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Introduction

This thesis comprises three essays in microeconomic theory.
Chapter 1 is based on Niemeyer and Preusser (2022). We investigate the prob-

lem of allocating a scarce resource among a number of agents. The efficient allo-
cation depends on the information that agents have about their peers, but mone-
tary transfers are not used to elicit this information. This problem arises, for ex-
ample, when distributing social grants among the members of a community (who
can vouch for each other’s needs), allocating funding to researchers (who can eval-
uate one other’s work), or selecting the leader of the group (where each member
has an opinion about the leadership qualities of their peers). We consider dominant-
strategy incentive-compatible mechanisms for this problem. Our contribution is two-
fold. First, we establish fundamental properties of the set of mechanisms: determin-
istic mechanisms do not suffice for implementation, and anonymous mechanisms
cannot meaningfully elicit information from the agents. Second, we propose and
make a case for a simple class of mechanisms called jury mechanisms. These mech-
anisms solve the problem with three agents, are approximately optimal with many
“exchangeable” agents, and are the only deterministic mechanisms satisfying a re-
laxed notion of anonymity.

Chapter 2 is based on Kattwinkel et al. (2022). We study a mechanism design
problem with two agents having opposing interests. The leading example is an al-
location problem. The management of a firm has to decide how to split a budget
between two departments of the firm. The departments have private information
about the marginal revenue they can generate, and management wishes to allocate
to the department with the highest marginal revenue. As in Chapter 1, the depart-
ments may have valuable information about one another. This information is mod-
elled as a type that correlates with the marginal revenues as well with the type of
the other department. Our results shed light on how this information is useful to the
manager. First, we fully characterize the set of implementable mechanisms. Further,
in a sense that we make precise, we show that the manager is reliant on each depart-
ment’s type’s being informative about the revenue of the other department. However,
correlation between the types themselves shrinks the set of implementable mecha-
nisms, revealing how the absence of transfers overturns canonical results due to
Crémer and McLean (1985, 1988).
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Chapter 3 is based on Preusser and Speit (2022). We study a dynamic market for
a single good where market participants gradually learn about the good’s value. For
example, a prospective buyer of a house may update on the fact that other interested
buyers inspected the house but chose not to buy. The precise inference depends on
a number of details, such the house’s time-on-the-market and the prices that earlier
buyers were offered by the seller of the house. Consequently, market outcomes, too,
depend on the transparency of the market. This paper contributes to a literature
investigating how this form of transparency interacts with other features of the mar-
ket (see, for example, Hörner and Vieille, 2009; Kim, 2017). We find that, when
either everything or nothing is made public about the time-on-the-market and past
prices, then the seller can appropriate all gains from trade. However, when time-
on-the-market but not past prices are made public, buyers always enjoy gains from
trade.
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Chapter 1

Simple Allocation with Correlated
Types

1.1 Introduction

We consider environments where an object is allocated among a number of agents.
The efficient allocation depends on how the agents evaluate their peers, but mone-
tary transfers are not used to elicit this information. A number of environments fit
this description:

(1) A group has to elect one of its members to a prestigious post. The group as whole
benefits from selecting a qualified candidate, and each agent knows the qualities
of their friends in the group. Monetary transfers would naturally be excluded in
such an election.

(2) A community of households has to distribute a good among its members. Each
member can vouch for the needs and valuations of their friends or neighbors. If
some members are financially constrained, it may be infeasible or undesirable
to have members compete for the good via bids.

(3) A funding agency splits a budget across researchers. Each researcher can eval-
uate others in their field. If all parties are risk neutral, the allocated share of
the budget can be interpreted as the probability of being allocated the object.
Additional monetary transfers would be self-defeating.

In these environments, asking the agents straightforwardly who “should” get the
object does not guarantee satisfactory outcomes. In particular, if agents are primarily
concerned with their own winning chances, they may exaggerate their individual
qualities instead of impartially disclosing their peer information.

To better understand good allocation rules, we take a mechanism design ap-
proach and consider the following model. Each agent wants to win the object and
is indifferent to which of the others wins. Allocating to an agent generates a so-
cial value. The agents have private information about these values—their types. We
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model peer information by allowing for an arbitrary joint distribution of types and
values. Hence an agent’s type may be informative about the types and values of all
others.

We study mechanisms for maximizing the expected value of the allocation. In
a mechanism, each agent is asked to report their type. We focus on mechanisms
where truthfully reporting one’s type is a dominant strategy; that is, we focus on
dominant-strategy incentive-compatible (DIC) mechanisms. For the assumed pref-
erences of the agents, DIC requires that one’s report never influences one’s own
winning probability.

Let us highlight some of the differences to existing models (a detailed review
follows later). Alon et al. (2011) and Holzman and Moulin (2013) consider DIC
mechanisms (there called strategyproof or impartial) where the agents nominate
one another to win the object. These nominations do not arise from some ground
truth. By contrast, we fix a general joint distribution of types and values. This lets
us study mechanisms where, say, two agents can share their private information
and form a consensus about which of the others to nominate. Other work considers
settings where non-monetary instruments for screening the agents are available, but
where the agents have no peer information (for example, Ben-Porath, Dekel, and
Lipman, 2014, 2019).

We contribute two results demonstrating the difficulty of designing “simple”
mechanisms for this problem: deterministic DIC mechanisms are not without loss,
and anonymous DIC mechanism cannot meaningfully elicit information. We further
contribute three positive results on so-called jury mechanisms. These mechanisms,
described in detail below, solve the problem with three agents, are approximately
optimal in symmetric environments with many agents, and are the only determinis-
tic DIC mechanisms satisfying a relaxed notion of anonymity. Let us elaborate.

For each agent, there is a trade-off between allocating to the agent and using the
agent’s peer information. This trade-off arises since, on the one hand, DIC demands
that a change in an agent’s type does not affect that agent’s own winning probability,
but, on the other hand, the change in the type reveals information about the values
from allocating to the others.

Optimally resolving this trade-off may require the use of stochastic mechanisms
that cannot be implemented by randomizing over deterministic ones. That is, the set
of DIC mechanisms may admit stochastic extreme points, and these can be uniquely
optimal. Stochastic extreme points exist if and only if there are at least four agents
and the type spaces are not “too small.” The typical view in the literature is that one
should use mechanisms that can be implemented by randomizing over deterministic
ones (for example, Pycia and Ünver, 2015; Chen et al., 2019). We find that doing
so is not generally without loss in the present problem.

Our next result is that all anonymous DIC mechanisms must ignore the reports
of the agents. Here, anonymity means that all agents can make the same reports and
that an agent’s winning probability does not change when one permutes the reports
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of the others. We view anonymity as the familiar axiom from social choice theory
that no agent play a special role in determining the chosen social alternative; that is,
in determining whowins the object. As such, anonymity helps reduce the complexity
of the mechanism, protects agents’ privacy when evaluating their peers, and ensures
that agents have the same rights as voters. Our negative result also sheds new light
on a characterization due to Holzman and Moulin (2013) and Mackenzie (2015) of
a slightly different notion of anonymity.

Our positive results concern the following class of mechanisms. In a jury mecha-
nism, each agent is either a juror or a candidate. The allocation only depends on the
reports of the jurors, and the object is always allocated to a candidate. Given that
jurors cannot win, all jury mechanisms are DIC.

If there are three agents, then all DICmechanisms are randomizations over deter-
ministic jury mechanisms. In particular, a deterministic jury mechanism is optimal.
This generalizes a known result for deterministic DIC mechanisms due to Holzman
and Moulin (2013). Our key insight is that in the three-agent case all DIC mecha-
nisms are actually randomizations over deterministic ones.

Next, we identify a condition on the environment under which deterministic
jury mechanisms are approximately optimal with many agents. By “approximately
optimal” we mean that the difference in expected values between an optimal deter-
ministic jury mechanism and an optimal DIC mechanism vanishes as the number of
agents diverges. The condition on the environment is that agents are exchangeable
in terms of supplying information about the vector of values. Intuitively, when agents
are exchangeable, increasing their number relaxes the aforementioned trade-off. In
particular, there is essentially no loss from ignoring the reports of those agents who
are sometimes allocated the object—this is the defining property of a jury mecha-
nism.

For the last result, we consider a relaxed notion of anonymity—partial
anonymity. Whereas the earlier notion of anonymity demands that an agent’s win-
ning probability be invariant with respect to all permutations of the others, partial
anonymity only considers permutations of those agents that in the given mechanism
actually influence the agent’s winning probability. We show that all deterministic
partially anonymous DIC mechanism are jury mechanisms.

The paper is organized as follows. We next discuss related work (Section 1.2)
and present the model (Section 1.3). In Section 1.4, we introduce jury mechanisms
and present the results for the three- and many-agent cases. In Section 1.5, we char-
acterize when stochastic extreme points exist. In Section 1.6, we study anonymous
mechanisms, presenting the two notions and the associated characterizations side-
by-side. We conclude by discussing open questions (Section 1.7). All omitted proofs
are in Appendix 1.A. Supplementary material is collected in Appendix 1.B and Ap-
pendix 1.C.
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1.2 Related literature

Holzman and Moulin (2013) study axioms for peer nomination rules. In such a rule,
agents nominate one another to receive a prize. Their central axiom— impartiality—
is equivalent to DIC when each agent cares only about their own winning probability.
As Holzman and Moulin note, many of their axioms have no obvious counterparts in
a model with abstract types. Most relevant for us is their notion and characterization
of anonymity, as well subsequent results due to Mackenzie (2015, 2020). We discuss
the differences to our characterization in detail in Section 1.6.4.1

Alon et al. (2011) initiated a literature on optimal DIC mechanisms (there called
strategyproof mechanisms) in a model where each agent nominates a subset of
the others, and the aim is to select an agent nominated by many. Mechanisms are
ranked according to approximation ratios2 rather than according to expected values,
and this leads to qualitatively different optimal mechanisms. For example, while
jury mechanisms can be optimal in our model, the 2-partition mechanism of Alon
et al. (2011), which is a natural analogue of jury mechanisms, is not optimal in
their model.3⁴

See Olckers and Walsh (2022) for a survey of the literature following Holzman
and Moulin (2013) and Alon et al. (2011). Olckers and Walsh also report on some
related empirical studies.

Other work in mechanism design focuses on non-monetary instruments for elicit-
ing information For example, in the aforementioned paper of Ben-Porath, Dekel, and
Lipman (2014), the agents’ types can be verified at a cost.⁵ The typical assumption in
this literature is that the agents do not have information about their peers. Most rel-

1. Further contributions to the literature following Holzman andMoulin (2013) include Tamura
and Ohseto (2014), Tamura (2016), and Edelman and Por (2021). See also de Clippel, Moulin, and
Tideman (2008).

2. Given α ∈ [0,1], a mechanism has an approximation ratio of α if it guarantees a fraction α
of some benchmark value. The guarantee is computed across all realizations of the type profile; that
is, across all possible approval sets. The benchmark value at a particular realization is the maximal
number of approvals across agents.

3. The 2-partition mechanism randomly splits the agents into two subsets, and then selects an
agent from the first subset with the most approvals from agents in the second subset. Alon et al. (2011,
Theorem 4.1) show that the 2-partitionmechanism has an approximation ratio of 1

4 . Fischer and Klimm
(2015) present a mechanism that achieves the strictly higher and optimal ratio of 1

2 .
4. Further contributions to this literature include Bousquet, Norin, and Vetta (2014), Aziz

et al. (2016), Bjelde, Fischer, and Klimm (2017), Aziz et al. (2019), Mattei, Turrini, and Zhydkov
(2020), and Lev et al. (2021). See also Caragiannis, Christodoulou, and Protopapas (2019, 2021),
who consider additive approximations rather than approximation ratios.

5. See Epitropou and Vohra (2019), Erlanson and Kleiner (2019), and Li (2020) for further
work with costly verification. Other examples of non-monetary instruments include promises of fu-
ture allocations (Guo and Hörner, 2021), costly signaling (Condorelli, 2012; Chakravarty and Kaplan,
2013), allocative externalities (Bhaskar and Sadler, 2019; Goldlücke and Tröger, 2020), or ex-post
punishments (Mylovanov and Zapechelnyuk, 2017; Li, 2020).
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evant for us are papers that study how a Bayesian incentive-compatible mechanism
may use agents’ peer information to incentivize truthtelling (Kattwinkel, 2019; Kat-
twinkel and Knoepfle, 2021; Bloch, Dutta, and Dziubiński, 2022; Kattwinkel et al.,
2022). The idea is that when agents have information about their peers, one can de-
tect lies by cross-checking the agents’ reports. We observe that the dominant-strategy
incentive-compatible mechanisms that we consider do not use peer information in
this manner. While DIC thus shuts down a screening channel, it leads to mecha-
nisms that are far simpler for the agents to play. Relatedly, the fundamental insights
of Crémer and McLean (1985, 1988) and McAfee and Reny (1992) on mechanisms
with transfers do not apply here.

The papers of Baumann (2018) and Bloch and Olckers (2021, 2022) study
related settings but focus on different questions. For instance, Bloch and Olckers
(2022) study whether it is possible to reconstruct the ordinal ranking of agents from
their reports when agents prefer a high rank.

We also contribute to the literature on the gap between stochastic and deter-
ministic mechanisms⁶ by fully characterizing when deterministic DIC mechanisms
suffice for describing the set of DIC mechanisms in the present model. Methodologi-
cally, we show that here the existence of stochastic extreme points can be understood
via a graph-theoretic result due to Chvátal (1975). We elaborate in Appendix 1.B.

1.3 Model

A single indivisible object is to be allocated to one of n agents, where n≥ 2. For each
agent i, let Ωi be a finite set of reals representing the possible social values from
allocating to agent i, and let Θi be a finite set representing agent i’s possible private
types. LetΩ = ×n

i=1Ωi andΘ = ×n
i=1Θi. Values and types are distributed according to

a joint distribution µ over Ω ×Θ. At all type profiles, agent i strictly prefers winning
the object to not winning it; agent i is indifferent to which of the others is allocated
the object.

In a (direct) mechanism, each agent reports a type, and then the object is al-
located to one of the agents according to some lottery. Formally, a mechanism is
a function φ : Θ→ [0, 1]n satisfying

∑n
i=1φi = 1. Here φi : Θ→ [0,1] denotes the

winning probability of agent i. Since the object is allocated to one of the agents,
these probabilities sum to 1. The requirement that the object is always allocated
keeps with some earlier work (for example, Alon et al. (2011) and Holzman and
Moulin (2013)). In Appendix 1.B, we discuss mechanisms that do not always allo-
cate.

A mechanism φ is dominant-strategy incentive-compatible (DIC) if truthfully re-
porting one’s type is a dominant strategy. For the assumed preferences of the agents,

6. See, for example, Budish et al. (2013), Pycia and Ünver (2015), Jarman and Meisner (2017),
Chen et al. (2019), and Rivera Mora (2022).
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a mechanism is DIC if and only if one’s report never affects one’s own winning prob-
ability.

To see the previous point in detail, let ui(θ) denote the payoff to an agent i when
i is allocated the object at a type profile θ . We normalize i’s payoff when not allocated
the object to 0, and we assume ui > 0. DIC for a mechanism φ requires that all
i,θi,θ

′
i ,θ−i, and θ ′−i satisfy ui(θi,θ−i)φi(θi,θ

′
−i)≥ ui(θi,θ−i)φi(θ

′
i ,θ
′
−i). Since ui > 0

and since θi and θ ′i are arbitrary, we must have φi(θi,θ
′
−i)= φi(θ

′
i ,θ
′
−i). That is,

agent i’s report never affects φi. Observe that nothing in this argument changes
if ui < 0. Hence we can equally model cases where some agents prefer not to be
allocated the object.

We evaluate a DIC mechanism φ via the expected value of the allocation, which
is given by Eω,θ

�∑n
i=1φi(θ)ωi

�

. When we say a DIC mechanism is optimal, we
mean it maximizes the expected value among all DIC mechanisms. The Revelation
Principle implies that DIC mechanisms are without loss: if a mechanism can be im-
plemented in some dominant-strategy equilibrium of some game, then it is DIC.

Lastly, we define the following: Amechanism is deterministic if it maps to a subset
of {0,1}n. A mechanism is stochastic if it is not deterministic.

1.4 Jury mechanisms

In this section, we focus on the following class of mechanisms.

Definition 1.1. A mechanism φ is a jury mechanism if for all agents i we have the
following: if the mechanism is non-constant in agent i’s report, then agent i never
wins, meaning φi = 0.

Given a jury mechanism, we refer to an agent as a juror if the mechanism is
non-constant in their report. The set of jurors is called the jury, and the remaining
agents are called candidates. All jury mechanisms are DIC since jurors never win.

The most natural jury mechanisms are those that allocate to the top candidate
conditional on the jurors’ reports. That is, when the set of jurors is J and jurors
report types (θi)i∈J, the object is allocated to one of the candidates in

arg max
k∈{1,...,n}\J

Eωk
[ωk|(θi)i∈J].

Assuming a common prior, this mechanism would be implemented by having the
jurors share their private information via cheap-talk messages, update their beliefs
about the candidates, and then award the object to the top candidate given their
shared posterior belief. (For our proofs, however, it is convenient to allow the jurors
to select a suboptimal candidate.)

A priori, all agents in the model are candidates for winning and suppliers of
information. Jury mechanisms are special since the roles of candidates and jurors
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are assigned before the agents are consulted. There are more complicated mecha-
nisms where an agent’s “role” varies across type profiles, and we shall encounter
such mechanisms later. As such, it is remarkable that there are situations where jury
mechanisms are (approximately) optimal, as we discuss next.

1.4.1 Jury mechanisms solve the three-agent case

Theorem 1.1. Let n≤ 3. A mechanism is DIC if and only if it is a convex combination
of deterministic jury mechanisms. In particular, there is an optimal DIC mechanism
that is a deterministic jury mechanism.

With three agents, a jury mechanism admits at most one juror who deliberates
between the other two. Therefore, all DIC mechanisms with three agents can be
implemented by nominating a juror (according to some distribution over the set of
agents), and then asking the juror to pick one of the others as a winner of the object.
Optimally, the information of at least two of the agents is ignored. (With only two
agents, all DIC mechanisms are constant.)

In the remainder of this subsection, we explain the steps in the proof of The-
orem 1.1. We begin with a known result (Holzman and Moulin, 2013, Proposi-
tion 2.i).

Lemma 1.2. If n≤ 3, then all deterministic DIC mechanisms are jury mechanisms.

In the language of Section 5 of Holzman and Moulin (2013), a deterministic DIC
mechanism is an impartial award rule. Their Proposition 2.i implies that, if n≤ 3,
then in each impartial award rule there is at most one agent whose report influ-
ences the allocation, and this influential agent never wins. Such a rule is a jury
mechanism.⁷

To the best of our knowledge, Lemma 1.2 has so far been limited to deterministic
DIC mechanisms. We now close the gap to stochastic ones.

Lemma 1.3. If n≤ 3, then all DIC mechanisms are convex combinations of determin-
istic DIC mechanisms.

Lemma 1.3 completes the proof of Theorem 1.1. Indeed, Lemma 1.2 and
Lemma 1.3 immediately imply that all DIC mechanisms are convex combinations
of deterministic jury mechanisms. Since the expected value is a linear function of
the mechanism, at least one deterministic jury mechanism must be optimal.

To prove Lemma 1.3 we consider the extreme points of the set of DIC mech-
anisms. A routine argument shows that the set of DIC mechanisms is convex and

7. Holzman andMoulin (2013) note that the result is essentially due to Kato and Ohseto (2002),
who study pure exchange economics. For a discussion of this relationship, we refer to Section 1.4 of
Holzman and Moulin (2013).
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compact (as a subset of Euclidean space). Hence, by the Krein-Milman theorem
(Aliprantis and Border, 2006, Theorem 7.68), the set is given by the convex hull
of its extreme points.

We show that all stochastic DIC mechanisms fail to be extreme points. Specifi-
cally, given an arbitrary stochastic DIC mechanism φ we construct a non-zero func-
tion f such that φ + f and φ − f are two other DIC mechanisms. To understand this
construction, recall that a stochastic mechanism is one where, for at least one type
profile, at least one agent enjoys an interior winning probability. Since the object is
always allocated, some other agent must also enjoy an interior winning probability
at the same profile. The function f represents a shift of a small probability mass
between these two agents. This shift should be consistent with DIC (since we want
φ + f and φ − f to be DIC), and hence we have to shift masses at multiple type pro-
files. What makes the construction of f difficult is that changing one agent’s type
may change which of the others enjoys an interior winning probability. Our argu-
ment thus intuitively leans on there only being three agents. Indeed, we shall later
see that the argument does not go through with four or more agents.

1.4.2 Approximate optimality of jury mechanisms

In this subsection, we identify environments in which jury mechanisms are approxi-
mately optimal if the number n of agents is large. As suggested in the introduction,
DIC creates a tension between allocating to an agent and using the agent’s peer
information. This tension becomes easier to resolve with many agents. Indeed, we
intuit that many DIC mechanisms become approximately optimal as n→∞. The
insight of the upcoming result is that this includes the DIC mechanisms that resolve
the tension in the most straightforward way—jury mechanisms.

The following example conveys the basic idea.

Example 1.1. For each agent i, the value ωi of allocating to i depends on some
common component s and some private component ti. Specifically, for some func-
tion ω̂i we have ωi = ω̂i(s, ti) with probability 1. The agents observe their private
components, which are independently and identically distributed across agents and
independent of s. All agents observe s. (So, agent i’s type is θi = (s, ti).) Let φ be an
arbitrary DIC mechanism for these n agents. Now suppose a new agent n+ 1, who
also observes the common component s, joins the group. Agent n+ 1 may observe
some additional information, but this will not be relevant. We claim that there is a
jury mechanism that only uses agent n+ 1 as a single juror and that does as well
as φ. Note that, by ignoring the reports of agents 1 to n, the information contained
in the public component s is not lost. The only information that is potentially lost
is the first n agents’ knowledge of their private components t1, . . . , tn. Each agent
i’s private component ti is informative only about i’s own value (by independence).
However, DIC of the original mechanism φ implies that ti could not have been used
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to determine i’s own allocation. Thus one does not actually lose any information
when ignoring the reports of agents 1 to n.

The main result of this section generalizes the previous example as follows. Un-
der an assumption on the distribution of types and values, an arbitrary DIC mecha-
nism with n agents can be replicated by a jury mechanism when additional agents
are around. If values remain bounded in n, an implication is that the loss from using
an optimal jury mechanism vanishes as n→∞.

We introduce new notation to accommodate the growing number of agents. The
agents share a common finite type space (Θ1 = Θi for all i). The prior distribution
of values and types is now a Borel-probability measure µ on ×i∈N(Ωi ×Θi),where
each Ωi is a finite set of reals.⁸

The following assumption captures the idea that if i, j, and k are three distinct
agents, then i and j have access to the same sources of information about ωk.

Assumption 1.1. For all n ∈ N, all i ∈ {1, . . . , n}, and all ωi ∈ Ωi, we have the fol-
lowing: Conditional on the value of agent i being equal to ωi, the distribution of
(θj)j∈{1,...,n}\{i} is invariant with respect to permutations of {1, . . . , n} \ {i}.

We are not assuming that i and j have the same information as k about ωk. For
example, in Example 1.1, the common component is the only information that i and
j have about ωk, but agent k actually observes ωk.

When there are n agents (meaning that mechanisms only consult and allocate
to the first n agents), let Vn denote the expected value from an optimal DIC mecha-
nism. Let VJ

n denote the expected value from a jury mechanism with n agents that
is optimal among jury mechanisms with n agents.

Theorem 1.4. Let Assumption 1.1 hold. For all n ∈ N there existsm ∈ N such that Vn ≤
VJ

n+m. If, additionally, the sequence {Vn}n∈N is bounded,⁹ then limn→∞(Vn − VJ
n)= 0.

In plain words, if m new agents are added to the group, a jury mechanism with
n+m agents does as well as an with an arbitrary DIC mechanism with n agents. The
proof shows this claim for a jury mechanism that has the new m agents as jurors, and
the old n agents as candidates, and where m= n. That is, a jury mechanism with
the desired properties exists as soon as the number of agents is doubled. Depending
on the exact distribution µ, a much smaller number of new agents may be needed;
in Example 1.1, one new agent suffices.

Assumption 1.1 is stronger than what we really need. It suffices if, informally
speaking, for all groups of agents {1, . . . , n} there eventually comes a disjoint group

8. Each of the finite sets Ωi and Θi is equipped with the discrete metric. The product ×i∈N(Ωi ×
Θi) is equipped with the product metric.

9. A sufficient condition for boundedness of the sequence {Vn}n∈N is that the values ωi are
bounded across agents. For example, suppose with µ-probability 1 we have ωi ∈ [0, 1] for all i ∈ N.
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of agents that is at least as well informed as {1, . . . , n} about each other. Assump-
tion 1.2 in Appendix 1.A.1.2 formalizes this idea.
Remark 1. Theorem 1.4 does not assert that DIC mechanisms become approxi-
mately ex-post optimal conditional on the type profile. In Example 1.1, the only
information that is used in the allocation is the common component. The common
component need not pin down the entire profile of values.

1.5 Random allocations

In this section, we show that it typically does not suffice to consider deterministic
mechanisms. This fact sheds light on the fundamental economic forces of the model
and has practical implications for implementation, as we explain below.

1.5.1 Stochastic extreme points

One of way constructing a stochastic DIC mechanism is by randomizing over deter-
ministic ones; that is, by taking a convex combination of deterministic DIC mecha-
nisms. In this case, one of the deterministic mechanisms from the combination must
generate a weakly higher expected value than the stochastic mechanism.

We therefore ask whether all stochastic DIC mechanisms can be represented as
convex combinations of deterministic ones; that is, whether all extreme points of
the set of DIC mechanisms are deterministic. In a nutshell, this is true if and only if
there are at most three agents or the agents’ type spaces are small.
Theorem 1.5. All extreme points of the set of DIC mechanisms are deterministic if and
only if at least one of the following is true:

(1) There are at most three agents; that is, we have n≤ 3.
(2) All agents have at most two types; that is, for all i we have |Θi| ≤ 2.
(3) At least (n− 2)-many agents have a degenerate type; that is, we have

|{i ∈ {1, . . . , n}: |Θi| = 1}| ≥ n − 2.

We already know from Lemma 1.3 that (1) is sufficient for all extreme points to
be deterministic. Sufficiency of (2) is related to a generalization of the well-known
Birkhoff-von Neumann theorem; sufficiency of (3) is economically and technically
uninteresting, but must be included for completeness.1⁰ As for the other direction:

10. The reader may wonder whether one can prove sufficiency of (1) to (3) by viewing the set of
DIC mechanisms as the set of solutions to a linear system of inequalities, checking for total unimodular-
ity of the constraint matrix, and then invoking the Hoffman-Kruskal theorem (Korte and Vygen, 2018,
Theorem 5.21). In the mechanism design literature, this approach is discussed in Pycia and Ünver
(2015), for example. Here the approach works for the case where all type spaces are binary; our proof
uses a result which can itself be derived from the Hoffman-Kruskal theorem. However, in the difficult
case with three agents, the constraint matrix is not generally totally unimodular (see Appendix 1.C.3).



1.5 Random allocations | 13

we momentarily give an example of a stochastic extreme point. The general claim
that a stochastic extreme point exists when (1) to (3) all fail follows readily by
extending this example.

An implication of Theorem 1.5 is that deterministic DIC mechanisms do not
suffice for optimality. Indeed, for each extreme point there exists at least one dis-
tribution of types and values where the extreme point is the unique optimal DIC
mechanisms.11

We do not expect stochastic extreme points to closely resemble mechanisms ob-
served in practice. The literature discusses several issues. First, to reduce complexity
and opaqueness, it is appealing to implement a mechanism by randomizing over de-
terministic mechanisms, announcing the selected mechanism, and only then collect-
ing the agents’ reports (see, for example, Pycia and Ünver (2015)). A stochastic ex-
treme point is precisely a DIC mechanism that cannot be implemented in this way.12
Second, to implement a stochastic extreme point, the designer must commit to hon-
oring the outcome of a stochastic process (see, for example, Chen et al. (2019)).
A commitment issue arises if the agents’ collective information identifies a unique
qualified agent but the mechanism nevertheless promises to flip a coin between this
agent and a less qualified one.

Despite the above points, it may be acceptable to randomize if this happens
“rarely” or is used to break ties between “similar” agents. As it happens, the opti-
mality of stochastic extreme points is not limited to such cases. We next present
an example where a stochastic extreme point is uniquely optimal. This stochastic
extreme point “frequently” randomizes between “dissimilar” agents.

1.5.2 An example of a stochastic extreme point

There are four agents, and their types are as follows:

Θ1 = {ℓ, r}, Θ2 = {u, d}, Θ3 = {f , c, b}, Θ4 = {0}. (1.1)

Figure 1.1 shows (among other things that are not yet relevant) the type profiles of
agents 1, 2, and 3; the degenerate type of agent 4 is omitted. The types of agents

11. The argument is as follows. The set of DIC mechanisms is a polytope in Euclidean space
that does not depend on the distribution. All extreme points of the polytope are exposed. Since all
linear functionals on this polytope can be represented via some distribution, the claim follows. See
Appendix 1.C.1 for the formalities.

12. In fact, in our model, stochastic extreme points cannot be implemented via any dominant-
strategy equilibrium of any deterministic indirect mechanism. See Appendix 1.C.2. We note, however,
a result of Rivera Mora (2022) implying the following (for our model): Given an arbitrary DIC direct
mechanism, there is an ex-post equilibrium of a deterministic indirect mechanism that implements the
given DIC direct mechanism. In this ex-post equilibrium, the agents play mixed strategies that emulate
the randomization on the part of the given DIC mechanism. These mixed strategies do not generally
form a dominant-strategy equilibrium.
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1, 2, and 3 span a three-dimensional hyperrectangle. (Mnemonically, their types
mean left, right, up, down, front, center, and back.) Each edge of the hyperrectangle
represents a set of type profiles along which exactly one agent’s type is changing.
Hence DIC requires that the winning probability of this agent be constant along the
edge. We identify such an edge by a pair (i,θ−i), where i indicates the agent whose
type is changing, and θ−i indicates the fixed types of the others.

θe

θd

θc

θb

θg

θf
θa

fd
u

ℓ r

c
b

ω̂1(ℓ) = 5 ω̂1(r) = 0

ω̂2(d) = 5

ω̂3(f) = 5(1− ρ)

ω̂3(c) = 0

ω̂2(u) = 0

ω̂3(b) = 5(1− ρ)

1
2

1
2

1
2

1
2

1
2 1

2

1
2

Figure 1.1. The set of types of agents 1, 2, and 3. The probabilities 1
2 attached to the edges of the

hyperrectangle represent the relevant values of the mechanism ϕ
∗. The values from the allocation

are as defined in (1.5). The distribution µ assigns probability 1
5 to the profiles {θa, θc, θd, θe, θf }.

All other profiles have probability 0.

Let Θ∗ = {θ a,θ b,θ c,θ d,θ e,θ f ,θ g} be the set of labeled type profiles in Fig-
ure 1.1; these are the profiles

θ a = (ℓ, d, c, 0), θ b = (r, d, c, 0), θ c = (r, d, b, 0),

θ d = (r, u, b, 0), θ e = (r, u, f , 0), θ f = (ℓ, u, f , 0),

θ g = (ℓ, u, c, 0).

(1.2)

Let V∗ denote the set of bold edges in Figure 1.1 that connect the profiles in Θ∗;
these are the edges

V∗ = {(1,θ a
−1), (3,θ c

−3), (2,θ c
−2), (3,θ e

−3), (1,θ e
−1), (3,θ f

−3), (2,θ a
−2)}.

Our candidate stochastic extreme point φ∗ is defined as follows (see Figure 1.1):
For all i ∈ {1,2, 3} and θ ∈ Θ, let

φ∗i (θ) =

(

1
2 , if (i,θ−i) ∈ V∗,

0, otherwise.
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Further, for all θ ∈ Θ let φ∗4(θ)= 1−
∑

i∈{1,2,3}φ
∗
i (θ). In plain words, at all profiles

inΘ∗, exactly two bold edges of the hyperrectangle intersect at the profile; the mech-
anism φ∗ randomizes evenly between the two agents of these edges. All remaining
probability mass is assigned to agent 4. It is easy to verify from Figure 1.1 that φ∗
is a well-defined DIC mechanism.

Further belowwe specify valuesΩ and a distribution µ such thatφ∗ is the unique
optimal DIC mechanism. This implies that φ∗ is an extreme point of the set of DIC
mechanisms. Since the proof for uniqueness is somewhat involved, we next present
a simple self-contained argument showing that φ∗ is an extreme point.

Let φ be a DIC mechanism that receives non-zero weight in a convex combina-
tion that equals φ∗. We show φ = φ∗. For all profiles θ ∈ Θ∗, there are exactly two
agents i and j such that (i,θ−i) and (j,θ−j) both belong to V∗; these are the two
bold edges of the hyperrectangle that intersect at θ . Hence at θ the mechanism φ∗
randomizes evenly between i and j. Since φ is part of a convex combination that
equals φ∗, it follows that at θ the mechanism φ only randomizes between i and
j, meaning φi(θ)= 1−φj(θ). Since φ is DIC, repeatedly applying this observation
shows:

φ1(θ a) = 1 − φ3(θ c) = φ2(θ c) = 1 − φ3(θ e)

= φ1(θ e)

= 1 − φ3(θ f ) = φ2(θ a) = 1 − φ1(θ a).

(1.3)

In particular, we have φ1(θ a)= 1−φ1(θ a), implying φ1(θ a)= 1
2 . Hence all proba-

bilities in (1.3) equal 1
2 . Hence φ agrees with φ∗ at all profiles in Θ∗. By inspecting

Θ \Θ∗, we may easily convince ourselves that φ and φ∗ also agree on Θ \Θ∗. Thus
φ∗ is an extreme point.

We next construct an environment in which φ∗ is uniquely optimal. We could do
so by invoking a separating hyperplane theorem. However, this would be unsatisfy-
ing since we would gain no intuition for why randomization helps or for whetherφ∗
is uniquely optimal in a restricted class of environments. We shall gain both by con-
sidering environments in which values are privately known, in the following sense:
for all agents i, the value of allocating to i is pinned down by a function ω̂i that
depends only on θi.

We can describe an environment with privately known values by specifying a
distribution µ over type profiles and, for all agents i, a function ω̂i : Θi→ R that
governs the value of allocating to i. Our candidate distribution µ is given by (see
Figure 1.1)

∀θ∈Θ, µ(θ) =

(

1
5 , if θ ∈ {θ a,θ c,θ d,θ e,θ f}

0, else.
(1.4)
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Our candidates for ω̂1, . . . ω̂4 are parametrized by ρ ∈ [0, 1
2] and given by

ω̂1(r) = ω̂2(u) = ω̂3(c) = 0

ω̂1(ℓ) = ω̂2(d) = 5

ω̂3(f) = ω̂3(b) = 5(1 − ρ)

ω̂4 = 0.

(1.5)

Proposition 1.6. The mechanism φ∗ is an optimal DIC mechanism if and only if
ρ ∈ [0, 1

2], and it is uniquely optimal if and only if ρ ∈ (0, 1
2).

In the introduction, we intuited that there is a trade-off between allocating to
an agent and using that agent’s information about others. In the present example,
this trade-off involves agent 3 and depends on ρ.

To gain an intuition for the trade-off and the result, consider the case ρ = 0.
Allocating to agent 3 is now ex-post optimal at all except one of the five profiles
in the support of µ. Indeed, one optimal DIC mechanisms is the constant one that
always allocates to agent 3. The mechanism φ∗ is another optimal mechanism for
ρ = 0, which is intuitively explained by agent 3’s type being informative: if θ3 = c
realizes, the type profile must be θ a, where θ a is the unique type profile in the
support of µ at which allocating to agents 1 or 2 is better than allocating to agent
3. The mechanism φ∗ indeed allocates to agents 1 and 2 at θ a.

