there is an activation by a positive feedback mechanism and a rate law given
by a Michaelis-Menten law. Third, there is an activation induced by an external chemical
signal. We assume here that this signal has already been processed and has lead to a con-
centration field c on the membrane of a chemical that catalyzes the activation (the function
c could be also interpreted as the surface concentration of some activated receptors). This
concentration in general may vary with space and time. For the deactivation we again
prescribe a Michaelis-Menten rate law. The use of Michaelis-Menten laws stems from the
fact that the corresponding processes require some catalyzation, as the intrinsic activation
and deactivation of GTPase proteins is typically very slow [4].

To give a mathematical formulation, we represent the cell and its outer cell membrane
by a domain Ω ⊂ R3 and its boundary Γ := ∂Ω. Moreover we fix a time interval (0, T )
of observation and a signal concentration c : Γ × (0, T ) → R. The assumptions described
above give rise to the following bulk-surface reaction diffusion system.

∂tu = ∆Γu+
(
a1 + a2u

a3 + u
+ c

)
v − a4u

1 + u
on Γ× (0, T ) , (1.3.1)

∂tv = ∆Γv −
(
a1 + a2u

a3 + u
+ c

)
v + a4u

1 + u
− a5v + a6w on Γ× (0, T ) , (1.3.2)

∂tw = D∆w in Ω× (0, T ) , (1.3.3)

8



1.3. A bulk-surface reaction-diffusion system

−D∂w
∂ν

= −a5v + a6w on Γ× (0, T ) . (1.3.4)

Here ∆Γu and ∆Γv denote the Laplace-Beltrami operator on the surface Γ and a1, . . . , a6

are nonnegative constants while D denotes the quotient of the cytosolic diffusion and
the lateral membrane diffusion constants, which typically is very large. Throughout our
analysis we assume that both active and inactive proteins diffuse on the membrane with
the same rate. However we stress that having different diffusion rates for u and v would not
affect the subsequent analysis, since the diffusion of the inactive protein on the membrane
vanished in our scaling limit (cf. (3.3.3)). Furthermore, setting f1(u) := a1 + a2u

a3+u and
f2(u) := u

1+u , we note that in principle both f1, f2 could be replaced by any continuously
differentiable increasing functions such that f1(0) ≥ 0, f2(0) = 0 with f1 becoming constant
and f2 having a positive limit as u becomes large. In that case, the rescaling in (cf. (3.3.1))
is then adapted to (f1, f2) (f1, ε

−1f2).

We complement the system with initial conditions:

u(·, 0) = uin , v(·, 0) = vin on Γ , w(·, 0) = win in Ω , (1.3.5)

where uin, vin : Γ→ [0,∞) and win : Ω→ [0,∞) are given nonnegative data.

The system (1.3.1)-(1.3.4) contains two parts. On the one hand, we have a reaction-
diffusion system on the membrane for the variables u and v, with a w-dependent source
term. On the other hand, there is a diffusion equation for w in the interior of the cell
with a nonlinear Robin-type boundary condition that depends on u and v. Solutions of
(1.3.1)-(1.3.5) satisfy the mass conservation propertyˆ

Ω
w(·, t) dx+

ˆ
Γ

(
u(·, t) + v(·, t)

)
dS =

ˆ
Ω
win dx+

ˆ
Γ

(
uin + vin

)
dS (1.3.6)

for all t ∈ (0, T ).

In addition to (1.3.1)-(1.3.4) we will study a reduced system that is obtained in the
limit of infinite cytosolic diffusivity, which is motivated by the fact that cytosolic diffusion
within the cell is by a factor of hundred larger than the lateral diffusion on the membrane
[34]. In this limit the cytosolic concentration becomes spatially constant and w = w(t) is
determined by the total mass conservation, i.e.

|Ω|w(t) = m−
ˆ

Γ

(
u(·, t) + v(·, t)

)
dS , (1.3.7)

where m is the total amount of protein. The reduction for D = ∞ leads to a nonlocal
reaction-diffusion system on Γ× (0, T ), given by (1.3.1), (1.3.2) and (1.3.7), complemented

9



Chapter 1. Introduction

by initial conditions for u and v. This reduction can be viewed as a kind of shadow system.
Such systems have been analyzed intensively in the case of two-variable reaction-diffusion
systems in open domains [28,33,42], and in the context of obstacle problems in [64].

1.3.1 Large reaction rate limit

This section is basen on the introduction of the paper [44] written jointly by Barbara
Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

We parametrize the reaction rates a4, a5 and a6, the diffusion coefficient D and the total
mass of proteins by a large parameter ε−1 > 0. A distinctive attribute of the model
(1.3.1)-(1.3.5) is that a suitably rescaled version of the solution converges as in the large
reaction rate limit ε → 0 to solutions of certain reduced systems. An almost immediate
and natural question arising is how these fast reactions are justified for extremely large
rates a4, a5 and a6. Yet, there are no experimental data that could provide insight in
this direction. However, the assistance of these particular rate parameters in the clear
distinction of regions in which the concentrations of some chemicals have different orders
of magnitude is crucial. First, we will investigate the limit of infinite cytosolic diffusion
D → ∞. After appropriate rescaling and renaming (cf. (3.3.1)), taking the limit ε → 0,
yields the following parabolic obstacle-type problem

∂tu−∆Γu = −a4(1− g)ξ + αg on Γ× (0, T ) , (1.3.1.1)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on Γ× (0, T ) , (1.3.1.2)
u(·, 0) = u0 on Γ , (1.3.1.3)

where u0 is the limit of suitably rescaled versions of uin, the function g : Γ× (0, T )→ (0, 1)
is given by

g(x, t) = c(x, t)
c(x, t) + a5

, (1.3.1.4)

and α : (0, T )→ R only depends on time and is determined by a solvability condition for
(3.2.2), see (3.2.5). This function α plays the role a Lagrange multiplier associated to the
mass conservation property

ˆ
Γ
u(·, t) dS =

ˆ
Γ
u0 dS for all t ∈ (0, T ) ,

that is satisfied in the limit.

10
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In the case D <∞ equation (1.3.1.1) changes and we obtain the system

∂tu = ∆Γu− a4(1− g)ξ + a6gw on Γ× (0, T ) , (1.3.1.5)
0 = ∆w in ΩT , on Γ× (0, T ) , (1.3.1.6)

D
∂w

∂n
= a4(1− g)ξ − a6gw on Γ× (0, T ) , (1.3.1.7)

u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on Γ× (0, T ) , (1.3.1.8)
u(·, 0) = u0 on Γ . (1.3.1.9)

The analogy to D = ∞ is even more apparent if one expresses w as a non-local operator
of u. A particularly convenient form is presented in [44, Proposition 2.7].

The problems (1.3.1.1)-(1.3.1.3) and (1.3.1.5)-(1.3.1.9) provided the foundation of our
first publication [44], a detailed outline of which is presented in Chapter 3. The main
contributions are a rigorous justification of the asymptotic reduction, the well-posedness
of the evolutionary obstacle-type problem that we obtain in the limit, an L1-contraction
property of solutions, and the global stability of steady states.

1.4 Obstacle type problems

This section is based on both introductions of papers [44] and [46] written jointly
by Barbara Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

Obstacle type problems are still an active field of research. In particular, parabolic obstacle
type problems appear in various applications and have been studied thoroughly over the
past decades [24].

For the first time, Duvaut in [15] suggests a suitable transformation for the one-phase
Stefan problem, by means of which, he obtains a formulation in terms of a parabolic obstacle
problem. Another well known instance arises in the context of fluid flows in porous media,
where the Baiocchi transform [2] also leads to an obstacle problem.

Obstacle problems are tightly correlated with free boundary problems. More precisely,
obstacle problems belong to a class of free boundary problems that can be formulated
as variational inequalities, that is inequalities for bilinear functionals which are satisfied
for functions u and test functions in a space satisfying inequalities of the form u ≥ ψ.
On the other hand, under appropriate regularity assumptions it is possible to reformulate
the same class of free boundary problems as partial differential equations in which an
unknown function ξ satisfies an inequality almost everywhere in the set in which the partial

11
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differential equations are solved. Both formulations can be found for example in [37, 62].
The equivalence between both approaches can be seen using the so-called Stampacchia
Lemma [62, Section 5:3, Theorem 5:4.3].

In principle, a classical parabolic obstacle problem is given by
u ≥ 0,
∂tu−∆u ≥ f,

∂tu−∆u = f in {u > 0}
(1.4.1)

(see for example [66, Section 3.1]). However, as we mentioned earlier, it can always be
rephrased as a parabolic variational inequality [5]

u ≥ 0, (∂tu−∆u)(v − u) ≥ f(v − u) a.e., for any v ≥ 0. (1.4.2)

We notice that under suitable (parabolic Sobolev) regularity assumptions the system (1.4.1)
generalizes the classical formulation

∂tu−∆u = f in {u > 0} ,
f ≤ 0 in {u = 0} ,
u = ∇u = 0 on ∂{u > 0} .

(1.4.3)

Throughout this thesis we will only use the equivalent to having a variational inequality
approach. On this account, an auxiliary function ξ ∈ [0, 1] such that ξ = 1 in {u > 0}
must be determined along with the unknown u.

In order to understand better how the problems that we obtain in the large reaction
rate limit are associated with the parabolic obstacle problems, we focus on the reduced
model (1.3.1.1)-(1.3.1.2). In [44, Remark 2.3] we derive the following characterization of
solutions,

∂tu−∆u+
(
a4(1− g)− αg

)
=
(
a4(1− g)− αg

)
+
X{u=0}, u ≥ 0, (1.4.4)

with α = α(t) given as a non-local function of u, more precisely

α(t) =
a4
´
{u(·,t)>0}

(
1− g(·, t)

)
dS´

{u(·,t)>0} g(·, t) dS .

In the formulation (1.4.4) the problem corresponds to the classical parabolic obstacle model,
where a4(1 − g) − αg is replaced by some given function f independent of u. Defining
F(u) := ∂tu−∆u+

(
a4(1− g)− αg

)
, the problem (1.4.4) can be written as

uF(u) = 0, F(u) ≥ 0, u ≥ 0,

and can be expressed as a variational inequality, see for example [43, Section II.9.1].
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1.4.1 Non-local free boundary problems

This section is based on the introduction of paper [44] written jointly by Barbara
Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

A distinguished feauture of the free boundary problems that we obtain in the limit of
both infinite and finite cytosolic diffusivity, is the presence of some terms in the equations
that depend in a non-local way on the solution u itself. To be more precise, the problem
(1.3.1.1)-(1.3.1.3) establishes the non-locality through the dependence of α in (1.4.4) on
the positivity set {u > 0}. On the other hand, in the case of the bulk-surface problem
(1.3.1.5)-(1.3.1.9), the non-local dependence takes place through the function w which
solves the elliptic problem (1.3.1.6), (1.3.1.7).

1.5 Regularity of the free boundary

This section is based on the introduction of paper [46] written jointly by Barbara
Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

Over the years, many mathematicians engaged with either evolutionary or stationary ob-
stacle problems, have been allured by the study of fine regularity properties of the free
boundary. In the context of the present thesis, free boundary is described by the boundary
between the support of the solution and the coincidence set {u = 0}.

Brezis and Friedman prove in [6] the existence of solutions to problem (1.4.1) for f ∈
L∞(Rn × (0, T )) with ∂tf ∈ L∞(Rn × (0, T )) and prescribed initial data u0 given by a
finite, positive measure. Moreover, if f is strictly negative, more precisely f ≤ −ν for
some constant ν > 0, and u0 has compact support then the solution has compact support
for all times. Under more restrictive conditions on u0 it is further shown that the support of
u(·, t) has distance at most of order

√
t from the support of u0. The proof relies on careful

comparison arguments, see also [18] for an alternative (and simpler) approach. Slightly
weaker estimates on the support for a larger class of obstacle problems have been derived
by probabilistic methods in [3].

The origin of respective analysis appears for the first time in the context of the classical
one-phase Stefan problem. In particular, a specific parabolic obstacle problem [16] of the
form (1.4.1), where f = −1 and the additional sign restriction ∂tu ≥ 0 arise. In this case,

13
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the free boundary consists of two set of points, namely the regular and the singular ones.
The set of regular points includes all points where the coincidence set {u = 0} has positive
density. Whereas cusps may occur in singular points, in regular points the free boundary
is locally smooth [7], see also the exposition in [23, Section 2.9].

In the case f = −1 but without any additional assumptions on the sign of ∂tu it is
proved that the boundary is C1,1-regular in space and C0,1-regular in time [11]. Moreover,
around regular points (defined in terms of a lower density function) the free boundary is
C∞-regular in space and time.

Essential part of the proof of such regularity properties relies on local monotonicity
formulas and blow ups. We refer to [10], [20], [21], [66] and the references therein for more
recent developments and extensions to more general operators.

Half of this thesis is concerned with the study of qualitative properties of the solutions
to the non-local free boundary problem that is obtained in Section 1.3.1 as an asymptotic
reduction for a cell polarization model. In particular, we restrict our analysis to a simplified
version of the problem (1.3.1.1)-(1.3.1.3), in which g is assumed to be a time-independent
function.

Without loss of generality, rescaling u and α accordingly in (1.3.1.1), we can further
set a4 = 1.

We then consider a triplet (u, ξ, α) of functions u, ξ : ΓT → R and α : (0, T )→ R that
solve the following problem in an almost everywhere sense,

∂tu−∆Γu = −(1− g)ξ + αg on ΓT , (1.5.1)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (1.5.2)
u(·, 0) = u0 on Γ . (1.5.3)

and that satisfy the following compatibility condition (guaranteeing mass conservation for
u)

α(t) =
´
{u(·,t)>0}(1− g) dS´
{u(·,t)>0} g dS

for t ∈ (0, T ) . (1.5.4)

In (1.5.1) the notation ∆Γ stands for the Laplace-Beltrami operator associated to the
surface Γ.

It turns out that there are two conditions that play a crucial role in proving either
continuity or jumps of the set {u(·, t) > 0} as t → 0+. More precisely, we introduce the
following assumptions on the initial data. We assume that for some fixed θ > 0 it holds a
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first non-degeneracy condition

(1− g)− α0g ≥ θ > 0 in {u0 = 0} where α0 :=
´
{u0>0}(1− g) dS´
{u0>0} g dS

(1.5.5)

and further we prescribe a second non-degeneracy condition

H2
(
∂{u0 > 0}

)
= 0 , (1.5.6)

where H2 denotes the two-dimensional Hausdorff measure in R3.

The motivation behind the choice of (1.5.5) and (1.5.6) stems from the following ob-
servation. The problem (1.5.1), (1.5.2) can be reformulated in the form

u ≥ 0,
∂tu−∆u ≥ −(1− g) + αg,

∂tu−∆u = −(1− g) + αg in {u > 0}
(1.5.7)

As a consequence, it can be compared with the classical obstacle problem given by
(1.4.1) and its generalized formulation given by (1.4.3). In the case of problem (1.5.7),
the term (1 − g) − αg plays the role of −f in (1.4.1). The first condition is therefore
clearly related to the condition f ≤ −ν < 0 for the classical obstacle problem that has
been present in all the regularity results stated above. The necessity of such a condition
for the regularity of solutions and its free boundary is well known and can for example
be seen from an application of the Hopf boundary point lemma [9]. The same condition
also appears as a stability condition for the free boundary and estimates on the symmetric
difference of the support of different solutions (see [8] and the exposition in [63, Chapter
6]).

Regarding the problem (1.5.7), if (1 − g) − α0g ≤ −θ < 0, it follows from the strong
maximum principle that u(·, t) becomes strictly positive for small positive times. Then,
the interface ∂{u(·, t) > 0} experiences a jump and the same is true for α. Moreover, by
the differential inequality in (1.5.7) we obtain at least formally in {u(·, t) = 0} for almost
all t that

0 ≥ −(1− g) + αg.

It is worth pointing out though that in general the right-hand side of (1.5.1) does not have
a sign, since its integral over the support of u vanishes.

Regarding the second nondegeneracy condition, we prove in [46, Appendix B, Lemma
B.2] that (1.5.6) is equivalent to

H2
((
{u0 > 0}

)
+δ
\
(
{u0 > 0}

)
−δ

)
→ 0 as δ → 0 , (1.5.8)
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where

(
{u0 > 0}

)
+δ

:= {x |d(x,
(
{u0 > 0}

)
) ≤ δ} ,

(
{u0 > 0}

)
−δ

:= {x |d(x,
(
{u0 = 0}

)
) ≥ δ} .

In our analysis in [46] mainly the formulation (1.5.8) is used.

Such a condition seem not to be required for problem (1.4.3) but appears to be quite
significant for problem (1.5.7). In future work (cf. [45]), we will provide an example of
initial data u0 such that (1.5.5) holds while (1.5.8) is not satisfied. We expect that in this
case, the function α(t) can not be continuous at t = 0 and the positivity set {u(·, t) > 0}
is oscillatory as t→ 0+.

The necessity of this second condition in our analysis is a consequence of the particular
structure of the right-hand side in (1.5.7) and its dependence on the positivity set {u(·, t) >
0} through the non-local functional α(t), whereas f in (1.4.3) is a general function of space
and time.

Under assumptions (1.5.5) and (1.5.6) our first major result is that the set {u(·, t) > 0}
and therefore the non-local term α(t) are continuous at t = 0. That was the starting point
for our second publication in [46], a detailed summary of which can be found in Chapter 4.
Besides continuity, we further investigate the jump of the support at t = 0 in case (1.5.5)
is violated but (1.5.6) is valid.

1.5.1 Global continuity of the interface

Thus far, we have proved that {u(·, t) > 0} converges as t→ 0+ to {u0 > 0} in a suitable
topology, under assumptions (1.5.5) and (1.5.8). Since the non-local term α(t) depends
on the support of the solution (cf. (1.5.4)), this convergence implies in particular that the
functional α(t) is continuous at t = 0.

Nevertheless, the question of whether the former continuity results can be improved
arises naturally now. The answer to that question is positive and a detailed proof lies
in Chapter 5. In fact, Chapter 5 closely follows the forthcoming article, namely [45]. It
consists of though, only a part of it, since the rigorous construction of a counterexample
of initial data for which (1.5.5) is valid but (1.5.8) fails, is not included here.

For the purpose of our analysis, we restrict ourselves to the special case of the unit
sphere S2 and to axisymmetric data and axisymmetric solutions. We further assume that
(1.5.5) and (1.5.8) are valid. It turns out that, if we impose some additional assumptions on
the initial data u0, we can deduce global continuity of both the positivity set {u(·, t) > 0}
and the non-local term α.

16



1.6. Overview

1.6 Overview

This section contains parts of both introductions of papers [44] and [46] written
jointly by Barbara Niethammer, Matthias Röger, Juan J. L. Velázquez and the author.

The layout of the current thesis is as follows. In Chapter 2 we introduce the notation that
is used throughout this work and we further provide some lemmas that will play a crucial
role throughout our analysis.

As it has been already stated, the significance of the model that has been investigated in
this thesis stems from the fact that in a suitable parameter regime an asymptotic reduction
leads to a generalized obstacle-type problem that allows for a clear and mathematically
tractable characterization of polarized states. In [51] the authors have analyzed stationary
states and the onset of polarization. In Appendix A which coincides with our first publi-
cation [44], we continue this analysis to some extent, by considering the time-dependent
problem. More precisely, we prove that in a suitable asymptotic limit the system (1.3.1)-
(1.3.5) converges to a bulk-surface parabolic obstacle type problem. For this model and a
reduction to a non-local surface equation we show an L1-contraction property and, in the
case of time-constant signals, the stability of stationary states. We outline thoroughly the
content of Appendix A in Chapter 3.

The parabolic obstacle problem that is obtained in [44] involves a specific nonlinear
non-local term that can be seen as a (time dependent) Lagrange multiplier ensuring mass
conservation. The particular dependence of this term on the solution (more specifically on
the support of the solution) makes the analysis quite challenging. In Appendix B which
coincides with our second publication [46], we focus on this specific parabolic obstacle
problem and we investigate continuity properties of the Lagrange multiplier and of the
(compact) support of the solutions. We present necessary and sufficient conditions for the
initial data that imply continuity of the support at t = 0. If one of these assumptions fail,
then jumps of the support take place. In addition we provide a complete characterization
of the jumps for a large class of initial data. We summarize the content of Appendix B in
detail in Chapter 4.

In Chapter 5 we improve the continuity results obtained in Chapter 4 and hence, the
last chapter of this thesis can be considered as a continuation of the analysis in Chapter
4. We prove that under some additional assumptions on the initial data, along with the
necessary and sufficient conditions introduced in Chapter 4, the support of the solution is
continuous for all t ≥ 0.
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Let us conclude now this section by underlining the features that distinguish this work
from any previous existent literature and hence advance the knowledge in the field.

With regard to the mathematical model (1.3.1)-(1.3.5) proposed for cell polarization
that we study in the beginning of this thesis (cf. Section 1.3), we should point out that it
is quite different from LEGI-type models (cf. Subsection 1.2.3), and rather describes the
signal amplification following a first polarization of the cell, expressed by a heterogeneous
distribution c. Indeed, in contrast to the classical Gierer-Meinhardt models [cf. [25]]
solutions of the proposed model, under suitable scaling limits, do not exhibit spontaneous
polarized patterns if the signal c is constant. Yet, in the absence of an external chemical
signal, the model under consideration is closely related to models for spontaneous cell
polarization considered in [30], [60].

We have already mentioned that the respective stationary model has been studied in
[51]. In particular, in addition to well-posedness for the elliptic obstacle problems which the
authors obtain in corresponding scaling limits (cf. Section 1.3.1), the onset of polarization is
studied in [51] for sufficiently small (rescaled) mass of protein. In the interpretation of a cell
polarization model as described in Section 1.3, the positivity set {u(·, t) > 0} corresponds
to regions where the concentration of a chemical is high, while the set {u(·, t) = 0} indicates
those regions where the concentration of such a chemical is low.

Although the initial purpose of [44] was to complement the analysis in [51] by extending
most of the results, especially the ones concerning the well-posedness of the limit obstacle
problems to the parabolic case, significant innovations have been developed in addition
to the former knowledge. More precisely, compared to [51] the main novelty of [44] is
to introduce some monotonicity formulas which allow us to prove uniqueness of solutions
and also uniqueness and stability of steady states of the problems (1.3.1.1)-(1.3.1.3) and
(1.3.1.5)-(1.3.1.8).

Uniqueness of the steady states associated to the problem (1.3.1.1)-(1.3.1.3) has been
proved in [51] using a completely different approach. Similar uniqueness results have been
obtained in [51] for the stationary states of (1.3.1.5)-(1.3.1.8) in the particular case in
which the domain Ω is a ball.

We recall that the second part of this thesis is concerned with the qualitative properties
of solutions to the non-local obstacle problem that we derive in [44] for D =∞. In Section
1.4 we provide a reformulation of (1.5.1)-(1.5.2) in terms of (1.5.7). Compared to the
subject of [46], there is a key difference between problem (1.5.7) and the classical obstacle
problem (1.4.1) (cf. Section 1.4), which makes the analysis in this paper quite challenging
and leads in turn to some interesting results. More specifically, the right-hand side of
(1.5.7) differs from the corresponding right-hand side of (1.4.1) in the sense that in the
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first, α(t) depends on the positivity set {u(·, t) > 0}. It is worth noticing that, in principle,
problems with a nonlinear and non-local dependence f := f(u) have already been studied.
However, in most works this dependence is either local or only includes a dependence on´
u, which leads to much better continuity properties and is much easier to control than

a dependence on the support of u. A notable exception is the work [65], where also a
dependence on the size of the support is present. Yet, the particular non-local dependence
of the functional α(t) on the solution u(·, t), does not allow us to use already existent
techniques similar to the ones used for problem (1.4.3) or in the more general cases just
mentioned.

19





C
h

a
p

t
e

r 2
Notation and Preliminaries

To begin with, let us summarize here the notation that is relevant for all of the thesis.

• For an open, bounded and connected set Ω ⊂ R3 we denote by |Ω| = L3(Ω) the
Lebesgue measure and by

´
Ω · dL

3 the corresponding volume integral. For a smooth
orientable hypersurface Γ ⊂ R3 we denote by |Γ| = H2(Γ) its area (i.e. the 2-
dimensional Hausdorff measure) and by

´
Γ · dS the corresponding surface integral.

• For subsets A ⊂ Γ we denote by XA the standard characteristic function of the set
A. For x0 ∈ Γ and ρ > 0 we denote by Bρ(x0) the ball on the hypersurface Γ with
respect to the extrinsic (Euclidean) distance in R3. We remark that for a smooth
hypersurface Γ, the intrinsic (geodesic) and the extrinsic distances induce equivalent
metrics.

• For the sake of convenience, ΩT and ΓT stand for Ω×(0, T ) and Γ×(0, T ) respectively.

• We denote the usual Sobolev spaces by W k,p(U) and the parabolic Sobolev spaces
by W k,k/2

p (UT ), where U = Ω or U = Γ, k ∈ N0, 1 ≤ p ≤ ∞. The Hölder and
parabolic Hölder spaces are denoted by Cα(U) and Cα,α/2(UT ), respectively, for
0 < α < 1. Moreover, Cm(U) denotes the space of all functions f : U → R which
admit continuous partial derivatives ∂αf in U for each multi-index α with |α| ≤ m.
The weak parabolic solution spaces are denoted by V2(UT ) := L2(0, T ;H1(U)) ∩
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H1(0, T ;H1(U)∗).

• For two vectors a, b ∈ R3 we denote by a · b the Euclidean inner product in R3 and
by a⊗ b the corresponding tensor product in B(R3), where B(R3) is the space of all
bounded linear operators from R3 to R3. We further denote by a⊥ the perpendicular
vector to a.

• Let ν be the smooth outer unit normal field on Γ. We denote by P = Id−ν ⊗ ν

the tangential projections. Since any map f ∈ C1(Γ) can be extended to a map
f̂ ∈ C1(R3), we define the tangential derivative in i-th coordinate direction and the
gradient of f by

Dif = Pij∂j f̂ , ∇Γf =
(
D1f, . . . , D3f

)T
= P∇f̂ . (2.0.1)

It turns out that Dif does not depend on the choice of continuation (cf. [17, Lemma
2.4]). The shape operator of Γ is given by

H : Γ→ R3×3, Hij = −Diνj, H = −P (Dν̂)T . (2.0.2)

It is easily shown that the matrix H is symmetric with a zero eigenvalue on direction
of ν. For the mean curvature H of Γ we obtain

H = trH = −∇Γ · ν = −∇ · ν̂. (2.0.3)

For the second tangential derivatives of a function f ∈ C2(Γ) we obtain

DDf = PD2f̂P +H∇f̂ · ν + (H∇Γf)⊗ ν (2.0.4)

and therefore, the Laplace-Beltrami operator of f is defined as

∆Γf := ∇Γ · ∇Γf = trDDf = ∆f̂ − ν ·D2f̂ν +H∇f̂ · ν. (2.0.5)

• For the Laplace-Beltrami operator on Γ we just write ∆ instead of ∆Γ if there is
no reason for confusion. We recall that the relevant diffusion operator on Γ is the
corresponding Laplace-Beltrami operator, see for example [57]. In local coordinates
the Laplace-Beltrami operator corresponds to an elliptic operator in divergence form
(with C2-regular coefficients in our case). One can deduce parabolic maximum prin-
ciples in analogy to [22, Chapter 2] for evolution problems on Γ involving the Laplace-
Beltrami operator.
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In the remaining part of this chapter, we collect some lemmas, which appear to be
useful for the analysis in both Chapters 4 and 5.

We define H : R→ (0, 1), H = X(0,∞) as the characteristic function of the positive real
numbers. By means of [44, Remark 2.3], there is an equivalent and more convenient way
to write (1.5.1), given by the following lemma. The practicality of this formulation will be
apparent later.

Lemma 2.0.1. Let λ ∈ L∞(0, T ) be defined by

λ(t) =
 
{u(·,t)>0}

g dS . (2.0.6)

Then equations (1.5.1), (1.5.2) are equivalent to

∂tu−∆u = −
(

1− g

λ

)
H(u) on ΓT , (2.0.7)

g ≤ λ almost everywhere in {u = 0} . (2.0.8)

The proof of this lemma follows by a a straightforward computation and can be found
in [46]. Several of the regularity results that we have obtained in the second half of this
thesis, are due to this equivalent formulation.

By (2.0.6), it is obvious that the function λ introduces the non-locality in our problem.
Actually, it is correlated to the non-local term α by

α(t) = 1ffl
{u(·,t)>0} g dS

− 1 = 1
λ(t) − 1 . (2.0.9)

The former characterization can be easily seen using (1.5.4).

A key result that we often use is the following nondegeneracy lemma. This lemma plays
an essential role in the analysis of free boundary problems and states that if a solution to
(1.4.3) is small in a sufficiently large open set, then it vanishes in a smaller set (cf. [6]).
More precisely,

Lemma 2.0.2. Let t1 ∈ [0, T ), t2 ∈ (t1, T ] and U1 := {u(·, t1) = 0}. Suppose that for some
nonnegative function u ≥ 0 it holds that ∂tu−∆u ≤ −θ for some θ > 0 in U1× [t1, t2]. Let
x0 ∈ Ů1 and ρ ∈ (0, ρmax(Γ)) such that B2ρ(x0) ⊂ Γ ∩ U1. Then there exists A > 0 such
that the following holds. Suppose that we have

u ≤ θ

A
ρ2 in B2ρ(x0)× [t1, t2]

then
u = 0 in Bρ(x0)× [t1, t2] .
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Chapter 2. Notation and Preliminaries

This lemma as well as a regularized version of it, given by [46, Lemma 3.3], contributes
significantly in the continuity results that we obtain in [46] (cf. Chapter 4, Section 4.3 for
more details) and Chapter 5 for the support of the solution. The proof of Lemma 2.0.2
relies mostly on careful comparison arguments and follows analogously to Lemma 3.3 in
[46].

Moreover, in Chapter 5 we restrict ourselves to the spherical case Γ = S2 and to the
case that all data and the solution are axisymmetric with respect to the first coordinate
axis. To this end, we provide here some explicit calculations concerning axisymmetric
functions on the unit sphere S2 which will be useful in the later analysis.

Lemma 2.0.3. Let f : S2 → R be an axisymmetric function on the unit sphere S2,
f(p) = f̃(x), p = (x, y, z). Then the following properties hold.

(i) f ∈ C1(S2) if and only if f̃ ∈ C1((−1, 1)) with limr↓0 rf̃
′(±
√

1− r2) = 0. In this
case

∇f(p) =
(

1−x2
−xy
−xz

)
f̃ ′(x)

and ∇S2f
(
(±1, 0, 0)

)
= 0.

(ii) f ∈ C2(S2) if and only if f̃ ∈ C2((−1, 1)) ∩ C1([−1, 1]) with

lim
r↓0

r2f̃ ′′(±
√

1− r2) = 0. (2.0.10)

(iii) For f ∈ C2(S2) we have

DDf(p) = f̃ ′′(x)(~e1 − xp)⊗ (~e1 − xp)− f̃ ′(x)(x Id +~e1 ⊗ p) + 2xf̃ ′(x)p⊗ p.

and
DDf(±~e1) = ∓f̃ ′(±1)(Id−~e1 ⊗ ~e1).

(iv) The Laplace-Beltrami operator on S2 is for f ∈ C2(S2) given by

∆S2f(p) = d

dx

(
(1− x2)f̃ ′(x)

)
, p = (x, y, z) ∈ S2 . (2.0.11)

(v) For f ∈ L1(S2) the integral over S2 can be computed as
ˆ
S2
f dS = 2π

ˆ 1

−1
f̃ dx . (2.0.12)

(vi) It holds f ∈ W 1,q(S2) if and only if f̃ ∈ Lq(−1, 1)∩W 1,q
loc (−1, 1) with x 7→

√
1− x2f̃ ′(x) ∈

Lq((−1, 1)). Then

‖∇f‖qLq(S2) =
ˆ 1

−1
(1− x2)

q
2 |f̃ ′(x)|q dx.
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Chapter 2. Notation and Preliminaries

(vii) It holds f ∈ W 2,q(S2) if and only if f̃ ∈ W 1,q(−1, 1) ∩W 2,q
loc (−1, 1) with x 7→ (1 −

x2)f̃ ′′(x) ∈ Lq((−1, 1)).

Proof. The outer unit normal field of B(0, 1) on S2 is given by ν(p) = p and can be extended
to R3 by ν̂(p) = p. Therefore, the tangential projection is given by P (p) = Id−p⊗ p, the
shape operator by −P and the mean curvature with respect to ν by −2.

We can extend f to [−1, 1] × R2 by setting f̂(x, y, z) = f̃(x). Therefore f ∈ Ck(S2 \
{(±1, 0, 0)}) if and only f̃ ∈ Ck((−1, 1)). For f ∈ C1(S2) and p = (x, y, z) ∈ S2, x ∈
(−1, 1) we in particular have

∇f(p) = (Id−p⊗ p)
(
f̃ ′(x)

0
0

)
=
(

1−x2
−xy
−xz

)
f̃ ′(x).

We next consider the parametrization ψ : B2(0, 1) → S2
+, w 7→ (

√
1− |w|2, w) with S2

+ =
{p ∈ S2, p1 > 0}. It holds f ∈ C2(S2

+) if and only if f ◦ ψ = f̃(
√

1− |w|2) ∈ C2(B2(0, 1)).
For 0 < |w| < 1 we compute

∇(f ◦ ψ)(w) = f̃ ′(
√

1− |w|2) −w√
1− |w|2

.

