
Optimal Numerical Basis Functions in the
Partition of Unity Method

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Denis Alexander Düsseldorf
aus

Köln

Bonn, Dezember 2023



ii



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Marc Alexander Schweitzer
2. Gutachterin: Prof. Dr. Ira Neitzel

Tag der Promotion: 20.02.2024
Erscheinungsjahr: 2024



iv



v

Acknowledgements

Für meine Eltern, Andrea und Heinz, die
mich in jeder Situation unterstützen und mir
Halt geben.

Für meine Verlobte, Flor, die mich motiviert
und mir immer den Rücken frei hält.

Für meine Urgroßeltern, Luise und Karl, die
gespannt auf diesen Tag warteten, ihn aber
leider nicht mehr erleben durften.

Für all meine Freunde, die mich mit
schlechter Laune ertragen mussten, weil
wieder etwas nicht geklappt hat.

I would also like to thank my supervisor, Marc Alexander Schweitzer, for making this work possi-
ble and supporting me throughout these years. I’m grateful for the countless discussions and help
from the whole PUMA group of Fraunhofer SCAI and the people from the Institute of Numerical
Simulation, including the former colleagues Albert Ziegenhagel and Christian Rieger. All of you
have made this work possible.



vi



Contents

1 Introduction and motivation 13

2 Elliptic partial differential operators 17
2.1 Partial differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Partial differential operators of even order . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Existence and uniqueness of weak solutions . . . . . . . . . . . . . . . . . 26
2.2.3 Conditions for ellipticity of the bilinear form . . . . . . . . . . . . . . . . 34

3 PDE with heterogeneous coefficients 39
3.1 Second-order scalar problems in divergence form . . . . . . . . . . . . . . . . . . 41
3.2 Linear Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Partition of Unity Method 59
4.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Construction of the approximation space . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Approximation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Practical details of the cover construction . . . . . . . . . . . . . . . . . . . . . . 66

5 Optimal basis functions 69
5.1 Theoretical construction of optimal bases . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Lifting of solutions and homogeneous sampling problem . . . . . . . . . . 70
5.1.2 Construction of optimal bases . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Practical construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1 Choice of the oversampling factor . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Sampling of harmonic functions . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Setup and solution of the generalized eigenvalue problem . . . . . . . . . . 84
5.2.4 Adding additional boundary data . . . . . . . . . . . . . . . . . . . . . . . 85

vii



viii

5.2.5 Generation of structured boundary data . . . . . . . . . . . . . . . . . . . 87
5.3 Reusability of optimal basis functions . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 General conditions for geometric reusability . . . . . . . . . . . . . . . . . 94
5.3.2 Geometric reusability for second-order elliptic PDE in divergence form . . 98

6 Numerical computation of Optimal Bases 105
6.1 Poisson equation with jumping coefficient . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.2 Influence of the boundary data . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.3 Discusison of global errors . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Stationary convection diffusion equation . . . . . . . . . . . . . . . . . . . . . . . 131
6.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.2.2 Influence of the boundary data . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.3 Discussion of global errors . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Isotropic linear elasticity in 2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.3.2 Influence of the boundary data . . . . . . . . . . . . . . . . . . . . . . . . 155
6.3.3 Discussion of global errors . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Isotropic linear elasticity in 3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.4.2 Influence of the boundary data . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4.3 Discussion of global errors . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Numerical study of model problems 187
7.1 Orthotropic linear elasticity on an airplane rib . . . . . . . . . . . . . . . . . . . . 188
7.2 Wave propagation in heterogeneous media . . . . . . . . . . . . . . . . . . . . . . 190

8 Conclusive remarks 197

A Appendix A: Korn inequality 201



List of Figures

1.1 Simplified design cycle, w/o bypass . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Complicating geometic features . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Complicating features due to changes in coefficients . . . . . . . . . . . . . . . . . 40

4.1 Domain and discretization using rectangular patches . . . . . . . . . . . . . . . . 60
4.2 Weight functions and Shepard PU . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Geometrical relations between ω, ω` and Ω . . . . . . . . . . . . . . . . . . . . . 75
5.2 Several discretizations of an oversampled patch . . . . . . . . . . . . . . . . . . . 88
5.3 Discretization of ω` without overlap . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Discretization of ω` with stretch factor 1.2 . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Boundary map T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Geometric relations between old and new patches . . . . . . . . . . . . . . . . . . 94
5.7 Sketch of a translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.8 Sketch of an isotropic scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.9 Sketch of a rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.10 Sketch of a shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Benchmark 1: Boundary hats - largest two eigenvalues . . . . . . . . . . . . . . . 110
6.2 Benchmark 1: Quadratic B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 Benchmark 1: B-Splines - largest two eigenvalues . . . . . . . . . . . . . . . . . . 113
6.4 Benchmark 1: Largest achievable eigenvalue for different types of boundary data . 115
6.5 Benchmark 1: Energy of numerical solutions . . . . . . . . . . . . . . . . . . . . 116
6.6 Benchmark 1: Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.7 Benchmark 1: Coarse global discretization . . . . . . . . . . . . . . . . . . . . . . 118
6.8 Benchmark 1: Boundary hats - difference of enriched solutions to reference . . . . 120
6.9 Benchmark 1: Boundary hats - relative energy error of enriched solutions . . . . . 121
6.10 Benchmark 1: B-Splines - difference of enriched solutions to reference . . . . . . . 124
6.11 Benchmark 1: B-Splines - relative energy error of enriched solutions . . . . . . . . 125
6.12 Benchmark 1: Oscillating functions - difference of enriched solutions to reference . 127

ix



x LIST OF FIGURES

6.13 Benchmark 1: Oscillating functions - relative energy error of enriched solutions . . 128
6.14 Benchmark 1: Discretizations using coarse particular solutions . . . . . . . . . . . 130
6.15 Benchmark 1: Plots of enriched solutions using coarse particular solutions . . . . . 131
6.16 Benchmark 2: Leading coefficient of the PDE . . . . . . . . . . . . . . . . . . . . 133
6.17 Benchmark 2: Boundary hats - largest two eigenvalues . . . . . . . . . . . . . . . 137
6.18 Benchmark 2: B-Splines - largest two eigenvalues . . . . . . . . . . . . . . . . . . 139
6.19 Benchmark 2: Energy of numerical solutions . . . . . . . . . . . . . . . . . . . . 141
6.20 Benchmark 2: Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.21 Benchmark 2: Coarse global discretization . . . . . . . . . . . . . . . . . . . . . . 142
6.22 Benchmark 2: Boundary hats - difference of enriched solutions to reference . . . . 145
6.23 Benchmark 2: Boundary hats - relative energy error of enriched solutions . . . . . 146
6.24 Benchmark 2: B-Splines - difference of enriched solutions to reference . . . . . . . 149
6.25 Benchmark 2: B-Splines - relative energy error of enriched solutions . . . . . . . . 150
6.26 Benchmark 2: Oscillating functions - difference of enriched solutions to reference . 152
6.27 Benchmark 2: Oscillating functions - relative energy error of enriched solutions . . 153
6.28 Benchmark 3: Boundary hats - largest four eigenvalues . . . . . . . . . . . . . . . 158
6.29 Benchmark 3: B-Splines - largest four eigenvalues . . . . . . . . . . . . . . . . . . 160
6.30 Benchmark 3: First three optimal shape functions . . . . . . . . . . . . . . . . . . 161
6.31 Benchmark 3: Energy of numerical solutions . . . . . . . . . . . . . . . . . . . . 163
6.32 Benchmark 3: Reference solution . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.33 Benchmark 3: Coarse global discretization . . . . . . . . . . . . . . . . . . . . . . 165
6.34 Benchmark 3: Boundary hats - difference of enriched solutions to reference . . . . 167
6.35 Benchmark 3: Boundary hats - relative energy error of enriched solutions . . . . . 168
6.36 Benchmark 3: B-Splines - difference of enriched solutions to reference . . . . . . . 170
6.37 Benchmark 3: B-Splines - relative energy error of enriched solutions . . . . . . . . 171
6.38 Benchmark 3: Oscillating functions - difference of enriched solutions to reference . 173
6.39 Benchmark 3: Oscillating functions - relative energy error of enriched solutions . . 174
6.40 Benchmark 4: Boundary hats - largest four eigenvalues . . . . . . . . . . . . . . . 179
6.41 Benchmark 4: B-Splines - largest four eigenvalues . . . . . . . . . . . . . . . . . . 180
6.42 Benchmark 4: Energy of numerical solutions . . . . . . . . . . . . . . . . . . . . 181
6.43 Benchmark 4: Coarse global discretization . . . . . . . . . . . . . . . . . . . . . . 182
6.44 Difference between reference and unenriched solution . . . . . . . . . . . . . . . . 182
6.45 Benchmark 4: Sketch of the front left patch . . . . . . . . . . . . . . . . . . . . . 183
6.46 Benchmark 4: Difference of partly enriched solutions to reference . . . . . . . . . 184
6.47 Benchmark 4: Difference between fully enriched solution and reference . . . . . . 184

7.1 Sketch of an airplane and a rib from its wings . . . . . . . . . . . . . . . . . . . . 188
7.2 Enrichment strategies for parts of an airplane rib . . . . . . . . . . . . . . . . . . . 189
7.3 Dilatational strain of enriched solution . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4 Initial velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.5 Discretization of three-dimensional domain . . . . . . . . . . . . . . . . . . . . . 193
7.6 The displacement field at several time steps . . . . . . . . . . . . . . . . . . . . . 195

A.1 Sketch of the action of the local boundary map ρj acting on patch Ωj . . . . . . . . 205



List of Tables

6.1 Benchmark 1: Boundary hats, pd “ 0 - key numbers . . . . . . . . . . . . . . . . 109
6.2 Benchmark 1: Boundary hats, pd “ 1 - key numbers . . . . . . . . . . . . . . . . 109
6.3 Benchmark 1: Boundary hats, pd “ 2 - key numbers . . . . . . . . . . . . . . . . 109
6.4 Benchmark 1: Boundary hats, pd “ 0, 1 - key numbers . . . . . . . . . . . . . . . 110
6.5 Benchmark 1: Boundary hats, pd “ 0, 1, 2 - key numbers . . . . . . . . . . . . . . 110
6.6 Benchmark 1: B-Splines, x1, no corners - key numbers . . . . . . . . . . . . . . . 112
6.7 Benchmark 1: B-Splines, x1, corners - key numbers . . . . . . . . . . . . . . . . . 112
6.8 Benchmark 1: B-Splines, x1, x2, no corners - key numbers . . . . . . . . . . . . . 112
6.9 Benchmark 1: B-Splines, x1, x2, corners - key numbers . . . . . . . . . . . . . . . 113
6.10 Benchmark 1: Cubic B-Splines, x1, x2, corners - key numbers . . . . . . . . . . . 113
6.11 Benchmark 1: Oscillating functions - key numbers . . . . . . . . . . . . . . . . . 114
6.12 Benchmark 1: Boundary hats, pd “ 0 - relative energy error . . . . . . . . . . . . 118
6.13 Benchmark 1: Boundary hats, pd “ 1 - relative energy error . . . . . . . . . . . . 119
6.14 Benchmark 1: Boundary hats, pd “ 2 - relative energy error . . . . . . . . . . . . 119
6.15 Benchmark 1: Boundary hats, pd “ 0, 1 - relative energy error . . . . . . . . . . . 119
6.16 Benchmark 1: Boundary hats, pd “ 0, 1, 2 - relative energy error . . . . . . . . . . 120
6.17 Benchmark 1: B-Splines, x1, no corners - relative energy error . . . . . . . . . . . 122
6.18 Benchmark 1: B-Splines, x1, corners - relative energy error . . . . . . . . . . . . . 122
6.19 Benchmark 1: B-Splines, x1, x2, no corners - relative energy error . . . . . . . . . 123
6.20 Benchmark 1: B-Splines, x1, x2, corners - relative energy error . . . . . . . . . . . 123
6.21 Benchmark 1: Cubic B-Splines, x1, x2, corners - relative energy error . . . . . . . 123
6.22 Benchmark 1: Oscillating functions - relative energy error . . . . . . . . . . . . . 126
6.23 Benchmark 1: Relative errors for coarse particular solutions. . . . . . . . . . . . . 130
6.24 Benchmark 2: Boundary hats, pd “ 0 - key numbers . . . . . . . . . . . . . . . . 135
6.25 Benchmark 2: Boundary hats, pd “ 1 - key numbers . . . . . . . . . . . . . . . . 136
6.26 Benchmark 2: Boundary hats, pd “ 2 - key numbers . . . . . . . . . . . . . . . . 136
6.27 Benchmark 2: Boundary hats, pd “ 0, 1 - key numbers . . . . . . . . . . . . . . . 136
6.28 Benchmark 2: Boundary hats, pd “ 0, 1, 2 - key numbers . . . . . . . . . . . . . . 137
6.29 Benchmark 2: B-Splines, x1, no corners - key numbers . . . . . . . . . . . . . . . 138
6.30 Benchmark 2: B-Splines, x1, corners - key numbers . . . . . . . . . . . . . . . . . 138

xi



12 LIST OF TABLES

6.31 Benchmark 2: B-Splines, x1, x2, no corners - key numbers . . . . . . . . . . . . . 138
6.32 Benchmark 2: B-Splines, x1, x2, corners - key numbers . . . . . . . . . . . . . . . 139
6.33 Benchmark 2: Oscillating functions - key numbers . . . . . . . . . . . . . . . . . 140
6.34 Benchmark 2: Boundary hats, pd “ 0 - relative energy error . . . . . . . . . . . . 143
6.35 Benchmark 2: Boundary hats, pd “ 1 - relative energy error . . . . . . . . . . . . 143
6.36 Benchmark 2: Boundary hats, pd “ 2 - relative energy error . . . . . . . . . . . . 143
6.37 Benchmark 2: Boundary hats, pd “ 0, 1 - relative energy error . . . . . . . . . . . 144
6.38 Benchmark 2: Boundary hats, pd “ 0, 1, 2 - relative energy error . . . . . . . . . . 144
6.39 Benchmark 2: B-Splines, x1, no corners - relative energy error . . . . . . . . . . . 147
6.40 Benchmark 2: B-Splines, x1, corners - relative energy error . . . . . . . . . . . . . 147
6.41 Benchmark 2: B-Splines, x1, x2, no corners - relative energy error . . . . . . . . . 147
6.42 Benchmark 2: B-Splines, x1, x2, corners - relative energy error . . . . . . . . . . . 148
6.43 Benchmark 2: Oscillating functions - relative energy error . . . . . . . . . . . . . 151
6.44 Benchmark 3: Boundary hats, pd “ 0 - key numbers . . . . . . . . . . . . . . . . 156
6.45 Benchmark 3: Boundary hats, pd “ 1 - key numbers . . . . . . . . . . . . . . . . 156
6.46 Benchmark 3: Boundary hats, pd “ 2 - key numbers . . . . . . . . . . . . . . . . 156
6.47 Benchmark 3: Boundary hats, pd “ 0, 1 - key numbers . . . . . . . . . . . . . . . 157
6.48 Benchmark 3: B-Splines, x1, no corners - key numbers . . . . . . . . . . . . . . . 159
6.49 Benchmark 3: B-Splines in x1, corners - key numbers . . . . . . . . . . . . . . . . 159
6.50 Benchmark 3: B-Splines in x1, x2, no corners - key numbers . . . . . . . . . . . . 159
6.51 Benchmark 3: B-Splines in x1, x2, corners - key numbers . . . . . . . . . . . . . . 160
6.52 Benchmark 3: Oscillating functions - key numbers . . . . . . . . . . . . . . . . . 162
6.53 Benchmark 3: Boundary hats, pd “ 0 - relative energy error . . . . . . . . . . . . 165
6.54 Benchmark 3: Boundary hats, pd “ 1 - relative energy error . . . . . . . . . . . . 166
6.55 Benchmark 3: Boundary hats, pd “ 2 - relative energy error . . . . . . . . . . . . 166
6.56 Benchmark 3: Boundary hats, pd “ 0, 1 - relative energy error . . . . . . . . . . . 166
6.57 Benchmark 3: B-Splines, x1, no corners - relative energy error . . . . . . . . . . . 168
6.58 Benchmark 3: B-Splines, x1, corners - relative energy error . . . . . . . . . . . . . 168
6.59 Benchmark 3: B-Splines, x1, x2, no corners - relative energy error . . . . . . . . . 169
6.60 Benchmark 3: B-Splines, x1, x2, corners - relative energy error . . . . . . . . . . . 169
6.61 Benchmark 3: Oscillating functions - relative energy error . . . . . . . . . . . . . 172
6.62 Benchmark 4: Boundary hats, pd “ 0 - key numbers . . . . . . . . . . . . . . . . 178
6.63 Benchmark 4: Boundary hats, pd “ 1 - key numbers . . . . . . . . . . . . . . . . 178
6.64 Benchmark 4: Boundary hats, pd “ 2 - key numbers . . . . . . . . . . . . . . . . 178
6.65 Benchmark 4: B-Splines, x1, x2, corners - relative energy error . . . . . . . . . . . 180



1
Introduction and motivation

Partial differential equations (PDE) arise from the modeling of a wide range of physical problems
and knowing how to solve them is of large interest in many industrial undertakings. Starting
from the need to understand wave propagation and heat diffusion, Leonhard Euler was among
the first people to develop easy discretization schemes to solve such problems in the 18th century,
resulting in the first Finite Difference Methods. In the 19th century Spectral Methods came to light,
introduced by Jean-Baptiste Joseph Fourier as a result of his idea of representing any function in
terms of a trigonometric series. With the invention of electronic computers, Finite Difference
Methods were developed further and applied to a broader range of PDE problems such as fluid
dynamics and structural analysis. While all of the existing methods had been based on mostly
regular grids to discretize a physical body of interest, the Finite Element Method (FEMs), which
was developed in the midst of the 20th century, proved itself to be a gamechanger for its ability
to handle complicated domains using non-uniform grids. The early Finite Element Methods were
developed by several researches in the 1940s, 1950s and 1960s, among them Richard Courant,
John Tinsley Oden, Olgierd Zienkiewicz and Ray William Clough ([Cou43, TCMT56, ZC67]).
For fluid dynamics and transport phenomena which can hardly be discretized using fixed grids, the
Finite Volume Methods emerged shortly after the introduction of the Finite Element Method. Its
earliest contributors were Arthur Allan Harlow, John E. Welch ([HW65]).

To this day, the mentioned methods have been improved and adapted to handle ever more exotic
domains and partial differential equations. On one hand, this is due to the development of high-
performance hardware such as multi-core processors and advances in semiconductor technology.
On the other hand, smart changes and adaptions of the generic algorithms describing the numeri-
cal schemes to certain applications of interest have had a tremendous impact on the performance
of the numerical schemes, such as the generalization of the FEM into the Partition of Unity Fi-
nite Element Method (PUFEM) due to Ivo Babuška and Jens M. Melenk ([MB96]). While the
classical FEM is based on a global mesh, the PUFEM allowed to use locally defined, indepen-
dent approximation spaces, which were then combined in the definition of a global approximation
space. Unfortunately, even the limits of modern-day hardware can be reached with ease, since the
mere quantity and size of the respective systems of linear equations to be solved are simply too
large. As strong simplifications of the models under study simultaneously decrease their reliability
and thus their interestingness, advanced numerical methods have to be developed in order to make
these problems computable. Yet, to provide sufficient accuracy and reliability requires substantial

13



14 CHAPTER 1. INTRODUCTION AND MOTIVATION

research into these methods and the particular design problem.

Among the reasons various industries are interested in solving partial differential equations is the
engineering and design of materials, since the development and construction of complex mechani-
cal structures relies on the use of materials that have use-case adapted properties. Oftentimes, such
materials are not known a priori and must themselves be developed. However, real-life testing
involves a huge financial risk since many physical material coupons and prototypes must be man-
ufactured and exposed to a series of physical tests designed to measure the materials response in
situations of interest. There is an infinite number of possible materials to be tested, and the material
design cycle may hence be arbitrarily expensive. A key factor to cut costs is numerical simulation,
which could be used to reduce the amount of physical testing by identifying promising material
designs. Consequently, physical testing has to be performed only for these identified designs. A
scheme of the material design cycle together with a possible bypass due to an increased use of
numerical simulation is shown in Figure 1.1. The employed numerical methods must, however,

Choice of material

Manufacturing

Physical testing

Evaluation

(a)

Choice of material

Numerical simulation
Promising
results?

Manufacturing

Physical testing

Evaluation

YES

NO

(b)

Figure 1.1: (a) Simplified traditional design cycle: Manufacturing and testing are the most expen-
sive steps. (b) Pre-identification of promising designs may cut costs by bypassing manufacturing
and testing.

be sufficiently accurate and fast, since the numerical simulation step includes all loading scenarios
that would also be considered in physical testing. In total, a large number of partial differential
equations for a range of materials has to be solved in order to obtain the most promising design.

This thesis considers the general case of elliptic, even-order partial differential equations, which
are introduced in Chapter 2. In Chapter 3, the impact and difficulty arising from heterogeneous co-
efficients is briefly described, before introducing the partial differential equations of interest in this
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thesis and showing that they are indeed elliptic partial differential equations with unique solutions.
The Partition of Unity Method (PUM) due to Marc Alexander Schweitzer, a further abstraction of
the PUFEM is introduced in Chapter 4. Traditional mesh-based methods typically use piecewise
polynomial approximation spaces and rely on spatial refinement to improve the approximation
power of the global space. In contrast, the PUM allows for a smart, operator-dependent choice of
local approximation spaces, which are then linked in a global approximation space. Their quality
can be enhanced either by using spatial refinement or by adding additional functions to the local
approximation spaces. Local approximation quality has a direct influence on global approximation
quality, and using local spaces with strong approximation properties is hence favorable. Chapter 5
presents a way of constructing local spaces that are optimal in a certain sense. The so-constructed
local spaces are independent of the load and imposed boundary conditions, and can be reused.
They will be pre-computed in a so-called offline phase, before any global simulation that uses
these spaces is started. The computation of optimal local approximation spaces, including the im-
pact of parameters used in their construction, is investigated in detail in Chapter 6. Using four
benchmark problems with a yet computable reference solution, a general approach for their com-
putation and use in more complex situations is identified. Many problems of (industrial) interest
require discretizations using tens of millions of degrees of freedom, and while these problems may
be computationally infeasible using standard methods, optimal local approximation spaces may
be used to replace heavy local refinement with a smarter choice of basis functions. As a result,
the number of degrees of freedom is reduced drastically and the previously computationally in-
feasible problem becomes feasible, all while maintaining the quality of high-resolution solutions.
Two such complicated problems are investigated in Chapter 7, the first being posed on a detailed
two-dimensional domain describing the rib of an airplane wing (Section 7.1). The second prob-
lem considered in Section 7.2 describes the dynamic propagation of a wave in a three-dimensional
heterogeneous material with multiple spherical inclusions.

This thesis proposes details of a constructive method to compute optimal local approximation
spaces. The original framework, which was introduced for the case of second-order elliptic PDE
([BL11]), was generalized to the case of even-order elliptic PDE. Moreover, the algebraic condi-
tions ensuring reusability of the optimal basis functions, whose computation is numerically ex-
pensive, were developed during the writing of this thesis. The effect of various parameters that
are to be chosen during their computation is investigated in a series of experiments. All of the
experiments were conducted using PUMA (Partition of Unity Method and Applications), an effi-
cient implementation of the Partition of Unity Method developed by Fraunhofer SCAI ([SCA]).
The back end of PUMA is implemented in C++ while its functionality can be controlled using a
Python 3 front end. In order to simplify the computation of optimal basis functions and their use
in PUMA, an additional Python package, optbasefun, was developed. Many of the Python
classes implemented in this package, handle instances of PUMA classes together with additional
meta information. This way, the entire computational process related to optimal basis functions is
modularized into mostly interchangeable blocks of code. Having the computational setup in place,
the last goal of this thesis is to identify trade-offs between the computational effort involved in the
construction of optimal basis functions and their performance.
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2
Elliptic partial differential operators

In this chapter, the class of elliptic partial differential operators, which is considered throughout
this thesis is introduced. Elliptic partial differential equations generalize the Laplace equation and
arise from the description of a variety of static problems. The theory presented in this chapter
is based on [Hac17], especially Chapters 5 and 7. The definitions and theoretical results will for
the scope of this thesis be extended to hold for vector-valued differential operators. In order to
consider the scalar and vector-valued cases conjointly, an additional parameter n is used in the
respective formulas, which takes either the value 1 (scalar PDE) or d (vector-valued PDE), with
d P N denoting the spatial dimension of the domain under study.

Section 2.1 describes the general notation and introduces basic definitions for working with partial
differential equations of arbitrary order k P N. The case of even order 2 k P N, together with its
implications, is then presented in detail in Section 2.2. This includes the concept of variational
formulations, as well as conditions for existence and uniqueness of solutions.

2.1 Partial differential operators
Throughout the whole thesis, Ω Ă Rd denotes a domain of interest and d P N is the spatial
dimension. By X pΩq, a Banach space of functions with certain regularity to be specified later is
denoted, and this space is referred to as the space of coefficient functions. For 0 ă k P N and
n P t1, du, let L : rCk

pΩqsn Ñ rC0
pΩqsn be a linear partial differential operator of the form

Lu :“
“

Li,j
‰n

i,j“1

“

ui
‰n

i“1
“

»

—

–

L1,1 . . . L1,n
... . . . ...

Ln,1 . . . Ln,n

fi

ffi

fl

»

—

–

u1
...
un

fi

ffi

fl

, (2.1)

for all u P rCk
pΩqsn, with Li,j : Ck

pΩq Ñ C0
pΩq and

Li,j v :“
ÿ

αi,jPNd
0

|αi,j |ďk

aαi,jB
αi,j

v @i, j “ 1, . . . , n, @v P Ck
pΩq. (2.2)

The operator L is of order k, meaning that at most k-th order partial derivatives appear in its
definition. In (2.2), αi,j “ rαi,jp s

d
p“1 P Nd

0 denote multi-indices with |αi,j| :“
řd
p“1 α

i,j
p , partial

17
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derivatives are denoted

B
αi,j

vpxq “
Bα

i,j
1

Bx
αi,j

1
1

. . .
Bα

i,j
d

Bx
αi,j
d
d

vpxq, (2.3)

and aαi,j P X pΩq for all αi,j P Nd
0 with |αi,j| ď k and all i, j “ 1, . . . , n are the coefficients.

4!

Note: For now, the space of coefficients X pΩq is arbitrary. Usual choices are
C0
pΩq, C1

pΩq, or L8pΩq, but the assumed degree of regularity always depends
on the PDE at hand. In the upcoming definitions and theory, many conditions
will be formulated ‘for all x P Ω’, implicitly meaning ‘for almost every x P Ω’
whenever this seems appropriate (e.g. when X pΩq “ L8pΩq).

Remark 2.1. Note that any operator L as in (2.1) can be written as the sum

L “ L0
` . . .` Lk, (2.4)

where Lm : rCmpΩqsn Ñ rC0
pΩqsn are linear differential operators of order m “ 0, . . . , k taking

the form
Lm u “ rLmi,jsni,j“1ruis

n
i“1, @u P rCmpΩqsn (2.5)

with Lmi,j : CmpΩq Ñ C0
pΩq and

Lmi,j v “
ÿ

αi,jPRd

|αi,j |“m

aαi,jB
αi,j

v, @i, j “ 1, . . . , n, @v P CmpΩq (2.6)

and all m “ 0, . . . , k.

˚

Definition 1 (Main component). If a linear differential operator L of order k P N such as in (2.1)
is written in the form (2.4), then the operator Lk is called main-component of L. ˝

Remark 2.2. In the case of n “ 1, the operator L “ L1,1 is linear and scalar-valued. After
dropping unused indices it reads

Lu “
ÿ

αPNd
0

|α|ďk

aαB
αu, @u P Ck

pΩq. (2.7)

If moreover L is of even order 2 k it can be written as

Lu “
ÿ

αPNd
0

|α|ďk

ÿ

βPNd
0

|β|ďk

p´1q|β|Bβ paα,βB
αvq , @v P Ck

pΩq. (2.8)

˚
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Remark 2.3. In the case of n “ k “ 1 and X pΩq containing functions with at least one continuous
derivative, the operator L “ L1,1 can be written in standard divergence form,

Lu “ ´ div pA∇uq ` b ¨∇u` cu, (2.9)

with the coefficients c P X pΩq,

A “

»

—

–

a1,1 . . . a1,d
... . . . ...
ad,1 . . . ad,d

fi

ffi

fl

P rX pΩqsdˆd , b “

»

—

–

b1
...
bd

fi

ffi

fl

P rX pΩqsd . (2.10)

˚

The operator L may satisfy useful conditions guaranteeing solvability of partial differential equa-
tions including L. Among them is ellipticity.

Definition 2 (Ellipticity of scalar-valued linear differential operators). A scalar-valued linear dif-
ferential operator of order k P N of the form (2.7) is called elliptic, if for all x P Ω and all
ξ P Rdzt0u it holds that

ÿ

αPNd
0

|α|“k

aαpxqξ
α
‰ 0, (2.11)

where ξα “ ξα1
1 . . . ξαd

d for all appearing multi-indices α. ˝

Remark 2.4. If the assumptions from Remark 2.3 hold with a constant and symmetric A P Rdˆd
sym ,

then L is elliptic if and only if all eigenvalues of A are bigger than zero.

˚

The definition of ellipticity can be extended easily to vector-valued linear differential operators.

Definition 3 (Ellipticity of vector-valued linear differential operators). A vector-valued linear dif-
ferential operator of order k P N of the form (2.1) with n “ d is called elliptic, if for all x P Ω and
all ξ P Rdzt0u it holds that

ÿ

αi,1PNd
0

|αi,1|“k

aαi,1pxqξα
i,1

` . . .`
ÿ

αi,dPNd
0

|αi,d|“k

aαi,dpxqξα
i,d

‰ 0, @i “ 1, . . . , d. (2.12)

˝

The general form of a partial differential equation reads as follows.
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Problem 1: General Partial Differential Equation.

Let Ω Ă Rd for d P N be open and bounded, let L be a linear differential
operator of order k P N as in (2.1) and let n P t1, du. Find a function u P
rCk
pΩqsn satisfying

Lu “ f, in Ω

B0 u “ g0, on Γ0
Ă BΩ

...

Bk´1 u “ gk´1, on Γk´1
Ă BΩ

(2.13)

where Bm are (piecewise) linear differential operators of order m “

0, . . . , k´1 defined on corresponding parts of the boundary and f : Ω Ñ Rn,
gm : Γm Ñ Rn,m “ 0, . . . , k´1 are sufficiently smooth functions.

Remark 2.5. The operator B0 is of order 0 and hence does not contain any derivatives. The
coefficients of the operators B0, . . . ,Bk´1 may depend on the domain, e.g. on its outer normal.
Essential, as well as natural boundary conditions may be expressed conjointly in this form.

˚

Remark 2.6. The functions f, g0, . . . , gk´1 are arbitrary and they may also be defined piecewise.
Furthermore, the coefficients of the boundary operators B0, . . . ,Bk´1 may be defined piecewise as
well, meaning that several boundary conditions of the same order may be expressed conjointly.

˚

The boundary operators B0, . . . ,Bk´1 may not be chosen arbitrarily, but they need to form a nor-
mal system on all parts of the boundary and cover the operator L, in order for Problem 1 to satisfy
a certain form of ellipticity and hence be solvable. The definitions and very technical results re-
garding these concepts can for example be found in [LMM68]. They are rather abstract and can
hardly be applied directly to show the solvability of a given partial differential equation. Through-
out the next section, more practical and easier-to-check conditions are established for the case of
even-order partial differential operators.

2.2 Partial differential operators of even order

In this section, the special case of differential operators of even order 2 k P N are investigated.
Whenever the coefficients of Li,j for i, j “ 1, . . . , n appearing in the definition of the even-order
operator L are sufficiently smooth, the scalar operators Li,j from (2.2) can be written in the form
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Li,jv “
ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

p´1q|β
i,j |
B
βi,j

´

aαi,j ,βi,jB
αi,j

v
¯

, @v P Ck
pΩq. (2.14)

For a differential operator of even order 2 k, Problem 1 can be written in the following form.

Problem 2: General Partial Differential Equation of even order.

Let Ω Ă Rd for d P N be open and bounded, let L be a linear differential
operator of even order 2 k P N as in (2.1) and let n P t1, du. Find a function
u P rC2 k

pΩqsn satisfying

Lu “ f, in Ω

B0 u “ g0, on Γ0
Ă BΩ

...

B2 k´1
“ g2 k´1, on Γ2 k´1

Ă BΩ

(2.15)

where Bm are (piecewise) linear differential operators of order m “

0, . . . , 2 k´1 defined on corresponding parts of the boundary and f : Ω Ñ Rn,
gm : Γm Ñ Rn,m “ 0, . . . , 2 k´1 are sufficiently smooth functions.

4!

Note: Problem 2 is stated in the most general form. It is not necessary to
define boundary operators of all orders for the problem and its variational for-
mulation (cf. Section 2.2.1) to be well-posed, so possibly Γj “ H for some
j P t0, . . . , 2 k´1u. In general, for even order 2 k only k boundary conditions
have to be imposed.

For the upcoming theory, it is common to consider the case that only the first k boundary operators
prescribe essential values of normal derivatives. These constraints can be incorporated into the trial
and test space. The presence of other boundary conditions mainly results in additional constraints
and terms appearing in the variational formulation that will be developed below. For the outer
normal ~n “

“

~n1, . . . , ~nd
‰T , the first order normal derivative of a function u is defined as

B~nu :“ ~n ¨∇u “ ~n1Bx1u` . . .` ~ndBxdu. (2.16)

The same concept can be applied recursively to obtain higher order normal derivatives of u,

B
i
~n “ B~n

`

B
i´1
~n u

˘

. (2.17)

From now on, the boundary operators are supposed to be of the form

B0
“ I, Bj “ Bj~n, @j “ 1, . . . , k´1, (2.18)

and Γ0 “ . . . “ Γk´1 “ BΩ, as well as Γk “ . . . “ Γ2 k´1 “ H, meaning that they explicitly
fix the value of terms appearing due to a repeated application of integration by parts, and in the
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simplest case these values are zero. Supposing that the values of the i-th normal derivatives for
i “ 0, . . . , k´1 are prescribed globally, the resulting problem reads as follows.

Problem 3: General PDE of even order with homogeneous Dirichlet b.c.

Let Ω Ă Rd for d P N open and bounded with a sufficiently smooth boundary.
Let L a differential operator of even order 2 k P N and let n P t1, du. As-
sume that f : Ω Ñ Rn is sufficiently smooth. Find a function u P rC2 k

pΩqsn

satisfying
Lrujsnj“1 “ f, in Ω

uj “ 0, on BΩ

B
i
~nuj “ 0, on BΩ

(2.19)

for all i “ 0, . . . , k´1 and j “ 1, . . . , n.

For operators of even order, a property that is stronger than ellipticity and that will be important
in the upcoming part of the theory is the so-called uniform ellipticity. Again, uniform ellipticity
is first described for scalar linear differential operators and extended to the vector-valued case
afterwards.

Definition 4 (Uniform ellipticity of scalar linear differential operators). A scalar linear differential
operator of even order 2k of the form (2.7) is called uniformly elliptic, if there exists a constant
Ce

L
P R` such that for all x P Ω and all ξ P Rdzt0u it holds that

ÿ

αPNd
0

|α|“2k

aαpxqξ
α
ě Ce

L
|ξ|2k (2.20)

˝

Definition 5 (Uniform ellipticity for vector-valued linear differential operators). A vector-valued
linear differential operator of even order 2k of the form (2.7) with n “ d is called uniformly
elliptic, if there exists a constant Ce

L
P R` such that for all x P Ω and all ξ P Rdzt0u and all

i “ 1, . . . , d it holds that
ÿ

αi,1PRd

|αi,1|“2k

aαi,1ξα
i,1

` . . .`
ÿ

αi,dPRd

|αi,d|“2k

aαi,dξα
i,d

ě Ce
L
|ξ|2k. (2.21)

˝

Remark 2.7. In the situation described in Remark 2.3 for a symmetric coefficient A “ rAi,jsdi,j“1,
as well as b “

“

0 . . . 0
‰

and c “ 0, uniform ellipticity of the PDE operator

Lpuq “ ´ divpA∇uq (2.22)

is assured whenever Apxq is symmetric and positive definite for all x P Ω, i.e.

ξTApxqξ ě |ξ|2, @ξ P Rd, @x P Ω . (2.23)
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In this case, the map x¨, ¨yApxq : Rd ˆ Rd Ñ R defined by xξ1, ξ2y :“ ξT1 Apxqξ2 defines a scalar
product, and since all scalar products on Rd are equivalent, it holds that

xξ, ξyApxq “ ξTApxqξ

“
“

ξ1 . . . ξd
‰

»

—

–

řd
j“1A1,jpxqξ1

...
řd
j“1Ad,jpxqξd

fi

ffi

fl

“

d
ÿ

i,j“1

Ai,jξiξj ě cpxq|ξ|2

(2.24)

for all x P Ω, constants 0 ă cpxq P R and all ξ P Rdzt0u. By taking c “ minxPΩ cpxq, the result
matches the definition of uniform ellipticity.

˚

Remark 2.8. Consider a vector-valued linear differential operator L of even order 2 k for n “ d
in the form (2.1). If the scalar linear differential operators Li,j for i, j “ 1, . . . , d are uniformly
elliptic with constant Ce

Li,j P R`, then also L is elliptic with uniform ellipticity constant

Ce
L :“

d

min
i“1

d
ÿ

j“1

Ce
Li,j (2.25)

˚

So far, the solution u of Problem 3 needs to be 2 k times continuously differentiable. In order to
relax this very strong regularity condition, the problem is transformed into a variational (weak)
formulation, as will be seen in the next section.

2.2.1 Variational formulation

Problem 3, i.e. the problem of finding a solution to the 2 k-th order linear partial differential
equation with homogeneous Dirichlet boundary conditions, is stated in its so-called strong form,
meaning that a solution must satisfy strong regularity conditions such as being 2 k times contin-
uously differentiable. In this section, the PDE is transformed into its corresponding variational
formulation (or weak form). This variational formulation relaxes the conditions imposed on solu-
tions and can be solved using numerical schemes such as the Partition of Unity Method (PUM),
which will be presented in Chapter 4. The Dirichlet boundary conditions in Problem 3 assure that
the solution u and all components of all derivatives of u of order up to k´1 vanish on the whole
boundary. The boundary conditions are incorporated into the approximation space, leading to the
condition u P rHk

0pΩqs
n, and the problem can be written in a more compact form.
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Problem 4: Reformulation of Problem 3.

Let Ω Ă Rd for d P N open and bounded with a piecewise smooth bound-
ary. Let L be a differential operator of even order 2 k P N and let n P

t1, du. Assume that f : Ω Ñ Rn is sufficiently smooth. Find a function
u P rC2 k

pΩqsn X rHk
0pΩqs

n satisfying

Lu “ f, in Ω . (2.26)

The variational (weak) formulation of Problem 4 can now be developed. For this purpose, assume
that the operator L appearing in the formulation is of even order 2k, and that its coefficients are
sufficiently smooth. Starting from (2.26), multiply the left-hand side Lu by a test function v P
rC80 pΩqsn and integrate over the domain Ω. Afterwards, repeatedly integrate by parts to move k
partial derivatives to the test function v. Since v has compact support, the boundary integrals over
BΩ appearing due to the integration by parts vanish. The calculation reads

xLu, vyL2pΩq “

ż

Ω

Lu ¨ v dx

“

ż

Ω

»

—

–

L1,1 . . . L1,n
... . . . ...

Ln,1 . . . Ln,n

fi

ffi

fl

»

—

–

u1
...
un

fi

ffi

fl

¨

»

—

–

v1
...
vn

fi

ffi

fl

dx

“

ż

Ω

n
ÿ

i,j“1

Li,j ujvi dx

“

ż

Ω

n
ÿ

i,j“1

ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

viaαi,j ,βi,jB
αi,j`βi,j

uj dx

“

n
ÿ

i,j“1

ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

p´1q|β
i,j |

ż

Ω

B
βi,j

paαi,j ,βi,jviqB
αi,j

uj dx

(2.27)

Analogously, the right-hand side of the PDE is multiplied by the test function and integrated over
Ω. Note that the right-hand side of eq. (2.27) does not require u to be 2 k-times continuously
differentiable anymore, but it only requires u to provide k weak derivatives. This allows to state
variational (weak) formulation of Problem 4.
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Problem 5: Weak formulation of uniformly elliptic PDE of even order with
homogeneous Dirichlet b.c.

Let Ω Ă Rd for d P N be open and bounded with a piecewise smooth boundary.
Let L a uniform elliptic differential operator of even order 2 k P N and let
n P t1, du. Assume f P rL2

pΩqsn. Find a function u P rHk
0pΩqs

n satisfying

aru, vs “ `pvq, @v P rHk
0pΩqs

n (2.28)

with bilinear form a : rHk
0pΩqs

n ˆ rHk
0pΩqs

n Ñ R and linear functional ` :
rHk

0pΩqs
n Ñ R given by

aru, vs :“
n
ÿ

i,j“1

ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

p´1q|β
i,j |

ż

Ω

B
βi,j

paαi,j ,βi,jviqB
αi,j

uj dx

`pvq :“

ż

Ω

f ¨ v dx

(2.29)

Remark 2.9. Even if the regularity assumptions on the solution were weakened in the variational
formulation, any strong solution u P rC2 k

pΩqsn of Problem 4, with a differential operator L of
order 2 k having sufficiently regular coefficients, also solves Problem 5.

˚

Remark 2.10. In case that the coefficients are constant and can be written in a product form,

aαi,j ,βi,j “ aαi,jaβi,j , @αi,j, βi,j P Nd
0, |α

i,j
|, |βi,j| ď k (2.30)

and for all i, j “ 1, . . . , n, then eq. (2.27) can be rewritten as

xLu, vyL2pΩq “

n
ÿ

i,j“1

x
ÿ

αi,jPNd
0

|αi,j |ďk

aαi,jB
αi,j

uj,
ÿ

βi,jPNd
0

|βi,j |ďk

p´1q|β
i,j |aβi,jB

βi,j

viyL2pΩq

that is

xLu, vyL2pΩq “

n
ÿ

i,j“1

xLtrial
i,j uj,Ltest

i,j viyL2pΩq (2.31)

for all v P rC80 pΩqsn, being the sum of inner products of linear differential operators that are
applied only to components of the trial and test functions. These operators read

Ltrial
i,j “

ÿ

αi,jPNd
0

|αi,j |ďk

aαi,jB
αi,j

Ltest
i,j “

ÿ

βi,jPNd
0

|βi,j |ďk

p´1q|β
i,j |aβi,jB

βi,j

,
(2.32)



26 CHAPTER 2. ELLIPTIC PARTIAL DIFFERENTIAL OPERATORS

for all i, j “ 1, . . . , n. Several classical partial differential equations, among them the Laplace
and Poisson equations, can be written in this way.

˚

Remark 2.11. In the scalar case n “ 1, after dropping unused indices, Remark 2.10 simplifies to

xLu, vyL2pΩq “ xLtrial u,Ltest vyL2pΩq, @v P C80 pΩq. (2.33)

Ltrial
“

ÿ

αPNd
0

|α|ďk

aαB
α, Ltest

“
ÿ

βPNd
0

|β|ďk

p´1q|β|aβB
β. (2.34)

˚

The variational formulation has been set up. In the next section, existence and uniqueness of
solutions will be investigated.

2.2.2 Existence and uniqueness of weak solutions
This section presents definitions and theoretical results related to the existence and uniqueness of
solutions of the variational Problem 5 introduced in the previous section. In particular, continuity
and ellipticity of the bilinear form and continuity of the linear functional are sufficient to guarantee
a unique solution due to the theorem of Lax and Milgram presented in further below. Ellipticity is
a very strong condition which under some circumstances can be weakened to coercivity. This may
still be enough to guarantee existence and uniqueness of a weak solution.

Continuity of linear and bilinear forms

Continuity is equivalent to boundedness for linear functionals as well as bilinear forms.

Definition 6 (Boundedness of linear functionals). Let pW, } ¨ }W q be a normed space. Then, the
linear functional ` : W Ñ R is bounded, if there exists a constant Ccont

`
P R` such that

`pvq ď Ccont
`
}v}W , @v P W. (2.35)

˝

Definition 7 (Boundedness of bilinear forms). Let pW, }¨}W q be a normed space. Then, the bilinear
form a : W ˆW Ñ R is bounded if there exists a constant Ccont P R` satisfying

aru, vs ď Ccont }u}W }v}W , @u, v P W. (2.36)

˝

Note that the linear functional ` appearing in Problem 5 is bounded due to

`pvq “

ż

Ω

f ¨ v dx ď }f}rL2pΩqsn}v}rL2pΩqsn ď }f}rL2pΩqsn}v}rHkpΩqsn , (2.37)

for all test functions v P rHk
pΩqsn, that is Ccont

`
“ }f}rL2pΩqsn . The bilinear form appearing in

Problem 5 is continuous under mild assumptions.
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Lemma 2.1. Let the assumptions from Problem 5 hold and let a : rHk
0pΩqs

n ˆ rHk
0pΩqs

n Ñ R be
the bilinear form appearing in the variational formulation 2.28. Suppose that the coefficient space
is X pΩq “ L8pΩq. Then, a is continuous in the sense that

aru, vs ď Ccont }u}rHkpΩqsn}v}rHkpΩqsn (2.38)

for all u, v P rHk
pΩqsn, with

Ccont :“
n
ÿ

i,j“1

ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

}aαi,j ,βi,j}L8pΩq. (2.39)

‚

Proof. Since the coefficients are in X pΩq “ L8pΩq and all components of u and v are in L2
pΩq,

the Hölder inequality is applied to see that for all i, j “ 1, . . . , n and all αi,j, βi,j P Nd
0 it holds that

ż

Ω

p´1q|β
i,j |aαi,j ,βi,jB

αi,j

ujB
βi,j

vi dx

ď }aαi,j ,βi,j}L8pΩq}B
αi,j

uj}L2pΩq}B
βi,j

vi}L2pΩq

ď }aαi,j ,βi,j}L8pΩq}u}rHkpΩqsn}v}rHkpΩqsn .

(2.40)

This estimate is used for all terms appearing in aru, vs to see that the claim holds with

Ccont “

n
ÿ

i,j“1

ÿ

αi,jPNd
0

|αi,j |ďk

ÿ

βi,jPNd
0

|βi,j |ďk

}aαi,j ,βi,j}L8pΩq. (2.41)

Ellipticity & coercivity of bilinear forms

Showing ellipticity of bilinear forms is usually more involved. In case that the bilinear form a
results from bringing a PDE with differential operator L into its variational formulation, it strongly
depends on the coefficients of L whether a is elliptic.

