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Abstract

Neurodegenerative diseases (NDDs) have a complex structure and most of them
are untreatable that’s why more research studies undertake translational paths
for getting better insights into prevention, early detection, and better treatment
options. A longitudinal understanding of disease development and progression
across all biological scales is required for translational research of these diseases.
However, due to the complexity underlying these diseases and their heterogeneous
nature, there is a need for a comprehensive picture of a specific disease. For this
purpose, multiple studies need to be compared and analyzed and several obser-
vational cohort studies and clinical trials are available for this purpose. Many of
these clinical studies aim at early prognosis, drug development, and treatment of
the disease. However, legal and ethical constraints typically do not allow for shar-
ing of sensitive patient data. In consequence, there exist data silos, which slow
down the overall scientific progress in translational research.

In our work, we suggest artificial intelligence (AI) based methods that are gener-
ative in nature and help to model and simulate the clinical studies for Alzheimer’s
disease (AD) and Parkinson’s disease (PD). The key idea here is to describe a
longitudinal patient cohort with the help of a Bayesian network (BN), in conjunc-
tion with deep learning methods. Our approach allows for incorporating arbitrary
multi-scale, multi-modal data. As our method is generative in nature, we try to
solve the problem of data sharing and data silos by generating synthetic data.
We show that with the help of such a model, we can simulate subjects that are
largely indistinguishable from real ones. Moreover, we demonstrate the possibility
to simulate counterfactual interventions in a synthetic cohort. We also unravel the
complexities underlying NDDs by disentangling and quantifying the connections
between different clinical parameters.
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When you learn a little, you feel you know a lot.
But when you learn a lot, you realize you know
very little.

Jay Shetty

1
INTRODUCTION

1.1 Key problems in translational neurological research

According to the World Health Organization, brain disorders are considered to
be “one of the greatest threats to public health” with one in every four persons
getting affected by neurological or mental health conditions at some point in their
lives [1]. According to a study that was conducted by Global Burden of Disease,
neurological diseases are the major cause of growing disability around the world
[2]. A larger section of neurological diseases constitutes neurodegenerative disease
(NDD)s which are characterized by progressive loss, degeneration, and death of
nerve cells [3]. NDDs are age-related diseases, however, their onset might begin at
an early age and they affect the life expectancy and quality of life of a person [4].
In the past years, there was a significant increase in the incidence of the diseases
and as the population of the world ages, this increase is expected to continue [5].
NDDs affect up to 50 million people worldwide and roughly 10 million new cases
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are reported every year (https://www.who.int/news-room/fact-sheets/detail/
dementia). NDDs pose a huge challenge to society and can become a burden as
their cause is still unknown and no cure has been discovered [6]. AD and PD are
the two most common types of NDDs.

1.1.1 Alzheimer’s disease

AD, the most common cause of dementia [7], is a chronic NDD that causes prob-
lems with memory, thinking, and behavior. It is characterized by insidious onset
and progressive impairment of behavioral and cognitive functions that includes
memory, comprehension, language, attention, reasoning, and judgment [8]. It is
hypothesized that neuritic plaques and neurofibrillary tangles (NFT) could char-
acterize the pathophysiological mechanisms [9]. The NFT, also known as the
amyloid plaques are the hallmark of AD. These are the extracellular deposits of
amyloid beta (Abeta) protein present abundantly in the cortex of AD patients [10].
According to a report published by Alzheimer’s Association [11], it is estimated
that there were 6.2 million Americans aged 65 and older, affected by AD in 2021
and this number is projected to increase to 13.8 million by the year 2060. Some
of the causes of the rise in the number of AD patients are an increasingly aging
population, family history, stroke, and other underlying diseases occurring due to
lifestyle choices such as cardiovascular diseases, diabetes, and high blood pressure.

1.1.2 Parkinson’s disease

PD, the second most common cause of dementia is characterized by tremors and
bradykinesia and is a progressive NDD [12]. It affects predominantly neurons that
produce dopamine in a specific area of the brain called subastantia nigra (SN). It
has been estimated that 6.2 million individuals in 2015 had the disease globally,
compared to 2.5 million in 1990, and this number is expected to rise by more than
double in the year 2040 [13]. PD is also known to affect 1-2% of individuals above
65 and its prevalence is increasing at a fast pace with the increase in the aging
population [14]. Some of the causes of the exponential growth of PD cases are the
increasing longevity, aging population above age 65, declining smoking population,
and by-products of industrialization [15].
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While there is a significant rise in the growth of NDDs, there is a dearth of
treatments for these diseases. Moreover, due to several failed clinical trials around
their established hypotheses, these diseases are regarded as complex multi-factorial
diseases [16, 17]. These diseases are also accompanied by dysregulation at different
biological scales ranging from mutations at the genetic level to structural and
functional alteration of the brain at the clinical level [18]. Therefore, to understand
the complexity of these diseases, a large amount of data is generated every day in
hospitals, from medical devices, laboratories, clinical trials, and research studies
such as observational cohorts, mobile devices, etc. This leads to the production
of data with different modalities and varied scales, including imaging and non-
imaging. In our work, we will focus on the data generated from observational
longitudinal clinical studies.

As these diseases are untreatable and their cause is not clear, more research
studies are dedicated towards a translational path for getting better insights into
prevention, early detection, and better treatment options for these NDDs [6]. This
translation path incorporates the field of translational neuroscience that translates
basic clinical research into clinical applications and novel therapies for nervous sys-
tem disorders [19]. This field aims to tackle these diseases by applying the “bench
to bedside” concept and thereafter transforming the knowledge gained by basic
research in science into interventions and applications for the treatment [20]. The
hope is that this approach might change neuroscientific research and bridge the
gap between clinical practice and neuroscience methods. It also helps to bring
together neuroscience, neuroimaging, and clinicians for improving our understand-
ing of symptoms and disorders and for better diagnostics and treatments [21].
Bridging the gap between several domains will also help us to refine and advance
the application of discovery [22]. Nonetheless, there are also several challenges
underlying bridging this gap in the field of translational neuroscience.

The translation of basic scientific findings into clinical practice is not a straight-
forward approach [23]. Some of the challenges include a lack of culture of trans-
lation in different institutions [24, 25], lack of adequate infrastructure [26, 25],
inadequate training workforce [24, 25, 27] and facilities to conduct best practice
clinical research [26, 25].
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The other challenge is from the data-oriented perspective. As described above,
there is a large amount of data generated from the observational longitudinal
clinical cohorts for several features of these diseases. Hence, it is a challenging
task to effectively translate all the features having different scales and modalities
into one disease model or a clinical application. There is a lack of translation of
adequate interoperable data from various stakeholders to a central orchestrator.
A key requirement of translation is collaboration and this is often discouraged by
the fact that the university system rewards individual research rather than joint
clinical practices. This creates a culture divide between scientists and clinicians
and compartmentalization of departments within universities and hospitals [24, 25,
27, 28]. Due to a lack of collaboration and more focus on individualized research,
people often hesitate to share the data which leads to the formation of different
data “silos”. Furthermore, legal constraints such as the general data protection
regulation (GDPR) [29] and ethical constraints especially in the United States and
Europe in essence prohibit sharing of sensitive patient data across organizations.
These aforementioned challenges also increase the time accounted for a particular
research question and create a number of roadblocks.

In order to overcome these challenges, several initiatives have been established
at the policy level, some of which include the creation of biomedical research centers
that bring together the people working in a hospital setting and a university setting.
However, the major roadblock of data sharing can be overcome by the simulation
of a synthetic data cohort that is similar to the real cohort but not identical.

Considering all these challenges arising from the data perspective, it becomes
essential to overcome these which brings us to the field of AI and Data Science.
AI is a branch of computer science that deals with the simulation of human intelli-
gence by a machine such as a computer [30]. Data Science uses scientific methods,
algorithms based on AI, and tools to extract knowledge, interpret and understand
the noisy structured and unstructured data [31, 32].

To give more context, we will discuss the need for AI in the field of healthcare
specifically NDDs in the following section.
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1.2 Need of Artificial intelligence (AI)

AI has grown dramatically in the 21st century [33]. It aims to enhance and expand
the scope and efficiency of mankind in tasks focusing on remaking nature and
governing society through intelligent machines, with the eventual goal of realizing
a society where machines and people can coexist harmoniously [34]. AI was first
described in medicine in the year 1976 when a computer algorithm was used to
identify the causes of acute abdominal pain [35] and since then it has been rapidly
growing and hugely impacting the field of healthcare. There can be several reasons
for this growth, for e.g., it helps to relieve the manual workload of healthcare
professionals [36].

In the medical field, the initial aim of data being stored digitally in the form of
electronic health record (EHR) was meant to simplify and facilitate patient care,
but doctors find it very difficult to navigate the technological systems. This has
further been burdened by the bureaucracy and has resulted in burnout-related
symptoms in many doctors [30]. AI could also synthesize the patient records and
summarize the health concerns for the clinicians [37]; rather than manually an-
alyzing the patient data; it could examine the available information much faster
and highlight the core points [38]. It can also be used to automatically scan the
diagnostic images and their interpretation and can work as an initial screening tool
for the interpretation of scans and prioritizing those that are of concern. This also
in turn reduces or relieves the workload of the physician. From an economic point
of view, this could save time and resources [39, 40]. AI in the form of applications
can also help to replace some tasks that are carried out by healthcare profession-
als that are repetitive and require little cognition [41, 42]. Primarily, AI has an
enormous potential to augment clinical practice and patient care. It can assist in
providing significant help in the field of NDDs by targeting diagnosis and monitor-
ing e.g. detection of disease onset, classification of disease stages, improvement of
the differential diagnosis, quantification of the disease progression, tracking of the
effects of medication and treatment, etc. Considering all these target goals related
to diagnosing and monitoring the disease, it has led to the collection of multi-scale
and multi-level data for the diseases [43]. Due to the multi-scale and multi-level
data and the presence of “data silos” in the community, the need for data shar-
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ing has increased in recent times. Therefore, data-sharing initiatives have also
recently grown to contribute to the advancement of translational research. This
vast amount of data has led to the accumulation of an enormous amount of infor-
mation for diseases, which is beyond the human mind to comprehend. Therefore,
AI plays a vital role in providing various methods to analyze large and complex
data in order to understand and improve knowledge about diseases. To address
the concept of data sharing, there are models based on AI that are generative in
nature and help to simulate synthetic subjects. In the following section, we will
discuss the existing AI approaches used to simulate synthetic data.

1.3 Existing AI approaches in the field of synthetic data genera-
tion

As described above, the need for synthetic data generation often arises from chal-
lenging legal situations and the extensive timelines needed to share real data. The
thought is to provide researchers/data scientists a mechanism by which they could
get insights into patterns of the real data while at the same time not having access
to it. The most important and challenging part is to propagate AI methods for
the generation of synthetic data. Synthetic data generation technology enables
the research community to digitally generate the data they need in a given volume
which is tailored to their specific needs. The data that is high in quality and re-
alistic can be leveraged towards the advancement of methodological developments
in the field of medicine. The data owners generally anonymize or de-identify the
data to make sensitive patient data available to others. This could be done in
several ways, including removing easily identifiable features (e.g. names and ad-
dresses), perturbing them (e.g. adding noise to birth dates), or grouping variables
into broader categories to ensure more than one individual in each category [44].
While it might not be easy to re-identify the individuals based on the residual in-
formation contained in properly anonymized data. However, once this information
is linked to the existing data sets e.g. social media platforms, they may contain
enough information to identify specific individuals. There have been some efforts
to determine the efficacy of de-identification methods but this remains inconclusive,
specifically in the context of large datasets [45]. Therefore, it remains an extremely
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difficult task to guarantee that the re-identification of individual patients is not a
possibility with the aforementioned approaches.

Synthetic data generation has been explored for roughly three decades [46]
and it has been applied across several domains [47, 48] including patient data
[49, 50, 51]. There has been a lot of focus on synthetic data because of its several
advantages. They could either replace the entire real data, augment it, or be used
as a proxy resource to accelerate research. It has the potential to impact patient
care drastically enabling research on model development to move at a quicker
pace. There have been a number of models for generation of synthetic data [47]
but each model uses a different dataset and different evaluation metrics. Therefore,
it becomes difficult to directly compare synthetic data generation methods.

Synthetic data generation can be divided into two categories: process-driven
methods and data-driven methods. Synthetic data in process-driven methods is
derived from computational or mathematical models of an underlying physical
process. For e.g. numerical simulations, monte carlo simulations, discrete event
simulations, etc. On the other hand, data-driven methods derive synthetic data
from generative models that have been trained on observed data. Here we will
mainly focus on data-driven methods because the true mechanism behind these
diseases has not been understood so far. That means due to a lack of knowledge, it
is impossible to write down a differential equation system, which would explain a
disease and the observed symptoms. Some of the types of data-driven methods are
imputation-based methods, full joint probability distribution methods, and func-
tion approximation methods. Rubin [52] and Little [53] first introduced imputation
based methods for synthetic data generation in the context of statistical disclosure
control (SDC) or statistical disclosure limitation (SDL) [47]. These methods are
majorly concerned with reducing the risk of leakage of sensitive data when per-
forming statistical analysis. Mathews and Harrel [54] released a general survey
paper on data privacy methods related to SDL. The standard techniques are
based on multiple imputation [55], where sensitive data is treated as missing data
and randomly sampled imputed values are released instead of the sensitive data.
Later, Raghunathan, Reiter and Rubin [56] extended these methods to the fully
synthetic case. The limitation of the imputation-based methods is that while they
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are completely probabilistic, there is no guarantee that the resultant generative
model is an estimate of a full joint probability distribution of the target/sampled
population.

Patient data have several categorical features that must be handled carefully
while generating synthetic data. This brings a huge challenge, specifically in high
dimensions. Therefore, it becomes necessary to impose a certain kind of depen-
dence structure on the data [57]. An example of this is the BN proposed by Zhang
et al. [58], which approximates a joint distribution using a first-order dependence
tree as a method for generating synthetic data with privacy constraints. Some
of the more flexible methods that do not impose such dependence structures on
the distributions are Bayesian non-parametric methods for multidimensional cat-
egorical data. Examples are latent Gaussian process methods [59] and Dirichlet
mixture models [60, 61]. Several state-of-the-art machine learning methods are
based on function approximation methods for e.g. deep neural network (DNN)s.
A large number of parameters and a large amount of training data is required by
these models. Generative adversarial network (GAN)s are a prominent class of
DNNs for unsupervised learning tasks [62]. Specifically, two jointly trained net-
works are produced in these; one generates synthetic data that is intended to be
similar to the training data, and the other aims to discriminate synthetic data
from the actual training data. These methods have shown to be capable of learn-
ing high dimensional, continuous data [62, 63]. GANs for categorical data have
also been proposed by Caminon, Hammerschmidt, and State [64] having specific
applications to synthetic EHR data by Choi et al. [65].

We describe some of the existing synthetic data generation methods in detail
in the following paragraphs. We also discuss the advantages and limitations of
these approaches.

• Sampling from independent marginals: This method is known as the independent
marginals (IM) method as it is based on sampling from empirical marginal
distributions of each variable. This empirical marginal distribution is es-
timated from the observed data. Underlying are the key advantages and
disadvantages of this approach:

24



– It is a computationally efficient approach and a parallel estimation of
marginal distributions for different variables is possible.

– Limitation of this approach is that it does not capture statistical depen-
dencies across variables and therefore the synthetic data generated by
this method may fail to capture the underlying structure of the data.

• BNs: BNs are probabilistic graphical models where each node represents
a random variable while the edges between the nodes represent the proba-
bilistic dependencies between these random variables. When BN is used for
synthetic data generation, the graph structure and the conditional probabil-
ity distributions are typically inferred from the real data. There are primarily
two steps underlying the learning process [44]; a) learning a directed acyclic
graphs (DAG) from the data, which indicates all the pairwise conditional
(in)dependencies among the random variables [45] and b) estimating the
conditional probability tables (CPT) for each variable via maximum likeli-
hood. The graph structure obtained from the real data shows the conditional
dependencies among the variables. Sampling from the inferred BN can be a
method to generate synthetic data. The key advantages and limitations of
this approach are described as follows:

– One of the advantages is that BN allows for integrating highly het-
erogeneous data within one modeling framework [66] while allowing
to address one of the main challenging aspects of clinical study data,
namely a large number of missing values.

– The second advantage is, BNs belong to the family of generative models
and hence can be used to simulate synthetic patient trajectories after
model fitting [67].

– One of the limitations is that graph structure learning is an NP-hard
problem that might either be too costly to perform or impossible when
the subjects are in small numbers but they have a large number of fea-
tures. Also, they could only model DAG and not arbitrary dependency
structures.
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• Multiple imputation methods: These methods have been quite popular for
synthetic data generation, specifically for the part where the data is con-
sidered to be sensitive [47]. Multivariate imputation by chained equations
(MICE) [68] is one of the existing imputation methods and it has emerged
as a vital method for masking sensitive content in datasets with privacy
constraints. Here, the key idea is to treat sensitive data as missing data.
Thereafter, this “missing” data is imputed with randomly sampled values
generated from models trained on the non-sensitive variables. The multiple
imputation software “mice” in R is used for generating and analyzing syn-
thetic datasets [69]. The advantages and limitations of this approach are as
follows:

– MICE is computationally fast and is able to scale to massive datasets,
both in the number of variables and samples.

– It can easily deal with categorical and continuous values by precisely
choosing either a Softmax or a Gaussian model for the conditional prob-
ability distribution for a given variable.

– MICE is probabilistic, however, its limitation is that it does not guar-
antee the resulting generative model to be a good estimate of the un-
derlying joint distribution of the data.

– The other limitation is that it firmly relies on the flexibility of the model
for the topological ordering of the DAG and also continuous probability
distributions.

• GANs: GANs [62] have shown to be successful for generating complex syn-
thetic data, such as medical images [70, 71, 72, 73, 74, 75] and text [76, 77, 78].
In this approach, two neural networks are jointly trained in a competitive
manner: realistic synthetic data is generated by the first network while real
and synthetic data are discriminated by the second one. One of the methods
called deep de-Aliasing generative adversarial networks for fast compressed
sensing mRI reconstruction (DAGAN) for Fast compressed sensing (CS)
magnetic resonance imaging (MRI) Reconstruction, which is a conditional
GAN. Combining this approach with existing MRI scanning sequences and
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parallel imaging, the simulation-based study could be translated to the real
clinical environment. A well-known limitation of GANs is that it is not
suited for generating categorical synthetic datasets. Another example we
discuss here is medical generative adversarial network (medGAN) used for
medical image-to-image translation [65]. Considering clinical patient data
are largely categorical, works like medGAN have applied autoencoders that
enable the transformation of categorical data to a continuous space. Due
to this additional property to GANs, it can be applied for generating syn-
thetic patient data. As medGAN was only applicable to binary and count
data, an extension of it is called multi-categorical medGAN (MC-medGAN)
[64] that fits multi-categorical data. The advantages and disadvantages of
MC-medGAN are mentioned in the following paragraphs:

– Unlike BN, MC-medGAN is a generative approach that does not require
rigorous probabilistic model assumptions. Hence it is more flexible
compared to BN.

– The models based on GANs can be easily extended to deal with mixed
data types. e.g. continuous and categorical variables.

– One of the limitations is as MC-medGAN is a deep learning model, it
has a large number of parameters. The main issue with a large number
of parameters and thus high model complexity is that the model is
prone to overfitting. Hyperparameter tuning is yet another problem.

– The other limitation is that it is known to be very difficult to train
GANs as the process of solving the min-max optimization problem can
be very unstable. However, certain proposed variations of GANs such
as Wasserstein GAN and its variants have significantly alleviated the
problem underlying the stability of training GANs [79, 80].

– Another limitation of GANs is that they are prone to a so-called mode
collapse, i.e. they tend to fit very well close to the statistical model
of distribution, but deviate significantly from the training data in low-
density regions. Hence, synthetic patient samples tend to look similar
to the “average” patient. Once again, Wasserstein-GANs have been
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proposed to address this issue.

Overall, the major limitation of GANs is that it cannot explicitly model time
dependencies while accounting for missing and heterogeneous data.

• Autoencoders: Autoencoders are a specific type of neural network which
are majorly designed to encode the input into a compressed and relevant
representation, and then decode it back in a way that reconstructed output
is as similar as possible to the input [81]. A special case of autoencoders
that are deep generative models, called varitational autoencoder (VAE)s
[82] [83] additionally employ variational inference to regularize the encoding
distribution and ensure that the generation of new data is less prone to
overfitting. The advantages and disadvantages of VAEs are mentioned as
follows:

– VAEs are generative because drawings from the latent distribution can
be decoded again.

– VAEs have recently been extended to deal with heterogeneous multi-
modal and missing data [84], which is the common situation in clinical
studies, known as HI-VAE.

– The limitation of VAE is that in a situation with comparably small data,
a dense VAE model with several hidden layers could easily overfit.

– Another limitation is, that interpretation of the neural network models
is far more challenging than for BNs.

Additionally, several open-source packages also exist for synthetic data gener-
ation. Some of the examples include:

• R package synthpop: It focuses on synthesis of individual variables by se-
quential regression modeling [85].

• R package simPop [86]: It focuses on the simulation of synthetic populations
based on household survey data and auxiliary information.

• Python package DataSynthesizer [48]: It uses BNs (with differential privacy
respecting model training) or independent sampling from attributes, depend-
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ing on the complexity and availability of data.

• Java-based simulator Synthea [50]: It is a rule-based approach for the syn-
thesis of EHRs. It does not allow for simulating anything else.

Above, we have described various methods for synthetic data generation along
with their advantages and their limitations. It makes it clear that the existing
methods have several limitations that we need to overcome for generating syn-
thetic data. These methods have limitations do deal with the following charac-
teristics of clinical data; limited sample size while having an extensive number of
features, inability to model time series, heterogeneous multi-modal and multi-scale
data having missing values, inability to handle the computational complexity, not
able to preserve the dependency structure of the real data in the synthetic data.
Therefore, our work aims to overcome all these limitations. We have described the
aims and summary of our approach in detail in the following section.

1.4 Aims and summary

The aim of this thesis is to use AI and specifically machine learning methods to
model and simulate clinical studies. Considering the limitations of existing ap-
proaches described above, we develop a method for synthetic data generation that
can handle these limitations. Our method can handle limited sample size, highly
heterogeneous data with many variables having different distributions, multiple
scales, and longitudinal data with many missing values. This thesis specifically
aims to simulate the data from the patients and use this simulated data to fur-
ther solve the issues related to data privacy and data sharing. As BN has several
advantages, therefore our method takes BN as a base and further builds upon it.
The advantages of BN that led us to primarily focus on it are mentioned below:

• BN doesn’t need an enormous sample size.

• There is a straightforward mechanism to deal with missing values.

• They are white box models.

• They allow for simulating counterfactual scenarios.

29



• BN allows to create a synthetic representation of the original cohorts.

We also overcome the limitations underlying BN which are described in the
next chapters.

The thesis is structured as follows:

• Chapter 2 provides the theoretical background of the various statistical and
machine learning methods and approaches that have been used in our work.

• Chapter 3 comprises an evaluation of how far BNs allow to generate synthetic
data from a longitudinal PD study with few variables. In particular, we in-
troduce a concept to model missing values and mixed static and longitudinal
data.

• Chapter 4 comprises the similar generative approach that was discussed in
chapter 3 but with a modification. The main novelty is the extension of
the BN concept such that high dimensional data can be incorporated by
introducing the notion of a modular BN. The concept of sparse autoencoders
was also introduced here as these were used for reducing dimensionality. This
also includes the application of the approach to both AD and PD comprising
well-established longitudinal observational cohort studies.

• Chapter 5 adds one more modification to the generative approach by replac-
ing the sparse autoencoders with variational autoencoders. This approach
is termed VAMBN. This decision was taken to overcome the limitations of
sparse autoencoders. The main novelty of this method is that the approach
avoids any discretization of data. VAMBN allows modeling of mixed static
and longitudinal data of various heterogeneous data types and can deal with
missing values. To make sure that the real data is not identified in the
simulated set of data, differential privacy was also applied to the datasets.

• Chapter 6 talks about the application of VAMBN on AD studies and syn-
thetic data generation in the context of data derived from sensor and device
technologies. It discusses the generation of a global meta-cohort using two
different studies. It also discusses the links between the data measures from
the digital devices and already established questionnaire-based scores in AD.
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• Conclusion brings the thesis to an end by summarizing the essence of the
thesis. It primarily talks about the core message of using AI models for
synthetic data generation and modeling of longitudinal data. It also discusses
the scientific accomplishment of the thesis and its limitations along with
the future outlook for research in patient simulation. longitudinal disease
modeling and analysis of data derived from sensor and device technologies.

The work in this thesis is based on the following publications:

• “Bayesian network modeling of risk and prodromal markers of Parkinson’s
disease, Preprint medRxiv, 2022”. The paper has been submitted to PLOS
ONE and is currently under review.

• “Sood, M., Sahay, A., Karki, R., Emon, M. A., Vrooman, H., Hofmann-
Apitius, M., Fröhlich, H. (2020). Realistic simulation of virtual multi-scale,
multi-modal patient trajectories using Bayesian networks and sparse autoen-
coders. Scientific reports, 10(1), 10971. https://doi.org/10.1038/s41598-
020-67398-4”

• “Gootjes-Dreesbach, L., Sood, M., Sahay, A., Hofmann-Apitius, M., Fröh-
lich, H. (2020). Variational autoencoder modular Bayesian networks for
simulation of heterogeneous clinical study data. Frontiers in big Data, 3,
16.”

• “Evaluating Digital Device Technology in Alzheimer’s Disease via Artificial
Intelligence, Preprint medRxiv, 2021.”
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The smallest of actions is always better than the
noblest of intentions.

Robin Sharma

2
THEORETICAL BACKGROUND

In this chapter, we will discuss the theoretical background underlying the algo-
rithms that we have used in this thesis.

2.1 Bayesian networks (BNs)

BNs are probabilistic graphical models, where nodes represent variables and edges
represent probabilistic stochastic dependencies between them [87]. These stochas-
tic dependencies are characterized by conditional probability distributions (CPD),
one for each variable. It encodes a joint probability distribution over a set of ran-
dom variables X = X1, ...,Xn. By definition, a BN is a pair G,Θ, where G is a DAG
in which each node corresponds to one of the random variables [88] and Θ is a
set of network parameters. The parents of Xi are represented by PAi. Given its
parents, Xi is independent of its non-descendants. The conditional probability dis-
tributions P(Xi|PAi) for each Xi are specified by network parameters, Θ. A crucial
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concept in BN, known as markov blanket (MB) [89] is important to understand.
An MB of a node in a BN consists of its parents, children, and spouses (i.e. other
parents of their common children). BNs follow an assumption called the markov
assumption, meaning that every node in a BN, given its parents, is conditionally
independent of its non-descendants. According to the markov chain rule; where
every random variable Xi is directly dependent on its parents PAi [90], the joint
probability distribution for all the variables represented by a BN can be decom-
posed into a product of conditional probabilities using the graphical structure and
the chain rule of probability calculus. This is represented by [91],

P(X|θ) =
n∏
i=1

P(Xi|PAi, θi) (2.1)

θi are the parameters of Xi.

To present the applicability of BN we illustrate an example of a hypothetical
BN in Figure 2.1. Here the problem is to figure out the possible causes of cancer
[91]. The possible causes of cancer could be exposure to UV radiation (R), smoking
(S), unhealthy diet (D), obesity (O), alcohol (A), and physical inactivity (I). There
is an edge from O to C indicating a higher risk of cancer for obese people. There
are also direct edges from R and S to C indicating that cancer risk is dependent
on UV radiation and smoking. D and I have edges pointing towards O suggesting
that diet and physical activity are two of the reasons for obesity. Most importantly,
there is no direct edge from D and I to C, this implies that knowing the state of O
renders C independent of D and I. The joint distribution of all five variables can
be factored by the following equation:

P(D, I,R,O, S,C) = P(C|R,O, S) · P(R) · P(S) · P(O|D, I) · P(D) · P(I) (2.2)

If each of the five variables in Figure 2.1 is assumed to be binary, the above
factorization reduces the conditional probabilities (number of parameters) required
to specify the full joint distribution from 64 to 14. This allows small datasets to
parameterize large networks while still capturing all kinds of complex interactions.
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Figure 2.1: ABN representing the relationship between cancer incidence (C), UV radiations (R), obesity (O), physical
inactivity (I), and unhealthy diet (D).
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In most cases, the edges in the BN structure are unknown and therefore they
need to be inferred from data. An important question is, how far the learned
structure reflects existing causal relationships. In principle, it is not possible to
uniquely identify the underlying causal DAG from observational data. Here comes
the concept of markov equivalence. Markov equivalence is an equivalence graph
structure present in BNs. Two graphs are known to be equivalent if and only if the
set of markov properties of one graph is satisfied by the other graph [92]. Markov
equivalence contains all DAGs encoding the equivalent conditional independencies
and can be characterized by a completed partially directed acyclic graph (CPDAG)
[93]. Indeed, if the BN is faithful to the underlying statistical distribution (i.e.
models it correctly), then the true causal network is known to be part of a class
of these equivalent graph structures. [67, 94].

There are several advantages of BNs some of which are listed below:

• They efficiently encode multivariate distributions and multinomial data.

• They are interpretable because the underlying graph structure can represent
causal relationships.

• They exhibit a theoretical framework to simulate interventions via the “do”
calculus. Judea Pearl developed a well-established theory for modeling and
simulating interventions into BNs [95]: Assume we want to predict the in-
tervention effect of Xi = x on the remaining random variables in the BN,
denoted as P(X1, ...,Xi−1,Xi+1, ...,Xn|do(Xi = x)). Pearl demonstrated in his
work that this intervention effect can be computed by estimating the con-
ditional probability distribution P(X1, ...,Xi−1,Xi+1, ...,Xn|Xi = x) within a
mutilated BN, in which all incoming edges into Xi have been deleted.

Despite these advantages, there comes a limitation as well. The most important
constraint on the use of BN’s is that the computation is NP-hard [96]. There are
two NP-hard tasks in BNs, 1) Structure learning, and 2) Inference of the value
of a specific random variable Xi: if we do not constrain conditional probability
distributions to multinomial and Gaussian.

We need a set of parameters and a structure that can best encode the joint
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probability distribution. These are accounted in the BN learning process which is
described in the following section.