Since ρ decreases the value from allocating to agent 3, it is now intuitive thatφ∗
does strictly better than always allocating to agent 3 for small but strictly positive
values of ρ. In the formal proof, most of our effort goes towards showing that φ∗ is
in fact uniquely optimal for small but strictly positive values of ρ. The idea is that,
among all DIC mechanisms that are optimal for ρ = 0, the mechanism φ∗ is the
unique one minimizing agent 3’s overall winning probability.

If we increase ρ further, it eventually becomes optimal to use agent 3 as a source
of information and never allocate to agent 3. The critical value turns out to be ρ = 1

2 .
The intuition is confirmed by the fact that, if ρ = 1

2 , the following jury mechanism
with agent 3 as a juror is optimal: if agent 3 reports f , agent 1 wins; if agent 3 reports
c, a coin flip determines whether agent 1 or 2 wins; if agent 3 reports b, agent 2
wins.

Proposition 1.6 also helps illustrate the commitment issue discussed in the para-
graphs following Theorem 1.5. At the profile θ e, a coin flip determines whether
agent 1 or 3 wins the object. Yet, at this profile, the value from allocating to agent 3
is strictly higher than the value from allocating to agent 1. In fact, a coin is flipped
at all type profiles in the support of the distribution. For ρ ∈ (0, 1

2), the mechanism
designer is indifferent to the outcome of the coin flip at only one of these profiles.

Remark 2. Chen et al. (2019) show that, in certain mechanism design problems,
given any stochastic mechanism there is a deterministic one that induces the same
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interim-expected allocations. Since the deterministic mechanism is not guaranteed
to be DIC, their result does not contradict the suboptimality of deterministic DIC
mechanisms in our model.

Remark 3. An alternative approach to showing the existence of a stochastic ex-
treme point uses a graph-theoretic result due to Chvátal (1975), as we explain in
Appendix 1.B.2. For a certain graph G that we define in Appendix 1.B.2, Chvátal’s
theorem implies that all extreme points are deterministic if and only if G is perfect.
To be precise, the results of this appendix concern the related problem where the
mechanism may dispose the object instead of allocating it to the agents. The asso-
ciated characterization of extreme points is implied by Theorem 1.5, but not vice
versa.

1.6 Anonymous juries

In this section, we study anonymous DIC mechanisms. Anonymity, formally defined
below, is roughly the requirement that any two agents exert the same influence with
their reports on the winning probability of any third agent. This is a desirable prop-
erty as it helps protect the agents’ privacy when they evaluate their peers, reduces
the complexity of the mechanism, and ensures that the agents have the same voting
rights.

We offer two insights. First, all anonymous DIC mechanisms ignore the re-
ports of the agents. Second, we consider a relaxed notion of anonymity—partial
anonymity—and show that all deterministic partially anonymous DIC mechanisms
are jury mechanisms.

Throughout, we assume that the agents share a common type space, meaning
Θ1 = . . .= Θn. In an equally valid interpretation, we can consider indirect mecha-
nisms where all agents have the samemessage space and cannot influence their own
winning probabilities.

1.6.1 Notions of anonymity

Anonymity and partial anonymity are defined next. Anonymity requires that, for
all k, the winning probability of agent k does not change if one permutes the re-
ports of the agents other than k. Partial anonymity relaxes anonymity as follows:
When testing whether k’s winning probability is affected by permutations, we only
consider permutations of those agents who actually influence agent k. In particular,
partial anonymity permits the set of agents who influence k to be a proper subset of
{1, . . . , n} \ {k}.

Definition 1.2. Let the agents have a common type space. Let φ be a mechanism.

(1) Given i, j, and k that are all distinct, agents i and j are exchangeable for k if φk is
invariant with respect to permutations of i’s and j’s reports; that is, for all profiles



18 | 1 Simple Allocation with Correlated Types

θ and θ ′ such that θ is obtained from θ ′ by permuting the types of i and j we
have φk(θ)= φk(θ ′).

(2) Given distinct i and k, agent i influences k if φk is non-constant in i’s report;
that is, there exist type profiles θ and θ ′ that differ only in i’s type and satisfy
φk(θ) ̸= φk(θ ′).

(3) The mechanism is anonymous if for all i, j, and k that are all distinct, agents i
and j are exchangeable for k.

(4) The mechanism is partially anonymous if for all i, j, and k that are all distinct we
have the following: if i and j both influence k, then i and j are exchangeable for
k.

To state the upcoming characterization of partial anonymity, we also define what
we mean by an anonymous jury.

Definition 1.3. Let the agents have a common type space. A jury mechanism has
an anonymous jury if all jurors i and j are exchangeable for all agents k.

Remark 4. If Assumption 1.1 holds, then among jury mechanisms it is without
loss to use one with an anonymous jury. Indeed, consider the jury mechanism that
selects the candidate that is best conditional on the types of the jurors (breaking ties
in some fixed order). Under Assumption 1.1, the identity of the favored candidate
does not change when one permutes the jurors’ types.

1.6.2 Anonymous DIC mechanisms ignore all reports

Theorem 1.7. Let the agents have a common type space. All anonymous DIC mecha-
nisms are constant.

Note well that anonymity does not demand that i and j be exchangeable for i’s
own winning probability. If anonymity did demand this, the theorem would follow
rather trivially from DIC.

The theorem is more subtly related to the requirement that the mechanism al-
ways allocates the object, as we explain next. This requirement lets us link the influ-
ence that two agents i and j exert on others to the influence that they exert on each
other.

More concretely, assume towards a contradiction that at some profile θ agent
i can increase φj by changing their report from θi to some θ ′i . By DIC and since
the object is always allocated, this change in i’s report decreases

∑

k: i ̸=k ̸=jφk. Now
consider the profile that is obtained from θ by permuting the reports of i and j. By
anonymity, agent j can change their report from θi to θ ′i to decrease

∑

k: i ̸=k ̸=jφk.
Using again that the mechanism is DIC and that the object must be allocated, it fol-
lows that the change in agent j’s report increases φi. In summary, if i can increase j’s
winning probability at some profile, then j must also be able to increase i’s winning
probability at a permuted profile. This observation suggests that i and j both win
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with “high” probability when both report θ ′i . In a deterministic mechanism, where
winning probabilities are either 0 or 1, we thus arrive at a contradiction to there be-
ing only one object to allocate. We address stochastic mechanisms via a substantially
more complex summation over winning probabilities across all pairs (i, j).

Remark 5. Theorem 1.7 implies that all DIC mechanisms satisfying the following
stronger notion of anonymity are constant: Whenever the set of reports is permuted,
then the same permutation is applied to the vector of winning probabilities. This
stronger notion captures a sense in which agents are treated equally both as voters
and winners.

Remark 6. An implication of Theorem 1.7 is that it is impossible to elicit information
in environments where anonymity is without loss. Indeed, if the joint distribution of
types and values is invariant with respect to all permutations of the agents, then it
is without loss to use a DIC mechanism that satisfies the strong notion of anonymity
from Remark 5. Hence in this case it is without loss to use a constant mechanism.

1.6.3 Partial anonymity and jury mechanisms

Theorem 1.7 implies that a non-constant DIC mechanism must admit some asym-
metry in how it processes the reports of different agents. This brings us to partial
anonymity. We offer the following characterization for deterministic mechanisms.

Theorem 1.8. Let the agents have a common type space. A mechanism is deterministic,
partially anonymous, and DIC if and only if it is a deterministic jury mechanism with
an anonymous jury.

To better understand the theorem, consider how a partially anonymous jury
mechanism could fail to admit an anonymous jury. Given agents i and j, partial
anonymity is silent on the winning probabilities of those agents k who are influenced
by either i or j but not by both. By contrast, anonymity of the jury requires that all
candidates are either influenced by all or none of the jurors. Accordingly, most of
our effort goes towards proving that, in a deterministic partially anonymous DIC
mechanism, if i and j influence some third agent k, then i and j influence exactly
the same set of agents. Equipped with this fact, we show that the agents can be
partitioned into equivalence classes with the following property: two agents in the
same class do not influence one another, but influence the same (possibly empty)
set of agents outside the class. Lastly, there cannot be multiple classes; indeed, else
there is a profile where two distinct classes allocate the object to two distinct agents,
which is impossible. The unique class defines an anonymous jury.

1.6.4 Discussion and limitations

We conclude by discussing limitations of Theorem 1.7 and Theorem 1.8.
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1.6.4.1 Disposal and randomization

The following definition will be useful: A mechanism with disposal is a function
φ : Θ→ [0,1]n satisfying

∑n
i=1φi ≤ 1. In plain words, this is a mechanism that does

not necessarily allocate the object to the agents. For a mechanism with disposal, DIC
and anonymity are defined as above.

The next result shows via an example that Theorem 1.7 does not extend to mech-
anisms with disposal, and that Theorem 1.8 does not extend to stochastic mecha-
nisms (without disposal).

Proposition 1.9. Let the agents have a common type space T such that |T|= 7.

(1) If n= 3, then the set of DIC mechanisms with disposal admits an extreme point
that is stochastic and anonymous.

(2) If n= 4, then the set of DIC mechanisms (without disposal) admits an extreme point
that is stochastic and partially anonymous.

The extreme point in (1) is non-constant (else it would be a convex combination
of deterministic constant mechanisms). The extreme point in (2) is not a jury mech-
anism (else it would be a convex combination of deterministic jury mechanisms).
The idea of the proof is to “symmetrize” the stochastic extreme point φ∗ from Sec-
tion 1.5.2. See Appendix 1.A.3.3 for an informal sketch and the proof.

1.6.4.2 Anonymous ballots

Lastly, we discuss the assumption that all agents can make the same reports. Indeed,
a third escape route from Theorem 1.7 (besides partial anonymity and disposal) en-
tails message spaces with some inherent asymmetry across agents. This brings us
to the results of Holzman and Moulin (2013) and Mackenzie (2015, 2020). They
consider DIC mechanisms where agents nominate one another. Let us keep with the
terminology of Holzman and Moulin by referring to these mechanisms as impartial
nomination rules. This is the same mathematical object as a DIC mechanism when
each agent i’s type space is {1, . . . , n} \ {i}. Their notion of anonymity—anonymous
ballots—requires that the winning probabilities depend only on the number of nom-
inations received by each agent.13 Importantly, in a nomination rule agents cannot
nominate themselves, and hence they all have distinct message spaces. By contrast,
we have assumed that the agents have the same type space. Hence our notion of
anonymity neither nests nor is nested by anonymous ballots.

Contrasting Theorem 1.7, there are non-constant impartial nomination rules
with anonymous ballots. For one example, suppose one of the agents is selected

13. Equivalently, the allocation is unchanged if one permutes the profile in a way that does not
yield self-nominations (Mackenzie, 2015, Lemma 1.1). Mackenzie uses the name voter anonymity
instead of anonymous ballots.
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uniformly at random as a juror, following which the juror’s nomination determines
a winner. See Mackenzie (2015, Theorem 1) for a full characterization of anony-
mous ballots. Mackenzie’s result generalizes Theorem 3 of Holzman and Moulin
(2013), who had previously shown that all deterministic impartial nomination rules
with anonymous ballots are constant.

Mackenzie (2020) shows that impartiality and anonymous ballots are compati-
ble for deterministic nomination rules with disposal.1⁴ This parallels our discussion
from Section 1.6.4 and contrasts the aforementioned Theorem 3 of Holzman and
Moulin (2013). Mackenzie (2020, Theorem 1) also shows that when agents can
nominate themselves, then deterministic impartial nomination rules with anony-
mous ballots must be constant. This is a special case of our Theorem 1.7 as anony-
mous ballots with self-nominations is stronger than anonymity.

1.7 Conclusion

We saw that jury mechanisms are optimal with three agents, and approximately-
optimal when there are many exchangeable agents in the sense of Assumption 1.1.
While DIC mechanisms cannot process all reports anonymously, jury mechanisms
are the only deterministic partially anonymous DIC mechanisms. Lastly, outside of
special cases of the model, the set of DIC mechanisms admits stochastic extreme
points.

We conclude by discussing some interesting open problems.
The discussion on stochastic extreme points (Section 1.5.1) motivates restricting

attention to deterministic mechanisms. We observe in Appendix 1.C.4 that finding
an optimal deterministic DIC mechanism can be cast as the problem of finding a
maximum weight perfect matching in a certain hypergraph. If we relax the require-
ment that the object is always allocated, the problem can also be cast as finding
a maximum weight independent set in another graph. Both of these problems are
known to be NP-hard when general (hyper-)graphs and weights are considered. As
such, it is interesting to investigate the hardness of the problem for the particular
family of (hyper-)graphs that emerge from our model. (All weights can emerge via
a suitable choice of the distribution of types and values.) If we include stochastic
mechanisms in our search, finding an optimal DIC mechanism is a linear program
and hence computationally tractable.

It is naturally interesting to extend the analysis to settings with multiple ob-
jects, allocated simultaneously or over many periods.1⁵ If the mechanism designer

14. In fact, Mackenzie (2020, Theorem 2) shows that impartiality, anonymous ballots, and some
other desirable axioms together characterize supermajority.

15. See Guo andHörner (2021) for recent work in this directionwith a single agent. The literature
following Alon et al. (2011) has also studied settings with multiple objects. Lipnowski and Ramos
(2020) and de Clippel et al. (2021) study settings with limited or no commitment.
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can commit to future allocations, this should lead to stronger foundations for jury
mechanisms. Agents serving as jurors today can be promised a future spot as candi-
dates, which may help justify excluding jurors as potential winners in the present.
Alternatively, past winners may be expected to volunteer as jurors in the future.

The problem of finding an optimal composition of the jury is an interesting prob-
lem in itself. We expect interesting comparative statics when agents who are likely
to have good information are also likely to yield a high value. In the example from
the introduction where a group selects a president, say, an agent who is popular with
others may be a suitable candidate (being well-liked for their pleasant qualities) but
also have good information about others (being well-acquainted with everyone).

An important line of future research concerns optimal DIC mechanisms when
agents care about the allocation to their peers. While DIC has different implications
in such a model, our results provide insight in at least two cases. Firstly, in situ-
ations where agents evaluate their peers, it is seems inherently interesting to use
a mechanism where agents cannot influence their individual chances of winning;
that is, to impose the impartiality axiom of Holzman and Moulin (2013). Secondly,
suppose agents have the following lexicographic preferences: each agent i strictly
prefers one allocation to another if the former has i winning with strictly higher
probability; if two allocations have the same winning probability for i, agent i ranks
them according to some type-dependent preference. In some applications, this pref-
erence could reasonably capture i’s opinion about who is the most deserving winner
if it cannot be i themself. In particular, it could coincide with the preference of the
mechanism designer. In this case, optimal jury mechanism are ex-post incentive com-
patible. However, an agent’s preferences may also differ from those of the designer.
This is plausibly the case when agents are biased in favor of friends or family, biased
against minorities, or simply have a different notion of who deserves to win.1⁶ Fixing
a jury of agents, the designer therefore also has to design a voting rule for eliciting
the jurors’ information.

16. For example, Alatas et al. (2012), reporting on a field experiment on selecting beneficiaries
of aid programs in Indonesian communities, find evidence of nepotism, though the welfare impact
may be small relative to other upsides from involving the community in the decision. They also find
evidence that community members have a poverty notion that differs from poverty as defined by per
capita income. In this sense, if the central government wishes to select beneficiaries on the basis of
per capita income, agents indeed hold a different notion of who deserves to win.
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Appendix 1.A Omitted proofs

1.A.1 Jury mechanisms

1.A.1.1 Proof of Lemma 1.3

Proof of Lemma 1.3. If n= 1 or n= 2, it is easy to verify that all DIC mechanisms
are constant. All constant mechanisms are convex combination of deterministic con-
stant mechanisms, proving the claim. In what follows, let n= 3. Given an arbitrary
stochastic DIC mechanism φ, we will find a non-zero function f such that φ + f and
φ − f are two other DIC mechanisms. This shows that all extreme points of the set of
DIC mechanisms are deterministic. Since this set is non-empty, convex and compact
as a subset of Euclidean space, the claim follows from the Krein-Milman theorem.

In what follows, we fix a stochastic DIC mechanisms φ. Let us agree to the
following terminology. In view of DIC, we drop i’s type from φi. Given a profile θ ,
we refer to the equation

∑

i∈{1,2,3}φi(θ−i)= 1 as the feasibility constraint at profile
θ . We refer to (i,θ−i) as the node of agent i with coordinates θ−i. Lastly, when we say
φi(θ−i) is interior we naturally mean φi(θ−i) ∈ (0, 1).

Most of the work will go towards proving the following auxiliary claim.
Claim 1.10. There are non-empty disjoint subsets R and B (“red” and “blue”) of
∪i∈{1,2,3}({i}×Θ−i) such that all of the following are true:

(1) If (i,θ−i) ∈ R∪ B, then φi(θ−i) is interior.

(2) For all θ ∈ Θ, exactly one of the following is true:

a. There does not exist i ∈ {1, 2,3} such that (i,θ−i) ∈ R∪ B.

b. There exists exactly one i ∈ {1, 2,3} such that (i,θ−i) ∈ R, exactly one j ∈
{1, 2,3} such that (j,θ−j) ∈ B, and exactly one k ∈ {1,2, 3} such that (k,θ−k) /∈
R∪ B.

Before proving Claim 1.10, let us use it to complete the proof of Lemma 1.3. For
a number ϵ to be chosen in a moment, let f : Θ→ {−ϵ, 0,ϵ}3 be defined as follows:

∀θ∈Θ, fi(θ) =











−ϵ, if (i,θ−i) ∈ R,

ϵ, if (i,θ−i) ∈ B,

0, if (i,θ−i) /∈ R ∪ B.

By finiteness of Θ and Claim 1.10, if we choose ϵ > 0 sufficiently close to 0, then
φ + f and φ − f are two DIC mechanisms. Since f is non-zero, it follows that φ is
not an extreme point. It remains to prove Claim 1.10.

Proof of Claim 1.10. Given candidate sets R and B, let us say a profile θ is uncolored
if it falls into case (2.a) of Claim 1.10. A profile two-colored if it falls into case (2.a)
of Claim 1.10. In this terminology, our goal is to construct sets R and B such that
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all (i,θ−i) ∈ R∪ B satisfy φi(θ−i) ∈ (0, 1), and such that all type profiles are either
uncolored or two-colored.

Since φ is stochastic, we may assume (after possibly relabelling the agents and
types) that there exists a profile θ0 such that φ1(θ0

2 ,θ0
3 ) and φ2(θ0

1 ,θ0
3 ) are interior.

Let Θ◦2 denote the set of types θ2 for which φ1(θ2,θ0
3 ) is interior. Let Θ∂2 = Θ2 \

Θ◦2. Similarly, let Θ◦1 denote the set of types θ1 such that φ2(θ1,θ0
3 ) is interior, and

let Θ∂1 = Θ1 \Θ◦1. Notice that Θ◦1 and Θ◦2 are non-empty as, by assumption, agents 1
and 2 are enjoying interior winning probabilities at θ0.

We consider two cases.

Case 1. Let Θ∂1 ̸= ; and Θ∂2 ̸= ;.
We establish two auxiliary claims.

Claim 1.11. If θ1 ∈ Θ∂1 , thenφ2(θ1,θ0
3 )= 0. Similarly, if θ2 ∈ Θ∂2 , thenφ1(θ2,θ0

3 )=
0. If (θ1,θ2) ∈ (Θ◦1 ×Θ

∂
2 )∪ (Θ∂1 ×Θ

◦
1), then φ3(θ1,θ2) is interior.

Proof of Claim 1.11. Consider the first part of the claim. Let θ1 ∈ Θ∂1 . Recalling that
Θ◦1 is non-empty, let us find a type θ2 ∈ Θ◦1. By definition, φ1(θ2,θ0

3 ) is interior. By
definition ofΘ∂1 , we also know thatφ2(θ1,θ0

3 ) must either equal 0 or 1. But it cannot
equal 1 since φ2(θ1,θ0

3 ) and φ1(θ2,θ0
3 ) both appear in the feasibility constraint

at the profile (θ1,θ2,θ0
3 ), and since φ1(θ2,θ0

3 ) is interior. Thus φ2(θ1,θ0
3 )= 0, as

desired.
A similar argument establishes the second claim.
As for the third claim, let (θ1,θ2) ∈ Θ◦1 ×Θ

∂
2 . The previous two paragraphs imply

that at the profile (θ1,θ2,θ0
3 ) the winning probability of agent 1 is 0. Moreover, by

definition ofΘ◦1, the winning probabiltiy of agent 2 is interior. Thus agent 3’s winning
probability at this profile must be interior, meaning φ3(θ1,θ2) is interior. A similar
argument shows that φ3(θ1,θ2) is interior whenever (θ1,θ2) is in Θ∂1 ×Θ◦1.

The second auxiliary result is:

Claim 1.12. Let θ3 ∈ Θ3. If θ2 ∈ Θ◦2, then φ1(θ2,θ3) is interior. Similarly, if θ1 ∈ Θ◦1,
then φ2(θ1,θ3) is interior.

Proof of Claim 1.12. We will prove the first part of the claim, the second being sim-
ilar. Thus let θ2 ∈ Θ◦2. By assumption of Case 1, we may find θ ∂1 ∈ Θ∂1 and θ ∂2 ∈ Θ∂2 .
We make two auxiliary observations.

First, consider the profile (θ ∂1 ,θ ∂2 ,θ0
3 ). According to Claim 1.11, both agent 1’s

and agent 2’s winning probabilities at this profile equal 0. Thus φ3(θ ∂1 ,θ ∂2 )= 1. But
φ3(θ ∂1 ,θ ∂2 ) and φ2(θ ∂1 ,θ3) both appear in the feasibility constraint at the profile
(θ ∂1 ,θ ∂2 ,θ3). Hence φ2(θ ∂1 ,θ3)= 0.

Second, since θ ∂1 ∈ Θ∂1 and θ2 ∈ Θ◦2, we infer from Claim 1.11 that φ3(θ ∂1 ,θ2)
is interior.
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The previous two observations imply that at the profile (θ ∂1 ,θ2,θ3) agent 2’s
winning probability is 0 and that agent 3’s winning probability is interior. Hence
φ1(θ2,θ3) is interior, as promised.

We are ready to define the sets R and B. We assign the following colors (recall
the terminology introduced in the paragraph before Claim 1.10):

• red to all nodes of agent 1 with coordinates in Θ◦2 ×Θ3,
• blue to all nodes of agent 3 with coordinates in Θ∂1 ×Θ◦2,
• blue to all nodes of agent 2 with coordinates in Θ◦1 ×Θ3,
• red to all nodes of agent 3 with coordinates in Θ◦1 ×Θ∂2 .

According to Claim 1.11 and Claim 1.12, all of these nodes are interior. Moreover,
all profiles are now either two-colored or uncolored: The profiles in Θ∂1 ×Θ◦2 ×Θ3

are two-colored via red nodes of agent 1 and blue nodes of agent 3; the profiles
in Θ◦1 ×Θ◦2 ×Θ3 are two-colored via red nodes of agent 1 and blue nodes of agent
2; the profiles in Θ◦1 ×Θ∂2 ×Θ3 are two-colored via blue nodes of agent 2 and red
nodes of 3; and the profiles in Θ∂1 ×Θ∂2 ×Θ3 are uncolored.
Case 2. Suppose at least one of the sets Θ∂1 and Θ∂2 is empty. In what follows, we
assume that Θ∂2 is empty, the other case being analogous (switch the roles of agents
1 and 2).

The assumption that Θ∂2 is empty means that φ1(θ2,θ0
3 ) is interior for all θ2.

Let Θ∗1 be the set of types θ1 such that for all θ2 ∈ Θ2 the probability φ3(θ1,θ2) is
interior. Notice that at this point Θ∗1 may or may not be empty; we will make a case
distinction further below.

We first claim that if θ1 ∈ (Θ1 \Θ∗1), then φ2(θ1,θ0
3 ) is interior. Towards a con-

tradiction, suppose this were false for some θ1 ∈ (Θ1 \Θ∗1). This means that we can
find a type θ2 ∈ Θ2 such that φ2(θ1,θ0

3 ) and φ3(θ1,θ2) both fail to be interior. Re-
call from the previous paragraph that φ1(θ2,θ0

3 ) is interior for all θ2. Hence at the
profile (θ1,θ2,θ0

3 ) only agent 1 is enjoying an interior winning probability; this is
impossible.

Before proceeding further, let us assign the following colors:

• red to all nodes of agent 1 with coordinates in Θ2 × {θ0
3 }. These nodes are all

interior since Θ∂2 is empty.
• blue to all nodes of agent 2 with coordinates in (Θ1 \Θ∗1)× {θ0

3 }. The previous
paragraph implies that these nodes are all interior.

• blue to all nodes of agent 3 with coordinates in Θ∗1 ×Θ2. These nodes are all
interior by definition of Θ∗1.

Observe that all profiles in Θ1 ×Θ2 × {θ0
3 } are now either two-colored or uncolored.

If Θ∗1 is empty, then the colors assigned above already define sets R and B with
the desired properties, completing the proof. Thus suppose Θ∗1 is non-empty.
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Let θ3 ∈ Θ3 \ {θ0
3 } be arbitrary. The fact that we have already assigned blue to

the nodes of agent 3 with coordinates Θ∗1 ×Θ2 requires us to assign some colors to
the nodes of agents 1 or 2 whose 3’rd coordinate is θ3. In this step, we will not color
any further nodes of agent 3. We make a case distinction.

(1) Suppose that for all θ1 in Θ∗1 the probability φ2(θ1,θ3) is interior. We assign
red to all nodes of agent 2 with coordinates in Θ∗1 × {θ3}. This yields a coloring
of the profiles in Θ1 ×Θ2 × {θ0

3 } with the desired properties: The profiles in
Θ∗1 ×Θ2 × {θ3} are two-colored via red nodes of agent 2 and blue nodes of 3;
the profiles in (Θ1 \Θ∗1)×Θ2 × {θ3} are uncolored.

(2) Suppose there exists θ̃1 ∈ Θ∗1 such that φ2(θ1,θ3) is interior. Given that
φ3(θ̃1,θ2) is interior for all θ2 ∈ Θ2 (recall the definition of Θ∗1), it must be the
case that, for all θ2 ∈ Θ2, the probability φ1(θ2,θ3) is interior.

We next claim that φ2(θ1,θ3) is interior for all θ1 ∈ (Θ1 \Θ∗1). Suppose
this were false for some θ1 ∈ (Θ1 \Θ∗1). The previous paragraph tells us that
φ1(θ2,θ3) is interior for all θ2. Thus, if φ2(θ1,θ3) fails to be interior, then
φ3(θ1,θ2) would have to be interior for all θ2 ∈ Θ2; this is a contradiction since
θ1 ∈ (Θ1 \Θ∗1).

We now assign red to all nodes of agent 1 with coordinates in Θ2 × {θ3},
and assign blue to all nodes of agent 2 with coordinates in (Θ1 \Θ∗1)× {θ3}. The
previous two paragraphs imply that all of these nodes are interior. Moreover the
profiles in Θ∗1 ×Θ2 × {θ3} are two-colored via red nodes of agent 1 and blue
nodes of agent 3, and the profiles in (Θ1 \Θ∗1)×Θ2 × {θ3} are two-colored via
red nodes of agent 1 and blue nodes of agent 2.

If we apply this case distinction separately to all θ3 in Θ3 \ {θ0
3 }, this completes the

construction of R and B in Case 2.

Case 1 and Case 2 together complete the proof of Claim 1.10.

1.A.1.2 Approximate optimality of jury mechanisms

In this part of the appendix, we prove Theorem 1.4. To distinguish a random variable
from its realization, we denote the former using a tilde ∼. Given a set N of agents,
we denote the profile of their types by θN, and the set of these profiles by ΘN. For ex-
ample, given i ∈ N,ωi ∈ Ωi, and θN\{i} ∈ ΘN\{i}, we write µ

�

ω̃i =ωi, θ̃N\{i} = θN\{i}
�

to mean the probability of the event that i’s value is ωi and the types of the other
agents in N are θN\{i}.

Assumption 1.2. For all n ∈ N, there exists m ∈ N with the following property: De-
noting N = {1, . . . , n} and N′ = {n+ 1, . . . , n+m}, there is a function g: ΘN′ ×ΘN →
R+ with the following two properties:



Appendix 1.A Omitted proofs | 27

(1) For all i ∈ N, all ωi ∈ Ωi and θN\{i} ∈ ΘN\{i} we have

µ
�

ω̃i = ωi, θ̃N\{i} = θN\{i}
�

=
∑

θN′∈ΘN′

∑

θi∈Θi

g(θN′ ,θN\{i},θi)µ
�

ω̃i = ωi, θ̃N′ = θN′
�

. (1.A.1)

(2) For all θN′ ∈ ΘN′ we have
∑

θN∈ΘN

g(θN′ ,θN) = 1. (1.A.2)

Lemma 1.13. Assumption 1.1 implies Assumption 1.2.

Proof of Lemma 1.13. Let m= n. Let N = {1, . . . , n} and N′ = {n+ 1, . . . , 2n}, and let
ξ: N→ N′ be a bijection. It is straightforward to verify that the function g defined as
follows has the desired properties: For all (θN,θN′), let g(θN,θN′)= 1 if for all i ∈ N
the types of i and ξ(i) agree; else, let g(θN,θN′)= 0.

Proof of Theorem 1.4. The second part of the claim is immediate from the first. For
the first part, let φ be an arbitrary DIC mechanism with n agents. Let N = {1, . . . , n}.
For this choice of N, we invoke Lemma 1.13 to find m and g as in Assumption 1.2.
Let N′ = {n+ 1, . . . , n+m}. We define our candidate jury mechanism as follows: For
all i ∈ N, let ψi : ΘN′ → Rn be defined by

∀θN′∈ΘN′
, ψi(θN′) =

∑

θN∈ΘN

g(θN′ ,θN)φ∗i (θN\{i}).

For all i ∈ N′, let ψi = 0. Let ψ= (ψ1, . . . ,ψm).
Notice that ψ only depends on the reports of agents in N′. Since N′ is disjoint

from N, we can show that ψ is a jury mechanism in the setting with n+m agents
by showing that ψ maps to probability distributions over N. It is clear that φ is non-
negative (as g and ψ∗ are non-negative). To verify that ψ almost surely allocates to
an agent in N, we observe that for all profiles θN′ we have the following (the first
equality is by definition of ψ; the second is from the fact that φ∗ is a well-defined
mechanism when the set of agents is N; the third is from (1.A.2)):

∑

i∈N

ψi(θN′) =
∑

i∈N

∑

θN∈ΘN

g(θN′ ,θN)φ∗i (θN\{i}) =
∑

θN∈ΘN

g(θN′ ,θN) = 1,

as desired. We complete the proof by verifying that φ and ψ lead to the same ex-
pected value. We write the expected value from φ as follows (the first equality fol-
lows from (1.A.1); the remaining equalities obtain by rearranging):
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∑

i∈N

∑

θN\{i}

∑

ωi

ωiµ
�

ω̃i = ωi, θ̃N−i = θN\{i}
�

φ∗i (θN\{i})

=
∑

i∈N

∑

θN\{i}

∑

ωi

ωi

∑

θN′

∑

θi

g(θN′ ,θN\{i},θi)µ
�

ω̃i = ωi, θ̃N′ = θN′
�

φ∗i (θN\{i})

=
∑

i∈N

∑

ωi

∑

θN′

ωiµ
�

ω̃i = ωi, θ̃N′ = θN′
�

∑

θN\{i}

∑

θi

g(θN′ ,θN\{i},θi)φ
∗
i (θN\{i})

=
∑

i∈N

∑

ωi

∑

θN′

ωiµ
�

ω̃i = ωi, θ̃N′ = θN′
�

ψi(θN′).

This last expression is precisely the expected value from ψ.

1.A.2 Random allocations

1.A.2.1 Proof of Proposition 1.6

Proof of Proposition 1.6. To keep calculations readable, it will be convient to adopt
the following notation: When a DIC mechanism φ is given, we denote

φ1(θ a) = pa|b, φ3(θ c) = pb|c, φ2(θ c) = pc|d, φ3(θ e) = pd|e,

φ1(θ e) = pe|f , φ3(θ f ) = pf |g, φ2(θ a) = pg|a.

The probabilities in the previous display do not fully describe the mechanism, but
these are the only ones needed to evaluate the mechanism. For a given value of ρ,
we denote the expected value from φ by Vρ(φ). Direct computation shows

Vρ(φ) = pa|b + pb|c + pc|d + 2pd|e + pe|f + pf |g + pg|a − ρ
�

pb|c + 2pd|e + pf |g� .
(1.A.3)

In particular, Vρ(φ∗)= 4− 2ρ.
We first show that φ∗ is uniquely optimal if ρ ∈ (0, 1

2). The following auxiliary
claim is central.

Claim 1.14. Let φ be a DIC mechanism distinct from φ∗. We have V 1
2
(φ)≤ V 1

2
(φ∗).

Further, there exists ρφ ∈ (0, 1
2) such that ρ ∈ (0,ρφ) implies Vρ(φ)< Vρ(φ∗).

Proof of Claim 1.14. Inspection of Figure 1.1 shows thatφmust satisfy the following
system of inequalities:

pa|b + pg|a ≤ 1, pa|b + pb|c ≤ 1, pc|d + pb|c ≤ 1, pc|d + pd|e ≤ 1,

pe|f + pd|e ≤ 1, pe|f + pf |g ≤ 1, pg|a + pf |g ≤ 1.
(1.A.4)
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Turning to the first part of the claim, we have to show V 1
2
(φ)≤ V 1

2
(φ∗). Direct

computation shows V 1
2
(φ∗)= 3. Using (1.A.4), we can bound V 1

2
(φ) as follows.

V 1
2
(φ) =pa|b + pb|c + pc|d + 2pd|e + pe|f + pf |g + pg|a −

1
2

�

pb|c + 2pd|e + pf |g�

=pa|b +
pb|c

2
+ pc|d + pd|e + pe|f +

pf |g

2
+ pg|a

=pa|b + pg|a
︸ ︷︷ ︸

≤1

+
pb|c + pc|d

2
︸ ︷︷ ︸

≤ 1
2

+
pc|d + pd|e

2
︸ ︷︷ ︸

≤ 1
2

+
pd|e + pe|f

2
︸ ︷︷ ︸

≤ 1
2

+
pe|f + pf |g

2
︸ ︷︷ ︸

≤ 1
2

≤1 +
1
2
+

1
2
+

1
2
+

1
2

=3.

Hence V 1
2
(φ)≤ V 1

2
(φ∗), as promised.

Now consider the second part of the claim. We show the contrapositive: If there
exists a sequence {ρk}k∈N in (0, 1

2) that converges to 0 and such that Vρk
(φ)≥

Vρk
(φ∗) holds for all k, then φ = φ∗. Let {ρk}k∈N be such a sequence. For all ρk,

the system (1.A.4) implies the following upper bound on Vρk
(φ):

Vρk
(φ) =pa|b + pb|c

︸ ︷︷ ︸

≤1

+pc|d + pd|e
︸ ︷︷ ︸

≤1

+pd|e + pe|f
︸ ︷︷ ︸

≤1

+pf |g + pg|a
︸ ︷︷ ︸

≤1

− ρk

�

pb|c + 2pd|e + pf |g�

≤4 − ρk

�

pb|c + 2pd|e + pf |g� .