Definition 8 (Ellipticity of bilinear forms). Let pV, } ¨ }V q be a Hilbert space. The bilinear form
a : V ˆ V Ñ R is called elliptic, if there exists a constant Ce P R` such that

aru, us ě Ce }u}
2
V , @u P V. (2.42)

˝

Ellipticity of a bilinear form is a very strong condition and under some circumstances it is enough
that the bilinear form is coercive. In the theory of linear operators on arbitrary Hilbert spaces
pV, } ¨}V q, coercivity and ellipticity are defined identically and used interchangeably. If the bilinear
form is defined on a Sobolev space, coercivity is defined as follows.
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Definition 9 (Coercivity of bilinear forms). Consider a bilinear form a : rHk
0pΩqs

n ˆ rHk
0pΩqs

n Ñ

R. Then, a is called coercive, if there exist constants Cc
1,C

c
2 P R with Cc

1 ą 0, such that

aru, us ě Cc
1 }u}

2
rHkpΩqsn

´ Cc
2 }u}

2
rL2pΩqsn , @u P rHk

0pΩqs
n. (2.43)

˝

Unique solvability for elliptic bilinear forms

The Lax-Milgram Theorem connects continuity and ellipticity to guarantee the existence and
uniqueness of solutions. The proof relies on the Riesz representation theorem.

Theorem 2.2 (Riesz). Let pV, } ¨ }V q a real Hilbert space. Then, the Riesz operator

R : V ‹ Ñ V, with ` v “ xR `, vyV , @ ` P V ‹, @v P V (2.44)

exists and satisfies } ` }V ‹ “ }R ` }V .

˛

Proof. Define R piecewise. If ` “ 0 in V ‹, define R ` “ 0 P V . For all other ` P V ‹ denote its
kernel by K`. Since ` is bounded, it is continuous. Note that t0u Ă R is a closed subspace, and
continuous operators map closed subspaces to closed subspaces, implying that also K is closed.
The space V can hence be decomposed as a direct sum,

V “ K` ‘K
K
` . (2.45)

Since ` is not the zero functional, KK
` ‰ t0u must hold. Pick an element k P KK

` with }k}V “ 1.
Using the linearity of `, for all v P V it holds that

`pk ` v ´ v ` kq “ ` k ` v ´ ` v ` k “ 0, (2.46)

so
k ` v ´ v ` k P kerp`q “ K`. (2.47)

The linearity of the scalar product, a null-addition of v ` k´v ` k, conjugate symmetry and the fact
that ` : V Ñ R show that

` v “ ` vxk, kyV “ xk ` v, kyV

“ xk ` v ´ v ` k ` v ` k
looooomooooon

“0

, kyV

“ xk ` v ´ v ` k, kyV
looooooooomooooooooon

p2.47q
“ 0

`xv ` k, kyV

“ xvp` kq, kyV

“ xv, p` kqk
loomoon

“:R `

yV .

(2.48)

Concluding, the Riesz operator R is defined as

R : V ‹ Ñ V, ` ÞÑ R ` “

#

0, if ` “ 0 P V ‹

p` kqk, else
(2.49)
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and this operator satisfies ` v “ xR `, vyV for all ` P V ‹ and all v P V . The norm equality follows
since for all ` P V ‹ it holds that

}R ` }V “ }p` kqk}V “ | ` k| }k}V
loomoon

“1

“ | ` k| ď sup
vPV
}v}V “1

| ` v| “ } ` }V ‹ (2.50)

as well as
} ` }V ‹ “ sup

vPV
}v}V “1

| ` v|

“ sup
vPV
}v}V “1

|xR `, vyV |

ď sup
vPV
}v}V “1

}v}V }R ` }V

“ }R ` }V

(2.51)

so in total } ` }V ‹ “ }R ` }V .

Another component used in the proof of the Theorem of Lax and Milgram is the Banach fixed
point Theorem.

Definition 10. Let pX, dq a metric space. A mapping K : X Ñ X is called a contraction on X , if
there exists a constant 1 ą % P R` such that

drKpxq, Kpyqs ď % drx, ys, @x, y P X. (2.52)

˝

This means that geometrically the images of two arbitrary points x, y P X are closer together than
the points originally were.

Theorem 2.3 (Banach fixed point). Let pX, dq be a complete metric space and let K : X Ñ X be
a contraction on X with constant 1 ą % P R`. Then, K has a unique fixed point, i.e. there exists
a unique x P X such that

Kpxq “ x. (2.53)

˛

Proof. Consider the sequence txiu8i“1 with xi`1 “ Kpxiq for an arbitrary x0 P X . First, it is shown
that the sequence is a Cauchy sequence, then that it has a limit, and lastly that the limit is unique.
Step 1: Since K is a contraction,

drxi`1s,xis “ drKpxiq, Kpxi´1qs

ď % drxi, xi´1s

“ % drKpxi´1q, Kpxi´2qs

ď %2 drxi´1, xi´2s

...

ď %i drx1, x0s

(2.54)
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and using the triangle inequality for j ě i and the summation formula for a geometric sum, it holds
that

drxi, xjs ď drxi, xi`1s ` drxi“1, xi`2s ` . . .` drxj´1, xjs

ď p%i` %i`1
` . . .` %j´1

qdrx1, x0s

“ %i
1´ %j´i

1´ %
drx1, x0s.

(2.55)

Since 0 ă % ă 1 it holds that 1´ %j´i ă 1, implying that

drxi, xjs ď
%i

1´ %
drx1, x0s. (2.56)

From (2.56) it is seen that the right hand side can be made arbitrarily small by choosing i suffi-
ciently large and j ą i. This proves, that txiu8i“1 is a Cauchy sequence. Since the space pX, dq is
complete, the limit of the sequence, xi

iÑ8
Ñ x exists in X .

Step 2: The limit of the sequence is a fixed point. This follows from a use of the triangle inequality

drx,Kpxqs ď drx, xis ` drxi, Kpxqs “ drx, xis ` drKpxi´1q, Kpxqs

ď drx, xis ` % drxi´1, xs
(2.57)

and since xi Ñ x the right-hand side can be made arbitrarily small by choosing i large enough. It
follows that

drx,Kpxqs “ 0 ñ Kpxq “ x, (2.58)

so x P X is a fixed point of K.
Step 3: Suppose there exists another fixed point x̃. Since K is a contraction it follows that

drx, x̃s “ drKpxq, Kpx̃qs ď % drx, x̃s (2.59)

implying that drx, x̃s “ 0 since % ă 1. The fixed points must hence coincide.

The previous Theorems 2.2 and 2.3 finally allow to state and prove the Theorem of Lax and Mil-
gram.

Theorem 2.4 (Lax-Milgram). Let pV, } ¨ }V q be a Hilbert space and a : V ˆ V Ñ R a bilinear
form. If a is continuous with constant Ccont P R`, then there exists a unique continuous linear
operator A : V Ñ V satisfying

aru, vs “ xAu, vyV , @u, v P V, (2.60)

and
}A} :“ sup

uPV
}u}V “1

}Apuq}V ď Ccont . (2.61)

If moreover a is elliptic with constant Ce P R`, then the linear operator A is invertible with

}A´1
} ď Ce

´1, (2.62)

implying that for any bounded linear operator ` : V Ñ V the equation

aru, vs “ `pvq, @v P V (2.63)

is uniquely solvable.
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˛

Proof. Let A : V Ñ V ‹ be the map defined via

A : V Ñ V ‹, u ÞÑ Au :“ aru, ¨s. (2.64)

This map is continuous, since a is continuous. Let R : V ‹ Ñ V be the Riesz operator, satisfying

Auv “ xv,RAyV , @v P V. (2.65)

Using
xRAu, vyV “ Aupvq “ aru, vs, @u, v P V (2.66)

it holds that
Ce }v}

2
V ď arv, vs “ |xRA, vyV | ď }RA}V }v}V

}R}V ‹“1
“ }Av}V ‹}v}V ď }A}V ‹}v}

2
V ,

(2.67)

implying

Ce ď }A}V ‹ ñ 0 ă
Ce

}A}V ‹
ď 1. (2.68)

For % P R define the map

K : V Ñ V, u ÞÑ Kpuq :“ u´ %pRAu´R `q. (2.69)

Note that u‹ P V is a fix point of K if and only if

RAu‹ ´R ` “ 0, (2.70)

meaning that
xRAu‹, vyV
looooomooooon

“aru‹,vs

“ xR `, vyV
looomooon

“`pvq

, @v P V, (2.71)

so
xRAu‹ ´R `, vyV “ 0, @v P V. (2.72)

Choose v “ RAu‹ ´R ` P V to see that

}RAu‹ ´R ` }2V “ 0 ñ RAu‹ “ R `, (2.73)

showing that u‹ is a solution to Problem 5. It remains to show, that such a fix point u‹ of K exists.
For v1, v2 P V and v “ v1 ´ v2 it holds that

}Kpv1q ´Kpv2q}
2
V “ xv ´ %RAv, v ´ %RAvyV

“ }v}2V ´ 2%xRAv, vyV ` %2
}RAv}2V

“ }v}2V ´ 2% arv, vs ` %2 arv, vs

ď }v}2V ´ 2%Ce }v}
2
V ` %

2
}A}V ‹}v}V }RAv}V

ď }v}2V ´ 2%Ce }v}
2
V ` %

2
}A}V ‹}v}

2
V

“ }v}2V p1´ 2%Ce`%
2
}A}V ‹q.

(2.74)
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Finally, for % “ Ce
}A}2

V ‹
one obtains

1´ 2%Ce`%
2
}A}V ‹ “ 1´ 2

Ce

}A}2V ‹
Ce`

ˆ

Ce

}A}2V ‹

˙2

}A}2V ‹

“ 1´
Ce

2

}A}2V ‹

ă 1,

(2.75)

where the last inequality holds since (2.68) implies 0 ă Ce
2

}A}2
V ‹
ď 1. This shows that K, for %

defined as above, is a contraction. Due to Theorem 2.3, it has a unique fixed point. Concluding,
eq. (2.63) is uniquely solvable.

The Theorem of Lax and Milgram can be applied directly to the operators defined in Problem 5.
Whenever the bilinear form is continuous and elliptic, a unique solution uf P rHk

pΩqsn exists. An
a priori error estimate of the approximation error using a finite dimensional subspace Vh Ă V is
given in Céas Lemma 2.5.

Lemma 2.5 (Céa). Let pV, } ¨ }V q be a real Hilbert space, Vh Ă V a finite-dimensional subspace
and let a : V ˆV Ñ R be an elliptic and continuous bilinear form with constants 0 ă Ce ď Ccont,

aru, vs ď Ccont }u}V }v}V , @u, v P V

aru, us ě Ce }u}
2
V , @u P V.

(2.76)

Let u P V and uh P Vh be the solutions of

aru, vs “ `pvq, @v P V (2.77)

respectively
aruh, vhs “ `pvhq, @vh P Vh, (2.78)

which exist due to the Lax-Milgram Theorem 2.4. Then it holds that

}u´ uh}V
Ccont

Ce
inf
vhPVh

}u´ vh}V . (2.79)

‚

Proof. Since Vh Ă V it holds that

aruh, vhs ´ aru, vhs “ `pvhq ´ `pvhq “ 0, @vh P Vh. (2.80)

Hence, also

aru´ uh, u´ uhs “ aru´ uh, u´ vh ` vh ´ uhs

“ aru´ uh, u´ vhs ` aru´ uh, vh ´ uhs
loooooooooomoooooooooon

“0 by (2.80)

“ aru´ uh, u´ vhs.

(2.81)
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This yields
Ce }u´ uh}

2
V “ aru´ uh, u´ uhs

p2.81q
“ aru´ uh, u´ vhs

ď Ccont }u´ uh}V }u´ vh}V ,

(2.82)

which in turn implies

}u´ uh}V ď
Ccont

Ce
}u´ vh}V , @vh P Vh, (2.83)

and since vh P Vh is arbitrary, this concludes the proof.

Ellipticity of the bilinear form is oftentimes shown by hand. This is done by invoking a suitable
type of Poincaré Friedrichs inequality, which helps to provide one part of the norm equivalence
between the standard Sobolev norm, and the energy norm defined by the bilinear form on a certain
subspace. In case that the bilinear form ar¨, ¨s, corresponding to the partial differential operator L
of order 2 k under study, has a nontrivial kernel KpLq, the bilinear form is no scalar product on
the full Sobolev space rHk

pΩqsn, but only on the quotient space rHk
pΩqsn

{KpLq, and the variant of
Poincaré Friedrichs inequality that needs to be invoked in this case should show that

aru, us
!
ě Ce }u}

2
rHkpΩqsn

, @u P rHk
pΩqsnKpLq. (2.84)

For the scalar, pure Dirichlet Problem 5, the corresponding Poincaré Friedrichs inequality is pre-
sented in Theorem 2.6.

Theorem 2.6 (Poincaré Friedrichs inequality). For d P N, let Ω Ă Rd be bounded. Then, there
exists a constant CPF ą 0 such that

CPF

¨

˚

˚

˝

ÿ

αPRd

|α|“k

}B
αu}2L2pΩq

˛

‹

‹

‚

1
2

ě }u}L2pΩq, @u P Hk
0pΩq. (2.85)

˛

Remark 2.12. The term appearing in the brackets on the left-hand side of (2.85) is the Sobolev
seminorm. In the case of second-order scalar partial differential equations, (2.85) can be written
as

CPF }∇u}rLpΩqsd ě }u}L2pΩq, @u P H1
pΩq. (2.86)

˚

Unique solvability for coercive bilinear forms

As stated before, ellipticity is a very strong condition that can under some circumstances be weak-
ened to coercivity. Conditions for the unique solvability of Problem 5 with a coercive bilinear form
are presented in Theorem 2.7.
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Theorem 2.7 (Coercivity and unique solvability). Let Ω Ă Rd for d P N be open and bounded.
Also, let a : rHk

0pΩqs
n ˆ rHk

0pΩqs
n Ñ R be coercive with constants Cc

1,C
c
2 P R with Cc

1 ą 0, and
let ` : rHk

0pΩqs
n Ñ R be a linear form. Then, the problem

aru, vs “ `rvs, @v P rHk
0pΩqs

n (2.87)

has a unique solution u P rHk
0pΩqs

n, if and only if the kernels of both linear functionals u ÞÑ aru, ¨s
and v ÞÑ ar¨, vs only contain the zero function, i.e.

dimtw P rHk
pΩqsn : arw, vs “ 0, @v P rHk

0pΩqs
n
u “ 0

dimtw P rHk
pΩqsn : aru,ws “ 0, @u P rHk

0pΩqs
n
u “ 0.

(2.88)

˛

Proof. The proof is very technical and can be found in [Hac17, Theorem 6.108 & Theorem 7.14].

2.2.3 Conditions for ellipticity of the bilinear form
In the previous section, the abstract concepts of ellipticity and coercivity have been introduced,
which due to Theorem 2.4 and Theorem 2.7 are directly linked to the solvability of Problem 5 and
the uniqueness of its solutions. In this section, assumptions on the coefficients of the differential
operator are reviewed, which ensure ellipticity of the corresponding bilinear form ar¨, ¨s. Again, the
theory is based on [Hac17] with some additional information and modifications for vector-valued
problems.

Theorem 2.8 (Ellipticity of bilinear form I). Let Ω Ă Rd for d P N open and bounded with a
piecewise smooth boundary. Consider a scalar second-order linear differential operator L that is
uniformly elliptic with constant Ce

L. Also suppose that the bilinear form a : H1
0pΩq ˆ H1

0pΩq Ñ R
appearing in the pure Dirichlet Problem 5 takes the form

aru, vs “
ÿ

αPNd
0

|α|“1

ÿ

βPNd
0

|β|“1

ż

Ω

aα,βB
αuBβv dx, @u, v P H1

0pΩq (2.89)

with coefficients αα,β P X pΩq “ L8pΩq for all α, β P Nd
0 with |α| “ |β| “ 1. Then, a is elliptic,

i.e.
aru, us ě Ce }u}

2
H1pΩq, @u P H1

0pΩq, (2.90)

with the constant Ce “
Ce
L

2
mint1,CPF

´2
u P R`, where CPF is the Poincaré-Friedrichs constant.

˛

Proof. Since L contains only second-order derivatives, all terms Bαu and Bβv appearing in the
bilinear form refer to first-order weak derivatives. For fixed x P Ω, the definition of uniform
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ellipticity with ξ “ ∇u yields

aru, us “
ÿ

αPNd
0

|α|“1

ÿ

βPNd
0

|β|“1

ż

Ω

aα,βB
αuBβu dx

“

ż

Ω

ÿ

αPNd
0

|α|“1

ÿ

βPNd
0

|β|“1

aα,βp∇uqα`β dx

ě Ce
L
ż

Ω

|∇u|2 dx

“ Ce
L
}∇u}2L2pΩq.

(2.91)

An application of the Poincaré-Friedrichs inequality yields the claim,

aru, vs ě
Ce

L

2

´

}∇u}2
rL2pΩqsd ` }∇u}2rL2pΩqsd

¯

ě
Ce

L

2

ˆ

1

CPF
2 }u}2L2pΩq ` }∇u}2rL2pΩqsd

˙

ě min

"

Ce
L

2
,

Ce
L

2 CPF
2

*

loooooooooomoooooooooon

“:Ce

}u}2H1pΩq.

(2.92)

Theorem 2.9 (Ellipticity of bilinear form II). Let Ω Ă Rd for d P N open and bounded with a
piecewise smooth boundary. Consider a vector-valued linear differential operator L of even order
2, that has a diagonal form, i.e.

L “

»

—

—

—

–

L1,1 0 . . . 0

0 L2,2
. . . ...

... . . . . . . 0
0 . . . 0 Ld,d

fi

ffi

ffi

ffi

fl

(2.93)

and suppose further that all second-order linear and scalar differential operators Li,i appearing
in L are uniformly elliptic with constant Ce

Li,i for all i “ 1, . . . , d. Additionally, assume that the
corresponding bilinear form a : rH1

0pΩqs
d ˆ rH1

0pΩqs
d Ñ R of the pure Dirichlet Problem 5 takes

the form

aru, vs “
d
ÿ

i“1

ÿ

αi,iPNd
0

|αi,i|“1

ÿ

βi,iPNd
0

|βi,i|“1

aαi,i,βi,iB
αi,i

uiB
βi,i

vi, @u, v P rH1
0pΩqs

d (2.94)

with coefficients aαi,i,βi,i P X pΩq “ L8pΩq for all αi,i, βi,i P Nd
0 with |αi,i| “ |βi,i| “ 1 for all

i “ 1, . . . , d. Then, a is elliptic.

˛
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Proof. The bilinear form reads

aru, vs “
d
ÿ

i“1

ai,irui, vis (2.95)

with
ai,i : H1

0pΩq ˆ H1
0pΩq Ñ R,

ai,irui, vis “
ÿ

αi,iPNd
0

|αi,i|“1|

ÿ

βi,iPNd
0

|βi,i|“1

aαi,i,βi,iB
αi,i

uiB
βi,i

vi, (2.96)

for all ui, vi P H1
0pΩq being the bilinear form corresponding to the operator Li,i, for i “ 1, . . . , d.

Since all Li,i satisfy the assumptions from Theorem 2.8, the bilinear forms ai,i are elliptic with
constants Ce

ai,i . Hence, for all u P rH1
0pΩqs

d it holds that

aru, us “

d
ÿ

i“1

ai,irui, uis

ě

d
ÿ

i“1

Ce
ai,i }ui}

2
H1pΩq

ě
d

min
i“1

Ce
ai,i

looomooon

“:Ce

d
ÿ

i“1

}ui}
2
H1pΩq

looooomooooon

“}u}2
rH1pΩqsn

“ Ce }u}
2
rH1pΩqsd .

(2.97)

Ellipticity of the bilinear form can also be shown for higher order operators.

Theorem 2.10 (Ellipticity of bilinear form III). Let Ω Ă Rd for d P N be open and bounded and let
L be a scalar linear differential operator of even order 2 k, that is uniformly elliptic with constant
Ce

L. Furthermore, suppose that the corresponding bilinear form a : Hk
0pΩq ˆ Hk

0pΩq appearing in
the pure Dirichlet Problem 5 reads

aru, vs “
ÿ

αPNd
0

|α|ďk

ÿ

βPNd
0

|β|ďk

ż

Ω

aα,βB
αuBβv dx, @u, v P Hk

0pΩq, (2.98)

with coefficients of the form

aα,β “ const @α, β P Nd
0, |α| ` |β| “ 2 k

aα,β “ 0 @α, β P Nd
0, 0 ă |α| ` |β| ď 2 k´1

a0,0pxq ě 0, @x P Ω .

(2.99)

Then, the bilinear form a is elliptic.

˛
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Proof. The proof is performed similar to the one from Theorem 2.8. Using the uniform ellipticity
of L, aru, u, s is estimated downwards to the Sobolev seminorm }u}2

H2 kpΩq
. Afterwards, parts of

this seminorm are estimated using variants of the Poincaré Friedrichs inequality, leading to semi-
norms of u on all spaces Hm

pΩq for m “ 0, . . . , 2 k´1. Taking the minimum over all appearing
coefficients proves the claim.

Theorem 2.11 (Ellipticity of bilinear form IV). Let Ω Ă Rd for d P N open and bounded. Consider
a vector-valued linear differential operator L of even order 2 k, that has a diagonal form, i.e.

L “

»

—

—

—

–

L1,1 0 . . . 0

0 L2,2
. . . ...

... . . . . . . 0
0 . . . 0 Ld,d

fi

ffi

ffi

ffi

fl

. (2.100)

Suppose further, that all linear scalar-valued differential operators Li,i appearing in L are uni-
formly elliptic with constants Ce

Li,i for all i “ 1, . . . , d. Additionally, suppose that the correspond-
ing bilinear form a : rHk

0pΩqs
d ˆ rHk

0pΩqs
d Ñ R appearing in the pure Dirichlet Problem 5 reads

aru, vs “
d
ÿ

i“1

ÿ

αi,iPNd
0

|αi,i|ďk

ÿ

βi,iPNd
0

|βi,i|ďk

aαi,i,βi,iB
αi,i

uiB
βi,i

vi, @u, v P rHk
0pΩqs

d, (2.101)

with coefficients of Li,i for i “ 1, . . . , d satisfying

aαi,i,βi,i “ const @αi,i, βi,i P Nd
0, |α

i,i
| ` |βi,i| “ 2 k

aαi,i,βi,i “ 0, @αi,i, βi,i P Nd
0, 0 ă |α

i,i
| ` |βi,i| ď 2 k´1

aαi,i“0,βi,i“0 ě 0

(2.102)

Then, the bilinear form a is elliptic.

˛

Proof. The bilinear form a reads

aru, vs “
d
ÿ

i“1

ai,irui, vis (2.103)

with

ai,i : Hk
0pΩq ˆ Hk

0pΩq Ñ R, pui, viq ÞÑ
ÿ

αi,iPNd
0

|αi,i|ďk

ÿ

βi,iPNd
0

|βi,i|ďk

ż

Ω

aαi,i,βi,iB
αi,i

uiB
βi,i

vi dx (2.104)

being the bilinear form corresponding to the operator Li,i for i “ 1, . . . , d. The bilinear forms ai,i
satisfy the assumptions from Theorem 2.10 and hence are elliptic with constants Cai,i

e P R` for all
i “ 1, . . . , d, i.e.

ai,irui, uis ě C
ai,i
e }ui}

2
HkpΩq

, @ui P Hk
pΩq. (2.105)
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Hence, also a is elliptic with

aru, us “
d
ÿ

i“1

ai,irui, uis

ě

d
ÿ

i“1

Ce,ai,i
}ui}

2
H1pΩq

ě

ˆ

d

min
i“1

C
ai,i
e

˙ d
ÿ

i“1

}ui}
2
HkpΩq

looooomooooon

“}u}2
rHkpΩqsd

“
d

min
i“1

C
ai,i
e }u}2

rHkpΩqsd
.

(2.106)

Remark 2.13. If Ω is not bounded, the result from Theorems 2.10 and 2.11 still holds if the coeffi-
cients of the terms not involving any weak derivatives, a0,0 resp. aαi,i“0,βi,i“0 for i “ 1, . . . , d are
bounded below by a constant c ą 0 resp. ci ą 0 for i “ 1, . . . , d. This was proven in [Hac17,
Theorem 7.7].

˚



3
PDE with heterogeneous coefficients

The problems of interest in this thesis are described using strongly heterogeneous coefficients,
leading to numerical solutions which may vary on a fine scale. Problems of this type are in general
hard to handle using standard numerical methods, since they require a very fine discretization of
the underlying computational domain. If the discretization is chosen too coarse, the desired fine-
scale features of the true solution cannot be resolved and numerical solutions are inaccurate. On
the other hand, high levels of detail lead to large numbers of degrees of freedom needed to describe
the discrete numerical solutions. The identification of a good trade-off between the accuracy of
solutions and the complexity of numerical models cannot be generic and must be based on the
properties of the considered partial differential operators, the domain, as well as the data of the
problem.

In general, complicating features come in two categories. First, there are geometric features that
possibly cause fine-scale behavior of numerical solutions. The well-known Poisson equation on
an L-shaped domain shows, that this may even happen for apparently simple physical domains,
partial differential operators, loads and boundary conditions. A straight-forward application of
standard numerical methods, such as the Finite Element Method or more general the Partition of
Unity Method (cf. Chapter 4) using polynomial bases, will lead to poor results if the corresponding
regions around the complicating features of the domain are not resolved finely enough, for example
using an adaptive refinement strategy. In Figure 3.1 two of these complicating geometric features
are sketched. Figure 3.1 (a) shows a domain with a reentrant corner, which possibly causes singu-
larities. In order to improve the accuracy of numerical solutions, adaptive refinement towards the
reentrant corner is required for standard numerical methods in such cases. Figure 3.1 (b) shows a
domain with a circular hole in the center, which in most applications won’t cause singularities but
still require heavy (adaptive) spatial refinement for standard elements / patches / volumes / cells
having straight edges. Note that a hole in the domain may also be interpreted as a sudden jump in
the operators’ coefficients to zero. In general, the coefficients have a strong impact on the behavior
of numerical solutions, and their explicit meaning depends on the physical problem described by
the partial differential operator. They may for example express thermal conductivity in the study
of the heat equation, or the elastic modulus of a material when investigating linear elasticity. In
the simplest case, the coefficients are constant throughout the whole body under study, but this
does not necessarily hold, leading to the second category of complicating features. The body may
contain inclusions made of other materials, with very different physical properties than those of

39
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(a) (b)

Figure 3.1: Examples of complicating geometric features are reentrant corners (a) and holes (b)

the matrix material, or it may even be made entirely from various material plies. Throughout this
thesis, the different subdomains are assumed to be perfectly connected to each other. Figure 3.2
(a) sketches the cross-section of a domain into which a rectangular rod has been inserted. In (b),
a domain with multiple inclusions of different sizes and materials is shown. Figure 3.2 (c) shows
the cross-section of a three-ply laminate.

(a) (b) (c)

Figure 3.2: (a) Domain with an inclusion, (b) domain with many inclusions of different sizes, (c)
3-ply laminate. The various colors denote different materials.

Many problems of interest in industrial applications combine various of the complicating features
presented so far: For a high strength-to-weight ratio, a physical body is made from a laminated
material. The geometry of the body may include reentrant corners and each ply is possibly fiber-
reinforced, i.e. contains inclusions of a very small size. In order to further reduce weight and save
material costs, there may be holes in the body. Finally, bolts and screws, modeled by inclusions
throughout the thickness, are inserted in order to connect the body to other structural parts.

Since it is a priori not clear which material to choose for a given purpose, many laminates have
to be tested in order to identify good candidates. Furthermore, material coupons in a structural
design cycle are exposed to a wide range of conditions and tested for failure. Replacement of
physical testing by numerical testing may drastically cut overall costs, since only coupons for the
most promising materials will have to be manufactured and tested.
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Traditional numerical methods, however, fail to produce accurate results for complex simulations
in a feasible amount of time. The Partition of Unity Method, which is introduced in Chapter 4,
allows for the use of additional local basis functions, so-called enrichment functions, which may
encode a-priori knowledge on the true solutions. For some of the complicating features and dif-
ferential operators, such enrichment functions can be derived analytically, for example using the
stress recovery method ([Mel05]). Unfortunately, analytical enrichments are not available for gen-
eral operators and domains. Chapter 5 presents a method to compute numerical enrichment func-
tions, which will then be applied to a number of model problems in Chapter 6. The remainder of
this chapter introduces these model problems and shows that they are well-posed.

3.1 Second-order scalar problems in divergence form
Second-order elliptic partial differential equations in divergence form were considered before in
Chapter 2, and their general form is presented again in Problem 6.

Problem 6: Second-order elliptic PDE in divergence form.

Let Ω Ă Rd for d P N be open, bounded and sufficiently regular, and let
L : C2

pΩq Ñ C0
pΩq be a scalar partial differential operator of order k “ 2 in

the form
u ÞÑ Lu :“ ´ divpA∇uq ` b ¨∇u` cu, (3.1)

for data A P rC1
pΩqsdˆd, b P rC0

pΩqsd and c P C0
pΩq. Furthermore, let ΓD Ă

BΩ,ΓN Ă BΩ zΓD and f : Ω Ñ R, g : ΓD Ñ R as well as h : ΓN Ñ R
sufficiently smooth functions. Find a function u P C2

pΩq satisfying

Lu “ f, in Ω

u “ g, on ΓD

A∇u ¨ ~n “ h, on ΓN .

(3.2)

Remark 3.1. Problem 6 can also be formulated for vector-valued operators.

˚

Partial differential equations of this form can be used to model a wide variety of stationary phe-
nomena. The theory and conditions for ellipticity of the operator L have already been investigated
in Chapter 2.

Weak formulation

On all parts of the boundary where no boundary condition is imposed in eq. (3.2), a zero Neumann
boundary condition is implicitly assumed, i.e. A∇u ¨ ~n “ 0 on BΩ zpΓD Y ΓNq, allowing the
solution to behave freely. Hence, multiply the left-hand side of the partial differential equation
with a test function v that vanishes on the Dirichlet boundary ΓD, integrate over Ω and apply
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integration by parts to see that
ż

Ω

Luv dx “

ż

Ω

p´ divpA∇uq ` b ¨∇u` cuqv dx

“

ż

Ω

´ divpA∇uqv ` b ¨∇uv ` cuv dx

“

ż

Ω

∇u ¨ A∇v ` b ¨∇uv ` cuv dx

´

ż

BΩ

vpA∇uq ¨ ~n ds

“

ż

Ω

∇u ¨ A∇v ` b ¨∇uv ` cuv dx

´

ż

ΓN

hv ds,

(3.3)

where the last inequality holds due to the boundary conditions. The weak form of Problem 6 can
now be formulated for the trial and test spaces

Vtrial
pΩq :“ tu P H1

pΩq : tru “ g, on ΓDu

Vtest
pΩq :“ tv P H1

pΩq : tr v “ 0, on ΓDu.
(3.4)

Problem 7: Weak second-order PDE in divergence form.

Consider a domain of interest, Ω Ă Rd for d P N, which is open, bounded
and sufficiently regular. Consider the differential operator L as in Problem 6,
with data A P rL8pΩqsdˆd, b P rL8pΩqsd, c P L8pΩq, For given functions
f P L2

pΩq, g P L2
pΓDq, h P L2

pΓNq find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtest
pΩq, (3.5)

with bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R and linear functional ` :
VtrialpΩq Ñ R defined by

aru, vs :“

ż

Ω

∇u ¨ A∇v dx

`pvq :“

ż

Ω

fv dx`

ż

ΓN

hv ds.
(3.6)

Ellipticity of the bilinear form ar¨, ¨s has already been discussed in Chapter 2. The proof of el-
lipticity requires an application of a Poincaré Friedrichs inequality, that shows the equivalence of
the Sobolev seminorm (resp. the energy norm) and the full Sobolev norm on H1. For the pure
Dirichlet problem, i.e. for ΓN “ H and ΓD “ BΩ, the corresponding inequality is given in
Theorem 2.6. This in turn allowed to formulate easy-to-check conditions for ellipticity of a, see



3.2. LINEAR ELASTICITY 43

Theorems 2.8 and 2.10. For other types of boundary conditions, other variants of the Poincaré
Friedrichs inequality have to be employed.

3.2 Linear Elasticity
An application of forces (loads) to a physical body results in movement of the materials particles,
and solid materials can only resist so much tension before breaking. Linear elasticity is a sim-
plification of small (in magnitude) responses of the material to the applied load. There is a large
industrial interest in (efficient) numerical methods to solve such problems, as they arise in nearly
every sector of manufacturing.
Section 3.2.1 introduces the concept of the stiffness tensor of material properties to describe the
constitutive equations of a general orthotropic (anisotropic) material. In general, orthotropic mate-
rials may respond differently to outer forces depending on the direction of these forces. They are
a generalization of isotropic materials, which share the same material properties in all coordinate
directions. The description of a general orthotropic material is hence based on the choice of a
coordinate system, the so-called principal axes of the material. This section, which is based on
[BC09, GF18, Gur73], also develops the strong formulation of the partial differential equations
describing linear elasticity and shows that it is elliptic. In Section 3.2.2, the corresponding weak
formulation is derived and it is shown that this is an elliptic variational problem according to the
definitions presented in Chapter 2, implying existence and uniqueness of solutions.

3.2.1 Constitutive equations
Outer forces (loads) that are applied to a material lead to movements of its particles. The relation
between the applied force and the resulting deformation of the material points is described in
terms of the materials’ stress tensor σ and strain tensor ε, which are both symmetric by definition.
Materials are called emphelastic, if the deformation is reversed whenever the load is removed.
Elastic materials are able to deform without suffering damages to their internal structure. If the
relation between an elastic materials’ stress and strain is linear, the material is referred to as a linear
elastic material. In this case Hooke’s law holds, stating that the entries of the stress tensor σ in
spatial dimension d “ 2 and d “ 3 can be written as

σij “
d
ÿ

k,l“1

C
ijkl
εkl. (3.7)

This is the tensor contraction σ “ C : ε of the fourth-order tensor C P Rdˆdˆdˆd, called the
Hooke’s tensor or the stiffness tensor of material properties, and the infinitesimal second-order
strain tensor ε P Rdˆd. For a vector-valued displacement function u P rC1

pΩqsd, the latter is
defined as

εpuq :“
1

2

`

∇u` p∇uqT
˘

, (3.8)

with ∇u P rC0
pΩqsdˆd being the Jacobian of u. The material tensor has 24 “ 16 components in 2d

and 34 “ 81 components in 3d, and various simplifications are derived in the following. Since the
stress is symmetric, i.e. σij “ σji and ε is arbitrary, it holds that

σij “
d
ÿ

k,l“1

C
ijkl
εkl “

d
ÿ

k,l“1

C
jikl
εkl “ σji, (3.9)
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so C
ijkl
“ C

jikl
for all i, j. This reduces the number of components from 24 “ 16 to 22 ¨ 3 “ 12 in

2d and from 34 “ 81 to 32 ¨ 6 “ 54 in 3d. Similarly, the symmetry of the strain tensor gives

σij “
d
ÿ

k,l“1

C
ijkl
εkl “

d
ÿ

k,l“1

C
ijkl
εlk

kØl
“

d
ÿ

k,l“1

C
ijlk
εkl, (3.10)

that is
d
ÿ

k,l“1

pC
ijkl
´C

ijlk
qεkl “ 0. (3.11)

Since this holds for all ε, the stiffness tensor satisfies C
ijkl
“ C

ijlk
, which reduces the number of

coefficients to 3 ¨ 3 “ 9 in 2d and to 6 ¨ 6 “ 36 in 3d.

Hooke’s tensor is derived from the quadratic strain energy density ψ (for details see [BC09]),

C
ijkl

:“
B2ψ

BεklBεij
. (3.12)

If ψ is a C2 function, the order of derivation can be changed and hence

C
ijkl

Def.
“

B2ψ

BεklBεij
“

B2ψ

Bεijεkl

Def.
“ C

klij
, (3.13)

further reducing the number of coefficients to 6 in 2d and 21 in 3d. In the following, the three-
dimensional case is considered, but for d “ 2 the corresponding relations are derived analogously.
Let te1, e2, e3u be an orthonormal basis of R3. Representing the tensor in this basis reads

C “ C
ijkl
ei b ej b ek b el. (3.14)

Using the above-described symmetries, the stress-strain relation from Hooke’s law can also be
written in Voigt notation as a relation of a matrix (second-order tensor) and stress and strain vectors,

σ “ C ε, (3.15)

with

σ :“

»

—

—

—

—

—

—

–

σ11

σ22

σ33

σ23

σ13

σ12

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, ε :“

»

—

—

—

—

—

—

–

ε11

ε22

ε33

ε23

ε13

ε12

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.16)

as well as

C :“

»

—

—

—

—

—

—

—

–

C
1111

C
1122

C
1133

C
1123

C
1113

C
1112

C
1122

C
2222

C
2233

C
2223

C
2213

C
2212

C
1133

C
2233

C
3333

C
3323

C
3313

C
3312

C
1123

C
2223

C
3323

C
2323

C
2313

C
2312

C
1113

C
2213

C
3313

C
2313

C
1313

C
1312

C
1112

C
2212

C
3312

C
2312

C
1312

C
1212

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.17)
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It can be shown that the matrix form C of the elasticity tensor C is invertible, so

»

—

—

—

—

—

—

–

ε11

ε22

ε33

ε23

ε13

ε12

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ C´1

»

—

—

—

—

—

—

–

σ11

σ22

σ33

σ23

σ13

σ12

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.18)

Using another orthonormal basis tẽ1, ẽ2, ẽ3u, and representing the tensor also in this basis, it holds
that

C “ C̃ ðñ C
ijkl
ei b ej b ek b el “ C̃

pqrs
ẽp b ẽq b ẽr b ẽs. (3.19)

Using the relation
pem b enq ¨ ẽk “ pen ¨ ẽkqem (3.20)

and associativity of the Kronecker product, it holds that

C
ijkl
pei b ejq b pek b elq ¨ el “ C

ijkl
pei b ejq b pel ¨ elqek

“ Cpel ¨ elqei b ej b ek

“ Cei b ej b ek.

(3.21)

Hence, from (3.19) one obtains

C
ijkl
ei b ej b ek “ C̃

pqrs
pẽs ¨ elqẽp b ẽq b ẽr (3.22)

A similar step is performed with ek, ej and ei yielding

C
ijkl
“ C̃

pqrs
pẽs ¨ elqpẽr ¨ ekqpẽq ¨ ejqpẽp ¨ eiq, (3.23)

which provides a way to compute changes of bases for the fourth-order material stiffness tensor,
possibly leading to further simplifications for materials with special properties. Note that any
symmetry transformation can be described by an orthogonal matrix Q P R3ˆ3, with

Q “ Qijei b ej. (3.24)

From the transformation formula (3.23) it is seen, that a material symmetry with respect to Q gives
rise to the conditions

C
ijkl
“ QipQjqQkrQlsCpqrs

. (3.25)

A material that has three orthogonal planes of reflection symmetry is called orthotropic. These
materials will be considered in the remainder of this work intensively. The orthogonal matrices
related to the reflection symmetries are

Qx
“

»

–

´1 0 0
0 1 0
0 0 1

fi

fl , Qy
“

»

–

1 0 0
0 ´1 0
0 0 1

fi

fl , Qz
“

»

–

1 0 0
0 1 0
0 0 ´1

fi

fl . (3.26)
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Considering Qx, the material invariance (3.25) gives rise to the conditions

C
1111

“ Qx
1pQ

x
1qQ

x
1rQ

x
1sCpqrs

“ p´1q4C
1111

“ C
1111

C
1122

“ Qx
1pQ

x
1qQ

x
2rQ

x
2sCpqrs

“ p´1q212C
1122

“ C
1122

C
1133

“ Qx
1pQ

x
1qQ

x
3rQ

x
3sCpqrs

“ p´1q212C
1133

“ C
1133

C
1123

“ Qx
1pQ

x
1qQ

x
2rQ

x
3sCprqs

“ p´1q212C
1123

“ C
1123

C
1113

“ Qx
1pQ

x
1qQ

x
1rQ

x
3sCpqrs

“ p´1q31C
1113

“ ´C
1113

C
1112

“ Qx
1pQ

x
1qQ

x
1rQ

x
2sCpqrs

“ p´1q31C
1112

“ ´C
1112

C
2222

“ Qx
2pQ

x
2qQ

x
2rQ

x
2sCpqrs

“ 14C
2222

“ C
2222

C
2233

“ Qx
2pQ

x
2qQ

x
3rQ

x
3sCpqrs

“ 14C
2233

“ C
2233

C
2223

“ Qx
2pQ

x
2qQ

x
2rQ

x
3sCpqrs

“ 14C
2223

“ C
2223

C
2213

“ Qx
2pQ

x
2qQ

x
1rQ

x
3sCpqrs

“ p´1q13C
2213

“ ´C
2213

C
2212

“ Qx
2pQ

x
2qQ

x
1rQ

x
2sCpqrs

“ p´1q13C
2212

“ ´C
2212

C
3333

“ Qx
3pQ

x
3qQ

x
3rQ

x
3sCpqrs

“ 14C
3333

“ C
3333

C
3323

“ Qx
3pQ

x
3qQ

x
2rQ

x
3sCpqrs

“ 14C
3323

“ C
3323

C
3313

“ Qx
3pQ

x
3qQ

x
1rQ

x
3sCpqrs

“ p´1q13C
3313

“ ´C
3313

C
3312

“ Qx
3pQ

x
3qQ

x
1rQ

x
2sCpqrs

“ p´1q13C
3312

“ ´C
3312

C
2323

“ Qx
2pQ

x
3qQ

x
2rQ

x
3sCpqrs

“ 14C
2323

“ C
2323

C
2313

“ Qx
2pQ

x
3qQ

x
1rQ

x
3sCpqrs

“ p´1q13C
2313

“ ´C
2313

C
2312

“ Qx
2pQ

x
3qQ

x
1rQ

x
2sCpqrs

“ p´1q13C
2312

“ ´C
2312

C
1313

“ Qx
1pQ

x
3qQ

x
1rQ

x
3sCpqrs

“ p´1q212C
1313

“ C
1313

C
1312

“ Qx
1pQ

x
3qQ

x
1rQ

x
2sCpqrs

“ p´1q212C
1312

“ C
1312

C
1212

“ Qx
1pQ

x
2qQ

x
1rQ

x
2sCpqrs

“ p´1q212C
1212

“ C
1212

.

(3.27)

showing that

0 “ C
1113

“ C
1112

“ C
2213

“ C
2212

“ C
3313

“ C
3312

“ C
2313

“ C
2312

.
(3.28)
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Considering Qy implies that the coefficients which are nonzero yet satisfy

C
1111

“ Qy
1pQ

y
1qQ

y
1rQ

y
1sCpqrs

“ 14C
1111

“ C
1111

C
1122

“ Qy
1pQ

y
1qQ

y
2rQ

y
2sCpqrs

“ p´1q212C
1122

“ C
1122

C
1133

“ Qy
1pQ

y
1qQ

y
3rQ

y
3sCpqrs

“ 14C
1133

“ C
1133

C
1123

“ Qy
1pQ

y
1qQ

y
2rQ

y
3sCprqs

“ p´1q13C
1123

“ ´C
1123

C
2222

“ Qy
2pQ

y
2qQ

y
2rQ

y
2sCpqrs

“ p´1q4C
2222

“ C
2222

C
2233

“ Qy
2pQ

y
2qQ

y
3rQ

y
3sCpqrs

“ p´1q212C
2233

“ C
2233

C
2223

“ Qy
2pQ

y
2qQ

y
2rQ

y
3sCpqrs

“ p´1q31C
2223

“ ´C
2223

C
3333

“ Qy
3pQ

y
3qQ

y
3rQ

y
3sCpqrs

“ 14C
3333

“ C
3333

C
3323

“ Qy
3pQ

y
3qQ

y
2rQ

y
3sCpqrs

“ p´1q13C
3323

“ ´C
3323

C
2323

“ Qy
2pQ

y
3qQ

y
2rQ

y
3sCpqrs

“ p´1q212C
2323

“ C
2323

C
1313

“ Qy
1pQ

y
3qQ

y
1rQ

y
3sCpqrs

“ 14C
1313

“ C
1313

C
1312

“ Qy
1pQ

y
3qQ

y
1rQ

y
2sCpqrs

“ p´1q13C
1312

“ ´C
1312

C
1212

“ Qy
1pQ

y
2qQ

y
1rQ

y
2sCpqrs

“ p´1q212C
1212

“ C
1212

.

(3.29)

showing that
C

1123
“ C

2223
“ C

3323
“ C

1312
“ 0. (3.30)

Lastly, considering Qz yields the following relations for the nonzero coefficients

C
1111

“ Qz
1pQ

z
1qQ

z
1rQ

z
1sCpqrs

“ 14C
1111

“ C
1111

C
1122

“ Qz
1pQ

z
1qQ

z
2rQ

z
2sCpqrs

“ 14C
1122

“ C
1122

C
1133

“ Qz
1pQ

z
1qQ

z
3rQ

z
3sCpqrs

“ p´1q212C
1133

“ C
1133

C
2222

“ Qz
2pQ

z
2qQ

z
2rQ

z
2sCpqrs

“ 14C
2222

“ C
2222

C
2233

“ Qz
2pQ

z
2qQ

z
3rQ

z
3sCpqrs

“ p´1q212C
2233

“ C
2233

C
3333

“ Qz
3pQ

z
3qQ

z
3rQ

z
3sCpqrs

“ p´1q4C
3333

“ C
3333

C
2323

“ Qz
2pQ

z
3qQ

z
2rQ

z
3sCpqrs

“ p´1q212C
2323

“ C
2323

C
1313

“ Qz
1pQ

z
3qQ

z
1rQ

z
3sCpqrs

“ p´1q212C
1313

“ C
1313

C
1212

“ Qz
1pQ

z
2qQ

z
1rQ

z
2sCpqrs

“ 14C
1212

“ C
1212

.

(3.31)

Hence, two symmetry planes are enough to reduce the matrix form of the stiffness tensor of the
material to the final, simplified form

C “

»

—

—

—

—

—

—

—

–

C
1111

C
1122

C
1133

0 0 0

C
1122

C
2222

C
2233

0 0 0

C
1133

C
2233

C
3333

0 0 0

0 0 0 C
2323

0 0

0 0 0 0 C
1313

0

0 0 0 0 0 C
1212

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.32)
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An orthotropic material can be fully described by the Young’s moduli, the shear moduli and the
Poisson ratios. They are defined using the three main axes (the axes of the coordinate system).
Young’s moduli Ex, Ey, Ez describe the stiffness of the material along the axes. The shear moduli
Gyz, Gzx, Gxy describes the ratio of shear stress to shear strain. The first index denotes the direc-
tion of stress and strain (along one of the main axes) and the second index denotes the direction of
the normal of the plane (also one of the main axes), whose movement is considered. The Poisson
ratios νyz, νzx, νxy describe the contraction in direction of the main axes corresponding to the sec-
ond index when applying a force in direction of the main axes corresponding to the first index.

