
Approximations for Hierarchical and
Lower-Bounded Clustering and the

Complexity of Minimum-Error
Triangulation

DISSERTATION
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Anna Arutyunova
aus

Visaginas, Litauen

Bonn 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Gutachter/Betreuer: Prof. Dr. Heiko Röglin
Gutachterin: Prof. Dr. Melanie Schmidt

Tag der Promotion: 14.12.2023
Erscheinungsjahr: 2024

Abstract

Clustering deals with the problem of finding structures in data. Given a number k we
search for a good partition of a set of data points into at most k sets, where the sets of
the partition are called clusters. In the hierarchical clustering problem we have to find a
sequence of clusterings, one for every possible number k, such that the clusterings in the
sequence are hierarchically compatible with each other. We say that such a hierarchical
clustering achieves an α-approximation with respect to a given cost function, such as the
radius (k-center), the sum of (squared) distances between points and their closest center
(k-median and k-means), if the following holds. For every k the cost of its k-clustering
can be bounded by α times the cost of an optimal clustering of size k. However for most
of the popular k-clustering objectives there does not exist a hierarchical clustering with
approximation factor α = 1 since the optimal clusterings are in general not hierarchically
compatible. Therefore we are interested in the smallest α such that there always exists a
hierarchical clustering with approximation factor α. We construct a clustering instance
which shows that for the objective discrete radius (drad) we have α ≥ 4 and for radius
(rad) and diameter (diam) we have α ≥ 3+ 2

√
2. For drad we already know that we can

always compute a hierarchical clustering with approximation factor 4 and we show that
there always exists a hierarchical clustering with approximation factor 3 + 2

√
2 for rad

and diam.
In practice agglomerative clustering methods are often used to compute hierarchical

clusterings. One such algorithm is the complete linkage algorithm, which starts with
the clustering where every point is in its own cluster and merges the two clusters whose
union has the smallest (discrete) radius or diameter among all possible merges until all
points are in the same cluster. We know that this algorithm does compute an O(1)-
approximation in the case where the metric space is Euclidean and of constant dimension.
For general metric spaces we only know that the approximation factor of the algorithm
is in Ω(log(k)). We show that the approximation factor is in fact in Ω(k) for discrete
radius and diameter and that complete linkage computes an O(k)-approximation for
discrete radius and an O(k1.59)-approximation for diameter.

We further consider k-median/k-means with lower bounds, where we need to parti-
tion the set of data points into at most k clusters of size at least B for a given bound
B ∈ N while minimizing the k-median or k-means objective. There already exist O(1)-
approximation algorithms for the related facility location problem with lower bounds,
which can be transformed into an O(1)-approximation algorithm for k-median with lower
bounds. We present a general approach that shows how to transform any approximation
algorithm for facility location with lower bounds into an approximation algorithm for
k-median with lower bounds. Since the resulting approximation factors are high, we con-
sider a relaxed variant of lower bounds, which we call weak lower bounds. Here we allow
that points can be contained in multiple clusters. We discuss how to compute a (6.5+ ϵ)-
approximation for k-median with weak lower bounds and an O(1)-approximation for
k-means with weak lower bounds. Furthermore we show that we can transform every
solution with weak lower bounds into a solution with 2-weak lower bounds, where every
point is contained in at most two clusters, while the cost only increases by a constant
factor. We generalize this result and show that in fact we can achieve (1 + ϵ)-weak
lower bounds, where every point is assigned to one center and possibly a fraction of ϵ
to another center. Finally we present a bi-criteria approximation algorithm for k-means
with lower bounds.

In the last part of this thesis we study the minimum-error triangulation problem.
Given a set of triangulation points S ⊂ R2 and values f : S → R and a set of reference
points R in the convex hull of S with values h : R → R, we want to find a triangulation
of S such that the linear interpolation of f on the triangulation represents the values
at R as well as possible, i.e., the sum of squared differences between the values at
R and their interpolation is minimized. This problem has been studied before in the
context of sea surface reconstruction. While there exist many heuristics to compute
good minimum-error triangulations it was not known whether there exist polynomial
time approximation algorithms for this problem. We show that the problem to decide
whether there exists a triangulation of zero error is already NP-hard, which implies that
there does not exist an approximation algorithm for minimum-error triangulation which
runs in polynomial time unless P = NP.

4

Acknowledgments

In the following I would like to thank all people who made this thesis possible.
First of all I would like to thank my supervisor Heiko Röglin who supported me and

provided guidance during the course of my PhD. I was welcomed in a pleasant work
environment and was able to work freely on research topics that I was interested in. I
would also like to thank Melanie Schmidt who supported me and always comes up with
new interesting problems.

I am grateful for all the nice colleagues from our department that I had the pleasure
to meet. I always felt welcome and I am really happy that I could get to know you
all better after the long lasting home-office period. From my first months I especially
remember the 4 pm math-calendar problems solving meetings before Christmas. Later
on the discussions about games, music, food and many other topics as well as the cooking
and board game events made my time with you very enjoyable.

I would also like to thank all of my co-authors, Anne Driemel, Anna Großwendt, Jan-
Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer,
Petra Mutzel, Heiko Röglin, Melanie Schmidt, and Julian Wargalla.

During my time as PhD student I was financially supported by the German Research
Foundation (DFG) - project number 416767905.

Finally I would like to thank my friends and family: my mother and sister, as well
as Amanda, who always supported me in many ways and provided the distraction from
work that I sometimes needed. Especially I thank Michael. You not only read parts of
this thesis and listened to me whenever I talked about my research but you were always
there for me with your incredible kindness and care.

Contents

1 Introduction 9
1.1 Clustering Objectives . 11
1.2 Clustering with Weak Lower Bounds . 14

1.2.1 Results . 16
1.3 Hierarchical Clustering . 18

1.3.1 Complete Linkage . 20
1.3.2 Results . 20

1.4 Minimum-Error Triangulations . 22
1.4.1 Results . 25

2 Achieving Anonymity via Weak Lower Bound Constraints for k-Median
and k-Means 27
2.1 Preliminaries . 27
2.2 Reducing Lower-Bounded k-Clustering to Lower-Bounded Facility Location 29
2.3 Generalized k-Median with Weak Lower Bounds 33

2.3.1 Computing a Solution . 33
2.3.2 Reducing the Number of Assignments per Point to 2 34
2.3.3 Reducing the Number of Assignments per Point to (1+ϵ) 41

2.4 A Bi-Criteria Algorithm to Generalized k-Median with Lower Bounds . . 48

3 Hierarchical Clustering 53
3.1 The Price of Hierarchy . 55

3.1.1 An Upper Bound on the Price of Hierarchy 55
3.1.2 A Lower Bound on the Price of Hierarchy 59
3.1.3 Counterexample for Mondal’s Algorithm 74

3.2 Complete Linkage in General Metric Spaces 77
3.2.1 Approximation Guarantee of Single Linkage 78
3.2.2 An Upper Bound for Complete Linkage 80
3.2.3 A Lower Bound for Complete Linkage 90
3.2.4 The Average Approximation Factor 98

3.3 Complete Linkage in the Euclidean Space 99

4 Minimum-Error Triangulation Is NP-Hard 105
4.1 The Planar 3SAT Problem . 105
4.2 Preliminaries . 106
4.3 Overview of the Main Idea . 107
4.4 Notation and Local Properties . 109
4.5 The Gadgets . 111

7

CONTENTS

4.6 Replacing Mandatory Edges . 124
4.7 The Reduction . 125
4.8 The Paraboloid . 128

5 Conclusion 131

Bibliography 133

8

Chapter 1

Introduction

Clustering is an unsupervised learning tool for finding structures in data and has been
extensively used and studied in the last decades. Usually we are given a set of data
points and a measure which tells us how similar or dissimilar two data points are. The
task is then to compute a partition of the data into a certain number of subsets, or
clusters as we call them from now on. Naturally we would like that similar objects are
contained in the same cluster while dissimilar objects are contained in different clusters.

Clustering can be modeled in many different ways. We focus on a popular theoret-
ical model where the data is represented by points in a metric space, for example the
Euclidean space, and that the number k of clusters is part of the input. The metric then
indicates how similar or dissimilar two points are. If two points have a small distance to
each other, they are assumed to be similar and are more likely to be contained in the same
cluster. Often we additionally have to choose a center out of the metric space for every
cluster that represents the points in the cluster well. Then the goal is to minimize some
cost function like the maximum radius or diameter of a cluster (k-center/k-diameter) or
the sum of (squared) distances of points to their centers (k-median/k-means). We call
a solution which has the smallest cost among all possible clusterings optimal.

As an example we can think of the problem of placing k shops in some given area.
In this scenario the points represent households and the task is to find good locations
to build k shops which serve the households well. If we want that there is no person
which has to travel too far to its nearest shop, we would like to minimize the maximum
traveling distance between a household and its nearest shop. This can be modeled by
the k-center problem. Another possibility is to minimize the total traveling distance of
all persons. So there may be persons which have a large traveling distance to a shop
but we guarantee that a large fraction of persons do not travel a long distance to their
nearest shop. This can be modeled by sum based cost functions such as k-median and
k-means.

In general we cannot expect to compute an optimal solution efficiently for any of
these problems unless P = NP. Here efficient means that the running time of the
algorithm is polynomial in the input size of the problem instance. Therefore we focus
on computing a solution which is close to the optimal solution. If OPT denotes the cost
of an optimal clustering and α > 1, we want to compute a solution of cost at most
αOPT efficiently. Such solutions are called α-approximations. For k-center there exists
an efficient algorithm which computes such a solution for any instance for α = 2 [43].
For k-median and k-means there exist such algorithms for α = 2.67059 + ϵ [32] and
α = 5.912 + ϵ [31], respectively.

9

CHAPTER 1. INTRODUCTION

For some applications it is desirable to only allow clusters which have some additional
properties. For example given some number B we can ask for a clustering where every
cluster consists of at least B points. This problem is known as clustering with lower
bounds. Similarly we can enforce the clusters to have a size of at most B, which is
known as clustering with upper bounds. In the above example where we have to place
shops this could be useful to model that it is only economically viable to open a shop if
it serves at least B households (lower bounds) or to model that it has a certain capacity
of goods and therefore can only serve at most B households (upper bounds).

It is usually harder to compute reasonably good solutions for clustering under side
constraints efficiently. In the unconstrained version we make the problem easier by
allowing for solutions which are not necessarily optimal with respect to the given cost
function but have a cost that is within a factor α of the optimal cost. Similarly we
can relax the side constraints. For clustering with lower bounds we allow that clusters
violate the lower bound condition by some factor β ∈ (0, 1), i.e., every cluster has to
contain βB instead of B points. In a similar way we can relax upper bound constraints.
This leads to the concept of bi-criteria approximations. For clustering with lower bounds
we call a solution an (α,β)-approximation if every cluster contains at least βB points
and has cost at most αOPT. Here OPT denotes the cost of the best clustering where
every cluster consists of at least B points. Another possibility to relax the lower bound
constraint is to allow that a point can be contained in multiple clusters. While this may
increase the cost induced by a point, this allows us to satisfy the lower bound constraints
more easily. We call this clustering with weak lower bounds and will see how one can
obtain reasonably good solutions for this relaxed version of the problem.

However, all of these problems require that we know the number of clusters k be-
forehand. It may be already a non-trivial task to determine the right number of clusters
for some given data set and there may be multiple reasonable values for k. Suppose
that the data consists of DNA sequences of different animals. It is not hard to picture
that there are multiple values of k which produce sensible clusterings, for example for
different taxonomic ranks as order, family or species. We expect that the data admits a
hierarchical structure which allows to group the animals on different levels of granularity
(e.g. the taxonomic ranks). This leads us to the concept of hierarchical clustering. A
hierarchical clustering of a data set is actually a sequence of clusterings, one for each
possible number of clusters. We require that every two clusterings are hierarchically
compatible: Given a k-clustering and a k′-clustering with k < k′, the two clusterings are
hierarchically compatible if for every cluster in the k′-clustering there is a cluster in the
k-clustering containing this cluster.

A hierarchical clustering provides information on different levels of granularity. How-
ever, it is not clear how to evaluate the quality of such clusterings. A way to evaluate the
quality is to compare the cost of the k-clustering with the cost of an optimal k-clustering
for every k. This has the advantage that we can guarantee a good cost on every level.
Roughly speaking given some α ≥ 1 we want to find a hierarchical clustering which is an
α-approximation, i.e., the cost of its k-clustering is worse by factor at most α than the
cost of an optimal k-clustering for every k. However, it may happen that the optimal
clusterings are not hierarchically compatible, so we can generally not expect that there
exists a hierarchical clustering which is optimal for every possible number of clusters.

There are two common ways to compute hierarchical clusterings. The first possibility
is to start with the clustering in which every data point forms its own cluster and then
successively merge two clusters until all points are in the same cluster. It is easy to see

10

CHAPTER 1. INTRODUCTION

that the result is a hierarchical clustering. Usually the decision which two clusters we
merge in each step depends on the cost function which is to be optimized. These kinds
of approaches are known as agglomerative clustering methods. The second possibility is
to construct clusterings the other way around. We start with the clustering of size one
which consists of a cluster containing all points and successively divide a cluster into two
clusters until every point forms its own cluster. These kinds of approaches are known as
divisive clustering methods.

We study the performance of the popular complete linkage algorithm, which is an
agglomerative clustering method. In every step complete linkage merges the two clusters
whose merge results in the smallest radius (or diameter). We are interested in bounding
the ratio between the radius (or diameter) of the k-clustering computed by complete
linkage and the radius (or diameter) of the optimal k-clustering solution for every possible
k.

Besides the analysis of the approximation guarantee of popular algorithms for hierar-
chical clustering, we are interested in the smallest α such that there exists a hierarchical
clustering with approximation factor α for every clustering instance. We call this α the
price of hierarchy.

In the last part of this thesis we focus on the minimum-error triangulation problem.
This problem is considered in the work by Nitzke et al. [68] who focus on computing
triangulations of the sea surface by taking into account two types of data. The first
type of data is altimeter data obtained from tide gauge stations located at the sea shore.
The second type of data is altimeter data of the sea surface measured by satellites. The
tide gauge stations serve as triangulation points which are used to triangulate the sea
surface. Every triangulation of the sea surface now induces a piece-wise linear map by
linearly interpolating the altimeter data at the tide gauge stations in every triangle. A
triangulation is considered good if the interpolation of the tide gauge altimeter data
represents the satellite altimeter data on the sea surface well. Data from the tide gauge
stations is available for a long period of time, starting in the late 17th century for some
of the tide gauge stations while satellite altimeter data is only available since 1993.
Suppose we learn a good triangulation of the sea surface at some given year, then it
is a reasonable assumption that the learned triangulation of the sea surface together
with the altimeter data from tide gauge stations will recover the altimeter data on the
sea surface for years where satellite altimeter data is not available. Using integer linear
programming techniques Nietzke et al. [68] learn such a triangulation of the sea surface
using altimeter data from tide gauge stations and satellite altimeter data at some fixed
time and evaluate their triangulation at other times where both altimeter data from tide
gauge stations and satellite altimeter data are available. However, the question remains
whether we can expect to find efficient (approximation) algorithms which compute such
minimum-error triangulations. We will see later that unless P = NP we cannot expect
to find such algorithms.

1.1 Clustering Objectives

The k-clustering problem can be defined as follows: We are given a metric space (X , d),
a set of n points P ⊂ X and an objective function which assigns to every k-clustering
a positive real number. A k-clustering is a partition of the set P into k subsets C =
(C1, . . . , Ck). For an objective function cost we denote by Ocost the optimal solution with

11

CHAPTER 1. INTRODUCTION

respect to the objective cost. The task is to compute a k-clustering which approximates
the optimal solution as well as possible.

We consider the following objective functions throughout this thesis.

(discrete) k-center: The discrete radius of a cluster C ⊂ P is defined as drad(C) =
minc∈C maxx∈C d(c,x). Thus it is the radius of the cluster with respect to the
best possible center chosen from C. The cost of a k-clustering C is then given as
drad(C) = maxC∈C drad(C), the maximum radius of a cluster in C .

(non-discrete) k-center: The radius of a cluster C ⊂ P is defined as rad(C) = minc∈X
maxx∈C d(c,x). Thus it is the radius of the cluster with respect to the best possible
center chosen from X . The cost of a k-clustering C is then given as rad(C) =
maxC∈C rad(C).

k-diameter: The diameter of a cluster C ⊂ P is defined as diam(C) = maxx,y∈C d(x, y).
Thus it is the maximum distance between two points in the same cluster. The cost
of a k-clustering C is then given as diam(C) = maxC∈C diam(C).

The only difference between radius and discrete radius is the restriction that for the
discrete radius the center has to be contained in the cluster itself. While this may be
a small detail this has actually an impact on the price of hierarchy as well as on the
approximation guarantee of complete linkage as we see later.

All of these problems are related to each other. For the optimal solutions it holds
that rad(Orad) ≤ diam(Odiam) ≤ 2rad(Orad) and for any k-clustering C we obtain a
similar inequality rad(C) ≤ diam(C) ≤ 2rad(C). Therefore a k-clustering C which is an
α-approximation with respect to rad is a 2α-approximation for the diam objective and
vice versa. This is also true for the combinations diam, drad and rad, drad.

One of the easiest approximation algorithms for a clustering problem is probably the
algorithm of Gonzales [43] for k-center and k-diameter. It first computes an enumeration
of points in P as follows. The first point p1 is chosen arbitrarily from the set P, the
second point p2 is then the point with largest distance to p1. If we determined p1, . . . , pi

already then the (i + 1)-st point is the point which maximizes min1≤j≤i d(p, pj) for
p ∈ P. Thus pi+1 is the point in P farthest away from the first i points.

Now we can use the enumeration of points in P to determine a k-clustering. We
assign every point in P to the nearest point from p1, . . . , pk. Then two points are in
the same cluster if they are assigned to the same point. This yields a k-clustering
that is a 2-approximation with respect to the cost functions rad, drad, diam. Since it
is NP-hard to compute α-approximations for all of these objectives for α < 2 [52] this
algorithm already achieves the best possible approximation guarantee. Another well-
known 2-approximation algorithm for these objectives is the algorithm by Hochbaum
and Shmoys [52].

When talking about sum-based objectives we usually define a k-clustering not as a
partition of the set P but as a set of k centers C ⊂ X and an assignment σ : P → C of
points to centers. Let C = {c1, . . . , ck}, then this gives us a partition of the set P into
k subsets C = (C1, . . . , Ck) with Ci = σ−1(ci). Thus both definitions are related to each
other. The most popular sum-based objectives are k-median and k-means.

k-median: This objective is a sum over the distances between points and their assigned
centers med(C,σ) = ∑

x∈P d(x,σ(x)).

12

CHAPTER 1. INTRODUCTION

∆

1

Figure 1.1: An instance for 3-means consisting of 9 points. A possible solution of Lloyd’s
algorithm is depicted in gray and the optimal solution is depicted in red.

k-means: Similarly to the k-median objective we take the sum over the squared dis-
tances between points and their assigned centers mean(C,σ) = ∑

x∈P d
2(x,σ(x)).

Usually these problems, especially k-means, are studied in the Euclidean space. Here
we consider the more general version where (X , d) can be any metric space. Approxi-
mation algorithms for k-median and k-means have been extensively studied. In the case
of an arbitrary metric space we know that both problems are NP-hard to approximate
within a factor of 1+ 2/e for k-median and 1+ 8/e for k-means [48]. The best known ap-
proximation algorithms achieve an approximation factor of 2.67059+ ϵ [32] for k-median
and 9+ ϵ [54] for k-means. If the underlying metric space is Euclidean then we know that
both problems are NP-hard to approximate within a factor of 1.015 for k-median and 1.06
for k-means [34] while the best known approximation algorithms achieve an approxima-
tion guarantee of 2.406+ ϵ for k-median and 5.912+ ϵ for k-means [31]. However, these
algorithms are very complex. Therefore, in practice simpler algorithms are used, even
though they do not have good theoretical performance. For instances in the Euclidean
space Lloyd’s algorithm [64] has become a popular heuristic to compute solutions for
k-means. It starts with k centers chosen arbitrarily from P and is based on two optimiza-
tion steps. The first step is the following: If we are given a set of k centers, we compute
the respective k-clustering by assigning every point to its closest center. In the second
step we then optimize over the choice of centers, i.e., for a cluster we define the new cen-
ter to be the point which minimizes the sum of squared distances to points in the cluster.
It is a well-known fact that the best choice for the new center is the mean of points in the
cluster. Then we proceed with the first and second optimization step until the solution
stabilizes. While this works well in practice, the running time of Lloyd’s algorithm can
be exponential in the worst case [8] and the computed solution can be arbitrarily bad. To
see that the solution can be arbitrary bad we consider a set of 9 points on the plane with
coordinates (0, 0), (0, 1), (0, −1), (−∆, 0), (−∆, 1), (−∆, −1), (∆, 0), (∆, 1), (∆, −1) as il-
lustrated in Figure 1.1. If we want to compute a 3-means solution with Lloyd’s algo-
rithm we may choose (0, 0), (0, 1), (0, −1) as centers in the beginning. Now assigning
every point to its closest center and recomputing the means of the clusters will result
again in the centers (0, 0), (0, 1), (0, −1). The respective solution has then cost 6∆2

while the optimal solution chooses (−∆, 0), (0, 0), (∆, 0) as centers and has cost 6. Since
we can choose ∆ arbitrarily large, this shows that the approximation factor of Lloyd’s
algorithm can be arbitrarily bad.

The k-means++ algorithm improves upon the choice of the k centers in the beginning
of Lloyd’s algorithm. It samples the first center uniformly at random from P, then the
i-th center is sampled proportionally to the squared distance to the first i− 1 centers,
so if a point is very far away from the centers sampled so far, the probability to sample
this center is high. After sampling the k centers we proceed with Lloyd’s algorithm. The

13

CHAPTER 1. INTRODUCTION

Figure 1.2: Here we see a possible 4-center solution with lower bound B = 6. As we see
it is better to take a clustering of size three since any solution with four clusters results
in clusters of larger radius to satisfy the lower bound.

k-means++ algorithm computes an O(log(k))-approximation in expectation [9].
Facility location is not exactly a clustering problem but closely related to k-median

clustering. We are given a set of clients D, a set of facilities F with facility opening
costs fi ≥ 0 for every i ∈ F and a metric d on D ∪ F . The task is to compute a set
C ⊂ F of open facilities and an assignment σ : D → C such that the following objective
is minimized:

facility location: The objective is a sum of the opening cost of facilities and the sum
of distances between clients and their assigned facility fac(C,σ) =

∑
i∈C fi +∑

p∈D d(p,σ(p)).

The facility location problem is very similar to the k-median problem with the only dif-
ference that the number of centers is not bounded by k but instead we pay a certain cost
for every center we choose. Li [60] presents the currently best approximation algorithm
with an approximation ratio of 1.488, while the best known lower bound is 1.463 [48]
unless P = NP.

1.2 Clustering with Weak Lower Bounds

In the first part of this thesis we study k-clustering problems with lower bound con-
straints. Suppose we are given a metric space (X , d), a set of n points P ⊂ X and a
number 1 ≤ B ≤ n. We are interested in computing a clustering consisting of at most
k clusters such that the size of every cluster is at least B, while minimizing some objec-
tive function like k-center, k-median or k-means. Notice that here we explicitly allow
clusterings that consist of fewer than k clusters. We can define lower-bounded facility
location in a similar way by enforcing that every open facility serves at least B clients.

Enforcing a lower bound on the size of a cluster can be of interest for example if the
data points contain sensitive information, so we want to publish only a representative
(e.g. the center) and the size of each cluster. If now the clusters are sufficiently large
this guarantees a certain level of anonymity for the individual data points. This idea was
proposed by Aggarwal et al. [3] as a motivation to study k-center with lower bounds.

Lower bound constraints have been studied before in the context of radii-based clus-
tering and facility location. If we consider the k-center objective, we first notice that
in the unconstrained version of the problem the cost of an optimal solution decreases

14

CHAPTER 1. INTRODUCTION

with growing k, this may not be the case for clustering with lower bounds as we see for
example in Figure 1.2. If k is too large it may be even impossible to find solutions with
k clusters which satisfy the lower bound constraint at every cluster. Therefore we also
may remove the constraint of having at most k clusters and instead ask for a clustering
which minimizes the maximum radius and may have arbitrarily many clusters of size at
least B. Aggarwal et al. [3] studied both versions of the problem, one where the number
of clusters is upper bounded by some number k, i.e., k-center with lower bounds, and
one where the number of clusters can be arbitrarily large. For both versions they give
a polynomial time 2-approximation. In the more general version of this problem the
lower bound is not uniform but every point p ∈ X has its own lower bound B(p), which
has to be satisfied if p is chosen as center of a cluster. For this version Ahmadian and
Swamy [5] present a 3-approximation.

Regarding sum based objectives Karger and Minkoff [55] as well as Guha, Meyerson
and Munagala [49] show how to compute bi-criteria solutions for lower-bounded facility
location, i.e. solutions that can violate the lower bound by a certain factor and whose
cost can be bounded in terms of the cost of an optimal solution. The first algorithm
which computes a constant factor approximation to lower-bounded facility location is
the algorithm by Svitkina [72]. It first computes a bi-criteria solution as in [55, 49].
To decide which facilities to remove from the solution to satisfy the lower bound con-
straints, Svitkina reduces the instance to an instance of capacitated facility location,
for which constant factor approximations are already known [19]. The result is a 558-
approximation, which was later improved to 82.6 by Ahmadian and Swamy [4]. As in
radii-based clustering we can consider a more general version of lower-bounded facility
location which allows for an individual lower bound B(i) for every facility i. Li [61]
proves that there is a 4000-approximation for this problem, which we call non-uniform
lower-bounded facility location. There also has been an effort to design algorithms
with better approximation guarantees which run in FPT time. Bera et al. [20] give a
4.676-approximation for k-median with lower bounds running in time 2kpoly(n). For
Euclidean instances in Rd, Bandyapadhyay et al. [18] give a (1 + ϵ)-approximation for
k-median and k-means with lower bounds running in time 2Õ(k/ϵO(1))poly(nd).

We are interested in k-median/k-means clustering with lower bounds. Most of the
algorithms known for facility location with lower bounds can be transformed into al-
gorithms for k-median with lower bounds while the approximation factor can increase
by a constant factor. The bi-criteria algorithm for lower-bounded facility location in
[55, 49] can be transformed relatively straightforwardly to a bi-criteria algorithm for
k-median with lower bounds [50]. Furthermore the algorithms [72, 4] for lower-bounded
facility location can be adapted for k-median by replacing the first reduction step. This
is discussed in more detail in [51]. We show that using the concept of nesting, which is
for example also used in the design of approximation algorithms for hierarchical clus-
tering [63], any approximation algorithm for facility location with lower bounds can be
transformed into an approximation algorithm for k-median with lower bounds and this
reduction works also for more general k-clustering problems including k-means.

Since the approximation factor of algorithms for facility location with lower bounds
is relatively high this yields high approximation factors for k-median with lower bounds
as well. Also it is not clear whether the results in [72, 4, 49, 55] can be adapted for k-
means since the triangle inequality does not hold for squared Euclidean metrics, which
causes a problem when bounding the cost of the computed clustering.

15

CHAPTER 1. INTRODUCTION

B − 1 B − 1∆

Figure 1.3: On the difference between lower-bounded clustering and weakly lower-
bounded clustering.

Therefore we consider a relaxation of this problem which we call weakly lower-bounded
k-clustering where every point may be part of multiple clusters. Now our solution does
not consist of a partitioning of P, instead we want to cover P by at most k clusters,
each of size at least B, and these clusters may intersect. To explain this idea, consider
Figure 1.3. The instance consists of two sets of (B − 1) points such that the distance
of two points in the same set is small and the distance of two points in different sets
is large. For simplicity we assume that the distance between points in the same set is
zero. In Figure 1.3 we have two locations with B − 1 points, and the distance between
the two locations is ∆. If we enforce a lower bound of B, we can open only one center,
which results in a cost of (B − 1)∆ for 2-median and Ω(B∆2) for 2-means. If we allow
points to be assigned to multiple centers we can open two centers, one at each of the two
locations, and assign one point from every location to both centers and all other points
to its nearest center. This yields clusters of size B and the cost reduces from (B− 1)∆ to
2∆ for 2-median and from Ω(B∆2) to Ω(∆2) for 2-means. Thus even if we have to pay
additional connection cost for two of the points, the overall cost is smaller. In conclusion
we see that the cost of an optimal solution for clustering with lower bounds cannot be
bounded by the cost of an optimal solution for clustering with weak lower bounds within
a constant factor.

1.2.1 Results

We obtain the following results. First we show that any solution which satisfies lower
bounds but has arbitrary many clusters can be transformed into a solution with at most
k clusters.

Corollary (2.2.4). Suppose there exists a λ-approximation algorithm for k-median and
a µ-approximation algorithm for facility location with uniform or non-uniform lower
bounds. Then there exists a (2µ+ λ)-approximation for k-median with uniform lower
bounds and a (3µ+ 2λ)-approximation for k-median with non-uniform lower bounds.

Then we focus on weakly lower-bounded k-median/k-means. Both problems can
be reduced relatively straightforwardly to k-median/k-means with center costs, i.e., a
variant where opening a center c induces a cost fc. Since there exists a (3.25 + ϵ)-
approximation for k-median with center costs [28] and an O(1)-approximation for k-
means with center costs [53], we obtain a (6.5 + ϵ)-approximation for weakly lower
bounded k-median and an O(1)-approximation for weakly lower-bounded k-means.

We show that we can transform every solution for weakly lower-bounded k-median/k-
means into a solution where every point is assigned to at most two centers, which we call
solutions with 2-weak lower bounds. Both k-median and k-means are special cases of the
generalized k-median problem where the distance function d satisfies all properties of a
metric but the triangle inequality is only satisfied with a factor α, i.e., for all x, y, z ∈ X
we have d(x, z) ≤ α(d(x, y) + d(y, z)). The cost of a solution to this problem equals the
k-median cost med since it is just the sum of distances between points an their assigned
centers.

16

CHAPTER 1. INTRODUCTION

Theorem (2.3.4). Given a solution (C,σ) to generalized k-median with weak lower
bounds, we can compute a solution (C̃, σ̃) to generalized k-median with 2-weak lower
bounds (assigning every point at most twice) in polynomial time such that med(C̃, σ̃) ≤
α(α+ 1)med(C,σ).

If we plug in α = 1 for k-median, we obtain a solution for k-median with 2-weak
lower bounds which is by factor 2 worse than the given solution for k-median with weak
lower bounds. For k-means we plug in α = 2 and get an increase by a factor of 6.

Remember that lower-bounded clustering can be of interest when the points contain
sensitive information which we want to protect. The lower bound guarantees that pub-
lishing the centers of the clusters does not reveal information about the individual data
points. We also can use 2-weak lower-bounded clustering to guarantee anonymity since
the lower bound is satisfied for every cluster and at the same time the data distortion is
not to large, since every point is allowed to be contained in at most two clusters. We can
reduce the distortion of the data set even further by allowing a point to be assigned to
one center and with a fraction ϵ ∈ (0, 1) to a second center. We say that such solutions
satisfy (1 + ϵ)-weak lower bounds.

Theorem (2.3.10). Given 0 < ϵ < 1 and a solution (C,σ) to generalized k-median
with weak lower bounds, we can compute a solution (C̃, σ̃) to generalized k-median with
(1 + ϵ)-weak lower bounds in polynomial time such that med(C̃, σ̃) ≤ (⌈1

ϵ ⌉α(α+ 1) +
1)med(C,σ).

Finally, we show that our results imply an (O(1),O(1))-bi-criteria approximation
algorithm for generalized k-median with lower bounds, where the lower bounds are
satisfied only to an extent of B/O(1).

Theorem (2.4.2). Given a γ-approximate solution (C,σ) to generalized k-median with
2-weak lower bounds and a fixed β ∈ [0.5, 1) we can compute a (β, γmax{ αβ

1−β + 1, α2β
1−β })-

bi-criteria solution to generalized k-median with lower bounds in polynomial time. In
particular, there exists a polynomial time (1

2 ,O(1))-bi-criteria approximation algorithm
for k-means with lower bounds.

Notice that there already exists a bi-criteria algorithm for facility location [49, 55]
which can be transformed easily into a bi-criteria algorithm for k-median. However, the
triangle inequality is crucial for the analysis of this algorithm, therefore it is not clear if
it can be used to compute a bi-criteria approximation for k-means with lower bounds.
Notice that, unless we specify it, all these results hold for the more general case of non-
uniform lower bounds even if we focused on uniform lower bounds in the introduction
for simplicity.

These results presented in Chapter 2 are published in [17]. The work [17] is motivated
by the master thesis On Variants of Lower-Bounded Facility Location [10] supervised by
Melanie Schmidt, where we first develop the concept of weak lower bounds for the facility
location problem and present an approximation algorithm for this problem. Furthermore
we show how to modify a solution with weak lower bounds into a solution with 2-
weak lower bounds while the cost only increases by a constant factor. The work [17]
builds upon [10] but considers k-median and k-means with weak lower bounds. The
approximation algorithms for k-median and k-means with weak lower bounds follow
the same idea as in [10]. The modification of a solution with weak lower bounds into a
solution with 2-weak lower bounds is similar to [10] but contains significant modifications

17

CHAPTER 1. INTRODUCTION

to work for k-means. The work [17] has been carried out together with Melanie Schmidt
who also gave the initial idea for the concept of weak lower bounds. The reduction
of lower-bounded generalized k-median to lower-bounded generalized facility location
presented in Section 2.2 was developed by Melanie Schmidt. The proof that a solution
with weak lower bounds can be transformed into a solution with 2-weak lower bounds
(or (1 + ϵ)-weak lower bounds) was done by the author of this thesis as well as the
development of the bi-criteria algorithm and the proof of its approximation factor.

1.3 Hierarchical Clustering

In the second part of this thesis we study hierarchical clustering, which is defined as
follows.

Definition. Let (X , d) be a metric space and P ⊂ X a set of n points. A hierarchical
clustering H is a sequence of clusterings (Hn, . . . , H1) of the set P such that Hk is a
k-clustering and it satisfies the following property: for every 1 ≤ k < k′ ≤ n and every
cluster A ∈ Hk′ there exists a cluster B ∈ Hk with A ⊂ B. In this case we call Hk′ and
Hk hierarchically compatible with each other.

A hierarchical clustering is thus a sequence of clusterings where the clustering with
k′ clusters is a refinement of the clustering with k < k′ clusters. To evaluate the quality
of a hierarchical clustering we fix a k-clustering objective and compare to the optimal
cost on every level of granularity.

Definition. Let cost be an objective function for k-clustering which is to be minimized
and Ok an optimal k-clustering with respect to cost. We say that H has an approxi-
mation factor of α with respect to cost if H is an α-approximation on every level of
granularity, i.e., cost(Hk) ≤ α · cost(Ok) for all 1 ≤ k ≤ n.

We see that a small approximation factor α yields a strong guarantee for the hier-
archical clustering on every level of granularity. In fact α = 1 would imply that the
hierarchical clustering is optimal on every level. However, this cannot be achieved on
every clustering instance since there are not necessarily optimal clusterings On, . . . , O1
with respect to cost which are hierarchically compatible. We can see in Figure 1.4 a
clustering instance consisting of four points. For cost = diam we have diam(O3) = 1
and diam(O2) = 2. However, O3 and O2 are not hierarchically compatible and it is easy
to see that there exists no hierarchical clustering which has an approximation guarantee
< 3

2 .
This yields the question whether there even exist α-approximations for constant

α. This question was answered positively by Dasgupta and Long [39] and Charikar
et al. [27]. They both present independently an algorithm that computes efficiently
an 8-approximate hierarchical clustering with respect to the objectives rad, drad and
diam. It is known that under reasonable conditions both algorithms even compute the
same clustering [37]. Mondal [66] claims in a recent work that there exists an efficient
6-approximation for the drad objective. However, we will later see that this algorithm
does not achieve the claimed guarantee by presenting an instance where it computes only
a 7-approximation. For the objectives med and mean Plaxton [70] proposed constant-
factor approximations later on and Lin et al. [63] present a general framework that also
leads to constant approximation guarantees for many objective functions including med
and mean. Their framework can be applied to compute hierarchical clusterings for any

18

CHAPTER 1. INTRODUCTION

2 21 2 21

Figure 1.4: Here we see the optimal clusterings of size three and size two with respect
to cost = diam. These two clusterings are not hierarchically compatible.

cost function which satisfies a certain nesting property, especially those of k-median and
k-means. This yields a 20.71α-approximation for k-median and a 576β-approximation
for k-means. Here α = 2.67059 and β = 5.912 are the currently best approximation
guarantees for k-median [32] and k-means [31]. These factors can be improved to 16α
for k-median [36] and 32β for k-means [46].

There are still several questions arising: Are there algorithms which run in polynomial
time and can improve upon these factors? The 8-approximation by [39, 27] is still the
best known polynomial time algorithm for the objectives rad, drad and diam.

What is the best approximation guarantee that we can get in polynomial time under
the assumption that P ̸= NP? So far we only have the hardness results from the flat k-
center/k-diameter clustering which directly transform to the hierarchical setting. Unless
P = NP there is no polynomial time α-approximation for hierarchical clustering for α < 2
and the objectives drad, rad and diam. For drad, rad this is an immediate consequence
of the reduction from dominating set presented by [52]. A similar reduction from clique
cover yields the statement for diam. However, it is not clear whether it is even possible
to construct hierarchical clusterings which have approximation guarantee α < 2, which
already yields the final question.

What is the best approximation guarantee if we are not restricted to polynomial time
algorithms but are just interested in the best approximation factor that a hierarchical
clustering can achieve? As we have seen earlier, Figure 1.4 shows an easy example where
the approximation guarantee for the diameter is greater than one. Das and Kenyon-
Mathieu [37] and Großwendt [46] present instances for diam and rad, drad, where no
hierarchical clustering has an approximation guarantee smaller than 2. On the other
hand Großwendt [46] proves an upper bound of 4 on the approximation guarantee of
drad by using the framework of Lin et al. [63]. For the two other objectives diam, rad the
best known upper bound results from the 8-approximation by [39, 27].

Recently other cost functions for hierarchical clustering were proposed, which do
not compare to the optimal clustering on every level. Dasgupta [38] defines a new
cost function for similarity measures and presents an O(α log(n))-approximation for the
respective problem. This was later improved to O(α) independently by Charikar and
Chatziafratis [26] and Cohen-Addad et al. [33]. Here α is the approximation guarantee of
sparsest cut. However, Cohen-Addad et al. [33] prove that every hierarchical clustering
is an O(1)-approximation to the corresponding cost function for dissimilarity measures
when the dissimilarity measure is a metric. A cost function more suitable for Euclidean
spaces was developed by Wang and Moseley [74]. They prove that a randomly generated
hierarchical clustering performs poorly for this cost function and show that bisecting k-
means computes an O(1)-approximation.

19

CHAPTER 1. INTRODUCTION

1.3.1 Complete Linkage

Aside from the theoretical results, there also exist greedy heuristics, which are more
commonly used in applications. One very simple agglomerative algorithm is the fol-
lowing: starting from the clustering where every point is separate, it merges in every
step the two clusters whose merge results in the smallest increase of the cost function.
For the diam objective this algorithm is known as complete linkage. For convenience
we refer to the respective algorithm for rad and drad as complete linkage as well. For
the mean objective this is Ward’s method [75]. Other popular greedy heuristics include
single linkage and average linkage. Single linkage merges in every step the two clusters
with smallest distance to each other and average linkage merges the two clusters with
smallest average distance to each other. Here the distance of two clusters A,B is defined
as minx∈A,y∈B d(x, y) and the average distance is defined as 1

|A||B|
∑

x∈A,y∈B d(x, y).
Ackermann et al. [1] analyze the approximation guarantee of complete linkage in the

Euclidean space. They show an approximation guarantee of Ω(log(k)) for the objec-
tives drad, rad and diam assuming the dimension of the Euclidean space to be constant.
Surprisingly the dependence on the dimension d of the Euclidean space varies with the
choice of the objective function. For drad the approximation factor only depends linearly
on d, for rad it depends exponentially on d and for diam it depends doubly exponen-
tially on d. Later Großwendt and Röglin [44] improved the approximation guarantee
to O(1) under the assumption that d is constant. There are not many results regard-
ing complete linkage in general metric spaces. Dasgupta and Long [39] show a lower
bound of O(log(k)) on the approximation guarantee with respect to diam. For Ward’s
method Großwendt et al. [45] show an approximation guarantee of 2 under the strong
assumption that the optimal clusters are well separated. We analyze the approximation
guarantee of complete linkage in general metric spaces. We show that the approximation
guarantee of complete linkage is in Θ(k) for the drad. For diam we show a lower bound
of Ω(k) and an upper bound of O(kln(3)/ ln(2)) on the approximation factor. Our results
show that within our standard definition of the approximation factor complete linkage
does not perform better than single linkage, for which we show an upper bound of O(k)
on the approximation factor. This is surprising since single linkage is not designed to
minimize the diam or drad objective. However, in the definition of the approximation
factor we always consider the largest ratio between the cost of the clustering computed
by complete linkage and the optimal clustering as we vary over all possible cluster sizes.
In fact complete linkage for drad produces reasonable results for most of the cluster sizes
especially when compared to single linkage. To go past the worst case definition of an
approximation factor we therefore consider what approximation factor is achieved by
both clustering methods on average. We define the average approximation factor of a
hierarchical clustering as the average of all ratios between the cost of a k-clustering and
that of an optimal k-clustering. We show that the average approximation factor of com-
plete linkage for drad is in O(log(n)) while the average approximation factor of single
linkage is in Ω(n). Thus complete linkage for drad produces a hierarchical clustering
that is better on average than that produced by single linkage.

1.3.2 Results

Price of hierarchy. We have seen an example where it is not possible to find a
hierarchical clustering which is optimal on every level of granularity. Thus given some
objective function cost we are interested in the smallest α for which there always exists

20

CHAPTER 1. INTRODUCTION

a hierarchical clustering which is an α-approximation with respect to cost.

Definition. For cost ∈ {diam, rad, drad} the price of hierarchy ρcost ≥ 1 is defined as
follows.

1. For every instance (X , P, d), there exists a hierarchical clustering H of P that is
a ρcost-approximation with respect to cost.

2. For any α < ρcost there exists an instance (X , P, d), such that there is no hierar-
chical clustering of P that is an α-approximation with respect to cost.

We compute the price of hierarchy for all three objectives. First we provide a better
upper bound for the objectives rad, diam.

Theorem (3.1.2). For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

Second we construct an instance where there is no hierarchical clustering with ap-
proximation factor < 3 + 2

√
2 for rad, diam and approximation factor < 4 for drad.

Theorem (3.1.8). For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad
we have ρcost ≥ 4.

Notice that this implies that the price of hierarchy is exactly 3 + 2
√

2 for rad, diam.
For drad we can combine our result with the upper bound of 4 by [46] to see that the
price of hierarchy is exactly 4. The upper bound of 3 + 2

√
2 for the radius was also

recently proved by Bock [22] in independent work.

Complete linkage. In the second part of this chapter we analyze the approximation
guarantee of complete linkage and single linkage for the objectives drad and diam. Thus
we can assume that the clustering instance (X , P, d) satisfies X = P.

Theorem (3.2.4). Let H = (Hn, . . . , H1) be the hierarchical clustering computed by
complete linkage on (P, d) with respect to drad. For all 1 ≤ k ≤ n the radius drad(Hk)
is upper bounded by O(k)drad(Ok), where Ok is an optimal k-clustering with respect to
drad.

Theorem (3.2.12). Let H = (Hn, . . . , H1) be the hierarchical clustering computed by
complete linkage on (P, d) with respect to diam. For all 1 ≤ k ≤ n the diameter diam(Hk)
is upper bounded by ⌈kln(3)/ ln(2)⌉diam(Ok), where Ok is an optimal k-clustering with
respect to diam.

On the other hand we construct for both objectives instances where the cost of the
k-clustering computed by complete linkage is by factor at least k worse than the cost of
an optimal k-clustering.

Theorem (3.2.21). For every k ∈ N there exists an instance (V (Pk), d) on which
complete linkage, minimizing either diam or drad, computes a solution of diameter k or
radius k

2 , respectively, whereas the cost of an optimal solution is 1.

Thus the performance guarantee of complete linkage in general metric spaces with
respect to drad is in Θ(k). It remains an open question whether the analysis for diam
can be improved to prove an approximation guarantee of Θ(k).

Finally we present an easy proof that complete linkage computes anO(1)-approximation
in the Euclidean metric space. This result is a simplification of the proof presented by

21

CHAPTER 1. INTRODUCTION

Großwendt and Röglin [44] and implies slightly smaller approximation factors compared
to [44].

Chapter 3 contains results from the two works [13] and [14].
The work [13] has been carried out together with Anna Großwendt, Heiko Röglin,

Melanie Schmidt and Julian Wargalla. The paper is the result of many discussions
between all authors and a dynamic developing process that all authors contributed to.
Nevertheless, for the construction of the lower bound instance as well as the proof for the
performance guarantee of single linkage, the main contribution is due to Anna Großwendt
and Julian Wargalla. The proof of the upper bound on complete linkage for drad and
diam is mainly due to the the author of this thesis, and the notion of the average
approximation factor is solely due to the author of this thesis.

The work [14] has been carried out together with Heiko Röglin. Heiko Röglin sug-
gested to study the price of hierarchy for different clustering objectives. The paper is
the result of many discussions between both authors and a dynamic developing process
that both authors contributed to. However the author of this thesis mainly developed
the algorithm for the upper bound on the price of hierarchy for the objectives diam and
rad as well as the clustering instance and the proof for the lower bound on the price of
hierarchy for all three objectives.

Furthermore this chapter contains unpublished material. We give a simplified analy-
sis of the last steps of complete linkage presented in [44] which also yields slightly better
approximation factors.

1.4 Minimum-Error Triangulations

Given a set S on the Euclidean plane, a triangulation of S is a maximal set of straight
line edges between points in S which do not intersect except at their endpoints. We
define a triangle as the convex hull of three non-collinear points s, t,u and say that it is
part of a triangulation of S if its vertices s, t,u are in S, it does not contain further points
from S and edges between the vertices s, t,u are part of the triangulation. The maybe
most widely known triangulation is the Delaunay triangulation. A triangulation of S is
called a Delaunay triangulation if for every triangle in the triangulation the circumcircle
of the triangle does not contain points from S other than its vertices in its interior. If
the points in S are in general position, i.e., no more than three points from S lie on
a circle, such a Delaunay triangulation exists, is unique and can be computed in time
O(n log(n)) [40] where n is the number of points. Furthermore among all triangulations
it maximizes the minimum angle of a triangle [40]. Usually one is interested in finding a
triangulation which optimizes a certain objective function. A problem of this flavor is the
minimum-weight triangulation problem, where the objective to be minimized is the sum
of lengths of edges in the triangulation. There exist polynomial time algorithms which
solve this problem on simple polygons [42, 56] as well as a constant factor approximation
in the general case [59]. However, it has been a long standing open problem whether the
minimum-weight triangulation can be computed efficiently until Mulzer and Rote [67]
proved that this problem is NP-hard.

Now suppose that additionally to the triangulation points S there exists a function
f assigning to every point in S a real value. Every triangulation D of the set S then
yields a piece-wise linear function on the convex hull of S, where the convex hull of a
set of points is defined as follows.

