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Abstract 
 
The inaugural Ph.D. dissertation is divided into two chapters. The first chapter consists of 

the integrative analysis of genetic and epigenetic data of individuals with familial and 

environmental risk for affective disorder. The second chapter is focused on the rare variant 

burden analysis of Niemann-Pick genes in SCZ (Schizophrenia) using smMIP-based 

targeted sequencing. First, the neurobiological correlates for the development of affective 

disorder development are largely unknown. There is increasing evidence that epigenetic 

modifications e.g. DNA methylation play an important role in the development of MDD 

(Major Depressive Disorder) and BD (Bipolar Disorder). We conducted two separate 

epigenome-wide methylation studies in whole-blood samples of female individuals with no 

reported history of psychiatric diseases to identify methylation sites associated with 

different risk factors for affective disorder: (i) familial risk (at least one 1st-degree relative 

with a history of affective disorder) or (ii) environmental risk (ranks above the threshold for 

a minimum of two forms of maltreatment in the CTQ (childhood trauma questionnaire)). 

Female individuals without any of these risk factors were chosen as controls. The data 

analysis pipeline included the following steps, probe filtering, functional normalization, and 

correction for leukocyte subpopulations. After rigorous quality control measurements, 

495,406 DNA methylation sites were tested using a linear regression approach and 

correction for technical and biological covariates. Overall, 22,230 and 21,940 DNA 

methylation sites were nominally associated (p<0.05) with familial and environmental risk 

for affective disorder. Not any of the tested methylation sites reached epigenome-wide 

significance after correction for multiple testing. GO (Gene Ontology) analyses for familial 

and environmental risk displayed an enrichment of methylation sites in pathways related 

to neurogenesis and nervous system development. To identify the effects of genetic 

variants on the DNA methylation level, an integrated analysis of genome-wide genotype 

and epigenetic data was conducted. At this point, 45 independent single-nucleotide 

polymorphisms indicated a significant regulatory effect on DNA methylation. These 

methylation quantitative trait loci may help to understand the functional role of genetic 

variants in affective disorders. Further, analyses involving post-mortem brain samples, 

larger cohort sizes, and independent replication cohorts are needed to discover epigenetic 

mechanisms in affective disorder development. Second, SCZ is a severe neuropsychiatric 
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disorder with devastating health consequences for the affected individuals. Patients with 

SCZ display a broad range of symptoms highlighting that it is a clinically heterogeneous 

and complex mental disorder. The age at onset varies from early childhood to 

adolescence. The heritability was estimated to be around 60% in families and 80% in 

twins. Both genetic and environmental risk factors contribute to disease development. As 

many genes are implicated in SCZ from common variants with small effects to rare 

variants with large effects, there is currently no valid biomarker available to confirm or rule 

out the clinical diagnosis of SCZ. Due to the clinical heterogeneity and overlapping 

symptoms with other neurological and psychiatric disorders, making a correct clinical 

diagnosis can be challenging. Nieman-Pick type C (NP-C) disease belongs to a group of 

rare lysosomal storage disorders which are a group of heterogeneous inherited inborn 

errors of lipid metabolism. This disease is caused by mutations in either one of the genes 

NCP1 or NPC2. It is a slowly progressing neurodegenerative disease where the clinical 

spectrum is remarkably heterogeneous and whose manifestations are age-dependent. In 

young adulthood neuropsychiatric symptoms like major depressive syndromes, 

sometimes bipolar disorder, or schizophrenia including psychosis start to manifest in the 

affected individuals. Mimicking psychiatric symptoms such as SCZ might lead to the 

misdiagnosis of NP-C patients. Correctly diagnosing NP-C is crucial for the affected 

individuals as NP-C-specific therapies are available. For that, NGS-based targeted 

sequencing of all coding exons and exon/intron boundaries of the NPC1 and NPC2 genes 

was applied. To test the hypothesis of whether rare functionally relevant NPC1 and NPC2 

variants are enriched in SCZ patients compared to controls, a rare variant association test 

using SKAT-O (Optimal Sequence Kernel Association Test) was carried out. This type of 

test is advantageous as it maximizes the power by adaptively selecting the best linear 

combination of the burden and non-burden SKAT test. After stringent QC and filtering, 42 

and 4 rare functionally relevant variants in NPC1 and NPC2 from 1,815 SCZ patients and 

1,831 controls served as input for the SKAT-O. None of the tested genes either NPC1 

(pSKAT-O<0.929) or NPC2 (pSKAT-O<0.489) were significant in the rare variant association 

test. A lookup in the currently largest meta-analysis of exome sequencing data in SCZ 

(SCHEMA) revealed similar non-significant findings for NPC1 (p=0.153) and NPC2 

(p=0.206). Further, to access the effect of rare functionally relevant variants in NPC1 and 

NPC2, a single marker association test was applied using Pearson’s chi-square test. None 
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of the tested single variants were significant. Together these results suggested that the 

effects of rare variants in NPC1 and NPC2 have no major impact on the development of 

SCZ in the current study’s cohort. However, the enrichment of heterozygous variants is 

rigorously discussed in the development of late-onset NP-C manifestations and as a 

potential risk factor for neurodegenerative diseases such as AD (Alzheimer’s disease). 

Overall, the smMIPs assay enabled the screening of a large cohort of patients diagnosed 

with SCZ (NP-C). This might lead to a first step toward the implementation of a routine 

clinical diagnostics pipeline for the detection of rare pathogenic variants in NPC1 and 

NPC2 until NGS-based methods such as WES (whole-exome) or WGS (whole-genome) 

sequencing become more feasible than in the past. 
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CHAPTER 1 

 

EPIGENOME-WIDE METHYLATION IN FEMALE INDIVIDUALS WITH 

FAMILIAL OR ENVIRONMENTAL RISK FOR AFFECTIVE DISORDER 

 
 

In this chapter, the findings of the integrative analyses of genetic and epigenetic data in 

female individuals with different risk factors for affective disorder are presented. 
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1.1  Introduction 
 

1.1.1   Affective Disorders 

Affective disorders including bipolar disorder (BD) and major depressive disorder (MDD) 

are highly complex and clinically heterogeneous neuropsychiatric disorders [Lohoff et al., 

2010; Craddock et al., 2012]. They belong to one of the leading causes of disabilities 

worldwide with a high economic impact on the global health system [WHO, 2017]. The 

etiology of BD and MDD involves both genetic and environmental risk factors [Klengel et 

al., 2013; Aldinger et al., 2017]. The lifetime prevalence among the general population 

range between 1-2% for BD and 15% for MDD [Merikangas et al., 2007; Kessler et al., 

2013]. Up to 5% of people experiencing one of these disorders are likely to commit suicide 

indicating the fatal consequences of these disorders [Isometsä et al., 2014]. MDD is 

characterized by the recurrence of depressive episodes which include depressed mood, 

decreased energy, and lack of interest and joy [McIntoshet al., 2019]. Other characteristics 

of MDD consist of cognitive symptoms like reduced concentration and behavioral 

symptoms like suicidal thoughts [McIntoshet al., 2019; Power et al., 2017]. The minimum 

duration of symptoms should last at least 2 weeks according to the structured diagnostic 

criteria [American Psychiatric Association, 2013]. Bipolar disorder is defined by the 

occurrence of manic and hypomanic phases which alternate with depressive periods 

[Phillips et al., 2013]. The manic phase lasts at least one week and is defined by high 

energy, increased self-esteem, racing thoughts, and irritable mood [Severus et al, 2013]. 

The depressive phase includes low energy, sad mood, suicidal thoughts, and 

psychomotor disturbances [Severus et al, 2013]. The symptoms observed in the 

depressive periods of bipolar disorder are similar to those observed in major depressive 

disorder. Two major subtypes of BD are distinguished: i.) Bipolar disorder type I (BD1) 

involves a severe history of recurring elevation of mania and depression; ii.) Bipolar 

disorder type II (BD2) consists of milder episodes of mania and depression with at least 

one-lifetime occurrence [American Psychiatric Association, 2013]. For the diagnosis, two 

main classification systems called the DSM-V (Diagnostic and Statistical Manual of Mental 

Disorders) published by the American Psychiatric Association (APA) and the ICD-11 

(International Classification of Diseases) manual from the WHO are applied [American 

Psychiatric Association, 2013; WHO, 2019]. 
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1.1.2   Genetic Factors 

Family and twin studies revealed a strong genetic contribution to the etiology of affective 

disorders. Family studies indicated a five to ten times greater risk of developing an 

affective disorder among first-degree relatives of BD patients [Song et al., 2015]. However, 

complex disorders such as BD or MDD are multifactorial and a polygenic contribution of 

common and rare variants leads to disease susceptibility [Sul et al., 2020, Yu et al., 2018]. 

Recently, genome-wide association studies (GWAS) have identified susceptibility genes 

implicated in the disease etiology and generated initial insights into the genetic 

architecture of BD and MDD [Wray et al., 2018; Stahl et al., 2019; Howard et al., 2019; 

Mullins et al., 2021]. In GWAS the contribution of common SNPs (single-nucleotide 

polymorphisms) is assessed in case-control studies. The allele frequency of each SNP in 

individuals from a given population with and without a given disease trait is compared by 

statistical testing [Visscher et al., 2017]. The heritability of BD was estimated to be 40% 

and MDD 80%, respectively [Sullivan et al., 2000; Craddock et al., 2006]. The genetic 

correlation between bipolar disorder and major depressive disorder was estimated to be 

35% using common SNPs [Brainstorm Consortium et al., 2018]. This is in line with other 

empirical studies that showed that BD and MDDD have not only overlapping clinical 

symptoms but also shared genetic etiology [Schulze et al., 2014]. However, due to the 

greater heterogeneity of MDD, more molecular genetic factors (n>100) were identified 

through GWAS to date than in BD.  At the time of writing two of the largest GWAS of BD 

and MDD were conducted by the Psychiatric Genomics Consortium (PGC). The largest 

GWAS of BD comprised 41,917 cases and 371,549 controls in which 64 independent 

genome-wide significant loci were identified from which 33 were novel [Mullins et al., 

2021]. BD associations were mainly enriched in genes in synaptic signaling pathways and 

brain-expressed genes with high specificity of expression in neurons of the prefrontal 

cortex and hippocampus [Mullins et al., 2021]. In a GWAS of MDD conducted in 2019, a 

meta-analysis based on 246,363 cases and 561,190 controls, 87 of 102 independent loci 

were genome-wide significant after correction for multiple testing. These were mainly 

associated with pathways related to synaptic structure and neurotransmission [Howard et 

al., 2019]. Although GWAS has identified successfully candidate genes for BD and MDD, 

a large proportion of the heritability remains unexplained suggesting that rare variants, 

copy-number variations, and non-genetic or environmental factors influence the risk for 
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affective disorders [Priebe et al., 2012; Goes et al., 2021]. The largest whole-exome study 

of BD conducted in 2022 comprising 13,933 patients with BD and 14,422 controls revealed 

a significant contribution of ultra-rare protein-truncating variants (PTVs) to BD risk [Palmer 

et al., 2022]. In this study overall, 68 candidate gene sets were investigated, among the 

significantly enriched genes for ultra-rare PTVs were CHD8 binding targets in the human 

brain (2,517 genes, OR = 1.09, P = 5.18 × 10−5) and genes from the SCHEMA browser (34 

genes, OR = 1.89, P = 4.81 × 10−5). These results highlighted the importance of assessing 

rare variants for a better understanding of the genetic architecture of BD. 

1.1.3   Environmental Factors 

A substantial amount of studies identified environmental factors which play an important 

role in the etiology of affective disorders. Environmental factors can be grouped into three 

main categories that are neurodevelopmental (e.g. maternal infection during pregnancy 

or indicators of fetal development), physical or psychological stress (e.g. brain injuries or 

abuses), and substances (e.g. cannabis or cocaine) [Marangoni et al., 2016]. Most of the 

attention is focused on early life adversities like childhood maltreatment including physical, 

emotional, and sexual abuse, stressful life events, socioeconomic status, and substance 

abuse [Johnson et al., 1995, Barichello et al., 2016; Bortolato et al., 2017, Marangoni et 

al, 2016]. Childhood maltreatment is a well-studied factor for which there is clear evidence 

that it increases the risk to develop affective disorders such as bipolar disorder in later life 

[Bortolato et al., 2017; Schmitt et al., 2014]. However, the neurobiological mechanisms 

and pathophysiology by which these risk factors influence disease development are hardly 

understood and remain largely unknown [Forstner et al., 2018]. Several studies revealed 

that environmental factors partly mediate gene expression through epigenetic 

modifications such as DNA methylation, histone modifications, and non-coding RNAs 

[Weder et al., 2014; Cruceanu et al., 2013; Fan et al., 2014]. Such modifications do not 

alter the genetic code but regulate gene expression in response to environmental factors 

in a time and cell-type-specific manner. DNA methylation is, in particular, one of the best-

studied epigenetic mechanisms which plays a crucial role in normal development, 

genomic imprinting, X-chromosome inactivation, aging, and carcinogenesis [Smith et al., 

2013; Robertsen, 2005; Klutstein et al., 2016]. Increasing evidence suggests that 

epigenetic modifications such as DNA methylation have important implications for the 
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development of neuropsychiatric disorders including bipolar disorder and major 

depressive disorder [Januar et al., 2015]. 

1.1.4   DNA Methylation 

DNA methylation occurs at a CpG dinucleotide content where a methyl group is added at 

the C5 position of a cytosine molecule which is called 5-methylcytosine (5mC). This form 

of DNA methylation is the most common in the mammalian genome where 70% to 80% 

of CpG dinucleotides are methylated [Jabbari et al., 1986]. Next to this, DNA methylation 

can occur at the C4 position in cytosine (4mC) and the C6 position in adenine (6mA) 

[Ehrlich et al., 1985; Dunn et al., 1958]. Overall, there are more than 28 million CpG sites 

across the human genome, and these are located in around 30,000 CpG islands (CGI) 

which are dense areas of CpG dinucleotides [Venter et al., 2001; Lander et al., 2001]. 

Approximately 60% to 70% of human genes have CpG islands associated with their 

corresponding promoter regions [Saxonov et al., 2006; Illingworth et al., 2010]. 

Transcriptional repression or gene silencing occurs through high levels of 5mC 

methylation in CGIs of promoter regions while methylation in the gene body leads to 

transcriptional activation or alternative splicing [Bird, 2002; Jones, 2012]. Interestingly, the 

function of DNA methylation varies with different genomic contexts such as the 

transcription start site, gene body, regulatory elements, and repeat sequences. 