Using these material constants, the stiffness matrix C´1 in the stress strain relations (3.18) reads

C´1
“

»

—

—

—

—

—

—

—

–

1
Ex

´
νyx
Ey

´
νyx
Ey

0 0 0

´
νxy
Ex

1
Ey

´
νyz
Ey

0 0 0

´
νxy
Ex

´
νyz
Ey

1
Ey

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gzx

0

0 0 0 0 0 1
2Gxy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.33)

and inverting it yields

C “

»

—

—

—

—

—

—

—

–

1´νyzνzy
EyEz∆

νyx`νzxνyz
EyEz∆

νzx`νyxνzy
EyEz∆

0 0 0
νxy`νxzνzy
EzEx∆

1´νzxνxz
EzEx∆

νzy`νzxνxy
EzEx∆

0 0 0
νxz`νxyνyz
ExEy∆

νyz`νxzνyx
ExEy∆

1´νxyνyx
ExEy∆

0 0 0

0 0 0 2Gyz 0 0
0 0 0 0 2Gzx 0
0 0 0 0 0 2Gxy

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.34)

with
∆ “

1´ νxyνyx ´ νyzνzy ´ νzxνxz ´ 2νxyνyzνzx
ExEyEz

. (3.35)

Note that one can compute νzy from νyz, νxz from νzx and νyx from νxy via the relations
νyz
Ey

“
νzy
Ez

νzx
Ez

“
νxz
Ex

νxy
Ex

“
νyx
Ey

.

(3.36)

Remark 3.2. For isotropic linear elastic materials, it holds that

Ex “ Ey “ Ez “: E

νyz “ νzx “ νxy “: ν

Gyz “ Gzx “ Gxy “: G.

(3.37)

In this case, the shear modulus can be expressed using the Poisson ratio and the modulus of
elasticity via

G “
E

2p1` νq
. (3.38)
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The stiffness tensor reads

C´1
“

»

—

—

—

—

—

—

–

1
E

´ ν
E
´ ν
E

0 0 0
´ ν
E

1
E

´ ν
E

0 0 0
´ ν
E
´ ν
E

1
E

0 0 0
0 0 0 1`ν

E
0 0

0 0 0 0 1`ν
E

0
0 0 0 0 0 1`ν

E

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.39)

and its inverse can be written using the Lamé constants

λ :“
νE

p1´ 2νqp1` νq
, µ :“

E

2p1` νq
(3.40)

as

C´1
“

»

—

—

—

—

—

—

–

2µ` λ λ λ 0 0 0
λ 2µ` λ λ 0 0 0
λ λ 2µ` λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.41)

˚

Next, the strong form of the partial differential equations describing linear elasticity is stated. In
order to do so, the divergence operator is extended to matrices: The divergence of the matrix
A P rC1

pΩqsdˆd is defined as the vector containing the divergence of the columns of A, i.e.

divpAq :“

»

—

–

řd
i“1

BAi,1

Bxi...
řd
i“1

BAi,d

Bxi

fi

ffi

fl

. (3.42)

The general form of the partial differential equations of linear elasticity, which prescribe the value
of the divergence of the strain tensor σpuq subject to boundary conditions, are presented in Prob-
lem 8.
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Problem 8: Linear elasticity.

Let Ω Ă Rd for d P t2, 3u be open and bounded with piecewise smooth bound-
ary and let a stiffness tensor C be given. Let

L : rC2
pΩqsd Ñ rC0

pΩqsd, (3.43)

with
Lupxq :“ ´ div σpupxqq (3.44)

and strain tensor σpuq “ C : εpuq. Furthermore, let ΓD Ă BΩ, ΓN Ă BΩ zΓD
and f : Ω Ñ Rd, g : ΓD Ñ Rd as well as h : ΓN Ñ Rd sufficiently smooth
functions. Find a function u P rC2

pΩqsd satisfying

Lu “ f, in Ω

u “ g, on ΓD

σpuq ¨ ~n “ h, on ΓN .

(3.45)

Remark 3.3. The form of the differential operator from Problem 8 and the definition of the matrix
divergence from eq. (3.42) show, that Problem 8 is a coupled system of d second-order partial
differential equations in divergence form.

˚

The operator L from Problem 8 is continuous. Whenever Assumption 3.1 holds, it can be shown
that L is elliptic.

Assumption 3.1 (Ellipticity of L). The material under study is not perfectly incompressible, i.e.
at least one of the Young moduli is less than 0.5, and the shear moduli are positive.

˛

Assumption 3.1 ensures ∆ ą 0 in (3.35) implying that all nontrivial entries from the stiffness
tensor C are positive. It can now be shown that L is an elliptic operator. Expanding the action of
the differential operator L applied to u P rC2

pΩqsd reads

Lu “ div σpuq “ divpC : εpuqq

“ div
”

ř3
k,l“1

1
2
C
ijkl
pBxkul ` Bxlukq

ı3

j“1

“
1

2

”

ř3
i“1 Bxi

1
2

ř3
k,l“1 Cijkl

pBxkul ` Bxlukq
ı3

j“1

“
1

2

”

ř3
i,k,l“1 Cijkl

BxiBxkul `
ř3
i,k,l“1 Cijkl

BxiBxluk
ı3

j“1
.

(3.46)
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The main component L2 of L is obtained by taking i “ k in the first sum, and i “ l in the second
sum. It reads

L2 u “
1

2

”

ř3
k,l“1 Ckjkl

B2
xk
ul `

ř3
k,l“1 Cljkj

B2
xj
uk
ı3

j“1
. (3.47)

Note that for any fixed j, only the choice l “ j leads to nontrivial entries C
kjkl

of the stiffness
tensor in the first sum. Analogously for the second sum, C

ljkj
is nontrivial only for k “ l. Hence,

L2 u “
1

2

”

ř3
k“1 Ckjkj

B2
xk
uj `

ř3
k“1 Ckjkj

B2
xk
uk
ı3

j“1
, (3.48)

which according to eq. (2.1) can be written in the form

L2 u “

»

–

L2
1,1 L2

1,2 L2
1,3

L2
2,1 L2

2,2 L2
2,3

L2
3,1 L2

3,2 L2
3,3

fi

fl

»

–

u1

u2

u3

fi

fl , (3.49)

with scalar differential operators

L2
i,j “

1

2

$

&

%

2C
jjjj
B2
xj
`
ř3
p“1
p‰j

C
pjpj
B2
xp , if i “ j

ř3
p“1
p‰j

C
jpjp
B2
xj
up, else.

(3.50)

Note that in the above equation, symmetry of the stiffness coefficients is implicitly used, such that
e.g. C

2121
refers to C

1212
etc. The explicit representations of the scalar differential operators ap-

pearing in the constitutive equations of linear elasticity can now be used to show uniform ellipticity
of the equations. For any ξ P R3 and all j “ 1, . . . , d it holds that

¨

˚

˝

C
jjjj

`

3
ÿ

p“1
p‰j

C
pjpj

˛

‹

‚

ξ2
j `

3
ÿ

p“1
p‰j

C
jpjp

ξ2
p ě Ce,j|ξ|

2, (3.51)

with

Ce,j “ min

$

’

&

’

%

C
jjjj

`

3
ÿ

p“1
p‰j

C
jpjp

, min
p“1,2,3
p‰j

!

C
jpjp

)

,

/

.

/

-

, (3.52)

which is precisely the definition of uniform ellipticity.

3.2.2 Weak formulation
In this section, the weak form of the PDE of Linear Elasticity for d P t2, 3u is established, and it is
shown that the corresponding bilinear form is elliptic. This section is based on the works of J. L.
Lions & G. Duvaut [LD72], and of L. Tartar [Tar82]. The proofs of all relevant theoretical results
are presented in full length in Chapter A.

The variational formulation is obtained as in the case of any other partial differential equation, by
multiplying all components i “ 1, . . . , d of (3.45) by a test function vi and integrating them over
the domain Ω. By denoting the j-th column of σpuq as σ¨,jpuq, this reads

ż

Ω

´ divpσ¨,jpuqqvj dx “

ż

Ω

fjvj dx, @j “ 1, . . . , d. (3.53)
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Using Greens identity (integration by parts) individually on the left-hand side of all equations
results in

ż

Ω

σ¨,jpuq ¨∇vj dx´
ż

BΩ

vjσ¨,jpuq ¨ ~n ds “

ż

Ω

fjvj dx, j “ 1, . . . , d. (3.54)

Note that this system of variational formulations is coupled via the strain tensor σpuq, and the sum
of the equations from (3.54) is solved for the vector-valued function v “

“

v1 v2 v3

‰T . Formally,
the sum of all integrands from the left-hand side volume integrals reads

d
ÿ

j“1

σ¨,jpuq ¨∇vj “
d
ÿ

i,j“1

σi,jpuq
Bvj
Bxi

“ σpuq : ∇v. (3.55)

The sum of all integrands from the boundary integrals is

d
ÿ

j“1

vjσ¨,jpuq ¨ ~n “ v ¨ σpuq~n (3.56)

and the sum of all integrands from the right-hand sides is

d
ÿ

j“1

vjσ¨,jpuq ¨ ~n “
d
ÿ

i,j“1

vjσij~ni “ v ¨ σpuq~n. (3.57)

In total, one obtains the equation
ż

Ω

σpuq : ∇v dx´
ż

BΩ

v ¨ σpuq~n ds “

ż

Ω

f ¨ v dx. (3.58)

Note that the boundary integral does not appear on the left-hand side in practical computations:
It moves to the right-hand side of the equation for all parts of the boundary on which a boundary
condition is imposed. If no explicit boundary condition is set, u is assumed to satisfy a zero
Neumann boundary condition, allowing it to behave freely and leading to the boundary integral
being zero on these parts of the boundary. Therefore, inserting the boundary conditions into (3.58)
reads

ż

Ω

σpuq : ∇v dx “
ż

Ω

f ¨ v dx`

ż

ΓN

v ¨ h ds. (3.59)

The symmetry of C formally implies that

σpuq : ∇v “
d
ÿ

i,j“1

σijpuq
Bvi
Bxj

“

d
ÿ

i,j“1

σjipuq
Bvi
Bxj

iØj
“

d
ÿ

i,j“1

σijpuq
Bvj
Bxi

“ σpuq : ∇Tv,

(3.60)

so the left-hand side of (3.59) is symmetric and can be written as
ż

Ω

σpuq : ∇v dx “
ż

Ω

σpuq : εpvq dx “

ż

Ω

pC : εpuqq : εpuq dx. (3.61)
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Using the trial and test spaces

Vtrial
pΩq :“ tu P rH1

pΩqsd : tru “ g on ΓDu

Vtest
pΩq :“ tv P rH1

pΩqsd : tr v “ 0 on ΓDu,
(3.62)

the weak formulation of Problem 8 can be formulated.

Problem 9: Weak linear elasticity.

Let Ω Ă Rd for d P t2, 3u be open, bounded and sufficiently regular. Let
ΓD Ă BΩ, ΓN Ă Ω zΓD and suppose that f P rL2

pΩqsd, g P rL2
pΓDqs

d as well
as h P rL2

pΓNqs
d. Find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtest
pΩq, (3.63)

with bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R and linear functional ` :
VtestpΩq Ñ R defined by

aru, vs :“

ż

Ω

σpuq : εpvq dx

`pvq “

ż

Ω

f ¨ v dx`

ż

ΓN

h ¨ v ds.
(3.64)

In the following, it will be shown that a is an elliptic bilinear form. In order to do so, the equiva-
lence of the strain energy norm

}v}EpΩq :“

„
ż

Ω

εpvqpxq : εpvqpxq dx`

ż

Ω

vpxq ¨ vpxq dx


1
2

“

„

}εpvq}2
rL2pΩqsdˆd ` }v}

2
rL2pΩqsd


1
2

,

(3.65)

and the standard Sobolev norm on rH1
pΩqsd is needed. The Korn inequality shows one part of this

estimate.

Theorem 3.1 (Korn inequality). Let Ω Ă Rd an open, bounded and regular domain. Then, there
exists a constant CkornpΩq ą 0 such that

}v}EpΩq ě CkornpΩq}v}rH1pΩqsd , @v P rH1
pΩqsd. (3.66)

˛

Proof. The proof can be found in [LD72, Tar82], as well as in Chapter A.
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The other part of the norm equivalence follows by a straight-forward calculation: Let v P rH1
pΩqsd,

then

}v}2
rH1pΩqsd “ }εpvq}

2
rL2pΩqsdˆd ` }v|

2
rL2pΩqsd . (3.67)

The matrix norm is rewritten as

}εpvq}2
rL2pΩqsdˆd “

ż

Ω

εpvq : εpvq dx

“
1

4

d
ÿ

i,j“1

ż

Ω

ˆ

Bui
Bxj

`
Buj
Bxi

˙2

dx

“
1

4

d
ÿ

i,j“1

ż

Ω

ˆ

Bui
Bxj

˙2

`

ˆ

Buj
Bxi

˙2

` 2
Bui
Bxj

Buj
Bxi

dx

“
1

4
}∇v}2

rL2pΩqsdˆd `
1

4
}∇v}2

rL2pΩqsdˆd

`
1

2

d
ÿ

i,j“1

ż

Ω

Bui
Bxj

Buj
Bxi

dx

“
1

2
}∇v}2

rL2pΩqsdˆd `
1

2

d
ÿ

i,j“1

x
Bui
Bxj

,
Buj
Bxi
yL2pΩq

(3.68)

and the scalar product terms are estimated using the Cauchy Schwarz inequality, followed by an
application of the inequality of the arithmetic and geometric mean,

d
ÿ

i,j“1

x
Bui
Bxj

,
Buj
Bxi
yL2pΩq ď

d
ÿ

i,j“1

›

›

›

›

Bui
Bxj

›

›

›

›

L2pΩq

›

›

›

›

Buj
Bxi

›

›

›

›

L2pΩq

“

d
ÿ

i,j“1

d

›

›

›

›

Bui
Bxj

›

›

›

›

2

L2pΩq

›

›

›

›

Buj
Bxi

›

›

›

›

2

L2pΩq

ď

d
ÿ

i,j“1

1

2

ˆ›

›

›

›

Bui
Bxj

›

›

›

›

2

L2pΩq

`

›

›

›

›

Buj
Bxi

›

›

›

›

2

L2pΩq

˙

“
1

2
}∇u}2

rL2pΩqsdˆd `
1

2
}∇u}2

rL2pΩqsdˆd

“ }∇u}2
rL2pΩqsdˆd .

(3.69)

Using (3.69) in (3.68) yields the other side of the norm equivalence,

}εpvq}rL2pΩqsd ď }∇v}rL2pΩqsd . (3.70)
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Remark 3.4. Due to the norm equivalence, it holds that

CkornpΩq}v}rH1pΩqsd ď }v}EpΩq

“

ˆ

}εpvq}2
rL2pΩqsdˆd ` }v}

2
rL2pΩqsd

˙
1
2

ď

ˆ

}∇v}2
rL2pΩqsdˆd ` }v}

2
rL2pΩqsd

˙
1
2

“ }v}rH1pΩqsd ,

(3.71)

that is
CkornpΩq}v}rH1pΩqsd ď }v}rH1pΩqsd , @v P rH1

pΩqsd, (3.72)

implying CkornpΩq ď 1.

˚

In the following, the material under study is assumed to be admissible according to definition 11.

Definition 11 (Admissibility of fourth-order tensors). A tensor T P Rdˆdˆdˆd is called admissible
for β ě γ ą 0, if T satisfies

T
ijkl

“ T
jikl
“ T

klij

|T
ijkl
| ď β, @i, j, k, l “ 1, . . . , d

pT : Apxqq : Apxq ě γApxq : Apxq, @A : Ω Ñ Rdˆd
sym , a. e. x P Ω .

(3.73)

˝

For admissible materials, ellipticity of the bilinear form in the pure Dirichlet case now follows
from Theorem 3.2

Theorem 3.2 (Ellipticity / boundedness). Suppose that the assumptions from Problem 9 hold with
ΓD “ BΩ and ΓN “ H. Let C be an admissible stiffness tensor with admissibility constants
pγ, βq. Then, the bilinear form ar¨, ¨s appearing in Problem 9 is elliptic and continuous, i.e.

aru, us ě Ce }u}
2
rH1pΩqsd ,

aru, vs ď Ccont }u}rH1pΩqsd}v}rH1pΩqsd ,
(3.74)

for all u P VtrialpΩq and v P VtestpΩq with constants

Ce “ min

"

γC2
kornpΩq,

γC2
kornpΩq

c2
PFpΩq

*

,

Ccont “ β ě,

(3.75)

satisfying Ccont ě Ce ą 0.

˛

Proof. The stiffness tensor C is admissible, meaning that

pC : εpuqpxqq : εpuqpxq ě γεpuqpxq : εpuqpxq, (3.76)
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for all u P Vtrial and almost every x P Ω. Hence,

aru, us “

ż

Ω

pC : εpuqq : εpuq dx

ě γ

ż

Ω

εpuq : εpuq dx

“ γ}εpuq}2
rL2pΩqsdˆd .

(3.77)

Inserting the relation
}εpuq}2

rL2pΩqsdˆd “ }u}
2
EpΩq ´ }u}

2
rL2pΩqsd (3.78)

into (3.77) yields

aru, vs ě γ}εpuq}2
rL2pΩqsdˆd

“ γ

ˆ

}u}2EpΩq ´ }u}
2
rL2pΩqsd

˙

Korn
ě γ

ˆ

C2
kornpΩq}u}

2
rH1pΩqsd ´ }u}

2
rL2pΩqsdq

ě mintγ, γC2
kornpΩqu

ˆ

}u}2
rH1pΩqsd ´ }u}

2
rL2pΩqsd

˙

“ mintγ, γC2
kornpΩqu}∇u}2rL2pΩqsdˆd

“ γC2
kornpΩq}∇u}2rL2pΩqsdˆd

(3.79)

where the last inequality holds since CkornpΩq ď 1, as stated in Remark 3.4. Since the domain is
bounded, a vectir-valued Poincaré Friedrichs inequality holds, stating that there exists a constant
cPFpΩq ą 0 such that

}∇u}rL2pΩqsdˆd ě
1

cPFpΩq
}u}rL2pΩqsd , @u P rH1

0pΩqs
d. (3.80)

Thus, eq. (3.79) yields

aru, us ě γC2
kornpΩq}∇u}2rL2pΩqsdˆd

“ γC2
kornpΩq

ˆ

1

2
}∇u}2

rL2pΩqsdˆd `
1

2
}∇u}2

rL2pΩqsdˆd

˙

ě γC2
kornpΩq

ˆ

}∇u}2
rL2pΩqsdˆd `

1

cPF2

}u}2
rL2pΩqsd

˙

ě min

"

γC2
kornpΩq,

γC2
kornpΩq

c2
PFpΩq

*

}u}2
rH1pΩqsd

(3.81)

showing that the bilinear form ar¨, ¨s is elliptic with ellipticity constant

Ce :“ min

"

γC2
kornpΩq,

γC2
kornpΩq

c2
PFpΩq

*

ą 0. (3.82)

Boundedness of the bilinear form is a direct consequence of the admissibility of the material. For
any u P VtrialpΩq and v P VtestpΩq it holds that

aru, vs “

ż

Ω

pC : εpuqq : εpvq dx

ď β

ż

Ω

εpuq : εpvq dx

(3.83)
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and using the Cauchy Schwarz inequality,

aru, vs ď β}εpuq}rL2pΩqsdˆd}εpvq}rL2pΩqsdˆd

ď β

ˆ

}εpuq}2
rL2pΩqsdˆd ` }u}

2
rL2pΩqsd

˙
1
2

¨

ˆ

}εpvq}2
rL2pΩqsdˆd ` }v}

2
rL2pΩqsd

˙
1
2

“ β}u}EpΩq}v}EpΩq

ď β}u}rH1pΩqsd}v}rH1pΩqsd .

(3.84)

This proves the result.

Remark 3.5. Theorem 3.2 proved the ellipticity of the bilinear form in the pure Dirichlet problem.
In other well-posed cases, different versions of the Poincaré Friedrichs inequality must be invoked.

˚
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4
Partition of Unity Method

In this chapter, a brief overview of the Partition of Unity Method (PUM) is given, as introduced in
[Sch03] as a further abstraction to the Generalized Finite Element Method (GFEM). The GFEM,
which was presented in [MB96, MB97], is itself a broad generalization of the standard Finite Ele-
ment Method (FEM). In the following, the general process of constructing a PUM for the solution
of a partial differential equation is presented, starting with a description of the domain discretiza-
tion in Section 4.1. In Section 4.2, the construction of local and global approximation spaces is
described. Since the partial differential operators considered in this thesis are of even order 2 k,
not necessarily for k “ 1, the error estimate of PUM-approximations is formulated accordingly in
Section 4.3. Lastly, Section 4.4 shortly presents practical details of the cover construction.

4.1 Spatial discretization
In the following, let Ω Ă Rd be a d P N dimensional open and bounded with a sufficiently regular
boundary. Let tωiumi“1 be an open cover of Ω, that is a collection of open sets, the so-called patches,
with

ωi Ă Rd,
m
ď

i“1

ωi Ą Ω. (4.1)

Note that there are no specifications on the form or the alignment of these patches. However, there
are some conditions that can be imposed on the patches to make computations easier. In practical
applications, numerical integration needs to be performed on the patches. Hence, the patches are
usually chosen to be rectangles or circles in d “ 2, resp. cubes and spheres in d “ 3, since efficient
quadrature rules are available for these types of geometry. In Assumptions 4.1 and 4.2, conditions
for efficiency and stability of the global method are presented. These conditions assure that the
patches from the cover are chosen in a sensible way, for example preventing redundant patches.
The pointwise overlap condition from Assumption 4.1 ensures, that at most a certain number of
patches overlap at all points of the domain.

Assumption 4.1 (Pointwise overlap condition). There is a generic bound on the number of patches
any point x P Ω belongs to, i.e. there exists a number M P N such that for all points x P Ω it holds
that

cardti|x P ωiu ďM. (4.2)
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˛

Assumption 4.2 guarantees, that each patch exclusively covers a part of the domain. This property
will be essential to prevent linear dependencies in the global approximation space, as will be seen
in Section 4.2.

Assumption 4.2 (Flat top property). Assume that there exists a constant CFT ą 0 such that for all
patches ωi, the flat top region

ωFT
i :“ tx P ωi | ϕipxq “ 1u (4.3)

satisfies the condition

measpωiq ď CFT measpωFT
i q, @i “ 1, . . . ,m . (4.4)

˛

Figure 4.1 shows an exemplary discretization of a bounded domain using rectangular patches. The
sketched discretization satisfies the pointwise overlap condition, as well as the flat top property.

Figure 4.1: Domain and discretization using rectangular patches. The patches fully cover the
closure of the domain and satisfy Assumptions 4.1 and 4.2.

4.2 Construction of the approximation space
In the following, the notion of a Partition of Unity (PU) is introduced. A PU is a set of functions
with certain properties, which prove useful when constructing a global approximation space from
local approximation spaces.
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Definition 12 (Partition of Unity). Let tϕiu
m
i“1 be a set of Lipschitz functions, such that for all

i “ 1, . . . ,m and all x P Ω it holds that

suppϕi “ ωi, (4.5)
ϕipxq P r0, 1s, (4.6)

m
ÿ

i“1

ϕipxq “ 1. (4.7)

In this case, tϕiu
m
i“1 is called a Partition of Unity (PU) subordinate to the cover tωiumi“1. If

tϕiu
m
i“1 Ă CrpΩq, the Partition of Unity is said to be of order r. ˝

In order to introduce the Partition of Unity Method and to simplify the notation, multi-indices are
used. For α P Nd

0 and any sufficiently smooth function u : Ω Ñ R,

B
αu :“ Bα1

x1
B
α2
x2
. . . Bαd

xd
u. (4.8)

Furthermore, multi-indices satisfy

|α| :“
d
ÿ

i“1

αi, and α ˘ β “ pα1 ˘ β1, . . . , αd ˘ βdq, @α, β P Nd
0. (4.9)

Additionally, the notation β ď α is used whenever βi ď αi for all i “ 1, . . . , d. In the following, it
is assumed that the Partition of Unity satisfies Assumption 4.3.

Assumption 4.3. Let tϕiu
m
i“1 be a Partition of Unity subordinate to the cover tωiumi“1 and suppose

that the constructed PUM should be used to solve PDE of even order 2 k. Furthermore, suppose
that for all β P Nd

0 with |β| ď k there exists a constant Cβ ą 0 such that

}B
β ϕi }L8pRdq ď

Cβ
diampωiq|β|

, @i “ 1, . . . ,m . (4.10)

˛

Next, the construction of a global approximation space is presented, and its approximation quality
investigated. To this end, a local approximation space Vpωiq is introduced on each patch ωi,
i “ 1, . . . ,m. These local spaces are of the form

Vpωiq :“ Ppipωiq ` Epωiq, @i “ 1, . . . ,m, (4.11)

where Ppipωiq is the space of polynomials of degree pi P N on ωi. The space Epωiq is called space
of enrichments, and it is of the form

Epωiq “ spantψi,1, . . . , ψi,nu. (4.12)

The enrichment functions ψi,j encode a priori knowledge on the behavior of the overall solution,
such as fine-scale oscillations due to heterogeneous coefficients, or singularities due to reentrant
corners. In Chapter 5, a numerical scheme to pre-compute local functions encoding this behavior
of the solution will be presented, which can then be used as enrichment functions on the corre-
sponding patch(es). The set of functions tηi,ju

di
j“1 denotes a basis of Vpωiq for all i “ 1, . . . ,m,
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and di is the corresponding dimension of the local space. The global approximation space is the
result of a combination of the Partition of Unity with the local spaces,

VPU
pΩq :“

m
ÿ

i“1

ϕi Vpωiq “ tϕi vi| vi P Vpωiqu. (4.13)

The global space is spanned by the local bases in the sense that

VPU
pΩq “ spantϕi ηi,j | i “ 1, . . . ,m, j “ 1, . . . , diu. (4.14)

For a covering of the domain that satisfies the flat top property from assumption 4.2, any local
basis function ηi,j corresponds to a global basis function ϕi ηi,j and in this case

dimVPU
pΩq “

m
ÿ

i“1

di. (4.15)

The flat top property can hence be used as a stability criterion. Moreover, note that for local
approximation spaces only consisting of polynomials and a Partition of Unity of order r, the global
basis functions are all r-times continuously differentiable as well. This shows, that higher global
regularity is easy to achieve with the PUM, and that the PUM can (in contrast to FEM) be used
without modifications to solve higher order problems.

4!

The described construction works for local spaces consisting of scalar or
vector-valued functions. For the experimental part of this thesis, it is assumed
that a vector-valued local approximation space is the tensor product of scalar
local spaces. Adding a vector-valued enrichment function means enriching the
scalar spaces with the components of the enrichment.

4.3 Approximation properties
In the following theorem, the error estimates from [Sch03, Theorem 2.1] are formulated for the
case of higher order approximations.

Theorem 4.1 (Approximation properties). Let Ω Ă Rd be sufficiently regular and let tωiumi“1

be a covering of Ω satisfying Assumptions 4.1 and 4.2. Moreover, let tϕiu
m
i“1 be a Partition of

Unity subordinate to the cover that satisfies Assumption 4.3. Furthermore, let tVpωiqumi“1 be local
approximation spaces, and VPU

pΩq as in (4.13). Let u P Hk
pΩq be the function to be approximated

and suppose that there exist local functions vi P Vpωiq satisfying

}B
α
pu´ viq}L2pΩXωiq ď εα,i (4.16)

with constants εα,i, for any α P Nd
0, |α| ď k and all i “ 1, . . . ,m. Then, the function

uPU :“
m
ÿ

i“1

ϕi vi P VPU
pΩq Ă Hk

pΩq (4.17)

satisfies

}B
α
pu´ uPU

q}L2pΩq ď
?

2|α|M

»

—

—

–

ÿ

βPNd
0

|β|ď|α|

m
ÿ

i“1

ˆ

Cβεα´β,i
pdiamωiq|β|

˙2

fi

ffi

ffi

fl

1
2

(4.18)

for all α P Nd
0 with |α| ď k.
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˛

Proof. Let α P Nd
0 with |α| ď k be arbitrary. Using the fact that u “

řm
i“1 ϕi u, it holds that

B
α
pu´ uPU

q “ B
α

m
ÿ

i“1

ϕipu´ viq

“

m
ÿ

i“1

B
α
rϕipu´ viqs

“

m
ÿ

i“1

ÿ

βPNd
0

βďα

B
β ϕi B

α´β
pu´ viq.

(4.19)

Note that there are 2|α| multi-indices β in the inner sum, since the product rule is applied |α| times.
From the inequality of arithmetic and geometric means, one can see for any fixed α that

»

—

—

–

ÿ

βPNd
0

βďα

m
ÿ

i“1

B
β ϕi B

α´β
pu´ viq

fi

ffi

ffi

fl

2

ď 2|α|
ÿ

βPNd
0

βďα

«

m
ÿ

i“1

B
β ϕi B

α´β
pu´ viq

ff2

. (4.20)

The pointwise overlap condition from Assumption 4.1 reads

cardti|x P ωiu ďM, @x P Ω, (4.21)

implying that for any α and β from (4.20) it holds that
«

m
ÿ

i“1

B
β ϕi B

α´β
pu´ viq

ff2

ďM
m
ÿ

i“1

“

B
β ϕi B

α´β
pu´ viq

‰2
. (4.22)

Combining everything,

}B
α
pu´ uPU

q}
2
L2pΩq ď 2|α|M

m
ÿ

i“1

ÿ

βPNd
0

βďα

}B
β ϕi B

α´β
pu´ viq}

2
L2pΩq, (4.23)

and the summands appearing on the right-hand side can be estimated as

}B
β ϕi B

α´β
pu´ viq}

2
L2pΩq ď

ˆ

Cβ
pdiamωiq|β|

˙2

ε2
α´β,i. (4.24)

Inserting (4.24) into (4.23) proves the claim,

}B
α
pu´ uPU

q}L2pΩq ď
?

2|α|M

»

—

—

–

ÿ

βPNd
0

βďα

m
ÿ

i“1

ˆ

Cβεα´β,i
pdiamωiq|β|

˙2

fi

ffi

ffi

fl

1
2

. (4.25)
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Remark 4.1. Under the assumptions from Theorem 4.1, the estimates of the partial derivatives
(4.18) imply estimates of the full Hk-norm,

}u´ uPU
}HkpΩq

Def.
“

»

—

—

–

ÿ

αPNd
0

|α|ďk

}B
α
pu´ uPU

q}
2
L2pΩq

fi

ffi

ffi

fl

1
2

p4.18q

ď

»

—

—

–

ÿ

αPNd
0

|α|ďk

2|α|M
ÿ

βPNd
0

βďα

m
ÿ

i“1

ˆ

cβεα´β,i
pdiamωiq|β|

˙2

fi

ffi

ffi

fl

1
2

.

(4.26)

˚

The estimates from Theorem 4.1 show, that the global error is bounded by the sum of the local
errors. Hence, it is important to choose local approximation spaces with good approximation
properties. In the following, the Partition of Unity Method will be formulated as an h- and p-
version. In order to do so, recall the Lemma of Bramble and Hilbert.

Lemma 4.2 (Bramble & Hilbert). Let ω Ă Rd be a bounded Lipschitz domain. Let r P N arbitrary
and u P Hr

pωq. Then, there exists a polynomial v P Pr´1
pωq such that for all t P t0, . . . , ru

|u´ v|Htpωq ď Cpr, ωq diampωqr´t|u|Htpωq, (4.27)

with the Sobolev seminorms |u|Htpωq on Ht
pωq.

‚

Proof. The proof can be found in [Bra07].

Since the true solution u of the problem under study is in Hk
pΩq, it is also locally in Hk

pωiq for
all i “ 1, . . . ,m. Therefore, the Bramble Hilbert Lemma 4.2 can be applied locally on all patches,
whenever Assumption 4.4 holds.

Assumption 4.4 (Patch size & polynomial degree). All patches ωi for i “ 1, . . . ,m have a similar
size h, i.e. diamωi « h for all i “ 1, . . . ,m. Also assume, that the local approximation spaces
consist of polynomials of degree at least k´1, i.e.

Vpωiq “ Ppipωiq ` Epωiq, (4.28)

with pi ě k´1.

˛

Consequently, the local approximation quality can be expressed in terms of h and pi as fol-
lows.
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Corollary 4.3 (Local approximation as h-, p- & hp-version). Let u P Hk
pΩq and let Assump-

tions 4.1 to 4.4 hold with pi “ k´1 for all i “ 1, . . . ,m. Then, there exist local polynomials
vi P Vpωiq satisfying

|u´ vi|Hrpωiq ď Cpk, ωiqh
pi`1´r

|uPU
|Hrpωiq, @i “ 1, . . . ,m (4.29)

for all r “ 0, . . . , k.

‚

Proof. Since u P Hk
pωiq for all ωi, i “ 1, . . . ,m, the Bramble Hilbert Lemma 4.2 can be applied

on all patches, ensuring the existence of a polynomial vi P Pk´1
pωiq Ă Vpωiq satisfying

|u´ vi|Hrpωiq ď Cpk, ωiqh
k´r
|uPU

|Hrpωiq

“ Cpk, ωiqh
pi`1´r

|uPU
|Hrpωiq

(4.30)

for all r “ 0, . . . , k.

Corollary 4.3 shows, that the Partition of Unity method can be used as h-, p- or hp-version.

Remark 4.2. From Corollary 4.3 it especially follows, that the local approximation vi P Vpωiq
satisfies

}u´ vi}L2pωiq ď Cpk, ωiqh
pi`1

}uPU
}L2pωiq (4.31)

and

}∇pu´ viq}2L2pωiq
“

d
ÿ

i“1

}Bxipu´ viq}
2
L2pωiq

“
ÿ

αPNd
0

|α|“1

}B
α
pu´ viq}

2
L2pωiq

“ |u´ vi|
2
H1pωiq

ď Cpk, ωiqh
pi |uPU

|H1pωiq

(4.32)

and similar estimates hold for derivatives of higher order.

˚

Remark 4.3. The estimates from Corollary 4.3 can directly be used as the bounds εα,i in (4.16)
from Theorem 4.1, yielding global estimates of the Partition of Unity Method in terms of the local
polynomial degree and the diameter of the patches.

˚
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4.4 Practical details of the cover construction
In this section, the practical process of constructing the cover and a corresponding Partition of
Unity is briefly described. After defining the spatial domain Ω, a bounding box of Ω is determined,
which on its own forms an open cover. This cover is said to be of level 0. Subsequent levels i` 1
are constructed hierarchically by splitting all patches from the cover on level i at hand in half in all
coordinate directions. Newly created patches that do not have an intersection with Ω are discarded.
Hence, the number of patches increases roughly by a factor of 2d for each new level and spatial
dimension d. Since the Partition of Unity Method is intended to work on discretizations consisting
of overlapping patches, the patches are stretched in all coordinate directions by a factor κ ą 1.
By choosing this stretch factor appropriately, Assumptions 4.1 and 4.2 are satisfied automatically
from the cover construction. After the cover was generated, a Partition of Unity subordinate to this
cover may be constructed. A straight-forward approach to do this is to first define weight functions
tWiu

m
i“1 for the patches, and taking their weighted sums,

ϕi :“
Wi

řm
j“1Wj

, @i “ 1, . . . ,m, (4.33)

The functions tϕumi“1 form a Partition of Unity, and the method of construction is referred to as
Shepards approach. Figure 4.2 shows possible weight functions and the corresponding Shepard
PU on an exemplary discretization consisting of overlapping patches in one and two spatial di-
mensions. The two-dimensional weight functions are tensor products of one-dimensional weight
functions, and the figure also shows overlapping patches.
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(a) Discretization of a one dimen-
sional domain into overlapping in-
tegrals, and weight functions based
on |x|

(b) Shepard PU resulting from the
weight functions from (a)

(c) Weight functions in 2d that are
tensor products of the 1d weight
functions from (a)

(d) Shepard PU resulting from the
weight functions from (c)

(e) Cover made from overlapping
rectangles used in (c) and (d)

(f) PU function corresponding to
the center patch from (d)

Figure 4.2: Weight functions based on the absolute value and the corresponding Shepard PU func-
tions. In two spatial dimensions, the weight functions are tensor products of the one-dimensional
weight functions. In the flat top region of each patch, the corresponding PU function is equal to 1.
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5
Optimal basis functions

Finding the best approximation to a given element in a certain space is a classical problem in nu-
merical analysis. In the case of functions which are to be best-approximated in a Sobolev space, the
first quantitative, yet abstract estimates were presented by Andrey Kolmogorov in 1936 ([Kol36]).
In the works of Tichomirov, Babadjanov and Garkavi ([TB67, Gar62]), the original definitions
were modified and various explicit formulas for worst-case best approximation errors, together
with estimates for certain other cases of function spaces, were computed. Conditions for the exis-
tence of subspaces with best-possible approximation quality were developed in [Bro64] (Theorem
6) and extended in the works of Singer and Pinkus ([Sin13, Pin85]). In the latter, Theorem 2.2 in
chapter 4 also gives an explicit representation of the optimal subspaces in terms of the solutions
of a generalized eigenvalue problem. In the works of Babuška and Lipton ([BL11]), this repre-
sentation was exploited in order to compute optimal local approximation spaces for second-order
elliptic partial differential equations. The performance of the so-constructed spaces is superior to
that of standard polynomial approximation spaces, and hence allows for an improvement of the
quality of numerical solutions to second-order partial differential equations, without the need to
use heavy spatial refinement. As mentioned before, it is possible to obtain analytical enrichments
for certain combinations of differential operators, domains and data, for example using the stress
recovery method ([Mel05]). Whenever such analytical enrichments are available, they should be
used, but this is only the case for very specific problems. In Section 5.1, the framework presented
in [BL11], which allows to compute operator-dependent numerical enrichments with superior ap-
proximation qualities, is recapitulated. While the original publication considered second-order
elliptic problems, the framework is extended to the more general case of elliptic partial differential
equations of even order. Since the framework is formulated for the case of homogeneous partial
differential equations, this section also introduces the concept of lifting of solutions, allowing to
handle non-homogeneous data via particular solutions. Section 5.2 presents practical aspects for
the computation of locally optimal approximation spaces, which will be applied in the experimen-
tal section of this thesis. The computation of optimal local approximation spaces can be done in
an offline phase, prior to any global computation using these spaces. As a result, a coarse global
computation using optimal basis functions will provide results that are comparable to computa-
tions on much finer discretizations, while requiring only a fraction of the corresponding degrees
of freedom. Nevertheless, the offline phase requires a substantial amount of numerical work. Sec-
tion 5.3 therefore investigates and develops conditions which allow the optimal shape functions to

69
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be reused in changed settings.

5.1 Theoretical construction of optimal bases
In the previous Chapter 4, the Partition of Unit Method was introduced. For a patch ω Ă Ω, it
was seen that the corresponding local approximation space used in the Partition of Unity Method,
Vpωq, takes the general form

Vpωq “ Ppωqp ` Epωq, (5.1)

where Ppωqp denotes the space of polynomials up to a certain order p and Epωq is referred to as the
space of enrichments. A fundamental property of the Partition of Unity Method is, that all local
approximation spaces are independent of each other, and the space of enrichments Epωq should
hence be chosen in a way that maximizes the approximation power of the whole local space Vpωq.
This section is concerned with revisiting and extending the framework from [BL11], allowing for
a smart choice of the space of enrichments Epωq. The theory is formulated for homogeneous
problems, and hence the method of lifting of solutions will be presented beforehand. Lifting of
solutions allows to split the solution of the original problem into a sum of particular solutions and
function satisfying the homogeneous problem. The latter encodes fine-scale information which is
inherent to the differential operator appearing in the problem under study.

5.1.1 Lifting of solutions and homogeneous sampling problem
This section describes a decomposition of the solution of a partial differential equation which is
referred to as lifting of solutions. Consider a general PDE in the form of Problem 1, which is
specified by the tuple

pk, f, g0, . . . , gk´1,Γ0, . . . ,Γ
k´1
q (5.2)

describing the order of the partial differential equation, the load, boundary values and boundary
parts. For clarity, recall the definition of Problem 1.

Problem 1: General Partial Differential Equation.

Let Ω Ă Rd for d P N be open and bounded, let L be a linear differential
operator of order k P N as in (2.1) and let n P t1, du. Find a function u P
rCk
pΩqsn satisfying

Lu “ f, in Ω

B0 u “ g0, on Γ0
Ă BΩ

...

Bk´1 u “ gk´1, on Γk´1
Ă BΩ

where Bm are (piecewise) linear differential operators of order m “

0, . . . , k´1 defined on corresponding parts of the boundary and f : Ω Ñ Rn,
gm : Γm Ñ Rn,m “ 0, . . . , k´1 are sufficiently smooth functions.
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Since the partial differential operator L and all partial differential boundary operators Bi for i “
0, . . . , k´1 are linear, the superposition principle can be used to express the solution u P rCk

pΩqsn

in the form u “ uf ` u0 ` u1 ` . . .` uk´1 ` uhom, where

uf solves Problem 1 with pk, f, 0, . . . , 0,Γ0, . . . ,Γk´1
q

u0 solves Problem 1 with pk, 0, g0, 0, . . . , 0,Γ0, . . . ,Γk´1
q

...

uk´1 solves Problem 1 with pk, 0, . . . , 0, gk´1,Γ0, . . . ,Γk´1
q

uhom solves Problem 1 with pk, 0, . . . , 0,Γ0, . . . ,Γk´1
q

(5.3)

In the above equation (5.3), 0 denotes the zero vector in the case of a vector-valued partial differ-
ential equation. The functions uf , u0, . . . , uk´1 are called particular solutions for the given data
f, g0, . . . , gk´1. The function uhom satisfies the homogeneous problem, in which all data has been
replaced by zero. It encodes fine-scale information which is inherent to the involved differential
operators L,B0, . . . ,Bk´1 and totally independent of the data of the original problem.

4!
In general, the homogeneous problem has an infinite number of solutions,
among them the zero function. The computation of the unique function uhom

from the lifting is no easy task, and a method to approximate it is investigated
in detail in Section 5.1.2.

Remark 5.1. Consider a second-order partial differential equation in divergence form that is
subject to classical Dirichlet and Neumann boundary conditions, i.e. find a function u solving

´ divpA∇uq ` b ¨∇u` cu “ f, in Ω

u “ g, on ΓD Ă BΩ

A∇u ¨ ~n “ h, on ΓN :“ BΩzΓD

(5.4)

for sufficiently regular data A, b, c, g, h. Using particular solutions, i.e. a function uf solving

´ divpA∇uf q ` b ¨∇uf ` cuf “ f, in Ω

uf “ 0, on ΓD Ă BΩ

A∇uf ¨ ~n “ 0, on ΓN :“ BΩzΓD

(5.5)

another function ug solving

´ divpA∇ugq ` b ¨∇ug ` cug “ 0, in Ω

ug “ g, on ΓD Ă BΩ

A∇ug ¨ ~n “ 0, on ΓN :“ BΩzΓD

(5.6)

and a function uh solving

´ divpA∇uhq ` b ¨∇uh ` cuh “ 0, in Ω

uh “ 0, on ΓD Ă BΩ

A∇uh ¨ ~n “ h, on ΓN :“ BΩzΓD

(5.7)
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as well as a function uhom satisfying the homogeneous problem

´ divpA∇uhomq ` b ¨∇uhom ` cuhom “ 0, in Ω

uhom “ 0, on ΓD Ă BΩ

A∇uhom ¨ ~n “ 0, on ΓN :“ BΩzΓD

(5.8)

a solution of the original problem is given by u “ uf ` ug ` uh ` uhom.

˚

Lifting of local solutions

The superposition principle described before will be extensively used throughout this thesis and
the remainder of this chapter specifically. Optimal shape functions, whose construction will be
presented in Section 5.1.2, are however computed and employed locally. In fact, not even the
particular solutions for the data should be computed on a global scale, and hence the previously
described lifting of solutions is localized in the following. The locally computed particular solu-
tions, as well as the correct function satisfying the local homogeneous problem, are then used as
enrichments on the corresponding patches in a global Partition of Unity Method. The restriction
of Problem 1 to a subdomain ω Ă Ω is presented in Problem 10.

Problem 10: Local General Partial Differential Equation.

Let Ω Ă Rd for d P N be open and bounded, ω Ă Ω, let L be a linear differ-
ential operator of order k P N as in (2.1) and let n P t1, du. Find a function
uω P rCk

pωqsn satisfying

Lu “ f, in ω

B0 u “ g0, on Γ0
ω :“ Γ0

X B ω

...

Bk´1 u “ gk´1, on Γk´1
ω :“ Γk´1

X B ω

(5.9)

where Bm are (piecewise) linear differential operators of order m “

0, . . . , k´1 defined on corresponding parts of the boundary and f : Ω Ñ Rn,
gm : Γm Ñ Rn, m “ 0, . . . , k´1 are sufficiently smooth functions from the
corresponding global problem.

It is worth noticing that the local Problem 10 does not necessarily have to be well-posed, even
if the global problem was. The reason is, that Γiω may be empty for some i P t0, . . . , k´1u.
Consider for example the case that there is no boundary condition of order 0, i.e. Γ0

ω “ H, making
solutions at most unique up to a constant. However, one has total freedom in adding additional
boundary data on the faces of ω which are not fixed by the globally imposed boundary conditions
in order to restore the well-posedness of the problem. The superposition principle presented before
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implies that the solution uω can be written as the sum uω “ uω,f ` uω,0 ` . . . ` uω,k´1 ` uω,hom,
where uω,f , uω,0, . . . , uω,k´1 are particular solutions corresponding to the data, and uω,hom is a local
function satisfying the homogeneous problem, i.e.

uf solves Prb. 1 with pk, f, 0, . . . , 0,Γ0
ω, . . . ,Γ

k´1
ω q

u0 solves Prb. 1 with pk, 0, g0, 0, . . . , 0,Γ0
ω, . . . ,Γ

k´1
ω q

...

uk´1 solves Prb. 1 with pk, 0, . . . , 0, gk´1,Γ0
ω, . . . ,Γ

k´1
ω q

uhom solves Prb. 1 with pk, 0, . . . , 0,Γ0
ω, . . . ,Γ

k´1
ω q.

(5.10)

Remark 5.2. It is not always necessary to compute all parts of the decomposed solution: Consider
for example an interior patch ω Ă Ω with ωXBΩ “ H. In this case, a particular solutions to
any boundary condition function gi for i P t0, . . . , k´1u is only defined by artificially prescribed
boundary values, which need to be added to the problem in order to make it uniquely solvable. In
fact, such particular solutions are again solutions of the homogeneous problem.

˚

Remark 5.3. It may also happen, that a particular solution is a constant or a lower order poly-
nomial, which is contained in the local approximation space anyway. Adding this function as
enrichment will not improve the approximation quality of the local approximation space.

˚

Solving the homogeneous local problem requires the prescription of artificial boundary conditions.
Otherwise, the zero function is a trivial solution for any PDE of order k ą 0. In general, there is
an infinite-dimensional function space spanned by the solutions of the homogeneous problem, and
samples from this space can be computed by solving the local homogeneous sampling Problem 11
for a given function b, which is imposed as boundary condition on the free boundary B ω zBΩ of
the local patch ω.
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Problem 11: Local homogeneous sampling problem.

Let Ω Ă Rd for d P N be open and bounded, ω Ă Ω, let L be a linear dif-
ferential operator of order k P N as in (2.1) and let n P t1, du. Furthermore,
let ΓF

ω :“ B ω zBΩ and b : ΓF
ω Ñ Rn sufficiently regular. Find a function

uω P rCk
pωqsn satisfying

Lubω,hom “ 0, in ω

B0 ubω,hom “ 0, on Γ0
ω

...

