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Abstract

Let X be a smooth variety, let S be a smooth surface, let Cg,N æ Mg,N be
a universal curve over a moduli space of stable marked curves and let (C, x)
be a marked nodal curve.

In the first part of the thesis, comprised of two chapters, we develop the
theory of quasimaps to a smooth proper moduli space of stable sheaves M
on S. A quasimap is a map to the moduli space of all sheaves (not nec-
essarily stable), generically mapping to M . For each ‘ œ R>0, there exists
a stability condition for quasimaps, termed ‘-stability. Moduli spaces of ‘-
stable quasimaps interpolate between moduli spaces of stable maps to M and
moduli spaces of stable sheaves of the relative geometry S ◊ Cg,N æ Mg,N ,
the two being the moduli spaces of ‘-stable quasimaps for extremal values
of ‘. Using Zhou’s theory of calibrated tails, we prove wall-crossing for-
mulas, which therefore relate Gromov–Witten invariants of M and relative
Donaldson–Thomas invariants of S ◊ Cg,N æ Mg,N .

In the second part we introduce a stability condition for maps from nodal
curves to X ◊ C relative to X ◊ x for each ‘ œ RÆ0, termed ‘-admissibility.
Moduli spaces of ‘-admissible maps interpolate between moduli spaces of
twisted stable maps to the orbifold symmetric product [X(n)] and stable
maps to the relative geometry X ◊ Cg,N æ Mg,N . Using Zhou’s theory
of calibrated tails, we prove wall-crossing formulas, which therefore relate
orbifold Gromov–Witten invariants of [X(n)] and relative Gromov–Witten
invariants of X ◊ Cg,N æ Mg,N .

The main result of the thesis is establishment of correspondences be-
tween di�erent enumerative theories, using aforementioned wall-crossings.
In particular, we prove the wall-crossing part of Igusa cusp form conjecture;
higher-rank/rank-one Donaldson–Thomas wall-crossing for some threefolds
S ◊ C; Donaldson–Thomas/Pandharipande–Thomas wall-crossing for some
threefolds S ◊ C. We show that the quantum cohomology of S[n] is deter-
mined by relative Pandharipande–Thomas theory of S◊P

1 for del Pezzo and
K3 surfaces. Finally, we express Crepant resolution conjecture for the pair
S[n] and [S(n)] in terms of Gromov–Witten/Pandharipande–Thomas corre-
spondence for S ◊ C, thereby proving 3-point genus-0 Crepant resolution
conjecture, if S is a toric del Pezzo surface.
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Chapter 1

Introduction

1.1 Overview
Quasimaps were first considered in an unpublished work by Drinfeld in early
80’s in the context of geometric representation theory, see Braverman [Bra06]
for an account of the representation-theoretic side of the theory. Their
importance in a di�erent but not unrelated field of enumerative geometry
was also already understood. In subsequent years the enumerative side of
quasimaps was studied as an alternative to Gromov–Witten theory in the
case of certain GIT targets by many people (e.g. [MOP11], [Tod11]), leading
to the work of Ciocan-Fontanine–Kim–Maulik [CKM14], where the theory
was given the most general treatment.

Moduli spaces of stable quasimaps and stable maps are di�erent com-
pactifications of the moduli space of stable maps with smooth domains.
There exists also a mixed theory of ‘-stable quasimaps that interpolates
between the two, thereby giving rise to a wall-crossing, which provides an
e�ective way to compute Gromov–Witten invariants in terms of quasimap
invariants, which in many cases are more accessible. Moreover, it turned
out that the quasimap wall-crossing is related to enumerative mirror sym-
metry. For example, in [CK20] it was shown that for a quintic threefold the
generating series of quasimap invariants exactly matches the B-model series,
while the quasimap wall-crossing is the mirror transformation.

Quasimaps then found their applications beyond numbers in the enumer-
ative geometry of Nakajima quiver varieties (see e.g. [Oko17]), which also
brought them back to their roots, since enumerative geometry is inseparable
from geometric representation theory in this context. It also brings us to
the theme of the thesis. Already for the simplest example of a Nakajima
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quiver variety - a punctorial Hilbert scheme (C2)[n] of the a�ne plane C
2 -

one can consider five enumerative theories, among which there is the GIT
quasimap theory:

GW - Gromov–Witten theory of (C2)[n];

Q - GIT quasimap theory of (C2)[n];

GWorb - orbifold Gromov–Witten theory of [(C2)(n)];

GWrel - relative Gromov–Witten theory of C
2 ◊ Cg,N /Mg,N ;

PTrel - relative Pandharipande–Thomas theory of C
2 ◊ Cg,N /Mg,N ,

which are related in the following ways:

• GIT quasimap wall-crossing between GW and Q, [CK14];

• analytic continuation and a change of variables between GW and GWorb
provided by Crepant resolution conjecture (C.R.C.), [BG09], [Rua06];

• analytic continuation and a change of variables between GWrel and
PTrel provided by PT/GW correspondence, [MNOP06];

• the moduli spaces of Q and PTrel are naturally isomorphic and virtual
fundamental classes coincide, [Oko17, Excercise 4.3.22].

Moreover, all of those correspondences are equivalences - the generating
series of invariants of the theories above are equal up to a change of a
variable. The above correspondences were established in a series of papers
- [OP10d], [OP10b], [OP10a], [BP08] - the culmination of which was [PT19].

Similar correspondences can be formulated for an arbitrary smooth sur-
face S with one exception - the theory of the type Q does not make sense
in the form it is stated for C

2, because in general S[n] does not admit a
natural GIT presentation1, despite being constructed with the help of GIT
techniques. On the other hand, the moduli space S[n] is naturally embedded
into a rigidified2 stack of coherent sheaves Coh(S)((( C

ú. More generally, any
moduli space M of Gieseker-stable sheaves on S in a class3

v is naturally
1There is no natural choice of a GIT stack, whose stable locus is S

[n], apart from S
[n]

itself, which is not interesting for our purposes.
2Rigidification amounts to taking quotient of the usual stack Coh(S) by the scaling

C
ú-action, the quotient a�ects the automorphisms of the objects but not the isomorphism

classes of the objects. We refer to Section 2.1.1 for more details.
3By which we mean that sheaves have Chern character v œ H

ú(S, Q) .
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embedded into a rigidified stack of all coherent sheaves in the class v,

M µ Cohr(S)v := Coh(S)v((( C
ú.

In Chapter 2 and Chapter 3 of the thesis we will be interested in quasimaps
to a pair

(M,Cohr(S)v),

which we define to be maps from nodal curves to Cohr(S)v which generically
map to M , see Definition 2.2.1. It will be shown that our quasimap theory
is naturally equivalent to the theory of the type PTrel already on the level
of moduli spaces. These chapters are based on two preprint articles, [Nesa]
and [Nesb] respectively.

We introduce the notion of ‘-stability for quasimaps, which depends on
a parameter ‘ œ R>0 fi {0+, Œ}. Moduli spaces of ‘-stable maps interpolate
between theories of the types GW and PTrel. We prove that their moduli
spaces are proper and admit a perfect obstruction theory. Using the theory
of calibrated tails of Zhou introduced in [Zho22], we establish a wall-crossing
formula relating the invariants for di�erent values of ‘ œ R>0 fi{0+, Œ}. The
result is an equivalence of the theories of type GW and PTrel in a general
context: for all surfaces, all positive ranks and all curve classes.

Such relation was already studied on the level of invariants, e.g. for (C2)[n]

in [OP10c] and more recently for (Am)[n] in [Liu21]. It was also expected to
hold in a more general context. In particular, the conjectures of Oberdieck–
Phandharipande [OP16, Conjecture A] and Oberdieck [Obe19, Conjecture
1] regarding such relation for K3 surfaces served as our main motivating
goal. In Chapter 3 we will focus on the case of K3 surfaces, as it requires
some extra treatment due to the presence of holomorphic symplectic form,
which makes the standard invariants trivial.

In Chapter 4 of the thesis we study a correspondence between GWorb
and GWrel for an arbitrary smooth target X. Influenced by the ideas
from the theory of quasimaps, we introduce a notion of ‘-admissibility for
maps from nodal curves to X ◊ Cg,N /Mg,N , which depends on a parameter
‘ œ RÆ0fi{≠Œ}. Moduli space of ‘-admissible maps interpolate between the-
ories GWorb and GWrel for arbitrary smooth target X. Using Zhou’s theory
of calibrated tails, we establish a wall-crossing formula relating the invari-
ants for di�erent values of ‘ œ RÆ0fi{≠Œ}, which is completely analogous to
quasimap wall-crossing formulas. The result is an equivalence of the theories
of type GWorb and GWrel for arbitrary smooth target X. This wall-crossing
can be termed Gromov–Witten/Hurwtiz (GW/H) wall-crossing, because if

6



X is a point, the moduli spaces of ‘-admissible maps interpolates between
Gromov–Witten and Hurtwitz spaces.

Together these wall-crossings can be represented by the square in Figure
1.1. Vertical sides of the square also hold in more general settings - quasimap
wall-crossing applies for any higher-rank moduli spaces of sheaves; GW/H

applies to a target of an arbitrary dimension.

quasimap

wall-crossing

GW/H

wall-crossing

GWorb([S(n)])GW(S[n])
C.R.C.

PTrel(S ◊ Cg,N /Mg,N ) GWrel(S ◊ Cg,N /Mg,N )
PT/GW

Figure 1.1: The Square

Using the wall-crossings, we prove the following results:
• the wall-crossing part of Igusa cusp form conjecture, conjectured in

[OP10c];

• quantum cohomology of S[n] is determined by relative Pandharipande–
Thomas theory of S ◊P

1, if S is a K3 or del Pezzo surface, conjectured
in [Obe19] for K3 surfaces and by Davesh Maulik for del Pezzo surfaces;

• relative higher-rank/rank-one Donaldson–Thomas correspondence for
S ◊ P

1, if S is a K3 surface;

• relative Pandharipande–Thomas/Donaldson–Thomas correspondence
for S ◊ P

1, if S is a K3 surface;

• 3-point genus-0 Crepant resolution conjecture for the pair S[n] and
[S(n)], if S is a toric del Pezzo surface.

• a geometric origin of the variable change y = ≠eiu in PT/GW through
C.R.C.
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1.2 Quasimaps and sheaves
Let us explain the correspondence between quasimaps to a moduli space of
sheaves on a surface and sheaves on threefolds. For simplicity, let the moduli
space be S[n] for a smooth surface S over the field of complex numbers
C, satisfying q(S) := h1,0(S) = 0. Then, as before, we have a natural
embedding

S[n] µ Cohr(S)v,

such that the complement of S[n] is the locus of non-torsion-free sheaves
with Chern character v = (1, 0, ≠n) œ Hú(S, Q).

For the choice of v as above, the stack Cohr(S)v has a canonical universal
family. For a smooth curve C the relation between torsion-free sheaves on
a threefold S ◊ C and quasimaps from C to the pair (S[n],Cohr(S)v) then
becomes apparent. Indeed, by the moduli problem of sheaves on S the later
is given by a family of sheaves on S over C, i.e. a sheaf on S ◊ C,

f : C æ Cohr(S)v … F œ Coh(S ◊ C),

where F is flat over C. The rigidification of the stack amounts to requiring
the determinant of F to be trivial. The general fiber of F over C is torsion-
free by the definition of a quasimap. Therefore F is torsion-free itself. Being
of rank 1 and having a trivial determinant, F is, in fact, an ideal sheaf
of 1-dimension subscheme. Conversely, any ideal sheaf of 1-dimensional
subscheme defines a quasimap in the above sense.

The degree of a quasimap to a pair (S[n],Cohr(S)v) is defined by evalu-
ating it at determinant line bundles over Cohr(S)v. In this way the degree
is determined by the Chern character of the corresponding family and vice
versa,

degree — of f … ch(F ) = (n, —̌),
for more about the notation on the right we refer to Section 2.2 and Section
2.3.1.

1.2.1 Stability
We import ‘-stability from the GIT set-up to ours, Definition 2.2.8. This
will allow us to interpolate between Gromov–Witten theory and stable4

quasimap theory. The idea of ‘-stability can be summarised as follows. In
the stable quasimap theory we trade rational tails (which are allowed in
Gromov–Witten theory) for base points5(which are prohibited in Gromov–

4By which we mean 0+-stable quasimaps.
5Those points that are mapped outside of the stable locus.
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Witten theory) for the sake of properness of the moduli space. On the
other hand, ‘-stability allows both rational tails and base points, putting
numerical restrictions on their degrees. The value ‘ œ R>0 fi {0+, Œ} is the
measure of that degree, see Definition 2.2.8. When ‘ = 0+, quasimaps do
not have any rational tails but have base points of all degrees. When ‘ = Œ,
quasimaps do not have any base points but have rational tails of all degrees.

In the language of one-dimensional subschemes on threefolds, ‘-stability
controls non-flatness of a subscheme on S ◊ C over C. Non-flatness arises
due to the presence of non-dominant components or floating points. Then
‘-stability requires that a weighted6 sum of the degree and the Euler char-
acterstics of either floating points or non-dominant components must not
exceed ‘ œ R>0 fi {0+, Œ}. If it becomes larger than ‘ in the limit, then a
curve sprouts a rational tail, like in relative Donaldson–Thomas theory. In
addition, ‘-stability also controls the degree and the Euler charactesrtics of
components of the subscheme which lie on rational tails. See Corollary 2.3.1
for more precise statements.

1.2.2 Properness
Having defined ‘-stability, we then use the relation between sheaves and
quasimaps to prove Proposition 2.2.17, where it is shown that the moduli
spaces of ‘-stable quasimaps are proper for fine projective moduli spaces of
sheaves. The stack Cohr(S)v is not bounded, but the stability of quasimaps
su�ces to guarantee the boundedness of moduli spaces of ‘-stable quasimaps.
However, it is essential to consider the entire stack Cohr(S)v, because with
the increase of the degree the more of the stack becomes relevant for the
properness of the moduli space. This is one of the reasons why GIT point-
of-view breaks7 down here, at least for a projective surface. Nevertheless,
we closely follow the proof of properness in the GIT set-up, and it roughly
consists of two steps.

The first step is to prove that the number of components of the domain
of a quasimap is bounded after fixing the degree and the genus. This is
achieved with a line bundle on the stack Cohr(S)v which is positive with
respect to quasimaps, see Section 2.2.1. Our construction of such line bundle
crucially exploits the geometry of coherent sheaves, e.g. Langton’s semistable

6The degree is weighted more than the Euler characterstics.
7More precisely, the stack Coh(S) is locally a GIT stack. However, it is unbounded and

(very) singular. Moreover, those GIT charts, through which our quasimaps factor for a
fixed degree, are not stacky quotients of a�ne schemes. Therefore results from the theory
of GIT quasimaps are not applicable.
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reduction.
The second step is to show that quasimaps are bounded for a fixed

curve. To achieve this, we reverse Langton’s semistable reduction and prove
that there is bounded family of choices to obtain a stable quasimap of a
fixed degree from a stable map in Lemma 2.2.9. Boundedness also implies
that families of sheaves corresponding to quasimaps are stable for a suitable
stability, see Lemma 2.2.13. In Appendix 5.1 the converse is shown to be
true for moduli of slope stable sheaves with rk Æ 2. We also expect it to be
true in general. In the case of S[n] it is not di�cult to see, as sheaves are of
rank one, therefore being stable is equivalent to being torsion-free.

We then prove a variant of Hartog’s property for sheaves on families of
nodal curves over a discrete valuation ring (DVR), Lemma 2.2.15, which
allows us to conclude the proof of properness of the moduli spaces in the
same way as it is done in the GIT case, [CKM14, Section 4.3].

On the way we establish a precise relation between quasimaps and sheaves.
Namely, in the case of S[n] the moduli space of stable quasimaps is naturally
isomorphic to a relative Hilbert scheme

Qg,N (S[n], —) ≥= Hilb
n,—̌

(S ◊ Cg,N /Mg,N ).

More specifically, the moduli space on the right parametrises triples (I, S ◊
C, x), where I is an ideal on S ◊ C and x is a marking of C. Stability of
such triples consists of the following data:

• the curve (C, x) is prestable, in particular, it does not have rational
tails;

• the subscheme corresponding to the ideal is flat over nodes and marked
points 8;

• the ideal is fixed only by finitely many automorphisms of the curve
(C, x).

A moduli space of ‘-stable quasimaps Q‘

g,N
(S[n], —) similarly admits a purely

ideal-theoretic formulation, such that some rational tails are allowed and
some subschemes with vertical components are prohibited. We refer to
Corollary 2.3.1 for more details. These moduli spaces therefore provide
an interpolation,

Mg,N (S[n], —) oo ‘ // Hilb
n,—̌

(S ◊ Cg,N /Mg,N ) (1.1)

8This is a usual stability condition in relative Donaldson–Thomas theory, referred to
as predeformability.
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The higher-rank case admits a similar identification with relative moduli
spaces of sheaves, see Definition 2.2.12.

1.2.3 Perverse quasimaps
A variant of the quasimap theory for a moduli space of sheaves is given by
considering the stack of objects in a perverse heart Coh(S)˘. For S[n] we
have a perverse pair,

S[n] µ Coh˘

r(S)v,

see Section 2.3.2 for precise definitions. The moduli space of stable perverse
quasimaps is then isomorphic to the relative moduli stack of stable pairs,

Qg,N (S[n], —)˘ ≥= P
n,—̌

(S ◊ Cg,N /Mg,N ).

In Section 2.3.3 we discuss the case of S = C
2, for which the moduli stack

of perverse sheaves with a framing is naturally isomorphic to the GIT stack
associated to (C2)[n] (including the unstable part) viewed as Nakajima quiver
variety, thereby making GIT quasimaps and moduli-of-sheaves quasimaps
equivalent in this case. This provides a conceptual geometric explanation
for the equivalences of di�erent enumerative theories that were previously
observed numerically, e.g. in [OP10c].

1.2.4 Obstruction theory
An obstruction theory of Q‘

g,N
(S[n], —) is given by the deformation theory

of maps from curves to a derived enhancement RCohr(S)v of Cohr(S)v. The
former exists by [TV08]. In fact, we consider a slight modification of the
standard derived enhancement - we take a derived fiber over derived Picard
stack, as it is explained in [STV15], to obtain the enhancement, whose virtual
tangent bundle is given by the traceless obstruction theory of sheaves. The
relative sheaf-theoretic obstruction theory of Hilb

n,—̌
(S ◊ Cg,N /Mg,N ) can

be easily shown to be isomorphic to the map-theoretic obstruction theory
of Qg,N (S[n], —) given by the pull-back of the virtual tangent bundle on
Cohr(S)v, as is explained in Section 2.4.2. With this comparison result we
can relate Gromov–Witten theory and relative Donaldson–Thomas theory
via quasimap wall-crossing.

The moduli space of ‘-stable quasimaps has all the necessary structure,
such as the evaluation maps, to define invariants via the virtual fundumental
class in the spirit of Gromov–Witten theory,

È·m1(“1), . . . , ·mN (“N )ÍM,‘

g,—
:=

⁄

[Q‘
g,N (M,—)]vir

i=NŸ

i=1
Âmi

i
evú

i “i,

11



where “1, . . . , “N are classes in Hú(S[n]) and Â1, . . . , ÂN are Â-classes asso-
ciated to the markings. In the language of ideals on threefolds the primary
quaismap insertions correspond exactly to relative DT insertions. We sim-
ilarly define perverse invariants ˘È·m1(“1), . . . , ·mN (“N )Í‘

g,N,—
associated to

the pair (S[n],Coh˘

r(S)v).

1.2.5 Wall-crossing
Invoking recent results of [Zho22], we then establish the quasimap wall-
crossing. However, for this part of the present work we mostly refer to
Zhou’s paper, as his arguments carry over to our case almost verbatim. We
now briefly explain what is meant by the quasimap wall-crossing.

The space R>0 fi {0+, Œ} of ‘-stabilities is divided into chambers, in
which the moduli space Q‘

g,N
(M, —) stays the same, and as ‘ crosses a wall

between chambers the moduli space changes discontinuously. The quasimap
wall-crossing relates invariant for di�erent values of ‘, it involves certain
DT-type invariants that are defined via the virtual localisation S ◊ P

1 with
respect to the C

ú-action on P
1,

t[x, y] = [tx, y], t œ C
ú.

These invariants are assembled together in so-called I-functions, which is
defined in Section 2.5.1. By convention we set

eCú(Cstd) = ≠z,

where Cstd is the standard representation of C
ú on C. Then in the case of

S[n], the I-function is

I(q, z) = 1 +
ÿ

—>0
q—

evú

A
[F—]vir

eCú(Nvir)

B

œ Aú(S[n])[z±] ¢Q Q[[q—]],

where F— µ Hilb
n,—̌

(S ◊ P
1) is the distinguished C

ú-fixed component con-
sisting of subschemes which are supported on fibers of S ◊ P

1 æ S and over
0 œ P

1, and which are non-flat only over 0 œ P
1. The evaluation

ev : F— æ S[n]

is defined by taking the fiber of the subscheme over Œ œ P
1. We define

µ(z) := [zI(q, z) ≠ z]+ œ Aú(S[n])[z],

12



where [. . . ]+ is the truncation by taking only non-negative powers of z.
To state the wall-crossing formula in the most e�cient way, we assemble
invariants in the following generating series

F ‘

g (t(z)) =
Œÿ

n=0

ÿ

—

q—

N !Èt(Â1), . . . , t(ÂN )Í‘

g,N,— ,

where t(z) œ Hú(X [n], Q)[z] is a generic element, and the unstable terms are
set to be zero.
Theorem. For all g Ø 1 we have

F 0+
g (t(z)) = F Œ

g (t(z) + µ(≠z)).
For g = 0, the same equation holds modulo constant and linear terms in t.

The change of variables above is the consequence of a wall-crossing for-
mula across each wall between extremal values of ‘, see Theorem 2.5.3.
Moreover, by evoking the identification C

ú-equivariant sheaves on S ◊ C
ú

with flags of sheaves on S, one can express the wall-crossing invariants in
terms of integrals on moduli spaces of flags of sheaves. For more details on
this relation we refer to [Obec], where the case of K3 surfaces is treated,
leading to a beautiful connection between di�erent enumerative theories.

1.2.6 Reduced wall-crossing
The case of K3 surfaces requires a special treatment due to the presence
of a holomorphic symplectic form and, consequently, the vanishing of the
standard virtual fundamental class of relevant enumerative theories. Hence
one has to construct a surjective cosection of the obstruction theory of ‘-
stable quasimaps.

Let S be a K3 surface. To give a short motivation for our forthcoming
considerations, let us recall the origin of reduced perfect obstruction theory
of Gromov–Witten theory of M . Since M is hyper-Kähler, for any algebraic
curve class — œ H2(M, Z) there exists a first-order twistor family

M æ Spec C[‘]/‘2

of M , for which the horizontal lift of — is of type (k, k) only at the central
fiber. In particular, standard GW invariants vanish. To get a non-trivial
enumerative theory, we have to remove obstructions that arise via such de-
formations of M . However, in the case of ‘-stable quasimaps we need twistor
families not only of the moduli space M but of the pair (M,Cohr(S)v). Such
twistor families can be given by non-commutative deformations of S. Let
us now elaborate on this point.

13



Non-commutative deformations

For simplicity assume M = S[1] = S. A map f : C æ S of degree — is
determined by its graph on S ◊C. Let I be the associated ideal sheaf of this
graph. The deformation theories of I and f are equivalent. Assuming C is
smooth and — ”= 0, the existence of a first-order twistor family associated to
the class — is equivalent to the surjectivity of the following composition

H1(TS) Òæ H1(TS◊C) ·At(I)≠≠≠≠æ Ext2(I, I)0
‡I≠æ H3(�1

S◊C) ≥= C, (1.2)

i.e. to the existence of a class Ÿ— œ H1(TS) whose image is non-zero with
respect to the composition above, where ‡I := tr(ú · ≠At(I)) for the Atiyah
class At(I) œ Ext1(I, I¢�1

S◊C
). To see this, recall that the second map gives

the obstruction to deform I along a first-order deformation Ÿ œ H1(TS),
while the third map, called semiregularity map [BF03], relates obstructions
of deforming I to the obstructions of

ch2(I) = (≠—, 1) œ H4(S ◊ C, Z) = H2(S, Z) ü Z

to stay (k, k). With these interpretations in mind it is not di�cult to grasp
that Ÿ— is indeed our first-order twistor family associated to —.

The semiregularity map ‡I globalises, i.e. there exists a cosection

‡ : E
• æ O

of the obstruction theory complex of the moduli space of ideals on S ◊ C.
This cosection ‡ is surjective by the existence of first-order twistor fami-
lies if the second Chern character of ideals is equal to (—, n) for — ”= 0. By
localisation-by-cosection technique introduced by Kiem–Li the standard vir-
tual fundamental class therefore vanishes, as shown in [KL13]. To make the
enumerative theory non-trivial, we have to consider the reduced obstruction
theory complex Ered := ker(‡). Proving that Ered is an obstruction theory
is sometimes di�cult, instead [KL13] provides a construction of the reduced
virtual fundamental class without an obstruction theory.

Let us come back to the case of a general moduli space M . By the moduli
problem of M the deformation theory of quasimaps to M is equivalent to
the one of sheaves on threefolds of the type S ◊ C. The obstruction theory
of sheaves on S ◊C also admits a cosection given by the semiregularity map.
We want to show it is surjective. However, already for M = S[n] with n > 1
there is a problem with the argument presented above. If the degree of

14



f : C æ S[n] is equal to a multiple of the exceptional curve class9, then (1.2)
is zero. Indeed, in this case ch2(I) = (0, n) and the composition (1.2) is equal
to the contraction È≠, ch2(I)Í, which therefore pairs trivially with classes in
H1(TS). The geometric interpretation of this issue is that the exceptional
curve class of S[n] stays Hodge along the commutative deformations of S,
because punctorial Hilbert schemes deform to punctorial Hilbert schemes
under commutative deformations of S. To fix the argument, we have to
consider classes not only in H1(TS) but in a larger space

H0(·2TS) ü H1(TS) ü H2(OS),

i.e. we have to consider non-commutative first-order twistor families to prove
the surjectivity of the semiregularity map.

Strategy

Since we consider possibly non-normal threefolds S ◊ C, where C is a nodal
curve, we have to take Atiyah classes valued in �1

S
� ÊC ,

AtÊ(F ) œ Ext1(F, F ¢ (�1
S � ÊC)),

instead of �1
S
� LC = �1

S
� �1

C
, as the latter does not behave well under

degenerations. Chern characters of sheaves are then defined via the Atiyah
class of the form as above. After establishing an expected correspondence
between degrees of quasimaps and Chern characters of sheaves, which gen-
eralises (2.3), we closely follow [BF03, Section 4] with an exception that
we allow contractions with classes in H0(·2TS) ü H1(TS) ü H2(OS) instead
of only H1(TS). We deduce surjectivity of the semiregularity map from
Proposition 3.1.3.

Having constructed a surjective cosection of the obstruction theory, ide-
ally one would like to reduce it. However, due to the involvement of non-
commutative geometry in our considerations, we can reduce the obstruction
theory only under a certain assumption, which is nevertheless not unnatural,
see Proposition 5.2.1 for the details. This part of the paper is presented in
the attempt to complete the story of reduced obstruction theory for S ◊ C.
However, we do not use our reduced obstruction theory for the construc-
tion of the reduced virtual fundamental class due to the limitations of our
assumption. We instead choose to work with the reduced class of [KL13].

9The curve class dual to a multiple of the exceptional divisor associated to the resolution
of singularities S

[n] æ S
(d).
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1.3 Gromov–Witten/Hurwitz wall-crossing
1.3.1 Analogy
‘-stable quasimaps

Let us now illustrate how the theory of quasimaps sheds light on a seemingly
unrelated theme of admissible covers. A map from a nodal curve C,

f : C æ S[n],

is determined by its graph
�f µ S ◊ C.

If the curve C varies, the pair (C, �f ) can degenerate in two ways:

(i) the curve C degenerates;

(ii) the graph �f degenerates.

By a degeneration of �f we mean that it becomes non-flat10 over C as a
subscheme of S ◊ C, which is due to

• floating points;

• non-dominant components.

Two types of degenerations of a pair (C, �f ) are related. Gromov–Witten
theory proposes that C sprouts out a rational tail (C degenerates), when-
ever non-flatness arises (�f degenerates). Donaldson–Thomas theory, on
the other hand, allows non-flatness, since it is interested in arbitrary 1-
dimensional subschemes, thereby restricting degenerations of C to semistable
ones (no rational tails).

A non-flat graph � does not define a map to S[n], but it defines a
quasimap to S[n]. Hence the motto of quasimaps:

Trade rational tails for non-flat points and vice versa.

The idea of ‘-stability is to allow both rational tails and non-flat points,
restricting their degrees. The moduli spaces involved in (1.1) are given by
the extremal values of ‘.

10A 1-dimensional subscheme � µ S ◊ C is a graph, if and only if it is flat.
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‘-admissible maps

The motto of Gromov–Witten/Hurwitz wall-crossing is the following one:

Trade rational tails for branching points and vice versa.

Let us explain what we mean by making a complete analogy with quasimaps.
Let

f : P æ C

be an admissible cover, defined in [HM82, Chapter 4], with simple branch-
ing11. If the curve C varies, the pair (C, f) can degenerate in two ways:

(i) the curve C degenerates;

(ii) the cover f degenerates.

The degenerations of f arise due to

• ramifications of higher order;

• contracted components and singular points mapping to smooth locus.

As previously, these two types of degenerations of a pair (C, f) are related.
Hurwtiz theory of a varying curve C proposes that C sprouts out ratio-
nal tails, whenever f degenerates in the sense above. On the other hand,
Gromov–Witten theory of a varying curve C allows f to degenerate and
therefore restricts the degenerations of C to semistable ones.

The purpose of ‘-admissible maps is to interpolate between these Hurwtiz
and Gromov–Witten cases. Let f : P æ C be a degree-n map between nodal
curves, such that it is admissible at nodes and g(P ) = h, g(C) = g. We allow
P to be disconnected, requiring that each connected component maps non-
trivially. Following [FP02], we define the branching divisor

br(f) œ Div(C),

it is an e�ective divisor which measures the degree of ramification away from
nodes and the genera of contracted components of f . If C is smooth, then
br(f) can be given by associating to the 0-dimensional complex

fú[fú�C æ �P ]

its support weighted by Euler characteristics. Otherwise, we need to take
the part of the support which is contained in the smooth locus of C.

11The fiber of every regular point in C has at most one ramification point, which is of
the form z ‘æ z

2.

17



Remark 1.3.1. To establish that branching divisor behaves well in families
for maps between singular curves, we have to go through an auxiliary (at
least for the purposes of this paper) notion of twisted ‘-admissable map.
The construction of a map br in (4.2) and (4.3) is essentially the only place
where we use twisted maps.

Definition. Let ‘ œ RÆ0 fi {≠Œ}. A map f is ‘-admissible, if

• ÊC(e≠1/‘ · br(f)) is ample;

• ’p œ C, multp(br(f)) Æ e≠1/‘.

Remark 1.3.2. Note that the presence of exponential e≠1/‘ in the defini-
tion above is mostly conventional, we could also make the definition with
‘ instead of e≠1/‘. The reason is that we would like ‘-admissibility to be
defined for ‘ œ R<0 fi {≠Œ}, because ‘-stability of quasimaps is defined for
‘ œ R>0 fi {0+, Œ}. In this way we can view both theories as a part of one
theory which is defined for ‘ œ R. This is useful for the purposes of Crepant
resolution conjecture.
Remark 1.3.3. One can also trade contracted components for higher order
singularities of the source curve P , the branching divisor can be defined in
this setting. The analogous one-parameter stability condition of such maps
was studied in [Deo14]. However, the moduli spaces that one obtains don
not have a perfect obstruction theory.

One can readily verify that for ‘ = ≠Œ, an ‘-admissible map is an
admissible cover with simple branching. On the other hand, if ‘ = 0, an ‘-
admissible map is a stable12 map, such that the target curve C is semistable.
Hence ‘-admissibility provides an interpolation between the moduli space of
admissible covers with simple branching, Admh,g,n, and the moduli space of
stable maps, M

•
h(Cg/Mg, n),

Admh,g,n
oo ‘ //M

•
h(Cg/Mg, n)

After introducing markings x = (x1, . . . , xN ) on C and requiring the map
to be admissible13 over these markings, ‘-admissibility interpolates between
admissible covers with fixed ramifications over markings and relative stable
maps. Sometimes it is more convenient to consider normalisation of the
moduli space of admissible covers - the moduli space of stable twisted maps

12When the target curve C is singular, by a stable map we will mean a stable map which
is admissible at nodes.

13We require the map to be a ramified cover over the markings with fixed ramifications.
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to BSn, denoted by Kg,N (BSn, h). The interpolation above can therefore
be equally considered as the following one

Kg,N (BSn, h) oo ‘ //M
•
h(Cg,N /Mg,N , n)

In fact, this point of view is more natural, if one wants to make an analogy
with quasimaps.

Higher-dimensional case

We can upgrade the set-up even further by adding a map fX : P æ X for
some target variety X. This leads us to the study of ‘-admissibility of the
data

(P, C, x, fX ◊fC),
which can be represented as follows

P X

(C, x)

fX

fC

In this case, ‘-admissibility also takes into account the degree of the com-
ponents of P with respect to the map fX , cf. Definition 4.1.4. If X is an
point, we get the set-up discussed previously.

Let — = (“, h) œ H2(X, Z) ü Z be an extended degree14. For ‘ œ RÆ0 fi
{≠Œ}, we then define

Adm‘

g,N (X(n), —)
to be the moduli space of ‘-admissible data

(P, C, x, fX ◊ fC),

such that g(P ) = h; g(C) = g, |x| = N and the map fX ◊ fC is of degree
(“, n). The notation is slightly misleading, as ‘-admissible maps are not
maps to X(n). The notation is justified by the analogy with quasimaps and
is more natural with respect to our notions of degrees of ‘-admissible maps.

As in the case of X is a point, we obtain the following description of
these moduli spaces for extremal values of ‘,

M
•
h(X ◊ Cg,N /Mg,N , (“, n)) = Adm0

g,N (X(n), —),

Kg,N ([X(n)], —) fl≠æ Adm≠Œ
g,N

(X(n), —),
14By a version of Riemann-Hurwtiz formula, Lemma 4.1.9, the degree of the branching

divisor br(f) = m and the genus h determine each other, latter we will use m instead of h.
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such that the map fl is a virtual normalisation in the sense of (4.12), which
makes two spaces equivalent from perspective of enumerative geometry. We
therefore get an interpolation,

Kg,N ([X(n)], —) oo ‘ //M
•
h(X ◊ Cg,N /Mg,N , (“, n))

which is completely analogous to (1.1).