Furthermore, DNA methylation of regulatory elements such as enhancers is recognized 

to be functionally important [Jones et al., 2012]. Another important aspect of DNA 

methylation is that it stabilizes the genome by suppressing the expression of transposable 

elements and repeat regions such as centromeres [Moarefi et al., 2011].  Interestingly, 

DNA methylation is a reversible process in which demethylation occurs during early 

embryonic cell development orchestrated by methyltransferases [Li et al., 1992]. In 

general DNA methylation is a highly dynamic and complex process involved in cell 

differentiation during embryonic and normal cell development [Smith et al., 2013]. Thus, 

alterations in DNA methylation in conjunction with genetic factors are involved in different 

types of human diseases i.e. carcinogenesis, imprinting, autoimmune and 

neuropsychiatric disorders [Counts et al., 1995; Roberston, 2005; Richardson, 2003; Ai et 

al., 2012].  
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1.1.5   Epigenome-wide association studies (EWAS) 

Over the past years, numerous technologies arose to investigate DNA methylation 

patterns. Recently, advances in next-generation sequencing (NGS) and microarray 

technologies e.g. whole-genome bisulfite sequencing and Illumina BeadArray technology 

(Infinium Methylation EPIC Array) facilitated the investigation of DNA methylation levels 

in a high-throughput genome-wide way. Thus, these technologies enabled a 

comprehensive, highly accurate, and reproducible analysis of epigenome-wide DNA 

methylation patterns. These approaches have been utilized to explore DNA methylation 

with regard to environmental factors in neuropsychiatric disorders. Up to date, candidate 

gene studies have focused on promoter methylation as one plausible biological 

mechanism for reduced gene expression. Several studies have demonstrated that 

alterations in DNA methylation mediate gene expression in response to the environment. 

In addition, there is increasing evidence that alterations in DNA methylation at specific 

candidate gene loci are associated with future risk for developing neuropsychiatric 

disorders including bipolar disorder and major depressive disorder [Vinkers et al., 2015; 

Matosin et al., 2017]. In particular, early life adversity, such as childhood maltreatment, 

can alter DNA methylation in complex neuropsychiatric disorders, such as BD or MDD 

[Weder et al., 2014; Bustamante et al., 2016]. Promising candidate genes for promoter 

methylation include BDNF, FKBP5, NR3C1, and SLC6A4 [Oberlander et al., 2008; 

Fuchikami et al., 2011; Sugawara et al., 2011; Roy et al., 2017]. Several studies have 

investigated epigenetic alterations in the context of affective disorders via epigenome-

wide association studies (EWAS) [Córdova-Palomera et al., 2015; Ratanatharathorn et 

al., 2017; Kuan et al., 2017; Story Jovanova et al., 2018; Starnawska et al., 2019]. For 

example, the largest currently conducted EWAS meta-analysis on DNA methylation of 

depressive symptoms included more than 7,900 middle-aged and elderly individuals with 

depressive symptoms [Story Jovanova et al., 2018]. The EWAS discovered methylation 

of 3 CpG sites significantly associated with depressive symptoms.  Axon guidance was 

the most common disrupted pathway of the 3 methylated sites [Story Jovanova et al., 

2018]. At the same time, epigenetic analyses in psychiatric patients might be affected by 

several confounding factors, e.g., sex, age, disease course, and/or medication. Recent 

studies investigated methylation changes in post-mortem brain samples associated with 

MDD in which cell-type-specific deconvolution was applied to correct for subpopulations 
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of neurons and glial cells [Aberg et al., 2020; Chan et al., 2020; Hüls et al., 2020]. Thus, 

analyses of the correlation between brain and blood-based methylation signatures are of 

big interest [Hannon et al., 2015].  Likewise, the integrative analyses of multi-omics data 

promoted methylation quantitative trait loci (mQTL) analyses which provide a way to 

functionally annotate genetic variation within the context of DNA methylation and the risk 

for neuropsychiatric disorders [Starnawska et al., 2021; Villicaña et al., 2021]. 

1.1.6   Methylation Quantitative Trait Loci (mQTLs) 

The majority of GWAS susceptibility loci are located in the non-coding part of the genome 

and likely affect the phenotype through gene regulation [Ng et al., 2021]. Many genetic 

associations were identified through GWAS but still many candidate gene loci and their 

functional role remain unanswered [Howard et al., 2019; Mullins et al., 2021]. Therefore, 

DNA methylation can provide valuable insights through gene regulatory mechanisms as 

a potential pathomechanism of GWAS susceptibility variants. Many recent studies pointed 

out that genetic variants have a strong impact on levels of DNA methylation [Min et al., 

2021, Ng et al. 2021]. These studies systematically correlated genetic variation (SNP 

genotypes) with DNA methylation levels at CpG sites in a genome-wide approach to 

identify DNA methylation quantitative trait loci (mQTLs). In general, mQTLs can be divided 

into cis-mQTLs, which are mQTLs that have local effects on the methylation from 500 kb 

to 1 Mb, or trans-mQTLs that have an effect on the long-distance within at least 5 Mb [Nica 

et al., 2013]. Overall, the genetic regulation of DNA methylation is highly complex and 

variable across different tissues and cell types [Januar et al., 2015]. The integration of 

mQTLs in epigenome-wide association studies is crucial and recommended as the 

identification of non-genetic effects is needed to distinguish between the contribution of 

environmental and genetic factors in disease progression. Recently, in many studies, 

genome-wide SNP and methylation array (e.g., Illumina EPIC array) data are analyzed in 

an integrative way [Januar et al., 2015]. For the majority of quantitative trait analyses, 

linear regression models are used for association testing between SNP genotypes and 

molecular traits [Shabalin et al., 2012; Ongen et al., 2016]. Thereby, the methylation level 

at each CpG site serves as the response variable and SNP genotypes as predictor 

variables. Additionally, important technical and biological covariates such as amplification 

plate, array, PC components from population stratification, proportions of cell components, 

age, gender, and/or medication are included in the statistical model. In a recently 
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conducted GWAS, one of the most replicated risk variants in bipolar disorder, located in 

the intron of ANK3 (rs10994336) showed to modulate ANK3 methylation [Tang et al., 

2021]. In another candidate gene study, it was shown that variation in DNA methylation 

levels at CACNA1C was associated with genotypes from bipolar disorder risk SNPs 

providing further evidence that methylation might mediate genotype-phenotype 

relationships [Starnawska et al., 2016]. As many EWAS and mQTL studies were 

performed using whole-blood samples they may not be sufficient to reflect the biological 

processes in the brain of psychiatric patients [Gamazon et al., 2013; Lin et al., 2018]. As 

DNA methylation is highly tissue and cell-type-specific, replication of these findings in 

post-mortem brain samples, larger sample sizes, and independent replication cohorts are 

warranted to further elucidate epigenetic mechanisms in affective disorders. 

1.1.7   Aim of the Study 

The aim of the present study was threefold. First, analyses were performed to identify 

methylation sites (CpGs) associated with: (i) familial risk (a family history of affective 

disorder); and (ii) environmental risk (childhood maltreatment). Second, we performed 

pathway enrichment analyses to determine the functional relevance of genes associated 

with significant methylation sites. Third, we investigated the impact of common genetic 

variants on DNA methylation via cis-mQTL analysis to dissect the complex interplay 

between genetic and epigenetic factors for affective disorders. 

 
1.2  Material and Methods 

 
1.2.1   Participants 

The study participants were all unrelated females with no reported history of psychiatric 

disease (excluding specific phobias), as characterized by the Structured Clinical Interview 

(SCID) [First et al., 2004]. All participants were recruited at the Departments of Psychiatry 

of the Universities of Marburg and Münster, Germany, as part of the German Research 

Foundation unit FOR2107 (http://for2107.de/) [Kircher et al., 2019]. To avoid any potential 

confounding by sex and disease status, in this study, the focus was on female participants 

with no reported history of psychiatric disease only. The phenotypic data were requested 

in 2016 from the FOR2107 database. Three groups of participants served as input for the 

http://for2107.de/
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epigenome-wide DNA methylation analyses. Group one comprised 22 individuals with a 

reported familial risk for affective disorder. These individuals had at least one first-degree 

relative (i.e., parent, sibling, or adult child) with a reported lifetime diagnosis of an affective 

disorder as assessed by the semi-structured clinical interview. None of the participants 

had a reported history of childhood maltreatment (environmental risk) in this group. One 

participant had a familial risk for BD and no additional risk for MDD, whereas 21 reported 

a familial risk for MDD but no additional risk for BD. Group two comprised 22 individuals 

with a reported environmental risk for affective disorder. These individuals scored above 

the cut-off for at least two forms of maltreatment in the childhood trauma questionnaire 

(CTQ) [Bernstein et al., 1994] and had no reported family history of affective disorder. Due 

to the longitudinal design, the CTQ data and the disease status were retrieved from the 

FOR2107 database in 2020, resulting in subsequent changes and the exclusion of three 

participants in this group. One participant scored above the cutoff for only one form of 

maltreatment, and two other participants were diagnosed with anorexia nervosa and an 

adaptation disorder with depressed mood. Group three consists of 22 healthy control 

samples with no reported familial or environmental risk. The present work was approved 

by the ethics committee of the Universities of Marburg and Münster, Germany. Written 

informed consent was provided by all participants before inclusion. 

1.2.2   DNA Methylation Microarrays 

Whole blood was bisulfite-treated using the EpiTect Bisulfite Kit (Qiagen, Hilden, 

Germany) to extract genomic DNA (500 ng). For assessing DNA methylation, the Infinium 

MethylationEPIC BeadChip (Illumina, San Diego, USA) and the Infinium HD Methylation 

Assay protocol were applied. Batch effects were prevented by random sampling of all 

samples across the 96-well plate before processing. Amplification, fragmentation, 

extension, hybridization, staining, and scanning were carried out according to the 

manufacturer’s instructions. 

1.2.3   Data Preprocessing and Normalization 

All raw data and downstream analyses were carried out using R (3.4.0) and Bioconductor 

packages [Aryee et al., 2014; Pidsley et al., 2013; Leek et al., 2018; Ritchie et al., 2015]. 

The median methylated versus unmethylated signal intensities were inspected for sample-

level quality control (QC) purposes. By assessing the methylation of X and Y chromosome 
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probe intensities the observed sex was estimated and compared with the reported sex. 

To identify sample swaps, genotype concordance was captured by using SNP probes 

(n=65) on the MethylationEPIC BeadChip and genotypes from a genome-wide genotyping 

array (PsychArray BeadChip, Illumina, San Diego, USA; see also section Genotyping and 

Imputation). Probe-level QC consisted the following filtering steps: (i) detection p-value 

>0.05; (ii) bead count <3 in >5% of samples; (iii) probes overlapping with a SNP (MAF 

>5%, dbSNP, v137) [Sherry et al., 2001]; (iv) cross-hybridizing probes; (v) non-autosomal 

probes [Chen et al., 2013]. Background correction was applied using the Noob (normal-

exponent out-of-band) algorithm with dye-bias normalization [Triche et al., 2013]. 

Functional normalization was performed, to get rid of technical variance between arrays 

[Fortin et al., 2014]. β-values were calculated by determining the intensity of the 

methylated and unmethylated allele ratio of fluorescent signals. β-values were logit-

transformed into M-values to improve the detection and true positive rate of strongly 

methylated and unmethylated CpG sites [Du et al., 2010]. Combat was used to apply 

batch effect correction on the methylation data based on known covariates such as chip 

and chip row [Johnson et al., 2007]. The estimation of leukocyte subpopulations (B cells, 

CD4+ T cells, CD8+ T cells, monocytes, natural killer cells, and granulocytes) from 

heterogenous tissue sources like whole blood was carried out using the regression 

calibration algorithm [Houseman et al., 2012]. The most significant sources of technical 

and biological variation were calculated using the SVD (singular value decomposition) 

approach [Teschendorff et al., 2009]. 

1.2.4   Statistical Analysis of DNA Methylation 

To assess the significance of DNA methylation at single CpG sites with familial or 

environmental risk, we carried out two separate epigenome-wide methylation analyses: (i) 

participants with environmental risk versus controls, and (ii) participants with familial risk 

versus controls. For that, the methylation level of each CpG site served as a response 

variable and each risk group served as the explanatory variable in a linear regression 

model. Technical and biological covariates were applied according to their effect on the 

first three principal components (PCs) of the genome-wide methylation data. The 

statistical significance threshold was chosen at an FDR (false discovery rate) <0.05 

[Benjamini & Hochberg, 1995]. Further, the epigenome-wide significance threshold was 
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proposed at a p-value <1×10-7 corresponding to approximately 495,000 independent tests 

and an FDR of 0.05. QQ (quantile-quantile) plots were generated to illustrate deviations 

of the test statistics from the null hypothesis. In the case of deflated or inflated test 

statistics, a correction was applied using the inflation factor lambda (λ). 

1.2.5   Pathway Enrichment Analysis 

To assess the functional relevance of significantly associated methylation sites and their 

corresponding genes, GO (Gene Ontology) pathway enrichment analyses [Ashburner et 

al., 2000] were carried out using the missMethyl package [Phipson et al., 2015]. This 

package estimates an enrichment of GO categories based on a hypergeometric test and 

accounts for the differing number of probes per gene. Correction for the differing number 

of probes per gene is a crucial step as this can prevent any bias in the GO enrichment 

analysis. For each test statistic, methylation sites that were unique for each of the risk 

groups served as input for the GO analyses. All probes that passed the aforementioned 

quality control steps served as background for these analyses. The Benjamini-Hochberg 

method was applied for multiple testing correction [Benjamini & Hochberg, 1995]. 

Statistical significance was considered at an FDR q-value <0.05. To discard redundant 

GO categories, the web-based tool Revigo was applied which is based on a clustering 

algorithm for semantic similarity measures [Supek, et al., 2011]. 

1.2.6   Genotyping and Imputation 

Genotyping and imputation were carried out on the larger FOR2107 dataset 

(http://for2107.de/) and are described elsewhere [Kircher et al., 2019]. The present study's 

participants were a subset of the larger FOR2107 dataset. Briefly, genotyping was applied 

using the Illumina Infinium PsychArray BeadChip (Illumina, San Diego, CA, USA) 

according to standard protocols. Clustering and initial QC were performed in 

GenomeStudio v.2011.1 (Illumina, San Diego, USA) using the Genotyping Module v.1.9.4. 