Since f has a local extremum at ±~e1 we deduce the properties stated in the first claim.

Similarly we have for 0 < |w| < 1

D2(f ◦ψ)(w) = f̃ ′′(
√

1− |w|2) w ⊗ w1− |w|2 − f̃
′(
√

1− |w|2) 1√
1− |w|2

3

(
(1− |w|2) Id +w⊗w

)
.

and in particular(
D2(f ◦ ψ)(w)− A

)
w⊥
|w|

= −
(
f̃ ′(
√

1− |w|2) 1√
1− |w|2

Id +A
)
w⊥
|w|

.

Hence, if f ∈ C2(S2) then the left-hand side with A = D2(f̃ ◦ ψ)(0) converges to zero as
w → 0, which first shows the existence of f̃ ′(1) = limr↓0 f̃

′(
√

1− r2) with

−f̃ ′(1) Id = D2(f ◦ ψ)(0)

and then
−2f̃ ′(1) = lim

r↓0
r2f̃ ′′(

√
1− r2)− 2f̃ ′(1),

hence limr↓0 r
2f̃ ′′(
√

1− r2) = 0.

Vice versa we obtain that if f̃ ∈ C2((−1, 1)) and (2.0.10) is satisfied, then f ∈ C2(S2)
holds.
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Using the extension f̃ of f we compute in p = (x, y, z), −1 < x < 1

DDf(p) = (Id−p⊗ p)f̃ ′′(x)~e1 ⊗ ~e1(Id−p⊗ p)
− (Id−p⊗ p)f̃ ′(x)~e1 · p− (Id−p⊗ p)f̃ ′(x)~e1 ⊗ p

= f̃ ′′(x)(~e1 − xp)⊗ (~e1 − xp)− f̃ ′(x)(x Id +~e1 ⊗ p) + 2xf̃ ′(x)p⊗ p.

In particular, with p→ ±~e1, p ∈ S2 and (2.0.10) we obtain

DDf(±~e1) = ∓f̃ ′(±1)(Id−~e1 ⊗ ~e1).

For the Laplace-Beltrami operator we compute

∆S2f = trDDf(p) = [(1− x2)2 + (xy)2 + (xz)2]f̃ ′′(x)− 4xf̃ ′(x) + 2x(x2 + y2 + z2)f̃ ′(x)
= (1− x2)f̃ ′′(x)− 2xf̃ ′(x)

=
(
(1− x2)f̃ ′(x)

)′
.

At this point, we show the representation of the integral. Using the Gauss divergence
theorem, Fubini and a partial integration we obtain

ˆ
S2
f dS =

ˆ
B(0,1)

∇ ·
(
f(p)p

)
dL3

=
ˆ 1

−1

ˆ
B2(0,

√
1−x2)

1
x2

(
x3f̃(x)

)′
dL2 dx

= π

ˆ 1

−1

1− x2

x2

(
x3f̃(x)

)′
dx = 2π

ˆ 1

−1
f̃(x) dx.

Finally, due to the first item we estimate

|∇f(p)|2 =
(
(1− x2)2 + (xy)2 + (xz)2)

)
|f ′(x)|2 =

=
(
(1− x2)2 + x2(1− x2)

)
|f ′(x)|2

= (1− x2)|f ′(x)|2 ,

which in particular yields that

|∇f(p)| = (1− x2)1/2|f ′(x)| .

Combining this and (2.0.12) the sixth item follow. For the very last item we proceed in a
similar way by means of (2.0.11).

�
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A parabolic free boundary problem modeling cell

polarization

This chapter outlines the results obtained in [44], written jointly by Barbara Ni-
ethammer, Matthias Röger, Juan J. L. Velázquez and the author.

This peer-reviewed paper is given in the first part of the appendix, Chapter A and
it has appeared in the SIAM Journal on Mathematical Analysis.

3.1 Motivation

A minimal model for cell polarization as a response to some external chemical gradients
has been proposed in [51]. This model, given by (1.3.1)-(1.3.5), consists of a system
of partial differential equations for different variants of a protein on the cell membrane
and the cytosol respectively. We discuss the model under consideration in detail in the
introductory Section 1.3.

The most remarkable feature of model (1.3.1)-(1.3.5) is that for a suitable choice of
parameters, an asymptotic reduction leads to a generalized obstacle-type problem by means
of which, polarized patterns can be mathematically fully characterized.

The authors in [51] study stationary states of this model for a time-constant external
chemical signal. Under the assumption that several reaction rates on the membrane as
well as the diffusion coefficient within the cell are large (particularly of order ε−1 > 0),
they prove that steady states converge as ε→ 0 to solutions of some elliptic obstacle type
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Chapter 3. A parabolic free boundary problem modeling cell polarization

problems. Besides the well-posedness of these limit problems, the onset of polarization for
sufficiently small (rescaled) mass of protein is studied in [51].

Polarization however is in many cases a dynamic process and therefore the investiga-
tion of the time-dependent problem arises almost naturally after the study in [51]. More
specifically, we compliment the former analysis by extending a part of the results to the
parabolic case while we further prove an L1-contraction property for solutions that ap-
pears to be essential in proving uniqueness of solutions and the fact that steady states are
globally stable.

3.2 Main results

To begin with, we consider the model (1.3.1)-(1.3.5) where c = c(c, t) corresponds to the
time-dependent external chemical signal that plays an important role in the activation pro-
cesses of the GTP-ase proteins. We study solutions of (1.3.1)-(1.3.5) in certain parameter
regimes similar to the ones introduced in [51], in which the reaction rates a4, a5 and a6,
the diffusion coefficient D as well as the total mass of proteins are of order ε−1 > 0.

In the large reaction rate limit ε→ 0, we prove that solutions of this model converge to
solutions of parabolic obstacle type problems analogous to the ones obtained in [51], where
the stationary case was investigated. Actually, we consider two different types of scaling
limits for solutions of (1.3.1)-(1.3.5). In the first one we assume that D =∞ before taking
the limit ε → 0. That is motivated by the fact that the cytosolic diffusion is typically
much larger than the lateral diffusion over the membrane [35].

Although we introduce these limit problems in Section 1.3.1, let us also recall them
here for the sake of completeness. We define for simplicity the function g : ΓT → (0, 1) as

g(x, t) = c(x, t)
c(x, t) + α5

(3.2.1)

and we further assume that the signal c and hence the function g are smooth functions
bounded from below by a strictly positive constant. After appropriate rescaling and renam-
ing, we prove the existence of solutions to the following parabolic obstacle-type problems
in the limit ε→ 0.

Theorem 3.2.1 (The parabolic obstacle-type problem for D =∞). There exists a triplet
(u, ξ, α) of functions u ∈ V2(ΓT ) with u ∈ W 2,1

p (Γ× (δ, T )) for any δ > 0, ξ ∈ L∞(ΓT ) and
α ∈ L∞(0, T ) that solve the following problem in an almost everywhere sense

∂tu−∆Γu = −a4(1− g)ξ + αg on ΓT , (3.2.2)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (3.2.3)
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u(·, 0) = u0 on Γ . (3.2.4)

The function α is determined by a solvabilility condition for (3.2.2), that is

α(t) =
´

Γ a4(1− g)(·, t)ξ(·, t) dS´
Γ g dS

=
´
{u(·,t)>0} a4(1− g)(·, t) dS´

{u(·,t)>0} g(·, t) dS (3.2.5)

for almost all t ∈ (0, T ).

Theorem 3.2.2 (The parabolic obstacle-type problem for D <∞). There exists a triplet
(u, ξ, w) of functions u ∈ V2(ΓT ) with u ∈ W 2,1

p (Γ× (δ, T )) for any δ > 0, ξ ∈ L∞(ΓT ) and
w ∈ L2(0, T ;H1(Ω)) that solve the following problem in an almost everywhere sense

∂tu = ∆Γu− a4(1− g)ξ + a6gw on ΓT , (3.2.6)
0 = ∆w, in ΩT , (3.2.7)

D
∂w

∂n
= a4(1− g)ξ − a6gw on ΓT , (3.2.8)

u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (3.2.9)
u(·, 0) = u0 on Γ . (3.2.10)

Remark 3.2.3. We highlight that there is in fact a clear correspondence between problems
(3.2.2)-(3.2.4) and (3.2.6)-(3.2.10). In [44, Proposition 2.7], we provide a representation
formula for w in terms of a non-local operator that depends on the positivity set {u(·, t) >
0}. As a matter of fact, the function w in the case of finite diffusion, plays the role of α.

The former theorems not only extend the elliptic obstacle-type problems presented in
[51, Theorem 3.2] and [51, Theorem 4.2] to the parabolic case, but also serve as a spring-
board for the rest of the analysis in [44] which differs from [51] and rather advances the
previous results. To be more precise, we justify for both infinite and finite diffusion, some
monotonicity formulas that allow us to prove uniqueness of solutions and also uniqueness
and global stability of steady states of the problems (3.2.2)-(3.2.4) and (3.2.6)-(3.2.10).

Theorem 3.2.4 (L1-contraction forD =∞ andD <∞). Let (u1, ξ1, α1) and (u2, ξ2, α2) be
two different solutions of (3.2.2)-(3.2.4) while (u1, ξ1, w1) and (u2, ξ2, w2) are two different
solutions of (3.2.6)-(3.2.10). Then,

t 7→
ˆ

Γ
(u1 − u2)+(·, t) dS is decreasing on [0, T ].

In particular, given u0 ≥ 0, there exists at most one solution (u, ξ, α), (u, ξ, w) of (3.2.2)-
(3.2.4) and (3.2.6)-(3.2.10) respectively.
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Chapter 3. A parabolic free boundary problem modeling cell polarization

Remark 3.2.5. The monotonicity formula implies that the evolution semigroup associated
to the problems (3.2.2)-(3.2.4) and (3.2.6)-(3.2.9) is contractive in the L1 norm.

Combining the well-posedness results that we first prove for (3.2.2)-(3.2.4) and (3.2.6)-
(3.2.9) with Theorem 3.2.4, we show that for any given initial data there exists a unique
solution of the parabolic obstacle-type problems for all times t ≥ 0.

To conclude our study in [51], we restrict our analysis to a time-independent external
signal c := c(x) and hence by (3.2.1) to a function g := g(x) that does not depend on time
as well. By means of Theorem 3.2.4, we prove convergence of the parabolic obstacle-type
problems for both infinite and finite diffusion to the stationary state with the same mass.
Before proceeding to the last result of this chapter, we recall the definition of steady states
for both D =∞ and D <∞.

Definition 3.2.6. In the case D =∞, we let (u∗, ξ∗, α∗) be the unique stationary solution
of the obstacle-type problem given by

−∆u∗ = −(1− g)ξ∗ + α∗g , on ΓT (3.2.11)
u∗ ≥ 0 , 0 ≤ ξ∗ ≤ 1 , ξ∗u∗ = u∗ , on ΓT . (3.2.12)

In the case D < ∞, (u∗, ξ∗, w∗) denotes the unique stationary solution of the following
problem

∂tu∗ = ∆u∗ − (1− g)ξ∗ + gw∗, u∗ξ∗ = u∗, u∗ ≥ 0 on ΓT (3.2.13)

0 = ∆w∗ in Ω, ∂w∗
∂n

= (1− g)ξ∗ − gw∗ on ΓT . (3.2.14)

Remark 3.2.7. For the case of infinite diffusion, we stress that existence and uniqueness
of steady states for any prescribed mass was proved in [51].

For the case of finite diffusion, we can also show uniqueness of steady states for given
mass m with similar arguments as in the proof of Theorem 3.2.4. This result has been
shown in [51] only in the case that Γ is a sphere. In [44, Theorem 4.2] we prove even more,
namely a monotonicity result from which uniqueness of steady states follows.

The next theorem is concerned with the fact that the unique steady states (u∗, ξ∗, α∗)
and (u∗, ξ∗, w∗) as given in Definition 3.2.6 are globally stable.

Theorem 3.2.8 (Global stability of steady states for D = ∞ and D < ∞). The unique
solutions (u, ξ, α) and (u, ξ, w) of problems (3.2.2)-(3.2.4) and (3.2.6)-(3.2.9) respectively,
converge as t → ∞, to the unique stationary solutions (u∗, ξ∗, α∗) and (u∗, ξ∗, w∗) with´

Γ u∗ dS = m.

30



3.3. Comments on proofs

3.3 Comments on proofs

We now shortly outline the ideas behind the proofs of the previously mentioned theorems.

We begin with the convergence of system (1.3.1)-(1.3.5) to the obstacle-type problems
for infinite and finite diffusion, cf. Theorem 3.2.1 and Theorem 3.2.2. Since the proofs
for both theorems follow along the same lines, we only discuss here the underlying ideas
behind the proof of Theorem 3.2.1.

To this end, we consider the case of infinite diffusion. As we have already explained
in the introductory Section 1.3, in the limit D → ∞, (1.3.1)-(1.3.5) reduces to a non-
local reaction-diffusion system on ΓT , given by (1.3.1),(1.3.2) and (1.3.7), complemented
by initial conditions for u and v. Then for small ε > 0 we introduce the following rescalings

a4  
a4

ε
, a5  

a5

ε
, a6  

a6

ε
, c 

c

ε
and m 

m

ε
. (3.3.1)

The corresponding solutions are denoted by uε, vε and wε and let Uε := εuε. Hence, the
system (1.3.1),(1.3.2) and (1.3.7) can be rewritten as

∂tUε = ∆Uε +
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε −

a4Uε
ε+ Uε

on ΓT ,

(3.3.2)

ε∂tvε = ε∆vε −
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε + a4Uε

ε+ Uε
− a5vε + a6wε on ΓT ,

(3.3.3)

ε|Ω|wε(t) = m−
ˆ

Γ
(Uε(x, t) + εvε(x, t)) dS for a.a. t ∈ (0, T ) .

(3.3.4)

In [44, Theorem 2.1 ] we obtain some suitable uniform estimates for the triplet (Uε, vε, wε)
independent of ε. More precisely, we prove that

‖Uε‖V2(ΓT ) + ‖vε‖L∞(0,T ;L2(Γ)) + ‖wε‖L∞(0,T ) ≤ C , (3.3.5)

where C denotes a constant that depends on the data of the problem but not on ε. These
estimates ensure the existence of weak convergent subsequences. Therefore, we can pass
to the limit ε→ 0 in (3.3.2),(3.3.3) and (3.3.4) and obtain problem (3.2.2)-(3.2.4).

We now proceed to the proof of Theorem 3.2.4, which refers to the monotonicity for-
mulas that we obtain for both obstacle problems. Let (u1, ξ1, α1) and (u2, ξ2, α2) be two
different solutions of (3.2.2)-(3.2.4) while (u1, ξ1, w1) and (u2, ξ2, w2) are two different so-
lutions of (3.2.6)-(3.2.10).
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We set X+ := X{u1>u2}. Integrating then the equation for the difference u1 − u2 over
{u1 > u2} yields

d

dt

ˆ
Γ
(u1 − u2)+ dS ≤ −

ˆ
Γ
X+(1− g)(ξ1 − ξ2) dS + (α1 − α2)

ˆ
Γ
X+g dS , (3.3.6)

d

dt

ˆ
Γ
(u1 − u2)+ dS ≤ −

ˆ
Γ
X+(1− g)(ξ1 − ξ2) dS +

ˆ
Γ
X+(w1 − w2)g dS . (3.3.7)

The existence of the monotonicity formulas in Theorem 3.2.4 rely on a delicate balance
of the terms −a4(1 − g)ξ and αg, a5gw in (3.2.2), (3.2.6). The term −a4(1 − g)ξ has
a stabilizing effect, which is similar to the analogous term arising in the study of the
reformulation of the one-phase Stefan problem due to Duvaut [15]. On the other hand
the terms αg, a5gw in (3.2.2), (3.2.6) depend on functions determined as a non-local
functional of u (namely α and w respectively). These terms have a destabilizing effect
on the solutions of the problems (3.2.2)-(3.2.4) and (3.2.6)-(3.2.9), but some cancellations
between the contributions of both terms in the derivative of the L1 norm of the difference
of two solutions of these problems yield an overall stabilizing effect.

To conclude this section, we emphasize once more the significance of the L1-contraction
property that we infer in Theorem 3.2.4. This particular property plays an essential role
not only in the proof of uniqueness of solutions but also in stability of the stationary
states. Thus, Theorem 3.2.8 can be as well considered a corollary of Theorem 3.2.4, since
the monotonicity formulas are key points in the proof of this theorem.
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Qualitative properties of solutions to a non-local free

boundary problem modeling cell polarization

This chapter outlines the results obtained in [46], written jointly by Barbara Ni-
ethammer, Matthias Röger, Juan J. L. Velázquez and the author.

This paper is given in the second part of the appendix, Chapter B and for the
moment appears in the arXiv.

4.1 Motivation

In [44], which has been outlined in Chapter 3, we obtain particular parabolic obstacle-type
problems as an asymptotic reduction for a cell polarization model in response to some
external chemical signal. Throughout this work, the signal has been assumed to be a
smooth function. However, as indicated by laboratory experiments, an oscillatory external
signal, would be much more realistic and natural to consider.

To this end, we restricted our attention to the resulting parabolic obstacle problem
obtained for infinite cytosolic diffusion in Theorem 3.2.1, considering this time an external
chemical source which is periodic in time. More specifically, we focused on the obstacle
problem (3.2.2)-(3.2.4) that involves the non-local term α given by(3.2.5). Applying stan-
dard homogenization techniques, the main difficulty that arose almost immediately in the
homogenized equation was the control of the function α which depends on the support of
the solution.
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In principle, several of the technical difficulties that we addressed even in our first work
in [44], were due to the fact that the function α changes in a discontinuous manner if
the positivity set {u(·, t) > 0} changes discontinuously in time. Therefore, this lack of
regularity for the non-local term α motivated our most recent work in [46].

To be more precise, in our second publication we investigate time continuity properties
of the function t 7→ α(t). We prove that under suitable assumptions on the initial data, the
set {u(·, t) > 0} and hence the non-local term α, change continuously in time. Moreover,
we justify potential jumps of the support of the solution and of the non-local function α if
the former assumptions fail.

4.2 Main results

For the purpose of the present analysis, we consider a simplified version of the parabolic
obstacle problem (3.2.2)-(3.2.4) that we obtain in the limit D →∞, in which the external
chemical signal does not depend on time. We conclude that there are two assumptions
on the initial data that play an essential role in proving either continuity or jumps of the
support of the solution.

A thorough description of the setting of [46] as well as the motivation behind the choice
of these assumptions has been introduced in Section 1.5. However, to make this chapter
comprehensive, we will recall once again the problem under consideration along with the
imposed assumptions.

Let g be as in (3.2.1) but this time is assumed to be a smooth time-independent function.
We investigate the following problem

∂tu−∆Γu = −(1− g)ξ + αg on ΓT , (4.2.1)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (4.2.2)
u(·, 0) = u0 on Γ , (4.2.3)

where the function α : (0, T )→ R satisfies the compatibility condition given by

α(t) =
´
{u(·,t)>0}(1− g) dS´
{u(·,t)>0} g dS

for t ∈ (0, T ) . (4.2.4)

We assume that the initial data u0 are smooth and we impose also some further as-
sumptions on them. In particular, for some fixed θ > 0, a first non-degeneracy condition
holds, namely

(1− g)− α0g ≥ θ > 0 in {u0 = 0} where α0 :=
´
{u0>0}(1− g) dS´
{u0>0} g dS

. (4.2.5)
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Moreover we prescribe a second non-degeneracy condition, given by (1.5.6). In [46, Ap-
pendix B, Lemma B.2] we prove an equivalent formulation of (1.5.6), that we mainly use
throughout our analysis and is given by

H2
((
{u0 > 0}

)
+δ
\
(
{u0 > 0}

)
−δ

)
→ 0 as δ → 0 , (4.2.6)

where(
{u0 > 0}

)
+δ

:= {x |d(x,
(
{u0 > 0}

)
) ≤ δ} ,

(
{u0 > 0}

)
−δ

:= {x |d(x,
(
{u0 = 0}

)
) ≥ δ} .
(4.2.7)

Assuming that both (4.2.5) and (4.2.6) hold, we prove that the function α(t) is continu-
ous at t = 0. In addition, we show that the positivity set {u(·, t) > 0} changes continuously
as t→ 0+. In fact, we prove the following theorem.

Theorem 4.2.1. Suppose that (4.2.5) and (4.2.6) hold true for some θ > 0. Then for any
arbitrary small η > 0, there exists t̄ = t̄(η; θ, u0, g) > 0 such that(

{u0 > 0}
)
−η
⊂ {u(·, t) > 0} ⊂

(
{u0 > 0}

)
+η

(4.2.8)

and

|α(t)− α0| ≤ η (4.2.9)

for all t ∈ [0, t̄].

Remark 4.2.2. We notice that in Chapter 2, Lemma 2.0.1, we provide an equivalent
formulation for (4.2.1), (4.2.2) given by (2.0.7), (2.0.8). Hence, all continuity properties
that have been justified for the function α in Theorem 4.2.1, hold for the function λ as
well (cf. (2.0.9)).

For the sake of convenience, in the following we choose to study instead of (4.2.1)-(4.2.3)
the equivalent problem

∂tu−∆u = −
(

1− g

λ(t)

)
H(u) on ΓT , (4.2.10)

λ ≤ g a.e in {u = 0} , (4.2.11)
u(·, 0) = u0 on Γ . (4.2.12)

The rest of the analysis in this chapter, highlights the necessity of (4.2.5) for the
continuity of the function λ and of the support of the solution u. More precisely, we show
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that if (4.2.5) fails, then one cannot expect continuity of the function λ nor of the set
{u(·, t) > 0} at t = 0. To this end, we assume that (4.2.6) holds true, while (4.2.5) is
violated in the sense that

|{u0 = 0} ∩ {(1− g)− α0g < 0}| > 0 , (4.2.13)

where α0 =
´
{u0>0}(1−g) dS´
{u0>0} g dS

. By (2.0.9), this assumption is equivalent to

|{u0 = 0} ∩ {g > λ0}| > 0 , where λ0 =
 
{u0>0}

g dS. (4.2.14)

We prove that under assumption (4.2.14) the function λ and the positivity set {u(·, t) > 0}
both will jump at t = 0. We can characterize this jump in terms of a variational principle.
More specifically, we define Λ[u0] as follows.

Definition 4.2.3. For any open, measurable set S ⊂ Γ, we set

Λ[u0] := sup
{ 

A

g dS : A ⊂ Γ measurable with {u0 > 0} ⊂ A

}
. (4.2.15)

Moreover, the maximum in (4.2.15) is attained by the set A0
∗, given by

A0
∗ :=

{
g ≥ Λ[u0]

}
∪ {u0 > 0} , (4.2.16)

where u0 : Γ→ R denotes a given nonnegative continuous function.

We then prove the following.

Theorem 4.2.4. Suppose that (4.2.6) holds true and that g is smooth. For any η > 0 there
exists t̄ = t̄(η) > 0 such that the positivity set {u(·, t) > 0} satisfies for all 0 < t ≤ t̄(η)(

{u0 > 0} ∪ {g > Λ[u0]}
)
−η
⊂ {u(·, t) > 0} ⊂

(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+η
. (4.2.17)

Furthermore,

|λ(t)− Λ[u0]| ≤ η for all 0 < t ≤ t̄(η) . (4.2.18)

In particular, λ(t)→ Λ[u0] as t↘ 0. If in addition (4.2.14) holds, then

Λ[u0] > λ0 and |A0
∗ \ {u0 > 0}| > 0 .

Remark 4.2.5. The inclusions in (4.2.17) imply that there exists a set B(t) ⊂ {g = Λ[u0]}
such that {u(·, t) > 0} ∪ B(t) → A0

∗ with respect to the L1−convergence of sets. The set
B(t) could in principle be oscillatory.
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It is worth noticing that Theorem 4.2.4 can be considered as a generalization of Theorem
4.2.1. Indeed, if along with the assumptions in Theorem 4.2.4, we further assume that
(4.2.5) holds, Theorem 4.2.4 reduces to Theorem 4.2.1 (cf. [46, Remark 4.7]).

4.3 Comments on proofs

The proofs of the previously mentioned theorems are long and rely on several auxiliary
technical lemmas and propositions. Hence, in this section, we will either briefly sketch
these proofs or emphasize the underlying ideas.

Sketch Proof of Theorem 4.2.1

Step 1: Recalling (4.2.4), we estimate

|α(t)− α0| ≤ C
∣∣∣{u0 > 0}∆{u(·, t) > 0}

∣∣∣ . (4.3.1)

Therefore, we can control |α(t)− α0| by the symmetric difference between the posi-
tivity sets at the initial time t = 0 and t > 0.

Step 2: We claim that for all δ > 0 sufficiently small there exists t†(δ) > 0 such that

{u0 ≥ δ} ⊂ {u(·, t) > 0} ⊂
(
{u0 = 0}−δ

)c
for all 0 < t < t†(δ) . (4.3.2)

The inclusions in (4.3.2) follow immediately for t = 0.

Step 3: The previous step yields that for all 0 < t < t†(δ)

{u(·, t) > 0}∆{u0 > 0} ⊂
(
{u0 = 0}−δ

)c
\ {u0 ≥ δ} . (4.3.3)

Step 4: Using [46, Lemma A.2 and Lemma A.4], we infer that for any δ > 0 we can choose
δ̄ := δ̄(δ) ≥ δ with δ̄ → 0 as δ → 0 such that(

{u0 = 0}−δ
)c
\ {u0 ≥ δ} ⊂ {u0 > 0}+δ̄ \ {u0 > 0}−δ̄ . (4.3.4)

Moreover, (4.3.2) implies that

{u0 > 0}−δ̄ ⊂ {u(·, t) > 0} ⊂ {u0 > 0}+δ̄ for all 0 < t < t†(δ) . (4.3.5)

Step 5: Hence, due to (4.3.3), (4.3.4), the convergence δ̄ → 0 as δ → 0 and (4.2.6) we deduce
that

|{u(·, t) > 0}∆{u0 > 0}| ≤ |{u0 > 0}+δ̄ \ {u0 > 0}−δ̄| → 0 as δ → 0 .
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Step 6: Therefore, for given η > 0, we can choose 0 < δ ≤ η, δ = δ(η) sufficiently small,
such that the right-hand side of (4.3.1) is less or equal than η for all 0 < t < t̄(η),
with t̄(η) = t†(δ). Thus, we obtain (4.2.9). Moreover, by (4.3.5) and δ ≤ η we obtain
(4.2.8).

Yet, the proof is not complete. To conclude the proof of Theorem 4.2.1 it remains to
justify the claim in (4.3.2). A key estimate for the left-hand side inclusion is the uniform
convergence u(·, t)→ u0, which follows from the regularity of the solution u (cf. [44]). To
show however the right-hand side inclusion in (4.3.2) is not that easy. In fact, it is the
most challenging part of this proof.

Considering the complements in the right-hand side in (4.3.2), an equivalent way to to
write this inclusion is the following

{u0 = 0}−δ ⊂ {u(·, t) = 0} for all 0 < t < t†(δ) . (4.3.6)

At this point, we recall the so-called nondegeneracy Lemma 2.0.2. This lemma is the main
core of the proof. If we could obtain a sufficiently small uniform estimate for the solution
u in a large open set, then (4.3.6) would follow by a comparison argument, provided that
the right-hand side in (4.2.1) has the correct sign. Although (4.2.5) serves this purpose
at t = 0, we cannot claim that the assumption would still be valid even for sufficiently
small t > 0. The fact that we have no control on α and more specifically knowing that
α ∈ L∞(0, T ), yields that the limit limt→0+ α(t) might not exist or might be different from
α0.

In order to tackle this difficulty, we consider a regularized version of (4.2.1)-(4.2.3),
for which the analogon of the function α is smooth. Arguments similar to those in [44]
imply that a unique smooth solution of the regularized problem exists for all positive times,
and that solutions approximate (4.2.1)-(1.5.3) as ε → 0. In [46, Lemma 3.3] we prove a
corresponding nondegeneracy result for this regularized problem. It is worth noticing that
in the limit ε→ 0+, this result would "converge" to the standard nondegeneracy result for
the Stefan problem, cf. [6, Theorem 3.1] and Lemma 2.0.2.

Therefore, owing to [46, Lemma 3.3] we prove an estimate for the solution uε of the
regularized problem, namely

{u0 = 0}−δ ⊂ {uε(·, t) ≤ L0ε} for all 0 < t < t†(δ)

for some L0 independent of ε. Letting ε → 0, we obtain (4.3.6) and this concludes the
proof.
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Regularization though, is the principal idea behind the proof of Theorem 4.2.4 as well.
The full proof of the initial jump of the set {u(·, t) > 0} and the function λ(t) is been
rigorously presented in [46, Section 4.2] and consists of various technical steps. Let us skip
here the technicalities and discuss instead the foundation of this proof.

In Theorem 4.2.4, we derive precise estimates for the jump of both functions t 7→
{u(·, t) > 0} and t 7→ λ(t), under the assumption that (4.2.6) holds, while (4.2.5) fails, in
the sense of (4.2.14). However, as we have already mentioned in the bottom of Section 4.2,
if we assume that (4.2.5) holds in addition to (4.2.6), then Theorem 4.2.4 reduces to the
continuity Theorem 4.2.1.

Motivated by this observation, our strategy for the proof of Theorem 4.2.4 is to ap-
proximate u by a solution to (4.2.10)-(4.2.11) with suitably modified initial data u0

n. The
latter are chosen such that we can recover assumption (4.2.5) for the modified problem. In
particular, we choose u0

n such that they converge uniformly to u0 but such their support,
on the other hand, approximates the maximal set A0

∗ given by (4.2.16). We describe this
class of initial data in [46, Lemma 4.13]. A key property of the modified solutions is that
we can apply the continuity results obtained in Theorem 4.2.1.

Thus, for this specific family of initial data u0
n, we define our main approximation.

Regularization: Let (un)n be the unique solution of the problem

∂tun −∆un = −
(

1− g

λn(t)

)
H(un), in ΓT (4.3.7)

g ≤ λn, a.e in {un = 0} (4.3.8)
un(·, 0) = u0

n on Γ, (4.3.9)

where
λn(t) =

 
{un(·,t)>0}

g dS .

We stress that by [44, Theorem 3.1]

un → u in C0([0, T ], L1(Γ)) for all T > 0 . (4.3.10)

We derive upper and lower estimates for the sequence of functions λn and the positivity
sets {un(·, t) > 0}. To infer the proof, we consider the limit n→∞.
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Global continuity of the interfaces of a non-local free

boundary problem describing cell polarization.

This chapter is based on paper [45], that is a joint work in preparation with Barbara
Niethammer, Matthias Röger and Juan J. L. Velázquez.

5.1 Introduction

In this chapter, we complement to a certain extent the analysis in [46], a detailed summary
of which is presented in Chapter 4, of the following problem

∂tu−∆Γu = −(1− g)ξ + αg on ΓT , (5.1.1)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (5.1.2)
u(·, 0) = u0 on Γ , (5.1.3)

where α : (0, T )→ R depends only on time and is a non-local functional of u that is given
by

α(t) =
´
{u(·,t)>0}(1− g) dS´
{u(·,t)>0} g dS

. (5.1.4)

The function g is assumed to be time-independent and smooth (precise assumptions on the
regularity of g will be stated later). The initial data u0 : Γ→ R is given and nonnegative
and ∆Γ stands for the Laplace-Beltrami operator associated to the surface Γ.

41



Chapter 5. Global continuity of the interfaces of a non-local free boundary problem describing cell
polarization.

We remark that the identity (5.1.4) guarantees mass conservation of u.

The problem (5.1.1)-(5.1.4) has been derived in Chapter 3 (cf. [44]) as the limit of
a bulk-surface reaction diffusion system of equations which models cell polarization as a
response to an external chemical signal. The respective time independent problem has
been obtained in [51]. From the biological point of view, the positivity set {u(·, t) > 0}
corresponds to the regions where the concentration of a chemical is high, while the set
{u(·, t) = 0} indicates those regions where the concentration of such a chemical is extremely
low.

Well-posedness and global stability of steady states have been established in Chapter
3 (cf. [44]). Furthermore, in Chapter 4 (cf. [46]) we have deduced necessary and sufficient
conditions which ensure that the positivity set {u(·, t) > 0} changes continuously as t →
0+. It is worth noticing that a key difficulty in the analysis of Chapter 4 was to prove
continuity of the function α for sufficiently small times, due to its non-local dependence
on the positivity set {u(·, t) > 0}.

By means of Lemma 2.0.1, we obtain an equivalent formulation of problem (5.1.1)-
(5.1.2) given by

∂tu−∆u = −
(

1− g

λ

)
H(u) on ΓT , (5.1.5)

g ≤ λ almost everywhere in {u = 0} . (5.1.6)

Here λ : (0, T )→ R is a non-local functional of u and characterized by

λ(t) =
 
{u(·,t)>0}

g dS (5.1.7)

and we recall that H = X(0,∞) denotes the characteristic function of the positive real
numbers.