1.3.2 Wall-crossing
The invariants of M

•
h(X ◊Cg,N /Mg,N , (“, n)) that can be related to orbifold

invariants of Kg,N ([X(n)], —) are the relative GW invariants taken with re-
spect to the markings of the target curve C. More precisely, for all ‘, there
exist natural evaluations maps

evi : Adm‘

g,N (X(n), —) æ IX(n), i = 1, . . . , N,

where IX(n) is a rigidified version of the inertia stack IX(n). We define

È·m1(“1), . . . , ·mN (“N )Í‘

g,N,— :=
⁄

[Adm
‘
g,N (X(n),—)]vir

i=NŸ

i=1
Âmi

i
evú

i (“i, ),

where “1, . . . , “N are classes in the orbifold cohomology Hú
orb(X(n)); Â1, . . . , ÂN

are Â-classes associated to the markings of the sources curve. By Lemma
4.1.17, these invariants specialise to orbifold GW invariants associated to
space Kg,N ([X(n)], —) and relative GW invariants associated to space M

•
h(X◊

Cg,N /Mg,N , (“, n)) for corresponding choices of ‘.
To relate invariants for di�erent values of ‘, we also use the master space

technique developed by Zhou in [Zho22] for the purposes of quasimaps. We
establish the properness of the master space in our setting in Section 4.2,
following the strategy of Zhou.

As in Section 1.2.5, to state compactly the wall-crossing formula, we
define

F ‘

g (t(z)) =
Œÿ

n=0

ÿ

—

q—

N !Èt(Â1), . . . , t(ÂN )Í‘

g,N,— ,

where t(z) œ Hú
orb(X(n), Q)[z] is a generic element, and the unstable terms

are set to be zero. There exists an element

µ(z) œ Hú
orb(X(n))[z] ¢ Q[[q—]],
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defined in Section 4.3.1 as a truncation of an I-function. The I-function
is in turn defined via the virtual localisation on the space of stable maps
to X ◊ P

1 relative to X ◊ {Œ}. This element µ(z) provides the change of
variables, which relates generating series for extremal values of ‘.

Theorem. For all g Ø 1 we have

F 0
g (t(z)) = F ≠Œ

g (t(z) + µ(≠z)).

For g = 0, the same equation holds modulo constant and linear terms in
t(z).

The change of variables above is the consequence of a wall-crossing for-
mula across each wall between extremal values of ‘, see Theorem 4.3.3.

1.4 Applications
1.4.1 Applications of the quasimap wall-crossing
Higher-rank/rank-one DT wall-crossing for K3 ◊ C

Since smooth projective moduli spaces of higher-rank sheaves M on S are
deformation equivalent to S[n], we can prove certain higher-rank/rank-one
DT wall-crossing statements for threefolds S ◊ C, using the quasimap wall-
crossing on both sides, as it is represented in Figure 1.2.

quasimap

wall-crossing

quasimap

wall-crossing

GW(S[n])GW(M)
deformation

invariance

DTrel,rk>1(S ◊ Cg,N /Mg,N ) DTrel,rk=1(X ◊ Cg,N /Mg,N )
DTrk>1/DTrk=1

Figure 1.2: Higher-rank/rank-one DT
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If g = 0, N = 3, the wall-crossing is trivial. We therefore obtain that
higher-rank invariants with three relative vertical insertions associated to
moduli spaces of sheaves, which are stable at a general fiber, exactly match
rank-one invariants on S ◊ P

1,

DTrk=1(S ◊ P
1/S0,1,Œ) = GW0,3(S[n]) = DTrk>1(S ◊ P

1/S0,1,Œ),

where S0,1,Œ = S ◊ {0, 1, Œ} µ S ◊ P
1. However, the result is not opti-

mal, since stability of a sheaf at a general fiber over a curve is shown to
be equivalent to stability of the sheaf itself only under some assumptions.
Namely, we require rk Æ 2 and M to be a projective moduli of slope stable
sheaves, see Proposition 5.1.4. In particular, they are satisfied for threefold
invariants that arise from a moduli space of sheaves on a K3 surface with
Chern character

(2, –, ≠2k ≠ 1) œ Hú(S, Q)

for k > 0 and a polarisation such that deg(–) is odd (or a generic polarisation
which is close to a polarisation for which deg(–) is odd). Note that we are
in the setting of non-Calabi–Yau relative geometry, hence the techniques of
wall-crossings in derived categories cannot be applied to prove the statement
as above. The case of S ◊ E for an elliptic curve E is also discussed.

DT/PT correspondence for K3 ◊ C

Using both standard and perverse quasimap wall-crossings for S[n], we ob-
tain rank-one Donaldson–Thomas theory/rank-one Pandharipande–Thomas
theory (DT/PT) correspondence, as it is illustrated in Figure 1.3.

��

�� @@

@@
GW(S[n])

quasimap

wall-crossing

quasimap

wall-crossing

DTrel,rk=1(S ◊ Cg,N /Mg,N ) PTrel,rk=1(X ◊ Cg,N /Mg,N )
DT/PT

Figure 1.3: DT/PT

As before, for g = 0, N = 3 the wall-crossing is trivial. We therefore
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obtain the following

DTrk=1(S ◊ P
1/S0,1,Œ) = GW0,3(S[n]) = PTrk=1(S ◊ P

1/S0,1,Œ).

Equality can reasonably be expected due to the nature of the reduced virtual
fundamental class.

Enumerative geometry of S[n]

The quasimap wall-crossing can be used to study the enumerative geometry
of S[n] by relating it to Pandharipande–Thomas theory of S ◊ C (and, con-
sequently, to Gromov–Witten theory of S ◊ C by PT/GW correspondence).
The latter is much simpler to deal with, as S ◊ C is a 3-dimensional prod-
uct variety. By using the virtual localisation on S ◊ P

1, one can show that
genus-0 3-point invariants of S[n] are determined in a certain precise sense
by the classical geometry of S and some universal polynomials. This will be
addressed in a subsequent paper.

In Section 2.5.4 the wall-crossing invariants of S[n] for a del Pezzo surface
S are explicitly computed. In particular, using Nakajima operators, for
n > 1 we have the following identification

H2(S[n], Z) ≥= H2(S, Z) ü Z · A,

where A is the exceptional curve class of the Hilbert–Chow morphism

S[n] æ S(n).

With respect to the above decomposition we then define

˘È“1, . . . , “N ÍS
[n]

,‘

0,“
:=

ÿ

m

˘È“1, . . . , “N ÍS
[n]

,‘

0,(“,mA)y
m.

Assuming 2g ≠ 2 + N Ø 0, the quasimap wall-crossing then gives us

˘È“1, . . . , “N ÍS
[n]

,0+
0,“

= (1 + y)c1(S)·“ · ˘È“1, . . . , “N ÍS
[n]

,Œ
0,“

.

After applying the identification of the moduli space of genus-zero 0+-stable
quasimaps with three marked points with the moduli space of stable pairs
on S ◊ P

1 relative to three vertical divisors, the above result relates the
quantum cohomology of S[n] to the ring whose structure constants are given
by Pandharipande–Thomas theory of S ◊ P

1. The change of variables as
above was predicted15 by Davesh Maulik.

15Communicated to the author by Georg Oberdieck.
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Enumerative geometry of K3[n]

Let S be a K3 surface. In [Obec] the wall-crossing terms are shown to be
virtual Euler numbers of certain Quot schemes, which are computed for
S[n]. Therefore, using the results of [Obec] together with reduced quasimap
wall-crossing for S[n], we obtain the wall-crossing part of the Igusa cusp
form conjecture [OP16, Conjecture A], thereby completing the proof of the
conjecture along with [OS20] and [OP18].

Genus-0 3-point Gromov–Witten theory of S[n] is shown to be equivalent
to Pandharipande–Thomas theory of S ◊ P

1 with three relative vertical
insertions. Together with PT/GW correspondence of [Obeb], this confirms
the conjecture proposed in [Obe19].

In [Obea] a holomorphic anomaly equation is established for S[n] for
genus-0 GW invariants with at most 3 markings. The proof crucially uses
the quasimap wall-crossing, which relates genus-0 GW invariants S[n] to PT
invariants of S ◊ P

1. The later can be in turn related to GW invariants of
S ◊ P

1 by PT/GW correspondence of [Obeb], thereby reducing the problem
to the one of a product threefold.

1.4.2 Applications of Gromov-Witten/Hurwitz wall-crossing
The Square

For a del Pezzo surface S we compute the wall-crossing invariants in Section
4.4. A computation for analogous quasimap wall-crossing invariants is given
in Proposition 2.5.10.

The wall-crossing invariants can be easily shown to satisfy PT/GW.
Hence when both quasimap wall-crossing and GW/H wall-crossing are ap-
plied, C.R.C. becomes equivalent to PT/GW. For the precise statements of
both we refer to Section 4.5.1. This is expressed in terms of the square of
theories, see Figure 1.1.

For a toric surface S [PP17] proves PT/GW for S ◊P
1 relative to S0,1,Œ.

The square therefore gives us the following result.

Theorem. If S is a toric del Pezzo surface, g = 0 and N = 3, then C.R.C.
holds for all S[n] in all classes.

Previously, the theorem above was established for n = 2 and S = P
2

in [Wis11, Section 6]; for an arbitrary n and an arbitrary toric surface but
only for an exceptional curve class in [Che13]. If S = C

2, C.R.C. was proven
for all genera and any markings on the level of Cohomological field theories
in [PT19].
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The theorem can also be restated as an isomorphism of quantum coho-
mologies,

QHú
orb(S(n)) ≥= QHú(S[n]),

we refer to Section 4.5.2 for more details. The result is very appealing,
because the underlying cohomologies with classical multiplications are not
isomorphic for surfaces with c1(S) ”= 0, but the quantum cohomologies are.
In particular, the classical multiplication on Hú

orb(S(n)) is a non-trivial quan-
tum deformation of the classical multiplication on Hú(S[n]).

We want to stress that C.R.C. should be considered as a more funda-
mental correspondence than PT/GW, because it relates theories which are
closer to each other. Moreover, as [BG09] points out, C.R.C. explains the
origin of the change of variables,

y = ≠eiu, (1.3)

it arises due to the following features of C.R.C.,

(i) analytic continuation of generating series from 0 to -1;

(ii) factor i =
Ô

≠1 in the identification of cohomologies of S[n] and S(d),
cf. Remark 4.5.2;

(iii) the divisor equation in GW(S[n]);

(iv) failure of the divisor equation in GWorb([S(n)]).

More precisely, (i) is responsible for the minus sign in (1.3); (iii) and (iv) are
responsible for the exponential; (ii) is responsible for i in the exponential.
More conceptual view on C.R.C. is presented in works of Iritani, e.g. [Iri09].

LG/CY vs C.R.C.

We will now draw certain similarities between C.R.C. and the theory of
Landau–Ginzburg/Calabi–Yau correspondence (LG/CY). For all the details
and the notations of LG/CY we refer to [CIR14].

LG/CY consists of two types of correspondences - A-model and B-model
correspondences. The B-model correspondence is the statement of equiv-
alence of two categories - matrix factorisation categories and derived cate-
gories of coherent sheaves. While the A-model correspondence is the state-
ment of equality of generating series of certain curve-counting invariants
after an analytic continuation and a change of variables. Moreover, there
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exists a whole family of enumerative theories depending on a stability pa-
rameter ‘ œ R. For ‘ œ R>0 it gives the theory of GIT quasimaps, while for
‘ œ R<0 it gives FJRW (Fan–Jarvis–Ruan–Witten) theory. GLSM (Gauged
Linear Sigma Model) formalism, defined mathematically in [FJR18], allows
to unify quasimaps and FJRW theory. The analytic continuation occurs,
when one crosses the wall at ‘ = 0.

In the case of C.R.C. we have a similar picture. B-model correspondence
is given by an equivalence of categorises, Db(S[n]) and Db([S(n)]). A-model
correspondence is given by an analytic continuation of generating series and
subsequent application of a change of variables, as it is stated in Section 4.5.
There also exist a family of enumerative theories depending on a parameter
‘ œ R. For ‘ œ R>0, it is given by quasimaps to a moduli space of sheaves,
while for ‘ œ RÆ0 it is given by ‘-admissable maps. It would be interesting
to know, if a unifying theory exists in this case (like GLSM in LG/CY).

B-model A-model

LG/CY Db(XW ) ≥= MF(W ) GW(XW ) ‘Æ0Ω≠≠|0
‘>0≠≠æ FJRW(Cn, W )

C.R.C. Db(S[n]) ≥= Db([S(n)]) GW(S[n]) ‘Æ0Ω≠≠|0
‘>0≠≠æ GWorb([S(n)])

Table 1.1: LG/CY vs C.R.C

The above comparison is not a mere observation about structural simi-
larities of two correspondences. In fact, both correspondences are instances
of the same phenomenon. Namely, in both cases there should exist Kähler
moduli spaces, MLG/CY and MC.R.C., such that two geometries in question
correspond to two di�erent cusps of these moduli spaces (e.g. S[n] and [S(n)]
correspond to two di�erent cusps of MC.R.C.). B-models do not vary across
these moduli spaces, hence the relevant categories are isomorphic. On the
other hand, A-models vary in the sense that there exist non-trivial global
quantum D-modules, DLG/CY and DC.R.C., which specialise to relevant enu-
merative invariants around cusps. For more details on this point of view we
refer to [CIR14] in the case of LG/CY, and to [Iri10] in the case of C.R.C.
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1.4.3 Notation and conventions
We work over the field of complex numbers C. Given a variety X, by [X(n)]
we denote the stacky symmetric product by [Xn/Sn] and by X(n) its coarse
quotient. By X [n] we denote the Hilbert scheme of length-n points. For a
partition µ of n, let ¸(µ) denote the length of µ and age(µ) = n ≠ ¸(µ).

By convention we set eCú(Cstd) = ≠z, where Cstd is the standard repre-
sentation of C

ú on a vector space C.
After fixing an ample line bundle OS(1) on a surface S, for a sheaf F we

define deg(F ) to be the degree of F with respect to the OS(1). By a general
fiber of a sheaf F on S ◊ C we will mean a fiber of F over a point in some
dense open subset of C.

Let N be a semigroup and — œ N its element. By Q[[q—]] we will denote
the (completed) semigroup algebra Q[[N ]]. In our case, N will be a semigroup
of various e�ective curve classes.

For a possibly disconnected curve C, we define g(C) = 1 ≠ ‰(OC).
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Chapter 2

Quasimaps to a moduli space
of sheaves

2.1 Stack of coherent sheaves
2.1.1 Rigidification
Let S be a smooth projective surface. Let OS(1) œ Pic(S) be a very ample
line bundle and v œ Knum(S) be a class, such that

• rk(v) > 0;

• there are no strictly Gieseker semistable sheaves.

We will frequently identify v with its Chern character. Let

Coh(S)v : (Sch/C)¶ æ (Grpd).

be the stack of coherent sheaves on S in the class v. We will usually drop v

from the notation, as we will be working with a fixed class, unless we want
to emphasise some particular choice of the class. There is a locus of Gieseker
OS(1)-stable sheaves in the class v,

M Òæ Coh(S),

which is a C
ú-gerbe over a scheme M , where the C

ú-automorphisms come
from multiplication by scalars. In fact, we can quotient out C

ú-automorphisms
of the entire stack Coh(S), as explained in [AGV08, Appendix C], thereby
obtaining a rigidified stack

Cohr(S) := Coh(S)((( C
ú.
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A B-valued point of Cohr(S) can be represented by a pair (G, „), where G

is a C
ú-gerbe over B and „ : G æ Coh(S) is a C

ú-equivariant map (here we
will ignore 2-categorical technicalities, see [AGV08, Appendix C.2] for more
details). The moduli space M canonically embeds into the stack Cohr(S),
giving rise to the following square

M �
�

//

Cú≠gerbe
✏✏

Coh(S)

Cú≠gerbe
✏✏

M �
�

// Cohr(S)

Now let (X,X) be one of the following pairs, (M,Cohr(S)) or (M,Coh(S)).
Abusing the notation, we define

Pic(X) := lim
UµX

Pic(U),

where the limit is taken over substacks of finite type. The stack Coh(S) is
not of finite type, therefore this definition of Picard group might not agree
with the standard one. However, for our purposes it is the most suitable
one. We will refer to the elements of Pic(X) as line bundles. The need for
this definition of the Picard group is justified in Remark 2.1.1.

2.1.2 Determinant line bundles
Let F be the universal sheaf on S ◊ Coh(S), then for each U µ Coh(S) of
finite type we have naturally defined maps

⁄|U : K0(S)
p

!
S≠æ K0(S ◊ U)

·[F|U]
≠≠≠æ K0(S ◊ U) pU!≠≠æ K0(U) det≠≠æ Pic(U)

which are compatible with respect to inclusions UÕ µ U, hence we have the
induced map

⁄ : K0(S) æ Pic(Coh(S)).

Remark 2.1.1. The construction of ⁄|U requires a locally free resolutions of
F|U, the ranks of terms of the resolution grow with U. Hence determinant
line bundles cannot be easily defined as honest line bundles on Coh(S), but
only as elements of Pic(Coh(S)) in the sense of our definition of Pic(Coh(S)).

In general, the C
ú-weight of the line bundle ⁄(u) is equal to ‰(v · u),

wCú(⁄(u)) = ‰(v · u),
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so there are two types of classes that we will be of interest to us. A class
u œ K0(S), such that ‰(v · u) = 1, gives a trivilisation of the C

ú-gerbe

Coh(S) æ Cohr(S)

over each substack of finite type, or, in other words, a universal family on
Cohr(S). While for a class u œ K0(S), such that ‰(u, v) = 0, the line bundle
⁄(u)|U descends to U((( C

ú. Let

Kv(S) := v
‹ µ K0(S),

then ⁄ restricted to Kv(S) descends to a map to Pic(Cohr(S)),

⁄v : Kv(S) æ Pic(Cohr(S)).

The class v will be frequently dropped from the notation in ⁄v, when it is
clear what stack is considered. We define

Pic⁄(Coh(S)) := Im(⁄), Pic⁄(Cohr(S)) := Im(⁄v).

There exists a particular class of elements in Kv(S), which deserve a special
mention and will be used extensively later,

ui := ≠rk(v) · hi + ‰(v · hi) · [Ox],

Li := ⁄(ui),

where Ox is a structure sheaf of a point x œ S, and h = [OH ] for a hyperplane
H œ |OS(1)|. More generally, let us fix a Q-basis {L1, . . . , Lfl(S)} of NS(S)
consisting of ample Q-line bundles, such that Li’s and OS(1) are in the same
chamber of Gieseker stabilities. Let {L1,1, . . . ,L1,fl(S)} be the corresponding
determinant Q-line bundles defined in the same way as L1. The importance
of these classes is due to the following theorem.

Theorem 2.1.2. The line bundles L1 and L0 ¢ Lm
1 are nef and ample

respectively on fibers of M æ Pic(S) for all m ∫ 0. The same holds for
L1,¸. Moreover, their restrictions to the fibers are independent of a point
x œ S.

Proof. See [HL97, Chapter 8].
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2.2 Quasimaps
For the sake of simplicity of the exposition we assume that q(S) := h1,0(S) =
0 from now on. See Section 2.2.5 for the discussion about the theory for
surfaces with q(S) ”= 0.

Definition 2.2.1. A map f : (C, x) æ X is a quasimap to (X,X) of genus
g and of degree — œ Hom(Pic⁄(X), Z), if

• (C, x) is a nodal connected curve of genus g with n marked points;

• L ·f C := deg(fúL) = —(L) for all L œ Pic⁄(X);

• |{p œ C| f(p) œ X \ X}| < Œ.

We will refer to the set {p œ C| f(p) œ X \ X} as base points. A quasimap
f is prestable if

• {t œ C| f(t) œ X \ X} fl {nodes, x} = ÿ.

We define
� :=

n

p

Hp,p(S).

For a smooth connected curve C we then have a Kn̈neth’s decomposition of
(p, p)-part of the cohomology of the threefold S ◊ C,

n

p

Hp,p(S ◊ C) = � ¢ H0(C, C) ü � ¢ H2(C, C) = � ü �. (2.1)

Let f : C æ Coh(S) be of degree —. By the moduli problem of sheaves, a
map f is given by a sheaf F on S ◊ C which is flat over C. The Chern
character of F has two components with respect to the decomposition in
(2.1),

ch(F ) = (ch(F )f , ch(F )d) œ � ü �,

where the subscripts ”f” and ”d” stand for fiber and degree respectively. As
the notation suggests,

ch(F )f = v,

which can be seen by pulling back ch(F ) to a fiber over C and using the
flatness of F . Consider now the linear extension

E�(M,Coh(S)) æ �, — ‘æ ch(F )d (2.2)

of the map given by associating the degree part of the Chern character to
the degree of the quasimap for smooth C . By relating — to ch(F )d in

31



more explicit terms in the following lemma, we show that the association
above is indeed well-defined, i.e. a degree — cannot have a presentation
by two di�erent ch(F )d’s. Later in Corollary 2.2.11 it will be shown that
the map is even injective, i.e. the degree of f and the Chern character of
the corresponding family F determine each other, thereby justifying the
subscript ”d” in ch(F )d.

Lemma 2.2.2. The map (2.2) is well-defined.

Proof. By the functoriality of the determinant line bundle construction

—(⁄(u)) = deg(⁄F (u)),

where ⁄F (u) is the determinant line bundle associated to the family F and
a class u œ K0(S). Using Grothendieck–Riemann–Roch and projection for-
mulas we obtain

deg(⁄F (u)) =
⁄

C

ch(pC!(p!
Su · [F ]))

=
⁄

S◊C

ch(p!
Su · [F ]) · pú

StdS

=
⁄

S

ch(u) · pSúch(F ) · tdS

=
⁄

S

ch(u) · ch(F )d · tdS .

Now let —� : � æ Q be the descend of (— ¶ ⁄)Q : K0(S)Q æ Q to � via
Chern character,

� Q

K0(S)Q

—�

ch (—¶⁄)Q

which exists by the above formula for the degree of a determinant line bun-
dle. The formula also shows that the descend —� and — determine each
other. We thereby obtain an expression of ch(F )d in terms of —�,

ch(F )d = —‚
� · td≠1

S
,

where —‚
� is the dual of —� with respect to the cohomological intersection

pairing on �. Using non-degeneracy of the intersection pairing over alge-
braic classes and the above expression of ch(F )d, we obtain that (2.2) is
indeed well-defined. Moreover, if ch(F )d = 0, then — = 0.
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We define
—̌ := ch(F )d = —‚

� · td≠1
S

. (2.3)
By the preceding discussion we therefore obtain a neat expression of the
Chern character of the family F ,

ch(F ) = (v, —̌) œ � ü �.

Remark 2.2.3. Another justification for the use of Pic⁄(X) is the following
one: ⁄Q|M is surjective for Hilbert schemes of points of surfaces with q(S) =
0, all projective moduli of stable sheaves on a K3 surface and expected to
be surjective for all projective moduli of stable sheaves over surfaces with
q(S) = 0 (see e.g. [HL97, Theorem 8.1.6]). Since we care really only about
curve classes on M , we can throw away some obscure classes on X, leaving
Hom(Pic⁄(X), Z), which is good enough for our purposes.

2.2.1 Positivity
The aim of this section is prove the positivity for certain line bundles -
Proposition 2.2.6. We start with the following result, which is inspired
by [BM14, Proposition 4.4].

Lemma 2.2.4. Let F be the sheaf on S ◊ C associated to a map f : C æ
Coh(S), then

L1 ·f C = deg(v)rk(pSúF ) ≠ rk(v)deg(pSúF ),
L0 ·f C = ‰(v)rk(pSúF ) ≠ rk(v)‰(pSúF ),

where deg(v) is the degree of v with respect to OS(1).

Proof. By the proof of Lemma 2.2.2,

Li ·f C = ‰(ui · pS![F ]) for i = 0, 1.

The claim then follows from the following computation

‰(u1 · B) = ≠rk(v)‰(B · h) + ‰(v · h)‰([Opt] · B)

= ≠rk(v)(deg(B) ≠ rk(B)
2 H2 ≠ rk(B)

2 H · c1(S))

+ (deg(v) ≠ rk(v)
2 H2 ≠ rk(v)

2 H · c1(S))rk(B)

= rk(B) deg(v) ≠ rk(v) deg(B);
‰(u0 · B) = ≠rk(v)‰(B) + ‰(v)‰([Opt] · B)

= ‰(v)rk(B) ≠ rk(v)‰(B).
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The relation between quasimaps to Coh(S) and sheaves on S ◊ C is the
central for our study of quasimaps. Since we are interested in quasimaps to
the rigidified stack Cohr(S), we would also like to extend that relation to
this setting, which is done in the following lemma.

Lemma 2.2.5. Any quasimap f : C æ Cohr(S) admits a lift to Coh(S).
Di�erent lifts are related by tensoring the corresponding sheaf on S ◊C with
a line bundle from C.

Proof. By [AGV08, Appendix C.2] a map C æ Cohr(S) is given by a
BC

ú-gerbe G over C with an C
ú-equivariant map „ : G æ Coh(S). It can be

checked that
H2

fppf(C,Oú
C) = H2

ét(C,Oú
C) = 0

by passing to the normalisation of C and using the exponential sequence.
Therefore G is a trivial gerbe. Choose some trivialisation

G ≥= C ◊ BC
ú.

By the moduli problem of sheaves a C
ú-equivariant map „ : C ◊ BC

ú æ
Coh(S) is given by a C

ú-equivariant sheaf F on S ◊ C such that the C
ú-

equivariant structure is the one given by multiplication by scalars applied
to the sheaf F viewed as a sheaf on S ◊ C. In particular, C

ú-equivariant
structure is unique and determined by F alone. The sheaf F defines a lift
f : C æ Coh(S). Given another lift f Õ : C æ Coh(S) with an associated sheaf
F Õ on S◊C, then by the properties the rigidification (see [AGV08, Appendix
C.2]) there exists an automorphism of the trivial gerbe

Â : C ◊ BC
ú ≥= C ◊ BC

ú,

such that f ≥= f Õ ¶Â, therefore (idS ◊Â)úF Õ ≥= F . Automorphisms of a trivial
gerbe admit the following description

AutC(G) ≥= Pic(C), Â ‘æ LÂ,

which can be easily proven after recalling that maps to BC
ú are given by

line bundles. Moreover, the pullback of a sheaf by Â is isomorphic to the
sheaf tensored by LÂ. Hence we obtain that

F ≥= (id ◊ Â)úF Õ ≥= F Õ ¢ pú
CLÂ.
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Proposition 2.2.6. Let f : C æ Cohr(S) be a prestable quasimap. There
exists m0 œ N such that for all m Ø m0 the quasimap is non-constant, if
and only if

L0 ¢ Lm

1 ·f C > 0.

The constant m0 depends only on v and L1,¸ ·f C for all ¸. The same holds
for all subcurves C Õ and the induced maps for the same choice of m.

For the illustration of the method, which will be used to prove the claim,
we will firstly prove that

L1 ·f C Ø 0 (2.4)

under the same assumption. The proof of the inequality (2.4) also contains
the essential ingredients for the proof of the proposition.

Warm-up for Proposition 2.2.6. By Lemma 2.2.5 any f : C æ Cohr(S)
can be lifted to Coh(S) and intersections with Li’s are independent of the
lift. Let F be a family of sheaves on S ◊ C associated to a lift of f . Assume
for simplicity that f has one base point b œ C, then by Langton’s semistable
reduction the sheaf F can be modified at a point b to a sheaf which is stable
over b and is isomorphic to F away from S ◊ b µ S ◊ C. The modification
is given by a finite sequence of short exact sequences

0 æ F 1 æF 0 æ Q1 æ 0,

...
0 æ F k æF k≠1 æ Qk æ 0,

where F 0 = F , the sheaf F k is stable over b œ C and Qi is the maximally
destabilising quotient sheaf of F i≠1

b
(if F i≠1

b
has torsion, then Qi is the

quotient by the maximal torsion subsheaf). In particular, for all i

deg(v)rk(Qi) ≠ rk(v)deg(Qi) Ø 0. (2.5)

Applying derived pushforward pSú to each sequence we get distinguished
triangles

pSú(F i) æ pSú(F i≠1) æ Qi ≠æ .

By Lemma 2.2.4 we obtain that

L1 ·f i≠1 C = L1 ·f i C + deg(v)rk(Qi) ≠ rk(v)deg(Qi), (2.6)
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where f i is the quasimap associated to F i. The line bundle L1 is nef on M
by Theorem 2.1.2 and the assumption q(S) = 0, therefore

L1 ·fk C Ø 0,

because fk does not have base points. The property of L1 stated in (2.4)
now follows from (2.5) and (2.6).

Proof of Proposition 2.2.6. We now deal with the claim in the proposi-
tion. By Lemma 2.2.4

L0 ¢ Lm

1 ·f C = L0 ¢ Lm

1 ·fk C

+ m
ÿ

i

deg(v)rk(Qi) ≠ rk(v)deg(Qi) +
ÿ

i

‰(v)rk(Qi) ≠ rk(v)‰(Qi),

(2.7)

therefore for L0 ¢ Lm
1 ·f C to be positive for some big enough m, the terms

‰(v)rk(Qi) ≠ rk(v)‰(Qi)

have to be bounded from below. We will now split our analysis, depending
on whether (2.5) is positive or zero.

Consider firstly the case of Qi’s, such that

deg(v)rk(Qi) ≠ rk(v)deg(Qi) > 0.

We plan to use Lemma 2.2.7. The sheaves Qi sit in filtrations (see e.g. [HL97,
Theorem 2.B.1]) inside F m

b
,

Q1 µ Q2 µ · · · µ Qm µ F m

b . (2.8)

Since F m

b
is stable, we have a bound for µmax(Qi),

µmax(Qi) Æ µ(v).

By (2.5) and (2.6) the degrees of such Qi can be bounded,

deg(v)rk(Qi) ≠ L1 ·f C

rk(v) Æ deg(Qi) <
deg(v)rk(Qi)

rk(v) , (2.9)

we therefore get a uniform bound on deg(Qi) for all such Qi depending on
the sign of deg(v),

≠L1 ·f C

rk(v) Æ deg(Qi) < deg(v), if deg(v) Ø 0 ,

deg(v) ≠ L1 ·f C

rk(v) < deg(Qi) <
deg(v)
rk(v) , if deg(v) < 0.
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If fl(S) > 1, then we can get the similar bounds for L1,¸’s for all ¸, thereby
bounding c1(Qi). Hence by Lemma 2.2.7 we obtain that

ch2(Qi) < A
Õ,

where the constant A
Õ depends only on rk(v), deg(v) and L1,¸ ·f C, we there-

fore can also uniformly bound ‰(Qi),

‰(Qi) < A.

We conclude that

‰(v)rk(Qi) ≠ rk(v)‰(Qi) > ‰(v) ≠ A · rk(v), if ‰(v) Ø 0;
‰(v)rk(Qi) ≠ rk(v)‰(Qi) > ‰(v)rk(v) ≠ A · rk(v), if ‰(v) < 0.

Consider now the case of Qi’s, such that

deg(v)rk(Qi) ≠ rk(v)deg(Qi) = 0.

By (2.8) and stability of F m

b
it must be that

‰(v)rk(Qi) ≠ rk(v)‰(Qi) > 0.

Now let m0 œ N be such that L0 ¢ Lm0
1 is ample on M (possible by

Theorem 2.1.2) and

m0 · (deg(v)rk(Qi) ≠ rk(v)deg(Qi)) > A · rk(v) ≠ ‰(v)

for all Qi, such that deg(v)rk(Qi) ≠ rk(v)deg(Qi) > 0, if ‰(v) Ø 0, and
similarly for ‰(v) < 0. By (2.7) the proposition then follows for quasimaps
with one base point. Note that all the bounds do not depend on a base
point b œ C and therefore are the same for all base points, hence we can
safely drop the assumption that there is one base point.

The dependence of m0 on v and L1,¸ ·f C follows from bounds presented
in (2.9). The fact that positivity of the line bundle L0 ¢ Lm

1 holds for all
subcurves for the same choice of m follows from the proof itself.

Lemma 2.2.7. Let F be a torsion-free sheaf of rank r on a smooth projective
surface S with Picard rank fl(S) = 1 , such that µmax(F ) < B. Then ch2(F )
is bounded from above by a number that depends only on r, c1(F ) and B.

If fl(S) ”= 1, then µmax(F ) is considered as a linear function on a neigh-
bourhood U µ Amp(S) around OS(1) and B is some function in the same
neighbourhood. We require the inequality µmax(F ) < B to be satisfied point-
wise. Then the same conclusion holds.
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Proof. We present the proof for fl(S) = 1, the case of fl(S) ”= 1 follows
from the same argument. Let

0 = HN0(F ) µ HN1(F ) µ · · · µ HNk(F ) = F

be the Harder-Narasimhan filtration of F . Slopes of the graded pieces of the
filtration satisfy

µmax(F ) = µ(grHN

1 ) Ø · · · Ø µ(grHN

k ),

therefore
deg(grHN

i ) < B · rk(grHN

i )

and

deg(grHN

i ) = deg(F ) ≠
ÿ

j ”=i

deg(grHN

j ) > deg(F ) ≠ B ·
ÿ

j ”=i

rk(grHN

j )

= deg(F ) ≠ B · (r ≠ rk(grHN

i )).

Hence we get a uniform bound for all i,

deg(F ) ≠ B · r < deg(grHN

i ) < B · r, if B Ø 0;
deg(F ) < deg(grHN

i ) < 0, if B < 0.

Which implies that c1(grHN

i
) is uniformly bounded, since fl(S) = 1. So

there exists A
Õ œ Z, which depends only on B, r and c1(F ), such that

c1(grHN

i )2 < A
Õ, for all i,

then by semistablity of grHN

i
and Bogomolov-Gieseker inequality

ch2(grHN

i ) Æ c1(grHN

i )2/2rk(grHN

i ),

so we get

ch2(grHN

i ) < A =
I

A
Õ if A

Õ Ø 0
A

Õ/2r if A
Õ < 0

Finally, by ch2(F ) =
q

ch2(grHN

i
) and by the fact that there are at most r

pieces in the filtration we get the desired bound

ch2(F ) < r · A.

38



2.2.2 Stable quasimaps
For all — œ E�(X,X) we fix once and for ever a line bundle1

L— := L0 ¢ Lm

1 œ Pic⁄(X)

for some m œ N such that L0 ¢ Lm
1 satisfies the conclusion of Proposition

2.2.6.
Given a quasimap f : C æ X of a degree — and a point p œ C, we define

the length of t to be

¸(p) := L— ·f C ≠ L— ·fp C,

where fp is the stabilisation of f at p, which is defined by viewing f as a
rational map to M with an indeterminacy at p and removing the indeter-
minacy by evoking the properness of M . By the proof of Proposition 2.2.6
we have that ¸(p) Ø 0; and ¸(p) = 0, if and only if p is not a base point.

