
Robust Information Extraction From
Unstructured Documents

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Marcin Namysł
aus

Ostrów Wielkopolski, Polen

Bonn, 2022

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erster Gutachter: Prof. Dr. Sven Behnke
Zweiter Gutachter: Prof. Dr. Christian Bauckhage
Tag der Promotion: 7. Dezember 2022
Erscheinungsjahr: 2023

Dedication

This dissertation is dedicated to three beloved people who mean so much to me.
First and foremost, to my wife Paulina Myler for her ceaseless and limitless
support. Without her by my side, I would never have completed this chapter of
my life. Next, to my respectful parents Barbara and Kazimierz Namysł for their
understanding and encouragement during my entire Ph.D. journey.

iii

Abstract

In computer science, robustness can be thought of as the ability of a system to
handle erroneous or nonstandard input during execution. This thesis studies the
robustness of the methods that extract structured information from unstructured
documents containing human language texts. Unfortunately, these methods
usually suffer from various problems that prevent achieving robustness to the
nonstandard inputs encountered during system execution in real-world scenarios.

Throughout the thesis, the key components of the information extraction
workflow are analyzed and several novel techniques and enhancements that lead
to improved robustness of this process are presented. Firstly, a deep learning-
based text recognition method, which can be trained almost exclusively using
synthetically generated documents, and a novel data augmentation technique,
which improves the accuracy of text recognition on low-quality documents, are
presented. Moreover, a novel noise-aware training method that encourages neural
network models to build a noise-resistant latent representation of the input
is introduced. This approach is shown to improve the accuracy of sequence
labeling performed on misrecognized and mistyped text. Further improvements
in robustness are achieved by applying noisy language modeling to learn a
meaningful representation of misrecognized and mistyped natural language tokens.
Furthermore, for the restoration of structural information from documents, a
holistic table extraction system is presented. It exhibits high recognition accuracy
in a scenario, where raw documents are used as input and the target information
is contained in tables. Finally, this thesis introduces a novel evaluation method of
the table recognition process that works in a scenario, where the exact location of
table objects on a page is not available in the ground-truth annotations.

Experimental results are presented on optical character recognition, named
entity recognition, part-of-speech tagging, syntactic chunking, table recognition,
and interpretation, demonstrating the advantages and the utility of the presented
approaches. Moreover, the code and the resources from most of the experiments
have been made publicly available to facilitate future research on improving the
robustness of information extraction systems.

v

Acknowledgements

I would like to express my deepest gratitude to my advisor Prof. Dr. Sven Behnke
for giving me the opportunity to pursue my research interest and develop the ideas
that resulted in the approaches presented in this thesis. Moreover, I would like
to thank Dr. Joachim Köhler for his encouragement and countless support during
my Ph.D. research and my work at Fraunhofer IAIS. Furthermore, I would like to
thank all co-authors and anonymous reviewers of the papers included in this thesis
as well as the members of my doctoral committee: Prof. Dr. Christian Bauckhage,
Prof. Dr. Thomas Schultz, and Prof. Dr. Andrea Schnepf.

My special thanks go to Alexander Esser, who helped me practice my conference
presentations and proofread several chapters from the draft of this thesis, providing
many insightful comments that helped improve the final content. Moreover, I
would like to thank Tim Adams for a great collaboration during the preparation
of our joint paper on benchmarking table recognition systems. Furthermore, I
would like to thank Dr. Michael Gref for the exchange of experiences on the formal
requirements of the application for admission to the doctoral procedure.

Several publications included in this thesis were supported by the following
grants: (1) The Fraunhofer Internal Programs under the Human Brain Phar-
macome initiative (Grant No. 836 885). (2) The German Federal Ministry of
Education and Research-funded program KMU-innovativ in the project DeepER.
The detailed information about the funding programs can be found in the acknowl-
edgments sections of the corresponding publications.

vii

Contents

Abstract v

Acknowledgements vii

Contents xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Definition of Robustness 1
1.1.2 Information Extraction . 2

1.2 Motivation . 3
1.3 Contributions . 4
1.4 Publications . 6
1.5 Outline . 7
1.6 Open-Source Software . 8

2 Robust Neural OCR Engine 9
Preface . 9
Abstract . 10
2.1 Introduction . 10
2.2 Preliminaries . 12

2.2.1 Recurrent Neural Networks 12
2.2.2 Convolutional Neural Networks 14

2.3 Related Work . 15
2.3.1 Segmentation-Based Text Recognition Methods 16
2.3.2 Segmentation-Free Text Recognition Methods 16

2.4 Proposed Method . 20
2.4.1 System Architecture . 20
2.4.2 Synthetic Document Generation 22
2.4.3 Data Augmentation for OCR 23
2.4.4 Geometric Normalization 25

ix

Contents

2.5 Experimental Setup . 26
2.5.1 Data Sources and Data Sets 26
2.5.2 Training Setup . 28
2.5.3 Evaluation Setup . 30

2.6 Experimental Results . 31
2.6.1 Recognition Accuracy . 31
2.6.2 Analysis of the Most Frequent Errors 31
2.6.3 Runtime Analysis . 34
2.6.4 Qualitative Example of CTC Decoding 35
2.6.5 Ablation Study . 35

2.7 Summary . 37

3 Noise-Aware Training 39
Preface . 39
Abstract . 40
3.1 Introduction . 40
3.2 Background and Motivation . 42

3.2.1 Neural Sequence Labeling 42
3.2.2 Noisy Neural Sequence Labeling 44
3.2.3 Problem Definition . 44

3.3 Proposed Noise-Aware Training Method 45
3.3.1 Noise Model . 45
3.3.2 Noise Induction Procedure 47
3.3.3 Data Augmentation Objective 48
3.3.4 Stability Training Objective 48

3.4 Experimental Setup . 50
3.4.1 Data Sets and Tasks . 50
3.4.2 Model Architecture . 51
3.4.3 Training Setup . 52
3.4.4 Evaluation Setup . 52
3.4.5 Implementation Details 54

3.5 Experimental Results . 54
3.5.1 Named Entity Recognition 54
3.5.2 Syntactic Chunking and Part-of-Speech Tagging 57
3.5.3 Sensitivity Analysis . 57
3.5.4 Error Analysis . 60
3.5.5 Qualitative Analysis . 62

3.6 Related Work . 62
3.6.1 The Impact of Noisy Input Data 65

x

Contents

3.6.2 Noise-Additive Data Augmentation 65
3.6.3 Noise-Invariant Latent Representation 66
3.6.4 Adversarial Learning . 68

3.7 Summary . 68

4 Empirical Error Modeling for Improved Noise-Aware Training 71
Preface . 71
Abstract . 72
4.1 Introduction . 72
4.2 Related Work . 74

4.2.1 Spelling and OCR Postcorrection 74
4.2.2 Grammatical Error Correction 74

4.3 Problem Definition and Motivation 75
4.3.1 Noisy Neural Sequence Labeling 75
4.3.2 Confusion Matrix-Based Error Model 75
4.3.3 Realistic Empirical Error Modeling 76
4.3.4 Data Sparsity of Natural Language 77
4.3.5 The Issues of Error Correction Methods 78

4.4 Proposed Empirical Error Modeling Method 78
4.4.1 Sequence-to-Sequence Error Generator 78
4.4.2 Unsupervised Parallel Data Generation 79
4.4.3 Sentence- and Token-Level Error Modeling 80
4.4.4 Token-Level Sentence Alignment 81
4.4.5 Noisy Language Modeling 81

4.5 Experimental Setup . 82
4.5.1 Sequence-to-Sequence Error Generation and Correction . . 83
4.5.2 Unsupervised Parallel Data Generation 84
4.5.3 Noisy Language Modeling 85
4.5.4 Sequence Labeling . 85
4.5.5 Tasks and Data Sets . 86
4.5.6 Noisy Benchmarks . 87
4.5.7 Error Generation Baselines 89
4.5.8 Error Correction Baselines 89

4.6 Experimental Results . 89
4.6.1 Empirical Noise Generation Approaches 89
4.6.2 Error Generation vs. Error Correction 91
4.6.3 Noisy Language Modeling 94
4.6.4 Human-Generated Errors 96
4.6.5 Relationship with the Size of the Parallel Corpus 96

xi

Contents

4.7 Summary . 101

5 Flexible Table Recognition and Semantic Interpretation 103
Preface . 103
Abstract . 103
5.1 Introduction . 104
5.2 Table Extraction Task . 107

5.2.1 Table Detection . 107
5.2.2 Table Structure Recognition 108
5.2.3 Table Interpretation . 108

5.3 Related Work . 109
5.3.1 Complete Table Recognition Approaches 109
5.3.2 Table Interpretation Approaches 111

5.4 Proposed Basic Table Extraction Method 112
5.4.1 Preprocessing . 113
5.4.2 General Table Recognition Considerations 114
5.4.3 Recognition of Fully Bordered Tables 115
5.4.4 Recognition of Partially Bordered Tables 118
5.4.5 Proposed Table Interpretation Method 121

5.5 Proposed Hybrid Table Extraction Method 124
5.5.1 Table Detection . 126
5.5.2 Table Structure Recognition 127

5.6 Experimental Setup - Table Recognition 129
5.6.1 Data Sets . 132
5.6.2 Table Detection Setup . 132
5.6.3 TSR Setup . 133
5.6.4 Postprocessing . 134

5.7 Experimental Results - Table Recognition 134
5.7.1 ICDAR 2013 Experiment 134
5.7.2 ICDAR 2019 Experiment 136

5.8 Table Interpretation Experiment 139
5.8.1 Data Sets . 139
5.8.2 Evaluation Setup . 139
5.8.3 Evaluation Results . 141

5.9 Summary . 142

6 Position-Independent Evaluation of Table Recognition Systems 145
Preface . 145
Abstract . 145

xii

Contents

6.1 Introduction . 146
6.2 Related Work . 147
6.3 Problem Definition . 149
6.4 Proposed Evaluation Method of the CTR Task 150
6.5 Experimental Setup . 152

6.5.1 Data Set . 152
6.5.2 Baseline Table Recognition Methods 153
6.5.3 Evaluation Metrics . 154
6.5.4 Evaluation Procedure . 155

6.6 Experimental Results . 156
6.6.1 Single-Variant and Multiple-Variant Evaluation Results . . 156
6.6.2 Subset-Level Evaluation Results 156

6.7 Discussion . 159
6.7.1 Table Extraction Challenges Based on Benchmark Data . 159
6.7.2 PDF vs. Image-Based Input Documents 159
6.7.3 Could We Also Evaluate the Accuracy of Table Detection? 159
6.7.4 Evaluation Behavior on Two Practical Examples 160

6.8 Summary . 161

7 Conclusions 163
7.1 Future Work Directions . 164

Appendix A Supplementary Material 167

Appendix B Statistics of the Sequence Labeling Data Sets 173

Appendix C Incorporated Publications 179
C.1 “Efficient, Lexicon-Free OCR using Deep Learning” 179
C.2 “NAT: Noise-Aware Training for Robust Neural Sequence Labeling” 179
C.3 “Empirical Error Modeling Improves Robustness of Noisy Neural

Sequence Labeling” . 180
C.4 “Flexible Table Recognition and Semantic Interpretation System” 180
C.5 “Benchmarking table recognition performance on biomedical litera-

ture on neurological disorders” . 180

Acronyms 181

Bibliography 183

xiii

1 Introduction

1.1 Background

In this thesis, we study the robustness of information extraction (IE) systems that
process either born-digital Portable Document Format (PDF) files with embedded
text or digitized documents in image format. In the following, the definition of the
robustness concept is presented and explained intuitively. Subsequently, the task
of performing IE from documents is described in detail and its typical workflow is
presented.

1.1.1 Definition of Robustness

Robustness is a fundamental property of both biological organisms and sophisti-
cated engineering systems. In biology, robust traits often result from evolutionary
adaptations and are developed to ensure that specific functions are maintained
despite external or internal perturbations (Kitano, 2004). Similarly, in computer
science, robustness can be thought of as the ability of a system to cope with
erroneous or nonstandard input during execution. IEEE Standard Glossary of
Software Engineering Terminology defines robustness as: “The degree to which a
system or component can function correctly in the presence of invalid inputs or
stressful environmental conditions” (IEEE, 1990, p. 64).

In both biology and computer science, there are intrinsic trade-offs between ro-
bustness against certain perturbations, performance under normal circumstances,
and fragility elsewhere (Kitano, 2004). Diseases expose the fragility of biological
organisms and often require systematic countermeasures to reestablish control
and balance the system’s dynamics. Similarly, adversarial examples — input
perturbations that cause machine learning (ML) models to make incorrect predic-
tions — reveal the vulnerability of neural network models (Goodfellow et al., 2015).
Moreover, the factors like the discrepancy between the data used to develop the
system and the data encountered during execution in a real-world scenario often
lead to decreased performance (Müller et al., 2020).

1

1 Introduction

1.1.2 Information Extraction

The goal of the IE task is to extract structured information from unstructured
documents containing human language texts by means of natural language pro-
cessing (NLP). By creating a structured view of the information present in the
input documents, IE algorithms help us to cope with the enormous amount of
data that otherwise could not be processed manually.

Figure 1.1 presents the flow of the IE process. Preprocessing is first performed
to clean and prepare the raw input document for subsequent processing. When
documents in image format are given as input, skew angle correction (Le et al.,
1994), binarization (Sauvola et al., 1997), and text line detection (Diem et al.,
2013) should be performed prior to the digitization process, i.e, optical character
recognition (OCR) that converts the document image into the machine-readable
format. Concerning the born-digital documents, preprocessing could involve
tokenization (Webster and Kit, 1992), stemming (Jivani et al., 2011), or spelling
correction (Brill and Moore, 2000).

IE typically includes entity-centric tasks like named entity recognition (NER),
relation extraction (Q. Zhang et al., 2017), coreference resolution (Lee et al., 2017),
and knowledge base population (Ji and Grishman, 2011). Noteworthy is the NER
task, whose goal is to locate all named entities in unstructured text and to classify
them into predefined categories, e.g., person names, organizations, and locations
(Tjong Kim Sang and De Meulder, 2003). IE could also be used to restore the
structure of the information in the input document and involves tasks such as
table extraction (Tengli et al., 2004), mathematical formula recognition (Lavirotte
and Pottier, 1997), and other image-to-markup generation tasks (Y. Deng et al.,
2017).

no
Preprocessing

Documents

OCR Information
Extraction

Information
yes

is in digital form?

Figure 1.1: Flow of the IE process. Preprocessing is performed to clean and prepare the
raw input documents for subsequent analysis. OCR is used to digitize the
input document images, i.e., to convert them into a machine-readable format.
OCR could be skipped if the input document is already available in a digital
form. Subsequently, IE is employed to extract structured information (e.g.,
entities, tables) from unstructured document text.

2

1.2 Motivation

1.2 Motivation

This thesis is primarily concerned with the robustness of the OCR, NER, and
table extraction tasks. These tasks play an important role in the IE pipeline for
the following reasons:

• OCR is an essential component of any IE process that works with document
images that were, e.g., scanned or captured with a camera.

• NER accuracy is critical to any entity-centric downstream NLP task such
as coreference resolution, which finds all expressions that refer to the same
entity in a document.

• Table extraction restores the structure of information in a document, which
facilitates further information and knowledge extraction activities.

Unfortunately, these tasks usually suffer from various problems that prevent
achieving robustness to the nonstandard inputs encountered during system execu-
tion in real-world scenarios:

• Due to the heterogeneity of documents, the degradation of the printed
material, and the distortions induced by the image acquisition process, OCR
often suffers from recognition errors (Packer et al., 2010).

• NLP systems are generally trained using standard, error-free textual input
but they are also employed to process user-generated text or consume the out-
put of prior OCR or automatic speech recognition (ASR) processes. These
systems thus perform poorly when the nonstandard, i.e., misrecognized or
misspelled text is given as input (Miller et al., 2000).

• NLP models also suffer from the data sparsity problem of natural language
text, i.e., most of the misrecognized or mistyped words are unobserved during
training and therefore poorly represented by the standard NLP models
(Allison et al., 2006).

• Table extraction systems are often designed to handle only one input format:
either PDF files with embedded text or documents in image format (cf. L.
Gao et al. (2019) and Göbel et al. (2013)). Moreover, the approaches that
perform the complete table extraction process are scarce.

• Although many table extraction systems already perform well on tables with
a simple layout, they often struggle with tables that have a complex layout
as training data for such tables is very limited (Chi et al., 2019). Moreover,
many systems perform poorly on the examples from an out-of-domain data
distribution.

3

1 Introduction

In this thesis, we take a step toward developing a solution to these problems,
which are of high importance to the research community.

1.3 Contributions

The key contributions presented in this thesis are summarized as follows:

Robust neural OCR model and a novel data augmentation method

Chapter 2 presents a segmentation-free, deep learning-based OCR model that was
trained almost exclusively using synthetically generated documents. The presented
approach does not require training data that is annotated at a fine-grained level.
Therefore, it can be trained using the text annotated at the level of text lines,
which saves a considerable manual effort, previously required for producing the
character- or word-level ground truth segmentation and transcription. Moreover,
the impact of various geometrical distortions and pixel-level perturbations on
the text recognition performance is analyzed and a novel data augmentation
technique — alpha compositing with background texture images — is proposed.
The performed experiments show that: (1) The proposed data augmentation
method improves the robustness of neural OCR methods for distorted images and
(2) The developed text recognition system outperforms established commercial
and open-source OCR engines in terms of accuracy on challenging benchmark
data sets consisting of both real and synthetically rendered documents.

Noise-aware training (NAT) method

In Chapter 3, we examine neural network models for sequence labeling by feeding
the text that contains naturally occurring adversarial examples — OCR errors
and misspellings. Firstly, two variants of a confusion matrix-based error model
are defined. The vanilla variant represents plausible typographic noise that
mimics the naturally occurring errors using a uniform distribution over the
set of edit operations at the character level. In contrast, the empirical noise
model employs the error distribution encountered in real-world scenarios, which is
estimated by aligning pairs of error-free and erroneous sentences. Secondly, a novel
noise induction procedure that simulates misrecognized or misspelled sentences is
proposed. Thirdly, the NAT method is introduced. It employs two auxiliary
training objectives: data augmentation and stability training, which use both the
original, error-free input and its synthetically distorted variants to improve the

4

1.3 Contributions

robustness of the sequence labeling models to erroneous text. The effectiveness
of the presented approach was demonstrated by comparing the accuracy of state-
of-the-art baseline models trained using either the proposed NAT method or the
standard training objective for the sequence labeling task on text containing real-
world OCR errors and misspellings.

Empirical error generation and noisy language modeling (NLM) method

Chapter 4 presents an improved version of the NAT framework. Firstly, the
confusion matrix-based noising process is replaced with a learnable error generation
method that employs a sequence-to-sequence (Sutskever et al., 2014) model trained
to translate from error-free to erroneous text. To train the error generation model,
an unsupervised parallel training data generation method is developed, which
directly utilizes an OCR engine and accurately simulates naturally occurring OCR
noise distribution. The presented empirical error induction method improves the
accuracy of noisy neural sequence labeling compared to the baseline error model
from prior work. Secondly, to overcome the data sparsity issue, the NLM method
is proposed, which estimates the embeddings employed by the sequence labeling
model using noisy text produced by the unsupervised parallel data generation
process. The NLM embeddings further improve the accuracy of models for two
sequence labeling tasks in a scenario where the input text contains OCR or human-
generated errors.

Flexible table recognition and semantic interpretation method

In Chapter 5, a holistic approach is introduced that performs recognition and
semantic interpretation of tables contained in unstructured documents that are
either in image or PDF format. For table recognition, a hybrid method is
implemented that combines a deep learning-based table detection module with
heuristics for table structure recognition (TSR). The proposed algorithms rec-
ognize tables with various formats such as fully bordered, partially bordered,
and borderless tables. Moreover, the basic formulation of the table recognition
task is complemented by including a table interpretation module. To this end, a
general formulation of the table interpretation task as a maximum weight matching
(Edmonds, 1965) on a corresponding graph is provided and a rule-based table
interpretation method is proposed. This method leverages regular expressions
(RegEx) (Kleene, 1951) and an approximate string-matching algorithm to compute
semantic similarities between table cells and predefined semantic concepts. The
proposed table recognition method was evaluated on two challenging benchmarks

5

1 Introduction

and achieved results on par with the state-of-the-art approaches in this domain.
Moreover, an issue in the official repository of a recent competition on table
recognition was corrected and the results of the proposed and the baseline method
obtained using the rectified evaluation script are presented. Finally, the proposed
holistic table extraction system exhibited high recognition accuracy in an end-to-
end IE scenario, where raw documents were used as input and target information
was contained in tables.

A novel evaluation method of the complete table recognition (CTR) task

In Chapter 6, we examine the accuracy of several general-purpose table recognition
systems that exhibit state-of-the-art results on widely used table recognition
benchmarks in a scenario, where the input documents come from the biomedical
domain (Adams and Namysl, 2021). As the employed benchmarking data set does
not provide information about the exact location of table objects on a page, a
novel method that evaluates the CTR process was designed. It performs table
matching and structure comparison between the ground-truth and the recognized
tables using exclusively the information about the structure of the tables and not
their exact location in a document. The results obtained by each baseline method
on the employed benchmarking data set are discussed, as well as the factors that
can impact the performance of table recognition systems.

1.4 Publications

Parts of this thesis have been published in conference proceedings and journals.
The most relevant publications1 are presented below in chronological order:

Pub. (1) M. Namysl and I. Konya (2019). “Efficient, lexicon-free OCR using
deep learning.” In: International Conference on Document Analysis
and Recognition (ICDAR). IEEE, pp. 295–301. doi: 10.1109/ICDAR.2
019.00055

Pub. (2) M. Namysl, S. Behnke, J. Köhler (2020). “NAT: Noise-aware training
for robust neural sequence labeling.” In: Annual Meeting of the Asso-
ciation for Computational Linguistics. Association for Computational
Linguistics, pp. 1501–1517. doi: 10.18653/v1/2020.acl-main.138

1 In Appendix C, the full text of each publication is reprinted with the permission of the copyright
holders.

6

https://doi.org/10.1109/ICDAR.2019.00055
https://doi.org/10.1109/ICDAR.2019.00055
https://doi.org/10.18653/v1/2020.acl-main.138

1.5 Outline

Pub. (3) M. Namysl, S. Behnke, J. Köhler (2021). “Empirical error modeling
improves robustness of noisy neural sequence labeling.” In: Findings of
the Association for Computational Linguistics: ACL-IJCNLP. Associa-
tion for Computational Linguistics, pp. 314–329. doi: 10.18653/v1/2
021.findings-acl.27

Pub. (4) T. Adams, M. Namysl, A. T. Kodamullil, S. Behnke, and M. Jacobs
(2021). “Benchmarking table recognition performance on biomedical
literature on neurological disorders.” In: Bioinformatics 38.6, pp. 1624–
1630. issn: 1367-4803. doi: 10.1093/bioinformatics/btab843

Pub. (5) M. Namysl, A. Esser, S. Behnke, J. Köhler (2022). “Flexible table
recognition and semantic interpretation system.” In: International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications. Vol. 4: VISAPP. INSTICC. SciTePress,
pp. 27–37. isbn: 978-989-758-555-5. doi: 10.5220/0010767600003
124

It is worth noting that the publication that is marked as Pub. (5) in the list
above was nominated for the Best Industrial Paper Award at the 17th International
Conference on Computer Vision Theory and Applications.2

In addition to the key publications that constitute the core part of this thesis,
the author also contributed to the following publications that are closely related
to the topics presented in this thesis and were written during the time in which
the presented research has been conducted:

• K. D. Dhole, V. Gangal, S. Gehrmann, A. Gupta, Z. Li, et al. (2021). NL-
Augmenter: A framework for task-sensitive natural language augmentation.
doi: 10.48550/ARXIV.2112.02721

• V. Lage-Rupprecht, B. Schultz, J. Dick, M. Namysl, A. Zaliani, et al.
(2022). “A hybrid approach unveils drug repurposing candidates targeting an
Alzheimer pathophysiology mechanism.” In: Patterns 3.3, p. 100433. issn:
2666-3899. doi: 10.1016/j.patter.2021.100433

1.5 Outline

This thesis consists of seven chapters. Chapters 2-6 present the scientific contri-
butions of the thesis (see Section 1.3). Each of them starts with the introduction
to the topic of interest, and problem formulation followed by the details of
2 https://visapp.scitevents.org/?y=2022

7

https://doi.org/10.18653/v1/2021.findings-acl.27
https://doi.org/10.18653/v1/2021.findings-acl.27
https://doi.org/10.1093/bioinformatics/btab843
https://doi.org/10.5220/0010767600003124
https://doi.org/10.5220/0010767600003124
https://doi.org/10.48550/ARXIV.2112.02721
https://doi.org/10.1016/j.patter.2021.100433
https://visapp.scitevents.org/?y=2022

1 Introduction

the proposed methods, the experimental evaluation, and the discussion of the
advantages and limitations of the presented approach. Moreover, a review of the
related approaches in the field is also presented. Finally, Chapter 7 concludes this
thesis by discussing the accomplished scientific results and possible future work
directions.

1.6 Open-Source Software

To facilitate future research on improving the robustness of IE systems, most of the
described methods and proposed data sets were made publicly available, including:

• The complete source code of the NAT framework that was introduced in
Namysl et al. (2020).3

• The complete source code of the improved NAT framework including re-
sources used in the experiments and the pretrained NLM embeddings
presented in Namysl et al. (2021).4

• The source code of the evaluation method of the CTR process, which was
presented in Adams et al. (2021).5

• The table recognition benchmark (Adams and Namysl, 2021) that was
introduced in Adams et al. (2021).6

• The source code of the evaluation method of the table interpretation task
and the resources used in the table interpretation experiment presented in
Namysl et al. (2022).7

• The resources from the table recognition experiment presented in Section 5.7,
including the evaluation scripts and the output files produced by the pro-
posed and the baseline approach.8

Moreover, the author also contributed to the development of the NL-Augmenter
framework9 (Dhole et al., 2021) — a collaborative effort intended to add reusable
transformations of NLP data sets that could be used to generate additional training
data or to test model robustness.

3 https://github.com/mnamysl/nat-acl2020
4 https://github.com/mnamysl/nat-acl2021
5 https://github.com/mnamysl/benchmarking_table_recogn
6 https://zenodo.org/record/5549977
7 https://github.com/mnamysl/table-interpretation
8 https://github.com/mnamysl/tabrec-sncs
9 https://github.com/GEM-benchmark/NL-Augmenter

8

https://github.com/mnamysl/nat-acl2020
https://github.com/mnamysl/nat-acl2021
https://github.com/mnamysl/benchmarking_table_recogn
https://zenodo.org/record/5549977
https://github.com/mnamysl/table-interpretation
https://github.com/mnamysl/tabrec-sncs
https://github.com/GEM-benchmark/NL-Augmenter

2 Robust Neural OCR Engine

Preface

This chapter is adapted from Namysl and Konya (2019)1, previously published by
IEEE and presented at the 15th International Conference on Document Analysis
and Recognition (ICDAR 2019)2.

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the previous
publication (Namysl and Konya, 2019), including the conception, design, and im-
plementation of the proposed methods, the collection, generation, and annotation
of the data for training and evaluation of the proposed approach, conducting
the experimental evaluation, the analysis and interpretation of the experimental
results, drafting the manuscript, as well as the revision, proofreading, and final
approval of the version to be published.

The content presented in this chapter, unless otherwise stated, is the contribu-
tion of the author of this thesis.

Unpublished Content

Compared to the previous publication, additional, unpublished content is included
in this chapter. In particular, Section 2.2 that describes the preliminaries and
Section 2.6.4 that discusses the employed decoding method on a qualitative
example were additionally presented.

1 ©2019 IEEE. Reprinted in Appendix C.1 with permission, from M. Namysl and I. Konya (2019).
“Efficient, lexicon-free OCR using deep learning.” In: International Conference on Document
Analysis and Recognition (ICDAR). IEEE, pp. 295–301. doi: 10.1109/ICDAR.2019.00055

2 http://icdar2019.org

9

https://doi.org/10.1109/ICDAR.2019.00055
http://icdar2019.org

2 Robust Neural OCR Engine

Abstract

OCR remains a challenging problem when text occurs in unconstrained environ-
ments, like natural scenes, due to geometrical distortions, complex backgrounds,
and diverse fonts. In this chapter, a segmentation-free text recognition system that
combines deep learning-based methods and rich data augmentation techniques is
presented. It utilizes synthetic training data that was generated by rendering
images, which contain sentences sampled from a large text corpus, using diverse
fonts. To simulate text occurring in complex natural scenes, rendered images are
augmented with geometric distortions and with a proposed data augmentation
technique — alpha compositing with background textures. The employed architec-
ture uses a convolutional neural network (CNN) encoder to extract features from
text images. To model the interactions between the input elements, both CNN
and recurrent neural network (RNN) models are used. The proposed method
surpasses the accuracy of leading commercial and open-source OCR engines on
distorted text examples.

2.1 Introduction

OCR is one of the most widely studied problems in the field of pattern recognition
and computer vision. OCR is an important component of the digitization process,
which involves converting analog document sources to their electronic versions for
further processing, analysis, or archiving. It is not limited to printed text but also
includes handwritten documents, as well as natural scene text (Figure 2.1).

Typically, the OCR task involves two components: a text detection and a text
recognition module.3 The goal of the text detection component is to localize all text
blocks, i.e., characters, words, lines, or paragraphs, within an image. Subsequently,
the text recognition module aims to transcribe the text depicted in each textual
region into natural language tokens.

The accuracy of various OCR methods has recently greatly improved due to
advances in deep learning (He et al., 2016; Hu et al., 2018; Ioffe and Szegedy,
2015). Moreover, many current open-source and commercial products reach
a high recognition accuracy and good throughput for run-of-the-mill printed
document images. While the recent progress in this field has led the research
community to regard OCR as a largely solved problem, this work shows that
3 Long et al. (2021) present a thorough review of recent scene text detection and recognition

approaches.

10

2.1 Introduction

(a) Printed text example
(©2015 IEEE)

(b) Handwritten text ex-
ample (©2017 IEEE)

(c) Scene text example (©2011 IEEE)

Figure 2.1: Examples of (a) printed, (b) handwritten, and (c) scene text. The images
were reprinted from Nayef et al. (2015), Sánchez et al. (2017), and K. Wang
et al. (2011), respectively.

even the most successful and widespread OCR solutions are neither able to
robustly handle large font varieties nor distorted texts, potentially superimposed
on complex backgrounds. Such unconstrained environments for digital documents
have already become predominant, due to the wide availability of mobile phones
and various specialized video recording devices (Nayef et al., 2015). Moreover,
existing methods seem to be suboptimized for some commonly used subsets of
fonts. They exhibit high susceptibility to foreground and background variations
and considerable dependence on external language models (Smith, 2011).

In contrast to popular OCR engines, methods used in scene text recognition
(STR) (Bušta et al., 2017; Lyu et al., 2018) exploit computationally expensive
network models, aiming to achieve the best possible recognition rates on popular
benchmarks. Such methods are tuned to deal with significantly smaller amounts of
text per image and are often constrained to predefined lexicons. Commonly used
evaluation protocols substantially limit the diversity of symbols to be recognized,
e.g., by ignoring all non-alphanumeric characters, or by neglecting case sensitiv-
ity (K. Wang et al., 2011). Hence, models designed for scene text are generally
inadequate for performing OCR of printed documents, where high throughput and
support for great varieties of symbols are essential.

The method presented in this chapter addresses the general text recognition
problem and tries to overcome the limitations of both printed OCR and STR
systems. To this end, a fast and robust multiple-font OCR engine was developed. It
recognizes 132 different character classes and employs deep learning-based models
that are trained almost exclusively using synthetically generated documents. The

11

2 Robust Neural OCR Engine

proposed method requires a much lower data labeling effort, making the resulting
framework more readily extensible for new languages and scripts. Moreover, in
Section 2.4.3, a novel data augmentation technique is proposed to improve the
robustness of neural models for text recognition.

The presented approach was evaluated using large and challenging data sets
that consist of both real and synthetically rendered documents. The comparison
with leading commercial and established open-source engines shows that the pro-
posed solution obtains significantly better recognition accuracy with comparable
execution time.

2.2 Preliminaries
In this section, the RNN and the CNN architectures employed by the proposed
text recognition method, as well as by several related approaches reviewed in
Section 2.3, are briefly introduced. This part can be omitted if the reader is
already familiar with the aforementioned neural network architectures and their
popular variants.

2.2.1 Recurrent Neural Networks

An RNN is a class of artificial neural networks designed to model interactions
between consecutive input elements. It maintains its internal state to better
process sequential data. RNNs can be trained with iterative gradient descent
algorithms like backpropagation through time (Werbos, 1990).

An RNN computes its hidden states ht and output vectors yt as follows (Graves
et al., 2013):

ht = H(Wxhxt +Whhht−1 + bh), (2.1)
yt = Whyht + by, (2.2)

where x is the input vector and t denotes the time step that iterates from 1

to the maximum number of steps T . Moreover, Wxh, Whh, and Why represent
the input-hidden, hidden-hidden, and hidden-output weight matrices, respectively.
Furthermore, bh and by are the corresponding bias vectors. H is the hidden layer
function modeled as an element-wise application of a sigmoid function (Graves
et al., 2013).

A long short-term memory (LSTM) network (Hochreiter and Schmidhuber,
1997) is a special variant of the RNN consisting of LSTM units that implement a

12

2.2 Preliminaries

more complex hidden layer function H. LSTM networks prevent backpropagated
errors from vanishing or exploding (Pascanu et al., 2013), and therefore can
memorize particular events for a longer period of time than the standard RNN.

A basic LSTM unit consists of a memory cell and three multiplicative gates,
i.e., input, forget, and output gates. A more elaborated extension is the peephole
LSTM unit (Gers and Schmidhuber, 2000), where the multiplicative gates compute
their activations at the current time step using additionally the activation of the
memory cell from the previous time step (Figure 2.2).

Figure 2.2: Illustration of a peephole LSTM unit. The memory cell is denoted as ct.
The sigmoid function is represented by an S-shaped curve. ©2013 IEEE.
Reprinted from Graves et al. (2013).

A gated recurrent unit (GRU) (Cho et al., 2014) is another variant of the RNN
unit with an alternative gating mechanism. GRUs have only the update and reset
gates and therefore fewer parameters and simpler structure than the LSTM units.

The RNN architecture was further extended to better exploit the information
from past and future states and to be able to process multidimensional data.
Bidirectional recurrent neural networks (BRNNs) (Schuster and Paliwal, 1997)
consist of two hidden RNN layers traversing the input sequence in opposite spatial
directions (i.e., left-to-right and right-to-left directions) that are connected to a
single output layer, as illustrated in Figure 2.3. The BRNN computes the sequences
of forward and backward hidden state vectors (−→h and ←−h , respectively), and the
output vector as follows (Graves et al., 2013):

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by. (2.3)

13

2 Robust Neural OCR Engine

Multidimensional recurrent neural networks (MDRNNs) (Graves et al., 2007)
further generalize standard RNNs by providing recurrent connections along all
spatiotemporal dimensions, making them robust to local distortions along any
combination of the respective input dimensions.

Figure 2.3: Illustration of a bidirectional RNN. x, y, and h are the input, output, and
hidden state vectors, respectively, and t denotes the time step. Arrows
indicate the direction in which the input sequence is traversed. ©2013 IEEE.
Reprinted from Graves et al. (2013).

2.2.2 Convolutional Neural Networks

A CNN (Lecun et al., 1998) is a class of feed-forward neural networks commonly
used to extract features from speech, images, and videos (Chauhan et al., 2018;
Huang et al., 2014; Xu et al., 2015). These features can be then used, e.g., for
object classification and detection (Krizhevsky et al., 2012).

CNNs use a concept of the receptive field, where each neuron of a hidden layer
receives inputs only from a local region in the previous layer, which greatly reduces
the number of weights that need to be learned (Le and Borji, 2017; Luo et al.,
2016). Such connectivity patterns between neurons are biologically inspired by
the organization of the animal visual cortex (Hubel and Wiesel, 1962).

Each convolutional layer applies a cross-correlation operation with a learnable
two-dimensional kernel matrix to its inputs and passes the results to the next

14

2.3 Related Work

layer (Figure 2.4). This allows the CNN to be deeper in terms of the number
of layers than the corresponding feed-forward network with the same number of
parameters (Simonyan and Zisserman, 2014; Szegedy et al., 2015). Convolutional
filters learned this way successfully replaced traditionally used, hand-crafted
features in many computer vision applications (Coşkun et al., 2017; Kagaya et al.,
2014).

Figure 2.4: Illustration of a CNN. Typically, it consists of several convolutional layers
with a nonlinear activation function interleaved with pooling layers, which
reduce the dimensions of the feature maps. The feature maps from the last
layer are fed to a fully connected neural network with a softmax function
(Bridle, 1990) to get the output predictions. A convolutional layer applies
the cross-correlation (denoted as ∗) operation to the input X with a kernel
H, as illustrated in the lower part of the figure. ©2020 IEEE. Adapted from
Cheung et al. (2020).

2.3 Related Work

In this section, a detailed review of related approaches for printed, handwritten,
and scene text recognition is presented. These can be broadly categorized
into segmentation-based and segmentation-free methods, which are detailed in
Sections 2.3.1 and 2.3.2, respectively.

15

2 Robust Neural OCR Engine

2.3.1 Segmentation-Based Text Recognition Methods

Segmentation-based methods recognize individual character hypotheses, explicitly
or implicitly generated by a character segmentation method (Breuel, 2008; Jacobs
et al., 2005). The output is a recognition lattice containing various segmentation
and recognition alternatives weighted by the classifier. The lattice is then decoded,
e.g., via a greedy or beam search method. Moreover, the decoding process may
also make use of an external language model or allow the incorporation of certain
lexicon constraints.

The PhotoOCR system for text extraction from smartphone imagery proposed
by Bissacco et al. (2013) is a representative example of a segmentation-based OCR
method. In this method, the segmentation points between characters are detected
using a binary logistic sliding window classifier trained on a combined histogram
of oriented gradients (HOG) and weighted direction code histogram feature vector.
They used a deep fully connected neural network model trained on extracted HOG
features for character classification and incorporated a character-level language
model into the score function to facilitate resolving ambiguities between similarly
looking characters.

The accuracy of segmentation-based methods heavily suffers from segmentation
errors and the lack of context information wider than a single character candidate
image during classification. Improper incorporation of an external language model
or lexicon constraints can significantly degrade the accuracy of the complete OCR
system (Smith, 2011). While offering high flexibility in the choice of segmentation,
classification, and decoding methods, segmentation-based approaches require a
similarly high effort to tune optimally for specific application scenarios. Moreover,
the precise weighting of all involved hypotheses must be recomputed from scratch
as soon as one component is updated (e.g., the language model), whereas the
process of data labeling (e.g., at the character or pixel level) usually causes high
costs in terms of human annotation labor.

2.3.2 Segmentation-Free Text Recognition Methods

Segmentation-free methods eliminate the need for presegmented inputs, i.e., allow
to transcribe images of entire words or text lines without prior detection of
character bounding boxes. In the following, the evolution of the segmentation-
free methods is presented, and the most popular and successful approaches are
briefly summarized.

16

2.3 Related Work

Text Recognition Methods Based on Hidden Markov Models

The previous line of work on segmentation-free text recognition employed Hidden
Markov Models (HMMs). Motivated by the success of HMMs in speech (Gales
and Young, 2007) and handwritten text recognition (HTR) (Bunke et al., 2004;
Natarajan et al., 2008), HMMs were also applied to printed OCR (Rashid
et al., 2012). Although HMMs avoided many difficulties of segmentation-based
approaches, the drawbacks of HMMs, like assuming independent observations and
being generative in nature, limit their recognition performance. Therefore, most
of the recently developed segmentation-free solutions employ the RNN and CNN
architectures, which are described in the following part of this section.

Text Recognition Methods Based on Recurrent Neural Networks

BRNNs were found to be well-suited for both handwritten (Graves et al., 2009) and
printed text recognition (Breuel et al., 2013). Moreover, MDRNNs have gained
high popularity among researchers in the field of HTR (Graves and Schmidhuber,
2008; Voigtlaender et al., 2016) because of their ability to attain state-of-the-art
recognition rates.

MDRNNs are computationally much more expensive than their basic one-
dimensional variant, both during training and inference. Because of this, they
have been less frequently explored in the field of printed document OCR. Instead,
to overcome the issue of sensitivity to stroke variations along the vertical axis,
researchers have proposed different solutions. For example, Breuel et al. (2013)
combined a bidirectional long short-term memory (BLSTM) network architecture
with a text line normalization method for performing OCR of printed Latin and
Fraktur scripts. Similarly, by normalizing the positions and baselines of letters,
Reza Yousefi et al. (2015) achieved superior performance and faster convergence
with a standard BLSTM network over its two-dimensional variant for Arabic HTR.

An additional advantage of segmentation-free approaches is their inherent ability
to work directly on grayscale or full-color images. This increases the robustness
and accuracy of text recognition, as any information loss caused by a previously
mandatory binarization step can be avoided. Asad et al. (2016) applied a BLSTM
network directly to original, blurred document images and were able to obtain
state-of-the-art recognition results. Similarly, Yousefi et al. (2015) trained a
BLSTM network directly on grayscale images of text lines for OCR of historical
documents.

17

2 Robust Neural OCR Engine

Hybrid Text Recognition Methods

The incorporation of CNNs allowed for further improvements in the recognition
accuracy. Since CNNs can extract latent representations of input images, thus
increasing robustness to local distortions, they can be successfully employed as a
substitute for the MDRNN layers.

Shi et al. (2017) introduced the convolutional recurrent neural network (CRNN)
architecture, which is a combination of deep CNN and LSTM models. The former
are used to extract sequences of features from the input image and the latter
are employed to predict a distribution over the class labels for each input frame.
Finally, the connectionist temporal classification (CTC) (Graves et al., 2006) layer
is utilized to translate the predictions into the final sequence of labels. CTC
is a variant of the forward-backward algorithm (Rabiner, 1989) that eliminates
the need to use presegmented training data, which greatly facilitates the training
process. In a similar manner, Breuel (2017) proposed a model that combines
CNNs and LSTMs for printed text recognition. Features extracted by CNNs are
combined and fed into the LSTM network with a CTC output layer. Moreover,
Puigcerver (2017) applied a model that relies only on CNNs and BLSTMs to HTR
and compared it against the MDRNN model, achieving competitive results with
significantly faster runtime.

Text Recognition Methods Based on Fully Convolutional Networks

A few other methods have completely departed from the use of the computationally
expensive RNNs and rely purely on convolutional layers for modeling the local
image context. One example of such a method is a framework for STR presented
by Jaderberg et al. (2014) that performs word recognition on a whole image
holistically. They examined three different classification methods, i.e., dictionary,
character sequence, and bag-of-N-gram encoding, on top of a CNN-based feature
extraction module. They demonstrated the superior performance of their models
on several standard STR benchmarks.

In contrast, Bušta et al. (2017) used a fully convolutional network (FCN) to
extract relevant features from word images and a CTC layer to transform variable-
width feature vectors into conditional probability distributions over available
classes. FCN follows the CNN architecture but does not employ fully connected lay-
ers and thus relies exclusively on the convolution operations. Similarly, Borisyuk
et al. (2018) presented a scalable OCR system called Rosetta, which employs an
FCN model followed by the CTC layer to extract the text depicted on input images
uploaded daily by the users of a popular social media platform.

18

2.3 Related Work

Attention-Based Text Recognition Methods

Visual attention allows humans to focus on a certain region in the visual field with
higher resolution while perceiving the surrounding areas less accurately (Treue
and Katzner, 2009). Bahdanau et al. (2015) proposed to incorporate the attention
mechanism into the standard sequence-to-sequence architecture for the neural
machine translation (NMT) task. Attention was shown to help the model
dynamically focus on a particular input element while making predictions in each
decoding step, which improved the accuracy of the models on long input sentences.

Inspired by these findings, the attention mechanism was increasingly used in
the area of STR and HTR. Lee and Osindero (2016) presented an approach that
extracts and encodes image features using recursive CNNs and then decodes them
using RNNs one character at a time. They use the attention mechanism to improve
the feature selection process. The approach proposed by Ghosh et al. (2017) relies
on an LSTM-based visual attention model that is jointly learned with a CNN-based
image encoder. Their attention-based decoder emits the output characters using
a weighted combination of image features corresponding to different areas of the
image. Noteworthy, they integrate an explicit language model into the decoding
algorithm, achieving state-of-the-art performance on standard STR benchmarks.
Similarly, Chowdhury and Vig (2018) combined a deep CNN with a recurrent
encoder-decoder network with attention to perform HTR. The latter was used
to transcribe the text depicted in the input image. Their system surpassed the
state-of-the-art word-level accuracy on two popular HTR benchmarks.

Text Recognition Methods Based on the Transformer Architecture

Motivated by the success of the attention-based models in NLP, Vaswani et al.
(2017) introduced the Transformer architecture, which is solely based on the atten-
tion mechanism, omitting the use of recurrent or convolutional layers. Transformer-
based models were successfully applied in many NLP (Devlin et al., 2019; Raffel
et al., 2020) and computer vision tasks (Dosovitskiy et al., 2021; Zhu et al., 2021).

Inspired by these results, some recent approaches employed Transformer-based
network models for the OCR problem. M. Li et al. (2021) proposed TrOCR, a text
recognition approach that leverages pretrained Transformer models for both image
and text modalities. Their model outperformed the state-of-the-art approaches on
both printed and handwritten text recognition tasks.

In contrast, Diaz et al. (2021) investigated the general text line recognition
problem. They considered two decoder families, i.e, the Transformer- and the CTC-

19

2 Robust Neural OCR Engine

based models, and different encoder modules, including, BLSTM- and attention-
based architectures. Interestingly, their experiments on widely used data sets
for STR and HTR showed that, although not previously explored for the OCR
task, the attention-based encoder coupled with the CTC decoder outperformed all
other combinations of encoder and decoder components in terms of accuracy and
computational complexity.

2.4 Proposed Method

In this section, the architecture of the developed text recognition approach (Sec-
tion 2.4.1), the proposed synthetic document generation method (Section 2.4.2),
the introduced data augmentation technique (Section 2.4.3), and the employed
geometrical normalization method (Section 2.4.4) are presented.

2.4.1 System Architecture

In the following, two variants of the proposed text recognition architecture depicted
in Figure 2.5 are described. The presented system builds upon the segmentation-
free text recognition techniques described in Section 2.3.2.

Inspired by the CRNN (Shi et al., 2017) and Rosetta (Borisyuk et al., 2018)
systems, either a hybrid CNN-BLSTM-based or an FCN-based model is used to
perform feature extraction and sequence modeling. On top of the core model, a
well-established CTC transcription layer is employed. The bottom part of the
architecture consists of multiple CNN layers that extract higher-level features
from an input image. Activation maps obtained by the last convolutional layer
are transformed into a feature sequence with the map-to-sequence operation.
Specifically, three-dimensional maps are sliced along their width dimension into
two-dimensional maps and then each map is flattened into a vector.

In the case of the hybrid CNN-BLSTM variant, the obtained feature vectors
are fed into a BLSTM network with 256 hidden units in both directions. The
output sequences from both layers are concatenated and fed to a linear layer
with the softmax activation function (Bridle, 1990) to produce a per timestep
probability distribution over the set of available classes. The classes correspond
to the characters that can be recognized by the model. In the case of the FCN
model variant, feature sequences transformed by the map-to-sequence operation
are directly fed into a linear layer, skipping the recurrent components entirely.

20

2.4 Proposed Method

feature maps

B
R

N
N...

per timestep class probability distribution

"In der Mitte der Seite"

...

convolutional layers

... feature
sequence

map-to-sequence
function

linear layer with softmax

CTC output layer

... feature
sequence

Figure 2.5: The architecture of the proposed text recognition system. An image is fed
into the CNN layers that perform feature extraction. Subsequently, the
obtained activation maps are transformed into feature sequences and fed
into a BLSTM network, which performs modeling of the interaction between
the elements of the feature vector sequence. Finally, higher-level feature
sequences are transcribed into sequences of natural language tokens using
a CTC output layer. The gray region indicates a recurrent block that is
omitted in the case of the FCN-based model. In such a case, feature sequences
extracted by deep CNNs are directly fed into the CTC component.

21

2 Robust Neural OCR Engine

Finally, at training time, the CTC output layer is employed to compute a
loss between the network outputs and the ground-truth transcriptions. During
inference, CTC loss computation is replaced by greedy CTC decoding. Tables A.1
and A.2 in the appendix present a detailed structure of the hybrid CNN-BLSTM
model and the FCN-based architecture, respectively.

2.4.2 Synthetic Document Generation

Even though a segmentation-free text line recognition system does not need the
ground-truth training data at the character or word level, the manual annotation
process might still be error-prone and time-consuming. Inspired by the work of
Jaderberg et al. (2014), in this work, an automatic synthetic document creation
process is developed. To this end, artificial document pages with synthetically
rendered lines of text are generated to be used for the training and evaluation of
text line recognition systems.

Given a text corpus T and a set of fonts F , the text line generation process first
selects a piece of text (up to 40 characters) from T and renders it in an image with
a font that is randomly chosen from F . The rendered sequence of tokens and the
attributes that were used for rendering (i.e., bounding boxes, baseline positions,
and x-height values) are associated with the rendered image and stored in the
corresponding text line metadata. Upon generating enough text line samples to
fill a page image of predefined dimensions (e.g., 3,500× 5,000 pixels), the image is
saved on a hard disk together with the associated metadata.

Since many different Unicode symbols produce almost identical output, some
characters are replaced by the most similar one that is modeled in the proposed
system, e.g., hyphen character (0x2010) is replaced by hyphen-minus character
(0x2D). In this way, the amount of text that can be rendered by the data generator
can be increased considerably. Moreover, to ensure that the rare characters
are not underrepresented in the generated data, a counter for the number of
occurrences of every individual character is maintained and used to guide the
text extraction mechanism to choose text pieces containing the less frequently
represented symbols.

The procedure described above is repeated until the number of occurrences of
each character reaches a required minimum level Nmin, which guarantees that even
rare characters are sufficiently well represented in each of the generated data sets,
or until all available text from T has been processed. Note that this procedure
uses sentences from a real text corpus (and not synthetically generated sequences

22

2.4 Proposed Method

of tokens) to ensure that the sampled character and n-gram distribution is the
same as that of natural language texts.

Figure 2.6: A portion of a synthetically generated document. Excerpts extracted from a
text corpus are rendered using a randomly selected font. The corresponding
attributes of each rendered string are stored in the document metadata and
can be used to extract and augment the examples.