22

CHAPTER 1. INTRODUCTION

Definition. For a set M ⊂ Rd let conv(M) = {
∑n

i=1 αixi |
∑n

i=1 αi = 1,αi ≥
0, {x1, . . . ,xn} ⊂ M ,n ∈ N} denote the convex hull of M .

For every triangle T with vertices s, t,u in the triangulation D we obtain a linear
interpolation fD of f as follows. For every point v ∈ T there exist unique α,β, γ ≥ 0
with α + β + γ = 1 and v = αs + βt + γu, so we define fD(v) = αf(s) + βf(t) +
γf(u). Data-dependent triangulation problems, which were introduced by Dyn, Levin
and Rippa in [41], are optimization problems related to properties of the function fD.
They considered the smoothness of the function fD as an optimization criterion, i.e., the
interpolation does not vary too much between neighboring vertices in the triangulation.
Furthermore they suggest to study three-dimensional properties of the triangulation.
Notice that we can move points from S into the three-dimensional space by appending
the values given by the function f . Then every triangulation of S naturally transforms
into a triangulation in the three dimensional space. Dyn, Levin and Rippa [41] propose
to optimize properties of the three-dimensional triangulation, for example to maximize
the minimum angle or to minimize the sum of edge lengths.

Finally they also introduced minimum-error criteria which are useful in the case that
the function f is defined not only on S but on the convex hull of S. A triangulation D
is then considered good if the respective interpolation fD represents the function f well.
We call this problem the minimum-error triangulation problem and define it formally as
follows.

An instance of the minimum-error triangulation problem consists of a set of triangu-
lation points S ⊂ R2 with measurement values given by the function f : S → R and a set
of reference points R ⊂ conv(S) with reference values given by the function h : R → R.
For a triangulation D of S the error of the triangulation is defined as

ErrD(R) =
∑
r∈R

(fD(r) − h(r))2.

Thus the error measures how well the interpolation matches the reference values.
The minimum-error triangulation problem is of interest in the context of reconstruct-

ing the sea level in the last centuries which can help to understand the impact of climate
change on the sea. For this purpose one can use sea level recordings starting at the late
17th century on tide gauge stations which are usually located at the sea shore. However,
these tide gauge stations even today are sparsely distributed and not distributed uni-
formly over the globe. Since 1993 gridded altimeter data, obtained from measurements
by satellite, is available and allows for a better reconstruction of the sea level. To provide
a reconstruction of the sea level in years where satellite measurements are not available a
common approach is to learn global base functions in years where satellite measurements
are available [30]. Another approach by Olivieri and Spada [69] suggests to compute a
triangulation of the sea surface with the tide gauge stations as triangulation points.
Knowing the measurements at the tide gauge stations, this provides a reconstruction
of the altimeter data on the whole sea surface: In every triangle one can reconstruct
the altimeter data by linearly interpolating the measurements at the tide gauge stations
that form the vertices of that triangle. Now the question arises how to find a reasonable
triangulation of the sea surface. Olivieri and Spada [69] use the Delaunay triangulation
to reconstruct the sea level of the Baltic Sea. We know that the Delaunay triangula-
tion maximizes the minimum angle of a triangulation over all possible triangulations of
the points [40] and therefore produces nicely shaped triangles. However, the Delaunay
triangulation is known to be unique and independent of the altimeter data at the tide

23

CHAPTER 1. INTRODUCTION

gauge stations [40] so it does not allow for optimization over how well the triangulation
represents the altimeter data obtained from satellite measurements. Therefore Nitzke et
al. [68] propose to take the altimeter data from satellite measurements into account to
compute a good triangulation of the sea surface. At a year where both tide gauge data
as well as data from satellite measurements is available, we learn a minimum-error trian-
gulation of the sea surface which minimizes the sum of the squared differences between
the satellite altimeter data and its interpolation given by the triangulation and then use
this triangulation to reconstruct the sea level in years where no satellite altimeter data
is available. However, such triangulations might contain badly shaped triangles which
only minimize the error at that specific year and do not generalize well to other years.
Therefore Nitzke et al. [68] suggested to restrict the set of possible triangulations that
one can choose from to minimize the error. They suggested to only consider k-order
Delaunay triangulations. A k-order Delaunay triangulation introduced in [47] by Gud-
mundsson, Hammar and van Kreveld is a triangulation where every circumcircle of a
triangle contains at most k points other than the vertices of the triangle in its interior.
If k = 0 this gives us the definition of Delaunay triangulations and if k equals the num-
ber of triangulation points then every triangulation is a k-order Delaunay triangulation.
The parameter k is a trade off between nicely shaped triangulations and triangulations
with small error. Nitzke et al. [68] evaluate this approach for values k ≤ 3 on the North
Sea and show that their reconstruction outperforms the reconstruction obtained from
the Delaunay triangulation in [69] for up to 19 years back in time. To find a triangula-
tion of minimum error among all k-order Delaunay triangulations they use integer linear
programming techniques.

In general there exist many heuristics to compute solutions for data-dependent tri-
angulations [6, 24, 41, 73]. Most of these heuristics are based on a local search algorithm
called Lawson’s edge flip algorithm [58]. For a given triangulation Lawson’s edge flip al-
gorithm replaces one edge of the triangulation such that the given objective is improved
and repeats this procedure.

For the minimum-weight triangulation problem there exist several algorithms running
in FPT time [7, 23, 29, 42, 56] which can be adapted to the minimum-error triangulation
problem [21]. In the case where the set of triangulations is restricted to 1-order Delau-
nay triangulations Gudmundsson, Hammar and van Kreveld [47] give a polynomial time
algorithm to compute optimal solutions for some data-dependent triangulation prob-
lems which also yields a polynomial time algorithm to the minimum-error triangulation
problem restricted to 1-order Delaunay triangulations. For k-order Delaunay triangula-
tions Silveira and van Kreveld [71] present an algorithm for a class of data-dependent
triangulation problems including the minimum-error triangulation problem, where the
running time is not necessarily polynomial but depends exponentially on the number of
connected components in the so called order-k Delaunay fixed-edge graph.

To compute minimum-error triangulations on a large set of points, for example to re-
construct the global sea surface, one may want to find efficient approximation algorithms
for the minimum-error triangulation problem. Therefore the question arises whether this
problem is NP-hard or even NP-hard to approximate within a certain factor. We know
that the previously mentioned minimum-weight triangulation problem is NP-hard [67] as
well as the surface-approximation problem [2] which is the problem of finding a piece-wise
linear function of minimum complexity that approximates a given surface well.

24

CHAPTER 1. INTRODUCTION

1.4.1 Results

We show that the minimum-error triangulation problem is NP-hard to approximate. To
show this we first prove the NP-hardness of the closely related zero-error triangulation
problem. The zero-error triangulation problem asks for a triangulation D of S with
fD(r) = h(r) for all r ∈ R, or equivalently ErrD(R) = 0.

Theorem (4.3.1). The zero-error triangulation problem is NP-hard.

We prove the NP-hardness of the zero-error triangulation problem via a reduction
from planar 3SAT. Notice that the NP-hardness of this problem directly implies that
the minimum-error triangulation problem likely cannot be approximated efficiently.

Corollary (4.3.2). The minimum-error triangulation problem cannot be approximated
within any multiplicative factor in polynomial time unless P = NP.

The following results, also contained in [11], are contributions of the other co-authors
and are not discussed in detail in the main body of the dissertation. In the following we
give a brief summary of these results.

For the sea surface reconstruction problem we propose to use the dynamic program-
ming approach introduced by Silveira and van Kreveld [71] to compute a minimum-error
triangulation with the restriction that the triangulation is a k-order Delaunay triangula-
tion. The runtime of this algorithm depends exponentially on the number of connected
components in the order-k Delaunay fixed-edge graph. For k = 1 we know that this
graph is connected [47]. We analyze properties of this graph for k = 2, 3 and prove
that for k = 2 every connected component consists of at least two vertices and present
an instance whose order-k Delaunay fixed-edge graph is not connected. For k ≥ 3 we
present an instance whose order-k Delaunay fixed-edge graph consists of ⌊n

6 ⌋ connected
components, implying an exponential running time of the algorithm in the worst case.
Here n is the number of triangulation points. However, the experiments on different
projections of the tide gauge data set show that the algorithm is reasonably fast for data
sets of medium size and k ≤ 7 in practice. Finally we use the computed triangulation
to reconstruct the sea surface at other years and evaluate its quality similarly to the
approach by Nitzke et al. [68]. The experiments show that the reconstruction improves
with larger k.

The work [11] which contains the NP-hardness proof presented in Chapter 4 has been
carried out with Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche,
Elmar Langetepe, Philip Mayer, Petra Mutzel and Heiko Röglin. Jan-Henrik Haunert
suggested to study the hardness of the minimum-error triangulation problem. Anne
Driemel and Herman Haverkort suggested the usage of the paraboloid for the definition
of the reference and measurement values and constructed the wire gadget. Based on
that idea the author of this thesis constructed the other gadgets and elaborated the NP-
hardness proof including the proof of the properties of the gadgets and the final reduction
from planar 3SAT. The properties of the bit were elaborated by Herman Haverkort.

25

CHAPTER 1. INTRODUCTION

26

Chapter 2

Achieving Anonymity via Weak
Lower Bound Constraints for
k-Median and k-Means

This chapter contains results from the work Achieving Anonymity via Weak Lower Bound
Constraints for k-median and k-means [17] by Anna Arutyunova and Melanie Schmidt
published in the proceedings of the Symposium on Theoretical Aspects of Computer
Science (STACS), 2021. A full version of the paper is also available at arXiv [16].

Lower bounds were studied previously for the facility location problem and for k-
center. Svitkina [72] presents the first constant factor approximation to facility location
with uniform lower bounds. The approximation factor was later improved by Ahmadian
and Swamy [5] to 82.6 and Li [61] gives the first constant factor approximation to facility
location with non-uniform lower bounds. For k-center with lower bounds Aggarwal et
al. [3] present a 2-approximation.

In this chapter we consider k-median and k-means with lower bounds. Given a set
P we want to find a clustering of P where every cluster consists of at least B points
while minimizing the k-median or k-means objective. We show that any solution which
satisfies lower bounds but may open more than k centers can be transformed into a
solution which satisfies lower bounds and opens at most k centers while the cost of the
solution only increases by a constant factor. Furthermore we consider a relaxation of
the lower bounds constraint which we call weak lower bounds and finally we present a
bi-criteria approximation algorithm for both problems.

2.1 Preliminaries

Instead of considering k-median and k-means separately we define a generalization of
both problems and consider this generalization in the following.

Definition 2.1.1. An instance to the generalized k-median problem consists of a set
X with distance function d : X × X → R≥0 and a set of points P ⊂ X . The distance
function is symmetric and satisfies d(x, y) = 0 iff x = y. Furthermore there exists
a constant α ≥ 1 such that d satisfies the α-relaxed triangle inequality, i.e., for all
x, y, z ∈ X we have

d(x, z) ≤ α(d(x, y) + d(y, z)).

27

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

A solution consists of a set C ⊂ X with |C| ≤ k and an assignment σ : P → C with cost

med(C,σ) =
∑
x∈P

d(x,σ(x)).

Notice that the k-median problem equals the generalized k-median problem with
α = 1. For the k-means problem in the Euclidean space we set d to be the squared
Euclidean distance and X = Rd. However since X is assumed to be part of the input
we restrict ourselves to the case where X is a finite set of size polynomial in |P|. It
is well-known that for any constant ϵ ∈ (0, 1) and for any P ⊂ Rd we can compute a
set X whose size is polynomial in |P| in polynomial time and that any γ-approximation
yields a (γ+ ϵ)-approximation for the original problem [65]. Therefore we assume for the
k-means problem that X is a finite set which is part of the input from now on. Observe
that the squared Euclidean metric satisfies the relaxed triangle inequality for α = 2 as
the following easy computation shows.

Lemma 2.1.2. For x, y, z ∈ Rd we have ∥x− z∥2
2 ≤ 2∥x− y∥2

2 + 2∥y− z∥2
2 .

Proof. First notice that

0 ≤ (∥x− y∥2 − ∥y− z∥2)
2 = ∥x− y∥2

2 + ∥y− z∥2
2 − 2∥x− y∥2∥y− z∥2.

We use the triangle inequality for ∥·∥2 to obtain

∥x− z∥2
2 ≤ (∥x− y∥2 + ∥y− z∥2)

2 ≤ 2∥x− y∥2
2 + 2∥y− z∥2

2.

Lower bounds have already been studied for facility location by [72, 61]. Similar to
the generalized k-median problem we can consider a generalized version of the facility lo-
cation problem, where the distance function only satisfies the relaxed triangle inequality.

Definition 2.1.3. An instance to the generalized facility location problem consists of
a set X with distance function d : X × X → R≥0, a set of points P ⊂ X and facility
opening costs fx ≥ 0 for all x ∈ X . The distance function is symmetric and satisfies
d(x, y) = 0 iff x = y. Furthermore there exists a constant α ≥ 1 such that d satisfies
the α-relaxed triangle inequality. A solution consists of a set C ⊂ X and an assignment
σ : P → C with cost

fac(C,σ) =
∑
x∈P

d(x,σ(x)) +
∑
c∈C

fc.

The generalized k-median problem with center costs equals the generalized facility location
problem, with the only difference that the set C has to contain at most k centers.

Given a solution (C,σ) for generalized k-median or generalized facility location, we
say that σ−1(c) is the cluster with center c ∈ C and call (σ−1(c))c∈C the clustering
associated to (C,σ). In the lower-bounded generalized k-median and lower-bounded gen-
eralized facility location problem we demand that every center in the solution (C,σ)
gets assigned a minimum number of points. For uniform lower bounds, the input addi-
tionally contains a number B and the solution must satisfy |σ−1(c)| ≥ B for all c ∈ C.
Non-uniform lower bounds are specified by a function B : X → N and the solution must
satisfy |σ−1(c)| ≥ B(c) for all c ∈ C.

Notice that Euclidean k-means with uniform lower bounds can be modeled by gen-
eralized k-median with uniform lower bounds since we can restrict the set X to have

28

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

size polynomial in |P| [65]. This does not work for Euclidean k-means with non-uniform
lower bounds since by restricting the centers to be in X we may be forced to satisfy
large lower bounds and therefore all solutions may have high cost compared to the cost
of an optimal solution for the original problem. Therefore we only consider the variant
of k-means with non-uniform lower bounds where the set of centers is already part of
the input.

Clustering with lower bounds can be of interest when the set P contains data which
needs to be protected. Enforcing lower bounds guarantees a certain level of anonymity.
Therefore it would be sufficient to consider uniform lower bounds, however most of our
results also hold for non-uniform lower bounds. Therefore most of the time we consider
the general case of non-uniform lower bounds.

Our new problem variant called weakly lower-bounded generalized k-median is a
relaxation of the lower bound constraint in the following way. Given lower bounds
B : X → N, the goal is to compute a set of at most k centers C ⊂ X and an assignment
σ : P → 2C\{∅} such that the lower bound is satisfied, i.e., |{x ∈ P | c ∈ σ(x)}| ≥ B(c)
for all c ∈ C. Here 2C denotes the power set of C. If a point is assigned to multiple
centers the distance of the point to all assigned centers is paid by the solution. The total
cost of a solution is given by

med(C,σ) =
∑
x∈P

∑
c∈σ(x)

d(x, c).

If a solution of a weakly lower-bounded clustering problem satisfies that every point is
assigned to at most b centers, then we say that the solution satisfies b-weak lower bounds.
Weak lower bounds were already considered in [10] for the facility location problem.

2.2 Reducing Lower-Bounded k-Clustering to Lower-Bounded
Facility Location

We observe that by using a known technique from the area of approximation algorithms
for hierarchical clustering, we can turn an approximation algorithm for lower-bounded
generalized facility location into an algorithm for lower-bounded generalized k-median.
The technique is called nesting. Given two solutions (C1,σ1) and (C2,σ2) for the same
clustering problem with different number of centers k1 > k2, nesting describes how to
find a solution (C,σ) with k2 centers which has a cost bounded by a constant times
the costs of (C1,σ1) and (C2,σ2) and which is hierarchically compatible with (C1,σ1),
i.e., the clusters in (C,σ) result from merging clusters in (C1,σ1). Suppose we consider
the generalized k-median problem with lower bounds. Let (C1,σ1) be a solution which
satisfies lower bounds but may violate the cardinality constraint of k for the number of
cluster centers and (C2,σ2) be a solution which consists of at most k centers but may
violate the lower bound constraint. The resulting solution (C,σ) has at most k centers
and the clusters result from clusters that satisfy the lower bound – thus they satisfy
the lower bound as well. For uniform lower bounds, the execution of this plan is very
straightforward, for non-uniform lower bounds we have to be a bit more careful and
adjust the nesting appropriately. Although the reduction is applicable to lower-bounded
generalized k-median, this only helps to obtain constant-factor approximations for lower-
bounded k-median because no approximation algorithms for generalized facility location
with lower bounds are known for α > 1.

29

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

More generally this approach can also be applied for generalized k-median under
side constraints which are benign in the following sense: If a clustering satisfies the
constraint, then the clustering resulting from merging two clusters is also feasible under
the constraint. This is true for lower-bounded clustering since a cluster arising from
merging two clusters with B points each definitely has at least B points, too. We call
such constraints mergeable constraints. A slightly weaker mergability property holds for
non-uniform lower bounds where the constraint depends on the center: If we merge two
clusters that satisfy lower bounds B(c1) and B(c2) of their centers c1 and c2, then the
merged cluster still satisfies the lower bounds of c1 and c2, so as long as the merged
cluster uses one of these two centers, the lower bound is still satisfied.

For many clustering problems under side constraints, solving the version where the
number of centers is at most k is much more difficult to tackle than solving its fa-
cility location variant where we allow arbitrary many centers and the facility opening
costs are set to zero. For example, uniform capacitated facility location allows for a
3-approximation, while finding a constant-factor approximation for uniform capacitated
k-median is a long-standing open problem. However, this is not the case for lower-
bounded clustering because of the above described mergability property.

Roughly speaking, we show that for mergable constraints, we can turn a generalized
k-median solution and a constrained facility location solution (with facility opening cost
equal zero) into a constrained generalized k-median solution which does not cost much
more. To do this, we borrow a concept from the area of hierarchical clustering which
formalizes what it costs to merge clusters under a specific clustering objective.

Definition 2.2.1 (adapted from [63]). A generalized facility location problem satisfies
the (γ, δ)-nesting property for reals γ, δ ≥ 0 if for any input point set P and any two
solutions S1 = (C1,σ1) and S2 = (C2,σ2) with |C1| > |C2|, a solution S = (C,σ) can
be computed such that

• S1 and S are hierarchically compatible, i.e., for all c ∈ C1 there exists a c′ ∈ C
such that for all x ∈ P with σ1(x) = c it holds that σ(x) = c′,

• fac(C,σ) ≤ γ · fac(C1,σ1) + δ · fac(C2,σ2), and

• |C| ≤ |C2|.

We call such a solution (γ, δ)-nested with respect to S1 and S2.

Lin et al. [63] show that the standard facility location/k-median cost function satisfies
the (2, 1)-nesting property (also see Lemma 2.2.3 below). Combining this with the best-
known constant-factor approximation for k-median [25], which achieves a (2.67059+ ϵ)-
approximation [32], and the 82.6-approximation for facility location with uniform lower
bounds by Ahmadian and Swamy [4], the following lemma implies a (167.87059 + ϵ)-
approximation for k-median with uniform lower bounds.

Lemma 2.2.2. Assume that we are given a generalized facility location problem with fa-
cility opening costs equal zero that satisfies the (γ, δ)-nesting property, a β-approximation
algorithm for its generalized k-median variant and an α-approximation algorithm for the
constrained generalized facility location variant under a mergeable constraint. Then there
is a (γ · α+ δ · β)-approximation algorithm for the generalized k-median problem under
the same constraint.

30

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Proof. We compute two solutions: An α-approximate solution S1 = (C1,σ1) for the con-
strained generalized facility location variant and a β-approximate solution S2 = (C2,σ2)
for the unconstrained generalized k-median problem. Remember that the opening cost
for facilities equals zero.

By the nesting property, we get a solution S = (C,σ) for the constrained generalized
k-median problem which costs med(C,σ) ≤ γ · fac(C1,σ1) + δ · med(C2,σ2), that is
hierarchically compatible with S1 and satisfies that |C| ≤ |C2| ≤ k. The unconstrained
generalized k-median problem is a relaxation of the constrained generalized k-median
problem because all we do is drop the constraint. The constrained facility location
problem with facility opening cost zero arises from dropping the condition that |C| ≤ k,
so it is also a relaxation. Thus,

med(C,σ) ≤ γ · fac(C1,σ1) + δ · med(C2,σ2)

≤ γ · α · med(Ok) + δ · β · med(Ok),

where Ok is an optimal solution for the constrained generalized k-median problem. Since
S is hierarchically compatible with S1, we know that every cluster in S results from merg-
ing two clusters in S1. Since S1 satisfies the constraint and the constraint is mergeable,
S also satisfies the constraint.

Notice that Definition 2.2.1 does not require that the center set C is a subset of
C2. For (truly) mergable constraints like uniform lower bounds, this poses no problem
because the constraint is not affected by the choice of center. However, for non-uniform
lower bounds, we have to be a little more careful: We need that the merged cluster is
assigned to a center whose lower bound is indeed satisfied. Definition 2.2.1 does not
guarantee this. We thus prove the following slight generalization of the nesting step by
Lin et al. [63] (Statement 1 only generalizes to the case of arbitrary α, but Statement 2
gives the generalization that we need for non-uniform lower bounds).

Lemma 2.2.3. Let S1 = (C1,σ1) and S2 = (C2,σ2) be two solutions with |C1| > |C2|
for the generalized facility location problem with facility opening costs equal to zero. We
can compute

1. a solution S = (C ′
2,σ) with C ′

2 ⊆ C2 that is (α+ α2,α2)-nested with respect to S1
and S2,

2. a solution S = (C ′
1,σ′) with C ′

1 ⊆ C1 that is (α3 + 2α2,α3 + α2)-nested with
respect to S1 and S2, and which satisfies that for all c ∈ C ′

1 and for all x ∈ P with
σ1(x) = c, it holds that σ′(x) = c.

Proof. We have two solutions S1 = (C1,σ1) and S2 = (C2,σ2) with |C1| > |C2|.
For all ci ∈ C1, let Pi be the set of all points assigned to ci ∈ C1 by σ1, and for all

oj ∈ C2 , let Oj be the set of all points assigned to oj by σ2. First we create a solution
S = (C ′

2,σ) with C ′
2 ⊆ C2. For all i, we assign every point x ∈ Pi the center oj which

is closest to ci, i.e., σ(x) = arg mino∈C2 d(ci, o). By this choice we know that for any
x ∈ Pi, d(ci, oj) ≤ d(ci,σ2(x)). By two applications of the relaxed triangle inequality,

31

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

we get that ∑
x∈Pi

d(x, oj) ≤
∑

x∈Pi

α · d(x, ci) +
∑

x∈Pi

α · d(ci, oj)

≤ α ·
∑

x∈Pi

d(x, ci) + α ·
∑

x∈Pi

d(ci,σ2(x))

≤ α ·
∑

x∈Pi

d(x, ci) + α ·
∑

x∈Pi

α · (d(ci,x) + d(x,σ2(x))

= (α+ α2) ·
∑

x∈Pi

d(x,σ1(x)) + α2 ·
∑

x∈Pi

d(x,σ2(x)).

Adding the cost of all clusters yields the statement.
Now we convert S into a solution (C ′

1,σ′) with C ′
1 ⊂ C1 at the cost of an increase

in the nesting factors. Let i be fixed. So far, we have reassigned the points in Pi to
the center oj in C2 closest to ci. Now among all c ∈ C1 for which oj was the closest
center, we choose a center that is closest to oj and reassign the points there. More
formally let Dj = {σ1(x) | x ∈ P,σ(x) = oj} we define σ′(x) = arg minc∈Dj d(oj , c) for
all points x ∈ Pi. The points are now assigned only to points in C1. We know that all
points assigned to oj by σ are (re)assigned to arg minc∈Dj d(oj , c). And because we only
reassign a new center to the clustering induced by (C ′

2,σ), we know that it still has at
most |C ′

2| ≤ |C2| many clusters. The cost is bounded by∑
x∈Pi

d(x,σ′(x)) ≤
∑

x∈Pi

α · d(x, oj) + α · d(oj ,σ′(x))

=
∑

x∈Pi

α · d(x, oj) + α · d(oj , ci)

≤
∑

x∈Pi

α2 · d(x, ci) + (α2 + α) · d(oj , ci)

≤
∑

x∈Pi

α2d(x, ci) + (α2 + α)
∑

x∈Pi

α · (d(ci,x) + d(x,σ2(x)))

= (α3 + 2α2) ·
∑

x∈Pi

d(x,σ1(x)) + (α3 + α2) ·
∑

x∈Pi

d(x,σ2(x)).

Statement 2 of Lemma 2.2.3 guarantees a solution where the centers are a subset of
the centers in solution S1, and the assignment ensures that points that were previously
assigned to the chosen centers C ′

1 are still assigned to their previous center. This has
the following benefit: if the mergeability of the constraint depends on the center as for
non-uniform lower bounds, we still satisfy the constraint. Indeed, for all c ∈ C ′

1 we now
know that all points previously assigned to c are still assigned to c, then this means that
if the lower bound for c was satisfied by S1, then it is also satisfied for S. We obtain
the following result for k-median with lower bounds as an immediate consequence of
Lemma 2.2.3.
Corollary 2.2.4. Suppose there exists a λ-approximation algorithm for k-median and
a µ-approximation algorithm for facility location with uniform or non-uniform lower
bounds. Then there exists a (2µ+ λ)-approximation for k-median with uniform lower
bounds and a (3µ+ 2λ)-approximation for k-median with non-uniform lower bounds.

Thus, we plug in the the O(1)-approximation for facility location with non-uniform
lower bounds by Li [61] as S1 and the already mentioned (2.67059+ ϵ)-approximation [32]
for k-median as S2 and get an O(1)-approximation for k-median with non-uniform lower
bounds.

32

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

2.3 Generalized k-Median with Weak Lower Bounds

Now we consider a relaxed version of generalized k-median with lower bounds where
points in P can be assigned multiple times. This relaxation does make sense since we
have lower bounds on the centers, so it can be more valuable to assign points to multiple
centers to satisfy the lower bounds instead of closing the respective centers.

For standard k-median/k-means with weak lower bounds we give an algorithm that
computes a (6.5 + ϵ)-approximation and an O(1)-approximation respectively. Further-
more we show that a solution to generalized k-median with weak lower bounds can be
transformed into a solution to generalized k-median with 2-weak lower bounds in poly-
nomial time. We show that this transformation increases the cost only by a factor of
α(α+ 1). We combine this with the approximation algorithm for standard k-median/k-
means with weak lower bounds and obtain an approximation algorithm for standard
k-median/k-means with 2-weak lower bounds. If we allow fractional assignments we
show how to obtain a solution which assigns every point by an amount of at most 1 + ϵ
for arbitrary ϵ ∈ (0, 1), losing ⌈1

ϵ ⌉α(α+ 1) + 1 in the approximation factor.
The results in this section hold for the more general case of non-uniform lower bounds.

Therefore we only consider non-uniform lower bounds from now on.

2.3.1 Computing a Solution

This paragraph mainly follows the ideas in [10], where it is described how one can obtain
an approximation algorithm for weakly lower-bounded facility location. We adapt the
approach in [10] for weakly lower-bounded generalized k-median.

To approximate generalized k-median with weak non-uniform lower bounds, we re-
duce this problem to generalized k-median with center costs. Remember that this prob-
lem is a combination of generalized k-median and generalized facility location where
we are only allowed to choose at most k centers and we have to pay a certain cost for
opening centers.

The reduction that we use works by introducing a center cost of

fc =
∑

p∈Dc

d(p, c) (2.1)

for every point c ∈ X . This cost is paid if c becomes a center. Here Dc is the set
consisting of the B(c) nearest points in P to c. The idea for this reduction is adapted
from the bi-criteria algorithm for lower-bounded facility location presented by Guha,
Meyerson and Munagala [49] and Karger, Minkoff [55].

Note that for a center c in a feasible solution (C,σ) to generalized k-median with
weak lower bounds, the term ∑

p∈Dc
d(p, c) is a lower bound on the assignment cost

caused by c. This leads to the following lemma.

Lemma 2.3.1. Let O′ be an optimal solution to the generalized k-median problem with
center costs and O = (O,σ) be an optimal solution to generalized k-median with weak
lower bounds. It holds that fac(O′) ≤ 2med(O).

Proof. For p ∈ P let cp = argmin{d(p, c) | c ∈ σ(p)} be the closest center to which p is
assigned in O. We define σ′(p) = cp for all p ∈ P and obtain a feasible solution (O,σ′)

33

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

to the generalized k-median problem with center costs. Furthermore we have

fac(O′) ≤ fac(O,σ′) =
∑
c∈O

fc +
∑
p∈P

d(p,σ′(p))

=
∑
c∈O

∑
p∈Dc

d(p, c) +
∑
p∈P

d(p,σ′(p))

≤ 2
∑
p∈P

∑
c∈σ(p)

d(p, c)

= 2med(O).

The second inequality follows from the fact that ∑
c∈O

∑
p∈Dc

d(p, c) and ∑
p∈P d(p,σ′(p))

are both lower bounds on the assignment cost of O.

Let (C,σ) be a solution for the generalized k-median problem with center costs.
To turn it into a solution for generalized k-median with weak lower bounds we have
to modify the assignment. Let c ∈ C and nc = |σ−1(c)|. We additionally assign
mc = max{0,B(c) − nc} points to c to satisfy the lower bound. Let Sc ⊂ Dc be the set
of points in Dc which are not assigned to c. We choose mc points from Sc and assign
them to c. This is feasible since we are allowed to assign points multiple times. Let
(C,σ′) be the corresponding solution.

Lemma 2.3.2. It holds that med(C,σ′) ≤ fac(C,σ).

Proof. The additional assignment cost for each center c ∈ C can be upper bounded by∑
p∈Dc

d(p, c). We obtain

med(C,σ′) ≤
∑
c∈C

∑
p∈Dc

d(p, c) +
∑
p∈P

d(p,σ(p))

=fac(C,σ).

Lemma 2.3.1 and Lemma 2.3.2 imply the following corollary.

Corollary 2.3.3. Given a γ-approximation for the generalized k-median problem with
center costs, we get a 2γ-approximation for the generalized k-median problem with weak
lower bounds in polynomial time.

We use the (3.25+ ϵ)-approximation for the k-median problem with center costs [28],
which results in a (6.5+ ϵ)-approximation for k-median with weak lower bounds. For k-
means, we use the algorithm by Jain and Vazirani [53] which was originally designed for
k-median. However, as outlined in the journal version [53], it can be used for k-means,
and also for k-median with center costs. The two extensions are not conflicting and can
both be applied to obtain an O(1)-approximation for the k-means problem with center
costs.

2.3.2 Reducing the Number of Assignments per Point to 2

We see that the solution for standard k-median/k-means with weak lower bounds com-
puted above can assign a point to all centers in the worst case. The number of assigned
centers per point cannot be bounded by a constant. This may not be desirable in the

34

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

context of publishing anonymized representatives since the distortion of the original data
set is not bounded.

However, we show that any solution to the generalized k-median problem with weak
lower bounds can be transformed into a solution assigning every point at most twice.
This increases the cost by a factor of α(α+ 1). Recall that α is the constant appearing
in the relaxed triangle inequality. This leads to the following theorem.

Theorem 2.3.4. Given a solution (C,σ) to generalized k-median with weak lower
bounds, we can compute a solution (C̃, σ̃) to generalized k-median with 2-weak lower
bounds (assigning every point at most twice) in polynomial time such that med(C̃, σ̃) ≤
α(α+ 1)med(C,σ).

A similar statement is already known for weakly lower-bounded facility location
in [10], where the authors show that we can obtain a solution with 2-weak lower bounds
for facility location while the cost of the respective solution increases by a factor of 2.
While our proof is inspired by their approach it differs in the reassignment process to
construct a solution with 2-weak lower bounds. This is necessary to achieve that the cost
only increases by a constant factor, especially for distances which are not determined by
a metric.

Reassignment process. We start by setting C̃ = C and σ̃ = σ and modify both
C̃ and σ̃ until we obtain a feasible solution to generalized k-median with 2-weak lower
bounds. During the process, the centers in C̃ are called currently open, and when a
center is deleted from C̃, we say it is closed. The centers are processed in an arbitrary
but fixed order, i.e., we assume that C = {c1, . . . , ck′} for some k′ ≤ k and process them
in order c1, . . . , ck′ . We say that ci is smaller than cj if i < j.

Let c = ci be the currently processed center. By Pc, we denote the set of points
assigned to c under σ̃. We divide Pc into three sets P 1

c = {q ∈ Pc | |σ̃(q)| = 1},
P 2

c = {q ∈ Pc | |σ̃(q)| = 2} and P 3
c = {q ∈ Pc | |σ̃(q)| ≥ 3}. Furthermore with C(P 3

c)
we denote all centers which are connected to at least one point in P 3

c under σ̃.
If P 3

c is empty, we are done and proceed with the next center in C̃. Otherwise we
need to empty P 3

c . Observe that points in P 3
c are assigned to multiple centers, so if we

delete the connection between one of these points and c, the point is still served by some
other center. However, doing so may violate the lower bound at c. So we have to replace
this connection.

As long as P 3
c is non-empty, we do the following. We pick a center d = minC(P 3

c)\{c}
and a point x ∈ P 3

c connected to d. We want to assign a point y from P 1
d to c to free x.

For technical reasons, we restrict the choice of y: We exclude all points from the subset
P 1

d := {q ∈ P 1
d | |σ(q)| ≥ 3 and σ(q)∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅}, i.e., all points which were

assigned to at least 3 centers under the initial assignment σ, and where one of these at
least 3 centers is still open and smaller than c.

If P 1
d \P 1

d is non-empty, we pick a point y ∈ P 1
d \P 1

d arbitrarily. We set σ̃(y) = {d, c}
and σ̃(x) = σ̃(x)\{c}. So x is no longer connected to c, but to satisfy the lower bound
at c we replace x by y (Figure 2.1).

If P 1
d \P 1

d is empty, our replacement plan does not work. Instead, we close d. This
means that x is now assigned to one center less, and, if this happens repeatedly, x will at
some point no longer be in P 3

c . Since we close d, all points in P 1
d have to be reassigned

because they are only connected to d. For each q ∈ P 1
d , we reassign q to the smallest

35

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Algorithm 1: Reducing the number of assigned centers per point to two

1 define an ordering on the centers c1 ≤ c2 . . . ≤ ck′

2 set C̃ := C and σ̃ := σ
3 for all c ∈ C
4 Pc := {q ∈ P | c ∈ σ̃(q)}
5 P 3

c := {q ∈ Pc | |σ̃(q)| ≥ 3}, P i
c := {q ∈ Pc | |σ̃(q)| = i} for i = 1, 2

6 C(P 3
c) :=

⋃
q∈P 3

c
σ̃(q)

7 for i = 1 to l do
8 while P 3

ci
̸= ∅ do

9 d = min C(P 3
ci
)\{ci}

10 P 1
d = {q ∈ P 1

d | |σ(q)| ≥ 3 and σ(q) ∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅}}
11 if P 1

d \P 1
d = ∅ then

12 for all q ∈ P 1
d

13 let e = min(σ(q) ∩ C̃)
14 set σ̃(q) = {e}
15 delete d from C̃ and all connections to d in σ̃

16 else
17 pick x ∈ P 3

ci
connected to d and y ∈ P 1

d \P 1
d

18 set σ̃(x) = σ̃(x)\{ci}, σ̃(y) = {ci, d}

currently open center in σ(q). Notice that such a center exists and is smaller than c

because P 1
d = P 1

d and for every q ∈ P 1
d , there is at least one center in σ(q) ∩ C̃ which is

smaller than c.
The entire process is described in Algorithm 1. It satisfies the following invariants.

Lemma 2.3.5. Algorithm 1 computes a feasible solution (C̃, σ̃) to generalized k-median
with 2-weak lower bounds. Furthermore the following properties hold during all steps of
the algorithm.

1. The algorithm never establishes connections for points currently assigned more
than once.

2. For any center c ∈ C, Pc does not change before c is processed or closed.

3. If a connection between x ∈ P and the currently processed center c ∈ C̃ is deleted
by the algorithm, we have from this time on x /∈ P 3

c until termination. Moreover
P 3

c remains empty after c is processed.

x

y
c d

x

y
c d

Figure 2.1: Connection between x ∈ P 3
c and c is deleted. A point y ∈ P 1

d replaces x.

36

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

4. While the algorithm processes c ∈ C we always have c < minC(P 3
c)\{c}. Moreover

all currently open centers which are smaller than c remain open until termination.

5. If the algorithm establishes a new connection in Line 14 or Line 18 it remains until
termination.

Proof. The process terminates: For every iteration of the while loop starting in Line 8,
either a point is deleted from P 3

ci
or there is at least one point x ∈ P 3

ci
for which |σ̃(x)|

is reduced by one. Furthermore |σ̃(x)| does never increase for any x ∈ P 3
ci

.
The final solution satisfies lower bounds: Every time we delete a connection between

a point and a center it either happens because the center is closed or we replace this
connection by assigning a new point to it. So the lower bounds are satisfied at all open
centers.

All points stay connected to a center: Assume that the algorithm deletes the connec-
tion between a point p and the center d it is exclusively assigned to. This only happens
if at this time d is closed by the algorithm. Then p is assigned to another center as
defined in Line 14.

We conclude that the solution is feasible.
Property 1: The algorithm establishes connections in Line 14 and Line 18 which

always involve a point currently assigned once.
Property 2: Let c ∈ C. Connections are only changed for the center that is

currently processed or for a smaller center which has been processed already. Thus, the
algorithm does not add or delete any connections involving c before c is processed or
closed.

Property 3: Assume that after the connection between x ∈ P 3
c and c is deleted by

the algorithm, x is again part of P 3
c . That would require that the algorithm establishes a

new connection for a point which is connected more than once, which does not happen by
Property 1. For the same reason P 3

c remains empty after c is processed by the algorithm.
Property 4: Assume c is currently processed by the algorithm and d = minC(P 3

c)\{c}.
We know that at this time P 3

d is non-empty, which is by Property 3 only possible if d is
processed after c. Thus we have c < d. This also means that centers can only be closed
by the algorithm if they are not processed so far.

Property 5: If a connection is deleted, the respective point is either connected to
more than two centers or to a center which is closed at this time. A connection in Line
14 or Line 18 is established by the algorithm between a point which is at this time
assigned exactly once and a center which is already processed or currently processed by
the algorithm. Thus the point is from this time on never assigned to more than two
centers and the center remains open until termination by Property 4. So the necessary
conditions for a deletion of this connection are never fulfilled.

We now want to bound the cost of new connections created by the algorithm by
the cost of the original solution. Notice that only Line 18 generates new connections,
Line 14 re-establishes connections that were originally present. So let Nc be the set of
all points newly assigned to c by the algorithm in Line 18 while center c is processed.
For y ∈ Nc let dy be the respective center in Line 9 of Algorithm 1 and xy the point in
Line 17 contained in P 3

c and connected to dy.

37

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Using the α-relaxed triangle inequality, we obtain the following upper bound.

d(y, c) ≤ α(d(y,xy) + d(xy, c)) ≤ α

(
α

(
d(y, dy) + d(dy,xy)

)
+ d(xy, c)

)
= α2

(
d(y, dy) + d(dy,xy)

)
+ αd(xy, c). (2.2)

We can apply (2.2) to all c ∈ C̃ and all y ∈ Nc. This yields the following upper bound
on the cost of the final solution (C̃, σ̃).

med(C̃, σ̃) =
∑
c∈C̃

∑
y∈P :

c∈σ̃(y)

d(y, c) =
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

d(y, c)
)

≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy,xy)) + αd(xy, c)
)

. (2.3)

Expression (2.3) is what we want to pay for. We show in Observation 2.3.6 below
that all involved distances contribute to the original cost as well. So in principle, we can
bound each summand by a term in the original cost. But what we need to do is to bound
the number of times that each term in the original cost gets charged. To organize the
counting, we count how many times a specific tuple of a point z and a center f occurs as
d(z, f) in (2.3). Since it is important at which position a tuple appears, we give names
to the different occurrences (also see Figure 2.2).

We say that that a tuple appears as a tuple of Type 0 if it appears as d(y, c) in (2.3),
as tuple of Type 1 if it appears as d(xy, c), and as tuple of Type 2 if it appears as
d(y, dy) or d(dy,xy). We distinguish the latter type further by calling a tuple occurring
as d(y, dy) a tuple of Type 2.1 and a tuple occurring as d(xy, dy) a tuple of Type 2.2.
We say that (y, dy), (dy,xy) and (xy, c) contribute to the cost of (y, c), where by the cost
of (y, c) we mean the upper bound on d(y, c) in (2.2) which we want to pay for.

Observation 2.3.6. If a tuple (z, f), z ∈ P, f ∈ C, occurs as Type 0, 1 or 2, then
f ∈ σ(z), so in particular, d(z, f) occurs as a term in the cost of the original solution.

Proof. For a center c the set Pc\Nc consists of points which are assigned to c by the
initial assignment σ or assigned to c while c is not processed by the algorithm. The
latter can only happen if a connection is reestablished in Line 14 which requires that the
connection was already present in (C,σ). So Type 0 tuples satisfy the statement.

For Type 1 and 2 tuples, consider y ∈ Nc for some center c and the respective tuples
(xy, c), (y, dy), (xy, dy). Notice that both y and xy are connected to dy the step before
y is assigned to c. By Property 4 of Lemma 2.3.5 we have c < dy. Thus we know by
Property 2 of Lemma 2.3.5 that Pdy is not changed by the algorithm at least until y is
assigned to c. So dy ∈ σ(y) and dy ∈ σ(xy) which proves that Type 2 tuples satisfy the
statement. Moreover it holds that c ∈ σ(xy) since there is a time where xy ∈ P 3

c . This
can, by Property 1 of Lemma 2.3.5, only happen if the connection between xy and c is
already part of (C,σ). Thus, Type 1 tuples satisfy the statement.

As indicated above, a tuple (z, f) can contribute to the cost of multiple tuples. Notice
that a tuple occurs at most once as a tuple of Type 0 in (2.3). To bound the cost of
(C̃, σ̃) we bound the number of times a tuple appears as Type 1 or Type 2 tuple in (2.3).

38

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

xy

y
c dy

α α2

α2

Figure 2.2: Bounding the distance between y and c. The respective distances appear
with a factor of α or α2. Tuple (xy, c) is of Type 1 and (xy, dy), (y, dy) are of Type 2.

Lemma 2.3.7. For all z ∈ P, f ∈ C, the tuple (z, f) can appear in (2.3) at most once
as a tuple of Type 1 and at most once as a tuple of Type 2.

Proof. In the following, the tuple whose cost the tuple (z, f) contributes to will always
be named (y, c), and we denote the time at which y is newly assigned to c by t.

Type 1: Assume (z, f) contributes to the cost of (y, c) as a tuple of Type 1. Then
f = c. Notice that at the time step before t we must have z ∈ P 3

c and afterwards,
z is never again contained in P 3

c by Property 3 of Lemma 2.3.5. Thus the pair (z, c)
can never again be responsible for any reassignment to c, i.e., (z, c) = (z, f) does not
contribute to any further cost as a tuple of Type 1.

Type 2.1: Assume that (z, f) contributes to the cost of (y, c) as a tuple of Type
2.1. Then z = y. At the time step before t, we have y ∈ P 1

f , f ∈ C(P 3
c), and at time

t, we have y ∈ P 2
c ∩ P 2

f . By Property 5 of Lemma 2.3.5, newly established connections
are never deleted, so after time t, it always holds that y ∈ Pc. So even if y is in Pf at
a later time, it cannot be in P 1

f since it is also connected to c. So (y, f) = (z, f) does
not contribute to any further cost as tuple of Type 2.1. Furthermore by Property 1 of
Lemma 2.3.5 we know that y is always assigned to fewer than three centers after t which
means that (y, f) does not contribute as tuple of Type 2.2 to the cost of any connection
established by the algorithm after t either.

Type 2.2: Finally we consider the case where (z, f) contributes to the cost of (y, c)
as a tuple of Type 2.2. At time t, the algorithm processes c. By the way the algorithm
chooses f and z, we know that z ∈ P 3

c (at the beginning of the process, i.e., before t)
and f = minC(P 3

c)\{c}. After t, Property 3 of Lemma 2.3.5 implies z /∈ P 3
c , which

means that as a tuple of Type 2.2, it can never again contribute to the cost of any tuple
containing c. Assume instead that it contributes (as Type 2.2) to the cost of a tuple
(y′, c′) for a center c′ ̸= c, and some point y′ ∈ P. This is supposed to happen after t,
so y′ is newly assigned to c′ at some time t′ > t. Before c′ is processed, we must always
have z ∈ P 3

c′ by Property 1 and 2 of Lemma 2.3.5. So in particular, at time t < t′ we
have c′ ∈ C(P 3

c)\{c}. Moreover we know that at some time while c′ is processed by the
algorithm we have f = minC(P 3

c′)\{c′}. Using Property 4 of Lemma 2.3.5 we conclude
that c′ < f . Which is a contradiction since the algorithm chose f and not c′ at time t,
i.e., f = minC(P 3

c)\{c} must hold. Thus, (z, f) cannot contribute to the cost of (y′, c′)
as a tuple of Type 2.2.

It is left to show that (z, f) cannot contribute to the cost of any (y′, c′) as a tuple
of Type 2.1 at some time t′ > t. For a contribution as Type 2.1, we would have z = y′

and y′ ∈ P 1
f . We show that in this case y′ is in fact contained in P 1

f . Remember that at
time t we have y′ = z ∈ P 3

c and that this only happens if |σ(y′)| ≥ 3 by Property 1 of
Lemma 2.3.5. Moreover c is still open by Property 4 of Lemma 2.3.5 and is smaller than
c′. Thus c ∈ σ(y′)∩ {e | e < c′} ∩ C̃, which proves y′ ∈ P 1

f . Therefore the algorithm does

39

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

not assign y′ to c′ (see Lines 11-15) and (z, f) does not contribute as tuple of Type 2.1
to the cost of any connection established by the algorithm after t.

We now know that a tuple only appears at most once as any of the three tuple types.
For the final counting, we define T0, T1 and T2 as the sets of all tuples of Type 0, 1
and 2, respectively. We could already prove a bound on the cost now, but to make it
slightly smaller and prove Theorem 2.3.4, we need one final statement.

Lemma 2.3.8. The set T0 ∩ T1 ∩ T2 is empty.

Proof. Let (z, f) ∈ T0 ∩T1 ∩T2. Since (z, f) is of Type 0, the point z must be connected
to f in the final assignment σ̃. We distinguish whether the connection between z and f
was deleted at some point by the algorithm or not. If it is not deleted, (z, f) cannot be
of Type 1 since this would require that z is temporarily not assigned to f . Otherwise the
connection between z and f was deleted while f was processed and later reestablished
by the algorithm in Line 14.