Bk´1 ubω,hom “ 0, on Γk´1
ω

ubω,hom “ b, on ΓF
ω .

(5.11)

where Bm are the (piecewise) linear differential operators of order m “

0, . . . , k´1 defined on corresponding parts of the boundary from the global
problem, and 0 denoting the zero vector in the case of n “ d.

Remark 5.4. The sampling problem can also be defined differently: Instead of prescribing the
value of the solution on the free boundary, other conditions such as a divergence may be pre-
scribed.

˚

4!
Depending on the location of ω in Ω and the order of the PDE it may be nec-
essary to prescribe additional conditions on the free boundary to ensure well-
posedness of the sampling problem. For the sake of simplicity, it will be as-
sumed throughout the remainder of this thesis that Problem 11 is well-posed.

As mentioned before, the solutions of the homogeneous problem and hence the form of an ex-
plicit basis of the space of local weakly harmonic functions are only known for very few partial
differential operators. In all other cases, the space of local weakly harmonic functions needs to be
sampled, for example using the sampling Problem 11. The process of identifying harmonic func-
tions encoding valuable fine-scale information is described in the following Section 5.1.2.

5.1.2 Construction of optimal bases
As seen in the previous Section 5.1.1, the solution of a partial differential equation can be expressed
locally as a sum of particular solutions corresponding to the data of the problem, and a function
that satisfies the homogeneous problem. The space of homogeneous solutions is in general infinite-
dimensional, and the true homogeneous solution appearing in the lifting can only be computed
from the sampling Problem 11 if the correct boundary boundary value b is known. This, however,
requires knowledge of the true solution, which is not available. Instead, a low-dimensional space
of harmonic functions can be constructed, such that the best-approximation error of uω,hom in this
space is arbitrarily small. A framework for the construction of such best-possible approximation
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spaces is presented in the following.

The original publication [BL11] introduced the construction in the case of second-order elliptic
partial differential equations, and in this section the framework will be extended to the more general
case of elliptic partial differential equations of even order. Consider the general Problem 1 and
suppose that it is of even order 2 k and scalar, i.e. n “ 1, in order to simplify the notation. Similar
results hold for the vector-valued case. The construction is done locally on a subdomain ω Ă Ω,
where ω is a patch, resp. a collection of several patches in the context of the Partition of Unity
Method (cf. Chapter 4). Improving the local approximation quality on ω will also improve the
global error bound from Theorem 4.1. In order to construct the local approximation space on ω,
an oversampled version ω` of ω must be invoked, which can be obtained by stretching ω with
factors τ 1, . . . , τ d ą 1 in all coordinate direction. Possible geometric relations between ω and ω`

are sketched in Figure 5.1.

Ω

ω

ω+

(a) Neither ω nor ω` intersect BΩ

Ω
ω

ω+

(b) Both ω and ω` intersect BΩ

Ω

ω

ω+

(c) Only ω` intersects BΩ

Ω

ω

ω+

(d) An inner global boundary is contained in ω

Figure 5.1: Possible geometrical relations between ω, ω` and Ω. The

The problem under study is transformed into its variational formulation, and the corresponding
bilinear form is denoted by aΩr¨, ¨s, where the subscript is added in order to indicate the integration
domain. R denotes the space of rigid body modes, that is the space of functions whose contribu-
tions to the solution are fixed by imposing suitable boundary conditions. Hence, the homogeneous
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problem at hand is well-posed for

aΩ : Hk
pΩq{R ˆ Hk

pΩq{R Ñ R, (5.12)

and the corresponding linear functional defined on this quotient space.

Remark 5.5. The bilinear form corresponding to the Laplace operator,

aΩru, vs :“

ż

Ω

∇u ¨∇v dx, (5.13)

is a scalar product on H1
pΩq{R with R “ spant1u.

The rigid body modes corresponding to three-dimensional linear elasticity,

aΩru, vs :“

ż

Ω

σpuq : εpvq dx, (5.14)

are translations and rotations, i.e.

R :“

$

&

%

»

–

1
0
0

fi

fl ,

»

–

0
1
0

fi

fl ,

»

–

0
0
1

fi

fl ,

»

–

x2

´x1

0

fi

fl ,

»

–

x3

0
´x1

fi

fl ,

»

–

0
x3

´x2

fi

fl

,

.

-

. (5.15)

˚

Similarly, the local problems on ω and ω` are well-posed for

aω : Hk
pωq{R ˆ Hk

pωq{R Ñ R,
aω` : Hk

pω`q{R ˆ Hk
pω`q{R Ñ R,

(5.16)

with corresponding linear functionals, and the bilinear forms define local energy inner products

xu, vyEpωq :“ aωru, vs, xu, vyEpω`q :“ aω`ru, vs. (5.17)

Local spaces of weakly harmonic functions are defined as

Hpωq :“ tu P Hk
pωq{R | aωru, ϕs “ 0, @ϕ P C80 pωqu

Hpω`q :“ tu P Hk
pω`q{R | aω`ru, ϕs “ 0, @ϕ P C80 pω`qu

(5.18)

and by definition it holds that the weak local homogeneous solutions satisfy uω,hom P Hpωq, resp.
uω`,hom P Hpω`q. A ’good’ local approximation space for uω`,hom must hence be a subspace
of Hpωq and its construction will involve the harmonic space on the oversampled patch Hpω`q.
Furthermore, the construction relies on a Cacciopoly-type inequality presented in Theorem 5.1,
which allows to estimate the energy of a function on ω in terms of the Hk´1 norm on ω`.

4!

In the original publication [BL11], the difference between the construction on
inner patches and patches touching the boundary was highlighted, and Theo-
rems 5.1 and 5.2 were shown for both cases and k “ 2. In the latter case,
the construction of optimal local approximation spaces is technically more in-
volved, but the results coincide. For the following generalization, the geometric
relation ω Ă ω` Ă Ω with ω`XBΩ “ H will be assumed.
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Theorem 5.1 (Caccioppoli-type inequality for local energy norm). Consider a uniformly elliptic
differential operator L of order 2 k, and assume the corresponding elliptic bilinear form aΩ :
Hk
pΩq{R ˆ Hk

pΩq{R Ñ R takes the form

aΩru, vs :“
ÿ

α,βPNd
0

|α|,|β|ďk

ż

Ω

aα,βB
αuBβv dx (5.19)

with coefficients aα,β P L8pΩq and aα,β P R constant for any terms involving derivatives of the
highest order k, i.e. maxt|α|, |β|u “ k. Then, for all u P Hpω`q the following inequality holds,

}u}Epωq ď C}u}Hk´1pω`q. (5.20)

˛

Proof. Let u P Hpω`q be a harmonic function, i.e. aω`ru, ηs “ 0 for all C80 pω`q. Since ω Ă ω`

with distpB ω, B ω`q ą 0, there exists a cutoff (bump) function η P C80 pω`q with η “ 1 on ω. The
funtion η, as well as all of its partial derivatives have zero trace on B ω`, which proves especially
useful during integration by parts. Using the chain rule,

0 “ aω`ru, ηus “
ÿ

α,βPNd
0

|α|,|β|ďk

ż

ω`
aα,βB

αuBβpηuq dx

“
ÿ

α,βPNd
0

|α|,|β|ďk

ÿ

γPNd
0

γďβ

ż

ω`
aα,βB

αuBγηBβ´γu dx,

(5.21)

and by bringing all terms for |γ| ą 0 to the other side,

ÿ

α,βPNd
0

|α|,|β|ďk

ż

ω`
aα,βB

αuBβuη dx

“ ´
ÿ

α,βPNd
0

|α|,|β|ďk

ÿ

γPNd
0

0ă|γ|
γďβ

ż

ω`
aα,βB

αuBγηBβ´γu dx.
(5.22)

Next, the terms appearing on the right-hand side are estimated individually. Since |γ| ą 0, also
|β ´ γ| ď k´1. For any α with |α| ă k, the Hölder and Cauchy Schwarz inequalities are applied
to see that

ż

ω`
aα,βB

αuBγηBβ´γu dx ď }aα,β}L8pω`q}B
γη}C8pω`q}u}

2
Hk´1pω`q

. (5.23)

In the case of |α| “ k and |β ´ γ| ă k´1, apply integration by parts, having in mind that aα,β is
constant by assumption. Let i P t1, . . . , du such that αi ą 0, then α “ α ´ ei ` ei with i-th unit
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vector ei, and

ż

ω`
B
αuBγηBβ´γu dx “

ż

ω`
B
α´ei`eiuBγηBβ´γu dx

“ ´

ż

ω`
B
α´eiuBei

`

B
γηBβ´γu

˘

dx

“ ´

ż

ω`
B
α´eiuBγ`eiηBβ´γu` Bα´eiuBγηBβ´γ`eiu dx

(5.24)

Due to the assumptions on the multiindices, it holds that

|α ´ ei| “ k´1, |β ´ γ| ă |β ´ γ ` ei| ď k´1, (5.25)

and similar estimates to (5.23) can be performed for both integrands with |aα,β| instead of }aα,β}L8pω`q.
In the last case, consider |α| “ k and |β ´ γ| “ k´1, again noting that aα,β is constant and can
hence be regarded as a multiplicative factor of the integral. Apply integration by parts once to
remove one partial derivative from α “ α ´ ei ` ei, and the calculation is identical to the one in
(5.24). However, note that now |β ´ γ ` ei| “ k, and the estimate from (5.23) can only be applied
for one of the two integrands. Integration by parts is now applied again, this time removing a
partial derivative from β´ γ` ei “ β´ γ` ei´ ej ` ej . Again, one of the terms can be estimated
as in (5.23), while for the other the process is iterated. All in all, integration by parts is applied
over and over again to move all partial derivatives from β ´ γ and α to the corresponding other
part of the integrand. Each time, an additional term appears involving a partial derivative of η of
maximum order |γ| ` 2 k´1, and the corresponding terms can be estimated as before. Combining
everything, and noting that integration by parts is performed 2 k´1 times, an odd number, it holds
that

ż

ω`
B
αuBγηBβ´γu dx ď ´

ż

ω`
B
β´γuBγηBαu dx

` }u}2
Hk´1pω`q

ÿ

δ1,δ2PNd
0

δ1ďα
δ2ďβ

}B
δη}C80 pω`q, (5.26)

or
ż

ω`
B
αuBγηBβ´γu dx ď

1

2
}u}2

Hk´1pω`q

ÿ

δPNd
0

|δ|ď|γ|`2 k´1

}B
δη}C80 pω`q (5.27)

The proof is finished by noting that uniform ellipticity of L implies

ÿ

α,βPNd
0

|α|ďk
|β|ďk

aα,βB
αuBβu ě 0 almost everywhere in Ω, (5.28)
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so
}u}2Epωq “

ż

ω

ÿ

α,βPNd
0

|α|ďk
|β|ďk

aα,βB
αuBβu dx

“

ż

ω

ÿ

α,βPNd
0

|α|ďk
|β|ďk

aα,βB
αuBβuη dx

ď

ż

ω`

ÿ

α,βPNd
0

|α|ďk
|β|ďk

aα,βB
αuBβuη dx

ď

¨

˚

˚

˚

˚

˚

˝

Cpηq
ÿ

α,βPNd
0

|α|ďk
|β|ďk

}aα,β}L8pω`q

˛

‹

‹

‹

‹

‹

‚

}u}2
Hk´1pω`q

,

(5.29)

where in the last inequality all previously described estimates were used, and Cpηq contains norms
of partial derivatives of η.

It will turn out, that the functions spanning the desired optimal approximation space on ω are in
fact restrictions of weakly harmonic functions on ω`. Theorem 5.2 shows a crucial property of the
corresponding restriction operator.

Theorem 5.2 (Compactness of the restriction operator). Consider the restriction operator P :
Hpω`q ãÑ Hpωq, defined by Pupxq “ upxq for all x P ω. Under the assumptions from Theo-
rem 5.1, P is compact.

˛

Proof. The compactness of P is shown using sequences. If tuiu8i“1 Ă Hpω`q is a bounded se-
quence, it needs to be shown that tPuiu8i“1 Ă Hpωq has a convergent subsequence. It follows
from the Rellich-Kondrachov theorem, that the embedding ιkk´1 : Hk

pω`q ãÑ Hk´1
pω`q, u ÞÑ u is

compact. Hence, the sequence tιkk´1 uiu
8
i“1 “ tuiu

8
i“1 has a convergent subsequence in Hk´1

pω`q,
named tuiju

8
j“1. The Caccioppoli-type inequality from Theorem 5.1 holds, and can be applied to

Puij ´ Puik P Hpωq, reading

}Puij ´ Puik}Epωq ď C}uij ´ uik}Hk´1pω`q, @j, k P N. (5.30)

The subsequence tuiju
8
j“1 at hand converges in Hk´1

pω`q, so it is a Cauchy sequence, meaning
that for any ε ą 0 there exists r P N such that

}uij ´ uik}Hk´1pω`q ă ε, @j, k ě r. (5.31)

From (5.30) and (5.31) it follows that

}Puij ´ Puik}Epωq ď C}uij ´ uik}Hk´1pω`q ă Cε, @j, k,ě r, (5.32)
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showing that also tPuiju
8
j“1 is a Cauchy sequence in Hpωq, thus convergent.

Using the restriction operator P, n-dimensional approximation spaces Vnpωq Ă Hpωq, for n P N,
will be constructed in the following. Their approximation quality is quantified in terms of the
worst-case best approximation error,

sup
uPHpω`q

inf
vPVnpωq

}Pu´ v}Epωq
}u}Epω`q

. (5.33)

Consequently, the best n dimensional approximation space, Vn
opt
pωq, is defined by

Vn
opt
pωq :“ arginf

VnpωqĂHpωq
dimVnpωq“n

sup
uPHpω`q

inf
vPVnpωq

}Pu´ v}Epωq
}u}Epω`q

(5.34)

and the corresponding worst-case best approximation error is denoted

dnpω, ω
`
q :“ inf

VnpωqĂHpωq
dimVnpωq“n

sup
uPHpω`q

inf
vPVnpωq

}Pu´ v}Epωq
}u}Epω`q

“ sup
uPHpω`q

inf
vPVn

optpωq

}Pu´ v}Epωq
}u}Epω`q

.

(5.35)

The quantity dn is called Kolmogorov n-width of the compact operator P.

The space Vn
opt
pωq can now be constructed explicitly. Consider the adjoint of the restriction op-

erator, P‹ : Hpωq Ñ Hpω`q. The operator P‹ is linear and continuous. Under the assumptions
from Theorem 5.1, P is compact, so for any bounded sequence tuiu8i“1 Ă Hpω`q there exists a
convergent subsequence tPuiju

8
j“1 Ă Hpωq. From the continuity of P‹, it follows that

}P‹pPuij ´ Puikq}Hpω`q ď }P
‹
}op}Puij ´ Puik}Hpω`q, @j, k P N. (5.36)

with the operator norm

}P‹}op :“ sup
uPHpωq

}P‹u}Hkpω`q

}u}Hkpωq

, (5.37)

showing that tP‹ Puiju
8
j“1 Ă Hpω`q converges in Hpω`q. This means, that also the operator

P‹ P is compact. Moreover, it is self-adjoint and non-negative. In the books of [Gar62, Sin13,
Pin85], it was shown that the Kolmogorov n-width is directly related to (and computable using)
the eigenvalues of the eigenvalue problem P‹ Pu “ λu. This is presented in Theorem 5.3.

Theorem 5.3 (n-width and eigenvalue problem). The n-widths of the compact, self-adjoint, non-
negative operator P‹ P and the corresponding optimal n-dimensional approximation spaces Vn

opt
pωq

satisfy
dnpω, ω

`
q “

a

λn`1

Vn
opt
pωq “ spantψ1, . . . , . . . , ψnu

(5.38)

for all n P N, where λ1 ě λ2 ě . . . ě 0 are the ordered eigenvalues of P‹ P and ψi is the
eigenfunction corresponding to λi for all i.
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˛

Proof. See [Sin13, Chapter IV, Theorem 2.2].

Using the definition of the adjoint operator and the local energy inner products, the eigenvalue
problem can be rewritten. While the operator P‹ P is rather abstract, this reformulation can be
used to explicitly compute the optimal approximation space Vn

opt
pωq.

Theorem 5.4 (n-width and gEVP). The n-widths of the compact, self-adjoint, non-negative op-
erator P‹ P and the corresponding optimal n-dimensional approximation spaces Vn

opt
pωq satisfy

dnpω, ω
`
q “

a

λn`1

Vn
opt
pωq “ spantPψ1, . . . , . . . ,Pψnu,

(5.39)

where 1 ě λ1 ě λ2 ě . . . ě 0 and Hpω`q Q ψ1, ψ2, . . . are the eigenvalues and eigenfunctions of
the generalized eigenvalue problem

xψ, vyEpωq “ λxψ, vyEpω`q, @v P Hpω`q. (5.40)

˛

Proof. From Theorem 5.3 it is known that the eigenpairs of the eigenvalue problem are the solu-
tions of

P‹ Pψ “ λψ . (5.41)

Given a solution pλ, ψq of (5.41) it also holds that

xP‹ Pψ, vyEpω`q “ λxψ, vyEpωq, @v P Hpω`q. (5.42)

Using the definition of the adjoint operator, and recalling that P is the restriction, it follows

xPψ,P vyEpω`q “ xψ, vyEpωq, @v P Hpω`q, (5.43)

and the generalized eigenvalue problem reads

xψ, vyEpωq “ λxψ, vyEpωq, @v P Hpω`q. (5.44)

Due to Theorem 5.3, the eigenvalues encode information on the n-widths, whereas the restrictions
of the eigenfunctions span the space Vn

opt
pωq.

5.2 Practical construction
The framework for the computation of optimal local approximation spaces, which was presented in
the previous Section 5.1.2, will be extensively used in the experimental part of this thesis. This sec-
tion describes practical details of the computational process using the Partition of Unity Method.
Consider Problem 1 and suppose the differential operator is uniformly elliptic, scalar and of even
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order 2 k. Suppose further that ω Ă Ω is a subdomain which will be used as a patch in the Par-
tition of Unity Method and on which the local approximation quality of the global space is to be
enhanced, for example due to the presence of a complicating feature. According to the lifting of
solutions described in Section 5.1.1, the solution uω of the corresponding local Problem 10 can be
decomposed as

uω “ uω,f ` uω,g0 ` . . .` uω,g2 k´1 ` uω,hom, (5.45)

with the function uω,hom being a unique function satisfying the local homogeneous problem and the
particular solutions uω,f , uω,g0 , . . . , uω,g2 k´1 , which can be computed in a straight-forward fashion
by solving the corresponding local problems. In the following, all functions appearing in (5.45) re-
fer to variational solutions. As described before, it may be necessary to impose artificial boundary
conditions in order to fix rigid modes and ensure well-posedness of the local problems.

The computation of uω,hom on a local level is a very difficult task for many reasons, so the frame-
work from Section 5.1.2 is employed, providing an optimal local approximation space Vn

opt
pωq to

approximate uω,hom, with dimension n P N to be decided upon.

Let now VPU
pΩq be the global approximation space of a Partition of Unity Method, which uses ω

as one of the patches in the underlying cover. The local approximation space on ω appearing in
VPU

pΩq has the general form
Vpωq “ Pp

pωq ` Epωq (5.46)

for some polynomial degree p. Using the splitting (5.45) and Vn
opt
pωq, a space of enrichments on ω

is given by
Epωq “ spantuω,f , uω,g0 , . . . , uω,g2 k´1u Y Vn

opt
pωq. (5.47)

In order to construct Vn
opt
pωq explicitly, an oversampled patch ω` containing ω is chosen and the

generalized eigenvalue problem from Theorem 5.4, that is

xψ, vyEpωq “ λxψ, vyEpω`q, @v P Hpω`q (5.48)

is solved. As mentioned before, an explicit basis of the infinite-dimensional space of harmonic
functions Hpω`q is only known for very few differential operators and must in general be sam-
pled. This section describes practical details of the sampling process and the construction of
Vn

opt
pωq.

5.2.1 Choice of the oversampling factor
The construction of optimal shape functions which are to be used on a patch ω are constructed
on an oversampled version ω` of this patch and afterwards restricted to ω. A priori, the shapes
of ω and ω` are arbitrary, and the only necessary geometrical condition is ω Ă ω`. For practi-
cal applications, ω is chosen to be a hypercube and ω` is obtained by stretching all sides of ω.
Without loss of generality, this oversampling factor τ ą 1 is chosen identical in all coordinate
directions.

Remark 5.6. Depending on the problem at hand, it can make sense to use differently shaped
subdomains such as spheres. The shape of the patch can also have a strong influence on reusability
of the optimal basis functions, as will be seen in Section 5.3.
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˚

Suppose now, that pλ, ψq P R ˆ Hpω`q is an eigenpair of the infinite-dimensional eigenvalue
problem (5.48). Since x¨, ¨yEpωq and x¨, ¨yEpω`q are scalar products on Hpωq, resp Hpω`q, the choice
v “ ψ leads to the equation

xψ, ψyEpωq
loooomoooon

}ψ }2Epωq

“ λ xψ, ψyEpω`q
looooomooooon

}ψ }2
Epω`q

, @v P Hpω`q, (5.49)

and hence λ P p0, 1q for an oversampling factor τ ą 1. Moreover, supposing that ω is an interior
patch with side lengths h1, . . . , hd, i.e. measω “

śd
i“1 hi, it holds that measω` ď

śd
i“1 τ hi, and

equality holds for ω` Ă Ω. As a result,

measpω` zωq ď
d
ź

i“1

τ hi ´
d
ź

i“1

hi “ pτ
d
´1q

d
ź

i“1

hi, (5.50)

and for τ « 1 also ω` « ω, implying that the energy norm of a function on ω will be arbitrarily
close to the energy norm of the function on ω`. Hence, (5.49) implies λ « 1. Following similar
lines, choosing a very large oversampling factor tends to lead to very small eigenvalues, since the
fraction of a functions energy on ω eventually gets negligibly small compared to its energy on ω`,
leading to eigenvalues λ « 0.

Solving the sampling problem means propagating the boundary data prescribed on the free bound-
ary according to the PDE coefficients towards the center of the oversampled patch ω`. Oversam-
pling factor and boundary data hence influence each other and must be balanced. In the upcoming
numerical experiments (Chapters 6 and 7), the oversampling factor τ “ 2.0 worked well, and this
is also the value chosen in the original publication [BL11]. It was slightly shrunk if this led to
increases of measpΓF

ω`q or to avoid interference from other subregions of interest.

5.2.2 Sampling of harmonic functions
As introduced in Section 5.1.1, denote by ΓF

ω` the free part of the boundary of ω` on which no
global boundary condition holds, and recall that weakly local harmonic functions can be sampled
by solving the variational formulation of Problem 11. In the following, it is assumed that the
sampling problem is well-posed for any provided nonzero boundary value on the free boundary.
Let now tbiumi“1 Ă L2

pΓF
ω`q, and denote by DpΓF

ω` , tb
iumi“1q the space spanned by these boundary

data functions,
DpΓF

ω` , tb
i
u
m
i“1q :“ spantb1, . . . , bmu Ă L2

pΓF
ω`q. (5.51)

Furthermore, denote by ub the solution of the sampling Problem 11 with additional boundary data b
prescribed on ΓF

ω` . For any b1, b2 P DpΓF
ω` , tb

iumi“1q, it follows that also b1` b2 P DpΓF
ω` , tb

iumi“1q.
Moreover, for all ϕ P C80 pω`q it holds that

aω`rub1 ` ub2 , vs “ aω`rub1 , vs ` aω`rub2 , vs “ 0,

pub1 ` ub2q|ΓF “ ub1 |ΓF ` ub2 |ΓF “ b1 ` b2.
(5.52)

Hence,
ub1`b2 “ ub1 ` ub2 , @b1, b2 P Dpω`q, (5.53)
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showing that the space Hmpω
`, tbiumi“1q :“ spantub1 , . . . , ubmu spanned by the solutions satisfies

dimHmpω
`, tbiumi“1q “ dimDpΓF

ω` , tb
i
u
m
i“1q. (5.54)

The choice of boundary data functions for the sampling is essential to the quality of the finite di-
mensional harmonic space Hm, and various ways of sampling will be described in Section 5.2.5.

Remark 5.7. The sampling of a finite-dimensional subspace of the infinite-dimensional, abstract
harmonic space is the first source of errors in any practical computation of the optimal local basis
functions.

˚

Note that the sampling of harmonic functions is the most expensive part of the overall computation.
The reason for this is that a partial differential equation has to be solved and that the solution of
this PDE should be able to capture the fine-scale behavior of the homogeneous solution, u0

|ω`
,

meaning that the sampling problem must be resolved finely enough to capture it. In practice, this
means using a large number of very fine patches in the Partition of Unity Method.

5.2.3 Setup and solution of the generalized eigenvalue problem
After a set of boundary data functions tbiumi“1 Ă L2

pΓFq has been chosen and a finite-dimensional
subspace of the infinite-dimensional space of weakly local harmonic functions has been sampled,

Hmpω
`, tbiumi“1q Ă Hpω`q, (5.55)

the discrete generalized eigenvalue problem

xψ, vyEpωq “ λxψ, vyEpω`q, @v P Hmpω
`, tbiumi“1q (5.56)

can be set up. Since tubiumi“1 is a generating set of Hmpω
`, tbiumi“1q, there arem eigenpairs pλi, ψiq,

i “ 1, . . . ,m, with

ψi “
m
ÿ

j“1

pψiqjubj , (5.57)

and ψi is the coefficient vector solving the generalized matrix eigenvalue problem

Mω ψi “ λiMω` ψi (5.58)

with matrices

Mω “

»

—

–

xub1 , ub1yEpωq . . . xub1 , ubmyEpωq
... . . . ...

xubm , ub1yEpωq . . . xubm , ubmyEpωq

fi

ffi

fl

Mω` “

»

—

–

xub1 , ub1yEpω`q . . . xub1 , ubmyEpω`q
... . . . ...

xubm , ub1yEpω`q . . . xubm , ubmyEpω`q

fi

ffi

fl

.

(5.59)
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Remark 5.8. The solution of the generalized eigenvalue problem is a post-processing step, and
can be regarded as a filtering to identify functions from the finite-dimensional harmonic space
that provide the most valuable information. If the number of samples m is small, the generating
functions tubiumi“1 could also directly be used as local enrichment functions in a global computa-
tion. Choosing the ’right’ type of boundary data is however not an easy task, and the simulations
presented in Chapter 6 will reveal that the required number of boundary data functions is usually
quite large.

˚

5.2.4 Adding additional boundary data
Suppose now that an additional boundary data function bm`1 P L2

pΓF
ω`q is added, and that all

boundary data functions tbium`1
i“1 are linearly independent, leading to an m ` 1 dimensional dis-

crete space of weakly harmonic functions, Hm`1pω
`, tbium`1

i“1 q. It is not clear a priori, how the
eigenpairs obtained from the m and the m` 1 dimensional approximation spaces are related, even
if the spaces themselves are nested. In order to see this, note that the extended pm` 1q ˆ pm` 1q
matrices appearing in the pm`1q-dimensional generalized eigenvalue problem contain the mˆm
matrices appearing in the m-dimensional generalized eigenvalue problem,

Mm`1
ω “

«

Mm
ω dω

dTω cω

ff

Mm`1
ω` “

«

Mm
ω` dω`

dTω` cω`

ff
(5.60)

with the following vectors from Rm,

dω “

»

—

–

xub1 , ubm`1yEpωq
...

xubm , ubm`1yEpωq

fi

ffi

fl

, dω` “

»

—

–

xub1 , ubm`1yEpω`q
...

xubm , ubm`1yEpω`q

fi

ffi

fl

(5.61)

and scalars
cω “ xubm`1 , ubm`1yEpωq, cω` “ xubm`1 , ubm`1yEpω`q. (5.62)

Suppose that pλ,ψm
q is an eigenpair of the m dimensional generalized eigenvalue problem. Let

now T : Rm Ñ Rm be a linear transformation, e P R and consider the vector

ψm`1 :“

„

T ψm

e



P Rm`1. (5.63)

The vectorψm`1 is an eigenvector of them`1 dimensional gEVP corresponding to an eigenvalue
µ, whenever

Mm`1
ω ψm`1

“ µMm`1
ω` ψm`1, (5.64)

i.e.
«

Mm
ω dω

dTω cω

ff«

T ψm

e

ff

“ µ

«

Mm
ω` dω`

dTω` cω`

ff«

T ψm

e

ff

. (5.65)
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For orthonormal tubium`1
i“1 in the energy scalar product over ω`, it holds that

Mm
ω` “ Im P Rmˆm, Mm

ω` “ Im`1 P Rpm`1qˆpm`1q, (5.66)

meaning that dω` is the zero vector and cω` “ 1. Consequently, (5.65) simplifies to
„

Mm
ω T ψ

m
`edω

dωT ψ
m
`ecω



“ µ

„

T ψm

e



ô

edω “ pµ´ λqT ψm

dTωT ψ
m

“ pµ´ cωqe.

(5.67)

Case: Optimal shape function remains unchanged
Suppose that the optimal shape function remains unchanged, i.e. consider the canonical embedding
of ψm into Rm`1. Then, T “ Im, e “ 0 and the conditions from (5.65 resp. (5.67)) read

pµ´ λqψm
“

»

—

–

0
...
0

fi

ffi

fl

dTω ψ
m

“ 0.

(5.68)

Equation (5.68) shows that the canonical embedding of ψm can only be the eigenvector corre-
sponding to the same eigenvalue as before, µ “ λ. Furthermore, the orthogonality condition
dω K ψ

m must hold.

Case: Eigenvalue remains unchanged
Consider now the case that µ “ λ. The conditions from (5.67) read

edω “

»

—

–

0
...
0

fi

ffi

fl

dTωT ψ
m

“ pλ´ cωqe.

(5.69)

The first condition from (5.69) holds if either e “ 0, or dω is the zero vector. In the first case, the
second equation from (5.69) implies the orthogonality condition

dω K T ψm . (5.70)

This condition can be used to explicitly compute feasible transformations T .

In the second case, the second equation from (5.69) reads

pλ´ cωqe “ 0, (5.71)

which is satisfied if either cω “ λ, or e “ 0 holds.
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Conclusion
The foregoing discussion shows that it may under some circumstances be possible for optimal
shape functions to remain invariant when increasing the dimension of the discrete space of weakly
harmonic functions. In such cases, the corresponding eigenvalue will not change either. On the
other hand, if an eigenvalue of them dimensional generalized eigenvalue problem is also an eigen-
value of the pm ` 1q dimensional generalized eigenvalue problem, then the corresponding eigen-
vectors may be a transformation of each other. In general, it is not possible to estimate whether
the largest eigenvalue of the m dimensional problem will still be the dominant eigenvalue of the
m`1 dimensional problem. In the experiments presented in Chapter 6, it will be observed that the
dominant eigenvalues tend to stabilize at certain values for sufficiently large numbers of samples,
even when changing the entire set of boundary data functions.

5.2.5 Generation of structured boundary data

Different ways of structurally generating boundary data functions in two spatial dimensions, which
can then be used in the sampling Problem 11, are presented in the following. In the original pub-
lication [BL11], as well as the follow-up paper [BHL14], the generalized Finite Element Method
was employed to numerically compute the optimal local basis functions. The authors chose the
nodal finite element basis functions as boundary data in the sampling problem, since every bound-
ary data function that is representable in the FEM approximation space is a linear combination
of these nodal basis functions. On the other hand, the number of basis functions in this case is
maximal for a fixed grid. In the more recent article [LSS22], oscillating boundary data functions
having support on the full free boundary were investigated.

In this section, three variants to generate structured boundary data in the Partition of Unity Method
are introduced. The first one generates functions that are defined patchwise and can be local
polynomials of any desired order. This approach to construct boundary data with possibly very
small support is the PUM equivalent of the approach presented in [BHL14]. Since the sampling
problem is expensive to solve, one is interested in solving it for ’relevant’ boundary data only.
However, since the optimal basis functions are a linear combination of the solutions of the sampling
problem, they can by definition only have support on those parts of the free boundary where at least
one of the boundary data functions is supported. This motivates the use of boundary data functions
having larger support, possibly on the whole free boundary of the domain. Two ways of generating
structured boundary data of this type are presented further below, the first one using edgewise B-
Splines, and the second one using oscillating trigonometric functions.

Ultimately, the local homogeneous solution uω,hom is to be approximated, and this homogeneous
solution lies in the space of harmonic functions, which is infinite-dimensional and will hence be
approximated by a finite dimensional subspace. The functions spanning this finite dimensional
subspace are solutions to the sampling Problem 11. Different choices of boundary data used in the
sampling problem correspond to expanding uω,hom in different bases. Depending on the properties
of uω,hom, an expansion of the function on the boundary in one of the three presented bases may be
favorable.
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4!

Note: ω, resp. ω`, are subdomains of the global domain Ω, on which the orig-
inal problem of interest was formulated. The sampling problem on the other
hand is local, meaning that ω` now acts as the full domain for the sampling
problem. In order to solve the sampling problem, ω` has to be discretized
itself. In the enriched global method, all fine patches appearing in the dis-
cretization of the local problem must then be resolved for an accurate numeri-
cal quadrature.

Boundary hats

In the publication [BHL14], nodal basis functions in a P1-FEM were considered. These are the
boundary data functions with smallest possible support, and for the interpolant P1-FEM they are
defined by setting the coefficient corresponding to one single boundary node to one, while all other
coefficients are set to zero. In contrast to this nodal construction, the Partition of Unity Method uses
patches, and a local set of basis functions that are supported throughout the corresponding patch. It
is hence straight-forward to define the boundary data functions to be used in the sampling problem
patchwise. In the following, suppose that the oversampled patch ω` is discretized in such a way
that the patches on the boundary stem from a uniform discretization of level ` P N, in the following
referred to as boundary level. Figure 5.2 shows sketches of several exemplary situations. It should
be highlighted, that the discretization is not necessarily assumed to be uniform throughout the
whole oversampled patch, as can be seen in Figure 5.2 (c): Only the patches touching any part of
the free boundary ΓF

ω` must be constructed on the given boundary level in the initial discretization,
and other parts of the domain may for example be the result of adaptive refinement.

ΓF
ω+

(a) Uniform discretization of level
2

ΓF
ω+

(b) Uniform discretization of level
3

ΓF
ω+

(c) Adaptive discretization, level 2
to 3

Figure 5.2: Several possible ways of discretizing an exemplary oversampled patch ω`. The free
boundary consists of the left and top face of ω` (blue line), and the boundary patches are hatched
in blue. In contrast to the theory of the PUM and for simplicity of the visualization, patches are
shown without overlap.

Remark 5.9. The assumption on the uniform level of boundary patches is only imposed for the
formalization of the practical approach presented in this thesis and not due to theoretical restric-
tions.

˚
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The set of boundary patches from a uniform discretization of level ` is denoted P`pω`q. On each
of the boundary patches, the Partition of Unity method defines a local, polynomial approximation
space of order p P N. The set of scalar, patchwise boundary data functions of polynomial degree q
in xj , for 0 ď q ď p and j “ 1, . . . , d defined on level ` is denoted Hq,1

`,j . Combining these sets of
functions for all variables j leads to

Hq,1
` :“

d
ď

j“1

Hq,1
`,j . (5.72)

If vector-valued boundary data in dimension d is desired, define

Hq,d
` :“

d
ď

i“1

 

hei|h P H
q,1
`

(

(5.73)

where ei denotes the i-th unit vector in d dimensions. In general, the problem at hand clearly
defines whether scalar or vector-valued boundary data is needed. In order to cover both cases
conjointly, Hq

` is introduced as

Hq
` :“

#

Hq,1
` , in the scalar case

Hq,d
` , in the vector-valued case.

(5.74)

Regardless of the polynomial degree q or the dimension of the data, the functions from Hq
` will be

referred to as boundary hats, or boundary hats of degree q. It makes sense to investigate the impact
of the polynomial degree q, as well as of the boundary level ` on the quality of the discrete space
of harmonic functions.

Note that the set of boundary patches on a coarser level, P˜̀pω`q, for 0 ď ˜̀ ď `, can in general
only be approximately reconstructed by grouping various boundary patches of level `. This is due
to the fact that the size of the overlap region results from multiplication of the patch size by a
stretch factor, and its volume hence becomes smaller for higher levels. In Figure 5.3 it can be
seen that a reconstruction of lower-level patches is only possible for a stretch factor of 1.0, i.e.
non-overlapping patches. Figure 5.4 sketches the problems arising for a stretch factor bigger than
1.0. In such cases, a uniform refinement of a boundary patch on level ` leads to patches on level
``1 whose union does not cover the full stretched domain of the level ` patch. Moreover, the
overlap between the smaller patches is covered multiple times. In general, patches should overlap
in the Partition of Unity Method, and the constant boundary hats on level ` are hence linearly
independent of the boundary hats on level ``1.

Remark 5.10. Depending on the problem at hand, it may not be necessary to consider polynomials
in all coordinate directions. In the case of extruded two-dimensional domains, polynomials acting
in the extruded coordinate direction may oftentimes be omitted in practical applications.

˚

Basis-Splines

The next type of boundary data is supported on larger parts of the free boundary, not only on single
patches as in the case of the boundary hats. This is motivated by the fact that the solution of the
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ΓF
ω+

Figure 5.3: Exemplary two-dimensional discretization of ω` without overlap. The boundary
patches on level ` “ 3 are hatched in blue. The reconstructed parts of boundary patches on level
˜̀ “ 2 are hatched alternating in red and green for better visibility. In this case, reconstruction of
lower-level patches is possible.

ΓF
ω+

(a) boundary level ` “ 1

ΓF
ω+

(b) boundary level ` “ 2

Figure 5.4: Exemplary two-dimensional discretization of ω` with stretch factor 1.2. The patches
from level ` “ 1 (a) are once refined uniformly (b). The coarse boundary patch (blue) is refined
to four smaller patches, but only three of them are boundary patches on level 2. The red dashed
domain in (b) was part of the level 1 stretched coarse patch, but is not covered by the stretched
refined patches on level 2. The green dashed region is covered by two adjacent patches on level 2.

sampling problem is numerically expensive and the number of boundary data functions should
therefore be as small as possible. In the following, Basis-Splines (B-Splines) are the functions of
choice (cf. [PBP02]). The construction can be performed either for the full free boundary in case
it is connected, or only a connected part of it. In order to formalize the ideas, suppose that the



5.2. PRACTICAL CONSTRUCTION 91

domain is two-dimensional, d “ 2. Consider a splitting of the free boundary,

ΓF
ω` “

r
ď

s“1

Γs, (5.75)

into connected parts Γs Ă ΓF
ω` , s “ 1, . . . , r, which can also overlap, and assume bijections

Ti : r0,meas Γss Ñ Γs, j “ 1, . . . , r (5.76)

are given. However, note that the boundary data is always imposed on the whole free boundary in
the sampling problem, and the boundary data functions on Γ are extended by zero for this purpose
to the full free boundary. The following construction is repeated for all boundary parts Γ from the
splitting and corresponding bijection T , leading to a set of B-Splines in xj for j “ 1, . . . , d, which
are of order k P N and defined on Γ. An example of a free boundary and a corresponding boundary
map is sketched in Figure 5.5. Let n P N and consider the knot sequence

ΓF
ω+

(−2,−2)

(2, 2)

0

84

T

Figure 5.5: Sketch of the boundary map T corresponding to the free boundary marked in blue,
which is considered entirely, Γ “ ΓF

ω` . The length of the free boundary is meas ΓF
ω` “ 8, and T

satisfies the following conditions: T p0q “ p´2,´2qT , T p4q “ p´2, 2qT , T p8q “ p2, 2qT .

0 ď b0 ď b1 ď . . . ď bn ď meas Γ. (5.77)

The B-splines of order 1 on r0,meas Γs are defined as

Bi
1,n : r0,meas Γs Ñ R, Bi

1,npxq :“

#

1, if bi ď x ă bi`1

0, else
(5.78)

for all i “ 0, . . . , n ´ 1. B-splines of higher order p ą 1 are computed using the three term
recursion

Bi
p,npxq :“

x´ bi
bi`p ´ bi

Bi
p´1,npxq `

bi`p`1 ´ x

bi`p`1 ´ bi`1

Bi`1
p´1,npxq, (5.79)

for i “ 0, . . . , n´ p´ 1. The B-Splines of oder p in xj on Γ are now defined as the concatenation
of the B-Splines of order p on r0,meas Γs with the j-th component of the inverse transformation,
pT´1qj ,

B1
p,n,jpΓq :“

"

Bi
p,n ˝ pT

´1
qj| i “ 0, . . . , n´ p´ 1

*

. (5.80)
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Repeating this construction for all variables xj , j “ 1, . . . , d and combining the sets of B-Splines
yields

B1
p,npΓq :“

d
ď

j“1

B1
p,n,jpΓq. (5.81)

In case vector-valued B-Splines (d-dimensional) are desired,

Bd
p,npΓq :“

 

bei| b P B
1
p,npΓq, i “ 1, . . . , d

(

, (5.82)

with ei being the i-th unit vector in d dimensions. Scalar boundary data is needed for scalar par-
tial differential equations, and vector-valued boundary data is needed for vector-valued problems.
Since no confusion is possible, both cases will be denoted conjointly as

Bp,npΓq :“

#

B1
p,npΓq, in the scalar case

Bd
p,npΓq, else.

(5.83)

The process is repeated for all connected parts of the boundary appearing in the splitting (5.75),
leading to the full set of boundary B-Splines on the free boundary ΓF

ω` ,

B
ΓF
ω`
p,n :“

r
ď

s“1

Bp,npΓsq. (5.84)

The previous construction can be extended to the case of higher-dimensional domains by mapping
multivariate B-Splines from a reference domain to a hyperplane Γ being part of the free bound-
ary.

Remark 5.11. In the case of three-dimensional domains, variation of the boundary data in the
third coordinate direction x3 may not be necessary. In such cases, the B-Splines from the 2d
approach above can be assumed to be constant in x3.

˚

Oscillating trigonometric functions

The mapping process described before is not inherent to B-Splines and can be applied to other sets
of functions as well. In the following, oscillating trigonometric functions are considered, which
appear in Fourier series expansions. These functions oscillate on arbitrarily fine scales in order
to compensate for their large support. The functions are constructed in exactly the same way as
described above, with the univariate B-Splines on r0,meas Γs replaced by the sets of functions

"

cos

ˆ

2πi ςp¨q

meas Γ

˙*n

i“1

(5.85)

or
"

sin

ˆ

2πi ςp¨q

meas Γ

˙*n

i“1

. (5.86)

The number of oscillations, i.e. the number of maxima and minima of the functions increase with
their index and are specified by 1 ď ς P N. For general i “ 1, . . . , n the number of oscillations is
pi ` 1q ς . The sets of functions of oscillating boundary data on ΓF

ω` are denoted Cςn for the cosine
functions, resp. Sς

n for the sine functions.
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General remarks regarding the construction of boundary data

The B-Splines in the experiments from Chapter 6, which consider rectangular and cubic patches,
will not be defined on the entire free boundary, but edge-wise. This doubles the number of bound-
ary data functions defined in each coordinate direction, but adds more variability. Moreover, ad-
ditional knots located slightly outside of the bounds of the edges may be inserted into the knot
sequence, leading to additional B-Splines that are referred to as corner splines in the experiments.
In order to support the boundary data also along vertices, the B-Spline boundary data functions in
the experiments are defined as tensor products of B-Splines of an arbitrary order on one edge with
the B-Spline of order 1 defined on an adjacent edge of the free boundary, which takes value 1 at
the vertex and value 0 towards the interior of the adjacent edge.

5.3 Reusability of optimal basis functions
As seen before, the numerical computation of optimal basis functions is based on the repeated
numerical solution of the sampling Problem 11. The restriction of the homogeneous solution of
the original partial differential equation under study is contained in the infinite-dimensional space
of local weakly harmonic functions, and the solutions of the sampling problem span a discrete,
finite-dimensional approximation of this infinite-dimensional space. Since the optimal basis func-
tions are linear combinations of the solutions of the sampling problem, these solutions should be
computed as accurate as possible, in turn causing a significant amount of numerical work.

Fortunately, the construction of optimal basis functions is independent of the load and the explicit
value of boundary conditions that apply in the problem. Handling changes in the data only requires
the recomputation of local particular solutions.

On the other hand, the question arises whether local optimal basis functions computed on one
patch may be employed on another patch. This geometric reusability is not clear by construc-
tion, and will be investigated in the remainder of this section. The presented theoretical results
regarding geometric reusability were developed in cooperation with Prof. Dr. Christian Rieger
from the University of Marburg. In Section 5.3.1, general considerations regarding reusability of
optimal shape functions are presented. Since it is impossible to state relations for partial differen-
tial equations of any given order and structure, more specific and easy-to-check conditions will be
developed for the special case of scalar second-order partial differential equations in divergence
form in Section 5.3.2. Similar results can also be developed for the vector-valued case.

Note that this section is focussed on geometric reusability, which can be analytically investigated
in order to establish algebraic conditions linking the transformations and the coefficients of the
partial differential equations. These conditions ensure, that optimal basis functions computed on
one patch are still optimal when transformed to another patch. In the case that the underlying
differential operator changes, it is in general not possible to find an algebraic relation between
optimal shape functions computed for the old and the new operator (except for example if the
operator is just scaled by a fixed constant). Since the differential operators under study are assumed
to be elliptic, small changes of the operators also lead to small changes of the solutions of the
sampling problem, which consequently also lead to relatively small changes of the spectrum of the
generalized eigenvalue problems. Straight-forward estimates of the errors are, however, too greedy
to be of any practical use, and the similarity between sets of optimal shape functions corresponding
to different differential operators will not be investigated in this thesis.
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5.3.1 General conditions for geometric reusability
This section presents general considerations on the reusability of optimal shape functions under
geometric transformations. In the following, let Ω Ă Rd be a d-dimensional domain, and let
L : rC2 k

pΩqsn Ñ Rn be an elliptic partial differential operator of even order 2 k, for which the
optimal shape functions are to be computed. For scalar PDE it holds that n “ 1, otherwise n “ d.
Let ω Ă Ω be a patch from the domain, on which optimal shape functions are to be used, and let
ω` Ą ω be an oversampled version of the patch, that is used in their construction. The generalized
eigenvalue problem consists of finding eigenpairs pλ, ψq P RˆHpω`q satisfying

xψ, vyEpωq “ λxψ, vyEpω`q, @v P Hpω`q. (5.87)

In order to investigate geometric reusability of the shape functions, consider another patch ω̃ to-
gether with its oversampled version ω̃`. For the sake of simplicity, suppose that ω`XBΩ “

ω̃`XBΩ “ H. The original patches and the new ones are linked via a bijective map

T : Rd
Ñ Rd, x ÞÑ x̃ :“ Tx “

»

—

–

T1pxq
...

