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List of abbreviations

DNA Deoxyribonucleic acid

DNMT DNA methyltransferase

lncRNAs long non-coding RNAs

ncRNAs non-coding RNAs

sncRNAs small non-coding RNAs

HBV hepatitis B virus

HCV hepatitis C virus

NASH non-alcoholic steatohepatitis

NAFLD nonalcoholic fatty liver disease

AFB1 aflatoxin B1

HCC hepatocellular carcinoma

CCA cholangiocarcinoma

AML acute myeloid leukemia

CML Chronic myeloid leukemia

ALL Acute lymphocytic leukemia

CLL Chronic lymphocytic leukemia

HDAC Histone deacetylases

GPCRs G protein-coupled receptors

RGS20 Regulator of G protein signaling 20
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1. Abstract

Background: Epigenetics is crucial in cancer research, revealing its impact on diverse

cancer types' development and progression. Epigenetic-targeting drugs show promise in

improving patient outcomes, but addressing their potential side effects is also important.

Liver cancer and hematological malignancies pose a significant global health burden

with high incidence and mortality rates. Further research is needed to explore new

treatments and targets for them. Drug repurposing, such as metformin, offers a

promising approach by leveraging non-oncology drugs with anticancer effects and low

side effects. This strategy holds potential for discovering new therapeutic options.

Aims: This dissertation explores the role of epigenetics in cancer by investigating two

primary research objectives: 1) the potential benefits of repurposing market-available

drugs for epigenetic therapy as novel anticancer treatments; 2) the identification of long

non-coding RNAs (lncRNAs) in cancers for prognosis prediction and the identification of

potential therapeutic targets.

Method: In the first publication, we investigated the anticancer properties of meticrane, a

diuretic medication, in liver cancer and hematological malignancies. Additionally, we

assessed the synergistic effects of meticrane when combined with epigenetic drugs for

cancer treatment. In our subsequent publications, we employed bioinformatic analysis to

identify potential lncRNAs associated with the survival of cancer patients.

Results: Meticrane demonstrated anticancer effects in liver cancer and leukemia.

Furthermore, it exhibited additive or synergistic effects when used in combination with

epigenetic drugs against both liver cancer and leukemia. In addition, our research

identified several lncRNAs that are associated with the prognosis of cancer patients.

Conclusion: The non-oncology drug meticrane exhibited an anticancer effect and

demonstrated additive or synergistic effects when combined with epigenetic drugs in the

treatment of cancers (liver cancer and leukemia). Additionally, our research identified

prognosis-related lncRNAs with potential applications as prognostic predictors and

therapeutic targets, thereby enhancing our knowledge of cancer biology and expanding

the scope of therapeutic possibilities.
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2. Introduction

2.1 Background:

2.1.1 Epigenetics

Conrad Hal Waddington coined the term "epigenetics" to describe the mechanisms of

inheritance that go beyond standard genetics (Waddington, 2012). Epigenetics

encompasses heritable traits that are independent of DNA sequence and involves three

primary forms of regulation: DNA methylation, histone modification, and noncoding RNA

activity (Loscalzo & Handy, 2014), and linked with cancers (Dhabhai, Sharma,

Maciaczyk, & Dakal, 2022; Sharma, Liu, Herwig-Carl, Chand Dakal, & Schmidt-Wolf,

2021). DNA methylation, a extensively studied modification, is mediated by the

enzymatic activity of DNA methyltransferase (DNMT), which adds a methyl group to the

5'-carbon of the cytosine pyrimidine ring in DNA (Miller & Grant, 2013). This process

relies on three main methyltransferases: DNMT1, DNMT3A, and DNMT3B (Nishiyama &

Nakanishi, 2021). In addition, the association between DNMTs (DNA methyltransferases)

and cancers has been well-established (Chen et al., 2023; W. Zhang & Xu, 2017). In

eukaryotic cells, DNA is structured into chromatin, which is composed of nucleosomes

as the fundamental units. These nucleosomes consist of an octamer comprising four

core histones (H3, H4, H2A, and H2B), with approximately 147 base pairs of DNA coiled

around them (Audia & Campbell, 2016). Histone modifications, facilitated by specific

enzymes, play a pivotal role in chromatin compaction, nucleosome dynamics, and

transcriptional regulation. Perturbations in these processes can disrupt the balance of

gene expression and are commonly observed in human cancers, resulting from various

mechanisms such as gain or loss of function, overexpression, promoter

hypermethylation, chromosomal translocation, mutations in histone-modifying

enzymes/complexes, or even modifications in the histone modification sites themselves

(Z. Zhao & Shilatifard, 2019). Our current understanding suggests that non-coding RNAs

(ncRNAs) make up approximately 98% of the human genome, yet the exploration of this

vast amount of information remains limited, with only a small fraction having been

investigated to date (Le, Romano, Nana-Sinkam, & Acunzo, 2021). Non-coding RNAs

(ncRNAs) encompass a broad range of lengths, varying from a few nucleotides to

several thousands. Small non-coding RNAs (sncRNAs) are typically shorter than 200
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nucleotides in length, while long non-coding RNAs (lncRNAs) form a separate category

of RNA molecules that exceed 200 nucleotides in length. LncRNAs, exhibiting high

heterogeneity, play a crucial role in regulating gene expression through diverse

mechanisms, and their differential expression in tumors is directly associated with the

transition from normal cells to tumor cells (Huarte, 2015). Some lncRNAs have been

proved in the proliferation, growth or survival of cancers (Ghafouri-Fard, Ahmadi

Teshnizi, Hussen, Taheri, & Zali, 2023; Salman et al., 2023; Su, Huang, & Li, 2023; H.

Zhang et al., 2023). Moreover, the intriguing interplay between different epigenetic

factors, such as miRNA/DNA methylation or miRNAs/lncRNAs, has garnered

considerable attention (Bhattacharjee et al., 2023; Saviana et al., 2023). Therefore, the

significance of epigenetics in human diseases, particularly cancer, cannot be overstated.

2.1.2 Liver cancer and hematologic malignancy

Deaths caused by liver cancer ranked fourth cancer death in the world and risk factors

include hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol, and non-alcoholic

steatohepatitis (NASH) (Huang et al., 2022). NAFLD has emerged as the most prevalent

liver disease worldwide, impacting approximately 38% of the global population, and

while only a minority of NAFLD patients develop cirrhosis or hepatocellular carcinoma,

the growing size of this population puts an increasing number of individuals at risk for

these severe outcomes (Wai-Sun Wong, Ekstedt, Lai-Hung Wong, & Hagstrom, 2023).

HBV and HCV as the main risk factors for liver cancer will might be replaced by

NAFLD/NASH, and Aflatoxin B1 (AFB1) will be a predominant risk factor in the future

(McGlynn, Petrick, & El-Serag, 2021). According to a study (Yoo et al., 2023), smoking

has been demonstrated to increase the incidence of HCC in individuals with NAFLD. A

recent investigation in England (Liao et al., 2023) reveal the following observations: 1)

men exhibit a higher risk of liver cancer diagnosis compared to women. 2) Asian and

Black African populations show a higher likelihood of HCC diagnosis compared to white

British individuals. 3) Survival rates were worse in patients with CCA and other

specified/unspecified liver cancers compared to HCC patients. Though, increasing

studies revealed that more and more targets were found for liver cancer (Shu, Luo,

Zhang, & Gao, 2023; Tang et al., 2023), the escalating incidence, mortality rates, and

low survival rates of liver cancer pose a significant burden on the NHS, patients, and
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caregivers (Liao et al., 2023). Therefore, additional researches on liver cancer are still

required.

Hematologic malignancies, encompassing leukemia (such as ALL, CLL, AML, and CML),

myeloma, and lymphoma (both Hodgkin's and non-Hodgkin's), represent a diverse

group of malignant disorders affecting the blood, bone marrow, and lymph nodes, and

they play a substantial role in contributing to the global burden of cancer (Keykhaei et al.,

2021). A survey revealed the number of newly diagnosed cases and deaths for various

hematologic malignancies in 2018: leukemia (437,033 new cases and 309,004 deaths),

Non-Hodgkin lymphoma (509,590 new cases and 248,724 deaths), Multiple myeloma

(159,985 new cases and 106,105 deaths), and Hodgkin lymphoma (79,990 new cases

and 26,167 deaths) (Bray et al., 2018). These statistics clearly demonstrate the

substantial impact of these diseases on both incidence and mortality rates, indicating

their status as global health burden issues. Therefore, it is crucial to implement

additional efforts/measures to prevent the occurrence of these diseases and enhance

the survival rates of patients affected by them.

Recently, there has been growing evidence highlighting the promising relationship

between epigenetics and liver cancer as well as hematological malignancies

(Fernandez-Barrena, Arechederra, Colyn, Berasain, & Avila, 2020; Jasielec, Saloura, &

Godley, 2014; Wang, Malnassy, & Qiu, 2021; A. Zhao, Zhou, Yang, Li, & Niu, 2023).

These findings suggest that exploring the role of epigenetic mechanisms/targets in the

development, progression and treatment of these diseases is of great importance,

emphasizing the need for further research and investigation in this area.

2.1.3 Non oncology drug

The well-established understanding is that while anti-cancer/chemotherapy drugs are

capable of eliminating cancer cells, they can also inflict damage on healthy cells,

resulting in a plethora of side effects. Special attention has been devoted to testing non-

oncology drugs, leading to the strategy of "drug repurposing," wherein drugs approved

for other diseases are identified as potential cancer therapies to mitigate collateral

damage (Papapetropoulos & Szabo, 2018; Z. Zhang et al., 2020). A recent article of

interest presents a summary of various small molecule non-oncology drugs with

therapeutic potential in cancer, providing insights into their putative targets and key
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pathways pertinent to cancer treatment (Fu et al., 2022). Metformin, a well-known anti-

diabetic drug, serves as a prominent example of non-oncology drug repurposing, with

extensive research conducted across various cancer types (Kasznicki, Sliwinska, &

Drzewoski, 2014; Zi et al., 2018). It has demonstrated its therapeutic potential in

hepatocellular carcinoma (Cheng et al., 2023) and various hematological malignancies,

including leukemia, myeloma, and lymphoma (Y. Zhang, Zhou, Guan, Zhou, & Chen,

2023). Therefore, exploring non-oncology drugs for the treatment of liver cancer and

hematological malignancies holds promise in identifying additional potential therapeutic

options that can benefit patients. Besides, studies (Bezu, Kepp, & Kroemer, 2022;

Bridgeman, Ellison, Melton, Newsholme, & Mamotte, 2018) have demonstrated that

certain non-oncology drugs with anticancer effects can influence epigenetic processes.

Combining non-oncology drugs, which possess anticancer properties, with established

epigenetic-targeting treatments for cancers represents a promising and innovative

approach to enhance therapeutic efficacy and improve patient outcomes.

2.2 Aims

This dissertation aims to address two primary questions related to the role of the

epigenetics in cancers. Firstly, it aims to investigate the potential benefits of novel

anticancer treatments through drug repositioning focused on epigenetic therapy using

market-available drugs. Secondly, it seeks to identify additional lncRNAs in cancers to

improve the prediction of cancer patient prognosis and discover potential cancer targets.

By exploring these areas, the study contribute to the advancement of epigenetic-based

therapies and expand our understanding of cancer biology.
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Emerging evidence suggests that chemotherapeutic agents and targeted

anticancer drugs have serious side effects on the healthy cells/tissues of the

patient. To overcome this, the use of non-oncology drugs as potential cancer

therapies has been gaining momentum. Herein, we investigated one non-

oncology drug named meticrane (a thiazide diuretic used to treat essential

hypertension), which has been reported to indescribably improve the

therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our

hypothesis-driven study, we tested anti-cancer potential meticrane in

hematological malignance (leukemia and multiple myeloma) and liver cancer

cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell

viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer

(SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane

showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC,

HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional

analysis showed that meticrane treatment induces changes in the expression

of genes associated with non-cancer associated pathways. Of importance,

differentially expressed genes showed favorable correlation with the survival-

related genes in the cancer genome. 4) We also performed molecular docking

analysis and found considerable binding affinity scores of meticrane against PD-

L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for

immunotherapy against cancers, but meticrane showed no response to the

cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is

the first attempt to identify and experimentally confirm the anti-cancer potential

of meticrane, being also the first to test the suitability of any non-oncology drug
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in CIK cell therapy. Beyond that, we have expressed some concerns confronted

during testing meticrane that also apply to other non-oncology drugs when

considered for future clinical or preclinical purposes. Taken together, meticrane

is involved in some anticancer pathways that are passively targeting cancer cells

and may be considered as compatible with epigenetic inhibitors.
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Introduction

It has been well established that while anti-cancer/

chemotherapy drugs kill cancer cells, they can also damage the

healthy cells, causing a plethora of side effects. To avoid this

collateral damage, special attention has been paid to the concept

of testing non-oncology drugs, prompting the strategy of “drug

repurposing,” i.e., drugs already approved for other diseases being

identified as potential cancer therapies (1, 2). One of the best

examples demonstrating the use of non-oncology drug

repurposing is metformin, a classic anti-diabetic drug, that has

been under intense investigation across multiple cancer types (3, 4).

Of interest is a recent article summarizing several small molecule

non-oncology drugs with therapeutic potential in cancer and

discussing their putative targets and key pathways relevant to

cancer treatment (5).

Notwithstanding all this new progress, it is still too early to

definitively assess the success of these proposed potential drugs,

although early indications point to positive results. Pushpakom and

colleagues recently discussed the challenges being faced by the

repurposing community and recommended some innovative

ways to address them (6). As a broader concept, the testing of

selective (computationally/dockings, high throughput screenings)

non-oncology drugs in diverse cancer models, and how they may

respond to individual epi(genomic) characteristics remain to be

carefully evaluated. In particular, if they can be well combined

with other clinically proven drugs/active compounds for

cancer. For instance, the combination of epigenetic drugs with

chemotherapeutic regimens has proven to be a synergistically

relevant as treatment approach (7, 8). More importantly, if the

newly selective drug is compatible with cancer immunotherapy

related approach.

Considering this, herein, we investigated one non-oncology

drug named meticrane (a thiazide diuretic used to treat essential

hypertension), which undescribably improved the therapeutic

efficacy of anti-CTLA4 in AB1-HA tumor-bearing mice (9). In

this hypothesis-driven study, we tested the anti-cancer potential

meticrane in hematological malignance (leukemia and multiple

myeloma) and liver cancer cell lines. We further extend our

analyses by assessing the additive/synergistic potential of

meticrane with two epigenetic inhibitors (DNMT1/5AC and

HDAC/CUDC-101) in these cells, which was further supported
02
by the molecular docking analysis. Besides, we evaluated the

compatibility of meticrane with cytokine-induced killer (CIK)

cells, a clinically established effective adoptive immunotherapy

approach. To our knowledge, our study is the first attempt to

identify and experimentally confirm the anticancer potential

of meticrane.
Materials and methods

Generation of PBMCs and CIKs

Both Peripheral Blood Mononuclear Cells (PBMCs) and

Cytokine-induced killer (CIK) cells were generated, as described

previously (10–13). To isolate PBMCs from healthy donors by

gradient density centrifugation, Pancoll (Pan-Biotech, Aidenbach,

Bavaria, Germany) was used. All donors included in our study were

from the blood bank of the University Hospital Bonn. To generate

CIK cells, fresh PBMCs were seeded at 3×106 cells/mL in a 75 cm2

flask and 1000 U/ml IFN-g (ImmunoTools GmbH, Aidenbach,

Bavaria, Germany) was added after 2 hours. On the following day,

50 ng/ml anti-CD3 antibody (OKT, eBioscience, Thermo Fisher

Scientific, Inc. San Diego, CA, USA), 600 U/ml IL-2 (ImmunoTools

GmbH, Aidenbach, Bavaria, Germany) and 100 U/ml IL-1b
(ImmunoTools GmbH, Aidenbach, Bavaria, Germany) were

supplemented. Both PBMCs and CIK cells were cultured in

RPMI-1640 medium (Pan-Biotech, Aidenbach, Bavaria,

Germany) supplemented with 10% FBS (Sigma-Aldrich Chemie

GmbH, Munich, Germany) and 1% penicillin/streptomycin (P/S)

(Gibco, Schwerte, Germany), at 37°C, 5% CO2, and humidified

atmosphere. CIK cells were subcultured every 2-3 days with fresh

medium supplemented with 600U/ml IL-2 (1×106 cells/ml). On

completion of 14 days of expansion, the CIK cells were collected for

the experiments.
Cell culture, meticrane compound and
epigenetic inhibitors

We utilized seven cell lines in this study. The cell lines K562,

SK-hep-1, HepG2, and CCD18co were purchased from the

American Type Culture Collection (ATCC, Manassas, Virginia,
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USA). Whereas the cell lines Jurkat, U266 and OPM2 were acquired

from the German Collection of Microorganisms and Cell Cultures

(DSMZ, Braunschweig, Germany). We cultured K562, U266,

Jurkat, and OPM2 in RPMI1640 medium (Pan-Biotech,

Aidenbach, Bavaria, Germany) supplemented with 10% FBS

(Sigma-Aldrich Chemie GmbH, Munich, Germany) and 1%

penicillin/streptomycin (P/S) (Gibco, Schwerte, Germany). While

SK-hep-1, HepG2, and CCD18co cells were maintained in EMEM

medium (Pan-Biotech, Aidenbach, Bavaria, Germany)

supplemented with 10% FBS (Sigma-Aldrich Chemie GmbH,

Munich, Germany) and 1% penicillin/streptomycin (P/S) (Gibco,

Schwerte, Germany). Meticrane (Sigma-Aldrich Chemie GmbH,

Munich, Germany) was dissolved in DMSO and stored at -20°C at a

concentration of 200mM. The HDAC inhibitor CUDC-101 (Selleck

Chemicals GmbH, Munich, Germany) and the selective HDAC6

inhibitor ACY1215 (Cayman Chemical, Ann Arbor, Michigan, US)

was dissolved in DMSO and stored at -20°C at a concentration of

50mM. Also, DNMT1 inhibitor 5-Azacytidine (5AC) (STEMCELL

Technologies Germany GmbH, Cologne, Germany) was dissolved

in DMSO and stored at -20°C at a concentration of 25mM.
Cell viability assay and cells number
counting assay

In case of suspension cells (K562, U266, OPM2, Jurkat, and

PBMCs), the cells were seeded in 96-well flat-bottom plates and

then immediately mixed with compounds (meticrane, CUDC-

101, 5AC and ACY1215). For adherent cells (SK-hep-1, HepG2,

and CCD18co), the drugs were added 4 hours later allowing the

cells to adhere first. Considering the different growth rates of

tumor cells, 0.5×104 K562 cells, 2×104 U266 cells, 2×104 OPM2

cells, 10×104 PBMCs, 0.5×104 Jurkat cells, 0.25×104 CCD18co

cells, 0.3×104 SK-hep-1 cells, and 0.3×104 HepG2 cells were

seeded. CCK8 assay (Dojindo EU GmbH, Munich, Germany)

was used to determine the cell viability according to its

manufacturer’s instructions. In addition, based on the CCK8

results, the combined effects of meticrane and HDAC inhibitors

(CUDC101, 5AC and ACY1215) were evaluated using the

formula, as described elsewhere (14):

Combination index Q 

=   KEð a + b)=(KEa  +  KEb �  KEa �  KEb)

KE represents the killing effect of drugs on cells, while a and b

represent drug a and drug b. KE(a+b) means the killing effect of

combination drug a and drug b.

According to the combination index Q value, the combined

effects of meticrane and epigenetic inhibitors on tumor cells were

classified as antagonism (< 0.85), additive (0.85 - 1.15) or synergism

(> 1.15). The live cell count was performed using the Canto II flow

cytometer (BD Biosciences, Heidelberg, Germany). Hoechst 33258

(Cayman Chemical, Ann Arbor, Michigan, US) was used to stain

dead cells, and then precision count beads (BioLegend GmbH,

Koblenz, Germany) were used to count the number of live cells.
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Cell proliferation and apoptosis assays

To assess cell proliferation, 0.25mM CFSE (Cell Trace carboxyfl

fluorescein succinimidyl ester) (Thermo Fisher Scientific, Eugene,

USA) was used to stain 1×106 cells in PBS for 20 minutes at room

temperature. While 1ul FITC-annexin (BioLegend GmbH, Koblenz,

Germany) and 1ul eBioscience™ 7-AADViability Staining Solution

(Thermo Fisher Scientific, Eugene, USA) were added to stain tumor

cells (100ul volume) for 15mins at room temperature and then were

used to assay cell apoptosis. In addition, CellEvent™ Caspase-3/7

Green Flow Cytometry Assay Kit (Thermo Fisher Scientific,

Eugene, USA) was used to further evaluate the apoptosis and

caspase 3/7 activation level. 0.5mM CellEvent™ Caspase-3/7

Green Detection Reagent and 1mM SYTOX™ AADvanced™

Dead Cell Stain were utilized to stain tumor cells at room

temperature for 1h and 5 mins respectively. In these three

experiments, 0.5×104 K562 cells, 0.5×104 Jurkat cells and 0.3×104

SK-hep-1 cells were seeded in 96-well flat-bottom plates for 3 days.

