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Abstract
by Shijie Li

for the degree of

Doctor rerum naturalium

In recent years, autonomous driving vehicles have attracted a lot of attention. In au-
tonomous driving, safety is the highest priority. To ensure this, scene understanding and
motion forecasting play an important role in autonomous driving. Because the LiDAR sen-
sor can capture environment information accurately, in the scene understanding task, we
want to assign each point a semantic label. Unfortunately, there are usually massive points
lying in the LiDAR point cloud. Processing such a large point cloud usually requires a lot
of computation resources. However, only limited computation resources are available on
autonomous driving platforms. What’s worse, there are usually many modules that run con-
currently on autonomous driving which further limits the available computation. This is the
same for motion forecasting tasks. Thus we can observe that efficiency is very important for
realistic autonomous driving applications.

However, previous methods targeting the semantic segmentation of LiDAR point clouds
have largely focused on accuracy, often at the expense of efficiency, which is crucial for
practical applications. To bridge this gap, we propose a highly efficient architecture tailored
to process 2D projection maps generated from input LiDAR sensors. By capitalizing on
the intrinsic characteristics of LiDAR sensors and converting sparse 3D data into a dense
2D format, our methodology achieves a commendable balance between accuracy and effi-
ciency. Building on this architecture, we further endeavor to determine the motion status
of each point within the LiDAR point cloud. This is realized by adopting a generalized
projection-based LiDAR data representation that can encapsulate motion information. Ad-
ditionally, we have set a new benchmark for LiDAR-based moving object segmentation,
anchored on the SemanticKITTI dataset. The aforementioned discussions primarily revolve
around projection-based approaches. Moreover, we explore the enhancement of point-based
methods for semantic segmentation of LiDAR point clouds. We present a novel concept
of reconfiguring 3D point-based operations to operate within the projection space. This in-
genious design allows for the conversion of any point-based methods into projection-based
ones, markedly improving their accuracy and efficiency for LiDAR point cloud semantic
segmentation. A significant hurdle with projection-based methods is the apparent gap be-
tween them and voxel-based approaches. We ascertain that this gap arises from the “many-
to-one” dilemma, due to the limited horizontal and vertical angular resolution of the range
image. To tackle this, we introduce a temporal fusion layer to extract pertinent information
from previous scans, integrating it with the current scan. We also suggest a max-voting-
based post-processing technique to amend erroneous predictions.

As highlighted, besides scene understanding, precise and efficient trajectory forecasting
is paramount for ensuring safety in autonomous driving. As the safety of humans is the
highest priority, we first work on mapless human trajectory prediction. In this work, we en-
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force the temporal consistency between historical data and predicted future data. Although
this method works well for low-speed scenarios that mainly consist of pedestrians, the au-
tonomous driving scenario is usually highly dynamic where the agents are usually at high
speed, like vehicles. In this case, the map can provide meaningful information as the drivers
usually need to follow some driving rules. One issue here is that processing map informa-
tion usually costs a lot of computation resources. To address this, we propose a streamlined
architecture that incorporates an additional aggregation token for each lane and trajectory.
This facilitates the modeling of global dependencies within each lane or trajectory and be-
tween the lanes or trajectories, leading us to name the network the Aggregation-Interaction
Transformer. Nonetheless, efficiently modeling the interactions among various road users
and drivable lanes remains a formidable challenge. Thus another notable contribution is our
approach’s ability to learn intention seeds, which serve as queries to generate a diverse array
of future trajectories in a highly efficient manner.

For both the LiDAR point cloud semantic segmentation and motion forecasting tasks,
we evaluate the proposed approaches on several public datasets with different scenarios.
Extensive evaluation shows the effectiveness of the proposed approaches in both accuracy
and efficiency which shows they are suitable for realistic applications.

Keywords: LiDAR semantic segmentation, Motion forecasting, Autonomous driving,
Scene understanding
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1.1 Motivation

Autonomous driving, also known as self-driving or driverless driving, refers to the technology that
allows a vehicle to navigate and operate without any human intervention or control. This technology
leverages a variety of systems and tools to function properly.

The autonomous driving system usually consists of several modules:

• Perception system: This is the initial step in autonomous driving where the vehicle collects
data from the surrounding environment. To ensure safe autonomous driving, various sensors
are used including LiDAR, radar, camera, IMU, and so on.

• Scene Understanding: The system interprets the data to understand the driving scene. It usually
involves object detection, object tracking, and semantic segmentation.

• Anticipation: In this phase, the vehicle anticipates the actions of other road users and makes
decisions accordingly. As there are usually many potential trajectories, this module usually
predicts diverse outcomes.
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• Control: The control module in autonomous driving is a critical system responsible for execut-
ing the decisions made by the planning module to maneuver the vehicle safely and efficiently.

Although vehicles equipped for autonomous driving incorporate a range of sensors, the LiDAR
sensor stands as the most critical one. LiDAR, which stands for Light Detection and Ranging, is
a sophisticated remote sensing technology that utilizes pulsed laser light to gauge distances. This
technology is capable of generating detailed 3D maps of the surroundings, capturing the intricate
details of various objects, and offering a 360-degree field of view, thereby ensuring a comprehen-
sive understanding of the environment. LiDAR excels in identifying obstacles with a high degree of
precision, including pedestrians and cyclists, thereby significantly enhancing safety measures. One
of its standout features is its independence from ambient light, which facilitates effective function-
ing in low-light conditions, a capability not shared by cameras. Furthermore, LiDAR maintains its
functionality across a diverse range of weather conditions, including during rain and fog, conditions
that often challenge other sensors such as cameras. When used in harmony with other sensors, Li-
DAR contributes to a redundancy system, bolstering the reliability and robustness of the autonomous
driving system.

However, LiDAR sensors typically record the surrounding environment as a large-scale point
cloud composed of a vast number of points. Analyzing such extensive point cloud data demands
substantial computational resources. Regrettably, autonomous vehicles often rely on embedded plat-
forms, which offer limited computational capabilities. Compounding this issue is the fact that these
platforms frequently run multiple modules simultaneously, as previously noted. This concurrent op-
eration further restricts the computational resources available for processing LiDAR data in scene
understanding applications. Therefore, it is evident that efficiency is crucial when it comes to pro-
cessing LiDAR data in autonomous driving contexts. Regrettably, the inherent characteristics of
LiDAR point clouds, which are large-scale yet sparse, present unique challenges. Many existing
methods are not designed to handle such large-scale sparse point clouds effectively, often failing to
strike a harmonious balance between accuracy and efficiency.

In the realm of autonomous driving, the anticipation module operates synergistically with the
scene understanding module to enhance safety through meticulous trajectory forecasting for each
agent present in the prevailing scenario. This module is tasked with predicting the forthcoming tra-
jectories of all entities on the road - vehicles, pedestrians, or cyclists- leveraging both their current
states and historical data. Functioning in real-time, it continually refreshes its predictions, draw-
ing from the most recent data harvested from the vehicle’s sensor suite. Through the utilization
of cutting-edge technologies and sophisticated algorithms, the module scrutinizes the movements
and behavioral patterns of various road users to forecast their future paths. This predictive prowess
stands as a fundamental component in the autonomous vehicle’s toolkit, facilitating safe and effi-
cient navigation through ever-changing environments, thereby cementing itself as a cornerstone in
the technology driving autonomous vehicles.

Moreover, it is imperative to comprehend and model the intricate social interactions between
road users, a task steeped in complexity given the unpredictable nature of human behavior and the
diverse range of scenarios that can unfold on the roads. Adding to the complexity is the dynamic
environment in which autonomous vehicles operate, requiring real-time trajectory forecasting to re-
spond swiftly to evolving situations. This demands high computational resources, which are often
limited, thereby restricting the complexity of forecasting models that can be deployed. Therefore,
there is a pressing need to develop forecasting models that are both sophisticated in understanding
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and predicting a range of human behaviors and social interactions, while also being computationally
efficient to operate in real-time in a highly dynamic environment.

In this thesis, we present significant contributions to the autonomous driving domain, specifically
focusing on enhancing the scene understanding and anticipation modules through LiDAR point cloud
semantic segmentation and motion forecasting, respectively.

In the context of scene understanding, we delve into a detailed analysis of various semantic seg-
mentation methods applicable to LiDAR point cloud data. Our discussion elucidates the relationships
among these methods, leading to the proposition of techniques that stand out as both highly accurate
and efficient, thereby making them apt for deployment in autonomous driving scenarios.

Turning our attention to the anticipation module, we work on both mapless and map-assist trajec-
tory prediction. We first propose a method for mapless method targeting human trajectory prediction
which enforces the temporal consistency between historical data and the predicted data. While this
method already works well for low-speed scenarios, it is not suitable for autonomous driving scenar-
ios which a highly dynamic scenarios where agents are usually at high speed. Furthermore, the map
can provide meaningful information in this case as the cars need to follow some driving rules. Thus
we introduce a novel method that can process input maps efficiently, a trait that renders it highly suit-
able for real-world autonomous driving applications, aligning perfectly with the demands of realistic
and dynamic driving environments. It can also delineate agent intentions, effectively capturing the
multi-modal characteristics inherent in driving scenarios.

1.2 Challenges

Autonomous driving technology is advancing rapidly, but it still faces a myriad of challenges that
need to be addressed to ensure safety, efficiency, and widespread adoption. Here are some of the
significant challenges:

1.2.1 Sparse High Dimension data

LiDAR point clouds are inherently sparse compared to image data, making it challenging to accu-
rately identify and segment objects, particularly those that are small or distant. Additionally, LiDAR
data exists in a 3D space, escalating the data complexity and the computational resources necessary
for processing. This high dimensionality further complicates data storage and transmission, aspects
critical for real-time applications in autonomous driving.

1.2.2 Real-Time Processing

As previously noted, processing LiDAR point cloud data typically demands substantial computa-
tional resources. However, autonomous vehicles operate under constraints concerning computational
resources, power consumption, and space. Navigating these constraints while striving for real-time
processing of LiDAR data for semantic segmentation poses a complex challenge.

1.2.3 Multi-Modal Predictions in motion forecasting

Forecasting the future movements of surrounding entities carries inherent uncertainty. Drivers, pedes-
trians, and other road users may alter their behavior due to a myriad of unpredictable factors. More-
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over, there often exist multiple plausible future trajectories for an object. For example, a vehicle
approaching an intersection may turn left, right, or continue straight. Capturing these multi-modal
predictions poses a significant challenge.

1.3 Contributions

1.3.1 Multi-path architecture for efficient LiDAR point cloud semantic segmentation
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Our first contribution is that we propose
a projection-based method, called Multi-
scale Interaction Network (MINet),
which is very efficient and accurate.
The network uses multiple paths with
different scales and balances the com-
putational resources between the scales.
Additional dense interactions between
the scales avoid redundant computations
and make the network highly efficient.
The proposed network outperforms point-based, image-based, and projection-based methods in
terms of accuracy, number of parameters, and runtime. Moreover, the network processes more than
24 scans, captured by a high-resolution LiDAR sensor with 64 beams, per second on an embedded
platform, which is higher than the framerate of the sensor. The network is therefore suitable for
robotics applications.

1.3.2 Reducing the influence of moving objects in autonomous driving by moving
object segmentation

Raw Point Cloud Segmented Point Cloud

Range Images

Our Predictions

Ground Truth Labels

Apart from semantic information, mov-
ing information is also very important in
autonomous driving perception modules
which is usually ignored in previous re-
search. The ability to detect and segment
moving objects in a scene is essential for
building consistent maps, making future
state predictions, avoiding collisions, and
planning. Our second contribution, in-
stead of assigning each point a semantic
label, we want to distinguish the moving
status of each point. We propose a novel
approach that pushes the current state of
the art in LiDAR-only moving object segmentation forward to provide relevant information for au-
tonomous robots and other vehicles. Instead of segmenting the point cloud semantically, i.e., pre-
dicting the semantic classes such as vehicles, pedestrians, buildings, roads, etc., our approach accu-
rately segments the scene into moving and static objects, i.e., distinguishing between moving cars
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vs. parked cars. Our proposed approach exploits sequential range images from a rotating 3D LiDAR
sensor as an intermediate representation combined with a convolutional neural network and runs
faster than the frame rate of the sensor. We compare our approach to several other state-of-the-art
methods showing superior segmentation quality in urban environments. Additionally, we created a
new benchmark for LiDAR-based moving object segmentation based on SemanticKITTI.

1.3.3 Efficient Point-based LiDAR point cloud semantic segmentation by operation
projection
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Our contributions so far only focus on
projection-based methods. Apart from
projection-based methods, point-based
methods, which directly operate on the
raw point cloud, are also widely used in
3D scene understanding. However, most
of them have been designed for indoor
scenarios, but they struggle if they are ap-
plied to point clouds that are captured by
a LiDAR sensor in an outdoor environment. In order to make these methods more efficient and robust
such that they can handle LiDAR data, we introduce the general concept of reformulating 3D point-
based operations such that they can operate in the projection space. While we show by means of three
point-based methods that the reformulated versions are between 300 and 400 times faster and achieve
a higher accuracy, we furthermore demonstrate that the concept of reformulating 3D point-based op-
erations allows to design of new architectures that unify the benefits of point-based and image-based
methods. As an example, we introduce a network that integrates reformulated 3D point-based op-
erations into a 2D encoder-decoder architecture that fuses the information from different 2D scales.
We evaluate the approach on four challenging datasets for semantic LiDAR point cloud segmentation
and show that leveraging reformulated 3D point-based operations with 2D image-based operations
achieves very good results for all four datasets.

1.3.4 Enforce Temporal consistency in projection-based methods
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One issue with the projection-based
method is that it faces a significant chal-
lenge known as the “many-to-one” prob-
lem caused by the range image’s lim-
ited horizontal and vertical angular res-
olution. As a result, around 20% of
the 3D points can be occluded. In this
contribution, we present TFNet, a range-
image-based LiDAR semantic segmenta-
tion method that utilizes temporal infor-
mation to address this issue. Specifically,
we incorporate a temporal fusion layer to
extract useful information from previous scans and integrate it with the current scan. We then design
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a max-voting-based post-processing technique to correct false predictions, particularly those caused
by the “many-to-one” issue. We evaluated the approach on two benchmarks and demonstrated that
the post-processing technique is generic and can be applied to various networks.

1.3.5 Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecast-
ing

GC

DTCs

GC

DTCs

Obs

Pred

FWC

Based on the results from the scene un-
derstanding module, we want to go one
step further and forecast the future trajec-
tories of each agent. In this work, we fo-
cus on mapless human trajectory predic-
tion as the safety of humans is of the highest priority. To this end, agents are required to understand
and forecast the trajectories of surrounding pedestrians or vehicles such that they can make the right
decisions and for instance navigate safely and smoothly through a crowd. Trajectory forecasting,
however, is challenging due to the complex behavior and interactions of humans in crowds. Apart
from accurate prediction, efficiency is also an important factor in realistic applications. To overcome
the above limitation, we propose a compact model called Spatial-Temporal Consistency Network
(STC-Net). In STC-Net, dilated temporal convolutions are introduced to model long-range depen-
dencies along each trajectory for better temporal modeling while graph convolutions are employed
to model the spatial interaction among different trajectories. Furthermore, we propose a feature-wise
convolution to generate the predicted trajectories in one pass and refine the forecast trajectories to-
gether with the reconstructed observed trajectories. We demonstrate that STC-Net generates spatially
and temporally consistent trajectories and outperforms other graph-based methods.

1.3.6 Efficient Transformer architecture for motion forecasting

Actually, the high-definition map (HD
map) plays an important role in trajectory
forecasting. Compared to normal maps,
HD maps target autonomous driving and
only include necessary task-related infor-
mation. In this work, we focus on uti-
lizing map information to help trajectory
prediction tasks under autonomous driv-
ing scenarios. However, modeling all the
interactions between different road users
and drivable lanes in an efficient way re-
mains a challenging problem. To address
this issue, we propose an efficient architecture that introduces an additional aggregation token per
lane and trajectory. It allows to modeling of global dependencies within each lane or trajectory
and global dependencies between the lanes or trajectories. We thus term the network Aggregation-
Interaction Transformer. As a second contribution, our approach learns intention seeds that are used
as queries to generate diverse future trajectories in a very efficient way. We conduct comprehensive
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experiments and our method achieves state-of-the-art performance both in terms of accuracy and
efficiency.

1.4 Thesis Structure

The rest of this thesis is organized as follows:
Chapter 2 provides an overview of the related work on LiDAR point cloud semantic segmenta-

tion and motion forecasting. It also provides a brief summary of the datasets that are used to evaluate
the proposed approaches.

Chapter 3 gives a brief overview of the concepts that are used throughout the thesis. It starts
with a quick introduction to neural networks, including convolutional and recurrent networks. Then,
it describes the transformer architecture. Finally, it provides a formal definition of the evaluation
metrics that are used to evaluate the performance of the proposed approaches.

Chapter 4 proposes a projection-based method, called Multi-scale Interaction Network (MINet),
which is very efficient and accurate. This chapter is based on (Li et al., 2021a).

Chapter 5 extends the approach proposed in Chapter 3 to predict the moving status of each point
in the LiDAR point cloud. Additionally, we created a new benchmark for LiDAR-based moving
object segmentation based on SemanticKITTI. This chapter is based on (Chen et al., 2021b).

Chapter 6 introduces the general concept of reformulating 3D point-based operations such that
the point-based methods can operate in the projection space. This chapter is based on (Li et al.,
2021b).

Chapter 7 incorporates a temporal fusion layer to extract useful information from previous scans
and integrate it with the current scan to solve the “many-to-one” problem caused by the range im-
age’s limited horizontal and vertical angular resolution. It further proposes a max-voting-based post-
processing technique to correct false predictions.

Chapter 8 proposes an efficient architecture that enforces temporal consistency between histori-
cal data and predicted future data for human trajectory prediction. This chapter is based on (Li et al.,
2021c).

Chapter 9 proposes an efficient architecture that introduces an additional aggregation token per
lane and trajectory for motion forecasting in autonomous driving.

Finally, conclusions are given in Chapter 10 along with suggested directions for future work.





CHAPTER 2

Related Work

In this chapter, we discuss the related literature to this thesis. As this thesis mainly includes two
subtopics, LiDAR point cloud semantic segmentation and trajectory forecasting, we split this chapter
into two parts and describe each part in detail.

In the first part, we discuss recent progress in LiDAR point cloud semantic segmentation. The
LiDAR point cloud has different data representations, like the original 3D point cloud, 2D projection
map, which projects the 3D LiDAR point cloud into 2D space by spherical projection, and 3D voxels,
which voxelize the 3D point cloud into 3D voxels. To handle different data representations, different
methods are proposed. Thus we categorize these methods according to the data representation they
adopted and name them point-based methods, projection-based methods, and voxel-based methods
respectively. We also discuss some fusion-based methods that try to utilize the benefits of different
representations. Although most works target single LiDAR scan processing, more and more works
focus on utilizing historical data. Unfortunately, most of these works are for moving object segmen-
tation. We also include a discussion of these methods. Finally, post-processing is an important step
for projection-based methods, we will briefly discuss its recent progress.

In the second part, we introduce the recent progress in trajectory prediction. We demonstrate
the motion forecasting methods with or without the usage of map information. For the low-speed
scenario, like human trajectory prediction, most methods do not utilize the map but can still achieve
good performances. By incorporating the map information, the performance will be improved to
some extent. However, autonomous driving cars usually lie in a highly dynamic environment where
most cars are at high speed. In this case, the map can play a more important role. This is because
the drivers usually follow some driving rules, like the cars usually follow the lanes, thus the map can
provide meaningful guidance information. In this chapter, we discuss the literature for both mapless
and map-assisted motion forecasting methods.
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2.1 LiDAR point cloud semantic segmentation

2.1.1 Point-based methods

As the original data representation of the LiDAR point cloud is 3D point cloud, most methods for
processing 3D point cloud can be directly applied here. PointNet (Qi et al., 2017b) is the first work
that introduces deep learning into point cloud processing. It directly consumes point clouds and
respects the permutation invariance of points in the input. It provides a unified architecture for appli-
cations ranging from object classification, and part segmentation, to scene semantic parsing. As its
following work, PointNet++ (Qi et al., 2017d) is a hierarchical neural network that applies PointNet
recursively on a nested partitioning of the input point set. By exploiting metric space distances, the
network learns local features with increasing contextual scales. KPConv (Thomas et al., 2019c) is a
new design of point convolution that operates on point clouds without any intermediate representa-
tion. The convolution weights of KPConv are located in Euclidean space by kernel points and applied
to the input points close to them. KPConv can also be extended to deformable convolutions that learn
to adapt kernel points to local geometry. Tangent Convolutions (Tatarchenko et al., 2018) introduces
tangent convolutions, a new method for convolutional networks on 3D data. It operates directly on
surface geometry and is applicable to unstructured point clouds.

Instead of directly processing the point cloud in 3D space, some methods map 3D coordinates
into a high dimension of space. LatticeNet (Rosu et al., 2019) utilizes a sparse permutohedral lattice.
It uses PointNet to describe the local geometry of point clouds and embeds them into the lattice
for fast convolutions. It also introduces DeformSlice, a learned data-dependent interpolation for
projecting lattice features back onto the point cloud. SPLATNet (Su et al., 2018) directly operates
on a collection of points represented as a sparse set of samples in a high-dimensional lattice. It
uses sparse bilateral convolutional layers as building blocks to maintain efficiency and allow flexible
specifications of the lattice structure enabling hierarchical and spatially-aware feature learning.

However, the above methods are not designed for LiDAR point cloud which is usually very
sparse while with massive points. Recently some point-based methods target LiDAR point cloud
semantic segmentation. SPGs (Landrieu and Simonovsky, 2018) presents a novel deep learning-
based framework for semantic segmentation of large-scale point clouds of millions of points using
superpoint graphs (SPGs). SPGs offer a compact yet rich representation of contextual relationships
between object parts, which is then exploited by a graph convolutional network. Hu et al. (2020a)
present a simple and efficient neural architecture for semantic segmentation of large-scale 3D point
clouds. It uses random point sampling instead of more complex point selection approaches and
introduces a novel local feature aggregation module to increase the receptive field for each 3D point.

2.1.2 Voxel-based methods

Although the above point-based methods can produce reasonable outcomes, the performance is far
from satisfactory. This is because the LiDAR point cloud has its own characteristics, like large-scale
and sparse. Unfortunately, most point-based methods are not optimized for these characteristics and
thus cannot perform well. Because the LiDAR point cloud is usually very sparse. In other words,
most space is empty. SPVCNN (Tang et al., 2020) observes this and introduces Sparse Point-Voxel
Convolution (SPVConv), a lightweight 3D module that equips the vanilla Sparse Convolution with
a high-resolution point-based branch. This point-based branch preserves fine details even from large
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outdoor scenes. It further presents 3D Neural Architecture Search (3D-NAS) to search the optimal
network architecture over a diverse design space efficiently and effectively. To produce a dense
prediction of the whole scene, JS3C-Net (Yan et al., 2021) tries to fuse semantic segmentation and
semantic scene completion (SSC) together. By merging multiple frames in the LiDAR sequence
as supervision, the optimized SSC module has learned the contextual shape priors from sequential
LiDAR data, completing the sparse single sweep point cloud to the dense one.

However, splitting LiDAR point clouds as cubics does not follow the data capture characteristic
of the LiDAR sensor. To solve this issue, PolarNet (Zhang et al., 2020b) proposes an Improved Grid
Representation for Online LiDAR Point Clouds Semantic Segmentation. It presents a new LiDAR-
specific, nearest-neighbor-free segmentation algorithm. Instead of using common spherical or bird’s-
eye-view projection, PolarNet’s polar bird’s-eye-view representation balances the points across grid
cells in a polar coordinate system. Cylinder (Zhu et al., 2021) proposes a new framework for outdoor
LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are
designed to explore the 3D geometric pattern while maintaining inherent properties of outdoor point
clouds. The proposed model acts as a backbone and the learned features from this model can be
used for downstream tasks such as point cloud semantic and panoptic segmentation or 3D detection.
(AF)2-S3Net (Cheng et al., 2021b) proposes an end-to-end encoder-decoder CNN network for 3D
LiDAR semantic segmentation. It introduces a novel multi-branch attentive feature fusion module
in the encoder and a unique adaptive feature selection module with feature map re-weighting in the
decoder. This method aims to address issues such as high computational complexity and lack of
fine details of smaller instances present in other methods. Spherical Transformer (Lai et al., 2023)
introduces a spherical partition and a spherical transformer module that can capture the global and
local geometric patterns of point clouds.

