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Introduction

This thesis combines three self-contained research studies. In the first chapter, we use empiri-
cal data to study the dynamics of physical and cognitive capacities during later stages of life within.
Concerning a related topic, but in a different setting, the second chapter also uses empirical data
to study functional outcomes in the later stages of life, with a particular aim of understanding
how environmental factors interact with intrinsic capacities to determine those outcomes. In the
third chapter, we propose an optimization algorithm tailored to the needs of economists who deal
with “hard” optimization problems when fitting structural models to empirical data.

Chapter 1: Mens Sana in Corpore Sano? Almost by definition, human capital development,
encompassing the acquisition of knowledge, cognitive skills, and physical abilities, plays a cru-
cial role in shaping individuals’ lives. While the importance of early childhood investments in the
formation of human capital has been studied extensively, the literature on the maintenance of
human capital reserves in later stages of life, to slow down the decline of cognitive and physical
capacities, is scarce. This chapter aims to bridge this gap by employing a dynamic modeling ap-
proach to investigate the interdependencies between physical and cognitive capacity throughout
individuals’ later life stages.

To this end, we adapt the Technology of Skill Formationmodel by Cunha, Heckman, and Schen-
nach (2010) to the context of aging. Our model introduces two latent factors reflecting human
capital- physical and cognitive capacities, and two investment factors- physical exercise and cogni-
tive stimulation. As in Cunha, Heckman, and Schennach (2010), we treat the factors as unobserv-
able and estimate their joint distribution by modeling them in a dynamic system of state-space
equations together with observable measurement variables.

Following Cunha, Heckman, and Schennach (2010), we estimate the model parameters via a
maximum likelihood estimator. We apply the estimator on data from the Health and Retirement
Study (Health and Retirement Study (HRS) no date). To remove the selection bias introduced by
the link between poor health and mortality, we incorporate a simple model of mortality into the
dynamic latent factor model. To account for gender-specific differences in health trajectories, we
perform the estimation separately for females and males.

Our study yields three main results: 1) We estimate substantial noise in all observed variables.
No single observable variable can be detected as a perfect measurement for the latent factor it
represents, rendering it impossible to use just one measurement variable and ignore the measure-
ment errors in the analysis. 2) Despite a general decline in physical and cognitive capacity with
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age, the relative ranking of latent factors remains remarkably stable. 3) Investments in physical
and cognitive capacity can influence these latent factors until very late stages of life. The impact
of cognitive stimulation is limited to cognitive capacity, while physical exercise primarily enhances
physical capacity, albeit with a modest impact on cognitive capacity.

Chapter 2: Intrinsic and External Determinants of Age-Related Decline in Functioning
Aging is an inevitable biological process that affects all living organisms. At the biological level,
the gradual accumulation of molecular and cellular damage associated with aging (World Health
Organization, 2015) can lead to a broad spectrum of impairments that limit an individual’s ability
to perform daily activities and maintain independence. Yet, age-related functional decline and the
associated risk of disability is neither a deterministic nor a linear function of the biological age
(World Health Organization, 2015), but is influenced by a complex interplay between intrinsic
and environmental factors.

Deterioration of intrinsic capacities manifested mainly through accumulating multiple chronic
conditions in older adults can strain their physical andmental resources, leading to reducedmobil-
ity, fatigue, and cognitive impairment. At the same time, environmental factors, including social
support, access to healthcare, and living conditions, can either exacerbate or mitigate the effects
of intrinsic factors.

Understanding the intricate relationship between intrinsic and environmental factors is crucial
for developing effective interventions to promote healthy aging and prevent functional decline.
By identifying modifiable environmental factors, we can design strategies to optimize individuals’
environments and enhance their ability to maintain independence and quality of life as they age.

While the research on both intrinsic capacities and external factors as possible determinants of
old-age disability is rich, and the importance of viewing disability in the context of one’s environ-
ment has been established, to the best of our knowledge, in the existing literature, the prevalent
econometric approach is the modeling of the relevant variables in a somewhat simplified, linear
manner.

In this chapter, we estimate nonlinear interaction terms between intrinsic and extrinsic factors
and their impact on disability rate. To this end, we use the semi-parametric double index binary
choice estimator developed in Klein and Vella (2009). In this econometric model, we identify two
indices, intrinsic and extrinsic, which are summary quantification of intrinsic and environmental
factors, respectively. Within this framework, we are able to abstain from parametric assumptions
regarding the functional form of the link function between the two indices to obtain the predicted
probability of being disabled.

We find that the environmental index has a nontrivial impact on the predicted probability of
being disabled. We also find considerable nonlinear interaction effects between intrinsic and ex-
trinsic indices. In particular, we find the intrinsic gradient of the predicted probability of disability
to be steeper at lower quantiles of the environmental index.

Chapter3: Tranquilo In this study, we propose the tranquilo algorithm, a model-based
(derivative-free) trust-region optimizer that aims to facilitate optimization problems that arise
during the method of simulated moments estimation (MSM).

Despite the prevalence of MSM estimation in structural papers (see Eisenhauer, Heckman, and
Mosso (2015) for a review) and widely available anecdotal evidence that structural researchers
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would love to spend less time on solving optimization problems, there are no specialized opti-
mization algorithms that are tailored to the characteristics of MSM estimation problems.

tranquilo has been developed to precisely close this gap by enabling scientists to solve hard
optimization problems more frequently arising during MSM estimation with less need for manual
intervention. The difficulty here arises both from the computational complexity, often requiring
hours or even days of runtime, and from the necessity of many manual interventions to achieve
the right configuration of start values and algorithm parameters.

We restrict our attention to economic problems, allowing us to make the critical assumption
that most of the computational costs are due to the objective function. The algorithm is particularly
suited for this type of problem as it (1) can utilize the least-squares structure of the MSM problem,
(2) can be parallelized on the level of the algorithm, and (3) can adaptively deal with noise in
the objective function. By comparing benchmark results, we show that tranquilo can compete
with state-of-the-art algorithms and even outperform them in specific scenarios. At the same
time, the usefulness of tranquilo is not restricted to the field of economics, as problems the same
characteristics are also encountered in other fields. Prime examples are design optimization in
engineering or calibrating epidemiological models to empirical data.

In tranquilo, we make the following contributions:
First, We adopt a conventional trust-region approach for nonlinear least-squares solvers (see,

for instance, Conn, Gould, and Toint (2000)) and restructure it in a modular style that facilitates
the substitution of individual algorithm components to tailor it to the specifics of MSM estimation
issues.

Second, we add parallelization capabilities to the trust-region framework. While some parts
of derivative-free trust-region algorithms have been parallelized in other algorithms, we add two
new ideas for a more efficient parallelization: The first is a parallel line search that tries out
multiple step lengths in the search direction obtained by solving the trust-region subproblem. The
second is speculative sampling: While doing the function evaluation(s) needed to decide whether
a candidate point is accepted, we already sample points that would be helpful in the next iteration
if the candidate point is accepted, and evaluate the objective function on those points.

Third, we propose novel ways of adaptively determining how many function evaluations are
needed to average out the noise just enough so that the optimizer can make progress.

Fourth, we make tranquilo (Gabler, Gsell, Mensinger, and Petrosyan, 2024) available as an
open-source Python package that can be used in isolation or via the estimagic package (Gabler,
2022).
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Chapter 1

Mens Sana in Corpore Sano?
Joint with Hans-Martin von Gaudecker, Jürgen Maurer, and Janoś Gabler

1.1 Introduction

Development and maintenance of human capital throughout the life-course enables individuals
to lead longer, more productive and more satisfactory lives. The notion of human capital gener-
ally comprises a broad range of useful abilities that shape individuals’ capabilities, behaviors and
wellbeing such as their knowledge, skills, and health among others (World Bank, 2018). While
there is a large economic literature on early-life human capital development and its effects on
adult outcomes (Heckman and Mosso, 2014), fewer studies in economics have analyzed the roles
individual investments and corresponding technologies for the maintenance and depreciation of
human capital during later life within an integrated framework to model later-life human capital
dynamics (McFadden, 2008).

Physical and cognitive capacity represent two key forms of human capital during adulthood
and are perhaps the most important forms of human capital at older ages, especially after re-
tirement. Physical and cognitive capacity are key determinants of many important outcomes in
health economics and beyond such as mortality, healthcare use and healthcare cost and spending,
falls and disability, long-term care needs and nursing home use, economic and social participation
and subjective wellbeing to name but a few. As a result, investments in the maintenance of physi-
cal and cognitive capacity are key to ensuring a healthier, longer, and happier old-age. Moreover,
since many of these outcomes are highly uncertain, demand for various healthcare and long-term
care related insurance products depends on the later-life dynamics of physical and cognitive ca-
pacity (Hosseini, Kopecky, and Zhao, 2022). Understanding the later-life dynamics of physical
and cognitive capacity is, therefore, a key pre-requisite and input into models aimed at studying

⋆
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the role of later-life human capital on these important later-life outcomes and related investment
and insurance decisions.

While physical and cognitive capacity tend to decline during later life (Niccoli and Partridge,
2012), there is considerable heterogeneity in the onset and speed of such aging-related declines
across individuals, which is often related to individual differences in exposures and investments
(Crimmins, 2020). What is more, several studies have in fact shown significant improvements in
later life physical and cognitive capacity following targeted investments such as physical exercise
programs or cognitive trainings, suggesting that both physical and cognitive function remain mal-
leable even at very high ages (Fiatarone, O’Neill, Ryan, Clements, Solares, et al., 1994; Ball, Berch,
Helmers, Jobe, Leveck, et al., 2002). This evidence suggests that aging-related changes in func-
tion are not fully pre-determined biologically but can be postponed, slowed down, compensated
and in certain instances perhaps even (temporarily) reversed or overcompensated through appro-
priate later-life investments. These findings highlight the important role of health investments for
physical and cognitive capacity throughout the entire life course, even if early-life health invest-
ments into health to build up "reserves" for later life may be more efficient due to a higher degree
of malleability early in life, the longer time horizon available to capitalize on early investments
and potentially important complementarities of health investments over time (Cunha, Heckman,
and Schennach, 2010).

Besides documenting the continued malleability of physical and cognitive capacity during
later life, the more recent literature in gerontological science has also found for evidence po-
tentially important cross-effects of physical function on cognitive function and vice versa. These
cross-effects may go beyond the responses of physical and cognitive function due to common risk
factors such as physical inactivity or diseases affecting both physical and cognitive capacities such
as Parkinson’s disease, and represent more general connections between physical and cognitive
capacity (Clouston, Brewster, Kuh, Richards, Cooper, et al., 2013). Evidence for such connections
comes from both observational studies and RCTs, often but not always focused on the connection
between cognitive and gait (dys-)function (Montero-Odasso, Verghese, Beauchet, and Hausdorff,
2012). In view of these findings, economic models of human capital maintenance and deprecia-
tion during later life should thus allow for flexible later-life dynamics of physical and cognitive
capacities that can incorporate different forms of investment, and possible cross-effects between
physical and cognitive capacities.

Varied existing conceptualizations of physical and cognitive capacity used in the literature
and potentially widespread measurement error in physical and cognitive assessments in survey
data and self-reported health investments further complicate the already complex task of cap-
turing the joint dynamics of later-life physical and cognitive capacity and related investments
(Bound, Brown, and Mathiowetz, 2001; Baker, Stabile, and Deri, 2004; Kapteyn, Banks, Hamer,
Smith, Steptoe, et al., 2018; Hosseini, Kopecky, and Zhao, 2022). Physical capacity, for exam-
ple, is a multifaceted concept that is generally assessed through multiple self-reported and/or
performance-based survey items presenting noisy measurements for underlying true physical ca-
pacity (Kasper, Chan, and Freedman, 2017). Similarly, cognition comprises a range of different
cognitive functions such as such as perception, attention, intelligence, knowledge, memory and
working memory, judgement, reasoning, computation, problem solving or comprehension, whose
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corresponding measurements have signal value for overall cognitive capacity (Salthouse, 2010;
Salthouse, 2012). Perhaps more surprisingly, even commonly used survey items for health invest-
ments such as self-reported physical activity contain substantial measurement error relative to
actual health investments and, therefore, need to be treated with caution (Kapteyn et al., 2018).
Given the large potential for significant measurement error in survey-based assessments of physi-
cal and cognitive capacity and corresponding health investments documented in the literature, it
seems prudent to employ an analytical framework that can readily accommodate such measure-
ment errors when analyzing the joint dynamics of these outcomes.

The main objective of this paper is to estimate the technology for human capital maintenance
and depreciation in later-life focusing on the dynamic interplay between later-life physical and
cognitive capacity and corresponding investments among older adults in the US. To this end, we
propose the use of a non-linear dynamic latent factor model as first proposed by Cunha, Heck-
man and Schennach (Cunha, Heckman, and Schennach, 2010) as a framework to model early-
life human capital accummulation, to study later-life human capital depreciation processes using
longitudinal data from the US Health and Retirement Study (HRS). Applying this framework to
investigate the joint dynamics of later-life physical and cognitive capacity and related investments
is very attractive as such a non-linear dynamic latent factor model can incorporate the main afore-
mentioned stylized facts about human capital depreciation, i.e., (1) allowing for a joint modelling
of physical and cognitive capacity and investments that can incorporate potentially important
cross-domain effects; (2) integrating the continued malleability of both physical and cognitive
capacity into the model to study dynamically optimal investment paths and (3) accounting for
error in the measurement of physical and cognitive function and corresponding investments in a
context where there are several measurements of each of these domains in many commonly used
data sets, but each measurement is likely to provide only a noisy signal for the underlying con-
struct at hand. In addition to accommodating key stylized facts about human capital maintenance
and depreciation into a unified framework, our model also allows us to identify the distribution
of latent factors from noisy measurements, simulate the effects of different investment patterns
on physical and cognitive capacity, calculate optimal investment patterns, notably the role of in-
vestments for human capital maintenance in younger old vs older old individuals, and anchor the
results in interpretable metrics such as survival probabilities.

Our paper relates to two strands of research in economics, a methodological one on the use of
non-linear dynamic latent factor models for estimating dynamic human capital production, which
has-to the best of our knowledge-so far only been applied to the case of human capital accumu-
lation in early life but not to human capital maintenance and depreciation in later life, and a
more substantive one on the measurement and modelling of health dynamics during adulthood
and later life. From a methodological point of view, our paper transfers widely used methods for
the study of early-life human capital accumulation to the study of later-life dynamics of physi-
cal and cognitive function and eventual mortality. As a technical contribution, we show how to
incorporate mortality into the framework and improve the numerical stability of a well known
maximum likelihood estimator. By applying non-linear dynamic latent factor models to questions
of aging and later life health dynamics, we show the usefulness of these methods to study hu-
man development not just in early life but across the entirely life-course, especially since many
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of the modelling and measurement issues mentioned above seem common to both ends of the
life-course. As a result, we hope that our paper will aspire a larger group of life-course and aging
researchers to consider such models in their research both in health economics and related fields.

Substantively, we contribute to the literature on how to measure and model later-life health
dynamics in situations where we observe multiple potentially very noisy measurements for fewer
latent concepts such as physical and cognitive capacity, which has long challenged empirical anal-
yses in health economics and beyond. More specifically, one important issue in this literature is
how to measure health in a comprehensive yet parsimonious way in view of the multifaceted
nature of health on the one hand and the common need for dimensionality reduction in econo-
metric models on the other. To address this trade-off, one set of commonly adopted approach to
measuring health is to directly use (usually ordered measurements of) self-rated health as sum-
mary measure of health as outcome of interest (Contoyannis, Jones, and Rice, 2004; Heiss, 2011;
Latham and Peek, 2012). This approach is generally motivated by a high predictive value of self-
rated health for mortality (Idler and Benyamini, 1997). Alternatively to directly using self-reports
to measure health, a commonly used approach is to "instrument" health via a larger and "more
objective" set of individual health measurements, such as information on specific health condi-
tions, functional limitations, performance test results or anthropometric measures. This approach
endogenously derives weights for aggregating the more detailed set of individual health measure-
ments into a single health index that can then be used in further analysis (Cutler and Richardson,
1997; Jürges, 2007). Relative to using self-rated health directly as outcome, the approach aims
to improve measurement by using "more objective" measures of health to construct an underlying
health index, whereby the weights attributed to each detailed and "more objective" health mea-
sure in the final health index is determined by the partial association of the respective detailed
health measure with self-rated health. While this approach can address some known issues with
self-rated health, such as potential age-, sex- or SES-dependent reporting heterogeneity (Linde-
boom and Van Doorslaer, 2004; Dowd and Zajacova, 2007; Dowd and Zajacova, 2010), there is
often still considerable measurement error in the "more objective" health measures that cannot
be purged using this approach and may require further consideration (Baker, Stabile, and Deri,
2004; Maurer, Klein, and Vella, 2011). A second related approach side-steps the use of self-rated
health entirely and instead uses principal component analysis of the more detailed health mea-
surements to derive lower dimensional health indices (Jenicek, Cleroux, and Lamoureux, 1979;
Poterba, Venti, and Wise, 2017; Nakazato, Sugiyama, Ohno, Shimoyama, Leung, et al., 2020). A
third and increasingly popular approach simplifies the aggregation process for the more detailed
health measurements even further by constructing a so-called “frailty index” or “deficit index”,
which simply consists of the total number of prevalent "health deficits" divided by the total number
of potential "health deficits" (Rockwood and Mitnitski, 2007; Hosseini, Kopecky, and Zhao, 2022).
A such constructed "frailty index"/"deficit index" is thus bounded to lie between zero and one and
represents the percentage of potential "health deficits" already suffered by a given individual. A
final set of studies refrains from performing some form of dimensionality reduction and uses the
more detailed health measures directly in their analyses, either in isolation or simultaneously. As
this is, for example„ the standard approach of disease-based analyses, most published papers on
health adopt this latter approach.
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While all of the aforementioned approaches have their respective advantages and disadvan-
tages in measuring and modelling health in economic applications and have been employed with
some success in the literature, they have mainly been used to describe the dynamic evolution of
health during adulthood as inputs for structural models in health economics concerning retire-
ment, housing or insurance decisions rather than studying the production technology of later life
health maintenance or depreciation directly. Regarding the latter, the aforementioned approaches
have some potential downsides that we aim to address in this paper. First, to the best of our knowl-
edge, our paper is the first to explicitly study the dynamic interplay between physical capacity,
cognitive capacity and related investments in the context of a structural non-linear dynamic la-
tent factor model as first proposed by Cunha, Heckman and Schennach (Cunha, Heckman, and
Schennach, 2010), which can generate new insights on the dynamic relationships between phys-
ical and cognitive capacity as well as investment into these important facets of human capital.
Second, explicitly distinguishing between physical and cognitive capacity is thereby not only im-
portant due to increasing evidence for potentially important cross-effects between the two health
domains cited above but also in view of likely differences in the consequences of depleted lev-
els of physical vs cognitive capacity for functioning, participation and other important later life
outcomes (Crimmins, 2020; Amengual, Bueren, and Crego, 2021). In the economics literature,
there is to date only limited evidence on the potential cross-effects between physical and cogni-
tive capacity maintenance with Schiele and Schmitz (Schiele and Schmitz, 2021) being a notable
exception studying the effects of adverse physical health shocks on cognitive capacity in later
life using non-structural event study methods. Third, our approach can accommodate a situation
where information about a few latent factors needs to be extracted from many measurements of
the underlying construct which can potentially suffer from severe measurement error.

Our analysis complements the aforementioned approaches to modelling and analyzing later-
life health by delivering new insights on the dynamics of later-life human capital and related
investments among older adults in the US. Our approach, thereby, highlights the structural pro-
duction function of older adults concerning the maintenance and depreciation of physical and
cognitive capacity. Our key findings are as follows: 1) There is substantial noise in all observed
variables. While most measurements have a high correlation with the latent factor they measure,
no single measurement dominates to an extent where it would be justified to just use a single vari-
able and ignore the measurement error in the econometric analysis. 2) Despite a strong decline
in means of physical and cognitive capacity, the rank order of these latent factors is remarkably
stable. 3) Physical and cognitive capacity can be influenced by investments until very high ages.
Cognitive stimulation is a specific investment into cognitive capacity. Physical exercise has a larger
effect on physical capacity and a small effect on cognitive capacity.

The remainder of the paper is organized as follows: Section 1.2 provides information on our
main data source and gives detailed description of the factor measurements. Section 1.3 describes
our empirical approach and the challenges associated with it. Section 2.4 presents and discusses
our results, and section 1.5 concludes.
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1.2 Data and Measurements

We base our empirical analysis on the 1992-2016waves of the Health and Retirement Study (HRS)
conducted by The University of Michigan. The HRS offers longitudinal panel data with represen-
tative sample of approximately 40,000 individuals living in the U.S. and aged 50 and above. The
HRS core questionnaire offers rich set of measures of physical health, mental status, and behaviors.
Measures of physical and cognitive capacities include self-reported diagnoses, subjective assess-
ments, and objective biomedical markers. Additional off-wave surveys offer additional measures
that are particularly relevant for our analysis. Specifically, we employ the Consumption and Ac-
tivities Mail Survey (CAMS) (Health and Retirement Study, 2022b) to extract measurements for
Exercise and Cognitive Stimulation.

Wherever possible, we include data prepared by the RAND corporation (Health and Retire-
ment Study, 2022c), which provides a harmonized and easy-to-use version of the core HRS data.
Out of the many variables we need, several are not included in the RAND HRS data, however, and
we recur to the original core files (Health and Retirement Study, 2022b).

We start our analysis at age 68, when most people are retired and we start to see meaning-
ful variation in the measures at our disposal for physical and cognitive capacity. The last age we
consider is 93, after which the sample size becomes small. Since the HRS questionnaire is admin-
istered biannually, we work with two-year transitions and age groups. For conciseness, we refer
to these age groups by the lower bound included – “age 68” thus includes ages 68 and 69, and
at the other end of the spectrum “age 92” comprises ages 92 and 93. Because men and women
show very different aging patterns, we present all statistics by gender. We will also estimate the
model separately for each gender.

We standardize almost all measures to have mean zero and unit variance in the first age
group included in our data. Any age trends are thus preserved. For example, until age 90, the
mean of (residualized) grip strength declines by around 1.4 original standard deviations. At the
same time, the dispersion of grip strength shrinks to around 80% of its original standard deviation.
For categorical variables, all of which have numerical values with spacing 1, we add noise using
uniform distributions on (−0.5, 0.5). This preserves the original ordering and add to the numerical
stability of the estimator below. Changing the seed of the random number generator did not affect
any results; future work will pursue additional robustness exercises.

1.2.1 Physical Capacity

We employ six variables as measurements for physical capacity. Quite naturally, vital status is a
dummy for being alive, which becomes zero in the first HRS wave after an individual has died. It
is set to missing thereafter, so that the average of this variable can be interpreted as the probability
of surviving until the next survey wave. The first row of Figure 1.2.1 shows the age trends in our
measures of physical capacity.1 Unsurprisingly, survival probabilities decreases in age both for

1. Figure 1.A.1 in Appendix 1.A shows the same trends for the standard deviations of our measurements.
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women (Figure 1.2.1a) and men (Figure 1.2.1b). Note that the level of survival probabilities is
depressed because the HRS is very good at tracking respondents’ dates of death even when they
have not responded to previous waves. In this version of the data preparation, individuals who
did not respond to a survey round would not enter the denominator of vital status.

The second measurement shown in Figures 1.2.1a and 1.2.1b is a version of the frailty index
used, for example, in Hosseini, Kopecky, and Zhao (2022). The frailty index is the unweighted
sum of all recorded medical conditions a doctor has diagnosed in an individual. These conditions
comprise high blood pressure, diabetes, cancer, lung disease, heart disease, stroke, psychiatric
problems, and arthritis. We reverse it so that higher values indicate better health. The reversed
frailty index declines by 0.4 (women) and 0.3 (men) original standard deviations until the end
of the age range we consider. Note that this trend and all those we will subsequently discuss
are conditional on survival. Due to the high predictive power of the frailty index for mortality—
as noted by Hosseini, Kopecky, and Zhao (2022) and others—the effect of mortality selection is
particularly large here. For individuals still alive at age 80, average frailty at age 68 is 0.39 among
women and 0.34 among men. By including vital status among the health measures, our model
below will take care of this to some extent, but it is important to keep in mind for the descriptive
statistics.

Grip Strength measurements were introduced to the HRS survey in 2006 and consist of in-
home physical tests of the hand grip strength, conducted twice for each hand. To obtain our vari-
able of use, we average the four measurements. Our measure of grip strength is then the residual
of a regression of average grip strength on individuals’ height. We partial height out because of
the high correlation between height and grip strength (Steiber, 2016) and we do not expect dif-
ferences in grip strength associated with differences in height to be indicative of physical capacity.
Among all measures pertaining to physical health, grip strength shows the steepest decline.

Mobility summarizes difficulties in performing the various activities of daily living: walking
several blocks, walking one block, walking across the room, climbing several flights of stairs, and
climbing one flight of stairs. As with the frailty index, we add up indicators for each measurement
and reverse the scale so that higher values are associated with greater mobility. Mobility declines
strongly in age. At the same time, its standard deviation rises as mobility impairments become
more frequent over time.

Closely related, the Large Muscle Index summarizes difficulties in performing a number of
activities associated with large muscles’ strength. These activities are sitting for two hours, getting
up from a chair, stooping ot kneeling or crouching, and pushing or pulling a large object. Again,
we revert the order of the values to have a positive association between the variable and physical
capacity.

Finally, Self-Reported Health is a measure of health that is based on the respondent’s self-
assessed rating of their general health status. The values range from 1 (poor) to 5 (excellent). It
probably is the most common health measure employed by economists as it provides an individu-
als’ summary of her/his health in a single measure.
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure 1.2.1. Average measurements by age
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1.2.2 Cognitive Capacity

During interviews (in-person and via phone) HRS conducts a rich set of tests measuring respon-
dents’ cognitive capacity. For respondents that do not answer some of the cognitive test questions,
HRS assumes non-random missing values and provides cross-wave imputation data in special
data files (Health and Retirement Study, 2022a). Our measures of cognitive capacity are based
on these cognitive tests and respondents’ subjective ranking of their general memory status. In
total, we employ five measures of cognitive capacity.

Serial 7 Subtraction is our first measure and is based on the test of serial sevens (SST) during
which respondents are asked to subtract 7 from 100 and from continue subtracting 7 from each
resulting number for a maximum of five times. The respondents are then assigned scores based
on the total number of correct answers. In psycho-medical literature SST has widely been used
to assess mental status of patients with dementia and been generally regarded as a measure
of concentration (Karzmark, 2000). Figures 1.2.1c and 1.2.1d demonstrate a steady decline in
concentration, as measured by the serial sevens, for both men and women, from our youngest
age group to the oldest one being somewhat larger for women (0.5 units of original standard
deviaton) than for men (0.4 units of original standard deviation).

Our second measure of cognitive capability is Vocabulary which is a test summarizing respon-
dents’ ability to provide correct definitions of words from a list of five words. One of two sets of
words is assigned randomly at the first interview, and alternating sets are given during subsequent
interviews. The two alternating sets of words are 1) repair, fabric, domestic, remorse, plagiarize;
and 2) conceal, enormous, perimeter, compassion, audacious. We can see in Figures 1.2.1c and
1.2.1d that Vocabulary test has an age trend similar to that of the Serial 7 Subtraction, both in
terms of absolute slopes and relative differences between men and women.

Immediate Word Recall is the third variable in Figures 1.2.1c and 1.2.1d and results from
a test that asks the respondents to recall words (in any order) form a list of ten (later waves) or
twenty (earlier waves) words, directly after being read the list. Examples of words included in
a list are lake, car, army, etc. In in the initial wave, respondents were randomly assigned a list
from the set of four lists and during the consequent four waves there were assigned a different
list (McCammon, Fisher, Hassan, Faul, Rodgers, et al., 2022). Delayed Word Recall has the same
structure as immediate word recall. In this task, respondents are asked to recall the same list
of words once more, after spending several minutes on answering other survey questions. Word
recall tests are widely used as measures of episodic memory frequently administered to patients
with alzheimer’s disease (see, e.g., Dixon and Frias, 2014; Runge, 2015).

Both of the word recall variables being measures of the same conceptual variable (episodic
memory) perhaps explains the similar trends that they display. Of all the measurements of cogni-
tive capacity, word recall variables have the sharpest decline over the age span in our model, and
as with other measurements, the decline is larger for women than for men, with the caveat that
our data are conditional on survival.

Finally, Self-Rated Memory, is our last measure of cognitive capacity and is based on re-
spondents’ self-assessed rating of their general memory status. The values range from 1 (poor)
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to 5 (excellent). Self-Rated Memory displays a moderate decline in both genders, which has a
somewhat more pronounced trend among men.

1.2.3 Exercise and Cognitive Stimulation

We use Vigorous, Moderate and Light Activities as measures for investment in physical health.
Each of these survey questions asks respondents how often they do vigorous (running, jogging,
cycling, etc.), moderate (gardening, cleaning the car, walking at moderate pace, dancing, stretch-
ing) and light/mildly energetic (vacuuming, laundry, home repair), respectively. Up until the sixth
wave (year 2002) respondents were only asked if they do vigorous activities at least three times a
week. Starting from wave seven, this questionnaire item was replaced by the three activity ques-
tions that we use in our study. Figures 1.2.1e and 1.2.1f show that with age people do less of all
types of physical activities, with largely similar trends for men and women.

To obtain measures for cognitive stimulation, we utilized the CAMS survey which allowed
us to construct measures of time respondents spend on different cognitively stimulating activi-
ties. Among these, our first measurement of cognitive stimulation is Reading that counts weekly
hours spent on reading books, newspapers, or magazines. The association between reading and
cognitive decline has been studied in psycho-medical literature, and reading has been found to
be positively associated with hampered cognitive decline (Chang, Wu, and Hsiung, 2021). In Fig-
ures 1.2.1g and 1.2.1h we see that Reading has declining trend among women and is rather
stable among men.

The second variable in Figures 1.2.1g and 1.2.1h is Listening to Music, and it meausres
how many hours weekly respondents listen to music. The effects of music listening on cognitive
functioning of at-risk patients have been studied in psycho-medical literature, and listening to
music has been found to be beneficial for cognitive functioning (see, e.g., Särkämö, Tervaniemi,
Laitinen, Forsblom, Soinila, et al., 2008; Särkämö and Soto, 2012). As with most measurements
of cognitive stimulation, we observe a declining age trend for Listening to Music both among men
and women.

Our last variables for cogntivie stimulation are Stimulating Hobbies and Communication
which summarize how many hours respondents spend weekly on various hobbies that may be ex-
pected to stimulate cognition, and the weekly hours spent on interacting with others, respectively.
Stimulating Hobbies aggregates the survey variables that ask how many hours respondents spend
on: 1) playing cards or solving jigsaw puzzles, 2) singing or playing instruments, 3) doing arts
and crafts, and 4) going to movies or lectures. We construct the Communication variable as the
sum of hours spent on visiting with others in person and communication via letters/phone/email.
Looking at Figures 1.2.1g and 1.2.1h, Communication has similarly declining tred among men
and women, whereas Stimulating Hobbies has a steeper slope for women and than for men.

1.2.4 Raw Correlations in the Data

Figures 1.2.2 and 1.2.3 show correlation matrices for women and men, respectively. Each figure
contains two panels. The upper panels show within-period correlations until age 79, the lower
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panels do the same ages 80 and above. We show the lower triangular part of the correlationmatrix.
We leave out the indicator for being alive because we only measure the other variables whenever it
is one. In addition to showing the numbers, we color the matrix’ elements such that a correlation
of 1 is dark red, 0 is white, and −1 is dark blue. Scaling is linear on both sides of the origin.
Variables are ordered by factor, which we include in the label of the first measure pertaining to
it. The measures in the first five rows and columns—from the reversed frailty index until self-
reported health—load on physical capacity. The subsequent block of five rows and columns load
on cognitive capacity. In the lower part of the matrix, exercise and cognitive stimulation load on
three and four measures, respectively.

Several patterns are visually apparent in all four correlation matrices. First of all, the blocks
of measures pertaining to each factor are clearly visible as having substantial cross-correlation
throughout. For example, the first four entries in the first columns are the correlations of the
reversed frailty index with the other measures loading on physical capacity. Across all four panels,
correlations are at least 0.3 with the exception of the correlation of reversed frailty and grip
strength, which is at least 0.1 throughout.

Similarly, the triangle with correlations for measurements pertaining to cognitive capacity—
with the three corners (Serial 7 Subtraction, Vocabulary), (Serial 7 Subtraction, Self-Rated Mem-
ory), and (Delayed Word Recall, Self-Rated Memory)—has distinctly dark colors throughout. Un-
surprisingly, correlations are particularly large between the two word recall tasks. The three cor-
relations between the various types of physical activity are high throughout. The six elements to
the bottom right to the matrix contain the correlations among the measures loading on cognitive
stimulation. Among all factors, these have the weakest within-factor correlations with values rang-
ing from 0.09 to 0.25. This is not very surprising as the variables do cover a much wider range of
activities than, say, the various activity levels that load on exercising.

A second salient feature is that almost all elements are positive. This implies that it is im-
portant to model physical and cognitive capacity jointly with each other and with the two types
of investments. This being written, there are clear level differences. Maybe unsurprisingly, the
largest correlations are between measures of exercise and those of physical capacity. Most mea-
sures of cognitive capacity are substantially and positively related to variables measuring physical
capacity and exercise, respectively. The correlation patterns are somewhat more mixed when it
comes to cognitive stimulation and the other three factors.

This is related to our third broad observation: While the general patterns noted so far hold
up across age groups and genders, there are some important differences. For example, the corre-
lations of grip strength with other health measures are higher among women than among men,
particularly at higher ages. Correlation patterns of individual measures pertaining to cognitive
stimulation and cognitive capacity are quite distinct among men and women, particularly at older
ages. For example, among individuals aged 80 and above, reading and serial 7 subtraction have
a correlation of 0.27 among women whereas it is 0.18 among men. Among women in this age
group, listening to music is slightly negatively correlated with serial 7 subtraction and vocabulary
scores. For men, the same correlations are small and positive.

While these patterns are informative, the 2× 2× 153 numbers in Figures 1.2.2 and 1.2.3 are
clearly too many to make sense of directly – and the matrices already reduce the 13 periods
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(a) Aged below 80

(b) Aged 80 and above

Figure 1.2.2. Cross factor measurement correlations (female).
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(a) Aged below 80

(b) Aged 80 and above

Figure 1.2.3. Cross factor measurement correlations (male).
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we observe in our data to 2. In the next section, we outline a framework that constructs latent
variables for our four factors and which allows us to interpret their joint evolution.

1.2.5 Example Transitions

Before going to the formal model, we show a few exemplary trajectories of physical and cogni-
tive capacity. Figure 1.2.4 shows the trajectories of 500 randomly sampled individuals from our
dataset. Dots at the end of a trajectory mean that that person died in the next period. Trajectories
that do not end in a dot are from individuals whose death was not observed, either because they
dropped out of the sample or are still alive in the last wave.

The highlighted lines are hand-picked examples of individuals that had a physical capacity
close to the 90th percentile, but very different trajectories afterwards. The blue line shows a
person that had a strong decline in physical capacity over two periods and then passed away. The
yellow line shows a person with a very volatile trajectory in both physical and cognitive capacity.
The red line shows an individual who had a bad health shock at some point but recovered and
enjoyed a high level of physical capacity for many years. The right panel of the figure shows
the cognitive capacity of the same individuals. All three lines show fluctuations around a robust
declining trend.

The plot illustrates that vastly different trajectories of physical and cognitive capacities are
possible even for people with similar starting conditions in terms of physical capacity. Answering
the question whether such differences can be explained or are the product of random shocks
requires ar more rigorous approach.
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Figure 1.2.4. Trajectories for decline of health and cognitive capacity

1.3 Model

1.3.1 The Technology of Aging

Analyzing the joint evolution of physical and cognitive capacity and the effect physical exercise
and cognitive stimulation have on both poses many econometric challenges.

1. As discussed in the previous section, there are many potential observed variables to measure
each concept we analyze. In order to make the results interpretable, their dimensionality has
to be reduced.

2. All observed variables are subject to measurement error, which is potentially large in many
cases.

3. Physical and cognitive capacity, exercise, and cognitive stimulation are dynamically inter-
twined in the sense that each of them has a potential effect on all others. For example, exercise
should improve physical capacity. Conversely, it may well be that the cost of exercise might be
higher at low levels of physical capacity because physiotherapy is less enjoyable than a walk
in nature.

4. The relationships between variables might change over time.

The Technology of Skill Formation (Cunha and Heckman, 2007; Cunha, Heckman, and Schen-
nach, 2010) is an econometric framework that emerged to deal with very similar challenges in the
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context of skill formation during childhood. It distinguishes observed variables—for example an
IQ test—from latent factors such as cognitive and non-cognitive skills. The technology is the law
of motion of latent factors over multiple discrete time periods. Observed variables are stochastic
functions of one or more latent factors. In addition to the latent factors of interest, the framework
allows for observed or latent investments such as parental investments in skills or schooling.

To account for the multitude of potential effects, each latent factor may depend on lagged
values of itself and all other latent factors. The law of motion of the latent factors is usually
nonlinear. This is necessary to allow for different productivity of investments at different levels
of skills. Moreover, it allows for dynamic complementarity, i.e., the fact that earlier investments
may increase the productivity of later investments (Cunha and Heckman, 2007).

The Technology of Skill Formation maps perfectly on our setting. Instead of cognitive and
non-cognitive skills, our Technology of Aging models physical and cognitive capacity. Instead of
parental investments, we have exercise and cognitive stimulation. While we separate investments
into a physical and cognitive component, we allow each investment factor to influence both latent
capacities.

Transition Functions

We assume the following law of motion of our latent factors:

x1,t+1 = β1,t +
4
∑

i=1

γ1,t,ixt,i +
4
∑

i=1

i
∑

j=1

δ1,t,i,jxt,ixj,t + η1,t

x2,t+1 = β2,t +
4
∑

i=1

γ2,t,ixt,i +
4
∑

i=1

i
∑

j=1

δ2,t,i,jxt,ixj,t + η2,t

x3,t+1 = β3,t +
∑

i∈{1,2,3}

γ3,t,ixt,i + η3,t

x4,t+1 = β4,t +
∑

i∈{1,2,4}

γ4,t,ixt,i + η4,t

(1.3.1)

Where x1, x2, x3, and x4 are physical capacity, cognitive capacity, exercise, and cognitive stim-
ulation, respectively. β , γ and δ denote the technology parameters to be estimated. η denotes a
stochastic shock.

The first two equations in (1.3.1) mean that physical and cognitive capacity follow a flexi-
ble functional form containing all lagged factors, their squares, and their interaction terms. This
is known as the translog function in the skill formation literature (because skills are typically
assumed to be measured in logs, not levels) and has been used by, for example, Agostinelli and
Wiswall (2016a). The translog function allows for dynamic complementarity but does not assume
it. While this functional form is not a standard economic production function, we interpret it as a
flexible approximation to an arbitrary underlying production function in the spirit of a nonpara-
metric series estimator.
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The bottom two equations in (1.3.1) relate to exercise and cognitive stimulations, respectively.
Both investment factors are assumed to depend on their own lagged values along with the lagged
values of physical and cognitive capacity.

Measurement System

We assume the measurement equations to be linear with an additively separable and normally
distributed error term. All of them thus have the following form:

yℓ,t = αℓ,t +
4
∑

i=1

hℓ,t,ixt,i + εℓ,t (1.3.2)

where yℓ,t denotes the ℓth measurement in period t, α is the intercept of the measurement equation
and h are factor loadings. In the empirical application we only have measurements that load on
just one factor, so that for all measurements, three out of the potentially four loadings hℓ,t are
zero by construction. Subject to identification requirements outlined in Cunha, Heckman, and
Schennach (2010), this could easily be relaxed.

In typical applications of the Technology of Skill Formation, the number and type of available
measurement variables varies strongly across periods. This is because any test score that is appli-
cable to very young children would not work for older children. In our case, the measurements
stay the same across periods and most of them can be assumed to be time-invariant, i.e. to have
the same loading, intercept, and standard deviation of measurement error in each period.

1.3.2 Identification and Interpretation of Parameters

The econometric model implied by the Technology of Skill Formation is a Structural Equation
Model or dynamic latent factor model. Linear Structural equation models are widely used since
the 1970ies to study relationships between latent and observable variables. However, standard
identification results and software for Structural Equation Models are not applicable to our setting
because they usually require linearity assumptions or put restrictions on the connectedness of the
underlying causal graph, which go beyond those encoded in our system (1.3.1).

Cunha, Heckman, and Schennach (2010) provide general nonparametric identification results
for nonlinear dynamic latent factor models. The exact conditions for identification depend on the
assumptions one is willing to put on the nature ofmeasurement error. Typically, having at least two
dedicated continuousmeasurements for each latent factor in each period is sufficient to identify an
arbitrary production function under mild conditions. Doing so requires normalizations of location
and scale in each period because latent factors do not have a natural unit of measurement.

A subsequent literature (Agostinelli and Wiswall, 2016b; Freyberger, 2021) has shown
that much fewer normalizations are required when empirical applications assume the popular
constant-elasticity-of-substitution (CES) form, which implies restrictions on the location and scale
of its outputs (see Appendix 1.C.1 for details). Our specification of the production function (1.3.1)
does not impose any such restrictions. However, as discussed previously, we have at least one age
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invariant measurement for each latent factor. We always use such measurements for normaliza-
tions, which pin down the location and scale of each corresponding factor in all periods.

The lack of natural units for the latent factors and the requirement for normalizations also
poses challenges for the interpretation of the results. In short: any outcome that depends on
transformations of measurements outside of the model, the choice of the measurement being
normalized, or the values of the normalized parameters cannot be interpreted without further
information. For details and a more formal definition see Freyberger (2021).

In practical applications, different ways of dealing with this have emerged. Cunha and Heck-
man (2008) and Cunha, Heckman, and Schennach (2010) propose to anchor the latent factors
in terms of observable cardinal variables. For example, they anchor cognitive and non-cognitive
skills in terms of years of schooling, wages or the probability to commit a criminal offense. For
each anchoring outcome, they re-estimate the model to obtain estimated production function
parameters in terms of anchored factors. Attanasio, Meghir, and Nix (2020) do not have access
to adult outcomes. Instead they communicate the variables that were normalized and state that
results have to be interpreted with respect to the normalizations. Del Bono, Kinsler, and Pavan
(2020) propose to simply standardize the variance of the latent factors in logs. This allows for
statements such as increasing investment by 1 % increases skills by x %. While this is invariant
to any normalization of location and scale in the measurement system, the approach is only valid
if one defines that skills are measured in logs not levels. Due to the ordinality of skills, this is a
valid but arbitrary definition and thus the approach falls short of its goal to be completely objec-
tive. Freyberger (2021) proposes to translate inputs and outputs of the production functions into
ranks. This is invariant to any normalization of location and scale, assumptions on whether latent
factors are measured in levels or logs and transformations of the measurements outside of the
model.

We acknowledge that there is no single natural scale for latent factors and thus see value in all
of the above approaches. For example, translating everything to ranks is a natural way of solving a
problem that is caused by ordinality. Moreover, it makes the results completely invariant to many
decisions made by the econometrician. However, it might not be as interpretable as anchoring
approaches. For example, it destroys any time trend that was present in the measurements. To
address the shortcomings of any single method, we thus use a combination of all of them.