Definition 2.2.8. Given ‘ œ R>0fi{0+, Œ}, a prestable quasimap f : (C, x) æ
X of degree — is ‘-stable, if

(i) ÊC(x) ¢ fúL‘

—
is positive;

(ii) ‘¸(p) Æ 1 for all p œ C.

We will refer to 0+-stable and Œ-stable quasimaps as stable quasimaps and
stable maps respectively.

A family of quasimap over a base B is a family of nodal curves C over
B with a map f : C æ Cohr(S) such that the geometric fibers of f over B
are quasimaps.

Let

Q‘

g,N (M, —) : (Sch/C)¶ æ (Grpd)
B ‘æ {families of ‘-stable quasimaps over B}

be the moduli space of ‘-stable quasimaps of genus g and the degree — with
n marked points.

1Such line bundle indeed depends on —, because the conclusions of Proposition 2.2.6
depend on — via the intersection numbers L1,¸ ·f C for all ¸.

39



2.2.3 Properness
The first step on the way to proving properness of the moduli space is the
following lemma.

Lemma 2.2.9. Let — œ E�(M,Cohr(S)) and a nodal curve C be fixed. The
moduli space of quasimaps of degree — from C to M is quasi-compact.

Proof. Choose a lift of f to Coh(S), let F 0 be the associated family. The
semistable reduction applied to all base points at once gives a sequence of
short exact sequences

0 æ F 1 æF 0 æ Q1 æ 0,

...
0 æ F k æF k≠1 æ Qk æ 0,

such that F k defines a map fk : C æ M . To establish the claim of the
lemma, we plan to reverse the semistable reduction, i.e. we start with some
map from C to M and take consecutive extensions of the corresponding
families of sheaves by sheaves supported scheme-theoretically on fibers. For
that we have to show that there is bounded number of possibilities. In
particular, we have to show that

(i) the number of steps in the semistable reduction is bounded, i.e. k is
uniformly bounded;

(ii) the family of possible fk : C æ M is bounded;

(iii) the family of possible Qi’s is bounded.

To be more precise, di�erent lifts of a quasimap are related by tensoring a
sheaf with a line bundle coming from C, hence a lift of fk also determines
a lift of f . Therefore if we fix lifts of maps to M , there will always be a lift
of f , such that the lift of fk is the one that we fixed, this will eliminate a
potential unboundedness coming from di�erent lifts.

(i) By Proposition 2.2.6 and its proof there are at most —(L1) steps with

deg(v)rk(Qi) ≠ rk(v)deg(Qi) > 0

and there are at most —(L0 ¢ Lm
1 ) steps with

deg(v)rk(Qi) ≠ rk(v)deg(Qi) = 0,
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therefore
k Æ —(L1) + —(L0 ¢ Lm

1 ).

(ii) By the proof of Proposition 2.2.6 the numerical degree of possible fk’s
with respect to an ample line bundle L0 ¢ Lm

1 is bounded in the following
way

—(L0 ¢ Lm

1 ) = L0 ¢ Lm

1 ·f C >L0 ¢ Lm

1 ·fk C Ø 0.

Since the family of maps with a fixed domain of a given degree is bounded,
the family of possible fk’s must be bounded.

(iii) By the semistable reduction sheaves Qi’s are subsheaves of stable
sheaves in the class v (see [HL97, Theorem 2.B.1]). Chern classes of Qi’s are
bounded by Lemma 2.2.4 and by the proof of Proposition 2.2.6. Therefore
by boundedness of Quot schemes and stable sheaves, the family of possible
Qi’s is also bounded.

Corollary 2.2.10. The moduli space Q‘

g,N
(M, —) is quasi-compact.

Proof. The restriction of a stable quasimap to an unstable component (a
rational bridge or a rational tail) must be non-constant by stability and it
must pair positively with L— by Proposition 2.2.6. Therefore the number of
unstable components of the domain curve of a stable quasimap is bounded
in terms of —. Therefore the projection Q‘

g,N
(M, —) æ Mg,N factors through

a substack of finite type. By Lemma 2.2.9 the projection is quasi-compact,
therefore Q‘

g,N
(M, —) is quasi-compact.

To continue further exploiting the geometry of sheaves, we need to be
able to relate quasimaps to sheaves in families (Lemma 2.2.5 permits us to
do it only pointwise). For that we have to narrow down our scope. If the
C

ú-gerbe Coh(S) æ Cohr(S) is trivial such that a trivialisation is given by
a section

s : Cohr(S) æ Coh(S),

then by composing quasimaps with s we can lift quasimaps from Cohr(S)
to Coh(S) in families. More generally, in order to lift quasimaps of fixed
degree in families, the C

ú-gerbe has to be trivial only over any substack of
finite type U µ Cohr(S), since the moduli of quasimaps of fixed degree is
quasicompact, hence factors through a substack of finite type. A C

ú-gerbe is
trivial, if and only if there exists a line bundle of C

ú-weight 1. In particular,
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if there exists a class u œ K0(S), such that ‰(u · v) = 1, then there is a
section

su|U : U æ Coh(S),

which is given by the descend of the family F ¢ ⁄(u)≠1
|U to S ◊ U, note that

the section su is defined only over substacks of finite type, because ⁄(u) is
defined this way. We will only consider trivialisations that arise through
determinant line bundles. In any case, they are the only ones that can be
checked to exist in practice.

From now one we assume that

÷u œ K0(S), such that ‰(u · v) = 1.

A more general case is discussed in the end of the section.
We will identify a class — with its image with respect to the pushforward

by the section su (more precisely, by the system of sections over substacks
of finite type),

suú : E�(M,Cohr(S)) Òæ E�(M,Coh(S)).

Using (2.2), we can identify E�(M,Cohr(S)) with classes �, as shown in the
following corollary.

Corollary 2.2.11. The map

ˇ(...) : E�(M,Cohr(S)) æ �

defined as the restriction of (2.2) to E�(M,Cohr(S)) is injective.

Proof. We need to show that — ”= 0 implies —̌ ”= 0. By Proposition 2.2.6
a non-zero — intersects positively with a line bundle L0 ¢ Lm

1 for some m.
Hence by the definition of —̌ in (2.3) it also intersects positively with the
corresponding class in �. Therefore it cannot be zero.

Consider now the following composition

Q‘

g,N (M, —) ÒæQ‘

g,N (M, —) Òæ Coh(S ◊ Cg,N /Mg,N ),
f ‘æ su ¶ f ‘æ F,

(2.10)

where Cg,N æ Mg,N is the universal curve over the moduli stack of nodal
curves and Coh(S ◊ Cg,N /Mg,N ) is the relative moduli stack of sheaves on
S ◊ Cg,N /Mg,N .

42



Definition 2.2.12. Let M ‘

v,—̌,u
(S ◊ Cg,N /Mg,N ) be the image of the com-

position (2.10). By M ‘

v,—̌,u
(S ◊ C/Spi) we will denote2 a fiber of

M ‘

—̌,u
(S ◊ Cg,N /Mg,N ) æ Mg,N

over a C-valued point [(C, x)] œ Mg,N , here Mg,N is the moduli of stable
curves. Similarly, we define Q‘

(C,x)(M, —) to be the fiber of

Q‘

g,N (M, —) æ Mg,N

over a C-valued point [(C, x)] œ Mg,N . We will frequently drop v from the
notation, and in the case of ‘ = 0+ we will drop 0+.

In (2.10) the first map is a closed immersion (as it is given by composition
with a section), while the second is an open immersion. In particular,

Q‘

g,N (M, —) ≥= M ‘

—̌,u
(S ◊ Cg,N /Mg,N ). (2.11)

The C-valued points of the moduli space M ‘

—̌,u
(S ◊ Cg,N /Mg,N ) are just

families of sheaves associated to quasimaps via the section su.
We will now study the moduli on the right in (2.11) in more detail.

By the construction the section su is given by the descend of F ¢ ⁄(u)≠1,
therefore a sheaf F œ M ‘

—̌,u
(S ◊ C)(C) µ M ‘

—̌,u
(S ◊ Cg,N /Mg,N )(C) satisfies3

det(pCú(pú
Su ¢ F )) = (su ¶ f)ú⁄(u) = OC .

Moreover, by the definition of a quasimap, a general fiber of F over C is
stable. The stability of a general fiber can be related to the stability of the
sheaf F itself, as is shown in the following lemma.

Lemma 2.2.13. There exists k0 œ N such that for all k Ø k0 the moduli
M ‘

—̌,u
(S ◊ C) is an open sublocus of a moduli of Gieseker OS◊C(1, k)-stable4

sheaves on S ◊ C satisfying the condition det(pCú(pú
S
u ¢ F )) = OC .

We will refer to the stability in the lemma as suitable. The converse of
the lemma is more subtle, in Appendix 5.1 it is proven in the rank-2 case
for slope stabilities, rank-1 case holds trivially. Note that a sheaf which is
OS◊C(1, k)-stable for all k ∫ 0 is stable at a general fiber. Hence proving

2The notation is similar to the one of Donaldson–Thomas theory relative to divisors.
3Later this will be important for the deformation theory.
4OS◊C(1, k) stands for OS(1) ⇥ OC(k).
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converse amounts to proving that there are no walls between OS◊C(1, k)-
stabilities for k ∫ 0.

Proof of Lemma 2.2.13. Given a sheaf F œ M ‘

—̌,u
(S ◊ C), a general

fiber of F over C is stable, in particular, it is torsion-free, therefore F is
torsion-free itself by Lemma 2.2.14. It also must be OS◊C(1, k)-stable for all
k ∫ 0, this can be seen as follows. Since a general fiber of F is stable, the
di�erence between OS◊C(1, k)-Hilbert polynomials of F and of its subsheaves
increases as k increases, because c1(OC(k)) pairs only with chf(F ). Since the
family of OS◊C(1, k)-destabilising subsheaves of F is bounded, for k ∫ 0 no
subsheaves of F will be OS◊C(1, k)-destabilising, therefore F is OS◊C(1, k)-
stable for k ∫ 0.

The moduli space M ‘

—̌,u
(S ◊C) is quasi-compact, therefore there exists a

uniform choice of k0 for which the statement holds for all sheaves in M ‘

—̌,u
(S◊

C). The fact that it is open follows from openness of stability of fibers.

Lemma 2.2.14. Let F be a sheaf on S ◊ C flat over C, such that Ft is
torsion-free for a general t œ C, then F is torsion-free.

Proof. Let T (F ) µ F be the maximal torsion subsheaf. Firstly, T (F ) ”=
F , because rk(F ) ”= 0. It also cannot be supported on fibers of S ◊ C æ C
due to flatness of F over C, therefore Supp(T (F )) intersects a general fiber.
Since F/T (F ) is generically flat, restricting T (F ) µ F to a general fiber
t œ C, we get a torsion subsheaf of Ft for a general t œ C, which is zero,
therefore T (F ) is zero.

The final ingredient for the proof of properness of the moduli space is
the following lemma, Hartog’s property for families of nodal curves over a
DVR (however, for a general surface Hartog’s property fails).

Lemma 2.2.15. Let C æ � be a family of nodal curves over a DVR � and
{pi} µ C be finitely many closed points in the regular locus of the central
fiber. If there exists a class u œ K0(S), such that ‰(u · v) = 1, then any
quasimap f̃ : C̃ = C \ {pi} æ Cohr(S) extends to f : C æ Cohr(S), which is
unique up to unique isomorphism.

Proof. Let F̃ be the family on S ◊ C̃ corresponding to the lift of f̃ by su,
we then extend F̃ to a coherent sheaf F on S ◊ C, quotienting the torsion,
if necessary. The sheaf F is therefore flat over �. The central fiber Fk of
F defines a quasimap, if it is torsion-free, because Ck is regular at pi. If
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Fk is not torsion-free, we can remove the torsion inductively as follows. Let
F 0 = F and F i be defined by short exact sequences,

0 æ F i æ F i≠1 æ Qi æ 0,

such that Qi is the quotient of F i≠1
k

by the maximal torsion subsheaf. It
is not di�cult to check, that at each step the torsion of F i

k
is supported

at slices S ◊ pi, therefore all F i’s are isomorphic to F 0 over S ◊ C̃. By the
standard argument (see e.g. [HL97, Theorem 2.B.1]), this process terminates,
i.e. F i = F i+1 and F i

k
is torsion-free for i ∫ 0. Let us redefine the sheaf

F , we set F = F i for some i ∫ 0, then the sheaf F induces a quasimap to
Coh(S), and composing it with the projection to Cohr(S), we thereby obtain
an extension f : C æ Cohr(S) of f̃ .

Consider now another extension f Õ : C æ Cohr(S), we lift both f and f Õ

to Coh(S) with su, then let F Õ and F be the corresponding families on S ◊C

(notice, F might di�er from the previous F by a tensor with a line bundle),
by Lemma 2.2.13 they define a family of stable sheaves relative to � in some
relative moduli of sheaves M(S◊C/�), hence they must be isomorphic up to
tensoring with a line bundle by separateness of the relative moduli of stable
sheaves. The isomorphism becomes unique after projection to Cohr(S).
Remark 2.2.16. In general, Hartog’s property fails for sheaves on a surface.
Hence the assumption that our surface is given by a family of curves C æ �
is necessary. This form of Hartog’s property is good enough for proving
Theorem 2.2.17 in the spirit of [CKM14, Section 4].

Theorem 2.2.17. If there exists a class u œ K0(S), such that ‰(u · v) = 1,
then Q‘

g,N
(M, —) is a proper Deligne–Mumford stack.

Proof. The morphism S ◊ Cg,N æ Mg,N is locally of finite type. Rel-
ative moduli spaces of sheaves are known to be locally of finite type and
quasi-separated, therefore by Lemma 2.2.10 and (2.11) the moduli space
Q‘

g,N
(M, —) is of finite type and quasi-separated. By (i) of the quasimaps’

stability (see Definition 2.2.8), ‘-stable quasimaps have only finitely many
automorphisms given by automorphisms of curves which fix the sheaves. The
moduli space Q‘

g,N
(M, —) is therefore a quasi-separated Deligne–Mumford

stack. Using the valuative criteria of properness for quasi-separated Deligne–
Mumford stacks and Lemma 2.2.15, the proof of properness then proceeds
as in the GIT case [CKM14, Section 4.3].
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2.2.4 Stable sheaves
Let us now concentrate further on the moduli space of sheaves associated to
quasimaps. Since torsion-free is equivalent to flatness for a smooth curve, the
moduli space M

—̌,u
(S ◊ C) is a component (it is open by Lemma 2.2.13 and

closed by properness) of the moduli of stable sheaves, such that a general
fiber of a sheaf over C is stable. On the other hand, the moduli space
QC(M, —) is the moduli of stable quasimaps from a fixed curve C. By
definition we have

M
—̌,u

(S ◊ C) ≥= QC(M, —), (2.12)
this identification will be the origin of the relation between Gromov–Witten
theory of M and Donladson–Thomas theory of S ◊ C. For slope-stable
sheaves with rk Æ 2 the moduli M

—̌,u
(S ◊ C) is exactly the moduli of stable

sheaves by Proposition 5.1.4, which is also expected to be the case for any
rank.

Similarly, quasimaps from a fixed curve C with a marking without iden-
tifications by automorphisms is isomorphic to a moduli of sheaves on S ◊ C
relative to a vertical divisor Sp := S ◊ p µ S ◊ C,

M
—̌,u

(S ◊ C/Sp) ≥= Q(C,p)(M, —),

where the additional stability conditions of a sheaf are the ones of the corre-
sponding quasimap, in particular, restriction of a sheaf to the relative divisor
and the singular locus of expanded degenerations is stable.

We will now relate the moduli space M ‘

—̌,u
(S ◊ C) to a more familiar

one - a moduli space of sheaves with a fixed determinant. Let M ‘

—̌,L
(S ◊ C)

be the moduli of sheaves stable at a generic fiber with a fixed determinant
L such that the associated quasimaps satisfy ‘-stability, where L = det(G)
for some G œ M ‘

—̌,u
(S ◊ C). Then there exists projection that relates two

moduli spaces,

p : M ‘

—̌,L
(S ◊ C) æ M ‘

—̌,u
(S ◊ C), F ‘æ F ⇥ det(pCú(pú

Su ¢ F ))≠1, (2.13)

which is, in fact, an étale cover, if C is smooth.

Lemma 2.2.18. Assume C is smooth, then the map p is étale of degree
rk(v)2g.

Proof. The surjectivity can be seen as follows. Consider a sheaf F œ
M ‘

—̌,u
(S ◊ C), then

L0 := det(F ) ¢ L≠1 œ Pic0(S ◊ C) = Pic0(C).
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Now let L
1

rk(v)
0 be a rk(v)th root of L0, then

det(F ¢ L
≠ 1

rk(v)
0 ) = det(F ) ¢ L≠1

0 = L,

therefore
F ¢ L

≠ 1
rk(v)

0 œ M ‘

—̌,L
(S ◊ C)

and it can be easily checked that it maps to F via the map (2.13). It
is of degree rk(v)2g, because det(F ¢ A) = det(F ) ¢ A¢rk(F ) for a line
bundle A œ Pic(S ◊ C). Therefore only rk(v)-torsion line bundles preserve
M

—̌,L
(S ◊ C). Moreover, sheaves in an orbit of the action of J(C)[rk(v)]

map to the same sheaf via (2.13), where J(C)[rk(v)] ≥= (Z/rk(v)Z)2g is the
subgroup of rk(v)-torsion points of the Jacobian J(C). The action is free,
because

det(pCú(pú
Su ¢ F ⇥ A) ≥= det(pCú(pú

Su ¢ F ) ¢ A,

for a line bundle A, which is due to ‰(u · v) = 1. In particular,

M ‘

—̌,L
(S ◊ C)/J(C)[rk(v)] ≥≠æ M ‘

—̌,u
(S ◊ C),

hence the claim follows.

2.2.5 More general cases
Non-trivial gerbe

The proof of properness of the moduli Q‘

g,N
(M, —) crucially relies on the

identification of the space with the relative moduli of sheaves M ‘

—̌,u
(S ◊

C/Mg,N ). To make it work in the case when C
ú-gerbe Coh(S) æ Cohr(S)

is not trivial, one needs to consider twisted universal families. Given any
u œ K0(S) such that

w = ‰(u · v) ”= 0,

then over each finite type open substacks U µ Coh(S) we can take a wth-root
stack associated to ⁄(u) with the universal wth-root ⁄(u) 1

w of ⁄(u) ,

Coh(S)
u
w
|U æ U, ⁄(u)

1
w œ Pic(Coh(S)

u
w
|U).

Then wCú(⁄(u) 1
w ) = 1, therefore ⁄(u) 1

w defines a trivialisation of the C
ú-

gerbe
Coh(S)

u
w
|U æ Cohr(S)

u
w
|U,
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given by the descend of the twisted family F ¢ ⁄(u)≠ 1
w , where

Cohr(S)
u
w
|U := Coh(S)

u
w
|U((( C

ú.

Thereby we obtain the desired section

s u
w

: Cohr(S)
u
w
|U æ Coh(S)

u
w
|U.

The price we pay for this section is that the stable locus becomes a Z/wZ-
gerbe of M , which we denote by M

u
w . In particular, we have to consider

orbifold quasimaps for the sake of properness of the moduli space. All the
definitions carry over to this setting verbatim, so let us consider now the
quasimap theory of the pairs,

(M
u
w ,Cohr(S)

u
w ) and (M

u
w ,Coh(S)

u
w ).

As in the case of untwisted case we can consider the following composition

Q‘

g,N (M
u
w , —) Òæ Q‘

g,N (M
u
w , —) æ Coh(S ◊ Ctw

g,N /Mtw
g,N ),

f ‘æ s u
w

¶ f ‘æ F,

where Mtw
g,N

is the moduli of twisted nodal curves with the universal family
Ctw

g,N
. The second map is no longer an embedding, because the moduli

problem of Coh(S) u
w is now a pair

(F, det(pCú(pú
Su ¢ F ))

1
w ),

a sheaf F and a wth-root of det(pCú(pú
S
u ¢ F )). However, by the definition

of the section s u
w

, the wth-root is fixed

(su ¶ f)ú⁄(u)
1
w = det(pCú(pú

Su ¢ F ))
1
w = OC ,

hence the composition above is an embedding and det(pCú(pú
S
u¢F )) = OC .

Let M ‘

—̌,u
(S ◊ Ctw

g,N
/M

tw
g,N ) be its image. We therefore have the desired

identification,

Q‘

g,N (M
u
w , —) ≥= M ‘

—̌,u
(S ◊ Ctw

g,N /M
tw
g,N ).

the rest goes as in the untwisted case. However, to give a full treatment
of twisted invariants, we have to add many modifications and remarks here
and there, making the presentation more obscure. In principle, there are
no obstacles for extension of all results including wall-crossing formulas.
Using [AJT], we then can relate the twisted invariants to untwisted ones.
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Non-trivial Jacobian

The case of a surface with q(S) ”= 0 can be tackled in the same manner.
However, we need to adjust some definitions. Firstly, instead of the stack
Cohr(S)v we have to take its fiber over Pic(S) with respect to the determi-
nant morphism

det : Cohr(S)v æ Pic(S),

where we slightly abuse the notation, because the morphism det is only
defined over substacks of finite type.

Then for the definition of a degree we have to take care of an extra
summands in Künneth’s decomposition of (p, p)-part of the cohomology on
S ◊ C,

n

i

p”=qn

p+p
Õ=i

q+q
Õ=i

Hp,q(S) ¢ Hp
Õ
,q

Õ(C).

The classes Hom(Pic⁄(X), Z) are not sensitive to the piece of Kn̈neth decom-
position as above in the sense that the Chern character ch(F ) of a family F
is not determined by the degree — œ Hom(Pic⁄(X), Z) of the corresponding
quasimap. On the Gromov–Witten side of M this extra piece corresponds
to extra classes that are not given by determinant line bundles. One could
make the definition of the degree finer by defining it as a class in H2(X, Z),
but then we loose a direct connection of the degree with the Chern char-
acters of sheaves on threefolds. One could also leave the definition as it is,
thereby making the degree slightly coarser than it could be. For genus-0 in-
variants this, however, does not matter. Indeed the extra piece in Künneth
decomposition of cohomology is not present, because H1,0(P1) = 0.

Similarly, in the case of punctorial Hilbert schemes and the fixed-curve
invariants one can define the degree of a quasimap by the Chern character of
the corresponding subscheme on a threefold after contracting rational tails
and projecting the subscheme to the component corresponding to the fixed
curve.

2.3 Hilbert schemes
2.3.1 Relative Hilbert schemes
We now restrict to v = (1, 0, ≠n), i.e. M = S[n]. Punctorial Hilbert schemes
are special, because there exists a canonical trivialisation of Coh(S)v æ
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Cohr(S)v over any U µ Cohr(S)v of finite type. It is given by the determi-
nant

det(F) œ Pic(S ◊ Coh(S)v)

of the universal sheaf F on S ◊Coh(S)v. It is indeed a line bundle of weight
1, because F is of rank 1. Hence the family F¢det(F|U)≠1 descends to S◊U,
giving the canonical section

sdet |U : U æ Coh(S)v

of the gerbe Coh(S)v æ Cohr(S)v. By Corollary 2.2.10, there exists U of
finite type through which the universal quasimap factors. Therefore the
section sdet |U gives us the embedding

Q‘

g,N (S[n], —) Òæ Coh(S ◊ Cg,N /Mg,N ),

which is defined as the one in (2.10). By the construction of the section, the
sheaves in the image of the embedding satisfy

det(F ) = (idS ◊ f)ú det(F) = OS◊C

over any base scheme B. Therefore the embedding factors through a relative
Hilbert scheme,

Q‘

g,N (S[n], —) Òæ Hilb(S ◊ Cg,N /Mg,N ).

Indeed, the above embedding factors through the relative moduli of sheaves
of rank 1 with trivial determinant by the construction of the section sdet.
This moduli is in turn isomorphic to the moduli of ideals, because there exits
a natural embedding F Òæ F ‚‚ ≥= OS◊C . It is a stack but not a scheme,
because S ◊ Cg,N æ Mg,N is a stack.

We denote the image of the embedding above by Hilb‘

n,—̌
(S◊Cg,N /Mg,N ),

where the subscript ”n, —̌” is the shortening of

((1, 0, ≠n), —̌) œ � ¢ �.

The image can be described more explicitly in terms of ideals, or, equiva-
lently, in terms of the corresponding one-dimensional subschemes. Firstly,
the automorphisms of a quasimap f admit the following description

Aut(f) = Aut(C,x)(I) = Aut(C,x)(�),
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where I is the corresponding ideal sheaf, � µ S ◊ C is the associated sub-
scheme and

Aut(C,x)(I) = {Â : (C, x) ≥= (C, x)|(idS ◊ Â)úI = I},

similarly for Aut(C,x)(�). The quasimap ‘-stability therefore requires the
group Aut(C,x)(I) to be finite.

The part (ii) of ‘-stability in Definition 2.2.8 can be rephrased in terms
of � as follows. A sheaf It is an ideal for all t œ C, if and only if all irreducible
components of the subscheme � are dominant over a component of C and
there are not embedded points, if and only if � if flat over C. We call
non-dominant components without embedded points vertical. Let

�h+v ™ �

be the maximal subscheme without embedded ponts, then �h+v = �h fi �v,
where �h is horizontal part of �, which is dominant over C and therefore
is the subscheme associated to the stabilisation of I, and �v is the vertical
part of �. We have the following equality

Ih+v = Ih fl Iv,

because there are no embedded points. Therefore there is an exact sequence

0 æ Ih+v æ Ih ü Iv +≠æ I�hfl�v æ 0, (2.14)

such that Ih is stable over all t œ C. Now let �u

i
µ � be the maximal non-

dominant subscheme (with embedded points) supported on S◊bi for a given
base point bi and �v

i
be its vertical component without embedded points,

then by the part (ii) of Definition 2.2.8, Lemma 2.2.4 and the sequence
above, these �u

i
’s must satisfy

m · deg(�u

i ) + ‰(�u

i ) ≠ ‰(I�hfl�v
i
) Æ 1/‘,

for some fixed m for which Proposition 2.2.6 holds.
Apart from the usual condition on finiteness of automorphisms, the part

(i) of Definition 2.2.8 can be similarly translated into restriction of the ’size’
of � on rational tails in terms of its degree and Euler characteristic: given
a rational tail Rj of C, let deg(�|Rj

) := deg(ch(�|Rj
)d), then for all rational

tails the following must be satisfied

m · deg(�|Rj
) + ‰(�|Rj

) > 1/‘.
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Finally, by stability of quasimaps, � has to be flat over nodes and marked
points.

Hilbert schemes clearly satisfies the assumption of Theorem 2.2.17, hence
summing up the discussion above we obtain the following result.

Corollary 2.3.1. The moduli stack Q‘

g,N
(S[n], —) is a proper Deligne–Mumford

stack. For some fixed m ∫ 0, there exists a natural isomorphism of the mod-
uli spaces

Q‘

g,N (S[n], —) ≥= Hilb‘

n,—̌
(S ◊ Cg,N /Mg,N ),

where the stack on the right is the relative moduli stack of 1-dimensional
subschemes, satisfying the following properties

• |Aut(C,x)(�)| < Œ;

• � is flat over nodes and marked points;

• m · deg(�u

i
) + ‰(�u

i
) ≠ ‰(�s fl �v

i
) Æ 1/‘ for a component �u

i
;

• m · deg(�|Cj
) + ‰(�|Rj

) > 1/‘ for a rational tail Rj.

Remark 2.3.2. It is worth mentioning that a moduli of 0+-stable quasimaps
from a fixed smooth non-rational curve C without identifications by auto-
morphisms in a non-zero class is just a Hilbert scheme on a threefold S ◊ C,

QC(S[n], —) ≥= Hilb
n,—̌

(S ◊ C),

while the moduli of 0+-stable quasimaps with one fixed marked point p œ C
is a moduli of ideals relative to a vertical divisor Sp µ S ◊ C,

Q(C,p)(S[n], —) ≥= Hilb
n,—̌

(S ◊ C/Sp),

see also Remark 2.4.4. Moreover, pulling back a class with a marking on the
left is equivalent ot pulling back the class from a relative divisor on the right.
In particular, as soon as the obstruction theories are defined and shown to
match in Proposition 2.4.5, the equality of corresponding invariants with
insertions will follow.

2.3.2 Changing the t-structure
Consider the following torsion pair in Coh(S),

T = {A œ Coh(S) | dim(A) = 0},

52



T‹ = {B œ Coh(S) | Ext•(A, B) = 0, ’A œ T}.

Let Coh˘(S) = ÈT‹,T[≠1]Í be the corresponding perverse heart. Punctorial
Hilbert schemes sit inside the rigidification of the corresponding moduli
stack,

S[n] µ Coh˘

r(S)v := Coh˘(S)v((( C
ú.

Before proceeding further we firstly introduce some terminology from [AP06].
Let A := Coh˘(S) and AC be the Abramovich-Polishchuk heart in Dperf(S ◊
C). An object F œ AC is called torsion, if it is a pushforward of an object
from Dperf(S ◊ T ), where T µ C is some proper subscheme. The object F
is flat, if Ft := Liú

t F œ A for all t œ C, and it is torsion-free, if it does not
contain any torsion subobjects.

Let f : C æ Coh˘

r(S)v be a quasimap to the pair (S[n],Coh˘

r(S)), then as
in the case of the standard heart, we can lift it to Coh˘(S)v by the determi-
nant section

sdet : U æ Coh˘(S)v

over some U µ Coh˘

r(S)v of finite type. We now prove the following.

Proposition 2.3.3. Let F be the family on S ◊ C associated to the lift of
f æ Coh˘

r(S)v via sdet, then F is stable pair, i.e. F œ P(S ◊C). Conversely,
given a stable pair I• œ P(S ◊ C), then I• œ AC .

We firstly need the following lemma.

Lemma 2.3.4. A flat object F œ AC is torsion-free.

Proof of Lemma 2.3.4. Let F̃ be the pullback of F to the normalisation
S ◊ C̃. Let T µ F̃ be the maximal torsion object, then F̃ Õ := F̃ /T is a
torsion-free object, hence it is flat by [AP06, Corollary 3.1.3]. Restricting to
a fiber over some t œ C we get an exact sequence

0 æ Tt æ F̃t æ F̃ Õ
t æ 0,

because F̃ is flat. Thus Tt œ Coh˘(S) and ch(Tt) = 0 for all t œ C, since
ch(F̃t) = ch(F̃ Õ

t), which implies that Tt = 0 for all t œ C, which in turn
implies that T = 0. If F had torsion, it would produce torsion in F̃ , hence
F is torsion-free.

Proof of Proposition 2.3.3. Now let be F be an object corresponding to
the lift of a quasimap f : C æ Coh˘

r(S)v, by definition it is family of objects
in A, hence F œ AC by [AP06] and F is flat. It is also clear that F is of rank
1, and that det(F ) = OS◊C by the choice of the lift. By [Tod10, Lemma 3.11]
to show that F œ P(S ◊ C), we have to establish the following properties:
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(i) Hi(F ) = 0, for i ”= 0, 1;

(ii) H0(F ) is a rank-1 torsion-free sheaf and H1(F ) is 0-dimensional;

(iii) Hom(Q[≠1], F ) = 0 for any 0-dimensional sheaf Q.

(i) Since F is a family of objects with amplitude [0, 1], F cannot be of
amplitude wider than [0, 1]. To see this, consider the two triangles the
object F fits in

·<0F æ F æ ·Ø0F æ,

·<2F æ F æ ·Ø2F æ,

where the truncation is taken with respect to the standard t-structure. Tak-
ing fibers over t œ C and considering long exact sequences of cohomologies
in the standard heart we conclude that ·<0F = 0 and ·Ø2F = 0.

(ii) Let T (H0(F )) ™ H0(F ) be the maximal torsion subsheaf, composition
T (H0(F )) Òæ H0(F ) æ F is zero, because F is torsion-free, but in the stan-
dard heart the second map is just an inclusion of 0-th cohomology, hence the
whole composition must be zero, therefore T = 0 and H0(F ) is torsion-free.
Due to fact that Ft is an ideal for a general t œ C and Ft œ A for all t œ C,
H1(F ) must be 0-dimensional by the definition of A.

(iii) The last property follows trivially, because F is torsion-free.

Conversely, given now a stable pair I• œ P(S ◊ C), by definition it sits
in a triangle

H0(I•) æ I• æ H1(I•)[≠1] æ,

such that H0(I•) is an ideal sheaf and H1(I•) is 0-dimensional. Applying
pSú(≠ ¢ OC(m)) for m ∫ 0 to the triangle, we obtain that pSú(H0(I•) ¢
OC(m)) is a torsion-free sheaf and pSú(H1(I•) ¢ OC(m)) is 0-dimensional,
therefore pSú(I• ¢OC(m)) œ A for m ∫ 0, hence by the definition I• œ AC .

With a bit more work, one should be able to prove that

AC = ÈT‹
C ,TC [≠1]Í,

where TC = {A œ Coh(S ◊ C)| dim(A) = 0}.

The determinant line bundle construction in this setting also defines the
map ⁄ : K0(S) æ Pic(Coh˘(S)v). The line bundles L0 and L1 satisfy the
same properties as in the case of the standard heart.
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Lemma 2.3.5. Let f : C æ Coh˘(S) be a prestable quasimap. There exists
m0 œ N such that for all m Ø m0 the quasimap is non-constant, if and only
if

L0 ¢ Lm

1 ·f C > 0.

The constant m0 depends only on v and L1,¸ ·f C for all ¸. The same holds
for all subcurves C Õ and the induced maps for the same choice of m.

Proof. The proof is similar to the one of Proposition 2.2.6, but with one
exception - the unstable locus of Coh˘(S) now contains objects which sit in
a distinguished triangle

H0(A) æ A æ H1(A)[≠1] æ

such that H1(A) is a 0-dimension sheaf. When we apply semistable re-
duction to such objects the corresponding term ‰(v)rk(Qi) ≠ rk(v)‰(Qi) is
strictly negative. To get around this problem, for a pair I• œ P(S ◊ C) we
firstly take its zeroth cohomology

H0(I•) æ I• æ H1(I•)[≠1] ≠æ

where H0(I•) is an ideal sheaf and H1(I•) is zero dimensional, and then run
the Langton’s semistable reduction for H0(I•).