Full QC was conducted in PLINK (v1.90b5) and R (v3.3.3) [Purcell et al., 2007; R Core 

Team, 2020]. Genotype data were imputed to the 1000 Genomes Phase 3 reference panel 

using SHAPEIT and IMPUTE2 [1000 Genomes Consortium, 2015; Delaneau et al., 2014; 

Howie et al., 2011]. Finally, the dataset contained 1,673 individuals and 8,578,636 variants 

after imputation and post-imputation QC. Population stratification was assessed using 

MDS (multidimensional scaling) as implemented in PLINK [Purcell et al., 2007]. Four 
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individuals were classified as genetic outliers in the present cohort and were discarded 

from all downstream analyses of the present study (Figure 1). 

1.2.7   Statistical Analysis of cis-mQTLs 

Local genetic effects that influence variation in DNA methylation were identified through 

cis-mQTL analysis using FastQTL v2.184 which is based on a linear regression approach 

[Ongen et al., 2016]. The methylation level of each CpG site was used as the response 

variable. The SNP genotype served as the explanatory variable, and risk group, age, 

smoking history, and estimates of leukocyte subpopulations were used as covariates. For 

this analysis, only the overlap between methylation sites associated with both risk groups 

(p<0.05) was taken into account. The window size for cis-mQTLs was restricted to 

±500 kb. FastQTL was performed using an adaptive permutation scheme via beta 

approximation. The number of permutations was set from 10,000 to 100,000. Beta 

approximated p-values were calculated for each SNP-CpG pair. Multiple testing correction 

was applied using Benjamini-Hochberg [Benjamini & Hochberg, 1995]. To identify LD-

independent cis-mQTL associations, LD clumping based on the 1000 Genomes phase 3 

release was applied. Further, a pairwise r2 threshold of 0.5 within 500 kb of the most 

significant cis-mQTLs was considered. 

1.2.8   Enrichment of cis-mQTLs among GWAS SNPs 

To detect if cis-mQTLs were enriched among genetic associations of BD and MDD [Stahl 

et al., 2019; Howard et al., 2019], an enrichment analysis of cis-mQTLs and GWAS SNPs 

was carried out. For this purpose, the p-values of cis-mQTL SNPs (q<0.05) were extracted 

from the GWAS of MDD and BD conducted by the PGC. A permutation-based approach 

was applied, to estimate the significance of the enrichment. For that, 1,000 sets of SNPs 

were randomly selected from the FOR2107 dataset by matching the MAF threshold 

(MAF>0.05). The overlap for each random set and the cis-mQTLs was calculated under 

the null distribution. An empirical p-value was estimated by comparing the cumulative 

distribution of the control SNPs over the MDD- and BD-associated GWAS SNPs. 

 

 



26 

 

1.3  Results 

 
1.3.1   Demographic Characteristics 

A re-examination of the phenotype data in 2020 led to the exclusion of three participants 

due to mismatches in the phenotypic database. One of these participants scored above 

the cutoff for only one form of maltreatment, and the other two participants were diagnosed 

with anorexia nervosa and an adaptation disorder with depressed mood. Four additional 

individuals were classified as genetic outliers, and their data were not included in the 

genome-wide methylation analysis (Figure 1).  

 

 

 
 

 

Figure 1 | Multidimensional Scaling (MDS) plot. MDS was performed using PLINK from 
genome-wide genotype data of the larger FOR2107 dataset for which the present cohort 
constituted a subset. First and second component of the MDS analysis are plotted using R. 
The larger FOR2107 cohort is indicated in green and the present cohort of this study is 
indicted in purple. 

FOR2107 

Present Cohort 

Present Cohort 
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The final sample size thus comprised 59 study participants. The demographic 

characteristics of the three study groups after sample exclusion are shown in Table 1. 

Kruskal-Wallis test revealed a significant difference between the test groups in terms of 

the CTQ score (p<0.003). This was as expected as the environmental risk group scored 

above the cut-off for at least two forms of maltreatment in the childhood trauma 

questionnaire. 

 

 

 

 

 
 
 
 
1.3.2   Quality Control of Methylation Data  

Sample-level quality control of the methylation data was assessed by inspecting the 

median methylated versus unmethylated signal intensities. Figure 2 indicates a distinct 

clustering of all samples based on median intensities and did not reveal any sample 

outlier. Usually, sample outliers tend to separate from the main cluster and have lower 

median intensities. Further, exploring the quality of the samples using M-value densities 

before and after normalization did not reveal any sample-level quality control issues. As 

anticipated, the methylation data displayed a bimodal distribution in terms of methylated 

and unmethylated signal intensities. The mean detection p-value summarises the quality 

of the signal across all the probes and was <0.05 for each sample indicating a good quality 

of the methylation data on the sample level.  

 

 

Variable 
Familial Risk 
(n=20) 

Environmental Risk 
(n=17) 

Controls 
(n=22) 

2 df p 

Age (years, mean ±SD) 32.00±11.09 36.06±8.94 26.68±6.88 42.87 42 0.43 

Current smoker N (%) 3 (15%) 5 (29%) 5 (23%) 1.12 2 0.57 

Former smoker N (%) 6 (30%) 8 (47%) 8 (36%) 1.16 2 0.56 

Medication N (%) 4 (20%) 2 (12%) 0 (0%) 4.65 2 0.10 

Organic Disease N (%) 4 (20%) 4 (23%) 0 (0%) 4.97 2 0.083 

CTQ - total (mean ±SD) 30.95±4.38 51.24±10.44 29.41±4.6 76.51 46 0.003 

Legend Table 1 | SD: Standard Deviation; N: Number; CTQ: Childhood Trauma 
Questionnaire; 2: Chi-squared test statistic; df: Degree of freedom; p: p-Value. 
 



Table 1 | Demographic characteristics of the study cohort 

https://www.sciencedirect.com/science/article/pii/S0165032717309904?via%3Dihub#t0005
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No mismatches were found for gender by looking at the median total intensities of the X- 

and Y-chromosome mapped probes on the EPIC array. The first two principal components 

explained 13.8% and 4.8% of the variance in the methylation data, respectively (Figure 

3). Hence, most of the variance in the methylation data is captured on the first two principal 

components. In the principal component analysis, no outlier samples were detected. At 

the same time, no distinct clustering of technical batches or phenotypic data was observed 

(Figure 3). About 41.72% of the CpG sites on the EPIC array were discarded due to quality 

control measurements. The largest proportion of these was due to cross-reactive probes 

(3.44%), probes located in common SNPs (20.26%), and probes with low variance 

(14.57%). After filtering as specified in Table 2, a total of 495,406 CpG sites (58.28%) 

remained for all statistical and downstream analyses. Singular Value Decomposition 

(SVD) analysis revealed significant correlations of the methylation data with biological and 

technical covariates. The effects of technical covariates (e.g., slide or array) on the 

methylation data were discarded successfully after batch effect correction (Figure 4). 

None of the technical covariates such as slide or array were correlated with the first three 

principal components afterward. 

Figure 3 | Sample-level QC plot. In this quality control plot methylated and unmethylated 
median signal intensities are plotted. The dashed line indicates the regression line. Samples 
are colored by test group. 
 

Controls 

Environmental Risk 

Familial Risk 

 

Sample Group 
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None of the technical covariates such as slide or array were correlated with the first three 

PC components afterward. A significant correlation with the first PC component was found 

for age (p<0.01); former smoking status (p<0.05); CD8+ T cells (p<0.01); CD4+ T cells 

(p<1×10-5); natural killer cells (p=0.01); monocytes (p<0.05); and granulocytes(p<1×10-10) 

(Figure 4 A/B). Among these CD4+ T cells and granulocytes had the highest effect on the 

methylation data. Age and three out of six cell-type components were also significantly 

correlated with the second principal component highlighting their importance and effect 

on the methylation (Figure 4 A/B).  

Feature Probes 

Detection p-Value 4,941 (0.58%) 

Bead Count 12,157 (1.43%) 

Cross-Reactive Probes 29,205 (3.44%) 

SNPs in Probes 172,252 (20.26%) 

Non-Specific Probes 6,813 (8.00%) 

Low Variance 123,852 (14.57%) 

Total 495,406 (58.28%) 

Figure 5 | Principal Component Analysis. The PCA plot shows the percentage of variance 
explained by each principal component. The x-axis represents the first and the y-axis the 
second principal component. The different colors indicate the sample group and the size of 
each data point specifies the contribution of each sample to the overall variance. 

Table 2 | Probe Filtering 
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Figure 4 | Singular value decomposition (SVD) plot. Figure A) and B) specify the SVD analysis before 
and after batch effect correction. The x-axis represents the number of principal components and the 
y-axis technical and biological covariates. The darker the color the stronger the correlation between 
principal components and covariates as indicated in the legend.  

 

Figure 5 | Estimates of Cell-type Proportions. Relative proportions of CD4+ and CD8+ T-cells, 
natural killer cells, monocytes, granulocytes, and B-cells in the stud cohort are plotted. The 
Houseman regression calibration approach [Houseman et al., 2012] for the Illumina EPIC array 
for deconvoluting heterogeneous tissue sources like whole-blood was applied. Colors indicate 
the different test groups. 
 

      A                                                                                     B 
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As the EPIC array provides CpG sites associated with cell-type-specific methylation 

patterns in whole blood, the cell-type composition can be estimated to avoid any 

confounding. The estimated proportions of leukocyte subpopulations indicate large 

proportions of granulocytes of approximately 60% (Figure 5). There were no significant 

differences between the test groups in leukocyte subpopulations.  These findings highlight 

the importance of adjusting for cell-type-specific confounding in methylation data with 

regard to statistical analyses and models. 

 

1.3.3   Differential DNA Methylation 

After rigorous QC, a total of 495,406 CpG-sites were tested using multivariable linear 

regression models. The genomic inflation factor lambda  (λ) for familial and environmental 

risk was 1.17 and 0.96, respectively (Figure 6 A/B). Due to an inflation of the test statistics 

in the familial risk group (Figure 6A), a correction was applied by dividing the chi-square 

test statistics through λ. Strong effects of population stratification could be excluded as 

the final participants were all of central European origin, as shown by the multidimensional 

scaling (MDS) plot of the genotype data (Figure 1).  

 

 
 

 

Figure 6 | Quantile-Quantile (QQ) plot. QQ plots for the epigenome-wide methylation 
of familial and environmental risk for affective disorder. A) Familial risk versus 
controls. B) Environmental risk versus controls. QQ plots display the distribution of 
expected and observed p-values according to a logarithmic scale. Deviations from 
the red line indicate an inflation or deflation of the test statistics. 
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None of the tested CpG-sites achieved epigenome-wide significance (p<1×10-7) after 

correction for multiple testing. However, the epigenome-wide methylation analysis of 

familial and environmental risk revealed that 22,230 and 21,940 methylation sites, 

respectively, achieved nominal significance (p<0.05). Of these, 20 and 40 methylation 

sites for familial and environmental risk achieved a p-value of <1×10-4, respectively. The 

strongest association for familial risk was found at cg25160593 (p=1.12×10-5) located on 

chromosome 3 within the 5’UTR of the ZNF197 gene (Table 3). The strongest association 

for environmental risk was identified at cg06253966 (p=1.78×10-6) located on 

chromosome 6 in an intergenic region (Table 4). The overlap of nominally significant 

methylation sites (p<0.05) in both risk groups comprised 5,717 CpG sites.  

 

        Table 3 | Top 10 associations between DNA methylation and familial risk for affective disorder 

           

 
 
 
 
 
 
 
 
 
 
 
 

Probe ID Chr Position Strand Gene Feature logFC logOdds p (λ adj.) q (λ adj.) 
cg25160593 3 44666684 - ZNF197 5'UTR -0.451 2.415 1.12E-05 0.997 
cg14088628 14 71023160 + - - 0.343 1.819 2.62E-05 0.997 
cg25016544 5 72511412 + - - 0.393 1.726 2.99E-05 0.997 
cg01612292 8 144809598 - FAM83H Intron -1.409 1.579 3.68E-05 0.997 
cg16514214 17 28009516 + SSH2 Intron -0.246 1.567 3.74E-05 0.997 
cg05604487 17 77386277 + HRNBP3 5'UTR -0.361 1.437 4.49E-05 0.997 
cg27097386 15 96400610 + - - -0.420 1.436 4.50E-05 0.997 
cg06103654 2 27072413 - DPYSL5 5'UTR 0.370 1.389 4.81E-05 0.997 
cg25738505 3 101757700 + - - 1.753 1.369 4.94E-05 0.997 
cg25513853 17 72272298 + DNAI2 5'UTR 0.296 1.269 5.69E-05 0.997 

Legend Table 3 | Methylation sites are ranked in descending order of statistical significance. 
Abbreviations: Probe ID: Unique identifier for each methylation site in the genome; Chr: 
Chromosome; Strand: Forward (+) or reverse (-) designation of the DNA strand; Feature: Gene 
regulatory feature; UTR: Untranslated region; logFC: Log-fold change; logOdds: Log-odds ratio; 
λ adj.: Inflated test statistics corrected by the genomic inflation factor (λ). 
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  Table 4 | Top 10 associations between DNA methylation and environmental risk for affective disorder 

 

 
 
1.3.4   Pathway Enrichment Analysis 

We carried out GO (Gene Ontology) pathway enrichment analyses with methylation sites 

nominally associated with each risk group uniquely (p<0.05). For familial risk, a total of 

112 GO pathways were significant at an FDR q-value <0.05 (Figure 7). Among the top 

enriched pathways for familial risk were neurogenesis (q<1.93×10-8) and generation of 

neurons (q<2.87×10-7). For methylation sites associated with environmental risk, 52 GO 

pathways remained significant (q<0.05) after correction for multiple testing (Figure 8). 

Nervous system development (q<1.52×10-6) was the top finding in the environmental risk 

group. GO pathway enrichment analyses indicated an enrichment of brain-derived and 

nervous system-related categories in the methylation data of both risk groups. This 

indicates that both risk groups share common pathways. The Revigo analysis revealed 

redundant GO terms. For example, the parent term for nervous system development and 

neurogenesis belonged to the GO class tissue development. As a result, 59 of 112 (53%) 

and 23 of 59 (39%) GO categories were independent of each other for familial and 

environmental risk. 