We standardize age invariant measures with respect to their mean and standard deviation at
age 68. We estimate the parameters of the production function, normalizing one age-invariant
measure for each factor in period zero. The normalized measures are the reversed Frailty Index,
Serial 7 Subtraction, Moderate Activity, and Reading. This preserves the time trend in the mea-
surement variables and means that our estimated parameters and the time trend can roughly be
interpreted in terms of standard deviations at age 68. For reference, we also show the marginal
distributions of each latent factor and the joint distributions of each factor pair at multiple ages
(see 1.D.3).
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1.3.3 Estimation

Multiple estimators for nonlinear dynamic latent factor models are available. Agostinelli and
Wiswall (2016a) estimate the fist period factor loadings from ratios of covariances between mea-
surements. To estimate production function parameters, they subsequently employ an iterative IV
approach. Their method is very tractable; it comes at the cost of statistical efficiency. Our own ex-
periments on simulated data suggest that it works well for models with few periods but becomes
imprecise if there are ten or more periods, especially when the correlation between latent factors
is high.

Attanasio, Cunha, and Jervis (2019) use linear regression on Bartlett factor scores with a cor-
rection approach. This estimator is computationally very attractive. However, it does not deal well
with missing observations. Several of our variables are not contained in the core HRS question-
nair; they are available for subsets of individuals at different points in time. Because of this, the
estimator of Attanasio, Cunha, and Jervis (2019) is unsuitable for our application.

Attanasio, Meghir, and Nix (2020) first estimate the distribution of the latent factors as a
mixture of normal distributions and then estimate the parameters of the production functions
on a simulated sample from that distribution. This approach is computationally harder than the
two previous ones but simpler than the maximum likelihood estimator by Cunha, Heckman, and
Schennach (2010). The required assumptions are the same as for the likelihood estimator.

Cunha, Heckman, and Schennach (2010) use a maximum likelihood estimator. For compu-
tational tractability, they use nonlinear Kalman Filters to factorize the likelihood function into a
product of conditional likelihoods. This estimator is computationally more difficult than the oth-
ers. In its original formulation, numerical stability is often compromised. However, the estimator
is statistically efficient and it can deal well with observations that are missing at random.

We derive a mathematically equivalent but numerically stable version of the likelihood esti-
mator used by Cunha, Heckman, and Schennach (2010). Our version replaces standard filters
by square-root Kalman filters (Prvan and Osborne, 1988; van der Merwe and Wan, 2001), which
are numerically more robust. The computational cost is similar to the original approach. The de-
tails of the original and the reformulated estimator as well as the exact assumptions required for
estimation are described in Appendix 1.B.

To account for mortality, we add a dummy variable for being alive as an additional measure-
ment of physical capacity. This is analogous to a linear probability model of survival. Thus, the
estimated health state of survivors is adjusted upwards, while the health state of everyone who
has passed away is adjusted downwards compared to a state estimation that ignores mortality. In
future work we plan to replace the linear probability model of mortality by a Probit model.

A flexible implementation of the new estimator can be found in the Python package skillmod-
els (Gabler, 2022). It uses JAX (Bradbury, Frostig, Hawkins, Johnson, Leary, et al., 2018) for just
in time compilation and automatic differentiation. This reduces the computational cost drastically.
We use estimagic (Gabler, Raabe, Röhrl, and Gaudecker, 2022) for numerical optimization and
the calculation of standard errors. To generate good start values for the optimization, we first
decompose the model into four single factor model with much fewer free parameters. In a sec-
ond step we estimate a linear model. In the third step we estimate the full nonlinear model. We
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use pytask (Raabe, 2020) and the Templates for Reproducible Research Projects in Economics
(Gaudecker, 2019) to automate our research project and to parallelize many tasks. The full esti-
mation takes approximately four hours on a laptop.

1.4 Results

We present our results in three stages. First, we describe the measurement system. Next, we
describe broad patterns for the transition equations. Finally, we dig deeper into the dynamic
effects of changing factors along their distribution.

1.4.1 Measurement System

Table 1.4.1 shows exemplary parameter estimates of the measurement system. The first panel
shows the parameters that we constrain to be time-invariant. The three panels below display
time-varying parameters of the system at ages 70, 80, and 90. We show loadings and standard
deviations for women and men, respectively. Tables 1.D.1–1.D.8 in Appendix 1.D.1 show the com-
plete set of parameter estimates, including the intercepts. Remember from Section 1.2 that we
scale all measures—except for dummy measuring vital status, which retains its natural form—to
have mean zero and unit variance in the initial period.

For the measurements loading on physical capacity, we normalize the reversed frailty index
to have intercept zero and unit loading. We also restrict the parameters relating to mobility, the
large muscle index, and self-reported health to be time-invariant – all of these have fairly similar
time trends as seen in Figure 1.2.1 (note that mobility has a steeper trend than the others, but
making the measurement system time-varying did not change results). All four measurement have
similar factor loadings in the 0.93–1.33 range and the standard deviation in their measurement
errors is very similar, too (0.75–0.8). The correlations between these four measurements are high
throughout in the 0.6-0.85 range (see the correlation matrices in Section 1.D.2 of the Appendix).

We leave the measurement systems for vital status and grip strength unrestricted across age
groups. The standard deviation of measurement error in grip strength decreases over time; the
loadings decrease for females and stay roughly constant for males. In sum, this means that the
correlation between grip strength and the latent factor representing physical capacity stays con-
stant with age for women at 0.3 and increases for men from 0.35 to 0.45. The loading on vital
status increases for both genders. Due to the fact that the dummy for being alive has its natural
scale, the coefficient has a meaningful interpretation in terms of survival probabilities. At age 70,
the interquartile range of physical capacity is 0.95 for women and 0.78 for men (see Appendix
Section 1.D.3). Changing physical capacity from its first to its third quartile thus increases the
probability of survival by 0.95× 4.2%= 4% for women and 0.78× 5.8%= 4.5% for men. At age
80, the interquartile ranges are just below 1 and the loadings of 0.09 for both genders directly
measure changes in survival chances as one moves across the outer quartiles. The same is true at
age 90 for men (∆survival = 0.2), for women the distribution is less dispersed at that age and an
interquartile range of 0.8 implies a increase in survival probabilities of 11%. This is in line with
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Table 1.4.1. Loadings and Measurement Standard Deviations

Female Male

Loading Meas. Std. Loading Meas. Std.

Age Factor Measurement

All Physical

Capacity

Frailty Index (Reversed) 1.000 0.707∗∗∗ 1.000 0.796∗∗∗

(0.001) (0.002)

Mobility 1.228∗∗∗ 0.766∗∗∗ 1.331∗∗∗ 0.750∗∗∗

(0.005) (0.003) (0.007) (0.003)

Large Muscle Index 0.929∗∗∗ 0.750∗∗∗ 1.032∗∗∗ 0.761∗∗∗

(0.005) (0.002) (0.006) (0.003)

Self-Reported Health 0.950∗∗∗ 0.765∗∗∗ 0.963∗∗∗ 0.793∗∗∗

(0.004) (0.002) (0.006) (0.003)

Cognitive

Capacity

Serial 7 Subtraction 1.000 0.890∗∗∗ 1.000 0.907∗∗∗

(0.003) (0.004)

Vocabulary 0.839∗∗∗ 0.923∗∗∗ 0.960∗∗∗ 0.900∗∗∗

(0.013) (0.004) (0.016) (0.004)

Immediate Word Recall 1.801∗∗∗ 0.583∗∗∗ 1.684∗∗∗ 0.599∗∗∗

(0.015) (0.003) (0.016) (0.003)

Delayed Word Recall 1.805∗∗∗ 0.595∗∗∗ 1.648∗∗∗ 0.605∗∗∗

(0.014) (0.002) (0.015) (0.003)

Exercise Vigorous Activity 0.682∗∗∗ 0.809∗∗∗ 0.741∗∗∗ 0.814∗∗∗

(0.010) (0.004) (0.012) (0.005)

Moderate Activity 1.000 0.794∗∗∗ 1.000 0.816∗∗∗

(0.004) (0.004)

Light Activity 1.076∗∗∗ 0.933∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.012) (0.004) (0.013) (0.004)

Cognitive

Stimulation

Reading 1.000 0.780∗∗∗ 1.000 0.683∗∗∗

(0.006) (0.007)

Listening to Music 0.512∗∗∗ 0.980∗∗∗ 0.229∗∗∗ 1.004∗∗∗

(0.010) (0.006) (0.010) (0.007)

Stimulating Hobbies 0.578∗∗∗ 0.925∗∗∗ 0.375∗∗∗ 0.969∗∗∗

(0.011) (0.005) (0.012) (0.005)

Communication 0.523∗∗∗ 0.999∗∗∗ 0.325∗∗∗ 0.989∗∗∗

(0.010) (0.005) (0.011) (0.006)

70 Physical

Capacity

Alive 0.042∗∗∗ 0.303∗∗∗ 0.058∗∗∗ 0.303∗∗∗

(0.011) (0.039) (0.013) (0.035)

Grip Strength 0.489∗∗∗ 0.933∗∗∗ 0.578∗∗∗ 0.978∗∗∗

(0.042) (0.015) (0.053) (0.020)

Cognitive

Capacity

Self-Rated Memory 0.576∗∗∗ 0.961∗∗∗ 0.626∗∗∗ 0.937∗∗∗

(0.031) (0.009) (0.035) (0.011)

80 Physical

Capacity

Alive 0.091∗∗∗ 0.353∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.023) (0.047) (0.031) (0.068)

Grip Strength 0.367∗∗∗ 0.882∗∗∗ 0.571∗∗∗ 0.891∗∗∗

(0.052) (0.021) (0.061) (0.023)

Cognitive

Capacity

Self-Rated Memory 0.470∗∗∗ 1.013∗∗∗ 0.589∗∗∗ 0.988∗∗∗

(0.038) (0.012) (0.048) (0.015)

90 Physical

Capacity

Alive 0.137∗ 0.425∗∗∗ 0.204∗ 0.430∗∗∗

(0.081) (0.133) (0.121) (0.128)

Grip Strength 0.357∗∗∗ 0.736∗∗∗ 0.508∗∗∗ 0.766∗∗∗

(0.099) (0.032) (0.120) (0.055)

Cognitive

Capacity

Self-Rated Memory 0.459∗∗∗ 1.081∗∗∗ 0.386∗∗∗ 1.080∗∗∗

(0.097) (0.026) (0.120) (0.038)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1



26 | 1 Mens Sana in Corpore Sano?

the intuition that physical capacity is more predictive of death at older ages, as deterioration of
overall health becomes a more important cause of death than fairly sudden shocks such as cancer
or heart attacks (Gill, Gahbauer, Han, and Allore, 2010).

For measures pertaining to cognitive capacity, we normalize the results from the serial 7 sub-
traction task to have intercept zero and unit loading. This measure along with the vocabulary score
and the two word recall tasks are restricted to have the same factor loading and measurement er-
ror variance across all ages. Serial 7 subtraction and the vocabulary score look very similar in terms
of loading and measurement error. For the word recall tasks, loadings are substantially higher and
measurement errors are lower than this. Consequently, all correlations between these measures
and the cognitive capacity factor are high throughout – around 0.5 for serial 7 subtraction and vo-
cabulary; exceeding 0.8 for the word recall tasks. The measurement system of self-rated memory
is allowed to vary with age. For both genders, its loading is estimated to be about 0.6 initially and
decreases over time. The standard deviation of measurement error is around unity, with a slightly
increasing trend. Consequently, the correlation of self-rated memory with cognitive capacity us
declining with age which is consistent with Huang and Maurer (2019)

Given the similarity of our measurements for exercise, it is unsurprising that all three of them
load substantially on the underlying factor. Moderate activity—the normalized measurement—
has the largest correlation with the exercise factor at all ages. The correlation of vigorous activity
and exercise declines over time whereas light activity goes the other direction. Both of these
trends are more pronounced among women than among men.

Among the measurements loading on cognitive stimulation, we normalize the parameters
on the time spent reading. This is also the dominant one among the four measurements with a
standard deviation of its error around 0.78 (women) and 0.68 (men) and correlations with the
factor exceeding 0.7 throughout. The errors on the other three measurements are between 0.9
and 1; their loadings are estimated to be around 0.5 for women and 0.3 for men. For women,
these coefficients translates into correlations with the cognitive stimulation factor of around 0.4,
which are roughly stable over time. Among men, they start from a level around 0.2-0.3. While
communication activities maintain a constant correlation with the factor, listening to music or
pursuing stimulating hobbies have hardly any relation left with it by age 90.

In sum, the measurements show a high correlation with the factors they are supposed to iden-
tify. For many measurements, it is sensible to restrict the model parameters to be time invariant
and we do so. Measurements that are allowed to be changing with age vary in a way that makes
sense in the light of prior literature. Differences between genders are not dramatic, but large
enough to command separate estimation. Having established these direct relations to the data,
we now turn to the core contribution of our paper: The joint evolution of physical and cognitive
capacity and the impact of exercise and cognitive stimulation.

1.4.2 Transition Equations

The translog production functions for physical and cognitive capacity have many parameters.
In total, we have 15 coefficients per factor, which needs to be multiplied with four age groups
(or“stages” in the terminonlogy of Cunha, Heckman, and Schennach, 2010) and two genders.
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Furthermore, the parameters do not have intuitive interpretations without referring to precise
values of the four factors in our model. We thus refrain from listing the parameters in the main
text and relegate them to Tables 1.D.9–1.D.16 in Appendix 1.D.4. We note that the vast majority
of parameters is very precisely estimated. The set of model parameters is completed with the ini-
tial distribution of states and the standard deviation of period-by-period innovations, which we
relegate to Appendix 1.D.5.

As a first pass, Figure 1.4.1 shows transition equations for physical capacity (first row of each
subfigure referring to women and men, respectively) and cognitive capacity as a function of the
input factors. Each of the sixteen panels contains four lines, one for each age group or stage. Input
factors are kept at their median except for the one on the x-axis, which is varied from the 1st to
the 99th percentile of its distribution in the respective age group.

The top left panel in Figure 1.4.1a thus shows the result of the following thought experiment:
Conditional on current age, what is a woman’s expected value of physical capacity in two years as
a function of her current physical capacity while fixing cognitive capacity, exercise, and cognitive
stimulation at their median values. The results show that there is a high degree of persistence in all
age groups. For the upper part of the distribution of physical capacity, the lines are below the 45°-
line (the distributions at ages 70, 80, and 90 are shown in in Appendix 1.D.3, Figures 1.D.7–1.D.9;
as a rough guide to interpret the first panel of Figure 1.4.1a, the first quartile at age 90 has a value
of −1.2). The transition function is below 45°-line everywhere in the youngest age group, which
has the steepest slope throughout. This means that at median levels of cognitive capacity, exercise,
and cognitive stimulation, physical capacity will unambiguously decline in expectation regardless
of the initial level. In contrast, for very low values of physical capacity at older ages, there would
be some mean reversion – if all other factors were at their median. Of course, cognitive capacity
is not a (direct) choice and there might be substantial costs to reaching median levels of exercise
or cognitive stimulation if physical capacity is very low, for example.

Increased cognitive capacity is associated with a slightly more favorable evolution of physical
capacity. For example, changing cognitive capacity from its first quartile (−0.63) to its third quar-
tile (−0.17) at age 80 is associated with an increase of age-82 physical capacity of 0.02 units or
just under 2 percentiles. The corresponding effects of increased exercise are positive as well and
tend to be larger. The same interquartile move for exercise at age 80 (from −0.81 to −0.06) leads
to an increase of physical capacity by 0.16 units, which corresponds to almost 5 percentiles. The
effects of cognitive stimulation on the dynamics of physical capacity are often slightly negative at
median levels of physical capacity, cognitive capacity, and exercise.

The second row of Figure 1.4.1a shows the corresponding effects for the evolution of cognitive
capacity. We start with the second panel, which contains the own-effects. They are much less
persistent than the own-effects for physical capacity as evident by the flatter slopes at all ages.
The four lines are also further apart except at the very bottom of the distribution of cognitive
capacity. This means that at almost any level of cognitive capacity, the dynamics are worse for
higher ages, provided all other factors are at their median.

The first panel in the second row of Figure 1.4.1a displays modestly positive effects of physical
capacity in the lower age groups; these become zero for higher ages and, in the highest age group,
turn out to be negative at very low levels of physical capacity. Exercise has mostly positive effects



28 | 1 Mens Sana in Corpore Sano?

(a) Transitions, females

(b) Transitions, males

Figure 1.4.1. Next period states as a function of current states, other factors evaluated at the median

on the evolution of cognitive capacity at median values of other states with an exception being
in the lower half of the exercise distribution during women’s upper seventies. Finally, cognitive
stimulation has positive effects almost everywhere. Note that the lines are visually misleading to
some extent because of the long left tail of cognitive stimulation. For example, the first quartile
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at age 80 is −0.66, the slope is steepest to the left of it. Moving cognitive stimulation to its third
quartile at 0.14 has hardly any effect.

Figure 1.4.1b shows the same set of transition functions for men. Again, the broad patterns
are fairly similar to women, but there are some important differences. For example, physical
capacity is deteriorating more quickly for ages 74 and beyond across the entire distribution of
current physical capacity; only at the very bottom of the distribution there is some sign of mean
reversion. For the own-effects of physical capacity, there is a similar pattern to what we noted for
the own effects of cognitive capacity among women: At almost any level of physical capacity, the
dynamics are worse for higher ages, provided all other factors are at their median. In contrast,
for cognitive capacity, the same effect is somewhat less pronounced then for women; the lower
two age group and the upper two age groups look much more similar to each other there. The
signs and magnitudes we noted for the off-diagonal elements generally hold up, although some
curvatures appear markedly different. These mostly concern the tails of the distributions, however.

1.4.3 Dynamic Effects Over Several Periods

A major benefit of our dynamic model over multiple periods is that it can be used to evaluate
the dynamic effects of interventions through various channels. For example, a positive relation
between exercise and cognitive capacity in the cross-section does not mean much because it is
not the snapshot that matters, but the history of processes that has led there. In this section, we
highlight a few examples of how the distributions of factors change in several years’ time when we
exogenously manipulate the factors measuring investments, i.e., exercise or cognitive stimulation.

Tables 1.4.2 and 1.4.3 contain the effects of one possible set of such exercises for women and
men, respectively. In the baseline scenario, we fix all factors at their age-80 medians. The next
row shows the age-86 quantiles the factors are expected to end up at. We then change exercise to
its first quartile at age 80, leaving all other factors at their median and letting all of them evolve
according to the estimated transition equations until age 86. We repeat this exercise for setting
the exercise factor to its third quartile at age 80. The last two panels do the same for cognitive
stimulation. We do not take into account that mortality might be affected by the experiment – all
effects are conditional on the corresponding individual in the data still being alive at age 86.

The main takeaway from the baseline exercise is that even when fixing everything at the
median, there can be large expected changes just a few years down the road. For women, physical
capacity is expected to be at the 45th percentile at age 86, whereas cognitive capacity would be
expected at its 64th percentile. Hardly any change would be expected in the quantiles of exercise
or cognitive stimulation. In stark contrast, for men there would be large drops in the expected
quantiles of physical capacity, exercise, and cognitive stimulation along with a tiny drop in the
quantile of cognitive capacity.

Due to the high persistence in exercise (for women, see Table 1.D.13 or Figure 1.D.13 in the
Appendix; the numbers for men follow directly after those), changing at age 80 essentially means
setting it to the same quantile all three periods. Doing so has a large effect on physical capacity
(drops by 6-7 percentiles); cognitive capacity and cognitive stimulation barely change. The effect
of increasing exercise to its third quartile is almost symmetric for women; the improvement is
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Table 1.4.2. 6-year-ahead effects of changing exercise or cognitive stimulation, females

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Scenario Age

Baseline
80 0.50 0.50 0.50 0.50

86 0.45 0.64 0.49 0.51

Exercise low
80 0.50 0.50 0.25 0.50

86 0.39 0.63 0.28 0.51

Exercise high
80 0.50 0.50 0.75 0.50

86 0.50 0.65 0.67 0.52

Cognitive Stimulation low
80 0.50 0.50 0.50 0.25

86 0.46 0.52 0.48 0.29

Cognitive Stimulation high
80 0.50 0.50 0.50 0.75

86 0.40 0.71 0.49 0.72

Table 1.4.3. 6-year-ahead effects of changing exercise or cognitive stimulation, males

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Scenario Age

Baseline
80 0.50 0.50 0.50 0.50

86 0.34 0.48 0.39 0.38

Exercise low
80 0.50 0.50 0.25 0.50

86 0.27 0.49 0.23 0.37

Exercise high
80 0.50 0.50 0.75 0.50

86 0.37 0.50 0.54 0.39

Cognitive Stimulation low
80 0.50 0.50 0.50 0.25

86 0.35 0.43 0.39 0.19

Cognitive Stimulation high
80 0.50 0.50 0.50 0.75

86 0.33 0.53 0.40 0.60
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only three percentiles for men. Note that, by age 86, exercise has reverted to its 54th percentile,
so less of an effect might be expected, too.

Fixing cognitive stimulation at its first quartile reduces cognitive capacity by 12 percentiles
for women and by 5 percentiles for men. Interestingly, the larger effect for women occurs despite
the fact that at age 86, cognitive stimulation is expected to be at its 29th percentile for women
compared to the 19th percentile for men. Conversely, increasing cognitive stimulation substantially
improves cognition for both genders. It also has a detrimental effect on women’s health whereas
there is no effect for men.

1.5 Conclusions and Outlook

We adapt a nonlinear dynamic latent factor framework that was developed for skill formation of
children to study the physical and cognitive decline between ages 68 and 93. To this end, we
incorporate mortality into the model. The model is estimated with a rich set of measures from
the Health and Retirement Study.

We document a large amount of measurement error in all observed variables. While most
measurements have a high correlation with the latent factor theymeasure, no single measurement
is a good enough proxy to use in isolation. A dynamic latent factor model is therefore a good
fit for this setting. Having a rich set of time invariant measurements for each latent factor, lets
us overcome some of the challenges related to the interpretability of latent factors. To make our
results evenmore interpretable we also present them in terms of population ranks and use survival
probabilities to anchor physical capacity.

We find that, despite a strong decline in means for physical and cognitive capacity, the rank
order of these latent factors is remarkably stable over periods. Nevertheless, physical and cognitive
capacity can be influenced by investments until very high ages. Cognitive stimulation is a specific
investment into cognitive capacity. Physical exercise has a larger effect on physical capacity and
a small effect on cognitive capacity.

We leave a few extensions of our approach for future work. Besides expanding the sampling
period by another wave, we want to add mental health as a separate latent factor that is different
from cognitive and physical capacity but can influence both. As a robustness check we want to
replace the linear probability model of mortality by a probit model. This requires the addition
of nonlinear measurement equations to the model. To address any concerns of endogeneity of
investments, we will use a control function approach similar to recent skill formation papers
(Agostinelli and Wiswall, 2016a; Attanasio, Meghir, and Nix, 2020) as endogeneity correction.
Finally wewill use themodel to simulate the effect of different investment policies and use Shapley
decompositions to attribute the dynamic of investments overmultiple periods to different channels
of transmission.

Appendix 1.A Additional Background on the Data and Measurements
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(a) Physical capacity, females (b) Physical capacity, males

(c) Cognitive capacity, females (d) Cognitive capacity, males

(e) Exercise, females (f) Exercise, males

(g) Cognitive Stimulation, females (h) Cognitive Stimulation, males

Figure 1.A.1. Standard deviation of measurements by age
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Appendix 1.B The Maximum Likelihood Estimator

1.B.1 State Estimation

1.B.1.1 Preliminaries

To discuss the econometric approach used in this paper and potential alternatives it is convenient
to express the model in state space notation.

To do so, let xt ∈ RN denote the vector of latent factors (i.e. physical capacity, cognitive ca-
pacity, physical exercise and cognitive stimulation) in period t.

Similarly, let yt ∈ RLt denote the vector of all observable measurements in period t.
Then the transition function of the latent factors can be written as:

xt+1 = Ft(xt) + ηt (1.B.1)

where ηt is a vector of error terms with ηj
t on the jth position. Let Qt denote the covariance

matrix of ηt

The linear measurement system can be written as:

yt = Htxt + εt (1.B.2)

where Ht is a matrix of coefficients known as factor loadings and εt is a vector of measurement
errors with εt,l on the lth position. Let Rt denote the covariance matrix of εt.

Equations 1.B.1 and 1.B.2 define a state space model. Equation 1.B.1 is called transition equa-
tion. Equation 1.B.2 is called measurement equation. The vector xt is called the state of the system.
The matrices Qt and Rt are called process noise and measurement noise, respectively.

To see why it was handy to rewrite the technology of skill formation in state form, assume
for a moment that the transition function Ft (including parameters) as well as the matrices Ht, Qt

and Rt are known for all t ∈ T but the state vectors xt are unknown and have to be estimated from
measurements yt. This problem is known as optimal state estimation, which is a well researched
topic in physics and engineering.

To efficiently estimate the state vector in period t, an estimator should not only use mea-
surements from this period, but also take the information from all previous measurements into
account. For linear systems, Kalman filters are the method of choice for state estimation (Kalman,
1960). For nonlinear systems, several nonlinear variants of the Kalman filter have been developed.
Kalman filters treat the state of a system itself as random vector. Therefore, they are sometimes
classified as Bayesian filters.

Kalman filters consist of a predict and an update step. They are initialised with an initial
estimate for the mean x̄0 and covariance matrix P0 of the distribution of the state vector. Then, in
each period, the new measurements are incorporated to update the mean and covariance matrix
of the state vector. After that, the transition equation is used to predict the mean and covariance
matrix of the state vector in the next period. This predicted state vector can then again be updated
with measurements.
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For the application of Kalman filters, the following assumptions must hold:

1. ηt ∼N (0N,Qt) where 0N denotes a vector of zeros of length N, Qt is a diagonal matrix.
2. The ηj

t are serially independent over all t.
3. εt ∼N (0Lt

,Rt) where Rt is a diagonal matrix.
4. The εt,l are serially independent over all t.

5. εt,l and ηj
t are independent of xt for all t= 1, . . . , T, l= 1, . . . , L and each factor j.

6. The distribution of the state vector p(xt) can be approximated by a mixture of normal distri-
butions for all t= 1, . . . , T

Due to the assumption of a linear measurement system, the state vector can be estimated by
combining the update step of a linear Kalman filter with the predict step of a nonlinear Kalman
filter. For computational reasons, it will be convenient not to incorporate all measurements at
once but to perform a separate update step for each measurement.

1.B.1.2 The Update Step of the Kalman Filter

The aim of the Kalman update is to efficiently combine information frommeasurements in the cur-
rent period with previous measurements. To do so, the measurement function is used to convert
the pre-update state vector into predicted measurements for the current period (equation 1.B.3).
The difference between the predicted and actual measurements is called residual (equation 1.B.4).
This residual, scaled by the so called Kalman gain, is then added to the pre-update state vector
(equation 1.B.8). The Kalman gain is smaller if the variance of the measurement (calculated by
equation 1.B.6) is large. This has the intuitive consequence that noisy measurements receive a low
weight. The Kalman gain becomes larger if the pre-update covariance matrix has large diagonal
entries (equation 1.B.5 and 1.B.7). Thus, measurements receive more weight if the pre-update
state is known imprecisely due to bad initial values or a high process noise, for example. After the
incorporation of the measurements, the state is always known with the same or more precision
than before. This is reflected by subtracting a positive semi-definite matrix from the pre-update
covariance matrix (equation 1.B.9).

Let x̄t|y−t,l
denote the mean of the conditional distribution of the state vector given all measure-

ments up to but not including the lth measurement in period t. Let Pt|y−t,l
denote the covariance

matrix of this distribution. Let ht,l denote the lth row of Ht. Let rt,l,l be the lth diagonal element
of Rt. The update step that incorporates the lth measurement into the estimate is given by the
following equations:
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ȳt,l|y−t,l
= ht,lx̄t|y−t,l

ȳt,l|y−t,l
= E(yt,l|y−t,l) (1.B.3)

δt,l = yt,l − ȳt,l|y−t,l
δt,l can be interpreted as residual (1.B.4)

f t,l = Pt|y−t,l
hT

t,l f t,l is an intermediate result (1.B.5)

σt,l = ht,lf t,l + rt,l,l σt,l is the variance of yt,l (1.B.6)

kt,l =
1
σt,l

f t,l kt,l is the (scaled) Kalman gain (1.B.7)

x̄t|yt,l
= x̄t|y−t,l

+ kt,lδt,l x̄t|yt,l
is the updated mean (1.B.8)

Pt|yt,l
= Pt|y−t,l

−
1
σt,l

f t,lf
T
t,l Pt|yt,l

is the updated covariance matrix (1.B.9)

1.B.1.3 The Predict Step of the Kalman Filter

In linear systems, the mean and covariance matrix of the system can be propagated to the next
period by simply applying the linear transition equation. With a nonlinear transition function,
however, this is not possible, as E(f(X) ̸= f(E(X) in general. For the nonlinear predict step, two
basic options exist: The extended Kalman filter and the unscented Kalman filter. Cunha, Heckman
and Schennach choose the unscented Kalman filter because it has been shown to be more reliable
in a wide range of settings (Van Der Merwe, 2004).

The intuition of the predict step of the unscented Kalman filter is relatively simple: firstly,
a deterministic sample of points in the state space, called sigma points (equation 1.B.10), and
accompanying weights are chosen (equation 1.B.11). Usually these are 2N + 1 points and weights,
where N is the length of the state vector. Secondly, these sigma points are transformed using the
true nonlinear transition equation. Thirdly, the weighted sample mean is used as estimate for the
next period mean of the state vector (equation 1.B.12). Fourthly, the sum of the covariance matrix
of the process noise and the weighted sample covariance of the transformed sigma points is used
as estimate of the covariance matrix of the state vector (equation 1.B.13). Intuitively, the addition
of the process noise accounts for the fact that the prediction always adds some uncertainty about
the state of the system.

For the choice of sigma points and sigma weights, many different algorithms exist. All have
in common that some form of matrix square root of the covariance matrix of the state vector is
taken. Two definitions of matrix square root exist: 1) A is a matrix square root of P if P= AA. 2) A
is a matrix square root of P if P= AAT. The matrix square root is not unique in general and some
matrices do not have a square root. However, all symmetric positive semi-definite matrices, i.e. all
valid covariance matrices, can be decomposed into P= LLT where L is lower triangular (Zhang,
1999). For the unscented Kalman filter, both definitions of matrix square root work. Below, the
sigma point algorithm proposed by Julier and Uhlmann (1997), is presented without reference
to a particular type of matrix square root:

Let κ ∈ R be a scaling parameter. Usually, κ is set to 2 if the distribution of the state vector is
assumed to be normal. Let Pt|t denote the covariance matrix of the state vector, conditional on all
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measurements up to and including period t. Define St|t ≡
p

Pt|t as the matrix square root of Pt|t
and let st,n denote its nth column.

Sigma points are calculated according to the following equations:

χt,n = x̄t|t for n = 0

χt,n = x̄t|t +
p

N + κ st,n for n = 1, . . . N (1.B.10)

χt,n = x̄t|t −
p

N + κ st,n for n = N + 1, . . . 2N

where χt,n is the nth sigma point at period t that is calculated after incorporating all measure-
ments of that period. The corresponding sigma weights are calculated as follows:

wt,n =
κ

N + κ
for n = 0 (1.B.11)

wt,n =
1

2(N + κ)
for n = 1, . . . , 2N

where wt,n is the nth sigma weight. Define eχt,n ≡ Ft(χt,n) where Ft(·) is defined as in equation
1.B.1. Then the predict step of the unscented Kalman filter is given by:

x̄t+1|t =
2N
∑

n=0

wt,n eχt,n (1.B.12)

Pt+1|t =

� 2N
∑

n=0

wt,n(eχt,n − x̄t+1|t)(eχt,n − x̄t+1|t)
T

�

+ Qt (1.B.13)

1.B.2 The Likelihood Interpretation of the Kalman Filter

Of course, the parameters of the function Ft and the matrices Ht, Qt and Rt are unknown in reality.
However, they can be estimated bymaximum likelihood. The direct maximization of the likelihood
function would involve the evaluation of high dimensional integrals which is computationally very
expensive (Cunha, Heckman, and Schennach, 2010). Instead, Kalman filters can be used to reduce
the sumber of computations required for each evaluation of the likelihood function dramatically.

To see how, define θ as the vector with all estimated parameters of the model. Then, the
likelihood contribution of individual i is given by:

L (θ |y1, . . . ,yT) ≡ pθ (y1, . . . ,yT) =
T
∏

t=1

Lt
∏

l=1

pθ (yt,l|y−t,l) (1.B.14)

where pθ (y1, . . . ,yT) denotes the joint density of all measurements for individual i, conditional
on the parameter vector θ and pθ (yt,l|y−t,l) is the density of the lth measurement in period t, given
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all measurements up to but not including this measurement. The subscript i is again omitted for
readability.

To see how this relates to the Kalman filter, recall that for each t= 1, . . . , T and each
l= 1, . . . , Lt, equation 1.B.3 calculates ȳt,l|y−t,l

, i.e the expected value of the lth measurement in
period t, conditional on all previous measurements. In addition, due to the normality and inde-
pendence assumptions on the error terms and the factor distribution, yt,l is normally distributed
around ȳt,l|y−t,l

. Equation 1.B.6 can be used to calculate the variance σt,l of this distribution. Thus,
pθ (yt,l|y−t,l)= φȳt,l|y−t,l

,σt,l
(yt,l) where φµ,σ(·) is the density of a normal random variable with mean

µ and variance σ.
A nice feature of the estimator based on this factorization of the likelihood function is that

it can deal very well with missing observations. If measurement yt,l is missing for inidividual i,
the corresponding update of the state vector is just skipped. More formally, this means that the
missing measurement is integrated out from the likelihood function.

1.B.3 Numerical Stability

1.B.3.1 Numerical Challenges

While the Kalman filter based maximum likelihood estimator is statistically and computationally
efficient, it is numerically unstable. The numerical instability caused by floating point imprecision
is inherent to Kalman filters and has been discovered soon after Kalman published his original
article. Since then, the precision of computers has increased enormously such that nowadays
numerical problems are not a big issue for well specified Kalman filters. However, during the
maximization of the likelihood function the optimizer might pick parameter combinations that
are far from leading to a well specified filter.

The numerical problems manifest themselves in two places:

1. In the update step, the subtraction in equation 1.B.9 can lead to negative diagonal elements
in the updated covariance matrix of the state vector. While this is mathematically impossible
in a well specified Kalman filter, numerical imprecisions and badly specified Kalman filters
during the maximization process make it possible.

2. Even if the covariance matrix of the state vector has nonnegative diagonal entries, numerical
imprecisions might render it not positive semi-definite. With this the existence of a matrix
square root is not guaranteed, which can make the calculation of sigma points impossible.

Cunha, Heckman and Schennach mention the numerical problems in their supplementary
material. To solve the first problem, they recommend to find good initial values for the maximiza-
tion by first constraining some parameters and letting the code find good initial values for the
others. For the second problem, they propose to set all off-diagonal elements of P to zero before
taking the square root, which then corresponds to taking the element wise square root of the
diagonal elements. While this prevents the estimator from crashing, it is not standard practice in
Kalman filtering and it is not guaranteed that an estimator based on this type of matrix square
root produces reliable results.
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1.B.3.2 Outline of the Solution

A better approach is to use a square root implementation of the Kalman filter. Many different
square root Kalman filters exist. They are mathematically equivalent to normal Kalman filters but
numerically more stable.

Instead of propagating the full covariance matrix of the state vector, square root Kalman filters
propagate the square root of this matrix. This has three advantages:

1. It avoids overflow errors due to numbers with very small or large absolute values, as taking
the square root makes large numbers smaller and small numbers larger.

2. By using a matrix square root A of the type P= AAT, the problematic covariance matrix is
guaranteed to be positive semi-definite (Zhang, 1999), i.e. a valid covariance matrix. In par-
ticular, its diagonal entries are sums of squared terms and, consequently, guaranteed to be
nonnegative. This solves the first problem.

3. By choosing an appropriate pair of square root update and predict algorithms, taking matrix
square roots can be completely avoided. This eliminates the second problem.

The computational requirements of square root filters are comparable to those of normal
Kalman filters. In the nonlinear case, they are even lower. For a maximally robust estimator, we
use a pair of square root update and predict algorithms that completely avoid takingmatrix square
roots. The algorithm for the update was developed by Prvan and Osborne (Prvan and Osborne,
1988). The unscented square root predict step was proposed by Van Der Merwe and Wan (van
der Merwe and Wan, 2001). Both propagate the transpose of a lower triangular matrix square
root of the state covariance matrix.

1.B.3.3 The QR Decomposition of a Matrix

Both square root algorithms rely on a matrix factorization called QR decomposition. Note that in
this subsection, Q and R do not denote the covariance matrices of the process and measurement
noise but factors into which a matrix is decomposed.

QR is called QR decomposition of an m× n matrix A with m≥ n if:

1. A= QR

2. Q is an orthogonal m×m matrix
3. R is an m× n matrix and the first n rows of R form a upper triangular matrix and its remaining

rows only contain zeros

The QR decomposition of a matrix always exists but is not unique. A useful property of the
QR decomposition is that:

ATA = (QR)TQR = RTQTQR = RTR (1.B.15)
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where the last equality comes from the defining property of orthogonal matrices that QTQ=
QQT = I, where I denotes the identity matrix. Thus, the upper triangular part of R is the trans-
pose of a lower triangular matrix square root of ATA. For convenience, let qr(A) denote the QR
decomposition of A that only returns the upper triangular part of the matrix R.

1.B.3.4 The Update Step of the Square-Root Kalman Filter

Let St|y−l,t
be a lower triangular matrix square root of Pt|y−l,t

and keep the rest of the notation as in
section 1.B.1. Then, the square root update that incorporates the lth measurement in period t is
given by the following equations:

ȳt,l|y−t,l
and δt,l are calculated as in equation 1.B.3 and 1.B.4 respectively. Then the following

intermediate results are calculated.

f ∗t,l = ST
t|y−t,l

hT
t,l (1.B.16)

Mt,l =





p

rt,l,l 0T
N

f ∗t,l ST
t|y−t,l



 (1.B.17)

It can be shown that:

qr(Mt,l) =





p

σt,l
1p
σt,l

fT
t,l

0N ST
t|yt,l



 (1.B.18)

where ST
t|yt,l

is the transpose of a lower triangular square root of the updated covariance matrix
and 0N denotes a column vector of length N that is filled with zeros.

The matrix in equation 1.B.18 also contains f t,l and σt,l such that the Kalman gain can be
calculated as in equation 1.B.7 and the mean of the state vector can be updated as in equation
1.B.8.

To see why equation 1.B.18 holds, define Ut,l ≡ qr(Mt,l) and partition it as follows:

Ut,l =





U1,1 U1,2

0 U2,2



 (1.B.19)

where U1,1 is a scalar, U1,2 a row vector of length N, 0 a column vector of length N filled with
zeros and U2,2 an upper triangular N × N matrix. Recall from the definition of Ut,l and equation
1.B.15 that UT

t,lUt,l = MT
t,lMt,l. Multiplying out both sides of this equality yields:





rt,l,l + f ∗Tt,l f
∗
t,l f ∗Tt,l S

T
t|y−t,l

St|y−t,l
f ∗t,l St|y−t,l

ST
t|y−t,l



 =





U2
1,1 U1,1U1,2

UT
1,2U1,1 UT

1,2U1,2 + UT
2,2U2,2



 (1.B.20)

It is obvious from equation 1.B.6 and 1.B.16 that U1,1 =
p

σt,l. Using this and noting that
f ∗Tt,l S

T
t|y−t,l

= fT
t,l, where f t,l is defined as in equation 1.B.5, one obtains that:
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U1,2 =
fT

t,l
p

σt,l
(1.B.21)

It remains to show that U2,2 = ST
t|yt,l

. By noting that the bottom right element of the left
hand side of equation 1.B.20 is, by definition, equal to the pre-update covariance matrix Pt|y−t,l
and plugging in the value for U1,2, one obtains that:

UT
2,2U2,2 = Pt|y−t,l

−
1
σt,l

f t,lf
T
t,l = Pt|yt,l

(1.B.22)

where the last equality comes comes from equation 1.B.9. Thus UT
2,2 is a matrix square root

of Pt|yt,l
and by the definition of the QR decomposition it is lower triangular, which completes the

proof. Importantly, no part of the proof requires the lower triangular square roots of Pt|y−t,l
or Pt|yt,l

to be unique or makes reference to a specific type of matrix square root.

1.B.3.5 The Predict Step of the Square-Root Kalman Filter

For the square root implementation of the unscented predict step in period t, firstly the sigma
points are calculated as in equation 1.B.10, where this time St|t is required to be a lower triangular
matrix square root of Pt|t. Again, X̃t denotes the (2N + 1)×N matrix of the transformed sigma
points. The calculation of the predicted mean of the state vector remains the same as before
(equation 1.B.12).

Define At as stacked matrix of weighted deviations of the sigma points from the predicted
mean and the covariance matrix of the transition shocks:

At ≡













p

wt,0(X̃t,0 − x̄t+1|t)
T

. . .
p

wt,2n(X̃t,2n − x̄t+1|t)
T

p

Qt













(1.B.23)

Then equation 1.B.13 can be rewritten as:

Pt+1|t = AT
t At (1.B.24)

and by the relation of the QR decomposition and and the lower triangular matrix square root
(equation 1.B.15) a lower triangular matrix square root of Pt+1|t is given by qr(At)

T.

Appendix 1.C Detailed Model Setup

1.C.1 Background on Identification

Cunha, Heckman, and Schennach (2010) provide very general nonparametric Identification re-
sult for nonlinear dynamic latent factor models. The exact conditions for identification depend
on the assumptions one is willing to put on the measurement error. However, having at least two



Appendix 1.D Additional Tables and Figures for the Main Specification | 41

dedicated measurements for each latent factor in each period is sufficient to identify an arbitrary
production function under mild conditions. Since latent factors do not have a natural unit of mea-
surement, the identification requires normalizations of location and scale. Thus, Cunha, Heckman,
and Schennach (2010) normalize one loading of each factor in each period to 1 and one intercept
of each factor in each period to 0. While the identification result works for arbitrary production
functions, they use a parametric CES function in their empirical application.

Agostinelli and Wiswall (2016b) criticize the identification result by Cunha, Heckman, and
Schennach (2010) to be flawed. They point out that the CES production function already puts a
restriction on the scale and location of its output. Thus, normalization of scale and location are only
required in the first period and re-normalizations in each period are actually not normalizations
but testable assumptions. Moreover, they show that under the implicit restrictions imposed by
the CES production function, identification under a linear measurement system can be achieved
with as little as one measurement per latent factor and period as long as there are at least two
measurements in the first period.

Freyberger (2021) shows that the CES production function also imposes implicit restrictions
on the relative scale of the latent factors and thus identification can be achieved if only the location
and scale of a single factor are normalized in the first period.

While the critique by Agostinelli and Wiswall (2016b) that over-normalizations are detrimen-
tal is correct, it mostly applies to the empirical application and not the general identification result
in Cunha, Heckman, and Schennach (2010) nor the maximum likelihood estimator used in the
paper. The identification result states that latent factors have no natural scale and location that
could be be identified from data and thus their location and scale has to be fixed by restrictions
imposed by the econometrician. Cunha, Heckman, and Schennach (2010) restrict factor loadings
and intercepts but mention, that instead of factor loadings, the variances of measurement errors
could be restricted. Of course, these restrictions are mutually exclusive and it would not be valid
to restrict factor loadings and variances of measurement error at the same time. The main contri-
bution of Agostinelli and Wiswall (2016b) is to point out that using restrictive functional forms for
the production function is yet another way of fixing the location and scale of the latent factors.