In terms of problem (5.1.5)-(5.1.6), it has been shown in Chapter 4 (cf. [46]) that
under specific assumptions on the initial data, namely (4.2.5) and (4.2.6), it holds that
{u(·, t) > 0} → {u0(·) > 0} as t → 0+ in a suitable topology. In particular, we assume
that for some fixed θ > 0, it holds

g(x)− λ(0) ≤ −θ < 0 for all x ∈ {u0 = 0} (5.1.8)

and further we prescribe a second non-degeneracy condition, that is

H2
((
{u0 > 0}

)
+δ
\
(
{u0 > 0}

)
−δ

)
→ 0 as δ → 0 , (5.1.9)
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where(
{u0 > 0}

)
+δ

:= {x |d(x,
(
{u0 > 0}

)
) ≤ δ} ,

(
{u0 > 0}

)
−δ

:= {x |d(x,
(
{u0 = 0}

)
) ≥ δ} .
(5.1.10)

We stress that (5.1.9) is a more technical formulation of (1.5.6). We justify the equiv-
alence between both statements in [46, Appendix B, Lemma B.2].

However if (5.1.8) fails but the non-degeneracy condition (5.1.9) is valid, we show in
[46] that at t = 0 the positivity set {u(·, t) > 0} will have a jump discontinuity that can
be characterized by a variational principle.

In this work we continue with the study that began in Chapter 4 (cf. [46]). More
specifically, in this chapter, that can be considered as a companion chapter of Chapter 4,
we prove under additional assumptions on the initial data u0 that the positivity set {u > 0}
and the function λ is continuous for all t > 0. To this end, in the rest of this paper we
restrict our analysis to the specific case of the unit sphere,

S2 = {p ∈ R3 | p2
1 + p2

2 + p2
3 = 1}

and to axisymmetric data and axisymmetric solutions.

The plan of this chapter is the following. First, we collect in Section 5.2 some results
from previous work. In Section 5.3 we provide the framework of the current analysis.
Finally, we prove in Section 5.4 global in time continuity for the positivity set {u(·, t) > 0}
and the function λ under some further assumptions on the initial data in addition to (5.1.8)
and (5.1.9).
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5.2 Previous results

Before proceeding to the main analysis of this chapter, we collect here some results from
[44] (cf. Chapter 3), which appear to be useful in what follows.

In [44] we have established that problem (5.1.1)-(5.1.3) admits a unique nonnegative
solution for rather general (not necessarily axisymmetric) data. In fact, for nonnegative
u0 ∈ C4(Γ), there exists a unique u ∈ L2(0, T ;H1(Γ)) ∩ H1(0, T ;H1(Γ)∗) ∩ W 2,1

p (ΓT )
for all p ∈ [1,∞) and α ∈ L∞(0, T ) that solves (5.1.1)-(5.1.3). Moreover it holds that
u ∈ C1+β, 1+β

2 (ΓT ) for all 0 < β < 1 .

In [44, Remark 2.3], we further justify a representation formula that we infer for ξ, that
is

ξ(·, t) =

1 in {u(·, t) > 0}
α(t)g(·)
1−g(·) in {u(·, t) = 0}

(5.2.1)

for almost all t ∈ (0, T ). Due to (5.2.1), we also deduce a formula for α which is equivalent
to (5.1.4) and is given by

α(t) =
´

Γ(1− g)ξ(·, t) dS´
Γ g dS

. (5.2.2)

We also prove in [44] that the solution to (5.1.1)-(5.1.3) satisfies
ˆ

Γ
u dS =

ˆ
Γ
u0 dS = m . (5.2.3)

5.3 Assumptions and preliminaries

Let us state the main assumptions that we impose throughout this chapter. In particular,
we will restrict to the spherical case Γ = S2 and to the case that all data and the solution
are axisymmetric with respect to the first coordinate axis.

For example, we assume that g : S2 → R is given by a function g̃ : [−1, 1]→ R as

g(p) = g̃(p1) for all p = (p1, p2, p3) ∈ S2.

For simplicity we will often drop the˜and write g = g(p1) (even though this is an abuse of
notation). We typically denote the p1 variable by x and the derivative of g with respect to
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p1 as g′. It will become clear from the context whether we consider g as a function on S2

or as a function on [−1, 1]. For example, ∆S2g refers to the Laplace-Beltrami operator of
g : S2 → R, whereas g′′ refers to the second derivative of g : [−1, 1] → R (more precisely
g̃ : [−1, 1]→ R).

Assumption 5.3.1. Let Γ = S2 be the 2-dimensional unit sphere in R3.

We assume that

u0 ∈ C4(S2), with u0 ≥ 0 and |{u0 > 0}| > 0 (5.3.1)

and

g ∈ C2(S2) and 0 < g0 ≤ g ≤ g1 < 1 on S2 (5.3.2)

for some constants 0 < g0 < g1 < 1.

Moreover we assume that both the initial data u0 and the function g are axisymmetric
functions with respect to the first coordinate axis in R3.

Due to Lemma 2.0.3, we now define the space of axisymmteric solutions as follows

Definition 5.3.2 (Axisymmetric solution spaces). Let

X2 :=
⋂

1≤q<∞

{
ũ ∈ W 1,q(−1, 1) ∩W 2,q

loc (−1, 1) with x 7→ (1− x2)ũ′′(x) ∈ Lq((−1, 1))
}
.

and
X2,1
T :=

⋂
1≤q<∞

{
ũ ∈ Lq(0, T ;X2) ∩ ∂tu ∈ Lq

(
(−1, 1)× (0, T )

)}
.

At this point, we observe that due to Assumption 5.3.1 the solution of (5.1.5) reduces
to a one-dimensional problem. We provide a justification for this reduction in the next
Proposition.

Proposition 5.3.3. Suppose that Assumption 5.3.1 holds. Then the unique solution u ∈
W 2,1
q (ΓT ) to (5.1.5), (5.1.6) with initial data u0 is axisymmetric with respect to the first

coordinate axis, i.e. u(p, t) = ũ(x, t) for any p = (x, y, z) ∈ S2, t ∈ (0, T ).

Moreover, ũ ∈ X2,1
T is the unique solution to

∂tũ−
(
(1− x2)ũ′

)′
= −

(
1− g

λ

)
H(ũ) in (−1, 1)× (0, T ) (5.3.3)

with ũ(·, 0) = ũ0, where λ ∈ L∞((0, T )) is given by

λ(t) =
 
{u(·,t)>0}

g̃(x) dx . (5.3.4)
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Proof. The proof follows by existence and uniqueness (cf. [44, Theorem 3.1]) and invariance
of (5.1.5), (5.1.6) with respect to rotations around the first coordinate axis. �

5.4 Global continuity results

From now on we will only deal with the axisymmetric case and drop the tilde notation
for functions depending on the spatial variables x ∈ [−1, 1]. Moreover we denote by g′ et
cetera the derivative with respect to x ∈ [−1, 1].

Let u be a solution to (5.1.5), (5.1.6) with initial data u0 and moreover assume that u
is axisymmetric. Recalling Proposition 5.3.3, we obtain that u is also a bounded solution
to

∂tu−
(
(1− x2)u′

)′
= −

(
1− g

λ(t)

)
H(u) in (−1, 1)× (0, T ], (5.4.1)

g ≤ λ(t) in {u(·, t) = 0} , (5.4.2)

where H = X(0,∞).

Our aim in this section is to provide global continuity results under certain assump-
tions on the initial data u0 and the external stimulus g. More precisely, we assume that
Assumptions 5.3.1 hold and that for some γ ∈ (−1, 1)

{u0 > 0} = (γ, 1) and u′0 ≥ 0 in (γ, 1) . (5.4.3)

Moreover, besides (5.3.2) we also assume that g satisfies

g′ ≥ κ > 0 in [−1, 1]. (5.4.4)

For the following we define the boundary of the positivity set of u via

p(t) := inf{x |u(x, t) > 0} . (5.4.5)

Indeed, we will see in Lemma 5.4.3 that if u0 is increasing, then so is u(·, t) for any t > 0
and [p(t), 1] is indeed the support of u(·, t).

Theorem 5.4.1. Suppose that Assumption 5.3.1 hold and that u0, g satisfy (5.4.3), (5.4.4).

Moreover, let u be an axisymmetric function which solves (5.1.5), (5.1.6). Then the
following holds:
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(i) If p(t̃) > −1 for some t̃ ≥ 0, then there exists δ0 = δ0(t̃) such that for all δ ∈ (0, δ0]
there exists ω(δ) > 0 with

p(t̃)− δ ≤ p(t) ≤ p(t̃) + δ for all t ∈ [t̃, t̃+ ω(δ)].

(ii) If for given m > 0 the corresponding steady state u∗ has an interface, then p is con-
tinuous for sufficiently large times.

Remark 5.4.2. (i) Theorem 5.4.1 implies in particular that if p(t̃) > −1, then p is
continuous in an interval [t̃, t1] where t1 = sup{t > t̃ | p(t) > −1}. In other words,
p moves continuously until it might vanish at the boundary x = −1, but we cannot
exclude that it jumps back discontinuously into the domain at some later time.

(ii) From the proof it will be apparent that δ0(t̃) depends on t̃ only through the distance
of p(t̃) to the left boundary −1.

5.4.1 Auxiliary lemmas

First we prove that the solution to (5.4.1)-(5.4.2) is non-decreasing assuming that the initial
data u0 is also non-decreasing.

Lemma 5.4.3. Under the assumptions of Theorem 5.4.1 it holds that u′(·, t) ≥ 0 in
(−1, 1)× [0, T ].

Proof. We approximate a solution to (5.1.5)-(5.1.6) by considering the solution uε to

∂tuε −
(
(1−x2)u′ε

)′
= −(1−g)fε(uε) + αεg in (−1, 1)× (0, T ] (5.4.1.1)

uε(·, 0) = u0 in (−1, 1) , (5.4.1.2)

where fε(u) = u
u+ε and αε is given by

αε(t) =
´ 1
−1(1−g)fε(uε(·, t)) dx´ 1

−1 g dx
. (5.4.1.3)

We notice that (5.4.1.1)-(5.4.1.2) has a global smooth solution that becomes strictly positive
for all positive times. Moreover it holds uε ∈ W 2,1

p,loc((−1, 1)× [0, T ])∩L∞([−1, 1]× [0, T ]).
Following the analysis in [44] we deduce for any 1 ≤ p <∞ and 0 < β < 1 that

uε ⇀ u in W 2,1
p,loc((−1, 1)× [0, T ]), (5.4.1.4)
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uε → u in C1+β, 1+β
2

loc ((−1, 1)× [0, T ]). (5.4.1.5)

We will prove first that uε(·, t) is non decreasing for all t ≥ 0. Since uε ∈ W 2,1
p,loc((−1, 1)×

[0, T ]) , by a standard embedding theorem we obtain that uε ∈ C
1+β, 1+β

2
loc ((−1, 1)× [0, T ]).

Then, via a bootstrapping argument we deduce that uε(·, t) ∈ C4,1+β
loc ((−1, 1)) for 0 ≤ t ≤ T

and uε(x, ·) ∈ C2, 1+β
2 ([0, T ]) for −1 < x < 1. Hence, we can differentiate (5.4.1.1) with

respect to x. Setting vε = u′ε we obtain

∂tvε −
(
(1−x2)vε

)′′
= −(1−g) εvε

(ε+ uε)2 + g′fε(uε) + αεg
′ . (5.4.1.6)

Due to the properties of g and fε we find that
(
(1 − x2)vε

)′′
− ∂tvε ≤ Cg,εvε for some

positive constant C = Cg,ε. For wε := eCg,εtvε we conclude:(
(1− x2)wε

)′′
− ∂twε ≤ 0 . (5.4.1.7)

To construct a suitable subsolution for (5.4.1.7) we fix µ > 0 that eventually will become
arbitrarily small, choose a sufficiently small η := η(ε, µ) > 0 and define yε : [−1 + ηε, 1 −
ηε]× [0, T ]→ R+ via

yε(x, t) = −µ
( 1

1− x2 + t

1− x2

)
. (5.4.1.8)

One can easily see that
(
(1− x2)yε

)′′
− ∂tyε ≥ 0. By assumption vε(·, 0) > 0 and thus we

obtain wε(x, 0) = vε(x, 0) > 0 > yε(x, 0) for all x ∈ [−1 + ηε, 1 − ηε] . Moreover (5.4.1.6)
yields that vε ∈ C3,3

loc ((−1, 1)× [0, T ]). Hence, there exists some constant Mε > 0 such that
|wε| ≤Mε in (−1, 1)× [0, T ]. Having chosen η = η(ε, µ) > 0 sufficiently small, we conclude

wε(−1+ηε, t) ≥ −Mε ≥ −
µ

1− (ηε−1)2 −
µt

1−(ηε−1)2 = yε(−1+ηε, t) .

for all t ∈ [0, T ] . Similarly, we find that wε(1−ηε, t) ≥ yε(1−ηε, t) . Thus, a comparison
argument yields

wε(x, t) ≥ −µ
( 1

1−x2 + t

1−x2

)
, for all (x, t) ∈ [−1+ηε, 1−ηε]× [0, T ] .

Letting now µ→ 0 implies wε ≥ 0 in (−1, 1)× [0, T ]. We conclude the proof of this lemma
by letting ε→ 0. Due to (5.4.1.5), it follows that u(·, t) is also increasing in (−1, 1). �

Next, we show that the support of u can not be the whole interval [−1, 1]. For that we
recall that for any T > 0 we have a bound ‖u‖∞ := ‖u‖L∞((−1,1)×[0,T ]) ≤ CT .
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Lemma 5.4.4. Under the assumptions of Theorem 5.4.1 it holds

p(t) ≤ 1− m

2π‖u‖∞
for all t ∈ [0, T ] . (5.4.1.9)

Furthermore we have

g(x) ≤ λ(t)− κm

4π‖u‖∞
for all x ∈ (−1, p(t)) and t ∈ [0, T ] . (5.4.1.10)

Proof. We observe that due to (5.2.3), (2.0.12) estimate (5.4.1.9) follows from

m = 2π
ˆ 1

p(t)
u(x, t) dx ≤ 2π‖u‖∞(1−p(t)) .

By (2.0.12), Taylor’s Theorem and (5.4.4), we obtain that

λ(t) = 1
1−p(t)

ˆ 1

p(t)
g dx ≥ 1

1−p(t)

ˆ 1

p(t)
g(p(t)) + κ(x− p(t)) dx

≥ g(p(t)) + κ

2 (1−p(t)) ≥ g(p(t)) + κm

4π‖u‖∞
.

Due to the monotonicity of g we deduce (5.4.1.10). �

Next we prove that p(t) is sufficiently separated from the value s(t) where g(s(t)) = λ(t).

Lemma 5.4.5. Assume that (5.4.3), (5.4.4) are valid. Then, there exists a unique s(t) ≥
p(t) with

g(s(t)) = λ(t) (5.4.1.11)

and it holds

p(t) ≤ s(t)− c0 for all t ∈ [0, T ] (5.4.1.12)

for some c0 = c0(g,m, ‖u‖∞) > 0.

Proof. We notice due to (5.1.7), (5.3.2) and (5.4.4) that g(−1) < λ(t) < g(1) for all
t ∈ [0, T ]. Thus, there exists s(t) ∈ (−1, 1) such that (5.4.1.11) holds true. Furthermore,
due to (5.4.4), the function g−1 : [g(−1), g(1)] → [−1, 1] is well defined. Then, recalling
that g(p(t)) ≤ λ(t), it follows that p(t) ≤ s(t). Inequality (5.4.1.12) then follows from
(5.4.1.10) and (5.4.4). �

Finally, we formulate the degeneracy Lemma 2.0.2 for our particular setting.

Corollary 5.4.6. Let t1 > 0, x0 < p(t1) and ρ ∈ (0, ρmax] such that x0 + 2ρ ≤ p(t1). Then
there exists A > 0 such that if u ≤ 1

A
κm

4π‖u‖∞ρ
2 in (−1, x0 + 2ρ) × (t1, t2) then u = 0 in

(−1, x0 + ρ)× (t1, t2). This in particular implies that p(t) ≥ x0 + ρ in [t1, t2].
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5.4.2 Proof of Theorem 5.4.1

We consider now a time t̃ ≥ 0 such that p(t̃) > −1 and define δ0 := 1
8 min

(
1
2(p(t̃) +

1), c0,
m

2π‖u‖∞ ,
κm

4π‖u‖∞

)
, with c0 as in (5.4.1.12)

Step 1: p(t̃)− δ ≤ p(t)

We fix any δ ∈ (0, δ0] and define U as the solution of

∂tU −
(
(1− x2)U ′

)′
= 0 in [−1 + δ

4 , p(t̃) + δ
4 ]× (t̃, T ) , (5.4.2.1)

U(x, t̃) = ‖u‖∞χ{u(·,t̃)>0} in [−1 + δ
4 , p(t̃) + δ

4 ] . (5.4.2.2)
U(x, t̃) = ‖u‖∞χ{u(·,t̃)>0} in {−1 + δ

4 , p(t̃) + δ
4} × (t̃, T ) . (5.4.2.3)

By (5.4.1.10) and the choice of δ0 it follows that g ≤ λ(t) in [−1, p(t̃) + δ0]× [t̃, T ] and thus

∂tu−
(
(1− x2)u′

)′
= −

(
1− g

λ(t)

)
H(u) ≤ 0 in [−1, p(t̃) + δ0]× [t̃, T ].

Hence, the maximum principle principle implies that u(·, t̃) ≤ U(·, t̃) in [−1 + δ
4 , p(t̃) + δ

4 ].

In fact, there is an explicit formula in [22] for the solution U , that is

U(x, t) =
ˆ p(t̃)+ δ

4

p(t̃)
Γ(x, t, ξ, t̃)U(x, t̃) dξ = ‖u‖∞

ˆ p(t̃)+ δ
4

p(t̃)
Γ(x, t, ξ, t̃) dξ

≤ C
[

erf
(
p(t̃) + δ

4 − x√
C(t− t̃)

)
+ erf

(
x− p(t̃)√
C(t− t̃)

)]
.

Here Γ(x, t, ξ, t̃) denotes the fundamental solution of (5.4.2.1) and erf(y) stands for the
error function. Due to the previous estimate and the monotonicity of u we obtain that

sup
x∈[−1,p(t̃)− δ2 ]

u(x, t) ≤ u(p(t̃)− δ
2 , t) ≤ sup

x∈[−1,p(t̃)− δ2 ]

U(x, t)→ 0 for |t− t̃| → 0 .

Hence, using Lemma 5.4.6, it follows that p(t̃)− δ ≤ p(t) for t− t̃ ≤ ω(δ).

Step 2: p(t) ≤ p(t̃) + δ

We are going to construct a subsolution, more precisely, we are going to show that
there exists a nonnegative, continuous function W that depends only on the initial data
u0, with W (ξ) > 0 for all ξ > 0 and W (0) = 0 such that

u(x, t) ≥ W (x− p(t)), for x ∈ (p(t), p(t) + δ0(t)) , t ∈ [0, T ] . (5.4.2.4)
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Indeed, if (5.4.2.4) holds we define for any t̃ ≥ 0 the function w as the solution to

∂tw −
(
(1− x2)w′

)′
= 0 in (p(t̃), p(t̃) + δ0)× (t̃, T ] (5.4.2.5)

w(x, t̃) = W (x− p(t̃)) in (p(t̃), p(t̃) + δ0) (5.4.2.6)
w(p(t̃), t) = w(p(t̃) + δ0, t) = 0 in (t̃, t̃+ ω(δ0)] (5.4.2.7)

and let w̃ := w − (t− t̃). Equation (5.4.2.5) yields

∂tw̃ −
(
(1− x2)w̃′

)′
= −1 ≤ ∂tu−

(
(1− x2)u′

)′
in (p(t̃), p(t̃) + δ0)× (t̃, T ]. Furthermore, u(x, t̃) ≥ W (x− p(t̃)) for all x ∈ (p(t̃), p(t̃) + δ0)
by (5.4.2.4) and u(p(t̃), t), u(p(t̃) + δ0, t) > 0 = w(p(t̃), t) = w(p(t̃) + δ0, t) for all t ∈ (t̃, T ].
Hence, we obtain by a comparison principle argument that

u(x, t) ≥ w̃ in [p(t̃), p(t̃) + δ0]× [t̃, T ]. (5.4.2.8)

If we consider any 0 < δ ≤ δ0
2 it holds

u ≥ w̃ > 0 in [p(t̃) + δ, p(t̃) + δ0 − δ)× [t̃, t̃+ ω(δ)]

redefining ω(δ) if necessary. Moreover, the monotonicity of u yields that

u(x, t) > 0 in [p(t̃) + δ, 1]× [t̃, t̃+ ω(δ)]

which proves the claim.

We now proceed to the proof of (5.4.2.4). Due to Step 1, we find for any t̃ ≥ 0 a δ0

such that for δ ∈ (0, δ0] and for all t ∈ [t̃, t̃+ ω(δ)] it holds

p(t̃) ≤ p(t) + δ for all t̃ ≤ t ≤ t̃+ ω(δ) . (5.4.2.9)

For any τ ≥ 0 we set t∗δ := max{τ − ω(δ), 0} ≥ 0 and we infer by (5.4.2.9) that
p(t∗δ) ≤ p(τ) + δ. In particular, we obtain that

u > 0 in [p(τ) + δ, 1)× [t∗δ , τ ] . (5.4.2.10)

Since τ ≥ 0 is arbitrary, we distinguish in the following the cases τ − ω(δ0(τ)) > 0 and
τ − ω(δ0(τ)) ≤ 0. Moreover, in the case of τ ≤ ω(δ0(τ)), we fix 0 < δ∗ ≤ δ0 such that
τ = ω(δ∗).

Our goal is to construct suitable subsolutions. In the first case we will find an explicit
subsolution, while in the second we will work with the initial data.
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Case 1: Suppose that τ − ω(δ0) > 0 and consider any arbitrary δ ∈ (0, δ02 ]. Due to
(5.4.2.10), u is a solution of

∂tu−
(
(1− x2)u′

)′
= −1 + g

λ(t) , in [p(τ) + δ, p(τ) + 2δ]× (t∗δ , τ ] .

We observe that, by regularity of u and standard embedding theorems, we can differentiate
the above equation with respect to x. Then for v = u′ we obtain, using (5.4.4), that

∂tv −
(
(1− x2)v

)′′
= g′

λ(t) ≥M in [p(τ) + δ, p(τ) + 2δ]× (t∗δ , τ ] ,

for some constant M := M(||g||∞, ||g′||∞) > 0. To construct a suitable subsolution let V
satisfy

∂tV −
(
(1− x2)V

)′′
≤M, in [p(τ) + δ, p(τ) + 2δ]× (t∗δ , τ ] , (5.4.2.11)

V (x, t∗δ) = 0, in [p(τ) + δ, p(τ) + 2δ] , (5.4.2.12)
V (p(τ) + δ, t) = V (p(τ) + 2δ, t) = 0, t ∈ (t∗δ , τ ] . (5.4.2.13)

It is easy to verify that the function

V (x, τ) = M

2 (t− t∗δ)e
−µ

t−t∗
δ

δ2 cos
(
π(x− (p(τ) + 3

2δ))
δ

)
, (5.4.2.14)

satisfies (5.4.2.11)-(5.4.2.13) if µ > 0 is sufficiently large.

In particular we find that u′(x, τ) ≥ Cω(δ)e−µ
ω(δ)
δ2 =: F (δ) in [p(τ) + 5δ

4 , p(τ) + 7δ
4 ].

Therefore, since δ ≤ δ0 but otherwise arbitrary, we deduce

u′(x, τ) ≥ W̃ (x− p(τ)) in
(
p(τ), p(τ) + δ0

]
for some function W̃ which is positive on R+. Integrating this equation we find indeed
that (5.4.2.4) holds for τ > ω(δ0).

Case 2: Next we investigate the case τ ≤ ω(δ0), that is t∗δ = 0. We find as above that
v = u′ solves

∂tv −
(
(1− x2)v

)′′
= g′

λ(t) ≥M [p(τ) + δ, p(τ) + 2δ]× (0, τ ] .

We construct a subsolution V by solving the problem

∂tV −
(
(1− x2)V

)′′
= M, in [p(τ) + δ, p(τ) + 2δ]× (0, τ ] , (5.4.2.15)

V (x, 0) = u′0, in [p(τ) + δ, p(τ) + 2δ] , (5.4.2.16)
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V (p(τ) + δ, t) = V (p(τ) + 2δ, t) = 0, in (0, τ ] . (5.4.2.17)

Since u′0 ≥ 0 by assumption, we conclude that V (x, τ) > φ(δ, u0) in [p(τ) + 5
4δ, p(τ) + 7

4δ]
and as above we finally conclude that there exists a positive function W2 such that

u(x, τ) ≥ W2(x− p(τ)), in [p(τ), p(τ) + δ0] (5.4.2.18)

for τ ∈ [0, ω(δ0)] from which (5.4.2.4) follows with W := min{W1,W2} > 0.

The second part of Theorem 5.4.1 follows from the fact that u(·, t) → u∗ uniformly as
t → ∞ (see Theorem 3.2 in [46]), the monotonicity of u(·, t) and the degeneracy Lemma
5.4.6 which implies that p(t) needs for large times be close to the interface of u∗.
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A parabolic free boundary problem modeling cell

polarization

This appendix coincides with the paper [44], written jointly by Barbara Nietham-
mer, Matthias Röger, Juan J. L. Velázquez and the author.

A.1 Introduction

Cell polarization in response to some external chemical stimulus contributes significantly
in numerous biological processes, such as the migration, development, and organization of
eukaryotic cells [58]. Roughly speaking, the process of cell polarity is correlated to the
reorganization of several chemicals within a cell and on a cell membrane. Typically polar-
ization is achieved by the combination of an internal pattern forming system, a response
to an external signal that imposes some directional preference to the pattern, and the
amplification of small concentration differences [70].

A key step in the polarization process is the direction sensing [12], where chemical
gradients are detected and amplified. This step proceeds by the transduction of a signal
by receptors on the plasma membrane and its adaption by intracellular signaling cascades,
which involve the activation and deactivation of specific proteins and the translation of
possibly shallow gradients in the outer signal to large amplitude intracellular gradients in
protein distributions. Once such polarity of the cell in form a of a spatial asymmetry in
chemical concentrations has been established, changes in cell shape and the movement of
the cell in the surrounding environment can be initiated.
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Polarization is in many instances a dynamic, time-dependent process and a tight reg-
ulation of the response to changing environmental conditions is key for many biological
functions. One prominent and well-studied example is the chemotaxis of the social amoeba
Dictyostelium that migrate to the source of waves of chemoattractant, which exposes the
cell to a pulsatile gradient [49, 69].

Several mathematical models of varying complexity have been suggested to analyze the
spatial and temporal processes associated with cell polarization. One of the most popular
models is the local excitation, global inhibition (LEGI) mechanism which was suggested in
the seminal paper about cell polarization [47], see also [40, 53], and is often part of more
comprehensive models [12].

We focus on a minimal model for the amplification step that has been proposed in [51].
The significance of the suggested model stems from the fact that in a suitable parameter
regime an asymptotic reduction leads to a generalized obstacle-type problem that allows
for a clear and mathematically tractable characterization of polarized states. In [51] we
have analyzed stationary states and the onset of polarization. The present paper continues
this analysis by considering the time-dependent problem.

The model proposed in [51] consists of a system of PDEs, motivated by the GTPase
cycle model presented in [59, 60]. We consider a protein that can be in an active or an
inactive state, where the inactive protein moreover can be bound to the cell membrane or be
in a cytosolic state, i.e. contained in the cells interior. We denote the surface concentration
of the active and incative form by u and v, respectively, and the volume concentration
of the inactive cytosolic state by w. The model has only a few ingredients. It accounts
for lateral diffusion on the cell membrane, for diffusion inside the cell, for activation and
deactivation processes on the cell membrane and for attachment to and detachment from
the cell membrane. One contribution to the activation depends on a concentration c of a
protein that characterizes an external signal (possibly after a first processing step). This
concentration in general may vary with space and time.

Most of these processes are modeled by linear kinetic laws, except for parts of the
activation and deactivation processes that need the catalyzation by enzymes and are de-
scribed by simple Michaelis-Menten type rate laws, see [51] for more details on the model
derivation.

To give a mathematical formulation, we represent the cell and its outer cell membrane
by a domain Ω ⊂ R3 and its boundary Γ := ∂Ω. Moreover we fix a time interval (0, T ) of
observation, a signal concentration c : Γ × (0, T ) → R, and request that u, v : Γ × (0, T )
and w : Ω×(0, T ) solve the following coupled system of bulk and surface partial differential
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equations

∂tu = ∆Γu+
(
a1 + a2u

a3 + u
+ c

)
v − a4u

1 + u
on Γ× (0, T ) , (A.1.1)

∂tv = ∆Γv −
(
a1 + a2u

a3 + u
+ c

)
v + a4u

1 + u
− a5v + a6w on Γ× (0, T ) , (A.1.2)

∂tw = D∆w in Ω× (0, T ) , (A.1.3)

−D∂w
∂ν

= −a5v + a6w on Γ× (0, T ) . (A.1.4)

Here ∆Γu and ∆Γv denote the Laplace-Beltrami operator on the surface Γ and a1, . . . , a6

are nonnegative constants while D denotes the quotient of the cytosolic diffusion and the
lateral membrane diffusion constants, which typically is very large. Throughout the whole
paper we assume that both active and inactive proteins diffuse on the membrane with the
same rate. However we stress that having different diffusion rates for u and v would not
affect the subsequent analysis, since the diffusion of the inactive protein on the membrane
vanished in our scaling limit (cf. (A.2.1.3)). Furthermore, setting f1(u) := a1 + a2u

a3+u and
f2(u) := u

1+u , we note that in principle both f1, f2 could be replaced by any continuously
differentiable increasing functions such that f1(0) ≥ 0, f2(0) = 0 with f1 becoming constant
and f2 having a positive limit as u becomes large. In that case, the rescaling in (A.2.1.1)
below is then adapted to (f1, f2) (f1, ε

−1f2).

We complement the system with initial conditions:

u(·, 0) = uin , v(·, 0) = vin on Γ , w(·, 0) = win in Ω , (A.1.5)

where uin, vin : Γ→ [0,∞) and win : Ω→ [0,∞) are given nonnegative data.

The system (A.1.1)-(A.1.4) contains two parts. On the one hand, we have a reaction-
diffusion system on the membrane for the variables u and v, with a w-dependent source
term. On the other hand, there is a diffusion equation for w in the interior of the cell
with a nonlinear Robin-type boundary condition that depends on u and v. Solutions of
(A.1.1)-(A.1.5) satisfy the mass conservation property

ˆ
Ω
w(·, t) dx+

ˆ
Γ

(
u(·, t) + v(·, t)

)
dS =

ˆ
Ω
win dx+

ˆ
Γ

(
uin + vin

)
dS (A.1.6)

for all t ∈ (0, T ).

In addition to (A.1.1)-(A.1.4) we will study a reduced system that is obtained in the
limit of infinite cytosolic diffusivity, which is motivated by the fact that cytosolic diffusion
within the cell is by a factor of hundred larger than the lateral diffusion on the membrane
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[34]. In this limit the cytosolic concentration becomes spatially constant and w = w(t) is
determined by the total mass conservation, i.e.

|Ω|w(t) = m−
ˆ

Γ

(
u(·, t) + v(·, t)

)
dS , (A.1.7)

where m is the total amount of protein. The reduction for D = ∞ leads to a nonlocal
reaction-diffusion system on Γ×(0, T ), given by (A.1.1), (A.1.2) and (A.1.7), complemented
by initial conditions for u and v. This reduction can be viewed as a kind of shadow system.
Such systems have been analyzed intensively in the case of two-variable reaction-diffusion
systems in open domains [28,33,42], and in the context of obstacle problems in [64].

Under the assumption that the reaction rates a4, a5 and a6, the diffusion coefficient D
and the total mass of proteins are of order ε−1, we will prove that solutions converge in
the large reaction rate limit ε→ 0 to solutions of certain reduced systems. Although so far
we do not have any experimental data justifying the fast reactions as a4, a5 and a6 become
large, these parameters undoubtedly play a crucial role in the clear distinction of regions
in which the concentrations of some chemicals have different orders of magnitude. First,
we will investigate the limit of infinite cytosolic diffusivity. After appropriate rescaling and
renaming (cf. (A.2.1.1)), taking the limit ε → 0, yields the following parabolic obstacle-
type problem

∂tu−∆u = −a4(1− g)ξ + αg on Γ× (0, T ) , (A.1.8)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on Γ× (0, T ) , (A.1.9)
u(·, 0) = u0 on Γ , (A.1.10)

where u0 is the limit of suitably rescaled versions of uin (cf. (A.2.1.6)), the function
g : Γ× (0, T )→ (0, 1) is given by

g(x, t) = c(x, t)
c(x, t) + a5

, (A.1.11)

and α : (0, T )→ R only depends on time and is determined by a solvability condition for
(A.1.8), see (A.2.1.25). This function α plays the role a Lagrange multiplier associated to
the mass conservation propertyˆ

Γ
u(·, t) dS =

ˆ
Γ
u0 dS for all t ∈ (0, T ) ,

that is satisfied in the limit.