Probe ID Chr Position Strand Gene Feature logFC logOdds p-Value q-Value 
cg06253966 chr6 9851903 + - - -0.205 2.230 1.78E-06 0.854 
cg14078118 chr3 5047351 + - - -0.339 1.473 6.62E-06 0.854 
cg21666801 chr10 77285588 - C10orf11 Intron 0.253 1.315 8.68E-06 0.854 
cg08991615 chr11 75222390 + GDPD5 5'-UTR -0.377 1.263 9.49E-06 0.854 
cg03696617 chr7 150097762 + - - 0.250 1.147 1.16E-05 0.854 
cg02331649 chr3 52926322 - TMEM110 Intron 0.740 1.102 1.25E-05 0.854 
cg08134671 chr19 2542837 - GNG7 5'-UTR 0.218 1.010 1.46E-05 0.854 
cg14171448 chr10 1711025 - ADARB2 Intron 0.186 0.944 1.64E-05 0.854 
cg05847183 chr1 90316786 + LRRC8D 5'-UTR 1.603 0.935 1.66E-05 0.854 
cg16322388 chr18 72954277 + TSHZ1 5'-UTR 0.290 0.879 1.83E-05 0.854 

Legend Table 4 | Methylation sites are ranked in descending order of statistical significance. 
Abbreviations: Probe ID: Unique identifier for each methylation site in the genome; Chr: 
Chromosome; Strand: Forward (+) or reverse (-) designation of the DNA strand; Feature: Gene 
regulatory feature; UTR: Untranslated region; logFC: Log-fold change; logOdds: Log-odds ratio. 
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Figure 7 | Gene Ontology pathway enrichment analysis of associations between DNA methylation and 
familial risk for affective disorder. Top 50 enriched GO categories are shown. GO terms are ranked in 
descending order of statistical significance and GO ontology categories. Different colors of the bars 
represent gene ontology classes. Red dashed line indicates an adjusted p-value threshold of 0.05. 
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Figure 8 | Gene Ontology pathway enrichment analysis of associations between DNA methylation and 
environmental risk for affective disorder. Top 50 enriched GO categories are shown. GO terms are 
ranked in descending order of statistical significance and GO ontology categories. Different colors of 
the bars represent gene ontology classes. Red dashed line indicates an adjusted p-value threshold of 
0.05. 
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Figure 9 | Boxplot of the four most significant cis-mQTLs identified in environmental and genetic risk group 
(n=37) for affective disorder. For the cis-mQTL analysis both risk groups were combined. X-axis represent 
the genotype and y-axis the methylation level of each individual.  

1.3.5   Effect and Enrichment of cis-mQTLs 
 
To identify SNPs that regulate DNA methylation in sites/genes relevant to environmental 

and familial risk, the cis-mQTL analysis was restricted to CpG sites that were significantly 

associated with both risk groups (n=5,715, p<0.05). Using FastQTL via the adaptive 

permutation scheme, we identified a total of 61 SNP-CpG associations (q<0.05) after 

correction for multiple testing. From these, 45 independent cis-mQTLs remained after LD 

clumping (Table 5). The top-ranked cis-mQTL SNP rs3780420 (qmQTL=1.37×10-6) was 

associated with the methylation at cg11093459, which is located in the 5’-untranslated 

region (5’UTR) or promoter region (TSS1500) of the HEMGN gene (Figure 9A). The 

second-ranked cis-mQTL SNP rs7722394 (qmQTL=2.23×10-6) was associated with the 

level of methylation at cg08323540 which mapped to the promoter region (TSS1500) of 

GABRP (Figure 9B). Further, the third and fourth-ranked cis-mQTL in FOXN3 and ADCY9 

are depicted in Figures 9C and 9D.  
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Table 5 | Top 20 associations between SNP genotypes and DNA methylation (cis-mQTLs) in the 
environmental and genetic risk groups combined.  

 

 

 

Enrichment analysis of the 45 independent cis-mQTLs was performed using the summary 

statistics of the large GWAS of BD and MDD. A permutation-based testing approach was 

applied to estimate an empirical p-value by comparing the cumulative distribution of 

randomly drawn control SNPs over the MDD- and BD-associated GWAS SNPs. Due to a 

lack of overlap (missing test statistics) between cis-mQTLs and GWAS risk variants for 

MDD (p<0.05), an empirical p-value could not be retrieved. Three of the 45 independent 

cis-mQTLs were nominally associated in the GWAS of bipolar disorder (rs7152726: 

p<0.04; rs4904551 p<0.02); rs6781560 p<0.01). However, the enrichment in the GWAS 

of BD was not significant (p<0.771) as indicated by the permutation-based enrichment 

test. Further, the three cis-mQTLs were only moderately associated with bipolar disorder 

and thus might not have an impact in terms of the risk or pathophysiology of affective 

disorder.   

Chr SNP Distance CpG Effect p-Value Adj.p-Val. Nearby Gene Function 

9 rs3780420 -23976 cg11093459 -0.9235 2.39E-10 1.37E-06 HEMGN 5'UTR; TSS1500 

5 rs7722394 660 cg08323540 0.5653 9.69E-10 2.23E-06 GABRP TSS1500 

14 rs4904551 -1255 cg02073796 -1.1036 1.17E-09 2.23E-06 FOXN3 Intron 

16 rs11076799 -357 cg24109275 -0.4485 3.44E-09 4.14E-06 ADCY9 Intron 

9 rs2147257 -13613 cg06800115 0.4621 3.67E-09 4.14E-06 HSD17B3 Intron 

3 rs7433472 -3418 cg02772928 0.6621 4.35E-09 4.14E-06  - - 

8 rs2006937 3274 cg09039475 0.9399 1.38E-08 1.13E-05 CCDC25 Intron 

19 rs10500292 53479 cg14061069 -0.8063 2.10E-08 1.50E-05 DMPK Intron 

2 rs1629979 -5303 cg00532797 -0.4718 3.02E-08 1.92E-05 LOC101929231 Intron 

6 rs263184 238301 cg21182457 0.8677 1.92E-07 9.99E-05 ADGRG6 Intron 

22 rs5757207 -4663 cg03443888 0.3433 1.25E-06 5.95E-04 FAM227A TSS1500 

14 rs4902360 74 cg15311201 -0.3420 2.22E-06 9.75E-04 MAX Intron 

5 rs11955291 6837 cg18269756 -0.5709 3.19E-06 1.30E-03  -  - 

3 rs1398609 -7339 cg25738505 -1.3772 3.50E-06 1.33E-03  - -  

1 rs947367 14899 cg16771827 -0.3962 3.74E-06 1.34E-03 PRELP 5'UTR 

17 rs11655504 -19684 cg21657704 -0.3195 4.39E-06 1.45E-03 TBCD Intron 

17 rs56078934 -96531 cg06153925 0.9220 4.83E-06 1.45E-03 RPTOR Body 

3 rs12495073 70284 cg08033130 0.8967 4.96E-06 1.45E-03 CXCR6 TS1500 

12 rs6598154 1105 cg04155630 -0.2455 5.34E-06 1.45E-03 - - 

Legend Table 5 | cis-mQTLs are ranked in descending order of statistical significance. 
Abbreviations: Chr: Chromosome; Strand: SNP: Single-nucleotide polymorphism; Distance: 
Distance between the CpG site and variant in bp; Effect: Slope from the linear regression; 
Function: Gene regulatory feature; UTR: Untranslated region; TSS: Transcription start site. 
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1.4  Discussion 

1.4.1   Key Findings 

In the present study, epigenome-wide methylation analyses of familial and environmental 

risk for affective disorders were carried out in whole-blood samples from female 

individuals with no reported history of psychiatric disease. A total of 22,230 methylation 

sites were associated at nominal significance (p<0.05) with familial risk, while 21,940 sites 

were nominally associated with environmental risk. However, none of the tested 

methylation sites achieved epigenome-wide significance after correction for multiple 

testing. The lowest p-value for familial risk was found at cg25150593 (p=2.10×10-6), which 

is located in the 5’UTR (untranslated region) of ZNF197 on chromosome 3. However, to 

our knowledge, no associations between alterations in DNA methylation of this gene and 

affective disorders has yet been reported. The top-ranked methylation site for 

environmental risk cg16713962 (p=1.60×10-6) was located in an intergenic region of 

chromosome 16. Furthermore, one of the top-ranked methylation sites for environmental 

risk (cg02331649, p=1.25×10-5) was located at the intron of TMEM110, which is a 

previously reported genome-wide significant risk locus for BD, schizophrenia (SCZ) and 

autism spectrum disorder [Sklar et al., 2011; Ripke et al., 2014; Anney et al., 2017]. 

TMEM110 encodes a brain-expressed transmembrane protein that connects the 

endoplasmic reticulum and plasma membrane and acts as a positive regulator of Ca2+ 

influx in mammalian cells [Quintana et al., 2015; Jing et al., 2015; Song et al., 2017]. 

Interestingly, research has implicated dysregulation of Ca2+ homeostasis in the 

pathophysiology of several neuropsychiatric disorders, including BD and SCZ [Forstner et 

al., 2017; Berridge et al., 2014]. However, among the other top ten findings for familial as 

well as environmental risk, we did not find any gene linked to neuropsychiatric illness. To 

assess the potential functional relevance of genes associated with significantly associated 

methylation sites, GO pathway enrichment analyses were performed. In both risk groups, 

we identified pathways that are related to the brain and neuronal system. In particular, 

neurogenesis was the most significant finding for familial risk and among the top pathways 

for environmental risk. Neurogenesis plays an important role in the maintenance and 

function of the hippocampus circuitry [Lazarov et al., 2016]. It is a process in which new 

neurons are generated in the subgranular zone of the dentate gyrus regulated by 
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environmental and genetic factors [Samuels et al., 2011; Jesulola et al., 2018]. The 

neurogenesis theory hypothesizes that MDD is linked to impairments of adult 

neurogenesis [Jacobs et al., 2000]. Furthermore, the effects and mechanisms of 

antidepressants are partly mediated through increased neurogenesis [Tunc-Ozcan et al., 

2019]. Some research implicated that neurogenesis plays a pivotal role in the treatment 

and prevention of neurological and psychiatric disorders [DeCarolis et al., 2010].  These 

findings and the results of the present study suggest that neurogenesis might be of 

potential relevance in terms of the pathophysiology of affective disorders. Finally, we 

performed a cis-mQTL analysis to identify genetic variants that impact DNA methylation 

levels. In this analysis, 45 independent SNP-CpG pairs were significant after correction 

for multiple testing via the permutation scheme.  For the most significant SNP-CpG 

association (rs3780420; cg11093459; qmQTL<1.37×10-6) located nearby HEMGN, we did 

not find any link to psychiatric diseases. However, the second most significant SNP-CpG 

association (rs7722394; cg08323540; qmQTL<2.23×10-6) was located in the promoter of 

GABRP (gamma-aminobutyric acid type A receptor subunit pi) which encodes for a 

multisubunit chloride channel expressed in the hippocampus and several non-neuronal 

tissues. This gene plays an important role in the inhibitory synaptic transmission of the 

central nervous system [Neelands et al., 1999; O'Leary et al., 2016].  However, the effect 

sizes of the cis-mQTLs were moderate and their functional role in the development of 

affective disorder needs further investigation. In addition, an enrichment of the cis-mQTLs 

in the GWAS of MDD or BD could not be confirmed. On the individual level, only three cis-

mQTLs were retrieved from the GWAS summary statistics but these were only moderately 

associated with BD.  

1.4.2   Strengths and Limitations 

The present study had several limitations. First, whole-blood samples were used for the 

assessment of DNA methylation levels. Although the heterogeneity of whole-blood 

samples was considered via correction for leukocyte subpopulations, it is currently unclear 

whether blood is a relevant tissue for investigating the pathophysiology of affective 

disorders. Previous studies have demonstrated only a limited correlation between DNA 

methylation in the whole blood of psychiatric patients and brain tissue [Walton et al., 2016; 

Farré et al., 2015]. The tissue specificity of neuropsychiatric disorders might explain the 
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moderate number of findings on the epigenome-wide scale. Investigations of methylation 

alterations in whole-blood and post-mortem brain samples of psychiatric patients are 

warranted to identify tissue-dependent epigenetic signatures of relevance to psychiatric 

diagnosis [Aberg et al., 2020; Chan et al., 2020; Boström et al., 2017]. Second, we only 

examined individuals without a reported history of psychiatric disease to avoid any 

potential confounding by disease status or course. Therefore, it remains unclear whether 

the methylation sites identified in the present study also show an association in patients 

with affective disorder, which should be investigated in future studies. The third important 

limitation of this study was the sample size which limited the power to detect associations 

on the epigenome-wide scale. The largest epigenome-wide association study of 

depressive symptoms to date was performed by the CHARGE consortium (discovery 

cohort, n= 7,948; replication cohort, n= 3,308) [Story Jovanova et al., 2018]. In that meta-

analysis, three methylation sites showed an epigenome-wide significant association    

(p<1×10-7) to depressive symptoms with moderate effect sizes. This demonstrates that 

the association between methylation sites and depressive symptoms may be subtle and 

that very large sample sizes are needed. Interestingly, the three methylated sites were 

targeting the axonal guidance pathway which is one of the commonly affected pathways 

in depressive symptoms. The respective three methylation sites were not significant in 

either of the risk groups in the present study. Future studies involving larger sample sizes 

are therefore warranted and should include case/control analyses to elucidate epigenetic 

mechanisms in affective disorders. 

1.4.3   Conclusions 

To conclude, the present work is one of the first epigenome-wide methylation studies in 

which environmental and familial risk for affective disorders were analyzed in an 

integrative way using the MethylationEPIC BeadChip. No epigenome-wide significant 

methylation site was found after correction for multiple testing. However, the analyses 

implicated >20,000 nominally significant CpG sites for familial or environmental risk that 

converged into pathways associated with neurogenesis and nervous system 

development.  
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CHAPTER 2 

RARE VARIANT BURDEN ANALYSIS OF NIEMANN-PICK GENES IN 

SCHIZOPHRENIA USING TARGETED SEQUENCING 

 

In this chapter, the findings of the rare variant burden analysis of Niemann-Pick genes 

NPC1 and NPC2 in SCZ patients and controls using smMIP-based targeted sequencing 

are presented. 
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2.1  Introduction 
 
2.1.1   Schizophrenia 

Schizophrenia (SCZ) is a severe neuropsychiatric disorder that affects about 1% of the 

population worldwide [Leucht et al., 2007]. Patients with SCZ display a broad range of 

symptoms that may include delusions, hallucinations, disorganized speech, and grossly 

disorganized or catatonic behavior. The latter include affective flattening, alogia, avolition, 

and social withdrawal [Crow et al., 1985; Andreasen 1999; Sass et al., 2003; American 

Psychiatric Association, 1994]. All of these symptoms highlight that SCZ is a clinically 

heterogeneous and complex mental disorder with devastating consequences on the 

physical and mental health of the affected individuals [Millier et al., 2014]. The age at onset 

of SCZ is in early childhood or adolescence [Kessler et al., 2007]. The disorder is highly 

heritable, exceeding 60% in family studies and 80% in twin studies [Wray et al., 2012; 

Sullivan et al., 2003]. However, environmental factors such as childhood traumatic life 

events, migration, substance use, and psychosocial factors also contribute to the 

development of SCZ and these may interact with genetic factors [Vilain et al., 2013]. 