2.1.1 Learning BN

The main aim of the BN learning process is to find the most suitable network that
best encodes the joint probability distribution of a domain [97]. In general, BN
learning can be divided into two parts, parameter learning, and structure learning;
parameter learning involves describing the conditional probability distributions
underlying a BN [98] and structure learning comprises finding the optimal DAG.
These are described below:

Parameter Learning

It is the process of using data to learn distributions underlying a BN.

There are different types of parameter learning algorithms; maximum likelihood
estimation (MLE), bayesian method, expectation-maximization algorithm, robust
bayesian estimate, monte-carlo method, and gaussian approximation [90]. Given
the scope of our work, here we will discuss the first two algorithms; MLE and
Bayesian method. Parameters of a BN can be estimated from a data sample D.
Here we assume, that the sample has no missing values.

We will describe the two methods as follows:

• MLE: It is a method of estimating the parameters of an (unknown) proba-
bility distribution by maximizing a likelihood function so that the observed
data is most probable under the assumed statistical model. As mentioned
above, a given set of observations, (X1,X2, ....,Xn), from an unknown popu-
lation is considered as a random sample [99]. The goal of MLE is to make
inferences about the population that is most likely to have generated this
sample, precisely the joint probability distribution of the random variables.

• Bayesian method: It is defined by the idea: given a distribution with un-
known parameters and a complete set (C) observed data, Θ is a random
variable with a prior distribution p(Θ), the changes of parameter Θ, namely
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p(Θ|C), can be estimated according to the previous knowledge of the as-
sumption of p(Θ). p(Θ|C) therefore represents the posterior probability of
Θ. The aim of this method is to calculate the posterior probability which is
then considered as a basis of parameter learning.

Considering the assumption of statistical independence between different pa-
rameters of a network, their estimation decomposes into various independent esti-
mation problems, one for each variable and the potential configuration of parents.
p(Θ|Xi,PAi) = p(Θ|Xi), because Xi and PAi are statistically independent. The
standard estimate for a parameter Θ|Xi is:

p(Θ|Xi) =
p(Θ,Xi)

p(Xi)
(2.3)

An elementary difference between MLE and the Bayesian method is that point
estimates of the parameters are provided by MLE method while Bayesian method
maintains a constantly updated distribution over these parameters. Therefore, as
new examples are provided, it enables the Bayesian method to continuously learn
and improve new parameters [100].

Structure learning

For a dataset, D = D1, ....,DN, of the available variables in V, structure learning
of BN is the problem of learning a network structure from dataset D.

The process of structure learning is NP hard [96] and a substantial amount
of work in the research community has been dedicated to identifying heuristic-
search techniques to identify good models. Here we will discuss six different types
of structure learning algorithms. These algorithms are divided into score-based,
constraint-based and hybrid algorithms. Greedy hill climbing (hc) and tabu search
[101] are heuristic score-based optimization approaches, whereas MMPC [102]
and SI-HITON-PC[103] are constraint-based approaches. Max-min hill-climbing
(MMHC) [102] and restricted maximization (RSMAX2) [102] fall in the hybrid cat-
egory as they used ideas from both score-based and constrained-based approaches.
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Score-plus search-based algorithms: Score-based is a widely used ap-
proach for structure learning [87]. As the number of possible structures that can be
learned from a graph is super-exponential with the number of nodes |V|, learning
an optimal BN from D is considered to be an NP-hard problem [104]. Therefore, a
lot of previous work focused on algorithms such as hc [105], and tabu search as they
consider random restarts [106]. They limit the number of parents and parameters
for each variable [107] and search the space representing equivalence classes of net-
work structures [108]. These aforementioned algorithms use local search to search
“good” networks; nonetheless, there is no guarantee offered by these algorithms to
find the network that optimizes the scoring function. The main task is to find the
most suited DAG based on certain score functions that measure its fitness to the
data. A scoring function is used to measure the goodness of fit of a structure to the
data in this approach. The goal of the learning problem here is then to search for
the optimal scoring structure. Generally, the score approximates the probability
of the structure given the data and represents a trade-off between how well the
network fits the data and how complex the network is. Here, a decomposability
assumption is made for the score [109]. That means, that we can calculate the
score for a network structure as the sum of scores for the individual variables, and
here the score for a variable is calculated entirely on the basis of a random variable
and its parents [88]. Therefore,

Score(G|D) =
n∑
i=1

Score(Xi|PAi,D), (2.4)

Several scoring functions are represented in the form of a penalized log likeli-
hood (LL) function. The likelihood of the data, given a structure, can be calculated
as:

LL(D|G) =
N∑
j

logP(Dj|G) =
n∑
i

N∑
j

logP(Dij|PAij), (2.5)

where LL(D|G) is the log probability of D given G, Dij is the instantiation of Xi

in data point Dj and PAij represents the instantiation of Xi’s parents in Dj. While
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adding an arc to the network, the arc could be ignored if it does not add any extra
information to the network. The extra arcs could possibly lead to two problems,
firstly they could lead to the overfitting of the training data and could result
in lower performance on testing data. Secondly, the networks that are densely
connected could increase the running time when they are used for inference and
prediction type of analysis. This overfitting problem can be addressed by adding
a penalty to the LL function and is represented by a penalized LL function. This
helps to penalize the complex network. Hence, despite a very good LL score
for complex networks, a high penalty term may help to reduce the score to fall
below that of a less complex network. This is called decomposable penalized log
likelihood (DPLL) scores and they are illustrated in the following form:

DPLL(G,D) = LL(D|G)−
n∑
i=1

Penalty(Xi,G,D) (2.6)

Two of the most widely used DPLL scores for learning BN’s are bayes dirichlet
(likelihood) equivalent uniform (BDeu) [110] [105] [109], and Bayesian information
criterion (BIC) [111]. The difference between these scoring functions is in their
penalty terms.

• BDeu: It is a scoring function where ‘e’ stands for likelihood equivalence
and ‘u’ stands for uniform distribution. Two assumptions called likelihood
equivalence and structure possibility were defined by Heckermann, Geiger,
and Chickering (1995) [109]. If two DAGs encode the same joint probability
distributions, they are called equivalent. Bayesian dirichlet (BD) function
computes the joint probability of a network for a given dataset [105]. The
likelihood equivalence likelihood equivalence Bayesian drichlet (BDe) score
was induced by heckermann, geiger and chickering (HGC95) theorem [109],
and its expression is identical to BD expression. Buntine [110] proposed a
particular case of BDe score, known as BDeu score. The score only depends
on one assumption which is the equivalent sample size, referred to as N. N
can be used to calculate all the required parameters and prior distribution
over network structures. Under the assumption that all the network struc-
tures are equally likely, which means prior distribution over the network
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structures is uniform, N is the only input required for this scoring function.
BDeu measures the posterior probability of a selected DAG given the avail-
able data while assuming uniform prior probability distributions on all the
possible networks. BDeu is a DPLL scoring function and its penalty term is
represented as follows:

PenaltyBDeu(Xi,G,D) =

qi∑
j

ri∑
k

log
P(Dijk|Dij)

P(Dijk|Dij,Nij)
, (2.7)

where possible values of PAi is represented by qi, ri is the number of possible
values for Xi, Dijk is the number of times Xi = k and PAi = j in D, and the
parameter determined based on the N specified by the user is represented
by Nij. The density of optimal network structure is learned with the scoring
function BDeu, and it is correlated with N. Low N values give rise to sparser
networks. Selecting an appropriate N could be difficult if the density of the
network to be learned is unknown.

• BIC: BIC approximates BDeu. Both BDeu and BIC share the property of
decomposability. It is represented by the formula:

BIC = −2 ∗ LL+ Θ ∗ log(N), (2.8)

where N is the sample size of the training set and Θ is the total number
of parameters. A good model requires a lower BIC score. The Θ ∗ log(N)

here is the penalty term and it grows with the number of parameters. The
penalty term enables accurate estimation of the network on the given data
set with size N, by filtering out over-complicated networks with too many
parameters.

We will discuss primarily two types of score-based algorithms; hc [102] and
tabu [101] search algorithm.

• hc: In these algorithms, network DAG is scored by the function f with regard
to the training data, and a search method is used to explore a network with
the best score [112]. This algorithm traverses the search space by beginning
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from an initial solution and executing a finite number of steps. At each
step, the algorithm considers neighboring DAGs and chooses the one with
the largest improvement in f. The algorithm terminates when there is no
local change resulting in an improvement in f. Due to this greedy behavior,
the execution terminates when the algorithm is trapped at a solution that
maximizes f locally rather than globally. They explore the search space of
DAG by single-arc addition, arc removal, and reversal, with random restarts
to avoid local optima [113]. Due to the super-exponential cardinality of the
search space [114], it seems a good objective to limit the areas of search space
to be visited, particularly in domains with a substantial number of variables.
The efficient evaluation of neighbors/DAGs is based on the scoring metrics
which means decomposability in the presence of complete data. Hence, usage
of the decomposability metric helps to efficiently evaluate the neighbor due
to the change in only one arc at each move. This can further help to reuse the
computation carried out in previous stages, and only the statistics related
to the variables whose parents have been modified need to be recomputed.
As hill climbing uses the operators of arc addition, deletion, and reversal, it
takes advantage of the above-mentioned operation mode.

hc algorithms are prominent because of their trade-off between the quality
of models learned and computational demands.

• Tabu search: Tabu search is a sub-heuristic algorithm that mimics the func-
tion of human memory [115]. It has fewer parameters and a simple structure
and it can rely on a local search, akin to greedy hill climbing. Similar to
the hill climbing approach, this algorithm also utilizes three operations; ad-
dition, removal, and reversal of edges, that generate neighborhoods without
generating a network loop. It explores the neighbourhood for a local optimal
solution and places it into a tabu table. After this step, in order to avoid
duplication of the search process, tabu table serves as the tool to search the
local optimal solution. This is done to make the next search as far as possible
from the current one. Tabus are one of the distinctive features of tabu search
when compared to hill climbing or other local search methods [116]. They
also help to move the search away from the portions of the search space that
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have been visited before and thus, perform extensive exploration. As dis-
cussed above, while hill climbing can get stuck in local optima, tabu search
maintains a tabu list to avoid the same. The tabu list holds objects that
are recently used and are taboo to use for now. Consequently, moves that
are comprised in tabu list are not accepted. Another aspect of tabu search
is that it accepts a certain number of worsening moves if no improvement
is possible. Hence tabu, despite still being a local search approach - has a
higher chance to escape local optima than hc.

Constraint-based algorithms: Constraint-based algorithms can be used to
learn causal graphical models under certain assumptions [117]. They identify con-
ditional independent constraints with statistical tests and link nodes that are not
independently observed. They provide a framework for learning the DAG of a
BN using these tests taking the assumption that probabilistic independence and
graphical separation imply each other [118]. The common tests that are used are,
the mutual information test (for discrete BNs), the exact Student’s t-test, and the
Fisher’s Z transformation for correlation (for gaussian Bayesian network (GBN)s).
All constraint-based structure learning algorithms share a three-phase structure.
The first phase is optional and consists of two steps. The first step is learning
the MB of each node so that the number of potential DAGs can be reduced early
on. Any algorithm that aims to learn MB can be plugged into step 1 and ex-
tended into a complete BN structure learning algorithm [119]. After all, MBs have
been learned, they are checked for consistency (step 2) using their symmetry; by
definition:

If any asymmetries are left, they are corrected by treating them as false posi-
tives and removing the violating nodes from each other’s MBs. In the second phase,
algorithm learns the skeleton of DAG, which is equivalent to learning the neighbors
N(Xi) of each node including their parents and children. If certain set of nodes
S(Xi,Xj) separating a particular pair Xi,Xj are absent, it implies that either Xi → Xj

or Xj → Xi. Finally, arc directions are established [120] in the third phase. For
some arcs, both directions are equivalent, which means they identify equivalent de-
composition of the global distribution. This leads some arcs to be undirected and

43



the algorithm will return a CPDAG that identifies an equivalent class containing
multiple DAGs. In contrast to the score-based algorithms, the constraint-based
approach mitigates the problem of heavy computational costs and extends the
available network learning size, thus allowing the learning of larger BNs. A sig-
nificant problem of these algorithms is their lower accuracy in comparison to the
score-based approach. Here we discuss two types of constraint-based algorithms,
MMPC and SI-HITON-PC.

• MMPC: Given that these algorithms consist of three stages, here first stage
starts with an empty set and each node has all other nodes as potential
parents. All possible variables for the parent-child set are added. The second
stage removes several variables from this set via conditional independence
tests. These first two stages result in all members of the parent-child set but
it can also contain some false positives i.e. variables that are not included in
the parent-child set. After the two stages, all the false positives are removed
from the network. Finally, after stage three, the complete parent-child set
of the target variable T is returned by the algorithm.

• SI-HITON-PC: It is a fast-forward selection technique for neighborhood
detection that is designed to exclude the nodes early on, based on marginal
association.

Hybrid algorithms: As the name suggests, hybrid algorithms are a mix of
score-based and constraint-based algorithms. It uses both conditional indepen-
dence to reduce the space of candidate DAGs and network scores to identify the
optimal DAG amongst them. Here we will briefly explain two examples, MMHC
and RSMAX2.

• MMHC: This algorithm is a combination of ideas from local learning, constraint-
based, and search-and-score approaches. Firstly, it reconstructs the skeleton
(i.e. the edges without their orientation) of a BN using MMPC and then
orients the edges using greedy Bayesian scoring hill-climbing search.

• RSMAX2: It is a more general implementation of MMHC as it can use any
combination of constraint-based and score-based algorithms [113].
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2.2 Modular Bayesian networks (MBN)

As described above, learning DAG structure is NP hard [96], and it requires lim-
iting the space of potential networks as much as possible. This is of distinct
importance for datasets with many variables and a limited sample size. Therefore,
module networks [121] have been introduced to address this situation. The key
idea in module networks is to group variables into modules that share parame-
ters [122]. During the BN structure learning process, only edges between modules
are learned. The variables in the module have the same statistical behavior with
the same set of parameters and local probabilistic model [121]. Enforcing this
constraint on the network significantly helps to reduce the complexity of model
space as well as the number of parameters. Thereafter, these reductions lead to
more robust estimation and better generalization for unseen data. The explicit
representation of the module network helps to gain insight into the domains that
are often obscured by the intricate details of a large BN. The exact definition
of variable groups differs between the datasets used. The key question is how to
learn and encode a shared distribution for a module. In their original publication,
Segal et.al. [121] assumed normally distributed data (such as gene expression) and
employed decision trees to represent modules [121, 122]. The set of variables in a
module shares the same set of parents and CPD. Here, each module is represented
by a formal variable that is used as a placeholder for variables in the module. A
module set C, consisting of K modules is a set of variables M1.....,MK. All the
variables in a module should also have the same domain as they share the same
CPD. Val(Mj) is used to represent the set of probable values of the formal vari-
able of the jth module. Module component is defined by two components. The
first component defines the template probabilistic model for each module in C and
the model is shared by all the variables available in the module. Module network
template, T = (S,Θ) for C, defines for each Mj:

• a set of parents PaMj
⊂ X;

• a template of conditional probability distribution P(Mj|PaMj
) which specifies

a distribution over Val(Mj) for each assignment in Val(PaMj
)

S is used to denote the dependency structure encoded by {PaMj
: Mj ∈ C} and
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Θ to denote the parameters that are required for CPD templates {PMj |PaMj
) : Mj ∈

C}.

The second component defines the function for module assignment that assigns
each variable Xi ∈ X to one of the K modules M1...,MK. A variable can only be
assigned to the module having the same domain.

2.3 Logic sampling algorithm

This algorithm is used to generate synthetic data from BN. We want to investigate
a new evidence E using the knowledge that is encoded in the BN. The posterior
distribution can be investigated by P(X|E,BN) = P(X|E,G,Θ). The values for the
root nodes are sampled from their (unconditional) distribution [113]. Furthermore,
the values for the distribution of their children conditional on the respective sets
of parents are generated. This process is performed iteratively until values for all
nodes have been sampled.

2.4 Likelihood weighting algorithm

Likelihood weighting algorithm is an inference-based algorithm that helps to infer
the value of node conditional on the observations for all the other nodes in the
BN [113]. The nodes with known values are referred to as evidence variables, E.
Therefore, we need to query the remaining nodes given the evidence nodes, to
determine the state of the entire network. Here the sampling is not done from
the original BN but from the BN where all nodes are in evidence E and are fixed.
This network is known as a mutilated network. After the sampling is complete,
a likelihood weight is assigned to the sample by multiplying the probabilities of
each evidence variable given its parents. Thereafter, this result is stored in a map,
represented by W here, that encompasses the association of all the variables in the
network with its weight. To further explain it in more detail:

• A temporary variable w is assigned to 1 and it holds the calculated weight
of the sample.

• A temporary variable x is set to empty and it holds the state of each node
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for this sample.

• After this, each node in the network is examined and if the node is E node,
the following calculation is performed, w = w ∗ p(current node|parents of
current node), where p is the probability of the E node given its parents. If
the current node is not an E node, then its state is determined by sampling
it. It does not add anything to the weight calculation. The state of the
node is added to x whether it is an evidence node or whether it is discovered
through sampling.

We will be left with x (state of the network) and w (likelihood weight associated
with that state) after the entire network is examined for the particular sample.
This is further added to the map, W where x is used as the key and w as the data
value. If W already consists x, then w is added to the data value that is associated
with x in W.

2.5 Missing data

One of the key challenges and common problems with longitudinal patient data is
missing values. Overlooking missing data can lead to loss of statistical power, in-
troduces bias in the estimation of parameters, can reduce the representativeness of
the samples, cause incorrect estimation of variability in the data, and may compli-
cate the analyses of the study [123]. In longitudinal clinical studies, many subjects
could be present at baseline, or at one-time point and missing at another time
point. This leads to non-monotone missing data patterns [124]. The missingness
in the data can originate due to various reasons: (a) patients withdrawal from the
study, e.g. because of worsening symptoms; (b) a certain diagnostic test is not
measured at a particular visit (e.g. due to lack of patient agreement) (c) unclear
further reasons like lack of availability of time, issues in the quality of data, etc.
From a statistical point of view, these reasons divulge into three mechanisms of
missing data which are explained as follows [46] [125]:

• Missing completely at random (MCAR): The probability underlying missing
information is not related to either the specific value which is supposed to
be obtained or other observed data. Hence, entire patient records could be
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skipped without introducing any bias. However, this type of missing data
mechanism is probably rare in clinical studies.

• Missing at random (MAR): The probability of missing information depends
on other observed data, but is not related to the specific missing value which
is expected to be obtained. An example would be a patient drop out due
to the worsening of certain symptoms, which are at the same time recorded
during the study.

• Missing not at random (MNAR): Any reason for missing data, which is
neither MCAR nor MAR. Here the missingness might depend on the unob-
served data in addition to the observed data. MNAR is problematic because
the only way to obtain unbiased estimates is to model missing data.

2.5.1 Dealing with missing data

In most of the longitudinal studies, the missing data is a combination of MAR and
MNAR. Typically, multiple imputation methods have been proposed to handle
missing data in longitudinal patient data [125]. One commonly used approach
to handle missing data is complete case (CC) analysis [126]. CC analysis often
assumes MCAR data and estimates the mean by the sample mean of the com-
pleters. In this case, if the patients who drop out are healthier or sicker than the
patients who complete the study, the CC estimator will have a low or a high bias
respectively. The other common approach to handling the missing data is the
last observation carried forward (LOCF). LOCF just replaces any missing values
of variable V after visit t by the value that V had at t. There are other types
of single imputation approaches such as mean substitution, regression imputation,
maxmin-likelihood, expectation maximization (EM), etc. These types of imputa-
tion approaches tend to underestimate the standard errors and thus overestimate
the level of precision of the estimator. Therefore, “multiple imputation approach”
have been established to deal with missing data [127]. It means multiple datasets
can be created and the inference can be averaged over these datasets. They have
several advantages compared to single imputation approaches. They have been
shown to produce valid statistical inference that reflects the uncertainty associ-
ated with the estimation of missing data. Additionally, they have been proven to
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be robust to the violation of normality assumption and generate relevant results
even for data set with high missingness and small sample size.

2.6 Autoencoders

Autoencoders are a specific type of neural network which are majorly designed to
encode the input into a compressed and relevant representation and then decode
it back in a way that the reconstructed output is as similar as possible to the input
[81]. The main goal of autoencoders is to learn an “informative” representation
of the data that can have various functions one of them being clustering in an
unsupervised manner. Briefly, autoencoders perform non-linear dimensionality
reduction [128]. An autoencoder takes a feature vector x ∈ Rd as input and
transforms/encodes it to a hidden representation x̃ ∈ Rq via

x̃ = s(Wx+ b) (2.9)

where s(·) is a non-linear activation function e.g. sigmoid, rectified linear unit.
Matrix W consists of weights and b is a bias vector. Several encoding steps can be
performed sequentially, resulting in a deep autoencoder. The latent representation
x̃ can be decoded/mapped back via

z = s´(W´x̃+ b´) (2.10)

where W´, b´ are the parameters of the decoder that are not necessarily identical
to the encoder. Moreover, s’ (·) is a non-linear activation function, which may be
different from s(·). Autoencoders are trained to minimize the difference between
reconstructions z and original inputs x. MSE is one of the ways to measure it.

2.6.1 Standard variational autoencoders (VAE)

Standard VAE [81] is considered to be the most popular form of autoencoders.
VAEs were introduced by Kingma and Welling [82] and can be interpreted as
a special type of BN, which has the form Z → X, where Z is a latent, usually
multivariate standard Gaussian, and X a multivariate random variable describing
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the input data. Moreover, for any sample (x, z), we have p(x|z) = N(μ(z), σ(z)).
One of the key ideas behind VAEs is to variationally approximate

log q(z|x) = log N(z|μ(x), σ(x)) (2.11)

This means that μ(x) and σ(x) are the mean and standard deviation of the
approximate posterior and are outputs of a multilayer perceptron neural network
that is trained to minimize for each data point, x the evidence lower bound (ELBO)
criterion

log(x) ≥ 1
2

D∑
j=1

(1+ log σj(x)2 − μj(x)
2 − σj(x)2) +

∑
l

log p(x|z(l)) (2.12)

where z = μ(x) + σ(x) ⊙ ε(l) with ε(l) ∼ N(0, 1). Here, ⊙ denotes element-wise
multiplication.

2.7 Random forest (RF)

The RF is an “ensemble learning” technique constructed from an aggregation of a
large number of decision trees, resulting in a reduction of variance compared to the
single decision trees [129]. It is a significant modification of bagging that builds
an extensive collection of de-correlated trees [130]. It helps to reduce the variance
as compared to a single decision tree by averaging many noisy but approximately
unbiased models.

The steps for generating an RF are explained below, for b = 1 tree to B number
of trees:

1. Firstly, a bootstrap sample Z* of size N is drawn from the training data.

2. A RF tree, Tb is constructed for each bootstrapped sample, by recursively
repeating the following steps for each leaf node of the tree. The following
steps are repeated until the minimum node size nmin is reached.
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Figure 2.2: RF construction using multiple decision trees.

– Random m variables are selected from a list of p variables.

– Then, variables are picked according to the best split-point among m.

– Lastly, two daughter nodes are created from each node.

3. The ensemble of trees Tb1
B are obtained as a result

An illustration of RF is provided in Figure 2.2: An average of independently and
independently and identically distributed (i.i.d.) B random variables, each having
variance σ2, has total variance of 1

Bσ
2. For only identically distributed (i.d.) and not

independent variables with having a positive pairwise correlation ρ, the variance
of the average is,
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ρσ2 +
1− ρ
B

σ2 (2.13)

In equation 2.13, if B increases, only the first term stays, and therefore the
benefits of averaging are limited by the size of the correlation of pairs of bagged
trees. The concept behind RFs is to reduce the correlation between the decision
trees, without increasing the variance substantially and hence improve the variance
reduction of bagging. The tree-growing process through random selection helps to
achieve this.

Before each split, while growing a tree on a bootstrapped dataset, m ≤ p of
the input variables is selected at random as a candidate for splitting.

Typically, values for m are √p or as low as 1. The RF predictor is represented
by the following equation after B such trees.

f̂Brf(x) =
1
B

B∑
b=1

T(x; θb) (2.14)

where θb depicts the bth random forest tree with regard to split variables, cut-
points at each node, and terminal node values. When m is reduced, it also assists
in reducing the correlation between any pair of trees in the ensemble, and hence
according to equation 2.14, it will reduce the variance of the average.

RF approach can be used both for classification and regression problems. In
classification, an RF attains a class vote from each tree, and a majority vote is
used for final classification. The default value here for m is √p and the minimum
node size is 1. On the other hand, in regression the predictions from each tree are
averaged at a target point x. Here the default value for m is p/3 and the minimum
node size is 5.

Out-of-bag (OOB) error estimate is used to calculate the performance of ran-
dom forests. It is calculated by constructing a random forest predictor by averaging
the trees corresponding to bootstrap samples considered as OOB or for which each
observation zi = (xi, yi) did not appear.

52



2.8 Logistic regression

Logistic regression is a class of regression analysis that is used in classification
when the dependent variable is categorical. Like all regression analyses, logistic re-
gression is predictive and is used to explain the relationship between the dependent
and independent variables. In a binary logistic model, the dependent variable has
2 possible values and is labeled as 0 or 1. The log-odds for the value labeled as 1 is
a linear combination of the corresponding predictor variables, which is converted
by the model into a probability varying between 0 and 1 using a logistic function.
The input class is then determined by choosing a cutoff value, where inputs are
classified in one class if their probability is higher than the cutoff or in another
class if their probability is lower.

Consider a model with predictors X = x1, ..., xi and a binary dependant variable
p = P(Y = 1|X), logistic regression can be expressed as:

log
(

p
1− p

)
= β0 + β1x1....βixi (2.15)

where p(X)
1−p(X) is called the odds.

and the probability of Y = 1:

p(Y = 1|X) = eβ0+β1x1...βixi

1+ eβ0+β1x1...βixi
(2.16)
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The only limit to our realization of tomorrow will
be our doubts of today.

Franklin D. Roosevelt

3
Development of generative AI-based

approach using Bayesian Networks

This chapter is an adaptation of our work “Bayesian network modeling of risk and
prodromal markers of Parkinson’s disease, Preprint medRxiv, 2022.”

3.1 Introduction

PD is the second most common NDD [131], and there are several risks involved
with the disease some of which are age, male sex, and environmental factors. More-
over, various genetic variants have been associated with the disease risk. The
prime identifiers of the disease are a) cardinal motor symptoms such as tremor,
rigidity, bradykinesia/akinesia, and postural instability b) clinical symptoms com-
prised by other motor symptoms such as postural abnormalities, gait disturbances,
disturbances of speech, etc., and c) non-motor features such as dysphagia and di-
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arrhea, autonomic, gastrointestinal, sleep, cognitive and neuropsychiatric distur-
bances. Pathologically, the loss of dopaminergic neurons in the substantia Nigra
pars compacta (SNpc) and accumulation of misfolded α-synuclein are the hall-
marks of PD. However, the etiology of the disease is still unclear in most of the
patients and extensive research is going on to understand the disease. The disease
is usually detected in its advanced stage and the latent phase can vary from 5 to 20
years [132]. This latent phase is termed as the prodromal phase of PD [133]. Some
of the most recognized prodromal symptoms that might arise 10 years before the
diagnosis of the disease are hyposmia, depression and anxiety, constipation and
REM-sleep behavior disorder (RBD) [134], erectile dysfunction, somnolence [135],
orthostatic hypotension, urinary dysfunction, possible subthreshold parkinsonism
(MDS-UPDRS-III > 3 excluding action tremor) / abnormal quantitative motor
testing and abnormal dopaminergic Positron emission tomography/Single photon
emission computed tomography positron emission tomography/single photon emis-
sion computed tomography (PET/SPECT) [136, 137, 135]. It is vital to identify
the disease at its prodromal phase, in order to recognize the subjects at a higher
risk of the disease much before the neurodegeneration occurs. Identifying the dis-
ease at the prodromal phase also provides an opportunity to slow or prevent the
onset of motor symptoms when disease-modifying treatments become available
[138, 139, 140]. Therefore, it becomes really important to identify the markers for
the prodromal phase of the disease.

One of the studies focusing on identifying PD at prodromal phase is the
TREND study. The overview of the study is provided in the next section. As
we know that PD is a disease having multi-modal, multiscale, and heterogeneous
data, it is important to have an understanding of the disease development and
progression across all biologically relevant scales [122], that can further assist in
early disease prediction. This can be achieved by modeling the health trajectory
of the patient by developing disease risk [141, 142] and disease progression models
[143, 144, 145, 146]. Accordingly, a compilation of a comprehensive overview of a
specific disease requires comparison and analysis of multiple studies of the same
disease. A large number of observational and clinical studies are being conducted
in the context of early disease detection, drug development, and translational and
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pharmaceutical research. Nevertheless, there is a big problem of data silos in the
medical field and it could be due to several reasons as discussed in Chapter 1.
There are a number of legal and ethical constraints that restrict the organizations
responsible for the study to share sensitive patient data. Moreover, there are a
number of restrictions on terms of use, regulations imposed by the government,
and an inability to get informed consent from marginalized populations. Orga-
nizations these days are keener on working across boundaries but that does not
mean they have terminated their tendency to work with those most “like” them,
continuing the rise in the “data silos” and thereafter the “silo effect” [147]. The
problem of decentralized storage and strict data protection laws has also led to
the generation of data silos [148]. The existence of data silos further slows down
the overall scientific progress in translational research. Firstly, due to the highly
sensitive nature of the health data, a lot of it is out of reach for researchers which
could halt advancement in the research and slow down the development of new
treatments. Therefore, it could curtail key findings that could lead to much-needed
treatments and cures. Typically, siloed data is incompatible with the other data
sets and is stored in a standalone system. This makes it difficult for users from
other parts of the organization to access and use the data. They may also arise in
any organization because separate business units might have different goals and
want to operate independently. The data silos in healthcare also prevent phar-
maceutical companies, physicians, and researchers from accessing and analyzing
important data sets. Instead, it encourages each group to make conclusions based
on the part of the information available to them. This further results in temporary
fixes that are not sustainable in the long run and for patients, it results in delays
in diagnosis, access to treatments, and proper care. Data silos create barriers for
information sharing and collaboration amongst the research community.

