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Abstract 
Chlorophyll fluorescence is the absorbed photosynthetically active radiation 

(PAR) re-emitted as a faint red glow when the photosynthetic apparatus is not able 
to run photochemistry. This relation that Chlorophyll fluorescence has with 
photosynthesis makes it an indicator of plant physiological status. After half a 
century research the emission of solar-induced Chlorophyll fluorescence (SIF) from 
the canopy can be measured from ground up to satellite scales. Though the first 
models of ground sensors were created since the 90’s, operational platforms for 
the remote sensing of SIF were only possible in the last decade. The increasing 
accessibility of SIF information has aroused the interest of ecology, forestry and 
agriculture scientists to use it as a reference of plants functioning response to 
varying environmental factors. Such a challenge demands integrated knowledge 
from diverse disciplines like biology, plant physiology, agronomy, geography and 
data analytics and specific sub-disciplines depending on the spatiotemporal scale 
of the plant process being studied. The knowledge network on each specific area 
and scale is woven by the interconnection of every single study published on the 
matter. In this regard, the present thesis aims to contribute with new knowledge 
about the use of SIF data on ground, aerial and satellite scales where a study 
addressing the spatial relation of airborne-SIF with the plant available water in the 
root zone (PAW) is considered as the main contribution of this doctoral work. 

Further, applications of Chlorophyll fluorescence data for field phenotyping 
were addressed in a ground-level study, where lower photosynthetic efficiency at 
noon was found in bean genotypes cultivated in a free-air CO2 enriched (FACE) 
experiment. In the same study, a significant relation between SIF and the 
Chlorophyll fluorescence measured from active sensors is reported. Moreover, the 
potential use of unmanned aerial vehicles (UAVs) for the retrieval of SIF was 
discussed in a ‘state-of-the-arte’ article. Despite its great potential, the UAV-based 
SIF retrieval is challenged mainly by the complex characterization of the sensor 
pose and therefore its projected footprint on the ground. A higher progress on the 
retrieval of SIF has been achieved through airborne-based methods; e.g., with the 
recent development of the high-Performance airborne Imaging spectrometer 
(HyPlant), as well as with the improvement of the spectral fitting method (SFM) to 
retrieve SIF from hyperspectral information. With these novel advances it is 
possible to monitor SIF in high spatial resolution, enabling e.g. a deeper analysis of 
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the water stress impact on the crop physiology at large scale. In this regard, the 
spatial relation between airborne-SIF and PAW was observed to be significant in 
non-irrigated sugar beet fields, whilst it was not detected in cases where there was 
enough natural or artificial water supply. In winter wheat, a stronger response of 
SIF to a low PAW zone was observed when compared with temperature- and 
reflectance-based information. Besides, in order to provide initial understandings 
about how the relation of SIF with the soil moisture may behave at satellite level, a 
SIF-soil moisture comparison was done in the context of the gross primary 
productivity (GPP). It was found that the positive SIF-GPP relation was decoupled 
in the lower soil moisture areas during a heat wave at European scale. Additionally, 
a new potential direction for SIF downscaling approaches (based on fractal theory) 
is introduced. 

The contributions of this doctoral work serve to advance our knowledge 
concerning the use of SIF data for vegetation functioning assessment at multiple 
scales. This becomes possible when the studies herewith presented are analyzed 
as a complement with related investigations published nearly in the same time 
window. Details about the context and methodologies of each study published 
within the frame of this thesis will be presented in the following pages. 

Kurzfassung 
Die Chlorophyllfluoreszenz ist die absorbierte photosynthetisch aktive 

Strahlung (PAR), die als schwaches rotes Leuchten zurückgegeben wird, wenn der 
photosynthetische Apparat keine Photochemie betreiben kann. Diese Beziehung 
zwischen der Chlorophyllfluoreszenz und der Photosynthese macht sie zu einem 
Indikator für den physiologischen Zustand der Pflanze. Nach einem halben 
Jahrhundert Forschung kann die Emission der solarinduzierten 
Chlorophyllfluoreszenz (SIF) aus dem Kronendach vom Boden aus bis hin zu 
Satelliten gemessen werden. Die zunehmende Zugänglichkeit von SIF-
Informationen hat das Interesse von Ökologie-, Forst- und Agrarwissenschaftlern 
geweckt, sie als Referenz für die Reaktion von Pflanzen auf unterschiedliche 
Umweltfaktoren zu nutzen. Eine solche Herausforderung erfordert integriertes 
Wissen aus verschiedenen Disziplinen wie Biologie, Pflanzenphysiologie, 
Agronomie, Geografie und Datenanalyse sowie aus spezifischen Teildisziplinen, je 
nach dem räumlichen und zeitlichen Umfang des untersuchten Pflanzenprozesses. 
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Die Verknüpfung jeder einzelnen veröffentliche Studie zu diesem Thema, egal auf 
welchen spezifischen Bereich und Maßstab angewandt, führt zu einem ständig sich 
erweiterndem Wissensnetzwerk. Hierbei wobei eine Studie, die sich mit der 
räumlichen Beziehung zwischen luftgestützter SIF und dem pflanzenverfügbaren 
Wasser in der Wurzelzone (PAW) befasst, als Hauptbeitrag dieser Doktorarbeit 
angesehen wird. 

Darüber hinaus wurden Anwendungen von Chlorophyll-Fluoreszenzdaten für 
die Phänotypisierung im Feld untersucht. Dabei wurde bei Bohnengenotypen, die 
in einem Experiment mit CO2-Anreicherung unter Freiluftbedingungen (FACE) 
angebaut wurden, eine geringere photosynthetische Effizienz zur Mittagszeit 
festgestellt. In derselbigen Studie wurde ein signifikanter Zusammenhang zwischen 
der SIF und der von aktiven Sensoren gemessenen Chlorophyllfluoreszenz 
festgestellt. Darüber hinaus wurde der potenzielle Einsatz unbemannter 
Luftfahrzeuge (UAVs) für die Erfassung von SIF in einem "State-of-the-Art"-Artikel 
diskutiert. Trotz des großen Potenzials birgt die UAV-basierte SIF-Ermittlung vor 
allem durch die komplexe Charakterisierung der Sensorposition und des damit 
verbundenen projizierten Fußabdrucks auf dem Boden Herausforderungen. Ein 
größerer Fortschritt bei der Ermittlung von SIF wurde durch flugzeuggestützte 
Methoden erzielt, z. B. durch die jüngste Entwicklung des luftgestützten 
Hochleistungs-Bildspektrometers (HyPlant) sowie durch die Verbesserung der 
spektralen Anpassungsmethode (SFM) zur Messung von Hyperspektraldaten. Mit 
diesen neuen Methoden ist es möglich, SIF in hoher räumlicher Auflösung zu 
erfassen, was z.B. eine vertiefte Analyse der Auswirkungen von Wasserstress auf 
die Physiologie der Pflanzen auf regionaler Ebene ermöglicht. In diesem 
Zusammenhang wurde ein signifikanter räumlicher Zusammenhang zwischen 
luftgestützter SIF und PAW auf nicht bewässerten Zuckerrübenfeldern beobachtet, 
während dies in Fällen mit ausreichender natürlicher oder künstlicher 
Wasserversorgung nicht beobachtet wurde. Bei Winterweizen wurde im Vergleich 
zu temperatur- und reflexionsbasierten Informationen eine stärkere Reaktion der 
SIF auf eine niedrige PAW-Zone beobachtet. Um erste Erkenntnisse darüber zu 
gewinnen, wie sich die Beziehung zwischen SIF und Bodenfeuchte auf 
Satellitenebene verhalten könnte, wurde außerdem ein Vergleich zwischen SIF und 
Bodenfeuchte im Zusammenhang mit der Bruttoprimärproduktivität (GPP) 
durchgeführt. Dabei wurde festgestellt, dass die positive Beziehung zwischen SIF 
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und GPP in den Gebieten mit niedrigerer Bodenfeuchte während einer Hitzewelle 
auf europäischer Ebene entkoppelt wurde. Zusätzlich, eine neue potenzielle 
Richtung für SIF-Downscaling-Ansätze (Basierend auf der Fraktaltheorie) wird 
eingeführt. 

Die Beiträge dieser Doktorarbeit dienen dazu, unser Wissen über die 
Verwendung von SIF-Daten für die Bewertung der Vegetationsfunktion auf 
verschiedenen Ebenen zu erweitern. Dies wird möglich, wenn die hier vorgestellten 
Studien als Ergänzung zu verwandten Untersuchungen analysiert werden, die fast 
im gleichen Zeitfenster veröffentlicht wurden. Details über den Kontext und die 
Methodik der einzelnen Studien, die im Rahmen dieser Arbeit veröffentlicht 
wurden, werden auf den folgenden Seiten vorgestellt. 
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Table of abbreviations 
Abbreviation Meaning 

a[CO2] Ambient concentration of CO2 
B-H Before heat wave peak 
CFIS Chlorophyll fluorescence imaging spectrometer 

[CO2] Concentration of carbon dioxide  
CSIRO Commonwealth Scientific and Industrial Research 
DEM Digital elevation models 
D-H During heat wave peak 

e[CO2] Elevated concentration of CO2 
ET Evapotranspiration 

ETH Eidgenössische Technische Hochschule Zürich 
ETR Electron transport rate 

EUMETSAT European organization for the exploitation of meteorological satellites 
EVI Enhanced vegetation index 

FACE Free-air concentration [CO2] enrichment  
FAO Food and Agricultural Organization of the United Nations 
FLD Fraunhofer line depth 
FLEX Fluorescence explorer 
Flox Fluorescence box  
Fm’ Maximum fluorescence yield in light 

Fm° Maximum fluorescence yield in dark adapted leaf 

Fq’/Fm’ Yield of photosystem II (from LIFT) 

Fr1/Fv Reoxidation efficiency of Quinone A 

Ft Fluorescence yield in light 
GOME-2 Global ozone monitoring experiment 2 
GOSAT Greenhouse gases observing satellite 

GPP Gross primary productivity  
HyPlant High-performance airborne imaging spectrometer 

IBG-2 Institute of bio-geosciences 2 
IBIS High performance imaging spectrometer within the HyPlant  

JAXA Japan aerospace exploration agency 
LIDAR Laser imaging detection and ranging 
LIFT Light-induced fluorescence transient  
LST Land surface temperature 
LUE Light use efficiency  

MERIS Medium resolution imaging spectrometer 
MTCI MERIS terrestrial chlorophyll index 
NDVI Normalized difference vegetation index 
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NIR Near-infrared radiation 
NIRv Near infrared reflectance of vegetation  
nm Nanometer 

NPQ Non-photochemical quenching 
OCO-2 Orbiting carbon observatory 2 
OECD Organization for economic co-operation and development 

O2 Oxygen 
PAM Pulse amplitude modulation 
PAR Photosynthetic active radiation 
PAW Plant available water in the root zone 

PL Power law 
PQ Photochemical quenching 
PRI Photochemical reflectance index 

PS I & II Photosystem I & II 
QA Quinone A 

RTM Radiative transfer model 
R&D Research and development 
RE Red edge 

RGB Red-green-blue 
SFM  Spectral fitting method  
SIF Solar-induced chlorophyll fluorescence  

SIFFar-red Solar-induced chlorophyll fluorescence emitted in the far red spectrum 

SIFred Solar-induced chlorophyll fluorescence emitted in the red spectrum 

SIFTOT Total Solar-induced chlorophyll fluorescence 
SNR Signal to noise ratio 
SSD Sensor surface distance 

TROPOMI Tropospheric monitoring instrument 
UAV Unmanned aerial vehicle 

VI Vegetation index 
VIS Red, green and blue 

WDRVI Wide dynamic range vegetation index 
Y_II Photosynthetic efficiency of photosystem II 
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1 General Introduction 
World’s agriculture production has to increase ~50% by 2050 in order to 

meet the food demand of a population estimated to rise up to 10 billion, according 
to the Food and Agricultural Organization of the United Nations (FAO, 2018). 
Solving such a challenge merely through the increase of agriculture areas is 
unrealistic, since according to the World Resources Institute (WRI, 2018) it would 
require a cropland expansion by an area nearly twice the size of India. To meet the 
alarmingly increasing demand for food in the next decades, other practices like 
reducing food waste (Stangherlin and Barcellos, 2018), better distributing aliments 
across society (Akkerman et al., 2010), but first of all, improving agricultural 
production must be employed. For the latest, the use of remote sensing tools plays 
a key role do to its capability for monitoring vegetation health over large areas in 
short periods of time (Kogan, 2019). In that sense, the remote sensing of solar-
induced chlorophyll fluorescence (SIF; Meroni et al., 2009; Mohammed et al., 2019) 
has gained great interest in the last years, since SIF is more closely related to plant 
physiological processes (Porcar-Castell et al., 2021) than reflectance- or thermal-
based information (Damm et al., 2018). 

Within that context, the global goal of this thesis was to provide new knowledge 
on the response of plants to varying environmental conditions, by analyzing the 
dynamics of SIF information from ground to aerial scales. That goal is addressed 
through ten scientific publications (two articles, one book chapter, one peer-
reviewed conference paper, and six conference posters) in which SIF data is used 
to understand the vegetation response to different environments, specifically to an 
elevated [CO2] (as studied in a ground-level study, and briefly mentioned in an 
aerial-scale review paper) and varying levels of soil water content (as investigated 
on airborne- and satellite-scale studies). One additional study on the downscaling 
(increase of spatial resolution) of SIF data is provided, in which the main goal is to 
propose a potential new research line that could be consider in future SIF-
downscaling approaches. It is worth mentioning that the studies conducted within 
the frame of this thesis were possible thanks to the cooperation of researchers 
from at least eight different disciplines (agronomy, biology, mathematics, soil 
science, plant physiology, geography, informatics and meteorology). 
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In the following pages the basics of remote sensing of vegetation (subsection 
1.1) and SIF (subsection 1.2) are first introduced, since they are the pillars that all 
publications have in common. In subsections 1.3 to 1.6 the general background 
(state-of-the-art, research gap and objectives) of each topic developed at specific 
SIF assessment scales (ground, aerial and satellite) is presented. In subsection 1.7 
the general background of the SIF scaling issue is provided, with focus on SIF 
downscaling (understood as the increase of spatial resolution). A synthesis and 
conclusions chapter is presented in section 2, where the knowledge gain with this 
thesis contributions is placed within the SIF research and development (R&D) 
general context. In section 4 the first author (full text studies and poster abstracts) 
and co-authored (only listed) publications are presented. Additional first author 
and coauthored publications not strictly related to this thesis, as well as some 
additional activities done while completing this doctoral work are listed in sections 
5 and 6. 

To avoid confusion by numerous section subdivisions, keywords inside the 
main text are highlighted with an underline and larger font size. Highlighted 
keywords guide the line of argumentation of each corresponding subsection. 
Additional clarifications on the text and the works published within the frame of 
this thesis are presented in footnotes. 

 

 

1.1 Remote sensing of vegetation 
Decades of remote sensing research have resulted in the development of the 

wide variety of platforms and sensors that are currently available. The platforms 
can be classified according to their distance from the surface, also known as sensor 
surface distance (SSD), in: ground (centimeters-m’s SSD), aerial (UAV at ~< 100 m 
SSD), airborne (~< 3 km SSD) and satellite (> 1x103 kilometers SSD; Fig. 1a) scale. 
The spatial resolution of the information provided at each level decreases from 
millimeters on the ground scale, to (generally) > 10 m on the satellite level. At each 
scale sensors are able to detect different object sizes, processes and types of 
vegetation information (Gamon et al., 2019). 
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Remote sensors can be classified in passive and active devices, being 
passive when the measured energy is naturally reflected or emitted by an object, 
and active when an artificial source of energy is used (Khorram et al., 2012). Passive 
sensors are generally attached to aerial and satellite platforms, whereas active 
devices are generally used for ground applications. An exception to it are the radar 
and laser imaging detection and ranging (LIDAR) sensors, which are feasibly 
adapted to aerial and satellite platforms. The most used remote sensing 
approaches for functional vegetation functioning assessments are based on the 
reflectance properties of plants (Thenkabail et al., 2011). The typical spectral 
signature of vegetation is presented and compared to one of a bare soil surface in 
Fig. 1b.  

Numerous broad band multispectral remote sensing sensors were 
developed to capture information in the so called visible (VIS), as well as red edge 
(RE) and near infrared (NIR) regions of the electromagnetic spectrum (Deng et al., 
2018). This type of sensors are characterized by providing information in a limited 
amount of separated wavelengths or bands. Visible light is associated to changes 
in pigments concentration, whilst NIR reflectance shows alterations of structural 
properties of leaves. Moreover, vital green canopies stronger reflect NIR radiation 
at the mesophyll cell walls, while pigments, such as chlorophyll, absorb more red 
and blue radiation. 
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Figure 1: Sensor surface distance (SSD) and the spatial resolution of information provided by 
ground-, unmanned aerial vehicle (UAV)-, airborne- and satellite-platforms (a); and the typical 
spectral signature of green vegetation compared with the one of soil (b). 

 

The translation of raw remote sensing data into quantitative information of 
plant traits relies in a wide variety of data processing techniques, ranging from 
statistical approaches to mathematical modeling and artificial intelligence routines 
(Verrelst et al., 2015). The most established parametric technique is the use of 
vegetation indices (VIs), which are the combination of two or more spectral 
bands into a specific mathematical expression, aiming for quantification of specific 
vegetation properties. A review of more than 115 VIs can be found in Xue and Su 
(2017). Table 1 shows the equations of the VIs used in the articles included within 
the present thesis. 
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Table 1:  Equations of vegetation indices (VIs) used in the papers included within the present 
thesis. R<--> represents the reflectance at the specific wavelengths, and α is a weighing coefficient 
ranging from 0.1 to 0.2 (more detailed information can be found in Quiros-Vargas et al., AGU-
2020). *Wavelengths on the formulas represent those used in the studies related to this thesis, 
they may differ from the specific wavelengths used in the original publications. 1 

 

 

Reflectance-based methods succeeded in solving several issues in remote 
sensing of vegetation, especially those associated to existing above ground 
biomass-related parameters. Biomass and crop yield estimations, as well as plant 
counting algorithms were the basis for the development of commercially available 
automated tools with practical applications for farmers. Estimations of harvest loss 
for insurance purposes (Kenduiywo et al., 2021), the automatic detection of plants 
for tree inventory (White et al., 2016), crop row detection for auto steering 
guidance systems (Inforow, 2022), and biomass and yield (Quiros-Vargas et al., 
2019) estimations are just a few of several practical applications that can be 
mentioned. Nevertheless, the low spectral resolution (20 nm band width) makes 
                                                           
1 The references of conference posters associated to this thesis will be cited with the abbreviation of the conference 
before the year. This was done with two intentions: (i) to differentiate the posters from the main studies, and (ii) to 
ease the distinction between conference references, since most of them were presented in 2022. 
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such devices unable to track smooth changes in plant reflectance. A variety of 
imaging and non-imaging (point) spectrometers (instruments to separate and 
measure spectral features) were developed to tackle that limitation by providing 
higher spectral resolution (5 nm band width) over a continuous spectrum, opening 
what is known as hyperspectral remote sensing. The sensitivity given by such 
an amount of information makes it possible to detect smooth changes of early 
physiological processes activated in plants in response to biotic or abiotic stressors.   

Besides VIs more advanced (non-parametric) methods have been widely 
explored for the calculation of vegetation products. For instance, machine learning 
processing chains imitate the way that humans analyze patterns and extract 
information of a specific problem. Some of the most common machine learning 
methods are based on the implementation of artificial neural network-, random 
forest-, decision tree- and nearest neighbor-based algorithms (Maxwell et al., 
2017). Applied to remote sensing imagery, these techniques are used to calibrate 
algorithms to automatically solve simple (e.g., color-based image classification) as 
well as complex issues requiring structural learning methods (e.g., image 
classification with complex object geometries; Camps-Valls 2009). Nevertheless, 
the application of parametric (VIs) and non-parametric (machine learning) methods 
is often limited, as they work only under the specific conditions in which they were 
developed. 

Alternatively, radiative transfer models (RTMs) can be employed to compute 
advanced vegetation products regardless of spatiotemporal characteristics of data 
acquisition and sensor characteristics (Chakhvashvili et al., 2022). With RTMs more 
realistic simulations of vegetation processes can be created by understanding the 
interaction between the radiation and a vegetation surface (Verrelst et al., 2015) 
from wide spectrum regions  
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1.2 Solar-induced chlorophyll fluorescence (SIF) 
The solar light that reaches vegetation can be reflected, transmitted or 

absorbed (Fig. 2a). The absorbed solar light is captured by the pigments molecules 
located in the thylakoid membrane of chloroplasts (cellular organelles also 
composed by outer and inner membranes, stroma, granum, thylakoids and 
lamellae; Fig. 2b). The photons absorbed by chlorophyll molecules are transported 
to the reaction centers of photosystems II (PSII; Fig. 2c) producing what is known 
as photochemical quenching (PQ). After reaching the reaction center chlorophyll 
the electron passes to a series of protein complexes called the ‘electron transport 
chain’, which triggers several reactions leading (after several furthers steps) to the 
production of sugars. However, this ideal condition might not always occur, and 
depending on environmental conditions (e.g., light intensity or plant stress) the 
absorbed light can be dissipated as heat before reaching the reaction center (non-
photochemical quenching -NPQ-), or re-emitted as chlorophyll fluorescence in 
the electron transport chain. Thus, the magnitude on which a plant emits more, or 
less, chlorophyll fluorescence compared with the heat dissipation and 
photochemistry depends on numerous factors, e.g.: the species, phenology, time 
point within the day (Siegmann et al., 2021) and the season (Mengistu et al., 2021), 
and the stress/health status as well (Zeng et al., 2022). 

 

 
Figure 2: Interaction of light with vegetation at leaf (a), chloroplast (b; based on Biswal and 
Pandey, 2016) and reaction center (c) levels. The three paths that the energy can follow after 
being absorbed are represented in (c). 
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SIF is a low intensity signal (1-5 % of the reflected radiance; Meroni et al., 
2009) emitted from the core of the photosynthetic apparatus under 400-700 nm 
(Photosynthetic Active Radiation, PAR) radiations, with a spectrum characterized 
by two crests at 690 nm (FRed) and 740 nm (FFar-red; Mohammed et al., 2019) 2. Based 
on its connection to the functional status of photosynthesis, SIF has been used as 
an indicator of physiological changes caused by biotic (Zarco-Tejada et al., 2018) or 
abiotic (Panigada et al., 2014) stressors, as well as a GPP tracker (Martini et al., 
2021). However, it is difficult to disentangle SIF from the reflected radiance, since 
it is attenuated by the reflected light. Moreover, the SIF signal intensity is distinctly 
decreasing with increasing distance from the molecular (PS) level due to scattering 
and re-absorption processes (Fig. 3a). At canopy level it can be reabsorbed by other 
canopy constituents (Porcar-Castell et al., 2014), and additionally the SIF signal 
leaving the canopy is weakened by the scattering caused by atmosphere molecules 
(Fig. 3b; Porcar-Castell et al., 2021). 

The retrieval of SIF is complicated due to the combination of two factors: 
the by-nature low intensity of the signal and the strong background light that 
hinders the detection of such a faint glow. To overcome the second factor, SIF 
retrieval methods approach the attenuation of the background light through the 
use of solar or atmospheric absorption bands. Solar absorption bands are also 
called Fraunhofer lines (FLs), which are dark lines in the spectrum caused by the 
absorption of specific wavelengths by chemical elements in the sun. Assuming 
constancy in the reflectance and fluorescence signals, Fraunhofer line depth (FLD) 
methods were developed to retrieve SIF by calculating the ratio between the 
incoming solar radiance inside and outside a FL (within the Chlorophyll 
fluorescence emission spectrum), and the apparent reflectance (including the 
contribution of SIF) inside and outside the same FL (Theisen, 2002, and Plascyk 
1975; cited by Meroni et al., 2009). The result shows a slightly higher apparent 
reflectance inside the FL, which is proportional to the emitted SIF signal. Besides, 
other retrieval methods exploit the absorption of solar light by elements in the 
Earth atmosphere through the so called ‘telluric bands’. In particular for the 
retrieval of SIF, Oxygen (O2) telluric bands are used since they absorb the solar light 

                                                           
2 In the publications associated to this thesis only SIF-O2A (also called ‘SIFFar-red’ or ‘SIF’) data used, which is in general 
more often investigated by the SIF research community. Based on such information, further parameters like SIF yield 
(SIF/PAR) and SIF downscaled to leaf level were calculated. 
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at ~759 nm (O2-A) and ~687 nm (O2-B; Tubuxin et al., 2015; Fig. 3b) from where 
SIFFar-red (hereinafter referred to as SIF) and SIFRed can be measured, respectively.  

Novel spectral fitting methods (SFMs) were developed to retrieve SIF either 
from the O2 absorption bands or from the full Chlorophyll fluorescence spectrum 
(Cogliati et al., 2015; Cogliati et al., 2019) by using high resolution spectral data 
from contiguous bands within the spectral region of interest. SFM approaches offer 
some advantages over the FLD-based approaches, since they overcome the 
assumption of a constant reflectance and fluorescence signal (Meroni et al., 2010), 
they are based on the principles of the radiative transfer theory, and they allow for 
the correction of interferences of the atmosphere (e.g., aerosols, surface pressure, 
water vapor, etc.). A detailed revision of approaches to retrieve SIF can be found in 
Bandopadhyay et al. (2020). 