2.1.3 Projection-based methods

Efficiency is of vital importance for autonomous driving. Although applying sparse convolution on
3D voxels can reduce the computation a lot, it is still not good enough for realistic applications as
the operations are still conducted in 3D space. With spherical projection introduced in the follow-
ing chapter, the LiDAR point cloud can be converted into a 2D projection map. Thus one solution
for LiDAR point cloud semantic segmentation is conducting semantic segmentation on a 2D projec-
tion map and then unproject predictions back into 3D space. RangeNet++ (Milioto et al., 2019b)
exploits range images as an intermediate representation in combination with a Convolutional Neu-
ral Network (CNN) that takes into account the rotating LiDAR sensor model. To obtain accurate
results, a novel post-processing algorithm is introduced that addresses issues such as discretization
errors and blurry CNN outputs. The method can perform full semantic segmentation of LiDAR point
clouds at the sensor frame rate. SalsaNext (Cortinhal et al., 2020c) presents an encoder-decoder
network for the uncertainty-aware semantic segmentation of a full 3D LiDAR point cloud in real
time. SalsaNext is an improved version of SalsaNet, which introduces a new context module, a new
residual dilated convolution stack, a pixel-shuffle layer, and a Lovasz-Softmax loss. SalsaNext also
injects a Bayesian treatment to compute the epistemic and aleatoric uncertainties for each point in the
cloud. SqueezeSeg (Wu et al., 2018b) is an end-to-end pipeline based on convolutional neural net-
works (CNN) that takes a transformed LiDAR point cloud as input and directly outputs a point-wise
label map, which is then refined by a conditional random field (CRF) implemented as a recurrent



12 Chapter 2. Related Work

layer. SqueezeSegV2 (Wu et al., 2019b) improve the robustness of SqueezeSeg (Wu et al., 2018b).
With improved model structure, training loss, batch normalization, and additional input channels,
SqueezeSegV2 achieves significant accuracy improvement when trained on real data. It also pro-
poses a domain-adaptation training pipeline for better performance. SqueezeSegV3 (Xu et al., 2020b)
proposes Spatially-Adaptive Convolution (SAC) to adopt different filters for different locations ac-
cording to the input image. SAC can be computed efficiently and is a general framework such that
several previous methods can be seen as special cases of SAC. 3D-MiniNet (Alonso et al., 2020) is a
fast and efficient method for semantic segmentation of LIDAR point clouds. It first learns a 2D rep-
resentation from the raw points through a novel projection that extracts local and global information
from the 3D data. This representation is fed to an efficient 2D Fully Convolutional Neural Network
(FCNN) that produces a 2D semantic segmentation. FPS-Net (Xiao et al., 2021) exploits the unique-
ness and discrepancy among the projected image channels for optimal point cloud segmentation.
FPS-Net adopts an encoder-decoder structure and uses a residual dense block with multiple recep-
tive fields as a building block in the encoder which preserves detailed information in each modality
and learns hierarchical modality-specific and fused features effectively. KPRNet (Kochanov et al.,
2020a) adopts recent advances in both image and point cloud segmentation to achieve better accu-
racy in segmenting LiDAR scans. KPRNet improves the convolutional neural network architecture
of 2D projection methods and utilizes KPConv to replace commonly used post-processing techniques
with a learnable point-wise component which allows for obtaining more accurate 3D labels. Most
above methods adopt the convolution neural network (CNN) architecture. Rangeformer (Kong et al.,
2023a), instead, introduces the transformer architecture (Vaswani et al., 2017b) for this task. Be-
sides, it also investigates the challenges and limitations of using range view projections for LiDAR
semantic and panoptic segmentation. It identifies three key factors that affect the performance of
range view models: many-to-one mapping, semantic incoherence, and shape deformation.

2.1.4 Fusion-based methods

Recently, there are some methods that fuse information from different views or modalities to fur-
ther improve performance. 2DPASS (Yan et al., 2022) aims to improve the representation learning of
point clouds by leveraging rich appearance information from 2D images. The paper introduces a gen-
eral training scheme that uses an auxiliary modal fusion and multi-scale fusion-to-single knowledge
distillation (MSFSKD) to transfer the knowledge from multi-modal data to the pure 3D network.
Point-to-Voxel Knowledge Distillation (Hou et al., 2022) addresses the problem of distilling knowl-
edge from a large teacher model to a slim student network for LiDAR semantic segmentation. It
proposes Point-to-Voxel Knowledge Distillation (PVD), which transfers the hidden knowledge from
both the point level and voxel level. It also introduces a difficulty-aware sampling strategy and an
inter-point and inter-voxel affinity distillation to better exploit the structural information of point
clouds. MPF (Alnaggar et al., 2021) introduces a novel approach for 3D point cloud semantic seg-
mentation that exploits multiple projections of the point cloud to mitigate the loss of information
inherent in single projection methods. It uses two separate highly efficient 2D fully convolutional
models to analyze spherical and bird’s-eye view projections and then combines the segmentation
results of both views. GFNet (Qiu et al., 2022) explores the geometric correspondence between dif-
ferent views in an align-before-fuse manner. A novel geometric flow module (GFM) is devised to
bidirectionally align and propagate the complementary information across different views according
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to geometric relationships under the end-to-end learning scheme.
Multi-frame information plays a crucial role in LiDAR data processing. For example,

MOS (Chen et al., 2021c) and MotionSeg3D (Sun et al., 2022a) generate residual images from multi-
ple LiDAR frames to explore the sequential information and use it for segmenting moving and static
objects. Motivated by these approaches, Meta-RangeSeg (Wang et al., 2022b) also uses residual
range images for the task of semantic segmentation of LiDAR sequences. It employs a meta-kernel
to extract the meta-features from the residual images. SeqOT (Ma et al., 2022a) exploits sequential
LiDAR frames using yaw-rotation-invariant OverlapNets (Chen et al., 2020, 2021a) and transformer
networks (Vaswani et al., 2017a; Ma et al., 2022b) to generate a global descriptor for fast place
recognition in an end-to-end manner. In addition, SCPNet (Xia et al., 2023) designs a knowledge
distillation strategy between multi-frame LiDAR scans and a single-frame LiDAR scan for seman-
tic scene completion. Recently, Mars3D (Liu et al., 2023a) designed a plug-and-play motion-aware
module for multi-scan 3D point clouds to classify semantic categories and motion states. Seal (Liu
et al., 2023b) proposes a temporal consistency loss to constraint the semantic prediction of super-
points from multiple scans. Although the benefit of using multiple scans has been studied, these
works address other tasks.

Although projection-based LiDAR segmentation methods are computationally efficient, they suf-
fer from boundary blurriness or the many-to-one issue (Wu et al., 2018a; Milioto et al., 2019c). To
alleviate this issue, most works use a conditional random field (CRF) (Wu et al., 2018a) or k-NN (Mil-
ioto et al., 2019c) to smooth the predicted labels. Wu et al. (2018a) implements the CRF as an end-
to-end trainable recurrent neural network to refine the predictions according to the predictions of the
neighbors within three iterations. It does not address occluded points explicitly. k-NN (Milioto et al.,
2019c) infers the semantics of ambiguous points by jointly considering its k closest neighbors in
terms of the absolute range distance. However, finding a balance between under and over-smoothing
can be challenging, and it may not be able to handle severe occlusions. Recently, NLA (Zhao et al.,
2021) assigns the nearest point’s prediction in a local patch to the occluded point. However, it is re-
quired to iterate over each point to verify occlusions. In addition, RangeFormer (Kong et al., 2023b)
addresses this issue by creating sub-clouds from the entire point cloud and inferring labels for each
subset. However, partitioning the cloud into sub-clouds ignores the global information. It can also
not easily be applied to existing networks. Some methods (Kochanov et al., 2020b; Sun et al., 2022a;
Ando et al., 2023) propose additional refinement modules for the networks to refine the initial esti-
mate, which increases the runtime. In this work, we propose to tackle this issue by combining past
predictions in an efficient max-voting manner. Our method complements existing approaches and
can be applied to various networks.

2.2 Motion Forecasting

2.2.1 Trajectory Forecasting without Maps

One branch of trajectory forecasting approaches focuses on agent interactions while not utilizing
nearby map information (Xu et al., 2022; Yue et al., 2022; Huang et al., 2019; Alahi et al., 2016;
Mohamed et al., 2020). These methods are usually applied in low-speed scenarios with pedestrians.
RNN-based methods model the motion of each pedestrian by a recurrent architecture and the context
of nearby trajectories by pooling operations. Social-LSTM (Alahi et al., 2016) is one of the earli-
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est methods following this approach and several methods explore different strategies to improve the
performance. PIF (Liang et al., 2019) takes human behavioral information into consideration and
introduces rich visual features. SR-LSTM (Zhang et al., 2019b) proposes a social-aware information
selection mechanism to select useful information from neighboring pedestrians. FvTraj (Bi et al.,
2020) focuses on first-person view-based trajectory forecasting with multi-head attention mecha-
nisms. Recently, Mangalam et al. (2020) proposed a variational auto-encoder to predict first the end-
points of the trajectories and then the corresponding trajectories in a second step. While it achieves
impressive results, it is too expensive for most applications.

GAN-based methods take into account that many future trajectories might be plausible. To han-
dle this problem, Social-LSTM (Alahi et al., 2016) is converted into a generative model in Social-
GAN (Gupta et al., 2018). Based on it, SoPhie (Sadeghian et al., 2019) combines a social attention
mechanism with a physical attention mechanism. CGNS (Li et al., 2019) replaces the LSTMs in
SoPhie (Sadeghian et al., 2019) by GRUs. Similar to (Mangalam et al., 2020), Goal-GAN (Den-
dorfer et al., 2020) uses a two-stage process for trajectory forecasting. Since these works also rely
on recurrent architectures, they are as inefficient as RNN-based methods. Graph-based methods use
graph convolutions instead of simple pooling operations for modeling spatial interactions. Social-
BiGAT (Kosaraju et al., 2019) is a graph-based generative model that uses a graph attention network
to encode social interactions between pedestrians and a recurrent encoder-decoder architecture to
predict future trajectories. Similar to Social-BiGAT (Kosaraju et al., 2019), STGAT (Huang et al.,
2019) captures spatial interactions by a graph attention mechanism at each time step and uses LSTMs
for forecasting. RSBG (Sun et al., 2020) proposes a social behavior graph that encodes the social
representations. DAG-Net (Monti et al., 2020) uses a double attentive graph neural network for
trajectory forecasting. These methods, however, remain inefficient since they still use a recurrent
architecture. Social-STGCNN (Mohamed et al., 2020) omits the RNNs and uses a CNN for time
extrapolation. While this results in a very low latency, it comes at the cost of a very weak temporal
model.

Recent advancements in trajectory prediction have seen the application of encoder-decoder struc-
tures, as illustrated in studies by Cheng et al. (2021a); Mangalam et al. (2020); Sun et al. (2021).
These structures are favored for their ability to effectively encode a range of contextual features. The
MID framework, introduced by Gu et al. (2022), presents a novel stochastic approach incorporating
motion indeterminacy diffusion. This method redefines trajectory prediction as evolving from a gen-
eral walkable area to a specific desired trajectory. In a different approach, Memonet developed by Xu
et al. (2022), departs from traditional parameter-based frameworks that rely on optimizing model
parameters through training data. Instead, Memonet employs an instance-based framework, utilizing
retrospective memory to store and reference various past trajectories and their associated intentions.

2.2.2 Trajectory Forecasting with Maps

For autonomous driving, the map information plays an important role as it can provide a strong
prior for the future trajectory (Mangalam et al., 2021; Wang et al., 2022a; Mangalam et al., 2020).
The map information can be represented as an image, which is a semantic bird-view map, or as a
lane map, which represents each lane by a sequence of points. Early research in this field applied
long short-term memory (LSTM) networks (Alahi et al., 2016) to model historical states of agents,
and convolutional neural networks (CNNs) for processing rasterized scene images (Cui et al., 2019;
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Gilles et al., 2021a; Huang et al., 2022b; Salzmann et al., 2020). To capture agent interactions, graph
neural networks (GNNs) have been extensively used, as seen in works by Chen et al. (2022); Gilles
et al. (2022); Huang et al. (2022a); Mo et al. (2022) , which represent these interactions through scene
or interaction graphs. More recently, the Transformer encoder-decoder architecture has emerged as
a popular method for motion prediction, exemplified by the SceneTransformer (Ngiam et al., 2021)
and WayFormer (Nayakanti et al., 2023), known for their concise model structure and enhanced
performance. However, existing Transformer-based models have primarily focused on the encoding
process, with less attention to decoding. Addressing this, the Motion Transformer (Shi et al., 2022)
proposed an advanced decoding stage that utilizes iterative local motion refinement for improved
prediction accuracy. In the realm of using prediction models for planning tasks, there’s a significant
focus on multi-agent joint motion prediction frameworks, as discussed in studies by Gilles et al.
(2021b); Jia et al. (2022); Mo et al. (2022); Sun et al. (2022b). These frameworks are crucial for effi-
cient and consistent prediction of diverse, multi-agent trajectories. A common challenge with current
motion prediction models is their tendency to overlook the impact of autonomous vehicle (AV) ac-
tions, which limits their applicability in subsequent planning tasks. To address this, researchers have
developed conditional multi-agent motion prediction models that incorporate AV planning data into
the prediction mechanism, as seen in works by Espinoza et al. (2022); Huang et al. (2023b); Song
et al. (2020).

2.2.3 Forecasting other Modalities

In the context of autonomous driving, there are also other approaches that do not forecast trajectories,
but other modalities (Hu et al., 2021a; Akan and Güney, 2022; Zhang et al., 2022) combine percep-
tion, sensor fusion, and prediction and forecast future instance segmentation maps in the bird eye
view (BEV). Apart from object-level forecasting, some methods focus on scene-level prediction, like
occupancy forecasting or semantic scene completion. Approaches for occupancy forecasting (Hu
et al., 2022b, 2021b; Khurana et al., 2022; Shi et al., 2023) use a free space-centric representation,
which can be directly obtained by raycasting. This representation can capture the free space of the
surrounding scene and can assist in forecasting tasks. Some methods not only estimate the binary
occupancy map but aim to reconstruct the entire semantic scene (Behley et al., 2019b; Garbade et al.,
2019; Huang et al., 2023a; Cao and de Charette, 2022), which is also named semantic scene com-
pletion. There are also some works that focus directly on end-to-end driving (Prakash et al., 2021;
Chitta et al., 2021; Hu et al., 2022a).





CHAPTER 3

Preliminaries

In this chapter, we first delve into fundamental concepts pertinent to this thesis. We commence with
an overview of foundational techniques employed, encompassing Neural Networks, Convolutional
Neural Networks, and Transformer architecture. Furthermore, we outline the two primary tasks
addressed in this thesis: LiDAR Point Cloud Semantic Segmentation and Motion Forecasting. The
used datasets and the metrics for evaluation are also presented in the end.
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3.1 Neural Networks

A neural network is a computational model structured around interconnected layers, with each suc-
cessive layer receiving inputs from its predecessor. These layers house multiple processing units
known as neurons. These neurons perform transformations on the data relayed from the previous
layer. Broadly, the layers of a neural network can be classified into three categories: the input layer,
hidden layers, and the output layer. The network begins with the input layer and culminates in the
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Input Layer Output LayerHidden Layer

Figure 3.1: A feed-forward neural network comprises two hidden layers. Within each layer are
multiple neurons, and every neuron establishes connections with all neurons from the preceding
layer.

output layer, with one or more hidden layers sandwiched between them. In its canonical form, the
nodes and connections in neural networks create a directed acyclic graph. Such configurations are
termed feed-forward neural networks or multi-layer perceptrons (MLP). Figure 3.1 illustrates the
architecture of a feed-forward neural network featuring two hidden layers. The primary utility of
neural networks is function approximation, particularly in pattern recognition domains where defin-
ing explicit rule-based solutions is impractical. Subsequently, we will provide a concise overview of
the integral components of neural networks.

3.1.1 Neuron

The neuron stands as the foundational element of neural networks. Conceptually, it operates as a
system that ingests inputs undergoes a transformation process, and subsequently emits an output,
termed the "activation". Initially, it calculates a weighted sum of its inputs, integrates a bias, and then
channels this aggregate through an activation function to yield an output. This activation function
is typically a differentiable, non-linear function. Feed-forward neural networks are architecturally
assembled by layering these neurons. In such a configuration, each neuron determines a weighted
sum of the activations from its preceding layer. This sum then undergoes a non-linear transformation,
producing an activation that serves as input for the subsequent layer. The process is described as
follows:

o
plq
j “ b

plq
j `

K
ÿ

i“1

w
plq
ij a

pl´1q

i , (3.1)

a
plq
j “ fpo

plq
j q, (3.2)

where o
plq
j is the weighted sum of activations from layer l ´ 1, aplq

j is the activation of neuron j at

layer l, wplq
ij is the weight from neuron i at layer l ´ 1 to neuron j on layer l, K is the number of

neurons at layer l ´ 1. In Equation (3.2), f is a non-linear activation function.
The incorporation of non-linearity in intermediate layers is imperative. Absent this non-linear

feature, the entire network’s cumulative transformation capability would simply mirror that of a
singular layer. Figure 3.3 delineates the structure of a neuron, highlighting its inputs, transformations,
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Figure 3.2: Different activation functions: Linear, Rectified Linear Unit (ReLU), tanh, and sigmoid.

and output. Conversely, Figure 3.2 showcases a selection of prevalent activation functions frequently
utilized in neural networks.

3.1.2 Output Layer

The output layer represents the terminal layer of the neural network, producing the final prediction
corresponding to a given input. The choice of activation function for this layer hinges on the specific
nature of the task at hand. For regression tasks, where the desired output is a continuous real number,
a linear activation function is typically employed.

flinearpxq “ x, (3.3)

For classification tasks, the choice of activation function is influenced by the number of classes.
Specifically, in binary classification scenarios where there are only two classes, a sigmoid activation
function is utilized.

fsigmoidpxq “
1

1 ` e´x
, (3.4)

The neuron’s output is scaled to fall between 0 and 1, representing the probability of the correspond-
ing class, in scenarios such as binary classification. Likewise, for multi-class classification tasks, a
softmax layer is employed to ensure that the network’s output forms a valid probability distribution
across the various classes.

fsoftmaxpoiq “
eoi

ř

j e
oj
, (3.5)

where oi is the output of the i-th neuron in the output layer. It’s important to highlight that the
softmax function is employed exclusively for single-label classification tasks. In contrast, for multi-
label classifications, sigmoid activation is the preferred choice.
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Figure 3.3: A neuron with n inputs (x1, . . . , xn), weights (w1, . . . , wn), a bias (b) and activation
function f .

Additionally, the activation function of the output layer can be strategically chosen to impose
specific constraints on the output values. For example, an exponential activation ensures predictions
are positive, while a tanh activation confines the network’s output to a range between -1 and 1.

3.1.3 Objective Function

The objective function quantifies the divergence between the neural network’s predictions and the
expected results. Often referred to as the loss or error function, it serves as a barometer for model
performance. This function steers the neural network training, directing it towards an optimal set
of parameters that diminish the error. This is achieved by progressing in the direction opposite
to the gradients of the objective function. Hence, it’s imperative for the objective function to be
differentiable concerning the network’s outputs. A prevalent choice for an objective function is the
mean squared error (MSE).

Lmsepθq “
1

N

N
ÿ

n“1

pypxn, θq ´ tnq2, (3.6)

the objective function Lmse is characterized by the network parameters θ (comprising the weights and
biases of the network). Here, N denotes the total number of training examples, ypxn, θq represents
the output corresponding to the n ´ th training example, and tn is the target or desired value for that
particular example. For multi-class classification tasks encompassing C classes, the cross-entropy
loss is typically utilized.

Lcepθq “ ´
1

N

N
ÿ

n“1

C
ÿ

c“1

tn,c logpycpxn, θqq, (3.7)

the target tn is depicted through a one-hot encoding of the target class, with tn,c being its value for
class c. Likewise, ycpxn, θq denotes the predicted probability for class c. Given that the target is
represented as a one-hot encoding vector, this loss can be succinctly expressed as:

Lcepθq “ ´
1

N

N
ÿ

n“1

logpycpxn, θqq, (3.8)

where ycpxn, θq is the predicted probability for the target class c.
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Broadly speaking, any function that gauges the deviation between the network’s output and a
designated target value can serve as an objective function for training a neural network, provided it’s
differentiable in relation to the network’s parameters.

3.1.4 Network Training

In earlier discussions, we delved into how neural networks employ layers of transformations to cor-
relate inputs with the anticipated outputs. The essence of these transformations, their parameters, are
deduced from data by scouring the parameter space to find the optimal set of parameters, encompass-
ing both weights and biases, that curtail the objective function.

Typically, gradient descent-based methodologies are employed to train neural networks. Begin-
ning with a preliminary parameter set, the training algorithm iteratively refines these parameters,
nudging them in the direction contrary to the gradients of the objective function relative to the net-
work’s parameters

θi`1 “ θi ´ η∇Lpθiq (3.9)

In this formulation, θi denotes the network parameters at the i-th iteration, while L represents the
objective function. The symbol η stands for the learning rate, a small positive number that dictates the
extent of movement in the direction of the negative gradients. To determine the gradients relative to
the parameters in the intermediate layers, the backpropagation algorithm is employed. This algorithm
recursively utilizes the chain rule, ensuring that the gradients concerning the parameters at layer l are
derived based on the gradients at layer l ` 1

The selection of the learning rate, denoted as η, is pivotal for successful training convergence.
Setting η too high can lead to oscillatory behavior around the optimal value. Conversely, an overly
conservative η can protract the convergence process, making training inordinately lengthy. Con-
temporary methods employ adaptive learning rates tailored for individual parameters, drawing upon
gradient moments; an exemplar of this is the Adam optimizer, as highlighted in (Kingma and Ba,
2015).

3.2 Convolutional Neural Networks (CNNs)

Conventional neural networks predominantly feature fully connected layers, where every neuron is
linked to all the neurons from the preceding layer. Consequently, each layer is essentially a matrix
multiplication of a weight matrix and the activation vector of the prior layer. In contrast, convo-
lutional networks incorporate at least one convolutional layer. Unlike their fully connected counter-
parts, convolutional layers manifest sparse connectivity, with each neuron tethered only to a localized
region from the preceding layer. Additionally, neurons within the same convolutional layer share
parameters, leading to a substantial decrease in the total parameter count when compared to fully
connected layers.

Convolutional neural networks (CNNs) have gained significant traction in image processing,
demonstrating remarkable efficacy in image classification and recognition tasks. Each layer within a
CNN can be conceptualized as a learned filter or kernel that distills local features from the input im-
age. Owing to the shared parameters across neurons focusing on different regions, multiple kernels
can be learned with a relatively modest parameter set. At its core, a convolutional layer performs a
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Figure 3.4: The network architecture of LeNet-5. (LeCun et al., 1998).

convolution operation between the input image I and the learned kernel W . This two-dimensional
convolution is defined as:

pI ˚ W qpi, jq “
ÿ

l,m

Ipi ´ l, j ´ mqW pl,mq. (3.10)

Typically, convolutional networks comprise a sequence of convolutional layers, succeeded by
fully connected layers towards the end. Following the convolutional stages, a non-linear transforma-
tion is enacted, often employing activation functions like the ReLU. Occasionally, a pooling layer
is incorporated, which consolidates the activations of several neurons into a singular output. Imple-
menting such layers, such as max pooling, bestows the network with resilience to minor translational
variations.