Appendix 1.D Additional Tables and Figures for the Main Specification

1.D.1 Complete Set of Parameters of the Measurement System
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Table 1.D.1. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity, Females

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.707∗∗∗

(0.001)

Mobility −0.113∗∗∗ 1.228∗∗∗ 0.766∗∗∗

(0.003) (0.005) (0.003)

Large Muscle Index 0.005∗ 0.929∗∗∗ 0.750∗∗∗

(0.003) (0.005) (0.002)

Self-Reported Health −0.048∗∗∗ 0.950∗∗∗ 0.765∗∗∗

(0.003) (0.004) (0.002)

70 Alive 0.897∗∗∗ 0.042∗∗∗ 0.303∗∗∗

(0.103) (0.011) (0.039)

Grip Strength −0.126∗∗∗ 0.489∗∗∗ 0.933∗∗∗

(0.027) (0.042) (0.015)

72 Alive 0.909∗∗∗ 0.045∗∗∗ 0.288∗∗∗

(0.107) (0.011) (0.038)

Grip Strength −0.241∗∗∗ 0.396∗∗∗ 0.922∗∗∗

(0.028) (0.042) (0.016)

74 Alive 0.902∗∗∗ 0.060∗∗∗ 0.301∗∗∗

(0.097) (0.013) (0.036)

Grip Strength −0.292∗∗∗ 0.466∗∗∗ 0.935∗∗∗

(0.030) (0.043) (0.018)

76 Alive 0.885∗∗∗ 0.073∗∗∗ 0.327∗∗∗

(0.101) (0.018) (0.043)

Grip Strength −0.471∗∗∗ 0.368∗∗∗ 0.924∗∗∗

(0.030) (0.049) (0.012)

78 Alive 0.879∗∗∗ 0.075∗∗∗ 0.339∗∗∗

(0.103) (0.019) (0.046)

Grip Strength −0.540∗∗∗ 0.447∗∗∗ 0.924∗∗∗

(0.033) (0.048) (0.019)

80 Alive 0.871∗∗∗ 0.091∗∗∗ 0.353∗∗∗

(0.097) (0.023) (0.047)

Grip Strength −0.758∗∗∗ 0.367∗∗∗ 0.882∗∗∗

(0.034) (0.052) (0.021)

82 Alive 0.870∗∗∗ 0.089∗∗∗ 0.359∗∗∗

(0.112) (0.026) (0.054)

Grip Strength −0.789∗∗∗ 0.336∗∗∗ 0.861∗∗∗

(0.037) (0.055) (0.020)

84 Alive 0.869∗∗∗ 0.110∗∗∗ 0.371∗∗∗

(0.105) (0.030) (0.053)

Grip Strength −0.980∗∗∗ 0.334∗∗∗ 0.866∗∗∗

(0.042) (0.061) (0.026)

86 Alive 0.856∗∗∗ 0.123∗∗∗ 0.391∗∗∗

(0.122) (0.040) (0.067)

Grip Strength −0.997∗∗∗ 0.337∗∗∗ 0.839∗∗∗

(0.046) (0.071) (0.028)

88 Alive 0.846∗∗∗ 0.129∗∗ 0.406∗∗∗

(0.146) (0.053) (0.086)

Grip Strength −1.191∗∗∗ 0.413∗∗∗ 0.827∗∗∗

(0.060) (0.084) (0.035)

90 Alive 0.828∗∗∗ 0.137∗ 0.425∗∗∗

(0.203) (0.081) (0.133)

Grip Strength −1.105∗∗∗ 0.357∗∗∗ 0.736∗∗∗

(0.062) (0.099) (0.032)

92 Alive 0.819∗∗∗ 0.168 0.443∗∗∗

(0.215) (0.116) (0.148)

Grip Strength −1.362∗∗∗ 0.350∗∗∗ 0.746∗∗∗

(0.083) (0.116) (0.048)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.2. Intercepts, Loadings, and Measurement Standard Deviations for Physical Capacity, Males

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.796∗∗∗

(0.002)

Mobility −0.015∗∗∗ 1.331∗∗∗ 0.750∗∗∗

(0.005) (0.007) (0.003)

Large Muscle Index 0.042∗∗∗ 1.032∗∗∗ 0.761∗∗∗

(0.004) (0.006) (0.003)

Self-Reported Health 0.026∗∗∗ 0.963∗∗∗ 0.793∗∗∗

(0.003) (0.006) (0.003)

70 Alive 0.901∗∗∗ 0.058∗∗∗ 0.303∗∗∗

(0.092) (0.013) (0.035)

Grip Strength −0.056 0.578∗∗∗ 0.978∗∗∗

(0.034) (0.053) (0.020)

72 Alive 0.907∗∗∗ 0.075∗∗∗ 0.298∗∗∗

(0.083) (0.015) (0.030)

Grip Strength −0.294∗∗∗ 0.550∗∗∗ 0.959∗∗∗

(0.034) (0.053) (0.020)

74 Alive 0.900∗∗∗ 0.061∗∗∗ 0.310∗∗∗

(0.119) (0.017) (0.046)

Grip Strength −0.318∗∗∗ 0.497∗∗∗ 0.922∗∗∗

(0.035) (0.057) (0.021)

76 Alive 0.876∗∗∗ 0.073∗∗∗ 0.344∗∗∗

(0.129) (0.024) (0.059)

Grip Strength −0.506∗∗∗ 0.559∗∗∗ 0.898∗∗∗

(0.037) (0.057) (0.020)

78 Alive 0.872∗∗∗ 0.081∗∗∗ 0.355∗∗∗

(0.130) (0.027) (0.062)

Grip Strength −0.560∗∗∗ 0.553∗∗∗ 0.920∗∗∗

(0.041) (0.059) (0.023)

80 Alive 0.866∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.135) (0.031) (0.068)

Grip Strength −0.737∗∗∗ 0.571∗∗∗ 0.891∗∗∗

(0.043) (0.061) (0.023)

82 Alive 0.852∗∗∗ 0.136∗∗∗ 0.394∗∗∗

(0.117) (0.043) (0.066)

Grip Strength −0.959∗∗∗ 0.468∗∗∗ 0.872∗∗∗

(0.046) (0.065) (0.025)

84 Alive 0.868∗∗∗ 0.139∗∗∗ 0.387∗∗∗

(0.130) (0.047) (0.068)

Grip Strength −1.042∗∗∗ 0.557∗∗∗ 0.842∗∗∗

(0.052) (0.069) (0.027)

86 Alive 0.849∗∗∗ 0.140∗∗ 0.408∗∗∗

(0.157) (0.062) (0.092)

Grip Strength −1.238∗∗∗ 0.488∗∗∗ 0.841∗∗∗

(0.064) (0.085) (0.034)

88 Alive 0.856∗∗∗ 0.176∗∗ 0.418∗∗∗

(0.154) (0.074) (0.090)

Grip Strength −1.283∗∗∗ 0.471∗∗∗ 0.826∗∗∗

(0.071) (0.109) (0.045)

90 Alive 0.850∗∗∗ 0.204∗ 0.430∗∗∗

(0.212) (0.121) (0.128)

Grip Strength −1.358∗∗∗ 0.508∗∗∗ 0.766∗∗∗

(0.102) (0.120) (0.055)

92 Alive 0.765∗∗ 0.183 0.464∗

(0.312) (0.218) (0.268)

Grip Strength −1.493∗∗∗ 0.684∗∗∗ 0.816∗∗∗

(0.123) (0.166) (0.077)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.3. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity, Females

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.890∗∗∗

(0.003)

Vocabulary 0.043∗∗∗ 0.839∗∗∗ 0.923∗∗∗

(0.006) (0.013) (0.004)

Immediate Word Recall −0.161∗∗∗ 1.801∗∗∗ 0.583∗∗∗

(0.006) (0.015) (0.003)

Delayed Word Recall −0.189∗∗∗ 1.805∗∗∗ 0.595∗∗∗

(0.006) (0.014) (0.002)

70 Self-Rated Memory 0.005 0.576∗∗∗ 0.961∗∗∗

(0.014) (0.031) (0.009)

72 Self-Rated Memory 0.029∗∗ 0.593∗∗∗ 0.955∗∗∗

(0.015) (0.030) (0.009)

74 Self-Rated Memory 0.016 0.555∗∗∗ 0.973∗∗∗

(0.015) (0.030) (0.009)

76 Self-Rated Memory 0.028∗ 0.497∗∗∗ 0.968∗∗∗

(0.017) (0.033) (0.010)

78 Self-Rated Memory 0.045∗∗ 0.501∗∗∗ 0.992∗∗∗

(0.019) (0.035) (0.011)

80 Self-Rated Memory 0.052∗∗ 0.470∗∗∗ 1.013∗∗∗

(0.022) (0.038) (0.012)

82 Self-Rated Memory 0.069∗∗ 0.460∗∗∗ 1.010∗∗∗

(0.027) (0.043) (0.013)

84 Self-Rated Memory 0.083∗∗ 0.398∗∗∗ 1.035∗∗∗

(0.032) (0.050) (0.015)

86 Self-Rated Memory 0.079∗ 0.393∗∗∗ 1.063∗∗∗

(0.041) (0.058) (0.018)

88 Self-Rated Memory 0.261∗∗∗ 0.549∗∗∗ 1.069∗∗∗

(0.055) (0.075) (0.021)

90 Self-Rated Memory 0.210∗∗∗ 0.459∗∗∗ 1.081∗∗∗

(0.074) (0.097) (0.026)

92 Self-Rated Memory 0.218∗∗ 0.538∗∗∗ 1.145∗∗∗

(0.110) (0.133) (0.040)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.4. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Capacity, Males

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.907∗∗∗

(0.004)

Vocabulary 0.048∗∗∗ 0.960∗∗∗ 0.900∗∗∗

(0.008) (0.016) (0.004)

Immediate Word Recall −0.183∗∗∗ 1.684∗∗∗ 0.599∗∗∗

(0.008) (0.016) (0.003)

Delayed Word Recall −0.200∗∗∗ 1.648∗∗∗ 0.605∗∗∗

(0.008) (0.015) (0.003)

70 Self-Rated Memory −0.041∗∗ 0.626∗∗∗ 0.937∗∗∗

(0.017) (0.035) (0.011)

72 Self-Rated Memory −0.052∗∗∗ 0.560∗∗∗ 0.955∗∗∗

(0.017) (0.034) (0.011)

74 Self-Rated Memory −0.043∗∗ 0.573∗∗∗ 0.949∗∗∗

(0.017) (0.035) (0.011)

76 Self-Rated Memory −0.039∗∗ 0.527∗∗∗ 0.955∗∗∗

(0.020) (0.040) (0.012)

78 Self-Rated Memory −0.051∗∗ 0.607∗∗∗ 0.972∗∗∗

(0.022) (0.043) (0.013)

80 Self-Rated Memory −0.002 0.589∗∗∗ 0.988∗∗∗

(0.026) (0.048) (0.015)

82 Self-Rated Memory −0.019 0.479∗∗∗ 1.033∗∗∗

(0.034) (0.057) (0.018)

84 Self-Rated Memory −0.019 0.520∗∗∗ 1.007∗∗∗

(0.040) (0.063) (0.020)

86 Self-Rated Memory −0.019 0.464∗∗∗ 0.992∗∗∗

(0.046) (0.071) (0.022)

88 Self-Rated Memory 0.007 0.509∗∗∗ 1.035∗∗∗

(0.065) (0.091) (0.028)

90 Self-Rated Memory 0.011 0.386∗∗∗ 1.080∗∗∗

(0.089) (0.120) (0.038)

92 Self-Rated Memory 0.003 0.599∗∗∗ 1.011∗∗∗

(0.125) (0.182) (0.049)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.5. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Females

Intercept Loading Meas. Std.

All Vigorous Activity −0.009 0.682∗∗∗ 0.809∗∗∗

(0.006) (0.010) (0.004)

Moderate Activity 0.000 1.000 0.794∗∗∗

(0.004)

Light Activity −0.127∗∗∗ 1.076∗∗∗ 0.933∗∗∗

(0.007) (0.012) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.D.6. Intercepts, Loadings, and Measurement Standard Deviations for Exercise, Males

Intercept Loading Meas. Std.

All Vigorous Activity −0.012∗∗ 0.741∗∗∗ 0.814∗∗∗

(0.006) (0.012) (0.005)

Moderate Activity 0.000 1.000 0.816∗∗∗

(0.004)

Light Activity −0.077∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.007) (0.013) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.7. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimulation, Females

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.780∗∗∗

(0.006)

Listening to Music −0.168∗∗∗ 0.512∗∗∗ 0.980∗∗∗

(0.006) (0.010) (0.006)

Stimulating Hobbies −0.069∗∗∗ 0.578∗∗∗ 0.925∗∗∗

(0.007) (0.011) (0.005)

Communication −0.062∗∗∗ 0.523∗∗∗ 0.999∗∗∗

(0.006) (0.010) (0.005)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.D.8. Intercepts, Loadings, and Measurement Standard Deviations for Cognitive Stimulation, Males

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.683∗∗∗

(0.007)

Listening to Music −0.175∗∗∗ 0.229∗∗∗ 1.004∗∗∗

(0.007) (0.010) (0.007)

Stimulating Hobbies −0.012 0.375∗∗∗ 0.969∗∗∗

(0.009) (0.012) (0.005)

Communication −0.083∗∗∗ 0.325∗∗∗ 0.989∗∗∗

(0.007) (0.011) (0.006)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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1.D.2 Correlations Between Measurements and Factors

Figure 1.D.1. Correlations across implied factors and measurement correlations – females aged 70
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Figure 1.D.2. Correlations across implied factors and measurement correlations – females aged 80
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Figure 1.D.3. Correlations across implied factors and measurement correlations – females aged 90
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Figure 1.D.4. Correlations across implied factors and measurement correlations – males aged 70
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Figure 1.D.5. Correlations across implied factors and measurement correlations – males aged 80
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Figure 1.D.6. Correlations across implied factors and measurement correlations – males aged 90
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1.D.3 Factor Distributions

Figure 1.D.7. Factor distributions – females aged 70
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Figure 1.D.8. Factor distributions – females aged 80
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Figure 1.D.9. Factor distributions – females aged 90
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Figure 1.D.10. Factor distributions – males aged 70
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Figure 1.D.11. Factor distributions – males aged 80
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Figure 1.D.12. Factor distributions – males aged 90
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1.D.4 Transition Equations

Figure 1.D.13. Transition equations for all factors (other factors evaluated at the median), females
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Figure 1.D.14. Transition equations for all factors (other factors evaluated at the median), males
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Table 1.D.9. Transition Parameters for Physical Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.999∗∗∗ 0.972∗∗∗ 0.969∗∗∗ 0.994∗∗∗

(0.006) (0.008) (0.014) (0.035)

Cognitive Capacity 0.007 0.003 −0.086∗∗∗ −0.093

(0.008) (0.011) (0.023) (0.069)

Exercise 0.066∗∗∗ 0.074∗∗∗ 0.054∗∗∗ −0.022

(0.007) (0.009) (0.015) (0.043)

Cognitive Stimulation −0.035∗∗∗ −0.025∗∗∗ 0.039∗∗∗ 0.021

(0.006) (0.008) (0.015) (0.034)

Physical Capacity Squared −0.015 0.030∗∗∗ 0.041∗∗∗ 0.002

(0.009) (0.012) (0.015) (0.030)

Cognitive Capacity Squared −0.066∗∗∗ −0.097∗∗∗ −0.180∗∗∗ −0.235∗∗∗

(0.015) (0.019) (0.031) (0.067)

Exercise Squared −0.074∗∗∗ −0.031∗ −0.001 −0.136∗∗∗

(0.016) (0.016) (0.021) (0.040)

Cognitive Stimulation Squared −0.004 −0.029∗∗ −0.066∗∗∗ −0.045∗∗

(0.013) (0.012) (0.015) (0.021)

Physical Capacity × Cognitive Capacity 0.069∗∗∗ 0.099∗∗∗ 0.142∗∗∗ 0.221∗∗∗

(0.018) (0.021) (0.032) (0.065)

Physical Capacity × Exercise 0.075∗∗∗ 0.024 0.014 0.161∗∗∗

(0.019) (0.021) (0.027) (0.054)

Physical Capacity × Cognitive Stimulation −0.074∗∗∗ −0.036∗∗ −0.080∗∗∗ −0.115∗∗∗

(0.015) (0.016) (0.021) (0.036)

Cognitive Capacity × Exercise −0.099∗∗∗ −0.211∗∗∗ −0.267∗∗∗ −0.254∗∗∗

(0.024) (0.026) (0.040) (0.071)

Cognitive Capacity × Cognitive Stimulation 0.077∗∗∗ 0.148∗∗∗ 0.187∗∗∗ 0.170∗∗∗

(0.022) (0.025) (0.037) (0.060)

Exercise × Cognitive Stimulation 0.085∗∗∗ 0.094∗∗∗ 0.170∗∗∗ 0.148∗∗∗

(0.024) (0.020) (0.027) (0.043)

Constant −0.072∗∗∗ −0.104∗∗∗ −0.120∗∗∗ −0.089∗∗∗

(0.006) (0.007) (0.011) (0.025)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.10. Transition Parameters for Physical Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 1.010∗∗∗ 0.989∗∗∗ 0.997∗∗∗ 0.939∗∗∗

(0.008) (0.011) (0.023) (0.062)

Cognitive Capacity 0.034∗∗∗ 0.036∗∗∗ 0.034 −0.031

(0.009) (0.013) (0.035) (0.113)

Exercise 0.051∗∗∗ 0.082∗∗∗ 0.070∗∗∗ 0.133∗

(0.006) (0.009) (0.020) (0.070)

Cognitive Stimulation −0.039∗∗∗ −0.037∗∗∗ −0.029 −0.048

(0.007) (0.009) (0.022) (0.065)

Physical Capacity Squared −0.020∗ 0.057∗∗∗ 0.073∗∗∗ 0.062

(0.011) (0.013) (0.024) (0.054)

Cognitive Capacity Squared 0.004 −0.074∗∗∗ 0.047 −0.037

(0.018) (0.021) (0.046) (0.112)

Exercise Squared −0.012 0.019 0.009 0.032

(0.012) (0.014) (0.025) (0.062)

Cognitive Stimulation Squared 0.024∗∗∗ −0.005 0.044∗∗ 0.067∗

(0.009) (0.011) (0.021) (0.035)

Physical Capacity × Cognitive Capacity −0.010 0.024 0.131∗∗∗ 0.120

(0.019) (0.024) (0.047) (0.114)

Physical Capacity × Exercise −0.006 −0.045∗∗ 0.002 −0.019

(0.017) (0.020) (0.039) (0.088)

Physical Capacity × Cognitive Stimulation 0.006 0.026 −0.074∗∗ −0.052

(0.015) (0.017) (0.032) (0.071)

Cognitive Capacity × Exercise −0.078∗∗∗ −0.073∗∗∗ −0.207∗∗∗ −0.152

(0.019) (0.025) (0.050) (0.119)

Cognitive Capacity × Cognitive Stimulation −0.026 0.076∗∗∗ −0.088∗ −0.088

(0.021) (0.024) (0.050) (0.105)

Exercise × Cognitive Stimulation 0.047∗∗∗ 0.011 0.101∗∗∗ 0.027

(0.016) (0.017) (0.034) (0.080)

Constant −0.090∗∗∗ −0.124∗∗∗ −0.191∗∗∗ −0.246∗∗∗

(0.007) (0.008) (0.016) (0.044)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.11. Transition Parameters for Cognitive Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.042∗∗∗ 0.046∗∗∗ 0.011 0.016

(0.008) (0.009) (0.013) (0.028)

Cognitive Capacity 0.664∗∗∗ 0.568∗∗∗ 0.600∗∗∗ 0.521∗∗∗

(0.010) (0.012) (0.019) (0.052)

Exercise 0.013 −0.011 0.038∗∗ 0.039

(0.011) (0.011) (0.016) (0.037)

Cognitive Stimulation 0.100∗∗∗ 0.151∗∗∗ 0.129∗∗∗ 0.194∗∗∗

(0.010) (0.010) (0.014) (0.027)

Physical Capacity Squared −0.019 −0.014 0.005 0.022

(0.013) (0.014) (0.016) (0.024)

Cognitive Capacity Squared −0.096∗∗∗ −0.274∗∗∗ −0.210∗∗∗ −0.150∗∗∗

(0.018) (0.023) (0.027) (0.058)

Exercise Squared 0.025 0.067∗∗∗ 0.047∗∗ 0.072∗∗

(0.026) (0.022) (0.024) (0.036)

Cognitive Stimulation Squared 0.025 −0.045∗∗∗ −0.058∗∗∗ −0.069∗∗∗

(0.019) (0.016) (0.015) (0.019)

Physical Capacity × Cognitive Capacity 0.064∗∗∗ 0.203∗∗∗ 0.132∗∗∗ 0.218∗∗∗

(0.021) (0.024) (0.033) (0.058)

Physical Capacity × Exercise 0.030 −0.022 −0.034 −0.056

(0.029) (0.026) (0.030) (0.046)

Physical Capacity × Cognitive Stimulation −0.002 −0.070∗∗∗ −0.051∗∗ −0.081∗∗

(0.022) (0.021) (0.022) (0.033)

Cognitive Capacity × Exercise −0.044 −0.178∗∗∗ −0.056 −0.243∗∗∗

(0.029) (0.030) (0.038) (0.072)

Cognitive Capacity × Cognitive Stimulation 0.015 0.227∗∗∗ 0.199∗∗∗ 0.262∗∗∗

(0.027) (0.031) (0.033) (0.054)

Exercise × Cognitive Stimulation −0.070∗∗ 0.029 0.016 0.080∗

(0.034) (0.028) (0.029) (0.042)

Constant −0.045∗∗∗ −0.098∗∗∗ −0.163∗∗∗ −0.263∗∗∗

(0.009) (0.010) (0.011) (0.020)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.12. Transition Parameters for Cognitive Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.040∗∗∗ 0.030∗∗ 0.027 −0.041

(0.010) (0.012) (0.017) (0.045)

Cognitive Capacity 0.738∗∗∗ 0.668∗∗∗ 0.699∗∗∗ 0.760∗∗∗

(0.011) (0.013) (0.026) (0.075)

Exercise 0.029∗∗∗ 0.019∗ 0.025 0.090∗

(0.010) (0.011) (0.016) (0.053)

Cognitive Stimulation 0.059∗∗∗ 0.099∗∗∗ 0.099∗∗∗ 0.020

(0.010) (0.010) (0.016) (0.039)

Physical Capacity Squared 0.018 −0.012 0.006 −0.052

(0.017) (0.018) (0.023) (0.044)

Cognitive Capacity Squared −0.054∗∗∗ −0.177∗∗∗ −0.141∗∗∗ 0.044

(0.018) (0.024) (0.040) (0.088)

Exercise Squared 0.026 0.046∗∗ 0.040∗ −0.013

(0.021) (0.020) (0.023) (0.057)

Cognitive Stimulation Squared 0.054∗∗∗ −0.044∗∗∗ −0.017 0.037

(0.014) (0.014) (0.017) (0.025)

Physical Capacity × Cognitive Capacity 0.043∗ 0.062∗∗ 0.071∗ −0.023

(0.025) (0.031) (0.043) (0.087)

Physical Capacity × Exercise −0.001 −0.008 −0.030 0.092

(0.030) (0.031) (0.034) (0.081)

Physical Capacity × Cognitive Stimulation −0.000 −0.028 0.006 0.006

(0.022) (0.023) (0.028) (0.055)

Cognitive Capacity × Exercise −0.039 −0.083∗∗∗ −0.033 0.016

(0.028) (0.031) (0.042) (0.092)

Cognitive Capacity × Cognitive Stimulation −0.068∗∗∗ 0.162∗∗∗ 0.114∗∗∗ −0.098

(0.025) (0.027) (0.042) (0.076)

Exercise × Cognitive Stimulation −0.023 0.031 −0.003 −0.031

(0.027) (0.025) (0.029) (0.059)

Constant −0.079∗∗∗ −0.082∗∗∗ −0.164∗∗∗ −0.209∗∗∗

(0.010) (0.011) (0.014) (0.028)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.13. Transition Parameters for Exercise, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.026∗∗∗ 0.029∗∗∗ 0.035∗∗ 0.053∗∗

(0.010) (0.011) (0.014) (0.021)

Cognitive Capacity 0.006 0.050∗∗∗ 0.110∗∗∗ 0.138∗∗∗

(0.011) (0.011) (0.015) (0.027)

Exercise 0.990∗∗∗ 0.941∗∗∗ 0.880∗∗∗ 0.790∗∗∗

(0.014) (0.014) (0.018) (0.027)

Constant −0.074∗∗∗ −0.109∗∗∗ −0.155∗∗∗ −0.258∗∗∗

(0.004) (0.005) (0.008) (0.017)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.D.14. Transition Parameters for Exercise, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.075∗∗∗ 0.059∗∗∗ 0.106∗∗∗ 0.117∗∗∗

(0.012) (0.013) (0.021) (0.038)

Cognitive Capacity 0.038∗∗∗ 0.025∗ 0.132∗∗∗ 0.056

(0.013) (0.014) (0.022) (0.044)

Exercise 0.933∗∗∗ 0.945∗∗∗ 0.825∗∗∗ 0.782∗∗∗

(0.015) (0.015) (0.022) (0.047)

Constant −0.078∗∗∗ −0.111∗∗∗ −0.178∗∗∗ −0.266∗∗∗

(0.005) (0.006) (0.011) (0.025)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.D.15. Transition Parameters for Cognitive Stimulation, Females

68-73 74-79 80-85 86-91

Physical Capacity −0.006 0.041∗∗∗ 0.008 0.116∗∗∗

(0.013) (0.014) (0.020) (0.041)

Cognitive Capacity 0.050∗∗ 0.076∗∗∗ 0.120∗∗∗ 0.081

(0.022) (0.023) (0.035) (0.072)

Cognitive Stimulation 1.020∗∗∗ 0.962∗∗∗ 0.985∗∗∗ 0.927∗∗∗

(0.018) (0.017) (0.024) (0.046)

Constant −0.033∗∗∗ −0.071∗∗∗ −0.046∗∗∗ −0.144∗∗∗

(0.007) (0.009) (0.014) (0.035)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.D.16. Transition Parameters for Cognitive Stimulation, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.011 0.037∗∗ 0.079∗∗ 0.020

(0.018) (0.019) (0.032) (0.080)

Cognitive Capacity 0.134∗∗∗ 0.046 0.057 0.119

(0.026) (0.031) (0.050) (0.141)

Cognitive Stimulation 0.953∗∗∗ 0.982∗∗∗ 0.936∗∗∗ 0.858∗∗∗

(0.018) (0.019) (0.030) (0.067)

Constant −0.033∗∗∗ −0.039∗∗∗ −0.056∗∗ −0.051

(0.009) (0.011) (0.022) (0.070)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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1.D.5 Distributions of Initial Factors and of Shocks to Factors

Table 1.D.17. Distribution of the initial states, females

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.19 0.68 1.00 0.35 0.66 0.36

Cognitive Capacity 0.11 0.46 0.35 1.00 0.32 0.52

Exercise 0.15 0.59 0.66 0.32 1.00 0.51

Cognitive Stimulation 0.08 0.68 0.36 0.52 0.51 1.00

Table 1.D.18. Distribution of the intitial states, males

Correlation with

Mean
Standard
Deviation

Physical
Capacity

Cognitive
Capacity Exercise

Cognitive
Stimulation

Factor

Physical Capacity 0.10 0.61 1.00 0.30 0.58 0.30

Cognitive Capacity 0.11 0.49 0.30 1.00 0.27 0.42

Exercise 0.12 0.64 0.58 0.27 1.00 0.33

Cognitive Stimulation 0.04 0.79 0.30 0.42 0.33 1.00
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Table 1.D.19. Standard deviations of shocks

Male Female

68-73 Physical Capacity 0.094∗∗∗ 0.005

(0.008) (0.103)

Cognitive Capacity 0.292∗∗∗ 0.308∗∗∗

(0.005) (0.004)

Exercise 0.236∗∗∗ 0.164∗∗∗

(0.012) (0.011)

Cognitive Stimulation 0.155∗∗∗ 0.001

(0.028) (2.725)

74-79 Physical Capacity 0.161∗∗∗ 0.159∗∗∗

(0.006) (0.005)

Cognitive Capacity 0.283∗∗∗ 0.302∗∗∗

(0.005) (0.004)

Exercise 0.261∗∗∗ 0.240∗∗∗

(0.012) (0.009)

Cognitive Stimulation 0.190∗∗∗ 0.185∗∗∗

(0.026) (0.017)

80-85 Physical Capacity 0.231∗∗∗ 0.188∗∗∗

(0.009) (0.008)

Cognitive Capacity 0.240∗∗∗ 0.274∗∗∗

(0.006) (0.005)

Exercise 0.326∗∗∗ 0.275∗∗∗

(0.015) (0.012)

Cognitive Stimulation 0.319∗∗∗ 0.225∗∗∗

(0.031) (0.024)

86-91 Physical Capacity 0.315∗∗∗ 0.227∗∗∗

(0.020) (0.012)

Cognitive Capacity 0.250∗∗∗ 0.238∗∗∗

(0.013) (0.010)

Exercise 0.372∗∗∗ 0.304∗∗∗

(0.028) (0.017)

Cognitive Stimulation 0.471∗∗∗ 0.309∗∗∗

(0.059) (0.047)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Appendix 1.E Results for a Linearized Model

1.E.1 Measurement System
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Table 1.E.1. Loadings and Measurement Standard Deviations for Physical Capacity, Females

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.705∗∗∗

(0.001)

Mobility −0.114∗∗∗ 1.222∗∗∗ 0.768∗∗∗

(0.003) (0.005) (0.002)

Large Muscle Index 0.005∗ 0.926∗∗∗ 0.750∗∗∗

(0.003) (0.005) (0.002)

Self-Reported Health −0.048∗∗∗ 0.947∗∗∗ 0.765∗∗∗

(0.003) (0.004) (0.002)

70 Alive 0.897∗∗∗ 0.042∗∗∗ 0.303∗∗∗

(0.101) (0.011) (0.038)

Grip Strength −0.125∗∗∗ 0.488∗∗∗ 0.933∗∗∗

(0.027) (0.042) (0.015)

72 Alive 0.910∗∗∗ 0.045∗∗∗ 0.288∗∗∗

(0.106) (0.011) (0.037)

Grip Strength −0.240∗∗∗ 0.395∗∗∗ 0.922∗∗∗

(0.028) (0.042) (0.016)

74 Alive 0.902∗∗∗ 0.060∗∗∗ 0.301∗∗∗

(0.096) (0.013) (0.036)

Grip Strength −0.291∗∗∗ 0.464∗∗∗ 0.936∗∗∗

(0.030) (0.042) (0.018)

76 Alive 0.886∗∗∗ 0.073∗∗∗ 0.327∗∗∗

(0.099) (0.018) (0.042)

Grip Strength −0.470∗∗∗ 0.367∗∗∗ 0.924∗∗∗

(0.030) (0.048) (0.012)

78 Alive 0.879∗∗∗ 0.075∗∗∗ 0.339∗∗∗

(0.101) (0.019) (0.045)

Grip Strength −0.540∗∗∗ 0.445∗∗∗ 0.924∗∗∗

(0.033) (0.048) (0.019)

80 Alive 0.870∗∗∗ 0.091∗∗∗ 0.353∗∗∗

(0.097) (0.022) (0.046)

Grip Strength −0.758∗∗∗ 0.365∗∗∗ 0.882∗∗∗

(0.034) (0.052) (0.021)

82 Alive 0.871∗∗∗ 0.090∗∗∗ 0.359∗∗∗

(0.109) (0.026) (0.053)

Grip Strength −0.789∗∗∗ 0.339∗∗∗ 0.860∗∗∗

(0.036) (0.054) (0.020)

84 Alive 0.869∗∗∗ 0.110∗∗∗ 0.371∗∗∗

(0.103) (0.030) (0.052)

Grip Strength −0.979∗∗∗ 0.336∗∗∗ 0.866∗∗∗

(0.041) (0.060) (0.025)

86 Alive 0.855∗∗∗ 0.120∗∗∗ 0.391∗∗∗

(0.124) (0.040) (0.069)

Grip Strength −0.999∗∗∗ 0.332∗∗∗ 0.840∗∗∗

(0.046) (0.070) (0.028)

88 Alive 0.845∗∗∗ 0.128∗∗ 0.406∗∗∗

(0.142) (0.051) (0.084)

Grip Strength −1.190∗∗∗ 0.415∗∗∗ 0.826∗∗∗

(0.059) (0.082) (0.035)

90 Alive 0.826∗∗∗ 0.133∗ 0.425∗∗∗

(0.204) (0.080) (0.135)

Grip Strength −1.099∗∗∗ 0.371∗∗∗ 0.734∗∗∗

(0.061) (0.097) (0.031)

92 Alive 0.816∗∗∗ 0.164 0.444∗∗∗

(0.228) (0.120) (0.159)

Grip Strength −1.357∗∗∗ 0.356∗∗∗ 0.745∗∗∗

(0.083) (0.115) (0.047)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.2. Loadings and Measurement Standard Deviations for Physical Capacity, Males

Intercept Loading Meas. Std.

All Frailty Index (Reversed) 0.000 1.000 0.796∗∗∗

(0.002)

Mobility −0.015∗∗∗ 1.330∗∗∗ 0.751∗∗∗

(0.005) (0.007) (0.003)

Large Muscle Index 0.043∗∗∗ 1.033∗∗∗ 0.761∗∗∗

(0.004) (0.006) (0.003)

Self-Reported Health 0.027∗∗∗ 0.964∗∗∗ 0.792∗∗∗

(0.003) (0.006) (0.003)

70 Alive 0.901∗∗∗ 0.057∗∗∗ 0.303∗∗∗

(0.093) (0.013) (0.035)

Grip Strength −0.055 0.578∗∗∗ 0.977∗∗∗

(0.034) (0.053) (0.020)

72 Alive 0.907∗∗∗ 0.074∗∗∗ 0.298∗∗∗

(0.083) (0.015) (0.030)

Grip Strength −0.294∗∗∗ 0.549∗∗∗ 0.959∗∗∗

(0.034) (0.053) (0.020)

74 Alive 0.900∗∗∗ 0.061∗∗∗ 0.310∗∗∗

(0.119) (0.017) (0.046)

Grip Strength −0.317∗∗∗ 0.499∗∗∗ 0.922∗∗∗

(0.035) (0.057) (0.021)

76 Alive 0.876∗∗∗ 0.073∗∗∗ 0.344∗∗∗

(0.129) (0.024) (0.059)

Grip Strength −0.505∗∗∗ 0.557∗∗∗ 0.898∗∗∗

(0.036) (0.056) (0.020)

78 Alive 0.872∗∗∗ 0.081∗∗∗ 0.355∗∗∗

(0.128) (0.026) (0.061)

Grip Strength −0.559∗∗∗ 0.552∗∗∗ 0.920∗∗∗

(0.040) (0.058) (0.022)

80 Alive 0.866∗∗∗ 0.089∗∗∗ 0.367∗∗∗

(0.132) (0.031) (0.066)

Grip Strength −0.736∗∗∗ 0.573∗∗∗ 0.891∗∗∗

(0.042) (0.062) (0.023)

82 Alive 0.853∗∗∗ 0.136∗∗∗ 0.393∗∗∗

(0.114) (0.042) (0.064)

Grip Strength −0.959∗∗∗ 0.466∗∗∗ 0.873∗∗∗

(0.046) (0.064) (0.025)

84 Alive 0.869∗∗∗ 0.138∗∗∗ 0.387∗∗∗

(0.127) (0.046) (0.067)

Grip Strength −1.040∗∗∗ 0.561∗∗∗ 0.842∗∗∗

(0.052) (0.068) (0.027)

86 Alive 0.847∗∗∗ 0.137∗∗ 0.408∗∗∗

(0.158) (0.061) (0.092)

Grip Strength −1.237∗∗∗ 0.491∗∗∗ 0.841∗∗∗

(0.063) (0.083) (0.033)

88 Alive 0.858∗∗∗ 0.179∗∗ 0.416∗∗∗

(0.145) (0.071) (0.083)

Grip Strength −1.280∗∗∗ 0.480∗∗∗ 0.824∗∗∗

(0.069) (0.107) (0.044)

90 Alive 0.851∗∗∗ 0.204∗ 0.429∗∗∗

(0.201) (0.116) (0.120)

Grip Strength −1.361∗∗∗ 0.503∗∗∗ 0.767∗∗∗

(0.097) (0.114) (0.053)

92 Alive 0.765∗∗ 0.183 0.464∗

(0.317) (0.220) (0.271)

Grip Strength −1.487∗∗∗ 0.683∗∗∗ 0.817∗∗∗

(0.120) (0.162) (0.076)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.3. Loadings and Measurement Standard Deviations for Cognitive Capacity, Females

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.890∗∗∗

(0.003)

Vocabulary 0.044∗∗∗ 0.840∗∗∗ 0.923∗∗∗

(0.006) (0.013) (0.004)

Immediate Word Recall −0.161∗∗∗ 1.799∗∗∗ 0.584∗∗∗

(0.006) (0.014) (0.003)

Delayed Word Recall −0.189∗∗∗ 1.803∗∗∗ 0.595∗∗∗

(0.006) (0.014) (0.002)

70 Self-Rated Memory 0.005 0.577∗∗∗ 0.961∗∗∗

(0.014) (0.031) (0.009)

72 Self-Rated Memory 0.029∗∗ 0.595∗∗∗ 0.954∗∗∗

(0.014) (0.030) (0.009)

74 Self-Rated Memory 0.016 0.562∗∗∗ 0.972∗∗∗

(0.015) (0.030) (0.009)

76 Self-Rated Memory 0.028∗ 0.496∗∗∗ 0.968∗∗∗

(0.017) (0.032) (0.010)

78 Self-Rated Memory 0.046∗∗ 0.501∗∗∗ 0.992∗∗∗

(0.019) (0.035) (0.011)

80 Self-Rated Memory 0.054∗∗ 0.480∗∗∗ 1.012∗∗∗

(0.022) (0.038) (0.012)

82 Self-Rated Memory 0.069∗∗ 0.460∗∗∗ 1.009∗∗∗

(0.027) (0.043) (0.013)

84 Self-Rated Memory 0.082∗∗ 0.396∗∗∗ 1.035∗∗∗

(0.032) (0.050) (0.015)

86 Self-Rated Memory 0.079∗∗ 0.393∗∗∗ 1.063∗∗∗

(0.040) (0.058) (0.018)

88 Self-Rated Memory 0.261∗∗∗ 0.549∗∗∗ 1.069∗∗∗

(0.054) (0.074) (0.021)

90 Self-Rated Memory 0.213∗∗∗ 0.463∗∗∗ 1.080∗∗∗

(0.074) (0.096) (0.026)

92 Self-Rated Memory 0.215∗∗ 0.532∗∗∗ 1.146∗∗∗

(0.108) (0.131) (0.040)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1



74 | 1 Mens Sana in Corpore Sano?

Table 1.E.4. Loadings and Measurement Standard Deviations for Cognitive Capacity, Males

Intercept Loading Meas. Std.

All Serial 7 Subtraction 0.000 1.000 0.907∗∗∗

(0.004)

Vocabulary 0.048∗∗∗ 0.962∗∗∗ 0.900∗∗∗

(0.007) (0.015) (0.004)

Immediate Word Recall −0.184∗∗∗ 1.683∗∗∗ 0.600∗∗∗

(0.008) (0.015) (0.003)

Delayed Word Recall −0.201∗∗∗ 1.647∗∗∗ 0.607∗∗∗

(0.008) (0.015) (0.003)

70 Self-Rated Memory −0.041∗∗ 0.627∗∗∗ 0.937∗∗∗

(0.016) (0.035) (0.011)

72 Self-Rated Memory −0.052∗∗∗ 0.563∗∗∗ 0.955∗∗∗

(0.017) (0.034) (0.011)

74 Self-Rated Memory −0.043∗∗ 0.579∗∗∗ 0.948∗∗∗

(0.017) (0.035) (0.011)

76 Self-Rated Memory −0.039∗∗ 0.528∗∗∗ 0.955∗∗∗

(0.019) (0.039) (0.012)

78 Self-Rated Memory −0.050∗∗ 0.610∗∗∗ 0.971∗∗∗

(0.022) (0.043) (0.013)

80 Self-Rated Memory −0.001 0.596∗∗∗ 0.988∗∗∗

(0.026) (0.048) (0.015)

82 Self-Rated Memory −0.019 0.478∗∗∗ 1.033∗∗∗

(0.034) (0.056) (0.018)

84 Self-Rated Memory −0.018 0.520∗∗∗ 1.007∗∗∗

(0.039) (0.062) (0.020)

86 Self-Rated Memory −0.018 0.465∗∗∗ 0.992∗∗∗

(0.045) (0.069) (0.021)

88 Self-Rated Memory 0.007 0.511∗∗∗ 1.035∗∗∗

(0.063) (0.088) (0.027)

90 Self-Rated Memory 0.013 0.391∗∗∗ 1.080∗∗∗

(0.086) (0.117) (0.037)

92 Self-Rated Memory 0.006 0.602∗∗∗ 1.011∗∗∗

(0.124) (0.180) (0.048)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.5. Loadings and Measurement Standard Deviations for Exercise, Females

Intercept Loading Meas. Std.

All Vigorous Activity −0.009 0.683∗∗∗ 0.808∗∗∗

(0.006) (0.010) (0.004)

Moderate Activity 0.000 1.000 0.794∗∗∗

(0.004)

Light Activity −0.127∗∗∗ 1.077∗∗∗ 0.933∗∗∗

(0.007) (0.012) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.6. Loadings and Measurement Standard Deviations for Exercise, Males

Intercept Loading Meas. Std.

All Vigorous Activity −0.012∗∗ 0.742∗∗∗ 0.813∗∗∗

(0.006) (0.012) (0.005)

Moderate Activity 0.000 1.000 0.816∗∗∗

(0.004)

Light Activity −0.078∗∗∗ 0.927∗∗∗ 0.861∗∗∗

(0.007) (0.013) (0.004)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.7. Loadings and Measurement Standard Deviations for Cognitive Stimulation, Females

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.769∗∗∗

(0.006)

Listening to Music −0.168∗∗∗ 0.498∗∗∗ 0.981∗∗∗

(0.006) (0.010) (0.006)

Stimulating Hobbies −0.068∗∗∗ 0.564∗∗∗ 0.926∗∗∗

(0.007) (0.011) (0.005)

Communication −0.062∗∗∗ 0.513∗∗∗ 0.999∗∗∗

(0.006) (0.010) (0.005)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.8. Loadings and Measurement Standard Deviations for Cognitive Stimulation, Males

Intercept Loading Meas. Std.