 

 
Figure 3: Possible ways followed by the absorbed light (a), and a detailed illustration of the 
attenuation of the solar-induced chlorophyll fluorescence (SIF) signal from the molecular-, to the 
ground-and aerial- (unmanned aerial vehicle -UAV- and airborne) and satellite-scales (b). Based 
on Porcar-Castell et al. (2021).  
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Imaging and non-imaging (point) spectrometers are employed to measure 
the high (sub-nm) spectral resolution reflectance used to retrieve SIF. At ground 
scale, point spectrometers like the fluorescence box (Flox; JB Hyperspectral) are 
used to monitor SIF with high temporal resolution, but low spatial coverage. On the 
other hand, a higher spatial coverage, but low temporal resolution, can be provided 
by imaging spectrometers mounted on airborne platforms, e.g., the imaging 
fluorimeter (IBIS, the high performance imaging spectrometer within the HyPlant; 
Gamon et al., 2018), the chlorophyll fluorescence imaging spectrometer (CFIS; 
Frankenberg et al., 2018) and the high-performance airborne imaging 
spectrometer (HyPlant; Rascher et al., 2015; Siegmann et al., 2019).  

Despite of the great advances achieved during the last decades, the retrieval 
of SIF carries instrument- and retrieval-associated uncertainties, which are yet 
matter of investigation to be solved. Specific sensor characteristics like the detector 
and fore optics used, as well as the type of calibration used for one specific device, 
makes it difficult to standardize and compare SIF measurements across 
spatiotemporal scales and sensors. Moreover, the major source of uncertainty 
associated to the retrieval comes from the atmospheric interference, since it is 
sensitive to variations in factors like water vapor, terrain elevation, aerosol optical 
thickness and surface pressure.  Thus, the method used (either empirical 
corrections or those based on radiative transfer models) to correct for the 
interference of atmosphere will have a strong impact on the output data (Eropean 
Space Agency, ESA, 2022a; Photoproxy, report No. 3). Here, numeric inaccuracies 
in the atmospheric correction algorithms, and the use of atmospheric transfer 
models with an erroneous parameterization are probably the main sources of 
uncertainty (ESA, 2022c, and ESA, 2022d; corresponding to Flexsense campaigns 
final reports 2018 and 2019, respectively). 

Besides the passive sensing of SIF, the active Chlorophyll fluorescence 
sensing has been possible for decades by using the pulse amplitude modulation 
(PAM; Schreiber, 2004) principle. PAM-based instruments measure the 
fluorescence yield provoked by saturating (blue or red light) pulses followed by 
intervals of exposure to actinic light, and use this information to estimate other 
photosynthesis-related traits, e.g., quantum efficiency of photosystem II (Y_II), 
electron transport rate (ETR) and NPQ (Fig. 4a; Maxwell and Johnson, 2000). The 
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Y_II is calculated as the difference between the maximum fluorescence yield (Fm') 
and the fluorescence yield (Ft) in a light adapted photosynthetic tissue, divided by 
Fm'; whilst ETR is calculated as the Y_II multiplied by the absorbed PAR, 0.5 
(assuming equal distribution of the absorbed PAR between photosystems I and II) 
and 0.84 (as the leaf absorption coefficient). NPQ is in turn measured as the 
difference between the maximum fluorescence yield in dark adapted leaf (Fm°) and 
Fm'. Two of the main PAM-based instruments for field measurements can be 
mentioned: the MoniPAM (Fig. 4b) and the MiniPAM (Fig. 4c). The MoniPAM can 
be installed in a fixed location, thus allowing to collect data with high temporal 
resolution, while the MiniPAM is a mobile device and therefore allows to collect 
information at higher spatial resolution. 

 

 

Figure 4. Typical fluorescence trace produced during the leaf exposure to saturating and actinic 
light pulses and the respective derived parameters (Fo, Fm°, Fm' and Ft; a; based on Maxwell and 
Johnson, 2000) used for the calculation of photosynthetic traits (non-photochemical quenching, 
NPQ, efficiency of photosystem II, Y_II, and the derived electron transport chain, ETR). In panels 
(b) and (c) images of the MoniPAM and MiniPAM instruments are respectively shown. 

  

Another method available for the active sensing of chlorophyll fluorescence 
is the light-induced fluorescence transient (LIFT; Kolber et al., 1998) principle, 
based on the stimulation of chlorophyll fluorescence throughout fast repetition 
rate emissions of blue flashlets (Keller et al.; 2019). First, the closest possible to the 
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maximum reduction state of Quinone A (QA, primary electron acceptor of the 
photosystem II) is reached with the emission of faster flashlets. Subsequently, an 
interval with slower flashlets, in the order of ms, is emitted to analyze the re-
oxidation of QA during the ‘relaxation’ phase after the excitation (Osmond et al., 
2017). Among the main LIFT-derived Chlorophyll fluorescence traits are the Y_II and 
the reoxidation efficiency of QA− (Fr1/Fv). The results presented on Quiros-Vargas 
et al. (2021) derived from LIFT data were preceded mainly by Keller et al. (2019), a 
study about photosynthesis phenotyping in which a software was developed 
required for further LIFT data processing. In addition, Soares et al. (2021) and 
Zendonadi dos Santos et al. (2021) provided deeper analyses on the use of LIFT data 
for the phenotypic characterization of soybean (in a FACE environment) and wheat 
genotypes, respectively. 

It is worth mentioning that remote sensing studies often require the 
integration of data from several methods (parametric, non-parametric, radiative 
transfer, etc.; Gerhards et al., 2019). This is due to the complexity of the vegetation 
processes being measured, which can be caused by several factors that at the same 
produce different responses in the plant. For instance, the several functions that 
water has in the plant physiology (turgor, thermal regulation, photolysis, etc.) can 
cause many responses at the root, leave and canopy structure levels (Jonard et al., 
2020). While VIs can be used to monitor changes in the canopy pigments 
composition, thermal data and SIF can be used to analyze alterations in canopy 
temperature and photosynthetic activity, respectively. 3 

 

 

1.3 Chlorophyll fluorescence assessments at ground scale 
Since the second half of the 20th century, the demand for more productive 

and stress resistant varieties has greatly increased, and thereby the need of more 
efficient plant phenotyping techniques as well. In that sense, multiple platforms 
have been developed in order to make the assessment of varieties in the field more 

                                                           
3 With this introduction about RS of SIF, the following subsections will a more detailed description of the SIF 
assessments at specific spatial scales, from the ground over the aerial (UAV and airborne) to the satellite scale. The 
main results of the studies reported in this thesis are presented within each subsection, aiming to contextualize 
where they are located within the general research status of each scale. 
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efficient. For example, the first mobile ground systems for plant phenotyping were 
pulled by walk and consisted of a horizontal platform with manually triggered 
sensors installed over bike wheels (White and Conley, 2013). Researchers rapidly 
realized the necessity to include mechanical and electrical components to reduce 
labor. Andrade-Sanchez et al. (2014), e.g., mounted three sensors on a horizontal 
axis installed in the front of a commercial sprayer with close to 2 m of maximum 
height clearance, thus improving performance. More efficient automated 
platforms were developed in the last three years by research institutions (Muller et 
al., 2018) and companies (Lemnatec, 2019), aiming at more accurate and less labor 
demanding field phenotyping campaigns. Ground sensing platforms (mentioned in 
section 1.1) stands, therefore, as the most robust and reliable technique to 
accurately assess key crop traits for plant phenotyping. The following six platforms 
are the main ones developed in the last five years: 

i. Phenomobile lite, from the Commonwealth Scientific and Industrial 
Research (CSIRO), Australia (Rebetzke et al., 2016). 

ii. Characterisation through Kinetic Observati (Gecko), from CSIRO, 
Asutralia (Potgieter et al., 2018). 

iii. Field-Scanalyzer®, from Lemnatec, Germany (Lemnatec, 2019) 
iv. Field-Scan®, from Phenospex, Netherlands (Phenospex, 2019) 
v. Field Phenotyping Platform (FIP), from the Eidgenössische 

Technische Hochschule (ETH), Switzerland (Kirchgessner et al., 
2016). 

vi. Field-snake, from the Institute of Bio- and Geosciences (IBG-2), of 
the Julich Forschungszentrum, Germany. 

The advent of platforms like the field-snake (Fig. 5a) has advanced the use 
of chlorophyll fluorescence information for plant phenotyping. The field 
snake is a mobile (up to 7 km h-1 speed) platform equipped with a hydraulic system 
capable of moving a sensors box in the X-Y-Z directions. The sensors box slides at 
0.18 m s-1 along the 20 m X-axis and can be elevated up to 3.5 m over the X-axis 
level to create the Z-axis. The system payload is 100 kg, therefore it is capable to 
carry VIS, multispectral, hyperspectral and thermal cameras, as well as the 
abovementioned Flox and LIFT instruments for passive and active chlorophyll 
fluorescence measurements. The versatility of the field-snake combined with the 
accurate chlorophyll fluorescence information provided by instruments like Flox 
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and LIFT, makes it a suitable system to investigate the response of genotypes in 
free-air CO2 enrichment (FACE) experiments (Quiros-Vargas et al., 2021). The latest 
constitutes a topic of high interest, since chlorophyll fluorescence information 
measured from active (Flexas et al., 2002) and passive (Jablonski et al., 2017) 
sensors has been reported as a good indicator to track the photosynthetic response 
of plants to varying levels of [CO2]. Yet, specific crop responses to higher 
atmospheric CO2 concentration have to be further investigated, since the e[CO2] 
effect on a plant might vary according to the species, genotype and phenological 
stage.  

The contribution of the present doctoral work in this (ground scale) 
context was about the chlorophyll fluorescence assessment in the late phenology 
(pod filling stage) of three bean genotypes cultivated in a FACE experiment (Quiros-
Vargas et al., 2021). The lower noon SIF (Flox-derived) observed at the end of the 
pod filling stage under e[CO2], alongside the lower yield of photosystem II 
measured with the LIFT (Fq’/Fm’) and the MoniPAM (YII; Fig. 5b), suggest a faster 
senescence effect in the three analyzed bean genotypes. This result may however 
differ in other crops and phenological stages; e.g., in an ongoing study Knopf et al. 
(in progress) did not found effects of e[CO2] in winter wheat senescence. In the 
same study, this observation was also supported by a faster seasonal NDVI decay 
in the e[CO2] experiment. Moreover, chlorophyll fluorescence estimations from the 
three instruments were compared since this was unclear in literature at the 
publication time (Fig. 5c). A correlation of Flox SIF with MoniPAM (R2 = 0.62) and 
LIFT chlorophyll fluorescence estimations was found. In the first case the 
significance (p = 0.03) in the relation was influenced by the contrasting low and high 
chlorophyll fluorescence values at the beginning and end of pod filling stage, 
respectively. 4 

 

 

 

                                                           
4 In sections 1.3-1.7 figures with the main results obtained from scale specific studies are presented. In each figure 
a time line is included to better contextualize where this thesis contributions are located within the respective 
research area. 
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Figure 5: Platform (field-snake) and active (light-induced fluorescence transients -LIFT- and the 
moni Pulse-amplitude modulated –MoniPAM-) and passive (fluorescence box –Flox-) sensors 
used in the Quiros-Vargas et al. (2021) ground scale study (a). Different responses in solar-
induced chlorophyll fluorescence (SIF) yield, and the yield of photosystem II from LIFT (Fq’/Fm’) 
and MoniPAM (YII) in the ambient (a[CO2]) and elevated (e[CO2]) CO2 concentration experiments 
(b). The relation between chlorophyll fluorescence estimations from the three sensors is 
presented in (c). Panel (d) shows where the Quiros-Vargas et al. (2021) study is located within 
research field of Chlorophyll fluorescence assessment from the ground scale. 

 

 

1.4 SIF assessments at unmanned aerial vehicle (UAV) scale 
Vegetation in open fields is always heterogeneous due to edaphic and micro-

climatic variations. The assessment of spatial variability in vegetation 
surfaces is necessary to improve management practices in agriculture fields, and 
to understand ecosystem dynamics. In the past, the assessment of vegetation 
status was carried by sparse and tedious field observations prone to inaccuracies 
and misinterpretations. At present, the advance of remote sensing technologies 
brought options to map large areas in short lapses of time with high spatial and 
temporal resolutions. Among those options, some authors identified the use of 
unmanned aerial vehicles (UAVs) as the most cost-effective technology in areas of 
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≤ 20 ha (Matese et al., 2015) in forestry (Torresan et al, 2017), environment 
(Manfreda et al., 2018), and in several branches of agronomy, e.g., crop protection 
(Psirofonia et al., 2017), site specific management and field phenotyping (Sankaran 
et al., 2015). 

UAV platforms such as multicopters and fixed-wing gliders (Norasma et al., 
2019; Ziliani et al., 2018) are the most used UAVs for vegetation monitoring, and 
its selection criteria relies on the needs of the specific research. Multicopters are 
generally intended to map smaller areas at lower altitude and higher spatial 
resolution, which is especially important to assess breeding research experiments, 
(Sankaran et al., 2015). Conversely, fixed-wing UAVs match the requirements for a 
larger scale monitoring (Chung et al., 2016), with applications in commercial farms. 
Besides the platform, the characteristics of the sensors and data processing 
methods are the essential aspects to focus in the planning and development of 
research. UAV sensors capturing data in red-green-blue (RGB) channels are the 
simplest sensors to use in low altitude imagery research, yet, useful to calculate 
parameters like the percentage of colors and band ratios like the Green-Red 
Vegetation Index (GRVI; Quiros-Vargas et al., 2020b). Furthermore, the high spatial 
resolution normally presented by RGB sensors make the suitable to compute 
detailed digital elevation models (DEM; Chu et al., 2017) of fields, useful to assess 
key agricultural information like crop lodging (Wilke et al., 2019). Despite the 
mentioned uses of RGB data, their application in remote sensing of vegetation is 
limited by the lack of information in the red edge (RE) and near Infrared (NIR) 
spectral windows. Indeed, this triggered the development of RGB altered 
cameras to make them sensitive to detect reflected light in the NIR spectrum. 
These kind of sensors were popular for several years due to their low cost and user-
friendly characteristics (Quiros and Khot, 2016), however, the demand for more 
accurate NIR information by the remote sensing research community stimulated 
the development of multispectral camera capable to measure RGB, NIR and RE 
information simultaneously (Lum et al., 2016).  

The further development of UAV-based hyperspectral sensors (Mäkynen 
et al., 2012) permitted more detailed remote sensing studies, e.g., for the 
classification of infested (with bark beetle; Näsi et al., 2015) and asymptomatic  
(infected with Xylella fastidiosa; Zarco-Tejada et al., 2018) plants, the estimation of 
leaf chlorophyll (Aasen et al., 2015) and carotenoids (Zarco-Tejada et al., 2013), the 
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individual tree crown detection (Nevalainen et al., 2017) and the assessment of 
water stress (Zarco-Tejada et al., 2012). Nevertheless, compared with RGB- and 
multispectral-based studies, there is a limited number of publications addressing 
hyperspectral low altitude sensing due the expensive cost of the sensors and the 
complexity in data processing (Adão et al., 2017). The use of UAV-hyperspectral 
systems for the retrieval of SIF sensors is nowadays a topic of utmost interest, 
due to the close relation that SIF has with the physiological status of 
photosynthesis, especially if integrated with thermal data (Gerhards et al., 2019). 
However, the retrieval of SIF requires high (sub-nm) spectral information and 
therefore all the studies published in this direction have worked with 
spectrometers mounted on the UAV platforms, which add complexity to the data 
collection and analysis. One of the major difficulties of working with spectrometers 
data collected form UAV platforms is the location and characterization of the 
sensor footprint, which has been addressed in some studies (Gautam et al., 2020), 
yet it has not been solved. A plausible solution can be the development of an 
imaging sensor, i.e. a multi-channel camera or scanning spectroradiometer, which 
is currently being investigated at the IBG-2 as well. 

The state-of-the-art of UAV-based SIF assessments is still in an experimental 
stage, where different sensor and platform developments are being carried by 
researchers from several groups in the world. Therefore, a publication summarizing 
the main of those developments was missing in the literature. This is why the 
contribution of the present doctoral work in the (UAV-scale) context was 
a review of the available UAV-based methods for SIF retrieval with non-imaging 
spectrometers (Quiros-Vargas et al., 2020a). In the study three systems were 
reported, the so called Floxplane, Piccolo-Doppio and AirSIF. The first consisted of 
a fixed wing platform aimed to characterize the interference of the (multiple km) 
atmosphere column on the retrieval of SIF; whereas the Piccolo-Doppio and AirSIF 
share the same principle of the bifurcation of the spectroradiometer optical path. 
Preliminary results were presented, e.g., those obtained by researchers from the 
University of Edinburgh-GeoSciences, who installed a Piccolo-Doppio system on an 
UAV to retrieve SIF of a FACE experiment with oak trees (Fig. 6a). They found a high 
correlation (R2 = 0.88) of SIF with incoming radiation (Fig. 6b). Further, the authors 
found SIF be useful as indicator of treatment effects and their relation with 
environmental factors. 
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Figure 6: Unmanned aerial vehicle (UAV) platform (a; source: Dr. Andrew Revill, BBSRC/NERC 
ATEC project at the University of Edinburgh-GeoSciences) and the correlation of solar-induced 
chlorophyll fluorescence (SIF) retrieved from it with incoming radiation (b), extracted from 
Quiros-Vargas et al. (2020a). Light and dark gray squares correspond to data points from the 
ambient (a[CO2]) and elevated (e[CO2]) CO2 concentration experiments, respectively, measured 
in a mature oak forest at the BIFoR FACE site in the UK. Panel (c) shows where the publication 
Quiros-Vargas et al. (2020a) is located within the research field focused on the retrieval of SIF 
from the aerial (UAV) scale. 

 

  After Quiros-Vargas et al. (2020a), two new SIF measurement system for 
drones have been developed (Fig. 6c). Chang et al. (2020) further developed a new 
system implementing a mechanical arm to alternate between upwelling and 
downwelling measurements, in order to avoid light loss from the fiber entrance. 
Additionally, Wang et al. (2021) reported the feasibility of retrieving SIF from the 
UAV-based FluorSpec system. These two platforms are mentioned by Bendig et al. 
(2021), who provided an updated overview about the reliability of UAV-based SIF 
measurements for applications in plant phenotyping and precision agriculture.  
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1.5 SIF assessments at airborne scale 
Vegetation surfaces (i.e., agriculture fields, forest, wetlands, shrubs, etc.) are 

not isolated points in an inert space. Spatial patterns in agriculture areas 
reflect dynamic processes linking plant populations of different fields. The 
abovementioned UAV-based systems are generally able to just provide information 
about intra-field patterns, which may hinder the understanding of a certain lager 
scale phenomenon. This limitation can be overcome with airborne-based remote 
sensing systems due to its capacity to cover larger areas. For instance, since its first 
results capturing airborne SIF (Rascher et al., 2015), data from the HyPlant imaging 
spectrometer (Siegmann et al., 2019) has pushed forward for the understanding of 
large scale vegetation processes. There are numerous studies using HyPlant data 
since then: Wieneke et al. (2016) analyzed HyPlant SIF usefulness to improve GPP 
estimations, while Tagliabue et al. (2020) proposed the use of HyPlant SIF for the 
assessment of the functional diversity as a reference of ecosystems functioning and 
stability. Recently, Siegmann et al. (2021) used HyPlant data to downscale the 
canopy SIF to the SIF emission efficiency (Ef) at the leaf level, following the approach 
suggested by (Yang et al., 2020).  

The larger spatial coverage enabled by airborne sensors becomes important 
for the assessment of water stress, since the soil water content will be strongly 
determined by the topography and soil physical characteristics of a whole 
landscape. Indeed, the use of SIF for water stress assessment is the subject for our 
contribution at airborne scale, and it is also related to two of the main emerging 
SIF applications mentioned by Porcar-Castell et al. (2021): (i) the pre-visual stress 
detection, and (ii) the water cycle studies. Besides, understanding the SIF response 
to varying soil water content levels have applications on climate modeling, since it 
can help to elucidate the mechanistic basis of SIF towards better constraining 
transpiration and photosynthetic dynamics.  

The state-of-the-art of airborne-based SIF measurements is, in general, in a 
‘prove of concepts’ stage. Namely, airborne SIF information (in most of the cases 
from HyPlant) is being used to prove research concepts in agriculture (Siegmann et 
al., 2021) and environmental (Tagliaube et al., 2016) study areas.  In agriculture, 
investigations about the use of airborne SIF data for water stress assessment in 
particular are currently gaining relevance. In this sense, Damm et al. (2022) recently 
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published the first study showing how SIF data detected an early physiological plant 
response to drought effects, which previously was just theoretically known. In 
addition to the Damm et al. (2022) study, this year two additional studies following 
a similar direction have been published: “Remote Sensing of Instantaneous 
Drought Stress at Canopy Level Using Sun-Induced Chlorophyll fluorescence and 
Canopy Reflectance” (De Cannière et al., 2022) and “Stress detection in agriculture 
with focus on the synergistic use of different optical domains: a review” (Berger et 
al., 2022). As common factor, those studies try to contribute in elucidating how the 
soil water availability can be related to the emission of SIF. Such knowledge gap is 
addressed as well in this thesis through the studies commented below. 

The contributions of the present doctoral work in this (airborne-
scale) context were mainly two. First, in Quiros-Vargas et al. (AGU-2020) we 
found HyPlant SIF (Fig. 7a and 6b) to be more sensitive than VIs to the effect of heat 
in lower soil water retention capacity areas. In the same study, we report a 
significant match (that was not observed with NDVI) between the spatial patterns 
of SIF and soil homogeneous units similarly as it was reported by von Hebel et al. 
(2018). Subsequently, in Quiros-Vargas et al. (in revision at PNAS-Nexus) we report 
on the spatial relation between SIF and the plant available water in the root zone 
(PAW) over several irrigated potato, and non-irrigated sugar beet and winter wheat 
fields. Based on airborne data from three consecutive growing seasons our results 
showed for the first time the relation between SIF and PAW,  which was strongly 
positive in non-irrigated sugar beet (Fig. 7c) in the late morning (~11:00 h). 
Remarkably, no relations were found in irrigated potato fields (Fig. 7d). These 
findings constitute the latest study published using airborne SIF information (Fig. 
7e), and are intended to set a first step towards the development of SIF-based 
precision irrigation techniques.  When interpreting these data, however, it is 
essential to take into account that the SIF-PAW relation can vary, for instance, 
according to the stress severity and the spatiotemporal scale of data. Both topics 
are addressed in the following subsections 1.6 (where the SIF-soil moisture relation 
in an upscaled, satellite-level, scenario is analyzed) and 1.7 (where the scaling issue 
and the importance of downscaling SIF imagery are discussed). 
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Figure 7: The high-performance airborne imaging spectrometer HyPlant used Quiros-Vargas et 
al. (in revision at PNAS-Nexus) airborne scale study (a), and an example of the solar-induced 
chlorophyll fluorescence (SIF) imagery used (b). The main results of the relation between the SIF 
emission efficiency (Ef) and the estimated plant available water (PAWest) in the non-irrigated 
sugar beet and irrigated potato fields are presented in (c) and (d), respectively. Panel (e) shows 
where the Quiros-Vargas et al. (in revision at PNAS-Nexus) publication is located within research 
field of the assessment of SIF from the airborne scale. 5 

 

 

 

 

 

 

 

                                                           
5 Other conference posters (Quiros-Vargas et al., LPS-2022a and EMS-2022) are not considered as main (airborne-
scale) contributions since most of their content was already presented in Quiros-Vargas et al. (2022a) under review 
in the PNAS-Nexus journal. The goal of those posters was to communicate the results to a broader audience (in the 
case of the LPS) and different communities (in the case of the EMS). 
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Future studies assessing the effect of water shortage on plants should use 
actual soil water content. Moreover, alongside emission based SIF information, 
reflectance-based vegetation indices (e.g. PRI, MTCI and NDVI) can provide 
complementary qualitatively data about vegetation traits and the effects of a water 
deficit (Damm et al., 2018). Indeed, the integration of multiple-sensor data 
(especially SIF- and thermal-based) has been reported as the most effective way to 
understand the effects of stressors in vegetation (Zarco Tejada et al., 2018). 6 

1.6 SIF assessments at satellite scale 
Satellite-based SIF retrievals are based on data from missions that were 

originally planned for atmospheric chemistry applications. Such spaceborne-based 
SIF data provides key information for vegetation functioning studies from 
regional to global scale. The story about satellite-based SIF retrievals using data 
from missions that were originally planned for atmospheric chemistry applications. 
The Medium resolution imaging spectrometer (MERIS, from the European space 
agency -ESA-) and the moderate resolution imaging spectroradiometer (MODIS; 
from the national aeronautics and space administration –NASA-) were the firsts 
sensors allowing space born SIF retrieval based on the so called ‘fluorescence line 
height algorithm’ (Gower et al., 1999; Gower et al., 2004). Nevertheless, those 
studies were focused on the analysis of phytoplankton fluorescence and thus had 
low impact for the remote sensing of vegetation community. Further, those early 
studies were strongly affected by atmospheric conditions like the aerosol optical 
thickness (Bandopadhyay et al., 2020). The first spaceborne-SIF retrieval from 
vegetation was done based on the FLD principle by Guanter et al. (2007), who 
validated the satellite estimations with ground and airborne measurements. The 
subsequent launch of the greenhouse gases observing satellite (GOSAT) by the 
Japan aerospace exploration agency (JAXA) motivated further research on the 
retrieval of the seasonal SIF dynamics at global scale (Joiner et al., 2011). The low 
spatiotemporal resolution and poor signal to noise ratio (SNR) of GOSAT’s data 
were partly overcome with the launch of the global ozone monitoring experiment 
2 (GOME-2; Joiner et al., 2013) satellite by the European organization for the 
exploitation of meteorological satellites (EUMETSAT) and ESA. SIF derived from 

                                                           
6 This research subject (spatial relation between SIF and the soil water content) represents a transition between the 
two research projects. First promising results on the spatial relation between SIF and the soil water content were 
gathered in the frame of the Training on Remote Sensing for Ecosystem Modelling (TRuStEE) network (Quiros-Vargas 
et al., AGU-2020), and further investigated within the Photoproxy project, which yielded in the publication of Quiros-
Vargas et al. (in revision at PNAS-Nexus). 
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GOME-2 data was used as an indicator of crop photosynthetic capacity (Zhang et 
al., 2014).  