By assumption the tuple is also of Type 2. Assume it is of Type 2.1 and contributes to
the cost of a tuple (y, c) with z = y. We know that c < f by Property 4 of Lemma 2.3.5.
Consider the time when z is newly assigned to c. The step before we have z ∈ P 1

f . On
the other hand while f is processed we have z ∈ P 3

f in contradiction to Property 1 of
Lemma 2.3.5.

Assume finally that (z, f) is of Type 2.2 and contributes to the cost of a tuple
(y, c). Again we have c < f . Consider the time y is newly assigned to c. The step
before we have z ∈ P 3

c and, by Property 1 and 2 of Lemma 2.3.5, also z ∈ P 3
f . At the

time the connection between z and f is reestablished by the algorithm, both centers
are contained in σ(z) ∩ C̃. This is a contradiction to c < f = min(σ(z) ∩ C̃). This
completes the proof.

Proof of Theorem 2.3.4. Slightly abusing the notation we write d(e) for a tuple e =
(z, f) by which we mean the distance d(z, f). Combining Lemma 2.3.7 and 2.3.8 we
obtain

med(C̃, σ̃) ≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy,xy)) + αd(xy, c)
)

(2.3)

=
∑

e∈T 0
d(e) + α2 ∑

e∈T 2
d(e) + α

∑
e∈T 1

d(e) (2.4)

≤ (α2 + α)med(C, a). (2.5)

By Lemma 2.3.7 we know that a tuple only appears at most once as any of the three
tuple types. We replace (2.3) by summing up the cost of all tuples in Ti for i = 0, 1, 2
with the respective factor for each type and obtain (2.4).

Finally by Observation 2.3.6 the cost d(e) for e ∈ T0 ∪ T1 ∪ T2 occurs as a term in
the original solution and T0 ∩ T1 ∩ T2 = ∅ by Lemma 2.3.8, which proves (2.5).

In Section 2.3.1 we reduce generalized k-median with weak lower bounds to gen-
eralized k-median with center cost and obtain a (6.5 + ϵ) or O(1)-approximation for
k-median or k-means with weak lower bounds, respectively. We combine this with The-
orem 2.3.4 to get a solution with 2-weak lower bounds whose cost is a constant factor
away from the problem with weak lower bounds. Since weak lower bounds are a relax-
ation of 2-weak lower bounds, we get:

40

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Corollary 2.3.9. Let O be an optimal solution to k-median/k-means with 2-weak lower
bounds and ϵ > 0 be a constant. We can compute a solution (C,σ) in polynomial time
for

1. k-median with 2-weak lower bounds with med(C,σ) ≤ (13 + ϵ)med(O)

2. k-means with 2-weak lower bounds with mean(C,σ) ≤ O(1)mean(O).

2.3.3 Reducing the Number of Assignments per Point to (1+ϵ)

So it is possible to reduce the number of assignments per point to two at a constant
factor increase in the approximation factor. We can go even further and allow points to
be fractionally assigned to centers which poses the question if it is possible to bound the
assigned amount by a number smaller than two. Indeed we can prove for every ϵ ∈ (0, 1)
that we can modify a solution to generalized k-median with weak lower bounds such
that every point is assigned by an amount of at most 1 + ϵ and the cost increases by a
factor of O(1

ϵα
2). Note that even if we allow fractional assignments of points to centers,

the centers remain either open or closed, which differentiates our result from a truly
fractional solution, where it is also allowed to open centers fractionally. Furthermore,
the new assignment assigns every point to at most two centers. It is assigned by an
amount of one to one center and potentially by an additional amount of ϵ to a second
center. We say that such solutions satisfy (1 + ϵ)-weak lower bounds.

Since we consider fractional assignments we modify our notation and denote with
σ̃c

x ∈ [0, 1] the amount by which x ∈ P is assigned to c ∈ C̃, where C̃ is the set of centers.
Let σ̃x =

∑
c∈C̃

σ̃c
x be the amount by which x ∈ P is assigned to C̃. The assignment σ̃

is feasible if σ̃x ≥ 1 for all x ∈ P and ∑
x∈P σ̃

c
x ≥ B(c) for all c ∈ C̃, and its cost is

med(C̃, σ̃) =
∑
c∈C̃

∑
x∈P

σ̃c
xd(x, c).

The proof of the following theorem is similar to the proof of Theorem 2.3.4 but to satisfy
lower bounds we can only assign an amount of ϵ from points which are already assigned
once. Therefore we consider suitable sets with ⌈1

ϵ ⌉ points, which leads to the increase of
O(1

ϵ) in the approximation factor.

Theorem 2.3.10. Given 0 < ϵ < 1 and a solution (C,σ) to generalized k-median
with weak lower bounds, we can compute a solution (C̃, σ̃) to generalized k-median with
(1 + ϵ)-weak lower bounds in polynomial time such that med(C̃, σ̃) ≤ (⌈1

ϵ ⌉α(α+ 1) +
1)med(C,σ).

Reassignment process. In the beginning we set C̃ = C. For q ∈ P let σ̃c
q = 1

if c ∈ σ(q) and otherwise let σ̃c
q = 0. We modify both C̃ and σ̃ until we obtain a valid

solution to generalized k-median with (1 + ϵ)-weak lower bounds. During the process,
the centers in C̃ are called currently open, and when a center is deleted from C̃, we say
it is closed. The centers are processed in an arbitrary but fixed order, i.e., we assume
that C̃ = C = {c1, . . . , ck′} for some k′ ≤ k and process them in order c1, . . . , ck′ . We
say that ci is smaller than cj if i < j.

Before we start explaining the reassignment we observe that the following properties
hold for (C̃, σ̃) in the beginning.

1. for all q ∈ P we have either σ̃q ∈ N or σ̃q = 1 + ϵ.

41

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

2. if σ̃q = 1+ ϵ then q is assigned to one center by an amount of one and to a second
center by an amount of ϵ.

3. if σ̃q ∈ N then σ̃c
q ∈ {0, 1} for all c ∈ C̃.

We ensure that these properties also hold during the whole reassignment process.
Let c = ci be the currently processed center. By Pc we denote the set of points

assigned to c by a positive amount under σ̃. We divide Pc into the four sets P 1
c = {q ∈ Pc |

σ̃q = σ̃c
q = 1}, P ϵ

c = {q ∈ Pc | σ̃q = 1 + ϵ, σ̃c
q = ϵ}, Qϵ

c = {q ∈ Pc | σ̃q = 1 + ϵ, σ̃c
q = 1}

and finally P 2
c = {q ∈ Pc | σ̃q ≥ 2, σ̃c

q = 1}. Thus we differentiate between points which
are assigned exclusively to c, points which are assigned by an amount of ϵ to c and by
an amount of one to an other center or vice versa and points which are assigned by an
amount of one to c and by an amount of at least one to some other centers. Furthermore
with C(P 2

c) we denote all centers which are connected to at least one point in P 2
c under

σ̃. Observe that indeed Pc = P 1
c ∪ P ϵ

c ∪Qϵ
c ∪ P 2

c if the above properties hold at that
time.

Notice that points in Pc\P 2
c are already assigned by an amount of at most 1 + ϵ, so

we only care about points in P 2
c . If P 2

c is empty, we are done and proceed with the next
center in C̃. Otherwise we need to empty P 2

c . Observe that points in P 2
c are assigned to

multiple centers, so if we delete the connection between one of these points and c, the
point is still served by some other center. However, doing so violates the lower bound
at c. So we have to replace this connection.

As long as P 2
c is non-empty, we do the following. We pick a center d = minC(P 2

c)\{c}
and a point x ∈ P 2

c connected to d. We want to assign points from P 1
d by amount of ϵ to

c to free x. For technical reasons, we restrict the choice of these points: We exclude all
points from the subset P 1

d := {q ∈ P 1
d | |σ(q)| ≥ 2 and σ(q) ∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅},

i.e., all points which were assigned to at least 2 centers under the initial assignment σ,
and where one of these at least 2 centers is still open and smaller than c.

We can only assign points from P 1
d \P 1

d to c if its cardinality is at least ⌈1
ϵ ⌉. If this

is the case we choose a set A of ⌈1
ϵ ⌉ points from P 1

d \P 1
d and set σ̃c

q = ϵ for all q ∈ A.
Furthermore we set σ̃c

x = 0. So x is no longer connected to c, but to satisfy the lower
bound at c we replace x by a set of ⌈1

ϵ ⌉ points which are now connected to c by an amount
of ϵ (Figure 2.3). By this we guarantee that the lower bound at c is still satisfied.

If |P 1
d \P 1

d | < ⌈1
ϵ ⌉ our replacement plan does not work. Instead we close d and set

σ̃d
q = 0 for all q ∈ P. If we close d, points in P 1

d ∪Qϵ
d will be assigned by an amount

smaller than one, thus we do the following. All points in P 1
d \P 1

d are reassigned to c, i.e.,
σ̃c

q = 1 for q ∈ P 1
d \P 1

d (Figure 2.4). Since we assign all points in P 1
d \P 1

d to c, we could
delete this many connections between points in P 2

c and c. But for simplicity, if P 1
d \P 1

d is
non-empty and σ̃x ≥ 3, we only delete the connection between x and c. A point q ∈ P 1

d

is reassigned to the smallest open center in σ(q) by an amount of one. And finally every
point in Qϵ

d is assigned by an amount of ϵ to some other center than d, so we add an
additional amount of 1 − ϵ to this assignment.

Observe that none of the above reassignments violates the claimed properties for
(C̃, σ̃) above. The entire procedure is described in Algorithm 2.

Lemma 2.3.11. Algorithm 2 computes a feasible solution (C̃, σ̃) to generalized k-median
with (1 + ϵ)-weak lower bounds. Furthermore the following properties hold during all
steps of the algorithm.

42

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Algorithm 2: Reducing the number of assigned centers per point to 1 + ϵ

1 define an ordering on the centers c1 < c2 . . . < ck′

2 set C̃ := C and σ̃c
q = 1 if c ∈ σ(q) otherwise set σ̃c

q = 0
3 for all c ∈ C
4 Pc = {q ∈ P | σ̃c

q > 0}
5 P 1

c = {q ∈ Pc | σ̃q = σ̃c
q = 1}

6 P ϵ
c = {q ∈ Pc | σ̃q = 1 + ϵ, σ̃c

q = ϵ}
7 Qϵ

c = {q ∈ Pc | σ̃q = 1 + ϵ, σ̃c
q = 1}

8 P 2
c = {q ∈ Pc | σ̃q ≥ 2, σ̃c

q = 1}
9 for i = 1 to k′ do

10 while P 2
ci

̸= ∅ do
11 d = min C(P 2

ci
)\{ci}

12 P 1
d = P 1

d ∩ {q ∈ P | |σ(q)| ≥ 2 and σ(q) ∩ {c1, . . . , ci−1} ∩ C̃ ̸= ∅}
13 if |P 1

d \P 1
d | < 1

ϵ then
14 delete d from C̃ and all connections to d in σ̃

15 for all q ∈ P 1
d

16 let e = min(σ(q) ∩ C̃)
17 set σ̃e

q = 1
18 for all q ∈ Qϵ

d

19 let e ∈ C̃ such that σ̃e
q = ϵ

20 set σ̃e
q = 1

21 if P 1
d \P 1

d ̸= ∅ then
22 pick x ∈ P 2

ci
connected to d

23 if σ̃x ≥ 3 set σ̃ci
x = 0

24 for all q ∈ P 1
d \P 1

d

25 set σ̃ci
q = 1

26 else
27 pick x ∈ P 2

ci
connected to d and A ⊂ P 1

d \P 1
d of cardinality ⌈1

ϵ ⌉
28 set σ̃ci

x = 0 and σ̃ci
y = ϵ for all y ∈ A

43

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

1. For any center c ∈ C, Pc does not change before c is processed or closed. Up to
that point all points in Pc are assigned by an amount of 1 to c.

2. If a connection between x ∈ P and the currently processed center c ∈ C̃ is deleted
by the algorithm, we have from this time on x /∈ P 2

c until termination. Moreover
P 2

c remains empty after c is processed.

3. While the algorithm processes c ∈ C we always have c < minC(P 2
c)\{c}. Moreover

all currently open centers which are smaller than c remain open until termination.

4. If the algorithm establishes a new connection in Line 17, Line 25 or Line 28 it
remains until termination.

Proof. The process terminates: For every iteration of the while loop starting in Line 10,
either a point is deleted from P 2

ci
or there is at least one point x ∈ P 2

ci
for which σ̃x is

reduced by one. Furthermore σ̃x does never increase for any x ∈ P 2
ci

.
The final solution satisfies lower bounds: Every time we delete a connection between

a point and a center it either happens because the center is closed or we replace this
connection by assigning ⌈1

ϵ ⌉ new points each by an amount of ϵ to it. So the lower
bounds are satisfied at all open centers.

All points are assigned by an amount of at least 1: Assume that the algorithm deletes
the connection between a point p and a center d. This either happens if p is assigned
by a total amount of at least 2 at this time or d is closed by the algorithm. In the last
case we ensure in Line 17, Line 20 or Line 25 that p is assigned by an amount of one to
an other center after we close d.

All points are assigned by an amount of at most 1 + ϵ: For c ∈ C we know by
Property 2 that P 2

c is empty after termination. Then Pc = P 1
c ∪ P ϵ

c ∪Qϵ
c, so all points

connected to c are assigned by a total amount of at most 1 + ϵ.
We conclude that the solution is feasible.
Property 1: Let c ∈ C. Assume the property is true up to a time t. In the next

step connections may change for the center that is currently processed, for a smaller
center which has been processed already or for a center which is currently connected to
a point by an amount of ϵ. If c is not processed so far none of this applies to it, so the
property also holds in the next step.

Property 2: Assume that after the connection between x ∈ Pc and c is deleted
by the algorithm, x is part of P 2

c . That would require that the algorithm assigns x
to a center by an amount of one while it is already assigned to a second center by an
amount of one, which does not happen. For the same reason P 2

c remains empty after c
is processed by the algorithm.

Property 3: Assume c is currently processed by the algorithm and d = minC(P 2
c)\{c}.

We know that at this time P 2
d is non-empty. Which is by Property 2 only possible if d is

processed after c. Thus we have c < d. This also means that centers can only be closed
by the algorithm if they are not processed so far.

Property 4: A connection established in Line 17 involves a center which is already
processed by the algorithm. By Property 3 such centers remain open, thus the connection
is not deleted until termination. In Line 25 and Line 28 the algorithm establishes a
connection between the currently processed center c and some point p which is assigned
by an amount of at most 1 at this time. If this connection is deleted at some later point
in time, this would require that c is closed by the algorithm or p ∈ P 2

c . Both can not
happen.

44

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

We bound the cost of (C̃, σ̃) in a similar way we bounded the cost of the solution in
Theorem 2.3.4. Let Nc denote the set of points which are newly assigned by ϵ respectively
1 to c while c is processed. This happens in Line 25 and Line 28 of the algorithm. We
want to charge the cost of these new connections to the cost of the original solution.

For y ∈ Nc let dy be the respective center in Line 11 of Algorithm 2 and xy the
point in Line 22 respectively Line 27 contained in P 2

c and connected to dy. Using the
α-relaxed triangle inequality, we obtain the following upper bound.

d(y, c) ≤ α(d(y,xy) + d(xy, c)) ≤ α

(
α

(
d(y, dy) + d(dy,xy)

)
+ d(xy, c)

)
≤ α2

(
d(y, dy) + d(dy,xy)

)
+ αd(xy, c). (2.6)

We can apply (2.6) to all c ∈ C̃ and all y ∈ Nc. This yields the following upper bound
on the cost of the final solution (C̃, σ̃).

med(C̃, σ̃) =
∑
c∈C̃

∑
y∈P

d(y, c)σ̃c
y ≤

∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑
y∈Nc

d(y, c)
)

≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy,xy)) + αd(xy, c)
)

. (2.7)

Notice that in the first inequality we use the fact that σ̃c
y ≤ 1. So we pay the the

price of connecting y to c by an amount of 1 independent of whether σ̃c
y is 1 or ϵ.

Expression (2.7) is what we want to pay for. Observe that all involved distances
contribute to the original cost as well (we state this formally in Observation 2.3.12
below). So in principle, we can charge each summand to a term in the original cost.
But what we need to do is to bound the number of times that each term in the original
cost gets charged. To organize the counting, we count how many times a specific tuple
of a point z and a center f occurs as d(z, f) in (2.7). Since it is important at which
position a tuple appears, we give names to the different occurrences. We say that that
a tuple appears as a tuple of Type 0 if it appears as d(y, c) in (2.7), as tuple of Type 1
if it appears as d(xy, c), and as tuple of Type 2 if it appears as d(y, dy) or d(dy,xy). We
distinct the latter type further by calling a tuple occurring as d(y, dy) a tuple of Type
2.1 and a tuple occurring as d(xy, dy) a tuple of Type 2.2. We say that (y, dy), (dy,xy)
and (xy, c) contribute to the cost of (y, c), where by the cost of (y, c) we mean the upper
bound on d(y, c) in (2.6) which we want to pay for.

Observation 2.3.12. If a tuple (z, f), z ∈ P, f ∈ C, occurs as Type 0, 1 or 2, then
f ∈ σ(z), so in particular, d(z, f) occurs as a term in the cost of the original solution.

Proof. For a center c the set Pc\Nc contains points which are assigned to c by the initial
assignment σ or assigned to c while c is not processed by the algorithm. Latter can only
happen if a connection is reestablished in Line 17 which requires that the connection
was already present in (C,σ). So Type 0 tuples satisfy the statement.

For Type 1 and 2 tuples, consider y ∈ Nc for some center c and the respective
tuples (xy, c), (y, dy), (xy, dy). Notice that both y and xy are connected to dy before y
is assigned to c. By Property 3 of Lemma 2.3.11 we have c < dy. Thus we know by
Property 1 of Lemma 2.3.11 that dy ∈ σ(y) and dy ∈ σ(xy) which proves that Type
2 tuples satisfy the statement. Moreover it holds that c ∈ σ(xy) since there is a time
where xy ∈ P 2

c , which can only happen if the connection between xy and c is already
part of (C,σ). Thus, Type 1 tuples satisfy the statement.

45

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

As indicated above, a tuple (z, f) can contribute to the cost of multiple tuples. Notice
that a tuple occurs at most once as a tuple of Type 0 in (2.7). To bound the cost of
(C̃, σ̃) we bound the number of times a tuple appears as Type 1 or Type 2 tuple in (2.7).

Remember that we used a similar statement in the proof of Theorem 2.3.4, where we
proved that every tuple can appear at most once as each type. However here we can only
bound the appearance by ⌈1

ϵ ⌉ for Type 1 and Type 2 tuples due to Line 25 and Line 28
where we assign up to ⌈1

ϵ ⌉ points from P 1
d to c. Notice that even if we assign each of

these points initially by an amount of ϵ to c as it is done in Line 28, that amount can
be increased to 1 at some later time in Line 20. The proof is similar to that of Lemma
2.3.7 but we carry out the arguments again for sake of completeness.
Lemma 2.3.13. For all z ∈ P, f ∈ C, the tuple (z, f) appears in (2.7) at most ⌈1

ϵ ⌉
times as tuple of Type 1 and at most ⌈1

ϵ ⌉ times as tuple of Type 2.
Proof. In the following, the tuple whose cost the tuple (z, f) contributes to will always
be named (y, c), and we denote the time at which y is newly assigned to c by t.

Type 1: Assume (z, f) contributes to the cost of (y, c) as a Tuple of Type 1. Then
f = c. At t we assign up to ⌈1

ϵ ⌉ points to c. So (z, f) contributes to the cost of at most
⌈1

ϵ ⌉ connections established by the algorithm at t as tuple of Type 1. Notice that at the
time step before t we must have z ∈ P 2

c and afterwards, z is never again contained in
P 2

c by Property 2 of Lemma 2.3.11. Thus the tuple (z, c) can not be responsible for any
assignment to c after t, i.e., (z, c) = (z, f) does not contribute to any further cost as a
tuple of Type 1.

Type 2.1: Assume that (z, f) contributes to the cost of (y, c) as a Tuple of Type
2.1. Then z = y. At the time step before t, we have y ∈ P 1

f , f ∈ C(P 2
c). By Property

4 of Lemma 2.3.11, newly established connections stay, so after time t, it always holds
that y ∈ Pc. So even if y is in Pf at a later time, it can not be in P 1

f since it is also
connected to c. So (y, f) = (z, f) does not contribute to any further cost as tuple of
Type 2.1. Furthermore, observe that the algorithm never adds a connection to a point
which is assigned more than once. So we know that y is always assigned by an amount
of at most 1+ ϵ after t which means that (y, f) does not contribute as tuple of Type 2.2
to the cost of any connection established by the algorithm after t either.

Type 2.2: Finally we consider the case where (z, f) contributes to the cost of (y, c)
as a tuple of Type 2.2. At time t, the algorithm processes c. By the way the algorithm
chooses f and z, we know that z ∈ P 2

c (at the beginning of the process, i.e., before
t) and f = minC(P 2

c)\{c}. After t, Property 2 of Lemma 2.3.11 implies z /∈ P 2
c ,

which means that as a tuple of Type 2.2, it can not contribute to the cost of any tuple
containing c after t. However it contributes as tuple of Type 2.2 to the cost of up to
⌈1

ϵ ⌉ − 1 additional connections at time t (see Line 25 and Line 28). Assume instead that
it contributes (as Type 2.2) to the cost of a tuple (y′, c′) for a center c′ ̸= c, and some
point y′ ∈ P. This is supposed to happen after t, so y′ is newly assigned to c′ at some
time t′ > t. The step before t′ we have z ∈ P 2

c′ . Thus before c′ is processed, we must
always have z ∈ P 2

c′ by Property 1 of Lemma 2.3.11. So in particular, at time t < t′ we
have c′ ∈ C(P 2

c)\{c}. Moreover we know that at some time while c′ is processed by the
algorithm we have f = minC(P 2

c′)\{c′}. Using Property 3 of Lemma 2.3.11 we conclude
that c′ < f . Which is a contradiction since the algorithm chose f and not c′ at time t,
i.e., f = minC(P 2

c)\{c} must hold. Thus, (z, f) can not contribute to the cost of (y′, c′)
as a tuple of Type 2.2.

It is left to show that (z, f) can not contribute to the cost of any (y′, c′) as a tuple of
Type 2.1 at some time t′ > t. For a contribution as Type 2.1, we would have z = y′ and

46

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

x

P 1
d \ P 1

d

c d

1 1

1

1

x

A

c d

1

1

ϵ

ϵ

Figure 2.3: Shows case |P 1
d \P 1

d | > ⌈1
ϵ ⌉. Pick a set A ⊂ P 1

d \P 1
d of cardinality ⌈1

ϵ ⌉ and
assign an amount of ϵ from points in A to c. Here A = P 1

d \P 1
d .

y′ ∈ P 1
f . We show that in this case y′ is even contained in P 1

f . Remember that at time
t we have y′ = z ∈ P 2

c and that this only happens if |σ(y′)| ≥ 2. Moreover c is sill open
by Property 3 of Lemma 2.3.11 and is smaller than c′. Thus c ∈ σ(y′)∩ {e | e < c′} ∩ C̃,
which proves y′ ∈ P 1

f . Therefore the algorithm does not assign y′ to c′ (see Line 17) and
(z, f) does not contribute as tuple of Type 2.1 to the cost of any connection established
by the algorithm after t.

For the final counting, we define T0, T1 and T2 as the sets of all tuples of Type 0,
1 and 2, respectively.

Proof of Theorem 2.3.4. Slightly abusing the notation we write d(e) for a tuple e =
(z, f) by which we mean the distance d(z, f). We obtain

med(C̃, σ̃) ≤
∑
c∈C̃

(∑
y∈Pc\Nc

d(y, c) +
∑

y∈Nc

α2(d(y, dy) + d(dy,xy)) + αd(xy, c)
)

(2.7)

=
∑

e∈T 0
d(e) + α2

⌈1
ϵ

⌉ ∑
e∈T 2

d(e) + α

⌈1
ϵ

⌉ ∑
e∈T 1

d(e) (2.8)

≤
(⌈1
ϵ

⌉
α(α+ 1) + 1

)
med(C, a). (2.9)

Here we replace (2.7) by summing up the cost of all tuples in Ti for i = 0, 1, 2 with
the respective factor times the maximal number of appearances for each type. Thus by
Lemma 2.3.13 we obtain a total factor of 1 for Type 0, α2⌈1

ϵ ⌉ for Type 1 and α⌈1
ϵ ⌉ for

Type 2 (see (2.8)).
Finally by Observation 2.3.12 the cost d(e) for e ∈ T0 ∪ T1 ∪ T2 occurs as a term in

the original solution which proves (2.9).

Note that we also prove that we can find a fractional assignment of a special structure.
The assignment σ̃ assigns every point to at most two centers. It is assigned by an amount
on one to one center and eventually by an additional amount of ϵ to a second center.

Combining the results in Section 2.3.1 with Theorem 2.3.10 we obtain:

47

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

x

P 1
d \ P 1

d

c d

1

Figure 2.4: Shows case |P 1
d \P 1

d | < ⌈1
ϵ ⌉. Center d is closed and points from P 1

d \P 1
d are

assigned to c.

x

P 1
d \ P 1

d

c d

≤ ⌈1
ϵ ⌉α ≤ ⌈1

ϵ ⌉α2

α2

1

1

Figure 2.5: Showing the case where d is closed. To bound the distance from points in
P 1

d \P 1
d to c the respective distances appear with a factor of ⌈1

ϵ ⌉α, ⌈1
ϵ ⌉α2 or α2.

Corollary 2.3.14. Let O be an optimal solution to k-median/k-means with (1+ ϵ′)-weak
lower bounds and ϵ > 0 be a constant. We can compute a solution (C,σ) in polynomial
time for

1. k-median with (1 + ϵ′)-weak lower bounds with med(C,σ) ≤ ((13 + ϵ)⌈ 1
ϵ′ ⌉ + 6.5 +

ϵ)med(O)

2. k-means with (1 + ϵ′)-weak lower bounds with mean(C,σ) ≤ O(1
ϵ′)mean(O).

2.4 A Bi-Criteria Algorithm to Generalized k-Median with
Lower Bounds

So far we presented an algorithm that computes a set of at most k centers C ⊂ X
and an assignment σ : P → 2C such that the lower bound is satisfied at all centers and
every point is assigned at least once and at most twice. Instead allowing a point to be
assigned multiple times to satisfy the lower bounds, we can instead allow to violate the
lower bound by some fixed factor. Such solutions are called bi-criteria approximations
and are defined as follows.

Definition 2.4.1. A (β, δ)-bi-criteria solution for generalized k-median with lower bounds
consists of at most k centers C ⊂ X and an assignment σ : P → C such that at least

48

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

ci ci

Figure 2.6: Shows the case where Ai contains at least ⌈βB(ci)⌉ unassigned points. The
three points on the left are already assigned to other centers and the three points on the
right are newly assigned to ci. The gray connections come from σ.

βB(c) points are assigned to c ∈ C by σ and med(C,σ) ≤ δmed(O). Here O denotes an
optimal solution to generalized k-median with lower bounds.

Guha, Meyerson and Munagala [49] and Karger, Minkoff [55] presented a bi-criteria
algorithm for facility location with lower bounds which can easily be transformed into a
bi-criteria algorithm for k-median with lower bounds. However their approach only works
for distances which are given be a metric, especially it does not yield a constant factor
bi-criteria approximation for k-means with lower bounds. In this section we use our
results on 2-weak lower bounds to compute a bi-criteria approximation for generalized
k-means with lower bounds.

Theorem 2.4.2. Given a γ-approximate solution (C,σ) to generalized k-median with
2-weak lower bounds and a fixed β ∈ [0.5, 1) we can compute a (β, γmax{ αβ

1−β + 1, α2β
1−β })-

bi-criteria solution to generalized k-median with lower bounds in polynomial time. In
particular, there exists a polynomial time (1

2 ,O(1))-bi-criteria approximation algorithm
for k-means with lower bounds.

Proof. Given a β ≥ 1
2 and a γ-approximate solution to generalized k-median with 2-weak

lower bounds (C,σ), we can compute a (β, γmax{ αβ
1−β + 1, α2β

1−β })-bi-criteria solution in
the following way. Let C = {c1, . . . , ck′} for some k′ ≤ k. We process the centers in
order c1, . . . , ck′ and decide if they are open or closed. We say that ci is smaller than cj

if i < j. If we decide that a center c is open we directly assign at least ⌈βB(c)⌉ points
to c. In the beginning all points are unassigned.

Consider center ci. Let Ai be the set of all points assigned to ci under σ. We know
that |Ai| ≥ B(ci). If at least ⌈βB(ci)⌉ points in Ai are not assigned so far, ci remains
open and all currently unassigned points from Ai are assigned to ci (Figure 2.6). If fewer
than ⌈βB(ci)⌉ points from Ai are unassigned, the center is closed.

Let C ′ denote the centers from {c1, . . . , ci−1} which are open and Bi the set of
unassigned points from Ai which are not connected to any center larger than ci under σ.
To guarantee that all points are assigned at the end, we have to take care of points in
Bi. By assumption there are at most ⌊βB(ci)⌋ such points. We simply assign any point
p ∈ Bi to the nearest center arg minc∈C′ d(c, p) in C ′. The whole procedure is described
in Algorithm 3.

To upper bound the assignment cost in the case ci is closed by the algorithm we
consider a second assignment τ , which may be fractional. We define for p ∈ Bi and

49

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

c ∈ C ′ a value τ c
p ∈ [0, 1] which indicates the amount by which p is assigned to c. We

claim that we can find a fractional assignment such that for every q ∈ Bi and f ∈ C ′

the following holds

1. point q is assigned by an amount of one, i.e.,∑
c∈C′

τ c
q = 1

2. and at most β
1−β |{p ∈ Ai | f ∈ σ(p)}| amount is assigned to f , i.e.,

∑
p∈Bi

τ f
p ≤ β

1 − β
|{p ∈ Ai | f ∈ σ(p)}|

Such an assignment can be found since

β

1 − β

∑
c∈C′

|{p ∈ Ai | c ∈ σ(p)}| = β

1 − β
|{p ∈ Ai | σ(p) ∩C ′ ̸= ∅}|

≥β(1 − β)

1 − β
B(ci) ≥ |Bi|.

To see the first inequality we observe the following. If a point p ∈ Ai is connected to an
open center c ∈ C ′ under σ, it is already assigned to c by the algorithm. So the set of
points from Ai which are already assigned to some center equals {p ∈ Ai | σ(p)∩C ′ ̸= ∅}.
We know that |Ai| ≥ B(ci) and that at most ⌊βB(ci)⌋ points from Ai are unassigned.
Thus we have |{p ∈ Ai | σ(p) ∩C ′ ̸= ∅}| ≥ (1 − β)B(ci).

Let τ be an assignment satisfying the above properties. We obtain the following
upper bound to the cost of τ .

∑
c∈C′

∑
p∈Bi

τ c
p d(p, c) ≤

∑
c∈C′

(∑
x∈Ai : c∈σ(x)

β

1 − β

(
α2d(ci,x) + αd(x, c)

)
+

∑
p∈Bi

τ c
pα

2d(p, ci)

)

≤ αβ

1 − β

∑
c∈C′

∑
x∈Ai : c∈σ(x)

d(x, c) + α2β

1 − β

∑
x∈Ai

d(x, ci).

For the first inequality we used the above bound on ∑
p∈Bi

τ c
p . We can charge every

point in {x ∈ Ai | c ∈ σ(x)} up to an amount of β
1−β for the assignment cost of Bi to

c. Assume such a point x gets charged by an amount of δ ≤ τ c
p for the distance d(p, c).

We obtain the following upper bound on the cost

δd(p, c) ≤ δ(α2d(p, ci) + α2d(ci,x) + αd(x, c)).

Thus in total the distance d(p, ci) appears with a factor of τ c
pα

2, distance d(ci,x) with
factor β

1−βα
2 and d(x, c) with factor β

1−βα in the upper bound on the assignment cost
of Bi to c.

The second inequality follows immediately from β
1−β ≤ 1, ∑

c∈C′ τ c
p = 1 and Bi ∩ {x ∈

Ai | σ(x) ∩C ′ ̸= ∅} = ∅.

50

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

ci

α2

α2
α

Figure 2.7: Showing assignment τ in the case where ci is closed. The two points from
Bi are distributed to centers in C ′. The gray connections come from σ. α and α2 are
the factors with which the respective distances appear in the upper bound of the new
connection.

Assigning every point in Bi to its nearest center can only be cheaper than distributing
Bi to centers in C ′ via τ . We obtain∑

p∈Bi

min
c∈C′

d(p, c) ≤
∑
c∈C′

∑
p∈Bi

τ c
p d(p, c)

≤ αβ

1 − β

∑
c∈C′

∑
x∈Ai : c∈σ(x)

d(x, c) + α2β

1 − β

∑
x∈Ai

d(x, ci). (2.10)

Let (C ′,σ′) be the final solution computed by the algorithm.

med(C ′,σ′) =
∑
c∈C′

∑
x∈P :

σ′(x)=c

d(x, c)

≤
∑
c∈C′

∑
x∈P :

c∈σ(x)

d(x, c) + αβ

1 − β

∑
c∈C′

∑
x∈P :

c∈σ(x)

d(x, c) + α2β

1 − β

∑
c∈C\C′

∑
x∈P :

c∈σ(x)

d(x, c)

≤ max{ αβ

1 − β
+ 1, α

2β

1 − β
}

∑
c∈C

∑
x∈P :

c∈σ(x)

d(x, c)

= max{ αβ

1 − β
+ 1, α

2β

1 − β
}med(C,σ).

To see the first inequality we use the upper bound in (2.10). Let x ∈ P and c ∈ σ(x). If
c is closed in the final solution the distance d(x, c) is only charged with a factor of α2β

1−β

in (2.10) for closing c. If c is open in the final solution the distance d(x, c) is charged
with factor one if σ′(x) = c and can also be charged with a factor of αβ

1−β in (2.10) for
closing a center d ∈ σ(x). This can happen at most once since |σ(x)| ≤ 2. This proves
the second inequality.

Since generalized k-median with 2-weak lower bounds is a relaxation of generalized
k-median with lower bounds we obtain

cost(C ′,σ′) ≤ γmax{ αβ

1 − β
+ 1, α

2β

1 − β
}cost(O).

51

CHAPTER 2. ACHIEVING ANONYMITY VIA WEAK LOWER
BOUND CONSTRAINTS FOR K-MEDIAN AND K-MEANS

Algorithm 3: A (β, γmax{ αβ
1−β + 1, α2β

1−β })-bi-criteria approximation algo-
rithm to generalized k-median with lower bounds

Input : γ-approximate solution (C,σ) to generalized k-median with 2-weak
lower bounds, C = {c1, . . . , ck′}

Output: Bi-criteria solution (C ′,σ′) to generalized k-median with lower
bounds.

1 set C ′ = ∅, σ′(x) = ⊥ for all x ∈ P
2 N = P
3 for i = 1 to k′ do
4 Ai = {x ∈ P | ci ∈ σ(x)}
5 Bi = {x ∈ Ai | σ(x) ⊂ {c1 . . . , ci}} ∩N
6 if Ai ∩N ≥ βB(ci) then
7 set σ′(x) = ci for all x ∈ Ai ∩N
8 N = N\Ai

9 C ′ = C ′ ∪ {ci}
10 else
11 set σ′(x) = arg minc∈C′ d(x, c) for all x ∈ Bi

This yields the (β, γmax{ αβ
1−β + 1, α2β

1−β })-bi-criteria approximation to generalized k-
median with lower bounds. For k-means with lower bounds we apply Corollary 2.3.9 to
see that there exists an (1

2 ,O(1))-bi-criteria algorithm with polynomial running time.

52

Chapter 3

Hierarchical Clustering

The first part of this chapter contains results from the paper The Price of Hierarchical
Clustering [14] by Anna Arutyunova and Heiko Röglin published in the proceedings of
the European Symposium on Algorithms (ESA), 2022. A full version of this paper is
available at arXiv [15].

The second part of this chapter contains results from the paper Upper and Lower
Bounds for Complete Linkage in General Metric Spaces [13] by Anna Arutyunova, Anna
Großwendt, Heiko Röglin, Melanie Schmidt and Julian Wargalla published in the pro-
ceedings of the International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 2021. This paper is currently under consideration
at the journal Machine Learning. This chapter extends [13] by an improved upper bound
for complete linkage for the diameter, which was improved from O(k2) to O(k1.59), and
the notion of the average approximation factor.

In this chapter we consider the problem of computing hierarchical clusterings with
respect to several objective functions. Given a set of n points P in a metric space X
with metric d, the task is to compute a k-clustering for every 1 ≤ k ≤ n such that
the clusterings are hierarchicallly compatible. Informally speaking two clusterings are
hierarchically compatible if one is a refinement of the other. We say that a hierarchical
clustering achieves an approximation factor α if every k-clustering is an α-approximation
to the optimal k-clustering.

Remember that a k-clustering C = (C1, . . . , Ck) is a partition of the set P into
k clusters. The radius of the clustering is given by the maximal radius of one of its
clusters. We consider two variants of the radius: the discrete radius, where the center of
a cluster must be contained in the cluster itself, and the non-discrete radius, where the
center can be any point in X . More formally for a cluster C ⊂ P the discrete radius is
defined as

drad(C) = min
c∈C

max
p∈C

d(p, c)

and the discrete radius of the k-clustering C is given by drad(C) = maxC∈C drad(C).
The non-discrete radius of a cluster C ⊂ P is defined as

rad(C) = min
c∈X

max
p∈C

d(p, c)

and the non-discrete radius of the k-clustering C is given by rad(C) = maxC∈C rad(C).
Furthermore the diameter of a cluster C ⊂ P is defined as the maximum distance between
two point in the cluster

diam(C) = max
p,q∈C

d(p, q)

53

CHAPTER 3. HIERARCHICAL CLUSTERING

2 21 2 21

Figure 3.1: Here we see the optimal clusterings of size three and size two with respect
to the diameter. These two clusterings are not hierarchically compatible.

and the diameter of the k-clustering C is given by diam(C) = maxC∈C diam(C).
Now a hierarchical clustering and its approximation factor are defined as follows.

Definition 3.0.1. Given an instance (X , P, d), let n = |P|. We call two clusterings
C and C′ of P with |C| ≥ |C′| hierarchically compatible if for all C ∈ C there exists
C ′ ∈ C′ with C ⊂ C ′. A hierarchical clustering of P is a sequence of clusterings H =
(Hn, . . . , H1), such that

1. Hi is an i-clustering of P

2. for 1 < i ≤ n the two clusterings Hi−1 and Hi are hierarchically compatible.

For cost ∈ {diam, rad, drad} let Oi denote the optimal i-clustering with respect to cost.
We say that H is an α-approximation with respect to cost if for all i = 1, . . . ,n we have

cost(Hi) ≤ α · cost(Oi).

Remember the example from the introduction shown in Figure 3.1 where we see that
optimal clusterings do not have to be hierarchically compatible and therefore α = 1 is
usually not possible.

Given a clustering objective we can now ask the following two questions: What is the
best polynomial time approximation algorithm unless P = NP? If given unlimited com-
putation time, what is the best approximation factor that we can achieve? We consider
the three objectives discrete radius, non-discrete radius and diameter. Regarding the
first question, the best known algorithms are by Dasgupta and Long [39] and Charikar
et al. [27] and both achieve an 8-approximation for all three objectives. Mondal [66]
claims that there exists a 6-approximation for the discrete radius. The algorithm pre-
sented in [66] is a modification of the algortihm in [39]. However we present an instance
in Section 3.1.3 where the algorithm in [66] does not achieve this approximation factor.

As we see in Figure 3.1 the answer to the second question has to be greater or equal
to 3

2 when considering the diameter. In the first part of this chapter we compute the
best possible approximation factor for the objectives discrete radius, non-discrete radius
and diameter.

Even though there exist polynomial time constant factor approximations for most
of the popular clustering objectives such as the algorithms in [39, 27], agglomerative
clustering methods are much more popular in practice. The complete linkage algorithm
is such an agglomerative clustering method which starts with all points in separate
clusters and in every step merges the two clusters whose cost results in the smallest
increase of the considered objective function. Originally this algorithm seeks to minimize
the diameter of emerging clusters in every step, but we also consider the variant where
the algorithm minimizes the radius and call it also complete linkage for convenience. We
analyze the performance guarantee of complete linkage in general metric spaces. So far
it is only known that complete linkage may produce a hierarchical clustering which is not

54

CHAPTER 3. HIERARCHICAL CLUSTERING

better than a log2(k)-approximation [39] for the diameter. We provide upper bounds
for complete linkage with respect to radius and diameter and also show examples where
complete linkage computes a hierarchical clustering which is by factor Ω(k) worse than
the optimal clustering for both radius and diameter.

We know that complete linkage performs reasonably well in the Euclidean space.
Ackerman et al. [1] show an approximation guarantee of O(log(k)) for all three objectives
assuming the dimension of the Euclidean space to be constant. Their analysis was later
improved by Großwendt and Röglin [44] who show approximation guarantee O(1) under
the assumption that the dimension is constant. In the third part of this chapter we give
a simplified proof of the analysis in [44] which also yields slightly better approximation
factors.

3.1 The Price of Hierarchy

Since optimal clusterings are generally not hierarchically compatible, there is usually no
hierarchical clustering with approximation guarantee α = 1. We have to accept that the
restriction on hierarchically compatible clusterings comes with an unavoidable increase
in the cost compared to an optimal solution.

Definition 3.1.1. For cost ∈ {diam, rad, drad} the price of hierarchy ρcost ≥ 1 is defined
as follows.

1. For every instance (X , P, d), there exists a hierarchical clustering H of P that is
a ρcost-approximation with respect to cost.

2. For any α < ρcost there exists an instance (X , P, d), such that there is no hierar-
chical clustering of P that is an α-approximation with respect to cost.

Thus ρcost is the smallest possible number such that for every clustering instance
there is a hierarchical clustering with approximation guarantee ρcost. In the next two
sections we focus on computing the price of hierarchy for all three objectives.

3.1.1 An Upper Bound on the Price of Hierarchy

The framework by by Lin et al. [63] can be applied to compute incremental and hierar-
chical solutions to a large class of minimization problems. It yields an upper bound of
4 on the price of hierarchy for the discrete radius [46]. It also yields upper bounds for
the price of hierarchy for radius and diameter, which are not tight, however. We first
discuss their framework in the context of hierarchical clustering for (discrete) radius and
diameter. In the second part we then present an improved version of their algorithm
for radius and diameter that yields the following better upper bound on the price of
hierarchy for radius and diameter.

Theorem 3.1.2. For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

First we introduce the notion of a hierarchical sequence, which is a relaxation of a
hierarchical clustering in the sense that it does not have to contain a k-clustering for
every 1 ≤ k ≤ |P|.

Definition 3.1.3. Given an instance (X , P, d), with n = |P|. We call a sequence
C = (C(t), . . . , C(1)) of clusterings a hierarchical sequence if it satisfies

55

CHAPTER 3. HIERARCHICAL CLUSTERING

Algorithm 4: (Lin et al. [63])
Input : Clustering instance (X , P, d), with d(x, y) > 2 for all x, y ∈ P,

optimal clusterings O|P|, . . . , O1 of P with respect to cost
Output: A hierarchical clustering of P

1 Set ∆ = cost(O1), t = ⌈log2γ(∆)⌉ + 1 and C(t) = O|P|
2 for i = t− 1 to 1 do
3 Let 1 ≤ ni ≤ |P| be the smallest number such that

cost(Oni) ∈ ((2γ)t−i−1, (2γ)t−i]
4 if such a number exists then
5 set C(i) = Augmentcost(C(i+1), Oni , γ, δ)
6 else
7 set C(i) = C(i+1)

8 return h(C(t), . . . , C(1))

1. |C(t)| = n and |C(1)| = 1

2. for 1 ≤ i ≤ t either C(i−1) = C(i) or C(i−1) is obtained from C(i) by merging some
of its clusters.

Such a hierarchical sequence can be extended to a hierarchical clustering of P as follows.
We define the respective hierarchical clustering h(C) by assigning every 1 ≤ i ≤ n the
clustering among C(t), . . . , C(1) of smallest cost and size at most i. We say that C is an
α-approximation iff h(C) is an α-approximation.

Before we are able to define the algorithm we need one important definition from [63].

Definition 3.1.4. Given an instance (X , P, d). For cost ∈ {diam, rad, drad} we say that
the (γ, δ)-nesting property holds for reals γ, δ ≥ 0, if for any two clusterings C, D of P
with |C| > |D| there exists a clustering C′ with

1. |C′| ≤ |D|

2. C′ is hierarchically compatible with C and

3. cost(C′) ≤ γcost(C) + δcost(D).

We say that C′ is a nesting of C at D. Let Augmentcost(C, D, γ, δ) denote the subroutine
that computes such a clustering C′.

The algorithm of Lin et al. [63] is shown as Algorithm 4. It computes a hierarchical
sequence C = (C(t), . . . , C(1)) of clusterings as follows. Starting with C(t) = O|P| the
algorithm builds the i-th clustering C(i) as nesting of C(i+1) at an optimal clustering
Oni . This guarantees that the clusterings are hierarchically compatible.

Theorem 3.1.5 ([63]). For cost ∈ {drad, rad, diam}, if the (γ, δ)-nesting property holds
for reals γ ≥ 1, δ > 0, then Algorithm 4 computes a hierarchical clustering of P with
approximation guarantee 4γδ with respect to cost.

56

CHAPTER 3. HIERARCHICAL CLUSTERING

Algorithm 5:

Input : Step size α > 1. Clustering instance (X , P, d), with d(x, y) > 2 for all
x, y ∈ P, optimal clusterings O|P|, . . . , O1 of P with respect to cost

Output: A hierarchical clustering of P
1 Set ∆ = cost(O1), t = ⌈logα(∆)⌉ + 1 and C(t) = O|P|
2 For all C ∈ C(t) we set parentt(C) = C
3 for i = t− 1 to 1 do
4 Let 1 ≤ ni ≤ |P| be the smallest number such that cost(Oni) ∈ (αt−i−1,αt−i]
5 if such a number exists then
6 For C ∈ C(i+1) let O ∈ Oni be a cluster with parenti+1(C) ∩O ̸= ∅ and

set Nesti(C) = O

7 Set C(i) = {
⋃

C∈Nest(−1)
i (O)

C | O ∈ Oni}
8 Set parenti(

⋃
C∈Nest

(−1)
i (O)

C) = O for all O ∈ Oni

9 else
10 set C(i) = C(i+1), parenti = parenti+1

11 return h((C(t), . . . , C(1)))

Großwendt [46] proved the existence of such a nesting property for diam, rad, and
drad.

Lemma 3.1.6 ([46]). For cost ∈ {diam, rad} there exists a (2, 1)-nesting and for cost =
drad there exists a (1, 1)-nesting.

In combination with Theorem 3.1.5 this yields ρdrad ≤ 4. However, for the other two
objectives we obtain an upper bound of only 8. We improve Algorithm 4 to obtain the
claimed upper bound of 3 + 2

√
2.

In the definition of the (γ, δ)-nesting property we require a nesting of C at D for
arbitrary clusterings C, D with |C| > |D|. However, in Algorithm 4 we know more
about the structure of C. This clustering is obtained by repeatedly nesting at optimal
clusterings of increasing cost. In Algorithm 5 we define a nesting subroutine for this
type of clusterings that eventually leads to a better approximation guarantee.