In this work, we address this limitation of data sharing and data silos by
building a generative model. The generative property of the model allows us to
simulate subjects in the form of a SC that are sufficiently similar to the real ones
and can be shared with the larger community. The idea behind our SC concept is
to decipher the complex relationships between different biological scales and data
modalities (clinical, genomic, etc.) within one modeling framework. This allows
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for generating synthetic patients that are highly similar to real ones with respect to
relevant characteristics. Our work should at this point be discriminated from exist-
ing work on synthetic trial simulation, which mostly focuses on pharmacokinetic-
pharmacodynamic (PKPD) modeling in clinical study design and typically involves
mechanistic modeling of well-understood biological processes [149].

AI approaches, such as BNs [66] may offer possible solutions to these challenges.
BNs can be used 1) to realistically simulate prospective cohorts, which could “at
least partially” help to overcome restrictions posed by data privacy, and 2) to
access such synthetic, comprehensive (population-based) cohort data 3) to model
interdependencies of markers. Thereby, both the consideration of more generaliz-
able evidence underlying PD prediction as well a more differentiated investigation
and understanding of prodromal PD subtypes may be supported and possibly help
to inform the design and recruitment for early intervention trials in prodromal PD.

The present study has two different aims: 1) to demonstrate the feasibility of
generating a sufficiently realistic synthetic cohort, which shares statistical patterns
of the original data and could allow researchers to gain a better understanding of
the properties of the real data before formally applying for access to it and, 2)
to model a BN with the interdependencies between longitudinal data of risk and
prodromal markers of PD and incident PD status of a large prospective cohort
(TREND).

3.2 Methodology

3.2.1 Overview of the data used

The data we use for this work comes from the TREND study. It started in
2009/2010 with the aim to collect early biomarkers for AD and PD. At present,
the study consists of 1200 subjects, aged over 50 years with either one or several
of the prodromal risk markers (hyposmia, RBD, depression) or none of these early
markers that form the control group. These subjects are examined every two years
and several examinations are performed including neurological, blood parameter
collection, and medical history. Other tests include examining motor control, dif-
ferent tremor types, dexterity, slowing of distal movements, cognitive functions,
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etc. Questionnaires assessing sleep quality, mood, and activities of daily living are
also recorded. For more information, visit https://www.trend-studie.de. We use
the TREND study in our work in the context of PD.

The ten risk markers and ten prodromal markers of PD as assessed in the
TREND study were defined as reported previously [150] and selected according to
the recent International Parkinson and MDS Research Criteria for Prodromal PD
[151].

Summary statistics of the variables are provided in Table 3.1. In this table,
we present the descriptive statistics of longitudinal risk and prodromal marker
data of PD-free individuals and incident PD cases. In total, data of 1178 PD-
free was available and analyzed at their respective first visit (baseline). Of these
individuals, 24 were diagnosed with PD (incident PD) at later visits (up to visit 6)
of the TREND study and based on comprehensive neurological clinical diagnosis at
the hospital. We provide the summary statistics of neurological, neuropsychiatric,
environmental, lifestyle, and autonomic dysfunction biomarkers.

Variables At Baseline Visit 2 Visit 3 Visit 4
n-conv (1178) n-conv (1172) conv (6) n-conv (1167) conv (5) n-conv (1162) conv (5)

Age at baseline 63 (58, 68) 63 (58, 68) 74 (70, 74) 63 (58, 68) 75 (73, 76) 63 (58, 68) 70 (68, 71)
Sex (male/female)

Male 599 (51%) 594 (51%) 5 (83%) 589 (50%) 5 (100%) 586 (50%) 3 (60%)
Female 579 (49%) 578 (49%) 1 (17%) 578 (50%) 0 (0%) 576 (50%) 2 (40%)

Sibling with PD (Yes/No)
No 1010 (86%) 1007 (86%) 3 (50%) 1,003 (86%) 4 (80%) 999 (86%) 4 (80%)
Yes 168 (14%) 165 (14%) 3 (50%) 164 (14%) 1 (20%) 163 (14%) 1 (20%)
PRS

Marker absent(Lowest quartile of PRS distribution) 247 (21%) 245 (21%) 2 (33%) 244 (21%) 1 (20%) 241 (21%) 3 (60%)
Borderline marker 500 (42%) 498 (42%) 2 (33%) 496 (43%) 2 (40%) 495 (43%) 1 (20%)

Marker present (highest PRS quartile) 252 (21%) 251 (21%) 1 (17%) 250 (21%) 1 (20%) 250 (22%) 0 (0%)
Missing 179 (15%) 178 (15%) 1 (17%) 177 (15%) 1 (20%) 176 (15%) 1 (20%)

GBA mutation carriers (Yes/No)
No 1173 (99.6%) 1167(96.4%) 6 (100%) 1163 (99.7%) 4 (80%) 1158 (100%) 5 (100%)
Yes 5 (0.4%) 5 (0.4%) 0 (0%) 4(0.3%) 1 (20%) 4 (0.3%) 0 (0%)
SN
SN- 839 (71%) 838 (72%) 1(17%) 835 (72%) 3(60%) 832 (72%) 3 (60%)
SN+ 210 (18%) 205 (17%) 5 (83%) 203 (17%) 2(40%) 201 (17%) 2 (40%)

Missing 179 (15%) 129 (11%) 0 (0%) 129 (11%) 0(0%) 129 (11%) 0 (0%)
Pesticides (Yes/No)

No 878 (75%) 855 (73%) 1(17%) 838 (72%) 1(20%) 811 (70%) 3 (60%)
Yes 19 (1.6%) 18 (1.5%) 0 (0%) 17 (1.5%) 0(0%) 17 (1.5%) 0 (0%)

Missing 281 (24%) 299 (26%) 5 (83%) 312 (27%) 4(80%) 343 (29%) 2 (40%)
Solvents (Yes/No)

No 774 (66%) 753 (64%) 1 (17%) 738 (63%) 1(20%) 712 (61%) 2 (40%)
Yes 129 (11%) 125 (11%) 0 (0%) 122 (10%) 0(0%) 117 (10%) 1 (20%)

Missing 275 (23%) 294 (17%) 5 (83%) 307 (26%) 4(80%) 333 (29%) 2 (40%)
Smoking

Marker absent 535 (45%) 478 (41%) 2 (33%) 437 (37%) 3(60%) 393 (34%) 0 (0%)
Borderline marker 533 (45%) 509 (43%) 4 (67%) 467 (40%) 2(40%) 418 (36%) 4 (80%)
Marker present 109 (9.3%) 83 (7.1%) 0 (0%) 72 (6.2%) 0(0%) 61 (5.2%) 1 (20%)

Missing 1 (<0.1%) 102 (8.7%) 0 (0%) 191 (16%) 0(0%) 290 (25%) 0 (0%)
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Variables At Baseline Visit 2 Visit 3 Visit 4
n-conv (1178) n-conv (1172) conv (6) n-conv (1167) conv (5) n-conv (1162) conv (5)

Diabetes_II (Yes/No)
No 1131 (96%) 1015 (87%) 5 (83%) 919 (79%) 5 (100%) 820 (71%) 4 (80%)
Yes 47 (4%) 55 (4.7%) 1 (17%) 58 (5%) 0 (0%) 53 (4.6%) 1 (20%)

Missing 1 (<0.1%) 102 (8.7%) 0 (0%) 190 (16%) 0 (0%) 289 (25%) 0 (0%)
Physical Inactivity Code (Yes/No)

No 542 (46%) 343 (29%) 1 (17%) 752 (64%) 4 (80%) 695 (60%) 3 (60%)
Yes 142 (12%) 98(8.4%) 0(0%) 221 (19%) 1 (20%) 175 (15%) 2 (40%)

Missing 494 (42%) 731 (62%) 5 (83%) 194 (16%) 0 (0%) 292 (25%) 0 (0%)
RBD (Yes/No)

No 1116 (95%) 1041 (89%) 6 (100%) 956 (82%) 4 (80%) 846 (73%) 4 (80%)
Yes 54 (4.6%) 28 (2.4%) 0 (0%) 21 (1.8%) 1 (20%) 27 (2.3%) 1 (20%)

Missing 8 (0.7%) 103 (8.8%) 0 (0%) 190 (16%) 0 (0%) 289 (25%) 0 (0%)
MDS-UPDRS-III

No motor deficit 1006 (85%) 980 (84%) 0 (0%) 912 (78%) 1 (20%) 784 (67%) 1 (20%)
Borderline motor deficit 120 (10%) 66 (5.6%) 1 (17%) 39 (3.3%) 2 (40%) 63 (5.4%) 0 (0%)
Subthreshold parkinsonism 52 (4.4%) 24 (2%) 5 (83%) 26 (2.2%) 2 (40%) 26 (2.2%) 4 (80%)

Missing 0 (0%) 102 (8.7%) 0 (0%) 190 (16%) 0 (0%) 289 (25%) 0 (0%)
Hyposmia

Marker absent 913 (78%) 860 (73%) 1 (17%) 746 (64%) 0 (0%) 664 (57%) 1 (20%)
Borderline marker 244 (21%) 186 (16%) 4 (67%) 192 (16%) 5 (100%) 159 (14%) 4 (80%)
Marker present 17 (1.4%) 4 (0.3%) 0 (0%) 24 (2.1%) 0 (0%) 42 (3.6%) 0 (0%)

Missing 4 (0.3%) 122 (10%) 1 (17%) 205 (18%) 0 (0%) 297 (26%) 0 (0%)
Constipation
Marker absent 1015 (86%) 891 (76%) 4 (67%) 810 (69%) 2 (40%) 754 (65%) 5 (100%)

Borderline marker 139 (12%) 135 (12%) 2 (33%) 110 (9.4%) 2 (40%) 89 (7.7%) 0 (0%)
Marker present 15 (1.3%) 23 (2%) 0 (0%) 28 (2.4%) 1 (20%) 26 (2.2%) 0 (0%)

Missing 9 (0.8%) 123 (10%) 0 (0%) 219 (19%) 0 (0%) 293 (25%) 0 (0%)
Excessive Daytime Somnolence (Yes/No)

No 0(0%) 32 (2.7%) 1 (17%) 383 (33%) 1 (20%) 833 (72%) 5 (100%)
Yes 0(0%) 1 (<0.1%) 0 (0%) 12 (1%) 0 (0%) 38 (3.3%) 0 (0%)

Missing 1178 (100%) 1139 (97%) 5 (83%) 772 (66%) 4 (80%) 291 (25%) 0 (0%)
Symptomatic Hypotension

Marker absent 918 (78%) 793 (68%) 5 (83%) 746 (64%) 5 (100%) 736 (63%) 3 (60%)
Borderline marker 230 (20%) 218 (19%) 0 (0%) 198 (17%) 0 (0%) 93 (8%) 1 (20%)
Marker present 28 (2.4%) 52 (4.4%) 1 (17%) 27 (2.3%) 0 (0%) 41 (3.5%) 1 (20%)

Missing 2 (0.2%) 109 (9.3%) 0 (0%) 196 (17%) 0 (0%) 292 (25%) 0 (0%)
Urinary Dysfunction

Marker absent 733 (62%) 691 (59%) 4 (67%) 634 (54%) 2 (40%) 625 (54%) 3 (60%)
Borderline marker 391 (33%) 286 (24%) 1 (17%) 269 (23%) 2 (40%) 192 (17%) 1 (20%)
Marker present 51 (4.3%) 82 (7%) 1 (17%) 64 (5.5%) 1 (20%) 52 (4.5%) 1 (20%)

Missing 3 (0.3%) 113 (9.6%) 0 (0%) 200 (17%) 0 (0%) 293 (25%) 0 (0%)
Depression (Yes/No)

No 830 (70%) 735 (63%) 3 (50%) 664 (57%) 4 (80%) 594 (51%) 4 (80%)
Yes 348 (30%) 335 (29%) 3 (50%) 313 (27%) 1 (20%) 279 (24%) 1 (20%)

Missing 0 (0%) 102 (8.7%) 0 (0%) 190 (16%) 0 (0%) 289 (25%) 0 (0%)
Global Cognitive Deficits (Yes/No)

No 971 (82%) 911 (78%) 6 (100%) 852 (73%) 4 (80%) 782 (67%) 4 (80%)
Yes 194 (16%) 142 (12%) 0 (0%) 111 (9.5%) 1 (20%) 80 (6.9%) 1 (20%)

Missing 13 (1.1%) 119 (10%) 0 (0%) 190 (16%) 0 (0%) 300 (26%) 0 (0%)

Table 3.1: Summary statistics of age, risk and prodromal markers of PD‐free individuals and incident PD cases at
different time points, absolute and relative (%) frequencies of marker presence or median (IQR in brackets) are
given unless specified otherwise.

3.2.2 BN based approach

We propose a BN-based approach to simulate a realistic SC, to understand the
links between different features that were measured in the study, and describe
the longitudinal patient trajectories in a multi-modal, multi-scale manner. As
explained in chapter 2, BNs are probabilistic graphical models, where nodes rep-
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resent variables and edges represent probabilistic stochastic dependencies between
them [87] characterized by a CPT for each variable. Please refer to Chapter 2 for
a detailed description of BN.

In our case, there exists a subset X̃ ⊂ X (X is a set of random variables in
the BN), such that measurements are time-dependent, i.e. x̃ = (x̃(1)), ..., x̃(T))
with T being the number of visits. Dynamic BNs [152] usually deal with this
situation by implicitly unfolding the BN structure over time, i.e. introducing for
each visit t a separate copy X̃(t) of X̃ while requiring that edges always point from
time slice t to time slice t + 1 (corresponding to a first-order Markov process).
This implicit unfolding assumes a stationary Markov process, i.e. parameters “Θ”
do not change with time. In our setting this assumption is most likely wrong,
because patients change in their disease outcome during the course of a study, i.e.
p(X̃(t)|X̃(t−1))̸=(X̃(t+ 1)|X̃(t)). Hence, we here use an unfolding strategy, in which
we explicitly use different copies X̃(t) for each time point.

One of the key challenges with longitudinal data as described in chapter 2
is dealing with the missing data and especially the data that is MNAR. We
mitigated this limitation by defining auxiliary variables for each variable and visit.
These auxiliary variables are fixed parents of all nodes, which contain missing
values in a “systematic” way i.e. following an MNAR pattern, and we do not
learn any more edges for auxiliary variables. Furthermore, for the features that
are assessed at different visits, we enforced auxiliary variables to point from one
visit to the next visit. An advantage of using auxiliary variables is that they
make parameter estimates conditionally dependent on the missingness information,
therefore accounting for the potential biases of the multiple imputations (due to
hidden confounding factors). The missing data approach is illustrated in Figure
3.1.

To learn a BN corresponding to the MDS research criteria for prodromal PD,
prospective data of established risk and prodromal markers of PD that have been
collected in the TREND study [153] entered the analyses. In this work, we com-
piled a BN with 10 risk markers and 10 prodromal markers as well as age. These
markers were assigned to different domains including: autonomic dysfunction
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Figure 3.1: Aux/indicator variables defined for each variable and visit, “AUX Visit 2” is a parent of other AUX
variables at visit 2.

(constipation, symptomatic orthostatic hypotension, erectile and urinary dysfunc-
tion; based on a self-report questionnaire), lifestyle features and related diseases
(physical inactivity, non-smoking (self-report questionnaire), diabetes type II (self-
reported medical diagnosis)), environmental features (occupational pesticide and
solvent exposure; self-report questionnaire), neuropsychiatric features (depression
(life-time diagnosis or acute depression based on international classification of dis-
eases 10th revision (ICD-10) criteria), global cognitive deficit (based on comprehen-
sive neuropsychological testing)), neurological features (incident PD diagnosis (PD
conversion based on neurological diagnosis), sub-threshold Parkinsonism (based on
MDS-UPDRS-III), (pRBD; based on a self-report questionnaire), hyposmia (Snif-
fin Sticks), SN hyperechogenicity based on transcranial ultrasnd), genetic factors
(first-degree family history of PD (self-reported), polygenic risk scores (PRS) of
PD, pathogenic glucocerebrosidase (GBA) mutations based on genetic testing)
and demographic factors (age, sex). Since erectile dysfunction was only assessed
in males, this prodromal marker was not included in the final BN to avoid biases
in the model.

Notably, the TREND data of risk and prodromal markers of PD has been dis-
cretized such that all variables (except for age) indicate the presence or absence (or
borderline status) of a marker in an individual TREND participant, as published
previously for the TREND cohort and suggested by the MDS research criteria for
prodromal PD [151, 136]. For each variable, a CPT was determined as the overall
BN was learned.
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Constraints on the network structure

In most cases, the edges in BN are not known and they need to be inferred from
the data. We need to answer an important question how far the learned BN
structure reflects existing causal relationships in the data? If the BN is able to
learn the existing statistical distributions in the data and faithfully represent the
underlying statistical distribution, then the true causal network is known to be a
part of a class of equivalent graph structures, called CPDAG [67, 94]. Considering
this assumption, the CPDAG follows the same skeleton as the true causal graph,
and might also have some undirected edges. Therefore, it is important to restrict
the CPDAG equivalence class as much as possible by prior knowledge to allow
the correct orientation of as many edges as possible. We imposed the following
constraints for the BN structure:

• No node can affect environmental factors except the factors themselves.

• Genetic factors like GBA mutation and PRS cannot be dependent on any
other feature except themselves, PD family history, and sex.

• PD family history cannot be dependent on any other features except genetic
factors, age, and sex.

• No other feature can be affected by the conversion feature (the conversion
node is the node that represents if the subject has converted to PD or not).

• Age and sex cannot be dependent on any other node.

• Auxiliary variable that was created based on the missingness of a certain
feature can only have an influence on their corresponding feature and the
auxiliary variable for the same feature at the next time point.

BN structure and parameter learning

We learned the network on four different algorithms from R-package bnlearn [113]
hc, tabu search, RSMAX2, and MMHC (described in detail in Chapter 2). Cross-
validation was used to assess the generalization ability of a BN model and compare
different structure learning algorithms. Selection between different BN structure
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Figure 3.2: Comparison of different BN structure learning algorithms via 10‐fold cross‐validation for the data. The
y‐axis depicts the negative log‐likelihood of the test data.

algorithms was done via k-fold cross-validation, meaning overall data were ran-
domly split into k (k = 10) folds, and BN structure together with its parameters
was learned using k-1 folds. If the overall population is correctly modeled by fit-
ting the BN (and not just the training data), the data in the left out fold with
high probability should fall into the same statistical distribution that is described
by the BN. Negated expected log-likelihood of the test data is used to quantify
this. The algorithm with the least negative log-likelihood is considered to be the
best performing and in this case, hc satisfied the criteria. The comparison between
different algorithms is illustrated in Figure 3.2.

We trained a BN based on the data of all 1178 subjects using a non-parametric
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bootstrap [154] by randomly selecting n = 1178 for 1,000 times, with replacement,
and for each of these 1,000 bootstrap samples, we learned a complete BN structure.
The relative frequency of observing a particular edge among 1,000 boot-straps was
determined (see BN edges in Figure 3.3) and served as an indicator of the level of
statistical confidence, i.e., a higher value means stronger support by the data for
the existence of the respective connection. A value of 1.0 indicates two specific
nodes were interdependent in all of the 1,000 learned BNs, and a value of 0.5
indicates in 50% of the BNs an interdependency was observed.

Once a BN topology is defined, parameters were then inferred using a Dirichlet
prior to account for parent-child node configurations that were not observed [109].

3.2.3 Simulation of a synthetic TREND study cohort

As discussed earlier, we know that BNs belong to the class of generative machine
learning models. It means they learn the multivariate statistical distribution un-
derlying the observed data. Therefore, random samples drawn from the model
correspond to synthetic subjects. This was done by first drawing random values
from a node’s distributions and subsequently from the distributions of the children
of that node while conditioning on the values of the parents. We also calculated the
KLD [155] between real and synthetic data distributions. KLD is used to quantify
the distributions of a random variable and measure the similarity between the two
probability distributions of the same variable. Hence, it measures the divergence
of one distribution from another. If the distributions are an exact match, the KL
divergence is 0, otherwise, it can lie between 0 and ∞.

3.3 Results

3.3.1 The BN of risk and prodromal markers of PD in the TREND
study

Our analysis using BN of the longitudinal TREND data resulted in a quantitative
network between different variables, which is depicted in Figure 3.3.

A wide range in the level of confidence regarding the interconnectedness, i.e.,
statistical interdependence, was observed between several nodes and domain clus-
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ters of nodes. High probabilistic confidence (>0.5) of edges between different
markers in the BN was found for edges between age to sub-threshold Parkinsonism
(MDS-UPDRS-III) and urinary dysfunction, sex to SN hyperechogenicity, depres-
sion, non-smoking to constipation; depression to symptomatic hypotension and
excessive daytime somnolence; solvent exposure to cognitive deficits and to phys-
ical inactivity; and non-smoking to physical inactivity. Pairwise co-occurrences
of different markers showing edges with probabilistic certainties of >0.2 in the
BN were shown and statistically tested for significance in Table 3.2. P-values
have been calculated based on a Chi-square test and corrected for multiple test-
ing using Holm’s method. These findings remain significant in logistic regressions
(additionally accounting for age and sex). All of these edges also showed statis-
tically significant co-occurrences between markers, except for sex and PD family
history, sex, and diabetes type-II (visit 1), occupational solvent exposure (visit
3), and constipation (visit 3), as well as GBA mutation carriers and PRS. These
associations were no longer significant after accounting for multiple testing using
Holm’s method.

The BN revealed both expected as well as novel connections between risk and
prodromal markers and the phenoconversion to PD. Plausibly, the nodes with
edges directed to the conversion to PD comprised (prior) subthreshold parkinson-
ism indicated by MDS-UPDRS-III scores, age, and (with lower statistical confi-
dence), SN hyperechogenicity. Further expected marker interdependencies were
observed for edges pointing from depression and solvent exposure to global cogni-
tive deficits, which itself was linked to physical inactivity while non-smoking was
linked to physical inactivity. Edges pointing from depression to excessive day-
time somnolence, pointing from solvent exposure and depression to hyposmia, or
pointing from hyposmia to global cognitive deficits and to SN hyperechogenicity
demonstrated further expected interdependencies. Unexpected interdependencies
were observed from depression to non-smoking; pesticide exposure to symptomatic
hypotension; physical inactivity to urinary dysfunction; and edges with direction-
ality from SN hyperechogenicity, global cognitive deficits, sex, and PD family
history to diabetes. Interestingly, constipation was dependent on sex, global cog-
nition, and occupational solvent exposure. Surprisingly, little interdependencies
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were observed for pRBD, which was only linked to depression and received an edge
from physical inactivity. Nodes with genetic features were not dependent on other
markers except for sex being linked to PD family history, which itself was linked
to diabetes.

Nodes of the same marker assessed at different time points were largely highly
interdependent, except for subthreshold parkinsonism (MDS-UPDRS-III) for which
visit 2 and visit 3, were not linked to other nodes of the BN. MDS-UPDRS-III at
visit 1 showed no edge with the corresponding nodes of other visits, but instead
only received edges from depression and pesticide exposure at visit 1.

Risk/prodromal marker Risk/prodromal marker Participants (n) p-valueNo Borderline Yes
Male sex Depression at visit 1 471 128 <0.0001*Female sex 359 220
Male sex Non-smoker at visit 1 228 320 51 <0.0001*Female sex 308 213 58
Male sex SN hyperechogenicity 453 146 <0.0001*Female sex 515 64
Male sex Constipation at visit 1 549 45 5 <0.0001*Female sex 472 96 11
Male sex PD family history 529 70 0.013Female sex 481 98
Male sex Symptomatic hypotension at visit 1 508 83 8 <0.0001*Female sex 412 147 20
Male sex Diabetes type II at visit 1 567 32 0.024Female sex 564 15
Exposure to solvents at visit 1 Cognitive deficits at visit 1 302 86 <0.0001*No exposure to solvents at visit 1 678 112
Exposure to solvents at visit 2 Cognitive deficits at visit 2 246 176 <0.0001*No exposure to solvents at visit 2 682 74
Exposure to solvents at visit 3 Cognitive deficits at visit 3 201 237 <0.0001*No exposure to solvents at visit 3 668 72
Exposure to solvents at visit 3 Constipation at visit 3 394 32 12 0.029No exposure to solvents at visit 3 626 88 26
Exposure to pesticides at visit 1 Symptomatic hypotension at visit 1 13 20 1 <0.0001*No exposure to pesticides at visit 1 907 210 27
Presence of depression at visit 2 Day time somnolence at visit 4 414 26 <0.0001*Absence of depression at visit 2 725 13
Presence of depression at visit 2 Symptomatic hypotension at visit 2 213 200 27 <0.0001*Absence of depression at visit 2 588 122 28
Non-smoker at visit at visit 1

Physically active at visit 1
107 429

<0.0001*Borderline smoker at visit 1 82 451
Smokers at visit 1 63 46
Non-smoker at visit at visit 1

Depression at visit 1
389 147

<0.0001*Borderline smoker at visit 1 382 151
Smokers at visit 1 59 50
Presence of Global cognitive deficits at visit 2 Physically active at visit 3 224 85 <0.0001*Absence of Global cognitive deficits at visit 2 193 676
GBA mutation carries Polygenic risk score 21 24 7 0.002GBA mutation non-carriers 226 655 245
Age (Older than 65 years) Conversion to PD 500 23 <0.0001*Age (Younger than/ equal to 65 years) 654 1
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Risk/prodromal marker Risk/prodromal marker Participants (n) p-valueNo Borderline Yes
Age (Older than 65 years) Subthreshold parkinsonism at visit 4 462 31 30 <0.0001*Age (Younger than/ equal to 65 years) 616 32 7
Age (Older than 65 years) Subthreshold parkinsonism at visit 1 418 71 34 <0.0001*Age (Younger than/ equal to 65 years) 588 49 18
Age (Older than 65 years) Urinary Dysfunction at visit 1 269 220 34 <0.0001*Age (Younger than/ equal to 65 years) 465 173 17
Age (Older than 65 years) Non-smoking at visit 1 260 236 27 <0.0001*Age (Younger than/ equal to 65 years) 276 297 82

Table 3.2: Statistical testing of the co‐occurrence of markers in the TREND data as suggested by edges in the
TREND BN of real data. P‐values have been calculated based on a Chi‐square test and corrected for multiple
testing using Holm’s method. Significant findings (after correction for multiple testing) are indicated by an asterisk.
Findings remain significant in logistic regressions additionally accounting for age and sex.

3.3.2 Comparison of real and synthetic data

We sampled synthetic subjects as real participants and then compared the distri-
butions of each variable visually at each visit (Figure 3.4-3.7).

As seen in Figures 3.4-3.7, the KLD value is close to 0 which means we have a
good match between the distribution of real and synthetic data, the lower the value
the better the match. We also measured spearman rank correlation for real and
synthetic data, and we observed that the correlation between the variables remains
preserved. The plot is illustrated in Figure 3.8. We used the relative error (re) of
the “Frobenius norm” (norm) of the matrix to compare the correlation matrices
for real (RD) and synthetic data (SD), which is 0.36. It was calculated using the
following formula (in Equation 3.1), where corr.matrix refers to the correlation
matrix:

re = ∥(corr.matrix(RD)− corr.matrix(SD))∥ / ∥(corr.matrix(RD))∥ (3.1)

The generative property of the BN allowed the simulation of synthetic versions
of the prospective data of the TREND study and to extract individual synthetic
participant profiles including age and the risk and prodromal markers of PD. Table
3.3 shows five arbitrary examples of synthetic subjects (from the synthetic cohort
with the same sample size) and three real subjects together with their individual
data (at visit 4) on age, sex, MDS-UPDRS-III, pRBD, depression, global cognitive
deficits, and PD conversion status.
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Figure 3.4: Examples of real and simulated subjects at visit 1 generated via the BNmodel trained on TREND study
data. The Figure compares the distributions of features at visit 1 for real subjects (green) and synthetic/simulated
subjects (red). KLD between the real and synthetic subjects is mentioned at the top of each plot.
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Figure 3.5: Examples of real and simulated subjects at visit 2 generated via the BN model trained on TREND
data. The Figure compares the distributions of features at visit 2 for real subjects (green) and synthetic/simulated
subjects (red). KLD between the real and synthetic subjects is mentioned at the top of each plot.

71



Figure 3.6: Examples of real and simulated subjects at visit 3 generated via the BN model trained on TREND
data. The Figure compares the distributions of features at visit 3 for real subjects (green) and synthetic/simulated
subjects (red). KLD between the real and synthetic subjects is mentioned at the top of each plot.
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Figure 3.7: Examples of real and simulated subjects at visit 4 generated via the BN model trained on TREND
data. The Figure compares the distributions of features at visit 4 for real subjects (green) and synthetic/simulated
subjects (red). KLD between the real and synthetic subjects is mentioned on the top of each plot.
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Figure 3.8: Spearman rank correlation for (A) real and (B) synthetic subjects. Legend indicates the strength of
correlation, the darker the color (red or blue) the higher the correlation (positive (red) or negative(blue)), relative
error for correlation matrices is 0.36.

Subjects Age Sex MDS-UPDRS-III at visit 4 pRBD at visit
4

Depression at
visit 4

Global cogni-
tive deficits
at visit 4

Conversion to
PD

Synthetic subject # 1 68 Male No motor deficit No No No No
Synthetic subject #2 67 Female No motor deficit No No No No
Synthetic subject #3 68 Male Subthreshold parkinsonism No No Yes Yes
Synthetic subject #4 73 Female No motor deficit No No No No
Synthetic subject #5 69 Male Borderline motor deficit No No No Yes
Real subject #1 63 Female No motor deficit No No No No
Real subject #2 68 Male Subthreshold parkinsonism No No No Yes
Real subject #3 70 Male Borderline motor deficit No No No Yes

Table 3.3: Examples of synthetic and real subjects and their demographics, selected prodromal markers, subthresh‐
old parkinsonism (MDS‐UPDRS‐III) and PD conversion status at visit 4. The rows in bold represent the similarity
between the real and synthetic subjects data for incident PD cases.