Besides the impact of the abovementioned platforms, satellite-based SIF 
retrieval was greatly improved afterwards with the launch of the orbiting carbon 
observatory 2 (OCO-2; Sun et al., 2017) satellite. Among other applications, OCO-2 
data was used to analyze the relation of SIF and GPP in numerous studies 
(Bandopadhyay et al., 2020). Later, the launch of the tropospheric monitoring 
instrument (TROPOMI) onboard the Sentinel-5 Precursor (satellite) raised 
expectations to retrieve SIF with a quality similar to the OCO-2, but with higher 
spatiotemporal resolution (Guanter et al., 2015). This was confirmed by Köhler et 
al. (2018) who published a time series of global SIF dataset (TROPOMI-SIF) with a 
spatial resolution of 7x3.5 km pixel-1 providing daily information over several years. 
A similar SIF product was recently also released by ESA in the frame of the 
TROPOSIF project (Guanter et al. 2021). A timeline showing the mentioned 
satellites is shown in Fig. 8a, whilst the carrying satellite and a global SIF map 
example from TROPOMI (data source used in Quiros-Vargas et al., EARSeL-2022) 
are shown in Fig. 8b and c. In addition, based on NASA’s public information, Fig. 8d 
shows the SIF data availability from some of the North American missions since 
1995 to the present. The unprecedented high spatiotemporal resolution of 
the TROPOMI-based SIF products encouraged novel studies addressing, e.g., 
in more detail the SIF-GPP relation (Li and Xiao, 2022), as well as variations of SIF in 
the dry season of tropical forests (Doughty et al., 2019). 
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Figure 8: Satellite platforms that have been used to estimate SIF since 1999 (a; Bandopadhyay et 
al., 2020); in grey are those commented in the main text, and in red are other less relevant. The 
Sentinel-5 precursor satellite (b) holding the TROPOspheric Monitoring Instrument (TROPOMI) 
sensor from which worldwide solar-induced chlorophyll fluorescence (SIF) data can be retrieved. 
An example of a global SIF map, recorded in July 2018, is presented in panel (c). Global SIF data 
since 1992 from GOME, OCO-2 and TROPOMI platforms (d; adapted from 
HTPPs://climatesciences.jpl.nasa.gov/sif/download-data/level-2/). 
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The assessment of SIF from spaceborne sensors is to date in a ‘prove of 
specific research concepts’ stage. Investigations on the satellite scale address 
regional to continental and global scale vegetation functioning assessment. For 
instance, the use of satellite SIF data to analyze the effect of water limitations (the 
topic of particular interest in this thesis) was recently addressed by Jonard et al., 
(2022). The authors reported non-linear relations of photosynthesis with light and 
water at global scale. Another topic of utmost interest within the SIF research 
community is about the SIF-GPP relation during water scarcity periods. This has 
been addressed in some studies with ground data at (Martini et al., 2021), yet, it is 
still unknown how it may behave in a regional to continental and global scale.  

The contribution of the present doctoral work in this (satellite-
scale) context was a case study using European scale TROPOMI-SIF information 
integrated with satellite based soil moisture, information from NASA’s soil moisture 
active/passive (SMAP) mission, and the GPP data from ESA’s TerrA-P project 
(Quiros-Vargas et al., EARSeL-2022; Fig. 9a) 7. The study was conducted with the 
overall goal of having an upscaled perspective of the spatial relation between SIF 
and soil water content (previously addressed only at airborne scale in Quiros-
Vargas et al., in revision at PNAS-Nexus). The aim in Quiros-Vargas et al. (EARSeL-
2022) was to elucidate how the SIF-GPP relation is influenced by soil moisture on 
European scale during a heatwave in summer 2018, in order to understand the 
continental scale response of vegetation to abnormal high temperatures. We found 
a strong positive SIF-soil moisture relation (r = 0.91, p < 0.01; Fig. 9b) and a lower 
SIF but more heat sensitive SIF pattern across time in the lower soil moisture classes 
(Fig. 9c). Moreover, our results suggest that the positive SIF-GPP relation observed 
under normal conditions becomes negative under abnormal high temperature 
conditions during a heat wave (as recently reported by Martini et al., 2021) in 
regions with soil moisture below 15 l m-2, but remains positive in areas with higher 
soil water content (Fig. 9d).  

 

                                                           
7 The Quiros-Vargas et al. (EARSeL-2022) study was presented as a conference abstract, and not addressed in more 
detail, since it was done in the last stage of the PhD program. The major goal of this study was to have an initial 
notion about how the spatial relation of SIF with soil water content would behave when up-scaled to continental 
scale. 
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Figure 9: Average soil moisture (SM), solar-induced chlorophyll fluorescence (SIF) and gross 
primary productivity (GPP) maps computed over the study area (yellow boundary) across the 
nine time points analyzed (a). Values of the soil moisture classes and their correlation with SIF 
(b). Temporal variation of SIF for each soil moisture class before (B-H, June) and during (D-H, July) 
the peak of the heatwave (c). B-H (dark green) and D-H (light green) relation of GPP, SIF and soil 
moisture (circles size; d). (*) Positive GPP-SIF relation kept D-H in regions with higher SM.  
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1.7 The SIF-scaling issue: importance of downscaling 
The spatiotemporal resolution of remote sensing data determines the 

amount and quality of information that can further be used to assess vegetation 
functioning. While the spatial resolution is mainly determined by the sensor 
characteristics and the SSD, the temporal resolution is driven by the amount of data 
collected across time. In general, proximal-, aerial- and satellite-based information 
are more suitable to detect changes in the regulatory processes, canopy reflectance 
and structure and plant morphology, respectively (Fig. 10, based on Gamon et al., 
2019). I.e., fine scale remote sensing information (in centimeters and minutes-
hours) can capture a wide range of plant responses to stress, from regulatory 
processes which can potentially be useful for the early (asymptomatic) stress 
detection, to changes in the pigments composition and leaf angles; whereas lower 
spatiotemporal resolution information (in m’s and days) might not be able to sense 
subtle changes in physiological process, but still can track changes in the canopy 
structure and color (reflectance) useful for the assessment of vegetation 
productivity. Coarser remote sensing information (in the order of kilometers and 
months to years) can only capture strong alterations on vegetation morphology 
over regional to global scales, which is generally used to quantify the impact of 
severe stress, or to study energy exchanges between the surface and atmosphere 
on the biome level.  
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Figure 10: Spatial (y-axis, cm to km) and temporal (x-axis, hours to months) scales of ground-, 
unmanned aerial vehicles (UAV)-, airborne-, and satellite-based information, and the vegetation 
processes (in orange) for which each scale is particularly more suitable. The importance of 
downscaling, as well as the types of stress and their effect are presented in grey, red and blue, 
respectively. The figure is based on Gamon et al. (2019).  

 

SIF information, compared with reflectance- and thermal-based data, is 
more affected by the scaling issue in the spatial domain. The spatial resolution of 
SIF products is particularly hindered by technical limitations; e.g., the low intensity 
of the SIF signal makes it necessary to sense larger areas in order to integrate a 
signal with high SNR. Consequently the SIF downscaling, herewith understood 
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as the increase in the spatial resolution, is nowadays of utmost 
importance within the SIF research community targeting the improvement of the 
amount and quality of information of SIF imagery. Currently, the SIF downscaling 
research is generally focused on the use of linear relations between SIF and 
explanatory variables like the light use efficiency (LUE; Duveiller et al. 2020), land 
surface temperature (LST) and VIs (Zhang et al. 2020) which were derived from 
remote sensing at higher spatial resolution.  Yet, besides the abovementioned 
efforts, more flexible SIF-downscaling approaches have to be investigated trying to 
meet the dynamism of SIF in diverse ecosystems.  

In Quiros-Vargas et al. (2022) we propose to consider the use of the fractal 
theory for SIF-downscaling, whose developer said: “the success of fractals 
depend on people being familiar with the basic ideas and pushing them in different 
directions with more specialized topics” (Mandelbrot 2012). The theory states that 
natural phenomena can be described as repetition of patterns (fractal geometry) 
across spatiotemporal scales. The presence of fractal geometry can be recognized 
through different mathematical approaches, e.g., based on power laws (PL’s; 
Nagajothi et al., 2021) as addressed in Quiros-Vargas et al. (2022), where we found 
that the total SIF (SIFTOT) of vegetation objects within a 60 ha soybean field followed 
a PL distribution across spatial scales (1.5, 5, 10 and 15 m pixel-1; Fig. 11a). 
According to the fractal theory this indicates the presence of a fractal geometry 
composed by patterns where few incidences of high SIFTOT values contrast with 
abundant occurrences of small values. We furthermore observed a linear increase 
and a nearly steady behavior of the dimension and scaling factors of the PLs across 
scales (Fig. 11b), which can be interpreted as evidence of the scale invariant 
property of fractals.  
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Figure 11: Total solar-induced chlorophyll fluorescence (SIFTOT) power law (PL) distributions 
observed at 1.5, 5, 10 and 15 m pixel-1 spatial scales (a), and the respective dimension and scaling 
factors (b). Panel (c) shows where the abovementioned study is located among other studies 
addressing the spatial downscaling of SIF. 

 

 Future SIF downscaling efforts in this direction might aim to find explanatory 
variable(s) that can describe the SIFTOT distribution through bi-variate SIF PL’s. A 
potential variable could be related to the object geometry properties (like area and 
perimeter). Special interest has to be paid to the use of the object size as it was 
found to strongly determine the spatial dependency of near infrared reflectance of 
vegetation (NIRv; Badgley et al., 2017) data in another contribution of this thesis 
(Quiros-Vargas et al., EGU-2022). In preliminarily analyses we observed that the 
direct linear relation between SIFTOT and the average object size becomes a nearly 
perfect PL if the second variable is inverted (Quiros-Vargas et al., LPS-2022b). This 
will further be addressed in future studies and is not part of the presented doctoral 
work. 
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2 Knowledge gain and outlook 
In the past two years three review-type publications have summarized the 

current status of the use of SIF for vegetation monitoring applications from the 
phenotyping (Mangalraj and Cho, 2022), multiple scale (Bandopadhyay et al., 2020) 
and historic perspectives (Mohammed et al., 2019). Further, Porcar-Castell et al. 
(2021) stressed the SIF-photosynthesis link emphasizing the research challenges 
that yet have to be overcome, i.e. leaf and canopy scattering, atmospheric 
reabsorption, integration of SIF information from different scales, etc. In this thesis, 
besides the short review of multiple scale SIF applications provided in the present 
introduction, new knowledge is provided through individual studies on ground, 
UAV, airborne and satellite scales. The Figure 11 presents a diagram where this 
thesis’s publications are placed in the general SIF R&D context. This was done in 
order to represent the contribution of this thesis for the SIF research community. 

At ground scale, the knowledge gained about Chlorophyll fluorescence 
emission of bean at e[CO2] helps to improve our understanding about the potential 
physiological response of key food-security crops to the expected increase in the 
atmospheric [CO2]. In particular, the impact of an augmented concentration of 
atmospheric CO2 on the bean plants biomass partitioning was missing in the 
literature. This knowledge provided in Quiros-Vargas et al. (2021) can help to better 
understand how specific genotypes of such staple food production could behave in 
the next decades when the [CO2] is expected to constantly increase. Additionally, 
the genetic variation observed in the bean yield response to e[CO2] can support 
further studies about productivity breeding (Ainsworth and Long, 2021). For 
instance, genotypes like the one reported in our investigation as the most positively 
responsive to increments in [CO2] can be of interest for bean breeders in the future. 

The review published about UAV-based systems for SIF retrieval (Quiros-
Vargas et al., 2020a) was cite in multiple studies within the last two years, including 
investigations addressing the development of further aerial platforms for the 
assessment of SIF, e.g., the one published by Chang et al., 2020. This can suggest 
the relevance of this publication for the SIF research community, for which the 
UAV-based SIF retrieval has great potential as a cal/val instrument for future 
satellite missions providing information about SIF (e.g. the fluorescence explorer, 
FLEX, mission from ESA). Besides the remote sensing research area, our study was 
also cited in studies touching a variety of topics like chlorophyll fluorescence 
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physiology, plant disease monitoring, horticulture and field phenotyping. It is worth 
noting that most of the challenges and limitations of retrieving SIF from UAV 
platforms mentioned in our study are still valid.  

The main contribution on the airborne scale (Quiros-Vargas et al., in revision 
at PNAS-Nexus) is among the first three studies analyzing in high resolution the 
effect of soil properties and water content on SIF (also see Hebel et al., 2018 and 
Damm et al., 2022). The spatial correlations reported between SIF and PAW with a 
multiple year and crop dataset were formerly unknown. Such knowledge provided 
in Quiros-Vargas et al. (in revision at PNAS-Nexus) can encourage further 
investigations addressing SIF as a potential real-time indicator for crop water 
demands, due to its direct link with the first physiological processes activated in 
response to water shortage. This makes SIF superior to thermal- and reflectance-
based remote sensing information, since they will react hours or days later when 
the plant has already suffered more severe water stress symptoms, e.g., pigments 
degradation and morphology alterations. Such advantage of SIF can be used as the 
base for the development of precision water management, aiming scheduled 
irrigation events only in specific sites where it is required. Moreover, the numerical 
characterization of the spatial SIF-PAW relation provided in Quiros-Vargas et al. (in 
revision at PNAS-Nexus) helps to improve our understanding on how ground- and 
in the future UAV-based SIF information can be translated into crop water status; 
this is relevant since airborne data acquisition is expensive and not likely to be used 
for crop water management on a daily basis at farm level.  

The analysis reported on the satellite-scale (Quiros-Vargas et al., EARSeL-
2022) provides complementary information to recent studies in which the SIF-GPP 
relation was investigated on spatial higher resolution data (e.g. as Martini et al., 
2021, did on the ground level). With our study we added knowledge to Martini et 
al.’s (2021) conclusions by contextualizing where the SIF-GPP relation breakdown 
may occur or not at continental scale during heat stress periods. In Quiros-Vargas 
et al., EARSeL-2022 we highlight the need of including soil moisture information to 
better understand the relation between SIF and GPP, a relevant aspect for global 
scale estimations of photosynthesis.  
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The information provided in the airborne- and satellite-scale studies can be 
relevant for the climate and land surface modeling research community, due to the 
key role of vegetation in the water and carbon cycles. In particular, SIF data has a 
great potential to support the estimation of GPP in land surface models that 
consider plant growth. Moreover, SIF can be used to recalibrate and parametrize 
functions and sub-components in the algorithms, e.g., those related to soil 
moisture stress. Another potential application of SIF in climate modeling is to 
constrain the evapotranspiration (ET) component, since both processes (SIF and ET) 
have the stomata closure as a common factor. However, to achieve such an 
advanced point it is necessary to first analyze remote sensing and ground (e.g., 
eddy covariance) measurements integrated in radiative transfer models (Jonard et 
al., 2020). In order to learn more about how SIF research advances can help the 
climate- and land surface-modeling communities, the results of the investigations 
addressing the relation between SIF and soil water content at airborne and satellite 
scales were presented at the European Meteorology Society conference this year 
(Quiros-Vargas et al., EMS-2022), being this a topic of high interest for the climate 
modeling community. 

SIF downscaling studies have normally been focused on linear approaches 
using direct relations of SIF with explanatory variables. Therefore, there is a 
knowledge gap in using non-linear methods to address the SIF scaling issue. With 
the intention contributing to start filling this knowledge gap, we proposed a new 
direction based on a non-linear principle, which can be considered in the 
development of future SIF downscaling approaches. What we proposed was the 
potential application of the fractal theory to fragment the coarse SIF pixel into the 
SIFTOT of smaller objects within its area of influence. We proposed it based on the 
statement that (unlike reflectance based information) the SIF signal is aggregated 
across scales, and therefore the SIFTOT of one single coarse pixel is equal to the sum 
of the SIF emitted by all objects within the same pixel. Thus, we aimed to open a 
new perspective to increase the spatial resolution of aerial to satellite SIF products 
based on the distribution of geometric characteristics that are easily computed 
from imagery of any vegetation type.  
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Figure 12: Location of this thesis’s studies within the general context of solar-induced chlorophyll 
fluorescence (SIF) research at ground-, unmanned aerial vehicles (UAV)-, airborne- and satellite-
scales. The distinction between ‘development’ (green ring), ‘applied’ (yellow ring) and ‘basic’ (red 
circle) R&D stages is based on the Organization for Economic Co-operation and Development 
(OECD) classification. The role of downscaling is highlighted in the concentric red line. The main 
first-author contributions of this thesis are presented in blue numbers in brackets, whereas two 
co-authored contributions (related to the topic of the thesis) are presented in grey letters in 
brackets. 
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Abstract: Chlorophyll fluorescence (ChlF) information offers a deep insight into the plant physiological
status by reason of the close relationship it has with the photosynthetic activity. The unmanned
aerial systems (UAS)-based assessment of solar induced ChlF (SIF) using non-imaging spectrometers
and radiance-based retrieval methods, has the potential to provide spatio-temporal photosynthetic
performance information at field scale. The objective of this manuscript is to report the main
advances in the development of UAS-based methods for SIF retrieval with non-imaging spectrometers
through the latest scientific contributions, some of which are being developed within the frame of the
Training on Remote Sensing for Ecosystem Modelling (TRuStEE) program. Investigations from the
Universities of Edinburgh (School of Geosciences) and Tasmania (School of Technology, Environments
and Design) are first presented, both sharing the principle of the spectroradiometer optical path
bifurcation throughout, the so called ‘Piccolo-Doppio’ and ‘AirSIF’ systems, respectively. Furthermore,
JB Hyperspectral Devices’ ongoing investigations towards the closest possible characterization of the
atmospheric interference suffered by orbital platforms are outlined. The latest approach focuses on
the observation of one single ground point across a multiple-kilometer atmosphere vertical column
using the high altitude UAS named as AirFloX, mounted on a specifically designed and manufactured
fixed wing platform: ‘FloXPlane’. We present technical details and preliminary results obtained

Remote Sens. 2020, 12, 1624; doi:10.3390/rs12101624 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6524-7504
https://orcid.org/0000-0002-6454-5654
https://orcid.org/0000-0003-3299-4380
https://orcid.org/0000-0001-8307-2584
https://orcid.org/0000-0002-6052-3140
https://orcid.org/0000-0001-7249-7106
https://orcid.org/0000-0001-9451-6769
https://orcid.org/0000-0002-9993-4588
http://www.mdpi.com/2072-4292/12/10/1624?type=check_update&version=1
http://dx.doi.org/10.3390/rs12101624
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 1624 2 of 21

from each instrument, a summary of their main characteristics, and finally the remaining challenges
and open research questions are addressed. On the basis of the presented findings, the consensus
is that SIF can be retrieved from low altitude spectroscopy. However, the UAS-based methods for
SIF retrieval still present uncertainties associated with the current sensor characteristics and the
spatio-temporal mismatching between aerial and ground measurements, which complicate robust
validations. Complementary studies regarding the standardization of calibration methods and the
characterization of spectroradiometers and data processing workflows are also required. Moreover,
other open research questions such as those related to the implementation of atmospheric correction,
bidirectional reflectance distribution function (BRDF) correction, and accurate surface elevation
models remain to be addressed.

Keywords: hyperspectral remote sensing; light weight spectroradiometer; telluric bands; ESA-FLEX;
VNIR; SIF; UAS

1. Introduction

Chlorophyll fluorescence (ChlF) is defined as the light emitted by photosynthetic organisms
with peaks at 687 (red ChlF) and 740 nm (far-red ChlF) [1]. The study of ChlF goes further than the
estimation of basic structural plant traits like those usually analyzed from conventional multispectral
remote sensing [2], e.g., throughout vegetation indices based on red-green-blue (RGB) and near infrared
(NIR) reflectance. ChlF occurs in competition with heat to dissipate absorbed radiation not used in
the light reactions of photosynthesis. Thus, the variation in the efficiency of one process affects the
efficiencies of the others. This link forms the rationale for the use of ChlF to infer the plant physiological
status, improving the understanding of the health↔ stress status dynamics of plants in agricultural
and environmental studies [3]. Recent studies successfully used ChlF as a proxy for water stress [4],
leaf nitrogen [5], nutrient status [6], biomass determination [7], and gross primary production (GPP) [8].
The authors of [9] summarize the main physiological processes, such those related to photo-protection,
that might be affected by specific ChlF drivers at ecological and temporal scales.

Several options are available for the assessment of ChlF, such as the light induced fluorescence
transient (LIFT) active sensing method, which provides accurate ChlF field estimations especially
useful in the context of high-throughput phenotyping field experiments [10]. However, this proximal
technique is not viable for open field studies, as it is only suitable for close range observations. Large
scale monitoring becomes feasible with the passive sensing of solar induced ChlF (SIF) [9] on the basis
of hyperspectral techniques using spectroradiometers, e.g., on airborne and orbital platforms [11].
SIF can be quantitatively obtained throughout spectral measurements by the Oxygen-A (O2-A, 760 nm)
and Oxygen-B (O2-B, 687 nm) absorption features of the atmosphere, where the ratio between the ChlF
signal and the reflected radiance is higher [12] due to the absorption of the incoming irradiance (>90%
in O2-A) [2,9]. SIF is considered the most direct remote sensing signal to infer the actual functional
state of the photosynthetic apparatus and its dynamics at leaf, canopy, ecosystem, or even global scale.
However, the SIF–photosynthesis relationship is influenced by several factors, including environmental
conditions, structural traits, stress effects, and re-absorption processes by chlorophyll [9]. Hence,
ancillary information is needed to interpret fluorescence changes and link them to variations in the
photosynthetic efficiency. Moreover, an accurate retrieval of SIF is crucial to understand photosynthesis
and its dynamics [13]. The three main SIF retrieval methods are: the Fraunhofer Lines Depth (FLD) [14],
the spectral fitting methods (SFM) [15], and the singular vector decomposition (SVD) [16].

The relatively low intensity of the ChlF signal (<1%–5% of the reflected NIR radiation) [2]
makes the retrieval of SIF challenging, and numerous studies tried to address this. Satellite missions,
for example the Orbiting Carbon Observatory-2 (OCO-2), the Gases Observing Satellite (GOSAT),
and the Global Ozone Monitoring Experiment-2 (GOME-2) were used to retrieve SIF for the assessment
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of physiological parameters like carbon fixation [17,18]. Other missions such as the Scanning Imaging
Absorption Spectrometer for Atmospheric Cartography (SCIMACHY), the Tropospheric Monitoring
Instrument (TROPOMI), and the Exploratory Satellite for Atmospheric CO2 (TanSat) have been used
for similar purposes [19]. Airborne SIF estimations are also being explored by means of the HyPlant
sensor: a system composed by two spectroradiometers covering the 400–2500 nm and 670–780 nm
spectral ranges [20]. During the last years, HyPlant data has been the subject of a number of preliminary
studies [21–23] related to the FLuorescence EXplorer (FLEX) mission of the European Space Agency
(ESA) [24]. The first validated HyPlant maps were published in 2015, where contrasting SIF values
among crops were found and attributed to differences in the photosynthetic apparatus activity [25].
Further studies reported the relation between HyPlant-derived SIF information and GPP [26]. Moreover,
Tagliabue et al. [8] recently generated GPP maps over a forest area based on SIF retrieved from HyPlant
imagery. They found significant correlations among SIF, GPP and absorbed photosynthetically active
radiation in a range of R2 = 0.43–0.46 (p < 0.001).

The interpretation and validation of space-borne and airborne SIF retrievals rely on the comparison
with field measurements [27]. Yet, there is a scaling difference between these levels of observation
that could possibly be addressed by unmanned aerial systems (UAS) [28] due to their intermediate
sensor-surface distance. In a wide review of the existing remote sensing studies to retrieve top-of-canopy
SIF, the authors of [29] commented about the lack of literature about UAS-based developments, and the
lack of systematic protocols for data processing leading to uncertainties. Zarco-Tejada et al. [30]
simulated the effect of aggregated reflectance on satellite imagery by decreasing the pixel size of low
altitude hyperspectral data. These authors found that the correlation between key physiological traits,
specifically stomatal conductance and ChlF, was reduced from R2 = 0.69 (p < 0.01) to R2 = 0.38 (p < 0.05)
when using the original UAS imagery and the decreased spatial resolution image, respectively. In a
similar approach, in the study of [31] they flew up to 500 m above ground level (AGL) to simulate
satellite-like conditions for SIF retrieval, but only preliminary results were presented without a deeper
insight in the high altitude results.

Contrary to UAS based imaging sensors, the technical feasibility for field measurements of
non-imaging spectrometers [32], combined with their higher signal to noise ratio (SNR) and higher
spectral and dynamic resolutions (allowing quantitative ChlF retrievals), as well as the reduced size and
energy consumption encouraged employing these systems on UAS for SIF retrieval [33]. This concept
has been in development for the past eight years, and notably in the last three to five years, it has been
materialized in UAS models and prototypes leading to encouraging results. Nevertheless, further
investigations are necessary until the point of a full operational UAS for SIF retrieval is reached. Thus,
the aim of the present manuscript is to communicate the state of the art and future challenges in the
development of UAS-based methods for SIF.

The manuscript is organized in four sections. Section 2 presents an overview of previous efforts using
UAS-mounted spectroradiometers for reflectance measurements. In Section 3, the main three projects for
UAS-based retrieval of SIF are presented: ‘Piccolo Doppio’ [34,35], ‘AirSIF’ [36], and ‘FloXPlane’ [37].
Section 4 is dedicated to a discussion about remaining challenges and open research questions.