The main difference between Algorithm 4 and Algorithm 5 is the replacement of
the function Augmentcost(Ci+1, Oni , γ, δ), which computes the nesting of C(i+1) at Oni ,
by a more explicit approach to compute such a nesting. We use the fact that C(i+1) is
obtained by a nesting at Oni+1 . This is reflected in the function parenti+1 which assigns
every cluster in C(i+1) a cluster from Oni+1 . In iteration i we then use the (i+ 1)-st
parent function to determine which clusters of C(i+1) will be merged to obtain C(i). We
are allowed to merge clusters C,D ∈ C(i+1) if there is a cluster O ∈ Oni which has a
non-empty intersection with both parenti+1(C) and parenti+1(D). The parent of the
merged cluster in C(i) is then set to O.

Lemma 3.1.7. For cost ∈ {diam, rad} and any α > 1 Algorithm 5 computes a hierar-
chical clustering with approximation guarantee α

(
2

α−1 + 1
)
.

Proof. Let n denote the cardinality of P. Notice first that (C(t), . . . , C(1)) is indeed a
hierarchical sequence. The first property of a hierarchical sequence is satisfied: We define

57

CHAPTER 3. HIERARCHICAL CLUSTERING

C(t) = On and since cost(O1) = ∆ ∈ (αt−2,αt−1] we obtain |C(1)| ≤ n1 = 1. The second
property is satisfied since C(i) either equals C(i+1) or is obtained by merging clusters
from C(i+1). Thus Algorithm 5 indeed computes a hierarchical clustering.

Diameter (cost = diam): Let 1 ≤ i ≤ t. We claim

1. for every cluster C ∈ C(i) and every point p ∈ parenti(C) that maxq∈C d(p, q) ≤∑t−i
l=1 α

l,

2. that diam(C(i)) ≤ αt−i + 2 ∑t−i−1
l=1 αl.

We prove this by induction over i, starting with i = t in decreasing order. Observe that
C(t) consists only of clusters of size one so these claims are true for i = t.

Let 1 ≤ i ≤ t− 1. If C(i) = C(i+1) both claims are true by induction hypothesis. Thus
we assume from now on that C(i) ̸= C(i+1). For the first claim, we fix a cluster C ∈ C(i)

and two points p ∈ parenti(C) and q ∈ C. Let D ∈ C(i+1) be the cluster which contains
q. Since C(i) is obtained by merging clusters from C(i+1), we know that D ⊂ C and thus
parenti+1(D) ∩ parenti(C) ̸= ∅. Let x ∈ parenti+1(D) ∩ parenti(C). By the induction
hypothesis

d(x, q) ≤ max
y∈D

d(x, y) ≤
t−i−1∑

l=1
αl.

Since p and x both lie in parenti(C) we obtain d(p,x) ≤ diam(Oni) ≤ αt−i. Using the
triangle inequality we conclude

d(p, q) ≤ d(p,x) + d(x, q) ≤
t−i∑
l=1

αl.

For the second claim we again fix a cluster C ∈ C(i) and two points p, q ∈ C.
Let B,D ∈ C(i+1) such that p ∈ B and q ∈ D. Observe that B ∪D ⊂ C and thus
parenti+1(B) ∩ parenti(C) ̸= ∅ ̸= parenti+1(D) ∩ parenti(C). Let xp ∈ parenti+1(B) ∩
parenti(C) and xq ∈ parenti+1(D)∩ parenti(C). Since xp and xq both lie in parenti(C) we
obtain d(xp,xq) ≤ diam(Oni) ≤ αt−i. We apply the triangle inequality and the induction
hypothesis of the first claim to obtain

d(p, q) ≤ d(p,xp) + d(xp,xq) + d(xq, q) ≤ αt−i + 2
t−i−1∑

l=1
αl.

Radius (cost = rad): Let 1 ≤ i ≤ t. We claim that for every cluster C ∈ C(i) and
the center c of the cluster parenti(C), it holds that maxq∈C d(c, q) ≤ αt−i + 2 ∑t−i−1

l=1 αl.
Notice that this immediately implies

rad(C(i)) ≤ αt−i + 2
t−i−1∑

l=1
αl.

We prove this by induction over i. Observe that C(t) consists only of clusters of size
one. So this claim is true for i = t. Let 1 ≤ i ≤ t− 1. If C(i) = C(i+1) the claim is true by
induction hypothesis. Thus we assume from now on that C(i) ̸= C(i+1). We fix a cluster
C ∈ C(i), a point q ∈ C and denote by c the center of parenti(C). Let D ∈ C(i+1) be the
cluster which contains q. Since C(i) is obtained by merging clusters from C(i+1), we know

58

CHAPTER 3. HIERARCHICAL CLUSTERING

that D ⊂ C and thus parenti+1(D)∩ parenti(C) ̸= ∅. Let x ∈ parenti+1(D)∩ parenti(C).
By induction hypothesis the following holds for the center d of parenti+1(D):

max
v∈D

d(d, v) ≤ αt−i−1 + 2
t−i−2∑

l=1
αl

Together with the triangle inequality this implies

d(x, q) ≤ d(x, d) + d(d, q) ≤ rad(Oni+1) + αt−i−1 + 2
t−i−2∑

l=1
αl ≤ 2

t−i−1∑
l=1

αl.

This yields the claim, as

d(c, q) ≤ d(c,x) + d(x, q) ≤ rad(Oni) + 2
t−i−1∑

l=1
αl ≤ αt−i + 2

t−i−1∑
l=1

αl.

Finally we can bound the approximation factor for both radius and diameter. Let
cost ∈ {diam, rad}. Since d(x, y) > 2 for all x, y ∈ P we get that cost(On−1) > 1. Thus
for every 1 ≤ m < n there is 1 ≤ i ≤ t− 1 such that cost(Om) ∈ (αt−i−1,αt−i]. Thus
the clustering h((C(t), . . . , C(1))) is an α

(
2

α−1 + 1
)

-approximation iff for all 1 ≤ i ≤ t

cost(C(i)) ≤ α

(2
α− 1 + 1

)
cost(O)

for all optimal clusterings O with cost(O) ∈ (αt−i−1,αt−i]. We obtain

cost(C(i)) ≤ αt−i + 2
t−i−1∑

l=1
αl < αt−i + 2 · α

t−i

α− 1

= αt−i
(2
α− 1 + 1

)
≤ α

(2
α− 1 + 1

)
cost(O).

Theorem 3.1.2. For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

Proof. Let (X , P, d) be a clustering instance. We can assume without loss of generality
that d(x, y) > 2 for all x, y ∈ P, otherwise we scale the metric d accordingly. For
cost ∈ {diam, rad} we then use Algorithm 5 with α = 1 +

√
2 to compute a hierarchical

clustering. By Lemma 3.1.7 we obtain a hierarchical clustering that is an 3 + 2
√

2
approximation and thus ρcost ≤ 3 + 2

√
2.

3.1.2 A Lower Bound on the Price of Hierarchy

The most challenging part is to improve the lower bounds on the price of hierarchy for
diameter, radius, and discrete radius.

Theorem 3.1.8. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad
we have ρcost ≥ 4.

59

CHAPTER 3. HIERARCHICAL CLUSTERING

There is already existing work in this area by Das and Kenyon-Mathieu [37] for the
diameter and Großwendt [46] for the radius. Both show a lower bound of 2 for the
respective objective. To improve upon these results we have to construct much more
complex instances which differ significantly from those in [37, 46].

For every ϵ > 0 we will construct a clustering instance (X , P, d) such that for
any hierarchical clustering H = (H|P|, . . . , H1) of P there is 1 ≤ i ≤ |P| such that
cost(Hi) ≥ α · cost(Oi), where Oi is an optimal i-clustering of P with respect to cost
and α = (3 + 2

√
2 − ϵ) for cost ∈ {diam, rad} and α = 4 − ϵ for cost = drad.

The proof is divided in three parts. First we introduce the clustering instance
(X , P, d) and determine its optimal clusterings. In the second part we develop the
notion of a bad cluster. We prove that any hierarchical clustering contains such bad
clusters and develop a lower bound on their cost. In the third part we compare the
lower bound to the cost of optimal clusterings and prove Theorem 3.1.8.

Definition of the Clustering Instance

For n ∈ N we denote by [n] the set of numbers from 1 to n. Let k ∈ N and Γ = k+ 1.
For 0 ≤ ℓ ≤ k we define point sets Qℓ and Pℓ recursively as follows

1. For ℓ = 0 let P0 = Q0 = [1] and denote by N0 the cardinality of P0.

2. For ℓ > 0 let Qℓ = [Γ ·Nℓ−1]
Nℓ−1 and Pℓ =

∏ℓ
i=0 Qi. Furthermore set Nℓ = |Pℓ|.

Moreover let ϕℓ : Pℓ → [Nℓ] be a bijection for 0 ≤ ℓ ≤ k.
We refer to a point X ∈ Pk as a matrix with k+ 1 rows and Nℓ−1 entries in the ℓ-th

row. Thus we write

X = (x01 | . . . | xℓ1, . . . ,xℓNℓ−1 | . . . | xk1, . . . ,xkNk−1).

Let Xℓ = (xℓ1, . . . ,xℓNℓ−1) ∈ Qℓ for 0 ≤ ℓ ≤ k. For a shorter representation we can
replace the ℓ-th row directly by Xℓ and for 0 ≤ i ≤ j ≤ k we can replace the i-th up to
j-th row by X[i:j] = (Xi | . . . | Xj).

Let X ∈ Pk and 1 ≤ ℓ ≤ k. Notice that X[0:ℓ−1] ∈ Pℓ−1 and let m = ϕℓ−1(X[0:ℓ−1]),
we define

AX
ℓ = {(X[0:ℓ−1] | xℓ1, . . . ,xℓm−1, ⋆,xℓm+1, . . . ,xℓNℓ−1 | X[ℓ+1:k]) | ⋆ ∈ [Γ ·Nℓ−1]}.

Thus all coordinates of points in AX
ℓ are fixed and agree with those of X except one

which is variable. Here X[0:ℓ−1] serves as prefix which indicates through ϕℓ−1 which
coordinate of Xℓ can be changed.

We define Aℓ = {AX
ℓ | X ∈ Pk} as the set containing all subsets of this form.

It is clear that Aℓ is a partition of Pk and that it contains only sets of size Γ ·Nℓ−1.
Furthermore we set A0 = {{X} | X ∈ Pk}.

Example 3.1.9. If we perform the first three steps of the construction we get Q0 =
[1], Q1 = [Γ],Q2 = [Γ2]Γ and

P1 = {(1 | x11) | x11 ∈ [Γ]},
P2 = {(1 | x11 | x21, . . . ,x2Γ) | x11 ∈ [Γ],x2i ∈ [Γ2] for 1 ≤ i ≤ Γ}

60

CHAPTER 3. HIERARCHICAL CLUSTERING

Since ϕ0 is a map between two sets of cardinality one this map is always unique. Now
suppose that we picked ϕ1 such that ϕ1((x01 | x11)) = x11 for all (x01 | x11) ∈ P1. Then
the partition A1 consists of the sets

{(1 | ⋆ | x21, . . . ,x2Γ) | ⋆ ∈ [Γ]}

with x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ. The partition A2 consists of the sets

{(1 | x11 | x21, . . . ,x2x11−1, ⋆,x2x11+1, . . . ,x2Γ) | ⋆ ∈ [Γ2]}

with x11 ∈ [Γ] and x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ with i ̸= x11.

Let G = (V ,E,w) denote the weighted hyper-graph with V = Pk and E =
⋃k

i=1 Ai.
The weight of a hyper-edge e ∈ E is set to ℓ iff e ∈ Aℓ. For 0 ≤ ℓ ≤ k, the sub-graph
Gℓ = (Vℓ,Eℓ,wℓ) is given by Vℓ = Pk,Eℓ =

⋃ℓ
i=0 Ai and wℓ = w|Eℓ

.
We extend G to a hyper-graph H = (V ′,E′,w′) as follows. Let V ′ = V ∪

⋃k
i=0{vA |

A ∈ Ai} and E′ = E ∪
⋃k

i=0{{v, vA} | A ∈ Ai, v ∈ A}. Thus H contains one vertex for
every A ∈

⋃k
i=0 Ai and this vertex is connected by edges to every vertex v ∈ A. For

e ∈ E we set w′(e) = w(e) and for e = {v, vA} for some A ∈ Aℓ and v ∈ A we set
w′(e) = ℓ/2.

The clustering instance (X , P, d) is given by X = V ′, P = V , and d as the shortest
path metric on H. Observe that the extension of G to H is only necessary for the lower
bound for the radius but not for the diameter and the discrete radius. This is because the
additional points V ′ \ V do not belong to P and are hence irrelevant for the clustering
instance for the diameter and discrete radius. In the lower bound for the radius they
will be used as centers, however.

Lemma 3.1.10. Let p, q ∈ V , then d(p, q) is the length of a shortest path between p and
q in G.

Proof. By definition d(p, q) is the length of a shortest path between p and q in H.
Suppose the shortest path contains a vertex vA for some A ∈

⋃k
i=0 Ai with v ∈ A as

predecessor and w ∈ A as ancestor. Since v and w are connected in H by the hyper-edge
A we can delete vA from the path and the length of the path does not change. The
resulting path is also a path in G, so d(p, q) is also the length of a shortest path between
p and q in G.

Next we state some structural properties of the graph G and the clustering instance
(X , P, d). To establish a lower bound on the approximation factor of a hierarchical
clustering we first focus on the optimal clusterings of the instance (X , P, d). One can
already guess that Aℓ is an optimal clustering with Nk

ΓNℓ−1
clusters with respect to cost ∈

{diam, rad, drad} and we will prove this in this section. First we need the following
statement about the connected components of Gℓ.

Lemma 3.1.11. The vertex set of every connected component in Gℓ has cardinality Nℓ

and is of the form V X
ℓ = {(X ′ | X) | X ′ ∈ Pℓ} for a given X = (Xℓ+1 | . . . | Xk) ∈∏k

i=ℓ+1 Qi.

Proof. Notice that |V X
ℓ | = Nℓ and that {V X

ℓ | X ∈
∏k

i=ℓ+1 Qi} is a partition of V .
Furthermore since Eℓ =

⋃ℓ
i=0 Ai any edge e ∈ Eℓ is either completely contained in or

disjoint to V X
ℓ .

61

CHAPTER 3. HIERARCHICAL CLUSTERING

y`s → z`s y`s′ → z`s′
V Y
`−1

V Y ′

`−1 V Y ′′

`−1

V Z
`−1

Figure 3.2: Here we see the construction of the path. It corresponds to changing the
coordinates of Y successively until they match Z. We use an edge in Aℓ to change yls to
zls, next we change yls′ to zls′ and proceed like this until we obtain Z. The respective
edges are then connected to a path from V X

ℓ−1 to V Z
ℓ−1.

It is left to show that V X
ℓ is connected. We prove this via induction over ℓ. For ℓ = 0

this is clear because |V X
0 | = 1. For ℓ > 0 let Y = (Yℓ | X),Z = (Zℓ | X) ∈

∏k
i=ℓ Qi.

By the induction hypothesis we know that the sets V Y
ℓ−1,V Z

ℓ−1 are connected. To prove
that V X

ℓ is connected it is sufficient to show that there is a path from a point in V Y
ℓ−1 to

a point in V Z
ℓ−1. We show this claim by induction over the number m of coordinates in

which Y and Z differ. For m = 0 there is nothing to show. If m > 0 pick 1 ≤ s ≤ Nℓ−1
such that yℓs ̸= zℓs and let P = ϕ−1

ℓ−1(s) ∈
∏ℓ−1

i=0 Qi. Consider the point (P | Yℓ | X)

which is contained in V Y
ℓ−1 . This point is also contained in the set

{(P | yℓ1, . . . , yℓs−1, ⋆, yℓs+1, . . . , yℓNℓ−1 | X) | ⋆ ∈ [Γ ·Nℓ−1]} ∈ Eℓ.

Thus there is an edge in Gℓ connecting a point in V Y
ℓ−1 to a point in V Y ′

ℓ−1 with Y ′ =
(yℓ1, . . . , yℓs−1, zℓs, yℓs+1, . . . , yNℓ−1 | X). Now Y ′ and Z differ in m− 1 coordinates, thus
there is a path between two points in V Y ′

ℓ−1 and V Z
ℓ−1 by induction hypothesis. If we

combine this with the induction hypothesis that V Y ′
ℓ−1 is connected this yields the claim

(see Figure 3.2 for an illustration).

Lemma 3.1.12. Any clustering of (X , P, d) with fewer than Nk
Nℓ−1

clusters costs at least
ℓ if cost ∈ {diam, drad} and ℓ/2 if cost = rad.

Proof. The shortest path in G between any two points which lie in different connected
components of Gℓ−1 must contain an edge of weight ≥ ℓ. Thus any set of points M ⊂ V
which is disconnected in Gℓ−1 has diameter ≥ ℓ. Remember that the discrete radius of
M is given by drad(M) = minc∈M maxp∈M d(p, c). For every possible choice of c ∈ M
there exists a point p ∈ M which is not in the same connected component of Gℓ−1 as c,
thus d(c, p) ≥ ℓ and therefore drad(M) ≥ ℓ and rad(M) ≥ diam(M)/2 ≥ ℓ/2.

We conclude that if cost ∈ {diam, drad} any cluster of cost smaller than ℓ is contained
in one of the sets V X

ℓ−1 for some X ∈
∏k

i=ℓ Qi by Lemma 3.1.11 and any clustering with
fewer than

∣∣∣ ∏k
i=ℓ Qi

∣∣∣ clusters costs at least ℓ. By the same argument if cost = rad any
cluster of cost smaller than ℓ/2 is contained in one of the sets V X

ℓ−1 for some X ∈
∏k

i=ℓ Qi

by Lemma 3.1.11 and any clustering with fewer than
∣∣∣ ∏k

i=ℓ Qi

∣∣∣ clusters costs at least

62

CHAPTER 3. HIERARCHICAL CLUSTERING

ℓ/2. Since ∣∣∣∣ k∏
i=ℓ

Qi

∣∣∣∣ =
∣∣∣ ∏k

i=0 Qi

∣∣∣∣∣∣ ∏ℓ−1
i=0 Qi

∣∣∣ = Nk

Nℓ−1

this proves the lemma.

Corollary 3.1.13. For 1 ≤ ℓ ≤ k and cost ∈ {diam, rad, drad} the clustering Aℓ is an op-
timal Nk

ΓNℓ−1
-clustering for the instance (X , P, d). Furthermore diam(Aℓ) = drad(Aℓ) = ℓ

and rad(Aℓ) = ℓ/2.

Proof. If cost ∈ {diam, drad} we obtain by definition of (X , P, d) that cost(Aℓ) ≤ ℓ. If
cost = rad we obtain that cost(A) ≤ ℓ/2 by picking vA ∈ X \P as center for A ∈ Aℓ. On
the other hand |Aℓ| = Nk

ΓNℓ−1
< Nk

Nℓ−1
and thus cost(Aℓ) ≥ ℓ if cost ∈ {diam, drad} and

cost(Aℓ) ≥ ℓ/2 for cost = rad by Lemma 3.1.12.

Characterization of Hierarchical Clusterings

Let from now on H = (HNk
, . . . , H1) denote a hierarchical clustering of (X , P, d).

We introduce the notion of bad clusters in H Nk
ΓNℓ−1

which are clusters whose cost increases

repeatedly, as we will see later. In this section we prove the existence of such clusters in
H and we give a lower bound on their cost.

Definition 3.1.14. We call all clusters C ∈ HNk
bad at time 0 and denote by Ker0(C) =

C the kernel of C at time 0 and set Bad(0) = HNk
.

For 1 ≤ ℓ ≤ k we say that a cluster C ∈ H Nk
ΓNℓ−1

is anchored at ℓ ≤ ℓ′ ≤ k if the set⋃
D∈Bad(ℓ−1) : D⊂C Kerℓ−1(D) is

1. connected in Gℓ′,

2. disconnected in Gℓ′−1.

We call C bad at time ℓ if C is anchored at some ℓ′ ≥ ℓ. We denote by Bad(ℓ) ⊂ H Nk
ΓNℓ−1

the set of all bad clusters at time ℓ. If C is bad we define the kernel of C as the union
of all kernels of bad clusters at time ℓ− 1 contained in C, i.e.,

Kerℓ(C) =
⋃

D∈Bad(ℓ−1) : D⊂C

Kerℓ−1(D).

All clusters in H Nk
ΓNℓ−1

\Bad(ℓ) are called good.

The example in Figure 3.3 shows that a bad cluster at time ℓ can contain clusters
which are good at time ℓ− 1. However we are only interested in points that are contained
exclusively in bad clusters at any time t < ℓ. The set Kerℓ(C) contains exactly such
points.

We will use two crucial properties to prove the final lower bound on the approximation
factor of any hierarchical clustering H of (X , P, d). We first observe that bad clusters
exist in H for every time-step 1 ≤ ℓ ≤ k and second that these clusters have a large
cost compared to the optimal clustering.

63

CHAPTER 3. HIERARCHICAL CLUSTERING

V X
`−1 V Y

`−1

V Z
`−1 V W

`−1

A
B

C

D

E

V X
`−1 V Y

`−1

V Z
`−1 V W

`−1

D

E

A
B

C

Figure 3.3: An illustration of the evolution of good and bad clusters: In the example,
we see five clusters at time ℓ− 1. The clusters A,B,D,E are assumed to be bad, with
their kernels depicted in dark gray, while C is assumed to be a good cluster. At time ℓ,
clusters A,B and C are merged. The resulting cluster is bad because the kernels of A
and B lie in different connected components of Gℓ−1. Clusters D and E are still present
at time ℓ, but now D is a good cluster since its kernel is completely contained in V Z

ℓ−1,
while E is still bad, since its kernel is disconnected in Gℓ−1.

Lemma 3.1.15. Let C be a good cluster at time 1 ≤ ℓ ≤ k and

W =
⋃

D∈Bad(ℓ−1) : D⊂C

Kerℓ−1(D),

then W is connected in Gℓ−1 and thus |W | ≤ Nℓ−1.

Proof. Suppose W is disconnected in Gℓ−1. Since Gk = G is connected, there must be a
time ℓ′ ≥ ℓ such that W is connected in Gℓ′ and disconnected in Gℓ′−1. But then C is a
bad cluster at time ℓ which is anchored at ℓ′ in contradiction to our assumption. Thus
W is connected in Gℓ−1. By Lemma 3.1.11 we know that every connected component
in Gℓ−1 is of size Nℓ−1.

Lemma 3.1.16. For all 0 ≤ ℓ ≤ k we have
∑

C∈Bad(ℓ) |Kerℓ(C)| ≥ Γ−ℓ
Γ Nk.

Proof. We prove this via induction over ℓ. For ℓ = 0 this is clear since ⋃
C∈Bad(0) Ker0(C) =

Pk.
Now suppose that ℓ > 0 and that∑

C∈Bad(ℓ)
|Kerℓ(C)| <

Γ − ℓ

Γ
Nk.

By induction hypothesis we know that∑
C∈Bad(ℓ−1)

|Kerℓ−1(C)| ≥ Γ − ℓ+ 1
Γ

Nk.

Thus the number of points which are in the kernel of a bad cluster at time ℓ− 1 but not
at time ℓ is larger than

Γ − ℓ+ 1
Γ

Nk − Γ − ℓ

Γ
Nk =

Nk

Γ
.

64

CHAPTER 3. HIERARCHICAL CLUSTERING

xjs → yjs

V
X[j:k]

j−1 V
Y[j:k]

j−1

j

(P | X[j:k]) (P | Y[j:k])X Y

Figure 3.4: A shortest path between X and Y . It consists of two shortest paths inside
the connected components of Gj−1 and the unique edge of weight j between these com-
ponents.

In other words these are points that are in the kernel of a bad cluster at time ℓ− 1 but
contained in a good cluster at time ℓ. Now we use that any good cluster at time ℓ can
contain only Nℓ−1 such points by Lemma 3.1.15. Thus the number of good clusters is
greater than

Nk

Γ
· 1
Nℓ−1

=
Nk

ΓNℓ−1
.

We obtain that H Nk
ΓNℓ−1

contains more than Nk
ΓNℓ−1

clusters, which is not possible.

Remember that Γ = k + 1, thus an immediate consequence of Lemma 3.1.16 is the
existence of bad clusters at time ℓ for any 0 ≤ ℓ ≤ k. To prove that their (discrete)
radius and diameter is indeed large we need a lower bound on the distance between two
points X,Y ∈ P that lie in different connected components of Gj−1 for some 1 ≤ j ≤ k.

Suppose that the points X and Y only differ in one coordinate, i.e., there is a
1 ≤ s ≤ Nj−1 such that xjs ̸= yjs, while X and Y agree in all other coordinates. There
is only one edge in Gj connecting V X[j:k]

j−1 with V
Y[j:k]

j−1 . Let P = ϕ−1
j−1(s), then this edge

connects the points (P | X[j:k]) and (P | Y[j:k]). If we connect X to (P | X[j:k]) and
(P | Y[j:k]) to Y via a shortest path, this results in a path from X to Y , see Figure 3.4.
We show that this path is indeed a shortest path between X and Y and generalize this
to arbitrary X and Y which are disconnected in Gj−1.

Lemma 3.1.17. Let X,Y ∈ P be two points and suppose there is 1 ≤ j ≤ k and
1 ≤ s ≤ Nj−1 such that xjs ̸= yjs. Let P = ϕ−1

j−1(s) ∈
∏j−1

i=0 Qi. Then

d(X,Y) ≥ d
(
X, (P | X[j:k])

)
+ j + d

(
Y , (P | Y[j:k])

)
.

Proof. Observe that if two points in G are connected by an edge they differ in exactly
one coordinate. Since xjs ̸= yjs any shortest path connecting X and Y must contain
two consecutive points Z,Z ′ with Z = (P | Zj | . . . | Zk) and Z ′ = (P | Z ′

j | . . . | Z ′
k)

such that zjs = xjs, z′
js = yjs and Z agrees with Z ′ in all remaining coordinates. We

obtain

d(X,Y) = d
(
X,Z

)
+ d(Z,Z ′) + d

(
Z ′,Y

)
= d

(
X,Z

)
+ j + d

(
Z ′,Y

)
.

It is now left to show that d(X,Z) ≥ d
(
X, (P | X[j:k])

)
and d(Y ,Z ′) ≥ d

(
Y , (P |

Y[j:k])
)
. To prove this we consider a shortest path V 1, . . . ,V t connecting V 1 = X with

65

CHAPTER 3. HIERARCHICAL CLUSTERING

V t = Z. Let W i = (V i
[0:j−1] | X[j:k]) for i = 1, . . . , t. We claim that W i is connected to

W i+1 by an edge in G and that d(V i,V i+1) ≥ d(W i,W i+1) for all 1 ≤ i ≤ t− 1. So let
1 ≤ i ≤ t− 1, we know that V i and V i+1 differ in exactly one coordinate. If they differ
at a coordinate in row r ≥ j we have W i = W i+1 and thus the claim holds. Otherwise
let u = ϕr−1(V i

[0:r−1]) then V i and V i+1 satisfy vi
ru ̸= vi+1

ru and d(V i,V i+1) = r. Since
r ≤ j − 1 we obtain that W i is connected to W i+1 by the edge

{(V i
[0:r−1] | vi

r1, . . . , vi
ru−1, ⋆, vi

ru+1, . . . , vi
rNr−1 | W i

[r+1:k]) | ⋆ ∈ [ΓNr−1]},

which has weight r. This yields the claim.
Observe that W 1 = X and W t = (P | X[j:k]) and that

d
(
X, (P | X[j:k])

)
≤

t−1∑
i=1

d(W i,W i+1) ≤
t−1∑
i=1

d(V i,V i+1) = d(X,Z).

Analogously one can show d(Y ,Z ′) ≥ d
(
Y , (P | Y[j:k])

)
and obtains

d(X,Y) = d
(
X,Z

)
+ j + d

(
Z ′,Y

)
≥ d

(
X, (P | X[j:k])

)
+ j + d

(
Y , (P | Y[j:k])

)
.

We now define the so called anchor set Ancℓ(C) of a bad cluster C at time ℓ. If C
is anchored at ℓ′ then Ancℓ(C) is the union of ℓ′ and the anchor set of some bad cluster
D ⊂ C at time ℓ− 1. If we choose D appropriately the sum of anchors in Ancℓ(C) is a
lower bound on the discrete radius of C, as we show later. It is clear that ℓ′ itself is a
lower bound on the discrete radius since Kerℓ(C) is disconnected in Gℓ′−1 by definition.
If we additionally assume that the discrete radius of D is large, e.g., lower bounded
by the sum of anchors in Ancℓ−1(D), then it is reasonable to assume that the discrete
radius of C is lower bounded by some function in ℓ′ and the sum of anchors in Ancℓ−1(D).
Before proving this we give a formal definition of Ancℓ(C) and how to choose D.

Definition 3.1.18. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ which is anchored at
ℓ′ ≥ ℓ. If ℓ = 1 we define the anchor set of C as Anc1(C) = {ℓ′} and set prev(C) = {X}
for some X ∈ C.

For ℓ > 1 we distinguish two cases.

Case 1: C contains a bad cluster D which is bad at time ℓ− 1 and anchored at ℓ′. We
then set Ancℓ(C) = Ancℓ−1(D) and prev(C) = D.

Case 2: C does not contain such a cluster. Then let D ⊂ C be a bad cluster at time
ℓ− 1 minimizing ∑

a∈Ancℓ−1(D)

a

among all clusters D′ ∈ Bad(ℓ− 1) with D′ ⊂ C. We set Ancℓ(C) = Ancℓ−1(D) ∪
{ℓ′} and prev(C) = D.

Observe that in Case 2 of the previous definition, the bad cluster D must be anchored
at some ℓD < ℓ′.

Lemma 3.1.19. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ. If C contains a cluster
D which is bad at time ℓ− 1 then Kerℓ−1(D) ⊂ Kerℓ(C).

66

CHAPTER 3. HIERARCHICAL CLUSTERING

Proof. Since D ∈ Bad(ℓ− 1) and D ⊂ C, we get

Kerℓ−1(D) ⊂
⋃

D′⊂Bad(ℓ−1) : D′⊂C

Kerℓ−1(D
′) = Kerℓ(C).

With the help of Lemma 3.1.17 we are able to show how the discrete radius and
diameter of a bad cluster, depends on the sum of anchors.

Lemma 3.1.20. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then
for any point Z ∈ P there is X ∈ Kerℓ(C) such that

d(Z,X) ≥
∑

a∈Ancℓ(C)

a.

Proof. Let Z ∈ P and suppose that C is a bad cluster at time ℓ anchored at ℓ′. We
prove the lemma via induction over ℓ. For ℓ = 1 we know that Kerℓ(C) is disconnected
in Gℓ′−1 by definition. Thus there is a point X ∈ Kerℓ(C) which is disconnected from Z
in Gℓ′−1 yielding

d(Z,X) ≥ ℓ′ =
∑

a∈Anc1(C)

a.

Let ℓ > 1. If D = prev(C) is anchored at ℓ′ we apply Lemma 3.1.19 to observe
that Kerℓ−1(D) ⊂ Kerℓ(C). By induction hypothesis the lemma holds for D. Since
Ancℓ(C) = Ancℓ−1(D) the lemma also holds for C.

Otherwise let D = prev(C) be anchored at ℓD < ℓ′. We know that Kerℓ(C) is
disconnected in Gℓ′−1. On the other hand Kerℓ−1(D) is connected in Gℓ′−1 since ℓD < ℓ′.
Thus there is V ∈ Kerℓ(C) which is disconnected from Kerℓ−1(D) in Gℓ′−1. Let E ⊂ C be
the cluster at time ℓ− 1 which contains V . Since V ∈ Kerℓ(C) we know that E is a bad
cluster at time ℓ− 1 anchored at ℓE < ℓ′. We know that Kerℓ−1(E) is connected in Gℓ′−1
and lies in a different connected component than Kerℓ−1(D). Thus Z is disconnected
from Kerℓ−1(D) or Kerℓ−1(E) in Gℓ′−1.

We assume without loss of generality that Z is disconnected from E in Gℓ′−1. Since
Kerℓ−1(E) is connected inGℓ′−1 we know by Lemma 3.1.11 that (P | Y[ℓ′ :k]) = (P | Y ′

[ℓ′ :k])

for all Y ,Y ′ ∈ Kerℓ−1(E). Also by Lemma 3.1.11 there is ℓ′ ≤ r ≤ k and 1 ≤ s ≤ Nr−1
such that zrs ̸= yrs for all Y ∈ Kerℓ−1(E). Let P = ϕ−1

r−1(s). Thus we know by induction
hypothesis that there is a point X ∈ Kerℓ−1(E) ⊂ Kerℓ(C) with

d(X, (P | X[r:k])) ≥
∑

a∈Ancℓ−1(E)

a.

Figure 3.5 shows an exemplary path between X and Z.
We apply Lemma 3.1.17 to see that

d(Z,X) ≥ d
(
Z, (P | Z[r:k])

)
+ r+ d

(
X, (P | X[r:k])

)
≥ r+

∑
a∈Ancℓ−1(E)

a

≥ ℓ′ +
∑

a∈Ancℓ−1(E)

a

≥
∑

a∈Ancℓ(C)

a

67

CHAPTER 3. HIERARCHICAL CLUSTERING

zrs → xrs

V A
`′−1 V B

`′−1

r

(P | Z[r:k]) (P | X[r:k])

Z
X

Ker`−1(E)Ker`−1(D)

Figure 3.5: Shows the special case where Z[r:k] and Y[r:k] only differ in the rs-coordinate.
The length of the red path is lower bounded by ∑

a∈Ancℓ−1(E) a.

x`′s → y`′s

V A
`′−1 V B

`′−1

`′

(P | X[`′:k]) (P | Y[`′:k])Ker`−1(D)

X Y

Ker`−1(E)

Figure 3.6: Shows the special case whereX[ℓ′ :k] and Y[ℓ′ :k] only differ in the ℓ′s-coordinate.
The length of the blue path is lower bounded by ∑

a∈Ancℓ−1(D) a, while the length of the
red path is lower bounded by ∑

a∈Ancℓ−1(E) a.

Here the last inequality follows from the minimality of ∑
a∈Ancℓ−1(D) a among all clusters

D′ ∈ Bad(ℓ− 1) with D′ ⊂ C.
If Z is disconnected from D in Gℓ′−1 our argument still works after replacing E by

D.

Lemma 3.1.21. Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then
there are two points X,Y ∈ Kerℓ(C) such that

d(X,Y) ≥ ℓ′ + 2
∑

a∈Ancℓ(C)\{ℓ′}
a.

Proof. Suppose that C is a bad cluster at time ℓ anchored at ℓ′. We prove the lemma via
induction over ℓ. For ℓ = 1 we know that Kerℓ(C) is disconnected in Gℓ′−1 by definition.
Thus there are two points X,Y ∈ Kerℓ(C) that are disconnected in Gℓ′−1 yielding

d(X,Y) ≥ ℓ′ = ℓ′ + 2
∑

a∈Anc1(C)\{ℓ′}
a.

Let ℓ > 1. If D = prev(C) is anchored at ℓ′ we apply Lemma 3.1.19 to observe
that Kerℓ−1(D) ⊂ Kerℓ(C). By induction hypothesis the lemma holds for D. Since
Ancℓ(C) = Ancℓ−1(D) the lemma also holds for C.

Otherwise let D = prev(C) be anchored at ℓD < ℓ′. We know that Kerℓ(C) is
disconnected in Gℓ′−1 and Kerℓ−1(D) is connected in Gℓ′−1. Thus there is V ∈ Kerℓ(C)
which is disconnected from Kerℓ−1(D) in Gℓ′−1. Let E ⊂ C be the cluster at time ℓ− 1
which contains V . We know that E is a bad cluster at time ℓ− 1 anchored at ℓE < ℓ′.

68

CHAPTER 3. HIERARCHICAL CLUSTERING

Furthermore Kerℓ−1(E) is connected in Gℓ′−1 and lies in a different connected component
than Kerℓ−1(D).

Since Kerℓ−1(D) and Kerℓ−1(E) are disconnected in Gℓ′−1 but connected in Gℓ′ , there
must be 1 ≤ s ≤ Nℓ′−1 such that for all U ∈ Kerℓ−1(D) and T ∈ Kerℓ−1(E) we have
uℓ′s ̸= tℓ′s by Lemma 3.1.11. Let P = ϕ−1

ℓ′−1(s), we know by Lemma 3.1.17 that

d(U ,T) ≥ d(U , (P | U[ℓ′ :k])) + ℓ′ + d(T , (P | T[ℓ′ :k])).

Let U ∈ Kerℓ−1(D) and T ∈ Kerℓ−1(E). We know by Lemma 3.1.20 that for any two
points Z = (P | U[ℓ′ :k]) and Z ′ = (P | T[ℓ′ :k]) there must be X ∈ Kerℓ−1(D) and
Y ∈ Kerℓ−1(E) such that

d(X,Z) ≥
∑

a∈Ancℓ−1(D)

a

and
d(Y ,Z ′) ≥

∑
a∈Ancℓ−1(E)

a.

We use Lemma 3.1.11 to observe that Z = (P | X[ℓ′ :k]) and Z ′ = (P | Y[ℓ′ :k]) because
X is connected to U and Y is connected to T in Gℓ′−1. Figure 3.6 shows an exemplary
path between X and Y . Thus

d(X,Y) ≥ d(X, (P | X[ℓ′ :k])) + ℓ′ + d(Y , (P | Y[ℓ′ :k]))

≥ d(X,Z) + ℓ′ + d(Y ,Z ′)

≥ ℓ′ +
∑

a∈Ancℓ−1(D)

a+
∑

a∈Ancℓ−1(E)

a

≥ ℓ′ + 2
∑

a∈Ancℓ(C)\{ℓ′}
a

Here the last inequality follows from the minimality of ∑
a∈Ancℓ−1(D) a among all clusters

D′ ∈ Bad(ℓ− 1) with D′ ⊂ C.

Comparison to Optimal Clusterings Our initial motivation was to construct an
instance where any hierarchical clustering has a high approximation ratio. If we consider
an arbitrary time 1 ≤ ℓ ≤ k then the hierarchical clustering H on (X , P, d) may be even
optimal at time ℓ. Thus the bounds which we develop in Lemma 3.1.20 and Lemma 3.1.21
on the discrete radius and diameter of bad clusters are useless without linking the cost
of a bad cluster at time ℓ to the cost of bad clusters at other time steps. Therefore we
construct a sequence of clusters C1 ⊂ C2 . . . ⊂ Ck where Ci is a bad cluster at time
i such that Anc1(C1) ⊂ Anc2(C2) ⊂ . . . ⊂ Anck(Ck). We then show with the help of
Lemma 3.1.20 and Lemma 3.1.21 that at least one of these clusters has a high discrete
radius and diameter compared to the optimal cost.

Lemma 3.1.22. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k − 1 we define
Ci = prev(Ci+1). For all 1 ≤ i ≤ k − 1 cluster Ci is bad at time i and one of the
following two cases occurs:

1. Anci(Ci) = Anci+1(Ci+1),

2. Anci+1(Ci+1)\{ℓ} = Anci(Ci), where ℓ = max Anci+1(Ci+1).

69

CHAPTER 3. HIERARCHICAL CLUSTERING

Proof. For i = k cluster Ck is bad at time k by assumption. If Ci+1 is a bad cluster at
time i+ 1 then Ci = prev(Ci+1) is a bad cluster at time i, by definition of prev.

Let Ci be anchored at ℓ′ ≥ i and Ci+1 be anchored at ℓ ≥ i+ 1. Since Keri(Ci) ⊂
Keri+1(Ci+1) by Lemma 3.1.19, we know that ℓ′ ≤ ℓ. If ℓ′ = ℓ we obtain by Defini-
tion 3.1.18, that Anci(Ci) = Anci+1(Ci+1), so the lemma holds in this case.

If ℓ′ < ℓ we know by Definition 3.1.18 that Anci(Ci) = Anci+1(Ci+1)\{ℓ}. So the
lemma also holds in this case.

Corollary 3.1.23. Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k − 1 we define
Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs} such that ℓt−1 < ℓt for all 2 ≤ t ≤ s
and let ℓ0 = 0. Then for any 1 ≤ t ≤ s and for any i with ℓt−1 < i ≤ ℓt, we have
{ℓ1, . . . , ℓt} ⊂ Anci(Ci).

Proof. We prove this via induction over i, starting from i = k in decreasing order.
There is nothing to show for i = k. For i < k we distinguish two cases. If Anc(Ci) =
Anci+1(Ci+1), the lemma follows from the induction hypothesis.

Otherwise remember that Anci(Ci) ⊂ Anck(Ck) and ℓt−1 < i. Thus we know that
max Anci(Ci) ∈ {ℓt, . . . , ℓs} and therefore ℓt ≤ max Anci(Ci). By Lemma 3.1.22 we
know that Anci(Ci) = Anci+1(Ci+1)\{ℓ}, where ℓ = max Anci+1(Ci+1). Thus ℓt ≤
max Anci(Ci) < max Anci+1(Ci+1) = ℓ and by induction hypothesis we obtain

{ℓ1, . . . , ℓt} ⊂ Anci+1(Ci+1)\{ℓ} = Anci(Ci).

Before we are able to prove the theorem we need some final lemma.

Lemma 3.1.24. For every ϵ > 0 there exists k ∈ N such that for every s ∈ N any
sequence of s + 1 numbers (ℓ0, . . . , ℓs) ∈ Rs+1

≥0 with ℓ0 = 0 and ℓs = k satisfies the
following.

1. There exists 1 ≤ t ≤ s such that for α1 = 4 − ϵ and ∆1 = 1 we have

ℓt + ∆1
∑t−1

i=0 ℓi
ℓt−1 + 1 > α1.

2. There exists 1 ≤ t ≤ s such that for α2 = 3 + 2
√

2 − ϵ and ∆2 = 2 we have

ℓt + ∆2
∑t−1

i=0 ℓi
ℓt−1 + 1 > α2.

Proof. Let k, s ∈ N and j ∈ {1, 2}. We call a sequence (a0, . . . , as) ∈ Rs+1
≥0 feasible if

a0 = 0, as = k and for all 1 ≤ t ≤ s we have

at + ∆j
∑t−1

i=0 ai

at−1 + 1 ≤ αj . (3.1)

Our proof is divided in two parts. In the first part we argue that for all k, s ∈ N

the existence of a feasible sequence (ℓ0, . . . , ℓs) yields the existence of a feasible sequence
(b0, . . . , bs) which satisfies (3.1) for all u+ 1 ≤ t ≤ s with equality, where u is the smallest
number such that bu ̸= 0. In the second part we observe that there exists k ∈ N such
that for all s ∈ N there is no feasible sequence (a0, . . . , as) ∈ Rs+1

≥0 which satisfies (3.1)
for all u+ 1 ≤ t ≤ s with equality, where u is the smallest number such that au ̸= 0. In
combination both parts yield the lemma.

70

CHAPTER 3. HIERARCHICAL CLUSTERING

Part 1: Let k, s ∈ N and suppose that there exists a feasible sequence (ℓ0, . . . , ℓs).
We consider the set

M = {(a0, . . . , as) ∈ Rs+1
≥0 | (a0, . . . , as) is feasible}

of all feasible sequences.
For (a0, . . . , as) ∈ M , we claim that at ≤ (αj + 1)t+1 for all 0 ≤ t ≤ s. We show this

via a simple induction over t. If t = 0 there is nothing to show since a0 = 0. For t > 0
we obtain

at ≤ αj(at−1 + 1) − ∆j

t−1∑
i=0

ai ≤ αj(at−1 + 1) ≤ αj((αj + 1)t + 1) ≤ (αj + 1)t+1.

Here the first inequality follows from the feasibility of the sequence. As a consequence
we see that M is a bounded set. Furthermore M is also closed since a0 = 0, at = k
are both linear inequalities and (3.1) is a linear inequality for all 1 ≤ t ≤ s. Thus M is
compact.

We consider the function F : M → R with F (a0, . . . , as) =
∑s

i=0 ai. Since F is
continuous and M is compact and non-empty we know that F attains a minimum on M ,
i.e., there is (b0, . . . , bs) ∈ M with F (b0, . . . , bs) ≤ F (a0, . . . , as) for all (a0, . . . , as) ∈ M .
We claim that (b0, . . . , bs) satisfies (3.1) with equality for all u+ 1 ≤ t ≤ s, where u is
the smallest number such that bu ̸= 0. Suppose this is not the case and let u+ 1 ≤ t ≤ s
be a number such that

bt + ∆j
∑t−1

i=0 bi

bt−1 + 1 < αj .

If bt−1 = 0, then (0, . . . , 0, bt, . . . , bs) is also feasible and moreover

F (0, . . . , 0, bt, . . . , bs) =
s∑

i=t

bi < bu +
s∑

i=t

bi ≤ F (b0, . . . , bs)

in contradiction to (b0, . . . , bs) being a minimum. Thus we must have bt−1 > 0 and
therefore by continuity there exists an ϵ ∈ (0, bt−1), such that

bt + ∆j(bt−1 − ϵ) + ∆j
∑t−2

i=0 bi

bt−1 − ϵ+ 1 ≤ αj .

Observe that the sequence (c0, . . . , cs) = (b0, . . . , bt−2, bt−1 − ϵ, bt, . . . , bs) is still feasible.
The t-th inequality is satisfied by choice of ϵ. All other inequalities are satisfied, since
for all 1 ≤ r ≤ s with r ̸= t we have

cr + ∆j
∑r−1

i=0 ci

cr−1 + 1 ≤ br + ∆j
∑r−1

i=0 bi

br−1 + 1 ≤ αj .

On the other hand

F (c0, . . . , cs) =
s∑

i=0
ci = −ϵ+

s∑
i=0

bi < F (b0, . . . , bs),

which again stands in contradiction to (b0, . . . , bs) being the minimum. Thus (b0, . . . , bs)
is of the desired form.

71

CHAPTER 3. HIERARCHICAL CLUSTERING

Part 2: Let k, s ∈ N and (a0, . . . , as) ∈ Rs+1
≥0 be a feasible sequence which satisfies

(3.1) for all u+ 1 ≤ t ≤ s with equality, where u is the smallest number such that au ̸= 0.
Thus we know that a1 = . . . = au−1 = 0 and au ∈ (0,αj]. Furthermore

au+1 = αj(au + 1) − ∆j

u∑
i=0

ai = αj(au + 1) − ∆jau

and for u+ 2 ≤ t ≤ s we have

at = αj(at−1 + 1) − ∆j

t−1∑
i=0

ai

= αj(at−1 + 1) − ∆jat−1 − ∆j

t−2∑
i=0

ai

= αj(at−1 + 1) − ∆jat−1 − (αj(at−2 + 1) − at−1)

= αj(at−1 − at−2) − (∆j − 1)at−1.

Here we use that (3.1) is satisfied with equality for t and t− 1.
Let

Ψ =
αj − ∆j + 1 +

√
(αj − ∆j + 1)2 − 4αj

2
and

Θ =
αj − ∆j + 1 −

√
(αj − ∆j + 1)2 − 4αj

2
be the two roots of the polynomial X2 − (αj − ∆j + 1)X + αj . We observe later that
Φ ̸= Θ. Let x = Θau−au+1

Θ−Φ and y = au+1−Φau

Θ−Φ .
Claim: It holds that at = Φt−ux+ Θt−uy for all u ≤ t ≤ s.
We prove this claim by induction over t. For t = u we obtain

x+ y =
Θau − au+1 + au+1 − Φau

Θ − Φ
= au.