(1.A.5)

Since Vρk
(φ)≥ Vρk

(φ∗)= 4− 2ρk and ρk > 0, we find

pb|c + 2pd|e + pf |g ≤ 2. (1.A.6)

Further, since Vρk
(φ)≥ 4− 2ρk holds for all k, taking limits implies V0(φ)≥ 4. To-

gether with the bound in (1.A.5) we get V0(φ)= 4; that is,

V0(φ) = pa|b + pb|c + pc|d + pd|e + pd|e + pe|f + pf |g + pg|a = 4 (1.A.7)

Hence (1.A.4) and (1.A.7) imply

pa|b + pb|c = pc|d + pd|e = pd|e + pe|f = pf |g + pg|a = 1. (1.A.8)

We now bound V0(φ) a second time (the equality is by direct computation; the
inequality follows from (1.A.4)):

V0(φ) = pa|b + pg|a + pb|c + pc|d + 2pd|e + pe|f + pf |g ≤ 3 + 2pd|e. (1.A.9)
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Hence V0(φ)= 4 implies pd|e ≥ 1
2 . We next claim pd|e = 1

2 . Towards a contradiction,
suppose not, meaning pd|e > 1

2 . Hence (1.A.8) implies pc|d = pe|f < 1
2 . Now, we also

know from (1.A.6) and (1.A.7) that
pa|b + pc|d + pe|f + pg|a ≥ 2

holds. However, in light of (1.A.4) we have pa|b + pg|a ≤ 1, and hence the previous
display requires pc|d + pe|f ≥ 1. This contradicts pc|d = pe|f < 1

2 . Thus pd|e = 1
2 .

Let us now return to the bound derived in (1.A.9). In view of pd|e = 1
2 and (1.A.4),

we can infer from (1.A.9) that pa|b + pg|a = pb|c + pc|d = pe|f + pf |g = 2pd|e = 1 holds.
Together with (1.A.8), we find

pa|b = 1 − pb|c = pc|d = 1 − pd|e = pe|f = 1 − pf |g = pg|a. (1.A.10)
We already know that pd|e = 1

2 holds. Hence all probabilities (1.A.10) must equal 1
2 .

This shows that φ agrees with φ∗ at all profiles in Θ∗ = {θ a,θ b,θ c,θ d,θ e,θ f ,θ g}.
By inspectingΘ \Θ∗, it is now easy to verify thatφ andφ∗ also agree onΘ \Θ∗.

We next use Claim 1.14 to show that φ∗ is uniquely optimal if ρ ∈ (0, 1
2). Let

φ be an arbitrary DIC mechanisms distinct from φ∗. Inspection of (1.A.3) shows
that the difference Vρ(φ)− Vρ(φ∗) is an affine function of ρ. That is, there exist
reals aφ and bφ such that Vρ(φ)− Vρ(φ∗)= aφ + bφρ holds for all ρ ∈ [0, 1

2]. Let
ρφ ∈ (0, 1

2) be as in the conclusion of Claim 1.14. If ρ ∈ (0,ρφ), the choice of ρφ
implies Vρ(φ)< Vρ(φ∗), and so we are done. Hence in what follows we assume
ρ ∈ [ρφ , 1

2). We distinguish two cases.
(1) If bφ ≤ 0, then

Vρ(φ) − Vρ(φ∗) = aφ + bφρ ≤ aφ + bφ
ρφ

2
= V ρφ

2
(φ) − V ρφ

2
(φ∗).

Now ρφ
2 ∈ (0,ρφ) and the choice of ρφ imply V ρφ

2
(φ)− V ρφ

2
(φ∗)< 0, and we

are done.
(2) If bφ > 0, then

Vρ(φ) − Vρ(φ∗) = aφ + bφρ < aφ + bφ
1
2
= V 1

2
(φ) − V 1

2
(φ∗).

Now Claim 1.14 implies V 1
2
(φ)− V 1

2
(φ∗)≤ 0, and we are done.

Hence all ρ ∈ (0, 1
2) and all DIC mechanisms φ distinct from φ∗ satisfy Vρ(φ)<

Vρ(φ∗).
It remains to show that φ∗ is not uniquely optimal if ρ ∈ {0, 1

2}, and that φ∗ is
not optimal if ρ /∈ [0, 1

2]. To that end, recall the constant mechanism and the jury
mechanism described in the paragraphs after Proposition 1.6. By direct computation
one can show that the constant mechanism or the jury mechanism, respectively,
generate the same expected value as φ∗ if ρ = 0 or ρ = 1

2 , respectively. Thus φ∗ is
not uniquely optimal if ρ ∈ {0, 1

2}. Since φ∗ is uniquely optimal on (0, 1
2), and since

the expected value is affine inρ, we conclude thatφ∗ is not optimal ifρ /∈ [0, 1
2].
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1.A.2.2 Proof of Theorem 1.5

Lemma 1.15. If for all agents i we have |Θi| ≤ 2, then all extreme points of the set of
DIC mechanisms are deterministic.

For the proof, recall the following definitions for a given (simple undirected)
graph G with node set V and edge set E. Given a node v, the set of edges which
are incident to v is denoted E(v). A perfect matching is a function ψ: E→ {0,1}
such that all v ∈ V satisfy

∑

e∈E(v)ψ(e)= 1. The perfect matching polytope is the set
{ψ: E→ [0, 1]: ∀v∈V ,

∑

e∈E(v)ψ(e)= 1}.

Proof of Lemma 1.15. Let us relabel types such that we have Θi ⊆ {0, 1} for all i.
First, suppose we have Θi = {0,1} for all i.

For all DIC mechanisms φ, all agents i and all profiles θ , we may drop i’s report
from i’s winning probability, writingφi(θ−i) instead ofφi(θ). Under this convention,
we claim that the set of DIC mechanisms is the perfect matching polytope of the
graph G that has node set {0, 1}n and where two nodes are adjacent if and only
if they differ in exactly one coordinate. (This graph is known as the n-hypercube.)
Indeed, each node of the graph is a type profile θ , and each edge may be identified
with a pair of the form (i,θ−i). The set of edges incident to θ is the set {(i,θ−i)}ni=1.
Hence the constraint

∑

e∈E(v)ψ(e)= 1 is exactly the constraint that the object be
allocated to one of the agents.

Now, the graph G described in the previous paragraph is bi-partite (partition the
type profiles (that is, the nodes of G) according to whether the profile has an odd
or even number of entries equal to 0). It follows from Theorem 11.4 of Korte and
Vygen (2018) that all extreme points of the perfect matching polytope are perfect
matchings. All perfect matchings represent deterministic DIC mechanisms. Hence
all extreme points of the set of DIC mechanisms are deterministic.

The claim for the general case, where we have Θi ⊆ {0, 1} for all i, follows from
the previous paragraph by viewing a DICmechanism onΘ as amechanism on {0,1}n

that ignores the reports of those whose type spaces are singletons.

Lemma 1.16. If |{i ∈ {1, . . . , n}: |Θi| ≥ 2}| ≤ 2, then all extreme points of the set of
DIC mechanisms are deterministic.

Proof of Lemma 1.16. We may assume n≥ 3, as otherwise the claim follows from
Lemma 1.15.Wewill prove the claim for the case where |{i ∈ {1, . . . , n}: |Θi| ≥ 2}|=
2, the other cases being simpler. After possibly relabelling the agents, suppose we
have |Θ1| ≥ 2 and |Θ2| ≥ 2. Let φ be a stochastic DIC mechanism. Notice that at
all profiles θ where either agent 1 or agent 2 but not both is enjoying an interior
winning probability, there must be an agent in {3, . . . , n} who is also enjoying an
interior winning probability; let iθ denote one such agent. For a number ϵ > 0 to be
chosen later, consider f : Θ→ {−ϵ, 0,ϵ}n defined for all θ as follows:
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(1) Ifφ1(θ) ∈ (0, 1) andφ2(θ) ∈ (0,1), let f1(θ)= ϵ, let f2(θ)= −ϵ, and let fi(θ)=
0 for all i /∈ {1, 2}.

(2) If φ1(θ) ∈ (0,1) and φ2(θ) /∈ (0,1), let f1(θ)= ϵ, let fiθ (θ)= −ϵ, and let
fi(θ)= 0 for all i /∈ {1, iθ}.

(3) If φ1(θ) /∈ (0, 1) and φ2(θ) ∈ (0,1), let f2(θ)= −ϵ, let fiθ (θ)= ϵ, and let
fi(θ)= 0 for all i /∈ {2, iθ}.

Using that, for all θ , agent iθ has a singleton type space, it is easy to see that φ + f
and φ − f are two DIC mechanisms distinct from φ whenever ϵ is sufficiently small.
Thus φ is not an extreme point.

Proof of Theorem 1.5. Lemma 1.3, Lemma 1.15 and Lemma 1.16 together imply
that all extreme points are deterministic if one of the conditions (1) to (3) holds.
Now let conditions (1) to (3) all fail. We know from Section 1.5.2 that a stochas-
tic extreme point exists in the hypothetical situation where n= 4 and the set of
type profiles is Θ̂ = {ℓ, r}× {u, d}× {f , c, b}× {0}. Since (1) to (3) all fail, we can
relabel the agents and types such that agents 1 to 4 have these sets as subsets
of their respective sets of types. Let φ∗ denote the stochastic extreme point Sec-
tion 1.5.2. Using φ∗, it is straightforward to define a stochastic extreme point for
the actual set of type profiles with n agents. To see this in detail, let us agree to
the following notation: when i ∈ {1,2, 3}, then Θ̂−i means the sets of type pro-
files of agents {1,2, 3,4} \ {i} that belong to Θ̂. Now consider ψ∗ : Θ→ Rn defined
as follows: For all i ∈ {1, . . . , n} \ {1, 2,3, 4}, let ψ∗i = 0; for all i ∈ {1,2, 3} and all
θ ∈ Θ, let ψ∗i (θ)= φ∗i (θ1,θ2,θ3,θ4) if (θj)j∈{1,2,3,4}\{i} ∈ Θ̂−i, and let ψ∗i (θ)= 0 if
(θj)j∈{1,2,3,4}\{i} /∈ Θ̂−i; let ψ∗4 = 1−

∑3
i=1ψ

∗
i . A moment’s thought reveals that ψ∗ is

a well-defined DIC mechanism. To see that it is a stochastic extreme point, consider
an arbitrary DIC mechanism ψ that appears in a convex combination that equals
ψ∗. We know from Section 1.5.2 that ψ must agree with ψ∗ whenever the types of
agents 1 to 4 are in Θ̂. From here it is easy to see that ψ must agree with ψ∗ at all
other profiles, too.

1.A.3 Anonymous juries

1.A.3.1 Proof of Theorem 1.7

Proof of Theorem 1.7. Let φ be DIC and anonymous.
The following notation is useful. Let T denote the common type space. Let Tn−1

with generic element θn−1 denote the (n− 1)-fold Cartesian product of T. We will
frequently consider profiles obtained from a profile θn−1 in Tn−1 by replacing one
entry of θn−1. For instance, we write (t,θn−1

−j ) to denote the profile obtained by
replacing the j’th entry of θn−1 by t.
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By DIC, for all i, we may drop i’s type from i’s winning probability. Thus we write
φi(θ

n−1) for i’s winning probability when the types of the others are θn−1 ∈ Tn−1.
Anonymity implies that φi(θ

n−1) is invariant to permutations of θn−1.
We use the following auxiliary claim.

Claim 1.17. Let i ∈ {1, . . . , n}, t ∈ T, t′ ∈ T, and θn−1 ∈ Tn−1. Then

n−1
∑

j=1

�

φi(t,θn−1
−j ) − φi(t′,θn−1

−j )
�

= 0. (1.A.11)

Proof of Claim 1.17. Let us arbitrarily label θn−1 as (θj)j∈N\{i}. Let us also fix an
arbitrary type θi ∈ T.

In an intermediate step, let j be distinct from i. For clarity, we spell out winning
probabilities as follows: φi(ri = t, rj = t′, r−ij = θ−ij) means i’s winning probability
when i reports t, j reports t′, and all remaining agents report θ−ij. A permutation of
i’s and j’s reports does not change the winning probabilities of the agents other than
i and j. Since the object is allocated with probability one, we have

φi(ri = t, rj = t′, r−ij = θ−ij) + φj(ri = t, rj = t′, r−ij = θ−ij)

=φi(ri = t′, rj = t, r−ij = θ−ij) + φj(ri = t′, rj = t, r−ij = θ−ij).

By rearranging the previous display, and by DIC, we obtain

φi(ri = t, rj = t′, r−ij = θ−ij) − φi(ri = t′, rj = t, r−ij = θ−ij)

=φj(ri = t′, rj = θj, r−ij = θ−ij) − φj(ri = t, rj = θj, r−ij = θ−ij).
(1.A.12)

Now consider summing (1.A.12) over all j ∈ {1, . . . , n} \ {i}. This summation
yields

∑

j: j̸=i

�

φi(ri = t, rj = t′, r−ij = θ−ij) − φi(ri = t′, rj = t, r−ij = θ−ij)
�

(1.A.13)

=
∑

j: j̸=i

�

φj(ri = t′, rj = θj, r−ij = θ−ij) − φj(ri = t, rj = θj, r−ij = θ−ij)
�

.

(1.A.14)

In (1.A.14), the profiles considered are all of the form (ri = t′, r−i = θ−i) and (ri =
t, r−i = θ−i), respectively. Note that by DIC we have φi(ri = t′, r−i = θ−i)−φi(ri =
t, r−i = θ−i)= 0. Hence (1.A.14) equals

n
∑

j=1

�

φj(ri = t′, r−i = θ−i) − φj(ri = t, r−i = θ−i)
�

.
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Since the object is always allocated, the term in the previous display equals 0. Hence
the sum in (1.A.13) equals

∑

j: j̸=i

�

φi(ri = θi, rj = t′, r−ij = θ−ij) − φi(ri = θi, rj = t, r−ij = θ−ij)
�

= 0.

We now revert to our usual notation. By DIC, we may drop i’s report from φi. Since
φi is permutation-invariant with respect to N \ {i}, we may also write

φi(ri = θi, rj = t′, r−ij = θ−ij) = φi(t
′,θn−1
−j ) and

φi(ri = θi, rj = t, r−ij = θ−ij) = φi(t,θ
n−1
−j ).

Thus we obtain the desired equality
n−1
∑

j=1

�

φi(t
′,θn−1
−j )−φi(t,θ

n−1
−j )

�

= 0.

In what follows, let i be an arbitrary agent. We show i’s winning probability is
constant in the reports of others. To that end, let us fix an arbitrary type t∗ ∈ T. For
all k ∈ {0, . . . , n− 1}, let Tn−1

k denote the subset of profiles in Tn−1 where exactly
k-many entries are distinct from t∗. Let pi denote i’s winning probability when all
other agents report t∗. We will show via induction over k that i’s winning probability
is equal to pi whenever the others report a profile in Tn−1

k . This completes the proof
since Tn−1 = ∪n−1

k=0Tn−1
k holds.

Base case k= 0. Immediate from the definitions of pi and Tn−1
0 .

Induction step. Let k≥ 1. Let all θ̂n−1 ∈ ∪k−1
ℓ=0Tn−1

ℓ
satisfy φi(θ̂

n−1)= pi. Letting
θn−1 ∈ Tn−1

k be arbitrary, we show φi(θ
n−1)= pi.

By anonymity, we may assume that exactly the first k entries of θn−1 are distinct
from t∗. That is, there exist types t1, . . . , tk all distinct from t∗ such that θn−1 =
(t1, . . . , tk, t∗, . . . , t∗).

Let θ̃n−1 = (t1, . . . , tk−1, t∗, . . . , t∗). This profile is obtained from θn−1 by replac-
ing tk by t∗. We now invoke Claim 1.17 to infer

n−1
∑

j=1

φi(tk, θ̃n−1
−j ) =

n−1
∑

j=1

φi(t
∗, θ̃n−1
−j ). (1.A.15)

Consider the profiles appearing in the sum on the left of (1.A.15) as j varies from
1 to n− 1.

(1) Let j≤ k− 1. Since exactly the first k− 1 entries of θ̃ are distinct from t∗, it
follows that (tk, θ̃n−1

−j ) is another profile where exactly k− 1 entries differ from
t∗. Hence the induction hypothesis implies φi(tk, θ̃n−1

−j )= pi.
(2) Let j> k− 1. In the profile (tk, θ̃n−1

−j ), the first k− 1 entries are t1, . . . , tk−1, the
j’th entry is tk, and all remaining entries are t∗. Hence (tk, θ̃n−1

−j ) is a permutation
of θn−1. Anonymity implies φi(tk, θ̃n−1

−j )= φi(θ
n−1).
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Hence the sum on the left of (1.A.15) equals
n−1
∑

j=1
φi(t, θ̃

n−1
−j )= (k− 1)pi + (n−

k)φi(θ
n−1)

Now consider the sum on the right of (1.A.15). For all j, a moment’s thought
reveals that the profile (t∗, θ̃n−1

−j ) contains at most (k− 1)-many entries different
from t∗. By the induction hypothesis, therefore, the sum on the right of (1.A.15)
equals (n− 1)pi.

The previous two paragraphs and (1.A.15) imply (k− 1)pi + (n− k)φi(θ
n−1)=

(n− 1)pi. Equivalently, (n− k)(φi(θ
n−1)− pi)= 0. Since k≤ n− 1, we find

φi(θ
n−1)= pi, as promised.

1.A.3.2 Proof of Theorem 1.8

Proof of Theorem 1.8. We omit the straightforward verification that a jury mecha-
nism with an anonymous jury is partially anonymous.

For the converse, let φ be deterministic, partially anonymous, and DIC. Let N
denote the set of agents, and let T denote the common type space. For this proof,
we write φ(θ) to mean the agent who wins at profile θ ; this makes sense since φ
is deterministic.

Let Ii denote the set of agents that influence agent i’s winning probability. For
all j ∈ N, let Aj = {i ∈ N : j ∈ Ii} be the set of agents that are influenced by j. Let I =
{i ∈ N : Ai ̸= ;}. We may assume that φ is non-constant, meaning I ̸= ;, as otherwise
the proof is trivial.

Given two agents i and j, let Di−j = Ai \ Aj, and Dj−i = Aj \ Ai, and Cij = Aj ∩ Ai,
and Nij = N \ (Ai ∪ Aj). Note that, by DIC, the set Cij contains neither i nor j. Hence
partial anonymity implies that for all k ∈ Cij the winning probability of k is invariant
with respect to permutations of i and j.

When i, j, and k are given, we write (t, t′, t′′,θ−ijk) to mean the profile where i, j,
and k, respectively, report t, t′, and t′′, respectively, and all others report θ−ijk.

Claim 1.18. Let i and j be distinct. Let θ−ij ∈ Θ−ij. If there exists θi,θj ∈ T such that
φ(θi,θj,θ−ij) ∈ Di−j, then all θ ′i ,θ

′
j ∈ T satisfy φ(θ ′i ,θ

′
j ,θ−ij) ∈ Di−j.

Proof of Claim 1.18. We drop the fixed type profile θ−ij of the others from the nota-
tion. To show φ(θ ′i ,θ

′
j ) ∈ Di−j, it suffices to show φ(θ ′i ,θj) ∈ Di−j since if the latter

is true then definition of Di−j implies φ(θ ′i ,θ
′
j )= φ(θ ′i ,θj).

We first claim φ(θj,θi) ∈ Di−j. If φ(θj,θi) ∈ Nij, then φ(θj,θi)= φ(θi,θj), and
we have a contradiction to φ(θi,θj) ∈ Di−j. If φ(θj,θi) ∈ Cij, then partial anonymity
implies φ(θi,θj) ∈ Cij, and we have another contradiction to φ(θi,θj) ∈ Di−j. If
φ(θj,θi) ∈ Dj−i, then φ(θj,θi)= φ(θi,θi) ∈ Dj−i. However, from φ(θi,θj) ∈ Di−j we
know φ(θi,θj)= φ(θi,θi) ∈ Di−j; contradiction. Thus φ(θj,θi) ∈ Di−j.
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We next claim φ(θ ′i ,θj) ∈ (Di−j ∪ Cij). Towards a contradiction, suppose not.
Thenφ(θ ′i ,θj) ∈ (Dj−i ∪Nij), and henceφ(θ ′i ,θj)= φ(θi,θj) /∈ Di−j. This contradicts
the assumption φ(θi,θj) ∈ Di−j.

In view of the previous paragraph, we can complete the proof by showing
φ(θ ′i ,θj) /∈ Cij. Towards a contradiction, letφ(θ ′i ,θj) ∈ Cij. Partial anonymity implies
φ(θj,θ

′
i ) ∈ Cij. We have shown earlier that φ(θj,θi) ∈ Di−j holds. Hence φ(θj,θ

′
i ) ∈

Di−j, and this contradicts φ(θj,θ
′
i ) ∈ Cij. Thus φ(θ ′i ,θj) /∈ Cij and the proof is com-

plete.

Claim 1.19. Let i, j, k be distinct. Let θk ∈ T and θ−ijk ∈ Θ−ijk be such that
all θ ′i ,θ

′
j ∈ T satisfy φ(θ ′i ,θ

′
j ,θk,θ−ijk) ∈ (Cij ∪Nij). Then, all θ ′i ,θ

′
j ,θ
′
k ∈ T satisfy

φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ (Cij ∪Nij).

Proof of Claim 1.19. Towards a contradiction, suppose φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ (Di−j ∪

Dj−i). Suppose φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ Di−j, the other case being similar. The inclu-

sions φ(θ ′i ,θ
′
j ,θk,θ−ijk) ∈ (Cij ∪Nij) and φ(θ ′i ,θ

′
j ,θ
′
k,θ−ijk) ∈ Di−j together imply

φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ Ak. Hence φ(θ ′i ,θ

′
j ,θ
′
k,θ−ijk) ∈ Dk−j. We now invoke Claim 1.18

to infer φ(θ ′i ,θ
′
j ,θk,θ−ijk) ∈ Dk−j. Since we also have φ(θ ′i ,θ

′
j ,θk,θ−ijk) ∈ (Cij ∪

Nij), we infer φ(θ ′i ,θ
′
j ,θk,θ−ijk) ∈ Nij. In particular, we have φ(θ ′i ,θ

′
j ,θk,θ−ijk) /∈

Ai. Hence φ(θ ′i ,θ
′
j ,θk,θ−ijk) ∈ Dk−i. We now invoke Claim 1.18 to infer

φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ Dk−i. In particular, we have φ(θ ′i ,θ

′
j ,θ
′
k,θ−ijk) /∈ Ai. This contra-

dicts the assumption φ(θ ′i ,θ
′
j ,θ
′
k,θ−ijk) ∈ Di−j.

Claim 1.20. If Cij ̸= ;, then Di−j ∪Dj−i = ;.

Proof of Claim 1.20. Let k ∈ Cij. We may find a profile θ such that φ(θ)= k as else
k’s winning probability is constantly 0 (which would contradict k ∈ Cij). Denoting
by θ−ij the types of agents other than i and j at θ , we appeal to Claim 1.18 to infer
that all θ ′i ,θ ′j ∈ T satisfy φ(θ ′i ,θ

′
j ,θ−ij) ∈ (Cij ∪Nij). Repeatedly applying Claim 1.19

implies that all profiles θ ′ satisfy φ(θ ′) ∈ (Cij ∪Nij). It follows that all agents in
Di−j ∪Dj−i enjoy a winning probability that is constantly equal to 0. Recalling the
definitions Di−j = Ai \ Aj, and Dj−i = Aj \ Ai, it follows that Di−j ∪Dj−i is empty.

Recall the definition I = {i ∈ N : Ai ̸= ;}. Consider the binary relation ∼ on I de-
fined as follows: Given i and j in I, we let i∼ j if and only if Cij ̸= ;.

Claim 1.21. The relation∼ is an equivalence relation. For all i, j ∈ I, if i∼ j, then i /∈ Aj

and Ai = Aj.

Proof of Claim 1.21. It is clear that ∼ is symmetric. As for reflexivity, note that i ∈ I
implies Ai = Cii ̸= ;. Turning to transitivity, suppose i∼ j and j∼ k. Hence Cij ̸= ;
and Cjk ̸= ;. Let ℓ ∈ Cjk. Claim 1.20 and Cij ̸= ; together implyDj−i = ;. Hence ℓ ∈ Cjk

implies ℓ ∈ Cij. Hence ℓ ∈ Cjk ∩ Cij, implying ℓ ∈ Cik. Hence i∼ k.
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As for the second part of the claim, let i∼ j. Thus Cij ̸= ;. Claim 1.20 implies
Dj−i = Di−j = ;. This immediately implies Ai = Aj. Together with DIC, we also infer
i /∈ Aj.

Claim 1.21 implies that we may partition I into finitely-many non-empty ∼-
equivalence classes. (Recall that I is non-empty.) We now claim that there is ex-
actly one ∼-equivalence class. Towards a contradiction, suppose not. In view of
Claim 1.21, this means that there are distinct i and j such that Ai ∩ Aj = ; and
Ai ̸= ; ≠ Aj. Let Ji and Jj, respectively, denote the equivalence classes containing
i and j, respectively. Let k ∈ Ai and ℓ ∈ Aj. Claim 1.21 implies k /∈ Ji and ℓ /∈ Jj

and k ̸= ℓ. Since k ∈ Ai and φ is deterministic, there is a type profile θ such that
φ(θ)= k; there must be another type profile θ ′ such that φ(θ ′)= ℓ. However, the
definition of equivalence classes implies that k’s winning probability depends only
on the types of agents in Ji, and that ℓ’s winning probability depends only on the
types of agents in Jj. Hence there is a type profile where both k and ℓ are winning
with probability 1 (such a type profile is obtained by changing at the profile θ the
types of agents in Jj to their respective types at θ ′, and keeping all other types fixed).
Contradiction.

Now, Claim 1.21 implies that the members of the unique ∼-equivalence class do
not influence one another, and that they influence the same set of others. By partial
anonymity, it follows φ that is a deterministic jury mechanism with an anonymous
jury.

1.A.3.3 Proof of Proposition 1.9

We first give an informal sketch of the proof. The idea is to “symmetrize” the stochas-
tic extreme point φ∗ from Section 1.5.2.

In Section 1.5.2, there are four agents, the set of type profiles of agents 1 to 3 is
a 2× 2× 3 set Θ̂, and agent 4 has a singleton type space. Let us view allocating to
agent 4 as disposing the object. Let us relabel the types of agents 1 to 3 so that they
are all distinct. Across agents 1 to 3 we thus have a set T of seven distinct types. The
3-fold Cartesian product T3 of T with itself contains six permutations of Θ̂ (one for
each permutation of {1, 2,3}). In Figure 1.A.1, the common type space is labelled
T = {1, . . . , 7}, and the six permutations of Θ̂ are depicted via six symbols (square,
circle, etc.).

We can associate to each permutation of Θ̂ a permutation of the mechanism
φ∗. The idea is to extend these permutations to a DIC mechanism with disposal
on all of T3. The difficulty is to verify that the resulting mechanism is well-defined.
To see the issue, reconsider Figure 1.A.1. For each of the six subsets, imagine rays
emanating from the subset and travelling parallel to the axes. Along the ray, exactly
one agent’s type changes. Hence DIC requires that this agent’s winning probability
remain constant along the ray. The rays emanating from distinct subset intersect,
and we have verify that the sum of the associated winning probabilities does not
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exceed 1. We use two observations. The first is that, at most two such rays intersect
simultaneously; this is a consequence of the fact that the types in Θ̂ are distinct
across agents. The second is that the winning probabilities associated with the rays
are at most 1

2 ; this is a consequence of the construction of φ∗ in Section 1.5.2.

Proof of Proposition 1.9. We first prove part (2) of the claim, assuming for a moment
that part (1) is true. Let ψ∗ : T3→ [0, 1]3 be a mechanism with disposal for three
agents that meets the conclusion of part (1). We view ψ∗ as a mechanism (without
disposal) with four agents that ignores the report of agent 4, and where agent 4’s
winning probability equals the probability that ψ∗ does not allocate the object to
the first three agents. Using the assumed properties of ψ∗, we obtain a mechanism
without disposal that is DIC, partially anonymous, and an extreme point of the set
of DIC mechanisms without disposal for four agents.

It remains to prove part (1) of the claim. That is, we show that if n= 3, then
there is an anonymous DIC mechanism with disposal that is an extreme point of the
set of all DIC mechanisms with disposal.

Let us relabel the common type space as T = {1,2, 3,4, 5,6, 7}. Let T3 = ×3
i=1T

denote the 3-fold Cartesian product of T. Let T1 = {1,2}, T2 = {3,4} and T3 =
{5, 6,7} and Θ̂ = T1 × T2 × T3. In Section 1.5.2, we constructed a stochastic DIC
mechanismφ∗ without disposal in a setting with 4 agents, where the types of agents
1, 2, and 3, respectively, are {ℓ, r}, {u, d}, {f , c, b}, respectively, and where agent 4’s
type is degenerate. By relabeling types, we view φ∗ as a mechanism with disposal
with 3 agents on the set of type profiles Θ̂, and where allocating to agent 4 is iden-
tified with disposing the object. The arguments from Section 1.5.2 show that, if
n= 3 and the set of type profiles is Θ̂, then φ∗ is an extreme point of the set of DIC
mechanisms with disposal.

For later reference, we note that, at all type profiles θ ∈ Θ̂ and all i ∈ {1, 2,3},
agent i’s winning probability at θ under φ∗ is either 0 or 1/2.

Our candidate mechanism will be denoted ψ∗. Let Ξ denote the set of permu-
tations of {1, 2,3}. Let Θ∗ = {ξ(θ): θ ∈ Θ̂,ξ ∈ Ξ} denote the set of type profiles
obtained by permuting a type profile in Θ̂; see Figure 1.A.1. Fixing an arbitrary
type profile in Θ̂, the types of the agents at this type profile are all distinct. Con-
sequently, for all θ ∗ in Θ∗ there is a unique profile θ in Θ̂ and ξ in Ξ such that
θ ∗ = ξ(θ).

For later reference, we also note that at an arbitrary type profile in Θ∗, the types
of distinct agents must belong to distinct elements of the partition {T1, T2, T3}.

We defineψ∗ as follows: For all θ ∗ in Θ∗, we find the unique (θ ,ξ) ∈ T ×Ξ such
that θ ∗ = ξ(θ), and then let

�

ψ∗i (θ ∗)
�n

i=1 =
�

φ∗ξ(i)(ξ(θ))
�n

i=1
. (1.A.16)

For the remaining profiles, we proceed as follows: For all agents i and profiles θ , if
θ differs from at least one profile θ ∗ in Θ∗ in agent i’s type and no other agent’s
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Figure 1.A.1. The set Θ∗ viewed from two different angles. Each agent is associated with a distinct
axis. Each symbol (square, circle, upward-pointing triangle, etc.) identifies a particular permuta-
tion of {1, 2, 3}. For instance, the upward-pointing triangles are obtained from the downward-
pointing triangles by permuting the two agents on the horizontal axes.

type, then i’s winning probability at θ equals i’s winning probability at θ ∗ (which
makes sense since the latter probability has already been defined in (1.A.16)); else,
if no such profile θ ∗ in Θ∗ exists, then agent i’s winning probability is set equal to
0.

To complete the argument, we have to show thatψ∗ is well-defined, DIC, stochas-
tic, anonymous, and an extreme point of the set of DIC mechanisms with disposal.
Assuming for a moment that the mechanism is well-defined, it is clear that the mech-
anism is stochastic, and one can easily verify from the definition that it is DIC and
anonymous. To show that it is an extreme point of the set of DIC mechanisms, we
proceed via the arguments from Section 1.5.2. Indeed, we know from Section 1.5.2
that all DIC mechanisms ψ with disposal that appear in a candidate convex com-
bination must agree with ψ∗ on Θ̂, and hence on Θ∗. It is then straightforward to
verify that such a mechanism ψ must also agree with ψ∗ on Θ \Θ∗.

It remains to show that ψ∗ is well-defined. Towards a contradiction, suppose
there is a profile θ = (θ1,θ2,θ3) in Θ such that

∑3
i=1ψ

∗
i (θ)> 1. By construction,

all i ∈ {1,2, 3} satisfy ψ∗i ∈ {0, 1
2}. Hence all three agents enjoy non-zero winning

probabilities at θ . By definition of ψ∗, we can infer the following: Since agent 1’s
winning probability at θ is non-zero, there exists t1 such that (t1,θ2,θ3) ∈ Θ∗. Sim-
ilarly, there are t2 and t3 such that (θ1, t2,θ3) ∈ Θ∗ and (θ1,θ2, t3) ∈ Θ∗. Recall that
{T1, T2, T3} is a partition of T. Hence, for all agents i, there is a unique integer ξ(i)
in {1,2, 3} such that θi ∈ Tξ(i). We now recall that if a profile is in Θ∗, then the types
of distinct agents belong to distinct elements of the partition {T1, T2, T3}. Hence we
infer from (t1,θ2,θ3) ∈ Θ∗ that ξ(2) ̸= ξ(3) holds. Similarly, from (θ1, t2,θ3) ∈ Θ∗

and (θ1,θ2, t3) ∈ Θ∗ we infer ξ(1) ̸= ξ(2) and ξ(1) ̸= ξ(3). Taken together, we infer
θ ∈ Θ∗. Hence the vector of winning probabilities at θ is a permutation of the vector
of winning probabilities at a profile θ ′ in Θ̂. At the profile θ ′, the winning probabili-
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ties underψ∗ agree with φ∗. Thus there is a profile where the winning probabilities
under φ∗ sum to a number strictly greater than 1. This contradicts the fact that φ∗
is a well-defined mechanism on Θ̂.

Appendix 1.B Supplementary material: Disposal

In this part of the appendix, we relax the requirement that the object always be
allocated. An interpretation is that the mechanism designer can dispose or privately
consume the object. Accordingly, we refer to such mechanisms as mechanisms with
disposal. We discuss how this affects our results from themain text (Appendix 1.B.1).
Further, we show how the existence of stochastic extreme points of the set of DIC
mechanisms with disposal can be related to a certain graph (Appendix 1.B.2).

Beginning with the definitions, a mechanism with disposal is a function φ : Θ→
[0,1]n satisfying

∀θ∈Θ,
n
∑

i=1

φi(θ) ≤ 1.

Amechanism from the main text will be referred to as a mechanismwith no disposal.
If there is no risk of confusion, we will drop the qualifiers “with disposal” or “with
no disposal”.

A mechanism with disposal is DIC if and only if for arbitrary i the winning proba-
bilityφi is constant in i’s report. We will sometimes drop i’s report θi fromφi(θi,θ−i).

A jury mechanismwith disposal is defined as in the basic model: For all i, if agent
i influences the allocation, then i never wins the object.

We normalize the value from not allocating the object to 0.
A mechanism with n agents and disposal can be viewed as a mechanism with

no disposal and with n+ 1 agents where agent n+ 1 has a singleton type space;
the value from allocating to n+ 1 is always 0. Likewise, if there are other agents
with singleton type spaces, we can always renormalize values and view allocating to
one of these agents as disposing the object. In what follows, whenever considering
mechanisms with disposal, let us thus simplify by assuming that no agent has a
singleton type space; that is, for all agents i we have |Θi| ≥ 2.

1.B.1 Results from the main text

Here we discuss how our results change when the mechanism can dispose the object.
To begin with, we have the following analogue of Theorem 1.5.

Theorem 1.22. Fix n and Θ1, . . . ,Θn. For all agents i, let |Θi| ≥ 2. All extreme points
of the set of DIC mechanisms with disposal are deterministic if and only if at least one
of the following is true:

(1) We have n≤ 2.
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(2) For all agents i we have |Θi|= 2.

Proof of Theorem 1.22. As discussed above, a DIC mechanism with n agents and dis-
posal is a DIC mechanism with n+ 1 agents and no disposal. The claim follows from
Theorem 1.5.

Further below, we provide an alternative proof of Theorem 1.22 that does not
invoke Theorem 1.5 but relies on graph-theoretic results. We emphasize that The-
orem 1.22 does not imply Theorem 1.5. Namely, we cannot conclude from Theo-
rem 1.22 that if n= 3 all extreme points of the set of DIC mechanisms with no
disposal are deterministic.