Diagnosis is based on psychiatric evaluations and an extensive assessment by an 

experienced mental health professional [American Psychiatric Association, 1994]. The 

advent of genome-wide association studies (GWAS) and next-generation sequencing 

(NGS) technologies allowed dissecting the genetic architecture of SCZ. In GWAS it was 

found that SCZ is highly polygenic which means that many genes with relatively low effect 

sizes contribute to the disease development. One of the largest GWAS of SCZ was 

conducted by the Psychiatric Genomics Consortium (PGC) in 2014 which included 36,989 

cases and 113,075 controls and revealed 108 independent risk loci from which 83 were 

newly implicated with SCZ. Multiple associations such as DRD2, genes involved in 

glutamatergic neurotransmission (GRIN2A, SRR, CLCN3, and GRIA1), neuronal calcium 

signaling (CACNA1C, CACNA1l, CACNB2, RIMS1) and broader synaptic function 

(KCTD13, CNTN4, PAK6) were identified [Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014]. Interestingly, one of the top new loci was 

associated with the major histocompatibility complex (MHC) locus on chromosome 6. This 

led to the conclusion that there might be an important component of immune mechanisms 

involved in the pathophysiology of SCZ [Schizophrenia Working Group of the Psychiatric 
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Genomics Consortium, 2014]. However, common variants explain only partially the 

heritability and phenotypic variance. In addition, most of these variants are located in the 

noncoding part of the genome and do not affect protein-coding genes with known 

functions. There is increasing evidence that copy number variations (CNVs) and rare 

single-nucleotide variants (SNVs) also play an important role in the development of SCZ. 

Over many years multiple rare chromosomal deletions and duplications were identified by 

large consortia-based studies [International Schizophrenia Consortium, 2008; CNV and 

Schizophrenia Working Groups of the Psychiatric Genomics Consortium, 2017].  It was 

found that there was a global as well as gene-specific increase in the burden of rare CNVs 

in SCZ patients [Walsh et al., 2008; International Schizophrenia Consortium, 2008]. The 

Psychiatric Genomics Consortium (PGC) provided an analysis in which it pinpointed more 

than eight genome-wide significant CNVs such as  1q21.1, 2p16.3 (NRXN1), 3q29, 

7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2  [CNV and Schizophrenia 

Working Groups of the Psychiatric Genomics Consortium, 2017].  Most of the findings 

unveiled that the identified CNVs overlapped with genes associated with 

neurodevelopmental disorders [Grayton et al., 2012]. In sequencing studies such as 

exome studies, it was found that rare loss-of-function (LoF) variants with a minor allele 

frequency (MAF) ≤0.1% were associated with the risk of schizophrenia and developmental 

disorders [Singh et al., 2016]. In particular, in this study, rare variants in SETD1A 

contributed significantly to the risk of SCZ. This gene is a component of a histone 

methyltransferase (HMT) that catalyzes the trimethylation of histone H3 at lysine 4 

(H3K4me4) chromatin modification. This modification is generally known to play a role as 

a regulator of gene transcription [Wang et al., 2021]. The SCZ Exome Sequencing Meta-

analysis (SCHEMA) consortium is a large collaboration in which currently exomes from 

24,248 cases and 97,322 controls, and de novo mutations from 3,402 parent-proband 

trios were analyzed [Singh et al., 2022]. This large collaborative study results revealed 

that ultra-rare coding variants (URVs) in ten genes impact the risk of developing 

schizophrenia substantially (odds ratios 3 - 50, p<2.14 × 10-6), and 32 genes at an FDR < 

5% [Singh et al., 2022]. The majority of the genes indicated the greatest expression in the 

central nervous system neurons. This large-scale analysis of exome sequencing data 

highlighted the importance of assessing the role of rare variants in the risk of developing 

SCZ. As many genes are implicated in SCZ from common variants with small effects to 
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rare single mutations or CNVs of large effect sizes, so far there is no valid biomarker 

available to confirm or rule out the clinical diagnosis of SCZ. And due to its clinical 

heterogeneity and overlapping symptoms with other neurological and psychiatric 

disorders, making a correct clinical diagnosis shortly after the first symptom presentation 

can be challenging [Doherty et al., 2016]. 

 
2.1.2   Niemann-Pick Type C Disease 

NP-C (Niemann-Pick type C) disease belongs to a group of rare lysosomal storage 

disorders which are a group of heterogeneous inherited inborn errors of lipid metabolism 

and were first described by Albert Niemann (1880-1921) and Ludwig Pick (1868-1944) 

[Niemann, 1914; Pick, 1926]. In principle, there are 3 subtypes A, B, and C which are 

inherited in an autosomal recessive way and are classified based on the genetic cause 

and clinical symptoms [Crocker et al., 1961; Vanier et al., 2013]. Niemann-Pick Type A 

(NP-A) and Type B (NP-B), also called acid sphingomyelinase deficiency (ASMD) are 

caused by deficiency of the enzyme acid sphingomyelinase (ASM). Loss of function 

mutations in the SMPD1 gene encoding for the acid sphingomyelinase (ASM) on 

chromosome 11 lead to a toxic accumulation of sphingomyelin and other lipids within the 

cell causing malfunctions of multiple organ systems [Schuchman et al., 2007]. However, 

Type A and Type B differ in the presented clinical symptoms and severity based on the 

mutations in the SMPD1 gene. Based on the mutations, the amount of the gene product 

varies in Type A and Type B [Schultz et al., 2016]. In Type A (classic infantile form) very 

low to no functional ASM (~1%) is retained and is associated with hepatosplenomegaly 

(abnormal growth of liver and spleen) and severe progressive neurological symptoms 

such as hypotonia, ataxia, spasticity which leads to the early death of the affected 

individuals by an age of 2 to 3 years [Vanier et al., 2013]. In Type B (visceral form) 

approximately ~10% of ASM is available, this type does not show any neurological 

pathology so the affected individuals survive until late adulthood with health complications 

arising from chronic hepatosplenomegaly, respiratory and cardiovascular diseases 

[Schuchman et al., 2015, Schultz et al., 2016]. Niemann-Pick Type C is caused by 

mutations in either one of the genes NPC1 or NPC2 in the affected individuals. The NPC1 

gene encodes for a lysosomal transmembrane protein and NPC2 for a soluble lysosomal 

protein, both of these gene products work collaboratively by regulating the transport of 
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intracellular cholesterol and thus play an important role in cholesterol homeostasis 

[Carstea et al., 1997; Loftus et al., 1997]. When this function is impaired it comes to an 

accumulation of unesterified cholesterol, sphingolipids, and other lipids in multiple organ 

systems. Thus, Niemann-Pick Type C is a slowly progressing neurodegenerative disease 

belonging to the aforementioned group of lysosomal storage diseases. NPC1 is affected 

in 95% of the cases whereas NPC2 is involved in 5% of the affected individuals, 

respectively [Patterson et al., 2012; Vanier et al., 2016]. The estimated lifetime prevalence 

varies on the causing gene which is 1:92,000 for NPC1 and 1:2,860,000 for NPC2 [Wassif 

et al., 2016]. The clinical spectrum is remarkably heterogeneous with manifestations being 

age-dependent. Most of the symptoms in early infancy are visceral with 

hepatosplenomegaly, jaundice, and pulmonary infiltrates. In later infancy, neurological 

manifestations start to dominate such as ataxia, dysarthria, seizures, dementia, or 

developmental delay [Pattersen et al., 2000]. In young adulthood (age > 15 years) 

neuropsychiatric symptoms like major depressive syndromes, sometimes bipolar 

disorder, or schizophrenia including psychosis overshade the neurological manifestations 

[Pattersen et al., 2000; Vanier et al., 2013; Kawazoe et al., 2018]. Due to clinically 

heterogeneous symptoms, the diagnostics of NP-C are challenging and long-lasting. 

Since the 90s, molecular diagnostic analyses based on the polymerase chain reaction 

method (PCR) and Sanger sequencing were applied for the diagnostics of NP-C. This 

was, in particular, used when biochemical biomarkers such as filipin testing were not 

convincing. However, in the end, genetic testing is crucial for high-precision diagnostics 

of NP-C to rule out any false-positive diagnoses. Nowadays targeted next-generation 

sequencing (NGS) or whole-exome sequencing of NPC1 and NPC2 may be applied 

[Bounford et al., 2914; Sitarska et al., 2019]. This saves costs because at the same time 

many other genes in a panel or exome can provide valuable insights into disease 

pathology. The NPC1 and NPC2 gene consists of 25 and 5 exons and are located on 

chromosome 18q11.2 and 14q24.3 [Carstea et al., 1997; Naureckiene et al., 2000]. At the 

time of writing, there were 185 and 30 pathogenic mutations for NPC1 and NPC2 listed in 

ClinVar [Landrum et al., 2018]. But rare private family-specific mutations including indels 

can cause the development of the disease as well. Further, mimicking psychiatric 

symptoms such as SCZ might lead to a misdiagnosis of NP-C patients [Kawazoe et al., 

2018; Sandu et al., 2009]. Correctly diagnosing NP-C is crucial for the affected individuals 
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as NP-C-specific therapies are available [Alavi et al., 2013]. Therefore, NGS-based 

targeted or whole-exome sequencing of all exons and exon/intron boundaries of the NPC1 

and NPC2 genes is warranted and might become the method of choice in the diagnostics 

of Niemann-Pick disease [Málaga et al., 2019]. 

 

2.1.3   smMIP-based Targeted Sequencing 

Single-molecule Molecular Inversion Probes (smMIPs) enable massive parallel targeted 

resequencing of genes by increasing throughput and reducing costs. This technology 

combines single-molecule tagging with a multiplex targeted capture that allows the 

detection of rare and low-frequency variations [O'Roak et al., 2012; Hiatt et al., 2013]. The 

smMIP technology provides many advantages including its flexible design meaning that 

genes can be easily integrated into an existing panel, the workflow is highly automatable, 

variant calling is highly reproducible due to high coverage, and its low costs compared to 

other commercial kits. The accurate genotyping of variants in subclonal frequencies is of 

importance in the detection of somatic mutations for example in cancer diagnostics e.g. 

BRCA testing [Neveling et al., 2017]. The smMIP technology is applied in the diagnostics 

of many other diseases such as male infertility, congenital disorders, hypopituitarism, 

dystonia, and many more indicating that the technology has already been established so 

far in clinical practice [Oud et al., 2017; Bakar et al., 2022; Millán et al., 2018; Pogoda et 

al., 2019]. However, the design of the smMIPs is a complex process in which the capture 

uniformity and specificity are evaluated using statistical models [Boyle et al., 2014]. The 

following steps are carried out (i) sequences corresponding to the targeted regions are 

extracted from the reference sequence, (ii) then it is checked whether any SNPs are 

located in the target region to place the probe arm in non-polymorphic sites, (iii) all 

targeting arms and insert sequences are checked for overlapping copy number variations 

using an alignment tool called Burrows-Wheeler Aligner (BWA, (iv) finally a machine 

learning approach called Library for Support Vector Machines (LIBSVM) is applied for 

scoring the best fitting combinations of the targeting arms. Then the MIP selection is 

guided by the scoring approach until an optimal MIP tiling that covers all targeted bases 

has been reached. Targets that cannot be tiled due to low complexity or specificity are 

accessed separately [Boyle et al., 2014]. Although the technology is highly scalable and 

demonstrated comprehensive multiplexing there are some important limitations such as 
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the non-uniformity of the capture efficiency across long exons and GC-rich target regions. 

To address this, a re-pooling to balance the dropouts is necessary. This step can lower 

the turnaround time and increase a certain amount of the costs and resources for 

sequencing [Boyle et al., 2014]. While rare variants and de novo mutations contribute to 

the development of complex genetic disorders including neuropsychiatric disorders like 

bipolar disorder [Forstner et al., 2020; Toma et al., 2021], major depressive disorder [Zhou 

et al., 2021; Tombácz et al., 2019] or schizophrenia [Singh et al., 2016; Zoghbi et al., 

2021; Purcell et al., 2014], implicated genes need to be resequenced and analyzed in 

large quantities of cases and control samples. The smMIP technology has tremendous 

potential to influence the diagnostics and therapy of different diseases on a large scale. 

Further, this technology might also replace conventional gold-standard Sanger 

sequencing by inaugurating a new era of NGS-based diagnostics [Diekstra et al., 2015; 

Beck et al., 2016].  

 
2.1.4   Rare Variant Association Test 

The missing heritability problem highlighted that common variants identified by GWAS 

only account partially for the heritability of complex genetic diseases [Eichler et al., 2010]. 

It is well known that numerous Mendelian disorders are caused by rare highly penetrant 

variants. There is increasing evidence that rare variants with a minor allele frequency 

(MAF) <1% in the general population contribute to the missing heritability of complex 

genetic disorders such as SCZ [Purcell et al., 2014]. The detection of rare variants became 

possible through the rapid advent of NGS technologies that were capable of identifying 

rare single nucleotide variants (SNVs) and copy number variations (CNVs). In particular, 

targeted resequencing and whole-exome sequencing (WES) are applied to investigate the 

role of putative rare functionally relevant variants in the coding region of the genome. The 

assessment of the pathogenicity (e.g. CADD score) of these variants is of major interest 

as they can be critical for correct diagnosis and therapy intervention [Kircher et al., 2014]. 

However, due to their rare allelic spectrum much larger sample sizes are needed than in 

GWAS for rare variant association testing. Therefore, typically rare variants are collapsed 

into genes, gene sets, or genomic regions for a particular disease of interest. The 

statistical testing is then based on a gene or genomic region rather than on a single variant 

level [Li et al., 2008; Madsen et al., 2009; Morgenthaler et al., 2007]. This integration of 
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the effects of rare variants in units defined by gene annotations or genomic regions with 

functional impact improves the power to detect any associations. Because of the grouping 

of variants into genes, rare variant tests are also called gene-based tests. In principle, the 

frequencies of the individuals carrying rare variants in a gene or genomic region of interest 

are calculated in cases and controls and the differences in the frequencies of both of these 

groups are tested for quantitative or binary traits, respectively. Mainly, linear regression-

based approaches are applied which enable the adjustment of the underlying models 

using covariates [Lee et al., 2014]. For gene-based tests, the genome-wide significance 

threshold is set to 2.5×10-6 assuming 20,000 genes in the human genome. In general, 

there exist two types of gene-based tests that are either burden or variance-component 

tests including methods that combine both of these approaches [Bansal et al., 2010]. 