In the case D <∞ equation (A.1.8) changes and we obtain the system

∂tu = ∆u− a4(1− g)ξ + a6gw on Γ× (0, T ) , (A.1.12)
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0 = ∆w in ΩT , on Γ× (0, T ) , (A.1.13)

D
∂w

∂n
= a4(1− g)ξ − a6gw on Γ× (0, T ) , (A.1.14)

u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on Γ× (0, T ) , (A.1.15)
u(·, 0) = u0 on Γ . (A.1.16)

The analogy to D =∞ is even more apparent if one expresses w as a nonlocal operator of
u. A particularly convenient form is presented in Proposition A.2.7.

Stationary solutions of model (A.1.1)-(A.1.4) and the corresponding scaling limits have
already been studied in [51]. In particular, in addition to well-posedness, the onset of
polarization is studied in [51] for sufficiently small (rescaled) mass of protein. The goal of
the present paper is to complement this analysis. The main contributions are a rigorous
justification of the asymptotic reduction, the well-posedness of the evolutionary obstacle-
type problem that we obtain in the limit, an L1-contraction property of solutions, and the
global stability of steady states.

Parabolic obstacle problems appear in various applications and have have been studied
intensively over the past decades [24]. For example, the one-phase Stefan problem can
be written as a parabolic obstacle problem by a suitable transformation that was first
proposed by Duvaut [15]. In the context of fluid flows in porous media the Baiocchi
transform [2] also leads to an obstacle problem. Obstacle problems belong to a class of
free boundary problems that can be formulated as variational inequalities, i.e. inequalities
for bilinear functionals which are satisfied for functions u and test functions in a space
satisfying inequalities of the form u ≥ ψ. Alternatively, under some regularity assumptions
it is possible to reformulate the same class of free boundary problems as PDEs in which
an unknown function ξ satisfies an inequality almost everywhere in the set in which the
PDEs are solved. Both formulations can be found for example in [37,62]. The equivalence
between both approaches can be seen using the so-called Stampacchia Lemma [62, Section
5:3, Theorem 5:4.3]. In this paper we will only use the second approach. Therefore, in
addition to the unknown u we must determine also an auxiliary function ξ ∈ [0, 1] such
that ξ = 1 in {u > 0}.

The connection of our limit problems with the parabolic obstacle problem is best seen
for the reduced model (A.1.8)-(A.1.9). In Remark A.2.3 we derive the following character-
ization of solutions,

∂tu−∆u+
(
a4(1− g)− αg

)
=
(
a4(1− g)− αg

)
+
X{u=0}, u ≥ 0, (A.1.17)
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with α = α(t) given as a nonlocal function of u, more precisely

α(t) =
a4
´
{u(·,t)>0}

(
1− g(·, t)

)
dS´

{u(·,t)>0} g(·, t) dS ,

see (A.2.1.25) and (A.2.1.27). In the formulation (A.1.17) the problem corresponds to the
classical parabolic obstacle model, where a4(1− g)−αg is replaced by some given function
f independent of u. Defining H(u) := ∂tu−∆u+

(
a4(1− g)− αg

)
, the problem (A.1.17)

can be written as
uH(u) = 0, H(u) ≥ 0, u ≥ 0,

and can be expressed as a variational inequality, see for example [43, Section II.9.1].

One of the features of the free boundary problems considered in this paper is the
presence of some terms in the equations that depend in a non-local way on the solution
u itself. In the case of problem (A.1.8)-(A.1.10), the non-locality is introduced by the
dependence of α in (A.1.17) on the positivity set {u > 0}. For the bulk-surface problem
(A.1.12)-(A.1.16) the non-local dependence takes place through the function w which solves
the elliptic problem (A.1.13), (A.1.14). We remark that free boundary problems containing
dependences on the positivity set of the solution itself (i.e. {u > 0}) have been considered
in [64].

Several of the technical difficulties that we need to address in this paper are due to the
fact that the function α changes in a discontinuous manner if the positivity set {u(·, t) > 0}
changes discontinuously in time. However, to prove that {u(·, t) > 0} changes continuously
in time is not an easy task and we expect that jumps of this set are possible in some
situations. We will address the continuity properties of {u(·, t) > 0} and α in future work,
but remark here that possible jumps of the functions t 7→ {u(·, t) > 0} and t 7→ α(t) are
the main reason for several of the most technical points of this paper.

Compared to [51] the main novelty of this paper is to introduce some monotonicity
formulas which allow us to prove uniqueness of solutions and also uniqueness and stability
of steady states of the problems (A.1.8)-(A.1.10) and (A.1.12)-(A.1.15).

Uniqueness of the steady states associated to the problem (A.1.8)-(A.1.10) has been
proved in [51] using a completely different approach. Similar uniqueness results have been
obtained in [51] for the stationary states of (A.1.12)-(A.1.15) in the particular case in
which the domain Ω is a ball. The monotonicity formulas introduced in this paper (cf.
Sections A.3 and A.4) imply that the evolution semigroup associated to the problems
(A.1.8)-(A.1.10) and (A.1.12)-(A.1.15) is contractive in the L1 norm. It is worth to remark
that the existence of these monotonicity formulas rely on a delicate balance of the terms
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−a4(1 − g)ξ and αg, a5gw in (A.1.8), (A.1.12). The term −a4(1 − g)ξ has a stabilizing
effect, which is similar to the analogous term arising in the study of the reformulation of the
one-phase Stefan problem due to Duvaut [15]. On the other hand the terms αg, a5gw in
(A.1.8), (A.1.12) depend on functions determined as a non-local functional of u (namely α
and w respectively). These terms have a destabilizing effect on the solutions of the problems
(A.1.8)-(A.1.10) and (A.1.12)-(A.1.15), but some cancellations between the contributions
of both terms in the derivative of the L1 norm of the difference of two solutions of these
problems yield an overall stabilizing effect.

The plan of this paper is the following. Section A.2 is devoted to establishing the con-
vergence of solutions in the fast reaction limit to the limiting obstacle-type problems. In
Section A.2.1 we will first investigate the case of infinite cytosolic diffusion D =∞, intro-
duce a suitable rescaled system (A.2.1.2)-(A.2.1.6) and prove the convergence to (A.1.8)-
(A.1.10) (cf. Theorem A.2.2). In Section A.2.2 we consider the analogous problem for finite
cytosolic diffusion coefficients D. We derive in a scaling limit analogous to the case D =∞
the generalized obstacle-type problem (A.1.12)-(A.1.16) in Theorem A.2.5. Section A.3 fo-
cuses on the case D =∞. In Section A.3.1 we justify an L1-contraction property and the
uniqueness of solutions of problem (A.1.8)-(A.1.10) (Theorem A.3.1) while in Section A.3.2
we will show the global stability of the steady states (Theorem A.3.2). In Section A.4 we
study the reduced model for finite cytosolic diffusion D <∞. We prove an L1-contraction
property and the uniqueness of solutions of problem (A.1.12)-(A.1.16) in Section A.4.1, see
Theorem A.4.1. We also include a monotonicity property and a uniqueness result for solu-
tions of the stationary problem in Theorem A.4.2. This improves the corresponding result
from [?] that was only shown for Ω = B(0, 1) there. Along the lines of Section A.3.2, we
will further show in Section A.4.2, Theorem A.4.3, that steady states are globally stable.

A.1.1 Notation and Assumptions

Notations: For a set Ω ⊂ R3 we denote by |Ω| = L3(Ω) the Lebesgue measure. For
a surface Γ ⊂ R3 we denote by |Γ| = H2(Γ) its area (i.e. the 2-dimensional Hausdorff
measure) and by

´
Γ · dS the corresponding surface integral.

For the sake of convenience, ΩT and ΓT stand for Ω× (0, T ) and Γ× (0, T ) respectively.
For the Laplace-Beltrami operator on Γ we just write ∆ instead of ∆Γ if there is no reason
for confusion.

We denote the usual Sobolev spaces by W k,p(U) and the parabolic Sobolev spaces by
W k,k/2
p (UT ), where U = Ω or U = Γ, k ∈ N0, 1 ≤ p ≤ ∞. The Hölder and parabolic Hölder

spaces are denoted by Cα(U) and Cα,α/2(UT ), respectively, for 0 < α < 1. The weak

61



Appendix A. A parabolic free boundary problem modeling cell polarization

parabolic solution spaces are denotes by V2(UT ) := L2(0, T ;H1(U)) ∩H1(0, T ;H1(U)∗).

Assumptions: Let Ω ⊂ R3 be an open, bounded, connected set with C3−regular
boundary Γ = ∂Ω. Assume a1, a2 ≥ 0, a3, a4, a5, a6 > 0 and D ≥ 1 and that c : ΓT → R+

is smooth and that there exists c0 > 0 with

c(x, t) ≥ c0 > 0 for all (x, t) ∈ ΓT . (A.1.1.1)

A.2 The fast reaction limit

A.2.1 Convergence to a parabolic obstacle-type problem for D =∞

In this section we consider the case of infinite cytosolic diffusion coefficient, that is we
consider solutions to (A.1.1), (A.1.2) and (A.1.5) together with (A.1.7). It follows from
[29] that for givenm > 0 and for nonnegative data uin, vin ∈ L2(Γ) with

´
Γ(uin+vin) dS ≤ m

there exists a nonnegative solution (u, v, w) with u, v ∈ V2(ΓT ) and w ∈ W 1,∞(0, T ). In
fact, although the analysis in [29] does not consider nonconstant c all arguments easily
carry over to the present case.

Our goal in this section is to consider a suitable scaling limit of the system (A.1.1),
(A.1.2), (A.1.5) and (A.1.7). More precisely, for small ε > 0 we introduce the following
rescalings

a4 = â4

ε
, a5 = â5

ε
, a6 = â6

ε
, c = ĉ

ε
and m = m̂

ε
(A.2.1.1)

with â4, â5, â6, ĉ and m̂ being positive and of order one. We denote the corresponding
solutions by uε, vε and wε and let Uε := εuε. Dropping the hats again, we can rewrite
(A.1.1), (A.1.2), (A.1.5) and (A.1.7) as

∂tUε = ∆Uε +
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε −

a4Uε
ε+ Uε

on ΓT , (A.2.1.2)

ε∂tvε = ε∆vε −
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε + a4Uε

ε+ Uε
− a5vε + a6wε on ΓT ,

(A.2.1.3)

ε|Ω|wε(t) = m−
ˆ

Γ
(Uε(x, t) + εvε(x, t)) dS for a.a. t ∈ (0, T ) . (A.2.1.4)

For given nonnegative, smooth functions U ε
0 , v

ε
0 : Γ → R with

´
Γ

(
U ε

0 + εvε0
)
≤ m we

prescribe the initial conditions

Uε(·, 0) = U ε
0 , vε(·, 0) = vε0 on Γ . (A.2.1.5)
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In order to obtain a nontrivial limit, we assume for the initial data that

U ε
0 → u0 in L2(Γ) as ε→ 0 , sup

ε>0

[ ˆ
Γ
|vε0|2 dS + 1

ε

(
m−

ˆ
Γ

(
U ε

0 + εvε0
)
dS
)]
≤ C

(A.2.1.6)

for some u0 ∈ L2(Γ) with
´

Γ u0 dS = m and some C > 0.

We first prove some uniform estimates.

Theorem A.2.1. For any nonnegative solution (Uε, vε, wε) of (A.2.1.2)-(A.2.1.5) we have

‖Uε‖V2(ΓT ) + ‖vε‖L∞(0,T ;L2(Γ)) + ‖wε‖L∞(0,T ) ≤ C , (A.2.1.7)

where here and in the following C denotes a constant that depends on the data of the
problem but not on ε.

Proof. By virtue of (A.2.1.3) we compute

d

dt

ˆ
Γ

εa5v
2
ε

2 dS = −
ˆ

Γ
εa5|∇vε|2 dS −

ˆ
Γ
a5

(
εa1 + εa2Uε

εa3 + Uε
+ c

)
v2
ε dS

+
ˆ

Γ

a4a5Uεvε
ε+ Uε

dS −
ˆ

Γ

(
(a5vε)2 − a5a6vεwε

)
dS . (A.2.1.8)

We observe that (A.2.1.2)-(A.2.1.4) imply that

ε|Ω| d
dt
wε =

ˆ
Γ
(a5vε − a6wε) dS , ε|Ω|wε(0) = m−

ˆ
Γ

(
U ε

0 + εvε0
)
dS (A.2.1.9)

and obtain

ε|Ω|a6
d

dt

1
2w

2
ε = a5a6

ˆ
Γ
vεwε dS − a2

6|Γ|w2
ε . (A.2.1.10)

Taking the sum of (A.2.1.8) and (A.2.1.10) and using c ≥ c0 > 0 yields

d

dt

(ˆ
Γ

εa5v
2
ε

2 dS + ε|Ω|a6
1
2w

2
ε

)
+
ˆ

Γ
εa5|∇vε|2 dS + c0

ˆ
Γ
a5v

2
ε dS

≤
ˆ

Γ
a4a5vε dS −

ˆ
Γ

(
a2

5v
2
ε − 2a5a6vεwε + a2

6w
2
ε

)
dS

≤
ˆ

Γ

c0a5

4 v2
ε + 1

c0
a2

4a5 +
(1
δ
− 1

)
a2

5v
2
ε − (1− δ)a2

6w
2
ε dS ,

where we have used Young’s inequality and where δ > 0 is arbitrary.
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We next choose δ < 1 sufficiently close to one such that (1
δ
− 1

)
a5 <

1
4c0 and obtain

ε
d

dt

(ˆ
Γ
v2
ε dS + w2

ε

)
≤ C −

(ˆ
Γ
v2
ε dS + w2

ε

)
.

Using (A.2.1.6) we deduce
ˆ

Γ
v2
ε(·, t) dS + w2

ε(t) ≤ C for all 0 ≤ t ≤ T. (A.2.1.11)

This implies the required bounds for vε, wε.

Furthermore, by these estimates the reaction-terms on the right-hand side of (A.2.1.2)
are uniformly bounded in L2(ΓT ). Parabolic weak solution theory, see [74, Theorem 26.1],
and (A.2.1.6) imply the uniform bound for Uε, which finishes the proof of (A.2.1.7). �

Theorem A.2.2. Suppose that {(Uε, vε, wε)}ε>0 is a family of nonnegative solutions of
(A.2.1.2)-(A.2.1.5) and assume (A.2.1.6). Then there exist a subsequence ε → 0, a non-
negative function u ∈ V2(ΓT ) and a measurable function ξ such that

Uε ⇀ u in V2(ΓT ) , (A.2.1.12)
Uε

Uε + ε
∗
⇀ ξ weakly* in L∞(ΓT ) (A.2.1.13)

as ε→ 0. Moreover, u ∈ W 2,1
p (Γ× (δ, T )) for any δ > 0, 1 ≤ p <∞, with

‖u‖W 2,1
p (Γ×(δ,T )) ≤ C(p, δ, T ), (A.2.1.14)

and
´

Γ u(·, t) dS = m holds for all t ∈ [0, T ].

Finally, there exists a nonnegative function α ∈ L∞(0, T ) such that (A.1.8)-(A.1.10)
are satisfied.

Proof. By Theorem A.2.1 there exists a subsequence ε → 0 (not relabeled) and functions
u ∈ V2(ΓT ), v ∈ L∞(0, T ;L2(Γ)), w ∈ L∞(0, T ) and ξ ∈ L∞(0, T ) such that

Uε ⇀ u in V2(ΓT ),
vε

∗
⇀ v in L∞(0, T ;L2(Γ)),

wε
∗
⇀ w in L∞(0, T ),

Uε
Uε + ε

∗
⇀ ξ in L∞(ΓT ).

By the Aubin-Lion’s compactness Lemma [1,67] we also have

Uε → u in L2(ΓT ). (A.2.1.15)
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With these convergence properties we can pass to the limit in the weak form of (A.2.1.2)
and conclude that for any φ ∈ C1

c (Γ× [0, T )) it holds
ˆ

ΓT
∂tφ(u− u0) dS dt =

ˆ
ΓT

(
∇φ · ∇u− φ

(
cv − a4ξ(·, t)

))
dS dt . (A.2.1.16)

In particular, (A.1.8) holds in H−1(Γ) for almost all t ∈ (0, T ). Moreover, by [74,
Theorem 25.5] we have u ∈ C0([0, T ];L2(Γ)), and u(·, 0) = u0 holds in the sense that
u0 = limt↘0 u(·, t) in L2(Γ).

Let φ ∈ C2,1
c (ΓT ) be an arbitrary test function. Multiplying (A.2.1.3) by φ and inte-

grating over ΓT we deduce, after integrating by parts, that

−ε
ˆ T

0
〈vε, ∂tφ〉 dt = ε

ˆ T

0

ˆ
Γ
vε∆φ dS dt−

ˆ T

0

ˆ
Γ

(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vεφ dS dt

+
ˆ T

0

ˆ
Γ

a4Uεφ

ε+ Uε
dS dt−

ˆ T

0

ˆ
Γ
a5vεφ dS dt+

ˆ T

0
a6wε

ˆ
Γ
φ dS dt . (A.2.1.17)

Taking the limit in (A.2.1.17) we obtain

0 = −
ˆ T

0

ˆ
Γ
(c+ a5)vφ dS dt− a4

ˆ T

0

ˆ
Γ
ξφ dS dt+

ˆ T

0
a6w

ˆ
Γ
φ dS dt ,

hence

0 = −(c+ a5)v − a4ξ + a6w a.e. in ΓT . (A.2.1.18)

Similarly we deduce from (A.2.1.4) that

0 = m−
ˆ

Γ
u(·, t) dS in (0, T ) (A.2.1.19)

and from (A.2.1.9)

0 =
ˆ

Γ
(a5v(·, t)− a6w(t)) dS a.e. in (0, T ). (A.2.1.20)

Finally, we define
α(t) = a5

|Γ|

ˆ
Γ
v(·, t) dS

such that (A.2.1.18) and (A.2.1.20) imply

v = − a4

c+ a5
ξ + α

c+ a5
a.e. in ΓT . (A.2.1.21)

Due to the boundedness of g and ξ we can apply parabolicW 2,1
p -regularity theory to (A.1.8).

In fact, fix arbitrary δ > 0 and p ≥ 1. Choose a smooth cut-off function η ∈ C∞c (( δ2 , T ]),
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η = 1 in [δ, T ] and use a smooth partition of unity for Γ subordinate to a covering of Γ
by parametrized surface patches. In local coordinates we obtain that ηu solves a parabolic
equation with bounded continuous coefficients, hence [39, Theorem IV.9.1] yields theW 2,1

p -
regularity of ηu in local coordinates, with an estimate for the corresponding norms only
depending on the data. Using the compactness of Γ we finally deduce the W 2,1

p -regularity
of ηu, hence (A.2.1.14) holds.

From (A.2.1.15) we obtain for any test function φ ∈ C0(Γ× [0, T ]) that
ˆ T

0

ˆ
Γ
φ(ξu−u) dS dt = lim

ε→0

ˆ T

0

ˆ
Γ
φ
(

Uε
Uε + ε

−1
)
Uε dS dt = − lim

ε→0

ˆ T

0

ˆ
Γ

εφUε
ε+ Uε

dS dt = 0 ,

(A.2.1.22)

which implies ξu = u. �

Remark A.2.3. By Stampacchia’s Lemma [19, Theorem 4.4] and the W 2,1
p (Γ × (δ, T ))-

regularity of u for any δ > 0 one obtains ∂tu = ∆u = 0 almost everywhere in {u = 0}.
In fact, we can apply the lemma to W 1,p(ΓT ) and obtain the claim for ∂tu, and then to
W 2,p(Γ) for almost all t to obtain the corresponding property for ∆u. This in particular
yields the representation formula

ξ(·, t) =

1 a.e in {u(·, t) > 0}
a4α(t)g(·,t)

1−g(·,t) a.e in {u(·, t) = 0}
(A.2.1.23)

for almost all t ∈ (0, T ). By ξ ≤ 1 we deduce that

αg ≤ 1− g almost everywhere in {u = 0}. (A.2.1.24)

Moreover, by an integration of (A.1.8) over Γ and by (A.2.1.23) we deduce that

α(t) =
´

Γ a4(1− g)(·, t)ξ(·, t) dS´
Γ g dS

=
´
{u(·,t)>0} a4(1− g)(·, t) dS´

{u(·,t)>0} g(·, t) dS (A.2.1.25)

for almost all t ∈ (0, T ). Note that the second equality in (A.2.1.25) shows that α is
already determined by u and the data. Similarly, for any measurable set A ⊃ {u(·, t) > 0}
we deduce that

α(t) =
´
A
a4(1− g)(·, t)ξ(·, t) dS´

A
g(·, t) dS (A.2.1.26)

holds for almost all t ∈ (0, T ).
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We derive a further characterization of solutions. By the properties obtained so far we
deduce from (A.1.8), ξ ≤ 1 and (A.2.1.25) that

∂tu−∆u = −a4(1− g) + αg +
(
a4(1− g)− αg

)
+
X{u=0}. (A.2.1.27)

Vice versa, this equation implies (A.1.8), with ξ as (A.2.1.23), and the conditions on ξ in
(A.1.9).

A.2.2 Convergence to a parabolic obstacle-type problem for D <∞

We now consider the case of finite cytosolic diffusion D <∞. In [29] it is proved that also
in this case the system (A.1.1)-(A.1.5) has a unique nonnegative solution (u, v, w) with
u, v ∈ V2(ΓT ) and w ∈ V2(ΩT ), provided that the initial data are such that uε0, vε0 ∈ L2(Γ)
and wε0 ∈ L2(Ω). Again, this result first only covers the case of constant c. The proof,
however, carries over to the present case.

For finite D we use a similar rescaling of the general model (A.1.1)-(A.1.5) as in the
previous subsection but consider in addition to (A.2.1.1) that D becomes large with ε→ 0,
more precisely D = D̂

ε
. This yields, after dropping the hats, the system

∂tUε = ∆Uε +
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε −

a4Uε
ε+ Uε

on ΓT , (A.2.2.1)

ε∂tvε = ε∆vε −
(
εa1 + εa2Uε

εa3 + Uε
+ c

)
vε + a4Uε

ε+ Uε
− a5vε + a6wε on ΓT , (A.2.2.2)

ε∂twε = D∆wε on ΩT , (A.2.2.3)

−D∂wε
∂n

= −a5vε + a6wε on ΓT , (A.2.2.4)

Uε(·, 0) = U ε
0 , vε(·, 0) = vε0 , wε(·, 0) = wε0 , (A.2.2.5)

where
´

Γ

(
U ε

0 + εvε0
)
dS +

´
Ω εw

ε
0 dx = m.

Similarly as in Section A.2.1 we assume that for some u0 ∈ L2(Γ) with
´

Γ u0 = m and
some C > 0 we have

U ε
0 → u0 in L2(Γ), sup

ε>0

(ˆ
Γ
|vε0|2 dS +

ˆ
Ω
|wε0|2 dx

)
≤ C. (A.2.2.6)

We recall that a solution conserves the mass, that is
ˆ

Ω
εwε(·, t) dx+

ˆ
Γ

(
Uε(·, t) + εvε(·, t)

)
dS = m for all t ∈ (0, T ) . (A.2.2.7)

We first prove some uniform bounds.
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Theorem A.2.4. For any nonnegative solution (Uε, vε, wε) of (A.2.2.1)-(A.2.2.6) we have

‖Uε‖V2(ΓT ) + ‖vε‖L∞(0,T ;L2(Γ)) + ‖wε‖L∞(0,T ;L2(Γ))) + ‖wε‖L2(0,T ;H1(Ω)) ≤ C . (A.2.2.8)

Proof. As in the proof of Theorem A.2.1 we test (A.2.2.2) with a5vε and obtain

d

dt

ˆ
Γ

εa5v
2
ε

2 dS = −
ˆ

Γ
εa5|∇vε|2 dS −

ˆ
Γ
a5

(
εa1 + εa2Uε

εa3 + Uε
+ c

)
v2
ε dS +

ˆ
Γ

a4a5Uεvε
ε+ Uε

dS

−
ˆ

Γ

(
(a5vε)2 − a5a6vεwε

)
dS .

By virtue of (A.2.2.3) and (A.2.2.4) we compute

d

dt

ˆ
Ω

εa6w
2
ε

2 dx = −
ˆ

Ω
a6D|∇wε|2 dx+

ˆ
Γ
(a5a6wεvε − a2

6w
2
ε) dS .

Combining both inequalities and using c ≥ c0 > 0 and Uε
ε+Uε ≤ 1 implies

d

dt

(ˆ
Γ

εa5v
2
ε

2 dS +
ˆ

Ω

εa6w
2
ε

2 dx
)

+
ˆ

Γ
εa5|∇vε|2 dS +

ˆ
Ω
a6D|∇wε|2 dx+

ˆ
Γ
a5c0v

2
ε dS

≤
ˆ

Γ
a4a5vε dS −

ˆ
Γ

(
a2

5v
2
ε − 2a5a6vεwε + a2

6w
2
ε

)
dS

≤ 1
2

ˆ
Γ
a5c0v

2
ε dS + C − c

ˆ
Γ
w2
ε dS, (A.2.2.9)

where in the last step we have used a Youngs inequality as in the derivation of (A.2.1.11),
and where C, c > 0 only depend on the data. Next, applying Poincaré’s inequality for
functions with mean value zero on the boundary, we deduceˆ

Ω
w2
ε dx ≤ 2

ˆ
Ω

∣∣∣∣wε − 1
|Γ|

ˆ
Γ
wε dS

∣∣∣∣2 dx+ 2 |Ω|
|Γ|2

( ˆ
Γ
wε dS

)2

≤ C
(ˆ

Ω
|∇wε|2 dx+

ˆ
Γ
wε

2 dS
)

and therefore we obtain from (A.2.2.9)

ε
d

dt

(ˆ
Γ
v2
ε dS +

ˆ
Ω
w2
ε dx

)
≤ C − c

(ˆ
Γ
v2
ε dS +

ˆ
Ω
w2
ε dx

)
.

Hence (A.2.2.6) yields a uniform bound for ‖vε‖L∞(0,T ;L2(Γ)) and ‖wε‖L∞(0,T ;L2(Ω)).

By an integration of (A.2.2.9) we in addition obtain
ˆ T

0

ˆ
Ω
D|∇wε|2 dx dt ≤ C .

Finally, weak solution theory for parabolic equations (see [74, Theorem 26.1]), implies a
uniform bound also for ‖Uε‖V2(ΓT ). �
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With these uniform estimates we can pass to the limit ε → 0 to obtain the following
theorem.

Theorem A.2.5. Consider a sequence (Uε, vε, wε) of nonnegative solutions to (A.2.2.1)-
(A.2.2.6) with total mass m > 0 and under Assumption (A.2.2.6). Then there exists a
subsequence ε → 0, a function u ∈ V2(ΓT ) with u ∈ W 2,1

p (Γ × (δ, T )) for any δ > 0,
1 ≤ p < ∞, functions w ∈ L2(0, T ;H1(Ω)) with w(·, t) ∈ C∞(Ω) for almost all t ∈ (0, T )
and ξ ∈ L∞(ΓT ) with 0 ≤ ξ ≤ 1, such that

Uε ⇀ u in V2(ΓT ) , wε ⇀ w in L2(0, T ;H1(Ω)) and Uε
Uε + ε

∗
⇀ ξ in L∞(ΓT ) .

These functions satisfy equations (A.1.12), (A.1.13) and (A.1.15) pointwise almost every-
where and the Robin condition in (A.1.14) in a weak sense. Furthermore we have that
u(·, 0) = u0 on Γ in L2(Γ) and that

´
Γ u(·, t) dS = m holds for all t ∈ [0, T ].

Moreover u and w are nonnegative with w ∈ L∞(0, T ;C0(Ω̄)) and for all δ > 0 and any
1 ≤ p <∞ it holds

‖u‖W 2,1
p (Γ×(δ,T )) + ‖w‖L∞(0,T ;C0(Ω̄)) ≤ C(δ, T, p) .

Proof. By the uniform bounds provided by Theorem A.2.4 we obtain a subsequence and
functions w, u, v, ξ such that

wε ⇀ w in L2(0, T ;H1(Ω)) (A.2.2.10)
Uε ⇀ u in V2(ΓT ) (A.2.2.11)
vε

∗
⇀ v in L∞(0, T ;L2(Γ)) (A.2.2.12)

Uε
ε+ Uε

∗
⇀ ξ in L∞(ΓT ).

In particular, we have by the Aubin-Lions Lemma that Uε → u in L2(ΓT ). The continuity
of the trace map H1(Ω) ↪→ L2(Γ) yields that wε ⇀ w in L2(ΓT ).

We can now multiply (A.2.2.1),(A.2.2.2),(A.2.2.3) and (A.2.2.4) by suitable test func-
tions, integrate and pass to the limit ε→ 0, to deduce that

∂tu = ∆u+ cv − a4ξ on ΓT , (A.2.2.13)
0 = −cv + a4ξ − a5v + a6w on ΓT , (A.2.2.14)
0 = D∆w on ΩT , (A.2.2.15)

−D∂w
∂n

= −a5v + a6w on ΓT , (A.2.2.16)
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are satisfied in a weak sense. Since the arguments are similar to those used in the proof
of Theorem A.2.2, we only consider w here. Multiplying (A.2.2.4) with a test function
φ ∈ C1

c (Ω̄× (0, T )) and using (A.2.2.3) we obtain
ˆ

ΩT

(
− ε∂tφwε +∇φ · ∇wε

)
dx dt =

ˆ
ΓT
φ(a5vε − a6wε) dS dt .

Passing to the limit ε→ 0 and using the convergence properties obtained above we deduce
that ˆ

ΩT
∇φ · ∇w dx dt =

ˆ
ΓT
φ(a5v − a6w) dS dt,

which implies that (A.2.2.15), (A.2.2.16) holds in a weak sense. In particular w(·, t) is
harmonic in Ω for almost all t ∈ (0, T ) and hence smooth inside Ω.

Finally, it follows exactly in the same way as in (A.2.1.22) that ξu = u.

By the uniform bounds (A.2.2.8) on wε and vε we obtain
´

Ω εwε(·, t) dx+
´

Γ εvε(·, t) dS →
0, which together with (A.2.2.7),(A.2.2.11) yields

´
Γ u(·, t) dS = m for almost all t. Since

u ∈ V2(ΓT ) ↪→ C0([0, T ];L2(Γ)) this equality even holds for all t ∈ [0, T ]. Since 0 ≤
Uε
ε+Uε ≤ 1 the corresponding bounds for ξ follow. Furthermore, by (A.2.2.8) and (A.2.2.10),
(A.2.2.11), (A.2.2.12) we deduce

‖u‖V2(ΓT ) + ‖v‖L∞(0,T ;L2(Γ)) + ‖w‖L2(0,T ;H1(Ω)) ≤ C .

To improve these bounds, we test for p > 2, equation (A.2.2.15) with (kpw)p−1 , kp := a6
a5

as well as (A.2.2.14) with vp−1 and we find almost everywhere in (0, T )

0 =−
ˆ

Ω
Dkp

p−1(p− 1)wp−2|∇w|2 dx+
ˆ

Γ
kp
p−1(a5v − a6w)wp−1 dS

−
ˆ

Γ

(
(a5v − a6w)vp−1 − a4ξv

p−1 + cvp
)
dS

=−
ˆ

Ω
Dkp

p−1(p− 1)wp−2|∇w|2 dx−
ˆ

Γ
a5(v − kpw)

(
vp−1 − (kpw)p−1

)
dS

+
ˆ

Γ

(
a4ξv

p−1 − cvp
)
dS

≤
ˆ

Γ

(
a4ξv

p−1 − cvp
)
dS .

Thus, using Young’s inequality, c ≥ c0 and |ξ| ≤ 1 we conclude
ˆ

Γ
vp dS ≤ C almost everywhere on (0, T ) (A.2.2.17)
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and hence v is bounded in L∞(0, T ;Lp(Γ)) for any 1 ≤ p <∞. By [52] and (A.2.2.15),(A.2.2.16)
we obtain for some γ > 0 and for almost all t ∈ (0, T ) that w(t) ∈ C0,γ(Ω), with

‖w(t)‖C0,γ(Ω) ≤ C
(
‖v(t)‖Lp(Γ) + ‖w(·, t)‖L2(Ω)

)
.

for any p > 2. Therefore, this estimate combined with (A.2.2.17) yields that w ∈
L∞(0, T ;C0(Ω̄)). Finally, by parabolic Lp−regularity for (A.2.2.13), see the arguments in
the proof of Theorem A.2.2, we deduce that ‖u‖W 2,1

p (Γ×(δ,T )) ≤ C for any δ > 0, 1 ≤ p <∞.

Finally, we observe that (A.2.2.14) is equivalent to v = 1−g
a5

(
a4ξ + a6w

)
. Using this, it

is easy to see that (A.2.2.13) - (A.2.2.16) are equivalent to (A.1.12)-(A.1.14). �

The system (A.1.12)-(A.1.14) can be formulated as an obstacle-type problem in terms
of u and ξ only. This formulation will be most convenient for the analysis in Section A.4
and contains a non-local operator that we introduce now. Consider for s ∈ L2(Γ) and
h ∈ L∞(Γ), h ≥ 0, |{h > 0}| > 0, the solution z of

0 = ∆z in Ω, ∂z

∂n
+ hz = s on Γ. (A.2.2.18)

This defines a linear operator Lh : L2(Γ)→ H1(Ω) via Lhs := z. We collect some properties
of the operator Lh.

Lemma A.2.6. Let h ∈ L∞(Γ), h ≥ 0, |{h > 0}| > 0, be given. Then the following hold.