2.4.3 Data Augmentation for OCR

To make the models more resistant to a common set of distortions, standard data
augmentation methods are applied during training such as Gaussian smoothing,
perspective distortions transformation, morphological filtering, upscaling, down-
scaling, additive noise induction, and elastic distortions transformation (Simard
et al., 2003).

Additionally, to further improve robustness, a novel, task-specific data aug-
mentation technique — alpha compositing with background texture images — is
proposed. Specifically, each time a specific sample is presented to the network,
it is composited (Porter and Duff, 1984) with a randomly selected background
texture image as follows:

Ires(x, y) = Isrc(x, y) + α
Ibkgr(x, y)

255
, (2.4)

α = 255− Isrc(x, y), (2.5)

23

2 Robust Neural OCR Engine

where x and y are pixel coordinates within an image and Isrc, Ibkgr, and Ires
are source, background, and result grayscale images, respectively. Note that, in
Equations (2.4) and (2.5), we assume that each image is stored with 8 bits per
sampled pixel, which accounts for 256 different intensities.

Note that the position of a background segment used for alpha compositing
is selected randomly within the selected texture image. In the case that the
selected background segment is not located completely within the texture image,
e.g., because the dimensions of the source text line image exceed the dimensions
of the texture image, the pixels of the texture image are mirrored about the image
border with duplication (Bailey, 2011). Figure 2.7 illustrates the proposed data
augmentation method.

(a) Background Texture

(b) Original Image

(c) Blended Image

Figure 2.7: Illustration of the proposed data augmentation method: (a) A background
texture image. (b) A binarized text line image. (c) The result of blending
the text line image with a background texture. The green box marks the
region of the texture image that was randomly selected to be used for
compositing. Note that it exceeds the dimensions of the image, thus the
missing background content is mirrored with duplication, as can be seen in
the resulting blended image (marked with a blue box).

By randomly altering the backgrounds of training samples, the network model
is guided to focus on the features that facilitate text extraction and help to ignore
background noise. Figure 2.8 presents several augmented examples that were
generated by applying the proposed data augmentation pipeline on synthetically
rendered text lines images.

In the presented system, data augmentation is dynamically applied to the input
images both during training and inference. In contrast to the approach proposed
by Jaderberg et al. (2014), the presented method renders undistorted synthetic
documents once and then applies random data augmentations dynamically during

24

2.4 Proposed Method

inference. This enables efficient generation of samples and eliminates the signifi-
cant overhead caused by input/output hard disk operations.

Figure 2.8: Training and validation data samples from the proposed system that were
generated using the data augmentation pipeline described in Section 2.4.3.

2.4.4 Geometric Normalization

Breuel (2017) recommended that text line images should be geometrically nor-
malized before recognition. The normalization process used in this chapter is
performed per text line before the feature extraction. To this end, the baseline
and the x-height of the corresponding text line are used.

In typography, the baseline is an imaginary line upon which most letters sit,
whereas the x-height is the mean line of lower-case letters (Evans et al., 2013, p. 29).
During training, the text line attributes from the document metadata are used,
whereas, at inference time, the layout analysis algorithm provides the baseline
position and the x-height values for each line. Using the baseline information, the
skew of the text lines is corrected, and the scale of each image is normalized, so
that the x-height, as well as the heights of ascender and descender regions, are
consistent across examples, as illustrated in Figure 2.9.

25

2 Robust Neural OCR Engine

Figure 2.9: Examples of geometrically normalized text samples. Blue and orange lines
correspond to the baselines and the x-height lines, respectively. Left
column: Original examples extracted from a document image based on
the bounding boxes of the text blocks. Note that each bounding box exactly
fits the content of a text block, e.g., in the second row, the ascender and
descender parts are missing and in the third and fourth row, there is no
descender part. Right column: Geometrically normalized examples. The
x-height, as well as the heights of ascenders and descenders, are consistent
across different examples, which reduces variation in the vertical direction.

For the case where the normalization is not used, this procedure is skipped
entirely, and each cropped text line sample is further passed on to the feature ex-
tractor. This case is especially relevant for scene text images, where normalization
information is usually unavailable and expensive to compute separately.

2.5 Experimental Setup

2.5.1 Data Sources and Data Sets

To train and evaluate the proposed text recognition system, several data sets
consisting of both real and synthetic documents were prepared. This section
describes each of them in detail.

Real Documents Subset

For evaluation, 16 pages of scanned historical and recent German-language newspa-
pers, as well as 11 contemporary German invoices, were collected. All documents
were deskewed and preprocessed via the document layout analysis algorithms
(Konya, 2013), providing us with the geometrical and logical document structure,

26

2.5 Experimental Setup

including bounding boxes, baseline positions, and x-height values for each text line.
The initial transcriptions obtained using the Tesseract OCR engine (Smith, 2007)
were manually corrected. The ground-truth transcriptions were stored along with
document layout information in Extensible Markup Language (XML) format.

Documents with Synthetically Generated Text

The core data set was extended by generating multiple further documents using
the procedure described in Section 2.4.2. To this end, two large text corpora
T were collected, namely, the English and German Wikipedia dump files4, that
were used as the sources of sentences for generating training data. For validation
and test purposes, a corpus from the Leipzig Corpora Collection (Goldhahn et al.,
2012) was used. Moreover, over 2,000 serif, sans serif, and monospace fonts5 were
collected as the set of fonts F required by the generation procedure. Furthermore,
Nmin, the minimum number of occurrences of each symbol in the data, was set to
5,000, 100, and 100 in the case of the synthetically generated training, validation,
and test sets, respectively.

Summary of Raw Data Sources

The data sources used in the experiments are summarized in Table 2.1. The
presented system was trained to recognize 132 different character classes, including
basic lower- and uppercase Latin letters, whitespace characters, German umlauts,
ligature ß, digits, punctuation marks, subscripts, superscripts, as well as mathe-
matical, currency, and other commonly used symbols. The training part consists
of about 6.4 million characters, 95.9% of which were synthetically generated.

Table 2.1: Statistics of the data sources used in the experiments.

Element
Newspapers Invoices Synthetic documents

Training Test Test Training Validation Test

Documents 12 4 11 390 10 9
Text lines 7,049 1,943 486 200,030 4,827 4,650
Words 39,218 9,735 2,143 1,181,760 30,097 29,004
Text length 260,041 66,327 15,374 6,128,394 151,653 141,280

4 https://dumps.wikimedia.org
5 https://fonts.google.com

27

https://dumps.wikimedia.org
https://fonts.google.com

2 Robust Neural OCR Engine

Evaluation Data Sets

To test the recognition accuracy of all examined OCR engines on the documents
with standard quality, the evaluation using the documents from the corresponding
test sets was performed. Moreover, the core test data set was extended by
generating multiple distorted variants of each original document. To this end,
synthetic distortions were induced to the input images prior to recognition.

Two different variants of the degradation were explored. In the first scenario
(referred to as moderate), only geometrical transformations, morphological opera-
tions, blur, noise addition, upscaling, and downscaling were used. This scenario
corresponds to the typical case of printed document scans of varying quality.

In the second scenario (referred to as difficult), all extracted text line images were
additionally composited with a random background texture (Figure 2.8). Note that
a different set of textures was used for training and during evaluation. Moreover,
the image gray values were randomly inverted to test the ability of each method
to handle examples with white text on a dark background and vice versa. The
second scenario best corresponds to scene text recognition and was applied only
in the case of synthetically generated documents.

In the case of the moderate and the difficult evaluation scenario, 30 randomly
distorted copies of each original document were generated using different hyper-
parameters and varying the strength of each distortion. Note that since the
distortions were applied randomly, some images obtained by this procedure may
end up nearly illegible, even for human readers. Table 2.2 presents the ground
truth length of each test subset. In summary, the employed evaluation data set
consists of over eleven million characters.

Table 2.2: The length of the ground truth text from the evaluation data set.

Newspapers Invoices Synthetic documents
Original Moderate Original Moderate Original Moderate Difficult

66,327 1,989,810 15,374 461,220 141,280 4,238,400 4,238,400

2.5.2 Training Setup

Generation of Training and Validation Samples

The batches containing the final training and validation samples were generated
on the fly, as in the following. Text line images were randomly selected from

28

2.5 Experimental Setup

the corresponding (training or validation) data set and the associated layout
information was used to normalize each sample. Note that the normalization
step is optional (see also Section 2.4.4), since especially in the case of scene text, it
may be too computationally expensive and error-prone to extract exact baselines
and x-heights at inference time.

Subsequently, all samples were rescaled to a fixed height of 32 pixels, while
maintaining the original aspect ratio. This particular choice for the sample height
was determined experimentally. Larger sample heights did not improve recognition
accuracy for skew-free text lines. However, if the targeted use case involves the
recognition of relatively long, free-form text lines, the use of larger sample heights
should be considered.

Since text line lengths vary greatly, the corresponding images must be (zero)
padded appropriately to fit the widest element within the batch. The amount of
padding was minimized by composing batches from text lines having similar widths.
Subsequently, random data augmentation methods were dynamically applied to
each sample (Section 2.4.3). Finally, all pixel values were normalized to the range
between 0.0 and 1.0 prior to feeding them into the deep learning model.

Implementation Details

To improve efficiency, an optimized training and validation data generation
mechanism was implemented by employing the producer-consumer pattern. The
producer process generates batches of samples and puts them into a shared queue.
Concurrently, the consumer process removes generated batches from the queue
and feeds them to the network. This mechanism allows for efficient utilization of
available resources and simultaneously saves disc space used to store the data.

The deep learning-based models were developed in TensorFlow (Abadi et al.,
2016). The Python interface of TensorFlow was used to implement the training
process and the C++ interface was employed to perform the inference timings. As
in the case of the sample generation, an efficient, multithreaded procedure was
employed by using a lock-free, single-producer, single-consumer queue to handle
the generation and recognition of samples in parallel.

Training Hyperparameters

All models were trained via mini-batch stochastic gradient descent using the
adaptive moment estimation optimization method (Kingma and Ba, 2014). The
learning rate was decayed by a factor of 0.99 every 1,000 iterations and the initial

29

2 Robust Neural OCR Engine

value of 0.0006 and 0.001 was used in the case of the hybrid and the FCN-based
models, respectively. Moreover, batch normalization (Ioffe and Szegedy, 2015) was
applied to speed up the training, and the dropout method (Srivastava et al., 2014)
was employed to reduce the overfitting problem. Furthermore, the hybrid models
were trained for approximately 300 epochs and the FCN-based models for about
500 epochs.

2.5.3 Evaluation Setup

The accuracy of the approaches examined in the experiments was compared using
the character error rate (CER) metric, which was computed as the Levenshtein
distance (Levenshtein, 1966) between the ground-truth and the recognized text line
content. Note that the ground-truth text lines were extracted from the documents
from the evaluation data sets (Section 2.5.1) using the available ground-truth
layout information.

Baseline Approaches

Two established commercial OCR products were examined: ABBYY FineReader6

v12 and OmniPage Capture SDK7 v20.2, as well as a popular open-source OCR
library — Tesseract (Smith, 2007) v3.04 and v4.08. The latest Tesseract engine
uses deep learning-based models similar to the proposed architecture.

The Method Proposed in This Work

The models with the architecture proposed in this chapter (Section 2.4.1), unless
otherwise stated, are fine-tuned with real data (Table 2.1). Moreover, by default,
they use geometric text line normalization (Section 2.4.4) and data augmentation
methods (Section 2.4.3) except for elastic distortions.

External Language Models

Since it was shown that LSTMs learn an implicit language model (Sabir et al.,
2017), the proposed system was evaluated without external language models or
lexicons, although their use can likely further increase accuracy. By contrast, both
6 https://www.abbyy.com/en-eu/ocr-sdk
7 https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-rec

ognition/omnipage/omnipage-for-developers.html (Retrieved: 01/20/2019)
8 https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM

30

https://www.abbyy.com/en-eu/ocr-sdk
https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/omnipage/omnipage-for-developers.html
https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/omnipage/omnipage-for-developers.html
https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM

2.6 Experimental Results

examined commercial OCR engines used language models and lexicons for English
and German, and their settings have been chosen for best recognition accuracy.
Moreover, the fast integer models9 were used in the case of Tesseract 4.0 because
they demonstrate a comparable running time to the other examined methods.

2.6 Experimental Results

2.6.1 Recognition Accuracy

Table 2.3 compares CERs of all examined OCR engines. The results show that
the models with the proposed architecture outperform all other engines in terms
of recognition accuracy in all evaluation scenarios. A substantial difference can be
observed on distorted documents composited with background textures (see the
results in the difficult category), where Tesseract and both commercial engines
exhibit a very poor recognition accuracy. Noisy backgrounds hinder their ability
to perform an adequate character segmentation. Although Tesseract 4.0 was
trained on augmented synthetic data, we observe that it cannot properly deal
with significantly distorted inputs.

A further qualitative examination of the results of the examined baseline engines
revealed that these methods have difficulties in handling fonts with different,
alternating styles located on the same page. Moreover, these engines have problems
recognizing subscript and superscript symbols.

2.6.2 Analysis of the Most Frequent Errors

Table 2.4 gives an insight into the most frequent errors (insertions, deletions, and
substitutions of characters) made by the best-performing methods on real versus
synthetic data. All tested methods have the most difficulties in recognizing the
exact number of whitespace characters due to the nonuniform letter and word
spacing (e.g., kerning and justified text) across documents. This problem is
particularly visible in the case of the real documents that were manually annotated,
where a certain degree of ambiguity due to human judgment becomes apparent.

The remaining errors for the hybrid models include substitutions of similarly
looking characters and are primarily focused on small or thin letters and symbols,
which are indeed the ones most affected by distortions and background patterns.
In contrast, ABBYY FineReader exhibits a clear tendency to insert spurious
characters, especially for highly textured and distorted images.
9 https://github.com/tesseract-ocr/tessdata_fast

31

https://github.com/tesseract-ocr/tessdata_fast

2 Robust Neural OCR Engine

Table 2.3: Character error rate (%) on the evaluation data sets. The results of the
baseline OCR engines and multiple variants of the proposed architecture
are reported. Different variants are denoted with superscripts: (1) Hybrid
CNN-BLSTM-based models. (2) Models trained exclusively with synthetic
data (Synth). (3) Models that employed elastic distortions during training
(Elastic). (4) The FCN-based model (FCN). (5) The model trained without
geometric normalization (NoGeomNorm) and without the alpha compositing
augmentation method (NoAlphaComp). (6) The model that employed either
peephole LSTM units (Peephole) or GRU RNN cells (GRU). Bold values
indicate the best results within each evaluation data set (Section 2.5.1).

Method
Newspapers Invoices Synthetic documents

Original Moderate Original Moderate Original Moderate Difficult

ABBYY FineReader 0.63 3.03 2.65 4.38 6.64 10.86 19.27

OmniPage Capture 0.31 3.76 2.61 9.94 7.62 17.13 58.43

Tesseract 3.04 1.15 16.90 6.11 10.16 11.79 17.76 37.00

Tesseract 4.0 1.14 9.63 4.53 6.66 8.70 14.80 35.91

ProposedFCN 0.16 0.81 1.66 3.28 1.03 2.02 3.25

ProposedHybrid 0.11 0.75 1.63 2.33 0.62 1.48 2.84

ProposedHybrid, NoGeomNorm 0.13 1.14 2.86 3.67 0.46 1.31 4.50

ProposedHybrid, Peephole 0.14 0.69 1.85 2.81 0.53 1.35 2.43
ProposedHybrid, GRU 0.16 0.67 2.14 3.31 1.10 2.02 4.16

ProposedHybrid, Elastic 0.11 0.73 1.63 2.47 0.65 1.46 2.70

ProposedHybrid, NoAlphaComp 0.14 1.24 2.49 3.58 0.48 1.94 7.54

ProposedHybrid, Synth 0.20 0.96 1.85 3.05 0.67 1.58 2.84

ProposedHybrid, Synth, Elastic 0.20 0.95 1.76 2.89 0.69 1.51 2.69

32

2.6 Experimental Results

Table 2.4: Top 10 most frequent errors for the best OCR engines in the main experiment
(Table 2.3). Note that the real data (left side) comprises both newspapers and
invoices (Table 2.1).

(a) ProposedHybrid (real data)

Error type Rate [%]

Insertion of ’ ’ 25.77

Substitution ’l’→’i’ 4.43

Substitution ’.’→’,’ 3.56

Insertion of ’.’ 2.77

Substitution ’i’→’l’ 2.67

Insertion of ’_’ 2.52

Substitution ’I’→’l’ 2.15

Insertion of ’t’ 1.27

Substitution ’o’→’a’ 1.21

Substitution ’f’→’t’ 1.19

(b) ProposedHybrid, Peephole (synthetic data)

Error type Rate [%]

Insertion of ’ ’ 8.53

Substitution ’0’→’O’ 4.09

Deletion of ’.’ 1.77

Substitution ’O’→’Ö’ 1.62

Deletion of ’_’ 1.58

Deletion of ’-’ 1.45

Substitution ’I’→’l’ 1.44

Substitution ’.’→’,’ 1.33

Insertion of ’r’ 1.00

Substitution ’©’→’O’ 0.97

(c) ABBYY FineReader (real data)

Error type Rate [%]

Insertion of ’ ’ 12.35

Insertion of ’.’ 5.70

Substitution ’,’→’.’ 2.95

Insertion of ’i’ 2.70

Insertion of ’r’ 2.09

Deletion of ’e’ 1.83

Substitution ’c’→’e’ 1.77

Insertion of ’l’ 1.63

Insertion of ’n’ 1.41

Insertion of ’t’ 1.35

(d) ABBYY FineReader (synthetic data)

Error type Rate [%]

Insertion of ’ ’ 9.27

Insertion of ’i’ 1.72

Insertion of ’e’ 1.55

Insertion of ’t’ 1.33

Insertion of ’r’ 1.21

Insertion of ’.’ 1.19

Insertion of ’l’ 1.18

Insertion of ’-’ 1.07

Insertion of ’n’ 1.06

Insertion of ’a’ 0.96

33

2 Robust Neural OCR Engine

2.6.3 Runtime Analysis

Figure 2.10 presents the runtime comparison. All baseline approaches and selected
models with the proposed architecture are included. As can be seen in the results,
both commercial engines and Tesseract 3.04 work slowly for significantly distorted
images. Apparently, they make use of certain computationally expensive image
restoration techniques to be able to handle low-quality inputs.

Unsurprisingly, the models with the proposed architecture that were executed on
a graphics processing unit (GPU) are the fastest across the board. All experiments
were conducted on a workstation equipped with an Nvidia GeForce GTX 745
graphics card and an Intel Core i7-6700 central processing unit (CPU).

Articles
(original)

Articles
(moderate)

Invoices
(original)

Invoices
(moderate)

Synthetic
(original)

Synthetic
(moderate)

Synthetic
(difficult)

0

1

2

3

4

5

6

7

8

9

In
fe

re
nc

e
Ti

m
e

(s
)

ABBYY Fine Reader
OmniPage Capture
Tesseract 3.04
Tesseract 4.0

ProposedHybrid (GPU)
ProposedHybrid, Peephole (GPU)
ProposedFCN (GPU)

ProposedHybrid (CPU)
ProposedHybrid, Peephole (CPU)
ProposedFCN (CPU)

Figure 2.10: Runtime comparison (in seconds) on the test data sets per standard page
with 1,500 symbols. Values for the documents from the original category as
well as the CPU experiments are averaged over 10 trials. All other values
are averaged over 30 trials. Moreover, the CPU experiments use a batch
size of four images, whereas the GPU runs use a batch of 48 images. Note
that data points from different data sets are connected solely to allow easier
traceability of the results of each engine. Best viewed in color.

34

2.6 Experimental Results

2.6.4 Qualitative Example of CTC Decoding

Figure 2.11 shows an example of the CTC decoding procedure on a real-world
example. The visualization gives an insight into the decoding process and helps
greatly in spotting many decoding failures.

For instance, the text line presented in this example was recognized by the
proposed system with one minor error as “tagtäglich viele gute ldeen und”.
When we closely look at probabilities in a region where this error occurs, we notice
that probabilities of the letters ’l’ and ’I’ are very close, as both characters are
also visually similar, though. Such ambiguities can be potentially detected and
corrected for example via an external language model.

Figure 2.11: Visualization of the CTC decoding results on an example from the data
collection used in the experimental evaluation. Each cell in the grid
represents the probability of a specific character at a specific time step —
the darker the color, the higher the probability. The last row represents
the probability of a blank character that separates two consecutive output
symbols. The text line presented in this example was erroneously recognized
as “tagtäglich viele gute ldeen und”. The probabilities of the letters
’l’ and ’I’ are very close in this case (see a red box in the image), as both
characters are visually similar, which may cause incorrect predictions in
such cases.

2.6.5 Ablation Study

In this section, the impact of different model components on the recognition
performance of the proposed system is analyzed.

FCN-Based vs. Hybrid CNN-BLSTM Models

The fully convolutional model (ProposedFCN in Table 2.3) achieves a slightly lower
accuracy than the best hybrid variant. However, its inference time is significantly

35

2 Robust Neural OCR Engine

lower on the CPU. This clearly shows that convolutional layers are much more
amenable to parallelization than recurrent units.

GRU vs. LSTM Cells

The model employing GRU units (ProposedHybrid, GRU in Table 2.3) exhibits
competitive but slightly lower accuracy than the LSTM variants. Since the GRU
cell has a simpler structure than the basic LSTM cell, it should work a bit faster
on the CPU, which is consistent with the obtained results.

Peephole Connections

The model utilizing peephole LSTM cells (ProposedHybrid, Peephole in Table 2.3),
which also pools feature maps along the width dimension only once, i.e., omits the
second max pooling operation in Table A.1, exhibits better recognition accuracy
in the scene text scenario. This is not the case for the original and moderately
distorted document scans, where the peepholes do not seem to bring any additional
accuracy gains compared to the vanilla LSTM model. The use of peephole
connections does, however, add a significant runtime overhead.

Alpha Compositing with Background Textures Data Augmentation

The model that was trained without using the proposed data augmentation
technique (ProposedHybrid, NoAlphaComp in Table 2.3), i.e., alpha compositing with
background textures (Section 2.4.3), exhibits significantly higher error rates, not
only on samples with complicated backgrounds but also on those with significant
distortions. This confirms that the proposed augmentation technique has a positive
effect on the robustness of neural OCR models.

Geometric Normalization

The model that did not use geometric normalization (ProposedHybrid, NoGeomNorm in
Table 2.3), as described in Section 2.4.4, exhibited a decrease in accuracy, especially
in the case of images with stronger distortions (see the results in the difficult
category in Table 2.3). This indicates that geometric normalization is indeed
beneficial, but not indispensable. Apparently, max pooling and strided convolution
operations provide enough translational invariance in most cases.

36

2.7 Summary

Training With Synthetic Data Only

The models that were trained exclusively using synthetic data (ProposedHybrid, Synth

and ProposedHybrid, Synth, Elastic in Table 2.3) obtained very competitive results,
which indicates that using such a model together with proper data augmentation
is sufficient for achieving a satisfactory recognition accuracy.

Elastic Distortions Data Augmentation

Apparently, nonlinear distortions can further reduce the error rate of models,
particularly those trained exclusively on synthetic data (cf. ProposedHybrid, Synth

versus ProposedHybrid, Synth, Elastic in Table 2.3). Hence, this augmentation method
is beneficial, especially in cases where annotated real data is not available or simply
too difficult to produce. We also observe that although most of the models were
trained without elastic distortions applied to training data, they can nonetheless
deal with test data augmented with nonlinear distortions. We can attribute this to
the fact that the synthetic training data was generated using a substantial number
of fonts, which allowed for reasonable variation of text styles.

2.7 Summary

In this chapter, a general text line recognition method was proposed (Section 2.4).
Experiments under different scenarios, on both real and synthetically generated
documents, showed that both developed architectures — the hybrid CNN-BLSTM
and the FCN-based model — outperform leading commercial and open-source
engines (Section 2.6). In particular, the presented approach demonstrated an
outstanding recognition accuracy on severely degraded inputs.

The proposed architecture is universal and can be employed to recognize printed,
handwritten, or scene text (Section 2.4.1). The training of models for other
languages is straightforward. Moreover, external language models or lexicons
can be easily integrated into the CTC decoding process. Via the proposed
pipeline, deep neural network models can be trained using only text line-level
annotations. This saves a considerable manual annotation effort, previously
required for producing the character- or word-level ground-truth segmentation
and the corresponding transcription (Section 2.3.1).

A novel data augmentation technique — alpha compositing with background
textures — was introduced in Section 2.4.3 and evaluated with respect to its effects
on the overall recognition robustness. Moreover, the analysis in Section 2.6.5

37

2 Robust Neural OCR Engine

confirmed that generating synthetic training data is indeed a viable and scalable
alternative to collecting real training data, provided that sufficiently diverse
samples can be generated by the data augmentation modules.

The effect of different structural choices and data augmentation on recognition
accuracy and inference time was experimentally investigated (see Section 2.6.1 and
Section 2.6.5). Hybrid recognition architectures proved to be more accurate, how-
ever, they are considerably more expensive in terms of computational complexity
than the purely convolutional approaches. The peephole LSTM units exhibited
better accuracy in more challenging scenarios but also induced significant runtime
overhead. On the other hand, the GRU cells provide competitive accuracy and
work efficiently on the CPU, which makes them a viable solution in the scenarios,
where execution speed is critical. Nevertheless, the basic LSTM units offer the
best trade-off between accuracy and runtime and proved to be the most universal
in all text line recognition scenarios.

Future Work Directions

The importance of a solid data generation pipeline cannot be overstated. As such,
future work on improving the proposed data augmentation method should involve
its continuous improvement and comparison with other notable efforts from the
research community, such as the work of Jaderberg et al. (2014).

Moreover, the FCN approaches, in particular, offer great potential for future
improvement. The incorporation of advances in the field of computer vision,
such as squeeze-and-excitation blocks (Hu et al., 2018) should provide further
improvements in terms of both recognition accuracy and robustness. Another
possible extension would be to integrate an automatic rectification module as in
Jaderberg et al. (2015) to handle irregular text.

38

3 Noise-Aware Training

Preface

This chapter is adapted from Namysl, Behnke, and Köhler (2020)1, previously pub-
lished by the Association for Computational Linguistics and presented at the 58th

Annual Meeting of the Association for Computational Linguistics (ACL 2020)2.
Moreover, Section 3.6 incorporates related work presented in Namysl, Behnke,
and Köhler (2021)3, previously published by the Association for Computational
Linguistics and presented at the Joint Conference of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-IJCNLP 2021)4.

The content from both aforementioned publications is used under the terms of
Creative Commons Attribution 4.0 International License.5

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the previous
publications (Namysl, Behnke, and Köhler, 2020, 2021), including the conception,
design, and implementation of the proposed methods, the preparation of the data
for training and evaluation of the proposed approach, conducting the experimental
evaluation, the analysis and interpretation of the experimental results, drafting the
manuscript, as well as the revision and final approval of the version to be published.

The content presented in this chapter, unless otherwise stated, is the contribu-
tion of the author of this thesis.

1 ©2020 Association for Computational Linguistics. Reprinted in Appendix C.2.
2 https://acl2020.org
3 ©2021 Association for Computational Linguistics. Reprinted in Appendix C.3.
4 https://2021.aclweb.org
5 https://creativecommons.org/licenses/by/4.0

39

https://acl2020.org
https://2021.aclweb.org
https://creativecommons.org/licenses/by/4.0

3 Noise-Aware Training

Unpublished Content

Compared to the previous publication, additional, unpublished content is included
in this chapter. In particular, in addition to the evaluation of the named entity
recognition task, the evaluation results in the part-of-speech tagging and syntactic
chunking scenarios are additionally presented in Section 3.5.2.

Abstract

Sequence labeling systems should perform reliably not only under ideal conditions
but also with corrupted inputs, as these systems often process user-generated text
or follow an error-prone upstream component. In this chapter, the noisy sequence
labeling problem is formulated, which assumes that the input may undergo an
unknown noising process. Two noise-aware training objectives are proposed to
improve the robustness of sequence labeling performed on perturbed input: The
data augmentation method trains a neural model using a mixture of clean and noisy
samples, whereas the stability training algorithm encourages the model to create
a noise-invariant latent representation. Extensive experiments on the original
English and German sequence labeling benchmarks as well as on their variants
perturbed with real OCR errors and misspellings confirm that the proposed noise-
aware training method consistently improves the robustness of the state-of-the-art
sequence labeling models, preserving accuracy on the original, error-free input.

3.1 Introduction

Sequence labeling is a task that involves the assignment of a categorical label to
the elements of an input sequence of natural language tokens. Many components
of the IE pipeline (Figure 1.1) can be formulated as a sequence labeling problem,
e.g, NER classifies the input tokens into some predefined entity classes.

Sequence labeling systems are generally trained using error-free input text,
although, in real-world scenarios, they often follow an error-prone upstream
component, such as OCR (Neudecker, 2016) or ASR (Parada et al., 2011) engine.
Sequence labeling is also often performed on user-generated text, which may
contain spelling mistakes or typos (Derczynski et al., 2013). Errors introduced
in an upstream task are propagated downstream, diminishing the performance of
the end-to-end IE system (Alex and Burns, 2014).

40

3.1 Introduction

While humans can easily cope with typos, misspellings, and the complete
omission of letters when reading (Rawlinson, 2007), most NLP systems fail when
processing corrupted or noisy text (Belinkov and Bisk, 2018). Although this
problem is not new to NLP, only a few works addressed it explicitly (Karpukhin
et al., 2019; Piktus et al., 2019). Other methods that do not account for the errors
in the input must rely on the noise that occurs naturally in the training data.

reference text: Singapore sees prestige in hosting WTO .
ground-truth labels: S-LOC O O O O S-ORG O

input text: Singaporc sees prestige in hosting WTO .
baseline predictions: S-ORG O O O O S-ORG O

NAT predictions: S-LOC O O O O S-ORG O

Sequence
labeling
system

Noising
process

Input: Training
loss

Figure 3.1: An example of a labeling error on a slightly perturbed sentence. The noise-
aware method correctly predicted the location (LOC) label for the first
word, as opposed to the standard approach, which misclassified it as an
organization (ORG). The example is complemented with a high-level idea of
the NAT method, where the original sentence and its noisy variant are passed
together through the system. The final loss is computed based on both sets
of features, which improves the robustness against the input perturbations.

In this chapter, we are primarily concerned with the performance difference of
sequence labeling performed on error-free and noisy input. We aim to answer the
following question: Is it possible to narrow the gap between these two domains and
design an approach that is transferable to different noise distributions at test time?
Figure 3.1 illustrates the problem and the approach developed toward improving
the robustness of sequence labeling models.

Firstly, in Section 3.2.2, the noisy sequence labeling problem, which assumes
that the input may undergo an unknown noising process, is formulated. Moreover,
in Section 3.3.1, a model that can be used to estimate the real error distribution is
introduced. Furthermore, in Section 3.3.2, a novel noise induction procedure used
to simulate real-world noisy input is presented.

41

3 Noise-Aware Training

Secondly, inspired by recent research in computer vision (S. Zheng et al., 2016),
NMT (Cheng et al., 2018), and ASR (Sperber et al., 2017), two noise-aware
training (NAT) objectives are proposed. These objectives improve the accuracy
of sequence labeling performed on noisy input without reducing the efficiency on
the original, error-free data. To this end, a data augmentation algorithm was
developed (Section 3.3.3). It directly induces noise into the input data to perform
training of the neural model using a mixture of noisy and error-free samples.
Moreover, a stability training method (S. Zheng et al., 2016) was implemented
and adapted to the sequence labeling scenario. This method explicitly addresses
the noisy data problem by encouraging the model to produce a noise-invariant
latent representation of the input (Section 3.3.4).

Finally, a thorough evaluation of the proposed method against the state-of-
the-art baseline models (Akbik et al., 2018; Devlin et al., 2019; Peters et al.,
2018) was performed. The experiments on the text that contains real OCR
errors and misspellings demonstrated the effectiveness of the presented approach
(Section 3.5).

3.2 Background and Motivation

In this section, the neural sequence labeling task is described (Section 3.2.1), as
well as its extension that includes the noise present on the source side of the
sequence labeling system (Section 3.2.2). Moreover, in Section 3.2.3, the research
problem studied in this chapter is formulated.

3.2.1 Neural Sequence Labeling

Figure 3.2 presents a typical architecture for the neural sequence labeling task.
We will refer to the sequence labeling system as F (x; θ), abbreviated as F (x)6,
where x = (x1, . . . , xN) is a tokenized input sentence of length N , and θ represents
all learnable parameters of the system. F (x) takes x as input and outputs the
probability distribution over the class labels y(x) as well as the final sequence of
labels ŷ = (ŷ1, . . . , ŷN).

Either a softmax model (Chiu and Nichols, 2016) or a conditional random field
(CRF) (Lample et al., 2016) can be used to model the output distribution over
the class labels y(x) from the logits l(x), i.e., non-normalized predictions, and
6 We drop the θ parameter for brevity in the remainder of the chapter. Nonetheless, we still

assume that all components of F (x; θ) and all expressions derived from it also depend on θ.

42

3.2 Background and Motivation

to output the final sequence of labels ŷ. As a labeled entity can span several
consecutive tokens within a sentence, special tagging schemes are often employed
for decoding, e.g., BIOES, where the Beginning-, Inside-, Outside-, End-of-entity,
and Single-tag-entity subtags are also distinguished (Ratinov and Roth, 2009).
This method introduces strong dependencies between subsequent labels, which
are modeled explicitly by a CRF (Lafferty et al., 2001) that produces the most
likely sequence of labels.

Se
qu

en
ce

 la
be

lin
g

sy
st

em

 or

U.N. official Ekeus heads for Bagdad .

 and

Embedding lookup table

Sequence labeling model

Projection layer

Decoding (softmax or CRF)

S-ORG O S-PER O O S-LOC O

Noising
process:

Figure 3.2: Neural sequence labeling architecture. In the standard scenario (Sec-
tion 3.2.1), the original sentence x is fed as input to the sequence labeling
system F (x). Token embeddings e(x) are retrieved from the corresponding
lookup table and fed to the sequence labeling model f(x), which outputs
latent feature vectors h(x). The latent vectors are then projected to the
class logits l(x), which are used as input to the decoding model (softmax
or CRF) that outputs the distribution over the class labels y(x) and the
final sequence of labels ŷ. In a real-world scenario (Section 3.2.2), the
input sentence undergoes an unknown noising process Γ, and the perturbed
sentence x̃ is fed to the sequence labeling system F (x).

43

3 Noise-Aware Training

3.2.2 Noisy Neural Sequence Labeling

Similar to human readers, sequence labeling should perform reliably both in
ideal and suboptimal conditions. Unfortunately, this is rarely the case. User-
generated text is a rich source of informal language containing misspellings, typos,
or scrambled words (Derczynski et al., 2013). Noise can also be introduced in
an upstream task, like OCR (Alex and Burns, 2014) or ASR (Chen et al., 2017),
causing the errors to be propagated downstream.

The sequence labeling model introduced in Section 3.2.1 is defined as a transfor-
mation of the source sequence of tokens x to the target sequence of labels y. To
include the noise present on the source side of F (x), we can modify its definition
accordingly (Figure 3.2). Let us assume that the input sentence x is additionally
subjected to some unknown noising process Γ = P (x̃i|xi), where xi is the original
i-th token and x̃i is its distorted equivalent. Let V be the vocabulary of tokens
and Ṽ be a set of all finite character sequences over an alphabet Σ. Γ is known
as the noisy channel matrix (Brill and Moore, 2000) and can be constructed by
estimating the probability P (x̃i|xi) of each distorted token x̃i given the intended
token xi for every xi ∈ V and x̃i ∈ Ṽ .

3.2.3 Problem Definition

In this chapter, we primarily study the effectiveness of state-of-the-art NER
systems in handling imperfect input data. NER can be considered as a special case
of the sequence labeling problem, where the goal is to locate all named entities
mentioned in unstructured text and to classify them into predefined categories, e.g.,
person names, organizations, and locations (Tjong Kim Sang and De Meulder,
2003). Note that, although the evaluation of the proposed approach primarily
focuses on the NER task, other sequence labeling scenarios are also experimentally
validated (Sections 3.4.1 and 3.5.2).

Sequence labeling systems are often trained using error-free textual input.
Consequently, they exhibit degraded performance in real-world scenarios where
the transcriptions are produced by the previous upstream component, such as
OCR or ASR modules (Section 3.2.2), which results in a detrimental mismatch
between the training and the test conditions. The goal of the method proposed in
this chapter is thus to improve the robustness of sequence labeling performed on
data from noisy sources, without deteriorating performance on the original data.

Moreover, let us assume that the source sequence of tokens x may contain errors.
However, the noising process is generally label-preserving, i.e., the level of noise is

44

3.3 Proposed Noise-Aware Training Method

not significant enough to affect the corresponding labels7. It follows that the noisy
token x̃i inherits the ground-truth label yi from the underlying original token xi.

3.3 Proposed Noise-Aware Training Method

In the previous section, we highlighted that the standard sequence labeling systems
are not robust to perturbed input (Section 3.2.2). In this section, the noise
model employed by the proposed method is introduced (Section 3.3.1). Moreover,
the noise induction procedure (Section 3.3.2) and the proposed NAT objectives
(Section 3.3.3 and Section 3.3.4) are thoroughly described.

3.3.1 Noise Model

To model the input noise, the character-level noisy channel matrix Γ is used, which
we will refer to as the character confusion matrix (Section 3.2.2).

Natural Noise

The natural error distribution can be estimated by calculating the alignments
between the pairs (x̃, x) ∈ P of noisy and clean sentences using the Levenshtein
distance metric (Levenshtein, 1966), where P is a corpus of paired noisy and
manually corrected sentences (Section 3.2.2). The allowed edit operations include
insertions, deletions, and substitutions of characters. Insertions and deletions can
be modeled by introducing an additional symbol ε into the character confusion
matrix. The probability of insertion and deletion can then be formulated as
Pins(c|ε) and Pdel(ε|c), where c is a character to be inserted or deleted, respectively.

Synthetic Noise

P is usually laborious to obtain. Moreover, the exact modeling of noise might
be impractical, and it is often difficult to accurately estimate the exact noise
distribution to be encountered at test time. Such distributions may depend on,
e.g., the OCR engine used to digitize the documents. Therefore, the estimated
natural error distribution is intended for evaluation, and a simplified, synthetic
7 Moreover, a human reader should be able to infer the correct label yi from the token x̃i and

its context. We assume that this corresponds to a character error rate of ≤ 20%.

45

3 Noise-Aware Training

error model is used for training. In this model, all types of edit operations, i.e.,
character insertions Pins, deletions Pdel, and substitutions Psubst, are equally likely:∑

c̃∈Σ\{ε}

Pins(c̃|ε) = Pdel(ε|c) =
∑

c̃∈Σ\{c, ε}

Psubst(c̃|c), (3.1)

where c and c̃ are the original and the perturbed characters, respectively. Moreover,
Pins and Psubst are uniform over the set of allowed insertion and substitution
candidates, respectively.

More specifically, let η be a hyperparameter that controls the amount of noise
to be induced with this method and Pedit = η/3 be the probability of performing a
single character edit operation (insertion, deletion, or substitution) that replaces
the source character c with a noisy character c̃, where c̃ ̸= c. Equation (3.2) defines
the vanilla error distribution, which is used at training time:

P (c̃|c) =

Pedit

|Σ\{ε}|
, if c = ε and c̃ ̸= ε.

1− Pedit, if c = ε and c̃ = ε.

Pedit

|Σ\{c, ε}|
, if c ̸= ε and c̃ ̸= c.

Pedit, if c ̸= ε and c̃ = ε.

1−2Pedit, if c ̸=ε and c̃ = c.

(3.2a)

(3.2b)

(3.2c)

(3.2d)
(3.2e)

It consists of the following components:
(a) The insertion probability Pins(c̃|ε) in Equation (3.2a). It describes how likely

it is to insert a nonempty character c̃ ̸= ε and it is uniform over the set of
all characters from the alphabet Σ, except the ε symbol.

(b) The keep ε probability Pkeep(ε|ε) in Equation (3.2b).
(c) The substitution probability Psubst(c̃|c) in Equation (3.2c). It is uniform over

the set of all characters from the alphabet Σ, except the source character c

and the ε symbol.
(d) The deletion probability Pdel(ε|c) in Equation (3.2d).
(e) The keep probability Pkeep(c|c) in Equation (3.2e).

Equations (3.2a) and (3.2b) correspond to the row in the character confusion
matrix Γ, where c = ε, and form a valid probability distribution:

Pkeep(ε|ε) +
∑

c̃∈Σ\{ε}

Pins(c̃|c) = 1. (3.3)

46

3.3 Proposed Noise-Aware Training Method

Similarly, Equations (3.2c) to (3.2e) correspond to the rows in the character
confusion matrix Γ, where c ∈ Σ\{ε}, and are also valid probability distributions:

Pdel(ε|c) + Pkeep(c|c) +
∑

c̃∈Σ\{c, ε}

Psubst(c̃|c) = 1 (3.4)

Finally, Figures A.1 and A.2 in the appendix depict the confusion matrices used
in the proposed vanilla and OCR error models, respectively. Note that the former
assigns equal probability to all edit operations and the latter is biased toward
substitutions of characters with similar shapes.

3.3.2 Noise Induction Procedure

Ideally, we would use the noisy sentences annotated with named entity labels
for training robust sequence labeling models. Unfortunately, such data is scarce.
On the other hand, labeled, error-free text corpora are widely available (Benikova
et al., 2014; Tjong Kim Sang and De Meulder, 2003). Hence, the method proposed
in this chapter uses the standard NER corpora and induces noise into the input
tokens during training synthetically.

In contrast to the image domain, which is continuous, the text domain is discrete,
and we cannot directly apply continuous perturbations to written language.
Although some works applied distortions at the level of embeddings (Bekoulis et al.,
2018; Miyato et al., 2017; Yasunaga et al., 2018), we do not have a good intuition
about how it changes the meaning of the underlying textual input. Instead, the
proposed method employs the noise induction procedure to generate distorted
copies of the input.

For every input sentence x, each token xi = (c1, . . . , cK) is independently
perturbed, where K is the length of xi, with the following procedure illustrated in
Figure 3.3:

(1) The ε symbol is inserted before the first and after every character of xi to
get an extended token x′i = (ε, c1, ε, . . . , ε, cK , ε).

(2) For every character c′k of x′i, the replacement character c̃′k is sampled from
the corresponding probability distribution P (c̃′k|c′k), which can be obtained
by taking a row of the character confusion matrix that corresponds to c′k. As
a result, we get a noisy version of the extended input token x̃′i.

(3) All ε symbols are removed from x̃′i and the remaining characters are collapsed
to obtain a noisy token x̃i.

47

3 Noise-Aware Training

t oken��

ϵ tϵoϵkϵeϵnϵ

ϵ tϵo i kϵeϵnϵ

�
′

�

�̃ ′
�

t o i ken�̃ �

t oken

ϵ tϵoϵkϵeϵnϵ

ϵϵϵoϵkϵeϵnϵ

oken

token

ϵ tϵoϵkϵeϵnϵ

ϵ tϵoϵkϵeϵmϵ

tokem

Figure 3.3: Illustration of the proposed noise induction procedure. Three examples
correspond to insertion, deletion, and substitution errors. xi, x′i, x̃′i, and
x̃i are the original, extended, extended noisy, and noisy tokens, respectively.

3.3.3 Data Augmentation Objective

We can improve robustness to noise at test time by introducing various forms of
artificial noise during training. We can distinguish between regularization methods
such as dropout (Srivastava et al., 2014) and task-specific data augmentation that
transforms the data to resemble noisy input. The latter technique was successfully
applied in other domains, including computer vision (Krizhevsky et al., 2012) and
speech recognition (Sperber et al., 2017).

During training, the proposed method artificially induces noise into the original
sentences using the algorithm described in Section 3.3.2 and trains the neural
sequence labeling models using a mixture of error-free and noisy sentences. Let
L0(x, y; θ) be the standard training objective for the sequence labeling task, where
x is the input sentence, y is the corresponding ground-truth sequence of labels, and
θ represents the parameters of F (x). The composite loss function that describes
the data augmentation objective is defined as follows:

Laugm(x, x̃, y; θ) = L0(x, y; θ) + αL0(x̃, y; θ), (3.5)

where x̃ is the perturbed sentence, and α is the weight of the noisy loss component.
Laugm is a weighted sum of standard losses calculated using error-free and noisy

sentences. Intuitively, the model that would optimize Laugm should be more robust
to imperfect input data, retaining the ability to perform well on error-free text.
Figure 3.4a presents a schematic visualization of the data augmentation approach.

3.3.4 Stability Training Objective

S. Zheng et al. (2016) pointed out the output instability issues of deep neural
networks. They proposed a training method to stabilize deep networks against

48

3.3 Proposed Noise-Aware Training Method

small input perturbations and applied it to the tasks of near-duplicate image
detection, similar image ranking, and image classification. Inspired by their idea,
in the proposed approach, the stability training method is adapted to the natural
language scenario.

Our goal is to stabilize the outputs y(x) of a sequence labeling system against
small input perturbations, which can be thought of as flattening y(x) in a close
neighborhood of any input sentence x. When a perturbed copy x̃ is close to x,
then y(x̃) should also be close to y(x). Given the standard training objective
L0(x, y; θ), the original input sentence x, its perturbed copy x̃, and the sequence
of ground-truth labels y, the stability training objective Lstabil can be defined as
follows:

Lstabil(x, x̃, y; θ) = L0(x, y; θ) + αLsim(x, x̃; θ), (3.6)
Lsim(x, x̃; θ) = D

(
y(x), y(x̃)

)
, (3.7)

where Lsim encourages the similarity of the model outputs for both x and x̃, D
is a task-specific feature distance measure, and α balances the strength of the
similarity objective.

Let R(x) and Q(x̃) be the discrete probability distributions obtained by calcu-
lating the softmax function over the logits l(x) for x and x̃, respectively:

R(x) = P (y|x) = softmax
(
l(x)

)
, (3.8)

Q(x̃) = P (y|x̃) = softmax
(
l(x̃)

)
. (3.9)

D is modeled as Kullback–Leibler divergence DKL, which measures the corre-
spondence between the likelihood of the original and the perturbed input:

Lsim(x, x̃; θ) =
∑

i
DKL

(
R(xi)∥Q(x̃i)

)
, (3.10)

DKL

(
R(x)∥Q(x̃)

)
=

∑
j
P (yj|x) log P (yj|x)

P (yj|x̃)
, (3.11)

where i, j are the token and the class label indices, respectively. Figure 3.4b
summarizes the main idea of the proposed stability training objective.

A critical difference between the data augmentation and the stability training
objective is that the latter does not use noisy samples for the original task, but
only for the stability objective. Both objectives could also be combined and used
together, however, the goal of this work is to study their impact on robustness
separately, and further exploration of the synergies between different training
objectives is left to future work. Furthermore, both methods need perturbed

49

3 Noise-Aware Training

(a) Data Augmentation Training Objective Laugm

(b) Stability Training Objective Lstabil

Figure 3.4: Schema of the auxiliary training objectives. x, x̃ are the original, and
the perturbed inputs, respectively, that are fed to the sequence labeling
system F (x). Γ represents a noising process. y(x) and y(x̃) are the output
distributions over the entity classes for x and x̃, respectively. L0 is the
standard training objective. Laugm combines L0 computed on both outputs
from F (x). Lstabil fuses L0 calculated on the original input with the similarity
objective Lsim.

copies of the input samples, which results in longer training time but could be
ameliorated by fine-tuning the existing model for a few epochs8.

3.4 Experimental Setup

3.4.1 Data Sets and Tasks

Named Entity Recognition Task

The experiments that examine the proposed NAT approach are primarily focused
on the NER scenario. To this end, the CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) and the GermEval 2014 (Benikova et al., 2014) data sets
were employed. These data sets contain annotations for the following entity
categories: person names (PER), organizations (ORG), locations (LOC), and
miscellaneous entities (MISC). The detailed statistics of both data sets are
presented in Tables B.1 and B.2 in the appendix.
8 This setting was not explored in this thesis, leaving such optimization to future work.

50

3.4 Experimental Setup

Following Akbik et al. (2018), the revisited version of German CoNLL 2003 was
used, which was prepared in 2006 and is believed to be more accurate, as the
previous version was done by non-native speakers9. Moreover, only the inner layer
of annotation for GermEval 2014 was employed in this work.

Syntactic Chunking and Part-of-Speech Tagging Tasks

In addition to the NER task, the utility of the presented approach is further
validated in other sequence labeling scenarios:

• Syntactic chunking refers to the task of dividing the text into syntactically
related, nonoverlapping groups of words (chunks).

• Part-of-speech tagging (POST) is the process of tagging each word in the
text with the corresponding part of speech.

For the syntactic chunking experiment, the CoNLL 2000 data set (Tjong Kim
Sang and Buchholz, 2000) was employed. To evaluate POST, both the English
(UD English EWT10; Silveira et al., 2014) and the German (UD German GSD11)
Universal Dependency Treebanks were exploited. The detailed statistics of these
data sets are presented in Tables B.3, B.4 and B.6 in the appendix.

3.4.2 Model Architecture

In all experiments presented in this chapter, the BLSTM-CRF architecture (Huang
et al., 2015) with a single BLSTM layer and 256 hidden units in both directions
was used for f(x). Moreover, four different text representations used to retrieve
token embeddings e(x) were considered. These representations were previously
used to achieve state-of-the-art results on the studied data set and should also be
able to handle misspelled text and out-of-vocabulary tokens:

• FLAIR (Akbik et al., 2018) learns a bidirectional language model using a
BLSTM network to represent any sequence of characters. Following previous
work, FLAIR was combined with GloVe embeddings (Pennington et al.,
2014) for English and Wikipedia FastText word vectors (Bojanowski et al.,
2017) for German. Moreover, FLAIR was also coupled with word vectors
trained on Common Crawl (Mikolov et al., 2018) for both languages in the
syntactic chunking and POST experiments.

9 The revisited annotations are available on the official website of the CoNLL 2003 shared task:
https://www.clips.uantwerpen.be/conll2003/ner.

10 https://universaldependencies.org/treebanks/en_ewt (version 2.5)
11 https://universaldependencies.org/treebanks/de_gsd (version 2.5)

51

https://www.clips.uantwerpen.be/conll2003/ner
https://universaldependencies.org/treebanks/en_ewt
https://universaldependencies.org/treebanks/de_gsd

3 Noise-Aware Training

• BERT (Devlin et al., 2019) uses a Transformer encoder to learn a bidirec-
tional language model from large unlabeled text corpora and subword units
to represent textual tokens. In the experiments presented in this chapter,
the BERTBASE model was employed.

• ELMo (Peters et al., 2018) utilizes a linear combination of hidden state
vectors derived from a BLSTM word language model trained on a large text
corpus.

• Glove/Wiki+Char is a combination of pretrained word embeddings (GloVe
for English and Wikipedia FastText for German) and randomly initialized
character embeddings (Lample et al., 2016).