Of note, adherent cells (SK-hep-1) were added to the wells and

meticrane was added 4 hours afterwards. Flow cytometry was

performed for these three experiments.
Cytotoxicity assay of CIK cells

0.25mMCFSE was used to stain tumor cells (1×106) in 1ml PBS,

20 min at room temperature. Subsequently, 1×104 cells of K562

were seeded in 96-well flat-bottom plates and then meticrane and

10×104 CIK cells (4h co-culture time), 10×104 CIK cells (24h co-

culture time) and 20×104 CIK cells (24h co-culture time) were

added respectively. Likewise, 1×104 SK-hep-1 cells were seeded in

96-well flat-bottom plates and 4 hours later meticrane and 40×104

CIK cells (4h coculture time), 10×104 CIK cells (24h coculture time)

and 20×104 CIK cells (24h coculture time) were added. Flow

cytometry was used to test the cytotoxicity of CIKs against

tumors at 4 and 24 hours of coculture. The cytotoxicity was

calculated as following formula: cytotoxicity (%) = ((TC-TT)/TC)

×100. TC: percentage of live tumor cells in control tubes (tumor

cells alone), TT: percentage of live tumor cells in test tubes (tumor

cells + CIK cells).
RNA isolation and whole
transcriptome analysis

K562 (1×105 cells), Jurakt (1×105 cells) and SK-hep-1 (0.6×105

cells) were seeded in six well plates. As previous described,

meticrane was added promptly in K562 and Jurkat cells but in

SK-hep-1 cells, it was introduced 4h later. RNA isolation was

performed using the RNeasy plus mini kit (QIAGEN GmbH,

Hilden, Germany) following the manufacturer’s instructions.

Whole transcriptome analysis (3’-mRNA sequencing) was

performed at the NGS Core Facility in Bonn, Germany. The data

was analyzed using Histat2 (mapping tool) and EdgeR2 (differential

analysis tool). The cutoff value (logFC > 2 and FDR< 0.05) was
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applied to select the differential genes between the untreated and

treated meticrane groups. KEGG pathway enrichment analysis (R

package: clusterProfiler) were performed on the basis of based on

differential genes. The heatmap (R package: pheatmap) was used to

show the comparative analysis of differential genes between the

untreated and treated meticrane groups.
Identification of the potential
targets of meticrane

To identify potential targets of meticrane, we used previously

described methodology (15). Briefly, AML (Acute Myeloid

Leukemia) and HCC (Hepatocellular carcinoma) specific gene

expression data (log2 (FPKM+1)) (TCGA data from TCGA

database, https://portal.gdc.cancer.gov/, project:TCGA-LAML and

TCGA-LIHC) and survival data (TCGA data from Ucsc Xena

database, https://xenabrowser.net/datapages/, cohort: GDC TCGA

Liver Cancer (LIHC) and GDC TCGA Acute Myeloid Leukemia

(LAML)) were utilized to imitate the clinical model. Using the

TCGA data, we identified genes relevant to survival based on the

following criteria: KM curve (p< 0.001), Cox regression (p< 0.001) and

the difference in five-year survival between the low and high gene

expression groups of more than 10%. Based on the HR (hazard ratio)

value from the Cox regression, we further distinguish between genes

with a high risk (poor prognosis) (HR > 1) and those with a low risk

(good prognosis) (HR< 1). We then overlap differentially expressed

genes (RNA-sequence data) with prognostic genes from TCGA

patients’ data. In particular, overlapping of low risk group with up-

regulated genes and a high-risk group with down-regulated genes

induced by meticrane treatment. All the overlapping genes were used

to build protein-protein interaction (string: https://string-db.org/) and

KEGG analysis (R package: clusterProfiler).
Molecular docking and molecular
dynamics (MD) simulation

In addition, molecular docking was used to further explore the

potential targets of meticrane, particularly focusing on known

immune checkpoint (CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, B7-

H4, TIGIT, CD73) and epigenetic targets (DNMT1, HDACs). For

this purpose, the crystal structures of the corresponding proteins

were first extracted from the protein database (www.rcsb.org) and

the respective proteins CTLA-4/1I8L, PD-1/4ZQK, PD-L1/6R3K,

LAG-3/7TZH, TIM-3/7M3Z, B7-H4/4GOS, TIGIT/5V52, CD73/

6TWA, DNA methyltransferase 1/3PTA, and Histone deacetylases

(HDAC2/7JS8, HDAC3/4A69, HDAC4/2VQJ, HDAC6/5EDU,

HDAC7/3ZNR, HDAC8/7JVU and HDAC10/7U3M were

identified. Since for HDACs, three small molecules bound crystal

structures were available, therefore, we used all of them to

comprehensively analyze different binding modes of ligands in

their respective pockets. The protein structures were prepared by

using the protein preparation wizard (PPW) module of maestro

(Schrodinger LLC, New York, NY, USA) was used to pre-process

the structures (16–20). Then, the ligand (meticrane) was prepared
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(module of maestro), which generates tautomers, and possible

ionization states at the pH range 7 ± 2 using Epik (21) and also

generates all the stereoisomers of the compound, if necessary (16).

The optimization was done using the OPLS3 (Optimized

Potentialsfor Liquid Simulations) force field (22). Finally, Glide

module of Schrodinger was used to perform the molecular docking

and Prime MM-GBSA for binding free energy quantification. The

grids were generated using the centroid of co-crystals by using the

Receptor Grid Generation panel in Glide. The most favorable

ligand-receptor conformations for a drug complex provided by a

docking study (18). Glide is a comprehensive and systematic search

tool for the molecule of interest from the virtual libraries. The

obtained docked poses were then subjected to short MD simulations

to study their dynamicity in the pocket. Desmond v3.6 module from

Schrodinger suite was used to perform the MD simulations. The

systems were built via Systems builder using OPLS3 force field and

solvated with TIP3P water solvent model. All the complexes were

placed in the orthorhombic periodic boundary conditions with a

size of repeating buffered units at 10Å. Counter ions were also

added to neutralize the systems. An energy minimization step was

done for each system for 100ps. The NPT ensemble was employed

for the simulations with the Nose-Hover chain thermostat and the

martyna-tobias-klein barostat. RESPA integrator was used with a

time step of 0.002ps. For short range coulombic interactions, a 9.0 Å

cut-off was considered. Bonds to hydrogen were constrained using

the MSHAKE algorithm of Desmond. The coordinates were saved

at intervals of 10 ps.
Statistical analysis

All experiments were performed in triplicate and repeated

thrice. Besides, the experiments involving CIK cells were

performed with three independent donors. FACS data were

analyzed using FlowJo V10.6 software (FlowJo, LLC, Ashland,

Oregon, U.S.A.). The mean values and standard deviations were

used in the figures to demonstrate the experimental data. Also,

figures and statistical analyses including one-way or two-way

analyses of variance (ANOVA) with Bonferroni’s post-hoc test

and T-tests were performed using GraphPad Prism v.8.0

(GraphPad Soft-ware, Inc., San Diego, CA, U.S.A.). For

bioinformatic data, the statistical analyses and figures were

performed by R software. A p< 0.05 was considered as significant.

*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns: not significant.
Results

Meticrane-induced alteration in the cell
viability and proliferation is independent
from the apoptosis signaling pathway

To investigate the anticancer effect of meticrane, all cancer cells

were co-cultured with meticrane at a concentration of 0.06 to 1 mM

at 72 h. The leukemia cells (K562 and Jurkat) were found to be more
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sensitive to meticrane from 0.125 mM to 1 mM compared to the

control cells (PBMCs) (Figure 1A). The cell viability was found to be

decrease with increase in meticrane concentration in K562

(0.06mM: p=0.2384, 0.125mM: p=0.0264, 0.25mM: p=0.0323,

0.5mM: p=0.0005, 1mM: p<0.0001) and Jurkat (0.06mM:

p=0.0103, 0.125mM: p=0.0073, 0.25mM: p=0.0017, 0.5mM:

p<0.0001, 1mM: p<0.0001). However, myeloma cells (U266 and

OPM2) (Figure 1A) showed no significant difference at any

concentration compared to the controls (all p values at each

concentration were more than 0.05). Likewise, in liver cells, SK-

hep-1 cells showed significantly lower viability compared to the

control cells (CCD18co cells), whereas HepG2 cells showed no

significant difference (Figure 1B). The cell viability was found to be

decrease with increase in meticrane concentration in SK-hep-1

(0.06mM: p=0.011, 0.125mM: p=0.0025, 0.25mM: p=0.0001,

0.5mM: p<0.0001, 1 mM: p<0.0001) and HepG2 (all p values at

each concentration were more than 0.05) (Figure 1B). Considering

cell viability is directly correlated to the viable/alive cells, we next

investigated and found that the number of alive K562 cells
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(p=0.026), Jurkat cells (p=0.0013), and SK-hep-1 cells (p=0.0011)

significantly decreased in the meticrane (1mM)-treated group

compared with the untreated group after 72 h (Figure 1C),

suggesting that meticrane could reduce the number of tumor

cells. In addition, the MFI (Mean fluorescent intensity) of CFSE

(Cell Trace carboxyfl fluorescein succinimidyl ester) of K562 cells

(p<0.0001), Jurkat cells (p=0.0002), and SK-hep-1 cells (p=0.0007)

was also found to be higher in the presence of meticrane

(Figure 1D), suggesting that the proliferation of these cell were

inhibited due to meticrane. Interestingly, no significant difference

was observed between early and late apoptosis in all observed

groups of K562 cells, Jurkat cells and SK-hep-1 cells by using

Annexine V and 7AAD dyes (Figure 1E). Besides, we checked

both apoptosis and caspase 3/7 activation level potentially caused by

meticrane, and found no alterations by using CellEvent™ Caspase-

3/7 Green Flow Cytometry Assay Kit (Supplementary Figure 1).

Both two apoptosis experiments suggested that the strongly reduced

cell viability is independent of the apoptosis-related signaling

pathway. It can therefore be concluded that meticrane may
D

E

A B

C

FIGURE 1

Effect of meticrane on the cell viability, alive cell number, proliferation and apoptosis of tumor cells. (A) CCK8 assay for cell viability for leukemia cell
lines, myeloma cell lines and control cells. PBMCs (control cells), myeloma (U266 and OPM2) and leukemia (K562 and Jurkat) cells. P value were
calculated by two-way ANOVA and Bonferroni’s post-hoc test. All data were representative of at least three independent experiments (n≥3).
(B) CCK8 assay for cell viability for liver cancer cell lines and control cells. CCD18co (control cells), and liver cancer (HepG2 and SK-hep-1) cells. P
value were calculated by two-way ANOVA and Bonferroni’s post-hoc test. All data were representative of at least three independent experiments
(n≥3). (C) FASC assay for the relative alive cell number for Jurkat (left), K562 cells (middle) and SK-hep-1 cells (right). All data were representative of
three independent experiments (n=3). P value were calculated by T tests. (D) Proliferation of Jurkat (left), K562 cells (middle) and SK-hep-1 cells
(right). Data are mean ± SD of triplicate measurements; data are one representative of three independent experiments. T test were applied to
calculate the p values. MFI, Mean Fluorescent Intensity. (E) The apoptosis of K562, Jurkat and SK-hep-1 cells. All data were representative of at four
independent experiments (n=4). P value were calculated by two-way ANOVA and Bonferroni’s post-hoc test. *p< 0.05, **p< 0.01, ***p< 0.001,
****p< 0.0001, ns, no significant.
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induce the alteration of cell viability and proliferation in selected

hematologic and liver cancer cells, through independent of the

apoptosis signaling pathway.
Meticrane showed additive/synergistic
effect with epigenetic inhibitors

Whether the effects of meticrane led to the alteration in cell

viability and proliferation in leukemia cells (K562 and Jurkat) and

liver cancer cells (SK-hep-1) can be enhanced with known

epigenetic inhibitors, we assayed both the DNMT1 inhibitor

(5AC) and HDAC inhibitor (CUDC-101) in these cells for 72 h

using CCK8 assay (Figures 2A, B). To ensure consistency, meticrane

(125mM) was combined with 5AC (31.25nM-1000nM) and CUDC

-101 (6.25nM-200nM) against K562 and Jurkat cells, whereas

CUDC -101 (0.125mM-4mM) or 5AC (0.313mM-10mM) was

optimized against SK-hep-1 cells. Of interest, in all cell lines, the
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addition of 5AC in combination with meticrane showed significant

differences in Jurkat cells (all p<0.0001), K562 cells (1000nm:

p=0.0033, 31.25-500nM: all p values< 0.0001) and SK-hep-1 cells

(0.313-1.25mM: all p<0.05, 2.5mM: p=0.0014) compared to the 5AC

alone. Notably, in Jurkat cells, meticrane (125mM) in combination

with 5AC (250nM: p=0.0499, 500nM: p=0.001 and 1000nM:

p<0.0001) showed higher inhibitory effect than meticrane alone

(Figure 2A). This effect was also observed in K562 (125nM:

p=0.0104, 250nM: p=0.0004, 500nM: p<0.0001 and 1000nM:

p<0.0001) and SK-hep-1 cells (0.625mM: p=0.0006, 1.25mM-

10mM: all p<0.0001). Like 5AC, CUDC -101 also in combination

with meticrane showed significant differences in Jurkat cells

(6.25nM: p=0.0005, 12.5nM: p=0.0019, 25nM: p=0.0018, 50nM:

p=0.0221), K562 cells (6.25nM-25nM: all p<0.0001, 50nM:

p=0.0002, 100nM: p<0.0001, 200nM: p=0.0016), and SK-hep-1

cells (0.125mM: p<0.0001, 0.25mM: p=0.0001, 0.5mM: p=0.0116)

compared to the CUDC-101 alone. The higher inhibitory effect of

meticrane in combination with CUDC-101 was observed in Jurkat
A

B

C

FIGURE 2

The combination effect of meticrane with epigenetic inhibitors or CIK cells. 5AC (A) or CUDC-101 (B) were used to test the cell viability (CCK8 assay)
in Jurkat, K562 and SK-hep-1 cells. All data were representative of at least three independent experiments (n≥3). When comparing these two groups
(no meticrane group vs. combined meticrane group), p-values were calculated using two-way ANOVA and Bonferroni’s post-hoc test. When
comparing the different dose in the group with meticrane, the p-value was calculated using a one-way ANOVA and the Bonferroni post-hoc test. (C)
Cytotoxicity of CIK cells with/without meticrane against K562 and SK-hep-1 cells at 4 hours (left) and 24 hours (right) point time. Data are mean ±
SD of triplicate measurements; data are one representative of three independent experiments. T test (4h) and two-way ANOVA (Bonferroni’s post-
hoc test) (24h) were applied to calculate the p values. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, no significant.
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cells (25nM: p=0.0033, 50nM-200nM: all p<0.0001), K562 (100nM:

p<0.0001, 200nM: p<0.0001) and Sk-hep-1 cells (0.125mM:

p=0.0126, 0.25mM-4mM: p<0.0001) compared to meticrane alone.

We also calculated the combination index Q values of meticrane

with different concentrations of CUDC101 or 5AC on tumor cells

(K562, Jurkat and SK-hep-1), and found mainly the additive/

synergetic effects (Tables 1, 2).
Meticrane showed no compatibility with
cytokine-induced killer cells

To further investigate the potential effect of meticrane with

immunotherapy, cytokine-induced killer cells (CIKs) were assessed

with meticrane. Meticrane (1mM) in combination with CIK cells

was tested against K562 cells and SK-hep-1 cells. In particular,

meticrane did not change the cytotoxicity of CIKs against K562 cells

(p=0.2391) and SK-hep-1 cells (p=0.424) tested at time point 4h

(Figure 2C). Due to this different sensitivity of CIKs against K562

and SK-hep-1 cells at 4h, we applied a different E/T ratio for K562

(E/T=10) and SK-hep-1 (E/T=40). Likewise, meticrane did not

change the cytotoxicity of CIKs against K562 cells (E/T=10 p=1,

E/T=20 p=0.1548) and SK-hep-1 cells (E/T=10 p=0.344, E/T=20

p=0.0673) tested at time point 24h (Figure 2C). Of note, as shown in

the tumor only group in Figure 2C at 4h and 24 time point,

meticrane alone (without CIKs) did not show cytotoxicity against
Frontiers in Oncology 07
K562 (4 hours p=1, 24 hours p=0.6757) or SK-hep-1 cells (4 hours

p=1, 24 hours p=1) at either 4 hours or 24 hours (Figure 2C).

Overall, meticrane showed no compatibility with cytokine-induced

killer cells.
Meticrane exerts no effect on
cancer-associated signaling
pathways in cancer cells

A genome-wide transcriptional analysis was performed to

investigate the transcriptional changes in the cells treated with

meticrane (Figures 3A-C). Based on differential genes between

untreated and treated meticrane groups, we obtained meticrane

induced significantly upregulated/downregulated genes from

leukemia cell lines (Jurkat: 1500 up-regulated and 1519 down-

regulated, Supplementary Table 1; K562: 1521 up-regulated and

1237 down-regulated, Supplementary Table 2) and liver cancer cell

line (SK-hep-1: 1195 up-regulated and 1557 down-regulated,

Supplementary Table 3). Using KEGG enrichment analysis to

identify the ten most enriched metabolic pathways, we found that

the leukaemia cell lines (Jurkat and K562) were highly enriched in

oxidative phosphorylation, mTOR signalling, RNA degradation and

regulation of cancer-related metabolic pathways. For the liver

cancer cell line (SK-hep-1), there was significant enrichment in

ferroptosis, focal adhesion and signaling pathways that play an
TABLE 1 Combination index Q of meticrane with CUDC101 in K562, Jurkat and SK-hep-1 cells.

Jurkat K562 SK-hep-1

meticrane CUDC101 Index Q meticrane CUDC101 Index Q meticrane CUDC101 Index Q

125mM 0nM 1.00 125mM 0nM 1.00 125mM 0mM 1.00

125mM 6.25nM 0.99 125mM 6.25nM 0.90 125mM 0.125mM 1.02

125mM 12.5nM 0.96 125mM 12.5nM 0.98 125mM 0.25mM 0.96

125mM 25nM 1.02 125mM 25nM 0.85 125mM 0.5mM 0.96

125mM 50nM 1.05 125mM 50nM 0.80 125mM 1mM 0.97

125mM 100nM 1.03 125mM 100nM 1.05 125mM 2mM 0.98

125mM 200nM 1.00 125mM 200nM 1.03 125mM 4mM 1.01
fro
TABLE 2 Combination index Q of meticrane with 5AC in K562, Jurkat and SK-hep-1 cells.

Jurkat K562 SK-hep-1

meticrane 5AC Index Q meticrane 5AC Index Q meticrane 5AC Index Q

125mM 0nM 1.00 125mM 0nM 1.00 125mM 0mM 1.00

125mM 31.25nM 1.17 125mM 31.25nM 1.39 125mM 0.313mM 1.03

125mM 62.5nM 1.14 125mM 62.5nM 1.26 125mM 0.625mM 0.99

125mM 125nM 1.06 125mM 125nM 1.05 125mM 1.25mM 1.03

125mM 250nM 1.02 125mM 250nM 1.07 125mM 2.5mM 1.02

125mM 500nM 1.03 125mM 500nM 1.03 125mM 5mM 1.00

125mM 1000nM 1.01 125mM 1000nM 0.95 125mM 10mM 1.00
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important role in cancer regulation, such as protein processing in

the ribosome and endoplasmic reticulum. Thus, meticrane showed

no direct/predominant effect on cancer-related signaling pathways

in leukemia cell lines, and a distant impact (i.e., pathways not

directly involved in cancer) to cancer in liver cancer cells.
Meticrane induced differentially
expressed genes showed association
with survival-related genes in cancer

We identified survival relevant genes for AML (high risk genes:

n=135 and low risk genes: n=35; Supplementary Table 4) and HCC

(high risk genes: n=469 and low risk genes: n=23; Supplementary

Table 5) were found using TCGA datasets. Subsequently, the low-risk

genes were correlated with the up-regulated genes induced by

meticrane (RNA-sequence) and the high-risk genes were correlated

with the down-regulated genes induced by meticrane. In this pattern,

we identified groups of overlapping genes in for AML (low-risk/up-

regulated genes: n=5; high-risk/down-regulated genes: n=21) and

HCC (low-risk/up-regulated genes: n=1; high-risk/down-regulated

genes: n=83) (Figures 3D, E; Supplementary Table 6). By combining

our in vitro data and information from TCGA’s publicly available

clinical portal, we described 110 genes (AML=26 genes; HCC=84

genes) (Supplementary Table 6) as potential targets of meticrane in

these two cancers. We then established PPI (protein-protein

interaction, cutoff interaction value: 0.4.) on these genes and found

moderate to weak interactions in HCC and AML, respectively

(Figures 3D, E). Using KEGG analysis of these selective genes, we

also found that they are specifically involved in non-cancer pathways

(Supplementary Figure 2).
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Molecular docking and molecular
dynamics (MD) simulation analysis
confirmed the binding affinity of meticrane
with known oncological targets

To further explore the potential targets of meticrane, we

performed a molecular docking analysis by aligning Meticrane

against known immune checkpoints (CTLA-4, PD-1, PD-L1,

LAG-3, TIM-3, B7-H4, TIGIT, CD73) and epigenetic targets

(DNMT1, HDACs) (Figure 4; Supplementary Figure 3). On the

basis of molecular docking followed by MM-GBSA scores, it is

evident that meticrane has considerable binding affinity against

some oncological targets such as PD-L1, TIM-3, CD73, and HDACs

(HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, HDAC8 and

HDAC10) (Figure 4). Given the small size of meticrane, the

binding affinity score is considerable, suggesting that these

proteins may be possible targets. As proof of principle, we

selected HDAC6 for further analysis. Interestingly, when HDAC6

inhibitor (ACY1215) was combined with meticrane, a significantly

high impact on the viability of tumor cells (K562, Jurkat and SK-

hep-1) were observed (Supplementary Figures 4A-C). Additionally,

we found that meticrane with ACY1215 has additive/synergistic

effects against tumor cells, based on the combination index Q values

(Supplementary Figure 4D).