(i) Lh : L2(Γ)→ H1(Ω) is continuous.
(ii) Lh : L2(Γ)→ L2(Γ) is self-adjoint , that is

ˆ
Γ
s1Lh(s2) dS =

ˆ
Γ
Lh(s1)s2 dS . (A.2.2.19)

(iii) It holds

Lhh = 1 . (A.2.2.20)

(iv) h 7→ Lh is monotone decreasing in the following sense: For any h1, h2 ∈ L∞(Γ) with
0 ≤ h1 ≤ h2 we have

Lh1(s) ≥ Lh2(s) for all s ∈ L2(Γ), s ≥ 0 . (A.2.2.21)

(v) Lh is positive, more precisely there exists a positive constant c = c(h,Ω) such that
for all s ≥ 0

Lh(s) ≥ c

ˆ
Γ
s dS in Ω. (A.2.2.22)
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Proof. We first have
ˆ

Ω
|∇z|2 dx =

ˆ
Γ

(
− h|z|2 + sz

)
dS ≤ −

ˆ
Γ
h|z|2 dS + ‖s‖L2(Γ)‖z‖L2(Γ).

Since there holds a generalized Poincaré inequality in {ζ ∈ H1(Ω) :
´

Γ hζ
2 ≤ 1} we deduce

‖z‖2
H1(Ω) ≤ C

(ˆ
Ω
|∇z|2 +

ˆ
Γ
h|z|2

)
≤ C‖s‖L2(Γ)‖z‖H1(Ω),

from which ‖z‖H1(Ω) ≤ C‖s‖L2(Γ) and the desired continuity of Lh follow.

The second statement is obtained fromˆ
Γ

(
s1Lh(s2)− Lh(s1)s2

)
dS =

ˆ
Ω

(
z2∆z1 − z1∆z2

)
dx = 0 .

The third property is easily verified from the definition of Lh.

We next prove that Lh is non-negative, i.e.

s ≥ 0 =⇒ Lhs ≥ 0. (A.2.2.23)

In fact, with z := Lhs, by a partial integration we deduce

0 = −
ˆ

Ω
z−∆z dx = −

ˆ
Ω
|∇z−|2 dx−

ˆ
Γ

(
sz− + hz2

−

)
dS ≥ 0.

where z− = max{0,−z}. Hence z− = 0 almost everywhere in Ω and z ≥ 0.

We now verify (A.2.2.21). Let z1 = Lh1(s), z2 = Lh2(s). Then

0 = ∆(z1 − z2) in Ω, ∂(z1 − z2)
∂n

+ h1(z1 − z2) = z2(h2 − h1) ≥ 0 on Γ.

Then (A.2.2.23) ensures that z1 ≥ z2.

We finally prove (A.2.2.22). Therefore fix h ≥ 0, s ≥ 0, letm := ‖h‖L∞(Γ) and ζ := Lms,
i.e.

∆ζ = 0 in Ω, ∂ζ

∂n
+mζ = s on Γ. (A.2.2.24)

Then z := Lhs ≥ Lms = ζ by (A.2.2.21) and to prove (A.2.2.22) it suffices to show that
there exists κ > 0 with

ζ ≥ κ

ˆ
Γ
s dS . (A.2.2.25)
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In the first step of the proof of this inequality we show that for any K ⊂⊂ Ω there
exists a constant c1 = c1(K) such that

ζ ≥ c1

m

ˆ
Γ
s dS in K. (A.2.2.26)

To prove this estimate consider for x ∈ K the Green’s function G(x, y), i.e. the solution of

−∆G(x, ·) = δx in D′(Ω), G(x, ·) = 0 on Γ.

By the positivity of G we derive from the Hopf maximum principle that ∂
∂n
G(x, y) < 0 for

all x ∈ K, y ∈ Γ. Since K × Γ is compact and ∂
∂n
G is continuous due to the smoothness

of Γ we even obtain the existence of c1 = c1(K,Ω) > 0 such that

∂

∂n
G(x, y) ≤ −c1 for all x ∈ K, y ∈ Γ. (A.2.2.27)

The representation formula in terms of the Green’s function implies that for all x ∈ K

ζ(x) = −
ˆ

Γ

∂

∂n
G(x, ·)ζ dS ≥ c1

ˆ
Γ
ζ dS = c1

m

ˆ
Γ
s dS ,

where the last equality follows from (A.2.2.24). This proves (A.2.2.26).

We now use (A.2.2.26) to prove a bound from below for ζ in the whole set Ω. By
the smoothness of Γ there is a uniform radius % > 0 such that for any y ∈ Γ an interior
sphere condition is satisfied for a ball B(zy, 2%) ⊂ Ω. Moreover % can be chosen such that⋃
y∈Γ B(zy, %) ⊂⊂ Ω \ K for some compact set K ⊂ Ω such that ∂K is smooth and K

has nonempty interior. Denote by K1 the closure of ⋃y∈Γ B(zy, %). Then in particular
K1 ⊂⊂ Ω \K.

We then consider the solution ζ̃ of

∆ζ̃ = 0 in Ω \K, ζ̃ = ζ on ∂K, ∂ζ̃

∂n
+mζ̃ = 0 on Γ.

As in the proof of (A.2.2.23) we deduce that ζ̃ ≤ ζ and by the maximum principle that
ζ̃ ≥ 0.

We claim that

ζ̃ ≥ κ̃

ˆ
Γ
s dS in Ω \K (A.2.2.28)

holds. By (A.2.2.26) and ζ ≥ ζ̃ this eventually justifies (A.2.2.25).
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We consider the Green’s function G̃ of Ω \ K. Similar as above we obtain that there
exists c̃2 > 0 such that

∂

∂ν
G̃(x, y) ≤ −c̃2 for all x ∈ K1, y ∈ ∂

(
Ω \K

)
, (A.2.2.29)

where ν denotes the outer unit normal field of Ω \K. By the representation formula and
the non-negativity of ζ̃ we further deduce that for all x ∈ K1

ζ̃(x) = −
ˆ

Γ

∂

∂ν
G̃(x, ·)ζ̃ dS −

ˆ
∂K

∂

∂ν
G̃(x, ·)ζ̃ dS ≥ c̃2

ˆ
∂K

ζ̃ dS

= c̃2

ˆ
∂K

ζ dS ≥ c2
c1

m

ˆ
Γ
s dS ,

(A.2.2.30)

where c2 = Hn−1(∂K)c̃2 and where we have used (A.2.2.26) in the last step.

Moreover, the harmonic function ζ̃ attains its minimum on ∂K ∪ Γ. If the minimum is
attained on ∂K we have ζ̃ ≥ c1

´
Γ s by (A.2.2.26) and conclude that (A.2.2.28) holds. If

on the other hand the minimum is attained in a point y0 ∈ ∂Ω the Hopf boundary point
lemma (cf. the proof of Lemma 3.4 in [26]) imply that

∂ζ̃

∂n
(y0) ≤ −c3

(
min
K1

ζ̃ − ζ̃(y0)
)

for some positive constant c3 = c3(%). Using the Robin boundary condition for ζ̃ we deduce
that

mζ̃(y0) ≥ c3
(

min
K1

ζ̃ − ζ̃(y0)
)
,

hence
inf
Ω\K

ζ̃ ≥ c3

m+ c3
min
K1

ζ̃ ≥ c1c2c3

m(m+ c3)

ˆ
Γ
s dS ,

where we have used (A.2.2.30) in the last step.

This shows (A.2.2.28) and finishes the proof of (A.2.2.22). �

Proposition A.2.7. Let (u,w, ξ) be nonnegative functions with
´

Γ u = m > 0, the same
regularity as in Theorem A.2.5 and with 0 ≤ ξ ≤ 1 almost everywhere in ΓT . Then the
following statements are equivalent:

(i) (u,w, ξ) satisfies (A.1.12)-(A.1.14).
(ii) (u, ξ) satisfies

∂tu = ∆u− a4(1− g)ξ + `gL`g
(
a4(1− g)ξ

)
, uξ = u a.e on ΓT , (A.2.2.31)
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where ` = a6
D
, and w is determined by

w = `

a6
LX `g

(
a4X (1− g)

)
a.e. on ΓT , (A.2.2.32)

with X = X{u>0}.

Proof. Due to Stampacchia’s Lemma and the regularity of u we have that a4(1−g)ξ = a6gw

holds almost everywhere in {u = 0}. Hence D ∂w
∂n

+Xa6g = a4X (1−g) and thus (A.2.2.32)
follows. �

Remark A.2.8 (Infinite cytosolic diffusion limit). In (A.2.2.31), (A.2.2.32) the parameter
D has been substituted by `. The limit D →∞ is equivalent to `→ 0. From the definition
of the operator Lh we observe that z` := `L`g(s) solves

0 = ∆z` in Ω, ∂z`
∂n

+ g`z` = `s on Γ.

We then obtain an estimateˆ
Ω
|∇z`|2 dx = `

ˆ
Γ

(
sz` − gz2

`

)
dS ≤ `‖s‖L2(Γ)‖z`‖L2(Γ) − c`‖z`‖2

L2(Γ) ≤
`

2c‖s‖
2
L2(Γ)

and deduce that `L`g(s) becomes constant over Γ with `→ 0. This observation shows that
(A.2.2.31) reduces to (A.1.8) in the infinite cytosolic diffusion limit.

Remark A.2.9 (Characterization of ξ, w). In the formulation of (A.2.2.31),(A.2.2.32) we
remark that ξ and w are already determined by u. In fact, we have

ξ(·, t) =

1 a.e. in {u(·, t) > 0},
a6wg

a4(1−g) a.e. in {u(·, t) = 0}
(A.2.2.33)

and ξ is determined by u,w. By (A.2.2.32) we see that w is determined by u.

Notice that the characterization (A.2.2.32) is analogous to the second formula in (A.2.1.25).
We further remark that we have different representations for the function w in the same
manner that we have different characterizations of α (see (A.2.1.26)). In particular we
have also the following characterization in terms of an arbitrary measurable set A ⊂ Γ
containing {u > 0},

w = `

a6
LXA`g

(
a4(1− g)XAξ

)
on Γ . (A.2.2.34)

From now on we set without loss of generality a4 = a6 = 1.
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A.3 The reduced model for infinite cytosolic diffusion D =∞

A.3.1 Uniqueness of solutions

Theorem A.3.1. Let (u1, ξ1, α1) and (u2, ξ2, α2) be two different solutions of (A.1.8)-
(A.1.9) with uk ∈ V2(ΓT ), ξk ∈ L∞(ΓT ), αk ∈ L∞(0, T ), k = 1, 2. Then

t 7→
ˆ

Γ
(u1 − u2)+(·, t) dS is decreasing on [0, T ]. (A.3.1.1)

In particular, given u0 ∈ L2(Γ) with u0 ≥ 0, there exists at most one solution (u, ξ, α) of
(A.1.8)-(A.1.10) with u ∈ V2(ΓT ), ξ ∈ L∞(ΓT ), α ∈ L∞(0, T ).

Proof. Any solution satisfies in addition u ∈ W 2,1
p (Γ× (δ, T )) for any δ > 0, 1 ≤ p <∞.

By the regularity of u1, u2 the function (u1−u2)+ belongs toW 1,p(ΓT ) for any 1 ≤ p ≤ ∞
and

∂t(u1 − u2)+ = X{u1>u2}∂t(u1 − u2). (A.3.1.2)

In particular the weak derivative d
dt

´
Γ(u1−u2)+ dS exists as an Lp(0, T ) function and hence

almost everywhere in (0, T ).

Furthermore, for almost all t ∈ (0, T ) we have (u1 − u2)(·, t) ∈ W 2,p(Γ) and Kato’s
inequality [32] implies that X{u1>u2}∆(u1−u2) ≤ ∆(u1−u2)+ in the sense of distributions.
We therefore obtain, with 1Γ denoting the constant function with value 1 on Γ,

ˆ
{u1>u2}

∆(u1 − u2) ≤ 〈∆(u1 − u2)+,1Γ〉 = 0. (A.3.1.3)

This justifies the following computations for almost all t ∈ (0, T ). We drop in the following
in most places the argument t.

We let X+ := X{u1>u2}. Integrating then the equation for the difference u1 − u2 over
{u1 > u2} and using (A.3.1.2), (A.3.1.3) yields

d

dt

ˆ
Γ
(u1 − u2)+ dS =

ˆ
{u1>u2}

∂t(u1 − u2) dS

=
ˆ
{u1>u2}

∆(u1 − u2) dS −
ˆ
{u1>u2}

(1− g)(ξ1 − ξ2) dS

+
ˆ
{u1>u2}

g(α1 − α2) dS

≤ −
ˆ

Γ
X+(1− g)(ξ1 − ξ2) dS + (α1 − α2)

ˆ
Γ
X+g dS . (A.3.1.4)
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We next rewrite the difference α1 − α2. Almost everywhere in {u1 = 0 = u2} by
Stampacchia’s Lemma it holds

∆u1 = ∆u2 = 0 and ∂tu1 = ∂tu2 = 0

which yields due to (A.1.8),

(α1 − α2)g = (1− g)(ξ1 − ξ2) (A.3.1.5)

almost everywhere in {u1 = u2 = 0}. We use the notation X := X{u1+u2>0} and derive
thanks to (A.2.1.25) that

(α1 − α2)
ˆ

Γ
g dS =

ˆ
Γ
X (1− g)(ξ1 − ξ2) dS + (α1 − α2)

ˆ
Γ
(1−X )g dS

and thus

(α1 − α2)
ˆ

Γ
X g dS =

ˆ
Γ
X (1− g)(ξ1 − ξ2) dS (A.3.1.6)

Plugging (A.3.1.6) into (A.3.1.4) we find

d

dt

ˆ
Γ
(u1 − u2)+ dS ≤

1´
ΓX g dS

(
−
ˆ

Γ
X g dS

ˆ
Γ
X+(1− g)(ξ1 − ξ2) dS

+
ˆ

Γ
X (1− g)(ξ1 − ξ2) dS

ˆ
Γ
X+g dS

)
. (A.3.1.7)

For the term on the right-hand side in brackets we further obtain(
. . .
)

=−
ˆ

Γ
(X − X+)g dS

ˆ
Γ
X+(1− g)(1− ξ2) dS

−
ˆ

Γ
X+g dS

ˆ
Γ
(X − X+)(1− g)(1− ξ1) dS ≤ 0 , (A.3.1.8)

where we have used that X − X+ ≥ 0, that ξ1 = 1 in {X+ > 0} and that ξ2 = 1 in
{X − X+ > 0}.

This shows that t 7→
´

Γ(u1−u2)+(·, t) dS is decreasing in time. Moreover, since u1, u2 ∈
C0([0, T ];L2(Γ)) we deduce that t 7→

´
Γ(u1 − u2)+(·, t) dS is continuous on [0, T ], and in

particular vanishes at t = 0. This proves that (u1 − u2)+ = 0 on ΓT , hence u1 ≤ u2. By
the symmetry of the argument, we also have u2 ≤ u1, which gives the desired contraction
property and the uniqueness for u. The uniqueness of ξ and α then easily follows from
(A.2.1.25) and (A.2.1.23). �
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A.3.2 Global stability of steady states

The results of the previous sections show that for any given initial data with mass m > 0
there exists a unique solution of (A.1.8)-(A.1.10) for all times t ≥ 0. We now consider the
case that c = c(x) does not depend on time, hence g = g(x) is time-independent, too. The
existence and uniqueness of stationary states for any prescribed mass was proved in [51].
The goal of this section is to prove that (u, ξ, α)(·, t) converge with t → ∞ to the unique
steady state (u∗, ξ∗, α∗) with the same mass m.

In the following we consider Γ1 = Γ × (0, 1) and denote by Stu : Γ1 → R the function
defined by (Stu)(x, s) := u(x, s + t). The functions Stξ, Stα are defined analogously. We
denote the constant function with value (u∗, ξ∗, α∗) on (0, 1) again by (u∗, ξ∗, α∗).

Theorem A.3.2. Consider the unique solution (u, ξ, α) of (A.1.8)-(A.1.10) and the sta-
tionary solution (u∗, ξ∗, α∗) with the same mass, that is the unique solution of

−∆u∗ = −(1− g)ξ∗ + α∗g , u∗ ≥ 0 , 0 ≤ ξ∗ ≤ 1 , ξ∗u∗ = u∗ , (A.3.2.1)ˆ
Γ
u∗ dS = m. (A.3.2.2)

Then (u, ξ, α) converges with t→∞ to (u∗, ξ∗, α∗), more precisely

Stu ⇀ u∗ in W 2,1
p (Γ1) , Stξ

∗
⇀ ξ∗ in L∞(Γ1) , Stα

∗
⇀ α∗ in L∞(0, 1) . (A.3.2.3)

Moreover, Stu converges with t→∞ uniformly on Γ to u∗.

Proof. We consider for k ∈ N the functions

(uk, ξk, αk) ∈ W 2,1
p (Γ1)× L∞(Γ1)× L∞(0, 1), uk = Sku, ξk = Skξ, αk = Skα .

Then these triples are all solutions of (A.1.8), (A.1.9) on Γ1 and we deduce from Theorem
A.2.1 and (A.2.1.14) that they are uniformly bounded in W 2,1

p (Γ1) × L∞(Γ1) × L∞(0, 1)
for all p ∈ [1,∞). Hence, there exists (u∞, ξ∞, α∞) ∈ W 2,1

p (Γ1)× L∞(Γ1)× L∞(0, 1) such
that for some subsequence k →∞

uk ⇀ u∞ in W 2,1
p (Γ1) , ξk

∗
⇀ ξ∞ in L∞(Γ1) , αk

∗
⇀ α∞ in L∞(0, 1). (A.3.2.4)

By the compact embedding W 2,1
p (Γ1) ↪→ Cα,α/2(Γ × [0, 1]) cpct

↪→ C0(Γ × [0, 1]) for p > 2,
0 < α ≤ 2− 4

p
(see [75, Theorem 1.4.1]) we deduce that limt→∞ u(·, t) = u∞ in C0(Γ).

We therefore can pass in (A.1.8), (A.1.9) (for u replaced by uk) to the limit and deduce
that (u∞, ξ∞, α∞) is again a solution of (A.1.8), (A.1.9) on Γ1. We would like to show that
this solution is time-independent and coincides with (u∗, ξ∗, α∗).
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Exactly as in (A.3.1.4)-(A.3.1.8) we can conclude

d

dt

ˆ
Γ
(u− u∗)+ dS ≤ −

ˆ
{u>u∗}

(
(1− g)(ξ − ξ∗)− (α− α∗)g

)
dS ≤ 0 (A.3.2.5)

and thus t 7→
´

Γ(u− u∗)+(·, t) is decreasing.

By (A.3.2.4) and the monotonicity property (A.3.2.5) we deduce that limT→∞
´

Γ(u −
u∗)+(T, ·) dS exists and that for any t ∈ (0, 1)
ˆ

Γ
(u∞(·, t)− u∗)+ dS = lim

k→∞

ˆ
Γ
(uk(·, t)− u∗)+ dS = lim

T→∞

ˆ
Γ
(u(·, T )− u∗)+ dS (A.3.2.6)

is independent of t. Since (u∞, ξ∞, α∞) and (u∗, ξ∗, α∗) are both solutions of (A.1.8), (A.1.9)
on Γ1 we deduce again, as in (A.3.2.5) that

0 = d

dt

ˆ
Γ
(u∞ − u∗)+ dS ≤ −

ˆ
{u∞>u∗}

(
(1− g)(1− ξ∗)− (a∞ − α∗)

)
dS ≤ 0 (A.3.2.7)

and hence the right-hand side must be zero for almost any t ∈ (0, 1).

Now assume that there exists t ∈ (0, 1) such that α∞(t) < α∗ and such that (A.3.2.7)
holds. Then we deduce that {u∞(·, t) > u∗} has measure zero and u∞(·, t) ≤ u∗ almost
everywhere, which implies by the equal mass condition that u∞(·, t) = u∗. But this further
induces α∞(t) = α∗ by the second equality in (A.2.1.25), a contradiction. Hence α∞(t) ≥ α∗
for almost all t ∈ (0, 1).

In a completely analogous way we can derive that α∞(t) ≤ α∗ for almost all t ∈ (0, 1),
which finally implies α∞ = α∗ almost everywhere.

Using this information in (A.3.2.7) and the analogous inequality for d
dt

´
Γ(u∗−u∞)+ dS

we deduce that ξ∞(·, t) = ξ∗ = 1 in {u∞(·, t) 6= u∗}. In addition they also are equal in
{u∞(·, t) = u∗ > 0} and by (A.2.1.23) also in {u∞(·, t) = u∗ = 0}. Hence ξ∞ = ξ∗ almost
everywhere.

It therefore remains to prove that (ξ∞, α∞) = (ξ∗, α∗) implies u∞ = u∗. This follows
from the following lemma, applied to u∞ − u∗. �

Lemma A.3.3. Given u ∈ W 2,1
2 (ΓT ) with ∂tu−∆u = 0 almost everywhere and

ˆ
Γ
u(·, t) dS = 0 , d

dt

ˆ
Γ
u(·, t)+ dS = 0 for a.a. t ∈ (0, T ) (A.3.2.8)

it follows that u ≡ 0.
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Proof. Due to the regularity of u the second identity implies
ˆ

Γ
(u(·, t1))+dS =

ˆ
Γ
(u(·, t2))+ dS for any 0 < t1 < t2 ≤ T . (A.3.2.9)

Using standard smoothing effects we can assume that u ∈ C∞(Γ × (0, T )). In particular
we have that t 7→ u(·, t) is continuous in Lq(Γ) for any q ∈ [1,∞]. We define ψ as the
solution of

ψt + ∆ψ = 0 , ψ(·, t2) = χ{u(·,t2)>0} , t2 ∈ (0, T ] .

We notice that the set {u(·, t2) > 0} is well defined since u is smooth. Classical regularity
theory for the heat equation implies that ψ ∈ C0([t1, t2];Lp(Γ)) with 0 < t1 < t2 and
1 ≤ p <∞. Since ψ ∈ C∞([t1, t2 − δ]× Γ) for any arbitrarily small δ > 0 we can use ψ as
a test function in the equation for u. Then, integrating by parts we obtain

ˆ
Γ
u(·, t1)ψ(·, t1) dS =

ˆ
Γ
u(·, t2 − δ)ψ(·, t2 − δ)dS .

Using the continuity of the map t 7→ u(·, t) and t 7→ ψ(·, t) in L2(Γ) we obtain that
u(·, t2 − δ)ψ(·, t2 − δ) converges to u(·, t2)ψ(·, t2) in L1(Γ) as δ → 0. Thus

ˆ
Γ
u(·, t2 − δ)ψ(·, t2 − δ) dS →

ˆ
Γ
u(·, t2)ψ(·, t2) dS =

ˆ
Γ
(u(·, t2))+ dS as δ → 0,

whence ˆ
Γ
(u(·, t2))+ dS =

ˆ
Γ
u(·, t1)ψ(·, t1) dS . (A.3.2.10)

If |{u(·, t2) > 0}| > 0 we have, since
´

Γ u(·, t) dS = 0 for all t ∈ (0, T ], that |{u(·, t2) >
0}| < |Γ|. Therefore, the strong maximum principle implies that for any t1 < t2 we have

0 < ψ(·, t1) ≤ θ < 1

where θ depends on t1. Then
ˆ

Γ
u(·, t1)ψ(·, t1) dS ≤

ˆ

{u(·,t1)>0}

u(·, t1)ψ(·, t1) dS ≤ θ

ˆ

{u(·,t1)>0}

u(·, t1) dS = θ

ˆ
Γ
u(·, t1)+ dS .

Combining this with (A.3.2.10) we obtain
´

Γ(u(·, t2))+ dS ≤ θ
´

Γ u(·, t1) dS which contra-
dicts (A.3.2.9).

Therefore |{u(·, t2) > 0}| = 0. Then, we have that u(·, t2) ≤ 0, but since
´

Γ u(·, t2) dS =
0 this implies that u(·, t2) ≡ 0. Since t2 was arbitrary this proves u ≡ 0. �
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A.4 The reduced model for finite cytosolic diffusion D <∞

From now on we choose D = 1. All arguments and calculations for the case D 6= 1 are
analogue. We recall that we have also set a4 = a6 = 1, which in particular gives ` = 1 in
the characterization of Proposition A.2.7.

A.4.1 Uniqueness of solutions

In this section we consider a solution (u,w, ξ) in V2(ΓT )× L2(0, T ;H1(Ω))× L∞(ΓT ) of

∂tu = ∆u− (1− g)ξ + gw, uξ = u, u ≥ 0 on ΓT (A.4.1.1)

0 = ∆w in Ω, ∂w

∂n
= (1− g)ξ − gw on ΓT , (A.4.1.2)

u(·, 0) = u0 on Γ . (A.4.1.3)

We recall that

ξ(·, t) =

1 a.e. in {u(·, t) > 0}
wg
1−g (·, t) a.e. in {u(·, t) = 0}

. (A.4.1.4)

In the following we use the operator Lh as defined before Lemma A.2.6, i.e. for given
h ∈ L∞(Γ), h ≥ 0 the function z = Lhs solves

0 = ∆z in Ω, ∂z

∂n
+ hz = s on Γ. (A.4.1.5)

We next prove an L1-contraction property and the uniqueness of solutions.

Theorem A.4.1. Consider two solutions (uk, ξk, wk), k = 1, 2 of (A.4.1.1)-(A.4.1.2).
Then

t 7→
ˆ

Γ
(u1 − u2)+(·, t) dS is decreasing on (0, T ).

In particular, given u0 ∈ L2(Γ) with u0 ≥ 0 and T > 0, there exists at most one solution
u ∈ V2(ΓT ), ξ ∈ L∞(ΓT ), w ∈ L2(0, T ;H1(Ω)) of (A.4.1.1)-(A.4.1.3).

Proof. As above, by parabolic regularity results, we have uk ∈ W 2,1
p (Γ × (δ, T )) for any

δ > 0, 1 ≤ p <∞.

Letting sk = (1− g)ξk we have

wk = Lgsk. (A.4.1.6)
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In the following we let X+ = X{u1>u2} and X = X{u1+u2>0}. As in the proof of (A.2.2.32)
we conclude that the difference w1 − w2 satisfies

w1 − w2 = LXg
(
X (s1 − s2)

)
. (A.4.1.7)

Following the arguments in the proof of Theorem A.3.1 we obtain, using also Lemma
A.2.6, that

d

dt

ˆ
Γ
(u1 − u2)+ dS ≤

ˆ
{u1>u2}

(
− (s1 − s2) + g(w1 − w2)

)
dS

=
ˆ

Γ

(
−X+(s1 − s2) + X+gLXg

(
X (s1 − s2)

))
dS

=
ˆ

Γ

(
−X+(s1 − s2)LXg(X g) + X+gLXg

(
X (s1 − s2)

))
dS (A.4.1.8)

=
ˆ

Γ
−X gLXg

(
X+(s1 − s2)

)
+ X+gLXg

(
X (s1 − s2)

))
dS

= −
ˆ

Γ

(
X − X+)gLXg

(
X+(s1 − s2)

)
dS +

ˆ
Γ
X+gLXg

(
(X − X+)(s1 − s2)

)
dS ≤ 0 .

In the last line we have used in the first term that X − X+ ≥ 0 and X+(s1 − s2) ≥ 0 and
for the second term that X − X+ = X{u2>u1} + X{u1=u2>0}, that s1 ≤ s2 on {u2 > u1} and
s1 = s2 on {u1 = u2 > 0}.

Applying the same argument to u2 − u1 we find that
´

Γ |u1 − u2| dS is decreasing in
time, and in particular u1 = u2 since the initial data are the same.

From Remark A.2.9 it follows that w1 = w2 and ξ1 = ξ2. �

With similar arguments as in the proof of Theorem A.4.1 we can also show uniqueness
of steady states for given mass m. This result has been shown in [51] only in the case that
Γ is a sphere. In the following Theorem we prove even more, namely a monotonicity result
from which uniqueness of steady states follows.

Theorem A.4.2 (Monotonicity). Let (u1, w1, ξ1), (u2, w2, ξ2) ∈ H2(Γ) ×H1(Ω) × L∞(Γ)
be solutions to

−∆u = −(1− g)ξ + gw , uξ = u, u ≥ 0 on Γ (A.4.1.9)

0 = ∆w in Ω ,
∂w

∂n
= (1− g)ξ − gw on Γ , (A.4.1.10)

with
´

Γ u1 dS = m1 and
´

Γ u2 dS = m2. Suppose that m1 ≥ m2, then

u1 ≥ u2, w1 ≥ w2, ξ1 ≥ ξ2 on Γ.
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Proof. Again we let sk = (1− g)ξk, X+ = X{u1>u2} and X = X{u1+u2>0}.

We first show that u1 ≥ u2. We integrate the difference of the equations for u1 and u2

over the set {u1 > u2} and obtain, exactly as in (A.4.1.8) that

0 ≤
ˆ
{u1>u2}

(
− (1− g)(ξ1 − ξ2) + g(w1 − w2)

)
dS

= −
ˆ

Γ

(
X − X+)gLXg

(
X+(s1 − s2)

)
dS +

ˆ
Γ
X+gLXg

(
(X − X+)(s1 − s2)

)
dS ≤ 0 .

(A.4.1.11)

We now exploit that both integrands in the last line of (A.4.1.11) vanish. If X+ = 0 almost
everywhere or X −X+ = 0 almost everywhere, then u1 ≤ u2 or u1 ≥ u2, respectively, hence
u1 ≥ u2 almost everywhere since we have assumed that m1 ≥ m2.

If X+ and X − X+ are both nontrivial we deduce from the positivity of LXg, see
(A.2.2.22), that s1 = s2 and thus ξ1 = ξ2 in {u1 + u2 > 0}. By the first line in (A.4.1.11)
this in addition implies w1 = w2 in {u1 > u2}.

Testing the difference equation with (u1 − u2)+ yields

0 =
ˆ

Γ

(
|∇(u1 − u2)+|2 +

(
(s1 − s2)− g(w1 − w2)

)
(u1 − u2)+

)
dS =

ˆ
Γ
|∇(u1 − u2)+|2 dS .

This implies that (u1 − u2)+ is constant, from which we obtain by m1 ≥ m2 that u1 ≥ u2.

The property u1 ≥ u2 implies that X (ξ1 − ξ2) ≥ 0. Therefore (A.2.2.32) and the
positivity of Lh, see (A.2.2.22), imply that

w1 − w2 = LXg
(
(1− g)X (ξ1 − ξ2)) ≥ 0.

Then, using (A.2.2.33) we finally deduce ξ1 ≥ ξ2. �

A.4.2 Global stability of steady states

Again we assume in this section that c = c(x) does not depend on time, hence g has the
same property. We prove the convergence of the obstacle-type problem for finite diffusion
to the stationary state with the same mass. We again denote the shift operator by St, see
the definition before Theorem A.3.2.

Theorem A.4.3. The unique solution (u,w, ξ) of (A.4.1.1)-(A.4.1.3) converges as t→∞
to the unique stationary solution (u∗, w∗, ξ∗) of (A.4.1.9)-(A.4.1.10) with

´
Γ u∗ dS = m =´

Γ u0 dS, more precisely

Stu ⇀ u∗ in W 2,1
p (Γ1) , Stξ

∗
⇀ ξ∗ in L∞(Γ1) , Stα

∗
⇀ α∗ in L∞(0, 1) . (A.4.2.1)

In particular, Stu converges with t→∞ uniformly on Γ to u∗.
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Proof. Since (u∗, w∗, ξ∗) is a solution of (A.4.1.1)-(A.4.1.2) we obtain from Theorem A.4.1
that t 7→

´
Γ(u(·, t)− u∗)+ dS is decreasing and

lim
T→∞

ˆ
Γ
(u(·, T )− u∗)+ dS exists. (A.4.2.2)

We consider for k ∈ N the functions

(uk, wk, ξk) ∈ W 2,1
p (Γ1)× L2(0, 1;H1(Ω))× L∞(Γ1),(

uk(·, t), wk(·, t), ξk(·, t)
)

=
(
u(·, t+ k), w(·, t+ k), ξ(·, t+ k)

)
.

Then uk, wk, ξk are uniformly bounded in W 2,1
p (Γ1) × L2(0, 1;H1(Ω)) × L∞(Γ1) for all

p ∈ [1,∞). Hence, there exists (u∞, w∞, ξ∞) ∈ W 2,1
p (Γ1)× L2(0, 1;H1(Ω))× L∞(Γ1) such

that for some subsequence k →∞

uk ⇀ u∞ in W 2,1
p (Γ1) , wk ⇀ w∞ in L2(0, 1;H1(Ω)) , ξk

∗
⇀ ξ∞ in L∞(Γ1) . (A.4.2.3)

As in the proof of Theorem A.3.2 we deduce that limt→∞ u(·, t) = u∗ in C0(Γ) and that
(u∞, w∞, ξ∞) is again a solution of (A.4.1.1),(A.4.1.2). We prove that this solution is
time-independent and coincides with (u∗, w∗, ξ∗).

We first deduce from (A.4.2.2) as in (A.3.2.6) that t 7→
´

Γ(u∞(·, t) − u∗)+ dS is inde-
pendent of t ∈ (0, 1).