Several convolutional neural network architectures have made notable impacts in the domain.
Among the seminal 2D CNNs, LeNet-5 (LeCun et al., 1998) stands out, showcased in Figure 3.4.
This pioneering convolutional network was instrumental in recognizing handwritten digits. Subse-
quent architectures like AlexNet (Krizhevsky et al., 2012) and VGG (Simonyan and Zisserman, 2015)
also gained prominence, proving their mettle in a range of tasks, including image classification and
object detection. In contemporary times, architectures drawing inspiration from ResNet (He et al.,
2016a) are predominantly favored.

3.3 Transformer

The Transformer architecture follows an encoder-decoder structure, characteristic of numerous Neu-
ral Machine Translation models (Bahdanau et al., 2015). Subsequent adaptations of the Transformer,
such as the encoder-exclusive BERT or the decoder-centric GPT, have demonstrated exemplary per-
formance in language modeling tasks.

3.3.1 Attention and Self-Attention

Attention mechanisms allow neural networks to enhance predictions by focusing selectively on spe-
cific segments of data. This selective focus is quantified through learned weights, resulting in the
output typically manifesting as a weighted average.
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Figure 3.5: Illustration of the multi-head scaled dot-product attention mechanism. This image is
from Vaswani et al. (2017b).

Self-attention extends this concept, enabling the model to make predictions for a portion of a data
sample based on information from other parts of the same sample. Conceptually, it bears resemblance
to non-local means. It’s important to highlight that self-attention is permutation-invariant, signifying
that it operates on sets without being influenced by the order of elements.

Numerous variations of attention and self-attention mechanisms exist. The Transformer model,
as introduced by Vaswani et al. (2017b), employs the scaled dot-product attention. In this mechanism,
given a query matrix Q, a key matrix K, and a value matrix V, the output is derived from a weighted
summation of the value vectors. Here, the weighting for each value is governed by the dot-product
between the query and its corresponding key:

attnpQ,K,Vq “ softmax

ˆ

QK
?
dk

˙

V (3.11)

And for a query and a key vector qi,kj P Rd (row vectors in query and key matrices), we have a
scalar score:

aij “ softmax

˜

qik
J
j

?
dk

¸

“

exp
´

qik
J
j

¯

?
dk

ř

rPSi
exp pqikJ

r q
(3.12)

where Si is a collection of key positions for the i-th query to attend to.

3.3.2 Multi-Head Self-Attention

The multi-head self-attention mechanism, as Figure 3.5 stands as a cornerstone of the Transformer
architecture. Instead of performing a singular attention computation, this method divides the inputs
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Figure 3.6: The architecture of the vanilla Transformer model. This image is from Vaswani et al.
(2017b).

Figure 3.7: Sinusoidal positional encoding with L “ 32 and d “ 128. The value is between -1
(black) and 1 (white) and the value 0 is in gray. This image is from Vaswani et al. (2017b).

into multiple subspaces and calculates the scaled dot-product attention for each subspace concur-
rently. The separate attention outcomes are then merged through concatenation and undergo a linear
transformation to achieve the desired dimensions.

MultiHeadAttn pXq,Xk,Xvq “ rhead1; . . . ; headhsWo

where head i “ Attention
´

XqW
q
i ,XkW

k
i ,XvW

v
i

¯ (3.13)

r.;.s denotes a concatenation operation. The matrices Wq
i , Wk

i P Rdˆdk{h, and Wv
i P Rdˆdv{h

serve as weight matrices to transform input embeddings Xq, Xk, Xv of dimensions L ˆ d into
query, key, and value matrices, respectively. Additionally, Wo P Rdvˆd represents the output linear
transformation. All these weights are to be learned during the training process.

3.3.3 Encoder-Decoder Architecture

The whole transformer architecture is shown in Figure 3.6 which consists of an encoder-decoder
architecture.
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The encoder produces an attention-oriented representation, pinpointing specific details within a
broad context. It’s composed of a series of six identical modules. Each of these modules houses two
sub-layers: a multi-head self-attention mechanism and a point-wise, fully connected feed-forward
network. The term "point-wise" signifies that the same linear transformation, using consistent
weights, is applied individually to each element of the sequence. This approach can also be concep-
tualized as a convolutional layer with a filter size of one. Additionally, every sub-layer incorporates
a residual connection alongside layer normalization. Regardless of their functionality, all sub-layers
emit data of the consistent dimension d.

In contrast, the Transformer’s decoder is tasked with extracting information from the encoded
representations. Its structural design bears resemblance to the encoder but introduces a notable differ-
ence. Each repeated module in the decoder contains not one, but two multi-head attention sub-layers.
The initial multi-head attention sub-layer incorporates a masking mechanism to deter positions from
accessing subsequent information, ensuring a logical information flow.

3.3.4 Positional Encoding

Because self-attention operation is permutation invariant, it is important to use proper positional
encoding to provide order information to the model. The positional encoding P P RLˆd has the same
dimension as the input embedding, so it can be added on the input directly. The vanilla Transformer
considered two types of encodings:

3.3.4.1 Sinusoidal Positional Encoding

The sinusoidal positional encoding is articulated as, given the token position i “ 1, . . . , L and the
dimension δ “ 1, . . . , d :

PEpi, δq “

$

&

%

sin
´

i
100002δ{d

¯

if δ is even

cos
´

i
1000028{d

¯

if δ is odd
(3.14)

Each dimension of the positional encoding corresponds to a distinct sinusoidal wave with varying
wavelengths across dimensions, from 2π to 10000 92π. This is shown in Figure 3.7.

3.3.4.2 Learned Positional Encoding

Learned positional encoding assigns a trainable column vector to each element, signifying its absolute
position, as proposed by (Gehring et al., 2017). Additionally, (Al-Rfou et al., 2019) highlighted that
this encoding can be adapted individually for each layer.

3.4 LiDAR Point Cloud Semantic Segmentation

3.4.1 LiDAR Data Processing

Over the past two decades, the light detection and ranging (LiDAR) sensor has emerged as a pivotal
tool in numerous robotics applications. Inside a LiDAR unit, laser beams discharge pulsed light
waves into the environment, then measure the time taken for each pulse to bounce back. This process,
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Figure 3.8: Several representations of LiDAR scans.

executed millions of times each second, enables the creation of detailed, real-time 3D environmental
maps.

For robotics applications, the market mainly offers two LiDAR sensor variants: mechanically
rotating LiDAR and solid-state LiDAR. This thesis predominantly zeroes in on the mechanically
rotating variant due to its prevalent use in autonomous vehicles up to the present. Henceforth, ref-
erences to mechanically rotating LiDAR will simply be termed as “LiDAR”. Data collected from a
complete rotation of such LiDAR sensors, capturing a full 360-degree environment scan, is denoted
as a single LiDAR scan.

Several methods exist to depict a LiDAR scan for subsequent analysis. The three predominant
representations include the point cloud view, bird-eye view, and range image view, as showcased in
Figure 3.8.

A point cloud, the quintessential output of most LiDAR tools, essentially starts as an amalga-
mation of range readings paired with sensor orientation metrics. Preliminary processing converts
each laser shot’s range and orientation into a position within the LiDAR sensor’s local 3D coordinate
system. This conversion is as follows:

x “ r cospαq sinpθq,

y “ r cospαq cospθq,

z “ r sinpαq,

the triplet px, y, zqJ represents the 3D coordinates of a LiDAR point, while r denotes the corre-
sponding range measurement. The symbols θ, α represent the azimuth and inclination orientation
angles respectively, as illustrated in Figure 3.11. The resulting point cloud serves as the foundational
data for subsequent analysis and processing. Nonetheless, a standard rotating 3D LiDAR sensor can
generate several hundred thousand points in a single frame, demanding significant computational re-
sources for processing. The raw point cloud, characterized by its distance-driven sparsity and lack of
order, often proves challenging for direct integration into downstream tasks. In particular, methods
that leverage neural networks find the task of handling 3D point cloud data daunting. This complexity
has yet to be fully addressed, especially for large-scale outdoor applications, including autonomous
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Figure 3.9: Illustration of "submanifold" dilation: On the left is the original curve. The middle shows
the outcome of applying a standard 3 ˆ 3 convolution with weights 1{9 to it. On the right, the result
of applying the same convolution once more is displayed. This example demonstrates that with each
convolutional layer, standard convolutions significantly diminish the sparsity of the features. This
image is from Graham et al. (2018).

Figure 3.10: The Sparse Submanifold Convolution (SSC) operation, denoted as SSCp¨, ¨, 3q, centers
its receptive field at different active spatial locations. Active locations are shown in green, while red
locations are ignored by SSC, keeping the pattern of active locations unchanged. This image is from
Graham et al. (2018).

driving.
The bird-eye view offers a 2D depiction of a LiDAR scan by projecting the point cloud onto a

grid map aligned with the x-y plane. Each grid cell captures the height information of its respective
point. Given its lightweight nature and its ability to provide a comprehensive top-down perspective,
the bird-eye view has become a popular choice for tasks like object detection (Lang et al., 2019),
motion planning (Mohapatra et al., 2021), and tracking (Yin et al., 2021). Nevertheless, it has its
limitations. When segmenting the space into voxels or pillars, quantization errors can arise, leading
to the omission of distant objects represented by only a handful of points. Additionally, this view
loses details of vertical structures, such as buildings, trees, and poles, as these 3D objects get flattened
onto the 2D x-y plane.

In semantic segmentation, a common alternative to bird-eye view representation is the discretiza-
tion of LiDAR point clouds into voxels, followed by the application of sparse 3D convolution for
processing. This approach is necessitated by the typically large-scale point clouds generated by Li-
DAR. Processing these voxelized large-scale point clouds directly can be computationally intensive.
Furthermore, the volume resulting from voxelizing LiDAR point clouds is often heavily sparse. Uti-
lizing standard 3D convolution on such sparse volumes can lead to a "submanifold" dilation issue, as
highlighted by Graham et al. (2018) shown in Figure 3.9. This issue can be mitigated by employing
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Figure 3.11: Illustrating the generation of a range image from a point cloud. This figure is adapted
from the work by Fan et al. (2021).

sparse convolution, as proposed by the same authors, which focuses operations only on valid voxels,
thereby reducing unnecessary computation shown in Figure 3.10.

The range image view serves as an intuitive representation of scans captured by rotating 3D
LiDARs, such as those produced by Velodyne or Ouster sensors. This representation acts as an
intermediary step in the transformation of raw LiDAR measurements into a point cloud. As the
LiDAR scans, it creates a 2D matrix dictated by its elevation and azimuth resolutions. Each cell
within this matrix corresponds to a range measurement, culminating in what’s known as the range
image R. For a LiDAR configured with h beams and pulsing w times during a single rotation, the
resulting range image will have a height of h and a width of w, as depicted in Figure 3.11.

For every pixel in the range image, determined by a specific set of elevation and azimuth angles,
the 3D coordinates of the corresponding end-point of the beam can be computed using the below
equation. Conversely, starting with a point cloud, a projection transformation can be applied to
recreate a range image. Specifically, we convert each LiDAR point p “ px, y, zqJ via a mapping
Π : R3 ÞÑ R2 to spherical coordinates, and finally to image coordinates, as defined by

ˆ

u

v

˙

“

ˆ

1
2

“

1 ´ arctanpy, xqπ´1
‰

w
“

1 ´
`

arcsin
`

zr´1
˘

` fup
˘

f´1
‰

h

˙

the pair pu, vqJ denotes image coordinates, while h and w represent the height and width of the
desired range image representation, respectively. The term f “ fup ` fdown signifies the vertical
field-of-view of the sensor, and r “ }pi}2 denotes the range of each point. Following this procedure
yields a list of pu, vqJ tuples, with each tuple containing a pair of image coordinates corresponding
to each point pi.

For now, we can categorize LiDAR point semantic segmentation methods into three types ac-
cording to different data partitions, including point-based methods, projection-based methods and
voxel-based methods which are shown in Figure 3.12. In this thesis, we adopt a range projection-
based representation for processing LiDAR point cloud data. This approach allows us to leverage
the extensive research on 2D convolutional neural networks, which have already proven effective in



3.4. LiDAR Point Cloud Semantic Segmentation 29

Figure 3.12: Categories of LiDAR semantic segmentation methods. This image is from Camuffo
et al. (2022).

Figure 3.13: Visualization for SemanticKitti dataset. This image is from Behley et al. (2019d).

image-related tasks. Processing compact range images is more efficient than handling point clouds
directly, and unlike the 2D bird-eye views, there is no loss of raw data information.

An additional advantage of pairing range images with neural networks is the capability to effort-
lessly incorporate various types of data captured by LiDAR sensors. Using the image indices, for
each point pi we can extract its range r, its coordinates x, y, z and its reflectance value e storing
them channel-wise in the image. As a result, each pixel in this representation encapsulates more than
just range data. This design facilitates the integration of additional information as extra channels.
Thus, we can seamlessly input this augmented data into existing network designs without the need
for architectural modifications. This not only enhances the efficacy of our methodologies but also
ensures they can be easily adapted to emerging architectures.

3.4.2 Datasets

For LiDAR point cloud semantic segmentation, We use four challenging datasets to evaluate our
method:

• SemanticKITTI (Behley et al., 2019d) provides pixel-wise semantic labels for the entire
KITTI Odometry Benchmark (Geiger et al., 2012b) with more than 20000 scans which are
divided into 22 sequences. We use its training set for training (sequences 00-10 without se-
quence 08), its validation set (sequence 08) for the ablation study, and its test set (sequences
10-21) for comparison with state-of-the-art methods. Some visualizations are shown in Fig-
ure 3.13.

• SemanticPOSS (Pan et al., 2020a) contains about 3000 scans at the Peking University, which
are divided into 6 equal subsets. For the experiments, we use the 3rd subset for evaluation
and the others for training as in Pan et al. (2020a). There are usually more moving and small
objects in the campus scenarios, making it more difficult compared to urban environments.
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• nuScenes (Caesar et al., 2020) includes about 40000 annotated scans captured in 900 scenes,
where 750 scenes are for training and the others for validation. As recommended1, we merge
similar classes and remove rare classes.

• Pandaset2 contains about 16000 LiDAR scans at 2 routes in Silicon Valley. Two LiDAR
sensors have been used for recording the data, a spinning LiDAR and a solid-state LiDAR.
For the experiments, the data from the spinning LiDAR is used. We use 30% of the data for
evaluation and the rest for training. Similar to the nuScenes dataset, we merge similar classes
and remove rare classes.

3.4.3 Evaluation Metric

As for the evaluation metric, we calculate the standard mean intersection over union (mIoU) (Ever-
ingham et al., 2015) over all classes:

mIoU “
1

N

N
ÿ

n“1

TPn

TPn ` FPn ` FNn
(3.15)

where TPn, FPn, and FNn denote the numbers of true positive, false positive, and false negative
predictions for class n, respectively. N is the number of classes.

3.5 Motion Forecasting

Motion forecasting in autonomous driving involves predicting the future trajectories of surrounding
agents, such as vehicles, pedestrians, and cyclists. It is essential for ensuring safety, optimizing
routes, understanding agent intentions, and handling complex driving scenarios. Techniques used for
accurate motion forecasting include spatial and temporal modeling. In essence, motion forecasting
is pivotal for autonomous vehicles to anticipate and adeptly respond to evolving traffic situations.

3.5.1 Map Representation

To encode context information, the High-definition map (HD map), which is a map representation
targeting at autonomous driving, is usually converted into different map representations according to
the requirement. There are usually two main map representations, grid map and lane map which are
shown in Figure 3.14.

3.5.1.1 Grid Map (Rasterized Representation)

In the domain of motion forecasting for autonomous driving, the grid map representation plays a
pivotal role by converting intricate high-definition (HD) maps into a structured, discretized format.
This involves dividing the continuous spatial environment into a matrix of uniform cells or grids.
Each individual cell or grid encodes crucial information derived from the HD map, capturing details
such as road boundaries, pedestrian pathways, intersections, and even dynamic entities like vehicles,

1The nuScenes LiDAR segmentation task is available at https://www.nuscenes.org/lidar-segmentation.
2https://scale.com/open-datasets/pandaset.

https://www.nuscenes.org/lidar-segmentation
https://scale.com/open-datasets/pandaset
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Figure 3.14: Map representations in motion forecasting. This image is from Gao et al. (2020).

cyclists, or pedestrians in motion. The primary advantage of this discretization process is the creation
of a standardized and scalable input, which can be easily consumed by machine learning models and
prediction algorithms. Moreover, the fusion of both static information from HD maps and real-time
sensor data within this grid structure provides a comprehensive, momentary snapshot of the envi-
ronment, essential for safe and informed decision-making by autonomous systems. However, this
grid-based approach does come with its own challenges. Decisions regarding grid resolution can
impact the quality and accuracy of predictions; finer grids capture more detail but at the cost of com-
putational efficiency, while coarser grids might overlook crucial nuances. Furthermore, while grid
maps are adept at capturing a lot of the scene’s details, they might not always convey the hierarchical
and semantic understanding of road structures as efficiently as more specialized map formats, such
as lane maps, which are tailored to represent roadways and their associated attributes explicitly.

3.5.1.2 Lane Map (Vectorized Representation)

In the domain of autonomous driving, the lane map stands as a pivotal tool designed to meticulously
capture the nuances of road lanes and their intricate structures. Unlike broader mapping frameworks,
a lane map zeros in on the specifics, charting out every curve, marking, and deviation of the lane
structures, making it a crucial component for sophisticated driving systems. These maps provide
comprehensive details of the roadways, showcasing lane boundaries, categorizing lanes based on
their usage (e.g., turning lanes, merging lanes, bus lanes), and embedding essential metadata such
as lane width, type, direction of permissible traffic flow, and any special regulations or guidelines
associated with them.

Moreover, they encapsulate the hierarchical framework of road systems, deftly distinguishing be-
tween primary arterials, secondary lanes, and tertiary byways. Such granularity becomes especially
crucial at complex intersections and in scenarios with multilane configurations. An integrated view
of lane connections, bifurcations, and potential merge points is presented, aiding autonomous sys-
tems in understanding permissible driving actions. When harnessed for motion forecasting, the rich
tapestry of information presented by lane maps plays a decisive role. Vehicles, relying on this de-
tailed map, can predict their trajectories with increased accuracy, understanding their relative position
in conjunction with the broader lane layout. This not only facilitates more informed decision-making
for autonomous vehicles but also amplifies safety measures, ensuring they adhere to lane protocols
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and anticipate the movement of other vehicles with respect to the lane blueprint.

3.5.2 Datasets

This thesis includes both mapless trajectory prediction and map-assisted trajectory prediction.

3.5.2.1 Mapless trajectory prediction

We evaluate our method on three common trajectory forecasting datasets and follow the common
evaluation setting that 8 frames are used as observation and the following 12 frames need to be
forecast. All trajectories are provided in 2D coordinates.

The ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) datasets aim at pedestrian
trajectory forecasting. ETH contains 2 top view scenes with 750 trajectories and UCY contains
3 scenes close to the top view with 786 trajectories. The data processing is done as Gupta et al.
(2018). The sampling rate is 2.5 frames per second (one frame per 0.4s), which means that the model
observes 3.2 seconds and predicts the trajectories for the next 4.8 seconds.

The Stanford Drone Dataset (Robicquet et al., 2016) includes a series of videos captured by a
hovering drone from 8 different college campuses with more than 10,000 trajectories. The dataset is
much larger than ETH and UCY and includes other objects like bikes or cars apart from pedestrians.
The frame rate is 2.5 frames per second, which is the same as for ETH and UCY.

3.5.2.2 Map-assist trajectory prediction

We evaluate our method on a widely used dataset for trajectory forecasting: nuScenes (Caesar et al.,
2020). It provides high-definition (HD) maps associated with the trajectory data. The nuScenes
dataset includes 245,414 trajectory instances across 1,000 different scenes. Each trajectory instance
lasts for 8 seconds sampled at 2Hz. The trajectory forecasting task defined in the nuScenes dataset
requires forecasting the future trajectory of the ego vehicle for 6 seconds given the first 2 seconds as
the observed trajectory.

3.5.3 Evaluation Metrics

We report the widely used minimum average displacement error ADEK and the final displacement
error FDEK of K forecast trajectories with respect to the ground-truth trajectory T f :

ADEKpT̂ f
1:K , T f q “ min

k

$

&

%

1

Tf

Tf
ÿ

t“1

||xt ´ x̂kt ||2

,

.

-

, (3.16)

FDEKpT̂ f
1:K , T f q “ min

k
||xTf

´ x̂kTf
||2. (3.17)

We also report the Miss Rate for different values of K and the Off Road Rate for the nuScenes
dataset (Caesar et al., 2020). The former metric is defined as the proportion of misses over all agents.
If the maximum L2 distance between the best prediction and the ground truth trajectory is larger than
2m, this prediction is defined as a miss. Similarly, if a prediction does not entirely lie in the drivable
area, it is defined as off road. The Off Road Rate is defined as the proportion of off road predictions
over all agents.
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Individual Contribution

The following chapter is based on the publication:

Multi-scale Interaction for Real-time LiDAR Data Segmentation on an Embedded Platform
ShiJie Li, Xieyuanli Chen, Yun Liu, Dengxin Dai, Cyrill Stachniss, Juergen Gall
IEEE Robotics and Automation Letters (RA-L), 2021.
doi:10.1109/LRA.2021.3132059.

Below we will summarize the contributions of each author.

• Shijie Li
Shijie proposed the main idea of the paper and implemented the whole method. Shijie per-
formed the experiments and conducted the qualitative and quantitative analysis. Shijie also
wrote most of the paper.

• Xieyuanli Chen, Yun Liu
Both contributed to the idea and writing.

• Dengxin Dai, Cyrill Stachniss
Both contributed with supervision, discussions, and writing.

• Juergen Gall
Juergen supervised the project. He contributed with discussion and writing.

In this chapter, we propose a projection-based method, called Multi-scale Interaction Network
(MINet), which is very efficient and accurate. The network uses multiple paths with different scales
and balances the computational resources between the scales. Additional dense interactions between
the scales avoid redundant computations and make the network highly efficient. The proposed net-
work outperforms point-based, image-based, and projection-based methods in terms of accuracy,
number of parameters, and runtime. Moreover, the network processes more than 24 scans, captured
by a high-resolution LiDAR sensor with 64 beams, per second on an embedded platform, which is
higher than the framerate of the sensor. The network is therefore suitable for robotics applications.
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4.1 Introduction

Environment perception and understanding are key to realize self-driving vehicles and robots. For the
full-view perception of the environment, autonomously driving vehicles are usually equipped with
multi-sensor systems, among which light detection and ranging (LiDAR) sensors play a key role due
to their precise distance measurements. The large point clouds that are generated by the LiDAR
sensors, however, need to be interpreted in order to understand the environment.

Although convolution neural networks (CNNs) perform well for semantic image segmentation
(Chen et al., 2017; Zhao et al., 2017; Howard et al., 2019; Ma et al., 2018), they cannot be applied
directly to 3D point clouds. This is because standard convolutions require a regular grid structure,
whereas a raw point cloud is an unordered structure. To address this problem, some methods (Qi
et al., 2017b,d; Wu et al., 2019c) directly process point clouds using some spatial aggregation op-
erations like grouping and gathering. Although these methods work well in indoor scenarios, it is
difficult to apply them to large outdoor scenarios since the computational cost of the aggregation
operation increases with the number of points. Another issue is that these methods are inefficient
on embedded platforms since they use operations that cannot be efficiently mapped on embedded
hardware like Jetson AGX using TensorRT. However, runtime efficiency is of vital importance for
real-world applications, especially for autonomously driving vehicles and robots.

Wu et al.(Wu et al., 2018b, 2019b) thus proposed to represent point clouds produced by a LiDAR
sensor as an ordered projection map, such that CNNs can then be applied. However, projected LiDAR
data and RGB images are different modalities and applying directly 2D image-based methods does
not yield a high segmentation accuracy. For this reason, some specific CNNs have been designed for
LiDAR-based depth images, named as projection-based methods. Recent projection-based methods
like Milioto et al. (2019b), however, are very large with more than 50M parameters, making them
unsuitable for embedded platforms.