For t = u+ 1 we obtain

Φx+ Θy =
ΦΘau − Φau+1 + Θau+1 − ΘΦau

Θ − Φ
= au+1.

For t > u+ 1 we obtain

Φt−ux+ Θt−uy

= Φt−u−2x((αj − ∆j + 1)Φ − αj) + Θt−u−2y((αj − ∆j + 1)Θ − αj)

= αj((Φt−u−1x+ Θt−u−1y) − (Φt−u−2x+ Θt−u−2y)) − (∆j − 1)(Φt−u−1x+ Θt−u−1y)

= αj(at−1 − at−2) − (∆j − 1)at−1

= at.

For the first equality we used that Φ and Θ are roots of X2 − (αj − ∆j + 1)X + αj , i.e.,
Φ2 = (αj − ∆j + 1)Φ − αj and Θ2 = (αj − ∆j + 1)Θ − αj . For the third equality we
used the induction hypothesis. This proves the claim.

We argue that if k is large enough, there must be u ≤ t ≤ s with at < 0 in con-
tradiction to our assumption that (a0, . . . , as) is feasible. For this we observe that by

72

CHAPTER 3. HIERARCHICAL CLUSTERING

x
‖x‖

Φx
‖Φx‖

Φrx
‖Φrx‖

Θy
‖Θy‖

Θry
‖Θry‖

Φ2x
‖Φ2x‖

Θ2y
‖Θ2y‖

y
‖y‖

C

Figure 3.7: Here we see the normalized numbers on the complex plane.

choice of αj and ∆j , we get (αj − ∆j + 1)2 − 4αj < 0 and thus Φ and Θ are complex
numbers. Furthermore Φ and Θ are complex conjugates and so are x and y. Thus there
exists r > 0 such that the real part of Φrx and Θry is negative and thus Φrx+ Θry is
negative, see Figure 3.7.

Observe that at ≤ (αj + 1)t−u+1 for u ≤ t ≤ s. One can prove this similar to the
bound in Part 1. Thus if k ≥ (αj + 1)r+1 we obtain s ≥ r + u and ar+u = Φrx+ Θry
is negative. Therefore (a0, . . . , as) is not feasible in contradiction to our assumption.

Let now k ≥ (αj + 1)r+1 and suppose there exists s ∈ N and a feasible sequence
(ℓ0, . . . , ℓs). By the first part we know that there also exists a feasible sequence (a0, . . . , as)
which satisfies (3.1) for all u+ 1 ≤ t ≤ s with equality, where u is the smallest number
such that au ̸= 0. This is in contradiction with the second part, where we prove that for
k ≥ (αj + 1)r+1 such a sequence cannot exist.

Theorem 3.1.8. For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad
we have ρcost ≥ 4.

Proof. Let ϵ > 0 and k be the respective number from Lemma 3.1.24. We claim that the
approximation factor of any hierarchical clustering H = (HNk

, . . . , H1) on the instance
(X , P, d) is larger than 3 + 2

√
2 − ϵ if cost ∈ {diam, rad} and larger than 4 − ϵ if cost =

drad. First we use Lemma 3.1.16 to observe that there is a cluster Ck ∈ H Nk
ΓNk−1

that is

bad at time k. For 1 ≤ i ≤ k− 1 we define Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs}
with ℓt−1 < ℓt for 2 ≤ t ≤ s and let ℓ0 = 0. We know by Corollary 3.1.23, that for any
1 ≤ t ≤ s and for i = ℓt−1 + 1 we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci). Let ℓ′ = max Anci(Ci),

73

CHAPTER 3. HIERARCHICAL CLUSTERING

we obtain by Lemma 3.1.21 and Lemma 3.1.20 that

diam(Ci) ≥ ℓ′ + 2
∑

a∈Anci(Ci)\{ℓ′}
a ≥ ℓt + 2

t−1∑
u=1

ℓu,

rad(Ci) ≥ diam(Ci)

2 ≥ ℓt + 2 ∑t−1
u=1 ℓu

2 ,

drad(Ci) ≥
∑

a∈Anci(Ci)

a ≥
t∑

u=1
ℓu.

Remember that by Corollary 3.1.13 Ai is an optimal Nk
ΓNi−1

-clustering with cost(Ai) = i

if cost ∈ {diam, drad} and cost(Ai) = i/2 if cost = rad. We obtain

rad(Ci)

rad(Ai)
=

2rad(Ci)

2rad(Ai)
≥ diam(Ci)

diam(Ai)
≥ ℓt + 2 ∑t−1

u=1 ℓu
ℓt−1 + 1

drad(Ci)

drad(Ai)
≥

∑t
u=1 ℓu

ℓt−1 + 1

which are lower bounds on the approximation factor of H .
We apply Lemma 3.1.24 on (ℓ0, . . . , ℓs) to observe that there is 1 ≤ t′ ≤ s such that

ℓt′ + 2 ∑t′−1
u=1 ℓu

ℓt′−1 + 1 > 3 + 2
√

2 − ϵ

and an 1 ≤ t′′ ≤ s such that ∑t′′
u=1 ℓu

ℓt′′−1 + 1 > 4 − ϵ.

This proves the theorem.

3.1.3 Counterexample for Mondal’s Algorithm

So far we learned that the price of hierarchy is 3 + 2
√

2 for rad, diam and 4 for drad.
However, the price of hierarchy does not reveal whether one can compute hierarchical
clusterings with these approximation guarantees. The best polynomial time algorithm
is the 8-approximation by Dasgupta and Long [39]. Mondal claims that one can even
obtain a 6-approximation for the discrete radius objective [66, Theorem 3.7]. We claim
that this is not correct and present an example where the approximation factor is 7.
First we give a brief summary of Mondal’s algorithm.

Let (X , P, d) be the clustering instance. In the beginning we compute a numbering
of the points in P by running Gonzales’ algorithm [43]. The numbering is computed as
follows. We pick the first point x1 ∈ P arbitrarily and set R1 = ∞. For 2 ≤ k ≤ |P| we
set

xk = argmaxx∈P\{x1,...,xk−1} min
1≤i≤k−1

d(x,xi)

and Rk = min1≤i≤k−1 d(xk,xi). In other words the k-th point is picked as far as possible
from the points x1, . . . ,xk−1 and we denote by Rk the distance of xk to x1, . . . ,xk−1.

Based on the R-values we define the parent of a point x ∈ P\{x1}. Let N(x) =

argmin{d(x, y) | y ∈ P,Rx ≤ Ry

2 } denote the parent of x. In other words N(x) is the

74

CHAPTER 3. HIERARCHICAL CLUSTERING

9

23

25 2

2
2− ε

2− ε
2− ε

1

7
2

2

8

8− ε

8− ε 8− ε

8

8 22

24

2

2

2− ε 2− ε

2− ε
1

6
2 28

8

8− ε

8− ε

8− ε

4− ε

2− ε

4− ε

2− ε

15

13

11

117

8− ε8− ε

8− ε

8− ε

116

R1 =∞
R2 = 24− 2ε

R3 = R4 = 16− ε
R5 = 8

R6 = R7 = R8 = R9 = 8− ε
R10 = R11 = R12 = R13 = 4

R16 = R17 = R18 = R19 = R20

R24 = R25 = 2− ε
R26 = R27 = 1

15

2

2

4

4− ε

4− ε4− ε

4

13 4

19

2 2

2

1422
4

4− ε

4− ε

4− ε

4

12

2

18

2

2

2

111

121

127

110 120

126

R14 = R15 = 4− ε

= R21 = R22 = R23 = 2

Figure 3.8: Here we see the clustering instance and the numbering obtained from Gon-
zales’ algorithm as well as the optimal 9-clustering with radius 2 depicted in gray.

point nearest to x that satisfies Rx ≤ RN(x)

2 . Notice that every point in P\{x1} has a
properly defined parent, as R1 = ∞.

We build a tree on P as follows. For every point x ∈ P we simply add an edge
between x and N(x). The resulting graph is cycle free, since Rx < RN(x) for all x ∈ P,
and contains |P| − 1 edges. Thus it is indeed a tree.

For any given 1 ≤ k ≤ |P| we observe that by deleting the edges {xi,N(xi)} for all
2 ≤ i ≤ k the tree decomposes into k connected components with vertex sets H1

k , . . . ,Hk
k .

We define the k-clustering on P to be Hk = (H1
k , . . . ,Hk

k). Then H = (H|P|, . . . , H1)
is a hierarchical clustering of P.

We believe that the algorithm by Mondal does not differ significantly from the al-
gorithm by Dasgupta and Long. Since we already know that the analysis of the ap-
proximation guarantee of Dasgupta and Long’s algorithm is tight [37], the significant
improvement on the approximation guarantee seems surprising. We present an example
where Mondal’s algorithm in fact computes a 7 − ϵ approximation for some arbitrarily
small ϵ > 0, contradicting the claimed approximation guarantee of 6. We believe that
this example can be generalized to prove that the approximation guarantee of Mondal’s
algorithm is at least 8.

Let ϵ ∈ (0, 1
2). Figure 3.8 shows a graph with 27 points that need to be clustered.

75

CHAPTER 3. HIERARCHICAL CLUSTERING

R? = 1

R? = 2− ε

R? = 2

R? = 4− ε

R? = 4

R? = 8− ε

R? = 8

R? = 16− ε

R? = 24− 2ε

R? =∞

24 25

26 27

16 17

6 7

3

1

22 23

8 9

15

4

18 19

14

12

2

13

20 21

10 11

5

Figure 3.9: Here we see the final tree. To obtain the 9-clustering we cut the red edges.
The resulting clustering contains the cluster {x5,x10,x11,x20,x21,x26,x27} of radius 14 −
3ϵ.

The metric is given by the shortest-path metric in the graph. We perform Mondal’s
algorithm on this instance under the assumption that we can decide how to break ties,
whenever they occur.

In Figure 3.8 we see the numbering of the points which is computed by Gonzales’
algorithm as well as all R-values. Figure 3.9 shows the resulting tree. We obtain the
9-clustering by cutting all edges {xi,N(xi)} with 2 ≤ i ≤ 9. This clustering contains
the cluster {x5,x10,x11,x20,x21,x26,x27}, whose radius is 14 − 3ϵ, while the radius of
the optimal 9-clustering is 2 (see Figure 3.8).

76

CHAPTER 3. HIERARCHICAL CLUSTERING

3.2 Complete Linkage in General Metric Spaces

Complete linkage is a popular algorithm for computing hierarchical clusterings. Given
a set of n points P contained in a metric space (X , d), the algorithm starts with the
n-clustering Hn where every point is contained in its own cluster. In every step complete
linkage then merges the two clusters whose merge results in the smallest increase of the
objective function cost ∈ {drad, rad, diam}, i.e., given a (k+ 1)-clustering Hk+1 complete
linkage merges the two clusters A,B ∈ Hk+1 that minimize cost(A ∪B). This process
terminates when only one cluster is left.

The single linkage algorithm is also a popular agglomerative clustering method. In-
stead of minimizing the given objective function single linkage merges the two clusters
with smallest distance to each other. Given a (k + 1)-clustering Hk+1 single linkage
merges the two clusters A,B ∈ Hk+1 that minimize d(A,B) = minx∈A,y∈B d(x, y). In
this section we analyze the approximation guarantee for complete linkage and single
linkage for the objectives drad and diam.

One of the biggest and most well-known issues concerning single linkage is that of
chaining. If there is a sequence of points x1, . . . ,xk ∈ P with d(xi,xi+1) relatively small
for all i, then single linkage might merge all of them together, despite the resulting cluster
being quite large. Dasgupta and Long [39] show with their lower bound of Ω(log(k)) that
a similar process of chaining can also occur when executing complete linkage. They give
the example of points placed on a regular (k× k)-grid with a spacing of 1. The distance
is given by the sum of the discrete metric on the horizontal axis and the logarithm of the
absolute value of the vertical axis. That is, d((x, y), (x′, y′)) = 1x ̸=x′ + log2(1+ |y− y′|).
Now, although an optimal clustering just consists of the individual rows of the grid,
complete linkage might reproduce the columns instead (assuming that k is a power of
2): iteratively go from top to bottom and merge vertically neighboring clusters. Every
such iteration halves the number of clusters and, due to the logarithm, only increases the
cost by 1, just as when merging along the rows. Of course, we would have to pay only
once to merge horizontally, whereas we have to pay log2(k) times to merge vertically,
but complete linkage cannot distinguish between these two cases. In fact, one can shift
the vertical placement by arbitrarily small values to ensure that complete linkage always
chooses the bad case.

We have to heavily modify the example to improve upon this log2(k) factor. The
fundamental problem is this: a vertical merge is only allowed to increase the cost by 1
to tie it with any horizontal merge, whereas the number of rows occupied by a cluster
(and thus its diameter) doubles. We raise the lower bound by constructing an instance
on which complete linkage iteratively merges diagonally shifted clusters. This process
of merging clusters is much slower and does not require us to introduce a logarithmic
scaling: merging one such cluster into the other incurs a cost of 1, while at the same
time increasing the number of occupied rows only by one. The instance that we describe
later is successively built from smaller components that exhibit exactly this behaviour,
while ensuring that any such merge does not pay for the whole row.

Following the work [1] one can show for complete linkage an upper bound of log2(|P |−
k) for drad. This comes from the following easy property, which is true for the radius but
cannot be transferred to diameter: Suppose the optimal drad solution O has cost x. In a
complete linkage clustering consisting of more than k clusters two of its centers must lie
in the same optimal cluster and therefore are at distance ≤ 2x to each other. Thus the
merge that is performed by complete linkage increases the cost by at most 2x. However

77

CHAPTER 3. HIERARCHICAL CLUSTERING

r
2x

r d
x

d

Figure 3.10: On the left we see two clusters with radius r whose centers lie in the
same optimal cluster with radius x. The radius of the merged cluster is at most r+ 2x.
On the right we have a similar situation for the diameter but we can upper bound the
diameter of the merged cluster only by 2d+ x.

if we replace drad by diam we see that the cost is more than doubled in the worst case
(see Figure 3.10), which is not enough to obtain an upper bound polynomial in k. Thus
we introduce another perspective on the cost of a cluster. A cluster is good if its cost is
small enough in comparison to the number of optimal clusters from O which it intersects.
As O consists of k clusters this already implies a sufficiently small upper bound for good
clusters. For all remaining clusters we show that their number is small enough. This
approach leads to an upper bound of O(kln(3)/ ln(2)) for diam and, in combination with
the log2(|P | − k) upper bound, an upper bound of O(k) for drad.

To analyze the hierarchical clustering H constructed by complete linkage we often
consider the smallest clustering from H (in terms of the number of clusters) whose cost
does not exceed a given bound. This perspective is already used in [44] and allows for a
better handling of the cost.

Definition 3.2.1. Let cost ∈ {drad, diam} and let H = (Hn, . . . , H1) be the hierarchical
clustering computed by complete linkage with respect to cost ∈ {drad, diam}. For any
x ≥ 0 let t≤x = min{k | cost(Hk) ≤ x} and set Cx = Ht≤x

. Furthermore, for a cluster
C ⊆ P and an optimal k-clustering O = Ok we denote by OC = {O ∈ O |O ∩C ̸= ∅}
the set of all optimal k-clusters hit by C.

Observe that Cx is the smallest clustering from H with cost at most x. Thus it has
the useful property that every merge of two clusters in Cx results in a clustering of cost
more than x.

3.2.1 Approximation Guarantee of Single Linkage

As outlined in [39] there are clustering instances where single linkage builds chains
yielding the lower bound Ω(k) on the approximation factor. We show that this is the
worst case scenario, as in fact single linkage computes an O(k)-approximation for diam
and drad.

Let (Hk)
n
k=1 be the hierarchical clustering computed by single linkage on (P, d).

Recall that Hk−1 arises from Hk by merging two clusters A,B ∈ Hk that minimize
d(A,B).

We first compare the radius of Hk to the radius of an optimal k-clustering O with
respect to drad. We introduce a graph G whose vertices are the optimal clusters V (G) =
O and whose edges E(G) = {{O,O′} ⊆ O | d(O,O′) ≤ 2drad(O)} connect all pairs of
optimal clusters O,O′ ∈ O with distance at most twice the optimal radius.

78

CHAPTER 3. HIERARCHICAL CLUSTERING

We make a similar construction to compare the diameter of Hk to the diameter of
an optimal diam clustering O′. We consider the graph G′ with V (G′) = O′ where two
clusters in O′ are connected via an edge if their distance is at most diam(O′).

To estimate the cost of a single linkage cluster C ∈ Hk we look at the optimal
clusters hit by C. The next lemma shows that for any two points in C we can find a
path connecting them that passes through a chain of optimal clusters with distance at
most 2drad(O) or diam(O′) when considering the radius or diameter, respectively. One
can already anticipate that this gives an upper bound of O(k)drad(O) or O(k)diam(O′)
on the radius or diameter of any such cluster C. In Figure 3.11 we see an example of
such a cluster C and the optimal clusters hit by C.

Lemma 3.2.2. Let C ∈ Ht be a cluster computed by single linkage at a time step t ≥ k.
Then the graphs G[OC] and G′[O′

C] induced by the vertex set of optimal clusters hit by
C are connected.

Proof. We prove the lemma for G[OC] by induction. At the beginning (t = n) the lemma
obviously holds, since any cluster contained in Hn is a point and thus hits only one single
optimal cluster. Assume now that the claim holds for t > k. By the pigeonhole principle
there must exist two clusters C,C ′ ∈ Ht with two points c ∈ C and c′ ∈ C ′ lying in the
same optimal cluster O ∈ O. We know that d(C,C ′) ≤ 2drad(O) ≤ 2drad(O). But this
value is exactly the objective that single linkage minimizes, so we know in particular that
this upper bound also holds for the distance between the clusters D,D′ chosen by single
linkage. Combining this with the induction hypothesis that both G[OD] and G[OD′]
are connected finishes the proof. One proves analogously that G′[O′

C] is connected by
replacing d(C,C ′) ≤ 2drad(O) ≤ 2drad(O) through d(C,C ′) ≤ diam(O′) in the above
argument.

As we see in Figure 3.11 this already yields an upper bound of 2kdiam(O′) on the
diameter of C. We estimate the radius of C by looking at the paths going through optimal
clusters in OC that are at distance at most 2drad(O) from one another. Choosing the
center appropriately and uncoiling these paths in our original space P yields our upper
bound of (2k+ 2)drad(O).

Theorem 3.2.3. Let cost ∈ {drad, diam} and (Hk)
n
k=1 be the hierarchical clustering

computed by single linkage on (P, d) and let Ok be an optimal clustering with respect to
cost. We have for all 1 ≤ k ≤ n

1. cost(Hk) ≤ (2k+ 2) · cost(Ok) if cost = drad

2. cost(Hk) ≤ 2k · cost(Ok) if cost = diam.

Proof. We prove the statement for drad. Fix an arbitrary time step 1 ≤ k ≤ n and
denote O = Ok. Let C ∈ Hk be an arbitrary cluster and Q a longest simple path in
G[OC]. Choose as center for C an arbitrary point c ∈ C ∩O from an optimal cluster
O lying in the middle of Q. Note that by this choice every other vertex in G[OC] is
reachable from O by a path of length at most k

2 . Uncoiling such paths in P gives us
an upper bound of 2(k + 1)drad(O) for the distance between c and any other point
z ∈ C as follows: If Oz ∈ O is the optimal cluster containing z, then by choice of O,
there exists a path O = O1, . . . ,Oℓ+1 = Oz in G[OC] of length ℓ ≤ k

2 connecting them.

79

CHAPTER 3. HIERARCHICAL CLUSTERING

· · · · · ·

x y

c

A1

A⌈ ℓ
2 ⌉

Aℓ

C

· · · · · ·

x y
A1 Aℓ

C

Figure 3.11: Cluster C hits the optimal clusters A1, . . . ,Aℓ with d(Ai,Ai+1) ≤ 2drad(O)
when considering the radius on the left and d(Ai,Ai+1) ≤ diam(O′) when considering
the diameter on the right. In the left picture, we see that choosing center c in A⌈ ℓ

2 ⌉ leads
to drad(C) ≤ 2(ℓ+ 1)drad(O). Similarly the diameter of C in the right picture is at
most 2ℓdrad(O).

That means, for each i = 1, . . . , ℓ there exist points xi ∈ Oi, yi+1 ∈ Oi+1 such that
d(xi, yi+1) ≤ 2drad(O). Hence

d(c, z) ≤ d(c,x1) +
ℓ−1∑
i=1

(d(xi, yi+1) + d(yi+1,xi+1))

+ d(xℓ, yℓ+1) + d(yℓ+1, z)
≤ 2(2ℓ+ 1)drad(O) ≤ 2(k+ 1)drad(O).

Using Lemma 3.2.2 one proves the statement for diam analogously.

3.2.2 An Upper Bound for Complete Linkage

Even though complete linkage is often used when it comes to computing a hierarchical
clustering, there are no known non-trivial upper bounds for its approximation guarantee
in general metric spaces, to the best of the author’s knowledge. We give an upper bound
for complete linkage for the radius and diameter objective.

An Upper Bound for Radius-Based Cost

We show that the approximation ratio of complete linkage for the drad objective is in
O(k).

Theorem 3.2.4. Let H = (Hn, . . . , H1) be the hierarchical clustering computed by
complete linkage on (P, d) with respect to drad. For all 1 ≤ k ≤ n the radius drad(Hk)
is upper bounded by O(k)drad(Ok), where Ok is an optimal k-clustering with respect to
drad.

To simplify the notation we fix an arbitrary k and assume that the optimal k-
clustering O = Ok has radius drad(O) = 1

2 . The latter is possible without loss of
generality by scaling the metric appropriately.

We split the proof of Theorem 3.2.4 into two parts. In the first, we derive a crude
upper bound for the increasing cost of clusterings produced during the execution of
complete linkage. This part follows from [1], which uses the same bound to estimate the

80

CHAPTER 3. HIERARCHICAL CLUSTERING

cost of some few merge steps. Lemma 3.2.7 shows that the difference in cost between
Hk and Ht for t > k is at most ⌈log2(t − k)⌉ + 1. That is, drad(Hk) ≤ ⌈log2(t −
k)⌉ + 1 + drad(Ht) holds for all 1 ≤ k < t ≤ n. A clustering Ht whose radius we can
estimate directly (i.e. without refering to any other clustering) thus yields a proper upper
bound for drad(Hk). Ideally, this clustering should consist of relatively few clusters
(so that ⌈log2(t− k)⌉ is small), while at the same time not being too expensive. Of
course, however, these criteria oppose each other. Naively choosing the initial clustering
Ht = Hn is not good enough. Although its radius is minimal, the number of clusters is
too high, only yielding an upper bound of drad(Hk) ≤ ⌈log2(n− k)⌉ + 1. In the second
part of the proof we thus set out to find a different clustering to start from.

Part 1: An estimate of the relative difference in cost When dealing with radii,
any merge done by complete linkage previous to reaching a k-clustering increases the
radius by at most 2drad(O) = 1 (Figure 3.10). This is due to the fact that the centers
of two of those clusters are contained in the same optimal cluster.

We show that complete linkage clusterings at times t≤x and t≤x+1 can have at most
k clusters in common. All other clusters from Cx are merged in Cx+1.

Lemma 3.2.5. For all x ≥ 0 the clustering Cx+1 contains at most k clusters of radius
at most x. In particular, it holds that |Cx+1 ∩ Cx| ≤ k.

Proof. Assume on the contrary that at time t≤x+1 there exist k + 1 pairwise different
clusters D1, . . . ,Dk+1 of radius at most x. Denote by di ∈ Di a point that induces the
smallest radius, i.e. drad(Di) = maxd∈Di

d(d, di) for all i. Then two of these points, say
d1 and d2, have to be contained in the same optimal cluster O ∈ O. Hence, we know
that

drad(D1 ∪D2) ≤ 1 + max
i∈{1,2}

drad(Di) ≤ 1 + x

because d(d1, d2) ≤ 2drad(O) ≤ 2drad(O) = 1 and drad(Di) ≤ x for i = 1, 2. This
contradicts the definition of Cx+1, as D1 and D2 can still be merged without pushing
the radius beyond x+ 1.

With this we can upper bound |Cx+i| in terms of |Cx| for all i ∈ N.

Corollary 3.2.6. For all i ∈ N and x ≥ 0 it holds that |Cx+i| ≤ k+ 1
2i (|Cx| − k).

Proof. First, we consider what happens when we increase the radius by 1. We fix an
arbitrary x′ ≥ 0. Lemma 3.2.5 shows that at most k clusters from Cx′ are left untouched,
while the remaining |Cx′ | − k clusters have to be merged with at least one other cluster
(thus at least halving the number of those clusters) to get to Cx′+1. This yields a bound
of

|Cx′+1| ≤ k+
1
2 (|Cx′ | − k).

Now, the case for general i ∈ N follows by a straightforward induction. We have
just shown that the claim is true for i = 1, where we set x′ = x. For the induction step
suppose that

|Cx+i−1| ≤ k+
1

2i−1 (|Cx| − k).

Substituting this into the inequality

|Cx+i| ≤ k+
1
2 (|Cx+i−1| − k),

81

CHAPTER 3. HIERARCHICAL CLUSTERING

derived from the first part of our proof with x′ = x+ i− 1, yields

|Cx+i| ≤ k+
k+ 1

2i−1 (|Cx| − k) − k

2 = k+
1
2i
(|Cx| − k)

as claimed.

Lemma 3.2.7. For all k < t ≤ n it holds that drad(Hk) ≤ ⌈log2(t− k)⌉+ 1+ drad(Ht).

Proof. Let x = drad(Ht), so that Cx consists of at most t clusters. Applying Corol-
lary 3.2.6 with i = ⌈log2(t− k)⌉ + 1 then shows that

|Cx+i| < k+
1

t− k
(|Cx| − k) ≤ k+ 1.

That is, Cx+i emerges from Hk by merging some (or none) of its clusters and we can
conclude that drad(Hk) ≤ drad(Cx+i) ≤ x+ i = drad(Ht) + ⌈log2(t− k)⌉ + 1.

Part 2: A cheap clustering with few clusters Suppose that there exists a complete
linkage clustering Ht for some t > k with t ∈ O(2k) clusters and drad(Ht) ∈ O(k). Then
applying Lemma 3.2.7 shows that

drad(Hk) ∈ log2(O(2k)) + 1 +O(k) = O(k) = O(k)drad(O)

and Theorem 3.2.4 is proven (recall that drad(O) = 1
2). We show that Ht = C4k+2 is

a sufficiently good choice. To estimate the size of C4k+2, we distinguish between active
and inactive clusters. Remember that OC = {O ∈ O | O ∩C ̸= ∅} is the set of optimal
clusters hit by C.

Definition 3.2.8. We call a cluster C ∈ Cx active, if drad(C) ≤ 4 · |OC |, or if there
exists a cluster C ′ ∈

⋃x
i=1 Cx−i such that OC = OC′ and drad(C ′) ≤ 4 · |OC′ |. Otherwise,

C is called inactive.

The behavior that makes complete linkage difficult to analyze it the problem that
complete linkage can merge clusters that are quite far apart. That is complete linkage
can produce clusters that are very expensive relative to the number of optimal clusters
hit by them. We mark such clusters as inactive and count them directly the first time
they are created. We will see that the number of such clusters is small. However the
number of active clusters is potentially large, but if the radius of the clustering reaches
4k+ 2, this number can also be bounded as we see in the following lemma.

Lemma 3.2.9. There are at most 2k active clusters in C4k+2.

Proof. Notice that at time t≤4k+2 there cannot exist two active clusters C1 and C2 with
OC1 ⊆ OC2 . Indeed, since C2 hits all the optimal clusters hit by C1 we get that

drad(C1 ∪C2) ≤ drad(C2) + 1 ≤ 4|OC2 | + 2 ≤ 4k+ 2

where the second inequality follows from the fact that C2 is active. We conclude that C1
and C2 would have been merged in C4k+2. Now, if there are more than 2k active clusters
in C4k+2, then at least two of them must hit exactly the same set of optimal clusters.
Since we have just ruled this out, the lemma follows.

82

CHAPTER 3. HIERARCHICAL CLUSTERING

We estimate the number of inactive clusters by looking at the circumstances under
which they arise. As it happens, at each step there are not many clusters whose merge
yields an inactive cluster.

Lemma 3.2.10. There are at most 4k2 + k inactive clusters in C4k+2.

Proof. Let mx be the number of inactive clusters in Cx. We show that the recurrence
relation mx ≤ mx−1 + k holds for any x ∈ N. In that case m4k+2 ≤ (4k+ 1)k = 4k2 + k
since m1 = 0 and we are done.

To prove the recurrence relation first fix some arbitrary x ∈ N and let D ∈ Cx be an
inactive cluster. Let D1, . . . ,Dℓ ∈ Cx−1 be the clusters whose merge results in D. We
show that none of them can be active at time t≤x−1 and have radius at least x− 2. Since
this only leaves few possible clusterings, we get the recurrence inequality given above.
Suppose that for one of the clusters, sayDi, it holds that 4 · |ODi |+ 1 ≥ drad(Di) ≥ x− 2.
Right away, notice that |ODi | < |OD| since otherwise D would also be active by the
second part of the definition. But then

drad(D) ≤ x ≤ drad(Di) + 2 ≤ 4|ODi | + 3 < 4(|ODi | + 1) ≤ 4|OD|

contradicts the assumption of D being inactive. As such, we know that all Di (i =
1, . . . , ℓ) must be inactive or have radius less than x− 2. In other words, each inactive
cluster in Cx descends from the set

{D ∈ Cx−1 |D is inactive} ∪ {D ∈ Cx−1 | drad(D) < x− 2}.

The cardinality of the set on the left is mx−1 and, by Lemma 3.2.5, the cardinality of
the set on the right is at most k. This proves the claim.

Corollary 3.2.11. C4k+2 consists of at most 2k + 4k2 + k clusters.

Notice that Theorem 3.2.4 is an immediate consequence of Corollary 3.2.11 and
Lemma 3.2.7.

An Upper Bound for Diameter-Based Cost

The main challenge in proving an upper bound on the approximation guarantee of com-
plete linkage when replacing the drad objective by the diam objective is to deal with the
possibly large increase of cost after a merge step. When we perform complete linkage
for the drad objective, complete linkage roughly halves the number of clusters while the
radius increases by a constant amount and this is repeated as long as the number of clus-
ters is larger than k (see Corollary 3.2.6). This is an easy conclusion from the fact that
whenever the centers of two clusters are contained in the same optimal cluster merging
the two clusters increases the radius only by twice the radius of the optimal clustering.
If we try to apply this insight to analyze complete linkage for the diam objective we
now consider the merge of two clusters which intersect the same optimal cluster. As
we see in Figure 3.10 merging these two clusters can double the diameter in the worst
case, therefore we are not able to prove a similar statement to Corollary 3.2.6 for diam.
In conclusion when dealing with the diameter we ignore Part 1 of the analysis for the
radius and instead follow some ideas of Part 2 where we divide clusters constructed by
complete linkage in active and inactive clusters. Even though we substantially change
the definition of inactive and active clusters the main idea stays the same: the diameter

83

CHAPTER 3. HIERARCHICAL CLUSTERING

of active clusters can be upper bounded nicely while we guarantee that there are not
too many inactive clusters. A main difference to Part 2 of the analysis for the radius is
now that the total number of active and inactive clusters must be upper bounded by k
instead of O(2k), which yields the increase in the approximation factor for diameter.

We now give a brief overview over the ideas used to upper bound the approximation
factor of complete linkage for the diameter. For some arbitrary but fixed k let O denote
an optimal diam solution of size k and assume that diam(O) = 1 from now on. Consider
the clustering C1 computed by complete linkage at time t≤1. Observe that every optimal
cluster can fully contain at most one cluster from C1, as the union of such clusters would
cost at most 1. Now, consider the graph G = (V ,E) with V = O and edges {A,B} ⊂ V
for every cluster C ∈ C1 intersecting A and B. If there is such an edge {A,B}, then the
cost of merging A and B is upper bounded by 3. We can go even further and consider
the merge of all optimal clusters in a connected component of G. Suppose the size of the
connected component is m, then the resulting cluster costs at most 2m− 1. There are
two extreme cases in which we could end up: if E = ∅, then C1 = O and complete linkage
has successfully recovered the optimal solution. On the other hand, if G is connected,
then merging all points costs at most 2k− 1 and we get an O(k)-approximative solution.
The remaining cases are more difficult to handle. We proceed by successively adding
edges between optimal clusters, while maintaining the property that for a connected
component Z in G merging ∪A∈V (Z)A costs at most |V (Z)|ln(3)/ ln(2). This leads to an
upper bound of ⌈kln(3)/ ln(2)⌉ for all clusters C constructed by complete linkage with
C ⊂ ∪A∈V (Z)A. We call such clusters active clusters. All clusters which do not admit
this property are called inactive clusters. We show that the number of inactive clusters
is sufficiently small, such that in the end, we are able to prove that C⌈kln(3)/ ln(2)⌉ consists
of at most k clusters. This immediately leads the following theorem.

Theorem 3.2.12. Let H = (Hn, . . . , H1) be the hierarchical clustering computed by
complete linkage on (P, d) with respect to diam. For all 1 ≤ k ≤ n the diameter diam(Hk)
is upper bounded by ⌈kln(3)/ ln(2)⌉diam(Ok), where Ok is an optimal k-clustering with
respect to diam.

Let α = ln(3)/ ln(2) from now on. Essential for this section is a sequence of cluster
graphs Gt = (Vt,Et) for t = 1, . . . , ⌈kα⌉ constructed directly on the set Vt = O of
optimal k-clusters. We start with the cluster graph G1 that contains edges {A,B} for
every two vertices A,B ∈ V1 = O that are hit by a common cluster from C1. To this
we successively add edges based on a vertex labeling in order to create the remaining
cluster graphs G2, . . . ,G⌈kln(3)/ ln(2)⌉. The labeling distinguishes vertices as being either
active or inactive. We denote the set of active vertices in Vt by V a

t and the set of
inactive ones by V i

t . In the beginning (t = 1) the inactive vertices are set to precisely
those that are isolated: V i

1 = {O ∈ V1 | δG1(O) = ∅}. For t ≥ 2, the labeling is outlined
in Definition 3.2.13. Over the course of time, active vertices may become inactive, but
inactive vertices never become active again.

Given a labeling for Vt+1, we construct Gt+1 from Gt by adding additional edges: If
there are two active vertices A,B ∈ V a

t+1 that are both hit by a common cluster from
Ct+1, we add an edge {A,B} to Et+1.

Definition 3.2.13. Let t ≥ 1 and A ∈ Vt+1 be an arbitrary optimal cluster and ZA

the connected component in Gt that contains A. We call A inactive (i.e., A ∈ V i
t+1

) if ⌈diam(ZA)⌉ ≤ t, and active otherwise. Here, and in the following diam(ZA) =
diam(

⋃
B∈V (ZA)B) denotes the cost of merging all optimal clusters contained in V (ZA).

84

CHAPTER 3. HIERARCHICAL CLUSTERING

Thus if a connected component in Gt has small diameter, then all vertices in this com-
ponent become inactive in Gt+1 by definition. We state the following useful properties
of inactive vertices in (Gt)

⌈kα⌉
t=1 .

Lemma 3.2.14. If Z is a connected component in Gt+1 with V (Z) ∩ V i
t+1 ̸= ∅, then

1. Z is also a connected component in Gt and ⌈diam(Z)⌉ ≤ t,

2. we have V (Z) ⊆ V i
t+1, i.e., all vertices in Z become inactive at the same time.

Moreover we have V i
t ⊆ V i

t+1, so once vertices become inactive, they stay inactive. Equiv-
alently, V a

t+1 ⊆ V a
t .

Proof. Take any inactive vertex A ∈ V i
t+1 ∩V (Z) and consider the connected component

ZA in Gt containing A. By Definition 3.2.13, we have that ⌈diam(ZA)⌉ ≤ t and so all
other vertices in ZA have to be in V i

t+1 as well. We observe that Et+1 \Et only contains
edges between vertices from V a

t+1 by construction. This shows Z = ZA.
It is left to show that inactive vertices stay inactive. For t = 1 the inactive vertices

V i
1 are already connected components with diameter at most 1. As such, they remain

inactive at step t = 2. For t ≥ 2, consider an inactive vertex A ∈ V i
t and the connected

component Z ⊆ Gt containing it. We showed previously that V (Z) ⊂ V i
t and so Z is

also a connected component in Gt+1 with ⌈diam(Z)⌉ ≤ t− 1 < t and thus A ∈ V (Z) ⊂
V i

t+1.

Definition 3.2.15. Let C ∈ Ct for some fixed t ∈ N. We define It = {C ∈ Ct |
OC ∩ V i

t ̸= ∅} as the set of all clusters in Ct which hit at least one inactive vertex of Gt.
We call these clusters inactive and all clusters from Ct\It active.

We prove the following easy property about active clusters.

Lemma 3.2.16. If C ∈ Ct \ It, then Gt[OC] forms a clique. In particular there exists
a connected component in Gt that fully contains OC .

Proof. By definition of It, OC must consist exclusively of active vertices. Since all of
them are hit by C ∈ Ct there exists an edge {A,B} ∈ Et for every pair A,B ∈ OC . In
other words, Gt[OC] forms a clique and the claim follows.

This does not necessarily hold for an inactive cluster C ∈ It. As C contains at
least one inactive vertex, the connected component Z which contains this vertex does
not grow. If later on complete linkage merges C with another cluster the result is
an inactive cluster which may hit vertices outside of Z. So Gt′ does not reflect the
progression of C for t′ ≥ t. However, the number of such clusters cannot exceed |V i

t |.

Lemma 3.2.17. The number of inactive clusters in Ct is at most the number of inactive
vertices at time t. That is, |It| ≤ |V i

t | holds for all t ∈ N.

Proof. We prove the claim by showing that the following inductive construction defines
a family of injective mappings ϕt : It → V i

t :

• Let C ∈ I1 be an inactive cluster. By definition C thus has to intersect an inactive
optimal cluster A ∈ V i

1 . Actually, there can only be one such cluster, as any other
optimal cluster that is hit would induce an edge incident to A in G1, making it
active. Set ϕ1(C) = A, so that OC = {ϕ1(C)}.

85

CHAPTER 3. HIERARCHICAL CLUSTERING

• For t > 1 and C ∈ It we distinguish two cases: If there is no cluster in It−1 that
is a subset of C, we pick an arbitrary but fixed A ∈ OC ∩ V i

t and set ϕt(C) = A.
Otherwise, we know that C must descend from some cluster D ∈ It−1 and we can
set ϕt(C) = ϕt−1(D). Since ϕt−1(D) ∈ V i

t−1 ⊂ V i
t by Lemma 3.2.14, this shows

that ϕt really maps into V i
t .

Suppose that there exist two inactive clusters C,D ∈ I1 that are mapped to the
same inactive vertex A ∈ V i

1 . Then, by the construction of ϕ1, OC = {A} = OD shows
that C and D are actually fully contained in the same optimal cluster. The optimal
cluster has diameter at most 1 and so C and D would have already been merged in C1.
As this is not possible, ϕ1 has to be injective.

Now, let t ≥ 2 be arbitrary and assume ϕt−1 to be injective. We show that in that
case ϕt also has to be injective. Suppose on the contrary that there exist two different
clusters C,D ∈ It with ϕt(C) = ϕt(D). We distinguish three cases.

Case 1: Both C and D descend from (i.e., contain) clusters C ′,D′ ∈ It−1 with ϕt(C) =
ϕt−1(C ′) and ϕt(D) = ϕt−1(D′), respectively. Then ϕt−1(C ′) = ϕt(C) = ϕt(D) =
ϕt−1(D′) entails that C ′ = D′, since ϕt−1 is assumed to be injective. Clearly,
C ′ = D′ cannot end up being a subset of two different clusters in It and so we
end up in a contradiction.

Case 2: Neither C nor D descend from a cluster in It−1. In other words, C and D fully
descend from clusters in Ct−1 \ It−1 and so there exist clusters C ′,D′ ∈ Ct−1 \ It−1
contained in C and D, respectively, such that A = ϕt(C) = ϕt(D) ∈ OC′ ∩ OD′ .
Applying Lemma 3.2.16 yields the existence of a connected component Z in Gt−1
with V (Z) ⊃ OC′ ∪ OD′ . We show that this connected component has diameter
at most t− 1. In that case, C ′ and D′ should have already been merged in Ct−1; a
contradiction. To show that diam(Z) ≤ t− 1, consider the connected component
Z ′ in Gt containing A = ϕt(C) = ϕt(D) ∈ OC ∩ OD ∩V i

t . Since A was chosen from
a subset of V i

t , we know from Lemma 3.2.14 that Z ′ is also a connected component
in Gt−1 with diam(Z ′) ≤ t− 1. Now, A ∈ V (Z) ∩ V (Z ′) shows that Z = Z ′ and
so we are done.

Case 3: D contains a cluster D′ ∈ It−1, so that ϕt(D) = ϕt−1(D′) ∈ V i
t−1, whereas C

does not. (The symmetric case with the roles of C and D swapped is left out.)
Since C fully descends from Ct−1 \It−1, we know that OC ⊆ V a

t−1. But this already
yields a contradiction: V a

t−1 ∋ ϕt(C) = ϕt(D) = ϕt−1(D′) ∈ V i
t−1.

This covers all possible cases, with each one ending in a contradiction. Hence ϕt has to
be injective and by induction this holds for all t ∈ N.

Active clusters from Ct are nicely represented by the graph Gt as shown in Lemma
3.2.16. We can indirectly bound the diameter of active clusters by bounding the diameter
of the connected components they are contained in.

Lemma 3.2.18. Let Z be a connected component in Gt. If V (Z) ⊂ V a
t , we have

⌈diam(Z)⌉ ≤ |V (Z)|α.

Proof. Again, we prove this via an induction over t. For t = 1 and A,B ∈ V (Z) we
want to upper bound the distance between p ∈ A and q ∈ B. Let A = Q1, . . . ,Qs = B
be a simple path connecting A and B in Z. We know by definition of G1 that for

86

CHAPTER 3. HIERARCHICAL CLUSTERING

j = 1, . . . , s− 1 there is a pair of points pj ∈ Qj and qj ∈ Qj+1 with d(pj , qj) ≤ 1. Using
the triangle inequality we obtain

d(p, q) ≤ d(p, p1) +
s−2∑
j=1

(
d(pj , qj) + d(qj , pj+1)

)
+ d(ps−1, qs−1) + d(qs−1, q)

≤ 2s− 1.

Here we use that qj and pj+1 are in the same optimal cluster, thus the distance between
those points is at most one.

Since V (Z) contains only active vertices we have |V (Z)| ≥ 2. Using the above upper
bound on the distance between two points in ⋃

A∈V (Z)A we obtain

⌈diam(Z)⌉ ≤ 2|V (Z)| − 1 ≤ |V (Z)|α,

where the last inequality follows from the fact that the function h(x) = xα − 2x+ 1
is convex and h(1) = h(2) = 0. Thus h(x) ≤ 0 for x ∈ (1, 2) and h(x) ≥ 0 for
x ∈ R≥0\(1, 2).

For t > 1 let Z1, . . . ,Zu denote the connected components in Gt−1 with V (Z) =⋃u
j=1 V (Zj). Let j ∈ {1, . . . ,u}. We observe that V (Zj) ⊂ V (Z) ⊂ V a

t ⊂ V a
t−1. Thus

we obtain by induction that

⌈diam(Zj)⌉ ≤ |V (Zj)|α. (3.2)

Suppose that ⌈diam(Zj)⌉ ≤ t− 1. Then V (Zj) ⊂ V i
t by definition, which is a contradic-

tion to V (Z) ∩ V i
t = ∅. So we must have

t ≤ ⌈diam(Zj)⌉. (3.3)

Combining (3.2) and (3.3) we obtain

t ≤ |V (Zj)|α. (3.4)

For A,B ∈ V (Z) we want to upper bound the distance between p ∈ A and q ∈ B.
Let A = Q1, . . . ,Qs = B be a simple path connecting A and B in Z which enters
and leaves every connected component Zj for j ∈ {1, . . . ,u} at most once. We divide
the path into several parts such that every part lies in one connected component from
{Z1, . . . ,Zu}. Let 1 = m1 < m2 < . . . < mℓ = s such that Qmj . . . ,Qmj+1−1 lie in one
connected component Z(j) ∈ {Z1, . . . ,Zu} and Z(j) ̸= Z(j+1) for all j ∈ {1, . . . , ℓ}. Since
(Qmj−1,Qmj) ∈ Et we know that there exists a cluster in Ct that intersects Qmj−1 and
Qmj , thus there is a pair of points pj ∈ Qmj−1 and qj ∈ Qmj such that d(pj , qj) ≤ t. We
obtain

⌈d(p, q)⌉ ≤
ℓ−1∑
j=1

(
⌈diam(Z(j))⌉ + ⌈d(pj , qj)⌉

)
+ ⌈diam(Z(ℓ))⌉

≤ (ℓ− 1)t+
ℓ∑

j=1
|V (Z(j))|α

≤ (ℓ− 1) min
1≤j≤ℓ

|V (Z(j))|α +
ℓ∑

j=1
|V (Z(j))|α.

87

CHAPTER 3. HIERARCHICAL CLUSTERING

For the second inequality we use (3.2) and d(pj , qj) ≤ t. For the third inequality we use
(3.4). Now it remains to show that

(ℓ− 1) min
1≤j≤ℓ

|V (Z(j))|α +
ℓ∑

j=1
|V (Z(j))|α ≤

(ℓ∑
j=1

|V (Z(j))|
)α

.

For this purpose we assume without loss of generality that |V (Z(1))| ≥ |V (Z(2))| ≥
. . . ≥ |V (Z(ℓ))| and define xj = |V (Z(j))|

|V (Z(1))| for j = 1, . . . , ℓ. We obtain the following
equivalent inequality:

|V (Z(1))|α
(
(ℓ− 1)xα

ℓ +
ℓ∑

j=1
xα

j

)
≤ |V (Z(1))|α

(ℓ∑
j=1

xj

)α

.

Since 1 = x1 ≥ . . . ≥ xℓ ≥ 0 this follows directly from Lemma 3.2.19 and thus

⌈d(p, q)⌉ ≤
(ℓ∑

j=1
|V (Z(j))|

)α

≤ |V (Z)|α.

We obtain ⌈diam(Z)⌉ ≤ |V (Z)|α which proves the lemma.

Lemma 3.2.19. For ℓ ≥ 1 let

f(y1, . . . , yℓ) =
(
(ℓ− 1)yα

ℓ +
ℓ∑

j=1
yα

j

)
−

(ℓ∑
j=1

yj

)α
.

We have f(y1, . . . , yℓ) ≤ 0 for all 1 = y1 ≥ y2 ≥ . . . ≥ yℓ ≥ 0.

Proof. Let M = {(a1, . . . , aℓ) | 1 = a1 ≥ a2 ≥ . . . ≥ aℓ ≥ 0}. We have to prove that
f(y1, . . . , yℓ) ≤ 0 for all (y1, . . . , yℓ) ∈ M .