3.3.3 Evaluating the utility of synthetic TREND subjects

To evaluate the utility of synthetic subjects generated by the BN model we per-
formed different tests:

• We generated the same number of synthetic individuals as real individuals
for the data and then tested whether a conventional RF classifier was able
to separate between synthetic and real subjects within 10 times repeated 10-
fold cross-validation scheme. That means we sequentially left out 1/10 of the
subjects and trained an RF on the remaining subjects to learn the discrimina-
tion between real and synthetic subjects. We used the left-out portion of the
data to assess the prediction performance of the RF. We used the pAUC at
a pre-specified true positive rate of 99% for real subjects as a measure of the
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Figure 3.9: Performance of a RF classifier to correctly identify a given number of real TREND participants among
synthetic subjects. The performance was measured via the pAUC at a pre‐specified detection rate of≥ 99% for
real participants. The pAUC was assessed on test sets within 10 repeats of a 10‐fold cross‐validation procedure.
Accordingly, boxplots show the distribution of the tenfold cross‐validated pAUC thatwas obtained from10 repeats
of the cross‐validation procedure.

prediction performance. The pAUC has been normalized between 0% and
100%. The area under the receiver operator characteristic (ROC) curve at
which the detection rate for real subjects was between 99% and 100% served
as an indicator of the validity of the synthetic TREND participants. This
was done to account for the fact that misclassification of a synthetic TREND
participant as real would be far less relevant as the other way around. In
our case, a pAUC slightly above the chance level was achieved (Figure 3.9,
indicating that synthetic subjects cannot reliably be discriminated from real
ones by machine learning). The multiple correspondence analysis (MCA)
[156] plot shown in Figure 3.10 indicates the similarity of synthetic subjects
in relation to real ones.

• As a third test, we trained and evaluated the prediction performance of
different machine learning models on real as well as synthetic data. More
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Figure 3.10: Multiple correspondence analysis (MCA) analysis plot of prospective data of real (in blue) and synthetic
(in yellow) TREND participants.

specifically we here focused on the prodromal markers; pRBD, hyposmia,
and depression. We trained a machine learning model (a RF classifier) to
test the prediction ability of several variables to predict these prodromal
markers at multiple visits. Outcomes at a subsequent visit were predicted
by training the classifier on variables from the previous visit. For example,
to predict the prodromal marker at visit 2, the classifier was trained on all
the markers (measured longitudinally in the study) at visit 1. We either
trained and tested the classifier on real subjects or trained the classifier on
simulated/synthetic subjects generated by the BN and subsequently tested
the classifier on real subjects. We evaluated the prediction performance of
machine learning models using 10-fold cross-validation repeated 10 times.
The overall dataset was randomly split into 10 folds, of which sequentially
one of the folds was left out for testing the model, while the rest of the
data was used for training. The prediction ability was measured via the
AUC [157]. Despite synthetic data generally showing high similarity to real
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data, our results indicate a loss of ∼10% AUC when training on synthetic
subjects compared to training on real subjects (Figure 3.11). This could
be due to slight differences between real and synthetic data regarding the
distribution of individual variables (e.g. hyposmia, physical inactivity in
Figure 3.6) as well as correlation structure (Figure 3.8). Notably, RFs are
a comparably complex machine learning method, which allows for modeling
highly nonlinear structures.

Altogether these results highlight that synthetic data share many patterns of
real patient data, but they are not identical and hence do not necessarily allow for
coming to identical statistical conclusions.

3.4 Conclusion

This work demonstrates a BN-based method by which we can unravel the com-
plexities underlying a disease, by establishing connections between different clini-
cal features of the disease. The model brings together heterogeneous multi-scale
and multi-modal data together accounting for missing data patterns. We devised
a method to identify MNAR patterns and deal with them using auxiliary vari-
ables. The present study shows the feasibility of generating a BN on prospective
data on established risk and prodromal markers of PD in the TREND cohort of
elderly PD-free individuals and incident PD cases. (1) The BN model showed
several expected as well as non-obvious interdependencies of these markers, which
may be explained by co-occurrences of markers in the TREND cohort and/or by
methodological aspects of marker assessment. (2) The BN allowed the creation of
a synthetic representation of the TREND cohort regarding the risk and prodro-
mal marker interdependencies and to derive marker profiles of individual synthetic
participants. The multitude of marker interdependencies as revealed through the
AI-supported BN modeling approach may have important methodological implica-
tions for evidence-based PD prediction approaches as well as for the understanding
of the interplay of different markers in the prodrome of PD and in potential pro-
dromal PD subtypes. Based on our findings from a BN model of established PD
markers in the prospective TREND cohort, we could show that for many markers
independence might not be met.
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Figure 3.11: Performance of an RF classifier with subjects trained on real and tested on real data (red) and trained
on synthetic and tested on synthetic data (blue) for (A) pRBD (B) hyposmia and (C) depression as clinical endpoints
of the prospective data. The classification accuracy is indicated as AUC‐ROC curves. The boxplots show the
distribution of the AUC derived from the real/synthetic training data within 10 times repeated 10‐fold cross‐
validation. In the case of training on synthetic data, results have been averaged over 50 repeated samplings of the
same number of synthetic as real subjects.
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Our approach also tries to solve the problem of data sharing and data silos by a
realistic simulation of virtual clinical subject trajectories across multiple biological
scales and data modalities outside the area of mechanistically well-understood
biological processes. This was achieved by modeling the data with the help of BN
which serves as a generative model, from which patient trajectories can be drawn.
Using our method, we showed that synthetic and real patient trajectories are highly
similar, but not identical. Hence, our proposed approach opens the possibility to
build synthetic patients and at the same time realistic versions of clinical studies
across multiple disease areas in the future. These synthetic studies could then be
shared with the larger research community, even, if the raw data cannot be because
of legal or ethical constraints. Hence, our method could help to unlock one of the
key bottlenecks in biomedical research in data-scarce disease areas. Our proposed
approach is not without limitations: BN structure and parameter learning require
sufficiently large datasets that are representative of the disease population. The BN
model makes the re-identification of real patients from the training data relatively
unlikely. However, in its current implementation, our approach does not provide
strict theoretical guarantees for this situation. But, we like to point out that
privacy-preserving training of neural network models is possible in principle [158]
which we have demonstrated in chapter 5 in the advancement of this work. Overall,
this work demonstrates the potential of modern AI approaches to advance our
understanding of prodromal PD and facilitate data sharing.
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Greatness starts with being grateful.

Vex King

4
Modification of generative AI-Based
approach with Sparse Autoencoders

This chapter is based on our work published in “Meemansa Sood, Akrishta Sahay,
Reagon Karki, Mohammad Asif Emon, Henri Vrooman, Martin Hofmann-Apitius,
and Holger Fröhlich. Realistic simulation of synthetic multi-scale, multi-modal
patient trajectories using bayesian networks and sparse auto-encoders. Scientific
reports, 10(1):1–14, 2020.”

4.1 Introduction

As described earlier, BN is a generative model that helps us to simulate pa-
tients that are realistic in nature. It is also useful for longitudinal understand-
ing of disease development and progression across all biologically relevant scales.
Here, we applied BN to two datasets ADNI (https://adni.loni.usc.edu/) and
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PPMI)(https://www.ppmiinfo.org/). The motivation behind the application of
BN to these studies was to generate synthetic data subjects for them. In contrast
to the previous data, the challenge is that there are many features and a compa-
rably small number of subjects. However, many features are semantically related
to each other, as they describe related aspects such as demographic information,
clinical characteristics, or molecular mechanisms. The features have similar prop-
erties that can be combined together in the form of modules. Therefore, in this
work, we describe a longitudinal patient cohort with the help of BN in conjunction
with a deep learning technique called, sparse autoencoder. Altogether, this allows
for simulating subjects that are sufficiently similar to real ones. Researchers could
then develop models and generate hypotheses based on SCs that can, later on, be
tested with the help of real data within their own organization. Moreover, we also
demonstrate that SCs open the opportunity to simulate scenarios, which have not
been observed in reality (e.g. a certain shift towards a more healthy population).

4.2 Motivation behind sparse autoencoders

The idea of sparse autoencoders was introduced in order to aggregate data on the
level of variable groups, which do not make any assumptions about the underlying
statistical distribution. Some variables in the datasets are continuous, and others
are discrete. We discretize all the variables to enable efficient BN structure and
parameter learning for arbitrary statistical distributions and non-linear dependen-
cies between variable groups. The concept of sparse autoencoders is described in
more detail in Chapter 2.

4.3 Methodology

The workflow of our approach is illustrated in Figure 4.1.

4.3.1 Datasets used

We used two longitudinal observational cohorts here, ADNI for AD and PPMI for
PD. The overview of these datasets is given in the following paragraphs.
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Figure 4.1: Overview about our modeling approach for longitudinal patient cohorts: (A) Approach to estimate
BN, including dimensionality reduction via sparse autoencoders and modeling of missing data. (B) Conservative
approach to simulate synthetic subjects.

ADNI

ADNI (adni.loni.usc.edu) was launched in 2004 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. It unites the expertise and
efforts of scientists from varied disciplines and organizations who help us to gain
a better understanding in the field of AD [159]. It is a longitudinal study and is
undergoing at multiple sites throughout the world. It assesses clinical, imaging,
genetic and bio-specimen biomarkers through the process of normal aging to early
mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), de-
mentia, or AD. There are diverse data sets available in ADNI related to clinical
data, genetic data, MRI data, positron emission tomography (PET) image data,
etc. Therefore, it produces an accumulation of data that is heterogeneous, complex,
and large. The fundamental goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological assessment can
be integrated to measure the progression of MCI and early AD. The other global
goal is to validate the biomarkers for use in AD clinical treatment trials. ADNI
is divided into 4 subsets; ADNI-1 which was the initial five-year study and was
further extended by ADNI-GO, ADNI-2, and ADNI-3. There are 2600 subjects as
of September 2021, out of which 837 are CN, 672 are MCI, 115 have significant
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memory concern (SMC), 340 are EMCI, 185 are LMCI, and 451 are in the AD
stage. For up-to-date information on the study, visit www.adni-info.org.

In the following text we give an overview of the subjects and variables we use
for our work for ADNI data and provide summary statistics for the same in Table
4.1.

Overview of ADNI data

This study includes 417 CN patients, 106 subjects with SMC, 310 subjects with
EMCI, 562 subjects with LMCI, and 342 subjects, which were diagnosed with AD
at the beginning of the study. In this work, we used longitudinal data from 689
subjects that were initially either diagnosed with AD (n = 342) or converted into
AD patients during the study. In our work, ADNI data includes single nucleotide
polymorphism (SNP) based genotype, APOE4 status, cerebrospinal fluid (CSF)
biomarkers, volume measurements of seven brain regions as well as different clinical
and neuropsychological test results. In addition to the 7 brain volume measure-
ments provided in the original ADNIMERGE dataset, we calculated 68 cortical
brain region volumes from raw images using Desikan parcellation which we explain
in the next section. Out of more than 300,000 SNPs that have been commonly
measured in the ADNI1 and ADNI2/GO phases of the ADNI study we focused
on 110, which have previously been implicated as relevant in the transition of a
normal/cognitively impaired state to AD [142]. We grouped all features measured
in ADNI into brain volumes, cortical brain regions, cognition tests, CSF markers,
genotype (SNPs + APOE4 status), demographic features, and baseline diagnosis
(see exact definitions in Table 4.2). We generally discarded features with more than
50% missing values, which reduced the number of visits modeled by our approach
to baseline, month 6, month 12, and month 24 (see Table 4.3).
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Variable Dementia, N = 3411 MCI, N = 3221 NL, N = 261
Age 76 (71, 80) 74 (70, 79) 76 (72, 78)
Gender
Male 189 (55%) 196 (61%) 12 (46%)
Female 152 (45%) 126 (39%) 14 (54%)
yearsOfEducation 16.00 (13.00, 18.00) 16.00 (14.00, 18.00) 16.00 (14.00, 18.00)
Marital Status
Married 285 (84%) 262 (81%) 19 (73%)
Widowed 34 (10.0%) 34 (11%) 6 (23%)
Divorced 14 (4.1%) 20 (6.2%) 1 (3.8%)
Never married 8 (2.3%) 6 (1.9%) 0 (0%)
Unknown 0 (0%) 0 (0%) 0 (0%)
Ethnicity
Unknown 3 (0.9%) 1 (0.3%) 0 (0%)
Not Hisp/Latino 327 (96%) 312 (97%) 26 (100%)
Hisp/Latino 11 (3.2%) 9 (2.8%) 0 (0%)
apoe4
0 114 (33%) 110 (34%) 13 (50%)
1 162 (48%) 162 (50%) 13 (50%)
2 65 (19%) 50 (16%) 0 (0%)

Table 4.1: Summary statistics of ADNI demographic data, and APOE4 status grouped by diagnostic stages, data
are n (%), or median (Intra Quartile Range (IQR) in brackets), unless specified otherwise
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Group Contained Features #Bins MSE of autoencoder p.adjust (real vs simu-
lated data)

brain*̇ brain regions: Hippocam-
pus, Entorhinal, Ventri-
cles, Fusiform, Intracra-
nial volume (ICV),Mid
temporal lobe

Baseline: 4, Month 6: 12,
Month 12: 4, Month 24: 2

Baseline: 0.016, Month 6:
0.013, Month 12: 0.013,
Month 24: 0.013

Baseline - 1, Month 6 - 1,
Month 12 - 1, Month 24 -
1

Cog.* cognition scores: MMSE,
MOCA, CDRSB,
ADAS11, ADAS13,
RAVLT, FAQ

Baseline: 6, Month 6: 3,
Month 12: 3, Month 24:
2

Baseline: 0.022, Month 6:
0.013, Month 12: 0.016,
Month 24: 0.017

Baseline - 1, Month
6 - 0.2616, Month 12
- 0.4262, Month 24 -
0.1625

CSF ABETA, TAU, PTAU Baseline: 2 Baseline: 0.015 Baseline - 1

SNP.bl APOE status + 110 SNPs Baseline: 2 Baseline: 0.06 Baseline - 1

brain68.bl 68 cortical brain regions Baseline: 2 Baseline: 0.016 Baseline - 1

FDG PET imaging diagnostics Baseline: 4 NA FDG - 1

Demographic
features
(treated
separately

Age, Gender, Education,
Race, Ethnicity, Marital
status

Age: 11, Gender: 2, Edu-
cation: 16, Race: 4, Eth-
nicity: 3, Marital status:
4

NA Age - 1, Gender - 1, Edu-
cation - 1, Race - 1, Eth-
nicity - 1, Marital status -
1

DX Diagnosis at baseline and
subsequent time points

Baseline: 3, Month 6, 12,
24: 4

NA Baseline - 0.619, Month
6 - < 0.001, Month 12 -
< 0.001, Month 24 - <
0.001

Table 4.2: Feature groups defined for ADNI dataset, number of bins for each feature, and MSE for each autoen‐
coded feature. P‐values correspond to a Chi‐square test (null hypothesis: synthetic and real patient samples come
from the same distribution). P‐values were corrected for multiple testing using Bonferroni Holm’s method. Note
that p‐values tend to become smaller the more samples are tested. ∗ Features considered as time‐dependent. NA
(not applicable).

Annotation for clinical visit Months
bl Baseline
m06 Month 6
m12 Month 12
m24 Month 24

Table 4.3: Description of suffixes of variable names in ADNI

Calculation of cortical brain region volumes in ADNI

All available MRI scans (T1-weighted scans) from the ADNI database were quan-
tified by an open-source, automated segmentation pipeline at the Erasmus Univer-
sity Medical Center, The Netherlands. The number of slices of the T1w scans var-
ied from 160 to 196 and the in-plane resolution was 256 × 256 on average, yielding
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an overall voxel size of 1.2 × 1.0 × 1.0 mm. From the 1715 baseline ADNI scans, the
volumes of 34 bilateral cortical brain regions, 68 structures in total, were calculated
using a model and surface-based automated image segmentation procedure, incor-
porated in the FreeSurfer Package (v.6.0, https://surfer.nmr.mgh.harvard.edu/).
Segmentation in Freesurfer was performed by rigid-body registration and nonlinear
normalization of images to a probabilistic brain atlas. In the segmentation pro-
cess, each voxel of the MRI volumes was labeled automatically as a corresponding
brain region based on a cortex parcellation (subdivision) guide. In this case, the
cortical parcellation method, implemented by Desikan and Killiany in 2006 [160],
was used for brain segmentation. For the subdivision of the human cerebral cortex
into gyral-based regions, Desikan and Killiany manually identified the 34 cortical
regions in the individual hemispheres. This information was encoded into an atlas
that was utilized to automatically label region of interest (ROI)s. Desikan and
Killiany showed that compared to manual segmentation, their automated method
reached an intra-class correlation coefficient (ICC) of 0.835 across all of the ROIs.
The mean distance error was less than 1 mm.

PPMI

PPMI was launched in the year 2010 by Michael J.Fox Foundation and a core group
of scientists and industry partners with a mission to identify biomarkers of PD,
onset, and progression (https://www.michaeljfox.org/ppmi-clinical-study). It
is a landmark study in the field of PD that brings together collaborators from
around the world to create a robust open-access data set and biosample library
(https://www.ppmi-info.org/about-ppmi). The aim of this collaborative work
is to speed up scientific breakthroughs and new treatments. As this data has
open-access data sharing, it also helps to provide a deeper understanding of the
disease and informed design of many therapeutic trials. PPMI is a multi-modal,
longitudinal observational, multi-center cohort and it assesses the progression of
clinical features, imaging outcomes, biological and genetic markers, and digital
markers across all stages of PD from prodromal to moderate disease. The study
aims to identify markers related to disease progression that can help:

• To accelerate therapeutic trials, further reducing the progression of disability
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caused due to the disease.

• To develop quantitative measures via which an optimal interval change is
established between different stages of the disease (prodromal to PD).

The PPMI cohort additionally consists of multiple cohorts from a network of clini-
cal sites. Specifically, it comprises eight cohorts with different clinical and genetic
characteristics. As of February 2021, 1683 subjects were enrolled in this study.
For up-to-date information on the study, visit www.ppmi-info.org.

In the following text, we give an overview of the subjects and variables we use
for our work for PPMI data and provide summary statistics for the same in Table
4.4.

Overview of PPMI data

Variable N = 362
Age 62 (55, 69)
Gender
Female 122 (34%)
Male 240 (66%)
yearsOfEducation 16.00 (14.00, 18.00)

Table 4.4: Summary statistics of PPMI demographic data are n (%), or median (IQR in brackets), unless specified
otherwise

Here we used data from 362 de-novo PD patients. These untreated subjects were
diagnosed with PD for 2 years or less and showed signs of resting tremor, bradykine-
sia, and rigidity during the last 2 years. The dataset contains 831 clinical variables,
which we categorized into 12 groups, such as patient demographics, patient PD his-
tory, imaging, non-motor symptoms, CSF markers, and UPDRS (see the complete
list and exact definition in Table 4.5). PPMI assesses clinical variables at baseline
and 11 follow-up visits. Noteworthy, some variables were assessed irregularly and
not for all patients, yielding missing values. We generally discarded features with
more than 50% missing values for modeling purposes. Accordingly, there were
12-time points included in our model, but not all variables were available at each
time point (see Table 4.6).
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Group Contained Feature #Bins MSE of au-
toencoder

p.adjust (real vs simu-
lated data)

Patient_ENROL_AGE Age at enrollment 4 NA 1

Patient_Simplified_Gender Child bearing capacity Male, Female NA 1

Patient_Gender Gender Child bearing capacity - yes,
no

NA 1

Patient demographic Gender, Ethnicity- Is subject His-
panic/Latino, Identify self as Am In-
dian/Alaska Native, Identify self as
Asian, Identify self as Black/African
American, Identify self as Hawai-
ian/Other Pacific, Identify self as
White, Race not specified, Origin
population

7 NA 1

Patient PD history Biological Mother, Biological Mother
with PD, Biological Father, Biolog-
ical Father with PD, Full Siblings,
Full Siblings with PD, Half Sib-
lings, Half Siblings with PD, Mater-
nal Grandparents, Maternal Grand-
parents with PD, Paternal Grand-
parents, Paternal Grandparents with
PD, Maternal Aunts and Uncles, Ma-
ternal Aunts and Uncles with PD,
Paternal Aunts and Uncles, Pater-
nal Aunts and Uncles with PD, How
many children do you have, How
many children with PD, PD Family
History, Duration of the disease at
enrollment, Handedness, Number of
years of education

7 NA 1

UPDRS UPDRS- Total Unified Parkinson’s
Disease Rating Scale score

Baseline-2, visit 1- 3, visit 2
-5, visit 3- 2, visit 4- 4, visit
5-2, visit 6-2, visit 7- 2, visit
8- 1, visit 9- 2, visit 10- 2,
visit 11- 6

NA Baseline - 1, visit 1 - 1, visit
2 - 1, visit 3 - 0.34, visit 4 -
0.01, visit 5 - 1, visit 6 - 1,
visit 7 - 1, visit 8 - 1, visit 9
- 1, visit 10 - 1, visit 11 - 1

UPDRS1-Non-motor experiences of
daily living

Baseline-3, visit 1- 3, visit 2
-4, visit 3- 5, visit 4- 4, visit
5-2, visit 6-4, visit 7- 2, visit
8- 2, visit 9- 3, visit 10- 4,
visit 11- 3

NA Baseline - 1, visit 1 - 1, visit
2 - 1, visit 3 - 1, visit 4 - 1,
visit 5 - 1, visit 6 - 1, visit
7 - 1, visit 8 - 1, visit 9 - 1,
visit 10 - 1, visit 11 - 1

UPDRS2-Motor experiences of daily
living

Baseline-3, visit 1- 5, visit 2
-2, visit 3- 3, visit 4- 2, visit
5-6, visit 6-2, visit 7- 2, visit
8 - 5, visit 9- 3, visit 10- 4,
visit 11- 5

NA Baseline - 1, visit 1 - 1, visit
2 - 1, visit 3 - 1, visit 4 - 1,
visit 5 - 1, visit 6 - 1, visit
7 - 1, visit 8 - 1, visit 9 - 1,
visit 10 - 1, visit 11 - 1

UPDRS3-Motor examination Baseline-2, visit 1- 2, visit 2
-5, visit 3- 4, visit 4- 4, visit
5-2, visit 6-2, visit 7- 2, visit
8- 1, visit 9- 5, visit 10- 3,
visit 11- 3

NA Baseline - 1, visit 1 - 1, visit
2 - 1, visit 3 - 0.51, visit 4 -
0.02, visit 5 - 1, visit 6 - 1,
visit 7 - 1, visit 8 - 1, visit 9
- 1, visit 10 - 1, visit 11 - 1
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Group Contained Feature #Bins MSE of au-
toencoder

p.adjust (real vs simu-
lated data)

Medical history WGTKG - Weight (in Kilograms),
HTCM - Height (in Centimeters),
TEMPC- Temperature (in Celsius),
SYSSUP -Supine BP – systolic,
DIASUP - Supine BP – dias-
tolic, HRSUP-Supine heart rate,
SYSSTND-Standing BP – systolic,
DIASTND-Standing BP – diastolic,
HRSTND- Standing heart rate

Baseline -2, visit 1 - 6, visit
2- 7, visit 3 - 7, visit 4- 4,
visit 5 - 4, visit 6 - 4, visit
7 - 3, visit 8 - 4, visit 9- 5,
visit 10 - 4, visit 11- 8

Baseline: 0.019,
Visit 1: 0.015,
Visit 2: 0.013,
Visit 3: 0.016,
Visit 4: 0.018,
Visit 5: 0.015,
Visit 6: 0.018,
Visit 7: 0.016,
Visit 8: 0.019,
Visit 9: 0.017,
Visit 10: 0.016,
Visit 11: 0.010

Baseline - 1, visit 1 - 1, visit
2 - 1, visit 3 - 0.51, visit 4 -
<0.01, visit 5 - 1, visit 6 - 1,
visit 7 - 1, visit 8 - 1, visit 9
- 1, visit 10 - 1, visit 11 - 1

Non-motor DVT_TOTAL_RECALL-Derived-
Total Recall T-Score, DVS_LNS-
Derived-LNS Scaled Score, ESS-
Epworth sleepiness scale, QUIP-
Questionnaire for Impulsive-
Compulsive Disorders in PD,
SCOPA-Scales for outcomes in
Parkinson’s disease-autonomic,
STA-State Trait Anxiety Total Score

Baseline- 2, Visit 2- 6, visit
4- 4, visit 6- 5, visit 8- 4,
visit 10- 3

Baseline: 0.027,
Visit 2: 0.018,
Visit 4: 0.024,
Visit 6: 0.023,
Visit 8: 0.029,
Visit 10: 0.023

Baseline - 1, visit 2 - 1, visit
4 - 0.07, visit 6 - 1, visit 8 -
1, visit 10 - 1

RBD REM Sleep Behavior disorder (RBD) Baseline- 2, Visit 2- 3, visit
4- 3, visit 6- 3, visit 8- 3,
visit 10- 4

NA Baseline - 1, visit 2 - 1, visit
4 - 1, visit 6 - 1, visit 8 - 1,
visit 10 - 1

CSF Abeta 42 (pg/ml) Baseline - 2 NA Baseline - 1

CSF Alpha-synuclein (pg/ml) Baseline -2, visit 2 - 3,
visit4 - 4, visit6 - 4, visit
8 - 2

NA Baseline - 1, visit 2 - 1, visit
4 - 0.52, visit 6 - 1, visit 8 -
1

p-Tau181P (pg/ml) Baseline - 3 NA Baseline - 1

Total tau (pg/ml) Baseline - 2 NA Baseline - 1

t-tau/Abeta 1-42 Baseline - 3 NA Baseline - 1

p-tau/Abeta 1-42 Baseline - 4 NA Baseline - 1

p-tau/t-tau Baseline - 3 NA Baseline - 1

Biological ALDH1A1 (rep 1),ALDH1A1 (rep
2), GAPDH (rep 1), GAPDH (rep
2), HSPA8 (rep 1), HSPA8 (rep
2), LAMB2 (rep 1), LAMB2 (rep
2), PGK1 (rep 1), PGK1 (rep 2),
PSMC4 (rep 1), PSMC4 (rep 2),
SKP1 (rep 1), SKP1 (rep 2), UBE2K
(rep 1), UBE2K (rep 2)

Baseline - 4, visit 8 - 6 Baseline: 0.011,
Visit 8: 0.007

Baseline - 1, visit 8 - 1

Imaging MRI results 3 NA Baseline - 1

Table 4.5: Feature groups defined for PPMI dataset. = treated as individual variables. For UPDRS “off‐medication
scores” were used. P‐values correspond to a Chi‐square test (null hypothesis: synthetic and real patient samples
come from the same distribution). P‐values were corrected for multiple testing using Bonferroni Holm’s method.
Note that p‐values tend to become smaller the more samples are tested.

The annotations for clinical visits for PPMI data are described in Table 4.6.
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Annotation
for clinical
visit

Months

V00 Baseline
V01 Visit 01 (Month 3)
V02 Visit 02 (Month 6)
V03 Visit 03 (Month 9)
V04 Visit 04 (Month 12)
V05 Visit 05 (Month 18)
V06 Visit 06 (Month 24)
V07 Visit 07 (Month 30)
V08 Visit 08 (Month 36)
V09 Visit 09 (Month 42)
V10 Visit 10 (Month 48)
V11 Visit 11 (Month 54)

Table 4.6: Description of suffixes of variable names in PPMI

4.3.2 Dimensionality reduction via MBNs using sparse autoencoders

Dimensionality reduction is performed using sparse autoencoders. For this purpose,
the group of features to which each feature belongs was defined as illustrated in
Table 4.2 for ADNI and Table 4.5 for PPMI.

As described earlier, learning the true CPDAG structure is NP hard [96]. Lon-
gitudinal observational cohorts like ADNI and PPMI have many variables and
limited sample sizes. These types of data structures require the CPDAG structure
to limit the space of potential networks substantially. For this purpose, the type
of networks known as module networks has been introduced [121]. These networks
have been described in detail in Chapter 2. The key idea in Module Networks is to
group variables into modules, which share parameters. During the BN structure
learning process, only edges between modules are learned. In our case, modules
comprised e.g. imaging related features, plasma biomarkers, SNPs, medical his-
tory, cognition scores, etc (Table 4.2 and 4.5). The key question is, how to learn
and encode a shared distribution for a module. In their original publication, Segal
et al. relied on the assumption of normally distributed data (such as gene expres-
sion) and employed decision trees to represent modules [121]. In this work, we
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used sparse autoencoders, which can weigh the influence of different variables on
the aggregate module score. Furthermore, autoencoders do not make any distri-
bution assumption. We enforced sparsity in the network by introducing drop-out
units in the input layer. Furthermore, we used an l2 penalty for all weights. We
constructed a separate sparse autoencoder for every variable group and different
combinations of activation functions were tested via a grid search. Grid search also
involved the tuning of l2 penalty and drop-out ratio of input units. Autoencoders
were trained for brain volumes, cognitive scores, CSF features, SNP features, and
cortical brain regions for ADNI data (Table 4.3); and medical history, non-motor,
and biological features for PPMI data (Table 4.5). The loss function optimized by
the autoencoder networks was the MSE. Tuned hyper-parameters of autoencoder
networks included the activation function (rectified linear unit or hyperbolic tan-
gent), the input dropout ratio (0%, 5%, 20%, 50%), l2 penalty (10-4,..., 104), and
the network architecture. More specifically, we tested the following architectures:

• One hidden layer with one hidden unit.

• Two hidden layers: first layer with n/2 units, second with one hidden unit.

• Three hidden layers: first layer with n/2 units, second with n/4 units, and
third with one hidden unit.

For each combination of hyper-parameters, a separate autoencoder training was
performed for at most 500 epochs, but stopped earlier, if the MSE did not improve
for 5 rounds. The best autoencoder model was selected according to the MSE
criterion. We here relied on the h2o autoencoder implementation (http://docs.
h2o.ai/). Tables 4.3 and 4.5 show the MSE obtained for each autoencoded module.
To understand the influence of individual features on each of the autoencoder
networks, we applied the method by Gedeon et al. [161], which is based on the
idea that the relative contribution of the ith input to the jth output of a neuron
can be estimated by:

Pij =
|Wij|∑
p|Wpj|

(4.1)

where the sum runs over all inputs of the neuron. Pij can be regarded as the
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weight of the edge i → j in the neural network graph. Now assume that j itself
feeds into a further neuron k. Gedeon [161] suggests to estimate the overall impact
of i on k by:

Pik =
∑
r

PirPrk (4.2)

That means we take the product of edge weights along a path connecting i and
k and sum over all alternative paths. The definition can directly be extended to
deeper networks.