In this work, we therefore propose a lightweight projection-based model for semantic segmenta-
tion of LiDAR data that runs in real-time on an embedded platform. To this end, we revisit common
multi-scale approaches like U-Net (Ronneberger et al., 2015) that have one path for each scale,
i.e.each scale is processed independently and then fused at the end of the network. These networks,



4.2. Multi-scale Interaction Network 35

however, use the same operations for each path, which makes them either too expensive for embed-
ded platforms or the accuracy is very low depending how complex the used operations are. In order
to achieve a good balance between effectiveness and efficiency, we therefore adapt the computational
operations for each path. While the top path extracts low-level clues, which can be easily detected
with shallow layers operating on high-resolution feature maps, the bottom path extracts high-level
semantic information, which requires more complex operations but on low-resolution feature maps.
In order to avoid redundant computations across the paths, we propose a dense top-to-bottom inter-
action strategy where feature maps from a path are passed to all lower paths. We term the network,
which is shown in Figure 4.1, Multi-scale Interaction Network (MINet).

In addition, we show that the accuracy can be increased if additional supervision is added. While
this is consistent with Zhao et al. (2017); Zhang et al. (2018); Liu et al. (2019b, 2018), we demon-
strate that it is important to use the right type of supervision for the right part of the network. In
fact, we use semantic supervision only for the two top paths but not for the bottom path and edge
supervision for the fusion of the multiple paths. The latter is important to obtain accurate segment
boundaries after upsampling the paths with lower resolution. Finally, we process the multi-modal
data consisting of 3D coordinates, remission, and depth information first independently and then fuse
them in the feature space. This is in contrast to previous works for LiDAR data that just concatenate
the modalities and therefore ignore that the characteristics of each modality are different.

In summary, our contributions include:

• We propose a multi-scale approach where the computational operations are balanced across
the different scales and a top-to-bottom interaction strategy avoids redundant computations.

• We exploit different types of additional supervision to improve the accuracy without increasing
the inference time.

• Different from previous methods, we process each modality independently and fuse them in
the feature space, which improves the overall segmentation performance.

• By incorporating the above design decisions, we propose a lightweight projection-based model
for semantic segmentation of LiDAR data that runs in real-time on an embedded platform.

The experimental results demonstrate that our method reduces the number of parameters by about
98% and is about 4ˆ faster than the state-of-the-art projection-based method (Milioto et al., 2019b),
while achieving a higher accuracy. We also evaluate our model on an embedded platform and demon-
strate that our method can be deployed for autonomous driving.

4.2 Multi-scale Interaction Network

The proposed Multi-scale Interaction Network (MINet) operates on projection maps generated from
LiDAR point clouds. To associate a LiDAR point a “ px, y, zq to a pixel pu, vq in the projection
map of size ph,wq, we compute yaw by Equation 4.1 and pitch by Equation 4.2 and map it to pixel
coordinates by translation and scaling (Milioto et al., 2019b):

u “
1

2
r1 ´ arctan2py, xqπ´1sw, (4.1)
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Figure 4.1: Illustration of the MINet architecture with three paths in the Multi-scale Interaction
Module. The numbers 2 and 4 for interpolation (U) and average pooling (D) indicate the upsampling
and downsampling factor. The dashed arrows indicate the supervision type. The detailed description
of the architecture is given in Table 4.1 where the different blocks are illustrated in Figure 4.2 and
the Up Fusion Module is illustrated in Figure 4.3.

v “ r1 ´ parcsinpzd´1q ` oupqo´1sh. (4.2)

The vertical field-of-view of the LiDAR sensor is o “ oup ` odown, where oup and odown represent
the above and below horizon of the field-of-view, respectively. d “ ||a|| denotes the depth of a point.
After this transformation, we obtain a projection map of size ph,w, 5q where the 5 channels corre-
spond to the coordinates px, y, zq, the depth, and the remission of the corresponding 3D point. The
remission value indicates the proportion of the light that is diffusely reflected. It provides therefore
information of the surface, which is helpful for distinguishing different classes. While depth can be
computed from the coordinates, the network operations do not compute the depth explicitly. Adding
depth in addition to the coordinates thus improves the accuracy as we show in our experiments. Each
channel is normalized by the mean and standard deviation computed over the training and validation
set.
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Figure 4.2: Illustration of the MobileBlock (left) and the BasicBlock (right). DWConv means depth-
wise convolution.

The architecture of MINet is shown in Figure 4.1. The projection map is first processed by the
Mini Fusion Module (MFM) (Section. 4.2.1) to fuse the multi-modal information in the feature space.
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In the Multi-scale Interaction Module (MIM) (Section. 4.2.2), the data is processed at three different
scales where the resolution is reduced by factor two for each path. As it is shown in Table 4.1, the
computation differs for each path where we use two basic components, namely MobileBlock and
BasicBlock. The MobileBlock (Howard et al., 2017; Sandler et al., 2018) utilizes depthwise convo-
lutions and has thus fewer parameters, but its learning capacity is also limited. The BasicBlock (He
et al., 2016a) is stronger, but also more expensive. MobileBlock and BasicBlock are shown in Fig-
ure 4.2. We therefore balance the computational resources across the three paths as it is shown in
Table 4.1. While we use the expensive BasicBlock for the bottom path with lowest resolution, we
decrease the computational cost as the resolution increases using five MobileBlocks for the middle
path and three for the top path. The connections from each path to lower paths avoid redundant
computations at lower paths and make the network more efficient. Finally, the 2D predictions for the
original resolution are produced by the Up Fusion Module (UFM) (Section. 4.2.1), which are then
mapped back to the 3D space. In the remainder of this section, we describe each module of MINet.

Module Operation k c s t Output size

MFM

Conv2d 3 4 1 5 64ˆ2048
MobileBlock 3 20 1 1 64ˆ2048
MobileBlock 3 24 2 1 32ˆ512
MobileBlock 3 24 1 1 32ˆ512
MobileBlock 5 40 2 1 16ˆ256
MobileBlock 5 40 1 1 16ˆ256
MobileBlock 5 40 1 1 16ˆ256
MobileBlock 3 80 1 1 16ˆ256
MobileBlock 3 80 1 1 16ˆ256
MobileBlock 3 80 1 1 16ˆ256
MobileBlock 3 80 1 1 16ˆ256

Conv2d 1 32 0 1 16ˆ256

MIM

MobileBlock 3 64 1 1 16ˆ256
MobileBlock 3 128 1 1 16ˆ256
MobileBlock 3 128 1 1 16ˆ256
MobileBlock 3 32 1 1 8ˆ128
MobileBlock 3 64 1 1 8ˆ128
MobileBlock 3 64 1 1 8ˆ128
MobileBlock 3 128 1 1 8ˆ128
MobileBlock 3 128 1 1 8ˆ128
BasicBlock 3 64 1 1 4ˆ64
BasicBlock 3 128 1 1 4ˆ64
BasicBlock 3 128 1 1 4ˆ64

UFM
Conv2d 3 32 1 1 16ˆ512
Conv2d 3 32 1 1 64ˆ2048
Conv2d 1 32 1 1 64ˆ2048

* Each module contains several components: Conv2d, MobileBlock, and
BasicBlock. Conv2d denotes a convolutional layer followed by one batch
normalization layer and ReLU activation. MobileBlock and BasicBlock
are illustrated in Figure 4.2. Each operation has a kernel size k, stride
s, and c output channels, repeated t times. The three sections of MIM
denote the three paths.

Table 4.1: Instantiation of the proposed MINet.
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No. MFM Interaction UFM mIoU
1 ✓ ✓ 50.9
2 ✓ ✓ 50.7
3 ✓ ✓ 50.6
4 ✓ ✓ ✓ 51.8
5 w/o depth ✓ ✓ 49.6

Table 4.2: Impact of the three modules.

4.2.1 Mini Fusion Module (MFM)

Different from an RGB image, the projection map contains channels of different modalities. Previous
projection-based segmentation methods (Wu et al., 2018b, 2019b; Milioto et al., 2019b) treat such
different modalities equally, but we show that processing each channel independently using MFM
is more efficient. Specifically, each channel of the multi-modal image is mapped to an independent
feature space using five convolution blocks, including normalization and activation. This corresponds
to the first row of Table 4.1. This step can be considered as a feature calibration step for each modality
before fusing them. It needs to be noted that we also treat the x, y, and z coordinates separately. After
the first five convolutional layers, these features are concatenated and fed into several MobileBlocks
for fusing them. Since a small resolution leads to less computation, the information of the feature
maps are gradually aggregated by average pooling.

4.2.2 Multi-scale Interaction Module (MIM)

After the fusion module, the data is processed by three paths where each path corresponds to a
different scale as shown in Figure 4.1. From top to bottom, the resolution of the feature maps is
decreased by factor two using average pooling and the receptive field is accordingly increased. For
the top path, we use the highest resolution. Since processing high resolution feature maps is very
expensive, we use only three MobileBlocks as shown in Table 4.1. The bottom path, which has
the largest receptive field and lowest resolution, can offer more abstract semantic clues if we use
more expensive operations. Hence, it uses three BasicBlocks. The middle path is a compromise
between the top and bottom path and consists of five MobileBlocks. In our experiments, we show
that increasing the computational operations as the resolution decreases leads to a higher efficiency
compared to using the same blocks for all paths. While the number of parameters doubles compared
to the proposed architecture if we use the BasicBlocks for all paths, the accuracy drops if only
MobileBlocks are used.

A second important design choice is to allow interactions among the paths. Since the computa-
tional complexity of the paths increases for lower paths, we use a dense top-to-bottom fusion design
for efficient multi-scale feature interaction. Especially, feature maps of the first and second path will
be resized by average pooling and passed to all lower paths. To avoid a mismatch of the number
of channels, the number of channels is increased gradually for each path and kept the same at each
interaction position. Hence, no other operations are used to adjust the number of channels as shown
in Table 4.1. Due to the interaction, the lower paths benefit from the features computed from higher
paths. The lower paths can therefore focus on information that has not been extracted by higher paths
due to limited computational resources.
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Figure 4.3: Illustration of the Up Fusion Module (UFM).

No.
MIM

UFM mIoU
Top Middle Bottom

1 S S E 51.8
2 S E 50.3
3 S E 50.2
4 S S 50.5
5 E 49.0
6 48.4
7 S S S E 50.9
8 S S S 50.8
9 S S E(FL) 49.4

* “S” denotes semantic supervision. “E” denotes edge su-
pervision. “(FL)” indicates that the focal loss is used for
edge supervision.

Table 4.3: Impact of additional supervision.

4.2.3 Up Fusion Module (UFM)

To obtain the semantic labels of each pixel in the projection map, UFM shown in Figure 4.3 combines
the features from different scales and upsamples them to the input resolution. In addition, features
after the first MobileBlock of the Mini Fusion Module are used to recover detailed spatial information
as shown in Figure 4.1. The lower part of Figure 4.3 shows the feature maps of the three different
paths that are first resized to the same size, concatenated together, and fused by a 1ˆ1 convolution.
The fused feature maps are then upsampled to the original resolution and processed by a convolution
block including a 3ˆ3 convolution, batch normalization, and ReLU activation. The upper part shows
the feature maps from the Mini Fusion Module that have already the original resolution. They are
processed by a MobileBlock and a convolution block. Finally, the processed features from both
modules are added together. Although the spatial information of the original feature maps already
helps to sharpen segment boundaries, which can be fuzzy due to the upsampling, adding additional
supervision for the segment boundaries emphasizes this effect as we will explain in the next section.
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λ 0 0.01 0.1 1.0
mIoU 49.0 49.3 51.8 51.4

Table 4.4: Impact of λ in Equation 4.7.

4.2.4 Booster Training Strategy

Adding supervision to intermediate parts of a network (Lee et al., 2015) has been shown to be useful
for network optimization (Zhao et al., 2017; Zhang et al., 2018; Liu et al., 2019b, 2018). In this
work, we also use intermediate supervision, however, we propose two different types of supervision.
Similar to balancing the computational resources across scales, it is very important to use the right
supervision for the right part of the network.

We use the standard weighted cross-entropy loss as semantic supervision

Ls “ ´
1

|I|

ÿ

iPI

N
ÿ

n“1

wnp
n
i logpp̂ni q, (4.3)

where N is the number of classes, |I| is the total number of image pixels, pni is the ground-truth
semantic label for pixel i and class n (pni P t0, 1u), and p̂ni is the predicted class probability. The
weight wn for class n is inversely proportional to its occurrence frequency as in Milioto et al. (2019b).

Besides, at the end of the network, we use the weighted cross-entropy loss Ls for the top and
middle path as indicated by the dashed arrows in Figure 4.1. As we will show in the experiments,
this intermediate supervision improves the training and boosts the accuracy. Adding this semantic
supervision to the bottom path, however, does not help since the resolution of the lower path is too
low, and the downsampling of the ground truth introduces too many artifacts.

As discussed in Section. 4.2.3, obtaining accurate segment boundaries after upsampling is an
issue. Inspired by Yu et al. (2018b); Kirillov et al. (2017), we extract the semantic boundaries from
the ground-truth labels and compare them to the semantic boundaries after upsampling. The semantic
edge loss is then obtained by

Le “ ´
1

|I|

ÿ

iPI

pei logpêiq ` p1 ´ eiq logp1 ´ êiqq , (4.4)

where ei is the ground-truth edge label at pixel i (ei P t0, 1u) and êi is the predicted edge probability
at pixel i.

Besides the weighted cross entropy loss, which we denote by Lfs and which is computed in the
same way as Ls, we use the Lovász-Softmax loss Lls (Berman et al., 2018a) at the end of the network,
which maximizes the intersection-over-union (IoU) score:

Lls “
1

N

N
ÿ

n“1

∆Jnpmpnqq, (4.5)

mipnq “

"

1 ´ p̂ni if pni “ 1

p̂ni otherwise,
(4.6)

where ∆Jn defines the Lovász extension of the Jaccard index, p̂ni P r0, 1s and pni P t0, 1u denote
for class n at pixel i the predicted probability and ground-truth label, respectively. In summary, the
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Top Middle Bottom Param (M) GFLOP SPS mIoU
3ˆMB 5ˆMB 3ˆBB 1.0 6.20 59 51.8
5ˆMB 5ˆMB 3ˆBB 1.1 6.43 52 50.1
7ˆMB 5ˆMB 3ˆBB 1.1 6.62 51 49.7
9ˆMB 5ˆMB 3ˆBB 1.2 7.77 48 48.9
3ˆMB 3ˆMB 3ˆBB 1.0 6.20 60 50.8
3ˆMB 7ˆMB 3ˆBB 1.0 6.29 55 49.0
3ˆMB 9ˆMB 3ˆBB 1.2 6.57 51 50.2
3ˆMB 5ˆMB 5ˆBB 1.4 6.43 54 50.3
3ˆMB 5ˆMB 7ˆBB 1.8 6.62 52 51.5
3ˆMB 5ˆMB 9ˆBB 2.4 6.92 50 49.8
3ˆMB 3ˆMB 3ˆMB 0.6 6.00 61 49.7
5ˆMB 5ˆMB 5ˆMB 0.6 6.30 58 50.2
3ˆBB 3ˆBB 3ˆBB 2.0 11.04 33 51.2

* “MB” denotes MobileBlock. “BB” denotes BasicBlock.
“SPS” represents the number of processed scans per second.

Table 4.5: Ablation study for different blocks of each path.

combined loss is given by
L “ Lfs ` Lls ` Le ` λ

ÿ

s

Ls (4.7)

where λ “ 0.1 and Ls are the loss functions for the top and middle path. The arrows in Figure 4.1
show where each type of supervision is applied.

4.3 Experiments

4.3.1 Experimental Settings

We use two challenging datasets to evaluate our method, namely SemanticKITTI (Behley et al.,
2019d, 2021b) and SemanticPOSS (Pan et al., 2020a). Based on the KITTI Odometry Bench-
mark (Geiger et al., 2012b), SemanticKITTI provides a semantic label for each point in all scans. It
includes over 43,000 scans from 21 sequences, among which sequences 00 to 10 with over 21,000
scans are available for training and the remaining scans from sequences 11 to 21 are used for test-
ing. Sequence 08 is used as the validation set, and we train our approach on the remaining training
set. We report the results on the validation set for the ablation study. For the test set, which we use
to compare to the state-of-the-art, the ground-truth is withheld and the results are evaluated by an
on-line server.

SemanticPOSS is a smaller dataset with 2988 LiDAR scans, captured at the Peking University.
The point clouds of SemanticPOSS are more sparse compared to SemanticKITTI due to the lower
resolution of the LiDAR sensor. SemanticPOSS is split into six subsets equally, among which we
use the 3rd subset for validation and the others for training. We report the results on the validation
set. Since these two datasets differ in size, LiDAR sensor, and environment, they provide an ideal
testbed for evaluating the proposed approach. As for the evaluation metric, we calculate the standard
mean intersection over union (mIoU) (Everingham et al., 2015) over all classes:

mIoU “
1

N

N
ÿ

n“1

TPn

TPn ` FPn ` FNn
(4.8)
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((a)) Input projection map ((b)) Ground Truth

((c)) SqueezeSeg ((d)) SqueezeSeg + CRF

((e)) SqueezeSegV2 ((f)) SqueeSegV2 + CRF

((g)) RangeNet53 ((h)) RangeNet53 + k-NN

((i)) MINet ((j)) MINet + k-NN

Figure 4.4: Qualitative results. For the input image, we only show the depth.

where TPn, FPn, and FNn denote the numbers of true positive, false positive, and false negative
predictions for class n, respectively. N is the number of classes.

4.3.2 Ablation Study

4.3.2.1 Modules

As illustrated in Figure 4.1, our network consists of three modules. In Table 4.2 we evaluate some
design choices for the Mini Fusion Module (MFM) (Section. 4.2.1), the Multi-scale Interaction Mod-
ule (MIM) (Section. 4.2.2), and the Up Fusion Module (UFM) (Section. 4.2.3). While the proposed
approach achieves 51.8% mIoU (Row 4), we evaluate the impact of processing each modality sep-
arately before fusing them in the features space in the first row. To keep the number of parameters
the same, we use 3ˆ3 convolutions to process the input multi-modal image instead of processing
each modality separately in MFM. In this case, the accuracy drops by 0.9% (Row 1). This shows the
benefit of processing each modality separately at the beginning. In the last row, we also report the
result when we omit the depth from the input. In this case, the accuracy drops to 2.2%. In Figure 4.1,
we have connections between the three paths. If we remove the top-to-down interactions, the accu-
racy is reduced by 1.1% (Row 2). This demonstrates the benefit of allowing interactions between the
multi-scale features. If the multi-resolution features are just resized, concatenated, and processed by
convolutional layers, instead of using UFM, the accuracy is reduced by 1.2% (Row 3).

4.3.2.2 Supervision Setting

As discussed in Section. 4.2.4, we use additional supervision for MIM and UFM. For MIM, we use
the semantic labels (S) to add the loss Equation 4.3 to the top and middle path. For UFM, we add
the loss Equation 4.4 for the segment boundaries (E). In Table 4.3, we report the mIoU for different
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Pointnet (Qi et al., 2017b) 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 2 3.0 14.6
Pointnet++ (Qi et al., 2017d) 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 0.1 6.0 20.1
SPGraph (Landrieu and Simonovsky, 2018) 68.3 0.9 4.5 0.9 0.8 1.0 6.0 0.0 49.5 1.7 24.2 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5 0.2 0.3 20.0
SPLATNet (Su et al., 2018) 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0 1 0.8 22.8
TangentConv (Tatarchenko et al., 2018) 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 0.3 0.4 35.9
P2Net (Li et al., 2020c) 85.6 20.4 14.4 14.4 11.5 16.9 24.9 5.9 87.8 47.5 67.3 7.3 77.9 43.4 72.5 36.5 60.8 22.8 38.2 12 6.0 39.8
RandLA-Net (Hu et al., 2019) 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7 16 2.1 53.9
PolarNet (Zhang et al., 2020b) 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 8 16.6 54.3
DeepLabV3+(Chen et al., 2018) 78.4 13.6 9.5 9.5 10.4 17.5 22.0 0.4 88.5 54.5 66.7 9.7 77.9 39.1 72.0 39.9 60.0 23.4 36.1 39 59.4 38.4
PSPNet(Li et al., 2018) 79.6 25.0 26.4 17.5 24.0 34.1 28.4 7.3 90.2 58.2 70.2 19.9 79.7 43.5 74.2 43.2 61.2 23.1 37.5 31 49.1 44.4
BiSeNet(Yu et al., 2018a) 76.0 13.4 11.9 18.3 7.6 16.4 26.0 0.5 87.6 49.9 64.2 6.5 74.7 34.7 69.7 36.8 58.0 19.6 32.3 50 50.9 37.1
DenseASPP(Yang et al., 2018) 78.1 20.5 18.2 20.0 16.6 27.8 28.9 5.7 88.5 53.3 67.5 9.3 76.3 39.6 70.0 36.8 57.7 15.9 32.4 20 23.4 40.2
SqueezeSeg (Wu et al., 2018b) 68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 66 1.0 29.5
SqueezeSeg + CRF (Wu et al., 2018b) 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 55 1.0 30.8
SqueezeSegV2 (Wu et al., 2019b) 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 50 1.0 39.7
SqueezeSegV2 + CRF (Wu et al., 2019b) 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0 40 1.0 39.6
RangeNet21 (Milioto et al., 2019b) 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0 20 25.0 47.4
RangeNet53 (Milioto et al., 2019b) 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2 13 50.4 49.9
RangeNet53 + k-NN (Milioto et al., 2019b) 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 12 50.4 52.2
MINet 85.2 38.2 32.1 29.3 23.1 47.6 46.8 24.5 90.5 58.8 72.1 25.9 82.2 49.5 78.8 52.5 65.4 37.7 55.5 59 1.0 52.4
MINet + k-NN 90.1 41.8 34.0 29.9 23.6 51.4 52.4 25.0 90.5 59.0 72.6 25.8 85.6 52.3 81.1 58.1 66.1 49.0 59.9 47 1.0 55.2

* The proposed MINet performs well for small objects.

Table 4.6: Evaluation results on the SemanticKITTI test set for point-based, image-based, and projection-based methods.
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(a) Input Scan (b) Ground Truth

(c) RangeNet53 + k-NN (d) MINet + k-NN

Figure 4.5: Qualitative results. RangeNet segments most points of the truck as a car, while MINet
segments the truck correctly (red circle). In some cases, both approaches fail (yellow circle). Al-
though MINet segments the object correctly, it misclassifies it.
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Figure 4.6: Visualization of Table 4.6. We omit point-based methods that need more than 140ms per
scan. The proposed MINet is not only the most accurate method, it also achieves the best trade-off
between accuracy and runtime.

settings. The best setting is achieved by adding semantic supervision to the top and middle path in
MIM and applying edge supervision to UFM (Row 1). Removing any of this additional supervision
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Figure 4.7: Accuracy of different projection-based methods based on the distance to the sensor (a)
and the impact of resolution.

person rider car trunk plants traffic sign pole building fence bike road mIoU
SqueezeSegV1(Wu et al., 2018b) 5.5 0.0 8.7 3.4 39.1 2.4 2.5 34.5 7.6 18.4 62.5 16.8

SqueezeSegV1(Wu et al., 2018b) + CRF 14.2 1.4 11.6 18.1 5.9 11.1 1.9 37.9 5.6 18.9 78.7 18.7
SqueezeSegV2(Wu et al., 2019b) 18.4 11.2 34.9 15.8 56.3 11.0 4.5 47.0 25.5 32.4 71.3 29.8

SqueezeSegV2(Wu et al., 2019b) + CRF 23.9 22.6 29.7 15.3 37.3 11.1 5.3 45.9 18.2 34.7 73.4 28.9
RangeNet53(Milioto et al., 2019b) 10.0 6.2 33.4 7.3 54.2 5.5 2.6 49.9 18.4 28.6 63.5 25.4

RangeNet53 + k-NN 14.2 8.2 35.4 9.2 58.1 6.8 2.8 55.5 28.8 32.2 66.3 28.9
MINet 13.3 11.3 34.0 18.8 62.9 11.8 4.1 55.5 20.4 34.7 69.2 30.5

MINet + k-NN 20.1 15.1 36.0 23.4 67.4 15.5 5.1 61.6 28.2 40.2 72.9 35.1

Table 4.7: Evaluation results on the SemanticPOSS dataset.

leads to an accuracy loss by more than 1.3% (Row 2-4). If the additional supervision is only used for
UFM, the accuracy even decreases further (Row 5). If we do not use any additional supervision, the
accuracy is lowest and 3.4% below the proposed setting (Row 6). While we removed so far additional
supervision, the last two rows in the table show results when we add or change the type of supervision.
If we add additional supervision to the bottom path, the accuracy decreases by 0.9%. This is due to
the large difference between the ground-truth resolution and the resolution of the bottom path, which
results in sampling artifacts that have a negative impact. Instead of using the edge loss Equation 4.4
for UFM, we also replaced it by the semantic loss that is used for MIM. While adding the semantic
loss (Row 8) is better than using no additional loss for UFM (Row 4), the edge loss (Row 1) achieves
a 1% higher accuracy than the semantic loss. This is expected since the purpose of the edge loss is
to improve the segment boundaries after the upscaling, which is done by the Up Fusion Module. We
also investigated what happens if the focal loss (Lin et al., 2017) is used for the edge loss instead of
Equation 4.4 (Row 9). In this case, the accuracy decreases.