To extend the analysis, we also performed MD simulations and

investigated the dynamic behavior of the protein and ligands using

the RMSD parameter, in which the structural deviations in the

molecule are calculated over time with respect to the initial

structure (docked pose). The RMSD of the ligands (plateau

reached) confirms the stability of the meticran in the pocket of

each protein, suggesting that these proteins may be of interest as
DA

B

E

C

FIGURE 3

A genome wide transcriptional analysis and correlation with the patient survival. The differentially expressed genes, heat map of the 30 most important
differential genes and KEGG pathways comparing the meticrane-treated group and the meticrane-untreated group (DMSO control group) in Jurkat (A),
K562 (B) and SK-hep-1 (C). Venn diagram (left) of meticrane upregulated/downregulated genes and low/high risk genes and protein-protein interaction
(right) of overlapping genes between upregulated/downregulated genes and low/high risk genes for leukemia (D) and liver cancer (E).
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potential targets for thorough experimental validation in the future

(Supplemental Figure 5).
Discussion

Certainly, there are enormous number of chemotherapeutic

agents and targeted anti-cancer drugs, however, their side effects on

the patient’s healthy cells/tissues are not negligible. Given that the

development of new anti-tumor drugs requires extensive preclinical

and clinical studies, drug repositioning (also known as “drug

repurposing”) has emerged as a rapid alternative strategy,

particularly related to non-oncology drugs (23). Moreover, several

putative non-oncology drugs have been predicted, but their

potential as future cancer therapeutics is unknown (24). Broadly,

metformin is currently a typical example of a non-oncology

anticancer drug (25), driven by the hypothesis of reducing the

availability of glucose and insulin to slow down the tumor growth

and progression. Herein, we tested another non-oncological drug

named as meticrane, a thiazide diuretic commonly used to treat

essential hypertension. Previously, meticrane in combination with

CTLA-4 treatment was reported to improve the survival of

mesothelioma mice (9), however, the anticancer effect of

meticrane in tumors remained unexplored. In the current study,

for the first time, we investigated the anti-cancer ability of meticrane

in hematologic malignancies (myeloma and leukemia) and liver

cancer cell lines.

We first cultured meticrane with cancer cells and found that

leukemia cells (K562 and Jurkat) were more sensitive, whereas

myeloma cells (U266 and OPM2) lacked a similar response.

Similarly, some liver cancer cells (SK-hep-1) responded more

effectively to meticrane, whereas others did not (HepG2).

Notably, all the cell lines included in this study have a very

distinctive (epi-)genetic profile, e.g., K562 (adult female/53 years,

TP53 mutation), Jurkat (young male/14 years, TP53, BAX,
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NOTCH1, MSH1/6, INPP5D mutations), U266 (adult male/53

years, TP53, BRAF, TRAF3, MSH6 mutations), OPM2 (adult

female/56 years, TP53, SMAD2, CDKN2A, FGFR3 mutations),

SK-hep-1 (adult male/52 years, BRAF, CDKN2A mutations), and

HepG2 (young male/15 years, TERT, NRAS mutations). Thus, we

confirmed that meticrane indeed has an anti-cancer potential that

specifically targets certain genetic constellations. Certainly,

some discrepancies in the experiments are expected owing to

heterogeneity among cancer cell lines in addition to (epi-)

genomic factors (26). In addition, we also tested and confirmed

that meticrane has the potential to significantly reduce the number

of tumor cells and proliferation. Particularly, these effects were

validated in three cell lines (K562, Jurakt and SK-hep-1). We also

examined whether apoptosis-related signaling pathways (cell death)

might contribute to this noticeable cytotoxic effect, but confirmed

that no evidence of apoptosis was detectable in K562, Jurkat, or SK-

hep-1 cells, suggesting that it may inhibit cancer cell proliferation in

an apoptosis-independent manner. In fact, some previous evidence

suggests that a few compounds can cause cancer cell death via an

apoptosis-independent pathway (27, 28). Whether meticrane would

be of greater benefit to patients, who do not respond to clinical

drugs due to apoptosis resistance, will be of future interest.

Next, we combined meticrane with the established epigenetic

inhibitors CUCD-101 (HDACi) and 5AC (DNMTi), as epigenetic

alterations are also known to influence numerous aspects of cancer

and such inhibitors have already been tested in multiple cancer/

clinical studies (29). Noticeably, meticrane in combination with

CUDC-101 or 5AC showed a higher inhibitory effect in

hematological malignancies (K562 and Jurkat cells) and in liver

cancer (SK-hep-1) cells compared to meticrane or epigenetic

inhibitors alone. The combination of meticrane and epigenetic

inhibitors (CUDC-101 or 5AC) showed additive/synergistic effects

on K562, Jurkat and SK-hep-1 cells. Therefore, this combo

(meticrane+epigenetic inhibitors) might be a possible replacement

for toxic substances used for cancer treatment, however, in-vivo
FIGURE 4

Molecular docking analysis for meticrane. Molecular docking of meticrane on established oncological targets is shown. The bi-axis docking energy
and MM-GBSA scores (in kcal/mol) are marked. The cut-off is shown in a red dotted line. The interaction mapping of all targets with significant
docking energy and MM-GBSA scores (>= to cut-off) are highlighted. In the interaction map, the meticrane and amino acids of each protein are
shown in licorice color and colored by atoms as C: white/orange, O: red, N: blue, S: yellow, respectively. From the interaction map the aromatic
residues that appear to be essential for the binding and stability of the metachrane have been identified (highlighted with underlining).
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studies are warranted in this context. Motivated by the optimistic

results attained with a cocktail of meticrane and epigenetic

inhibitors for anticancer efficacy, we subsequently tested its

suitability for immunotherapy against cancers, in particular,

cytokine-induced killer (CIK) cell therapy. Being a pioneer of CIK

cell therapy (30), we have already demonstrated the favorable effect

of CIK cells with known cancer inhibitors (e.g. PD-1/PD-L1) (31)

and even epigenetic compounds (e.g. HDAC) (32). Intriguingly,

meticrane showed no response to the cytotoxicity of CIKs against

K562 cells and Sk-hep-1 cells over 4-24 hours of treatment. At this

point, we cannot conclude whether similar effect will also prevail for

other immunomodulatory effects of CIK cells when used under in

vivo conditions. To our knowledge, this is the very first study to test

any non-oncology drug against CIK cells. To gain better insight into

the transcriptional role of meticrane, we performed genome-wide

transcriptional analyses in both untreated and treated groups of

meticrane in Jurkat, K562 and SK-hep-1 cells. Interestingly, we

identified both up-regulated and down-regulated genes in all

experimental groups, showed no direct/predominant effect on

cancer-related signaling pathways in leukemia cell lines, and a

distant impact to cancer in liver cancer cells. This suggests that

meticrane can induce changes in cancer cells (as confirmed by the

changes in cell viability and proliferation), but in a passive manner.

As a proof of concept, we also overlap the obtained meticrane

induced differentially expressed genes with the cancer specific

survival data from the publicly available TCGA dataset and found

a correlation among them. Therefore, it is reasonable to speculate

that meticrane is involved in some anticancer pathways that are

passively involved in targeting cancer cells and may be considered

as compatible with other clinically safe drugs, particularly

epigenetic inhibitors. These findings also prompted us to conduct

molecular docking analysis in order to further explore the potential

targets of meticrane. We specifically focused on known immune

checkpoints (CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, B7-H4,

TIGIT, CD73) and epigenetic targets (DNMT1, HDACs). Of

interest, we found considerable binding affinity scores of

meticrane against PD-L1, TIM-3, CD73, and HDACs. To

validate, we focused on HDAC6 for further analysis, and found a

significantly high impact on the viability of tumor cells when

HDAC6 inhibitor (ACY1215) was combined with the meticrane.

Since meticrane showed additive/synergistic effects with CUDC101,

5AC and ACY1215 in our analysis, this could partly explain its

positive molecular binding affinity with these epigenetic target

proteins. Certainly, additional analyses for other putative targets

are warranted. On a broader view, it is reasonable to speculate that

meticrane may not alter any specific cancer-related pathway, but

may exert its distant effects on the cancer cells (passively) via well-

known immune-regulatory/epigenetic signaling pathways,

preferably via targeting PD-L1, TIM-3, CD73, and HDACs.

It is equally important to address the limitations and future

prospects of our (similar) studies, for instance, 1) As we have

observed in case of meticrane, other non-oncology drugs may also

not have direct targets associated with cancer, and therefore
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experiments like RNA sequencing (whole transcriptome analysis)

studies following co-cultures in cancer cells may not be sufficient to

draw any conclusions. 2) It is entirely possible that these drugs show

anticancer activity only at high doses, so screening with variable

concentrations (min to max) is recommended. At least in the case of

meticrane, synthesis of other next-generation compounds (based on

its structure) with a stronger tendency to inhibit the proliferation of

cancer cells may solve this problem to some extent. 3) The genetic/

epigenetic background of the cancer type and even gender

differences may lead to different outcomes with these drugs in

clinics. Specifically, when it is also known about the considerable

overlapping between gene expression variation and the association

of altered mutational pathways across the cancer genome (33, 34).

Therefore, larger panels of cancer cell lines with multiple genetic

constellations are necessary to confirm their potential mode of

action. 4) Considering that cancer patients have a limited

therapeutic window, it will be a significant question to follow

whether non-oncology drugs (presumably alone) are sufficient to

prolong the survival, especially in patients without any signs of

cancer for a certain period of time after the treatment. 5) Such drugs

may not be appropriate for all cancer immunotherapy types, hence,

a critical selection of specific immunotherapy (broadly activating

the immune system and/or precisely targets of the tumor) should be

pre-addressed. Overall, we were able to show that meticrane, a non-

oncology drug, exhibits anticancer potential with epigenetic

inhibitors in-vitro, but not with cytokine-induced killer (CIK) cells.
Conclusions

Non-oncology drug (meticrane) effectively synergizes with

epigenetic inhibitors in leukemia and liver cancer cells. Though

we have demonstrated its anticancer ability, its mechanistic

inference is still unclear. In the current study, we also expressed

some important concerns encountered during the meticrane

testing, which are also relevant to other non-oncology drugs

when considering their future clinical or preclinical use.
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Simple Summary: Clinical and molecular advances have improved knowledge and treatment
prospects for cancer, yet hepatocellular carcinoma (HCC), the most common form of liver cancer, still
ranks significantly higher in terms of the global cancer burden. Herein, we investigated the role of
RGS20 as a potential prognostic marker in 28 different cancers with a particular focus on HCC.

Abstract: Hepatocellular carcinoma (HCC) is at the forefront of the global cancer burden, and
biomarkers for HCC are constantly being sought. Interestingly, RGS (Regulators of G protein
signaling) proteins, which negatively regulate GPCR signaling, have been associated with various
cancers, with some members of the RGS family being associated with liver cancer as well. Considering
this, we investigated the role of RGS20 as a potential prognostic marker in 28 different cancer types
with special emphasis on HCC. By using the Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) data, our analysis revealed that (a) RGS20 was strongly upregulated in tumor tissue
compared with adjacent normal tissue of HCC patients; (b) RGS20 was strongly associated with
some important clinical parameters such as alpha-fetoprotein and tumor grade in the HCC patients;
(c) besides HCC (p < 0.001), RGS20 was found to be an important factor for survival in four other
cancers (clear renal cell carcinoma: p < 0.001, lung adenocarcinoma: p = 0.004, mesothelioma: p = 0.039,
ovarian serous cystadenocarcinoma: p = 0.048); (d) RGS20 was found to be significantly associated
with some tumor-related signaling pathways and long intergenic non-coding RNAs (lincRNAs:
LINC00511, PVT1, MIR4435-2HG, BCYRN1, and MAPKAPK5-AS1) that exhibit oncogenic potential.
Taken together, we showed that RGS20 correlates with a few HCC-associated lincRNAs harboring
oncogenic potential and is markedly upregulated in HCC patients. Our analysis further supports the
putative function of RGS proteins, particularly RGS20, in cancer.
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1. Introduction

Liver cancer is the fourth leading cause of cancer-related deaths [1], and remains a
global health concern among prevalent cancers, being hepatocellular carcinoma (HCC) the
most common form of liver cancer. In the last few decades, the number of liver cancer
cases has also increased, primarily due to hepatitis C infection and nonalcoholic fatty liver
disease (NAFLD).

Indeed, clinical and molecular advances have improved the knowledge and treatment
perspective, still, HCC ranks significantly higher in terms of global cancer burden. While
many approaches have been applied to the treatment of HCC, cancer immunotherapy
has been at the forefront of respective clinical trials and patient care [2,3]. There has
been a constant search for identifying HCC-related biomarkers, however, most of them
showed association with poor prognosis, either in early or advanced HCC [4]. Notably, two
members of the ubiquitin C-terminal hydrolases (UCHs) family, BRCA1-associated protein-
1 (BAP1) [5] and UCH-L3 [6] have been implicated in the survival rate of this particular
cancer. More recently, authors established immuno-autophagy-related long non-coding
RNA (IARlncRNA) signature with a prognostic ability in HCC [7]. Recently, the crucial
role of G protein-coupled receptors (GPCRs) in tumorigenesis and HCC development has
been discussed [8]. Interestingly, RGS (Regulators of G protein signaling) proteins, which
negatively regulate GPCR signaling, have been implicated in various cancers including
lung, prostate, breast, and ovarian cancers [9–12]. To date, 20 canonical RGS genes (RGS1-
RGS20) have been reported and a few members of the RGS family (RGS3, RGS5, RGS17)
have also been associated with liver cancer [13–18].

Considering this, herein, we focused our analysis on RGS20, which is solely associated
with the occurrence and progression of several cancers, including breast cancer, bladder
cancer, oral squamous cell carcinoma, and metastatic melanoma [19–22]. With special
emphasis on HCC, we investigated the role of RGS20 as a potential prognostic marker.
Furthermore, we also evaluated the survival probability of RGS20 in 28 different cancer
types. In addition, we correlate its expression with putative HCC-related long intergenic
non-coding RNAs (lincRNAs). To our knowledge, our study is the first to expand the clinical
relevance and molecular significance of RGS20 in the cancer spectrum, especially HCC.

2. Materials and Methods
2.1. Gene Expression Data and Clinical Data

Gene expression data (workflow type: HTSeq—FPKM) was obtained from the TCGA-
LICH dataset in the Cancer Genome Atlas Program (TCGA) database, which contains
374 tumor samples and 50 normal samples. The clinical data of HCC patients were down-
loaded from the GDC TCGA Liver Cancer (LIHC) dataset in the UCSC XENA database.
The clinical data parameters included age, sex, Child-Pugh classification, alpha-fetoprotein
(AFP), fibrosis, grade, and stage. Of note, 371 primary HCC samples were included in our
analysis by excluding 3 recurrent samples. Among them, 365 samples contained survival
data (survival time and survival status) and gene expression data, while 163 samples
contained survival data, clinical characteristics and gene expression data. In addition, the
gene expression data and clinical data of HCC in the GSE76427 dataset from the Gene
Expression Omnibus (GEO) database were used for validation, which contains 115 tumor
samples and 52 normal samples. Besides gene expression data, all 115 tumor samples also
contained survival data. In addition, gene expression data (TPM) and cancer samples with
overall survival data for 28 cancer types were obtained from TCGA database as well. These
28 cancer types include adrenocortical carcinoma (ACC, 73 samples), bladder urothelial
carcinoma (BLCA, 400 samples), breast invasive carcinoma (BRCA, 1033 samples), cervical
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squamous cell carcinoma and endocervical adenocarcinoma (CESC, 292 samples), cholan-
giocarcinoma (CHOL, 33 samples), colon adenocarcinoma (COAD, 261 samples), lymphoid
neoplasm diffuse large B-cell lymphoma (DLBC, 46 samples), esophageal carcinoma (ESCA,
182 samples), glioblastoma multiforme (GBM, 162 samples), head and neck squamous
cell carcinoma (HNSC, 518 samples), kidney chromophobe (KICH, 60 samples), kidney
renal clear cell carcinoma (KIRC, 509 samples), kidney renal papillary cell carcinoma (KIRP,
281 samples), acute myeloid leukemia (LAML, 102 samples), liver hepatocellular carci-
noma (LIHC, 344 samples), lung adenocarcinoma (LUAD, 477 samples), lung squamous
cell carcinoma (LUSC, 482 samples), mesothelioma (MESO, 79 samples), ovarian serous
cystadenocarcinoma (OV, 418 samples), pancreatic adenocarcinoma (PAAD, 178 samples),
pheochromocytoma and paraganglioma (PCPG, 179 samples), prostate adenocarcinoma
(PRAD, 460 samples), stomach adenocarcinoma (STAD, 377 samples), testicular germ cell
tumors (TGCT, 135 samples), thyroid carcinoma (THCA, 508, samples), thymoma (THYM,
118 samples), uterine corpus endometrial carcinoma (UCEC, 172 samples), uterine carci-
nosarcoma (UCS, 56 samples). The cutoff values for grouping patients into high and low
RGS20 gene expression were based on the median value of RGS20 gene expression in each
kind of cancer, respectively.

2.2. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was used to determine a defined set of genes that
exhibit statistical significance and consistent differences between the two biological states
(e.g., phenotypes). In GSEA analysis, RGS20 expression was divided into low and high
groups, and the cut-off value was considered as the median value of its expression. Gene
set permutations were performed 1000 times for each analysis in the h.all.v7.4.symbols.gmt
[Hallmarks] set. The expression level of RGS20 was set as a phenotype label. The enrich-
ment of pathways in each phenotype was selected according to the p value < 0.05 and false
discovery rate (FDR) < 0.25.

2.3. Prediction of RGS20 Interaction with lincRNAs

Both RGS20 gene expression (FPKM) and lincRNAs gene expression (FPKM) in LIHC
were obtained from TCGA data and a total of 1193 lincRNAs were involved in this analysis.
The averages of gene expression no more than 0 were excluded. Log2 was further applied
to the gene expression data (FPKM) in order to obtain a suitable normalized distribution.
Subsequently, gene expression (log2 (FPKM+1)) was used to investigate the correlation
between RGS20 and lincRNAs using the Spearman correlation test. Statistical significance
was determined using Spearman correlation coefficient |R| > 0.4 and p value < 0.05.

The prediction of physical and functional interaction between five lincRNAs and the
RGS20 protein was performed in RNA-Protein Interaction Prediction (RPISeq, http://pridb.
gdcb.iastate.edu/RPISeq/, accessed on 5 January 2022) using the protein sequence of RGS20
and RNA sequence of the lincRNAs. The output, i.e., prediction probability of possible
interactions were obtained in terms of RF and SVM classifiers. Interaction probabilities
range from 0 to 1, wherein the higher the probability is better. In general, prediction
probabilities with scores of more than 0.5 are considered “positive,” i.e., expressing the
likelihood of interaction between given lincRNA and protein.

LincRNAs and RGS20 mRNA Interaction and Tissue-specific Expression Profile were
investigated. The prediction of physical and functional interaction between five lincRNAs
and the mRNA of RGS20 was performed using LncRRIsearch web server (http://rtools.cbrc.
jp/LncRRIsearch/, accessed on 5 January 2022), which also gives tissue-specific expression
level of lincRNAs and mRNA based on RNA-seq data from the Genotype-Tissue Expression
(GTEx) Project (E-MTAB-2919).