Tdpxq

fi

ffi

fl

, with T pω`q “ ω̃` . (5.88)

A sketch of this situation is shown in Figure 5.6. Similar to (5.87), the eigenpairs pλ̃, ψ̃q of the

ω ω+

ω̃
ω̃+

T T−1

Figure 5.6: Sketch of the geometric relation between ω and ω̃, resp. ω` and ω̃`. The patches,
which are linked through the transformation T , are supposed to be in the interior of Ω.

generalized eigenvalue problem posed on the new patches ω̃ and ω̃` satisfy

xψ̃, ṽyEpω̃q “ λ̃xψ̃, ṽyEpω̃`q, @ṽ P Hpω̃`q. (5.89)

In the following, conditions to be imposed on the operator L and the map T will be identified,
such that an eigenpair pλ, ψq can be mapped to an eigenpair pλ̃, ψ̃q. Although one is in general
interested in mapping the space spanned by various eigenfunctions on ω` to a space spanned
by eigenfunctions on ω̃`, this is very hard to investigate analytically. Hence, a mapping of the
individual basis functions will be analyzed in the following.
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By the multidimensional chain rule, one obtains with the new variables x̃ “ T pxq for a function
h P C1

pRdq that
BhpT pxqq

Bxj
“

d
ÿ

i“1

Bhpx̃q

Bx̃k

BTkpxq

Bxj
. (5.90)

For T P rC1
pRdqsd with components T1, . . . , Td in the x variables, the Jacobian is defined as

JT,xpxq :“

»

—

–

BT1pxq
Bx1

. . . BT1pxq
Bxd... . . . ...

BTdpxq
Bx1

. . . BTdpxq
Bxd

fi

ffi

fl

. (5.91)

4!
In the scope of Linear Elasticity from Section 3.2, the Jacobian of a vector-
valued function was denoted similar to the case of scalar functions with the
gradient symbol ∇. Since in this section Jacobians and regular gradients appear
in the same equations, the notion from (5.91) will be used for better readability.

Using this notation, the chain rule (5.90) reads

∇xhpT pxqq “ JTT,x∇x̃hpT pxqq, (5.92)

or equivalently
J´TT,x pxq∇xhpx̃q “ ∇x̃hpx̃q. (5.93)

A basic property that is needed in order to show reusability of the optimal shape functions is
presented in the following.

Lemma 5.5 (Transformation of smooth local functions). Let T : Rd Ñ Rd be a C8 diffeomorphism
with T pω`q “ ω̃`. Then, the map M with

ψ̃ ÞÑMpψ̃q :“ ψ̃ ˝ T, @ψ̃ P C80 pω̃`q (5.94)

has the image C80 pω`q and is bijective.

‚

Proof. For any ψ̃ P C80 pω̃`q, the function

Mpψ̃q :“ ψ̃ ˝ T : ω` Ñ R (5.95)

is in C8pω`q. Moreover, it holds that

suppψ “ T´1
psupp ψ̃q. (5.96)

Since supp ψ̃ Ă ω̃` is compact and T´1 is continuous, also suppψ Ă ω` is compact, so MpC80 pω̃`qq Ă
C8pω`q.

Injectivity: Let Mpψ̃1q “ ψ “Mpψ̃2q for some ψ1, ψ2 P C80 pω̃`q. This means

ψ̃1pT pxqq “ ψ̃2pT pxqq, @x P ω` (5.97)
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and since T pω`q “ ω̃`, this means that

ψ̃1px̃q “ ψ̃2px̃q, @x̃ P ω̃`, (5.98)

so ψ̃1 “ ψ̃2 on ω̃`.

Surjectivity: Let ψ P C80 pω`q. By repeating the same argument as before, the function ψ̃ :“

ψ ˝T´1 is in C80 pω̃`q.
Therefore, the map M : C80 pω̃q Ñ C80 pω`q is bijective.

Remark 5.12. Using Lemma 5.5, a function ψ̃ P C80 pω̃`q can be identified with the function
pψ ˝T q P C80 pω̃`q, for a unique ψ P C80 pω`q. Analogously, any function ψ P C80 pω`q can be
identified with the function pψ̃ ˝ T´1q P C80 pω̃`q, for a unique ψ̃ P C80 pω̃`q.

˚

A similar transformation can be derived for H1 functions.

Lemma 5.6 (Transformation of weakly differentiable local functions). Let T : Rd Ñ Rd be a C8
diffeomorphism with T pω`q “ ω̃` and JT,x “ const. Then, the map M with

ṽ ÞÑMpṽq :“ ṽ ˝ T, @ṽ P H1
pω̃`q (5.99)

has the image H1
pω`q and is bijective.

‚

Proof. Transformation of L2 functions: Let ṽ P L2pω̃`q. Using the transformation formula for
integrals,

ż

ω̃`
ṽpx̃q2 dx̃ “

ż

T pω`q

ṽpx̃q2 dx̃

“

ż

ω`
ṽpT pxqq2 | det JT,x|

loooomoooon

“const

dx.
(5.100)

Hence, v “Mpṽq “ pṽ ˝ T q P L2pω`q.

Injectivity of M: Let Mpṽ1q “ v “ Mpṽ2q for some ṽ1, ṽ2 P H1pω̃`q. In the L2-sense this
means Mpṽ1q “Mpṽ2q almost everywhere, that is

Mpṽ1qpxq “Mpṽ2qpxq, a.e. ðñ ṽ1pT pxqq “ ṽ2pT pxqq, a.e. (5.101)

and since T is a diffeomorphism, this means ṽ1px̃q “ ṽ2px̃q for almost every x̃ P ω̃`.

Surjectivity of M: Let v P L2pω`q. Then, for any η P C80 pω`q it holds that

8 ą

ż

ω`
vpxqηpxq dx “

ż

T´1pω`q

vpxqηpxq dx

“

ż

ω̃`
| det JT´1,x̃|vpT

´1
px̃qqηpT´1

px̃qq dx̃.

(5.102)
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From Lemma 5.5 it follows that η ˝ T´1 can be identified with a unique function η̃ P C80 pω̃`q.
Since | det JT´1,x̃| is constant and nonzero, one can choose ṽ “ v ˝ T´1 and obtain that

ż

ω̃`
ṽpx̃qη̃px̃q dx̃ ă 8, @η̃ P C80 pω̃`q (5.103)

implying that ṽ P L2pω̃`q. Concluding, the map M is bijective.

Transformation of weak derivatives: Let ṽ P H1pω̃`q. Let η̃ P C80 pω̃`q and let v be the unique
function v “ ṽ ˝ T . It holds that η̃1 P C80 pω̃`q and one can also identify η1 “ η̃1 ˝ T (this is the
transformation from Lemma 5.5). Next, it is shown that w :“ ṽ1 ˝T is the weak derivative of v and
for this, the definition of the weak derivative for ṽ will be used.

ż

ω`
wpxqηpxq dx “

ż

T´1pω̃`q

wpxqηpxq dx

“

ż

ω̃`
wpT´1

px̃qqηpT´1
px̃qq| det JT´1,x̃| dx̃

“

ż

ω̃`
ṽ1pT pT´1

px̃qqqη̃px̃q| det JT´1,x̃| dx̃

“

ż

ω̃`
ṽ1px̃qη̃px̃q| det JT´1,x̃| dx̃

“ ´

ż

ω̃`
ṽpx̃qη̃1px̃q| det JT´1,x̃| dx̃

“ ´

ż

T pω`q

ṽpx̃qη̃1px̃q| det JT´1,x̃| dx̃

“ ´

ż

ω`
ṽpT pxqqη̃1pT pxqq | det JT´1,x̃| | det JT,x|

loooooooooooomoooooooooooon

“1

dx

“ ´

ż

ω`
vpxqη1pxq dx.

(5.104)

This shows that v1 :“ w “ ṽ1 ˝ T is the weak derivative of v.

Remark 5.13. The preceding Lemma 5.6 can be generalized easily to the case of vector-valued
functions. Also note, that the statements from Lemma 5.5 and Lemma 5.6 can be generalized to
hold in more abstract settings. These results are well-known and can be found in the literature.

˚

In the proof of Lemma 5.6 it was shown that weak derivatives can be transformed using diffeo-
morphisms with constant Jacobians. Especially this can be used to transform all terms including
derivatives that occur in the weak form of the PDE from one patch to another. Consequently,
any harmonic function ψ P Hpω`q on ω` can be identified with a unique harmonic function
ψ̃ P Hpω̃`q on ω̃`, with

ψ “ ψ̃ ˝ T. (5.105)

In particular, this also holds for the eigenfunctions of the generalized eigenvalue problem.
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Using Lemma 5.5 and Lemma 5.6, the generalized eigenvalue problem (5.89) posed on the patches
ω̃ and ω̃` can be transformed to the patches ω and ω`, and explicit conditions on T and the coeffi-
cients appearing in the partial differential equation can be derived. In the next section, this will be
done for the special case of second-order partial differential equations in divergence form.

5.3.2 Geometric reusability for second-order elliptic PDE in divergence form

In this section, geometric reusability of optimal shape functions for the case of scalar second-order
differential equations in divergence form is investigated. The goal of this section is to present
general conditions that both the data of the partial differential equation and the map T need to
satisfy in order for an eigenfunction of (5.87) to be transformable via T to an eigenfunction of
(5.89). The partial differential operator L : C2

pΩq Ñ C0
pΩq in this section reads

C2
pΩq Q u ÞÑ Lrus :“ ´ divpA∇uq ` b ¨∇u` cu, (5.106)

with coefficients A P rC1
pΩqsdˆd, b P rC0

pΩqsd and c P C0
pΩq. Next, the integrals appearing in the

gEVP eq. (5.89) will be rewritten. In order to do this, let ũ, ṽ P Hpω̃`q and use the transformation
formula for integrals to see that the integral appearing on the left-hand side of (5.89) reads

aω̃rũ, ṽs “

ż

ω̃

∇x̃ũpx̃q ¨ Apx̃q∇x̃ṽpx̃q dx̃`

ż

ω̃

bpx̃q ¨∇x̃ũpx̃q dx̃

`

ż

ω̃

cpx̃qũpx̃qṽpx̃q dx̃

Trafo.
“

ż

ω

∇x̃ũpT pxqq ¨ ApT pxqq∇x̃ṽpT pxqq| det JT,xpxq| dx

`

ż

ω

bpT pxqq ¨∇x̃ũpT pxqqṽpT pxqq| det JT,xpxq| dx

`

ż

ω

cpT pxqqũpT pxqqṽpT pxqq| det JT,xpxq| dx

“

ż

ω

J´TT,x pxq∇xũpT pxqq ¨ ApT pxqqJ
´T
T,x pxq∇xṽpT pxqq| det JT,xpxq| dx

`

ż

ω

bpT pxqq ¨ J´TT,x pxq∇xũpT pxqqṽpT pxqq| det JT,xpxq| dx

`

ż

ω

cpT pxqqũpT pxqqṽpT pxqq| det JT,xpxq| dx.

For practical applications, the transformations of interest are translations, scalings, rotations and
sometimes shearings. All of these transformations are linear mappings and have constant Jaco-
bians. This will be assumed in the following.

Assumption 5.1. The map T is linear, i.e. the Jacobian JT,x is constant.

˛

Lemma 5.6 can be used to identify ũ and ṽ with unique functions u, v P Hpω̃`q, implying
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that
aω̃rũ, ṽs “

ż

ω

∇xupxq ¨ J
´1
T,xApT pxqqJ

´T
T,x∇xvpxq| det JT,x| dx

`

ż

ω

bpT pxqq ¨ J´TT,x pxq∇xupxqvpxq| det JT,x| dx

`

ż

ω

cpT pxqqupxqvpxq| det JT,x| dx.

(5.107)

In the same way, the integral over ω̃` appearing on the right-hand side of (5.89) can be transformed
to an integral over ω`,

aω̃`rũ, ṽs “

ż

ω`
∇xupxq ¨ J

´1
T,xApT pxqqJ

´T
T,x∇xvpxq| det JT,x| dx

`

ż

ω`
bpT pxqq ¨ J´TT,x pxq∇xupxqvpxq| det JT,x| dx

`

ż

ω`
cpT pxqqupxqvpxq| det JT,x| dx.

(5.108)

This allows to state compatibility conditions for different types of transformation T and the data
A, b, c of the partial differential equation. Obviously, the eigenvalues of the generalized eigenvalue
problems posed on pω̃, ω̃`q and pω, ω`q coincide, if the integrals appearing on the left-hand side
and on the right-hand side of (5.87) and (5.89) are identical up to a multiplicative factor. Using
eqs. (5.107) and (5.108), this means

α

ż

ω`
∇xupxq ¨ Apxq∇xvpxq dx` α

ż

ω`
bpxq ¨∇xupxqvpxq dx

` α

ż

ω`
cpxqupxqvpxq dx

“

ż

ω`
∇xupxq ¨ J

´1
T,xApT pxqqJ

´T
T,x∇xvpxq| det JT,x|

`

ż

ω`
bpT pxqq ¨ J´TT,x∇xupxqvpxq| det JT,x| dx

`

ż

ω`
cpT pxqqupxqvpxq| det JT,x| dx

(5.109)

for 0 ‰ α P R and a similar condition with the same factor α should hold for the integration
domain ω. One possibility for (5.109) to hold is that the following three conditions are satisfied

α

ż

ω`
∇xupxq ¨ Apxq∇xvpxq dx “

ż

ω`
∇xupxq ¨ J

´1
T,xApT pxqqJ

´T
T,x∇xvpxq| det JT,x|

α

ż

ω`
bpxq ¨∇xupxqvpxq dx “

ż

ω`
bpT pxqq ¨ J´TT,x∇xupxqvpxq| det JT,x| dx

α

ż

ω`
cpxqupxqvpxq dx “

ż

ω`
cpT pxqqupxqvpxq| det JT,x| dx

(5.110)
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and the same conditions should hold for all integrals replaced by integrals over ω. A sufficient
condition for (5.110) to hold is that the continuous data A, b, c and the diffeomorphism T satisfy

αApxq “ J´1
T,xApT pxqqJ

´T
T,x | det JT,x|, @x P ω`

αbpxq “ bpT pxqq ¨ J´TT,x | det JT,x|, @x P ω`

αcpxq “ cpT pxqq| det JT,x|, @x P ω` .

(5.111)

These relations are formulated for any diffusion coefficient A, any sink / source terms b and any
constant changes c. They can be simplified substantially in the case of simpler PDEs. Consider
e.g. the diffusion equation with a changing scalar diffusion coefficient, that is A “ γ I, bT “
“

0 . . . 0
‰

, c “ 0 for γ P R in the reference configuration, and A “ γ̃ I, bT “
“

0 . . . 0
‰

, c “ 0
in the new configuration. Suppose further that T “ I. In this case, (5.111) reads

αγ “ γ̃ (5.112)

which always can be satisfied by choosing α “ γ̃
γ

. The optimal shape functions for any diffusion
coefficient will hence coincide. Note that in the case of non-constant diffusion, γ “ γpxq, the
relation can only be satisfied whenever γ̃pxq is a multiple of γpxq.

In the following, the investigation will be performed the other way around: First, the transformation
is fixed, and then necessary conditions to be imposed on the data are developed.

Translations

Consider a translation of the form,

T : Rd
Ñ Rd, T : x ÞÑ T pxq :“ Bx` y (5.113)

for B “ I and y P Rd. In this case we have JT,x “ I and | det JT,x| “ 1. A sketch is shown in
Figure 5.7. The conditions from eq. (5.111) read

T

ω+

ω̃+

Figure 5.7: Sketch of a translation x ÞÑ x` y

αApxq “ Apx` yq, @x P ω`

αbpxq “ bpx` yq, @x P ω`

αcpxq “ cpx` yq, @x P ω` .

(5.114)

A sufficient condition for (5.114) to hold is that the data is constant. In this case α “ 1.
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Isotropic scalings

Consider an isotropic scaling of the patch, that is scaling by the same factor β ą 0 in all coordinate
directions,

T : Rd
Ñ Rd, x ÞÑ T pxq :“ βx “ β Ix, (5.115)

as sketched in Figure 5.8. Here it holds that

T

ω+ ω̃+

Figure 5.8: Sketch of an isotropic scaling x ÞÑ βx

JT,x “ β I, @x P ω`

| det JT,x| “ βd, @x P ω` .
(5.116)

The conditions (5.111) read

αApxq “ βd´2Apβxq, @x P ω`

αbpxq “ βd´1bpβxq, @x P ω`

αcpxq “ βdcpβxq, @x P ω` .

(5.117)

In the following, β is interpreted to establish conditions that the data needs to satisfy. Note that
even for the case of constant coefficients, that is A P Rdˆd, b P Rd, c P R, the transport term b ¨∇u
and the source term cu from (5.106) cause problems, since (5.117) implies that

b “
α

βd´1
b, c “

α

βd
c, (5.118)

must hold, i.e. α “ β “ 1 is the only feasible choice for general b, c. Consequently, T must be the
identity. In the case that b and c vanish, the conditions (5.117) for constant A P Rdˆd read

A “
α

βd´2
A. (5.119)

This means that any isotropic scaling T pxq :“ βx can be chosen in the case of bT “
“

0 . . . 0
‰

,
c “ 0 and A P Rdˆd, α “ βd´2 is feasible.

Remark 5.14. In the more general case of bT “
“

0 . . . 0
‰

, c “ 0 and a non-constant A : Rd Ñ

R, the conditions (5.117) are satisfied whenever A coincides on ω` and ω̃`.

˚
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Orthogonal transformations

In this section, general orthogonal transformations are considered, that is

T : Rd
Ñ Rd, x ÞÑ Qx (5.120)

for an orthogonal matrix Q P Rdˆd. It holds that

Q´1
“ QT

JT,x “ Q

| det JT,x| “ 1.

(5.121)

The conditions (5.117) read

αApxq “ QTApQxqQ, @x P ω`

αbpxq “ bpQxq ¨Q, @x P ω`

αcpxq “ cpQxq, @x P ω` .

(5.122)

The factor of the source term, c, does not cause problems in this case, as long as c coincides on
ω` and ω̃`. Neither does the transport term b, whenever on ω̃` it is the transformed transport
term from ω`. In the case of bT “

“

0 . . . 0
‰

, c “ 0 and constant A, it must only be assumed
that AQT “ αQTA for some α P R. A special case of orthogonal transformations are rotations,
exemplarily shown in Figure 5.9.

T

ω+ ω̃+

Figure 5.9: Sketch of a rotation. Rotations are a special case of orthogonal transformations.

Shearings

In this section, shearings of the domain are considered. Without loss of generality, consider a
shearing in x1-direction, that is

T : Rd
Ñ Rd, x ÞÑ T pxq :“ Sx, with S “

»

–

1 ε 0
0 1 0
0 0 1

fi

fl for ε P R. (5.123)

A sketch of this type of transformation is shown in Figure 5.10 In this case, it holds that

JT,x “ S, | det JT,x| “ 1, S´1
“

»

–

1 ´ε 0
0 1 0
0 0 1

fi

fl . (5.124)
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T

ω+ ω̃+

Figure 5.10: Sketch of a shearing in x1-direction.

The conditions (5.117) read

αApxq “ S´1ApSxqS´T , @x P ω`

αbpxq “ bpSxq ¨ S´T , @x P ω`

αcpxq “ cpSxq, @x P ω` .

(5.125)

For the case of bT “
“

0 . . . 0
‰

, c “ 0, the conditions are satisfied whenever for a fixed nonzero
α it holds that

αSApxq “ ApSxqS´T , @x P ω` . (5.126)

Combination of transformations

The transformations that were considered previously can be combined in order to obtain compati-
bility conditions for more complex transformations. Let two linear transformations T1, T2 be given
as

Ti : Rd
Ñ Rd, x ÞÑ Tipxq :“ Bix` yi, i “ 1, 2. (5.127)

The concatenation of the movements is given by

pT2 ˝ T1q : Rd
Ñ Rd,

x ÞÑ pT2 ˝ T1qpxq :“ B2pB1x` y1q ` y2

“ B2B1x`B2y1 ` y2

(5.128)

and therefore
JT2˝T1,x “ B2B1, | det JT2˝T1,x| “ | detB2B1|. (5.129)

The conditions (5.117) for an application of T2 ˝ T1, that must be fulfilled for a fixed nonzero
α P R, read

αApxq “ pB2B1q
´1ApT2pT1pxqqqpB2B1q

´T
| detB2B1|,

αbpxq “ bpT2pT1pxqqq ¨B2B1| detB2B1|,

αcpxq “ cpT2pT1pxqqq| detB2B1|

(5.130)

for all x P ω`.



104 CHAPTER 5. OPTIMAL BASIS FUNCTIONS



6
Numerical computation of Optimal Bases

This chapter investigates numerically computed optimal basis functions, as well as global approxi-
mation properties of the enriched Partition of Unity Method. The differential equations considered
in this section all present some kind of fine-scale behavior that is hard to capture using standard
polynomial bases on coarse patches. The missing fine-scale information of coarse solutions should
then be recovered using optimal local basis functions.

Four benchmark problems are investigated in Sections 6.1 to 6.4, and the structure of these sec-
tions is as follows: First, the corresponding partial differential equation is presented in its strong
form. Trial and test spaces are introduced, together with the variational formulation of the problem,
whose solvability is briefly discussed. Next, the influence of the various types of structured bound-
ary data and their parameters, presented in Section 5.2.5, on the solutions of the generalized eigen-
value problem is investigated. Claims regarding the expected performance in global simulations
can be made based on the number and magnitude of the largest eigenvalues that were computed in
each case, since these eigenvalues encode information on the worst case best-approximation error,
cf. Section 5.1. Finally, the claims are validated by identifying a numerical reference solution and
discussing the error of global computations using increasing numbers of optimal shape functions as
enrichments. This allows to draw conclusions from the benchmark problems and better understand
the overall computational process.

Consider an elliptic partial differential equation of even order 2 k, and let ω be a patch from the
cover employed in a Partition of Unity Method. The approximation power of the local approxima-
tion space Vpωq should be enhanced, and as discussed in Chapters 4 and 5, the local enrichment
space takes the form

Epωq “ spantuω,f , uω,g0 , . . . , uω,g2 k´1u ` Vn
opt
pωq, (6.1)

with particular solutions uω,f , uω,g0 , . . . , uω,g2 k´1 for the data and an optimal approximation space
Vn

opt
pωq for the homogeneous part of the solution, uω,hom. A suitable choice of the dimension n

of this optimal local approximation space is not generic and depends on the problem at hand.
In the following benchmark problems, the fine-scale behavior of the solutions is expected to be
localized in only few patches, and the corresponding enrichment spaces take the form (6.1). On
the remaining patches, no fine-scale behavior is anticipated and only particular solutions will be
used to span the corresponding enrichment spaces.
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The first benchmark problem from Section 6.1 is a Poisson equation with a coefficient that jumps
from value 1.0 to a value of 100.0 in a small square region located in the center of the domain. If
not resolved correctly, the jump of the coefficient has a strong influence on the true solution, since
its behavior in both parts of the domain will differ significantly. Section 6.2 considers a stationary
convection diffusion equation with oscillating coefficients on a fine scale around the center of the
domain, taking values between 1 and 121. The solution is expected to oscillate on a fine-scale,
and resolving the coefficients oscillations requires heavy spatial refinement in traditional methods.
The third benchmark, presented in Section 6.3, investigates the equations of linear elasticity for
an isotropic material in two spatial dimensions on a plate with a circular hole located in its center.
Resolving the periphery of the hole, as well as approximating sufficiently accurate values of the
strains near this periphery, usually requires heavy spatial refinement. Section 6.4 then considers
linear elasticity in d “ 3, again for the case of a plate with a circular hole located in its center.
Additionally, the domain is made from two isotropic material plies modeling steel (bottom ply)
and aluminum (top ply). The first three benchmarks are pure Dirichlet problems, having boundary
conditions prescribed globally. The fourth benchmark only prescribes the values of the solution on
the left and right face of the three dimensional plate, which will lead to additional difficulties.

In the following, all optimal shape functions are computed on a discretization of level 8 using
polynomials of degree two. B-Splines are quadratic unless stated otherwise and trigonometric
functions are treated as patchwise polynomials of order 4. The oversampling factor is chosen as
τ “ 2.0. All simulations were performed using the PUMA software toolkit developed by Fraunhofer
SCAI ([SCA]) and the optbasefun module for Python 3 developed in the scope of this thesis
for the computation and use of optimal basis functions.

6.1 Poisson equation with jumping coefficient

This section investigates a Poisson problem with a jumping coefficient. The coefficient appearing
in the problem is 100 times larger in a small region located in the center of the domain than outside,
leading to a steep gradient of the weak solutions. This fine-scale behavior is difficult to resolve
using coarse discretizations and standard polynomial bases.

In Section 6.1.1, the strong and weak formulation of the Poisson equation with a jumping co-
efficient is presented. The set of boundary conditions, as well as the trial and test spaces are
introduced. In Section 6.1.2, the effects of different choices of structured boundary data on the
set of optimal shape functions are investigated. Finally, Section 6.1.3 presents the results of the
global, enriched computation. In all of the tables presented in the remainder of this section, dim
is the dimension of the discrete space of harmonic functions, which coincides with the number of
employed boundary functions. Furthermore, λ0 ě λ1 ě . . . denote the obtained eigenvalues in
descending order, and n´i is the number of eigenvalues that are larger than 10´i, i.e.

n´i “ cardtλ : λ ą 10´iu, i “ 1, 2, 4, 8. (6.2)

6.1.1 Problem formulation

Problem 12 presents the strong form of the PDE under study.
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Problem 12: Poisson problem with jumping coefficient.

Let Ω :“ r´6, 6s2 Ă R2, let A1,1 : R2 Ñ R and A : R2 Ñ R defined as

A1,1pxq :“

#

100, x P r´1, 1s2

1, else
,

Apxq :“ A1,1pxq

„

1 0
0 1



(6.3)

and consider the partial differential operator

L : C2
pΩq Ñ C0

pΩq, v ÞÑ L v :“ ´ divpA∇uq. (6.4)

Moreover, let

f : R2
Ñ R, x “ px1, x2q ÞÑ fpxq :“ x1

g : R2
Ñ R, x “ px1, x2q ÞÑ gpxq :“ x2

(6.5)

Find a function u P C2
pΩq satisfying

´Lupxq “ fpxq, in Ω

upxq “ gpxq, on BΩ.
(6.6)

Problem 12 is a special case of the stationary convection diffusion equation for b “
“

0 0
‰T , c “ 0.

According to Section 3.1, the problem under study is uniformly elliptic.

Define the trial and test spaces

Vtrial
pΩq :“ tu P H1

pΩq : trpuq “ g on BΩu

Vtest
pΩq :“ tv P H1

pΩq : trpvq “ 0 on BΩu,
(6.7)

multiply the differential equation with a test function v P VtestpΩq, integrate over Ω and use inte-
gration by parts. The obtained weak formulation corresponding to Problem 12 is stated in Prob-
lem 13.
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Problem 13: Weak Poisson problem with jumping coefficient.

Let Ω :“ r´6, 6s2 Ă R2, let A1,1 : R2 Ñ R and A : R2 Ñ R defined as

A1,1pxq :“

#

100, x P r´1, 1s2

1, else
,

Apxq :“ A1,1pxq

„

1 0
0 1



(6.8)

as well as
f : R2

Ñ R, x “ px1, x2q ÞÑ fpxq :“ x1

g : R2
Ñ R, x “ px1, x2q ÞÑ gpxq :“ x2.

(6.9)

Define the bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R and linear functional
` : VtestpΩq Ñ R,

aru, vs :“

ż

Ω

A1,1∇u ¨∇v dx,

`pvq :“

ż

Ω

fv dx.

(6.10)

Find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtest
pΩq. (6.11)

The bilinear form and linear functional are both continuous since the coefficients are sufficiently
regular. Moreover, the Poincaré Friedrichs inequality (Theorem 2.6) can be applied, showing that
a is elliptic. Hence, the assumptions of the Lax-Milgram Theorem 2.4 are satisfied, showing the
existence of a unique solution.

6.1.2 Influence of the boundary data
Now, the impact of different choices of boundary data on the eigenvalues is investigated, and as
described in Section 5.2, the boundary data consisted of boundary hats, B-Splines and Fourier-type
oscillating functions.

Boundary hats

The following Tables 6.1 - 6.5 present key numbers obtained from the computation of optimal
shape functions using boundary hats as boundary data in the sampling problem. In all of these
tables, ` refers to the boundary level on which the boundary hats are piecewise defined with support
on only one of the patches on this level at a time. Moreover, pd stands for the polynomial degree(s)
used in the computation. In Figure 6.1, the two largest eigenvalues of the computations are
plotted against the corresponding boundary level. It is visible, that the largest eigenvalues of the
computations for polynomial degrees t0u, t1u, t2u, t0, 1u and t0, 1, 2u approach approximately
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` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0 12 1.355 ¨ 10´1 1.355 ¨ 10´1 2 4 11 11
3 0 28 1.89 ¨ 10´1 1.89 ¨ 10´1 2 6 12 23
4 0 60 2.21 ¨ 10´1 2.21 ¨ 10´1 2 6 12 26
5 0 124 2.385 ¨ 10´1 2.385 ¨ 10´1 2 6 14 28
6 0 252 2.472 ¨ 10´1 2.472 ¨ 10´1 2 6 14 28
7 0 508 2.514 ¨ 10´1 2.514 ¨ 10´1 2 6 14 28
8 0 1020 2.537 ¨ 10´1 2.537 ¨ 10´1 2 6 14 28

Table 6.1: Key numbers obtained from the computation of the optimal shape functions using con-
stant boundary hats on various boundary levels.

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 1 24 2.395 ¨ 10´1 6.062 ¨ 10´2 1 4 11 12
3 1 56 2.424 ¨ 10´1 7.835 ¨ 10´2 1 5 12 24
4 1 120 2.463 ¨ 10´1 1.099 ¨ 10´1 2 5 12 26
5 1 248 2.497 ¨ 10´1 1.365 ¨ 10´1 2 6 13 28
6 1 504 2.519 ¨ 10´1 1.574 ¨ 10´1 2 6 14 28
7 1 1016 2.531 ¨ 10´1 1.747 ¨ 10´1 2 6 14 28
8 1 2040 2.538 ¨ 10´1 1.947 ¨ 10´1 2 6 14 28

Table 6.2: Key numbers obtained from the computation of the optimal shape functions using linear
boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 2 24 1.977 ¨ 10´1 5.708 ¨ 10´2 1 4 11 12
3 2 56 2.055 ¨ 10´1 6.03 ¨ 10´2 1 4 12 24
4 2 120 2.175 ¨ 10´1 6.834 ¨ 10´2 1 5 12 26
5 2 248 2.307 ¨ 10´1 9.32 ¨ 10´2 1 5 13 28
6 2 504 2.412 ¨ 10´1 1.179 ¨ 10´1 2 6 14 28
7 2 1016 2.484 ¨ 10´1 1.411 ¨ 10´1 2 6 14 28
8 2 2040 2.534 ¨ 10´1 1.662 ¨ 10´1 2 6 14 28

Table 6.3: Key numbers obtained from the computation of the optimal shape functions using
quadratic boundary hats in x1 and x2 direction on various boundary levels.

the same value when increasing the boundary level. The second eigenvalue tends to stabilize in the
same region as the first eigenvalue whenever constants are included. Higher order boundary hats
do not yield a large second eigenvalue on their own.
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` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0, 1 36 2.482 ¨ 10´1 1.822 ¨ 10´1 2 6 12 19
3 0, 1 84 2.498 ¨ 10´1 2.058 ¨ 10´1 2 6 12 26
4 0, 1 180 2.513 ¨ 10´1 2.266 ¨ 10´1 2 6 14 28
5 0, 1 372 2.525 ¨ 10´1 2.405 ¨ 10´1 2 6 14 28
6 0, 1 756 2.532 ¨ 10´1 2.479 ¨ 10´1 2 6 14 28
7 0, 1 1524 2.536 ¨ 10´1 2.517 ¨ 10´1 2 6 14 28
8 0, 1 3060 2.538 ¨ 10´1 2.537 ¨ 10´1 2 6 14 29

Table 6.4: Key numbers obtained from the computation of the optimal shape functions using con-
stant and linear boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0, 1, 2 60 2.487 ¨ 10´1 1.826 ¨ 10´1 2 6 12 22
3 0, 1, 2 140 2.499 ¨ 10´1 2.058 ¨ 10´1 2 6 12 28
4 0, 1, 2 300 2.513 ¨ 10´1 2.266 ¨ 10´1 2 6 14 29
5 0, 1, 2 620 2.525 ¨ 10´1 2.405 ¨ 10´1 2 6 14 29
6 0, 1, 2 1260 2.532 ¨ 10´1 2.479 ¨ 10´1 2 6 14 28
7 0, 1, 2 2540 2.536 ¨ 10´1 2.517 ¨ 10´1 2 6 14 28

Table 6.5: Key numbers obtained from the computation of the optimal shape functions using con-
stant, linear and quadratic boundary hats in x1 and x2 direction on various boundary levels.

(a) (b)

Figure 6.1: Largest eigenvalue λ1 (a) and second largest eigenvalue λ2 (b) for increasing boundary
levels ` obtained from the computations for boundary hats of various polynomial degrees. Markers
are plotted every 500 degrees of freedom.

Increasing the boundary level shows, for all polynomial degrees, that the PDE under study seems
to yield two very large and six more large eigenvalues. The largest eigenvalue is moreover seem
to stabilize at around 0.253 - 0.254 for increasing boundary levels, regardless of the polynomial
degree(s). On the other hand, the second eigenvalue variates more for different types of boundary
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hats, even for high-dimensional approximation spaces. The largest values are obtained whenever
the constant boundary hats are included in the boundary data. It seems that constant boundary hats
have the strongest influence on the eigenvalues of the benchmark problem under study.

Note that increasing the boundary level or using multiple polynomial degrees increases the number
of boundary hats, and since their number coincides with the number of sample problems to be
solved, a suitable trade-off has to be identified. For the benchmark problem under study, it can be
concluded from the previous discussion and the numbers of degrees of freedom, that using constant
boundary hats on boundary level 8 yields the most promising results for a moderate 1020 degrees
of freedom.

B-Splines

In this subsection, B-Splines are used as boundary data in the sampling problem. The B-Splines
under study are quadratic and in some cases cubic. Inner knots are repeated in order to assure
a maximum number of continuous B-Splines. Note that four ways of generating the boundary
data were tested: The splines can either be generated in one coordinate direction only, or in both
coordinate directions. When adding artificial knots outside of the coordinate range, the original
vertices become inner knots and this in turn leads to additional splines having support on the
endpoints of the domain edges. These splines are referred to as corner splines in the following.
Figure 6.2 exemplarily shows the sets of quadratic univariate B-Splines for 4 different inner knots
(without repetitions) with and without corner splines. As described in Section 5.2.5, bivariate
B-Splines to be used as boundary data in the sampling problem are obtained by multiplying the
univariate splines by linear splines in the other coordinate direction. Figure 6.2 (c) shows linear B-
Splines without inner knots. The so-constructed bivariate splines are also referred to as quadratic
B-Splines in the following.

(a) (b) (c)

Figure 6.2: Quadratic B-Splines with four different inner knots (without repetitions) without corner
splines (a) and with corner splines (b). Linear B-Splines without inner knots are shown in (c).

Tables 6.6 - 6.9 present key numbers obtained from the four computations using quadratic B-
Splines, with n denoting the number of inner knots without repetitions. Table 6.10 shows the
results for cubic B-Splines in x1 and x2 direction with included corner splines. From Table 6.6
it can be seen, that using quadratic B-Splines only in x1 direction and without considering cor-
ner splines results in one very large and four additional large eigenvalues. The size of the largest
eigenvalue is 0.1403 in all computations shown. When adding corner splines, and / or considering
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n dim λ1 λ2 n´1 n´2 n´4 n´8

3 16 1.403 ¨ 10´1 5.721 ¨ 10´2 1 4 8 8
4 20 1.403 ¨ 10´1 5.74 ¨ 10´2 1 4 8 10
5 24 1.403 ¨ 10´1 5.743 ¨ 10´2 1 4 8 12
6 28 1.403 ¨ 10´1 5.744 ¨ 10´2 1 4 8 14
7 32 1.403 ¨ 10´1 5.744 ¨ 10´2 1 4 8 16
8 36 1.403 ¨ 10´1 5.744 ¨ 10´2 1 4 8 18
9 40 1.403 ¨ 10´1 5.744 ¨ 10´2 1 4 8 18

Table 6.6: Key numbers obtained from the computation of the optimal shape functions using
quadratic B-Splines in x1 direction, not including corner splines.

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 24 2.47 ¨ 10´1 2.443 ¨ 10´1 2 6 11 11
4 28 2.47 ¨ 10´1 2.446 ¨ 10´1 2 6 10 13
5 32 2.471 ¨ 10´1 2.448 ¨ 10´1 2 6 11 15
6 36 2.471 ¨ 10´1 2.449 ¨ 10´1 2 6 11 17
7 40 2.471 ¨ 10´1 2.449 ¨ 10´1 2 6 11 19
8 44 2.471 ¨ 10´1 2.449 ¨ 10´1 2 6 11 21
9 48 2.471 ¨ 10´1 2.45 ¨ 10´1 2 6 11 20

Table 6.7: Key numbers obtained from the computation of the optimal shape functions using
quadratic B-Splines in x1 direction, including corner splines.

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 32 1.992 ¨ 10´1 1.992 ¨ 10´1 2 6 12 16
4 40 2.017 ¨ 10´1 2.017 ¨ 10´1 2 6 14 20
5 48 2.036 ¨ 10´1 2.036 ¨ 10´1 2 6 14 23
6 56 2.053 ¨ 10´1 2.053 ¨ 10´1 2 6 14 24
7 64 2.066 ¨ 10´1 2.066 ¨ 10´1 2 6 14 27
8 72 2.077 ¨ 10´1 2.077 ¨ 10´1 2 6 14 27
9 80 2.087 ¨ 10´1 2.087 ¨ 10´1 2 6 14 28

Table 6.8: Key numbers obtained from the computation of the optimal shape functions using
quadratic B-Splines in x1 and x2 direction, not including corner splines.

quadratic B-Splines also in x2 direction, there are two very large and six additional large eigenval-
ues. In the case of B-Splines in x1 and x2 direction together with corner splines, the two dominant
eigenvalues are of identical size 0.2538 for all considered numbers of inner knots, and only the
number of very small eigenvalues keeps increasing. The development of the two dominant eigen-
values for increasing numbers of oscillations is shown in Figure 6.3. The following Table 6.10
shows the results for cubic B-Splines. Also for this type of boundary data, there are two very
large and six large eigenvalues, and both dominant eigenvalues are of similar size as in the case of
quadratic B-Splines.
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n dim λ1 λ2 n´1 n´2 n´4 n´8

3 96 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 12 19
4 112 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 23
5 128 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 23
6 144 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 24
7 160 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 27
8 176 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 27
9 192 2.538 ¨ 10´1 2.538 ¨ 10´1 2 6 14 28

Table 6.9: Key numbers obtained from the computation of the optimal shape functions using
quadratic B-Splines in x1 and x2 direction, including corner splines.

(a) (b)

Figure 6.3: Largest eigenvalue λ1 (a) and second largest eigenvalue λ2 (b) obtained from the com-
putations using quadratic B-Splines with an increasing number of inner knots (without repetitions).
All computations use less than 200 degrees of freedom.

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 80 2.532 ¨ 10´1 2.532 ¨ 10´1 2 6 12 20
4 96 2.532 ¨ 10´1 2.532 ¨ 10´1 2 6 14 24
5 112 2.533 ¨ 10´1 2.533 ¨ 10´1 2 6 14 24
6 128 2.533 ¨ 10´1 2.533 ¨ 10´1 2 6 14 27
7 144 2.533 ¨ 10´1 2.533 ¨ 10´1 2 6 14 28
8 160 2.533 ¨ 10´1 2.533 ¨ 10´1 2 6 14 28
9 176 2.533 ¨ 10´1 2.533 ¨ 10´1 2 6 14 29

Table 6.10: Key numbers obtained from the computation of the optimal shape functions using
cubic B-Splines in x1 and x2 direction, including corner splines.

Concluding, it can be said that the corner splines seem to have a strong influence on the size of
the largest eigenvalues. The experimental approach of only considering splines in one coordinate
direction seems to perform quite well for the benchmark problem under study. However, this ap-
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proach will probably only work whenever the fine-scale properties of the true solution do not vary
much in the other coordinate directions. This behavior will probably be hardly visible by diffused
boundary conditions on x1. In regard of the relatively low quantity of B-Splines per edge, it is
therefore recommended to consider them in both coordinate directions. Moreover, corner splines
should always be included. Using higher order B-Splines does not seem to be advantageous.

Oscillating trigonometric functions

This subsection considers boundary data defined by the fourier-type basis functions CpΓFq from
Section 5.2 and the maximum number of oscillations, nosc, is increased subsequently. Table 6.11
shows key numbers obtained from the corresponding computations. For Fourier-type basis func-

nosc dim λ1 λ2 “ λ3 n´1 n´2 n´4 n´8

2 26 7.203 ¨ 10´2 2.083 ¨ 10´2 0 3 7 8
5 56 7.371 ¨ 10´2 2.087 ¨ 10´2 0 3 9 17

10 106 7.392 ¨ 10´2 2.091 ¨ 10´2 0 3 9 19
15 156 7.399 ¨ 10´2 2.093 ¨ 10´2 0 3 9 19
20 206 7.4 ¨ 10´2 2.094 ¨ 10´2 0 3 9 19
25 256 7.401 ¨ 10´2 2.094 ¨ 10´2 0 3 9 19
30 306 7.402 ¨ 10´2 2.094 ¨ 10´2 0 3 9 19
35 356 7.402 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
40 406 7.402 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
45 456 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
50 506 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
55 556 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
60 606 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
65 656 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
70 706 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
75 756 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
80 806 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
85 856 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
90 906 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19
95 956 7.403 ¨ 10´2 2.095 ¨ 10´2 0 3 9 19

Table 6.11: Key numbers obtained from the computation of the optimal shape functions using
Fourier-type basis functions in x1 and x2 direction for increasing numbers of oscillations.

tions, the results only show three moderately large eigenvalues, with the largest being approxi-
mately 0.074. The largest eigenvalues do not change in size for increasing numbers of oscillations.
Concluding, it seems that Fourier-type boundary data performs poor for the benchmark problem
under study, even when using high oscillatory functions and consequently about one thousand so-
lutions to the sampling problem. In a global computation, the error will probably decrease very
slowly when increasing the number of optimal shape functions.



6.1. POISSON EQUATION WITH JUMPING COEFFICIENT 115

Conclusive remarks

In the previous discussion it was established, that constant boundary hats on the highest feasi-
ble boundary level 8 seem to produce the most promising results: Two very large and six large
eigenvalues are captured, and the sampling problem has to be solved a moderate 1020 times. The
constant hats are essential to increase the first two dominant eigenvalues, but combining them with
boundary hats of higher degrees rapidly increases the number of sampling problems to be solved,
being a computationally expensive step in the overall computation. It was also seen that B-Splines
should be defined in both coordinate directions, not only in x1, and corner splines should be in-
cluded. Moreover, higher order B-Splines do not seem to further improve the results. For quadratic
B-Splines defined using only three different inner knots, two very large and six large eigenvalues
are captured. These eigenvalues also remain approximately unchanged when increasing the num-
bers of inner knots. Furthermore, the dominant eigenvalues are of similar size to the dominant
eigenvalues from the boundary hats computations. Since less than 200 sampling problems need to
be solved, the results from this subsection look very promising. In order to visualize the difference
in computational effort, Figure 6.4 shows the largest achievable eigenvalue in terms of the degrees
of freedom, i.e. the number of sampling problems needed to compute it. Furthermore, it turned

Figure 6.4: Comparison of the size of the largest eigenvalues attainable using boundary hats, and
using B-Splines, in relation to the number of degrees of freedom (i.e. the dimension of the approx-
imation to the space of harmonic functions).

out that only three moderate eigenvalues with the largest being of size « 0.007 could be identified
when using Fourier-type boundary data, even when using large numbers of highly oscillatory func-
tions on the boundary. It is expected, that the optimal shape functions from these computations
will perform worse than the other two approaches in a global experiment. However - and to be fair
- this may be due the design of the model problem, whose solution is not expected to oscillate in
any way.
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6.1.3 Discusison of global errors
In the following, a reference solution for the benchmark problem is identified. Afterwards, the
various sets of optimal shape functions investigated in the previous section are employed in a
global computation and their approximation power is investigated. This will help to (in)validate
the claims made in the previous section.

In order to identify a reasonable reference solution, numerical solutions of the PDE described in
Problem 13 are computed for various discretization levels. The domain is given by Ω “ r´6, 6s2

and the bounding box is chosen to be r´6, 10s2, hence a discretization on any level ι consists of
m “ 3 ¨ 2ι´2 patches of size h “ 12

m
. The cover is chosen this way in order to have four patches of

size 2 on level 3 covering ω, as will be seen further below. The energy of the solutions on different
levels is computed, leading to a discrete approximation of the function

E : R` Ñ R, h ÞÑ Ephq :“ aΩruh, uhs
1
2 , (6.12)

where uh is the solution computed on the corresponding discretization using patch size h. The
obtained values of E, as well as the extrapolated limit for h “ 0 are shown in Figure 6.5. It can be
seen, that the extrapolated value at h “ 0 approximately coincides with the value at h “ 0.015625,
corresponding to a discretization on level 10. The level 10 solution u0.015625 will hence be chosen
as reference solution in the upcoming analysis.

Figure 6.5: The energy of the solutions uh for various values of h. The extrapolated limit value at
h “ 0 is also shown.

In the following, the enriched solutions obtained from the use of boundary hats, B-Splines and
Fourier-type basis functions as boundary data in the sampling problem are compared to the ref-
erence solution. For an increasing number of enrichments, the enriched solutions are intuitively
expected to be ever closer to the reference solution. However, note that additional enrichments used
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in one part of the domain may improve the local error on this subdomain, but due to global regu-
larity of the PUM solution also have an adverse effect on the error in the rest of the domain. Since
the PUM minimizes the global (not the local) energy error, enrichments may hence be discarded.
In such cases, the solutions remain invariant even when adding more and more enrichments. This
was investigated in detail in [Sch11]. The reference solution is shown in Figure 6.6. In the fol-

(a) (b)

Figure 6.6: (a) Reference solution u0.015625 for load fpxq “ x1 and global essential boundary
condition gpxq “ x2. In (b), the warped state is shown.

lowing subsections, the domain is coarsely discretized as shown in Figure 6.7. Particular solutions
for the load fpxq “ x1 and global essential boundary conditions gpxq “ x2 have been computed
for all coarse patches, resp. all coarse boundary patches individually and will be used as local
enrichments on the corresponding patches. Optimal shape functions are used as enrichments in
the marked center of the domain, since fine-scale behavior is only expected in this region. From
Figure 6.7, it is clearly visible that the jump interface of the coefficient is not resolved by the
patches, and hence a solution without any further enrichments used on the red patches is expected
to perform poor. This is confirmed by a relative global energy error of « 25%.

In all upcoming computations, the optimal basis functions were computed on the oversampled
patch ω` “ r´4, 4s2 and used as enrichment in the four center patches, which are marked in red
in Figure 6.7 and cover ω “ r´2, 2s2.
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Figure 6.7: Coarse global discretization. In the blue marked region, the coefficient A takes the
value 100 and outside it is equal to 1. Local particular solutions for load and essential boundary
conditions are used on the corresponding patches, and the red patches will be further enriched
using optimal shape functions. The red patches cover the patch ω.