All Reading 0.000 1.000 0.674∗∗∗

(0.007)

Listening to Music −0.175∗∗∗ 0.223∗∗∗ 1.005∗∗∗

(0.007) (0.010) (0.007)

Stimulating Hobbies −0.011 0.369∗∗∗ 0.970∗∗∗

(0.009) (0.011) (0.005)

Communication −0.082∗∗∗ 0.320∗∗∗ 0.990∗∗∗

(0.007) (0.010) (0.006)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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1.E.2 Transition Equations

(a) Transitions, females

(b) Transitions, males

Figure 1.E.1. Transition equations (other factors evaluated at the median)
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Table 1.E.9. Transition Parameters for Physical Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 1.000∗∗∗ 0.950∗∗∗ 0.905∗∗∗ 0.835∗∗∗

(0.006) (0.007) (0.009) (0.017)

Cognitive Capacity −0.020∗∗∗ 0.020∗∗ 0.053∗∗∗ 0.164∗∗∗

(0.007) (0.009) (0.015) (0.029)

Exercise 0.046∗∗∗ 0.081∗∗∗ 0.109∗∗∗ 0.128∗∗∗

(0.007) (0.008) (0.010) (0.019)

Cognitive Stimulation −0.003 −0.019∗∗ −0.026∗∗ −0.061∗∗∗

(0.007) (0.008) (0.011) (0.017)

Constant −0.086∗∗∗ −0.105∗∗∗ −0.117∗∗∗ −0.090∗∗∗

(0.002) (0.004) (0.007) (0.018)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.10. Transition Parameters for Physical Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 1.010∗∗∗ 0.957∗∗∗ 0.922∗∗∗ 0.842∗∗∗

(0.007) (0.008) (0.013) (0.030)

Cognitive Capacity 0.009 0.028∗∗ 0.038∗∗ −0.003

(0.009) (0.011) (0.019) (0.042)

Exercise 0.039∗∗∗ 0.081∗∗∗ 0.098∗∗∗ 0.173∗∗∗

(0.006) (0.007) (0.013) (0.030)

Cognitive Stimulation −0.004 −0.018∗∗ −0.020 0.020

(0.007) (0.008) (0.014) (0.029)

Constant −0.090∗∗∗ −0.115∗∗∗ −0.139∗∗∗ −0.200∗∗∗

(0.003) (0.005) (0.010) (0.029)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.11. Transition Parameters for Cognitive Capacity, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.040∗∗∗ 0.011 −0.023∗∗ −0.052∗∗∗

(0.007) (0.008) (0.010) (0.015)

Cognitive Capacity 0.664∗∗∗ 0.639∗∗∗ 0.693∗∗∗ 0.664∗∗∗

(0.010) (0.011) (0.014) (0.026)

Exercise 0.023∗∗ 0.024∗∗ 0.047∗∗∗ 0.078∗∗∗

(0.010) (0.011) (0.012) (0.018)

Cognitive Stimulation 0.097∗∗∗ 0.126∗∗∗ 0.095∗∗∗ 0.087∗∗∗

(0.010) (0.010) (0.011) (0.016)

Constant −0.054∗∗∗ −0.122∗∗∗ −0.180∗∗∗ −0.248∗∗∗

(0.003) (0.004) (0.006) (0.013)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.12. Transition Parameters for Cognitive Capacity, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.037∗∗∗ 0.024∗∗ 0.003 −0.052∗∗

(0.009) (0.010) (0.012) (0.024)

Cognitive Capacity 0.733∗∗∗ 0.704∗∗∗ 0.782∗∗∗ 0.730∗∗∗

(0.011) (0.013) (0.017) (0.033)

Exercise 0.028∗∗∗ 0.023∗∗ 0.028∗∗ 0.084∗∗∗

(0.010) (0.010) (0.012) (0.026)

Cognitive Stimulation 0.063∗∗∗ 0.089∗∗∗ 0.061∗∗∗ 0.063∗∗∗

(0.010) (0.010) (0.013) (0.023)

Constant −0.056∗∗∗ −0.105∗∗∗ −0.160∗∗∗ −0.203∗∗∗

(0.004) (0.004) (0.007) (0.017)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.13. Transition Parameters for Exercise, Females

68-73 74-79 80-85 86-91

Physical Capacity 0.027∗∗∗ 0.030∗∗∗ 0.027∗∗ 0.052∗∗

(0.010) (0.011) (0.014) (0.021)

Cognitive Capacity 0.005 0.040∗∗∗ 0.101∗∗∗ 0.115∗∗∗

(0.010) (0.011) (0.016) (0.027)

Exercise 0.991∗∗∗ 0.941∗∗∗ 0.886∗∗∗ 0.802∗∗∗

(0.014) (0.014) (0.018) (0.026)

Constant −0.073∗∗∗ −0.111∗∗∗ −0.158∗∗∗ −0.261∗∗∗

(0.004) (0.005) (0.008) (0.016)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.14. Transition Parameters for Exercise, Males

68-73 74-79 80-85 86-91

Physical Capacity 0.073∗∗∗ 0.063∗∗∗ 0.106∗∗∗ 0.117∗∗∗

(0.012) (0.013) (0.020) (0.037)

Cognitive Capacity 0.038∗∗∗ 0.022 0.133∗∗∗ 0.045

(0.013) (0.014) (0.022) (0.042)

Exercise 0.934∗∗∗ 0.942∗∗∗ 0.820∗∗∗ 0.786∗∗∗

(0.015) (0.015) (0.021) (0.046)

Constant −0.078∗∗∗ −0.111∗∗∗ −0.180∗∗∗ −0.268∗∗∗

(0.005) (0.006) (0.011) (0.024)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.15. Transition Parameters for Cognitive Stimulation, Females

68-73 74-79 80-85 86-91

Physical Capacity −0.010 0.024∗ −0.000 0.101∗∗

(0.013) (0.014) (0.021) (0.043)

Cognitive Capacity 0.041∗ 0.097∗∗∗ 0.115∗∗∗ 0.109

(0.023) (0.024) (0.038) (0.076)

Cognitive Stimulation 1.030∗∗∗ 0.960∗∗∗ 0.980∗∗∗ 0.922∗∗∗

(0.018) (0.017) (0.025) (0.049)

Constant −0.037∗∗∗ −0.064∗∗∗ −0.057∗∗∗ −0.141∗∗∗

(0.007) (0.009) (0.015) (0.034)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1

Table 1.E.16. Transition Parameters for Cognitive Stimulation, Males

68-73 74-79 80-85 86-91

Physical Capacity −0.007 0.033∗ 0.067∗∗ 0.025

(0.018) (0.019) (0.032) (0.080)

Cognitive Capacity 0.143∗∗∗ 0.059∗ 0.048 0.110

(0.026) (0.030) (0.049) (0.138)

Cognitive Stimulation 0.950∗∗∗ 0.974∗∗∗ 0.939∗∗∗ 0.843∗∗∗

(0.018) (0.019) (0.032) (0.067)

Constant −0.034∗∗∗ −0.036∗∗∗ −0.062∗∗∗ −0.059

(0.009) (0.011) (0.023) (0.069)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 1.E.17. Standard deviations of shocks

Male All Male All Linear Female All Female All Linear

68-73 Physical Capacity 0.094∗∗∗ 0.111∗∗∗ 0.005 0.038∗∗∗

(0.008) (0.006) (0.103) (0.014)

Cognitive Capacity 0.292∗∗∗ 0.294∗∗∗ 0.308∗∗∗ 0.308∗∗∗

(0.005) (0.004) (0.004) (0.004)

Exercise 0.236∗∗∗ 0.235∗∗∗ 0.164∗∗∗ 0.158∗∗∗

(0.012) (0.012) (0.011) (0.011)

Cognitive Stimulation 0.155∗∗∗ 0.171∗∗∗ 0.001 0.001

(0.028) (0.026) (2.725) (2.840)

74-79 Physical Capacity 0.161∗∗∗ 0.181∗∗∗ 0.159∗∗∗ 0.183∗∗∗

(0.006) (0.005) (0.005) (0.004)

Cognitive Capacity 0.283∗∗∗ 0.287∗∗∗ 0.302∗∗∗ 0.309∗∗∗

(0.005) (0.005) (0.004) (0.004)

Exercise 0.261∗∗∗ 0.264∗∗∗ 0.240∗∗∗ 0.243∗∗∗

(0.012) (0.012) (0.009) (0.009)

Cognitive Stimulation 0.190∗∗∗ 0.198∗∗∗ 0.185∗∗∗ 0.192∗∗∗

(0.026) (0.025) (0.017) (0.017)

80-85 Physical Capacity 0.231∗∗∗ 0.252∗∗∗ 0.188∗∗∗ 0.219∗∗∗

(0.009) (0.007) (0.008) (0.006)

Cognitive Capacity 0.240∗∗∗ 0.243∗∗∗ 0.274∗∗∗ 0.279∗∗∗

(0.006) (0.006) (0.005) (0.004)

Exercise 0.326∗∗∗ 0.328∗∗∗ 0.275∗∗∗ 0.273∗∗∗

(0.015) (0.015) (0.012) (0.012)

Cognitive Stimulation 0.319∗∗∗ 0.326∗∗∗ 0.225∗∗∗ 0.231∗∗∗

(0.031) (0.031) (0.024) (0.024)

86-91 Physical Capacity 0.315∗∗∗ 0.341∗∗∗ 0.227∗∗∗ 0.268∗∗∗

(0.020) (0.014) (0.012) (0.010)

Cognitive Capacity 0.250∗∗∗ 0.254∗∗∗ 0.238∗∗∗ 0.258∗∗∗

(0.013) (0.009) (0.010) (0.007)

Exercise 0.372∗∗∗ 0.372∗∗∗ 0.304∗∗∗ 0.295∗∗∗

(0.028) (0.027) (0.017) (0.018)

Cognitive Stimulation 0.471∗∗∗ 0.487∗∗∗ 0.309∗∗∗ 0.313∗∗∗

(0.059) (0.056) (0.047) (0.049)

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1



Appendix References | 83

References

Agostinelli, Francesco, and Matthew Wiswall. 2016a. “Estimating the Technology of Children’s Skill Formation.”

Working Paper 22442. National Bureau of Economic Research. [20, 22, 31]

Agostinelli, Francesco, and Matthew Wiswall. 2016b. “Identification of Dynamic Latent Factor Models: The Impli-

cations of Re-Normalization in a Model of Child Development.” Working Paper 22441. National Bureau of

Economic Research. [21, 41]

Amengual, Dante, Jesús Bueren, and Julio A Crego. 2021. “Endogenous health groups and heterogeneous dynam-

ics of the elderly.” Journal of Applied Econometrics 36 (7): 878–97. [9]

Attanasio, Orazio, Flávio Cunha, and Pamela Jervis. 2019. “Subjective Parental Beliefs. Their Measurement and

Role.” NBER Working Papers 26516. National Bureau of Economic Research. [22]

Attanasio, Orazio, Costas Meghir, and Emily Nix. 2020. “Human Capital Development and Parental Investment

in India.” Review of Economic Studies 87 (6): 2511–41. eprint: https://academic.oup.com/restud/article-

pdf/87/6/2511/34133061/rdaa026.pdf. [21, 22, 31]

Baker, Michael, Mark Stabile, and Catherine Deri. 2004. “What do self-reported, objective, measures of health

measure?” Journal of human Resources 39 (4): 1067–93. [6, 8]

Ball, Karlene, Daniel Berch, Karin Helmers, Jared Jobe, Mary Leveck, Michael Marsiske, John Morris, George Re-

bok, David Smith, Sharon Tennstedt, Frederick Unverzagt, and Sherry Willis. 2002. “Effects of Cognitive Train-

ing Interventions With Older Adults: A Randomized Controlled Trial.” JAMA : the journal of the American

Medical Association 288 (12): 2271–81. [6]

Bound, John, Charles Brown, and Nancy Mathiowetz. 2001. “Measurement error in survey data.” In Handbook of

econometrics. Vol. 5, Elsevier, 3705–843. [6]

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George

Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable

transformations of Python+NumPy programs. Version 0.3.13. [23]

Chang, Yu-Hung, I-Chien Wu, and Chao A. Hsiung. 2021. “Reading activity prevents long-term decline in cognitive

function in older people: evidence from a 14-year longitudinal study.” International Psychogeriatrics 33 (1):

63–74. [14]

Clouston, Sean A. P., Paul Brewster, Diana Kuh, Marcus Richards, Rachel Cooper, Rebecca Hardy, Marcie S. Rubin,

and Scott M. Hofer. 2013. “The Dynamic Relationship Between Physical Function and Cognition in Longitudi-

nal Aging Cohorts.” Epidemiologic Reviews 35 (1): 33–50. eprint: https://academic.oup.com/epirev/article-

pdf/35/1/33/7287926/mxs004.pdf. [6]

Contoyannis, Paul, Andrew M. Jones, and Nigel Rice. 2004. “The dynamics of health in the British Household Panel

Survey.” Journal of Applied Econometrics 19 (4): 473–503. eprint: https://onlinelibrary.wiley.com/doi/pdf/

10.1002/jae.755. [8]

Crimmins, Eileen M. 2020. “Social hallmarks of aging: Suggestions for geroscience research.” Ageing research

reviews 63: 101136. [6, 9]

Cunha, Flavio, and James Heckman. 2007. “The Technology of Skill Formation.” American Economic Review 97 (2):

31–47. [19]

https://academic.oup.com/restud/article-pdf/87/6/2511/34133061/rdaa026.pdf
https://academic.oup.com/restud/article-pdf/87/6/2511/34133061/rdaa026.pdf
https://academic.oup.com/epirev/article-pdf/35/1/33/7287926/mxs004.pdf
https://academic.oup.com/epirev/article-pdf/35/1/33/7287926/mxs004.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jae.755
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jae.755


84 | 1 Mens Sana in Corpore Sano?

Cunha, Flavio, and James J. Heckman. 2008. “Formulating, identifying and estimating the technology of cognitive

and noncognitive skill formation.” Journal of human resources 43 (4): 738–82. [21]

Cunha, Flavio, James J. Heckman, and Susanne M. Schennach. 2010. “Estimating the technology of cognitive and

noncognitive skill formation.” Econometrica 78 (3): 883–931. [6, 7, 9, 19–23, 26, 36, 40, 41]

Cutler, David M, and Elizabeth Richardson. 1997. “Measuring the health of the US population.” Brookings papers

on economic activity. Microeconomics 1997: 217–82. [8]

Del Bono, Emilia, Josh Kinsler, and Ronni Pavan. 2020. “A Note on the Importance of Normalizations in Dynamic

Latent Factor Models of Skill Formation.” IZA Discussion Papers 13714. Institute of Labor Economics (IZA).

[21]

Dixon, Roger A., and Cindy M. de Frias. 2014. “Cognitively elite, cognitively normal, and cognitively impaired aging:

Neurocognitive status and stability moderate memory performance.” Journal of Clinical and Experimental

Neuropsychology 36 (4): 418–30. [13]

Dowd, Jennifer Beam, and Anna Zajacova. 2007. “Does the predictive power of self-rated health for subsequent

mortality risk vary by socioeconomic status in the US?” International journal of epidemiology 36 (6): 1214–

21. [8]

Dowd, Jennifer Beam, and Anna Zajacova. 2010. “Does self-rated health mean the same thing across socioeco-

nomic groups? Evidence from biomarker data.” Annals of epidemiology 20 (10): 743–49. [8]

Fiatarone, Maria A., Evelyn F. O’Neill, Nancy Doyle Ryan, Karen M. Clements, Guido R. Solares, Miriam E. Nelson,

Susan B. Roberts, Joseph J. Kehayias, Lewis A. Lipsitz, and William J. Evans. 1994. “Exercise Training and

Nutritional Supplementation for Physical Frailty in Very Elderly People.” New England Journal of Medicine

330 (25): 1769–75. eprint: https://doi.org/10.1056/NEJM199406233302501. PMID: 8190152. [6]

Freyberger, Joachim. 2021. “Normalizations and misspecification in skill formation models.” Working Paper. [21,

41]

Gabler, Janos. 2022. A Python Library to Estimate Nonlinear Dynamic Latent Factor Models. [23]

Gabler, Janoś, Tobias Raabe, Klara Röhrl, and Hans-Martin von Gaudecker. 2022. “The effectiveness of testing,

vaccinations and contact restrictions for containing the CoViD-19 pandemic.” en. Sci. Rep. 12 (1): 8048. [23]

Gaudecker, Hans-Martin von. 2019. “Templates for Reproducible Research Projects in Economics.” [23]

Gill, Thomas M., Evelyne A. Gahbauer, Ling Han, and Heather G. Allore. 2010. “Trajectories of Disability in the

Last Year of Life.” New England Journal of Medicine 362 (13): 1173–80. eprint: https://doi.org/10.1056/

NEJMoa0909087. PMID: 20357280. [25]

Health and Retirement Study. 2022a. “Cross-Wave Imputation of Cognitive Functioning Measures 1992-2018.”

[13]

Health and Retirement Study. 2022b. “HRS Public Survey Data.” [10]

Health and Retirement Study. 2022c. “RAND HRS Products.” [10]

Heckman, James J, and Stefano Mosso. 2014. “The Economics of Human Development and Social Mobility.” Annu.

Rev. Econ. 6 (1): 689–733. [5]

Heiss, Florian. 2011. “Dynamics of self-rated health and selective mortality.” Empirical Economics 40 (1): 119–40.

[8]

Hosseini, Roozbeh, Karen A. Kopecky, and Kai Zhao. 2022. “The evolution of health over the life cycle.” Review

of Economic Dynamics 45: 237–63. [5, 6, 8, 11]

https://doi.org/10.1056/NEJM199406233302501
https://doi.org/10.1056/NEJMoa0909087
https://doi.org/10.1056/NEJMoa0909087


References | 85

Huang, Zhiyong, and Jürgen Maurer. 2019. “Validity of Self-Rated Memory Among Middle-Aged and Older Chi-

nese Adults: Results From the China Health and Retirement Longitudinal Study (CHARLS).” Assessment 26 (8):

1582–93. eprint: https://doi.org/10.1177/1073191117741188. PMID: 29126348. [25]

Idler, Ellen L., and Yael Benyamini. 1997. “Self-Rated Health and Mortality: A Review of Twenty-Seven Community

Studies.” Journal of Health and Social Behavior 38 (1): 21–37. [8]

Jenicek, Milos, Robert Cleroux, and Michel Lamoureux. 1979. “Principal component analysis of four health in-

dicators and construction of a global health index in the aged.” American Journal of Epidemiology 110 (3):

343–49. [8]

Julier, Simon J., and Jeffrey K. Uhlmann, editors. 1997. New extension of the Kalman filter to nonlinear systems.

International Society for Optics and Photonics. [35]

Jürges, Hendrik. 2007. “True health vs response styles: exploring cross-country differences in self-reported

health.” Health Economics 16 (2): 163–78. eprint: https : // onlinelibrary . wiley . com / doi / pdf / 10 . 1002 /

hec.1134. [8]

Kalman, Rudolph Emil. 1960. “A new approach to linear filtering and prediction problems.” 0021-9223, [33]

Kapteyn, Arie, James Banks, Mark Hamer, James P Smith, Andrew Steptoe, Arthur Van Soest, Annemarie Koster,

and Saw Htay Wah. 2018. “What they say and what they do: comparing physical activity across the USA,

England and the Netherlands.” J Epidemiol Community Health 72 (6): 471–76. [6, 7]

Karzmark, Peter. 2000. “8.” Internation journal of geriatric psychiatry Validity of the serial seven procedure (15):

[13]

Kasper, Judith D, Kitty S Chan, and Vicki A Freedman. 2017. “Measuring physical capacity: an assessment of a

composite measure using self-report and performance-based items.” Journal of aging and health 29 (2):

289–309. [6]

Latham, Kenzie, and Chuck W. Peek. 2012. “Self-Rated Health and Morbidity Onset Among Late Midlife

U.S. Adults.” Journals of Gerontology: Series B 68 (1): 107–16. eprint: https : / / academic . oup . com /

psychsocgerontology/article-pdf/68/1/107/1694524/gbs104.pdf. [8]

Lindeboom, Maarten, and Eddy Van Doorslaer. 2004. “Cut-point shift and index shift in self-reported health.”

Journal of health economics 23 (6): 1083–99. [8]

Maurer, Jürgen, Roger Klein, and Francis Vella. 2011. “Subjective health assessments and active labor market par-

ticipation of older men: evidence from a semiparametric binary choice model with nonadditive correlated

individual-specific effects.” Review of Economics and Statistics 93 (3): 764–74. [8]

McCammon, Ryan J., Gwenith G. Fisher, Halimah Hassan, Jessica D. Faul, Willard L. Rodgers, and David R. Weir.

2022. “Health and Retirement Study – Imputation of Cognitive Functioning Measures: 1992-2018 Data De-

scription.” Working paper. Version 7.0. Survey Research Center University of Michigan. [13]

McFadden, Daniel. 2008. “Human capital accumulation and depreciation.” Applied Economic Perspectives and

Policy 30 (3): 379–85. [5]

Montero-Odasso, Manuel, Joe Verghese, Olivier Beauchet, and Jeffrey M Hausdorff. 2012. “Gait and cognition: a

complementary approach to understanding brain function and the risk of falling.” Journal of the American

Geriatrics Society 60 (11): 2127–36. [6]

Nakazato, Yuichi, Tomoko Sugiyama, Rena Ohno, Hirofumi Shimoyama, Diana L Leung, Alan A Cohen, Riichi Ku-

rane, Satoru Hirose, Akihisa Watanabe, and Hiromi Shimoyama. 2020. “Estimation of homeostatic dysreg-

https://doi.org/10.1177/1073191117741188
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hec.1134
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hec.1134
https://academic.oup.com/psychsocgerontology/article-pdf/68/1/107/1694524/gbs104.pdf
https://academic.oup.com/psychsocgerontology/article-pdf/68/1/107/1694524/gbs104.pdf


86 | 1 Mens Sana in Corpore Sano?

ulation and frailty using biomarker variability: a principal component analysis of hemodialysis patients.”

Scientific Reports 10 (1): 1–12. [8]

Niccoli, Teresa, and Linda Partridge. 2012. “Ageing as a Risk Factor for Disease.” Current Biology 22 (17): R741–

R752. [6]

Poterba, James M, Steven F Venti, and David A Wise. 2017. “The asset cost of poor health.” Journal of the Eco-

nomics of Ageing 9: 172–84. [8]

Prvan, Tania, and M. R. Osborne. 1988. “A Square-Root Fixed-Interval Discrete-Time Smoother.” Journal of the

Australian Mathematical Society. Series B. Applied Mathematics 30 (1): 57–68. [23, 38]

Raabe, Tobias. 2020. “A Python tool for managing scientific workflows.” [23]

Rockwood, Kenneth, and Arnold Mitnitski. 2007. “Frailty in relation to the accumulation of deficits.” Journals of

Gerontology Series A: Biological Sciences and Medical Sciences 62 (7): 722–27. [8]

Runge, Shannon K. 2015. “Word Recall: Cognitive Performance Within Internet Surveys.” JMIR Mental Health 2 (2):

[13]

Salthouse, Timothy. 2010. “Selective review of aging.” Journal of the International Neuropsychological Society :

JINS 16 (09): 754–60. [7]

Salthouse, Timothy. 2012. “Consequences of age-related cognitive declines.” Annual review of psychology 63:

201. [7]

Särkämö, Teppo, and David Soto. 2012. “Music listening after stroke: beneficial effects and potential neural

mechanisms.” Annals of the New York Academy of Sciences 1252 (1): 266–81. eprint: https : // nyaspubs .

onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2011.06405.x. [14]

Särkämö, Teppo, Mari Tervaniemi, Sari Laitinen, Anita Forsblom, Seppo Soinila, Mikko Mikkonen, Taina Autti,

Heli M. Silvennoinen, Jaakko Erkkilä, Matti Laine, Isabelle Peretz, and Marja Hietanen. 2008. “Music listening

enhances cognitive recovery and mood after middle cerebral artery stroke.” Brain 131 (3): 866–76. eprint:

https://academic.oup.com/brain/article-pdf/131/3/866/907374/awn013.pdf. [14]

Schiele, Valentin, and Hendrik Schmitz. 2021. “Understanding cognitivedecline in older ages: The role of health

shocks.” Ruhr Economic Papers, (919): [9]

Steiber, Nadia. 2016. “Strong or Weak Handgrip? Normative Reference Values for the German Population across

the Life Course Stratified by Sex, Age, and Body Height.” PLOS One 10 (11): [11]

Van Der Merwe, Rudolph. 2004. “Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space

Models.” Doctoral dissertation. OGI School of Science & Engineering at Oregon Health & Science University.

[35]

van der Merwe, Rudolph, and Eric A. Wan, editors. 2001. The square-root unscented Kalman filter for state and

parameter-estimation. IEEE. [23, 38]

World Bank. 2018. World development report 2019: The changing nature of work. The World Bank. [5]

Zhang, Fuzhen. 1999. Matrix Theory: Basic Results and Techniques. Universitext (Berlin. Print). Springer. [35, 38]

https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2011.06405.x
https://nyaspubs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2011.06405.x
https://academic.oup.com/brain/article-pdf/131/3/866/907374/awn013.pdf


.

Chapter 2

Intrinsic and External Determinants of

Age-Related Decline in Functioning
Joint with Jürgen Maurer

2.1 Introduction

Aging is an inevitable biological process that affects all living organisms. At the biological level,
the gradual accumulation of molecular and cellular damage associated with aging (World Health
Organization, 2015) can lead to a broad spectrum of impairments that limit an individual’s ability
to perform daily activities and maintain independence. Yet, age-related functional decline and the
associated risk of disability is neither a deterministic nor a linear function of the biological age
(World Health Organization, 2015), but is influenced by a complex interplay between intrinsic
and environmental factors.

Deterioration of intrinsic capacities manifested mainly through accumulating multiple chronic
conditions in older adults can strain their physical andmental resources, leading to reducedmobil-
ity, fatigue, and cognitive impairment. This cumulative burden of chronic conditions can disrupt
daily routines and activities of daily living, such as bathing, dressing, and eating, leading to social
isolation, increased dependence on others, and a decline in overall quality of life.

At the same time, environmental factors, including social support, access to healthcare, and
living conditions, can either exacerbate or mitigate the effects of intrinsic factors.

Thus, a comprehensive assessment of functioning in older age is inevitably tied not only to an
individual’s physical and mental limitations but also to the social environment and norms around
them. Ultimately, these intrinsic and broader environmental factors interact in non-trivial ways to
determine old-age outcomes related to functioning and wellbeing, as captured by an individual’s
happiness, satisfaction, and fulfillment.

⋆
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Understanding the intricate relationship between intrinsic and environmental factors is crucial
for developing effective interventions to promote healthy aging and prevent functional decline.
By identifying modifiable environmental factors, we can design strategies to optimize individuals’
environments and enhance their ability to maintain independence and quality of life as they age.

We derive the motivation for our study primarily from theWorld Health Organization’s (WHO)
2015 report on healthy aging (World Health Organization, 2015). The report defines healthy
ageing as a multifaceted process encompassing the development and maintenance of functional
ability, enabling individuals to experience wellbeing and live fulfilling lives in their later years. As
defined in the report, functional abilities encompass the health-related attributes enabling individ-
uals to perform activities they value. They are determined by an individual’s intrinsic capabilities,
the external environment, and the interactions between these factors (World Health Organization,
2015). Uncovering the implications of the environmental factors for age-related functional decline
bears importance for the policies aimed at promoting healthy aging and reducing disparities in
the age trajectories of disability.

A valuable framework for understanding the interplay between an individual’s intrinsic capac-
ities and external environment in shaping disability is developed in the seminal paper Verbrugge
and Jette (1994). The paper proposes a sociomedical model of disability, emphasizing the dy-
namic and interactive nature of the disablement process. Intrinsic factors, such as age, genetics,
and comorbidities, contribute to the underlying impairments and functional limitations. Extrin-
sic factors, including social structures, environmental barriers, and personal resources, influence
how individuals with impairments function and participate in society. Disability, the paper sug-
gests, is then determined by the gap between the demand for functional abilities imposed by one’s
environment and the actual functional abilities arising from one’s intrinsic capacities.

Various empirical studies have also been conducted into intrinsic and extrinsic predictors of
disabilities among older adults. In most studies, disability was defined in terms of difficulties in
performing activities of daily living (ADL) and instrumental activities of daily living (IADL)1. As a
summary index of health status in older adults, frailty, defined as the presence of multiple health
risk factors, has been found to be a major factor contributing to increased risk of disability in
older people (see, e.g., Vermeulen, Neyens, Rossum, Spreeuwenberg, and Witte, 2011; Makizako,
Shimada, Doi, Tsutsumimoto, and Suzuki, 2015; Cunha, Veronese, Melo Borges, and Ricci, 2019).
On a more disaggregated level, pertaining to more specific physical measurements, hand grip
strength has been found to be negatively associated with increased risk of functional disability
(see e.g., Taekema, Gussekloo, Maier, Westendorp, and Craen, 2010; McGrath, Vincent, Jurivich,
Hackney, Tomkinson, et al., 2020).

Cognitive health has similarly been found to have significant implications for functional de-
cline in older adults. In studies of aging and dementia, several papers have found finds that cogni-
tive decline is either a precursor to functional decline or coexists with it (see e.g., Auyeung, Kwok,

1. ADL include basic self-care tasks, such as bathing, dressing, and getting in and out of bed, while IADL encom-
pass complex activities that assist individuals in living independently in the community, including meal preparation,
shopping, housekeeping, etc.
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Lee, Leung, Leung, et al., 2008; Burton, Strauss, Bunce, Hunter, and Hultsch, 2009; Zahodne,
Manly, MacKay-Brandt, and Stern, 2013).

A wide range of environmental factors have also been studied as potential predictors for
healthy aging in general and sustentation of functional abilities in particular, in later stages of
life. Unsurprisingly, built environments with lower accessibility of dwellings and transportation
contribute to increased risk of disability among older adults with functional limitations (see e.g.,
Keysor, Jette, LaValley, Lewis, Torner, et al., 2009; Lien, Guo, Chang, Lin, and Kuan, 2014; Sa-
tariano, Kealey, Hubbard, Kurtovich, Ivey, et al., 2014). Apart from physical barriers to mobility,
socioeconomic and psychosocial factors have also been found to be linked to functional disabil-
ity in older adults. Zhong, Wang, and Nicholas (2017), for instance, finds that both childhood
and adult socioeconomic status were associated with functional disability. One should, however,
be wary of the apparent endogenous nature of economic status (i.e., income) relative to the dis-
ability status. A number of studies in gerontology have found that promoting social participation
among older adults is beneficial in terms of reduced risk of disability and overall functional health
(see e.g., Mendes de Leon, 2003; Kanamori, Kai, Aida, Kondo, Kawachi, et al., 2014; Gao, Sa, Li,
Zhang, Tian, et al., 2018).

While the research on both intrinsic capacities and external factors as possible determinants
of old-age disability is rich, and the importance of viewing disability in the context of one’s envi-
ronment has largely been established, to the best of our knowledge, in the existing literature, the
prevalent econometric approach is the modeling of the relevant variables in a somewhat simpli-
fied, linear manner.

The main contribution of our study to the existing literature is, thus, the estimation of nonlin-
ear interaction terms between intrinsic and extrinsic factors and their impact on disability rate.
To this end, we use the semi-parametric double index binary choice estimator developed in Klein
and Vella (2009). In this econometric model, we identify two indices, intrinsic and extrinsic, which
are summary quantification of intrinsic and environmental factors, respectively. Within this frame-
work, we are able to abstain from parametric assumptions regarding the functional form of the
link function between the two indices to obtain the predicted probability of being disabled.

Ourmain results are alignedwith the prevailing view in the gerontology literature. Specifically,
we find that the environmental index has a nontrivial impact on the predicted probability of being
disabled. We also find considerable nonlinear interaction effects between intrinsic and extrinsic
indices. In particular, we find the intrinsic gradient of the predicted probability of disability to be
steeper at lower quantiles of the environmental index.

The rest of the paper is organized as follows: Section 2.2 describes the data source we use for
our estimation and discusses the specific variables used in the econometric specification. Section
2.3 presents the estimation framework of Klein and Vella (2009) and discusses specific estimators
of interest. Section 2.4 discusses our results, and Section 3.6 concludes.
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2.2 Data and model specification

In our empirical application, we use data from the first wave2 of the WHO Study on global AGEing
and Adult Health (SAGE)(World Health Organization, 2022), pertaining four lower- to upper-
middle-income countries (China, India, Russian Federation, and Ghana)3. SAGE collects data on
a wide range of individual and household-level characteristics of individuals aged 50 and above,
its main target population. Sample sizes vary significantly from country to country (see Table
2.2.1). The Chinese sample has the largest number of observations (more than 11 000), and the
Russian sample has the lowest number of observations (less than 2 500). However, the sampling
was conducted for each country to ensure that the data are representative on the national level.

Extensive coverage of individuals’ health status, health-related impairments, and social net-
works make SAGE data especially suitable for our study. We extract our outcome and most of
the independent variables from the individual-level questionnaire of SAGE. The individual ques-
tionnaire contains various variables covering socio-demographic characteristics, difficulties due to
health conditions, and measures (objective and self-reported) of physical and mental/cognitive
health. We use the information on the estimated household income and the number of household
members from the household-level data sets.

We proceed by describing our outcome variable and variables included in each index in the
following subsections.

2.2.1 Outcome variable

We base our outcome variable, the binary disability indicator, on the WHO Disability Assess-
ment Schedule 2.0 (WHODAS-2.0). WHODAS-2.0 is a 12-item, self-reported questionnaire that
asks how much health-state related difficulty a person has had in performing physical or cogni-
tive/mental activities in six domains: 1) cognition (understanding and communicating), 2) mo-
bility (moving and getting around ), 3) self-care (hygiene, dressing, eating and staying alone), 4)
getting along (interacting with others), 5) life activities (domestic responsibilities, leisure, work,
and school), and 6) participation (participation in community activities and society) (T.B. Ustun,
N. Kostanjesek, S. Chatterji, J. Rehm, 2010). Possible scores assigned to each question range from
0 (no difficulty at all) to 5 (extreme difficulty or impossible to perform the task.). We calculate
the overall score as the sum of scores across the 12 questions. Finally, in our primary analysis,
to define our outcome disability variable, we choose the cut-off of the upper 20th percentile of
the disability score distribution. The average rate of disability, perhaps somewhat mechanically,
is around 20% in most of the country samples (see Table 2.2.1).

We consider a stricter (10th percentile) and a looser (30th percentile) cut-off in additional
results reported in Appendix 2.A and Appendix 2.B.

2. Although WHO has implemented three waves of the survey (Wave 1: 2007-2010, Wave 2: 2014-2015, and
Wave 3: 2018-2019), the first wave is to date the only available one.

3. In our application, we do not use the data from Mexico and South Africa given a large number of missing
values in critical variables of our analysis.
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Table 2.2.1. Summary statistics, outcome and intrinsic variables

China India Russia Ghana

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Disability 0.20 0.40 0.19 0.40 0.18 0.38 0.19 0.39

Age 62.78 9.12 61.28 8.56 63.38 9.61 63.75 10.07

Male 0.47 0.50 0.53 0.50 0.39 0.49 0.52 0.50

Grip Strength 0.28 0.12 0.21 0.09 0.30 0.13 0.26 0.12

Cognition Score 0.51 0.13 0.45 0.11 0.55 0.14 0.50 0.11

Diabetes 0.06 0.24 0.07 0.26 0.08 0.28 0.04 0.19

Lung 0.09 0.28 0.04 0.20 0.17 0.38 0.01 0.07

Arthritis 0.27 0.44 0.28 0.45 0.38 0.48 0.26 0.44

Angina 0.11 0.31 0.19 0.39 0.38 0.49 0.16 0.36

Stroke 0.03 0.18 0.02 0.13 0.04 0.20 0.02 0.15

Asthma 0.05 0.22 0.12 0.32 0.07 0.25 0.05 0.22

Hypertension 0.55 0.50 0.30 0.46 0.58 0.49 0.56 0.50

Depression 0.02 0.13 0.13 0.34 0.08 0.27 0.08 0.27

N. Obs 11062 5458 2417 3652

2.2.2 Intrinsic variables

As discussed previously, the intrinsic index summarizes the individual characteristics of aging
adults. In the intrinsic index, we thus include the age and variables measuring physical and cog-
nitive capacities, frailty, age, and gender.

The first variable in the intrinsic index is the age variable. By convention, setting age as the
first variable in the intrinsic index implies that coefficient estimates of the variables in the index
are to be interpreted in units (a year) of age. To be more precise, in our estimation, we will
normalize the coefficient of age variable to -1. Using age as the normalizing variable seems like
the natural choice given first, the context of our analysis, that is, age-related decline in functioning,
and second, the strong and positive association between age and the average disability rate, as
evidenced by Figure 2.2.1. For all countries, we see a smooth increase (albeit at various rates)
in average disability along the age axis. To control for different trajectories (from a biological
perspective) in functional decline between men and women, we include gender in the index of
intrinsic variables⁴. As we can see in 2.2.1, in terms of gender representation, samples from China,
India, and Ghana are relatively balanced; the Russian sample has a slightly higher rate of female
participation.

4. Liang, Bennett, Shaw, Quiñones, Ye, et al. (2008) shows, for the US population, that among older adults,
women have lower baseline level, as well as a higher rate of worsening of functional status.
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(c) Russia

50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Age

Sh
ar

e 
di

sa
bl

ed

(d) Ghana

Figure 2.2.1. Disability rate by age
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The next variable in the intrinsic index, the grip strength, has been used as a biomarker
for identifying adults at risk of cognitive and functional impairments (see Bohannon (2019) and
Rantanen, Guralnik, Foley, Masaki, Leveille, et al. (1999) ). In the SAGE survey, two tests were
conducted for each hand, using a specialized tool to measure grip strength in kilograms. Our vari-
able of interest is constructed using the average measurement for the dominant hand, converted
to a score ranging from zero to one.

We include the variable cognition score to measure cognitive functioning. Cognition score
has been calculated as the composite of scores from the following tests administered during the
survey interviews:

Immediate word recall test reads a list of ten words to the interviewees and asks them to recall
them (in any order) in three subsequent trials. The summary score is the average of correctly
recalled words across the three trials. In the delayed word recall test, participants are asked to
recall the same list of words after a delay of ten minutes.

In backward and forward counting tests, respondents are asked to recall (in the correct order,
backward and forward, respectively ) lists of numbers of different lengths in two subsequent trials.
The length of the most extended list determines the final score recited correctly in either of the
trials.

To account for health-related risk factors, we include indicator variables for the following
diseases: diabetes, lung disease, arthritis, angina, stroke, asthma, hypertension, and depression.
The binary variables have been constructed based on the combination of (self-reported) diagnoses
and symptomatic conditions. An exception is the indicator for hypertension, which is based on
the blood pressure measurements conducted during the at-home interviews.

As we can see in Table 2.2.1, the prevalence rates vary quite significantly across the diseases.
In particular, in all the country samples, we observe higher prevalence rates for arthritis and
hypertension. Depression and stroke, on the other hand, have the lowest prevalence rate in all
the country samples.

2.2.3 Environmental variables

To capture the environmental factors impacting individuals’ functional abilities, we consider sev-
eral variables from the socioeconomic domain, as well as social cohesion variables, which describe
an individual’s connectedness to their community.

The first variable we include in the environmental index, which is also the normalizing vari-
able, is the income percentile. We construct the variable based on the (per country) sample
distribution of the permanent income score. The SAGE data estimates households’ permanent in-
come based on current income and household assets. An obvious concern with including income
in the environmental index is its endogenous nature, as current income can strongly depend on
disability status. A potentially alleviating factor for the endogeneity concern is the inclusion of
household assets, reflecting long-term wealth, in estimating the permanent income score.

Fig 2.2.2 offers a first look at how disability rates vary along the income distribution. We
mainly observe gradually declining disability rates as we move up along the income distributions.
The income gradient of the disability rate is especially pronounced in the Chinese sample.
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Table 2.2.2. Summary statistics, environmental variables

China India Russia Ghana

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Income Percentile 48.71 16.41 60.99 21.13 54.89 12.88 53.82 15.96

Education Years 5.48 4.42 3.80 4.77 11.32 3.62 4.19 5.32

Num. HH Memberds 1.76 1.32 5.45 3.68 1.55 1.58 4.52 3.33

Cohabiting 0.83 0.37 0.76 0.43 0.62 0.49 0.57 0.49

Comm Loc. Affairs 1.18 0.48 1.38 0.67 1.44 0.74 1.75 0.86

Comm Community Leader 1.10 0.40 1.43 0.77 1.25 0.60 2.42 1.25

Comm Soc. Clubs 1.24 0.61 1.44 0.75 1.35 0.67 2.28 1.18

Comm Work Nbhd. 1.62 0.84 1.72 0.95 1.53 0.70 2.03 1.10

Comm Friends Over 2.12 0.91 2.79 1.21 2.48 0.87 3.55 1.31

Comm Diff. Nbhd. 1.94 0.91 2.80 1.20 2.06 0.85 3.16 1.33

Comm Got Out 2.08 0.74 2.09 0.82 2.29 1.18 3.14 1.26

Trust Nbhd 3.89 0.70 3.30 1.00 2.94 1.03 3.38 1.10

Trust Work 3.84 0.69 3.08 1.04 3.02 1.01 3.13 1.13

Trust Stangers 1.57 0.79 2.23 1.09 1.82 0.90 2.44 1.16

Trust Gen 0.89 0.31 0.55 0.50 0.32 0.47 0.61 0.49

Trust Someone 0.98 0.14 0.81 0.40 0.80 0.40 0.78 0.41

Gov Impact 1.80 0.98 2.06 1.20 2.12 0.96 2.71 1.25

Gov Freedom 3.73 0.85 2.63 1.43 3.08 1.19 3.57 1.09

N. Obs 11062 5458 2417 3652
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Figure 2.2.2. Disability rate by income percentile
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The second variable we include in the environmental index is education years. As part of a
larger set of socio-economic variables, education has been shown to be negatively associated with
functional decline (see, e.g., Beydoun and Popkin, 2005; Larnyo, Dai, Nutakor, Ampon-Wireko,
Larnyo, et al., 2022). In terms of sample means, Russia stands out among the four countries with
average education years of more than ten years, compared to the 4-5 years for the other coun-
tries (Table 2.2.2). This stark difference can arise either from specifics of the Soviet educational
system (when our survey participants would have attained their education), namely compulsory
secondary education and state-sponsored free higher education, or from oversampling of the ur-
ban population in the Russian data ( 80% compared to 25% in India, 40% in Ghana, and 50%
in China).

A number of studies have shown that amore supportive social environment can be amitigating
factor in age-related functional decline and psychological distress associated with it (see, e.g.,
Backe, Patil, Nes, and Clench-Aas, 2018; Hajek, Brettschneider, Eisele, Mallon, Oey, et al., 2022).
number of household members is the first variable from this domain of variables that we include
in the environmental index. Table 2.2.2 shows that the largest average household size is observed
in India (5.5), followed by Ghana (4.51), China (1.75), and Russia (1.5). We also include an
indicator variable for the marital status (variable cohabiting in Table 2.2.2), which is coded as
one if an individual is married or cohabits with another person.

We further include several variables associated with social cohesion. The first set of these
questions asks about the frequency of community involvement during the period of 12 months
prior to the interview. An example question is how often an individual has attended group, society,
or union meetings (Comm Soc Clubs), with possible answers ranging from never (score of 1) to
daily (score of 5). The second set of variables concerns trust for different groups of people. Two
binary answer questions ask whether respondents think people can be trusted in general (Trust
Gen) and whether they have someone they can trust (Trust Someone). The rest of the questions
in this set ask to which extent respondents trust strangers (Trust Strangers) and people at work
(Trust Work) and neighborhood (Trust Nbhd). Possible answers range from "to a very great
extent" (score of 1, but coded as 5 in our analysis) to "to a very small extent" (score of 5, but
coded as 1 in our analysis). Finally, Gov Impact and Gov Freedom ask respondents, on a scale of
from 1 to 5, how much influence they think they have in getting the government to address issues
relevant to them and how much freedom they have in expressing political opinions without fear
of reprisal, respectively.