2.4. Statistical Analysis

The statistical analyses were performed using R. The relationship between clinical
characteristics and RGS20 was analyzed using Wilcoxon Rank Sum and logistic regression.
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The Kaplan–Meier method was used to demonstrate the association between RGS20 expres-
sion and overall survival (OS). Clinical variables and RGS20 were associated with survival
using Cox regression. Multivariable Cox analysis was used to find independent factors
based on the clinical characteristics and RGS20 gene. The cutoff value for RGS20 expression
was determined by its median value. Spearman analysis was used to find lincRNAs related
to RGS20. p values of less than 0.05 were considered statistically significant.

3. Results
3.1. RGS20 Gene Expression, Clinical Features Relevant and Survive Probability in HCC

We first sought to analyze the difference in RGS20 gene expression between nor-
mal and tumor tissue samples from the TCGA database. In the panel of 421 samples
(tumor = 371, normal = 50) and paired samples (tumor = 50, normal = 50), we observed
elevated expression of RGS20 in tumor samples compared to the controls (Figure 1A,B)
using Wilcoxon Rank Sum test. To assess the survival pattern according to the RGS20
expression, we next divided the data into high and low expression groups (based on
their median value) and analyzed them using Kaplan–Meier survival analysis (Figure 1C).
The analysis showed that patients with higher RGS20 expression had a worse prognosis
(p = 0.005), suggesting that RGS20 may be predictive of survival in liver cancer patients.
Next, we correlate the patient-specific clinical parameters with the RGS20 expression. We
specifically distinguished these clinical parameters in groups such as age (≥65 vs. <65),
AFP (≥400 vs. <400), Child-pugh (B + C vs. A), fibrosis (no fibrosis vs. fibrosis), sex (male
vs. female), grade (G3 + G4 vs. G1 + G2), stage (III + IV vs. I + II). Using Wilcoxon Rank
Sum test, we found that RGS20 expression significantly correlated with AFP (p = 0.04)
and grade (p = 0.003) (Figure 1D). Likewise, logistic regression analysis also confirmed
this in the case of AFP (p = 0.043) and grade (p = 0.009) (Table 1). To verify the predictive
function, we also used the independent dataset GSE76427 from the GEO database. The
analysis clearly showed that the expression of RGS20 varied significantly between tumor
and normal samples (p = 0.023) (Figure 1E). Importantly, the KM curve result also indicated
that the group with higher RGS20 expression had a lower survival rate than the group with
low expression (Figure 1F).

Table 1. Logistic regression assessment of RGS20 expressions between the clinical variable groups
using TCGA data.

Clinical Characteristics Odd Ratio (OR) p-Value

Age (≥65 vs. <65) 0.923 (0.494–1.722) 0.801
Gender (male vs. female) 0.780 (0.398–1.518) 0.465

Grade (G3 + G4 vs. G1 + G2) 2.358 (1.245–4.539) 0.009 **
Stage (III + IV vs. I + II) 0.743 (0.337–1.612) 0.454

AFP (≥400 vs. <400) 2.360 (1.048–5.619) 0.043 *
Child-pugh (B + C vs. A) 0.767 (0.262–2.166) 0.617

Fibrosis (no fibrosis vs. fibrosis) 0.808 (0.412–1.573) 0.531
* p < 0.05, ** p < 0.01.

3.2. RGS20 Survive Probability Spectrum in 28 Cancers

To investigate the survival potential of RGS20 in other cancer types, we extend our
analysis to 28 cancer types (Figure 2). Interestingly, only five cancers, namely KIRC
(p < 0.001), LIHC (p < 0.001), LUAD (p = 0.004), MESO (p = 0.039), and OV (p = 0.048),
showed a difference in survival between the high and low RGS20 expression groups. Of
these, KIRC, LIHC, LUAD, and MESO cancers demonstrated poorer survival in the high
RGS20 expression group, while OV cancers were observed to have poorer survival in the
low RGS20 expression group.
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Figure 1. RGS20 analysis in HCC patients (TCGA and GEO analysis). (A) All samples, (B) and paired
samples from TCGA data were analyzed using Wilcoxon Rank Sum test. (C) The impact of RGS20
expression level on overall survival time in HCC patients calculated using Kaplan–Meier method.
(D) Relationship between RGS20 expression and clinical features using Wilcoxon Rank Sum test.
(E) RGS20 gene expression between tumor and normal samples (Wilcoxon Rank Sum test), (F) and
KM curve was used to assess the survival rate between high and low RGS20 expression group using
GEO data.
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Figure 2. RGS20 survival probability in 28 cancers. KM curves show data from 28 cancers. Pa-
tients were classified into low and high expression groups based on the median value of RGS20 in
each cancer.

3.3. Identification of Independent Factors and GSEA Enrichment Results

In the context of overall survival (OS), univariate analysis also revealed that age
(p = 0.022), stage (p = 0.017), and RGS20 (p < 0.001) were related to OS. (Table 2). In addition,
multivariable Cox regression confirmed that age, stage, and RGS20 were independent
factors associated with survival (Figure 3A). In the above part, each clinical feature was
classified into two subgroups. However, age (continuous value), AFP (continuous value),
RGS20 gene expression (continuous value), Child-pugh (A, B and C), fibrosis (no fibrosis
and fibrosis), sex (female and male), grade (G1, G2, G3 and G4) and stage (I, II, III and IV)
were applied in this part.

To determine whether RGS20 is involved in established biological pathways, we per-
formed gene set enrichment analysis (GSEA) using the TCGA dataset. We first divided
the RGS20 data into high and low cohorts and investigated them using hallmark gene sets.
GSEA revealed that 20 gene signatures were enriched in patients with high RGS20 expres-
sion (FDR < 0.25, normalized p-value < 0.05) (Figure 3B). Some tumor-related pathways
were included such as mTORC1, MYC TARGETS V1, MYC TARGETS V1, DNA REPAIR,
P53, G2M CHECKPOINT, PI3K/AKT/MTOR, IL2/STAT5, and APOPTOSIS. Of which,
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DNA REPAIR, mTORC1, MYC TARGETS V1 signaling were the top three enriched terms
with NES values > 2. These three enrichment plots are shown in Figure 3C.

Table 2. Univariate survival prediction of RGS20 expression and the clinical factors using TCGA data.

Univariate Cox Regression

HR (95% CI of HR) p Value

Age (continuous) 1.029 (1.004–1.054) 0.022 *
Gender 0.761 (0.420–1.379) 0.368
Grade 1.405 (0.912–2.164) 0.123
Stage 1.463 (1.072–1.997) 0.017 *

Child-pugh 1.447 (0.611–3.426) 0.401
AFP (continuous) 1.000 (1.000–1.000) 0.615

Fibrosis 0.686 (0.380–1.239) 0.212
RGS20 (continuous) 77.931 (5.954–1019.956) <0.001 ***

* p < 0.05, *** p < 0.001.

Figure 3. Multivariable Cox regression and GSEA enrichment analysis. (A) Multivariable Cox survival
model including RGS20 and clinical features. The hazard ratio values are represented by squares. The
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horizontal bars depict the 95% CI of the hazard ratio estimation. * p < 0.05, ** p < 0.01. (B) GSEA
enrichment results. (C) Top 3 Enrichment plots from GSEA (NES > 2). The green curves depict the
enrichment score curve obtained from GSEA software. NES: normalized enrichment score; p-value:
normalized p-value; FDR: false discovery rate.

3.4. Prediction of RGS20 Interaction with lincRNAs

Given that the non-coding genome has been suggested to contribute to the regula-
tion of RGS protein in oral squamous cell carcinoma [22], cervical cancer [23], ovarian
cancer [24] and lung cancer [25]. We therefore investigated the possible links of RGS20
to lincRNAs implicated in HCC. Using TCGA data, we performed Spearman correlation
analysis (|R| > 0.4 and p < 0.05) and identified five lincRNAs, including LINC00511, PVT1,
MIR4435-2HG, BCYRN1, and MAPKAPK5-AS1 in this category (Figure 4A).

Figure 4. Prediction of RGS20 interaction with lincRNAs and gene expression in human tissues.
(A) Correlation of RGS20 with five lincRNAs. (B) Interaction of five lincRNAs with RGS20 protein.
(C) Two physical interactions of lincRNA PVT1 and mRNA of RGS20. (D) Gene expression level of
the lincRNA PVT1 and the RGS20 mRNA in different tissues of humans.

Further investigations for the possible interaction of RGS20 with the obtained five
lincRNAs were performed using two kinds of web tools. First, the prediction of physical
and functional interaction between five lincRNAs and the RGS20 protein was performed
using the RPISeq webtool of the Iowa State University [26]. The prediction probabili-
ties in terms of RF and SVM classifiers of individual interaction of lincRNAs with the
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RGS20 protein have been shown in Figure 4B. The prediction probabilities indicate that
all five obtained lincRNAs are likely to interact with RGS20 protein, except the lincRNA
BCYRN1 (prediction probability less than the threshold value). Then, we subjected the
five lincRNAs and RGS20 to the LncRRIsearch web server to predict possible physical
and functional interaction. However, the information on lincRNA BCYRN1 was not avail-
able in this web tool which means it cannot predict the interaction of lincRNA BCYRN1
with mRNA of RGS20. For the remaining four lincRNAs, we found that only lincRNA
PVT1 (Transcript ID: ENST00000523427) interacts with the mRNA of RGS20 (Transcript
ID: ENST00000297313). The genomic locus of PVT1 (transcript length 938 nt) is chr8(+)
127,794,575–127,890,952 based on the UCSC Genome Browser (https://genome.ucsc.edu/,
accessed on 5 January 2022). The genomic locus of RGS20 (transcript length 2104 nt) is
chr8(+) 53,851,808–53,959,303. The total genomic distance is 73,835,271 bp. Figure 4C shows
that two physical interactions of LincRNA PVT1 and RGS20 mRNA are possible with
energy −20.78 and −17.55 kcal/mol, respectively. Of note, the energy threshold was set as
−16 kcal/mol. In addition, we also checked the RNA expression level of the lincRNA PVT1
and the RGS20 mRNA. We generated the RNA-seq expression profile using the database
E-MTAB-2919, which encompasses the expression profile of RNAs from different tissues
in humans. The RNA-seq expression profile shows that the expression of PVT1 is very
high in the ovary (FPKM ~5.0) and high in some other tissues such as the adrenal gland,
breast, prostate and spleen (FPKM ~3.0) (Figure 4D). Compared to this the expression levels
of RGS20 mRNA is almost negligible (FPKM~0.1–0.2) in these five tissues (Figure 4D).
However, in brain tissue the expression of RGS20 mRNA is high (FPKM ~3.0) and the
expression of lincRNA PVT1 is very low (FPKM ~0.2–0.3) (Figure 4D).

4. Discussion

There has been a plethora of evidence to suggest that each cancer is unique and that there
is considerable overlap in altered mutational pathways across the cancer genome [27–29].
Liver cancer is no different from other cancers in this respect, exhibiting shared molecular
mechanisms. Interestingly, alterations in this particular gene have also been observed in
numerous other cancers [30]. Due to clinical and molecular heterogeneity, stratification of
patients remains a difficult task, especially in HCC, the predominant form of liver cancer. Of
interest, several abnormally regulated signaling pathways [31], and the frequently mutated
drivers [32] have been associated with HCC; however, their transformation as molecular
therapy is still pending. Therefore, there is an urgent need to find more effective diagnostic
and prognostic markers.

Since there have been recent discussions about the crucial role of G protein-coupled
receptors (GPCRs) in tumorigenesis and the development of HCC [8]. Moreover, the
possible involvement of RGS (Regulators of G protein signaling) proteins that negatively
regulate GPCR signaling in various cancers. Herein, we investigated the potential role of
RGS20 in liver cancer. As aforementioned, a few members of the RGS family (RGS3, RGS5,
RGS17) have also been associated with liver cancer, however, the putative role of RGS20 as
a prognostic indicator in HCC has not yet been investigated. We found that RGS20 was
strongly upregulated in tumor tissue compared with adjacent normal tissue of HCC patients.
In addition, RGS20 was strongly associated with some important clinical parameters such
as AFP and grade in HCC patients. Of interest, RGS20 was found to be an important factor
in the survival of HCC patients. Specifically, in TCGA data high RGS20 expression group
was associated with a worse survival rate compared to the low RGS20 expression group.
Using Cox regression analysis to examine independent HCC survival-related factors, some
features including RGS20, age and tumor stage were confirmed. We also validated the
prognostic potential of RGS20 in HCC using GEO datasets. GSEA analysis revealed some
tumor pathways associated with RGS20, namely DNA REPAIR, mTORC1, MYC TARGETS
V1 signaling being predominant. In addition, the RGS20 gene is correlated with five
lincRNAs (LINC00511, PVT1, MIR4435-2HG, BCYRN1, and MAPKAPK5-AS1). Besides
BCYRN1, the other four lincRNAs present possible interaction with RGS20 protein and only

37

https://genome.ucsc.edu/


Biology 2022, 11, 1174 10 of 12

lincRNA PTV1 showed potential interaction with mRNA of RGS20. This evidence supports
that RGS20 was found to be significantly associated with some tumor-related signaling
pathways and long non-coding RNAs (lincRNAs) that exhibit oncogenic potential. An
interesting study using overexpression and knockdown of RGS20 in different cancer cell
lines showed that it may play a role in the regulation of cancer cell migration and invasion,
and even perhaps metastasis [19].

Of interest, all of the lincRNAs (LINC00511, PVT1, MIR4435-2HG, BCYRN1, and
MAPKAPK5-AS1) that we found associated with RGS20 have previously been implicated in
HCC. For instance, a high expression of LINC00511 was found in HCC tissues and cell lines,
and blocking the LINC00511 contributed to a lower proliferation, migration, and invasion
in HCC cell lines [33]. Similarly, PVT1 has been shown to facilitate the growth of HCC
cells via the PVT1/EZH2/miR-214 axis [34]. In the case of MIR4435-2HG, its expression
was found to be upregulated in HCC which may promote cancer cell proliferation by
upregulating miRNA-487a [35]. The high expression of BCYRN1 was also linked to an
unfavorable prognosis in patients with HCC [36]. The expression of MAPKAPK5-AS1
was also significantly increased in HCC, and it was suggested that the MAPKAPK5-
AS1/PLAGL2/HIF-1α signaling loop contributes to HCC progression [37]. Since some
cancers were not associated with RGS20 and some also did not show a significant difference,
despite RGS20 being expressed highly in their respective tissues (e.g., glioblastoma). This
can be partially explained by variability in the expression of certain genes in different tissues.
Furthermore, a cumulative effect of (epi-) genomics and oncogenic networks/mechanisms
might be contributing to this. Recently, a novel immunodiagnostic assay was developed
to screen tumor-associated antigens (TAAs) associated with HCC, that includes RGS20
in a panel of eleven TAAs (AAGAB, C17orf75, CDC37L1, DUSP6, EID3, PDIA2, RGS20,
PCNA, TAF7L, TBC1D13, and ZIC2) [38]. Thus, providing further evidence to support our
study indicating the distinctive involvement of RGS20 in HCC. Overall, our results suggest
that RGS20 is an attractive candidate to predict the prognosis for survival of HCC patients.
Further studies in experimental and clinical settings are required to validate our findings.

5. Conclusions

The regulator of G protein signaling 20 correlates with lincRNAs harboring oncogenic
potential and is markedly upregulated in hepatocellular carcinoma. Our analysis further
supports the putative function of RGS proteins, particularly RGS20, in cancer.
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Emerging insights into iron-dependent form of regulated cell death ferroptosis

in cancer have opened a perspective for its use in cancer therapy. Of interest, a

systematic profiling of ferroptosis gene signatures as prognostic factors has

gained special attention in several cancers. Herein, we sought to investigate the

presence of repetitive genomes in the vicinity of ferroptosis genes that may

influence their expression and to establish a prognostic gene signature

associated with multiple myeloma (MM). Our analysis showed that genes

associated with ferroptosis were enriched with the repetitive genome in their

vicinity, with a strong predominance of the SINE family, followed by LINE, of

which the most significant discriminant values were SINE/Alu and LINE/L1,

respectively. In addition, we examined in detail the performance of these genes

as a cancer risk prediction model and specified fourteen ferroptosis-related

gene signatures, which identified MM high-risk patients with lower immune/

stromal scores with higher tumor purity in their immune microenvironment. Of

interest, we also found that lncRNA CRNDE correlated with a risk score and was

highly associated with the majority of genes comprising the signature. Taken

together, we propose to investigate the molecular impact of the repetitive

genome we have highlighted on the local transcriptome of ferroptosis genes in
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cancer. Furthermore, we revealed a genomic signature/biomarker related to

ferroptosis that can be used to predict the risk of survival in MM patients.
KEYWORDS

ferroptosis, lncRNA – long noncoding RNA, repetitive genome, multiple myeloma,
gene signature, prognosis
Highlights
• Ferroptosis-related genes showed enrichment with the

repetitive genome in their vicinity, with strong

predominance of the SINE family.

• We generated ferroptosis-related prognostic gene

signature that can identify high-risk multiple myeloma

patients.

• LncRNA CRNDE showed strong association with the

majority of genes forming the prognostic signature.
Introduction

Cell death is an essential feature of physiological/pathological

processes, and ferroptosis which differs considerably from other cell

death types, such as apoptosis, necrosis, and autophagy has recently

gainedattention.Accumulative studieshave shown thatdysregulated

ferroptosis participates in several cancers, including renal cell

carcinoma (1), colorectal carcinoma (2), gastric cancer (3), and

multiple myeloma (4, 5). Overall, targeting potential regulatory

factors in the ferroptosis pathway is thought to promote or inhibit

disease progression in several malignancies.

Over the years, ferroptosis-related genes have been used to

generate a prognostic signature in lung adenocarcinoma (6),

low-grade glioma (7)., acute myeloid leukemia (8), gastric cancer

(9), renal cell carcinoma (10), osteosarcoma (11), skin

melanoma (12), and breast cancer (13). However, most of

studies focused on the gene expression patterns and

correlation with the clinical outcomes, mainly survival rate.

None of the above-mentioned studies addressed the impact of

genome organization in proximity to these genes, which is

known to play a pivotal role in human diseases (14). On this

note, the prevalence of repetitive sequences, especially LINEs

(Long Interspersed Nuclear Elements), SINEs (Short

Interspersed Nuclear Elements), Alu family in the functional

parts of genomes and their association with cancers remains

undisputed (15–17). Aoki et al. evaluated global methylation

levels of four repetitive elements (LINE-1, Alu Ya5, Alu Yb8 and

Satel l i te-a) in MM samples and found the global
02
hypomethylation of LINE-1 being associated with progression

and worse prognosis of multiple myeloma (MM) (18). Using

bisulfite treatment followed by sequencing, Bollati et al.

investigated the methylation status of repetitive DNA elements

to verify a possible correlation with the different molecular

subtypes of MM, and found a progressive and significant

decrease of methylation in Alu, LINE-1 and SAT-a sequences

(19). In a comprehensive study, Lee et al. discussed about various

somatic insertions of LINE-1, Alu and ERV in different types of

cancer, including colorectal, glioblastoma, ovarian, prostate and

multiple myeloma (20). It is also noteworthy to mention that

some noncoding RNAs (ncRNAs), particularly long noncoding

RNAs, have been found to be involved in biological processes of

ferroptosis, thus influencing cancer growth (21, 22). Although

the exact regulatory mechanism behind this remains unclear,

their potential use as ncRNAs-based ferroptosis targeting has

been hypothesized (23) An interesting study examined some

lncRNAs closely related to ferroptosis and identified PELATON

as a novel ferroptosis suppressor that may also serves as a

prognostic signature in glioblastoma patients (24).

Considering this, herein, we investigate the presence of

repetitive genomes in the vicinity of ferroptosis genes that may

influence their expression. In our comprehensive approach, we

considered the analysis of various repeat configurations, e.g.,

LINEs (L1 and L2), SINEs (Alu and MIR), low complexity (AT

and GC) and interspersed elements, across the upstream

promoter region of these particular genes, as we reported

previously (25). In addition, we used ferroptosis genes to

create the first prognostic gene signature (based on risk groups

and immune microenvironment) linked to multiple myeloma.

Besides, we demonstrated the putative association of the

oncogenic lncRNA CRNDE with the obtained MM-specific

ferroptosis gene signature.
Materials and methods

Ferroptosis-related genes and repetitive
genome analysis

We manually collected 387 genes classified as ferroptosis

driver genes, suppressor genes, and markers using available
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database (http://www.zhounan.org/ferrdb). Upon removal of

duplicates, we retained 269 genes that were used for further

analysis like repetitive genomic analysis and determination of

the prognostic signature.