Boundary hats

The relative energy error of the various series of enriched solutions on the full domain is shown
for enrichments based on constant, linear and quadratic boundary hats, as well as combinations
thereof, in tables 6.12 - 6.16. It can be seen, that all sets of optimal shape functions reduce the
error from 25.22% to 4.69% when using at least 10 enrichments. The enrichments corresponding
to the first two dominant eigenvalues have the largest impact, and are in all cases able to reduce
the error to less than 6% on their own.

It stands out, that the error obtained using only one enrichment constructed from boundary hats of
pd “ t0, 1u or pd “ t0, 1, 2u is significantly worse than in the case of a single polynomial degree.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0 25.22% 10.04% 5.07% 4.97% 4.93% 4.82% 4.69% 4.69%
3 0 25.22% 6.81% 5.08% 4.95% 4.92% 4.79% 4.69% 4.69%
4 0 25.22% 7.65% 5.07% 4.97% 4.92% 4.79% 4.69% 4.69%
5 0 25.22% 6.94% 5.07% 5.01% 4.92% 4.79% 4.69% 4.69%
6 0 25.22% 6.54% 5.07% 5.00% 4.92% 4.78% 4.69% 4.69%
7 0 25.22% 7.77% 5.07% 4.99% 4.92% 4.79% 4.69% 4.69%
8 0 25.22% 7.11% 5.07% 4.99% 4.92% 4.79% 4.69% 4.69%

Table 6.12: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant boundary hats.

Concluding from the foregoing tables, it results that all sets of optimal shape functions can be
used to drastically reduce the initial error of 25.22% to 4.69%. The boundary level moreover
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` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 1 25.22% 7.68% 5.43% 4.96% 4.93% 4.76% 4.69% 4.69%
3 1 25.22% 7.66% 5.28% 4.97% 4.93% 4.77% 4.69% 4.69%
4 1 25.22% 7.64% 5.21% 4.98% 4.93% 4.78% 4.69% 4.69%
5 1 25.22% 7.63% 5.16% 5.02% 4.93% 4.79% 4.69% 4.69%
6 1 25.22% 7.63% 5.12% 5.00% 4.93% 4.80% 4.69% 4.69%
7 1 25.22% 7.63% 5.10% 5.00% 4.93% 4.80% 4.69% 4.69%
8 1 25.22% 7.63% 5.08% 4.99% 4.93% 4.81% 4.69% 4.69%

Table 6.13: Development of the relative energy error for increasing numbers of enrichments ob-
tained from linear boundary hats in x1 and x2.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 2 25.22% 8.24% 5.55% 5.29% 5.00% 4.72% 4.69% 4.69%
3 2 25.22% 8.11% 5.45% 5.22% 4.99% 4.73% 4.69% 4.69%
4 2 25.22% 7.94% 5.63% 5.12% 4.96% 4.74% 4.69% 4.69%
5 2 25.22% 7.79% 5.40% 5.03% 4.95% 4.76% 4.69% 4.69%
6 2 25.22% 7.69% 5.24% 4.99% 4.94% 4.78% 4.69% 4.69%
7 2 25.22% 7.65% 5.16% 5.04% 4.93% 4.79% 4.69% 4.69%
8 2 25.22% 7.63% 5.11% 5.01% 4.93% 4.81% 4.69% 4.69%

Table 6.14: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic boundary hats in x1 and x2.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0, 1 25.22% 19.00% 5.76% 5.18% 4.94% 4.85% 4.69% 4.69%
3 0, 1 25.22% 19.02% 5.30% 4.95% 4.93% 4.78% 4.69% 4.69%
4 0, 1 25.22% 19.07% 5.10% 4.93% 4.93% 4.79% 4.69% 4.69%
5 0, 1 25.22% 19.11% 5.06% 5.04% 4.92% 4.80% 4.69% 4.69%
6 0, 1 25.22% 19.13% 5.06% 5.01% 4.92% 4.81% 4.69% 4.69%
7 0, 1 25.22% 19.14% 5.07% 5.00% 4.92% 4.81% 4.69% 4.69%
8 0, 1 25.22% 19.15% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%

Table 6.15: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant and linear boundary hats in x1 and x2.

does not need to be chosen very high. As seen before, there are two dominant eigenvalues in
the computations for sufficiently large boundary levels, and hence both corresponding optimal
shape functions should be used as enrichments. Using more enrichments only slightly improves
the error, and using more than 10 enrichments does not change the result anymore. Plots of the
difference between reference and enriched solutions give visual evidence for this, and are presented
in Figure 6.8. In Figure 6.9 the decay of the energy error is visualized.
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` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0, 1, 2 25.22% 18.98% 5.78% 5.18% 4.94% 4.86% 4.69% 4.69%
3 0, 1, 2 25.22% 19.02% 5.30% 4.95% 4.93% 4.78% 4.69% 4.69%
4 0, 1, 2 25.22% 19.07% 5.10% 4.93% 4.93% 4.79% 4.69% 4.69%
5 0, 1, 2 25.22% 19.11% 5.06% 5.04% 4.92% 4.80% 4.69% 4.69%
6 0, 1, 2 25.22% 19.13% 5.06% 5.01% 4.92% 4.81% 4.69% 4.69%
7 0, 1, 2 25.22% 19.14% 5.07% 5.00% 4.92% 4.81% 4.69% 4.69%

Table 6.16: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant, linear and quadratic boundary hats in x1 and x2.

(a) (b)

(c) (d)

Figure 6.8: Difference between reference and enriched solutions, for (a) only particular solutions,
(b) particular solutions and two enrichments, (c) particular solutions and ten enrichments, (d) par-
ticular solutions and twenty enrichments. Enrichments were computed using boundary level 8 and
polynomial degrees pd “ t0, 1u. Note that the minimum and maximum shown on the scale of (a)
is ten times bigger than in the scales of (b), (c) and (d).
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Figure 6.9: Relative energy error for increasing numbers of enrichments, constructed from bound-
ary hats of different degrees and defined on various boundary levels.
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B-Splines

The enrichments used in this section are constructed from B-Spline boundary data, and tables 6.17
- 6.20 present the relative energy errors of the enriched computations based on the four variants
of quadratic B-Splines presented in Section 6.1.2. All sets of optimal shape functions reduce the
error from 25.22% to « 4.7% when using at least 10 enrichments. Two enrichments from the
optimal shape functions constructed from B-Splines only in x1 direction and without considering
corner splines lead to errors of 8.01%. Optimal shape functions constructed from all other types of
B-Splines lead to errors of at most 5.3% whenever two enrichments are used, and the enrichments
constructed from B-Splines in x1 and x2 direction including corner splines perform best.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

4 25.22% 20.78% 8.01% 7.18% 5.00% 4.83% 4.70% 4.70%
5 25.22% 20.79% 8.01% 7.18% 5.00% 4.84% 4.70% 4.69%
6 25.22% 20.79% 8.01% 7.18% 5.00% 4.84% 4.70% 4.69%
7 25.22% 20.79% 8.01% 7.18% 5.00% 4.84% 4.70% 4.69%
8 25.22% 20.79% 8.01% 7.18% 5.00% 4.84% 4.70% 4.69%
9 25.22% 20.79% 8.01% 7.18% 5.00% 4.84% 4.70% 4.69%

Table 6.17: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction without corner splines.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.70%
4 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.70%
5 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.69%
6 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.69%
7 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.69%
8 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.69%
9 25.22% 7.71% 5.30% 4.91% 4.89% 4.77% 4.70% 4.69%

Table 6.18: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction with corner splines.

The results for boundary data consisting of cubic B-Splines in x1 and x2 direction, including corner
splines, are presented in Table 6.21. It is seen that the error decays very similar to that in the case
of quadratic B-Splines presented in table 6.20. Again, the first enrichment is able to reduce a very
large fraction of the error, leading to errors of 5.07% for only two enrichments.

Concluding, it results that all sets of optimal shape functions constructed from B-Spline boundary
data can be used to drastically reduce the initial error of 25.22% to approximately 4.7%. It even
seems that weakly chosen boundary data will only decrease the speed of decay, but ultimately, i.e.
for sufficiently large numbers of enrichments, lead to errors of comparable size. For reasonable
boundary data however, two enrichments corresponding to the two obtained dominant eigenvalues
(cf. Section 6.1.2) were obtained, and hence the corresponding optimal shape functions should
definitely be used as enrichments. Using more than ten enrichments, in case there are more, does
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n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 25.22% 8.73% 5.20% 5.05% 5.02% 4.89% 4.69% 4.69%
4 25.22% 8.56% 5.20% 5.05% 5.02% 4.87% 4.69% 4.69%
5 25.22% 7.78% 5.19% 5.05% 5.02% 4.84% 4.69% 4.69%
6 25.22% 9.37% 5.18% 5.05% 5.02% 4.87% 4.69% 4.69%
7 25.22% 8.77% 5.17% 5.04% 5.02% 4.83% 4.69% 4.69%
8 25.22% 8.19% 5.16% 5.03% 5.01% 4.85% 4.69% 4.69%
9 25.22% 8.10% 5.16% 5.03% 5.01% 4.82% 4.69% 4.69%

Table 6.19: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction without corner splines.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 25.22% 7.77% 5.07% 4.99% 4.92% 4.78% 4.69% 4.69%
4 25.22% 7.95% 5.07% 4.99% 4.92% 4.83% 4.69% 4.69%
5 25.22% 8.16% 5.07% 4.99% 4.92% 4.78% 4.69% 4.69%
6 25.22% 8.18% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%
7 25.22% 7.23% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%
8 25.22% 8.33% 5.07% 4.99% 4.92% 4.78% 4.69% 4.69%
9 25.22% 7.28% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%

Table 6.20: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction with corner splines.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 25.22% 7.12% 5.07% 4.99% 4.92% 4.79% 4.69% 4.69%
4 25.22% 7.89% 5.07% 4.99% 4.92% 4.83% 4.69% 4.69%
5 25.22% 8.16% 5.07% 4.99% 4.92% 4.78% 4.69% 4.69%
6 25.22% 8.23% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%
7 25.22% 7.49% 5.07% 4.99% 4.92% 4.78% 4.69% 4.69%
8 25.22% 7.97% 5.07% 4.99% 4.92% 4.82% 4.69% 4.69%
9 25.22% 7.37% 5.07% 4.99% 4.92% 4.81% 4.69% 4.69%

Table 6.21: Development of the relative energy error for increasing numbers of enrichments ob-
tained from cubic B-Splines in x1 and x2 direction with corner splines.

not further reduce the error. Plots of the difference between reference and enriched solutions,
shown in Figure 6.10, presents visual evidence for this. In Figure 6.11, the decay of the energy
errors from table 6.20 is visualized.
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(a) (b)

(c) (d)

Figure 6.10: Difference between reference and enriched solutions, for (a) only particular solutions,
(b) particular solutions and two enrichments, (c) particular solutions and ten enrichments, (d) par-
ticular solutions and twenty enrichments. Enrichments were computed from quadratic B-Splines
in x1 and x2 direction, including the corner splines, for 9 different inner knots. Note that the scale
of the errors in (a) is ten times larger than in (b), (c) and (d).
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Figure 6.11: Relative energy error for increasing numbers of enrichments, constructed from
quadratic B-Spline boundary data in x1 and x2, including corner splines, and defined for vari-
ous numbers of inner knots (without repetitions).
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Oscillating trigonometric functions

The following table 6.22 presents the development of the relative energy error for increasing num-
bers of optimal shape functions based on oscillatory Fourier-type basis functions used as enrich-
ments. Note that the maximum number of optimal shape functions computed with this approach
is 18. It is clearly visible, that the error decays very slow, and the first three enrichments for all
numbers of oscillations are barely capable of reducing it. Additionally using the fourth enrichment
results in a strong decay from « 22% to less than 8.3%. Additional enrichments then lead to slight
improvements of the error to 4.7% for ten enrichments. The remaining nine enrichments further-
more only lead to a negligible improvement, and in the end all sets of optimal shape functions
reduce the initial error of 25.22% to 4.69%. It can be concluded, that all sets of optimal shape

nosc nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 19

2 25.22% 24.70% 24.00% 22.55% 8.81% 7.81% -% -%
5 25.22% 24.70% 23.87% 22.48% 8.28% 5.84% 4.70% -%

10 25.22% 24.70% 23.78% 22.42% 7.98% 5.64% 4.70% 4.69%
15 25.22% 24.70% 23.74% 22.40% 7.87% 5.84% 4.70% 4.69%
20 25.22% 24.70% 23.72% 22.39% 7.82% 5.68% 4.70% 4.69%
25 25.22% 24.70% 23.71% 22.39% 7.79% 5.74% 4.70% 4.69%
30 25.22% 24.70% 23.71% 22.38% 7.77% 5.62% 4.70% 4.69%
35 25.22% 24.70% 23.70% 22.38% 7.76% 5.65% 4.70% 4.69%
40 25.22% 24.70% 23.70% 22.38% 7.75% 5.10% 4.70% 4.69%
45 25.22% 24.70% 23.70% 22.38% 7.75% 5.79% 4.70% 4.69%
50 25.22% 24.70% 23.70% 22.37% 7.74% 5.66% 4.70% 4.69%
55 25.22% 24.70% 23.70% 22.37% 7.74% 5.46% 4.70% 4.69%
60 25.22% 24.70% 23.69% 22.37% 7.74% 5.59% 4.70% 4.69%
65 25.22% 24.70% 23.69% 22.37% 7.73% 5.72% 4.70% 4.69%
70 25.22% 24.70% 23.69% 22.37% 7.73% 5.80% 4.70% 4.69%
75 25.22% 24.70% 23.69% 22.37% 7.73% 5.61% 4.70% 4.69%
80 25.22% 24.70% 23.69% 22.37% 7.73% 5.08% 4.70% 4.69%
85 25.22% 24.70% 23.69% 22.37% 7.73% 5.59% 4.70% 4.69%
90 25.22% 24.70% 23.69% 22.37% 7.73% 5.61% 4.70% 4.69%
95 25.22% 24.70% 23.69% 22.37% 6.78% 5.44% 4.70% 4.69%

Table 6.22: Development of the relative energy error for increasing numbers of enrichments ob-
tained from Fourier-type basis functions in x1 and x2 direction with increasing number of maxi-
mum oscillations.

functions are able to substantially reduce the error. However, the error for increasing numbers of
enrichments decays very slowly, and this coincides with the observation from Section 6.1.2, which
revealed that no dominant eigenvalues were captured for Fourier-type boundary data. As stated be-
fore, it is possible that the Fourier-type data has a poor performance for the benchmark problem at
hand since the homogeneous solution does not oscillate rapidly on a fine scale. For completeness,
Figure 6.12 shows the development of the difference between various enriched solutions and the
reference. In Figure 6.13, the slow decay of the the relative energy error is visualized.
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(a) (b)

(c) (d)

Figure 6.12: Difference between reference and enriched solutions, for (a) only particular solu-
tions, (b) particular solutions and two enrichments, (c) particular solutions and ten enrichments,
(d) particular solutions and nineteen enrichments. Enrichments were computed from Fourier-type
boundary data in x1 and x2 direction, for a maximum of 95 oscillations. Note that the scale of the
error in (a) is ten times larger than the scale of (b), (c) and (d).
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Figure 6.13: Relative energy error for increasing numbers of enrichments, constructed from
Fourier-type boundary data in x1 and x2 direction for various maximum numbers of oscillations.
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Conclusions from the benchmark problem

The foregoing detailed discussion revealed, that the homogeneous solution of the benchmark prob-
lem under study can be approximated well using optimal shape functions constructed from bound-
ary hats, B-Splines or Fourier-type boundary data. All approaches were capable of reducing the
initial error of 25.22% to« 4.7%. However, the workload needed to compute the enrichments from
the different approaches, as well as the rate of decay of the error, differ significantly. The boundary
hats approach is the most versatile, but in general also the most expensive, while the B-Spline ap-
proach is the cheapest, since relatively few sampling problems have to be solved. Boundary hats,
as well as B-Splines, led to two dominant eigenvalues. The Fourier approach on the other hand was
not able to capture any dominant eigenvalues at all. It was also observed, that the optimal shape
functions corresponding to dominant eigenvalues are able to reduce the error much faster. In total,
the B-Spline approach, considering quadratic splines in x1 and x2 direction defined on 9 different
inner nodes, together with the corresponding corner splines, showed the best overall performance.
This is due to the fact that the sampling problem has to be solved relatively few times, and the
resulting shape functions are able to reduce the energy error very quickly.

Residual error

In the previous discussion, particular solutions for the load were used on coarse patches and local
function spaces on boundary patches were furthermore enriched with particular solutions for the
essential boundary conditions. There are four patches in the center, whose corresponding local
function spaces were enriched with an ever-increasing number of optimal shape functions com-
puted using different types of boundary data in the sampling problem. It was seen in the previous
Section 6.1.3, that all shape functions were capable of substantially reducing the initial error, but
even for a large number of enrichments there was still a residual error which could not be improved
anymore. The magnitude of the residual error was, furthermore, of the same size « 4.7% for all
sets of optimal shape functions that were considered. This section aims to identify the source of
this residual error.

The residual error of 4.7% may be due to three possible reasons: Either, the resolution of the en-
richments was not high enough, or the error is due to the coarse discretization that is employed
globally, especially as a result of the relatively large overlap between patches. The lifting of solu-
tions furthermore implies that optimal basis functions for the approximation of the homogeneous
part of local solution need to be computed and applied on all patches, not only in the center of
the domain, and this may also have a negative influence on the results. Since optimal local ba-
sis functions basically replace the need for heavy refinement, the last two sources of error can be
treated conjointly. When identifying the reference solution at the beginning of Section 6.1.3, it
was observed that a global level 10 solution with patches of size h “ 0.015625 captures all fine-
scale features of the homogeneous solution. The enrichments have been computed on a global
discretization on level 8, but since the patch ω` on which the enrichments are computed is much
smaller, the patch sizes coincide. The enrichments are hence defined on the same sufficiently small
length-scale as the reference solution. The previous argumentation shows, that the resolution of
the enrichments cannot be responsible for the residual error.

In order to check the effect of the coarse discretization on the residual error, the particular solutions
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corresponding to the coarse level 3 were used on a global discretization of the levels 3, 4 and 5.
Figure 6.14 shows a discretization on two subsequent levels and two marked patches on the coarse
level. The particular solutions are computed on these coarse patches, and they are also used on all
patches on the fine level that result from a refinement of the corresponding coarse patch.

(a) (b)

Figure 6.14: (a) shows a level 3 discretization. Particular solutions are computed for all patches,
including the ones marked in red and blue. (b) shows a level 4 discretization. The blue patches use
the particular solutions computed on the blue patch from (a), and the red patches use the particular
solutions computed on the red patch from (a).

This construction minimizes the influence of factors other than the coarse discretization level on the
enriched computations. The following table 6.23 presents the results of the enriched computation,
and Figure 6.15 shows plots of the differences of the enriched solutions to the reference solution
u0.015625.

coarse level particular level nn relative energy error

3 3 20 4.70
4 3 20 2.80
5 3 20 2.50

Table 6.23: Relative errors for coarse discretization on levels 3, 4 and 5, when using particular
solutions from level 3 and 20 optimal shape functions as enrichments in the center region.

The results show, that the coarse level has a strong influence on the residual error. This is due
to the construction of the Partition of Unity Method, in which local function spaces (and local
approximations) are chosen independently of each other and glued together with functions forming
a partition of unity. Note that the use of optimal local basis functions on all patches, as described
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(a) (b)

(c)

Figure 6.15: Difference between enriched solutions using particular solutions from level 3 and 20
optimal shape functions in the center region, for coarse discretization of level 3 (a), 4 (b) and 5 (c).

in the lifting (cf. Section 5.1.1), replaces the need for spatial refinement and a similar reduction of
errors is expected in this case.

For subsequent benchmark problems, which show a residual error of similar structure, the previous
discussion can be repeated analogously and will hence be omitted.

6.2 Stationary convection diffusion equation with leading C1

coefficient
This section presents a two-dimensional stationary convection diffusion equation with coefficients
that oscillates in both coordinate directions within a small region located in the center of the do-
main. The maximum magnitude of the leading coefficient is 112 “ 121, whereas it is constant
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and equal to 1 outside of the center region. The fine-scale behavior is hard to grasp using standard
polynomial basis functions, especially since the coefficients imply steep gradients of the solution.
Optimal basis functions will hence be locally employed to improve the approximation quality in
enriched global simulations.

In Section 6.2.1, the strong and weak formulation of the stationary convection diffusion equation
is presented. The set of boundary conditions, as well as the trial and test spaces are introduced as
well. In Section 6.2.2, the effect of parameter variation on the set of optimal shape functions is
investigated. Finally, Section 6.2.3 presents the results of the global, enriched computation.

6.2.1 Problem formulation

Problem 14 presents the strong form of the PDE under study.

Problem 14: Stationary convection diffusion with oscillating coefficients.

Let Ω :“ r´6, 6s2 Ă R2, let A1,1 : R2 Ñ R and A : R2 Ñ R defined as

A1,1pxq “ p5 cosp3πx1q ` 6qp5 cosp3πx2q ` 6q, (6.13)

for x P r´1, 1s2, and A1,1pxq “ 1 for x R r´1, 1s2. Consider the coefficient
A : R2 Ñ R with

Apxq :“ A1,1pxq

„

1 0
0 1



(6.14)

and the partial differential operator

L : C2
pΩq Ñ C0

pΩq, v ÞÑ L v :“ ´ divpA∇uq `∇A1,1 ¨∇u. (6.15)

Moreover, let

f : R2
Ñ R, x “ px1, x2q ÞÑ fpxq :“ x1

g : R2
Ñ R, x “ px1, x2q ÞÑ gpxq :“ x2

(6.16)

Find a function u P C2
pΩq satisfying

´Lupxq “ fpxq, in Ω

upxq “ gpxq, on BΩ.
(6.17)

The coefficient A1,1 is shown in Figure 6.16. Note that the gradient of the coefficient A1,1 reads

∇A1,1pxq “ ´15π

„

sinp3πx1qp5 cosp3πx2q ` 6q
p5 cosp3πx1q ` 6q sinp3πx2q



. (6.18)



6.2. STATIONARY CONVECTION DIFFUSION EQUATION 133

Figure 6.16: The leading coefficient A1,1 of the PDE presented in Problem 14, which oscillates in
the center of the domain.

The trial and test spaces are defined as

Vtrial
pΩq :“ tu P H1

pΩq : trpuq “ g on BΩu

Vtest
pΩq :“ tv P H1

pΩq : trpvq “ 0 on BΩu,
(6.19)

and hence the weak formulation reads as follows.

Problem 15: Weak stationary convection diffusion with oscillating coffi-
cients.

Let Ω :“ r´6, 6s2 Ă R2, let A1,1 : R2 Ñ R and A : R2 Ñ R defined as

A1,1pxq “ p5 cosp3πx1q ` 6qp5 cosp3πx2q ` 6q, (6.20)

for x P r´1, 1s2, and A1,1pxq “ 1 for x R r´1, 1s2. Consider the coefficient
A : R2 Ñ R with

Apxq :“ A1,1pxq

„

1 0
0 1



(6.21)

as well as
f : R2

Ñ R, x “ px1, x2q ÞÑ fpxq :“ x1

g : R2
Ñ R, x “ px1, x2q ÞÑ gpxq :“ x2

(6.22)

Define the bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R and linear functional
` : VtestpΩq Ñ R,

aru, vs :“

ż

Ω

A1,1∇u ¨∇v ` v∇u ¨∇A1,1 dx,

`pvq :“

ż

Ω

fv dx.

(6.23)

Find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtrial
pΩq. (6.24)
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From (6.18) it follows that

∇A1,1pxq “ ´15π

„

sinp3πx1qp5 cosp3πx2q ` 6q
p5 cosp3πx1q ` 6q sinp3πx2q



ě

„

´165π
´165π



, (6.25)

and hence

aru, us “

ż

Ω

A1,1
loomoon

ě1

∇u ¨∇u` u∇u ¨∇A1,1 dx

ě

ż

Ω

∇u ¨∇u dx´ 165π

ż

Ω

uBx1u` uBx2u dx.

(6.26)

An application of the Poincaré-Friedrichs inequality (Theorem 2.6) on the first term yields
ż

Ω

∇u ¨∇u dx “ }∇u}2
rL2pΩqs2

“
1

2

”

}∇u}2
rL2pΩqs2 ` }∇u}2rL2pΩqs2

ı

“
1

2

„

}∇u}2
rL2pΩqs2 `

1

CPF
2 }u}

2
L2pΩq



ě min

"

1

2
,

1

2 CPF
2

*

”

}∇u}2
rL2pΩqs2 ` }u}

2
L2pΩq

ı

ě min

"

1

2
,

1

2 CPF
2

*

}u}2H1pΩq.

(6.27)

For the other terms appearing on the right-hand side of (6.26), integration by parts reads
ż

Ω

uBxju dx “

ż

BΩ

~nju
2 ds´

ż

Ω

Bxjuu dx, j “ 1, 2, (6.28)

that is
ż

Ω

uBxju dx “
1

2

ż

BΩ

~nju
2 ds

u“g on BΩ
“

1

2

ż

BΩ

~njg
2 ds, j “ 1, 2. (6.29)

Using the boundary data gpxq “ x2, (6.29) for j “ 1 reads

ż

Ω

uBx1u dx “
1

2

ż

BΩ

~n1x
2
2 dS

“
1

2

ż 6

´6

´1x2
2 dx2 `

1

2

ż 6

´6

1x2
2 dx2

looooooooooooooooooomooooooooooooooooooon

“0

`
1

2

ż 6

´6

0 ¨ p´6q2 dx2

loooooooooomoooooooooon

“0

`
1

2

ż 6

´6

0 ¨ 62 dx2

looooooomooooooon

“0

“ 0,

(6.30)

where the boundary integral was split into integrals over the left, right, bottom and top side of Ω.
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Similarly, for j “ 2 it holds that
ż

Ω

uBx2u dx “
1

2

ż

BΩ

~n2x
2
2 dS

“
1

2

ż 6

´6

0x2
2 dx2

loooooomoooooon

“0

`
1

2

ż 6

´6

0x2
2 dx2

loooooomoooooon

“0

`
1

2

ż 6

´6

´1 ¨ p´6q2 dx2 `
1

2

ż 6

´6

1 ¨ 62 dx2

loooooooooooooooooooooooomoooooooooooooooooooooooon

“0

“ 0.

(6.31)

Inserting (6.27), (6.30) and (6.31) into (6.26) yields

aru, us ě min

"

1

2
,

1

2 CPF
2

*

}u}2H1pΩq, (6.32)

proving the ellipticity the bilinear form ar¨, ¨s. Due to Theorem 2.4 (Lax and Milgram), Problem 15
has a unique weak solution.

6.2.2 Influence of the boundary data
In the following, the impact of different choices of boundary data on the eigenvalues is investi-
gated. In the following, the results obtained from using the boundary hats approach, the B-Spline
approach, and the Fourier approach are presented. Afterwards, conclusions drawn from the full
investigation of the benchmark problem at hand are presented.

Boundary hats

The following tables 6.24 - 6.28 present key numbers obtained from the computation of optimal
shape functions using boundary hats as boundary data in the sampling problem. The boundary
level ` is varied, and pd denotes the polynomial degree(s) of the boundary hats that are used.

Figure 6.17 presents a visualization of the development of the two dominant eigenvalues in

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0 12 1.303 ¨ 10´1 1.303 ¨ 10´1 2 4 11 11
3 0 28 1.845 ¨ 10´1 1.845 ¨ 10´1 2 6 12 23
4 0 60 2.175 ¨ 10´1 2.175 ¨ 10´1 2 6 12 35
5 0 123 2.362 ¨ 10´1 2.355 ¨ 10´1 2 6 14 55
6 0 252 2.448 ¨ 10´1 2.448 ¨ 10´1 2 6 14 64
7 0 508 2.492 ¨ 10´1 2.492 ¨ 10´1 2 6 14 65
8 0 1020 2.516 ¨ 10´1 2.516 ¨ 10´1 2 6 14 72

Table 6.24: Key numbers obtained from the computation of the optimal shape functions using
constant boundary hats on various boundary levels.
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` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 1 24 2.366 ¨ 10´1 6.016 ¨ 10´2 1 4 11 11
3 1 56 2.397 ¨ 10´1 7.337 ¨ 10´2 1 5 12 23
4 1 120 2.438 ¨ 10´1 1.039 ¨ 10´1 2 5 12 36
5 1 248 2.474 ¨ 10´1 1.301 ¨ 10´1 2 6 13 55
6 1 504 2.497 ¨ 10´1 1.511 ¨ 10´1 2 6 14 64
7 1 1016 2.509 ¨ 10´1 1.687 ¨ 10´1 2 6 14 65
8 1 2040 2.517 ¨ 10´1 1.893 ¨ 10´1 2 6 14 72

Table 6.25: Key numbers obtained from the computation of the optimal shape functions using
linear boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 2 24 1.94 ¨ 10´1 5.695 ¨ 10´2 1 4 11 12
3 2 56 2.02 ¨ 10´1 6.027 ¨ 10´2 1 4 12 23
4 2 120 2.143 ¨ 10´1 6.473 ¨ 10´2 1 5 12 36
5 2 248 2.278 ¨ 10´1 8.746 ¨ 10´2 1 5 13 55
6 2 504 2.387 ¨ 10´1 1.116 ¨ 10´1 2 6 14 64
7 2 1016 2.461 ¨ 10´1 1.346 ¨ 10´1 2 6 14 64
8 2 2040 2.513 ¨ 10´1 1.6 ¨ 10´1 2 6 14 71

Table 6.26: Key numbers obtained from the computation of the optimal shape functions using
quadratic boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0, 1 36 2.454 ¨ 10´1 1.785 ¨ 10´1 2 6 12 15
3 0, 1 84 2.472 ¨ 10´1 2.023 ¨ 10´1 2 6 12 23
4 0, 1 180 2.488 ¨ 10´1 2.236 ¨ 10´1 2 6 14 36
5 0, 1 372 2.502 ¨ 10´1 2.379 ¨ 10´1 2 6 14 55
6 0, 1 756 2.51 ¨ 10´1 2.456 ¨ 10´1 2 6 14 66
7 0, 1 1524 2.515 ¨ 10´1 2.495 ¨ 10´1 2 6 14 67
8 0, 1 3060 2.519 ¨ 10´1 2.517 ¨ 10´1 2 7 14 72

Table 6.27: Key numbers obtained from the computation of the optimal shape functions using
constant and linear boundary hats in x1 and x2 direction on various boundary levels.

terms of the boundary level. It is visible, that the largest eigenvalue λ1 of the computations for
polynomial degrees t0u, t1u, t2u, t0, 1u and t0, 1, 2u approaches approximately the same value
when increasing the boundary level. For a fixed boundary level, the optimal shape functions from
pd “ t0, 1u and pd “ t0, 1, 2u yield the largest values. However, in terms of degrees of freedom,
also purely linear and purely constant boundary hats lead to large values of λ1. Approximately 500
degrees of freedom are sufficient in all of these cases. Large values of the second eigenvalue λ2

cannot be obtained in all cases. Only the cases pd “ t0u, pd “ t0, 1u and pd “ t0, 1, 2u give large
values for 500 to 1000 degrees of freedom.
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` pd dim λ1 λ2 n´1 n´2 n´4 n´8

2 0, 1, 2 60 2.459 ¨ 10´1 1.79 ¨ 10´1 2 6 12 15
3 0, 1, 2 140 2.473 ¨ 10´1 2.024 ¨ 10´1 2 7 13 23
4 0, 1, 2 300 2.492 ¨ 10´1 2.238 ¨ 10´1 2 7 14 36
5 0, 1, 2 620 2.502 ¨ 10´1 2.379 ¨ 10´1 2 7 14 55
6 0, 1, 2 1260 2.51 ¨ 10´1 2.456 ¨ 10´1 2 6 14 66
7 0, 1, 2 2540 2.515 ¨ 10´1 2.495 ¨ 10´1 2 6 14 67

Table 6.28: Key numbers obtained from the computation of the optimal shape functions using
constant, linear and quadratic boundary hats in x1 and x2 direction on various boundary levels.

(a) (b)

Figure 6.17: Largest eigenvalue λ1 (a) and second largest eigenvalue λ2 (b) for increasing boundary
levels ` obtained from the computations for boundary hats of various polynomial degrees. Markers
are plotted every 500 degrees of freedom.

Increasing the boundary level shows for all polynomial degrees, that the PDE under study seems to
yield two very large and six or seven additional large eigenvalues. The largest eigenvalue stabilizes
at around 0.25, and whenever constant boundary hats are included in the computation, the second
largest eigenvalues are of around the same size. The second eigenvalue variates much more for
the different polynomial degree(s) considered, and it seems that constant boundary hats have the
strongest influence on the dominant eigenvalues.

In order to keep the degrees of freedom, i.e. the number of sampling problems to be solved, as
small possible, a computation of the optimal shape functions using constant boundary hats on
boundary level 8 seems to produce the most promising results. This way, 1020 sampling problems
have to be solved.

B-Splines

In this subsection, B-Splines are used as boundary data in the sampling problem. The B-Splines
under study are quadratic. Cubic B-Splines have been investigated in Section 6.1, but did not
show advantages over quadratic B-Splines and will hence not be considered anymore. Inner knots
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are repeated in order to ensure a maximum number of continuous B-Splines. The four ways of
generating B-Splines, which were already used in Section 6.1, were also used for this benchmark
problem: B-Splines can be constructed only in x1, or in both coordinate directions, and corner
splines can eventually be included. Key numbers from the computations using quadratic B-Splines
are presented in tables 6.29 to 6.32, where n denotes the number of inner knots without repetitions.

The results of the construction considering B-Splines only in x1 direction and without corner

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 15 1.179 ¨ 10´1 4.38 ¨ 10´2 1 4 7 7
4 20 1.373 ¨ 10´1 5.787 ¨ 10´2 1 4 8 10
5 24 1.373 ¨ 10´1 5.79 ¨ 10´2 1 4 8 11
6 28 1.373 ¨ 10´1 5.791 ¨ 10´2 1 4 8 13
7 32 1.373 ¨ 10´1 5.791 ¨ 10´2 1 4 8 14
8 36 1.373 ¨ 10´1 5.791 ¨ 10´2 1 4 8 15
9 40 1.373 ¨ 10´1 5.791 ¨ 10´2 1 4 8 16

Table 6.29: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 direction, not including corner splines.

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 24 2.439 ¨ 10´1 2.421 ¨ 10´1 2 6 11 11
4 28 2.44 ¨ 10´1 2.424 ¨ 10´1 2 6 10 12
5 32 2.44 ¨ 10´1 2.425 ¨ 10´1 2 6 11 14
6 36 2.44 ¨ 10´1 2.426 ¨ 10´1 2 6 12 15
7 40 2.44 ¨ 10´1 2.427 ¨ 10´1 2 6 11 16
8 44 2.44 ¨ 10´1 2.427 ¨ 10´1 2 6 11 17
9 48 2.44 ¨ 10´1 2.427 ¨ 10´1 2 6 11 19

Table 6.30: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 direction, including corner splines.

n dim λ1 λ2 n´1 n´2 n´4 n´8

3 32 1.954 ¨ 10´1 1.952 ¨ 10´1 2 6 12 15
4 40 1.98 ¨ 10´1 1.978 ¨ 10´1 2 6 14 18
5 48 2¨10´1 1.998 ¨ 10´1 2 6 14 19
6 56 2.016 ¨ 10´1 2.015 ¨ 10´1 2 6 14 23
7 64 2.03 ¨ 10´1 2.028 ¨ 10´1 2 6 14 25
8 72 2.041 ¨ 10´1 2.039 ¨ 10´1 2 6 14 27
9 80 2.051 ¨ 10´1 2.049 ¨ 10´1 2 6 14 29

Table 6.31: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 and x2 direction, not including corner splines.
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n dim λ1 λ2 n´1 n´2 n´4 n´8

3 96 2.517 ¨ 10´1 2.517 ¨ 10´1 2 6 12 15
4 112 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 18
5 128 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 19
6 144 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 22
7 160 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 23
8 176 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 26
9 192 2.518 ¨ 10´1 2.517 ¨ 10´1 2 6 14 29

Table 6.32: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 and x2 direction, including corner splines.

splines, which is presented in Table 6.29, show that there tends to be only one dominant eigenvalue
with a size of about 0.137. The second-largest eigenvalue is very small in this case. The other
variants of construction presented in Tables 6.30 to 6.32 lead to two very large and six more large
eigenvalues. Both dominant eigenvalues are of approximately the same size and the construction
based on B-Splines in both coordinate directions including corner splines - as also seen before in
the previous experiment - produces dominant eigenvalues of largest values. Since the dimension
of the discrete harmonic spaces, i.e. the number of sampling problems to be solved, is relatively
small, the construction using B-Splines in both coordinate directions and including corner splines
is favorable. Figure 6.18 presents the development of the dominant eigenvalues for increasing
numbers of inner knots without repetitions for all four variants of construction.

(a) (b)

Figure 6.18: Largest eigenvalue λ1 (a) and second largest eigenvalue λ2 (b) obtained from the
computations using quadratic B-Splines for increasing numbers of inner knots (without repeti-
tions). All computations use less than 200 degrees of freedom.

Oscillating trigonometric functions

This subsection considers boundary data defined by the oscillatory Fourier-type basis functions
C from Section 5.2 and the maximum number of oscillations, nosc, is increased subsequently.
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Table 6.33 shows key numbers obtained from the corresponding computations. No very large

nosc dim λ1 λ2 “ λ3 n´1 n´2 n´4 n´8

2 26 7.217 ¨ 10´2 2.097 ¨ 10´2 0 3 7 8
5 56 7.385 ¨ 10´2 2.101 ¨ 10´2 0 3 9 18

10 106 7.405 ¨ 10´2 2.105 ¨ 10´2 0 3 9 18
15 156 7.412 ¨ 10´2 2.107 ¨ 10´2 0 3 9 18
20 206 7.414 ¨ 10´2 2.107 ¨ 10´2 0 3 9 18
25 256 7.415 ¨ 10´2 2.108 ¨ 10´2 0 3 9 18
30 306 7.415 ¨ 10´2 2.108 ¨ 10´2 0 3 10 18
35 356 7.416 ¨ 10´2 2.108 ¨ 10´2 0 3 10 18
40 406 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
45 456 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
50 506 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
55 556 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
60 606 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
65 656 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
70 706 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
75 756 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
80 806 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18
85 856 7.416 ¨ 10´2 2.109 ¨ 10´2 0 3 10 18

Table 6.33: Key numbers obtained from the computation of the optimal shape functions using
Fourier-type basis functions in x1 and x2 direction for increasing numbers of oscillations.

eigenvalues are captured, and the largest eigenvalue is of size « 0.07, even when using a large
number of boundary data functions. As already seen in the previous benchmark problem, it is
expected that the optimal shape functions based on Fourier-type boundary data will perform poor,
meaning that many enrichments will be needed to decrease the error in a global computation to a
reasonable level. The results from this subsection are surprising in the sense that the coefficient
indeed oscillates, which in turn may indicate that also the homogeneous solution oscillates.

Conclusive remarks

The conclusion of this section are similar to the ones of the first benchmark problem. Using con-
stant boundary hats on the highest feasible boundary level 8 promise the best results, with two
very large, dominant eigenvalues. Furthermore, six to seven large eigenvalues were captured.
The corresponding optimal shape functions are linear combinations of 1020 solutions to the sam-
pling problem. When using B-Spline boundary data, the importance of considering corner splines
was shown. Also, B-splines in both coordinate directions should be employed, even though quite
promising values of the two dominant eigenvalues could also be computed from B-splines only in
x1 direction and including the corner splines. Boundary data consisting of oscillatory, Fourier-type
functions was not able to capture any dominant eigenvalues, and the performance of the corre-
sponding optimal shape functions in global computations is expected to be relatively poor.
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6.2.3 Discussion of global errors
The procedure of the first benchmark problem is repeated. First, a numerical reference solution
is identified. Afterwards, the various sets of optimal shape functions from Section 6.2.2 are used
as enrichments and the enriched solutions are compared against the reference solution, which will
help to (in)validate the claims previously made.

The bounding box is chosen to be r´6, 10s2 and the reference solution is identified as in the first
benchmark problem. Unenriched solutions uh are computed for various discretization levels and
corresponding patch sizes h, leading to discrete values of the function

E : R` Ñ R, h ÞÑ Ephq :“ aΩruh, uhs
1
2 , (6.33)

The discrete approximation of the function, as well as the extrapolated limit for h “ 0 are shown
in Figure 6.19. The value at h “ 0.015625, corresponding to a discretization on level 10, approxi-

Figure 6.19: The energy of the solutions uh for various values of h. The extrapolated limit value
at h “ 0 is also shown.

mately coincides with the extrapolated limit, and hence the corresponding level 10 approximation
u0.015625 will be used as a reference solution in the following.

In the following, the enriched solutions obtained from boundary hats, B-Splines and Fourier-type
basis functions as boundary data in the sampling problem are compared to the reference solution.
As already mentioned in the analysis of the first benchmark problem, additional local enrichments
may lead to improvements of the local energy, but have adverse effects on other parts of the domain.
Since the PUM minimizes the global (not the local) energy, enrichments may hence be discarded
(cf. [Sch11]). The reference solution is shown in Figure 6.20. The domain is coarsely discretized
on level ι “ 3 as shown in Figure 6.21. Particular solutions for the load fpxq “ x1 and global
essential boundary conditions gpxq “ x2 have been computed for all coarse patches, resp. all
coarse boundary patches individually and will be used as local enrichments on the corresponding
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(a) (b)

Figure 6.20: (a) Reference solution u0.015625 for load fpxq “ x1 and global essential boundary
condition gpxq “ x2. In (b), the warped state is shown.

patches. Optimal shape functions are used as enrichments in the marked center of the domain.
From Figures 6.16 and 6.21 it is clearly visible, that the behavior of the coefficient is not resolved

Figure 6.21: Coarse global discretization. In the blue marked region, the coefficient A oscillates,
and outside it is equal to 1. Local particular solutions for load and essential boundary conditions
are used on the corresponding patches, and the red patches will be further enriched using optimal
shape functions. The red patches cover the patch ω.

by the coarse patches, leading to an expected poor performance of the unenriched solution. The
global energy error of the unenriched solution is approximately 33%.

In all upcoming computations, the optimal basis functions were computed on the oversampled
patch ω` “ r´4, 4s2 and used as enrichment in the four center patches, which are marked in red
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in Figure 6.21 and cover ω “ r´2, 2s2.

Boundary hats

The following tables 6.34 to 6.38 show the relative energy error for enrichments based on constant,
linear and quadratic boundary hats, as well as combinations thereof.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0 33.14% 24.41% 6.69% 4.87% 4.73% 4.51% 3.91% 3.91%
3 0 33.14% 24.36% 6.85% 4.86% 4.77% 4.73% 3.93% 3.90%
4 0 33.14% 24.36% 6.76% 4.88% 4.74% 4.74% 3.93% 3.90%
5 0 33.14% 8.07% 6.63% 4.91% 4.73% 4.67% 3.92% 3.90%
6 0 33.14% 24.44% 6.55% 4.92% 4.68% 4.73% 3.93% 3.90%
7 0 33.14% 24.46% 6.51% 6.15% 4.67% 4.73% 3.93% 3.90%
8 0 33.14% 24.47% 6.48% 6.11% 4.67% 4.73% 3.93% 3.90%

Table 6.34: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant boundary hats.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 1 33.14% 12.25% 7.88% 5.78% 5.74% 4.38% 3.90% 3.91%
3 1 33.14% 12.15% 6.83% 5.66% 5.63% 4.41% 3.93% 3.90%
4 1 33.14% 12.03% 6.67% 5.45% 5.44% 4.40% 3.93% 3.90%
5 1 33.14% 11.94% 6.54% 5.25% 5.25% 4.38% 3.93% 3.90%
6 1 33.14% 11.88% 6.48% 6.22% 5.09% 4.36% 3.93% 3.90%
7 1 33.14% 11.86% 6.44% 6.14% 4.96% 4.34% 3.93% 3.90%
8 1 33.14% 11.84% 6.44% 6.12% 4.84% 4.33% 3.93% 3.90%

Table 6.35: Development of the relative energy error for increasing numbers of enrichments ob-
tained from linear boundary hats in x1 and x2.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 2 33.14% 12.52% 8.35% 6.87% 6.63% 4.24% 3.91% 3.91%
3 2 33.14% 12.38% 8.11% 6.73% 6.38% 4.30% 3.93% 3.90%
4 2 33.14% 12.23% 8.16% 6.37% 6.03% 4.32% 3.93% 3.90%
5 2 33.14% 12.08% 7.26% 5.90% 5.68% 4.34% 3.93% 3.90%
6 2 33.14% 11.97% 6.85% 5.49% 5.39% 4.35% 3.93% 3.90%
7 2 33.14% 11.90% 6.59% 5.21% 5.18% 4.35% 3.93% 3.90%
8 2 33.14% 11.84% 6.42% 6.15% 5.01% 4.34% 3.93% 3.90%

Table 6.36: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic boundary hats in x1 and x2.



144 CHAPTER 6. NUMERICAL COMPUTATION OF OPTIMAL BASES

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0, 1 33.14% 27.32% 7.08% 4.14% 4.56% 4.67% 3.93% 3.91%
3 0, 1 33.14% 27.35% 6.88% 4.28% 4.48% 4.65% 3.93% 3.90%
4 0, 1 33.14% 27.42% 6.70% 4.55% 4.54% 4.25% 3.93% 3.90%
5 0, 1 33.14% 27.48% 6.58% 4.75% 4.61% 4.28% 3.93% 3.90%
6 0, 1 33.14% 27.52% 6.53% 6.26% 4.65% 4.33% 3.93% 3.90%
7 0, 1 33.14% 27.53% 6.50% 6.16% 4.68% 4.70% 3.93% 3.90%
8 0, 1 33.14% 25.11% 6.48% 6.11% 4.69% 4.45% 3.93% 3.90%

Table 6.37: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant and linear boundary hats in x1 and x2.

` pd nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

2 0, 1, 2 33.14% 27.28% 7.09% 4.12% 4.52% 4.64% 3.94% 3.91%
3 0, 1, 2 33.14% 27.34% 6.87% 4.28% 4.47% 4.40% 3.93% 3.90%
4 0, 1, 2 33.14% 27.37% 6.70% 4.59% 4.43% 4.34% 3.93% 3.90%
5 0, 1, 2 33.14% 27.47% 6.58% 4.75% 4.60% 4.56% 3.93% 3.90%
6 0, 1, 2 33.14% 27.52% 6.53% 6.26% 4.65% 4.30% 3.93% 3.90%
7 0, 1, 2 33.14% 27.54% 6.50% 6.16% 4.68% 4.33% 3.93% 3.90%

Table 6.38: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant, linear and quadratic boundary hats in x1 and x2.