3.4.3 Training Setup

Two components of the sequence labeling architecture (Figure 3.2) were trained
from scratch: (1) the sequence labeling model f(x) and (2) the final CRF decoding
layer. The pretrained embedding vectors e(x) were fixed during training, except for
the character embeddings. To train the NAT models, a mixture of the original data
and its perturbed copies was used. The latter was generated from the synthetic
noise distribution (Section 3.3.1) with the proposed noise induction procedure
(Section 3.3.2).

Table A.3 in the appendix presents the detailed hyperparameters of the sequence
labeling model f(x) employed in the experiments described in this chapter. The
hyperparameters were consistent with Akbik et al. (2018). All models were
trained for at most 100 epochs. Moreover, early stopping was used based on the
development set performance, measured as an average F1 score of clean and noisy
samples. Note that the development sets of each benchmark data set were used
for validation only and not for training.

3.4.4 Evaluation Setup

The entity-level micro average F1 score on the test set was used as the evaluation
metric except for the POST task, where per token accuracy was used. The
evaluation on both the original data sets and their copies perturbed using two
common natural error distributions was performed as follows:

• OCR errors: The OCR errors were induced using the character confusion
matrix Γ (Section 3.3.2) that was estimated based on the results of the
Tesseract 3.04 OCR engine, which was employed to digitize the document

52

3.4 Experimental Setup

images from the corpus detailed in Section 2.5.1. All characters that are
not present in the original alphabet Σ of the corresponding data set for
the downstream task were filtered out to avoid introducing out-of-alphabet
symbols in the noise induction stage.

• Misspellings: Two sets of misspellings that were previously released by
Belinkov and Bisk (2018) and Piktus et al. (2019) were employed in this
scenario. Following the authors, every original token was replaced with
the corresponding misspelled variant, sampling uniformly among available
replacement candidates.

Table 3.1 presents the estimated error rates of text that is produced by
executing these noise induction procedures on all employed test sets. Moreover,
as the evaluation with noisy data leads to some variance in the final scores, all
experiments were repeated five times, and the mean and standard deviation values
were reported.

Table 3.1: Estimated error rates of text produced using different noise distributions
(Section 3.4.4). OCR noise is modeled with the character confusion matrix,
whereas misspellings are induced using lookup tables released by Belinkov and
Bisk (2018)† and Piktus et al. (2019)‡.

(a) Character Error Rates

Data Set OCR Noise Misspellings† Misspellings‡

EnglishCoNLL2003 8.9% 16.5% 9.8%
GermanCoNLL2003 9.0% 8.3% 8.0%
GermEval 2014 9.3% 8.6% 8.2%
CoNLL2000 8.5% 12.4% 9.0%
UDEnglishEWT 8.9% 13.9% 9.2%
UDGermanGSD 8.7% 9.8% 8.7%

(b) Word Error Rates

Data Set OCR Noise Misspellings† Misspellings‡

EnglishCoNLL2003 35.6% 55.4% 48.3%
GermanCoNLL2003 39.5% 26.5% 45.5%
GermEval 2014 41.2% 27.0% 47.9%
CoNLL2000 35.6% 45.9% 46.3%
UDEnglishEWT 34.4% 48.4% 44.8%
UDGermanGSD 38.9% 30.5% 50.4%

53

3 Noise-Aware Training

3.4.5 Implementation Details

All models were implemented using the FLAIR framework (Akbik, Bergmann,
Blythe, et al., 2019)12. The basic sequence labeling model in this framework was
extended by integrating the proposed auxiliary training objectives (Sections 3.3.3
and 3.3.4). Nonetheless, the approach presented in this chapter is universal and
can be implemented in any other sequence labeling framework.

3.5 Experimental Results

3.5.1 Named Entity Recognition

Firstly, the NAT approach was validated in the NER scenario. To this end,
the baseline models were trained with and without the proposed auxiliary loss
objectives (Sections 3.3.3 and 3.3.4). The CoNLL 2003 and the GermEval 2014
data sets were employed (Section 3.4.1), and a label-preserving training setup was
used in this experiment, i.e., α = 1.0 and ηtrain = 10%.

The baselines utilized GloVe vectors coupled with FLAIR and character em-
beddings (FLAIR+GloVe and GloVe+Char, respectively), BERT, and ELMo
embeddings for English. For German, Wikipedia FastText vectors paired with
FLAIR and character embeddings (FLAIR+Wiki and Wiki+Char, respectively)
were employed.13

Tables 3.2 to 3.4 present the results of this experiment14. The proposed auxiliary
training objectives significantly improved accuracy on noisy input data containing
OCR errors and misspelling for all baseline models and both languages. At the
same time, they preserved the accuracy for the original input. Moreover, the
data augmentation objective performed slightly better than the stability training
objective. However, the chosen hyperparameter values were rather arbitrary, as
the goal of this experiment was to prove the utility and the flexibility of both
objectives. Therefore, the achieved results can most likely be improved.

12 FLAIR v0.4.2; https://github.com/flairNLP/flair
13 This choice was motivated by the availability of pretrained embedding models in the FLAIR

framework.
14 The exact results from the original papers could not be replicated because the development sets

were not used for training in this work. Moreover, the presented approach is feature-based,
as the embeddings are not fine-tuned on the target task.

54

https://github.com/flairNLP/flair

3.5 Experimental Results

Table 3.2: Evaluation results of NER on the English CoNLL 2003 test set (Table B.1a).
The original data, as well as its noisy copies with OCR errors and two types of
misspellings released by Belinkov and Bisk (2018)† and Piktus et al. (2019)‡
were used. L0, Laugm, and Lstabil are the standard, the data augmentation,
and the stability objectives, respectively. Mean F1 scores with standard
deviations from five experiments and mean differences against the standard
objective (in parentheses) are reported.

(a) FLAIR + GloVe Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 92.05 76.44±0.45 75.09±0.48 87.57±0.10
Laugm 92.56 (+0.51) 84.79±0.23 (+8.35) 83.57±0.43 (+8.48) 90.50±0.08 (+2.93)
Lstabil 91.99 (-0.06) 84.39±0.37 (+7.95) 82.43±0.23 (+7.34) 90.19±0.14 (+2.62)

(b) BERT Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 90.91 68.23±0.39 65.65±0.31 85.07±0.15
Laugm 90.84 (-0.07) 79.34±0.32 (+11.11) 75.44±0.28 (+9.79) 86.21±0.24 (+1.14)
Lstabil 90.95 (+0.04) 78.22±0.17 (+9.99) 73.46±0.34 (+7.81) 86.52±0.12 (+1.45)

(c) ELMo Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 92.16 72.90±0.50 70.99±0.17 88.59±0.19
Laugm 91.85 (-0.31) 84.09±0.18 (+11.19) 82.33±0.40 (+11.34) 89.50±0.16 (+0.91)
Lstabil 91.78 (-0.38) 83.86±0.11 (+10.96) 81.47±0.29 (+10.48) 89.49±0.15 (+0.90)

(d) GloVe + Char Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 90.26 71.15±0.51 70.91±0.39 87.14±0.07
Laugm 90.83 (+0.57) 81.09±0.47 (+9.94) 79.47±0.24 (+8.56) 88.82±0.06 (+1.68)
Lstabil 90.21 (-0.05) 80.33±0.29 (+9.18) 78.07±0.23 (+7.16) 88.47±0.13 (+1.33)

55

3 Noise-Aware Training

Table 3.3: Evaluation results of NER on the German CoNLL 2003 test set (Table B.1b).
The original data, as well as its noisy copies with OCR errors and two types of
misspellings released by Belinkov and Bisk (2018)† and Piktus et al. (2019)‡
were used. L0, Laugm, and Lstabil are the standard, the data augmentation,
and the stability objectives, respectively. Mean F1 scores with standard
deviations from five experiments and mean differences against the standard
objective (in parentheses) are reported.

(a) FLAIR + Wiki

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 86.13 66.93±0.49 78.06±0.13 80.72±0.23
Laugm 86.46 (+0.33) 75.90±0.63 (+8.97) 83.23±0.14 (+5.17) 84.01±0.27 (+3.29)
Lstabil 86.33 (+0.20) 75.08±0.29 (+8.15) 82.60±0.21 (+4.54) 84.12±0.26 (+3.40)

(b) Wiki + Char

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 82.20 59.15±0.76 75.27±0.31 71.45±0.15
Laugm 82.62 (+0.42) 67.67±0.75 (+8.52) 78.48±0.24 (+3.21) 79.14±0.31 (+7.69)
Lstabil 82.18 (-0.02) 67.72±0.63 (+8.57) 77.59±0.12 (+2.32) 79.33±0.39 (+7.88)

Table 3.4: Evaluation results of NER on the GermEval 2014 test set (Table B.2). The
original data, as well as its noisy copies with OCR errors and two types of
misspellings released by Belinkov and Bisk (2018)† and Piktus et al. (2019)‡
were used. L0, Laugm, and Lstabil are the standard, the data augmentation,
and the stability objectives, respectively. Mean F1 scores with standard
deviations from five experiments and mean differences against the standard
objective (in parentheses) are reported.

(a) FLAIR + Wiki

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 85.05 58.64±0.51 67.96±0.23 68.64±0.28
Laugm 84.84 (-0.21) 72.02±0.24 (+13.38) 78.59±0.11 (+10.63) 81.55±0.12 (+12.91)
Lstabil 84.43 (-0.62) 70.15±0.27 (+11.51) 75.67±0.16 (+7.71) 79.31±0.32 (+10.67)

(b) Wiki + Char

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 80.32 52.48±0.31 61.99±0.35 54.86±0.15
Laugm 80.68 (+0.36) 63.74±0.31 (+11.26) 70.83±0.09 (+8.84) 75.66±0.11 (+20.80)
Lstabil 80.00 (-0.32) 62.29±0.35 (+9.81) 68.23±0.23 (+6.24) 72.40±0.29 (+17.54)

56

3.5 Experimental Results

3.5.2 Syntactic Chunking and Part-of-Speech Tagging

Secondly, to confirm that the NAT approach is applicable beyond the NER task,
the NER experiment (Section 3.5.1) was replicated in other sequence labeling
scenarios, i.e., syntactic chunking and POST (Section 3.4.1). A label-preserving
training setup was used, i.e., α = 1.0 and ηtrain = 10%, except that the results
on the UD English EWT and the CoNLL 2000 data set with misspellings were
obtained using a lower sampling rate of 70%.

The syntactic chunking experiment was performed on the CoNLL 2000 data set.
The baseline models utilized ELMo embeddings and FLAIR embeddings coupled
with word vectors trained on Common Crawl (Mikolov et al., 2018), referred to as
ELMo and FLAIR+Crawl embeddings, respectively.

In the POST experiment on the UD English EWT data set, FLAIR em-
beddings paired with GloVe and Common Crawl word vectors (FLAIR+GloVe
and FLAIR+Crawl, respectively) were employed. For experiments on the UD
German GSD data set, FLAIR embeddings coupled with Wikipedia FastText and
Common Crawl word vectors (FLAIR+Wiki and FLAIR+Crawl, respectively)
were employed.

The results of the syntactic chunking and POST experiments are presented in
Tables 3.5 to 3.7. They confirm that NAT improves the accuracy of sequence
labeling beyond the recognition of entities. The observed improvements are even
more pronounced than in the case of NER. Apparently, this is due to the fact
that entities are relatively rare in natural text. In contrast, the annotations in the
case of the syntactic chunking and the POST tasks are much denser, which could
explain the observed difference in the level of improvements between the tasks.

3.5.3 Sensitivity Analysis

This experiment aims to evaluate the impact of the hyperparameters of the
proposed method on sequence labeling accuracy. In this scenario, the English
CoNLL 2003 data set was used, and multiple models were trained with different
amounts of synthetic noise that was induced at training time (ηtrain) and different
weighting factors of the auxiliary training objectives (α). For comparison, the
models that employed the test-time error distribution at training time were also
examined. The FLAIR+GloVe model was chosen as a baseline because it achieved
the best results in the preliminary analysis (Table 3.2) and performed satisfactorily
in terms of the execution time, which allowed performing extensive experiments.

57

3 Noise-Aware Training

Table 3.5: Evaluation results of syntactic chunking on the CoNLL 2000 data set
(Table B.3). The original data, as well as its noisy copies with OCR errors and
two types of misspellings released by Belinkov and Bisk (2018)† and Piktus
et al. (2019)‡ were used. L0, Laugm, and Lstabil are the standard, the data
augmentation, and the stability objectives, respectively. Mean F1 scores with
standard deviations from five experiments and mean differences against L0
(in parentheses) are reported.

(a) FLAIR + Crawl Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 96.39 80.55±0.11 61.87±0.39 64.23±0.25
Laugm 96.37 (-0.02) 91.44±0.15 (+10.89) 81.89±0.23 (+20.02) 85.97±0.34 (+21.74)
Lstabil 96.27 (-0.12) 90.45±0.12 (+9.90) 80.81±0.17 (+18.94) 84.16±0.27 (+19.93)

(b) ELMo Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 96.56 80.55±0.21 61.41±0.24 62.65±0.48
Laugm 96.64 (+0.08) 90.92±0.18 (+10.37) 80.04±0.34 (+18.63) 84.11±0.19 (+21.46)
Lstabil 96.50 (-0.06) 89.87±0.22 (+9.32) 78.97±0.17 (+17.56) 82.29±0.18 (+19.64)

Table 3.6: Evaluation results of POST on the UD English EWT test set (Table B.4).
The original data, as well as its noisy copies with OCR errors and two types
of misspellings released by Belinkov and Bisk (2018)† and Piktus et al. (2019)‡
were used. L0, Laugm, and Lstabil are the standard, the data augmentation,
and the stability training objectives, respectively. Per token accuracy with
standard deviations from five experiments and mean differences against L0
(in parentheses) are reported.

(a) FLAIR + GloVe Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 94.03 72.03±0.30 52.13±0.39 58.41±0.22
Laugm 93.49 (-0.54) 83.17±0.30 (+11.14) 68.29±0.36 (+16.16) 75.23±0.14 (+16.82)
Lstabil 93.61 (-0.42) 83.62±0.36 (+11.59) 69.23±0.34 (+17.10) 75.91±0.24 (+17.50)

(b) FLAIR + Crawl Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 94.02 71.99±0.37 54.01±0.49 59.24±0.25
Laugm 93.89 (-0.13) 84.14±0.36 (+12.15) 70.68±0.21 (+16.67) 76.97±0.31 (+17.73)
Lstabil 94.04 (+0.02) 84.09±0.23 (+12.10) 71.00±0.27 (+16.99) 76.95±0.21 (+17.71)

58

3.5 Experimental Results

Table 3.7: Evaluation results of POST on the UD German GSD test set (Table B.6).
The original data, as well as its noisy copies with OCR errors and two types
of misspellings released by Belinkov and Bisk (2018)† and Piktus et al. (2019)‡
were used. L0, Laugm, and Lstabil are the standard, the data augmentation,
and the stability training objectives, respectively. Per token accuracy with
standard deviations from five experiments and mean differences against L0
(in parentheses) are reported.

(a) FLAIR + Wiki Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 90.24 68.35±0.37 64.81±0.19 49.85±0.30
Laugm 90.30 (+0.06) 84.17±0.41 (+15.82) 75.25±0.27 (+10.44) 77.61±0.39 (+27.76)
Lstabil 90.08 (-0.16) 83.27±0.23 (+14.92) 74.80±0.24 (+9.99) 76.82±0.32 (+26.97)

(b) FLAIR + Crawl Embeddings

Train loss Original data OCR errors Misspellings† Misspellings‡

L0 90.10 66.17±0.34 63.19±0.22 49.05±0.42
Laugm 90.12 (+0.02) 84.13±0.32 (+17.96) 74.57±0.23 (+11.38) 78.16±0.17 (+29.11)
Lstabil 89.97 (-0.13) 83.11±0.35 (+16.94) 74.27±0.15 (+11.08) 77.27±0.35 (+28.22)

Figure 3.5 summarizes the results of the sensitivity experiment. In most cases,
the models trained with the proposed auxiliary NAT objectives preserved or even
improved the accuracy on the original test data compared to the baseline model
(α = 0). Moreover, they significantly outperformed the baseline model on test
data perturbed with OCR noise. The highest accuracy was achieved for ηtrain
from 10 to 30%, which roughly corresponds to the label-preserving noise range
(Section 3.2.3).

The best choice of α was in the range from 0.5 to 2.0. In the case that the
weight of the auxiliary training objective is set to α = 5.0, we observe lower
accuracy on the original, error-free data. Furthermore, the models trained on the
real error distribution demonstrated at most slightly better performance, which
indicates that the exact noise distribution might not necessarily have to be known
at training time. Note that the aspect of mimicking an empirical noise distribution
is further explored in Chapter 4.

Similar to Heigold et al. (2018) and Cheng et al. (2019), it can be concluded
that a nonzero noise level induced during training (ηtrain > 0) always yields
improvements on noisy input data when compared with the models trained
exclusively on error-free examples.

59

3 Noise-Aware Training

OCR 1 10 20 30 40 50 60 70 80 90 100
Training noise level (train) [%]

90

91

92

93

94

F1
 sc

or
e

=0.0
=0.5

=1.0
=2.0

=5.0

(a) Data augmentation (original test data)

OCR 1 10 20 30 40 50 60 70 80 90 100
Training noise level (train) [%]

90

91

92

93

94

F1
 sc

or
e

=0.0
=0.5

=1.0
=2.0

=5.0

(b) Stability training (original test data)

OCR 1 10 20 30 40 50 60 70 80 90 100
Training noise level (train) [%]

74
76
78
80
82
84
86
88

F1
 sc

or
e

=0.0
=0.5

=1.0
=2.0

=5.0

(c) Data augmentation (tested on OCR errors)

OCR 1 10 20 30 40 50 60 70 80 90 100
Training noise level (train) [%]

74
76
78
80
82
84
86
88

F1
 sc

or
e

=0.0
=0.5

=1.0
=2.0

=5.0

(d) Stability training (tested on OCR errors)

Figure 3.5: Sensitivity analysis performed on the English CoNLL 2003 test set (Ta-
ble B.1a). Each figure presents the results of a model trained using one
of the proposed auxiliary training objectives (Sections 3.3.3 and 3.3.4) and
evaluated on either original data or its variant perturbed with OCR errors
(Section 3.4.4). The bar marked as OCR represents a model trained using
the test-time OCR noise distribution. Other bars correspond to models
trained using synthetic noise with different noising rates ηtrain and weighting
factors α.

3.5.4 Error Analysis

To further quantify the improvements provided by the proposed approach, as well
as to identify its potential drawbacks and limitations, the accuracy of sequence
labeling was measured on the subsets of data with different levels of perturbation.
More specifically, the input tokens were grouped based on edit distance to their
error-free counterparts. Moreover, the data was partitioned by the named entity
class to assess the impact of noise on the recognition of different entity types.

For this experiment, both the test and the development parts of the English
CoNLL 2003 data set were jointly used as the evaluation data set. To imitate the
noisy input, OCR errors were induced to the original, error-free data as described
in Section 3.4.4. Subsequently, the subset-level error rates were calculated for
the models that employed either the standard or the proposed auxiliary training
objectives. Figure 3.6 presents the results of this experiment.

60

3.5 Experimental Results

LD = 0 LD = 1 LD = 2 LD = 3 LD 4
Levenshtein Distance (LD) value

0

5

10

15

20

Er
ro

r R
at

e
[%

]

augm

stabil

0

(a) Data divided by the edit distance value

O PER LOC ORG MISC
Named entity class

0

5

10

15

Er
ro

r R
at

e
[%

]

augm

stabil

0

(b) Data divided by the entity class (error-free tokens)

O PER LOC ORG MISC
Named entity class

0

10

20

30

40

50

Er
ro

r R
at

e
[%

]

augm

stabil

0

(c) Data divided by the entity class (perturbed tokens)

Figure 3.6: Error analysis on the English CoNLL 2003 data set with OCR noise. The
results of the FLAIR+GloVe model trained with the standard, the data
augmentation, and the stability training objectives (L0, Laugm, and Lstabil,
respectively) are presented. The data was divided into subsets based on the
edit distance of a token to its original counterpart and its named entity class.
The latter group was further partitioned into the error-free and the perturbed
tokens. The error rate is the percentage of tokens with misrecognized entity
class labels.

61

3 Noise-Aware Training

It can be seen that the NAT approach achieved significant error reduction across
all perturbation levels and all entity types. Moreover, narrowing down the analysis
to perturbed tokens reveals that the baseline model was particularly sensitive to
noisy tokens from the LOC and the MISC categories. The proposed NAT approach
considerably reduced this negative effect.

Furthermore, as the stability training worked slightly better on the LOC class
and the data augmentation was more accurate on the ORG type, both methods
could possibly be combined to enhance overall sequence labeling accuracy further.
Finally, note that even if the particular token was not perturbed, its context
could be noisy, which would explain the fact that the proposed approach provided
improvements even for tokens without perturbations.

3.5.5 Qualitative Analysis

In this section, the outputs of the models trained with and without the NAT
method generated on erroneous input text are qualitatively compared. The results
in Figures 3.7 and 3.8 show that the proposed method improved robustness to:

(1) Capitalization errors — see the 1st and the 5th example in Figure 3.8.
(2) Substitutions of characters — see the 2nd example in Figure 3.8 as well as

the 1st, the 2nd, the 4th, and the 5th example in Figure 3.7.
(3) Deletions of characters — see the 3rd and the 6th example in Figure 3.8.
(4) Insertions of characters — see the 3rd and the 5th example in Figure 3.7.
Moreover, the proposed method better recognized the semantics of the sentence

in the 4th row of Figure 3.8, where the location name was creatively rewritten
(Brazland instead of Brazil). Furthermore, note that misrecognition could also
be caused by the errors in the context words. In the 7th example in Figure 3.8,
the organization name Bundesliga is spelled correctly, but the preceding words
are misspelled, which apparently confused the model trained using the standard
objective and caused the model to omit this entity. In contrast, the model that
employed the NAT method correctly identified all entities in this example.

3.6 Related Work
This section presents the most related approaches for improving robustness to
nonstandard or erroneous input (Sections 3.6.2 to 3.6.4), as well as the prior
work on the impact of noisy input data on the downstream task performance
(Section 3.6.1).

62

3.6 Related Work

Reference #1 Hapoel Jerusalem 12 4 1 7 10 18 13
Noisy Reference Hapoel lerusalem I2 A 1 7 10 18 13
NAT Model Hapoel lerusalem I2 A 1 7 10 18 13
Standard Model Hapoel lerusalem I2 A 1 7 10 18 13

Reference #2 SOCCER - SPANISH FIRST DIVISION RESULT / STANDINGS.
Noisy Reference SOCCER - SPANlSH FIRST DIVISiOW RESULT / STA'DINGS.
NAT Model SOCCER - SPANlSH FIRST DIVISiOW RESULT / STA'DINGS.
Standard Model SOCCER - SPANlSH FIRST DIVISiOW RESULT / STA'DINGS.

Reference #3 EU , Poland agree on oil import tariffs.
Noisy Reference EU , Po'land agree on oil import tarifs.
NAT Model EU , Po'land agree on oil import tarifs.
Standard Model EU , Po'land agree on oil import tarifs.

Reference #4 Schlamm scheint zu helfen - Yahoo!
Noisy Reference Schlamm scheint zu helfen - Yaho0!
NAT Model Schlamm scheint zu helfen - Yaho0!
Standard Model Schlamm scheint zu helfen - Yaho0 !

Reference #5 Fachverband für Hauswirtschaft :
Noisy Reference Fachverbandi für Hauswi'tschaTt :
NAT Model Fachverbandi für Hauswi'tschaTt :
Standard Model Fachverbandi für Hauswi'tschaTt :

Figure 3.7: Outputs produced by the models trained either with the standard or the
auxiliary NAT objectives on the input text that contains OCR errors. The
examples demonstrate the cases where the models trained with the NAT
objectives correctly recognized all tags, while the baseline models either
misclassified or completely missed some entities. The background color
indicates the entity type: person name (blue), location (green), organization
(orange), or miscellaneous entity (gray). Best viewed in color.

63

3 Noise-Aware Training

Reference #1 7-1 Raul Gonzalez 7-1 Juan Pizzi
Noisy Reference 7-1 raul gonzalez 7-1 juan Pizzi
NAT Model 7-1 raul gonzalez 7-1 juan Pizzi
Standard Model 7-1 raul gonzalez 7-1 juan Pizzi

Reference #2 6. Heidi Zurbriggen (Switzerland) 153
Noisy Reference 6. Heidi Zurbriggen (swizzerland) 153
NAT Model 6. Heidi Zurbriggen (swizzerland) 153
Standard Model 6. Heidi Zurbriggen (swizzerland) 153

Reference #3 Damascus denies aiding the rebels.
Noisy Reference Damascuse denies aiding de rebels.
NAT Model Damascuse denies aiding de rebels.
Standard Model Damascuse denies aiding de rebels.

Reference #4 Plastic surgery gets boost in Brazil .
Noisy Reference Plastic surgury hets boost is Brazland .
NAT Model Plastic surgury hets boost is Brazland .
Standard Model Plastic surgury hets boost is Brazland .

Reference #5 Waltraud Zimmer , Rödermark-Ober-Roden
Noisy Reference Waltraud zimmer , Rödermark-Ober-Roden
NAT Model Waltraud zimmer , Rödermark-Ober-Roden
Standard Model Waltraud zimmer, Rödermark-Ober-Roden

Reference #6 Deutschland ist noch nicht Teil der Reiseroute."
Noisy Reference Deutshland is nach nich Teil der Reiseroute."
NAT Model Deutshland is nach nich Teil der Reiseroute."
Standard Model Deutshland is nach nich Teil der Reiseroute."

Reference #7 Auch für sie kostet die Bundesliga 14,90 Euro im Monat.
Noisy Reference Aauch fur si kosstet di Bundesliga 14,90 Euro im Monat.
NAT Model Aauch fur si kosstet di Bundesliga 14,90 Euro im Monat.
Standard Model Aauch fur si kosstet di Bundesliga 14,90 Euro im Monat.

Figure 3.8: Outputs produced by the models trained either with the standard or the
auxiliary NAT objectives on the input text that contains misspellings. The
examples demonstrate the cases where the models trained with the NAT
objectives correctly recognized all tags, while the baseline models either
misclassified or completely missed some entities. The background color
indicates the entity type: person name (blue), location (green), organization
(orange), or miscellaneous entity (gray). Best viewed in color.

64

3.6 Related Work

3.6.1 The Impact of Noisy Input Data

Errors of OCR, ASR, and other text generators always pose a challenge to the
downstream NLP systems (Alex and Burns, 2014; Lopresti, 2009; Packer et al.,
2010; Ruiz et al., 2017).

Previous research concerning the impact of noisy input on downstream task
performance was primarily carried out in the context of ASR and NMT. Ruiz
et al. (2017) noted that machine translation systems are conventionally trained on
the text that does not exhibit phenomena that occur in spoken language. They
employed state-of-the-art machine translation systems to translate utterances that
contain ASR errors and identified new research areas in evaluating NMT systems
for spoken language translation. Chen et al. (2017) investigated the effects of ASR
errors on spoken dialog systems and noted that the basic approach of cascading
ASR modules with the downstream text processing systems works well only when
the ASR accuracy is relatively high. X. Li et al. (2018) stated that recent NMT
systems trained using error-free parallel data sets cannot properly handle sentences
produced by the ASR system due to erroneous input.

In the document processing field, Lopresti (2009) investigated the impact of
noise that is induced by OCR and stated that text recognition errors present a
serious challenge to the downstream NLP systems that make use of such data.
Moreover, Packer et al. (2010) studied the task of extracting person names from
digitized historical documents and argued that accurate identification of named
entities in the noisy output of an OCR engine presents a challenge beyond
previously explored NER scenarios. Furthermore, Alex and Burns (2014) analyzed
NER performed on several digitized historical text collections and showed that
OCR errors have a significant impact on the accuracy of the downstream task.

Although the OCR technology is more advanced than several years ago when
many historical archives were digitized (Kim and Cassidy, 2015; Neudecker, 2016),
recall that in Chapter 2, the efficiency of modern OCR engines was examined,
and it was shown that the most widely used methods still have difficulties with
nonstandard or lower quality input documents.

3.6.2 Noise-Additive Data Augmentation

A widely adopted method of improving robustness to nonstandard input is to
augment the training data with examples perturbed using a model that mimics the
error distribution to be encountered at test time (Cubuk et al., 2019; Krizhevsky
et al., 2012; Lim et al., 2019; Tsvetkov et al., 2014).

65

3 Noise-Aware Training

Apparently, the exact modeling of noise might be impractical or even impossible,
thus, methods that employ randomized error patterns for training recently gained
increasing popularity (Belinkov and Bisk, 2018; Heigold et al., 2018; Karpukhin
et al., 2019; Lakshmi Narayan et al., 2019; Sperber et al., 2017). Although
trained using synthetic errors, these methods are often able to achieve moderate
improvements on data from natural sources of noise.

Sperber et al. (2017) randomly induced errors to the source side of parallel
training data for speech translation and achieved moderately improved robustness
with properly calibrated type and amount of noise that is induced at training time.
Heigold et al. (2018) demonstrated that the noisy input substantially degrades the
accuracy of models trained on error-free data. They used word scrambling, as well
as character flips and swaps as their noise model, and achieved the best results
under matched training and test noise conditions.

Belinkov and Bisk (2018) reported significant degradation in the performance
of NMT systems on noisy input. They built a lookup table of possible lexical
replacements from Wikipedia edit histories and used it as a natural source of
the noise. Robustness to noise was only achieved by training with the same
distribution — at the expense of performance degradation on other types of noise.
In contrast, the method proposed in this chapter performed well on natural noise
at test time by using a simplified synthetic noise model during training.

Noteworthy, Karpukhin et al. (2019) pointed out that existing NMT approaches
are very sensitive to spelling mistakes and proposed to augment training samples
with random character deletions, insertions, substitutions, and swaps. They
showed improved robustness to natural noise, represented by frequent corrections
in Wikipedia edit logs, without diminishing performance on the original data.
However, not every word in the vocabulary has a corresponding misspelling.
Therefore, even when noise is applied at the maximum rate, only a subset of tokens
is perturbed (20-50%, depending on the language). In contrast, the approach
presented in this chapter uses a confusion matrix, which is better suited to model
statistical error distribution and can be applied to all tokens, not only those present
in the corresponding lookup tables.

3.6.3 Noise-Invariant Latent Representation

Robustness can also be improved by designing a representation that is less sensitive
to noise, in particular, by encouraging the models to learn a similar latent
representation for both the error-free and the erroneous input.

66

3.6 Related Work

Inspired by contractive autoencoders (Rifai et al., 2011), Y. Li et al. (2016)
proposed to stabilize predictions by minimizing the ability of features to perturb
results by keeping the variation of the output lower than the noise. They trained
their models using first-order derivatives of the training loss as a part of the
regularization term and used a word-level dropout as their noise model.

S. Zheng et al. (2016) introduced stability training — a general method used
to stabilize predictions against small input perturbations. Cheng et al. (2018)
continued their work and developed the adversarial stability training method for
NMT by adding a discriminator term to the objective function. They induced noise
by randomly replacing words in the input sentence or by adding Gaussian noise to
word embeddings and evaluated their approach using random swaps, deletions, and
replacements of words. They combined data augmentation and stability objectives,
while in this work, both methods were evaluated separately and the evaluation
results on natural noise distribution were provided.

Piktus et al. (2019) learned a representation that embeds misspelled words close
to their correct variants. Their misspelling oblivious embeddings model jointly
optimizes two loss functions, each of which iterates over a separate data set
(a corpus of text and a set of misspelling/correction pairs) during training. In
contrast, the method proposed in this chapter does not depend on any additional
resources and uses a simplified error distribution during training.

Jia et al. (2019) focused on adversarial word substitutions and applied the
interval bound propagation technique to minimize an upper bound on the worst-
case loss for allowed word substitutions. Their method outperformed data
augmentation on text classification data sets but also caused a moderate drop in
the accuracy on unperturbed text compared with normal training. Moreover, it is
still an open problem whether this model could handle other types of perturbations
like insertions or deletions.

Jones et al. (2020) developed robust encodings that balance stability (consistent
predictions across various perturbations) and fidelity (accuracy on unperturbed
input) by mapping sentences to a smaller discrete space of encodings. Although
their model improved robustness against small perturbations, it decreased accuracy
on the error-free input.

Contemporary to the NAT method, Q. Xie et al. (2020) proposed the unsuper-
vised data augmentation approach that encourages the predictions to be consistent
between the original and the augmented examples from an unlabeled data set.
Similar to the stability training objective, their method minimizes the Kullback–
Leibler divergence between the predictions on the original and the augmented
examples. Moreover, they proposed to induce perturbation using targeted data

67

3 Noise-Aware Training

augmentation methods, i.e., backtranslation (Sennrich et al., 2016) for textual
data and AutoAugment (Cubuk et al., 2019) for the input in image format. Their
method leads to substantial improvements in several language and vision tasks.

3.6.4 Adversarial Learning

Adversarial examples are the inputs designed to mislead ML models (Goodfellow
et al., 2015; Szegedy et al., 2014). Adversarial attacks aim to slightly modify the
original input, so that the model misclassifies it, although the original example
is classified correctly. In a white-box attack scenario (Ebrahimi et al., 2018) we
assume that the attacker has access to the model parameters, in contrast to the
black-box scenario (J. Gao et al., 2018), where the attacker can only sample model
predictions on given input examples.

Many different methods were used to generate adversarial examples. Bekoulis
et al. (2018), Miyato et al. (2017), and Yasunaga et al. (2018) added the worst-case
perturbation of a small, bounded norm at the level of dense word and character
embeddings. Ebrahimi et al. (2018) used the gradient of each perturbation to guide
the sample selection process. Alzantot et al. (2018) exploited population-based,
gradient-free optimization via genetic algorithms to generate natural language
adversarial examples. H. Zhang et al. (2019) proposed the Metropolis-Hastings
attack algorithm to improve the fluency of generated results.

On the other hand, adversarial training (Bekoulis et al., 2018; Miyato et al., 2017;
Yasunaga et al., 2018) is a method that augments the training data with adversarial
examples to make the ML models more resistant to adversarial input. The NAT
method proposed in this chapter can be thought of as a black-box adversarial
training method that utilizes naturally occurring adversarial examples in the form
of noisy digitized or misspelled text.

3.7 Summary

In this chapter, we investigated the difference in accuracy between sequence
labeling performed on error-free and noisy text (Section 3.2.3). To this end, the
noisy sequence labeling problem was formulated, where the input may undergo an
unknown noising process (Section 3.2.2). Moreover, in Section 3.3.1, the confusion
matrix-based model was introduced. It can be used to either estimate the real
noise distribution encountered in natural language text or to imitate mistyped or
misrecognized text by using a simplified, uniform error distribution. Furthermore,

68

3.7 Summary

the noise induction procedure was developed and used to simulate the real noisy
text (Section 3.3.2).

Most importantly, two NAT objectives that boost sequence labeling accuracy
on the perturbed text were proposed:

(1) The data augmentation approach uses a mixture of clean and noisy ex-
amples during training to make the model resistant to erroneous input
(Section 3.3.3).

(2) The stability training algorithm encourages output similarity for the original
and the perturbed input, which helps the model build a noise invariant latent
representation (Section 3.3.4).

The performed experiments confirmed that NAT consistently improves the effi-
ciency of popular sequence labeling models on data perturbed with different error
distributions, preserving accuracy on the original input (Section 3.5). Moreover,
the proposed method avoids expensive retraining of embeddings on noisy data
sources by employing existing text representations.

The NAT approach makes existing models applicable beyond the idealized
conditions for which they were originally designed. Although this method was not
intended to correct erroneous text, it may support an automatic correction method
that uses recognized entity types to narrow the list of feasible correction candidates.
Another application is data anonymization (Biesner et al., 2022; Mamede et al.,
2016), where only the locations in text and not the exact values of entities are
required, as they will be anonymized anyway.

Future Work Directions

Future work will involve improvements in the proposed noise model to study the
importance of fidelity to real-world error patterns.15 Moreover, the evaluation of
the NAT approach in handling errors from other real noise distributions (e.g., from
ASR) and other sequence labeling tasks would further support the utility of the
proposed method. Furthermore, NAT could be combined with techniques that
allow for avoiding erroneous tokenization, e.g., the method proposed by Liu et al.
(2019), which is orthogonal to the proposed approach.

15 In Chapter 4, an improved error model that better mimics empirical error distribution is
presented.

69

4 Empirical Error Modeling for
Improved Noise-Aware Training

Preface

This chapter is adapted from Namysl, Behnke, and Köhler (2021)1, previously
published by the Association for Computational Linguistics and presented at the
Joint Conference of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (ACL-IJCNLP 2021)2.

The content from the aforementioned publication is used under the terms of
Creative Commons Attribution 4.0 International License.3

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the previous
publication (Namysl, Behnke, and Köhler, 2021), including the conception, design,
and implementation of the proposed methods, the preparation of the data for
training and evaluation of the proposed approach, conducting the experimental
evaluation, the analysis and interpretation of the experimental results, drafting
the manuscript, as well as the revision and final approval of the version to be
published.

The content presented in this chapter, unless otherwise stated, is the contribu-
tion of the author of this thesis.

Unpublished Content

Compared to the previous publication, additional, unpublished content is included
in this chapter. In particular, the analysis of the data efficiency of the proposed
1 ©2021 Association for Computational Linguistics. Reprinted in Appendix C.3.
2 https://2021.aclweb.org
3 https://creativecommons.org/licenses/by/4.0

71

https://2021.aclweb.org
https://creativecommons.org/licenses/by/4.0

4 Empirical Error Modeling for Improved Noise-Aware Training

method is additionally presented in Section 4.6.5.

Abstract

Despite recent advances, standard sequence labeling systems often fail when
processing noisy user-generated text or consuming the output of an OCR process.
In this chapter, the confusion matrix-based noise model used in the original
NAT method is replaced by an empirical error generation approach that employs
a sequence-to-sequence model trained to perform translation from error-free to
erroneous text. Using an OCR engine, a large parallel text corpus is generated for
training and several real-world noisy sequence labeling benchmarks are produced
for evaluation. Moreover, to overcome the data sparsity problem that exacerbates
in the case of imperfect textual input, noisy language model-based embeddings
are additionally integrated into the NAT framework. The presented approach
outperformed the baseline noise generation and error correction techniques on the
erroneous sequence labeling data sets.

4.1 Introduction

Deep learning models have already surpassed human-level performance in many
NLP tasks (Devlin et al., 2019; Z. Zhang et al., 2019).4 Sequence labeling systems
have also reached extremely high accuracy (Akbik, Bergmann, and Vollgraf, 2019;
Heinzerling and Strube, 2019). Still, NLP models often fail in scenarios, where
nonstandard text is given as input (Belinkov and Bisk, 2018; Heigold et al., 2018).

NLP systems are predominantly trained on error-free input but are also em-
ployed to process user-generated text (Baldwin et al., 2013; Derczynski et al.,
2013) or consume the output of prior OCR and ASR processes (Miller et al.,
2000). Both misrecognized and mistyped text pose a challenge for the standard
models trained using error-free data (see Section 3.6.1). It is worth noting that
the errors occurring in any upstream component of an NLP system deteriorate the
accuracy of the target downstream task, diminishing the performance of the whole
IE system (Alex and Burns, 2014).

This chapter is primarily focused on the problem of performing sequence labeling
on the text produced by an OCR engine. Moreover, the transferability of the
methods learned to model OCR noise to the distribution of the human-generated
4 GLUE benchmark (A. Wang et al., 2018): https://gluebenchmark.com/leaderboard

72

https://gluebenchmark.com/leaderboard

4.1 Introduction

Training
Loss

Sailing is a passion. Sailing 1s o passion. Sequence-to-
Sequence Model

Figure 4.1: The proposed modification of the NAT method (green boxes). Firstly, the
confusion matrix-based noise model is replaced with a learnable sequence-to-
sequence error generator. Secondly, the FLAIR embeddings (Akbik et al.,
2018) are retrained using noisy text to improve the accuracy of noisy neural
sequence labeling. Γ is a process that induces noise to the input x producing
erroneous x̃. E(x) is an embedding matrix. F (x) is a sequence labeling
system. e(x) and e(x̃) are the embeddings of x and x̃, respectively. y(x) and
y(x̃) are the outputs of the system for x and x̃, respectively.

errors is also investigated. Different from the method described in Chapter 3, this
chapter presents an improved empirical error generation approach that imitates
real-world OCR error patterns during the training of a NAT model more precisely.
The underlying assumption is that fidelity to real-world noise distribution should
enhance the robustness of the noisy neural sequence labeling process beyond the
improvements achieved by the baseline NAT approach.

In conclusion, this chapter makes the following contributions (Figure 4.1):

• Firstly, a targeted noise generation method for OCR is proposed. It
employs a sequence-to-sequence model trained to translate from error-free
to erroneous text (Section 4.4.1). The presented approach improves the
accuracy of noisy neural sequence labeling compared to the standard NAT
method (Section 4.6.1).

• Secondly, an unsupervised parallel training data generation method, which
directly utilizes an OCR engine, is presented (Section 4.4.2). Similarly, real-
istic noisy versions of popular sequence labeling data sets can be synthesized
for evaluation (Section 4.5.6), mitigating the data scarcity problem.

• Thirdly, to overcome the data sparsity problem, the erroneous text is used to
perform noisy language modeling (NLM) (Section 4.4.5). The proposed NLM
embeddings further improve the accuracy of noisy neural sequence labeling,
also in the case of human-generated errors (Sections 4.6.3 and 4.6.4).

73

4 Empirical Error Modeling for Improved Noise-Aware Training

4.2 Related Work

In this section, a brief review of related approaches in the field of text correction
is presented. Please refer to Section 3.6 for a thorough overview of other methods
for improving robustness to nonstandard input.

4.2.1 Spelling and OCR Postcorrection

The most widely used method of handling noisy text is to apply error correction
on the input produced by human writers (spelling correction) or the output of an
upstream OCR component (OCR postcorrection).

Noisy channel modeling is one of the most widely studied correction techniques
(Brill and Moore, 2000; Duan and Hsu, 2011; Kemighan et al., 1990; Kolak and
Resnik, 2002, 2005; Toutanova and Moore, 2002). A popular alternative is to
detect the erroneous tokens, generate plausible correction candidates, and rank
them in order of correctness (Fivez et al., 2017; Flor et al., 2019).

Another extensively used approach is to adapt machine translation-based meth-
ods to the text correction task (Afli et al., 2016; Schmaltz et al., 2017). For
instance, Schnober et al. (2016) apply monotone sequence-to-sequence modeling to
this task. Moreover, Hämäläinen and Hengchen (2019) proposed Natas — an OCR
postcorrection technique that uses a character-level NMT method. They extracted
parallel training data using embeddings learned from the erroneous text and used
it as input to their translation model. Other related postcorrection techniques
include voting algorithms that align results from multiple OCR engines (Al Azawi
et al., 2015; Lund et al., 2011; Wemhoener et al., 2013) and hybrid systems (Schulz
and Kuhn, 2017).

This thesis proposes a different approach that attempts to make the neural
models robust without relying on prior error correction, which, in the case of OCR
errors, is still far from being solved (Chiron et al., 2017; Rigaud et al., 2019).

4.2.2 Grammatical Error Correction

Grammatical error correction (GEC) (Bryant et al., 2019; Ng et al., 2014, 2013)
aims to automatically correct ungrammatical text. This task is not limited to
typographical errors but also includes cases that involve longer dependencies such
as errors in subject-verb agreement. GEC can be approached as a translation from
an ungrammatical to a grammatical language, which enabled NMT sequence-to-
sequence models to be applied to this task (Yuan and Briscoe, 2016). However,

74

4.3 Problem Definition and Motivation

due to the limited size of human-annotated GEC corpora, NMT models could not
be trained effectively (Lichtarge et al., 2019), though.

Artificial Error Generation

Several studies investigated generating realistic erroneous sentences from gram-
matically correct text to boost training data (Choe et al., 2019; Grundkiewicz
et al., 2019; Kasewa et al., 2018; Qiu and Park, 2019). Inspired by backtranslation
(Edunov et al., 2018; Sennrich et al., 2016), artificial error generation (AEG)
approaches (Rei et al., 2017; Z. Xie et al., 2018) train an intermediate model in
reverse order — to translate correct sentences into the erroneous ones.

Following AEG approaches, a large corpus of clean and noisy sentences is
generated for the training of the sequence-to-sequence models employed in this
work. As a result, the proposed method produces rich and diverse errors resembling
the natural noise distribution (see Sections 4.3.3 and 4.4.2).

4.3 Problem Definition and Motivation

4.3.1 Noisy Neural Sequence Labeling

As pointed out in Sections 3.1 and 4.1, the standard NLP systems are generally
trained using error-free textual input, which causes a discrepancy between the
training and the test conditions. These systems are thus more susceptible to
nonstandard, corrupted, or adversarial input.

To model this phenomenon, in Section 3.2.2, the noisy neural sequence labeling
problem was formulated. It assumes that every input sentence might be subjected
to some unknown token-level noising process Γ = P (x̃i|xi), where xi is the original
i-th token and x̃i is its distorted equivalent. As a solution, the NAT framework
was proposed (Section 3.3). It trains the sequence labeling model using auxiliary
objectives that exploit both the original sentences and their copies corrupted using
a noising process that imitates the naturally occurring errors.

4.3.2 Confusion Matrix-Based Error Model

In Section 3.3.1, a confusion matrix-based method was used to model insertions,
deletions, and substitutions of characters. Given a corpus of paired noisy and
manually corrected sentences P , the natural error distribution was estimated

75

4 Empirical Error Modeling for Improved Noise-Aware Training

by calculating the alignments between the pairs (x̃, x) ∈ P of noisy and clean
sentences using the Levenshtein distance metric (Levenshtein, 1966).

Moreover, as P is usually laborious to obtain, a vanilla error model was also
defined and employed to induce noise into error-free sentences during the training
of the NAT-based models. This model assumes that all types of edit operations
are equally likely (see Equation (3.1)).

4.3.3 Realistic Empirical Error Modeling

In Section 3.5.3, the NAT models that use the vanilla and the empirically estimated
confusion matrix-based error models were compared and no advantage of exploiting
the test-time error distribution during training was observed. But would we make
the same observation given a more realistic error model?

Even though the methods that use randomized error patterns were often
successful (Section 3.6.2), leveraging the empirical noise distribution for training
should be beneficial, providing additional accuracy improvements. The data
produced by the naïve noise generation methods may not resemble naturally
occurring errors, which could lead the downstream models to learn misleading
patterns.

10 20 30 40 50 60 70 80 90 100
Token error rate [%]

0

10

20

30

40

50

Nu
m

. o
f s

en
te

nc
es

 [%
] Digitized text

OCR-aware baseline model
The proposed method
Vanilla baseline error model

Figure 4.2: Distributions of the token error rates of sentences produced by the baseline
confusion matrix-based error models and the method proposed in this
chapter. For comparison, the distribution of error rates in the text that
contains naturally occurring errors is also included. Each value n on the
x-axis is the percentage of sentences with a token error rate in [n− 10, n).

Figure 4.2 compares the distributions of error rates of sentences produced by
the method proposed in this chapter with the confusion matrix-based noise models

76

4.3 Problem Definition and Motivation

introduced in Section 3.3.1. For comparison, the distribution of error rates in the
noisy text that was used to estimate both empirical error models is also included.
It can be seen that the distribution of naturally occurring errors follows Zipf’s
law, while the baseline confusion matrix-based noise models produce bell-shaped
curves. Interestingly, both the vanilla and the empirical baselines exhibit similar
characteristics, which could explain the observations that were made based on the
results of the experiment in Section 3.5.3.

In practice, the error rate is not uniform throughout the text. Some passages are
recognized perfectly, while others can barely be deciphered. The objective of this
chapter is thus to develop a noise model that produces a smoother distribution,
imitating the errors encountered at test time more precisely (see The proposed
method in Figure 4.2).

Moreover, although the exact noise distribution in the test data cannot always
be known beforehand, the noising process, e.g., an OCR engine, used to provide
the input for the downstream task, can often be identified. One could thus take
advantage of such prior knowledge to improve the efficiency of the complete IE
system that is employed to process noisy input data.

4.3.4 Data Sparsity of Natural Language

Embeddings are real-valued vectors that are typically used to represent text
passages (words, sentences, paragraphs) in many recent NLP systems (Mikolov,
Sutskever, et al., 2013; Pennington et al., 2014). They capture syntactic and
semantic textual features that can be exploited to solve higher-level language tasks.
Embeddings that are pretrained on a large corpus of mono- or multilingual text
became ubiquitous (Akbik et al., 2018; Devlin et al., 2019; Peters et al., 2018).

Embeddings are generally trained using corpora that contain error-free text.
Due to the data sparsity problem that arises from the large vocabulary sizes
and the exponential number of feasible contexts, the majority of possible word
sequences do not appear in the input data. Even though increasing the size of the
training corpora was shown to improve the performance of language processing
tasks (Brown et al., 2020), most of the misrecognized or mistyped tokens would
still be unobserved and therefore poorly modeled when using the error-free text
only. Therefore, in this chapter, we also seek the answer to the following question:
Would it be beneficial to pretrain the embeddings on data that includes realistic
erroneous sentences?

77

4 Empirical Error Modeling for Improved Noise-Aware Training

4.3.5 The Issues of Error Correction Methods

Furthermore, we can assume that the correction methods, although widely adopted,
can only reliably manage moderately perturbed text (Flor et al., 2019). In
particular, OCR postcorrection has been reported to be very challenging in the
case of historical books that exhibit high OCR error rates (Chiron et al., 2017;
Rigaud et al., 2019).

Note that the correction methods have no information about the downstream
task to be performed. Moreover, in the automatic correction setting, they only
provide the best guess for each token. Comparing their performance with the NAT
approach in the context of sequence labeling would be thus informative.

4.4 Proposed Empirical Error Modeling Method

Figure 4.1 summarizes the modifications of the NAT framework presented in this
chapter. Specifically, the following improvements were introduced:

• Firstly, the confusion matrix-based noising process was replaced with a
noise induction method that generates a more realistic error distribution
(Sections 4.4.1 to 4.4.4).

• Secondly, to overcome the data sparsity problem discussed in Section 4.3.4,
the language model-based embeddings were trained using digitized text
(Section 4.4.5) and used as a substitution for the pretrained model proposed
in Akbik et al. (2018).