It follows from Theorem 1.22 that Theorem 1.1 (jury mechanisms with 3 agents)
carries over to mechanisms with disposal in the sense that all mechanisms with
disposal and 2 agents are convex combinations of deterministic jury mechanisms
with disposal. Note that, according to Theorem 1.22, this result does not extend
to n= 3. With n= 2, a jury mechanism with disposal admits a single juror whose
report determines whether or not the object is disposed or allocated to the other
agent.

Proposition 1.6 (on the suboptimality of deterministic DIC mechanisms) analo-
gizes straightforwardly to mechanisms with disposal. Indeed, note that in our proof
of Proposition 1.6 agent 4 was simply a dummy agent with value normalized to 0.

Theorem 1.4 (approximate optimality of jury mechanisms under Assumption 1.1
and large n) extends to mechanisms with disposal in a straightforward way, with no
changes to the proof.

We already showed via Proposition 1.9 that Theorem 1.7 does not extend to
mechanisms with disposal. In fact, the non-constant mechanism constructed in the
proof of Proposition 1.9 actually satisfies an even stronger notion of anonymity.
Namely, whenever one permutes the type profiles, the vector of winning probabili-
ties is permuted in the same manner.

We next turn to partial anonymity for mechanisms with disposal. In particular,
we show that Theorem 1.8 extends under a slight strengthening of partial anonymity.
Given a mechanism φ, let φ0 = 1−

∑n
i=1φi denote the probability that the object

is not allocated.

Definition 1.4. Let φ be a mechanism with disposal. Let N = {1, . . . , n} and N0 =
N ∪ {0}.

(1) Given distinct i ∈ N and k ∈ N0, agent i influences k if φk is non-constant in i’s
report.

(2) Themechanism is partially ∗-anonymous if for all i ∈ N, j ∈ N, and k ∈ N0 that are
all distinct and are such that i and j influence k, agents i and j are exchangeable
for k.
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In words, partial anonymity is strengthened by demanding that the disposal
probability φ0 is permutation-invariant with respect to those agents who influence
φ0.

It follows from Theorem 1.8 that a deterministic partially ∗-anonymous DIC
mechanism with disposal is a deterministic jury mechanism with an anonymous
jury. To see this, let us view disposing the object as allocating to agent 0. Now, agent
0 does not have the same type space as the other agents. Since this was a maintained
assumption of Section 1.6, we cannot yet appeal to Theorem 1.8. But, we can simply
view the mechanism as a mechanism where agent 0’s type space is same as the type
spaces of the others, and where agent 0’s report is always ignored. By now appealing
to Theorem 1.8, the claim follows.

1.B.2 Stochastic extreme points and perfect graphs

In this section, we relate the existence of stochastic extreme points with disposal to
a graph-theoretic property called perfection.

1.B.2.1 Preliminaries

We first recall several definitions for a simple undirected graph G with nodes V and
edges E.

An induced cycle of length k is a subset {v1, . . . , vk} of V such that, denoting vk+1 =
v1, two nodes vℓ and vℓ′ in the subset are adjacent if and only if |ℓ− ℓ′|= 1.

The line graph of G is the graph that has as node set the edge set of G; two nodes
of the line graph are adjacent if and only if the two associated edges of G share a
node in G.

A clique of G is a set of nodes such that every pair in the set are adjacent. A clique
is maximal if it is not a strict subset of another clique. A stable set of G is a subset of
nodes of which no two are adjacent. The incidence vector of a subset of nodes V̂ is
the function x : V→ {0, 1} that equals one on V̂ and equals zero otherwise. Let S(G)
denote the set of incidence vectors belonging to some stable set of G.

The upcoming result uses another property of graphs called perfection. For our
purposes, it will be enough to know the following facts, all of which may be found
in Korte and Vygen (2018).

Lemma 1.23. All bi-partite graphs and line graphs of bi-partite graphs are perfect. If
a graph admits an induced cycle of odd length greater than five, then it is not perfect.

Our interest in perfect graphs is due to the following theorem of Chvátal (1975,
Theorem 3.1); one may also find it in Korte and Vygen (2018, Theorem 16.21).

Theorem 1.24. A graph G with node set V and edge set E is perfect if and only if the
convex hull co S(G) is equal to the set
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¨

x : V → [0, 1]: all maximal cliques X of G satisfy
∑

v∈X

x(v) ≤ 1

«

. (1.B.1)

The set co S(G) is the stable set polytope of G. The set in (1.B.1) is the clique-
constrained stable set polytope of G.

1.B.2.2 The feasibility graph

We next define a graph G such that the set of deterministic DIC mechanisms with
disposal corresponds to S(G), and such that the set of all DIC mechanisms with
disposal coincides with the clique-constrained stable set polytope of G. In view of
Theorem 1.24, the question of whether all extreme points are deterministic thus
reduces to checking whether G is a perfect graph.

Consider the following graph G with node set V and edge set E. Let

V = ∪n
i=1

�

{i} × Θ−i

�

,

and let two nodes (i,θ−i) and (j,θ ′−j) be adjacent if and only if i ̸= j and there is
a type profile θ̂ satisfying θ̂−i = θ−i and θ̂−j = θ ′−j. We refer to G as the feasibility
graph.

Informally, a node (i,θ−i) is the index for agent i’s winning probability when
the type profile of the others is θ−i. Two nodes are adjacent if and only if there is
a profile θ̂ such that the associated winning probabilities simultaneously appear in
the feasibility constraint

n
∑

i=1

φi(θ̂−i) ≤ 1 (1.B.2)

of the profile θ̂ .
Figure 1.B.1 shows the feasibility graph in an example with two agents; Fig-

ure 1.B.2 shows it in an example with three agents.
Given a node v= (i,θ−i) of G, let us write φ(v)= φi(θ−i). Note that a clique in

the feasibility graph is a subset of nodes of V such that the winning probabilities
associated with these nodes all appear in the same feasibility constraint (1.B.2). It
follows that there is a one-to-one mapping between maximal cliques of G and type
profiles. For a DIC mechanism with disposal, the feasibility constraint (1.B.2) may
thus be equivalently stated as follows: For all maximal cliques of X of G, we have
∑

v∈X φ(v)≤ 1. Thus the set of DIC mechanisms with disposal coincides with the set
(1.B.1). One may similarly verify that the set of deterministic DIC mechanisms with
disposal coincides with S(G). In view of Theorem 1.24, we deduce:

Lemma 1.25. All extreme points of the set of DIC mechanisms with disposal are deter-
ministic if and only if G is perfect.
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(a) The set of type profiles Θ. Circles repre-
sent type profiles.

(1, u)

(2,ℓ)

(1, d)

(2, m) (2, r)

(b) The graph G. Red triangles represent
nodes of G that are associated with agent
1. Blue squares represent nodes associated
with agent 2.

Figure 1.B.1. The feasibility graph with two agents whose type spaces are Θ1 = {�, m, r} and Θ2 =
{u, d}, respectively.

Figure 1.B.2. The feasibility graph G in an example with three agents. Agents 1 and 2 each have
two possible types. The nodes of G associated with agents 1 and 2, respectively, are depicted
by red triangles and blue squares, respectively. Agent 3 has three possible types; the associated
nodes are depicted by green circles. One may view this as the graph G associated with the four-
agent environment of Section 1.5.2, except that all nodes of the dummy agent 4 are omitted.

This leads us to the following alternative proof of Theorem 1.22.

Alternative proof of Theorem 1.22. Let n= 2. Observe that the node set of G may be
partitioned into the sets {1}×Θ2 and {2}×Θ1. By definition, two nodes (i,θ−i) and
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(j,θ−j) are adjacent only if i ̸= j. Thus G is bi-partite. Since every bi-partite graph is
perfect (Lemma 1.23), the claim follows from Theorem 1.24.

Suppose |Θi|= 2 holds for all i. We may relabel the types so that Θi = {0,1}
holds for all i. In this case G is the line graph of a bi-partite graph; namely the bi-
partite graph with node set {0, 1}n and where two nodes are adjacent if and only
if they differ in exactly one entry. The line graph of a bi-partite graph is perfect
(Lemma 1.23), and so the claim again follows from Theorem 1.24.

Lastly, suppose n≥ 3 and |Θi|> 2 for at least one i. We will show that G admits
an odd induced cycle of length seven. In view of Lemma 1.23 and Theorem 1.24,
this proves that there exists a stochastic extreme point. Let us relabel the agents and
types such that the type spaces contain the following subsets of types:

Θ̃1 = {ℓ, r} and Θ̃2 = {u, d} and Θ̃3 = {f , c, b}

all hold. Let θ−123 be an arbitrary type profile of agents other than 1, 2 and 3 (as-
suming such agents exist). One may verify that the following is an induced cycle of
length seven:

�

2,
�

ℓ, c,θ−123

��

↔
�

1,
�

d, c,θ−123

��

↔
�

3,
�

r, d,θ−123

��

↔
�

2,
�

r, b,θ−123

��

↔
�

3,
�

r, u,θ−123

��

↔
�

1,
�

u, f ,θ−123

��

↔
�

3,
�

ℓ, u,θ−123

��

↔
�

2,
�

ℓ, c,θ−123

��

.

The proof in the main text for the existence of a stochastic extreme point is
slightly more elaborate than the one given above since in the former we explicitly
spell out the extreme point. (The proof in the main text uses one of the agents as
a dummy, and therefore also works for mechanisms with disposal.) In our view, the
advantage of the more elaborate argument is that it facilitates the construction of
environments where all deterministic DIC mechanisms fail to be optimal. This lets
us give an interpretation as to why it may be optimal to use a lottery. That said, it
is clear how the induced cycle defined in the proof of Theorem 1.22 relates to the
construction from the main text. The nodes of the cycle correspond to the bold edges
of the hyperrectangle in Figure 1.1.

Appendix 1.C Supplementary material: Additional results

This part of the appendix presents results that were previously mentioned in passing.
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1.C.1 All extreme points are candidates for optimality

For the following lemma, observe that the set of DIC mechanisms depends only on
the number of agents and their type spaces.

Lemma 1.26. Let n ∈ N. Let Θ1, . . . ,Θn be finite sets, and let Θ = ×n
i=1Θi. If φ is an

extreme point of the set of DIC mechanisms when there are n agents and the set of type
profiles is Θ, then there exists a set Ω of value profiles and a distribution µ over Ω ×Θ
such that in the environment (n,Ω,Θ,µ) the mechanism φ is the unique optimal DIC
mechanism.

Proof of Lemma 1.26. The set of DIC mechanisms is a polytope in Euclidean space
(being the set of solutions to a finite system of linear inequalities). Hence all its
extreme points are exposed (Aliprantis and Border, 2006, Corollary 7.90). Hence
there is a function p: {1, . . . , n}×Θ→ R such that for all DIC mechanisms ψ dif-
ferent from φ we have

∑

i,θ pi(θ)(φi(θ)−ψi(θ))> 0. By suitably choosing Ω and
µ, the function p represents the objective function of our model. For example, one
possible choice of Ω and µ is as follows: Let the marginal of µ on Θ be uniform;
for all agents i, let Ωi be the image of pi; for all θ , conditional on the type profile
realizing as θ , let the value of allocating to agent i be |Θ|pi(θ).

1.C.2 Implementation with deterministic outcome functions

An indirect mechanism specifies a tuple M = (M1, . . . , Mn) of finite message sets,
and an outcome function g: ×i Mi→∆{0, . . . , n}. (Given a finite set X, we denote
by ∆X the set of distributions over X.) The outcome function is deterministic if
for all m the distribution g(m) is degenerate. A strategy of agent i in (M, g) is a
function σi : Θ→∆Mi; let Σi denote the set of strategies of agent i in (M, g). A
DIC mechanism φ is implementable (in dominant strategies) via (M, g) if there is a
dominant-strategy equilibrium (σ1, . . . ,σn) of (M, g) such that all profiles θ satisfy
φ(θ)=

∑

m g(m)
∏

iσi(mi|θi).

Lemma 1.27. If a stochastic DIC mechanism φ is implementable via an indirect mech-
anism with a deterministic outcome function, then φ is not an extreme point of the set
of DIC mechanisms.

Proof of Lemma 1.27. Towards a contradiction, supposeφ is an extreme point. As in
the proof of Lemma 1.26, we may find p: {1, . . . , n}×Θ→ R such that all DIC mech-
anisms ψ distinct from φ satisfy

∑

i,θ pi(θ)(φi(θ)−ψi(θ))> 0. However, since φ
is implementable via an indirect mechanism with a deterministic outcome function,
Proposition 1 of Jarman and Meisner (2017) implies that there is a deterministic
DIC mechanism ψ such that

∀θ∈Θ,
∑

i

pi(θ)(φi(θ) −ψi(θ)) ≤ 0.
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Hence
∑

i,θ pi(θ)(φi(θ)−ψi(θ))≤ 0. Sinceφ is stochastic, we haveψ ̸= φ; contra-
diction.

1.C.3 Total unimodularity

This section of the appendix discusses another potential approach for showing that
all extreme points are deterministic. Our aim is to explain why this approach does
not help us for the proof of Theorem 1.5 in the difficult case with three agents.

For a functionφ : Θ→ [0,1]n to be a DICmechanism, the function should satisfy
the following:

∀i,θ , 1 ≥ φi(θ)

∀i,θi,θ
′
i ,θ−i

, 0 ≥ φi(θi,θ−i) − φi(θ
′
i ,θ−i) ≥ 0

∀θ , 1 ≥
∑

i

φi(θ) ≥ 1
(1.C.1)

For a suitable matrix A and vector b, the set of DIC mechanisms is then the poly-
tope {φ : Aφ ≥ b,φ ≥ 0}. Here, the matrix A has one row for every constraint in
(1.C.1) (after splitting the constraints into one-sided inequalities). Each column of
A identifies a pair of the form (i,θ).

A matrix or a vector is integral if its entries are all in Z. A polytope is integral if
all its extreme points are integral. In this language, all extreme points of the set of
DIC mechanisms are deterministic if and only if the polytope {φ : Aφ ≥ b,φ ≥ 0} is
integral.

Recall that a matrix is totally unimodular if all its square submatrices have a
determinant equal to −1, 0, or 1. A submatrix of a totally unimodular matrix is
itself totally unimodular.

Our interest in total unimodularity is due the Hoffman-Kruskal theorem (Korte
and Vygen, 2018, Theorem 5.21).

Theorem 1.28. An integral matrix A is totally unimodular if and only if for all integral
vectors b all extreme points of the set {φ : Aφ ≥ b,φ ≥ 0} are integral.

Thus a sufficient condition for all extreme points of the set of DIC mechanisms to
be deterministic is that the constraint matrix A be totally unimodular. Unfortunately:

Lemma 1.29. For all agents i, let |Θi| ≥ 2. Let n= 3. If there exists i such that |Θi| ≥ 3,
then A is not totally unimodular.

Proof of Lemma 1.29. Towards a contradiction, suppose A is totally unimodular.
Consider the constraint matrix Ã and vector b̃ that define the set of DIC mecha-
nisms with disposal (where such mechanisms are defined in Appendix 1.B). That
is, φ is a DIC mechanism with disposal if and only if Ãφ ≥ b̃ and φ ≥ 0. Notice
that Ã is obtained from A by dropping all rows corresponding to constraints of the
form

∑

iφi(θ)≥ 1; the vector b̃ is obtained from b by dropping the corresponding
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entries. In particular, the matrix Ã is a submatrix of A. Since A is totally unimodu-
lar, we conclude that Ã is totally unimodular. We infer from Theorem 1.28 that all
extreme points of the set of DIC mechanism with disposal are deterministic. Since
n= 3, since all agents have at least binary types, and since at least one agent has
non-binary types, we have a contradiction to Theorem 1.22.

We can give an alternative proof of Lemma 1.29 that does not require Theo-
rem 1.22. Consider the following characterization of total unimodularity due to
Ghouila-Houri (1962) (Korte and Vygen, 2018, Theorem 5.25).
Theorem 1.30. A matrix A with entries in {−1, 0,1} is totally unimodular if and only
if all subsets C of columns of A satisfy the following: There exists a partition of C into
subsets C+ and C− such that for all rows r of A we have

�

∑

c∈C+
A(r, c) −

∑

c∈C−
A(r, c)

�

∈ {−1, 0,1}. (1.C.2)

Alternative proof of Lemma 1.29. Let us relabel the agents and types such that the
type spaces contain the following subsets:

Θ̃1 = {ℓ, r} and Θ̃2 = {u, d} and Θ̃3 = {f , c, b}

Fixing an arbitrary type profile θ−123 of agents other than 1, 2, and 3, let us define
the type profiles {θ a,θ b,θ c,θ e,θ f ,θ g} as in (1.2) in Section 1.5.2. That is, let

θ a = (ℓ, d, c,θ−123), θ b = (r, d, c,θ−123), θ c = (r, d, b,θ−123),

θ d = (r, u, b,θ−123), θ e = (r, u, f ,θ−123),

θ f = (ℓ, u, f ,θ−123), θ g = (ℓ, u, c,θ−123).

Recall that each column of A corresponds to an entry of the form (i,θ). We will
argue that the following set C of columns does not admit a partition in the sense of
Theorem 1.30.

C = {(1,θ a), (1,θ b), (3,θ b), (3,θ c),

(2,θ c), (2,θ d), (3,θ d), (3,θ e),

(1,θ e), (1,θ f ), (3,θ f ), (3,θ g),

(2,θ g), (2,θ a)}

Towards a contradiction, suppose C does admit a partition into sets C+ and C− in the
sense of Theorem 1.30. Let us assume (1,θ a) ∈ C+, the other case being similar. Note
that θ a and θ b differ only in the type of agent 1. Consider the row of A corresponding
to the DIC constraint for agent 1 at these type profiles. By referring to (1.C.2) for
this row, we deduce (1,θ b) ∈ C+. Next, via a similar argument, the constraint that
the object is allocated at θ b requires (3,θ b) ∈ C−. Continuing in this manner, it is
easy to see that (1,θ a) must be in C−. Since (1,θ a) is assumed to be in C+, we have
a contradiction to the assumption that C+ and C− are a partition of C.
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1.C.4 Maximum weight perfect hypergraph matching

In this section, we explain that the problem of finding an optimal deterministic DIC
mechanism corresponds to finding a maximumweight perfect matching on a certain
hypergraph.

The hypergraph has as vertices the set of type profiles. Its hyperedges are those
type profiles along which the type of exactly one agent i varies across Θi. That is,
a set of type profiles e is a hyperedge if and only if there exist i ∈ {1, . . . , n} and
θ−i ∈ Θ−i such that e= {(θi,θ−i): θi ∈ Θi}. We index this hyperedge by (i,θ−i). The
weight attached to hyperedge (i,θ−i) is Eωi

[ωi|θ−i].
In a matching of this hypergraph, including edge (i,θ−i) in the matching corre-

sponds to allocating to agent i at all type profiles incident to (i,θ−i); this respects
DIC for agent i. In a perfect matching, each type profile is covered by some edge;
this respects the requirement that the object is always allocated.

If we relax the requirement that the object is always allocated (Appendix 1.B),
we instead consider the larger set of all matchings on the hypergraph. Such a match-
ing can also be interpreted as a stable set of the feasibility graph introduced in Ap-
pendix 1.B.2.2.
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.

Chapter 2

Mechanisms Without Transfers for
Fully Biased Agents

2.1 Introduction

A principal has to decide between two options. Which one she prefers depends on
the private information of two agents. One agent always prefers the first option;
the other always prefers the second. Transfers are infeasible. The principal designs
and commits to a mechanism: a mapping from reported information profiles to a –
potentially randomized – decision. One prominent example of such a setting is the
allocation of a fixed amount of money:

Example 2.1 (Budget allocation). Upper management has endowed a division man-
ager with a fixed budget. The manager can divide these funds between her two
departments L, R. Her objective is to maximize expected returns. Department heads
i= ℓ, r hold private information θi about the future marginal returns yL, yR and want
to maximize their department’s budget. Formally, (θℓ,θr, yL, yR) follows some joint
distribution and conditional on the private information the manager’s marginal re-
turn from allocating $1 to L instead of R is v(θℓ,θr)= E[yL − yR|θℓ,θr].

In this setting, we characterize all implementable mechanisms without transfers
under arbitrary correlation. We find a connection between our mechanism design
setting and a zero-sum game. Incentive compatibility of a mechanism given a type
distribution corresponds to this distribution being a correlated equilibrium in the
game induced by the mechanism.

Crémer and McLean’s (1985; 1988) results for the corresponding setting with
transfers suggest that the principal should be able to exploit correlation to induce
truthful reporting. We define a preorder on type distributions and find that corre-
lation has the opposite effect in our setting: it restricts the set of implementable
mechanisms. Under Crémer and McLean’s full-rank condition on the the joint type
distribution, the set of implementable mechanisms collapses to the mechanisms that
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ignore the agents’ reports entirely. In particular, under the full-rank condition, the
principal cannot do better than choosing her ex-ante preferred option.

We then give necessary and sufficient conditions (on the joint type distribution)
for the existence of a “profitable” mechanism that allows the principal to do better
than her ex-ante preferred option. When she is ex-ante indifferent between the two
options, the existence of a profitable mechanism is equivalent to a non-additive pay-
off structure. Informally speaking, in the money-allocation example, non-additivity
means that one department has valuable information about the expected marginal
return of the other department.

When the principal is not ex-ante indifferent, a key insight is that choosing a
mechanism corresponds to introducing endogenous correlation. The existence of a
profitable mechanism depends on the value of a related optimal transport problem
in which the principal chooses this endogenous correlation structure. Incentive con-
straints translate into an equal marginals condition and an orthogonality constraint
between the exogenously given type distribution and the endogenously chosen one.

One application of our results is the problem of allocating a single nondispos-
able good between two agents. In section 6, we extend our setting and study the
problem of allocating a (potentially disposable) good among multiple agents under
independence. When the good has to be allocated, we find that a profitable mecha-
nism exists if and only if a generalized version of the additivity condition is violated.
Under free disposal, a profitable mechanism exists if and only if there is an agent
such that the principal’s value from allocating to that agent depends on the types of
other agents.

More broadly, our results convey that there is large class of settings without
transfers where the principal can profit from designing a mechanism that elicits the
agent’s information despite their opposed interests. This scope for communication
does not rely on any correlation of the agents’ information but instead on types
interdependence in the principal’s preferences.

2.2 Model

There is a principal (she), two agents i= ℓ, r and a decision: L or R. Agent ℓ (he)
always prefers L; agent r (he) always prefers R. Agents enjoy utility 1 if their fa-
vored decision is taken and 0 otherwise.1 Each agent has a private type θi ∈ Θi (
|Θi|<∞) and the type profile θ = (θℓ,θr) is drawn from a commonly known dis-
tribution π(θℓ,θr) with positive2 marginals πℓ,πr. Let Π be the set of joint type
distributions with positive marginals and let Π(πℓ,πr) be the set of joint type dis-

1. All of our results would apply unchanged if agents receive utility ūi(θi) from their preferred
decision and utility ui(θi) from their less preferred decision, where ūi > ui.

2. This is without loss. Note that we do not assume full support.
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tributions with marginals πi. The independent type distribution with marginals πℓ
and πr is denoted by πℓπr.

The principal designs and commits to a mechanism. By the revelation princi-
ple she can restrict attention to direct, (Bayesian) incentive-compatible mechanisms
x : Θ = Θℓ ×Θr→ [0, 1], where x(θℓ,θr) denotes the probability that L is chosen if
agent ℓ reports θℓ and agent r reports θr. From now on we refer to direct mecha-
nisms simply as mechanisms.

If the realized type profile is θ then the principal receives a payoff of vL(θ) from
L and of vR(θ) from R. Without loss of generality, her ex-ante preferred option is
R, and vR is normalized to 0; that is, Eπ[vL(θ )]≤ 0= vR.3 From now on we denote
vL = v.

The principal’s problem then reads:

max
0≤x≤1

Eπ[v(θ )x(θ )]

s.t. Eπ[x(θℓ,θ r)|θℓ] ≥ Eπ[x(θ ′ℓ,θ r)|θℓ] ∀θℓ,θ ′ℓ (ICℓ)
Eπ[x(θ ℓ,θr)|θr] ≤ Eπ[x(θ ℓ,θ

′
r)|θℓ] ∀θr,θ

′
r (ICr)

Given π ∈Π, let the set of IC mechanisms be X (π). A mechanism is said to be
profitable if it is IC and yields the principal a strictly greater payoff than choosing her
ex-ante preferred option Rwithout consulting the agents. Given our normalization of
the principal’s payoff, an IC mechanism x is profitable if and only if Eπ[v(θ )x(θ )]>
0.

2.3 Implementation

In this section we characterize the set of IC mechanisms given a type-distribution.
The proof is based on the observation that incentive-compatibility can be phrased
in terms of the correlated equilibria of an auxiliary two-player zero-sum game, as
we explain next.

Let π ∈Π and let x ∈ X (π) be an IC mechanism. The IC conditions read
∑

θr

π(θr|θℓ)x(θℓ,θr) ≥
∑

θr

π(θr|θℓ)x(θ ′ℓ,θr) ∀θℓ,θ ′ℓ (IC′
ℓ
)

∑

θℓ

π(θℓ|θr)x(θℓ,θr) ≤
∑

θℓ

π(θℓ|θr)x(θℓ,θ
′
r) ∀θr,θ

′
r . (IC′r)

Consider now the auxiliary two-player zero-sum game G in which the Maximizer
chooses θℓ, the Minimizer chooses θr and the objective (i.e. the Maximizer’s payoff
if θℓ and θr is chosen) is x(θℓ,θr). In this game we can interpret π as a correlated
strategy under which the Maximizer’s payoff is

∑

θℓ

∑

θr
π(θℓ,θr)x(θℓ,θr). With this

3. Bold symbols denote random variables.
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interpretation the IC conditions become obedience conditions and π becomes a cor-
related equilibrium of G:

Lemma 2.1. A mechanism x is IC under some type distribution π ∈Π if and only if
π is a correlated equilibrium of the auxiliary two-player zero-sum game in which the
Maximizer chooses θℓ ∈ Θℓ, the Minimizer chooses θr ∈ Θr and the Maximizer’s payoff
is x(θℓ,θr).

Note that under the mechanism design interpretation π is an exogenous part of
the environment while x is endogenous. In the auxiliary game the roles are exactly
flipped: x is an exogenous while π is endogenous.

Proposition 2.2. Let π ∈Π and let x be some mechanism. The following are equiva-
lent.

(i) x is IC under π.

(ii) For each agent i, each type θi, and each report θ ′i , we have Eπ[x(θ ′i ,θ−i)|θi]=
Eπ[x(θ )].

Moreover, if x is IC then Eπ[x(θ )]= x̄, where

x̄ = max
σℓ∈∆Θℓ

min
σr∈∆Θr

∑

θℓ

∑

θr

σℓ(θℓ)σr(θr)x(θℓ,θr)

is the maximin value of the auxiliary game.

Proposition 2.2 says that a mechanism is IC if and only if each type of each
agent is indifferent between every possible report and each type’s expectations of x
are given by the distribution-independent constant x̄.

Proof of Proposition 2.2. Any mechanism that satisfies (ii) is clearly IC. To show the
converse let π ∈Π and let x be an IC mechanism. By Lemma 2.1, π is a correlated
equilibrium of the auxiliary game G in which the Maximizer chooses θℓ, the Mini-
mizer chooses θr and the Maximizer’s payoff from such an action profile is x(θℓ,θr).

Suppose now that the Minimizer obeys his recommendation under the corre-
lated equilibrium π. Suppose further that the Maximizer disobeys his recommen-
dation under π and instead plays the mixed strategy πℓ. As disobediance is not
profitable, we get

∑

θℓ

∑

θr

π(θℓ,θr)x(θℓ,θr) ≥
∑

θℓ

∑

θr

π(θℓ,θr)
∑

θ ′
ℓ

πℓ(θ
′
ℓ)x(θ ′ℓ,θr).

But the last term is simply
∑

θℓ

∑

θr
πℓ(θℓ)πr(θr)x(θℓ,θr) and so we obtain

∑

θℓ

∑

θr

π(θℓ,θr)x(θℓ,θr) ≥
∑

θℓ

∑

θr

πℓ(θℓ)πr(θr)x(θℓ,θr). (2.1)
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The symmetric argument for the Minimizer implies that the opposite inequality to
(2.1) must also hold. We conclude that (2.1) must hold with equality. Finally, since
πℓ has full support if there were some pair θℓ,θ ′ℓ for which the inequality in the
obedience constraint (IC′

ℓ
) were strict then (2.1) could not hold with equality. Hence

(IC′
ℓ
) must always bind. A similar argument shows that (IC′r) must always bind. Thus,

for all i, if player i is recommended some action θi then he is indifferent between all
actions and his interim expectation of x is x̄i(θi)= Eπ[x(θ )|θi]. We will now show
that the interim expectations x̄i(θi) are actually all the same.

Let σ = (σℓ,σr) be a Nash equilibrium of G. (Existence follows from finiteness
of G.) Let x̄ =

∑

θℓ
σℓ(θℓ)

∑

θr
σr(θr)x(θℓ,θr) be the Maximizer’s expected payoff

under σ. Then for any θr it holds that

x̄ ≥
∑

θℓ

π(θℓ|θr)
∑

θ̃r

σr(θ̃r)x(θℓ, θ̃r)

=
∑

θ̃r

σr(θ̃r)
∑

θℓ

π(θℓ|θr)x(θℓ, θ̃r)

≥
∑

θℓ

π(θℓ|θr)x(θℓ,θr) = x̄r(θr),

where the first inequality holds since the mixed strategy π(·|θr) is not a profitable
deviation from σℓ; the second inequality follows from type θr’s IC constraint for θ̃r

and the last equality is by definition. Combining this inequality with the correspond-
ing inequality for the other player we thus have that

x̄r(θr) ≤ x̄ ≤ x̄ℓ(θℓ) ∀θℓ,θr.

Since the terms on the left and the right hand side of the above inequalities are equal
in expectation and all θℓ and θr occur with positive probability both inequalities
above must always bind. That is to say, for each agent i, Eπ[x(θ ′i ,θ−i)|θi]= x̄ for any
θi and θ ′i . Finally, note that x̄ =maxσℓ∈∆Θℓ minσr∈∆Θr

∑

θℓ

∑

θr
σℓ(θℓ)σr(θr)x(θℓ,θr)

holds since (σℓ,σr) is a Nash equilibrium of the zero sum game G.

2.4 Comparative statics for implementation

In this section, we study how the set of implementable mechanisms depends on
the type distribution. We define a preorder on distributions and derive a monotone
comparative statics result for the correspondence π 7→ X (π). We conclude that cor-
relation has a restrictive effect.

Definition 2.1. Let τ0,τ1, . . . ,τk ∈∆Θ−i be a collection of beliefs over types of
agent−i. Then {τ1, . . . ,τk} is said to span τ0 if there exist coefficients α1, . . . ,αk ∈ R
such that

τ0(θ−i) =
k
∑

j=1

τj(θ−i)αj ∀θ−i.
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Given joint type distributions π, π̃ ∈Π, we say π spans π̃ if for all i= ℓ, r and θi the
collection {π(·|θ̃i): θ̃i ∈ Θi} spans π̃(·|θi).

Hence π spans π̃ if each interim belief an agent can hold under π̃ is a linear
combination of some interim beliefs that he can hold under π. Spanning is reflexive
and transitive but not anti-symmetric and therefore defines a preorder.

Example 2.2. Let π ∈Π with marginals πi. Then π spans the independent type
distribution π̃= πℓπr since

πi(θi) =
∑

θ−i

π(θi|θ−i)π−i(θ−i) ∀θi∀i.

Example 2.3. A joint distribution π ∈Π spans every other joint distribution π̃ ∈Π
if and only if the matrix (π(θℓ,θr)) ∈ RΘℓ×Θr has full column-rank and full row-rank.
This is exactly the condition introduced by Crémer and McLean (see Assumption 4
in their 1985 paper and Theorem 1 in their 1988 paper).

Our first application of the spanning relation shows that the set of ICmechanisms
cannot shrink when passing fromπ to some other type distribution π̃ that is spanned
by π.

Proposition 2.3. Let π, π̃ ∈Π be type distributions. If π spans π̃ then

X (π) ⊂ X (π̃).

Proof. By Proposition 2.2 a mechanism x is IC under π if and only if
∑

θ−i

π(θ−i|θi)(x(θ ′i ,θ−i) − x̄) = 0 ∀θi,θ
′
i , i = ℓ, r.

Now let x be IC underπ and consider some π̃ ∈Π spanned byπ. By definition, there
exist coefficients αi(θi, θ̃i) such that

π̃(θ−i|θi) =
∑

θ̃i

π(θ−i|θ̃i)αi(θi, θ̃i) ∀θi,θ−i, i = ℓ, r.

But then x must also be IC under π̃ because for all θi,θ
′
i :

∑

θ−i

π̃(θ−i|θi)(x(θ ′i ,θ−i) − x̄) =
∑

θ̃i

αi(θi, θ̃i)
∑

θ−i

π(θ−i|θ̃i)(x(θ ′i ,θ−i) − x̄) = 0.

The proof (appendix) of the next result is another application of the spanning
relation.

Proposition 2.4. Let π ∈Π with marginals πi and let x be some mechanism. Then:
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(1) If x is IC underπ then x is also IC under the independent type distribution π̃= πℓπr.
(2) If the matrix (π(θℓ,θr)) ∈ RΘℓ×Θr has full rank then only constant mechanisms

are IC.

The maximal elements of the spanning preorder are exactly the full-rank distributions
and its minimal elements are exactly the independent distributions.

Crémer and McLean (1985) show in a setting with transfers that full rank cor-
relation makes it possible to implement any allocation rule while paying zero infor-
mation rents.⁴ We show that under the same full-rank condition only mechanisms
that ignore the agents’ reports are IC. Absent full rank correlation, any mechanism
that is IC under correlation must also be IC when types are independent. This shows
that the spirit of Crémer and McLean’s results is inverted in our setting. The next
example illustrates this difference.

Example 2.4. Assume Θℓ = Θr = {−1,1}, πℓ = πr =
1
2 and v(θ)= θℓθr. Both op-

tions yield the principal an ex-ante expected payoff of 0 while the first best mech-
anism x∗ would choose L iff θℓ = θr and yield E[v(θ )x∗(θ )]= 1

2 > 0. If types are
independent then x∗ is actually IC because from each agent’s perspective, any report
will lead to the same probability of L. Now assume instead that types are correlated
and that π is given by

−1 1
−1 0.25− ϵ 0.25+ ϵ
1 0.25+ ϵ 0.25− ϵ

where 0< ϵ ≤ 1
4 is arbitrary. Then x∗ is not IC anymore: For example, type 1 of agent

ℓ would infer from his type that the other agent’s type is probably −1 and would
therefore claim to be type −1 instead of being truthful. In fact, since the distribution
matrix has full rank, Proposition 2.4 implies that the only remaining IC mechanisms
are constant.

2.5 Profitable mechanisms

In this section we investigate when the principal can design a profitable mechanism.
We attack this question from two different angles. Our first characterization is in

4. The full-rank condition is often seen as generic. In many applications, though, it is not sat-
isfied even when types are correlated. For example, assume that there exists a finite underlying
state of the world ω ∈ {1, . . .k} such that θℓ and θr are independent given ω. That is, π(θℓ,θr|ω)=
πℓ(θℓ|ω)πr(θr|ω) ∀θℓ,θr,ω. Then

π(θℓ,θr) =
k
∑

ω=1

πℓ(θℓ|ω)πr(θr|ω)Pr(ω).

and so each column π(·,θr) of the matrix (π(θℓ,θr))θℓ ,θr
is a linear combination of the k vectors

πℓ(·|ω), ω= 1, . . . , k (with coefficients αθr
(ω)= πr(θr|ω) Pr(ω)). Hence rank(π)≤ k.
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terms of the principal’s objective and applies when the principal is ex-ante indiffer-
ent between the two options. The second characterization is in terms of a related
optimal transport problem. It also yields an explicit characterization of incentive-
compatible mechanisms under independence.