2. Previous Efforts with UAS-Mounted Spectroradiometers for Reflectance Measurements

Ground based spectroradiometer measurements can be carried out relatively easily following
standard protocols for setup, calibration, and data storage. When the instrument is mounted on an
aerial platform, the accurate footprint (defined as the sampled Earth surface area from which radiance is
received) geolocation on the ground, and the measurement of ambient light changes during the flight
become the main challenges, which have been addressed in previous studies from different perspectives:

(a) Burkart et al. [38] calculated reflectance based on synchronized measurements from two, one
on-board and one on-ground, equally configured and cross calibrated STS micro-spectroradiometers
(STS Series Spectrometers, Ocean Optics, Dunedin, Florida, USA) under the same environmental
conditions. In this case, the radiometric calibration was performed indirectly from comparisons
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between STS and an Analytical Spectral Device (ASD) FieldSpec 4 (Analytical Spectral Devices,
Inc., Boulder, Colorado, USA) calibrated spectroradiometer. Results proved the high precision of
the reasonably priced STS measurements, notwithstanding a second order effect was detected
influencing NIR readings. The 338–412 nm stray light interfered with bands within 676–823 nm,
especially in the O2-A band. Consequently, the authors suggested additional studies for STS-based
SIF retrieval. Current investigations are focused on the use of STS micro-spectroradiometers,
not for SIF measurements, but for the assessment of reflectance factors as a complementary (canopy
scale) data source to leaf level spectral information acquired with an ASD spectroradiometer.
The system, from the Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab),
included a real time optimization of the integration time, seeking to maximize signal independently
of target brightness or changes in illumination. This feature was relevant considering the low
signal-to-noise ratio of the STS spectrometers, and the variability of surface reflectance factors in
heterogeneous Mediterranean tree-grass ecosystems, where bright dry grass is mixed with dark
tree canopies during summer [39].

(b) Garzonio et al. [40] realized downwelling irradiance measurements with a USB4000 spectroradiometer
(Ocean Optics, Dunedin, Florida, USA) through linear interpolation of two measurements of
the radiance reflected by a reference tarp, and the use of a second on-ground hand held ASD
FieldSpec measuring a Lambertian surface (Spectralon®) as reference (both spectroradiometers
were synchronized). The robust radiometric and spectral calibration of the instruments, despite
not being temperature stabilized (e.g., the STS and the USB4000), permitted accurate radiance
measurements especially at O2-A. Both approaches present a relative root mean square error
lower than 10% compared with ground information.

3. Currently Operational UAS Systems for SIF Retrieval

3.1. “Piccolo-Doppio”—A Dual-Field of View (FOV) Dual Spectrometer System

Remote sensing protocols for accurate SIF retrieval, based on high spectral resolution data at
the oxygen absorption features, require the sunlight irradiance (downwelling) and surface energy
emissions (upwelling) being simultaneously measured. These measurements generally mismatch in
time in a range of multiple seconds, thus causing uncertainties in the SIF estimation. To overcome
this, Mac Arthur et al. [34] split the fore optic path into a QEPro spectroradiometer (Ocean Optics,
Dunedin, Florida, USA) aiming at a dual FOV system as proposed by [41]. The sensor measures in
the 650–800 nm spectral range at a resolution of 0.15 nm, with a full width at half maximum (FWHM)
between 0.31 and 0.35 nm. The SNR, dynamic range, and integration times are: 1000:1, 8.5 × 104:1,
and up to 60 min, respectively. The detector has 1048 × 64 pixels (two-dimensional) with columns
summed to give increased dynamic range (Table 1). The system, named Piccolo-Doppio, is capable to
perform upwelling and downwelling (cosine error <2%) measurements almost simultaneously (≈50 ms
difference between each measurement), diminishing reported uncertainties in field readings [42].
Moreover, the capability to work with two spectroradiometers (with a double bifurcated fiber optic
assembly) differentiates the Piccolo-Doppio from some other UAS-based methods, since it allows
synchronized Visible and NIR (VNIR; 400–950 nm) and the SIF (640–800 nm) measurements using the
same fore optic for upwelling and the same fore optic for downwelling readings. Thus, any VNIR
index, e.g., the photochemical reflectance index (PRI), can be derived together with SIF. As a drawback,
light transmittance is reduced in one channel (either upwelling or downwelling) as fibers of two
different diameters have been used which increases integration times and reduces SNR of the channel
with the smaller diameter fiber. The use of one spectrometer, rather than two with independent optical
paths, is necessary (i) to avoid the interpolation of one wavelength scale to the other (which might
lead to loose detail in particular across the O2 absorption features); and (ii) to ensure the radiometric
calibration is constant for both up and downwelling measurements.
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Table 1. Summary of the main characteristics of the spectroradiometer and UAS utilized for each project.

Platform Spectroradiometer Additional Components Unmanned Aerial System (UAS) Highlights

Piccolo-Doppio

QEPro (Ocean
Optics, Inc., USA)

Dimensions 182 × 110 × 47 mm Radio control for data
transferring Custom

hexacopter
Tarot T910 frame KDE 4213
motors pixhawk autopilot

Can be used with two
spectroradiometers

Spectral range (nm) 650–800 Battery Lithium Polymer
14.7 V, 1 A Two independent channels

Approximate
spectral interval
(nm)

0.15
Originally a raspberry Pi
Model A. Currently
updated to Pi3

Custom
quadcopter

T-motor U8 100 kv motors
Pixhawk autopilot
Based on a Gryphon
dynamics frame

Dual FOV for NIR reflectance
and SIF
(O2-A/O2-B)

FWHM (nm)
0.31 (5 µm optical
slit)–0.35 (10 µm
optical slit)

RTK or PPK correction

DJI Matrice
600 A3 Pro

Dimensions: 1.67 × 1.52 × 0.75 m
Upwelling and downwelling
measurements near
simultaneously

Digital range
(analogue to digital
converter; bit)

18 Payload 6 kg (16 min hovering) Etaloning effect correction.

SNR 1000:1 take-off weight 15 kg Feasible installation on aerial and
ground based platforms

Dynamic range 8.5 × 104:1
Vertical and horizontal hovering
accuracy 0.5 m and 1.5 m

Integration time up to 60 min Vertical take-off and landing DJI GNS- RTK system
(3 GPS antenna)Has been

tested with:
NIRQuest, QEPro, Flame, HR4000
and Maya 3 GNSS antennas and IMU’s

AirSIF
QEPro (Ocean
Optics, Inc., USA)

Dimensions 182 × 110 × 47 mm Dual GNSS antenna

DJI Matrice
600

Dimensions: 1.67 × 1.52 0.75 m Adaption of the two independent
channels system

Spectral range (nm) 500–870 IMU Payload 7 kg
Characterization of cosine
corrector homogeneity and
linearity

Approximate
spectral interval
(nm)

0.37 Grasshopper 3 machine
vision camera take-off weight 15 kg

Upwelling and downwelling
measurements near
simultaneously

FWHM (nm) 0.80 RTK correction Vertical and horizontal hovering
accuracy 0.5 m and 1.5 m

NIR reflectance and SIF
(O2-A/O2-B)

Digital range (bit) 18 Average flight speed: 2 m/s Etaloning effect correction

SNR 1000:1 Vertical take-off and landing Dual GNSS antennae for accurate
georeferencing in post processing

Dynamic range 8.5 × 104:1
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Table 1. Cont.

Platform Spectroradiometer Additional Components Unmanned Aerial System (UAS) Highlights

AirFloX/
FloxPlane

QEPro (Ocean
Optics, Inc., USA)

Dimensions 182 × 110 × 47 mm Data acquisition module

FloXPlane:
large fixed
wing

Wingspan 4.40 m

The QEPro is integrated with a
large but light UAS capable to
elevate several kilometers with
one spectrometer coupled

Spectral range (nm) 650–800 Length 3.32 m

Approximate
spectral
interval (nm)

0.17 Independent battery
management take-off weight 24 kg

FWHM (nm) 0.30 Stabilizing gimbal Payload 2.5 kg

Digital range (bit) GPS times stamps for
synchronizing

Battery weight 9 kg

SNR 1000:1 Average cruise speed: 10 m/s Single spot constant monitoring

Dynamic range 8.5 × 104:1
- Endurance: 1.5 h normal cruise
flight. High altitude 40 min.

Characterize SIF retrieved at very
high altitude for a closer
understanding of satellite-based
estimations

Runway length of about 10 m for
start and landing.
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Figure 1 summarizes the main steps to process Piccolo-Doppio data, from the extraction of
JavaScript Object Notation (JSON) files into MATLAB® (Mathworks, Field Spectroscopy Facility Post
Processing Toolbox) [43] to the multiplication of the radiance (or irradiance) by the non-linearity
corrected, the normalized, and the dark current corrected values per pixel for each spectroradiometer
and optical direction. Currently, the data processing workflow and codes are updated to Python3.
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Figure 1. Piccolo-Doppio data processing workflow to obtain radiance. In step 2, an analogue data
processing flow was developed in Python3.

Alongside the software solutions, the authors worked on hardware developments, e.g., the design
of the fore optic and fiber optic assembly in order to maximize the light transmission, thus achieving
integration times of 50–75 ms at VNIR, and 500–1500 ms at SIF wavelengths under clear-sky conditions
in northern Europe (when the spectroradiometer’s maximum dynamic range is utilized). Nonetheless,
the QEPro is prone to the etaloning effect caused by the interference of the light reflected in the
boundaries of its thinned back-illuminated charge coupled device [42] detector, consequently producing
wavy-aspect outputs. Founded on the statements of the instrument’s near-linear response to light
intensity (when the generic non-linearity correction of the instrument is applied to the data in post
processing) plus the etaloning stationarity in respect to the wavelength, [34] carried out laboratory
experiments and presented two post-processing techniques for the etaloning correction for any system
using QEPro spectrometers:

(i) ‘By reference’: employing etaloning correction factors obtained from the division between the
measured spectra of a calibrated light source and the known outputs per wavelength. The factors
were applied to tungsten halogen readings at 20 levels of intensity (Figure 2a). The instrument
response was then convolved with the respective spectral measurements to obtain the spectrum
with the etaloning effect corrected. A variance of ±0.7% was detected (Figure 2b) and linked to
the instrument non-perfect linear response.

(ii) ‘By curve-fitting and residual interpolation’: using correction coefficients obtained from the
rounded residuals between actual and spline-smoothed reflectance at 17 levels of intensity of
a tungsten halogen light source. A validation test performed with three additional levels of
intensity demonstrated the efficiency of the method by reproducing a smooth spectrum (Figure 2c).
Furthermore, the residuals of measured wavelengths were interpolated to enable the etaloning
correction at unassessed ranges. The results obtained, differed by no more than 10 raw digital
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counts (DN) from the etaloning corrected spectra (Figure 2d), hence demonstrating higher
performance in the correction of the effect compared with the ‘referencing’ method.
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Figure 2. (a) Uncorrected spectral measurements of 20 light intensity levels of the tungsten
halogen calibrated light and (b) their respective ‘by-reference’ corrected wavelengths. (c) Presents the
‘by curve-fitting and residual interpolation’ corrected spectra of the three curves highlighted in (a) with
the same colors, and the detailed example of corrected vs. uncorrected instrument response is shown
in (d) [34].

Mac Arthur et al. [34] demonstrated a feasible route to solve the discrepancies in time between
surface radiance and solar irradiance wavelengths collected from individual spectroradiometers.
The authors clarified that the application of both methods for etaloning correction under field
conditions is challenging and will necessitate to push the spectroradiometer dynamic range to the
maximum. Later, the authors of [33] reported the feasibility to mount the Piccolo-Doppio onto the
UAS DJI Matrice 600 with an interchangeable gimbal where the spectroradiometer could be installed
together with an RGB or thermal camera (Figure 3a). The Piccolo-Doppio design was further used
by [31] who recorded information at several altitudes (up to 500 m) and time points confirming the
viability of the Piccolo-Doppio system to be mounted on aerial platforms. However, at the time of the
present manuscript publication the authors had not completed the data processing.

Additionally, a Piccolo-Doppio was also installed on a DJI Matrice 600 Pro [44] to monitor SIF
in a mature oak woodland (UK) over a 30 m diameter free air CO2 enrichment experiment [45].
A significant correlation of R2 = 0.8821 (p < 0.01; Figure 3b) was found between UAS-based SIF and the
incoming radiation, suggesting reliable variations of the SIF data retrieved with this system especially
in a context where other approaches (e.g., eddy covariance) are not appropriate due to the scale of the
treatments. Additionally, SIF information was useful to identify treatment effects and its relationship
with environmental drivers.

Furthermore, the spectral calibration and characterization of three spectroradiometers using a
Piccolo-Doppio-like system design could be analyzed [46] by the implementation of two methodologies,
using Ar and Ne lamps or a double monochromator respectively. The versatility of Piccolo-Doppio
makes it practical to be used even on a ground platform mounted on a tractor, as demonstrated by [47]
who estimated soy bean populations on early vegetative states under changing atmospheric conditions.
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Figure 3. (a) Instrument presented by [33] and used by [31,44], highlighting the position of the
solar induced ChlF (SIF) QEPro, downwelling and upwelling fore optics and VNIR QEPro (source:
Dr. Andrew Revill, BBSRC/NERC ATEC project at University of Edinburgh-GeoSciences); and (b) the
relationship between incoming radiation and SIF under ambient and elevated [CO2] in a mature oak
forest, measured at the BIFoR FACE site in the UK.

3.2. “AirSIF”—A UAS-Based Spectroradiometer

The AirSIF platform (Figure 4a) shares the Piccolo-Doppio concept of splitting the optical path
but using a single spectroradiometer (500–870 nm spectral range at an interval of 0.37 nm, with a
FWHM of 0.8 nm), for collecting real time downwelling and upwelling radiance. AirSIF includes a
dual global navigation satellite system (GNSS) antenna. Furthermore, in [36] the authors implemented
the etaloning effect correction suggested by [34]. Additionally, they retrieved the corrected zenith angle
between sun and cosine corrector (Ocean Optics CC-3), and the fore optic measuring downwelling
radiance, depending on sun position and inclination of the cosine corrector during the UAS flight [28].
This information was computed from the platform pitch, roll and yaw obtained from an inertial
measurement unit (IMU) mounted next to the cosine corrector. Cosine corrector measurements were
not influenced by the azimuth angle, but sun zenith angles of >10◦ resulted in a significant deviation
from the expected cosine response of the cosine corrector. Common flight conditions led to platform
tilt angles of 6◦ maximum. In order to correct the uncertainty caused by the irradiance underestimation
of the cosine corrector, the authors of [28] proposed to estimate a corrected zenith angle based on the
dot product principle accounting for the two vectors involved: the vectors between cosine sensor and
sun and the cosine corrector pointing direction. With the implementation of this function mean and
maximum differences of 1.7% and 3.2% from the original radiance measurements were obtained.

The latest results presented in March 2019 by [48] at the International Network on Remote Sensing
of Terrestrial and Aquatic Fluorescence conference, reported the results of a comparison between
AirSIF-derived spectra measured at 8 m AGL over barley experiment plots versus ground-based
SIF retrieved with a high-resolution references system, the Fluorescence Box (Flox, JB Hyperspectral
Devices, Düsseldorf, Germany) [37] mounted on a field-bike (Figure 4b). The results are visualized in a
map of spatially explicit and geolocated AirSIF footprints with their respective O2-A SIF ranges at
edge and middle sampled plots overlaid over an orthophoto derived from UAS imagery (Figure 4c).
Flox footprints were estimated as round shapes, where the size was estimated from sensor height
above canopy according the 25◦ FOV of the Flox instrument. The study had four main shortcomings:
(i) the spatial misalignment of the footprints between repeated UAS flights, (ii) the lack of accurate
geolocation of Flox ground measurements, (iii) the difference in footprint size between AirSIF and
Flox (0.5–2.5 m2), and (iv) the resulting significant difference between UAS- and Flox-based SIF
measurements. The accuracy of the footprint determination of the AirSIF platform was analyzed in a
recent study being ±15 cm for 10 m AGL height [49].
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Figure 4. (a) AirSIF system components, (b) field bike used for ground Flox measurements, and (c)
footprints of the flight at 12:00 local time with their respective O2-A SIF at edge (blue) and middle (red)
sampled plots over the orthophoto derived from UAS photogrammetry [49].

An initial test was carried out by comparing a single AirSIF flight with Flox observations from
the field bike. The measurements were collected at the Campus Klein-Altendorf, an agricultural
research station affiliated to the Agricultural Faculty of the University of Bonn (Germany). In total,
55 observations over nine 3 × 5 m barley plots were collected, three per plot by the Flox instrument,
and between one and four per plot by AirSIF at 10:45–12:00 (Flox) and 12:00–12:15 (AirSIF), respectively.
The results showed a link between the SIF retrieved from both platforms, which was stronger but
negative for UAS footprints located at the plot edge (Figure 5a). A paired t-test showed no significant
differences between the mean SIF retrieved from UAS and Flox. Moreover, there seems to be an
underestimation of ≈13% with UAS-based measurements (Figure 5b).

The implementation of a dual GNSS antenna system [50], the use of an IMU in the correct position,
and the appropriate flight and sensor configurations [51] were found crucial to acquire the highest
accuracy in the platform pose characterization and footprint localization for the improvement of
SIF estimates, especially over small experimental plots like the ones presented here. Consequently,
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the authors of [52] published the results of research concerning boresight (IMU-spectroradiometer-
camera misalignment) and lever arm (GNSS antenna-spectroradiometer offset) correction methods.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 
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SIF measurements. Flox footprints were always located at the center of the plots, and UAS footprints
were at the middle and edge of the plots.

3.3. “AirFloX” on Board of the “FloXPlane”—Atmospheric Interference on SIF Retrieval Across a Multiple
Kilometer Air Column

The AirFloX is the lighter and simplified version of the Flox system manufactured by JB
Hypersectral Devices [53], and up to date the only existing commercially available instrument
for the continuous long-term top of canopy SIF measurements. Whilst FloX design, reported in [54],
relies on the use of two channels to collect nearly simultaneously upwelling and downwelling at sensor
radiance, AirFloX is designed to only acquire data collected by one channel (downward looking fiber),
making it more similar, in a conceptual approach, to an image sensor. Due to the distance from the
canopy at which the sensor is expected to fly, up to 4 km, the upwelling at sensor radiance is expected
to be biased by atmospheric absorption, thus not easily used for SIF retrieval. The fluorescence retrieval
will be performed by applying a similar processing scheme as the one used in imaging sensors data
processing, e.g., HyPlant [20].

The investigations described here, alongside airborne (HyPlant) studies for SIF retrieval, contribute
to integrate into the bigger picture of the FLEX satellite mission expected to be launched in 2022 [55].
Within this context, one of the major challenges is to precisely understand the impact of large atmosphere
columns on a kilometer scale and their impact on SIF retrieval. Background studies started elucidating
this topic, as presented by [56], who showed that SIF is strongly influenced by the atmospheric
scattering and absorption, which in turn are defined by factors such as the surface pressure and
concentration of aerosols. In practice, the higher the sensor-surface distance, the larger the air column
above the targets [19], the stronger the scattering and the extinction of the signal in the atmosphere
due to the absorption by aerosols and oxygen molecules, respectively. Hence, at this multiple km
vertical scale, retrieving SIF becomes more challenging due to the need of increasing the accuracy of
the atmospheric correction.

Recently, researchers from JB Hyperspectral Devices developed a high altitude and light fixed wing
UAS, called ‘FloXPlane’ (Figure 6a), equipped with the AirFloX system (Figure 6b,c). The FloXPlane was
manufactured with two purposes: (i) sampling large areas suitable for satellite calibration/validation
(cal/val), and (ii) characterizing the surface radiance of one fixed spot at ground level across a multiple
kilometer (up to 4000 m) air column. Their goal is to measure the atmospheric absorption of the
upwelling SIF emission, considering that the majority of oxygen and aerosols are present in the
innermost atmosphere layers. This is achieved by a steep screw-like flight pattern, incorporating a
stabilizing gimbal, which ensures accurate pointing of the sensor to the target. A co-aligned camera
provides proof of the gimbal pointing accuracy and allows structure from motion processing for highly
accurate positioning of the sensor in 3D space. Using a fixed wing aircraft turned out to be mandatory
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for this mission, since it can provide enough range to reach 4 km and will sail down to ground
level. This concept ensures the necessary safety and fallback scenarios to achieve legal clearance into
public airspace.
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At the time of writing, the complex legislation process allowing the experimental UAS flights
in the controlled airspace has been successful. However, in this manuscript the results of previous
tests flying to a maximum altitude of 600 m AGL are shown. Further experiments with the AirFloX
system onboard a manned aircraft, a manned gas balloon, and a rotary wing DJI Matrice 600 have been
performed in 2018 and 2019. A focus of the medium-altitude vertical flights is the determination of
the change in the O2-A and O2-B absorption versus the distance from the target (i.e., flight altitude).
In fact, the change of absorption in these two bands is directly affecting the SIF estimates, therefore,
an accurate parametrization is a key factor for accurate SIF retrieval using flying platforms. Due to the
changing light conditions during flights, the absolute oxygen band depth value could lead to erroneous
results. Therefore, the relative band depth was calculated as reported in the following formula:

Band depth =
Lλout− Lλin

Lλout
(1)

where Lλout and Lλin are the wavelength of the shoulder and the deepest point of the oxygen absorption
band, respectively. Preliminary results reported in Figure 7 are promising. The O2-B and O2-A at
sensor radiance spectra (Figure 7a,b) show a stable spectral and radiometric behavior i.e., no spectral
shift caused by grating distortion due to air pressure is found.
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Figure 7. Zoom to the (a) O2-B and (b) O2-A at sensor radiance spectra of the first flight of the
FloX-Plane UAS [36].

As shown in Figure 8, the two flights performed were made on a 600 m vertical column. A pseudo
normalized difference vegetation index (NDVI; at sensor radiance based) was calculated showing that
the target was remaining the same during the whole ascending flight duration (bare soil). The invariant
target selection is a key point, since no confounding SIF emission is expected to alter the oxygen
band depth. Looking at the relative band depth change, an increase of 1% was found in the O2-B
band, whilst for O2-A results are less clear. Although the preliminary results are aligned with theory,
a stronger absorption takes place under a larger air column leading to SIF underestimations [57]. Thus,
the encouraging results obtained hitherto support the needs of more and repeated flights, covering a
wider range of atmospheric conditions (e.g., different solar zenith angle ranges, aerosol concentrations,
and air pressure conditions).
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Figure 8. Flight altitude, pseudo-NDVI, and O2-A and O2-B relative bands depth for the (a) first and
(b) second preliminary flights up to 600 m AGL. The first plots on each panel show the relation between
the time and the flight altitude.

3.4. Summary of the UAS-Based Methods Presented

The presented projects are summarized in Figure 9, where the main components of the
Piccolo-Doppio, AirSIF, and FloXPlane are displayed. The figure tracks the progress in development
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of UAS-based platforms for quantitative retrieval of SIF in physical units starting with the fiber
optic bifurcation of [34], who also conducted a valuable characterization of the etaloning effect,
and afterwards adapted by [35,36] who installed a similar-principle system on-board a UAS including
the implementation of an IMU and a dual GNSS antenna for a better pose characterization and cosine
corrector performance analysis. Researchers from [37] added the investigation of the atmospheric
influence on SIF retrieval under a 600 m air column.
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More systems may be under development, e.g., a platform called FluorSpec, not discussed here,
is currently being developed by researchers of the Geo-information Science and Remote Sensing
laboratory, at Wageningen Unversity and Research [58]. The core components of the system are the
QEPro spectrometer, an RGB camera, a GNSS, and a Laser rangefinder sensor, all boarded on a DJI
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S1000 octocopter. The spectrometer is configured with a split fiber, one channel for downwelling and
one for upwelling measurements, covering a spectral range from 630 to 800 nm, with an FWHM of
0.14 nm and a spectral sampling interval of 0.31 nm. The irradiance, radiance, and reflectance factors
at the top of UAS and canopy level can be derived after radiometric calibration and atmospheric
correction processing.

4. Remaining Challenges and Open Research Questions

Beyond the valuable advances achieved so far, several challenges are yet to be overcome and
several issues related to the UAS-based methods for SIF retrieval remain open. First, the sensitivity of
the cosine corrector to varying sun zenith angles, and the etaloning effect caused by the interfering of
the light reflected in the borders of the back-illuminated thinned charge coupled device add uncertainty
to SIF estimations. In addition, sensor calibration methods, data collection, and data processing
protocols need to be standardized and spectroradiometers need to be characterized [46] in order
to enable measurements from different instruments at diverse geographical locations and temporal
periods to be directly compared. The main features to be characterized are the FWHM as proposed
by [42], and the SNR, spectral sampling interval, and spectral shift, which were identified by [59] as
the most impacting characteristics on SIF retrieved with FLD methods. Besides, inherent issues of the
SIF retrieval must be considered, such as the higher variation and lower SNR generally obtained in
the O2-B, and the lack of required information to run an accurate correction to diminish the effect of
atmospheric interference.

Besides the sensor-associated issues, complementary studies should be conducted suggesting
ways to improve the FOV geolocation accuracy, and the spatio-temporal match between on-board and
proximal measurements of same targets. Indeed, robust validations of UAS-based SIF estimations are
up to now hindered by these spatio-temporal discrepancies of the two levels of information, since their
comparison is not fully convincing with differences of few meters and/or minutes. Some ideas have
been proposed to improve the spatio-temporal match between UAS-based and ground SIF retrievals
aiming at conclusive validations; for instance, in [40] the authors suggest to overlay the spectrometer
data with RGB imagery derived maps, while the authors of [51] recommend the use of real time
kinematic (RTK) correction for the geolocation of footprints, plus the implementation of lever arm and
boresight corrections [52].