Fixing a positive line bundle L— from the Lemma 2.3.5 once and for ever
for all — œ E�(S[n],Coh˘

r(S)v), we can define the length of base point as
previously. The definition of ‘-stability carries over to this case verbatim.
Given ‘ œ R>0 fi {0+, Œ} let

Q‘

g,N (S[n], —)˘ : (Sch/C)¶ æ (Grpd)

be a moduli of ‘-stable perverse quasimaps to the pair (S[n],Coh˘

r(S)v) for
some — œ E�(S[n],Coh˘

r(S)). The proof of boundedness of the moduli is
exactly the same as in the case of the standard heart. And using Lemma
2.3.3, we obtain an immersion,

Q‘

g,N (S[n], —)˘ Òæ P(S ◊ Cg,n/Mg,n),

where is the space on the right is the relative moduli stack of stable pairs.
The image of above embedding we denote by P‘

n,—̌
(S ◊ Cg,N /Mg,N ), which

can also be described more explicitly in terms of stable pairs just as in the
case of a relative Hilbert scheme, Section 2.3.1. For properness we need
the following lemma, whose proof is, however, di�erent from the one of the
standard heart.
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Lemma 2.3.6. Let C æ � be a family of nodal curves and {pi} µ C be
finitely many closed in the regular locus of the central fiber. Then any
quasimap ũ : C̃ = C \ {pi} æ Coh˘

r(S)v extends to u : C æ Coh˘

r(S)v, which
is unique up to unique isomorphism.

Proof. Employing the similar proof as the one of Lemma 2.2.15 is prob-
lematic in this case, as we do not know how to extend the objects, so we
follow a di�erent strategy.

Restricting ũ to the generic fiber C¶ of C over �, we obtain a relative
family F ¶ on S ◊ C¶, which by properness of the relative moduli of stable
pairs P(S ◊ C/�) can be completed to a family F on S ◊ C, it may only
be non-flat over nodes of the central fiber, therefore it defines a rational
quasimap u : C 99K Coh˘

r(S)v possibly with indeterminacies only at the nodes
of the central fiber. It also defines a rational map urat : C 99K S[n], so does ũ,
ũrat : C 99K S[n], the corresponding graphs in Hilb(S[n]◊C) agree generically,
therefore by separateness of Hilbert schemes they are equal, i.e. urat = ũrat.
If pi is not a limit of base points of ũ, then there is a neighbourhood U µ C

around pi, where

ũ|U/pi
= ũrat|U/pi

= urat|U/pi
= u|U/pi

,

we then define ũ|U = u|U (u is defined at pi, because pi is in the regular
locus), since quasimaps to Coh˘

r(S)v do not have any internal automorphisms
we can glue maps in a unique way thereby extending ũ to pi. If pi is an
limit of base points of ũ, let Bi µ C be the section corresponding to these
base points, then there is some neighbourhood U around Bi, such that

ũ|U/Bi
= ũrat|U/Bi

= urat|U/Bi
= u|U/Bi

,

but since ũ|C¶ = u|C¶ , we conclude that ũU/pi
= uU/pi

, again because
quasimaps to Coh˘

r(S)v do not have any internal automorphisms and there-
fore glue in a unique away, we then proceed as before. Let uÕ : C æ Coh˘

r(S)v
be the resulting extension and F Õ be the associated family, then separateness
of relative moduli of stable pairs implies that F Õ = F and that the extension
is unique.

Summing up the discussion above, we obtain the following result.

Corollary 2.3.7. The moduli stack Q‘
g(S[n], —)˘ is a proper Deligne–Mumford

stack, and there exists a natural isomorphism of the moduli stacks

Q‘

g,N (S[n], —)˘ ≥= P‘

n,—̌
(S ◊ Cg,N /Mg,N ),
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the stack on the right is the relative moduli stack of stable pairs, satisfying
exactly the same conditions as in the case of the standard heart.

Proof. For the properness we use Lemma 2.3.6 and the proof presented
in [CKM14, Proposition 4.3.1.].
Remark 2.3.8. As in the case of the standard heart, the moduli space of
perverse 0+-stable quasimaps from a fixed smooth non-rational curve C
without identifications by automorphisms in a non-zero class is just the
moduli of all stable pairs on a threefold S◊C, as torsion-free implies flatness
in this setting too by [AP06],

QC(S[n], —)˘ ≥= P
n,—̌

(S ◊ C),

while the moduli of perverse 0+-stable quasimaps with one fixed marked
point p œ C is a moduli of stable pairs relative to a vertical divisor Sp µ
S ◊ C,

Q(C,p)(S[n], —)˘ ≥= P
n,—̌

(S ◊ C/Sp).

2.3.3 A�ne plane
A punctorial Hilbert scheme of the a�ne plane C

2 admits two equivalent
descriptions, one is a Nakajima variety of a quiver, which is a GIT construc-
tion,

(C2)[n] = [µ≠1(0)/GLn]s µ [µ≠1(0)/GLn],

for the notation see [Gin12]. Another one is a moduli of framed sheaves on
P

2. Both descriptions sit in some bigger stack, but to match the unstable
loci, one has to consider a non-standard heart of Db(P2), namely Coh˘(P2),
then

(C2)[n] µ Coh˘(P2, lŒ)v,

where on the right we consider framings with respect to the line at infinity,
which in this case just kills C

ú-automorphisms. By [BFG06, Theorem 5.7]
we have a canonical isomorphism

[µ≠1(0)/GLn] ≥= Coh˘(P2, lŒ)v,

which identifies stable loci on both sides. Therefore the GIT quasimap mod-
uli and perverse-coherent-sheaves quasimap moduli of (C2)[n] are isomorphic,

Q0+
g,N ((C2)[n], —)GIT ≥= Q0+

g,N ((C2)[n], —)˘.
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Moreover, since [µ≠1(0)/GLn] is l.c.i, an easy check of virtual dimensions
shows that the obstruction theory on Coh˘(P2, lŒ), given by

Homfi(F,F)0[1]‚ æ LCoh˘(P2,lŒ),

is an isomorphism, where F is the universal complex and LCoh˘(P2,lŒ) is the
truncated cotangent complex. Therefore the obstruction theories of both
quasimap theories also match, (see Section 2.4.2 for the construction of the
obstruction theory for perverse quasimaps). To match other ‘-stabilities, one
would need to check that the naturally defined line bundles of both stacks
agree. However, we will not be concerned with it here, since ‘-stability is
mostly an auxiliary tool to do the wall-crossing between ‘ = 0+ and ‘ = Œ
chambers, and the identification above is enough to conclude that the wall-
crossing is the same in both cases.

2.4 Obstruction theory
2.4.1 Preparation
From now on we fix a class u œ K0(S), such that

‰(v · u) = 1,

to lift quasimaps with a section su. For punctorial Hilbert schemes we
use the determinant section sdet. By a family associated to a quasimap
f : C æ Cohr(S) we will mean the one that is obtained from the lift by this
fixed section. The content of this chapter applies to the pair (S[n],Cohr(S))
as well as to the pair (S[n],Coh˘

r(S)), the arguments are exactly the same for
both pairs, hence we will just state and prove everything for (S[n],Cohr(S)).

Lemma 2.4.1. Let f : C æ Coh(S) be a quasimap, then the corresponding
family F on S ◊ C is perfect.

Proof. Since F is a family of sheaves on a smooth S over C, which is of
finite type, there exists a locally free resolution of finite length.

Let
tr : Hom(F, F ¢ L) æ L

be the trace morphism. We define

Exti(F, F ¢ L)0 := ker H i(tr) for all i.

58



Proposition 2.4.2. Let f : C æ Cohr(S) be a prestable quasimap. Assume
any of the following holds

(i) (M,Cohr(S)) = (S[n],Cohr(S)) or

(ii) S is a del Pezzo surface or

(iii) S is a K3 surface and g(C) Æ 1,

then the corresponding family F satisfies the following

Exti(F, F )0 = 0 for i ”= 1, 2.

Proof. By Lemma 2.4.1 and by Serre duality we get

Exti(F, F ) = Extn≠i(F, F ¢ ÊS◊C),

therefore Exti(F, F ) = 0 for i /œ [0, 3], because S ◊ C is l.c.i. (ÊS◊C is a
locally free sheaf). Since F is stable, it is simple, hence Hom(F, F )0 = 0.
We therefore have to show that

Hom(F, F ¢ ÊS◊C)0 = 0.

And since the trace morphism has a section given by

id¢ : ÊS◊C æ Hom(F, F ¢ ÊS◊C), s ‘æ idF ¢ s

after taking cohomology, it is enough to show that H0(tr) is injective.

(i) Assume that (M,Cohr(S)) = (S[n],Cohr(S)), then F is an ideal sheaf I
of a curve � µ X. Let U be the complement of � and

fi : S ◊ C̃ æ S ◊ C, D µ S ◊ C

be the normalisation and the singular locus of S ◊ C respectively, then by
applying H0(S ◊ C, ≠) and H0(U, ≠) to the exact sequence

0 æ ÊS◊C æ fiúÊ
S◊C̃

æ ÊS◊C|D æ 0

we obtain

H0(S ◊ C, ÊS◊C) H0(S ◊ C, fiúÊ
S◊C̃

) H0(D, ÊS◊C|D)

H0(U, ÊS◊C) H0(U, fiúÊ
S◊C̃

) H0(D fl U, ÊS◊C|D)
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The last two vertical arrows are bijective, because ÊS◊C is locally free, � is
of codimension 2, and D intersects properly with �. We conclude that

H0(S ◊ C, ÊS◊C) = H0(U, ÊS◊C).

Finally, since I is torsion free, the restriction of global sections

Hom(I, I ¢ ÊS◊C) æ Hom(I|U , I|U ¢ ÊS◊C) = H0(U, ÊS◊C)
= H0(S ◊ C, ÊS◊C)

is injective. Moreover, it is equal to H0(tr) by the construction of tr, hence
the claim follows.

(ii) Assume now that S is a del Pezzo surface, then the degree of a general
fiber of F ¢ ÊS◊C is strictly smaller than the degree of a general fiber of
F by ampleness of the anti-canonical line bundle of S. Therefore by the
stability of a general giber of F we have that

Hom(F, F ¢ ÊS◊C) = 0.

(iii) Finally, assume S is a K3 surface. We will show that

H0(id¢) : H0(S ◊ C, ÊS◊C) æ Hom(F, F ¢ ÊS◊C)

is surjective. By assumption ÊS◊C
≥= pú

C
ÊC , hence we have to show that all

morphisms „ : F æ F ⇥ÊC are of the form idF ⇥ s for some s œ H0(ÊC , C).
By the normalisation sequence it is enough to show it for

fiúF æ fiúF ⇥ fiú
CÊC ,

where
fi = id ◊ fiC : S ◊ C̃ æ S ◊ C

is the normalisation map. We firstly establish the following result.

Lemma 2.4.3. Let C be smooth. Given a sheaf F on S ◊ C, that defines
a quasimap, and an e�ective divisor D =

q
pi on C, then any non-zero

morphism
„ : F æ F (D) := F ⇥ OC(D)

is an inclusion. Moreover, if all pi’s are distinct, supp(coker(„)) = S ◊ D
and F is stable over D, then „ = idF ⇥ s for some s œ H0(O(D), C).
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Proof of Lemma 2.4.3. Assume „ is not an inclusion, then the di�erence
of Hilbert polynomials

pOS◊C(1,m)(Im(„)) ≠ pOS◊C(1,m)(F )

increases as n increases, because a general fiber of F is stable. Therefore
Im(„) becomes OS◊C(1, m)-destabilising for F (D) for some m ∫ 0. How-
ever, by Lemma 2.2.13 the sheaf F (D) is OS◊C(1, m)-stable for some m ∫ 0,
which is a contradiction. Hence „ must be an inclusion.

We now deal with the second part of the lemma. Consider the sequence

0 æ F
„≠æ F (D) æ coker(„) æ 0,

restricting it to S ◊ D, we obtain

0 æ coker(„) æ F|D
„|D≠≠æ F (D)|D æ coker(„) æ 0,

where we used that schematic support of coker(„) is S ◊ D. Since Fpi ’s are
stable and F|D ≥= F (D)|D, the map „|D must be zero. Therefore the map
F (D)|D æ coker(„) is an isomorphism. Consider now the following diagram

0 F F (D) F (D)|D 0

0 F F (D) coker(„) 0,

idF ⇥sD

Â

„

where sD œ H0(O(D), C) is a defining section of D. The right square of the
diagram is commutative, and the last two vertical arrows are isomorphisms,
so we have

„ = Â ⇥ sD for some Â œ Aut(F ).

But F is stable and therefore simple, hence Â = c · idF for some c œ C
ú. The

claim now follows.

Continuation of the proof of Proposition 2.4.2. Recall that there is a
natural isomorphism fiú

C
ÊC

≥= Ê
C̃

(
q

qi + qÕ
i
), where qi and qÕ

i
are preimages

of a node of C. Given now a rational component C̃j of C̃ with at most two
special points, then fiú

j
ÊC

≥= OP1(k) for k Æ 0. Both fiú
j
F and F|C̃j

⇥OP1(k)
are OS◊C(1, m)-stable for some m ∫ 0 by Lemma 2.2.13. If k < 0, then
Hilbert polynomials satisfy

pOS◊C(1,m)(fiú
j F ) > pOS◊C(1,m)(fiú

j F ⇥ OP1(k)),
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hence
Hom(fiú

j F, fiú
j F ⇥ OP1(k)) = 0.

If k = 0, then fiú
j
F ≥= fiú

j
F ⇥ OP1(k). By induction we then conclude that

the restriction of „ to all rational trees must be zero, and by the previous
lemma the restriction of „ to their complement comes from box-tensoring a
section.
Remark 2.4.4. All quasimaps are prestable in the case of punctorial Hilbert
schemes, since an ideal I of a curve on a threefold S ◊C is stable over a node
s œ C, if and only if it is flat over the node 5. This can be seen as follows.
The sheaf Is is stable, if and only if it is torsion-free, which is equivalent to
the injectivity on the left of the exact sequence

Is æ OS◊s æ �s æ 0,

which in turn is equivalent to Tor1
S◊C(O�,OS◊s) = 0, but by standard peri-

odic resolution of a structure sheaf of a node,

Tork

S◊C(O�,OS◊s) = Tor1
S◊C(O�,OS◊s) for all k Ø 1.

If I is flat, then I is perfect, hence O� is also perfect, so

Tork

S◊C(O�,OS◊s) = 0 for some k ∫ 0,

which therefore implies that Tor1
S◊C(O�,OS◊s) = 0.

2.4.2 Obstruction theory
In what follows all the functors are derived. We have the following perfect
obstruction theory over a substack of finite type U µ Cohr(S),

(Tvir)‚ := (Homfi(Fr|U,Fr|U)0[1])‚ æ LU,

where Fr is the universal family on S ◊ Cohr(S), note that the complex
(Tvir)‚ is of amplitude [-1,1] due to the presence of non-discrete automor-
phisms of the unstable part of Cohr(S). Let

fi1 : Cg,N æ Q‘

g,N (M, —)

f : Cg,N æ Cohr(S),
5In Donaldson–Thomas theory this condition is referred to as predeformable.
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be the canonical projection from the universal curve and the universal map.
The universal map f factors through some substack of finite type, hence we
can define the obstruction complex (fiúf

ú
T

vir)‚. Let us show how it is related
to obstruction-theory complex of a relative moduli of stable sheaves. Let

fi2 : S ◊ Cg,N ◊ Q‘

g,N (M, —) æ Q‘

g,N (M, —),

F œ Coh(S ◊ Cg,N ◊ Q‘

g,N (M, —))
be the canonical projection and the universal sheaf, which is defined via
the identifation Q‘

g,N
(M, —) ≥= M ‘

—̌,u
(S ◊ Cg,N /Mg,N ). We then take the

traceless part of the relative derived self-hom complex

Homfi2(F, F)0[1],

and prove the following.

Proposition 2.4.5. The complex (fi1úf
ú
T

vir)‚ is canonically isomorhpic to
the complex (Homfi2(F, F)0[1])‚.

Proof. Consider the following diagram

S ◊ Cg,N ◊ Q‘

g,N
(M, —) S ◊ U

S ◊ Cg,N ◊ Q‘

g,N
(M, —) U

Q‘

g,N
(M, —)

id◊f

fi2

fiU

f

fi1

the trace map tr : Hom(Fr|U,Fr|U) æ OU has a section given by the inclusion
of identity OU æ Hom(Fr|U,Fr|U), therefore

Hom(Fr|U,Fr|U) = Hom(Fr|U,Fr|U)0 ü OU,

and by the moduli problem of Cohr(S) we get

(f ◊ id)úFr = F,

hence by functoriality of the trace and the splitting above we obtain that

(f ◊ id)úHom(Fr|U,Fr|U)0 = Hom(F, F)0,

and by base change theorem

Homfi2(F, F)0 = fi1úf
úHomfiU

(Fr|U,Fr|U)0.
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Corollary 2.4.6. There exists an obstruction theory

„ : (fi1úf
ú
T

vir)‚ æ LQ
‘
g,N (M,—)/Mg,N

,

which is is perfect under the assumptions of Proposition 2.4.2. Moreover,
for ‘ = 0+ the corresponding virtual fundamental classes coincide with those
of Donaldson–Thomas theory.

Proof. Using the results of [TV08] and [STV15], the stack Cohr(S) can be
naturally upgraded to a derived stack RCohr(S) whose truncation is Cohr(S),

·Æ0RCohr(S) = Cohr(S),

and
LRCohr(S) = (Tvir)‚.

The obstruction theory

„ : (fi1úf
ú
T

vir)‚ æ LQ
‘
g,N (M,—)/Mg,N

is therefore given by the obstruction theory of maps to the derived stack
RCohr(S), using the construction of a derived mapping stack of [TV08]. It
is perfect by Proposition 2.4.5 and Proposition 2.4.2 .

By [Sie04] a virtual fundamental class depends only on Chern characters
of the corresponding obstruction-theory complex. The second part of the
claim therefore follows from Proposition 2.4.5.

Let
[Q‘

g,N (M, —)]vir œ Avdim(Q‘

g,N (M, —))Q

be the associated virtual fundamental class. Invoking the identification pre-
sented in Lemma 2.2.2, the virtual dimension can be computed via the
virtual dimension of the relative moduli stack of sheaves,

vdim =
ÿ

(≠1)i dim Exti(F, F )0 + (3g ≠ 3) + N

=
⁄

S◊C

(ch(F ) · ch(F )‚ ≠ 1) · tdS◊C + (3g ≠ 3) + N

= rk(v)c1(—̌) · c1(S) ≠ rk(—̌)c1(v) · c1(S) + (dim(M) ≠ 3)(1 ≠ g) + N,

where rk(—̌) and c1(—̌) are the components of —̌ œ � of cohomogical degrees
0 and 2 respectively.

By our definition of a degree —, it can only pair with determinant line
bundles on the stack Cohr(S), and it is unclear, if the virtual anti-canonical
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line bundle is a determinant line bundle, even though it is the case over the
stable locus in some very special instances. Therefore the above formula for
the virtual dimension is the most reasonable one. We will treat the first
two summands as the degree with respect to the virtual anti-canonical line
bundle,

—(det(Tvir)) := rk(v)c1(—̌) · c1(S) ≠ rk(—̌)c1(v) · c1(S).

The above formula is, however, dependent upon presentation of Q‘

g,N
(M, —)

as a relative moduli space of sheaves, the virtual dimension itself is not
though.

2.4.3 Invariants
The moduli Q‘

g,N
(M, —) has the usual canonical structures to define the

enumerative invariants:

• evaluation maps at marked points

evi : Q‘

g,N (M, —) æ M, i = 1, . . . , N

• cotangent line bundles

Li := sú
i (ÊCg,N /Q

‘
g,N (M,—)), i = 1, . . . , N

where si : Q‘

g,N
(M, —) æ Cg,N are universal markings. We denote

Âi := c1(Li), i = 1, . . . , N

Definition 2.4.7. The descendent ‘-invariants are

È·m1(“1), . . . , ·mN (“N )Í‘

g,N,— :=
⁄

[Q‘
g,N (M,—)]vir

i=NŸ

i=1
Âmi

i
evú

i (“i, ),

where “1, . . . , “N œ Hú(M, Q) and m1, . . . mN are non-negative integers. We
similarly define the perverse invariants È·m1(“1), . . . , ·mN (“N )Í˘,‘

g,N,—
.

Remark 2.4.8. We can also define another kind of invariants by the identifica-
tion of quasimaps with the relative moduli of sheaves - relative Donaldson–
Thomas descendent invariants (do not confuse with invariants relative to
divisors), consider

S ◊ Cg,N

S ◊ Mg,N+1 Q‘

g,N
(M, —)

fi1 fi2
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where for the fi1 we stabilise the curves and used the identification of Mg,N+1
with the universal curve of Mg,N , for the unstable values of g and N we set
the product S ◊ Mg,N+1 to be S. For a class “̄ œ Hú(S ◊ Mg,N+1, Q) define
the following operation on cohomology,

chk+2(“̄) : Hú(Q‘

g,N (M, —), Q) æ Hú≠2k+2≠¸(Q‘

g,N (M, —), Q),

chk+2(“̄)(›) = fi2ú (chk+2(F) · fiú
1(“̄) fl fiú

2(›)) .

The relative descendent invariants are then defined by

È·̃k1(“̄1), . . . , ·̃kr (“̄r)Í‘

g,n,—

= (≠1)k1chk1+2 ¶ . . . ¶ (≠1)kr chkr+2
1
[Q‘

g,N (M, —)]vir
2

,

here we just transferred the definitions from rank-1 story, note that for higher
ranks ·̃≠1(≠) in the notation above might also be non-trivial. We can also
define the mix of descendent GW invariants and relative DT invariants,

È·̃k1(“̄1), . . . , ·̃kr (“̄r) | ·m1(“1), . . . , ·mN (“N )Í‘

g,N,— ,

which are essentially a mix of relative and absolute DT invariants of the
relative geometry

S ◊ Cg,N æ Mg,N

for di�erent ‘-stabilities. However, we will not be concerned with any of the
DT-type invariants defined above in the present work.

The discussion in [CKM14, Section 6] also applies to ‘-invariants in our
setting. In particular, ‘-invariants satisfy an analogue of the Splitting Axiom
in Gromov–Witten theory, and there exists a projection to the moduli of
stable nodal curves

p : Q‘

g,N (M, —) æ Mg,N

by taking stabilisation of the domain of a quasimap, so that the classes

pú(
i=NŸ

i=1
Âmi

i
evú

i (“i, )) œ Hú(Mg,N , Q)

gives rise to Cohomological Field theory on Hú(M, Q).

66



2.5 Wall-crossing
2.5.1 Graph space
As previously, all the results of this section apply both to standard and
perverse quasimaps, if M = S[n]. In the latter case all the notations obtain
the superscript ’˘’.

Given — œ E�(M,Cohr(S)), let ‘ œ R>0 and k œ Z>0 be such that
1/k < ‘ < 1/ deg —, then we define the graph space

QG0,1(M, —) := Q‘

0,1(M ◊ P
1, — + [P1]),

where we consider quasimaps to Cohr(S) ◊ P
1 and ‘-stability on the right

is given with respect to L— ⇥ OP1(k). This is the moduli space of genus-0
quasimaps, whose domain has a unique parametrised rational tail, such that
the restriction of the quasimap to its complement satisfies ‘-stability, which
is equivalent to 0+-stability by the choice of ‘. The definition is independent
of ‘ and k, as long as they satisfy the inequality above.

The obstruction theory of QG0,1(M, —) is given by

(Rfiúf
ú(Tvir � TP1))‚ æ LQG0,1(M,—)/M0,1 .

There is a C
ú-action on P

1 given by

t[x, y] = [tx, y], t œ C
ú,

the fixed points of this action must have their entire degrees with the marking
lie over either 0 or Œ in the form of rational components or base points .
Assuming the marking is over Œ, there are two distinguished extremal fixed
components

F— and F 0,0
1,—

≥= Q0+
0,1+•(M, —).

The former is the locus of quasimaps with entire degree — over 0 as a base
point, while the latter is the locus of quasimaps with entire degree over Œ in
the form of rational components. If the degree splits non-trivially between
0 and Œ, then the fixed components are of the following form

F 0,—1
1,—2

:= F—1 ◊M F 0,0
1,—2

, (2.15)

where — = —1 + —2 and the fibered product is taken with respect to dis-
tinguished markings. The description of fixed components F 1,—1

0,—2
with the

marking over 0 is exactly the same. The virtual fundamental classes [F 0,—1
1,—2

]vir
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and the virtual normal bundles Nvir
F

0,—1
1,—2

/QG0,1(M,—)
are defined by fixed and

moving parts of the obstruction theory of QG0,1(M, —). They are compatible
with respect to the product expression above,

[F 0,—1
1,—2

]vir = [F—1 ]vir ◊M [F 0,0
1,—2

]vir,

Nvir
F

0,—1
1,—2

/QG0,1(M,—) = Nvir
F—1 /QG0,1(M,—) ⇥M Nvir

F
0,0
1,—2

/QG0,1(M,—).

Let
ev : F— æ M

be the evaluation map at the unique marking at Œ œ P
1.

Definition 2.5.1. We define I-function

I(q, z) = 1 +
ÿ

—>0
≠zq—evú

Q

a [F—]vir

eCú(Nvir
F—/QG0,1(M,—))

R

b œ Aú(M)[z±] ¢Q Q[[q—]],

by convention eCú(Cstd) = ≠z, where Cstd is the standard representation of
C

ú. We also define

µ(z) := [zI(q, z) ≠ z]+ œ Aú(M)[z] ¢Q Q[[q—]]

where [. . . ]+ is the truncation by taking only non-negative powers of z. Let

µ—(z) œ Aú(M)[z]

be the coe�cients of q— in µ(z).

2.5.2 Graph space and sheaves
There is a forgetful morphism

QG0,1(M, —) æ M0,1(P1, 1) (2.16)

which is given by projecting a quasimap to its parametrised component, the
graph space QG0,1(M, —) then admits a relative perfect obstruction

(Rfiúf
ú
T

vir)‚ æ L
QC0,1(M,—)/M0,1(P1,1),

which sits in a distinguished triangle

L
M0,1(P1,1) æ EQG0,1(M,—) æ (Rfiúf

ú
T

vir)‚ ≠æ .
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Restricting the sequence above to the fixed component F
—̌
, we obtain that

the morphism
E

f
QG0,1(M,—) æ (Rfiúf

ú
T

vir)‚,f

between fixed parts is an isomorphism and

eCú((Rfiúf
ú
T

vir)‚,mv) = ≠zeCú(Nvir
F—/QG0,1(M,—)),

because the restriction of L
M0,1(P1,1) is a trivial line bundle with the fiber

being the cotangent space of P
1 at Œ, which is not fixed and whose Euler

class is equal to ≠z. Consider now the component

QG0,pŒ(M, —) µ QG0,1(M, —)

of quasimaps, whose marking is over Œ. In other words, this is the fiber of
(2.16) over Œ. Then applying the identification of quasimaps with sheaves,
we obtain

QG0,pŒ(M, —) ≥= M
—̌,u

(S ◊ P
1/SŒ),

such that obstruction theory (RfiúF ú
T

vir)‚
|QG0,pŒ (M,—) matches the relative

Donaldson–Thomas obstruction theory. By the discussion above for all pur-
poses the graph space can be replaced by M

—̌,u
(S ◊ P

1/SŒ). The fixed
component F— µ M

—̌,u
(S ◊ P

1/SŒ) can then be expressed in terms of flags
of sheaves on S by invoking the identifications between flags of sheaves and
C

ú-equivariant sheaves on S ◊ C.

2.5.3 Master space and wall-crossing
For the material discussed in this section we refer the reader to [Zho22].
Here we just glide over the machinery developed there, adjusting some minor
details to our needs.

The space R>0fi{0+, Œ} of ‘-stabilities is divided into chambers, in which
the moduli Q‘

g,N
(M, —) stays the same, and as ‘ crosses the a wall between

chambers, the moduli changes discontinuously. Let ‘0 = 1/d0 be a wall for
a given — œ E�(M,Cohr(S)) and ‘≠, ‘+ be some values that are close to ‘0
from left and right of the wall respectively. Assuming 2g≠2+N+‘0 deg(—) >
0, let

MQ‘0
g,N

(M, —) æ M ÊMg,N

be the master space with the projection to the moduli of curves with cali-
brated tails constructed in [Zho22], the construction is carried over to our
set-up varbatim. The space M ÊMg,N is a P

1-bundle over ÊMg,N , the latter
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is obtained by a series of blow-ups of a moduli space of semistable curves
weighted by degree, Mss

g,N,d
, with total degree d = deg(—). As in GIT case

the following holds.

Theorem 2.5.2. MQ‘0
g,N

(M, —) is a proper Deligne–Mumford stack.

Proof. With Lemma 2.2.15 the proof is exactly the same as in GIT case,
we therefore refer to [Zho22, Section 5].

The master space also carries a perfect obstruction theory, which is ob-
tained in the same way as the one for Q‘

g,N
(M, —). Let

f : MQ‘0
g,N

(M, —) ◊
M ÂMg,N,d

C æ Cohr(S),

fi : MQ‘0
g,N

(M, —) ◊
M ÂMg,N,d

C æ MQ‘0
g,N

(M, —)

be the universal quasimap and the canonical projection, then we have a
relative perfect obstruction theory over M ÊMg,n

„ : E
• = (fiúf

ú
T

vir)‚ æ L
MQ

‘0
g,N (M,—)/M ÂMg,N

,

which is constructed via the same identification as in Proposition 2.4.5.
Using the master space we can establish the following result.

Theorem 2.5.3. Assuming 2g ≠ 2 + N + ‘0 deg(—) > 0, we have

È·m1(“1), . . . , ·mN (“N )Í‘
≠

g,N,— ≠ È·m1(“1), . . . , ·mN (“N )Í‘
+

g,N,—

=
ÿ

kØ1

ÿ

—̨

1
k!

⁄

[Q‘+
g,N+k(M,—Õ)]vir

i=NŸ

i=1
Âmi

i
evú

i (“i) ·
a=kŸ

a=1
evú

N+aµ—a(z)|z=≠ÂN+a

where —̨ runs through all the (k + 1)-tuples of e�ective curve classes

—̨ = (—Õ, —1, . . . , —k),

such that — = —Õ + —1 + · · · + —k and deg(—i) = d0 for all i = 1, . . . , k, and
‘+-stability for the class —Õ is given by L—. The same holds for perverse
quasimap invariants È·m1(“1), . . . , ·mN (“N )Í˘,‘

g,N,—
.

Sketch of the proof. Here we will sketch the proof, for all the details we
refer to [Zho22, Section 6], as the proof in our case is exactly the same as
the one for GIT.

The master space MQ‘0
g,N

(M, —) carries a natural C
ú-action, such that

up to finite coverings the fixed loci are following three types of spaces:
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• Q‘
≠

g,N
(M, —);

• ÂQ‘
+

g,N
(M, —), base change of Q‘

+
g,N

(M, —) from Mg,N,d to ÊMg,N ;

• Y ◊Mk

r
k

i=1 F—i , a finite gerbe over ÂQ‘
+

g,N+k
(M, —Õ) ◊Mk

r
k

i=1 F—i .

Applying the virtual localisation formula and the taking equivariant residue,
we obtain certain relations between the classes associated to the spaces
above. Projecting everything to a point, we get the wall-crossing formula.
All the e�ort goes into the careful construction of the master space and the
analysis of moving and fixed parts of the obstruction theories at fixed loci.
The latter task can be separated into two independent parts by splitting
the restriction of the absolute obstruction theory E

•
MQ|F of the master space

to a fixed locus F (one of the spaces above) into the relative obstruction
theory E

•
|F and the restriction cotangent complex L

M ÂMg,N,d|F of the moduli
of calibrated curves,

L
M ÂMg,N,d|F æ E

•
MQ|F æ E

•
|F ≠æ,

the analysis of L
M ÂMg,N,d|F presented in [Zho22] is completely independent of

what kind of quasimaps one considers, while the analysis of E
•
|F does not use

any special feature of the GIT set-up. For more details we refer the reader
to [Zho22, Section 6].
Remark 2.5.4. In the GIT set-up there are naturally defined maps [W/G] æ
[Cn+1/C

ú], which induce Q‘

g,N
(W/G, —) æ Q‘

g,N
(Pn, d). This allows to give

a more refined class-valued wall-crossing by pushforwarding the classes on
MQ‘0

g,N
(W/G, —) to Q‘

≠
g,N

(Pn, d) instead of a point. In our case this seems to
be less natural. Even though Cohr(S) is Zariski-locally a GIT stack, we do
not have these naturally defined maps, because it is unclear, if line bundles
L—’s are actually ample on any of the GIT loci through which the universal
quasimap factors. Moreover, for di�erent — these loci change.

It is also possible to pushforward the classes to Mg,N instead of Q‘

g,N
(Pn, d).

The problem with this approach is that the projection

Q‘

g,N+k(M, —) æ Mg,N

involves stabilisation of a curve, which implies that Â-classes do not pullback
to Â-classes. Consequently, the wall-crossing formula becomes ine�cient to
state.
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Since our ‘-stability depends on a class —, there are only two univer-
sally defined values - 0+ and Œ, i.e. the values that correspond to stable
quasimaps and stable maps. Let ‘ œ {0+, Œ}, we define

F ‘

g (t(z)) =
Œÿ

N=0

ÿ

—Ø0

q—

N !Èt(Â), . . . , t(Â)Í‘

g,N,— ,

where t(z) œ Hú(M, Q)[[z]] is a generic element, and the unstable terms are
set to be zero. By repeatedly applying Theorem 2.5.3 we obtain.
Corollary 2.5.5. For all g Ø 1 we have

F 0+
g (t(z)) = F Œ

g (t(z) + µ(≠z)).

For g = 0, the same equation holds modulo constant and linear terms in t.
For g = 0 the relation holds only moduli linear terms in t(z), because

the moduli space Q‘
≠

0,1(M, —) is empty, if ‘≠ deg(—) Æ 1. The wall-crossing
formula takes a di�erent form in this case.
Theorem 2.5.6. For ‘ œ ( 1

deg(—) , 1
deg(—)≠1) we have

evú

A
[Q‘

≠
0,1(M, —)]vir

z(z ≠ Â1)

B

= [I(q, z)]zÆ≠2,q— ,

where [. . . ]z≠2,q— means that we take a truncation up to z≠2 and the coe�-
cient of q—.

Proof. See [Zho22, Lemma 7.2.1].

To express the wall-crossing formula above in terms of change of vari-
ables, we do the following. Let {Bi} be a basis of Hú(M, Q) and {Bi} be its
dual basis with respect to intersection pairing. Let

J0+(t(z), q, z) = t(≠z)
z

+ I(q, z)

+
ÿ

—Ø0,NØ0

q—

N !
ÿ

p

BiÈ
Bi

z(z ≠ Â) , t(Â), . . . , t(Â)ÍM,0+

0,1+N,—
,

where unstable terms are set to be zero, and let

JŒ(t(z), q, z) = t(≠z)
z

+ 1

+
ÿ

—Ø0,NØ0

q—

N !
ÿ

p

BiÈ
Bi

z(z ≠ Â) , t(Â), . . . , t(Â)ÍM,Œ
0,1+N,—

,
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then genus-0 case admits more refined wall-crossing formula, which also
incorporates some of the unstable contributions.