4.4.1 Sequence-to-Sequence Error Generator

Motivated by the AEG approaches (Rei et al., 2017; Z. Xie et al., 2018), a
learnable error generation method is proposed in this section. This method
employs a character-level, sequence-to-sequence model to perform monotone string
translation (Schnober et al., 2016). It directly models the conditional probability
p(x̃|x) of mapping error-free text x into erroneous text x̃ using an attention-based
encoder-decoder framework (Bahdanau et al., 2015). The encoder computes the
representation h = {h1, . . . , hn} of x, where n is the length of x. The decoder
generates x̃ one token at a time:

p(x̃|x) =
∏n

i=1
p(x̃i|x̃<i, x, c), (4.1)

c = fattn({h1, . . . , hn}), (4.2)

78

4.4 Proposed Empirical Error Modeling Method

where c is a vector generated from h, and fattn is an attention function. The
employed sequence-to-sequence models are trained to maximize the likelihood of
the training data. At inference time, the subsequent tokens are sampled from the
learned conditional language model.

Moreover, note that the presented approach reverses the standard sequence-to-
sequence error correction pipeline, which uses the erroneous text as input and
trains the model to produce the corresponding error-free string (Figure 4.3). By
interchanging the input and the output data, sentence correction models can also
be readily trained. One difference is that, at inference time, it would be preferred
to perform a beam search and select the best decoding result rather than sampling
subsequent characters from the learned distribution.

Error-Free
Sentence

Erroneous
Sentence

Sequence-to-
Sequence
Model

Figure 4.3: Schematic visualization of the error generation (blue arrows) and the error
correction (green arrows) methods. The parallel data can be utilized to train
sequence-to-sequence models for both tasks.

4.4.2 Unsupervised Parallel Data Generation

To train the error generation model introduced in Section 4.4.1, a large parallel
corpus P of error-free and erroneous sentences is required. AEG approaches
use seed GEC corpora to learn the inverse models directly. Unfortunately, a
comparably large resource for the digitized text that could be used for this task,
can hardly be found.

To address this issue, an unsupervised sentence-level parallel data generation
approach for OCR is proposed (Figure 4.4). The proposed method assumes that
a large seed corpus T that contains the error-free text and a set of fonts F have
been collected. Each sentence from the corpus T is first rendered as an image
and then subsequently recognized using an OCR engine. Moreover, to increase
the variation in training data, different fonts are sampled from F and used for
rendering. Furthermore, to simulate an imperfect image acquisition process and
the degradation of the printed material, both geometrical distortions and pixel-
level noise are induced to the images before recognition. Table 4.1 presents
examples of a sentence rendered using different noising settings. When induced

79

4 Empirical Error Modeling for Improved Noise-Aware Training

simultaneously, geometrical distortions and pixel-level noise pose the greatest
challenge to the subsequent OCR process.

Note that the presented approach is universal and could be used to generate
parallel data sets for other tasks, e.g., an ASR system could be trained on samples
from a text-to-speech engine (D. Wang et al., 2018).

Text
Renderer OCR

Rendered Text
Images

Noisy and Clean
Sentence Pairs

Error-free
Sentences

Figure 4.4: The proposed parallel data generation method for OCR. The sentences
extracted from a text corpus are rendered as images. Subsequently, an OCR
engine recognizes the text depicted in the rendered images. Finally, the pairs
of original and recognized sentences are gathered to form a parallel corpus
used to train translation models for error generation and correction.

Table 4.1: Examples of a sentence rendered using different noising settings employed in
the parallel data generation method (Section 4.4.2). Geometrical distortions
(the 3rd and 4th row) and pixel-level noise (the 2nd and 4th row) were induced
to the original image (the 1st row).

Rendered Sentence Geom.
Distort.

Pixel-Level
Noise

7 7

7 3

3 7

3 3

4.4.3 Sentence- and Token-Level Error Modeling

Note that the sequence labeling problem is formulated at the token level, i.e., each
token has a class label assigned to it (Section 3.2.1). To employ the method

80

4.4 Proposed Empirical Error Modeling Method

proposed in Section 4.4.1 in this scenario: (1) the sentence-level and (2) the
token-level variant of the error generator are further developed.

Sentence-Level Error Generator

The sentence-level error generator uses a sequence-to-sequence model trained
to translate from error-free to erroneous sentences. It can potentially utilize
contextual information from surrounding tokens, which may improve the quality of
the results. During the training of a NAT model, a learned sequence-to-sequence
model translates the original input x to generate x̃. Subsequently, an alignment
algorithm introduced in Section 4.4.4 is used to transfer the token-level annotations
from x to x̃.

Token-Level Error Generator

The token-level error generator uses a sequence-to-sequence model trained to
translate from error-free to erroneous tokens. It relies exclusively on the input
and the output tokens and discards the context, which could potentially provide
relevant information for the generator, especially in the case of short words, e.g.,
prepositions or conjunctions. The alignment algorithm is used to build a training
set for this task, i.e., extract token-level parallel data from the corpus of parallel
sentences (Section 4.4.2). During the training of a NAT model, a learned generator
translates each token xi from x to produce the erroneous sentence x̃.

4.4.4 Token-Level Sentence Alignment

Figure 4.5 illustrates the alignment procedure that was developed to extract token-
level parallel training data for the token-level generator and to transfer the labels to
the erroneous sentences for the sentence-level generator in the sequence labeling
scenario. To this end, each pair of error-free and noisy sentences is aligned at
the token level using the Levenshtein distance algorithm (Levenshtein, 1966).
The proposed alignment procedure takes both the error-free and the erroneous
sentences as input and produces pairs of aligned tokens. The annotations for
tokens are transferred accordingly.

4.4.5 Noisy Language Modeling

Recently, Z. Xie et al. (2017) drew a connection between input noising in neural
network language models and smoothing in n-gram models. Data noising could be

81

4 Empirical Error Modeling for Improved Noise-Aware Training

¬ G o g l e i s a n i c e s e a r c h e n g i n e .o

. G o g i e 1 s a m i c e s e a r c h e n g i n e ¦o

i - - - s - -s - s - - - - - - - - - - - - - d-

('Google', '.Googie', PROPN), ('is', '1s', AUX), ('a', 'a', DET), ('nice', 'mice',
ADJ), ('search', 'search', NOUN), ('engine', 'engine', NOUN), ('.', '', PUNCT)

- -

AUXPROPN DET ADJ NOUNNOUN PUNCT

Figure 4.5: The proposed sentence alignment procedure. The original and the recognized
sentences (x and x̃, respectively) are aligned using the sequence of edit
operations a, which includes insertions i, deletions d, and substitutions s of
characters. The symbols ’¬’ and ’¦’ are used as placeholders for the insertion
and the deletion operation, respectively. Matched characters are marked
with ’-’. The alignment procedure produces a list of paired error-free and
possibly erroneous tokens with class labels y (optional). The original sentence
used in this example was extracted from the UD English EWT data set
(Table B.5). Tokens are annotated with the corresponding part of speech.

an effective technique for regularizing neural language models that would help to
overcome the data sparsity problem of imperfect natural language text and enable
learning meaningful representation of erroneous tokens.

To this end, the proposed method includes the data from noisy sources in the
corpora used to train language model-based embeddings. Specifically, a noisy
language model is learned using the output of an OCR engine (Section 4.4.2) that
captures the characteristics of OCR errors. Any other noisy source could be readily
used to model related domains, e.g., ASR transcripts or ungrammatical text.

The NLM embeddings are used as a replacement for the FLAIR embeddings
introduced by Akbik et al. (2018). Similarly, transformer-based language models
could also be employed. Compared to the work of Piktus et al. (2019), language
model-based embeddings assign each token a representation based on its context
and are thereby better suited to the task of modeling noisy sentences.

4.5 Experimental Setup

In this section, the employed experimental setup is thoroughly described to
facilitate reproducibility of the experimental evaluation presented in Section 4.6.

82

4.5 Experimental Setup

4.5.1 Sequence-to-Sequence Error Generation and Correction

Hyperparameters

To learn the error generation and error correction models (Section 4.4.1), the
OpenNMT toolkit5 (Klein et al., 2017) is utilized in this work. Table A.4 in
the appendix lists all nondefault hyperparameters that were employed to train
the sequence-to-sequence models used in the experiments. Moreover, it is worth
noting that the learning rate was decayed eight times during the training for all
sequence-to-sequence models. Furthermore, the copy attention (See et al., 2017)
and the global attention (Luong et al., 2015) functions were employed as fattn
used in Equation (4.2) in the case of the error generation and the error correction
models, respectively.

Sentence Encoding-Decoding Schema

The OpenNMT toolkit was primarily designed to process data tokenized at the
word level. To adapt it to the character-level input, a sentence encoding-decoding
process depicted in Figure 4.6 was employed. Specifically, the input sentence is
first encoded at the character level before feeding it into the sequence-to-sequence
model. Subsequently, the output produced by the sequence-to-sequence model is
decoded back to the original form.

Sailing is a passion. S a i l i n g ¬ i s ¬ a ¬ p a s s i o n .

S a i l i n g ¬ 1 s ¬ o ¬ p a s s i o n .Sailing 1s o passion.

Seq2Seq Model
Encoding

Decoding

Figure 4.6: Sentence encoding-decoding schema. The whitespace characters are first
replaced with a placeholder symbol ’¬’. The sentences are tokenized at
the character level by adding whitespace between every pair of characters.
Decoding reverses this process.

Validation Accuracy and Learnable Parameters

Table 4.2 summarizes the validation accuracy of the sequence-to-sequence models
for error generation. The sentence-level models were trained for 1.6× 104 and the
token-level models for 4× 105 iterations or at least one epoch of training.
5 https://github.com/OpenNMT/OpenNMT-py

83

https://github.com/OpenNMT/OpenNMT-py

4 Empirical Error Modeling for Improved Noise-Aware Training

Moreover, the token-level error correction model employed by Natas was trained
for one epoch (about 4 × 105 iterations) on one million parallel sentences and
achieved 96.9% accuracy on the validation set of 5,000 sentences. Furthermore, all
sequence-to-sequence models for error generation and correction employed in the
experiments have about 7.7 million parameters.

Table 4.2: Validation accuracy of the sequence-to-sequence models for error generation.
Both the token-level and the sentence-level variants were trained. The first
and the second column shows the number of parallel sentences used for
training and validation, respectively.

Training Set Size Validation Set Size
Validation Accuracy

Token-Level Sentence-Level

107 5,000 98.3% 95.7%
106 5,000 95.4% 94.9%
105 5,000 95.1% 95.3%
104 1,000 94.6% 90.1%
103 100 93.3% 91.6%

4.5.2 Unsupervised Parallel Data Generation

Following the approach introduced in Section 4.4.2, a large parallel corpus P was
generated to train the error generation and correction models. Firstly, ten million
sentences, which accounts for about 253 million words, were sampled from the
English part of the 1 Billion Word Language Model Benchmark6 and used as
the source of error-free text, i.e., the seed corpus T . Each sentence from T was
rendered as an image using the Text Recognition Data Generator package7. More-
over, 90 different fonts were collected as F and used for rendering. Furthermore,
random distortions were induced to the rendered images. Subsequently, OCR was
performed on each image of text using a Python wrapper8 for Tesseract OCR9

(Smith, 2007).
Finally, the pairs of error-free and erroneous sentences were gathered to form

the parallel corpus P . Note that, to be consistent with the tokenization rules
applied in the FLAIR framework (Akbik, Bergmann, Blythe, et al., 2019), segtok10

6 https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
7 https://pypi.org/project/trdg
8 https://github.com/sirfz/tesserocr
9 Tesseract v4.0 was used to generate the parallel data set P.

10 https://github.com/fnl/segtok

84

https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
https://pypi.org/project/trdg
https://github.com/sirfz/tesserocr
https://github.com/fnl/segtok

4.5 Experimental Setup

was used to tokenize the error-free sentences prior to the alignment procedure
(Section 4.4.4).

The generated parallel data corpus P was used to train both the sentence-level
and the token-level error generation models (Section 4.4.3). For error correction,
only the context-free models were trained, as the applied OCR postcorrection
method could only be performed at the token level.

4.5.3 Noisy Language Modeling

FLAIR (Akbik et al., 2018) learns a bidirectional language model to represent
sequences of characters. To train the NLM embeddings proposed in this work
(Section 4.4.5), the target side of the parallel corpus P was employed to retrain
FLAIR embeddings on the noisy digitized text. The hyperparameters used to train
the language model were consistent with prior work of Akbik et al. (2018).11

4.5.4 Sequence Labeling

Training Setup

The NAT framework12 (Figure 4.1) was employed to study the robustness of
sequence labeling systems. Following Akbik et al. (2018), a combination of FLAIR
and GloVe embeddings was used in all experiments.13 The data augmentation and
the stability training objectives (Laugm and Lstabil, respectively) were employed
with default weights (α = 1.0). Consistent with the experimental setup used in
Section 3.4, erroneous sentences x̃ were generated dynamically in every epoch.

Evaluation Setup

The evaluation pipeline is shown in Figure 4.7. Following Akbik et al. (2018),
the entity-level micro-average F1 score and the per token accuracy is used as the
evaluation metrics for NER and POST, respectively.

Learnable Parameters

The number of parameters of the sequence labeling models is constant across
different variants, as the same architecture is used in all experiments. The number
11 Note that they also used the 1 Billion Word corpus for pretraining.
12 https://github.com/mnamysl/nat-acl2020
13 Other hyperparameters also follow Akbik et al. (2018).

85

https://github.com/mnamysl/nat-acl2020

4 Empirical Error Modeling for Improved Noise-Aware Training

Figure 4.7: Evaluation pipeline. Γ is a noising process that transforms x into x̃. C(x) is
an optional text correction module that returns x̃′ (x̃′ = x̃, if C(x) is absent).
E(x) is an embedding matrix. F (x) is a sequence labeling system. e(x̃′) and
y(x̃′) are the embeddings and the output of the system for x̃′, respectively.

of all parameters is 60.3 million (including embeddings that were fixed during the
training), and the number of all trainable parameters is 25.5 million.

Computing Architecture and Average Runtime

The training and the evaluation were performed on a workstation equipped with
an Intel Xeon CPU with ten cores and an Nvidia Quadro RTX 6000 graphics
card with 24 gigabytes of memory. The evaluation of the complete test set took
seven and ten seconds on average in the case of the UD English EWT and the
English CoNLL 2003 data set, respectively. The runtime did not depend on the
training method that was used. Nevertheless, when the correction method was
employed, the runtime was significantly lengthened, e.g., it took almost three
minutes to evaluate a model that employed the Natas correction method on the
English CoNLL 2003 data set.

4.5.5 Tasks and Data Sets

The NER and POST tasks were used to examine the sequence labeling models.
NER aims to locate all named entities mentioned in the input text and classify
them into predefined classes, e.g., person names, locations, and organizations.
POST is the process of tagging each token in the text with the corresponding
part of speech.

For NER, the English CoNLL 2003 data set (Tjong Kim Sang and De Meulder,
2003)14 was employed. To evaluate POST, the Universal Dependency Treebank
(UD English EWT; Silveira et al., 2014)15 was used. The detailed statistics of the
aforementioned data sets are presented in Tables B.1a and B.5 in the appendix.
14 https://www.clips.uantwerpen.be/conll2003/ner
15 https://universaldependencies.org/treebanks/en_ewt (version 2.6)

86

https://www.clips.uantwerpen.be/conll2003/ner
https://universaldependencies.org/treebanks/en_ewt

4.5 Experimental Setup

4.5.6 Noisy Benchmarks

Data Scarcity Problem

Unfortunately, there is no publicly available noisy sequence labeling data set that
could be used as a benchmark to compare the accuracy of different methods for
improving robustness. Such a data set should be preferably generated using a real-
istic noising process to precisely imitate the real-world conditions. Many previous
approaches employed synthetic noise patterns for evaluation (Heigold et al., 2018)
or randomly sampled errors from the lookup tables of possible lexical replacements
(Belinkov and Bisk, 2018). However, these methods cannot accurately reflect the
real-world input to be encountered at test time (Section 4.3.3).

OCR Noise

To perform a realistic evaluation, several noisy versions of the original sequence
labeling data sets were generated. The sentences were extracted from each
original benchmark and, subsequently, the procedure described in Section 4.4.2 was
applied.16 Furthermore, the token-level annotations were transferred as described
in Section 4.4.4. Finally, as a result, the data in the CoNLL format was produced.
Table 4.3 shows an excerpt from a noisy sequence labeling data set generated for
evaluation.

Table 4.3: An example of a sentence from the noisy English CoNLL 2003 data set.
The first and the second column contain the noisy and the error-free tokens,
respectively. The third column denotes the class label in BIO format, where
the Beginning-, Inside-, and Outside-of-entity subtags are distinguished.

Noisy Token Error-Free Token Class Label

No No O
nzw new O
fixtuvzs fixtures O
reported reported O
from from O
New New B-LOC
Vork York I-LOC
. . O

16 Both Tesseract v3.04 and v4.0 were applied. Note that different sets of distortions and image
backgrounds were used than those employed to generate parallel training data.

87

4 Empirical Error Modeling for Improved Noise-Aware Training

Human-Generated Errors

Moreover, to evaluate the transferability of error generators, the experimental
setup employed in Section 3.4.4 was used, i.e., the misspellings were synthetically
induced into the error-free data sets. To this end, the lookup tables of possible
lexical replacements released by Belinkov and Bisk (2018) and Piktus et al. (2019)
were used.17

Summary of Noisy Benchmarks

As a result, each noisy data set exhibits a different level of difficulty for the methods
examined in the experiments. In summary, the following noisy versions of both
original data sets were additionally generated for evaluation (Table 4.4):

• Tesseract 3♣ - generated using a less accurate Tesseract 3.04 OCR engine
on undistorted images with a clean background.

• Tesseract 4♢ - generated using the Tesseract 4.0 OCR engine on distorted
images with a noisy background.

• Tesseract 4♡ - generated using the Tesseract 4.0 OCR engine on distorted
images with a clean background.

• Tesseract 4♠ - generated using the Tesseract 4.0 OCR engine on undistorted
images with a noisy background.

• Typos - generated by applying an out-of-domain distribution of human-
generated errors.

Table 4.4: The noisy sequence labeling data sets that were generated either by applying
OCR on rendered sentences from an original benchmark (first four rows) or
by inducing misspellings (last row). Multiple variants of the former data
sets were generated by combining geometrical distortions and pixel-level noise
induction. The last two columns present the token error rates (the column
headers indicate the name of the original benchmark).

Data Set Geometrical
Distortions

Pixel-Level
Noise

English
CoNLL 2003

UD English
EWT

Tesseract 3♣ 7 7 22.72% 23.31%
Tesseract 4♢ 3 3 16.35% 22.12%
Tesseract 4♡ 3 7 14.89% 20.38%
Tesseract 4♠ 7 3 3.53% 5.83%
Typos n/a n/a 15.53% 15.22%

17 Both sets were merged and used to induce typos into the original data (see Section 4.6.4).

88

4.6 Experimental Results

4.5.7 Error Generation Baselines

The proposed token-level and sentence-level error generators were compared with
the OCR-aware confusion matrix-based noise model described in Section 4.3.2
(marked as Baseline in Tables 4.5, 4.6, 4.9 and 4.10). For a fair comparison,
the noisy part of the parallel corpus P was used to estimate the confusion
matrix employed by this baseline. Moreover, in the experiments that involved
the proposed NLM embeddings, the vanilla error model described in Section 3.3.1
(marked as Vanilla in Tables 4.9 and 4.10b) was also used.

4.5.8 Error Correction Baselines

In this scenario, the sequence labeling models were trained using the standard
objective L0. Subsequently, a text correction method was applied to the erroneous
input before feeding it into the sequence labeling model (see Figure 4.7). Two error
correction methods were examined: Hunspell18, a widely adopted spell checker,
and Natas19 (Hämäläinen and Hengchen, 2019), a sequence-to-sequence OCR
postcorrection method. The latter model was trained to correct OCR errors
in 18th-century documents, thus it could not be used directly. Therefore, the
context-free error correction models compatible with Natas were retrained using
the parallel corpus P (Section 4.5.1). Following the authors, the default ONMT
hyperparameters were employed, except that a BRNN was used as the encoder.

4.6 Experimental Results

4.6.1 Empirical Noise Generation Approaches

In this experiment, the NAT models that employed either the proposed sequence-
to-sequence error generators (Section 4.4.3) or the baseline confusion matrix-based
noise model (Section 4.3.2) were compared. In this evaluation scenario, the C(x)
module is omitted (Figure 4.7).

Tables 4.5 and 4.6 present the results of this experiment. The proposed
error generators consistently outperformed the OCR-aware confusion matrix-based
model on the noisy benchmarks generated using the Tesseract 4.0 engine. Note
that Tesseract 4.0 was used to produce the parallel corpus P , which was employed
to estimate the confusion matrix used by the baseline noise model and to train
18 https://hunspell.github.io
19 https://github.com/mikahama/natas

89

https://hunspell.github.io
https://github.com/mikahama/natas

4 Empirical Error Modeling for Improved Noise-Aware Training

the sequence-to-sequence error generators. On the other hand, the advantage of
the proposed method over the baseline approach was less emphasized in the case
of the noisy data sets generated using the Tesseract 3.04 engine.

Table 4.5: Comparison of error generation approaches on the original and noisy English
CoNLL 2003 test sets (Section 4.6.1). Four noisy variants of the original
benchmark were used: Tesseract 3♣, Tesseract 4♢, Tesseract 4♡, Tesseract
4♠ (Table 4.4). Mean and standard deviation F1 scores over five runs with
different random initialization are reported. The Noise Model column corre-
sponds to the noise generator used at training time: the Baseline OCR-aware
confusion matrix-based noise model (Section 4.3.2) or the Sentence-Level* and
Token-Level* sequence-to-sequence error generators (Section 4.4.3). Bold
values indicate top results (within the models trained using the same objective)
that are statistically inseparable (Welch’s t-test; p < 0.05).

(a) Data Augmentation Training Objective (Laugm)

Noise Model Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠

Baseline 92.56±0.06 85.29±0.16 88.62±0.08 89.19±0.12 92.04±0.07
Token-Level* 92.76±0.07 85.38±0.16 89.39±0.17 89.99±0.22 92.37±0.10
Sentence-Level* 92.81±0.11 84.38±0.15 88.96±0.18 89.67±0.26 92.44±0.17

(b) Stability Training Objective (Lstabil)

Noise Model Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠

Baseline 92.23±0.12 84.49±0.10 87.58±0.13 88.40±0.20 91.65±0.14
Token-Level* 92.24±0.18 84.25±0.23 88.24±0.25 88.91±0.21 91.86±0.16
Sentence-Level* 92.45±0.12 83.89±0.30 88.14±0.23 88.88±0.11 91.99±0.11

Comparing the results obtained by both variants of the proposed sequence-
to-sequence error generator (Section 4.4.3), the token-level translation method
performed better than the sentence-level variant, while the latter was more efficient
when the error rate of the input was lower (see the original data and the Tesseract
4♠ columns), although it often struggled with translating long sentences. Moreover,
data augmentation generally outperformed stability training, which is consistent
with the results obtained in Section 3.5.1.

Furthermore, we observe a slight decrease in accuracy on the original UD English
EWT data set with both auxiliary objectives. This could be caused by the different
proportions of the tokens that were perturbed during training by the proposed
sequence-to-sequence error generators (e.g., 18% and 19.5% in the case of the
token-level model for the English CoNLL 2003 and the UD English EWT data
set, respectively). The trade-off between accuracy for clean and noisy data has

90

4.6 Experimental Results

Table 4.6: Comparison of error generation approaches on the original and noisy UD
English EWT test sets (Section 4.6.1). Four noisy variants of the original
benchmark were used: Tesseract 3♣, Tesseract 4♢, Tesseract 4♡, Tesseract
4♠ (Table 4.4). Mean and standard deviation accuracies over five runs with
different random initialization are reported. The Noise Model column corre-
sponds to the noise generator used at training time: the Baseline OCR-aware
confusion matrix-based noise model (Section 4.3.2) or the Sentence-Level* and
Token-Level* sequence-to-sequence error generators (Section 4.4.3). Bold
values indicate top results (within the models trained using the same objective)
that are statistically inseparable (Welch’s t-test; p < 0.05).

(a) Data Augmentation Training Objective (Laugm)

Noise Model Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠

Baseline 96.90±0.06 91.35±0.13 92.12±0.14 92.99±0.21 96.17±0.07
Token-Level* 96.76±0.04 91.44±0.11 93.65±0.13 94.19±0.10 96.26±0.07
Sentence-Level* 96.78±0.06 90.92±0.08 93.37±0.08 94.10±0.03 96.27±0.03

(b) Stability Training Objective (Lstabil)

Noise Model Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠

Baseline 96.80±0.04 91.16±0.07 91.93±0.11 92.77±0.10 96.06±0.02
Token-Level* 96.65±0.07 91.36±0.12 93.34±0.09 93.97±0.05 96.14±0.07
Sentence-Level* 96.67±0.05 90.70±0.14 93.05±0.17 93.71±0.13 96.15±0.05

thus been shifted toward the latter. We can also notice a greater advantage of the
sequence-to-sequence error generation method over the baseline on the noisy UD
English EWT data sets than in the case of the English CoNLL 2003 benchmark.

4.6.2 Error Generation vs. Error Correction

This experiment compares the NAT approach with the baseline error correction
methods applied to the input text prior to feeding it into the sequence labeling
model (see C(x) in Figure 4.7). Table 4.7 presents the results of this experiment.

Preliminary analysis revealed that these baselines underperformed on both the
original and the noisy data sets due to the overcorrection problem. To make
them more competitive, their default dictionaries were extended by adding all
tokens from the corresponding test sets for evaluation. Although the vocabulary
of a test set could rarely be entirely determined, this setting would simulate
a scenario where accurate, in-domain vocabularies could be exploited by the
correction methods.

91

4 Empirical Error Modeling for Improved Noise-Aware Training

Table 4.7: Comparison of error correction approaches on the original and noisy English
CoNLL 2003 and UD English EWT test sets (Section 4.6.2). Four noisy
variants for each original data set were used: Tesseract 3♣, Tesseract 4♢,
Tesseract 4♡, Tesseract 4♠ (Table 4.4). Mean and standard deviation F1

scores (English CoNLL 2003) and accuracies (UD English EWT) over five
runs with different random initialization are reported. All models were
trained using the standard objective L0. The Correction Method column
corresponds to the correction approach executed before the target task
prediction: Hunspell or Natas. Bold values indicate top results that are
statistically inseparable (Welch’s t-test; p < 0.05).

(a) English CoNLL 2003 Test Set

Correction Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠Method

— 92.54±0.08 80.48±0.09 84.71±0.19 85.62±0.08 91.50±0.08
Hunspell 92.54±0.08 82.17±0.11 85.80±0.11 86.70±0.07 91.73±0.11
Natas 92.54±0.08 77.80±0.19 84.50±0.11 85.24±0.10 91.33±0.13

(b) UD English EWT Test Set

Correction Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠Method
— 96.96±0.04 86.75±0.16 86.97±0.14 88.30±0.16 94.34±0.07
Hunspell 96.96±0.04 87.53±0.14 86.74±0.14 88.12±0.16 94.49±0.08
Natas 96.96±0.04 88.98±0.10 88.94±0.14 89.68±0.16 95.11±0.08

A direct comparison of the results obtained by the error correction methods
(Table 4.7) with the scores of the error generation methods presented in Tables 4.5
and 4.6 reveals that, although more general, error correction techniques were
outperformed by the NAT approach regardless of the noising method used. This
can be attributed to the fact that the correction methods have no information
about the downstream task to be performed. In contrast, the NAT method
is directly integrated into the training process of the downstream task, which
provides more information to be exploited to solve this task more efficiently and
results in higher overall accuracy.

The comparison between the examined correction methods showed that, surpris-
ingly, Hunspell performed better than Natas on the English CoNLL 2003 data set.
To better understand this finding, a thorough inspection of the results of both
methods was carried out. Table 4.8 presents the error rates and the correction
accuracies of the Natas and Hunspell methods calculated on the test sets of both
noisy sequence labeling benchmarks.

92

4.6 Experimental Results

Table 4.8: Token Error Rates (TER) and the correction accuracies (ACC) of Natas and
Hunspell on the test sets of the noisy sequence labeling data sets. In the
case of the English CoNLL 2003 data set, the correction accuracies computed
exclusively on the entity tokens, marked as ACC (entities), are additionally
presented. All values are percentages. Bold values represent the lowest token
error rates and the highest accuracies.

(a) English CoNLL 2003

Metric Method Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠ Typos

TER
Original 22.72 16.35 14.89 3.53 15.53
Natas 17.24 12.20 11.13 2.34 11.53
Hunspell 17.44 13.54 12.24 2.43 10.69

TER
(entities)

Original 29.66 16.70 15.00 3.61 8.20
Natas 27.81 14.97 13.36 2.93 7.62
Hunspell 16.63 9.95 8.76 1.89 4.07

ACC Natas 24.13 25.40 25.24 33.70 25.75
Hunspell 23.26 17.19 17.76 31.20 31.17

ACC
(entities)

Natas 6.23 10.41 10.93 18.77 7.07
Hunspell 43.93 40.44 41.58 47.78 50.38

(b) UD English EWT

Metric Method Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠ Typos

TER
Original 23.31 22.12 20.38 5.83 15.22
Natas 17.76 17.46 16.23 4.21 11.68
Hunspell 19.14 19.74 18.09 4.75 11.22

ACC Natas 23.82 21.05 20.36 27.75 23.27
Hunspell 17.90 10.74 11.20 18.59 26.49

93

4 Empirical Error Modeling for Improved Noise-Aware Training

Although Natas achieved higher overall accuracy, it struggled with the correction
of tokens that were a part of named entities. This behavior could be an issue of
data-driven error correction methods, as the entities are relatively rare in written
text and are often out-of-vocabulary tokens (Alex and Burns, 2014).

To further verify the assumption about the cause of the inferior accuracy of
the downstream NER task in the case when the Natas method was used as
preprocessing, a set of unique entity tokens was additionally extracted from the
test set of the English CoNLL 2003 data set. As a result, 20% of these tokens were
not covered and 31% appeared at most three times in the data that was employed
to train the error correction model, which confirms the assumption formulated in
the previous paragraph.

4.6.3 Noisy Language Modeling

This experiment compares the accuracy of the NAT models with the vanilla noise
generator (Section 4.3.2) that employed either the pretrained FLAIR embeddings
or the proposed NLM embeddings (Sections 4.4.5 and 4.5.3). In this evaluation
scenario, the C(x) module is omitted (Figure 4.7).

Note that the noise model and the embeddings are two distinct components of
the NAT architecture (Γ and E(x) in Figure 4.1, respectively) and therefore they
could be easily used in combination with each other. However, in this work, the
NLM embeddings are not mixed with empirically estimated error models to avoid
the twofold empirical error modeling effect and the evaluation of this combination
is left to future work.

Table 4.9 summarizes the results of this experiment. The proposed NLM
embeddings significantly improved the accuracy across all training objectives, even
when the standard training objective for the sequence labeling task (L0) was
employed. Surprisingly, the evident improvements were also achieved for the noisy
data set generated using the Tesseract 3.04 engine, which confirms that the NLM
embeddings can effectively model the features of erroneous tokens from an out-of-
domain noise distribution.

On the other hand, the NLM embeddings slightly decreased the accuracy on
the original data for the standard training objective compared to the baseline
pretrained embeddings. This effect could be investigated in future work by
eliminating possible differences in the pretraining procedure and comparing the
NLM against a model trained on the original, error-free text corpus instead of
using the pretrained embeddings released by Akbik et al. (2018).

94

4.6 Experimental Results

Table 4.9: Comparison of the NAT models trained with and without the proposed NLM
embeddings (Section 4.6.3) on the original and noisy English CoNLL 2003
test sets. Four noisy variants of the original data set were used: Tesseract
3♣, Tesseract 4♢, Tesseract 4♡, Tesseract 4♠ (Table 4.4). Mean and standard
deviation F1 scores over five runs with different random initialization are
reported. The Noise Model column corresponds to the Baseline OCR-aware
or Vanilla confusion matrix-based error models (Section 3.3.1). The NLM
column indicates whether the model employed the NLM embeddings. Bold
values indicate top results (within the models trained using the same objective)
that are statistically inseparable (Welch’s t-test; p < 0.05).

(a) Standard Training Objective (L0)

Noise NLM Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠Model

n/a 7 92.54±0.08 80.48±0.09 84.71±0.19 85.62±0.08 91.50±0.08
n/a 3 92.09±0.07 83.83±0.21 88.17±0.12 88.71±0.17 91.68±0.09

(b) Data Augmentation Training Objective (Laugm)

Noise NLM Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠Model

Baseline 7 92.56±0.06 85.29±0.16 88.62±0.08 89.19±0.12 92.04±0.07
Vanilla 7 92.39±0.11 85.59±0.23 88.01±0.17 88.65±0.20 91.93±0.13
Vanilla 3 92.45±0.05 87.28±0.19 90.12±0.19 90.43±0.19 92.17±0.05

(c) Stability Training Objective (Lstabil)

Noise NLM Original Data Tesseract 3♣ Tesseract 4♢ Tesseract 4♡ Tesseract 4♠Model

Baseline 7 92.23±0.12 84.49±0.10 87.58±0.13 88.40±0.20 91.65±0.14
Vanilla 7 92.04±0.06 84.63±0.17 87.24±0.24 88.02±0.10 91.52±0.12
Vanilla 3 91.85±0.07 86.79±0.11 89.32±0.12 89.77±0.05 91.51±0.07

95

4 Empirical Error Modeling for Improved Noise-Aware Training

4.6.4 Human-Generated Errors

This experiment evaluates the utility of the proposed sequence-to-sequence error
generators learned to model OCR noise and the proposed NLM embeddings in
a scenario where the input contains human-generated errors. For evaluation, the
noisy data sets with synthetically induced misspellings were used (Section 4.5.6).
Moreover, the C(x) module is omitted in this scenario (Figure 4.7).

Table 4.10 summarizes the results of this experiment. The models that employ
the proposed NLM embeddings outperformed the baselines for all training objec-
tives. Moreover, the sequence-to-sequence error generation approach performed on
par with the OCR-aware confusion matrix-based models on the English CoNLL
2003 data set, while the latter achieved better accuracy on the UD English EWT
data set. Nevertheless, the sequence-to-sequence error generation method also
proved to be beneficial in this scenario, which would suggest that the errors made
by human writers and by the text recognition engines have common characteristics
that were successfully exploited by this method.

The observed difference in accuracy of the sequence-to-sequence error generator
could be caused by the discrepancy between the data distributions. Note that
although the data used in this experiment reflects the patterns of human-generated
errors, the distribution of these errors does not necessarily follow the natural
distribution of human-generated errors, as it was synthetically generated using
a fixed replacement probability that was uniform across all candidates.

Figure 4.8 presents the distribution of token error rates in relation to the
number of sentences in the noisy data sets. Note that the error distribution of the
noisy data sets generated using the unsupervised parallel data generation method
proposed in Section 4.4.2 is close to the Zipfian distribution. As the Typos data
set was generated by randomly sampling possible lexical replacement candidates
from the lookup tables, its distribution exhibits a bell-shaped curve pattern. This
observation suggests that the data sets generated using the proposed method are
better suited for the evaluation of the robustness of sequence labeling models than
the data generated by the prior, lookup table-based approaches.

4.6.5 Relationship with the Size of the Parallel Corpus

Empirical error generators are especially beneficial when we can approximate the
noise distribution to be encountered at test time. This experiment aims to answer
the question of how much parallel training data is required to train a solid sequence-
to-sequence error generation model.

96

4.6 Experimental Results

Table 4.10: Transferability of the error generators and the embeddings learned to model
OCR noise to the distribution of the human-generated errors (Section 4.6.4).
The evaluation was performed on the English CoNLL 2003 and the UD
English EWT test sets with synthetically induced typos. Mean and standard
deviation F1 scores (English CoNLL 2003) and accuracies (UD English
EWT) over five runs with different random initialization are reported. L0,
Laugm, Lstabil is the standard, the data augmentation, and the stability
objective, respectively. The Noise Model column corresponds to the error
model employed at training time: either the Sentence-Level* and Token-
Level* sequence-to-sequence error generators, or the Baseline OCR-aware
and Vanilla confusion matrix-based noise model (Section 3.3.1). The NLM
column indicates whether the model employed the NLM embeddings. Bold
values indicate top results (within the models trained using the same
objective) that are statistically inseparable (Welch’s t-test; p < 0.05).

(a) Empirical Error Generation Methods

Training Loss Noise Model English CoNLL
2003 with Typos

UD English EWT
with Typos

L0 n/a 88.79±0.07 90.54±0.11

Laugm
Baseline 90.82±0.12 93.63±0.11
Token-Level* 90.92±0.13 92.87±0.08
Sentence-Level* 90.77±0.19 92.68±0.09

Lstabil
Baseline 90.30±0.13 93.37±0.05
Token-Level* 90.19±0.12 92.79±0.08
Sentence-Level* 90.15±0.16 92.42±0.11

(b) The Impact of the NLM Embeddings

Training Loss Noise Model NLM English CoNLL 2003
with Typos

L0
n/a 7 88.79±0.07
n/a 3 89.60±0.24

Laugm
Baseline 7 90.82±0.12
Vanilla 7 90.77±0.14
Vanilla 3 91.10±0.05

Lstabil
Baseline 7 90.30±0.13
Vanilla 7 90.34±0.06
Vanilla 3 90.53±0.07

97

4 Empirical Error Modeling for Improved Noise-Aware Training

10 20 30 40 50 60 70 80 90 100
Token error rate [%]

0

20

40

60

80

Nu
m

. o
f s

en
te

nc
es

 [%
] Tesseract 3

Tesseract 4
Tesseract 4
Typos

(a) Noisy sentence labeling data sets (English CoNLL 2003)

10 20 30 40 50 60 70 80 90 100
Token error rate [%]

0

20

40

60

80

Nu
m

. o
f s

en
te

nc
es

 [%
] Tesseract 3

Tesseract 4
Tesseract 4
Typos

(b) Noisy sentence labeling data sets (UD English EWT)

Figure 4.8: Distributions of the token error rates of sentences in the noisy sequence
labeling data sets: Tesseract 3♣, Tesseract 4♢, Tesseract 4♠, and Typos
(Section 4.5.6). Each value n on the x-axis is the percentage of sentences
with a token error rate in [n− 10, n), e.g., the value of 50 corresponds to the
sentences with an error rate greater than 40 and lower than or equal to 50.

To this end, multiple NAT models that employ either the sequence-to-sequence
error generator or the vanilla confusion matrix-based noise model (Section 3.3.1)
were trained. The latter noise model does not need any training data and was used
as a noise-aware baseline. The original English CoNLL 2003 data set and its noisy
variants with OCR errors and human-generated typos were used for evaluation.
The amount of training data was incrementally increased to find the level above
which the empirical error models start to consistently outperform the baseline.

Figures 4.9 and 4.10 present the results of this experiment. The NAT mod-
els that employed the proposed sequence-to-sequence error generation approach
performed better than the models that used the baseline vanilla error model

98

4.6 Experimental Results

for all noisy benchmarks that were generated using the Tesseract 4.0 OCR
engine (Figure 4.9). The improvements were observed when as few as 1,000
parallel training sentences were used. Unexpectedly, the proposed method also
outperformed the baseline on the original data set (Figure 4.10).

On the contrary, the results in Figure 4.10 show that the accuracy of the NAT
models trained using the proposed error generator fell slightly behind the variants
that employed the baseline noise model on the noisy data sets generated using the
Tesseract 3.04 OCR engine (Tesseract 3♣) and the data with human-generated
errors (Typos).

102 103 104 105 106 107

Number of sentences

84

86

88

90

92

F1
 sc

or
e

base
AUGM
proposed
AUGM

0

(a) LAUGM (Tesseract 4♢)

102 103 104 105 106 107

Number of sentences

84

86

88

90

92

F1
 sc

or
e

base
STAB
proposed
STAB

0

(b) LSTAB (Tesseract 4♢)

102 103 104 105 106 107

Number of sentences

86

88

90

92

F1
 sc

or
e

base
AUGM
proposed
AUGM

0

(c) LAUGM (Tesseract 4♡)

102 103 104 105 106 107

Number of sentences

86

88

90

92

F1
 sc

or
e

base
STAB
proposed
STAB

0

(d) LSTAB (Tesseract 4♡)

Figure 4.9: F1 score in relation to the number of parallel sentences (Section 4.6.5). Two
noisy variants of the English CoNLL 2003 data set were used: Tesseract 4♢
and Tesseract 4♡. The token-level sequence-to-sequence method is compared
with the vanilla error model, and the standard objective L0. The results
for the data augmentation (Lproposed

AUGM , Lbase
AUGM) and the stability training

(Lproposed
STAB , Lbase

STAB) objectives are presented.

99

4 Empirical Error Modeling for Improved Noise-Aware Training

102 103 104 105 106 107

Number of sentences

91

92

93

94

95

96

F1
 sc

or
e

base
AUGM
proposed
AUGM

0

(a) LAUGM (original data set)

102 103 104 105 106 107

Number of sentences

91

92

93

94

95

96

F1
 sc

or
e

base
STAB
proposed
STAB

0

(b) LSTAB (original data set)

102 103 104 105 106 107

Number of sentences

89

90

91

92

93

F1
 sc

or
e

base
AUGM
proposed
AUGM

0

(c) LAUGM (Typos)

102 103 104 105 106 107

Number of sentences

89

90

91

92

93

F1
 sc

or
e

base
STAB
proposed
STAB

0

(d) LSTAB (Typos)

102 103 104 105 106 107

Number of sentences

80
82
84
86
88
90

F1
 sc

or
e

base
AUGM
proposed
AUGM

0

(e) LAUGM (Tesseract 3♣)

102 103 104 105 106 107

Number of sentences

80
82
84
86
88
90

F1
 sc

or
e

base
STAB
proposed
STAB

0

(f) LSTAB (Tesseract 3♣)

Figure 4.10: F1 score in relation to the number of parallel sentences (Section 4.6.5). The
original English CoNLL 2003 benchmark and its noisy variants: Tesseract
3♣, and Typos were used. The token-level sequence-to-sequence approach
is compared with the vanilla error model, and the standard objective L0.
The results for the data augmentation (Lproposed

AUGM , Lbase
AUGM) and the stability

training (Lproposed
STAB , Lbase

STAB) objectives are presented.

100

4.7 Summary

4.7 Summary

In this chapter, the task of performing sequence labeling on noisy digitized and
human-generated text was thoroughly studied. The NAT approach introduced
in Section 3.3 was extended by integrating the empirical error generator that
performs the translation from error-free to erroneous text (Section 4.4.1). To
train the proposed generator, the unsupervised parallel data synthesis method
that directly employs an OCR engine was developed (Section 4.4.2). Analogously,
several realistic noisy benchmarks were produced for evaluation (Section 4.5.6).
Moreover, the NLM embeddings were introduced in Section 4.4.5. These embed-
dings substantially alleviate the data sparsity problem of natural language that
exacerbates in the case of imperfect textual input.

The presented approach outperformed the baseline noise induction and error
correction methods, improving the accuracy of the noisy neural sequence labeling
task (Section 4.6). In particular, it was demonstrated that the representation
learned to model OCR noise is transferable to the out-of-domain scenarios —
the human-generated error distribution (Section 4.6.4) and the noise induced
by a different OCR engine (Sections 4.6.1 and 4.6.3). Finally, the proposed
error generator was shown to be data-efficient (Section 4.6.5), which facilitates
its practical application.

Future Work Directions

Grundkiewicz and Junczys-Dowmunt (2019) showed that unsupervised systems
benefit from domain adaptation on authentic labeled data. Therefore, future
work could involve fine-tuning the NAT models that were pretrained on synthetic
samples using the labeled data generated directly by the natural noising process.

Moreover, the incorporation of the NAT approach into every framework that
processes noisy input text is strongly advocated. The NAT approach should also
improve the performance of other NLP tasks beyond the sequence labeling scenario.
In future work, the NAT method and the NLM embeddings should preferably be
evaluated using an NLP benchmark that covers diverse language understanding
tasks. Furthermore, the research community would further benefit from pretrained
multilingual NLM embeddings, as well as from a broader spectrum of models
specialized in a particular language or error distribution.

101

5 Flexible Table Recognition and
Semantic Interpretation

Preface

This chapter extends the approach introduced in Namysl, Esser, Behnke, and
Köhler (2022)1 that was previously published by SciTePress and was also presented
at the 17th International Conference on Computer Vision Theory and Applications
(VISAPP 2022)2.

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the previous
publication (Namysl, Esser, Behnke, and Köhler, 2022), including the conception,
design, and implementation of the proposed methods, the preparation of the data
for training and evaluation of the proposed approach, conducting the experimental
evaluation, the analysis and interpretation of the experimental results, drafting the
manuscript, as well as the revision and final approval of the version to be published.

The content presented in this chapter, unless otherwise stated, is the contribu-
tion of the author of this thesis.

Abstract

Table extraction is an important but still unsolved problem. This chapter presents
a flexible and modular table extraction system that supports the most frequent
table layouts and handles both the documents in image format and PDF files
with embedded text. The presented approach combines a deep learning-based
table detection module, heuristics for table structure recognition (TSR), and a
1 ©2022 SciTePress. Reprinted in Appendix C.4.
2 https://visapp.scitevents.org/?y=2022

103

https://visapp.scitevents.org/?y=2022

5 Flexible Table Recognition and Semantic Interpretation

rule-based semantic interpretation method. The proposed system achieves results
competitive with state-of-the-art approaches on two challenging benchmarks from
the table competitions held at the International Conference on Document Analysis
and Recognition (ICDAR). Noteworthy, an issue in the evaluation script used in a
recent competition was corrected and the results of the proposed and the baseline
method were reported using both the original and the rectified script. Finally,
the effectiveness of the presented table extraction system was demonstrated in the
scenario, where raw documents were given as input and the target information was
contained in a subset of table columns.

5.1 Introduction

Information can hardly be presented in a more compressed way than in a table.
Humans can easily comprehend documents containing tables (Wright, 1980). In
contrast, automatic table extraction has not been completely solved yet, although
it has been widely studied before (see Section 5.3). Due to the heterogeneity of
document formats (e.g., invoices, scientific papers, or balance sheets), this task is
extremely hard. However, as the number of digitized documents steadily increases,
a solution for automatic IE from tabular data is urgently needed.

In this chapter, a holistic approach is introduced. It combines table recognition
and semantic interpretation modules, which allows performing IE directly from
tables in documents that are either in image format or contain embedded text.
Specifically, in Section 5.4, a basic variant of the proposed table extraction system
is introduced. It combines a heuristic-based table recognition approach, i.e.,
table detection and structure recognition performed in one step, with a semantic
interpretation module implemented as a rule-based method that matches table
content with predefined semantic concepts.

For table recognition, two heuristics are proposed that target fully bordered
(Section 5.4.3) and partially bordered tables (Section 5.4.4), respectively. The
former method handles the most popular table format, which is predominantly
used in business documents. The latter algorithm recognizes tables that are typeset
with a LATEX package that is widely used in scientific and technical publications. By
combining these two heuristics, the presented system is able to precisely recognize
the two most widely used tabular formats. Moreover, in Section 5.5, the basic
variant of the proposed system is extended by incorporating a deep learning-based
table detection module and combining it with the adapted version of the heuristics
for structure recognition employed in the basic variant of the presented system.

104

5.1 Introduction

The proposed modifications result in a highly effective, hybrid table recognition
approach, which recognizes the structure of borderless and hybrid-layout tables.

The utility of the proposed hybrid table recognition approach is demonstrated
on two challenging benchmarks from ICDAR 2013 (Göbel et al., 2013) and
ICDAR 2019 (L. Gao et al., 2019) Table Competition that contain documents in
different formats (Section 5.7). In both scenarios, the proposed method exhibits
recognition accuracy competitive with state-of-the-art approaches. Moreover, in
the preliminary experiments, a previously unnoticed issue in the official evaluation
tool employed in ICDAR 2019 Table Competition was discovered. The issue
in the script was rectified and the corrected version of the code was used for
evaluation. The repository with the corrected script was made publicly available
and all changes were also submitted to the official evaluation tool3. In addition, the
evaluation in Section 5.7 also includes the revised annotations used in this competi-
tion that were recently released4. Furthermore, to facilitate the reproducibility and
fair comparison of the results obtained by different methods on the ICDAR 2013
benchmark, the evaluation script employed in this work was also released publicly
(Section 5.7.1). It parses the output produced by the official evaluation tool and
accumulates them to get the final averaged scores. It also includes the adjacency
relations from the false-positively detected tables to give a better perspective on
the actual performance of the table recognition approaches.

Concerning the semantic interpretation of the table content, in this work, the
basic formulation of the table recognition task is complemented by including a table
interpretation module. To this end, a general formulation of the table interpre-
tation task as a maximum weight matching (Edmonds, 1965) on a corresponding
graph is provided (Section 5.2.3) and a rule-based table interpretation method
is proposed (Section 5.4.5). This method leverages regular expressions (RegEx)
and an approximate string-matching algorithm to compute semantic similarities
between table cells and predefined semantic concepts. By combining the table
recognition and table interpretation modules, the presented table extraction
system can directly extract the desired information from tables contained in raw,
unstructured documents (Section 5.8).

The approach presented in this chapter is both: (1) flexible, supporting both
documents in image format and PDF files with embedded text, and (2) modular,
allowing us to separately adapt particular modules to a specific scenario. Both are
crucial for a table extraction system because: (1) Few table recognition methods

3 https://github.com/cndplab-founder/ctdar_measurement_tool/pull/1
4 https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b

07f9cabce2a9480af98c78

105

https://github.com/cndplab-founder/ctdar_measurement_tool/pull/1
https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b07f9cabce2a9480af98c78
https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b07f9cabce2a9480af98c78

5 Flexible Table Recognition and Semantic Interpretation

support both types of input, while most approaches require PDF documents with
embedded text, and (2) Different processing steps need to be optimized, depending
on the document type and the layout of the extremely heterogeneous input data.
For some documents, the challenge might be table detection, for others TSR, or
semantic interpretation.

The contributions presented in this chapter can be summarized as follows:
• A formal definition of the table extraction task and its main components —

table detection, table structure recognition, and table interpretation — is
provided in Section 5.2.

• The basic variant of the proposed table extraction system is introduced
in Section 5.4. For the recognition of fully and partially bordered tables,
two heuristic-based methods are implemented, as described in Sections 5.4.3
and 5.4.4, respectively. For semantic interpretation, a rule-based method is
proposed (Section 5.4.5).

• Subsequently, the basic variant of the proposed system is extended by
integrating a deep learning-based table detection module and adapting the
TSR component from the basic variant of the presented system to enable
recognition of borderless and hybrid-layout tables (Section 5.5.2).

• A thorough evaluation is performed using two widely adopted table recogni-
tion benchmarks demonstrating the utility of the proposed table recognition
method that exhibits recognition accuracy on par with the state-of-the-art
approaches (Section 5.7).