Moreover, the precise characterization of the spectroradiometer footprint might also be achieved
with the support of automated ground platforms for SIF assessment, particularly those developed and
used in plant phenotyping. These instruments can be programmed to collect SIF data at specific points
with an accuracy of few seconds and centimeters, which consequently can be precisely aligned with
the moment and place of the UAS-based data points. Some ground platforms for SIF phenotyping can
be configured to collect information at specific sensor angles and AGL elevation, therefore they might
also be used for optimal UAS flight simulations with a precise pose characterization and footprint
spatio-temporal location, targeting to (i) elucidate the real maximum scope of UAS-based methods for
SIF retrieval, which is so far unclear, (ii) facilitate the robust validation of aerial retrievals, thus (iii)
allowing deeper analyses and understanding of the SIF estimated from low altitude hyperspectral data,
e.g., throughout the comparison of retrieval methods, and a thorough comprehension of the sensor
multi-angularity effect.

Furthermore, according to [60], the effect of the atmospheric conditions should be incorporated
into the retrieval throughout model-based approaches notwithstanding if the data is acquired at
proximal, airborne, or orbital level, which opens another query: would the accuracy of UAS-based SIF
retrievals be significantly increased by implementing new dedicated atmospheric correction methods
where current models are not easily adapted? In addition, the authors of [61] reported the impact of
the bidirectional reflectance distribution function (BRDF) on the canopy chlorophyll content estimation
from UAS hyperspectral imagery. The authors recommend the correction of the BRDF for reliable
and consistent estimations, as it accounts for the surface reflectance anisotropy and varying solar and
instrument-view angles. Although the authors of [61] used an imaging sensor, the same principle
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applies to the UAS-mounted point spectrometers [62] since the BRDF effect is inherent to remote
sensing information [63].

Pinto et al. [63] studied the SIF directionality according to the surface, inclination, and orientation
of leaves, as well as the sensor and sun angles. Nonetheless, the authors worked with single and static
measurements, therefore a full characterization of the BRDF was not possible due to the limited range
of illumination and viewing angles. In this respect, hypothetically, the implementation of a detailed
canopy slopes map computed from a UAS-derived crop surface model might contribute to upscale
and improve the results found by [63]. Moreover, considering that surface elevation differences of
0.50–1.50 m AGL (common crop canopy height range) represent 5%–15% of the sensor-surface distance
in low altitude (e.g., 10 m AGL) UAS flights, we can also hypothesize that the incorporation of a crop
surface model into the UAS-based methods for SIF assessment might help to better account for the
ChlF re-absorption effect. Accordingly, more scientific questions arise: does the implementation of
accurate surface elevation models significantly improve the quality of SIF estimations? Could a slope
map derived from a crop surface model represent the canopy architecture complexity? Might this be
useful for a full canopy BRDF characterization thus precise SIF retrievals from UAS-based methods?

5. Conclusions

The UAS-based retrieval of SIF with non-imaging spectroradiometers is possible and has been
demonstrated by a number of groups. Recent advances in the platform and instrument design contributed:

(i) The optical path bifurcation presented in the Piccolo-Doppio system for nearly simultaneous
upwelling and downwelling measurements with two spectroradiometers, allowing synchronized
VNIR and SIF measurements.

(ii) The implementation of a dual GNSS antenna system and IMU placed in the correct position,
alongside the appropriate flight and sensor configurations reported in the AirSIF project, for the
accurate pose characterization and footprint geolocation accuracies.

(iii) The development of the FloXPlane as a fixed wing UAS for very high altitude measurements,
which will provide crucial information to understand the impact of large atmosphere columns on
the retrieval of SIF.

Despite many important advances achieved by [34,36,37], UAS-based SIF observations
from non-imaging spectroradiometers still present uncertainties associated to the current sensor
characteristics and the spatio-temporal mismatching between aerial and ground measurements, mostly
caused by the footprint spatial extent and form and location dependency on the flying height and
pose geometry. The latest complicated the proper robust validation of aerial UAS-SIF measurements.
Consequently, more investigations are required addressing the accurate FOV size and location, along
with the spatio-temporal matching of UAS-based and ground SIF measurements of the same targets.
Complementary studies regarding the standardization of calibration methods and the characterization
of spectroradiometers and data processing workflows are required. Open research questions like
those related to the implementation of atmospheric correction, BRDF correction, and accurate surface
elevation models should be addressed in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

AGL Above ground level
ASD Analytical spectral device
BRDF Bidirectional reflectance distribution function
ChlF Chlorophyll fluorescence
DN Raw digital counts
ESA European Space Agency
FLD Fraunhofer Lines Depth
FLEX FLuorescence EXplorer
Flox Fluorescence box
FOV Field of view
FWHM Full Width at Half Maximum
GNSS Global navigation satellite system
GOME-2 Global Ozone Monitoring Experiment–2
GOSAT Gases Observing Satellite
GPP Gross primary production
IMU Inertial measurement unit
JSON JavaScript Object Notation
LIFT Light induced fluorescence
NDVI Normalized difference vegetation index
NIR Near infrared
O2-A Oxygen-A band
O2-B Oxygen-B band
OCO-2 Orbiting Carbon Observatory-2
PRI Photochemical reflectance index
RGB red-green-blue
SCIMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Cartography
SFM Spectral fitting method
SIF Solar induced chlorophyll fluorescence
SNR Signal to noise ratio
SpecLab Environmental Remote Sensing and Spectroscopy Laboratory
SVD Singular vector decomposition
TanSat Tropospheric Monitoring Instrument (TROPOMI) and the Exploratory Satellite for Atmospheric CO2
TRuStEE Training on Remote Sensing for Ecosystem Modelling
UAS Unmanned aerial systems
VNIR Visible and near-infrared
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6. Kalaji, H.M.; Bąba, M.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.;
Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in
rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [CrossRef]

7. Thoren, D.; Schmidhalter, W. Nitrogen status and biomass determination of oilseed rape by laser-induced
chlorophyll fluorescence. Eur. J. Agron. 2009, 30, 238–242. [CrossRef]

8. Tagliabue, G.; Panigada, C.; Dechant, B.; Baret, F.; Cogliati, S.; Colombo, R.; Migliavacca, M.; Rademske, P.;
Schickling, A.; Schüttemeyer, D.; et al. Exploring the spatial relationship between airborne-derived
red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem.
Remote Sens. Environ. 2019, 231, 1–19. [CrossRef]

9. Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; vanderTol, C.; Nedbal, L.; Goulas, Y.;
Pérez-Priego, O.; Damm, A.; Meroni, M.; et al. Remote sensing of solar-induced chlorophyll fluorescence
(SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 1–39. [CrossRef]

10. Muller, O.; Keller, B.; Zimmerman, L.; Jedmowski, C.; Kleits, E.; Pingle, V.; Acebron, K.; dos Santos, N.Z.;
Steier, A.; Freiwald, L.; et al. Field phenotyping and an example of proximal sensing of photosynthesis under
elevated CO2. IEEE IGARSS 2018, 8252–8254. [CrossRef]

11. Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.;
Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision
viticulture. Remote Sens. 2015, 7, 2971–2990. [CrossRef]

12. Liu, L.; Zhang, Y.; Wang, J.; Zhao, C. Detecting solar-induced chlorophyll fluorescence from field radiance
spectra based on the fraunhofer line principle. IEEE Trans. Geosci. Remote Sens. 2005, 43, 827–832. [CrossRef]

13. Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.;
Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing
applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [CrossRef] [PubMed]

14. Thesien, A.F. Detecting chlorophyll fluorescence from orbit: The fraunhofer line depth model. In From
Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial Ecosystems, 1st ed.; Muttiah, R.S., Ed.; Springer:
Dordrecht, The Netherlands, 2002; pp. 203–232. [CrossRef]

15. Cogliati, S.; Verhoef, W.; Kraft, S.; Sabater, N.; Alonso, L.; Vicent, J.; Moreno, J.; Drusch, M.; Colombo, R.
Retrieval of sun-induced fluorescence using advanced spectral fitting methods. Remote Sens. Environ. 2015,
169, 344–357. [CrossRef]

16. Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G.
Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements.
Remote Sens. Environ. 2012, 121, 236–251. [CrossRef]

17. Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of Solar-Induced
chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison,
and global monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [CrossRef]

18. Zhang, Y.; Xiao, X.; Zhang, Y.; Wolf, S.; Zhou, S.; Joiner, J.; Guanter, L.; Verma, M.; Sun, Y.; Yang, I.; et al. On
the relationship between sub-daily instantaneous and daily total gross primary production: Implications for
interpreting satellite-based SIF retrievals. Remote Sens. Environ. 2018, 205, 276–289. [CrossRef]

19. Ni, Z.; Lu, Q.; Huo, H.; Zhang, H. Estimation of chlorophyll fluorescence at different scales: A review. Sensors
2019, 19, 3000. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2009.05.003
http://dx.doi.org/10.1093/aob/mcy087
http://www.ncbi.nlm.nih.gov/pubmed/29873681
http://dx.doi.org/10.3390/rs10040604
http://dx.doi.org/10.3390/rs10081315
http://dx.doi.org/10.1007/s11120-017-0467-7
http://dx.doi.org/10.1016/j.eja.2008.12.001
http://dx.doi.org/10.1016/j.rse.2019.111272
http://dx.doi.org/10.1016/j.rse.2019.04.030
http://dx.doi.org/10.1109/IGARSS.2018.8517301
http://dx.doi.org/10.3390/rs70302971
http://dx.doi.org/10.1109/TGRS.2005.843320
http://dx.doi.org/10.1093/jxb/eru191
http://www.ncbi.nlm.nih.gov/pubmed/24868038
http://dx.doi.org/10.1007/978-94-017-1620-8_10
http://dx.doi.org/10.1016/j.rse.2015.08.022
http://dx.doi.org/10.1016/j.rse.2012.02.006
http://dx.doi.org/10.1016/j.rse.2018.02.016
http://dx.doi.org/10.1016/j.rse.2017.12.009
http://dx.doi.org/10.3390/s19133000


Remote Sens. 2020, 12, 1624 19 of 21

20. Siegmann, B.; Alonso, L.; Celesti, M.; Cogliati, S.; Colombo, R.; Damm, A.; Douglas, S.; Guanter, L.; Hanuš, J.;
Kataja, K.; et al. The high-performance airborne imaging spectrometer HyPlant—From raw images to
top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain.
Remote Sens. 2019, 11, 2760. [CrossRef]

21. Cogliati, S.; Colombo, R.; Celesti, M.; Tagliabue, G.; Rascher, U.; Schickling, A.; Rademske, P.; Alonso, L.;
Sabater, N.; Schuettemeyer, D.; et al. Red and far-red fluorescence emission retrieval from airborne high
resolution spectra collected by the hyplant-fluo sensor. IEEE IGARSS 2018, 3935–3938. [CrossRef]

22. Bandopadhyay, S.; Rastogi, A.; Juszczak, R.; Rademske, P.; Schickling, A.; Cogliati, S.; Julitta, T.; Mac Arthur, A.;
Hueni, A.; Tomelleri, E.; et al. Examination of Sun-induced Fluorescence (SIF) signal on heterogeneous
ecosystem platforms using ’HyPlant’. In Proceedings of the European Geosciences Union General Assembly
(EGU), Vienna, Austria, 8–13 April 2018.

23. Tagliabue, G.; Panigada, C.; Dechant, B.; Baret, F.; Cogliati, S.; Colombo, R.; Migliavacca, M.; Rademske, P.;
Schickling, A.; Schuettemeyer, D.; et al. Sun-Induced Fluorescence and photosynthesis estimation in a mixed
forest ecosystem using high resolution airborne imagery. In Proceedings of the American Geophysical Union,
Fall Meeting, Washington, DC, USA, 12–14 December 2018.

24. European Space Agency (ESA). Available online: https://earth.esa.int/web/guest/missions/esa-future-
missions/flex (accessed on 9 April 2020).

25. Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.;
Hanus, J.; et al. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging
spectrometer HyPlant. Glob. Change Biol. 2015, 21, 4673–4684. [CrossRef] [PubMed]

26. Wieneke, S.; Ahrends, H.; Damm, A.; Pinto, F.; Stadler, A.; Rossini, M.; Rascher, U. Airborne based
spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates
of gross primary productivity. Remote Sens. Environ. 2016, 184, 654–667. [CrossRef]

27. Ni, Z.; Liu, Z.; Li, Z.L.; Nerry, F.; Huo, H.; Sun, R.; Yang, P.; Zhang, W. Investigation of atmospheric effects
on retrieval of Sun-Induced Fluorescence using hyperspectral imager. Sensors 2016, 16, 480. [CrossRef]
[PubMed]

28. Bendig, J.; Gautam, D.; Malenovský, Z.; Lucieer, A. Influence of cosine corrector and uas platform dynamics
on airborne spectral irradiance measurements. IEEE IGARSS 2018, 8822–8825. [CrossRef]

29. Bandopadhyay, S.; Rastogi, A.; Juszczak, R. Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) studies
from ground, UAV, airborne to spaceborne observations. Sensors 2020, 20, 1144. [CrossRef]

30. Zarco-Tejada, J.P.; Catalina, A.; González, M.R.; Martín, P. Relationships between net photosynthesis and
steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens. Environ.
2013, 136, 247–258. [CrossRef]

31. Atherton, J.; Mac Arthur, A.; Hakala, T.; Maseyk, K.; Robinson, I.; Liu, W.; Honkavaara, E.; Porcar-Castell, A.
Drone measurements of solar-induced chlorophyll fluorescence acquired with a low-weight DFOV
spectrometer system. IEEE IGARSS 2018, 8834–8836. [CrossRef]

32. Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N. Progress in field spectroscopy.
Remote Sens. Environ. 2009, 113, 92–109. [CrossRef]

33. Mac Arthur, A.; Robinson, I. A critique of field spectroscopy and the challenges and opportunities it presents
for remote sensing for agriculture, ecosystems, and hydrology. In Proceedings of the SPIE 9637 Remote
Sensing for Agriculture, Ecosystems, and Hydrology XVII, Toulouse, France, 14 October 2015. [CrossRef]

34. Mac Arthur, A.; Robinson, I.; Rossini, M.; Davis, N.; MacDonald, K. A dual-field-of-view spectrometer system
for reflectance and fluorescence measurements (Piccolo Doppio) and correction of etaloning. In Proceedings
of the 5th International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, France, 22–24 April
2014; Available online: https://www.research.ed.ac.uk/portal/files/17385047/A_DFOV_spectrometer_system_
for_reflectance_and_fluorescence_Piccolo.pdf (accessed on 9 April 2020).

35. Mac Arthur, A.; Robinson, I.; Hagdorn, M.; Wood, J.; Kershaw, R.; Taylor, R. Piccolo spectrometer system
for reflectance and fluorescence measurement from mobile and fixed platforms. In Proceedings of the
Innovative Optical Tools for Proximal Sensing of Ecophysiological Processes (OPTIMISE), Vienna, Austria,
23–28 April 2017.

36. Bendig, J.; Malenovský, Z.; Gautam, D.; Lucieer, A. Solar-induced chlorophyll fluorescence measured
from an unmanned aircraft system—Sensor etaloning and platform motion correction. IEEE Trans. Geosci.
Remote Sens. 2019. [CrossRef]

http://dx.doi.org/10.3390/rs11232760
http://dx.doi.org/10.1109/IGARSS.2018.8517758
https://earth.esa.int/web/guest/missions/esa-future-missions/flex
https://earth.esa.int/web/guest/missions/esa-future-missions/flex
http://dx.doi.org/10.1111/gcb.13017
http://www.ncbi.nlm.nih.gov/pubmed/26146813
http://dx.doi.org/10.1016/j.rse.2016.07.025
http://dx.doi.org/10.3390/s16040480
http://www.ncbi.nlm.nih.gov/pubmed/27058542
http://dx.doi.org/10.1109/IGARSS.2018.8518864
http://dx.doi.org/10.3390/s20041144
http://dx.doi.org/10.1016/j.rse.2013.05.011
http://dx.doi.org/10.1109/IGARSS.2018.8517474
http://dx.doi.org/10.1016/j.rse.2007.08.001
http://dx.doi.org/10.1117/12.2201046
https://www.research.ed.ac.uk/portal/files/17385047/A_DFOV_spectrometer_system_for_reflectance_and_fluorescence_Piccolo.pdf
https://www.research.ed.ac.uk/portal/files/17385047/A_DFOV_spectrometer_system_for_reflectance_and_fluorescence_Piccolo.pdf
http://dx.doi.org/10.1109/TGRS.2019.2956194


Remote Sens. 2020, 12, 1624 20 of 21

37. JB Hyperspectral Devices. Available online: https://www.jb-hyperspectral.com/ (accessed on 7 July 2019).
38. Burkart, A.; Cogliati, S.; Schickling, A.; Rascher, U. A novel UAV-based ultra-light weight spectrometer for

field spectroscopy. IEEE Sens. J. 2014, 14, 62–67. [CrossRef]
39. Becerra, J.; Martin, M.P.; Pacheco-Labrador, J.; Gonzalez-Cascon, R.; Melendo-Vega, J.R.; Angás, J. Chlorophyll

Estimation in Mediterranean Quercus ilex tree canopies with hyperspectral vegetation indices at leaf and
crown scales. In Proceedings of the IEEE YP Remote Sensing Conference, Aachen, Germany, 7–8 June 2018.

40. Garzonio, R.; Di Mauro, B.; Colombo, R.; Cogliati, S. Surface reflectance and sun-induced fluorescence
spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 2017, 9, 472. [CrossRef]

41. Cogliati, S.; Rossini, M.; Meroni, M.; Barducci, A.; Julitta, T.; Colombo, R. Unattended instruments
for ground-based hyperspectral measurements: Development and application for plant photosynthesis
monitoring. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco CA, USA,
5–9 December 2011.

42. Anderson, K.; Rossini, M.; Pacheco-Labrador, J.; Balzarolo, M.; Mac Arthur, A.; Fava, F.; Julitta, T.; Vescovo, L.
Inter-comparison of hemispherical conical reflectance factors (HCRF) measured with four fibre-based
spectrometers. Opt. Express 2013, 21, 605–617. [CrossRef] [PubMed]

43. Mathworks. Field Spectroscopy Facility Post Processing Toolbox—File Exchange—MATLAB Central.
Available online: https://uk.mathworks.com/matlabcentral/fileexchange/31547-field-spectroscopy-facility-
post-processing-toolbox (accessed on 9 April 2020).

44. Maseyk, K.; Atherton, J.; Thomas, R.; Wood, K.; Tausz-Posch, S.; Mac Arthur, A.; Porcar-Castell, A.; Tausz, M.
Investigating forest photosynthetic response to elevated CO2 using UAV-based measurements of Solar
Induced Fluorescence. IEEE IGARSS 2018, 8830–8833. [CrossRef]

45. Hart, K.M.; Curioni, G.; Blaen, P.; Harper, N.J.; Miles, P.; Lewin, K.F.; Nagy, J.; Bannister, E.J.; Cai, X.M.;
Thomas, R.M.; et al. Characteristics of free air carbon dioxide enrichment of a northern temperate mature
forest. Glob. Change Biol. 2019, 26, 1023–1037. [CrossRef] [PubMed]

46. Mihai, L.; Mac Arthur, A.; Hueni, A.; Robinson, I.; Sporea, D. Optimized spectrometers characterization
procedure for near ground Support of ESA FLEX Observations: Part 1 Spectral Calibration and
Characterization. Remote Sens. 2018, 10, 289. [CrossRef]

47. Herrmann, I.; Vosberg, S.K.; Townsend, P.A.; Conley, S.P. Spectral data collection by dual Field-of-View System
under Changing Atmospheric Conditions—A case study of estimating early season soybean populations.
Sensors 2019, 19, 457. [CrossRef]

48. Bendig, J.; Malenovský, Z.; Siegmann, B.; Rademske, P.; Krause, A.; Gruenhagen, L.; Koeing, S.; Prum, M.;
Gautam, D.; Rascher, U.; et al. UAS-based chlorophyll fluorescence measurements of barley canopies—Results
from FLEXsense 2019. In Proceedings of the International Network on Remote Sensing of Terrestrial and
Aquatic Fluorescence, Davos, Switzerland, 5–8 March 2019.

49. Gautam, D.; Lucieer, A.; Bendig, J.; Malenovský, Z. Footprint determination of a spectroradiometer mounted
on an unmanned aircraft system. IEEE Trans. Geosci. Remote Sens. 2019. [CrossRef]

50. Gautam, D.; Lucieer, A.; Malenovskz, Z.; Watson, C. Comparison of MEMS-Based and FOG-Based IMUs TO
Determine Sensor Pose on an Unmanned Aircraft System. J. Surv. Eng. 2017, 143. [CrossRef]

51. Gautam, D.; Watson, C.; Lucieer, A.; Malenovský, Z. Error Budget for Geolocation of Spectroradiometer
Point Observations from an Unmanned Aircraft System. Sensors 2018, 18, 3465. [CrossRef]

52. Gautam, D.; Lucieer, A.; Watson, C.; McCoull. Lever-arm and boresight correction, and field of view
determination of a spectroradiometer mounted on an unmanned aircraft system. ISPRS J. Photogramm.
Remote Sens. 2019, 155, 25–36. [CrossRef]

53. Julitta, T.; Burkart, A.; Colombo, R.; Rossini, M.; Schickling, A.; Migliavacca, M.; Cogliati, S.; Wutzler, T.;
Rascher, U. Accurate measurements of fluorescence in the O2A and O2B band using the FloX spectroscopy
system—Results and prospects. In Proceedings of the Potsdam GHG Flux Workshop: From Photosystems to
Ecosystems, Potsdam, Germany, 24–26 October 2017.

54. Cogliati, S.; Celesti, M.; Cesana, I.; Miglietta, F.; Genesio, L.; Julitta, T.; Schuettemeyer, D.; Drusch, M.;
Rascher, U.; Jurado, P.; et al. A spectral fitting algorithm to retrieve the fluorescence spectrum from canopy
radiance. Remote Sens. 2019, 11, 1840. [CrossRef]

55. Drusch, M.; Moreno, J.; Del Bello, U.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.; Miglietta, F.;
Mohammed, G.; et al. The FLuorescence EXplorer mission concept—ESA’s Earth Explorer 8. IEEE Trans.
Geosci. Remote Sens. 2018, 55, 1273–1284. [CrossRef]

https://www.jb-hyperspectral.com/
http://dx.doi.org/10.1109/JSEN.2013.2279720
http://dx.doi.org/10.3390/rs9050472
http://dx.doi.org/10.1364/OE.21.000605
http://www.ncbi.nlm.nih.gov/pubmed/23388953
https://uk.mathworks.com/matlabcentral/fileexchange/31547-field-spectroscopy-facility-post-processing-toolbox
https://uk.mathworks.com/matlabcentral/fileexchange/31547-field-spectroscopy-facility-post-processing-toolbox
http://dx.doi.org/10.1109/IGARSS.2018.8517348
http://dx.doi.org/10.1111/gcb.14786
http://www.ncbi.nlm.nih.gov/pubmed/31376229
http://dx.doi.org/10.3390/rs10020289
http://dx.doi.org/10.3390/s19030457
http://dx.doi.org/10.1109/TGRS.2019.2947703
http://dx.doi.org/10.1061/(ASCE)SU.1943-5428.0000225
http://dx.doi.org/10.3390/s18103465
http://dx.doi.org/10.1016/j.isprsjprs.2019.06.016
http://dx.doi.org/10.3390/rs11161840
http://dx.doi.org/10.1109/TGRS.2016.2621820


Remote Sens. 2020, 12, 1624 21 of 21

56. Damm, A.; Guanter, L.; Laurent, C.E.; Schaepman, M.E.; Schickling, A.; Rascher, U. FLD-based retrieval
of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data.
Remote Sens. Environ. 2014, 256–266. [CrossRef]

57. Sabater, N.; Vicent, J.; Alonso, L.; Verrelst, J.; Middleton, E.M.; Porcar-Castell, A.; Moreno, J. Compensation of
Oxygen transmittance effects for proximal sensing retrieval of canopy–leaving sun–induced chlorophyll
fluorescence. Remote Sens. 2018, 10, 1551. [CrossRef]

58. Wang, N.; Bartholomeus, H.; Kooistra, L.; Suomalainen, J.; Brede, B.; Novani, M.; Masiliunas, D.; Clevers, J.
Measuring temporal patterns of crop sun-induced chlorophyll fluorescence at canopy and plot scale.
In Proceedings of the 11th EARSeL SIG IS Workshop, Brno, Czech Republic, 6–8 February 2019.

59. Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact
of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence.
Remote Sens. Environ. 2011, 115, 1882–1892. [CrossRef]

60. Alonso, L.; Sabater, N.; Vicent, J.; Mihai, N.; Moreno, J. Atmospheric and instrumental effects on the
fluorescence remote sensing retrieval. IEEE IGARSS 2018. [CrossRef]

61. Li, D.; Zheng, H.; Xu, X.; Lu, N.; Yao, X.; Jiang, J.; Wang, X.; Tian, Z.; Zhu, Z.; Cao, W.; et al. BRDF effect
on the estimation of canopy chlorophyll content in paddy rice from UAV-based hyperspectral imagery.
IEEE IGARSS 2018, 6464–6467. [CrossRef]

62. Burkart, A.; Aasen, H.; Alonso, L.; Menz, G.; Bareth, G.; Rascher, U. Angular dependency of hyperspectral
measurements over wheat characterized by a novel UAV based goniometer. Remote Sens. 2015, 7, 725–746.
[CrossRef]

63. Pinto, F.; Müller-Linow, M.; Schickling, A.; Cendrero-Mateo, M.P.; Ballvora, A.; Rascher, U. Multiangular
observation of canopy sun-induced chlorophyll fluorescence by combining imaging spectroscopy and
stereoscopy. Remote Sens. 2017, 9, 415. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2014.03.009
http://dx.doi.org/10.3390/rs10101551
http://dx.doi.org/10.1016/j.rse.2011.03.011
http://dx.doi.org/10.1109/IGARSS.2018.8517895
http://dx.doi.org/10.1109/IGARSS.2018.8517684
http://dx.doi.org/10.3390/rs70100725
http://dx.doi.org/10.3390/rs9050415
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


49 
 

1.1.1 Second publication [Quiros-Vargas et al., in preparation] 

 

“Spatial relation between solar-induced chlorophyll fluorescence and plant 

available water in the root zone” 

  

 

 

 

 

 

 

 

 

 

 

Authors (country): 
 
J. Quiros-Vargas  (GE) 
Cosimo Brogi (GE) 
A. Damm  (CH) 
B. Siegmann  (GE) 
P. Redemske (GE) 
V. Burchard  (ES) 
Vera Krieger  (GE) 
Marius Schmidt (GE) 
Jan Hanuš  (CZ) 
L. Weihermueller (GE) 
Onno Mueller (GE) 
Uwe Rascher (GE) 

Aimed journal: Remote Sensing of 
Environment 
 
Status: In preparation 
 
Contribution of the doctorate candidate: 

 Conceptualization: 80% 

 Data analysis: 80% 

 Writing: 90% 

 Field work: 10% 

CLARIFICATION NOTE: in the original (f irst) 

version of the thesis (delivered to the University of 

Bonn in October 2022) this paper was reported as “ in 

revision at PNAS-Nexus”, however, the manuscript was 

rejected by the journal on December 2022.  

 

In the present thesis ’s re-print I  kept the same former 

version of the study. Nevertheless, i t  is worth 

mentioning that during 2023 the study was 

fundamentally revisited and updated, and the new 

version is aimed to be re-submitted, this t ime to 

Remote Sensing of Environment . 



This version of the study was under review at PNAS-Nexus until December 2022. An updated and extended 
version will be submitted to Remote Sensing of Environment 

 

Spatial relation between solar-induced chlorophyll 
fluorescence and plant available water in the root zone  
 
Juan Quiros-Vargas1,*, Cosimo Brogi2, Alexander Damm3,4, Bastian Siegmann1, Patrick 
Rademske1, Vicente Burchard-Levine5, Vera Krieger1, Marius Schmidt2, Jan Hanuš6,7, Lutz 
Weihermüller2, Onno Muller1, Uwe Rascher1 
 
1Institute of Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, 
Jülich, Germany, 52428; 2Institute of Bio- and Geosciences, Agrosphere (IBG-3), 
Forschungszentrum Jülich GmbH, Jülich, Germany, 52428; 3Department of Geography, 
University of Zurich, Zurich, Switzerland, CH-8057; 4Eawag, Swiss Federal Institute of Aquatic 
Science & Technology, Surface Waters – Research and Management, Dübendorf, Switzerland, 
CH-8600; 5Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), Spanish 
National Research Council (CSIC), Madrid, Spain; 6Global Change Research Institute of the 
Czech Academy of Sciences, Brno, Czech Republic, 603 00; 7Czech Technical University, 
Faculty of Civil Engineering, Department of Geomatics, Czech Republic 
 
*Corresponding author 
 
Email:  j.quiros@fz-juelich.de 
 
Author Contributions: J.Q-V, C.B., A.D., B.S., V.K., O.M., L.W. and U.R. designed research; 
J.Q-V and C.B. performed research; J.Q-V, C.B., P.R., V.B-L, M.S. and J.H. analyzed data; and 
J.Q-V, A.D., B.S. and U.R. wrote the paper. 
 
Classification: Biological sciences; agricultural sciences 
Keywords: fluorescence emission efficiency, mild water stress assessment, water management 
 
This PDF file includes: Main Text; Figures 1 to 3; Supplemental information figures S1 to S3 

Abstract 
The use of water in agricultural activities is huge, and alarmingly inefficient. Recent 
advances on the remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) 
opens the possibility for the development of new approaches to assess the water status 
of crops, since SIF is directly related to photosynthesis and thus to plant physiological 
responses to limitations in the water supply. In principle, the understanding given by SIF 
information about the spatial and temporal dynamics of crop water needs can be used to 
improve irrigation practices and therefore water use in agriculture. Nevertheless, this is 
still a young research line and there are multiple questions to be answered before SIF-
based irrigation practices can be implemented on the field. In this study we provide one 
further step in such direction by developing new knowledge concerning the effect of 
variable plant available water in the root zone (PAW) levels on the canopy SIF emission 
efficiency, or Ef. Based on data from three vegetation periods (2018, 2019 and 2020), we 
found a significant positive correlation between PAW and Ef in mildly water stressed fields, 
but no correlation in well-watered fields. Moreover, we found that SIF responded stronger 
and faster to low PAW compared to reflectance- and thermal-based information in the 
spatial and temporal domains, respectively. The spatial characterization of the Ef-PAW 
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relation herewith reported at high resolution (1 m pixel-1) lays the foundation for future SIF-
based precision irrigation studies. 

 

Significance Statement 
Agriculture is one of the most water-demanding and -wasting activities in times when 
global warming threaten to increase the risk of water scarcity. The early detection of water 
shortage in crops is currently of utmost importance to improve water use efficiency in 
agriculture. Developments in remote sensing (RS) of solar-induced chlorophyll 
fluorescence (SIF) opens the opportunity for new farm level approaches, due to the direct 
relation of SIF with plant physiological responses to early soil water shortage. In this 
context, we provide new insight on the spatial sensitivity of SIF to variations of plant 
available water in the root zone (PAW), serving as one step further towards the 
development of SIF-based precision irrigation techniques for a sustainable agricultural 
water use.  
 
 

Introduction 

Climate change and water wasting customs at domestic and industrial scales threaten to 
limit the access to freshwater for a large part of the population. Agriculture is the most 
water consuming sector (FAO, 2021) and one of the most inefficient activities using such 
resource as well. Sensitive and harmonized information of actual crop-water status is 
essential to make agricultural water use more sustainable, while remote sensing (RS) is 
particularly suitable for providing such data continuously over large crop areas. 
Nevertheless, widely used RS approaches based on canopy reflectance and derived 
vegetation indices (VIs) tend to represent interwoven sensitivities for evolving crop water 
stress caused by physiological, biochemical, and canopy structural responses that are 
difficult to disentangle (Damm et al., 2018). Moreover, results of thermal-based 
approaches are difficult to interpret, since canopy temperature can also vary due to 
external factors not related to limitations in the water supply, e.g., wind speed, air 
temperature, and humidity (Gerhards et al., 2019).  

Solar-induced chlorophyll fluorescence (SIF) is a low intensity light released from 
the photosynthetic apparatus between 600 to 800 nm with emission peaks in the red 
(SIFRed, 687 nm) and far-red light (SIFFar-red, 760 nm, used for all the calculations in this 
study and hereafter referred just as SIF; Mohammed et al., 2019; Meroni et al., 2009). 
Due to its direct link with photosynthesis (Guanter et al., 2014), and thus with plant 
physiological responses to limitations in the water supply (Jonard et al., 2020), SIF 
information has been reported as a suitable complement of reflectance- and temperature-
based RS approaches for crop water stress assessment. In particular, the sensitivity of 
SIF for subtle plant physiological reactions (Zeng et al., 2022) happening before changes 
in leaf temperature (Damm et al., 2022), orientation (Damm et al., 2018) or pigments 
content (Xu et al., 2018), suggest its potential use for the detection of initial effects of mild 
water stress at fine spatial (cm-m’s) and temporal (min-h’s) resolutions. 

The use of SIF information for operational crop water stress assessment is 
nevertheless not established yet, and it requires further investigations involving efforts 
from several research areas like remote sensing, plant physiology and soil science. The 
first fundamental questions to be answered are those related to the spatio-temporal 
variations of SIF emission in the course of gradually reducing water supply in natural field 
conditions. In  this sense, Shen et al. (2021) found SIF information to be more sensitive 
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than the normalized difference vegetation index (NDVI) to changes in the surface soil 
moisture at satellite (> 1km pixel-1) scale. Besides, using higher spatial resolution (~1 m 
pixel-1) data of one agricultural field, von Hebel et al. (2018) reported the significant relation 
between subsoil apparent electrical conductivity (related to soil physical properties) and 
airborne-based SIF. At a similar scale, Quiros et al. (2020) found a significant spatial 
match between varying SIF and qualitative soil units in an area where the NDVI data was 
homogeneous. More recently, Damm et al. (2022) assessed the temporal domain and 
could for the first time observe a short-term rise and a subsequent decline of SIF 
(theoretically known as ‘double response’) to evolving water stress with airborne data. 
Despite these meaningful advances, further studies at high spatiotemporal resolution are 
necessary to fill the knowledge gap concerning the SIF response of crops to varying water 
supply levels. 

In this study our goal was to (i) elucidate for the first time the spatial relation 
between SIF and PAW with high resolution (1 m pixel-1) datasets of sugar beet, potato, 
and winter wheat fields observed over three growing seasons (2018, 2019 and 2020), and 
characterized by different water supply conditions: mild water stress (non-irrigated fields 
without precipitation within two weeks before SIF data acquisition) and no water stress 
(e.g., artificial irrigation, precipitation). The analysis of mild water stress scenarios is of 
utmost importance, since it can help to improve our understanding of the dynamic relation 
between SIF and PAW, which can be the basis to further develop precision irrigation 
techniques. This could help farmers to detect water shortage effects early enough and 
initialize irrigation to avoid crop losses. Additionally, we also aimed to (ii) compare the 
response of SIF to varying PAW levels with the response observed from reflectance- and 
temperature-based data in one specific field.  

For a more detailed analysis, SIF data was further processed to represent the SIF 
emission efficiency (Ef), which accounts for the scattering of emitted SIF within the canopy 
and absorbed photosynthetically active radiation. Thus, we use Ef as the fraction of SIF 
actually linked to physiological processes, since it is expected to be more sensitive to 
changes in soil water supply. Ef was calculated using the fluorescence correction 
vegetation index (FCVI) as proposed by Yang et al. (2020). Ef data was then compared 
with PAW information, which represents the fraction of the gross soil water content that is 
actually available to be consumed by plants (Wong and Assen, 2006). High resolution 
PAW maps were derived from soil mapping techniques that combine hydrogeophysical 
measurements (i.e., electromagnetic induction (EMI) for the measurement of apparent 
electrical conductivity (ECa)) and direct soil sampling (Brogi et al., 2019) proved by Brogi 
et al. (2021) to be effective for this study area.  

This research was done within the frame of preparatory studies for the forthcoming 
fluorescence explorer (FLEX) mission of the European Space Agency (ESA; Drusch et 
al., 2017) planned to be launched in 2025.  
 
 

Results 

The Ef-PAW spatial relation for different crops (i.e., sugar beet, potato, and winter wheat), 
growing seasons (i.e., 2018-2020) and water supply conditions (i.e., mild water stress and 
no water stress) is presented graphically and numerically in Figs. 1 and 2, respectively. A 
distinction is made between fields located in the upper (UT) or lower (LT) terraces that 
shape the landscape of the study area, characterized by lower and higher PAW values, 
respectively. Absolute Ef values show great differences, with the lowest (~1x10-5 nm-1) and 
highest (>6x10-5 nm-1) values in a mild water stressed winter wheat and irrigated potato 
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fields, respectively. Higher Ef is observed in the zones with higher PAW as frequently 
present in the LT, which is more pronounced in winter wheat in 2018 and 2020 but not 
visible in 2019 probably due to an earlier planting date in that year (Fig. 2a-c). Remarkably, 
Ef of mild water stressed sugar beet fields significantly increases with higher levels of PAW 
in 2018 (Fig. 2d) and 2019 (Fig. 2e). Particularly, Ef values in (irrigated) potato fields 
remained nearly constant regardless of the spatial heterogeneity in PAW (Fig. 2g-i). 
Similarly, Ef remains mostly constant in all 2020 fields (Fig. 2c, f and i), which are 
considered as non-stressed due to the accumulation of 25 l m-2 of precipitation a few days 
before the airborne campaign. 
 

 
Figure 1. Solar-induced chlorophyll fluorescence emission efficiency (Ef; upper maps with thick 
boundaries) and plant available water in the root zone (PAW; lower maps with dashed boundaries) 
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maps of the non-irrigated winter wheat (a-c, grey charts) and sugar beet (d-f, red charts) fields, as 
well as irrigated potato (g-i, green charts) fields in 2018 (top row), 2019 (medium row) and 2020 
(bottom row) according to their location either in the upper (UT, gray) and lower (LT, back) terrace. 
Blue labels indicate the scenarios in 2020 where 25 l m-2 of precipitation were registered in the 
seven days prior to RS data acquisition. 

 
Figure 2. Solar-induced Chlorophyll Fluorescence Emission Efficiency (Ef) box-plotted with plant 
available water in the root zone (PAW) for the non-irrigated winter wheat (a-c, grey chart) and sugar 
beet (d-f, red chart) fields, as well as irrigated potato (g-i, green chart) fields in 2018 (top row), 2019 
(medium row) and 2020 (bottom row) according to their location either in the upper (UT, gray) or 
lower (LT, back) terrace. Blue labels indicate the scenarios in 2020 where 25 l m-2 of precipitation 
were registered in the seven days prior to RS data acquisition. ** and * represent significant 
relations at p < 0.01 and p < 0.05, respectively. 

 



This version of the study was under review at PNAS-Nexus until December 2022. An updated and extended 
version will be submitted to Remote Sensing of Environment 

 

 

Of particular interest is the relation of the SIF response to varying PAW levels 
compared to the response of reflectance-based (i.e., the enhanced vegetation index -EVI-
; Huete et al., 2002) and thermal-based (i.e., land surface temperature, LST) products. 
We contrasted the spatial response of morning SIF (Fig. 3a), LST (Fig. 3b) and EVI (Fig. 
3c), and afternoon SIF (Fig. 3d) and LST (Fig. 3e) across a decreasing PAW transect of 
147 m in length from X to X’ (Fig. 3f) in a non-irrigated winter wheat field located in the 
UT-LT transition area. The transect crosses fundamentally different soils in the UT-LT 
division, where the change of PAW is attributed to the presence of coarse alluvial 
depositions between the terraces. Here, alluvial and aeolian deposits are mixed due to 
natural depositional processes and anthropogenic management (Brogi et al.,2019). Along 
this transect, SIF starts decreasing close to the beginning of the lower PAW zone, which 
is about 45 m before the EVI did. Moreover, SIF yielded a stronger reduction (%Δ = -22%) 
compared to the reduction in EVI (%Δ = -5%; Fig. 3g). Remarkably, the stronger decrease 
in EVI matches with the area where plants suffer the most from low PAW, since most of 
the shallow soil has conserved its original alluvial characteristics (e.g., presence of rocks 
and sandy textures). To our knowledge, these results show for the first time evidence of 
the anticipated higher sensitivity of SIF to mild water stress in the spatial domain compared 
to the greenness-based EVI. A similar comparison done between morning (~10:30 h) and 
afternoon (~16:15 h) SIF and LST suggest a ~6 h earlier response of SIF to a lower PAW 

zone. In the morning, SIF showed a stronger change (%Δ = ∣22∣) compared with LST (%Δ 
= ∣5∣), while in the afternoon the difference is less pronounced (%Δ = ∣20∣ in SIF and %Δ 

= ∣13∣ in LST; Fig. 3h). Similarly as observed with the EVI, the LST data show the stronger 
decrease in soil zones with lower water retention capabilities. 
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Figure 3. Morning solar induced chlorophyll fluorescence (SIF; a), land surface temperature (LST; 
b) and enhanced vegetation index (EVI; c), and afternoon SIF (d) and LST (e) maps captured on 
June 23rd (2020) in a winter wheat field located in the border between the upper (UT) and lower 
(LT) terraces. A lower plant available water in the root zone (PAW; f) area is highlighted in all the 
maps with a dashed blue line. SIF, LST, EVI and PAW values across the X-X profile are presented 
in panels (g) and (h), with the respective change percentages (%Δ) in the lower PAW area. Vertical 
green, red and purple bars within (g) and (h) represent the approximate response start points of 
SIF, EVI and LST respectively. 

 
 

Discussion  

The great difference between the minimum and maximum absolute Ef values observed in 
mild water stressed winter wheat and not stressed potato fields, respectively, might be 
attributed to their contrasting phenological stages. While potato was at an early stage of 
development with accelerating metabolism, winter wheat was in an opposite situation 
already approaching senescence. Moreover, significant positive Ef-PAW relationships 
detected for mild water stress conditions in sugar beet can be explained by the time of SIF 
data acquisition in the seasonal and diurnal context. Considering the seasonal context, 
the strong Ef-PAW relationship is attributable to the early phenological stage of the crop 
with actively growing plants (Joiner et al., 2014). In those stages, the constant demand of 
resources makes plants more sensitive to even slight variations in water supply. 
Furthermore, the higher water demand of sugar beet (FAO 2012) might additionally 
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increase its sensitivity for decreasing PAW. Considering the diurnal context, SIF data were 
collected at ~10:30 h, a time when SIF tends to increase (Siegmann et al., 2021) alongside 
the photochemical activity (Pinto et al., 2016). Such a positive relation might indicate the 
greater photosynthetic rate and thus higher SIF signals (van der Tol et al., 2016) in zones 
with a higher amount of PAW. 

In winter wheat, the positive slope observed on the LT field of 2018 may be caused 
by different degrees of senescence in zones with different PAW. Lower Ef values in the 
zones with less PAW can be explained by the shorter growing period in these areas, where 
senescence and chlorophyll degradation (Chapman et al., 2021) might occurred earlier. 
On the contrary, slower senescence and higher Ef values of the analyzed time point are 
expected in areas with more water available for plants. The discussed results suggest that 
spatial variations in Ef of a canopy exposed to homogenous photosynthetically active 
radiation intensity (i.e., open sky conditions), and free of significant biotic and abiotic 
stressors, respond to differences in PAW. Nevertheless, such a significant spatial 
relationship between Ef and PAW cannot be detected in fields with sufficient rain or 
artificial water supply. Under those conditions the Ef spatial dynamics might be determined 
by other factors like specific poor soil chemical properties of a region, which constitutes 
an unexplored research field. 

The anticipated Ef response to lower PAW, compared with EVI and LST, can be 
explained by the higher Ef sensitivity to subtle changes in plant physiology under the 
studied mild stress condition. These findings illustrate the importance of integrating high 
spatio-temporal resolution information (Porcar-Castell et al., 2021) for the early detection 
of water shortage effects aiming at timely irrigation to improve the water use efficiency (Ač 
et al., 2015) and avoid crop losses. Moreover, such gradual response of SIF to crop water 
demands in the spatial domain suggest its potential use for the development of new 
precision irrigation tools. To our knowledge, these results show for the first time evidence 
of the anticipated higher sensitivity of SIF to mild water stress compared to the greenness-
based EVI and thermal-based LST. Our results complement satellite-based studies (Liu 
et al., 2021; Shen et al., 2021) by providing a high-spatial-resolution perspective on the 
sensitivity of SIF to varying soil water content and evolving water limitation. Our results 
additionally complement satellite-based studies (Liu et al., 2021; Shen et al., 2021) by 
providing a high-spatial-resolution perspective on the sensitivity of SIF to varying soil water 
content and evolving water limitation.  

Since maintaining water relations is crucial for plant metabolism and growth, plants 
have developed multiple strategies to structurally and functionally acclimate to limitations 
in soil water. These acclimatory mechanisms include sensing of water potential by the 
roots, hormone signaling from the root to the shoot, closure of stomata, adjustments of 
root and shoot growth, alterations in leaf morphology and anatomy and finally leaf 
shedding. These mechanisms occur on different time scales, are dynamically adjusted to 
the severity of drought and are dependent of the ecological plasticity of a species. Thus, 
it is very complex to causally separate those adaptation mechanisms and to understand 
their relations to SIF emission intensity, while it can be assumed that SIF emission 
intensity is primarily determined by the amount of canopy chlorophyll content and the 
efficiency of photosynthetic light reactions. Nevertheless, the comprehension of the SIF-
PAW link involves considering the contribution of plant responses related to specific 
processes according to the stress severity (Fig. 4a1). For instance, strong changes in the 
pigments composition, canopy structure and morphology might be visible when the stress 
intensity has increased over weeks to months. Stomatal closure and reduction of the 
RuBisCo metabolic efficiency responses are more immediate as they are activated min to 
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h’s after a water supply shortage began. This early reaction can be detected with high 
spatiotemporal SIF information (Damm et al., 2022), which is indeed one of the major 
advantages of using SIF data (Fig. 4b).  

Additional confounding factors within the SIF-PAW spatial relation can be 
introduced from the soil carbon content, nutrient status (especially N-content,) and 
compaction, due to the possible influence of soil properties on crop growth and thus on 
the SIF spatial heterogeneity. Irrespectively of the influence of those soil properties, the 
soil profile depth (Fig. 4a2) is likely the most important one in the study region, due to the 
heterogeneous geology and associated pedology (Rudolph et al., 2015). In general, 
lowest PAW found in this study area is related to shallow soil depth and those areas also 
show lower SIF. Here, it has to be mentioned that a smaller soil profile depth will also 
impact other soil properties alongside PAW, with nutrient availability being the most 
relevant one. However, nutrient (especially N) availability in the study area might well be 
artificially homogenized due to the high amounts of mineral fertilizers that are normally 
applied by farmers. Additionally, the soil organic carbon content was found to be relatively 
homogeneous across the study area (Reichenau et al. 2020).  

 
 

 
Figure 4: Plant physiology- (a1) and soil-related (a2) factors that can confound the solar-induced 

chlorophyll fluorescence (SIF)-plant available water in the root zone (PAW) relation due to their 

influence on the spatiotemporal expression of a stress detected in the SIF signal (b). Thick black 

lines indicate the link between the confounding factors and SIF. 

 
 
Since soil water limitation provokes numerous different responses in plants, its 

effect on the spectral properties of vegetation is different and might not only be related to 
the emission of SIF (Gerhards et al., 2019). Therefore, the complementary use of SIF- 
with thermal- and reflectance-based information is important to detect the cascade of 
physiological and structural changes of plants under water stress conditions (Damm et al., 
2018). In this context, integrative multi-sensor approaches must be developed and 
employed for an effective plant water stress monitoring (Panigada et al., 2014). It is worth 
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mentioning that such complementarity among data sources should account for the type of 
crop water stress being analyzed, whether it is mild, established, or severe. In this sense, 
SIF information might be more relevant in detecting mild stress (as herewith addressed), 
and thus in prescribing irrigation only for selected locations, whereas thermal and 
reflectance data might play a major role in stablished and severe stressed environments, 
respectively. 

Since we investigated the Ef–PAW relation using single Ef snapshots during an 
evolving process, a limitation of this study is the lack of higher resolution time series to 
fully understand how the Ef–PAW relation would vary considering other times of the day. 
This motivates further research on a diurnal scale to analyze, e.g., the relation between 
SIF and PAW during the so-called midday depression and afternoon recovery of 
photosynthesis. Another limitation of this study was the use of PAW information derived 
from a geophysics-based soil map, in the absence of actual soil water content information. 
Although the used PAW data served to provide a first insight into the Ef–PAW spatial 
relation in high resolution, future investigations should aim to use either actual soil 
moisture or more accurately modeled PAW. Within this context, recent advancements in 
RS technology for soil moisture estimation can support further studies at larger spatial 
scales. For instance, airborne radar technology like the scanning L-band active passive 
(SLAP) sensor from NASA (Kim, 2015), or the satellite-based soil moisture passive and 
active (SMAP) and SMOS (Ma et al., 2019) data sources of NASA and ESA, respectively, 
have great potential to be comprehensively analyzed together with SIF information. 
 
 

Materials and Methods 
Study area: The study site was located near Selhausen, western Germany (50.865228° 
N, 6.450074° W), a farming area composed of 50 fields, where agricultural investigations 
in a variety of summer and winter crops are regularly conducted (Simmer et al., 2015). To 
better understand the influence of contrasting environments (species × phenology × water 
supply) on the SIF-PAW relation, we analyzed winter wheat (in early ripening phase), as 
well as sugar beet (vegetative growth phase) and irrigated potato (during tubers formation; 
Fig. 5a) fields covering a total of 33.50 ha distributed in individual fields captured in 2018 
(Fig. 5b), 2019 (Fig. 5c) and 2020 (Fig. 5d). The multiple year comparison was done to 
add knowledge on the effect of the water supply factor, since each year presents different 
precipitation regimes. The location of the study site within Germany and the specific 
location of the individual fields is presented in Fig. 5d and e, respectively. The yellow 
dashed line in Fig. 5e shows the division between an upper and lower terrace (UT and 
LT). The UT present shallow soils with a fine loess layer (up to 30-90 cm depth) covering 
coarse materials; whereas the LT is composed of soils with a thicker loess layer over a 
generally less coarse material (Brogi et al., 2019). Monthly temperatures were similar 
within the three observed years (~18 °C). In the two weeks before data acquisition in 2018 
and 2019, the low amount of precipitation likely resulted in a reduction of available soil 
water resources. Especially 2018 is known to have been generally affected by an intense 
drought period (Graf et al., 2020). We can thus assume that plants had to cope with limited 
soil water availability in these two years (see also the calculation of plant available water 
in the root zone, PAW). In 2020, on the contrary, 25 l m-2 of precipitation was recorded in 
the seven days before the airborne campaign, and therefore, we consider this year as 
unaffected by water limitations. 
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Figure 5. Phenologies of the three analyzed crops at the time of the airborne data acquisition (a), 
and the respective areas and identification (ID) of the analyzed fields (in accordance to Brogi et al., 
2019) in June 27th 2018 (b), June 26th 2019 (c) and June 23rd 2020 (d). The location of the study 
area and the specific fields are presented in panels (e) and (f), respectively. Source of the 
background images: BingMaps. 
 