Theorem 2.5.7. We have

JŒ(t(z) + µ(≠z)) = J0+(t(z)).

Proof. We again refer to [Zho22, Section 7.4].

2.5.4 Semi-positive targets
I-function.

Using the virtual localisation on the graph space, we can obtain a more
explicit expression for I-functions for semi-positive moduli of sheaves.

Definition 2.5.8. A pair (M,Cohr(S)) is semi-positive, if for all classes
— œ E�(M,Cohr(S)) the following holds

—(det(Tvir)) Ø 0.

The virtual dimension of QG0,1(M, —) is equal to dim(M)+1+—(det(Tvir)).
Therefore by the virtual localisation we can establish the degrees of the
classes involved in the definition of I-function,

≠zevú

Q

a
[F

—̌
]vir

eCú(Nvir
F—̌/QG0,1(M,—))

R

b œ A≠—(det(Tvir))
Cú (M)Q,

where we made the identification Aú
Cú(M) ≥= Aú(M)[z] for a trivial C

ú-action
on M , and Aú

Cú(M)Q is the localised equivariant Chow group. Consider now
the expansion

[zI(q, z) ≠ z]+ = I1(q) + (I0(q) ≠ 1)z + I≠1(q)z2 + I≠2(q)z3 + . . . ,

by the dimension constraint

≠—(det(Tvir)) Ø 0

all terms Ik with k Ø ≠1 therefore vanish for a semi-positive target. Hence
in this case we have

[zI(q, z) ≠ z]+ = I1(q) + (I0(q) ≠ 1)z.

These terms in turn can be given a more explicit expression.
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Proposition 2.5.9. For a semi-positive pair (M,Cohr(S)) the following
holds

(i)
I0(q)≠1 = 1 +

ÿ

— ”=0

ÿ

i

q—È“i, , “iÍ0+
0,—;

(ii)
I1(q) = f0(q) +

ÿ

j

fj(q)Dj ,

where {Dj} is a basis of H2(M, Q), and

f0(q)
I0(q) =

ÿ

— ”=0
q—È[pt], Í0+

0,—

fj(q)
I0(q) =

ÿ

— ”=0

ÿ

j

q—ÈDj , Í0+
0,—.

Proof. The proof is exactly the same as in [CK14, Section 5.5].

An example of a semi-positive target would be a moduli of sheaves on a
del Pezzo surface, e.g. P

2. However, even a pair (P2,Cohr(S)) is not Fano
in the sense of quasimaps, i.e. there exists class a — œ E�(P2,Cohr(S)) for
which

—(det(Tvir)) = 0.

These are just the classes such that c1(—̌) = 0. In fact, for all puncto-
rial Hilbert schemes of del Pezzo surfaces S[n] there are no classes with
—(det(Tvir)) = 1, therefore there is no f0(q) term. Moreover, in the case
of punctorial Hilbert schemes of del Pezzo surfaces we can explicitly deter-
mine the terms of the perverse I-function, I˘

0 and I˘

1. Let us firstly do some
notational preparations, and from now on we assume that M = S[n].

By Corollary 2.2.11 we have an embedding

≠ ˇ(...) : E�(S[n],Coh˘

r(S)) Òæ H1,1(S) ü H2,2(S), (2.17)

here we change the sign of the classes, which amounts to considering classes
of subschemes instead of classes of ideals on threefolds. Using this em-
bedding, we identify — with its image ≠—̌. The class — can therefore be
decomposed as

— = (“, m) œ H1,1(S) ü H2,2(S),

hence
Q[[q—]] = Q[[q“ ]] ¢ Q[[y]], q— = q“ · ym.
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On the side of S[n] the variable y keeps track of multiples of the exceptional
curve class A œ H2(S[n], Z), and the above decomposition corresponds to the
one of H2(S[n], Z) given by Nakajima basis (images of Nakajima operators
applied to classes on S),

H2(S[n], Z) ≥= H2(S, Z) ü Z · A.

More precisely, if � µ S is a curve, then we can define an associated curve
�n µ S[n] given by letting one point move along � and keeping n ≠ 1 other
distinct points fixed. Then �n represents a class in H2(S, Z) µ H2(S[n], Z)
with respect to the identification above. We then define c1(S)n œ H2(S[n], Z)
to be the class associated to a canonical class c1(S) œ H2(S, Z) as described
above.

With the above notation we have the following result, which was kindly
communicated to the author by Georg Oberdieck.

Proposition 2.5.10 (Georg Oberdieck). Assume S is a del Pezzo surface,
then for M = S[n] we have

I˘

0(q) = 1
I˘

1(q) = log(1 + y)c1(S)n.

Proof. By dimension constraints and the fact that there are no “ œ
E�(S) such that “ · c1(S) = 1, the non-zero contributions to the I -function
come only from classes of the form — = (0, m). Let us firstly consider I˘

0. Let
P œ S[n] be a point, then the preimage ev≠1(P ) µ F

—̌
parametrizes stable

pairs supported in U ◊ P
1 where U is a local neighbourhood of the support

of P . We can assume that U is the disjoint union’s of C
2, hence since C

2

carries a symplectic form, the only non-vanishing contributions are therefore
due to m = 0. Hence ÈI˘

0, P Í = 1, which implies that I0 = 1.
We now consider the term I˘

1. With the same argument as above ÈI˘

1, AÍ =
0. Now let us evaluate I˘

1 at the classes in H2(S, Z) µ H2(S[n], Z). By the
previous argument the d ≠ 1 fixed points contribute 1 each, so that

ÈI˘,S
[n]

1 , [�n]Í = ÈI˘,S

1 , [�]Í.

Hence we may assume d = 1. In this case the moduli space F•,(0,m) is
isomorphic to S, parametrizing pairs (F, s) given by I• = OP1

x
æ OP1

x
(D)

where P
1
x = P

1 ◊ x for a point x œ S, and D = m · [Œ]. The local model
of P1,—(S ◊ P

1/S0) near F
—̌

is Symm(P1) ◊ S. The obstruction theory was
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computed in [PT09, Section 4.2]6,

DefI• = H0(OD(D))

ObsI• = H0(OD(D) ¢ ÊS◊P1)‚ = H0(OD(D) ¢ ÊP1)‚ ¢ Ê‚
S|x.

Consider now the C
ú-action on P

1 by t · (x, y) = (tx, y). The coordinate
Y = y/x gets scaled by t · Y = t≠1Y hence has weight ≠z. Let us analyse
the C

ú-equivariant structure the obstruction theory. Firstly,

H0(O(D)|D) = (Y ≠m) ¢ C[Y ]/Y m = CY ≠m ü CY ≠m+1 ü . . . ü CY ≠1,

which therefore has weights z, 2z, . . . , mz as a C-module. Moreover, ÊP1 =
C[Y ]dY , so since dY has weight ≠z we get that H0(O(D)|D ¢ ÊP1) has
weights 0, z, . . . , (m≠1)z, therefore its dual has weights (≠m+1)z, . . . , ≠z, 0.
Let c1 = c1(S), we therefore obtain the following

evú
[F

—̌
]vir

eCú(Nvir) = pSú

3
eCú(Obsmov

I• )
eCú(Defmov

I• ) · pú
Sc1

4

= (≠z + c1) · · · ((≠m + 1)z + c1)
z · 2z · · · mz

· c1

= (≠1)m≠1(m ≠ 1)!zm≠1

m!zm
· c1 + (. . .) · c2

1

= (≠1)m≠1

mz
· c1 + (. . .) · c2

1,

this proves the claim.

We now define
˘ È“1, . . . , “N ÍS

[n]
,‘

g,“
:=

ÿ

m

˘È“1, . . . , “N ÍS
[n]

,‘

g,(“,m)y
m,

then using the wall-crossing formula from Theorem 2.5.3, the string and
divisor equations, one obtains the following result, which specialises to the
result stated in Section 1.4.1 after enumerating the invariants with respect
to classes on S[n] instead of S ◊ C.

Corollary 2.5.11. Assume 2g ≠ 2 + N Ø 0. If S is a del Pezzo surface,
then

˘ È“1, . . . , “N Í0+
g,“

= (1 + y)c1(S)·“ · ˘ È“1, . . . , “N ÍŒ
g,“

.

6The equivariantly correct obstruction theory is given in the latest arXiv version. The
canonical line bundle ÊP1 (D)|D = ÊD is equivariantly not trivial.
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DT/PT correspondence

Using dilaton equation for GW invariants (see [CK20, Corollary 1.5]) one
can restate the wall-crossing formula for g ”= 1 (for g = 1 there is an extra
constant term which we do not want to write down for the clarity of expo-
sition, see [CK20, Corollary 1.5]) as follows

(I0)2g≠2 · F 0+
g (t(z)) = F Œ

g

3
t(z) + I1(q)

I0(q)

4
,

the same holds for the perverse generating series F ˘,‘
g (t(z)). Since the gen-

erating series are related by a change of variable, the above equation is
equivalent to

(I0)2g≠2 · F 0+
g (I0(q)t(z) ≠ I1(q)) = F Œ(t(z)),

therefore perverse and non-perverse generating series are related in the fol-
lowing way

(I0)2g≠2 · F 0+
g (I0(q)t(z) ≠ I1(q)) = (I˘

0)2g≠2 · F ˘,0+
g (I˘

0(q)t(z) ≠ I˘

1(q)),

moving the change of variables to one side we, obtain

(I0)2g≠2

(I˘

0)2g≠2
· F 0+

g

A
I0(q)
I˘

0(q)
·
1
t(z) + I˘

1(q)
2

≠ I1(q)
B

= F ˘,0+
g (t(z)).

Passing from quasimaps to sheaves and establishing the DT/PT correspon-
dence for wall-crossing terms, we would get the DT/PT correspondence for
the relative geometry

S ◊ Cg,N æ Mg,N ,

such that 2g ≠ 2 + N Ø 0 and ch(I)d ”= 0. In particular, DT/PT correspon-
dence relative to three vertical divisors on S ◊ P

1 is reduced to the DT/PT
correspondence of wall-crossing invariants.
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Chapter 3

Quasimaps to a moduli space
of sheaves on a K3 surface

3.1 Surjective cosection
Throughout the chapter we assume S to be a K3 surface. Let F be a sheaf on
S ◊ C flat over a nodal curve C, such that fibers of F have Chern character
v œ Hú(S, Q). We start with some preparations. Consider the Atiyah class

At(F ) œ Ext1(F, F ¢ �1
S◊C),

represented by the canonical exact sequence

0 æ F ¢ �1
S◊C æ P1(F ) æ F æ 0,

where P1(F ) is the sheaf of principle parts. Composing the Atiyah class
with the natural map

�1
S◊C = �1

S � �1
C æ �1

S � ÊC ,

we obtain a class

AtÊ(F ) œ Ext1(F, F ¢ (�1
S � ÊC)).

We then define the Chern character of a sheaf F on S ◊ C for possibly
singular C as follows

chk(F ) := tr
A

(≠1)k

k! AtÊ(F )k

B

œ Hk(·k(�1
S � ÊC)). (3.1)
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If C is smooth, it agrees with the standard definition of the Chern character.
Using the canonical identification H1(ÊC) ≥= C and

·k(�1
S � ÊC) ≥= �k

S � (�k≠1
S

⇥ ÊS),

we get a Künneth’s decomposition of the cohomology

Hk(·k(�1
S � ÊC)) ≥= Hk(�k

S) ü Hk≠1(�k≠1
S

),

therefore
n

Hk(·k(�1
S � ÊC)) ≥= � ¢ H0(C, C) ü � ¢ H2(C, C) ≥= � ü �. (3.2)

With respect to this decomposition above the Chern character ch(F ) has
two components

ch(F ) = (ch(F )f , ch(F )d) œ � ü �.

If C is smooth, it was shown in Lemma 2.2.2 that

(ch(F )f , ch(F )d) = (v, —̌),

where — is the degree of a quasimap associated to F and —̌ is its dual class
in Hú(S, Q), for more details see Section 2.2. We would like to establish the
same result in the case of a singular C. Let

fi : S ◊ C̃ æ S ◊ C

be the normalisation morphism and fiúFi be the restriction of fiúF to its
connected components C̃i of C̃. The above decomposition of the Chern
character then satisfies the following property.

Lemma 3.1.1. Under the identification (3.2) the following holds

ch(F ) = (v,
ÿ

ch(fiúFi)d) œ � ü �.

In other words, if the quasimap associated to F is of degree —, then

ch(F )d = —̌.

Proof. Firstly, there exist canonical maps making the following diagram
commutative

0 fiúF ¢ fiú�1
S◊C

fiúP1(F ) fiúF 0

0 fiúF ¢ �1
S◊C̃

P1(fiúF ) fiúF 0
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where the first row is exact on the left, because Lfiú ≥= F , since1 F is flat over
C. The diagram above implies that the pullback of Atiyah class fiúAt(F ) is
mapped to At(fiúF ) with respect to the map

Ext1(fiúF, fiúF ¢ fiú�1
S◊C) æ Ext1(fiúF, fiúF ¢ �1

S◊C̃
).

The same holds for fiúAtk(F ). Consider now the following commutative
diagram

RHom(F, F ¢ �k

S◊C
) �k

fiúRHom(fiúF, fiúF ¢ fiú�k

S◊C
)

fiúRHom(fiúF, fiúF ¢ �k

S◊C̃
) fiú�k

S◊C̃
·k(�1

S
� ÊC)

such that the first vertical map is the composition

RHom(F, F ¢ �k

S◊C) æ fiúLfiúRHom(F, F ¢ �k

S◊C) =
= fiúRHom(fiúF, fiúF ¢ Lfiú�k

S◊C) æ fiúRHom(fiúF, fiúF ¢ fiú�k

S◊C),

where we used that LfiúF ≥= fiúF . Taking cohomology of the diagram above
and using the exactness of fiú, we can therefore factor the map

Extk(F, F ¢ �k

S◊C) æ Hk(·k(�1
S � ÊC))

as follows

Extk(F, F¢�k

S◊C) æ Extk(fiúF, fiúF¢fiú�k

S◊C) æ Extk(fiúF, fiúF¢�k

S◊C̃
)

æ Hk(�k

S◊C̃
) ≥= Hk(�k

S) ü
n

i

Hk≠1(�k≠1
S

) ¢ H1(Ê
C̃i

)

æ Hk(�k

S) ü Hk≠1(�k≠1
S

) ¢ H1(ÊC) ≥= Hk(·k(�1
S � ÊC)).

Under the natural identifications H1(Ê
C̃i

) ≥= C and H1(ÊC) ≥= C the last
map in the sequence above becomes

Hk(�k

S) ü
n

i

Hk≠1(�k≠1
S

) (id,+)≠≠≠≠æ Hk(�k

S) ü Hk≠1(�k≠1
S

).

1To see that, one can use a standard locally-free resolution for a flat sheaf; these
resolutions are functorial with respect to pullbacks.
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The claim then follows by tracking the powers of Atiyah class Atk(F ) along
the maps above. The fact that

ÿ
ch(fiúFi)d = —̌

follows from the definition of —̌, Section 2.2.

3.1.1 Cosection
By pulling back the classes in

HT 2(S) := H0(·2TS) ü H1(TS) ü H2(OS)

to S ◊ C, we will treat HT 2(S) as classes on S ◊ C. Let

‡i := tr(ú · (≠1)i

i! AtÊ(F )i) : Ext2(F, F ) æ H i+2(·i(�1
S � ÊC))

be the semiregularity map.

Lemma 3.1.2. The following diagram commutes

H2≠k(·kTS) Ext2(F, F )

H i+2(·i(�1
S
� ÊC))

· (≠1)k

k! AtÊ(F )k

Èú,chk+i(F )Í ‡i

Proof. If i = 0, then ‡0 = tr and the commutativity is implied by the
following statement

ÈŸ, tr(AtÊ(F )k))Í = trÈŸ, AtÊ(F )kÍ,

whose proof is presented in [BF03, Proposition 4.2] for k = 1 and is the
same for other values of k.

If i = 1, then for the commutativity of the digram we have to prove that

ÈŸ, tr(AtÊ(F )k+1

k + 1! )Í = tr(ÈŸ,
Atk

Ê(F ))
k! Í · AtÊ(F )).

If Ÿ œ H2(OS), the equality follows trivially, since there is no contraction.
The case of Ÿ œ H1(TS) is treated in [BF03, Proposition 4.2]. For Ÿ œ
H0(·2TS) we use the derivation property for contraction with a 2-vector
field

È›, At3
Ê(F )Í = 3È›, At2

Ê(F )Í · AtÊ(F ),
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which can be checked locally on a 2-vector field of the form V · W .

Due to the decomposition

H i(·i(�1
S � ÊC)) ≥= H i(�i

S) ü H i≠1(�i≠1
S

),

there are two ways to contract a class in H i(·i(�1
S
� ÊC)) with a class in

H2≠k(·kTS): either via the first component of the decomposition above or
via the second. Hence due to the wedge degree or the cohomological degree,
only one component of H i(·i(�1

S
�ÊC)) pairs non-trivially with H2≠k(·kTS)

for a fixed k. It is not di�cult to check that contraction with the Chern
character

H2≠k(·kTS) È≠,chk+i(F )Í≠≠≠≠≠≠≠≠æ H i+2(·i(�1
S � ÊC))

is therefore equal to È≠, ch(F )fÍ for i = 0 and to È≠, ch(F )dÍ for i = 1.
Moreover, using the identification

H i+2(·i(�1
S � ÊC)) ≥= H2(OS),

contraction È≠, ch(F )d/fÍ with classes on S ◊C is identified with contraction
with classes on S.

Proposition 3.1.3. Assume

ch(F )f · ch(F )d ”= 0,

then there exists Ÿ œ HT 2(S), such that

ÈŸ, ch(F )fÍ = 0 and ÈŸ, ch(F )dÍ ”= 0.

Hence the restriction of the semiregularity map to the traceless part

‡1 : Ext2(F, F )0 æ H3(�1
S � ÊC)

is non-zero.

Proof. Using a symplectic form on S, we have the following identifica-
tions

·2TS
≥= OS , TS

≥= �1
S , OS

≥= �2
S .

After applying the identifications and taking cohomology, the pairing

HT 2(S) ¢ H�0(S) æ H2(OS), (3.3)
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which is given by contraction, becomes the intersection pairing

H�0(S) ¢ H�0(S) æ H2(�2
S),

where H�0(S) =
m

H i(�i). In particular, the pairing (3.3) is non-degenerate.
Hence ch(F )‹

d and ch(F )‹
f are distinct, if and only if ch(F )d is not a multi-

ple of ch(F )f , therefore there exists a class Ÿ œ HT 2(S) with the properties
stated in the lemma. By Lemma 3.1.2 and the discussion afterwards the
property ÈŸ, ch(F )fÍ = 0 implies that

Ÿ · exp(≠AtÊ(F ) œ Ext2(F, F )0,

while the property ÈŸ, ch(F )dÍ = 0 implies that the restriction of the semireg-
ularity map to Ext2(F, F )0 is non-zero, as it is non-zero when applied to the
element Ÿ · exp(≠AtÊ(F )).

Remark 3.1.4. From the point of view of quasimaps the condition

ch(F )f · ch(F )d ”= 0,

is equivalent to the fact, that the quasimap f : C æ Cohr(S) associated to
F is not constant.

A geometric interpretation of the above result is the following one. With
respect to Hochschild–Kostant–Rosenberg (HKR) isomorphism

HT 2(S) ≥= HH2(S)

the space HT 2(S) parametrises first-order non-commutative deformations of
S, i.e. deformations of Db(S). Given a first-order deformation Ÿ œ HT 2(S),
the unique horizontal lift of ch(F )d/f relative to some kind of Gauss-Manin
connection associated to Ÿ should stay Hodge, if and only if ÈŸ, ch(F )d/fÍ =
0. On the other hand, ÈŸ, exp(≠AtÊ(F )) gives obstruction for deforming
F on S ◊ C in direction Ÿ. Therefore by Lemma 3.1.2 the semiregularity
map ‡i relates obstruction to deform F along Ÿ with the obstruction that
ch(F )d/f stays Hodge. Proposition 3.1.3 states that there exists a deforma-
tion Ÿ œ HT 2(S), for which ch(F )f stays Hodge, but ch(F )d does not. Form
the point of view of quasimaps means that the moduli of stable sheaves
M on S deforms along Ÿ, but the quasimap associated to F does not, if
its degree is non-zero. For example, let S be a K3 surface associated to a
cubic 4-fold Y , such that the Fano variety of lines F (Y ) is isomorphic to
S[2]. Then if we deform Y away from the Hasset divisor, F (Y ) deforms
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along, but a point class of S does not. Therefore such deformation of Y
will gives us the first-order non-commutative deformation Ÿ œ HT 2(S) of S,
such that v = (1, 0, ≠2) stays Hodge, but —̌ = (0, 0, k) does not. Note that
—̌ = (0, 0, k) corresponds to multiplies of the exceptional curve class in S[2].
Indeed there are no commutative deformations of S that will make (0, 0, k)
non-Hodge, because the exceptional divisor deforms along with Hilb2(S).

Applying the identification of Q‘

g,N
(M, —) with the relative moduli stack

of stable sheaves M ‘

v,—̌,u
(S ◊ Cg,N /Mg,N ) and of the corresponding obstruc-

tions theories, Proposition 2.4.5, we construct a surjective cosection as fol-
lows. Let

E
• := (Homfi(F, F)0[1])‚,

then there exists a global relative semiregularity map

sr : (E•)‚ æ R3fiú(�1
S � ÊC/Mg,n

)[≠1],

and since
R3fiú(�1

S � ÊC/Mg,N
) ≥= H2(OS) ¢ OQ

‘
g,N (M,—),

we obtain a cosection of the obstruction theory

sr : (E•)‚ æ H2(OS) ¢ OQ
‘
g,N (M,—)[≠1] ≥= OQ

‘
g,N (M,—)[≠1].

Corollary 3.1.5. Assuming — ”= 0, the semiregularity map sr is surjective.
Proof. Under the given assumption the surjectivity of sr follows from

Proposition 3.1.3 and Lemma 3.1.1.

Consider now the composition

Ext1
C(�C ,OC(≠

ÿ
pi)) æ Ext2(F, F )0

‡1≠æ H3(�1
S � ÊC), (3.4)

where the first map defined by the following composition

Ext1
C(�C ,OC(≠

ÿ
pi)) æ Ext1

C(ÊC ,OC) ·≠AtÊ(F )≠≠≠≠≠≠æ Ext2(F, F )0.

The composition (3.4) is zero by the same arguments as the ones which are
presented in Lemma 3.1.2. The semiregularity map therefore descends to
the absolute obstruction theory

E
•
abs E

•
LMg,n [1]

OQ
‘
g,N (M,—)[≠1]

sr
sr

so the results of [KL13] apply.
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3.2 Reduced wall-crossing
In what follows we use Kiem–Li construction of reduced classes via local-
isation by cosection [KL13]. The cosection of the obstruction theory of
the master space MQ‘0

g,N
(M, —) is constructed in the similar way as for

Q‘

g,N
(M, —) by viewing it as a relative moduli space of sheaves. Since we

need virtual localisation for the proof of the wall-crossing formulas, we refer
to [CKL17] for the virtual torus localisation of Kiem–Li reduced classes.

From now on, by a virtual fundamental class we always will mean a re-
duced virtual fundamental class, except for — = 0, since in this case the stan-
dard virtual fundamental class does not vanish. The arguments presented
in this section apply both to standards invariants È·m1(“1), . . . , ·mN (“N )Í‘

g,—

and perverse invariants È·m1(“1), . . . , ·mn(“N )Í˘,‘

g,—
, if M = S[n]. We therefore

state and prove everything only for the standard invariants.
We start with derivation of a more explicit formula for wall-crossing

invariants µ—(z), Definition 2.5.1, by using localisation on a graph space
GQ0,1(M). As it is explained in Section 2.5.1, the C

ú-fixed components
of GQ0,1(M) are identified with certain products, the reduced class of a
product splits as a product of reduced and non-reduced classes on its factors.
Assuming the marking is over Œ the virtual class is therefore non-zero only
for F

—̌
and F 0,0

1,—
. Now let

“ipŒ := “i ⇥ pŒ œ Hú
Cú(M ◊ P

1),

where pŒ œ Hú
Cú(P1) is the equivariant class of Œ œ P

1. Then by the virtual
localisation formula we have the following identity

ÿ
“i

⁄

[GQ0,1(M)]vir
“ipŒ =

ÿ
“i

⁄

[F—̌ ]vir

≠zev
ú“i

eCú(Nvir)

+
ÿ

“iÈ“i, ≠z ≠ Â
Í0+
0,— , (3.5)

where we used that

eCú(Nvir
F

0,0
1,— /GQ0,1(M)) = z(z + Â)

and
pŒ|0 = 0, pŒ|Œ = ≠z,

which also implies that only fixed components with markings over Œ con-
tribute to the integral 3.5. The virtual dimension of GQ0,1(M) is dim(M)+2,
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the virtual dimension of Q0+
0,2(M, —) is dim(M) and the degree of “ipŒ is at

most dim(M) + 1, hence the left-hand side of (3.5) is zero and the second
term on the right-hand side is non-zero only for “i = [pt], we therefore get
that

≠zevú

Q

a
[F

—̌
]vir

eCú(Nvir
F—̌/QG0,1(M,—))

R

b =
z

È[pt], Í0+
0,— œ Aú(M)[z±],

in particular, we obtain that

µ—(z) = È[pt], Í0+
0,— œ Aú(M)[z]. (3.6)

Theorem 3.2.1. Assuming 2g ≠ 2 + N + ‘0 deg(—) > 0, we have

È·m1(“1), . . . , ·mn(“N )Í‘≠
g,—

≠ È·m1(“1), . . . , ·mN (“N )Í‘+
g,—

= È[pt], Í0+
0,— · È·m1(“1), . . . , ·mN (“N ), Íg,0,

if deg(—) = d0, and

È·m1(“1), . . . , ·mN (“N )Í‘≠
g,—

= È·m1(“1), . . . , ·mN (“N )Í‘+
g,—

otherwise.

Sketch of the proof. As in the case of Theorem 2.5.3 we have to refer
mostly to [Zho22, Section 6]. The di�erence with is that we use reduced
classes now.

The fixed components of the master space which contribute to the wall-
crossing formula are of the form (up to some finite gerby structure and finite
coverings)

ÂQ‘
+

g,N+k(M, —Õ) ◊Mk

kŸ

i=1
F—i ,

where — = —Õ + —1 + · · · + —k and deg(—i) = d0. Recall that ÂQ‘
+

g,N+k
(M, —Õ)

is just a base change of Q‘
+

g,N
(M, —) from Mg,N to ÊMg,N,d, where the latter

is the moduli space of curves with entangled tails. The reduced class of a
product splits as a product of reduced and non-reduced classes on its factors,
therefore by Corollary 3.1.5 and [KL13] it vanishes, unless —Õ = 0 and k = 1,
in which case

ÂQ‘
+

g,N+1(M, 0) = QŒ
g,N+1(M, 0) = Mg,N+1(M, 0),
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then using the explicit expression of µ—(z) from (3.6) and the analysis pre-
sented in [Zho22, Section 7], we get that contribution of this component to
the wall-crossing is

È[pt], Í0+
0,— · È·m1(“1), . . . , ·mN (“N ), ÍŒ

g,0,

this concludes the argument.

Corollary 3.2.2. For all g Ø 1 we have

F 0+
g (t(z)) = F Œ

g (t(z)) + Fwall(t(z))

where
Fwall(t(z)) = µ(q) ·

A Œÿ

n=0

1
N !Èt(Â), . . . , t(Â), ÍŒ

g,N+1,0

B

and
µ(q) =

ÿ

—>0
È[pt], Í0+

0,—q—.

For g = 0, the equation holds modulo constant and linear terms in t.

There are invariants that are not covered by the results above and of
great interest for us: those of a fixed genus-1 curve. We deal with them
now. Let E be a smooth genus-1 curve and Q‘

E/E
(M, —) be the fiber of

Q‘

1,0(M, —) æ M1,0

over the stacky point [E]/E œ M1,0. In other words, Q‘

E/E
(M, —) is the

moduli space of ‘-stable quasimaps, whose stabilisation of the domain is
equal to E, and such that maps are considered up translations of E (no
other automorphisms of E).

Theorem 3.2.3. Assuming — ”= 0, we have
⁄

[Q‘≠
E/E

(M,—)]vir
1 =

⁄

[Q‘+
E/E

(M,—)]vir
1 + ‰(M)È[pt], Í0+

0,—,

if deg(—) = d0, and
⁄

[Q‘≠
E/E

(M,—)]vir
1 =

⁄

[Q‘+
E/E

(M,—)]vir
1

otherwise.
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Sketch of the proof. As in Theorem 3.2.1 the only case when the contri-
bution from the wall-crossing components is non-zero is the one of —Õ = 0
and k = 1. In this case

ÂQ‘
+

(E,0)(M, 0) ≥= M,

and the obstruction bundle is given by the tangent bundle TM . Hence the
virtual fundamental class is ‰(M)[pt], then by (3.6) the wall-crossing term
is

‰(M)È[pt], Í0+
0,—,

this concludes the argument.

3.3 Applications
3.3.1 Enumerative geometry of S[n]

Genus-0 invariants

Let us firstly consider genus-0 3-point quasimap invariants of S[n]. This case
is particularly nice, because the moduli of P

1 with 3 marked points is just a
point, hence by fixing markings we get

Q0+
0,3(S[n], —)˘ ≥= P

n,—̌
(S ◊ P

1/S0,1,Œ). (3.7)

Moreover, by Theorem 3.2.1 there is no wall-crossing, therefore

È“1, “2, “3Í˘,S
[n]

,0+

0,—
= È“1, “2, “3ÍS

[n]
,Œ

0,—
.

Definition 3.3.1. We define

È“1, ..., “N | ·̃0(“̄), ..., ·̃0(“̄N Õ)ÍS◊C

v,—̌
œ Q

to be DT invariants associated to the moduli space of sheaves Mv,—̌,u
(S ◊

C/Sx) (see Definition 2.10). On the left we put relative primary insertions
and on the right the absolute primary ones. Since the moduli spaces can be
identified for di�erent choices of u œ K0(S), we drop u from the notation of
the invariants. In rank 1 we add ”˘” in the case of PT invariants.

Applying the identification (3.7), we obtain the following result, which
confirms the conjecture proposed in [Obe19] after applying PT/GW of [Obeb].

Corollary 3.3.2.

È“1, “2, “3ÍS
[n]

,Œ
0,—

= È“1, “2, “3Í˘,S◊P1

n,—̌
.
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More generally, the results above can be restated for relative geometries
of the type S ◊ Cg,N æ Mg,N such that 2g ≠ 2 + N > 0. The marked
points play the role of relative divisors in the sense of relative Donaldson–
Thomas theory. In this case, the wall-crossing terms are also zero for primary
invariants.

Genus-1 invariants, Igusa cusp form conjecture

Let us firstly establish a more precise relation between — and —̌. Given a
generic K3 surface S and a elliptic curve E, let

E�(S) = È—hÍ, —2
h = 2h ≠ 2.

Then for n > 1, we have

E�(S[n]) = ÈC—h
, AÍ,

where C—h
and A are the primitive curves classes which are dual to a multiple

of L1 and to a multiple of L0 respectively with respect to the intersection
pairing on S[n]. The latter is also the exceptional curve class coming from
the Hilbert–Chow morphisms S[n] æ S(n).

Using Corollary 2.2.11, we obtain a correspondence between degrees of
quasimaps and classes on the threefold S ◊ E,

(n, ≠—̌) : E�(S[n],Coh˘

r(S)) Òæ E�(S ◊ E) ü H6(S ◊ E),

such that for n > 1 its restriction to E�(S[n]) µ E�(S[n],Cohr(S)) is given
by

k1C—h
+ k2A ‘æ ((n, k1—h), k2),

and for n = 1 the class —h goes to ((—h, 1), 0). Note that we changed the sign
of classes on S ◊E, which amounts to considering the class of the subscheme
rather than its ideal. A general class in E�(S[n],Cohr(S)) can therefore be
identified with k1C—h

+ k2A for possibly negative k2.
By Corollary 2.3.7 we have the following identification of moduli spaces

Q0+
E/E

(S[n], C—h
+ kA)˘ ≥= [P(n,—h),k(S ◊ E)/E],

such that the natural obstruction theories match. As before the subscript
notation of the moduli on the left indicates that we consider maps up to
translations of E, for the same reason we take the quotient by E on the left.
On the other hand,

QŒ
E/E

(S[n], C—h
+ kA)˘ = ME/E(S[n], C—h

+ kA).
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Consider now the following two generating series

PT(p, q, q̃) :=
ÿ

nØ0

ÿ

hØ0

ÿ

kœZ

pkqh≠1q̃n≠1
⁄

[P(n,—h),k(S◊E)/E]vir
1

GW(p, q, q̃) :=
ÿ

n>0

ÿ

hØ0

ÿ

kØ0
pkqh≠1q̃n≠1

⁄

[ME/E(S[n],C—h
+kA)]vir

1.

The series are well-defined, because (S, —) and (SÕ, —Õ) are deformation equiv-
alent, if and only if

—2 = —Õ2 and div(—) = div(—Õ),

where div(—) is the divisibility of the class, in our case —h’s are primitive by
definition. In [OP18] it was proven that

PT(p, q, q̃) = 1
≠‰10(p, q, q̃) ,

where ‰10(p, q, q̃) is the Igusa cusp form, hence the name of the conjecture.
By the discussion above, we can view both series as generating series of
quasimaps for ‘ œ {0+, Œ}. Using Theorem 3.2.3, we obtain

PT(p, q, q̃) = GW(p, q, q̃)

+
ÿ

nØ0

ÿ

hØ0

ÿ

kœZ

pkqh≠1q̃n≠1‰(S[n])È[pt], Í˘,S
[n]

,0+

C—h
+kA

.

Remark 3.3.3. The e�ective quasimap cone E�(S[n],Cohr(S)) is strictly big-
ger than the e�ective cone E�(S[n]). For a class, which is not in E�(S[n]), the
moduli space of Œ-stable quasimaps will be just empty. Nevertheless, the
wall-crossing formula still applies but with zero contribution from ‘ = Œ.