2.5.1 The role of the objective

Definition 2.2. The principal’s objective is said to be additive if there exist functions
vi : Θi→ R such that

v(θℓ,θr) = vℓ(θℓ) + vr(θr) ∀θℓ,θr.

Givenπ ∈Π the objective is said to beπ-additive if there exist coefficients λℓ(θℓ, θ̃ℓ),
λr(θr, θ̃r) ∈ R such that

v(θℓ,θr)π(θℓ,θr) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ,θr.

(2.2)

Additivity is a special case of π-additivity (take λi(θi, θ̃i)= vi(θi)πi(θ̃i)1(θ̃i=θi)
)

and it is easily seen that the two concepts coincide when types are independent
(π= πℓπr). To interpretπ-additivity let the type distribution byπ ∈Π and consider
some mechanism x. When v is π-additive we then get from (2.2) that

Eπ[v(θ )x(θ )] =
∑

θℓ,θ̃ℓ

λℓ(θℓ, θ̃ℓ)Eπ[x(θℓ,θ r)|θ̃ℓ] +
∑

θr,θ̃r

λr(θℓ, θ̃r)Eπ[x(θ ℓ,θr)|θ̃r]

so that Eπ[v(θ )x(θ )] is a linear combination of the potential expected payoffs
Eπ[x(θi,θ−i)|θ̃i] of types θ̃i from any (mis-)report θi. If x is IC then Eπ[v(θ )x(θ )] is
the principal’s expected payoff from x and the “misreporting expectations” must all
coincide with the maximin value x̄. Hence replacing x by the constant mechanism
x̃ ≡ x̄ does not change the principal’s payoff and x cannot be profitable. A necessary
condition for the existence of a profitable mechanism is thus that the principal’s ob-
jective is not π-additive. If the principal is ex-ante indifferent between L and R then
this condition is also sufficient

Proposition 2.5. Let types be distributed according to π ∈Π.
A profitable mechanism exists only if the principal’s objective is not π-additive.
If Eπ[v(θ )]= 0, then a profitable mechanism exists if and only if the principal’s

objective is not π-additive. In particular, if Eπ[v(θ )]= 0 and types are independent,
then a profitable mechanism exists if and only if the principal’s objective is not additive.

The proof (in the appendix) works by projecting vπ on the linear subspace U of
functions that can be expressed in the form of the right hand side of (2.2). Given
ex-ante indifference the principal’s expected payoff in an IC mechanism depends
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only on the part of vπ that is orthogonal to U. We construct a mechanism that yields
a strictly positive payoff whenever this projection residual is nonzero.⁵
Example 2.1 (continued). Consider again the budget allocation problem. Recall that

v(θℓ,θr) = E[yL − yR|θℓ,θr] = E[yL|θℓ,θr] − E[yR|θℓ,θr].

Let hi(θℓ,θr)= E[yi|θi,θ−i]. If hi(θℓ,θr) depends only on θi then Proposition 2.5 im-
plies that there does not exist a profitable mechanism. Hence a necessary condition
for the existence of a profitable mechanism is that at least one department head
has information that is relevant to the future return of the other department. Now
assume that types are independent and identically distributed, and that hℓ = hr = h.
Then E[yℓ]= E[h(θℓ,θr)]= E[h(θr,θℓ)]= E[yr] so that the principal is ex-ante in-
different. Hence a profitable mechanism exists if, and only if h(θℓ,θr)− h(θr,θℓ) is
not additive.

2.5.2 The role of correlation

Correlation between agent-types affects the principal through two distinct channels.
Firstly, correlation affects the set of mechanisms in which agents find it optimal to be
truthful (see Section 2.4). Secondly, fixing a mechanism and assuming that agents
are truthful, correlation can increase or decrease the principal’s expected payoff by
concentrating more mass on specific type profiles. In this section we show that the
principal’s problem can be viewed as a problem of choosing an “optimal correlation
structure”.

We start by reinterpreting incentive-compatibility. The proof is in the appendix.

Lemma 2.6. Let the type distribution be π ∈Π. A mechanism x is IC if and only if

(1) Agents are ex-ante indifferent between reports; that is,

Eπ[x(θ ′i ,θ−i)] = Eπ[x(θ ′′i ,θ−i)] ∀θ ′i ,θ
′′
i ∀i.

(2) Their type realizations are uninformative; that is,

Eπ[x(θ ′i ,θ−i)|θi] = Eπ[x(θ ′i ,θ−i)] ∀θi,θ
′
i ∀i.

Ex-ante indifference is equivalent to IC under the independent type distribu-
tion πℓπr. Uninformativeness implies that agents cannot gain any payoff-relevant
information from their type about their opponent’s type. Note that this is automati-
cally satisfied if types are independent. Correlation therefore restricts the set of IC

5. One appeal of the argument given in the appendix is that it is constructive. There is an al-
ternative and more abstract argument using Farkas’ lemma (though we do not report this argument
here).
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mechanisms by making the agents more informed which adds additional incentive-
constraints. From this perspective, IC under correlation lies mid-way between IC
under independence and IC under full information.

Lemma 2.6 allows us to derive a necessary and sufficient criterion for the exis-
tence of a profitable mechanism. We need the following definition.

Definition 2.3. Two joint type distributions π, π̃ ∈Π(πℓ,πr) with the same
marginals πi > 0 are said to be orthogonal if

Cov(π(θi|θ−i), π̃(θ ′i |θ−i)) = 0 ∀θi,θ
′
i ∀i.

Hence π and π̃ are orthogonal if the random variables π(θi|θ−i) and π̃(θ ′i |θ−i)
are uncorrelated for all θi,θ

′
i , i= ℓ, r. Note that

Cov(π(θi|θ−i), π̃(θ ′i |θ−i)) =
∑

θ−i

[π(θi|θ−i) − πi(θi)][π̃(θ ′i |θ−i) − πi(θ
′
i )]π−i(θ−i)

and π(θi|θ−i)−πi(θi) is the update of type θ−i about the probability of type θi

under π. Clearly, if one of π or π̃ is the independent type distribution πlπr then
orthogonality is automatically satisfied. Otherwise the condition says that for all
θi,θ

′
i , the vector π(θi|·)−πi(θi) ∈ RΘ−i of possible belief updates of agent −i about

the probability of type θi under π must be orthogonal to the vector of updates
π̃(θ ′i |·)−πi(θi) ∈ RΘ−i about the probability of θ ′i under π̃ under the inner prod-
uct 〈a, b〉=

∑

θ−i
a(θ−i)b(θ−i) on RΘ−i .

The next result shows that the problem of finding a profitable mechanism is
intricately related to the choice of an “optimal correlation strucuture”: A profitable
mechanism exists if and only if it is possible to find some alternative correlation
structure that is orthogonal to the exogenously given one and such that — under
the alternative correlation structure (and with a suitably transformed objective) —
L becomes the principal’s ex-ante strictly preferred option. This can be phrased as a
constrained optimal transport problem.⁶

Proposition 2.7. Let the type distribution be π ∈Π and denote its marginals by πi.
Let v̂= vπ/πℓπr. A profitable mechanism exists if and only if

�

max
π̃∈Π(πℓ,πr)

Eπ̃[v̂(θ )] s.t. π̃ is orthogonal to π
�

> 0. (2.3)

In particular, if types are independent then a profitable mechanism exists if, and only
if

max
π̃∈Π(πℓ,πr)

Eπ̃[v(θ )] > 0.

6. For an in-depth treatment of optimal transport see Villani (2009).
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To explain how the constrained optimal transport problem in Proposition 2.7
is related to the principal’s problem let x be some mechanism. Together with π, x
induces a density g(θ)= π(θ)x(θ)= π(θ)

πℓ(θℓπr(θr)
f(θ) of a measure on Θ whose “cor-

relation structure” depends on an exogenous part π
πℓπr

and an endogenous part f .
Instead of in terms of mechanisms, the principal’s problem can also be phrased in
terms of f . Requiring ex-ante indifference for the agents then translates into requir-
ing that f be a nonnegative multiple of some probability distribution π̃ ∈Π with the
same marginals as π: f = qπ̃ (q ∈ [0,1]). Uninformativeness translates into π̃ be-
ing orthogonal to π. Under this reparametrization the principal’s objective becomes
qEπ̃[v̂(θ)] and the (upper) feasibility constraint on the mechanism becomes a cor-
relation constraint: q π̃

πℓπr
≤ 1. If there is a profitable π̃ then the principal therefore

faces a tradeoff between up-scaling her objective (by increasing q) and the ability
to concentrate more mass on type profiles with a positive objective value (by de-
creasing q). The mere existence of a profitable π̃ does not depend on the correlation
constraint, however, and after dropping this constraint and dividing everything by
q we arrive at the formulation in Proposition 2.7.

The proof of the above proposition (in the appendix) yields another characteri-
zation of incentive compatible mechanisms when types are independent.

Corollary 2.8. If types are independent then a mechanism x is IC if and only if there
exist nonnegative coefficients {γj}kj=1 (k≥ 0) and extreme points⁷ πj of Π(πℓ,πr) such
that

x =
k
∑

j=1

πj

πℓπr
γj.

Consider an example where both agents have the same number of types (with-
out loss Θℓ = Θr) and where marginals are uniform. Together with the Birkhoff-von
Neumann Theorem the characterization then implies that a mechanism is IC if and
only if it can be decomposed into mechanisms where, up to relabeling of the types,
the principal chooses L if and only if both agents make the same report. This il-
lustrates how incentive-compatibility is fundamentally based on the inability (and
unwillingness) of the agents to coordinate.

Example 2.5. Assume Θℓ = Θr = {1, . . . , m}. A mechanism x is said to be a match-
your opponent mechanism if there exists a matching⁸ m : Θℓ→ Θr such that

x(θℓ,θr) =

(

1, if θr = m(θℓ)

0, otherwise

7. Recall that an element of a convex set is an extreme point of the set if is is not the midpoint of
a line-segment connecting two distinct points in the set. For a characterization of the extreme points
of Π(πℓ,πr) see Brualdi (2006), Theorem 8.1.2.

8. A matching is a bijective function.
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Assume that types are independent with πi =
1
N . Using the Birkhoff-von Neumann

Theorem and Corollary 2.8, a mechanism x is IC if and only if there exist match-
your-opponent mechanisms xj and nonnegative coefficients γj such that

x =
k
∑

j=1

xjγj.

Thus, a profitable mechanism exists if and only if there exists a profitable match-
your-opponent mechanism. If the principal’s objective is supermodular it follows⁹
that a profitable mechanism exists if and only if

m
∑

t=1

v(t, t) > 0.

Indeed, as long as types are independent and agents are symmetric (i.e. πℓ(t)=
πr(t), t= 1, . . . , m), it can be shown that a profitable mechanism exists if and only
if
∑m

t=1πℓ(t)v(t, t)> 0.1⁰

2.6 Allocation with more than two agents and disposal

One application of our results is the problem of allocating a single nondisposable
good between two agents. In this section, we extend our setting and study the prob-
lem of allocating a (potentially disposable) good among n agents i= 1, . . . , n.

Agents are again expected utility maximizers and enjoy utility 1 from receiv-
ing the good and 0 otherwise.11 Every agent has a private type θi ∈ Θi. The
set of type profiles Θ =ΠiΘi is finite. Throughout this section we assume that
types are independent; the joint type distribution is denoted by π(θ1, . . . ,θn)=
π1(θ1) . . .πn(θn)12.

The principal’s value from allocating the good to agent i can depend on the types
θ = (θ1, . . . ,θn) of all agents and is denoted by vi(θ) ∈ R. A (direct) mechanism
specifies for each agent i and every profile θ the probability of allocating the good
to this agent when the report profile is θ .

We distinguish between the case where the principal can commit to dispose the
good (or consume it privately) from the case where she is forced to allocate to one of
the agents. We normalize the principal’s utility from disposing the good to 0. If the
principal must allocate the good the feasibility constraint reads:

∑n
i=1 xi(θ)= 1; un-

der free disposal it reads:
∑n

i=1 xi(θ)≤ 1. In either case, the principal’s problem is to

9. See Hardy, Littlewood, and Pólya (1952), Becker (1973), and Vince (1990).
10. See Hoffman (1963).
11. All results apply unchanged if agents receive utility ūi(θi)> 0 from getting the good and 0

otherwise.
12. As before, we assume without loss of generality that πi > 0, i= 1, . . . , n.



2.6 Allocation with more than two agents and disposal | 65

find a feasible, incentive compatible mechanism that maximizes E[
∑n

i=1 vi(θ )xi(θ )].
As before, we will be interested in whether the principal can do better than choosing
her ex-ante preferred option.

We first characterize the set of incentive compatible mechanisms. Whether or
not disposal is possible, a mechanism is incentive compatible if and only if each
agent’s interim probability of obtaining the good does not depend on his report:

Lemma 2.9. Assume there are n agents with independent types and let x be a mecha-
nism (with or without disposal). Then x is incentive compatible if and only if

E[xi(θi,θ−i)] = E[xi(θ )] ∀i∀θi.

Let v̄=maxi E[vi(θ )] be the principal’s expected payoff from allocating to her
ex-ante preferred agent.

An incentive compatible mechanism is profitable if it yields the principal strictly
more than choosing her ex-ante preferred option (ignoring type reports). Formally,
when there is free disposal, an incentive compatible mechanism is profitable if
∑

i E[vi(θ )xi(θ )]>max{0, v̄}. Without disposal it is profitable if
∑

i E[vi(θ )xi(θ )]>
v̄.

The following proposition generalizes the scope of Proposition 2.5 to the n agent
case under independence.

Proposition 2.10. Assume there are n agents with independent types and that the
principal has to allocate to some agent. If the principal is unbiased then a profitable
mechanism exists if and only if there do not exist functions u1(θ1), . . . , un(θn) such
that13

vi(θ) − vj(θ) = ui(θi) − uj(θj) ∀i, j∀θ . (2.4)

In the proof (in the appendix) we show that a violation of condition (2.4) re-
mains a necessary condition for the existence of a profitable mechanism when the
principal is not unbiased. The above proposition also allows us to state a necessary
and sufficient condition for the existence of a profitable mechanism when the prin-
cipal is allowed to discard the good:

Proposition 2.11. Assume there are n agents with independent types and that the
principal does not have to allocate the good to the agents. If the principal is unbiased

13. Equivalently: There do not exist functions ω(θ) and u1(θ1), . . . , un(θn) such that

vi(θ) = ω(θ) + ui(θi) ∀i,θ .
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and v̄= 0, then a profitable mechanism exists if and only if there do not exist functions
u1, . . . , un such that

vi(θ) = ui(θi) ∀i∀θ ;

that is, a profitable mechanisms exists if and only if there is an agent j and a type
θj ∈ Θj such that vj(θj,θ−j) is non-constant in θ−j.

2.7 Related Literature

Our main setting can be interpreted as an allocation problem without disposal. It
therefore relates to Myerson (1981) who characterizes the set of IC-mechanisms
with transfers under independence. Crémer and McLean (1985, 1988) show that
with transfers, full rank correlation makes any allocation rule implementable.

Börgers and Postl (2009) study a setting without transfers and two agents with
opposed interests. Their setting has a third option that acts as a compromise and
types are iid. They consider utilitarian welfare and study second-best rules using
numerical tools. Since utilitarian welfare is additive, our results underline the im-
portance of the compromise option for their results. Kim (2017) considers a related
setting with at least three ex-ante symmetric alternatives and several agents with
iid private values whose interests are not necessarily opposed.

Feng and Wu (2019) ask in a setting without transfer with a perfect conflict
of interests not between the agents but between the agents and the principal if
the later can do better than choosing her ex-ante preferred option. Goldlücke and
Tröger (2020) study “threshold mechanisms” with binary message spaces to assign
an unpleasant task without transfers in a setting with symmetric agents with iid
types.

More broadly, our paper is related to a strand of the mechanism design literature
investigating allocation problems without transfers. Several papers in this literature
study non-monetary instruments for screening the agents when the agents’ types are
independent and the principal’s objective is additive (see, for example, Ben-Porath,
Dekel, and Lipman, 2014; Mylovanov and Zapechelnyuk, 2017). Kattwinkel and
Knoepfle (2019) and Kattwinkel (2020) consider a single-agent allocation problems
where the principal observes a private signal about the agent’s type. Niemeyer and
Preusser (2022) consider dominant-strategy IC mechanisms with correlated types.

The proof of Proposition 2.2 connects implementation of mechanisms with the
properties of correlated equilibrium Aumann (1974, 1987) in zero sum games
Rosenthal (1974).

Our comparative statics result for the set of IC mechanisms with respect to the
spanning preorder relates to the comparison of experiments (Blackwell, 1951, 1953;
see also Börgers, Hernando-Veciana, and Krähmer, 2013), and the comparison of
information structures in games (Bergemann and Morris, 2016).
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Since the set of DIC mechanisms in our setting coincides with the set of constant
mechanisms, the existence of non-constant IC mechanisms is related to BIC-DIC
equivalence Manelli and Vincent (2010) and Gershkov et al. (2013). In our setting,
IC under correlation can be viewed as a mid-way point between IC under indepen-
dence and DIC.

Appendix 2.A Omitted proofs

2.A.1 Comparative statics for implementation

2.A.1.1 Proof of Proposition 2.4

Proof. The first assertion is an immediate consequence of Proposition 2.3 and Ex-
ample 2.2. To see why the second assertion holds note that if τ0,τ1, . . . ,τk ∈∆Θ−i

and y(θ−i): Θ−i→ R is any function such that
∑

θ−i

τj(θ−i)y(θ−i) = 0 ∀j = 1, . . . , k.

then also
∑

θ−i
τ0(θ−i)y(θ−i)= 0 if τ0 is spanned by {τ1, . . . ,τk}.

Now assume without loss that |Θℓ| ≥ |Θr|. By the full rank-condition the vectors
(π(·|θℓ))θℓ contain a basis of RΘr . In particular, for any θr, they span the belief 1θr

which puts mass 1 on θr. But then ℓ’s IC constraints must be satisfied under that
belief (consider the function yθ ′

ℓ
(θr)= x(θ ′

ℓ
,θr)− x̄). But that means that

x(θ ′ℓ,θr) = x̄ ∀θ ′ℓ.

Since θr was arbitrary it follows that x must be constant.
Next we will show that a distribution π ∈Π is maximal iff it has full rank, and

that π is minimal iff it is an independent type distribution. We need to show that
(i) π has full rank iff it spans every π̃ that spans it and (ii) π is an independent
type distribution iff for every π̃ spanned by π it is also the case that π̃ spans π.
Throughout, assume without loss of generality that |Θℓ| ≥ |Θr|.

First note that for π, π̃ ∈Π, π spans π̃ if and only if the row space and the
column space of π̃ are contained in the row space and the column space, respectively,
of π.

Assume that π ∈Π has full rank and that π̃ ∈Π spans π. Denote the column
and row spaces of π and π̃ by V, W and Ṽ, W̃, respectively. Since π̃ spans π it holds
that V ⊂ Ṽ and W ⊂ W̃. Since π has full rank, V and W both have dimension |Θr|. π̃
is an |Θℓ| × |Θr| matrix and so its column and row spaces cannot have a dimension
larger than |Θr|. Hence we must have V = Ṽ and W = W̃. But that implies that π
also spans π̃. Thus π is maximal. Conversely, assume that π is maximal. Let π̃ ∈Π
be some full rank distribution that spans π. Since π is maximal, π must then also
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span π̃. Hence the row space (and also the column space) of πmust have dimension
|Θr|. This means that π has full rank.

Now let π be an independent distribution. Let π̃ be spanned by π. Then, for all
θi, π̃(·|θi) is a linear combination of the vectors π(·|θ̃i) (θ̃i ∈ Θi). But since types are
independent underπ, the latter vectors all coincide withπi(·). Hence π̃(·|θi)= πi(·)
for all θi, i= ℓ, r. Thus π̃= π; in particular π̃ spansπ. Henceπ is a minimal element.
Now let π̃ be a minimal element. Let π̃ be the independent distribution with the
same marginals as π. Then π spans π̃ and since π is minimal, π̃ must also span π.
But π̃ has rank one and so π must also have rank one. But that means that π must
be an independent type distribution (thus π= π̃).

2.A.2 Profitable mechanisms

2.A.2.1 Proof of Proposition 2.5

Proof. First consider a generalπ ∈Π. Define w(θ)= v(θ)π(θ). If Eπ[v(θ )]= 0 and
agents are truthful then the principal’s payoff from some mechanism x is

∑

θ

v(θ)π(θ)x(θ) = Eπ[v(θ )]Eπ[x(θ )] +
∑

θ

v(θ)π(θ)(x(θ) − Eπ[x(θ )])

=
∑

θ

w(θ)(x(θ) − Eπ[x(θ )]).

By Proposition 2.2, x is IC if and only if
∑

θ−i

π(θ−i|θi)(x(θ ′i ,θ−i) − Eπ[x(θ )]) = 0 ∀θi,θ
′
i ∀i. (3)

First assume that there exist coefficients λℓ(θℓ, θ̃ℓ), λr(θr, θ̃r) ∈ R such that

w(θ) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ,θr. (4)

Then by (3), any IC mechanism satisfies
∑

θ w(θ)(x(θ)− Eπ[x(θ )])= 0 and so
there is no profitable mechanism.

Now assume instead that there exist no coefficients λℓ and λr such that w satis-
fies (4). Let U be the set of all u ∈ RΘℓ×Θr for which there exist coefficients λℓ(θℓ, θ̃ℓ),
λr(θr, θ̃r) ∈ R such that

u(θ) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr|θ̃ℓ) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ|θ̃r) ∀θℓ,θr.

Note that U is a linear subspace of RΘℓ×Θr (Indeed, 0 ∈ U and U is closed under
addition and multiplication by scalars). Let û be the orthogonal projection of w onto
U and let ŵ be the orthogonal projection of w onto the orthogonal complement of
U so that w= ŵ+ û. By assumption w ̸∈ U, and so ŵ ̸= 0.
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As before, given any IC mechanism x it holds that
∑

θ û(θ)(x(θ)− Eπ[x(θ )])=
0 and so the principal’s payoff from any IC mechanism x is

∑

θ

w(θ)(x(θ) − Eπ[x(θ )]) =
∑

θ

ŵ(θ)(x(θ) − Eπ[x(θ )]).

We will now construct a profitable mechanism, i.e. an IC mechanism for which the
latter expression is positive. Define

x̂(θ) = ϵ(ŵ(θ) −min ŵ)

where ϵ > 0 is sufficiently small such that x̂ ≤ 1. First note that x̂ is IC. Indeed, for
any θ ′

ℓ
,θ ′′
ℓ
,

∑

θr

π(θr|θ ′′ℓ )x̂(θ ′ℓ,θr) = ϵ
∑

θr

π(θr|θ ′′ℓ )ŵ(θ ′ℓ,θr) − ϵmin ŵ

= ϵ
∑

θℓ

∑

θr





∑

θ̃ℓ

1θℓ=θ ′ℓ,θ̃ℓ=θ ′′ℓ
π(θr|θ̃ℓ)





︸ ︷︷ ︸

∈U

ŵ(θℓ,θr) − ϵmin ŵ

= −ϵmin ŵ,

where the last equality follows because ŵ lies in the orthogonal complement of U.
Hence x̂ is IC for agent ℓ. The proof that x̂ is IC for agent r is symmetric.

We now show that x̂ is actually a profitable mechanism. First note that the above
incentive-compatibility calculation implies that Eπ[x̂(θ )|θℓ]= −ϵmin ŵ and in par-
ticular Eπ[x(θ )]= −ϵmin ŵ. Thus the principal’s payoff from x̂ is

∑

θ

ŵ(θ)(x(θ) − Eπ[x(θ )]) = ϵ
∑

θ

ŵ(θ)ŵ(θ)

> 0.

Hence x̂ is a profitable mechanism.
Finally, assume that types are independent. Note that

v(θℓ,θr)πℓ(θℓ)πr(θr) =
∑

θ̃ℓ

λℓ(θℓ, θ̃ℓ)π(θr) +
∑

θ̃r

λr(θr, θ̃r)π(θℓ) ∀θℓ,θr

if and only if
v(θℓ,θr) =

∑

θ̃ℓ

λ̃ℓ(θℓ, θ̃ℓ)

︸ ︷︷ ︸

vℓ(θℓ)

+
∑

θ̃r

λ̃r(θr, θ̃r)

︸ ︷︷ ︸

vr(θr)

,

where λ̃i(θi, θ̃i)=
λi(θi,θ̃i)
πi(θi)

and so the earlier condition reduces to additivity.
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2.A.2.2 Proof of Lemma 2.6

Proof. Let π ∈Π and let x be IC. By Proposition 2.2, agents must be ex-ante in-
different between reports and their type realizations must be uninformative. Con-
versely, suppose that x satisfies the assumptions of Lemma 2.6. Ex-ante indiffer-
ence combined with the law of iterated expectations implies that Eπ[x(θ ′i ,θ−i)]=
Eπ[x(θ )]∀i,θ ′i . Hence for any i and θi,θ

′
i :

Eπ[x(θ ′i ,θ−i)|θi] = Eπ[x(θ ′i ,θ−i)]

= Eπ[x(θ )],

where the first equality follows from uninformativeness.

2.A.2.3 Proof of Proposition 2.7

Proof. By Lemma 2.6, the principal’s problem can be written as

max
∑

θ

v̂(θ)πℓ(θℓ)πr(θr)x(θ)

s.t.
∑

θ−i

π−i(θ−i)x(θ ′i ,θ−i) =
∑

θ

πℓ(θℓ)πr(θr)x(θℓ,θr) ∀θ ′i ∀i (Ii)
∑

θ−i

π(θ−i|θi)x(θ ′i ,θ−i) =
∑

θ−i

π−i(θ−i)x(θ ′i ,θ−i) ∀θi,θ
′
i ∀i (Ui)

0 ≤ x(θ) ≤ 1 ∀θ . (F)

Here, (Ii) are the ex-ante indifference constraints (or, equivalently, the IC constraints
under the independent type distribution πℓπr) and (Ui) are the uninformativeness
constraints. Now define

f(θℓ,θr) = πℓ(θℓ)πr(θr)x(θℓ,θr).

Using this substitution the principal’s objective becomes
∑

θ v(θ)f(θ), the ex-ante
indifference constraints become

∑

θ−i

f(θ ′i ,θr) = πi(θ
′
i )
∑

θ

f(θ) ∀θ ′i ∀i (2.A.2)

and the uninformativeness constraints can be written as
∑

θ−i

(π(θi|θ−i) − πi(θi))f(θ ′i ,θ−i) = 0 ∀θi,θ
′
i ∀i (2.A.3)

while the feasibility constraints become

0 ≤ f(θℓ,θr) ≤ πℓ(θℓ)πr(θr) ∀θℓ,θr.
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Equation (2.A.2) says that the marginals of f are proportional to πi. Since f is
nonzero, it is thus a nonnegative multiple of some joint probability distribution π̃
with marginals πi. Hence the principal’s problem can be written as

max
q∈[0,1]

max
π̃∈Π(πl,πr)

q
∑

θ

v̂(θ)π̃(θ)

s.t.
∑

θ−i

(π(θi|θ−i) − πi(θi))π̃(θ ′i ,θ−i) = 0 ∀θi,θ
′
i ∀i

qπ̃(θℓ,θr) ≤ πl(θℓ)πr(θr) ∀θℓ,θr

where Π(πl,πr) is the set of joint type distributions with marginals πi. A profitable
mechanism therefore exists if and only if the latter problem has a positive optimal
value.

Since any π̃ ∈Π(πℓ,πr) can be made to satisfy the constraint qπ̃(θℓ,θr)≤
πl(θℓ)πr(θr) after appropriate scaling, the problem’s optimal value is positive if and
only if the value of the relaxed problem in which that constraint is left out is positive.
Finally, note that

∑

θ−i

(π(θi|θ−i) − πi(θi))π̃(θ ′i ,θ−i) =
∑

θ−i

(π(θi|θ−i) − πi(θi))π̃(θ ′i |θ−i)π−i(θ−i)

=
∑

θ−i

(π(θi|θ−i) − πi(θi))(π̃(θ ′i |θ−i) − πi(θ
′
i ))π−i(θ−i)

because
∑

θ−i
(π(θi|θ−i)−πi(θi))πi(θ

′
i )π−i(θ−i)= 0. Therefore a profitable π̃ exists

if and only if the optimal value of the following problem is positive:

max
π̃∈Π(πl,πr)

∑

θ

v̂(θ)π̃(θ)

s.t.
∑

θ−i

(π(θi|θ−i) − πi(θi))(π̃(θ ′i |θ−i) − πi(θ
′
i ))π−i(θ−i) = 0 ∀θi,θ

′
i ∀i.

This concludes the proof of Proposition 2.7.

2.A.2.4 Proof of Corollary 2.8

Proof. The proof of Proposition 2.7 shows that under independence, a mechanism x
is IC if and only if there exists some q ∈ [0,1] and π̃ ∈Π(πl,πr) such that πlπrx =
qπ̃. The set Π(πl,πr) is a polytope (known as the transportation polytope), hence
by the Weyl-Minkowski Theorem it is the convex hull of its finitely many extreme
points. This implies the claim.
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2.A.3 Allocation with more than two agents and disposal

2.A.3.1 Proof of Lemma 2.9

Let x = (x1, . . . , xn) be an incentive compatible mechanism. Let i be an agent and
let θi,θ

′
i ∈ Θi. In order for type θi to be truthful, it must hold that E[xi(θi,θ−i)]≥

E[xi(θ
′
i ,θ−i)]. In order for type θ ′i to be truthful, E[xi(θi,θ−i)]≤ E[xi(θ

′
i ,θ−i)]must

hold. Hence in any incentive compatible mechanism E[xi(θi,θ−i)] is constant in θi,
for all i. Since any mechanism satisfying the latter is also incentive compatible, the
condition is equivalent to incentive compatibility. Finally, if E[xi(θi,θ−i)] is constant
in θi then it must equal E[xi(θ )].

2.A.3.2 Proof of Proposition 2.10

Proof. First assume that (2.4) holds. It follows that there exist functions ui(θi) such
that vi(θ)− vn(θ)= ui(θi)− un(θn) for all i and θ . Recall that in an IC mechanism x,
x̄i := E[xi(θi,θ−i)] does not depend on θi. The principal’s payoff from an incentive
compatible mechanism x is therefore
∑

i

E[vi(θ )xi(θ )] =
∑

i<n

E[(vi(θ ) − vn(θ ))xi(θ )] + E[vn(θ )
∑

i

xi(θ )]

=
∑

i<n

E[(ui(θ i) − un(θ n))xi(θ )] + E[vn(θ )]

=
∑

i<n

E[ui(θ i)E[xi(θ )|θ i]] − E[un(θ n)E[
∑

i<n

xi(θ )|θ n]] + E[vn(θ )]

=
∑

i<n

E[ui(θ i)]x̄i − E[un(θ n)(1 − x̄n)] + E[vn(θ )]

=
∑

i

E[ui(θ i)]x̄i + E[vn(θ ) − un(θ n)]

=
∑

i

E[vi(θ ) + un(θ n) − vn(θ )]x̄i + E[vn(θ ) − un(θ n)]

=
∑

i

E[vi(θ )]x̄i.

Hence, if (2.4) holds then the principal’s expected payoff from an incentive compat-
ible mechanism x is the same as her expected payoff from the constant mechanism
y given by yi(θ)≡ x̄i. In particular, the principal cannot do better than allocating
to her ex-ante preferred agent and so no profitable mechanism exists. Note that we
have not used the unbiasedness assumption and so the following is true even if the
principal is not unbiased: A profitable mechanism can only exist if (2.4) is violated.

Now let the principal be unbiased. Assume that (2.4) is violated. Then
there do no exist functions ui(θi) (i= 1, . . . , n) such that vi(θ)− vn(θ)=
ui(θi)− un(θj) (i< n). (If such functions did exist then it would follow
that for any i, j: vi(θ)− vj(θ)= vi(θ)− vn(θ)− (vj(θ)− vn(θ))= ui(θi)− un(θn)−
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(uj(θj)− un(θn))= ui(θi)− uj(θj) and so (2.4) would hold). We will now construct
a profitable mechanism.

Let Ω be the vector space of functions from {1, . . . , n− 1}×Θ to R and let Ui

be the set of functions from Θi to R. Moreover, let W ⊂ Ω be the set of functions
from {1, . . . , n− 1}×Θ to R for which there exist functions ui(θi) with wi(θ)=
π(θ)(ui(θi)− un(θn)) ∀i< n∀θ . Now consider the following minimization problem

min
u1∈U1,...,un∈Un

∑

i<n

∑

θ

[π(θ)(vi(θ) − vn(θ)) − π(θ)(ui(θ) − un(θ))]2

= min
w∈W

∑

i<n

∑

θ

[ṽi(θ) − wi(θ)]2,

where ṽi(θ)= π(θ)(vi(θ)− vn(θ)). Note that W is a linear subspace ofΩ and hence
the solution ŵ to the above minimization problem is the orthogonal projection of
ṽ ∈ Ω onto W (all spaces are finite-dimensional and so existence is not an issue). Let
ϵ̂ = ṽ− ŵ be the projection residual. Note that the optimal value of the minimization
problem is zero if and only if (2.4) holds. By assumption, (2.4) is violated and hence
in particular ϵ̂ must be nonzero. Moreover, since ϵ̂ is orthogonal to W, for any h ∈W
it must hold that

∑

i<n

∑

θ

hi(θ)ϵ̂(θ) = 0.

We will now use ϵ̂ to construct a profitable mechanism. Let ϵ̂ =mini<n,θ ϵ̂i(θ) and
let

ẑi(θ) = ϵ̂i(θ) − ϵ̂ ∀i < n∀θ .

By construction, ẑ ∈ Ω is nonnegative. Define
x̂i(θ) = αẑi(θ),

where α > 0 is chosen sufficiently small such that
∑

i<n x̂i(θ)≤ 1 for all θ . Also,
define x̂n(θ)= 1−

∑

i<n x̂i(θ). Then x̂ is a feasible mechanism.
In the remainder of the proof we show that x̂ is a profitable mechanism. We first

verify that x̂ is IC. Let j< n be an agent. Then for any report θ ′j it holds that
∑

θ−j

π−j(θ−j)x̂j(θ
′
j ,θ−j) =

∑

i<n

∑

θ

π(θ)
1

πj(θj)
1(θj = θ

′
j )1(i = j)ϵ̂i(θ) − αϵ̂

= −αϵ̂,

because the function π(θ) 1
πj(θj)

1(θj = θ ′j )1(i= j) lies in W and the function ϵ̂i(θ) is
orthogonal to W. Since −αϵ̂ does not depend on θ ′j , x̂ is IC for agent j. It remains to
check IC for agent n. Let θ ′n be a report. Then
∑

θ−n

π−n(θ−n)x̂n(θ ′n,θ−n) =
∑

θ−n

π−n(θ−n)(1 −
∑

i<n

x̂i(θ
′
n,θ−n))

= 1 + (n − 1)αϵ̂ − α
∑

i<n

∑

θ

π(θ)
1

πn(θn)
1(θn = θ

′
n)ϵ̂i(θ)

= 1 + (n − 1)αϵ̂,
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because the functionπ(θ) 1
πn(θn)1(θn = θ ′n) lies in W and the function ϵ̂i(θ) is orthog-

onal to W. Hence x̂ is an IC mechanism. It only remains to show that the principal’s
expected payoff from x̂ is greater than v̂.