Since (u∞, w∞, ξ∞) and (u∗, w∗, ξ∗) are both solutions to (A.4.1.1),(A.4.1.2) we obtain
from (A.4.1.8) that

0 = d

dt

ˆ
Γ
(u∞ − u∗)+ dS

≤ −
ˆ

Γ

(
X − X+)gLXg

(
X+(s∞ − s∗)

)
dS +

ˆ
Γ
X+gLXg

(
(X − X+)(s∞ − s∗)

)
dS ≤ 0 ,

where s∞ = (1− g)ξ∞, s∗ = (1− g)ξ∗, X+ = X{u∞>u∗} and X = X{u∞+u∗>0}. We therefore
deduce as for (A.4.1.8) that both integrals on the right-hand side are zero.

In this situation we can follow the arguments after (A.4.1.11). Since u∞, u∗ have the
same mass we obtain that u∞ = u∗ or s∞ = s∗ on {u∞ + u∗ > 0}. In the first case the
claim is proved.

In the second case we have ξ∞ = ξ∗ on {u∞ + u∗ > 0} and it remains to examine what
holds in the region {u∞ = u∗ = 0}. To this end, it is more convenient to show first that
w∞ = w∗. This follows easily from (A.2.2.34), with A = {u∞ + u∗ > 0}. Indeed, since
ξ∞ = ξ∗ almost everywhere in {u∞+u∗ > 0}, we deduce that w∞ = w∗ almost everywhere

84



A.4.2. Global stability of steady states

in Γ × (0, 1). This, combined with (A.2.2.33) implies that ξ∞ = ξ∗ almost everywhere in
Γ× (0, 1).

What is left to prove is that (ξ∞, w∞) = (ξ∗, w∗) implies u∞ = u∗. We notice that:

∂t(u∞ − u∗) = ∆(u∞ − u∗).

In addition,
´

Γ u∞(·, t) dS =
´

Γ u∗(·, t) dS for all t ∈ (0, 1) and we recall that
´

Γ(u∞ −
u∗)+(·, t) dS is constant for all t ∈ (0, 1). Therefore, it follows from Lemma A.3.3 that
u∞ = u∗.

�
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ix B
Qualitative properties of solutions to a non-local free

boundary problem modeling cell polarization

This appendix coincides with the paper [46], written jointly by Barbara Nietham-
mer, Matthias Röger, Juan J. L. Velázquez and the author.

B.1 Introduction

Obstacle problems appear in various applications and are still an active field of current
research.

In this work we are concerned with a particular parabolic obstacle problem that was
obtained as an asymptotic reduction for a cell polarization model [44] (see also [51] for the
stationary case). As we discuss below, this model involves a specific nonlinear nonlocal term
that can be seen as a (time dependent) Lagrange multiplier ensuring mass conservation.
The particular dependence of this term on the solution (more specifically on the support
of the solution) makes the analysis quite challenging.

Whereas existence of solutions and convergence towards a unique stationary state have
been discussed in [44], our focus here is on the characterization of qualitative properties of
solutions, in particular continuity properties of the Lagrange multiplier and of the (com-
pact) support of the solutions.

The setting: Let Γ be a smooth, compact, two-dimensional manifold without bound-
ary embedded in R3 and let T > 0. We set ΓT := Γ × (0, T ). Moreover, let a smooth
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function g : Γ→ (0, 1) and nonnegative initial data u0 : Γ→ R be given (precise assump-
tions will be stated later).

We then consider a triplet (u, ξ, α) of functions u, ξ : ΓT → R and α : (0, T )→ R that
solve the following problem in an almost everywhere sense,

∂tu−∆Γu = −(1− g)ξ + αg on ΓT , (B.1.1)
u ≥ 0 , uξ = u , 0 ≤ ξ ≤ 1 on ΓT , (B.1.2)
u(·, 0) = u0 on Γ . (B.1.3)

and that satisfy the following compatibility condition (guaranteeing mass conservation for
u)

α(t) =
´
{u(·,t)>0}(1− g) dS´
{u(·,t)>0} g dS

for t ∈ (0, T ) . (B.1.4)

In (B.1.1) the notation ∆Γ stands for the Laplace-Beltrami operator associated to the
surface Γ. For simplicity, in the following we will drop the subscript Γ in the notation.

In the interpretation of a cell polarization model as described in [44], [51], the positivity
set {u(·, t) > 0} corresponds to regions where the concentration of a chemical is high, while
the set {u(·, t) = 0} indicates those regions where the concentration of such a chemical is
low.

Context of this work: The problem (B.1.1), (B.1.2) can be reformulated in the form
u ≥ 0,
∂tu−∆u ≥ −(1− g) + αg,

∂tu−∆u = −(1− g) + αg in {u > 0}
(B.1.5)

Problem (B.1.5) can be compared with the classical obstacle problem given by
u ≥ 0,
∂tu−∆u ≥ f,

∂tu−∆u = f in {u > 0}
(B.1.6)

(see for example [66, Section 3.1]), which again can be rephrased as a parabolic variational
inequality [5]

u ≥ 0, (∂tu−∆u)(v − u) ≥ f(v − u) a.e., for any v ≥ 0. (B.1.7)
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Note that under suitable (parabolic Sobolev) regularity assumptions the system (B.1.6)
generalizes the classical formulation

∂tu−∆u = f in {u > 0} ,
f ≤ 0 in {u = 0} ,
u = ∇u = 0 on ∂{u > 0} .

(B.1.8)

Classical obstacle problems and variational inequalities have been thoroughly investigated
over the past decades. In [6] the existence of solutions to problem (B.1.6) is proved for
f ∈ L∞(Rn× (0, T )) with ∂tf ∈ L∞(Rn× (0, T )) and prescribed initial data u0 given by a
finite, positive measure. Moreover, if f is strictly negative, more precisely f ≤ −ν for some
constant ν > 0, and u0 has compact support then the solution has compact support for
all times. Under more restrictive conditions on u0 it is further shown that the support of
u(·, t) has distance at most of order

√
t from the support of u0. The proof relies on careful

comparison arguments, see also [18] for an alternative (and simpler) approach. Slightly
weaker estimates on the support for a larger class of obstacle problems have been derived
by probabilistic methods in [3].

Fine regularity properties of the (moving) free boundary, which here is described by
the boundary between the support of the solution and the coincidence set {u = 0}, have
ever been a key question in evolutionary or stationary obstacle problem.

Corresponding results have first been obtained in the context of the classical one-phase
Stefan problem. This leads to a specific parabolic obstacle problem [16] of the form (B.1.6),
where f = −1 and the additional sign restriction ∂tu ≥ 0 holds. In this case, the free
boundary splits into regular and singular points. The set of regular points includes all
points where the coincidence set {u = 0} has positive density. Whereas cusps may occur
in singular points, in regular points the free boundary is locally smooth [7], see also the
exposition in [23, Section 2.9].

In the case f = −1 but without any assumptions on the sign of ∂tu it is proved that the
boundary is C1,1-regular in space and C0,1-regular in time [11]. Moreover, around regular
points (defined in terms of a lower density function) the free boundary is C∞-regular in
space and time.

The main tool in deriving all such regularity properties are local monotonicity formulas
and blow ups. We refer to [10], [20], [21], [66] and the references therein for more recent
developments and extensions to more general operators.

Compared to the subject of the present work, there is a key difference between problems
(B.1.5) and (B.1.6), which makes the analysis in this paper quite challenging and leads in
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turn to some interesting results. More specifically, the right-hand side of (B.1.5) differs
from the corresponding right-hand side of (B.1.6) in the sense that in the first, α(t) depends
on the positivity set {u(·, t) > 0}. It is worth noticing that, in principle, problems with a
nonlinear and nonlocal dependence f := f(u) have already been studied. However, in most
works this dependence is either local or only includes a dependence on

´
u, which leads to

much better continuity properties and is much easier to control than a dependence on the
support of u. A notable exception is the work [65], where also a dependence on the size of
the support is present. Yet, the particular non-local dependence of the functional α(t) on
the solution u(·, t), does not allow us to use already existent techniques similar to the ones
used for problem (B.1.8) or in the more general cases just mentioned.

The goal of this work: The well-posedness of (B.1.5) has been investigated in [44]
whereas the corresponding steady states have been studied in [51]. The authors in [44] also
prove uniqueness and global stability of the steady states. However, the well-posedness
results in [44] imply only the global existence and uniqueness of solutions to (B.1.1)-
(B.1.4) with α ∈ L∞(0, T ) without providing much insight about the evolution of the set
{u(·, t) > 0}.

In this paper, we investigate the time continuity of the positivity set {u(·, t) > 0}. To
this end, we focus our attention on the study of the function t 7→ α(t). We find that there
are two conditions that play a crucial role in proving either continuity or jumps of the set
{u(·, t) > 0} as t → 0+. More precisely, we introduce the following assumptions on the
initial data. We assume that for some fixed θ > 0 it holds a first non-degeneracy condition

(1− g)− α0g ≥ θ > 0 in {u0 = 0} where α0 :=
´
{u0>0}(1− g) dS´
{u0>0} g dS

(B.1.9)

and further we prescribe a second non-degeneracy condition

H2
(
∂{u0 > 0}

)
= 0 , (B.1.10)

where H2 denotes the two-dimensional Hausdorff measure in R3.

Let us discuss the assumptions (B.1.9) and (B.1.10). In the case of problem (B.1.5),
the term (1 − g) − αg plays the role of −f in (B.1.6). The first condition is therefore
clearly related to the condition f ≤ −ν < 0 for the classical obstacle problem that has
been present in all the regularity results stated above. The necessity of such a condition
for the regularity of solutions and its free boundary is well known and can for example
be seen from an application of the Hopf boundary point lemma [9]. The same condition
also appears as a stability condition for the free boundary and estimates on the symmetric
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difference of the support of different solutions (see [8] and the exposition in [63, Chapter
6]).

Regarding the problem (B.1.5), if (1 − g) − α0g ≤ −θ < 0, it follows from the strong
maximum principle that u(·, t) becomes strictly positive for small positive times. Then,
the interface ∂{u(·, t) > 0} experiences a jump and the same is true for α. Moreover, by
the differential inequality in (B.1.5) we obtain at least formally in {u(·, t) = 0} for almost
all t that

0 ≥ −(1− g) + αg.

It is worth pointing out though that in general the right-hand side of (B.1.1) does not have
a sign, since its integral over the support of u vanishes.

Regarding the second nondegeneracy condition, we prove in Appendix A.3.2.8, Lemma
II.2 that (B.1.10) is equivalent to

H2
((
{u0 > 0}

)
+δ
\
(
{u0 > 0}

)
−δ

)
→ 0 as δ → 0 , (B.1.11)

where(
{u0 > 0}

)
+δ

:= {x |d(x,
(
{u0 > 0}

)
) ≤ δ} ,

(
{u0 > 0}

)
−δ

:= {x |d(x,
(
{u0 = 0}

)
) ≥ δ} .

In our analysis below mainly the formulation (B.1.11) is used.

Such a condition seem not to be required for problem (B.1.8) but appears to be quite
significant for problem (B.1.5). In fact, in the companion paper [46], we provide an example
of initial data u0 such that (B.1.9) holds while (B.1.11) is not satisfied. We prove that in
this case, the function α(t) can not be continuous at t = 0.

The necessity of this second condition in our analysis is a consequence of the particular
structure of the right-hand side in (B.1.5) and its dependence on the positivity set {u(·, t) >
0} through the nonlocal functional α(t), whereas f in (B.1.8) is a general function of space
and time.

The plan of this paper is the following. First, we collect some results from previous
work and formulas that will play a crucial role in the current analysis. Under assumptions
(B.1.9) and (B.1.11) we prove in Section B.3 continuity properties for the set {u(·, t) > 0}
and the function α at t = 0. In Section B.4, we illustrate the importance of (B.1.9) in the
proof of continuity. More specifically, we assume that (B.1.9) is violated and only (B.1.11)
is valid. We prove that the set {u(·, t) > 0} and the function α will experience a jump at
t = 0 and we characterize their behavior in the limit t↘ 0.
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B.2 Previous results and preliminaries

Let us state the main assumptions that we impose throughout this paper.

Assumption B.2.1. Let Γ ⊂ R3 be a smooth compact surface without boundary. For
subsets A ⊂ Γ we denote by |A| = H2(A) its Hausdorff measure and by XA the standard
characteristic function of the set A.

For x0 ∈ Γ and ρ > 0 we denote by Bρ(x0) the ball on the surface Γ with respect to
the extrinsic (Euclidean) distance in R3. We remark that the assumptions on Γ imply that
the intrinsic (geodesic) and the extrinsic distances induce equivalent metrics.

By ∆ we denote the Laplace-Beltrami operator on Γ, see also the remark below.

We assume that

u0 ∈ C2(Γ) with u0 ≥ 0 and |{u0 > 0}| > 0, (B.2.1)

as well as

g ∈ C2(Γ) and 0 < g0 ≤ g ≤ g1 < 1 on Γ (B.2.2)

for some 0 < g0 < g1 < 1. We notice that in some cases, assuming only continuity for
the function g in the following analysis would be sufficient. However, (B.2.2) simplifies the
computations.

Remark B.2.2. We recall that the relevant diffusion operator on Γ is the corresponding
Laplace-Beltrami operator, see for example [57]. In local coordinates the Laplace-Beltrami
operator corresponds to an elliptic operator in divergence form (with C2-regular coefficients
in our case). One can deduce parabolic maximum principles in analogy to [22, Chapter 2]
for evolution problems on Γ involving the Laplace-Beltrami operator.

Before proceeding to the main analysis of this paper, we collect here some results from
our previous work in [44], which appear to be useful in what follows.

To begin with, we have established that problem (B.1.1)-(B.1.3) admits a unique non-
negative solution. In fact, for nonnegative u0 ∈ C2(Γ), there exists a unique nonnegative
u ∈ W 2,1

p (ΓT ) for all p ∈ [1,∞) and α ∈ L∞(0, T ) that solves (B.1.1)-(B.1.3). Moreover it
holds that u ∈ C1+β, 1+β

2 (ΓT ) for all 0 < β < 1 .

In [44, Remark 2.3], we further justify a representation formula for ξ, that is

ξ(·, t) =

1 in {u(·, t) > 0}
α(t)g
1−g in {u(·, t) = 0}

(B.2.3)
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for almost all t ∈ (0, T ). Due to (B.2.3), one obtains a formula for α which is equivalent
to (B.1.4) and is given by

α(t) =
´

Γ(1− g)ξ(·, t) dS´
Γ g dS

. (B.2.4)

We also prove in [44] that the solution to (B.1.1)-(B.1.3) conserves the mass, i.e
ˆ

Γ
u(·, t) dS =

ˆ
Γ
u0 dS = m for all t ∈ (0, T ) . (B.2.5)

Furthermore, we show that for any two solutions u1, u2 of (B.1.1)-(B.1.2), the map

t 7→
ˆ

Γ

(
u1 − u2

)
+

(·, t) dS is decreasing in time. (B.2.6)

This property is crucial for the proof of Theorem B.4.3.

Moreover, we observe that due to [44, Remark 2.3] there is an equivalent and more
convenient way to write (B.1.1). We provide a straightforward computation in the next
lemma.

We define H : R→ {0, 1}, H = X(0,∞) as the characteristic function of the positive real
numbers.

Lemma B.2.3. Let λ ∈ L∞(0, T ) be defined by

λ(t) =
 
{u(·,t)>0}

g dS . (B.2.7)

Then equations (B.1.1), (B.1.2) are equivalent to

∂tu−∆u = −
(

1− g

λ

)
H(u) on ΓT , (B.2.8)

g ≤ λ almost everywhere in {u = 0} . (B.2.9)

Proof. We stress that λ is well defined due to the continuity of u. Now, the characterization
of α in (B.1.4) yields

α(t) = 1ffl
{u(·,t)>0} g dS

− 1 = 1
λ(t) − 1 . (B.2.10)
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By [44, Remark 2.3] and (B.2.3) we can rewrite (B.1.1), (B.1.2) equivalently as

∂tu−∆u+
(
(1− g)− αg

)
=
(
(1− g)− αg

)
+
X{u=0} , (B.2.11)

Due to (B.2.10) this is equivalent to

∂tu−∆u+
(

1− g

λ(t)

)
=
(

1− g

λ(t)

)
+
X{u=0} . (B.2.12)

Using once again [44, Remark 2.3] equation (B.2.12) yields (B.2.9). Thus we conclude that
(B.2.8) holds.

Vice versa, if u is a solution of (B.2.8), (B.2.9), we can rewrite (B.2.8) as (B.2.12) and
hence obtain (B.1.1), (B.1.2). This completes the proof.

�

B.3 Continuity results

Our goal in this section is to prove that the function α is continuous at t = 0 assuming
that both (B.1.9) and (B.1.11) hold true. From now on θ > 0 will be fixed. Furthermore,
we will show that the positivity set {u(·, t) > 0} changes continuously as t → 0+. More
specifically, we will show the following.

Theorem B.3.1. Suppose that (B.1.9) and (B.1.11) hold true for some θ > 0. Then for
any arbitrary small η > 0, there exists t̄ = t̄(η; θ, u0, g) > 0 such that(

{u0 > 0}
)
−η
⊂ {u(·, t) > 0} ⊂

(
{u0 > 0}

)
+η

(B.3.1)

and

|α(t)− α0| ≤ η (B.3.2)

for all t ∈ [0, t̄].

We will prove this theorem in the following subsections. As we have already mentioned
in Section B.2, problem (B.1.1)-(B.1.3) admits a unique nonnegative solution with α ∈
L∞(0, T ). However, beyond this regularity we have no control on α and its evolution could
have jumps and fast oscillations.

We note that it is sufficient to prove the claim for all sufficiently small η > 0. In
fact, if (B.3.1), (B.3.2) hold for some η > 0, both properties hold for all η̃ ≥ η, with
t̄(η̃; θ, u0, g) = t̄(η; θ, u0, g).
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A priori, the limit limt→0+ α(t) might not exist or might be different from α0. Therefore,
it is convenient to consider a regularized version of (B.1.1)-(B.1.3), for which the analogon
of the function α is smooth.

B.3.1 Formulation of the regularized problem

For ε > 0 we consider the following problem

∂tuε −∆uε = −(1− g)fε(uε) + αεg on Γ× (0, T ) , (B.3.1.1)
uε(·, 0) = uε0 on Γ , (B.3.1.2)

where

fε(u) = u

u+ ε
(B.3.1.3)

describes a standard Michaelis-Menten law and the nonnegative initial data uε0 will be
suitably constructed later (see (B.3.1.12) below). Arguments similar to those in Chapter
3 imply that a unique smooth solution of the regularized problem exists for all positive
times, and that solutions approximate (B.1.1)-(B.1.3) as ε → 0. More precisely, for any
1 ≤ p <∞ and 0 < β < 1 we have

uε ⇀ u in W 2,1
p (ΓT ), (B.3.1.4)

uε → u in C1+β, 1+β
2 (ΓT ). (B.3.1.5)

It follows from (B.3.1.1) that αε is given by

αε(t) =
´

Γ(1− g)fε(uε(·, t)) dS´
Γ g dS

. (B.3.1.6)

We notice that αε is Hölder continuous but that a priori there is no uniform bound on its
modulus of continuity. Moreover, the solution of (B.3.1.1)-(B.3.1.2) is strictly positive for
all positive times. We aim to prove uniform continuity estimates for the function αε as
ε→ 0+ for short times.

We stress that solutions to the original problem (B.1.1)-(B.1.3) and to the regularization
(B.3.1.1)-(B.3.1.2) exist globally in time. As we are only concerned with the behavior for
small times, throughout this chapter we will consider a fixed time interval (0, T ) that is
independent of ε.

For further reference we also note that due to (B.2.2) we have

0 < c(g) ≤ αε, α ≤ C(g) in [0, T ] . (B.3.1.7)
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Construction of initial data for the regularized problem: Due to (B.1.9) and
the continuity of g, we can choose a sufficiently small σ > 0 such that

(1− g)− α0g ≥
θ

2 in Kσ := {u0 = 0}+σ . (B.3.1.8)

The definition of the set { · }+σ is given in Definition I.1. Then, using (B.3.1.8), we can
define the positive function

ûε0 := εα0g

(1− g)− α0g
in Kσ . (B.3.1.9)

Moreover, due to (B.3.1.3), we have that

−fε(ûε0)(1− g) + α0g = 0 in Kσ. (B.3.1.10)

We observe that

ε
(1−max g)g

max g ≤ ûε0 ≤ ε
2(1− g)− θ

θ
in Kσ, (B.3.1.11)

where we have used α0 ≥ 1−max g
max g and (B.3.1.8).

We now consider a smooth cut-off function ζ ∈ C1
c (Γ) with the following properties.

We assume that, 0 ≤ ζ ≤ 1 in Γ, ζ = 1 in {u0 = 0} and ζ = 0 in Γ\Kσ with |∇ζ| ≤ κ
σ

for some κ > 0 which is independent of σ. Then we take as initial data in (B.3.1.2) the
function

uε0 = u0 + ûε0ζ in Γ , (B.3.1.12)

in particular uε0 ≥ u0 on Γ and uε0 = ûε0 in {u0 = 0}. Moreover, we observe that

uε0 ≤ mε in {u0 = 0}, (B.3.1.13)

for some m = m(g) > 0.

Remark. We point out that σ > 0 is fixed throughout the chapter and does only depend
on θ and the modulus of continuity of g. Here its only role is to specify the size of the
region in which we can define ûε0 via (B.3.1.9).

We can easily check that uε0 → u0 uniformly on Γ as ε→ 0. Furthermore we obtain

αε(0)
ˆ

Γ
g dy =

ˆ
Γ
(1− g)fε(uε0) dy →

ˆ
{u0>0}

(1− g) dy + α0

ˆ
{u0=0}

g dy

= α0

ˆ
{u0>0}

g dy + α0

ˆ
{u0=0}

g dy = α0

ˆ
Γ
g dy

96



B.3.2. Uniform continuity of αε at t = 0

and hence we have that αε(0)→ α0 and

(1− g(x))− αε(0)g(x) ≥ 3θ
4 for all x ∈ {u0 = 0} (B.3.1.14)

for sufficiently small ε > 0.

The continuity of the function t 7→ uε(·, t) at t = 0 in the uniform topology and
(B.3.1.3), imply that αε is also continuous at t = 0. Combining this and the fact that
αε(0) → α0 as ε → 0, we conclude that for any η > 0 there exists Tε > 0, in principle
depending on ε such that

|αε(t)− α0| ≤ η for all t ≤ Tε. (B.3.1.15)

Recall that it is sufficient to prove the claims for all sufficiently small η > 0. In the following
we will assume that 0 < η < θ

4 max g . Then by (B.1.9) and (B.3.1.15) we conclude that

(1− g(x))− αε(t)g(x) ≥ θ

2 for all x ∈ {u0 = 0} and t ∈ [0, Tε] . (B.3.1.16)

Our goal will be to show that there exists a time t̄ > 0 that is independent of ε such that
(B.3.1.15) and hence (B.3.1.16) hold also in [0, t̄]. We will use this result to show that for
some L0 > 0 and for t ∈ [0, t̄] the sets {uε(·, t) > L0ε} and {uε0 > L0ε} are close in the
sense of Lebesgue measure for small t. Then we can pass to the limit ε → 0 to conclude
the same for {u(·, t) > 0} and {u0 > 0}. Recalling the form of α in (B.2.4) we see that
this is the key estimate in order to prove the continuity of α.

B.3.2 Uniform continuity of αε at t = 0

We start with a few auxiliary lemmas. The dependence of constants on the data u0 and g,
also through the uniform bounds on αε, α in (B.3.1.7), will not be written explicitly in the
following. However, any additional dependence will be specified each time.

Furthermore uε always denotes a solution to (B.3.1.1)-(B.3.1.2) with data uε0 as in
(B.3.1.12) and Tε > 0 such that (B.3.1.16) holds.

Our first result yields uniform continuity in ε for short times.

Lemma B.3.2. Let uε be the unique solution to (B.3.1.1)-(B.3.1.2) with data uε0 as in
(B.3.1.12). Then,

‖uε(·, t)− uε0‖L∞(Γ) ≤ C1t
1+β

2 for all t ≤ T (B.3.2.1)

and for all 0 < β < 1 .
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Proof. Since uε is a solution to (B.3.1.1)-(B.3.1.2) with data as in (B.3.1.12) and the right-
hand side of (B.3.1.1) is uniformly bounded in ε, we deduce from standard Hölder regularity
results for parabolic equations, see [22], that uε ∈ C1+β, 1+β

2 (ΓT ) for any 0 < β < 1 . The
claim then follows. �

To proceed, we define for the sake of simplicity

U := {u0 = 0} , V := Γ\U = {x |u0(x) > 0} (B.3.2.2)

and for any sufficiently small δ > 0 we define

U−δ :=
(
{u0 = 0}

)
−δ

= {x |d(x,
(
{u0 > 0}

)
) ≥ δ}, V δ := {u0 ≥ δ} . (B.3.2.3)

A key property in the analysis of free boundary problems is the so-called nondegeneracy
property.

This property states that if a solution to (B.1.8) is small in a sufficiently large open set,
then it vanishes in a smaller set (cf. [6]). A version of this property for the stationary solu-
tions to (B.1.1)-(B.1.3), has been formulated in [51, Proposition 3.9(5)]. The next lemma
yields a variation of this nondegeneracy property for the regularized problem (B.3.1.1),
(B.3.1.2).

Since the solution to (B.3.1.1), (B.3.1.2) is strictly positive due to maximum principle,
the corresponding nondegeneracy result is formulated as follows. If uε is smaller than
some number independent of ε, in a sufficiently large set with size independent of ε, then
uε ≤ L0ε for some positive constant L0 which is independent of ε, in a smaller set with size
independent of ε as well. It is worth noticing that in the limit ε → 0+, this result would
"converge" to the standard nondegeneracy result for the Stefan problem, cf. [6, Theorem
3.1].

Lemma B.3.3. Consider Tε > 0 such that (B.3.1.15) holds. Then there exist positive
constants ρmax = ρmax(Γ), A = A(Γ) and L0 = L0(g, θ) such that for any t̃ ∈ [0, Tε] and
any ρ ∈ (0, ρmax) the following holds:

If B2ρ(x0) ⊂ U and if

uε ≤
θ

A
ρ2 in B2ρ(x0)× [0, t̃] ,

then uε satisfies
uε ≤ L0ε in Bρ(x0)× [0, t̃].
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Proof. Without loss of generality x0 = 0 ∈ Γ. Let us also recall (B.3.1.13). Then we can
choose L0 > 0 such that

L0 ≥ 2m and (1− g) 1
L0 + 1 ≤

θ

4 . (B.3.2.4)

We proceed by contradiction, that is we suppose that there exists (y, τ) ∈ Bρ(0) × [0, t̃]
such that uε(y, τ) > L0ε. As a candidate for a supersolution we define

ũ(x, t) := L0ε+ θ

A
|x− y|2 + θ

8(τ − t)

and compute that
∂tũ−∆ũ = −θ8 −

4θ
A
− 2θ
A
~H · (x− y) ≥ −θ4

if ρ ≤ ρmax(Γ) is sufficiently large. (Here ~H denotes the mean curvature vector on Γ.) By
(B.3.1.16) and the choice of L0 we have in (B2ρ(0)× [0, τ ]) ∩ {uε ≥ L0ε} that

∂tuε −∆uε = −(1− g)fε(uε) + αε(t)g ≤ −
θ

4 ≤ ∂tũ−∆ũ .

Furthermore, we check that on (∂B2ρ(0)× [0, τ ]) ∩ {uε ≥ L0ε} we have

uε ≤
θ

A
ρ2 ≤ ũ

while on (B2ρ(0) × [0, τ ]) ∩ ∂{uε ≥ L0ε} it clearly holds that uε − ũ ≤ 0. Furthermore
uε(·, 0) ≤ ũ(·, 0) by our choice of L0 in (B.3.2.4). Hence the parabolic maximum principle
implies u ≤ ũ in (B2ρ(0)× [0, τ ]) ∩ {uε ≥ L0ε} which gives a contradiction. �

Now, we can prove the left inclusion in (B.3.1) for the solution of the regularized
problem (B.3.1.1), (B.3.1.2).

Corollary B.3.4. Let δ > 0, β ∈ (0, 1) be fixed and Tε > 0 be such that (B.3.1.15) holds.
Let A = A(Γ) be as in Lemma B.3.3, C1 > 0 as in Lemma B.3.2 and set

t∗(δ) :=
(
θδ2

8AC1

) 2
1+β

. (B.3.2.5)

Then, there exists ε0 = ε0(δ, u0, g) > 0, such that for all 0 < ε ≤ ε0 we have

U−δ ⊂ {uε(·, t) ≤ L0ε} for all 0 ≤ t ≤ min{Tε, t∗(δ)},

where U−δ is given by (B.3.2.3).
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Proof. Due to (B.3.1.13) Lemma B.3.2 implies

‖uε(·, t)‖L∞(U) ≤ ‖uε(·, t)− uε0‖L∞(U) + ‖uε0‖L∞(U) ≤ C1t
1+β

2 +mε .

Hence, we deduce by (B.3.2.4) that

‖uε(·, t)‖L∞(U) ≤ 2mε ≤ L0ε for all 0 ≤ t ≤ min
{
Tε, t

∗(δ),
(
mε

C1

) 2
1+β
}
.

On the other hand, for (mε
C1

) 2
1+β < t ≤ min{Tε, t∗(δ)} we obtain by (B.3.2.5) that

‖uε(·, t)‖L∞(U) ≤ 2C1
(

min{Tε, t∗(δ)}
) 1+β

2 ≤ θ

A

(
δ

2

)2
.

We now apply Lemma B.3.3. To this end we choose ρ = min(ρmax, δ/2) and arbitrary
x0 ∈ U−δ. Then Lemma B.3.3 implies the claim. �

As long as (B.3.1.15) is valid, we obtain in the next lemma some detailed pointwise
estimates for the function fε(uε) which is given by (B.3.1.3).

Lemma B.3.5. Let η ∈
(
0, θ

4 max g

]
and Tε > 0 be such that (B.3.1.15) holds. Then for

given small δ > 0 there exists a constant Cδ > 0 such that in the set U−2δ× (0, Tε) we have

fε(uε)(1− g)− (α0 + η)g ≤ Cδε (B.3.2.6)

and

fε(uε)(1− g)− (α0 − η)g ≥ −Cδε . (B.3.2.7)

Proof. We are going to prove (B.3.2.6), the proof of (B.3.2.7) goes analogously.

Step 1: We first construct a suitable supersolution by defining ūε : U−δ × [0, Tε]→ R+

via

∂tūε −∆ūε = −(1− g)fε
(
ūε) + (α0 + η)g , in U−δ × (0, Tε) (B.3.2.8)

ūε(·, 0) = ε
(α0 + η)g

(1− g)− (α0 + η)g in U−δ , (B.3.2.9)

ūε = L0ε on ∂U−δ × (0, Tε) . (B.3.2.10)

Indeed, for wε := uε − ūε we find, due to (B.3.1.15), that

∂twε −∆wε ≤ −(1− g)
(
fε(uε)− fε(ūε)

)
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= −(1− g) ε

(ε+ uε)(ε+ ūε)
wε .

Furthermore, on U−δ it holds

uε(·, 0) ≤ ε
(α0 + η)g

(1− g)− (α0 + η)g = ūε(·, 0) ,

while on ∂U−δ × [0, Tε] we have wε ≤ 0 by Corollary B.3.4. This yields wε ≤ 0, hence

uε ≤ ūε in U−δ × [0, Tε]. (B.3.2.11)

Step 2: We next show that for some C = C(δ, L0) it holds

|ūε(x, t)− ūε(x, 0)| ≤ Cε2 in U−2δ × [0, Tε] . (B.3.2.12)

Further we consider U0
ε := 1

ε
ūε0, Uε := 1

ε
ūε and vε := Uε−U0

ε . We compute, with f(u) = u
u+1 ,

that

∂tvε −∆vε = −1
ε

(1−g)f
(
Uε
)

+ 1
ε

(α0 + η)g −∆U0
ε (x)

= −1
ε

(1− g)
(
f(Uε)− f(U0

ε )
)
−∆U0

ε (x)

= −1
ε

(1− g) 1
(1 + Uε)(1 + U0

ε )vε −∆U0
ε (x) .

We first notice that, since |∆U0
ε | ≤ C0 for some C0 = C0(g), we have that |vε| and then

also Uε are uniformly bounded in ε by some constant only depending on δ, L0. Hence, we
have

∂tvε −∆vε ≤ −
µ

ε
vε + C0 (B.3.2.13)

for some µ = µ(δ, L0) > 0.

We compare vε with the solution of the boundary value problem

−ε∆wε = −µwε + εC0 in U−δ, wε = vε on ∂U−δ. (B.3.2.14)

By applying maximum principles we find that in U−δ for some C1 = C1(g, L0)

0 ≤ wε ≤ C1, vε(·, t) ≤ wε for all 0 < t < Tε. (B.3.2.15)

We next claim that there exists Λ = Λ(µ, δ) such that

wε ≤ Λε in U−2δ. (B.3.2.16)
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To prove this estimate consider an arbitrary Λ > 0 (to be chosen sufficiently large later)
and assume by contradiction that wε(x0) > Λε for some x0 ∈ U−2δ.

Let ϑ := ε Λ
2C1

+ ϕ2 where ϕ ∈ C∞c (Bδ(x0)) is chosen such that

ϑ(x0) = 1, ϑ ≤ 1, ‖ϑ‖C2(Bδ(x0)) ≤ C(δ).