To identify repetitive genomic sequence in the proximity of

these genes, we retrieved repeats and genomic annotations from

the T2T genome assembly (CHM13v2.0) available in the NCBI

FTP (ftp://ncbi.nlm.nih.gov). Genomics coordinates were used

to identify repeats in the 2kb promoter region of genes, as well as

the classification of the repeats, their length, and their order

relative to the transcription start site. We then calculated the

repeat content for each gene using the n-gram probabilistic

model (26) in which each repeat was defined as a unigram with a

normalized weight (frequency and length were properties

associated with the model). It was calculated as RC(r) =

Log (Nr * Lr/Le) , where the repeat content (RC) for the repeat

(r) is defined by the absolute frequency (Nr) and repeat length

(Lr) under a region of exploration with a specific length (Le),

here 2kb promoter. A weighted matrix was created with the

genes as the index and the repeat content values as the score for

each repeat type. To identify discriminative repeats, two

clustering methods were applied under the matrix:

Hierarchical clustering with a complete linkage method,

Manhattan distance metric for the whole data, and k-mean

clustering as an unsupervised algorithm for the pair of repeat

types with a significant discriminative score defined by

hierarchical clustering, mainly implemented by using custom

Python algorithms. Finally, gene clusters with associated repeats

in k-means clustering were described by functional enrichment

analysis in the String database (https://string-db.org), which

includes Geneontology, KEGG, and Wikipathways datasets,

together with the Enrich Tool and Allen Brain Atlas

datasets (27).
Gene expression data and construction/
validation of a prognostic signature

Multiple myeloma was selected to establish the prognostic

signature based on ferroptosis-related genes. MM gene

expression study MMRF-COMMPASS was obtained from the

XENA database maintained by UCSC (https://xenabrowser.net/

datapages/) and GSE24080 was obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). We used the MICE

package to supplement missing values such as ethnicity, race,

age, and International Staging System (ISS) stage from the

MMRF-COMMPASS study and B2M, CRP, and creatinine

from the GSE24080 cohort. We strictly followed the previously

described procedure for data processing, and the paired-samples

t-test was used to check for the consistency of the distribution

between two cohorts. Subsequently, 844 patients from the
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MMRF-COMMPASS study were used as the training cohort,

while the 556 patients from the GSE24080 dataset served as the

validation cohort. Next, Kaplan-Meier and univariate Cox

analyses were performed in the training cohort to investigate

the prognostic relationship between gene expression and overall

survival (OS). A list of prognostic genes with risk correlation

coefficients was generated using the Cox regression model

LASSO (Least Absolute Shrinkage and Selection Operator)

based on the OS in the training cohort with the optimal

parameter lambda. Risk score was calculated using following

equation, where n, bi and Coefi represented the number of hub

genes, regression coefficient values and gene expression levels,

respectively. Risk Score =on
i=1Coefi * bi. On the basis of median

risk scores, patients were divided into either high or low risk

score groups and Kaplan-Meier analysis were used to determine

the survival differences between them. In this study, ROC

analyses were performed to further evaluate the prognostic

power of the ferroptosis-related gene signature. A similar

procedure was used for the validation cohort. To mention, the

training cohort had only OS status with five years follow-up,

while validation cohort contained both OS status and event-free

survival (EFS) status with seven years follow-up. We extend our

analysis by generating and validating the nomogram-based

analysis for predicting the survival probability in our cohorts.

The nomogram was validated with the R package “rms”

(calibrated for 3 and 5 years) and the C-index was measured

to determine the predictive power.
Gene set enrichment analysis and
immune infiltration status estimation

The relative cell component of tumor microenvironment in

the MMRF-COMMPASS study was calculated using the

CIBERSORT algorithm (28, 29). Furthermore, gene set

enrichment analysis (GSEA) were used to investigate the

pathophysiological mechanisms associated with the

ferroptosis-related genes. Based on the median cutoff value,

samples were divided into low and high expression groups.

KEGG enrichment terms with an adjusted P value<0.05 and

false discovery rate (q value)<0.05 were considered statistically

significant and ranked accordingly. ESTIMATE algorithm was

used to calculate the immune score, stromal score, and tumor

purity of each sample. We also quantified the relative infiltration

of 28 immune cell types that mark the infiltrating immune cells

of MM by single-sample GSEA analysis (ssGSEA) followed

previous published methods (30). Each immune cell type of

feature gene panels was obtained from a recent article (31). An

enrichment score in ssGSEA analysis represented the relative

abundance of each immune cell type via “GSVA” package

(version 1.39.1).
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Expression profile of ferroptosis-related
signatures in pan-cancer

To explore the expression of obtained signatures in pan-

cancer, we downloaded the gene expression data of FPKM from

TCGA for 33 cancers, FPKM (Fragments Per Kilobase per

Million) i.e. fragments per kilobase of transcription per million

mapped reads. We then calculated the average expression levels

of these selective genes in all samples and in each cancer type

separately to plot heat maps for visualization.
Prediction of ferroptosis and lncRNA
interactions

LncRNAs gene expression in myeloma were obtained from

MMRF-COMMPASS dataset in XENA database maintained by

UCSC (https://xenabrowser.net/datapages/) and GSE24080

dataset in GEO database (https://www.ncbi.nlm.nih.gov/geo/).

The correlation of risk score (based on our signature) and

lncRNAs were investigated. Statistical significance was

determined using Spearman correlation coefficient |R| > 0.3

and p value< 0.05. The prediction of physical and functional

interaction between selected lncRNA (CRNDE) and the proteins

of our signature genes were performed in RNA-Protein

Interaction Prediction (RPISeq, http://pridb.gdcb.iastate.edu/

RPISeq/) using the protein sequence of signature genes and

RNA sequence of the lncRNAs. The output, i.e., prediction

probability of possible interactions was obtained in terms of

RF and SVM classifiers. The interaction probabilities ranging

from 0 to 1 were considered, being higher probabilities were

better. In general, prediction probabilities with score more than

0.5 was considered “positive,” i.e., expressing the likelihood of

interaction between given lncRNA and proteins. Next, the

interaction of CRNDE (lncRNA) and mRNA of signature

genes were explored. The prediction of physical and functional

interaction between five lincRNAs and the mRNA of RGS20 was

done using LncRRIsearch web server (http://rtools.cbrc.jp/

LncRRIsearch/).
Statistical analysis

Statistical analyses were performed using R Studio (version

2021.09.1; https://rstudio.com/). Kaplan-Meier analysis was

performed using the R packages “survival” and “survminer”.

Student’s t-test was used to compare differences between

subgroups where the data were normally distributed, otherwise

the Wilcox. Test was applied. Univariate and multivariate Cox

proportional hazard regression analyses were performed with

the R package “survival”, and LASSO analysis was performed
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with the R package “glmnet.” All statistical tests were two-sided

and P<0.05 was considered statistically significant.
Results

Repetitive genome predominantly
distributed in the proximity of ferroptosis
genes

We first investigated the occurrence of repetitive genomic

elements in the vicinity of ferroptosis genes (Supplementary

Figure 1). For this purpose, we first determined the repetitive

genome configuration in the promoter regions of these genes

(~2KB). We found that Alu, MIR, L1 and L2 were the frequent

repeats around 148 ferroptosis genes (Supplementary

Figure 1A). Further clustering of these genes revealed high

prevalence of LINE/L1, SINE/MIR, and SINE/Alu and low

prevalence when these genes were combined or when LINE/L2

or others were included. In addition, the hierarchical distribution of

repeats shows SINE/Alu and LINE/L1 as the divergent elements or

with a significant discriminative score for gene clustering. To

provide evidence for a possible functional relationship between

gene clusters and repeats, we applied k-means clustering and

functional enrichment analysis (Supplementary Figure 1B). Using

this approach, we identified four significant gene clusters: L1-related

(16 genes), Alu-related (59 genes), Alu/L1-related (17 genes), and

unrelated genes (56 genes). In terms of their functional analysis, this

discriminative analysis revealed the weight of each repeat type in the

promoter region of gene sets that could define regulatory directions

in the cellular and molecular context. We also checked the abilities

of these clusters in other available datasets, such as the Allen Brain

Atlas datasets, and found that each cluster represented a set of genes

for some brain segments, e.g., “anterior cingulate area” for L1 and

“paraventricular hypo-thalamic nucleus” for Alu-related repeats.

For instance, the gene GABARAPL2 (highly associated to SINE/

Alu) and the gene PARK7 (highly associated to LINE/L1)

highlighted in our analysis, are known to be expressed highly in

brain. In addition, these clusters were analyzed according to key

cellular and molecular processes, e.g., the gene cluster more

associated with LINE/L1 shows cellular responses to external

stimuli (cytokine production, nongenomic effect of vitamin D,

metabolic-related processes). Also, the gene cluster more

associated with SINE/Alu shows standard metabolic processes

and cellular adaptations to endogenous factors (response to

starvation, autophagy, ferroptosis, fatty acid metabolism). Of

interest, the cluster with Alu/L1-related genes reveals chromatin

pathways mainly associated with the sirtulin 1 (SIRT1) and histone

lysine methyltransferase (SUV39H1) genes, which could define

specific configurations of these repeats for important

regulatory processes.
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Ferroptosis-related gene signature
predicts the survival in multiple myeloma

We described our strategy in a flowchart (Supplementary

Figure 2). Using the stringent strategy, the clinical characteristics

of the patients involved in the study were outlined (Supplementary

Table 1). We primarily used information from 844 patients (in the

training cohort) and obtained 1669 survival-related genes

(Supplementary Table 2). Thereafter, we intersected these

survival-related genes with ferroptosis-related genes (n=269) and

generated a list of 17 ferroptosis-related prognostic genes

(Supplementary Figure 3A, Supplementary Table 3), which were

further narrowed down based on risk coefficient scores (n=14)

(Supplementary Figures 3B, C, Supplementary Table 4). Based on

their mean risk score derived from the signature of 14 genes, the

patients were classified into high-risk and low-risk groups. Notably,

twelve signature genes (SLC38A1, CDKN2A, MIOX, AGPS,

HELLS, FH, DAZAP1, SLC16A1, SUV39H1, DDIT4, TRIB3,

ALOX12B) were found to be upregulated (Supplementary

Figures 4A–L), while two (PIK3CA, ISCU) were downregulated
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in the high-risk group, based on the training cohort (Supplementary

Figures 4M, N). It is important to mention that compared to the

low-risk group, the high-risk group showed a worse outcome in the

training cohort OS (P< 0.0001, Figure 1A), both in the validation

cohort OS (P = 0.0014, Figure 1B), and in the validation cohort EFS

(P = 0.00016, Figure 1C). To confirm the prognostic power and

independence of the ferroptosis-related gene signature from other

clinical characteristics (age, albumin, Β2M, creatine, CRP,

hemoglobin, isotype, ISS stage, LDH, race, sex, risk), univariate

and multivariate Cox analyses were also performed. Our analysis

confirmed the robustness of the signature in the OS of the training

cohort (univariate, HR = 1.1, 95% = 1.06-1.15, P<0.001;

multivariate, HR = 1.06, 95%=1.02-1.1, P=0.005), OS of the

validation cohort (univariate, HR = 1. 18, 95%=1.15-1.21,

P<0.001; multivariate, HR=1.17, 95%=1.13-1.20, P<0.001) and

EFS of the validation cohort (univariate, HR=1.08, 95%=1.05-

1.12, P<0.001; multivariate, HR=1.05, 95%=1.02-1.09, P=0.004)

(Supplementary Table 5). Thus, the gene signature associated

with ferroptosis appears to be a reliable prognostic indicator for

MM patients.
B C

D E F

G H

A

FIGURE 1

Clinical application of 14-gene signature in MMRF-COMMPASS and GSE24080 cohorts. Kaplan-Meier curves of the 14-gene signature risk score in
the training cohort (A) and validation cohort (B, C). ROC curves of the 14-gene signature risk score in the training (D) and validation (E, F) cohorts.
Comparison of the C-indexes between the ferroptosis-related fourteen-gene signature and other existing biomarkers in multiple myeloma (G). The
risk coefficient between 14 genes and 33 types of cancer (H). Red star represented our ferroptosis-related fourteen-gene signature.
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Prognostic performance and clinical
application of ferroptosis-related gene
signature

Next, to assess the prognostic performance of the signature, we

performed time-dependent (one-year, three-year, and five-year)

dynamic AUC comparisons in the OS training cohort and obtain

AUC values of 0.67, 0.72, and 0.92, respectively (Figure 1D). Of

interest, theAUCvalueof themultigene risk scorecomparedwith ISS

stage and sex fared better compared to the independent variables in

the training cohort across each time point within 5 years

(Supplementary Figure 5A). Likewise, in the GSE24080 training

cohort, the AUC value of the multigene risk score was 0.63, 0.6, and

0.65 at 3, 5, and 7 years, respectively (Figure 1E), and each event

within 7 years was found to be greater compared to the defined

clinical variables (SupplementaryFigures 5B–D). Similar resultswere

obtainedwhen theEFS of the validation cohortwas used to assess the

predictive power of thismultigene risk score (AUC: 0.61, 0.61, 0.68 at

3, 5, and7years, respectively) (Figure 1F, SupplementaryFigures 5E–

G). To translate our obtained ferroptosis-related gene signature into

clinical application, we integrated the training factors (patient age,

sex, ISSstage, andmultigene signature) intomultivariateCoxanalysis

and constructed a nomogram to predict the survival probability of

patients with MM (Supplementary Figure 6A). Analysis of the

calibration curve, which included the nomogram after 3 and 5

years, showed a close resemblance to the diagonal curve at the

same defined intervals (Supplementary Figures 6B, C). In addition,

theC-indexof the training cohort for overall survivalwas found tobe

0.764 (95CI = 0.747-0.781), whereas the C-index of the validation

cohort was estimated as 0.703 (95CI = 0.682-0.724), suggesting

reliability of the nomogram. Of interest, we found superior

performance and better prognostic ability of the obtained

ferroptosis-related signature when compared with 10 already

known biomarkers (32–41) (Figure 1G). This was also evident in

the decision curve analysis (DCA) of the nomogram, where the

threshold probability ranged from14% to 95%and the probability of

maximum net benefit exceeded 0.2 (Supplementary Figure 7).

Besides, we investigated the reliability of the obtained signature in a

panel of 29 cancers and found that these genes are relatively highly

expressed in most cancers, especially in HNSC (squamous cell

carcinoma of the head and neck), CESC (squamous cell carcinoma

of the cervix and endocervical adenocarcinoma), and COAD

(adenocarcinoma of the colon) (Figure 1H).
Gene enrichment and immunofiltration
analysis confirmed the relevance of the
signature in high-risk MM patients

The result of CIBERSORT indicated that the plasma cells

accounted for more than 85% (Supplementary Figure 8A), which

was consistent with the experimental protocol of the GSE24080
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or MMRF-COMMPASS study. To our surprise, non-plasma

cells together, including memory B cells, CD4+ T cells, and

activated NK cells (Supplementary Figure 8B), could account for

more than 10% of the tumor microenvironment. These immune

cells should not be ignored despite low absolute content (42).

Considering the negative correlation between the risk score of

ferroptosis-related gene signature and the clinical outcome of

MM, KEGG enrichment analysis was performed between the

high-risk and low-risk groups. We found that 22 KEGG terms

were significantly enriched in the high-risk group (Figure 2A),

with DNA replication being the highly enriched (Enrichment

score = 0.8046), while the mRNA surveillance pathway had the

lowest enrichment (Enrichment score = 0.5593) (Figure 2B).

Notably, four ferroptosis-related pathways, including

proteasome (NES = 1.6748, adjusted p-value = 0.0263, 5q-

value = 0.0181), cysteine and methionine metabolism (NES =

1.7277, adjusted p-value = 0.0195, q-value = 0.0134), p53

signaling pathway (NES = 1.5643, adjusted p-value = 0.0263,

q-value = 0.0181) and DNA replication (NES = 1.9783, adjusted

p-value = 0.0195, q-value = 0.0134), were found to be

s i gn ifican t l y enr i ched in h igh- r i sk MM pat i en t s

(Supplementary Figure 9).

Since immune cell infiltration may have a differential impact

on high and low-score patients, we next assessed the degree of

immune infiltration using the ESTIMATE algorithm. The

analysis showed that the high-risk MM in the training cohort

had lower immune and stromal score but high tumor purity

(Supplementary Figures 10A–C), which was also confirmed in

the validation cohort (Supplementary Figures 9D–F). Of

interest, we found that immune and stromal score were

negatively correlated with risk score, whereas tumor purity

was positively correlated with risk score in the training cohort

(Supplementary Figures 10G–I). To further investigate the

influence of immune cell population alternation, we built cox

proportional hazards regression models based on the

enrichment level of 28 immune infiltration-related gene sets

via ssGSEA analyses, and focused on whether the alternation of

these gene sets was related with poor outcome. In the training

cohort, activated CD4+T cells, regulatory T cells, and type 1 T

helper cells were significantly negatively associated with OS

(P<0.05) (Supplementary Figure 11A), whereas follicular T

helper cells and immature B cells were significantly positively

associated with OS (P<0.05). Meanwhile, in the validation

cohort (Supplementary Figure 11B), activated CD4+T cells

and type 2 T helper cells were significantly negatively

associated with OS (P<0.05), whereas type 17 T helper cells

were significantly positively associated with OS (P<0.05). Thus,

we noticed that activated CD4+T cells was significantly

negatively associated with OS in both cohorts (Figure 2C).

Interestingly, the enrichment degree of high-risk group was

significantly higher than that of low-risk group in both cohorts

(Figures 2D, E). Of significance, only activated CD4+T cells were
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relevant to survival in both the training cohort (p<0.001) and the

validation cohort (p=0.035) (Figures 2F, G).
Oncogenic lncRNA CRNDE and signature
genes display strong correlation

Since an increasing number of studies have indicated that

non-coding RNAs may modulate the process of ferroptotic cell

death (43–45). Herein, we also assessed the potential correlation
Frontiers in Oncology 07
of obtained ferroptosis gene signature with the lncRNAs. Of

interest, while we found only a few lncRNAs in the training

cohort (KIFC1, DSCR4) and in the validation cohort (SLC44A4,

PSMB1, LINC01398, LINC01213, LINC00851), while the

oncogenic lncRNA CRNDE was significantly correlated in

both cohorts (Figure 3A). We also observed that the risk score

increased significantly with increasing expression of CRNDE in

both cohorts, MMRF-COMMPASS cohort (left) and GEO

cohort (right). (Figure 3B). Further analysis revealed that the

lncRNA CRNDE and signature genes interact with each other at
B

C D E

F G

A

FIGURE 2

Gene enrichment and immunofiltration analysis confirmed the relevance of the signature in high-risk MM patients. (A) Bubble diagram shows
gene counts and gene ratio of the significantly enriched KEGG pathway terms. (B) Ridgeline plot shows enrichment score of the significantly
enriched KEGG pathway terms. (C) Immune cell population alternation associated with OS with statistically significant difference in both cohorts.
(D, E) the enrichment degree of high-risk group was significantly higher than that of low-risk group in both cohorts by ssGSEA analyses ***
indicates P-value < 0.001. (F, G) Activated CD4+T cells were relevant to survival in both the training cohorts. KEGG, kyoto encyclopedia of
genes and genomes; GSEA, gene set enrichment analysis; ES, enrichment score.
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both the mRNA level and the protein level (Figures 3C, D). Our

analysis showed that all tested proteins were reasonably good

interaction partners of the lncRNA CRNDE. However, a selected

few proteins such as HELLS, SLC16A1, and CDKN2A were

predicted to be the major interacting partners of the lncRNA

CRNDE. With one exception (DDIT4), all other ferroptosis

associated genes in the obtained signature were enriched in

repetitive genomes, especially with Alu-related repeats (MIOX,

HELLS, DAZAP1, TRIB3, PIK3CA, SUV39H1).
Discussion

Emerging evidence suggests that ferroptosis may be the

target of innovative antitumor therapies (46, 47). Given this,

there have been a multitude of studies that have defined several

aspects of genes and mechanisms related to ferroptosis in

cancers (48–50). However, the effects of genome organization

(repetitive genome) in the proximity of these genes have not

been investigated. In addition, only a few studies have

investigated the aspect of ferroptosis in multiple myeloma

(MM), a form of cancer characterized by excessive

proliferation and dysfunction of certain plasma cells in the

bone marrow (5). MM being a hematological malignancy
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harbors biological complexity due to several disrupted cancer

pathways resulting from multiple genetic abnormalities and

epigenetic aberrations (4, 51, 52). A recent study showed that

induction of Ferroptosis in MM cells triggers DNA methylation

and histone modification changes associated with cellular

senescence (4). Similarly, a study compared the kinomic

activity profile of the natural anticancer agent withaferin A

with apoptotic and ferroptotic signatures to predict the mode

of cell death in MM cells (53). Considering this, herein, we

investigated the genomic architecture of ferroptosis-related

genes and independently constructed a prognostic signature

for patient stratification in MM.