• An issue in the official evaluation script used in ICDAR 2019 Table Compe-
tition is corrected5 and the scores of the proposed and the baseline method
are reported in all scenarios that involve the original and the corrected script
as well as the original and the recently revised annotations.

• To facilitate reproducibility and fair comparison of the results obtained by
different table recognition methods, the resources from the experiments pre-
sented in this chapter and the evaluation script employed in the experiment
on the ICDAR 2013 benchmark have been made publicly available.6

• Finally, the presented table extraction system was shown to be effective
in a scenario, where the unstructured, scientific documents were given as
input and the target information was contained in tables (Section 5.8). The
evaluation script employed in this scenario was released publicly to foster
future research on IE from tables contained in unstructured documents.7

5 https://github.com/mnamysl/ctdar_measurement_tool/tree/table_mapping_fix
6 https://github.com/mnamysl/tabrec-sncs
7 https://github.com/mnamysl/table-interpretation

106

https://github.com/mnamysl/ctdar_measurement_tool/tree/table_mapping_fix
https://github.com/mnamysl/tabrec-sncs
https://github.com/mnamysl/table-interpretation

5.2 Table Extraction Task

5.2 Table Extraction Task
Table extraction can be considered as a three-step process consisting of table
detection, structure recognition, and interpretation.

The goal of the table detection task is to locate all table regions within the input
document. Subsequently, TSR aims to recognize the structure of each detected
table. Note that both tasks can be performed on different input levels: text lines,
words, characters, or pixels.8 Moreover, although table detection and TSR aim
to solve different problems, some approaches cover these two tasks jointly. In this
case, we refer to the joint table detection and structure recognition as the table
recognition process.

Finally, the goal of table interpretation is to link the recognized cells with their
semantic representation. This step strongly depends on the actual use case and
no method fits all scenarios. In this work, this problem is formulated as maximum
weight matching (Edmonds, 1965) on a graph with the nodes that correspond to
table cells and predefined semantic concepts.

In the following, the table detection, TSR, and table interpretation tasks, that
are studied in this work, are described in more detail.

5.2.1 Table Detection

Table detection aims to locate all tables within an input document and can be
considered a single-class object detection problem. Moreover, it can be split into
two subtasks: (1) classify every input element, e.g., every pixel, as being part of
a table or not (image segmentation), and (2) merge homogeneous input elements
into distinct table regions (region growing and splitting).

In particular, region growing and splitting approaches make use of a heterogene-
ity criterion that specifies how similar two inputs are (Haralick and Shapiro, 1985).
Specifically, keyword-based approaches look for specific words (like table or figure)
and consider all elements within a specific distance to the keyword as being part
of the same table region. In contrast, whitespace-based approaches detect large
blank areas around the table and consider all enclosed pixels as a homogeneous
table region (Shigarov et al., 2018).

Table detection can be performed on different input levels. For instance, on text
line level, region growing and splitting becomes, geometrically, a one-dimensional
problem. For a text line, one has to decide whether the lines above and below are
similar enough or not to form a common table region.
8 Oro and Ruffolo (2009) speak of so-called content elements that form a table.

107

5 Flexible Table Recognition and Semantic Interpretation

5.2.2 Table Structure Recognition

During TSR, the structure of a table, i.e., rows, columns, and cells, is recognized.
Note that the previous detection step results in a set of content elements belonging
to the table object.

Given a set of input elements E belonging to the table object, TSR aims to map
these elements to a regular table grid. Formally, we are looking for a mapping:

µ : {0, . . . ,m− 1} × {0, . . . , n− 1} −→ P(E)

µ(i, j) = Ei,j ⊆ E,
(5.1)

which maps each position within an m× n table to a content element e ∈ E or a
set of multiple elements Ei,j ⊆ E, with P(E) denoting the power set of E.

In a simple case, one coordinate (i, j) is mapped to one single element e.
Alternatively, elements can be merged at this step — multiple text lines to one
text region — so that they collectively form a cell. Thus, µ generally points to a
subset Ei,j of elements in E.

To allow cells that span more than one row or column, it is valid that two
neighboring coordinates

(
(i, j) and (i, j + 1)

)
or

(
(i, j) and (i + 1, j)

)
both point

to the same element. A resulting table cell consists of all neighboring grid points
mapped to the same element. Finally, it is also allowed that a grid point is empty
and that µ points to an empty set.

5.2.3 Table Interpretation

In the final table interpretation step, the semantic meaning of the table cells is
understood. Formally, there exists a set of cells P and a set of meanings M , so
that a cell p ∈ P is mapped to a meaning m ∈M .

The matching between cells P and meanings M is not necessarily a perfect
matching. If a table contains additional columns that are not foreseen in the table
model, the cells in these columns cannot be assigned a meaning. On the other
hand, when the table model provides optional meanings, some of them cannot
always be matched.

For instance, in Figure 5.1, there exists, among others, a meaning REV-
ENUE_2020, which specifies the revenue for the fiscal year 2020.9 During the
table interpretation step, one aims to map cell (1, 1) with the content 30,500 to
this meaning.
9 The meanings are denoted in capital letters.

108

5.3 Related Work

2020
 ($’000s)

2019
 ($’000s)

Revenue 30,500 27,800

Profit for the period 10,275 6,900

Other comprehensive income 1,125 1,250

Total comprehensive income 12,250 8,633

(a) Balance sheet in tabular form

Profit for the
period

Cells

REVENUE_2020

PROFIT_2020

Meanings

ROW_HEADER_
PROFIT

TOTAL_2019

(b) A table interpretation graph constructed from Figure 5.1a

Figure 5.1: Table interpretation example. (a) A financial statement (balance sheet in
tabular form). (b) The corresponding table interpretation graph. Cells
p ∈ P are mapped to possible meanings m ∈ M . For each mapping, an
affinity value is calculated, symbolized by the thickness of the lines.

5.3 Related Work

5.3.1 Complete Table Recognition Approaches

In the following, a review of the most relevant approaches that perform complete
table recognition (CTR) is presented. This includes both heuristic-based and
learning-based methods performing CTR. For a thorough review of the approaches
formerly used for this task, please refer to a comprehensive review presented by
Silva et al. (2005).

109

5 Flexible Table Recognition and Semantic Interpretation

Heuristic-Based Complete Table Recognition Methods

Heuristic-based approaches implement sets of hand-crafted rules that differ from
method to method but generally allow to perform fairly accurate table recognition,
given that the format of the tables contained in the input documents is compatible
with the designed heuristics. These methods were mainly designed to handle PDF
documents with embedded text.

Hassan and Baumgartner (2007) described a system that parses the low-level
data from the PDF documents and extracts the HyperText Markup Language
(HTML) representation of tables. They locate and segment tables by analyzing
the spatial features of text blocks. Their system can detect cells that span multiple
rows or columns.

Oro and Ruffolo (2009) introduced PDF-TREX, a heuristic, bottom-up method
for table recognition in single-column PDF documents. It uses the spatial features
of page elements to align and group them into paragraphs and tables. Similarly,
it finds the rows and columns and obtains table cells from their intersections.

Nurminen (2013) proposed a set of heuristics for table detection and TSR.
Specifically, they locate subsequent text boxes with common left, middle, or right
coordinates and assign them the probability of belonging to a table object.

Rastan et al. (2015) presented TEXUS, a task-based table processing method.
They locate table lines and use transitions between them and main text lines to
detect table positions. Moreover, they use alignments of text chunks inside the
table region to identify columns and determine the dominant table line pattern to
find rows.

More recently, Shigarov et al. (2018) proposed TabbyPDF, a heuristic-based
approach for table detection and structure recognition from untagged PDF docu-
ments. Their system uses both textual and graphical features such as horizontal
and vertical distances, fonts, and rulings. Moreover, they exploit the feature of
the appearance of text printing instructions and the positions of a drawing cursor.

Learning-Based Complete Table Recognition Methods

Recently, many deep learning-based methods were proposed to solve the image-
based table recognition problem. To achieve acceptable results, these approaches
need many examples for training. Deep learning methods are often coupled with
heuristics that implement the missing functionality.

In particular, Schreiber et al. (2017) proposed DeepDeSRT which employs the
Faster R-CNN model for table detection and a semantic segmentation approach

110

5.3 Related Work

for structure recognition. For preprocessing, they stretch the images vertically
and horizontally to facilitate the separation of rows and columns by the model.
Moreover, they apply postprocessing to fix problems with spurious detections and
conjoined regions.

An alternative approach was presented by Reza et al. (2019). They apply
conditional generative adversarial networks for table localization and an encoder
decoder-based model for table row and column segmentation. In their experiments,
the segmentation stage was evaluated separately for rows and columns.

Paliwal et al. (2019) proposed TableNet, an encoder decoder-based neural
architecture for table recognition. Their encoder is shared between the table
detection and column segmentation decoders. Subsequently, rule-based row
extraction is employed to extract individual cells.

More recently, Prasad et al. (2020) proposed CascadeTabNet, which uses the
instance segmentation technique to detect tables and segment the cells in a
single inference step. Their model predicts the segmentation of cells only for the
borderless tables and employs simple rule-based text and line detection heuristics
for extracting cells from bordered tables.

Inspired by the approach of Prasad et al. (2020), Fischer et al. (2021) presented
a multistage, end-to-end table recognition system named Multi-Type-TD-TSR
that combines a deep learning-based table detection model with a heuristic-based
TSR method. Moreover, they additionally perform a preprocessing step that
involves skew angle correction and noise filtering. Furthermore, they perform
color normalization prior to the TSR stage to achieve the font and background
color invariance.

5.3.2 Table Interpretation Approaches

Table interpretation strongly depends on the actual use case. There is no state-
of-the-art method that fits all scenarios, but a variety of approaches from the
area of NLP are used. Popular methods involve string matching, calculating
the Levenshtein distance (Levenshtein, 1966), or RegEx (Kleene, 1951), e.g., for
matching a column title or the data type of a column (Yan and He, 2018). Other
methods, like word embeddings (Mikolov, Chen, et al., 2013), entity recognition,
relation extraction (Macdonald and Barbosa, 2020), or semantic parsing (Yu
et al., 2021), semantically represent table contents. More complex solutions
are specifically trained for a certain use case, e.g., a deep learning approach for
understanding balance sheets.

111

5 Flexible Table Recognition and Semantic Interpretation

Semantic Type Detection

Another task that is related to table interpretation is semantic type detection.
Semantic types describe the data by providing the correspondence between the
columns and the real-world concepts, such as locations, names, organizations, or
identification numbers.

A widely adopted method of detecting semantic types is to employ dictionary
lookup and RegEx matching of column headers and values. Many popular data
preparation and visualization tools successfully incorporate this technique to
enhance their data analysis capabilities.10

A noteworthy approach was introduced recently by Hulsebos et al. (2019). They
proposed Sherlock — a deep learning-based method that pairs column headers with
78 semantic types from a knowledge base (Auer et al., 2007). They represent the
content of a column using features that describe the distribution of characters,
the semantic meaning of the words, and global statistics such as cardinality and
uniqueness. In the follow-up work, D. Zhang et al. (2020) proposed a hybrid ML
model, which additionally incorporates the column context to predict semantic
types. They combine the baseline single-column type prediction used by the
Sherlock model with topic modeling and structured prediction to achieve further
improvements in recognition accuracy.

5.4 Proposed Basic Table Extraction Method

In this section, the basic variant of the proposed table extraction system is
described. Figure 5.2 presents the diagram of this system.

We assume that an unstructured document, either an image or a PDF file, is
given as input to the system. Firstly, preprocessing is performed to prepare the
input document for subsequent analysis (Section 5.4.1). Secondly, table recognition
is executed to detect all tables and recognize their building blocks — rows, columns,
and cells. Thirdly, table interpretation is carried out to link the extracted structural
elements with predefined semantic concepts.

In the presented system, two rule-based table recognition heuristics, that
perform table detection and TSR in one step, are implemented. The first method
was designed to handle fully bordered tables (Section 5.4.3). It exploits the semi-
structured document content that is extracted in the preprocessing step, i.e., the
10 Popular data analysis systems: https://powerbi.microsoft.com, https://www.trifacta

.com, https://datastudio.google.com.

112

https://powerbi.microsoft.com
https://www.trifacta.com
https://www.trifacta.com
https://datastudio.google.com

5.4 Proposed Basic Table Extraction Method

Unstructured
Document

Table
Recognition

Table
InterpretationPreprocessing Structured

Information

Figure 5.2: The basic variant of the proposed IE system. An unstructured document,
either an image or a PDF file, is given as input. Preprocessing is
performed prior to table recognition, which detects the table objects and
recognizes their building blocks — rows, columns, and individual table cells.
Table interpretation links the extracted structural elements with predefined
semantic concepts. As a result, the layout and the semantic interpretation
of a table is written in structured format.

information about the text blocks and solid separators, also called ruling lines, to
precisely extract the table objects containing cells that are fully outlined. The
second algorithm was developed for partially bordered tables (Section 5.4.4). It
recognizes tables that are typeset with a commonly used LATEX package.

Table interpretation (Section 5.4.5) is implemented as a rule-based method that
leverages regular expressions and an approximate string matching algorithm to
compute similarity between the extracted structural elements of a table and some
predefined semantic concepts. Moreover, to link the structural elements with their
semantic meanings, a graph-based algorithm is employed.

5.4.1 Preprocessing

Preprocessing is performed to prepare the input document for subsequent analysis.
It enables us to work with either PDF files with embedded text or documents in
image format. Note that few table recognition methods support both types of
input, while most approaches require PDF documents with embedded text (see
Section 5.3).

Preprocessing transforms the input document into a semi-structured represen-
tation that is exploited by the subsequent components of the presented table
extraction system. Specifically, in this work, the layout analysis module described
in Konya (2013) is used to extract ruling lines (hereafter referred to as solid
separators) and textual page regions from the input document.

In particular, if the input document is in PDF format, it is rendered as an image.
The input image is then binarized using a global thresholding method proposed

113

5 Flexible Table Recognition and Semantic Interpretation

by Otsu (1979). Subsequently, the solid separators are detected on a binary image
using a combination of methods described by Y. Zheng et al. (2001) and Gatos
et al. (2005). In the case of PDF files with embedded text, the text is directly
extracted using a PDF parsing method.11 Otherwise, OCR is performed using the
Tesseract library (Smith, 2007) to extract the textual content from the image.

5.4.2 General Table Recognition Considerations

In this section, general considerations that apply to both table recognition heuris-
tics described in Sections 5.4.3 and 5.4.4 are presented.

Preliminary Steps

As a first step that is common for both proposed table recognition heuristics, an
average character size within the input image, denoted as Sx and Sy for the width
and height dimensions, respectively, is calculated using the semi-structured data
provided by the preprocessing component. These values are then exploited in the
subsequent steps of the proposed heuristics.

Page Orientation

The proposed table recognition heuristics can be easily applied to pages that are
oriented horizontally or vertically. The latter case refers to pages that are rotated
90 degrees. In the following sections, the mechanics of each method is described
by taking the horizontal layout as the default orientation. Nevertheless, for the
vertical layout, all steps are identical, except that the horizontal and the vertical
separators are swapped with each other.

The Order of Heuristics

The table recognition heuristics are applied one after the other. The order in
which the heuristics are applied impacts the final recognition results because all
table candidates that overlap any valid table region that was already detected by
the previously applied heuristic are discarded by the employed filtering mechanism.
As the heuristic for partially bordered tables could generate spurious candidates
from bordered examples, the heuristic for fully bordered tables is applied first
followed by the other heuristic.
11 The presented method employs Poppler (https://poppler.freedesktop.org) for both

rendering and text extraction.

114

https://poppler.freedesktop.org

5.4 Proposed Basic Table Extraction Method

5.4.3 Recognition of Fully Bordered Tables

Figure 5.3 presents an example of a fully bordered table, which is handled by the
rule-based method described in this section.

Figure 5.3: An example of a fully bordered table cropped from the cTDaR_t10047.jpg
file contained in the ICDAR 2019 data set (L. Gao et al., 2019).

Separator Merging

The heuristic for fully bordered tables starts by sorting the horizontal and the
vertical separators by the top and the left position, respectively. All separator
boxes are first expanded by δx = 5 and δy = 5 pixels to increase the chance of
intersection with the neighboring solid separators. Then, all intersecting separators
are merged. As a result, they form clusters, as depicted in Figure 5.4.

Finally, all clusters that contain less than one separator with each orientation
(vertical and horizontal) are pruned from the list. The remaining, distinct
separator clusters found by this procedure correspond to the candidate table
objects that are passed to the subsequent processing stages.

Table Labels Assignment

To improve precision, the proposed algorithm searches for the presence of prede-
fined keywords (e.g., table, Tab.) in the close neighborhood of the table candidates
identified in the preceding step and, accordingly, marks the table as labeled or
unlabeled. If the labels are required by the current configuration, all unlabeled
tables are removed from the set of already found candidates at this stage.

115

5 Flexible Table Recognition and Semantic Interpretation

Figure 5.4: Separator merging stage of the table recognition method for fully bordered
tables. Vertical and horizontal separator regions are marked green and blue,
respectively. Orange circles correspond to the intersection points. The red
box represents the detected table label.

Table Grid Estimation and Refinement

Subsequently, for each table candidate, a rough grid of cells is derived as follows:
Each pair of subsequent vertical and horizontal separators forms a table column
or table row region, respectively. The regions of intersection between the column
and row boxes define the rough grid of cells.

Note that some cells in the roughly estimated grid need to be refined by merging
them with the neighboring cells to recover the cells that span multiple rows or
columns. To this end, an approach inspired by the union-find algorithm proposed
by Hoshen and Kopelman (1976) is employed, as illustrated in Figure 5.5.

Specifically, a raster scan is performed through the rough grid of cells line by
line in the left-to-right direction. If the area near the right border of a cell does
not overlap any vertical separator assigned to the current separator cluster, the
cell is merged with its right neighbor and the algorithm proceeds to the next cell.
A margin around the right border of a cell used to calculate the overlap is defined
as mx = Sx.

Subsequently, the whole procedure is repeated in the top-to-down direction.
In this case, the margin my = Sy is used. Note that the cells that fulfill the
merging criterion mentioned above need to have equal row and column spans in
the case of the scan in the left-to-right and top-to-down direction, respectively.
This additional requirement ensures that all cells retain the rectangular shape
after merging is performed.

116

5.4 Proposed Basic Table Extraction Method

Figure 5.5: Cell merging stage of the table recognition method for fully bordered tables.
Blue and orange circles are the centers of the cells that were merged
horizontally and vertically, respectively. Green circles are the centers of
fully bordered cells. Arrows show the scanning direction.

Postprocessing

During the postprocessing phase, all textual page regions are assigned to the
corresponding table cells based on their overlap ratios; cells that do not contain any
assigned page regions are marked as empty. Subsequently, the rows and columns
that contain exclusively empty cells are removed from the table.

Finally, all table candidates that have less than a predefined number of rows,
columns, and cells are pruned from the list of candidates. Figure 5.6 presents an
example of a table recognized by the heuristic for fully bordered tables.

Figure 5.6: Recognition result obtained by the table recognition method for fully
bordered tables. Blue circles represent the centers of the recognized cells.

117

5 Flexible Table Recognition and Semantic Interpretation

5.4.4 Recognition of Partially Bordered Tables

Booktabs12 is a popular LATEX package used to typeset tables in scientific articles.
An example of a table in this format is presented in Figure 5.7. It consists of three
main components: a top, middle, and bottom ruling line. The middle ruling line
separates the table header and the table body region. In addition, multiple-level
header structure can be represented using shorter cmidrules that span multiple
columns aggregated under the same higher-level header (see Figure 5.11a).

Figure 5.7: An example of a table in booktabs format from the us-021.pdf file contained
in the ICDAR 2013 data set (Göbel et al., 2013).

The presented heuristic for partially bordered tables uses horizontal separators
for horizontally oriented pages. As noted in Section 5.4.2, the pages with vertical
orientation can be easily handled by the proposed method by swapping horizontal
and vertical separators with each other.

Table Region Detection

In the first step, separator filtering is performed. Specifically, all thick lines that
are wider than Sy are discarded, and the remaining separators are sorted by the
top position. Moreover, if multiple separators are located within the margin of
D = 2Sy, only the element with the lowest y-position is kept.

To detect table objects, the triples of consecutive separators are located, for
which the difference of their left and right coordinates is lower than Sx. Moreover,
all cmidrules that are located between the top and the middle rule are also
collected and associated with the corresponding table region, so they can be used
to recognize a multiple-level header structure in the subsequent processing step.
To this end, they are grouped by their y-position to isolate different levels of the
12 https://ctan.org/pkg/booktabs

118

https://ctan.org/pkg/booktabs

5.4 Proposed Basic Table Extraction Method

header’s hierarchy and to separate header rows. Furthermore, label assignment is
optionally performed as described in Section 5.4.3.

Table Row Detection

The borders for the rows in the body region of a table are determined using the
horizontal profile, which is calculated by projecting all words within the body
region of a table, as illustrated in Figure 5.8. The row borders can then be easily
estimated by taking center positions of the gaps in the resulting profile.

Figure 5.8: Row segmentation process of the proposed table recognition method for
partially bordered tables. Blue lines represent the top, middle, and bottom
ruling lines. Orange lines depict the cmidrule lines. Orange bars to the right
correspond to the horizontal profile (running sum of pixels in the text regions
in each row). Green dotted lines correspond to the row borders.

Table Column Detection

To recognize the borders between the columns, all page regions within the body
region and the lowest-level header row are projected vertically, as illustrated in
Figure 5.9. Subsequently, the resulting projection is analyzed to find all gaps
between two consecutive table columns with a length above the threshold Dcolumn,
which is calculated as follows:

Dcolumn = DpageHtableγ, (5.2)

where Dpage is the median unit distance, i.e., the distance divided by the word
height, between two words within a page, Htable is the mean word height within
the table, and γ is a hyperparameter that controls the width of the gaps between
the columns.

119

5 Flexible Table Recognition and Semantic Interpretation

Figure 5.9: Column segmentation process employed by the proposed table recognition
method for partially bordered tables. The dotted red line is a border of the
lowest-level header. Orange bars at the bottom correspond to the vertical
histogram profile, i.e., running sum of pixels in the word regions in each
column. The values in the profile are clipped for better visualization. The
column gaps that are wider and narrower than Dcolumn are highlighted in
green and red, respectively. Green vertical dotted lines represent the detected
column borders.

The center positions of the intervals that satisfy the condition defined above
correspond to the column borders. In contrast, all gaps with a length below
Dcolumn correspond to vertically aligned words that form spurious columns. Note
that the higher-level headers are excluded, as they contain multiple-column cells
that would otherwise distort the calculated vertical projection.

Table Grid Estimation and Refinement

Given the row and column borders calculated in the previous stage, the initial
grid of cells is computed from the intersections between the row and the column
borders, which results in a partial table segmentation. An example of such a
segmentation grid is illustrated in Figure 5.10.

Note that to complement the table segmentation result obtained in the preceding
step, the structure of the remaining, higher-level headers needs to be recognized.
To this end, the rough grid of cells calculated in the previous step is first extended
to the higher-level headers. Subsequently, all cells that intersect the same cmidrule
segment are merged. Figure 5.11 illustrates the segmentation process of the higher-
level header region of a table.

120

5.4 Proposed Basic Table Extraction Method

Figure 5.10: The resulting segmentation grid obtained by the proposed table recognition
method for partially bordered tables. Blue lines and circles represent the
borders and the centers of the cells, respectively. The boxes with gray
backgrounds outline the words within the table area.

Postprocessing

Finally, all textual page regions are assigned to the corresponding table cells based
on their overlap ratios and the cells that do not contain any assigned page regions
are marked as empty.

Subsequently, the rows and columns that contain exclusively empty cells are
removed from the table. Moreover, all table candidates that have less than
a predefined number of rows, columns, and cells are pruned from the list of
candidates.

5.4.5 Proposed Table Interpretation Method

The proposed table interpretation method takes a result of the prior table
recognition step as input, i.e., a set of recognized tables T .

Given a set of predefined meanings M and a set of columns C contained in a
table t ∈ T , the proposed method first assigns meanings m ∈ M to the columns
c ∈ C. Subsequently, the column-level results are propagated to the individual
cells using the following procedure: For a column c that was matched with a
meaning mj, the tuples xi,j containing the target information are constructed by
associating the data cells in the body part of the column c with the meaning mj,
where i and j are the index of a table row and a meaning that was matched with
the column c, respectively.

121

5 Flexible Table Recognition and Semantic Interpretation

(a) Input Image

(b) Header Cell Merging

(c) Final Header Segmentation

Figure 5.11: Higher-level header segmentation method employed in the proposed table
recognition method for partially bordered tables. (a) The top part of a
table extracted from the us-018.pdf file from the ICDAR 2013 benchmark
(Göbel et al., 2013). (b) Header cell merging. Orange lines correspond to
the cmidrule lines. Green areas and lines represent column whitespaces and
borders, respectively. Blue circles are the centers of the cells intersecting a
cmidrule line. The cells that intersect the same cmidrule line are merged.
In contrast, other cells (marked with green circles) remain unchanged. (c)
Header segmentation. Blue lines and circles correspond to the borders and
the centers of the cells in the final grid, respectively.

122

5.4 Proposed Basic Table Extraction Method

Affinity Score Computation

The rules for assigning the columns to the meanings are established as follows. For
each meaning m, a customized set of affinity rules that describe a column that is
likely to be matched with m is defined:

(1) Title Keyword Score: approximate string matching between the title of a
column and the predefined keywords.

(2) Title RegEx Score: exact matching of the title of a column with customized
regular expressions.

(3) Data Type Score: exact matching of the content of the cells in a column with
regular expressions for predefined types (e.g., integer, date, etc.).

(4) Content RegEx Score: exact matching of the content of the cells in a column
with customized regular expressions.

Approximate string matching corresponds to the Levenshtein distance (Leven-
shtein, 1966) calculated between two strings and divided by the length of the
longer string. The exact RegEx score returns 1.0 if the matching succeeds and 0.0

otherwise. Moreover, note that the content and data type scores are averaged over
the scores for the cells in the corresponding column.

The final affinity score S for a column c with a meaning m is computed as
presented in Equation (5.3):

S(c,m) =
wc max(SRx

c , SDT
c) + wt max(SRx

t , SKW
t)

wc + wt
, (5.3)

where wt and wc are the weights of the title and the content property groups,
respectively. SRx

c and SDT
c are the affinity scores of the content RegEx and the

data type, respectively. SRx
t and SKW

t correspond to the scores of the title RegEx
and the approximate string matching with the keywords, respectively.

Note that the sum of weights must be a positive number. Moreover, if a
particular rule is not defined for a meaning, the corresponding score is set to
zero. All rules are defined in a configuration file, as presented in an example in
Figure 5.12.

Matching Table Columns with Semantic Concepts

To perform the matching between the meanings and the columns in a table, a
weighted bipartite graph is created, as illustrated in Figure 5.13b. In this graph,
two sets of vertices are defined — representing the meanings on one side and the

123

5 Flexible Table Recognition and Semantic Interpretation

[
{ "id": "compound",
"keywords": ["Compound", "compd", "Comp.", "cpd"],
"datatype": "string",
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.5

},
{ "id": "hdac1_gene",
"keywords": ["HDAC1"],
"titleRegex": "^HDAC[-]{0,1}1[^\\d].*$",
"datatype": ["double", "range", "integer"],
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.85

},
{ "id": "hdac6_gene",
"keywords": ["HDAC6"],
"titleRegex": "^HDAC[-]{0,1}6[^\\d].*$",
"datatype": ["double", "range", "integer"],
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.85

}
]

Figure 5.12: Configuration file used by the proposed table interpretation method. In
the presented example, the meanings COMPOUND, HDAC1, and HDAC6
GENE are defined, as well as the rules for matching table columns to these
meanings. The file is stored in JavaScript Object Notation (JSON) format.

columns on the other side. Moreover, all columns are connected with all meanings
with an edge that is weighted by the affinity score S(c,m) that specifies how likely
a column c matches with a certain meaning m. Note that the connections that do
not reach a predefined required minimum affinity value Smin are pruned.

To find the best assignment of the columns to the meanings, maximum weight
matching (Edmonds, 1965) on the created bipartite graph is performed. Finally,
the tuples xi,j are extracted, where i is an index of a row in the body part of the
table, and j is the index of a matched meaning (see Figure 5.13c).

5.5 Proposed Hybrid Table Extraction Method

In this section, the hybrid variant of the proposed table extraction system is
presented (Figure 5.14). It extends the basic variant described in Section 5.4.

124

5.5 Proposed Hybrid Table Extraction Method

Table 3. Activity profiling of three hit compounds, i.e. 2, 2–1 and 2–2 against a
panel of HDAC isoforms.

Name

IC50 (lM)

HDAC3 HDAC1 HDAC2 HDAC8 HDAC4 HDAC6

2 6.1 12.7 24.8 >100 >100 >100
2–1 1.3 0.957 1.78 >100 >100 >100
2–2 12.5 16.6 29.3 >100 >100 >100
Positive drug 0.043a 0.0633 0.173 4.33 1.37b 0.0222
aThe average from two independent tests.
bTSA instead of SAHA was used as a positive drug for HDAC4.

(a) Input Table

Columns

HDAC6 GENE

Meanings

COMPOUND

HDAC1 GENE

(b) Interpretation Graph

[
{
"compound": "2",
"hdac1_ic50": "12.7",
"hdac6_ic50": ">100"

},
{
"compound": "2-1",
"hdac1_ic50": "0.957",
"hdac6_ic50": ">100"

},
{
"compound": "2-2",
"hdac1_ic50": "16.6",
"hdac6_ic50": ">100"

},
{
"compound": "Positive drug",
"hdac1_ic50": "0.0633",
"hdac6_ic50": "0.0222"

}
]

(c) Extracted Tuples

Figure 5.13: Illustration of the proposed table interpretation method: (a) A table
extracted from Xia et al. (2018), which contains the inhibitory activity
of some representative compounds toward the histone deacetylase (HDAC)
gene. The columns corresponding to the defined meanings are marked with
blue boxes. (b) Table interpretation graph: Columns c ∈ C are mapped
to the meanings m ∈M . For each mapping, an affinity value is calculated,
symbolized by the thickness of the lines. (c) The extracted tuples that
represent the inhibitory activity of each compound toward the HDAC1 and
the HDAC6 gene. The resulting file is stored in JSON format.

125

5 Flexible Table Recognition and Semantic Interpretation

Unstructured
Document

Table
Detection

Table
Structure

Recognition

Table
InterpretationPreprocessing Structured

Information

Figure 5.14: The hybrid variant of the proposed IE system. An unstructured document,
either an image or a PDF file, is given as input. Table detection locates
all tables within an input document. Preprocessing is performed prior to
TSR, which recognizes the building blocks of a table — rows, columns, and
individual table cells. Table interpretation links the extracted structural
elements with predefined semantic concepts. As a result, the layout and
the semantic interpretation of a table is written in structured format.

As before, we assume that an unstructured document, either an image or a PDF
file, is given as input to the system. Firstly, table detection is performed to locate
all tables within the input document (Section 5.5.1). Secondly, each detected table
is cropped from the input document and passed through the preprocessing module
to prepare it for subsequent analysis, as described in Section 5.4.1. Thirdly, for
each detected table individually, TSR is executed to recognize the building blocks
of a table — rows, columns, and cells (Section 5.5.2). Finally, table interpretation
is carried out to link the extracted structural elements with predefined semantic
concepts (Section 5.4.5).

The presented system combines a deep learning-based table detection module,
rule-based TSR heuristics, and a graph-based table interpretation method. To
perform TSR, the heuristics described in Sections 5.4.3 and 5.4.4 are adapted to
handle documents containing individual table objects (Section 5.5.2). For table
interpretation, the method described in Section 5.4.5 is employed.

5.5.1 Table Detection

Table detection aims to locate all tables within an input document (Section 5.2.1).
Recent advances in deep learning-based object recognition (J. Wang et al., 2021;
S. Xie et al., 2017) allow to perform a highly accurate and reliable table detection
process. Therefore, the hybrid variant of the proposed system exploits an existing
deep learning-based table localization method combined with a heuristic-based
TSR module, resulting in an efficient, hybrid table recognition approach.

The detection method is required to take either an image or a PDF file as input
and to return a list of bounding boxes, each corresponding to a single table object.

126

5.5 Proposed Hybrid Table Extraction Method

If the confidence values for each detection result are also provided, they can be
exploited by the proposed method to perform additional filtering, as described in
Section 5.6.2. In general, the choice of the detection method is arbitrary, as long
as the aforementioned requirements are met.

Using the results provided by the table detection component, all identified tables
are cropped from the original input document and passed to the preprocessing
module as either images or PDF files, depending on the format of the original
document.

5.5.2 Table Structure Recognition

The table recognition module described in Section 5.4 takes a semi-structured
representation of a whole document as input and performs table detection and
structure recognition in one step. In contrast, the approach described in this
section performs table detection and TSR separately. Therefore, the input to the
TSR component constitutes a document containing a single table object together
with its semi-structured representation.

To perform TSR, the heuristics described in Sections 5.4.3 and 5.4.4 need
to be adapted to this scenario. The first, straightforward modification is that
table labels are not used for filtering table candidates (Section 5.4.3) because
the table detection module already delivers fairly accurate detection results.
Further adaptations and improvements, designed specifically for each heuristic,
are described in the remaining part of this section.

Recognition of Fully Bordered Tables

This TSR method employs the heuristic presented in Section 5.4.3 with the
modifications described in the following paragraphs.

Dynamic Margin for Separator Merging The margins employed in the separa-
tor merging procedure (Section 5.4.3) are calculated as follows: δx = max(5, Sx/2)

and δy = max(5, Sy/2). This makes the method more resistant to different
resolutions of the input document, preserving the minimum margin of five pixels
used in the basic approach.

Filtering Hybrid-Layout Tables In the postprocessing stage (Section 5.4.3),
additional filtering is performed to discard the tables that predominantly exhibit

127

5 Flexible Table Recognition and Semantic Interpretation

a bordered layout but also contain many rows that are separated by whitespaces
instead of solid separators, as such tables would preferably be recognized using the
heuristic for partially bordered tables (see Figure 5.15). For each table, the ratio
Hratio of the highest row to the median row height is calculated and all tables with
Hratio greater than a predefined threshold Hmax

ratio are discarded.

(a) Input Image

(b) Recognition Result

Figure 5.15: An example of a table cropped from the us-001.jpg file contained in the
ICDAR 2013 benchmark (Göbel et al., 2013). Solid blue lines represent
the borders between the cells that were detected by the TSR heuristic for
fully bordered tables. In contrast, light blue lines correspond to the row
borders that are not outlined with solid ruling lines and therefore could not
be recognized by this method.

Recognition of Partially Bordered and Borderless Tables

This TSR method employs the heuristic presented in Section 5.4.4 with the
modifications described in the following paragraphs.

128

5.6 Experimental Setup - Table Recognition

Adding Virtual Ruling Lines The recognition of the tables that do not strictly
follow the booktabs format, e.g., by missing a top or a bottom ruling line, is
facilitated by adding a virtual top and bottom ruling lines at the top and the
bottom of the input document, respectively. These ruling lines are stretched across
the entire width of the image and used in the subsequent table region detection
procedure (Section 5.4.4). Moreover, if the detection process does not output any
valid table candidate, an additional virtual ruling line is added at the position
−Sy, and the searching process is repeated. This step ensures that at least one
table candidate is found, even in the case of borderless tables.

Filtering Narrow Tables An additional filtering step is added, where all candi-
dates narrower than 90% of the image width are discarded. Figure 5.16 illustrates
a case that benefits from adding virtual ruling lines and filtering narrow tables.

Merging Overlapping Table Candidates In the case of the tables that use
solid separators for the separation of rows, the basic approach outputs multiple
overlapping candidates. Therefore, if the vertical overlap between two table
candidates is greater than Sy, these candidates are merged, i.e., the top and the
middle ruling line with a lower y-position as well as the bottom line with a higher
y-position are retained in the merged table candidate, as illustrated in Figure 5.17.
This procedure is performed prior to the table row detection step (Section 5.4.4).

Estimation of the Threshold for Column Separation The threshold used to
separate table columns is estimated as follows:

Dcolumn = γSx, (5.4)

where γ is a hyperparameter (Section 5.4.4). The average character size Sx within
the table is used instead of the median unit distance between the words on a page
(Equation (5.2)) because the full-page content cannot be exploited in this scenario.

5.6 Experimental Setup - Table Recognition

In this section, the experimental setup of the evaluation presented in Section 5.7
is described, where the proposed hybrid table extraction system (Section 5.5)
is examined using two widely adopted table recognition benchmarks. In both
cases, the CTR process is evaluated, i.e., end-to-end table detection and structure
recognition.

129

5 Flexible Table Recognition and Semantic Interpretation

(a) Input Image

(b) Initial Detection Result Without Filtering

(c) Final Results After Filtering

Figure 5.16: Filtering based on the table width employed by the TSR heuristic for
partially bordered and borderless tables. (a) An example of a table cropped
from the cTDaR_t10005.jpg file contained in the ICDAR 2019 benchmark
(L. Gao et al., 2019). (b) An initial result before the filtering — two spurious
candidates were identified. Green, orange, and blue lines correspond to the
top, middle, and bottom ruling lines, respectively. (c) The result after
filtering. Dotted green and blue lines correspond to the virtual top and
bottom ruling lines, respectively. Dotted red line is the virtual ruling line
added above the top ruling line. Note that the row between two virtual
ruling lines at the top is discarded as it does not contain any textual content.

130

5.6 Experimental Setup - Table Recognition

(a) Input Image

(b) Table Candidates Before Merging

(c) Table Candidates After Merging

Figure 5.17: Merging overlapping table candidates, as employed by the TSR heuristic
for partially bordered and borderless tables. (a) An example of a table
cropped from the cTDaR_t10058.jpg file contained in the ICDAR 2019
benchmark (L. Gao et al., 2019). (b) and (c) Overlapping tables. Each
triple of consecutive separators, marked with gray lines, represents one table
candidate. Using solid lines as row separators causes that a common line is
included in the subsequent candidates. Merging the overlapping elements
allows to mitigate this problem. Dotted green and blue lines correspond to
virtual top and bottom ruling lines, respectively. Solid blue lines represent
the remaining solid separators.

131

5 Flexible Table Recognition and Semantic Interpretation

5.6.1 Data Sets

The benchmarks employed in the experiments were released by the organizers of
the table recognition competitions that were held at the International Conference
on Document Analysis and Recognition.

The ICDAR 2013 Table Competition data set (Göbel et al., 2013) contains born-
digital business and government PDF documents with 156 tables. Ground-truth
annotations for both table detection and TSR tasks are available.

The ICDAR 2019 Table Detection and Recognition data set (cTDaR; L. Gao
et al., 2019) is a collection of modern and archival document images. Only the
former part was used in the experiments in this section, as the latter consists
of handwritten documents, and the analysis of hand-drawn tables is outside the
scope of this work. The track B2 in this competition was chosen for evaluation as
it corresponds to the CTR process, which is the most challenging task. The test
set of the aforementioned track consists of 100 images of scanned document pages,
each containing at least one table.

5.6.2 Table Detection Setup

In the case of the ICDAR 2013 data set, all pages of a PDF document are first
rendered as images with the resolution of 300 dots per inch (DPI) and the detection
is performed for each rendered image separately. In the case of the ICDAR 2019
benchmark, the original images are used as input to the detection model.

The hybrid variant of the proposed system employs two previously released table
detection models that are described in the following paragraphs. Nevertheless,
other models can readily be used instead (Section 5.5.1).

Domain-Specific Table Detection Model

The first variant is the table detection model released by Prasad et al. (2020). Their
CascadeTabNet method uses an instance segmentation technique and performs
pixel-level table identification. In the experiment in Section 5.7.1, a model fine-
tuned on the ICDAR 2013 benchmark is used and in Section 5.7.2, the model tuned
on the ICDAR 2019 data set is employed. Please refer to Prasad et al. (2020) for
the details about the architecture of the table detection model, the composition of
the data used for training, and the employed training setup. Hereinafter we refer
to this model as the domain-specific table detection model.

132

5.6 Experimental Setup - Table Recognition

General-Purpose Table Detection Model

In contrast, the second variant of the hybrid table recognition system employs the
table detection model proposed by M. Li et al. (2020), which is based on the Faster
R-CNN architecture (Ren et al., 2015) with the ResNeXt-152 model as backbone
(S. Xie et al., 2017). Their model was pretrained on the ImageNet data set (J. Deng
et al., 2009) and fine-tuned on the TableBank data (M. Li et al., 2020), which
contains a large number of Word and LATEX documents crawled from the internet.
Note that this model was not fine-tuned on the examples from the benchmarks
employed for evaluation. Therefore, we refer to this model as a general-purpose
table detection model.

Filtering Rules

Note that both employed table detection models take an image as input and return,
for each detected table, a bounding box and a confidence value. All detection
results with a confidence lower than 0.85 and 0.1 are discarded, respectively, in
the case of the domain-specific and the general-purpose table detector. Moreover,
if some detection results overlap with each other by more than 50%, only the result
with a higher confidence value is kept.

5.6.3 TSR Setup

All detected tables are cropped from the input documents based on the returned
bounding box coordinates and fed to the preprocessing module, followed by the
TSR component, one table at a time. In the case that the input document
is in PDF format, the PyPDF2 library13 is used to crop a region from a PDF
file. Therefore, the preprocessing module can extract the text embedded in the
PDF files, which is essential to obtain competitive results on the ICDAR 2013
benchmark.

Hyperparameters

The values of the hyperparameters are presented in Table A.5. They were
empirically estimated based on the results on a practice data set from ICDAR
2013 Table Competition that consists of 58 PDF documents and the data from
the remaining tracks in ICDAR 2019 Table Competition.
13 https://pypi.org/project/PyPDF2

133

https://pypi.org/project/PyPDF2

5 Flexible Table Recognition and Semantic Interpretation

5.6.4 Postprocessing

In the case of the ICDAR 2019 benchmark, the results for all tables on a page
are gathered to produce the output XML file in a format14 that is supported by
this competition. Similarly, in the ICDAR 2013 setup, the results of TSR from all
pages are gathered to produce the final XML file in a format15 exploited by the
evaluation tools employed in this competition.

5.7 Experimental Results - Table Recognition

In this section, the hybrid variant of the proposed table extraction system
(Section 5.5) is thoroughly examined using two widely adopted table recognition
benchmarks (Section 5.6.1).

5.7.1 ICDAR 2013 Experiment

In this section, the results of the evaluation performed on the benchmark from
ICDAR 2013 Table Competition16 are presented.

Evaluation Setup

The official evaluation tool written in Java programming language was released by
the organizers of this competition.17 It takes a PDF file and two XML files, with
the ground-truth annotations and the recognition results, respectively, as input
and produces the resulting precision, recall, and F1 scores for each ground-truth
table in the input document. Moreover, it also outputs the number of relations
in all false-positively recognized tables. Unfortunately, the document-level scores
used as the main metric in this competition have to be computed manually by
accumulating the results from each file in this data set. Specifically, according
to the evaluation setup described in (Göbel et al., 2013), the precision and recall
scores are first computed for each document separately, and then the average scores
are calculated based on the document-level scores.

To facilitate the evaluation process, in this work, a Python wrapper for the
competition’s evaluation tool was developed and released publicly to promote
14 https://cndplab-founder.github.io/cTDaR2019/dataset-description.html
15 https://roundtrippdf.com/en/data-extraction/dataset-format
16 https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
17 https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools

134

https://cndplab-founder.github.io/cTDaR2019/dataset-description.html
https://roundtrippdf.com/en/data-extraction/dataset-format
https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
https://roundtrippdf.com/en/data-extraction/table-recognition-dataset-tools

5.7 Experimental Results - Table Recognition

reproducibility and to enable fair comparison of research results obtained on this
benchmark.18 The wrapper script parses the output produced by the official
evaluation tool and accumulates the document-level scores to return the final,
per document averages — precision, recall, and F1 score. Moreover, the wrapper
script also includes the adjacency relations from the false-positively detected tables
to give a better perspective on the actual performance of the table recognition
approaches. Furthermore, the script utilizes alternative ground-truth annotations
prepared by the organizers for several documents in this data sets.

Evaluation Results

Table 5.1 compares the results of the proposed method with the state-of-the-art
approaches on the ICDAR 2013 data set. Note that only the prior work that
reported the results of the CTR process is included. Moreover, the methods that
used a subset of the data for evaluation are also excluded.

The F1 score achieved by the proposed method is better than all previously
reported results except for the commercial FineReader approach that won the
original competition. Comparing the results of two variants of the proposed
hybrid approach that employed either the general-purpose or the domain-specific
table detection model (Section 5.6.2) we can see a clear advantage of the latter.
Nevertheless, the general-purpose variant is still very competitive, outperforming
other methods, except for the FineReader engine.

Table 5.1: Evaluation results on the ICDAR 2013 benchmark. The precision, recall, and
F1 score (per document averages) for the CTR process are reported.

Method Precision Recall F1

FineReader v11 (Göbel et al., 2013) 0.8710 0.8835 0.8772
Proposeda 0.8714 0.8468 0.8589
Proposedb 0.8483 0.8397 0.8439
OmniPage 18 (Göbel et al., 2013) 0.8460 0.8380 0.8420
Nurminen (Göbel et al., 2013) 0.8693 0.8078 0.8374
TabbyPDF (Shigarov et al., 2018) 0.8339 0.8298 0.8318
TEXUS (Rastan et al., 2015) 0.8071 0.7823 0.7945
a Uses a domain-specific table detection model from Prasad et al., 2020.
b Uses a general-purpose table detection model from M. Li et al., 2020, i.e., the X512
(ResNeXt-512) Latex+Word model.

18 https://github.com/mnamysl/tabrec-sncs/tree/main/evaluation/ICDAR2013

135

https://github.com/mnamysl/tabrec-sncs/tree/main/evaluation/ICDAR2013

5 Flexible Table Recognition and Semantic Interpretation

5.7.2 ICDAR 2019 Experiment

In this section, the results of the evaluation performed on the benchmark from
ICDAR 2019 Table Competition19 are presented.

Basic Evaluation Setup

For this experiment, the official tools and metrics used in the original competition
are employed.20 The organizers of this competition adopted the metrics employed
in the ICDAR 2013 Table Competition, except that the textual content of the
cells is not used for the comparison of adjacency relations, i.e., relations between
the neighboring cells in a table, and the evaluation focuses on the geometrical
proximity between the ground-truth and the recognized cells. The main metric
used to compare the results of the examined methods is the weighted average F1

score, abbreviated as WAvg.F1, which is computed as a weighted sum of the F1

scores obtained using four different intersection over union (IoU) thresholds for the
cell matching procedure — IoU ∈ {0.6, 0.7, 0.8, 0.9}. IoU is defined as the ratio
between the area of the overlap and the union of two bounding boxes.

Correcting an Issue in the Evaluation Script

Preliminary experiments revealed a previously unseen issue in the official evalua-
tion script. Specifically, a simple sanity check was performed: The ground-truth
data was fed as the input to the evaluation script and the expected result was
to get a perfect WAvg.F1 score of 1.0. Surprisingly, the obtained score of 0.793

suggested some issues with the original evaluation script. In fact, the issue in the
code was located and fixed. The issue caused incorrect table matching in the case
when there are two or more tables in an input image. After correcting the issue in
the evaluation script, the sanity check passed as expected.

Revised Annotations

Moreover, the annotations of the track B2 (modern documents) available in
the official repository hosting the data for this competition have recently been
updated21. To estimate the expected difference in recognition scores obtained using
19 https://cndplab-founder.github.io/cTDaR2019
20 https://github.com/cndplab-founder/ctdar_measurement_tool
21 https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b

07f9cabce2a9480af98c78

136

https://cndplab-founder.github.io/cTDaR2019
https://github.com/cndplab-founder/ctdar_measurement_tool
https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b07f9cabce2a9480af98c78
https://github.com/cndplab-founder/ICDAR2019_cTDaR/commit/66c411710a99b75a6b07f9cabce2a9480af98c78

5.7 Experimental Results - Table Recognition

the revised versus the old annotations, another experiment was carried out: The
old annotations were fed as input and the revised annotations were used as ground
truth. Note that the corrected evaluation script was used in this experiment. The
resulting WAvg.F1 score of 0.647 suggests that the results obtained by evaluating
against the old annotations could substantially differ from the results obtained
by employing the revised annotations. This behavior could be caused by the fact
that the WAvg.F1 score is biased toward high overlap ratios between the cells and
strongly penalizes lower IoU scores.

Final Evaluation Setup

The above-described observations motivated the author to perform the experi-
ments in four different scenarios: (1) Using either the corrected or the original
evaluation script and (2) Using either the original or the revised annotations.

In the case that the original script and the original annotations were used, the
baseline methods include the best previously-reported scores on this data set.22

In all other scenarios, ABBYY FineReader Engine23 — a commercial solution
that facilitates information extraction from documents and also provides a table
recognition module — was additionally evaluated and used as a baseline approach.
To adapt the output produced by this method to the format expected by the
evaluation tool, the method employed in Adams et al. (2021) was used. This
method parses all table blocks from the output in the ABBY-XML format and
converts them to the XML format supported by the ICDAR 2019 evaluation tool.

Evaluation Results

The results of this experiment are presented in Table 5.2. In the case that the
original script and the original annotations were used, the scores exhibited by
the proposed method are lower than the best previously reported results in terms
of WAvg.F1, although the proposed hybrid system performed on par with the
FineReader engine, which can be considered as a strong baseline. Interestingly,
both the proposed method and the FineReader engine perform better than other
methods at the highest IoU threshold. However, note that the results obtained
using the evaluation script affected by the issue described in Section 5.7.2 are
22 For fair comparison, only the prior work that employed the official tools and annotations

for evaluation was included. For instance, the results of the Multi-Type-TD-TSR approach
(Fischer et al., 2021) are omitted because the authors reannotated the test data and used
images of cropped tables as input.

23 https://www.abbyy.com/ocr-sdk (SDK v12).

137

https://www.abbyy.com/ocr-sdk

5 Flexible Table Recognition and Semantic Interpretation

underestimated and should be taken with a grain of salt because it is not clear
how other methods would have performed if the corrected script had been used.

Moreover, the proposed method considerably outperformed ABBYY FineReader
Engine in the scenarios, where the revised annotations were employed. In the
remaining scenario, where the corrected script and the original annotations were
used, both the proposed and the FineReader methods exhibited comparable
WAvg.F1 scores. Furthermore, consistent with the results presented in Section 5.7.1,
the variant of the proposed method that employed the domain-specific table
detection model outperformed the general-purpose variant. In summary, the best
results were obtained when both the corrected evaluation script and the revised
annotations were used.

Table 5.2: Evaluation results on the ICDAR 2019 benchmark (track B2 — modern
document subset). The results of four different variants of the evaluation
are included — using either the original or the corrected evaluation script
as well as using either the original or the revised ground-truth annotations.
WAvg.F1 denotes the average F1 score weighted by the IoU threshold for IoU
∈ {0.6, 0.7, 0.8, 0.9}.