These methods differ in the varying assumptions they make in the underlying genetic 

model and power. The classical Burden test is powerful when a large number of variants 

are causal and the effect sizes have the same direction. Whereas it is not of advantage 

when variants have different directionalities or weak effect sizes. In burden tests, usually, 

variants are collapsed into a single genetic score which tests for association under a 

dominant rather additive genetic model [Li et al., 2008; Madsen et al., 2009; Morgenthaler 

et al., 2007]. The Variance-Component test takes into account a random-effect model. 

Instead of collapsing all variants into a single gene-based score, the distribution of 

aggregated score statistics of individual variants is assessed. This method is powerful 

when it comes to variants with mixed effects that are pathogenic or protective at the same 

time, but is less powerful when most of the variants are causal and the effects are in the 

same direction [Wu et al., 2011; Neale et al., 2011]. One of the most applied methods of 

the Variance-Component test is the Sequence Kernel Association Test (SKAT) [Wu et al., 

2011]. Its frequently applied as it is computationally efficient and enables modeling 

epistatic effects (SNP-SNP interactions). Several other methods have been introduced to 

unify burden and variance-component tests as implemented in SKAT-O. This approach 

maximizes the power by adaptively selecting the best linear combination of the burden 

and non-burden SKAT [Lee et al., 2012]. Hence, it is more robust in terms of causal 

variants that can have different directions. Usually, this type of approach is of advantage 

as the information on the underlying genetic model is often unknown. Thus, for these 
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reasons, SKAT-O was the tool of choice for the rare variant association test of rare 

functionally relevant variants in NPC1 and NPC2 of SCZ patients and controls. 

 

2.1.5   Aim of the Study 

The present study had three main aims: (i) to test the hypothesis that functionally relevant 

variants in NPC1 and NPC2 are enriched in patients with SCZ compared to controls; (ii) 

to screen a large cohort of patients diagnosed with SCZ (NP-C) and (iii) to implement an 

NGS-based routine diagnostics pipeline for the targeted resequencing of NPC1 and 

NPC2. 

 
 
2.2  MATERIALS & METHODS 

 
2.2.1   Cohort Description 

The study was approved by the respective ethics committee. All individuals provided 

written informed consent before inclusion. All study procedures were performed following 

the Code of Ethics of the World Medical Association [World Medical Association, 2013]. 

All participants were of German descent according to self-reported ancestry. DNA was 

extracted from whole venous blood. In total, 1,947 patients with SCZ and 1,921 controls 

were included in this study. All patients were recruited from departments of psychiatry 

across Germany. They were assessed by an experienced psychiatrist. The minimum 

assessment included medical records, family history, and performance of the Structured 

Clinical Interview [Spitzer et al., 1992]. A lifetime "best estimate" diagnosis of SCZ was 

assigned following the International Statistical Classification of Diseases and Related 

Health Problems ICD-10 criteria [Leckman et al., 1982]. The controls were recruited at 

different sites in Germany. They included individuals from the Heidelberg Cohort Study of 

the Elderly [HeiDE; Amelang et al., 2004] and the Heinz Nixdorf recall study [HNR; 

Schmermund et al., 2006]. 

 
2.2.1   Design of single molecule Molecular Inversion Probes (smMIPs) 

The genes NPC1 and NPC2 comprised of 25 and 5 coding exons, respectively (target 

region). In addition, 2 intronic regions in NPC1 were included for known pathogenic 
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variants. The target region was resequenced using smMIPs [Hiatt et al., 2013]. The 

smMIPs were designed using an in-house pipeline based on the program MIPgen [Boyle 

et al., 2014] with the following modifications: (i) without untranslated regions (UTR); (ii) 

target size 190 bp (170-210 bp); (iii) target regions: all exons ±5 bp. The logistic priority 

score was 0.5. In total, 48 and 6 smMIPs were designed, respectively. All 4,936 bp of the 

30 exons, 2 introns in NPC1, NPC2, and the corresponding splice sites were in silico 

sufficiently covered by the designed probes. 

 
2.2.3   Library Preparation and Sequencing 

Library preparation was performed as described elsewhere [Eijkelenboom et al., 2016]. 

Briefly, a total of 100ng of genomic DNA served as input material. After denaturation, 

incubation of the probe mix for hybridization, extension, and ligation is carried out before 

exonuclease treatment. Exonuclease-treated capture is then used for PCR with common 

forward and barcoded reverse primers. After pooling and purification of the PCR products 

to ensure a homogeneous read depth across all target regions, the concentration of the 

different smMIPs was adjusted according to their performance in a test run using Illumina’s 

MiSeq. Purified and diluted libraries were then sequenced using Illumina’s HiSeq 2500 

resulting in 2 × 150 bp paired-end reads [Hiatt et al., 2013]. Equivalent amount of patient 

and control samples were pooled prior sequencing of each flowcell.  

 
2.2.4   Sample-level QC - SNP Genotyping Data 

For all individuals presented in this study, data from Illumina SNP genotyping arrays were 

available. The genotyping information was used to detect sex mismatches, duplicates, 

relatedness, and population outliers. The latter sample QC steps were performed using 

PLINK [Purcell et al., 2007] and KING [Manichaikul et al., 2010]. Standard QC parameters 

as defined in PLINK were applied to the SNP dataset. Due to the low number of 

overlapping variants, we were unable to assess sequencing-array genotype concordance. 

Samples from our targeted sequencing cohort were excluded if they: (i) showed a 

mismatch between X-chromosomally inferred and phenotypic sex; (ii) had a kinship 

coefficient >0.0884; were identified as population outliers from the mean distance of > 3 

standard deviations (SD) in the first two components according to multidimensional 
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scaling (MDS) analysis using 1000 Genomes Project Phase 3 [The 1000 Genomes 

Project Consortium; Auton et al., 2015]. 

 

2.2.5   Sequencing Data - Variant Calling and Annotation 

Raw sequence reads were processed according to a previously published pipeline [Hiatt 

et al., 2013]. Briefly, the pre-processing of the raw data includes merging overlapping 

regions of read-pairs using PEAR [Zhang et al., 2013]. The extension and ligation arm 

(smMIP tags) are inserted into the header of the read-pairs applying a custom python 

script from the MIPgen repository (https://github.com/shendurelab) called “mipgen_fq_ 

cutter_pe.py”. Mapping of the read-pairs to the human genome assembly GRCh37 (hg19) 

is carried out using the Burrow-Wheeler Alignment tool (BWA) [Li et al., 2009]. Collapsing 

the smMIP tags and removing extension and ligation arms is performed using a custom 

python script called “mipgen_smmip_collapser.py” which was also available from the 

MIPgen repository. Variant calling was performed using the Unified Genotyper from the 

Genome Analysis Tool Kit (GATK) [Van der Auwera et al., 2013]. Variants were annotated 

using Annovar [Wang et al., 2010]. 

 

2.2.6   Sequencing Data - Sample Level Quality Control 

Samples were excluded from downstream analyses if they fulfilled at least one of the 

following criteria (i) <90% of the target sequence covered at >10x as calculated using 

Picard [Picard Tool Kit, 2018]; and (ii) >3 SD in Het/Hom and/or Ti/Tv Ratios as calculated 

by BCFTools [Li et al., 2011]. 

 

2.2.7   Variant-Level QC and Filtering 

Multi-allelic variants were left normalized according to BCFTools [Li et al., 2011] Then, all 

variants were filtered using the VariantFiltration tool in GATK applying hard-filtering 

thresholds [Van der Auwera et al., 2013]. Sequencing-based variants in the VCF file were 

converted to PLINK’s binary format using PLINK [Purcell et al., 2007]. Variants were 

excluded if the missing genotype rate was >10% and/or fail the Hardy-Weinberg test 

(p<1×10-6) in the study’s control cohort using PLINK [Purcell et al., 2007]. All synonymous 

variants were excluded. Subsequently, the non-synonymous variants were filtered 
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according to their minor allele frequency (MAF) and their putative in silico functional effect. 

Variants were excluded from our downstream analyses if they had a MAF > 0.001 in either 

the present study’s cohort and/or the Non-Finish European (nonPsych) subset of the 

Exome Aggregation Consortium [ExAC; Lek et al., 2016] (n=45,376). Variants with a 

Combined Annotation Dependent Depletion [CADD; Kircher et al., 2014] score < 20 were 

discarded. No CADD scores were available for frameshift indels but these were included 

in downstream analyses due to their protein-truncating effects. 

 
2.2.8   Statistical Analysis 

We applied the optimized SKAT-O which is a gene-based kernel-regression association 

test for rare variants [Lee et al., 2012]. To get model parameters and residuals for the 

SKAT-O, the SKAT null model for a binary trait without any corrections for covariates was 

assigned. SKAT-O default parameters were used: (i) exclusion of non-polymeric variants 

and (ii) variants with a missing rate >0.15 [Lee et al., 2012]. Using a linear-weighted kernel 

we carried out association tests between SCZ patients and controls for each gene 

separately. Correction for multiple testing was performed using the Benjamini-Hochberg 

method [Benjamini et al. 1995]. A p-value significance threshold for gene-based testing 

(0.05/2) of p<0.025 was considered. Additionally, a classical burden-like test statistic by 

counting heterozygous, compound heterozygous, and homozygous carriers in patients 

and controls were generated to run a one-sided Fisher`s exact test on a 2 x 2 contingency 

table. First, an SNP file with qualifying variants that are potentially functional according to 

the aforementioned filter criteria was created in which variants are assigned to genes. 

Then the allele counts of carriers in the cases and controls are assessed using a custom 

script separately. Finally, a table is generated in which individual carriers of heterozygous, 

compound heterozygous, and homozygous variants in cases and controls are listed. This 

table serves as input for the one-sided Fisher`s exact test which is run under a dominant 

or recessive model. Furthermore, to access the significance of single markers in SCZ 

patients versus controls, an association test based on allele frequency distributions using 

a Pearson’s Chi-square test as implemented in PLINK [Purcell et al., 2007] was carried 

out. All analyses were based on MAF<0.001 and CADD score >20 including frameshift 

variants without any CADD score. All statistical analyses were performed in R v3.6.3 [R 

Core Team, 2017] and PLINK [Purcell et al., 2007].  
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2.3  RESULTS 

 

2.3.1   Integration of SNP Array Data 

We included SNP genotyping array data for checking sex mismatches, duplicates, 

relatedness, and population stratification. No sex mismatches and duplicate samples were 

found. 115 related pairs of individuals up to 2nd degree (kinship coefficient >0.0844) were 

identified by estimating the kinship coefficients (Figure 1). These 115 individuals were 

discarded from all downstream analyses.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Additionally, 70 population outliers (>3 SD) were identified which were also excluded from 

all downstream analyses (Figure 1). For that 3 standard deviations were applied to the 

first and second components of the MDS analysis and population outliers were detected 

and visualized as presented in Figure 2.  

Mean: -0.01122 
SD: 0.02626 
 

Figure 1 | Kinship Coefficient. The histogramm shows the distribution of kinship 
coefficient estimates as calculated by the relationship inference tool KING. The mean and 
standard deviation from the distribution are specified. The straight black line indicates the 
mean of the distribution.  
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To capture the population structure along with other ancestries, we performed an MDS 

analysis using the 1000 genomes reference data. Only variants that overlap with the 1000 

genomes reference and the present cohort were taken into account for MDS analysis. The 

combined analysis with the 1000 genomes data indicated for the rest of the study cohort 

a central European origin (blue, Figure 3) and a homogenous population (green, Figure 

3) which is important in genetic association studies to reduce false-positive findings. After 

stringent GWAS-like quality control steps, we identified 115 related individuals and 70 

population outliers. By integrating SNP array genome-wide genotype data population 

stratification using common variants could be carried out. Overall 185 from 3,868 (4.8%) 

samples were discarded from the smMIPs data for the rare variant association analysis in 

NPC1 and NPC2. These QC steps would not have been possible without the use of 

genome-wide SNP array data. 

Figure 2 | Multidimensional Scaling Plot. MDS was performed using PLINK from genome-wide 
genotype data of the present cohort. First and second component of the MDS analysis are plotted. 
Population outlier as defined by >3 SD in the cohort are indicated in red. The green cluster 
represents a distinct cohort and is within <3 SD on the first and second component. The proportion 
of variance explained by each of the components is specified in brackets.  
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2.3.2   Targeted Sequencing using smMIPs 
 
We selected two genes NPC1 and NPC2 for the targeted sequencing of 1,947 

schizophrenia patients and 1,921 controls (pre-QC). 48 and 6 smMIPs were designed to 

sequence coding (25 and 5 exons), splicing (exons ±5 bp), and 2 intronic regions in NPC1, 

totaling in 4,936 target bases. The mean coverage of NPC1 and NPC2 for all samples 

was 269.45 (sd=79.68) and 214.37 (sd=63.06) (Figures 4 and 5). When comparing the 

mean coverage stratified by patients and controls for NPC1 and NPC2 there were 

differences in the overall coverage distribution (Figures 4 and 5). In both genes, there was 

a small proportion of control samples with less coverage than the patients, indicating 

cohort-specific effects of the target region captured by the smMIPs technology. The 

patients had an overall better coverage than the control samples.  

 

Figure 3 | Multidimensional Scaling Plot using 1000 Genomes data. MDS was 
performed using PLINK from genome-wide genotype data of the present cohort and 
the 1000 Genomes reference data. First and second component of the MDS analysis 
are plotted. The proportion of variance explained on each of the components is 
indicated in brackets. 
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Figure 4 | Mean Coverage Plot of NPC1. The mean coverage of the target regions of the 
NPC1 gene is depicted as a histogram. The red and light blue distributions represent the 
coverage stratified by controls and patients. The black dashed line indicates the overall 
mean of controls and patients. The control and patients-specific means are shown in the 
upper left corner of this chart.   

Mean (Controls): 265.54x 
Mean (Patients): 273.35x 
 

Mean Controls: 205.78x 
Mean Patients: 222.95x 
 

Figure 5 | Mean Coverage Plot of NPC2. The mean coverage of the target regions of the 
NPC2 gene is depicted as a histogram. The red and light blue distributions represent the 
coverage stratified by controls and patients. The black dashed line indicates the overall 
mean of controls and patients. The control and patients-specific means are shown in the 
upper left corner of this chart.   
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For sample-based quality control of the targeted sequencing data, the threshold of 90% 

of the target region covered at 10x was checked for both genes together. Overall, 46 from 

3,683 (1.25%) samples with a target region coverage <90% of 10x were identified and 

discarded from downstream analyses (Figure 5). In NPC1, 133 bp from 4,430 bp (3%) 

from the targeted bases were not covered at >10x in the entire cohort, and in NPC2, 91 

bp from 506 bp (17.98%) from the targeted bases were not covered at >10x. Meaning the 

overall target region capture efficiency of the smMIPs was better in NPC1 than NPC2. 