The invariants È[pt], Í˘,S
[n]

,0+

C—h
+kA

are just relative rubber PT invariants on
S ◊ P

1. These are invariants associated to the moduli of stable pairs over
S ◊ P

1 relative to two vertical divisors S0,Œ µ S ◊ P
1 up to the rescaling

C
ú-action coming from P

1-factor which fixes S0,Œ. These invariants can be
re-expressed as standard relative PT invariants with absolute insertions as
follows

È[pt], Í˘,S
[n]

,0+

C—h
+kA

= È[pt] | ·̃0(D ⇥ [Ê])Í˘,S◊P1

(n,—h),k,

where D œ H2(S, Q) is some class such that D · —h = 1, and Ê œ Hú(P1, Z)
is the point class. We will prove the above rigidification formula in Lemma
3.3.6 for a general moduli of sheaves M .
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The wall-crossing invariants can also be given a di�erent and more sheaf-
theoretic interpretation as virtual Euler numbers of Quot schemes, as it is
explained in [Obec]. In the same paper the wall-crossing invariants are also
explicitly computed for S[n]. Therefore we obtain the following corollary,
which completes the proof of the Igusa cusp conjecture.
Corollary 3.3.4.

PT(p, q, q̃) = GW(p, q, q̃) + 1
F 2� · 1

q̃

Ÿ

nØ1

1
(1 ≠ (q̃ · G)n)24 .

For the definition of the generating series on the right we refer to [OP16,
Section 2].

3.3.2 Higher-rank DT invariants
Let M be a smooth projective moduli of sheaves on a K3 surface in a class
v satisfying the assumptions of Theorem 2.2.17. The moduli space M is
deformation equivalent to a punctorial Hilbert scheme S[n], where 2n =
dim(M). Therefore Gromov–Witten theory of M is equivalent to the one of
S[n]. Applying quasimap wall-crossing both to M and to S[n], we can express
higher-rank DT invariants of a threefold K3 ◊ C in terms of rank-one DT
invariants and corresponding I-functions.

K3 ◊ P
1

Let us firstly consider invariants on S ◊ P
1 relative to S0,1,Œ. As previously

by fixing the markings we obtain

Q0+
0,3(M, —) ≥= Mv,—,u(S ◊ P

1/S0,1,Œ).

Moreover, as in the case of S[n] there is no wall-crossing by Theorem 3.2.1,
therefore

È“1, “2, “3ÍM,0+

0,—
= È“1, “2, “3ÍM,Œ

0,—
.

We deform (M, —) to (S[n], —), keeping — as a (1,1)-class and identifying
cohomologies via the deformation Hú(M, Q) ≥= Hú(S[n], Q). Under these
identifications we have

È“1, “2, “3ÍM,0+

0,—
= È“1, “2, “3ÍM,Œ

0,—

= È“1, “2, “3ÍS
[n]

,Œ
0,—

= È“1, “2, “3ÍS
[n]

,0+

0,—
. (3.8)

Passing from quasimaps to sheaves and using (3.8), we obtain the following
result.
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Corollary 3.3.5. Given a deformation of (M, —) to (S[n], —) we have

È“1, “2, “3ÍS◊P1

v,—̌
= È“1, “2, “3ÍS◊P1

n,—̌
.

More generally, the result above can be restated for relative geometries
of the type S ◊ Cg,N æ Mg,N such that 2g ≠ 2 + N > 0.

K3 ◊ E

Consider now S ◊ E for an elliptic curve E. Applying the same procedure
as for S ◊ P

1, we obtain
⁄

[Mv,—̌,u(S◊E)/E]vir
1 =

⁄

[Pn,—̌(S◊E)/E]vir
1

+ ‰(S[n])
1
È[pt], ÍS

[n]
,0+

0,—
≠ È[pt], ÍM,0+

0,—

2
.

Now we express the wall-crossing invariants in terms of DT invariants with
relative insertions by a standard rigidification-of-rubber argument.

Lemma 3.3.6. Given a class D œ H2(S, Q), such that c1(—̌) · D = 1, then

È[pt], ÍM,0+

0,—
= È[pt], | ·̃0(D ⇥ Ê)ÍS◊P1

v,—̌
.

Proof. There exists a map

p : Mv,—̌,u
(S ◊ P

1/S0,Œ) æ Q0,2(M, —)

which is given by associating to a sheaf the corresponding quasimap and
contracting unstable components. Let M(P1,0,Œ) be the moduli of expanded
degenerations of P

1 at 0 and Œ, then the obstruction theory of Q0,2(M, —)
relative to M0,2 pullbacks to the obstruction theory of Mv,—̌,u

(S ◊ P
1/S0,Œ)

relative to M(P1,0,Œ),

Homfi(F, F)0[1] = púHomfī(F̄, F̄)0[1].

In particular, pú[Mv,—̌,u
(S ◊ P

1/S0,Œ)]vir = [Q0,2(M, —)]vir. Consider now
the following square

S ◊ C(P1,0,Œ) ◊M(P1,0,Œ)
Mv,—̌,u

(S ◊ P
1/S0,Œ) S ◊ C0,2 ◊M0,2 Q0,2(M, —)

Mv,—̌,u
(S ◊ P

1/S0,Œ) Q0,2(M, —)
fi

fl

fī

p

92



Let

ÿ : S ◊ Mv,—̌,u
(S ◊ P

1/S0,Œ) Òæ S ◊C(P1,0,Œ) ◊M(P1,0,Œ)
Mv,—̌,u

(S ◊ P
1/S0,Œ)

be the inclusion of the fiber over 1 œ P
1. The composition fl ¶ ÿ is an isomor-

phism. Indeed, S ◊ C can be identified with some expended degeneration
P

1[k0, kŒ] by sending p œ C to 1 œ P
1. Now given (x, p) œ S ◊ C and a

sheaf F on S ◊ C, we send ((x, p), F̄ ) to (x, F ), where F is sheaf on the
corresponding expanded degeneration P

1[k0, kŒ]. This defines the inverse
of fl ¶ ÿ. Then given a class D œ H2(S, Q),

púfiú(ch2(F) · pú
S(D) · pú

P1(Ê) fl fiú[Mv,—̌,u
(S ◊ P

1/S0,Œ)]vir)

= fīúflúÿú(ÿú(ch2(F) · pú
S(D)) fl fiú[Mv,—̌,u

(S ◊ P
1/S0,Œ)]vir)

= fīú(ch2(F̄) · pú
S(D) fl fīú[Q0,2(M, —)]vir)

= (c1(—̌) · D)[Q0,2(M, —)]vir = [Q0,2(M, —)]vir.

After feeding the virtual class with the relative insertions we obtain the
claim of the lemma.

By degenerating P
1 to P

1 fi P
1 and applying degeneration formula we

obtain
È[pt], | ·̃0(D ⇥ Ê) |ÍS◊P1

v,—̌
= È[pt] | ·̃0(D ⇥ Ê)ÍS◊P1

v,—̌
.

Note that we treat sheaves as quasimaps and therefore the stability of
sheaves is the one of quasimaps, the rest goes as in the rank-one case.
Putting everything together, we get the following wall-crossing expression
for higher-rank DT invariants.

Corollary 3.3.7.⁄

[Mv,—̌,u(S◊E)/E]vir
1 =

⁄

[Pn,—̌(S◊E)/E]vir
1

+ ‰(S[n])
1
È[pt] | ·̃0(D ⇥ Ê)ÍS◊P1

n,—̌
≠ È[pt] | ·̃0(D ⇥ Ê)ÍS◊P1

v,—̌

2
.

Using the same argument as in Lemma 3.3.6, we also get the following
rigidification of the genus-1 invariant

⁄

[Mv,—̌,u(S◊E)/E]vir
1 = È·̃0(D ⇥ Ê)ÍS◊E

v,—̌
,
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then by degenerating E to E fi P
1 and applying the degeneration formula to

the invariants È·̃0(D ⇥ Ê)ÍS◊E

v,—̌
we obtain

⁄

[Mv,—̌,u(S◊E)/E]vir
1 = È | ·̃0(D ⇥ Ê)ÍS◊E

v,—̌
+ ‰(M)È[pt] | ·̃0(D ⇥ Ê)ÍS◊P1

v,—̌
,

the second term on the right is the wall-crossing term, therefore

È | ·̃0(D ⇥ Ê)ÍS◊E

v,—̌
= È | ·̃0(D ⇥ Ê)ÍS◊E

n,—̌
.

Using the Igusa cusp conjecture, we therefore can explicitly express these
higher-rank relative DT invariants. Using the results of [Obec], we can also
express the wall-crossing invariants in terms of virtual Euler numbers of
Quot schemes.

By Lemma 2.2.18 the higher-rank invariants associated to the moduli
space Mv,—̌,u

(S ◊ C) can be related to those of the moduli space of sheaves
with a fixed determinant Mv,—̌,L

(S ◊ C). In particular, we obtain
⁄

[Mv,—̌,L(S◊E)/E]vir
1 =

⁄

[Mv,—̌,u(S◊E)/E]vir
rk(v)2.

Remark 3.3.8. Recall that there are some limitations for the above results
due to the assumptions of Theorem 2.2.17 and Proposition 5.1.4. An ideal
example for which the above correspondence between higher-rank and rank-
one invariants holds is the invariants that arise from the moduli of sheaves
in the class v = (2, –, 2k + 1) for a polarisation such that deg(–) is odd
(or a generic polarisation that is close to a polarisation for which deg(–) is
odd). Firstly, rk(v) and deg(v) are coprime, therefore there are no strictly
slope semistable sheaves. For those k for which the expected dimension of
the moduli is positive, the moduli is non-empty, and there exists a class
u = [OS ] ≠ k[Opt] œ K0(S) that satisfies ‰(v · u) = 1. Moreover, Proposition
5.1.4 holds in the rank-two case. Therefore the moduli Mv,—̌,u

(S ◊ C) is the
moduli of all stable sheaves for a suitable polarisation. More specifically,
such set-up can be arranged on an elliptic K3 surface.

3.3.3 DT/PT correspondence
Using the wall-crossing for the standard pair (S[n],Cohr(S)) and the perverse
pair (S[n],Coh˘

r(S)), we also can relate rank-one PT invariants to rank-one
DT invariants. Unlike for standard virtual fundamental classes, in the re-
duced case we really have the equivalence of two theories by Corollary 3.2.1,

DT(S ◊ Cg,N /Mg,N ) = PT(S ◊ Cg,N /Mg,N ),
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for a relative geometry
S ◊ Cg,N æ Mg,N ,

where 2g ≠ 2 + N > 0. The wall-crossing terms are zero on both sides,
because from quasimap point-of-view we consider only primary invariants.
In particular, we obtain that

DT(S ◊ P
1/S0,1,Œ) = PT(S ◊ P

1/S0,1,Œ).

The equivalence of two theories also holds for S ◊ E, it was shown in [OS19,
Theorem 3] and [Obe18].
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Chapter 4

Gromov–Witten/Hurwitz
wall-crossing

4.1 The moduli problem
Let X be a smooth projective variety, (C, x) be a twisted1 marked nodal
curve and P be a possibly disconnected orbifold nodal curve.

Definition 4.1.1. For a map

f = fX ◊ fC : P æ X ◊ C,

the data (P,C, x, f) is called a twisted pre-admissible map, if

• fC is étale over marked points and nodes;

• fC is a representable;

• f is non-constant on each connected component.

We will refer to P and C as source and target curves, respectively. Note
that by the first two conditions of pre-admissibility, P itself must be a twisted
nodal curve with orbifold points over nodes and marked points of C.

Consider now the following complex

RfCú[fú
CLC æ LP] œ Db(C),

1By a twisted nodal curve we will always mean a balanced twisted nodal curve.
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which is supported at finitely many points of the non-stacky smooth locus,
which we call branching points. They arise either due to ramification points
or contracted components of the map fC. Following [FP02], to the complex
above we can associate a e�ective Cartier divisor

br(f) œ Div(C)

by taking the support of the complex weighted by its Euler characteristics.
This divisor will be referred to as branching divisor.

Let us give a more explicit expression for the branching divisor. Let
P¶ ™ P be the maximal subcurve of P which contracted by the map fC. Let
P• ™ P be the complement of P¶, i.e. the maximal subcurve which is not
contracted by the map fC. By ÂP• we denote its normalisation at the nodes
which are mapped into a regular locus of C. Note that the restriction of fC
to ÂP• is a ramified cover, the branching divisor of which is therefore given
by points of ramifications.

By ÂP¶,i we denote the connected components of the normalisation ÂP¶
and by pi œ C their images in C. Finally, let N µ P be the locus of nodal
points which are mapped into regular locus of C. The branching divisor
br(f) then has the following explicit expression.

Lemma 4.1.2. With the notation from above we have

br(f) = br(f|ÂP•
) +

ÿ

i

(2g(ÂP¶,i) ≠ 2)[pi] + 2fú(N).

Proof. By the definition of twisted pre-admissibility, all the branching
takes place away from orbifold points. We therefore have to determine what
are the contributions of contracted components (which are schemes) to the
branching divisor.

Given a nodal curve C and its normalisation v : ÂC æ C, let NC µ C
be the singular locus of C. Recall that LC

≥= �C , we therefore have the
following sequence

0 æ ONC æ LC æ vúLÂC æ 0, (4.1)

which, in particular, implies that

‰(LC) = ‰(ÊC).

With the sequence (4.1) the proof of the claim is the same as in [FP02], the
di�erence is that we use (4.1) instead of [FP02, (20)].
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Remark 4.1.3. The reason we use LC instead of ÊC is that fiúÊC
≥= ÊC, where

fi : C æ C is the projection to the coarse moduli space. Hence ÊC does not
see non-étalness of fi. Moreover, it is unclear, if a map fú

CÊC æ ÊP exists at
all in general.

We fix L œ Pic(X), an ample line bundle on X, such that for all e�ective
curve classes “ œ H2(X, Z),

deg(“) = — · c1(L) ∫ 0.

Let (P,C, x, f) be a twisted pre-admissible map. For a point p œ C, let

fúLp := fúL|f≠1(p),

we set deg(fúLp) = 0, if f≠1(p) is 0-dimensional. For a component CÕ ™ C,
let

fúL|CÕ := fúL|f≠1(CÕ).

Recall that a rational tail of a curve C is a component isomorphic to P
1

with one special point (a node or a marked point). A rational bridge is a
component isomorphic to P

1 with two special points.

Definition 4.1.4. Let ‘ œ RÆ0 fi {≠Œ}. A twisted pre-admissible map f is
twisted ‘-admissible, if

(i) for all points p œ C,

multp(br(f)) + deg(fúLp) Æ e≠1/‘;

(ii) for all rational tails T ™ (C, x),

deg(br(f)|T ) + deg(fúL|T ) > e≠1/‘;

(iii)
|Aut(f)| < Œ.

Lemma 4.1.5. The condition of twisted ‘-admissability is an open condi-
tion.

Proof. The conditions of twisted ‘-admissibility are constructable. Hence
we can use the valuative criteria for openness, i.e. we need to show that if
a pre-admissible map

(P,C, x, f) œ M(X ◊ Ctw
g,N /Mtw

g,N , (“, n))(R)
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is ‘-admissible at the closed fiber of a discrete valuation ring R with fraction
field K, then it is ‘-admissible at the generic fiber. In fact, each of conditions
of ‘-admissibility is an open condition. For example, let

T ™ (C, x)

a family of curves such that in the generic fiber T| Spec(K) is a rational tail
that does not satisfy the condition (ii). Then the central fiber T| Spec(C) of
T will be a tree of rational curves, whose rational tails don not satisfy the
condition (ii), because the degree of both br(f) and fúL can only decrease
on rational tails of T| Spec(C). Here we need to use that br(f) is defined for
families of pre-admissible twisted maps to conclude that the degree of br(f)
is constant in families.

A family of twisted ‘-admissable maps over a base scheme B is given by
two families of twisted B-curves P and (C, x) and a B-map

f = fX ◊ fC : P æ X ◊ (C, x),

whose fibers over geometric points of B are ‘-admissable maps. An isomor-
phism of two families

� = („1, „2) : (P,C, x, f) ≥= (PÕ,CÕ, x
Õ, f Õ)

is given by the data of isomorphisms of the source and target curves

(„1, „2) œ IsomB(P,PÕ) ◊ IsomB((C, x), (CÕ, x
Õ)),

which commute with the maps f and f Õ,

f Õ ¶ „1 ≥= „2 ¶ f.

Definition 4.1.6. Given an element

— = (“, m) œ H2(X, Z) ü Z,

we say that a twisted ‘-admissible map is of degree — to X(n), of genus g
with N markings, if

• f is of degree (“, n) and deg(br(f)) = m;

• g(C) = g and |x| = N .
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We define

Adm‘

g,N (X(n), —)tw : (Sch/C)¶ æ (Grpd)
S ‘æ {families of ‘-admissable maps over B}

to be the moduli space of twisted ‘-admissible to X(n) maps of degree —
and genus g with N markings. Following [FP02], one can construct the
branching divisor for any base scheme B, thereby obtaining a map

br : Adm‘

g,N (X(n), —)tw æ Mg,N,m. (4.2)

The space Mg,N,m is an Artin stack which parametrises triples

(C, x, D),

where (C, x) is a genus-g curve with n markings; D is an e�ective divisor of
degree m disjoint from markings x. An isomorphism of triples is an isomor-
phism of curves which preserve markings and divisors.

There is another moduli space related to Adm‘

g,N
(X(n), —)tw, which is

obtained by associating to a twisted ‘-admissible map the corresponding map
between the coarse moduli spaces of the twisted curves. This association
defines the following map

p : Adm‘

g,N (X(n), —)tw æ M(X ◊ Cg,N /Mg,N , (“, n)),

where M(X ◊Cg,N /Mg,N , (—, n)) is the relative moduli space of stable maps
to the relative geometry

X ◊ Cg,N æ Mg,N ,

where Cg,N æ Mg,N is the universal curve. By Lemma 4.1.5 the image of p
is open.

Definition 4.1.7. We denote the image of p by Adm‘

g,N
(X(n), —) with its

natural open-substack structure.

The closed points of Adm‘

g,N
(X(n), —) are relative stable maps with re-

stricted branching away from marked points and nodes, to which we refer
as ‘-admissable maps. On can similarly define pre-admissable maps. As in
Definition 4.1.1, we denote the data of a pre-admissible map by

(P, C, x, f).

The moduli spaces Adm‘

g,N
(X(n), —) will be the central objects of our study.
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Remark 4.1.8. The di�erence between the moduli spaces Adm‘

g,N
(X(n), —)

and Adm‘

g,N
(X(n), —)tw is the same as the one between admissible covers

and twisted bundles of [ACV03]. We prefer to work with Adm‘

g,N
(X(n), —),

because it is more convenient to work with schemes than with stacks for the
purposes of deformation theory and of analysis of the basic properties of the
moduli spaces. Moreover, the enumerative geometries of these two moduli
spaces are equivalent, at least for the relevant values of ‘. For more details
see Section 4.1.3 and Section 4.1.6.

Since br(f) is supported away from stacky points, the branching-divisor
map descends,

br : Adm‘

g,N (X(n), —) æ Mg,N,m. (4.3)

The moduli spaces Adm‘

g,N
(X(n), —) also admit a disjoint-union decomposi-

tion
Adm‘

g,N (X(n), —) =
·

µ

Adm‘

g,N (X(n), —, µ), (4.4)

where µ = (µ1, . . . , µN ) is a N -tuple of ramifications profiles of fC over the
markings x.

Riemann-Hurwitz formula extends to the case of pre-admissible maps.

Lemma 4.1.9. If f : P æ (C, x) is a degree-n pre-admissible map with
ramification profiles µ = (µ1, . . . , µN ) at the markings x µ C, then

2g(P ) ≠ 2 = n · (2g(C) ≠ 2) + deg(br(f)) +
ÿ

i

age(µi).

Proof. Using Lemma 4.1.2 and the standard Riemann-Hurwitz formula,
one can readily check that the above formula holds for pre-admissible maps.

4.1.1 Properness
We now establish the properness of Adm‘

g,N
(X(n), —), starting with the fol-

lowing result.

Proposition 4.1.10. The moduli spaces Adm‘

g,N
(X(n), —) are quasi-separated

Deligne–Mumford stacks of finite type.

Proof. By ‘-admissibility condition, the map br factors through a quasi-
separated substack of finite type. Indeed, (C, x, br(f)) is not stable (i.e. has
infinitely many automorphisms), if one of the following holds
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(i) there is a rational tail T ™ (C, x), such that supp(br(f)|T ) is at most
a point;

(ii) there is a rational bridge B ™ (C, x), such that supp(br(f)|B) is empty.

Up to a change of coordinates, the restriction of fC to T or B must of the
form

zn : (Ûk
P

1) Û0 P Õ æ P
1 (4.5)

at each connected component of P over T or B. Let us clarify the notation
of (4.5). The curve Ûk

P
1 is a disjoint union of k distinct P

1. A curve P Õ is
attached to to a disjoint union Ûk

P
1 at the points 0 œ P

1 at each connected
component of the disjoint union; P Õ is contracted to 0 œ P

1 in the target
curve P

1, while on i’th P
1 in the disjoint union the map is given by zni for

n = (n1, . . . , nk).
The fact that the restriction of fC is given by a map of such form can

be seen as follows. The condition (i) or (ii) implies that the restriction of
fC to T or B has at most two2 branching points, which in turn implies
that the source curve must be P

1 by Riemann-Hurwitz theorem. A map
from P

1 to itself with two branching points is given by zm
Õ : P

1 æ P
1 up to

change of coordinates. For a rational tail T , there might also be a contracted
component P Õ attached to the ramification points.

In the case of (ii), the ‘-admissibility condition then says that

deg(fúL|B) > 0.

While in the case of (i),

deg(br(f)|T ) = multp(br(f))

for a unique point p œ T which is not a node. Hence ‘-admissibility says
that

deg(fúL|T ) ≠ deg(fúLp) > 0.

Since we fixed the class —, the conclusions above bound the number of
components T or B by deg(—). Hence the image of br is contained in a
quasi-compact substack of Mg,N,m, which is therefore quasi-separated and
of finite type, because Mg,N,m is quasi-separated and locally of finite type.

The branching-divisor map br is of finite type and quasi-separated, since
the fibers of br are sub-loci of stable maps to X ◊ C for some nodal curve
C. The moduli space Adm‘

g,N
(X(n), —) is of finite type and quasi-separated

itself, because br is of finite type and quasi-seperated and factors through a
quasi-separated substack of finite type.

2Remember that branching might also be present at the nodes.
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Lemma 4.1.11. Given a pre-admissable map (P, C, x, f). Let (P Õ, C Õ, x
Õ, f Õ)

be given by contraction of a rational tail T ™ (C, x) and stabilisation of the
induced map

f : P æ X ◊ C Õ.

Let p œ C Õ be the image of contraction of T . Then the following holds

deg(br(f)|T ) + deg(fúL|T ) = multp(br(f Õ)) + deg(f ÕúLp).

Proof. By Lemma 4.1.9,

2g(P|T ) ≠ 2 = ≠2d + deg(br(f)) + d ≠ ¸(p),

where ¸(p) is the number of points in fiber above p, from which it follows
that

deg(br(f)) = 2g(P|T ) ≠ 2 + 2d ≠ d + ¸(p)
= 2g(P|T ) ≠ 2 + d + ¸(p).

By Lemma 4.1.2,

multp(br(f)) = 2g(P|T ) ≠ 2 + 2¸(p) + d ≠ ¸(p)
= 2g(P|T ) ≠ 2 + d + ¸(p).

It is also clear by definition, that

deg(fúL|T ) = deg(fúLp),

the claim then follows.

Definition 4.1.12. Let R be a discrete valuation ring. Given a pre-admissible
map (P, C, x, f) over Spec R. A modification of (P, C, x, f) is a pre-admissible
map ( ÂP , ÂC, Âx, Âf) over Spec RÕ such that

( ÂP , ÂC, Âx, Âf)| Spec KÕ ≥= (P, C, x, f)| Spec KÕ ,

where RÕ is a finite extension of R with a fraction field K Õ.

A modification of a family of curves C over a discrete valuation ring is
given by three operations:

• blow-ups of the central fiber of C;

• contractions of rational tails and rational bridges in the central fiber
of C;
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• base changes with respect to finite extensions of discrete valuation
rings.

A modification of a pre-admissible map is therefore given by an appropriate
choice of three operations above applied to both target and source curves,
such that the map f can be extended as well.

Theorem 4.1.13. The moduli spaces Adm‘

g,N
(X(n), —) are proper Deligne–

Mumford stacks.

Proof. We will now use the valuative criteria of properness for quasi-
separated Deligne–Mumford stacks. Let

(P ú, Cú, x
ú, fú) œ Adm‘

g,N (X(n), —)(K)

be a family of ‘-admissable maps over the fraction field K of a discrete
valuation ring R. The strategy of the proof is to separate P ú into two com-
ponents P ú

¶ and P ú
• , the contracted component and non-contracted one of

fú
C

, respectively (as it was done for Lemma 4.1.2). We then take a limit
of fú

|P ú
•

preserving it as a cover over the target curve, and a limit of fú
|P ú

¶
as a stable map. We then glue the two limits back and perform a series
of modifications to get rid of points or rational components that don not
satisfy ‘-admissibility.

Existence, Step 1. Let
(P ú

¶ , q
ú
¶) ™ P

ú

be the maximal subcurve contracted by f
ú
Cú , the markings q

ú
¶ are given by

the nodes of P ú disconnecting P ú
¶ from the rest of the curve. By

(P ú
• , q

ú
•) ™ P

ú

we denote the complement of P ú
¶ with similar markings. Let

( ÂP ú
• , t

ú, t
Õú)

be the normalisation of P ú
• at nodes which are mapped by fú

Cú to the regular
locus of Cú, the markings t

ú and t
Õú are given by the preimages of the those

nodes. The induced map
f̃ú

•,Cú : ÂP ú
• æ Cú

is an admissible cover. By properness of admissible covers, there exists,
possibly after a finite base change3, an extension

((P•, q•, t, t
Õ), (C, x), f̃•,C) œ Adm(R),

3For this proof, if we take a finite extension R æ R
Õ, we relabel R

Õ by R.
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where Adm is the moduli space of stable admissible covers with fixed ram-
ification profiles, such that both source and target curves are marked, and
markings of the source curve are not allowed to map to the markings of the
target curve. The ramification profiles are given by the ramification profiles
of f̃ú

•,Cú . If necessary, we then take a finite base change and modify the
central fibers of source and target curves to obtain a map

f• : P• æ X ◊ C,

such that f•,C is still an admissible cover (possibly unstable)4. Now let
f¶ : (P¶, q¶) æ X ◊ C

be the extension of
fú : (P ú

¶ , q
ú
¶) æ X ◊ C

to Spec R. It exists, possibly after a finite base change, by properness of the
moduli space of stable marked maps. If necessary, we modify the curve C
to avoid contracted components mapping to the markings x. If we do so,
we modify P• accordingly to make f•,C an admissible cover (again, possibly
unstable). We then glue back P¶ and P• at the markings (q¶, q•) and (t, t

Õ)
to obtain a map

f : P æ X ◊ C.

Let
(P, C, x, f) (4.6)

be the corresponding pre-admissible map. We now perform a series of mod-
ification to the map above to obtain an ‘-admissible map.

Existence, Step 2. Let us analyse (P, C, x, f) in relation to the conditions
of ‘-admissibility.

(i) Let p0 œ C| Spec C be a point in the central fiber of C that does
not satisfy the condition (i) of ‘-admissibility. There must be a contracted
component over p0, because f•,C was constructed as an admissible cover,
preserving the ramifications profiles. We then blow-up the family C at the
point p0 œ C. The map fC lifts to a map f̃C to Blp0(C)

P

Blp0C C
fC

f̃C

4The map f• can be constructed di�erently. One can lift f̃
ú
• : ÂP ú

• æ X ◊ C
ú to an

element of the moduli of twisted stable map Kg,N ([Symn
X]) after passing from admissible

covers to twisted stable maps and then take a limit there.
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by the universal property of a blow-up, since the preimage of the point p0
is a contracted curve (which is a Cartier divisor inside P ). The map fX

is left unchanged. Let T µ Blp0C be the exceptional curve, which is also
a rational tail of the central fiber of Blp0C attached at p0 to C| Spec C. By
Lemma 4.1.11 we obtain that

deg(br(f̃)|T ) + deg(f̃úL|T ) = multp0(br(f)) + deg(fúLp0) (4.7)

and that for all points x œ T

multx(br(f̃)) + deg(f̃úLx) < multp0(br(f)) + deg(fúLp0). (4.8)

We repeat this procedure inductively for all points of the central fiber for
which the part (i) of ‘-admissibility is not satisfied. By (4.7) and (4.8) this
procedure will terminate and we will arrive at the map which satisfies the
part (i) of ‘-admissibility. Moreover, the procedure does not create rational
tails which don not satisfy the part (ii) of ‘-admissibility.

(ii) If a rational tail T ™ (C| Spec C, x| Spec C) does not satisfy the condition
(ii) of ‘-admissibility, we contract it

P

C ConT C
fC

f̃C

The map fX is left unchanged. Let p0 œ ConT C be the image of the con-
tracted rational tail T . Since

deg(br(f̃)|P ) + deg(f̃úL|P ) = multp0(br(f)) + deg(fúLp0),

the central fiber satisfies the condition (i) of ‘-admissibility at the point
p0 œ ConT C. We repeat this process until we get rid of all rational tails
that don not satisfy the condition (ii) of ‘-admissibility.

(iii) By the construction of the family (4.6), it satisfies (iii) of ‘-admissibility.
The modifications above do not change this property.

Uniqueness. Assume we are given two families of ‘-admissible maps over
Spec R

(P1, C1, x1, f1) and (P2, C2, x2, f2),
which are isomorphic over Spec K. Possibly after a finite base change, there
exists a family of pre-admissible maps

( ÂP , ÂC, x̃, f̃)
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which dominates both families in the sense that there exists a commutative
square

ÂP X ◊ ÂC

Pi X ◊ Ci

f̃

fi

(4.9)

We take a minimal family ( ÂP , ÂC, x̃, f̃) with such property. The vertical maps
are given by contraction of rational tails. Then by the equality

deg(br(f)|P ) + deg(L|P ) = multp0(br(f)) + deg(Lp0),

those rational tails cannot satisfy the condition (ii) of ‘-admissibility, oth-
erwise the the point to which a rational tail contracted will not satisfy the
condition (i) of ‘-admissibility. But (Pi, Ci, xi, fi)’s are ‘-admissible by as-
sumption. Hence the source curves are isomorphic, by separatedness of the
moduli space of maps to a fixed target it must be that

(P1, C1, x1, f1) ≥= ( ÂP , ÂC, x̃, f̃) ≥= (P2, C2, x2, f2).

4.1.2 Obstruction theory
The obstruction theory of Adm‘

g,N
(X(n), —) is defined via the obstruction

theory of relative maps in the spirit of [GV05, Section 2.8] with the di�erence
that we have a relative target geometry X ◊ Cg,N /Mg,N . There exists a
complex E•, which defines a perfect obstruction theory relative to Mh,N Õ ◊
Mg,N ,

„ : E• æ L
Adm

‘
g,N (X(n),—))/Mh,NÕ ◊Mg,N

,

where Mh,N Õ is the moduli space of source curves with markings at the fibers
over marked points of the target curves; and Mg,N is the moduli space of
target curves. More precisely, such a complex exists at each connected
component Adm‘

g,N
(X(n), —, µ).

Proposition 4.1.14. The morphism „ is a perfect obstruction theory.

Proof. This is a relative version of [GV05, Section 2.8].

4.1.3 Relation to other moduli spaces
Let us now relate the moduli spaces of ‘-admissible maps for the extremal
values of ‘ œ RÆ0 fi {≠Œ} to more familiar moduli spaces.
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‘ = ≠Œ

In this case the first two conditions of Definition 4.1.4 are

(i) for all points p œ C,

multp(br(f)) + deg(fúLp) Æ 1;

(ii) for all rational tails T ™ (C, x),

deg(br(f)|T ) + deg(fúL|T ) > 1.

Since multiplicity and degree take only integer values, by Lemma 4.1.2 and
the choice of L, there is only possibility for which the condition (i) is satisfied.
Namely, if fC does not contract any irreducible components and has only
simple branching.

To unpack the condition (ii), recall that a non-constant ramified map
from a smooth curve to P

1 has at least two ramification points; it has pre-
cisely two simple ramification points , if it is given by

z2 : P
1 æ P

1 (4.10)

up to a change of coordinates. Hence

deg(br(f)|T ) + deg(fúL|T ) = 1,

if and only if fC = z2 and fX is constant; in particular, |Aut(f)| = Œ. In the
light of the condition (iii) of ‘-admissibility, the condition (ii) is therefore
empty for ‘ = ≠Œ.

We obtain that the data of a ≠Œ-admissible map (P, C, x, f) can be
represented by the following correspondence

P X

(C, x, p)

fX

fC

where fC is a degree-n admissible cover with arbitrary ramifications over the
marking x and with simple branching over the unordered marking p = br(f).
Hence the moduli space Adm≠Œ

g,N
(X(n), —) admits a surjective projection from

the moduli space of twisted stable maps with extended degree (see [BG09,
Section 2.1] for the definition) to the orbifold [X(n)],

fl : Kg,N ([X(n)], —) æ Adm≠Œ
g,N

(X(n), —), (4.11)

108



which is given by passing from twisted curves to their coarse moduli spaces.
Indeed, an element of Kg,N ([X(n)], —) is given by a data of

P X

(C, x, p)

fX

fC

where fC is a representable degree-n étale cover over twisted marked curve
(C, x, p). The additional marking p is unordered, and over this marking the
map fC must have simple branching after passing to coarse moduli spaces.
Hence after passing to coarse moduli spaces, we obtain the data of ≠Œ-
admissible maps.

Moreover, the virtual fundamental classes of two moduli spaces are re-
lated by the push-forward, as it is shown in the following lemma.

Lemma 4.1.15.

flú[Kg,N ([X(n)], —)]vir = [Adm≠Œ
g,N

(X(n), —)]vir.

Proof. Let Kg,N (BSn, m) be the moduli stacks of twisted maps to BSn

(not necessarily stable) and Admg,m,n,N be the moduli stack of admissible
covers (again not necessarily stable) with corresponding discrete invariants.
There exists the following pull-back diagram,

Kg,N ([X(n)], —) Adm≠Œ
g,N

(X(n), —)

Kg,N (BSn, m) Admg,m,n,N

fi2

fl

fi2 (4.12)

The bottom arrow is a normalisation map, therefore it is of degree 1. By
[Cos06, Theorem 5.0.1] we therefore obtain the equality of virtual funda-
mental classes given by the relative perfect obstruction theories.

flú[Kg,N ([X(n)], —)/Kg,N (BSn, m)]vir

= [Adm≠Œ
g,N

(X(n), —)/Admg,m,n,N ]vir. (4.13)

The moduli space Kg,N (BSn, m) is smooth and Admg,m,n,N is a locally com-
plete intersection (see [ACV03, Proposition 4.2.2]), which implies that their
naturally defined obstruction theories are given by cotangent complexes.
Using virtual pull-backs of [Man12], one can therefore express the virtual
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fundamental classes given by absolute perfect obstruction theories as follows

[Adm≠Œ
g,N

(X(n), —)]vir = (p ¶ fi2)![Mg,N ]
= fi!