2.3 Estimator and quantities of interest

2.3.1 Estimator

We formalize and estimate our empirical model using the binary response double index frame-
work developed in Klein and Vella (2009). Namely, we model the conditional probability of being
disabled in the following form:
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Pr(Disa = 1|I, E) = h(I, E) (2.3.1)

⇔Pr(Disa = 1|XI, XE) = h(XIβ I, XEβE) (2.3.2)

The empirical formulation of equation 2.3.1 implies that an individual’s intrinsic and environ-
mental characteristics enter the respective indices in linear form. Furthermore, the probability link
function h is determined nonparametrically, based on the observed data, and allows for nonlinear
interaction between the indices.

Our identification strategy is analogous to that of Drerup, Enke, and von Gaudecker (2017).
Specifically, in our econometric specification, the continuous age and income percentile variables
are included only in the intrinsic and environmental indices, respectively. We further normalize
the coefficients of those variables to -1 and 1.

Utilizing Bayes rule, the probability link function can be expressed as a function of the joint
densities of the two indices and unconditional probability of being disabled:

Pr(Disa = 1|XI, XE) = h(XIβ I, XEβE) =
fDisa=1(XIβ I, XEβE)Pr(Disa = 1)

f(XIβ I, XEβE)
(2.3.3)

where f(·, ·) and fDisa=1(·, ·) denote the unconditional and conditional (on being disabled) joint
densities of the intrinsic and environmental indices, respectively, and Pr(Disa= 1) is the uncon-
ditional probability of being disabled. Empirical estimates of the quantities involved in 2.3.3 are
obtained through the multistage kernel density estimation procedure of Klein and Vella (2009).
The index parameter vectors β I and βE then can then be estimated via maximum likelihood esti-
mation:

(β̂ I, β̂E) = argmax
β I,βE

N
∑

i=1

τi[Disai ln(P̂i(β
I,βE)) + (1 − Disai) ln(1 − ln P̂i)] (2.3.4)

where τi is a trimming function preventing densities from diminishing, and P̂i(·, ·) is the empirical
estimate of the conditional probability of being disabled.

2.3.2 Parameters of interest

As a summary version of the link function h, we estimate the average structural function (ASF)
proposed in Blundell and Powell (2003) and Blundell and Powell (2004). ASF summarizes the
dependence of the binary response variable (disability rate in our case) on either of the structural
indices by taking the average over the marginal distribution of the respective other index. In
formal terms:

ASFI(I
0) =

∫

h(I0, E)dFE (2.3.5)

ASFE(E0) =

∫

h(I, E0)dFI (2.3.6)

where the marginal distriubtions of the indices, FI and FE can be estimated, given the emprical esti-
mates of the index levels, Î = XIβ̂ I and Ê = XEβ̂E, respectively. While the parameters estimated via
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the maximum likelihood procedure describe the contribution of each microvariable to the struc-
tural indices, we summarize the effects of the individual environmental and intrinsic variables on
the predicted probability of being disabled by means of "average partial effects" (APE) of Klein
and Vella (2009),Maurer (2009) and Maurer, Klein, and Vella (2011). The average partial effect
of changing the value of a micro variable xj from x0

j to x1
j can be calculated as the difference of the

ASF of the corresponding index when the value of xj is fixed at x0
j and x1

j throughout. Formally,
the APE of an xj variable through the intrinsic index is calculated as:

APEI(x
0
j , x1

j ) =

∫

h(I(x1
j ), E)dFI(x1

j ),E −
∫

h(I(x0
j ), E)dFI(x0

j ),E (2.3.7)

with analogous calculations of the effects through the environmental index.

2.4 Main results

We will present our estimation results in several steps. We first discuss parameter estimates of
the linear coefficients of the intrinsic and environmental indices. We next present the estimated
semiparametric probability function, which illustrates the joint effect of the two indices on the
predicted probability of being disabled. Further, we discuss the marginal effects of the intrinsic
and environmental indices on the predicted probability of being disabled, wherein the effects of
the environmental and intrinsic indices, respectively, are integrated out. Finally, we discuss the
effects of individual covariates in each index on the predicted probability of being disabled.

2.4.1 Coefficient estimates

Tables 2.4.1 and 2.4.2 illustrate the estimated model parameters in the intrinsic and environmen-
tal indices, respectively. Recall that, for identification purposes, we normalize the constant terms
in both indices to zeros. Further, in the intrinsic index, we normalize the coefficient of the age
variable to -1, and in the environmental index, we normalize the coefficient of income percentile
to 1. This normalization setting implies that we should interpret the coefficients in each index in
units of the corresponding normalizing variables.

The negative association of age with the intrinsic index imposes certain expectations regard-
ing the remaining variables. In particular, we would expect the risk factors (variables indicating
various diagnoses) to enter the index with a negative coefficient, whereas the cognition score and
the grip strength with a positive one.

The estimate of the coefficient of the gender variable is positive and statistically significant in
the Chinese, Indian, and Ghanaian samples. The signs of the coefficient estimates imply that being
male is associated with a lower risk of disability, which is in line with results from several studies
in gerontology literature (see, e.g., Darkwah, Iddi, Nonvignon, and Aikins, 2022; Malik, 2022). If
we were to interpret the sizes of the estimates, then, in the Ghanaian sample, for instance, being
male has the same contribution to the intrinsic index as reducing age by almost 4 years. In any
kind of interpretation, however, we should keep in mind that these coefficients are considered
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Table 2.4.1. Estimated parameters, intrinsic index

China India Russia Ghana

Age −1.000 −1.000 −1.000 −1.000

Male 2.965∗∗ 3.353∗∗ −4.166 3.808∗∗

(1.315) (1.690) (2.800) (1.828)

Grip Strength 36.389∗∗∗ 24.529∗∗ 60.752∗∗∗ −19.570∗∗

(6.449) (10.870) (13.409) (8.051)

Cognition Score 52.770∗∗∗ 54.716∗∗∗ 53.268∗∗∗ 64.285∗∗∗

(6.602) (9.954) (13.411) (9.614)

Diabetes −2.671 −1.126 −6.455∗ −10.050∗∗

(2.344) (3.031) (3.550) (3.934)

Lung −0.165 −3.658 −4.190 −4.345

(1.916) (4.050) (2.818) (8.736)

Arthritis −9.703∗∗∗ −6.986∗∗∗ −10.979∗∗∗ −8.169∗∗∗

(1.327) (1.659) (2.572) (1.817)

Angina −14.350∗∗∗ −12.298∗∗∗ −16.027∗∗∗ −8.201∗∗∗

(2.020) (1.952) (2.967) (2.024)

Stroke −28.424∗∗∗ −8.959 −7.595 −24.583∗∗∗

(4.453) (5.886) (4.907) (7.343)

Asthma −9.933∗∗∗ −13.628∗∗∗ −8.707∗∗ 2.450

(2.682) (2.610) (4.173) (3.441)

Hypertension −1.671 −4.653∗∗∗ 1.322 −2.831∗

(1.184) (1.629) (2.362) (1.566)

Depression −26.617∗∗∗ −13.139∗∗∗ −10.355∗∗∗ 1.770

(5.356) (2.301) (3.847) (2.808)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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nuisance parameters in the Klein and Vella (2009) estimator, which is primarily concerned with
identifying the structural indices.

Further, as we see in Table 2.4.1, in all country samples, except for Ghana, the estimated
coefficient of the grip strength variable has the expected sign and is statistically significant. Next,
the estimated coefficients of the cognition score variable are positive and significant in all the
samples and are of the same order of magnitude as those of the grip strength score variable.
The normalization in our model and the standardization of cognition and grip strength variables
render it challenging to interpret the estimated coefficients by more than to say that in all the
country samples (with the noted exception), we observe statistically significant estimates and that
the effects of higher scores of grip strength and cognitive abilities on the intrinsic index go in the
same direction as that of lower age.

Turning to the risk factors, the estimated coefficients mainly have the expected negative sign.
Many coefficient estimates are also statistically significant.

Overall, while the precision of the coefficient estimates in the intrinsic index varies across the
country samples and for different risk factors, the results are rather satisfactory, with many of the
estimates being statistically significant and most of the coefficients having the correct expected
sign.

Table 2.4.2 presents the estimates of coefficients for the variables in the environmental index.
Given the assumed positive relationship between income and the environmental index, we would
expect all the variables in the environmental index to have positive estimated coefficients, as
none of them reflects a risk factor but rather is indicative of a better environment in terms of
social network and support. In the case of education years, the coefficient signs are aligned with
our expectations in all the country samples. Considering the Chinese sample, for example, an
additional year of education has the same effect on the environmental index as moving up the
income distribution by 1.8 percentage points.

Results are somewhat disappointing for the other variables in the environmental index, both in
terms of coefficient signs and estimation precisions. In particular, we would expect the household
size to contribute to the environmental index in the same direction as income. However, the
estimated coefficients are negative in most of the country samples. Further, the coefficients of
social cohesion variables appear not to have a consistent sign either across country samples or the
types of social cohesion. Within the community involvement subgroup, for example, attending
meetings where local affairs are discussed (Comm. Loc. Affairs) contributes to the environmental
index negatively (in terms of income percentile) in the Chinese sample but positively in the other
country samples.
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Table 2.4.2. Estimated parameters, environmental index

China India Russia Ghana

Income Percentile 1.000 1.000 1.000 1.000

Education Years 1.787∗∗∗ 1.612 1.926 −0.949

(0.383) (1.008) (1.304) (0.846)

Num. HH Memberds −0.309 −3.837∗∗∗ −7.702∗∗ −3.523∗∗∗

(0.904) (0.912) (3.161) (1.226)

Cohabiting 5.685∗ 17.860∗∗ −4.744 −8.612

(3.172) (7.646) (8.491) (8.773)

Comm Loc. Affairs −2.518 22.371∗∗∗ 15.633 58.000∗∗∗

(2.810) (7.585) (10.388) (15.265)

Comm Community Leader −17.981∗∗∗ 23.498∗∗∗ 2.705 −12.573∗∗

(3.029) (6.380) (9.367) (5.328)

Comm Soc. Clubs 3.184 −0.462 −0.361 7.551∗

(2.371) (5.265) (10.098) (4.545)

Comm Work Nbhd. 2.332 −4.052 19.562∗∗ 26.330∗∗∗

(1.627) (4.050) (8.733) (7.528)

Comm Friends Over 0.127 −11.582∗∗∗ −3.040 −16.860∗∗∗

(1.451) (3.568) (5.450) (5.272)

Comm Diff. Nbhd. 11.877∗∗∗ 9.780∗∗∗ 9.209 6.258

(1.722) (3.469) (6.305) (4.052)

Comm Got Out 13.415∗∗∗ 1.700 4.200 1.221

(2.163) (4.252) (3.949) (3.465)

Trust Nbhd −3.566 13.420∗∗∗ 7.356 −7.066

(2.772) (4.360) (5.307) (5.651)

Trust Work 5.608∗ −8.561∗∗ 9.380∗ 28.070∗∗∗

(2.865) (3.944) (5.553) (8.593)

Trust Stangers −3.907∗∗ 1.986 3.424 −16.981∗∗∗

(1.532) (3.225) (5.482) (5.826)

Trust Gen −0.003 −11.490 0.797 −4.809

(3.977) (7.008) (9.635) (8.237)

Trust Someone 3.782 18.172∗∗ −3.852 −8.789

(8.655) (9.029) (9.208) (9.665)

Gov Impact 4.148∗∗∗ −5.592 −8.819∗ −5.137

(1.356) (3.428) (4.884) (3.853)

Gov Freedom 5.698∗∗∗ 7.553∗∗ 12.350∗∗ −4.922

(1.575) (2.984) (5.416) (3.971)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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On the other hand, having friends over contributes to the index negatively in all the country
samples except for the Chinese one. In sum, we don’t see a pattern emerge in terms of the rela-
tive contributions of the social cohesion variables to the environmental index, and many of the
estimates lack statistical significance.

2.4.2 Average partial effects of individual covariates

To gauge how each microvariable, on average, affects the probability of being disabled, we look
at the estimated partial effects in Table 2.4.3 and Table 2.4.4.

For the binary variables, the average partial effects are calculated as the difference between
values of the non-parametric probability link function estimated ate index values when setting
the control variable’s value to one and zero for all observations, respectively. For the age, the
number of household members, and education years, we calculate the change in the link function
when increasing the values of the variable observations by one. We calculate the effect of a five
percentage points increase for the income percentile. We consider the effect of one standard
deviation increase in the observed values for the remaining variables.

Table 2.4.3. APEs, intrinsic index

China India Russia Ghana

Age 0.005 0.006 0.005 0.007

Male −0.014 −0.019 0.020 −0.025

Grip Strength −0.019 −0.012 −0.035 0.016

Cognition Score −0.028 −0.029 −0.033 −0.040

Diabetes 0.013 0.006 0.033 0.073

Lung 0.001 0.021 0.021 0.030

Arthritis 0.052 0.042 0.060 0.057

Angina 0.083 0.081 0.095 0.058

Stroke 0.168 0.056 0.039 0.193

Asthma 0.055 0.091 0.045 −0.015

Hypertension 0.008 0.027 −0.006 0.018

Depression 0.156 0.087 0.054 −0.011

We start by looking at the results for the variables in the intrinsic index. As we could expect,
the average rate of disability increases with age. Furthermore, the estimated partial effects are of
the same order of magnitude across the country samples. Adding one year to age increases the
probability of being disabled by 0.5 percentage points in the Chinese and Russian samples, by 0.6
percentage points in the Indian sample, and by 0.7 percentage points in the Ghanaian sample.

Further, given that in our model specification we do not have a variable appear in both indices,
the relative signs and magnitudes of the coefficient estimates (Table 2.4.1) hint at signs of the
average partial effects. In particular, in line with the coefficient estimates, being male is associated
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with a decreased probability of being disabled in China (by 1.4% points), India (by 1.9% points),
and Ghana (by 2.5% points), and an increased probability of being disabled in Russian (by 2.0%
points). The impact of higher grip strength on the disability rate is negative across all countries
except Ghana. In particular, increasing the grip strength score by one standard deviation leads
to a decrease in disability rate by 1.9% points in the Chinese sample, 1.2% points in the Indian
sample, and 3.5% points in the Russian sample. Similarly, increasing the cognition score by one
standard deviation decreases the predicted probability of being disabled in all the country samples,
including Ghana. The estimated average partial effects of the cognition score variable are of the
same magnitude as those of the grip strength variable.

Turning to the risk factors, we observe that in most cases, their presence is associated with
a higher probability of being disabled. The exceptions are the presence of symptoms or diagno-
sis of asthma and depression in the Ghanaian sample and hypertension in the Russian sample,
where the estimated average partial effects are negative. Compared to the other health-related
risk factors, the effect of stroke on the predicted probability of being disabled is the largest in the
Chinese (16.8% points) and the Ghanaian (19.3% points) samples. Suffering from depression is
also among the top risk factors in the Chinese, as well as the Indian samples, with estimated aver-
age partial effects of 15.6% (second to stroke) and 8.7% (second to asthma) points, respectively.

Table 2.4.4. APEs, environmental index

China India Russia Ghana

Income Percentile −0.011 −0.005 −0.005 −0.005

Education Years −0.004 −0.001 −0.002 0.001

Num. HH Memberds 0.001 0.004 0.008 0.004

Cohabiting −0.013 −0.017 0.005 0.009

Comm Loc. Affairs 0.003 −0.014 −0.012 −0.045

Comm Community Leader 0.017 −0.017 −0.001 0.016

Comm Soc. Clubs −0.004 0.000 0.001 −0.009

Comm Work Nbhd. −0.004 0.004 −0.014 −0.029

Comm Friends Over −0.000 0.013 0.003 0.022

Comm Diff. Nbhd. −0.023 −0.011 −0.008 −0.009

Comm Got Out −0.021 −0.001 −0.005 −0.001

Trust Nbhd 0.006 −0.013 −0.007 0.008

Trust Work −0.009 0.008 −0.009 −0.032

Trust Stangers 0.007 −0.002 −0.003 0.020

Trust Gen 0.000 0.011 −0.001 0.005

Trust Someone −0.009 −0.017 0.004 0.009

Gov Impact −0.009 0.006 0.009 0.007

Gov Freedom −0.011 −0.010 −0.015 0.006
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.1. Bivariate density contour of the two indices

Table 2.4.4 reports the average partial effects for the variables in the environmental index.
Our estimates indicate that being higher up in the income distribution is associated with a lower
disability rate. Increasing the income percentile by 5 percentage points is associated with a de-
crease in the probability of being disabled by 1.1 percentage points in the Chinese sample, and
by 0.5 percentage points in the other samples. An additional year of education has a negative
partial effect on the predicted probability of being disabled in all the country samples, except for
the Ghanaian one, in line with the coefficient estimates (see Table 2.4.2).

Contrary to our expectations, household size has a positive impact on the disability rate. The
largest effect is observed in the Russian sample, with an estimated average partial effect of 0.8
percentage points.

Turning to the average partial effects of the variables of social cohesion, we observe mixed
directions of impacts of these variables on the predicted probability of being disabled, both across
countries and within the variable groups. Among the community involvement variables, in par-
ticular, more involvement in local affairs (a one standard deviation increase in the corresponding
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score) is associated with an increased disability rate in the Chinese sample (0.3% points) and
with a decreased disability rate in the Ghanaian (4.5% points), Russian (1.2% points), and In-
dian (1.4% points) samples. Having friends over, on the other hand, is associated with an increase
in the disability rate in all the country samples, except for the Chinese one, where the estimated
partial effect is nill. Working with other people in the neighborhood leads to a decrease in the pre-
dicted probability of being disabled in all the country samples, except for India, with the largest
effect of -2.9% points observed in the Ghanaian sample.

The average partial effects of variables associated with trust have mixed signs both across and
within countries. A higher degree of trust in the neighborhood, for example, is associated with
a higher disability rate in the Chinese (0.6 percentage points) and Ghanaian (0.8 percentage
points) samples and with a lower disability rate in Indian (-1.3 percentage points) and Russian
(-0.7 percentage points) samples. Trusting people at work, on the other hand, is associated with
a decrease in the predicted probability of being disabled in all the country samples except for the
Indian sample.

To summarize, we have mixed results regarding how each of the covariates in the two indices
affects the predicted probability of being disabled. For the variables in the intrinsic index, we
mostly find the signs of the estimated effect to conform to prior expectations stemming from
existing literature. In the case of the variables in the environmental index, however, we have
more inconsistent results both across and within countries. Unfortunately, in some cases, the
estimated effects contradicted our expectations based on health and gerontology literature (see
e.g., Noguchi, Kondo, Saito, Nakagawa-Senda, and Suzuki, 2019; Fujihara, Miyaguni, Tsuji, and
Kondo, 2022).

2.4.3 The interaction terms

This section discusses how the estimated index levels interact non-parametrically to determine the
predicted probability of being disabled. Since the model does not allow for predictions outside
the support of the indices, we begin by looking at the joint distribution of the two indices.

Figure 2.4.1 plots the bivariate density contours of the intrinsic and environmental indices. We
can see that, to varying degrees, a positive correlation exists between the two structural indices
in all the country samples. Importantly, we observe these correlation structures even though we
do not have any common variables influencing both the intrinsic and the environmental index.
In what follows, we trim the index values to lie between the 5th and 95th percentiles of their
marginal distributions, where the masses are concentrated.
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.2. Predicted probability of being disabled: Both Indices

Figure 2.4.2 depicts the predicted probability of being disabled as a function of the intrin-
sic and environmental indices. We can see that in all the country samples, the disability rate is
decreasing in both indices. Panel (d) of Figure 2.4.2, for example, illustrates that in the Russian
sample, the disability rate goes from 60 percentage points at the lowest values of the indices to 10
percentage points at the highest values. We can also detect non-linear interaction effects between
the indices. In particular, the intrinsic gradient of the predicted probability of being disabled is
more prominent (in absolute terms) at lower levels of the environmental index.

To get a more concrete idea on the magnitude of the non-linearities, figures 2.4.3 and 2.4.4
depict slices from the bivariate probability function.

In Figure 2.4.3 specifically, we can see the dependence of the predicted probability of being
disabled on the intrinsic index when fixing the environmental index at its 5th (dashed line) and
95th (solid line) percentiles. The most striking difference is observed in the Ghanaian sample,
where the predicted probability of being disabled changes only by 18% points when moving from
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the 5th to the 95th percentile of the intrinsic index at the 95th percentile of the environmental
index, whereas the difference is 54% points at the 5th percentile of the environmental index.

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.3. Predicted probability of being disabled: Intrinsic Index. Depicts how the disability rate depends on

the intrinsic index at different quantiles of the environmental index

Figure 2.4.4 presents analogous plots for the intrinsic index’s non-linear effects on the prob-
ability function’s environmental gradient. In this case, we observe even more pronounced non-
linear effects. In particular, continuing with the Ghanaian sample, the increase in the predicted
probability of being disabled along the environmental index is eight times as large at lower values
of the intrinsic index (40% points), as it is at higher values of the intrinsic index (5% points).
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.4. Predicted probability of being disabled: Environmental Index. Depicts how the disability rate de-

pends on the environmental index at different quantiles of the intrinsic index

The difference in the non-linear effects speaks to the intrinsic index’s relative importance for
predicting disability. However, as we saw in Figure 2.4.3, the environmental index non-trivially
affects how the disability rate reacts to changes in the intrinsic index.

In our last set of results, we discuss the structural dependency of the predicted probability
of being disabled on the intrinsic and environmental indices through the means of respective
average structural functions (ASF). As discussed earlier, the ASFs represent how the disability
rate depends on the intrinsic (environmental) index when the environmental (intrinsic) effects
have been integrated out using their marginal distribution. Figure 2.4.5 illustrates the estimated
ASFs of the intrinsic index (solid lines), as well as the corresponding 95% confidence interval
(the area between the dashed lines). In all the country samples, ASF is a decreasing function of
the intrinsic index. The ASF values are of similar magnitudes across the country samples and
lie between just under 50% points (highest value observed in the Russian sample, panel (d) of
Figure 2.4.5) for the initial values of the intrinsic index and goes down to under 10% points. This
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negative relationship is especially strong for the index values in the middle part of its distribution.
Closer to the right tail of the support of the intrinsic index, the ASF either plateaus (in the Russian
and Ghanaian samples) or displays an ever-so-slight upward slope (in the Indian and Chinese
samples). In addition, the ASFs are rather precisely estimated, as evidenced by the narrow error
bounds, in most of the country samples.

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.5. Average structural function, intrinsic index

The estimates of the ASF for the environmental index are presented in Figure 2.4.6. As in
the case of the intrinsic index, the ASF of the environmental index has a negative slope across
all country samples. Considering the Chinese sample (panel (a) of Figure 2.4.6), the ASF of the
environmental index is initially around 37.5% and gradually declines until around 10% points for
higher values of the environmental index. We also observe larger standard errors of the estimates,
with significantly wider confidence intervals compared to Figure 2.4.5.
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.4.6. Average structural function, environmental index

To summarize our results, due to limitations of the data at hand, we were not able to estimate
the environmental index as well as the intrinsic one. Nevertheless, we were able to identify consid-
erable non-linear interaction effects between the two indices. Importantly, these non-linearities
arise without any mechanical effects that could have potentially be driven by common index vari-
ables.

Our main results, in particular the shapes of the ASF functions and the non-linear interaction
terms between the structural indices persist through considerations of looser (30th percentile)
and stricter (10th percentile) cut-offs. For the full set of tables and figures of the results we refer
to appendices 2.A and 2.B.

2.5 Conclusion

We study functional abilities in older age as an outcome of intrinsic capacities, which constitute bi-
ological age, gender and accumulated frailties, and environmental factors characterized by socio-
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economic indicators and social cohesion. We use the data from the first wave of the World Health
Organization’s Study on global AGEing (World Health Organization, 2022) to estimate a semi-
parametric double index model for the predicted probability of being disabled. This estimation
procedure allows us to model the link function of the intrinsic and environmental indices in a non-
parametric fashion, thus allowing for complex, non-linear interaction terms between the two.

This framework reveals significant interaction effects between the environmental and intrinsic
indices. Importantly, we find that the curvature of the intrinsic gradient of the probability link
function is affected by the level of the environmental index in a non-negligible way. In particular,
the change in the predicted probability of being disabled moving from the top 5th percentile of the
intrinsic index to the bottom 5th percentile can be up to two times as large at the low levels of the
environmental index as the change at the high levels of the latter index (2.4.3). We obtain these
results despite the relatively simple model specification and no common variables shared among
the two indices, meaning that the correlation between the indices does not arise mechanically.

Our results are an important first step in estimating how environmental factors and intrinsic
capacities interact to determine functional abilities in older people. At the same time, we ac-
knowledge the limitations of our study. In particular, the variables in the environmental index are
poorly identified compared to their intrinsic counterparts. Additionally, the normalizing variable
in the environmental index potentially suffers from endogeneity issues. Most of the issues in our
study stem from the data at hand. In future work, we intend to tackle the research question with
datasets with a more granular and wider set of variables for the environmental index.

We leave a few extensions of the estimation procedure employed in this study for future work.
We plan to: 1) Implement a multiple choice double index model to differentiate between different
levels of disability. 2) Extend the estimator to apply it to a continuous outcome variable to estimate
the impact of the intrinsic capacities and environmental factors on subjective well-being, retrieved
as a continuous score variable from the SAGE data.
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Appendix 2.A Additional results: 10th percentile cutoff for disability

2.A.1 Coefficient estimates

Table 2.A.1. Estimated parameters, intrinsic index

China India Russia Ghana

Age −1.000 −1.000 −1.000 −1.000

Male 3.226∗∗ 0.585 −4.190 3.055

(1.462) (1.795) (4.096) (2.424)

Grip Strength 32.990∗∗∗ 24.412∗∗ 25.901 −10.647

(6.742) (10.503) (16.062) (11.345)

Cognition Score 51.101∗∗∗ 37.189∗∗∗ 86.296∗∗∗ 73.291∗∗∗

(6.937) (9.021) (23.226) (13.525)

Diabetes −2.000 −2.320 −15.907∗∗∗ −11.761∗∗

(2.505) (2.756) (5.455) (5.272)

Lung −0.030 −6.185 −10.223∗∗ −17.577

(2.206) (4.216) (5.082) (11.967)

Arthritis −3.713∗∗∗ −5.214∗∗∗ −11.341∗∗∗ −7.930∗∗∗

(1.392) (1.651) (3.949) (2.337)

Angina −10.135∗∗∗ −12.743∗∗∗ −16.267∗∗∗ −10.079∗∗∗

(1.908) (1.773) (4.600) (2.623)

Stroke −19.760∗∗∗ −4.817 −9.862 −30.211∗∗∗

(3.483) (5.105) (7.254) (8.256)

Asthma −11.667∗∗∗ −10.168∗∗∗ −14.173∗∗ 4.915

(2.901) (2.322) (5.900) (4.622)

Hypertension 1.338 −3.575∗∗ 5.985∗ −3.904∗

(1.293) (1.628) (3.484) (2.210)

Depression −29.373∗∗∗ −5.553∗∗∗ −17.541∗∗∗ 10.153∗∗

(5.529) (2.026) (5.726) (4.495)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 2.A.2. Estimated parameters, environmental index

China India Russia Ghana

Income Percentile 1.000 1.000 1.000 1.000

Education Years 2.063∗∗∗ −0.050 10.601 −0.022

(0.561) (1.119) (8.798) (1.745)

Num. HH Memberds −1.289 −3.602∗∗∗ 5.849 −3.170

(1.275) (0.900) (10.504) (2.126)

Cohabiting −6.995∗ 11.984 10.112 8.648

(4.178) (7.462) (25.293) (16.064)

Comm Loc. Affairs −5.667 15.019 61.959 48.670∗

(3.824) (9.209) (52.747) (25.170)

Comm Community Leader −23.507∗∗∗ 19.411∗∗ 0.025 −13.942

(4.004) (8.291) (27.633) (9.396)

Comm Soc. Clubs 1.617 5.234 49.745 23.421

(3.485) (7.204) (51.202) (16.074)

Comm Work Nbhd. 7.002∗∗∗ 13.675∗∗∗ 43.403 22.659∗

(2.567) (5.242) (38.418) (13.666)

Comm Friends Over 2.249 −5.997∗ 9.662 −4.415

(2.117) (3.483) (17.069) (7.149)

Comm Diff. Nbhd. 12.378∗∗∗ −7.019∗ 5.099 4.488

(2.440) (3.877) (15.643) (6.620)

Comm Got Out 12.212∗∗∗ 10.054∗∗ 30.316 26.643∗∗

(2.786) (5.097) (25.995) (12.519)

Trust Nbhd −4.042 15.427∗∗∗ −9.385 −7.833

(3.778) (5.353) (13.649) (11.138)

Trust Work 4.962 −14.282∗∗∗ 56.122 22.149

(3.664) (4.795) (46.415) (14.533)

Trust Stangers −5.392∗∗∗ 2.864 4.675 −16.569

(2.065) (3.418) (13.504) (11.451)

Trust Gen −9.157 −4.194 13.035 −2.455

(5.737) (7.023) (26.519) (15.406)

Trust Someone 12.698 17.401∗∗ −60.617 −39.351

(11.603) (8.806) (57.965) (24.353)

Gov Impact 4.240∗∗ −26.372∗∗∗ −18.992 1.084

(1.992) (6.556) (15.941) (6.743)

Gov Freedom 6.852∗∗∗ 22.310∗∗∗ 5.068 −15.447

(2.152) (5.649) (9.976) (9.600)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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2.A.2 Averge partial effects

Table 2.A.3. Average partial effects, intrinsic index

China India Russia Ghana

Age 0.004 0.004 0.003 0.004

Male −0.011 −0.002 0.011 −0.011

Grip Strength −0.012 −0.008 −0.008 0.005

Cognition Score −0.019 −0.015 −0.029 −0.024

Diabetes 0.007 0.010 0.045 0.051

Lung 0.000 0.028 0.028 0.082

Arthritis 0.013 0.023 0.033 0.031

Angina 0.042 0.066 0.051 0.041

Stroke 0.092 0.022 0.027 0.155

Asthma 0.050 0.051 0.040 −0.016

Hypertension −0.005 0.015 −0.016 0.014

Depression 0.143 0.025 0.049 −0.029
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Table 2.A.4. Average partial effects, environmental index

China India Russia Ghana

Income Percentile −0.006 −0.003 −0.001 −0.002

Education Years −0.002 0.000 −0.003 0.000

Num. HH Memberds 0.002 0.003 −0.001 0.002

Cohabiting 0.008 −0.008 −0.003 −0.004

Comm Loc. Affairs 0.003 −0.007 −0.013 −0.016

Comm Community Leader 0.012 −0.010 0.000 0.008

Comm Soc. Clubs −0.001 −0.003 −0.009 −0.011

Comm Work Nbhd. −0.007 −0.009 −0.009 −0.010

Comm Friends Over −0.002 0.005 −0.002 0.003

Comm Diff. Nbhd. −0.012 0.006 −0.001 −0.002

Comm Got Out −0.010 −0.005 −0.010 −0.014

Trust Nbhd 0.004 −0.010 0.003 0.004

Trust Work −0.004 0.009 −0.017 −0.010

Trust Stangers 0.005 −0.002 −0.001 0.009

Trust Gen 0.011 0.003 −0.004 0.001

Trust Someone −0.016 −0.012 0.017 0.017

Gov Impact −0.005 0.018 0.005 −0.000

Gov Freedom −0.007 −0.021 −0.001 0.008



116 | 2 Intrinsic and External Determinants of Age-Related Decline in Functioning

2.A.3 Interaction terms

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.A.1. Bivariate density contour of the two indices
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.A.2. Predicted probability of being disabled

Table 2.A.5. The effect of intrinsic index on disability rate

at different values of the environmental index

China India Russia Ghana

Environmental Index

Low 0.31 0.32 0.40 0.32

High 0.15 0.09 0.08 0.15
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Table 2.A.6. The effect of the environmental index on disability rate

at different values of the intrinsic index

China India Russia Ghana

Intrinsic Index

Low 0.27 0.27 0.35 0.26

High 0.11 0.04 0.02 0.09

2.A.4 Average structural functions

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.A.3. Average structural function, intrinsic index
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.A.4. Average structural function, environmental index
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Appendix 2.B Additional results: 30th percentile cutoff for disability

2.B.1 Coefficient estimates

Table 2.B.1. Estimated parameters, intrinsic index

China India Russia Ghana

Age −1.000 −1.000 −1.000 −1.000

Male 2.231 10.620∗∗∗ −4.896 5.242∗∗∗

(1.382) (1.581) (3.657) (1.535)

Grip Strength 58.105∗∗∗ 18.152∗ 90.173∗∗∗ −24.196∗∗∗

(7.745) (10.071) (22.576) (6.943)

Cognition Score 74.305∗∗∗ 38.636∗∗∗ 67.202∗∗∗ 56.112∗∗∗

(8.032) (8.872) (19.084) (7.958)

Diabetes −3.857∗ −0.940 −17.675∗∗∗ −10.480∗∗∗

(2.330) (2.835) (5.750) (3.713)

Lung −1.377 −4.094 −17.314∗∗∗ −0.364

(2.116) (3.672) (4.610) (8.429)

Arthritis −11.786∗∗∗ −7.418∗∗∗ −14.564∗∗∗ −8.669∗∗∗

(1.492) (1.563) (3.726) (1.600)

Angina −19.287∗∗∗ −14.291∗∗∗ −19.864∗∗∗ −8.945∗∗∗

(2.383) (2.052) (4.530) (1.792)

Stroke −23.394∗∗∗ −7.226 −29.354∗∗∗ −23.008∗∗∗

(4.269) (5.158) (10.438) (7.184)

Asthma −11.642∗∗∗ −13.010∗∗∗ 0.849 0.191

(2.895) (2.497) (5.574) (3.201)

Hypertension −2.460∗∗ −3.033∗∗ −9.326∗∗∗ −1.819

(1.232) (1.543) (3.344) (1.363)

Depression −34.240∗∗∗ −14.052∗∗∗ −15.992∗∗∗ −0.887

(6.477) (2.348) (5.681) (2.535)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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Table 2.B.2. Estimated parameters, environmental index

China India Russia Ghana

Income Percentile 1.000 1.000 1.000 1.000

Education Years 0.807∗∗∗ 1.339∗∗ 12.149 −0.314

(0.273) (0.633) (7.896) (0.722)

Num. HH Memberds −1.946∗∗∗ −3.184∗∗∗ 19.920 −2.211∗∗

(0.717) (0.658) (14.067) (0.948)

Cohabiting 2.882 5.102 −23.653 −7.003

(2.641) (5.202) (20.515) (7.261)

Comm Loc. Affairs −7.964∗∗∗ 11.952∗∗ 44.218 35.565∗∗∗

(2.306) (4.669) (32.843) (8.885)

Comm Community Leader 24.724∗∗∗ −6.522∗ −46.322 −16.240∗∗∗

(3.393) (3.945) (32.521) (4.986)

Comm Soc. Clubs 0.309 11.448∗∗∗ 12.221 5.031

(1.776) (4.181) (17.578) (3.431)

Comm Work Nbhd. −0.861 −1.235 47.999 35.047∗∗∗

(1.289) (2.806) (31.553) (8.490)

Comm Friends Over 1.768 −7.783∗∗∗ −39.863 −16.046∗∗∗

(1.208) (2.291) (26.287) (4.612)

Comm Diff. Nbhd. 5.584∗∗∗ 7.460∗∗∗ 46.178 1.173

(1.213) (2.302) (29.717) (3.262)

Comm Got Out 13.074∗∗∗ −2.173 0.592 7.174∗∗

(1.733) (2.925) (6.720) (3.306)

Trust Nbhd −2.250 0.833 27.357 2.931

(2.101) (2.750) (18.226) (4.510)

Trust Work 2.764 −3.953 −3.349 21.331∗∗∗

(2.169) (2.679) (8.919) (6.309)

Trust Stangers −0.940 0.440 17.982 −15.588∗∗∗

(1.204) (2.212) (14.583) (4.776)

Trust Gen 7.192∗∗ 8.090∗ −25.141 1.475

(3.101) (4.494) (22.625) (7.005)

Trust Someone −0.197 18.090∗∗∗ −25.112 −6.222

(7.031) (6.747) (23.292) (8.054)

Gov Impact 0.609 2.064 −18.529 1.386

(0.989) (2.249) (13.539) (3.123)

Gov Freedom 3.564∗∗∗ 1.406 11.647 −4.419

(1.211) (1.846) (9.340) (3.400)

Observations 11062 5458 2417 3652

Note:
∗∗∗p<0.01;∗∗p<0.05;∗p<0.1
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2.B.2 Averge partial effects

Table 2.B.3. Average partial effects, intrinsic index

China India Russia Ghana

Age 0.005 0.007 0.005 0.009

Male −0.012 −0.076 0.022 −0.045

Grip Strength −0.034 −0.011 −0.049 0.026

Cognition Score −0.045 −0.027 −0.039 −0.048

Diabetes 0.022 0.006 0.086 0.095

Lung 0.008 0.029 0.083 0.003

Arthritis 0.070 0.054 0.071 0.079

Angina 0.122 0.113 0.105 0.082

Stroke 0.146 0.053 0.141 0.206

Asthma 0.070 0.100 −0.004 −0.002

Hypertension 0.013 0.021 0.044 0.015

Depression 0.210 0.110 0.077 0.008
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Table 2.B.4. Average partial effects, environmental index

China India Russia Ghana

Income Percentile −0.016 −0.009 −0.003 −0.008

Education Years −0.003 −0.002 −0.008 0.001

Num. HH Memberds 0.006 0.006 −0.013 0.004

Cohabiting −0.009 −0.009 0.016 0.011

Comm Loc. Affairs 0.012 −0.014 −0.022 −0.044

Comm Community Leader −0.030 0.009 0.021 0.031

Comm Soc. Clubs −0.001 −0.015 −0.006 −0.009

Comm Work Nbhd. 0.002 0.002 −0.022 −0.053

Comm Friends Over −0.005 0.016 0.026 0.032

Comm Diff. Nbhd. −0.016 −0.016 −0.025 −0.002

Comm Got Out −0.029 0.003 −0.000 −0.014

Trust Nbhd 0.005 −0.001 −0.019 −0.005

Trust Work −0.006 0.007 0.003 −0.035

Trust Stangers 0.002 −0.001 −0.011 0.028

Trust Gen −0.024 −0.014 0.018 −0.002

Trust Someone 0.001 −0.032 0.017 0.009

Gov Impact −0.002 −0.004 0.013 −0.003

Gov Freedom −0.010 −0.003 −0.009 0.008
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2.B.3 Interaction terms

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.B.1. Bivariate density contour of the two indices
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.B.2. Predicted probability of being disabled

Table 2.B.5. The effect of intrinsic index on disability rate

at different values of the environmental index

China India Russia Ghana

Environmental Index

Low 0.42 0.38 0.56 0.55

High 0.34 0.34 0.33 0.27
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Table 2.B.6. The effect of the environmental index on disability rate

at different values of the intrinsic index

China India Russia Ghana

Intrinsic Index

Low 0.32 0.21 0.39 0.41

High 0.23 0.17 0.16 0.13

2.B.4 Average structural functions

(a) China (b) India

(c) Russia (d) Ghana

Figure 2.B.3. Average structural function, intrinsic index
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(a) China (b) India

(c) Russia (d) Ghana

Figure 2.B.4. Average structural function, environmental index
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Chapter 3

Tranquilo
Joint with Janoś Gabler, Tim Mensinger, and Sebastian Gsell

3.1 Introduction

Economists frequently encounter “hard” optimization problems when fitting structural models to
empirical data. By “hard” we mean that solving the optimization problem requires a significant
amount of computation time, often hours or days; that manual intervention like tuning start
values or adjusting algorithm parameters is required to obtain a solution; and that solving the
optimization problems takes up a significant portion of the researcher’s time. A prime example
where such problems arise is the estimation of discrete choice models via the method of simulated
moments (MSM).

Despite the prevalence of MSM estimation in structural papers (see Eisenhauer, Heckman, and
Mosso (2015) for a review) and widely available anecdotal evidence that structural researchers
would love to spend less time on solving optimization problems, there are no specialized opti-
mization algorithms that are tailored to the characteristics of MSM estimation problems.

The goal of our paper is to close this gap by proposing the tranquilo (TrustRegion Adaptive
Noise robust QUadratIc or Linear approximation Optimizer) algorithm – an optimizer that helps
researchers solve hard optimization problems, as they arise during MSM estimation, faster and
with less need for manual intervention. tranquilo is designed to take three main characteristics of
MSM estimation problems into account:

First, MSM estimation problems are nonlinear least-squares problems. Least-squares optimiza-
tion problems lie within the general class of blackbox optimization problems

min
l≤x≤u

f(x) (DET)

where f : Rp→ R. In the least-squares case, it is assumed that the objective function f has the
structure f(x)=

k
∑

i=1
ri(x)2 and thus the optimization problem can be written as
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min
l≤x≤u

k
∑

i=1

ri(x)2 = min
l≤x≤u
∥r(x)∥2 (DET-LS)

where r(x)≡ [r1(x), . . . , rk(x)]T : Rp→ Rk and ∥·∥ is the 2-norm of a vector. ri(x) is called a least-
squares residual and r(x) is called a residual vector.

It is easy to see that MSM problems are nonlinear least-squares problems. The objective func-
tion of an MSM problem is given by

f(x) = (m(x) − m̂)TW(m(x) − m̂)

where x are the parameters to be estimated, m(x) is a vector of simulated moments from the
economic model, and m̂ is a vector of empirical moments. W is a positive definite weighting
matrix.

By defining L= chol(W) as the lower triangular Cholesky factor of W, we can rewrite the
objective function as

f(x) = (m(x) − m̂)TLLT(m(x) − m̂)

By defining r(x)= LT(m(x)− m̂), we can rewrite the objective function as

f(x) = r(x)Tr(x) =
k
∑

i=1

ri(x)2 = ∥r(x)∥2

Which shows the least-squares structure of the MSM objective function.
There is a class of optimization algorithms that exploit the least-squares structure of the ob-

jective function, and it is a robust result that they outperform general-purpose algorithms when
applicable (Levenberg, 1944; Marquardt, 1963; Wild, 2017; Cartis, Fiala, Marteau, and Roberts,
2019). A review of existing algorithms can be found in Section 3.2. Tranquilo builds on the class of
derivative-free least-squares optimizers and extends them to meet the requirements of an efficient
optimizer for MSM problems.

Second, MSM estimation problems as they arise in economics have an expensive objective
function that is hard to parallelize.

In structural economic models, each evaluation of the MSM objective function first requires
solving the model and then simulating data based on the solution. Solving a model can take
anywhere from a few seconds to a few hours but is never in the range of milliseconds. Simulating
data from a model is usually much faster but still adds some computation time.