4.3.2.3 Impact of λ

Our loss function Equation 4.7 contains only one hyper-parameter, namely λ. We evaluate the impact
of λ in Table 4.4. The setting λ “ 0 corresponds to row 5 of Table 4.3 where no additional supervision
is added to the paths. Setting λ between 0.1 and 1.0 performs well.
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Methods Resolutions GFLOPs SPS mIoU

RangeNet53 (Milioto et al., 2019b)
64 ˆ 2048 360.5 7 49.9
64 ˆ 1024 180.3 11 45.4
64 ˆ 512 90.1 22 39.3

RangeNet53 + k-NN (Milioto et al., 2019b)
64 ˆ 2048 360.5 5 52.2
64 ˆ 1024 180.3 8 48.0
64 ˆ 512 90.1 13 41.9

MINet
64 ˆ 2048 6.2 24 52.4
64 ˆ 1024 3.2 47 49.1
64 ˆ 512 1.7 80 45.0

MINet + k-NN
64 ˆ 2048 6.2 13 55.2
64 ˆ 1024 3.2 18 52.4
64 ˆ 512 1.7 21 48.5

* The number of GFLOPs does not include the post-processing.

Table 4.8: Performance on an embedded platform (Jetson AGX).
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Figure 4.8: Visualization of Table 4.8. For each method, the three points on its curve correspond to
the three different input resolutions 64ˆ512, 64ˆ1024, and 64ˆ2048 from left to right. MINet runs
at a real-time speed on a Jetson AGX with full resolution and post-processing.

4.3.2.4 Path Settings

As shown in Table 4.1, we balance the computational resources across the three paths where we
increase the complexity as the resolution decreases. In rows 1-10 of Table 4.5, we report the results
when we vary the number of blocks for the top, middle, and bottom path. The results show that
increasing the parameters only for one path does not result in an improvement. For instance, using 9
instead of 3 MobileBlocks for the top path (Row 4) decreases the accuracy by 2.9%. This shows that a
good computational balance between the paths is required. In rows 11-13, we report the results when
we use the same operations for all paths, i.e.either 3 or 5 MobileBlocks or 3 BasicBlocks. Using only
MobileBlocks reduces the number of parameters, but it improves the runtime only slightly and this is
only the case for 3 MobileBlocks. This, however, comes at a substantially lower accuracy. In terms of
runtime and accuracy, the proposed setting provides a much better trade-off. If the computationally
expensive BasicBlocks are used for all paths, the number of parameters and runtime nearly doubles
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while the accuracy is nearly the same. This shows that using the same operations for all resolutions
is highly inefficient and that the proposed approach achieves a good balance between efficiency and
effectiveness.

4.3.3 Comparison with other Methods

We first compare the proposed approach (MINet) with other methods on the SemanticKITTI test set
in terms of both accuracy and efficiency. For a fair comparison, all methods including image-based
methods are trained from scratch. The results are shown in Table 4.6. In the first rows, we show
the results for point-based methods. Most of the approaches are very slow and cannot process more
than 2 scans per second since spatial aggregation operations are usually very time-consuming for
large point clouds. The very recent works (Li et al., 2020c; Hu et al., 2019; Zhang et al., 2020b) are
faster and process up to 16 scans per second, but it is difficult to deploy these networks on embedded
systems due to their complex operations. The highest accuracy is achieved by Zhang et al. (2020b),
but the network is very large with over 16M parameters. Our proposed approach outperforms all
point-based methods in terms of runtime, number of parameters, and accuracy.

As for image-based methods, we use four widely used methods, namely PSPNet (Zhao et al.,
2017), DeepLabV3+ (Chen et al., 2018), DenseASPP (Yang et al., 2018), and the lightweight model
BiseNet (Yu et al., 2018a). We adjust the input channels so that these methods can be applied to the
projection map. While these methods are faster than point-based methods, they have by far more
parameters and the accuracy is significantly lower. This shows that projected LiDAR data cannot
be directly processed by image-based segmentation methods since the modality differs from RGB
images.

We also compare our approach to other projection-based methods. While SqueezeSeg (Wu et al.,
2018b, 2019b) has the same amount of parameters and depending on the setting runs slightly faster,
the accuracy is very low. The state-of-the-art projection-based method RangeNet (Milioto et al.,
2019b) outperforms SqueezeSeg in terms of accuracy, but this is achieved by increasing the num-
ber of parameters to over 50M and decreasing the runtime. Our approach is much more efficient.
It uses only 2% of the number of parameters compared to RangeNet53 and it is about 4ˆ faster
while achieving a higher accuracy. Figure 4.6 visualizes the accuracy and runtime of the methods of
Table 4.6 and shows the effectiveness and efficiency of the proposed approach.

We also evaluate our method on SemanticPOSS (Pan et al., 2020a) and compare our approach to
other methods in Table 4.7. Since the dataset is smaller and the point clouds are more sparse com-
pared to SemanticKitti, the mIoU is lower for all methods. However, our approach still outperforms
other methods with a large margin. This proves the effectiveness of our method.

We also show the performance variance according to the distance to the sensor in Figure 4.7.
Some qualitative results are shown in Figure 4.4 and Figure 4.5.

4.3.4 Performance on an Embedded Platform

We finally compare our method with RangeNet on an embedded platform. Here, we use a Jetson
AGX that is an AI module for embedded systems, as it is usually used for autonomous driving.
We optimize our method and RangeNet using TensorRT. The results are summarized in Table 4.8
and visualized in Figure 4.8. Since the input resolution can be decreased to reduce the runtime,
we report the results for three different input resolutions. We can see that at each resolution, the
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proposed MINet outperforms RangeNet53 (Milioto et al., 2019b) with or without post-processing.
Furthermore, MINet is also much faster than RangeNet53. Specifically, MINet is about 4ˆ faster
than RangeNet53 without post-processing and 2ˆ faster with post-processing. Such high efficiency
makes MINet quite suitable for robotics applications. Even with full resolution and post-processing,
MINet runs at real-time since the LiDAR scan frequency is 10Hz. Compared to Table 4.6 where
the runtime is measured on a workstation with a single Quadro P6000, the post-processing has a
higher impact on the runtime for the embedded platform since the post-processing is not optimized
by TensorRT. Moreover, the post-processing is applied to the point cloud, so it cannot benefit from
reducing the resolution of the projection map.

4.4 Summary

In this work, we proposed a novel lightweight projection-based method, called Multi-scale Interac-
tion Network (MINet), for semantic segmentation of LiDAR data. The network is highly efficient
and runs in real-time on GPUs and embedded platforms. It outperforms point-based, image-based,
and projection-based methods in terms of accuracy, number of parameters, and runtime. This is
achieved by using a multi-scale approach where the computational resources are balanced between
the scales and by introducing interactions between the scales. By processing the modalities separately
before fusing them and adding additional different types of supervision, we could further improve the
accuracy without decreasing the runtime. Compared to the state-of-the-art projection-based method
RangeNet, MINet reduces the number of parameters by 98% and is 4ˆ faster while achieving a higher
accuracy. Since MINet processes more than 24 scans per second on an embedded platform, it can be
used for autonomous vehicles and robots. Our method also achieves good performance on other tasks,
like moving object segmentation (Chen et al., 2021b). Projection-based methods, however, have
some limitations. For instance, it is not straightforward to integrate temporal information from multi-
ple views. Finally, we expect that the design principles of the network are also valuable for other tasks
like 3D car detection. The source code is available at https://github.com/sj-li/MINet.

https://github.com/sj-li/MINet
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Moving Object Segmentation in 3D
LiDAR Data: A Learning-based

Approach Exploiting Sequential Data

Individual Contribution

The following chapter is based on the publication:

Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting
Sequential Data
Xieyuanli Chen, Shijie Li, Benedikt Mersch, Louis Wiesmann, Juergen Gall, Jens Behley, Cyrill
Stachniss
IEEE Robotics and Automation Letters (RA-L), 2021.
doi:10.1109/LRA.2021.3093567

Below we will summarize the contributions of each author.

• Xieyuanli Chen
Xieyuanli proposed the main idea of the paper and implemented the whole method. Xieyuanli
performed the experiments of localization and mapping with the proposed method and con-
ducted qualitative and quantitative analysis. Xieyuanli also wrote most of the paper.

• Shijie Li
Shijie participated in the discussion and contributed to the main idea. Shijie conducted the
training of the proposed method on the SemanticKITTI dataset. Shijie also contributes to the
writing.

• Benedikt Mersch, Louis Wiesmann
Both contributed to writing.

• Juergen Gall, Jens Behley
Both contributed to discussions and writing.

• Cyrill Stachniss
Cyrill supervised the project. He contributed with discussion and writing.

In the previous chapter, we have proposed a highly efficient projection-based architecture for Li-
DAR point cloud semantic segmentation. Apart from semantic information, moving information is
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also very important in autonomous driving perception modules which is usually ignored in previous
research. The ability to detect and segment moving objects in a scene is essential for building con-
sistent maps, making future state predictions, avoiding collisions, and planning. In this task, instead
of assigning each point a semantic label, we want to distinguish the moving status of each point.

In this chapter, we address the problem of moving object segmentation from 3D LiDAR scans.
We propose a novel approach that pushes the current state of the art in LiDAR-only moving object
segmentation forward to provide relevant information for autonomous robots and other vehicles.
Instead of segmenting the point cloud semantically, i.e., predicting the semantic classes such as
vehicles, pedestrians, buildings, roads, etc., our approach accurately segments the scene into moving
and static objects, i.e., distinguishing between moving cars vs. parked cars. Our proposed approach
exploits sequential range images from a rotating 3D LiDAR sensor as an intermediate representation
combined with a convolutional neural network and runs faster than the frame rate of the sensor.
We compare our approach to several other state-of-the-art methods showing superior segmentation
quality in urban environments. Additionally, we created a new benchmark for LiDAR-based moving
object segmentation based on SemanticKITTI.
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5.1 Introduction

The ability to identify which parts of the environment are static and which ones are moving is key
to safe and reliable autonomous navigation. It supports the task of predicting the future state of the
surroundings, collision avoidance, and planning. This knowledge can also improve and robustify
pose estimation, sensor data registration, and simultaneous localization and mapping (SLAM). Thus,
accurate and reliable moving object segmentation (MOS) in sensor data at frame rate is a crucial
capability supporting most autonomous mobile systems. Depending on the application domain and
chosen sensor setup, moving object segmentation can be a challenging task.

In this work, we address the problem of moving object segmentation in 3D LiDAR data at sen-
sor frame rate in urban environments. Instead of detecting all theoretically movable objects such
as vehicles or humans, we aim at separating the actually moving objects such as driving cars from
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Raw Point Cloud Segmented Point Cloud

Range Images

Our Predictions

Ground Truth Labels

Figure 5.1: Moving object segmentation using our approach. Our method can detect and segment the
currently moving objects given sequential point cloud data exploiting its range projection. Instead
of detecting all potentially movable objects such as vehicles or humans, our approach distinguishes
between actually moving objects (labeled in red) and static or non-moving objects (black) in the
upper row. At the bottom, we show the range image and our predictions in comparison to the ground
truth labels.

static or non-moving objects such as buildings, parked cars, etc. See Figure 5.1 for an example
scene and our segmentation. Moving objects are colored in red. We propose a novel approach based
on convolutional neural networks (CNNs) to explicitly address the MOS problem for 3D LiDAR
scans. We exploit range images as an intermediate representation, which is a natural representa-
tion of the scan from a rotating 3D LiDAR such as a Velodyne or Ouster sensors. Based on this
comparably light-weight representation, we can directly exploit the existing range-image-based se-
mantic segmentation networks as proposed by Milioto et al. (Milioto et al., 2019b), Cortinhal et
al. (Cortinhal et al., 2020a), and Li et al. (Li et al., 2020b) to tackle the MOS problem. Most of such
existing LiDAR-based semantic segmentation networks predict the semantic labels of a point cloud,
e.g.vehicle, building, road, etc. They do not distinguish between actually moving objects, like mov-
ing cars, and static objects, like parked cars and also buildings, etc. We are making this distinction
and are exploiting sequences of range images, allowing for an effective moving object segmentation
targeted to autonomous vehicles. Our main application focus is the perception of self-driving cars in
outdoor scenes, but the method itself is not restricted to this domain.

This chapter’s main contribution is a novel method based on CNNs using range images generated
from 3D LiDAR scans together with the residual images generated from past scans as inputs and
outputs for each range measurement in the current frame a label indicating if it belongs to a moving
object or not. By combining range images and residual images our network exploits the temporal
information and can differentiate between moving and static objects as shown in Figure 5.1. For
training, we reorganize the SemanticKITTI (Behley et al., 2019a) dataset and merge the original
labels into two classes, moving and static, by exploiting the existing annotations of moving traffic
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Figure 5.2: Overview of our method. We use the range projection-based representation of LiDAR
scans to achieve online moving object segmentation. Given the current scan S0, we generate residual
images from previous scans tSiu

N
i“1 to explore the sequential information. This is by transforming

them to the current viewpoint with a homogeneous transformation matrix T
¯
0
i estimated from a SLAM

or sensor-based odometry, projecting them to the range representation with a mapping Π and sub-
tracting them from the current scan’s range image. The residual images are then concatenated with
the current range image and used as input to a fully convolutional neural network. Trained with the
binary labels, the proposed method can separate moving and static objects.

participants. Furthermore, our approach runs faster than the sensor frame rate, i.e., 10 Hz for a typical
rotating 3D LiDAR sensor. Comparisons with multiple existing methods suggest that the proposed
approach leads to more accurate moving object segmentation. In sum, we make two key claims:
First, our approach is able to achieve moving object segmentation using only 3D LiDAR scans and
runs faster than the sensor frame rate of 10 Hz. Second, it improves the moving object segmentation
performance by incorporating residual images in addition to the current scan and outperforms several
state-of-the-art networks. To allow for as easy as possible comparisons and support future research,
we propose and release a moving object segmentation benchmark, including a hidden test set, based
on the SemanticKITTI dataset and will release the source code of our approach.

5.2 Our Approach

The goal of our approach is to achieve accurate and fast moving object segmentation (MOS) for
LiDAR scans to enable autonomous mobile systems to make decisions in a timely manner. Figure
5.2 shows a conceptual overview of our proposed method. To achieve online MOS, we first project
the point clouds into a range image representation by spherical projection. To separate moving and
non-moving objects, we then exploit sequential information (see Section 5.2.1) computing residuals
between the current and the previous scans (see Section 5.2.2). We finally concatenate them together
with the range information as the input for a segmentation CNN (see Section 5.2.3). In addition, we
propose a novel MOS benchmark based on SemanticKITTI (see Section 5.2.4) to train and evaluate
MOS methods.
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5.2.1 Sequence Information

We aim at segmenting moving objects online, i.e., only using the current and recent LiDAR scans,
such that one can exploit the information for odometry estimation in a SLAM pipeline and potentially
remove dynamics from a map representation. We assume that we are given a time series of N LiDAR
scans in the SLAM history, denoted by Sj “ tpi P R4u with M points represented as homogeneous
coordinates, i.e., pi “ px, y, z, 1q. We denote the current LiDAR scan by S0 and the sequence of N
previously scans by Sj with 1 ă j ă N . The estimated N consecutive relative transformations from
the SLAM / odometry approach, TN´1

N , . . . ,T 0
1 , between the N ` 1 scanning poses, represented as

transformation matrices, i.e., T l
k P R4ˆ4, are also assumed to be available. Given the estimated

relative poses between consecutive scans, we can transform points from one viewpoint to another.
We denote the kth scan transformed into the lth scan’s coordinate frame by

SkÑl “ tT l
kpi|pi P Sku, (5.1)

with T l
k “

śl`1
j“k T

j´1
j .

5.2.2 Residual Images

Inspired by Wang et al. (2018), who exploit the difference between RGB video frames for action
recognition, we propose to use LiDAR-based residual images together with pixel-wise binary labels
on the range image to segment moving objects. Combining the current sensor reading and residual
images, we can employ existing segmentation networks to distinguish between pixels on moving
objects and backgrounds by leveraging the temporal information inside the residual images.

To generate the residual images and later fuse them into the current range image, transforma-
tion, and re-projection are required. To realize this, we propose a three-step procedure: First, we
compensate for the ego-motion by transforming the previous scans into the current local coordinate
system given the transformation estimates as defined in Equation 5.1. Next, the transformed past
scans SkÑl are re-projected into the current range image view by spherical projection. We compute
the residual dlk,i for each pixel i by computing the normalized absolute difference between the ranges
of the current frame and the transformed frame by

dlk,i “
abs ri ´ rkÑl

i

ri
, (5.2)

where ri is the range value of pi from the current frame located at image coordinates pui, viq and
rkÑl
i is the corresponding range value from the transformed scan located at the same image pixel.

We only calculate the residual for the valid pixels that contain measurements and set the residual to
zero for the invalid pixels. Examples of such residual images are depicted in Figure 5.3. We can see
that due to the motion of objects in the scene, e.g.the moving car, the displacement between these
points in the common viewpoint is relatively large compared to the static background. However,
there are ambiguities, since the large residual patterns appear twice for one moving object, while for
the slowly moving objects the residual patterns are not obvious. Therefore, directly using residual
images for moving object segmentation does not lead to a great performance. It, however, provides
a valuable cue for moving objects and can guide the network to separate moving and non-moving
objects.
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Figure 5.3: Residual images, where j means the residual image generated between the current frame
and the last j-th frame. We can see the continuous discrepancy in the residual images due to the
motion of the moving car.

In the end, the residual images are concatenated with the current range image as extra channels
where range image provides spatial information and residual image encodes temporal information.
Each pixel pui, viq in the fused range image then contains a vector of different types of information
pxi, yi, zi, ri, ei, d

0
1,i, ..., d

0
j,i, ..., d

0
N´1,iq, where d0j is the residual image calculated between the last

jth frame and the current frame.

5.2.3 Range Projection-based Segmentation CNNs

We do not design a new network architecture but reuse networks that have been successfully applied
to LiDAR-based semantic segmentation in the past. We adopt and evaluate three popular networks,
namely SalsaNext (Cortinhal et al., 2020a), RangeNet++ (Milioto et al., 2019a), and MINet (Li et al.,
2020b), for MOS. SalsaNext and RangeNet++ are encoder-decoder architectures with a solid perfor-
mance and MINet uses a light-weight and efficient multi-path architecture. After the segmentation, a
fast GPU-based k-Nearest-Neighbor search over the point cloud is used to remove artifacts produced
by the range projection (Milioto et al., 2019a). All methods are state-of-the-art range projection-
based LiDAR semantic segmentation networks, comparably light-weight, and can achieve real-time
operation, i.e., run faster than the frame rate of the employed LiDAR sensor, which is 10Hz for com-
mon Ouster and Velodyne scanners. For more detailed information about each network, we refer to
the original papers (Milioto et al., 2019a; Cortinhal et al., 2020a; Li et al., 2020b).

Instead of changing the architecture of these segmentation networks, we directly feed them with
the fused range images plus the residual information, retrain the network and evaluate their perfor-
mance with our MOS benchmark proposed in Section 5.2.4. Using our proposed residual image
approach, all segmentation networks show a large improvement in moving object segmentation as
shown in Section 5.3.1. For training, we use the same loss functions as used in the original segmen-
tation methods, while mapping all classes into two per-point classes, moving and non-moving.
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5.2.4 Moving Object Segmentation Benchmark

Large datasets for LiDAR-based odometry, object detection, and tracking, like the KITTI Vision
Benchmark (Geiger et al., 2012a), and semantic segmentation, panoptic segmentation, and scene
completion like SemanticKITTI (Behley et al., 2019a) are available and widely used. There are,
however, not many datasets and benchmarks available for 3D LiDAR-based moving object segmen-
tation. With this work, we also aim at covering this gap with a novel benchmark task for MOS.

Our proposed MOS benchmark is based on SemanticKITTI. It uses the same split for training and
test set as used in the original odometry dataset, where sequences 00 to 10 are used for training and
sequences 11 to 21 are used as a test set. SemanticKITTI contains in total 28 semantic classes such
as vehicles, pedestrians, buildings, roads, etc. and distinguishes between moving and non-moving
vehicles and humans. In the proposed MOS benchmark, we manually reorganize all the classes into
only two types: moving and non-moving/static objects. The actually moving vehicles and humans
belong to moving objects and all other classes belong to the non-moving/static objects.

For quantifying the MOS performance, we use the commonly applied Jaccard Index or
intersection-over-union (IoU) metric (Everingham et al., 2010) over moving objects, which is given
by

IoU “
TP

TP ` FP ` FN
, (5.3)

where TP, FP, and FN correspond to the number of true positive, false positive, and false negative
predictions for the moving class.

5.3 Experimental Evaluation

This chapter focuses on moving object segmentation from 3D LiDAR scan sequences. We present our
experiments to show the capabilities of our method and to support our key claims, that our approach:
(i) achieve moving object segmentation using only 3D LiDAR scans and runs faster than the sensor
frame rate of 10 Hz and (ii) improves the moving object segmentation performance by using residual
images, and outperforms several state-of-the-art networks.

We evaluate all the methods on our proposed MOS benchmark, now available online 1. We use
the odometry information provided by SemanticKITTI, which are estimated with a LiDAR-based
SLAM system, SuMa (Behley and Stachniss, 2018). Aiming at an easy-to-integrate algorithm, we
stick to the original setup while only changing the input and the output of the classification head into
the proposed binary labels. We train each network using their specific training hyperparameters over
150 epochs on sequences 00-07 and 09-10 and keep sequence 08 as the validation set. For more
details on the training regime for each network, we refer to the original papers (Milioto et al., 2019a;
Cortinhal et al., 2020a; Li et al., 2020b).

5.3.1 Ablation Study on Input and Architecture

The first ablation study presented in this section is designed to support our claim that our approach
is able to achieve moving object segmentation using only 3D LiDAR scans. All the experiments in
this section are evaluated on the validation set, i.e., sequence 08.

1See http://bit.ly/mos-benchmark for more information.
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Input RangeNet++ MINet SalsaNext

One frame 38.9 9.1 51.9
Two frames 40.6 35.0 56.0
Residual frames (N=1) 40.9 38.9 59.9

Table 5.1: Evaluating our method with three different networks

We test three different setups with three different networks, RangeNet++, SalsaNext, and MINet,
for moving object segmentation as shown in Table 5.1. The first setup is to train the three range
projection-based networks directly with the labels for moving and non-moving classes. The second
setup is to attach the previous frames to the current frame as the input of the network resulting in 2ˆ5

input channels, as each image contains the coordinates px, y, zq, the range r, and the remission e for
each pixel. The third setup is to concatenate the proposed residual images to the current frame as the
input of the network and therefore the input size is 5`N , as detailed in Section 5.2.2.

As can be seen in Table 5.1, RangeNet++ and SalsaNext show a basic performance while MINet
fails when training the network together with the binary labels and no additional inputs. Overall, the
performance has space for improvement. This is probably due to the fact, that from one frame, the
semantic segmentation networks cannot distinguish well between the moving and static objects from
the same general class, but may learn some heuristics, e.g.that cars on the road are usually moving
while those on parking lots are static, which can also be seen in the qualitative results Figure 5.5.
A reason why MINet fails may be due to the lightweight architecture that is not capable of learning
such heuristics.