2p![Mg,N ]
= fi!

2[Admg,m,n,N ]
= [Adm≠Œ

g,N
(X(n), —)/Admg,m,n,N ]vir,

where
p : Admg,m,n,N æ Mg,N

is the natural projection; we used that p![Mg,N ] = [Admg,m,n,N ], which is due
to the fact that the obstruction theory is given by the cotangent complex.
The same holds for Kg,N (BSn, m), hence we obtain that

flú[Kg,N ([X(n)], —)]vir = [Adm≠Œ
g,N

(X(n), —)]vir.

‘ = 0

By the first two conditions of Definition 4.1.4 the map fC can have arbitrary
ramifications and contracted components of arbitrary genera (more precisely,
the two are only restricted by n, g, N and —). In conjunction with other
conditions of Definition 4.1.4 we therefore obtain the following identification
of moduli spaces

Adm0
g,N (X(n), —) = M

•
m(X ◊ Cg,N /Mg,N , (“, n)), (4.14)

where the space on the right is the moduli space of relative stable maps with
disconnected domains to the relative geometry

X ◊ Cg,N æ Mg,N ,

where Cg,N æ Mg,N is the universal curve and where the markings play the
role of relative divisors. Instead of fixing the genus of source curves, we fix
the degree m of the branching divisor. At each component Adm0

g,N
(X(n), —, µ)

of the decomposition (4.4), the genus of the source curve and the degree of
the branching divisor are related by Lemma 4.1.9.

The obstruction theories of two moduli spaces are equal, since the ob-
struction theory of the space Adm0

g,N
(X(n), —) was defined via the obstruc-

tion theory of relative stable maps.
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4.1.4 Inertia stack
We would like to define evaluation maps of moduli spaces Adm‘

g,N
(X(n), —)

to a certain rigidification of the inertia stack IX(n) of [X(n)], for that we
need a few observations.

The inertia stack can be defined as follows

IX(n) =
·

[g]
[Xn,g/C(g)],

where the disjoint union is taken over conjugacy classes [g] of elements of
Sn, Xn,g is the fixed locus of g acting on Xn and C(g) is the centraliser
subgroup of g. Recall that conjugacy classes of elements of Sn are in one-
to-one correspondence with partitions µ of n. Let us express a partition µ
in terms to repeating parts and their multiplicities,

µ = (÷1, · · · , ÷1¸ ˚˙ ˝
m1

, · · · , ÷s, · · · , ÷s¸ ˚˙ ˝
ms

).

We define
C(µ) :=

sŸ

t=1
C÷t Ó Smt , (4.15)

here C÷t is a cyclic group and ” Ó ” is a wreath product defined as

C÷t Ó Smt := C�t
÷t

o Smt ,

where �t = {1, . . . , mt}; Smt acts on C�t
÷t

by permuting the factors. There
exist two natural subgroups of C(µ),

Aut(µ) :=
sŸ

t=1
Smt and N(µ) :=

sŸ

t=1
C�t

÷t
, (4.16)

as the notation suggests, Aut(µ) coincides with the automorphism group
of the partition µ. The inclusion Aut(µ) Òæ C(µ) splits the following the
sequence from the right

1 æ N(µ) æ C(µ) æ Aut(µ) æ 1. (4.17)

Viewing a partition µ as a partially ordered5 set, we define Xµ as the
self-product of X over the set µ. In particular,

Xµ ≥= X¸(µ),

5
µi Ø µj , ≈∆ j Ø i.
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where ¸(µ) is the length of the partition µ. The group C(µ) acts on Xµ as
follows. The products of cyclic groups C�

÷t
acts trivially on corresponding

factors of Xµ, while Smt permutes the factors corresponding to the same
part ÷t. These actions are compatible with the wreath product.

Given an element g œ Sn in a conjugacy class corresponding to a partition
µ, we have the following identifications

C(g) ≥= C(µ) and Xn,g ≥= Xµ,

such that the group actions match. In particular, with the notation intro-
duced above the inertia stack can be re-expressed,

IX(n) =
·

µ

[Xµ/C(µ)], (4.18)

and by the splitting of (4.17) we obtain that

IX(n) =
·

µ

[Xµ/Aut(µ)] ◊ BN(µ). (4.19)

We thereby define a rigidified version of IX(n),

IX(n) :=
·

µ

[Xµ/Aut(µ)].

Note, however, that this is not a rigidified inertia stack in the sense of
[AGV08, Section 3.3], IX(n) is a further rigidifiction of IX(n).

Recall that as a graded vector space, the orbifold cohomology is defined
as follows

Hú
orb(X(n), Q) := Hú≠2age(µ)(IX(n), Q).

By (4.18) we therefore get that

Hú
orb(X(n), Q) = Hú≠2age(µ)(IX(n), Q) = Hú≠2age(µ)(IX(n), Q). (4.20)

4.1.5 Invariants
Let

≠≠≠æ
Adm‘

g,N
(X(n), —) be the moduli space obtained from Adm‘

g,N
(X(n), —)

by putting the standard order6 on the fibers over marked points of the source
curve. The two moduli spaces are related as follows

·

µ

[
≠≠≠æ
Adm‘

g,N (X(n), —, µ)/
Ÿ

Aut(µi)] = M
‘

g,N (X(n), —), (4.21)

6We order the points in a fiber in accordance with their ramification degrees.
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There exist naturally defined evaluation maps at marked points

evi :
≠≠≠æ
Adm‘

g,N (X(n), —) æ
·

µ

Xµ, i = 1, . . . , N.

By (4.16), (4.18) and (4.21) we can define evaluation maps

evi : Adm‘

g,N (X(n), —) æ IX(n), i = 1, . . . , N, (4.22)

as the composition

Adm‘

g,N (X(n), —) =
·

µ

[
≠≠≠æ
Adm‘

g,N (X(n), —, µ)/
Ÿ

Aut(µi)] evi≠≠æ

evi≠≠æ
·

µ

[Xµ/Aut(µ)] = IX(n).

For universal markings

si : Adm‘

g,N (X(n), —) æ Cg,N

to the universal target curve

Cg,N æ Adm‘

g,N (X(n), —)

we also define cotangent line bundles as follows

Li := sú
i (ÊCg,N /Adm

‘
g,N (X(n),—)), i = 1, . . . , N,

where ÊCg,N /Adm
‘
g,N (X(n),—) is the universal relative dualising sheaf. We de-

note
Âi := c1(Li).

With above structures at hand we can define ‘-admissible invariants.

Definition 4.1.16. The descendent ‘-admissible invariants are

È·m1(“1), . . . , ·mN (“N )Í‘

g,— :=
⁄

[Adm
‘
g,N (X(n),—)]vir

i=NŸ

i=1
Âmi

i
evú

i (“i, ),

where “1, . . . , “N œ Hú
orb(X(n)) and m1, . . . mN are non-negative integers.

4.1.6 Relation to other invariants
We will now explore how ‘-admissible invariants are related to the invariants
associated to the spaces discussed in Section 4.1.3.

113



Classes

Let {”1, . . . ”mS } be an ordered basis of Hú(X, Q). Let

µ̨ = ((µ1, ”¸1), . . . , (µk, ”¸k
))

be a cohomology-weighted partition of n with the standard ordering, i.e.

(µi, ”¸i) > (µiÕ , ”¸iÕ ),

if µi > µiÕ , or if µi = µiÕ and ¸i > ¸iÕ . The underlying partition will be
denoted by µ. For each µ̨ we consider a class

”l1 ¢ · · · ¢ ”lk
œ Hú(Xµ, Q),

we then define

⁄(µ̨) := fiú(”l1 ¢ · · · ¢ ”lk
) œ Hú

orb(S(d), Q),

where
fi :

·

µ

Xµ æ IX(n)

is the natural projection. More explicitly, as an element of

Hú(Xµ, Q)Aut(µ) ™ Hú
orb(X(n), Q),

the class ⁄(µ̨) is given by the following formula
ÿ

hœAut(µ)
hú(”l1 ¢ · · · ¢ ”lk

) œ Hú(Xµ, Q)Aut(µ).

The importance of these classes is due to the fact they form a basis of
Hú

orb(S(n), Q).

Comparison

Given weighted partitions

µ̨i = ((µi

1, ”i

1), . . . , (µi

ki
, ”i

ki
)), i = 1, . . . N,

the relative Gromov–Witten descendent invariants associated to the moduli
space M

•
m(X ◊ Cg,N /Mg,N , (“, n)) are usually7 defined as

⁄

[M•
m(X◊Cg,N /Mg,N ,(“,n))]vir

nŸ

i=1
Âmi

i

kiŸ

j=1
evú

i,j”i

j ,

7Note that sometimes the factor 1/|Aut(µ̨)| is introduced, in this case we add such
factor for all classes defined previously.
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such that the product is ordered according to the standard ordering of
weighted partitions and

evi,j : M
•
m(X ◊ Cg,N /Mg,N , (“, n)) æ X

are evaluation maps defined by sending a corresponding point in a fiber over
a marked point.

In the case of Kg,N ([X(n)], —) we define evaluation maps as the compo-
sition

evi : Kg,N ([X(n)], —) æ IX(n) æ IX(n), i = 1, . . . N,

where we used (4.19).
The next lemma concludes the comparison initiated in Section 4.1.3. In

what follows, by a Â-class on Kg,N ([X(n)], —) we will mean a coarse Â-class.
Orbifold Â-classes are rational multiples of coarse ones.

Lemma 4.1.17.

È·m1(⁄(µ̨1)), . . . , ·mN (⁄(µ̨N ))Í0
g,— =

⁄

[M•
m(X◊Cg,N /Mg,N ,(“,n))]vir

NŸ

i=1
Âmi

i

kiŸ

j=1
evú

i,j”i

j

È·m1(⁄(µ̨1)), . . . , ·mN (⁄(µ̨N ))Í≠Œ
g,—

=
⁄

[Kg,N ([X(n)],—)]vir

NŸ

i=1
Âmi

i
evú

i ⁄(µ̨i).

Proof. In the light of our conventions it is a straightforward application
of projection and pullback-pushforward formulas.

4.2 Master space
4.2.1 Definition of the master space
The space RÆ0 fi {≠Œ} of ‘-stabilities is divided into chambers, inside of
which the moduli space Adm‘

g,N
(X(n), —) stays the same, and as ‘ crosses

a wall between chambers, the moduli space changes discontinuously. Let
‘0 œ RÆ0 fi {≠Œ} be a wall, and ‘+, ‘≠ be some values that are close to ‘0
from the right and the left of the wall, respectively. We set

d0 = e≠1/‘0 and deg(—) := m + deg(“) = d.

From now on we assume

2g ≠ 2 + N + 1/d0 · deg(—) Ø 0.

and 1/d0 · deg(—) > 2, if (g, N) = (0, 0).
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Definition 4.2.1. A pre-admissible map (P, C, f, x) is called ‘0-pre-admissible,
if

(i) for all points p œ C,

multp(br(f)) + deg(fúLp) Æ e≠1/‘0 ;

(ii) for all rational tails T ™ C,

deg(br(f)|T ) + deg(fúL|T ) Ø e≠1/‘0 ;

(iii) for all rational bridges B ™ C,

deg(br(f)|B) + deg(fúL|B) > 0;

We denote by M‘0
g,N

(X(n), —) the moduli space of ‘0-pre-admissible maps.
Let Mss

g,N,d
be the moduli space of weighted semistable curves defined in

[Zho22, Definition 2.1.2]. There exists a map

M‘0
g,N

(X(n), —) æ Mss

g,N,d

(P, C, f, x) ‘æ (C, x, d),

where the value of d on a subcurve C Õ ™ C is defined as follows

d(C Õ) = deg(br(f|CÕ)) + deg(fúL|CÕ).

By MM‘0
g,N

(X(n), —) we denote the moduli space of ‘0-pre-admissible
maps with calibrated tails, defined as the fiber product

MM‘0
g,N

(X(n), —) = M‘0
g,N

(X(n), —) ◊Mss
g,N,d

M ÊMg,N,d,

where M ÊMg,N,d is the moduli space of curves with calibrated tails introduced
in [Zho22, Definition 2.8.2].

Definition 4.2.2. Given a pre-admissible map (P, C, f, x). We say a ratio-
nal tail T ™ (C, x) is of degree d0, if

deg(br(f)|T ) + deg(fúL|T ) = d0.

We say a branching point p œ C is of degree d0, if

multp(br(f)) + deg(fúLp) = d0.
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Definition 4.2.3. We say a rational tail T ™ (C, x) is constant, if

|Aut((P, C, f, x)|T )| = Œ.

In other words, a rational tail T ™ (C, x) is constant, if at each connected
component of P|T the map fC|T is equal to

zn : (Ûk
P

1) Û0 P Õ æ P
1

up to a change of coordinates. The notation is the same as in (4.5).

Definition 4.2.4. A B-family family of ‘0-pre-admissible maps with cali-
brated tails

(P, C, x, f, e,L, v1, v2)

is ‘0-admissible if

1) any constant tail is an entangled tail;

2) if a geometric fiber Cb of C has tails of degree d0, then those rational
tails contain all the degree-d0 branching points;

3) if v1(b) = 0, then (P, C, x, f)b is ‘≠-admissible;

4) if v2(b) = 0, then (P, C, x, f)b is ‘+-admissible.

We denote by MAdm‘0
g,N

(X(n), —) the moduli space of genus-g, n-marked,
‘0-admissable maps with calibrated tails.

4.2.2 Obstruction theory
The obstruction theory of MAdm‘0

g,N
(X(n), —) is defined in the same way as

the one of Adm‘

g,N
(X(n), —). There exists a complex E•, which defines a

perfect obstruction theory relative to Mh,N Õ ◊ M ÊMg,N,d,

„ : E• æ L
MAdm

‘0
g,N (X(n),—)/Mh,NÕ ◊M ÂMg,N

.

The fact that it is indeed a perfect obstruction theory is a relative version
of [GV05, Section 2.8].
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4.2.3 Properness
Theorem 4.2.5. The moduli space MAdm‘0

g,N
(X(n), —) is a quasi-separated

Deligne–Mumford stack of finite type.

Proof. The proof is the same as in [Zho22, Proposition 4.1.11].

We now deal with properness of MAdm‘0
g,N

(X(n), —) with the help of val-
uative criteria of properness. We will follow the strategy of [Zho22, Section
5]. Namely, given a discrete valuation ring R with the fraction field K. Let

›ú = (P ú, Cú, x
ú, fú, eú,Lú, vú

1, vú
2) œ MAdm‘0

g,N
(X(n), —)(K)

be a family of ‘0-admissable map with calibrated tails over Spec K. We will
classify all the possible ‘0-pre-admissible extensions of ›ú to R up to a finite
base change. There will be a unique one which is ‘0-admissible.

(g, N, d) ”= (0, 1, d0)

Assume that (g, N, d) ”= (0, 1, d0) and ÷ú does not have rational tails of
degree d0. Let

÷ú = (P ú, Cú, x
ú, fú) and ⁄ú = (eú,Lú, vú

1, vú
2)

be the underlying pre-admissable map and the calibration data of ÷ú, re-
spectively. Let

›≠ = (÷≠, ⁄≠) œ MM‘0
g,N

(X(n), —)(RÕ)

be family over degree-r extension RÕ of R, where the ‘≠-pre-admissible map

÷≠ = (P≠, C≠, x≠, f≠).

is constructed according to the same procedure as (4.6). More precisely,
we apply modifications of Step 2 with respect to ‘≠-stability; we leave the
degree-d0 branching points which are limits of degree-d0 branching points
of the generic fiber untouched. The family ÷≠ is the one closest to being
‘≠-admissible limit of ÷ú. The calibration ⁄≠ is given by a unique extension
of ⁄ú to the curve C≠, which exists by [Zho22, Lemma 5.1.1 (1)].

Let
{pi | i = 1, . . . , ¸}
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be an ordered set, consisting of nodes of degree-d0 rational tails and degree-
d0 branching points of the central fiber

pi œ C≠| Spec C µ C≠.

We now define
bi œ R>0 fi {Œ}, i = 1, . . . , ¸

as follows. Set bi to be Œ, if pi is a degree-d0 branching point. If pi is a
node of a rational tail, then we define bi via the singularity type of C≠ at pi

- if the family C≠ has Ab≠1-type singularity at pi, we set bi = b/r.

We now classify all ‘0-pre-admissible modifications of ›≠ in the sense of
Definition 4.1.12. By [Zho22, Lemma 5.1.1 (1)] it is enough to classify the
modifications of ÷≠.

All the modifications of ÷≠ are given by blow-ups and blow-downs around
the points pi after taking base-changes with respect to finite extensions of
R. The result of these modifications will be a change of singularity type of
÷≠ around pi. Hence the classification will depend on an array of rational
numbers

– = (–1, . . . , –¸) œ Q
¸

Ø0,

the nominator of which keeps track of the singularity type around pi, while
the denominator is responsible for the degree of an extension of R. The
precise statement is the following lemma.

Lemma 4.2.6. For each – = (–1, . . . , –¸) œ Q
¸

Ø0, such that – Æ b, there
exists a ‘0-pre-admissible modification ÷– of ÷≠ with following properties

• up to a finite base change,

÷–
≥= ÷–Õ ≈∆ – = –Õ;

• given a ‘0-pre-admissible modification ÷̃ of ÷≠, then there exists – such
that

÷̃ ≥= ÷–

up to a finite base change.

• the central fiber of ÷– is ‘≠-stable, if and only if – = b.
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Proof. Let us choose a fractional presentation of (a1, . . . , a¸) with a
common denominator

(a1, . . . , a¸) = ( aÕ
1

rrÕ , . . . ,
aÕ

¸

rrÕ ).

Take a base change of ÷≠ with respect to a degree-rÕ extension of RÕ. We
then construct ÷– by applying modifications ÷≠ around each point pi, the
result of which is a family

÷–i = (P–i , C–i , x–i , f–i),

which is constructed as follows.

Case 1. If pi is a node of a degree-d0 rational tail and ai ”= 0, we blow-up
C≠ at pi,

Blpi(C≠) æ C≠.

The map fC≠ then defines a rational map

fC≠ : P≠ 99K Blpi(C≠).

We can eliminate the indeterminacies of the map above by blowing-up P≠
to obtain an everywhere-defined map

fBlpi (C≠) : ÂP≠ æ Blpi(C≠),

we take a minimal blow-up with such property. The exceptional curve E of
Blpi(C≠) is a chain of rÕbi rational curves. The exceptional curve of ÂP≠ is a
disjoint union ÛjEj , where each Ej is a chain of rbi rational curves mapping
to E without contracted components. We blow-down all the rational curves
but the aÕ

i
-th ones in both E and Ej for all j. The resulting families are C–i

and P–i , respectively. The family C–i has an A–
Õ
i≠1-type singularity at pi.

The marking x≠ clearly extends to a marking x–i of C–i . The map fBlpi (C≠)
descends to a map

fC–i
: P–i æ C–i .

The map f≠,X is carried along with all those modifications to a map

f–i,X : P–i æ X,

because exceptional divisors are of degree 0 with respect to f≠,X , hence the
contraction of curves in the exceptional divisors does not introduce any in-
determinacies. We thereby constructed the family ÷–i .
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Case 2. Assume now that pi is a node of a degree-d0 rational tail, but
ai = 0. The family C–i is then given by the contraction of that degree-d0
rational tail, it is smooth at pi. The marking x≠ extends to a marking x–i

of C–i . The family P–i is set to be equal to P≠. The map f–i is the compo-
sition of the contraction and f≠.

Case 3. If pi is a branching point, we blow-up C≠ inductively aÕ
i

times,
starting with a blow-up at pi and then continuing with a blow-up at a point
of the exceptional curve of the previous blow-up. We then blow-down all
rational curves in the exceptional divisor but the last one. The resulting
family is C–i , it has an Aa

Õ
i
-type singularity at pi. The marking x≠ extends

to the marking x–i of C–i . The map fC≠ then defines a rational map

fC≠ : P≠ 99K C–i .

We set
fC–i

: P–i æ C–i

to be the minimal resolution of indeterminacies of the rational map above.
More specifically, P–i is obtained by consequently blowing-up P≠ and blowing-
down all the rational curves in the exceptional divisor but the last one. The
map f≠,X is carried along, as in Case 1.

It is not di�cult to verify that the central fiber of ÷– is indeed ‘0-pre-
admissible. Up to a finite base change, the resulting family is uniquely
determined by – = (–1, . . . , –¸) œ Q

¸

Ø0 and independent of its fractional
presentation, because of the singularity types at points pi and the degree of
an extension R.

Given now an arbitrary ‘0-pre-admissible modification

÷ = (P, C, x, f)

of ÷≠. Possibly after a finite base change, there exists a modification

÷̃ = ( ÂP , ÂC, x̃, f̃)

that dominates both ÷ and ÷≠ in the sense of (4.9). We take a minimal
modification with such property. The family ÷̃ is given by blow-ups of C≠
and P≠. By the assumption of minimality and ‘0-pre-admissibility of ÷,
these are blow-ups at pi. By ‘0-pre-admissibility of ÷, the projections

ÂC æ C and ÂP æ P
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are given by contraction of degree-d0 rational tails or rational components
which don not satisfy ‘0-pre-admissibility. These are exactly the operations
described in Steps 1,2,3 of the proof. Uniqueness of of maps follows from
seperatedness of the moduli space of maps to a fixed target. Hence we obtain
that

÷ ≥= ÷–

for some – = (–1, . . . , –¸) œ Q
¸

Ø0, where – is determined by the singularity
types of ÷ at points pi.

(g, N, d) = (0, 1, d0)

We now assume that (g, N, d) = (0, 1, d0). In this case the calibration bundle
is the relative cotangent bundle along the unique marking. Moreover, there
is no entanglement. Given a family of pre-admissible maps (P, C, x, f), we
will denote the calibration bundle by MC . Therefore the calibration data ⁄
is given just by a rational section s of MC .

Let
›≠ = (÷≠, ⁄≠) œ MM‘0

0,1(X(n), —)(RÕ)
be the family over degree-r extension RÕ of R, such that ÷≠ is again given
by (4.6), if there is no degree-d0 branching point in ÷ú. Otherwise, let ÷≠
be any pre-admissible limit. The calibration data ⁄≠ is given by a rational
section s≠ which is an extension of the section sú of MCú to MC≠ .

Given a modification Â÷ of ÷≠ over a degree-rÕ extension of RÕ, the section
sú extends to a rational section s̃ of MÂC .

Definition 4.2.7. The order of the modification Â÷ is defined to be ord(s̃)/r
at the closed point of Spec RÕ.

We set b = ord(s≠)/r, of there is no degree-d0 branching point in the
generic fiber of ÷ú. Otherwise set b = ≠Œ.

Lemma 4.2.8. For each – œ Q, such that – Æ b, there exists a ‘0-pre-
admissible modification ÷– of ÷≠ of order – with following properties

• up to a finite base change,

÷–
≥= ÷–Õ ≈∆ – = –Õ;

• given a ‘0-pre-admissible modification ÷̃ of ÷≠, then there exists – such
that

÷̃ ≥= ÷–

up to a finite base change.
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• the central fiber of ÷– is ‘≠-stable, if and only if – = b.

Proof. Assume ÷ú does not have a degree-d0 branching point. We choose
a fractional presentation a = aÕ/rrÕ. We take a base change of ÷≠ with
respect to a degree-rÕ extension of RÕ. We blow-up consequently aÕ times
the central fiber at the unique marking. We then blow-down all rational
curves in the exceptional divisor but the last one. The resulting family with
a marking is (C–, x–). We do the same with the family P≠ at the points in
the fiber over the marked point to a obtain the family P– and the map

fP– : P– æ ÂC,

the map f≠,X is carried along with blow-ups and blow-downs. The resulting
family of ‘0≠pre-admissible maps is of order a.

Assume now that the generic fiber has a degree-d0 branching point. We
take a base change of ÷≠ with respect to a degree-rÕ extension of RÕ. After
choosing some trivialisation of MCú , we have that

sú = fir
Õ
a≠ œ K Õ,

where a≠ is the order of vanishing of s≠ before the base-change and fi is a
uniformiser of RÕ. Because of automorphisms of P

1 which fix a branching
point and a marked point, we have an isomorphisms of ‘0-pre-admissible
maps with calibrated tails,

(÷ú, sú) ≥= (÷ú, fic · sú)

for an arbitrary c œ Z. Hence we can multiply the section s≠ with fia
Õ≠r

Õ
a≠

to obtain a modification of order a.

The fact that these modifications classify all possible modifications follow
from the same arguments as in the case (g, N, d) ”= (0, 1, d0).

Theorem 4.2.9. The moduli space MAdm‘0
g,N

(X(n), —) is proper.

Proof. With the classifications of modifications of ÷≠ of Lemma 4.2.6
and Lemma 4.2.8, the proof of properness follows from the same arguments
as in [Zho22, Proposition 5.0.1].
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4.3 Wall-crossing
4.3.1 Graph space
For a class — = (—, m) œ H2(X, Z) ü Z consider now

M
•
m(X ◊ P

1/XŒ, (“, n)),

the space of relative stable maps with disconnected domains of degree (“, n)
to X ◊ P

1 relative to

XŒ := X ◊ {Œ} µ X ◊ P
1.

One should refer to this moduli space as graph space, as it will play the
same role, as the graph space in the quasimap wall-crossing. Note that we
fix the degree of the branching divisor m instead of the genus h, the two are
determined by Lemma 4.1.9.

There is a standard C
ú-action on P

1 given by

t[x, y] = [tx, y], t œ C
ú,

which induces a C
ú-action on M

•
m(X ◊ P

1/XŒ, (“, n)). Let

F— µ M
•
m(X ◊ P

1/XŒ, (“, n))Cú

be the distinguished C
ú-fixed component consisting of maps to X ◊ P

1 (no
expanded degenerations). Said di�erently, F— is the moduli space of maps,
which are admissible over Œ œ P

1 and whose degree lies entirely over 0 œ P
1

in the form of a branching point. Other C
ú-fixed components admit exactly

the same description as in the case of quasimaps in Section 2.5.1.

The virtual fundamental class of F—,

[F—]vir œ Aú(F—),

is defined via the fixed part of the perfect obstruction theory of

M
•
m(X ◊ P

1/XŒ, (“, n)).

The virtual normal bundle Nvir
F—

is defined by the moving part of the ob-
struction theory. There exists an evaluation map

ev : F— æ IX(n)

defined in the same way as (4.22).

124



Definition 4.3.1. We define an I-function to be

I(q, z) = 1 +
ÿ

— ”=0
q—

evú

A
[F—]

eCú(Nvir
F—

)

B

œ Hú
orb(X(n))[z±] ¢Q Q[[q—]].

Let
µ(z) œ Hú

orb(X(n))[z] ¢Q Q[[q—]]

be the truncation [zI(q, z) ≠ z]+ by taking only non-negative powers of z.
Let

µ—(z) œ Hú
orb(X(n))[z]

be the coe�cient of µ(z) at q—.

For later it is also convenient to define

I— := 1
eCú(Nvir

F—
) œ Aú(F—)[z±].

4.3.2 Wall-crossing formula
We will now concentrate on the case

2g ≠ 2 + N + 1/d0 · deg(—) > 0,

for (g, N, d) = (0, 1, d0) we refer to [Zho22, Section 6,4]. There exists a
natural C

ú-action on the master space MAdm‘0
g,N

(X(n), —) given by

t · (P, C, x, f, e,L, v1, v2) = (P, C, x, f, e,L, t · v1, v2), t œ C
ú.

By arguments presented in [Zho22, Section 6.5], the fixed locus then admits
the following expression

MAdm‘0
g,N

(X(n), —)Cú = F+ Û F≠ Û
·

#»
—

F #»
—

,

we will now explain the meaning of each term in the disjoint union above,
giving a description of virtual fundamental classes and virtual normal bun-
dles.
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F+

This is a simplest component,

F+ = Adm‘+
g,N

(X(n), —), Nvir
F+ = M

‚
+,

where M
‚
+ is the dual of the calibration bundle M+ on Adm‘+

g,N
(X(n), —), with

a trivial C
ú-action of weight -1, cf. [Zho22]. The obstruction theories also

match, therefore
[F+]vir = [Adm‘+

g,N
(X(n), —)]vir

with respect to the identification above.

F≠

We define

]Adm
‘≠
g,N (X(n), —) := Adm‘≠

g,N
(X(n), —) ◊Mg,N,d

ÊMg,N,d,

then
F≠ = ]Adm

‘≠
g,N (X(n), —), Nvir

F≠ = M≠,

where, as previously, M≠ is the calibration bundle on ]Adm
‘≠
g,N (X(n), —) with

trivial C
ú-action of weight 1. The obstruction theories also match and

pú[]Adm
‘≠
g,N (X(n), —)]vir = [Adm‘≠

g,N
(X(n), —)]vir,

where
p : ]Adm

‘≠
g,N (X(n), —) æ Adm‘≠

g,N
(X(n), —)

is the natural projection.

F
—̨

These are the wall-crossing components responsible for the non-trivial wall-
crossing formulas. Let

#»
— = (—Õ, —1, . . . , —k)

be a k + 1-tuple of classes in H2(X, Z) ü Z, such that — = —Õ + —1 + · · · + —k

and deg(—i) = d0. Then a component F #»
—

is defined as follows

F #»
—

= {› | › has exactly k entangled tails,
which are all fixed tails, of degree —1, . . . , —k}.

126



Let
Ei F #»

—
i = 1, . . . , k,

pi

be the universal i-th entangled rational tail with a marking pi given given
by the node. We define Â(Ei) to be the Â-class associated to the marking
pi. Let

Âglk : ÊMg,N+k,d≠kd0 ◊ (Mss

0,1,d0)k æ ÊMg,N,d

be the gluing morphism, cf. [Zho22, Section 2.4]. Let

Di µ ÊMg,N,d

be a divisor defined as the closure of the locus of curves with exactly i + 1
entangled tails. Finally, let

Y æ ]Adm
‘≠
g,N (X(n), —Õ)

be the stack of k-roots of M
‚
≠.

Proposition 4.3.2. There exists a canonical isomorphism

ÂglúkF #»
—

≥= Y ◊(IX(n))k

i=kŸ

i=1
F—i .

With respect to the identification above we have

[ ÂglúkF #»
—

]vir =[Y ]vir ◊(IX(n))k

i=kŸ

i=1
[F—i ]vir,

1
eCú( ÂglúkNvir

F #»
—

)
=

r
k

i=1(z/k + Â(Ei))
≠z/k ≠ Â(E1) ≠ ÂN+1 ≠

qŒ
i=k

Di

·
kŸ

i=1
I—i(z/k + Â(Ei)).

Proof. See [Zho22, Lemma 6.5.6].

Theorem 4.3.3. Assuming 2g ≠ 2 + N + 1/d0 · deg(—) > 0, we have

È·m1(“1), . . . , ·mn(“N )Í‘+
g,—

≠ È·m1(“1), . . . , ·mn(“N )Í‘≠
g,—

=
ÿ

kØ1

ÿ

—̨

1
k!

⁄

[Adm
‘≠
g,N+k(X(n),—Õ)]vir

i=NŸ

i=1
Âmi

i
evú

i (“i)·
a=kŸ

a=1
evú

n+aµ—a(z)|z=≠Ân+a

where —̨ runs through all the (k + 1)-tuples of e�ective curve classes

—̨ = (—Õ, —1, . . . , —k),

such that — = —Õ + —1 + · · · + —k and deg(—i) = d0 for all i = 1, . . . , k.
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Sketch of Proof. We will just explain the master-space technique. For all
the details we refer to [Zho22, Section 6]. By the virtual localisation formula
we obtain

[MAdm‘0
g,N

(X(n), —)]vir

=
A

ÿ
ÿFıú

A
[Fı]vir

eCú(Nvir
Fı

)

BB

œ ACú
ú (MAdm‘0

g,N
(X(n), —)) ¢Q[z] Q(z),

where Fı are the components of the C
ú-fixed locus of MAdm‘0

g,N
(X(n), —).

Let

– =
i=NŸ

i=1
Âmi

i
evú

i (“i) œ Aú(MAdm‘0
g,N

(X(n), —))

be the class corresponding to decedent insertions. After taking the residue8

at z = 0 of the above formula, capping with – and taking the degree of the
class, we obtain the following equality

⁄

[Adm
‘+
g,N (X(n),—)]vir

– ≠
⁄

[Adm
‘≠
g,N (X(n),—)]vir

–

= deg
A

– fl Resz=0

A
ÿ

ÿF—ú

A
[F—]vir

eCú(Nvir
F—

)

BBB

,

where we used that there is no 1/z-term in the decomposition of the class

[MAdm‘0
g,N

(X(n), —)]vir œ ACú
ú (MAdm‘0

g,N
(X(n), —)),

and that
1

eCú(M±) = 1/z + O(1/z2).

The analysis of the residue on the right-hand side presented in [Zho22, Sec-
tion 7] applies to our case. The resulting formula is the one claimed in the
statement of the theorem.

We define

F ‘

g (t(z)) =
Œÿ

n=0

ÿ

—

q—

N !Èt(Â1), . . . , t(ÂN )Í‘

g,N,— ,

where t(z) œ Hú
orb(S(n), Q)[z] is a generic element, and the unstable terms

are set to be zero. By repeatedly applying Theorem 4.3.3 we obtain.
8 i.e. by taking the coe�cient of 1/z of both sides of the equality.
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Corollary 4.3.4. For all g Ø 1 we have

F 0
g (t(z)) = F ≠Œ

g (t(z) + µ(≠z)).

For g = 0, the same equation holds modulo constant and linear terms in
t(z).

The fact that the change of variables above holds only moduli linear
terms in t(z) is due to the same reasons as in the case of quasimaps, and it
is explained in Section 2.5.3. The variants of Theorem 2.5.6 and Theorem
2.5.7 in exactly the same form hold in this case too.

4.4 Del Pezzo
In this section we determine the I-function in the case X = S is a del Pezzo
surface. Firstly, consider the expansion

[zI(q, z) ≠ z]+ = I1(q) + (I0(q) ≠ 1)z + I≠1(q)z2 + I≠2(q)z3 + . . . ,

we will show that by the dimension constraint, the terms I≠k vanish for all
k Ø 1.

In this we consider Hú
orb(X(n)) with its naive9 grading. Let z be of

cohomological degree 2 in Hú
orb(X(n))[z±]. The virtual dimension of M

•
m(X◊

P
1/XŒ, (“, n), µ) is equal to

⁄

c1(S)
— + n + ¸(µ).