All sets of enrichments can be used to reduce the initial error of 33.14% to about 3.9%. It can be
seen that the first two enrichments, corresponding to the two dominant eigenvalues, have the largest
impact on the error and using those two enrichments leads to relative errors of less than 8.4% in all
cases and for all boundary levels. The performance of the first enrichment alone however varies
significantly for the different types of boundary hats used in their construction. Using ten enrich-
ments reduces the relative error to less than 3.95% in all cases, and using further enrichments only
marginally changes the error. Concluding, the first two enrichments corresponding to the dominant
eigenvalues have the strongest potential to reduce the errors, and they should both be employed.
The boundary level does not need to be chosen very high in order to produce promising results.
In Figure 6.22, the distribution of the energy error for various numbers of enrichments is shown
visually. It can clearly be observed, that the error in ω is reduced. Furthermore, the remaining part
of the error for 20 enrichments is mostly located outside of ω and with highest absolute values in
the overlap region of coarse patches. The decay of the errors is shown in Figure 6.23
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(a) (b)

(c) (d)

Figure 6.22: Difference between reference and enriched solutions, for (a) only particular solutions,
(b) particular solutions and two enrichments, (c) particular solutions and ten enrichments, (d) par-
ticular solutions and eighteen enrichments. Enrichments were computed using boundary level 8
and polynomial degrees pd “ t0, 1u. Note that the minimum and maximum shown on the scale of
(a) is twice as large as in the scales of (b), (c) and (d).
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Figure 6.23: Relative energy error for increasing numbers of enrichments, constructed from bound-
ary hats of different degrees and defined on various boundary levels.
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B-Splines

In this section, the accuracy of the enriched solutions using enrichments constructed from B-Spline
boundary data in the sampling problem is investigated. The results are shown in tables 6.39 - 6.42.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 33.14% 29.77% 11.00% 9.03% 8.07% 5.23% 4.02% 4.02%
4 33.14% 30.20% 11.27% 9.88% 8.75% 5.51% 3.91% 3.91%
5 33.14% 30.20% 11.28% 9.87% 8.77% 5.51% 3.91% 3.91%
6 33.14% 30.20% 11.28% 9.87% 8.77% 5.51% 3.91% 3.89%
7 33.14% 30.20% 11.28% 9.87% 8.77% 5.52% 3.91% 3.90%
8 33.14% 30.20% 11.28% 9.87% 8.77% 5.52% 3.91% 3.90%
9 33.14% 30.20% 11.28% 9.87% 8.77% 5.52% 3.90% 3.90%

Table 6.39: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction without corner splines.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 33.14% 12.11% 6.76% 6.04% 5.35% 5.46% 3.91% 3.91%
4 33.14% 12.11% 6.76% 6.04% 5.38% 5.48% 3.92% 3.90%
5 33.14% 12.11% 6.76% 6.04% 5.38% 5.48% 3.92% 3.92%
6 33.14% 12.11% 6.76% 6.03% 5.38% 5.48% 3.92% 3.92%
7 33.14% 12.11% 6.76% 6.03% 5.38% 5.48% 3.92% 3.91%
8 33.14% 12.11% 6.76% 6.03% 5.38% 5.48% 3.92% 3.91%
9 33.14% 12.11% 6.76% 6.03% 5.38% 5.48% 3.92% 3.91%

Table 6.40: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction with corner splines.

n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 33.14% 28.06% 6.29% 4.61% 4.93% 4.26% 3.92% 3.90%
4 33.14% 28.05% 6.19% 4.58% 4.92% 4.25% 3.92% 3.89%
5 33.14% 28.01% 6.15% 4.58% 4.91% 4.25% 3.93% 3.90%
6 33.14% 27.99% 6.17% 4.60% 4.90% 4.25% 3.92% 3.90%
7 33.14% 27.97% 6.18% 4.61% 4.90% 4.25% 3.92% 3.90%
8 33.14% 27.96% 6.19% 4.62% 4.89% 4.26% 3.92% 3.90%
9 33.14% 27.95% 6.20% 4.62% 4.88% 4.26% 3.92% 3.90%

Table 6.41: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction without corner splines.

All sets of enrichments constructed from B-Spline boundary data are capable of reducing the initial
error of 33.14% to « 3.9% in almost all cases. The only exceptions are enrichments constructed
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n nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 20

3 33.14% 28.52% 6.49% 6.12% 4.59% 4.68% 3.94% 3.90%
4 33.14% 28.75% 6.48% 6.11% 4.58% 4.75% 3.92% 3.90%
5 33.14% 28.85% 6.48% 6.11% 4.58% 4.75% 3.94% 3.90%
6 33.14% 28.90% 6.48% 6.11% 4.57% 4.74% 3.93% 3.90%
7 33.14% 28.94% 6.48% 6.11% 4.57% 4.74% 3.93% 3.90%
8 33.14% 28.96% 6.48% 6.11% 4.57% 4.74% 3.93% 3.90%
9 33.14% 28.98% 6.48% 6.11% 4.57% 4.74% 3.93% 3.90%

Table 6.42: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction with corner splines.

from B-Splines only in x1 direction, without corner splines, and for only 3 different inner knots,
which perform slightly worse. In tables 6.40 - 6.42, the two enrichments corresponding to the
dominant eigenvalues have the largest influence on the error and reduce the error to less than 7%
in all cases. In the case of B-Splines only in x1 direction and without corner splines, presented in
table 6.39, the performance is slightly worse. Note that in this case only one dominant eigenvalue
had been computed. In all cases, the relative error varies substantially when only using one enrich-
ment corresponding to the largest eigenvalue. For 10 enrichments, the error is basically as small
as it will get. Concluding, it can be said that any set of enrichments constructed from B-Spline
boundary data performs well, and at least all enrichments corresponding to the dominant eigen-
values should be used. Note that weakly chosen boundary data in the sampling problem, such as
only using B-Splines in one coordinate direction without corner splines, only decreases the speed
of decay but will ultimately lead to promising results. The decay of the error for various numbers
of enrichments is visualized in Figure 6.24, showing that the error drastically reduces inside of ω.
The remaining error for 10 or 20 enrichments is mainly located outside of ω and the largest mag-
nitudes are attained in the overlap regions of the coarse patches. Finally, Figure 6.25 graphically
shows the decay of the relative errors.
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(a) (b)

(c) (d)

Figure 6.24: Difference between reference and enriched solutions, for (a) only particular solutions,
(b) particular solutions and two enrichments, (c) particular solutions and ten enrichments, (d) par-
ticular solutions and eighteen enrichments. Enrichments were computed from quadratic B-Splines
in x1 and x2 direction, including the corner splines, for 9 different inner knots. Note that the scale
of the errors in (a) is ten times larger than in (b), (c) and (d).
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Figure 6.25: Relative energy error for increasing numbers of enrichments, constructed from
quadratic B-Spline boundary data in x1 and x2, including corner splines, and defined for vari-
ous numbers of inner knots (without repetitions).
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Oscillating trigonometric functions

In table 6.43, the development of the relative energy error when using enrichments constructed
from Fourier-type boundary data in the sampling problem is shown. As expected from the discus-
sion in Section 6.2.2, which showed that no dominant eigenvalue and corresponding eigenfunctions
could be captured, the decay of the error is slower as in the case of boundary hats or B-Splines. For
10 enrichments however, the error is less than 4% and the remaining eight enrichments hardly de-
crease the error any further. For 18 enrichments, the magnitude of the relative error is very similar
to the previously investigated cases of boundary hats, resp. B-Spline boundary data. The foregoing
discussion holds for all considered maximum numbers of oscillations. All sets of enrichments are

nosc nn 0 nn 1 nn 2 nn 3 nn 4 nn 5 nn 10 nn 18

2 33.14% 27.46% 25.65% 21.89% 14.38% 12.06% -% -%
5 33.14% 27.53% 25.53% 21.63% 13.62% 11.45% 3.95% 3.92%
10 33.14% 27.53% 25.43% 21.48% 13.08% 11.04% 3.95% 3.92%
15 33.14% 27.53% 25.39% 21.42% 12.89% 10.90% 3.95% 3.92%
20 33.14% 27.53% 25.37% 21.40% 12.81% 10.85% 3.95% 3.92%
25 33.14% 27.53% 25.36% 21.38% 12.77% 10.82% 3.95% 3.92%
30 33.14% 27.53% 25.35% 21.37% 12.75% 10.81% 3.95% 3.92%
35 33.14% 27.53% 25.35% 21.36% 12.73% 10.80% 3.95% 3.92%
40 33.14% 27.53% 25.35% 21.36% 12.72% 10.79% 3.95% 3.92%
45 33.14% 27.53% 25.34% 21.35% 12.72% 10.79% 3.95% 3.92%
50 33.14% 27.53% 25.34% 21.35% 12.71% 10.79% 3.95% 3.92%
55 33.14% 27.53% 25.34% 21.35% 12.71% 10.78% 3.95% 3.92%
60 33.14% 27.53% 25.34% 21.35% 12.70% 10.78% 3.95% 3.92%
65 33.14% 27.53% 25.34% 21.35% 12.70% 10.78% 3.95% 3.92%
70 33.14% 27.53% 25.34% 21.34% 12.70% 10.78% 3.95% 3.92%
75 33.14% 27.53% 25.34% 21.34% 12.70% 10.78% 3.95% 3.92%
80 33.14% 27.53% 25.34% 21.34% 12.70% 10.78% 3.95% 3.92%
85 33.14% 27.53% 25.34% 21.34% 12.70% 10.78% 3.95% 3.92%

Table 6.43: Development of the relative energy error for increasing numbers of enrichments ob-
tained from Fourier-type basis functions in x1 and x2 direction with increasing number of maxi-
mum oscillations.

able to reduce the error to less than 4%, but the speed of decay is quite slow. This coincides with
the observation from Section 6.2.2, showing that no dominant eigenvalues could be identified for
Fourier-type boundary data. For completeness, the difference between various enriched solutions
and the reference solution is presented in Figure 6.26. For 10 and 18 enrichments, the largest
magnitudes of error are mainly located in the overlap region of the coarse patches outside of ω. In
Figure 6.27, the decay of the relative errors from table 6.43 is visualized.

Conclusions from the benchmark problem

The previous discussion showed that the homogeneous part of the solution of the benchmark prob-
lem under study could be approximated well using enrichments constructed from boundary hats,
B-Splines or oscillatory Fourier-type functions used as boundary data in the sampling problem. All
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(a) (b)

(c) (d)

Figure 6.26: Difference between reference and enriched solutions, for (a) only particular solu-
tions, (b) particular solutions and two enrichments, (c) particular solutions and ten enrichments,
(d) particular solutions and eighteen enrichments. Enrichments were computed from Fourier-type
boundary data in x1 and x2 direction, for a maximum of 85 oscillations. Note that the scale of the
error in (a) is twice as large as the scale used in (b), (c) and (d).

approaches were capable of reducing the initial error of 33.14% to « 3.9%. The workload needed
to construct the various sets of enrichments, the number of dominant eigenvalues, and the speed
of decay of the relative energy error in global computations vary significantly. As seen in the first
benchmark problem, the boundary hats approach is the most versatile, but in general also the most
expensive, since the number of boundary data functions grows very fast for increasing boundary
levels. The B-Spline approach is the cheapest, since even for 9 pairwise different inner knots there
are only a small number of sampling problems to be solved. B-Splines in both coordinate direc-
tions including the corner splines, as well as boundary hats defined on a sufficiently high boundary
level, led to 2 dominant eigenvalues. The use of Fourier-type boundary data did not result in any
dominant eigenvalue and yielded the slowest decay of the error in the global computations. The
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Figure 6.27: Relative energy error for increasing numbers of enrichments, constructed from
Fourier-type boundary data in x1 and x2 direction for various maximum numbers of oscillations.

size of eigenvalues and the speed of decay of the (relative) energy error are clearly correlated. The
best overall performance was achieved by using B-Splines in x1 and x2 direction, together with
corner splines and defined on 9 pairwise different inner knots.

6.3 Isotropic linear elasticity in 2d

This section presents results regarding a problem of linear elasticity on a rectangular two-dimensional
domain with a circular hole in the center. The material is assumed to be isotropic with a modulus
of elasticity of E “ 100.00 GPa and a Poisson ratio of ν “ 0.30. No boundary condition is pre-
scribed on the interior boundary of the hole. It is expected, that the strain of the solution along the
whole surface presents fine-scale behavior which is hard to grasp using standard basis functions
on coarse patches.

The remainder of this section is structured as in the previous two benchmark problems, i.e. Sec-
tion 6.3.1 explicitly presents the problem under study and in Section 6.3.2 the effect of the different
choices of boundary data on the eigenvalues obtained from the computation of the optimal shape
functions are investigated. Finally, Section 6.3.3 investigates the performance of the enriched com-
putations.

6.3.1 Problem formulation

Problem 16 presents the benchmark problem under study in this section.
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Problem 16: Isotropic linear elasticity in 2d.

Let Ω “ r´6, 6szB0.5p0, 0q Ă R2 be a two-dimensional plate with a circular
hole in the center. Also, let C be the the stiffness tensor for the isotropic
material defined by modulus of elasticity E “ 100.00 and Poisson ratio ν “
0.30. Finally, let fpxq “

“

1 1
‰T and

glpxq “
“

0 0
‰T

gbpxq “
“

0 0
‰T

gtpxq “
1

12

“

5px1 ` 6q 2px1 ` 6q
‰T

grpxq “
1

12

“

5px2 ` 6q 2px2 ` 6q
‰T
,

(6.34)

as well as g : BΩ zBB0.5p0, 0q Ñ R2 with

x ÞÑ gpxq :“

$

’

’

’

&

’

’

’

%

gl, if x1 “ ´6

gr, if x1 “ 6

gb, if x2 “ ´6

gb, if x2 “ 6.

(6.35)

Consider the differential operator

L : rC2
pΩqs2 Ñ rC0

pΩqs2, u ÞÑ Lu :“ ´ divpσpuqq. (6.36)

Find a function u P rC2
pΩqs2 satisfying

´Lupxq “ fpxq, in Ω

upxq “ gpxq, on BΩ,
(6.37)

with the stress tensor σpuq “ Cpuqεpuq and εpuq is the strain tensor εpuq “
1
2

`

∇u` p∇uqT
˘

.

The boundary conditions visually mean, that the bottom and left face of the plate are clamped,
whereas the top right vertex is pulled to a fixed displacement of

“

5 2
‰

. This behavior is described
by the linear functions gt and gr. The equations of isotropic linear elasticity are a special case
of the equations of orthotropic linear elasticity, and in Section 3.2 it has been shown that L is an
elliptic operator. Using the trial and test spaces

Vtrial :“ tu P rH1
pΩqs2 : trpuq “ g, on BΩ zBB0.5p0, 0qu

Vtest :“ tu P rH1
pΩqs2 : trpuq “

“

0 0
‰T
, on BΩ zBB0.5p0, 0qu

(6.38)

the weak formulation of Problem 16 is derived.
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Problem 17: Weak isotropic linear elasticity in 2d.

Let Ω “ r´6, 6szB0.5p0, 0q Ă R2 be a two-dimensional plate with a circular
hole in the center. Also, let C be the stiffness tensor for the isotropic material
defined by modulus of elasticity E “ 100.00 and Poisson ratio ν “ 0.30.
Finally, let fpxq “

“

1 1
‰T and

glpxq “
“

0 0
‰T

gbpxq “
“

0 0
‰T

gtpxq “
1

12

“

5px1 ` 6q 2px1 ` 6q
‰T

grpxq “
1

12

“

5px2 ` 6q 2px2 ` 6q
‰T
,

(6.39)

as well as g : BΩ zBB0.5p0, 0q Ñ R2 with

x ÞÑ gpxq :“

$

’

’

’

&

’

’

’

%

gl, if x1 “ ´6

gr, if x1 “ 6

gb, if x2 “ ´6

gb, if x2 “ 6.

(6.40)

Define the bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R2 and linear functional
` : Vtest Ñ R,

aru, vs :“

ż

Ω

σpuq : εpvq dx

`pvq :“

ż

Ω

f ¨ v dx.

(6.41)

Find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtest
pΩq. (6.42)

As presented in Section 3.2, the bilinear form a for the isotropic material under study is continuous
and elliptic. Since furthermore ` is a continuous linear functional, the theorem of Lax and Milgram
(Theorem 2.4) guarantees solvability of Problem 17.

6.3.2 Influence of the boundary data
This section studies the influence of the various type of boundary data on the eigenvalues ob-
tained from the computation of the optimal shape functions. In the following, the implications of
boundary data resulting defined by the boundary hats approach, the B-Spline approach, and the
Fourier-type approach are investigated. As in the previous benchmark problems, conclusions are
drawn afterwards.
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Boundary hats

The following Tables 6.44 to 6.47 present the results obtained from the use of constant, linear and
quadratic boundary hats, as well as the combination of constant and linear boundary hats used as
boundary data in the sampling problem. The tables show, that for boundary hats of all degrees

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 0 24 1.954 ¨ 10´1 1.929 ¨ 10´1 1.757 ¨ 10´2 3 9 18 22
3 0 56 3.023 ¨ 10´1 2.777 ¨ 10´1 3.375 ¨ 10´2 3 10 24 49
4 0 120 3.972 ¨ 10´1 3.552 ¨ 10´1 5.492 ¨ 10´2 5 13 27 53
5 0 248 4.692 ¨ 10´1 4.108 ¨ 10´1 7.664 ¨ 10´2 5 13 27 57
6 0 504 5.182 ¨ 10´1 4.433 ¨ 10´1 8.941 ¨ 10´2 5 13 29 57
7 0 1016 5.479 ¨ 10´1 4.607 ¨ 10´1 9.69 ¨ 10´2 6 13 29 57
8 0 2040 5.666 ¨ 10´1 4.708 ¨ 10´1 1.018 ¨ 10´1 8 15 29 59

Table 6.44: Key numbers obtained from the computation of the optimal shape functions using
constant boundary hats on various boundary levels.

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 1 48 4.921 ¨ 10´1 4.53 ¨ 10´1 7.888 ¨ 10´2 5 13 25 47
3 1 112 5.555 ¨ 10´1 4.653 ¨ 10´1 1.006 ¨ 10´1 8 13 29 55
4 1 240 5.652 ¨ 10´1 4.702 ¨ 10´1 1.02 ¨ 10´1 8 15 29 57
5 1 496 5.672 ¨ 10´1 4.711 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59
6 1 1008 5.676 ¨ 10´1 4.713 ¨ 10´1 1.021 ¨ 10´1 8 15 29 60
7 1 2032 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 61

Table 6.45: Key numbers obtained from the computation of the optimal shape functions using
linear boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 2 48 4.878 ¨ 10´1 3.89 ¨ 10´1 7.133 ¨ 10´2 6 13 25 48
3 2 112 5.549 ¨ 10´1 4.439 ¨ 10´1 9.527 ¨ 10´2 6 13 29 56
4 2 240 5.653 ¨ 10´1 4.648 ¨ 10´1 1.006 ¨ 10´1 8 15 29 57
5 2 496 5.672 ¨ 10´1 4.698 ¨ 10´1 1.018 ¨ 10´1 8 15 29 59
6 2 1008 5.677 ¨ 10´1 4.71 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59
7 2 2032 5.677 ¨ 10´1 4.711 ¨ 10´1 1.02 ¨ 10´1 8 15 29 60
8 2 4080 5.677 ¨ 10´1 4.712 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59

Table 6.46: Key numbers obtained from the computation of the optimal shape functions using
quadratic boundary hats in x1 and x2 direction on various boundary levels.

and sufficiently high boundary level there are 8 dominant, i.e. very large eigenvalues and 15 large
eigenvalues. For increasing boundary level, the largest eigenvalues stabilize at similar values, the
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` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 0, 1 72 5.587 ¨ 10´1 4.6 ¨ 10´1 9.193 ¨ 10´2 5 13 26 49
3 0, 1 168 5.667 ¨ 10´1 4.701 ¨ 10´1 1.008 ¨ 10´1 8 15 29 55
4 0, 1 360 5.677 ¨ 10´1 4.712 ¨ 10´1 1.02 ¨ 10´1 8 15 29 57
5 0, 1 744 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59
6 0, 1 1512 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59
7 0, 1 3048 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59
8 0, 1 6120 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 59

Table 6.47: Key numbers obtained from the computation of the optimal shape functions using
constant and linear boundary hats in x1 and x2 direction on various boundary levels.

first four being approximately 0.57, 0.47, 0.29 and 0.24. The development of the four largest eigen-
values is visualized in Figure 6.28. The plots show, that approximately 500 degrees of freedom
are sufficient to obtain large values of the four largest eigenvalues whenever linear or quadratic
boundary hats are at least included as boundary data in the sampling problem. When using only
constant boundary hats, a higher boundary level must be chosen to obtain results of the same mag-
nitude. In total, boundary hats of all degrees can be employed to capture dominant eigenvalues
of large magnitudes. Compared to the previously studied benchmark problems, however, it seems
that constant boundary hats are not that important in the problem currently under study. In order
to keep the number of degrees of freedom, i.e. the number of sampling problems to be solved as
small as possible, enrichments based on linear or quadratic boundary hats on boundary level ` “ 4
or ` “ 5 seem most promising.
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(a) λ1 (b) λ2

(c) λ3 (d) λ4

Figure 6.28: Development of the four largest eigenvalues for increasing boundary levels and all
considered boundary hats degrees. Markers are plotted every 500 degrees of freedom.

B-Splines

This subsection considers optimal shape functions constructed from B-Splines used as boundary
data in the sampling problem. The results for the four sets of B-Splines used already in the previ-
ous benchmark problems, i.e. only in x1 or in x1 and x2 direction as well as with / without corner
splines, are presented in Tables 6.48 to 6.51. The results show that the four approaches differ
significantly in the number of dominant eigenvalues they capture, as well as their magnitude. The
largest eigenvalue attainable using boundary data consisting of B-Splines in x1 direction without
corner splines is « 0.343. Using B-Splines also in x2 direction, as well as considering corner
splines, the magnitude of the largest achievable eigenvalue is increased to « 0.568. The implica-
tions of the various sets of B-Splines on the other eigenvalues are even stronger, as can be seen in
Figure 6.29. The results show, that a reasonable choice of boundary data in the sampling problem is
very important. It is expected, that the enrichments constructed from B-Splines in both coordinate
direction together with corner splines will have superior performance in the global computations
presented below in Section 6.3.3. Since the B-Spline approach usually relies on relatively few
solutions of the sampling problem, this approach is recommended.



6.3. ISOTROPIC LINEAR ELASTICITY IN 2D 159

n dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

3 32 3.411 ¨ 10´1 1.647 ¨ 10´1 1.274 ¨ 10´2 4 8 15 16
4 40 3.423 ¨ 10´1 1.706 ¨ 10´1 1.698 ¨ 10´2 4 8 16 20
5 48 3.427 ¨ 10´1 1.719 ¨ 10´1 1.785 ¨ 10´2 4 9 17 24
6 56 3.428 ¨ 10´1 1.723 ¨ 10´1 1.863 ¨ 10´2 4 9 19 28
7 64 3.429 ¨ 10´1 1.725 ¨ 10´1 1.892 ¨ 10´2 4 9 19 32
8 72 3.429 ¨ 10´1 1.725 ¨ 10´1 1.904 ¨ 10´2 4 9 19 36
9 80 3.429 ¨ 10´1 1.725 ¨ 10´1 1.909 ¨ 10´2 4 9 20 36

Table 6.48: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 direction, not including corner splines.

n dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

3 48 4.309 ¨ 10´1 3.795 ¨ 10´1 4.471 ¨ 10´2 5 11 18 21
4 56 4.32 ¨ 10´1 3.809 ¨ 10´1 5.294 ¨ 10´2 5 11 21 25
5 64 4.323 ¨ 10´1 3.814 ¨ 10´1 5.457 ¨ 10´2 5 11 21 29
6 72 4.324 ¨ 10´1 3.815 ¨ 10´1 5.532 ¨ 10´2 5 11 21 33
7 80 4.324 ¨ 10´1 3.816 ¨ 10´1 5.559 ¨ 10´2 5 11 21 37
8 88 4.324 ¨ 10´1 3.817 ¨ 10´1 5.568 ¨ 10´2 5 11 22 40
9 96 4.324 ¨ 10´1 3.817 ¨ 10´1 5.573 ¨ 10´2 5 11 22 40

Table 6.49: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 direction, including corner splines.

n dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

3 64 5.481 ¨ 10´1 2.99 ¨ 10´1 8.915 ¨ 10´2 6 13 24 32
4 80 5.502 ¨ 10´1 3.03 ¨ 10´1 9.278 ¨ 10´2 6 13 25 40
5 96 5.512 ¨ 10´1 3.071 ¨ 10´1 9.508 ¨ 10´2 6 13 27 45
6 112 5.519 ¨ 10´1 3.111 ¨ 10´1 9.616 ¨ 10´2 6 15 27 49
7 128 5.525 ¨ 10´1 3.146 ¨ 10´1 9.668 ¨ 10´2 6 15 29 50
8 144 5.53 ¨ 10´1 3.177 ¨ 10´1 9.697 ¨ 10´2 6 15 29 53
9 74 5.534 ¨ 10´1 3.204 ¨ 10´1 9.715 ¨ 10´2 6 15 29 54

Table 6.50: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 and x2 direction, not including corner splines.

Exemplarily, the first three enrichments obtained from boundary hats of polynomial degree pd “
t0, 1u and boundary level ` “ 8 are shown in Figure 6.30.
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n dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

3 192 5.668 ¨ 10´1 4.689 ¨ 10´1 9.544 ¨ 10´2 6 13 25 37
4 224 5.675 ¨ 10´1 4.707 ¨ 10´1 9.95 ¨ 10´2 6 13 26 42
5 256 5.677 ¨ 10´1 4.711 ¨ 10´1 1.013 ¨ 10´1 8 13 27 45
6 288 5.677 ¨ 10´1 4.713 ¨ 10´1 1.018 ¨ 10´1 8 15 27 49
7 320 5.678 ¨ 10´1 4.713 ¨ 10´1 1.02 ¨ 10´1 8 15 29 53
8 352 5.678 ¨ 10´1 4.713 ¨ 10´1 1.021 ¨ 10´1 8 15 29 53
9 384 5.678 ¨ 10´1 4.714 ¨ 10´1 1.021 ¨ 10´1 8 15 29 54

Table 6.51: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 and x2 direction, including corner splines.

(a) λ1 (b) λ2

(c) λ3 (d) λ4

Figure 6.29: Development of the four largest eigenvalues for increasing boundary levels and the
four different sets of B-Splines. All computations use less than 400 degrees of freedom.
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(a) ψ0 (b) Dilatational strain of ψ0

(c) ψ1 (d) Dilatational strain of ψ1

(e) ψ2 (f) Dilatational strain of ψ2

Figure 6.30: The first three optimal shape functions computed using pd “ t0, 1u and ` “ 8. Left
column: Restriction of the functions to ω, right column: Dilatational strain of the functions on the
warped domain.
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Oscillating trigonometric functions

Table 6.52 presents key numbers for the optimal shape functions computed from Fourier-type
boundary data. For all maximum numbers of oscillations, 4 very large and 11 large eigenvalues
were captured. It is also to be noted that λ1 « 0.28 is far larger than 2 « 0.125, λ2 « λ3, and also
that the magnitudes of the four dominant eigenvalues change only slightly when using more than
10 oscillations. Due to the relatively small magnitude of the dominant eigenvalues obtained from

nosc dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 46 2.449 ¨ 10´1 1.224 ¨ 10´1 1.691 ¨ 10´2 4 11 16 16
5 106 2.7 ¨ 10´1 1.247 ¨ 10´1 1.81 ¨ 10´2 4 11 23 40

10 206 2.808 ¨ 10´1 1.249 ¨ 10´1 1.839 ¨ 10´2 4 11 23 44
15 306 2.839 ¨ 10´1 1.25 ¨ 10´1 1.844 ¨ 10´2 4 11 23 44
20 406 2.853 ¨ 10´1 1.25 ¨ 10´1 1.847 ¨ 10´2 4 11 23 44
25 506 2.86 ¨ 10´1 1.25 ¨ 10´1 1.848 ¨ 10´2 4 11 23 44
30 606 2.864 ¨ 10´1 1.25 ¨ 10´1 1.848 ¨ 10´2 4 11 23 44
35 706 2.867 ¨ 10´1 1.251 ¨ 10´1 1.848 ¨ 10´2 4 11 23 44
40 806 2.869 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
45 906 2.87 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
50 1006 2.871 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
55 1106 2.872 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
60 1206 2.872 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
65 1306 2.873 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
70 1406 2.873 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
75 1506 2.873 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
80 1606 2.873 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44
85 1706 2.874 ¨ 10´1 1.251 ¨ 10´1 1.849 ¨ 10´2 4 11 23 44

Table 6.52: Key numbers obtained from the computation of the optimal shape functions using
Fourier-type basis functions in x1 and x2 direction for increasing numbers of oscillations.

the Fourier-type approach, as well as the conclusions from the previous benchmark problems, it
is expected that the enrichments constructed from Fourier-type boundary data will perform worse
than the boundary hats resp. the B-Spline approach.

Conclusive remarks

The results presented for the benchmark problem at hand implicate that promising sets of opti-
mal shape functions can be computed from the boundary hats approach, as well as the B-Spline
approach. Similar to the conclusions drawn from the previous benchmark problems, enrichments
constructed from Fourier-type boundary data is expected to perform poor, meaning that the number
of enrichments needed to significantly reduce the error in a global computation is large. For the
benchmark problem at hand, and in contrast to the previous ones, constant boundary hats do not
promise the best results. Instead, it seems that linear / quadratic boundary hats on the moderate
boundary level 4 or 5 should be used, in order to maintain the number of boundary data functions
relatively small. Also, using B-Splines in both coordinate directions and including corner splines
produced promising magnitudes of dominant eigenvalues.
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6.3.3 Discussion of global errors
This section repeats the procedure of the previous benchmark problems. After a numerical refer-
ence solution is identified, the various sets of enrichments constructed in Section 6.3.2 are used
and the performance of the enriched solutions is analyzed. This allows to validate the claims made
in Section 6.3.2.

The bounding box is chosen to be r´6, 10s2, and unenriched solutions uh are computed for various
cover levels ι and corresponding patch size

h “
4

2ι´2
. (6.43)

This leads to discrete values of the function,

E : R` Ñ R, h ÞÑ Ephq :“ aΩruh, uhs
1
2 , (6.44)

whose value at the limit h “ 0 is extrapolated. The data points are visualized in Figure 6.31. The

Figure 6.31: The energy of the solutions uh for various various values of h. The extrapolated limit
value at h “ 0 is also shown.

energy norm of the level 10 solution, i.e. h “ 0.015625, is approximately equal to the extrapolated
value at h “ 0, and will hence be used as reference solution in the following. The reference
solution is shown in Figure 6.32.

As in the previous benchmark problems, local particular solutions on all patches of the coarse
discretization for ι “ 3 are computed for the load and eventually for the boundary conditions, if
the patch intersects the global boundary. The four center patches covering r´1, 1s2 are furthermore
enriched using the optimal shape functions constructed in the previous section 6.3.2. This situation
is sketched in Figure 6.33. The displacement of the solution along the surface of the hole is
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(a) (b)

(c) (d)

Figure 6.32: (a) Reference solution u0.015625, (b) reference solution on warped domain, (c) dilata-
tional strain on warped domain, (d) distortional strain on warped domain

expected to change on a scale far smaller than what can be resolved using low-degree polynomial
basis functions, leading to an initial relative energy error of about 8%.

The optimal basis functions were computed on the oversampled patch ω` “ r´4, 4s2zB0.5p0, 0q
and will be used as enrichments in the four center patches marked in red in Figure 6.33, which
cover ω “ r´2, 2s2zB0.5p0, 0q.
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Figure 6.33: Coarse global discretization. Local particular solutions for load and essential bound-
ary conditions are used on the corresponding patches, and the red patches will be further enriched
using optimal shape functions. The red patches cover the patch ω.

Boundary hats

In Tables 6.53 to 6.56, the relative energy error of the enriched solutions based on constant, lin-
ear and quadratic boundary hats, as well as constant and the combination of constant and linear
boundary hats are presented.

` pd nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

2 0 8.00% 7.15% 4.87% 4.60% 4.10% 3.70% 3.33% 2.64%
3 0 8.00% 7.15% 2.91% 2.78% 2.72% 2.72% 2.72% 2.62%
4 0 8.00% 7.15% 2.92% 2.79% 2.76% 2.73% 2.72% 2.62%
5 0 8.00% 7.15% 2.93% 2.79% 2.77% 2.73% 2.71% 2.62%
6 0 8.00% 7.16% 2.94% 2.87% 2.77% 2.73% 2.72% 2.62%
7 0 8.00% 7.16% 2.96% 2.88% 2.78% 2.73% 2.72% 2.62%
8 0 8.00% 7.16% 2.96% 2.89% 2.78% 2.73% 2.73% 2.62%

Table 6.53: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant boundary hats.

From the tables it can be seen, that the first optimal shape function does not reduce the error at
all. This is due to the previously described fact, that the Partition of Unity Method minimizes
the global energy error, not the local ones. Hence, choosing a local enrichment as being part of
the solution may improve the corresponding local error, but increase the error on adjacent parts
of the domain, which could ultimately result in worse performance. This is exactly what happens
in the benchmark problem at hand. However, from the tables it also becomes clear that all sets
of enrichments based on boundary hats can be used to reduce the relative initial error of 8% to
2.62%. For all boundary data functions considered, the first four enrichments corresponding to the
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` pd nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

2 1 8.00% 7.16% 2.93% 2.83% 2.75% 2.75% 2.74% 2.62%
3 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
4 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
5 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
6 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
7 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%

Table 6.54: Development of the relative energy error for increasing numbers of enrichments ob-
tained from linear boundary hats in x1 and x2.

` pd nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

2 2 8.00% 7.16% 2.92% 2.82% 2.77% 2.76% 2.75% 2.62%
3 2 8.00% 7.16% 2.96% 2.88% 2.78% 2.74% 2.73% 2.62%
4 2 8.00% 7.16% 2.96% 2.89% 2.78% 2.73% 2.73% 2.62%
5 2 8.00% 7.16% 2.96% 2.89% 2.78% 2.73% 2.73% 2.62%
6 2 8.00% 7.16% 2.96% 2.89% 2.78% 2.73% 2.73% 2.62%
7 2 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
8 2 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%

Table 6.55: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic boundary hats in x1 and x2.

` pd nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

2 0, 1 8.00% 7.16% 2.94% 2.86% 2.78% 2.74% 2.74% 2.62%
3 0, 1 8.00% 7.16% 2.96% 2.88% 2.78% 2.73% 2.73% 2.62%
4 0, 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
5 0, 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
6 0, 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.72% 2.62%
7 0, 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.72% 2.62%
8 0, 1 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.72% 2.62%

Table 6.56: Development of the relative energy error for increasing numbers of enrichments ob-
tained from constant and linear boundary hats in x1 and x2.

four largest eigenvalues reduce the relative error to 2.97%, which is a 62.9% reduction. Additional
enrichments only slightly improve the results. Note that in Section 6.3.2, 8 dominant eigenvalues
were identified. However, the threshold of 0.1 was chosen generically, i.e. from empirical observa-
tions of many PDE, and did not consider individual properties of the underlying partial differential
operator. In Figure 6.34, the distribution of the energy error for various numbers of enrichments is
shown visually. The decay of the errors is shown in Figure 6.35
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(a) (b)

(c) (d)

Figure 6.34: Magnitude of the difference between reference and enriched solutions, for (a) only
particular solutions, (b) particular solutions and four enrichments, (c) particular solutions and ten
enrichments, (d) particular solutions and twenty enrichments. Enrichments were constructed from
boundary hats on level 8 with pd “ t0, 1u

B-Splines

The accuracy of enriched solutions using enrichments constructed from B-Splines boundary data
in the sampling problem is analyzed. Tables 6.57 to 6.60 present the obtained relative energy
errors.

Again, all sets of enrichments could significantly reduce the initial error of 8% to 2.62%. However,
there were significant differences in the speed of decay of the error in terms of the number of
enrichments. The approach using B-Splines in x1 and x2 together with corner splines has the
best performance and is able to reduce the error to 2.97% with only four enrichments. The same
number of enrichments leads to errors of 3.08% when corner splines are omitted. When B-Splines
only in x1 direction are considered, the corresponding errors are « 4.2% with corner splines, and
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Figure 6.35: Relative energy error for increasing numbers of enrichments, constructed from con-
stant and linear boundary hats and defined on various boundary levels.

n nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

3 8.00% 7.25% 5.72% 4.92% 3.72% 3.39% 3.12% 2.62%
4 8.00% 7.34% 5.87% 5.13% 3.73% 3.39% 3.16% 2.62%
5 8.00% 7.35% 5.89% 5.05% 3.71% 3.29% 3.13% 2.62%
6 8.00% 7.36% 5.90% 5.06% 3.71% 3.29% 3.13% 2.62%
7 8.00% 7.36% 5.90% 5.05% 3.71% 3.27% 3.14% 2.62%
8 8.00% 7.36% 5.90% 5.04% 3.71% 3.27% 3.14% 2.62%
9 8.00% 7.36% 5.90% 5.04% 3.71% 3.27% 3.14% 2.62%

Table 6.57: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction without corner splines.

n nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

3 8.00% 6.38% 4.17% 3.77% 3.09% 3.03% 2.87% 2.62%
4 8.00% 6.37% 4.20% 3.70% 3.09% 3.02% 3.01% 2.62%
5 8.00% 6.37% 4.20% 3.68% 3.10% 3.02% 3.01% 2.62%
6 8.00% 6.37% 4.20% 3.63% 3.10% 3.03% 3.02% 2.62%
7 8.00% 6.37% 4.20% 3.61% 3.10% 3.03% 3.02% 2.62%
8 8.00% 6.37% 4.20% 3.60% 3.10% 3.03% 3.02% 2.62%
9 8.00% 6.37% 4.20% 3.60% 3.10% 3.03% 3.02% 2.62%

Table 6.58: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 direction with corner splines.
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n nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

3 8.00% 7.17% 3.06% 2.97% 2.77% 2.73% 2.72% 2.62%
4 8.00% 7.17% 3.07% 2.97% 2.78% 2.73% 2.70% 2.62%
5 8.00% 7.17% 3.08% 2.97% 2.78% 2.73% 2.72% 2.62%
6 8.00% 7.17% 3.08% 2.97% 2.78% 2.73% 2.72% 2.62%
7 8.00% 7.17% 3.08% 2.97% 2.78% 2.73% 2.72% 2.62%
8 8.00% 7.17% 3.08% 2.97% 2.78% 2.73% 2.72% 2.62%
9 8.00% 7.17% 3.08% 2.97% 2.78% 2.73% 2.72% 2.62%

Table 6.59: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction without corner splines.

n nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

3 8.00% 7.16% 2.94% 2.87% 2.77% 2.74% 2.73% 2.62%
4 8.00% 7.16% 2.96% 2.88% 2.78% 2.74% 2.73% 2.62%
5 8.00% 7.16% 2.96% 2.88% 2.78% 2.73% 2.73% 2.62%
6 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
7 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
8 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%
9 8.00% 7.16% 2.97% 2.89% 2.78% 2.73% 2.73% 2.62%

Table 6.60: Development of the relative energy error for increasing numbers of enrichments ob-
tained from quadratic B-Splines in x1 and x2 direction with corner splines.

« 5.9% without corner splines. For all sets of enrichments, there is hardly any more change for
more than 10 enrichments. Also note, that the number of pairwise different inner knots did not
have a large impact on the decay (and speed of decay) of the error. Similar to the boundary hats
case, not all enrichments corresponding to dominant eigenvalues need to be employed to obtain
accurate results, and again this may be due to the value 0.1 of the threshold.

Figure 6.36 presents a visualization of the difference between enriched and reference solutions
for various numbers of enrichments, and it is clearly visible that the magnitude in ω, i.e. near
the periphery of the hole, is reduced. The enrichments that were used had been constructed from
B-Splines in x1 and x2 direction with corner splines and 9 pairwise different inner knots. The
difference for 20 enrichments is mainly located outside of ω and is due to the coarse global dis-
cretization. Figure 6.37 shows a graphical representation of the relative energy error.
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(a) (b)

(c) (d)

Figure 6.36: Magnitude of the difference between reference and enriched solutions, for (a) only
particular solutions, (b) particular solutions and four enrichments, (c) particular solutions and ten
enrichments, (d) particular solutions and twenty enrichments. Enrichments were computed from
quadratic B-Splines in x1 and x2 direction, including the corner splines, for 9 different inner knots.
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Figure 6.37: Relative energy error for increasing numbers of enrichments, constructed from
quadratic B-Spline boundary data in x1 and x2, including corner splines, and defined for vari-
ous numbers of inner knots (without repetitions).
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Oscillating trigonometric functions

In Table 6.61, the development of the relative energy error when using enrichments constructed
from Fourier-type boundary data in the sampling problem is shown. For a maximum number of
oscillations of at least 5, all sets of enrichments are capable of reducing the error from 8% to 2.62%.
From the discussion in Section 6.3.2 it was seen, that the magnitude of the largest eigenvalues is far
smaller than the magnitude of the largest eigenvalues from the boundary hats or B-Spline approach,
and this predicts the slower rate of decay of the relative energy error in the global computations.
Increasing the number of maximum oscillations does - if it is at least 5 - not have any influence on
the results. For completeness, the difference between reference and enriched solutions is shown

nosc nn 0 nn 2 nn 4 nn 6 nn 8 nn 9 nn 10 nn 20

2 8.00% 7.39% 6.34% 3.69% 3.53% 3.30% 2.93% 2.72%
5 8.00% 7.38% 6.31% 3.57% 3.43% 3.23% 3.07% 2.62%

10 8.00% 7.38% 6.31% 3.56% 3.42% 3.23% 3.07% 2.62%
15 8.00% 7.38% 6.31% 3.57% 3.42% 3.22% 3.06% 2.62%
20 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
25 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
30 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
35 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
40 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
45 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
50 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
55 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
60 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
65 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
70 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
75 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
80 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%
85 8.00% 7.38% 6.31% 3.56% 3.42% 3.22% 3.06% 2.62%

Table 6.61: Development of the relative energy error for increasing numbers of enrichments ob-
tained from Fourier-type basis functions in x1 and x2 direction with increasing number of maxi-
mum oscillations.

in Figure 6.38 for various numbers of enrichments. For 20 enrichments, the difference is mainly
located outside of ω and due to the coarse global discretization. Finally, Figure 6.39 visualizes the
decay of the relative energy error for increasing numbers of enrichments.
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(a) (b)

(c) (d)

Figure 6.38: Magnitude of the difference between reference and enriched solutions, for (a) only
particular solutions, (b) particular solutions and four enrichments, (c) particular solutions and ten
enrichments, (d) particular solutions and twenty enrichments. Enrichments were computed from
Fourier-type boundary data in x1 and x2 direction, for a maximum of 85 oscillations.
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Figure 6.39: Relative energy error for increasing numbers of enrichments, constructed from
Fourier-type boundary data in x1 and x2 direction for various maximum numbers of oscillations.
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Conclusions from the benchmark problem

The conclusions of this benchmark problem mainly coincide with the conclusions of the previous
benchmark problems. Ultimately, all sets of enrichments could be used to reduce the initial rel-
ative energy error of 8% to « 2.62%. Using boundary hats in the sampling problem is the most
expensive approach, but also the most versatile, since they allow for very fine scale variations of
the enrichments. The B-Spline approach is the cheapest, since it leads to relatively small numbers
of boundary data functions. Using B-Splines in both coordinate directions, and including corners
splines, proved to be essential for obtaining large numbers and magnitudes of the dominant eigen-
values, and hence good performance in global computations. For sufficiently high boundary level,
resp. number of inner knots, 8 dominant eigenvalues were captured. The global, enriched com-
putations revealed, that not necessarily all enrichments corresponding to these 8 dominant eigen-
values are essential for small energy errors. This may be due to the empirically chosen threshold
of 0.1 for the magnitude of eigenvalues in order to be called ’dominant’. Also note, that enrich-
ments based on constant boundary hats did not perform as well as enrichments based on linear
or quadratic boundary hats in this benchmark problem: Using constant boundary hats, the magni-
tude of the dominant eigenvalues was far smaller, even for boundary level 8. Using Fourier-type
boundary data, 4 dominant eigenvalues were captured, with the largest being significantly smaller
than in the other approaches. As expected, the size of the eigenvalues is a good predictor for the
achievable speed of decay when using the corresponding optimal shape functions as enrichments.
B-Splines in x1 and x2 direction, which additionally contained corner splines and were defined on
9 pairwise different inner knots, showed - again - the best overall performance, since they require
relatively few solutions of the sampling problem, yield dominant eigenvalues of large magnitude,
and ultimately show very good approximation qualities in global computations.

6.4 Isotropic linear elasticity in 3d
This section investigates the problem of Linear Elasticity posed on a on a rectangular three-
dimensional domain having a circular hole in the center. The material is assumed to be isotropic
and consists of two plies, the lower ply made of steel and the upper ply made of aluminum. The
corresponding moduli of elasticity are E “ 210 GPa resp. E “ 70 GPa, and the Poisson ratios
are ν “ 0.3 resp. ν “ 0.28. As in the previous benchmark problem, no boundary condition is
prescribed on the interior boundary. While all previous benchmarks considered essential boundary
conditions prescribed on the outer whole boundary, the displacement in this case is only prescribed
on two faces of the domain. On all other faces of the domain, including the inner boundary, the
solution satisfies zero Neumann boundary conditions, meaning that it is allowed to behave freely
on these faces.

It is expected, that the displacement presents fine-scale behavior near the periphery of the hole,
which is hard to grasp using standard basis functions on coarse patches. However, on patches
that touch faces with boundary conditions of both types, additional problems will occur in the
upcoming analysis. Compared to the previous three benchmark problems, the discussion of global
errors will hence be performed differently for this benchmark problem.

In Section 6.4.1, the problem under study is introduced. In Section 6.4.2, the influence of the previ-
ously used boundary data types to generate optimal shape functions is analyzed. The Section 6.4.3
studies their performance in global simulations.
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6.4.1 Problem formulation

The benchmark problem under study is presented in Problem 18.

Problem 18: Isotropic linear elasticity in 3d.

Let
Ω “

`

r´6, 6s2zB0.5p0, 0q
˘

ˆ r0, 0.2s Ă R3 (6.45)

be a three-dimensional plate with a circular hole in the center. Also, let C be
the piecewise stiffness tensor for the isotropic material defined by two plies of
thickness 0.1 each. The moduli of elasticity and the Poisson ratii are given by
E “ r210 GPa, 70 GPas and ν “ r0.30, 0.28s. Finally, let fpxq “

“

0 0 0
‰T

and
glpxq “

“

´1
36
x2 0 0

‰

grpxq “
“

´1
36
x2 0 0

‰

,
(6.46)

as well as g : BΩ zBpB0.5p0, 0q ˆ r0, 0.2sq Ñ R3 with

x ÞÑ gpxq :“

#

gl, if x1 “ ´6

gr, if x1 “ 6.
(6.47)

Consider the differential operator

L : rC2
pΩqs3 Ñ rC0

pΩqs3, u ÞÑ Lu :“ ´ divpσpuqq. (6.48)

Find a function u P rC2
pΩqs3 satisfying

´Lupxq “ fpxq, in Ω

upxq “ gpxq, on Γleft Y Γright :“ tx P Ω : |x1| “ 6u,
(6.49)

with the stress tensor σpuq “ C : εpuq and εpuq is the infinitesimal strain tensor
εpuq “ 1

2

`

∇u` p∇uqT
˘

.