The principal’s expected payoff from x̂ is
∑

i

∑

θ

π(θ)vi(θ)xi(θ) =
∑

i<n

∑

θ

π(θ)(vi(θ) − vn(θ))x̂i(θ) +
∑

θ

π(θ)vn(θ)
∑

i

x̂i(θ)

=
∑

i<n

∑

θ

ṽi(θ)x̂i(θ) + v̄

= α
∑

i<n

∑

θ

(ŵi(θ) + ϵ̂i(θ))ϵ̂i(θ) − α
∑

i

∑

θ

ṽi(θ)ϵ̂ + v̄.

By assumption,
∑

θ π(θ)vi(θ) is the same for all i and hence for any i< n:
∑

θ ṽi(θ)= 0. This means that the second term in the last line above is zero. Be-
cause in addition ŵ ∈W and ϵ̂ is orthogonal to W, the principal’s expected payoff
now simplifies to

α
∑

i<n

∑

θ

ϵ̂i(θ)2 + v̄.

By assumption ṽ does not lie in W and so the projection residual ϵ̂ is nonzero. It
follows that the first term above is positive and therefore that the principal’s expected
payoff from x̂ is greater than v̄. That is to say, x̂ is a profitable mechanism.

2.A.3.3 Proof of Proposition 2.11

Proof. The result follows from Proposition 2.10 by interpreting the disposal op-
tion as an additional agent. Formally, let there be an agent 0 with a singleton
type space Θ0 = {θ0} and v0 ≡ 0. A mechanism without disposal in this setting
corresponds to a mechanism with disposal in the original setting. By Proposition
2.10, a profitable mechanism without disposal exists in the setting with the addi-
tional agent if and only if there do not exist functions ui(θi) (i= 0, . . . , n) such that
vi(θ)− v0(θ)= ui(θi)− u0(θ0)∀i> 0∀θ . SinceΘ0 is a singleton and v0 ≡ 0 the con-
dition simplifies to the following: A profitable mechanism exists if and only there do
not exist functions u1(θ1), . . . , un(θn) and a constant c such that vi(θ)= ui(θi)− c
∀i> 0∀θ . But the latter simply means that there does not exist an agent i> 0 such
that vi(θi,θ−i) is not constant in θ−i.
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Chapter 3

Transparency in
Sequential Common-Value Trade

3.1 Introduction

In many markets, participants learn over time. A buyer who arrives to the market at
a late date may learn payoff-relevant information from the fact that earlier buyers
bargained with the seller but chose not to buy. The precise inference depends on the
information that is made public about past interactions: how many earlier buyers
bargained with the seller, and what terms of trade were they offered?We analyze the
welfare implications of this kind of transparency in a dynamic market for a common-
value good.

Existing work focuses on situations where the seller and no one else is initially
informed about the good’s value, andwhere the short-lived buyers propose the terms
of trade (for example, Hörner and Vieille, 2009; Fuchs, Öry, and Skrzypacz, 2016;
Kim, 2017). Yet, it is also plausible that that information is revealed only gradually
to all market participants, and that the seller proposes the terms of trade. Whymight
we expect the effect of transparency to depend on these details of the market? When
the seller proposes, they can affect the flow of information to the market, which is an
idea that goes back at least to Taylor (1999). Indeed, a buyer’s rejecting a low price
is more informative than rejecting a high price. The market’s transparency affects
what later buyers learn from these rejections, and, therefore, the seller’s incentives
for charging high prices in early periods. We take a step towards understanding this
interaction between learning and transparency.

In our model, there is a long-lived seller and a sequence of short-lived buyers.
The seller has a single indivisible good for which the buyers have a common value.
The value takes one of two values. The seller solicits buyers one-by-one. While the
seller is uninformed about the value, the buyers observe informative signals from
a discrete signal structure. Conditional on the value, these signals are independent
and identically distributed.
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In each period, the seller makes a recommendation that identifies for which
signal realizations a buyer should buy the object. An intermediary then picks a price
that implements the seller’s recommendation. We mainly think of this formulation
of the trading procedure as a convenient modelling choice that permits us to focus
on the flow of information to the market; we give an interpretation once we have
presented the model.

We compare three transparency regimes:
(1) The seller’s past recommendations and time-on-the-market are both observable.
(2) Past recommendations are unobservable, but time-on-the-market is observable.
(3) Past recommendations and time-on-the-market are both unobservable.
For each regime, we ask whether the seller extracts the full surplus from trade. There
are commonly known gains from trade, meaning that the object is traded with cer-
tainty in all equilibria. We can thus focus on the way the surplus is divided between
the players.

Our main insight is that, in a sense to be made precise momentarily, the seller’s
ability to extract the full surplus is smallest in the intermediate regime (2). The
seller would benefit from passing to either of the two more extreme regimes (1)
and (3).

In all regimes, the seller extracts the full surplus if and only if buyers accrue
zero information rents. This, in turn, happens if and only if trade is certain to take
place with a buyer observing the most optimistic signal. When recommendations
and time-on-the-market are both observable, we establish as a benchmark that the
seller indeed extracts the full surplus in the unique perfect Bayesian equilibrium. It
is as if the seller had commitment power.

Our first main result concerns the game with unobservable past recommenda-
tions but observable time-on-the-market. We show that, if the private signals of buy-
ers are sufficiently rich, then the seller’s utility is bounded away from the full surplus
across all perfect Bayesian equilibria. By sufficiently rich wemean that for each value
realization the conditional signal distribution approximates a continuous strictly pos-
itive density.

The argument is as follows: If the seller deviates (from a candidate equilibrium
strategy) when meeting the first buyer, all later buyers fail to account for this devia-
tion in their beliefs. For certain deviations, later buyers’ beliefs will be too optimistic
about the value relative to the correct Bayesian posterior—they are fooled into over-
paying. The downside for the seller from the deviation is that if the first buyer trades,
then this buyer accrues information rents. We show that this downside is dominated
in rich signal structures. Using such a deviation, we argue that the unique strategy
profile that would let the seller appropriate the full surplus cannot be sustained in
equilibrium. (However, an equilibrium exists.)

For our secondmain result, we turn to the third regimewhere neither past recom-
mendations nor time-on-the-market are observable. A deviation (from a candidate
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equilibrium strategy) can now signal that the seller has failed to trade with many
buyers. Failing to trade is an indicator of poor value. Thus a deviation entails trad-
ing at terms that are quite unfavorable for the seller. Building on this intuition, we
show that the seller extracts the full surplus in a sequential equilibrium. The same
idea can be used construct sequential equilibria where buyers are left some surplus.
In these equilibria (that may or may not leave surplus to buyers), the seller makes
a constant recommendation for many early periods. The price is constant across
these periods, and the good will trade with overwhelming probability at this con-
stant price. We derive these results in a modified game where the number of buyers
is finite but large, and where the seller incurs small costs for soliciting new buyers.
Therefore, these sequential equilibria are sustained even in the presence of (small)
incentives for trading quickly.

Since our result on the failure of full surplus extraction in the second regime
assumes that signals are rich, a natural follow-up is to ask whether the seller would
benefit from coarser signal structures. This is indeed the case, in the following sense:
if buyers’ signals about the value are binary, then buyer surplus is zero in all sequen-
tial equilibria of all three regimes.

The paper is organized as follows. In Section 3.2 we study the model with unob-
servable recommendations and observable time-on-the-market. The regime where
everything is observable is presented as a benchmark in this section. In Section 3.3,
we consider the game where neither the seller’s recommendations nor time-on-the-
market are observable. Section 3.4 discusses the literature, and Section 3.5 con-
cludes. All proofs are in the appendices.

3.2 Observable time-on-the-market

3.2.1 Model

We consider a game between a seller, and countably infinitely-many buyers and
intermediaries. The seller is long-lived. All other players are short-lived and arrive
to the market in a pre-determined order.

3.2.1.1 Environment

The seller (she) owns a single indivisible good which she values at 0. Buyers have
a common value for the good that depends on an unobservable state. The state
has two possible realizations, ℓ and h, with associated values vℓ and vh. We assume
0< vℓ < vh, and so it is common knowledge that there are gains from trade. Let
αω,0 ∈ (0, 1) be the common prior that the state is ω ∈ {ℓ, h}. It will frequently be
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more convenient to represent beliefs via the likelihood ratio of state h vs. ℓ. We
denote the prior likelihood ratio by π0 = αh,0/αℓ,0.1

At the start of the game, the seller is uninformed about the state. Each buyer (he)
is endowed with a private signal from a finite set S. Conditional on state ω, the sig-
nals of (each finite subset of) the buyers are independent draws from a distribution
fω that has support S.

Since the state is binary, it is without loss to order signals according to their
likelihood ratios; that is, we assume

∀s,s′∈S s < s′ ⇒
fh(s)
fℓ(s)

<
fh(s′)
fℓ(s′)

. (MLRP)

Given s ∈ S and π ∈ (0,∞), let

v̂(s,π) = vℓ + (vh − vℓ)
π

fh(s)
fℓ(s)

π
fh(s)
fℓ(s)
+ 1

. (3.1)

The value is v̂(s,π) is the posterior value for a buyer who observes a signal realization
s starting at a beliefπ. The prior value of the good, termed the full surplus, is denoted
v̂0 and given by

v̂0 = vℓ + (vh − vℓ)
π0

π0 + 1
. (3.2)

3.2.1.2 Trading protocol

The game unfolds in discrete time, indexed by N= {1,2, . . .}. In period i, the seller,
buyer i, and intermediary i are active. First, the seller picks an element σi of S.
We shall think of this as the seller recommending that buyers with a signal above
σi buy the object. Accordingly, we refer to this as the recommended cutoff. The
recommendation is observed by intermediary i, who then posts a price pi. Next,
buyer i arrives to the market with probability λ ∈ (0,1). Whether buyer i arrives is
unobserved by all other players. If he arrives, he learns σi, pi, and the realization
of his private signal. He then decides whether to buy at pi. If he does, the object is
traded and the game ends. If buyer i does not arrive to the market or does not trade,
the game moves to the next period.

Note that the seller’s time-on-the-market is observable to buyers in the sense
that each buyer i is in the market in period i or not at all.

The seller’s payoff is the price at which the object is traded, if at all. Buyer i’s
payoff in stateω is vω − pi if he trades; else his payoff is 0. As for the intermediaries

1. So, a belief of 0 means that the state is sure to be ℓ. A belief of∞ means the state is sure to
be h. All relevant Bayesian posteriors in our model will lead to beliefs in (0,∞).
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we assume the following: If the seller recommends σi and buyer i arrives with a
signal si such that σi ≤ si but buyer i ends up not buying the good, then the payoff
of intermediary i is −∞. In all other cases, the intermediary’s payoff is pi. (We
interpret the intermediaries further below.) The solution concept is perfect Bayesian
equilibrium.

3.2.1.3 Equilibrium prices

Buyer i’s beliefs about the state depend on his private signal si, the seller’s recom-
mendation σi, and the fact that he finds the good to not have been sold in previous
periods.2 Let πi(σi) denote i’s belief (expressed as the likelihood ratio of h vs. ℓ)
after learning that the game has reached round i and learning the seller’s action σi,
but before learning his private signal si. We will refer to π simply as buyers’ beliefs.
This is a slight abuse of language as π does not include a buyer’s inference from his
private signal, but no confusion should arise.

Once buyer i learns si, his valuation for the good updates to v̂(si,πi(σi)). Thus
he is willing to accept a price pi if and only if

v̂(si,πi(σi))≥ pi.

The MLRP implies that v̂(si,πi(σi)) is increasing in si. In equilibrium, the intermedi-
ary, acting according to his preferences, sets the price as large as possible subject to
the constraint that buyer i accepts if si is weakly above σi, Hence the intermediary
sets pi = v̂(σi,πi(σi)) whenever the principal recommends σi. Buyer i will accept
after a recommendation of σi if and only if i’s private signal is weakly above σi.

These observations let us simplify the description of equilibrium: It suffices to
specify the recommendations of the seller, and buyers’ beliefs π.

The seller’s conditions her recommendation only on calendar time and her past
recommendations. Her set of pure strategies is thus the set S∞ of sequences in S. Her
set of mixed strategies is the set∆(S∞) of distributions over S∞.3 Generic elements
of S∞ and ∆(S∞), respectively, are denoted σ and µ, respectively. Buyers’ beliefs
are given by a function π: N× S→ [0,∞]. Given (µ,π), we denote the seller’s
utility by V(µ,π). (See the appendix for general formulas for the seller’s expected
utility and buyers’ posteriors.)

We consider the following notion of equilibrium.

Definition 3.1. A pair (µ,π) is an equilibrium if µmaximizes V(·,π) across∆(S∞),
and π satisfies all of the following:

2. The belief could in principle also depend on the intermediary’s price. Note however, that
the buyer knows as much as the intermediary about the history, and hence we can safely omit this
dependence.

3. The finite set S has the discrete metric, and S∞ has the product metric. A distribution over
S∞ means a Borel probability-measure on S∞.
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• For all s ∈ S, we have π1(s)= π0.
• For all i≥ 2 and all s ∈ S, if s is played by µ with non-zero probability in period

i (meaning µ({σ ∈ S∞ : σi = s})> 0), then πi(s) is derived from µ via Bayes’
rule.

Some clarifying remarks are in order.

(1) All periods i are reached with non-zero probability since in all earlier periods
buyers may fail to arrive. In particular, the seller never finds herself in a period
off the path of play. Hence equilibrium only requires her strategy to maximize
her ex-ante utility V(·,π).

(2) The first condition on the buyers’ beliefs requires that the seller cannot signal
what she does not: buyer 1, who is the first to interact with the seller, draws
no inference from the seller’s recommended cutoff in period 1 as the seller is
initially uninformed about the state.

(3) The second condition on the buyers’ beliefs states that all other beliefs are de-
rived from Bayes’ rule where possible: all periods i are reached with non-zero
probability, and hence πi(s) can be derived from Bayes’ rule if and only if µ plays
s with non-zero probability in period i.

3.2.1.4 Sequential equilibria

Some of our results concern sequential equilibria.⁴

Definition 3.2. A strategy of the seller is fully mixed if in all periods it recommends
all cutoffs with non-zero probability.

An equilibrium (µ,π) is a sequential equilibrium if there is a sequence {µk}k∈N
of fully mixed strategies and a sequence {πk}k∈N of beliefs satisfying both of the
following:

(1) The sequence {µk}k∈N weak-∗ converges to µ, and the sequence {πk}k∈N con-
verges to π pointwise.

(2) For all k, the beliefs πk are derived from µk via Bayes’ rule.

Lemma 3.1. There exists a sequential equilibrium.

3.2.1.5 Interpreting the intermediaries

We think of the seller as recommending the cutoff above which a buyer should buy
the good. In order to actually implement this cutoff via a price, the seller relies on
intermediaries. This could be because intermediaries have greater expertise than

4. The definition is at a slight abuse of language as we do not consider perturbations of the
buyers’ or intermediaries’ strategies.
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the seller for interacting with buyers. For concreteness, suppose the seller writes a
contract that rewards the intermediary with a share ρ of the price, provided the
price is low enough to implement the seller’s recommendation. If there are multiple
intermediaries in each period, they compete the share ρ down to 0.

That said, we mostly view the intermediaries as a convenient modelling tool.
The advantage of our formulation is that we can focus on the cutoff at which trade
happens. In each period, the cutoff determines the information rents that the present
buyer accrues in the event of trade, and it determines what the market learns about
the value in the event of no-trade. Hence the cutoffs are key to determining the
division of surplus.

3.2.2 The full surplus is an upper bound

We begin our analysis by showing that the full surplus is an upper bound on the
seller’s equilibrium expected utility. For expositional purposes, let us assume λ= 1,
meaning that buyers are sure to arrive to the market (but the results are stated for
arbitrary λ ∈ (0,1)). For λ= 1, the game reaches period i if and only if all preceding
buyers had signals strictly below the seller’s cutoff. Let s̃i denote buyer i’s random
signal, and let σ̃i denote the (possibly random) cutoff of the seller in period i. We
therefore identify the event

{s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i}

with the event that buyer i ends up buying the object.
Consider an equilibrium (µ,π). The seller’s strategy µ together with the distri-

bution of states and signals induces some joint distribution of recommended cutoffs,
states, and signals. We denote the probability- and expectation-operators with re-
spect to this distribution by P and E.

Recall that if buyer i buys at a cutoff σi, he will pay v̂i(σi,πi(σi)). This is his pos-
terior valuation conditional on the game reaching period i, the seller recommending
σi, and his signal being equal to σi; let us denote this valuation by

E [v|̃s1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i = σi]

The seller’s equilibrium expected utility is therefore

∞
∑

i=1

�

P
�

s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i

�

× E [v|̃s1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i = σ̃i]

�

.

(3.3)
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The MLRP implies that this is no greater than
∞
∑

i=1

�

P
�

s̃1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i

�

× E [v|̃s1 < σ̃1, . . . , s̃i−1 < σ̃i−1, s̃i ≥ σ̃i]

�

.

(3.4)

By iterated expectations, the sum in (3.4) is nothing but the prior value of the good,
namely the full surplus v̂0. In fact, the MLRP implies that (3.3) is strictly less than
(3.4) if, with non-zero µ-probability, a period is reached where the cutoff is strictly
below the largest signal in S. That is, the seller leaves information rents unless she
is certain to trade with the highest possible signal.

To state this formally, let us denote by s̄ the largest signal in S. Let σ̄ be the
sequence of cutoffs that is constantly equal to s̄.

Lemma 3.2. In all equilibria, the seller’s utility is at most v̂0. If in an equilibirum the
seller’s utility is v̂0, then in this equilibrium the seller’s strategy is σ̄.

Note that even if the seller’s recommendation is constantly equal to s̄, the price
is strictly decreasing over time. Indeed, in this case the price in period i is given by

E [v|̃s1 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄] .

As i increases, this expectation conditions on a larger number of signals being be-
low s̄, which depresses beliefs.⁵ Put differently, as the good is not being sold, the
intermediaries are decreasing prices at just the right rate to keep buyer with signals
equal to s̄ indifferent between buying.

Lemma 3.2 does not say that the strategy σ̄ is actually sustained in equilibrium.
Before investigating whether this can happen, let us make good on discussing the
promised benchmark where past recommendation are observable.

3.2.3 Full surplus extraction with observable recommendations

Suppose for a moment that the seller’s recommended cutoffs were observable. We
claim that in this case she can extract the full surplus in equilibrium by playing the
pure strategy σ̄. In fact, this is the only equilibrium. To see this, suppose the seller
uses some pure strategy σ.⁶ Since the seller’s actions are observable, buyer i makes

5. Precisely, the conditional expectation reads

vℓ + (vh − vℓ)
π0

fh (̄s)
fℓ (̄s)

�

1−λfh (̄s)
1−λfℓ (̄s)

�i−1

π0
fh (̄s)
fℓ (̄s)

�

1−λfh (̄s)
1−λfℓ (̄s)

�i−1
+ 1

.

which, by the MLRP, is strictly decreasing in i.
6. Since her actions are observable, pure strategies are without loss.
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the correct inference from play; that is, his belief agrees with the Bayesian posterior
induced by σ. The price which buyer i is offered must therefore correctly account
for the Bayesian inference from reaching period i. Since this is true for all periods i,
the seller’s utility from σ is (assuming λ= 1)

∞
∑

i=1

�

P
�

s̃1 < σ1, . . . , s̃i−1 < σi−1, s̃i ≥ σi

�

× E [v|̃s1 < σ1, . . . , s̃i−1 < σi−1, s̃i = σi]

�

The arguments from the previous section imply that, if σ ̸= σ̄, then this utility is
strictly less than v̂0, and hence strictly less than the utility from σ̄.

The argument from the previous paragraph does not apply in the game with
unobservable recommendations since, following a deviation in some period, later
buyers do not revise their beliefs. We next show the seller may profitably deviate
from σ̄ by exploiting these incorrect beliefs and obtain a utility strictly above the
prior value v̂0.

3.2.4 No full surplus with rich signals

In this section, we show that if signals are sufficiently rich, then the seller cannot
extract the full surplus in equilibrium. We first make precise what we mean by a rich
signal structure. Fixing a pair of cdfs (Gh, Gℓ) on [0, 1] and an integer k, consider
Sk, fℓ,k and fh,k defined as follows:

Sk =
§

0,
1
k

, . . . , 1 −
1
k

ª

∀s∈Sk
, fω,k(s) = Gω

�

s +
1
k

�

− Gω(s).

We say the sequence {(Sk, fh,k, fℓ,k)}k∈N converges to (Gh, Gℓ).
Our result asserts that if (Gh, Gℓ) admit well-behaved densities, then, fixing a

signal structure far enough along the sequence {(Sk, fh,k, fℓ,k)}k∈N, the seller cannot
extract the full surplus. Note that the full surplus v̂0 = vℓ + (vh − vℓ)

π0
π0+1 does not

depend on the signal structure.

Proposition 3.3. Let (Gh, Gℓ) be a pair of cdfs on [0,1]. Let {(Sk, fh,k, fℓ,k)}k∈N be a
sequence of finite signal structures converging to (Gh, Gℓ).

If Gh and Gℓ admit continuous and strictly positive densities gh and gℓ on [0,1]
such that gh

gℓ
is strictly increasing, then the following holds for all except finitely many

k: If the signal structure is given by (Sk, fh,k, fℓ,k), then the seller’s utility is bounded
away from v̂0 across all equilibria.
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For the proof, it suffices to show that the pure strategy that always plays the
largest signal fails to be an equilibrium (Lemma 3.2). For expositional purposes, let
λ= 1. Suppressing the dependence on k, let s̄= s̄k denote the largest signal in the
k’th signal structure.

Suppose towards a contradiction that there is an equilibrium where the seller’s
utility is v̂0 and she plays s̄ in all periods.We consider a one-time deviation in period 1
to a cutoff strictly below s̄. Let s◦ = s◦k denote this cutoff (wherewe again suppress the
dependence on k). The deviation will have two effects, with opposing implications
for the seller’s utility. The upside from the deviation is that if buyer 1 does not end
up trading, then all later buyers will hold incorrect beliefs. In particular, since s◦ < s̄,
rejecting a cutoff of s◦ is a stronger signal in favor of the bad state ℓ than rejecting s̄.
Therefore, all later buyers will hold a belief that is too optimistic; their willingness
to pay will be too high relative to the true Bayesian posterior. The downside from
the deviation is that if buyer 1 has a private signal strictly above s◦, he will trade
and accrue information rents.

Let us spell this out in more detail. Since buyer 1’s belief does not react to the
seller’s action in round 1, the contribution from buyer 1 to the utility from the devi-
ation is

P(̃s1 ≥ s◦)E[v|̃s1 = s◦].

Now consider buyer i> 1. The probability that he will trade under the deviation is

P
�

s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄
�

Buyer i receives his on-path recommendation, and hence his belief equals his on-path
belief. Since the candidate equilibrium has the seller recommend s̄ in all periods, the
price that buyer i pays, if he trades, is

E [v|̃s1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄] .

The seller’s utility from the deviation is therefore

P(̃s1 ≥ s◦)E[v|̃s1 = s◦]

+
∞
∑

i=2

�

P
�

s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄
�

× E [v|̃s1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

�

.
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Let us compare this to the full surplus v̂0 (which is the seller’s utility from constantly
recommending s̄). By iterated expectations, we may write v̂0 as

P(̃s1 ≥ s◦)E[v|̃s1 ≥ s◦]

+
∞
∑

i=2

�

P
�

s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄
�

× E [v|̃s1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

�

.

Thus the deviation is profitable if and only if

P(̃s1 ≥ s◦)
�

E[v|̃s1 = s◦] − E[v|̃s1 ≥ s◦]
�

+
∞
∑

i=2

�

P
�

s̃1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄
�

×
�

E [v|̃s1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

− E [v|̃s1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]
�

�

is strictly positive. The difference

E[v|̃s1 = s◦]−E[v|̃s1 ≥ s◦]

is strictly negative, as we infer from the MLRP; this is the information rent left to
buyer 1. Each term inside the infinite sum, however, is strictly positive. To see this,
note that

E [v|̃s1 < s̄, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

conditions on (i− 1)-many buyers failing to trade at s̄. However,

E [v|̃s1 < s◦, s̃2 < s̄, . . . , s̃i−1 < s̄, s̃i = s̄]

conditions on one buyer failing to trade at s◦ and (i− 2)-many buyers failing to trade
at s̄. Since not trading at s◦ is a stronger signal for the bad state than not trading at
s̄, each term inside the infinite sum is strictly positive.

The seller thus benefits from the deviation if late buyers’ wrong beliefs outweigh
buyer 1’s information rents. The proof of Proposition 3.3 shows that this happens
whenever the signal structure is sufficiently rich. If we choose s◦ = s◦k ever closer to
1 as k→∞, the fact that the likelihood ratio gh

gℓ
is continuous implies that both the

loss due information rents as well as the gain due to incorrect beliefs vanish. By using
that the likelihood ratio is bounded at the top (which is implied by the fact that the
densities are continuous and strictly positive), we show that the loss vanishes more
rapidly than the gain for a suitable choice of s◦k. In particular, this is the case when
s◦k converges an order of magnitude more slowly to 1 than s̄= s̄k.
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3.2.5 Full surplus with binary signals

Since Proposition 3.3 concerns rich signals, a natural follow-up question asks how
the surplus is divided when signals are coarse. The next result shows that when
signals are binary we reach a conclusion starkly different from Proposition 3.3.

Proposition 3.4. Let signals be binary, meaning |S|= 2. If (µ,π) is a sequential equi-
librium, then the seller’s strategy is the pure strategy σ̄, and her expected utility is the
full surplus v̂0.

The key observation is that, for binary signals, no strategy induces more pes-
simistic beliefs than constantly playing the highest cutoff s̄. Let

¯
s denote the smallest

signal, which here simply means the only signal different from s̄. A recommendation
of

¯
s is accepted whenever a buyer arrives to the market. Failing to trade at

¯
s therefore

reveals that no buyer arrived to the market. Since this event contains no information
about the value, the belief remains unchanged. Conversely, whenever s̄ does not lead
to a trade, the posterior that the state is h decreases.

For a sequential equilibrium, the observation from the previous paragraph im-
plies that the posterior induced by σ̄ is also a lower bound on buyers’ off-path beliefs.
Hence a lower bound on equilibrium utility is given by the utility from deviating to
σ̄ and forming the induced prices using the beliefs induced by σ̄. But this lower
utility is nothing but v̂0, as we infer from the discussion in Section 3.2.2.⁷

3.3 Unobservable time-on-the-market

3.3.1 Model

In this section, we consider another game. Its defining property is that buyers ob-
serve neither the seller’s past recommendations nor the seller’s time-on-the-market.
That is, relative to the game of the previous section, a buyer is now also unaware of
the label of the period in which he is asked to make a move.

The number n of buyers and intermediaries is now finite. At the beginning of
the game, Nature picks a permutation of {1, . . . , n} according to the uniform distri-
bution. The realized permutation is not observed by any player, and it determines
the order in which buyers and intermediaries arrive to the market. When asked to
make a move, each buyer observes his private signal, the intermediary’s price, and
the seller’s recommendation. Each intermediary observes the seller’s current recom-
mendation. When in period i the seller recommends a cutoffσi, the buyer’s posterior

7. The argument sketched here uses the assumption that arrivals to the market are probabilis-
tic, meaning λ ∈ (0,1). Suppose that arrivals are certain, λ= 1. Playing the lowest signal now means
trading with probability one. In a sequential equilibrium, the beliefs of buyers who are reached with
probability zero along the path of play must therefore equal the beliefs induced by σ̄. A similar argu-
ment thus shows that the deviation to σ̄ must still yield v̂0.
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belief (expressed as the likelihood ratio of h vs. ℓ) is denoted π;(σi).⁸ In the same
situation, the intermediary will find it optimal to choose a price of v̂(σi,π

;(σi)). As
before, a buyer finds it optimal to accept σi at a private signal s if and only if s is
weakly greater than σi.

On the seller’s side, we now assume that she incurs a cost c whenever the game
moves to the next period. This cost can be interpreted as costs for soliciting new
buyers, and we assume c ∈ [0,λvℓ].⁹

A mixed strategy of the seller is now a distribution µ over the set Sn of finite
cutoff sequences. Buyers’ beliefs are represented by π; : S→ [0,∞]. The seller’s
profit from this pair is denoted V;(µ,π;, n, c). (The appendix presents formulas for
the seller’s utility and buyers’ Bayesian posteriors.) Let Γ ;(n, c) denote the game
described here.

Definition 3.3. A pair (µ,π;) is an equilibrium of Γ ;(n, c) if µ is a maximizer of
V;(·,π;, n, c), and π; satisfies the following: For all s ∈ S, if s is played by µ with
non-zero probability in some period (meaning

∑n
i=1µ({σ ∈ Sn : σi = s})> 0), then

π;(s) is derived from µ via Bayes’ rule.
A strategy of the seller is fully mixed if for all cutoffs there is at least one pe-

riod in which the cutoff is played with non-zero probability; that is, all s ∈ S satisfy
∑n

i=1µ({σ ∈ Sn : σi = s})> 0.1⁰
An equilibrium (µ,π;) is a sequential equilibrium if there is a sequence {µk}k∈N

of fully mixed strategies and a sequence {π;k}k∈N of beliefs satisfying both of the
following.

(1) The sequence {µk}k∈N converges to µ, and the sequence {π;k}k∈N converges to
π;.11

(2) For all k, the beliefs π;k are derived from µk via Bayes’ rule.

Lemma 3.5. For all n ∈ N and c ∈ [0,λvℓ] there exists a sequential equilibrium of
Γ ;(n, c).

3.3.2 Signaling calendar time

Our aim in this section is to show that, along a certain sequence of sequential equi-
libria, the seller can extract the full surplus as the number of buyers grows large and
solicitation costs vanish. However, not all sequences of sequential equilibria have this

8. Mnemonically, the superscript ; indicates that buyers know neither the seller’s past actions
nor her time-on-the-market.

9. The assumption that c is in [0,λvℓ] implies that the seller will always find it optimal to keep
searching until the pool of buyers is exhausted. Specifically, she can always recommend the lowest
signal as a cutoff, leading to trade at a price of at least vℓ when a buyer arrives with probability λ.

10. Notice that this notion of a fully mixed strategy differs from the regime with observable time-
on-the-market.

11. All strategies and beliefs are viewed as elements of Euclidean space.
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property. To state the result formally, given s ∈ S, let F̄ω(s) denote the probability of
observing a signal weakly above s. Recall also that

¯
s denotes the smallest signal.

Proposition 3.6. Let s∗ ∈ S \ {
¯
s}. Let {cn}n∈N be a sequence in [0,λvℓ] converging

to 0. For all n ∈ N, there exists µn, π;n, and an integer jn such that the sequence
{(µn,π;n, jn)}n∈N satisfies all of the following:

(1) For all but finitely many n ∈ N, the pair (µn,π;n) is a sequential equilibrium of
Γ ;(n, cn).

(2) For all n ∈ N, the seller using µn plays s∗ in the first jn rounds with probability one;
that is, we have µn({σ ∈ Sn : (σ1, . . . ,σjn)= (s∗, . . . , s∗)})= 1.

(3) The sequence {jn}n∈N diverges to∞.
(4) Along the sequence, the good is traded with probability converging to 1. The seller’s

expected utility and the price at which the good is traded converge almost surely to

vℓ + (vh − vℓ)
π

fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

π
fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗) + 1

. (3.5)

In the special case s∗ = s̄ we have F̄ω(̄s)= fω(̄s) for all ω, and hence the price
in (3.5) equals v̂0. That is, the seller gets the full surplus along this sequence of
equilibria. Whenever s∗ is different from s̄, however, the (MLRP) implies

fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

< 1.

Thus, for s∗ different from s̄, the seller’s equilibrium utility converges to a value
strictly below v̂0.

The basic observation that we use for the proof of Proposition 3.6 is that the
seller’s recommendation contains information about her time-on-the-market. Let us
sketch the proof idea for the case s∗ = s̄. Suppose for a moment that for some integer
j the seller uses a pure strategy σ that recommends s̄ in all of the first j periods, and
never thereafter. When the seller recommends to a buyer an on-path cutoff different
from s̄, this reveals that the seller has unsuccessfully tried to sell the object for at least
j rounds. Since failing to trade the object depresses beliefs, picking a cutoff different
from s̄ thus leads to a price approximately equal to vℓ, provided j is sufficiently large.
Let us compare to this to the price from recommending s̄. Since s̄ is on-path under
σ, a buyer’s belief π;(̄s,σ) after arriving to the market and being recommended s̄
can be computed via Bayes’ rule. This belief is given by

π;(̄s,σ) = π0

n
∑

i=1

1
n1(σi=s̄)(1 − λfh(̄s))i−1

n
∑

i=1

1
n1(σi=s̄)(1 − λfℓ(̄s))i−1

= π0

j
∑

i=1
(1 − λfh(̄s))i−1

j
∑

i=1
(1 − λfℓ(̄s))i−1

.
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Evaluating the geometric sums shows that, for large j, this belief approximately
equals π0

fℓ (̄s)
fh (̄s) . The price v̂(̄s,π;(̄s,σ)) after s̄ equals the posterior valuation con-

ditional on a private signal of s̄ and conditional on arriving to the market and being
recommended s̄. Hence this price approximately equals

vℓ + (vh − vℓ)
π0

fℓ (̄s)
fh (̄s)

fh (̄s)
fℓ (̄s)

π0
fℓ (̄s)
fh (̄s)

fh (̄s)
fℓ (̄s) + 1

= vℓ + (vh − vℓ)
π0

π0 + 1
.

This is nothing but the full surplus v̂0.
In summary, a cutoff of s̄ yields a price of v̂0, whereas deviations from s̄ yields a

price of vℓ (approximately, when j is large). This suggests that the seller’s offering
s̄ for a large number periods j can actually be sustained in equilibrium, leading to
trade with overwhelming probability at v̂0, and hence to the seller’s extracting the
full surplus. A complication in this argument is that the seller also incurs costs for
solicitng new buyers and that the pool of buyers is finite. Since s̄ leads to the smallest
per-period probability of trade, the seller has an incentive to deviate from s̄ to save
on costs or, when the pool of buyers is almost exhausted, to ensure a last minute
sale of the object. Hence we have to consider the possibility that the seller plays
signals other than s̄ along the equilibrium path. This complicates the construction
of equilibrium; care has to be taken to let j (the number of initial periods in which
the seller constantly recommends s̄) diverge to∞, but not too rapidly.

The proof for general s∗ ∈ S \ {
¯
s} is similar. To understand why, suppose the

seller’s strategy is to play s∗ for the first j rounds. As long as s∗ is not the lowest
signal

¯
s, failing to trade at s∗ depresses beliefs.12 Hence the earlier reasoning implies

that deviating from s∗ leads to a price approximately equal to vℓ, while s∗ leads to a
strictly higher price (namely the price in (3.5)).

3.3.3 Full surplus with binary signals

Proposition 3.6 implies that the players may fail to coordinate on a seller-optimal
equilibrium whenever there are at least three signals. We conclude this section by
addressing the case of binary signals. In parallel to Proposition 3.4, we find that the
seller extracts the full surplus along all sequences of sequential equilibria.

Proposition 3.7. Let signals be binary, meaning |S|= 2. Let {cn}n∈N be a sequence
in [0,λvℓ] converging to 0. For all n ∈ N, let (µn,π;n) be a sequential equilibrium of
Γ ;(n, cn).13 As n→∞, the seller’s utility along the sequence of equilibria converges to
v̂0.

12. As remarked at an earlier point, when
¯
s does not lead to a trade in some round, the Bayesian

inference is that no buyer arrived to the market in that round. Non-arrivals reveal nothing about the
state of the world, and hence playing

¯
s for many rounds will not depress beliefs towards zero.