Corrected Revised
Method WAvg.F1Script Annotations

7 7

CascadeTabNet (Prasad et al., 2020) 0.232
NLPR-PAL (L. Gao et al., 2019) 0.206
Proposeda 0.191
FineReader v12 0.190
Proposedb 0.181

3 7

FineReader v12 0.248
Proposeda 0.244
Proposedb 0.220

7 3

Proposeda 0.277
Proposedb 0.255
FineReader v12 0.235

3 3

Proposeda 0.345
Proposedb 0.309
FineReader v12 0.290

a Uses a domain-specific table detection model from Prasad et al., 2020.
b Uses a general-purpose table detection model from M. Li et al., 2020, i.e., the X512
(ResNeXt-512) Latex+Word model.

138

5.8 Table Interpretation Experiment

5.8 Table Interpretation Experiment

In this section, the proposed table extraction system is examined in the end-to-end
table extraction scenario. The basic variant of the proposed system is employed
(Section 5.4), as it performs reliably in the scenario where the tabular layout is
well defined, i.e., it follows the fully or partially bordered format, and the table
labels are present.

5.8.1 Data Sets

For table interpretation, a common, publicly available benchmark could hardly
be found, neither for general data nor for a specific use case. Therefore, to
evaluate the proposed table interpretation method, 13 documents containing tables
from an internal biomedical data collection were selected and manually annotated.
Specifically, the documents containing tables presenting the inhibitory activity of
different compounds toward the histone deacetylase (HDAC) gene were chosen.24

The ground-truth data for a table consists of a list of tuples, each representing
an intersection of a data row and the columns that correspond to the defined
meanings. The annotations were stored in JSON files with the following name
pattern:

<FILE_ID>_<PAGE_NR>_<TABLE_IDX>.json

where <FILE_ID> is the file identifier, <PAGE_NR> is the page number in the
corresponding PDF file, and <TABLE_IDX> is the index of a table on a page.

113 tuples from 17 tables were manually annotated and used as ground-truth
data in the experimental evaluation. An example of a ground-truth file is presented
in Figure 5.18. Moreover, a separate development set of four documents was
selected for fine-tuning the table interpretation rules employed by the proposed
approach.

5.8.2 Evaluation Setup

To perform end-to-end table extraction, the complete pipeline presented in Fig-
ure 5.2 needs to be executed. Specifically, a document in PDF format is fed as
input to the system. Subsequently, preprocessing is carried out followed by table
24 https://en.wikipedia.org/wiki/Histone_deacetylase. Specifically, the HDAC1 and

HDAC6 target genes were chosen.

139

https://en.wikipedia.org/wiki/Histone_deacetylase

5 Flexible Table Recognition and Semantic Interpretation

[
{

"compound": "9b (IC50;nM)",
"hdac1_ic50": "84.9 \u00b1 25.1",
"hdac6_ic50": "95.9 \u00b1 0.78"

},
{

"compound": "SAHA (IC50;nM)",
"hdac1_ic50": "102.7 \u00b1 5.9",
"hdac6_ic50": "198.5 \u00b1 103.0"

}
]

Figure 5.18: An example of a ground-truth file from the collection used in the table
interpretation experiment (11_page07_table0.json). Note that 0x00B1 is
the encoding of the ’±’ symbol in Unicode.

recognition and table interpretation. As a result, the relevant tuples of information
are extracted from the tables contained in the input documents.

To facilitate evaluation, the extracted tuples for each table are stored in a
separate JSON file (Figure 5.13c) using the same file name pattern as in the case
of the ground-truth files (Section 5.8.1).

Hyperparameters and Table Interpretation Rules

The hyperparameters of the table recognition method and the rules employed
by the table interpretation approach were tuned using the documents from the
development set (Section 5.8.1). The following hyperparameter values of the table
recognition method are used: The table labels are required by the heuristic for
partially bordered tables (Section 5.4.4) and γ = 2.0 is used. Moreover, Figure A.3
in the appendix presents the final set of rules employed by the table interpretation
method in the experiment presented in this section.

Evaluation Procedure

The evaluation script takes two sets of JSON files that correspond to the ground-
truth and the recognized tables, respectively, as input. For every page, the script
creates a bipartite graph with two sets of nodes corresponding to the ground-
truth and the recognized tables, respectively. The weights of the edges in the
graph correspond to the F1 scores of the matching between the corresponding
tables. Moreover, to prune all irrelevant edges, the affinity score threshold is set
to Smin = 0.01.

140

5.8 Table Interpretation Experiment

Subsequently, maximum weight matching, as proposed by Edmonds (1965), is
performed to find the correspondence between the aforementioned sets of tables.
Figure 5.19 illustrates the evaluation procedure performed on a document page
with two ground-truth tables.

0.8
0.3
0.1
0.2
0.3
0.9

Figure 5.19: An example of a weighted bipartite interpretation graph that contains two
ground-truth and three recognized tables, represented by green circles and
blue squares, respectively. Each vertex in a graph corresponds to a set of
tuples extracted from a table and stored in a separate JSON file. The edges
are weighted by the F1 scores of the matching between the corresponding
sets of tuples. The matching with the maximum sum of weights is marked
with green solid lines. Note that the y2 vertex corresponds to a false-positive
result, which is not included in the final matching. The document pages
presented in this example were extracted from the employed data set.

Evaluation Metrics

To compute cumulative scores, the results from all pages are collected and the
exact precision, recall, and F1 scores are calculated. Note that the tuples from
the missed reference tables and incorrectly extracted relations are also included in
the reported results. Therefore, the obtained scores reflect the performance of the
complete table extraction process.

It is worth noting that the evaluation script used in the experiment presented
in this section was made publicly available to foster future research on IE from
tables contained in unstructured documents.25

5.8.3 Evaluation Results

Table 5.3 presents the results of the proposed method in the complete table
extraction experiment. The presented method extracted 74 tuples from 10 out of 28
25 https://github.com/mnamysl/table-interpretation

141

https://github.com/mnamysl/table-interpretation

5 Flexible Table Recognition and Semantic Interpretation

tables present in the test set and achieved a solid F1 score of 0.7380. Moreover, after
decoupling the errors that result from the missed reference tables, the proposed
method exhibited a high F1 score of 0.9388, proving its utility.

Table 5.3: Results of IE from tabular data. The scores obtained both through the end-
to-end table extraction process (Proposed: end-to-end) and solely from the
correctly recognized tables (Proposed: interpretation-only) are included. The
precision, recall, and F1 score are reported. TP, FN, and FP refer to the
number of tuples that were perfectly matched (true-positive), missed (false-
negative), or incorrectly recognized (false-positive), respectively.

Method TP FP FN Precision Recall F1

Proposed: end-to-end 69 4 45 0.9452 0.6053 0.7380
Proposed: interpretation-only 69 4 5 0.9452 0.9324 0.9388

Qualitative Analysis

It could be expected that lower recall of the complete table extraction system re-
sulted from the errors made by its upstream components. Therefore, a qualitative
analysis of the results was carried out to identify the main sources of the recognition
errors. The analysis showed that only one false-positive and one false-negative
error was directly related to the designed interpretation rules. The remaining
errors were caused by TSR issues like incorrectly merged cells.

5.9 Summary

In this chapter, a flexible and modular table extraction system was presented. To
infer the location and the exact structure of tables in unstructured documents,
two heuristics that work with both PDF files with embedded text and image-
based documents were developed (Sections 5.4.3 and 5.4.4). Moreover, in a hybrid
variant of the proposed system, a deep learning-based table detection module
was combined with the proposed TSR heuristics (Section 5.5). For semantic
information extraction, a configurable, graph-based table interpretation method
was introduced (Section 5.4.5).

Extensive experiments on challenging table recognition benchmarks showed
that the proposed table recognition method is competitive with state-of-the-art
approaches in the field (Section 5.7). In particular, an issue in the evaluation
script used in ICDAR 2019 Table Competition was corrected and the results of

142

5.9 Summary

the proposed and the baseline method were reported using both the original and
the rectified script (Section 5.7.2). Moreover, the evaluation in the complete IE
scenario, where the target information is extracted directly from raw documents,
confirmed the utility of the presented holistic table extraction system (Section 5.8).

Future Work Directions

Future work could investigate different choices for the table detection module,
preferably trained using a large, representative data set containing tables with
various layouts, originating from different sources. Perspectively, various types
of business and financial documents could also be processed, such as invoices or
balance sheets.

Nevertheless, the most promising direction for future improvements is the
incorporation of recent advances in the field of multimodal, pretrained models
that exploit both visual and text information, such as the work presented recently
by Y. Huang et al. (2022).

143

6 Position-Independent Evaluation
of Table Recognition Systems

Preface

This chapter is adapted from Adams, Namysl, Kodamullil, Behnke, and Jacobs
(2021)1, previously published by Oxford University Press.2

Statement of Personal Contribution

The author of this thesis substantially contributed to all aspects of the previous
publication (Adams, Namysl, Kodamullil, Behnke, and Jacobs, 2021), including
the conception, design, and implementation of the proposed evaluation method,
the preparation of the proposed benchmark data set, conducting the experimental
evaluation, the analysis and interpretation of the experimental results, drafting
the manuscript, the revision and final approval of the version to be published.

In this chapter, only the part of the previous publication (Adams, Namysl,
Kodamullil, Behnke, and Jacobs, 2021) that was substantially contributed by
the author of this thesis is presented. Note that Sections 6.1 and 6.8 were
substantially adapted to match the part of the previous publication presented
in this chapter. Moreover, Section 6.3 that describes the problem studied in this
chapter is additionally presented.

Abstract

Table recognition systems are widely used to extract and structure quantitative
information from the vast number of documents that are increasingly available
from different open sources. While many systems already perform well on tables
1 ©2021 Oxford University Press. Reprinted in Appendix C.5.
2 Reproduced by permission of Oxford University Press (https://academic.oup.com).

145

https://academic.oup.com

6 Position-Independent Evaluation of Table Recognition Systems

with a simple layout, tables in the biomedical domain are often much more
complex. In this chapter, a novel evaluation method of the CTR process is
presented. It allows evaluating a scenario, where the exact location of table
objects on a page is not available in the ground-truth annotations. The presented
method was employed to evaluate several general-purpose, state-of-the-art table
recognition systems on a recently released benchmark containing challenging
scientific documents from the biomedical domain. Moreover, a detailed analysis of
the results obtained by the baseline methods as well as a discussion of the utility
of the presented approach is provided.

6.1 Introduction

Quantitative data that is present in scientific or business documents can be
primarily found in tables. This data is a rich source of information that could be
used to enrich the standard text mining workflows (Jimeno Yepes and Verspoor,
2014). While the number of documents and the contained quantitative information
is vast, it is virtually impossible to extract this information manually due to the
sheer volume of the data. Therefore, automatic table extraction systems have been
widely used for this task (Section 5.3).

Although many table extraction systems already perform well on tables with
a simple structure, they often struggle with tables that have a complex layout
(Chi et al., 2019). Moreover, many general-purpose systems perform poorly on
the examples from an out-of-domain data distribution. In particular, tables in the
biomedical literature are often highly complex and therefore difficult to extract.

Furthermore, a vast number of open access, full-text biomedical publications is
available both as PDF files as well as via a web browser — in an HTML-like XML
format — for instance in the PubMed Central (PMC) digital repository3. This
data has already been exploited to automatically extract the ground-truth anno-
tations for training and evaluation of various document understanding systems,
including table recognition methods (Adams and Namysl, 2021; Zhong et al.,
2020). Although the structure of the tables can be extracted relatively easily
from this data, determining the exact location of the table objects on a page in a
PDF document is an error-prone process that is performed predominantly using
heuristic-based approaches.

In this chapter, a novel evaluation method of the CTR process is presented
(Section 6.4). It employs the established adjacency relation-based protocol and

3 https://www.ncbi.nlm.nih.gov/pmc

146

https://www.ncbi.nlm.nih.gov/pmc

6.2 Related Work

enables performing the evaluation in a scenario, where the exact location of table
objects on a page is not available in the ground-truth annotations.

The presented method was employed to evaluate several general-purpose, state-
of-the-art table recognition systems (Section 6.5.2) on the benchmark released
by Adams and Namysl (2021), which contains scientific publications from the
biomedical domain (Section 6.6). Moreover, a thorough discussion of the results
achieved by the baseline table recognition systems, the challenges based on
the employed data as well as the utility of the presented approach is provided
(Section 6.7).

6.2 Related Work

The most widely used table recognition benchmarks were released by the organizers
of the table recognition competitions that were held at the ICDAR conference.

The data from the first ICDAR 2013 competition4 by Göbel et al. (2013) includes
born-digital business and government PDF documents. For the evaluation of table
detection, completeness and purity measures were employed (Silva, 2011). How-
ever, these measures do not discriminate between minor and major errors, therefore
the precision and recall scores on the subobject level were also calculated. To
evaluate the accuracy of structure recognition, one-dimensional lists of adjacency
relations (Göbel et al., 2012) between each content cell and its neighbors were
compared using precision and recall scores. The adjacency relation is a tuple that
contains the text of the content cell and its neighbor, the direction of the relation
between both cells, and the number of blank cells in between.

The data from the second ICDAR 2019 competition5 by L. Gao et al. (2019)
includes both modern and archival documents in the image format. The modern
data set contains English and Chinese documents of different types such as
scientific journals, forms, financial statements, etc. The archival part exhibits
a great variety of hand-drawn tables from various historical document sources
such as accounting books, stock exchange lists, production censuses, etc. The IoU
metric was employed to evaluate the performance of table detection. IoU measures
the ratio between the area of the overlap and the union of two arbitrary shapes.
The schema for table structure evaluation was adapted from the previous ICDAR
competition. The annotations include table and cell positions, without the textual
content of the cells.
4 https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
5 https://github.com/cndplab-founder/ICDAR2019_cTDaR

147

https://roundtrippdf.com/en/data-extraction/icdar-2013-table-competition
https://github.com/cndplab-founder/ICDAR2019_cTDaR

6 Position-Independent Evaluation of Table Recognition Systems

Chi et al. (2019) introduced SciTSR6, a large-scale TSR data set. Their
benchmark was constructed by compiling the LATEX table snippets, which were
extracted from the source code crawled from arXiv7 to the individual PDF files.
They obtained the structure information by analyzing each table snippet to extract
cell coordinates (i.e., row and column indices) and textual contents. Their method
produced reference annotations in JSON format. Moreover, they divided their
benchmark into easy and complicated subsets. The latter consists of tables that
contain at least one cell that spans multiple rows or columns.

M. Li et al. (2020) proposed TableBank8, an image-based data set of open-
domain business and scientific documents in many languages, including English,
Chinese, Japanese, and Arabic. They employed a weakly supervised method
to build the reference annotations from Word and LATEX documents that were
crawled from the web. The authors manually added a bounding box using
the markup language in the source code of each document to facilitate the
automatic localization of table regions. The arrangement of rows and columns was
represented as a sequence of HTML tags. They applied precision, recall, and F1

score measures for the evaluation of table detection accuracy. For table structure
assessment, the 4-gram bilingual evaluation understudy (BLEU) score (Papineni
et al., 2002) with a single reference was employed.

Recently, Zhong et al. (2020) introduced PubTabNet9, another image-based
TSR data set that contains table images extracted from biomedical documents.
Their benchmark was automatically generated by matching the table nodes in the
XML files and the content of the PDF articles in PMC Open Access Subset10.
Their algorithm produces pairs of table images with the corresponding table
representation in HTML format. They employed the tree edit distance-based
similarity metric (Pawlik and Augsten, 2016) for table structure evaluation. It
is worth noting that their evaluation schema assumes that the accurate location
of each table in the documents is given beforehand.

Table 6.1 summarizes the statistics of the table recognition benchmarks. Note
that it also includes the benchmark released by Adams and Namysl (2021), which
is described in Section 6.3. One-half of these data sets contain the documents
in image format, which makes information extraction harder and less reliable.
Consequently, the OCR technology needs to be additionally employed to extract
the text depicted in each cell, which can lead to information loss.
6 https://github.com/Academic-Hammer/SciTSR
7 https://arxiv.org
8 https://github.com/doc-analysis/TableBank
9 https://developer.ibm.com/exchanges/data/all/pubtabnet

10 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist

148

https://github.com/Academic-Hammer/SciTSR
https://arxiv.org
https://github.com/doc-analysis/TableBank
https://developer.ibm.com/exchanges/data/all/pubtabnet
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist

6.3 Problem Definition

Table 6.1: The number of tables in the previously proposed table detection, TSR, and
CTR benchmarks. Table detection involves locating the coordinates of a
table in a document. TSR takes the location of a table in a document and
recognizes its structure (e.g., coordinates of the cells or HTML-like output).
CTR involves both table detection and TSR. Only the data sets that provide
the annotations for TSR or CTR are included.

Data set Table Detection TSR CTR

ICDAR 2013 156 156 156
ICDAR 2019 1,639 750 250
SciTSR - 15,000 -
TableBank 417,234 145,463 -
PubTabNet - 568,592 -
Adams and Namysl (2021) - - 1,650

6.3 Problem Definition

Recently, a benchmark data set for evaluating table recognition systems in the
biomedical literature context was released by Adams and Namysl (2021). This
benchmark is based on a hand-curated literature corpus on neurological disor-
ders and contains PDF documents with tables of varying complexities, ranging
from simple n × m grid layouts to very complex structures with several nested
compartments. They retrieved the PDF documents, as well as their structural
representation in XML format, from PMC. Subsequently, the annotations for TSR
were automatically extracted and stored in a cell-based format that was established
by the ICDAR 2013 Table Competition, which specifies a flat list of cells for each
table region. Moreover, in this format, table regions are structured by the start
and end positions of their row and column span.

The information that is available in the original PMC-XML format allows the
reconstruction of the structured content of the tables. However, the annotations
for the location of the tables in a document are not available. Unfortunately,
the existing protocols cannot be employed for evaluation of the CTR process in
a scenario, where the reference data is only partially annotated, i.e., it does not
contain the information about the location of the table objects on a page.

A straightforward solution would be to match the PDF documents with the
corresponding XML files to locate the table object using manually engineered
heuristics. Unfortunately, this process could be error-prone, and the results may
require manual curation. Therefore, this chapter aims to answer the question:
How to evaluate the CTR process without using the information about the exact

149

6 Position-Independent Evaluation of Table Recognition Systems

location of the tables in a document?
The existing evaluation protocols either assume that the location of the table

objects is known beforehand, or it is not required as the inputs are assumed to
contain only one table object per document (Section 6.2). However, in a real-
world scenario, tables could be annotated with the corresponding arrangement of
the cells and their textual content. The HTML format is a representative example
of this type of annotation. Although widely available, these data could not be
fully exploited by the existing approaches.

6.4 Proposed Evaluation Method of the CTR Task

The approach presented in this section extends the portfolio of the available
evaluation methods of the CTR process to the scenario, where the ground-truth
data does not contain the information about the positions of the table objects on a
page in an input document, thereby addressing the issue described in Section 6.3.

To this end, a novel method that evaluates the CTR process is proposed. It
performs table matching and structure comparison between the ground-truth and
the recognized tables using exclusively the information about the structure of the
tables and not their exact locations in a document.

First, a method that measures the similarity between the relative structure of
two tables was developed. Specifically, for a pair of tables (a recognized and a
ground-truth table), it extracts the local adjacency relations between the cells of
each table. Then, the intersection between these two sets of relations is computed
and the precision, recall, and F1 scores are calculated, as described by Göbel et al.
(2012). The F1 score calculated in this way is used to rate the similarity between
two arbitrary tables and is referred to as the affinity score.

Note that for the computation of the adjacency relations, the same algorithm is
employed as in the work of Göbel et al. (2012) except that the number of empty
cells is not used, which allows computing the adjacency relations regardless of the
number of empty cells between the neighboring elements. Figure 6.1 visualizes
this aspect in a practical example.

To perform table matching in a document, a document-level bipartite graph
with two disjoint sets of vertices, each representing the set of ground-truth and
the recognized tables (X and Y in Figure 6.2, respectively) is created. Moreover,
an edge is added between every pair of tables from both sets of vertices. Each
edge is weighted by the affinity score between the corresponding tables. To
improve performance, the connections with affinity scores equal to zero are pruned.

150

6.4 Proposed Evaluation Method of the CTR Task

Number %

Liver resection Non-anatomical resection 11 28.9

Left hepatectomy 4 10.5

Right hepatectomy 20 52.6

Extended left hepatectomy 1 2.6

Extended right hepatectomy 2 5.3

Number of liver metastases 1 26 68.4

2 3 7.9

3 3 7.9

4 2 5.3

>4 4 10.5

Size of largest liver Median 5 (IQR 4 to 6)

metastasis (cm) Mode 4

Liver resection margin R0 32 84.0

status R1 6 16.0

Nearest involved Median 9 (IQR 5 to 10)

margin (mm) Mode 10

Table 2 Details of resected liver metastases

Figure 6.1: Visualization of adjacency relations. In this example, there are 91 such
relations. Green squares represent relations between the data cells. Blue
rectangles indicate the relations between the cells that are separated by
empty cells (marked orange). The relations will be correctly computed
regardless of the number of blank cells in between. The example was
adapted from Mole et al. (2011) and used under the terms of Creative
Commons Attribution-NonCommercial-Share Alike 3.0 Unported License
(https://creativecommons.org/licenses/by-nc-sa/3.0).

151

https://creativecommons.org/licenses/by-nc-sa/3.0

6 Position-Independent Evaluation of Table Recognition Systems

Subsequently, the maximum weight matching, as introduced by Edmonds (1965),
is performed on the document-level graph to find the best correspondence between
the aforementioned sets of tables. Figure 6.2 presents an example of a document-
level graph with the best assignment that was found using the proposed method.

0.90.9
0.70.10.0

0.3
0.1
0.6
0.0

0.5

0.4
0.2
0.1

Figure 6.2: An example of a weighted document-level bipartite graph that represents
three ground-truth tables (blue diamonds) and four tables recognized by a
table recognition system (orange triangles) that need to be matched. The
weights of the edges are calculated based on the affinity scores between the
corresponding tables. Green solid lines represent the matching with the
maximum sum of weights. The y4 vertex corresponds to a false-positive result
and was not included in the best matching. The document pages presented in
this example were extracted from the employed benchmark data set (Adams
and Namysl, 2021).

6.5 Experimental Setup

6.5.1 Data Set

In this chapter, the benchmark released by Adams and Namysl (2021) is used
for the experimental evaluation of table recognition methods. This data set is
comprised of 863 reference PMC documents with the corresponding annotations
in XML format.

For many references in this data set, multiple PDF documents are available,
as each reference corresponds to one PMC article, which, in addition to the
main publication content, may contain multiple files with supplementary material.
Therefore, the total number of PDF files in this data set is 1,164. The respective
total number of annotated tables is 1,650.

152

6.5 Experimental Setup

Moreover, the tables are divided in terms of complexity, and consequently,
expected difficulty for the table recognition methods, into the following three
categories:

1. Simple tables with an n×m grid structure without any cells spanning over
several rows and columns.

2. Complicated tables that contain a row or column (primarily found in the
table headers) with cells that span over several rows or columns.

3. Complex tables that contain several distinct rows or columns with cells
that span over other cells, which visually results in a complex, nested cell
structure.

The respective number of tables classified into each of the above-defined cate-
gories can be found in Table 6.2. Note that even though the number of complex
tables is rather high, the benchmark still contains a large number of simple
tables, making the data set well balanced for testing different table recognition
approaches.

Table 6.2: The number of tables in the employed benchmark data set assigned to
their respective complexity category and the number of the corresponding
adjacency relations.

Type Tables Adjacency Relations

Full benchmark 1,650 198,182
Simple tables 1,022 108,528
Complicated tables 140 20,527
Complex tables 488 69,127

Chi et al. (2019) use a similar system for the categorization of their benchmark
tables. They describe tables that span over at least two columns or rows as
complicated, similar to the categorization used in this work. They do, however, not
further differentiate between tables that show this characteristic in a single row
(e.g., the header) and tables that have different spanning cells in several distinct
areas, which, in this work, are described as complex.

6.5.2 Baseline Table Recognition Methods

The following methods are experimentally evaluated on the employed benchmark
data set (Section 6.5.1):

1. The basic variant of the table recognition method presented in Section 5.4.
It supports the table formats that are frequently found in the scientific

153

6 Position-Independent Evaluation of Table Recognition Systems

literature and business documents, i.e., partially bordered tables in book
tabs format11 and fully bordered tables.

2. ABBYY FineReader Engine12, a commercial solution for textual information
extraction from born-digital or digitized documents. It also provides a table
recognition module.

3. TabbyPDF13 (Shigarov et al., 2018), an open-source tool for extracting tables
from PDF documents with embedded text. It implements heuristics that
leverage both textual and graphical features such as distances, fonts, and
rulings.

4. Tabula14, a popular open-source tool for liberating tabular data from PDF
files. It implements the algorithms proposed by Nurminen (2013). Both the
lattice and stream mode are employed for bordered and borderless tables,
respectively. Note that this method does not support row and column
spans, therefore it may underperform on the examples that contain many
cells spanning multiple rows or columns.

Although many deep learning-based methods were recently proposed (Paliwal
et al., 2019; Prasad et al., 2020), they predominantly work with the image-based
input and are employed to recognize exclusively the structure of tables. As the
goal of the experiments in this chapter is to evaluate the accuracy of the extraction
of both the structure and the textual content present in the tabular data, these
methods could not be employed in this scenario.

6.5.3 Evaluation Metrics

Following the previous work of Göbel et al. (2013), the precision, recall, and F1

scores of the CTR process are reported as the main metrics in the experiments.
The scores are calculated based on the adjacency relations between the cells and
their neighbors (Göbel et al., 2012). Note that the adjacency relations from both
false-positive recognition results and missed reference tables (false-negatives) are
also included in the reported results. To calculate the cumulative scores, all true-
positive, false-positive, and false-negative relations are first summed. Subsequently,
these sums are used to calculate the final precision, recall, and F1 scores.

11 https://ctan.org/pkg/booktabs
12 https://www.abbyy.com/ocr-sdk (SDK v12).
13 https://github.com/cellsrg/tabbypdf (Retrieved: 10/20/2020).
14 https://github.com/tabulapdf/tabula-java (v1.0.4).

154

https://ctan.org/pkg/booktabs
https://www.abbyy.com/ocr-sdk
https://github.com/cellsrg/tabbypdf
https://github.com/tabulapdf/tabula-java

6.5 Experimental Setup

6.5.4 Evaluation Procedure

To evaluate the baseline table recognition methods (Section 6.5.2) on the employed
benchmark data set (Section 6.5.1), the algorithm described in Section 6.4 was
used. To fully exploit the data, further practical extensions to this procedure were
additionally implemented.

Unicode Normalization

To mitigate the negative impact of negligible differences between the ground-truth
annotations from the XML files and the text extracted from the input PDF files,
Unicode normalization15 is performed on the textual content of both the ground-
truth and the recognized cells. Specifically, all ligatures are decomposed into their
components, e.g., the ligature ’fi’ (0xFB01) is decomposed to ’f’ and ’i’.

Multiple-Variant Evaluation

Note that, for some articles, multiple PDF files are available — the main article
and its appendices. The reference XML file content may correspond to any of these
PDF files. Therefore, the matching described in Section 6.4 is first performed with
the recognition results obtained for all PDF files available for a particular article.
Subsequently, the document with the highest F1 score is selected to be included
in the final results.

In the remainder of this chapter, the basic evaluation procedure that uses only
the first PDF document, which is available for an article, and the extension
described in this paragraph are referred to as the single-variant and multiple-
variant evaluation, respectively.

Subset-Level Evaluation

To analyze how the examined table recognition systems handle table layouts with
different complexities (Table 6.2), the subset-level evaluation was additionally
performed. In this scenario, the single-variant procedure is employed to enforce
consistent matching across all methods. Moreover, the relations from all false-
positively detected tables, i.e., recognized tables that were not matched with any
ground-truth table (see y4 in Figure 6.2) are reported in a separate subset.
15 http://unicode.org/reports/tr15

155

http://unicode.org/reports/tr15

6 Position-Independent Evaluation of Table Recognition Systems

6.6 Experimental Results

6.6.1 Single-Variant and Multiple-Variant Evaluation Results

The results of the single-variant and the multiple-variant evaluation (Section 6.5.4)
are presented in Table 6.3. In terms of the F1 score metric, ABBYY FineReader
Engine outperformed all other methods, followed by the approach presented in
Section 5.4 and the TabbyPDF system. Moreover, the method presented in
Section 5.4 exhibited the best precision among all competitors. Furthermore,
Tabula was outperformed by other competitors by a large margin. Neither the
stream nor the lattice mode could reliably handle tables present in the employed
benchmark data set.

As expected, the multiple-variant evaluation procedure improved recall and
the number of correctly recognized relations for all examined table recognition
methods. Moreover, the multiple-variant evaluation also improved the F1 scores
(except for Tabula in the lattice mode).

Summarizing the results of the best methods, there is still plenty of room for
improvements and the employed benchmark proved to be very challenging even
for the current state-of-the-art table recognition systems.

6.6.2 Subset-Level Evaluation Results

The results of the subset-level evaluation are presented in Table 6.4. The analysis
is limited to the top three methods from the experiment in Section 6.6.1. Note
that the relations from all false-positively detected tables are reported separately
(see False Positives in Table 6.4).

ABBYY FineReader Engine outperformed all other baselines in terms of the
F1 score on all three table complexity subsets. Moreover, the method presented
in Section 5.4 recognized the smallest number of false-positive relations in all
evaluation scenarios and exhibited the highest precision except for the evaluation
on the subset of complex tables.

In general, the employed benchmark data set is of high difficulty. In particular,
the complex subset containing nested tables was the most challenging for all
methods examined in this experiment. Apparently, the achieved results can most
likely be improved, considering that the methods were not tuned for this particular
data set.

156

6.6 Experimental Results

Table 6.3: Evaluation results on the full benchmark using the single-variant and the
multiple-variant method (Section 6.5.4). The Precision (Prec.), recall, and
F1 scores are reported for the CTR process. Moreover, the number of the
found, correctly recognized (TP, true-positive), missed (FN, false-negative),
and incorrectly recognized (FP, false-positive) relations are presented. The
results are sorted by F1 scores. Bold values indicate the best results (highest
scores, the lowest number of incorrect relations, etc.).

(a) Single-variant method

Method
Relations

Prec. Recall F1
Found TP FN FP

ABBYY FineReader 196,807 117,904 80,278 78,903 0.5991 0.5949 0.5970
This work (Section 5.4) 138,835 92,666 105,516 46,169 0.6675 0.4676 0.5499
TabbyPDF 215,540 108,207 89,975 107,333 0.5020 0.5460 0.5231
Tabula (lattice mode) 40,754 25,689 172,493 15,065 0.6303 0.1296 0.2150
Tabula (stream mode) 693,723 69,435 128,747 624,288 0.1001 0.3504 0.1557

(b) Multiple-variant method

Method
Relations

Prec. Recall F1
Found TP FN FP

ABBYY FineReader 199,103 120,661 77,521 78,442 0.6060 0.6088 0.6074
This work (Section 5.4) 144,228 95,199 102,983 49,029 0.6601 0.4804 0.5561
TabbyPDF 206,576 111,195 86,987 95,381 0.5383 0.5611 0.5494
Tabula (lattice mode) 47,699 26,086 172,096 21,613 0.5469 0.1316 0.2122
Tabula (stream mode) 681,872 71,693 126,489 610,179 0.1051 0.3618 0.1629

157

6 Position-Independent Evaluation of Table Recognition Systems

Table 6.4: Evaluation results at the subset level (Section 6.5.4). The Precision (Prec.),
recall, and F1 scores for the CTR process are reported. Moreover, the
number of the found, correctly recognized (TP, true-positive), missed (FN,
false-negative), and incorrectly recognized (FP, false-positive) relations are
presented. Results are sorted by F1 scores. Bold values indicate the best
results (highest scores, the lowest number of incorrect relations, etc.) within
each subset.

(a) Simple Tables

Method
Relations

Prec. Recall F1
Found TP FN FP

ABBYY FineReader 86,909 68,177 40,351 18,732 0.7845 0.6282 0.6977
This work (Section 5.4) 72,651 57,293 51,235 15,358 0.7886 0.5279 0.6324
TabbyPDF 90,894 62,592 45,936 28,302 0.6886 0.5767 0.6277

(b) Complicated Tables

Method
Relations

Prec. Recall F1
Found TP FN FP

ABBYY FineReader 17,496 14,046 6,481 3,450 0.8028 0.6843 0.7388
TabbyPDF 12,728 7,799 2,675 44,376 0.8263 0.6201 0.7085
This work (Section 5.4) 11,217 9,274 11,253 1,943 0.8268 0.4518 0.5843

(c) Complex Tables

Method
Relations

Prec. Recall F1
Found TP FN FP

ABBYY FineReader 49,627 36,074 35,681 13,946 0.7190 0.5162 0.6009
TabbyPDF 52,213 32,887 36,240 19,326 0.6299 0.4757 0.5421
This work (Section 5.4) 39,413 26,099 43,028 13,314 0.6622 0.3776 0.4809

(d) False Positives

Method
Relations

Prec. Recall F1
Found TP FN FP

This work (Section 5.4) 15,554 — — 15,554 — — —
ABBYY FineReader 42,775 — — 42,775 — — —
TabbyPDF 57,030 — — 57,030 — — —

158

6.7 Discussion

6.7 Discussion

6.7.1 Table Extraction Challenges Based on Benchmark Data

In PDF files, the character shapes (glyphs) and their mappings to the Unicode
characters (toUnicode lookup table) are stored separately. The former is used
to render a page, i.e., to draw each glyph. The latter contains the textual
representation of the glyphs, which is extracted by the PDF parsing software.

While analyzing the results of the baseline systems, a problem with corrupted or
incomplete Unicode mappings in some files was identified. In such a case, the PDF
content is rendered correctly, but the extracted text does not match the rendered
glyphs (e.g., ’↔’ and ’↓’ are extracted as ’$’ and ’#’, respectively). This problem
could accidentally be caused by the software used to create or export PDF files.

Unfortunately, this problem cannot be automatically repaired. A possible
solution would be to render each page, apply OCR, and compare the results with
the extracted text. However, as a perfect OCR software still does not exist (see
Section 2.1), we should also differentiate between the OCR errors and the broken
toUnicode mappings, which would further complicate the extraction process.

6.7.2 PDF vs. Image-Based Input Documents

It is worth noting that the evaluation method presented in Section 6.4 does not
depend on the format of the input documents. Although the employed benchmark
consists of PDF files with embedded text, the presented method is not limited
to this input format, as it uses the structure of the tables from ground-truth
annotations and recognition results to calculate the final scores (precision, recall,
and F1). Note that it is up to the table recognition method to support the inputs
in a particular document format (PDF, image, etc.).

6.7.3 Could We Also Evaluate the Accuracy of Table
Detection?

As discussed in Section 6.4, the presented method evaluates the CTR process using
exclusively the information about the content and the structure of the tables. It
does not rely on the positions and the boundaries of table objects, because this
information is not present in the ground-truth XML files contained in the employed
benchmark (Section 6.5.1).

159

6 Position-Independent Evaluation of Table Recognition Systems

Nevertheless, the same method could also be indirectly used to evaluate the table
detection task by using the affinity score as a proxy for the IoU metric, which is
commonly used to rate the performance of table detection systems. Consequently,
all matchings (edges in the bipartite document graph in Figure 6.2) with affinity
scores equal to or greater than a predefined threshold could be considered as
correctly detected. The standard metrics such as precision, recall, and F1 score
might be then used to evaluate table detection accuracy. Such an evaluation could
be thus regarded as a variant of the presented method with additional constraints,
i.e., the affinity score threshold.

6.7.4 Evaluation Behavior on Two Practical Examples

In this section, the behavior of the presented evaluation method is analyzed on
two practical examples illustrated in Figure 6.3.

0.3

0.6

(a) Illustration of the first example (a detected table covers two ground-truth tables)

0.5
0.4

(b) Illustration of the second example (a ground-truth table erroneously detected as two tables)

Figure 6.3: Evaluation behavior demonstrated using two practical examples. Blue
diamonds and orange triangles represent the ground-truth and the recognized
tables, respectively. Green solid lines depict the best matching. The x2 and
y2 vertices correspond to a false-negative and false-positive detection result,
respectively. The document pages presented in this example were extracted
from the employed benchmark data set (Adams and Namysl, 2021).

160

6.8 Summary

Example 1 The ground-truth data contains two tables, but the recognition
algorithm detects one table that covers both ground-truth tables.

Example 2 The ground truth data contains one table, but two tables are
erroneously detected (each of them overlaps the ground truth table).

Ad. Example 1 We can expect that the detected table will be matched with the
ground-truth table that has a larger affinity score with the recognition result. In
practice, it would be the table that contains more data cells. The other ground-
truth table will be considered a false-negative detection.

Ad. Example 2 We can expect that the ground-truth table will be matched
with the detected table that overlaps the ground truth table the most. The other
detected table will be considered a false-positive detection.

6.8 Summary

In this chapter, a novel evaluation method of the CTR process was presented.
It allows the evaluation of a scenario, where the information about the location
of the table objects on a page is not available in the ground-truth annotations
(Section 6.4).

The presented approach was used to evaluate the accuracy of several state-of-the-
art, general-purpose table recognition systems on a recently proposed benchmark
containing documents from a biomedical domain (Section 6.5.1). In particular,
the accuracy of the baseline systems on different subsets of the data, which
were categorized based on the complexity of the table layout, was reported. A
thorough discussion of the results achieved by the baseline table recognition
systems (Section 6.6), as well as the challenges based on the employed data and
the utility of the presented evaluation method were provided (Section 6.7).

The presented graph-based table matching algorithm (Section 6.4) is universal
and is not limited to the adjacency relation-based evaluation. The adaptation
to other metrics is straightforward. For instance, the affinity score employed by
the presented approach could also be defined using the tree edit distance-based
similarity metric (Pawlik and Augsten, 2016) or the BLEU score (Papineni et al.,
2002) and used to evaluate the CTR process.

161

6 Position-Independent Evaluation of Table Recognition Systems

Future Work Directions

Future work could explore alternative choices for the affinity score metric, as
discussed in the previous paragraph. Moreover, a more sophisticated edge pruning
strategy would improve the computational efficiency of the presented algorithm
in a scenario, where large sets of tables need to be matched with each other.
Furthermore, it would be beneficial to test the utility of the presented method
using other data sets, such as TableBank (M. Li et al., 2020), and to compare the
results of a standard evaluation process, which uses the information about the exact
location of the tables on a page to match the recognized and the reference objects,
with the results obtained using the proposed content-based, position-independent
evaluation algorithm.

162

7 Conclusions

In this thesis, we studied the robustness of the IE systems that work with either
born-digital or digitized documents. We analyzed different components of the IE
workflow such as the OCR engine, the sequence labeling models, and the table
extraction module. In particular, several novel techniques and enhancements that
lead to improved robustness of the IE process were presented.

Firstly, an efficient and robust, deep learning-based OCR engine, which can be
trained almost exclusively using synthetically generated documents, was presented.
Moreover, a novel data augmentation technique that blends rendered text with a
background texture image was introduced. The presented approach outperformed
state-of-the-art commercial and open-source OCR engines in terms of accuracy and
computational efficiency on a challenging data set that consists of both historical
and contemporary documents.

Secondly, the NAT method was introduced and used to improve the robustness
of a state-of-the-art sequence labeling model in a scenario, where misrecognized
or mistyped text is used as input. NAT exploits both the original text and its
corrupted version, which is generated by inducing errors into the original sentence
using a noise model that imitates naturally occurring errors. The NAT approach
was shown to mitigate the negative impact of erroneous textual input without
diminishing the accuracy of the model on original, error-free sentences.

Thirdly, an extension of the NAT method was proposed, which replaces the
vanilla error model used at training time with an empirical error generator that
induces more plausible errors into the original text. Moreover, an unsupervised
parallel training data generation method was introduced and employed to synthe-
size the data used to estimate the empirical error model. Furthermore, the NLM
embeddings were trained using the noisy part of the generated parallel data set
and integrated into the NAT framework. The proposed improvements were shown
to significantly improve the robustness of the baseline NAT approach.

Fourthly, for the restoration of structural information from documents, a
flexible table extraction system was presented. It consists of configurable table
recognition and semantic interpretation modules that can be used to extract the

163

7 Conclusions

desired information directly from tables contained in the input document. The
presented approach achieved table recognition scores on par with the state-of-the-
art methods. Moreover, the proposed holistic table extraction system exhibited
high recognition accuracy in an end-to-end IE scenario, where raw documents were
used as input and the target information was contained in tables.

Fifthly, a novel evaluation method of the CTR process was introduced. It
enables performing the evaluation in a scenario, where the exact location of table
objects on a page is not available in the ground-truth annotations, for instance,
in the case of the HTML format, which is often used in digital repositories
that archive open access scholarly articles. The proposed method was used to
evaluate several general-purpose, state-of-the-art table recognition systems on the
benchmark that contains scientific publications from the biomedical domain. In
addition to the results of the experimental evaluation, a thorough discussion of
the results achieved by the baseline table recognition systems in an out-of-domain
scenario, the challenges based on the employed data set as well as the utility of
the presented approach were provided.

7.1 Future Work Directions

The methods presented in this thesis open several opportunities for future research.
In this section, the major directions are outlined. Moreover, in the summary
section of each chapter, a detailed discussion of the future work directions for the
corresponding approach is provided.

For instance, the presented text recognition method could be coupled with
an automatic image rectification module to improve robustness to geometrical
irregularities that are common in the STR scenario. Moreover, the incorporation
of recent advances in the field of computer vision into the presented network
architecture should provide further improvements in terms of both recognition
accuracy and robustness.

The NAT approach could be combined with techniques that allow for avoiding
erroneous tokenization, which would additionally help mitigate the impact of
token merging and splitting errors. The NAT approach should also improve the
robustness of other NLP tasks beyond the sequence labeling scenario investigated
in this thesis. Moreover, the research community would further benefit from a pre-
trained multilingual NLM text representation, as well as from a broader spectrum
of embeddings specialized in a particular language or error distribution, which
could be used to improve the robustness of various language understanding tasks.

164

7.1 Future Work Directions

Therefore, the incorporation of the NAT approach and the NLM embeddings into
every framework that processes noisy input text is strongly advocated.

Future work on the presented table recognition approach could investigate
different choices for the table detection module, preferably trained using a large,
representative data set containing tables with various layouts, originating from
different sources. Moreover, a promising direction for future improvements is the
incorporation of recent advances in the field of multimodal, pretrained models that
exploit both visual and text information.

Regarding the proposed evaluation method of the CTR process, alternative
choices of the employed affinity score metric could be investigated in future work.
Moreover, a comparison of the results obtained by the proposed content-based,
position-independent CTR evaluation algorithm with a method that directly
utilizes the location of table objects would give further insight into the utility
of the presented approach.

165

A Supplementary Material

Table A.1: Detailed architecture of the hybrid CNN-BLSTM text recognition model (Sec-
tion 2.4.1). Two blocks of two-dimensional convolutional layers (Conv2D),
interleaved with the max pooling, and the batch normalization operations
(Ioffe and Szegedy, 2015), are followed by the map-to-sequence module,
which transforms the activation maps into feature sequences. The values
in parentheses correspond to the kernel size, the number of filters, and the
stride size, respectively. Subsequently, the feature sequences are fed into a
BLSTM network. Dropout (Srivastava et al., 2014) is applied to the output
feature vectors with a probability of 50%. The outputs from the forward
and backward LSTM layers are concatenated and fed to a linear layer that
produces a per timestep probability distribution over the set of available
classes. Finally, either a CTC loss or a CTC decoding function is employed
during training and inference, respectively. In the second column, the size of
the output volume is presented, where W is the width of an input image, C
is the number of classes (characters) recognized by the model, and L is the
length of the output sequence of natural language tokens.

Operation Output volume size

Conv2D (3×3, 64; stride: 1×1) 32×W×64
Max pooling (2×2; stride: 2×2) 16×W/2×64
Batch normalization —
Conv2D (3×3, 128; stride: 1×1) 16×W/2×128
Max pooling (2×2; stride: 2×2) 8×W/4×128
Batch normalization —
Map-to-sequence function W/4×1024
BLSTM (num. units: 2×256) W/4×512
Dropout (50% probability) —
Linear mapping (num. units: C) W/4×C
CTC output layer L

167

A Supplementary Material

Table A.2: Detailed architecture of the FCN-based text recognition model (Section 2.4.1).
It consists of ten blocks of two-dimensional convolutional layers (Conv2D),
interleaved with the batch normalization operation (Ioffe and Szegedy, 2015),
that gradually reduce the height of the feature maps. The values in
parentheses correspond to the kernel size, the number of filters, and the stride
size, respectively. Note that the first Conv2D layer is additionally followed
by the max pooling operation. Subsequently, the map-to-sequence operation
transforms the activation maps into feature sequences that are fed to a linear
layer, which produces a per timestep probability distribution over the set of
available classes. Finally, either a CTC loss or a CTC decoding function is
employed during training and inference, respectively. In the second column,
the size of the output volume is presented, where W is the width of an input
image, C is the number of classes (characters) recognized by the model, and
L is the length of the output sequence of natural language tokens.

Operation Output volume size

Conv2D (7×7, 64; stride: 2×2) 16×W/2×64
Max pooling (2×2; stride: 2×2) 8×W/4×64
Batch normalization —
Conv2D (3×3, 64; stride: 1×1) 8×W/4×64
Batch normalization —
Conv2D (3×3, 64, stride: 1×1) 8×W/4×64
Batch normalization —
Conv2D (3×3, 128, stride: 2×1) 4×W/4×128
Batch normalization —
Conv2D (3×3, 128, stride: 1×1) 4×W/4×128
Batch normalization —
Conv2D (3×3, 256, stride: 2×1) 2×W/4×256
Batch normalization —
Conv2D (3×3, 256, stride: 1×1) 2×W/4×256
Batch normalization —
Conv2D (3×3, 512, stride: 2×1) 1×W/4×512
Batch normalization —
Conv2D (3×3, 512, stride: 1×1) 1×W/4×512
Batch normalization —
Conv2D (3×3, 512, stride: 1×1) 1×W/4×512
Batch normalization —
Map-to-sequence function W/4×512
Linear layer (num. units: C) W/4×C
CTC output layer L

168

" # $ %& ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; = ? @A B C D E F G H I J K L M N O P Q R S T U VWX Y Z [] a b c d e f g h i j k l m n o p q r s t u v w x y z

"
#

$
%

&'
(

)
*

+,
-

.
/

0
1

2
3

4
5

6
7

8
9:

;
=?

@A
B

C
D

E
F

G
HI

J
K

L
M

N
O

P
Q

R
S

T
U

V
WX

Y
Z[

]
a

b
c

d
e

f
g

hi
j

kl
mn

o
p

q
r

s
t

u
v

w
x

y
z

0.2

0.4

0.6

0.8

Figure A.1: Confusion matrix for the vanilla error distribution (Section 3.3.1) used at
training time (η = 20%). Each cell represents P (c̃|c). The rows and the
columns correspond to the original characters c and the perturbed characters
c̃, respectively. In this example, all symbols from the alphabet of the English
CoNLL 2003 data set are included. The vanilla noise model assigns equal
probability to all substitution errors and assumes that the deletion of a
character c is as likely as the sum of substitution probabilities with all
nonempty symbols, i.e.: Pdel(ε|c) =

∑
c̃∈Σ\{ε} Psubst(c̃|c).

169

A Supplementary Material

" # $ %& ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; = ? @A B C D E F G H I J K L M N O P Q R S T U VWX Y Z [] a b c d e f g h i j k l m n o p q r s t u v w x y z

"
#

$
%

&'
(

)
*

+,
-

.
/

0
1

2
3

4
5

6
7

8
9:

;
=?

@A
B

C
D

E
F

G
HI

J
K

L
M

N
O

P
Q

R
S

T
U

V
WX

Y
Z[

]
a

b
c

d
e

f
g

hi
j

kl
mn

o
p

q
r

s
t

u
v

w
x

y
z 0.0

0.2

0.4

0.6

0.8

Figure A.2: Confusion matrix for the OCR error distribution estimated from a large
document corpus using the Tesseract OCR engine (Section 3.3.1). Each cell
represents P (c̃|c). The rows and the columns correspond to the original
characters c and the perturbed characters c̃, respectively. In this example,
all symbols from the alphabet of the English CoNLL 2003 data set were
included. Note that the OCR error model is biased toward substitutions of
characters with similar shapes like ’I’→’l’, ’$’→’5’, ’O’→’0’ or ’,’→’.’.

170

Table A.3: Hyperparameters of the sequence labeling model f(x) (Section 3.4.3). Note
that dropout is applied both before and after the BLSTM layer.

Parameter name Parameter value

Mini batch size 32

Maximum number of epochs 100

Number of BLSTM hidden layers 1

Number of BLSTM hidden units 256

Optimizer SGD
Initial learning rate 0.1

Learning rate anneal factor 0.5

Minimum learning rate 0.0001

Word dropout level 0.05

Variational dropout level 0.5

Patience 3

Table A.4: Hyperparameters of the OpenNMT toolkit used to train the sequence-to-
sequence models employed in this work (Section 4.5.1).

Parameter Description Value

-share_vocab Share source and target vocabulary True
-share_embeddings Share the embeddings between encoder and decoder True
-word_vec_size Word embedding size 25
-src_seq_length Maximum source sequence length 1,000
-tgt_seq_length Maximum target sequence length 1,000
-encoder_type Type of encoder layer BRNN
-learning_rate Starting learning rate 1.0

Table A.5: Hyperparameters of the TSR method used by the hybrid variant of the
proposed table extraction system (Section 5.6.3). The values used both in
the experiment on the ICDAR 2013 (Section 5.7.1) and the ICDAR 2019
(Section 5.7.2) benchmark are presented. Note that, in the case of ICDAR
2019, table candidates are not discarded based on Hratio.

Name ICDAR 2013 ICDAR 2019

Min. number of rows 2 2
Min. number of columns 2 2
Min. number of cells 7 7
Hmax

ratio threshold 10.0 not used
Column gap threshold (γ) 1.5 1.0

171

A Supplementary Material

[
{ "id": "compound",
"keywords": ["Compound", "compd", "Comp.", "cpd"],
"datatype": "string",
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.5

},
{ "id": "hdac1_gene",
"keywords": ["HDAC1"],
"titleRegex": "^HDAC[-]{0,1}1[^\\d].*$",
"datatype": ["double", "range", "integer"],
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.85

},
{ "id": "hdac6_gene",
"keywords": ["HDAC6"],
"titleRegex": "^HDAC[-]{0,1}6[^\\d].*$",
"datatype": ["double", "range", "integer"],
"weightTitle": 1.0,
"weightContent": 0.0,
"minAffinityScore": 0.85

}
]

Figure A.3: A JSON file defining the meanings and rules for matching columns to these
meanings used in the table interpretation experiment (Section 5.8.2).