In the second setup, we directly combine two frames. Here, the networks can already gain some
improvements in MOS, since they can obtain the temporal information from two scans. In this setting,
MINet is also capable of predicting moving objects. In the third setup, the best MOS performance
is achieved. We hypothesize that it is advantageous to give direct access to the residual information
instead of the full range views. Given that most of the points are redundant in two successive frames
and the input is large due to the concatenation, the networks need less time to extract the temporal
information if the residuals are provided directly. While a large enough network should be able to
learn concepts as the difference between frames given enough time, it is generally advantageous to
directly provide this information as also shown by Milioto et al. (2019a).

As shown in Figure 5.4, we provide two further ablation studies using SalsaNext as the segmenta-
tion network. The left figure shows an ablation study on the number of residual images used for MOS
Both ablation studies use SalsaNext as the segmentation network. We can see that N “ 1 residual
image attains the biggest improvement in terms of MOS performance while adding more residual
images improves the MOS performance further with diminishing returns for N ą 8 residual images.
The figure on the right shows an ablation study on the MOS performance vslet@tokeneonedotthe
amount of noise added to the relative odometry poses used to generate the residual images. We man-
ually add noise to the poses estimated by SLAM in px, y, yawq with a unit of p0.1m, 0.1m, 1˝q to
see how the pose estimations influence our method during inferring. As can be seen, the MOS per-
formance will drop due to the noisy poses. However, when the added noises are larger than 20 units,
p2m, 2m, 20˝q, the network may ignore the noisy residual images and the MOS performance will
not become worse.
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Figure 5.4: Ablation studies. The left figure shows the ablation study on the MOS performance
vslet@tokeneonedotthe number of residual images N . The right figure shows the ablation study on
the MOS performance vslet@tokeneonedotthe number of added noise units to the poses during the
inferring.

5.3.2 MOS Performance and Comparisons

The experiment presented in this section investigates the MOS performance of our approach. It
supports the claim that our approach improves the MOS performance by using residual images and
outperforms several state-of-the-art networks. Since there are not many existing implementations
for LiDAR-based MOS available, we choose several methods that have been used in similar tasks,
e.g., semantic segmentation and scene flow, and modify them to achieve LiDAR-based MOS. All the
methods are evaluated on the test data of the proposed benchmark, i.e., sequences 11-21.

We analyze multiple alternative approaches. We start using an existing semantic segmenta-
tion network, e.g.SalsaNext (Cortinhal et al., 2020a), directly and label all the movable objects,
e.g.vehicles and humans, as moving objects while labeling other objects as static. We name this
method as SalsaNext (movable classes). Here, we also show the results generated by the retrained
SalsaNext with the proposed binary labels, named SalsaNext (retrained). Since the residual images
can already point out rough positions of moving objects, here we also take it as a simple heuristic-
based baseline, named Residual. Inspired by Yoon et al. (Yoon et al., 2019), we also re-implement the
pure geometric heuristic-based method using residual information together with free space checking
and region growing, named as Residual+RG.

We furthermore compare our method to the state-of-the-art scene flow method, FlowNet3D (Liu
et al., 2019a), referred to as SceneFlow, which is a network estimating the translational flow vector
for every LiDAR point given two consecutive scans as input. We set a threshold on the estimated
translation of each point to decide the label for each point, i.e., points with translations larger than
the threshold are labeled as moving. We fix the threshold based on the best MOS performance
on the validation set. We also compare our method to the state-of-the-art multiple point cloud-
based semantic segmentation methods (Thomas et al., 2019a; Shi et al., 2020a), since they can also
distinguish between moving and non-moving classes.

For the non-semantic-based methods, we additionally add semantic information by checking if
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IoU

SalsaNext (moveable classes) 4.4
SalsaNext (retrained) 46.6

Residual 1.9
Residual + RG 14.1
Residual + RG + Semantics 20.6

SceneFlow 4.8
SceneFlow + Semantics 28.7

SqSequence 43.2
KPConv 60.9

Ours (based on SalsaNext/N = 1) 52.0
Ours (based on SalsaNext/N = 8 +
Semantics)

62.5

Table 5.2: MOS performance compared to the state of the art.

the predicted moving objects are movable or not, and only label a point as moving if it is both
predicted as moving by the original method and at the same time assigned to a movable object,
e.g.vehicles and humans. The semantic information is generated using SalsaNext with the pre-trained
weights provided by the original paper. We identify the semantic-enhanced methods by adding +Se-
mantics.

We compare two setups of our method to all the above-mentioned methods. For our methods, we
choose SalsaNext as the base network as it shows the best performance in our ablation study. In the
first setup, we use only one residual image, N “ 1, to obtain the temporal information, and in the
other setup, we use our best setup fixed on the validation sequence with N “ 8 residual images and
semantic information to see the best performance of our method.

As shown in Table 5.2, our residual image-based method with N “ 1 already outperforms most
baselines, while being worse than KPConv, which is a dense multiple point clouds-based semantic
segmentation method. Due to the heavy computation burden, it cannot achieve real-time perfor-
mance. When our method uses multiple residual images (N “ 8) together with semantic informa-
tion, our method outperforms all other methods.

Figure 5.5 and Figure 5.6 show the qualitative results on range images and LiDAR scans respec-
tively in a very challenging situation, where the car is at the intersection and there are both a lot of
moving objects and static objects. Our method can distinguish moving and static points even when
some of the moving objects are moving slowly and other methods fail to detect this.

5.3.3 Applications

Two obvious applications of our proposed method are LiDAR-based odometry/SLAM as well as 3D
mapping. Here, we show the effectiveness of our method by using the MOS predictions as masks
for the input LiDAR scans, which removes effectively all points belonging to moving objects. No
further tweaks have been employed. We use our best setup for the MOS, i.e., our approach extending
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Figure 5.5: Qualitative results with range projections, where red pixels correspond to moving ob-
jects.

Split
Approach

SuMa SuMa++ SuMa+MOS

Train (Seq. 00-10) 0.36/0.83 0.29/0.70 0.29/0.66
Test (Seq. 11-21) 0.34/1.39 0.34/1.06 0.33/0.99

Table 5.3: KITTI Odometry Benchmark Results. Relative errors averaged over trajectories of 100 to
800m length: relative rotational error in degrees per 100m / relative translational error in %.

SalsaNext with N “ 8 residual images and semantics.

5.3.3.1 Odometry/SLAM

For the LiDAR-based odometry experiments, we use an off-the-shelf SLAM approach (Behley and
Stachniss, 2018) and apply our MOS method before feeding the point cloud into the SLAM pipeline.
We compare the improved odometry results to both the original approach, called SuMa, and our
semantic-enhanced approach, SuMa++ (Chen et al., 2019a). We evaluate these odometry methods,
SuMa, SuMa++, and SuMa+MOS on the KITTI odometry benchmark (Geiger et al., 2012a).

The quantitative results are shown in Table 5.3. We can see that, by simply applying our MOS
predictions as a pre-processing mask, the odometry results are improved in both the KITTI training
and test data and even slightly better than the well-designed semantic-enhanced SuMa.

5.3.3.2 3D Mapping

As shown in Figure 5.7, we compare the aggregated point cloud maps (a) directly with the raw LiDAR
scans, (b) with the cleaned LiDAR scans by applying our MOS predictions as masks. We use the
Open3D library (Zhou et al., 2018) to visualize the mapping results. As can be seen, there are moving
objects present that pollute the map, which might have adversarial effects, when used for localization
or path planning. By using our MOS predictions as masks, we can effectively remove these artifacts
and get a clean map. Note that, here we show two direct use cases of our MOS approach without any
further optimizations employed.
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(a) Raw point cloud (b) Ground truth labels

(c) SalsaNext (retrained) (d) SalsaNext+ N = 8 + Semantics (Ours)

Figure 5.6: Qualitative results shown as point clouds. (a) shows the raw point cloud with points
colored depending on the range from purple (near) to yellow (far). (b) shows the ground truth, and
(c,d) prediction results, where red points correspond to the class moving.

5.3.4 Runtime

The runtime is evaluated on sequence 08 with an Intel i7-8700 with 3.2 GHz and a single Nvidia
Quadro P6000 graphic card. It takes around 10 ms on average to estimate the odometry and generate
the residual image. Since we only change the input of each network while keeping the architecture
the same, the inference time is nearly the same as before, specifically 75 ms for RangeNet++, 42 ms
for SalsaNext, and 21 ms for MINet. In case of using semantics for the MOS, we can run a second
full semantics network in parallel.

As the odometry history for the SLAM is available, we need to estimate the pose and generate
the residual images only once for every incoming frame. In sum, using our method for LiDAR-based
odometry takes approx. 51 ms per scan (=20 Hz) using SalsaNext, which is faster than the frame rate
of a typical LiDAR sensor, i.e., 10 Hz.

5.4 Summary

In this chapter, we presented a novel and effective approach to achieve LiDAR-based moving object
segmentation in an end-to-end online fashion. Our method exploits neural networks and sequen-
tial information, which allows our approach to successfully distinguish between moving and static
objects. Our method is based on range projections and thus fast and can directly improve existing
SLAM and mapping systems. The experiments suggest that our method achieves good performance
on MOS and outperformed several state-of-the-art approaches. We also propose a new benchmark
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(a) Raw point clouds (b) Point clouds with moving segments removed

Figure 5.7: Mapping Results on Sequence 08, Frame 3960-4070, where we show the accumulated
point cloud (a) without removing segments and (b) when we remove the segments predicted as mov-
ing.

for LiDAR-based MOS and used it to evaluate our approach, also allowing further comparisons with
future MOS systems.





CHAPTER 6
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Individual Contribution

The following chapter is based on the publication:

Rethinking 3D LiDAR Point Cloud Segmentation
ShiJie Li, Yun Liu, Juergen Gall
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021.
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Below we will summarize the contributions of each author.

• Shijie Li
Shijie proposed the main idea of the paper and implemented the whole method. Shijie per-
formed the experiments and conducted the qualitative and quantitative analysis. Shijie also
wrote most of the paper.

• Yun Liu
Yun contributed with writing.

• Juergen Gall
Juergen supervised the project. He contributed with discussion and writing.

In the previous chapters, we have proposed a very efficient projection-based architecture for both
LiDAR point cloud semantic segmentation and moving object segmentation. Apart from projection-
based methods, point-based methods, which directly operate on the raw point clouds, are also widely
used in 3D scene understanding. However, most of them have been designed for indoor scenarios,
but they struggle if they are applied to point clouds that are captured by a LiDAR sensor in an outdoor
environment.

In this chapter, itomake these methods more efficient and robust such that they can handle Li-
DAR data, we introduce the general concept of reformulating 3D point-based operations such that
they can operate in the projection space. While we show using three point-based methods that the
reformulated versions are between 300 and 400 times faster and achieve a higher accuracy, we fur-
thermore demonstrate that the concept of reformulating 3D point-based operations allows to design
of new architectures that unify the benefits of point-based and image-based methods. As an example,
we introduce a network that integrates reformulated 3D point-based operations into a 2D encoder-
decoder architecture that fuses the information from different 2D scales. We evaluate the approach
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on four challenging datasets for semantic LiDAR point cloud segmentation and show that leveraging
reformulated 3D point-based operations with 2D image-based operations achieves very good results
for all four datasets.
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6.1 Introduction

In this work, we address these issues and demonstrate that point-based methods can be reformulated
such that they are suitable for LiDAR data. The core idea is that we make use of a projection of the
LiDAR point cloud as shown in the bottom row of Figure 6.1. In contrast to methods (Wu et al.,
2018b, 2019b; Milioto et al., 2019b) that apply 2D convolutions, we preserve the architectures and
the operations of point-based methods. Point-based methods comprise several steps that are repeated
within the network architecture. These steps include the sampling of 3D points of the point cloud,
grouping neighboring points for each sampled point, and computing a feature based on the grouped
points. In this work, we show how these operations can be performed in the projection space and how
these operations can be efficiently implemented. Although the operations are the same, the projection
leads to significant differences. For instance, the sampled points are differently distributed as shown
in Figure 6.3. The sampled points of the projected-point version are actually better distributed than
the sampled points of the point-based methods that oversample the sparse distant points in a LiDAR
point cloud.

We demonstrate the general concept of reformulating point-based methods by means of the three
point-based methods PointNet++ (Qi et al., 2017d), SpiderCNN (Xu et al., 2018), and PointConv (Wu
et al., 2019c) and show that the reformulated versions are between 300 and 400 times faster and in-
crease the mIoU by 58% - 68%. While the reformulated versions preserve the operations of the
original point-based methods, we also demonstrate that the concept of reformulating point-based
methods can also be used to develop new architectures that leverage reformulated 3D point-based
operations with 2D image-based operations. As an example of such a network, we propose a net-
work for 3D LiDAR point cloud segmentation, which we term Unprojection Network (UnPNet). It
integrates the reformulated feature propagation of PointConv for up- and down-sampling into a 2D
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Figure 6.1: Due to the nature of LiDAR sensors, the captured 3D point cloud can be projected onto a
plane. This means that neighboring points in 3D are also close in the projected plane, but neighbors
in the projected plane can be far distant in 3D. Furthermore, the points become more sparse as the
distance to the sensor increases (green arrow), while the points are dense in the projection. We
highlight some objects by bounding boxes as an example. Best seen using the zoom function of a
PDF viewer.

encoder-decoder architecture. In this way, we exploit 3D operations that are reformulated to operate
in the projection space as well as 2D operations that fuse the information from different 2D scales.
Furthermore, we employ edge supervision which would be impossible for point-based methods.

We evaluate UnPNet and the reformulated versions of PointNet++ (Qi et al., 2017d), Spider-
CNN (Xu et al., 2018), and PointConv (Wu et al., 2019c) on the SemanticKITTI dataset (Behley et al.,
2019d), which is a large-scale dataset for semantic segmentation of LiDAR point clouds. Apart from
SemanticKITTI, we also evaluate the proposed UnPNet on three other datasets for a comprehensive
comparison. The experiments show that UnPNet performs very well on all four datasets and that it
outperforms the reformulated point-based methods since it combines 3D point operations with 2D
fusion techniques.

In summary, we show in this work that

• point-based methods can be reformulated such that they operate in the projection space for
processing LiDAR point clouds;

• the reformulated point-based methods are more efficient and achieve a higher accuracy than
the original point-based methods;

• The combination of reformulated 3D point-based operations with 2D image-based operations
unifies the benefits of point-based and image-based methods.

Code will be released at https://github.com/sj-li/UnpNet.

6.2 Reformulation of Point-based methods

In order to show how a network operating on LiDAR points can be reformulated to operate in the
projection space, we use PointNet++ (Qi et al., 2017d) as an example. In Section 6.2.3, we discuss
the reformulated examples of two other point-based networks, namely SpiderCNN (Xu et al., 2018)
and PointConv (Wu et al., 2019c). Before we discuss our approach in Section. 6.2.2, we briefly
discuss the main operations of PointNet++.

https://github.com/sj-li/UnpNet
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Figure 6.2: Overall architecture of PointNet++ or its reformulation (reformulated PointNet++).

Figure 6.3: Comparison of the sampling methods in PointNet++ (top) and reformulated PointNet++
(bottom). 1024 points are sampled from the LiDAR point cloud. For better visualization, we show
the 2D projected image with white points denoting the sampled points. PointNet++ only samples a
few points for close objects like cars and most sampled points lie on the distant region where the real
distribution of points is sparse.

6.2.1 Review of PointNet++

We choose PointNet++ (Qi et al., 2017d) as an example since it is very popular and has been used
as the baseline in many works. The pipeline of PointNet++ is shown in Figure 6.2. PointNet++
consists of so-called set abstraction modules and feature propagation modules as shown in Figure 6.2.
The set abstraction module comprises a sampling layer, a grouping layer, and a PointNet layer. The
sampling layer chooses a subset from the input point set, which defines the centroids of local regions.
Figure 6.3 shows the sampled points. The grouping layer groups the neighboring points of each
centroid, which forms a local region. The PointNet layer computes a feature vector based on the
neighboring points using a multilayer perceptron (MLP) and max pooling. While the set abstraction
modules subsample the original point set, the feature propagation modules recover the original point
set by distance based interpolation:

f pjqpxq “

řk
i“1wipxqf

pjq

i
řk

i“1wipxq
, (6.1)

wipxq “
1

d px, xiq
p , j “ 1, . . . , C, (6.2)

where f is a point-wise feature and dpxi, xjq is the distance between point xi and xj .

6.2.2 Reformulated PointNet++

To reformulate PointNet++ so that it operates in the projection space, we will not change the archi-
tecture, but we need to reformulate the set abstraction and the feature propagation module as shown
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LiDAR LiDAR

(a) Farthest point sampling (b)Ray sampling

Figure 6.4: Toy example. The points on the black lines are correct measurements while the other
points are outliers. Farthest point sampling selects the outliers such that the sampled points are
uniformly distributed in the 3D space. The proposed ray sampling only selects the points (red) on
the black lines. The outliers (blue) are not selected.

in Figure 6.2. As input, we use the projected LiDAR point cloud as it has been proposed in (Wu et al.,
2018b).

We will first describe the sampling layer (Section. 6.2.2.1), the grouping layer (Section. 6.2.2.2),
and the PointNet layer (Section. 6.2.2.3) of the reformulated set abstraction and then discuss the
reformulated feature propagation (Section. 6.2.2.4).

6.2.2.1 Reformulated Sampling Layer

PointNet++ (Qi et al., 2017d) uses farthest point sampling to sample a subset of 3D points. It is
designed to maximize the distance between sampled points that are thus uniformly scattered in the
3D space. However, the real distribution of LiDAR points is not uniform and becomes sparse as
the distance to the sensor increases as shown in Figure 6.1. This mismatch harms the performance
when applying farthest point sampling to LiDAR points, as shown in Figure 6.3. Furthermore, the
computational complexity of farthest point sampling is OpN logNq where N is the number of 3D
points (Kamousi et al., 2016). This makes the approach highly inefficient for large point clouds
which are common for LiDAR sensors. Therefore, farthest point sampling is suboptimal for LiDAR
point cloud segmentation in terms of both effectiveness and efficiency. To address this problem, we
propose to uniformly sample the 3D points from the projected point cloud as shown in Figure 6.3.
This has the advantage that we sample rays instead of points, which means that the distance between
the sampled points is larger if they are farther away from the sensor. Hence, the distribution of
sampled points accords with the original point cloud. The sampling is also less sensitive to outliers.
Since farthest point sampling aims to sample points that are uniformly in the 3D space, it tends to
select all outliers that are distant to correct measurements. In case of ray sampling, the probability
to select an outlier is equivalent to the percentage of outliers and thus lower compared to farthest
point sampling as it is illustrated in Figure 6.4. Another benefit is that we can use a 2D grid structure
for sampling such that the computational complexity becomes OpMq where M “ H 1 ˆ W 1 is the
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number of sampled points and M ! N .

6.2.2.2 Reformulated Grouping Layer

For grouping neighboring 3D points, PointNet++ uses a ball query to obtain for each sampled point
all points that are within a given distance. While a naive implementation has the complexity of
OpMNq, more efficient implementations reduce it using data structures like k-d trees or octrees
(Behley et al., 2015). This, however, increases the memory requirements. In order to make the
grouping of PointNet++ (Qi et al., 2017d) much more efficient, we search neighboring rays first and
then exclude the points that are too far away from the sampled point. We obtain the neighboring rays
by taking the k ˆ k neighbors in the projected point cloud as shown in Figure 6.5. The parameter k
provides a trade-off between accuracy and runtime as we will show in the experiments. For each of
the k2 points, we obtain the 3D points and subtract the 3D position of the sampled point to convert
the points from global coordinates to local coordinates as in PointNet++. We then compute the norm
of each point, i.e., the 3D distance to the sampled point, and mask all points that are within a given
distance. The complexity of this operation is OpMk2q where k2 ! logN . A comparison between
this grouping strategy and the grouping in PointNet++ is displayed in Figure 6.5.

Figure 6.6 illustrates how reformulated sampling and grouping are efficiently implemented in
a network. Given the input RpC`3qˆHˆW , where C is the number of feature channels which are
concatenated with the 3D coordinates (C`3), the unfold operation uniformly samples H 1ˆW 1 points
as discussed in Section. 6.2.2.1 and copies the corresponding k ˆ k neighborhood for each sampled
point m P H 1 ˆ W 1. This yields the tensor Fin P RpC`3qˆk2ˆH 1ˆW 1

. For each sampled point, we
then subtract the 3D coordinate of the sampled point from the coordinates of the corresponding k2

neighboring points. We finally compute the distance map Rk2ˆH 1ˆW 1

and the binary neighborhood
mask t0, 1uk

2ˆH 1ˆW 1

, which is 1 if a point is within the radius of a sampled point. The neighborhood
mask defines the grouping for each sampled point.

At this step, we directly compute the inverse distance map, which will be used for the reformu-
lated feature propagation and will be described in the next section, and the inverse density map as
described in (Wu et al., 2019c). The latter will be needed for converting PointConv (Wu et al., 2019c)
into a reformulated point-based method.

6.2.2.3 Reformulated PointNet Layer

The PointNet layer in PointNet++ uses max pooling and an MLP. Given Fin P RpC`3qˆk2ˆH 1ˆW 1

after the unfold operation and the neighborhood mask, the reformulated PointNet layer can thus be
denoted as

Fout “ PoolingpMLPpFin b Mqq. (6.3)

The symbol b denotes element-wise multiplication and M is the neighborhood mask, which has
been duplicated pC ` 3q-times to have the same size as Fin. Figure 6.9(a) illustrates this operation.

6.2.2.4 Reformulated Feature Propagation Module

As described in Section. 6.2.1 and illustrated in Figure 6.2, the feature propagation modules recover
the original point set by the distance based interpolation (Equation 6.1). Since our sampled points
are uniformly distributed on the projected image, this can be very efficiently implemented. The
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Figure 6.5: Comparison of the reformulated grouping layer (bottom) with the original one in Point-
Net++ (Qi et al., 2017d) (top). PointNet++ uses a ball query to obtain all neighboring points (orange)
within a certain radius for each sampled point (red). In contrast, our method first searches the k ˆ k

neighboring rays, and then we discard the points that are outside the radius (dark green point).

sampled points are first set back to its original positions. The distance based interpolation (Interp)
is then applied as in Equation 6.1 using the precomputed inverse distance map D̂. As illustrated in
Figure 6.2, there are skip connections between the blocks. The interpolated features InterppFin, D̂q

are thus concatenated with the point features from the corresponding set abstraction module (F̂ ) and
fed into an MLP, i.e.,

Fout “ MLPpConcatpInterppFin, D̂q, F̂ qq. (6.4)

The reformulation of the Feature Propagation module is illustrated in Figure 6.7.

6.2.3 Reformulated SpiderCNN and PointConv

So far we discussed how PointNet++ (Qi et al., 2017d) can be reformulated so that it operates in
the projection space, but the approach can be applied to other point-based networks as well. In this
section, we therefore briefly describe how two other networks, namely SpiderCNN (Xu et al., 2018)
and PointConv (Wu et al., 2019c), are reformulated. Figure 6.9 illustrates the differences between
the reformulation of PointNet++, SpiderCNN, and PointConv.

The reformulated SpiderCNN (RSpiderCNN) can be viewed as a ‘soft’ version of RPointNet++
because it weights each point feature according to its relative position to the corresponding sampled
point. Instead of using a neighborhood mask, it computes the weight for each point. In our case,
the operations are performed for the k ˆ k neighborhood. The operations of the set abstraction in
RSpiderCNN are thus defined by

Fout “ MLPoutpMLPinpFinq b WeightNetpPqq, (6.5)

where the symbol b denotes matrix multiplication, and P denotes the unfolded 3D coordinates after
subtracting the 3D coordinates of the corresponding sampled point as shown in Figure 6.6. Here, we
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Figure 6.6: Illustration of the reformulated set abstraction.

omit the dimensions which are shown in Figure 6.9(c). For feature propagation, RSpiderCNN follows
Equation 6.4 and the main difference is that RSpiderCNN applies Equation 6.5 on the interpolated
features.