An optimization algorithm that is designed for MSM estimation problems can thus assume
that the evaluation of the objective function is a runtime bottleneck. Whenever there is a trade-
off between reducing calculations done by the optimizer (e.g., doing linear algebra to calculate
candidate points) vs. saving a few function evaluations, the optimizer should always prioritize
saving function evaluations. This is in stark contrast to traditional objectives of optimization algo-
rithms where often a significant amount of effort is spent on optimizing calculations done by the
optimizer so that they can solve benchmarks consisting of very fast objective functions as fast as
possible.
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Nowadays, most researchers have access to parallel hardware: 8 to 16 cores in a laptop; 16
to 64 cores in desktop computers and small servers, up to hundreds of cores in clusters. However,
in most codebases we are aware of, the objective function is not parallelized. This may partially
be due to the fact that economists are not trained in parallel programming, but there are also
inherent difficulties in parallelizing the solution of economic models. In any case, parallelizing
the objective function would require a large time investment of the researcher.

This implies that an optimization algorithm should parallelize the evaluation of the objective
function and thus shift the burden of parallel programming from researchers to algorithm de-
velopers. Algorithms that parallelize on the level of function evaluations exist (Lee and Wiswall,
2007), but to the best of our knowledge, none of them exploits the least-squares structure of the
objective function.

A primary goal for tranquilo was to develop an algorithm that evaluates the objective function
in batches and, instead of trying to minimize the number of function evaluations, tries to minimize
the number of batches. The batch size corresponds to the number of available cores in the system.
This design choice stems from the understanding that researchers typically do not benefit from
idle cores on their computers. Instead, their priority is often to minimize the time it takes to solve
the optimization problem.

Third, MSM estimation problems have a noisy objective function. Noise in the objective func-
tion means that we only observe noisy evaluations of the true objective function, but we are
interested in finding the minimum or minimizer of the true objective function.

Thus, the problem to be solved is not given by equations DET or DET-LS but by their stochastic
counterparts

min
l≤x≤u
Ef(x,ξ) (STOCH)

min
l≤x≤u
E∥r(x,ξ)∥2 = min

l≤x≤u
E

k
∑

i=1

ri(x,ξi)
2 (STOCH-LS)

In the method of simulated moments, the noise in the objective function comes from the fact
that we are simulating data of a stochastic model. As researchers, we can influence the amount
of noise in the objective function by increasing the number of simulation draws. However, this
comes at the cost of increased computation time, and reducing the amount of noise to a level that
is acceptable for standard optimizers is usually prohibitively expensive. This is especially the case
in dynamic discrete models where initially small random influences propagate over time and can
lead to large differences in the simulated data of final periods.

A common approach to deal with noisy objective functions inolves fixing the seed of the ran-
dom number generator and using the same random draws in each iteration of the optimizer. In
general, this approach is not suitable for solving STOCH or STOCH-LS. The reason is that the op-
timizer will be influenced by lucky draws under the chosen seed and has no chance to optimize
the true objective function, i.e., the expected value of the observable function.
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Moreover, in dynamic discrete models, this approach of fixing the seed also fails to produce
a well-behaved objective function. While it renders the objective function deterministic, it can
introduce discontinuities and local optima even if the underlying true objective function is smooth.

Any optimizer that aims to solve STOCH or STOCH-LS has to evaluate the objective function
more often than an equivalent optimizer for deterministic problems so the effect of noise can be
averaged out. Typically, such optimizers ask a user to specify the number of function evaluations,
either as a fixed sequence or a function that depends on the iteration counter and other internal
variables of the optimizer. This does not only require knowledge about the inner workings of the
optimizer but is very hard to do in practice, as the ideal number of function evaluations depends
on problem properties that are not known ex-ante. We illustrate this in Section 3.5.1. Usually, the
ideal sequence is increasing in the iteration counter. Choosing too many evaluations slows down
the progress. Choosing too few can lead to a catastrophic failure of the optimizer.

A primary goal of our optimizer is, therefore, to determine the optimal number of function
evaluations in an adaptive fashionwithout requiring any user-provided information on the amount
or type of noise in the objective function.

While tranquilo is tailored to MSM estimation problems as they arise in economics, it is not
limited to these. Problems with the same characteristics are also encountered in other fields.
Prime examples are design optimization in engineering or calibrating epidemiological models
to empirical data. In fact, one of the main motivations for developing tranquilo comes from an
epidemiological model (Gabler, Raabe, Röhrl, and Gaudecker, 2022).

To summarize the contributions on a technical level, some familiarity with derivative-free
trust-region optimizers is required. We describe the basic intuition of derivative-free trust-region
optimization in Section 3.2 and refer the reader to Conn, Gould, and Toint (2000) for a more
detailed introduction. The technical contributions are as follows.

First, We take a fairly standard trust-region framework for nonlinear least-squares optimizers
(see for example, Conn, Gould, and Toint (2000)) and reformulate it in a modular fashion that
allows us to replace individual components of the algorithm in order to customize it to the charac-
teristics of MSM estimation problems. Besides the obvious benefit of easing the implementation,
this modularization generates important insights. For example, we show that the fundamental
difference between a scalar and least-squares version of tranquilo is concentrated in one single
step (see Section 15), which is not obvious when looking at other codebases that implement scalar
and least-squares versions of an algorithm (e.g., Cartis, Fiala, et al. (2019) implement the scalar
PY-BOBYQA and least-squares DFO-LS in two separate codebases even though they highlight the
similarity of both algorithms in their paper).

Second, we add parallelization capabilities to the trust-region framework. Some parts of
derivative-free trust-region algorithms, such as the evaluation of the objective function on an
initial set of points, are embarrassingly parallel and have been parallelized in other algorithms
(e.g., Cartis, Fiala, et al. (2019)). We add two new ideas for more efficient parallelization: The
first is a parallel line search that tries out multiple step lengths in the search direction obtained by
solving the trust-region subproblem. The second is speculative sampling: While doing the func-
tion evaluation(s) needed to decide whether a candidate point is accepted, we already sample
points that would be helpful in the next iteration if the candidate point is accepted, and evaluate
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the objective function on those points. Both strategies have diminishing returns if many cores are
available. Therefore, we find that a combination of both approaches works best.

Third, we propose novel ways of adaptively determining how many function evaluations are
needed to average out the noise just enough so that the optimizer can make progress. We distin-
guish two different situations within each iteration.

In the model building phase, we need to determine how often the objective function should
be evaluated on each model point. The goal here is to build a model that is as cheap as possible
but good enough to send us in the right direction. We treat the error that derives from noise in
a similar form as the error that derives from approximating a general nonlinear function over
the trust-region with a low-order polynomial. To this end, we introduce a new measure of model
quality ρnoise that measures how strongly random error impedes the surrogate model’s ability
to produce good candidate points. This measure is then used to adjust the number of repeated
function evaluations at each model point. In this sense, it is similar to the traditional measure of
model quality ρ that is used to adjust the trust-region radius. The calculation of ρnoise is based on
a simulation approach that is computationally costly compared to an iteration of a normal trust-
region algorithm but small compared to a single evaluation of the objective function in typical
applications.

In the acceptance phase, we need to determine how many function evaluations are needed to
decide whether the candidate point is actually an improvement over the currently accepted point.
We use power analysis to determine the minimal number of additional function evaluations on
both the candidate point and the currently accepted point that are needed to achieve a certain
power in deciding which point is better. The approach takes the existing number of evaluations
on both points as well as the expected improvement – a side-product of the trust-region step –
into account.

Both approaches require an estimate of the variance of the noise in the objective function.
We estimate this variance from existing function evaluations on points in a neighborhood of the
current trust-region. By doing multiple function evaluations on the start parameters, we can guar-
antee that a sufficient number of function evaluations is available in all iterations and no extra
function evaluations are needed for the noise estimation. This approach treats the noise variance
as locally constant over the trust-region but otherwise accommodates both additive and multi-
plicative noise as well as mixtures thereof and does not require the user to specify which type of
noise is present.

Fourth, we make tranquilo (Gabler, Gsell, Mensinger, and Petrosyan, 2024) available as an
open-source Python package that can be used in isolation or via the estimagic package (Gabler,
2022).

Tranquilo builds heavily on previous algorithms and the literature on derivative-free opti-
mization (Conn, Gould, and Toint, 2000; Powell, 2009; Wild, 2017; Cartis, Fiala, et al., 2019).
While this literature uses terminology that is not commonly familiar to economists, it is surpris-
ing that large parts of tranquilo can be understood in terms of concepts that are familiar to
economists: Power analysis is routinely used to determine sample sizes in empirical work; in
tranquilo, it is used to determine the number of function evaluations for accepting a candidate
point. Using model-based simulations to determine optimal policies is the core business of struc-
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tural economists; in tranquilo we use them to determine an optimal policy for the number of
function evaluations used in the model building phase. Finally, ordinary least-squares regression
is the workhorse method for every empirical economists; in tranquilo we use it to fit linear or
quadratic approximations to a general nonlinear function.

We benchmark tranquilo against existing solvers on the Moré-Wild benchmark set Moré and
Wild (2009), which is the standard benchmark set for derivative-free least-squares solvers. To
assess the performance of tranquilo on noisy problems, we add artificial noise to the objective
functions of the benchmark set.

In a baseline setting without noise and parallelism, the least-squares and scalar versions of
tranquilo are competitive with comparable existing solvers. The least-squares version is slightly
slower than the best existing least-squares solver DFO-LS, but faster than POUNDERS. The scalar
version is slightly slower than the NlOpt implementation of BOBYQA but beats the scipy and NlOpt
implementations of Nelder-Mead as well as the NAG implementation of BOBYQA. While this is
not the primary use case for tranquilo, it is reassuring that tranquilo is competitive with existing
solvers in the baseline setting. The full results and details of the benchmarking procedure for this
setting can be found in Section 3.3.3.

To assess parallel performance, we compare tranquilo versions with 1, 2, 4, and 8 cores against
each other. We also include DFO-LS as a reference. Importantly, this time, the goal is not to min-
imize the number of function evaluations but the number of batches, where each batch is a set
of function evaluations that can be run in parallel. As before, we find that DFO-LS is faster than
the serial version of tranquilo, but with two cores, tranquilo is already considerably faster than
DFO-LS. Adding more cores keeps improving the performance of tranquilo, and the 8-core version
is the fastest solver for more than 80% of the problems in the benchmark set. The full results and
details of the benchmarking procedure for this setting can be found in Section 3.4.2.

In a noisy setting, we compare tranquilo against DFO-LS – the only other derivative-free least-
squares solver that is designed to handle noisy objective functions. Since DFO-LS requires the
user to specify the number of function evaluations at each parameter vector, we compare tran-
quilo against multiple variants of DFO-LS. We restrict our attention to a fixed number of function
evaluations because correctly guessing sequences that vary in each iteration is very hard to do in
practice. Compared to the noisy benchmarks in Cartis, Fiala, et al. (2019), we use a much larger
amount of noise.

We find that tranquilo outperforms all configurations of DFO-LS in the noisy setting. While
DFO-LS configurations with few function evaluations per parameter vector solve some problems
very quickly, they fail to solve others. Configurations with many function evaluations per param-
eter vector solve more problems but are very slow. Due to its adaptive nature, tranquilo is able
to solve problems quickly while still being robust to solve many problems. The full results and
details of the benchmarking procedure for this setting can be found in Section 3.5.4.

The remainder of the paper is structured as follows: Section 3.2 reviews core concepts and
terminology of derivative-free optimization and discusses how existing algorithms relate to tran-
quilo. Section 3.3 describes the modular formulation of our general trust-region framework and
discusses the implementation of each component for the baseline case without noise and par-
allelization. It also shows the results of benchmarking tranquilo against existing solvers in this
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setting. Section 3.4 explains our two ideas for improving the parallelization of derivative-free
trust-region optimizers and shows the speed-up we achieve via parallelization. Section 3.5 de-
scribes our approaches for noise handling as well as the corresponding benchmarks. Section 3.6
concludes.

3.2 Literature review

The literature review is split into two parts. The first reviews important concepts of derivative-
free optimization and is dedicated to readers with little or no background in optimization. We
introduce all essential concepts needed to understand the rest of the paper, as well as the technical
description of contributions in the introduction. The second part reviews related algorithms and
identifies gaps in the literature that are filled by tranquilo.

3.2.1 Concepts of derivative-free optimization

Local and global optimization. In economics and statistics, it is often the goal to find a global
minimum of a scalar objective function defined on Rp. Without further assumptions, this is an
impossible task, as the only way to guarantee that a global optimum was found is to evaluate the
objective function at all points in Rp.

There are two ways to solve global optimization problems in practice: Global optimizers or
local optimizers in a multistart framework.

Global optimizers require finite bounds for all parameters and sample the parameter space.
The simplest algorithms are random search and grid search; other algorithms sample candidate
points in more sophisticated ways. Global algorithms often yield relatively imprecise solutions
that must be refined with a local optimizer. Moreover, they suffer from the curse of dimensionality,
i.e., they become extremely expensive as soon as there are more than a handful of parameters. A
big drawback of global optimizers is that they typically do not exploit any known properties of
the objective function. For example, we are not aware of global optimizers that exploit the least-
squares structure. Without further precautions, global optimizers are also not robust to noise in
the objective function. A simple example of this is random search. While random search is a very
robust global optimizer for deterministic functions, it breaks down if there is considerable noise
in the objective function, as it might select a point that just had a lucky draw.

Multistart frameworks run local optimizers from multiple starting points. While any single
optimization run might get stuck in a local minimum, the hope is that the best local minimum is
also the global minimum. As with global optimizers, multistart frameworks come without guar-
antees that the global minimum was found. Their biggest advantage is that they work with any
local optimizers and, thus, can exploit known properties of the objective function, such as the
least-squares structure. As long as the local optimizer is robust to noise, multistart frameworks
are also robust to noise.
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Given these trade-offs, we decided to develop a local optimizer. If a global optimum is required,
we recommend to run tranquilo in an efficient multistart framework such as tiktak (Arnoud, Gu-
venen, and Kleineberg, 2019).

Derivative free optimization. Local optimizers move iteratively through the parameter space of
an optimization problem to find a parameter vector that minimizes the objective function. Thus,
in each iteration, the algorithm needs to decide on a search direction and a step size. In derivative-
based optimization, the search direction is usually based on the gradient of the objective function,
and the step size is chosen based on its Hessian (see Nocedal and Wright (2006) for examples).

While this approach is very successful, it requires a means to evaluate the gradient and, po-
tentially, the Hessian of the objective function. Whenever one has access to the objective function
itself, a way to get at its derivatives is to use finite differences. However, this approach is very
expensive. If there are p parameters, calculating a gradient via finite differences takes at least p
additional evaluations of the objective function, and second derivatives are even more expensive.

Gradient-free optimizers do not make direct use of the derivatives of the objective function. By
not using derivatives, their goal is to be faster than a gradient-based optimizer employing finite
differences. There are different classes of gradient-free optimizers. Each of them uses a different
approach to finding a search direction and a step size without using the derivatives of the objective
function. We restrict our attention to the class of derivative-free trust region optimizers. For an
overview of other approaches, see Larson, Menickelly, and Wild (2019).

Importantly, many derivative-free optimizers assume that the derivatives of the objective func-
tion exist. They simply do not use them because they are too expensive to evaluate. The existence
of derivatives is needed for convergence proofs. In practice, some derivative-free optimizers work
even if the derivatives do not exist.

The basic idea of trust-region optimization. An important class of derivative-free optimizers
are trust-region methods (Conn, Gould, and Toint, 2000; Nocedal and Wright, 2006). One itera-
tion of a prototypical trust-region algorithm looks as follows

1. Given a current parameter vector xt as trust-region center and a radius ∆t, form a surro-
gate model Mt that approximates the objective function inside the trust-region. The surrogate
model is usually a quadratic model or some other low-order polynomial.

2. Find the minimizer of the surrogate model using a specialized optimizer that is tailored
to the functional form of the surrogate model. This minimizer becomes a candidate step.

3. Evaluate the objective function at the candidate point and accept or reject the candidate
point.

4. Adjust the trust-region radius for the next iteration based on a measure of progress.

The basic idea of a trust-region optimizer is to iteratively replace an expensive objective function
that is hard to optimize with a local surrogate model that can be optimized very cheaply. The
acceptance decision and trust-region management play an important role in ensuring that the
model approximates the function well enough.
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Surrogate models. Different trust-region optimizers form the surrogate models in different
ways. Derivative-based methods use the gradient and Hessian of the objective function at xt to
form a second-order Taylor expansion that serves as the surrogate model. To save costly evalua-
tions of the Hessian, some optimizers use approximations to the Hessian. A robust result in the
literature is that (underdetermined) quadratic surrogate models work best (Conn, Gould, and
Toint, 2000). Linear surrogate models have no internal minimum and can thus only suggest can-
didate points on the boundary of the trust-region, which makes them unsuitable for choosing
good step lengths. Higher-order polynomials are not just too expensive to form but also too hard
to optimize.

Derivative-free optimizers form surrogate models by evaluating the objective function on a
sample of points and forming a quadratic model by interpolation or regression. The points are
chosen carefully based on geometric considerations to maximize the model’s approximation accu-
racy. To save function evaluations, only a few points in the sample are replaced in each iteration.
Fully determined quadratic interpolation models require the function to be evaluated at (p+1)(p+2)

2
points. Since this number grows quickly in p, many algorithms use underdetermined interpola-
tion models based on 2p+ 1 function evaluations. The remaining degrees of freedom are resolved
by choosing a solution to the interpolation conditions that minimize the Frobenius norm of the
model Hessian or the Frobenius norm of the change in the model Hessian between iterations.
This idea was first popularized by Powell in the NEWUOA and BOBYQA algorithms (Powell, 2006;
Powell, 2009) and has since been used by many others (see Larson, Menickelly, and Wild (2019)
for a review).

A special case are derivative-free trust-region methods for least-squares problems. Instead of
forming just one surrogate model for the function value, they form a surrogate model for each
least-squares residual. The surrogate models for the residuals are then aggregated into a surrogate
model for the actual function value. While there are no proofs that this approach works better
than forming scalar surrogate models directly, a vast amount of benchmarks shows that as few as
p+ 1 function evaluations can be enough to create useful surrogate models using this principle
(see for example Cartis, Fiala, et al. (2019) and Cartis and Roberts (2019)).

Trustregion radius management. The surrogate models in trust-region optimizers only approx-
imate the objective function locally. Using simple models like quadratic ones can, therefore, be
justified by Taylor’s theorem. This shows that the trust-region radius plays a central role in gov-
erning the approximation quality. If the radius is large, the optimizer can make large steps, but
the model might be a poor approximation to the objective function. Making the radius smaller
increases the model accuracy at the cost of slower progress.

It is very important that the model only has to be good enough to make progress, and it is
not an explicit goal to minimize the overall approximation error on the trust-region. The radius
adjustment is, therefore, based on a measure of model quality that specifically takes into account
how well the model predicts good candidate points

ρt ≡
f(x∗t ) − f(x∗t + st)

Ms
t(x
∗
t ) − Ms

t(x
∗
t + st)

=
Actual Improvement

Expected Improvement (3.2.1)
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The basic idea is then as follows: If ρ is large, the model worked well in predicting a descent
direction, and the radius can be increased or kept constant. If ρ is small, the radius has to be
reduced in order to improve the model quality in the next iteration. If suitable surrogate models
are used and regularity conditions are fulfilled, Taylor-like error bounds guarantee that a good
approximation quality can be achieved by making the radius small enough. The actual radius
adjustment is slightly more complex and depends on additional quantities and conditions. Several
methods are discussed in Conn, Gould, and Toint (2000).

Convergence. The word convergence is used for two very different things: In the theoretical lit-
erature, a convergence proof means that a mathematical algorithm is guaranteed to find a local
optimum or stationary point if run long enough. Among practitioners, convergence means that an
algorithm stopped the optimization process because a condition was achieved. Since those condi-
tions can usually be set by a user, reaching them is not a strong guarantee that an optimum has
been found, and practitioners should always verify that convergence was not spuriously induced
by weak convergence criteria.

Tranquilo is loosely based on a trust-region framework for which a convergence proof exists
(Conn, Gould, and Toint, 2000), and the components that play a central role in the convergence
proof (e.g., solvers for the surrogate problem and trust-region radius handling) are fairly standard.
However, tranquilo is meant as an algorithm for practitioners, and we do not make an attempt at
extending the convergence proof to cover the modifications we propose in tranquilo. Instead, we
rely on extensive benchmarks to show the practical performance of tranquilo.

3.2.2 Related algorithms

We restrict our attention to derivative-free trust-region methods for bound-constrained optimiza-
tion. A more comprehensive overview discussing other methods can be found in Larson, Menick-
elly, and Wild (2019).

While derivative-free trust-region optimizers based on quadratic models have been used since
the early 1970s (Winfield, 1973), the interest in these methods has been revitalized by the influen-
tial work of Powell. An important contribution of Powell was the introduction of underdetermined
interpolation for the construction of quadratic surrogate models –first introduced in the NEWUOA
and BOBYQA algorithms– which drastically improve the efficiency for higher dimensional prob-
lems (Powell, 2006; Powell, 2009). As an algorithm that supports bound constraints, BOBYQA
can be seen as the direct predecessor of most algorithms that we discuss in this section.

The BOBYQA algorithm (Powell, 2009) maintains a sample of 2p+ 1 points that are used
to form a quadratic surrogate model. The model is fit using underdetermined interpolation. The
remaining degrees of freedom are resolved by choosing the solution to the interpolation conditions
that minimize the Frobenius norm of the change in the model Hessian between two iterations.
Between two iterations, at most one model point is replaced. The replacement point is chosen
to maximize the stability of the model. Several variants of the BOBYQA algorithm are available
as open-source software and compare very favorably against other derivative-free optimizers like
the Nelder-Mead algorithm (see Section 3.3.3).



3.2 Literature review | 141

The DFBOLS (Zhang, Conn, and Scheinberg, 2010) and POUNDERS algorithm (Wild, 2017)
can be seen as a translation of BOBYQA to least-squares problems. Both algorithms use 2p+ 1
interpolation points and the same underdetermined interpolation method as BOBYQA. The main
difference is that they construct one quadratic surrogate model for each least-squares residual
and aggregate those models into a quadratic model for the objective function. The aggregation
method differs between the optimizers: POUNDERS’ aggregation method can be described as a
Full-Newton approach whereas DFBOLS incorporates elements from a Gauss-Newton approach.
The POUNDERS algorithm is available as a pure Python implementation in the estimagic library.
A C implementation of POUNDERS is available in the toolkit for advanced optimization (TAO)
(Dener, Denchfield, Suh, Munson, Sarich, et al., 2021). DFBOLS is available as Fortran code. The
performance of DFBOLS and POUNDERS is expected to be very similar (Wild, 2017). Due to the
lack of a DFBOLS implementation with Python bindings, we only compare tranquilo to POUNDERS.

DFO-LS (Cartis, Fiala, et al., 2019) is another derivative-free trust-region method for least-
squares problems. The key difference is that DFO-LS uses only p+ 1 interpolation points and
fits fully determined linear surrogate models for each residual. Those linear models are then
aggregated into a quadratic model for the objective function. This change drastically improves
DFO-LS’s performance for larger problems. We use the same approach in tranquilo. On top of this
change, DFO-LS introduces several new features: First, a fast start option tries to make progress
before there are enough function evaluations to fit an initial model. Second, there is a heuristic
that detects whether the trust-region radius collapsed due to the presence of noise and if so, the
algorithm is automatically restarted. Third, the user can specify sequences that control how often
a noisy objective function should be evaluated. The sequence can depend on several quantities,
among them the iteration counter and a restart counter. The same new features are also available
in Py-BOBYQA, which is developed in the same paper and works for scalar objective functions. The
performance of DFO-LS is excellent (see Section 3.3.3) and we use it as the main benchmark for
tranquilo. Py-BOBYQA is also included in the benchmarks but performs slightly worse than other
BOBYQA implementations. Both algorithms are available as standalone Python packages.

The main problem of derivative-free trust-region optimizers applied to noisy objective func-
tions is that the trust-region radius collapses to zero. This is caused by bad candidate points from
noise-affected surrogate models and spurious rejections due to unlucky draws in the acceptance
evaluation. While DFO-LS is the only least-squares optimizers for noisy objective functions that
we are aware of, there are several optimizers for scalar objective functions that employ strategies
to avoid the collapsing of the radius.

SNOWPACK (Augustin and Marzouk, 2017) ties the trust-region radius management to an
estimate of the noise in function evaluations. Moreover, it uses Gaussian process models instead
of quadratic interpolation models to reduce the effect of noise.

Shashaani, Hashemi, and Pasupathy (2018) recognize that user-specified sequences for the
number of function evaluations needed to average out noise are impractical and propose the
ASTRO-DF algorithm that uses adaptive sampling: The number of evaluations is increased until
an estimated standard error falls under a threshold. The threshold is a fixed factor of the squared
trust-region radius. This incorporates the idea that smaller trust-region radii require more precise
models. Moreover, it prevents the radius from shrinking too much before a good model quality
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has been achieved. The adaptive sampling in ASTRO-DF is, however, not based on the magnitude
of the function evaluations. ASTRO-DF is available as part of the simopt library, where it can be
benchmarked against other simopt optimizers. We currently exclude ASTRO-DF from our bench-
marks because we could not get it to solve our benchmark problems precisely enough, but we
want to exclude all errors that might be caused on our side before drawing any conclusions.

Parallelization on the algorithm level has not been a focus of the literature on derivative-free
trust-region optimizers or derivative-free least-squares optimizers. However, there are parallel
direct search algorithms for scalar problems.

Lee andWiswall (2007) introduce a parallel version of theNelder-Mead simplex algorithm. The
classical Nelder-Mead algorithm maintains a set of p+ 1 points that are used to form a simplex
in parameter space. In each iteration, the worst point is replaced by a new point. There are
different strategies for calculating the new point, which are selected based on the function values.
The parallel version replaces more than one point in each iteration and evaluates the objective
functions on all new points in parallel. Depending on the function value, an initial candidate for a
new point might be rejected, and a second function evaluation is necessary before a new point is
accepted. The empirical results in Lee and Wiswall (2007) show strong gains in efficiency, which
are sometimes substantially larger than the number of processors. They explain this by the fact
that the parallel version might sometimes create better search directions than the serial one. An
implementation of the parallel Nelder-Mead algorithm is available in the estimagic library. We are
currently working on incorporating it into our benchmarks.

3.3 Tranquilo core algorithm

In this section, we describe a core version of the tranquilo algorithm that is suitable for solving the
deterministic nonlinear least-squares problem DET-LS as well as the deterministic scalar problem
DET without using parallelization. The extension to the parallel case is described in Section 3.4.
The extension to the stochastic case is described in Section 3.5.

The structure is as follows: In Section 3.3.1, we describe our modular formulation of a gen-
eral trust-region algorithm that formalizes the interface of components in the algorithm. Most
components are mathematical functions that have a one-to-one correspondence in the Python im-
plementation of the algorithm. At this stage, we only describe the inputs and outputs of functions
and are agnostic about their inner workings. In Section 3.3.2, we change our focus and describe
the algorithmic implementation of each component. We focus on the deterministic and serial
case, and draw ample comparisons to existing algorithms. In Section 3.3.3, we describe how we
benchmark optimizers and show how tranquilo compares to other algorithms.

3.3.1 The trust region framework

In this section, we review the general trust-region framework of the tranquilo algorithm in a mod-
ular fashion with a high level of abstraction. Doing so allows us to describe the concrete imple-
mentation of our baseline algorithm as well as its extensions to the parallel and noisy case clearly
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and without repeating what stays unchanged. The full algorithm is described in Algorithm 1. A
lookup table for our notation can be found in Appendix 3.A.

Tranquilo is flexible because it is made up of replaceable components. By replaceable compo-
nent, we mean a function that takes a specified set of inputs and produces a specified set of
outputs. A simple example of a replaceable component is a Sampler, which takes existing points,
a trust-region, and a target sample size as inputs and produces a set of new points as output. How
the new points are created is not specified and varies across different samplers. Importantly, all
other parts of tranquilo will work with any sampler that conforms to the specified set of inputs
and outputs. This has, of course, a clear mapping to the Python implementation of tranquilo: For
every replaceable component, we implement several different versions that a user of the algorithm
can select by providing the name of that version. Advanced users can go beyond what we offer
and implement their own versions of components.

A full list of replaceable components and a definition of their interfaces can be found in Ta-
ble 3.A.4. The implemented versions of each component are described in Sections 3.3.2, 3.4.1,
and 3.5. Before looking at these implementations, we first describe how the different components
interact to create the tranquilo algorithm.
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Algorithm 1: Tranquilo algorithm
Input: Starting point x∗0, initial trust-region radius ∆region

0 , target sample size ntarget, search factor
γsearch, minimum step size smin, sample increment ndrop

stag , maximum number of iterations
tmax, maximum number of trials to avoid stagnation nmax

stag , lower and upper bounds l and u.

1 Initialize history withH0 = {(x∗0, r(x∗0))}

2 Initialize vector model Mv
0 with intercept terms at r(x∗0) and all other coefficients set to zero

3 for t=0,1,.. .,tmax do
4 Calculate the search radius ∆search

t = γsearch∆
region
t

5 Calculate the effective trust-region Rt based on x∗t , ∆
region
t , l and u

6 Scan the history for existing points X existing
t = {x ∈Ht : ∥x∗t − x∥ ≤∆search

t }

7 Filter existing points: X filtered
t = Filter(X existing

t )

8 if |X filtered
t |< ntarget then

9 Sample ntarget − |X filtered
t | new points in the trust-region: X new

t = Sample(X filtered
t , Rt, ntarget)

10 X model
t =X filtered

t ∪X new
t

11 else
12 X model

t =X filtered
t

13 end
14 Build a vector model Mv

t = Fit(X model
t ,Rmodel

t , Mv
t−1, Rt)

15 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

16 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

17 while |X model
t |> ntarget and ∥st∥ ≤ smin do

18 Reduce the sample: X reduced
t = Drop(X model

t , ndrop
stage,∆

region
t ) and set X model

t =X reduced
t

19 Build a vector model Mv
t = Fit(X model

t ,Rmodel
t , Mv

t−1, Rt)

20 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

21 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

22 end
23 nstag = 0

24 while ∥st∥ ≤ smin and nstag ≤ nmax
stag do

25 Reduce the sample: X reduced
t = Drop(X model

t , ndrop
stag ,∆region

t )

26 Sample new points in the trust-region: X new
t = Sample(X reduced

t , Rt, ntarget) and set
X model

t =X reduced
t ∪X new

t

27 Build a vector model Mv
t = Fit(X model

t ,Rmodel
t , Mv

t−1, Rt)

28 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

29 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

30 nstag = nstag + 1

31 end
32 Calculate ∆Ms

t =Ms
t(x
∗
t )−Ms

t(x
∗
t + st)

33 Accept or reject the step and calculate a measure of progress (x∗t+1,ρt)= Accept(x∗t , st,∆Ms
t)

34 Adjust the trust-region radius: ∆region
t+1 = AdjustRadius(∆region

t ,ρt, st)

35 if x∗t+1 ̸= x∗t and Converged(Ht, Ms
t , x∗t , x∗t+1) then

36 break
37 end

38 end
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At the beginning of tranquilo, we are equipped with a starting point x∗0 ∈ R
p, an initial radius

∆
region
0 > 0, as well as the lower and upper bounds of the optimization problem l, u ∈ Rp. Together,

those quantities define the initial trust-region. Moreover, we have several algorithm constants like
the target sample size ntarget, the search factor γsearch, the minimum step size smin, the sample
increment ndrop

stag , the maximum number of iterations tmax, and the maximum number of trials to
avoid stagnation nmax

stag . For now, we abstract from constants that are only used by the specific
implementation of components.

The algorithm starts by evaluating the objective function at the starting point and initializing
the history of function evaluations with H0 = {(x∗0, r(x∗0))} —If it is clear from the context, we
sometimes write x ∈H instead of (x, r(x)) ∈H . The history of function evaluations is scanned
at the beginning of each iteration to find points on which the objective function has previously
been evaluated and which are inside or near the current trust-region. Moreover, we initialize a
surrogate model for the least-squares residuals Mv

0 to equal the constant r(x∗0) for all points inside
the trust-region. We call this a vector model to distinguish it from the aggregated scalar model
that approximates the objective function instead of the residuals.

Before the first trust-region iteration, we calculate the effective trust-region Rt which is the
subset of the parameter space in which new points can be sampled and to which the solution
of the trust-region subproblem will be constrained. If no bounds are binding, the effective trust-
region is just the trust-region, i.e., a ball with center x∗t and radius ∆region

t in Euclidean norm. If
bounds are binding, we switch to a hypercube trust-region with the same volume as a ball of
radius ∆region

t . The hypercube is also centered at x∗t and clipped to comply with the bounds of the
optimization problem. Note that a hypercube can be viewed as a ball under the maximum-norm.
To avoid confusion, we stick to saying ball for spherical regions and hypercube for cubical regions.
Other trust-region algorithms that allow for bound constraints (e.g., Wild (2017)) work with a
radius in maximum-norm from the beginning. However, we found that switching between the
two shapes yields a better performance in benchmarks.

At the beginning of each iteration, we scan the history of function evaluations for points that
lie within the search radius of the current trust-region center. These points can be re-used when
building the surrogate model. Next, the set of points is filtered. The filtering step is the first re-
placeable component of the tranquilo algorithm. Having a filtering step is a design choice inspired
by the following seemingly counter-intuitive observation: A sample size that is too large can ac-
tually make surrogate models worse (Powell, 2009; Larson, Menickelly, and Wild, 2019). The
filtering step provides the option to discard points that are too close to each other or too close to
the trust-region center. In our practical experiments, however, we could not confirm this observa-
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tion and use the identity function as a filter. Other filters we tried and implemented are described
in Section 3.3.2.1.

The scanning and filtering approach differs from other trust-region algorithms that do not
maintain a full history and only store a fixed-size set of model points (Powell, 2009; Wild, 2017;
Cartis, Fiala, et al., 2019). To add a new point, old ones have to be discarded. We find the scanning
and filtering approach appealing because it allows the user to warm-start the algorithm with a
database of previous function evaluations and for costly objective functions, the memory overhead
of storing the full history is not a concern.

If the number of filtered points is smaller than the target sample size ntarget, we sample new
points in the current trust-region until we reach the target sample size. The sampling step is
another replaceable component of the tranquilo algorithm. The sampling can be based on the
geometry of the existing points, and all sampled points must lie inside the effective trust-region.
We discuss the sampling strategies we implemented in Section 3.3.2.2.

Scanning, filtering, and sampling leave us with a set of model pointsX model
t . After evaluating

the objective function on the newly sampled points, we can also construct a corresponding set
of least-squares residuals Rmodel

t . These can be used to fit a vector model Mv
t . Fitting is another

replaceable component of the tranquilo algorithm that allows us to nest the fitting strategies of
different algorithms in a simple way. In addition to X model

t and Rmodel
t , the fitting method needs

two more ingredients: First, the previous vector model Mv
t−1, which can, for example, be used to

penalize changes in the model Hessian and second, the effective trust-region, which is used to
scale the model to a unit-ball or unit-hypercube –depending on the shape of the trust-region– for
numerical stability.

Fitting methods can differ by the type of vector model they fit (e.g., linear or quadratic),
by the way they resolve degrees of freedom in the case of underdetermined interpolation (e.g.,
penalize Hessian terms or changes in Hessian terms), and by the way they do the actual fitting
(e.g., ordinary least squares, least absolute deviation, lasso or ridge regression). To ensure that the
model fitting is well-defined, all fitting methods must work for underdetermined, just-determined,
and over-determined fitting problems. We discuss the fitting methods we implemented in Sec-
tion 3.3.2.3.

The next step is to aggregate the vector model Mv
t (the surrogate model that approximates

the residual function r(x)) into a scalar model Ms
t (the surrogate model that approximates the

objective function f(x)). The minimizer of the scalar surrogate model will become the next can-
didate point. The aggregation step is another replaceable component of the tranquilo algorithm,
but it is important that the fitting step, which decides whether linear or quadratic residual models
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are built, and the aggregation step are compatible and produce a well-defined quadratic scalar
model.

By choosing appropriate pairs of fitting and aggregation methods, we can nest the fitting and
aggregation strategies of different algorithms; such as fitting linear residual models and aggregat-
ing them into a quadratic scalar model (Cartis, Fiala, et al., 2019) or fitting quadratic residual
models and aggregating them into a scalar model (Zhang, Conn, and Scheinberg, 2010; Wild,
2017).

By treating scalar optimization problems as outputting a vector of size one and using an iden-
tity function as the aggregation method, we can even nest the fitting approach of scalar algo-
rithms like BOBYQA (Powell, 2009). Even though our primary focus is developing a least-squares
optimizer, we show that the resulting algorithm is competitive with other derivative-free scalar
optimizers (see Section 3.3.3). Another possible extension would be a dedicated optimizer for
likelihood functions that leverages the information matrix equality to construct a quadratic scalar
model from linear surrogate models. This would be a derivative-free analog of the popular BHHH
algorithm (Berndt, Hall, Hall, and Hausman, 1974).

Using the scalar model Ms
t , we solve the trust-region subproblem to obtain a candidate step

length st. The subsolver is again a replaceable component of the tranquilo algorithm. After ex-
tensive experimentation, we found that two common methods work best: If bounds are binding,
we use the BNTR algorithm, otherwise we use the GGTPAR algorithm. Both solvers are also avail-
able in the POUNDERS algorithm (Wild, 2017). However, there, the user has to decide before the
optimization which one should be used, whereas we switch dynamically between the two. Both
algorithms solve the quadratic problem (almost) exactly, which is a good choice for our setting
with expensive objective functions. The details of the BNTR and GGTPAR algorithms are described
in Section 3.3.2.5.

If the candidate step st is large enough, we directly move to the acceptance step. Here, whether
a step is large enough is determined based on a cutoff that is relative to the trust-region radius
∆

region
t . If the candidate step is too small, we take extra measures to avoid stagnation. If the

sample size of the model points is larger than the target sample size ntarget, we drop ndrop
stag points,

re-fit a vector model, aggregate it, and solve the new trust-region subproblem to get another step
size. This process is repeated until the step size becomes large enough or the sample size equals
ntarget. Which points are dropped is again determined by a replaceable component described in
Section 3.3.2.6.

If this is not enough to produce a large enough step, we keep dropping ndrop
stag points, but this

time, we replace them with new points. This process is repeated up to nmax
stag times.
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Two things are important to note here: First, solving the trust-region subproblem many times
adds some overhead, but this cost is negligible compared to the cost of a single evaluation of
the objective function. Second, it seems counterintuitive to drop points instead of simply adding
new ones. However, we found that this approach works better in practice. If only new points are
added, they have a rather small impact on the model and can, therefore, not avoid stagnation. In
our experiments, we found that dropping one point at a time, i.e., ndrop

stag = 1, works best in a serial
algorithm.

Once a sufficiently large candidate step st has been found or the maximum number of trials for
avoiding stagnation has been reached, we move on to the acceptance step. The acceptance step is
a replaceable component of tranquilo that contributes strongly to the flexibility of our framework.

On an abstract level, the acceptance step looks as follows

(x∗t+1,ρt) = Accept(x∗t , st,∆Ms
t)

where x∗t+1 is the candidate point for the next iteration, ρt is a measure of progress or model
quality, and ∆Ms

t is the expected improvement from taking step st. x∗t+1 can be equal to x∗t + st,
x∗t or an entirely different point. ρt can either be calculated as in Equation 3.2.1 or in a different
way. Any evaluation of the objective function that happens in the acceptance step will be added
to the history and can be used in the next iteration.

This approach nests the classical case where the acceptance step consists of evaluating the
objective function at x∗t + st and accepting the step if the improvement is large enough, which often
just means larger than zero. Thenρt is simply calculated as in Equation 3.2.1. The implementation
of such a simple acceptance step is described in Section 3.3.2.7. However, our approach can also
express entirely different methods. Examples are a parallel line-search and speculative sampling,
which we will describe in Section 3.4.1.

Given ρt and the step size of st, we can adjust the trust-region radius for the next iteration.
Again, we make the radius adjustment a replaceable component. For our empirical results, we use
the radius adjustment rules of the POUNDERS algorithm (Wild, 2017), which is described further
in Section 3.3.2.8.

If x∗t+1 ̸= x∗t , we check for convergence of the algorithm. The convergence check is based on
the history of function evaluations Ht as well as the current scalar model Ms

t . This allows for all
common convergence criteria, which are either based on absolute or relative improvements in
the objective function, absolute or relative step sizes, or the gradient terms of the scalar surrogate
model. The exact implementation of the convergence check is again replaceable and described in
Section 3.3.2.9
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The flexible nature of the tranquilo framework allows for quick experimentation and bench-
marking of different components that are commonly used in trust-region algorithms. For example,
we can easily compare the performance of different model fitting and aggregation strategies, leav-
ing everything else equal. In the traditional literature, these changes would be considered large
enough to warrant a new algorithm name (compare, e.g., DFBOLS and POUNDERS). This flexibil-
ity will be extremely useful when looking at extensions for parallelization and noise handling. The
basic algorithm as described in this section, will stay virtually unchanged, and only components
will be swapped out. The few changes needed in the algorithm itself are the introduction of a few
new quantities (e.g., a batch size for parallelization or a noise estimate for noisy problems) that
were omitted in the baseline version for simplicity. Moreover, the parallel version of tranquilo (see
Section 3.4) and the noisy version of tranquilo (see Algorithm 3) nest the baseline algorithm.

3.3.2 Implementation of the components

In this section, we provide a detailed description of each component and their different imple-
mentations in tranquilo. We begin with a discussion of the components of the noise-free serial
optimization problem, deferring the discussion of components of the noisy and parallel optimiza-
tion problem to Section 3.5.3 and 3.4.1.

3.3.2.1 Filtering

At the beginning of each iteration, we get a set of existing pointsX existing
t in the neighborhood

of the trust-region center x∗t . These points and their corresponding function evaluations can be
used to construct a surrogate model. They are “free” from a computational budget perspective,
in the sense that using them for the surrogate model does not incur any additional evaluations
of the objective function. However, there can be reasons why not all of those points should be
used. First, some of them might be far away from the current trust-region, which might hinder
the model from approximating the objective function well locally. Second, some of them might
be very close to each other, which can lead the model to overfit certain areas of the trust-region.
Third, there might simply be so many points that any newly added point has only a small impact
on the model, and therefore, the next candidate point will be very close to the old one.

Filters can address these issues by discarding some of the existing points. More formally, they
take the following form

X filtered
t = Filter(X existing

t )
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Since existing algorithms do not maintain a full history of function evaluations, filtering has
no counterpart in the literature. However, the filtering methods we implement are inspired by the
traditional goal of producing a well-poised set of model points, i.e., model points with geometric
properties that lead to surrogate models with tight error bounds. This topic is discussed in more
detail in Section 3.3.2.2.

We implement the following filters:

Keep all. As the name suggests, this filter does not discard any points. We use this filter in our
benchmarks for the noise-free and serial case as it yields the best performance in this setting.

Discard all. This filter discards all existing points. Using this filter makes the optimizer slower
but, in some cases, more robust, as it uses a new high-quality sample of points in each iteration
and is therefore not prone to stagnation. The slowdown is not as severe as onemight expect: While
each model is now more costly to build, the model quality is also higher, and fewer iterations are
needed.

Drop excess. This filter only drops points if more than nfilter points are available. If so, we first
discard excessive points that are outside the trust-region.We beginwith the point farthest from the
trust-region center. If all remaining points are inside the trust-region, we look for the two points
that are closest to each other and discard the one that is closer to the trust-region center, unless
one of the points is the center itself. We repeat this process until only nfilter points remain. The
idea behind this filter is that we want to have points as far out as possible as long as they are inside
the trust-region. This filter is used in our benchmarks for the parallel case with nfilter = 3ntarget.