13. As we recall, Lemma 3.5 implies that Γ ;(n, cn) admits a sequential equilibrium for all n.
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Our proof uses the same ideas as our proof of Proposition 3.4. Namely, with
binary signals, the belief π;n(̄s) must be bounded below by the posterior induced by
σ̄ (verifying this in the present game is more complicated than in the game with
observable time). It is then easy to verify that the utility from deviating to σ̄ admits
a lower bound which converges v̂0. Since the utility from this deviation is itself a
lower bound on equilibrium utility and since equilibrium utility is bounded above
by v̂0, the claim follows.

3.4 Related literature

This paper is related to the literature on transparency in dynamic markets with ad-
verse selection. See Hörner and Vieille (2009), Kaya and Liu (2015), Fuchs, Öry,
and Skrzypacz (2016), Kim (2017), and Kaya and Roy (2022a, 2022b, 2022c). It
is by now understood that the effect of transparency on market outcomes is depen-
dent on other the details of the market. For example, Kaya and Roy (2022c) show
that the effect varies subtly with intra-period competition between buyers and the
prior belief about quality. Our contribution to this literature is to analyze the effect
of transparency when the long-lived seller makes all offers, buyers have private in-
formation, and all players are initially uninformed. Existing papers in this literature
study markets where the seller is informed and buyers make the offers.1⁴

The paper of Kim (2017) is perhaps closest. In Kim’s model, uninformed buyers
make private offers to the seller of a single unit. The seller’s costs and the object’s
value are the seller’s private information. Kim compares two regimes that differ in
whether buyers observe the seller’s time-on-the-market. (Kim also studies a version
of the model with an inflow of new sellers and buyers.) When time-on-the-market is
observable, buyers update on the fact that high types of the seller are more willing
to wait for favorable terms, leading buyers to offer higher prices as the game pro-
gresses. Hence transparency (of time-on-the-market) affects the seller’s incentives to
delay trade. In contrast, in our model, the seller benefits from high prices that min-
imize buyers’ information rents and delay trade. Transparency affects the seller’s
incentives to deviate to lower prices.

In several other papers on dynamic markets with learning, the seller is initially
informed about the value of the good, but additional signals arrive to the market
over time. In Zhu (2012), Lauermann and Wolinsky (2016), and Kaya and Kim
(2018), buyers observe private signals about the value. In Daley and Green (2012),
buyers’ signals are public. We differ from these papers in that, in our model, there
is no initial information asymmetry, but asymmetry develops endogenously through
delay in trade and buyers’ private signals.1⁵ Note that the lack of initial asymmetry

14. Some papers, e.g. Kaya and Liu (2015), reverse the roles of sellers and buyers.
15. In this regard, we are similar to Hwang (2018), in whose model there is no initial asymmetry,

but asymmetry grows as the seller observes an exogenous private signal.
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matters: in the game with observable time and unobservable actions, we use the
assumption that the first buyer does not revise his beliefs after observing the seller’s
deviation (Proposition 3.3). One can show that the deviation used in the proof is
not profitable if we let this buyer revise his beliefs arbitrarily.

In the regime with unobservable time, the seller’s action can signal calendar
time, and hence the good’s value. The idea that the seller’s actions signal informa-
tion about value is not new. For example, Barsanetti and Camargo (2022) recently
explore this idea in a model where the seller is informed about the value. Lauermann
and Wolinsky (2016), who study a regime with unobservable time, also discuss this
idea as part of a robustness check. A key distinguishing point is again that in our
model the seller is not initially informed about the value. Hence, in a consistent as-
sessment, buyers’ interpretations of the sellers’ actions are constrained by what the
seller can actually learn along the path of play. These constraints are absent when
the seller is initially informed, thereby expanding the set of equilibria. In particular,
our results for binary signal structures do not extend to informed-seller settings.

Taylor (1999) considers a two-period model that is related to ours. In each pe-
riod, buyers bid for the good and the seller sets a reserve price. Taylor discusses the
effects of the reserve price on the speed of learning: as in our benchmark model
with observable actions, the seller gains from setting high initial prices to keep fu-
ture beliefs high. Taylor further notes that high types of the seller benefit from public
records. We instead focus on the seller’s ability to extract the full surplus in a differ-
ent informational setup and with a large number of buyers.

Bose et al. (2006, 2008) study a model close to ours. Namely, a version of our
benchmark with observable actions but where the seller has an infinite number of
units (and chooses prices, rather than recommendations). The history of prices and
sales is public. Bose et al. (2006) study whether the monopolist’s strategy triggers
herding behavior. Bose et al. (2008) characterize optimal offers when signals are
binary. Their results have no immediate counterparts in our benchmark model with
observable actions as we consider the sale of a single unit. Specifically, since selling
a unit is good news about the value, their model admits belief dynamics that are
absent in ours.

Bose, Orosel, and Vesterlund (2002) also consider unobservable price offers
when signals are binary and sales are observable. Their Lemma 10 shows that the
seller may be unable to commit to trading exclusively with the most optimistic sig-
nal. The result is driven by the fact that selling a unit is good news about the value,
and hence accelerating trades makes later buyers more optimistic. As noted above,
this effect is absent in our model with a single unit. Indeed, their Lemma 10 sharply
contrasts our results for binary signals.

There are further papers investigating other notions of transparency in more
distant settings. The following are some examples. In the bilateral bargaining of
Hwang and Li (2017), the focus is on transparency of on one party’s outside option.
In the multilateral bargaining game of Krasteva and Yildirim (2012), the focus is
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on transparency of the negotiation sequence and prices. Chaves (2019) studies how
the transparency of on-going negotiations affects the incentives of third parties to
interrupt these negotiations. Dilmé (2022) studies imperfect signals about a long-
lived players actions in repeated bargaining. In the reputation models of Pei (2022a,
2022b), the question is how limited observability of the long-lived player’s actions
affect that players ability to build a reputation.

3.5 Conclusion

In a dynamic market for a common value good, we have uncovered a sense in which
hiding information about the seller’s actions but disclosing information about her
time-on-the-market is beneficial to buyers. For future work, it is interesting to con-
sider what changes if the seller has multiple objects for sale (as in the work of Bose
et al. (2006, 2008)) or if there are multiple sellers whose goods have correlated
values. With multiple objects, one can investigate how the transparency of sales
affect equilibrium outcomes. A different intriguing direction could attempt to en-
dogenize buyers’ arrival to the market. Our results use that the (random) order in
which buyers arrive to the market is exogenous. What would change if buyers could
strategically time when to solicit an offer from the seller? Lastly, our results suggest
interesting open questions for information design. While we have shown that binary
signals are optimal for the seller in the limit game, it is open what signal structures
minimize the seller’s revenue. Relatedly, which signal structures would maximize or
minimize the overall surplus when there are frictions?

Appendix 3.A Observable time-on-the-market

3.A.1 Definitions and notation

This part of the appendix derives the expressions for buyers’ posteriors belief and
the seller’s expected utility.

Since S is finite, the set S∞ of sequences in S is compact and metric (in the
product metric). This renders ∆(S∞) a compact metrizable space (Aliprantis and
Border, 2006, Theorem 15.11). Let Π denote the set of functions from N× S to
[0,π0]. As a countable product of compact intervals, the set Π is a compact metric
space when equipped with the product metric.

In the main text, we initially introduced buyers beliefs as functions mapping to
[0,∞]. As we will see, on-path beliefs always lie in [0,π0]. Restricting off-path be-
liefs to [0,π0] does not eliminate equilibria (since the prices, and hence the seller’s
utility, are increasing in buyers’ beliefs). Hence there is no loss in viewing beliefs as
element of Π.
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Let Fω denote the cdf. of the signals in state ω. For all s in S, let us define

¯
Fω = Fω(s)− fω(s) as the probability of observing a signal strictly below s. Further,
let F̄ω(s)= 1−

¯
Fω(s) denote the probability of observing a signal weakly above s.

3.A.1.1 The seller’s expected utility

Letπ ∈Π andσ ∈ S∞. When the seller uses the pure strategyσ, then in stateω the
game reaches period i with probability

i−1
∏

j=1

�

1−λF̄ω(σj)
�

. Conditional on reaching

period i, buyer i ends up buying the object with probability λF̄ω(σi); in that case,
given beliefs π, he pays v̂(σi,πi(σi)). So the seller’s expected utility equals

V(σ,π) =
∞
∑

i=1

∑

ω∈{ℓ,h}

αω,0λF̄ω(σi)

 

i−1
∏

j=1

�

1 − λF̄ω(σj)
�

!

v̂(σi,πi(s)). (3.A.1)

The infinite sum is well-defined since for all s ∈ S we have

1 − λF̄ω(s) ≤ 1 − λfℓ(̄s) < 1, (3.A.2)

meaning that
i−1
∏

j=1

�

1−λF̄ω(σj)
�

is bounded above by (1−λfℓ(̄s))
i−1.

Using the bound in (3.A.2) and finiteness of S, a routine argument shows that
V(σ,π) is continuous in (σ,π). Hence V is bounded. Thus it makes sense to define
the seller’s expected utility from a mixed strategy µ as

V(µ,π) =

∫

σ∈S∞
V(σ,π) dµ(σ).

Using the bound in (3.A.2) and finiteness of S once again, we also find that V is
continuous on ∆(S∞)×Π.

3.A.1.2 Buyers’ beliefs

Given µ ∈∆(S∞) and an integer i, let S(i,µ) denote the set of signals s ∈ S satisfying
∫

σ∈S∞
1(σi=s) dµ(σ)> 0.

These are the signals s which µ plays with non-zero probability in round i. For all
s ∈ S(i,µ), let

π̂i(s,µ) = π0

∫

σ∈S∞ 1(σi=s)

i−1
∏

j=1

�

1 − λF̄h(σj)
�

dµ(σ)

∫

σ∈S∞ 1(σi=s)

i−1
∏

j=1

�

1 − λF̄ℓ(σj)
�

dµ(σ)

(3.A.3)
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denote the Bayesian posterior likelihood of h versus ℓ conditional on reaching period
i and the seller then offering a cutoff of s.

It is not difficult to see that if s ∈ S(i,µ) and {µk}k is a sequence that weak-∗
converges to µ, then s ∈ S(i,µk) holds for all but finitely many k. In the same situa-
tion, the posterior π̂i(s,µk) is well-defined for all but finitely many k and converges
to π̂i(s,µ).

3.A.2 Equilibrium Existence

Proof of Lemma 3.1. Let µ0 denote the strategy with the property that all i ∈ N and
s ∈ S satisfy µ0{σ ∈ S∞ : σi = s}= 1

|S|+1 . That is, the seller randomizes uniformly
over S in each period. This strategy µ0 exists as one may verify, say, via an application
of Ionescu-Tulcea’s theorem (Bogachev, 2007, Theorem 10.7.3).

Given a strategy µ′ and an integer k, note that (1− 1
k )µ′ + 1

kµ0 is fully mixed.
Hence the Bayesian posterior belief as defined (3.A.3) induced by (1− 1

k )µ′ + 1
kµ0 is

well-defined. Let us denote this belief by π̂(·|µ′, k).1⁶ Consider the correspondence

µ′ 7→ argmax
µ∈∆(S∞)

V(µ, π̂(·|µ′, k))

As observed in Appendix 3.A.1.2, buyer’s beliefs are continuous in the seller’s strat-
egy when the strategy is fully mixed. That isµ′ 7→ π̂(·|µ′, k) is continuous.We further
noted in Appendix 3.A.1.1 that V is jointly continuous in the seller’s strategy and
beliefs. An application of Berge’s Maximum Theorem (Aliprantis and Border, 2006,
Theorem 17.31) implies that the above arg max-correspondence is non-empty and
compact-valued, and upper-hemicontinuous. Since V is linear in the seller’s strategy,
the arg max-correpondence is convex-valued, too. We thus infer from the Kakutani-
Fan-Glicksberg Theorem (see e.g. Corollary 17.55 of Aliprantis and Border (2006,
p. 583)) that for all k there exists a strategy µ∗k satisfying

µ∗k ∈ argmax
µ∈∆(S∞)

V(µ, π̂(·|µ∗k, k)).

Let π∗k denote the belief π̂(·|µ∗k, k).
By compactness of∆(Σ∞) andΠ, the sequence {µ∗k,π∗k}k∈N admits a convergent

subsequence. Let this be the sequence itself, and let (µ∗,π∗) denote the limit. We
claim that (µ∗,π∗) is a sequential equilibrium. To that end, we note that µ∗ is the
limit of the sequence

§�

1 −
1
k

�

µ∗k +
1
k
µ0

ª

k∈N
.

16. That is, π̂(·|µ′, k) is defined for all i and s by

π̂i(s|µ′, k) = π̂i

�

s,
�

1 −
1
k

�

µ′ +
1
k
µ0)

�

.



Appendix 3.A Observable time-on-the-market | 97

For all k, the strategy
�

1− 1
k

�

µ∗k +
1
kµ0 is fully mixed and the belief π∗k is obtained

from
�

1− 1
k

�

µ∗k +
1
kµ0 via Bayes’ rule. Therefore, to show that (µ∗,π∗) is a sequential

equilibrium, it suffices to show that µ∗ maximizes V(·,π∗) across ∆(S∞). Letting
µ be an arbitrary strategy, we know that for all k we have V(µ∗k,π∗k)≥ V(µ,π∗k).
Taking k→∞ and using continuity of V, we infer that V(µ∗,π∗)≥ V(µ,π∗) holds,
as promised.

3.A.3 Failure of surplus extraction

3.A.3.1 Auxiliary results

Proof of Lemma 3.2. Let (µ,π) be an equilibrium. Let i ∈ N andσi ∈ S(i,µ). If trade
happens at (i,σi), the price equals

v̂(σi,πi(σi)) = vℓ + (vh − vℓ)
πi(σi)

fh(σi)
fℓ(σi)

πi(σi)
fh(σi)
fℓ(σi)

+ 1
.

Since σi ∈ S(i,µ), the belief πi(σi) is derived from Bayes’ rule. Using (3.A.3), one
may verify thatπi(σi) ∈ (0,∞) holds. By theMLRP, the price in the previous display
is no greater than

vℓ + (vh − vℓ)
πi(σi)

F̄h(σi)
F̄ℓ(σi)

πi(σi)
F̄h(σi)
F̄ℓ(σi)

+ 1
.

This is the posterior valuation conditional on the joint event that a signal above σi

realizes, the game reaches period i, and the sellers recommends σi; let us denote
this event by Ei(σi). The posterior valuation conditional on Ei(σi) is E[v|Ei(σi)].
Note that since πi(σi) ∈ (0,∞) we have v̂(σi,πi(σi))< E[v|Ei(σi)]whenever σi <

s̄ holds.
Trade happens at (i,σi) if and only if the event Ei(σi) occurs. We know from

the bound in (3.A.2) that the probability of not trading within the first i rounds
converges to 0 as i→∞, uniformly across all strategies of the seller. Put differently,
as i→∞, the probability that the event

⋃

(σ1,...,σi)∈Si

�

i
⋃

j=1

Ej(σj)

�

does not occur converges to 0. It follows from the Law of Iterated Expectations that
the seller’s profit is at most the prior valuation v̂0, with equality if and only if the
induced cutoff in each period is s̄ with probability one. The unique strategy for which
this can hold is therefore the pure strategy σ̄.
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Lemma 3.8. Let (gh, gℓ) and {(Sk, fh,k, fℓ,k)}k∈N be as in the hypothesis of Proposi-
tion 3.3. For all k, let s̄k = 1− 1/k. There exists a sequence {s◦k}k∈N such that for all
except finitely-many k we have s◦k ∈ Sk, and such that (the following limits exist and
satisfy)

∞ > lim
k→∞

fh,k(̄sk)

fℓ,k(̄sk)
> 1, (3.A.4a)

lim
k→∞

fh,k(̄sk)

1 −
¯
Fℓ,k(s◦k)

= 0, (3.A.4b)

lim
k→∞

fh,k(̄sk)

fℓ,k(̄sk)

fℓ,k(s◦k)

fh,k(s◦k)
= 1. (3.A.4c)

Proof of Lemma 3.8. For all k, let s◦k =max{s ∈ Sk : s≤ 1− 1/
p

k}. Note that we have
s̄k = 1− 1/k.

Considering (3.A.4a), we note that fh,k (̄sk)
fℓ,k (̄sk) =

1−Gh(1−1/k)
1−Gℓ(1−1/k) converges to gh(1)/gℓ(1),

as an application of L’Hôpital’s rule shows. This limit is strictly greater than one.
Next consider (3.A.4b). The ratio fh,k (̄sk)

1−
¯
Fℓ,k(s◦k) equals 1−Gh(1−1/k)

1−Gℓ(1−1/
p

k)
approximately.

Another application of L’Hôpital’s rule shows that the limit of the latter is zero.
Turning to (3.A.4c), we have:1⁷

fh,k(̄sk)

fℓ,k(̄sk)

fℓ,k(s◦k)

fh,k(s◦k)

≈
�

1 − Gh(1 − 1/k)
1 − Gℓ(1 − 1/k)

�

�

Gℓ(1 + 1/k − 1/
p

k) − Gℓ(1 − 1/
p

k)

Gh(1 + 1/k − 1/
p

k) − Gh(1 − 1/
p

k)

�

.

An application of L’Hôpital’s rule shows that the limit of this term equals the limit of
�

gh(1)
gℓ(1)

�

�

gℓ(1 + 1/k − 1/
p

k)(1 −
p

k/2) + gℓ(1 − 1/
p

k)
p

k/2

gh(1 + 1/k − 1/
p

k)(1 −
p

k/2) + gh(1 − 1/
p

k)
p

k/2

�

.

Since gh and gℓ are continuous, this term converges to one, as desired.

Lemma 3.9. If s and s′ are signals in S satisfying fh(s)≥ fℓ(s) and s′ > s, then

1 − λF̄h(s′)

1 − λF̄ℓ(s′)
>

1 − λF̄h(s)

1 − λF̄ℓ(s)

holds.

17. When {xk}k∈N and {yk}k∈N are sequences of real numbers, we write xk ≈ yk to mean
limk→∞ xk/yk = 1.
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Proof of Lemma 3.9. It suffices to verify this for the case where s′ is the signal directly
above s. In that case, we have

¯
Fω(s)+ fω(s)=

¯
Fω(s′). Standard algebraic manipula-

tions show
1 − λF̄h(s′)

1 − λF̄ℓ(s′)
−

1 − λF̄h(s)

1 − λF̄ℓ(s)

=
λ
�

fh(s)(1 − λF̄ℓ(s)) − fℓ(s)1 − λF̄h(s)
�

�

1 − λF̄ℓ(s′)
� �

1 − λF̄ℓ(s)
� .

The (MLRP) implies (1−λF̄ℓ(s))≥ (1−λF̄h(s), andwe have fh(s)≥ fℓ(s) by assump-
tion.

3.A.3.2 Proof of Proposition 3.3

Proof of Proposition 3.3. We will prove that, for large enough k, there does not exist
an equilibrium in which the seller’s expected utility equals v̂0. This implies that her
utility is bounded away from v̂0 across all equilibria. For, otherwise, compactness of
∆(S∞)×Π lets us extract a convergent subsequence of equilibria along which her
utility converges to v̂0; the limit of this subsequence will be an equilibrium in which
her utility equals v̂0, and we have a contradiction.

For all k, let s̄k = 1− 1/k, and let s◦k be as in the conclusion of Lemma 3.8. In
what follows, we will suppress the dependence of k from the notation by writing
(S, fh, fℓ, s◦, s̄) instead of (Sk, fh,k, fℓ,k, s◦k, s̄k). No confusion should arise.

In light of Lemma 3.2, we can show that there is no equilibriumwhere the seller’s
expected utility equals v̂0 by showing that the pure strategy σ̄ is not an equilibrium.
Towards a contradiction, suppose σ̄ is supported in equilibrium by some beliefs π of
the buyers. We will argue that, for all except finitely-many k, the following strategy
constitutes a profitable deviation from σ̄ for the seller: In the first period, the seller
recommends s◦; in all later periods i, the seller recommends s̄. Let σ denote this
sequence of recommendations.

In equilibrium, the first buyer’s beliefs do not depend on the seller’s action.
Thus the prices induced by the deviation are v̂(s◦,π0)= E[v|̃s= s◦] in period 1 and
v̂(̄s, π̂i(̄s, σ̄)) for all i≥ 2. To economize on notation, let

x◦ω = 1 − λF̄ω(̄s) and x̄ω = 1 − λF̄ω(̄s).

Thus x◦ω and x̄ω, respectively, denote the probabilities of not trading after recom-
mending cutoffs s◦ and s̄, respectively, within a given period.

We can now write the seller’s utility from the deviation to σ as

E[v|̃s = s◦]
∑

ω∈{ℓ,h}

λαω,0F̄ω(̄s)

+
∞
∑

i=2

 

v̂(̄s, π̂i(̄s, σ̄))
∑

ω∈{ℓ,h}

λαω,0F̄ω(̄s)x◦ωx̄i−2
ω

!

.
(3.A.5)
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We complete the proof by arguing that, for all but finitely-many k, the term in the
previous expression is strictly greater than v̂0.

Consider the following equality for the expected utility from the deviation (the
first expression is simply a restatement of the expected utility from the deviation;
the equality adds a zero):

v̂(s◦,π0)
∑

ω∈{ℓ,h}

λαω,0F̄ω(s◦)

+
∞
∑

i=2

v̂(̄s, π̂i(̄s, σ̄))
∑

ω∈{ℓ,h}

λαω,0fω(̄s)x◦ωx̄i−2
ω

=
�

E[v|̃s = s◦] − E[v|̃s ≥ s◦]
�

∑

ω∈{ℓ,h}

λαω,0F̄ω(s◦) (3.A.6)

+
∞
∑

i=2

�

�

v̂(̄s, π̂i(̄s, σ̄)) − v̂(̄s, π̂i(̄s,σ))
�

×
∑

ω∈{ℓ,h}

λαω,0fω(̄s)x◦ωx̄i−2
ω

� (3.A.7)

+ E[v|̃s ≥ s◦]
∑

ω∈{ℓ,h}

λαω,0F̄ω(s◦) (3.A.8)

+
∞
∑

i=2

v̂(̄s, π̂i(̄s,σ))
∑

ω∈{ℓ,h}

λαω,0fω(̄s)x◦ωx̄i−2
ω (3.A.9)

Iterated expectations show that the sum of (3.A.8) and (3.A.9) equals the prior
value v̂0.1⁸ Thus, to show that utility from the deviation is strictly greater than v̂0, it
suffices to show that the sum of (3.A.6) and (3.A.7) is strictly positive.

Several lines of algebra establish the following identities:
E[v|̃s = s◦] − E[v|̃s ≥ s◦]

=
(vh − vℓ)αhαℓ

�

fh(s◦)F̄ℓ(s
◦) − fℓ(s

◦)F̄h(s◦)
�

�

∑

ω∈{ℓ,h}
αω,0fω(s◦)

��

∑

ω∈{ℓ,h}
αω,0F̄ω(s◦)

� ,

and
v̂(̄s, π̂i(̄s, σ̄)) − v̂(̄s, π̂i(̄s,σ))

=
(vh − vℓ)αhαℓfh(̄s)fℓ(̄s)x̄

i−2
h x̄i−2

ℓ

�

x̄hx◦
ℓ
− x̄ℓx

◦
h

�

�

∑

ω∈{ℓ,h}
αω,0fω(̄s)x̄i−1

ω

��

∑

ω∈{ℓ,h}
αω,0fω(̄s)x◦ωx̄i−2

ω

� .

18. For each i≥ 2, the summand in (3.A.9) is the probability that trade happens in period i under
the sequence σ. multiplied by the posterior value conditional on said event. In (3.A.8), we note that
E[v|̃s≥ s◦]

∑

ω∈{ℓ,h}
λαω,0F̄ω(s◦) is precisely that trade happens in period 1 under σ multiplied by the

posterior value on that event.
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Notice that the positive term (vh − vℓ)αhαℓ appears in both of the previous two iden-
tities. For the purposes of evaluating the sign of the sum of (3.A.6) and (3.A.7), we
may ignore this term. If we now plug the previous two identities back into (3.A.6)
and (3.A.7), it follows that we must verify that the following sum is strictly positive
sufficiently far enough along the sequence of signal structures:

�

fh(s◦)F̄ℓ(s
◦) − fℓ(s

◦)F̄h(s◦)
�

∑

ω∈{ℓ,h}
αω,0fω(s◦)

(3.A.10)

+
∞
∑

i=2

fh(̄s)fℓ(̄s)x̄
i−2
h x̄i−2

ℓ

�

x̄hx◦
ℓ
− x̄ℓx

◦
h

�

∑

ω∈{ℓ,h}
αω,0fω(̄s)x̄i−1

ω

. (3.A.11)

For convenience, let us restate the implications of Lemma 3.8 (the dependence
on k being suppressed in the notation).

∞ > lim
k→∞

fh(̄s)
fℓ(̄s)

> 1, (3.A.12a)

lim
k→∞

fh(̄s)
1 −

¯
Fℓ(s◦)

= 0, (3.A.12b)

lim
k→∞

fh(̄s)
fℓ(̄s)

fℓ(s
◦)

fh(s◦)
= 1. (3.A.12c)

We continue by establishing a lower bound on the term in (3.A.11). Consider
the difference

x̄hx◦ℓ − x̄ℓx
◦
h

=(1 − λfh(̄s))(1 − λF̄ℓ(s
◦)) − (1 − λfℓ(̄s))(1 − λF̄h(s◦).

(3.A.13)

We claim that this difference is strictly positive for all large k. We know from
(3.A.12a) that fh(̄s)/fℓ(̄s) is strictly greater than one and eventually bounded away
from one. Further, fh (̄s)

fℓ (̄s)
fℓ(s◦)
fh(s◦) approaches one. Thus fh(s◦)/fℓ(s◦) must be strictly larger

than one for all sufficiently large k. It now follows from Lemma 3.9 that (3.A.13) is
strictly positive for such k.

Next, consider the ratio

x̄i−2
ℓ

∑

ω∈{ℓ,h}
αω,0fω(̄s)x̄i−1

ω

. (3.A.14)

Recall the definition xω(s)= 1−λ(1−
¯
Fω(s)). The (MLRP) implies x̄i−1

h /x̄
i−2
ℓ
≤ 1,

and hence the following is a lower bound on (3.A.14):

x̄i−2
ℓ

∑

ω∈{ℓ,h}
αω,0fω(̄s)x̄i−1

ω

≥
1

∑

ω∈{ℓ,h}
αω,0fω(̄s)

. (3.A.15)
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The fact that the term in (3.A.13) is strictly positive and the inequality in (3.A.15)
together imply that the following is a lower bound on (3.A.11):

∞
∑

i=2

fh(̄s)fℓ(̄s)x̄
i−2
h x̄i−2

ℓ

�

x̄hx◦
ℓ
− x̄ℓx

◦
h

�

∑

ω∈{ℓ,h}
αω,0fω(̄s)x̄i−1

ω

≥
fh(̄s)fℓ(̄s)
∑

ω∈{ℓ,h}
αω,0fω(̄s)

�

x̄hx◦ℓ − x̄ℓx
◦
h

�

∞
∑

i=2

x̄i−2
h

=
fh(̄s)fℓ(̄s)
∑

ω∈{ℓ,h}
αω,0fω(̄s)

�

x̄hx◦ℓ − x̄ℓx
◦
h

� 1
1 − x̄h

.

If we plug back in the definition xω(s)= 1−λ(1−
¯
Fω(s))= 1−λF̄ω(s), we obtain

fℓ(̄s)
(1 − λfh(̄s))(1 − λF̄ℓ(s

◦)) − (1 − λfℓ(̄s))(1 − λF̄h(s◦))
λ

∑

ω∈{ℓ,h}
αω,0fω(̄s)

. (3.A.16)

To summarize: We may complete the proof by verifying that the sum of (3.A.10)
and (3.A.16) is strictly positive for all sufficiently large k. This sum reads

�

fh(s◦)F̄ℓ(s
◦) − fℓ(s

◦)F̄h(s◦)
�

∑

ω∈{ℓ,h}
αω,0fω(s◦)

(3.A.17)

+fℓ(̄s)
(1 − λfh(̄s))(1 − λF̄ℓ(s

◦)) − (1 − λfℓ(̄s))(1 − λF̄h(s◦))
λ

∑

ω∈{ℓ,h}
αω,0fω(̄s)

. (3.A.18)

It is useful to rearrange the sum of (3.A.17) and (3.A.18) before proceeding.
Dividing the sum of (3.A.17) and (3.A.18) by

fℓ(̄s)
F̄ℓ(s◦)

∑

ω∈{ℓ,h}
αω,0fω(̄s)

leaves its sign unchanged. Rearranging the resulting terms further via standard al-
gebraic manipulations, we find that the sign of the sum of (3.A.17) and (3.A.18) is
the sign of
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





fh(s◦)
fℓ(̄s)

∑

ω∈{ℓ,h}
αω,0fω(̄s)

∑

ω∈{ℓ,h}
αω,0fω(s◦)

− 1







−
F̄h(s◦)

F̄ℓ(s◦)







fℓ(s
◦)

fℓ(̄s)

∑

ω∈{ℓ,h}
αω,0fω(̄s)

∑

ω∈{ℓ,h}
αω,0fω(s◦)

− 1







+
fℓ(̄s)(1 − λF̄h(s◦)) − fh(̄s)(1 − λF̄ℓ(s

◦))

F̄ℓ(s◦)

=
�

π0

�

fh(̄s)
fℓ(̄s)
− 1

�

+ 1 −
fℓ(s◦)
fh(s◦)

��

fℓ(s◦)
fh(s◦)

+ π0

�−1

(3.A.19)

−π0
F̄h(s◦)

F̄ℓ(s◦)

fh(s◦)
fℓ(s◦)

�

fh(̄s)
fℓ(̄s)

fℓ(s◦)
fh(s◦)

− 1
��

1 + π0
fh(s◦)
fℓ(s◦)

�−1

(3.A.20)

+
fℓ(̄s)(1 − λF̄h(s◦)) − fh(̄s)(1 − λF̄ℓ(s

◦))

F̄ℓ(s◦)
. (3.A.21)

We complete the proof by arguing that, along the sequence of signal structures,
the term in (3.A.19) is positive (far enough along the sequence) and bounded away
from 0, whereas the sum of (3.A.20) and (3.A.21) admits a lower bound that con-
verges to 0.

Beginning with (3.A.19) we infer from (3.A.12a) and (3.A.12b) that fh (̄s)
fℓ (̄s) − 1 and

1− fℓ(s
◦)

fh(s◦) are eventually and bounded away from 0. We also know from (3.A.12a) that
�

fℓ(s
◦)

fh(s◦) +π0

�−1
is bounded. Hence (3.A.19) is eventually positive and bounded away

from 0.
Turning to (3.A.19), we infer from (3.A.21) that

�

fh (̄s)
fℓ (̄s)

fℓ(s◦)
fh(s◦) − 1

�

converges to 0.
The ratio F̄h(s◦)

F̄ℓ(s◦) is bounded (it converges to the ratio of the densities at 1.) Simulta-
neously, we know from (3.A.12a) and (3.A.12c) that all others terms in (3.A.19) are
bounded along the sequence. Thus (3.A.20) converges to 0.

Lastly, turning to (3.A.21), we have the following lower bound on (3.A.21):

fℓ(̄s)(1 − λF̄h(s◦)) − fh(̄s)(1 − λF̄ℓ(s
◦))

F̄ℓ(s◦)
≥ −

fh(̄s)(1 − λF̄ℓ(s
◦))

F̄ℓ(s◦)
.

We conclude from (3.A.12c) that this lower bound converges to 0.

3.A.4 Surplus extraction with binary signals

Proof of Proposition 3.4. We proceed along a number of claims.

Claim 3.10. If µ′ ∈∆(S∞) is a fully mixed mixed strategy, then for all i and s we have
π̂i(s,µ

′)≥ π̂i(̄s, σ̄)
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Proof of Claim 3.10. Given an integer i and a pure strategy σ, let N(i,σ)= |{j ∈
{1, . . . , i− 1}: σj = s̄}|. That is, N(i,σ) is the number of times σ plays s̄ in rounds 1
to i− 1.

Since signals are binary, we may write the posterior π̂i(s,µ
′) as follows:

π̂i(s,µ
′) =π0

∑

σ∈Sn
1(σi=s)µ

′(σ)
i−1
∏

j=1
(1 − λ(1 −

¯
Fh(σj)))

∑

σ∈Sn
1(σi=s)µ′(σ)

i−1
∏

j=1
(1 − λ(1 −

¯
Fℓ(σj)))

=π0

∑

σ∈Sn
1(σi=s)µ

′(σ) (1 − λ)(i−1)−N(i,σ)
�

1 − λfh(̄s)
�N(i,σ)

∑

σ∈Sn
1(σi=s)µ′(σ) (1 − λ)(i−1)−N(i,σ)

�

1 − λfℓ(̄s)
�N(i,σ)

=π0

∑

σ∈Sn
1(σi=s)µ

′(σ)
�

1−λfh (̄s)
1−λ

�N(i,σ)

∑

σ∈Sn
1(σi=s)µ′(σ)

�

1−λfℓ (̄s)
1−λ

�N(i,σ)
.

The belief π̂i(̄s, σ̄) is given by

π̂i(̄s, σ̄) =π0

�

1 − λfh(̄s)
1 − λfℓ(̄s)

�i−1

.

Hence the sign of difference π̂i(s,µ
′)− π̂i(̄s, σ̄) is the sign of

∑

σ∈Sn

1(σi=s)µ
′(σ)

�

�

1 − λfℓ(̄s)
�i−1

�

1 − λfh(̄s)
1 − λ

�N(i,σ)

−
�

1 − λfh(̄s)
�i−1

�

1 − λfℓ(̄s)
1 − λ

�N(i,σ)�

=
∑

σ∈Sn

�

1(σi=s)µ
′(σ)

(1 − λ)N(i,σ)

�

(1 − λfh(̄s))(1 − λfℓ(̄s))
1 − λ

�N(i,σ)

×
�

�

1 − λfℓ(̄s)
�i−1−N(i,σ) −

�

1 − λfh(̄s)
�i−1−N(i,σ)�

�

.

This sum is weakly positive since fℓ(̄s)< fh(̄s) holds and since N(i,σ) is no greater
than i− 1.

Claim 3.11. If (µ,π) is a sequential equilibrium of Γ (∞, 0), then the seller’s equilib-
rium expected utility is E[v|π0], and µ is the pure strategy σ̄

Proof of Claim 3.11. Since (µ,π) is a sequential equilibrium, the belief π is the
pointwise limit of a sequence of Bayesian posteriors derived from fully-mixed strate-
gies. Thus Claim 3.10 implies that, for arbitrary i ∈ N and s ∈ S, the belief πi(s)
is bounded below by π̂i(̄s, σ̄). The seller’s utility is pointwise-increasing in the be-
liefs. Hence, given beliefs π, and the seller’s utility from the pure strategy σ̄ is at
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least V(σ̄, π̂(·, σ̄)). Since π̂i(̄s, σ̄) is the posterior induced by σ̄, the reasoning of
Lemma 3.2 via iterated expectations shows that V(σ̄, π̂(·, σ̄)) equals v̂0. Thus v̂0 is
a lower bound on the seller’s equilibrium utility. We know from Lemma 3.2 that v̂0

is also an upper bound on the seller’s equilibrium utility. Hence another application
of Lemma 3.2 shows that the seller’s utility is v̂0 and that her strategy is σ̄.

Appendix 3.B Unobservable time-on-the-market

3.B.1 Definitions and notation

In this section we derive expressions for the seller’s expected utility and buyers’
posterior beliefs in the game of Section 3.3.