Let s ≥ 1 and consider all points in M whose sum of coordinates is exactly s, i.e.,
Ms = {(a1, . . . , aℓ) ∈ M | a1 + . . .+ aℓ = s}. Notice that Ms is a convex polytope and
f is a convex function on Ms and thus the maximum of f in Ms is attained at one of
the vertices of Ms. These vertices have the form (y1, . . . , yℓ) of f in Ms must be of the
form y1 = . . . = yℓ1 = 1 and yℓ1+1 = . . . = yℓ = b. We obtain for k = ℓ− ℓ1

f(y1, . . . , yℓ) = (ℓ− 1)bα + ℓ1 + (ℓ− ℓ1)b
α − (ℓ1 + (ℓ− ℓ1)b)

α

= ℓ1 + (2ℓ− ℓ1 − 1)bα − (ℓ1 + (ℓ− ℓ1)b)
α

= ℓ1 + (2k+ ℓ1 − 1)bα − (ℓ1 + kb)α.

It is left to show that for all b ∈ [0, 1] and natural numbers ℓ1 ≥ 1, k ≥ 0 this term is at
most 0. Thus we define for ℓ1, k, b ∈ R≥0 the function

g(ℓ1, k, b) = ℓ1 + (2k+ ℓ1 − 1)bα − (ℓ1 + kb)α.

The partial derivative of g with respect to k is given by

∂

∂k
g(ℓ1, k, b) = 2bα − αb(ℓ1 + bk)α−1

88

CHAPTER 3. HIERARCHICAL CLUSTERING

Now suppose that either ℓ1 ≥ 2 and b ∈ [0, 1] or ℓ1 = 1, k ≥ 1 and b ∈ [0, 1]. In both
cases we obtain

b < 0.67(ℓ1 + bk) ≤
(
α

2

) 1
α−1

(ℓ1 + bk)

and thus
∂

∂k
g(ℓ1, k, b) < 2b

(
α

2

) α−1
α−1

(ℓ1 + bk)α−1 − αb(ℓ1 + bk)α−1 = 0

Therefore g is monotonically decreasing for these values and we conclude that the max-
imum of g for b ∈ [0, 1] and natural numbers ℓ1 ≥ 1, k ≥ 0 must be attained at one of
the points (ℓ1, 0, b), (1, 1, b) for ℓ1 ∈ N≥1, b ∈ [0, 1]. Now

g(ℓ1, 0, b) = ℓ1 + (ℓ1 − 1)bα − ℓα1

is monotonically increasing in b, so the maximum is attained for b = 1. Observe that
h(ℓ1) = g(ℓ1, 0, 1) = 2ℓ1 − 1 − ℓα1 in concave and we have h(1) = h(2) = 0. Thus
h(ℓ1) ≥ 0 for ℓ1 ∈ (1, 2) and h(ℓ1) ≤ 0 for ℓ1 ∈ R≥0\(1, 2).

It is left to check the value of g at (1, 1, b) for b ∈ [0, 1]. Let ϕ(b) = g(1, 1, b) =
1 + 2bα − (1 + b)α. We consider the second derivative of ϕ which is given by

d2

db2ϕ(b) = α(α− 1)(2bα−2 − (1 + b)α−2).

Since bα−2 ≥ (1 + b)α−2 we obtain that d2

db2ϕ(b) ≥ 0 and therefore d
dbϕ(b) is monotoni-

cally increasing. This implies that ϕ is convex on [0, 1]. Since ϕ(0) = ϕ(1) = 0 and ϕ is
convex we know that ϕ(b) ≤ 0 for all b ∈ [0, 1]. This proves the lemma.

We see that a connected component in G⌈kα⌉ cannot contain two active clusters,
yielding the following upper bound.

Lemma 3.2.20. At time t≤⌈kα⌉ the number of active clusters is less than or equal to
the number of active vertices. In other words, |C⌈kα⌉ \ I⌈kα⌉| ≤ |V a

⌈kα⌉|.

Proof. By Lemma 3.2.16 we know that for every cluster C ∈ C⌈kα⌉ \ I⌈kα⌉ the set OC is
fully contained in a connected component ZC from G⌈kα⌉. We show that mapping any
such C to an arbitrary vertex in ZC yields an injective map φ : C⌈kα⌉ \ I⌈kα⌉ ↪−→ V a

⌈kα⌉.
First, notice that φ is well-defined: If ZC contains an inactive vertex, then all its vertices
are inactive (Lemma 3.2.14), contradicting the choice of C as active.

Suppose now that there are two different clusters C,C ′ ∈ C⌈kα⌉ \ I⌈kα⌉ that are
mapped to the same vertex φ(C) = φ(C ′). Then the connected components ZC and
ZC′ , in which they are embedded, already have to coincide (ZC = ZC′). But we have
just shown (Lemma 3.2.18), that diam(ZC) ≤ |V (ZC)|ln(3)/ ln(2) ≤ ⌈kα⌉ and so C and C ′

would have already been merged in C⌈kα⌉. As such the images of both cannot coincide
and the map is injective.

Together with the bound for the number of inactive clusters we are now able to prove
the theorem.

Prroof of Theorem 3.2.12. Using Lemma 3.2.17 and 3.2.20 we obtain |C⌈kα⌉| = |C⌈kα⌉ \
I⌈kα⌉|+ |I⌈kα⌉| ≤ |V a

⌈kα⌉|+ |V i
⌈kα⌉| = k, yielding diam(Hk) ≤ diam(C⌈kα⌉) ≤ ⌈kα⌉diam(Ok).

89

CHAPTER 3. HIERARCHICAL CLUSTERING

3.2.3 A Lower Bound for Complete Linkage

In the following we show that complete linkage performs asymptotically bad. That is,
for every k ∈ N we provide an instance (V (Pk), d) on which the diameter and radius of a
k-clustering computed by complete linkage is off by a factor of Ω(k) from the cost of an
optimal solution. This improves upon the previously known lower bound of Ω(log2(k))
established by Dasgupta and Long [39]. Recall that one of the big problems preventing
an improved lower bound was that any horizontal merge already paid for all the involved
rows. As such, for the worst case one was only allowed to merge vertically, but this can
be done at most log2(k) times. We improve upon this by inductively constructing an
instance from smaller components that are diagonally shifted to produce bigger ones.
Merging two such diagonally shifted components incurs an additional cost of 1, while
ensuring at the same time that this does not pay for any future merges of parallel
components.

A k-component Kk = (Gk,ϕk) is a combination of a graph Gk = (Vk,Ek) and a
mapping ϕk : Vk → {1, . . . , k}. The mapping is necessary for the construction of the
component and later on determines an optimal k-clustering on Pk. We refer to ϕk(x) as
the level of x. The other part of the component is an undirected graph Gk, referred to
as a k-graph, on 2k−1 points with edge weights in N that describe the distances between
the levels.

The 1-component K1 consists of a single point x with ϕ1(x) = 1. All higher compo-
nents are constructed inductively from this 1-component. Given the (k− 1)-component
Kk−1 we construct Kk as follows: Let K(0)

k−1 and K
(1)
k−1 be two copies of the (k − 1)-

component Kk−1. For the k-graph Gk we first take the disjoint union of the graphs
G

(0)
k−1 and G

(1)
k−1. This already yields all the points of Gk. For the k-mapping ϕk we set

ϕk(x) = ϕ
(i)
k−1(x) + i for x ∈ V (G

(i)
k−1) ⊂ V (Gk). That is, in the first copy the levels stay

the same, whereas in the second all levels are shifted by 1. Finally, to complete Gk, we
add one edge of weight k − 1 from the unique point s ∈ V (Gk) with ϕk(s) = 1 to the
unique point t ∈ V (Gk) with ϕk(t) = k. The progression of the first five components is
given in Figure 3.12.

The instance (V (Pk), d) is now constructed from the k-component as follows: Let
K

(1)
k , . . . ,K(k+1)

k be k + 1 copies of Kk. Take the disjoint union of the corresponding
k-graphs G(1)

k , . . . ,G(k+1)
k and connect them by adding edges {x, y} of weight 1 for every

two points x ∈ V (G
(i)
k) and y ∈ V (G

(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y). Note that the sets

of points from the same level constitute cliques of diameter and radius 1 and form an
optimal solution of cost 1. To simplify notation we omit the indices and write ϕk(x) to
denote the level of a point x ∈ V (G

(j)
k) ⊂ V (Pk). The distance between two points in

V (Pk) is given by the length of a shortest path.
Let (Hk′)n

k′=1 be the clustering produced by complete linkage on
(V (Pk), d) minimizing the radius or diameter. Recall that Hk′−1 arises from Hk′ by
merging two clusters A,B ∈ Hk′ that minimize the radius or diameter of A ∪B. Re-
member that for cost ∈ {diam, drad} we define t≤x = min{k′ | cost(Hk′) ≤ x} and that
Cx = Ht≤x

denotes the smallest clustering with cost smaller or equal to x. We show in
the following two subsections that Ck−1 consists exactly of the k + 1 different k-graphs
that make up the instance resulting in the following theorem.

Theorem 3.2.21. For every k ∈ N there exists an instance (V (Pk), d) on which com-

90

CHAPTER 3. HIERARCHICAL CLUSTERING

1
1

1
2

1

1
2

1

1
2

3

1

1
2

1

1
2

1

1
2

1

1
2

3

3

4

Figure 3.12: The progression of the first 5 componentsK1, . . . ,K5. The gray sets indicate
points on the same level and form the optimal clusters. When analyzing the instance
for the radius, the encircled points in the K2 and K4 component indicate their optimal
centers.

plete linkage, minimizing either diam or drad, computes a solution of diameter k or
radius k

2 , respectively, whereas the cost of an optimal solution is 1.

A Lower Bound for Diameter-Based Cost

We start with the analysis for diameter-based costs and after that move on to radius-
based costs.

Lemma 3.2.22. The distance between two points x, y ∈ V (Pk) is at least as big as the
difference in levels |ϕk(x) − ϕk(y)|.

Proof. By the inductive construction of the components, an edge of weight w can cross
at most w levels. Hence the distance between x and y is at least |ϕk(x) − ϕk(y)|.

Consider an ℓ-graph Gℓ. Instead of talking about the cluster V (Gℓ) in (V (Pk), d) we
slightly abuse our notation and see Gℓ as a cluster with diam(Gℓ) = maxx,y∈V (Gl) d(x, y),
i.e., the diameter of V (Gℓ). Using the previous lemma we can show inductively that the
diameter of any ℓ-graph in Pk is ℓ− 1.

Lemma 3.2.23. Let Gℓ be an ℓ-graph contained in Pk. We have diam(Gℓ) = ℓ− 1.

Proof. We prove the upper bound diam(Gℓ) ≤ ℓ− 1 by induction. The 1-graphs are
points and so the claim follows trivially for ℓ = 1. Assume now that we have shown the
claim for ℓ− 1. Let s, t ∈ V (Gℓ) be points such that d(s, t) = diam(Gℓ). If these points
lie in the same graph, say G(0)

ℓ−1, of the two (ℓ− 1)-graphs G(0)
ℓ−1 and G(1)

ℓ−1 that make up
Gℓ, then

diam(Gℓ) = d(s, t) ≤ diam(G
(0)
ℓ−1) ≤ ℓ− 2 < ℓ− 1

by induction and we are done. Otherwise we may assume that s ∈ V (G
(0)
ℓ−1) and t ∈

V (G
(1)
ℓ−1). This leaves us with another case analysis. If s is the unique point with level 1

91

CHAPTER 3. HIERARCHICAL CLUSTERING

and t is the unique point in level ℓ in Gℓ then we are again done, since by construction
there exists an edge between s and t of weight ℓ− 1. Otherwise one of s or t must
share a level with a point not in the same (ℓ− 1)-graph as themselves. Without loss
of generality we may assume that s lies in the same level as some u ∈ V (G

(1)
ℓ−1). By

induction d(u, t) ≤ ℓ− 2 and so

diam(Gℓ) = d(s, t) ≤ d(s,u) + d(u, t) ≤ 1 + ℓ− 2 = ℓ− 1.

This concludes the proof of the upper bound diam(Gℓ) ≤ ℓ− 1.
To see the lower bound diam(Gℓ) ≥ ℓ− 1, we apply Lemma 3.2.22 to the unique point

s with level 1 and the unique point t with level ℓ in Gℓ. This shows that diam(Gℓ) ≥
d(s, t) ≥ ℓ− 1.

The goal now is to show that complete linkage actually reconstructs these graphs as
clusters. We already computed the diameter of an ℓ-graph and now it is left to observe
that merging two ℓ-graphs costs at least ℓ.

Lemma 3.2.24. Complete linkage might merge clusters on (V (Pk), d) in such a way
that for all ℓ ≤ k, the clustering Cℓ−1 consists exactly of the ℓ-graphs that make up Pk.

Proof. We again prove the claim by induction. Complete linkage always starts with
every point in a separate cluster. Since those are exactly the 1-graphs and any merge
costs at least 1, the claim follows for ℓ = 1. Suppose now that Cℓ−1 consists exactly of
the ℓ-graphs of the instance. Since we are dealing with integer weights, any new merge
increases the diameter by at least 1 and so we may merge all pairs of ℓ-graphs that form
the (ℓ+ 1)-graphs. These are cheapest merges as they altogether increase the diameter
from ℓ− 1 to ℓ (see Lemma 3.2.23). To finish the proof we are left to show that at
this point there are no more free merges left. Take any two (ℓ+ 1)-graphs Gℓ+1 ̸= G′

ℓ+1
contained in the current clustering. If they do not exactly cover the same levels, then the
distance between the point in the lowest level to the point in the highest level is strictly
more than ℓ by Lemma 3.2.22. Hence, we can assume that they share the same levels,
say level λ up to level ℓ+ λ. Denote by s the unique point in V (Gℓ+1) with ϕk(s) = λ
and by t the unique point in V (G′

ℓ+1) with ϕk(t) = ℓ+ λ. A shortest path connecting
s and t must contain an edge {u,w} with u ∈ V (Gℓ+1) and w ∈ V (Pk)\V (Gℓ+1). Such
an edge either weights at least ℓ+ 1 or weights 1 and connects points in the same level,
i.e., ϕk(u) = ϕk(w). In the first case we directly obtain d(s, t) ≥ ℓ+ 1. In the second
case we use Lemma 3.2.22 and obtain

d(s, t) = d(s,u) + d(u,w) + d(w, t)
≥ |ϕk(s) − ϕk(u)| + 1 + |ϕk(w) − ϕk(t)|
= |ϕk(s) − ϕk(t)| + 1
= ℓ+ 1.

It follows that Cℓ consists exactly of the (ℓ+ 1)-graphs that make up Pk.

Proof of Theorem 3.2.21 (diameter). Lemma 3.2.24 shows that Ck−1 can consist of all
the k-graphs that make up Pk. There are exactly k + 1 of them and so there is one
merge remaining to get a k-clustering. By definition of Ck−1, this last merge increases
the diameter by at least 1 and so the k-clustering produced by complete linkage costs at
least k, whereas the optimal clustering consisting of the k individual levels costs 1.

92

CHAPTER 3. HIERARCHICAL CLUSTERING

A Lower Bound for Radius-Based Costs

We show that the instance (V (Pk), d) also yields a lower bound of k/2 for radius-based
costs. This requires some additional work, as we now also have to keep track of the
centers that induce an optimal radius. For an ℓ-graph Gℓ we again slightly abuse the
notation and talk about Gℓ as a cluster with drad(Gℓ) = minc∈V (Gℓ) maxx∈V (Gℓ) d(c,x),
the radius of V (Gℓ).

Lemma 3.2.25. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2

arbitrary. Then it holds that drad(G2ℓ) = ℓ and furthermore, all optimal centers that
induce this radius are themselves already contained in G2ℓ (and not in any other 2ℓ-
graph).

To prove Lemma 3.2.25 we show that there is a point in Pk for which the following
holds:

• For all but one of the ℓ-graphs that constitute G2ℓ we can find a point that we can
reach by an edge of weight 1. Since the diameter of these graphs is ℓ− 1, this is
sufficient.

• The remaining ℓ-graph lies in the same (ℓ+ 1)-graph as our point and so we are
again done by considering the diameter. Also there are no points that induce a
smaller radius, since the diameter of G2ℓ is already 2ℓ− 1.

Proof of Lemma 3.2.25. By Lemma 3.2.23 we know that the diameter of G2ℓ is 2ℓ− 1.
Thus the radius of G2ℓ is at least ℓ. To show the upper bound of ℓ suppose that G2ℓ

covers the levels λ up to λ + 2ℓ − 1 in Pk. Consider the unique (ℓ + 1)-graph Hℓ+1
contained in G2ℓ covering the levels λ+ ℓ− 1 to λ+ 2ℓ− 1. Let c be the unique point
in Hℓ+1 with level λ+ ℓ− 1. By Lemma 3.2.23 the diameter of Hℓ+1 is ℓ, so any point
in Hℓ+1 is at distance ≤ ℓ to c. Consider now a point x ∈ V (G2ℓ)\V (Hℓ+1) and the
ℓ-graph Hℓ containing x. We claim that Hℓ contains a point y with level λ+ ℓ− 1. If this
is not true then Hℓ covers the levels λ+ ℓ up to λ+ 2ℓ− 1 and therefore also contains
the unique point in G2ℓ with level λ+ 2ℓ− 1. This is not possible as the unique point
in G2ℓ with level λ+ 2ℓ− 1 is already contained in Hℓ+1. So using that the diameter of
Hℓ is ℓ− 1 and ϕk(c) = ϕk(y) we obtain

d(c,x) ≤ d(c, y) + d(y,x) ≤ 1 + (ℓ− 1) = ℓ.

Now we prove that all optimal centers must be contained in G2ℓ. For all points
c ∈ V (Pk)\V (G2ℓ) we have to show that maxx′∈V (G2ℓ) d(c,x

′) ≥ ℓ+ 1. Suppose that
ϕk(c) ≤ λ+ ℓ− 1. Let x be the unique point in G2ℓ with level λ+ 2ℓ− 1, we claim that
d(c,x) ≥ ℓ+ 1. Consider a shortest path between c and x and let {u,w} be an edge
on this path with u ∈ V (Pk)\V (G2ℓ) and w ∈ V (G2ℓ). By construction {u,w} either
weights at least 2ℓ in which case

d(c,x) ≥ 2ℓ ≥ ℓ+ 1

or it weights 1 and ϕk(u) = ϕk(w), so

d(c,x) = d(c,u) + d(u, v) + d(v,x)
≥ |ϕk(c) − ϕk(u)| + 1 + |ϕk(w) − ϕk(x)|
= |ϕk(c) − ϕk(x)| + 1
≥ ℓ+ 1.

93

CHAPTER 3. HIERARCHICAL CLUSTERING

In case ϕk(c) ≥ λ+ ℓ we can prove analogously that d(c, y) ≥ ℓ+ 1 for the unique point
y in G2ℓ with level λ. This finishes the proof.

Now we make sure that complete linkage completely reconstructs these components. In
particular we show that merging 2ℓ-graphs which cover the same levels increases the
radius of our solution. Here we make use of the fact that sets of optimal centers for
any pair of 2ℓ-graphs do not intersect. Lemma 3.2.26 ensures that the radius indeed
increases.

Lemma 3.2.26. Let C,D be two subsets of V (Pk) with drad(C) = drad(D). Let Z(C)
and Z(D) denote the set of all optimal centers for C respectively D. If Z(C)∩Z(D) = ∅
then drad(C ∪D) > drad(C).

Proof. Let x ∈ V (Pk). Since Z(C) ∩Z(D) = ∅ this point can be an optimal center for
at most one of the sets. Assume without loss of generality that x /∈ Z(D). We have

max
y∈C∪D

d(y,x) ≥ max
y∈D

d(y,x) > drad(D) = drad(C)

So we have for all x ∈ V (Pk) that maxy∈C∪D d(y,x) > drad(C) which proves the lemma.

Now, with this we can prove that the merging behavior of complete linkage recon-
structs our components. Observe that Theorem 3.2.21 is an immediate consequence of
Corollary 3.2.27.

Corollary 3.2.27. Complete linkage might merge clusters in (V (Pk), d) in such a way
that for 1 ≤ ℓ ≤ k

2 , the clustering Cℓ consists exactly of the 2ℓ-graphs that make up Pk.

Proof. The proof is an analogous induction to Lemma 3.2.24. Consider the case ℓ = 1.
The first merge increases the radius to 1. Observe by Lemma 3.2.25 that the radius of
a 2-graph is 1. Furthermore, the same lemma shows that the sets of optimal centers
for any pair of 2-graphs do not intersect and so, as shown in Lemma 3.2.26 any further
merge necessarily has to increase the radius. Hence C1 consists exactly of the 2-graphs.

Assume now that the claim holds for Cℓ. The induction step works essentially the
same as the base case. Any merge will increase the radius of the solution by at least 1
by definition of Cℓ and so we might as well merge all 2ℓ-graphs that together compose a
(2ℓ+ 2)-graph as this is a cheapest choice (Lemma 3.2.25). Furthermore, any additional
merge would increase the radius to at least ℓ+ 2 (again by Lemma 3.2.26) and so Cℓ+1
consists of the (2ℓ+ 2)-graphs.

Lower Bound for Complete Linkage without Bad Ties

Notice that in our analysis we decided which clusters will be merged by complete linkage
whenever it has to choose between two merges of the same cost. However with some
adjustments on the instance (V (Pk), d) we can show a lower bound of Ω(k) for both
diameter and radius, for any behavior of complete linkage on ties, as we see next.

We now modify the instance (V (Pk), d) such that merging two ℓ-graphs Gℓ,G′
ℓ that

are part of the same (ℓ+ 1)-graph is slightly cheaper than performing any other merge
in a clustering consisting of all ℓ-graphs.

94

CHAPTER 3. HIERARCHICAL CLUSTERING

Diameter-Based Cost

We explain how to adjust the construction of the k-components for the diameter. Let
ϵ ∈ (0, 1

2). The definition of K1 stays the same. As before a k-component is constructed
from two copies K(0)

k−1,K(1)
k−1 of the (k − 1)-component by taking the disjoint union of

the corresponding graphs and increasing the level of each point in K
(1)
k−1 by one. Here

we do not add an edge of weight k − 1 between the unique points s ∈ V (G
(0)
k−1) with

level 1 and t ∈ V (G
(1)
k−1) with level k. Instead we complete Gk by adding edges of weight

(k− 1)(1 − ϵ) between x ∈ V (G
(0)
k−1) and y ∈ V (G

(1)
k−1) if they are not on the same level,

i.e., ϕk(x) ̸= ϕk(y).
The instance (V (Pk), d) is then constructed from k copies K(1)

k , . . . ,K(k)
k of the k-

component Kk. We take the disjoint union of the corresponding k-graphs G(1)
k , . . . ,G(k)

k

and connect them by adding edges {x, y} of weight 1 for every two points x ∈ V (G
(i)
k)

and y ∈ V (G
(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y).

We show that the clustering computed by complete linkage on (V (Pk), d) at time
t≤ℓ(1−ϵ) consists exactly of the (ℓ+ 1)-graphs that make up the instance.

Lemma 3.2.28. The distance between two points x, y ∈ V (Pk) is at least |ϕk(x) −
ϕk(y)|(1 − ϵ).

Proof. By the inductive construction of the components, an edge which crosses w levels
costs at least w(1 − ϵ). Hence the distance between x and y is at least |ϕk(x)−ϕk(y)|(1 −
ϵ).

As before we use the previous lemma to show that the diameter of any ℓ-graph in Pk

is (ℓ− 1)(1 − ϵ).

Lemma 3.2.29. Let Gℓ be an ℓ-graph contained in Pk. We have diam(Gℓ) = (ℓ− 1)(1 −
ϵ).

Proof. We prove the upper bound diam(Gℓ) ≤ (ℓ − 1)(1 − ϵ) by induction. The 1-
graphs are points and so the claim follows trivially for ℓ = 1. Assume now that we
have shown the claim for ℓ− 1. Let Gℓ be an ℓ-graph and s, t ∈ V (Gℓ) points such
that diam(Gℓ) = d(s, t). If these points lie in the same graph, say G

(0)
ℓ−1, of the two

(ℓ− 1)-graphs G(0)
ℓ−1 and G

(1)
ℓ−1 that make up Gℓ, then

d(s, t) ≤ diam(G
(0)
ℓ−1) ≤ (ℓ− 2)(1 − ϵ) < (ℓ− 1)(1 − ϵ)

by induction and we are done. Otherwise we may assume that s ∈ V (G
(0)
ℓ−1) and t ∈

V (G
(1)
ℓ−1). We distinguish two cases. If ϕk(s) = ϕk(t) these points are connected by an

edge of weight one by construction. Notice that an ℓ-graph does not contain points with
the same level if ℓ ≤ 2. Using ϵ ≤ 1

2 and ℓ ≥ 3 we obtain

d(s, t) = 1 ≤ (ℓ− 1)(1 − ϵ).

If s and t are on different levels there is an edge of weight (ℓ− 1)(1 − ϵ) between s and
t by construction. Thus we obtain in all cases

diam(Gℓ) = d(s, t) ≤ (ℓ− 1)(1 − ϵ).

95

CHAPTER 3. HIERARCHICAL CLUSTERING

To see the lower bound diam(Gℓ) ≥ (ℓ− 1)(1 − ϵ), we apply Lemma 3.2.28 to the unique
point s ∈ V (Gℓ) with ϕℓ(s) = 1 and the unique point t ∈ V (Gℓ) with ϕℓ(t) = ℓ. This
shows that diam(Gℓ) ≥ d(s, t) ≥ (ℓ− 1)(1 − ϵ).

We show that complete linkage must reconstruct these components as clusters.
Lemma 3.2.30. Complete linkage must merge clusters on (V (Pk), d) in such a way
that for all ℓ < k, the clustering Cℓ(1−ϵ) consists exactly of the (ℓ+ 1)-graphs that make
up Pk.
Proof. We prove the claim by induction. Complete linkage always starts with every point
in a separate cluster. Since those are exactly the 1-graphs and any merge of two points
costs at least (1 − ϵ), the claim follows for ℓ = 0. Suppose now that C(ℓ−1)(1−ϵ) consists
exactly of the ℓ-graphs of the instance. Consider two ℓ-graphs Gℓ ̸= G′

ℓ contained in the
current clustering. We compute the cost of merging Gℓ with G′

ℓ. For this purpose we
distinguish whether they are contained in the same (ℓ+ 1)-graph or not.

Case 1: If they are contained in the same (ℓ + 1)-graph Gℓ+1 merging Gℓ with G′
ℓ

results in Gℓ+1. We obtain by Lemma 3.2.29 that diam(Gℓ+1) = ℓ(1 − ϵ).

Case 2: If they are not contained in the same (ℓ+ 1)-graph, we show that merging Gℓ

with G′
ℓ costs more than ℓ(1 − ϵ). We make the following observations.

1. The edges connecting x ∈ V (Gℓ) and y ∈ V (G′
ℓ) with ϕk(x) ̸= ϕk(y) are of

weight ≥ (ℓ+ 1)(1 − ϵ).
2. There exist s ∈ V (Gℓ) and t ∈ V (G′

ℓ) with |ϕk(s) − ϕk(t)| ≥ ℓ− 1.

The last observation follows from the fact that each of the graphs contains two
points whose difference in levels is exactly ℓ− 1.
We prove that d(s, t) > ℓ(1 − ϵ) and therefore merging Gℓ with G′

ℓ costs more than
ℓ(1 − ϵ). Any shortest path connecting s and t in Pk must contain an edge {u,w}
between a point u ∈ V (Gℓ) and a point w ∈ V (G′

ℓ). By above observation this
edge is either of weight ≥ (ℓ+ 1)(1 − ϵ) or u and w are on the same level and the
edge is of weight 1. In the first case we conclude

d(s, t) ≥ (ℓ+ 1)(1 − ϵ) > ℓ(1 − ϵ).
In the second case we obtain that

d(s, t) = d(s,u) + 1 + d(w, t)
≥ |ϕk(s) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(t)|(1 − ϵ)

= |ϕk(s) − ϕk(t)|(1 − ϵ) + 1
≥ (ℓ− 1)(1 − ϵ) + 1
> ℓ(1 − ϵ).

We see that Cℓ(1−ϵ) must consist exactly of the (ℓ+ 1)-graphs of Pk.

Lemma 3.2.30 shows that C(k−1)(1−ϵ) consists of all the k-graphs that make up Pk.
There are exactly k of them, thus the k-clustering produced by complete linkage costs
(k− 1)(1 − ϵ).
Corollary 3.2.31. However the tie-breaks are resolved, complete linkage computes a
k-clustering on (V (Pk), d) with diameter (k − 1)(1 − ϵ) while the optimal k-clustering
has diameter 1.

96

CHAPTER 3. HIERARCHICAL CLUSTERING

Radius-Based Cost

We explain how to adjust the construction of the k-components for the radius. Let
ϵ ∈ (0, 1

2). The definition of K1 does not change. As before a k-component is constructed
from two copies K(0)

k−1,K(1)
k−1 of the (k − 1)-component by taking the disjoint union of

the corresponding graphs and increasing the level of each point in K
(1)
k−1 by one. We

complete Gk by adding edges between x ∈ V (G
(0)
k−1) and y ∈ V (G

(1)
k−1) if ϕk(x) ̸= ϕk(y)

and we assign this edge a weight of ⌈k
2 ⌉(1 − ϵ) if |ϕk(x)−ϕk(y)| ≤ ⌈k

2 ⌉ − 1 and otherwise
a weight of |ϕk(x) − ϕk(y)|(1 − ϵ).

As before the instance (V (Pk), d) is constructed from k copies K(1)
k , . . . ,K(k)

k of the k-
component Kk. We take the disjoint union of the corresponding k-graphs G(1)

k , . . . ,G(k)
k

and connect them by adding edges {x, y} of weight 1 for every two points x ∈ V (G
(i)
k)

and y ∈ V (G
(j)
k) with ϕ

(i)
k (x) = ϕ

(j)
k (y). We observe that Lemma 3.2.28 still holds on

the adjusted instance. Also notice that the diameter of an ℓ-graph is still upper bounded
by (ℓ− 1)(1 − ϵ).

Lemma 3.2.32. Let G2ℓ be any of the 2ℓ-graphs that constitute Pk for 1 ≤ ℓ ≤ k
2 . It

holds that drad(G2ℓ) = ℓ(1 − ϵ). Furthermore let G′
2ℓ be a second 2ℓ-graph which is not

contained in the same 2(ℓ+ 1)-graph as G2ℓ. Any cluster containing G2ℓ and G′
2ℓ costs

at least ℓ(1 − ϵ) + 1.

Proof. We know that G2ℓ contains points s and t with |ϕk(s) − ϕk(t)| = 2ℓ− 1. Thus
for any x ∈ V (Pk) we have max{|ϕk(s)−ϕk(x)|, |ϕk(t)−ϕk(x)|} ≥ ℓ. By Lemma 3.2.28
we know that max{d(s,x), d(t,x)} ≥ ℓ(1 − ϵ) and therefore drad(G2ℓ) ≥ ℓ(1 − ϵ).

To prove the upper bound suppose that G2ℓ covers the levels λ up to λ+ 2ℓ− 1 in Pk.
Consider the unique (ℓ+ 1)-graph Hℓ+1 contained in G2ℓ covering the levels λ+ ℓ− 1 to
λ+ 2ℓ− 1. Let c be the unique point in Hℓ+1 with level λ+ ℓ− 1. Remember that the
diameter of Hℓ+1 is at most ℓ(1 − ϵ), so any point in Hℓ+1 is at distance ≤ ℓ(1 − ϵ) to c.
Consider now a point x ∈ V (G2ℓ)\V (Hℓ+1). We know that ϕk(x) < λ+ 2ℓ− 1. Thus
|ϕk(x) − ϕk(c)| ≤ ℓ− 1. By construction there exists an edge of weight at most ℓ(1 − ϵ)
between x and c and thus d(x, c) ≤ ℓ(1 − ϵ).

It is left to show that any cluster containing G2ℓ and G′
2ℓ costs at least ℓ(1 − ϵ) + 1.

Let y ∈ V (Pk) and let H2(ℓ+1) be the 2(ℓ+ 1)-graph containing y. Assume without
loss of generality that G2ℓ is not contained in H2(ℓ+1). Let x ∈ V (G2ℓ) be a point
with |ϕk(x) − ϕk(y)| ≥ ℓ. We claim that d(x, y) ≥ (ℓ − 1)(1 − ϵ) + 1. A shortest
path connecting x and y must contain an edge {u,w} with u ∈ V (Pk)\V (H2(ℓ+1)) and
w ∈ V (H2(ℓ+1)). We know by construction that either ϕk(u) = ϕk(w), or the edge
weights at least (ℓ+ 2)(1 − ϵ). In the first case we use Lemma 3.2.28 and obtain

d(x, y) = d(x,u) + d(u,w) + d(w, y)
≥ |ϕk(x) − ϕk(u)|(1 − ϵ) + 1 + |ϕk(w) − ϕk(y)|(1 − ϵ)

= |ϕk(x) − ϕk(y)|(1 − ϵ) + 1
≥ ℓ(1 − ϵ) + 1

and in the second case we obtain

d(x, y) ≥ (ℓ+ 2)(1 − ϵ) ≥ ℓ(1 − ϵ) + 1.

This immediately leads to the following results.

97

CHAPTER 3. HIERARCHICAL CLUSTERING

Corollary 3.2.33. Complete linkage must merge clusters on (V (Pk), d) in such a way
that for all 1 ≤ ℓ ≤ k

2 , the clustering Cℓ(1−ϵ) consists exactly of the 2ℓ-graphs that make
up Pk.

Corollary 3.2.34. However the tie-breaks are resolved, complete linkage computes a k-
clustering on (V (Pk), d) with radius k

2 (1 − ϵ), while the optimal k-clustering has radius
1.

3.2.4 The Average Approximation Factor

We have seen previously that the approximation guarantee for complete linkage for the
radius is in Θ(k) and that the same holds for single linkage. This is rather surprising since
complete linkage merges clusters based on which merge minimizes the objective function,
which is not the case for single linkage. Notice that when we perform complete linkage on
the worst case instance (V (Pk), d) presented in Section 3.2.3 complete linkage produces
reasonably good clusters for most cluster sizes ℓ ̸= k. Depending on the application we
may not need a strong approximation guarantee for all cluster sizes, instead it may be
sufficient to find a hierarchical clustering which is a good approximation to the optimal
cost for most of the cluster sizes. We try to incorporate this by considering the average
approximation factor. The advantage of this new definition is emphasized by the fact
that complete linkage for drad performs asymptotically better than single linkage with
respect to this definition. This fits our intuition that complete linkage is more suited
for the task of constructing hierarchical clusterings for the drad objective than single
linkage even though both compute a Θ(k)-approximation with respect to the standard
definition of an approximation factor.

Definition 3.2.35. Let (Hk)
n
k=1 be an arbitrary hierarchical clustering on (P, d) and

let (Ok)
n
k=1 be optimal solutions for the radius or diameter. We denote by

Avg((Hk)
n
k=1) =

1
n

n∑
k=1

cost(Hk)

cost(Ok)

the average approximation factor of (Hk)
n
k=1.

The following corollary is an immediate consequence of Lemma 3.2.7.

Corollary 3.2.36. Let (Hk)
n
k=1 be the hierarchical clustering computed by complete

linkage for the radius. We have

Avg((Hk)
n
k=1) ≤ ⌈log2(n)⌉.

However the upper bound of ⌈log2(n)⌉ seems too pessimistic. It would be interesting
to know whether this bound is tight or complete linkage in fact computes a constant
factor approximation on average and whether similar results hold for the diameter.

Next we give a lower bound on the average approximation factor for single linkage.
Let n = 2s. Consider the instance P = {1, . . . ,n} ⊂ R. We can assume that in the k-th
step single linkage merges the two clusters containing xn−k and xn−k+1 as the distance
between these clusters is 1. The k-clustering computed by single linkage on (P, ∥ · ∥1)
then equals

Hk = {{x1}, . . . , {xk−1}, {xk, . . . ,xn}}}

and has diameter n− k.

98

CHAPTER 3. HIERARCHICAL CLUSTERING

On the other hand for 0 ≤ t ≤ s the optimal 2t-clustering has diameter 2s−t − 1 and
consists of clusters with 2s−t consecutive points in P:

O2t = {{x1, . . . ,x2s−t}, . . . , {x2s−t(2t−1)+1, . . . ,x2s}}

Thus we obtain for the diameter

Avg((Hk)
n
k=1) =

1
n

(
1 +

s−1∑
t=0

∑
k∈(2t,2t+1]

diam(Hk)

diam(Ok)

)
≥ 1
n

s−1∑
t=0

2t diam(H2t+1)

diam(O2t)

≥ 1
n

s−1∑
t=0

2t 2s − 2t+1

2s−t
=

1
n

s−1∑
t=0

22t 2s−t − 2
2s−t

=
1
n

(s−1∑
t=0

4t −
s−1∑
t=0

23t

2s−1

)
=

1
2s

(s−1∑
t=0

4t − 1
2s−1

s−1∑
t=0

8t
)

=
1
2s

4s − 1
3 − 1

22s−1
8s − 1

7 =
2s − 2−s

3 − 2s+1 − 21−2s

7
≥ n

21 − 1

The same computation can be done for the radius, as the radius of H2t+1 equals 2s−2t+1

2
and the radius of O2t equals 2s−t

2 .

Corollary 3.2.37. The average approximation factor achieved by single linkage on
(P, ∥ · ∥1) for both radius and diameter is at least n

21 − 1.

We conclude that the average approximation factor achieved by complete linkage for
drad is asymptotically better than the average approximation factor achieved by single
linkage. In general it may be of interest to consider other ways to measure the quality
of hierarchical clusterings computed by complete linkage and single linkage.

3.3 Complete Linkage in the Euclidean Space

We have seen that the approximation guarantee of complete linkage in general metric
spaces is in Ω(k) for the radius and diameter objective. Remember that for the analysis
of the radius for a fixed cluster size k we made use of the fact that when a clustering Hk′

is computed by complete linkage for k′ > k the next k′−k
2 merges performed by complete

linkage increase the radius by at most 2drad(O) where O is the optimal k-clustering
with respect to drad. This bound on the increase in cost can be improved if we assume
that the given metric space is Euclidean. Ackermann et al. [1] use this fact to give
better approximation bounds in the Euclidean space. From now on let ∥·∥2 denote the
Euclidean metric.

Definition 3.3.1 ([1]). Given a set of points P ⊂ Rd and k ∈ N, r ∈ R. Then P
is called (k, r)-coverable, if there exist k points c1, . . . , ck such that P ⊂

⋃k
i=1B(ci, r),

where B(ci, r) = {x ∈ Rd | ∥x− ci∥2 ≤ r} is the ball of radius r around ci.

Lemma 3.3.2 ([1]). Given some k ∈ N, r ∈ R and a set of more than k points P ⊂ Rd

which is (k, r)-coverable, there exist two distinct points x, y ∈ P with ∥x− y∥2 ≤ 4r d

√
k

|P| .

99

CHAPTER 3. HIERARCHICAL CLUSTERING

Using Lemma 3.3.2 Ackermann et al. are able to proof that complete linkage produces
a clustering with few clusters whose cost is not too large when compared to the optimal
k-clustering Ok.

Definition 3.3.3. Given the clustering instance (X , P, d) and cost ∈ {drad, rad, diam}.
Let C be an arbitrary clustering of P and Ok the optimal clustering of size k with respect
to cost. For 1 ≤ k ≤ n we consider the graph G[C, Ok] with vertex set Ok, where we
connect two vertices O,O′ ∈ Ok by an edge if there is a cluster C ∈ C which intersects
both O and O′.

Furthermore we say that C is 2-near to Ok if for every connected component G =
(V ,E) of G[C, Ok] the number of clusters in C which intersect at least one vertex in V
is bounded by 2|V |.

Lemma 3.3.4 ([1]). Given the clustering instance (Rd, P, ∥·∥2) and cost ∈ {drad, rad, diam},
with respect to cost complete linkage computes a clustering Hk′ that is 2-near to Ok and
whose cost can be upper bounded by

1. 10ddrad(Ok) if cost = drad

2. 24de24drad(Ok) if cost = rad

3. 23·(42d)d
(28d+ 6)diam(Ok) if cost = diam

where Ok denotes the optimal k-clustering with respect to cost.

So we see that under the assumption that the dimension of the Euclidean space
is constant, there exists a clustering with few clusters computed by complete linkage
whose cost can be upper bounded by O(1)cost(Ok). Ackermann et al. then show that
the remaining merge steps performed by complete linkage to obtain the clustering Hk

increase the cost of the solution by a factor of at most O(log(k)). The analysis of the
remaining merge steps was later improved by Großwendt and Röglin [44]. They showed
the following statement, which also holds in general metric spaces.

Theorem 3.3.5 ([44]). Given the clustering instance (X , P, d) and cost ∈ {drad, rad, diam},
let Hk′ be a 2-near clustering to Ok and Hk be the k-clustering computed by complete
linkage with respect to cost. We have that

1. cost(Hk) ≤ 25cost(Hk′) + 12cost(Ok) if cost = drad

2. cost(Hk) ≤ 13cost(Hk′) + 6cost(Ok) if cost = rad

3. cost(Hk) ≤ 9cost(Hk′) + 8cost(Ok) if cost = diam

Combining Lemma 3.3.4 amd Theorem 3.3.5 yields immediately the following corol-
lary.

Corollary 3.3.6. Given the clustering instance (Rd, P, ∥·∥2) and cost ∈ {drad, rad, diam},
with respect to cost complete linkage computes a clustering Hk of size k whose cost can
be upper bounded by

1. (250d+ 12)drad(Ok) if cost = drad

2. (312de24d + 6)rad(Ok) if cost = rad

100

CHAPTER 3. HIERARCHICAL CLUSTERING

3. (9 · 23·(42d)d
(28d+ 6) + 8)diam(Ok) if cost = diam

where Ok denotes the optimal k-clustering with respect to cost.

In this section we now give a simplified proof of the analysis presented in [44], which
also yields slightly better approximation factors for all three objectives.

We start by observing a simple property about trees.

Lemma 3.3.7. Let T = (V ,E) be a tree with m > 1 vertices. There exists a set M of
at most m

2 vertices such that every other vertex in V is incident to a vertex in M .

Proof. We prove this by induction on m. For m = 2, 3 the claim holds. If m > 3
suppose T is rooted at a vertex v and let h be the height of T with respect to v. Let
w ∈ V be a vertex of height h− 1 that is not a leaf and denote with Z the children of
w. Observe that T ′ = T\(Z ∪ {w}) is still connected, as all children of w are of height
h and therefore must be leaves. If T ′ is empty or consists of only v, then the lemma
holds for M = {w}. In the other case T ′ consists of m′ ≥ 2 vertices. Thus we can
apply the induction hypothesis on T ′ to obtain a set M ′ of at most m′

2 vertices. We set
M = M ′ ∪ {w} and observe that all vertices in T are incident to at least one vertex in
M . Furthermore |M | ≤ m′

2 + 1 = m′+2
2 . Now T ′ contains at least two vertices fewer

than T as Z ̸= ∅ and therefore m′ + 2 ≤ m.

Lemma 3.3.8. Let C be a clustering of P and Ok the optimal k-clustering with respect
to cost ∈ {drad, rad, diam}. Let G = (V ,E) be a connected component of G[C, Ok]
with m > 1 vertices. There exists a clustering of cost at most 3cost(Ok) + 2cost(C) for
cost ∈ {drad, rad, diam}, which is obtained by merging at least m

2 clusters from V .

Proof. We delete edges from G until we obtain a tree. By Lemma 3.3.7 there exists a set
M of at most m

2 vertices such that every other vertex in G is incident to a vertex from
M . We reduce the number of clusters by merging every cluster O ∈ V \M with a cluster
in M it is incident to. The resulting clustering consists of at least m

2 fewer cluster than
Ok. Let C be one of the merged clusters and let O ∈ M be the unique cluster from M
contained in C. We upper bound the cost of C in terms of cost(Ok) and cost(C).

When we are dealing with the radius and discrete radius, i.e., cost ∈ {drad, rad} let
o be the center of O. We know that every point p ∈ C is either contained in O itself, in
which case d(p, o) ≤ cost(Ok), or in a cluster O′ ∈ V \M . As O and O′ are connected
by an edge, there must be a cluster in C which intersects both. Let q1 ∈ O′ and q2 ∈ O
be two points contained in the same cluster of C. We obtain

d(p, o) ≤ d(p, q1) + d(q1, q2) + d(q2, o)
≤ 3cost(Ok) + 2cost(C).

When we are dealing with the diameter cost = diam we make a similar computation.
Let p1, p2 ∈ C be contained in the optimal clusters O1 or O2, respectively. We know
that there are q1 ∈ O1, q2 ∈ O and r1 ∈ O, r2 ∈ O2 such that for each pair both points
lie in the same cluster in C. We obtain

d(p1, p2) ≤ d(p1, q1) + d(q1, q2) + d(q2, r1) + d(r1, r2) + d(r2, p2)

≤ 3cost(Ok) + 2cost(C).

101

CHAPTER 3. HIERARCHICAL CLUSTERING

Thus we showed that we can roughly half the number of clusters by merging clusters
in Ok such that the resulting clustering O′ is not too expensive. Let H = (H|P|, . . .H1)
denote the hierarchical clustering that is computed by complete linkage. Next we fix a
complete linkage clustering H with more than k clusters and use Ok or O′ to argue that
complete linkage computes a clustering with significantly fewer clusters than H while
the increase in cost can be bounded in terms of cost(Ok) or cost(O′).

In our analysis we again consider the smallest clustering from H whose cost does
not exceed a given bound x, which we denote by Cx. Remember that every merge of
two clusters in Cx results in a clustering of cost more than x. We show the following
improved version of Theorem 3.3.5 by Großwendt and Röglin.

Lemma 3.3.9. Given the clustering instance (X , P, d) and let cost ∈ {drad, rad, diam}
and let H be a clustering created by complete linkage with cost(H) > 2cost(Ok) and
which is 2-near to Ok, then we have

1. cost(Hk) ≤ 8cost(Ok) + 5cost(H) for cost = drad

2. cost(Hk) ≤ 5cost(Ok) + 6cost(H) for cost = rad

3. cost(Hk) ≤ 5cost(Ok) + 6cost(H) for cost = diam.

Proof. Let G = (V ,E) be the union of all connected components of G[H, Ok] consisting
of more than one vertex and D ⊂ H be the clusters which intersect at least one cluster
in V . Notice that |D| ≤ 2|V | since H is 2-near to Ok. Let ℓ = |V |. First observe
that H\D consists of at most k − ℓ clusters. If a cluster C ∈ H\D intersects a cluster
O ∈ Ok\V , then we already have C ⊂ O, as otherwise O would be incident to another
optimal cluster in G[H, Ok] and therefore contained in a connected component of size
at least two. Furthermore there cannot be two clusters C1,C2 ∈ H contained in O as
merging C1 with C2 yields a cluster of cost at most 2cost(Ok). As complete linkage
always chooses the merge with smallest increase in cost and cost(H) > 2cost(Ok) this
case does not occur. Thus |H\D| ≤ |Ok\V | = k− ℓ and so |H| = |D| + |H\D| ≤ k+ ℓ.

Let x = cost(Ok) and y = cost(H). We denote by O′ the clustering of cost at most
z = 3x+ 2y obtained from Ok by merging at least ℓ

2 cluster from V . Such a clustering
exists by Lemma 3.3.8.

cost = drad: Let C,D ⊂ P be two arbitrary clusters with centers c, d. Observe that

cost(C ∪D) ≤ max{cost(C), cost(D)} + d(c, d). (3.5)

We claim that first |Cy ∩ Cy+2x| ≤ k and second |Cy+2x ∩ Cy+2x+2z| ≤ k− ℓ
2 .