4.3.3 Dealing with missing data

As ADNI and PPMI are most likely a combination of MAR and MNAR mech-
anisms, missing data was dealt in a similar way as described in chapter 3. The
difference here is that instead of individual variables, we grouped the variables
in the form of modules, and therefore, we introduced one auxiliary variable for
each variable group/module and visit to account for patient drop-out, i.e. MNAR.
Moreover, in the case of features that are assessed at different visits, we enforced
auxiliary variables to point from one to the next visit. For example, in ADNI
dataset we introduced auxiliary variables for brain volume measurements at base-
line, visit at the 6th month, visit at the 12th month and visit at the 24th month.
Accordingly, the auxiliary variable for the feature “brain.bl” (brain volume at base-
line) was also a parent of the auxiliary variable for the feature “brain.m06” (brain
volume at month 6) (Figure 4.2). Details about the precise definition of auxiliary
variables used in our work can be found in Tables 4.7 and 4.8 for ADNI and PPMI
respectively.
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Figure 4.2: Temporal dependency of auxiliary variables (rectangles). The solid line is prescribed, and the dashed
line may be inferred from the data. BL and 6m depict baseline and month 6 respectively.

Auxiliary variable Target variables
brainvol.bl.aux brain.bl
brainvol.m06.aux brain.m06
brainvol.m12.aux brain.m12
brainvol.m24.aux brain.m24
CogScore.m06.aux Cog.m06
CogScore.m12.aux Cog.m12
CogScore.m24.aux Cog.m24
brain68.aux brain68.bl
snp.aux SNP

Table 4.7: Auxiliary variables defined for ADNI dataset
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Auxiliary variable Target variables
CSF_aux_V00 Abeta.42_V00, Alpha.synuclein_V00,

p.Tau181P_V00, Total.tau_V00,
tTau.Abeta_V00, pTau.Abeta_V00,
pTau.tTau_V00

Biological_aux_V00 Biological_V00

Biological_aux_V08 Biological_V08

UPDRS_aux at V01 to V11 UPDRS1, UPDRS2,UPDRS3, UPDRS ( V01 to
V11)

MedicalHistory_aux ( V01
to V11)

Medical History features at V01 to V11

NonMotor_aux ( V02, V04,
V06,V08,V10)

NonMotor features (V02, V04, V06,V08,V10)

Table 4.8: Auxiliary variables defined for PPMI dataset

4.3.4 Imposing Constraints on Network Structure

As described earlier it is important to restrict CPDAG equivalence class as much
as possible by prior knowledge to allow the correct orientation of as many edges
as possible. In our case we specifically imposed the following constraints for BN
structures:

• Demographic and other clinical baseline features (age, gender, ethnicity) can
only influence other features, but they are not influenced by themselves.

• Medical history in PD can depend on motor, non-motor, and other clinical
features.

• Imaging features can be related to each other, but they don’t influence other
features.

• Clinical diagnosis in AD is dependent on cognitive assessment scores, but
not vice versa.
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Figure 4.3: Potentially allowed edges between different variable groups in ADNI.

• Clinical outcome measures (e.g. UPDRS for PD) can influence imaging and
in PD they can be mutually correlated with the assessment of non-motor
symptoms.

• Biomarkers, including genomic features, can influence all features, except for
clinical baseline features.

• Longitudinal features must follow the right temporal order, i.e. there are no
edges pointing backward in time.

• Auxiliary variable for a particular feature/group can only influence its corre-
sponding feature/group and the auxiliary variable for the same feature/group
at the next time point (see last section and Figure 4.2).

Figures 4.3, and 4.4 schematically depict the set of potentially allowed edges, which
we defined between variable groups for the AD and PD datasets used in this work.
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Figure 4.4: Potentially allowed edges between different variable groups in PPMI.

4.3.5 Data Discretization

Structure learning with BNs is only computationally efficient, if all variables follow
a Gaussian or multinomial distribution, because then the marginal log-likelihood,
integrating out model parameters, can be computed analytically [67]. Since in
our case we had highly heterogeneous data, where many features were clearly
non-Gaussian, we decided to perform data discretization. In the case of ADNI
study, this was done via a supervised, decision tree-based approach [162], where
baseline diagnosis of patients (CN, MCI, or AD) was taken as a label. In the
case of PPMI study, all patients had a de-novo PD diagnosis. Accordingly, we
here employed an unsupervised univariate clustering via gaussian mixture models
(GMM) for discretization purposes. Both methods result in a variable number of
discrete values for each feature (Tables 4.1, and 4.3). For comparison reasons, we
also conducted BN structure learning without any discretization while assuming a
Gaussian distribution for each continuous variable, see details in the next section.
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Figure 4.5: Comparison of different BN structure learning algorithms via 10‐fold cross‐validation for ADNI dataset.
The y‐axis depicts the negative log‐likelihood of the test data.

4.3.6 BN Structure and Parameter Learning

We learned the network on six different algorithms from R-package bnlearn [113]
hc, MMHC, tabu search, MMPC, RSMAX2 and SI-HITON-PC(described in detail
in Chapter 2). Tabu search was identified as the best performing BN structure
learning algorithm for ADNI and hc for PPMI for discretized data (Figures 4.5,
4.6). This is in agreement with recent findings that in most situations score based
search methods are superior to constrained-based ones [163]. Given a learned BN
topology, parameters can then be inferred using a Dirichlet prior to account for
parent-child node configurations that are not observed [109]. BN structure and
parameter learning was executed via the R-package bnlearn [164].
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Figure 4.6: Comparison of different BN structure learning algorithms via 10‐fold cross‐validation for PPMI dataset.
The y‐axis depicts the negative log‐likelihood of the test data. The two Markov Blanket learning algorithms
(SI‐HITON‐PC, MMPC) are not shown, because their implementation in the bnlearn package resulted in an er‐
ror message.
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When omitting data discretization, we end up in a BN with a mixture of Gaus-
sian and discrete nodes (hybrid BN). To allow for a direct comparison with BN
structure learning after discretization, we used the same structure learning algo-
rithms. In addition, score-based search algorithms have empirically been found
to show a more robust behavior in terms of network reconstruction accuracy
than constraint-based methods for mixed discrete/continuous data, specifically
for smaller sample sizes [165].

4.3.7 Simulation of Synthetic Patients

As described in Chapter 3, given a BN with learned parameters, a synthetic patient
can be simulated by first drawing random values from parent node distributions
and subsequently from their child node distributions while conditioning on the
values of the parents. Each synthetic patient thus corresponds to a vector of
features, which follow the conditional statistical dependencies learned by the BN.
If the BN is learned from discretized data, then also each virtual patient’s feature
vector is discrete.

We generated synthetic data in two ways and compared the results:

• Non-conservative method: Here we directly drew the synthetic data from
the BN by the approach described above.

• Conservative method: A general concern at this point is that synthetic sub-
jects could show differences from real subjects either due to insufficient model
fit or due to the existence of confounding factors that are not part of the
observed data, resulting in biases in BN parameter estimates. To account for
this aspect we developed a scoring scheme, which could help to exclude unre-
alistic synthetic subjects directly after simulation. This was done by training
an RF classifier [166], which puts 100 times more weight on correctly classify-
ing original patients than simulated ones. The weighted RF classifier assigns
to each synthetic subject a probability/confidence score to fall into the real
patient distribution. In this way, we here excluded synthetic subjects that
showed a lower than 50% probability to fall into the real subject distribution
and could thus be regarded as outliers. The whole procedure of simulating
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subjects and excluding seemingly unrealistic ones can be run iteratively until
a desired number of synthetic subjects have been generated.

4.3.8 Classifier trained on AD and PD subjects to evaluate syn-
thetic data

To validate our synthetic data generation scheme we generated the same number
of synthetic as well as real subjects for ADNI and PPMI and then asked whether
a conventional RF classifier was able to separate between synthetic and real sub-
jects within a 10 times repeated 10-fold cross-validation scheme. That means we
sequentially left out 1/10 of subjects and trained an RF on the remaining subjects
to learn the discrimination between real and synthetic subjects. We used the left-
out portion of the data to assess the prediction performance of the RF. We used
the pAUC at a pre-specified true positive rate of 90% for real patients as a mea-
sure of the prediction performance. That means we looked at AUC-ROC at which
the detection rate for a real patient was between 90% and 100%. This was done
to account for the fact that misclassification of a synthetic patient as real would
be far less relevant than the other way around. Following the implementation in
R-package pROC [167] the pAUC is a measure in the interval [0, 1], where 0.5
represents the chance level.

4.3.9 Simulation of counterfactual interventions in BN

Judea Pearl developed a well-established theory for modeling and simulating inter-
ventions into BNs [95]. Assume we want to predict the intervention effect of Xk = x
on the remaining random variables in the BN, i.e. P(X1, ...,Xk1,Xk+1, ...,Xn|do(Xk =

x)). Pearl demonstrated in his work that this intervention effect can be computed
by estimating the conditional probability distribution P(X1, ...,Xk1,Xk+1, ...,Xn|Xk =

x) within a mutilated BN, in which all incoming edges into Xk have been deleted.

In practice, we used logic sampling [168] for estimating the conditional prob-
ability distribution P(X1, ...,Xk1,Xk+1, ...,Xn|Xk = x) in the mutilated BN. Logic
sampling instantiates all the nodes in a BN by sampling from the prior distribu-
tion and removes all samples that are not compatible with the evidence [169].
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4.4 Results

4.4.1 BN structure reflect expected causal associations

To gain a better understanding of the variable dependencies learned by our BN
models we performed a non-parametric bootstrap [154] similar to the one explained
in Chapter 3. Figure 4.7 and Figure 4.8 depicts the network structure learned by
ADNI and PPMI data respectively. As expected, edges connecting variables, which
represent the same group of features (e.g. UPDRS, CSF biomarkers, brain volume
measurements) at different visits were inferred more stable than edges between dif-
ferent variable groups. That means BN structure learning was able to learn stable
longitudinal dependencies in the data. This is for e.g. marked by the connections
between variables DX.bl (baseline diagnosis), DX.6 (diagnosis at 6 months), DX.12
(diagnosis at 12 months), and DX.24 (diagnosis at 24 months) in ADNI. Clinical
diagnoses at each time point are dependent on cognitive impairment scores at the
same time point because the clinical diagnosis of dementia in practice is done on
the basis of such tests. In addition, in ADNI stable connections between genotype
(SNPs) and baseline diagnosis, cognitive impairment scores (Cog.bl), and amyloid
PET scan diagnostics fluorodeoxyglucose (FDG) were found. We investigated the
relative influence of individual SNPs in the sparse autoencoder network output to
understand these connections better. This was done via the method described in
[161], see “Methods” section for more details. Altogether, there was a non-zero
influence of all 110 SNPs plus APOE4 status in the SNP group. The most relevant
SNP (rs9384488) has been associated with quantitative global cortical Abeta load
[170]. Abeta plaques are one of the hallmarks of AD, and Abeta measurements
are part of the CSF variable group, hence providing an interpretation of the SNP
→ CSF edge in our BN as well as SNP → FDG.

In PPMI the edge of UPDRS1 to non-motor symptoms reflects (found in about
500/1000 BN reconstructions) the fact that the UPDRS scoring system comprises
three parts, and the first part captures non-motor symptoms (cognitive function,
behavior, and mood) [171]. Similarly, the stable edge between non-motor symp-
toms and RBD can be explained by the fact that sleeping disorder assessment is
part of non-motor symptom-related variables in PPMI. In summary, BN structures
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learned by our models reflected expected variable dependencies in both datasets.

Figure 4.7: Variable dependencies identified in ADNI dataset in more than 100/1,000 bootstrapped BN recon‐
structions (dashed lines; relative frequency = edge label). Solid edges indicate variable dependencies that are
found commonly in bootstrapped BN reconstruction and the final BN topology.

4.4.2 Synthetic AD and PD patients looks realistic

Figure 4.9 and 4.10 demonstrates that for both, ADNI and PPMI, the cross-
validated classification performance is used to detect synthetic subjects not clearly
better than the chance level. It reflects the performance of both non-conservative
and conservative methods. We observe from the figure that the conservative
method performs better than the non-conservative method. We also generated
more synthetic data using the conservative method. This was done five times and
we generated 1368, 2278, 5817, and 10878 synthetic subjects. The RF classifier
was trained separately for each case including the actual number of real subjects
(689). We observe from Figures 4.11 and 4.12 that the classifier was not able to
distinguish between real and synthetic data for all five cases.
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Figure 4.8: Variable dependencies identified in PPMI dataset in more than 100/1000 bootstrapped BN reconstructions (dashed lines) and the final BN (learned
on the entire dataset, red lines), respectively. Solid edges indicate variable dependencies that are found commonly in bootstrapped BN reconstruction and the
final BN topology. Auxiliary variables are not shown to simplify the representation.
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Figure 4.9: Performance of a RF to correctly identify synthetic subjects, measured via the partial area under ROC
curve (pAUC) at a pre‐specified detection rate of ≥ 90% for real patients. The pAUC was assessed on test
sets within 10 repeats of a 10‐fold cross‐validation procedure. Accordingly, boxplots show the distribution of
the 10‐fold cross‐validated pAUC that was obtained from 10 repeats of the cross‐validation procedure. The left
plot shows the performance when the SC is obtained by directly drawing from the BN. The right plot shows the
performance when using our suggested conservative approach.
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Figure 4.10: Performance of a RF to correctly identify synthetic subjects, measured via the partial area under
ROC curve (pAUC) at a pre‐specified detection rate of≥ 90% for real patients. The pAUC was assessed on test
sets within 10 repeats of a 10‐fold cross‐validation procedure. Accordingly, boxplots show the distribution of
the 10‐fold cross‐validated pAUC that was obtained from 10 repeats of the cross‐validation procedure. The left
plot shows the performance when the SC is obtained by directly drawing from the BN. The right plot shows the
performance when using our suggested conservative approach.
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Figure 4.11: Performance of RF classifier to correctly identify a given number of real ADNI patients among syn‐
thetic subjects. The performance was measured via the pAUC at a pre‐specified detection rate of≥ 90% for real
patients. The pAUC was assessed on test sets within 10 repeats of a tenfold cross‐validation procedure. Accord‐
ingly, boxplots show the distribution of the tenfold cross‐validated pAUC that was obtained from 10 repeats of
the cross‐validation procedure.
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Figure 4.12: Performance of RF classifier to correctly identify a given number of real PPMI patients among syn‐
thetic subjects. The performance was via the pAUC at a pre‐specified detection rate of≥ 90% for real patients.
The pAUC was assessed on test sets within 10 repeats of a tenfold cross‐validation procedure. Accordingly, box‐
plots show the distribution of the tenfold cross‐validated pAUC that was obtained from 10 repeats of the cross‐
validation procedure.

4.4.3 Simulating an intervention in a SC

As pointed out earlier, the final BN structure learned from ADNI represents ex-
pected dependencies between variable groups and indeed all of these dependen-
cies can be regarded as causal (Figure 4.7, solid edges): In particular, note that
the effect of genotype (SNPs) on cognitive assessment scores (Cog.bl), amyloid
PET scan diagnostics (FDG.bl) and baseline diagnosis can only be interpreted
causally. Likewise, the influence of gender on subcortical brain volumes can
only be interpreted causally, although there potentially exist mediators such as
longevity (women on average live longer than men). To further exemplify the use

108



of our causal BN, we simulated an intervention for dementia and MCI patients at
baseline that shifted their cognition scores (Alzheimer’s disease assessment scale-
Cognitive subscale (ADAS)11, ADAS13, MMSE, clinical dementia rating sum of
boxes (CDRSB), FAQ, rey auditory verbal learning test (RAVLT)) towards the
median score of the CN patients (n = 423), e.g. the effect via a drug. We encoded
perturbed cognition scores via the autoencoder model that we had trained earlier
on cognition scores of real subjects. We then simulated the same number of syn-
thetic subject trajectories as real subjects while conditioning on the shift in study
baseline cognitive assessment scores. That means we used the perturbed cognition
scores of real subjects and then sequentially drew data for each dependent variable
using the conditional probability tables (i.e. BN parameters) learned by our model.
This implies that the intervened node becomes statistically independent from its
parents, i.e. all incoming edges of variable Cog.bl are deleted in the intervened
network [95]. Figure 4.13 demonstrates, how the effect of our counter-factual im-
provement of cognition scores at baseline resulted in an expected significant shift
of diagnoses toward CN or MCI throughout the study. Hence, our simulation of a
“perturbed” ADNI cohort underlines the validity of our BN model. Altogether this
example underlines the validity of our BN models and demonstrates the possibility
of qualitatively studying intervention effects in-silico.
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Figure 4.13: Simulation of a SC with an intervention: The figure shows diagnostic labels of 689 real ADNI subjects
(red) and of a simulated cohort of the same size (blue) at different visits. The cognitive assessment scores of
the simulated cohort have been shifted at baseline. MCI, NL (CN); unknown, unknown diagnosis/diagnosis not
reported.

4.5 Conclusion

This work demonstrates an application of a realistic simulation of synthetic clinical
subject trajectories across multiple biological scales and data modalities outside
the area of mechanistically well-understood biological processes. This was achieved
via a combination of deep learning techniques (sparse autoencoders) to significantly
reduce the input dimensionality of our data and BN learning. We also showed that
our SC approach allows for simulating interventions and studying their downstream
effects in a qualitative manner in-silico. Such an approach could help the design
of future clinical studies because it allows for assessing, which variables or variable
groups are more likely to show differences after a planned intervention (e.g. with
a drug).

Our proposed approach is not without limitations: MBN structure learning
requires defining variable groups and constraints on the network structure, which
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implies a detailed understanding of the data. Moreover, we typically need to
discretize input data to account for non-linearities between input variables while
making BN structure and parameter learning at the same time computationally
efficient. BN structure and parameter learning require sufficiently large datasets
that are representative of the disease population. In addition, our method uses a
sparse autoencoder-based aggregation of input features into variable groups, which
naturally implies computational costs and a certain loss of information. Drawings
of synthetic patients from the MBN model thus make the re-identification of real
patients from the training data relatively unlikely. However, in its current imple-
mentation, our approach does not provide strict theoretical guarantees for this
situation. But, we would like to point out that privacy-preserving training of
neural network models is possible in principle [172] and is discussed in chapter 5.
Training all sparse autoencoders via the modified stochastic gradient descent algo-
rithm proposed by Abadi et al. provides theoretical guarantees for the data privacy
of our entire MBN model. In future work, we will explore this aspect further and
make an according implementation available. Altogether, the work presented here
can only be seen as an extension to the proof of concept for the idea of simulating
realistic multi-scale, multi-modal SCs, and further methodological advancements
are necessary.
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Failure will never overtake me if my determina-
tion to succeed is strong enough.

Dr. APJ Abdul Kalam

5
Variational Autoencoder Modular

Bayesian Network

This chapter is adapted from our work in “Gootjes-Dreesbach, L., Sood, M., Sahay,
A., Hofmann-Apitius, M., Fröhlich, H. (2020). Variational autoencoder modular
Bayesian networks for simulation of heterogeneous clinical study data. Frontiers
in Big Data, 3, 16.”

5.1 Motivation behind the developed approach

This method is an extension of the previously developed method with MBNs and
sparse autoencoders. We have developed this method as an improvement on the
previous method and to serve the purpose of sharing patient data and dealing
with the challenges of data privacy. Our focus here is on data-driven, model-
based simulations of synthetic patients across biological scales and modalities (e.g.,
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clinical, imaging) where no or little mechanistic understanding is available and
required. Our novel proposed method [VAMBN] is a combination of a BN [173]
with modular architecture and a VAE [82] encoding defined groups of features
in the data. This approach also allows for generating synthetic patients under
certain theoretical guarantees for data privacy [174]. VAEs have recently been
extended to deal with heterogeneous multimodal and missing data [175], which
is a common situation in clinical studies. VAEs are generative because drawings
from the latent distribution can be decoded again. Our suggested approach aims
to combine the advantages of BNs and VAEs while mitigating their limitations
(Figure 5.1). The key differences to the previous approach are that here we used
regularized version of classical autoencoders where i) No discretization is required
and ii) it is possible to model arbitrary statistical distributions of heterogeneous
data types within each module. In consequence, synthetically generated subjects
now lie on the same numerical scale as original patient data.

Following the idea of module networks [176, 121], we first define modules of
variables that group together according to the design of the study. For example,
demographic features, clinical assessment scores, medical history, and treatment
might each form such a module. This means that we assume the grouping of
variables into modules to be known and defined upfront. Our aim is then to
learn an MBN between variables in these modules. Because of its generative
property, we use HI-VAEs, rather than regression trees to represent conditional
joint distributions of variables within each module [175]. Each HI-VAE is thus
only trained on a small subset of variables, hence significantly reducing the number
of network weights compared to a full HI-VAE model for the entire dataset and
allowing for applying the well-established “do” calculus for simulating interventions
[95]. VAMBN also allows for simulating synthetic subjects by first drawing a
sample from the BN and second by decoding it through the VAE representing the
corresponding module.
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Figure 5.1: Conceptual overview about VAMBN approach: In the first step, a low‐dimensional representation
of known modules of variables is learned via HI‐VAEs. The same group of variables (e.g., module 2) may have
been assessed at different visits of the study, for example, visits 1 and 2. Accordingly, we get a low‐dimensional
representation of module 2 at visit 1 and module 2 at visit 2. In a second step, a BN is learned between low dimen‐
sional representations of modules, such that the temporal ordering of visits is considered and further constraints
explained later are fulfilled. We call the resulting structure an MBN. The MBN explicitly models missing data at
specific visits. Synthetic patients can be generated by sampling from the MBN and the HI‐VAEs for each module.
The “do” calculus allows for the simulation of counterfactual interventions into synthetic cohorts, such as adding
features from another dataset. We carefully validate synthetic cohorts by comparison against real patients.

5.2 Methodology

5.2.1 Overview of the datasets used

PPMI

Here, we used data from 362 de novo PD patients and 198 healthy controls. All
PD patients were initially untreated and diagnosed with the disease for 2 years
or less. They showed signs of resting tremors, bradykinesia, and rigidity. We
used 266 clinical variables measured at 11 visits during 96 months comprising
demographics, patient PD history, dopamine transporter scan (DaTscan) imaging,
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non-motor symptoms, CSF biomarkers (Abeta, α-synuclein, dopamine, phospho
tau (P-Tau), total tau (T tau)), and UPDRS scores.

ADNI

We used 689 subjects, 26 healthy, 321 MCI, and 336 Dementia, with 1 subject
converting from MCI to Dementia subjects at baseline. We used 250 variables, the
same set that was also considered in chapter 4.

5.2.2 Heterogeneous incomplete variational autoencoders

As described in Chapter 2, VAEs were originally developed for homogeneous data
without missing values. However, clinical data within one and the same module
(e.g., demographics) could contain continuous as well as discrete features of var-
ious distributions and numerical ranges, i.e., the data are highly heterogeneous.
Moreover, there could be missing values. Nazabal et al. [175] extended VAEs to
address this limitation. Their HI-VAE approach starts from a factorization of the
VAE decoder according to:

p(x, z) = p(z)
∏
j

p (Xj|z) (5.1)

where x ∈ IRD denotes a D-dimensional data vector, and z ∈ IRK is its K-
dimensional latent representation. Furthermore, xj indicates the jth feature in x.
In the factorization, it is further possible to separate observed (O) from missing
features (M):

p(x|z) =
∏
j∈O

p (Xj|z)
∏
j∈M

p (Xj|z) (5.2)

A similar separation is possible in the decoder step. Accordingly, VAE net-
work weights can be optimized by solely considering observed data (input dropout
model). The input dropout model is essentially identical to the approach we de-
scribed earlier for MBNs.
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To account for heterogeneous data types, Nazabal et al. suggest to set:

p(xj|z) = p (xj|γj = hj (z)) (5.3)

where hj() is a function learned by the neural network, and γj accordingly mod-
els data modality specific parameters (e.g., for real-valued data γj = (μj(z), σ

2(z)).
Moreover, the authors use batch normalization to account for differences in numer-
ical ranges between different data modalities. Finally, Nazabal et al. do not use a
single Gaussian distribution as a prior for z, but a mixture of Gaussians, i.e.:

s ∼ Categorical(π) (5.4)

z|s ∼ N(μ(s), IK) (5.5)

where s is K-dimensional.

Nazabal et al. [175] extended VAEs to address the situation of homogeneity
by developing the HI-VAE approach and we refer to it for more details about their
VAE extension.

Importantly, categorical variables s are added to the MBN graph G as parents
of variables encoding modules. In practice, we kept K at 1 for all modules, resulting
in a single normal distribution for z, with the exception of the demographic data in
both studies. For these modules, K was set to 2. This choice was made after visual
inspection of the embeddings for each of the individual variable groups, indicating
that for modules containing demographic data and neurological examination, K =

2 was the minimal value for which a sufficient fit to the data was possible. This
was likely due to the existence of many categorical features among these variables.

5.2.3 Low dimensional representation of a module

Here, we assume that each low-dimensional representation of a module is the result
of a HI-VAE encoding. We identify low dimensional representations with random
variables X = (Xυ) , υ ∈ V indexed by nodes in a DAG, G = (V,E). This means that
there is a DAG between low-dimensional representations of modules (MBN). In our
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case, random variables represented by nodes, either follow a Gaussian distribution
(we explain the reasons later), or they could be of categorical nature, i.e., follow
a multinomial distribution and not be autoencoded. We impose a restriction at
this point, that a discrete node cannot be the child of a Gaussian one. Under
this assumption, the conditional log-likelihood of the training data D = {xvi|i =
1, ...,N, v ∈ V} given G can be calculated analytically [177]:

log p (D|G) =
∑
v∈V

log p (Xv|Xpa(v)) (5.6)

log p (Xv|Xpa(v)) =
∑
c∈C

lc (Yc) (5.7)

lc (Yc) =
nc
2

(log |
∑
c

|+ k log 2π + 1) + nc log
nc
N

(5.8)

where C is the set of possible partitionings of Gaussian variable Xυ according to the
configuration of its discrete parents, and nc is the number of patients in partition
c. Note that modeling a Gaussian distribution conditional on discrete parents
corresponds to a local analysis of variance (ANOVA) model. The associated design
matrix is denoted as Yc, and k is the number of columns of that matrix.

∑
c
is the

covariance matrix. In a similar way, the local log-likelihood for a discrete node Xυ

with only discrete parents can be computed. We refer to [177] for more details. By
considering, in addition, the number of parameters of the MBN, we can use the
BIC to score G with respect to data D.

5.2.4 Modeling missing data in MBNs

As described before, the pattern occurring mostly in longitudinal observational
cohorts is MNAR and we make use of auxiliary variables to handle such kind of
data. The details are described in Chapter 2. In our MBN framework, auxiliary
variables are fixed parents of all nodes, which contain missing values following an
MNAR pattern. We also define higher-level missing data nodes that show whether
a participant does not have any data for the entire visit. If the auxiliary variable
of a node representing an autoencoded variable group is identical to the missing
visit node, the auxiliary variable itself is removed from the network and the node
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is directly connected to the missing visit node instead. These higher-level nodes
account for the high correlation between the different auxiliary nodes at a visit.
Note that to facilitate modeling in the MBN, auxiliary and missing visit nodes
were only introduced for nodes and visits with more than 5 missing data points in
total.

5.2.5 MBN Structure learning

Most edges in the MBN structure are not known and hence need to be deduced
from data. As discussed earlier that MBN structure learning is NP-hard, the
search space of possible network structures should a-priori be restricted as much
as possible. We follow two essential strategies for this purpose:

1. We group variables in the raw data into autoencoded modules, as explained
above.

2. We impose causal constraints on possible edges between modules.

More specifically, we imposed the following type of constraints that are similar
to those imposed in Chapter 4:

• Modules of demographic and other clinical baseline features (e.g., age, gender,
ethnicity) can only have outgoing edges.

• Modules representing medical history can only depend on the modules men-
tioned in 1 and biomarkers.

• Modules of imaging features can be related to each other, but they do not
influence other modules.

• Modules of clinical outcome measures (e.g., UPDRS) can influence imag-
ing, and they can be mutually correlated with an assessment of non-motor
symptoms.

• Biomarker modules can influence all modules, except for modules of clinical
baseline features.

• Longitudinal measures must follow the right temporal order, i.e., there are
no edges pointing backward in time.
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• Auxiliary and missing visit nodes were connected to their respective coun-
terparts at the next time point, accounting for a correlation between these
measures over time, e.g., through study dropout.

Accordingly, we blacklisted possible edges that could violate any of these con-
straints. We learned the network on six different algorithms from R-package
bnlearn [113]; ’hc’, MMHC, tabu search, MMPC, RSAMAX2, and SI-HITON-
PC(described in detail in Chapter 2). Tabu search was found to be the best
learning algorithm [101]. In addition, it should be noted that due to the typically
small number, variables in the MBN runtime were not a major concern here.

5.2.6 MBN Parameter learning

Given a graph structure G of a MBN parameters (i.e., conditional probability
tables and conditional densities) were estimated via maximum likelihood.

5.2.7 VAMBN: Bringing MBNs and HI-VAEs together

Let v ∈ V be a node in our MBN and Xv the corresponding random variable.
Note that Xv is a low dimensional embedding/encoding of certain variables in the
original input space, Av. The total likelihood p(X,A|G,Θ) given graph G and model
parameters Θ can be written as:

p (X,A|G,Θ) =
∏
v∈V

p(Xv|pa(Xv),Θv)p(Av|Xv,Θυ) (5.9)

where p(Av|Xv,Θv) is the generative model of the data represented by HI-VAE
(it is the decoder distribution). Moreover, pa(Xv) denotes all module nodes plus
(in our case, one-dimensional) categorical δ variables. Hence, p(Xv|pa(Xv),Θυ) is a
normal distribution with mean

mv = Θ(0)
v +

∑
p∈pa(Xv)

Θ(ρ)
v ρ (5.10)

[i.e., modeled via a linear regression with intercept Θv(0) and slope coefficients
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Θ(ρ)
v ], and residual variance vv = Var(Xv-mv). Our aim is to find parameters Θ

maximizing logp(X,A|G,Θ). Using the factorization of this quantity and the typ-
ical assumption of node-wise statistical independence of parameters [67], we can
optimize the total log-likelihood by the following two steps:

1. For all v ∈ V : Θ̂
∗
v = argmax logp (Av|Xv, Θ̂v). This is achieved via training

a HI-VAE model for each module Xv, i.e., optimizing associated network
weights Θ̂v.