 
Remote sensing data acquisition: Airborne SIF data was collected on 2018 (June 27th), 
2019 (June 26th) and 2020 (June 23th) late in the morning (~10:30-11:30 h) under cloud 
free conditions at 600 m above the ground level. Data collection campaigns consisted in 
six flight lines (~360 m width x ~12 km length) from which high-resolution field-level SIF 
information was extracted. An additional set of afternoon (~16:00 h) SIF data was collected 
and used in the comparison between morning and afternoon LST response to low PAW 
levels in one specific winter wheat field in 2020. The sensor used to acquire the airborne-
SIF information was the high-performance airborne imaging spectrometer HyPlant 
(Siegmann et al., 2019; Rascher et al., 2015), a hyperspectral instrument composed by 
two modules, the DUAL and the FLUO. The first records data from 400 to 2500 nm, and 
it is mostly used to compute narrow band vegetation indices (Vis). The FLUO module was 
built to retrieve SIF, and therefore records high spectral resolution data in the O2-B and 
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O2-B oxygen absorption bands, with a Full Width Half Maximum (FWHM) of 0.3 nm. LST 
information was retrieved from long wave infrared (LWIR, 8000 to 11500 nm spectra) data 
measured with a push broom line scan spectroradiometer (TASI-600) installed in the same 
aircraft with HyPlant. 
 
Remote sensing data processing: 1 m pixel-1 SIF was computed (Fig. 6a) using the 
Spectral Fitting Method (SFM), which retrieves the fluorescence and reflectance signals 
in adjacent wavelengths over a specific spectral range at both sides of the oxygen 
absorption bands (Cogliati et al., 2015). Differently from other SIF retrieval methods, the 
SFM algorithm incorporates radiative transfer theory to correct for atmospheric 
interferences caused, e.g. by water vapor, aerosols, and surface air pressure. More details 
about how SIF was retrieved with the SFM approach can be consulted in Siegmann et al. 
(2021).  

Recently, several approaches have been proposed to correct the top-of-canopy 
SIF for the canopy structural effect; for instance, Zeng et al. (2022) proposed the use of 
the near-infrared radiance of vegetation, while Yang et al. (2020) proposed the use of the 
FCVI (Fig. 6b). We used the FCVI-based approach, since its correction for the SIF 
scattering within the canopy is fully based on the spectral invariant theory, which describes 
how photons interact with the top canopy surface and the pathways they can follow if not 
used for photosynthesis (e.g., passing through canopy gaps or continuing towards lower 
strata). We calculated the FCVI with information from the HyPlant DUAL module as the 
difference of the averaged reflectance in the near infrared (NIR; from 750 to 900 nm, R<750-

900>) and visible (VIS; from 400 to 700 nm, R<750-900>) regions of the spectrum (eq. 1). As 
suggested by Yang et al. (2020), only pixels with FCVI higher than 0.18 were considered 
for the analysis in order to exclude pixels with low fractional cover and thus with a higher 
influence of the soil background. The FCVI was used as factor in the following equation to 
derive Ef (eq. 2; Fig. 6c), accounting for the scattering and PAR absorption effects on the 
SIF signal, and therefore, providing information about changes in plant physiology. 

 

𝐹𝐶𝑉𝐼 = R<750-900> − R<400-700>       (eq. 1) 
 

𝐸𝑓 =
𝜋∗𝑆𝐼𝐹 

𝑖𝑃𝐴𝑅∗𝐹𝐶𝑉𝐼
          (eq. 2) 

 
where iPAR represents the incoming photosynthetically active radiation, obtained from 
terrestrial environmental observations (TERENO, 2022) and SIF refers to far-red SIF. 
Since the SIF is retrieved from one single angle, it is multiplied by π as an estimation of 
the SIF emitted in all directions of the upper hemisphere that is exposed to the sun light. 
As a reflectance-based greenness index, we chose the enhanced vegetation index (EVI), 
which was calculated according to eq. 3. The numbers in brackets describe the spectral 
window on which top-of-canopy reflectance of HyPlant’s DUAL module was averaged. 
 

𝐸𝑉𝐼 = 2.5 ∗
𝑅<795−810>−𝑅<665−680>

𝑅<795−810>+6∗𝑅<665−680>−7.5∗𝑅<475−490>+1
    (eq. 3) 

 
Evapotranspiration (ET) was computed using Sentinel-2 and -3 data through the 

Sentinels for ET (Sen-ET) approach (Guzinski et al., 2020; Fig. 6d) employing the python 
modules developed from the Sen-ET plugin for ESA's Sentinel Toolbox Development 
Platform (SNAP) software (ESA, 2021). Biweekly accumulated ET of each field were 
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computed during the two and a half months before the airborne campaign, and cubic 
spline functions were used to interpolate the resulting five Time Points (TPs; Fig. 6e). 
These ET curves were later used to adjust the water availability maps to specific values 
for each field; more details are provided in sections below. 

For the LST retrieval, first, a radiometric correction is applied to obtain the total 
radiation measured by the sensor. Subsequently, an atmospheric correction is applied in 
order to disentangle the surface radiation from the radiation reflected and emitted from the 
atmosphere. Finally, the corrected data is geo located through a geometric correction 
process. More details about the standardized TASI-600 data process can be consulted in 
Hanuš et al. (2016).  
 
Soil data: The soil information used in this study has 1 m pixel-1 resolution (the same as 
the airborne SIF data) and was derived from the geophysics-based ECa mapping 
presented by Brogi et al. (2019) (Fig. 6f). The authors published a ~90 ha soil map of the 
Selhausen area, which includes the investigated fields and differentiates between 18 soil 
units that are quantitatively described up to 2 m depth. The geophysics based ECa 
methodology follows the principle that specific physical properties of a soil will determine 
its capacity to conduct electricity across. Therefore, soil units sharing similar ECa 
dynamics with depth might share alike soil characteristics, thus belonging to a same soil 
class. The geometry of the 18 soil units was obtained by analyzing ECa maps with 
machine learning algorithms, while their specific soil properties were identified with a 
strategic field sampling directed to 100 representative points. For more information about 
the methodology and the description of each soil unit properties refer to Brogi et al. (2019) 
and references therein. 
 
Generation of the plant available water in the root zone (PAW) maps: To convert the 
textural information provided by the geophysics-based soil map into numerical values of 
PAW capacity (PAWcap), the Mualem-van Genuchten model (van Genuchten, 1980) was 
used (eq 4, Fig. 6g): 
 

𝜃𝑤(ℎ) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

(1+|𝛼ℎ|𝑛)𝑚        (eq. 4) 

 
where θw, θr, and θs (cm3 cm−3) are the actual volumetric, residual, and saturated water 
content, respectively. The h (-cm) is the pressure head, α is the inverse of the air entry 
pressure (cm−1), n is a dimensionless parameter related to the pore size distribution, and 
m a parameter that is set equal to 1 − 1/n. The soil hydraulic parameters to solve eq. 4 
were estimated based on textural information from the soil map using the pedotransfer 
function of (PTF) of Rawls and Brakensiek (1985). The PAWcap was calculated as the 
difference between the θw obtained at h = -100 cm (field capacity) and h = -15000 (wilting 
point). This calculation was performed on each soil unit of the geophysics-based soil map. 

For each crop, the PAWcap was calculated over their rooting depth used in previous 
studies from the same region (Brogi et al., 2020). Specific root zone depths of sugar beet, 
potato and winter wheat were: 1.5, 0.6, and 1 m, respectively. Moreover, it was assumed 
that roots cannot penetrate deep into soils that are characterized by coarse layers 
composed of compacted sand and gravel materials, as this is generally observed in the 
study area and proposed by literature (Daddow and Warrington, 1983). Thus, the PAWcap 
in soil units A1a-d, B1b, D1a-d, and D2 was calculated up to the depth of such coarse 
layers only. 
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The ratio between the precipitation (as the main year-level water input) and ET (as 
the main field-level water loss) integrals of the five biweekly time points (TPs) before the 
airborne campaign was used as a correction factor (CF; Fig. 6h) to convert the PAWcap 
map into the estimated actual PAW (referred just as PAW; eq. 5, Fig. 6i). If no data was 
available for one specific TP, then it was calculated as the average of the two neighboring 
TP’s. Since CF’s account for the field-level ET, there is one specific CF per field. These 
CF’s were then multiplied by the respective individual maps, in order to obtain the field-
specific PAW maps (Fig. 6j). In the study region most fields are not irrigated and thus PAW 
is only determined by natural precipitation and ET, yet, potato fields are irrigated with 
mobile systems. Therefore, according to standard irrigation practices in the region, 30 l m-

2 were added to the PAW of potato fields accounting for the amount of water irrigated 
during the week before HyPlant data acquisition. 
 

𝐶𝐹 = ∫ f(Prec. ) 𝑑𝑃
𝑇𝑃5

𝑇𝑃1
÷ ∫ f(ET) 𝑑𝐸𝑇

𝑇𝑃5

𝑇𝑃1
      (eq. 5) 

 
The CF formula was designed from the sense that ‘the higher the water income 

over the water output, the closer the PAW to reach its maximum (PAWcap). In Fig. 7 the 
precipitation and ET integrals (Fig. 7a-d) and the resulting CF’s (Fig. 7e) are presented.  
 
Data analysis: The analysis of the data was directed to estimate the spatial relation 
between PAW and Ef, i.e., to evaluate how much of the Ef spatial variability (as dependent 
variable) can be explained by variations of PAW (as independent variable) in the spatial 
domain. For that purpose, the Ef maps from the three study years were overlaid with the 
respective field-level PAW maps, both with 1 m pixel-1 resolution (Fig. 6k). Machinery 
paths were removed from the Ef imagery since they are not related to the soil moisture 
spatial patterns of interest. Similarly, polygons smaller than 20 m2 were removed from the 
PAW maps. The average Ef for each soil unit was calculated, and then box-plotted vs. its 
PAW. In addition, Pearson correlation coefficients (r) of the Ef-PAW relations were 
calculated in order to understand the strength of the influence that PAW had on the SIF 
emitted by plants. Since the unit of PAW is l m-2, it was not compared to the total but the 
averaged Ef m-2 of a certain soil unit. The results were differentiated by year, crop and 
geographic location within the study area, whether they were located in the UT (lower 
PAW) or LT (higher PAW). In order to assess the performance of our PAW estimating 
method we further compared it with time domain reflectometry (TDR, reported in Mengen 
et al., 2021) data generated on June 26th of 2019 (same day of the HyPlant campaign). In 
Fig. S1 (supplementary information) we plotted the relation between 1502 field-level 
averaged TDR-based soil moisture (%) data points and our PAW estimations. The 
resulting r = 0.88 (p < 0.001) relation confirms the reliability of our approach. 
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Figure 6. Summary of materials and methods separated according to inputs, process and outputs, 
and analysis done with the airborne (a-c), satellite (d and e) and soil (f-i) datasets. The gray shadow 
encloses the steps followed with the soil data. The statistical analysis (j) was done with the outputs 
from the remote sensing and soil data processing. All abbreviations are provided in the bottom. 
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Figure 7. Evapotranspiration (ET; a-c) and precipitation (d) curves (in mm day-1) interpolated with 
the cubic splines function between time points (TPs). Grey numbers in the x-axis represent specific 
TP’s with not available data and therefore calculated as the average of the two neighboring TP’s. 
The area under the curve for each field is presented within each panel. The ET information presents 
an average error of around 30% according to Guzinski et al., 2020. The resulting correction factors 
(eq. 5) are presented in panel (e). 
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al., 2021) data points and the plant available water (PAW) estimated with the methods used in the 
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and significance (p) were estimated (b). ** represent the significant relation at p < 0.01. Source of 
the background images: BingMaps. 
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Synonyms

Geometry of nature

Definition

The fractal geometry is a young branch of mathematics that
studies the configuration of complex shapes and phenomena
formed by the repetition of patterns.

Introduction

“Clouds are not spheres, mountains are not cones, coastlines
are not circles, and bark is not smooth, nor does lightning
travel in a straight line” (Mandelbrot 1982). The fractal geom-
etry was developed by Benoît Mandelbrot in the 1970s to
describe those and all other chaotic geometries observed in
nature. The theory states that natural phenomena can be
characterized as a repetition of self-similar (isotropic) or
self-affine (anisotropic) patterns with dimensions, not limited
to the Euclidean 1-, 2-, and 3-D planes. Thus, the complexity
of fractal geometries is described by the so-called Fractal
Dimensions (FDs), real numbers within the [1, 4] interval.
This means that the more complex a line, a polygon, or a
prism is, the higher to 1 (but lower than 2), 2 (but lower than
3), and 3 (but lower than 4) its dimension is, respectively.

Applications of the fractal geometry in science are nearly
as many as natural phenomena exist. One example is the
Remote Sensing (RS)-based investigation of scale dependen-
cies of dynamic processes in vegetation, especially between
individual leaves and the ecosystem. Since such dynamic
processes are composed by nonlinear phenomena, the imple-
mentation of linear methods for its analysis might lead to local
approaches with limited applicability beyond specific circum-
stances. The use of the fractal geometry, instead, can greatly
contribute to RS of vegetation and help understanding image
features as interconnected and scale-independent spatiotem-
poral patterns.

Fractal Geometry and the Power Law
(PL) Distribution of Sun-Induced Chlorophyll
Fluorescence (SIF)-Emitting Objects

Several approaches exist to mathematically prove the exis-
tence of fractal geometry in the distribution of RS-measured
objects; the computation of universal Power Laws (PLs), also
known as scaling laws, is one of them (Nagajothi et al. 2021).

© Springer Nature Switzerland AG 2022
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A PL distribution indicates the presence of fractal geometry
composed by patterns where few occurrences of large mag-
nitudes and numerous occurrences of small magnitudes are
observed regardless the scale. The function of a PL distribu-
tion is described with the following equation:

y ¼ a xb

where α is a constant representing the scale, and β is the
exponent which represents the dimension of the function
(closely related to the fractal dimension). Examples of PL
distribution can be found almost in any area of research. For
instance, in economics, a PL can describe how the richness in
a country is distributed in few individuals holding huge
amounts of money and many individuals with scarce mone-
tary resources. Another example can be found in linguistics,
where the frequency of words in a text follows a PL as well,
with few words repeated thousands of times, and many words
used only in few occasions.

Hypothetically, PLs can be used to describe the distribu-
tion of RS-measured properties of vegetation like the emitted
SIF signal, since: (i) Its heterogeneity is related to spatial
patterns defined by factors like canopy structure, shape, and
size of agricultural fields or the organization of tree species in
a forest; and (ii) SIF, as a red light emitted from vegetation, is
more clearly aggregated across spatial scales (pixel sizes) than
other more uniform signals like reflectance. Therefore, this
chapter focusses on the analysis of the distribution of SIF
emitting objects in an agricultural field to confirm whether
they present a PL distribution (fractal geometry) or not, and
how the scaling and dimension factors behave across spatial
scales.

Case Study: “Fractal Geometry for
SIF-Downscaling”

Context: The world is confronted with substantial socioeco-
nomic challenges. Agricultural production must ensure food
security for a growing population, while it is imperative to
protect and sustainably manage natural resources. Cropland
expansion at the cost of natural ecosystems is not an option;
therefore, large-scale farming must employ technology and
advanced management to improve yields. RS offers possibil-
ities to contribute making this possible. Recently available RS
platforms equipped with SIF sensors constitute a powerful
tool, since SIF shows large sensitivity to actual photosyn-
thetic efficiency of crops (Mohammed et al. 2019). Such
information is complementary to commonly used Vegetation
Indices (VIs) and offers new pathways to assess plant health
and, thus, optimize crop management. The forthcoming Fluo-
rescence Explorer (FLEX) satellite mission of the European

Space Agency (ESA) was planned within this context. Its
relatively coarse resolution of 300 m, however, limits appli-
cability for small field sizes and to investigate inter-field
heterogeneity of croplands. Thus, downscaling satellite SIF
products (understood as the increase of the spatial resolution)
is currently a research subject of utmost importance.

Previous studies have addressed the SIF-downscaling con-
sidering its physical relation with explanatory variables like
the land surface temperature (Duveiller et al. 2020), and using
machine learning-based statistical relations with VIs (Zhang
et al. 2020). Another approach with applications on plant
phenotyping was presented by Krämer et al. (2021), who
analyzed the potential use of aggregated SIF pixel to extract
representative values for crop plots representing few m2.
Despite the great relevance of these contributions, a more
versatile downscaling approach capable to run in a diversity
of ecosystems is still not available but needed. We hypothe-
size that the flexibility of the fractal theory as a complexity
measure together with the discontinuity of self-similar geom-
etries captured in RS data (Sun et al. 2006) enables new
strategies to advance downscaling approaches of SIF.

Aims: This study aims (i) to analyze if the aggregation of
SIF over vegetation objects follows a universal PL distribu-
tion (i.e., representing fractal geometry) across spatial scales,
and (ii) to evaluate how the scaling and dimension compo-
nents of the PLs behave across spatial scales.

Analysis: We analyze the fractal geometry vegetation
(SIF-emitting) objects through the computation of PLs at
1.5, 5, 10, and 15 m pixel�1 resolutions. Far red SIF at
740 nm (hereafter named “SIF”) in a 65 ha soybean field
was retrieved from an imaging fluorometer (IBIS, Specim,
Oulu Finland) with the Spectral Fitting Method (SFM,
Cogliati et al. 2015; Fig. 1a). Only vegetation pixels were
considered and afterward segmented into individual homoge-
neous objects through unsupervised classification (Fig. 1b).
For the first aim, the total SIF (SIFTOT) of each object was
calculated and its distribution plotted in order to identify the
presence of a PL distribution. For the second aim, the scaling
and dimension factors of the PLs from the different spatial
resolutions were compared in order to understand if they
follow scale-independent patterns.

Results: Besides the high intrafield variability observed in
Fig. 1, the distribution of the SIFTOT information aggregated
by objects follows the PL distribution at all analyzed scales
(Fig. 2a). Such order, characterized in the function equations,
describes how the data is arranged in patterns of few occur-
rences of objects with high SIFTOT, and numerous occur-
rences of objects with low SIFTOT emission. For
downscaling purposes, the information about known vari-
ables related to the analyzed feature, like the object area
(Fig. 2b), could potentially be used to infer the SIFTOT of
the polygons. Furthermore, the linear increase of the scaling
factor and the nearly constant dimension factor for 1.5 to 15 m
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pixel�1 sizes (Fig. 2c) might indicate the scale-invariant
property of the SIF signal aggregation patterns within the
range of analyzed resolutions.

Summary

Our results indicate that the distribution of the SIFTOT infor-
mation aggregated by object follows the PL distribution for
1.5 to 15 m pixel�1 resolutions, i.e., the fractal geometry is
present in the distribution of individual SIF-emitting objects
at all analyzed scales. Moreover, the linear (R2 ¼ 0.998)
increase of the PL-scaling component, and the nearly constant
dimension across the scales, might be an indicator of the

scale-invariant property of the SIF signal aggregation patterns
within the range of analyzed resolutions.

In theory, similar PL characterizations of high resolution
SIF-explanatory variables could help to understand how to
spatially disentangle SIFTOT represented in a coarse pixel
(e.g., measured by FLEX) in the SIFTOT contributions of
individual vegetation objects within the measurement foot-
print. Further studies might address that subject across diverse
ecosystems to provide more evidence on the suitability of this
proposed approach to downscale and link coarse-scale-
retrieved SIFTOT with field-level SIFTOT information.

Fractal Geometry and the Downscaling of Sun-Induced Chloro-
phyll Fluorescence Imagery, Fig. 1 Sun-Induced chlorophyll
Fluorescence (SIF) image (a) and the respective segmented images

considering individual aggregation scales, i.e., 1.5, 5, 10, and 15 m
pixel�1 (b)

a b c

Fractal Geometry and the Downscaling of Sun-Induced Chloro-
phyll Fluorescence Imagery, Fig. 2 Power Law (PL) distributions of
the total Sun-Induced chlorophyll Fluorescence (SIFTOT) data observed

at 1.5, 5, 10, and 15m pixel�1 scales (a), and the linear relation of SIFTOT
with respect to the object area (b). The dimension and scaling factors of
the PLs equations at all scales are present in (c)
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ABSTRACT 

 

The impact of elevated [CO2] (e[CO2]) in on yield, biomass 

(BM) and chlorophyll fluorescence (ChlF) was analyzed in 

three genotypes of common beans (Phaseolus vulgaris L.), a 

key food-security crop. Active- and passive-sensed ChlF 

traits acquired by the Light-Induced-Fluorescence-Transient 

(LIFT), Moni-Pulse-Amplitude-Modulation (MoniPAM), 

and Fluorescence Box (FloX) instruments were compared. 

Total biomass increased for all genotypes under e[CO2], but 

their biomass partitioning significantly differed. The highest 

yielding genotype under e[CO2] also showed the highest 

photosynthetic activity according to different active-sensed 

ChlF methods.  Furthermore, e[CO2]  resulted in earlier 

senescence, which was detected by either satellite- or FloX-

derived Normalized Difference Vegetation Index (NDVI). 

Moreover, we observed a significant agreement between 

MoniPAM- and LIFT-measured ChlF data (R2 = 0.89, p = 

0.02), as well as between SIF and FloX measurements (R2 = 

0.62, p = 0.03). 

 

Index Terms— LIFT, FloX, MoniPAM, FACE, 

biomass, yield, grain quality 

 

1. INTRODUCTION 

 

Free air CO2 enriched (FACE) experiments have been 

implemented to understand the impact of the increasing 

levels of atmospheric CO2 in plants. Legumes, are among 

the most sensitive species to e[CO2] [1,2]. For instance, at -

150-200 ppm higher [CO2], [2] estimated an augment of 

24% in bean yield, and [3] reported an increase in the leaf 

area and a reduction in the stomata density in leaves. 

However, [4] found no yield increase in bean plants grown 

under e[CO2], despite an increment in photosynthesis rates 

and dry matter production. Furthermore, growth at e[CO2] 

was shown to impact the mineral elements concentrations, 

where the response in legumes differed depending on the 

intensity and duration of the imposed stress, plant genotype 

and developmental stage [5]. Fluctuations on mineral 

elements concentrations stand as an important concern, since 

dietary deficiencies of both macro and, particularly, 

micronutrients are a major global public health problem. 

Thus, e[CO2] may severely impact the whole agroecosystem 

through both positive and negative effects of crop adaption. 

Due to its close relationship to photosynthetic 

activity chlorophyll Fluorescence (ChlF) allows a deeper 

understanding of plant physiology at leaf and canopy level, 

which is important in crop adaptation. ChlF provides useful 

information to assess the response of crops in a FACE 

experiment, e.g., by comparing the photosynthetic efficiency 

of genotypes when the [CO2] is elevated. ChlF can be 

estimated on the basis of active and passive methods using 

light induced fluorescence transients (LIFT; [6]) and solar-

induced ChlF (SIF) [7] measurement, respectively. The yield 

of photosystem II (PSII, Fq’/Fm’) can also be obtained from 

LIFT data. An alternative active sensing method is the pulse 

amplitude modulate (PAM) fluorometry used to estimate 

steady-state ChlF. The comparison of ChlF metrics from 

different sensors is a topic of great research interest aiming 

at comprehending how the data from several sources can be 

integrated to better understand ChlF spatio-temporal 

variations. In addition, such knowledge can contribute to the 

forthcoming ‘FLuorescence EXplorer’ (FLEX) satellite 

mission of the European Spatial Agency (ESA) [8].  

In this context we analyzed the response of three 

bean genotypes to e[CO2] in (i) yield and biomass (BM), as 

well as in (ii) the diurnal ChlF and photosynthetic efficiency 

of three genotypes during the pod-filling stage. Moreover, 

(iii) sensor metrics were compared; SIF was correlated with 

the active-sensed ChlF data, whereas the yield of 

photosystem II from LIFT (Fq’/Fm’) was compared with the 

one of MoniPAM (YII). 
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3. MATERIAL AND METHODS 

 

3.1. Study site and experiment: The study area was located 

at Campus Klein Altendorf, which is affiliated with the 

University of Bonn, Germany (50°37'29.39"N, 

6°59'11.33"E). The so called ‘BreedFACE’ operated by 

Forschungszentrum Jülich consisted of an octagon of ~7.25 

m steel pipes (~254 m2) with tiny openings each 20-30 cm 

for the ejection of CO2. CO2 was automatically controlled to 

be 600 ppm in the center of the ring. The system was 

activated on July 29 and stayed working until August 29 

with some gaps between July 31 to August 8, August 12 and 

August 19. The experiment was a complete randomized 

block design, with 2-4 repetitions of eleven genotypes, 

planted in 1.2x2.6 m plots at e[CO2] and ambient CO2 

(a[CO2]) conditions. The present study focuses on three 

genotypes, henceforth named: G1, G2 and G3, with three 

repetitions of G1 and G2, and two repetitions of G3. 

 

3.2. Instruments and data acquisition: The fluorescence 

box (FloX; JB Hyperspectral, Dusseldorf, Germany) and 

LIFT were mounted on the ‘field-snake’, an automated 

platform for field phenotyping with Real Time Kinematics 

(RTK) accuracy (~2 cm) in the horizontal (X-Y) and vertical 

(Z) axes. From the FloX the SIF measured at 760 nm in the 

O2-A band (SIF-A) was correlated with LIFT and MoniPAM 

information. LIFT and FloX data were collected at the 

beginning (Bpf) and end of pod filling (Epf) at different 

hours from 08:30 to 16:30. Bpf measurements were taken on 

July 30, July 31 and August 1, while Epf ones were 

collected on August 23 and August 27. MoniPAMs 

constantly recorded ChlF and the YII information from the 

same leaf during 29 days, from July 30 to August 27, 2019.  
 