Suppose the first inequality does not hold, thus there must be two clusters C,D
in Cy ∩ Cy+2x whose centers are contained in the same cluster from Ok. We use (3.5)
and get cost(C ∪D) ≤ max{cost(C), cost(D)} + 2cost(Ok) ≤ y + 2x in contradiction
to the definition of Cy+2x. Similarly one can prove the second inequality by replacing
Ok by O′. If the second inequality is violated, then there must be two clusters C,D in
Cy+2x ∩ Cy+2x+2z with cost(C ∪D) ≤ max{cost(C), cost(D)} + 2cost(O′) ≤ y+ 2x+ 2z
in contradiction to the definition of Cy+2x+2z.

We prove later that |Cy+2x+2z| ≤ k. Under this assumption we obtain cost(Hk) ≤
cost(Cy+2x+2z) ≤ y + 2x+ 2z = 8cost(Ok) + 5cost(H), which proves the lemma for the
discrete radius.

cost = rad: Let C,D ⊂ P be two arbitrary clusters. We claim that first |Cy ∩ C2y+x| ≤
k and second |C2y+x ∩ C4y+2x+z| ≤ k − ℓ

2 . If the first inequality is violated we find two

102

CHAPTER 3. HIERARCHICAL CLUSTERING

clusters C,D in Cy ∩ C2y+x such that both intersect the same cluster O from Ok. Let o
be the center of that cluster O and p1 ∈ C ∩O, p2 ∈ D∩O. Observe that cost(C ∪D) ≤
maxp∈C∪D d(p, o) ≤ 2 max{cost(C), cost(D)} + max{d(p1, o), d(p2, o)} ≤ 2y + x which
yields a contradiction. Analogously one can prove the second inequality.

We prove later that |C4y+2x+z| ≤ k. Under this assumption we obtain cost(Hk) ≤
cost(C4y+2x+z) ≤ 4y + 2x+ z = 5cost(Ok) + 6cost(H), which proves the lemma for the
radius.

cost = diam: Let C,D ⊂ P be two arbitrary clusters and p ∈ C, q ∈ D. Then we
have

cost(C ∪D) ≤ cost(C) + d(p, q) + cost(D). (3.6)

We claim that first |Cy ∩ C2y+x| ≤ k and second |C2y+x ∩ C4y+2x+z| ≤ k− ℓ
2 . The argument

is again the same. If one of the inequalities is violated we find two clusters C,D in
Cy ∩ C2y+x or C2y+x ∩ C4y+2x+z such that both intersect the same cluster from Ok or O′,
respectively. By (3.6) cost(C ∪D) is upper bounded by 2y + x or 2(2y + x) + z which
yields a contradiction.

We prove later that |C4y+2x+z| ≤ k. Under this assumption we obtain that cost(Hk) ≤
cost(C4y+2x+z) ≤ 4y + 2x+ z = 5cost(Ok) + 6cost(H), which proves the lemma for the
diameter.

Let 0 ≤ a ≤ b ≤ c such that |Ca ∩ Cb| ≤ k, |Cb ∩ Cc| ≤ k − ℓ
2 and |Ca| ≤ k + ℓ. We

know that all clusters in Ca\Cb or Cb\Cc must be merged in Cb or Cc, respectively. Thus
we obtain the following bounds on the size of both clusterings.

|Cb| ≤ |Ca| − k

2 + k

|Cc| ≤ |Cb| − (k− ℓ/2)
2 + k− ℓ

2 ≤ |Ca| − k

4 + k− ℓ

4 ≤ k.

For the last inequality we use |Ca| ≤ k+ ℓ.
We apply this observation for all three objectives and use that |Cy| ≤ |H| ≤ k + ℓ

to see that indeed |Cy+2x+2z| ≤ k for discrete radius and |C4y+2x+z| ≤ k for radius and
diameter.

103

CHAPTER 3. HIERARCHICAL CLUSTERING

104

Chapter 4

Minimum-Error Triangulation Is
NP-Hard

This chapter contains results from the work Minimum-Error Triangulations for Sea Sur-
face Reconstruction [11] by Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Her-
man Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel and Heiko
Röglin published in the proceedings of the International Symposium on Computational
Geometry (SoCG), 2022. The first part of the paper contains an NP-hardness proof
of the minimum-error triangulation problem. The second part considers a dynamic-
programming approach to compute minimum error triangulations of the sea surface,
where the set of allowed triangulations is restricted to so called k-OD triangulations. In
this chapter we present only the NP-hardness proof while the second part of the paper is
omitted. A full version of this paper is also available at arXiv [12] and currently under
consideration at the Journal of Computational Geometry.

4.1 The Planar 3SAT Problem

To prove that the minimum-error triangulation problem is NP-hard we perform a reduc-
tion from the planar 3SAT problem. The Boolean satisfiability problem (SAT problem)
is the first problem that has been proven to be NP-complete [35]. This result is often
referred as the Cook-Levin theorem.

Definition 4.1.1 (SAT). For a set of variables V we define the set of literals as V ∪ {v |
v ∈ V }, i.e., a literal is either a variable v or the negation of a variable v. We define
a clause as a subset of literals. Given an assignment ψ : V → {true, false}, we can
extend ψ on the set of literals by setting ψ(v) = true if ψ(v) = false and ψ(v) = false if
ψ(v) = true. We say that a clause c is satisfied under ψ if at least one of the literals in
c is assigned the value true under ψ.

An instance of the SAT problem consists of a set of variables V and a set of clauses
K. We call an assignment ψ : V → {true, false} feasible if all clauses in K are satisfied
by ψ. The task is to decide whether there exists a feasible assignment.

As an example an instance could consist of the set of variables V = {v1, v2, v3, v4} and
the set of clauses K = {{v1, v2, v4}, {v1, v2, v3}, {v1, v3, v4}}. The instance is satisfiable
since the assignment ψ(v1) = ψ(v2) = ψ(v3) = ψ(v4) = true satisfies all clauses in K.
We can also write the set of clauses K alternatively in the conjunctive normal form. In

105

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

the conjunctive normal form the set of clauses is replaced by the conjunction of its clauses
and every clause is written as a disjunction of its literals. In our example this yields
the Boolean formula (v1 ∨ v2 ∨ v4)∧ (v1 ∨ v2 ∨ v3)∧ (v1 ∨ v3 ∨ v4). Other variants of the
SAT problem such as the 3SAT problem and the planar 3SAT problem have been proven
to be NP-complete as well [35, 62]. The 3SAT problem is a variant of the SAT problem
where every clause consists of at most 3 literals. The planar 3SAT problem which will
be important in our NP-hardness proof of the minimum-error triangulation problem is a
special case of the 3SAT problem in which the incidence graph of the instance is assumed
to be planar.

Definition 4.1.2. Given an instance of the SAT problem with variables V and clauses
K, the vertex set of its incidence graph is given by the disjoint union of V and K and
edges {v, c} connecting a variable v to a clause c if c contains v or v.

Definition 4.1.3. A Jordan arc is an injective continuous map σ : [0, 1] → R2. We call
σ(0) and σ(1) the endpoints of σ. A planar embedding of the graph G = (V ,E) consists
of

1. a map f : V → R2 and

2. for every e = {s, t} ∈ E a Jordan arc σe with endpoints f(s) and f(t), called the
embedding of e,

such that for all e = {s, t} ∈ E and e′ ∈ E\{e} we have (σe([0, 1]) ∩ σe′([0, 1])) ⊂ f(V)
and (σe([0, 1])\{f(s), f(t)}) ∩ f(V) = ∅. Thus the embedded edge does not cross any
point from f(V) or any other embedded edge except at the embedding of its endpoints.
We call a graph G planar if there exists a planar embedding of G.

Definition 4.1.4. An instance of the planar 3SAT problem consists of a set of variables
V and a set of clauses K such that K contains only clauses of cardinality 3 and the
incidence graph of the instance is planar.

Lichtenstein [62] shows that the planar 3SAT problem is NP-hard. Furthermore he
shows that we can restrict ourselves to a planar embedding of the incidence graph of the
following form: An instance of the planar 3SAT problem can be embedded into the plane
such that every clause is represented by a vertex and every variable by a box placed on
the horizontal axis. A box is connected to a vertex via a rectilinear edge if the respective
variable is contained in the clause. For an example, see Figure 4.1. Such an embedding
is also used, for example, in [57].

Before we present the NP-hardness proof we repeat the definition of the minimum-
error triangulation problem.

4.2 Preliminaries

We recall the definition of the convex hull.

Definition 4.2.1. For a set M ⊂ Rd let conv(M) = {
∑n

i=1 αixi |
∑n

i=1 αi = 1,αi ≥
0,n ∈ N, {x1, . . . ,xn} ⊂ M} denote the convex hull of M . If M = {u, v} we also denote
the convex hull of u and v by uv .

106

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

v1 v2 v3 v4

v1 ∨ v2 ∨ v4

v1 ∨ v2 ∨ v3

v1 ∨ v3 ∨ v4

Figure 4.1: Embedding of the 3SAT formula (v1 ∨ v2 ∨ v4)∧ (v1 ∨ v2 ∨ v3)∧ (v1 ∨ v3 ∨ v4).

Remember that a triangulation of a point set S ⊂ R2 is a maximal set of non-crossing
straight line edges with endpoints in S.

Definition 4.2.2. A triangulation D of S ⊂ R2 is a subset of {uv | u, v ∈ S,u ̸= v} such
that for all e, e′ ∈ D we have e ∩ e′ ⊂ S and e ∩ S = {u, v} for e = uv. Furthermore
D is maximal, i.e. there is no other edge from {uv | u, v ∈ S,u ̸= v} which can be
added to D without violating this property. For three non-collinear points s, t,u ∈ R2 we
call T = conv(s, t,u) a triangle with vertices s, t,u and edges st,us, tu. We say that a
triangle T is contained in a triangulation D of S and write T ∈ D if its edges belong to
the triangulation D and T does not contain points from S other then its vertices, i.e.,
T ∩ S = {s, t,u}.

A minimum-error triangulation instance consists of the following parts. Let S ⊂ R2

be a set of n points and f : S → R. We call S the set of triangulation points and f(s)
the measurement value of s ∈ S. Additionally, we are given a set R ⊂ conv(S) of m
points and a function h : R → R. We refer to R as the set of reference points and to
h(r) as the reference value of r ∈ R.

For a triangulation D of S we now define the linear interpolation of f with respect to
D as follows. For every triangle T ∈ D with vertices s, t,u and every point v ∈ T written
as a convex combination v = αs+ βt+ γu we set fD(v) = αf(s) + βf(t) + γf(u). The
minimum-error triangulation problem asks for a triangulation D of S that minimizes the
squared error between the reference values and the interpolation fD, i.e.,

ErrD(R) =
∑
r∈R

(fD(r) − h(r))2.

Furthermore we define the zero-error triangulation problem as the problem to decide
whether there exists a triangulation D of S with ErrD(R) = 0 or alternatively fD(r) =
h(r) for all r ∈ R.

4.3 Overview of the Main Idea

We show that the minimum-error triangulation problem is NP-hard to approximate. To
show this we first prove the NP-hardness of the closely related zero-error triangulation
problem.

Theorem 4.3.1. The zero-error triangulation problem is NP-hard.

107

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Notice that the NP-hardness of this problem directly implies that the minimum-error
triangulation problem likely cannot be approximated efficiently.

Corollary 4.3.2. The minimum-error triangulation problem cannot be approximated
within any multiplicative factor in polynomial time unless P = NP.

For every instance of the planar 3SAT problem we construct an instance for the zero-
error triangulation problem by replacing the boxes, vertices and edges of its rectilinear
embedding in the plane by a set of triangulation points and reference points. For this
purpose we handle each component of the 3SAT embedding individually. We construct
variable gadgets, which replace the boxes, wire gadgets, which replace the rectilinear
edges, clause gadgets, which replace the vertices, and negation gadgets, which are inserted
on wires between variables and clauses that use those variables in negated form1. The
combination of these gadgets then constitutes an instance of the zero-error triangulation
problem.

Let V be the set of variables and K the set of clauses of the planar 3SAT instance.
We have to guarantee that every zero-error triangulation D of the triangulation instance
corresponds to a feasible assignment of variables and vice versa. Since a variable can
take only two values, true and false, we have to reflect this in the possible zero-error
triangulations. We ensure that there are only two possible zero-error triangulations on
the points that belong to a variable gadget and the negation and wire gadgets that are
attached to it.

Definition 4.3.3. Let C = {y | ∥x− y∥2 = ρ} be a circle around a point x ∈ R2 with
radius ρ ∈ R≥0. We denote with IC = {y ∈ R2 | ∥x− y∥2 < ρ} the interior of C, with
OC = R2\(C ∪ IC) the exterior of C, and with BC = IC ∪C the closed disk bounded by
C.

We will now describe the main tool in the construction of our gadgets. Suppose our
triangulation instance consists of several reference points R and a set of triangulation
points S, which satisfy the following properties. For every r ∈ R there exists a circle
Cr with r ∈ ICr such that the respective disks are pairwise disjoint, i.e., BCr ∩BCr′ = ∅
for r, r′ ∈ R with r ̸= r′. Furthermore for every r ∈ R there exist four distinct points
ar, br, cr, dr ∈ Cr ∩ S such that arcr ∩ brdr = {r}. All remaining points from S are
contained in ⋂

r∈ROCr and therefore lie outside all disks. We say that a triangle T
represents a point r ∈ R with zero error if r ∈ T and h(r) = fT (r). Our goal is now to
set the reference values h : R → R and measurement values f : S → R such that every
triangle that represents r with zero error has either arcr or brdr as an edge. For an
illustration see Figure 4.2.

We achieve this goal by exploiting well-known geometric properties of the unit
paraboloid in R3. For a set M ⊂ R2 we denote by M ′ = {(x1,x2,x2

1 + x2
2) | (x1,x2) ∈

M} the lift of M onto the paraboloid. For every triangulation point p = (p1, p2) ∈ S we
set f(p) = p2

1 + p2
2. For every reference point r ∈ R we consider the lifted circle C ′

r. It is
a known fact that there exists a plane Er in R3 whose intersection with the paraboloid
is exactly C ′

r. Since the paraboloid is convex, we know furthermore that the lift of the
interior I ′

Cr
onto the paraboloid lies below the plane Er and the lift of the exterior O′

Cr

onto the paraboloid lies above the plane. Thus for each reference point r = (r1, r2) we
do the following. We define h(r) such that (r1, r2,h(r)) ∈ Er. Since S ⊂ Cr ∪OCr , no

1In fact, our clause gadget negates the first two variables in the clause by default, so a negation gadget
must be used to undo the negation of one of the first two variables or to negate the third variable.

108

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

r

Cr

cr

ar

br

dr

Figure 4.2: The reference points are depicted as crosses. The other points are triangu-
lation points, lying either on or outside the circles.

point of the lift S ′ lies under Er. Thus every triangle T all of whose vertices lie in OCr

cannot triangulate r with zero error, since the lifted vertices would lie entirely above
the plane Er. In conclusion, a triangle T represents r with zero error if and only if it
contains either the edge arcr or the edge brdr. We will use these two options to encode
the values true and false for the variables of the planar 3SAT instance.

However, in our construction of the triangulation instance we cannot require BCr ∩
BCr′ = ∅ for all r, r′ ∈ R with r ̸= r′. It is even crucial that some of these intersections
are non-empty: by placing some of the points ar′ , br′ , cr′ and dr′ on BCr , we achieve
that the choice of a triangulation edge that represents r with zero error influences what
triangulation edge can be chosen to represent r′ with zero error. Such dependencies
are what makes our gadgets work. We only have to be careful that the points that are
additionally placed in BCr are placed such that they can never be used as vertices of
triangles that represent r with zero error. In the next section we describe our approach
more formally.

4.4 Notation and Local Properties

Our triangulation instance consists of a set of triangulation points with integral coordi-
nates S ⊂ Z2 and a set R ⊂ conv(S) of reference points.

Measurement values: The measurement values are determined by the function f : R2 →
R with f(p1, p2) = p2

1 + p2
2.

Reference values: For every circle C = {y | ∥x − y∥2 = ρ} around center x =
(x1,x2) ∈ R2 with radius ρ, we define the function hC : R2 → R with hC(r1, r2) =
2x1r1 + 2x2r2 − x2

1 − x2
2 + ρ2. For every r ∈ R we choose one circle C and set

h(r) = hC(r).

Thus the measurement values are fixed while we leave some freedom to choose the
reference values during the construction of the instance. Observe that the function
graph of f is the unit paraboloid {(p1, p2, p2

1 + p2
2) | (p1, p2) ∈ R2} and the function

graph of hC is the plane containing the lift of C onto the paraboloid (see Figure 4.3).

Coupled circle: Every point r ∈ R is coupled to a circle, which we denote by Cr. It
will be defined during the construction of the gadgets and determines the reference
value h(r) = hCr(r).

109

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Figure 4.3: Example of a reference point r with coupled circle Cr and its posi-
tive/negative edges crossing at r. Lifting the red and blue points to R3, with their mea-
surement values as third coordinate, we see that these points lie on both the paraboloid
and the plane which contains (r,hCr (r)) and the lift of Cr.

Positive and negative edge: Every point r ∈ R comes with a positive and a negative
edge called e+r or e−

r , respectively2. They intersect each other at r (i.e., e+r ∩ e−
r =

{r}) and their vertices are contained in the coupled circle Cr. It will always hold
that e+r has positive slope and e−

r has negative slope.

On the final triangulation instance we require that every zero-error triangulation D
corresponds to a feasible assignment on the variables V of the planar 3SAT instance.
For this purpose we define the positive and negative signals which later correspond to
setting the value of a variable to true or false.

Positive and negative signal: We say for a triangulation D that the signal at r ∈ R
is positive if D contains edge e+r and negative if it contains e−

r , otherwise we call
it ambiguous. Similarly for every set M ⊂ R we call D positive on M if the signal
is positive at all r ∈ M and negative on M if the signal is negative at all r ∈ M .

Definition 4.4.1. Let D be a triangulation of S and M ⊂ R. We define the error
incurred by D on M as

ErrD(M) =
∑
r∈M

(fD(r) − h(r))2.

Definition 4.4.2. We say that r ∈ R is represented with ϵ error by a triangle T , if
r ∈ T and (fT (r) − h(r))2 = ϵ. Here fT denotes the linear interpolation of f on T . In
particular we say that r is represented with zero error by T if fT (r) = h(r).

2More precisely this is true for all reference points except some reference points in the clause and
negation gadget. We elaborate on this during the construction of the gadgets.

110

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Lemma 4.4.3. Let r be a point of R and let T ⊂ R2 be a triangle with vertices s, t,u ∈ S
and r ∈ conv({s, t,u} ∩Cr). Then r is represented with zero error by T .

If the planar 3SAT instance is satisfiable, we argue that there is a triangulation containing
one of e+r , e−

r for every reference point r of the triangulation instance. Lemma 4.4.3 states
that such a triangulation has in fact zero error (see also Figure 4.3). To represent r with
zero error in any other way, we need at least one triangulation point inside and one
outside Cr. This follows from the convexity of f .

Lemma 4.4.4. Let T ⊂ R2 be a triangle with vertices s, t,u ∈ S representing r ∈ R
with zero error. If r /∈ conv({s, t,u} ∩Cr), then {s, t,u} has a non-empty intersection
with ICr and OCr .

We prove Lemma 4.4.3 and Lemma 4.4.4 in Section 4.8. We guarantee during the
construction that only few triangulation points lie in ICr for each reference point r. With
a concise case analysis we rule out that any of them can be used together with a point
in OCr to form a triangle that represents r with zero error, which limits the choice to
triangles containing one of e+r , e−

r . This ensures that every zero-error triangulation yields
a solution to the planar 3SAT instance.

4.5 The Gadgets

Before we give a formal definition of the gadgets we give a brief overview over the
main constructions as well as their functionality. We start with describing the smallest
construction called bit, the next larger constructions called segments up to the gadgets.

Bit: A small construction at a point r ∈ Z2. It contains r as a reference point and
several triangulation points. Every triangulation of S will have either positive or
negative signal at r. There are vertical and horizontal bits. Bits with the same
orientation can be combined into more complex constructions, whereas vertical
and horizontal bits cannot be combined directly.

Wire segment: A construction connecting two points x, y ∈ Z2 lying on the same
vertical or horizontal line. It is built from vertical/horizontal bits. It transports a
positive/negative signal from the bit at x to the bit at y or vice versa.

Multiplier segment: A construction centered at a point x ∈ Z2. It consists of two
vertical and two horizontal bits and some additional points. It has two functions.
First it serves as a multiplier of a signal: if one of the bits carries a positive/negative
signal the other three bits will carry the same signal. Secondly it serves as a
connection between vertical and horizontal bits.

Wire gadget: An extension of the wire segment to deal with arbitrary points x, y ∈
Z2. It consists of one horizontal wire segment, one vertical wire segment and
a multiplier segment connecting both. It has the same functionality as the wire
segment, namely transporting a positive/negative signal from the bit at x to the
bit at y or vice versa.

Variable gadget: It serves as a representation of a variable. If ℓ is the number of clauses
in the planar 3SAT instance, then this gadget consists of ℓ multiplier segments
which are connected to each other via wire segments. It will carry a consistent

111

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

positive/negative signal. Furthermore it has 2ℓ outputs where we can attach wire
gadgets to transport the signal of this variable gadget to clause gadgets.

Clause gadget: It serves as a representation of a clause. It has three inputs where the
signals of three variable gadgets arrive though wire gadgets. It can be triangulated
with zero error if and only if one of the first two signals is negative or the third
signal is positive.

Negation gadget: Since a clause may contain negated variables, we need to transform
a positive signal into a negative and vice versa. This is the functionality of the
negation gadget: it has one input carrying a positive or a negative signal and one
output carrying the opposite signal.

Every construction Z consists of a 5-tuple (R(Z), S(Z), F(Z), A(Z),E(Z)). Here
R(Z) denotes the set of reference points, S(Z) denotes the set of triangulation points
and the other three parts are the following.

Forbidden points: A set of points F(Z) that are not allowed to be triangulation points
in the triangulation instance as a whole, i.e., F(Z) ∩ S = ∅.

Anchor points: A set of anchor points A(Z) ⊂ R(Z) which indicates where the con-
struction can be combined with other constructions.

Mandatory edges: A set of edges E(Z) with vertices in S(Z) which are assumed to
be contained in any zero-error triangulation of S.

Note that the zero-error triangulation problem as defined in Section 4.2 does not allow
us to specify mandatory edges. We will deal with this in Section 4.6, where we explain
how we can add reference points to our zero-error triangulation instances in such a way
that any zero-error triangulation must contain all mandatory edges.

Construction of the gadgets

In the construction of the gadgets we make use of the following simplified notation. For
points x = (x1,x2), y = (y1, y2) ∈ R2 we denote by x± y the two points x+ y,x− y
and by x+ (±y1, y2) the two points x+ (y1, y2),x+ (−y1, y2). We define x+ (y1, ±y2)
and x+ (±y1, ±y2) analogously.

We start by describing the construction of a bit at point r ∈ Z2 (see Figure 4.4).
A bit can be oriented either horizontally or vertically. In the first case we denote the
construction by bh

r and in the second case by bv
r . We first describe the construction of

the horizontal bit.
We set R(bh

r) = {r}, thus r is the only reference point of this construction. The point
r is coupled to a circle Cr which is centered on r and has radius

√
2. The integer grid

points on this circle, that is, the points r+ (±1, ±1), are triangulation points. Moreover,
r+ (0, 1) and r+ (0, −1) are triangulation points, whereas r+ (−2, 0), r+ (−1, 0), r+

112

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

r

Cr

r

Cr

e+r

e−r

e+r

e−r

Figure 4.4: The (horizontal/vertical) bit at r with the positive edge in red and the
negative edge in blue. The black points are triangulation points and the white points
are forbidden.

(1, 0) and r+ (2, 0) are forbidden points. In conclusion

R(bh
r) = {r}

S(bh
r) = {r+ (±1, ±1), r+ (0, 1), r+ (0, −1)}

F(bh
r) = {r+ (−2, 0), r+ (−1, 0), r+ (1, 0), r+ (2, 0)}

A(bh
r) = ∅

E(bh
r) = ∅.

Furthermore we define the positive and negative edge as

e+r = conv(r+ (−1, −1), r+ (1, 1)), e−
r = conv(r+ (−1, 1), r+ (1, −1)).

As r + (±1, ±1) ∈ Cr, any triangle containing either e+r or e−
r represents r with zero

error by Lemma 4.4.3. For the vertical bit we reflect the whole construction at a line
of slope 1 through r. Thus the definition of reference points, anchor points, mandatory
edges as well as the definition of e+r , e−

r and the coupled circle do not change; note that
also in the vertical bit, e+r has positive slope whereas e−

r has negative slope. The set of
triangulation points and forbidden points is now given by

S(bv
r) = {r+ (±1, ±1), r+ (1, 0), r+ (−1, 0)}

F(bv
r) = {r+ (0, −2), r+ (0, −1), r+ (0, 1), r+ (0, 2)}.

Figure 4.4 illustrates both constructions. We show that the bit is well-behaved in the
sense that any zero-error triangulation must carry either a positive or a negative signal at
r. We show this by analyzing all possible triangles formed by points on the integer grid
that represent r with zero error. Before we analyze this, we first observe that the error
at a reference point does not change under an orthogonal transformation (i.e. rotation
around the origin or reflection at a line) or translation g : R2 → R2. More explicitly let
r be a reference point, Cr its coupled circle and T a triangle with r ∈ T . The error of
g(T) at g(r) with respect to the new measurement and reference values obtained after
application of g on r,Cr and T equals the error of T at r.

Lemma 4.5.1. Let T ⊂ R2 be a triangle representing r ∈ R with error ϵ. Let g : R2 →
R2 be an orthogonal transformation or translation. Let T = g(T), r = g(r) and Cr =

113

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

s

r

Cr

t

u

Figure 4.5: Here we see an example of a triangle T which contains r. Since v(T) ∩Cr

contains only s we clearly have r /∈ conv(v(T) ∩Cr).

g(Cr). Then T is a triangle containing r, Cr is a circle containing r in its interior and
(fT (r) − hCr

(r))2 = ϵ.

We defer the proof to Section 4.8.

Lemma 4.5.2. Suppose the instance contains a bit at r. If S ⊂ Z2 and S does not
contain forbidden points of the bit, any triangulation D of S with ErrD(r) = 0 contains
one of e+r , e−

r .

Proof. Clearly, D can contain at most one of e+r and e−
r . We need to prove that we

cannot have a triangle T that represents r with zero error and contains neither e−
r nor

e+r as one of its edges. We first observe that we can assume r = (0, 0) as, by Lemma 4.5.1,
translation of T , r and Cr by −r does not change the error.

Let v(T) = {s, t,u} ⊂ S denote the vertices of T . Notice that Cr does not contain any
integral point aside from the vertices of e+r , e−

r . Thus if r ∈ conv(v(T)∩Cr), then e+r or
e−

r would be an edge of T . So, henceforth, we consider the case that r /∈ conv(v(T)∩Cr).
For an illustration we refer to Figure 4.5. Lemma 4.4.4 now tells us that v(T)∩ ICr ̸= ∅.
Since the construction and the error are invariant under rotation (except the labeling of
e+r and e−

r , which may be switched) by Lemma 4.5.1, we may assume, without loss of
generality, that the point t = (0, 1) is included in v(T) ∩ ICr .

We lift our construction into the 3-dimensional space. That is, for a point p =
(p1, p2) ∈ R2, we denote with p′ = (p1, p2, f(p)) its lift on the paraboloid Γf =
{(q1, q2, q2

1 + q2
2) | (q1, q2) ∈ R2} and analogously we define the lift of a set M ⊂ R2 as

M ′ = {p′ | p ∈ M}. Let E denote the plane that contains v(T)′. As (0, 1) ∈ v(T)
we know that (0, 1, 1) ∈ v(T)′ ⊂ E. Furthermore (0, 0,hC0(0)) = (0, 0, 2) ∈ E
as T represents (0, 0) with zero error. Thus a point (x1,x2,x3) on E must satisfy
2ax1 − x2 − x3 + 2 = 0, for some fixed a.

We have v(T)′ ⊂ E ∩ Γf and thus the remaining points of v(T) must lie on the
circle described by x2

1 + x2
2 = 2ax1 − x2 + 2. This is the circle CT with center (a, −1/2)

and squared radius a2 + 9/4. Since the construction and the error are invariant under
reflection (except the labeling of e+r , e−

r), we may now assume, without loss of generality,
that a is non-negative. Let T̃ denote the convex hull of v(T)′. As T̃ must include r′,
T must include at least one point u = (u1,u2), different from t, such that u1 ≤ 0. We
will now investigate all possible locations of u. Let ga = {(a, −1

2) | a ≥ 0} be the
line segment containing all possible locations for the center of CT . The gray area in

114

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

t

ga

r

Figure 4.6: Here we see the line segment ga in blue which contains all possible locations
for the center of CT . The gray area indicates all points which lie left from r on a circle
through t with center in ga. As we can see there are only few integral points lying in
this area.

Figure 4.6 contains all possibilities for u, i.e. all points whose first coordinate is smaller
or equal to zero and which are lying on a circle through t with center in ga.

Remember that S ⊂ Z2 so u must have integral coordinates.

Case 1: Suppose that u1 ≤ −2. The first coordinate of any point of CT is at least
a−

√
a2 + 9/4. For a ≥ 0, this expression grows with a, starting from −3/2 for

a = 0. Thus such u cannot exist. We can also see in Figure 4.6 that the gray area
does not contain such points.

Case 2: Suppose that u1 = −1. We see in Figure 4.6 that the gray area only contains
the points (−1, 0), (−1, −1) as possibilities for u. More formally the circle equation
reads 1 + u2

2 = −2a− u2 + 2, so (u2 + 1/2)2 = 5/4 − 2a. For a ≥ 0, this implies
|u2 + 1/2| <

√
5/4, and therefore the only candidate for u is (−1, −1) (as (−1, 0)

is a forbidden point), with a = 1/2. Note that u lies on Cr. Now the first
coordinate of third point s in v(T) must be non-negative. Furthermore s has to lie
on CT , that is, on the circle with center (1/2, −1/2) and radius 1

2
√

10. Here the
only candidates with integer coordinates are (1, 1) (but then e+r would be an edge
of T), (2, 0) (which is forbidden and thus not in S), (2, −1), (1, −2) and (0, −2)
(which are all invalid because T would then contain a fourth triangulation point
(0, −1)). Therefore we cannot have u1 = −1. In Figure 4.7 we see the circle CT

in blue as well as all possibilities for the third point s.

Case 3: Finally, suppose that u1 = 0. Now we must have u = (0, −1), since u2 = 0
yields u = r, u2 > 0 would imply that T does not contain r, whereas u2 < −1 would
imply that T contains (0, −1) as a fourth triangulation point. But if t′ = (0, 1, 1)
and u′ = (0, −1, 1) are both vertices of T̃ , then r′ = (0, 0, 2) /∈ T̃ and thus we
obtain a non-zero error at r. Therefore we cannot have u1 = 0.

It follows that every triangle T that represents r with zero error contains either e+r or
e−

r .

The next larger components are the wire segment and the multiplier segment, which
we build from bits. A wire segment wxy connects two points x, y ∈ Z2 lying on the
same horizontal or vertical line. The anchor points of this segment are x and y. Let

115

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

t

r

(1
2
,−1

2
)

u

s t

r

(1
2
,−1

2
)

u s

t

r

(1
2
,−1

2
)

u

s

t

r

(1
2
,−1

2
)

u

s

Figure 4.7: Here we see the circle CT in blue which contains the points t = (0, 1) and
u = (−1, −1). The last triangulation point s has to be an integral point on CT which is
not forbidden. Here we see the four possible choices for s and the resulting triangles.

M = {x+ λ(y − x) | 0 ≤ λ ≤ 1} ∩ Z2 be the set of all integral points lying on the line
between x and y. If x and y lie on the same horizontal line we place a horizontal bit on
all points in M . In conclusion

S(wxy) =
⋃

r∈M

S(bh
r) F(wxy) =

⋃
r∈M

F(bh
r) R(wxy) =M

A(wxy) = {x, y} E(wxy) = ∅.

If x and y lie on the same vertical line we place a vertical bit on all points in M . In this
case we replace bh

r by bv
r in the construction above to obtain the construction of wxy.

For an illustration of the wire segment we refer to Figure 4.8.
Given some set M ⊂ R remember that a triangulation D is called positive on M if

D contains the edge e+r for all r ∈ M and negative on M if it contains the edge e−
r for

all r ∈ M .

Lemma 4.5.3. Suppose the instance contains a wire segment and let R̃ be the reference
points of this segment. If S ⊂ Z2 and S does not contain forbidden points of the segment,
any triangulation D of S with ErrD(R̃) = 0 is either positive or negative on R̃.

Proof. The wire segment connecting the points (x1,x2), (y1, y2) ∈ Z2 is completely built
from bits. By Lemma 4.5.2 such a bit must have either a positive or a negative signal at
its reference point. It is left to show that the signal is either positive or negative on the
complete segment. Suppose this is not the case and that x1 = y1 (the other case follows
analogously). Then there must be two reference points r, q ∈ R̃ with r = q + (0, 1)
where the signal at r differs from the signal at q. This is not possible as e+r and e−

q

intersect each other and so do e−
r and e+q .

116

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

x y x

Figure 4.8: Example of a horizontal wire segment on the left and a multiplier segment
with mandatory edges on the right. The red or blue edges indicate the positive or
negative edges of the crossing points, respectively. All white points and all reference
points are forbidden. The green points are anchor points.

The multiplier segment mx at a point x ∈ Z2 consists of two horizontal bits at
x ± (2, 0) and two vertical bits at x ± (0, 2). These four points are simultaneously
anchor points. Furthermore we add four inner reference points x ± (0, 1),x ± (1, 0)
whose coupled circle is of radius

√
5 and centered around x. So the circle contains the

points x+ (±2, ±1),x+ (±1, ±2). The positive/negative edges of the inner reference
points and the mandatory edges are shown in Figure 4.8. In conclusion

R(mx) = {x± (2, 0),x± (0, 2),x± (0, 1),x± (1, 0)}
S(mx) = S(bh

x+(2,0)) ∪ S(bh
x−(2,0)) ∪ S(bv

x+(0,2)) ∪ S(bv
x−(0,2))

F(mx) = F(bh
x+(2,0)) ∪ F(bh

x−(2,0)) ∪ F(bv
x+(0,2)) ∪ F(bv

x−(0,2))

A(mx) = {x± (2, 0),x± (0, 2)}
E(mx) = {conv(x+ (i, j),x+ (i+ 1, j)) | i ∈ {−3, −2, 1, 2}, j ∈ {−1, 1}}

∪ {conv(x+ (j, i),x+ (j, i+ 1)) | i ∈ {−3, −2, 1, 2}, j ∈ {−1, 1}}.

Figure 4.8 shows the multiplier segment.

Lemma 4.5.4. Suppose the instance contains a multiplier segment and let R̃ be the
reference points of this segment. If S ⊂ Z2 and S does not contain forbidden points of
the segment, any triangulation D of S with ErrD(R̃) = 0 is either positive or negative
on R̃.

Proof. We consider a multiplier segment at a point x ∈ Z2. By Lemma 4.5.1 we can
assume that x = (0, 0). We use Lemma 4.5.2 to see that the signal on the reference
points of bits must be either positive or negative. Thus D must contain one of the edges
e+r , e−

r for every reference point r ∈ {±(0, 2), ±(2, 0)}. Let F be any set of edges that
consists of the mandatory edges of the multiplier segment and at least one of the edges
e+r , e−

r for each r ∈ {±(0, 2), ±(2, 0)}. These edges isolate the inner reference points

117

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

from the remaining instance, as every triangle that contains one of the inner reference
points and a point outside of the segment must intersect at least one of the edges of F ,
regardless which of the sixteen possibilities for F is chosen.

Let T be a triangle in D representing an inner reference point r with zero error. The
multiplier segment is invariant under rotation by π

2 (except the labeling of positive and
negative edges). Furthermore rotation does not change the error at r by Lemma 4.5.1.
Thus we can fix r to be (−1, 0).

We claim that T contains one of e+r , e−
r as an edge. We already observed that the

vertices v(T) of T consist of triangulation points from the multiplier segment at (0, 0).
If r ∈ conv(v(T) ∩Cr) we see that one of e+r , e−

r is an edge of T . If this is not the case
we apply Lemma 4.4.4 to see that v(T) ∩ ICr ̸= ∅ ̸= v(T) ∩OCr , that is, T must have
at least one vertex strictly inside the circle and at least one vertex strictly outside the
circle. We enumerate all possibilities for such T .

Case 1: Assume that t = (−1, 1) ∈ v(T). Then (−1, −1) /∈ v(T), as hCr(r) = 5 ̸=
2 = 1

2 (f(−1, 1) + f(−1, −1)). Figure 4.9 shows all possibilities to choose the sec-
ond point u of v(T) such that conv(r, t,u)\{r, t,u} does not contain triangulation
points or intersect mandatory edges. Among these points there are four points
from OCr . As we know that v(T) must contain at least one of these, we consider
all the cases where we choose one of them as the second point u. Figure 4.9 shows
all possibilities choosing the last point of v(T) depending on the choice of u. We see
in Figure 4.9 that in the sub-cases (1.1) and (1.2) we have r /∈ T . In sub-case (1.3)
we have v(T) = {(−1, 1), (−2, 1), (1, −3)} and r = 1

4 (−1, 1) + 1
2 (−2, 1) + 1

4 (1, −3)
but

hCr (r) = 5 ̸= 11
2 =

2
4 +

5
2 +

10
4 =

1
4f(−1, 1) + 1

2f(−2, 1) + 1
4f(1, −3).

In sub-case (1.4) we have v(T) = {(−1, 1), (−3, −1), (1, 1)} and r = 1
2 (−3, −1) +

(1, 1) but
hCr(r) = 5 ̸= 6 =

1
2 (f(−3, −1) + f(1, 1)).

Thus in both cases we get a contradiction to T representing r with zero error.

Case 2: For t = (1, 1) ∈ v(T) we do the same and obtain two possibilities to choose a
point from OCr . Both are depicted in Figure 4.9. In sub-case (2.1) we have r /∈ T .
In sub-case (2.2) we calculate as in case 1 that T does not represent r with zero
error.

The remaining cases t = (±1, −1) can be shown analogously. The computations do not
change as f is invariant under reflection. We conclude that D contains one of e+r , e−

r for
all r ∈ R̃ and must be either positive or negative on the whole gadget.

To make the construction of gadgets easier we talk about the combination of multiple
constructions. We can combine two constructions Z1,Z2 into a construction Z, if the
following conditions are met

1. A(Z1) ∩ A(Z2) ̸= ∅,

2. S(Zi) ∩ (R(Zj) ∪ F(Zj)) = ∅ for i, j ∈ {1, 2} with i ̸= j,

118

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

t t t t t

u

u

u

u

u

tt

u

t

(1.1) (1.2) (1.3) (1.4)

(2.1) (2.2)

Figure 4.9: Possibilities to build v(T) starting with t = (±1, 1). The points outlined in
green are currently assumed to be in v(T). All points that are not boxed cannot be in
v(T).

3. (
⋃

e∈E(Zi) e) ∩ (S(Zj)\S(Zi)) = ∅ for i, j ∈ {1, 2} with i ̸= j.

In words they must have at least one anchor point in common; the triangulation points
of one construction are disjoint from the reference points and the forbidden points of the
other; and the mandatory edges, excluding their vertices, of one construction are disjoint
from the triangulation points of the other construction. We then define the combination
Z of the two constructions Z1 and Z2 as the union of all of their components.

S(Z) = S(Z1) ∪ S(Z2) R(Z) = R(Z1) ∪ R(Z2) F(Z) = F(Z1) ∪ F(Z2)

A(Z) = A(Z1) ∪ A(Z2) E(Z) = E(Z1) ∪E(Z2).

To obtain the larger variable gadget and wire gadget we combine wire segments with
multiplier segments. Remember that the wire gadget replaces the rectilinear edges of
the 3SAT embedding. Let x = (x1,x2), y = (y1, y2) ∈ Z2 with |x1 − y1| ≥ 4 and
|x2 − y2| ≥ 4. For the wire gadget wy

x we place a multiplier segment on (x1, y2) to form
a corner and for the wire gadget wx

y we place a multiplier segment on (y1,x2) to form
a corner. In both cases we combine the multiplier segment with two wire segments to
connect it to x and y. For simplicity we assume that x1 < y1 and x2 < y2; the general
case follows similarly. For wy

x we combine the multiplier segment at (x1, y2) with the wire
segment from x to (x1, y2 − 2) and the wire segment from y to (x1 + 2, y2). For wx

y we
combine the multiplier segment at (y1,x2) with the wire segment from x to (y1 − 2,x2)
and the wire segment from y to (y1,x2 + 2).

A variable gadget vx at x ∈ Z2 consists of ℓ multiplier segments at sufficiently large
distance α ∈ Z, which we do not specify further. Here ℓ denotes the number of clauses
of the planar 3SAT instance. Concretely, we place a multiplier segment on each of
the points x+ (kα, 0) with 0 ≤ k ≤ ℓ− 1 and combine them via wire segments from
x+ (kα + 2, 0) to x+ ((k + 1)α − 2, 0) for 0 ≤ k ≤ ℓ− 2. The multiplier segments
ensure that the gadget can later be connected at its anchor points to multiple clause
gadgets. We observe that the described combinations of segments for both gadgets are
feasible and that they have the following crucial property.

119

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Lemma 4.5.5. Suppose the instance contains a wire/variable gadget and let R̃ be the
reference points of this gadget. If S ⊂ Z2 and S does not contain forbidden points of the
gadget, any triangulation D of S with ErrD(R̃) = 0 is either positive or negative on R̃.

Proof. The signal at a segment that is part of the gadget must be either positive or
negative by Lemma 4.5.3 and Lemma 4.5.4. If it is connected to another segment at one
of its anchor points, this anchor point determines the signal at both segments, which
must agree with the signal at the anchor point. Proceeding like this we see that the
signal must be either positive or negative on the whole gadget.

Having the variable gadget and wire gadget in place we need two more constructions,
namely the clause gadget and the negation gadget. Both are very similar to each other.

We explain how to build the clause gadget representing a clause of the form v1 ∨ v2 ∨
v3 at a point x ∈ Z2. For simplicity we assume that x = (0, 0). We declare r = (0, 11) as
a reference point and the points {(5, −15), (±15, −5), (±9, 13)} as triangulation points.
Notice that these triangulation points all lie on one circle centered at (0, 0) with radius√

250. This circle is the coupled circle Cr of r. The reference point r is special as it does
not come with a positive and negative edge, instead we observe that it is represented
with zero error by the following three triangles:

T1 = conv((5, −15), (9, 13), (−9, 13))
T2 = conv((15, −5), (9, 13), (−9, 13))
T3 = conv((−15, −5), (9, 13), (−9, 13))

This is true by Lemma 4.4.3 and r ∈ Ti for i = 1, 2, 3.
A triangle T is blocked by an edge e if both cannot be part of the same triangulation

of S. This is the case if e is not an edge of T and (e ∩ T)\S ̸= ∅. Now we define for
every i ∈ {1, 2, 3} a reference point ri with the crucial property that the triangle Ti is
blocked by the positive edge of ri for i = 1, 2 and by the negative edge of ri for i = 3.

Let a1 = (−12, −17) and define r1 to be the intersection of the two edges e+r1 =
conv(a1 + (1, −1), a1 + (23, 4)) and e−

r1 = conv(a1 + (1, 1), a1 + (23, −4)). Thus we have
r1 = a1 + (27

5 , 0). We declare the vertices of e+r1 and e−
r1 as triangulation points. Observe

that they lie on a common circle Cr1 , which is the circle coupled to r1. Furthermore we
add three horizontal bits, one at each of the points a1 + (ℓ, 0) for ℓ = 0, 1, 2 and declare
a1 as anchor point. Let

R1 =
2⋃

ℓ=0
R(bh

a1+(l,0)) ∪ {r1}

S1 =
2⋃

ℓ=0
S(bh

a1+(l,0)) ∪ {a1 + (1, ±1), a1 + (23, ±4)}

F1 =
2⋃

ℓ=0
F(bh

a1+(l,0))

A1 = {a1}
E1 = {conv(a1 + (1, −1), a1 + (2, −1)), conv(a1 + (2, −1), a1 + (3, −1)),

conv(a1 + (3, −1), a1 + (23, −4)), conv(a1 + (23, −4), a1 + (23, 4))}

A similar construction is done at the anchor points a2 = (17, 12) and a3 = (−17, 12). Let
γ2 : R2 → R2 be the reflection on the line with slope -1 through (0, 0) and γ3 : R2 → R2

120

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

r

a1

a3

T3

T1

T2

a2

Figure 4.10: The clause gadget, where the red/blue edges indicate the positive/negative
edges of the crossing points. The triangles T1,T2,T3 are orange and the anchor points
a1, a2, a3 green.

the clockwise rotation by 3π
2 . Let i = 2, 3 and

Ri = γi(R1) Si = γi(S1) Fi = γi(F1) Ai = {ai} Ei = γi(E1).

Notice that γ2 does not change the slope while γ3 changes the slope. Thus for every
r′ ∈ R1 we have e+

γ2(r′) = γ2(e
+
r′), e−

γ2(r′) = γ2(e
−
r′) and e+

γ3(r′) = γ3(e
−
r′), e−

γ3(r′) = γ3(e
+
r′).

In total we obtain

R(cx) =
3⋃

i=1
Ri ∪ {r} S(cx) =

3⋃
i=1

Si ∪ {(5, −15), (±15, −5), (±9, 13)}

A(cx) =
3⋃

i=1
Ai E(cx) =

3⋃
i=1

Ei.

Furthermore we declare all points from ⋃3
i=1 Fi and all non-triangulation points on or

inside a circle coupled to a reference point r′ ∈ R(cx) as forbidden.

F(cx) =
3⋃

i=1
Fi ∪

⋃
r′∈R(cx)

BCr′ \S(cx)

The whole construction is depicted in Figure 4.10.

Lemma 4.5.6. Suppose the instance contains a clause gadget and let R̃ be its reference
points. If S ⊂ Z2 and S does not contain forbidden points of the gadget, any triangu-
lation D of S with ErrD(R̃) = 0 must be negative on one of the anchor points a1, a2 or
positive on a3.

Proof. The signal at a reference point of a bit must be either positive or negative by
Lemma 4.5.2. This also includes the anchor points a1, a2, a3.

121

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

r

a1

a2

T1

F1

F3
F2

T3

T2

r3 r2

r1
c

b
a3

Figure 4.11: Here we see all three cases together. For i ∈ {1, 2, 3}, if we choose the first
point t in v(T) to be one of the three marked points near ai, the remaining points of
v(T) must come from the shaded area Fi, otherwise T would intersect other triangulation
points or edges. However, Fi does not contain any points outside Cri (note that b =
(−9, 13) lies just outside F1, as conv(t, b, r1) would include c = (−9, −16) if t is any of
the marked points near a1).

Suppose that T1 is in D and the signal at a1 is positive. We show that the error at
r1 is positive contradicting the assumption that D is a zero-error triangulation.