3.3.2.2 Sampling

Sampling refers to the process of creating new model points X model at which the objective
function is evaluated in order to construct a surrogate model. In the first iteration, a full sample
is created from scratch, and the sample size is set to ntarget. In most other iterations, sampling
only complements a set of existing points, and the sample size might be larger than ntarget. In all
cases, the goal is to create a set of model points with geometric properties that lead to tight error
bounds of the surrogate model. Which points are optimal depends on the type of surrogate model
used (e.g., linear or quadratic).

We restrict our attention to simple polynomial models that are linear in the parameters. Let
nt denote the number of model points in iteration t, and d the number of coefficients of the
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model. In this case, the quality of the sample is not directly assessed on the model pointsX model =

[x1, . . . , xnt
]T but on a design matrix X ∈ Rnt×d that is constructed from the model points given

the model class. The design matrix is also known as the matrix of regressors. Note that for all
i= 1, . . . , nt the model points must be inside the effective trust-region, i.e., xi ∈ Rt ⊂ Rp. Abusing
notation slightly, we write X model ∈ Rnt

t .
In the case of a linear model, we have d= p+ 1 coefficients, and the construction of the design

matrix is as follows

Dl(X model) ≡ X l =









1 x1,1 . . . x1,p
... ... ... ...
1 xnt,1 . . . xnt,p









In the case of a quadratic model, there are additional columns for the cross products and
square terms, so we have d= (p+ 1)(p+ 2)/2 coefficients. The design matrix is constructed as
follows

Dq(X model) ≡ Xq =









1 x1,1 . . . x1,p x2
1,1 x1,1x1,2 . . . x2

1,p
... ... ... ... ... ... ... ...
1 xnt,1 . . . xnt,p x2

nt,1
xnt,1xnt,2 . . . x2

nt,p









There are multiple strands of literature that discuss the optimal sampling of model points.
The one that is closest to economics is the one on optimal design (see Pukelsheim (2006) for a
comprehensive overview). Optimal design asks the question of how to choose a set of points in
the space of potential experiments (which, in our case, is the parameter space) that leads to the
most informative data, i.e., data that allows us to estimate parameters of interest with the highest
precision. Depending on the goal of the experimenter, different statistical measures of precision
are maximized. In the case of a regression model, a frequently used measure is D-optimality. The
D-optimal sample is the one whose design matrix minimizes the determinant of the inverse Fisher
information matrix, i.e.,

X d∗ = argmin
X∈Rnt

t

det
�

�

D(X )TD(X )
�−1�

A closely related strand of literature is the one on function approximation. Themain difference
is that optimal design typically looks at cases where nt ≥ d, whereas function approximation looks
at the case where nt = d. In this case, the design matrix is square. In the function approximation
literature, the sample of choice is called Fekete points. Fekete points are the set of points that
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maximize the determinant of the designmatrix (see for examples Briani, Sommariva, and Vianello
(2012)), i.e.,

X f∗ = arg max
X∈Rnt

t

det (D(X ))

In the case of a square design matrix, the Fekete points are equivalent to the D-optimal sample.
To see this, note that

det
�

�

D(X )TD(X )
�−1�

= det
�

D(X )TD(X )
�−1

= det (D(X ))−2

While familiar to economists, neither of the previous approaches extends to the case where
n< d. Therefore, the literature on trust-region optimizers introduces the concept of Λ-poisedness
to measure the quality of samples. This concept is based on Lagrange polynomials and works for
over-determined, just-determined, and underdetermined interpolation problems. For a definition
and comprehensive treatment of Λ-poisedness, see Conn, Gould, and Toint (2000). While the
definition of the measure Λ relies on concepts that are not typically familiar to economists, it has
a simple interpretation: Λ−1 can be interpreted as the distance a set of model points has to linear
dependence, i.e., the smaller Λ is, the more linearly independent the model points are. In the case
of just-determined and over-determined interpolation problems, the optimal sample according to
Λ-poisedness is equivalent to Fekete points or D-optimal points, respectively.

It is very instructive to look at the optimal samples for linear and quadratic models in the case
of a spherical trust-region in two dimensions. These samples are shown in Figure 3.3.1.

While one might intuitively think that the optimal sample fills the space uniformly, this is not
the case. The optimal sample for a linear model consists of points that are uniformly spaced on the
sphere, i.e., the boundary of the ball. The same holds for the optimal samples of a quadratic model,
except that here, there is one additional point in the center. This pattern carries over to higher
dimensions and larger samples. In the case of a cubical-shaped trust-region, the optimal sample
also consists of points on the boundary of the cube (and one point in the center for quadratic
models), but the spacing is less regular. When moving to higher-order polynomial models, the
optimal sample consists of concentric rings (see Briani, Sommariva, and Vianello (2012)).

Calculating optimal samples directly based on Λ-poisedness, D-optimality or the Fekete crite-
rion is expensive. We, therefore, exploit the pattern described above in several of our samplers.
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Figure 3.3.1. Optimal samples for linear and quadratic models on a ball. The first row shows the optimal samples

for linear models, the second row shows the optimal samples for quadratic models. The three columns look at

the under-determined, just-determined, and over-determined case. Optimal samples are not space-filling. For

linear models, all points lie on the boundary of the ball. For quadratic models, there is one additional point in

the center.

Random hull sampling. This sampler draws points uniformly on the boundary of a spherical
or cubic trust-region. When used to complement an existing sample, it does not take the position
of existing points into account. The sampler is very fast and provides a good baseline for testing
against optimal samplers. Note that even for quadratic models, it is not necessary to sample a
point in the center of the trust-region, as the acceptance step from the previous iteration already
evaluated the objective function at that point.

Optimal hull sampling. This sampler uses the Random hull sampler to create an initial set of
points and refines these points by maximizing the minimal distance between points, i.e.,

argmax
X∈Rnt

t

�

min
�

∥xi − xj∥ : i, j = 1, . . . , nt, i ̸= j
		

To make the problem differentiable, we approximate the minimal distance by a smooth mini-
mum. A smooth minimum of a vector z= (z1, . . . , zn) can be constructed using various approaches.
We choose the log-sum-exp function, modified for the minimum-case
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SmoothMin(z) = −
1
h

ln

� n
∑

i=1

exp
�

−hzi

�

�

Where h determines the hardness of the smooth minimum. As h→∞, the smooth minimum
approaches the true minimum. If used to complement existing points, the optimal hull sampler
takes the position of all points into account and positions the new points away from the existing
points. This sampler is used by default in tranquilo and was used in all benchmarks. It provides a
good compromise between sample quality and speed.

Determinant sampler. This sampler creates a D-optimal sample byminimizing the D-optimality
criterion using a local optimizer. It is much slower than the optimal hull sampler and can produce
lower-quality samples if the optimizer gets stuck in a local optimum. Therefore, this sampler is
not used in any of our benchmarks.

3.3.2.3 Fitting

Fitting refers to the process of taking a set of model points X model and corresponding evalua-
tions of the residual functionRmodel and constructing a surrogate model Mv that approximates the
residual function. As is common in the literature, the model points are scaled to the trust-region
before fitting. This means that the solution of the trust-region subproblem is always performed
over a unit-ball or unit-hypercube. Moreover, scaling increases the numerical stability of the model
fitting. We emphasize this by using s instead of x to denote a scaled model point.

We restrict our attention to linear or quadratic models. A linear model for residual i takes the
following form

Mi
t(s) = ci

t + sTgi
t (3.3.1)

Where ci
t ∈ R is a scalar intercept term and gi

t ∈ R
p is a vector of slope coefficients. gi

t is also
known as the model gradient. Thus, in total, a linear model has p+ 1 coefficients per residual and
we require p+ 1 model points for a just-determined interpolation model.

A quadratic model includes additional terms

Mi
t(s) = ci

t + sTgi
t +

1
2

sTHi
ts (3.3.2)
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Here Hi
t is a symmetric matrix of second-order coefficients, which is also known as the model

Hessian. Due to the symmetry of Hi
t, the total number of coefficients is (p+ 1)(p+ 2)/2 and we

require (p+ 1)(p+ 2)/2 model points for a just-determined interpolation model.
If we have more model points than coefficients, the model is over-determined, and instead

of solving the interpolation conditions exactly, a least-squares solution is used. If fewer model
points than coefficients are available, the model is under-determined, and the remaining degrees
of freedom need to be resolved by an additional criterion. Additional criteria are usually based
on the absolute values or norm of the model coefficients. Methods differ according to two main
dimensions: First, whether they penalize all coefficients or only the coefficients in Hi

t. And sec-
ond, whether they penalize the magnitude of the coefficients or the magnitude of the change in
coefficients between two iterations. To capture the first dimension, we implement different fit-
ting methods. To capture the second one, we use a residualization approach that can be used in
combination with any fitting method.

Residualization means that on the left-hand side of the interpolation conditions, we do not use
Rmodel

t directly. Instead, we subtract the predicted residuals of the previous model Mv
t−1, evaluated

at the current model points X model
t from the residuals. Thus, the coefficients of the fitted model

only capture the difference between the previous and the current model, and any penalization
that might be done by the fitting method only penalizes the change in coefficients. After fitting
the model, the coefficients of the previous model can be added back to produce a model that
approximates the current residual function.

OLS fitting. OLS fitting solves overdetermined models by minimizing the squared norm of the
residuals. For just-determined models, this is equivalent to solving the interpolation conditions
exactly. For underdetermined models, there are multiple solutions to the interpolation conditions.
From those solutions, the solution where the Euclidean norm of all coefficients is smallest is
chosen. If used in combination with residualization, the solution with the smallest change in
coefficients (in Euclidean norm) is chosen.

Hessian-norm fitting. This fitting method is equivalent to OLS fitting for over and just-
determined models. For underdetermined models, it penalizes the Frobenius norm of the Hessian
coefficients. This approach is used by Wild (2008) and motivated by theoretical results that guar-
antee an approximation quality of the quadratic model (Larson, Menickelly, and Wild, 2019). If
used in combination with residualization, the penalty is only applied to the change in Hessian coef-
ficients between two iterations. This approach was first introduced by Powell (see Powell (2006)
and Powell (2009)) and is also used in POUNDERS (Wild, 2017) and several other algorithms
(Larson, Menickelly, and Wild, 2019).
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Mixed fitting. Motivated by the comparable success of OLS-fitting and Hessian-norm-fitting in
our benchmarks, we also implement a fitting method that combines the two approaches smoothly.
Instead of only penalizing Hessian coefficients or penalizing all coefficients equally, we introduce
the possibility of weighted penalization that differs across the intercept, gradient terms, and Hes-
sian terms. We use this fitting method by default for underdetermined fitting problems and find
that we get the best performance if we put a weak penalty on the intercept, a medium penalty
on the gradient terms, and a strong penalty on the Hessian terms. The exact weights are not in-
terpretable and were set empirically by tuning the algorithm against a benchmark set. The fitting
method uses standard OLS-fitting after scaling the columns of the design matrix. After the fitting,
we rescale the coefficients to undo the effects of rescaling the data. For over- and just-determined
problems, this fitting method is equivalent to standard OLS-fitting.

Ridge fitting. An alternative approach to the above three fitting methods is ridge regression.
Ridge regression performs an ℓ2-regularization of the coefficients by adding a penalty to the
objective function of a least-squares regression

min
Θ∈Rk×d

nt
∑

i=0

∥Mv(x̃i;Θ) − r(xi)∥2 + λ∥Θ∥2 (3.3.3)

where Θ are the coefficients of the regression problem, and the constant λ is a penalty term
that controls the shrinkage of coefficients, which leads to relatively smaller estimates for coeffi-
cients with low explanatory power. The big difference between ridge regression and the fitting
methods discussed above is that the penalty has an effect even for over-determined models. While
this could be attractive in the presence of noise, it introduces a practical problem: The penalty
parameter λ has to be set, for which we did not find an adequate solution that performed well
across all benchmarks.

3.3.2.4 Aggregation

Aggregation refers to the process of converting a vector model Mv
t , that approximates the

residual function r(x), into a scalar model Ms
t , that approximates the objective function f(x). The

scalar model is used to solve the trust-region subproblem to produce a candidate point st. While
vector models might be linear, we only consider aggregation methods that result in quadratic
scalar models. This is because linear scalar models are not capable of having internal optima,
which makes them unsuitable for trust-region optimization. The choice of aggregation method
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depends on the type of residual model (linear or quadratic) and the type of objective function
(scalar or least-squares). We implement aggregation methods for three cases:

Least-squares objective, linear residual models. With linear vector model Mv
t , we follow DF-

OLS by building the scalar model Ms
t through substitution of ri by Mi

t (Equation 3.3.1) in the
definition of the full objective function DET-LS

Ms
t(s) ≡

k
∑

i=1

Mi
t(s)

2 = cs
t + sTgs

t +
1
2

sTHs
ts

Where

cs
t ≡

k
∑

i=1

(ci
t) ∈ R (3.3.4)

gs
t ≡ 2

k
∑

i=1

ci
tg

i
t ∈ R

p (3.3.5)

Hs
t ≡ 2

k
∑

i=1

(gi
t)(g

i
t)

T ∈ Rp×p (3.3.6)

We define the gradient of Ms
t as gM

t =
d
dsM

s
t , which can be derived as

gM
t (s) = gs

t + Hs
ts (3.3.7)

Least-squares objective, quadratic residual models. With quadratic residual models,
POUNDERS obtains an aggregate model using a “full Newton” approach. The full Newton model
approximates the scalar model obtained by direct substitution of the residual functions by a
second-order Taylor expansion around the current candidate point x∗t

Ms
t(s) ≡

k
∑

i=1

(Mi
t(s))2 ≈ cs

t + gs
ts

T +
1
2

sTHs
ts (3.3.8)

where cs
t and gs

t are defined as in 3.3.4 and 3.3.5, respectively, and

Hs
t ≡ 2

k
∑

i=1

�

(gi
t)(g

i
t)

T + Hi
tc

i
t

�

An alternative approach is implemented in DFBOLS (Zhang, Conn, and Scheinberg, 2010),
where the second-order term of the scalar model is regularized based on cut-offs on the intercept
and the linear terms. The regularization is designed to provide fast local convergence for problems
with sparse residuals (Zhang, Conn, and Scheinberg, 2010). This approach could be implemented
in tranquilo in the future.
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Scalar objective, quadratic “residual” models. In the case of a scalar objective function, the
residual function is simply the objective function, and the aggregation method is the identity
function. Using the term aggregation here is simply an abstraction that allows us to use the same
algorithmic framework for both cases.

3.3.2.5 Subsolvers

After obtaining a scalar model Ms
t , we solve the trust-region subproblem to obtain a candidate

step st. The model is already scaled such that the subproblem is always solved over the same
space, which is either a unit-ball or a unit-hypercube. More formally, we solve one of the following
problems

min
s̃∈Rp

Ms
t (̃s) s.t. ∥s̃∥ ≤ 1 (SP-Ball)

min
s̃∈Rp

Ms
t (̃s) s.t. s̃ ∈ [−1,1]p (SP-Cube)

After solving the subproblem, the resulting vector s̃ is rescaled with the radius of the effective
trust-region to obtain the candidate step st.

The literature on subproblem optimizers is extremely well-developed, and we do not innovate
in this area. Traditionally, subproblem solvers only look for approximate solutions in order to save
computational resources. However, in a setting with expensive objective functions, solving the
subproblem precisely incurs only a negligible overhead that is outweighed by the benefits of a
precise solution. For solving the Problem SP-Ball, we use the GQTPAR algorithm. For solving the
Problem SP-Cube, we use BNTR. Both algorithms are also used by POUNDERS (Wild, 2017). We
provide numba-accelerated Python reimplementations of both algorithms. Our implementations
are described further in Appendix 3.C.

3.3.2.6 Dropping Points

To avoid stagnation, there are two situations in which we drop points: In the while loop
starting in Line 22, we are in a situation where the sample is larger than the target sample size
and drop points without replacing them. In the while loop starting in Line 31, we have reached
the target sample size and replace each dropped point with a new one. In both cases, we use the
same dropping algorithm which is also used by the drop-excess filter described in Section 3.3.2.1.
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3.3.2.7 Acceptance decision

The way we formalize the acceptance step in tranquilo plays a key role in making tranquilo a
flexible algorithmic framework for trust-region optimization. Formally, the acceptance step looks
as follows

(x∗t+1,ρt) = Accept(x∗t , st,∆Ms
t) (3.3.9)

where x∗t+1 is the candidate point for the next iteration, ρt is a measure of progress or model
quality, and ∆Ms

t is the expected improvement from taking step st.
Within these boundaries, many different implementations of acceptance steps are possi-

ble. Traditionally, ρt is calculated as the ratio of actual and expected improvement (see Equa-
tion 3.2.1), and x∗t+1 is either the candidate point x∗t + st or the current point x∗t . In some algo-
rithms, x∗t+1 can also be a model point if it yields an improvement over both the candidate point
and the current point (see, for example, Cartis, Fiala, et al. (2019)). Typically, the acceptance
step comprises only one new objective function evaluation at x∗t + st.

In tranquilo, the acceptance step can calculate ρt in any way that is useful for the radius
management and can use any number of objective function evaluations to create x∗t+1. While
we stick to traditional approaches for the serial and noise-free case, our extensions to parallel
and noisy settings mainly consist of modifications to the acceptance step. Those extensions are
described in Section 3.4.1.2 and 3.5.3.5.

Accept classic. In this acceptance step, ρt is calculated as in Equation 3.2.1 and x∗t+1 is either
x∗t + st or x∗t . The candidate point is accepted if it yields any improvement over the current point.

3.3.2.8 Trustregion radius adjustment

We base the implementation of the trust-region radius adjustment step on the radius adjust-
ment rules of Wild (2017), which is given by
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∆
region
t+1 =



















min{γinc∆
region
t ,∆max} if ρt ≥ ρinc and st ≥ cls∆

region
t

γdec∆t if ρt < ρ
dec

∆t otherwise

(3.3.10)

As we can see from Equation 3.3.10, the updates to the trust-region radius depend on model
performance, measured by ρt, and the length of the step st. Only if both are large, the trust-region
radius is increased by a factor γinc. Here, a high ρt indicates that the model is good enough that we
can afford a larger radius. A large step length indicates that the solution lies outside the current
trust-region, and we would actually benefit from a larger trust-region. What counts as a large
enough ρt is determined by a constant cutoff ρinc. As in POUNDERS (Wild, 2017), we bound the
trust-region radius by a constant ∆max.

On the other hand, if the ratio of actual to expected improvement falls below a threshold
ρdec ≤ ρinc, we shrink the trust-region radius by a factor γdec ≤ γinc.

For the values of ρt between cut-off values ρdec and ρinc, we leave the trust-region radius
unchanged. Similarly, if ρt > ρ

inc but the step-length is small st < cls∆
region
t , we also leave the

trust-region radius unchanged.
In tranquilo, we use the values ρdec = ρinc = 0.1 for the cut-offs on the ratio ρt. For the ex-

pansion and shrinkage factors of the trust-region radius, we use the values γinc = 2 and γ= 0.5.
To identify large candidate steps, we use the value of cls = 0.5 for the relative step length. Finally,
for ∆max, we use the value of 106. All of these values are taken from the TAO implementation of
POUNDERS (Dener et al., 2021).

3.3.2.9 Convergence and stopping criteria

We use common convergence criteria in Line 35 of Algorithm 1 based either on abso-
lute or relative improvements in the objective function, absolute or relative step sizes, or the
linear terms of the scalar surrogate model. Specifically, the algorithm stops at iteration t if
Converged(Ht, Ms

t , x∗t , x∗t+1) in Line 35 evaluates to True. This happens if any of the following con-
ditions are satisfied
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|f(x∗t ) − f(x∗t+1)| ≤ εfatol

|f(x∗t ) − f(x∗t+1)|/|f(x∗t )| ≤ εfrtol

∥gM
t (x∗t+1)∥ ≤ εgatol

∥gM
t (x∗t+1)∥/|f(x∗t+1)| ≤ εgrtol

∥x∗t+1 − x∗t ∥ ≤ ε
xatol

∥x∗t+1 − x∗t ∥/∥x
∗
t ∥ ≤ ε

xrtol

These convergence criteria are taken from the POUNDERS implementation, described in Dener
et al. (2021). Note that gM

t is the gradient of the scalar model Ms
t , as defined in Equation 3.3.7.

3.3.3 Benchmarking

The ideal way to evaluate the performance of an optimization algorithm would be to run it on a
large set of real-world problems and compare its performance to other optimizers. However, this
approach is not feasible for several reasons. First, for interesting real-world problems, the exact
solution is typically unknown. Second, the real-world problems we are interested in are too costly
to be used in a benchmark. Third, there are no standard sets of real-world problems, so our results
would not be comparable to other results in the literature.

For these reasons, it is common to evaluate optimization algorithms on standardized sets of
benchmark problems with known solutions. These problems are designed to be representative
of real-world problems and to include features that are challenging for optimization algorithms.
However, they are fast to evaluate, so the benchmark can be run in minutes or hours instead of
days or weeks. A complete benchmark is defined in terms of a set of problems, a set of solvers,
and a convergence test (Dolan and Moré (2002)).

Throughout this paper, we use modified versions of the Moré-Wild benchmark set (Moré and
Wild (2009)) to evaluate the performance of our algorithms. This benchmark set contains 53
non-linear least squares problems with known solutions. These test cases are constructed based
on 22 functions originally derived from the CUTEr Problems (Gould, Orban, and Toint (2003)).
The objective functions are twice continuously differentiable, but we do not make use of the
derivatives in our benchmarks. The parameter dimensions p vary between 2 and 12, where the
median dimension is 7. The dimension of the least squares residuals k is between 2 and 65. Only
three of the 53 problems have local minimizers that are not global minimizers. These are based
on the Freudenstein and Roth function and the Brown almost-linear function. The remaining 50
problems have a unique minimizer.
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The Moré-Wild benchmark set is standard in the recent literature on derivative-free optimiza-
tion. Among others, it has been used to benchmark POUNDERS (Wild (2017)), DFOGN (Cartis
and Roberts (2019)), and DFOLS (Cartis, Fiala, et al. (2019)).

The benchmark set plays an important role not only in measuring the final performance of
the algorithm but also in tuning the algorithm’s hyperparameters during development. In order
to avoid overfitting the tuning parameters to the benchmark set and to improve the robustness of
our conclusions, we extend the benchmark set with randomly generated problems. For each of the
53 problems, we generate four additional problems by drawing a new vector of start parameters
in the neighborhood of the original start parameters. The neighborhood is defined by multiplying
the original start parameters with 0.9 or 1.1. In the case of parameter values smaller than 1,
we switch to additive perturbations by adding and subtracting 0.1. The new start parameters are
drawn uniformly from the neighborhood. If the objective function is undefined at the new starting
values, we tighten the neighborhood until we find a valid starting point.

To measure the performance of different algorithms, we need a convergence test. Importantly,
a onvergence test is only based on the history of function values of each optimizer and the known
solution of the problem. It is independent of the algorithm’s internal convergence criteria. We use
the following convergence test, as proposed by Moré and Wild (Moré and Wild (2009)), to test
whether algorithm j solved problem i

fi(x
∗
ij) − f ∗i

fi(xi0) − f ∗i
≤ τ (3.3.11)

where τ > 0 is a tolerance level, xi0 is the vector of start parameters, f ∗i is the knownminimum
of the objective function, and fi(x

∗
ij) is the lowest objective function value obtained by the optimizer.

Note that x∗ij can be any point that has been tried out by algorithm j. For noise-free problems, we
set τ= 10−3.

Once we have the convergence test to decide whether an algorithm solved a problem, we need
a way to measure the computational budget the algorithm needed until it found a solution. The
computational budget can also be interpreted as the runtime until solution. Since we are inter-
ested in applications where the objective function is expensive, meaning that, by assumption, the
algorithm will spent most of its runtime on evaluating the objective function, we use the number
of function evaluations as the measure of the computational budget. Using walltime instead would
mostly measure how much work is done inside the algorithm itself because all objective functions
in the benchmark set are very fast to evaluate. Using the number of function evaluation is com-
mon practice in the literature on derivative-free least-squares optimization (see for example Wild
(2017) and Cartis, Fiala, et al. (2019)).
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The standard way of visualizing the performance of a set of solvers on a benchmark set are
performance profiles (Moré and Wild (2009)), which are also known as profile plots. Performance
profiles show the share of solved problems on the y-axis. On the x-axis, they show a normalized
measure of the computational budget. Normalized here means that the number of function eval-
uations each algorithm needed to solve a given problem is divided by the runtime that the fastest
algorithm needed to solve the problem. This makes performance profiles useful even for bench-
mark sets that contain problems with very different difficulty levels. Without normalization, the
performance profile would be dominated by the hardest problems. The x-axis of performance
profiles starts at 1. The y-value each algorithm achieves at 1 is the share of problems for which
this algorithm was the fastest.

Figure 3.3.2 shows the performance profiles for the least-squares version of tranquilo and
compares it against DFO-LS and POUNDERS.
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Figure 3.3.2. Comparison of least-squares optimizers on an augmented Moré-Wild benchmark set. The y-axis

shows the share of problems solved. The x-axis shows the normalized computational budget. The computational

budget is measured in terms of objective function evaluations needed by the optimizers. Normalized means that

the number of function evaluations each algorithm needed to solve a given problem is divided by the number of

function evaluations the fastest algorithm needed to solve that problem. Both DFO-LS and tranquilo solve the

same number of problems. In most problems, DFO-LS is slightly faster than tranquilo. POUNDERS is slower than

the other two on most problems. Moreover, it fails to solve some problems to the required level of precision.
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Both DFO-LS and tranquilo solve the same number of problems. In most problems, DFO-LS is
slightly faster than tranquilo. POUNDERS is slower than the other two onmost problems. Moreover,
it fails to solve some problems to the required level of precision. This is in line with results by Cartis,
Fiala, et al. (2019) who suspect that the lack of precision is related to the minimal trust-region
radius POUNDERS uses.

Figure 3.3.3 shows the performance profiles for the scalar version of tranquilo and compares
its performance against BOBYQA implementations from NlOpt and the Numerical Algorithms
Group (NAG) as well as Nelder-Mead implementations from NlOpt and SciPy.
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Figure 3.3.3. Comparison of scalar optimizers on an augmented Moré-Wild benchmark set. The y-axis shows the

share of problems solved. The x-axis shows the normalized computational budget. The computational budget

is measured in terms of objective function evaluations needed by the optimizers. Normalized means that the

number of function evaluations each algorithm needed to solve a given problem is divided by the number of

function evaluations the fastest algorithm needed to solve that problem. The fastest and most robust optimizer

is the NlOpt implementation of BOBYQA. The slowest and least robust optimizer is the SciPy implementation

of Nelder-Mead. All other algorithms solve slightly fewer problems than the NlOpt implementation of BOBYQA.

Among them, tranquilo is the fastest, followed by the NAG implementation of BOBYQA and the NlOpt implemen-

tation of Nelder-Mead.

The fastest and most robust optimizer is the NlOpt implementation of BOBYQA. The slowest
and least robust optimizer is the SciPy implementation of Nelder-Mead. All other algorithms solve
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slightly fewer problems than the NlOpt implementation of BOBYQA. Among them, tranquilo is
the fastest, followed by the NAG implementation of BOBYQA and the NlOpt implementation of
Nelder-Mead. Generally, the derivative free trust-region optimizers seem faster and more robust
than the direct search methods.

Figure 3.3.4 combines the two cases and compares scalar and least-squares algorithm in a
single plot. The main purpose of this plot is to show that the least-squares algorithms indeed
outperform similar scalar algorithms when applicable.
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Figure 3.3.4. Comparison of scalar and least-squares optimizers on an augmented Moré-Wild benchmark set. The

y-axis shows the share of problems solved. The x-axis shows the normalized computational budget. The compu-

tational budget is measured in terms of objective function evaluations needed by the optimizers. Normalized

means that the number of function evaluations each algorithm needed to solve a given problem is divided by

the number of function evaluations the fastest algorithm needed to solve that problem. The plot shows that

least-squares algorithms are generally faster and more robust than their scalar counterparts.

The combined plot shows a clear separation of several groups of algorithms: Least-squares
algorithms that use linear residual models and aggregate them into quadratic scalar models are
clearly faster than all other algorithms. POUNDERS, as the only least-squares algorithm that uses
a quadratic residual model, is faster than scalar optimizers but cannot solve all problems to the
required level of precision. The scalar optimizers can again be split into two groups: The two
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BOBYQA implementations (i.e., model-based trust-region optimizers) are faster than the NlOpt
implementation ofNelder-Mead (i.e., a direct searchmethod). The SciPy implementation ofNelder-
Mead is omitted because it is much slower than the other algorithms (see Figure 3.3.3).

3.4 Parallelization

Tranquilo is designed for objective functions f that cannot easily be parallelized. This means that
if parallel hardware is available, the parallelization should be done on the algorithm level.

When designing a parallel algorithm, the focus shifts fromminimizing the number of objective
function evaluations to minimizing the number of batches, where each batch consists of nbatch

objective function evaluations that can be done in parallel.
For instance, assume that nbatch is equal to four and we require seven function evaluations.

This example is illustrated in Figure 3.4.1. If all seven function evaluations are independent, we
can perform them in two batches. Further, the second batch is not full. If we do not derive utility
from idle resources, we could do one “free” evaluation in the second batch. The goal of our par-
allelization approaches in tranquilo is therefore to do as many function evaluations as possible in
parallel and to find good ways to use up any “free” evaluations.

�

�

f (x1), f (x2), f (x3), f (x4)
︸ ︷︷ ︸

Batch 1

�

,
�

f (x5), f (x6), f (x7)
︸ ︷︷ ︸

Batch 2

�

�

Figure 3.4.1. Illustration of batched evaluations. We assume that the batch-size is four and therefore 7 indepen-

dent function evaluations can be done in two batches. The second batch is not full and therefore contains one

“free” function evaluation.

In most cases, the batch size (nbatch) is equal to the number of cores that are available to the
optimizer. However, we allow for the batch size to be larger than the number of cores. This allows
us to simulate the behavior of heavily parallelized algorithms on machines with fewer cores.

The basic version of tranquilo as described in Algorithm 1 already creates some situations in
which the objective function needs to be evaluated on multiple points and there are no depen-
dencies between these evaluations: In the first iteration, the objective function is evaluated at
every point in the initial sample which contains at least p+ 1 points. In all subsequent iterations,
the objective function is evaluated at all newly sampled points. Of course, the parallel version of
tranquilo exploits these situations. However, in most of these cases, the number of function eval-
uations required are not multiples of the batch size and therefore, “free” evaluations are left on
the table. Moreover, there are several situations in which just one function evaluation is required.
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This is for example the case when points are replaced to avoid stagnation (Line 22 of Algorithm 1)
and in the acceptance step. The parallel version of tranquilo exploits most of these situations and
fills up the “free” function evaluations with different strategies.

3.4.1 Adding parallelization to tranquilo

Almost all of the changes required to add parallelization to tranquilo are done by switching out
components. The only exception is the sampling step in each iteration. Here, instead of passing
ntarget as target sample-size into the samplers (see Line 13), we pass in a target sample size that
makes sure that the number of newly sampled points is a multiple of nbatch. Moreover, the accep-
tance step now depends on the batch size.

3.4.1.1 Filtering

As the usage of these “free” evaluations potentially leads to many more available points in the
history, we observed that using no filter leads to worse benchmark results compared to using the
Drop excess filter. The Drop excess filter is described in Section 3.3.2.1 and activated by default
when nbatch > 1. In the parallel benchmarks we set nfilter = 3ntarget; see Figure 3.4.4 for reference.

3.4.1.2 Acceptance Step

During the acceptance step, we determine the new candidate point x∗t+1 and a measure of
model quality ρt. A typical serial acceptance step requires a single function evaluation at the
candidate point x∗t + st (see Section 3.3.2.7). In the parallel case, this leaves us with many “free”
evaluations, which we can use to improve efficiency.

In the parallel acceptance step, we invest one evaluation in the candidate point, which leaves
us with nbatch − 1 available evaluations to fill up the batch. We use these in two ways. First, we
check whether the candidate point lies at the trust-region border. If so, we interpret it as a signal
that the direction of the step is good, but the step size might be too small. We thus sample points
on the line that goes through the current best point and the candidate point. We call this a line
search. Second, we try to predict at which points the objective function needs to be evaluated in
the next iteration and perform the evaluations. We call this speculative sampling.

Line Search. Consider the illustration in Figure 3.4.2. For the line search, we sample points on a
line starting at the current best point (the center point of the circle in the illustration) and going
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through the candidate point (the red point in the illustration). Formally, the line is given by

Line(α) = x∗t + α st

where Line(1) equals the candidate point. For values α < 1, Line(α) represents points inside the
trust-region, while for α > 1, Line(α) represents points outside of the trust-region. Since we be-
lieve the step was too small, we want to sample outside of the trust-region. In one iteration, the
trust-region radius can increase by a maximum of 2. To simulate a continuous maximal increase
of the radius, we sample a maximum of three points on the line with α= 2, 4,8, respectively,
depending on the number of “free” evaluations (the blue points in the illustration).

If the search direction of the candidate step is good, a line search can dramatically increase the
speed of the algorithm, allowing us to go as far as 23 times the initial trust-region radius, which
translates to jumping ahead three iterations of the algorithm. If any of the line search points is
better than the current best point, we accept it.

Figure 3.4.2. Illustration of the line search. The candidate point is shown in red. The black dots show current

model points. The blue dots show the line search points. The line search points are all on a line that goes through

the current best point and the candidate point. The spacing is at 2, 4, and 8 times the current current trust-region

radius.

Speculative Sampling. Consider the illustration in Figure 3.4.3. For the speculative sampling,
we assume that the candidate point will be accepted (the red point in the illustration). In this
case, we can use any “free” evaluations to sample points around the candidate, as these points
will be required in the next iteration. We do not know, however, how the radius will change.
After empirical testing, we found that setting the radius of the region from which we draw the
speculative sampling to 0.75 times the current trust-region radius results in the best benchmark
performance. The speculative sample points are shown in blue in the illustration.



3.4 Parallelization | 169

Figure 3.4.3. Illustration of the speculative sampling. The candidate point is shown in red. The black dots show

a hypothetical sample of existing points that would be available in the next iteration if the candidate point was

accepted. The blue dots show the speculative sample. The points are sampled in the same way they would be

sampled in the next iteration if the candidate point was accepted and the radius was 0.75 times the current

trust-region radius.

Implementation of the Parallel Acceptance Step. If enough “free” function evaluations are
available, we combine both, the line search and speculative sampling in our parallel acceptance
step. For an efficient combination, we first calculate the line-search points and already take them
into account as existing points when creating the speculative sampling. Of course, the function
evaluations on both, the line-search points and the speculative sample are done in parallel, to-
gether with the function evaluation at the candidate point. The parallel acceptance step is shown
in Algorithm 2.
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Algorithm 2: Parallel acceptance step
Input: The current parameter vector x∗t , the candidate step st, the expected improvement

∆Ms
t , the effective trust-region Rt, the historyHt, and the batch size nbatch.

1 if nbatch = 1 then
2 return AcceptClassic(x∗t , st,∆Ms

t)

3 else

4 end
5 if x∗t + st is on the border of Rt then
6 Calculate the number of available line search points: nls =min{nbatch − 1,3}

7 Sample nls points on a line: X ls
t = {x

∗
t + 2i st : i= 1, . . . , nls}

8 else
9 nls = 0 and X ls

t = {}

10 end
11 Calculate number of speculative sampling points: nspeculative = nbatch − 1− nls

12 Define a speculative sampling region: Rspeculative
t with the same center as Rt, and a radius

of 0.75 times that of Rt

13 Scan the history for existing points X existing
t = {x ∈Ht : x ∈ Rspeculative

t }

14 Sample speculative points: X speculative
t = Sample(X ls

t ∪X
existing, Rspeculative

t , nspeculative)

15 Compute ρt = (f(x∗t )− f(x∗t + st))/∆Ms
t

16 Compute x∗t+1 = argmin{f(x) : x ∈ {x∗t + st}∪X ls
t ∪X

speculative
t }

17 return (x∗t+1,ρt)

3.4.2 Benchmarking

The performance-profiles have to be adjusted for the parallel case, as the number of objective
evaluations does not provide a good measure of runtime anymore. Instead, we use the number of
batch evaluations to measure the computational budget. This reflects our assumption that in the
parallel case the evaluation of a batch takes as much time as the evaluation at a single point.

Figure 3.4.4 shows the benchmark results of our parallel algorithm on the Moré and Wild
(2009) benchmark set; see Section 3.3.3 for details on benchmarking. We compare the parallel
least-squares version of tranquilo, for batch sizes 2, 4, and 8, to the serial version of tranquilo and
the DF-OLS algorithm.



3.4 Parallelization | 171

1 2 3 4 5 6
Computational budget (normalized)

0.0

0.2

0.4

0.6

0.8

1.0

Sh
ar

e 
of

 s
ol

ve
d 

pr
ob

le
m

s

Tranquilo-LS (2 cores)
DFO-LS

Tranquilo-LS (4 cores)
Tranquilo-LS

Tranquilo-LS (8 cores)

Figure 3.4.4. Comparison of parallel and serial least-squares optimizers on an augmented Moré-Wild benchmark

set. The y-axis shows the share of problems solved. The x-axis shows the normalized computational budget.

The computational budget is measured in terms of batches of objective function evaluations needed by the

optimizers. Normalized means that the number of batches each algorithm needed to solve a given problem

is divided by the number of batches the fastest algorithm needed to solve that problem. The plot shows that

tranquilo strongly benefits from having more cores available. The 8-core version is the fastest algorithm for

roughly 85% of the problems.

As in Section 3.3.3, the y-axis denotes the share of solved problems, while the x-axis denotes
the multiple of the minimal number of batches needed to solve the problem. This implies that the
intercept can be interpreted as the share of problems that the respective algorithm was able to
solve the fastest.

The serial version of tranquilo (lightest blue) is slower than the DF-OLS algorithm (green), as
was also seen in the least-square benchmark (see Figure 3.3.2). The parallel versions of tranquilo,
however, dominate the DF-OLS algorithm for given batch sizes. In particular, when using a batch
size of 8, tranquilo is the fastest algorithm for roughly 85% of the problems. In some sense, this
comes as no surprise, as there are multiple effects playing a role when using a larger batch size.
First, the sample sizes will be larger, and second, we can fully utilize the combination of line
search and speculative sampling.
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3.5 Noisy optimization

As described in Section 3.2.2, the main challenge for trust-region optimizers in the case of noisy
objective functions is to determine how often the objective function should be evaluated at each
point. Multiple evaluations at the same points are necessary in order to average out the noise to a
level that allows the optimizer to make progress. DFO-LS puts this burden on the user. ASTRO-DF
determines the sample size adaptively by adding evaluations until an estimated standard error
falls under a fixed factor of the squared trust-region radius.

Tranquilo takes an entirely different approach that recognizes that the effects of noise are
similar to the effect of approximation error in the surrogate model –which is handled very well
by trust-region optimizers. Tranquilo therefore introduces a new measure of model quality, ρnoise,
that can be used to adjust the number of function evaluations used to construct surrogate models.
Moreover, we borrow ideas from statistical power analysis to determine the number of function
evaluations required to make an acceptance decision.

The structure of this section is as follows: Section 3.5.1 discusses the effects of setting sub-
optimal sample sizes and why determining optimal sample sizes ex-ante is hard. Section 3.5.3
describes the changes to the core algorithm framework that are necessary tomake tranquilo robust
to noise, as well as the implementation of new components for noisy optimization. Section 3.5.4
compares the noise-robust version of tranquilo against different configurations of DFO-LS on a
noisy version of the Moré-Wild benchmark set.

3.5.1 The importance of sample sizes

To make things precise, we use the following notation: mmodel
t denotes the number of repeated

function evaluations at each model point in iteration t. maccept
t1 and maccept

t2 are the number of
repeated function evaluations at the current x and the candidate point in the acceptance step of
iteration t. For convenience, most algorithms for noisy optimization set all three numbers equal,
even though they are conceptually quite different. In tranquilo, we therefore keep the distinction,
and since each number of repetitions is set adaptively, they do not generally coincide. Although
the number of repetitions (symbolized by the letter m) will often be called sample size in the
following sections, it is not to be confused with the sample size as used in the earlier sections of
this paper (symbolized by the letter n), which measures the number of distinct x-vectors used for
building a surrogate model. If the distinction is not clear from the context, we will use the term
number of repetitions.

Ifmmodel
t is too small, the surrogatemodel will be estimated imprecisely, even if the trust-region

radius is chosen appropriately and a quadratic model can approximate the true objective function
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well. This means that the candidate points obtained from minimizing the surrogate model have
low quality, and therefore, the measure of model quality ρ will be low in many iterations. If
no further measures are taken, the radius is decreased until it collapses to zero, and the algo-
rithm stagnates. On the other hand, if the sample size is too large, the algorithm will become
prohibitively expensive.

A similar effect occurs in the acceptance step: If the sample size is too small, the acceptance
decision will be based on noisy information. It becomes possible that candidates that are worse
than the current point in expectation are accepted due to lucky draws and, conversely, it can hap-
pen that very good candidates are rejected. Moreover, ρ becomes noisy and the radius adjustment
erratic.

To talk about noisy and noise-free function evaluations and residuals, respectively, we use
the following conventions: f(x,ξj) is the j-th noisy realization of the objective function at x and
Ef(x,ξ) is the expectation of the objective function at x. Fmodel

t is used to denote the average of
all function evaluations at the model points. Analogous notation is used for the residual function
r.

Figure 3.5.1 illustrates why it is hard to pick optimal sample sizes. We focus on mmodel, but
very similar arguments apply to maccept. The left and right plot show the same objective function.
The vertical lines mark trust-regions bounds. In both plots, the trust-region radius is the same,
but the centers differ. In each trust-region, we plot a D-optimal sample (x1, x2, x3). At each point,
we observe one noisy function evaluation f(x1,ξ1), f(x2,ξ1) and f(x3,ξ1). The realizations of the
random term ξ are the same in both plots.

In the left plot, the trust-region is in a steep area of the objective function. While the effect
of noise makes the approximation quality of the surrogate model worse compared to a noise-
free case, the differences in observed function evaluations f is dominated by differences in Ef .
Therefore, the surrogate model still points into the right direction.

In the right plot, the trust-region is in a flat area of the objective function. Therefore, the
differences in observed function evaluations f are dominated by differences in the realized noise
and do not reflect differences in Ef . As a result, the surrogate model points in the wrong direction.
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(b) Noise with a flat function

Figure 3.5.1. Effect of noise on a surrogate model

This simple illustration shows that setting the sample size based on the variance of the error
term and the trust-region radius alone is not sufficient to ensure that sample sizes are close to
optimal. Since objective functions are typically steeper in the beginning and flatter as we get closer
to the optimum, the optimal sample size will typically be increasing in the iteration. However, it
is very hard to pick an optimal schedule for this. Therefore, approaches that require the user to
set a sequence of sample sizes as a function of the iteration counter require a lot of trial and error
in practice. This motivates us to develop a fully adaptive approach to selecting the sample sizes
in tranquilo.

3.5.2 Core ideas for noise handling

3.5.2.1 Determining mmodel

Our approach is based on the observation that the effects of noise on model quality are similar
to the effects of approximation error and can, therefore, be handled in a similar way.