To this end, we first defined the ferroptosis-related genes and

assessed the presence of the repetitive genome in their promoter

region and specified the gene clusters with L1, Alu, and L1/Alu

repeats. To mention, such repeats have been described by their

regulatory role in gene expression (54)., however, the

significance of their distribution or configuration remains

unclear. Moreover, further clustering of these genes revealed

high prevalence of LINE/L1, SINE/MIR, and SINE/Alu and low

prevalence when these genes were combined or when LINE/L2

or others were included. The functional analysis revealed that

the obtained clusters are involved in key cellular and molecular

processes. For instance, the gene cluster associated with LINE/L1
B

C
D

A

FIGURE 3

Oncogenic lncRNA CRNDE and signature genes display strong correlation. (A) The potential significant correlation of obtained ferroptosis gene
signature with the lncRNAs. (B) lncRNA CRNDE was significantly correlated in both cohorts, MMRF-COMMPASS cohort (left) and GEO cohort
(right). (C) The interaction between the transcript of lncRNA CRNDE and signature genes related mRNA. (D) The interaction between lncRNA
CRNDE and signature genes related proteins.
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showed involvement in cellular responses to external stimuli

(cytokine production, nongenomic effect of vitamin D,

metabolic-related processes). While, the gene clusters more

associated with SINE/Alu showed standard metabolic

processes and cellular adaptations to endogenous factors

(response to starvation, autophagy, ferroptosis, fatty acid

metabolism). Of interest, the clusters with Alu/L1-related

genes show chromatin pathways primarily linked sirtulin 1

(SIRT1) and histone lysine methyltransferase (SUV39H1) genes.

Next, using the stringent strategy, we established the

ferroptosis-related prognostic genes signature containing

fourteen genes (SLC38A1, CDKN2A, MIOX, AGPS, HELLS,

FH, DAZAP1, SLC16A1, SUV39H1, DDIT4, TRIB3, ALOX12B,

PIK3CA, ISCU). We further classified patients into high-risk

and low-risk groups based on the mean risk score according to

signature. We also confirmed the prognostic power and

independence of the obtained signature related to ferroptosis

with other clinical characteristics (age, albumin, Β2M,

creatinine, CRP, hemoglobin, isotype, ISS stage, LDH, race,

sex, risk) and found it to be a reliable indicator for patients

with MM. Besides, we investigated the reliability of the obtained

signature in a panel of 29 cancers and found that these genes are

relatively highly expressed in most cancers. Importantly, we

found superior performance and better prognostic ability of the

obtained ferroptosis-gene signature compared to 10 already

known biomarkers. The outcome of decision curve analysis

(DCA) of the nomogram affirmed the possible use of this

signature for clinical utility. As next, we utilized the

ferroptosis-related gene signature for GSEA analysis and found

that several KEGG terms significantly enriched in the high-risk

group. Among them, four ferroptosis-related pathways,

including proteasome, cysteine and methionine metabolism,

p53 signaling pathway and DNA replication, were found to be

significantly enriched in high-risk MM patients. In terms of

clinical application, myeloma patients receiving proteasome

inhibitor (ie, bortezomib) benefited in OS compared to those

who did not receive proteasome inhibitor (55)., and proteasome

inhibitor was commonly used to treat relapsed/refractory

myeloma, either as single agent or combined with other

therapies (56). Given that immune cell infiltration may have a

differential impact on high and low-score patients, we also

assessed the degree of immune infiltration and found that the

high-risk MM (in the training cohort) had lower immune and

stromal score but high tumor purity. Among several immune

cell populations, we found that activated CD4+ T cells and

activated CD8+ T cells were significantly upregulated in the

high-score group. Of significance, only activated CD4+ T cells

were relevant to survival in both the training cohort and the

validation cohort. Since MM is an immunoproliferative disease,

the increased frequency of Tregs and T cells possessing a

regulatory function have already been discussed MM patients

(57). An independent study also reported a higher proportion of

activated CD4+ Tregs in MM patients compared to healthy
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donors (58). The robust signature we used to establish the

relationship between activated CD4+ T cell subsets and patient

survival is concordant to these studies. However, the exact

mechanism by which immune cells, especially activated CD4+

T cell subsets, affect MM remains unclear. To mention, some of

the genes in our signature has already been implicated in MM,

for instance, ALOX12B variants has been proposed as a

biomarker for progression and resistance in MM (59).

CDKN2A has previously been found to be differentially

expressed in MM (60)., and its overexpression has been

correlated with poor OS in MM (61). SUV39H1 and the

contribution of other epigenetic modifiers has been implicated

in MM development and disease progression (62). To mention,

some studies have been conducted on prognostic gene signatures

related to cell death mechanisms such as ferroptosis (63, 64) and

autophagy (65, 66) seeking their potential role in cancer

treatment. Of importance, the ferroptosis-related gene

signature, we presented in the current study is the first for MM.

Next, we investigated whether the obtained signature shows

any potential correlation with the lncRNAs implicated in

cancers. Interestingly, we identified few lncRNAs (KIFC1,

DSCR4) in the training cohort and (SLC44A4, PSMB1,

LINC01398, LINC01213, LINC00851) in the validation cohort

appears to correlate with the signature. Most importantly, we

identified the oncogenic lncRNA CRNDE significantly

correlated in both training and validation cohorts. LncRNA

CRNDE has been found to be altered in several cancers,

including colorectal cancer, glioma, hepatocellular carcinoma,

lung cancer, breast cancer, gastric cancer, and renal cell

carcinoma (67, 68). Of interest, a recent study performed

CRISPR-mediated deletion of the lncRNA CRNDE and

showed decrease in IL6 signaling and proliferation responses

in multiple myeloma cells (69). Our analysis revealed that

lncRNA CRNDE and signature genes interact with each other

at both the mRNA level and the protein level. Hence, by using

multiple myeloma, we support the potential use of non-coding

genome based ferroptosis targeting, which has recently been

suggested (23).

It is also important to mention the limitations of this study,

such as: 1) we did not evaluate the impact of therapies (e.g.,

targeted therapy and/or chemotherapy, with or without steroids,

etc.) on the defined high/low risk groups of MM patients. 2)

Mutations in certain genes (including KRAS, NRAS, TP53,

FAM46C, DIS3 and BRAF) have a high recurrence rate in

MM, however, we did not calibrate our signature according to

the mutation spectrum of patients. 3) The experimental

validation of our signature is a requisite. 4) The current

methodologies for the enrichment of plasma cells specially by

using anti-CD138 immunomagnetic bead selection may lead to

some potential bias for assessing the immune microenvironment

components (e.g. memory B cells, CD4+ T cells, and activated

NK cells), the composition of non-plasma cells may

proportionally be lower/affected. Despite this, our study is the
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first to define the effects of the repetitive genome on the

proximity of ferroptosis related genes and their putative

association with the oncogenic lncRNA CRNDE.

Conclusions

We showed that ferroptosis-related genes are enriched with

the repetitive genome in their proximity, with a strong

predominance of the SINE family, followed by LINE, of which

the most significant discriminant values were SINE/Alu and

LINE/L1, respectively. In addition, we developed an independent

predictive model/signature comprising fourteen ferroptosis-

related genes that can identify MM high-risk patients with

lower immune/stromal score and higher tumor purity in their

immune microenvironment.

Besides, we found that the oncogenic lncRNA CRNDE

correlated with the risk score and was highly associated with

most of the signature genes.
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SUPPLEMENTARY FIGURE 1

Association of repetitive genome content in the upstream promoter

region and their functional meaning for ferroptosis-related genes. (A)
Hierarchical clustering of genes based on the normalized score of repeat

quantity and length “Log (Repeat content)”. (B) On top: k-means
clustering of genes based on SINE/Alu and LINE/L1 (brain sections are

from Allen Brain Atlas up-expression enrichment) and bottom: functional

enrichment of each gene cluster.

SUPPLEMENTARY FIGURE 2

Flowchart of the study. LASSO, the least absolute shirankage and selection

operator Cox regression model; ROC, receiver operating characteristic;
MM, multiple myeloma.

SUPPLEMENTARY FIGURE 3

Construction of the prognotic gene signature using LASSO regression

analysis. (A) Venn Diagram represents 17 potential prognostic genes
composed from Intersecting 1669 univariate genes with 269 ferroptosis

genes. (B) LASSO coefficient profiles of 17 ferroptosis-related potential
prognostic genes. Each curve corresponds to a gene. (C) Selection of the

optimal parameter in LASSO regression with 10-fold cross validation.

LASSO, the least absolute shirankage and selection operator Cox
regression model.

SUPPLEMENTARY FIGURE 4

The distribution of fourteen signature genes based on their mean risk
score. (A–L) SLC38A1, CDKN2A, MIOX, AGPS, HELLS, FH, DAZAP1,

SLC16A1, SUV39H1, DDIT4, TRIB3, ALOX12B. (M-N) PIK3CA, ISCU.

SUPPLEMENTARY FIGURE 5

Time-dependent dynamic AUC curves of the 14-gene signature risk score
in the training (A) and validation (B–G) cohorts. The time-dependent

dynamic AUC curve shows a comparison between the risk score and
other independent factors. AUC, area under the ROC curve; ROC,

receiver operating characteristic.

SUPPLEMENTARY FIGURE 6

Nomogram and its associated calibration curve analysis. (A) Ferroptosis-
related fourteen-gene based nomogram predicting the 3- and 5-year

survival probability in patients with multiple myeloma. (B, C) Calibration
analysis of ferroptosis-related fourteen-gene containing nomogram at 3

years (B) and 5 years (C).

SUPPLEMENTARY FIGURE 7

Decision curve analysis of the clinical use of ISS stage and the ferroptosis-
related fourteen-gene based nomogram in multiple myeloma.
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SUPPLEMENTARY FIGURE 8

Cell composition of tumormicroenvironment investigated by CIBERSORT. (A)
Cell composition of Bonemarrow (B)Non-plasma cell composition.

SUPPLEMENTARY FIGURE 9

GSEA result of KEGG gene set based on the risk-score of each multiple

myeloma patients. (A) Proteasome (B) Cysteine and methionine
metabolism (C) p53 signaling pathway (D) DNA replication (E)
Homologous recombination (F) Base excision repair (G) Mismatch
repair (H) Fanconi anemia pathway (I) Spliceosome (J) Aminoacyl-tRNA

biosynthesis (K) Cell cycle (L) Nucleotide metabolism. KEGG, kyoto
encyclopedia of genes and genomes; GSEA, gene set enrichment

analysis; NES, normalizedN enrichment score; FDR, false discovery rate.
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SUPPLEMENTARY FIGURE 10

Relationship between immune infiltration level and ferroptosis-related
fourteen-gene risk score. The distribution of immune score, stromal score

and tumor purity upon different risk score in the training cohort (A–C) and
validationcohort (D–F). Thecorrelationbetween risk score and thedistribution

of immune score (G), stromal score (H) and tumor purity (I), respectively. *p<
0.05, **p< 0.01, ***p< 0.001.

SUPPLEMENTARY FIGURE 11

Cox proportional hazards regression models based on the enrichment
level of 28 immune infiltration-related gene sets via ssGSEA analyses in (A)
MMRF-COMMPASS study and (B) GSE24080. Red stars indicate P<0.05.
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Simple Summary: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
which is more prevalent in adults. Herein, we established the first immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature displaying a prognostic ability among HCC patient groups.

Abstract: Background: The dysregulation of autophagy and immunological processes has been linked
to various pathophysiological conditions, including cancer. Most notably, their particular involvement
in hepatocellular carcinoma (HCC) is becoming increasingly evident. This has led to the possibility
of developing a prognostic signature based on immuno-autophagy-related (IAR) genes. Given that
long non-coding RNAs (lncRNAs) also play a special role in HCC, a combined signature utilizing IAR
genes and HCC-associated long noncoding RNAs (as IARlncRNA) may potentially help in the clinical
scenario. Method: We used Pearson correlation analysis, Kaplan–Meier survival curves, univariate and
multivariate Cox regression, and ROC curves to generate and validate a prognostic immuno-autophagy-
related long non-coding RNA (IARlncRNA) signature. The Chi-squared test was utilized to investigate
the correlation between the obtained signature and the clinical characteristics. CIBERSORT algorithms
and the Wilcoxon rank sum test were applied to investigate the correlation between signature and
infiltrating immune cells. GO and KEGG analyses were performed to derived signature-dependent
pathways. Results: Herein, we build an IAR-lncRNA signature (as first in the literature) and demon-
strate its prognostic ability in hepatocellular carcinoma. Primarily, we identified three IARlncRNAs
(MIR210HG, AC099850.3 and CYTOR) as unfavorable prognostic determinants. The obtained signature
predicted the high-risk HCC group with shorter overall survival, and was further associated with
clinical characteristics such as tumor grade (t = 10.918, p = 0.001). Additionally, several infiltrating
immune cells showed varied fractions between the low-risk group and the high-risk HCC groups in
association with the obtained signature. In addition, pathways analysis described by the signature
clearly distinguishes both risk groups in HCC. Conclusions: The immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature we established exhibits a prognostic ability in hepatocellular
carcinoma. To our knowledge, this is the first attempt in the literature to combine three determinants
(immune, autophagy and LnRNAs), thus requiring molecular validation of this obtained signature in
clinical samples.

Keywords: liver cancer; hepatocellular carcinoma; lncRNAs; autophagy; biomarker; kyoto encyclopedia
of genes and genomes; prognosis; signature; immune genes
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1. Introduction

Autophagy as a conserved process captures and degrades intracellular components
primarily to maintain metabolism and cellular homeostasis. Dysregulation of this process
has been linked to several pathophysiological conditions, such as cancer and neurodegen-
erative diseases [1,2]. Particularly in hepatocellular carcinoma (HCC), autophagy has been
shown to play a role by promoting the metastatic colonization of HCC cells [3].

HCC, the most common malignancy of the liver, is currently the fourth leading cause
of cancer-related death worldwide [4]. Primary risk factors for the development of HCC
include chronic liver disease and cirrhosis, most of which are caused by chronic viral
hepatitis (B + C) and excessive alcohol consumption. Several genetic and epigenetic factors
have also been implicated in the molecular pathogenesis of HCC [5]. Considering the
overlap of mutational pathways in cancers [6], studies have also prompted the analysis of
the prognostic potential of certain genes across the spectrum of multiple cancers, including
HCC [7]. Likewise, the relative contribution of autophagy in HCC is becoming increasingly
apparent; for instance, Wu et al. showed that autophagic degradation machinery and the
cell-cycle regulator cyclin D1 are linked to HCC tumorigenesis [8]. It has also been discussed
that activation of autophagy decreases the expression of oncogenic microRNA-224, and thus
impedes tumorigenesis in hepatitis B virus-related HCC [9]. Of interest, several compounds
have been shown to exert antitumor effects in liver cancer via autophagy [10–12]. In the
context of autophagy-related genes (ATG), lower expression was previously observed in
HCC, which was predicted to contribute to tumor growth and the poor prognosis of the
disease [13,14]. Of interest, there have been few recent attempts to identify a prognostic
signature of ATGs in HCC [15,16]. Besides this, immunoautophagy-related genes (IARGs)
were also recently evaluated for their potential prognostic significance in HCC patients [17].
Considering that long non-coding RNAs (lncRNAs) also play a special role in cancer, their
ability to regulate tumor growth by modulating autophagy in liver, bladder, and pancreatic
cancers has already been implicated [18,19]. In HCC, a study discussed the potential
involvement of lncRNA HULC (highly upregulated in liver cancer) in the autophagy and
chemoresistance of HCC cells [20]. Similarly, the lncRNA SNHG1 has been shown to
induce resistance to the drug sorafenib in HCC through activation of the Akt pathway [21].
Recently, the prognostic value of an autophagy-related lncRNA signature in HCC has been
discussed [22].

Considering this plethora of literature, we have attempted to combine immune-,
autophagy, and noncoding RNAs to generate immunoautophagy-related long noncoding
RNA (IAR-lncRNA). Herein, we build an IAR-lncRNA signature (first in the literature) and
demonstrate its prognostic ability in hepatocellular carcinoma.

2. Materials and Methods
2.1. Gene Expression Data and Clinicopathological Characteristics

Gene expression data (workflow type: HTSeq—FPKM) and associated clinical infor-
mation of patients with hepatocellular carcinoma of the liver (HCC) were downloaded from
UCSC Xena (https://xena.ucsc.edu/, accessed on 22 October 2021). The reference database
was the GDC TCGA Liver Cancer (LIHC) dataset, which contains 374 tumor samples with
comprehensive gene expression data. Of these, 371 samples were from primary tumors
(mainly used in this study), and the remaining 3 samples were from recurrent tumors
(3 samples from 2 patients), which were excluded from the analysis. Only 365 samples
have both gene expression data and survival data (survival time and survival status).
Based on the available clinical characteristics, only 163 samples were further processed for
the clinical comparisons. In total, 210 genes involved in autophagy were retrieved from
the Human Autophagy Database (HADb, http://autophagy.lu/clustering/index.html,
accessed on 22 May 2021). A total of 1344 immune-related genes were retrieved from
Immport Shared Data (https://www.immport.org/shared/home, accessed on 27 June
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2021). We focused our analysis on 371 HCC samples, excluding recurrent samples due
to their peculiar clinical/biological characteristics. Log2(FPKM + 1) gene expression data
were applied to obtain AR genes, IR genes and lncRNAs. Due to the sizes of genes and
lncRNAs, the average gene expression (log2(FPKM + 1)) of AR genes and IR genes (no
more than 0) and lncRNAs (no more than 0.5) was excluded. Log2 was further applied for
the gene expression data (log2(FPKM + 1)) in order to obtain fitting normalized distribution.
Since lncRNAs were expressed at relatively low levels, the correlation of gene (AR and IR)
expression (Log2(log2(FPKM + 1) + 1)) and lncRNA expression (log2(FPKM + 1)) was used
to establish AR- and IR-related lncRNAs. LncRNA expression (Log2(log2(FPKM + 1) + 1))
data were subsequently used in statistical analyses.

2.2. Development of the Prognostic Immuno-Autophagy-Related lncRNAs Signature

Univariate Cox regressions were applied to select survival-related autophagy genes
and immune genes, which were based on p-values < 0.01. Then the correlation between
lncRNAs and survival-related autophagy genes was determined by Pearson correlation
analysis. LncRNAs with correlation coefficients |R| > 0.4 and p values < 0.01 were consid-
ered autophagy-related. The correlation between lncRNAs and survival-related immune
genes was determined by Pearson correlation analysis. LncRNAs with correlation coeffi-
cients |R| > 0.6 and p values < 0.01 were defined as immune-related. Thus, we obtained
autophagy-related lncRNAs (ARlncRNAs) and immune-related lncRNAs (IRlncRNAs) for
the further steps. Next, we determined the lncRNA was associated with immunoautophagy
(IARlncRNA) if the lncRNA belonged to both ARlncRNAs and IRlncRNAs concurrently.
Then, univariate Cox regression was performed to select survival-related IARlncRNA. Sub-
sequently, multivariate Cox regression analysis was performed based on the lowest Akaike
information criterion (AIC) to determine the optimal prognostic signature. Risk scores were
calculated using the following formula: (βgene 1 × expgene 1) + (βgene 2 × expgene 2)
+ --- + (βgene n × expgene n). Here, expgene represents the expression of lncRNA. Of
note, the cutoff value for the high-risk group and the low-risk group was the median risk
score. The differential expressions of the lncRNAs in signature between high- and low-risk
groups were assessed by Wilcoxon rank sum test.

2.3. Prognostic Ability of Immuno-Autophagy-Related lncRNAs Signature

The Kaplan–Meier survival curve was applied to investigate the survival rate between
high-risk and low-risk groups, and p < 0.05 was considered as a significant difference.
Subsequently, an ROC curve was performed to test the predicting value of the signature.
Univariate Cox regression and multivariate Cox regression were used to assess the inde-
pendent ability of the signature, primarily based on p < 0.05 when clinical features (age,
gender, Child–Pugh classification, AFP, fibrosis, grade and stage) were considered.

2.4. Correlation between Immune Cells and Signature

CIBERSORT analysis was performed to explore the percentages of 22 immune cells in
each patient. Wilcoxon rank-sum test was used to determine the varying of immune cells
in low- and high-risk groups (p < 0.05).

2.5. GO and KEGG Analysis

Differential genes were found between the low-risk group and the high-risk group
based on log2 fold change (logFC) > 1 and false discovery rate (FDR) < 0.05 using the
Wilcoxon rank sum test. Subsequently, these genes were included in GO and KEGG
analyses using the R package “clusterProfiler” to explore pathways, which were selected
with a q value < 0.05.