Despite, the differences the majority of the samples (98.75%) attain 90% of the 10x target 

region-based coverage threshold indicating an overall good performance of the smMIP 

sequencing on the sample level (Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The exon-based mean coverage analysis revealed that exon 8 in NPC1 was fully affected 

by the loss of coverage meaning all targeted bases were covered <10x. Further, partially 

affected by the coverage loss were exon 11 (0.8% <10x), exon 24 (39% <10x) and one of 

Figure 6 | 10x Target Region Coverage. In this histogram the distribution of 90% of the 
target region covered at 10x are plotted. The red and light blue distributions represent 
the controls and patients from the study cohort. The red dashed line indicates the 90% 
cutoff threshold. 
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the intronic regions (26% <10x) (Figure 7). In NPC2 exon 4 (90% <10x) was fully affected 

by the loss of coverage (Figure 8). This revealed that some of the targeted regions such 

as exon 8 in NPC1 and exon 4 in NPC2 were not sufficiently covered for downstream 

analysis in particular for variant calling thus the contribution of these regions to the rare 

variant burden analysis could not be assessed. The loss of coverage of these particular 

exons and regions needs to be further investigated and evaluated. 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 | Exon-based mean coverage of NPC1. The mean coverage depth of all coding 
exons and 2 intronic regions in NPC1 are plotted by stratifiying controls and patients. The 
light grey dashed line indicates the overall mean coverage. The red circle outlines the 
failed exon 8 in NPC1. 

Figure 8 | Exon-based mean coverage of NPC2. The mean coverage depth of all 
exons in NPC2 are plotted by stratifiying controls and patients. The light grey dashed 
line indicates the overall mean of the coverage. The red circle outlines the failed exon 
4 in NPC2. 
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None of the other important quality control parameters on the sample level such as 

individual missing genotype data >15%, Het-/Hom- or Ti-/Tv-ratio (>3 SD) were exceeded. 

The mean Het-/Hom- and Ti/Tv-ratios were 1.403 and 2.09. After vigorous QC, data from 

a total of 1,815 patients and 1,831 controls were included in downstream analyses. Overall 

222 (5.74%) from 3,868 samples were discarded due to quality control issues.  

2.3.3   Variant Prioritization 

In total, 164 variants in NPC1 (91.5%) and NPC2 (8.5%) were identified. Among the 164 

variants, 2 MNPs (multiallelic SNP sites), 155 SNVs (single nucleotide variants), and 7 

Indels (insertion-deletions) were found (Table 1). Figure 9 highlights the main variant 

prioritization steps in a schematic overview. The overall genotype concordance with 

dbSNP (v144) within the sufficiently covered target regions (>10x) was 100%. After 

applying left normalization, GATK hard-filter, filtering for non-polymorphic sites, missing 

genotype rate (>15%), and MAF >0.001, 94 SNVs and 6 indels were left in NPC1 (94%) 

and NPC2 (6%) for the identification of rare potentially functional variants (Table 1). In 

particular, we included variants that had a MAF <0.001 in the study’s cohort or the Non-

Finish European (nonPsych) cohort of ExAC which were nonsynonymous with a PHRED-

scaled CADD score >20, and frameshift mutations for which no CADD scores were 

available. Overall, in NPC1 three frameshift deletions (6.5%), two frameshift insertions 

(4.3%), thirty-five non-synonymous (76.1%), and two stopgain (4.3%) variants were 

detected. The thirty-five non-synonymous and two stopgain variants had a CADD score 

>20 (Table 2). For two of the frameshift insertions, no CADD score was available. 

However, nineteen non-synonymous variants in NPC1 had a CADD score <20 and were 

not included in downstream analyses. In NPC2, we distinguished between one frameshift 

deletion (2.2%), two non-synonymous (4.3%), and one stopgain (2.2%) mutation. The two 

non-synonymous and one stopgain mutation had a CADD score >20 (Table 2) and for the 

frameshift deletion, no CADD score was accessible. For the statistical analyses, overall 

42 and 4 rare variants with a high impact on the protein-level and potentially functionally 

relevant in NPC1 and NPC2 were chosen (Tables 2 and 3). In total, 46 (28%) from 164 

variants were kept for all downstream analyses. 
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Filtering Steps Variants Variants Removal Samples Sample Removal 

Initial Raw Data 164 (150/14) 0 3,868 0 

Samples - Array QC 164 (150/14) 0 3,683 185 

Samples - MIPs QC  164 (150/14) 0 3,646 37 

Samples - Het-/Hom (3 SD) 164 (150/14) 0 3,646 0 

Samples - Ti-/Tv (3 SD) 164 (150/14) 0 3,646 0 

Samples - Missingness 15% 164 (150/14) 0 3,646 0 

Variants - GATK Hardfilter 142 (128/14) 22 3,646 0 

Variants - Non-Polymorphic 132 (120/12) 10 3,646 0 

Variants - Missingness 15% 129 (117/12) 3 3,646 0 

Variants - MAF >0.001      100 (92/8) 29 3,646 0 

Variants - Intronic, UTR, 
Synonymous 

     65 (61/4)  35 3,646 0 

Variants - Benign      46 (42/4) 19 3,646 0 

Sum      46 (28%) 118 (72%) 3,646 (94%) 222 (6%) 

All SNPs & Indels 
 PASS QC (n=129) 

 

Rare Variants  
MAF<0.001 (n=100) 

 

Common SNPs (n=29) 

Nonsyn., FrameShift, 
Start/Stop (n=65) 

 

Intronic, UTR, Synonymous (n=35) 

 

Predicted Pathogenic - 
CADD >20 & FrameShift 

Variants (n=46) 

Predicted benign (n=19) 

 

Raw SNVs and Indels 
(n=164) 

 

Basic QC Steps  (n=64) 

Figure 9 | Workflow overview for rare variant prioritization in NPC1 and NPC2. 
The flowchart highlights the prioritization of rare variants for the SKAT-O and 
Burden Test. The numbers in the brackets represent SNPs and Indels in 
NPC1 and NPC2 together.  

 

Table 1 | Overview of variant prioritization in NPC1 and NPC2. Basic quality control 
steps on the sample- and variant-level are shown. The total amount of discarded 
samples and variants are summarized. The numbers in the brackets represent 
variants in NPC1 and NPC2 separately. 
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Legend Table 2: Impact: Severity of variant consequence as assessed by VEP (Variant Effect Predictor); Clinical Significance: ACMG terms provided by ClinVar; 
Internal MAF: Minor allele frequency in the study’s cohort; External MAF: ExAC nonpsych non-finish European (NFE) MAF; CADD: Phred-based CADD score; 
MAC: Minor allele count in SCZ patients versus controls.  

 

Gene Position Change Exon Exonic Function Impact Clinical Significance Internal MAF External MAF CADD MACPat./Cont. 

NPC1 18:21113384 c.T3689C exon24 nonsynonymous SNV MODERATE 0 0.000274273 0.000094990 26.3 1/1 

NPC1 18:21113400 c.3666_3672del exon24 frameshift deletion HIGH Likely_pathogenic 0.000137137 0 0 1/0 

NPC1 18:21113459 c.C3614A exon24 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000023770 28.8 0/1 

NPC1 18:21114441 c.C3560T exon23 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000100000 23.7 1/0 

NPC1 18:21114444 c.G3557A exon23 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000047800 25.8 0/1 

NPC1 18:21114451 c.G3550A exon23 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000071690 23.8 1/0 

NPC1 18:21114508 c.G3493A exon23 nonsynonymous SNV MODERATE Conflicting_interpretations 0.000137137 0.000025010 31 1/0 

NPC1 18:21115468 c.A3442G exon22 nonsynonymous SNV MODERATE 0 0.000137137 0 24.1 1/0 

NPC1 18:21115582 c.T3328C exon22 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000023750 25.7 1/0 

NPC1 18:21115621 c.G3289A exon22 nonsynonymous SNV MODERATE Likely_pathogenic 0.000137137 0 29.8 1/0 

NPC1 18:21116679 c.C3203T exon21 nonsynonymous SNV MODERATE Uncertain_significance 0.000274273 0.000095410 23.7 0/2 

NPC1 18:21116700 c.T3182C exon21 nonsynonymous SNV MODERATE Pathogenic 0.000137137 0.000500000 23.9 0/1 

NPC1 18:21116722 c.G3160A exon21 nonsynonymous SNV MODERATE Pathogenic 0.000137137 0 26.8 1/0 

NPC1 18:21118573 c.2972_2973del exon20 frameshift deletion HIGH Conflicting_interpretations 0.000274273 0 0 1/1 

NPC1 18:21119357 c.G2873A exon19 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000048640 24.8 0/1 

NPC1 18:21119358 c.C2872T exon19 stopgain HIGH Pathogenic 0.000137137 0 33 1/0 

NPC1 18:21119369 c.C2861T exon19 nonsynonymous SNV MODERATE Pathogenic 0.000137137 0.000073210 24 0/1 

NPC1 18:21119411 c.C2819T exon19 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000025420 31 0/1 

NPC1 18:21119429 c.G2801A exon19 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0 23.5 1/0 

NPC1 18:21119430 c.C2800T exon19 stopgain HIGH Pathogenic 0.000137137 0.000026480 39 0/1 

NPC1 18:21119793 c.C2777T exon18 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000023790 28.4 1/0 

NPC1 18:21119842 c.G2728A exon18 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000023750 25.6 1/0 

NPC1 18:21119949 c.A2621T exon18 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000047670 25.2 1/0 

NPC1 18:21121091 c.C2455T exon16 nonsynonymous SNV MODERATE 0 0.000137137 0.000023730 22.9 1/0 

NPC1 18:21121147 c.G2399A exon16 nonsynonymous SNV MODERATE 0 0.000137137 0 24.5 0/1 

NPC1 18:21123467 c.2196dupT exon14 frameshift insertion HIGH Pathogenic 0.000137137 0.000023810 0 1/0 

 

Table 2 | List of rare variants in NPC1 and NPC2. All variants prioritized for the rare variant association test are listed in this table.  
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Gene Position Change Exon Exonic Function Impact Clinical Significance Internal MAF External MAF CADD MACPat./Cont. 

NPC1 18:21124366 c.C2072T exon13 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0 29.1 1/0 

NPC1 18:21124441 c.G1997A exon13 nonsynonymous SNV MODERATE 0 0.000137137 0 23 1/0 

NPC1 18:21124448 c.G1990A exon13 nonsynonymous SNV MODERATE Pathogenic/Likely_pathogenic 0.000137137 0.000023780 25.6 0/1 

NPC1 18:21124988 c.A1883C exon12 nonsynonymous SNV MODERATE Likely_pathogenic 0.000137137 0 24.9 0/1 

NPC1 18:21125112 c.T1759C exon12 nonsynonymous SNV MODERATE 0 0.000137137 0 24.4 1/0 

NPC1 18:21134845 c.C1430T exon9 nonsynonymous SNV MODERATE Conflicting_interpretations 0.000137137 0.000071200 21.7 1/0 

NPC1 18:21134854 c.C1421T exon9 nonsynonymous SNV MODERATE Pathogenic 0.000137137 0.000023730 23.7 0/1 

NPC1 18:21134927 c.A1348G exon9 nonsynonymous SNV MODERATE Conflicting_interpretations 0.000274273 0.000095620 20.6 1/1 

NPC1 18:21137120 c.G916A exon7 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0 23.6 0/1 

NPC1 18:21137150 c.C886T exon7 nonsynonymous SNV MODERATE 0 0.000137137 0.000048520 31 0/1 

NPC1 18:21140387 c.C689A exon6 nonsynonymous SNV MODERATE 0 0.000274273 0 24.2 0/2 

NPC1 18:21141335 c.616_619del exon5 frameshift deletion HIGH 0 0.000137137 0 0 1/0 

NPC1 18:21141414 c.G541A exon5 nonsynonymous SNV MODERATE Uncertain_significance 0.00041141 0.000071190 23.5 2/1 

NPC1 18:21141488 c.T467C exon5 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000100000 21.5 1/0 

NPC1 18:21148814 c.435dupA exon4 frameshift insertion HIGH 0 0.000137137 0 0 0/1 

NPC1 18:21153427 c.G169A exon2 nonsynonymous SNV MODERATE 0 0.000137137 0.000047460 23.3 1/0 

NPC2 14:74947469 c.376delG exon4 frameshift deletion HIGH 0 0.000137137 0 0 1/0 

NPC2 14:74951129 c.G352T exon3 stopgain HIGH Pathogenic 0.000137137 0.000047460 41 1/0 

NPC2 14:74951148 c.T333G exon3 nonsynonymous SNV MODERATE Uncertain_significance 0.000137137 0.000023730 24.1 0/1 

NPC2 14:74953113 c.G109A exon2 nonsynonymous SNV MODERATE 0 0.000137137 0 23.6 1/0 

 

Table 2 cont. | List of rare variants in NPC1 and NPC2. All variants prioritized for the rare variant association test are listed in this table.  

 

Legend Table 2: Impact: Severity of variant consequence as assessed by VEP (Variant Effect Predictor); Clinical Significance: ACMG terms provided by ClinVar; 
Internal MAF: Minor allele frequency in the study’s cohort; External MAF: ExAC nonpsych non-finish European (NFE) MAF; CADD: Phred-based CADD score; 
MAC: Minor allele count in SCZ patients versus controls.  
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2.3.4   Rare Variant Association Test 

To examine whether rare functionally relevant variants in NPC1 and NPC2 may cause 

schizophrenia, we carried out a SKAT-O and a classical burden (Fisher’s exact) test. In 

total, 42 and 4 potentially functional variants in NPC1 and NPC2 from 1,815 schizophrenia 

patients and 1,831 controls were included in these analyses. In NPC1, 49 heterozygote 

carriers were identified in schizophrenia patients (51%) and controls (49%). In NPC2, 

overall 4 heterozygote carriers were detected in patients (75%) and controls (25%). 