Let n ∈ N and let c ∈ [0,λvℓ]. A mixed strategy of the seller is an element µn

of ∆(Sn). Buyers’ beliefs are represented by a function π;n : S→ [0,π0]. (In the
main text, we introduced beliefs as a function mapping to [0,∞], but, as in Ap-
pendix 3.A.1, it is without loss to focus on beliefs in [0,π0].)

3.B.1.1 The seller’s expected utility

Given π;n, the seller’s expected utility from a mixed strategy µn is

V;(µn,π;n, n, c) =
∑

σ∈Sn

µn(σ)
n
∑

i=1

∑

ω∈{ℓ,h}

�

αω

i−1
∏

j=1

�

1 − λF̄ω(σj)
�

×
�

λF̄ω(σi)v̂(σi,π
;(σi)) − c

�

�

.

(3.B.1)

3.B.1.2 Buyers’ inference

Given a mixed strategy µn, let Sn(µn) denote the subset of signals that µn plays with
non-zero probability in at least one of the n periods. That is, s is in Sn(µn) if and
only if

n
∑

i=1

∑

σ∈Sn

1(σi=s)µn(σ) > 0. (3.B.2)

Givenµn and s ∈ Sn(µn), the Bayesian posterior conditional on arriving to themarket
on being recommended s is well-defined. We denote it by π̂;n(s,µn). It is given by

π̂;n(s,µn) = π0

∑

σ∈Sn

n
∑

i=1
1(σi=s)µn(σ)

i−1
∏

j=1

�

1 − λF̄ω(σj)
�

∑

σ∈Sn

n
∑

i=1
1(σi=s)µn(σ)

i−1
∏

j=1

�

1 − λF̄ω(σj)
�

. (3.B.3)
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A mixed strategy µn is fully mixed if Sn(µn)= S; that is, if each cutoff is recom-
mended with non-zero probability in at least one period.

3.B.2 Auxiliary Results

This part of the appendix presents some auxiliary results.

Lemma 3.12. Let n ∈ N, c ∈ [0,λvℓ], and µn ∈∆(Sn). Let π;n : S→ [0, 1] be a func-
tion that agrees with π̂;n(·,µn) at all s in Sn(µn). Then we have

V;(µn,π;n, n, c) ≤ v̂0.

The proof is analogous to that of Lemma 3.2 and is omitted.
The next result is chiefly used in the upcoming proof of Proposition 3.6; the

reader may prefer to skip the result for now returning to it as needed. Consider an
auxiliary fixed-point problem in which, for some given integer j and signal s∗, the
seller is restricted to randomizing over pure strategies in which s∗ is played in all of
the first j rounds. Formally, given n ∈ N and j ∈ N∪ {0} such that n− 1≥ j, let

Σn,j,s∗ =
�

(σ1, . . . ,σn) ∈ Sn :
�

∀k′ : 1≤k′≤j, σk′ = s∗
�	

.

The set of probability distributions over Σn,j,s∗ is denoted by ∆(Σn,j,s∗). As a conven-
tion, for j= 0, the set Σn,j,s∗ means the set Sn.

Lemma 3.13. Let c ∈ [0, vℓ]. Let n ∈ N and j ∈ N∪ {0} be such that n− 1≥ j. Let
s∗ ∈ S. There exists a sequence {µk}k∈N in ∆(Σn,j,s∗), a strategy µn,j in ∆(Σn,j,s∗), and
a belief π;n,j satisfying all of the following:

(1) We have

µn,j ∈ argmax
µ′∈∆(Σn,j,s∗ )

V;(µ′,π;n,j, n, c). (3.B.4)

(2) For all k, the strategy µk is fully mixed.
(3) The sequence {µk}k∈N converges to µn,j as k→∞.
(4) The sequence of induced beliefs {π̂;n(·,µk)}k converges to π;n,j as k→∞.

The proof proceeds via routine arguments and is omitted.
As an immediate corollary, we find that Γ ;(n, c) admits some sequential equilib-

rium. In the main text, this was stated as Lemma 3.5.

Proof of Lemma 3.5. Invoke Lemma 3.13 with j= 0.

The next auxiliary lemma will be useful for the upcoming proof of Proposi-
tion 3.6; the reader may prefer to skip the result for now returning to it as needed.
It characterizes the beliefs which are induced by a strategy in ∆(Σn,j,s∗) for large n
and j. Verbally, all on-path cutoffs different from s∗ lead to a belief that the state is ℓ
with overwhelming probability. Conversely, the belief at s∗ is approximately π0

F̄ℓ(s∗)
F̄h(s∗) .
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Lemma 3.14. Let s∗ ∈ S \ {
¯
s}. Let {jn}n∈N be a sequence of integers. For all n, let µn

be a mixed strategy in ∆(Σn,jn,s∗). If the sequence (jn)n∈N diverges to +∞, then for
every ϵ > 0 there exists nϵ ∈ N such that for all n greater than nϵ all of the following
are true:

(1) If s is in Sn(µn) \ {s∗}, then π̂;n(s∗,µn)< ϵ holds.
(2) We have

�

�

�

�

π̂;n(s∗,µn) − π0
F̄ℓ(s∗)
F̄h(s∗)

�

�

�

�

< ϵ. (3.B.5)

Proof of Lemma 3.14. Let ϵ > 0. Turning to the first claim, let n be arbitrary and
consider a signal s in Sn(µn) \ {s∗}. The posterior π̂;n(s,µn) is defined to be

π̂;n(s,µn) =

∑

σ∈Sn

n
∑

i=1
1(σi=s)µn(σ)

∏i−1
j=1

�

1 − λF̄h(σj)
�

∑

σ∈Sn

n
∑

i=1
1(σi=s)µn(σ)

∏i−1
j=1

�

1 − λF̄ℓ(σj)
�

.

By definition of ∆(Σn,jn,s∗), the distribution µn assigns positive probability to a pure
strategyσ only ifσ is inΣn,jn,s∗ . Accordingly, conditional on seeing a signal different
from s∗, a buyer can be sure that at least jn rounds have passed in which s∗ was not
accepted. This implies the following identity for arbitrary ω:

∑

σ∈Sn

n
∑

i=1

1(σi=s)µn(σ)
i−1
∏

j=1

�

1 − λF̄ω(σj)
�

=
�

1 − λF̄ω(s∗)
�jn

∑

σ∈Σn,jn ,s∗

n
∑

i=jn+1

1(σi=s)µn(σ)
i−1
∏

j=jn+1

�

1 − λF̄ω(σj)
�

.

Hence the posterior belief π̂;n(s,µn) reads

π̂;n(s,µn) =

�

1 − λF̄h(s∗)

1 − λF̄ℓ(s∗)

�jn−1

∑

σ∈Σn,jn ,s∗

n
∑

i=jn

1(σi=s)µn(σ)
∏i−1

j=1

�

1 − λF̄h(σj)
�

∑

σ∈Σn,jn ,s∗

n
∑

i=jn

1(σi=s)µn(σ)
∏i−1

j=1

�

1 − λF̄ℓ(σj)
�

.

The (MLRP) implies that the second fraction in this expression is less than 1. More-
over, since s∗ is not

¯
s, we infer from the (MLRP) that 1−λF̄h(s∗)< 1−λF̄ℓ(s

∗) holds.
Thus there is some integer j′ϵ satisfying

jn ≥ j′ϵ ⇒
�

1 − λF̄h(s∗)

1 − λF̄ℓ(s∗)

�jn−1

< ϵ.

In particular, for such jn above j′ϵ, the belief π̂;n(s,µn) is less than ϵ for all s ∈ Sn(µn).
Keeping this in mind, let us turn to the second part of the claim.



108 | 3 Transparency in Sequential Common-Value Trade

Consider the probability that a buyer assigns to following joint event: He arrives
to the market when the object has not yet been traded and is then offered a signal
of s∗. Conditional on the state beingω, we denote this probability by qω,n; it is given
by

qω,n =
1
n

∑

σ∈Sn

n
∑

i=1

1(σi=s∗)µn(σ)
i−1
∏

j=1

�

1 − λF̄ω(σj)
�

.

Using that µn is in ∆(Σn,jn,s∗), we find that qω,n equals

1
n

� jn
∑

i=1

�

1 − λF̄ω(s∗)
�i−1

+
�

1 − λF̄ω(s∗)
�jn

∑

σ∈Σn,jn ,s∗

n
∑

i=jn+1

µn(σ)1(σi=s∗)

i−1
∏

j=jn+1

�

1 − λF̄ω(σj)
�

�

A moment’s thought reveals that the following are lower and upper bounds, respec-
tively, on qω,n:

1
n

jn
∑

i=1

�

1 − λF̄ω(s∗)
�i−1

≤qω,n

≤
1
n

 

jn
∑

i=1

�

1 − λF̄ω(s∗)
�i−1

!

+
�

1 − λF̄ω(s∗)
�jn

n
∑

i=jn+1

(1 − λF̄ω(̄s))i−(jn+1).

Recall that jn→∞ as n→∞. Hence we have nqω,n→ 1/(λF̄ω(s∗) as n→∞. The
posterior belief π̂;n(s∗,µn) is equal to the ratio π0qh,n/qℓ,n. Hence, there is an integer
j′′ϵ such that π̂;n(s∗,µn) is within ϵ of π0F̄ℓ(s

∗)/F̄h(s∗) if jn is greater than j′′ϵ .
Let jϵ =max(j′ϵ, j′′ϵ ). The preceding arguments show that all desired inequalities

hold for µn if jn is above jϵ. Recalling that jn→∞ as n→∞, the claim follows.

3.B.3 Signaling calendar time

This part of the appendix is devoted to the proof of Proposition 3.6. Before delv-
ing into the details, let us sketch the idea. Let s∗ ∈ S \ {

¯
s}. We begin by defining a

sequence (jn)n∈N of integers. Think of this as a sequence that diverges to∞, but
not too rapidly. In the game with n buyers, we then consider a restricted notion of
equilibrium in which the seller is required to play s∗ in the first jn rounds (including
in deviations). Lemma 3.13 from Appendix 3.B.2 shows that such an “equilibrium”
exists. As long as jn diverges to∞, Lemma 3.14 from Appendix 3.B.2 then implies
that all signals different from s∗ induce buyers to update their beliefs such that their
willingness to pay is approximately vℓ; this step requires that s∗ be different from
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¯
s. Moreover, their willingness to pay after s∗ is bounded away from vℓ; it is approxi-
mately the expression for the seller’s limit utility as given in (3.5). We can then show
that, far enough along the sequence, the seller will indeed find it optimal to only
play s∗ in the first, say, in rounds. To complete the proof, it is therefore sufficient to
check that in is eventually larger than jn, i.e. that the earlier constraint on the seller’s
strategy is eventually non-binding. For this final step, we require that jn not diverge
too quickly. Intuitively, the seller may have a motive to save on search costs even if
this entails trading at an undesirable price. Thus the speed at which costs cn vanish
needs to be taken into account when letting jn diverge.

Proof of Proposition 3.6. We shall first define the sequence of integers {jn}n∈N. Our
candidates for (µn,π;n) will then be derived from Lemma 3.13.

For all n let jn denote the largest integer (or zero) smaller than

min

�

1
2

ln vℓ − ln cn

− ln(1 − λF̄h(s∗))
,
n
2

�

. (3.B.6)

(If cn = 0, we understand the minimum to equal n/2.) The motivation for this ob-
scure choice of jn will reveal itself in the final step of the proof. For the moment, we
only note that n− 1≥ jn holds, and that jn and n− jn both go to infinity as n goes
to infinity.

For arbitrary n, we may appeal to Lemma 3.13 with jn in the role of j to assert
the following:

Claim 3.15. For all n, there exists a strategy µn in Σn,jn,s∗ , a belief π;n, and a sequence
{µn,k}k∈N in ∆(Σn,jn,s∗) such that all of the following are true:

(1) We have

µn ∈ argmax
µ′∈∆(Σn,jn ,s∗ )

V;(µ′,π;n,jn
, n, c). (3.B.7)

(2) For all k, the strategy µn,k is completely mixed, i.e. the sets Sn(µn,k) and S are equal.

(3) The sequence (µn,k)k∈N converges to µn as k→∞.

(4) The sequence of induced beliefs (π̂;n(·,µn,k))k converges to π;n as k→∞.

In what follows, we understand that for all n, the tuple (µn,π;n, {µn,k}k∈N) is as in
the conclusion of Equation (3.B.7). We will prove that the sequence {µn,π;n, jn}n∈N
satisfies all desired properties.

As a first step, we use Lemma 3.14 to characterize the beliefs π;n. Note that
Lemma 3.14 is silent on the beliefs at off-path cutoffs. We will make use of the fact
that, by construction, µn and π;n are well-approximated by µn,k and π̂;n(µn,k), respec-
tively. Since µn,k is completely mixed, we may then use Lemma 3.14 to characterize
the beliefs at all cutoffs.
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Claim 3.16. For all ϵ > 0 there exists nϵ ∈ N such that for all n greater than nϵ all of
the following are true:

(1) If s is in S \ {s∗}, then π̂;n(s,µn)< ϵ holds.

(2) We have
�

�

�

�

π̂;n(s∗,µn) − π0
F̄ℓ(s
∗)

F̄h(s∗)

�

�

�

�

< ϵ.

Proof Claim 3.16. Let ϵ > 0. Part 4. of Claim 3.15 implies that for all n we may find
kn such that |π̂;(s,µn,kn

)−π;n(s)|< ϵ/2 holds for all s ∈ S. For later reference, note
that µn,kn

is fully mixed.
Consider the sequence {µn,kn

}n∈N thus defined. Since jn diverges to∞, we may
appeal to Lemma 3.14 to find an integer nϵ such that for all n above nϵ all of the
following are true:

(1) If s is in Sn(µn,kn
) \ {s∗}, then π̂;(s,µn,kn

)< ϵ/2.
(2) We have

�

�

�

�

π̂;(s∗,µn,kn
)−π0

F̄ℓ(s
∗)

F̄h(s∗)

�

�

�

�

< ϵ/2.

Since µn,kn
is fully mixed, the sets Sn(µn,kn

) and S are equal. We also recall that the
inequality

|π̂;(s,µn,kn
)−π;n(s)|< ϵ/2

holds for all s ∈ S. The claim follows from the above inequalities.

The previous step allows an easy comparison of the prices that the seller can
hope to obtain underπ;n. To keep some of more algebraic steps readable, we simplify
notation. For all s ∈ S let

un(s) = v̂(s,π;n(s))

denote the price that the seller would obtain from trading at a cutoff of s when
beliefs are π;n. An immediate implication of Claim 3.16 is that un(s) converges to vℓ
for all s different from s∗. Moreover, we have

un(s∗)
n→∞
−−−→

1

π0
fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗) + 1

�

vhπ0
fh(s∗)
fℓ(s∗)

F̄ℓ(s
∗)

F̄h(s∗)
+ vℓ

�

.

In particular, for all sufficiently large values of n and all s different from s∗, we may
assert that un(s∗)− un(s) is positive and bounded away from zero. These inequalities
and the limit for un(s∗) are the only properties of π;n that will be relevant in the
remainder of the proof.

In what follows, if σn in Sn is some pure strategy for some n, then σn,i means
the i’th entry of σn, i.e. the seller’s action in period i.
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Claim 3.17. There exists n∗ ∈ N such that for all n greater than n∗, if σnsatisfies

σ ∈ arg max
σ′∈Sn

V;(σ′,π;n, n, cn),

then the following is true: For all i and i′, if σn,i = s∗ and i′ < i, then σn,i′ = s∗.

In other words, eventually, every pure best response to π;n will admit a cutoff-
structure: If s∗ is played, then it is played up to some integer-cutoff, and never after-
wards. (This integer-cutoff may be different for each best response. The cutoff may
also equal n, in which case the strategy plays s∗ in all periods.)

Proof Claim 3.17. Recall that un(s∗)− un(s) is positive and bounded away from zero
for all sufficiently large values of n and all s ∈ S \ {s∗}. Recall also that cn converges
to zero. Hence we may find an integer n∗ such if n is greater than n∗ and s is in
S \ {s∗}, then for all ω the inequality

un(s∗) − un(s) >
cn

λ
¯
Fω(s∗) −

¯
Fω(s)

F̄ω(s)F̄ω(s∗)

holds.
Fix an integer n greater than n∗, and let σ be in ∈ arg max

σ′∈Sn
V;(σ′,π;n, n, cn). To-

wards a contradiction, suppose the claim was false. Then there exists an index i
satisfying σn,i+1 = s∗ and σn,i ̸= s∗. Let vi+2,ω denote the seller’s expected payoff
from period i+ 2 onwards under σ, conditional on state ω. Conditional on state ω,
her expected payoff from period i onwards under σ is thus given by

un(σn,i)λF̄ω(σn,i)

+
�

un(s∗)λF̄ω(s∗) − cn

� �

1 − λF̄ω(σn,i)
�

+vi+2,ω

�

1 − λF̄ω(σn,i)
� �

1 − λF̄ω(s∗)
�

.

(3.B.8)

Consider the strategy σ′ in which the seller picks s∗ in period i, picks s in period
i+ 1, and otherwise acts as under σ. The contribution of periods before i as well
as the probability of reaching period i under σ′ is clearly the same as under σ.
Conditional on period i being reached in state ω, the probability that period i+ 2 is
reached under σ′ is

�

1−λF̄ω(s∗)
� �

1−λF̄ω(σn,i)
�

; this is the same as under σ. The
continuation vi+2,ω from period i+ 2 onwards in state ω is also unchanged by the
deviation since her behaviour in periods i+ 2 onwards does not change. Thus we
may evaluate the profit from the deviation in state ω by comparing the expression
in (3.B.8) to the following:

un(s∗)λF̄ω(s∗)

+
�

un(σn,i)λF̄ω(σn,i) − cn

� �

1 − λF̄ω(s∗)
�

+vi+2,ω

�

1 − λF̄ω(s∗)
� �

1 − λF̄ω(σn,i)
�

.

(3.B.9)
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The deviation to σ′ is profitable if (3.B.9) is strictly larger than (3.B.8). By rearrang-
ing, we find that deviation is profitable in state ω if and only if

un(s∗) − un(σn,i) >
cn

λ
¯
Fω(s∗) −

¯
Fω(σn,i)

F̄ω(σn,i)F̄ω(s∗)

holds. This inequality is implied by our choice of n∗ and the assumption that σn,i is
a cutoff different from s∗. Thus the deviation to σ′ is profitable in both states of the
world, and so we have a contradiction to the fact that σ is a best response to π;n.

Claim 3.18. There exists an integer n∗∗ such that if n≥ n∗∗, then (µn,π;n) is a sequen-
tial equilibrium of V;(n, cn).

Proof Claim 3.18. Recalling the construction of (µn,π;n) in Claim 3.15, it suffices
to verify that µn is a best response to π;n for all but finitely many n. Towards a
contradiction, suppose not. Then there is a subsequence such that for each of its
members there exists a profitable deviation from µn. By possibly relabelling, let this
subsequence be the sequence itself. The expected utility of the seller is a linear
function of her mixed strategy. Thus the assumption implies that for all n there
exists a pure strategy σn such that

V;(σn,π;n, n, cn) = max
σ′′∈Sn

V;(σ′′,π;n, n, cn)

>V;(µn,π;n, n, cn).
(3.B.10)

(The maximum is attained since Sn is finite.)
Let n∗ be as in Claim 3.17. For integers n above n∗, we infer that there must exist

in in {0, . . . , n} such that for all i ∈ {1, . . . , n} the following equivalence holds:

σn,i = s∗ ⇔ i ≤ in. (3.B.11)

That is, the strategy σ plays s∗ exactly up to some last period in, possibly never. In
particular, we conclude that σn belongs to the set Σn,in,s∗ .

Recall our construction of (µn,π;n). In particular, according to (3.B.7), we have

V;(µn,π;n, n, cn) = sup
σ′′∈Σn,jn ,s∗

V;(σ′′,π;n, n, cn). (3.B.12)

Note that Σn,jn,s∗ contains Σn,i,s∗ whenever i is an integer greater than jn; for Σn,i,s∗

contains exactly those pure strategies which play s∗ for at least i periods, whereas
the set Σn,jn,s∗ contains those strategies which play s∗ for at least jn periods. We have
already argued that σn is in Σn,in,s∗ . We therefore conclude from (3.B.10) that, for
all n, the integer in from (3.B.11) is less than jn.

Consider the pure strategy σ∗n = (s∗, . . . , s∗), i.e. the strategy that constantly
plays s∗. Note that σ∗n is in Σn,jn,s∗ , so that (3.B.12) implies

V;(µn,π;n, n, cn) ≥ V;(σ∗n,π;n, n, cn). (3.B.13)
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Using the inequality in ≤ jn, we shall argue that for sufficiently large values of n we
have

V;(σ∗n,π;n, n, cn) > V;(σn,π;n, n, cn);

in light of (3.B.10) and (3.B.13), this yields a contradiction.
Consider the expected utility from σ∗n, first. It is given by

un(s∗)
∑

ω∈{ℓ,h}

n
∑

i=1

αωλF̄ω(s∗)
�

1 − λF̄ω(s∗)
�i−1

−λcn

∑

ω∈{ℓ,h}

n
∑

i=1

αω
�

1 − λF̄ω(s∗)
�i−1

= un(s∗)
∑

ω∈{ℓ,h}

αω
�

1 −
�

1 − λF̄ω(s∗)
�n�

−cn

∑

ω∈{ℓ,h}

αω
1 −

�

1 − λF̄ω(s∗)
�n

F̄ω(s∗)
.

(3.B.14)

Now consider the expected utility fromσn. We recall thatσn selects s∗ exactly up
to some period in, where in ≤ jn. By ignoring solicitation costs, we obtain an upper
bound on the expected utility from σn. Verbally, a further upper bound is obtained
in the following hypothetical scenario: If the seller does not trade within in periods,
she gets a price of max

s∈S\{s∗}
(un(s)) as soon she reaches period in + 1. Formally,

V;(σn,π;n, n, cn)

=un(s∗)
∑

ω∈{ℓ,h}

in
∑

i=1

αωλF̄ω(s∗)
�

1 − λF̄ω(s∗)
�i−1

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

�

αω
�

1 − λF̄ω(s∗)
�in

×
n
∑

i=in+1

λF̄ω(σn,i)
i−1
∏

j=in+1

�

1 − λF̄ω(σn,j)
�

�

≤un(s∗)
∑

ω∈{ℓ,h}

αω

�

1 −
�

1 − λF̄ω(s∗)
�in
�

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

αω
�

1 − λF̄ω(s∗)
�in

=un(s∗)
∑

ω∈{ℓ,h}

αω

�

1 −
�

1 − λF̄ω(s∗)
�in
�

+ max
s∈S\{s∗}

(un(s))
∑

ω∈{ℓ,h}

αω
�

1 − λF̄ω(s∗)
�in

=un(s∗) +
�

max
s∈S\{s∗}

(un(s)) − un(s∗)
�

∑

ω∈{ℓ,h}

αω
�

1 − λF̄ω(s∗)
�in . (3.B.15)
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We complete the argument by showing that (3.B.14) is greater than (3.B.15) for
sufficiently large n. The difference (3.B.14) minus (3.B.15) is given by

un(s∗)
∑

ω∈{ℓ,h}

αω
�

1 −
�

1 − λF̄ω(s∗)
�n� − cn

∑

ω∈{ℓ,h}

αω
1 −

�

1 − λF̄ω(s∗)
�n

F̄ω(s∗)

− un(s∗) −
�

max
s∈S\{s∗}

(un(s)) − un(s∗)
�

∑

ω∈{ℓ,h}

αω
�

1 − λF̄ω(s∗)
�in

=
∑

ω∈{ℓ,h}

αω
�

1 − λF̄ω(s∗)
�in
�

un(s∗) − max
s∈S\{s∗}

(un(s)) −
1

F̄ω(s∗)

cn
�

1 − λF̄ω(s∗)
�in

−
�

1 − λF̄ω(s∗)
�n−in

�

un(s∗) −
cn

F̄ω(s∗)

��

We know that n− in is greater than n− jn, and we know that the latter diverges as
n→∞. Hence, for all ω, the term

�

1 − λF̄ω(s∗)
�n−in

�

un(s∗) −
cn

F̄ω(s∗)

�

converges to 0 as n→∞. We also recall that un(s∗)− max
s∈S\{s∗}

is positive and bounded
away from 0 as n→∞. To prove that (3.B.14) minus (3.B.15) is strictly positive
for sufficiently large n, it therefore suffices to show that

cn
�

1 − λF̄ω(s∗)
�in

converges to 0 as n→∞. Again using that in is less than jn, it suffices to check that

cn
�

1 − λF̄ω(s∗)
�jn

(3.B.16)

converges to zero. Recall that definition of jn as

jn = min

�

1
2

ln vℓ − ln cn

− ln(1 − λF̄h(s∗))
,
n
2

�

where we understand the minimum to be n/2 if cn = 0. Therefore,

cn
�

1 − λF̄ω(s∗)
�jn
≤ c1/2

n v1/2
ℓ

.

Since cn→ 0 as n→∞, we conclude that (3.B.16) converges to 0, as promised.

In view of Claim 3.18, the next claim completes the proof.
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Claim 3.19. All of the following are true:
(1) For all n ∈ N, we have µn{σ ∈ Sn : (σ1, . . . ,σjn)= (s∗, . . . , s∗)}= 1.
(2) The sequence {jn}n∈N diverges to∞.
(3) Along the sequence (µn,πn), the good is traded with probability converging to

1. The seller’s expected utility and the price at which the good is traded converge almost
surely to

vℓ + (vh − vℓ)
π

fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗)

π
fh(s∗)
fℓ(s∗)

F̄ℓ(s∗)
F̄h(s∗) + 1

. (3.B.17)

Proof of Claim 3.19. Part (1) is immediate from the fact that µn is inΣn,jn,s∗ . Part (2)
follows from the definition of jn. Turning to part (3), note that the good is traded
at a price of un(s∗) whenever at least one of the first jn buyers who arrives to the
market has a signal equal to s∗. Conditional on stateω, the probability of this event is
�

1−λfω(s∗)
�jn . Since un(s∗) converges to (3.B.17), we conclude from here that good

is traded with probability converging to 1, and that the realized price conditional
on trade converges almost surely to (3.B.17). It is clear that the seller’s expected
solicitation costs converge to 0, and hence the seller’s expected utiltiy also converges
to (3.B.17).

3.B.4 Surplus extraction with binary signals

Proof of Proposition 3.7. Let σ̄n denote the pure strategy that plays s̄ in all periods.
Given a strategy σn in Sn, we denote its i’th entry by σn,i.

Given n ∈ N and m ∈ {0, . . . , n}, let σ(m)
n be the strategy which plays s̄ in all

rounds up to and including round m, and which plays
¯
s in all later rounds. Let us

also abbreviate x̄ω = 1−λfω(̄s).

Claim 3.20. For all m ∈ {0, . . . , n} we have π̂;n(̄s,σ(m)
n )≥ π̂;n(̄s, σ̄n).

Proof Claim 3.20. We will show that π̂;n(̄s,σ(m)
n )≥ π̂;n(̄s,σ(m+1)

n ) holds for arbitrary
m ∈ {1, . . . , n− 1}. This proves the claim since the strategy σ(n) is just the strategy
σ̄n.

The difference π̂;n(̄s,σ(m)
n )− π̂;n(̄s,σ(m+1)

n ) is given by
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π0

n
∑

i=1
1(σ(m)

n,i =s̄)

i−1
∏

j=1

�

1 − λF̄h(σ(m)
n,j )

�

n
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i=1
1(σ(m)

n,i =s̄)

i−1
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j=1

�

1 − λF̄ℓ(σ
(m)
n,j )

�

− π0

n
∑

i=1
1(σ(m+1)

n,i =s̄)

i−1
∏

j=1

�

1 − λF̄h(σ(m+1)
n,j )

�

n
∑

i=1
1(σ(m+1)

n,i =s̄)

i−1
∏

j=1

�

1 − λF̄ℓ(σ
(m+1)
n,j )

�

=π0

m
∑

i=1

i−1
∏

j=1

�

1 − λF̄h(σ(m)
n,j )

�

m
∑

i=1

i−1
∏

j=1

�

1 − λF̄ℓ(σ
(m)
n,j )

�

− π0

m+1
∑

i=1

i−1
∏

j=1

�

1 − λF̄h(σ(m+1)
n,j )

�

m+1
∑

i=1

i−1
∏

j=1

�

1 − λF̄ℓ(σ
(m+1)
n,j )

�

=π0

m
∑

i=1
(1 − λfh(̄s))i

m
∑

i=1
(1 − λfh(̄s))i

− π0

m+1
∑

i=1
(1 − λfh(̄s))i

m+1
∑

i=1
(1 − λfh(̄s))i

=π0

m
∑

i=1
x̄i

h

m
∑

i=1
x̄i
ℓ

− π0

m+1
∑

i=1
x̄i

h

m+1
∑

i=1
x̄i
ℓ

.

The sign of this difference is thus the sign of
� m
∑

i=1

x̄i
h

��

x̄m+1
ℓ +

m
∑

i=1

x̄i
ℓ

�

−

� m
∑

i=1

x̄i
ℓ

��

x̄m+1
h +

m
∑

i=1

x̄i
h

�

=
m
∑

i=1

�

x̄i
hx̄m+1
ℓ − x̄i

ℓx̄
m+1
h

�

.

The claim now follows from the fact that x̄ℓ = 1−λfℓ(̄s)> 1−λfh(̄s)= x̄h holds.

Claim 3.21. Let m ∈ {1, . . . , n}. Let σ ∈ Sn. If σn is a permutation of σ(m)
n , then

π̂;n(̄s,σn)≥ π̂;n(̄s,σ(m)
n ).

Proof Claim 3.21. For k ∈ {1, . . .m}, let ιk(σn) denote the label of the round in
which σn plays s̄ for the k’th time.1⁹ Defining ιk(σ(m)

n ) analogously, notice that we
have ιk(σ(m)

n )= k.
Given a state ω, consider the sum

n
∑

i=1

1(σn,i=s̄)

i−1
∏

j=1

�

1 − λ(1 −
¯
Fω(σn,i))

�

. (3.B.18)

The i’th summand is non-zero only if there is some k such that i= ιk(σn) holds. In
that case, the definition of ιk(σn) implies the following: Over the course of rounds

19. That is, ι1(σn)=min{i ∈ {1, . . . , n}: σn,i = s̄}. The remaining indices are defined inductively
via ιk(σn)=min{i ∈ {ιk−1(σn)+ 1, . . . , n}: σn,i = s̄}.
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{1, . . . , ιk(σn)− 1}, the strategy σn plays s̄ exactly k− 1 times, and
¯
s otherwise.

Hence we have
i−1
∏

j=1

�

1 − λ(1 −
¯
Fω(σn,i))

�

=(1 − λ(1 −
¯
Fω(

¯
s)))ιk(σn)−1−(k−1)(1 − λ(1 −

¯
Fω(̄s)))k−1

(1 − λ)ιk(σn)−1−(k−1)(1 − λfω(̄s))k−1

=(1 − λ)ιk(σn)−1−(k−1)x̄k−1
ω .

The sum in (3.B.18) thus equals
m
∑

k=1

(1 − λ)ιk(σn)−kx̄k−1
ω .

A similar expression can be derived for σ(m)
n , with the only change being that

we have ιk(σ(m)
n )= k for all k. The difference π̂;n(̄s,σn)− π̂;n(̄s,σ(m)

n ) thus reads

π0

m
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h
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=π0
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− π0
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h
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x̄k−1
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.

The sign of this difference is the sign of
m
∑

k=1

m
∑

k′=1

�
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h x̄k′−1

ℓ − (1 − λ)ιk(σn)−kx̄k−1
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h

�

=
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ℓ x̄k′−1

h
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h x̄k−1
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��
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ℓ − x̄k−1
ℓ x̄k′−1

h

�

To complete the proof, we argue that each of the summands in the last expression
is weakly positive.

First, recall that ιk(σn) denotes the label of the round in which σn plays s̄ for
k’th time, whereas ιk′(σn) denotes label of the round with the (k′)’th occurence.
This means that at least k− k′ rounds must pass between the two rounds. Formally,
we have ιk(σn)− ιk′(σn)≥ k− k′. This inequality implies that (1−λ)ιk(σn)−k − (1−
λ)ιk′ (σn)−k′ is negative.
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Second, notice that 1−λfℓ(̄s)= x̄ℓ > x̄h = 1−λfh(̄s) holds. Given that the sum-
mands consider k and k′ such that k> k′ holds, we conclude that x̄k−1

h x̄k′−1
ℓ
−

x̄k−1
ℓ

x̄k′−1
h is negative.

The previous two paragraphs imply that
�

(1 − λ)ιk(σn)−k − (1 − λ)ιk′ (σn)−k′
��

x̄k−1
h x̄k′−1

ℓ − x̄k−1
ℓ x̄k′−1

h

�

is weakly positive, which yields the desired conclusion.

Claim 3.22. If µ′n ∈∆(Sn) is a mixed strategy that plays s̄ with non-zero probability,
then π̂;n(̄s,µ′n) is well-defined and we have π̂;n(̄s,µ′n)≥ π̂;n(̄s, σ̄n).

Proof of Claim 3.22. For a pure strategy σn, a state ω and an integer i, let us ab-
breviate δω(i,σn)=

i−1
∏

j=1

�

1−λF̄ω(σn,j)
�

. In this notation, the sign of the difference

π̂;n(̄s,µ′n)− π̂;n(̄s, σ̄n) is

sgn
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n
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σ∈Sn
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�� n
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1(σn,i=s̄)δh(i,σn)
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.

Hence it suffices to show that, for arbitrary σn, the difference
� n
∑

i=1

1(σn,i=s̄)δh(i,σn)

�� n
∑

i=1

δℓ(i, σ̄n)

�

−

� n
∑

i=1

1(σn,i=s̄)δℓ(i,σn)

�� n
∑

i=1

δh(i, σ̄n)

�

is weakly positive. There is nothing to prove if σn never plays s̄. If σn plays s̄ at least
once, then the sign of this difference is precisely the sign of

π̂;n(̄s,σn) − π̂;n(̄s, σ̄n).

A strategy σn which plays s̄ a total of, say, m times is a permutation of the strategy
σ(m)

n . Thus Claim 3.20 and Claim 3.21 together imply π̂;n(̄s,σn)≥ π̂;n(̄s,σ(m)
n )≥

π̂;n(̄s, σ̄n). In particular, π̂;n(̄s,σn)− π̂;n(̄s, σ̄n) is weakly positive, as promised.

Claim 3.23. The seller’s equilibrium expected utility converges to v̂0



Appendix 3.B Unobservable time-on-the-market | 119

Proof of Claim 3.23. Recall that, for all n, the pair (µn,π;n) is a sequential equilib-
rium. Claim 3.22 therefore implies that π;n(̄s)≥ π̂;n(̄s, σ̄n) holds for all n. It follows
that the deviation to σ̄n yields an expected utility of at least

n
∑

i=1

∑

ω∈{ℓ,h}

αω

 

i−1
∏

j=1

�

1 − λF̄ω(σn,j)
�

!

�
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�
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n
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�
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αω
�

1 − (1 − λfω(̄s))n
�

− cn

∑

ω∈{ℓ,h}

αω
1 −

�

1 − λfω(̄s)
�n

fω(̄s)

We know from Lemma 3.14 that π̂;n(̄s, σ̄n) converges to fℓ(̄s)/fh(̄s). Hence the expres-
sion in the previous line converges to v̂(̄s,π0fℓ(̄s)/fh(̄s)) as n→∞. This expectation
equals v̂0. Thus we have shown that equilibrium utility admits a lower bound which
converges to v̂0. But we also know from Lemma 3.12 that equilibrium expected util-
ity is bounded above by v̂0, and hence we arrive at the desired conclusion.
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