2. For all v ∈ V : Θ̃
∗
v = argmax logp (Xv|pa(Xv), Θ̃v). This is achieved by learn-

ing the MBN structure G and associated parameters Θ̃v based on HI-VAE-
encoded modules.

Overall, the training of the proposed VAMBN approach thus consists of the
following steps:

1. Definition of modules of a variable.

2. Training of HI-VAEs for each module. In practice, the training procedure
included a hyperparameter optimization over.

a) Learning rate ∈ 0.01, 0.001

b) Minibatch size ∈ 16, 32

c) Each candidate parameter set was evaluated via a 3-fold cross-validation
using the reconstruction loss as an objective function.

3. Definition of constraints for possible edges in the MBN.

4. Structure and parameter learning of the MBN using encoded values for each
module: Note that by construction; our model for each variable, Xv follows
a mixture of Gaussian distributions. Let s ∼ Categorical(π) indicate the mix-
ture component. Hence, Xv|s is Gaussian. Introducing s into the MBN thus
yields a network with only Gaussian and discrete nodes, and parameter and
structure learning can accordingly be performed computationally efficiently,
as explained before.

We also considered using N(mv, νv) as a prior for Xv instead of the original
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Gaussian mixture prior to training of HI-VAE models in a second iteration of the
entire VAMBN training procedure. In reality, we could not observe a significant
increase in the total model likelihood p(X,A|G,Θ) due to this computationally
more costly procedure. The plots illustrated in Figures 5.2 and 5.3 contrast the log-
likelihoods of real patients after the initial/base training of VAMBN (red) and one
further iteration of the entire VAMBN training (consisting of continued training
of all HI-VAE models with a modified prior and re-estimation of the MBN, blue).
Log-likelihoods shown for HI-VAE models are averaged over all modules ADNI
and PPMI.

Figure 5.2: Log‐likelihoods shown for HI‐VAE models are averaged over all modules of PPMI
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Figure 5.3: Log‐likelihoods shown for HI‐VAE models are averaged over all modules of ADNI

5.2.8 Simulating SC

Samples were simulated from MBN by following steps:

1. Draw samples from the MBN.

2. Decode MBN samples through HI-VAE. Note that a sample drawn from the
MBN represents a vector of latent codes. Decoding maps these codes back
into the original input space.

5.2.9 DP respecting model training

One of our motivations for developing VAMBN was to strengthen the mechanism
for sharing data across organizations that addresses data privacy concerns. Practi-
cally, this could be achieved by sharing either simulated datasets or ready-trained
VAMBN models. However, specifically in the latter case, there is the concern that
by systematically feeding inputs and observing corresponding model outputs, it
might be possible to re-identify patients that were used to train VAMBN models.
This is particularly true for HI-VAEs, which encode groups of raw features. To
deal with this challenge, we applied the concept of DP. DP is a concept developed
in cryptography that poses guarantees on the probability to compromise a person’s
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privacy by a release of aggregate statistics from a dataset [178, 174]: Let A be a
randomized algorithm and 0 < ε, 0 < δ < 1. According to Dwork et al. [174]
A: D→R is said to respect (ε, δ) differential privacy, if for any two datasets D1,
D2 ∈ D that differ only in one single patient and for any output of the randomized
algorithm S, we have

Pr(A(D1) ∈ S) ≤ eε Pr(A(D2) ∈ S) + δ (5.11)

Abadi et al. [172] showed that it is possible to directly incorporate (ε, δ)
differential privacy guarantees into the training of a neural network by clipping
the norm of the gradient and adding a defined amount of noise to it.

It is straightforward to incorporate this approach into the training of each
VAE. Hence, it helps us to provide guarantees on (ε, δ) differential privacy for
the entire VAE because (ε, δ) differential privacy is composable. This means that
the property for a system of several components is fulfilled if all of its components
fulfill (ε, δ) differential privacy [174].

5.3 Results

5.3.1 VAMBN reflects expected causal relationships in PPMI and
ADNI data

As outlined previously, our proposed VAMBN approach results in an MBN that
describes conditional statistical dependencies between groups of variables that are
encoded via HI-VAEs. The next question is to find how statistically stable the
expected causal relationships are. To address this point, we performed a similar
non-parametric bootstrap of the MBN structure learning as described in chap-
ter 3 and chapter 4 [179]. We overlayed this bootstrapped network with the MBN
learned from the complete data to get an overall impression of the learned VAMBN
model as well as the stability of inferred conditional statistical dependencies. Fig-
ure 5.4 and Figure 5.5 highlight that, in both ADNI and PPMI, inferred edges
agree well with expected causal dependencies. In ADNI (Figure 5.4), the cognitive
tests are connected at different time points and they are also connected to the
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brain volumes. Brain volumes are also further connected at different time points.
Age and gender are factors that also affect brain volumes [180, 181]. In PPMI
(Figure 5.5), the RBD sleepiness score and non-motor symptoms mutually influ-
ence each other, and the same holds true for UPDRS. UPDRS is dependent on
age, medical history, and α-synuclein levels in CSF.

Altogether, these examples underline that VAMBN models permit a certain
level of interpretation.

Figure 5.4: Final MBNs learned by VAMBN based on ADNI data. The edges are labeled with the bootstrap fre‐
quencies of each connection. For readability, auxiliary variables and missing visit nodes were removed for the
visualization.

5.3.2 Evaluation of SC

We validate synthetic patient cohorts by comparing them against original patients:

• Marginal distributions of individual variables.

• Correlation structures.

• Expected differences between patient subgroups, e.g., treated vs. placebo
patients.
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Figure 5.5: Final MBNs learned by VAMBN based on PPMI data. The edges are labeled with the bootstrap frequencies of each connection. For readability,
auxiliary variables and missing visit nodes were removed for the visualization.
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Simulated patient trajectories generated by VAMBN are only useful if they
are sufficiently similar to real ones. On the other hand, we clearly do not want
VAMBN to simply regenerate the data it was trained on (which would trivially
maximize similarity to real patients). It is therefore not straightforward to come
up with a criterion or interpretable index to measure the quality of a synthetic
patient simulation.

From our point of view, simulated patients should mainly fulfill the following
criteria:

• Summary statistics (e.g., mean, variance, median, lower quartile, upper quar-
tile) over individual variables should look similar to real ones.

• Correlations between variables in simulated patients should be close to the
ones observed in real ones.

• MBN structures learned from simulated patients should be close to the ones
learned from real ones.

• Treatment effects or other expected outcomes should be similar in simula-
tions, also in terms of effect size.

To assess VAMBN with respect to these criteria, similar to the validations
described in the previous chapters, we simulated the same number of synthetic
subjects as real ones in each study. Figure 5.6 demonstrates that marginal distri-
butions for individual variables were sufficiently similar (but not identical) to the
empirical distributions of real data in both studies.

In addition, the empirical distributions of Pearson correlations in simulated
and real data were close to each other (Figure 5.7). Interestingly, in both cases
(marginal distributions and correlations), the largest differences were observed be-
tween HI-VAE-decoded features of real patients and the original features of the
same patients. Hence, the majority of the “simulation error” can be attributed to
an imperfect fit of HI-VAE models.
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Figure 5.6: Examples of real and simulated/synthetic patients for (A) PPMI and (B) ADNI datasets. The figure compares the marginal distributions of selected
variables for real patients (red), synthetic patients (blue), and real patients decoded via the HI‐VAE model (green). The tables show summary statistics of the
distributions.
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Figure 5.7: Distribution of Pearson correlation coefficients between variables in real patients (red), synthetic pa‐
tients (blue), and decoded real patients (green). Tables show the Frobenius norm of the correlation matrices as
well as the relative error, which consists of the norm of the matrix that is the difference between the decoded real
or synthetic correlation matrix divided by the norm of the original correlation matrix.

As a final assessment of the quality of synthetic patients, we compared known
patient subgroups in simulated and real data. Figure 5.8 demonstrates that, in
PPMI, UPDRS-III scores of simulated PD patients showed similar differences to
healthy controls than in real PD patients.

Figure 5.8: Distribution of PPMI. Distribution of original (purple) and decoded (red) UPDRS‐III scores of real PPMI
de‐novo PD patients at visit 4 in comparison to PPMI healthy controls (blue). MDS‐UPDRS‐III scores of synthetic
PD patients are shown in yellow. The table at the bottom shows differences in MDS‐UPDRS‐III scores between
original PD, decoded real PD, and synthetic PD patients compared to PPMI healthy controls, showing p‐value and
effect size from three Mann‐Whitney U‐tests.
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Altogether, we thus concluded that VAMBN allows for a sufficiently realistic
simulation of synthetic subjects with respect to our three defined criteria. At the
same time, we could confirm that indeed none of the simulated patients were a
simple regeneration of one of the patients in the training data.

5.3.3 Generalizability of VAMBN models

A relevant question is how generalizable VAMBN models are, i.e., whether they are
purely overfitted or whether they can sufficiently describe data in an independent
test set. To address this point, we randomly split data in PPMI and ADNI into
80% training and 20% test. VAMBN models were only fitted to the training
set. We then recorded the log-likelihood of patients in the training and test sets,
indicating a sufficiently good agreement (Figure 5.9). We thus concluded that
VAMBN models are generally not overfitted. This means that the previously
reported agreement of synthetic and real patients cannot just be the result of
overfitting the data with an overly complex model.

Figure 5.9: This figure compares the log‐likelihoods of real patients in a training set (red) and a test set (blue) of
PPMI (top row) and ADNI datasets (bottom row) for the MBN and the HI‐VAE models. The HI‐VAE log‐likelihoods
are based on the participants included in the respective sets after averaging across all separate HI‐VAE models.
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Figure 5.10: Counterfactual simulation of the shift of age 20 years before and after in PPMI.

5.3.4 Simulation of counterfactual scenarios match expectations

Due to its nature as a hybrid of a BN and a generative neural network, VAMBN
allows for the simulation of counterfactual scenarios via the “do” calculus, as ex-
plained in Chapter 4.

In PPMI, making all patients 20 years younger shifts the distribution of UPDRS-
III scores to the left (fewer motor symptoms), whereas making them 20 years older
has the opposite effect (Figure 5.10). Again, this effect matches expectations.

These counterfactual simulations exemplify the possibilities of VAMBN and
at the same time reconfirm that the model has learned the expected variable
dependencies from data because the simulation effects match expectations.

5.3.5 Differential privacy respecting modeling training

As the last point, we investigated differential privacy respecting model training of
VAMBN. As indicated in the Methods section, this can be realized by defining
a certain privacy loss via constants (ε, δ) for each HI-VAE model trained within
VAMBN. Smaller values for these constants generally impose stronger privacy
guarantees but make model training harder. To investigate this effect more quan-
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titatively, Figure 5.11 shows the reconstruction errors of the HI-VAE models for
the ADNI data at the first visit for “cogtest” module as a function of the num-
ber of training epochs and in dependence on different values for ε, δ. It can be
observed that in dependence on these constants, longer training, and more data
are required to achieve the same level of reconstruction error than for conventional
model training without differential privacy.
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Figure 5.11: This figure shows the effects of DP respecting HI‐VAE training on the HI‐VAE step of the model. (Left) reconstruction loss change between DP
and conventional model training for laboratory data at visit 1 for cogtest module at visit 1 ADNI study; (middle) epsilon plotted against reconstruction loss for
different delta values; (right) epsilon over 500 epochs, given different deltas. A noise multiplier of 1.1, norm clipping at 1.6, and a learning rate of 0.01 were used.
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5.4 Conclusion

Sensitive patient data requires high standards for protection as like that rein-
forced by the European Union through the GDPR (https://eur-lex.europa.eu/
eli/reg/2016/679/oj). However, at the same time, these data are instrumental
for biomedical research in the entire healthcare sector. Establishing a mechanism
for sharing data across organizations without violating data privacy is therefore of
utmost relevance for scientific progress. In this work, we build on the idea of devel-
oping generative models to simulate synthetic patients based on data from clinical
studies. A recent publication proposed to train GANs based on a few variables
recorded from more than 6,000 patients in the Systolic Blood Pressure Trial [75].
In contrast, our work focuses on the realistic situation regarding a much smaller
sample size coupled with a significantly higher number of variables, which is com-
mon in many other medical fields, such as neurology. Our results demonstrate
that VAMBN models generally do not overfit and allow for a sufficiently realistic
simulation of synthetic patients. In contrast to GANs, our VAMBN method relies
on explicit modeling of time dependencies, as well as missing and heterogeneous
data. Moreover, VAMBN models can be interpreted via the MBN structure. In ad-
dition, we demonstrated that data privacy respecting model training is in principle
possible with VAMBN.

From a user perspective, we see two important aspects for the successful appli-
cation of our approach:

• A careful understanding of the data and its structure, including the ability
to define variable groups.

• A careful check of the quality of synthetic data, using the approaches sug-
gested in this paper.

Taken together, VAMBN is a new method for the simulation of synthetic co-
horts for which we see a number of interesting future use cases in healthcare:

• Simulation of counterfactual scenarios to help the design of clinical trials.

• Privacy-preserving sharing of data across organizations to help data scientists
understand the structure of sensitive patient data, judge their utility for
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modeling purposes and derive statistical hypotheses that can be verified or
falsified with available real data.

• Training of AI models that can subsequently be tested with available real
data.

• Merging of different synthetic cohorts from the same indication area into
a global synthetic meta-cohort based on overlapping variables. This global
synthetic meta-cohort could be used to,

- identify for a specific real patient within the overall distribution a best
matching synthetic avatar.

- efficiently generate control arms for clinical trials.

Of course, our work is not without limitations: Building VAMBN models re-
quire (in contrast to GANs) a relatively detailed understanding of data and careful
handling of missing values in particular. Our examples have shown that VAMBN
models can in practice already be learned from datasets with comparably small
sample sizes and many variables. Nonetheless, our method, as with any AI-based
approach, is principally dependent on sample size and signal-to-noise ratio in data.
In the extreme case of more variables than samples (high dimensional setting), we
expect VAMBN to become statistically unstable and overfit. From a technical side,
VAMBN implies training multiple neural networks, which usually requires a mod-
ern parallel computing architecture. It thus remains a subject of future research to
investigate how VAMBN models could be made better accessible to practitioners
in order to facilitate their use in a widespread manner.

Overall, we see our work as a useful complement to federated machine learning
techniques, which, together with synthetic patient simulation tools, could help to
break data silos and thus enhance progress in biomedical research.
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Be the change that you wish to see in the world.

Mahatma Gandhi

6
Generation of global meta-cohort for AD

with data derived from digital devices

This chapter is an adaptation of our work in “Evaluating Digital Device Technology
in Alzheimer’s Disease via Artificial Intelligence, Preprint medRxiv, 2021.”

6.1 Data derived from digital devices and sensor technologies

The medical data that are collected via digital devices like smartphones, wearable
devices, and embedded environmental sensors can [182] provide an alternative
path to disease assessment as they allow objective, ecologically valid and long
term follow up with continuous estimation [183]. The evaluation of this aspect
is the goal of innovative medicines initiative (IMI) project, remote assessment of
disease and relapse-AD (RADAR-AD), project (www.radar-ad.org), and the work
described in this chapter is a step towards this direction.
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With the lack of a cure for AD, it has become essential to target the disease at
an early stage [184]. A prerequisite for the differential diagnosis of disease stages of
AD is a distinctive pattern of cognitive and functional impairment [185, 186]. Cog-
nitive impairment is examined through questionnaire-based tests that assess multi-
ple cognitive domains, including attention, memory, language, concentration, etc.,
e.g., the MMSE [187]. Functional impairment is measured by tests like the FAQ,
which is marked by deterioration in activities of daily living (ADLs), such as the
use of technology, managing finances, and shopping [188]. However, questionnaire-
based assessments only provide a subjective snapshot of a patient’s cognitive and
functional abilities, which can vary over time. Hence, digital device technologies,
including smartphone apps, currently receive increasing interest in the assessment
of dementia symptomatology [189, 190]. These technologies can measure features
of disease symptoms remotely and deliver real-time data to healthcare providers
[191]. Digital Measues (DMs), for example, scores reached in an AR game, could
allow for an accurate, quantitative, and objective monitoring of disease symptoms
[192].

As an example of a panel of digital technology, in this work, we focused on a dig-
ital medical device built by Altoida, Inc. [193] that deploys a battery of immersive
AR and motor activities over iOS, and Android smartphones and tablets, including
activities which require the user to place and find objects in a virtual environment.
The activities are designed to put the user under a cognitive load representative
of what they experience when performing complex activity of daily living (ADL).
The device generates several scores, including performance in individual tasks and
derived overall neurocognitive domain scores (backed by the diagnostic and statis-
tical manual of mental disorders, fifth edition (DSM-5) criteria) that can be used
to identify cognitive impairment and neurocognitive disease.

DMs can be collected in two ways [182]:

• Active data collection: It requires the user to be actively involved in inputting
the parameters being measured. e.g. digital e-assessment memory cognitive
test that examines memory on a tablet to detect AD [194]. The measures
derived via this approach are generally targeted at addressing specific metrics
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that are known to be associated with the disease.

• Passive data collection: In this approach, the measures are derived without
active user engagement and it results in continuous real-time data acquisi-
tion. e.g. a smartwatch that is used as a step counter that continuously
assesses the symmetry and length of the steps or a smart ring-based con-
tinuous monitor measuring heart rate variability (HRV). Therefore, active
interaction with smart devices can lead to the generation of a high-frequency
longitudinal data set that can be mined for signatures of the disease, while
users have their own control.

However, the generation of DMs is an expensive process. There have been very
few studies regarding this and before any clinical use, they have to be evaluated by
assessing their relationship to established clinical scores and understanding their
diagnostic benefit. There are very limited studies that focus on the measurement of
clinical data and data generated from digital devices together for the same patients.
This limits our understanding of data derived from digital devices as compared to
clinical data. Considering this challenge, there arises a need to generate a synthetic
meta-cohort where synthetic DMs can be added to the established observational
cohorts for AD such as ADNI.

6.2 Need of a synthetic meta cohort with Digital Measures (DMs)

Here, we are introducing the concept of the meta cohort. Meta cohort consists of
a number of cohorts that are considered as a single entity. As discussed above, we
need to evaluate DMs by assessing their relationship with respect to the established
questionnaire-based scores such as ADLs because both, DMs and questionnaire-
based scores measure the cognitive impairment in the patient. This is a very
important step to evaluate the sensitivity of DMs with respect to clinical outcomes.
There are several studies that are focusing on measuring data for AD via digital
devices but it often becomes difficult to measure the clinical outcomes for the same
set of patients due to limited resources, inclusion and exclusion criteria, or due to
budget problems. We can generate synthetic features in an already existing cohort
that comprises clinical outcomes. This kind of cohort, known as meta cohort
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can bring all the features together, including DMs and clinical which in turn can
assist in establishing and examining connections between these features. Moreover,
this process can help us to establish significant DMs, as we can have their direct
comparison with the clinical outcomes.

In this respect, RADAR-AD follows the ambition to evaluate a broad panel
of digital technologies with respect to their potential for early AD diagnosis while
focusing on ADLs.

The overall ambition of the work presented in this chapter was two-fold:

1. Generation of a meta-cohort by addition of DMs as synthetic features for
ADNI patients.

2. Understanding the relationship between the DMs produced by the Altoida
application and established tests and questionnaires (e.g., MMSE, FAQ/ADLs).

6.2.1 Overview about data from Altoida

Participants were diagnosed with different stages of the disease according to guide-
lines of the revised national institute on aging (NIA) and Alzheimer’s associa-
tion (AA) [195]. The smartphone application combines data from hand micro-
movements™ and microerrors™, gait micro-errors™, visuospatial navigation micro-
errors™, and recent voice parameters. One complete session consists of various
motor function activities, a series of complex AR activities, and speech analysis
[193].

The Altoida test: The Altoida test is a purely smartphone-sensor-based, dig-
ital biomarker-based prediction model, which only includes age, sex, and years of
education to personalize neuromotor index (NMI) on an individual level. Using a
tablet or smartphone device, a person is asked to perform a series of tasks ranging
from simple motoric tasks to complex AR tasks. During these tasks the handheld
device collects telemetry and touch data from the built-in sensors, enabling pro-
filing of hand micromovements, screen touch pressures, walking speed, navigation
trajectory, cognitive processing speed, and more. The motor activities consist of
drawing activities and tapping activities. In the shape drawing activity, the sub-
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ject is asked to draw various shapes (on the touch screen) using their index finger.
In the tapping activity, the subject is first asked to tap a simple series of buttons
(left, right) and then a similar series in which buttons are randomly highlighted.
During these motor activities, eye tracking can be enabled to get more sensor data.
In the AR activities, the subject is asked to walk around the room holding the de-
vice in their hands in front of them. On the screen, the environment is shown,
augmented with digital objects. The subject is asked to virtually place three ob-
jects by clicking a “place” button on the screen while holding the device near a
physical surface such as a table or desk. Afterward, the subject is asked to find
these three objects by holding the tablet close to the location where they placed
the objects. A speech activity can then be (optionally) performed in which the
subject is asked to verbally describe an image. All activities above are performed
twice in a specific order: motor, AR, speech, motor, AR, speech. For more details
on the complete activity battery, please refer to Bugler et al. 2020 [193].

Data analysis for Altoida test: During an Altoida test, the hand-held
device is recording data from various sensors. This raw sensor data is difficult to
interpret and difficult to compare between patients. For the purpose of Alzheimer’s
prediction and cognitive domain scoring, the dimensionality of the data by means
of feature extraction is reduced.

Recorded data: During an Altoida test (sensor) data from the following sources
are recorded:

• ACC, accelerometer, measuring the acceleration in all three axes, relative to
the device with the gravity component filtered out.

• ATT, attitude meter or, gyroscope, measuring the angle of rotation over all
three axes.

• TOUCH, screen touches combined with an estimate of the applied pressure.

• PATH, the trajectory of the device through the physical space, as estimated
by the tablet based on filtering the data of the accelerometer and gyroscope.
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Feature extraction: During the Altoida activity batter, the handheld device
records data from all available sensors for later analysis. Depending on the avail-
able sensors in the device, this data can include accelerometer data, gyroscope
data, screen touches, speech audio recording, screen brightness, ambient bright-
ness, eye tracking, and compass data. Thus, a single session of a single subject
can lead to millions of data points over all sensors. To reduce the large dimension-
ality of the raw sensor data, various feature extraction techniques were applied
depending on the performed test. For example, in the drawing tests, the partic-
ipants were asked to draw a specific shape with their finger on the touch screen.
Given the raw screen touches, various features such as drawing precision, drawing
speed, number of breaks in touches, etc. were extracted. Likewise, during the
AR test accelerometer and gyroscope data were collected which lend itself to a
Fourier analysis. Thus, the obtained frequency magnitudes could again be used
as a feature. The extracted features were subsequently used to assess the overall
cognitive performance of a subject. The performance is presented as a set of scores
over several cognitive domains.

Feature extraction is a data reduction technique aimed at describing the data
as a set of non-redundant and informative metrics. The sensor data described in
the previous section are what we consider “raw” data. Using feature extraction,
interpretable features can be achieved from this raw data. For example, the data
from the accelerometer is just a long list of measured accelerations in all three axes.
By itself, this does not say much about the subject. By means of feature extraction,
for example, micro-tremors from this data were extracted. These micro-tremors
are far more concise and informative than the original raw data.

Sensor data generated from these tests are considered as “raw” and using fea-
ture extraction, we can generate DMs. These measures were subsequently used
to assess the overall cognitive performance of a subject via several cognitive do-
main scores related to perceptual motor coordination, complex attention, cognitive
processing speed, inhibition, flexibility, visual perception, planning, prospective
memory, and spatial memory.

There are 9 derived scores for different cognitive domains explained in the
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following section:

Cognitive domains: The cognitive performance of a subject ranks the subject’s
test performance relative to his/her peers. The performance is presented as a
set of scores over several cognitive domains. To compute, the recorded sensor
data from an Altoida test is reduced into a set of characteristic elements, or data
features. For each of these features, a percentile score is computed by comparing
the participant’s feature value to those of a group of healthy participants of the
same age and sex. Per domain, a specific set of these percentile scores are combined
to form each of the cognitive domain scores.

Altoida currently reports on the following cognitive domains:

• Perceptual Motor Coordination, motor coordination in response to perceived
input.

• Complex Attention, capacity to choose what to pay attention to and what
to ignore.

• Cognitive Processing Speed, speed, and accuracy of information processing.

• Inhibition, ability to overlook stimuli that are irrelevant to the task.

• Flexibility Ability, to transition between thinking about two different con-
cepts.

• Visual Perception, visual search speed, visual perception, and efficiency.

• Planning, the process of thinking about the activities needed to achieve the
desired goal.

• Prospective Memory, ability to remember to carry out intended actions in
the future.

• Spatial Memory, ability to recognize items that previously appeared in phys-
ical space.

Altoida is currently working on new cognitive domains to augment the current
set of domains. These prospective cognitive domains are:
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• Speech and articulation, fluency of speech, and comprehension of visual in-
formation.

• Eye movement, eye focus, and hand-eye coordination.

6.3 Methodology

6.3.1 Overview of Altoida data used for this work

For our analysis, we examined 148 participants, out of which 123 were measured
once, 20 were measured twice, and 5 were measured thrice, leading to a total of 178
subject records. In addition to DMs, for all 148 participants, traditional MMSE
scores were available, which are often used in clinical routines. Table 6.1 provides
an overview of data from Altoida that we use in our in terms of baseline summary
statistics grouped by diagnostic stages.

CN, N =58 MCI, N = 29 MCI at Risk for AD, N = 33 Prodromal AD, N = 15 Dementia,N = 13
Age 66 (60,72) 66 (61, 72) 72 (66, 77) 69 (64, 72) 73 (65, 77)
Gender
Male 38 (66%) 15 (52%) 12 (36%) 5 (33%) 8 (62%)
Female 20 (34%) 14 (48%) 21 (64%) 10 (67%) 5 (38%)
Education (yrs) 13 (11, 16) 10 (8, 15) 12 (8, 15) 10 (8, 19) 9 (6, 12)
Amyloid Pos. 0 (0%) 0 (0%) 33 (100%) 15 (100%) 13 (100%)

Table 6.1: Summary statistics of Altoida demographic and amyloid data grouped by diagnostic stages, data are n
(%), or median (IQR in brackets), unless specified otherwise

6.3.2 Overview of ADNI data

Table 6.2 provides the summary statistics for baseline ADNI data. Participants in
ADNI are on average more educated and older than in Altoida. In ADNI a high
fraction of patients within the MCI and demented groups are carriers of at least
one APOE4 risk allele (MCI: 52%, dementia: 69%). We examined 1445 subjects,
having longitudinal measurements at baseline, months 6, 18, 24, and 36.
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CN, N =440 MCI, N = 735 Dementia, N = 270
Age 74 (71, 78) 74 (68, 79) 75 (71, 80)
Gender
Male 223 (51%) 442 (60%) 151 (56%)
Female 217 (49%) 293 (40%) 119 (44%)
Years of Education 16 (15, 18) 16 (14, 18) 16 (12.25, 18)
apoe4
0 317 (72%) 353 (48%) 85 (31%)
1 113 (26%) 295 (40%) 132 (49%)
2 10 (2.3%) 87 (12%) 53 (20%)
Amyloid
0 358 (81%) 507 (69%) 167 (62%)
1 82 (19%) 228 (31%) 103 (38%)

Table 6.2: Summary statistics of ADNI demographic data, amyloid and APOE4 status grouped by diagnostic stages,
data are n (%), or median (IQR in brackets) unless specified otherwise

The data consisted of three different diagnostic stages:

1. CN. Cognitively normal population.

2. MCI. MCI has been defined in ADNI as follows [196]:1) subjective memory
complaints reported by the study participant, study partner, or clinician; 2)
memory loss according to an education-adjusted WMS-R Logical Memory
Test; 3) global Clinical Dementia Rating (CDR) score of 0.5, and 4) gen-
eral cognitive and functional performance sufficiently preserved such that a
diagnosis of dementia could not be made.

3. AD. For an AD diagnosis, additional criteria according to the MMSE test
and the National Institute of national institute of neurological and com-
municative disorders and stroke - alzheimer’s disease and related disorders
association (NINCDS/ADRDA) had to be fulfilled.

We considered FAQ and MMSE subitem scores as cognitive tests because i)
they are also assessed in the Altoida data (MMSE), ii) reflect ADL (FAQ), and
iii) generally have been suggested to reflect disease progression [197, 198, 199].

We also calculated the genetic burden scores of mechanisms involved in AD by
encoding the SNPs at the molecular mechanism level. We followed the following
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steps to achieve this task. The information related to SNP data was downloaded
from the ADNI server for different subsets of data:

• ADNI 1: 581,500 SNPs from 757 subjects, measured via Illumina Human610-
Quad Bead Chip platform

• ADNI 2/GO: 708,870 SNPs from 432 subjects, measured via Illumina Hu-
manOmniExpress

• ADNI 3: 16,743,712 SNPs from 327 subjects measured via Illumina Omni
2.5M

SNPs were imputed via the Michigan Imputation Server [200] using the haplotype
reference consortium (HRC) reference panel, which consists of 64,976 haplotypes
[201]. SNPs were considered as reliable imputed if the r2 was above 0.3 (default
setting).

Two major databases, phenome-wide association studies (PheWAS) Catalog
[202] and DisGeNet [203] were used to gather AD-associated SNPs. SNPs collected
from both these databases were further extended by those SNPs, which were strong
in Linkage Disequilibrium (r2 > 0.8) via HaploReg (Version 4.1) [204].

In order to map these SNPs to genes, two steps were performed:

• Mapping to genes in closest chromosomal location via HaploReg and using
default settings.

• Via phenome-Wide association studies (eQTL) mapping using gene expres-
sion data from brain tissues obtained from the genotype-Tissue expression
(GTEx) Portal (GTEx Consortium, 2013). Only cis-eQTL was taken into
account.