Hence by the virtual localisation, the classes involved in the definition of
I-function,

evú

A
[F—,µ]vir

eCú(Nvir)

B

œ Hú(Sµ/Aut(µ))[z±] ™ Hú
orb(S(n))[z±],

have naive cohomological degree equal to

≠ 2
A⁄

c1(S)
— + n ≠ ¸(µ)

B

. (4.23)

Since S is a del Pezzo surface, the above quantity is non-positive, which
implies that

I0 = 1 and I≠k = 0
9We grade it with the cohomological grading of H

ú(ĪS(n)
, Q).
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for all ≠k Ø 1, because cohomology is non-negatively graded. Moreover, the
quantity (4.23) is zero, if and only if

µ = (1, . . . , 1) and — = (0, m).

Let us now study F—,µ for these values of µ and —. It is more convenient to
put an ordering on fibers over Œ œ P

1, so let F̨—,µ be the resulting space.
We will not give a full description of F̨—,µ, even though it is simple. We will
only be interested in one type of components of F̨—,µ,

ÿi : Mh,pi ◊ Sn Òæ F̨—,µ, (4.24)

where Mh,pi is the moduli spaces of stable genus-h curve with one marking
labelled by pi, i = 1, . . . N . The embedding ÿi is constructed as follows.
Given a point

((C, x), x1, . . . , xn)) œ Mh,pi ◊ Sn,

let

(P̃ , p1, . . . , pn) =
i=n·

i=1
(P1, 0) (4.25)

be an ordered disjoint union of P
1 with markings at 0 œ P

1. We define a
curve P by gluing (P̃ , p1, . . . , pn) with (C, pi) at the marking with the same
labelling. We define

fP1 : P æ P
1

to be an identity on P
1’s and contraction on C. We define

fS : P æ S

by contracting j-th P
1 in P possibly with an attached curve to the point

xj œ S. We thereby defined the inclusion

ÿi((C, p), x1, . . . , xn)) = (P, P
1, 0, fP1 ◊ fS).

By Lemma 4.1.9,
h = m/2, (4.26)

in particular, m is even. More generally, any connected component of F̨—,µ

admits a similar description with the di�erence that there might more mark-
ings on possibly disconnected C by which it attaches to ÂP , i.e. P has more
nodes. These components are not relevant for our needs, as it will be ex-
plained below.
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Let us now consider the virtual fundamental classes and the normal
bundles of these components Mh,pi ◊ Sn. By standard arguments we obtain
that

ÿú
i

[F—,µ]vir

eCú(Nvir) = e(fiú
i TS ¢ pú

E
‚) · e(E‚z)

z(z ≠ Â1) ,

where fii : Mh,pi◊Sn æ S is the projection to i-th factor of Sn and p : Mh,pi◊
Sn æ Mh,pi is the projection to Mh,pi ; E is the Hodge bundle on Mh,pi .

For other components of #»
F —,µ the equivariant Euler classes eCú(Nvir)

acquire factors
1

z(z ≠ Âi)
for each marked point. This makes them irrelevant for purposes of determin-
ing the truncation of I-function by non-negative powers of z. We therefore
have to determine the following classes

fiú

3
e(fiú

i TS ¢ pú
E

‚) · e(E‚z)
z(z ≠ Â1)

4
œ Hú(Sn)[z±],

where fi : Mh,pi ◊Sn æ Sn is the natural projection, which is identified with
evaluation map ev via the inclusion (4.24).

Let ¸1 and ¸2 be the Chern roots of fiú
i
TS . Then we can rewrite the class

above as follows ⁄

Mh,1

E
‚(¸1) · E

‚(¸2) · E
‚(z)

z(z ≠ Â1) ,

where

E
‚(z) := e(E‚z) =

j=hÿ

j=0
(≠1)h≠j⁄h≠jzj ,

and similarly for E
‚(¸1) and E

‚(¸2).
By putting these Hodge integrals into a generating series, we obtain an

explicit expression for them. Note that below we sum over the degree m of
the branching divisor, which in this case is related to the genus h by (4.26).

Proposition 4.4.1.

1 +
ÿ

h>0
u2h

⁄

Mh,1

E
‚(¸1) · E

‚(¸2) · E
‚(z)

z(z ≠ Â1) =
3sin(u/2)

u/2

4 ¸1+¸2
z
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Proof. The claim implicitly follows from the results of [FP00]. Firstly,

1 +
ÿ

h>0
u2h

⁄

Mh,1

E
‚(¸1) · E

‚(¸2) · E
‚(z)

z(z ≠ Â1)

= 1 +
ÿ

h>0
u2h

⁄

Mh,1

E
‚(¸1/z) · E

‚(¸2/z) · E
‚(1)

1 ≠ Â1
.

Now let
a = ¸1/z, b = ¸2/z

and
F (a, b) = 1 +

ÿ

h>0
u2h

⁄

Mh,1

E
‚(a) · E

‚(b) · E
‚(1)

1 ≠ Â1
.

By using the virtual localisation on a moduli space of stable maps to P
1, we

obtain the following identities

F (a, b) · F (≠a, ≠b) = 1;

F (a, b) · F (≠a, 1 ≠ b) = F (0, 1).
These identities with the fact that F (a, b) is symmetric in a and b imply
that

F (a, b) = F (0, 1)a+b (4.27)
for integer values of a and b. Each coe�cient of a power of u in F (a, b) is
a polynomial in a and b, hence the identity (4.27) is in fact a functional
identity.

By the discussion in [FP00, Section 2.2] and by [FP00, Proposition 2],
we obtain that

F (0, 1) = sin(u/2)
u/2 ,

the claim now follows.

Using the commutativity of the following diagram

F̨—,µ Sn

F—,µ [S(n)]

ęv

fi

ev

and Proposition 4.4.1, we obtain

I1(q) = log
3sin(u/2)

u/2

4
· 1

n ≠ 1!fiú(c1(S) ¢ · · · ¢ 1). (4.28)
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For 2g ≠ 2 + N Ø 0 we define

È“1, . . . , “N Í‘

g,“
:=

ÿ

k

È“1, . . . , “N Í‘

g,(“,m)u
m,

setting invariants corresponding to unstable values of g,N and — to zero. By
repeatedly applying Theorem 4.3.3, we obtain that

È“1, . . . , “N Í0
g,—

=
ÿ

kØ1

1
k!

K

“1, . . . , “N , I1(q), . . . , I1(q)
¸ ˚˙ ˝

k

L≠Œ

g,—

.

Applying the divisor equation10 and (4.28), we get following corollary.

Corollary 4.4.2. Assuming 2g ≠ 2 + N Ø 0,

È“1, . . . , “N Í0
g,“

=
3sin(u/2)

u/2

4“·c1(S)
· È“1, . . . , “N Í≠Œ

g,“
.

4.5 Crepant resolution conjecture
To a cohomology-weighted partition

µ̨ = ((µ1, ”¸1), . . . , (µk, ”¸k
))

we can also associate a class in Hú(S[n], Q), using Nakajima operators,

◊(µ̨) := 1
r

k

i=1 µi

P”¸1
[µ1] · · · P”¸k

[µk] · 1 œ Hú(S[n], Q),

where operators are ordered according to the standard ordering (see Sub-
section 4.1.6). For more details on these classes we refer to [Nak99, Chapter
8].

Proposition 4.5.1. There exists a graded isomorphism of vector spaces

L : Hú
orb(S(n), C) ≥= Hú(S[n], C),

L(⁄(µ̨)) = (≠i)age(µ)◊(µ̨).

Proof. See [FG03, Proposition 3.5].
Remark 4.5.2. The peculiar choice of the identification with a factor (≠i)age(µ)

is justified by Crepant resolution conjecture - this factor makes the invariants
match on the nose. See the next section for more details.

10One can readily verify that an appropriate form of the divisor equation holds for
classes in H

ú(S(d)
, Q) ™ H

ú
orb(S(d)

, Q).
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4.5.1 Quasimaps and admissible covers
From now on, we assume that 2g ≠ 2 + N Ø 0. Using (2.17), we obtain an
identification

H2(S[n], Z) ≥= H2(S, Z) ü Z, (4.29)

which is given by associating to the degree of a (quasi-)map the Chern
character of its graph. Given classes “i œ Hú

orb(S(n), C), i = 1, . . . N , and a
class

(“, m) œ H2(S, Z) ü Z,

for ‘ œ R>0 fi {0+, Œ} we set

È“1, . . . , “N Í‘

g,(“,m) := ˘ÈL(“1), . . . , L(“N )Í‘

g,(“,m) œ C,

the invariants on the right are defined in Section 2.4.3 and L is defined in
Proposition 4.5.1. We set

È“1, . . . , “N Í‘

g,“
:=

ÿ

m

È“1, . . . , “N Í‘

g,(“,m)y
m.

For ‘ = 0+, these are the relative PT invariants of the relative geometry
S ◊Cg,N æ Mg,N . The summation over m with respect to the identification
(4.29) corresponds to the summation over ch3 of a subscheme.

Using wall-crossings, we will now show the compatibility of PT/GW and
Crepant resolution conjecture C.R.C.. Let us firstly stress out our conven-
tions.

• We sum over the degree of the branching divisor instead of the genus
of the source curve. Assuming “i’s are homogenous with respect to
the age, the genus h and the degree m are related by Lemma 4.1.9,

2h ≠ 2 = ≠2n + m +
ÿ

age(“i).

For ‘ œ RÆ0 fi {≠Œ} let

Õ È“1, . . . , “N Í‘

g,“
:=

ÿ

h

È“1, . . . , “N Í‘

g,(“,h)u
2h≠2

be generating series where the summation is taken over genus instead.
Then two two generating series are are related as follows

Õ È“1, . . . , “N Í‘

g,“
‘æ u2n≠

q
age(“i) · È“1, . . . , “N Í‘

g,“
.
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• We sum over Chern character ch3 instead of Euler characteristics ‰.
For ‘ œ R>0 fi {0+, Œ} let

Õ È“1, . . . , “N Í‘

g,“
:=

ÿ

‰

˘È“1, . . . , “N Í‘

g,(“,‰)y
‰

be the generating series where the summation is taken over Euler char-
acteristics instead. Then by Hirzebruch–Riemann–Roch theorem the
two generating series are related as follows

Õ È“1, . . . , “N Í‘

g,“
‘æ y(g≠1)n · È“1, . . . , “N Í‘

g,“
.

• The identification of Proposition 4.5.1 has a factor of (≠i)age(µ).

Taking into account all the conventions above and Lemma 4.1.17, we obtain
that [MNOP06, Conjectures 2R, 3R] can be reformulated11 as follows.

PT/GW. The generating series È“1, . . . , “N Í0+
g,“

(y) is a Taylor expansion
of a rational function around 0, such that under the change of variables
y = ≠eiu,

(≠y)≠“·c1(S)/2 · È“1, . . . , “N Í0+
g,“

(y) = (≠iu)“·c1(S) · È“1, . . . , “N Í0
g,“

(u).

Assume now that S is a del Pezzo surface. Let us apply our wall-crossing
formulas. Using Corollary 4.4.2, we obtain

(≠iu)“·c1(S) ·È“1, . . . , “N Í≠Œ
g,“

= (eiu/2≠e≠iu/2)“·c1(S) ·È“1, . . . , “N Í0
g,“

. (4.30)

Using Corollary 2.5.11, we obtain

(≠y)≠“·c1(S)/2·È“1, . . . , “N ÍŒ
g,“

= (y1/2≠y≠1/2)“·c1(S)·È“1, . . . , “N Í0+
g,“

. (4.31)

Combining the two, we obtain the statement of C.R.C.

C.R.C. The generating series È“1, . . . , “N ÍŒ
g,“

(y) is a Taylor expansion of a
rational function around 0, such that under the change of variables y = ≠eiu,

È“1, . . . , “N ÍŒ
g,“

(y) = È“1, . . . , “N Í≠Œ
g,“

(u).

By both wall-crossings, the statements of PT/GW and C.R.C. in the form
presented above are equivalent.

11The conjectures of [MNOP06] were formulated for a fixed threefold, but they can be
analogously formulated for a moving one, see [PT19].
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Corollary 4.5.3. If S is a del Pezzo surface, then

PT/GW ≈∆ C.R.C.

4.5.2 Quantum cohomology
Let g = 0, N = 3. This is a particularly nice case, firstly, because these
invariants collectively are known as quantum cohomology. Secondly, the
moduli space of genus-0 curves with 3 markings is a point. Hence the in-
variants È“1, “2, “3Í≠Œ

0,“
are PT invariants of S ◊ P

1 relative to the divisor
S ◊{0, 1, Œ}. In [PP17] PT/GW is proven for S ◊P

1, if S is toric. Corollary
4.5.3 then implies the following.

Corollary 4.5.4. If S is a toric del Pezzo surface, g = 0 and N = 3, then
C.R.C. holds.

The above result can also be stated as an isomorphism of quantum co-
homologies with appropriate coe�cient rings. Let

QHú(S[n]) : = Hú(S[n]) ¢C C[[q“ ]](y)
QHú

orb(S(n)) : = Horb(S(n)) ¢C C[[q“ ]](eiu)

be quantum cohomologies, where C[[q“ ]](y) and C[[q“ ]](eiu) are rings of ratio-
nal functions with coe�cients in C[[q“ ]] and in variables y and eiu, respec-
tively. The latter we view as a subring of functions in the variable u. The
quantum cohomologies are isomorphic by Corollary 4.5.4,

QL : QHú
orb(S(n)) ≥= QHú(S[n]),

where QL is given by a linear extension of L, defined in Proposition 4.5.1,
from Hú

orb(S(n)) to Hú
orb(S(n)) ¢C C[[q“ ]] and by a change of variables y =

≠eiu. In particular,

QL(– · q“ · yk) = (≠1)nL(–) · q“ · eniu

for an element – œ Horb(S(n)). Ideally, one would also like to specialise
to y = 0 and y = ≠1, because in this way we recover the classical multi-
plications on Hú

orb(S(n)) and Hú(S[n]). To do so, a more careful choice of
coe�cients is needed - we have to take rational functions with no poles at
y = 0 and y = ≠1.
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Chapter 5

Appendix

5.1 Stability of fibers
The aim of this section is to prove Proposition 5.1.4, the converse of Lemma
2.2.13. The proof is inspired by the proof of [Tho00, Proposition 4.2], which,
however, contains a mistake in the direction

stability =∆ stability of a general fiber,

because a sheaf F on a threefold restricts to stable sheaf on the hyperplane
section with respect to the stability that defines the hyperplane section,
which is not necessarily suitable. If one adds fiber classes to the polarisa-
tion to make it suitable, then one has to take a hyperplane section of bigger
degree, for which suitable polarisation may be di�erent.

Let X := S ◊ C æ C be a trivial surface fibration over a connected
nodal curve C. Let us fix a very ample line bundle OS(1). We denote a
line bundle with specified degrees on each irreducible components OS(1) ⇥
OC(k1, . . . , km) by Lki , and the degree of a sheaf F with respect to Lki by
degki

(F ). Recall that for a possibly singular scheme X slope of a torsion-free
sheaf F can be defined as follows

µ(F ) =
adim(X)≠1(F )
adim(X)(F ) ,

where ai(F )’s are the coe�cients in a Hilbert polynomial

P (F, m) =
ÿ

ai(F )mi

i! .

In what follows by stability we will mean slope stability.

137



Proposition 5.1.1. Assume C is smooth. Fix a class — œ Hú(S ◊ C, Q),
such that rk(—) = 2. There exists n0 œ N, such that for all n Ø n0 and for
all torsion free sheaves F with ch(F ) = — the following statement holds: F
is Ln-stable, if Ft is stable for a general t œ C.

Proof. We will prove the proposition by restricting to a hyperplane
section and then applying [HL97, Theorem 5.3.2], see also [Yos99, Lemma
1.2].

Firstly, consider the Kn̈neth’s decomposition,

H2(S ◊ C, Q) = H2(S, Q) ü H1(S, Q) ¢ H1(C, Q) ü Q,

the first Chern class of a sheaf can be expressed accordingly

c1(F ) = c1(Ft) ü – ü k(F ),

where each summand is in a corresponding Kn̈neth component and Ft is a
general fiber of F over t œ C. The intersection numbers with Ln’s take the
following form

c1(F ) · Ln · Lm = d · k(F ) + (n + m) · deg(F )f , (5.1)

where d = OS(1)2 and deg(F )f = deg(Ft). In particular, slope-stability with
respect to a curve class L1 ·L2n≠1 coincides with slope-stability with respect
to a curve class Ln · Ln.

Consider now a general hyperplane section H œ |OS(1) ⇥ OC(1)|, let
2n0 ≠ 1 be the smallest odd integer such that [HL97, Theorem 5.3.2] holds
for H æ C, the class —|H and a polarisation L2n0≠1|H .

Assume Ft is unstable for all t œ C. Let G Òæ F be a relative destabilising
subsheaf (strictly speaking, it exists over some non-empty open subscheme
U ™ C, we then extend over the entire C). Consider now the restriction
to a general hyperplane section G|H Òæ F|H , it is destabilising by the proof
of [HL97, Theorem 5.3.2] with respect to L2n0≠1|H , therefore G Òæ F is
Ln0-destabilising.
Remark 5.1.2. The reason for the failure of the proof of Proposition 5.1.1
for rk > 2 is already present at the level of fibered surfaces. For a fibred
surface the di�erence between rk = 2 and rk > 2 cases is that for the
former a suitable polarisation has a stronger property, namely, a subsheaf is
destabilising, if and only if it is destabilising on a fiber as it is shown in [HL97,
Theorem 5.3.2]. However, the author couldn’t establish such property of a
suitable polarisation for rk > 2. In this case one can show that there are
no walls between the fiber stability and Ln-stability for n ∫ 0, which is a
weaker statement.
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Corollary 5.1.3. Assume we are in the setting of Proposition 5.1.1 and F
is unstable at a general fiber, let G µ F be a relatively destabilising subsheaf,
then

rk(G) degn(F ) ≠ rk(F ) degn(G) < 2(n0 ≠ n),
for all n Ø n0, i.e. the di�erence of slopes can be made arbitrary negative by
increasing n.

Proof. By the proof of Proposition 5.1.1 G µ F is Ln-destabilising for
all n Ø n0, therefore

rk(G) degn(F ) ≠ rk(F ) degn(G)
< rk(G) degn(F ) ≠ rk(F ) degn(G) ≠ (rk(G) degN (F ) ≠ rk(F ) degn0(G))

Æ 2(n0 ≠ n),

where for the last inequality we used (5.1).

Now let C be a connected nodal curve and C̃ be its normalisation, by
C̃i we will denote its connected components. For a sheaf F on a threefold
S ◊ C we denote its pullback to Xi := S ◊ C̃i by Fi.

Proposition 5.1.4. Fix classes —i œ Hú(S ◊ C̃i, Q) with the same fiber
component, such that rk(—i) = 2. There exists n0 œ N, such that for all
n Ø n0 and for all sheaves F flat over C with ch(Fi) = —i the following
statement holds: F is Lnki-stable, if Ft is stable for a general t œ C.

We will prove the proposition for the case of C with one node, splitting
the proof into two parts depending on whether the node is separating or
non-separating. The proof easily generalises to the case of C with more
nodes.

Proof (non-separating node). Let C be a connected nodal curve with one
non-separating node s œ C and fi : S ◊C̃ æ S ◊C be the normalization map
of the product. The sheaves F and fiúF are related by the normalisation
sequence

0 æ F æ fiúfiúF æ Fs æ 0,

from which we obtain

a3(F ) = a3(fiúF ), a2(F ) = a2(fiúF ) ≠ a2(Fs).

Now let G µ fiúF be a relatively destabilising subsheaf and G̃ be the kernel
of the following composition

fiúG Òæ fiúfiúF æ Fs,
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by construction G̃ is a subsheaf of F and

a3(G̃) = a3(G), a2(G̃) Æ a2(G).

The di�erence of slopes of F and G̃ can then be bounded from above as
follows

a2(F )
a3(F ) ≠ a2(G̃)

a3(G̃)
Ø a2(fiúF )

a3(fiúF ) ≠ a2(G)
a3(G) ≠ a2(Fs)

a3(fiúF ) .

After multiplying by denominators, the right-hand side of the expression
above is equal to

a3(G) · a2(fiúF ) ≠ a3(fiúF ) · a2(G) ≠ a3(G) · a2(Fs) (ú)

Recall that

a2(F ) = degk(F ) + rk(F ) · a2(OX),
a3(F ) = rk(F ) · a3(OX).

Substituting the above expressions into the summands of (ú), we obtain

(ú) = a3(OX) · (rk(G) · degk(fiúF ) ≠ rk(F ) · degk(G) ≠ d · rk(F ) · rk(G)),

where we also used that

a2(Fs) = d · rk(Fs) = d · rk(F ),

because F is flat over C. By Corollary 5.1.3 the term

rk(G) · degk(fiúF ) ≠ rk(F ) · degk(G)

can be made arbitrary negative by taking big enough power of OC(k),
thereby making the di�erence of slopes negative. Moreover, the choice of
the power is uniform for all F .

Proof (separating node). Let C = C1 fi C2 be a connected nodal curve
with one separating node s œ C, and let OC(k1, k2) be the ample line bundle
with prescribed degrees on each component. The restrictions of F to S ◊ Ci

are related to F by the normalisation sequence

0 æ F æ F1 ü F2 æ Fs æ 0,

from which we obtain

a3(F ) = a3(F1) + a3(F2), a2(F ) = a2(F1) + a2(F2) ≠ a2(Fs).

140



Now let Gi µ Fi be relatively destabilising subsheaves and G̃ be the kernel
of the following composition

G1 ü G2 Òæ F1 ü F2 æ Fs,

by construction G̃ is a subsheaf of F and

a3(G̃) = a3(G1) + a3(G2), a2(G̃) Æ a2(G1) + a2(G2).

The di�erence of slopes of F and G̃ then takes the following form

a2(F )
a3(F ) ≠ a2(G̃)

a3(G̃)
Ø

q
a2(Fi)q
a3(Fi)

≠
q

a2(Gi)q
a3(Gi)

≠ a2(Fs)
q

a3(Fi)
.

After multiplying by denominators, the right-hand side of the the expression
above is equal to

a2(F1) · (a3(G1) + a3(G2)) ≠ a2(G1) · (a3(F1) + a3(F2))
+a2(F2) · (a3(G1) + a3(G2)) ≠ a2(G2) · (a3(F1) + a3(F2))
≠a2(Fs) ·

ÿ
a3(Gi)

We now group the summands in the following way

a2(F1) · a3(G1) ≠ a2(G1) · a3(F1) + a2(F2) · a3(G2) ≠ a2(G2) · a3(F2)
≠a2(Fs) ·

ÿ
a3(Gi)

(a)

+a2(F1) · a3(G2) ≠ a2(G2) · a3(F1) + a2(F2) · a3(G1) ≠ a2(G1) · a3(F2) (b)

We will analyse terms (a) and (b) separately.

Term (a). The term (a) is simple to deal, substituting

a2(Fi) = degki
(Fi) + rk(Fi) · a2(OXi)

a3(Fi) = rk(Fi) · a3(OXi)

into (a) we obtain that

(a) =
ÿ

a3(OXi) ·
!
rk(Gi) · degki

(Fi) ≠ rk(F ) · degki
(Gi) ≠ rk(F ) · rk(Gi)

"
,

since F is stable at a general fiber, the right-hand side can be made negative
taking big enough power of OC(k1, k2) by Corollary 5.1.3.
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Term (b). Making the same substitution into (b) we obtain

rk(G2) · degk1(F1) · a3(OX2) ≠ rk(F2) · degk1(G1) · a3(OX2)
+rk(G1) · degk2(F2) · a3(OX1) ≠ rk(F1) · degk2(G2) · a3(OX1) (b.1)
+rk(F1) · rk(G2) · a2(OX1) · a3(OX2) ≠ rk(F1) · rk(G2) · a2(OX2) · a3(OX1)
+rk(F2) · rk(G1) · a2(OX2) · a3(OX1) ≠ rk(F2) · rk(G1) · a2(OX1) · a3(OX2)

(b.2)

We again split the analysis in two parts. For the term (b.1) we use that

degki
(Fi) = d · k(Fi) + 2ki · deg(Fi)f

a3(OXi) = d · ki

to obtain

2d · k1 · k2 · rk(G2) · deg(F1)f ≠ 2d · k1 · k2 · rk(F2) · deg(G1)f

+2d · k1 · k2 · rk(G1) · deg(F2)f ≠ 2d · k1 · k2 · rk(F1) · deg(G2)f

+d · k2 · d · rk(G2) · k(F1) ≠ d · k2 · d · rk(F2) · k(G1)
+d · k1 · d · rk(G1) · k(F2) ≠ d · k1 · d · rk(F1) · k(G2)

Let Ki be the smallest integer for which the proposition holds, then by (5.1)

d ·rk(F ) ·k(Gi) > 2Ki ·(·rk(Gi) ·deg(F )f ≠rk(F ) ·deg(Gi)f)+d ·rk(Gi) ·k(Fi),

where we also used that

rk(F1) = rk(F2) = rk(F ).

Regrouping the summands and applying the above inequality, we obtain
that

(b.1) <
ÿ

d · ki+1 · (ki ≠ Ki) · (rk(Gi) · deg(F )f ≠ rk(F ) · deg(Gi)f)

+
ÿ

d · ki+1 · d · k(Fi) · (rk(Gi) ≠ rk(Gi+1)).

For the term (b.2) we use that

a2(OXi) = d · gi + ki · c1(OS(1)) · c1(S)
2 ,

where gi = g(Ci), then after some cancellations we obtain

(b.2) =
ÿ

d · ki · d · gi+1 · rk(F ) · (rk(Gi) ≠ rk(Gi+1)),
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now putting (b.1) and (b.2) together we see that if

(ki ≠ Ki) · (rk(Gi) · deg(F )f ≠ rk(F ) · deg(Gi)f)
< d · (rk(Gi) ≠ rk(Gi+1)) · (gi+1 · rk(F ) ≠ k(Fi)),

then (b.1) + (b.2) is negative. The right-hand side of the above inequality
can be bounded independently of F , therefore by taking high enough power
of OC(k1, k2) the term (b) is negative independently of F .

5.2 Reduced obstruction theory
Let E

•
red be the cone of the dual of the semiregularity map sr

‚. The existence
of the obstruction-theory morphism

E
•
red æ LQ

‘
g,N (M,—)/Mg,N

is slightly problematic from a technical point of view, as one needs to con-
sider Hodge theory for non-commutative spaces to run the same argument
as in [KT18] in full generality. Another option would be to use results
from [Pri], however, there a singular case is not discussed, and in our case
S ◊ C might be singular due to singularity of C. The optimal result is
therefore the following one, if one refrains from going too deeply into non-
commutative geometry. The proof closely follows [KT18].

Proposition 5.2.1. Given (v, —̌) œ �ü�, assume a first-order deformation
ŸS œ HT 2(S) ≥= HH2(S) from Proposition 3.1.3 is represented by a C[‘]/‘2-
linear admissible subcategory

C ™ Dperf(Y),

where Y æ B = Spec C[‘]/‘2 is flat. Then there exists an obstruction theory
morphism

E
•
red æ LQ

‘
g,N (M,—)/Mg,N

.

Proof. Firstly, by taking the central fiber, we get that

Dperf(S) ™ Dperf(Y )

is an admissible subcategory, where Y is the central fiber of Y. Therefore
there is an isomorphism of moduli stacks

Coh(S) ≥= DCoh(S)(Y ), (5.1)
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where DCoh(S)(Y ) is the moduli stack of objects on Y which are contained in
the subcategory Coh(S). This also implies that the quasimap moduli stacks
are isomorphic,

Q‘

g,N (M,Coh(S), —) ≥= Q‘

g,N (M,DCoh(S)(Y ), —).

Let

MY := M ‘

v,—̌
(Y ◊ Cg,N /Mg,N ) ≥= M ‘

v,—̌
(S ◊ Cg,N /Mg,N ) =: MS

be the relative moduli of sheaves corresponding to Q‘

g,N
(M,DCoh(S)(Y ), —)

and Q‘

g,N
(M,Coh(S), —) respectively.

Secondly, the inclusion Db(S) Òæ Dperf(Y ) induces a map between Hochschild
cohomologies

HH2(Y ) æ HH2(S), (5.2)

given by restricting the natural transformation of functors

idDperf(Y) æ [2].

This map sends ŸY to ŸS (see e.g. [Per, Lemma 4.6]), where ŸY is the
class associated to the deformation Y æ B. Moreover, for a complex F œ
Db(S ◊ C) the class

Ÿ(F ) œ Ext2(F, F ),

which is given by applying the natural transformation associated to Ÿ œ
HH2(S) to F , is the obstruction to deform F in Ÿ-direction, and by [Tod09,
Proposition 5.2] and [C0̆5] it agrees with obstruction class given by compos-
ing Koidara-Spencer class with Atiyah class

Ÿ(F ) = Ÿ · exp(≠At(F ))

after applying HKR isomorphism

HH2(S) ≥= HT 2(S).

We now identify a sheaf F œ Coh(S ◊ C) with its image in Dperf(Y ◊ C),
then the following triangle commutes

HH2(S) Ext2(F, F )

HH2(Y )
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Hence by the choice of ŸS the deformation of sheaves in the class (v, —̌)
viewed as complexes on Y ◊ C is obstructed in ŸY -direction, because the
obstruction class is non-zero by the construction of ŸS .

We now closely follow [KT18, Section 3.2]. By the above discussion the
inclusion of the central fiber over B

MY Òæ MY/B

is an isomorphism. The obstruction complexes of MY and MS are isomor-
phic under the natural identifications of the moduli spaces

HomfiS (FS , FS) ≥= HomfiY (FY , FY ), (5.3)

because both complexes can be defined just in terms of Db(S), where FS/Y

are universal families of MS/Y with fiS/Y being the obvious projections. Note
that the trace on Y ◊ C has no e�ect on Ext2, since H2(OY ◊C) = 0, and in
certain sense a semiregularity map ‡i on S◊C corresponds to semiregularity
map ‡i+1 on Y ◊ C. In particular, HomfiS (FS , FS)0 and HomfiY (FY , FY )0
are not isomorphic. Nevertheless, we claim that the following composition

E
• : = HomfiS (FS , FS)0 æ HomfiY (FY , FY )0 æ LMY/B/B (5.4)

is a perfect obstruction theory, where the first map is given by identification
(5.3), while the second is by Atiyah class on Y ◊ MY/B, in particular, the
second map is an obstruction theory. For proof of the claim we plan to use
criteria from [BF97, Theorem 4.5].

Since for any B-scheme Z0 a B-map Z0 æ MY/B factors though the cen-
tral fiber, the B-structure map Z0 æ B factors through the closed point of
B. Let F0 be the sheaf associated to the map Z0 æ MY/B. The morphism
Homfi(FY , FY )0 æ LMY/B/B is an obstruction theory, therefore [BF97, The-
orem 4.5] to prove that (5.4) is an obstruction theory, it su�ces to prove that
the image of a non-zero obstruction class È(F0) œ Ext2

Y ◊Z0(F0,F0 ¢ pú
Y

I)
with respect to the map

Ext2
Y ◊Z0(F0,F0 ¢ pú

Y I) ≥= Ext2
S◊Z0(F0,F0 ¢ pú

SI)
æ Ext2

S◊Z0(F0,F0 ¢ pú
SI)0 (5.5)

is non-zero for any square-zero B-extension Z of Z0 given by an ideal I,
where pY : Y ◊B Z0 = Y ◊ Z0 æ Z0 and pS : S ◊ Z0 æ Z0 are the nat-
ural projections. Given a square-zero B-extension Z of Z0 there are two
possibilities
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(i) the B-structure map Z æ B factors through the closed point;

(ii) the B-structure map Z æ B does not factor through the closed point.

(i) In this case, the obstruction of lifting the map to Z æ MY/B coincides
with the obstruction of lifting the map to Z æ MY

≥= MS , hence if È(F0)
is non-zero, its image with respect (5.5) is non-zero.
(ii) In this case, a lift to Z æ MY/B is always obstructed, and the obstruc-
tion is already present at a single fiber of pY in the following sense. By
assumption there exists a section B æ Z which is an immersion (we can
find an open a�ne subscheme U µ Z such that U æ B is flat, but then
U ≥= U0 ◊ B, because first-order deformations of a�ne schemes are trivial,
thereby we get a section). Let z œ Z be image of the closed point of B of
the section, then the restriction

Ext2
Y ◊S0(F0,F0 ¢ pú

Y I) æ Ext2
Y ◊z(F0,z,F0,z ¢ pú

Y Iz)

applied to the obstruction class È(F0) is non-zero and is the obstruction
to lift the sheaf F0,z on Y to a sheaf on Y, hence due to the following
commutative diagram

Ext2
Y ◊Z0(F0,F0 ¢ pú

Y
I) Ext2

Y ◊z(F0,z,F0,z ¢ pú
Y

Iz)

Ext2
S◊Z0(F0,F0 ¢ pú

S
I)0 Ext2

S◊z(F0,z,F0,z ¢ pú
S
Iz)0

we conclude that the image of È(F0) in Ext2
S◊Z0(F0,F0 ¢ púI)0 is non-zero,

because the image of È(F0,z) is non-zero in Ext2
S◊z(F0,z,F0,z ¢ púIz)0. This

establishes claim.
The absolute perfect obstruction theory H

• is then defined by taking the
cone of E

• æ �B[1], so that we have the following diagram

H
•

E
• �B[1]

LMY LMY/B/B �B[1]

By the same argument as in [KT18, Section 2.3] the composition

H
• æ E

• æ E
•
red

is an isomorphism, hence the proposition follows.
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For example, if M = S[n] and c1(—̌) ”= 0 (i.e. the curve class is not ex-
ceptional), we can use a commutative deformation given by the infinitesimal
twistor family S = Y æ B with respect to the class c1(—̌).

The situation becomes more complicated already in the case of S[n] and
c1(—̌) = 0 (i.e. an exceptional curve class), a commutative first-order de-
formation can no longer satisfy the property stated in Proposition 3.1.3. If
d = 2 and S[2] is isomorphic to a Fano variety of lines of some special cubic
fourfold (e.g. see [Has00, Theorem 1.0.3]), then

Dperf(Y ) = ÈDperf(S),O,O(1),O(2)Í

and the family Y æ B is given by deformation of Y away from the Hassett
divisor.
Remark 5.2.2. In [Tod09] Toda constructed geometric realisations of in-
finitesimal non-commutative deformations in HH2(X) for a smooth projec-
tive X. However, it is not clear if they are of the type required by Proposition
5.2.1. In principle, there should be no problem in proving Proposition 5.2.1
dropping the assumption. For that one has to show that Toda’s infinitesimal
deformations behave well under base change.
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