Observe that ϑ ≥ ε Λ
2C1

and

|∇ϑ|2

ϑ
≤ 4ϕ2|∇ϕ|2

ε Λ
2C1

+ ϕ2 ≤ C(δ) (B.3.2.17)

for some C(δ) independent of ε,Λ. Furthermore, we compute

∇(ϑwε) = ϑ∇wε + wε∇ϑ, ∆(ϑwε) = ϑ∆wε + 2∇ϑ · ∇wε + wε∆ϑ,

and deduce from (B.3.2.14)

C0ϑ = −∆(ϑwε) + 2∇ϑ · ∇wε + wε∆ϑ+ µ

ε
(ϑwε)

= −∆(ϑwε) + 2
ϑ
∇ϑ · ∇(ϑwε) +

(
µ

ε
− 2|∇ϑ|2

ϑ2 + 1
ϑ

∆ϑ
)

(ϑwε).

Using (B.3.2.17) yields for all Λ ≥ Λ0, Λ0 = Λ0(δ, C1, µ)

−2|∇ϑ|2
ϑ2 + 1

ϑ
∆ϑ ≥ −C(δ)

ϑ
≥ −2C1C(δ)

εΛ ≥ − µ

2ε,

hence

C0ϑ ≥ −∆(ϑwε) + 2
ϑ
∇ϑ · ∇(ϑwε) + µ

2ε(ϑwε). (B.3.2.18)

By the choice of ϑ we have (ϑwε)(x0) > Λε > (ϑwε)|∂B(x0,δ). Hence ϑwε attains an interior
maximum at some x1 ∈ B(x0, δ). Evaluating (B.3.2.18) we deduce that

C0 ≥ C0ϑ(x1) ≥ µ

2ε(ϑwε)(x1) ≥ µ

2ε(ϑwε)(x0) > µΛ
2 ,

a contradiction for Λ ≥ Λ∗, where Λ∗ = Λ∗(C0, C1, µ, δ) only depends on δ and L0.

This completes the proof of (B.3.2.16).

Step 3: Using (B.3.2.11), (B.3.2.9), (B.3.2.12) and the monotonicity and continuity of
f we finally obtain

fε(uε)(1− g)− (α0 + η)g ≤ fε(ūε)(1− g)− (α0 + η)g

= fε(ū0
ε)(1− g)− (α0 + η)g + ε(ūε − ū0

ε)
(ε+ ūε)(ε+ ū0

ε)
(1− g)

≤ C(δ, L0)ε.

Since the choice of L0 only depends on g, θ this proves (B.3.2.6). �
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The following proposition plays a crucial role in proving Theorem B.3.1. It states that
we can choose Tε > 0 in (B.3.1.15) independent of ε. The key idea in this proof is to
consider the maximal time interval where (B.3.1.15) is satisfied and show that it could be
extended unless it contains and interval [0, t̄], with t̄ independent of ε.

Proposition B.3.6. Let θ > 0 as in (B.1.9) and 0 < η < θ
4 max g . Then, for sufficiently

small ε > 0, there exists t̄ := t̄(η, θ, u0, g) > 0 that is independent of ε such that

|αε(t)− α0| ≤ η for all t ∈ [0, t̄] .

In particular, we can choose Tε = t̄ in Corollary B.3.4 independent of ε > 0.

Proof. Step 1: We observe that Lemma B.3.5 yields that there exists r1 ∈ [−η, η] such
that ˆ

U

(1− g)fε
(
uε(·, t)

)
dS =

(
α0 + r1

) ˆ
U

g dS +O(Cδε) + ω(δ), (B.3.2.19)

where ω(δ) → 0 as δ → 0. Moreover, by (B.3.1.12) we have that uε0 ≥ u0 on Γ. Using
this and Lemma B.3.2 and possibly passing to a smaller value of t∗(δ), we obtain for all
t ≤ t∗(δ) that

ˆ
V δ

(1− g)fε
(
uε(·, t)

)
dS =

ˆ
V δ

(1− g) dS +O
(
ε

δ

)
. (B.3.2.20)

Moreover, using (B.1.11), (B.2.2) and (B.3.1.3) we deduce

0 ≤
ˆ

Γ\(U∪V δ)
(1− g)fε

(
uε(·, t)

)
dS ≤ |Γ\(U ∪ V δ)| → 0 , as δ → 0. (B.3.2.21)

Therefore we can write, combining (B.3.2.19), (B.3.2.20),

αε(t)
ˆ

Γ
g dS =

ˆ
V δ

(1− g)fε
(
uε(·, t)

)
dS +

ˆ
U

(1− g)fε
(
uε(·, t)

)
dS

+
ˆ

Γ\(U∪V δ)
(1− g)fε

(
uε(·, t)

)
dS

=
ˆ
V δ

(1− g) dS +O
(
ε

δ

)
+
(
α0 + r1

)ˆ
U

g dS + r2 ,

with |r2| ≤ Cδε+ ω(δ). This estimate can be further simplified as follows

αε(t)
ˆ

Γ
g dS =

ˆ
V

(1− g) dS +
(
α0 + r1

)ˆ
U

g dS + r3

= α0

ˆ
Γ\U

g dS + α0

ˆ
U

g dS + r1

ˆ
U

g dS + r3
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= α0

ˆ
Γ
g dS + r1

ˆ
U

g dS + r3 ,

where |r3| ≤ r2 +O
(
ε
δ

)
+ |V \ V δ|. Thus, we obtain for all 0 ≤ t ≤ Tε

∣∣∣αε(t)− α0

∣∣∣ ≤ κ|r1|+ C|r3| ≤ (1− κ)η + Cω(δ) + Cδε

with κ :=
´
{u0>0} g dS´

Γ g dS
> 0. This is the key estimate in order to complete the proof.

Indeed, let us first fix δ depending on η such that Cω(δ) ≤ κ
4η and then ε depending

on δ sufficiently small such that Cδε ≤ κ
4η. Then it holds

∣∣∣αε(t)− α0

∣∣∣ ≤ (1− κ

2

)
η for all 0 ≤ t ≤ Tε. (B.3.2.22)

Next, define

T̃ε := sup
{

0 ≤ s ≤ t∗(δ) : |αε(t)− α0| ≤ η for all t ∈ [0, s]
}
.

If T̃ε < t∗(δ) the continuity of αε and (B.3.2.22) imply that |αε(t) − α0| ≤ η holds on an
interval [0, T †] with T̃ε < T † ≤ t∗(δ), a contradiction to the definition of T̃ε.

Thus, setting t̄ := t̄(η) = t∗(δ), we obtain that |αε(t)− α0| ≤ η in [0, t̄]. �

Proposition B.3.6 implies that there exists a time t̄ > 0 which is independent of ε such
that (B.3.1.15) and hence (B.3.1.16) holds for all t ∈ [0, t̄].

B.3.3 Proof of Theorem B.3.1

With the uniform continuity result stated in Proposition B.3.6 we can now prove Theorem
B.3.1 by passing to the limit ε→ 0.

Proof of Theorem B.3.1. Recalling (B.1.4) and (B.3.1.7), we estimate

|α(t)− α0| =
∣∣∣∣∣
´
{u(·,t)>0}(1− g) dS´
{u(·,t)>0} g dS

−
´
{u0>0}(1− g) dS´
{u0>0} g dS

∣∣∣∣∣
≤ 1´

{u0>0} g dS

∣∣∣∣
ˆ
{u0>0}

(1− g) dS −
ˆ
{u(·,t)>0}

(1− g) dS
∣∣∣∣

+ α(t)´
{u0>0} g dS

∣∣∣∣
ˆ
{u(·,t)>0}

g dS −
ˆ
{u0>0}

g dS

∣∣∣∣
≤ C

∣∣∣{u0 > 0}∆{u(·, t) > 0}
∣∣∣ (B.3.3.1)
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Then it is sufficient to show that for all δ > 0 sufficiently small there exists t†(δ) > 0 such
that

V δ ⊂ {u(·, t) > 0} ⊂
(
U−δ

)c
for all 0 < t < t†(δ) , (B.3.3.2)

where V δ, U−δ are given by (B.3.2.3).

Indeed, by (B.3.2.2) we observe that

V δ ⊂ V ⊂
(
U−δ

)c
.

This in turn yields that for all 0 < t < t†(δ)

{u(·, t) > 0}∆{u0 > 0} ⊂
(
U−δ

)c
\ V δ . (B.3.3.3)

Using Lemma I.4, we infer that for any δ > 0 we can choose δ̄ := δ̄(δ) ≥ δ with δ̄ → 0 as
δ → 0 such that V−δ̄ ⊂ V δ. By Lemma I.2 it holds

(
U−δ

)c
⊂ V+δ̄, which yields(

U−δ
)c
\ V δ ⊂ V+δ̄ \ V−δ̄ . (B.3.3.4)

Moreover, we deduce by (B.3.3.2) that

V−δ̄ ⊂ {u(·, t) > 0} ⊂ V+δ̄ for all 0 < t < t†(δ) . (B.3.3.5)

Finally, (B.3.3.3), (B.3.3.4), the convergence δ̄ → 0 as δ → 0 and (B.1.11) yield that

|{u(·, t) > 0}∆{u0 > 0}| ≤ |{u0 > 0}+δ̄ \ {u0 > 0}−δ̄| → 0 as δ → 0 .

Therefore, for given η > 0, we can choose 0 < δ ≤ η, δ = δ(η) sufficiently small, such that
the right-hand side of (B.3.3.1) is less or equal than η for all 0 < t < t̄(η), with t̄(η) = t†(δ).
Thus, we obtain (B.3.2). Moreover, by (B.3.3.5) and δ ≤ η we obtain (B.3.1).

This proves that if (B.3.3.2) holds, then Theorem B.3.1 follows. To this end, we now
proceed to the proof of (B.3.3.2).

On the one hand, by Corollary B.3.4 and Proposition B.3.6 we obtain that for any
δ > 0 and for any ε = ε(δ) sufficiently small, U−δ ⊂ {uε ≤ L0ε} for all t ∈ [0, t∗(δ)]. This
in particular yields that for any x ∈ U−δ and for all 0 ≤ t ≤ t∗(δ), uε(x, t) ≤ L0ε. Due to
the uniform convergence uε → u, we conclude that U−δ ⊂ {u(·, t) = 0} for all t in [0, t∗(δ)].
Taking the complements, the right inclusion follows.

On the other hand, x ∈ V δ implies u0(x) ≥ δ and by uniform convergence u(·, t)→ u0,
see Section B.2, and after possibly passing to a lower value of t∗(δ), we have that u(x, t) > 0
for all t ≤ t∗(δ). Thus V δ ⊂ {u(·, t) > 0} for all t ≤ t∗(δ).

Hence, choosing t†(δ) = t∗(δ) we deduce (B.3.3.2).

�
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B.4 Initial jump for incompatible data

So far, we have proven the continuity of the function α in t = 0 assuming (B.1.9) and
(B.1.10). We notice that in Lemma B.2.3, we have derived an equivalent formulation for
(B.1.1), (B.1.2) given by (B.2.8), (B.2.9). Hence, all continuity properties that have been
justified for the function α in Section B.3, hold for the function λ as well. For the sake of
convenience, we choose in the following analysis to study the equivalent problem

∂tu−∆u = −
(

1− g

λ(t)

)
H(u) on ΓT , (B.4.1)

λ ≤ g a.e in {u = 0} , (B.4.2)
u(·, 0) = u0 on Γ (B.4.3)

and investigate the behavior of λ, as defined in (B.2.7).

This section highlights the necessity of (B.1.9) for the continuity of the function λ and
of the support of the solution u. More precisely, we will show that if (B.1.9) fails, then one
cannot expect continuity of the function λ nor of the set {u(·, t) > 0} at t = 0. To this
end, we assume that (B.1.10) holds true, while (B.1.9) is violated in the sense that

|{u0 = 0} ∩ {(1− g)− α0g < 0}| > 0 , (B.4.4)

where α0 =
´
{u0>0}(1−g) dS´
{u0>0} g dS

. By (B.2.10), this assumption is equivalent to

|{u0 = 0} ∩ {g > λ0}| > 0 , where λ0 =
 
{u0>0}

g dS. (B.4.5)

The non-generic case in which |{u0 = 0} ∩ {g = λ0}| > 0 will be addressed below (see
Remark B.4.8 ).

We stress that both (B.1.9) and (B.1.10) are necessary in order to obtain any continuity
properties for the function λ. In fact, we will present in Chapter 4 an example of initial
data u0 for which (B.1.9) holds while (B.1.10) is invalid. We will prove that under these
assumptions, the function λ is not continuous at t = 0 and the positivity set {u(·, t) > 0}
is oscillatory as t→ 0+.

Our aim is to prove that under assumption (B.4.5) the function λ and the positivity
set {u(·, t) > 0} both will jump at t = 0. It turns out that we can characterize this jump
in terms of a variational principle. More specifically, we define Λ[u0] as follows.
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Definition B.4.1. For any open, measurable set S ⊂ Γ, we set

ΛS := sup
{ 

A

g dS : A ⊂ Γ measurable with S ⊂ A

}
. (B.4.6)

In the particular case S = {u0 > 0}, where u0 : Γ→ R denotes the nonnegative continuous
initial data, we will write Λ[u0] := Λ{u0>0} for the sake of simplicity.

We will prove that under (B.4.5)

lim
t↘0

λ(t) = Λ[u0] and Λ[u0] > λ0 .

Moreover, we will show that the positivity set {u(·, t) > 0} approximates as t → 0+, one
of the sets, for which the maximum in (B.4.6) is attained. Notice that we can have several
maximizers in (B.4.6) differing by sets contained in {g = ΛS}.

Definition B.4.2. For a given nonnegative continuous function u0 : Γ→ R, we set

A0
∗ :=

{
g ≥ Λ[u0]

}
∪ {u0 > 0} . (B.4.7)

We will prove later that the maximum in (B.4.6) is attained by the set A0
∗.

Our main goal in this section is to prove the following result.

Theorem B.4.3. Suppose that (B.1.10) holds true and that g satisfies (B.2.2). For any
η > 0 there exists t̄ = t̄(η) > 0 such that the positivity set {u(·, t) > 0} satisfies for all
0 < t ≤ t̄(η)

(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η
⊂ {u(·, t) > 0} ⊂

(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+η
. (B.4.8)

Furthermore,

|λ(t)− Λ[u0]| ≤ η for all 0 < t ≤ t̄(η) . (B.4.9)

In particular, λ(t)→ Λ[u0] as t↘ 0.

Remark B.4.4. We stress that the inclusions in (B.4.8) imply that there exists a set
B(t) ⊂ {g = Λ[u0]} such that {u(·, t) > 0}∪B(t)→ A0

∗ with respect to the L1−convergence
of sets. It is worth noticing that B(t) could in principle be oscillatory.
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Remark B.4.5. It follows from the proof of Theorem B.4.3 and more specifically from
(B.4.2.33) that

{u0 > 0}∪ {g > Λ[u0]} ⊂ {lim inf
t↓0

u(·, t) > 0} ⊂ lim inf
t↓0
{u(·, t) > 0} =

⋃
δ>0

⋂
0<t<δ

{u(·, t) > 0}

and from (B.4.8) that

lim sup
t↓0
{u(·, t) > 0} =

⋂
δ>0

⋃
0<t<δ

{u(·, t) > 0} ⊂ {u0 > 0} ∪ {g ≥ Λ[u0]}.

Note that |{u0 > 0} \ {u0 > 0}| = 0 by the regularity of the set {u0 > 0}. On the other
hand, if |{g = Λ[u0]}| > 0, then the upper and lower inclusion may differ by a set of
positive measure.

Corollary B.4.6. Assume in addition that (B.4.5) holds. Then

lim
t↓0

λ(t) = Λ[u0] > λ0 and |A0
∗ \ {u0 > 0}| > 0 .

Proof. The first equality follows from Theorem B.4.3.

Let us consider the set A = {u0 > 0} ∪ B, where B := {u0 = 0} ∩ {g > λ0} satisfies
|B| > 0 by (B.4.5). We obtain that

 
A

g dS = 1
|A|

(ˆ
{u0>0}

g dS +
ˆ
B

g dS

)
>

1
|A|

(
λ0|{u0 > 0}|+ λ0|B|

)
= λ0 ,

which yields due to Definition B.4.1 that Λ[u0] > λ0.

Moreover, ∣∣∣A0
∗ \ {u0 > 0}

∣∣∣ =
∣∣∣{g ≥ Λ[u0]} ∩ {u0 = 0}

∣∣∣ > 0,

otherwise using once again Definition B.4.1 we obtain that Λ[u0] = λ0 which contradicts
the first statement of the Corollary. �

Remark B.4.7. If in addition to the assumptions in Theorem B.4.3 also (B.1.9) holds,
Theorem B.4.3 reduces to Theorem B.3.1. Indeed, (B.1.9) is by (B.2.10) equivalent to

g < λ0 in {u0 = 0} . (B.4.10)

Then, for any set A as in Definition B.4.1 with |A \ {u0 > 0}| > 0, we obtain due to
(B.4.10) and (B.2.7) that
 
A

g dS = 1
|A|

(ˆ
{u0>0}

g dS +
ˆ
A\{u0>0}

g dS

)
<

1
|A|

(
λ0|{u0 > 0}|+ λ0|A \ {u0 > 0}|

)
= λ0 .
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Thus, since λ0 ≤ Λ by definition of λ0, we conclude that Λ[u0] = λ0 and (B.4.9) reduces to
(B.3.2). Furthermore, by (B.4.10) and the fact that Λ[u0] = λ0, we observe that the right-
as well as the left-hand side of (B.4.8) can be written now equivalently as{
g ≥ Λ[u0]

}
∪ {u0 > 0} =

{
g ≥ λ0

}
∪ {u0 > 0} = {u0 > 0} =

{
g > Λ[u0]

}
∪ {u0 > 0} .

Hence, (B.4.8) reduces to (B.3.1) and therefore, Theorem B.4.3 can be considered as a
generalization of Theorem B.3.1.

Remark B.4.8. We will not consider in detail the non-generic case

|{u0 = 0} ∩ {g = λ0}| > 0 . (B.4.11)

It is worth noticing though, that in this case one can deduce, arguing in a similar way as
in Remark B.4.7, that λ0 = Λ[u0] while |{u0 > 0}∆A0

∗| > 0. Hence, it is possible to choose
initial data that satisfy (B.4.11) such that λ will be continuous at t = 0, while the interface
will jump.

Remark B.4.9. In the case of plateaus

|{g = Λ[u0]}| > 0 , (B.4.12)

in which g takes a constant value, it is not possible to decide using only the assumptions
of Theorem B.4.3 if the points of the set {g = Λ[u0]} are contained in the positivity set
{u(·, t) > 0} or in the set {u(·, t) = 0} as t→ 0+.

The reason for that is that in this case the sign of λ(t) − Λ[u0] could depend on the
details of the initial data u0 and as a consequence, the points of {g = Λ[u0]} could lie
either in the positivity set {u(·, t) > 0} or in the set {u(·, t) = 0} as t→ 0+. As a matter
of fact, a similar situation can occur not only when (B.4.12) holds, but also in any set
A ⊂ {g = Λ[u0]} such that A+δ ⊂ {g ≤ Λ[u0]} for any δ > 0.

B.4.1 A variational characterization of Λ

We collect some properties of Λ[u0] and A0
∗ that will be used in the following analysis.

Lemma B.4.10. (i) The maximum in (B.4.6) is attained by the set A0
∗. Any maximizer

is (up to sets of measure zero) contained in A0
∗. If |{g = Λ[u0]} ∩ {u0 = 0}| = 0 then

A0
∗ is unique (up to sets of measure zero).

(ii) For every x ∈ (A0
∗)

c it holds that g(x) < Λ[u0].
(iii) For every x ∈ ∂A0

∗ ∩ {u0 = 0}o it holds that g(x) = Λ[u0].
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Proof. We first prove (i). For any A,B ⊂ Γ we observe that
 
A∪B

(
Λ[u0]− g

)
dS = |A|

|A ∪B|

 
A

(
Λ[u0]− g

)
dS

+ |B|
|A ∪B|

 
B

(
Λ[u0]− g

)
dS − |A ∩B|

|A ∪B|

 
A∩B

(
Λ[u0]− g

)
dS.

(B.4.1.1)

For A,B ⊂ Γ with {u0 > 0} ⊂ A ∩ B (B.4.1.1) equation combined with the definition of
Λ[u0] implies

Λ[u0]−
 
A∪B

g dS ≤ |A|
|A ∪B|

(
Λ[u0]−

 
A

g dS
)

+ |B|
|A ∪B|

(
Λ[u0]−

 
B

g dS
)

≤
(

Λ[u0]−
 
A

g dS
)

+
(

Λ[u0]−
 
B

g dS
)
.

We next show that the maximum in (B.4.6) is attained. We therefore consider a se-
quence (Ak)k of measurable subsets of Γ with {u0 > 0} ⊂ Ak and

 
Ak

g dS ≥ Λ[u0]− 2−k−1

for all k ∈ N. Let AN := ⋃
k≥N , then the first item implies that

Λ[u0]−
 
AN

g dS ≤
∑
k≥N

(
Λ[u0]−

 
Ak

g dS
)
≤ 2−N → 0 as N →∞.

Moreover (AN)N∈N is monotonically decreasing and converges to A∞ = lim supk→∞Ak. By
monotonicity we conclude  

A∞
g dS = lim

N→∞

 
AN

g dS ≥ Λ[u0].

On the other hand {u0 > 0} ⊂ A∞, hence A∞ is a maximizer in (B.4.6). We next show that
A0
∗ is also a maximizer. Let A∞ be an arbitrary maximizer, which exists by the previous

item. We first use A∞ = (A∞ ∩ A0
∗) ∪ (A∞ \ A0

∗) and deduce by the first item

Λ[u0] = |A
∞ ∩ A0

∗|
|A∞|

 
A∞∩A0

∗

g dS + |A
∞ \ A0

∗|
|A∞|

 
A∞\A0

∗

g dS

≤ |A
∞ ∩ A0

∗|
|A∞|

Λ[u0] + |A
∞ \ A0

∗|
|A∞|

Λ[u0] = Λ[u0],

where the inequality follows by the definition of Λ[u0], and since g < Λ on A∞\A0
∗ ⊂ {u0 =

0}. This shows that the inequality needs to be an equality, which implies |A∞ \ A0
∗| = 0

and A∞ ⊂ A0
∗ up to a set of measure zero.
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On the other hand, we use A0
∗ = A∞∪ (A0

∗ \A∞) up to a set of measure zero and obtain
by {u0 > 0} ⊂ A0

∗ and the definition of Λ[u0] together with the first item

Λ[u0] ≥
 
A0
∗

g dS = |A
∞|
|A0
∗|

 
A∞

g dS + |A
0
∗ \ A∞|
|A0
∗|

 
A0
∗\A∞

g dS

≥ |A
∞|
|A0
∗|

Λ[u0] + |A
0
∗ \ A∞|
|A0
∗|

Λ[u0] = Λ[u0],

where we have used the second item and g ≥ Λ on A0
∗ \ A∞ ⊂ {u0 = 0}. Equality in the

inequalities above requires
ffl
A0
∗
g dS = Λ[u0] and g = Λ[u0] almost everywhere on A0

∗ \A∞.
This proves the first item of the lemma.

The items (ii) and (iii) follow from the definition of the set A0
∗. �

We collect some further properties of the functional Λ.

Proposition B.4.11.

(i) Monotonicity: For any measurable sets S1, S2 with S1 ⊂ S2 we have ΛS1 ≥ ΛS2. The
maximizer

Sj∗ := Sj ∪ {g ≥ ΛSj}, j = 1, 2

(see Lemma B.4.10) satisfies S1
∗ ⊂ S2

∗ .
(ii) Continuity: For any open set S ⊂ Γ, let the sets S−δ be as in Definition I.1. Then

ΛS−δ ↘ ΛS as δ ↘ 0.

Proof. (i) The property ΛS1 ≥ ΛS2 follows directly from the definition of ΛS. This also
implies {g ≥ ΛS1} ⊂ {g ≥ ΛS2}, hence S1

∗ ⊂ S2
∗ by definition.

(ii) By definition S−δ1 ⊃ S−δ2 for δ1 < δ2 and hence the first item implies that δ 7→ ΛS−δ

is increasing. Therefore
λ0 := lim

δ↓0
ΛS−δ

exists. By the first item the maximizers

S−δ∗ := S−δ ∪ {g ≥ ΛS−δ}

are monotone in the sense that S−δ1∗ ⊃ S−δ2∗ for 0 < δ1 < δ2. We deduce that XS−δ∗ is
monotonically increasing with δ ↓ 0 and hence converges to XS0 with S0 := ⋃

δ>0 S
−δ
∗ ,

in particular
XS−δ∗ → XS0 in L1(Γ)

and therefore  
S0

g = lim
δ↓0

ΛS−δ .
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Since S is open and g is continuous we also have

S0 =
⋃
δ>0

S−δ∗ =
⋃
δ>0

S−δ ∪
⋃
δ>0
{g ≥ ΛS−δ} = S ∪ {g > lim

δ↓0
ΛS−δ},

hence
S ⊂ S0

which implies by (B.4.6)

ΛS ≥
 
S0

g = lim
δ↓0

ΛS−δ .

On the other hand S−δ ⊂ S, hence using once again the monotonicity in the first
item, we obtain

lim
δ↓0

ΛS−δ ≥ ΛS,

which proves equality.

�

We next consider a solution u of (B.1.1)-(B.1.3) and connect the functional Λ to the
function λ.

Corollary B.4.12. Recall that Λ[u(·, t)] = Λ{u(·,t)>0}. Then, it holds

λ(t) ≤ Λ[u(·, t)] for all t ∈ (0, T ), (B.4.1.2)
λ(t) = Λ[u(·, t)] for almost all t ∈ (0, T ). (B.4.1.3)

Proof. The inequality (B.4.1.2) follows from the definitions of Λ and λ.

Let A∗(t) := {u(·, t) > 0} ∪ {g ≥ Λ[u(·, t)]}. By (B.4.2) for all t ∈ (0, T ) \N , |N | = 0
we have g ≤ λ(t) in {u(·, t) = 0}. Assume for some t ∈ (0, T ) \ N that λ(t) < Λ[u(·, t)].
Then

A∗(t) \ {u(·, t) > 0} = {g ≥ Λ[u(·, t)]} ∩ {u(·, t) = 0} = ∅,

which shows A∗(t) = {u(·, t) > 0} and

Λ[u(·, t)] =
 
A∗(t)

g =
 
{u(·,t)>0}

g = λ(t).

�
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B.4.2 Proof of Theorem B.4.3

Throughout this section, let u be a solution to (B.4.1), (B.4.2) with initial data u0. We
also recall that we only assume (B.1.11) but not (B.1.9).

As we have already mentioned in Remark B.4.6, if (B.1.9) fails in a set of positive
measure, or equivalently (B.4.5) is valid, one cannot expect any continuity properties for
the positivity set {u(·, t) > 0} nor for the function λ. Our goal is to derive precise estimates
for the corresponding jumps for short times.

Motivated by Remark B.4.7, our strategy is to approximate u by a solution to (B.4.1)-
(B.4.2) with suitably modified initial data u0

n. The latter are chosen such that they, in
particular, converge uniformly to u0 but such their support, on the other hand, approxi-
mates A0

∗, i.e.
u0
n ↘ u0 uniformly on Γ, A0

∗ =
⋂
n∈N
{u0

n > 0}.

A key property of the modified solutions will be that we can apply the continuity results
obtained in Section B.3.

We first fix a suitable family of initial data u0
n and describe specific properties that we

can obtain. We denote in the following

λ0
n :=

 
{u0
n>0}

g dS.

Lemma B.4.13. Let g ∈ C2(Γ) and assume that the set {u0 > 0} is regular according to
(B.1.10). There exists a non increasing sequence (γn)n of numbers with

γn ↘ 0 as n→∞ (B.4.2.1)

and a sequence (u0
n)n∈N of nonnegative functions in C2(Γ) such that the following properties

hold for all n ∈ N:

(1) u0 ≤ u0
n+1 ≤ u0

n.
(2) {u0

n > 0} ⊃ {u0
n+1 > 0}.

(3) u0
n > 0 in {g ≥ Λ[u0]− γn}.

(4) u0
n = 0 in {g ≤ Λ[u0]− 2γn} ∩ {u0 = 0}.

(5) The set {u0
n > 0} is regular.

(6) |λ0
n − Λ[u0]| < γn

4 .
(7) ‖u0

n − u0‖C0(Γ) ≤ γn.

and such that
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(8)
∣∣∣{u0

n > 0} \ A0
∗

∣∣∣→ 0 as n→∞

Moreover, for any η > 0 there exists n∗ = n∗(η) such that

(9) {u0
n > 0} ⊂

(
A0
∗

)
+η

for any n ≥ n∗.

We prove this lemma in Appendix III. Fixing sequences (γn)n and (u0
n) as in Lemma

B.4.13 we now define our main approximation.

Regularization: Let (un)n be the unique solution of the problem

∂tun −∆un = −
(

1− g

λn(t)

)
H(un), in ΓT (B.4.2.2)

g ≤ λn, a.e in {un = 0} (B.4.2.3)
un(·, 0) = u0

n on Γ, (B.4.2.4)

where
λn(t) =

 
{un(·,t)>0}

g dS .

By (B.2.6) and items (1), (7) of Lemma B.4.13 we deduce that for all n1 ≥ n2 it holds

u(·, t) ≤ un1(·, t) ≤ un2(·, t) for all t ≥ 0, (B.4.2.5)

and by Theorem A.3.1

un → u in C0([0, T ], L1(Γ)) for all T > 0 . (B.4.2.6)

Now we proceed to the proof of the main result of this Section, Theorem B.4.3.

Proof of Theorem B.4.3. As we already mentioned, our aim is to approximate (B.4.1)-
(B.4.3) by the regularized problem (B.4.2.2)-(B.4.2.4) and then pass to the limit as n→∞.
The strategy of the proof consists of six steps. More specifically, in the first five steps we
derive upper and lower estimates for the sequence of functions λn and the positivity sets
{un(·, t) > 0}. In the sixth step we consider the limit n→∞.

Step 1: First we will prove that there exists a modulus of continuity δ̂1 and for any
r > 0 a t1 = t1(r) > 0 such that

λn(t) ≤ Λ
[
u0] + δ̂1(r) , (B.4.2.7)

{u0 > r} ⊂
{
un(·, t) > r

2

}
, (B.4.2.8)

for all n ∈ N and for all 0 ≤ t ≤ t1(r).
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We will derive the uniform inclusion property (B.4.2.8) by means of a suitable subsolu-
tion. To this end, we define ũ(x, t) := S(t)u0(x)− t where S(t) denotes the heat semigroup
on Γ and we calculate

∂tũ−∆ũ = −1 < −
(

1− g

λn(t)

)
H(un) = ∂tun −∆un

in ΓT . Furthermore, ũ(·, 0) = u0 ≤ un(·, 0) on Γ by Lemma B.4.13, item (1). Hence, we
obtain by a comparison principle argument that

un(·, t) ≥ S(t)u0 − t in ΓT . (B.4.2.9)

Now, since S(t)u0 − t → u0 as t → 0+, it follows that for all r > 0 there exists t1(r) > 0
such that

un(·, t) > r

2 > 0 in {u0 > r} for all n ∈ N and 0 ≤ t ≤ t1(r) ,

which proves (B.4.2.8). Next, item (1) of Proposition B.4.11 and (B.4.1.2) in Corollary
B.4.12 yield

Λ
[
{u0 > r}

]
≥ Λ

[
{un(·, t) > 0}

]
≥ λn(t). (B.4.2.10)

By the second item of Proposition B.4.11 and Lemma I.4, we conclude that (B.4.2.7) holds.

Step 2: Let t1 be as in Step 1. For any σ > 0 there exist r1(σ) > 0, 0 < t2(σ) ≤
t1(r1(σ)) and a positive function ω∗2 : [0,∞)2 → R+ such that for all t ≤ t2(σ) we have

{g > Λ[u0] + σ} ⊂
{
un(·, t) > ω∗2(σ, t)

}
for all n ∈ N. (B.4.2.11)

Consider the set Aσ := {g > Λ[u0]+γσ}, where 0 < γ < 1 is chosen such that Λ[u0]+γσ
is a regular value of g. Then Aσ has a C2-regular boundary and it holds

Aσ ⊂⊂ {g > Λ[u0] + σ}.

By (B.4.2.7), we calculate that in Aσ × [0, t1(r)] it holds

∂tun −∆un = −
(

1− g

λn(t)

)
H(un) ≥

(
− 1 + Λ[u0] + σ

Λ[u0] + δ̂1(r)

)
H(un)

=
(

σ − δ̂1(r)
Λ[u0] + δ̂1(r)

)
H(un) .

For sufficiently small r1 = r1(σ) > 0 and t1 = t1(r1(σ)) from Step 1 we obtain

∂tun −∆un ≥
1
2

σ

Λ[u0]H(un) in Aσ × [0, t1].
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Due to the fact that u0
n > 0 in {g ≤ Λ[u0]} by Lemma B.4.13, item (3), there exists a

maximal 0 < t̂n ≤ t1 such that un > 0 in Aσ × [0, t̂n). Therefore, we find that

∂tun −∆un ≥
1
2

σ

Λ[u0] in Aσ × [0, t̂n).