172

B Statistics of the Sequence
Labeling Data Sets

In this chapter, the detailed statistics of the sequence labeling data sets employed
in Chapters 3 and 4 are presented.

Table B.1: Statistics of the CoNLL 2003 data set (Sections 3.4.1 and 4.5.5). The training,
development (Devel.), and test sets were included, as well as the number of
sentences, tokens, and entities: person names, locations, organizations, and
miscellaneous.

(a) English CoNLL 2003.

Element Training Devel. Test Total

Sentences 14,041 3,250 3,453 20,744
Tokens 203,621 51,362 46,435 301,418
Person names (PER) 6,600 1,842 1,617 10,059
Locations (LOC) 7,140 1,837 1,668 10,645
Organizations (ORG) 6,321 1,341 1,661 9,323
Miscellaneous (MISC) 3,438 922 702 5,062

(b) German CoNLL 2003.

Element Training Devel. Test Total

Sentences 12,705 3,068 3,160 18,933
Tokens 207,484 51,645 52,098 311,227
Person names (PER) 2,801 1,409 1,210 5,420
Locations (LOC) 4,273 1,216 1,051 6,540
Organizations (ORG) 2,154 1,090 584 3,828
Miscellaneous (MISC) 780 216 206 1,202

173

B Statistics of the Sequence Labeling Data Sets

Table B.2: Statistics of the GermEval 2014 data set (Section 3.4.1). The training,
development (Devel.), and test sets were included, as well as the number
of sentences, tokens, and entities: person names (PER), locations (LOC),
organizations (ORG), and miscellaneous (MISC). This data set defines two
additional fine-grained subtags: -part and -deriv that mark derivation and
compound words, respectively, which stand in direct relation to named
entities.

Element Training Devel. Test Total

Sentences 24,000 2,200 5,100 31,300
Tokens 452,853 41,653 96,499 591,005
PER 7,679 711 1,639 10,029
PER-deriv 62 2 11 75
PER-part 184 18 44 246
LOC 8,281 763 1,706 10,750
LOC-deriv 2,808 235 561 3,604
LOC-part 513 52 109 674
ORG 5,255 496 1,150 6,901
ORG-deriv 41 3 8 52
ORG-part 805 91 172 1,068
MISC 3,024 269 697 3,990
MISC-deriv 236 16 39 291
MISC-part 190 18 42 250

Table B.3: Statistics of the CoNLL 2000 data set (Section 3.4.1). The training and test
sets were included, as well as the number of sentences and tokens. This data
set has no development part. Note that the NP, VP, and PP chunks account
for over 90% of all chunk types.

Element Training Test Total

Sentences 8,936 2,012 10,948
Tokens 211,727 47,377 259,104
Noun phrase (NP) 55,081 12,422 67,503
Verb phrase (VP) 21,467 4,658 26,125
Prepositional phrase (PP) 21,281 4,811 26,092
Adverb phrase (ADVP) 4,227 866 5,093
Adjective phrase (ADJP) 2,060 438 2,498
Subordinated clause (SBAR) 2,207 535 2,742
Particles (PRT) 556 106 662
Conjunction phrase (CONJP) 56 9 65
Interjection (INTJ) 31 2 33
List marker (LST) 10 5 15
Unlike coordinated phrase (UCP) 2 0 2
Outside of any chunk (O) 27,902 6,180 34,082

174

Table B.4: Statistics of the UD English EWT data set (version 2.5; Section 3.4.1). The
training, development (Devel.), and test sets were included, as well as the
number of sentences and tokens.

Element Training Devel. Test Total

Sentences 12,543 2,002 2,077 16,622
Tokens 204,585 25,148 25,096 254,829
Adjective (ADJ) 12,482 1,788 1,691 15,961
Adposition (ADP) 17,625 2,021 2,020 21,666
Adverb (ADV) 10,559 1,265 1,226 13,050
Auxiliary (AUX) 12,396 1,504 1,512 15,412
Coordinating conjunction (CCONJ) 6,703 780 738 8,221
Determiner (DET) 16,284 1,895 1,896 20,075
Interjection (INTJ) 688 115 120 923
Noun (NOUN) 34,740 4,192 4,127 43,059
Numeral (NUM) 3,996 378 536 4,910
Particle (PART) 5,567 630 630 6,827
Pronoun (PRON) 18,579 2,218 2,158 22,955
Proper noun (PROPN) 12,944 1,879 2,075 16,898
Punctuation (PUNCT) 23,676 3,083 3,106 29,865
Subordinating conjunction (SCONJ) 3,850 403 386 4,639
Symbol (SYM) 643 75 100 818
Verb (VERB) 23,006 2,759 2,644 28,409
Other (X) 847 155 139 1,141

175

B Statistics of the Sequence Labeling Data Sets

Table B.5: Statistics of the UD English EWT data set (version 2.6; Section 4.5.5). The
training, development (Devel.), and test sets were included, as well as the
number of sentences and tokens.

Element Training Devel. Test Total

Sentences 12,543 2,002 2,077 16,622
Tokens 204,585 25,148 25,096 254,829
Adjective (ADJ) 12,458 1,784 1,689 15,931
Adposition (ADP) 17,625 2,021 2,020 21,666
Adverb (ADV) 10,553 1,264 1,226 13,043
Auxiliary (AUX) 12,396 1,512 1,504 15,412
Coordinating conjunction (CCONJ) 6,703 780 738 8,221
Determiner (DET) 16,284 1,895 1,896 20,075
Interjection (INTJ) 688 115 120 923
Noun (NOUN) 34,765 4,196 4,129 43,090
Numeral (NUM) 3,996 378 536 4,910
Particle (PART) 5,567 630 630 6,827
Pronoun (PRON) 18,584 2,219 2,158 22,961
Proper noun (PROPN) 12,945 1,879 2,075 16,899
Punctuation (PUNCT) 23,676 3,083 3,106 29,865
Subordinating conjunction (SCONJ) 3,850 403 386 4,639
Symbol (SYM) 643 75 100 818
Verb (VERB) 23,005 2,759 2,644 28,408
other (X) 847 155 139 1,141

176

Table B.6: Statistics of the UD German GSD data set (version 2.5; Section 3.4.1). The
training, development (Devel.), and test sets were included, as well as the
number of sentences and tokens.

Element Training Devel. Test Total

Sentences 13,814 799 977 15,590
Tokens 263,804 12,486 16,498 292,788
Adjective (ADJ) 18,741 807 1,020 20,568
Adposition (ADP) 29,266 1,119 1,604 31,989
Adverb (ADV) 12,456 1,123 1,283 14,862
Auxiliary (AUX) 9,272 635 687 10,594
Coordinating conjunction (CCONJ) 7,977 418 464 8,859
Determiner (DET) 33,594 1,314 1,888 36,796
Interjection (INTJ) 0 1 4 5
Noun (NOUN) 46,895 2,197 3,110 52,202
Numeral (NUM) 7,007 180 266 7,453
Particle (PART) 1,794 148 211 2,153
Pronoun (PRON) 12,980 1,018 1,043 15,041
Proper noun (PROPN) 29,218 614 1,025 30,857
Punctuation (PUNCT) 34,470 1,677 2,366 38,513
Subordinating conjunction (SCONJ) 1,466 115 167 1,748
Symbol (SYM) 86 2 4 92
Verb (VERB) 18,286 1,096 1,330 20,712
Other (X) 296 22 26 344

177

C Incorporated Publications

C.1 “Efficient, Lexicon-Free OCR using Deep
Learning”

This publication constitutes the core part of Chapter 2.
©2019 IEEE. Reprinted, with permission, from M. Namysl and I. Konya (2019).
“Efficient, lexicon-free OCR using deep learning.” In: International Conference on
Document Analysis and Recognition (ICDAR). IEEE, pp. 295–301. doi: 10.1109
/ICDAR.2019.00055.

C.2 “NAT: Noise-Aware Training for Robust Neural
Sequence Labeling”

This publication constitutes the core part of Chapter 3.
©2020 Association for Computational Linguistics. Reprinted under the terms of
Creative Commons Attribution 4.0 International License (https://creativecomm
ons.org/licenses/by/4.0) from M. Namysl, S. Behnke, J. Köhler (2020). “NAT:
Noise-aware training for robust neural sequence labeling.” In: Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics, pp. 1501–1517. doi: 10.18653/v1/2020.acl-main.138.

179

https://doi.org/10.1109/ICDAR.2019.00055
https://doi.org/10.1109/ICDAR.2019.00055
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.18653/v1/2020.acl-main.138

C Incorporated Publications

C.3 “Empirical Error Modeling Improves Robustness
of Noisy Neural Sequence Labeling”

This publication constitutes the core part of Chapter 4.
©2021 Association for Computational Linguistics. Reprinted under the terms of
Creative Commons Attribution 4.0 International License (https://creativeco
mmons.org/licenses/by/4.0) from M. Namysl, S. Behnke, J. Köhler (2021).
“Empirical error modeling improves robustness of noisy neural sequence labeling.”
In: Findings of the Association for Computational Linguistics: ACL-IJCNLP.
Association for Computational Linguistics, pp. 314–329. doi: 10.18653/v1/202
1.findings-acl.27.

C.4 “Flexible Table Recognition and Semantic
Interpretation System”

This publication constitutes the core part of Chapter 5.
©2022 SciTePress. Reprinted, with permission, from M. Namysl, A. Esser, S.
Behnke, J. Köhler (2022). “Flexible table recognition and semantic interpretation
system.” In: International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications. Vol. 4: VISAPP. INSTICC.
SciTePress, pp. 27–37. isbn: 978-989-758-555-5. doi: 10.5220/00107676000031
24.

C.5 “Benchmarking table recognition performance
on biomedical literature on neurological
disorders”

This publication constitutes the core part of Chapter 6.
©2021 Oxford University Press. Reproduced by permission of Oxford University
Press (https://academic.oup.com). Reprinted from T. Adams, M. Namysl,
A. T. Kodamullil, S. Behnke, and M. Jacobs (2021). “Benchmarking table
recognition performance on biomedical literature on neurological disorders.” In:
Bioinformatics 38.6, pp. 1624–1630. issn: 1367-4803. doi: 10.1093/bioinforma
tics/btab843.

180

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.18653/v1/2021.findings-acl.27
https://doi.org/10.18653/v1/2021.findings-acl.27
https://doi.org/10.5220/0010767600003124
https://doi.org/10.5220/0010767600003124
https://academic.oup.com
https://doi.org/10.1093/bioinformatics/btab843
https://doi.org/10.1093/bioinformatics/btab843

Acronyms

AEG artificial error generation 75, 78, 79
ASR automatic speech recognition 3, 40, 42, 44, 65, 69, 72, 80, 82
BLEU bilingual evaluation understudy 148, 161
BLSTM bidirectional long short-term memory 17, 18, 20–22, 32, 35, 37, 51, 52,

167, 171
BRNN bidirectional recurrent neural network 13, 17, 89, 171
CER character error rate 30–32
CNN convolutional neural network 10, 12, 14, 15, 17–22, 32, 35, 37, 110, 167
CPU central processing unit 34, 36, 38, 86
CRF conditional random field 42, 43, 51, 52
CRNN convolutional recurrent neural network 18, 20
CTC connectionist temporal classification 18–22, 35, 37, 167, 168
CTR complete table recognition 6, 8, 109, 129, 132, 135, 146, 149, 150, 154, 157–

159, 161, 164, 165
DPI dots per inch 132
FCN fully convolutional network 18, 20–22, 30, 32, 35, 37, 38, 168
GEC grammatical error correction 74, 75, 79
GPU graphics processing unit 34
GRU gated recurrent unit 13, 32, 36, 38
HDAC histone deacetylase 124, 125, 139
HMM hidden Markov model 17
HOG histogram of oriented gradients 16
HTML HyperText Markup Language 110, 146, 148–150, 164
HTR handwritten text recognition 17–20
ICDAR International Conference on Document Analysis and Recognition 104–106,

115, 118, 122, 128, 130–138, 142, 147, 149, 171

181

Acronyms

IE information extraction v, 1–3, 6, 8, 40, 72, 77, 104, 106, 113, 126, 141–143, 163,
164

IoU intersection over union 136–138, 147, 160
JSON JavaScript Object Notation 124, 125, 139–141, 148
LSTM long short-term memory 12, 13, 18, 19, 30, 32, 36, 38, 167
MDRNN multidimensional recurrent neural network 14, 17, 18
ML machine learning 1, 68, 112
NAT noise-aware training v, 4, 5, 8, 40–42, 45, 50, 52, 54, 57, 59, 62–64, 67–69,

72, 73, 75, 76, 78, 81, 85, 89, 91, 92, 94, 95, 98, 99, 101, 163–165
NER named entity recognition v, 2, 3, 40, 44, 47, 50, 51, 54–57, 65, 85, 86, 94
NLM noisy language modeling v, 5, 8, 73, 82, 85, 89, 94–97, 101, 163–165
NLP natural language processing 2, 3, 8, 19, 41, 65, 72, 75, 77, 101, 111, 164
NMT neural machine translation 19, 42, 65–67, 74, 75
OCR optical character recognition v, 2–5, 10, 11, 16–20, 27, 28, 30–33, 36, 40, 42,

44, 45, 47, 52–56, 58–61, 63, 65, 72–74, 77–80, 82, 84, 85, 87–91, 95–99, 101,
114, 148, 159, 163, 170

PDF Portable Document Format 1, 3, 5, 103, 105, 106, 110, 112–114, 126, 127,
132–134, 139, 142, 146–149, 152, 154, 155, 159

PMC PubMed Central 146, 148, 149, 152
POST part-of-speech tagging v, 40, 51, 52, 57–59, 85, 86
RegEx regular expressions 5, 105, 111–113, 123
RNN recurrent neural network 10, 12–14, 17–19, 32
STR scene text recognition 11, 18–20, 28, 164
TSR table structure recognition 5, 103, 106–108, 110–112, 126–128, 130–134, 142,

148, 149, 171
XML Extensible Markup Language 27, 134, 137, 146, 148, 149, 152, 155, 159

182

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, et al. (2016). “TensorFlow: A
system for large-scale machine learning.” In: USENIX Conference on Operating
Systems Design and Implementation (OSDI). USENIX Association, pp. 265–283.
isbn: 9781931971331. url: https://dl.acm.org/doi/10.5555/3026877.302
6899 (cit. on p. 29).

Adams, T. and M. Namysl (2021). Table recognition benchmark on biomedical
literature on neurological disorders. Version 1.0. Zenodo. doi: 10.5281/zenodo
.5549977 (cit. on pp. 6, 8, 146, 147, 148, 149, 152, 160).

Adams, T., M. Namysl, A. T. Kodamullil, S. Behnke, and M. Jacobs (2021).
“Benchmarking table recognition performance on biomedical literature on neuro-
logical disorders.” In: Bioinformatics 38.6, pp. 1624–1630. issn: 1367-4803. doi:
10.1093/bioinformatics/btab843 (cit. on pp. 7, 8, 137, 145, 180).

Afli, H., Z. Qiu, A. Way, and P. Sheridan (2016). “Using SMT for OCR error cor-
rection of historical texts.” In: International Conference on Language Resources
and Evaluation (LREC). European Language Resources Association (ELRA),
pp. 962–966. url: https://aclanthology.org/L16-1153 (cit. on p. 74).

Akbik, A., T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf (2019).
“FLAIR: An easy-to-use framework for state-of-the-art NLP.” In: Conference of
the North American Chapter of the Association for Computational Linguistics
(Demonstrations). Association for Computational Linguistics, pp. 54–59. doi:
10.18653/v1/N19-4010 (cit. on pp. 54, 84).

Akbik, A., T. Bergmann, and R. Vollgraf (2019). “Pooled contextualized embed-
dings for named entity recognition.” In: Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Association for Computational
Linguistics, pp. 724–728. doi: 10.18653/v1/N19-1078 (cit. on p. 72).

Akbik, A., D. Blythe, and R. Vollgraf (2018). “Contextual string embeddings for
sequence labeling.” In: International Conference on Computational Linguistics.
Association for Computational Linguistics, pp. 1638–1649. url: https://acla
nthology.org/C18-1139 (cit. on pp. 42, 51, 52, 73, 77, 78, 82, 85, 94).

183

https://dl.acm.org/doi/10.5555/3026877.3026899
https://dl.acm.org/doi/10.5555/3026877.3026899
https://doi.org/10.5281/zenodo.5549977
https://doi.org/10.5281/zenodo.5549977
https://doi.org/10.1093/bioinformatics/btab843
https://aclanthology.org/L16-1153
https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-1078
https://aclanthology.org/C18-1139
https://aclanthology.org/C18-1139

Bibliography

Al Azawi, M., M. Liwicki, and T. M. Breuel (2015). “Combination of multiple
aligned recognition outputs using WFST and LSTM.” In: International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 31–35. doi: 10.110
9/ICDAR.2015.7333720 (cit. on p. 74).

Alex, B. and J. Burns (2014). “Estimating and rating the quality of optically
character recognised text.” In: International Conference on Digital Access to
Textual Cultural Heritage (DATeCH). ACM, pp. 97–102. isbn: 978-1-4503-2588-
2. doi: 10.1145/2595188.2595214 (cit. on pp. 40, 44, 65, 72, 94).

Allison, B., D. Guthrie, and L. Guthrie (2006). “Another look at the data sparsity
problem.” In: International Conference on Text, Speech and Dialogue (TSD).
Springer-Verlag, pp. 327–334. isbn: 3540390901. doi: 10.1007/11846406_41
(cit. on p. 3).

Alzantot, M., Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W. Chang
(2018). “Generating natural language adversarial examples.” In: Conference on
Empirical Methods in Natural Language Processing. Association for Computa-
tional Linguistics, pp. 2890–2896. doi: 10.18653/v1/D18-1316 (cit. on p. 68).

Asad, F., A. Ul-Hasan, F. Shafait, and A. Dengel (2016). “High performance
OCR for camera-captured blurred documents with LSTM networks.” In: IAPR
Workshop on Document Analysis Systems (DAS), pp. 7–12. doi: 10.1109/DAS.2
016.69 (cit. on p. 17).

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives (2007).
“DBpedia: A nucleus for a web of open data.” In: The Semantic Web. Springer
Berlin Heidelberg, pp. 722–735. isbn: 978-3-540-76298-0. doi: 10.1007/978-3-
540-76298-0_52 (cit. on p. 112).

Bahdanau, D., K. Cho, and Y. Bengio (2015). “Neural machine translation by
jointly learning to align and translate.” In: International Conference on Learning
Representations (ICLR), Conference Track Proceedings. url: http://arxiv.o
rg/abs/1409.0473 (cit. on pp. 19, 78).

Bailey, D. G. (2011). “Image border management for FPGA based filters.” In: IEEE
International Symposium on Electronic Design, Test and Application, pp. 144–
149. doi: 10.1109/DELTA.2011.34 (cit. on p. 24).

Baldwin, T., P. Cook, M. Lui, A. MacKinlay, and L. Wang (2013). “How noisy
social media text, how diffrnt social media sources?” In: International Joint Con-
ference on Natural Language Processing. Asian Federation of Natural Language
Processing, pp. 356–364. url: https://aclanthology.org/I13-1041 (cit. on
p. 72).

Bekoulis, G., J. Deleu, T. Demeester, and C. Develder (2018). “Adversarial training
for multi-context joint entity and relation extraction.” In: Conference on Em-

184

https://doi.org/10.1109/ICDAR.2015.7333720
https://doi.org/10.1109/ICDAR.2015.7333720
https://doi.org/10.1145/2595188.2595214
https://doi.org/10.1007/11846406_41
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.1109/DAS.2016.69
https://doi.org/10.1109/DAS.2016.69
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/DELTA.2011.34
https://aclanthology.org/I13-1041

Bibliography

pirical Methods in Natural Language Processing. Association for Computational
Linguistics, pp. 2830–2836. doi: 10.18653/v1/D18-1307 (cit. on pp. 47, 68).

Belinkov, Y. and Y. Bisk (2018). “Synthetic and natural noise both break neural
machine translation.” In: International Conference on Learning Representations
(ICLR), Conference Track Proceedings. url: https://openreview.net/forum
?id=BJ8vJebC- (cit. on pp. 41, 53, 55, 56, 58, 59, 66, 72, 87, 88).

Benikova, D., C. Biemann, and M. Reznicek (2014). “NoSta-D named entity
annotation for German: Guidelines and dataset.” In: International Conference
on Language Resources and Evaluation (LREC). European Language Resources
Association (ELRA), pp. 2524–2531. url: http://www.lrec-conf.org/proce
edings/lrec2014/pdf/276_Paper.pdf (cit. on pp. 47, 50).

Biesner, D., R. Ramamurthy, R. Stenzel, M. Lübbering, L. Hillebrand, A. Ladi,
M. Pielka, R. Loitz, C. Bauckhage, and R. Sifa (2022). “Anonymization of
German financial documents using neural network-based language models with
contextual word representations.” In: International Journal of Data Science and
Analytics 13.2, pp. 151–161. issn: 2364-4168. doi: 10.1007/s41060-021-0028
5-x (cit. on p. 69).

Bissacco, A., M. Cummins, Y. Netzer, and H. Neven (2013). “PhotoOCR: Reading
text in uncontrolled conditions.” In: IEEE International Conference on Com-
puter Vision (ICCV), pp. 785–792. doi: 10.1109/ICCV.2013.102 (cit. on
p. 16).

Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov (2017). “Enriching word
vectors with subword information.” In: Transactions of the Association for
Computational Linguistics 5, pp. 135–146. doi: 10.1162/tacl_a_00051 (cit. on
p. 51).

Borisyuk, F., A. Gordo, and V. Sivakumar (2018). “Rosetta: Large scale system
for text detection and recognition in images.” In: ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, pp. 71–79. isbn:
978-1-4503-5552-0. doi: 10.1145/3219819.3219861 (cit. on pp. 18, 20).

Breuel, T. M. (2017). “High performance text recognition using a hybrid convolu-
tional-LSTM implementation.” In: IAPR International Conference on Document
Analysis and Recognition (ICDAR). Vol. 01, pp. 11–16. doi: 10.1109/ICDAR.2
017.12 (cit. on pp. 18, 25).

Breuel, T. M., A. Ul-Hasan, M. A. Al-Azawi, and F. Shafait (2013). “High-
performance OCR for printed English and fraktur using LSTM networks.” In:
International Conference on Document Analysis and Recognition (ICDAR),
pp. 683–687. doi: 10.1109/ICDAR.2013.140 (cit. on p. 17).

185

https://doi.org/10.18653/v1/D18-1307
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/276_Paper.pdf
https://doi.org/10.1007/s41060-021-00285-x
https://doi.org/10.1007/s41060-021-00285-x
https://doi.org/10.1109/ICCV.2013.102
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1145/3219819.3219861
https://doi.org/10.1109/ICDAR.2017.12
https://doi.org/10.1109/ICDAR.2017.12
https://doi.org/10.1109/ICDAR.2013.140

Bibliography

Breuel, T. M. (2008). “The OCRopus open source OCR system.” In: Document
Recognition and Retrieval XV. Vol. 6815. International Society for Optics and
Photonics. SPIE, pp. 120–134. doi: 10.1117/12.783598 (cit. on p. 16).

Bridle, J. S. (1990). “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition.” In: Neu-
rocomputing. Springer Berlin Heidelberg, pp. 227–236. isbn: 978-3-642-76153-9.
doi: 10.1007/978-3-642-76153-9_28 (cit. on pp. 15, 20).

Brill, E. and R. C. Moore (2000). “An improved error model for noisy channel
spelling correction.” In: Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, pp. 286–293. doi: 10.3
115/1075218.1075255 (cit. on pp. 2, 44, 74).

Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, et al. (2020). “Language
models are few-shot learners.” In: Advances in Neural Information Processing
Systems. Vol. 33. Curran Associates, Inc., pp. 1877–1901. url: https://proce
edings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64
a-Paper.pdf (cit. on p. 77).

Bryant, C., M. Felice, Ø. E. Andersen, and T. Briscoe (2019). “The BEA-2019
shared task on grammatical error correction.” In: Workshop on Innovative Use
of NLP for Building Educational Applications. Association for Computational
Linguistics, pp. 52–75. doi: 10.18653/v1/W19-4406 (cit. on p. 74).

Bunke, H., S. Bengio, and A. Vinciarelli (2004). “Offline recognition of uncon-
strained handwritten texts using HMMs and statistical language models.” In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 26.6, pp. 709–
720. doi: 10.1109/TPAMI.2004.14 (cit. on p. 17).

Bušta, M., L. Neumann, and J. Matas (2017). “Deep TextSpotter: An end-to-
end trainable scene text localization and recognition framework.” In: IEEE
International Conference on Computer Vision (ICCV), pp. 2223–2231. doi: 10
.1109/ICCV.2017.242 (cit. on pp. 11, 18).

Chauhan, R., K. K. Ghanshala, and R. Joshi (2018). “Convolutional neural net-
work (CNN) for image detection and recognition.” In: International Conference
on Secure Cyber Computing and Communication (ICSCCC), pp. 278–282. doi:
10.1109/ICSCCC.2018.8703316 (cit. on p. 14).

Chen, P.-J., I.-H. Hsu, Y. Y. Huang, and H.-Y. Lee (2017). “Mitigating the impact
of speech recognition errors on chatbot using sequence-to-sequence model.” In:
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU),
pp. 497–503. doi: 10.1109/ASRU.2017.8268977 (cit. on pp. 44, 65).

Cheng, Y., L. Jiang, and W. Macherey (2019). “Robust neural machine translation
with doubly adversarial inputs.” In: Annual Meeting of the Association for

186

https://doi.org/10.1117/12.783598
https://doi.org/10.1007/978-3-642-76153-9_28
https://doi.org/10.3115/1075218.1075255
https://doi.org/10.3115/1075218.1075255
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.1109/TPAMI.2004.14
https://doi.org/10.1109/ICCV.2017.242
https://doi.org/10.1109/ICCV.2017.242
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.1109/ASRU.2017.8268977

Bibliography

Computational Linguistics. Association for Computational Linguistics, pp. 4324–
4333. doi: 10.18653/v1/P19-1425 (cit. on p. 59).

Cheng, Y., Z. Tu, F. Meng, J. Zhai, and Y. Liu (2018). “Towards robust neural
machine translation.” In: Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
pp. 1756–1766. doi: 10.18653/v1/P18-1163 (cit. on pp. 42, 67).

Cheung, M., J. Shi, O. Wright, L. Y. Jiang, X. Liu, and J. M. F. Moura (2020).
“Graph signal processing and deep learning: convolution, pooling, and topology.”
In: IEEE Signal Processing Magazine 37.6, pp. 139–149. doi: 10.1109/MSP.20
20.3014594 (cit. on p. 15).

Chi, Z., H. Huang, H.-D. Xu, H. Yu, W. Yin, and X.-L. Mao (2019). Complicated
table structure recognition. doi: 10.48550/ARXIV.1908.04729 (cit. on pp. 3,
146, 148, 153).

Chiron, G., A. Doucet, M. Coustaty, and J. Moreux (2017). “ICDAR2017 com-
petition on post-OCR text correction.” In: IAPR International Conference on
Document Analysis and Recognition (ICDAR). Vol. 01, pp. 1423–1428. doi: 10
.1109/ICDAR.2017.232 (cit. on pp. 74, 78).

Chiu, J. P. and E. Nichols (2016). “Named entity recognition with bidirectional
LSTM-CNNs.” In: Transactions of the Association for Computational Linguistics
4, pp. 357–370. doi: 10.1162/tacl_a_00104 (cit. on p. 42).

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio (2014). “Learning phrase representations using RNN encoder–
decoder for statistical machine translation.” In: Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, pp. 1724–1734. doi: 10.3115/v1/D14-1179 (cit. on p. 13).

Choe, Y. J., J. Ham, K. Park, and Y. Yoon (2019). “A neural grammatical error
correction system built on better pre-training and sequential transfer learning.”
In: Workshop on Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics, pp. 213–227. doi: 10.18653/v1/W1
9-4423 (cit. on p. 75).

Chowdhury, A. and L. Vig (2018). An efficient end-to-end neural model for
handwritten text recognition. doi: 10.48550/ARXIV.1807.07965 (cit. on p. 19).

Coşkun, M., A. Uçar, Ö. Yildirim, and Y. Demir (2017). “Face recognition based
on convolutional neural network.” In: International Conference on Modern
Electrical and Energy Systems (MEES), pp. 376–379. doi: 10.1109/MEES.2
017.8248937 (cit. on p. 15).

Cubuk, E. D., B. Zoph, D. Mané, V. Vasudevan, and Q. V. Le (2019). “AutoAug-
ment: Learning augmentation strategies from data.” In: IEEE/CVF Conference

187

https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.1109/MSP.2020.3014594
https://doi.org/10.1109/MSP.2020.3014594
https://doi.org/10.48550/ARXIV.1908.04729
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.1109/ICDAR.2017.232
https://doi.org/10.1162/tacl_a_00104
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.48550/ARXIV.1807.07965
https://doi.org/10.1109/MEES.2017.8248937
https://doi.org/10.1109/MEES.2017.8248937

Bibliography

on Computer Vision and Pattern Recognition (CVPR), pp. 113–123. doi: 10.1
109/CVPR.2019.00020 (cit. on pp. 65, 68).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “ImageNet:
A large-scale hierarchical image database.” In: IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255. doi: 10.1109/CVPR.2009.52068
48 (cit. on p. 133).

Deng, Y., A. Kanervisto, J. Ling, and A. M. Rush (2017). “Image-to-markup gen-
eration with coarse-to-fine attention.” In: International Conference on Machine
Learning (ICML). Vol. 70. PMLR, pp. 980–989. url: https://proceedings.m
lr.press/v70/deng17a.html (cit. on p. 2).

Derczynski, L., A. Ritter, S. Clark, and K. Bontcheva (2013). “Twitter part-of-
speech tagging for all: Overcoming sparse and noisy data.” In: International
Conference on Recent Advances in Natural Language Processing (RANLP).
INCOMA Ltd., pp. 198–206. url: https://aclanthology.org/R13- 1026
(cit. on pp. 40, 44, 72).

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019). “BERT: Pre-training
of deep bidirectional transformers for language understanding.” In: Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Association
for Computational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423
(cit. on pp. 19, 42, 52, 72, 77).

Dhole, K. D., V. Gangal, S. Gehrmann, A. Gupta, Z. Li, et al. (2021). NL-
Augmenter: A framework for task-sensitive natural language augmentation. doi:
10.48550/ARXIV.2112.02721 (cit. on pp. 7, 8).

Diaz, D. H., S. Qin, R. Ingle, Y. Fujii, and A. Bissacco (2021). Rethinking text line
recognition models. doi: 10.48550/ARXIV.2104.07787 (cit. on p. 19).

Diem, M., F. Kleber, and R. Sablatnig (2013). “Text line detection for hetero-
geneous documents.” In: International Conference on Document Analysis and
Recognition (ICDAR), pp. 743–747. doi: 10.1109/ICDAR.2013.152 (cit. on
p. 2).

Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, et al. (2021).
“An image is worth 16x16 words: Transformers for image recognition at scale.”
In: International Conference on Learning Representations (ICLR). url: https
://openreview.net/forum?id=YicbFdNTTy (cit. on p. 19).

Duan, H. and B.-J. Hsu (2011). “Online spelling correction for query completion.”
In: International Conference on World Wide Web (WWW). Association for
Computing Machinery, pp. 117–126. isbn: 9781450306324. doi: 10.1145/19
63405.1963425 (cit. on p. 74).

188

https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/CVPR.2019.00020
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.mlr.press/v70/deng17a.html
https://proceedings.mlr.press/v70/deng17a.html
https://aclanthology.org/R13-1026
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2112.02721
https://doi.org/10.48550/ARXIV.2104.07787
https://doi.org/10.1109/ICDAR.2013.152
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/1963405.1963425
https://doi.org/10.1145/1963405.1963425

Bibliography

Ebrahimi, J., A. Rao, D. Lowd, and D. Dou (2018). “HotFlip: White-box adver-
sarial examples for text classification.” In: Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Association for Com-
putational Linguistics, pp. 31–36. doi: 10.18653/v1/P18-2006 (cit. on p. 68).

Edmonds, J. (1965). “Maximum matching and a polyhedron with 0, 1 vertices.” In:
Journal of Research of the National Bureau of Standards - B. Mathematics and
Mathematical Physics 69 B, pp. 125–130. url: https://nvlpubs.nist.gov/n
istpubs/jres/69B/jresv69Bn1-2p125_A1b.pdf (cit. on pp. 5, 105, 107, 124,
141, 152).

Edunov, S., M. Ott, M. Auli, and D. Grangier (2018). “Understanding back-
translation at scale.” In: Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, pp. 489–500. doi: 10.1
8653/v1/D18-1045 (cit. on p. 75).

Evans, P., A. Sherin, and I. Lee (2013). The graphic design reference and
specification book: Everything graphic designers need to know every day. Rockport
Publishers. isbn: 9781610587884. url: https://books.google.de/books?id
=4rXWAgAAQBAJ (cit. on p. 25).

Fischer, P., A. Smajic, G. Abrami, and A. Mehler (2021). “Multi-Type-TD-TSR
- Extracting tables from document images using a multi-stage pipeline for
table detection and table structure recognition: From OCR to structured table
representations.” In: KI 2021: Advances in Artificial Intelligence. Vol. 12873.
Springer International Publishing, pp. 95–108. isbn: 978-3-030-87626-5. doi: 1
0.1007/978-3-030-87626-5_8 (cit. on pp. 111, 137).

Fivez, P., S. Šuster, and W. Daelemans (2017). “Unsupervised context-sensitive
spelling correction of clinical free-text with word and character n-gram embed-
dings.” In: BioNLP. Association for Computational Linguistics, pp. 143–148.
doi: 10.18653/v1/W17-2317 (cit. on p. 74).

Flor, M., M. Fried, and A. Rozovskaya (2019). “A benchmark corpus of English
misspellings and a minimally-supervised model for spelling correction.” In:
Workshop on Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics, pp. 76–86. doi: 10.18653/v1/W1
9-4407 (cit. on pp. 74, 78).

Gales, M. and S. Young (2007). “The application of hidden Markov models
in speech recognition.” In: Foundations and Trends in Signal Processing 1.3,
pp. 195–304. issn: 1932-8346. doi: 10.1561/2000000004 (cit. on p. 17).

Gao, J., J. Lanchantin, M. L. Soffa, and Y. Qi (2018). “Black-box generation of
adversarial text sequences to evade deep learning classifiers.” In: IEEE Security
and Privacy Workshops (SPW), pp. 50–56. doi: 10.1109/SPW.2018.00016
(cit. on p. 68).

189

https://doi.org/10.18653/v1/P18-2006
https://nvlpubs.nist.gov/nistpubs/jres/69B/jresv69Bn1-2p125_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/69B/jresv69Bn1-2p125_A1b.pdf
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://books.google.de/books?id=4rXWAgAAQBAJ
https://books.google.de/books?id=4rXWAgAAQBAJ
https://doi.org/10.1007/978-3-030-87626-5_8
https://doi.org/10.1007/978-3-030-87626-5_8
https://doi.org/10.18653/v1/W17-2317
https://doi.org/10.18653/v1/W19-4407
https://doi.org/10.18653/v1/W19-4407
https://doi.org/10.1561/2000000004
https://doi.org/10.1109/SPW.2018.00016

Bibliography

Gao, L., Y. Huang, H. Déjean, J.-L. Meunier, Q. Yan, Y. Fang, F. Kleber, and
E. Lang (2019). “ICDAR 2019 competition on table detection and recognition
(cTDaR).” In: International Conference on Document Analysis and Recognition
(ICDAR), pp. 1510–1515. doi: 10.1109/ICDAR.2019.00243 (cit. on pp. 3, 105,
115, 130, 131, 132, 138, 147).

Gatos, B., D. Danatsas, I. Pratikakis, and S. J. Perantonis (2005). “Automatic
table detection in document images.” In: Pattern Recognition and Data Min-
ing. Springer Berlin Heidelberg, pp. 609–618. isbn: 978-3-540-28758-2 (cit. on
p. 114).

Gers, F. A. and J. Schmidhuber (2000). “Recurrent nets that time and count.”
In: IEEE-INNS-ENNS International Joint Conference on Neural Networks
(IJCNN). Neural Computing: New Challenges and Perspectives for the New
Millennium. Vol. 3, pp. 189–194. doi: 10.1109/IJCNN.2000.861302 (cit. on
p. 13).

Ghosh, S. K., E. Valveny, and A. D. Bagdanov (2017). “Visual attention models
for scene text recognition.” In: IAPR International Conference on Document
Analysis and Recognition (ICDAR). Vol. 01, pp. 943–948. doi: 10.1109/ICDAR.2
017.158 (cit. on p. 19).

Göbel, M., T. Hassan, E. Oro, and G. Orsi (2013). “ICDAR 2013 Table Com-
petition.” In: International Conference on Document Analysis and Recognition
(ICDAR), pp. 1449–1453. doi: 10.1109/ICDAR.2013.292 (cit. on pp. 3, 105,
118, 122, 128, 132, 134, 135, 147, 154).

Göbel, M., T. Hassan, E. Oro, and G. Orsi (2012). “A methodology for evaluating
algorithms for table understanding in PDF documents.” In: ACM Symposium on
Document Engineering (DocEng). Association for Computing Machinery, pp. 45–
48. isbn: 9781450311168. doi: 10.1145/2361354.2361365 (cit. on pp. 147, 150,
154).

Goldhahn, D., T. Eckart, and U. Quasthoff (2012). “Building large monolingual
dictionaries at the Leipzig Corpora Collection: From 100 to 200 languages.”
In: Language Resources and Evaluation Conference (LREC). Vol. 29. European
Language Resources Association (ELRA), pp. 759–765. url: http://www.lre
c-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf (cit. on p. 27).

Goodfellow, I., J. Shlens, and C. Szegedy (2015). “Explaining and harnessing
adversarial examples.” In: International Conference on Learning Representations
(ICLR). url: http://arxiv.org/abs/1412.6572 (cit. on pp. 1, 68).

Graves, A., M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber
(2009). “A novel connectionist system for unconstrained handwriting recogni-
tion.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence 31.5,
pp. 855–868. issn: 0162-8828. doi: 10.1109/TPAMI.2008.137 (cit. on p. 17).

190

https://doi.org/10.1109/ICDAR.2019.00243
https://doi.org/10.1109/IJCNN.2000.861302
https://doi.org/10.1109/ICDAR.2017.158
https://doi.org/10.1109/ICDAR.2017.158
https://doi.org/10.1109/ICDAR.2013.292
https://doi.org/10.1145/2361354.2361365
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/327_Paper.pdf
http://arxiv.org/abs/1412.6572
https://doi.org/10.1109/TPAMI.2008.137

Bibliography

Graves, A., S. Fernández, F. Gomez, and J. Schmidhuber (2006). “Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent
neural networks.” In: International Conference on Machine Learning (ICML).
ACM, pp. 369–376. isbn: 1-59593-383-2. doi: 10 . 1145 / 1143844 . 1143891
(cit. on p. 18).

Graves, A., S. Fernández, and J. Schmidhuber (2007). “Multi-dimensional recur-
rent neural networks.” In: Artificial Neural Networks (ICANN). Springer Berlin
Heidelberg, pp. 549–558. isbn: 978-3-540-74690-4. doi: 10.1007/978-3-540-7
4690-4_56 (cit. on p. 14).

Graves, A., A.-r. Mohamed, and G. Hinton (2013). “Speech recognition with deep
recurrent neural networks.” In: IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6645–6649. doi: 10.1109/ICASSP.
2013.6638947 (cit. on pp. 12, 13, 14).

Graves, A. and J. Schmidhuber (2008). “Offline handwriting recognition with
multidimensional recurrent neural networks.” In: International Conference on
Neural Information Processing Systems. Curran Associates Inc., pp. 545–552.
isbn: 978-1-6056-0-949-2. url: https://proceedings.neurips.cc/paper/20
08/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf (cit. on p. 17).

Grundkiewicz, R. and M. Junczys-Dowmunt (2019). “Minimally-augmented gram-
matical error correction.” In: Workshop on Noisy User-generated Text (W-NUT).
Association for Computational Linguistics, pp. 357–363. doi: 10.18653/v1/D1
9-5546 (cit. on p. 101).

Grundkiewicz, R., M. Junczys-Dowmunt, and K. Heafield (2019). “Neural gram-
matical error correction systems with unsupervised pre-training on synthetic
data.” In: Workshop on Innovative Use of NLP for Building Educational
Applications. Association for Computational Linguistics, pp. 252–263. doi: 1
0.18653/v1/W19-4427 (cit. on p. 75).

Hämäläinen, M. and S. Hengchen (2019). “From the paft to the fiiture: A fully
automatic NMT and word embeddings method for OCR post-correction.” In:
International Conference on Recent Advances in Natural Language Processing
(RANLP). INCOMA Ltd., pp. 431–436. doi: 10.26615/978-954-452-056-4
_051 (cit. on pp. 74, 89).

Haralick, R. M. and L. G. Shapiro (1985). “Image segmentation techniques.” In:
Applications of Artificial Intelligence II. Vol. 0548. International Society for
Optics and Photonics. SPIE, pp. 2–9. doi: 10.1117/12.948400 (cit. on p. 107).

Hassan, T. and R. Baumgartner (2007). “Table recognition and understanding
from PDF files.” In: International Conference on Document Analysis and
Recognition (ICDAR). Vol. 2, pp. 1143–1147. doi: 10.1109/ICDAR.2007.43
77094 (cit. on p. 110).

191

https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1007/978-3-540-74690-4_56
https://doi.org/10.1007/978-3-540-74690-4_56
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://proceedings.neurips.cc/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://doi.org/10.18653/v1/D19-5546
https://doi.org/10.18653/v1/D19-5546
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.26615/978-954-452-056-4_051
https://doi.org/10.1117/12.948400
https://doi.org/10.1109/ICDAR.2007.4377094
https://doi.org/10.1109/ICDAR.2007.4377094

Bibliography

He, K., X. Zhang, S. Ren, and J. Sun (2016). “Deep residual learning for image
recognition.” In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90 (cit. on p. 10).

Heigold, G., S. Varanasi, G. Neumann, and J. van Genabith (2018). “How
robust are character-based word embeddings in tagging and MT against wrod
scramlbing or randdm nouse?” In: Conference of the Association for Machine
Translation in the Americas (Volume 1: Research Track). Association for Ma-
chine Translation in the Americas, pp. 68–80. url: https://aclanthology.o
rg/W18-1807 (cit. on pp. 59, 66, 72, 87).

Heinzerling, B. and M. Strube (2019). “Sequence tagging with contextual and
non-contextual subword representations: A multilingual evaluation.” In: Annual
Meeting of the Association for Computational Linguistics. Association for Com-
putational Linguistics, pp. 273–291. doi: 10 . 18653 / v1 / P19 - 1027 (cit. on
p. 72).

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory.” In: Neural
Computation 9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9
.8.1735 (cit. on p. 12).

Hoshen, J. and R. Kopelman (1976). “Percolation and cluster distribution. I.
Cluster multiple labeling technique and critical concentration algorithm.” In:
Physical Review B 14 (8), pp. 3438–3445. doi: 10.1103/PhysRevB.14.3438
(cit. on p. 116).

Hu, J., L. Shen, and G. Sun (2018). “Squeeze-and-excitation networks.” In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 7132–7141. doi: 10.1109/CVPR.2018.00745 (cit. on pp. 10, 38).

Huang, Y., T. Lv, L. Cui, Y. Lu, and F. Wei (2022). LayoutLMv3: Pre-training
for document AI with unified text and image masking. doi: 10.48550/ARXIV.2
204.08387 (cit. on p. 143).

Huang, Z., M. Dong, Q. Mao, and Y. Zhan (2014). “Speech emotion recognition
using CNN.” In: ACM International Conference on Multimedia. Association for
Computing Machinery, pp. 801–804. isbn: 9781450330633. doi: 10.1145/2647
868.2654984 (cit. on p. 14).

Huang, Z., W. Xu, and K. Yu (2015). Bidirectional LSTM-CRF models for sequence
tagging. doi: 10.48550/ARXIV.1508.01991 (cit. on p. 51).

Hubel, D. H. and T. N. Wiesel (1962). “Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex.” In: The Journal of Physiology
160.1, pp. 106–154. doi: 10.1113/jphysiol.1962.sp006837 (cit. on p. 14).

Hulsebos, M., K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska,
Ç. Demiralp, and C. Hidalgo (2019). “Sherlock: A deep learning approach to
semantic data type detection.” In: ACM SIGKDD International Conference

192

https://doi.org/10.1109/CVPR.2016.90
https://aclanthology.org/W18-1807
https://aclanthology.org/W18-1807
https://doi.org/10.18653/v1/P19-1027
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1103/PhysRevB.14.3438
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.48550/ARXIV.2204.08387
https://doi.org/10.48550/ARXIV.2204.08387
https://doi.org/10.1145/2647868.2654984
https://doi.org/10.1145/2647868.2654984
https://doi.org/10.48550/ARXIV.1508.01991
https://doi.org/10.1113/jphysiol.1962.sp006837

Bibliography

on Knowledge Discovery and Data Mining (KDD). Association for Computing
Machinery, pp. 1500–1508. isbn: 9781450362016. doi: 10.1145/3292500.3330
993 (cit. on p. 112).

IEEE (1990). “IEEE standard glossary of software engineering terminology.” In:
IEEE Std 610.12-1990, pp. 1–84. doi: 10.1109/IEEESTD.1990.101064 (cit. on
p. 1).

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift.” In: International Conference on
Machine Learning (ICML). Vol. 37. PMLR, pp. 448–456. url: https://proce
edings.mlr.press/v37/ioffe15.html (cit. on pp. 10, 30, 167, 168).

Jacobs, C., P. Y. Simard, P. Viola, and J. Rinker (2005). “Text recognition of
low-resolution document images.” In: International Conference on Document
Analysis and Recognition (ICDAR). Vol. 2, pp. 695–699. doi: 10.1109/ICDAR.2
005.233 (cit. on p. 16).

Jaderberg, M., K. Simonyan, A. Vedaldi, and A. Zisserman (2014). Synthetic data
and artificial neural networks for natural scene text recognition. doi: 10.48550
/ARXIV.1406.2227 (cit. on pp. 18, 22, 24, 38).

Jaderberg, M., K. Simonyan, A. Zisserman, and K. Kavukcuoglu (2015). “Spatial
transformer networks.” In: Advances in Neural Information Processing Systems.
Vol. 28. Curran Associates, Inc., pp. 2017–2025. url: https://proceedings.n
eurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper
.pdf (cit. on p. 38).

Ji, H. and R. Grishman (2011). “Knowledge base population: Successful approaches
and challenges.” In: Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational
Linguistics, pp. 1148–1158. url: https : / / aclanthology . org / P11 - 1115
(cit. on p. 2).

Jia, R., A. Raghunathan, K. Göksel, and P. Liang (2019). “Certified robustness
to adversarial word substitutions.” In: Conference on Empirical Methods in
Natural Language Processing and the International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP). Association for Computational
Linguistics, pp. 4129–4142. doi: 10.18653/v1/D19-1423 (cit. on p. 67).

Jimeno Yepes, A. and K. Verspoor (2014). “Literature mining of genetic vari-
ants for curation: Quantifying the importance of supplementary material.” In:
Database 2014. issn: 1758-0463. doi: 10 . 1093 / database / bau003 (cit. on
p. 146).

Jivani, A. G. et al. (2011). “A comparative study of stemming algorithms.” In:
International Journal of Computer Technology and Applications 2.6, pp. 1930–
1938. issn: 2229-6093 (cit. on p. 2).

193

https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.1109/IEEESTD.1990.101064
https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/ICDAR.2005.233
https://doi.org/10.1109/ICDAR.2005.233
https://doi.org/10.48550/ARXIV.1406.2227
https://doi.org/10.48550/ARXIV.1406.2227
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf
https://aclanthology.org/P11-1115
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.1093/database/bau003

Bibliography

Jones, E., R. Jia, A. Raghunathan, and P. Liang (2020). “Robust encodings: A
framework for combating adversarial typos.” In: Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
pp. 2752–2765. doi: 10.18653/v1/2020.acl-main.245 (cit. on p. 67).

Kagaya, H., K. Aizawa, and M. Ogawa (2014). “Food detection and recogni-
tion using convolutional neural network.” In: ACM International Conference
on Multimedia. Association for Computing Machinery, pp. 1085–1088. isbn:
9781450330633. doi: 10.1145/2647868.2654970 (cit. on p. 15).

Karpukhin, V., O. Levy, J. Eisenstein, and M. Ghazvininejad (2019). “Training
on synthetic noise improves robustness to natural noise in machine translation.”
In: Workshop on Noisy User-generated Text (W-NUT). Association for Compu-
tational Linguistics, pp. 42–47. doi: 10.18653/v1/D19-5506 (cit. on pp. 41,
66).

Kasewa, S., P. Stenetorp, and S. Riedel (2018). “Wronging a right: Generating
better errors to improve grammatical error detection.” In: Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, pp. 4977–4983. doi: 10.18653/v1/D18-1541 (cit. on p. 75).

Kemighan, M. D., K. W. Church, and W. A. Gale (1990). “A spelling correction
program based on a noisy channel model.” In: International Conference on
Computational Linguistics (COLING). url: https://aclanthology.org/C90-
2036 (cit. on p. 74).

Kim, S. M. and S. Cassidy (2015). “Finding names in Trove: Named entity
recognition for Australian historical newspapers.” In: Australasian Language
Technology Association Workshop, pp. 57–65. url: https : / / aclanthology
.org/U15-1007 (cit. on p. 65).

Kingma, D. and J. Ba (2014). “Adam: A method for stochastic optimization.” In:
International Conference on Learning Representations (ICLR). url: http://a
rxiv.org/abs/1412.6980 (cit. on p. 29).

Kitano, H. (2004). “Biological robustness.” In: Nature Reviews Genetics 5.11,
pp. 826–837. issn: 1471-0064. doi: 10.1038/nrg1471 (cit. on p. 1).

Kleene, S. C. (1951). Representation of events in nerve nets and finite automata.
Tech. rep. Rand Project Air Force Santa Monica, CA. url: https://apps.dti
c.mil/sti/pdfs/ADA596138.pdf (cit. on pp. 5, 111).

Klein, G., Y. Kim, Y. Deng, J. Senellart, and A. Rush (2017). “OpenNMT:
Open-source toolkit for neural machine translation.” In: Annual Meeting of the
Association for Computational Linguistics,System Demonstrations. Association
for Computational Linguistics, pp. 67–72. url: https://aclanthology.org
/P17-4012 (cit. on p. 83).