Except for 3 variants (c.C3203T; c.C689A; c.G541A), all were singletons and observed 

only once in patients or controls (Tables 2 and 3). None of the samples in the cohort 

neither in patients nor in controls were enriched for homozygous variants. According to 

the SKAT-O and one-sided Fisher’s exact test, both genes NPC1, as well as NPC2, were 

not significantly associated with schizophrenia. For NPC1 the SKAT-O and Fisher’s exact 

test revealed a p-value of 0.9289 and 0.4885. For NPC2, both tests revealed a p-value of 

0.2487 and 0.3095 (Table 4). A lookup in the currently largest exome sequencing meta-

analysis of SCZ (SCHEMA) revealed non-significant findings for NPC1 (p=0.153) and 

NPC2 (p=0.206) as well. 

 
 
 
 
 
 
 
 
 
2.3.5   Single Marker Association Test 

Finally, to access the effect of rare functionally relevant variants in NPC1 and NPC2 

associated with schizophrenia, a single marker association test was applied using 

Pearson’s chi-square test (Table 5). An adaptive permutation-based testing approach was 

applied to derive empirical p-values. The single marker association analysis was applied 

to the same set of variants and samples as in the rare variant association test. None of 

the 46 single ultra-rare variants were significantly associated with schizophrenia (Table 5).  

Gene Marker All Marker Test MACPat./Cont. M Pat./Cont. PSKATO PBurden 

NPC1 42 42 49 (25/24) 49 (25/24) 0.9289 0.4885 

NPC2 4 4 4 (3/1) 4 (3/1) 0.2487 0.3095 

Table 3 | SKAT-O and Fisher exact test for rare variant association test in NPC1 and NPC2. 

Legend Table 4: Marker All: Number of the SNPs in the gene; Marker Test: Number of SNPs used for 
the test; MAC: Minor allele count; M: Number of individuals with minor allele; 
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Gene Variant F_A F_U CHISQ P Pemp. 

NPC1 18:21113384:G:A 0.0002755 0.0002731 0.00003853 0.9950 0.6429 

NPC1 18:21113400:A:AGAATATC 0.0002755 0 1.009 0.3152 0.2895 

NPC1 18:21113459:T:G 0 0.0002731 0.9914 0.3194 0.8125 

NPC1 18:21114441:A:G 0.0002755 0 1.009 0.3152 0.2365 

NPC1 18:21114444:T:C 0 0.0002731 0.9914 0.3194 0.8125 

NPC1 18:21114451:T:C 0.0002755 0 1.009 0.3152 0.2615 

NPC1 18:21114508:T:C 0.0002755 0 1.009 0.3152 0.2742 

NPC1 18:21115468:C:T 0.0002755 0 1.009 0.3152 0.3265 

NPC1 18:21115582:G:A 0.0002755 0 1.009 0.3152 0.2742 

NPC1 18:21115621:T:C 0.0002755 0 1.009 0.3152 0.2576 

NPC1 18:21116679:A:G 0 0.0005461 1.983 0.1591 0.2742 

NPC1 18:21116700:G:A 0 0.0002731 0.9914 0.3194 0.7083 

NPC1 18:21116722:T:C 0.0002755 0 1.009 0.3152 0.2797 

NPC1 18:21118573:C:CCT 0.0002755 0.0002731 0.00003853 0.9950 0.8571 

NPC1 18:21119357:T:C 0 0.0002731 0.9914 0.3194 0.7778 

NPC1 18:21119358:A:G 0.0002755 0 1.009 0.3152 0.2615 

NPC1 18:21119369:A:G 0 0.0002731 0.9914 0.3194 0.8571 

NPC1 18:21119411:A:G 0 0.0002731 0.9914 0.3194 0.7273 

NPC1 18:21119429:T:C 0.0002755 0 1.009 0.3152 0.2946 

NPC1 18:21119430:A:G 0 0.0002731 0.9914 0.3194 0.7273 

NPC1 18:21119793:A:G 0.0002755 0 1.009 0.3152 0.2797 

NPC1 18:21119842:T:C 0.0002755 0 1.009 0.3152 0.2308 

NPC1 18:21119949:A:T 0 0.0002731 0.9914 0.3194 0.8571 

NPC1 18:21121091:A:G 0 0.0002731 0.9914 0.3194 0.7083 

NPC1 18:21121147:T:C 0.0002755 0 1.009 0.3152 0.3444 

NPC1 18:21123467:GA:G 0 0.0002731 0.9914 0.3194 0.8125 

NPC1 18:21124366:A:G 0.0002755 0 1.009 0.3152 0.2056 

NPC1 18:21124441:T:C 0.0002755 0 1.009 0.3152 0.3077 

NPC1 18:21124448:T:C 0 0.0002731 0.9914 0.3194 0.8571 

NPC1 18:21124988:G:T 0 0.0002731 0.9914 0.3194 0.8571 

NPC1 18:21125112:G:A 0.0002755 0 1.009 0.3152 0.2576 

NPC1 18:21134845:A:G 0.0002755 0 1.009 0.3152 0.2615 

NPC1 18:21134854:A:G 0 0.0002731 0.9914 0.3194 0.7778 

NPC1 18:21134927:C:T 0.0002755 0.0002731 0.00003853 0.9950 0.7273 

NPC1 18:21137120:T:C 0 0.0002731 0.9914 0.3194 0.7273 

NPC1 18:21137150:A:G 0 0.0002731 0.9914 0.3194 0.9999 

NPC1 18:21140387:T:G 0 0.0005461 1.983 0.1591 0.3780 

NPC1 18:21141335:G:GGAGT 0.0002755 0 1.009 0.3152 0.2333 

NPC1 18:21141414:T:C 0.000551 0.0002731 0.3423 0.5585 0.4375 

NPC1 18:21141488:G:A 0.0002755 0 1.009 0.3152 0.2397 

NPC1 18:21148814:AT:A 0 0.0002731 0.9914 0.3194 0.8571 

NPC1 18:21153427:T:C 0.0002755 0 1.009 0.3152 0.2576 

NPC2 14:74947469:A:AC 0.0002755 0 1.009 0.3152 0.2365 

NPC2 14:74951129:A:C 0.0002755 0 1.009 0.3152 0.2333 

NPC2 14:74951148:C:A 0 0.0002731 0.9914 0.3194 0.9286 

NPC2 14:74953113:T:C 0.0002755 0 1.009 0.3152 0.3000 

Legend Table 6: F_A: Frequency in cases; F_U: Frequency in controls; CHISQ: Basic allelic chi-square 
test statistics; P: Asymptotic p-value; Pemp.: Empirical p-value derived by adaptive permutation approach. 

Table 4 | Single marker association test in NPC1 and NPC2. 
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2.4  DISCUSSION 

2.4.1   Key Findings 

To explore the role of NPC1 and NPC2 in schizophrenia, we have carried out rare variant 

association tests of smMIP-based targeted sequencing data. A total of 46 and 4 rare 

functionally relevant variants (MAF <0.01) were identified in NPC1 and NPC2 from 1,815 

schizophrenia patients and 1,831 controls (post-QC). The major goal was to test the 

hypothesis that rare functionally relevant variants in NPC1 and NPC2 are enriched in 

patients with schizophrenia compared to controls. The second aim was to screen a large 

cohort of patients diagnosed with schizophrenia (NP-C). The negative results of the SKAT-

O analyses indicated that rare heterozygous variants in NPC1 or NPC2 do not play an 

important role in the current schizophrenia cohort of this study. Further, we did not find 

any rare homozygous or compound heterozygote variant which might have confirmed an 

autosomal recessive form of NP-C in the current schizophrenia cohort. Thus, we conclude 

that in the current cohort a misdiagnosis of NP-C patients with psychiatric symptoms such 

as schizophrenia can be ruled out. However, we identified 42 and 4 rare heterozygous 

variants (internal MAF or ExAC non-psych NFE <0.001) in NPC1 and NPC2 with moderate 

to high impact on the protein level (Tables 2 and 3). All of these variants had a CADD 

score >20 except the frameshift mutations for which no CADD scores were available. 

Interestingly, three stop gain mutations in NPC1 (rs759826138, R958X; rs370721218, 

R934X) and NPC2 (rs80358266, E118X) had the highest CADD scores (33, 39, and 41) 

and were predicted to be pathogenic in Clinvar. All three variants were singletons in the 

current cohort, and rs759826138 had no allele frequency available in the ExAC (non-

psych NFE) database. Interestingly, in an international genetic screening study called 

ZOOM, an enrichment of heterozygous variants as a dominant condition with reduced 

penetrance was discussed in the development of late-onset NP-C manifestations (Bauer 

et al., 2013). However, they point out that there is not much evidence in the literature and 

clinic that heterozygous NPC1 and NPC2 variants lead to NP-C-based psychiatric 

symptoms (Bauer et al., 2013). Nonetheless, heterozygous mutations in NPC1 and NPC2 

are rigorously discussed as potential risk factors for neurodegenerative diseases such as 

Alzheimer's disease (AD) (Kresojević et al., 2014). Notably, in GWAS as well as targeted 

sequencing studies, heterozygous carriers of NPC1 loss-of-function mutations were 
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associated with an increased risk of obesity due to an incomplete transport of cholesterol 

(Meyre et al., 2009; Liu et al., 2017). However, due to missing BMI-based data, a follow-

up on the obesity trait of heterozygous NPC1 carriers could not be performed. A revisiting 

of pathogenic heterozygous variant carriers in NPC1 or NPC2 might be warranted to rule 

out any of the aforementioned phenotypic features or incidental findings. Notably, the main 

results were in concordance with the findings of the SCHEMA browser [Schizophrenia 

exome meta-analysis consortium, Singh et al., 2020] where exomes from 24,248 cases 

and 97,322 controls, and de novo mutations from 3,402 parent-proband were meta-

analyzed. A lookup in the SCHEMA browser displayed gene-based p-values of 0.153 and 

0.206 for NPC1 and NPC2. Likewise, the single marker association test revealed no 

significant association of rare variants in NPC1 or NPC2 with schizophrenia. Together 

these results indicate that the effects of rare variants in NPC1 and NPC2 have no major 

contribution to the development of SCZ. Thus, rare functionally relevant variants in NPC1 

and NPC2 in the current cohort and the newly established SCHEMA consortium might not 

play an important role for SCZ. However, further detailed investigation of clinically 

pathogenic variants in NPC1 and NPC2 is warranted to confirm or rule out the role of 

NPC1 and NPC2 in SCZ. 

2.4.2   Strengths and Limitations 

This study had several strengths, first, a smMIPs-based targeted next-generation 

sequencing approach was successfully implemented for reliably identifying rare variants 

in the target genes of NPC1 and NPC2. This technology enabled the processing of large 

quantities of samples with high coverage up to 200x for both target genes in a highly 

automatable and reproducible way compared to commercial kits. This setup can now be 

used for NGS-based diagnostics of recessive NP-C cases to rule out any misdiagnosis of 

NP-C patients who might mimic psychiatric symptoms. Therefore, this technology might 

change the diagnostics and therapy of NP-C patients as NP-C specific therapies such as 

Miglustat are available. Importantly, targeted sequencing provides a cost-effective 

solution for screening candidate genes for rare variants in a large cohort. Second, different 

approaches to test the effect of rare variants in NPC1 and NPC2 associated with 

schizophrenia were deployed in this study. Mainly, gene-based tests such as the SKAT-

O and conservative burden test were conducted. But also single marker association tests 
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were carried out to access the significance on a single variant level. Although several 

other methods have been proposed to study the effects of rare variants, the SKAT-O test 

was chosen as it maximizes the power by adaptively selecting the best linear combination 

of the burden and non-burden SKAT. Further, the SKAT-O analysis is highly automatable 

and computationally efficient so that a large cohort of patients and controls can be 

analyzed very quickly. Third, we integrated SNP array-based genome-wide genotype data 

for sophisticated sample-based quality control steps. Common variants from genome-

wide genotyping arrays enabled an improved analysis for estimating population 

stratification as it was shown that including only rare variants was not effective in 

controlling population stratification [Ma et al., 2020]. These steps are important in general 

to avoid any confounding and false-positive associations. This study had several 

limitations. First, although the mean coverage was higher than >200x for both genes, it 

was observed that in NPC1 3% and NPC2 17.98% from the targeted bases were not 

covered at >10x. Thus, some exons such as exon 8 in NPC1 or exon 4 in NPC2 failed to 

be covered fully. Due to the size of the genes, NPC1 (25 exons) and NPC2 (5 exons) the 

loss of coverage looks more dramatic in NPC2 than in NPC1. However, the chance to 

detect any pathogenic variant in these target regions is therefore prevented. A ClinVar 

lookup revealed that overall 9 (4/5) pathogenic variants in exon 8 of NPC1 and exon 4 of 

NPC2 would have been missed to be detected due to the loss of coverage. Some of the 

important limitations of the smMIPs technology are the non-uniformity of the capture 

efficiency across long exons and GC-rich target regions. Whether these factors influenced 

the efficacy of the sequencing of the failed target regions needs to be further investigated 

and optimized on the smMIPs assay level. Second, the limited sample size to detect any 

associations implicated less power on the rare variant level. However, the findings from 

the SCHEMA consortium revealed similar not significant findings for NPC1 and NPC2. 

This might suggest that rare variants in NPC1 and NPC2 might not play an important role 

or that small effects contribute to the development of SCZ. Third, we applied a basic 

statistical model for rare variant association testing without any correction for covariates 

such as age, sex, BMI, or ancestry. This leads to the fact that the effects of covariates on 

the rare variant level could not be estimated. 
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2.4.3   Conclusions 

In the present work, the targeted sequencing of NPC1 and NPC2 of a relatively large 

cohort of 1,815 schizophrenia cases and 1,831 controls was conducted. For that, an NGS-

based targeted sequencing of all exons and exon/intron boundaries of the NPC1 and 

NPC2 genes was established. To test the hypothesis of whether pathogenic NPC1 and 

NPC2 variants are enriched in SCZ patients compared to controls, a rare variant 

association test using SKAT-O was applied. According to the SKAT-O test, both genes 

NPC1, as well as NPC2, were not significantly associated with schizophrenia. However, 

the correct diagnosis of NP-C patients who might mimic psychiatric symptoms is crucial 

for the correct clinical diagnosis. Therefore, the smMIP technology has the potential to 

improve the diagnostics and therapy of the affected individuals. It can be run in parallel to 

conventional sequencing methods until NGS-based methods such as whole-exome 

(WES) or whole-genome sequencing (WGS) become more feasible than in the past. To 

conclude, this is a first step toward the setup of a routine clinical diagnostics pipeline for 

the identification of rare pathogenic variants in NPC1 and NPC2 which might lead to 

personalized individual care and treatment of NP-C or SCZ patients. 
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