We construct a suitable subsolution of un. To this end, we let U denote the solution of

∂tU −∆U = 1
2

σ

Λ[u0] in Aσ × (0, t̂n] ,

U = 0 in ∂Aσ × (0, t̂n] ,
U(·, 0) = 0 in Aσ .

It follows immediately that U > 0 in Aσ × [0, t̂n]. Due to Lemma B.4.13, item (3), we
obtain that u0

n > U(·, 0) in Aσ and moreover that un ≥ U on ∂Aσ × [0, t̂n]. A comparison
argument yields then that un ≥ U in Aσ × [0, t̂n].

Now assume that t̂n < t1. Then minAσ un(·, t̂n) = 0. Since un(·, t̂n) ≥ U(·, t̂n) > 0 in
Aσ there exists a boundary point x̂ ∈ ∂Aσ with

un(x̂, t̂n) = 0 = U(x̂, t̂n).

However, using the parabolic Hopf lemma, U(·, t̂n) > 0 in Aσ and 0 = minΓ un we deduce
that

0 < ∇
(
U(x̂, t̂n)− un(x̂, t̂n)

)
· ν ≤ 0,

which is a contradiction.

Therefore, un ≥ U in Aσ × [0, t1] and in particular we infer a uniform lower estimate
for un, that is

un(·, t) ≥ ω∗2(σ, t) in {g > Λ[u0] + σ} × (0, t1] for all n ∈ N , (B.4.2.12)

where
ω∗2(σ, t) := inf

{g>Λ[u0]+σ}
U(·, t) > 0, t ∈ (0, t1]

is positive by (B.4.2.10) and U > 0 in Aσ × [0, t̂n].

This yields (B.4.2.11) and finishes Step 2 of the proof.

Step 3: Next we will show that for any η > 0 there exists t3(η) such that(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η
⊂ {un(·, t) > 0} for all 0 ≤ t ≤ t3(η) (B.4.2.13)
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and for all n ∈ N.

In fact, for σ > 0 and r = r1(σ) we have by (B.4.2.8) and (B.4.2.11) that{
u0 > r1(σ)

}
∪
{
g > Λ[u0] + σ

}
=
{

(u0 − r1(σ))+ + (g − Λ[u0]− σ)+ > 0
}

⊂ {un(·, t) > 0} for all 0 ≤ t ≤ t2(σ). (B.4.2.14)

On the other hand, Lemma I.4 yields for some modulus of continuity δ for any 0 ≤ t ≤ t2(σ)(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η

=
(
{u0 + (g − Λ[u0])+ > 0}

)
−η

⊂
{
u0 + (g − Λ[u0])+ > δ(η)

}
⊂
({
u0 > δ(η)/2} ∪ {g > Λ[u0] + δ(η)/2

})
. (B.4.2.15)

Choosing σ = σ(η) > 0 sufficiently small such that σ, r1(σ) < δ(η)/2 and setting t3(η) =
t2(σ) we deduce from (B.4.2.14), (B.4.2.15) the inclusion property (B.4.2.13).

Step 4: Following Step 3, we will show that for any η > 0 there exists t4(η) such that,
with n∗ = n∗(η) as in item (9) of Lemma B.4.13, for all n ≥ n∗(η)

{un(·, t) > 0} ⊂
(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+2η

for all t ≤ t4(η) . (B.4.2.16)

To prove this claim let η > 0 be given and let n∗ = n∗(η) be as in item (9) of Lemma
B.4.13. Due to the items (1) and (9) of Lemma B.4.13 we obtain that(

{u0 > 0}
)
−η
⊂
(
{u0

n∗ > 0}
)
−η(

{u0
n∗ > 0}

)
+η
⊂
(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+2η

.

By the monotonicity property (B.4.2.5) we also have un(·, t) ≤ un∗(·, t) for any n ≥ n∗ and
for all t ≥ 0. This in particular implies that for any n ≥ n∗

{un(·, t) > 0} ⊂ {un∗(·, t) > 0} for all t ≥ 0. (B.4.2.17)

As mentioned in the beginning of this subsection, we will take advantage of the con-
tinuity results in Section B.3 for both un∗ and λn∗ at t = 0. In order to apply Theorem
B.3.1 we need that λ0

n∗ and the initial data u0
n∗ satisfy the conditions (B.1.9) and (B.1.11),

that is

g < λ0
n∗ − θn∗ in {u0

n∗ = 0} and the set {u0
n∗ > 0} is regular (B.4.2.18)
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for some θn∗ > 0. By Lemma B.4.13, item (8) the second condition is fulfilled. Moreover
by Lemma B.4.13, item (3) and item (6) we obtain that

g < Λ[u0]− γn∗ ≤ λ0
n∗ − γn∗ +

∣∣∣λ0
n∗ − Λ[u0]

∣∣∣ ≤ λ0
n∗ −

3γn∗
4 in {u0

n∗ = 0} . (B.4.2.19)

Hence, the first statement in (B.4.2.18) is satisfied with θn∗ = 3γn∗
4 > 0 We deduce by

Theorem B.3.1 that there exists t4(η) := t∗(η; θn∗ , u0
n∗ , g) > 0 such that

|λn∗(t)− λ0
n∗ | < η, (B.4.2.20)

{un∗(·, t) > 0} ⊂
(
{u0

n∗ > 0}
)

+η
(B.4.2.21)

for all t ≤ t4(η). Combining this and (B.4.2), (B.4.2.17) we conclude that for any n ≥ n∗

the inclusion (B.4.2.16) holds.

Step 5: We justify a uniform lower bound for λn. More precisely, for any η > 0 and
n∗ = n∗(η), t4(η) as chosen in Step 4 there exists a modulus of continuity ω̂ independent
of n ≥ n∗ such that for any n ≥ n∗

λn(t) ≥ Λ[u0]− ω̂(η) for all 0 ≤ t ≤ t4(η) (B.4.2.22)

holds.

Let us fix in the following an arbitrary t ∈ [0, t4(η)]. The key idea here is to rewrite
{un(·, t) > 0} as a union of disjoint sets. More precisely, we write

{un(·, t) > 0} = An ∪Bn ∪ Cn (B.4.2.23)

with

An := {un(·, t) > 0} ∩
(
{u0 > 0} ∪ {g > Λ[u0]}

)
,

Bn := {un(·, t) > 0} ∩
(
{u0 = 0} ∩ {g = Λ[u0]}

)
,

Cn := {un(·, t) > 0} ∩
(
{u0 = 0} ∩ {g < Λ[u0]}

)
.

Furthermore, by (B.4.2.13) and (B.4.2.16) we notice that for all 0 ≤ t ≤ t4(η)

An ⊃
(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η

for all n , (B.4.2.24)

Cn ⊂
(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+2η
∩
(
{u0 = 0} ∩ {g < Λ[u0]}

)
for all n ≥ n∗.

(B.4.2.25)
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Due to (B.4.2.23) ,(B.4.2.24) and the fact that 0 < g < 1 we derive for all n

λn(t) = 1
|An|+ |Bn|+ |Cn|

(ˆ
An

g dS +
ˆ

Bn

g dS +
ˆ

Cn

g dS

)

≥ 1
|An|+ |Bn|+ |Cn|

(ˆ
An

g dS +
ˆ

Bn

g dS

)

≥ 1
|An|+ |Bn|+ |Cn|

(ˆ(
{u0>0}∪{g>Λ[u0]}

)
−η

g dS + Λ[u0]|Bn|
)

(B.4.2.26)

Since by definition An ⊂
(
{u0 > 0} ∪ {g > Λ[u0]}

)
, it follows that

|An| ≤
∣∣∣{u0 > 0} ∪ {g > Λ[u0]}

∣∣∣ . (B.4.2.27)

Moreover, (B.4.2.25) and Lemma I.3 yield that for all n ≥ n∗

Cn ⊂
(
({u0 > 0})+2η ∩ {u0 = 0}

)
∪
(
({g ≥ Λ[u0]})+2η ∩ {g < Λ[u0]}

)
=
(
({u0 > 0})+2η \ {u0 > 0}

)
∪
(
({g ≥ Λ[u0]})+2η \ {g ≥ Λ[u0]}

)
.

This in turn implies, by (B.1.11) and (II.2) that

|Cn| ≤
∣∣∣({u0 > 0})+2η \ {u0 > 0}

∣∣∣+ ∣∣∣({g ≥ Λ[u0]})+2η \ {g ≥ Λ[u0]}
∣∣∣ ≤ ω1(η) (B.4.2.28)

for some ω1(η)→ 0 as η → 0.

By (B.4.2.27) and (B.4.2.28) we deduce that for all n ≥ n∗

1
|An|+ |Bn|+ |Cn|

≥ 1∣∣∣{u0 > 0} ∪ {g > Λ[u0]}
∣∣∣+ |Bn|+ ω1(η)

. (B.4.2.29)

In addition, the expression inside the parentheses on the right-hand side of (B.4.2.26) can
be estimated below by(

. . .

)
≥
ˆ
{u0>0}∪{g>Λ[u0]}

g dS + Λ[u0]|Bn| − (max g)|Dη| , (B.4.2.30)

where Dη :=
(
{u0 > 0} ∪ {g > Λ[u0]}

)
\
(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η
. We observe that by

(II.3)

|Dη| ≤ ω2(η) (B.4.2.31)

for some modulus of continuity ω2.
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We can plug now (B.4.2.29), (B.4.2.30) and (B.4.2.31) into (B.4.2.26) and obtain

λn(t) ≥ 1∣∣∣{u0 > 0} ∪ {g > Λ[u0]}
∣∣∣+ |Bn|+ ω1(η)

(ˆ(
{u0>0}∪{g>Λ[u0]}

)
∪Bn

g dS −max g ω2(η)
)
.

By (B.2.1), there is a positive constant M > 0 such that∣∣∣{u0 > 0} ∪ {g > Λ[u0]}
∣∣∣+ |Bn| ≥M > 0.

Then we deduce that

λn(t) ≥
 (
{u0>0}∪{g>Λ[u0]}

)
∪Bn

g dS − ω̂(η) , (B.4.2.32)

for some modulus of continuity ω̂. We set B̃n :=
(
{u0 > 0}∪{g > Λ[u0]}

)
∪Bn and we write

A0
∗ =

(
A0
∗\B̃n

)
∪B̃n. Due to (B.4.7), we further observe that Pn := A0

∗\B̃n ⊂ {g = Λ[u0]}.
This in turn implies that

 
A0
∗

g dS = 1
|B̃n|+ |Pn|

(
|B̃n|

 
B̃n

g dS + |Pn|
 
Pn

g dS

)

= 1
|B̃n|+ |Pn|

(
|B̃n|

 
B̃n

g dS + |Pn|Λ[u0]
)
.

Since the maximum in (B.4.6) is attained by the set A0
∗, it holds that

(|B̃n|+ |Pn|)Λ[u0] = |B̃n|
 
B̃n

g dS + |Pn|Λ[u0]

and
ffl
B̃n
g dS = Λ[u0]. Therefore, we conclude by (B.4.2.32) that

λn(t) ≥ Λ[u0]− ω̂(η) .

Step 6: To complete this proof, it remains to show (B.4.8) and (B.4.9).

By (B.4.2.5) we have un ≥ u for all n. Due to (B.4.2.16), setting t5(η) = t4(η/2) this
immediately yields the right inclusion in (B.4.8), that is

{u(·, t) > 0} ⊂ {un(·, t) > 0} ⊂
(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+η
,

for all t ∈ [0, t5(η)].

In order to obtain the left inclusion, we deduce from (B.4.2.6) and (B.4.2.8), (B.4.2.11)
that for all t ∈ [0, t4(η)] we have(

{u0 > 0} ∪ {g > Λ[u0]}
)
−η
⊂
{
u0 >

δ(η)
2

}
∪
{
g > Λ[u0] + δ(η)

2

}
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⊂
{
un(·, t) > δ(η)

4

}
∪
{
un(·, t) > ω∗2

(
δ(η)

2 , t
)}
.

Moreover, using (B.4.2.6) and passing with n→∞ to the limit gives(
{u0 > 0} ∪ {g > Λ[u0]}

)
−η
⊂
{
u(·, t) ≥ min

{
δ(η)

4 , ω∗2

(
δ(η)

2 , t
)}}

(B.4.2.33)

for all t ∈ [0, t4(η)]. This justifies the left inclusion in (B.4.8).

For proving (B.4.9), we argue as in the Step 1 and Step 5 in order to obtain upper and
lower bounds for λ(t)− Λ[u0] in terms of (B.4.8). More precisely, for the upper bound we
deduce by the left inclusion in (B.4.8) and Lemma I.3 that

{u0 > 0}−η ⊂ {u0 > 0}−η ∪ {g > Λ[u0]}−η ⊂ {u(·, t) > 0} for all t ∈ [0, t̄(η)] .

Similar to Step 1, we deduce using the first item of Proposition B.4.11 and (B.4.1.2) in
Corollary B.4.12 that

Λ
[
{u0 > 0}−η

]
≥ Λ

[
{u(·, t) > 0}

]
≥ λ(t).

Then, the second item of Proposition B.4.11 and Lemma I.4 yield the existence of a modulus
of continuity ω3 such that λ(t) − Λ[u0] ≤ ω3(η) holds for all t ∈ [0, t̄(η)]. After possibly
enlarging η and redefining t̄(η) we deduce

λ(t)− Λ[u0] ≤ η for all 0 < t ≤ t̄(η) .

For the lower bound, we rewrite {u(·, t) > 0} as the following union of disjoint sets

{u(·, t) > 0} = A ∪B ∪ C

with

A := {u(·, t) > 0} ∩
(
{u0 > 0} ∪ {g > Λ[u0]}

)
,

B := {u(·, t) > 0} ∩
(
{u0 = 0} ∩ {g = Λ[u0]}

)
,

C := {u(·, t) > 0} ∩
(
{u0 = 0} ∩ {g < Λ[u0]}

)
.

Following the same line of arguments as in Step 5, we infer by means of (B.4.8) the existence
of a modulus of continuity ω4

λ(t)− Λ[u0] ≥ −ω4(η) for all 0 < t ≤ t̄(η) .

Again, possibly enlarging η and redefining t̄(η) we deduce λ(t)−Λ[u0] ≥ −η. This completes
the proof of (B.4.9). �
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B.5 Comparison with the Stefan problem

We collect here some respective continuity and jump properties for the interfaces associated
to the classical parabolic free boundary problem (B.1.8).

We define H : R→ {0, 1}, H = X(0,∞) as the characteristic function of the positive real
numbers. Let U be a smooth compact manifold without boundary embedded in Rn and
also let T > 0. Then we can reformulate problem (B.1.8) as follows

∂tu−∆u = fH(u) on U × (0, T )
f ≤ 0 a.e. in {u = 0}
u(·, 0) = u0 on U

(B.5.1)

where f ∈ C(U × [0, T ]).

Clearly the only difference between this problem and the problem under consideration
(B.1.5), is the absence of the non local term α which depends on the positivity set {u(·, t) >
0}.

The well-posedness as well as the properties of the interfaces of (B.5.1) has been studied
in detail over the past years. For the continuity of the corresponding positivity set {u(·, t) >
0}, we state the following theorems.

Theorem B.5.1. Assume that f ∈ C(U× [0, T ]) for some T > 0 and consider nonnegative
initial data u0 ∈ C(U). If in addition we assume that f ≤ −θ for some fixed θ > 0 in a
neighbourhood of ∂{u0 > 0}× [0, T ], then the set {u(·, t) > 0} is continuous at t = 0 in the
sense that for any η > 0, there exists t∗(η) > 0 such that

{u0 > 0}−η ⊂ {u(·, t) > 0} ⊂ {u0 > 0}+η

for all 0 ≤ t ≤ t∗(η).

One can prove Theorem B.5.1 adapting the arguments in the proofs of [6, Theorem 4.2]
and [18, Theorem 3.2 (ii)] .

Theorem B.5.2. Suppose that u is a solution to (B.5.1) with initial data u0 ∈ C(U). The
positivity set {u(·, t) > 0} converges to the set {u0 > 0} ∪ {f(·, 0) > 0} as t → 0+ in the
sense that for any η > 0, there exists t∗(η) > 0 such that(

{u0 > 0} ∪ {f(·, 0) > 0}
)
−η
⊂ {u(·, t) > 0} ⊂

(
{u0 > 0} ∪ {f(·, 0) ≥ 0}

)
+η

for all 0 ≤ t ≤ t∗(η).
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The proof of Theorem B.5.2 can be obtained arguing in a similar way as in the proof
of Theorem B.4.3. Now the proof will follow by simpler techniques, since the dependence
of the non local term α on the positivity set {u(·, t) > 0} does not occur here.

Remark. In particular, we notice that in the case of problem (B.5.1) the positivity set
{u(·, t) > 0} as t → 0+ depends only on the set {u0 > 0} and the positivity set of f(·, t).
The strict inequality f < 0 in a neighbourhood of {u0 = 0} plays a similar role to the
condition (B.1.9) for the problem (B.1.1)-(B.1.3). However, since f(·, t) in (B.5.1) does
not depend on the positivity set {u(·, t) > 0}, we can omit (B.1.11) here. We recall that
imposing such a regularity condition for the set {u0 > 0}, was necessary in order to prove
continuity properties for the function α that depends on the support of the solution u.

Appendix I On the ±δ-sets

Throughout this section let Γ ⊂ R3 be a smooth compact surface without boundary. In
the formulation of the nondegeneracy condition for the initial data the following definition
of inner and outer approximations where used.

Definition I.1. For a Borel set A ⊂ Γ and δ > 0 we set

A+δ := {x |d(x,A) ≤ δ} , A−δ := {x |d(x,Ac) ≥ δ} . (I.1)

First, we are going to justify some properties of the sets A±δ, which will be useful in
our analysis.

Lemma I.2. (i) (Monotonicity) For any Borel set A ⊂ Γ and 0 < δ ≤ r we have

A ⊂ A+δ ⊂ Ar and A−r ⊂ A−δ ⊂ A.

(ii) (Complements) For all δ > 0, the following inclusions hold true

(A+δ)c = (Ac)−δ−0 :=
⋃
r>δ

(Ac)−r ⊂ (Ac)−δ (I.2)

(A−δ)c = (Ac)+δ−0 :=
⋃
r<δ

(Ac)+r ⊂ (Ac)+δ. (I.3)

In particular, (Ac)+ δ
2
⊂ (A−δ)c ⊂ (Ac)+δ and (Ac)−2δ ⊂ (A+δ)c ⊂ (Ac)−δ.

Proof. (i) The monotonicity follows immediately using (I.1).
(ii) Due to (I.1), we can write

(A+δ)c =
(
{x |d(x,A) ≤ δ}

)c
= {x |d(x,A) > δ} =

⋃
r>δ

{x |d(x,A) ≥ r} =
⋃
r>δ

(Ac)−r
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and by means of the monotonicity obtained in the first item, we deduce that

(Ac)−r ⊂ (Ac)−δ , for all r > δ .

This proves the first inclusion. Arguing in a similar way, we prove also the second
inclusion.

�

The significance of the sets A±δ , as defined in (I.1), becomes evident in the following
lemmas.

Lemma I.3. For any δ > 0(
A−δ ∪ C−δ

)
⊂
(
A ∪ C

)
−δ
⊂
(
A−δ ∪ C−δ

)
∪
(
A+δ \ A−δ

)
(
A ∪ C

)
+δ

=
(
A+δ ∪ C+δ

)
.

Proof. By definition, it follows easily that
(
A−δ ∪ C−δ

)
⊂
(
A ∪ C

)
−δ
. Hence, we write(

A ∪ C
)
−δ

=
(
A−δ ∪ C−δ

)
∪
[(
A ∪ C

)
−δ
\
(
A−δ ∪ C−δ

)]
and we fix x ∈

(
A ∪ C

)
−δ

. We
observe that there exists a ball Bδ(x) ⊂ A∪C such that Bδ(x)∩A 6= ∅ and Bδ(x)∩C 6= ∅ .
This in turn implies that d(x,A) ≤ δ and in particular that x ∈ A+δ . Therefore,(

A ∪ C
)
−δ
\
(
A−δ ∪ C−δ

)
⊂ A+δ \

(
A−δ ∪ C−δ

)
⊂ A+δ \ A−δ .

Moreover, for any x ∈ A+δ ∪ C+δ we have

x ∈ A+δ ∪ C+δ ⇔ d(x,A) ≤ δ or d(x,C) ≤ δ

⇔ d(x,A ∪ C) ≤ δ

⇔ x ∈
(
A ∪ C

)
+δ
.

�

Lemma I.4. Let h ∈ C(Γ) be given with {h > 0} and {h ≤ 0} both being non-empty. Then
there exist positive non-decreasing functions δ1, δ2 : (0, 1)→ R with lim

r→0
δ1(r) = lim

r→0
δ2(r) =

0 such that
({h > 0})−δ1(r) ⊂ {h ≥ r} ⊂ ({h > 0})−δ2(r) .

Proof. We first prove the second inclusion. We observe that for any r > 0 the sets {h ≥ r}
and {h ≤ 0} are compact and disjoint. Thus, setting

δ2(r) := d
(
{h ≥ r}, {h ≤ 0}

)
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yields a positive non-decreasing function. Moreover, by definition of δ2, in {h ≥ r} we have
d(·, {h ≤ 0}) ≥ δ2(r), which implies {h ≥ r} ⊂ ({h > 0})−δ2(r).

Since δ2 is non-decreasing ω := limr↘0 δ2(r) exists. Assume ω > 0. Then

d
(
·, {h ≤ 0}

)
≥ ω in {h > 0} =

⋃
r>0
{h ≥ r},

which yields a contradiction since h is continuous and ∂{h > 0} ⊂ {h ≤ 0} is non-empty.

To prove the first inclusion define for δ > 0 the function

m(δ) := min
{
h(x) : d(x, {h ≤ 0}) ≥ δ

}
.

We observe that m : (0, 1)→ R is well-defined, positive and non-decreasing.

By definition we have

({h > 0})−δ ⊂ {h ≥ m(δ)}. (I.4)

Assume that ω := limδ↘0m(δ) > 0. Then by continuity of h

h ≥ ω in
⋃
δ>0

({h > 0})−δ =
{
d(·, {h ≤ 0}) > 0

}
= {h > 0},

a contradiction.

We next define

δ̄1(r) := inf{δ > 0 : m(δ) ≥ r} (I.5)

and we notice that δ̄1 is positive, non-decreasing and moreover lim
r→0

δ̄1(r) = 0 since limδ↘0m(δ) =
0. Hence, if we set δ1(r) := δ̄1(r) + r, we deduce by (I.5) and the monotonicity of m that

m(δ1(r)) ≥ r ,

for δ1(r)→ 0 as r → 0. Then we conclude from (I.4) that

({h > 0})−δ1(r) ⊂ {h ≥ m(δ1(r))} ⊂ {h ≥ r}.

�
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Appendix II On the regularity of sets

Definition II.1. Assume that Γ ⊂ R3 is a smooth surface. We will call a Borel set A ⊂ Γ
regular if

|∂A| = 0 , (II.1)

where | · | = H2 denotes the two-dimensional Hausdorff measure.

To begin with, we prove an equivalent characterization for (II.1).

Lemma II.2. For some Borel set A ⊂ Γ and δ > 0, we consider the sets A±δ as these are
given by (I.1). Then, the set A is regular iff

|A+δ \ A−δ| → 0 as δ → 0 .

Moreover, we have that

lim
δ↓0
|A+δ \ A| ↓ 0 for all A ⊂ Γ closed, (II.2)

lim
δ↓0
|A \ A−δ| ↓ 0 for all A ⊂ Γ open. (II.3)

Proof. By the monotonicity properties stated in Lemma I.2, for δ1 > δ2 it holds that A+δ

is decreasing and A−δ is increasing as δ ↘ 0. Moreover,⋂
δ>0

A+δ = {x |d(x,A) = 0} = A and
⋃
δ>0

A−δ = {x |d(x,Ac) > 0} = Å.

This implies

lim
δ↘0
|A+δ \ A| =

∣∣∣ ⋂
δ>0

A+δ \ A
∣∣∣ = |A \ A| , (II.4)

lim
δ↘0
|A \ A−δ| =

∣∣∣ ⋂
δ>0

A \ A−δ
∣∣∣ = |A \ Å| , (II.5)

and
lim
δ↘0
|A+δ \ A−δ| = |

⋂
δ>0

(
A+δ \ A−δ

)
| = |A \ Å| = |∂A| .

Therefore, if the set A is regular according to Definition II.1, then lim
δ↘0
|A+δ \A−δ| = 0 and

vice versa.

The other claims follow by (II.4), (II.5). �

Next, we will show that the union of two regular sets is also regular.
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Lemma II.3. Suppose that both A and C are regular. Then, the union A ∪ C is also
regular in terms of Definition II.1.

Proof. It holds that ∂(A ∪ C) ⊂ ∂A ∪ ∂C. This in particular implies that

|∂(A ∪ C)| ≤ |∂A ∪ ∂C| ≤ |∂A|+ |∂C| .

Using Definition II.1 the claim follows immediately.

�

Appendix III Construction of suitable initial data

In Lemma B.4.13 we have claimed that we can construct initial data that enjoy suitable
convergence, positivity and monotonicity properties. In this section, we provide a proof of
the lemma.

Proof of Lemma B.4.13. Let (γn)n be a positive, non increasing sequence with 2γn+1 < γn
for all n ∈ N. In particular, γn ↓ 0 as n ↑ ∞. We are going to construct u0

n as follows.

We write Γ = {g ≤ Λ[u0]− 2γn} ∪ {Λ[u0]− 2γn < g < Λ[u0]− γn} ∪ {g ≥ Λ[u0]− γn}.
Since Γ is smooth and g ∈ C2(Γ), by the Morse-Sard Theorem [31, Theorem 3.1.3] almost
all r ∈ g(Γ) are regular values of g. Moreover, for all regular values r the sets {g = r} are
one-dimensional C2-submanifolds of Γ. In particular, for such values the sets {g > r} are
regular in the sense of Definition II.1.

Hence, for all n ∈ N we can fix a regular value

rn ∈ [Λ[u0]− 2γn,Λ[u0]− γn]. (III.1)

This choice and the fact that 2γn+1 < γn for all n ∈ N imply that (rn)n is a strictly
monotone increasing sequence.

Since g is continuous and (rn)n is strictly monotone increasing, the sets {g > rn} are
open and satisfy {g > rn+1} ⊂⊂ {g > rn}. Therefore, applying Lemma III.1 below, we
obtain that for all n ∈ N there exists ζn ∈ C∞(Γ) such that

ζn = 1 in {g > rn+1}, ζn ∈ (0, 1] in {rn < g ≤ rn+1}, ζn = 0 in {g ≤ rn}. (III.2)

At this point, we define u0
n as

u0
n = u0 + γnζn . (III.3)
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By (III.3) it follows immediately that u0
n ≥ u0 for all n. Since γn ↓ 0 and by (III.2), we

have that γn+1 ≤ γn and further that ζn+1 ≤ 1 = ζn in {g > rn+1}. Hence, we obtain that
u0
n+1 ≤ u0

n and item (1) is justified. Item ((7)) is a direct consequence of (III.3), 0 ≤ ζn ≤ 1
and γn ↓ 0.

We easily observe that item ((2)) follows from item ((1)), and that item ((3)) and ((4)) in
Lemma B.4.13 follow by (III.2) and (III.3). Moreover since {u0

n > 0} = {u0 > 0}∪{ζn > 0},
we derive ((5)) by means of Lemma II.3. In order to deduce ((8)), we combine ((4)) with
Lebesgue’s dominated convergence theorem. Then

|{u0
n > 0} ∩ {u0 = 0} ∩ {g < Λ[u0]}| ≤ |{Λ[u0]− 2γn < g < Λ[u0]}| → 0

as n→∞.

At this point we prove item (6). We recall due to (B.4.1.2) and the fact that {u0 >

0} ⊂ {u0
n > 0} that λ0

n ≤ Λ[u0]. In particular we have that

λ0
n = 1
|A0
∗|+ |{u0 = 0} ∩ {rn < g < Λ[u0]}|

(ˆ
A0
∗

g dS +
ˆ

{u0=0}∩{rn<g<Λ[u0]}

g dS

)
. (III.4)

For the sake of simplicity we set B := {u0 = 0} ∩ {rn < g < Λ[u0]}. By means of Lemma
B.4.10, (III.4) implies

λ0
n = 1
|A0
∗|+ |B|

(
Λ[u0]|A0

∗|+
ˆ

{u0=0}∩{rn<g<Λ[u0]}

g dS

)

= 1
|A0
∗|+ |B|

(
Λ[u0]|A0

∗|+ Λ[u0]|B|+
ˆ

B

(
g − Λ[u0]

)
dS

)

= Λ[u0] + 1
|A0
∗|+ |B|

ˆ

B

(
g − Λ[u0]

)
dS . (III.5)

Employing once again (B.4.1.2) and the fact that rn ∈ [Λ[u0]− 2γn,Λ[u0]− γn], we obtain
that

0 ≤ Λ[u0]− λ0
n <

2γn|B|
|A0
∗|+ |B|

.

Furthermore, since B = {u0
n > 0} ∩ {u0 = 0} ∩ {g < Λ[u0]} we deduce by item (8) and

|A0
∗| ≥ |{u0 > 0}| > 0 that |B| → 0 as n→∞. This in particular yields that there exists

n∗ ∈ N such that
|λ0
n − Λ[u0]| < γn

4 , for all n > n∗ .
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III. Construction of suitable initial data

We can assume that n∗ = 1, otherwise we pass to the sequences (γn+n∗)n∈N, (u0
n+n∗)n∈N.

Therefore, the proof of item (6) is complete.

It remains to prove item (9) of the lemma. First we show the right-hand side inclusion
in item. To this end, we notice that due to item (4) it holds

{u0
n > 0} ⊂ {g > Λ[u0]− 2γn} ∪ {u0 > 0}.

Furthermore, for any η > 0 we have that {u0 > 0} ⊂
(
{u0 > 0}

)
+η
. We claim that it

suffices to show that there exists n∗ = n∗(η) with n∗(η)→ 0 as η → 0 such that

{g > Λ[u0]− 2γn∗} ⊂
(
{g ≥ Λ[u0]}

)
+η
. (III.6)

Indeed, if (III.6) holds, then by virtue of Lemma I.3 and the monotonicity property in item
(2) we conclude that

{u0
n > 0} ⊂ {u0

n∗ > 0} ⊂
(
{u0 > 0}

)
+η
∪
(
{g ≥ Λ[u0]}

)
+η

=
(
{u0 > 0} ∪ {g ≥ Λ[u0]}

)
+η

for any n ≥ n∗. In order to show (III.6), we recall Lemma I.2 and Lemma I.4. More
precisely, we compute
(
{g ≥ Λ[u0]}

)
+η

=
((
{g < Λ[u0]}

)c
)

+η
⊃
((
{g < Λ[u0]}

)
−η

)c

⊃
(
{g ≤ Λ[u0]− 2γn∗}

)c

for some n∗(η) > 0 such that n∗(η)→∞ as η → 0.

The proof is complete.

�

We now prove the claim in (III.7).

Lemma III.1. For any two open sets U1 ⊂⊂ U2 ⊂ Γ, there exists ζ ∈ C∞(Γ) such that

ζ = 1 in U1, ζ > 0 in U2, ζ = 0 in Γ \ U2, 0 ≤ ζ ≤ 1 in Γ . (III.7)

Proof. In a first step we construct ψ ∈ C∞(Γ) with ψ > 0 in U2 and ψ = 0 in Γ \ U2.

We choose a sequence (xj)j in U2 such that {xj : j ∈ N} is dense in U2 and set
ρj := 1

2d(xj,Γ \ U2) > 0.

Next, we fix a nonnegative function φ ∈ C∞(R3) that vanishes outside the unit ball
B1(0) and satisfies 0 ≤ φ ≤ 1 in R3 and φ > 0 in B1(0). We define ψ : Γ→ R by

ψ(x) :=
∑
j∈N

2−jcjφ
(
x− xj
ρj

)
,
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Appendix B. Qualitative properties of solutions to a non-local free boundary problem modeling cell
polarization

where cj > 0 is chosen such that

∥∥∥∂αφ( · − xj
ρj

)∥∥∥
C0(Γ)

≤ 1
cj

for all (covariant) partial derivatives of order |α| ≤ j.

We observe that 0 ≤ ψ ≤ 1 is well-defined and smooth with ψ = 0 outside U2. Next,
we claim that ψ > 0 in U2.

In fact, for all x ∈ U2, there exists (xj(k))k with xj(k) → x as k →∞. This implies

lim
k→∞

ρj(k) = 1
2 lim
k→∞

d(xj(k),Γ \ U2) = 1
2d(x,Γ \ U2) > 0.

Therefore x ∈ B(xj(k), ρj(k)) for k sufficiently large, and hence ψ(x) > 0.

Next, we choose U1 ⊂⊂ V ⊂⊂ U2 and a bump function ϑ ∈ C∞(Γ), 0 ≤ ϑ ≤ 1 with
ϑ = 0 outside V and ϑ = 1 in U1. Finally, we set

ζ = (1− ϑ)ψ + ϑ

and observe that ζ = 1 in U1, that ζ = ψ = 0 outside U2 and that ζ ≥ ψ > 0 in U2, and
that ζ ≤ max{ψ, 1} = 1. �
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