Let T be the triangle in D with r1 ∈ T and let v(T) denote its vertices. As T1 belongs
to D and the signal at a1 + (2, 0) is positive, we know that e+r1 , e−

r1 cannot be edges of T .
Thus by Lemma 4.4.4 we know that v(T) has a non-empty intersection with ICr1

and
OCr1

. Furthermore v(T) must contain a point below the line that supports e−
r1 , so v(T)

must contain at least one of the points a1 + (l, −1) for l = 1, 2, 3. Let t be this point.
Choosing the second point u in v(T) from OCr1

already yields a contradiction, because
for any choice of u from OCr1

, the hull conv(t,u, r1) contains another triangulation point
or intersects a mandatory edge, the triangle T1, or the positive edge of a1 + (2, 0).

Analogously one can prove that T2 and e+a2 or T3 and e−
a3 cannot be simultaneously in

D. Figure 4.11 illustrates how to exclude all three combinations. Since r is triangulated
with zero error by D one of the triangles T1,T2,T3 must be in D. Thus the signal at one
of a1, a2 must be negative or the signal at a3 must be positive.

The last gadget, the negation gadget, is constructed out of wires, multipliers and
simplified clause gadgets. The core components of the negation gadget are the positive
and negative negation segments. For the positive negation segment n+x at a point x we

122

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

a′

a

Figure 4.12: The negation gadget. If the signal at anchor point a is negative it is negated
in the left segment. If the signal at a is positive it is negated in the right segment. Since
the top wire carries a consistent signal, negation is ensured at a′.

follow the construction of the clause gadget, except that we omit the triangle T3 and the
construction at a3. Thus following the notation for the clause gadget we define

R(n+x) = R(cx)\R3 S(n+x) = S(cx)\(S3 ∪ {x+ (−15, −5)}
A(n+x) = A(cx)\A3 E(n+x) = E(cx)\E3

and define the forbidden points to be

F(n+x) =
2⋃

i=1
Fi ∪

⋃
r′∈R(n+

x)

BCr′ \S(n+x).

The negative negation segment n−
x at a point x is now a reflection of the positive

negation segment. Let γ : R2 → R2 be the reflection at the vertical line through x. We
define

R(n−
x) = γ(R(n+x)) S(n−

x) = γ(S(n+x)) F(n−
x) = γ(F(n+x))

A(n−
x) = γ(A(n+x)) E(n−

x) = γ(E(n+x)).

The negation gadget nx at a point x ∈ Z2 is a combination of several constructions.
We place a multiplier segment at x, a positive negation gadget at x+ (27, 17) and a
negative negation gadget at x+ (−27, 17). The anchor point x+ (2, 0) of the multiplier
segment is then connected via a wire segment to the lower anchor point x+ (15, 0) of
the positive negation segment. The anchor point x− (2, 0) of the multiplier segment
is connected via a wire segment to the lower anchor point x− (15, 0) of the negative
negation segment. Furthermore we place a multiplier segment at x+ (0, 38) and connect
the anchor point x+ (2, 38) of this multiplier segment via a wire gadget to the upper
anchor point x+(44, 29) of the positive negation segment. Finally we connect the anchor
point x+ (−2, 38) of this multiplier segment via a wire gadget to the upper anchor point
x+ (−44, 29) of the negative negation segment. Figure 4.12 visualizes the construction.
We analyze the signal at the anchor points a = x− (0, 2) and a′ = x+ (0, 40):

123

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Lemma 4.5.7. Suppose the instance contains a negation gadget at x ∈ Z2 and let R̃ be
the reference points of this gadget. Let S ⊂ Z2 and assume S does not contain forbidden
points of the gadget. Any triangulation D of S with ErrD(R̃) = 0 is positive at a iff it
is negative at a′.

Proof. We consider the positive negation segment at point x+ (27, 17), which equals
the clause gadget without the construction at a3 and T3. We borrow the notation from
the clause gadget. As in the proof of Lemma 4.5.6 one can show that neither T1 and
e+r1 nor T2 and e+r2 can simultaneously be in D. As one of T1,T2 is in D this means that
at most one of a1 = x+ (15, 0), a2 = x+ (44, 29) has a positive signal. Analogously at
most one of the signals at the anchor points a′

1 = x− (15, 0), a′
2 = x+ (−44, 29) of the

negative negation segment at x+ (−27, 17) is negative.
Suppose that the signal at a is positive. Then by Lemma 4.5.3 the signal at a1 must

also be positive. By the observation above the signal at a2 must then be negative and so
must be the signal at a′ by Lemma 4.5.5. If the signal at a is negative the signal must
be positive at a′

2 and a′ following the same arguments.

4.6 Replacing Mandatory Edges

Before we dedicate ourselves to the proof of Theorem 4.3.1, we need to discuss how
we can enforce that the mandatory edges are part of any zero-error triangulation, since
the original definition of the zero-error triangulation problem does not allow us to spec-
ify mandatory edges. To this end, we slightly modify the previously constructed gad-
gets/segments as follows. Let Z be a construction. For every edge e = st ∈ E(Z) we add
the reference point re =

1
2 (s+ t) to R(Z). It is left to define the circle Cre coupled to re.

Notice that we would like to enforce the edge e to be in every zero-error triangulation
of the gadget. Suppose that

1. {s, t} ⊂ Cre and

2. BCre
does not contain further triangulation points.

Then any triangle with vertices s, t represents re with zero error by Lemma 4.4.3 and
any triangulation which does not contain e has positive error at re by Lemma 4.4.4.

If we have t ∈ {s± (1, 0), s± (0, 1)} then we define Cre as the circle centered at re

with radius ∥s−t∥2
2 . In this case BCre

\{s, t} does not contain integral points and therefore
it does not contain any triangulation points. Thus 1. and 2. are both satisfied for Cre .

The mandatory edges that do not satisfy the above property are all part of the clause
gadget and the negation gadget. Figure 4.13 shows how to define Cre for the mandatory
edges in the clause gadget. In Figure 4.13 we see that we can again define Cre as the
circle centered at re with radius ∥s−t∥2

2 for three out of six long mandatory edges in the
gadget. For the other three long edges in the clause gadget let Q1 and Q2 be the two
squares which contain e as one of their edges. One of these squares contains triangulation
points of the gadget other than s, t, while the other one does not. Let Q1 be the square
which does not contain any triangulation points other than s, t. We define Cre as the
circumcircle of Q1. In Figure 4.13 we see that 1. and 2. are then both satisfied for Cre .
Observe that a similar construction can be done for the long mandatory edges in the
negation gadget.

124

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

r

a1

a3 a2

Figure 4.13: Here we see the replacement of mandatory edges in the clause gadget. For
every mandatory edge e = st the set BCre

contains only s and t as triangulation points.

Finally we extend the set of forbidden points F(Z) by BCre
\{s, t}. The following

corollary is an immediate consequence of Lemma 4.4.3 and Lemma 4.4.4.

Corollary 4.6.1. Suppose the instance contains a modified construction with reference
points R̃, including the reference points which replace the mandatory edges. If S ⊂ Z2

and S does not contain forbidden points of the gadget, any triangulation D of S with
ErrD(R̃) = 0 contains all mandatory edges of this construction.

4.7 The Reduction

Given an instance I of the planar 3SAT problem, with V the set of variables and K
the set of clauses, we first explain how to construct the corresponding instance Ierr of
the zero-error triangulation problem. Let k = |K| + |V |. We fix an integral rectilinear
embedding of the planar 3SAT instance on the plane, i.e., the vertices representing the
clauses as well as the centers of the boxes representing the variables must have integral
coordinates. We scale the embedding by an integer factor γ ∈ O(k). Notice that the
scaled embedding is still rectilinear and integral. Let G(v) denote the center of the box
belonging to a variable v ∈ V and G(c) the vertex belonging to a clause c ∈ K of the
scaled embedding. Recall that G(v) lies on the horizontal axis for all v ∈ V .

The zero-error triangulation instance is constructed as follows: We place a variable
gadget at G(v) for all v ∈ V and a clause gadget at G(c) for all c ∈ K. For a clause c ∈ K
containing the variables v1, v2, v3 we do the following: Notice that G(v1),G(v2),G(v3)
lie on the horizontal axis and we assume that they appear on the axis from left to right
in this order.

125

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

v1 v2 v3 v4

c2

c3

clause

variable

negation

wire

c1

anchor

Figure 4.14: The triangulation instance corresponding to the planar 3SAT instance with
clauses c1 = v1 ∨ v2 ∨ v4, c2 = v1 ∨ v2 ∨ v3 and c3 = v1 ∨ v3 ∨ v4. The anchor points at
which we connect two gadgets are depicted as crosses. Notice that some of the anchor
points at the variable gadgets may be left unused.

We follow the notation in the construction of the clause gadgets and denote the
anchors of a fixed clause gadget by a1, a2, a3 (see Figure 4.10). If G(c) lies above the
horizontal axis, we connect the anchor point ai to an anchor of the variable gadget at
G(vi) for all i ∈ {1, 2, 3}. If G(c) lies below the horizontal axis we connect a1 to an
anchor of the variable gadget at G(v1), a2 to an anchor of the variable gadget at G(v3)
and a3 to an anchor of the variable gadget at G(v2). To connect the clause gadget at
G(c) at an anchor point ai with an anchor point of the variable gadget at G(vj) we use
a combination of wire gadgets. Notice that it is possible to connect all clause gadgets to
the corresponding variable gadgets such that the wire gadgets of two distinct connections
do not overlap (this is possible for a sufficiently large scaling factor γ ∈ O(k), because
the embedding is planar and rectilinear).

However, if the variable gadget of a variable that appears negated in the clause is
connected to the a3-anchor of the clause gadget, or if the variable gadget of a variable
that appears non-negated in a clause is connected to the a1- or a2-anchor of the clause
gadget, then we do not connect the clause gadget directly to the variable gadget, but we
insert a negation gadget: If G(c) lies above the horizontal axis we use a combination of
wire gadgets to connect the anchor of the clause gadget to the a′-anchor of the negation
gadget, and a wire segment to connect the a-anchor of the negation gadget to an anchor
of the variable gadget. If G(c) lies below the horizontal axis we use a combination of wire
gadgets to connect the anchor of the clause gadget to the a-anchor of the negation gadget,
and a wire segment to connect the a′-anchor of the negation gadget to an anchor of the
variable gadget. If we choose the distance α between multiplier segments in a variable
gadget to be at least 200 this construction can be done without the negation gadgets
overlapping each other. Figure 4.14 shows the structure of the zero-error triangulation
instance corresponding to our initial example.

Let S be the set of triangulation points and R the set of reference points of Ierr.
Notice that S is contained in Z2 by construction. Furthermore we want to establish the
property that S does not contain any forbidden points. This is already true for each
of the discussed gadgets. Remember that we scaled the rectilinear embedding of I by

126

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

a factor γ ∈ O(k) (the factor comes from the width of the variable gadget, which is
in O(k)). If we pick γ sufficiently large (e.g., γ = 1000k) the gadgets do not overlap
(excluding the overlap that occurs when two gadgets are combined with each other,
which is explicitly allowed). Thus the instance does not contain forbidden triangulation
points.

We are now able to prove the hardness of the zero-error triangulation problem.

Theorem 4.3.1. The zero-error triangulation problem is NP-hard.

Proof. Let I be an instance of the planar 3SAT problem and let Ierr denote the corre-
sponding instance of the zero-error triangulation problem. We have to guarantee that
every zero-error triangulation D of the triangulation instance corresponds to a feasible
assignment on the variables V and vice versa.

Suppose that there exists an assignment of the variables under which all clauses of
the 3SAT instance are satisfied, and fix such an assignment. For every reference point
that replaces a mandatory edge st we add st to the triangulation D. By Corollary 4.6.1
the error of D at such reference points is zero. For the reference points in the variable
gadget at G(v) we choose the triangulation D such that it is positive if the value of
v ∈ V is true and negative if the value of v is false in the assignment. Observe that by
Lemma 4.4.3 a negation/wire gadget can be triangulated with zero error with a fixed
signal at one of its anchor points. This zero-error triangulation of the negation/wire
gadget has the negated/same signal on the remaining anchor points. We extend D on
the negation/wire gadgets following the above observation. Now consider a clause gadget
at G(c) for some c ∈ K and its three anchor points a1, a2, a3 whose signals in D are
already determined by the wire gadgets connected to them. As clause c is satisfied under
the assignment, one of a1, a2 has a negative signal or a3 has a positive signal. Thus at
least one of the triangles triangulating r = G(c) + (0, 11) with zero error can be added
to D. In conclusion we see that D has zero error on this gadget.

Now suppose that there is a triangulation D of S with zero error. First observe that
the mandatory edges must belong to D by Corollary 4.6.1. For v ∈ V the triangulation
must be either positive or negative on the variable gadget at G(v) by Lemma 4.5.5. We
assign to v the value true if D is positive on the variable gadget at G(v) and false if it is
negative. On all wire gadgets directly connected to a variable gadget, the triangulation
must be either positive or negative by Lemma 4.5.5. If the triangulation is positive on a
variable gadget, then it must be negative on all wire gadgets connected to it through a
negation gadget and vice versa by Lemma 4.5.7. Lemma 4.5.6 then guarantees that all
clauses of the 3SAT formula are satisfied under this assignment since all clause gadgets
are triangulated with zero error.

It is left to show that the reduction works in polynomial time. The 3SAT instance
can be embedded in polynomial time on an integral grid of size O(k)×O(k) [62]. Scaling
the embedding by γ ∈ O(k) and constructing the set of triangulation points S ⊂ Z2 can
be done in polynomial time. The same holds for the computation of f(p1, p2) = p2

1 + p2
2,

as all triangulation points are integral. For the reference points and reference values we
consider a reference point r = (r1, r2) ∈ R and its coupled circle Cr centered at a point
x = (x1,x2) with radius ρ. Recall that

h(r) = hCr(r) = 2x1r1 + 2x2r2 − x2
1 − x2

2 + ρ2.

Thus if r and x are integral and the squared radius is an integer which is polynomial in
k, then hCr (r) is an integer polynomial in k. However there exist reference points and

127

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

reference values in our construction which are not integral. Observe that it is enough to
show that there is a number b ∈ N>0 which is polynomial in the input size such that
for every r ∈ R both br and bh(r) are integral.

We first claim that this is true for the reference points if we set b = 10. Remember
that a reference point which replaces a mandatory edge e = st for some s, t ∈ S is
of the form re = s+t

2 . Since s and t are both integral bre is integral as well. All
reference points of wire segments, wire gadgets and variable gadgets which do not replace
mandatory edges are integral. For the clause gadget cx at a point x ∈ Z2 we borrow
the notation from the construction of the clause gadget. Observe that all points from
R(cx)\{r1, r2, r3} that do not replace mandatory edges are integral. Furthermore 5 · ri

is integral for all i = 1, 2, 3, thus the claim is true for the clause gadget. Finally the
negation gadget is a combination of simplified clause gadgets, wire segments, wire gadgets
and multiplier gadgets, so the claim is also true for all reference points of the negation
gadget.

For the reference values we first introduce an equivalence relation ∼ on the set of
circles in R2 by saying that two circles C and C ′ are equivalent if there exists v ∈ Z2

such that C ′ = v +C = {v + c | c ∈ C}. Let M = {Cr | r ∈ R} be the set of all circles
coupled to reference points in R. Let [C] be an equivalence class in the quotient set
M/∼ and suppose there exists a bC ∈ N>0 such that bCx ∈ Z2 and bCρ

2 ∈ Z, where
x is the center and ρ the radius of C. Then for all C ′ ∈ [C] we also have bCx

′ ∈ Z2

and bCρ
′2 ∈ Z for the center x′ and the radius ρ′ of C ′. Since the cardinality of M/∼

is constant it is left to observe that for every equivalence class [C] there exists such a
bC ∈ N>0 which is polynomial in the input size. This property is clearly satisfied if C is
centered at a reference point which replaces a mandatory edge. In the remaining cases
C must contain at least three points s = (s1, s2), t = (t1, t2),u = (u1,u2) lying on an
integral grid of size O(k2) ×O(k2). The center x = (x1,x2) and the squared radius ρ2

can be computed by solving the linear equation2s1 2s2 1
2t1 2t2 1
2u1 2u2 1

 ·

x1
x2
ρ2

 =

s2
1 + s2

2
t21 + t22
u2

1 + u2
2

 .

Thus there is a bC ∈ N>0 polynomial in k, such that bCx and bCρ
2 are integral. In

conclusion we see that there exists a number b ∈ N>0 which is polynomial in the input
size such that bh(r) is integral for all r ∈ R. Thus the reduction can be performed in
polynomial time.

Corollary 4.3.2. The minimum-error triangulation problem cannot be approximated
within any multiplicative factor in polynomial time unless P = NP.
Proof. Every polynomial time approximation algorithm to the minimum-error triangula-
tion problem yields a polynomial time algorithm to the zero-error triangulation problem.
As the zero-error triangulation problem is NP-hard by Theorem 4.3.1 such a polynomial
time approximation algorithm does not exist unless P = NP.

4.8 The Paraboloid

It is left to prove the claimed properties of the unit paraboloid. The graph of the function
f : R2 → R with f(p1, p2) = p2

1 + p2
2 is the paraboloid

Γf = {(p1, p2, p2
1 + p2

2) | (p1, p2) ∈ R2}.

128

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

Remember that a circle C with radius ρ around x = (x1,x2) ∈ R2 defines the function
hC(r) = 2x1r1 + 2x2r2 − x2

1 − x2
2 + ρ2 for r = (r1, r2) ∈ R2. Let

ΓC = {(r1, r2,hC(r)) | r = (r1, r2) ∈ R2}

denote the graph of hC . We first repeat some useful properties of f and hC .

Lemma 4.8.1. For y ∈ R2 we have f(y) − hC(y) = ∥y− x∥2
2 − ρ2.

Proof. We have

f(y) − hC(y) = y2
1 + y2

2 − 2x1y1 − 2x2y2 + x2
1 + x2

2 − ρ2

= (y1 − x1)
2 + (y2 − x2)

2 − ρ2

= ∥y− x∥2
2 − ρ2.

Lemma 4.8.2. We have ΓC ∩ Γf = {(y1, y2, y2
1 + y2

2) | (y1, y2) ∈ C}.

Proof. We have

{(y1, y2,y2
1 + y2

2) | (y1, y2) ∈ C} = {(y1, y2, y2
1 + y2

2) | (y1 − x1)
2 + (y2 − x2)

2 = ρ2}
= {(y1, y2, y3) | y3 − 2x1y1 − 2x2y2 + x2

1 + x2
2 − ρ2 = 0, y3 = y2

1 + y2
2}

= ΓC ∩ Γf .

We are now able to prove Lemmas 4.4.3 and 4.4.4.

Lemma 4.4.3. Let r be a point of R and let T ⊂ R2 be a triangle with vertices s, t,u ∈ S
and r ∈ conv({s, t,u} ∩Cr). Then r is represented with zero error by T .

Proof. By Lemma 4.8.2 we know that f(v) = hCr(v) for all v ∈ {s, t,u} ∩Cr. As hCr is
affine this means that r is represented with zero error by T .

Lemma 4.4.4. Let T ⊂ R2 be a triangle with vertices s, t,u ∈ S representing r ∈ R
with zero error. If r /∈ conv({s, t,u} ∩Cr), then {s, t,u} has a non-empty intersection
with ICr and OCr .

Proof. We pick a convex combination λs+ µt+ γu = r. As T represents r with zero
error, we have

hCr(r) = λf(s) + µf(t) + γf(u).

Since hCr is affine also

hCr (r) = hCr (λs+ µt+ γu) = λhCr (s) + µhCr (t) + γhCr(u).

Combining the two equations we obtain

0 = λ(f(s) − hCr(s)) + µ(f(t) − hCr(t)) + γ(f(u) − hCr(u)).

Observe that f(p) − hCr(p) < 0 for p ∈ ICr and f(p) − hCr(p) > 0 for p ∈ OCr by
Lemma 4.8.1. We distinguish two cases: If points in {s, t,u} ∩ ICr and {s, t,u} ∩OCr

appear with factor zero in the above equation, then r ∈ conv({s, t,u} ∩Cr) contradicting
our assumption. Otherwise the sets {s, t,u} ∩ ICr and {s, t,u} ∩ OCr must be non-
empty.

129

CHAPTER 4. MINIMUM-ERROR TRIANGULATION IS NP-HARD

We need some additional statement about the behavior of the error under orthogonal
transformations and translations of the triangle and the reference point it is representing.

Lemma 4.5.1. Let T ⊂ R2 be a triangle representing r ∈ R with error ϵ. Let g : R2 →
R2 be an orthogonal transformation or translation. Let T = g(T), r = g(r) and Cr =
g(Cr). Then T is a triangle containing r, Cr is a circle containing r in its interior and
(fT (r) − hCr

(r))2 = ϵ.

Proof. Remember that an orthogonal transformation in R2 is a rotation or a reflection.
Thus for every possible choice of g we have that T is a triangle containing r and Cr is a
circle containing r in its interior. Therefore the error of T at r given by (fT (r)−hCr

(r))2

is properly defined. Let s, t,u be the vertices of T . We pick a convex combination
λs+ µt+ γu = r and obtain

ϵ = (λf(s) + µf(t) + γf(u) − hCr (r))
2

= (λ(f(s) − hCr(s)) + µ(f(t) − hCr (t)) + γ(f(u) − hCr (u)))
2.

By Lemma 4.8.1 the last part depends on the radius of Cr and the distance between its
center and s, t,u. These values do not change after applying g on T , r and Cr. Thus we
obtain

ϵ =

(
λ

(
f(g(s)) − hCr

(g(s))
)
+ µ

(
f(g(t)) − hCr

(g(t))
)
+ γ

(
f(g(u)) − hCr

(g(u))
))2

=

(
λf(g(s)) + µf(g(t)) + γf(g(u)) − λhCr

(g(s)) − µhCr
(g(t)) − γhCr

(g(u))

)2

= (fT (r) − hCr
(r))2.

130

Chapter 5

Conclusion

In this thesis we first discussed two well-known problems from the area of clustering,
clustering with lower bounds and hierarchical clustering. Furthermore we considered the
complexity of the minimum-error triangulation problem. In the following we give a brief
summary of the results of this thesis and discuss further research questions.

In Chapter 2 we study clustering with lower bounds. We show how to transform a
solution for facility location with lower bounds into a k-clustering with lower bounds.
This approach is independent of the algorithm that computes the facility location solu-
tion, so an improvement of the approximation factor for facility location directly implies
an improvement of the approximation factor for its k-clustering variant. Furthermore
we consider a relaxation of lower bounds called weak lower bounds and show that it
is possible to obtain a (13 + ϵ)-approximation for k-median with 2-weak lower bounds.
Our insights on weak lower bounds also yield the first bi-criteria algorithm for k-means
with lower bounds. So far there do not exist approximation algorithms for k-means
with lower bounds. It would be interesting to know whether the algorithms presented
in [72, 5] for facility location with lower bounds can be adapted to work for k-means
with lower bounds. Since the first step of the adapted algorithms would involve finding
a bi-criteria solution for k-means with lower bounds, which does exist, as we show in this
thesis, we assume that the remaining steps may also be adapted. It is also reasonable
to ask whether there is an improvement of the approximation factors. So far the best
approximation factor for facility location with lower bounds is 82.6 for uniform lower
bounds [5] and 4000 for non-uniform lower bounds [61]. As we show they imply algo-
rithms for k-median with lower bounds with approximation factor 168 for uniform lower
bounds and 12006 for non-uniform lower bounds, which are rather high.

In Chapter 3 we studied hierarchical clustering. For a fixed objective the approx-
imation factor of a hierarchical clustering is computed by comparing the cost of its
k-clustering to the cost of an optimal k-clustering for every possible k. The price of hi-
erarchy ρcost now describes the smallest possible approximation factor for a hierarchical
clustering with respect to the objective cost. We show that the price of hierarchy for
drad equals 4 and for rad, diam it equals 3+ 2

√
2. However this does not imply that there

exist polynomial time algorithms with these approximation guarantees. The currently
best polynomial time approximation algorithm achieves a guarantee of 8 [39, 27]. So it
is still an open question whether it is NP-hard to compute hierarchical clusterings with
approximation factor α < 8.

We assume that our construction of the instance for the lower bound on ρcost could
be adapted to prove lower bounds on ρcost for other objective functions as med and

131

CHAPTER 5. CONCLUSION

mean. So far we do not now any non-trivial lower bounds on ρcost for these objectives.
In general it might be interesting to analyze the price of hierarchy for other objective
functions.

In addition to the analysis of the price of hierarchy, we studied one popular algorithm
for hierarchical clustering, called complete linkage. Our results show that the approxi-
mation factor of complete linkage in a general metric space is in Ω(k) for drad and diam.
For drad we are able to prove a matching upper bound of O(k). For diam we are only
able to prove an upper bound of O(kln(3)/ ln(2)). Thus it is still open whether the approx-
imation guarantee of complete linkage for diam is in Θ(k). We know that in a Euclidean
space of constant dimension complete linkage computes an O(1)-approximation [1, 44].
However the respective factor is exponential or doubly exponential in the dimension for
rad or diam and it is still open if one can improve upon these dependencies. One other
popular agglomerative clustering algorithm is average linkage, which merges the two
clusters with smallest average distance to each other in every step. It is not known how
average linkage performs with respect to the objective functions drad, diam. In partic-
ular it would be interesting to know whether one can adapt the lower bound instance
for complete linkage to obtain lower bounds on the approximation guarantee of average
linkage.

In Chapter 4 we studied the complexity of the minimum-error triangulation problem.
We showed that it is NP-hard to decide whether there exists a triangulation with zero
error. This implies that the minimum-error triangulation problem cannot be approxi-
mated within any factor. Furthermore it implies the inapproximability of the following
generalization: minimizing the distance between fD and h on R for any metric on Rm,
especially the Lp-metric and the L∞-metric.

132

Bibliography

[1] Marcel R. Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler.
Analysis of agglomerative clustering. Algorithmica, 69(1):184–215, 2014. doi:10.
1007/s00453-012-9717-4.

[2] Pankaj K. Agarwal and Subhash Suri. Surface approximation and geometric par-
titions. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’94, pages 24–33, USA, 1994. Society for Industrial and Applied
Mathematics.

[3] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram
Kenthapadi, Samir Khuller, and An Zhu. Achieving anonymity via clustering.
ACM Transactions on Algorithms (TALG), 6(3):49:1–49:19, 2010. doi:10.1145/
1798596.1798602.

[4] Sara Ahmadian and Chaitanya Swamy. Improved approximation guarantees for
lower-bounded facility location. In Proceedings of the 10th International Workshop
on Approximation and Online Algorithms (WAOA), pages 257–271, 2012. doi:
10.1007/978-3-642-38016-7_21.

[5] Sara Ahmadian and Chaitanya Swamy. Approximation algorithms for clustering
problems with lower bounds and outliers. In Proceedings of the 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), pages
69:1–69:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.69.

[6] Lyuba Alboul, Gertjan Kloosterman, Cornelis Traas, and Ruud van Damme. Best
data-dependent triangulations. Journal of Computational and Applied Mathematics,
119(1):1–12, 2000. doi:10.1016/S0377-0427(00)00368-X.

[7] Efthymios Anagnostou and Derek Corneil. Polynomial-time instances of the
minimum weight triangulation problem. Computational Geometry, 3(5):247
– 259, 1993. URL: http://www.sciencedirect.com/science/article/pii/
092577219390016Y, doi:https://doi.org/10.1016/0925-7721(93)90016-Y.

[8] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In
Proceedings of the 22nd ACM Symposium on Computational Geometry (SoCG),
2006, pages 144–153, 2006. doi:10.1145/1137856.1137880.

[9] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1027–1035, 2007. URL: http://dl.acm.org/citation.
cfm?id=1283383.1283494.

133

https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1145/1798596.1798602
https://doi.org/10.1145/1798596.1798602
https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.1016/S0377-0427(00)00368-X
http://www.sciencedirect.com/science/article/pii/092577219390016Y
http://www.sciencedirect.com/science/article/pii/092577219390016Y
https://doi.org/https://doi.org/10.1016/0925-7721(93)90016-Y
https://doi.org/10.1145/1137856.1137880
http://dl.acm.org/citation.cfm?id=1283383.1283494
http://dl.acm.org/citation.cfm?id=1283383.1283494

BIBLIOGRAPHY

[10] Anna Arutyunova. On variants of lower-bounded facility location. Master’s thesis,
University of Bonn, 2019.

[11] Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman J. Haverkort,
Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin.
Minimum-error triangulations for sea surface reconstruction. In 38th Interna-
tional Symposium on Computational Geometry (SoCG), pages 7:1–7:18, 2022.
doi:10.4230/LIPIcs.SoCG.2022.7.

[12] Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman J. Haverkort,
Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin.
Minimum-error triangulations for sea surface reconstruction. CoRR, 2022. arXiv:
2203.07325, doi:10.48550/arXiv.2203.07325.

[13] Anna Arutyunova, Anna Großwendt, Heiko Röglin, Melanie Schmidt, and Julian
Wargalla. Upper and lower bounds for complete linkage in general metric spaces. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), pages 18:1–18:22, 2021. doi:10.4230/LIPIcs.
APPROX/RANDOM.2021.18.

[14] Anna Arutyunova and Heiko Röglin. The price of hierarchical clustering. In 30th
Annual European Symposium on Algorithms (ESA), volume 244, pages 10:1–10:14,
2022. doi:10.4230/LIPIcs.ESA.2022.10.

[15] Anna Arutyunova and Heiko Röglin. The price of hierarchical clustering. CoRR,
abs/2205.01417, 2022. arXiv:2205.01417, doi:10.48550/arXiv.2205.01417.

[16] Anna Arutyunova and Melanie Schmidt. Achieving anonymity via weak lower bound
constraints for k-median and k-means. CoRR, 2020. arXiv:2009.03078, doi:
10.48550/arXiv.2009.03078.

[17] Anna Arutyunova and Melanie Schmidt. Achieving anonymity via weak lower
bound constraints for k-median and k-means. In 38th International Symposium
on Theoretical Aspects of Computer Science (STACS), pages 7:1–7:17, 2021. doi:
10.4230/LIPIcs.STACS.2021.7.

[18] Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair
clustering in metric and euclidean spaces and their applications. In 48th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pages
23:1–23:15, 2021. doi:10.4230/LIPIcs.ICALP.2021.23.

[19] Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capac-
itated facility location. In Leah Epstein and Paolo Ferragina, editors, Algorithms -
ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-
12, 2012. Proceedings, volume 7501 of Lecture Notes in Computer Science, pages
133–144. Springer, 2012. doi:10.1007/978-3-642-33090-2_13.

[20] Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Ne-
gahbani. Fair algorithms for clustering. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 4955–4966, 2019. URL: https://proceedings.neurips.cc/
paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html.

134

https://doi.org/10.4230/LIPIcs.SoCG.2022.7
http://arxiv.org/abs/2203.07325
http://arxiv.org/abs/2203.07325
https://doi.org/10.48550/arXiv.2203.07325
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://doi.org/10.4230/LIPIcs.ESA.2022.10
http://arxiv.org/abs/2205.01417
https://doi.org/10.48550/arXiv.2205.01417
http://arxiv.org/abs/2009.03078
https://doi.org/10.48550/arXiv.2009.03078
https://doi.org/10.48550/arXiv.2009.03078
https://doi.org/10.4230/LIPIcs.STACS.2021.7
https://doi.org/10.4230/LIPIcs.STACS.2021.7
https://doi.org/10.4230/LIPIcs.ICALP.2021.23
https://doi.org/10.1007/978-3-642-33090-2_13
https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html

BIBLIOGRAPHY

[21] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In
Computing in Euclidean Geometry, 1992. doi:10.1142/9789814355858_0002.

[22] Felix Bock. Hierarchy cost of hierarchical clusterings. Journal of Combinatorial
Optimization, 2022. doi:10.1007/s10878-022-00851-4.

[23] Magdalene Borgelt, Christian Borgelt, and Christos Levcopoulos. Fixed param-
eter algorithms for the minimum weight triangulation problem. Int. J. Comput.
Geometry Appl., 18:185–220, 06 2008. doi:10.1142/S0218195908002581.

[24] Jeffrey L. Brown. Vertex based data dependent triangulations. Computer Aided
Geometric Design, 8(3):239–251, 1991. doi:10.1016/0167-8396(91)90008-Y.

[25] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and
Khoa Trinh. An improved approximation for k-median and positive correla-
tion in budgeted optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.
doi:10.1145/2981561.

[26] Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering
via sparsest cut and spreading metrics. In Proc. of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 841–854, 2017. doi:
10.1137/1.9781611974782.53.

[27] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental
clustering and dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440,
2004. doi:10.1137/S0097539702418498.

[28] Moses Charikar and Shi Li. A dependent lp-rounding approach for the k-median
problem. In Automata, Languages, and Programming - 39th International Collo-
quium (ICALP), pages 194–205, 2012. doi:10.1007/978-3-642-31594-7_17.

[29] Siu-Wing Cheng, Mordecai J. Golin, and Jeffrey Tsang. Expected case analysis of
{221}-skeletons with applications to the construction of minimum-weight triangu-
lations. Master’s thesis, Hong Kong University of Science and Technology, 1995.

[30] John A. Church, Neil J. White, Richard Coleman, Kurt Lambeck, and Jerry X.
Mitrovica. Estimates of the Regional Distribution of Sea Level Rise over the 1950–
2000 Period. Journal of Climate, 17(13):2609–2625, July 2004. doi:10.1175/
1520-0442(2004)017<2609:EOTRDO>2.0.CO;2.

[31] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam
Narayanan. Improved approximations for euclidean k-means and k-median, via
nested quasi-independent sets. In Stefano Leonardi and Anupam Gupta, edi-
tors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Com-
puting, Rome, Italy, June 20 - 24, 2022, pages 1621–1628. ACM, 2022. doi:
10.1145/3519935.3520011.

[32] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris
Schwiegelshohn. Breaching the 2 LMP approximation barrier for facility lo-
cation with applications to k-median. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2023, Florence, Italy, January 22-25, 2023, pages 940–986. SIAM, 2023.
doi:10.1137/1.9781611977554.ch37.

135

https://doi.org/10.1142/9789814355858_0002
https://doi.org/10.1007/s10878-022-00851-4
https://doi.org/10.1142/S0218195908002581
https://doi.org/10.1016/0167-8396(91)90008-Y
https://doi.org/10.1145/2981561
https://doi.org/10.1137/1.9781611974782.53
https://doi.org/10.1137/1.9781611974782.53
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1137/1.9781611977554.ch37

BIBLIOGRAPHY

[33] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Math-
ieu. Hierarchical clustering: Objective functions and algorithms. In Proc. of the 29th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 378–397,
2018. doi:10.1137/1.9781611975031.26.

[34] Vincent Cohen-Addad and Karthik C. S. Inapproximability of clustering in lp
metrics. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 519–539. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.
00040.

[35] Stephen A. Cook. The complexity of theorem-proving procedures (1971). In Ideas
that created the future. Classic papers of computer science, pages 333–338. Cam-
bridge, MA: MIT Press, 2021.

[36] Wenqiang Dai. A 16-competitive algorithm for hierarchical median prob-
lem. SCIENCE CHINA Information Sciences, 57(3):1–7, 2014. doi:10.1007/
s11432-014-5065-0.

[37] Aparna Das and Claire Kenyon-Mathieu. On hierarchical diameter-clustering and
the supplier problem. Theory Comput. Syst., 45(3):497–511, 2009. doi:10.1007/
s00224-009-9186-6.

[38] Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, pages 118–127, 2016. doi:10.1145/2897518.2897527.

[39] Sanjoy Dasgupta and Philip M. Long. Performance guarantees for hierarchical
clustering. Journal of Computer and System Sciences, 70(4):555–569, 2005. doi:
10.1016/j.jcss.2004.10.006.

[40] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.
Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008.
URL: https://www.worldcat.org/oclc/227584184.

[41] Nira Dyn, David Levin, and Samuel Rippa. Data Dependent Triangulations for
Piecewise Linear Interpolation. IMA Journal of Numerical Analysis, 10(1):137–
154, 01 1990. arXiv:https://academic.oup.com/imajna/article-pdf/10/1/
137/1956877/10-1-137.pdf, doi:10.1093/imanum/10.1.137.

[42] P. Gilbert. New results on planar triangulations. Master’s thesis, University of
Illinois, Coordinated Science Lab, Urbana, IL, USA, 1979.

[43] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster dis-
tance. Theoretical Computer Science (TCS), 38:293–306, 1985. doi:10.1016/
0304-3975(85)90224-5.

[44] Anna Großwendt and Heiko Röglin. Improved analysis of complete-linkage cluster-
ing. Algorithmica, 78(4):1131–1150, 2017. doi:10.1007/s00453-017-0284-6.

[45] Anna Großwendt, Heiko Röglin, and Melanie Schmidt. Analysis of ward’s method.
In Proc. of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2939–2957, 2019. doi:10.1137/1.9781611975482.182.

136

https://doi.org/10.1137/1.9781611975031.26
https://doi.org/10.1109/FOCS.2019.00040
https://doi.org/10.1109/FOCS.2019.00040
https://doi.org/10.1007/s11432-014-5065-0
https://doi.org/10.1007/s11432-014-5065-0
https://doi.org/10.1007/s00224-009-9186-6
https://doi.org/10.1007/s00224-009-9186-6
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1016/j.jcss.2004.10.006
https://doi.org/10.1016/j.jcss.2004.10.006
https://www.worldcat.org/oclc/227584184
http://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/10/1/137/1956877/10-1-137.pdf
http://arxiv.org/abs/https://academic.oup.com/imajna/article-pdf/10/1/137/1956877/10-1-137.pdf
https://doi.org/10.1093/imanum/10.1.137
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/s00453-017-0284-6
https://doi.org/10.1137/1.9781611975482.182

BIBLIOGRAPHY

[46] Anna-Klara Großwendt. Theoretical Analysis of Hierarchical Clustering and the
Shadow Vertex Algorithm. PhD thesis, University of Bonn, 2020. URL: http:
//hdl.handle.net/20.500.11811/8348.

[47] Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order
Delaunay triangulations. Computational Geometry, 23(1):85 – 98, 2002. URL:
http://www.sciencedirect.com/science/article/pii/S092577210100027X,
doi:https://doi.org/10.1016/S0925-7721(01)00027-X.

[48] Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31(1):228–248, 1999. doi:10.1006/jagm.1998.
0993.

[49] Sudipto Guha, Adam Meyerson, and Kamesh Munagala. Hierarchical placement
and network design problems. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Science (FOCS), pages 603–612, 2000. doi:10.1109/
SFCS.2000.892328.

[50] Lu Han, Chunlin Hao, Chenchen Wu, and Zhenning Zhang. Approximation al-
gorithms for the lower-bounded k-median and its generalizations. In Computing
and Combinatorics - 26th International Conference (COCOON), Proceedings, vol-
ume 12273 of Lecture Notes in Computer Science, pages 627–639. Springer, 2020.
doi:10.1007/978-3-030-58150-3_51.

[51] Lu Han, Chunlin Hao, Chenchen Wu, and Zhenning Zhang. Approximation algo-
rithms for the lower-bounded knapsack median problem. In Algorithmic Aspects in
Information and Management - 14th International Conference (AAIM), Proceed-
ings, pages 119–130, 2020. doi:10.1007/978-3-030-57602-8_11.

[52] Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation
algorithms for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.
doi:10.1145/5925.5933.

[53] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and Lagrangian re-
laxation. Journal of the ACM, 48(2):274–296, 2001. doi:10.1145/375827.375845.

[54] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means
clustering. Computational Geometry, 28(2-3):89–112, 2004.

[55] David R. Karger and Maria Minkoff. Building Steiner trees with incomplete global
knowledge. In Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 613–623, 2000. doi:10.1109/SFCS.2000.892329.

[56] G.T. Klincsek. Minimal triangulations of polygonal domains. In Pe-
ter L. Hammer, editor, Combinatorics 79, volume 9 of Annals of Dis-
crete Mathematics, pages 121–123. Elsevier, 1980. URL: https://www.
sciencedirect.com/science/article/pii/S016750600870044X, doi:https://
doi.org/10.1016/S0167-5060(08)70044-X.

137

http://hdl.handle.net/20.500.11811/8348
http://hdl.handle.net/20.500.11811/8348
http://www.sciencedirect.com/science/article/pii/S092577210100027X
https://doi.org/https://doi.org/10.1016/S0925-7721(01)00027-X
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1109/SFCS.2000.892328
https://doi.org/10.1109/SFCS.2000.892328
https://doi.org/10.1007/978-3-030-58150-3_51
https://doi.org/10.1007/978-3-030-57602-8_11
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/375827.375845
https://doi.org/10.1109/SFCS.2000.892329
https://www.sciencedirect.com/science/article/pii/S016750600870044X
https://www.sciencedirect.com/science/article/pii/S016750600870044X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70044-X
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70044-X

BIBLIOGRAPHY

[57] Donald E. Knuth and Arvind Raghunathan. The problem of compatible repre-
sentatives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992. doi:
10.1137/0405033.

[58] Charles L. Lawson. Software for C1 surface interpolation. In John R. Rice, edi-
tor, Mathematical Software, pages 161–194. Academic Press, 1977. doi:10.1016/
B978-0-12-587260-7.50011-X.

[59] Christos Levcopoulos and Drago Krznaric. Quasi-greedy triangulations approxi-
mating the minimum weight triangulation. J. Algorithms, 27(2):303–338, 1998.

[60] Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.
2012.01.007.

[61] Shi Li. On facility location with general lower bounds. In Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2279–2290,
2019. doi:10.1137/1.9781611975482.138.

[62] David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11:329–343, 1982. doi:10.1137/0211025.

[63] Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P.
Williamson. A general approach for incremental approximation and hierarchical
clustering. SIAM Journal on Computing, 39(8):3633–3669, 2010. doi:10.1137/
070698257.

[64] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982. doi:10.1109/TIT.1982.1056489.

[65] Jiŕı Matousek. On approximate geometric k-clustering. Discret. Comput. Geom.,
24(1):61–84, 2000. doi:10.1007/s004540010019.

[66] Sakib A. Mondal. An improved approximation algorithm for hierarchical clustering.
Pattern Recognit. Lett., 104:23–28, 2018. doi:10.1016/j.patrec.2018.01.015.

[67] Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard.
Journal of the ACM, 55(2):1–29, May 2008. URL: http://dx.doi.org/10.1145/
1346330.1346336, doi:10.1145/1346330.1346336.

[68] Alina Nitzke, Benjamin Niedermann, Luciana Fenoglio-Marc, Jürgen Kusche, and
Jan-Henrik Haunert. Reconstructing the dynamic sea surface from tide gauge
records using optimal data-dependent triangulations. Computers & Geosciences,
157:104920, 2021. doi:10.1016/j.cageo.2021.104920.

[69] Marco Olivieri and Giorgio Spada. Spatial sea-level reconstruction in the Baltic Sea
and in the Pacific Ocean from tide gauges observations. Annals of Geophysics, 59(3),
2016. URL: https://www.annalsofgeophysics.eu/index.php/annals/article/
view/6966, doi:10.4401/ag-6966.

[70] C. Greg Plaxton. Approximation algorithms for hierarchical location problems.
Journal of Computer and System Sciences, 72(3):425–443, 2006. doi:10.1016/j.
jcss.2005.09.004.

138

https://doi.org/10.1137/0405033
https://doi.org/10.1137/0405033
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1016/B978-0-12-587260-7.50011-X
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1137/1.9781611975482.138
https://doi.org/10.1137/0211025
https://doi.org/10.1137/070698257
https://doi.org/10.1137/070698257
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s004540010019
https://doi.org/10.1016/j.patrec.2018.01.015
http://dx.doi.org/10.1145/1346330.1346336
http://dx.doi.org/10.1145/1346330.1346336
https://doi.org/10.1145/1346330.1346336
https://doi.org/10.1016/j.cageo.2021.104920
https://www.annalsofgeophysics.eu/index.php/annals/article/view/6966
https://www.annalsofgeophysics.eu/index.php/annals/article/view/6966
https://doi.org/10.4401/ag-6966
https://doi.org/10.1016/j.jcss.2005.09.004
https://doi.org/10.1016/j.jcss.2005.09.004

BIBLIOGRAPHY

[71] Rodrigo I. Silveira and Marc van Kreveld. Optimal higher order Delaunay triangula-
tions of polygons. Computational Geometry, 42(8):803 – 813, 2009. Special Issue on
the 23rd European Workshop on Computational Geometry. URL: http://www.
sciencedirect.com/science/article/pii/S0925772109000224, doi:https://
doi.org/10.1016/j.comgeo.2008.02.006.

[72] Zoya Svitkina. Lower-bounded facility location. ACM Transactions on Algorithms
(TALG), 6(4):69, 2010. doi:10.1145/1824777.1824789.

[73] Kai Wang, Chor-Pang Lo, George A. Brook, and Hamid R. Arabnia. Comparison
of existing triangulation methods for regularly and irregularly spaced height fields.
International Journal of Geographical Information Science, 15(8):743–762, 2001.
doi:10.1080/13658810110074492.

[74] Yuyan Wang and Benjamin Moseley. An objective for hierarchical clustering in
euclidean space and its connection to bisecting k-means. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):6307–6314, 2020. doi:10.1609/aaai.
v34i04.6099.

[75] Joe H. Ward, Jr. Hierarchical grouping to optimize an objective function. J. of the
Am. Stat. Assoc., 58:236–244, 1963. doi:10.1080/01621459.1963.10500845.

139

http://www.sciencedirect.com/science/article/pii/S0925772109000224
http://www.sciencedirect.com/science/article/pii/S0925772109000224
https://doi.org/https://doi.org/10.1016/j.comgeo.2008.02.006
https://doi.org/https://doi.org/10.1016/j.comgeo.2008.02.006
https://doi.org/10.1145/1824777.1824789
https://doi.org/10.1080/13658810110074492
https://doi.org/10.1609/aaai.v34i04.6099
https://doi.org/10.1609/aaai.v34i04.6099
https://doi.org/10.1080/01621459.1963.10500845

	Introduction
	Clustering Objectives
	Clustering with Weak Lower Bounds
	Results

	Hierarchical Clustering
	Complete Linkage
	Results

	Minimum-Error Triangulations
	Results

	Achieving Anonymity via Weak Lower Bound Constraints for k-Median and k-Means
	Preliminaries
	Reducing Lower-Bounded k-Clustering to Lower-Bounded Facility Location
	Generalized k-Median with Weak Lower Bounds
	Computing a Solution
	Reducing the Number of Assignments per Point to 2
	Reducing the Number of Assignments per Point to (1+)

	A Bi-Criteria Algorithm to Generalized k-Median with Lower Bounds

	Hierarchical Clustering
	The Price of Hierarchy
	An Upper Bound on the Price of Hierarchy
	A Lower Bound on the Price of Hierarchy
	Counterexample for Mondal's Algorithm

	Complete Linkage in General Metric Spaces
	Approximation Guarantee of Single Linkage
	An Upper Bound for Complete Linkage
	A Lower Bound for Complete Linkage
	The Average Approximation Factor

	Complete Linkage in the Euclidean Space

	Minimum-Error Triangulation Is NP-Hard
	The Planar 3SAT Problem
	Preliminaries
	Overview of the Main Idea
	Notation and Local Properties
	The Gadgets
	Replacing Mandatory Edges
	The Reduction
	The Paraboloid

	Conclusion
	Bibliography