The reformulated PointConv (RPointConv) uses the point density as additional information. The
green branch in Figure 6.9(d) therefore takes the inverse density map D from Figure 6.6 as input.
The operations of the set abstraction in RPointConv are defined by

Fout “MLPoutppMLPinpFinqb

DensityNetpDqq b WeightNetpPqq.
(6.6)

Similar to RSpiderCNN, RPointConv follows Equation 6.4 for feature propagation, but it applies
Equation 6.6 on the interpolated features.

These examples show that point-based methods can be reformulated to operate in the projection
space. In the experiments, we will show that the reformulation makes the point-based methods 300-
400 times faster and increases the accuracy.

6.3 Unprojection Network (UnPNet)

So far, we have shown how point-based methods can be reformulated without changing the archi-
tecture design and principles. The reformulated approaches have the potential to leverage concepts
from 3D point-based methods and 2D image-based methods. In order to demonstrate this, we pro-
pose a network that uses the reformulated feature propagation of PointConv (Equation 6.6) for up-
and down-sampling and we integrate it into a 2D CNN with an encoder-decoder architecture. In this

Upsampling Interpolation Concatenation

MLP

Figure 6.7: Illustration of the reformulated feature propagation.
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Figure 6.8: Illustration of the context block.

k Acc mIoU Scans/s
3 71.4 26.8 38.2
5 74.7 30.7 30.0
7 76.2 31.9 23.7

((a)) Search size k

R Acc mIoU Scans/s
64ˆ512 74.7 30.7 30.0
64ˆ1024 77.4 31.3 17.2
64ˆ2048 75.2 25.7 9.4

((b)) Input resolution R

S Acc mIoU Scans/s
1 74.5 30.4 22.2
2 74.7 30.7 30.0
4 69.6 25.0 34.5

((c)) Sampling stride S

Table 6.1: Effect of different parameters.

way, we exploit 3D operations that are reformulated to operate in the projection space as well as 2D
operations that fuse the information from different 2D scales.

The network architecture is shown in Section. 6.2.2. As in the reformulated architectures, we first
project the LiDAR point cloud by spherical projection. Besides the basic block (i.e., 2D convolutions
with the residual link), the network uses the reformulated feature propagation of PointConv (Equation
6.6) for up- and down-sampling and an additional context block shown in Figure 6.8 for fusing image
context at multiple 2D scales. In order to make the context block as efficient as possible, we use 2D
dilated convolutions. More in detail, we use three 3 ˆ 3 convolutions with different dilation rates
(1, 2, 3) to extract multi-scale features. The three feature maps are then concatenated and fused by a
1ˆ1 convolution. In addition, a residual link is employed to facilitate the gradient flow. Furthermore,
we apply edge supervision to the decoder, which will be described in Section. 6.3.1, to ensure better
segment boundaries. As in Milioto et al. (2019b), k-NN can be used for post-processing. We call
this architecture Unprojection Network (UnPNet), and we will show in the experiments that UnPNet
outperforms RPointConv by a large margin. While UnPNet is just an example, it demonstrates that
the reformulation of point-based methods is a new general concept, allowing to construction of new
architectures by leveraging 3D point-based networks and 2D CNNs.
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Figure 6.9: Reformulation of the set abstraction module for PointNet++ (Qi et al., 2017d), Spider-
CNN (Xu et al., 2018), and PointConv (Wu et al., 2019c). In case of a dimension mismatch in the
element-wise operations, we use the broadcasting mechanism, which is omitted in the illustrations
since it is the default operation in modern deep learning frameworks like PyTorch (Paszke et al.,
2019). We also omit MLPin from Equation 6.5 and Equation 6.6.

Proj Unproj

ContextBlockBasicBlock

Skip Link Supervision

RPConvDown RPConvUp

Figure 6.10: Overview of UnPNet. The network combines 2D operations like the basic block and the
context block as well as reformulated 3D operations. In this example, we use the reformulated feature
propagation of PointConv for down- and upsampling. The corresponding operations are denoted by
RPConvDown and RPConvUp, respectively.
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PointNet++ (Qi et al., 2017d) RPointNet++ SCNN (Xu et al., 2018) RSCNN PointConv (Wu et al., 2019c) RPointConv
Acc 64.6 74.7 70.3 81.5 72.5 82.5

mIoU 19.4 30.7 21.8 36.8 23.2 37.6
Scans/sec 0.1 30.0 0.04 12.9 0.03 12.2

Table 6.2: Comparison with the original baseline methods.

Acc mIoU Scans/s
RPointConv 82.5 37.6 12.2

UnPNet w/o supp 87.0 50.2 12.8
UnPNet 87.4 50.7 12.8

UnPNet + k-NN 89.1 54.6 12.5

Table 6.3: Ablation study for UnPNet.

6.3.1 Auxiliary Supervision

For the decoder of UnPNet, we employ edge supervision to obtain accurate boundaries of the seg-
ments. Before each upsampling operation, we apply edge supervision by computing the edge loss Le

using the binary entropy loss as

Le “ ´
1

|I|

ÿ

iPI

pei logpêiq ` p1 ´ eiq logp1 ´ êiqq, (6.7)

where ei P t0, 1u is the ground-truth edge for pixel i and êi is the corresponding predicted probability
estimated by a 1 ˆ 1 convolution. The ground-truth edge is obtained by the segment boundaries of
the ground-truth segmentation.

As for the final semantic prediction of UnPNet, we use two loss terms. The first one is the
standard weighted cross-entropy loss which can be formulated as

Ls “ ´
1

|I|

ÿ

iPI

N
ÿ

n“1

wnp
n
i logpp̂ni q, (6.8)

where N is the number of classes, pni P t0, 1u is 1 if pixel i is annotated by class n, and p̂ni is the
predicted class probability. The weight wn for class n is inversely proportional to its frequency of
occurrence.

Apart from the weighted cross-entropy loss, we also directly maximize the intersection-over-
union (IoU) score by the Lovász-Softmax loss (Berman et al., 2018a):

Lls “
1

N

N
ÿ

n“1

∆Jnpmpnqq, (6.9)

mipnq “

"

1 ´ p̂ni if pni “ 1

p̂ni otherwise,
(6.10)

where ∆Jn is the Lovász extension of the Jaccard index.
Hence, the total loss is given by

L “ Ls ` Lls `
1

2

ÿ

u

Lu
e , (6.11)

where Ls denotes the weighted cross-entropy loss Equation 6.8, Lls denotes the Lovász-Softmax loss
Equation 6.9, and Lu

e is the edge loss Equation 6.7 for each upsampling step u of the decoder.
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Figure 6.11: Effect of the radius.

6.4 Experiments

6.4.1 Environment Setup

We use four challenging datasets to evaluate our method:

• SemanticKITTI (Behley et al., 2019d) provides pixel-wise semantic labels for the entire
KITTI Odometry Benchmark (Geiger et al., 2012b) with more than 20000 scans which are
divided into 22 sequences. We use its training set for training (sequences 00-10 without se-
quence 08), its validation set (sequence 08) for the ablation study, and its test set (sequences
10-21) for comparison with state-of-the-art methods.

• SemanticPOSS (Pan et al., 2020a) contains about 3000 scans at Peking University, which are
divided into 6 equal subsets. For the experiments, we use the 3rd subset for evaluation and the
others for training as in Pan et al. (2020a). There are usually more moving and small objects
in the campus scenarios, making it more difficult compared to urban environments.

• nuScenes (Caesar et al., 2020) includes about 40000 annotated scans captured in 900 scenes,
where 750 scenes are for training and the others for validation. As recommended1, we merge
similar classes and remove rare classes.

• Pandaset2 contains about 16000 LiDAR scans at 2 routes in Silicon Valley. Two LiDAR
sensors have been used for recording the data, a spinning LiDAR and a solid-state LiDAR.
For the experiments, the data from the spinning LiDAR is used. We use 30% of the data for
evaluation and the rest for training. Similar to the nuScenes dataset, we merge similar classes
and remove rare classes.

1The nuScenes LiDAR segmentation task is available at https://www.nuscenes.org/lidar-segmentation.
2https://scale.com/open-datasets/pandaset.

https://www.nuscenes.org/lidar-segmentation
https://scale.com/open-datasets/pandaset
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Pointnet (Qi et al., 2017b) 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6
Pointnet++ (Qi et al., 2017d) 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1

SPGraph (Landrieu and Simonovsky, 2018) 68.3 0.9 4.5 0.9 0.8 1.0 6.0 0.0 49.5 1.7 24.2 0.3 68.2 22.5 59.2 27.2 17.0 18.3 10.5 20.0
SPLATNet (Su et al., 2018) 66.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 70.4 0.8 41.5 0.0 68.7 27.8 72.3 35.9 35.8 13.8 0.0 22.8

TangentConv (Tatarchenko et al., 2018) 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9
DeepLabV3+(Chen et al., 2018) 78.4 13.6 9.5 9.5 10.4 17.5 22.0 0.4 88.5 54.5 66.7 9.7 77.9 39.1 72.0 39.9 60.0 23.4 36.1 38.4

PSPNet(Li et al., 2018) 79.6 25.0 26.4 17.5 24.0 34.1 28.4 7.3 90.2 58.2 70.2 19.9 79.7 43.5 74.2 43.2 61.2 23.1 37.5 44.4
DenseASPP(Yang et al., 2018) 78.1 20.5 18.2 20.0 16.6 27.8 28.9 5.7 88.5 53.3 67.5 9.3 76.3 39.6 70.0 36.8 57.7 15.9 32.4 40.2
SqueezeSeg (Wu et al., 2018b) 68.8 16.0 4.1 3.3 3.6 12.9 13.1 0.9 85.4 26.9 54.3 4.5 57.4 29.0 60.0 24.3 53.7 17.5 24.5 29.5

SqueezeSeg + CRF (Wu et al., 2018b) 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 30.8
SqueezeSegV2 (Wu et al., 2019b) 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 39.7

SqueezeSegV2 + CRF (Wu et al., 2019b) 82.7 21.0 22.6 14.5 15.9 20.2 24.3 2.9 88.5 42.4 65.5 18.7 73.8 41.0 68.5 36.9 58.9 12.9 41.0 39.6
RangeNet21 (Milioto et al., 2019b) 85.4 26.2 26.5 18.6 15.6 31.8 33.6 4.0 91.4 57.0 74.0 26.4 81.9 52.3 77.6 48.4 63.6 36.0 50.0 47.4
RangeNet53 (Milioto et al., 2019b) 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2 49.9

MINet 85.2 38.2 32.1 29.3 23.1 47.6 46.8 24.5 90.5 58.8 72.1 25.9 82.2 49.5 78.8 52.5 65.4 37.7 55.5 52.4
RPointNet++ 73.3 13.0 5.4 11.8 8.3 6.4 15.5 2.1 86.3 40.1 60.1 7.2 61.7 32.1 55.8 13.1 51.6 4.2 14.7 29.6

RSCNN 79.8 19.8 11.2 15.8 14.3 15.1 20.5 8.8 87.1 41.8 64.7 8.7 72.2 37.9 68.0 28.4 58.0 13.1 31.3 36.7
RPointConv 79.5 19.0 12.7 13.8 10.7 14.9 18.2 5.8 87.8 46.6 66.6 7.3 73.2 40.1 69.4 30.9 59.3 14.1 32.1 36.9

UnPNet 70.8 38.2 31.8 20.3 22.5 49.0 45.8 14.3 91.4 61.6 73.6 19.2 82.4 50.8 77.7 51.6 65.3 34.9 53.6 51.0
UnPNet + k-NN 90.4 43.8 36.1 20.4 23.1 54.3 54.2 14.4 91.4 62.0 74.2 18.9 86.3 54.6 80.5 59.4 66.3 48.7 58.6 54.6

Table 6.4: Evaluation results on the SemanticKITTI dataset. MIN is the method proposed in Chapter
4.
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DeepLabV3 (Chen et al., 2018) 50.5 4.9 58.6 60.3 10.6 7.5 21.6 17.2 35.1 46.2 88.1 47.2 55.7 59.2 69.1 69.4 43.8
DenseASPP (Yang et al., 2018) 52.7 6.2 69.0 67.1 18.5 32.6 24.3 16.9 39.7 58.0 87.4 43.1 57.1 58.6 69.8 70.4 48.2

PSPNet(Zhao et al., 2017) 56.9 8.9 69.8 68.9 23.6 36.9 26.5 18.9 42.3 58.7 88.0 44.5 58.5 59.6 71.5 71.6 50.3
SqueezeSegV1 (Wu et al., 2018b) 15.0 0.3 4.5 25.8 0.0 0.5 3.1 5.3 2.5 9.4 68.3 11.2 23.3 42.1 45.6 40.1 18.6
SqueezeSegV2 (Wu et al., 2019b) 44.3 2.7 62.2 68.0 11.2 19.3 7.6 12.1 25.3 44.8 84.8 29.8 51.6 56.6 64.4 67.8 40.8

RangeNet21 (Milioto et al., 2019b) 61.4 3.4 72.9 76.4 17.2 23.5 31.5 19.3 35.8 59.8 92.3 54.6 66.5 68.1 76.9 76.6 52.3
RangeNet53 (Milioto et al., 2019b) 59.8 2.7 62.6 73.5 14.1 21.6 28.3 13.9 34.5 58.3 90.8 53.8 61.7 64.5 74.8 75.0 49.4

UnPNet 61.2 5.9 77.7 73.2 21.9 34.7 38.5 25.7 40.3 62.9 92.3 61.6 66.7 67.7 78.7 78.9 55.5
UnPNet + k-NN 61.0 6.3 77.7 78.4 21.9 37.0 42.5 30.5 41.7 65.8 93.8 62.2 66.9 68.1 80.6 80.0 57.2

Table 6.5: Evaluation results on the nuScenes dataset.

As for the evaluation metric, we use the standard mean intersection over union (mIoU) metric (Ev-
eringham et al., 2015) over all classes. For a fair comparison, all experiments are performed with a
single GPU.

6.4.2 Ablation Study

The ablation study is conducted on the SemanticKITTI dataset.

6.4.2.1 Effect of hyperparameters

We first explore the influence of the size k of the 2D search region in the reformulated grouping
layer. For the study, we use the reformulated PointNet++ (RPointNet++) with an input resolution of
64 ˆ 512. The results are shown in Table 6.1(a). We can see that the performance improves and the
speed slows down with the search size k increasing. However, the improvement from k “ 5 to k “ 7

is not as large as that from k “ 3 to k “ 5, which indicates that the local region with k “ 5 already
includes the most important neighboring points. Considering the trade-off between effectiveness and
efficiency, we set k “ 5 in the following experiments.
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DeepLabV3 (Chen et al., 2018) 50.4 22.8 69.2 11.9 9.7 35.5 65.6 11.6 0.1 3.9 0.2 3.5 2.2 19.2 4.2 11.5 58.4 22.3
DenseASPP (Yang et al., 2018) 54.6 21.2 66.0 9.9 9.3 33.2 64.9 18.8 0.0 17.6 0.2 5.0 0.3 21.2 2.7 4.6 62.5 23.1

PSPNet (Zhao et al., 2017) 45.9 18.1 65.4 8.4 6.8 28.1 60.2 15.6 0.0 6.2 0.2 2.5 0.0 19.0 0.9 4.5 55.2 19.8
SqueezeSegV1 (Wu et al., 2018b) 40.0 16.5 66.7 9.4 6.3 19.2 52.4 9.6 0.0 3.9 0.3 2.6 0.1 15.5 1.2 0.0 39.4 16.6
SqueezeSegV2 (Wu et al., 2019b) 61.0 33.0 76.4 18.6 13.5 43.5 73.5 30.8 0.0 21.8 1.7 4.9 1.1 20.5 3.3 3.7 65.4 27.8

RangeNet21 (Milioto et al., 2019b) 65.9 35.3 81.1 26.6 20.0 47.1 75.0 28.6 0.1 25.7 1.5 12.0 1.6 34.2 4.9 19.0 72.4 32.4
RangeNet53 (Milioto et al., 2019b) 64.1 36.3 80.8 25.1 19.8 48.8 76.0 30.7 1.0 17.2 2.0 9.8 6.3 32.7 6.7 13.0 71.0 31.8

UnPNet 75.4 40.7 82.4 26.6 19.9 49.8 76.4 31.1 0.7 17.5 10.4 29.5 28.6 44.4 14.5 19.5 79.6 38.1
UnPNet + k-NN 78.2 41.6 82.5 29.3 21.7 52.0 78.9 31.9 0.9 17.7 12.1 36.7 40.4 63.7 19.5 24.9 83.8 42.1

Table 6.6: Evaluation results on the Pandaset dataset.

person rider car trunk plants traffic sign pole building fence bike road mIoU
DeepLabV3 (Chen et al., 2018) 9.6 4.8 15.3 9.5 40.3 5.3 3.1 41.2 11.9 20.0 62.5 20.3
DenseASPP (Yang et al., 2018) 11.6 5.7 20.4 10.8 46.4 5.2 4.9 46.8 7.7 20.6 62.0 22.0

PSPNet (Zhao et al., 2017) 9.0 4.8 17.6 10.3 44.1 5.1 3.2 45.3 5.9 20.0 63.0 20.8
SqueezeSegV1 (Wu et al., 2018b) 5.5 0.0 8.7 3.4 39.1 2.4 2.5 34.5 7.6 18.4 62.5 16.8
SqueezeSegV2 (Wu et al., 2019b) 18.4 11.2 34.9 15.8 56.3 11.0 4.5 47.0 25.5 32.4 71.3 29.8

RangeNet21 (Milioto et al., 2019b) 9.8 7.8 39.9 8.0 55.8 7.0 2.9 50.3 19.2 32.3 63.8 27.0
RangeNet53 (Milioto et al., 2019b) 10.0 6.2 33.4 7.3 54.2 5.5 2.6 49.9 18.4 28.6 63.5 25.4

UnPNet 11.3 12.1 36.8 10.6 62.3 6.9 4.2 60.4 20.6 35.4 65.6 29.7
UnPNet + k-NN 17.7 17.2 39.2 13.8 67.0 9.5 5.8 66.9 31.1 40.5 68.4 34.3

Table 6.7: Evaluation results on the SemanticPOSS dataset.

Then, we evaluate the effect of different input resolutions, and we summarize the results in Table
6.1(b). We can observe that increasing the input resolution from 64ˆ512 to 64ˆ1024 improves
the accuracy but at the cost of higher inference time. However, when the resolution changes from
64ˆ1024 to 64ˆ2048, the accuracy degrades. Since we kept k constant, increasing the resolution
decreases the receptive field. Hence, k needs to be increased when the resolution increases. For
a good trade-off between effectiveness and efficiency, we set the input resolution to 64ˆ512 if not
mentioned otherwise.

We also evaluate the impact of the stride of the uniform sampling, i.e., H 1 “ H
S and W 1 “ W

S .
The results are shown in Table 6.1(c). The accuracy is similar for the sampling stride 1 and 2, but
using stride 2 is more efficient. When the sampling stride is set to 4, the accuracy drops significantly
since the sampling becomes too sparse. We use therefore sampling stride 2.

As for the impact of the radius, we vary it between 1m and 200m. The results are shown in
Figure 6.11. The mIoU increases until a radius of 10m and then slightly decreases. We use 10m as
the default threshold.

6.4.2.2 Comparison between reformulated and original methods

Finally, we compare the original models with their reformulated versions. The three baseline methods
are PointNet++ (Qi et al., 2017d), SpiderCNN (Xu et al., 2018) and PointConv (Wu et al., 2019c). We
display the results in Table 6.2. We can see that the reformulated point-based methods achieve a much
better performance than the original baselines. The improvement is about 10% for all baselines in
terms of both accuracy and mIoU. For SpiderCNN (Xu et al., 2018) and PointConv (Wu et al., 2019c),
the mIoU is even improved by about 15%. These results prove the effectiveness of the reformulated
point-based methods. Apart from the mIoU and accuracy, the efficiency is also much better. We can
see that the reformulated methods are more than 300ˆ faster compared with the original ones. This
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UnPNet(-knn)

DenseASPP DeeplabV3

PSPNet

SqueezeSegV1

RangeNet21

SqueezeSegV2

RangeNet53

Figure 6.12: Mean IoU with regard to the distance of the points to the LiDAR sensor, evaluated
on the nuScenes dataset (Caesar et al., 2020). The dashed lines denote image-based methods while
solid lines represent projection-based methods. For UnPNet, we show both the results with k-NN
(red) and without k-NN post-processing (light red).

(a) RPointNet++ (b) RSCNN

(c) RPointConv (d) Ground Truth

Figure 6.13: Qualitative results of RPointNet++, RSCNN, and RPointConv. We highlight wrong
predictions by the red boxes. RPointNet++ makes wrong predictions for distant points due to the
weak aggregation capability of the used pooling operations. RPointConv achieves better results than
RSCNN, demonstrating the effectiveness of density information.
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Figure 6.14: Qualitative results of UnPNet for the nuScenes dataset. Top: Ground Truth, Bottom:
Prediction.

is because the reformulated methods utilize the projection space such that the 3D operations can be
performed much more efficiently. This demonstrates how point-based methods can be improved by
reformulating them. Figure 6.13 shows some qualitative results of the three reformulated versions.

6.4.2.3 Ablation study for UnPNet

After having discussed the reformulated point-based networks, we now evaluate UnPNet and the
results are shown in Table 6.3. Although UnPNet uses the reformulated feature propagation from
RPointConv, it outperforms RPointConv by a large margin. While the inference time is very similar,
the mIoU is much higher for UnPNet compared to RPointConv. This demonstrates that leveraging re-
formulated 3D point-based operations and 2D image-based operations achieves a good performance.
We also analyze the impact of the edge supervision. Without edge supervision, the mIoU decreases
by 0.5%. The k-NN post-processing increases the accuracy.

6.4.3 Comparison with State-of-the-art

We compare the proposed reformulated networks RPointNet++, RSCNN, and RPointConv as well
as UnPNet with other methods. For a comprehensive comparison, we selected point-based methods
(Pointnet (Qi et al., 2017b), Pointnet++ (Qi et al., 2017d), SPGraph (Landrieu and Simonovsky,
2018), SPLATNet (Su et al., 2018), TangentConv (Tatarchenko et al., 2018)), image-based methods
(DeepLabV3 (Chen et al., 2018), DenseASPP (Yang et al., 2018), PSPNet (Zhao et al., 2017)) and
projection-based methods (SqueezeSeg (Wu et al., 2018b, 2019b), RangeNet (Milioto et al., 2019b)).

We first show the results for the SemanticKITTI test dataset in Table 6.4. While the reformu-
lated point-based methods RPointNet++, RSCNN, and RPointConv outperform the corresponding
baselines PointNet++, SCNN, and PointConv as on the validation set, they do not achieve the accu-
racy of state-of-the-art approaches. However, as we discussed, the general concept of reformulating
point-based methods can also be used to develop new architectures by leveraging reformulated 3D
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operations and 2D CNNs. This is done by the proposed UnPNet and we can see that it outperforms
RPointNet++, RSCNN, and RPointConv by a large margin. Using k-NN as in (Milioto et al., 2019b)
for post-processing improves the accuracy further. Compared to the other approaches, UnPNet per-
forms in particular well for small objects like bicycle, person, or motorcyclist.

The results for the nuScenes dataset are shown in Table 6.5. Similar to the SemanticKITTI
dataset, UnPNet outperforms the other methods by a large margin. Furthermore, it achieves the best
performance for almost all classes. In Figure 6.12, we also report the mIoU based on the distance
to the sensor. We can see that as the points are more distant to the LiDAR sensor, the accuracy
decreases as expected. Nevertheless, UnPNet outperforms the other methods for all distances. We
can also observe that the k-NN post-processing mainly improves the accuracy at the close distances.
In Figure 6.14, we show some qualitative results for UnPNet.

For the Pandaset dataset, UnPNet can successfully detect some small objects that other methods
hardly recognize like bicycle or cones which can be seen in Table 6.6. The overall performance
of our method is more than 10% higher compared with the other methods. Finally, we present the
results for the SemanticPOSS dataset in Table 6.7. Our method also outperforms the other methods
and improves mIoU by about 4%. In summary, UnPNet achieves the best performance on all four
datasets. This shows the robustness of UnPNet.