3.3. Data processing: Quantum GIS (QGIS, version 

2.18.22), an open source Geographic Information System 

(GIS), was used to extract the LIFT and FloX data points. 

The extracted LIFT data was then processed with an R script 

in order to extract ChlF and Fq’/Fm’ information [9]. The 

FloX data was processed with an R-script developed by the 

manufacturer, and furtherly filtered according to a quality 

indicator called ‘E-stability’. The latter was done to remove 

unreliable data points under unstable light conditions. FloX 

SIF yield was estimated as the ratio of SIF-A to incoming 

photosynthetic active radiation (PAR) at 750nm. The 

MoniPAM ChlF and YII information was processed and 

readout with the WinControl commercial software (Heinz 

Walz GmbH, Germany).  

 

3.4. Estimation of BM and yield: above-ground BM 

samples were destructively collected on August 27. Ten 

plants per plot were uprooted. Leaves+stem, grains and pods 

were weighed after being dried at 60° during 5 days. The 

weights were converted to percentages of leaves+stem, pods 

and grains (i.e., yield) from the total BM.  

4. RESULTS AND DISCUSSION 

 

4.1. Changes in vegetative and reproductive 

Biomass: At e[CO2], genotypes 1, 2 and 3 accumulated 

more BM, with 74, 119 and 64 g more of total (leaf, stem, 

grains and pods) BM compared with the ambient experiment 

(Fig. 1a). This difference was significant for G1 and G2, but 

not for G3. Besides such general BM increase, the way 

plants divide the gained BM into vegetative and 

reproductive organs is counted to analyze genotypic 

response to e[CO2]. Remarkably, in comparison with the 

a[CO2] environment, G1 allocated 7% more BM in grains 

under e[CO2] (Fig. 1b and c). G2, in turn, allocated 8% more 

BM to leaves+stem, while decreased its grain and pod BM 

by 5% and 3%, respectively. Furthermore, G3 BM 

partitioning stayed similar for both [CO2] conditions, with a 

marginal increase of 1% in leaves+stem and decreased of 

1% in grains at e[CO2]. 

  Potentially, the impact of the e[CO2] on the BM of 

G1 and G2 can be explained by the following factors (and 

their interactions): i) higher photosynthetic efficiency; ii) the 

short time that the e[CO2] was active (3-4 weeks) may have 

reduced the stomatal density, which has been reported in 

long term experiments. Thus, higher gas exchange may have 

occurred to maintain the higher photosynthetic efficiency at 

e[CO2]; iii) the late application of e[CO2] may have 

contributed to avoid the impact of downregulation during 

most of the pod-filling. Thus, possibly keeping high 

photosynthetic rates during that stage; and iv) the balanced 

sink-source interaction, due to the presence of active sinks 

during the e[CO2] treatment.   

Lastly, an apparent earlier senescence was observed 

in the field. Firstly, this was shown for the complete FACE 

ring with a diameter of 17.5 meter by the seasonal 

normalized difference vegetation index (NDVI) curve 

computed with high resolution (3 m) satellite information 

(Fig. 2; Planet Labs, San Francisco, CA, USA), Secondly, at 

plot level, the FloX-derived NDVI similarly suggest how the 

loose of greenness occurred faster in the e[CO2] experiment 

towards Epf (Fig. 2).    

 

4.2. Diurnal ChlF at a[CO2] and e[CO2] environments: A 

higher SIF yield in the morning, and a subsequent rise after 

the noon decay was observed at Bpf, as it was likewise 

observed by [7] at early corn senescence. A similar 

behavior, despite less pronounced, is detected in the e[CO2] 

still at Epf (Fig. 3a); at the time the a[CO2] constantly 

decreased after the morning. SIF yield variations obey to the 

diurnal PAR cycle, however, the link between both 

parameters is not the same along the day; thus additional 

physiological mechanisms might play a key role modulating 

this relation [11]. 
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Fig. 1. Total biomass accumulation at both [CO2]’s (a), and 

genotypes biomass partitioning at a[CO2] (b) and e[CO2] (c).   
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Fig. 2. Seasonal (April to September) satellite-NDVI curve (a), 

and FloX-NDVI at Bpf (July 30) and Epf (August 27). 
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Fig. 3. FloX-derived SIF yield (a) and LIFT-derived Fq’/Fm’ (b) 

averaged for the three genotypes at Epf. And MoniPAM-derived 

YII for G3 at Bpf (c) and Epf (d). Results are presented per [CO2] 

condition during the morning (8:30-11:00h), noon (12:00-13:00h) 

and afternoon (14:00-16:30h). 

The Fq’/Fm’ was higher under e[CO2] at Bpf in the noon 

and afternoon, while at Epf it was higher in the morning and 

afternoon, but significantly lower than the one measured at 

noon in the a[CO2] plots (Fig. 3b). The latter is comparable 

with the diurnal yield of PSII reported by [8] at late corn 

senescence, with the difference that in their study the decay 

is dimmer and occurred around 2 hours later. In another 

study, [12] identified a similar pattern of the Fq’/Fm’ 

estimated from LIFT and MoniPAM instruments, with this 

characteristic decay in the quantum efficiency of PSII at 

noon, being clearer in the MoniPAM data (Fig. 3 c and d). 

The least productive genotype, G3, presented the lower 

photosynthetic efficiency at Epf, conversely to G1 (the most 

yield responsive). G2, in particular, showed a higher 

Fq’/Fm’ in the morning at e[CO2] in Epf, which could be 

associated to its  larger increase in total BM compared with 

G1 and 3. The response observed in the three analyzed 

genotypes may not be a rule of thumb for beans. Indeed, 

considering all the eleven genotypes included in the same 

FACE experiment (eight of which are not included in the 

present study) the accumulation in vegetative and 

reproductive BM at e[CO2] of G1-G2-G3 is above the 

average.  

 
4.3. Comparison of instruments metrics: A significant (p 

= 0.03) correlation (R2 = 0.62) was found between FloX-

derived SIF-A and the ChlF estimation derived from 

MoniPAM in the a[CO2]; a similar relation (R2 = 0.64) was 

observed in the e[CO2] with the SIF-A, although with a 

lower significance (p = 0.12; Fig. 4a). On the contrary, 

regarding the photosynthetic efficiency-related parameters, 

only the LIFT measurements (Fq’/Fm’) in the e[CO2] did 

correlate with the SIF-A (R2 = 0.98, p = 0.13; Fig. 4b). 

Following a similar goal, [13] found a lower R2 (0.32) in 

avocado leaves but more significant (p < 0.001) correlation 

between SIF and LIFT-derived yield of PSII. The 

comparison between the active sensing methods showed a 

high correlation (R2 = 0.88-0.89, p = 0.02) of ChlF data 

(Fig. 4c), but no link between the YII (MoniPAM) and 

Fq’/Fm’ (LIFT; Fig. 4d). 

 

5. CONCLUSIONS 

 

The response to e[CO2] in BM and yield varied for the 

different genotypes. While G1 increased 7% the BM at 

e[CO2], G2 destined 8% more BM to leaves+stems. G3 BM 

partitioning was similarly in both [CO2] environments. The 

effect of e[CO2] was associated earlier senescence, which 

was detected from satellite- and FloX-derived NDVI. Higher 

photosynthetic rates, derived from LIFT- Fq’/Fm’ and 

MoniPAM-YII, at Bpf, may be related to the higher yield-

response of G1. Moreover, significant agreements were 
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observed between MoniPAM ChlF estimation and the 

respective data from LIFT (R2 = 0.89, p = 0.02), as well as 

with SIF measured with the Flox (R2 = 0.62, p = 0.03). 

 
Fig. 4. Correlation between the FloX SIF (a.u.) and MoniPAM and 

LIFT ChlF (a) and photosynthetic efficiency (b) estimations at both 

timepoints and [CO2] concentrations, and the comparison between 

MoniPAM and LIFT ChlF (c) and photosynthetic efficiency (d) at 

Epf under both [CO2] conditions. Error bars for LIFT ChlF 

correspond to the 5% of the value; the remaining error bars 

correspond to the SD.  
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4.2.2 Fifth publication (Quiros-Vargas et al., AGU-2020) 
 

“Solar Induced Chlorophyll fluorescence and Vegetation Indices for Heat Stress 
Assessment in Three Crops at Different Geophysics-Derived Soil Units” 

 

Conference: American Geophysical Union (AGU Fall Meeting, online, 2020) 
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Authors: Juan Quiros-Vargas (GE), Cosimo Brogi (GE), Vera Krieger (GE), B. Siegmann (GE), Marco 
Celesti (IT), Micol Rossini (IT), Sergio Cogliati (IT), L. Weihermüller (GE), Uwe Rascher (GE) 

Abstract: Remotely-sensed Solar Induced chlorophyll fluorescence (SIF) is a novel promising tool to retrieve 
information on plants’ physiological status due to its direct link with the photosynthetic process. At the same 
time, narrow band Vegetation Indices (VIs) such as the MERIS Terrestrial chlorophyll index (MTCI), and the 
Photochemical Reflectance Index (PRI), as well as broad band VIs like the Normalized Difference Vegetation 
Index (NDVI), have been widely used for crop stress assessment. A match between these remote sensing 
products and the spatial distribution of soil units is expected; nevertheless, an in-depth analysis of such 
relationship has been rarely performed so that additional studies are required. In this contribution, we aimed 
at the comparison in the use of normalized SIF (SIF = SIF/PAR; computed with the Spectral Fitting Method, SFM) 
and VIs (MTCI, PRI and NDVI) for heat stress assessment in corn, sugar beet and potato at the beginning and 
towards the end of a heatwave occurring in Selhausen, Germany, 2018. Data were acquired with the HyPlant 
airborne sensor, which is a high performance imaging spectrometer with around 0.30 nm of spectral resolution 
in the Oxygen absorption bands. We compared different plots located in the upper (poorer soil characteristics 
for agriculture such as water holding capacity and content of coarse sediments) or lower landscape terraces; 
we also evaluated the different remote sensing products in comparison with site specific geophysics-based soil 
maps. At the beginning of the heat wave we found that, compared with VIs, SIF data showed a clearer 
differentiation of the stress conditions at a terrace level in potato and sugar beet. However, towards the end of 
the wave a significant decrease of MTCI and NDVI contrasted with higher SIF in sugar beet and corn. 
Nonetheless, those crops (sugar beet and corn) did not show significant SIF differences between terraces. A 
significant spatial match was found between SIF and geophysics-derived soil spatial patterns (p = 0.004-0.030) 
in fields where NDVI was more homogeneous (p = 0.028-0.499, respectively). This suggests the higher sensitivity 
of SIF to monitor heat stress compared with common VIs. 
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4.2.3 Sixth publication (Quiros-Vargas et al., EGU-2022) 
 

“Spatial dependency of Solar-induced Chlorophyll fluorescence (SIF)-emitting 
objects in the footprint of a FLuorescence EXplorer (FLEX) pixel: a SIF-downscaling 

perspective” 

 

Conference: European Geosciences Union (EGU, Vienna, Austria, 2022) 

  

 
DOI: 10.5194/egusphere-egu22-12671 

 

Authors: Juan Quiros-Vargas (GE), B. Siegmann (GE), A. Damm (CH), Vera Krieger (GE), Onno Muller 
(GE), Uwe Rascher (GE) 

Abstract: The assessment of large-scale vegetation functioning is essential to improve cropland productivity 
and monitor natural ecosystem health. The development of remote sensing (RS) technologies over decades 
made such assessments possible from field- to global-scale. Nevertheless, commonly used reflectance-based 
RS methods are often not sensitive enough to timely inform preventive or corrective actions. Recent advances 
on the RS of solar-induced chlorophyll fluorescence (SIF) have opened opportunities for novel approaches of 
earlier stress detection since SIF was found to be closely linked to photosynthesis. The forthcoming 
FLuorescence EXplorer (FLEX) satellite mission of the European Space Agency (ESA, to be launched) will offer 
timely non-aggregated global-scale SIF data at 300 m spatial resolution. Such pixel size, even though unique and 
accurate enough to monitor processes at biome level, may not be suitable to assess field scale processes. 
Therefore, the development of methodologies to downscale satellite-SIF information is currently of utmost 
interest since allowing to increase the spatial resolution of origin observations. A first step to comprehend the 
characteristics that possible approaches must meet is to understand the magnitude of the spatial variability 
within a coarse pixel footprint across representative vegetation types. Our study consequently aims to 
understand the spatial variability within the footprint of a FLEX pixel. We particularly analyze the spatial 
dynamics of SIF via the near infrared reflectance of vegetation (NIRv) data derived from Sentinel 2, World View- 
and Geo Eye- (10.0 m, 0.30, 0.40 m pixel-1, respectively) that was suggested as proxy for SIF in absence of 
environmental stress. With Sentinel 2 based NIRv we focus on four ecosystems, including small and large scale 
agriculture, pampa and savannah, with World View- and Geo Eye based NIRv, we investigate rain and coniferous 
forests. The very high resolution of World View- and Geo Eye was required to compute the variograms of forests 
since they were affected by a nugget effect when using Sentinel-2 images. Investigated ecosystems represent 
the most abundant vegetation types that the FLEX mission will cover. We also assessed the relation between 
the spatial dependencies (approximated by the lag of calculated semi-variograms) and the average object size 
in all the ecosystems. We found largest spatial dependencies (400-600 m) in large-scale agriculture, pampa and 
savannah and contrasting lower (<10 m) in forests. Spatial dependencies of small-scale agricultural scenes were 
in a middle position with approximately 100 m. Moreover, the spatial dependencies were found to be 
significantly (p = 0.023) linked to the average object size of the ecosystems. This demonstrates the importance 
of flexible downscaling methods, e.g. in a fractals-based direction (Quiros-Vargas et al., in press). 
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4.2.4 Seventh publication (Quiros-Vargas et al., LPS-2022a) 
 

“Spatial relation between Sun-induced Chlorophyll fluorescence (SIF) and the 
Plant Available Water (PAW) in the root zone” 

 

Conference: Living Planet Symposium (LPS, Bonn, Germany, 2022) 

 

 

 

 

Authors: Juan Quiros-Vargas (GE), Cosimo Brogi (GE), A. Damm (CH), B.Siegmann (GE), P. Redemske 
(GE), V. Burchard (ES), Vera Krieger (GE), L. Weihermueller (GE), Onno Mueller (GE), Uwe Rascher 
(GE) 

Abstract: All life on earth depends on the availability of water. Climate change and wasting customs threat to 
limit its access to a large part of the population. Inefficient water management systems makes agriculture one 
of the activities that contribute most to such an alarming situation. Thus, the need of new ideas for a better 
efficiency in the use of water constantly grows, which implies the use of remote sensing (RS) techniques to 
cover large areas. Reflectance-based RS products, such as vegetation indices, have shown low sensitivity to 
detect the effects of water limitation on vegetation before the stress has impacted canopy structural properties. 
Thermal information is more closely related to water stress in plants, but is also affected by other factors not 
related to soil water limitations, e.g. wind speed and humidity. Recently, the use of sun-induced chlorophyll 
fluorescence (SIF) for water stress assessments has gained interest, since it is directly related to the 
photosynthetic activity that dynamically responds to limitations in the availability of water. Nevertheless, it is 
not clear yet how the spatial relation between SIF and soil water content behaves according to specific 
vegetation and soil characteristics. Therefore, in the present study we analyzed the link between airborne-SIF 
and geophysics-based plant available water (PAW) in the root zone of three crops (winter wheat, summer non-
irrigated sugar beet and irrigated potato) during three growing seasons (2018, 2019 and 2020). We found a 
strong positive correlation (r = 0.92; p < 0.01) when water was a limiting factor, i.e., in the non-irrigated summer 
crop (sugar beet). The relation disappeared when the level of PAW is sufficient to meet the crops water need, 
i.e. in irrigated crops or years with precipitation events (25 l m-2) accumulated a few days before data 
acquisition. An unclear pattern in the relation of winter wheat and PAW might be explained to the advanced 
growth stage of winter wheat (ripening), when variations on SIF might be influenced by other physiological 
processes like chlorophyll degradation rather than the PAW in the root zone. Moreover, an expected response 
of SIF to a low PAW zone in the spatial and the temporal domains compared with the enhanced vegetation 
index (EVI) and the surface temperature, respectively, is reported in our study for the first time. The presented 
results contribute to the development of new methodologies for a better efficiency in the use of water by 
providing new insights on the role of SIF for real-time assessment of crop water stress. Besides, the current 
availability of global SIF and soil moisture satellite datasets such as the TROPOspheric Monitoring Instrument 
(TROPOMI)-SIF and the Soil Moisture Active/Passive (SMAP) products, respectively, enables further analysis to 
improve our understanding of the SIF-soil water content relation on larger scales. A brief insight on this relation 
will be presented on the example of the European heat wave in summer 2018. For this event the relationship 
between SIF and soil moisture for forests was characterized by high soil water content and low SIF values while 
crop lands showed an opposite trend. 
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4.2.5 Eighth publication (Quiros-Vargas et al., LPS-2022b) 
 

“Sun-induced Chlorophyll fluorescence (SIF)-downscaling from the fractal 
geometry perspective” 

 

Conference: Living Planet Symposium (LPS, Bonn, Germany, 2022) 

  

 

Authors: Juan Quiros-Vargas (GE), B. Siegmann (GE), A. Damm (CH), Ran Wang (US), John Gamon 
(US), Vera Krieger (GE), B.S. Daya Sagar (IN), Onno Muller (GE), Uwe Rascher (GE) 

Abstract: Agriculture has to guarantee food security for a constantly growing population by increasing crop 
productivity with minimized environmental impact. Remote Sensing (RS) for large scale vegetation assessment 
is one of the most important tools to overcome this challenge. For years the implementation of RS techniques 
for crop assessment has been mainly based on the use of reflectance-based information, e.g. Vegetation Indices 
(VIs), which indicate crop stress after its effect has impacted plant structural properties. It is suggested that the 
use of Sun-induced Chlorophyll fluorescence (SIF) possibly allows earlier crop stress detection, since being in 
direct relation with photosynthetic activity, thus, making it possible to detect smooth (pre-visual) changes in 
the functioning of vegetation. RS of SIF has gained interest of researchers thanks to the recent development of 
algorithms and models to compute SIF from airborne and satellite sensors. The FLuorescence EXplorer (FLEX) 
satellite mission of the European Space Agency (ESA) will provide SIF data at global scale with a spatial resolution 
of 300 m. Despite the great value of such data to track large-scale vegetation functional dynamics, there is high 
interest to study possible ways to increase its resolution to an intra- or inter-field level. Recent studies have 
addressed that subject using VIs, evapotranspiration and land surface temperature as explanatory variables. 
Yet, a more flexible method capable to work in multiple ecosystems and spatiotemporal scales is needed. Our 
hypothesis is that the versatility of the fractal geometry, present in numerous spatial and temporal phenomena 
in nature, allows fractal approaches to address that need. With this study, we aim to first evaluate the existence 
of fractal geometry in the spatial distribution of SIF emitting objects based on the presence of the universal 
Power Law (PL) and, second, to evaluate whether the aggregation of the SIF signal in SIF emitting objects across 
spatial resolutions is scale invariant. For that purpose we used airborne SIF data retrieved over a ~60 ha soybean 
field in Nebraska, USA (summer 2018). The image was resampled from its original resolution of 1.5 m to 5, 10 
and 15 m pixel size. The resampled images were segmented into individual objects, and for each object the total 
SIF (SIFTOT) was calculated. We found: (i) presence of fractal geometry in the distribution of SIFTOT objects, since 
they followed the PL in all the analyzed scales; and (ii) evidence of scale invariance in the SIF aggregated signal. 
The second was concluded based on the linear increase of the scale factor and the nearly invariant behavior of 
the dimension factor of the PL equations across spatial resolutions. Both findings constitute the first step 
towards the use of the fractal geometry for SIF-downscaling, understood as the fragmentation of coarse 
resolution SIF data into the SIFTOT of individual vegetation objects under its footprint. The above described study 
was accepted for publication as the ‘fractal geometry’ chapter in the Springer-Nature Encyclopedia of 
Mathematical Geosciences, and it was ‘in production’ status by the time of this abstract’s submission. 
Additionally, we investigated possible bi-variate PL’s where a second variable could explain variations in SIFTOT. 
Interestingly, we found in numerous datasets that the inverse of the (SIF emitting) object size fits the PL function 
with SIFTOT at R2 > 0.95. This finding opens the possibility for practical SIF-downscaling approaches using the 
fractal theory. 
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“Solar-induced chlorophyll fluorescence (SIF) relation with soil moisture (SM) and 

gross primary productivity (GPP) at European scale in a heat wave” 

 

Conference: European Association of Remote Sensing Laboratories (EARSeL, Potsdam, 
Germany, 2022) 

  

 

Authors: Juan Quiros-Vargas (GE), B. Siegmann (GE), A. Damm (CH), Cosimo Brogi (GE), Philipp 
Köhler (US), Roel Van Holst (BE), David Martini (GE), Onno Muller (GE), Uwe Rascher (GE) 

Abstract: Advancement in the development of imaging spectroscopy methods and instruments have a great 
impact on the assessment of vegetation functioning. In particular, the retrieval of Solar-Induced chlorophyll 
fluorescence (SIF) from satellite spectroscopic data attracted attention from the scientific community in recent 
years. Initially, missions like the Global Ozone Monitoring Experiment 2 (GOME-2), from the European Space 
Agency (ESA), and the Orbiting Carbon Observatory 2 (OCO-2) from the National Aeronautics and Space 
Administration (NASA) were used for the retrieval of SIF at satellite scale. Nevertheless, subsequently the 
unprecedented combination of the spectral resolution, signal-to-noise ratio, and spatial coverage of the 
TROPOspheric Monitoring Instrument (TROPOMI) motivated novel approaches for global scale SIF assessment. 
The ~7x3.5 km pixel-1 (at nadir) daily SIF data provided by the TROPOMI-SIF product (Köhler et al., 2018), 
alongside the high resolution in the temporal domain as well (daily revisit time), has large potential to advance 
our knowledge on large scale ecosystem dynamics. Especially when integrated with other ecosystem variables 
such as Soil Moisture (SM) and Gross Primary Productivity (GPP), it is possible to advance interpreting the 
response of ecosystems to stress conditions. In this study we analyze the relationship of SIF with subsurface soil 
moisture (from the NASA’s soil moisture active/passive –SMAP- mission) and GPP (generated within the ESA’s 
Scientific Exploitation of Operational Missions -SEOM- TerrA-P project) during the European Heat Wave (HW) 
in 2018, aiming to understand the continental scale response of vegetation to abnormally high temperatures. 
Therefore, in this study we classified the averaged soil moisture maps from June to early August into eight 
groups (from ~50 l m-3 to 300 l m-3) and analyzed their relation with the corresponding SIF and GPP data. We 
also analyzed the behavior of SIF in each soil moisture class with special attention to HW peaks in the fourth 
week of June and the third of July. We found a strong positive SIF- soil moisture relation (r = 0.91, p < 0.01) and 
a lower, but more heat sensitive, SIF pattern across time in the lower soil moisture classes. Moreover, our 
results suggest that a positive SIF-GPP relation is uncoupled and even becomes negative during the heat wave 
(as reported by Martini et al., 2021) in regions with soil moisture below 130 l m-3, but remains positive in areas 
with higher soil water content. Our results provide the first insight of the SIF-GPP relation contextualized in the 
frame of the soil water content. Furthermore, motivates future deeper analyses of this three-variate (SIF, SM, 
and GPP) relation within the specific lowest and highest soil moisture classes. 
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4.2.7 Tenth publication (Quiros-Vargas et al., EMS-2022) 

 
“Vegetation and climate: initial concepts about the relation between the sun-

induced chlorophyll fluorescence (SIF) and the soil water content (SWC)” 

 

Conference: European Meteorological Society (EMS, Bonn, Germany, 2022) 

  

 
DOI: 10.5194/ems2022-612 

 

 

 

 

 

 

 

Authors: Juan Quiros-Vargas (GE), Bastian Siegmann (GE), Alexander Damm (CH), Uwe Rascher 

Abstract: Climate conditions directly impact on vegetation growth, this is quite clear; yet, “how vegetation 
functioning alters climate?” is an open query rising many questions. Understanding the impact of vegetation 
functioning on climate is important to better comprehend climatological processes and thus to improve models, 
due to the influence of plants on the carbon and water cycles. For decades it was impossible to have information 
about plant functioning in the (regional to global) scale of climatological models, nevertheless, the advent of 
satellite-based remote sensing (RS) methods for the retrieval of sun-induced chlorophyll fluorescence (SIF, as a 
proxy of photosynthesis) made it feasible. For instance, using satellite SIF and precipitation data, Green et al. 
(2017; DOI 10.1038/ngeo2957) recently provided one of the first contributions in such direction. The authors 
reported that regional biosphere-atmosphere feedbacks can explain up to 30% of precipitation variance, mainly 
because of the role of plants in the regulation of the water flux from the soil towards the atmosphere. As a 
complement to such studies with focus on the vegetation-atmosphere link, in two recent studies we analyzed 
the relation that SIF has with the soil water content (SWC) at airborne and satellite scales. At airborne scale we 
found that (i) the SIF-SWC relation is crop- and growth stage-dependent, and that (ii) SIF showed a faster 
response to water limitations compared to conventional (reflectance-based) RS products. On the satellite level 
we found a strong impact of the SIF-SWC relation on the gross primary productivity (GPP) during a heat wave 
at European scale. With these contributions from the RS area, we aim to provide novel information that can 
help the meteorological research community to better understand how vegetation functioning can alter 
climatological processes, with potential applications in the improvement of climate models. 
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6 Additional activities (deliverables, talks, proposals and field 
campaigns) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

Table 1:  Deliverables, talks, proposals and field campaign contributions from 2019 to 2022. 
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