Subsequently, the multimodal mechanistic signatures for neurodegenerative dis-
eases (NeuroMMSig) knowledge base [205] was used to find those genes that can
be linked to AD-related biological mechanisms. As we required a minimal number
of mechanisms, we selected 20 relevant/well-known mechanisms that also had a
large number of genes in their corresponding network. Then, the corresponding
SNPs were mapped to each of the mechanisms.
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In addition to MMSE and the genetic burden scores [205], we used neuroimaging-
derived features CSF protein measurements (amyloid-beta, tau, and phospho-tau).
We determined the amyloid status of the patients based on the neuroimaging fea-
tures, Florbetapir (AV45) amyloid positron emission tomography (PET) value of
the patients. If patients had an AV45 value >1.11, they were amyloid positive and
negative otherwise [206].

6.3.3 Feature description

The description of MMSE subitem scores and FAQ subitem scores are presented
in Tables 6.3 and 6.4 respectively.

MMSE Subitem scores Description
MMSE Attention Concentration Clinical test used to assess mental function
MMSE Language Tests related to naming a pencil and a watch,

repeating words, and carrying out complex com-
mands like drawing a figure measured

MMSE Memory Recall Registration recall
MMSE Orientation Testing orientation to time and place
MMSE Working Memory Regis-
tration

Testing related to repeating names prompts

Table 6.3: Description of item scores of MMSE in Altoida and ADNI
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FAQ Subitem Scores Description
FAQFORM Assembling tax records, business affairs, or other

papers, Partial score of FAQ
FAQBEVG Heating water, making a cup of coffee, turning off

the stove. Partial Score, FAQ
FAQGAME Playing a game of skill such as bridge or chess,

working on a hobby. Partial Score, FAQ
FAQFINAN Writing checks, paying bills or balancing a check-

book. Partial Score, FAQ
FAQMEAL Preparing a balanced meal, Partial score of FAQ
FAQTV Paying attention to and understanding a TV pro-

gram, book, or magazine, Partial score of FAQ
FAQREM Remembering appointments, family occasions,

holidays, medications, Partial score of FAQ
FAQSHOP Shopping alone for clothes, household necessities,

or groceries, Partial Score of FAQ
FAQTRAVL Traveling out of the neighborhood, driving, or

arranging to take public transportation, Partial
score of FAQ

FAQEVENT Keeping track of current events, Partial Score of
FAQ

Table 6.4: Description of item scores of FAQ in ADNI

6.3.4 Motivation for generation of the meta-cohort and synthetic
feature generation

As observed in Altoida data, it comprises DMs and clinical outcomes such as item
scores of MMSE that were used to assess the overall cognitive performance of a
subject. Despite both types of features being available for all the subjects, it lacks
the features that reflect ADL and the number of subjects is also limited. However,
in ADNI data, we have MMSE features as well as features ADL e.g. FAQ but it
lacks DMs. This motivates us to generate a synthetic meta-cohort for ADNI data
consisting of DMs as synthetic features.

6.3.5 Overview about analysis strategy

The overall strategy of our approach is outlined in Figure 6.1.
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Figure 6.1: Brief workflow of our methodology is described here in 3 steps. 1) Fitting the VAMBN model for
Altoida and ADNI. 2) Generation of global meta‐cohort 3) Testing the classifier on Altoida and ADNI on different
features on real and synthetic data.

1) Fitting a VAMBN model

The Altoida app. results in 11 individual scores for different digital tasks in the
synthetic environment described in Table 6.5. It describes the module names and
their description for Altoida data. As the cognitive domains in Altoida measure
very similar parameters compared to the MMSE subitem scores, there is a very
large number of potential correlations between the Altoida DMs and the 5 different
MMSE subitem scores (illustrated in Table 6.3). To address this issue, in this work
we employed a VAMBN, which results in a quantitative and visualizable network
structure. More specifically, we employed the VAMBN [158] approach which was
described in Chapter 5.
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Module Name Description
AR Global Telemetry Variance The variance in telemetry (accelerometer and gy-

roscope) over the entire duration of the AR test
AR Intro Read Times The time the subject required to read the intro-

duction to the AR test
AR Object Finding Features pertaining to finding an object, such as

time required to find the next object, distance
traveled while searching, etc.

AR Object Placement Features pertaining to placing an object, such as
time taken to find a suitable surface, distance
traveled, holding the device steady, etc.

AR Object Placement FFT Fast Fourier Transform frequency spectrum anal-
ysis of a few seconds prior to placing an object.
These are special enough to warrant their own
group

AR Place and Find Telemetry
Variance

The telemetry variance in the moments before
placing and finding objects. In contrast to the
global telemetry variance, this disregards the
walking periods

AR Screen Button Presses Touch screen data of button pressed during the
AR test, such as pressure, and touch accuracy

Motor Drawing Features Features pertaining to the finger drawing tests
Motor Tapping Features Features pertaining to the finger tapping tests
Motor Test Durations The total duration of each test part
MMSE Attention Concentration Clinical test used to assess mental function
MMSE Language Tests related to naming a pencil and a watch,

repeating words, and carrying out complex com-
mands like drawing a figure measured

MMSE Memory Recall Registration recall
MMSE Orientation Testing orientation to time and place
MMSE Working Memory Regis-
tration

Testing related to repeating names prompts

Table 6.5: Description of the individual scores and their module names for different tasks performed in Altoida
app. and MMSE subitem scores in the synthetic environment

Fitting a VAMBN model consists of several steps:

• Defining interpretable variable groups in both Altoida and ADNI:
DMs and motor scores were grouped into different modules. Demographic
features (e.g., age, sex, etc.) were not grouped into a module as we wanted to
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see their individual effects on other features. Modules and their description
for Altoida data are presented in Table 6.5 and for ADNI are presented in
Table 6.6.

• Learning of a low-dimensional representation of each module:
This was achieved by training a HI-VAE [207]. The result was a GMM
encoding the higher dimensional input data.

• Learning of an augmented BN connecting the modules:
The BN contained additional auxiliary variables to account for missing values
in the data, e.g., due to patient drop-out. We repeated BN learning 1000
times using random subsamples of the data to derive a measure of statistical
confidence [175].

The result of the above three steps was a quantitative network model representing
patient-level data. In the following section, we will describe the details of the
learning procedure.

The VAMBN workflow is elaborated in the following steps:

1. Definition of modules that summarizes the original input features (Tables
6.5 and 6.6)

2. Encoding of modules into lower dimensional latent distributions (multivari-
ate Gaussian) via HI-VAE. The training procedure of HI-VAEs for each
module included a hyperparameter optimization over the following parame-
ters:

a) Learning rate: 0.01, 0.001

b) Mini batch size: 16, 32

c) Weight Decay: 0, 0.001, 0.01

The 3-fold cross-validated reconstruction loss was used as an objective func-
tion to evaluate each candidate parameter set.

3. Structure and Parameter Learning: We followed two essential strategies for
this purpose:
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Module Name Description
csf_VIS1 Abeta, tau and ptau csf biomarkers at baseline

volume_VIS (1,6,12,24) 6 brain volumes, entorhinal, hippocampus, ventricles, whole brain,
middle temporal, and fusiform at baseline, month 6, month 12,
and month 24 (brain volumes were normalized with respect to
intracranial brain volume (ICV))

Imaging_VIS(1) Imaging measures such as fluorodeoxyglucose-positron emission
tomography (FDG PET) and Alzbio3 kits and Florbetapir (AV45)
amyloid PET at baseline

ADAM_Metallopeptidase_subgraph ”rs4575098” ”rs2277027” ”rs1422795” ”rs7174386” ”rs12906705”
”rs28455654” ”rs383902”

Amyloidogenic_subgraph ”rs17571” ”rs676134” ”rs2829946” ”rs2830088”

APOE_subgraph ”rs405509” ”rs439401”

Apoptosis_signaling_subgraph ”rs1136410” ”rs1805411” ”rs1469926” ”rs319724” ”rs827423”
”rs6902771” ”rs8006145” ”rs10144225” ”rs10137185” ”rs2667543”

ATP_binding_cassette_transport_subgraph ”rs1045642” ”rs6949448” ”rs2235046” ”rs1128503” ”rs10276036”
”rs1202169” ”rs1202168” ”rs1202167” ”rs1883023” ”rs2777802”
”rs3818689” ”rs2066715” ”rs2066718” ”rs4149308” ”rs2066717”
”rs4149303” ”rs4149301” ”rs2297399” ”rs2297400” ”rs3824479”
”rs2472384” ”rs2253304” ”rs2253182” ”rs2253175” ”rs2253174”
”rs2253172” ”rs2230806” ”rs2243313” ”rs2482420” ”rs2487058”
”rs2487059” ”rs2230805” ”rs3847300” ”rs3847303” ”rs3905000”
”rs2575876” ”rs12826” ”rs7067971” ”rs11190305” ”rs1283816”
”rs1283817” ”rs829079” ”rs1283822” ”rs3752229” ”rs3752232”
”rs3764650” ”rs3752240” ”rs3752242” ”rs2279796” ”rs4147932”

Axonal_guidance_subgraph ”rs1354269” ”rs12364788” ”rs17614100” ”rs7112354”

Caspase_subgraph ”rs2027432” ”rs10159239” ”rs12130711” ”rs1143634” ”rs2276575”
”rs13430599” ”rs10194375” ”rs13426725” ”rs17014923”
”rs6743470” ”rs4663098” ”rs7561528” ”rs744373”

Chemokine_signaling_subgraph ”rs1024611” ”rs991804”

Cholesterol_metabolism_subgraph ”rs5174” ”rs3737983” ”rs2297663” ”rs2297660” ”rs3820198”
”rs7551288” ”rs9371201” ”rs1799986” ”rs12435918”

GSK3_subgraph ”rs2873950” ”rs3108749” ”rs6438552”

Inflammatory_response_subgraph ”rs2243248” ”rs2243290” ”rs7748777” ”rs7759295” ”rs7072793”
”rs6074022” ”rs1569723” ”rs6032678”

Insulin_signal_transduction “rs1999763”

Interferon_signaling_subgraph ”rs1554606” ”rs8038734”
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Module Name Description
Interleukin_signaling_subgraph ”rs4537545” ”rs4129267” ”rs4240872” ”rs7514452” ”rs1800896”

”rs4848300” ”rs17561””rs4848304” ”rs1143634” ”rs2243248”
”rs2243290” ”rs1554606” ”rs10975516” ”rs1330383””rs10815398”
”rs7072793” ”rs4072111” ”rs11857713” ”rs4778636” ”rs7197333”

Lipid_metabolism_subgraph ”rs2228467” ”rs6444175” ”rs11742194” ”rs3846662” ”rs5909”
”rs12435918” ”rs5882”

Matrix_metalloproteinase_subgraph ”rs10836653” ”rs4382897” ”rs17337649” ”rs645419” ”rs2241715”

Nerve_growth_factor_subgraph “rs3775256”

Tau_protein_subgraph ”rs242557” ”rs3785883”

Wnt_signaling_subgraph ”rs2873950” ”rs3108749” ”rs6438552” ”rs29645” ”rs7901695”
”rs7903146”

MMSE Language_VIS (1,6,12, 24, 36) Tests related to naming a pencil and a watch, repeating words, and
carrying out complex commands like drawing a figure measured
at baseline, months 6, 12, 24, and 36. Ranges between 0 and 5.

MMSE Memory Recall_VIS (1,6,12, 24,36) Registration recall measured at baseline, month 6, 12, 24 and 36.
Ranges between 0 and 5. Ranges between 0 and 3.

MMSE Orientation_VIS (1,6,12, 24, 36) Testing orientation to time and place at baseline, month 6, 12, 24
and 36. Ranges between 0 and 10.

MMSE Working Memory Registration_VIS
(1,6,12, 24, 36)

Testing related to repeating names prompts at baseline, month 6,
12, 24 and 36. Ranges between 0 and 3.

MMSE Attention Concentration_VIS (1,6,12, 24,
36)

Clinical test used to assess mental function at baseline, month 6,
12, 24 and 36. Ranges between 0 and 5.

Table 6.6: Modules and their description defined for ADNI data set
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a) As explained above, variables in the raw data were grouped into au-
toencoded modules.

b) Causal constraints as prior knowledge was imposed while learning the
augmented BN connected modules in order to restrict the search space
and to allow correct causal orientation of as many edges as possible.

After structure learning, the parameters of the MBN were fitted. This was done
via maximum likelihood. That means, for each Gaussian node a linear regression
was fitted, in which the parents of the node were used as predictors. For each
discrete node, parameters were determined via conditional probability tables.

During structure learning, the following causal constraints were imposed on
the datasets:

Causal constraints for VAMBN training on Altoida Data

• Demographic features such as age and sex cannot be influenced by any other
feature or by each other.

• Amyloid status of a subject cannot be affected by any other feature.

• Cognitive features and digital biomarkers cannot affect clinical diagnosis (it
can be only affected by Amyloid).

• No other feature can affect education except age and gender.

• An auxiliary variable representing the missingness of a certain feature can
only influence that particular feature at a later visit.

Causal constraints for VAMBN training on ADNI data

• Demographic features such as age and gender cannot be influenced by any
other feature or by each other.

• Modules of brain volumes can be related to each other, but they cannot be
influenced by modules of MMSE or FAQ features.

• Longitudinal measures must follow the right temporal order, i.e., there are
no edges pointing backward in time.
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• Modules of genetic burden scores can be related to each other, but they
cannot be influenced by other modules except the demographics

• The DMs can only influence each other and no other feature or module.

• Diagnostic status cannot influence any other feature except the acDMs.

• Auxiliary and missing visit nodes were connected to their respective coun-
terparts at the next time point, accounting for a correlation between these
measures over time, e.g., through study dropout.

Structure learning was conducted via hc, tabu search, RSAMAX2, and MMHC.
The final model was trained via “hc” as it had the lowest negative log-likelihood
score.

2) Global meta cohort generation

A ready-trained VAMBN model can be used to infer the value of a specific variable
based on the value of other variables within an individual patient using a likelihood
weighting algorithm (described in chapter 2). We used the VAMBN model trained
on the entire Altoida data to infer DMs in ADNI using the common features that
were observed in both datasets (diagnosis, demographics (age, education, gender),
MMSE subitems). We used the Bayes likelihood (Bayes-likelihood weighting (lw))
[164] methods from the ’bnlearn’ package for this purpose where we average the
likelihood weighting simulations using all available nodes as evidence (here we take
the common features mentioned above, except node that is being predicted) to
compute the predicted values. The value of the predicted variable is the expected
value of the conditional distribution. We compute the predicted DMs at each time
point (baseline, month 6, 12, 24, and 36) as we also have the values of the common
features available at each time point in ADNI. More specifically, we randomly
split the entire data into 10 folds and sequentially left out one fold for testing
while training the augmented BN on the rest of the data (10-fold cross-validation).
The same procedure was repeated 10 times. Splitting of the dataset was done on
the subject level rather than on the level of individual data points because the
Altoida dataset contains more than one measure for several patients. The aim of
the experiment was to predict the latent representation / the low-dimensional code
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of each DM module. Prediction performances were compared against those of a
standard RF regression model [179]. We calculated the NRMSE that represents
the prediction performance of the features.

NRMSE is represented by:

NRMSE =
1

Ymax − Ymin

√∑N
i=1(Yi − Ŷi)2

N
(6.1)

Here Yi and Ŷi denote the real and inferred DM, respectively.

Notably, the approach allows for making predictions in a patient, in which
no DM has been observed. This amounts to fixing the value of all nodes in the
BN (except the DMs) to their observed values in the patient and subsequently
running inference. Accordingly, it is also possible to predict DMs in ADNI based
on a VAMBN model learned from Altoida data: For each ADNI patient, we fixed
the value of all nodes representing demographic features, diagnostic status, and
MMSE scores in the BN and then inferred the most likely value of DMs. This
procedure was run for each visit in ADNI data.

10-fold cross-validation errors of VAMBN (more precisely the augmented BN)
were compared against a standard RF regression model using 100 regression trees.
The following additional hyper-parameters of the RF were considered:

a) mtry = 2, 3, 4. mtry means the number of possible splits at each node or
the number of candidate variables considered at each split [208].

b) splitrule = “variance”, “extratrees”, “maxstat”; the three algorithms are
described as follows:

– variance: This split minimizes the weighted variance [208]. This method
is favorable towards the variables with many possible splits (e.g. con-
tinuous variables or categorical variables with many categories).

– extratrees: It is known as extremely randomized trees [209]. This algo-
rithm builds an ensemble of unpruned decision trees according to the
classical top-down procedure [209] and a number of random splits are
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considered for each candidate splitting variable [210].

– maxstat: It is known as maximally selected rank statistics [211]. Using
this splitrule, the optimal split variable is determined via a statistical
test for binary splits, which adjusts for the multiple testing of multiple
possible split points. Through this approach adjusted p-values can be
obtained for continuous covariates.

c) min. node. size = 10, 20. It specifies the minimum number of observations
in a terminal node.

These hyper-parameters were tuned via a grid search, in which each hyper-
parameter combination was evaluated via an inner 10-fold cross-validation. That
means there was a repeated, nested cross-validation procedure.

3) Comparative study: Classifier trained on CN and MCI

To evaluate the quality of synthetic data and synthetic DMs, we performed a
comparative study on both Altoida and ADNI data. We trained an RF classifier
to classify them into CN and MCI at baseline based on a different set of modalities.
All classifiers were adjusted for confounding effects of age and sex. We performed
nested cross-validation that nests hyperparameter optimization under the model
evaluation procedure, such that the training set from the outer loop is further
split into sub-training and validation sets and passed to a parameter optimizing
procedure like grid search. The optimizing procedure will then utilize an internal
cross-validation loop to test for the optimum parameters on the training set, which
will be passed to the outer loop for model evaluation [212].

The internal cross-validation procedure takes an estimator, a parameter grid,
and a cross-validation strategy and applies an exhaustive search over the specified
grid in search of the best parameters. The external cross-validation procedure takes
the optimized estimator from the grid search procedure, the dataset, and a cross-
validation strategy and returns the evaluation metrics and predicted probability
respectively.
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Altoida data: We considered two scenarios. In the first one, classifier was
trained and tested on real data and in the second one, it was trained on synthetic
data and tested on the same real data as in the first scenario. The same process
was followed for all modalities, MMSE, aggregated digtial task scores and digital
cognitive domains.

ADNI data: The classifiers were trained and tested on real data for all the
modalities separately. There was one more modality, FAQ in addition to the
modalities in Altoida. The rationale behind this experiment is that, provided the
predicted features were correct, we expect them to discriminate between different
diagnostic stages in ADNI, and this should not be significantly worse than Altoida.

6.4 Results

6.4.1 Brief discussion of network structure for Altoida data

Non-trivial dependencies between DMs, MMSE scores, and diagnostic state were
obtained in Altoida data. Our analysis of Altoida data resulted in a quantitative
network between different groups of variables, which is depicted in Figure 6.2.
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Figure 6.2: Non‐trivial dependencies between DMs, MMSE scores and diagnostic state in Altoida data. The de‐
picted network represents dependencies between variables and variable groups learned from Altoida data (a part
of the network is represented here). Numbers on edges indicate the level of statistical confidence (bootstrap
probability≥ 0.5). A higher value indicates a higher confidence in the existence of a connection. Nodes are color
coded by the group they belong to. Nodes isolated from the rest of the network are not shown.

Numbers on edges indicate the level of statistical confidence, i.e., a higher
value means a stronger support by the data for the existence of the respective
connection. According to our model, the MMSE subitem, “Orientation” is linked
to the pressure and accuracy of touch screen button pressing in the AR game
(Spearman rank correlation ρ = -0.47, 95% CI [-0.67, -0.21], adj. p < 0.0001).
Spearman rank correlation is a measure between -1 and 1, where -1 indicates
a perfect anti-correlation and +1 a perfect positive correlation. MMSE language
sub-domain score is connected to the telemetry variance observed in object placing
and finding (ρ = -0.60, 95% CI [-0.76, -0.38], adj. p < 0.0001) and to the score
derived from tasks associated with placing the object in the synthetic environment
(ρ = 0.34, 95% CI [0.06, 0.58], adj. p < 0.05). We also observed that the MMSE
sub-domain associated with memory recall is connected to the digital cognitive
domain that measures the ability to switch between thinking about two different
concepts (ρ = 0.31, 95% CI [0.02, 0.55], adj. p < 0.05). The corresponding scatter
plots for all these connections are illustrated in Figure 6.3. Overall, our model
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revealed non-trivial dependencies between DMs and MMSE scores, which are far
away from simple one-to-one relationships.

Figure 6.3: Scatter plot between different pairs of variables in Altoida data: MMSE Orientation and AR Screen
Button Presses (top left), MMSE Language and AR Place and Find Telemetry Variance (top right), MMSE Language
and AR Object Placement (bottom left)) and MMSE Memory Recall Registration and Flexibility (bottom right).

A point of further interest was the dependency of all DMs on the diagnosis,
which was reflected via corresponding paths in our VAMBN network. We verified
the dependencies of individual DMs between MCI and CN with the help of linear
models while correcting for confounding effects of age and sex. This demonstrated
highly significant differences between the cognitive domains, “Cognitive Processing
Speed” (speed and accuracy of information processing), “Prospective Memory”
(ability to remember to carry out intended actions in the future) and “Spatial
Memory” (ability to recognize items that previously appeared in physical space)
between MCI and CN subjects, see Table 6.7. Likewise, we performed the analysis
for MMSE subitem scores, which demonstrated significance in all cases, except for
the working memory registration task, which was unconnected to the diagnosis in
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our VAMBN network (Table 6.8). All DMs showed a significant age dependency
which is shown in Table 6.9.

Digital cognitive domains p.adjusted (CN and MCI) 95% Confidence Interval (CN and MCI)
Perceptual Motor Coordination 0.2067 -0.65, -0.03
Complex Attention 0.2205 -0.65, -0.01
Cognitive Processing Speed <0.0001 -1.16, -0.58
Inhibition 0.9238 -0.32, 0.37
Flexibility 0.9238 -0.47, 0.21
Visual Perception 0.5791 -0.55, 0.11
Planning 0.2410 -0.65, 0.01
Prospective Memory <0.0001 -1.27, -0.73
Spatial Memory <0.0001 -1.29, -0.76

Table 6.7: Significance of the differences in each cognitive domain across CN and MCI (Altoida data). Multiple
testing was performed via Holm’s correction.

MMSE subitem scores p. adjusted (MCI and Prodromal AD) 95% Confidence Interval (CN and MCI)
MMSE_Attention_Concentration <0.0001 -1.24, -0.61
MMSE_Language 0.0001 0.40, 1.05
MMSE_Memory_Recall <0.0001 -1.40, -0.85
MMSE_Orientation 0.0004 -0.96, -0.30
MMSE_Working_Memory_Registration 0.2428 -0.56, 0.14

Table 6.8: Significance of the differences of each MMSE subitem score across CN and MCI stages (Altoida data).
Multiple testing was performed via Holm’s correction.

Demographic Aggregated Digital Tasks Spearman
Rank Cor-
relation
Coefficient(ρ)

p.adjusted 95% Confi-
dence interval
(lower bound)

95% Confi-
dence inter-
val (upper
bound)

AGE ARScreenButtonPresses_VIS1 0.38 <0.0001 0.10 0.60
AGE ARGlobalTelemetryVariance_VIS1 -0.40 <0.0001 -0.62 -0.13
AGE ARObjectPlacementFFT_VIS1 0.32 <0.05 0.03 0.56

Table 6.9: Spearman rank correlation with adjusted p values (Holm’s method) for digital tasks and age in Altoida

6.4.2 Assessment of the quality of synthetic DMs

The quality of DMs that were predicted using VAMBN model and RF approach
is shown in Table 6.10 (aggregated digital tasks) and Table 6.11 (digital cognitive
domains). Estimated NRMSE representing the prediction performance was signif-
icantly better for VAMBN trained model as compared to the RF model for most
of the features.
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Aggregated Digital Tasks NRMSE: Mean ±SE (VAMBN) NRMSE: Mean ±SE (RF)
ARObjectFinding 0.1752±0.0018 0.1260 ±0.0009
ARScreenButtonPresses 0.129 ±0.0011 0.1248 ±0.0007
MotorTestDurations 0.1880 ±0.0020 0.2640 ±0.0015
ARObjectPlacementFFT 0.1644 ±0.0022 0.3830 ±0.0014
ARPlaceAndFindTelemetryVariance 0.2144 ±0.0017 0.1570 ±0.0010
ARGlobalTelemetryVariance 0.2227 ±0.0027 0.2375 ±0.0015
ARObjectPlacement 0.1433 ±0.0023 0.2493 ±0.0004
BITDOTMotorInstructionReadingTimeRatios 0.1848 ±0.0030 0.1630 ±0.0014
MotorTappingFeatures 0.2135 ±0.0029 0.3829 ±0.0018

Table 6.10: Prediction error (NRMSE) for aggregated digital tasks using VAMBN and a RF regression model. The
results shownwere obtained via 10 times repeated 10‐fold cross‐validation procedure, and themean and standard
error (SE) is of the 10‐fold cross‐validated error presented.

Digital Cognitive Domains NRMSE: Mean ±SE (VAMBN) NRMSE: Mean ±SE (RF)
PerceptualMotorCoordination 0.1896 ±0.0010 1.0212 ±0.0045
ComplexAttention 0.1886 ±0.0028 1.1843 ±0.0057
CognitiveProcessingSpeed 0.1888 ±0.0023 1.1851 ±0.0039
Inhibition 0.2002 ±0.0026 3.1834 ±0.0070
Flexibility 0.2522 ±0.0031 2.3603 ±0.0155
VisualPerception 0.2145 ±0.0023 1.5758 ±0.0060
Planning 0.1638 ±0.0026 1.2976 ±0.0030
ProspectiveMemory 0.2439 ±0.0024 0.7780 ±0.0055
SpatialMemory 0.1976 ±0.0013 1.2946 ±0.0103

Table 6.11: Prediction error (NRMSE) for cognitive domains using VAMBN and a RF regression model. The results
shown were obtained via 10 times repeated 10‐fold cross‐validation procedure, and the mean and SE is of the
10‐fold cross‐validated error presented.

For the sake of completeness, we also evaluated, in how far MMSE subitem
scores could be inferred from DMs, demographic data and diagnostic status. Cor-
responding results are shown in Table 6.12.

MMSE Subitem Scores NRMSE: Mean ±SE (VAMBN) NRMSE: Mean ±SE (RF)
MMSE Attention Concentration 0.4173 ±0.0013 1.7103 ±0.0111
MMSE Language 0.3487 ±0.0011 1.1516 ±0.0053
MMSE Memory Recall 0.4080 ±0.0009 0.8288 ±0.0053
MMSE Orientation 0.3752 ±0.0011 1.9904 ±0.0076
MMSE Working Memory Registration 0.1302 ±0.0002 0.2686 ±0.0090

Table 6.12: Prediction error (NRMSE) for MMSE subitem scores using VAMBN and an RF regression model. The
results shown were obtained via a 10‐fold cross‐validation procedure, and the mean and SE of the 10‐fold cross‐
validated error is presented.
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6.4.3 Results of modeling ADNI and synthetic features derived
from Altoida

brief discussion of network structure

Non-trivial dependencies of DMs generated were predicted in ADNI data from
MMSE subitem scores, FAQ subitem scores, and diagnostic state in Altoida Data.
The analysis of ADNI data resulted in a rather large quantitative network model,
which can be explored interactively via the web-based tool DigiAD that we de-
veloped for this purpose (https://digi-ad-viewer.scai.fraunhofer.de). An ex-
cerpt of the network is depicted in Figure 6.4.
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Figure 6.4: Non‐trivial dependencies of DMs, MMSE scores, FAQ scores, and diagnostic state predicted in ADNI data. The depicted network represents depen‐
dencies between variables and variable groups learned from ADNI data. Numbers on edges indicate the level of statistical confidence. A higher value indicates
a higher confidence in the existence of a connection. Nodes are color‐coded by the group they belong to. Here, shown a part of the model depicts interesting
connections between clinical outcomes and DMs. Solid edges represent a bootstrap probability≥ 0.5, and dashed edges a bootstrap probability< 0.5. Nodes
isolated from the rest of the network are not shown.
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Importantly, DMs in this network had been predicted for each individual ADNI
patient using the AI model trained on Altoida data. The prediction used the
diagnostic state, age, education, gender, and MMSE subitem scores of each patient,
as explained in the methods section. Accordingly, we confirmed most connections
between MMSE subdomains and DMs, which we had previously also observed in
the Altoida data, see Table 6.13 for details. The corresponding scatter plots are
shown in Figure 6.5.

MMSE subitem scores (from
node)

Digital Measure (to node) Spearman
Rank corre-
lation coeffi-
cient (ρ)

CI [lower ci,
upper ci]

p.adjusted

MMSE Orientation (baseline) AR Screen Button Presses (base-
line)

-0.36 [-0.47, -0.25] <0.0001

MMSE Orientation (month 6) AR Screen Button Presses
(month 6)

-0.47 [-0.56, -0.37] <0.0001

MMSE Orientation (month 12) AR Screen Button Presses
(month 12)

-0.41 [-0.51, -0.3] <0.0001

MMSE Language (baseline) AR Place and Find Telemetry
Variance (baseline)

-0.60 [-0.67, -0.51] 6 < 0.0001

MMSE Language (month 6) AR Place and Find Telemetry
Variance (month 6)

-0.53 [-0.62, -0.43] < 0.0001

MMSE Language (month 12) AR Place and Find Telemetry
Variance (month 12)

-0.62 [-0.70, -0.54] < 0.0001

MMSE Language (baseline) AR Object Placement (baseline) 0.35 [0.23,0.46] <0.0001
MMSE Language (month 6) AR Object Placement (month 6) 0.18 [0.05,0.29] <0.0001
MMSE Language (month 12) AR Object Placement (month

12)
0.19 [0.07,0.31] <0.0001

MMSE Memory Recall (base-
line)

Flexibility (baseline) 0.66 [0.59,0.73] <0.0001

MMSE Memory Recall (month
6)

Flexibility (month 6) 0.54 [0.45,0.62] <0.0001

MMSE Memory Recall (month
12)

Flexibility (month 12) 0.49 [0.39,0.58] <0.0001

Table 6.13: Spearman Rank Correlation between MMSE subdomains and DMs in ADNI with confidence intervals
(CI) and adjusted p values (Holm’s method)
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Figure 6.5: Scatter plots between different pairs of variables in ADNI data: A) MMSE Orientation and AR Screen
Button Presses (baseline, month 6 and month 12), B) MMSE Language and AR Place and Find Telemetry Variance
(baseline, month 6 and month 12), C) MMSE Language and AR Object Placement (baseline, month 6 and month
12), D) MMSE Memory Recall Registration and Flexibility (baseline, month 6 and month 12).