194

https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.1145/2647868.2654970
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D18-1541
https://aclanthology.org/C90-2036
https://aclanthology.org/C90-2036
https://aclanthology.org/U15-1007
https://aclanthology.org/U15-1007
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nrg1471
https://apps.dtic.mil/sti/pdfs/ADA596138.pdf
https://apps.dtic.mil/sti/pdfs/ADA596138.pdf
https://aclanthology.org/P17-4012
https://aclanthology.org/P17-4012

Bibliography

Kolak, O. and P. Resnik (2002). “OCR error correction using a noisy channel
model.” In: International Conference on Human Language Technology Research.
Morgan Kaufmann Publishers Inc., pp. 257–262. url: https://dl.acm.org/d
oi/10.5555/1289189.1289208 (cit. on p. 74).

Kolak, O. and P. Resnik (2005). “OCR post-processing for low density languages.”
In: Human Language Technology Conference and Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational Linguistics,
pp. 867–874. url: https://aclanthology.org/H05-1109 (cit. on p. 74).

Konya, I. (2013). “Adaptive methods for robust document image understanding.”
PhD thesis. Rheinische Friedrich-Wilhelms-Universität Bonn. eprint: https://h
dl.handle.net/20.500.11811/5655 (cit. on pp. 26, 113).

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “ImageNet classification
with deep convolutional neural networks.” In: International Conference on
Neural Information Processing Systems. Vol. 1. Curran Associates Inc., pp. 1097–
1105. doi: 10.1145/3065386 (cit. on pp. 14, 48, 65).

Lafferty, J. D., A. McCallum, and F. C. N. Pereira (2001). “Conditional random
fields: Probabilistic models for segmenting and labeling sequence data.” In:
International Conference on Machine Learning (ICML). Morgan Kaufmann
Publishers Inc., pp. 282–289. isbn: 1-55860-778-1. url: http://dl.acm.or
g/citation.cfm?id=645530.655813 (cit. on p. 43).

Lage-Rupprecht, V., B. Schultz, J. Dick, M. Namysl, A. Zaliani, et al. (2022). “A
hybrid approach unveils drug repurposing candidates targeting an Alzheimer
pathophysiology mechanism.” In: Patterns 3.3, p. 100433. issn: 2666-3899. doi:
10.1016/j.patter.2021.100433 (cit. on p. 7).

Lakshmi Narayan, P., A. Nagesh, and M. Surdeanu (2019). “Exploration of noise
strategies in semi-supervised named entity classification.” In: Joint Conference
on Lexical and Computational Semantics (*SEM). Association for Computa-
tional Linguistics, pp. 186–191. doi: 10.18653/v1/S19-1020 (cit. on p. 66).

Lample, G., M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer (2016).
“Neural architectures for named entity recognition.” In: Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, pp. 260–270.
doi: 10.18653/v1/N16-1030 (cit. on pp. 42, 52).

Lavirotte, S. and L. Pottier (1997). “Optical formula recognition.” In: International
Conference on Document Analysis and Recognition. Vol. 1, pp. 357–361. doi: 1
0.1109/ICDAR.1997.619871 (cit. on p. 2).

Le, D. S., G. R. Thoma, and H. Wechsler (1994). “Automated page orientation
and skew angle detection for binary document images.” In: Pattern Recognition

195

https://dl.acm.org/doi/10.5555/1289189.1289208
https://dl.acm.org/doi/10.5555/1289189.1289208
https://aclanthology.org/H05-1109
https://hdl.handle.net/20.500.11811/5655
https://hdl.handle.net/20.500.11811/5655
https://doi.org/10.1145/3065386
http://dl.acm.org/citation.cfm?id=645530.655813
http://dl.acm.org/citation.cfm?id=645530.655813
https://doi.org/10.1016/j.patter.2021.100433
https://doi.org/10.18653/v1/S19-1020
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.1109/ICDAR.1997.619871
https://doi.org/10.1109/ICDAR.1997.619871

Bibliography

27.10, pp. 1325–1344. issn: 0031-3203. doi: 10.1016/0031-3203(94)90068-X
(cit. on p. 2).

Le, H. and A. Borji (2017). What are the receptive, effective receptive, and projective
fields of neurons in convolutional neural networks? doi: 10.48550/ARXIV.170
5.07049 (cit. on p. 14).

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). “Gradient-based learning
applied to document recognition.” In: Proceedings of the IEEE 86.11, pp. 2278–
2324. issn: 0018-9219. doi: 10.1109/5.726791 (cit. on p. 14).

Lee, C.-Y. and S. Osindero (2016). “Recursive recurrent nets with attention
modeling for OCR in the wild.” In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, pp. 2231–2239. doi: 10
.1109/CVPR.2016.245 (cit. on p. 19).

Lee, K., L. He, M. Lewis, and L. Zettlemoyer (2017). “End-to-end neural coref-
erence resolution.” In: Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, pp. 188–197. doi: 10.1
8653/v1/D17-1018 (cit. on p. 2).

Levenshtein, V. I. (1966). “Binary codes capable of correcting deletions, insertions,
and reversals.” In: Soviet Physics Doklady 10.8. url: https://nymity.ch/syb
ilhunting/pdf/Levenshtein1966a.pdf (cit. on pp. 30, 45, 76, 81, 111, 123).

Li, M., L. Cui, S. Huang, F. Wei, M. Zhou, and Z. Li (2020). “TableBank:
Table benchmark for image-based table detection and recognition.” In: Language
Resources and Evaluation Conference (LREC). European Language Resources
Association, pp. 1918–1925. isbn: 979-10-95546-34-4. url: https://aclantho
logy.org/2020.lrec-1.236 (cit. on pp. 133, 135, 138, 148, 162).

Li, M., T. Lv, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei (2021).
TrOCR: Transformer-based optical character recognition with pre-trained models.
doi: 10.48550/ARXIV.2109.10282 (cit. on p. 19).

Li, X., H. Xue, W. Chen, Y. Liu, Y. Feng, and Q. Liu (2018). “Improving the
robustness of speech translation.” In: doi: 10.48550/ARXIV.1811.00728 (cit. on
p. 65).

Li, Y., T. Cohn, and T. Baldwin (2016). “Learning robust representations of
text.” In: Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pp. 1979–1985. doi: 10.18653/v1
/D16-1207 (cit. on p. 67).

Lichtarge, J., C. Alberti, S. Kumar, N. Shazeer, N. Parmar, and S. Tong (2019).
“Corpora generation for grammatical error correction.” In: Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Association

196

https://doi.org/10.1016/0031-3203(94)90068-X
https://doi.org/10.48550/ARXIV.1705.07049
https://doi.org/10.48550/ARXIV.1705.07049
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.1109/CVPR.2016.245
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://aclanthology.org/2020.lrec-1.236
https://aclanthology.org/2020.lrec-1.236
https://doi.org/10.48550/ARXIV.2109.10282
https://doi.org/10.48550/ARXIV.1811.00728
https://doi.org/10.18653/v1/D16-1207
https://doi.org/10.18653/v1/D16-1207

Bibliography

for Computational Linguistics, pp. 3291–3301. doi: 10.18653/v1/N19-1333
(cit. on p. 75).

Lim, S., I. Kim, T. Kim, C. Kim, and S. Kim (2019). “Fast AutoAugment.” In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
pp. 6665–6675. url: http://papers.nips.cc/paper/8892-fast-autoaugmen
t.pdf (cit. on p. 65).

Liu, L., Z. Wang, J. Shang, D. Yin, H. Ji, X. Ren, S. Wang, and J. Han (2019).
Raw-to-end name entity recognition in social media. doi: 10.48550/ARXIV.190
8.05344 (cit. on p. 69).

Long, S., X. He, and C. Yao (2021). “Scene text detection and recognition: The
deep learning era.” In: International Journal of Computer Vision 129.1, pp. 161–
184. doi: 10.1007/s11263-020-01369-0 (cit. on p. 10).

Lopresti, D. (2009). “Optical character recognition errors and their effects on
natural language processing.” In: International Journal on Document Analysis
and Recognition (IJDAR) 12.3, pp. 141–151. issn: 1433-2825. doi: 10.1007/s1
0032-009-0094-8 (cit. on p. 65).

Lund, W. B., D. D. Walker, and E. K. Ringger (2011). “Progressive alignment
and discriminative error correction for multiple OCR engines.” In: International
Conference on Document Analysis and Recognition (ICDAR), pp. 764–768. doi:
10.1109/ICDAR.2011.303 (cit. on p. 74).

Luo, W., Y. Li, R. Urtasun, and R. Zemel (2016). “Understanding the effective
receptive field in deep convolutional neural networks.” In: International Con-
ference on Neural Information Processing Systems. Vol. 29. Curran Associates,
Inc., pp. 4905–4913. isbn: 9781510838819. url: https://proceedings.neuri
ps.cc/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
(cit. on p. 14).

Luong, T., H. Pham, and C. D. Manning (2015). “Effective approaches to attention-
based neural machine translation.” In: Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics, pp. 1412–
1421. doi: 10.18653/v1/D15-1166 (cit. on p. 83).

Lyu, P., M. Liao, C. Yao, W. Wu, and X. Bai (2018). “Mask TextSpotter: An
end-to-end trainable neural network for spotting text with arbitrary shapes.” In:
Computer Vision – ECCV 2018. Vol. 11218. Springer International Publishing,
pp. 71–88. isbn: 978-3-030-01264-9. doi: 10.1007/978- 3- 030- 01264- 9_5
(cit. on p. 11).

Macdonald, E. and D. Barbosa (2020). “Neural relation extraction on Wikipedia
tables for augmenting knowledge graphs.” In: ACM International Conference on
Information and Knowledge Management. Association for Computing Machinery,

197

https://doi.org/10.18653/v1/N19-1333
http://papers.nips.cc/paper/8892-fast-autoaugment.pdf
http://papers.nips.cc/paper/8892-fast-autoaugment.pdf
https://doi.org/10.48550/ARXIV.1908.05344
https://doi.org/10.48550/ARXIV.1908.05344
https://doi.org/10.1007/s11263-020-01369-0
https://doi.org/10.1007/s10032-009-0094-8
https://doi.org/10.1007/s10032-009-0094-8
https://doi.org/10.1109/ICDAR.2011.303
https://proceedings.neurips.cc/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/c8067ad1937f728f51288b3eb986afaa-Paper.pdf
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1007/978-3-030-01264-9_5

Bibliography

pp. 2133–2136. isbn: 9781450368599. doi: 10.1145/3340531.3412164 (cit. on
p. 111).

Mamede, N., J. Baptista, and F. Dias (2016). “Automated anonymization of text
documents.” In: IEEE Congress on Evolutionary Computation (CEC). IEEE,
pp. 1287–1294. doi: 10.1109/CEC.2016.7743936 (cit. on p. 69).

Mikolov, T., E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin (2018). “Advances
in pre-training distributed word representations.” In: International Conference
on Language Resources and Evaluation (LREC). European Language Resources
Association (ELRA). url: https://aclanthology.org/L18- 1008 (cit. on
pp. 51, 57).

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean (2013). “Distributed
representations of words and phrases and their compositionality.” In: Advances
in Neural Information Processing Systems. Vol. 26. Curran Associates, Inc. url:
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec03996
5f3c4923ce901b-Paper.pdf (cit. on p. 77).

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). “Efficient estimation of
word representations in vector space.” In: International Conference on Learning
Representations (ICLR), Workshop Track Proceedings. url: http://arxiv.or
g/abs/1301.3781 (cit. on p. 111).

Miller, D., S. Boisen, R. Schwartz, R. Stone, and R. Weischedel (2000). “Named
entity extraction from noisy input: Speech and OCR.” In: Applied Natural
Language Processing Conference. Association for Computational Linguistics,
pp. 316–324. doi: 10.3115/974147.974191 (cit. on pp. 3, 72).

Miyato, T., A. M. Dai, and I. J. Goodfellow (2017). “Adversarial training methods
for semi-supervised text classification.” In: International Conference on Learning
Representations (ICLR). url: https://openreview.net/forum?id=r1X3g2_x
l (cit. on pp. 47, 68).

Mole, D., C. O’Neill, P. Hamilton, B. Olabi, V. Robinson, L. Williams, T. Diamond,
M. El-Tanani, and F. Campbell (2011). “Expression of osteopontin coregulators
in primary colorectal cancer and associated liver metastases.” In: British Journal
of Cancer 104.6, pp. 1007–1012. doi: 10.1038/bjc.2011.33 (cit. on p. 151).

Müller, M., A. Rios, and R. Sennrich (2020). “Domain robustness in neural machine
translation.” In: Conference of the Association for Machine Translation in the
Americas (Volume 1: Research Track). Association for Machine Translation in
the Americas, pp. 151–164. url: https://aclanthology.org/2020.amta-res
earch.14 (cit. on p. 1).

Namysl, M., S. Behnke, and J. Köhler (2020). “NAT: Noise-aware training for
robust neural sequence labeling.” In: Annual Meeting of the Association for

198

https://doi.org/10.1145/3340531.3412164
https://doi.org/10.1109/CEC.2016.7743936
https://aclanthology.org/L18-1008
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/974147.974191
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
https://doi.org/10.1038/bjc.2011.33
https://aclanthology.org/2020.amta-research.14
https://aclanthology.org/2020.amta-research.14

Bibliography

Computational Linguistics. Association for Computational Linguistics, pp. 1501–
1517. doi: 10.18653/v1/2020.acl-main.138 (cit. on pp. 6, 8, 39, 179).

Namysl, M., S. Behnke, and J. Köhler (2021). “Empirical error modeling improves
robustness of noisy neural sequence labeling.” In: Findings of the Association
for Computational Linguistics: ACL-IJCNLP. Association for Computational
Linguistics, pp. 314–329. doi: 10.18653/v1/2021.findings-acl.27 (cit. on
pp. 7, 8, 39, 71, 180).

Namysl, M., A. Esser, S. Behnke, and J. Köhler (2022). “Flexible table recognition
and semantic interpretation system.” In: International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications.
Vol. 4: VISAPP. INSTICC. SciTePress, pp. 27–37. isbn: 978-989-758-555-5. doi:
10.5220/0010767600003124 (cit. on pp. 7, 8, 103, 180).

Namysl, M. and I. Konya (2019). “Efficient, lexicon-free OCR using deep learning.”
In: International Conference on Document Analysis and Recognition (ICDAR).
IEEE, pp. 295–301. doi: 10.1109/ICDAR.2019.00055 (cit. on pp. 6, 9, 179).

Natarajan, P., S. Saleem, R. Prasad, E. MacRostie, and K. Subramanian (2008).
“Multi-lingual offline handwriting recognition using hidden Markov models: A
script-independent approach.” In: Arabic and Chinese Handwriting Recognition.
Springer. Springer Berlin Heidelberg, pp. 231–250. isbn: 978-3-540-78199-8. doi:
10.1007/978-3-540-78199-8_14 (cit. on p. 17).

Nayef, N., M. M. Luqman, S. Prum, S. Eskenazi, J. Chazalon, and J.-M. Ogier
(2015). “SmartDoc-QA: A dataset for quality assessment of smartphone cap-
tured document images - single and multiple distortions.” In: International
Conference on Document Analysis and Recognition (ICDAR), pp. 1231–1235.
doi: 10.1109/ICDAR.2015.7333960 (cit. on p. 11).

Neudecker, C. (2016). “An open corpus for named entity recognition in historic
newspapers.” In: International Conference on Language Resources and Evalu-
ation (LREC). European Language Resources Association (ELRA), pp. 4348–
4352. url: https://aclanthology.org/L16-1689 (cit. on pp. 40, 65).

Ng, H. T., S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant
(2014). “The CoNLL-2014 shared task on grammatical error correction.” In: Con-
ference on Computational Natural Language Learning: Shared Task. Association
for Computational Linguistics, pp. 1–14. doi: 10.3115/v1/W14-1701 (cit. on
p. 74).

Ng, H. T., S. M. Wu, Y. Wu, C. Hadiwinoto, and J. Tetreault (2013). “The
CoNLL-2013 shared task on grammatical error correction.” In: Conference
on Computational Natural Language Learning: Shared Task. Association for
Computational Linguistics, pp. 1–12. url: https://aclanthology.org/W1
3-3601 (cit. on p. 74).

199

https://doi.org/10.18653/v1/2020.acl-main.138
https://doi.org/10.18653/v1/2021.findings-acl.27
https://doi.org/10.5220/0010767600003124
https://doi.org/10.1109/ICDAR.2019.00055
https://doi.org/10.1007/978-3-540-78199-8_14
https://doi.org/10.1109/ICDAR.2015.7333960
https://aclanthology.org/L16-1689
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601

Bibliography

Nurminen, A. (2013). “Algorithmic extraction of data in tables in PDF docu-
ments.” MA thesis. Tampere University of Technology. eprint: https://urn.f
i/URN:NBN:fi:tty-201305231166 (cit. on pp. 110, 154).

Oro, E. and M. Ruffolo (2009). “PDF-TREX: An approach for recognizing and
extracting tables from PDF documents.” In: International Conference on Doc-
ument Analysis and Recognition (ICDAR). IEEE, pp. 906–910. doi: 10.1109
/ICDAR.2009.12 (cit. on pp. 107, 110).

Otsu, N. (1979). “A threshold selection method from gray-level histograms.” In:
IEEE Transactions on Systems, Man and Cybernetics 9.1, pp. 62–66. doi: 10.1
109/TSMC.1979.4310076 (cit. on p. 114).

Packer, T. L., J. F. Lutes, A. P. Stewart, D. W. Embley, E. K. Ringger, K. D. Seppi,
and L. S. Jensen (2010). “Extracting person names from diverse and noisy OCR
text.” In: Workshop on Analytics for Noisy Unstructured Text Data. Association
for Computing Machinery, pp. 19–26. isbn: 9781450303767. doi: 10.1145/187
1840.1871845 (cit. on pp. 3, 65).

Paliwal, S. S., V. D, R. Rahul, M. Sharma, and L. Vig (2019). “TableNet: Deep
learning model for end-to-end table detection and tabular data extraction from
scanned document images.” In: International Conference on Document Analysis
and Recognition (ICDAR), pp. 128–133. doi: 10.1109/ICDAR.2019.00029
(cit. on pp. 111, 154).

Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu (2002). “BLEU: A method for
automatic evaluation of machine translation.” In: Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
pp. 311–318. doi: 10.3115/1073083.1073135 (cit. on pp. 148, 161).

Parada, C., M. Dredze, and F. Jelinek (2011). “OOV sensitive named-entity
recognition in speech.” In: Annual Conference of the International Speech
Communication Association (INTERSPEECH), pp. 2085–2088. doi: 10 . 214
37/Interspeech.2011-547 (cit. on p. 40).

Pascanu, R., T. Mikolov, and Y. Bengio (2013). “On the difficulty of training
recurrent neural networks.” In: International Conference on Machine learning
(ICML). Vol. 28. JMLR.org, pp. 1310–1318. url: http://proceedings.mlr.p
ress/v28/pascanu13.pdf (cit. on p. 13).

Pawlik, M. and N. Augsten (2016). “Tree edit distance: Robust and memory-
efficient.” In: Information Systems 56, pp. 157–173. issn: 0306-4379. doi: 10
.1016/j.is.2015.08.004 (cit. on pp. 148, 161).

Pennington, J., R. Socher, and C. Manning (2014). “GloVe: Global vectors for
word representation.” In: Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, pp. 1532–1543. doi: 10
.3115/v1/D14-1162 (cit. on pp. 51, 77).

200

https://urn.fi/URN:NBN:fi:tty-201305231166
https://urn.fi/URN:NBN:fi:tty-201305231166
https://doi.org/10.1109/ICDAR.2009.12
https://doi.org/10.1109/ICDAR.2009.12
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1145/1871840.1871845
https://doi.org/10.1145/1871840.1871845
https://doi.org/10.1109/ICDAR.2019.00029
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.21437/Interspeech.2011-547
https://doi.org/10.21437/Interspeech.2011-547
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/10.1016/j.is.2015.08.004
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162

Bibliography

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.
Zettlemoyer (2018). “Deep contextualized word representations.” In: Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). Association for Com-
putational Linguistics, pp. 2227–2237. doi: 10.18653/v1/N18-1202 (cit. on
pp. 42, 52, 77).

Piktus, A., N. B. Edizel, P. Bojanowski, E. Grave, R. Ferreira, and F. Silvestri
(2019). “Misspelling oblivious word embeddings.” In: Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, volume 1 (Long and Short Papers). Association for
Computational Linguistics, pp. 3226–3234. doi: 10.18653/v1/N19-1326 (cit. on
pp. 41, 53, 55, 56, 58, 59, 67, 82, 88).

Porter, T. and T. Duff (1984). “Compositing digital images.” In: SIGGRAPH
Computer Graphics 18.3, pp. 253–259. issn: 0097-8930. doi: 10.1145/964965
.808606 (cit. on p. 23).

Prasad, D., A. Gadpal, K. Kapadni, M. Visave, and K. Sultanpure (2020).
“CascadeTabNet: An approach for end to end table detection and structure recog-
nition from image-based documents.” In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 2439–2447. doi: 10
.1109/CVPRW50498.2020.00294 (cit. on pp. 111, 132, 135, 138, 154).

Puigcerver, J. (2017). “Are multidimensional recurrent layers really necessary for
handwritten text recognition?” In: IAPR International Conference on Document
Analysis and Recognition (ICDAR). Vol. 01, pp. 67–72. doi: 10.1109/ICDAR.2
017.20 (cit. on p. 18).

Qiu, M. and J. Park (2019). “Artificial error generation with fluency filtering.”
In: Workshop on Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics, pp. 87–91. doi: 10.18653/v1/W19-
4408 (cit. on p. 75).

Rabiner, L. R. (1989). “A tutorial on hidden Markov models and selected appli-
cations in speech recognition.” In: Proceedings of the IEEE 77.2, pp. 257–286.
issn: 0018-9219. doi: 10.1109/5.18626 (cit. on p. 18).

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu (2020). “Exploring the limits of transfer learning with a unified text-
to-text transformer.” In: Journal of Machine Learning Research 21.140, pp. 1–67.
url: http://jmlr.org/papers/v21/20-074.html (cit. on p. 19).

Rashid, S. F., F. Shafait, and T. M. Breuel (2012). “Scanning neural network for
text line recognition.” In: IAPR International Workshop on Document Analysis
Systems, pp. 105–109. doi: 10.1109/DAS.2012.77 (cit. on p. 17).

201

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N19-1326
https://doi.org/10.1145/964965.808606
https://doi.org/10.1145/964965.808606
https://doi.org/10.1109/CVPRW50498.2020.00294
https://doi.org/10.1109/CVPRW50498.2020.00294
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.1109/ICDAR.2017.20
https://doi.org/10.18653/v1/W19-4408
https://doi.org/10.18653/v1/W19-4408
https://doi.org/10.1109/5.18626
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1109/DAS.2012.77

Bibliography

Rastan, R., H.-Y. Paik, and J. Shepherd (2015). “TEXUS: A task-based approach
for table extraction and understanding.” In: ACM Symposium on Document
Engineering (DocEng), pp. 25–34. isbn: 9781450333078. doi: 10.1145/268257
1.2797069 (cit. on pp. 110, 135).

Ratinov, L. and D. Roth (2009). “Design challenges and misconceptions in named
entity recognition.” In: Conference on Computational Natural Language Learning
(CoNLL). Association for Computational Linguistics, pp. 147–155. url: https:
//aclanthology.org/W09-1119 (cit. on p. 43).

Rawlinson, G. (2007). “The significance of letter position in word recognition.”
In: IEEE Aerospace and Electronic Systems Magazine 22.1, pp. 26–27. issn:
0885-8985. doi: 10.1109/MAES.2007.327521 (cit. on p. 41).

Rei, M., M. Felice, Z. Yuan, and T. Briscoe (2017). “Artificial error generation with
machine translation and syntactic patterns.” In: Workshop on Innovative Use
of NLP for Building Educational Applications. Association for Computational
Linguistics, pp. 287–292. doi: 10.18653/v1/W17-5032 (cit. on pp. 75, 78).

Ren, S., K. He, R. Girshick, and J. Sun (2015). “Faster R-CNN: Towards real-
time object detection with region proposal networks.” In: Advances in Neural
Information Processing Systems. Vol. 28. Curran Associates, Inc. (cit. on p. 133).

Reza, M. M., S. S. Bukhari, M. Jenckel, and A. Dengel (2019). “Table localization
and segmentation using GAN and CNN.” In: International Conference on
Document Analysis and Recognition Workshops (ICDARW). Vol. 5, pp. 152–157.
doi: 10.1109/ICDARW.2019.40097 (cit. on p. 111).

Reza Yousefi, M., M. R. Soheili, T. M. Breuel, and D. Stricker (2015). “A
comparison of 1D and 2D LSTM architectures for the recognition of handwritten
Arabic.” In: The International Society for Optical Engineering (SPIE) 9402. doi:
10.1117/12.2075930 (cit. on p. 17).

Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011). “Contractive
auto-encoders: Explicit invariance during feature extraction.” In: International
Conference on Machine Learning (ICML). Omnipress, pp. 833–840. isbn: 978-1-
4503-0619-5. url: http://dl.acm.org/citation.cfm?id=3104482.3104587
(cit. on p. 67).

Rigaud, C., A. Doucet, M. Coustaty, and J. Moreux (2019). “ICDAR 2019
competition on post-OCR text correction.” In: International Conference on
Document Analysis and Recognition (ICDAR), pp. 1588–1593. doi: 10.1109
/ICDAR.2019.00255 (cit. on pp. 74, 78).

Ruiz, N., M. A. D. Gangi, N. Bertoldi, and M. Federico (2017). “Assessing the
tolerance of neural machine translation systems against speech recognition
errors.” In: Annual Conference of the International Speech Communication

202

https://doi.org/10.1145/2682571.2797069
https://doi.org/10.1145/2682571.2797069
https://aclanthology.org/W09-1119
https://aclanthology.org/W09-1119
https://doi.org/10.1109/MAES.2007.327521
https://doi.org/10.18653/v1/W17-5032
https://doi.org/10.1109/ICDARW.2019.40097
https://doi.org/10.1117/12.2075930
http://dl.acm.org/citation.cfm?id=3104482.3104587
https://doi.org/10.1109/ICDAR.2019.00255
https://doi.org/10.1109/ICDAR.2019.00255

Bibliography

Association (INTERSPEECH), pp. 2635–2639. doi: 10.21437/Interspeech
.2017-1690 (cit. on p. 65).

Sabir, E., S. Rawls, and P. Natarajan (2017). “Implicit language model in LSTM
for OCR.” In: IAPR International Conference on Document Analysis and
Recognition (ICDAR). Vol. 07, pp. 27–31. doi: 10 . 1109 / ICDAR . 2017 . 361
(cit. on p. 30).

Sánchez, J. A., V. Romero, A. H. Toselli, M. Villegas, and E. Vidal (2017). “IC-
DAR2017 competition on handwritten text recognition on the READ dataset.”
In: IAPR International Conference on Document Analysis and Recognition
(ICDAR). Vol. 01, pp. 1383–1388. doi: 10.1109/ICDAR.2017.226 (cit. on
p. 11).

Sauvola, J., T. Seppanen, S. Haapakoski, and M. Pietikainen (1997). “Adaptive
document binarization.” In: International Conference on Document Analysis and
Recognition. Vol. 1, pp. 147–152. doi: 10.1109/ICDAR.1997.619831 (cit. on
p. 2).

Schmaltz, A., Y. Kim, A. Rush, and S. Shieber (2017). “Adapting sequence
models for sentence correction.” In: Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, pp. 2807–2813.
doi: 10.18653/v1/D17-1298 (cit. on p. 74).

Schnober, C., S. Eger, E.-L. Do Dinh, and I. Gurevych (2016). “Still not there?
Comparing traditional sequence-to-sequence models to encoder-decoder neural
networks on monotone string translation tasks.” In: International Conference
on Computational Linguistics (COLING): Technical Papers. The COLING 2016
Organizing Committee, pp. 1703–1714. url: https://aclanthology.org/C16
-1160 (cit. on pp. 74, 78).

Schreiber, S., S. Agne, I. Wolf, A. Dengel, and S. Ahmed (2017). “DeepDeSRT:
Deep learning for detection and structure recognition of tables in document
images.” In: International Conference on Document Analysis and Recognition
(ICDAR). Vol. 01, pp. 1162–1167. doi: 10.1109/ICDAR.2017.192 (cit. on
p. 110).

Schulz, S. and J. Kuhn (2017). “Multi-modular domain-tailored OCR post-
correction.” In: Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, pp. 2716–2726. doi: 10.18
653/v1/D17-1288 (cit. on p. 74).

Schuster, M. and K. K. Paliwal (1997). “Bidirectional recurrent neural networks.”
In: IEEE Transactions on Signal Processing 45.11, pp. 2673–2681. issn: 1053-
587X. doi: 10.1109/78.650093 (cit. on p. 13).

See, A., P. J. Liu, and C. D. Manning (2017). “Get to the point: Summarization
with pointer-generator networks.” In: Annual Meeting of the Association for

203

https://doi.org/10.21437/Interspeech.2017-1690
https://doi.org/10.21437/Interspeech.2017-1690
https://doi.org/10.1109/ICDAR.2017.361
https://doi.org/10.1109/ICDAR.2017.226
https://doi.org/10.1109/ICDAR.1997.619831
https://doi.org/10.18653/v1/D17-1298
https://aclanthology.org/C16-1160
https://aclanthology.org/C16-1160
https://doi.org/10.1109/ICDAR.2017.192
https://doi.org/10.18653/v1/D17-1288
https://doi.org/10.18653/v1/D17-1288
https://doi.org/10.1109/78.650093

Bibliography

Computational Linguistics (Volume 1: Long Papers). Association for Computa-
tional Linguistics, pp. 1073–1083. doi: 10.18653/v1/P17-1099 (cit. on p. 83).

Sennrich, R., B. Haddow, and A. Birch (2016). “Improving neural machine
translation models with monolingual data.” In: Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Association for
Computational Linguistics, pp. 86–96. doi: 10.18653/v1/P16-1009 (cit. on
pp. 68, 75).

Shi, B., X. Bai, and C. Yao (2017). “An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text recognition.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 39.11,
pp. 2298–2304. issn: 0162-8828. doi: 10.1109/TPAMI.2016.2646371 (cit. on
pp. 18, 20).

Shigarov, A., A. Altaev, A. Mikhailov, V. Paramonov, and E. Cherkashin (2018).
“TabbyPDF: Web-based system for PDF table extraction.” In: Information and
Software Technologies. Springer, pp. 257–269. isbn: 978-3-319-99972-2. doi: 10
.1007/978-3-319-99972-2_20 (cit. on pp. 107, 110, 135, 154).

Silva, A. C. e. (2011). “Metrics for evaluating performance in document analysis:
Application to tables.” In: International Journal on Document Analysis and
Recognition (IJDAR) 14.1, pp. 101–109. issn: 1433-2833. doi: 10.1007/s1003
2-010-0144-2 (cit. on p. 147).

Silva, A. C. e., A. M. Jorge, and L. Torgo (2005). “Design of an end-to-end method
to extract information from tables.” In: International Journal of Document
Analysis and Recognition (IJDAR) 8, pp. 144–171. doi: 10.1007/s10032- 0
05-0001-x (cit. on p. 109).

Silveira, N., T. Dozat, M.-C. de Marneffe, S. Bowman, M. Connor, J. Bauer,
and C. Manning (2014). “A gold standard dependency corpus for English.”
In: International Conference on Language Resources and Evaluation (LREC).
European Language Resources Association (ELRA), pp. 2897–2904. url: http:
//www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf (cit. on
pp. 51, 86).

Simard, P. Y., D. Steinkraus, and J. C. Platt (2003). “Best practices for convolu-
tional neural networks applied to visual document analysis.” In: International
Conference on Document Analysis and Recognition (ICDAR), pp. 958–963. doi:
10.1109/ICDAR.2003.1227801 (cit. on p. 23).

Simonyan, K. and A. Zisserman (2014). Very deep convolutional networks for large-
scale image recognition. doi: 10.48550/ARXIV.1409.1556 (cit. on p. 15).

Smith, R. (2011). “Limits on the application of frequency-based language models
to OCR.” In: International Conference on Document Analysis and Recognition
(ICDAR), pp. 538–542. doi: 10.1109/ICDAR.2011.114 (cit. on pp. 11, 16).

204

https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1007/978-3-319-99972-2_20
https://doi.org/10.1007/978-3-319-99972-2_20
https://doi.org/10.1007/s10032-010-0144-2
https://doi.org/10.1007/s10032-010-0144-2
https://doi.org/10.1007/s10032-005-0001-x
https://doi.org/10.1007/s10032-005-0001-x
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1089_Paper.pdf
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/ICDAR.2011.114

Bibliography

Smith, R. (2007). “An overview of the Tesseract OCR engine.” In: International
Conference on Document Analysis and Recognition (ICDAR). Vol. 2, pp. 629–
633. doi: 10.1109/ICDAR.2007.4376991 (cit. on pp. 27, 30, 84, 114).

Sperber, M., J. Niehues, and A. Waibel (2017). “Toward robust neural machine
translation for noisy input sequences.” In: The International Workshop on Spoken
Language Translation (IWSLT). url: http://workshop2017.iwslt.org/down
loads/P04-Paper.pdf (cit. on pp. 42, 48, 66).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov
(2014). “Dropout: A simple way to prevent neural networks from overfitting.”
In: Journal of Machine Learning Research 15, pp. 1929–1958. url: http://jm
lr.org/papers/v15/srivastava14a.html (cit. on pp. 30, 48, 167).

Sutskever, I., O. Vinyals, and Q. V. Le (2014). “Sequence to sequence learning
with neural networks.” In: Advances in Neural Information Processing Systems.
Vol. 27. Curran Associates, Inc., pp. 3104–3112. url: https://proceedings.n
eurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper
.pdf (cit. on p. 5).

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich (2015). “Going deeper with convolutions.” In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–
9. doi: 10.1109/CVPR.2015.7298594 (cit. on p. 15).

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus (2014). “Intriguing properties of neural networks.” In: International
Conference on Learning Representations (ICLR). url: https://openreview.n
et/forum?id=kklr_MTHMRQjG (cit. on p. 68).

Tengli, A., Y. Yang, and N. L. Ma (2004). “Learning table extraction from ex-
amples.” In: International Conference on Computational Linguistics. COLING,
pp. 987–993. url: https://aclanthology.org/C04-1142 (cit. on p. 2).

Tjong Kim Sang, E. F. and S. Buchholz (2000). “Introduction to the CoNLL-
2000 shared task chunking.” In: Conference on Computational Natural Language
Learning and the Learning Language in Logic Workshop. url: https://aclan
thology.org/W00-0726 (cit. on p. 51).

Tjong Kim Sang, E. F. and F. De Meulder (2003). “Introduction to the CoNLL-
2003 shared task: Language-independent named entity recognition.” In: Confer-
ence on Natural Language Learning at HLT-NAACL, pp. 142–147. url: https:
//aclanthology.org/W03-0419 (cit. on pp. 2, 44, 47, 50, 86).

Toutanova, K. and R. C. Moore (2002). “Pronunciation modeling for improved
spelling correction.” In: Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, pp. 144–151. doi: 10.3
115/1073083.1073109 (cit. on p. 74).

205

https://doi.org/10.1109/ICDAR.2007.4376991
http://workshop2017.iwslt.org/downloads/P04-Paper.pdf
http://workshop2017.iwslt.org/downloads/P04-Paper.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1109/CVPR.2015.7298594
https://openreview.net/forum?id=kklr_MTHMRQjG
https://openreview.net/forum?id=kklr_MTHMRQjG
https://aclanthology.org/C04-1142
https://aclanthology.org/W00-0726
https://aclanthology.org/W00-0726
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.3115/1073083.1073109
https://doi.org/10.3115/1073083.1073109

Bibliography

Treue, S. and S. Katzner (2009). “Visual attention.” In: Encyclopedia of Neuro-
science. Academic Press, pp. 243–250. isbn: 978-0-08-045046-9. doi: 10.1016
/B978-008045046-9.00242-4 (cit. on p. 19).

Tsvetkov, Y., F. Metze, and C. Dyer (2014). “Augmenting translation models
with simulated acoustic confusions for improved spoken language translation.”
In: Conference of the European Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, pp. 616–625. doi: 10.3
115/v1/E14-1065 (cit. on p. 65).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin (2017). “Attention is all you need.” In: Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc. url: https:
//proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1
c4a845aa-Paper.pdf (cit. on p. 19).

Voigtlaender, P., P. Doetsch, and H. Ney (2016). “Handwriting recognition with
large multidimensional long short-term memory recurrent neural networks.” In:
International Conference on Frontiers in Handwriting Recognition (ICFHR),
pp. 228–233. doi: 10.1109/ICFHR.2016.0052 (cit. on p. 17).

Wang, A., A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman (2018). “GLUE:
A multi-task benchmark and analysis platform for natural language understand-
ing.” In: EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Association for Computational Linguistics, pp. 353–355. doi:
10.18653/v1/W18-5446 (cit. on p. 72).

Wang, D., Y. Song, J. Li, J. Han, and H. Zhang (2018). “A hybrid approach to
automatic corpus generation for Chinese spelling check.” In: Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics, pp. 2517–2527. doi: 10.18653/v1/D18-1273 (cit. on p. 80).

Wang, J., K. Sun, T. Cheng, B. Jiang, C. Deng, et al. (2021). “Deep high-resolution
representation learning for visual recognition.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 43.10, pp. 3349–3364. doi: 10.1109/TPAMI.2
020.2983686 (cit. on p. 126).

Wang, K., B. Babenko, and S. Belongie (2011). “End-to-end scene text recogni-
tion.” In: International Conference on Computer Vision, pp. 1457–1464. doi:
10.1109/ICCV.2011.6126402 (cit. on p. 11).

Webster, J. J. and C. Kit (1992). “Tokenization as the initial phase in NLP.”
In: Conference on Computational Linguistics - Volume 4. Association for
Computational Linguistics, pp. 1106–1110. doi: 10 . 3115 / 992424 . 992434
(cit. on p. 2).

Wemhoener, D., I. Z. Yalniz, and R. Manmatha (2013). “Creating an improved
version using noisy OCR from multiple editions.” In: International Conference

206

https://doi.org/10.1016/B978-008045046-9.00242-4
https://doi.org/10.1016/B978-008045046-9.00242-4
https://doi.org/10.3115/v1/E14-1065
https://doi.org/10.3115/v1/E14-1065
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICFHR.2016.0052
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/D18-1273
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1109/ICCV.2011.6126402
https://doi.org/10.3115/992424.992434

Bibliography

on Document Analysis and Recognition, pp. 160–164. doi: 10.1109/ICDAR.201
3.39 (cit. on p. 74).

Werbos, P. J. (1990). “Backpropagation through time: What it does and how to
do it.” In: Proceedings of the IEEE 78.10, pp. 1550–1560. issn: 0018-9219. doi:
10.1109/5.58337 (cit. on p. 12).

Wright, P. (1980). “The comprehension of tabulated information: Some similarities
between reading prose and reading tables.” In: NSPI Journal 19.8, pp. 25–29.
doi: https://doi.org/10.1002/pfi.4180190810 (cit. on p. 104).

Xia, J., H. Hu, W. Xue, X. S. Wang, and S. Wu (2018). “The discovery of novel
HDAC3 inhibitors via virtual screening and in vitro bioassay.” In: Journal of
Enzyme Inhibition and Medicinal Chemistry 33.1, pp. 525–535. doi: 10.1080/1
4756366.2018.1437156. eprint: https://doi.org/10.1080/14756366.2018
.1437156 (cit. on p. 125).

Xie, Q., Z. Dai, E. Hovy, T. Luong, and Q. Le (2020). “Unsupervised data
augmentation for consistency training.” In: Advances in Neural Information
Processing Systems. Vol. 33. Curran Associates, Inc., pp. 6256–6268. url: ht
tps://proceedings.neurips.cc/paper/2020/file/44feb0096faa83261925
70788b38c1d1-Paper.pdf (cit. on p. 67).

Xie, S., R. Girshick, P. Dollar, Z. Tu, and K. He (2017). “Aggregated residual
transformations for deep neural networks.” In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (cit. on pp. 126, 133).

Xie, Z., G. Genthial, S. Xie, A. Ng, and D. Jurafsky (2018). “Noising and
denoising natural language: Diverse backtranslation for grammar correction.”
In: Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long Papers).
Association for Computational Linguistics, pp. 619–628. doi: 10.18653/v1/N1
8-1057 (cit. on pp. 75, 78).

Xie, Z., S. I. Wang, J. Li, D. Lévy, A. Nie, D. Jurafsky, and A. Y. Ng (2017).
“Data noising as smoothing in neural network language models.” In: International
Conference on Learning Representations (ICLR), Conference Track Proceedings.
OpenReview.net. url: https://openreview.net/forum?id=H1VyHY9gg (cit.
on p. 81).

Xu, Z., Y. Yang, and A. G. Hauptmann (2015). “A discriminative CNN video
representation for event detection.” In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1798–1807. doi: 10.1109/CVPR.2015.7
298789 (cit. on p. 14).

Yan, C. and Y. He (2018). “Synthesizing type-detection logic for rich semantic data
types using open-source code.” In: International Conference on Management

207

https://doi.org/10.1109/ICDAR.2013.39
https://doi.org/10.1109/ICDAR.2013.39
https://doi.org/10.1109/5.58337
https://doi.org/https://doi.org/10.1002/pfi.4180190810
https://doi.org/10.1080/14756366.2018.1437156
https://doi.org/10.1080/14756366.2018.1437156
https://doi.org/10.1080/14756366.2018.1437156
https://doi.org/10.1080/14756366.2018.1437156
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
https://doi.org/10.18653/v1/N18-1057
https://doi.org/10.18653/v1/N18-1057
https://openreview.net/forum?id=H1VyHY9gg
https://doi.org/10.1109/CVPR.2015.7298789
https://doi.org/10.1109/CVPR.2015.7298789

Bibliography

of Data (SIGMOD). Association for Computing Machinery, pp. 35–50. isbn:
9781450347037. doi: 10.1145/3183713.3196888 (cit. on p. 111).

Yasunaga, M., J. Kasai, and D. Radev (2018). “Robust multilingual part-of-speech
tagging via adversarial training.” In: Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, pp. 976–986.
doi: 10.18653/v1/N18-1089 (cit. on pp. 47, 68).

Yousefi, M. R., M. R. Soheili, T. M. Breuel, E. Kabir, and D. Stricker (2015).
“Binarization-free OCR for historical documents using LSTM networks.” In:
International Conference on Document Analysis and Recognition (ICDAR),
pp. 1121–1125. doi: 10.1109/ICDAR.2015.7333935 (cit. on p. 17).

Yu, T., C.-S. Wu, X. V. Lin, bailin wang, Y. C. Tan, X. Yang, D. Radev, richard
socher, and C. Xiong (2021). “GraPPa: Grammar-augmented pre-training for
table semantic parsing.” In: International Conference on Learning Representa-
tions (ICLR). url: https://openreview.net/forum?id=kyaIeYj4zZ (cit. on
p. 111).

Yuan, Z. and T. Briscoe (2016). “Grammatical error correction using neural
machine translation.” In: Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. As-
sociation for Computational Linguistics, pp. 380–386. doi: 10.18653/v1/N16-
1042 (cit. on p. 74).

Zhang, D., M. Hulsebos, Y. Suhara, Ç. Demiralp, J. Li, and W.-C. Tan (2020).
“Sato: Contextual semantic type detection in tables.” In: VLDB Endowment
13.12, pp. 1835–1848. issn: 2150-8097. doi: 10.14778/3407790.3407793 (cit. on
p. 112).

Zhang, H., H. Zhou, N. Miao, and L. Li (2019). “Generating fluent adversarial
examples for natural languages.” In: Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, pp. 5564–
5569. doi: 10.18653/v1/P19-1559 (cit. on p. 68).

Zhang, Q., M. Chen, and L. Liu (2017). “A review on entity relation extraction.”
In: International Conference on Mechanical, Control and Computer Engineering
(ICMCCE), pp. 178–183. doi: 10.1109/ICMCCE.2017.14 (cit. on p. 2).

Zhang, Z., X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu (2019). “ERNIE: En-
hanced language representation with informative entities.” In: Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, pp. 1441–1451. doi: 10.18653/v1/P19-1139 (cit. on p. 72).

Zheng, S., Y. Song, T. Leung, and I. J. Goodfellow (2016). “Improving the
robustness of deep neural networks via stability training.” In: IEEE Conference

208

https://doi.org/10.1145/3183713.3196888
https://doi.org/10.18653/v1/N18-1089
https://doi.org/10.1109/ICDAR.2015.7333935
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.18653/v1/N16-1042
https://doi.org/10.14778/3407790.3407793
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.1109/ICMCCE.2017.14
https://doi.org/10.18653/v1/P19-1139

Bibliography

on Computer Vision and Pattern Recognition (CVPR), pp. 4480–4488. doi: 10
.1109/CVPR.2016.485 (cit. on pp. 42, 48, 67).

Zheng, Y., C. Liu, X. Ding, and S. Pan (2001). “Form frame line detection with
directional single-connected chain.” In: International Conference on Document
Analysis and Recognition, pp. 699–703. doi: 10.1109/ICDAR.2001.953880
(cit. on p. 114).

Zhong, X., E. ShafieiBavani, and A. Jimeno Yepes (2020). “Image-based table
recognition: Data, model, and evaluation.” In: Computer Vision – ECCV 2020.
Springer International Publishing, pp. 564–580. isbn: 978-3-030-58589-1. doi:
10.1007/978-3-030-58589-1_34 (cit. on pp. 146, 148).

Zhu, X., W. Su, L. Lu, B. Li, X. Wang, and J. Dai (2021). “Deformable DETR:
Deformable transformers for end-to-end object detection.” In: International
Conference on Learning Representations (ICLR). url: https://openreview
.net/forum?id=gZ9hCDWe6ke (cit. on p. 19).

209

https://doi.org/10.1109/CVPR.2016.485
https://doi.org/10.1109/CVPR.2016.485
https://doi.org/10.1109/ICDAR.2001.953880
https://doi.org/10.1007/978-3-030-58589-1_34
https://openreview.net/forum?id=gZ9hCDWe6ke
https://openreview.net/forum?id=gZ9hCDWe6ke

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Definition of Robustness
	Information Extraction

	Motivation
	Contributions
	Publications
	Outline
	Open-Source Software

	Robust Neural OCR Engine
	Preface
	Abstract
	Introduction
	Preliminaries
	Recurrent Neural Networks
	Convolutional Neural Networks

	Related Work
	Segmentation-Based Text Recognition Methods
	Segmentation-Free Text Recognition Methods

	Proposed Method
	System Architecture
	Synthetic Document Generation
	Data Augmentation for OCR
	Geometric Normalization

	Experimental Setup
	Data Sources and Data Sets
	Training Setup
	Evaluation Setup

	Experimental Results
	Recognition Accuracy
	Analysis of the Most Frequent Errors
	Runtime Analysis
	Qualitative Example of CTC Decoding
	Ablation Study

	Summary

	Noise-Aware Training
	Preface
	Abstract
	Introduction
	Background and Motivation
	Neural Sequence Labeling
	Noisy Neural Sequence Labeling
	Problem Definition

	Proposed Noise-Aware Training Method
	Noise Model
	Noise Induction Procedure
	Data Augmentation Objective
	Stability Training Objective

	Experimental Setup
	Data Sets and Tasks
	Model Architecture
	Training Setup
	Evaluation Setup
	Implementation Details

	Experimental Results
	Named Entity Recognition
	Syntactic Chunking and Part-of-Speech Tagging
	Sensitivity Analysis
	Error Analysis
	Qualitative Analysis

	Related Work
	The Impact of Noisy Input Data
	Noise-Additive Data Augmentation
	Noise-Invariant Latent Representation
	Adversarial Learning

	Summary

	Empirical Error Modeling for Improved Noise-Aware Training
	Preface
	Abstract
	Introduction
	Related Work
	Spelling and OCR Postcorrection
	Grammatical Error Correction

	Problem Definition and Motivation
	Noisy Neural Sequence Labeling
	Confusion Matrix-Based Error Model
	Realistic Empirical Error Modeling
	Data Sparsity of Natural Language
	The Issues of Error Correction Methods

	Proposed Empirical Error Modeling Method
	Sequence-to-Sequence Error Generator
	Unsupervised Parallel Data Generation
	Sentence- and Token-Level Error Modeling
	Token-Level Sentence Alignment
	Noisy Language Modeling

	Experimental Setup
	Sequence-to-Sequence Error Generation and Correction
	Unsupervised Parallel Data Generation
	Noisy Language Modeling
	Sequence Labeling
	Tasks and Data Sets
	Noisy Benchmarks
	Error Generation Baselines
	Error Correction Baselines

	Experimental Results
	Empirical Noise Generation Approaches
	Error Generation vs. Error Correction
	Noisy Language Modeling
	Human-Generated Errors
	Relationship with the Size of the Parallel Corpus

	Summary

	Flexible Table Recognition and Semantic Interpretation
	Preface
	Abstract
	Introduction
	Table Extraction Task
	Table Detection
	Table Structure Recognition
	Table Interpretation

	Related Work
	Complete Table Recognition Approaches
	Table Interpretation Approaches

	Proposed Basic Table Extraction Method
	Preprocessing
	General Table Recognition Considerations
	Recognition of Fully Bordered Tables
	Recognition of Partially Bordered Tables
	Proposed Table Interpretation Method

	Proposed Hybrid Table Extraction Method
	Table Detection
	Table Structure Recognition

	Experimental Setup - Table Recognition
	Data Sets
	Table Detection Setup
	TSR Setup
	Postprocessing

	Experimental Results - Table Recognition
	ICDAR 2013 Experiment
	ICDAR 2019 Experiment

	Table Interpretation Experiment
	Data Sets
	Evaluation Setup
	Evaluation Results

	Summary

	Position-Independent Evaluation of Table Recognition Systems
	Preface
	Abstract
	Introduction
	Related Work
	Problem Definition
	Proposed Evaluation Method of the CTR Task
	Experimental Setup
	Data Set
	Baseline Table Recognition Methods
	Evaluation Metrics
	Evaluation Procedure

	Experimental Results
	Single-Variant and Multiple-Variant Evaluation Results
	Subset-Level Evaluation Results

	Discussion
	Table Extraction Challenges Based on Benchmark Data
	PDF vs. Image-Based Input Documents
	Could We Also Evaluate the Accuracy of Table Detection?
	Evaluation Behavior on Two Practical Examples

	Summary

	Conclusions
	Future Work Directions

	Appendix Supplementary Material
	Appendix Statistics of the Sequence Labeling Data Sets
	Appendix Incorporated Publications
	
	
	
	
	

	Acronyms
	Bibliography