2.6. Statistical Analysis

Pearson correlation analysis, Chi-squared test, Wilcoxon rank sum test, Cox regression,
Kaplan–Meier curves, survival status, heat map, ROC curve, cibersort algorithm, GO
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analysis and KEGG analysis were performed using R software. The coexpression network
between genes (ARgenes and IRgenes) along with an lncRNA coexpression network was
illustrated using CYTOSCAPE software.

3. Results
3.1. Correlating Autophagy-Related Genes and Immune-Related Genes with lncRNAs

We first derived autophagy-related genes from the Human Autophagy Database (HADb,
http://autophagy.lu/clustering/index.html, accessed on 22 May 2021) and immune-related
genes from the Immport Shared Data (https://www.immport.org/shared/home, accessed
on 27 June 2021). Subsequently, the gene expression datasets of LIHC (GDC TCGA Liver
Cancer (LIHC)) were downloaded from the UCSC Xena. Next, we extracted the lncRNA
genes, autophagy-related (AR) genes and immune-related (IR) genes corresponding to HCC
from the TCGA data. First, univariate Cox regressions were performed to select survival-
related AR genes and IR genes. Subsequently, Pearson correlation was used to confirm
the correlation between autophagic genes and lncRNA (|R| > 0.4 and p-value < 0.01),
in addition to the correlation between immune-related genes and lncRNA (|R| > 0.6
and p-value < 0.01). Using these parameters, a total of 244 ARlncRNAs (Supplementary
File S1) and 36 IRlncRNAs (Supplementary File S2) was identified. When combined, the
ARlncRNAs and IRlncRNAs yielded 36 IARlncRNAs. The overview of the complete
strategy is shown in a flowchart (Figure S1).

3.2. A Signature Involving 3 Immuno-Autophagy-Related lncRNAs with Prognostic Potential

The aforementioned 36 immuno-autophagy-related lncRNAs were analyzed in com-
bination with clinical survival data. Univariate Cox regression analysis was performed
with a p-value of less than 0.01, resulting in the mapping of 10 lncRNAs (BACE1-AS,
MIR210HG, AC073896.4, AC099850.3, AC026401.3, MAPKAPK5-AS1, LINC01018, CYTOR,
AC115619.1, and F11-AS1) (Figure 1A). In addition, we used a multivariate Cox regres-
sion analysis based on the lowest Akaike information criterion (AIC) to determine the
β-values that were subsequently used to calculate the risk scores. The analysis revealed
three immunoautophagy-related lncRNAs (MIR210HG, AC099850.3, and CYTOR) as the
strongest candidates with prognostic potential (Table S1). The correlation between the
IARlncRNA of the obtained signature and the genes (AR genes and IR genes) is shown
in Figure 1C. Of interest, all these genes showed high expression in the high-risk group
(Figure 1B), and were considered unfavorable prognostic determinants (Figure 1D).

3.3. Validating the Prognostic Potential of Immuno-Autophagy-Related lncRNA Signature in Low-
and High-Risk HCC Groups

Next, we determined the functionality of the obtained signature within the low-risk
group and high-risk group HCC patients (Figure 2). The scatter plot shows that both
survival rates and survival time were lower in the high-risk group compared to the low-
risk group (Figure 2A).

Additionally, an expression pattern between lncRNAs and signature risk was observed
in the heat map (Figure 2A). The Kaplan–Meier survival curve showed a significant differ-
ence in overall survival between the low-risk and high-risk groups (Figure 2B). Notably,
the high-risk group showed shorter overall survival compared with the low-risk group.
In addition, we performed univariable (Figure 2C) and multivariable Cox (Figure 2D)
regression analyses to identify independent prognostic factors with clinical characteristics,
and found that age, stage, and risk score were independent predictive determinants of
survival in HCC patients. Additionally, an ROC curve was used to confirm the model, for
which the AUC values of the risk score for the prediction times of 1, 2, and 3 years were
0.746, 0.700, and 0.674, respectively, for each prediction time (Figure 2E).
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groups. (C) A network of prognostic lncRNA (black nodes) with co-expressed genes (green) in HCC. (D) Kaplan–Meier
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Figure 2. Immunoautophagy-related lncRNA risk score analysis in HCC patients. (A) Patient data with low- and high-
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are shown. (B) Kaplan–Meier survival curves for immunoautophagy-related lncRNA risk score for the HCC in TCGA
dataset. (C) Univariable Cox regression. (D) Multivariable Cox regression. (E) ROC curve for 1 year (left), 2 years (middle)
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3.4. Association of Immuno-Autophagy-Related lncRNA Signature with Clinical Characteristics

To determine the association between immuno-autophagy-related lncRNA signa-
ture and clinical characteristics, we divided each feature into two groups, such as age
(over/under 65 years), gender (male/female), grade (GI–G2/G3–G4), stage (I–II/III–IV),
Child–Pugh classification (A/B + C), AFP/alpha-fetoprotein (over/under 400 ng/mL) and
fibrosis (with/without) status of patients (Table 1). The analysis showed that a high-risk
score was associated significantly with the higher grade (t = 10.918, p = 0.001).

Table 1. The relation between risk of signature with clinical features.

Risk Total High Risk Low Risk t p Value

Age <65 95 (58.28%) 46 (63.89%) 49 (53.85%) 1.280 0.258
≥65 68 (41.72%) 26 (36.11%) 42 (46.15%)

Gender Female 50 (30.67%) 24 (33.33%) 26 (28.57%) 0.234 0.629
Male 113 (69.33%) 48 (66.67%) 65 (71.43%)

Child–Pugh A 147 (90.18%) 64 (88.89%) 83 (91.21%) 0.053 0.819
B + C 16 (9.82%) 8 (11.11%) 8 (8.79%)

AFP ≥400 30 (18.4%) 17 (23.61%) 13 (14.29%) 1.748 0.186
<400 133 (81.6%) 55 (76.39%) 78 (85.71%)

Fibrosis Fibrosis 113 (69.33%) 50 (69.44%) 63 (69.23%) 0 1
No Fibrosis 50 (30.67%) 22 (30.56%) 28 (30.77%)

Grade G1–G2 99 (60.74%) 33 (45.83%) 66 (72.53%) 10.918 0.001 **
G3–G4 64 (39.26%) 39 (54.17%) 25 (27.47%)

Stage Stage I–II 131 (80.37%) 57 (79.17%) 74 (81.32%) 0.021 0.885
Stage III–IV 32 (19.63%) 15 (20.83%) 17 (18.68%)

** p < 0.01.

3.5. Association of Infiltrating Immune Cells and Obtained Signature

Considering the obtained signature involved both immune and autophagy deter-
minants, its relationship with immune infiltration cells was investigated. The relative
percentages of 22 immune cells in each patient are shown in Figure S2. The distribution of
these cells in risk groups is shown in Figure 3A. The Wilcoxon rank sum test was applied
to determine the difference between each immune cell in the low- and high-risk groups
(Figure 3B). Interestingly, B cells (naïve, p < 0.01; memory, p < 0.01), T cells CD4 memory
(resting, p = 0.007; activated, p < 0.001), T cells follicular helpers (p < 0. 001), NK cells
resting (p = 0.018), macrophages M0 (p < 0.001), macrophages M2 (p = 0.034) and mast cells
resting (p = 0.015) were significantly different between low- and high-risk groups.

3.6. GO and KEGG Pathway Enrichment Analysis of the Obtained Signature

We further investigated the cellular and molecular pathways associated with the
obtained signature. The differential genes between high- and low-risk groups are listed
in Supplementary File S3. The biological/cellular processes obtained from GO analysis
(Figure S3) show that the signature is mainly associated with mitosis and chromosome segre-
gation. Additionally, the molecular function of the signature was related to tubulin binding
and kinase activity. The KEGG analysis shows that the signature is clearly associated with
seven signaling pathways, including cell cycle, oocyte meiosis, progesterone-mediated
oocyte maturation, p53 signaling pathway, human T-cell leukemia virus 1 infection, cellular
senescence, and human immunodeficiency virus 1 (Figure 3C).

61



Biology 2021, 10, 1301 8 of 11Biology 2021, 10, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 3. The relationship between immuno-autophagy-related lncRNA signature, infiltration immune cells and potential 
pathways. (A) Heatmap of 22 immune cells in high/low-risk group. (B) The fractions of immune cells in high- and low-
risk group. (C) KEGG analysis. 

3.6. GO and KEGG Pathway Enrichment Analysis of the Obtained Signature 
We further investigated the cellular and molecular pathways associated with the ob-

tained signature. The differential genes between high- and low-risk groups are listed in 
Supplementary File 3. The biological/cellular processes obtained from GO analysis (Figure 
S3) show that the signature is mainly associated with mitosis and chromosome segrega-
tion. Additionally, the molecular function of the signature was related to tubulin binding 
and kinase activity. The KEGG analysis shows that the signature is clearly associated with 
seven signaling pathways, including cell cycle, oocyte meiosis, progesterone-mediated 
oocyte maturation, p53 signaling pathway, human T-cell leukemia virus 1 infection, cel-
lular senescence, and human immunodeficiency virus 1 (Figure 3C). 

4. Discussion 
Cancer is a relatively complex disease [6,23], driven primarily by genetic/epigenetic 

processes that help these cells to proliferate and fuel cancer progression. Overall, the dy-
namics of dysregulated mechanisms involving several key cellular signaling pathways act 
as a critical factor for the slow to fast progression of this disease. Among them, autophagy 
and immune-related processes also play a crucial role in both promoting and suppressing 
tumor growth. Likewise, the peculiar contribution of long non-coding RNA (IARlncRNA) 
can also not be excluded. To date, several prognostic signatures involving autophagy-re-
lated (AR) and immune-related (IR) genes have been shown [24–26], and some have even 
attempted to combine them with lncRNAs [27,28]. However, to date, no combinatorial 
signature utilizing IR, AR and lncRNAs has been shown. 

With a special focus on hepatocellular carcinoma (HCC), herein, we sought to inves-
tigate a possible immuno-autophagy-related long non-coding RNA (IARlncRNA) signa-
ture, primarily to predict survival in HCC patients. At first, we selected survival-related 
IR and AR genes, and combined them lncRNAs to identify ARlncRNAs and IRlncRNAs 
datasets. Following this, specific sets of ARlncRNAs (n = 244) and IRlncRNAs (n = 36) were 

Figure 3. The relationship between immuno-autophagy-related lncRNA signature, infiltration immune cells and potential
pathways. (A) Heatmap of 22 immune cells in high/low-risk group. (B) The fractions of immune cells in high- and low-risk
group. (C) KEGG analysis.

4. Discussion

Cancer is a relatively complex disease [6,23], driven primarily by genetic/epigenetic
processes that help these cells to proliferate and fuel cancer progression. Overall, the
dynamics of dysregulated mechanisms involving several key cellular signaling pathways
act as a critical factor for the slow to fast progression of this disease. Among them,
autophagy and immune-related processes also play a crucial role in both promoting and
suppressing tumor growth. Likewise, the peculiar contribution of long non-coding RNA
(IARlncRNA) can also not be excluded. To date, several prognostic signatures involving
autophagy-related (AR) and immune-related (IR) genes have been shown [24–26], and
some have even attempted to combine them with lncRNAs [27,28]. However, to date, no
combinatorial signature utilizing IR, AR and lncRNAs has been shown.

With a special focus on hepatocellular carcinoma (HCC), herein, we sought to investi-
gate a possible immuno-autophagy-related long non-coding RNA (IARlncRNA) signature,
primarily to predict survival in HCC patients. At first, we selected survival-related IR
and AR genes, and combined them lncRNAs to identify ARlncRNAs and IRlncRNAs
datasets. Following this, specific sets of ARlncRNAs (n = 244) and IRlncRNAs (n = 36)
were generated, and then a preliminary signature of IARlncRNAs (n = 36) was derived
from the aforementioned data sets. Among them, 10 IARlncRNAs (BACE1-AS, MIR210HG,
AC073896.4, AC099850.3, AC026401.3, MAPKAPK5-AS1, LINC01018, CYTOR, AC115619.1,
and F11-AS1) were found to be associated with survival. Of importance, three of them
(MIR210HG, AC099850.3, and CYTOR) displayed a robust prognostic signature with unfa-
vorable prognosis. Previously, these three IARlncRNAs had all been implicated in HCC;
for instance, it has been shown that the silencing of MIR210HG expression leads to the
inhibition of HCC tumor growth [29]. Similarly, CYTOR has been shown to promote HCC
proliferation, and its disruption inhibited HCC growth [30,31]. Additionally, AC099850.3
has been shown to increase proliferation and migration in HCC [32], thus providing strong
evidence for the utility of our prognostic signature in the clinical spectrum of HCC patients.
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We next determined the functionality of the obtained signature within the HCC patient
groups, and found that both survival rates and survival time were significantly low in the
high-risk group. In addition, an inverse expression pattern was observed in lncRNAs and
risk groups. Of interest, among several clinical characteristics, risk score was found to be
an independent predictive determinant of survival in HCC patients. We also examined the
relationship between the obtained signature and the infiltrating immune cells. The analysis
showed that a higher proportion of naïve B cells, resting memory CD4 T cells, resting
NK cells, M2 macrophages, and resting mast cells predominated in the low-risk group,
whereas the proportion of memory B cells, activated memory CD4 T cells, follicular helper
T cells, and M0 macrophages was specific for the high-risk group. GO analysis showed that
differential gene expressions between risk groups were significantly enriched in biological
processes (mitosis and chromosome segregation), cellular components (chromosomes),
and molecular functions (tubulin binding and kinase activity). In addition, seven defined
signaling pathways (cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation,
p53 signaling pathway, human T-cell leukemia virus 1 infection, cellular senescence, and
human immunodeficiency virus 1) were found to be associated with the obtained signature.
To our knowledge, we have presented for the first time an immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature prognostic ability in hepatocellular carcinoma.
It is worth mentioning that molecular validation of this obtained signature using clinical
samples is required. Prognostic models for HCC based on lncRNAs have also been reported
previously. For instance, a recent study identified five autophagy-related long non-coding
RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and
CYTOR) for HCC patients from the TCGA database [27]. Likewise, one independent
study described four-immune-related-LncRNA signatures for predicting the prognosis and
guiding the application of immunotherapy in HCC [33]. However, it is worth mentioning
that the heterogeneity within clinical samples submitted to repositories (as previously
described by Sharma et al. [34]) and especially the selection of different computational
analytical methods makes these predictive markers less effective in the clinical environment.
In the present study, we have provided a detailed description of the methods used in our
analysis, which offers a platform for methodological compression to enable similar analyses
in HCC or in other cancers.

5. Conclusions

The immuno-autophagy-related long non-coding RNA (IARlncRNA) signature we
established exhibits a prognostic ability in hepatocellular carcinoma.
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4. Discussion

The epigenetic regulation plays a crucial role in the treatment and prognosis of cancers

(Cheng et al., 2019; Lu et al., 2020). Epigenetic inhibitors, such as DNMT1 inhibitors and

HDACs inhibitors, have been developed and proven effective in influencing cancer

survival (Eckschlager, Plch, Stiborova, & Hrabeta, 2017; Y. Li & Seto, 2016; Lim et al.,

2022; Wong, 2021). While combination therapy of epigenetic inhibitors with other

chemotherapy has shown promising results, it is important to consider the side effects

associated with both epigenetic inhibitors and chemotherapy agents. Non-oncology

drugs with anticancer properties have been shown to impact epigenetic processes (Bezu,

Kepp, & Kroemer, 2022; Bridgeman, Ellison, Melton, Newsholme, & Mamotte, 2018).To

mitigate side effects associated with epigenetic drugs, exploring the synergistic effects of

non-oncology drugs in combination with epigenetic inhibitors can be advantageous for

minimizing overall side effects in combination therapy. Additionally, non-coding RNAs

(ncRNAs), especially long non-coding RNAs (lncRNAs), have emerged as potential

prognostic biomarkers or potential targets for some cancers (Cao et al., 2023; Gao et al.,

2023; Khanmohammadi & Fallahtafti, 2023; Zhang et al., 2023). Therefore, exploring

potential lncRNAs can contribute to predicting patient risk and identifying novel cancer

targets. In summary, this cumulative dissertation focus on the following questions in

hematological malignancies (leukemia and myeloma) and liver cancer: 1) Exploring

potential non oncology drugs that synergize with epigenetic drugs, minimizing side

effects. 2) Investigating the correlation between the epigenetics and the survival of

cancer patients, particularly focusing on lncRNAs as potential prognostic markers.

In the first publication, our study focuses on exploring the potential of a non oncology

drug in combination with epigenetic drugs in hematologic malignancies (leukemia and

multiple myeloma) and liver cancer. In our investigation, we studied meticrane, a

thiazide diuretic drug commonly used for essential hypertension. Previous studies have

shown improved survival in mesothelioma mice through the combination of meticrane

with CTLA-4 treatment (Lesterhuis et al., 2015), however the anticancer effect of

meticrane remains unclear. Therefore, this study represents the first investigation of

meticrane's anti-cancer abilities in hematologic malignancies and liver cancer cell lines.

Our findings revealed that meticrane exhibited anticancer activity against leukemia and
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liver cancer cells, while showing limited or no effect on myeloma cells. Subsequently, we

examined the combination effect of meticrane with several established epigenetic drugs.

The combination of meticrane with epigenetic inhibitors demonstrated additive or

synergistic effects on leukemia and liver cancer cells, potentially reducing the toxicity

associated with epigenetic drugs for patients. Furthermore, we conducted molecular

docking studies to assess the binding affinity of meticrane with epigenetic targets,

specifically DNMT1 and HDACs. Notably, the results indicated significant binding affinity

scores of meticrane against most HDACs. Overall, our study investigated meticrane, a

clinical non-oncology drug, as a potential candidate for combination therapy with

epigenetic inhibitors. The synergy observed between meticrane and epigenetic inhibitors

may help reduce the side effects associated with epigenetic inhibitor treatment in clinical

settings.

In the second publication, we focused on the role of G protein-coupled receptors

(GPCRs) in the tumorigenesis and development of hepatocellular carcinoma (HCC), a

type of liver cancer (Peng et al., 2018). Additionally, the regulatory gene RGS20 has

been associated with several cancers in previous studies (Huang, He, & Wei, 2018;

Jiang, Shen, Zhang, He, & Wan, 2021; G. Li et al., 2019; Shi, Tong, Han, & Hu, 2022; L.

Yang, Lee, Leung, & Wong, 2016; Zhao et al., 2018). We aimed to evaluate the

prognostic ability of RGS20 in HCC. Our findings revealed that the expression of the

RGS20 gene was significantly upregulated in HCC tissue compared to adjacent tissue.

Moreover, we confirmed its prognostic capability in predicting outcomes for HCC

patients. Additionally, we observed that RGS20 was associated with five long intergenic

non-coding RNAs (lincRNAs): LINC00511, PVT1, MIR4435-2HG, BCYRN1, and

MAPKAPK5-AS1. These lincRNAs have previously been implicated in the proliferation,

survival, and progression of HCC (Ding, Jin, Hao, Kang, & Ma, 2020; Gou, Zhao, &

Wang, 2017; Kong et al., 2019; L. Wang et al., 2021; R. P. Wang, Jiang, Jiang, Wang, &

Chen, 2019). Our results suggest that lincRNAs may contribute to the role of RGS20 in

HCC patients, potentially influencing disease progression and outcomes.

In the third publication, we established a ferroptosis-related signature in multiple

myeloma based on ferroptosis genes, which showed good performance in predicting the

survival of myeloma patients. By investigating the correlation of this signature with long
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non-coding RNAs (lncRNAs), we found a strong association with the oncogenic lncRNA

CRNDE, which has been implicated in many cancers (Ghafouri-Fard, Safarzadeh,

Hussen, Taheri, & Mokhtari, 2023; C. Yang, Jiang, Hu, Li, & Qi, 2023), including multiple

myeloma (David et al., 2021). CRNDE also exhibited potential interactions with a

majority of ferroptosis genes and proteins, suggesting its involvement in the prognostic

signature for myeloma survival. While lncRNAs have been shown to affect prognostic

genes and signatures in cancers, further evaluation of the direct interaction between

lncRNAs and patient survival is warranted. In light of these findings, we proceeded to

investigate the role of lncRNAs in relation to the survival of liver cancer patients.

In the fourth publication, we focused on autophagy and immune-related long non-coding

RNAs (lncRNAs) in liver cancer. Based on these lncRNAs, we constructed a signature

consisting of three specific lncRNAs: MIR210HG, AC099850.3, and CYTOR. This

signature proved to be an independent and robust prognostic factor for clinical

hepatocellular carcinoma (HCC) patients. Interestingly, these three lncRNAs

(MIR210HG, AC099850.3, and CYTOR) within the signature were found to impact the

proliferation and growth of liver cancer (Hu, Yang, Yang, & Sang, 2020; Tian et al., 2021;

Y. Wang et al., 2019; Wu, Wei, Liu, & Zhang, 2021). Overall, our findings demonstrate

the interaction between lncRNAs and the survival of cancer patients, suggesting their

potential as targets for improving outcomes in cancer patients.