Approximation error is introduced by the fact that a quadratic surrogate model is not able
to capture the shape of the objective function exactly. The tuning parameter to govern the size of
the approximation error is the trust-region radius. A larger radius means a larger approximation
error. Talyor-like error bounds ensure that by making the radius small enough, the approximation
error can be made arbitrarily small. Of course, a small radius comes with the cost of smaller step
sizes and slower progress. Therefore, it is not a goal to make the approximation error as small as
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possible but to make the radius as large as possible while ensuring that the model is good enough
to produce suitable candidate points.

To achieve this balance, trust-region optimizers use ρ, the ratio of actual to predicted im-
provement, as a measure of model quality. If the actual improvement is larger or similar to the
predicted improvement, the model was good enough to find suitable candidates, and, therefore,
the radius can be increased or kept constant. Otherwise, the radius can be decreased.

Random error is introduced by the fact that observations of the objective function are noisy.
The tuning parameter to govern the size of the random error is the number of repeated function
evaluations. Under regularity conditions, a law of large numbers ensures that making mmodel large
enough will make the random error arbitrarily small. It is worth emphasizing that making the
error small comes at the cost of more function evaluations and it is, therefore, not a goal to make
the error as small as possible but to make it just small enough to ensure that the model is good
enough to find suitable candidates.

The presence of random error does, of course, not alleviate the approximation error. If ρ is
calculated as usual it reflects both kinds of errors:

ρ =
f(x∗,ξ) − f(x∗ + s,ξ)
Ms(x∗) − Ms(x∗ + s)

=
Actual Improvement

Expected Improvement

To obtain a measure that mostly reflects approximation error, we could, of course, replace the
noisy function evaluations with averages over multiple repetitions. However, this again requires
determining a sample size. We, therefore, first focus on finding a measure ρnoise that only reflects
the effect of random error on the model’s ability to produce good candidate points.

We start by noting that the denominator of ρ is made up of quadratic models and that any
alternative measure that puts a similar focus on the model’s ability to produce good candidate
points will likely have quadratic models in the denominator as well. If ρnoise should not be affected
by approximation error, we have to replace all occurrences of the objective function f in the nu-
merator with a quadratic model that approximates f . Of course, the best quadratic approximation
of f we have available is the surrogate model Ms.

We therefore constructρnoise with a simulation approach inwhichwe use the current surrogate
models Mv and Ms as a stand-in for the residual and objective functions. Using Mv we can create
a sample of “true” residuals for each point in the current set of model points X model

t . Using an
estimate of the noise variance, we can then simulate noisy function evaluations. On the simulated
function evaluations, we can fit simulated vector models Mv,sim, aggregate them into simulated
scalar models Ms,sim, and solve the simulated trust-region subproblem. This yields a candidate
step ssim. Given these ingredients, we can calculated ρnoise as follows:
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ρnoise =
Ms(x∗) − Ms(x∗ + ssim)

Ms,sim(x∗) − Ms,sim(x∗ + ssim)
(3.5.1)

All steps in the calculation of the simulated candidate step ssim completely mirror the steps
done to calculate the normal candidate step s in tranquilo. The only difference is that the true
objective function f is replaced by the surrogate model Ms and that noisy function evaluations are
replaced by their simulated counterparts. This means that ρnoise is a pure measure of the effects
of random error on the model’s ability to produce good candidate points. As both the numerator
and denominator are made up of quadratic models, it does not contain any approximation error.

In our practical implementation, we repeat the simulation b times to create a vector of ρnoise

values. This vector can then be used to adjust mmodel
t . We describe the details of this implementa-

tion in Section 3.5.3.3.

3.5.2.2 Determining maccept

In the absence of noise, accepting or rejecting a candidate step s boils down to the simple
question of whether f(x∗t + s) is smaller than f(x∗t ). In the presence of noise, this turns into a
question of expected values: Is Ef(x∗t + s,ξ) smaller than Ef(x∗t ,ξ)? This is a hypothesis test.

Empirical economists who collect data frequently have to make decisions about sample sizes.
Collecting data is expensive, but collecting too little datamight render non-zero effects statistically
insignificant. The method of choice for determining sample sizes to alleviate this problem is power
analysis.

For simplicity, we assume that our test statistic of interest –the difference in means between
function evaluations at the current and candidate point– is normally distributed. This can either be
seen as a finite sample assumption or justified with asymptotic arguments. Given this assumption,
we need to fix three ingredients for a power analysis: First, the significance level of the hypothesis
test that is going to be performed. Second, the desired power for detecting an effect. Third, the
minimal detectable effect size.

We treat the first two as tuning parameters of the algorithm and set them to maximize per-
formance in benchmarks. For the minimal detectable effect size, this cannot be done because it
depends on the scale of the objective function. However, the solution of the trust-region subprob-
lem generates an expected improvement as a by-product. We use this expected improvement as
a minimal detectable effect size.
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The results of the power analysis, together with the existing number of function evaluations
at x∗t and x∗t + s, can then be used to calculate optimal values for maccept

t1 and maccept
t2 that minimize

the number of additionally required function evaluations while achieving the desired power. In
our practical implementation we also keep the number of function evaluations used in the ac-
ceptance step between a lower and upper bound that can be set by the user. The details of this
implementation are described in Section 3.5.3.5.

3.5.3 Adding noise handling to tranquilo

3.5.3.1 Noisy-trustregion-framework

In this section, we describe the changes to the core algorithm framework as depicted in Algo-
rithm 1 that are necessary to make tranquilo robust to noise. The modified algorithm is shown in
Algorithm 3. The changes are highlighted in green.

The noisy version of tranquilo contains two additional inputs: m0, which determines how often
the objective function is evaluated at the start parameters, and mmodel

0 , which is the initial value
for the adaptively chosen number of repeated function evaluations. m0 needs to be larger or equal
to two, such that we cannot just get an estimate of the function value at the start parameters but
also an estimate of the noise variance. In our benchmarks, we set m0 to 5 and mmodel

0 to 1.
The first thing that changes in the algorithm is that the History Ht is now initialized with

a set of function evaluations at the start parameters instead of just one function evaluation. In
general, each parameter vector in the history can now be associatedwith several observed function
evaluations, and the number of function evaluations varies over time. As a consequence, Fmodel

t

andRmodel
t are now replaced byFmodel

t andRmodel
t which contain averages over multiple function

or residual evaluations at eachmodel point. Similarly, the initial vector model Mv
0 is now initialized

with the average of the function evaluations as intercept terms. All other coefficients stay at zero.
The main loop of tranquilo proceeds as before through the process of scanning the history,

filtering existing points, sampling new points, fitting and aggregating vector models, and solving
the trust-region subproblem. The two while loops for stagnation handling are also unchanged.
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Algorithm 3: Tranquilo algorithm (noisy case)
Input: Starting point x∗0, initial trust-region radius ∆region

0 , target sample size ntarget, search factor
γsearch, minimum step size smin, sample increment ndrop

stag , maximum number of iterations
tmax, maximum number of trials to avoid stagnation nmax

stag , lower and upper bounds l and u,
the number of function evaluations at the start parameters m0, and the initial value for the
number of repeated function evaluations mmodel

0 .
1 Initialize history withH0 =

��

x∗0, {rj(x
∗
0) : j= 1, ..., m0}

�	

2 Initialize vector model Mv
0 with intercept terms at 1

m0

∑m0
j=1 rj(x

∗
0) and all other coefficients set to 0

3 for t=0,1,.. .,tmax do
4 Calculate the search radius ∆search

t = γsearch∆
region
t

5 Calculate the effective trust-region Rt based on x∗t , ∆
region
t , l and u

6 Scan the history for existing points X existing
t = {x ∈Ht : ∥x∗t − x∥ ≤∆search

t }

7 Filter existing points: X filtered
t = Filter(X existing

t )

8 if |X filtered
t |< ntarget then

9 Sample ntarget − |X filtered
t | new points in the trust-region: X new

t = Sample(X filtered
t , Rt, ntarget)

10 X model
t =X filtered

t ∪X new
t

11 else
12 X model

t =X filtered
t

13 end

14 Build a vector model Mv
t = Fit(X model

t ,Rmodel
t , Mv

t−1, Rt)

15 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

16 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

17 while |X model
t |> ntarget and ∥st∥ ≤ smin do

18 Reduce the sample: X reduced
t = Drop(X model

t , ndrop
stage,∆

region
t ) and set X model

t =X reduced
t

19 Build a vector model Mv
t = Fit(X model

t ,Rmodel
t , Mv

t−1, Rt)

20 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

21 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

22 end
23 nstag = 0

24 while ∥st∥ ≤ smin and nstag ≤ nmax
stag do

25 Reduce the sample: X reduced
t = Drop(X model

t , ndrop
stag ,∆region

t )

26 Sample new points in the trust-region: X new
t = Sample(X reduced

t , Rt, ntarget) and set
X model

t =X reduced
t ∪X new

t

27 Build a vector model Mv
t = Fit(X model

t ,Rmodel
t , Mv

t−1, Rt)

28 Aggregate the vector model: Ms
t = Aggregate(Mv

t )

29 Solve the surrogate problem: st = Subsolve(Ms
t , Rt)

30 nstag = nstag + 1

31 end
32 Estimate the noise variance of the objective and residual functions σt,Σt = Varest(Ht, Rt)

33 Calculate ∆Ms
t =Ms

t(x∗t )−Ms
t(x
∗
t + st)

34 Accept or reject the step and calculate a measure of progress (x∗t+1,ρt)= Accept(x∗t , st,∆Ms
t ,σt)

35 Simulate the effect of noise on ρ:
ρnoise = {ρnoise

1 , . . .ρnoise
b }= SimNoise(X model,Rmodel, Mv

t−1, Mv
t , Rt,Σt)

36 Adjust the number of repeated function evaluations: mmodel
t+1 = AdjustRep(ρnoise,ρt, mmodel

t )

37 Adjust the trust-region radius: ∆region
t+1 = AdjustRadius(∆region

t ,ρt, st, mmodel
t , mmodel

t+1 )

38 if x∗t+1 ̸= x∗t and Converged(Ht, Ms
t , x∗t , x∗t+1) then

39 break
40 end

41 end
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The major changes appear when the original algorithm would have proceeded with the ac-
ceptance step. In the noisy case, we first estimate the variance of the noise term in the objective
function (σt) as well as the variance-covariance matrix of the noise terms in the residual function
(Σt). The actual implementation of the noise estimation is again a replaceable component, which
is further described in Section 3.5.3.2.

While the expected improvement is calculated as before, the acceptance step now takes the
estimated noise variance σt into account. Implementations of noise robust acceptance steps are
described in Section 3.5.3.5.

After the acceptance step, two new steps are introduced. The first is to simulate our noisy
measure of model quality ρnoise, and the second is to adjust the number of repeated function
evaluations mmodel

t based on the simulated values. Both are replaceable components, which are
further described in Section 3.5.3.3 and Section 3.5.3.4. Finally, the trust-region radius is adjusted
as before. The only difference is that it now takes two additional argumentsmmodel

t andmmodel
t+1 . This

can be used to skip radius decreases in situations where the number of repetitions was increased.

3.5.3.2 Estimation of noise variance

The literature on noisy optimization generally distinguishes between two types of noise: Ad-
ditive noise is a noise term with fixed variance over the entire parameter space that is added to
the objective function. Multiplicative noise is a noise term that enters the objective function as a
multiplicative factor, and therefore, the effective variance of the noise varies with the value of the
objective function. In least-squares optimization, the noise term is added to the residual function,
and therefore, even additive noise leads to a noise term whose variance varies over the parameter
space.

In tranquilo, we treat the noise term as constant over the current trust-region. This can be seen
as a locally constant approximation to more general noise terms. We do not make any assumptions
about how the noise term varies between trust-regions. We distinguish between Σt, the variance-
covariance matrix of the noise terms in the residual function, and σt, the variance of the noise
term in the objective function.

While we implement the noise estimation as a replaceable component, we provide just one
implementation: We first calculate a search radius ∆varest

t = γvarest∆
region
t and scan the history for

function evaluations within this radius of the current point. Out of these points, we only keep
the ones at which the objective function was evaluated at least mvarest times. Next, we de-mean
the function and residual evaluations at each point. Finally, we calculate σt as the variance of
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the de-meaned function evaluations and Σt as the variance-covariance matrix of the de-meaned
residual evaluations.

To make sure that at least one point exists in the current trust-region at which the function
has been evaluated often enough to get a variance estimate, the minimal number of repeated
function evaluations in the acceptance step maccept

min needs to be set larger or equal to mvarest
min . In our

benchmarks, we set mvarest
min = 3 and maccept

min = 4.

3.5.3.3 Simulating ρnoise

The goal of this step is to simulate multiple instances of measures of model quality ρnoise =

{ρnoise
1 , . . . ,ρnoise

b } that can be used to adjust mmodel
t . In principle, there are many possibilities

for doing this, which can range from heuristics to computationally costly simulation approaches.
Currently, we implement just one approach, which is based on simulations.

The approach for generating ρnoise is described in Algorithm 4. The inputs of the algorithm
are the current set of model points X model

t , the current and previous vector models Mv
t−1 and

Mv
t , the current effective trust-region Rt, the estimated variance-covariance matrix of the noise

terms in the residual function Σt, the current parameter vector x∗t , the number of simulations b,
and the number of repeated function evaluations mmodel

t . The first few inputs provide almost all
ingredients for a standard fitting step in tranquilo. The only thing that is missing are the residuals
at the model points Rmodel

t , because those will be replaced by simulated counterparts.
The simulation starts by calculating the “true” and noise-free residuals at the model points.

They are denoted by Rmodel
sim,true and calculated by evaluating the current vector model Mv

t at the
model points. These “true” residuals play the role of the unobservable Er(x,ξ) during the simula-
tion.

For each ℓ= 1, . . . , b simulation draw, we start by creating averages of simulated noisy resid-
uals, denoted by Rmodel

sim,ℓ . These play the role of the average observed residuals Rmodel in the sim-
ulation, i.e., they will be used to fit vector models Mv,sim

ℓ
. To capture residualized model fitting,

the previous vector model Mv
t−1 is used inside each simulated fitting step. The simulated vector

models are then aggregated into simulated scalar models Ms,sim
ℓ

and used to solve the simulated
trust-region subproblem. This yields a candidate step ssim

ℓ
.

Given these ingredients, we can calculate the simulated measure of model quality ρnoise
ℓ

as in
Equation 3.5.3.3. Since the simulated ρnoise

ℓ
mimics all steps of the actual algorithm, it is a pure

measure of the effect of random error on the model’s ability to produce good candidate points.
All other errors, such as approximation error, as well as imperfect solutions of the trust-region
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subproblem or numerical imprecisions in the fitting process are reflected in the standard ρ but
not in ρnoise.

Algorithm 4: Simulating ρnoise

Input: Model points X model
t , current and previous vector models Mv

t−1 and Mv
t , the

current effective trust-region Rt, The variance-covariance matrix of the noise
terms in the residual function Σt, the current parameter vector x∗t , the number of
simulations b and the number of repeated function evaluations mmodel

t .

1 Calculate “true” residuals Rmodel
sim,true = {M

v
t (x) : x ∈ X model

t }

2 for ℓ= 1, . . . , b do

3 Simulate average noisy residuals Rmodel
sim,ℓ over mmodel

t simulated noisy residuals that
are created by adding noise draws from N(0,Σt) to “true” residuals in Rmodel

sim,true

4 Fit a simulated vector model: Mv,sim
ℓ

= Fit(X model
t ,Rmodel

sim,ℓ , Mv
t−1, Rt)

5 Aggregate the simulated vector model: Ms,sim
ℓ
= Aggregate(Mv,sim

ℓ
)

6 Solve the simulated trust-region subproblem: ssim
ℓ
= Subsolve(Ms,sim

ℓ
, Rt)

7 Calculate the simulated measure of model quality: ρnoise
ℓ
=

Ms
t(x∗t )−Ms

t(x∗t+ssim
ℓ

)

Ms,sim
ℓ

(x∗t )−Ms,sim
ℓ

(x∗t+ssim
ℓ

)

8 end

In our practical implementation, we set b= 100. This means that simulating ρnoise incurs the
computational overhead of fitting, aggregating and minimizing 100 surrogate models. While this
overhead is much larger than an iteration of a typical trust-region algorithm, it is justified in a
setting with an expensive objective function.

3.5.3.4 Adjusting mmodel

The goal of this step is to adjust the number of repeated function evaluations mmodel
t based on

the simulated ρnoise
ℓ

values. A simple possibility would be to calculate the average of the simulated
ρnoise
ℓ

values and then adjust mmodel
t in a very similar way to the adjustment of the trust-region

radius. A drawback of this approach is that the denominator of the simulated ρnoise
ℓ

can be very
small and therefore, a non-robust statistic like the average is strongly affected by a few outliers.

To avoid this problem, we choose an approach that is not based on the average but on the share
of simulated ρnoise

ℓ
values below and above certain cutoffs. In particular, we use the following ap-

proach: ρnoise
high and ρnoise

low are cutoffs thate determine whether a simulated ρnoise
ℓ

is considered high
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or low. If more than πhigh of the simulated ρnoise
ℓ

are high, we conclude that mmodel
t is unnecessarily

large and decrease it by one in order to save costly function evaluations in the next iteration. If
this is not the case but more than πlow of the simulated ρnoise

ℓ
are high or the overall ρt is larger

than ρkeep, we conclude that mmodel
t is just right and leave it unchanged. Otherwise, we increase

mmodel
t by one.
To improve robustness, we also keep the number of repeated function evaluations between a

lower and upper bound. mmodel
min is the minimal number of function evaluations, which we set to 1

in our benchmarks. mmodel
max is the maximal number of function evaluations, which we set to 30.

3.5.3.5 Noisy acceptance steps

The noisy acceptance step requires an additional input σt, over the noise-free acceptance step
(Equation 3.3.9). It is a replaceable component, but we only provide one implementation based
on the power analysis ideas described in Section 3.5.2.2.

(x∗t+1,ρt) = Accept(x∗t , st,∆Ms
t ,σt)

As in the noise-free case, x∗t+1 is the candidate point for the next iteration, ρt is a measure
of progress or model quality, ∆Ms

t is the expected improvement from taking step st, and now
additionally, σt is the estimated variance of the noise term in the objective function.

In the noise-free case, we would, generally, accept the candidate step st if it yields any im-
provement over the current point. That is, if f(x∗t + st)< f(x∗t ). In the noisy case, we are ul-
timately interested in minimizing the Ef , and thus we would like to make the comparison
Ef(x∗t + st,ξ)< Ef(x∗t ,ξ). However, this is, of course, not observed. Instead, we can try to re-
duce the effect of the noise by averaging multiple function evaluations at each point. Define the
averages of the objective function at the candidate and current point as:

f̄(x∗t + st) =
1

maccept
t2

maccept
t2
∑

i=1

f(x∗t + st,ξi) and f̄(x∗t ) =
1

maccept
t1

maccept
t1
∑

j=1

f(x∗t ,ξj)

The noisy acceptance decision is then based on the following condition:

Accept st ⇐⇒ f̄(x∗t + st) < f̄(x∗t ) (3.5.2)
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Similarly to the noise-free case in Equation 3.2.1, we can compute ρt by replacing f with f̄ :

ρt =
f̄(x∗t ) − f̄(x∗t + st)

Ms
t(x
∗
t ) − Ms

t(x
∗
t + st)

While the mechanics of the noisy acceptance step are straightforward, as alluded to in the
previous sections, the difficulty stems from determining maccept

t1 and maccept
t2 such that the decision

based on the averages f̄ is a good proxy for the decision based on expected values Ef .
One way to solve this problem is to use a two-sample power analysis. For this we need to

assume that

1. f(x∗t + st,ξi) is independent of f(x∗t ,ξj) for all i, j

2. 1
maccept

t1

∑maccept
t1

j=1 f(x∗t ,ξj)≈ N
�

Ef(x∗t ),σ2/maccept
t1

�

3. 1
maccept

t2

∑maccept
t2

i=1 f(x∗t + st,ξi)≈ N
�

Ef(x∗t + st),σ
2/maccept

t2

�

4. σt is a reasonable estimate of σ

Given a significance level α ∈ (0,1), a power level 1− β ∈ (0,1), and a minimal detectable effect
size Ms

t(x
∗
t )−Ms

t(x
∗
t + st), by choosing maccept

t1 and maccept
t2 under following condition, we can guar-

antee that the noisy acceptance condition (Equation 3.5.2) is done with a significance level of α
and a power level of 1− β :

maccept
t1 maccept

t2

maccept
t1 + maccept

t2

≥
�

Φ−1(1 − α) + Φ−1(1 − β)
(Ms

t(x
∗
t ) − Ms

t(x
∗
t + st))/σt

�2

(3.5.3)

Since we still want to minimize the number of function evaluations, the actual choice of maccept
t1

and maccept
t2 is based on the following problem:

minimize
maccept

t1 ,maccept
t2 ∈N

maccept
t1 + maccept

t2 s.t. Equation 3.5.3 holds

A detailed derivation of Equation 3.5.3 is provided in Appendix 3.B.

3.5.3.6 Noisy radius adjustment

The noise robust radius adjustment is identical to the noise-free version, except that radius
decreases are skipped if mmodel

t+1 is larger than mmodel
t . This successfully prevents the trust-region

radius from collapsing to zero before a suitable value for mmodel is found.
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3.5.4 Benchmarking

To test the performance of tranquilo in a noisy setting, we use the bootstrapped version of theMoré-
Wild benchmark set. Following Cartis, Fiala, et al. (2019), we add identical and independently
normal-distributed noise terms to each residual. We choose a large standard deviation of 1.2 to
create a challenging benchmark set (compared to 0.01 in Cartis, Fiala, et al. (2019)). Note that
the scale of the residuals in the Moré-Wild benchmark varies drastically across problems. This
means that even though we add the same amount of noise to each residual, we obtain problems
with very different difficulties and with very different optimal sequences of sample sizes.

Since tranquilo is fully adaptive, we only run it in one configuration. For DFO-LS, we choose
configurations with three different sample sizes. Note that in DFO-LS, mmodel =maccept. Since it is
very hard to pick optimally increasing sequences of sample sizes in practice, we restrict ourselves
to fixed sequences of 3, 5, and 10 function evaluations at each point.

Since we are interested in minimizing the expected value of our objective functions, the con-
vergence test is based on evaluating the noise-free objective function at the parameter vectors
generated by the algorithm. Then the convergence test is as before, but the tolerance level τ is
relaxed to 0.1 to reflect that we cannot expect the same precision for noisy and noise-free opti-
mization problems. The results of the benchmark are shown in Figure 3.5.2.
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Figure 3.5.2. Comparison of least-squares optimizers on an augmented Moré-Wild benchmark set with added

noise. The noise is normally distributed with a standard deviation of 1.2. The x-axis shows the normalized com-

putational budget. The computational budget is measured in terms of objective function evaluations needed

by the optimizers. Normalized means that the number of function evaluations each algorithm needed to solve

a given problem is divided by the number of function evaluations the fastest algorithm needed to solve that

problem. The different DFO-LS configurations vary in the number of repeated function evaluations at each point.

tranquilo is fully adaptive and therefore does not need multiple configurations. The plot shows that tranquilo

outperforms the DFO-LS configurations in speed and robustness.

We see that DFO-LS with three evaluations solves some problems very quickly but then stag-
nates abruptly. Using 5 evaluations at each point makes the algorithm slower but helps to solve
more problems. The pattern repeats for 10 evaluations, even though only a few additional prob-
lems are solved by switching from 5 to 10 evaluations. This shows that it is very hard to pick a
sample size that works well for several problems, and in fact, the sample sizes 3, 5, and 10 are
already the result of some trial and error in which the whole benchmark set was solved multiple
times.

Tranquilo starts at a low sample size and can, therefore, solve easy problems very quickly. If
necessary, the sample size is increased, and therefore, tranquilo solves more problems than any
configuration of DFO-LS. In total, tranquilo is the fastest algorithm for more than 40 % of the



186 | 3 Tranquilo

problems. Moreover, its performance-profile is consistently above the performance profiles of all
DFO-LS configurations.

3.6 conclusion

This paper presents the tranquilo algorithm, an optimizer for noisy nonlinear least-squares prob-
lems with expensive objective functions. A typical situation in which such problems arise is the
estimation of econometric models using the method of simulated moments (MSM). Tranquilo im-
proves over existing least-squares optimizers in two important ways: By introducing a line-search
and speculative sampling approach, the algorithm becomes more parallelizable and the solution
can be accelerated if multi-core machines are available. By introducing novel approaches for adap-
tive noise handling, the algorithm can solve noisy optimization problems without requiring the
user to set any advanced algorithm parameters.

We show that in a noise-free and serial setting, tranquilo is roughly competitive with other
state-of-the-art optimizers. The parallel version of tranquilo is much faster that the serial version.
For noisy objective functions, tranquilo outperforms existing optimizers.

Appendix 3.A Notation
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Table 3.A.1. Algorithm constants

Symbol Description

p ∈ N Number of parameters in the optimization problem

k ∈ N Number of least-squares residuals. 1 for scalar problems

n
target ∈ N Target for the number of points used to construct surrogate models. Independent

of the number of evaluations at each point in the noisy case. Usually p + 1 for least-

squares optimizers

n
filter ∈ N Maximum number of points that remain after filtering. Typically larger than n

target

l ∈ Rp ∪ −∞ Lower bounds for parameters

u ∈ Rp ∪∞ Upper bounds for parameters

γ
search ∈ R+ Search radius factor, usually ≥ 1

s
min ∈ R+ Minimum step size

n
max

stag
∈ N Maximum number of trials to avoid stagnation

n
drop

stag
∈ N Sample increment

t
max ∈ N Maximum number of iterations

d
s ∈ N Number of free coefficients of a scalar surrogate model

d
v ∈ N Number of free coefficients of each individual model in a vector surrogate model

n
cores ∈ N Number of available cores

n
batch ∈ N Batch size

Appendix 3.B Power Analysis

In this section, we derive the optimization problem we solve in the noisy acceptance step to
determine the optimal number of objective function evaluations. For a more detailed discussion
of power analysis, we refer to Montgomery (2008) or Cohen (1988).

3.B.1 Statistical Motivation

Suppose we observe two samples {y(1)
1 , . . . , y(1)

n1
} and {y(2)

1 , . . . , y(2)
n2
}. The first sample has a mean

of E[y(1)
i ]= µ1 and the second a mean of E[y(2)

i ]= µ2. We assume that both samples are inde-
pendent of another and that the variance of both samples is σ2. Assume further that the sample
averages can be approximated by normal distributions, i.e.,

1
n1

n1
∑

i=1

y(1)
i ≈ N(µ1,σ2/n1) and 1

n2

n2
∑

i=1

y(2)
i ≈ N(µ2,σ2/n2)
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Note that this can be justified by distribution assumptions on the y(k)
i or by asymptotic arguments.

In particular, we do not want to assume that the variables in a sample are independent, i.e., y(k)
i

and y(k)
j may be dependent.

Our target parameter is∆ := µ1 −µ2, and our goal is to test whether this parameter is greater
than zero:∆> 0. The key assumption underlying power analysis is that we can choose the values
of n1 and n2.

For this, we first need to select a statistical significance level α ∈ (0,1), a power level 1− β ∈

(0,1), and a minimal detectable effect size ∆min. The formal test is then

H0 : ∆ = 0 v.s. H1 : ∆ = ∆min

Define the estimators µ̂1 := 1
n1

∑n1
i=1 y(1)

i and µ̂2 := 1
n2

∑n2
i=1 y(2)

i of µ1 and µ2, respectively, and
the estimator ∆̂= ∆̂(n1, n2) := µ̂1 − µ̂2. Under the normality assumption stated above, we get

∆̂(n1, n2) ≈ N(∆,σ2
∆)

With σ2
∆ = σ

2 n1+n2
n1n2

. Define the t-test statistic t̂= ∆̂/σ∆.
Under the null hypothesis H0, we find t̂≈ N(0,1), so that we can choose the critical value, i.e.,

the value such that the Type-1 error is α, as Φ−1(1−α). Note furthter that under the alternative
hypothesis H1, we have t̂−∆min/σ∆ ≈ N(0,1).

We also require that the Type-2 error is at most β , i.e., we want that the probability of accept-
ing H0, when H1 is true, is at most β . More formally,

β ≥ P[̂t ≤ z1−α|H2]

= P[̂t − ∆min/σ∆ ≤ Φ−1(1 − α) − ∆min/σ∆|H2]

≈ Φ(Φ−1(1 − α) − ∆min/σ∆)

And so,

Φ−1(β) ≳ Φ−1(1 − α) − ∆min/σ∆

= Φ−1(1 − α) − ∆min/σ
√

√ n1n2

n1 + n2
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Rearranging the previous equation then gives

n1n2

n1 + n2
≥
�

Φ−1(1 − α) + Φ−1(1 − β)
∆min/σ

�2

(3.B.1)

3.B.2 Optimal sample sizes

Given the condition in Equation 3.B.1, we want to minimize the total number of samples n1 + n2.
However, the exact problem we face in the noisy acceptance step (Section 3.5.3.5) in tranquilo
may slightly differ from Equation 3.B.1, as there may already exist previous samples nexist

1 and
nexist

2 .
In this case, we solve the following problem

minimize
n1,n2∈N

n1 + n2 s.t
(n1 + nexist

1 )(n2 + nexist
2 )

n1 + nexist
1 + n2 + nexist

2

≥
�

Φ−1(1 − α) + Φ−1(1 − β)
∆min/σ

�2

Appendix 3.C Subsolvers

3.C.1 GQTPAR

In the SP-Ball case, GQTPAR finds an exact solution to the trust-region subproblem (Moré and
Sorensen (1983)), which satisfies

(H + λI) s∗ = −g (3.C.1)

where g is the model gradient, H denotes the model Hessian, and I is the identity matrix.
GQTPAR determines the Lagrange multiplier λ≥ 0 such that the matrix (H+λI) is positive def-
inite and λ(1− ∥s∗∥)= 0. The latter is a complementary slackness condition which states that
at least one of the quantities λ and (1− ∥s∗∥) must be zero at the optimum s∗. Recall that in
the problem SP-Ball, the subspace B is a ball with a center of 0 and a radius of 1, defined as
B := {s ∈ Rp : ∥s∥ ≤ 1}. When the solution s∗ is interior to B, i.e. ∥s∗∥< 1, then λ= 0 and GQT-
PAR terminates immediately. Otherwise, when s∗ lies on the boundary of B, i.e. ∥s∗∥= 1, λ > 0,
and Newton’s method is applied to find the value of λ such that ∥s∗∥= 1 is satisfied. Rearranging
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Equation 3.C.1, Moré and Sorensen (1983) show that the unique solution s∗, which depends on
λ, is defined as

s∗(λ) = −(H + λI)−1 g (3.C.2)

for λ > 0 sufficiently large so that (H+λI) is positive definite and ∥s(λ)∥= 1. To obtain s∗,
one first needs an expression for λ. Starting with an initial guess, GQTPAR updates λ in each
iteration ℓ of Algorithm 5 via

λ(ℓ+1) = λ(ℓ) −
φ(λ(ℓ))
φ′(λ(ℓ))

(3.C.3)

where the function φ(λ(ℓ)) is defined as:

φ(λ(ℓ)) =
1

∥s(λ(ℓ))∥ − 1
(3.C.4)

and φ′(λ(ℓ)) is the first derivative of φ(λ(ℓ)) with respect to λ(ℓ). GQTPAR finds the opti-
mal λ(ℓ) by applying Newton’s root finding method to the function φ(λ(ℓ)) in Equation 3.C.4,
which is almost linear around the optimal λ(ℓ) (Nocedal and Wright (2006)). Before updating
λ(ℓ), however, an expression for s(λ(ℓ)) satisfying Equation 3.C.2 is needed. GQTPAR obtains a
candidate s(λ(ℓ)) by factorizing the model Hessian H via Cholesky factorization and solving the
resulting linear system (see lines 4 and 5 of Algorithm 5). Conn, Gould, and Toint (2000) show
that Equation 3.C.3 can be simplified to the updating formula in line 11 of Algorithm 5, which
makes the dependence on sℓ apparent. The vector qℓ is the solution to the linear system in line 10
of Algorithm 5, where R denotes the upper triangular matrix of H. The details are omitted here
for brevity but are available in Conn, Gould, and Toint (2000). With expressions for sℓ and qℓ in
hand, GQTPAR calculates their respective norms ∥sℓ∥ and ∥qℓ∥, and updates λ(ℓ+1) in line 11 of
Algorithm 5.

Note that in line 2 of Algorithm 5, λ(ℓ) is safeguarded. This is necessary to ensure that the
matrix (H+λ(ℓ))I is positive definite and its Cholesky factorization exists. For details on the safe-
guarding procedure, see Moré and Sorensen (1983) or Nocedal and Wright (2006). This con-
cludes Algorithm 5 for the “easy case”.

There may be situations, where (H+λ(ℓ)I) is positive definite but the solution s∗ to Equa-
tion 3.C.1 is not unique. This is what Moré and Sorensen (1983) call the “hard case”, which is not
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Algorithm 5: GQTPAR algorithm - The “easy case”
Input: Initial guess s0, λ(0), λ(0)

L , λ(0)
U

1 for ℓ=0,1,2,... do
2 Safeguard λ(l) to obtain λ(ℓ)

S

3 if H+λ(ℓ)I is positive definite then
4 Factor H+λ(l)I = RT R

5 Solve sℓ = −(RTR)−1g

6 end
7 Update λ(ℓ)

L , λ(ℓ)
U , λ(ℓ)

S

8 Check convergence criteria
9 if H+λ(l)I is positive definite and g ̸= 0 then

10 Solve qℓ = (RT)−1sℓ

11 Set λ(ℓ+1) = λ(ℓ) +
�

∥sℓ∥
∥qℓ∥

�2 �
∥sℓ∥ − 1
�

12 else
13 Set λ(ℓ+1) = λ(ℓ)

S

14 end

described in Algorithm 5. We refer the interested reader to Moré and Sorensen (1983) and Conn,
Gould, and Toint (2000) for details. In short, in the “hard case”, Equation 3.C.1 is replaced by

�

H − λ1I
�

(s∗ + τz) = −g (3.C.5)

where z is the eigenvector of the model Hessian H corresponding to the first eigenvalue λ1 of
H. Moreover, z is such that ∥s+τz (λ)∥= 1 for some τ.

3.C.2 BNTR

BNTR stands for “Bounded Newton Trust-Region” algorithm and was developed for the Toolkit of
Advanced Optimization (Dener et al. (2021)). It employs a trust-region-like approach combined
with an active set method to solve the bound-constrained problem SP-Cube. A search direction of
the candidate step is considered “active” if it lies at the boundary of the trust-region. The active
and inactive sets are defined as follows (Bertsekas (1982))
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lower bounded: L (s) = {i : si ≤ li ∧ g(s)i > 0},

upper bounded: U (s) = {i : si ≥ ui ∧ g(s)i < 0},

fixed: F (s) = {i : li = ui},

active-set:A (s) = L (s) ∪ U (s) ∪ F (s),

inactive-set: I (s) = {1, 2, . . . ,n} \ A (s).

where li and ui are the lower and upper bound on the ith search direction in s, respectively.
Instead of fitting a full surrogate model, BNTR uses a simplified quadratic model in the surrogate
step in line 5 of Algorithm 6. In particular, it solves for the minimizer rℓ of the reduced quadratic
model Mr

ℓ
(r) for the unconstrained (i.e. inactive) search directions only via a conjugate gradient

method. The available methods are Conjugate Gradient, Steihaug-Toint, and TRSBOX. The reduced
model is formed using the reduced model gradient gr and the reduced model Hessian Hr based
on the inactive set I (s), i.e. the unbounded search directions.

With the reduced conjugate gradient step rℓ in hand, BNTR constructs a new candidate step
pℓ (line 6 of Algorithm 6). It does so by projecting rℓ onto the lower and upper bounds of the
active setA (s)

p =



















li if si < li

ui if si > ui

ri otherwise

(bound-projection)

where the subscript ℓ is omitted for readability. Similar to other trust-region optimizers, ac-
ceptance of the candidate step pℓ is determined based on the ratio of the actual over expected
improvement of the surrogate model (see line 7 of Algorithm 6). The actual improvement is de-
fined as the difference between the surrogate model evaluated at the candidate sℓ + pℓ and the
surrogate model evaluated at the current iterate sℓ. The expected improvement is defined as the
value of the reduced surrogate model evaluated at rℓ. If the ratio is larger than a threshold, the
candidate step pℓ is accepted and the trust-region radius is increased. Else, the candidate is re-
jected and the trust-region radius is decreased. The process is repeated until convergence criteria
are met.
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Algorithm 6: BNTR algorithm
Input: Initial guess s0, ∆sub

0 > 0

1 Take a finite number of gradient descent steps and update s0, ∆sub
0

2 for ℓ=0,1,2,... do
3 Create active set of boundsA (s) and set of inactive directions I (s)

4 Construct reduced model gradient and reduced model Hessian based on I (s)

5 Solve for the optimum of the reduced model Mr
ℓ
: r≈ arg min

r
Mr
ℓ
(r) s.t. r≤∆sub

ℓ

6 Construct new candidate step pℓ by projecting rℓ ontoA (s)

7 Calculate κℓ =
Ms
ℓ
(sℓ+pℓ)−Ms

ℓ
(sℓ)

Mr
ℓ
(rℓ)

, the ratio of actual over expected improvement
8 if κℓ is larger than a threshold then
9 Accept step sℓ+1 = sℓ + pℓ

10 Expand trust-region radius: ∆sub
ℓ+1 = α

inc∆sub
ℓ

11 else
12 Reject step sℓ+1 = sℓ
13 Shrink trust-region radius ∆sub

ℓ+1 = α
dec∆sub

ℓ

14 Check convergence criteria
15 end
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Table 3.A.2. Component specific constants

Symbol Description

AdjustRadius

ρ
inc ∈ R+ Radius shrinking cutoff

ρ
dec ∈ R+ Radius expansion cutoff

γ
inc ∈ R+ Radius expansion factor

γ
dec ∈ R+ Radius shrinking factor

∆
max ∈ R+ Radius bound

c
ls ∈ R+ Large radius cut-off

Converge

ε
fatol ∈ R+ Convergence absolute tolerance objective function

ε
frtol ∈ R+ Convergence relative tolerance objective function

ε
gatol ∈ R+ Convergence absolute tolerance surrogate model gradient

ε
grtol ∈ R+ Convergence relative tolerance surrogate model gradient

ε
xatol ∈ R+ Convergence absolute tolerance parameters

ε
xrtol ∈ R+ Convergence relative tolerance parameters

Varest

γ
varest Factor to calculate a search radius for points used for noise variance estimation

m
varest

min
Minimal number of function evaluations required to use a point for variance esti-

mation

Accept

m
accept

min
Minimal number of repeated function evaluations for acceptance steps

m
accept

max Maximal number of repeated function evaluations for acceptance steps

SimulateNoise

b Number of simulation runs for the calculation of ρnoise

AdjustRep

m0 Number of repeated function evaluations at start parameters

ρ
noise

high
Threhshold for a simulated ρnoise to be considered high

ρ
noise

low
Threhshold for a simulated ρnoise to be considered low

π
high Minimal share of high ρnoise-estimates required to decrease m

model

t

π
low Minimal share of low ρ

noise-estimates required to increase m
model

t

ρkeep Threshold for ρt to be considered good enough that m does not have to be increased.

This refers to the overall ρ, not ρnoise

m
model

min
Minimal number of repeated function evaluations for surrogate model construction

m
model

max
Maximal number of repeated function evaluations for surrogate model construction
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Table 3.A.3. Internal algorithm variables

Symbol Description

x
∗
t
∈ Rp Accepted parameter vector at the beginning of iteration t. Also serves as trustregion

center

∆
region

t
Trust region radius in iteration t

∆
search

t
Search radius, defined as γsearch

∆
region

t

Rt Effective trustregion in iteration t. If no bounds are binding, Rt is defined as a ball

with center x
∗
t

and radius ∆region

t
. If bounds are binding, Rt is defined as a hypercube

with the same volume as a ball with radius ∆region

t
that contains x

∗
t

and respects

bound constraints

Ht History of function evaluations and parameter vectors up to period t

X existing

t
⊂ Rp Points inside the search radius for which the function has previously been evaluated

X filtered

t
⊂ Rp Filtered existing points

X new

t
Newly sampled points in iteration t. Defined asX filtered ∪X new

t

X model

t
Model points

Rexisting

t
,Rfiltered

t
, . . . Least-squares residuals evaluated on the corresponding set of points

F existing

t
,F filtered

t
, . . . Objective function evaluations on the corresponding set of points

M
s

t
∈M = R × Rp ×

Rp×p

Scalar quadratic model defined by an intercept, gradient-terms and hessian-terms

M
v

t
∈M k Vector model consisting of one scalar model per least-squares residual

∆ft ≡ f (x∗
t
) − f (x∗

t
+ st) Actual improvement through step st

∆M
s

t
≡ M

s

t
(x∗

t
) − M

s

t
(x∗

t
+

st)

Expected improvement through step st

R
existing

t
,R

filtered

t
, . . . Averaged Least-squares residuals evaluated on the corresponding set of points

F
existing

t
,F

filtered

t
, . . . Averaged function evaluations on the corresponding set of points

σt Estimate of the noise variance in the objective function in iteration t

Σt Estimate of the noise variance-covariance matrix in the residual function in iteration

t

m
model

t
Number of repeated function evaluations for surrogate model construction in iter-

ation t

m
accept

t1 and m
accept

t2 Number of repeated function evaluations at x
∗
t

and x
∗
t
+ st for the acceptance step

in iteration t. These are actually component variables of acceptance steps but listed

here because all noise-robust acceptance steps use these variables
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Table 3.A.4. Component functions

Symbol Description

X filtered

t
= Filter(X existing

t
) Filter applied to sample of existing points

X new

t
= Sample(X filtered

t
, Rt, n

target) Sample new points inside the trustregion

M
v

t
= Fit(X model

t
,Rmodel

t
, M

v

t−1, Rt) Fit a quadratic model scaled to the trustregion

M
s

t
= Aggregate(Mv

t
) Aggregate vector model into scalar model

st = Subsolve(Ms

t
, Rt) Solve the trustregion subproblem

X reduced

t
= Drop(X model

t
, n

drop, ∆region

t
) Drop the n

drop worst points

(x∗
t+1, ρt) = Accept(x∗

t
, st, ∆M

s

t
, σt) Accept or reject the proposed step and calculate a measure of

progress. The argument σt is only used in the noisy case

∆
region

t+1 = AdjustRadius(∆region

t
, ρt, st) Adjust the trustregion radius

Converged(Ht, M
s

t
, x
∗
t
, x
∗
t+1) Check for convergence

σt, Σt = Varest(Ht, Rt) Estimate the noise variance

ρ
noise = SimNoise(X model,Rmodel, M

v

t−1, M
v

t
, Rt, Σt)Simulate ρ that would obtain in the absence of Approximation

error due to noise. ρnoise = (ρnoise

1 , . . . , ρnoise

b
) is a vector of simu-

lated ρ’s.

m
model

t+1 = AdjustRep(ρnoise, ρt, m
model

t
) Adjust the number of repeated function evaluations for surrogate

model construction

Table 3.A.5. Mathematical symbols

Symbol Description

∥x∥ The Euclidean norm of a vector x

N(µ, Σ) A (multivariate) Normal distribution with mean µ and variance-covariance (matrix)

Σ

Φ(x) The cumulative distribution function of the standard Normal distribution evaluated

at x

⌈x⌉ The smallest integer greater than or equal to x
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