Furthermore in the network, we also observed the expected dependencies of
DMs on age. In addition to these expected and confirmed findings, we also pre-
dicted new dependencies, for example between the “orientation” domain of MMSE
and the difference in time when reading the instructions to the motor tests for the
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second time (ρ = -0.20, 95% CI [-0.32, -0.08], adj. p < 0.0001) at baseline. Addi-
tionally, dependencies were predicted between the “language” domain of MMSE
and the motor coordination in response to perceived input (perceptual motor coor-
dination) (ρ = -0.24, 95% CI [-0.36, -0.12], adj. p < 0.0001). We also found novel
predicted dependencies between DMs and FAQ subitems. There was a direct link
from the FAQ measure related to “remembering appointments, family occasions,
holidays, medications” at month 24 to the digital task of the total duration of each
motor test at month 36 (ρ = 0.14, 95% CI [0.02, 0.26], adj p = <0.005). Another
example was the indirect relationship between the same subdomain of FAQ at
month 12 and the cognitive domain “Flexibility” (ρ = -0.24, 95% CI [-0.36, -0.12],
adj. p <0.0001). Corresponding scatter plots along with other examples are only
unique to ADNI are illustrated in Figures 6.6 and 6.7. Note that FAQ was not
assessed in the Altoida data.

Figure 6.6: Scatter plots between different pairs of variables in ADNI data: A) MMSE Language and Spatial Mem‐
ory (month 6 and month 12), MMSE Language and Prospective Memory (baseline), MMSE Language and Percep‐
tual Motor Coordination (baseline), B) MMSE Orientation and BITDOT Motor Instructions Reading Time Ratios
(baseline, month 6 and month 12).
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Figure 6.7: Scatter plots between different pairs of variables in ADNI data: A) FAQFORM and Flexibility (base‐
line), FAQFORM at baseline and Flexibility at month 6), FAQFORM and AR Screen Button Presses (baseline), B)
FAQFORM at month 24 and Perceptual Motor Coordination at month 36, FAQFORM at month 24 and Planning
at month 36, FAQFORM at month 24 and AR Object Finding at month 36, C) FAQREM and Flexibility (month 12),
FAQREM at month 12 and Flexibility at month 36, D)FAQREM at month 24 and Motor Test Durations at month
36, FAQREM and AR Object Finding (month 24)
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Interestingly, Our VAMBN model also suggested direct associations of DMs
with CSF biomarkers, brain volumes, and molecular mechanisms, but these con-
nections were either not found statistically stable or not significant. We repeated
the same analysis using only those feature modalities from ADNI, which were also
present in Altoida (i.e., demographic features, MMSE scores, DMs). This gen-
erally confirmed the same connections between DMs and MMSE subitem scores
discussed before (Figure 6.8).
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6.4.4 Evaluating the fit of the synthetic data

As described in the previous section, synthetic patients were generated for both
Altoida and ADNI based on real features and real patients. As VAMBN is a
generative model, a trained VAMBN model was used to generate synthetic data.
The closer the synthetic data is to the real data, the better the fit of the model. In
agreement to our earlier publication [158] we generated as many synthetic patients
as real and mathematically assessed the model fit in two ways: a) agreement of
the marginal distributions of individual variables; b) agreement of the learned
correlation structure. More specifically, for a) we used the KLD as a mathematical
measure to quantify the difference. For b) we calculated the Frobenius norm of
the difference between the real Pearson correlation matrix and the synthetic one.
This quantity was divided by the Frobenius norm of the real correlation matrix,
yielding a relative error. The number of these plots is very large. We thus only
show selected results here. The distribution plots for selected variables from DMs
in the ADNI data are shown in Figure 6.9. The figure shows that the model fits
well to the synthetic data and the distribution for the DMs for real and synthetic
data are similar. Heatmaps depicting the correlation matrices and the distribution
of correlation coefficients are shown in Figure 6.10. This figure illustrates that
synthetic data is also able to show very similar correlations in the features as
compared to the real data
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Figure 6.9: Examples of real (pink) and synthetic (blue) patients for ADNI data. The figure compares the distribu‐
tions of variables related to cognitive domains in DMs for real and synthetic patients. KL‐divergence between the
real and synthetic patients is mentioned at the top of each plot.
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Figure 6.10: Top: Heatmaps reflecting the Pearson correlation matrix between variables in real data and decoded
synthetic data generated via the VAMBN model trained on in ADNI data. Bottom: Distribution of Pearson cor‐
relation coefficients between variables in real (red), decoded real (green), and synthetic/simulated patients (blue).
Tables show the Frobenius norm of the correlation matrices as well as the relative error, which consists of the
norm of the matrix, that is the difference between the real and decoded correlation matrix divided by the norm of
the original correlation matrix.

We also trained an RF classifier (as described in Chapter 5) on Altoida to
compare real and decoded synthetic data. The classifier was able to separate
between synthetic and real participants within 10 times repeated 10-fold cross-
validation scheme. It is illustrated in Figure 6.11.
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Figure 6.11: Performance of an RF classifier to correctly identify synthetic patients in Altoida, measured via the
partial area under ROC curve (pAUC) at a pre‐specified detection rate of ≥ 90% for real patients. The pAUC
was assessed on test sets within 10 repeats of a tenfold cross‐validation procedure. Accordingly, boxplots show
the distribution of the tenfold cross‐validated pAUC that was obtained from 10 repeats of the cross‐validation
procedure.

6.4.5 Comparative analysis of the utility of synthetic data and
synthetically generated DM scores

The different classifiers trained and their results are mentioned in the following
section. The results are illustrated in Figures 6.12 and 6.13. Figure 6.12 shows
a comparative analysis between the classifiers trained on the same features in
Altoida and ADNI data (with synthetic DMs). Figure 6.13 shows the results for
the classifier trained on FAQ features in ADNI data.

Altoida data:

• MMSE: We observed that the AUC for classifier trained and tested on real
data was 89.7% and that for trained on synthetic and tested on real data
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was 69%.

• Aggregated Digital task scores: The AUC for the classifier trained and tested
on real data was found to be 93.2% and that trained on synthetic and tested
on real data was 83%.

• Digital Cognitive Domains: The AUC for classifier trained and tested on
real data was found to be 86.7% and that for trained on synthetic and tested
on real data was 77.1%.

We observe that the classifier trained on synthetic data and then tested on real
data has a lower performance (AUC score) as compared to the classifier trained and
tested on real data. The reason could be that there are slight differences between
real and synthetic data, specifically with regard to the correlation structure. This
leads to the observed behavior.

ADNI data:

• MMSE: We observed that the AUC for the classifier trained and tested on
real data was 75.7%.

• FAQ: The AUC for the classifier trained and tested on real data was found
to be 83.4%.

• Aggregated Digital task scores: The AUC for the classifier was found to be
93.6%.

• Digital Cognitive Domains: The AUC for the classifier was found to be
85.5%.

From the above results, we can see that AUC of the classifier for aggregated digital
task scores and digital cognitive domains between Altoida and ADNI are compa-
rable. This shows that the synthetic DMs are also able to distinguish between
CN and MCI stages in ADNI. Furthermore, the AUC score of aggregated digital
tasks is higher than MMSE score in both Altoida and ADNI data and the DMs
including digital cognitive domains have a higher AUC than MMSE and FAQ in
ADNI data.
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Figure 6.12: Performance of a RF classifier to classify CN and MCI stages A: MMSE features: trained and tested
on real data for Altoida data, trained on synthetic data and tested on real data for Altoida data, trained and tested
on real data for ADNI data B: Aggregated digital tasks: trained and tested on real data for Altoida data, trained on
synthetic data and tested on real data for Altoida data, trained and tested on real data for ADNI data C: Digital
cognitive domains: trained and tested on real data for Altoida data, trained on synthetic data and tested on real
data for Altoida data, trained and tested on real data for ADNI data
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Figure 6.13: Performance of a RF classifier on FAQ data (ADNI to classify CN and MCI stages, trained and tested
on real data

6.5 Conclusion

The goal of this work was to simulate a synthetic global meta-cohort, which com-
prises features that have been observed in another study. We achieved our goal
by merging two different cohorts, Altoida and ADNI representing AD based on
overlapping variables. The overlapping features in Altoida and ADNI were MMSE,
demographic features and diagnostic status. The use case in this work was data
collected from digital devices. DMs derived from digital devices currently receive a
lot of attention, because they have the potential for a more objective, robust, and
sensitive measurement of disease symptoms compared to traditional questionnaire-
based assessments. In addition, data from digital devices can be used in outpatient
situations and thus allow for continuous monitoring of patients in their natural en-
vironment. In the AD field, the potential use of data derived from digital devices
for objective assessment of cognitive impairment has been discussed by several au-
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thors [193], including the possibility for early disease diagnosis [213]. Specifically,
the measures reflecting activities of daily living have been suggested to enable an
early disease diagnosis [192]. Despite all their benefits, these measures are currently
only available in a few studies, which are, however, not as well characterized and
as large as observational cohort studies like ADNI. Therefore, to understand the
usability of DMs and their links with the standard questionnaire-based measures
in AD, we simulated the DMs in ADNI based on 148 subjects in Altoida.

We were able to disentangle the apparently non-trivial and complex relation-
ships that exist between different types of DMs reflecting performance across dis-
tinct neurocognitive domains, as well as individual tasks obtained from a virtual
reality game in Altoida with questionnaire-based assessments of cognition (MMSE,
FAQ). Our identified associations were statistically stable, significant, and pre-
dictable. Additionally, the analysis of classifier on the simulated features in the
global meta-cohort showed these simulated features can be used for classification
and has significant importance. The classifier trained on DMs in ADNI to clas-
sify subjects into CN and MCI also showed a similar comparison to the classifier
trained on same features in Altoida. They also illustrate a higher AUC score to
classify the subjects than the traditional questionnaire-based scores in both ADNI
and Altoida. Altogether, the approach described in this paper could serve as a
blueprint to generate a global meta-cohort when the features are of significant
importance but are not available in many studies. This approach also helps us
to better understand DMs in AD and their links with questionnaire-based scores.
Generation of a global meta cohort has several advantages, a few of which are that
it can help us to identify the best matching synthetic avatar for a specific real
patient within the overall distribution. It could also help to efficiently generate
control arms for clinical trials.
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The greatest glory in living lies not in never falling,
but in rising every time we fall.

Nelson Mandela

7
Conclusion

7.1 Overview

The present work is an attempt to realistically simulate synthetic data and syn-
thetic subject trajectories across multiple biological scales and data modalities.
This aim is derived from the challenge we face regarding data privacy, data shar-
ing, and data silos.

It was important to leverage the multi-scale and multi-level data available from
large patient observational cohorts to achieve this goal. In the context of NDDs,
this type of data has enormous potential and has previously helped in understand-
ing the patterns underlying the diseases and has also enabled the possibility to
discover disease subtypes.

Despite the availability of large amount of data, patient data is highly sensitive
and often comes along with a lot of legal and ethical constraints. Due to these
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constraints, it becomes challenging to share the data outside the organization that
is responsible for the data. It is also possible that sometimes data cannot be shared
within the same organization. Consequently, this leads to the creation of “data
silos” which further slows the pace of the research. As discussed earlier, there are
some established methods that try to address this challenge but they come with
certain limitations, one of them being the classical anonymization techniques. In
order to share the data, data owners try to anonymize the data in a number of ways
like removing identifiable features (e.g. names and addresses), adding perturbation
to them (e.g., adding noise to the date of births) or grouping the variables into
broader categories to ensure more than one individual in each category [44]. Once
this kind of information is linked to other datasets (e.g., social media platforms) it
might become easier to identify specific individuals [214]. A further concern with
anonymization techniques is that fully anonymous data in essence is useless from
a data science perspective. We need a certain level of individual-level information
in the data if we want to build patient-level models. The other limitations of the
methods that try to solve the issue of data silos are that, some of them cannot
account for small sample sizes, missing values, or accommodate several variables
with different numerical scales and properties. We have discussed these limitations
in more detail at the beginning of the thesis.

In our work, we have tried to address these limitations to simulate a synthetic
data cohort that could help to solve the problem of data silos. We have addressed
an important question in the field of translational research. In the following section,
we summarize our methodology and discuss the applications of our approach. We
discuss the potential it holds in terms of the advancement of the current state of
translational research. We also talk about the advantages and limitations of our
approach over the already existing approaches.

7.2 Achievements relative to existing methods for synthetic data
generation

As discussed in our work, one of the main roadblocks in preventing the acceleration
of scientific research is the challenge that comes with data sharing. There have been
advances in science to deal with this challenge but one of the barriers is to share
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individual patient-level data while preserving patient privacy [75]. The concept of
differential privacy poses guarantees on the probability to compromise a person’s
privacy by a release of aggregate statistics from a dataset [215]. It has been shown
that pairs of deep neural networks can be trained with differential privacy. As
described in our work earlier, methods have been developed which aim to simulate
the data that is similar to the real data. Some of the examples of the existing
methods fall into the following groups (1) sampling methods that impose the risk
of data leakage and quantifiable privacy e.g. Gibbs Samplers [216], sampling from
BN (2) multiple imputation methods e.g. MICE (3) GANs [62](4)VAEs.

The sampling method, IM sampling for synthetic data generation simultane-
ously estimates the marginal distributions for different variables but it does not
capture statistical dependencies across variables and therefore the synthetic data
generated by this method may fail to capture the underlying structure of the data.
As our method is based on the concept of BN, it overcomes this limitation. It
is able to retain the data structure and the statistical dependencies across the
variables in the synthetic data.

When BN is used for synthetic data generation, the graph structure and the
CPDs are typically inferred from the real data. However, one of the limitations
is that graph structure learning is an NP-hard problem that might either be too
costly to perform or impossible when the subjects are in small numbers but they
have a large number of features. The modular structure in our approach accounts
for this problem and it helps to reduce the computational complexity by grouping
the variables that share parameters into modules.

Another approach, MICE masks sensitive content in datasets with privacy
constraints by treating sensitive data as missing data. The data here is imputed
with randomly sampled values generated from models trained on the non-sensitive
variables. It is probabilistic in nature, however it does not guarantee the resulting
generative model to be a good estimate of the underlying joint distribution of the
data. On the other hand, the DAG structure of BN in our method represents a
factorization of the joint probability distribution of the variables. Therefore, our
method also results in a generative model that is a good estimate of the underlying
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joint distribution of the data.

Recently, GANs are being widely used to generate synthetic data in the field of
biomedicine [65, 217] and can generate realistic data from complex distributions.
GANs combined with differential privacy have been shown to provide a technical
solution to sharing of biomedical data to facilitate exploratory analysis. A recent
publication proposed to train GANs based on a few variables recorded from more
than 6,000 patients in the Systolic Blood Pressure Trial [75]. However, the major
limitation of this method is that it tends to collapse to a statistical mode of dis-
tribution, which could raise concerns regarding the coverage of the distribution of
real data by synthetic data. In addition, these methods are also not suited to deal
with complexities underlying clinical data collected in observational longitudinal
cohort studies [218]. They cannot explicitly model time dependencies while ac-
counting for missing and heterogeneous data. Overlooking missing data can lead
to loss of statistical power, bias in the estimation of parameters, can reduce the
representativeness of the samples, incorrect estimation of variability in the data,
and may complicate the analyses of the study [123]. Therefore, accounting for
and overcoming the problem of incomplete observations is essential for longitudi-
nal observational data. One of the approaches that address these challenges is the
generation of realistic synthetic data using multimodal neural ordinary differential
equations [218]. However, this approach is also not without limitations, one be-
ing the computational complexity and their sensitivity to several hyperparameters
that should be optimized for optimal performance.

In general, one of the main limitations of deep learning methods is that they re-
quire substantial sample sizes and many training parameters. This property could
cause hindrances in its application for observational cohort studies and clinical
trials with small sample sizes. Our method addresses these limitations, as they
can handle longitudinal data from observational clinical studies that have MNAR
patterns. The auxiliary variables in our method accounts for missing patterns in
the data. It also accounts for complexities underlying the longitudinal data and
are able to preserve these complexities in the synthetic data.

The other type of neural networks that are generative in nature are known as
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VAEs. They employ variational inference to regularize the encoding distribution
and ensure that the generation of new data is less prone to overfitting, however
the interpretation of the neural network models is far more challenging than for
BNs. A standard VAE does not account for heterogeneous and incomplete data.
In our approach, we have used special type of VAEs known as HI-VAE that can
account for both heterogeneous and missing data.

Another approach, for synthetic patient generation is Synthea. It is a rule-
based approach and an open-source software package that simulates realistic pa-
tients but not real, and their associated health data in a variety of formats. It
is a tool to generate EHRs. The data generated from this package is free from
cost, privacy, and security restrictions. However, it has been established that the
synthetic data generated from Synthea is not appropriate for research into diseases
that are not covered by the project or research focused on clinical discovery [50].
Usually, Synthea modules are built using clinical care guidelines and standards of
care, therefore the data generated via Synthea does not include variations in care
that would occur in the real world. The data included in Synthea only focuses
on the care provided in the hospitals and settings by the provider and it does
not include behavioral therapies and treatments that are administered outside the
hospital. Moreover, the data is highly different from clinical study data, which is
the subject of this thesis.

Empirically, it has also been found to be challenging to replicate population-
level summary statistics with Synthea [219]. As model parameters in Synthea are
derived from aggregated population-level statistics of disease progression and med-
ical knowledge, there is a huge dependency on the prior knowledge of the system
[220, 221]. This type of modeling aims at understanding the disease and offers
interpretability, however, when complex systems need to be modeled, it becomes
difficult to avoid simplifications and assumptions and this could cause inaccura-
cies or reduced utility [222, 223]. As the longitudinal data is highly heterogeneous,
relying on population-level statistics does not produce models that are capable
of heterogeneous health outcomes [224]. While our approach has the ability to
identify aberrations of the real data, they lack the constraints that could avoid
nonsensical outputs. In this regard, Synthea has an advantage over our method
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as care maps could provide a standardized metric to validate synthetic data con-
forming to medical processes.

Our approach is a data-driven approach and has tried to address the above-
mentioned limitations. It combines the advantages of existing approaches while
mitigating their limitations. Our work focuses on the realistic situation regarding
a much smaller sample size (as opposed to GANs) coupled with a significantly
higher number of variables, which is common in many other medical fields, such
as neurology. We have also shown in our work that data privacy respecting model
training is possible. In contrast to GANs, our method relies on explicit modeling
of time dependencies, as well as missing and heterogeneous data. Nonetheless,
our method, as any AI-based approach, is principally dependent on sample size
and signal-to-noise ratio in data. Concretely, the Altoida dataset had only ∼ 150
subjects together with a very limited set of features. On the other hand, ADNI
(dependent on the respective study) had more than 600 subjects with far more
features, including several hundreds of SNPs.

7.3 Achievements summary

This work demonstrates a method based on the concept of BN that helps to unravel
the complexities underlying a disease, by establishing connections between different
clinical parameters of the disease. The model brings together heterogeneous multi-
scale and multi-modal data together accounting for MNAR patterns. One of the
vital aspects of our approach is data simulation by modeling the data with the
help of BN as it has a generative property. Based on this property, our approach
helps to solve the problem of data sharing and data silos by a realistic simulation
of synthetic clinical subject trajectories across multiple biological scales and data
modalities outside the area of mechanistically well-understood biological processes.
BN structure and parameter learning require sufficiently large datasets that are
representative of the disease population. BN model thus makes re-identification
of real patients from the training data relatively unlikely. To further strengthen
this point, we also included the concept of privacy-preserving training of neural
network models. Thereafter, it opens the possibility to build synthetic patients
and at the same time building realistic versions of clinical studies across multiple
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disease areas in the future. These synthetic studies could then be shared with the
larger research community, even if the raw data cannot be because of legal or ethical
constraints. Hence, our method could help to unlock one of the key bottlenecks in
biomedical research in data-scarce disease areas. A rigorous empirical evaluation
of the re-identification risk is something that has not been covered in this thesis
and is subject to future research.

As demonstrated in this work, BNs also opens the door to simulating counter-
factual scenarios (where we change the age of the patient and simulate its effect
on the clinical biomarker) within a well-established theoretical framework, which
could help, for e.g., in the design of clinical trials. Moreover, we have shown that
simulated data could be used to learn complex AI models, such as a BN struc-
ture, which can subsequently be compared to real data. One of the other main
applications that we tested using our method was the counterfactual simulation of
features that are learned from other studies. An example of this is simulation of
data from digital devices in ADNI from a model that was learned on Altoida data.
This simulation gives rise to a synthetic meta-cohort. Another way via which a
meta-cohort can be generated is generation of different models from cohorts having
the same feature set and trajectories. The data sets with the same features can be
combined based on their inclusion and exclusion criteria.

Data derived from digital devices currently receive a lot of attention, because
they have the potential for a more objective, robust, and sensitive measurement
of disease symptoms compared to traditional questionnaire-based assessments. In
the AD field, the potential use of this type of data is for objective assessment of
cognitive impairment and has been discussed by several authors [193], including
the possibility for early disease diagnosis [213]. Using our approach, DMs were
simulated in a study that did not originally have these features. This further lets
us find connections between DMs and clinical outcomes.

7.4 Limitations of our approach

Our proposed approach is also not without limitations. As the VAMBN method
is a special instance of BN, synthetic data preserves patterns of the real data, but
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it is not identical. Therefore, it is not necessarily true that follow-up analyses on
synthetic data would give the same results as those conducted on real data. To
build the model we require a relatively detailed understanding of data (in contrast
to GANs) and careful handling of missing values in particular. In the extreme case
of more variables than samples (high dimensional setting), we expect our method
to become statistically unstable and overfit. From a technical point of view, our
method usually requires a modern parallel computing architecture, hence it is also
computationally demanding.

7.5 Challenges underlying evaluation of synthetic data

The evaluation of synthetic data comes with several challenges as it is a compli-
cated task to efficiently evaluate the synthetic data [225]. There is no clearly
accepted metric and therefore throughout the work of this thesis different alter-
natives have been tried out, and the resulting inconsistency is a limitation of this
thesis. Theoretically, we expect the synthetic data to adhere to the following
points (Figure 7):

1. They should have high coverage/support of the real data distribution.

2. They should have low density outside the real data distribution / minimum
outliers.

3. Synthetic data points should be “sufficiently distinct” (which could mean
different things) from real ones. That means we want to be sure that we
don’t re-generate a real patient record

The development of an accepted metric covering all the above criteria including
a systematic evaluation of a broader set of synthetic datasets must be subject to
future research.

7.6 Future outlook

Our work helps in potentially facilitating data sharing and the development of
counterfactual interventions. It can help in facilitating trial design and can give a
better idea about inclusion and exclusion criteria. Due to ethical reasons, as real
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Figure 7.1: Pictorial depiction of the criteria that should be fulfilled by real and synthetic data. The green and blue
spheres correspond to the real and synthetic distributions, respectively. The Green and blue points represent real
and synthetic data respectively. (a) Synthetic data that lies outside the green sphere will look unrealistic or noisy.
(b) “Unauthentic” samples or samples that seem to be of high‐quality data are generated by overfitted models
because they are copied from the training data. (c) High‐quality data samples should lie inside the green sphere.

data cannot be used for teaching purposes in schools and colleges, synthetic data
can help to solve this problem as it maintains the properties of real data. There
is also an opportunity to simulate a scenario of “patients like me”. To give an
example; we can simulate trajectories for a patient of a certain age and sex who has
diabetes. As this data will have a given distribution, this could help us establish
a specific subset of subjects having a particular criterion. The benefit is here
more for the physician and the individual patient. The physician could potentially
use such simulations to get an idea, of how a given patient might progress in his
/ her disease. Importantly, such a simulation would provide information about
a whole distribution of possible developments. Accordingly, the physician could
then communicate with the patient to explain the situation in adequate words.

The biggest advantage of synthetic data is that it allows researchers to get
access to data in a much easier way (from a legal/contract point of view) than
real data. Synthetic data can help to understand the content of real data and
its utility for a given analysis task. Although, synthetic data does not replace
real data. One of the successful examples of synthetic data initiatives is from
the netherlands cancer institute (NKI). The synthetic data generated here is

187



a part of the netherlands cancer registry (NCR) and mimics the structure and
some of the statistical patterns of the data. This data not having any real data
information can give the researchers insight into the data they want to apply for
(https://iknl.nl/en/ncr/) synthetic-dataset accessed on 22nd July 2021.

Overall, we see our work as a useful complement to federated machine learn-
ing techniques, which could help us understand the complexities underlying the
diseases, generate synthetic data, break data silos, and thus enhance progress in
biomedical research. However, federated learning comes with its own set of pros
and cons. Practically the biggest challenges for federated learning are:

• We need an organizational and legal framework, in which all participating
organizations agree on mutual data usage. Typically this requires special
contracts, and legal processes are complex and slow.

• Federated learning only works, if data are semantically standardized and
harmonized across organizations. This is a huge effort on its own.

• Federated learning is technically challenging and requires the writing of spe-
cial code. There are libraries for federated learning publicly available, but
they are far from being mature.
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List of Acronyms

AA Alzheimer’s Association

Abeta Amyloid Beta

AD Alzheimer’s Disease

ADAS Alzheimer’s Disease Assessment Scale-Cognitive Subscale

ADLs Activities of Daily Living

ADL Activity of Daily Living

ADNI Alzheimer’s Disease Neuroimaging Initiative

AI Artificial Intelligence

ANOVA Analysis of Variance

APOE4 Apolipoprotein E4

AR Augmented Reality

AUC-ROC Area Under the Receiver Operating Characteristic Curve

AUC Area Under Curve

AV-45 Florbetapir

BD Bayesian Dirichlet

BDe Likelihood Equivalence Bayesian Drichlet

BDeu Bayes Dirichlet (likelihood) Equivalent Uniform
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BIC Bayesian Information Criterion

BN Bayesian Network

CC Complete Case

CDR Clinical Dementia Rating

CDRSB Clinical Dementia Rating Sum of Boxes

CN Cognitively Normal

CPD Conditional Probability Distributions

CPDAG Completed Partially Directed Acyclic Graph

CPT Conditional Probability Tables

CS Compressed Sensing

CSF Cerebrospinal Fluid

DAG Directed Acyclic Graph

DAGAN Deep De-Aliasing Generative Adversarial Networks for
Fast Compressed Sensing MRI Reconstruction

DAG Directed Acyclic Graphs

DaTscan Dopamine Transporter Scan

DM Digital Measure

DNN Deep Neural Network

DP Differential Privacy

DPLL Decomposable Penalized Log Likelihood

DSM-5 Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition

EHR Electronic Health Record

ELBO Evidence Lower Bound
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EM Expectation Maximization

EMCI Early Mild Cognitive Impairment

eQTL Phenome-Wide Association Studies

FAQ Functional Activity Questionnaire

FDG Fluorodeoxyglucose

GAN Generative Adversarial Network

GBA Glucocerebrosidase

GBN Gaussian Bayesian Network

GDPR General Data Protection Regulation

GMM Gaussian Mixture Models

GTEx Genotype-Tissue Expression

hc Greedy Hill Climbing

HGC95 Heckermann, Geiger and Chickering

HI-VAE Heterogeneous Incomplete Variational Autoencoder

HRC Haplotype Reference Consortium

HRV Heart Rate Variability

i.d. identically Distributed

i.i.d. Independently and Identically Distributed

ICD-10 International Classification of Diseases 10th Revision

IM Independent Marginals

IMI Innovative Medicines Initiative

IQR Inter Quartile Range

KLD Kullback-Leibler Divergence
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LL Log Likelihood

LMCI Late Mild Cognitive Impairment

LOCF Last Observation Carried Forward

lw Bayes-likelihood Weighting

MAR Missing at Random

MB Markov Blanket

MBN Modular Bayesian Network

MC-medGAN Multi-categorical medGAN

MCA Multiple Correspondence Analysis

MCAR Missing Completely at Random

MCI Mild Cognitive Impairment

MDS-UPDRS MDS-Unified Parkinson’s Disease Rating Scale

MDS Movement Disorder Society

medGAN Medical Generative Adversarial Network

MICE Multivariate Imputation by Chained Equations

MLE Maximum Likelihood Estimation

MMHC Max-Min Hill-Climbing

MMPC Max-Min Parents and Children

MMSE Mini-Mental State Examination

MNAR Missing Not at Random

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NCR Netherlands Cancer Registry
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NDD Neurodegenerative Disease

NDDs Neurodegenerative Diseases

NeuroMMSig Multimodal Mechanistic Signatures for Neurodegen-
erative Diseases

NFT Neurofibrillary Tangles

NIA National Institute on Aging

NINCDS/ADRDA National Institute of Neurological and Com-
municative Disorders and Stroke - Alzheimer’s Disease and
Related Disorders Association

NKI Netherlands Cancer Institute

NL Normal

NMI Neuromotor Index

NRMSE Normalized Root Mean Square Error

OOB Out-of-Bag

P-Tau Phospho Tau

pAUC Partial area under ROC curve

PD Parkinson’s Disease

PET Positron Emission Tomography

PET/SPECT Positron Emission Tomography/Single Photon Emis-
sion Computed Tomography

PheWAS Phenome-Wide Association Studies

PKPD Pharmacokinetic-Pharmacodynamic

PPMI Parkinson’s Progression Markers Initiative

pRBD possible REM-sleep Behavior Disorder

PRS Polygenic Risk Scores
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RADAR-AD Remote Assessment of Disease and Relapse-AD

RAVLT Rey Auditory Verbal Learning Test

RBD Rapid Eye Movement Sleep Behavior Disorder

RBD REM-sleep Behavior Disorder

RF Random Forest

ROC Receiver Operator Characteristic

ROI Region of Interest

RSMAX2 Restricted Maximization

SC Synthetic Cohort

SDC Statistical Disclosure Control

SDL Statistical Disclosure Limitation

SE Standard Error

SI-HITON-PC Semi-InterleavedHiton Parents and Children

SMC Significant Memory Concern

SN Subastantia Nigra

SNP Single Nucleotide Polymorphism

SNpc Substantia Nigra Pars Compacta

T tau Total Tau

TREND Tuebinger Evaluation of Risk Factors for Early Detection
of NeuroDegeneration

UPDRS Unified Parkinson’s Disease Rating Scale Score

VAE Varitational Autoencoder

VAMBN Variational Autoencoder Modular Bayesian Network
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