This benchmark problem is an extruded version of the previous benchmark problem to three-
dimensional space. Due to Section 3.2, the differential operator is elliptic. The weak formulation
is posed on the trial and test spaces

Vtrial :“ tu P rH1
pΩqs3 : trpuq “ g, on Γleft Y Γrightu

Vtest :“ tu P rH1
pΩqs3 : trpuq “

“

0 0 0
‰T
, on Γleft Y Γrightu

(6.50)

and reads
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Problem 19: Weak isotropic linear elasticity in 3d.

Let
Ω “

`

r´6, 6s2zB0.5p0, 0q
˘

ˆ r0, 0.2s Ă R3 (6.51)

be a three-dimensional plate with a circular hole in the center. Also, let C be
the piecewise stiffness tensor for the isotropic material defined by two plies of
thickness 0.1 each. The moduli of elasticity and the Poisson ratii are given by
E “ r210 GPa, 70 GPas and ν “ r0.30, 0.28s. Finally, let fpxq “

“

0 0 0
‰T

and
glpxq “

“

´1
36
x2 0 0

‰

grpxq “
“

´1
36
x2 0 0

‰

,
(6.52)

as well as g : BΩ zBpB0.5p0, 0q ˆ r0, 0.2sq Ñ R3 with

x ÞÑ gpxq :“

#

gl, if x1 “ ´6

gr, if x1 “ 6.
(6.53)

Define the bilinear form a : VtrialpΩq ˆ VtestpΩq Ñ R2 and linear functional
` : Vtest Ñ R,

aru, vs :“

ż

Ω

σpuq : εpvq dx

`pvq :“

ż

Ω

f ¨ v dx.

(6.54)

Find a function u P VtrialpΩq satisfying

aru, vs “ `pvq, @v P Vtest
pΩq. (6.55)

Theorem 3.2 from Section 3.2.2 showed, that the bilinear form a for the isotropic two-ply material
under study is continuous and elliptic in the pure Dirichlet problem. In the problem at hand, the
function u is allowed to behave freely on the lower and upper face of the domain. This is modeled
by a zero Neumann condition of the form

σpuq ¨ ~n “ 0, (6.56)

which is implicitly assumed in Problem 18. Ellipticity and boundedness are shown similar to
Theorem 3.2 using another variant of Poincaré inequality. The linear functional ` is obviously
continuous and the Lax-Milgram Theorem 2.4 hence ensures existence and uniqueness of solu-
tions.

6.4.2 Influence of the boundary data
This section investigates the influence of the choice of boundary data used in the sampling problem
on the number of dominant eigenvalues and their magnitude. The implications of using boundary
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hats and B-Splines as boundary data on the eigenvalues corresponding to the optimal shape func-
tions are investigated. The previous benchmark problems also considered oscillatory Fourier-type
boundary data, but the resulting performance was relatively poor. This approach will therefore
not be investigated in the scope of the benchmark problem at hand. For similar reasons, only
the approach considering B-Splines in x1 and x2 direction together with corner splines will be
considered, since it previously outperformed the other approaches.

Boundary hats

The following Tables 6.62 - 6.65 present the results for constant, linear and quadratic boundary
hats. For a sufficiently large boundary level, six dominant eigenvalues and 9 additional large

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 0 24 2.2 ¨ 10´1 2.16 ¨ 10´1 1.962 ¨ 10´2 5 11 20 24
3 0 56 3.319 ¨ 10´1 2.986 ¨ 10´1 3.731 ¨ 10´2 7 14 28 52
4 0 120 4.168 ¨ 10´1 3.675 ¨ 10´1 5.97 ¨ 10´2 7 15 29 58
5 0 248 4.791 ¨ 10´1 4.112 ¨ 10´1 7.991 ¨ 10´2 7 15 29 60
6 0 504 5.175 ¨ 10´1 4.336 ¨ 10´1 9.234 ¨ 10´2 7 15 31 60
7 0 1016 5.386 ¨ 10´1 4.443 ¨ 10´1 9.692 ¨ 10´2 8 15 31 60

Table 6.62: Key numbers obtained from the computation of the optimal shape functions using
constant boundary hats on various boundary levels.

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 1 48 4.711 ¨ 10´1 4.292 ¨ 10´1 7.214 ¨ 10´2 5 13 27 47
3 1 112 5.287 ¨ 10´1 4.397 ¨ 10´1 9.604 ¨ 10´2 5 13 31 60
4 1 240 5.377 ¨ 10´1 4.439 ¨ 10´1 9.71 ¨ 10´2 6 13 31 60
5 1 496 5.396 ¨ 10´1 4.447 ¨ 10´1 9.723 ¨ 10´2 6 15 31 60
6 1 1008 5.4 ¨ 10´1 4.449 ¨ 10´1 9.725 ¨ 10´2 6 15 31 61

Table 6.63: Key numbers obtained from the computation of the optimal shape functions using
linear boundary hats in x1 and x2 direction on various boundary levels.

` pd dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

2 2 48 4.667 ¨ 10´1 3.739 ¨ 10´1 7.146 ¨ 10´2 5 13 25 48
3 2 112 5.285 ¨ 10´1 4.214 ¨ 10´1 9.158 ¨ 10´2 5 13 31 60
4 2 240 5.379 ¨ 10´1 4.394 ¨ 10´1 9.606 ¨ 10´2 6 13 31 60
5 2 496 5.396 ¨ 10´1 4.437 ¨ 10´1 9.701 ¨ 10´2 6 13 31 60
6 2 1008 5.4 ¨ 10´1 4.447 ¨ 10´1 9.721 ¨ 10´2 6 15 32 61

Table 6.64: Key numbers obtained from the computation of the optimal shape functions using
quadratic boundary hats in x1 and x2 direction on various boundary levels.
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eigenvalues are captured. For all boundary hat degrees considered, the dominant eigenvalues sta-
bilize at similar values of around 0.54, 0.44, 0.28, 0.22, 0.22 and 0.10 (the last one is slightly
larger than the threshold). Figure 6.40 visualizes the development of the first four eigenvalues.
Ultimately, constant, linear, as well as quadratic boundary hats can be used to capture dominant

(a) λ1 (b) λ2

(c) λ3 (d) λ4

Figure 6.40: Development of the four largest eigenvalues for increasing boundary levels and all
considered boundary hats degrees. Markers are plotted every 500 degrees of freedom.

eigenvalues with large magnitudes. Since the number of degrees of freedom, i.e. the number of
sampling problems to be solved should be as small as possible, the optimal shape functions con-
structed from linear and quadratic boundary hats seem to outperform the approach using constant
boundary hats. In both cases, a boundary level of 4 or 5 seems to be sufficient, leading to less than
500 degrees of freedom.

B-Splines

Table 6.65 presents key numbers obtained from the computation of the optimal shape functions
when using B-Splines in x1 and x2 direction, and including corner splines, as boundary data in
the sampling problem. The development of the first four eigenvalues for increasing numbers of
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n dim λ1 λ2 λ8 n´1 n´2 n´4 n´8

3 288 1¨100 1¨100 2.123 ¨ 10´1 8 23 44 59
4 336 1¨100 1¨100 2.166 ¨ 10´1 8 24 44 68
5 384 1¨100 1¨100 2.177 ¨ 10´1 9 24 47 76
6 432 1¨100 1¨100 2.18 ¨ 10´1 9 24 50 83
7 480 1¨100 1¨100 2.181 ¨ 10´1 9 24 50 89
8 528 1¨100 1¨100 2.182 ¨ 10´1 9 24 52 91
9 576 1¨100 1¨100 2.182 ¨ 10´1 9 24 52 92

Table 6.65: Key numbers obtained from the computation of the optimal shape functions using B-
Splines in x1 and x2 direction with corner splines.

distinct inner knots is shown in Figure 6.41. They stabilize at approximately the same values as
the eigenvalues computed using boundary hats as boundary data.

(a) λ1 (b) λ2

(c) λ3 (d) λ4

Figure 6.41: Development of the four largest eigenvalues for increasing numbers of distinct inner
knots. Markers are plotted every 500 degrees of freedom.
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6.4.3 Discussion of global errors
In order to identify a numerical reference solution, the problem was solved for various levels of
discretization. Since the domain under study is relatively thin in x3 direction, it is discretized only
in x1 and x2. The two material layers in x3 direction are resolved implicitly using a second-order
B-Spline basis. Consequently, the patch size h in the following refers to the patch size in x1 resp.
x2 direction.

The energy norms of unenriched solutions on various discretization levels, as well as the extrapo-
lated value for patch size h “ 0 are shown in Figure 6.42. Since the energy norm for a discretiza-

Figure 6.42: The energy of the solutions uh for various various values of h. The extrapolated limit
value at h “ 0 is also shown.

tion on level ι “ 8, corresponding to a patch size of h “ 0.0625 and the extrapolated value at
h “ 0 approximately coincide, the solution u0.0625 will be used as a numerical reference solution
in the following. The problem under study is subject to Dirichlet boundary conditions imposed on
the left and right face, as well as zero Neumann boundary conditions on the other four outer faces
as well as the interior boundary. As mentioned before, this allows the solution to behave freely
among these parts of the boundary.

Similar to the previous benchmark problems, it is expected that the behavior of the solution at
the interior boundary is hard to grasp, motivating the use of optimal basis functions in the cen-
ter region. It will, however, turn out that the choice of boundary conditions leads to additional
difficulties.

An unenriched solution using 6 patches in x1 and x2 direction was computed, and the top view
of this coarse discretization is sketched in Figure 6.43. The original enrichment strategy is as
follows: The local approximation spaces of all patches touching the Dirichlet boundary will be
enriched with particular solutions for the boundary data, and the four center patches around the
hole will further be enriched using optimal local basis functions.
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ΓL ΓR

Figure 6.43: Top view of the coarse global discretization. Original enrichment strategy: Local
particular solutions for essential boundary conditions (blue faces) are used on the corresponding
patches, and the red patches will be further enriched using optimal shape functions. Only one
patch is used through the thickness. The problem is 3 dimensional, and all patches touching the
Dirichlet boundary also touch at least two zero Neumann boundaries.

The difference between the reference solution and the unenriched solution is shown in Figure 6.44.
The largest magnitude of the error is observed in the x1x2 corner patches of the domain, not
around the periphery of the circular hole as was expected. Hence, the enrichment strategy has to

Figure 6.44: Magnitude of the difference between the reference solution and the unenriched solu-
tion. The difference is largest near the x1x2-vertices of the domain.

be modified. Note that due to the lifting of solutions, the homogeneous part of the solution must
be included on all patches. For the previous benchmark problems, however, these homogeneous
solutions were expected to behave nicely and hence be negligible. For the problem at hand, this
is not the case, and before enriching the center patches near the periphery of the hole, the error at
the x1x2-vertices of the domain must be reduced. As described, this is done by not only enriching
the local spaces of the patches touching the Dirichlet boundary with a particular solution for g,
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but also with corresponding sets of optimal basis functions. The free boundary of the patchwise
local sampling problems, on which data needs to be prescribed, is formed by all interior edges of
the patch which result from punching it out of the full domain Ω. A sketch of the free boundary
for the front left patch is shown in Figure 6.45. For a sufficiently large amount of boundary data

Figure 6.45: Sketch of the front left patch of the domain. The patch extends through the whole
thickness. The face with global Dirichlet boundary conditions is marked with blue dots, zero
Neumann faces are not marked (front, bottom and top faces). Red dots are used to mark the free
boundary, i.e. artificial boundary obtained by punching ω out of Ω.

functions (cf. discussions from Sections 6.1 to 6.3), there are four dominant eigenvalues on the four
corner patches, and six dominant eigenvalues on all other patches touching the Dirichlet boundary.
Note that the front left corner patch can be shifted and rotated by 180˝ onto the rear right corner
patch, and the rear left corner patch can be transformed similarly onto the front right corner patch.
These transformations moreover correctly map the Dirichlet faces onto each other. Furthermore,
all other (non-corner) patches touching the Dirichlet boundary are either a translation of each
other, or a translation together with a rotation by 180˝. In total, only three sets of optimal shape
functions need to be computed due to the reusability results from Section 5.3. In Figure 6.46, the
differences between the reference and solutions that are unenriched in the center and only use a
particular solution for g, as well as one resp. six optimal basis functions on all patches touching
the Dirichlet boundary, i.e. the left and right face of the plate, are shown. Using only one optimal
basis function on each patch touching the Dirichlet boundary, the difference between the reference
and enriched solutions near the x1x2 vertices is still dominant. For six optimal basis functions,
the difference near the vertices and around the periphery of the hole is of the same magnitude.
While the patches touching the Dirichlet boundary were enriched with optimal basis functions
and a particular solution for g, their neighbors on the front resp. rear face were not enriched at
all, leading to a significant jump in resolution. While the magnitude of the difference between
both solutions is reduced significantly, it does not vanish entirely and the largest magnitude is now
observed near the jump in resolution.
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(a) (b)

Figure 6.46: Magnitude of the difference between the reference solution and solutions that do not
use enrichments around the hole in the center, but particular solutions for g as well as (a) one and
(b) six optimal shape functions on all patches touching the Dirichlet boundary.

Additionally to the particular solutions and six optimal basis functions for patches touching the
Dirichlet boundary, 10 optimal basis functions are used in the center, and the results are shown in
Figure 6.47. These functions are capable of reducing the local magnitude of the error around the
periphery of the hole as expected.

Figure 6.47: Difference between the reference solution and the solution using 10 optimal shape
functions around the hole in the center, particular solutions for g and six optimal shape functions
on all patches touching the Dirichlet boundary.

Similar to the previous benchmark problems, it was at first assumed that the solution behaves nicely
away from a pre-identified region, on which fine-scale behavior was anticipated. Consequently, the
homogeneous part of the solution appearing in the lifting was omitted on patches away from this
region of interest. As long as the problem under study is subject to Dirichlet boundary conditions
on the whole outer boundary, this tactic worked like a charm. In the current case of varying
boundary conditions, however, the homogeneous part of the solution cannot be omitted in the
lifting and must itself be approximated using optimal shape functions on the respective patches.
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As shown in [Sch11], the global error of the enriched Partition of Unity Method is only expected to
diminish when the approximation power is improved globally. The foregoing discussion showed,
that no part of the lifted solution should be neglected unless the problem at hand is very well
understood.
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7
Numerical study of model problems

A full investigation of the various ways of constructing optimal shape functions, as well as their
performance in global computations, was conducted in the previous Chapter 6, helping to gain a
better understanding of the overall method. As a result, ways of construction, that probably lead
to sets of optimal shape functions with a good performance in global enriched computations, were
identified. This chapter considers problems which are too complex for a full investigation in the
style of the benchmark problems. Furthermore, it may not even be possible to compute a reference
solution to compare against. As described in Chapter 3, the method of constructing optimal shape
functions investigated in this thesis is promising especially in the case of heterogeneous coefficients
appearing in the considered partial differential equations. The coefficients may oscillate or even
show discontinuities expressed in the form of jumps. Holes in the computational domain can be
described by vanishing coefficients.

The main goal of this chapter is to show that problems, which are hard to solve and require mil-
lions of degrees of freedom in generic, traditional methods, become feasible when employing local
enrichments in the form of optimal basis functions and particular solutions. These well-suited,
operator-dependent enrichment functions replace the need for heavy spatial refinement, and can be
used to significantly simplify the solution process. This chapter provides proof-of-concept exam-
ples, and all simulations were performed using the PUMA software toolkit developed by Fraunhofer
SCAI ([SCA]) and the optbasefun module for Python 3 developed in the scope of this the-
sis.

The problem in Section 7.1 investigates linear elasticity on the two-dimensional model of an air-
plane rib, a domain with many complicating features, among them 34 round holes and a large
number of reentrant corners. In the experiment, analytical, as well as numerical enrichments in
the form of optimal basis functions are employed. Since most of the circular holes have a similar
structure, the results from Section 5.3.1 regarding geometric reusability of optimal basis functions
are employed and thus validated numerically.

In Section 7.2, the propagation of waves due to an impact on a three-dimensional cube with 50
spherical inclusions is investigated by solving the equations of elastodynamics. The inclusions
have different material properties from the matrix material, and this will lead to a reduction in the
speed of propagation or even to local reflections of the propagating wave.

187
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7.1 Orthotropic linear elasticity on an airplane rib
As mentioned and investigated before, it is numerically expensive to compute optimal basis func-
tions. These basis functions are independent of the load and values of boundary conditions, and
it was shown in Section 5.3.1 that they can also be transformed to other geometries as long as
the coefficients satisfy some easy-to-check conditions. Moreover, it was mentioned that analyti-
cal enrichments should be used whenever available. All of these concepts are highlighted in the
following use-case simulation.

An airplane has two wings, and each wing consists of multiple ribs which stabilize its shape. A
sketch of the structure of a rib and its location in an airplane wing is sketched in Figure 7.1. All
red patches can be translated onto each other. The blue patches in the right half of the domain
are isotropically scaled and translated versions of the red patches. The green patch in the center
has a porthole-shaped hole in its center. In order to further complicate things, there is a large

(a) (b)

Figure 7.1: (a) Sketch of an airplane and one of the ribs from its wings. (b) Detailed sketch of a
rib. Subdomains marked in the same color have the same size and are translations of each other.
Blue marked subdomains in the right half of the rib are a shrunken and translated version of the
red marked subdomains from the left half of the rib.

number of reentrant corners on the outer periphery of the rib structure. All of the previously
described complicating features need to be resolved by the employed discretization, and using
adaptive spatial refinement towards all of the complicating features basically refines the whole
domain.

In the following, linear elasticity is investigated on the two-dimensional rib structure, consisting of
33 circular holes and the porthole-shaped hole in the center. The domain Ω used in the following
experiment is of size 29 cmˆ12 cm, and the radii of the circular inclusions are 1.0 cm (red patches),
resp. 0.5 cm (blue patches). The modulus of elasticity and Poisson ratio of the material are E “

100.0 GPa, ν “ 0.3.

The left boundary of the rib is clamped, and the right boundary is pulled with a constant dis-
placement of 1.0 cm in x1 direction. A proper resolution of the geometry of the two-dimensional
rib needs more than 5 million degrees of freedom. Instead of heavy spatial refinement, a coarse
discretization on level 5 with polynomials of order 1 is chosen. The discretization is chosen this
way, since all level 5 patches will at most contain (a part of) one interior hole. Note however,
that the patches are too coarse to resolve details of the circular shape of the inclusions. In order
to improve the approximation quality of the patchwise local approximation spaces, the following
additional enrichment functions will be employed: For all patches touching the Dirichlet boundary
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(left and right boundary), a particular solution is computed and used as local enrichment. Optimal
basis functions are computed for the green patch one of the red patches. Following Section 5.3.1,
optimal basis functions on all other red as well as all blue patches are obtained by concatenating
the computed optimal basis functions on the red patch with corresponding transformations. All
patches containing (a part of) an interior hole are enriched with 9 corresponding optimal basis
functions. Following the stress recovery method from [Mel05, LPD18], the components of the
stress field for a two-dimensional isotropic material can be expressed as a family of functions of
the form

cλpr, θq “ λrλ´1c̃λpr, θq (7.1)

in the vicinity of discontinuities, where λ P R, pr, θq are polar coordinates and c̃λ is a linear function
in θ. The functions from (7.1) for corresponding textbook values of λ and the coefficients appearing
in c̃λ are used as enrichment functions on all patches near reentrant corners. These functions are
defined for L-shaped domains and may have to be rotated and / or reflected. The enrichment
strategy is depicted and described again in Figure 7.2. In total, the global approximation space

(a) Subdomains of the same color have the same propor-
tions. All patches touching the marked subdomains are
enriched with correpsonding optimal basis functions.

(b) Reentrant corners are located in the center of the
marked subdomains. Blue patches use the L-domain
enrichments (7.1). Enrichments for the other cases are
obtained from rotations and reflections of these func-
tions.

Figure 7.2: Sketch of a rib used in the construction of airplane wings. Individual captions of (a)
and (b) describe the enrichment strategy for the marked subdomains. Additionally, a particular
solution for the boundary values is used as enrichment for all patches touching the left resp. right
boundary of the domain.

only consisted of 375520 degrees of freedom, and the dilatational strain of the enriched solution
on the deformed domain is shown in Figure 7.3. It can clearly be seen that the strain patterns
around the holes differ and are not generic. The enriched Partition of Unity Method is capable
of producing results with detailed fine-scale behavior while only needing a very small number of
degrees of freedom. The experiment moreover validated the theoretical reusability results from
Section 5.3.1 numerically.
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Figure 7.3: Plot of the dilatational strain of the enriched solution using 9 optimal basis functions on
all patches near the inner holes on the deformed domain, one analytical enrichment on all patches
near a reentrant corner, and a particular solution for the essential boundary values prescribed on
the left and right boundary.

7.2 Wave propagation in heterogeneous media

In order to describe wave propagation in a linear elastic material, the equations of elastodynamics
are solved, which links applied outer forces to vibrational responses of the material. The equations
are based on Newtons second law, stating that the application of outer forces results in an accel-
eration. This acceleration in turn creates a velocity which moves a physical system. During this
movement, resistance due to the internal structure of the material is encountered. The system of
vibrational action and material resistance creates a steady-state vibration after some time, and the
corresponding vibration coincides with the frequency of the applied outer force. Elastodynamics
appears naturally in everyday situations and must for example be considered in civil engineer-
ing, in order to prevent structures from vibrating in their eigenfrequency due to outer influences,
since this resonance effect could lead to the collapse of the entire structure. In the following, let
Ω “ r´6, 6s be a cube made from a linear elastic matrix material with modulus of elasticity and
Poisson ratio specified byEM “ 1.0, νM “ 0.3. There are 50 spherical inclusions of radius r “ 0.5
centered at random locations in r´4, 4s3, which are made of another linear elastic material with
EI “ 100.0, νI “ 0.3.

For tmax P R` let p0, tmaxq be a considered time horizon. The equations of elastodynamics for
linear elastic materials and a sufficiently smooth displacement field

u : Ωˆp0, tmaxq Ñ R3 (7.2)

reads

ρ:upx, tq ´ div σpupx, tqq “ fpx, tq, @px, tq P Ωˆp0, tmaxq, (7.3)

with the material density ρ P R, a load function f : Ωˆp0, tmaxq Ñ R3, a material stress tensor
σpuq and a known initial displacement field upx, 0q : Ω Ñ R3. The functions 9u and :u are the first
and second order derivatives in time.

In the following, the density is assumed to be ρ “ 1 and the load function f is assumed to be zero.
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The resulting hyperbolic problem reads

:upx, tq ´ div σpupx, tqq “

»

–

0
0
0

fi

fl , @px, tq P Ωˆp0, tmaxq. (7.4)

The equation is discretized in space using the Partition of Unity Method, leading to the discrete
variational formulation

M:uptq `Kuptq “

»

—

–

0
...
0

fi

ffi

fl

, @t P p0, tmaxq, (7.5)

with assembled mass matrix M and stiffness matrix K. In (7.5), uptq P RdimVPUpΩq denotes the
coefficients of the expansion of the solution u at timestep t in VPU

pΩq. Note that from (7.5), it
directly follows that

:uptq “ ´M´1Kuptq. (7.6)

In order to obtain a fully discretized iterative scheme, introduce the discrete time steps ti “ i∆t
and the notion ui :“ uptiq, 9ui :“ 9uptiq and :ui :“ :uptiq. Furthermore, a central finite difference
scheme is applied. Instead of solving (7.6) in every time step, ui on the right-hand side is replaced
by ui´1, allowing to calculate a new acceleration coefficient from the displacement in the previous
time step. This new acceleration is then propagated into a new velocity and consequently a new
displacement field. The entire iterative scheme reads

:ui “ ´M´1Kui´1

9ui “ 9ui´1 ` p∆tq:ui

ui “ ui´1 ` p∆tq 9ui.

(7.7)

Note that in the Partition of Unity Method, mass lumping can be used for any employed local
bases. Hence, M in the following refers to the lumped mass matrix, and M´1 is hence easy to
compute ([Sch13]).

The initial displacement u0 and acceleration :u0 are zero. The initial velocity is

9u “

»

–

´ 1
100
e
´}x´c}2

0.62

0
0

fi

fl (7.8)

with c “
“

6 0 0
‰T being the midpoint of the right face of Ω. The initial velocity describes an

impact at c, and its magnitude is shown in Figure 7.4. For better visibility, a part of the cube has
been cut out.

Using the iterative scheme (7.7) and the time step size ∆t “ 0.0132, values of the coefficients
ui, 9ui, :ui are calculated for i “ 1, . . . , 1500.

When using the classical FEM or PUM without enrichments, the size of the elements / patches near
the inclusions must be chosen small enough for their spherical shape to be resolved. For a large
number of inclusions, adaptive refinement towards all of them basically refines the whole domain,
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Figure 7.4: Magnitude of the initial velocity 9u, describing an impact on the midpoint of the right
face of Ω, i.e. the face with x1 “ 6.

leading to algebraic systems with millions of degrees of freedom that become infeasible without
utilizing large parallel computers. A global discretization on level 3 with polynomials of degree 2
is chosen, that uses 83 “ 512 patches, and the discretization is sketched in Figure 7.5 (a). Again,
a part of the domain has been cut out and the overlap region is not shown for better visibility. The
sketched patches have an extent of 1.25 and the spherical inclusions, which have a radius of 0.5,
can hence not be resolved by the chosen coarse discretization. In the following, the enrichment
strategy used on the 512 coarse patches is described.

The benchmark problem from Section 6.4 showed, that the solution cannot be expected to only
present interesting features in the subdomain containing all the inclusions, r´4, 4s3, but also near
the transition between Dirichlet and zero Neumann boundary conditions. Furthermore, computing
and using enrichments only on patches touching boundaries of both types pushed (parts of) the
error further into other regions of the domain instead of eliminating it entirely. Unfortunately,
using individual enrichments for all 512 patches makes the global assembly step of the system
of linear equations extremely expensive. This is due to the fact, that optimal basis functions for
one coarse patch are defined on a local discretization, and all these local patches hence have to be
resolved to perform a (sufficiently) exact global quadrature.

As a trade-off between complexity and accuracy, the domain Ω is cut into 8 cubes of identical size,
see Figure 7.5 (b). On all of these cubes, optimal basis functions are computed. Furthermore, a par-
ticular solution for g is computed on all cubes touching the Dirichlet face. All local computations
are performed using polynomials of degree 2 on a uniform discretization of level 5. Afterwards,
the local approximation spaces of all 512 global patches are enriched with 25 optimal basis func-
tions defined on the corresponding cube that the patch belongs to. All global patches forming the
four cubes touching the Dirichlet face are further enriched with the particular solution for g com-
puted on their corresponding cube. In order to further improve the approximation quality of the
global space, optimal basis functions on level 6 using polynomials of degree 2 are computed on the
subdomain r´4, 4s3 (white shaded in Figure 7.5), and all global patches located inside of this sub-
domain are additionally enriched with the first 25 resulting optimal basis functions. In the end, the
global approximation space VPU

pΩq consists of 54552 degrees of freedom, thereof 512 ¨ 6 “ 3072
corresponding to local polynomials on the patches and 51480 due to enrichments.



7.2. WAVE PROPAGATION IN HETEROGENEOUS MEDIA 193

(a) Global discretization of Ω on level 3, using 83 “
512 patches

(b) Splitting of Ω into 8 subdomains (colored cubes),
and subdomain containing all inclusion (white shaded)

Figure 7.5: For better visibility, a part of the cubic domain Ω “ r´6, 6s3 has been cut out.

Section 7.2 shows the modulus of elasticity of the multi-material under study. From the shown an-
gle, six inclusions are visible and should be detected by the enriched method. In order to reference
them, they have been numbered. The displacement field of the enriched PUM is shown for several

time steps in Figure 7.6. It is clearly visible, that the enriched Partition of Unity Method is able
to detect the spherical shape of the inclusions. Since the inclusions have a much larger modulus
of elasticity, the wave cannot propagate through the inclusions at the same rate as it passes trough
the matrix material. This experiment shows, that the PUM can be used together with optimal basis
functions to solve PDE which are infeasible unless large parallel computers are used. The initial
assembly of M´1K is relatively expensive for the enriched PUM, since all local discretizations
used in the computation of optimal basis functions and particular solutions have to be resolved
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during quadrature. However, since the number of degrees of freedom used in the global approxi-
mation space is very small compared to the number of degrees of freedom that would be needed
in an unenriched method, the matrix vector multiplications performed to compute the coefficients
of new time steps are very cheap. For a sufficiently large number of time steps, the enriched PUM
will hence also outperform any unenriched method that uses more degrees of freedom in terms of
runtime.
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(a) Timestep 17, t “ 0.2244, inclusions 4, 5 (b) Timestep 20, t “ 0.264, inclusions 4, 6

(c) Timestep 24, t “ 0.3168, inclusions
1, 2, 4, 6

(d) Timestep 29, t “ 0.3828, inclusion 5

(e) Timestep 42, t “ 0.5544, inclusion 4 (f) Timestep 51, t “ 0.6732, inclusions
3, 4, 5

Figure 7.6: The displacement field at several time steps, together with the indices of the detectable
inclusions according to the labeling in Section 7.2.
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8
Conclusive remarks

This thesis investigated a constructive way of computing optimal local approximation spaces. The
framework was originally presented in [BL11] for the solution of second-order elliptic partial
differential equations by the means of Finite Element Methods. During the writing of this thesis,
the framework was extended to the case of even-order elliptic PDE and modified for the use in the
Partition of Unity Method.

The PUM, is a broad generalization of the FEM and allows the use of independent local approxi-
mation spaces, which are then linked into a global approximation space with a Partition of Unity.
The global approximation error of the PUM is a direct consequence of the local approximation
errors, and a best-possible choice of local approximation spaces is hence favorable. The presented
framework allows to pre-compute local approximation spaces, which are optimal in the sense that
they minimize the Kolmogorov n-width. They are operator-dependent and independent of the ex-
plicit values of load and boundary data appearing in the PDE. Using the obtained space of optimal
local basis functions instead of heavy spatial refinement in areas of interest has the potential to
substantially reduce the number of degrees of freedom needed for an adequate discretization of a
given PDE.

Since the construction of the optimal approximation spaces is expensive, algebraic conditions for
their geometric reusability were derived. In the case of second order PDE in divergence form, this
led to explicit, easy-to-check conditions that need to be satisfied by the coefficients of the PDE and
any feasible geometric transformation. Whenever these conditions are satisfied, a set of optimal
basis functions can be transformed to another patch and still be optimal. This has the potential to
significantly reduce the computational effort for problems posed on domains with various regions
of interest and moreover increase the possibility to reuse results from previous simulations.

Various numerical experiments were conducted for this thesis. The first set of experiments con-
sisted of four benchmark problems, that underwent a full numerical investigation. The entire
process of constructing optimal local approximation spaces and using them in enriched global
simulations was investigated and quantified. The goal of these full investigations was to under-
stand the impact of the choice of boundary data used in the sampling problem. It turned out that
both boundary hats and quadratic B-Splines can be used as boundary data in the sampling problem
to obtain a small number of relevant eigenpairs in the generalized eigenvalue problem. The two
approaches lead to local approximation spaces with similar performance in global enriched sim-
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ulations. Even tough both approaches perform similarly, the amount of B-Spline boundary data
functions is smaller, favoring this approach.

The second type of conducted experiments were concerned with problems that are very hard to
solve using traditional numerical methods. The enriched PUM was capable of producing results
for these proof-of-concept problems with details on a very fine scale while only using a very small
number of degrees of freedom, validating the presented approach.

All simulations are based on the PUMA software toolchain developed by Fraunhofer SCAI ([SCA]).
In order to compute and use optimal local basis functions, a Python 3 module, optbasefun,
was developed in the scope of this thesis. This module allows to control the Python front end
of PUMA for the computation of optimal local basis functions. Many of the classes defined in
optbasefun handle instances of PUMA classes together with additional meta information needed
for the computation or use of optimal basis functions, which leads to a modularization of the code
into independent and interchangeable blocks. Additionally, it provides easy-to-use data handlers,
for example to set up the different types of boundary condition functions which are used in the
sampling of harmonic functions, or to simplify the setup and solution of the generalized eigenvalue
problem.

Outlook
In this thesis, the framework for the computation of optimal local basis functions was investigated
in terms of its feasibility. When shifting the focus towards performance, there are possible technical
improvements to be made, for example regarding the structure of the output. Performing numerical
quadrature is typically the most expensive part of any global method using enrichments defined on
a very fine discretization. Instead of storing the coefficient vectors of the optimal basis functions
and integrating their products with polynomial basis functions in every enriched simulation, the
assembled entries of the mass / stiffness matrix may be stored and reused directly. This can lead
to a significant speedup of the enriched method, but requires the definition of binding rules for the
geometric alignment between the local domain and global patches.

Additionally, the results regarding reusability may be extended. This thesis presented algebraic
conditions for the equality of optimal basis functions, and equality of several functions implies
equality of the spaces spanned by these functions. However, a different set of spanning functions
may still lead to the same (or a very similar) spanned space. Since the "approximation quality"
of a set of optimal local basis functions refers to their spanned space instead of their individual
contributions, similarity of optimal local approximation spaces should be investigated as well. The
main reasoning is, that slight changes of an elliptic PDE lead to slight changes of the harmonic
functions, which in turn lead to slight changes of the discrete matrices in the generalized eigenvalue
problem and consequently the discrete eigenfunctions. The optimal local approximation spaces for
two very similar PDE are hence expected to be sufficiently close to each other, and this can possibly
be quantified by the computation of an angle between these spaces ([GNB05, Hit13]). Ultimately,
this may lead to the development of a decision mechanism for the a priori selection of a set of
pre-computed optimal basis functions according to the coefficients of a problem at hand. Using
machine learning algorithms, additional sets of optimal basis functions may even be generated
without the need to explicitly solve PDE.

While the problems considered in the experimental part of this thesis were of second order, the
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framework has been shown to be feasible also for higher order PDE. Therefore, future applications
should also involve higher order PDE, such as the biharmonic equation or the Cahn Hilliard equa-
tion. It is worth noticing that it is technically very involved to construct and use higher order Finite
Elements, whereas the (enriched) PUM can easily be applied to such problems.

While this thesis investigated one way of constructing operator-dependent basis functions in de-
tail, a multitude of methods for the construction of improved shape functions has been developed
([EHMP19, SW17, CELL19]). Moreover, there are other well established approaches to reduce
the complexity of global approximation spaces. This ranges from the use of shell elements in the
modeling of thin structures to the Global Local approach typically used in fracture mechanics,
as presented by Birner in his dissertation ([Bir23]). It will be interesting for future works to in-
vestigate the combination of such methods with the presented framework for the computation of
optimal basis functions.
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A
Appendix A: Korn inequality

In the following, the works of [LD72] and [Tar82] regarding the Korn inequality (Theorem 3.1) are
recapitulated. The proof of the Korn inequality on a sufficiently regular domain Ω Ă R2,3 relies on
an alternative representation of the space in the form of L2

pΩq. Introduce

X pΩq :“ tv P H´1
pΩq| Bxjv P H´1

pΩq j “ 1, . . . , du. (A.1)

The equality will be proven first for the full space Rd, then for a half-space Rd
` and afterwards for

a regular, bounded and open set Ω Ă Rd, corresponding to Lemma 1 to 5 in [Tar82, Functional
spaces related to the Navier-Stokes equation, pp. 26 – 29].

Lemma A.1. For Ω “ Rd, it holds that X pRdq “ L2
pRdq.

‚

Proof. Plancharel’s Theorem states, that the Fourier transform F : L2
pRdq Ñ L2

pRdq is an isom-
etry. It is given by

Fpvqpyq “ v̂pyq “

ż

Rd

e´2ix¨yvpxq dx

F´1
pvqpxq “ vpxq “

ż

Rd

e2ix¨yv̂pyq dy.

(A.2)

The Fourier transform allows to identify

v P H1
pRd
q ðñ p1` | ¨ |2q

1
2 v̂p¨q P L2

pRd
q. (A.3)

It also allows an identification of the partial derivatives via

Bxj P H1
pRd
q ðñ p1` | ¨ |2q

1
2 ¨i v̂p¨q P L2

pRd
q. (A.4)

Since the Fourier transform is an isometry, i.e.

}v}L2pRdq “ }Fpvq}L2pRdq “ }v̂}L2pRdq, (A.5)
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the conditions (A.3) and (A.4) mount to

v P H1
pRd
q ðñ

v̂p¨q

p1` | ¨ |2q
1
2

P L2
pRd
q (A.6)

and

Bxjv P H1
pRd
q ðñ

|v̂p¨q ¨i |

p1` | ¨ |2q
1
2

P L2
pRd
q (A.7)

for j “ 1, . . . , d. The norm of the sum of the right-hand side from (A.6) and all right-hand sides
from (A.7) reads

›

›

›

›

›

ûp¨q

p1` | ¨ |2q
1
2

`

d
ÿ

j“1

|ûp¨q ¨i |

p1` | ¨ |2q
1
2

›

›

›

›

›

L2pRdq

ď

›

›

›

›

›

ûp¨q

p1` | ¨ |2q
1
2

›

›

›

›

›

L2pRdq

`

d
ÿ

j“1

›

›

›

›

›

|ûp¨q ¨i |

p1` | ¨ |2q
1
2

›

›

›

›

›

L2pRdq

“

ż

Rd

û2pyq

1` |y|2
dy `

d
ÿ

j“1

ż

Rd

|ûpyqyi|
2

1` |y|2
dy

“

ż

Rd

û2pyq

1` |y|2
dy `

d
ÿ

j“1

ż

Rd

ûpyq2y2
i

1` |y|2
dy

“

ż

Rd

û2pyq

1` |y|2
dy `

ż

Rd

ûpyq2|y|2

1` |y|2
dy

“

ż

Rd

p1` |y|2qûpyq2

1` |y|2
dy

“

›

›

›

›

›

p1` | ¨ |qûp¨q

p1` | ¨ |2q
1
2

›

›

›

›

›

L2pRdq

and the term on the right-hand side is finite, since all occurring integrals are finite. Therefore,

pA.6q, pA.7q ðñ
p1` | ¨ |qûp¨q

p1` | ¨ |2q
1
2

P L2
pRd
q. (A.8)

This is true, whenever û P L2
pRdq, which in turn holds whenever u P L2

pRdq. This proves the
claim.

In order to prove the statement for a half-space, the following statement is needed.

Lemma A.2. C80 pRd
`q is dense in X pRd

`q.

‚

Proof. Let u P X and let tTuhuh Ă X pRd
`q defined by the relation

Tuh :“ xuh, vyH1pΩq “ xu, u´hyH1pΩq, @v P H1
0pRd

`q. (A.9)

It holds that uh
hÑ0
Ñ u in X pRd

`q. Let now ϕ P C8pRdq defined by

ϕpxq :“

$

&

%

C exp

ˆ

1
|x|2´1|

˙

, |x| ă 1

0, |x| ě 1
(A.10)
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with C ą 0 selected such that
ş

Rd ϕpxq dx “ 1. The sequence of standard mollifiers is defined by
the functions

ϕεpxq :“
1

εd
ϕ

ˆ

x

ε

˙

P C80 pRd
q. (A.11)

For any h, the mollification of uh satisfies ρhε :“ puh ‹ ϕεq|Rd
`

εÑ0
Ñ uh, and since C80 pRd

`q is closed,

it holds for the limit that uh P C80 pRd
`q. Hence, any element from X pRd

`q can be approximated
arbitrarily well using a sequence from C80 pRd

`q, meaning that C80 pRd
`q is dense in X pRd

`q.

Lemma A.3. There exists a continuous extension Θ : X pRd
`q Ñ X pRdq.

‚

Proof. Define the operator Q : H1
pRdq Ñ H1

0pRd
`q by

Qpuqpx1, . . . , xdq :“

#

0, xd ă 0

upx1, . . . , xdq `
ř2
j“1 ajupx1, . . . , xd´1,´jxdq, xd ě 0

where a1, a2 P R are chosen such that 1` a1 ` a2 “ 0. By inserting xd “ 0 into the definition,

Qpuqpx1, . . . , xd´1, 0q “ 0, (A.12)

one sees that the image of Q are indeed functions from H1
0. Define a second operator

R : H1
pRd
q Ñ H1

0pRd
`q (A.13)

by

Rpuqpx1, . . . , xdq “

#

0, xd ă 0

upx1, . . . , xdq `
ř2
j“1

aj
´j
upx1, . . . , xd´1,´jxdq, xd ă 0

and since the image of R should be functions from H1
0, 1 ` a1

´1
` a2

´2
“ 0 is required, ensuring

Rpuqpx1, . . . , xd´1, 0q “ 0. Using the linearity of Q yields

Q

ˆ

Bu

Bxi

˙

“

#

B

Bxi
Qpuq, i ‰ d

B

Bxd
Rpuq, i “ d.

(A.14)

Since Qpuq “ 0 on xd “ 0, the operator Q can be extended to H1
pRdq by continuity, so

Qext : H1
pRd
q Ñ H1

pRd
q. (A.15)

Let Θ “ QT the formal adjoint of Q,

Θ : H1
0pRd

`q Ñ H1
pRd
q, (A.16)

that is
Θ : H´1

pRd
`q Ñ H´1

pRd
q. (A.17)



204 APPENDIX A. APPENDIX A: KORN INEQUALITY

For any v P H1
pRdq and any i ‰ d it holds that

x
B

Bxi
Θpuq, vy “ ´ xΘpuq,

Bv

Bxi
y “ ´xu,Q

ˆ

Bv

Bxi

˙

y

“ ´ xu,
B

Bxi
Qpvqy “ x

Bu

Bxi
, Qpvqy

“ xΘ

ˆ

Bu

Bxi

˙

, vy,

(A.18)

that is
B

Bxi
Θ “ Θ

B

Bxi
, i ‰ d. (A.19)

For i “ d it similarly holds that
B

Bxd
Θ “ RT B

Bxd
, (A.20)

where RT : H´1
pRd

`q Ñ H´1
pRdq is the form adjoint of R. Let now Bu

Bxd
P H´1

pRd
`q. Then

B

Bxd
Θpuq P H´1

pRd
q. (A.21)

The last thing to prove is that the operator Θ is an extension. For this, use a restriction operator

Π : H´1
pRd
q Ñ H´1

pRd
`q, Πpuq :“ u|Rd

`
, @u P H´1

pRd
q (A.22)

and an extension by zero

Ψ : H1
0pRd

`q Ñ H1
pRd
q, Ψpuq :“

#

upxq, x P Rd
`

0, x R Rd
`,

(A.23)

which is the formal transpose of the restriction. The following relations are obtained

H´1
pRd

`q
P
Ñ H´1

pRd
q

Π
Ñ H´1

pRd
`q

H1
0pRd

`q
Q
Ð H1

pRd
q

Ψ
Ð H1

0pRd
`q

(A.24)

Note that QΨ “ id holds, which is equivalent to ΠΘ “ id, showing that Θ is an extension
operator.

Lemma A.4. It holds that X pRd
`q “ L2

pRd
`q.

‚

Proof. Using the continuous extension Θ from lemma A.3, u P X pRd
`q implies

Θpuq P X pRd
q (A.25)

and hence Θpuq P L2
pRdq by lemma A.1.

Lemma A.5. Let Ω Ă Rd be regular, bounded and open. Then X pΩq “ L2
pΩq.
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‚

Proof. Let tΩiui be an open cover of Ω. Consider a smooth partition of unity subordinate to the
cover, tϕiui, that is functions

ϕi P C8pRd; r0, 1sq, @i (A.26)

with
ÿ

i

ϕipxq “ 1, @x P Ω . (A.27)

One can write any u P X pΩq as
u “

ÿ

i

ϕiu. (A.28)

If i is such that Ωi is entirely contained in Ω, then ϕiu P X pRdq, so ϕiu P L2
pRdq using lemma

A.1, and since supϕiu “ Ωi also ϕiu P L2
pΩq using an extension by 0 outside of the support.

If j is such that ϕj intersects the boundary of Ω, take a local representation of the boundary, that
is a function ρj that has two bounded derivatives and an inverse ρ´1

j which also has two bounded
derivatives. The function ρj maps the part of the boundary Ωj XBΩ onto the axis xd “ 0 (see
Figure A.1 for a sketch).

ωi

ωj

Local boundary map ρ

ρ(ωj ∩ Ω)

xd

Rd−1

Figure A.1: Sketch of the action of the local boundary map ρj acting on patch Ωj .

Therefore
ϕiu P X pΩq (A.29)
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implies that
pϕiuq ˝ ρ

´1
P X pRd

`q, (A.30)

and
pϕiuq ˝ ρ

´1
P L2

pRd
`q. (A.31)

by lemma Lemma A.4. Since L2 measurability is preserved by ρi, it can be used to map back to Ωi

ending up with
ϕiu P L2

pΩq. (A.32)

By iterating over all elements of the cover, one obtains

u “
ÿ

i

ϕiu
loomoon

PL2pΩq

P L2
pΩq. (A.33)

Using lemma A.5, the Korn inequality (Theorem 3.1) can finally be proven. This inequality shows
one part of the equivalence of the norm } ¨ }H1pΩq to the strain energy norm

}v}EpΩq :“

„
ż

Ω

εpvqpxq : εpvqpxq dx`

ż

Ω

vpxq ¨ vpxq dx


1
2

“

„

}εpvq}2
rL2pΩqsdˆd ` }v}

2
rL2pΩqsd


1
2

,

Proof of Theorem 3.1. Let EpΩq be the space of v P rL2
pΩqsd such that

εijpvq P L2
pΩq, @i, j “ 1, . . . , d (A.34)

It is obvious, that the strain energy norm is indeed a norm on EpΩq, and it is easily verified that
EpΩq is a Hilbert space. For all components i “ 1, . . . , d it holds that

B L2 vi
BxjBxk

“
Bεikpvq

Bxj
`
Bεijpvq

Bxk
´
Bεjkpvq

Bxi
. (A.35)

Since v P EpΩq, it holds that εijpvq P L2
pΩq, so

Bεijpvq

Bxk
P H´1

pΩq. (A.36)

Therefore, eq. (A.35) yields

B L2 vi
BxjBxk

P H´1
pΩq, @i, j, k “ 1, . . . , d. (A.37)

It was observed that Bvi
Bxk

satisfies all assumptions from lemma A.5, and therefore

Bvi
Bxk

P L2
pΩq, @i, k “ 1, . . . , d. (A.38)
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Therefore v P rH1
pΩqsd holds, and since the other inclusion is trivial EpΩq “ rH1

pΩqsd follows.
Note that the inclusion

i : rH1
pΩqsd ãÑ EpΩq (A.39)

is continuous, and as seen before, surjective. Therefore (cf. closed graph theorem) it is an isomor-
phism satisfying

}v}EpΩq ě CkornpΩq}v}VdpΩq, @v P rH1
pΩqsd, (A.40)

where CkornpΩq is the continuity constant of the inclusion from the closed graph theorem.
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