4.1 Strengths and limitations

This dissertation has several strengths, as outlined below: 1) The utilization of meticrane,

a thiazide diuretic drug, as a potential anticancer agent is advantageous due to its lower

side effects compared to traditional chemotherapy. When combined with epigenetic

drugs, meticrane demonstrates synergistic anticancer effects, which can contribute to

reducing the side effects and toxicity associated with epigenetic drugs. 2) The strategy

of drug repositioning, or repurposing, is an effective and cost-efficient approach for

developing new anti-tumor drugs. In this study, meticrane, an already available drug

used for treating essential hypertension, is repurposed for potential cancer treatment.

This approach saves time and resources by leveraging existing drug knowledge and

clinical data. 3) By utilizing publicly available RNA sequencing and clinical data, the

dissertation establishes a set of lncRNAs that are related to cancer survival. These
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lncRNAs have the potential to aid in the classification of cancer patients at the time of

diagnosis. Additionally, they provide valuable insights into potential targets for cancer

therapies at the epigenetic level, offering new avenues for treatment development.

Overall, these strengths enhance the dissertation's impact and potential contributions to

the field of cancer research and therapy.

This dissertation also has certain limitations, which are as follows: 1) The observed

anticancer ability of meticrane was achieved at a relatively high concentration. Therefore,

it is recommended to conduct screening with variable concentrations ranging from the

minimum to the maximum effective dose. Additionally, synthesizing next-generation

compounds based on the structure of meticrane that have a stronger tendency to inhibit

the proliferation of cancer cells may partially address this limitation. 2) The anticancer

effect of meticrane was only observed in vitro. To fully evaluate its potential as a cancer

treatment, further studies are needed to assess its efficacy in vivo, using animal models

or clinical trials. 3) Although the relationship between lncRNAs and the survival of cancer

patients was observed, the underlying mechanisms through which these lncRNAs

contribute to cancer development and progression remain unclear. Further research is

necessary to elucidate the specific roles and mechanisms of action of these lncRNAs in

cancer, which will provide valuable insights for future investigations. Acknowledging

these limitations highlights areas for future research and refinement, ensuring the

advancement of knowledge and potential improvements in cancer treatment approaches.

4.2 Implication for Practice and Research

The investigation of drugs with reduced toxicity to normal tissues and their synergistic

effects with epigenetic drugs is crucial, considering the potential side effects associated

with current cancer treatments. Drug repositioning, as an alternative strategy, offers a

cost-effective approach to evaluate the anticancer potential of known drugs used for

other diseases (Turabi et al., 2022). In our study, we demonstrated that meticrane, a

non-oncology drug used for essential hypertension, exhibits anticancer abilities against

cancer cells. Importantly, meticrane has shown a synergistic effect when combined with

epigenetic drugs. This combination therapy has the potential to reduce the required

dosage of epigenetic drugs, thereby limiting side effects for cancer patients. Additionally,

meticrane is readily available on the market, saving time and costs associated with new
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drug development. Furthermore, the advantages of meticrane extend beyond epigenetic

drugs and can benefit other chemotherapies as well. Notably, based on the information

gained from meticrane's anticancer ability and structure, it is possible to design more

effective and sensitive drugs with limited toxicity. This approach holds promise for the

development of novel anticancer treatments. Increasing evidence supports the

significant role of the epigenetics, particularly lncRNAs, in cancer (Gao et al., 2023; Xia

et al., 2023). Several lncRNAs have emerged as potential prognostic markers for cancer

patients (Chen et al., 2023; W. Li, Hong, & Lai, 2023; Lin et al., 2023). Moreover, with

the advancements in RNA-based therapy, FDA and/or EMA-approved RNA-based

therapeutics such as antisense oligonucleotides and small interfering RNAs have paved

the way for lncRNA-based therapeutics, which are gaining attention as alternative

treatment options (Winkle, El-Daly, Fabbri, & Calin, 2021). Therefore, investigating

lncRNAs holds great potential for predicting prognosis and identifying cancer targets for

patients. In this dissertation, we have identified several lncRNAs associated with the

survival of liver cancer or multiple myeloma. As their prognostic capabilities have been

confirmed in these specific cancers, they may serve as predictive factors for classifying

patients into good or poor prognosis categories at the time of diagnosis. Among these

lncRNAs, some have been demonstrated to be involved in cancer proliferation and

growth, while others have not. For the lncRNAs that have been implicated in cancer

proliferation and growth, their effects on tumors may be mediated through specific

tumor-related genes or pathways, thus providing potential therapeutic targets. Further

investigation into the mechanisms of lncRNAs that have not yet been proven to be

associated with cancer proliferation and growth is warranted. Exploring their potential

roles may uncover novel targets for cancer treatment and intervention.

70



4.3 References

Bezu, L., Kepp, O., & Kroemer, G. (2022). Impact of local anesthetics on epigenetics in

cancer. Front Oncol, 12, 849895. doi:10.3389/fonc.2022.849895

Bridgeman, S. C., Ellison, G. C., Melton, P. E., Newsholme, P., & Mamotte, C. D. S.

(2018). Epigenetic effects of metformin: From molecular mechanisms to clinical

implications. Diabetes Obes Metab, 20(7), 1553-1562. doi:10.1111/dom.13262

Cao, J., Liu, L., Xue, L., Luo, Y., Liu, Z., & Guo, J. (2023). Long non-coding RNA

TTTY14 promotes cell proliferation and functions as a prognostic biomarker in

testicular germ cell tumor. Heliyon, 9(5), e16082.

doi:10.1016/j.heliyon.2023.e16082

Chen, L., Zhang, L., He, H., Shao, F., Gao, Y., & He, J. (2023). Systemic Analyses of

Cuproptosis-Related lncRNAs in Pancreatic Adenocarcinoma, with a Focus on

the Molecular Mechanism of LINC00853. Int J Mol Sci, 24(9).

doi:10.3390/ijms24097923

Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., . . . Wei, X. (2019). Targeting

epigenetic regulators for cancer therapy: mechanisms and advances in clinical

trials. Signal Transduct Target Ther, 4, 62. doi:10.1038/s41392-019-0095-0

David, A., Zocchi, S., Talbot, A., Choisy, C., Ohnona, A., Lion, J., . . . Garrick, D. (2021).

The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via

an effect on IL6 signalling. Leukemia, 35(6), 1710-1721. doi:10.1038/s41375-020-

01034-y

Ding, S., Jin, Y., Hao, Q., Kang, Y., & Ma, R. (2020). LncRNA BCYRN1/miR-490-

3p/POU3F2, served as a ceRNA network, is connected with worse survival rate of

hepatocellular carcinoma patients and promotes tumor cell growth and metastasis.

Cancer Cell Int, 20, 6. doi:10.1186/s12935-019-1081-x

Eckschlager, T., Plch, J., Stiborova, M., & Hrabeta, J. (2017). Histone Deacetylase

Inhibitors as Anticancer Drugs. Int J Mol Sci, 18(7). doi:10.3390/ijms18071414

Gao, N., Jiang, G., Gao, Z., Cui, M., Li, J., Liu, H., & Fan, T. (2023). Long non-coding

RNA LINC00707, a prognostic marker, regulates cell proliferation, apoptosis, and

71



EMT in esophageal squamous cell carcinoma. Am J Transl Res, 15(4), 2426-

2442.

Ghafouri-Fard, S., Safarzadeh, A., Hussen, B. M., Taheri, M., & Mokhtari, M. (2023).

Contribution of CRNDE lncRNA in the development of cancer and the underlying

mechanisms. Pathol Res Pract, 244, 154387. doi:10.1016/j.prp.2023.154387

Gou, X., Zhao, X., & Wang, Z. (2017). Long noncoding RNA PVT1 promotes

hepatocellular carcinoma progression through regulating miR-214. Cancer

Biomark, 20(4), 511-519. doi:10.3233/CBM-170331

Hu, B., Yang, X. B., Yang, X., & Sang, X. T. (2020). LncRNA CYTOR affects the

proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells by

regulating the miR-125b-5p/KIAA1522 axis. Aging (Albany NY), 13(2), 2626-2639.

doi:10.18632/aging.202306

Huang, G., He, X., & Wei, X. L. (2018). lncRNA NEAT1 promotes cell proliferation and

invasion by regulating miR‑ 365/RGS20 in oral squamous cell carcinoma. Oncol

Rep, 39(4), 1948-1956. doi:10.3892/or.2018.6283

Jiang, L., Shen, J., Zhang, N., He, Y., & Wan, Z. (2021). Association of RGS20

expression with the progression and prognosis of renal cell carcinoma. Oncol Lett,

22(3), 643. doi:10.3892/ol.2021.12904

Khanmohammadi, S., & Fallahtafti, P. (2023). Long non-coding RNA as a novel

biomarker and therapeutic target in aggressive B-cell non-Hodgkin lymphoma: A

systematic review. J Cell Mol Med. doi:10.1111/jcmm.17795

Kong, Q., Liang, C., Jin, Y., Pan, Y., Tong, D., Kong, Q., & Zhou, J. (2019). The lncRNA

MIR4435-2HG is upregulated in hepatocellular carcinoma and promotes cancer

cell proliferation by upregulating miRNA-487a. Cell Mol Biol Lett, 24, 26.

doi:10.1186/s11658-019-0148-y

Lesterhuis, W. J., Rinaldi, C., Jones, A., Rozali, E. N., Dick, I. M., Khong, A., . . . Lake, R.

A. (2015). Network analysis of immunotherapy-induced regressing tumours

identifies novel synergistic drug combinations. Sci Rep, 5, 12298.

doi:10.1038/srep12298

72



Li, G., Wang, M., Ren, L., Li, H., Liu, Q., Ouyang, Y., . . . Li, F. (2019). Regulator of G

protein signaling 20 promotes proliferation and migration in bladder cancer via

NF-kappaB signaling. Biomed Pharmacother, 117, 109112.

doi:10.1016/j.biopha.2019.109112

Li, W., Hong, G., & Lai, X. (2023). INKA2-AS1 Is a Potential Promising Prognostic-

Related Biomarker and Correlated with Immune Infiltrates in Hepatocellular

Carcinoma. Mediators Inflamm, 2023, 7057236. doi:10.1155/2023/7057236

Li, Y., & Seto, E. (2016). HDACs and HDAC Inhibitors in Cancer Development and

Therapy. Cold Spring Harb Perspect Med, 6(10).

doi:10.1101/cshperspect.a026831

Lim, B., Yoo, D., Chun, Y., Go, A., Cho, K. J., Choi, D., . . . Choi, G. (2022). The

preclinical efficacy of the novel hypomethylating agent NTX-301 as a

monotherapy and in combination with venetoclax in acute myeloid leukemia.

Blood Cancer J, 12(4), 57. doi:10.1038/s41408-022-00664-y

Lin, K., Zhou, Y., Lin, Y., Feng, Y., Chen, Y., & Cai, L. (2023). Senescence-Related

lncRNA Signature Predicts Prognosis, Response to Immunotherapy and

Chemotherapy in Skin Cutaneous Melanoma. Biomolecules, 13(4).

doi:10.3390/biom13040661

Lu, Y., Chan, Y. T., Tan, H. Y., Li, S., Wang, N., & Feng, Y. (2020). Epigenetic regulation

in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer,

19(1), 79. doi:10.1186/s12943-020-01197-3

Peng, W. T., Sun, W. Y., Li, X. R., Sun, J. C., Du, J. J., & Wei, W. (2018). Emerging

Roles of G Protein-Coupled Receptors in Hepatocellular Carcinoma. Int J Mol Sci,

19(5). doi:10.3390/ijms19051366

Shi, D., Tong, S., Han, H., & Hu, X. (2022). RGS20 Promotes Tumor Progression

through Modulating PI3K/AKT Signaling Activation in Penile Cancer. J Oncol,

2022, 1293622. doi:10.1155/2022/1293622

Tian, Q., Yan, X., Yang, L., Liu, Z., Yuan, Z., & Zhang, Y. (2021). lncRNA CYTOR

promotes cell proliferation and tumor growth via miR-125b/SEMA4C axis in

hepatocellular carcinoma. Oncol Lett, 22(5), 796. doi:10.3892/ol.2021.13057

73



Turabi, K. S., Deshmukh, A., Paul, S., Swami, D., Siddiqui, S., Kumar, U., . . . Aich, J.

(2022). Drug repurposing-an emerging strategy in cancer therapeutics. Naunyn

Schmiedebergs Arch Pharmacol, 395(10), 1139-1158. doi:10.1007/s00210-022-

02263-x

Wang, L., Sun, L., Liu, R., Mo, H., Niu, Y., Chen, T., . . . Liu, Q. (2021). Long non-coding

RNA MAPKAPK5-AS1/PLAGL2/HIF-1alpha signaling loop promotes

hepatocellular carcinoma progression. J Exp Clin Cancer Res, 40(1), 72.

doi:10.1186/s13046-021-01868-z

Wang, R. P., Jiang, J., Jiang, T., Wang, Y., & Chen, L. X. (2019). Increased long

noncoding RNA LINC00511 is correlated with poor prognosis and contributes to

cell proliferation and metastasis by modulating miR-424 in hepatocellular

carcinoma. Eur Rev Med Pharmacol Sci, 23(8), 3291-3301.

doi:10.26355/eurrev_201904_17691

Wang, Y., Li, W., Chen, X., Li, Y., Wen, P., & Xu, F. (2019). MIR210HG predicts poor

prognosis and functions as an oncogenic lncRNA in hepatocellular carcinoma.

Biomed Pharmacother, 111, 1297-1301. doi:10.1016/j.biopha.2018.12.134

Winkle, M., El-Daly, S. M., Fabbri, M., & Calin, G. A. (2021). Noncoding RNA

therapeutics - challenges and potential solutions. Nat Rev Drug Discov, 20(8),

629-651. doi:10.1038/s41573-021-00219-z

Wong, K. K. (2021). DNMT1: A key drug target in triple-negative breast cancer. Semin

Cancer Biol, 72, 198-213. doi:10.1016/j.semcancer.2020.05.010

Wu, F., Wei, H., Liu, G., & Zhang, Y. (2021). Bioinformatics Profiling of Five Immune-

Related lncRNAs for a Prognostic Model of Hepatocellular Carcinoma. Front

Oncol, 11, 667904. doi:10.3389/fonc.2021.667904

Xia, A., Yue, Q., Zhu, M., Xu, J., Liu, S., Wu, Y., . . . Sun, B. (2023). The cancer-testis

lncRNA LINC01977 promotes HCC progression by interacting with RBM39 to

prevent Notch2 ubiquitination. Cell Death Discov, 9(1), 169. doi:10.1038/s41420-

023-01459-1

74



Yang, C., Jiang, Y., Hu, F., Li, Q., & Qi, B. (2023). Implications of CRNDE in prognosis,

tumor immunity, and therapeutic sensitivity in low grade glioma patients. Cancer

Cell Int, 23(1), 93. doi:10.1186/s12935-023-02930-w

Yang, L., Lee, M. M., Leung, M. M., & Wong, Y. H. (2016). Regulator of G protein

signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion.

Cell Signal, 28(11), 1663-1672. doi:10.1016/j.cellsig.2016.07.017

Zhang, Y., Wang, Y., He, X., Yao, R., Fan, L., Zhao, L., . . . Pang, Z. (2023). Genome

instability-related LINC02577, LINC01133 and AC107464.2 are lncRNA

prognostic markers correlated with immune microenvironment in pancreatic

adenocarcinoma. BMC Cancer, 23(1), 430. doi:10.1186/s12885-023-10831-4

Zhao, J., Cheng, W., He, X., Liu, Y., Li, J., Sun, J., . . . Gao, Y. (2018). Construction of a

specific SVM classifier and identification of molecular markers for lung

adenocarcinoma based on lncRNA-miRNA-mRNA network. Onco Targets Ther,

11, 3129-3140. doi:10.2147/OTT.S151121

75



5. Acknowledgements
I am deeply grateful to all the individuals who have supported me throughout my study

period. I would like to express my sincere appreciation to Prof. Ingo Schmidt-Wolf for

giving me the opportunity to pursue my studies and for his kindness and extensive

knowledge that have greatly contributed to my personal and academic growth. I am also

thankful to Prof. Hans Weiher for his valuable contributions and insightful discussions

during our lab meetings. My gratitude extends to my other dissertation committee

members (Prof. Dirk Skowasch and Prof. Matthias Schmid ) for their valuable input and

guidance during the yearly evaluations of my thesis work. I am grateful for the invaluable

assistance of Amit Sharma and the support of Tanja Schuster. I am also thankful for the

unwavering support from Prof. Ulrich Jaehde and Dagmar Bolz, whose guidance and

encouragement have been instrumental in my academic pursuits. I would like to express

my appreciation to my lab colleagues, whose fruitful discussions and camaraderie have

made my time in the lab enjoyable. Special thanks go to my family, especially my

partner, for their unwavering support throughout my studies in Germany, as their

encouragement has been crucial in my academic journey. Lastly, I am grateful to

platforms such as YouTube, TikTok, and Kuaishou, which have provided me with

entertainment and inspiring music during my study breaks.

76


	Doctoral thesis
	to obtain a doctorate (MD/PhD)
	from the Faculty of Medicine
	of the University of Bonn
	Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells
	Introduction
	Materials and methods
	Generation of PBMCs and CIKs
	Cell culture, meticrane compound and epigenetic inhibitors
	Cell viability assay and cells number counting assay
	Cell proliferation and apoptosis assays
	Cytotoxicity assay of CIK cells
	RNA isolation and whole transcriptome analysis
	Identification of the potential targets of meticrane
	Molecular docking and molecular dynamics (MD) simulation
	Statistical analysis

	Results
	Meticrane-induced alteration in the cell viability and proliferation is independent from the apoptosis signaling pathway
	Meticrane showed additive/synergistic effect with epigenetic inhibitors
	Meticrane showed no compatibility with cytokine-induced killer cells
	Meticrane exerts no effect on cancer-associated signaling pathways in cancer cells
	Meticrane induced differentially expressed genes showed association with survival-related genes in cancer
	Molecular docking and molecular dynamics (MD) simulation analysis confirmed the binding affinity of meticrane with known oncological targets

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Introduction 
	Materials and Methods 
	Gene Expression Data and Clinical Data 
	Gene Set Enrichment Analysis 
	Prediction of RGS20 Interaction with lincRNAs 
	Statistical Analysis 

	Results 
	RGS20 Gene Expression, Clinical Features Relevant and Survive Probability in HCC 
	RGS20 Survive Probability Spectrum in 28 Cancers 
	Identification of Independent Factors and GSEA Enrichment Results 
	Prediction of RGS20 Interaction with lincRNAs 

	Discussion 
	Conclusions 
	References
	Systematic discrimination of the repetitive genome in proximity of ferroptosis genes and a novel prognostic signature correlating with the oncogenic lncRNA CRNDE in multiple myeloma
	Highlights
	Introduction
	Materials and methods
	Ferroptosis-related genes and repetitive genome analysis
	Gene expression data and construction/validation of a prognostic signature
	Gene set enrichment analysis and immune infiltration status estimation
	Expression profile of ferroptosis-related signatures in pan-cancer
	Prediction of ferroptosis and lncRNA interactions
	Statistical analysis

	Results
	Repetitive genome predominantly distributed in the proximity of ferroptosis genes
	Ferroptosis-related gene signature predicts the survival in multiple myeloma
	Prognostic performance and clinical application of ferroptosis-related gene signature
	Gene enrichment and immunofiltration analysis confirmed the relevance of the signature in high-risk MM patients
	Oncogenic lncRNA CRNDE and signature genes display strong correlation

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Introduction 
	Materials and Methods 
	Gene Expression Data and Clinicopathological Characteristics 
	Development of the Prognostic Immuno-Autophagy-Related lncRNAs Signature 
	Prognostic Ability of Immuno-Autophagy-Related lncRNAs Signature 
	Correlation between Immune Cells and Signature 
	GO and KEGG Analysis 
	Statistical Analysis 

	Results 
	Correlating Autophagy-Related Genes and Immune-Related Genes with lncRNAs 
	A Signature Involving 3 Immuno-Autophagy-Related lncRNAs with Prognostic Potential 
	Validating the Prognostic Potential of Immuno-Autophagy-Related lncRNA Signature in Low- and High-Risk HCC Groups 
	Association of Immuno-Autophagy-Related lncRNA Signature with Clinical Characteristics 
	Association of Infiltrating Immune Cells and Obtained Signature 
	GO and KEGG Pathway Enrichment Analysis of the Obtained Signature 

	Discussion 
	Conclusions 
	References
	【书签】新建书签