6.5 Summary

In this chapter, we proposed a new paradigm to reformulate point-based methods so that they operate
in the projection space of a LiDAR sensor. As examples, we used three point-based approaches and
demonstrated that reformulated point-based methods achieve a better segmentation accuracy and ef-
ficiency than the original point-based methods. Furthermore, we proposed a new architecture named
Unprojection Network (UnPNet) which combines the benefits of both point-based and projection-
based methods. On one hand, it extracts features efficiently like projection-based methods and fuses
the context information from different 2D scales. On the other hand, it exploits the full 3D structure
as point-based methods for down- and upsampling. In addition, auxiliary edge supervision is uti-
lized, which is infeasible for point-based methods. We evaluated the approach on four challenging
datasets for semantic LiDAR point cloud segmentation and showed that the proposed concept of re-
formulating 3D point-based operations allows to design new architectures that outperform point- and
projection-based approaches. As our approach of reformulating point-based operations is generic, it
can be also used to make point-voxel methods like PV-RCNN (Shi et al., 2020b) more efficient by
reformulating the point-based operations within the network. We will explore this in the future work.





CHAPTER 7

TFNet: Exploiting Temporal Cues for
Fast and Accurate LiDAR Semantic

Segmentation

In previous chapters, we mainly focus on conducting semantic segmentation on the current LiDAR
scan. However, in realistic autonomous driving, the previous LiDAR scans are accessible which
are usually ignored by previous works. Another challenge is a “many-to-one” problem for a single
LiDAR scan caused by the range image’s limited horizontal and vertical angular resolution. As a
result, around 20% of the 3D points can be occluded. In this chapter, we present TFNet, a projection-
based LiDAR semantic segmentation method that utilizes temporal information to address this issue.
Specifically, we incorporate a temporal fusion layer to extract useful information from previous scans
and integrate it with the current scan. We then design a max-voting-based post-processing technique
to correct false predictions, particularly those caused by the “many-to-one” issue. We evaluated the
approach on two benchmarks and demonstrated that the post-processing technique is generic and can
be applied to various networks.
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7.1 Introduction

As mentioned above, the range view representation suffers from a boundary-blurring effect (Milioto
et al., 2019c; Zhao et al., 2021). This problem exists mainly because of the limited horizontal and
vertical angular resolution: more than one point will be projected to the same range image pixel
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Figure 7.1: Projection-based methods suffer from the “many-to-one” problem where multiple 3D
points with the same angle are mapped to a single range pixel. This can cause distant points to
receive erroneous predictions (marked by the red circles) from nearby points when the range image
is re-projected to 3D. Moreover, the occluded points in t0 are visible in t1, which can help correct
the predictions.

when these points share the same vertical and horizontal angle. This is also referred to as the “many-
to-one” problem (Zhao et al., 2021). Considering that the projection computes distant points first
and near points later (Milioto et al., 2019c), the distant points will be occluded by the near points.
Hence, during the re-projection of the range image into three-dimensional coordinates, a necessary
procedure for projection-based approaches, distant points will be assigned the same predicted label
as the overlapping closer points. As shown in Figure 7.1, this introduces errors for the distant points.
In fact, we measure the impact of this phenomenon on SemanticKITTI (Behley et al., 2019c, 2021a).
If the range image has a size of pH,W q “ p64, 2048q, over 20% of the 3D points are occluded in
the range image, i.e., more than one point is projected to the same pixel. As shown in Table 7.3,
this results in a substantial degradation of the accuracy if it is not addressed by an additional post-
processing step. Therefore, various post-processing approaches like k-NN (Milioto et al., 2019c),
CRF (Wu et al., 2018a) or NLA (Zhao et al., 2021) have been proposed. For instance, NLA (Zhao
et al., 2021) assigns the prediction of the nearest point to the occluded points.

In this work, we propose to incorporate temporal information to address the “many-to-one” chal-
lenge for LiDAR semantic segmentation. This is inspired by human visual perception, where tem-
poral information is crucial for understanding object motion and identifying occlusions. This is also
observed in LiDAR semantic segmentation, where heavily occluded points can be captured from ad-
jacent range image scans, as shown in Figure 7.1. Based on this intuition, we exploit the temporal
relations of features in the range map via cross-attention (Vaswani et al., 2017a; Li et al., 2022; Gao
et al., 2022). As for the inference stage, we propose a max-voting-based post-processing scheme that
effectively reuses the predictions of past frames. To this end, we transform the previous scans with
predicted semantic class labels into the current ego car coordinate frame and then obtain the final
segmentation by aggregating the predictions within the same voxel by max-voting.

In summary, we make the following three contributions:

• We propose TFNet, a projection-based LiDAR semantic segmentation method. It utilizes a
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Figure 7.2: Architecture of TFNet. For a point cloud Pt, TFNet projects it onto range images
It. It then uses a segmentation backbone to extract multi-scale features tFtu1:l, a Temporal Cross-
Attention (TCA) layer to integrate past features tFt´1u1:l, and a segmentation head to predict projec-
tion based logits Ot. In inference, it refines the re-projected prediction St by aggregating the current
and past temporal predictions tSu1:t by a Max-Voting-based Post-processing (MVP) strategy.

temporary cross-attention layer, which extracts informative features from previous LiDAR
scans and combines them with current range features, to compensate for occluded objects.

• We design a temporal-based post-processing method to solve the “many-to-one” mapping issue
in range images. Compared with previous post-processing steps, our method achieves better
performance, which is verified for various networks.

• We evaluate the proposed method on two public benchmarks, namely SemanticKITTI (Behley
et al., 2019c) and SemanticPOSS (Pan et al., 2020b), where our method achieves a good trade-
off between accuracy and inference time.

7.2 Method

7.2.1 Network Overview

The overview of our proposed network is illustrated in Figure 7.2. Our proposed network takes as
input a point cloud P comprising N points represented by 3D coordinates x, y, z, and intensity i.
The point cloud is projected onto a range image I of size H ˆ W ˆ 5 using a spherical projection
technique employed in previous works (Milioto et al., 2019c; Wu et al., 2018a). Here, H and W

represent the height and width of the image, and the last dimension includes coordinates px, y, zq,
range r “

a

x2 ` y2 ` z2, and intensity i. Next, we feed the range image into our backbone model
to obtain multi-scale features F with resolutions t1, 1{2, 1{4, 1{8u. We employ a Temporal Cross-
Attention (TCA) layer to integrate spatial features from history frame. The aggregated features
are then fed to the segmentation head, which predicts the projection-based semantic segmentation
logits O. For inference, we re-project the 2D semantic segmentation prediction to a 3D point-wise
prediction S. Subsequently, we propose a Max-Voting-based Post-processing (MVP) strategy to
refine the current prediction St by aggregating previous predictions. We describe the key components
of our network in the following sections.
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Figure 7.3: Illustration of the max voting post-processing strategy.

7.2.2 Temporal Cross Attention

Although the range image suffers from the “many-to-one” issue, the occluded points can be captured
from adjacent scans. This observation motivates us to incorporate sequential scans into both the
training and inference stages. First, we discuss how sequential data can be exploited during the
training stage.

Inspired by the notable information extraction ability of the attention mechanism (Vaswani et al.,
2017a) verified by various other works (Xie et al., 2021; Li et al., 2022; Wang et al., 2023; Ma
et al., ICCV), we use the cross-attention mechanism to model the temporal connection between the
previous range feature Ft´1 and the current range feature Ft.

The attended value is computed by:

xin “ AttentionpQ,K, V q “ Softmax

˜

Q ¨ KT

a

df

¸

V, (7.1)

where Q,K, V are obtained by Q “ LinearqpFtq, K “ LinearkpFt´1q, V “ LinearvpFt´1q, and
df is the dimension of the range features.

We integrate a 3 ˆ 3 convolution into the feed-forward module to encode positional information
as in Xie et al. (2021) as well as a residual connection (He et al., 2016b). The feed-forward module
is defined as follows:

xout “ MLP(GELUpConv3ˆ3pMLPpxinqqqq ` xin. (7.2)

The TCA module effectively exploits temporal dependencies in two ways. First, instead of us-
ing multiple stacked range features (Chen et al., 2021c), our method extracts temporal information
from the previous range features. This not only reduces computational costs but also minimizes the
influence of moving objects, which can introduce noise into the data. Secondly, we only utilize the
fusion module on the last feature level, which significantly decreases computation complexity. Pre-
vious works (Li et al., 2022; Gao et al., 2022) have shown that the attention at shallower layers is not
effective.

7.2.3 Max-voting-based Post-processing

While temporal cross attention exploits temporal information at the feature level, it does not resolve
the “many-to-one” issue during the re-projection process of a projection-based method, which causes
occluded far points to inherit the predictions of near points. We thus propose a max-voting-based
post-processing (MVP) strategy, which is motivated by the observation that occluded points will be



7.2. Method 85

In
pu

t

m
ea

n-
Io

U

ca
r

bi
cy

cl
e

m
ot

or
cy

cl
e

tr
uc

k

ot
he

r-
ve

hi
cl

e

pe
rs

on

bi
cy

cl
is

t

m
ot

or
cy

cl
is

t

ro
ad

pa
rk

in
g

si
de

w
al

k

ot
he

r-
gr

ou
nd

bu
ild

in
g

fe
nc

e

ve
ge

ta
tio

n

tr
un

k

te
rr

ai
n

po
le

tr
af

fic
-s

ig
n

PointNet (Qi et al., 2017a)

Point

14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7

PointNet++ (Qi et al., 2017c) 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9

LatticeNet (Luo et al., 2020b) 52.9 92.9 16.6 22.2 26.6 21.4 35.6 43.0 46.0 90.0 59.4 74.1 22.0 88.2 58.8 81.7 63.6 63.1 51.9 48.4

RandLA-Net (Hu et al., 2020b) 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7

KPConv (Thomas et al., 2019b) 58.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4

BAAF-Net (Qiu et al., 2021) 59.9 95.4 31.8 35.5 48.7 46.7 49.5 55.7 33.0 90.9 62.2 74.4 23.6 89.8 60.8 82.7 63.4 67.9 53.7 52.0

UnPNet 54.6 90.4 43.8 36.1 20.4 23.1 54.3 54.2 14.4 91.4 62.0 74.2 18.9 86.3 54.6 80.5 59.4 66.3 48.7 58.6

MINet

Range

55.2 90.1 41.8 34.0 29.9 23.6 51.4 52.4 25.0 90.5 59.0 72.6 25.8 85.6 52.3 81.1 58.1 66.1 49.0 59.9

FIDNet (Zhao et al., 2021) 59.5 93.9 54.7 48.9 27.6 23.9 62.3 59.8 23.7 90.6 59.1 75.8 26.7 88.9 60.5 84.5 64.4 69.0 53.3 62.8

Meta-RangeSeg (Wang et al., 2022b) 61.0 93.9 50.1 43.8 43.9 43.2 63.7 53.1 18.7 90.6 64.3 74.6 29.2 91.1 64.7 82.6 65.5 65.5 56.3 64.2

KPRNet (Kochanov et al., 2020b) 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

Lite-HDSeg (Razani et al., 2021) 63.8 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7

CENet (Cheng et al., 2022) 64.7 91.9 58.6 50.3 40.6 42.3 68.9 65.9 43.5 90.3 60.9 75.1 31.5 91.0 66.2 84.5 69.7 70.0 61.5 67.6

RangeViT (Ando et al., 2023) 64.0 95.4 55.8 43.5 29.8 42.1 63.9 58.2 38.1 93.1 70.2 80.0 32.5 92.0 69.0 85.3 70.6 71.2 60.8 64.7

LENet (Ding, 2023) 64.5 93.9 57.0 51.3 44.3 44.4 66.6 64.9 36.0 91.8 68.3 76.9 30.5 91.2 66.0 83.7 68.3 67.8 58.6 63.2

TFNet (Ours) 66.1 94.3 60.7 58.5 38.4 48.4 74.3 72.2 35.5 90.6 68.5 75.3 29.0 91.6 67.3 83.8 71.1 67.0 60.8 68.7

Table 7.1: Performance comparison on SemanticKITTI test set. “MINet” is the method in Chapter
4 while “UnPNet” is the method in Chapter 6.

visible in the adjacent scans as shown in Figure 7.1. As verified in Table 7.5, MVP is generic and
can be added to various networks.

Temporal scan alignment. To initiate post-processing, it is essential to align a series of past Li-
DAR scans (P1, ..., Pt) to the viewpoint (i.e., coordinate frame) of Pt. The alignment is accom-
plished by utilizing the estimated relative pose transformations T j

j´1 between the scans Pj´1 and
Pj . These transformation matrices can be acquired from an odometry estimation approach such as
SuMa++ (Chen et al., 2019b). The relative transformations between the scans (T 2

1 , ..., T
t
t´1) are rep-

resented by transformation matrices of T j
j´1 P R4ˆ4. Further, we denote the jth scan transformed to

the viewpoint of Pt by

P jÑt “ tT t
jpiupiPPj with T t

j “

t
ź

k“j`1

T k
k´1. (7.3)

Sparse grid max voting. After applying the transformations, we aggregate the aligned scans. We
quantize the aggregated scans into a voxel grid with a fixed resolution δ. In each grid, we use the
max-voting strategy to use the most frequently predicted class label to represent the semantics of all
points in the grid. We illustrate this process in Figure 7.3 and evaluate the impact of the grid size in
Figure 7.6.

To save computation and memory, we store only the non-empty voxels. This sparse representa-
tion allows our method to handle large scenes.

Sliding window update. We initialize a sliding window Wt´L`1:t with the length of L to store the
scans and use a FIFO (First In First Out) strategy to update the points falling in each grid. When
the LiDAR sensor obtains a new point cloud scan, we add it to this sliding window and remove the
oldest scan. We do not use different weights across frames due to the uncertain occlusion problem.
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7.3 Experiments

Datasets and evaluation metrics. We use two benchmark datasets, SemanticKITTI (Behley
et al., 2019c) and SemanticPOSS (Pan et al., 2020b), to evaluate our proposed method. Se-
manticKITTI (Behley et al., 2019c) is a popular benchmark for LiDAR-based semantic segmentation
in driving scenes. It contains 19,130 training frames, 4,071 validation frames, and 20,351 test frames.
Each point in the dataset is provided with a semantic label of 19 classes for semantic segmentation.
We also evaluate our dataset on the SemanticPOSS (Pan et al., 2020b) dataset, which contains 2988
scenes for training and testing. For evaluation, we follow previous works (Cheng et al., 2022; Kong
et al., 2023b; Zhao et al., 2021; Wu et al., 2018a), utilizing the class-wise Intersection over Union
(IoU) and mean IoU (mIoU) metrics to evaluate and compare with others.
Implementation details. While we use CENet (Cheng et al., 2022) as the main baseline method,
our method demonstrates robust generalization across various backbones as shown in the following
experiments. We train the proposed method using the Stochastic Gradient Descent (SGD) optimizer
and set the batch size to 8 and 4 for SemanticKITTI and SemanticPOSS, respectively. We follow the
baseline method (Cheng et al., 2022) to supervise the training with a weighted combination of cross-
entropy, Lovász softmax loss (Berman et al., 2018b), and boundary loss (Bokhovkin and Burnaev,
2019). The weights for the loss terms are set to β1 “ 1.0, β2 “ 1.5, β3 “ 1.0, respectively. All the
models are trained on GeForce RTX 3090 GPUs. The inference latency is measured using a single
GeForce RTX 3090 GPU. The backbone is trained from scratch on all the datasets.

7.3.1 Comparison with State-of-the-arts

Quantitative results on SemanticKITTI. Table 7.1 reports comparisons with representative models
on the SemanticKITTI test set. Our method outperforms all projection-based methods, including
CNN-based architectures (Cheng et al., 2022; Zhao et al., 2021; Li et al., 2021a) and Transformer-
based architectures (Ando et al., 2023) in terms of mean IoU. CENet (Cheng et al., 2022) uses test
time augmentation to improve the performance. For a fair comparison with previous methods (Mil-
ioto et al., 2019c; Li et al., 2021a), we do not use test time augmentation.
Quantitative results on SemanticPOSS. We present our performance on the SemanticPOSS test
set (Pan et al., 2020b) in Table 7.2. Our approach outperforms all approaches in terms of mean IoU.
Compared to CENet, our method shows a significant advantage in predicting small objects such as
traffic signs, poles, and cones/stones.
Inference time comparison. We visualize the inference time and mIoU of popular methods in Figure
7.4. The results show that projection-based methods are faster than point, voxel, or hybrid methods.
We measured the inference time of all the methods on the same hardware with a GeForce RTX 3090
GPU for a fair comparison.

7.3.2 Ablation Analysis

Effect of the temporal post-processing. Table 7.3 compares the proposed post-processing method
with other post-processing approaches on the SemanticKITTI validation set. Using a CRF for post-
processing has been used by SequeezeSegv2 (Wu et al., 2019a). We train the network with CRF
from scratch using the same training pipeline as our method. The k-Nearest Neighbor (k-NN)
method (Milioto et al., 2019c) is the most popular post-processing method. It is widely used in
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person 6.8 43.9 57.3 62.4 72.2 75.5 72.4
rider 0.6 7.1 4.6 12.1 23.1 22.0 20.5
car 6.7 47.9 35.0 63.8 72.7 77.6 77.7

truck 4.0 18.4 14.1 22.3 23.0 25.3 24.8
plants 2.5 40.9 58.3 68.6 68.0 72.2 71.6

traffic-sign 9.1 4.8 3.9 16.7 22.2 18.2 29.1
pole 1.3 2.8 6.9 30.1 28.6 31.5 37.8

trashcan 0.4 7.4 24.1 28.9 16.3 48.1 46.3
building 37.1 57.5 66.1 75.1 73.1 76.3 79.9

cone/stone 0.2 0.6 6.6 58.6 34.0 27.7 34.5
fence 8.4 12.0 23.4 32.2 40.9 47.7 47.3
bike 18.5 35.3 28.6 44.9 50.3 51.4 53.9

ground 72.1 71.3 73.5 76.3 79.1 80.3 78.4
mean-IoU 12.9 26.9 30.9 43.2 46.4 50.3 51.9

Table 7.2: Evaluation results on the SemanticPOSS test set.

Lite-HDseg (Razani et al., 2021), SequeezeSegv3 (Xu et al., 2020a), CENet (Cheng et al., 2022),
SalsaNext (Cortinhal et al., 2020b), and MiNet (Li et al., 2021a). The Nearest Label Assignment
(NLA) post-processing is used by FIDNet (Zhao et al., 2021). It iterates over each point to check if
a point is occluded or not. We use the source code from the corresponding methods. For the Point
Refine module proposed in MotionSeg3D (Sun et al., 2022a), we follow its implementation. We use
SPVCNN (Liu et al., 2019c) as the Point Refine module and use the features before the classification
layer as the input to the Point Refine module. We then fine-tune the network with the Point Refine
module in a second stage with a 0.001 learning rate for ten epochs. The results show the “many-
to-one” issue harms the performance heavily. Without our proposed post-processing (‘w/o MVP’),
the mean IoU is by 6.1 lower. That CRF can actually decrease the mean IoU has been also shown
in Milioto et al. (2019c). While NLA and k-NN improve the results, the best mean IoU is achieved
by our approach.

Effect of different fusion strategy. In Table 7.4, we replace the proposed temporal fusion layer with
other strategies. Mars3D (Liu et al., 2023a) adopts element-wise summation to aggregate temporal
multi-scan point cloud embeddings and produce enhanced features. The temporal memory attention
(TMA) module (Wang et al., 2021) validates its effectiveness on the video semantic segmentation
task. BEVFormer v2 (Yang et al., 2023) uses a feature warp and concatenation strategy to incor-
porate temporal information and shows its effectiveness on the LiDAR detection task. We follow
its implementation, which concatenates previous BEV features with the current BEV feature along
the channel dimension and employs residual blocks for dimensionality reduction. We transform the
scans to the same ego-car coordinates to implement the accurate alignment between temporal scans.
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w/o MVP 60.4 85.8 44.0 61.5 80.3 53.0 68.7 70.2 0.91 94.8 42.1 80.9 0.95 81.8 52.4 83.2 60.3 70.6 51.9 47.9
CRF (Wu et al., 2018a) 58.2 (-2.2) 87.0 40.0 57.3 67.7 52.2 66.1 62.5 0.38 94.5 46.4 81.1 0.66 81.7 53.6 81.4 60.9 66.3 49.0 47.6

PointRefine (Sun et al., 2022a) 59.2 (-1.2) 84.5 43.7 53.7 76.3 48.6 68.3 70.6 7.5 94.6 39.8 80.5 11.8 81.4 50.7 83.8 59.4 72.2 51.1 46.1
NLA (Zhao et al., 2021) 64.4 (+4.0) 92.0 47.5 66.8 79.0 55.9 76.2 85.7 12.4 94.5 42.7 80.8 10.6 87.3 54.6 85.9 66.0 72.2 63.4 49.8

k-NN (Milioto et al., 2019c) 64.5 (+4.1) 91.4 50.7 66.9 81.2 54.9 76.8 85.1 0.96 94.5 41.6 80.9 0.95 88.5 55.6 86.2 66.8 71.5 64.5 50.2
MVP (Ours) 66.5 (+6.1) 93.4 54.1 70.2 85.9 59.8 79.8 88.0 0.58 94.7 44.8 81.1 0.46 90.3 66.6 86.8 69.5 72.7 65.1 50.3

Table 7.3: Comparison with different post-processing methods. Our MVP method is significantly
better.

Fusion Strategies mIoU

w/o TCA 66.9

TMA module (Wang et al., 2021) 67.8 (+0.9)

Residual images (Wang et al., 2022b) 61.4 (-5.5)

Element-wise addition (Liu et al., 2023a) 67.6 (+0.7)

Channel concatenation (Yang et al., 2023) 68.0 (+1.1)

TCA module (ours) 68.1 (+1.2)

Table 7.4: Comparison with other temporal fusion methods.

For the LiDAR semantic segmentation task, Meta-RangeSeg (Wang et al., 2022b) proposes to use
three previous residual images as input and a meta-kernel module to incorporate temporal informa-
tion. We follow its implementation and add to the five-channel input (x,y,z,r,i) three channels for the
three residual images and a channel for the mask, which indicates whether the pixel is a projected
3D point or not. The residual images are calculated by first transforming the point clouds of previous
frames into the coordinates of the current frame and then calculating the absolute differences between
the range values of the current scan and the transformed one with normalization. A meta-kernel is
followed to capture the spatial and temporal information. For a fair comparison, we keep the encoder
and decoder of our architecture. We report the projection-based mIoU here because the loss function
is applied directly to the range image. All strategies are trained with the same setting and pipeline.
The results in Table 7.4 show that our temporal fusion approach performs best.

7.3.3 Generalization Ability

In order to demonstrate that the proposed max-voting-based post-processing (MVP) can be applied
to other networks, we apply MVP to various networks including point-based methods (Choy et al.,
2019; Liu et al., 2019c), projection-based methods (Wang et al., 2022b; Cheng et al., 2022; Zhao
et al., 2021), and a voxel-based method (Zhang et al., 2020a). In contrast to Table 7.1, which contains
the reported results on the test set, Table 7.5 reports the results of the public available pre-trained
models with and without post-processing on the validation set. The results show that the proposed
MVP post-processing improves the results for various approaches.
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Backbone Input
Post-processing

- k-NN (Milioto et al., 2019c) MVP (Ours)

MinkUNet (Choy et al., 2019)
Point

58.9 / 60.1 (+1.1)

SPVNAS (Liu et al., 2019c) 64.7 / 65.3 (+0.6)

FIDNet (Zhao et al., 2021)
Range

55.4 58.6 (+3.2) 61.5 (+6.1)

Meta-RangeSeg (Wang et al., 2022b) 56.6 60.3 (+3.7) 63.1 (+6.5)

CENet (Cheng et al., 2022) 58.8 62.6 (+3.8) 64.7 (+5.9)

PolarSeg (Zhang et al., 2020a) Polar 57.2 / 58.0 (+0.8)

Table 7.5: Generalization to other networks.

PolarSeg

FIDNet

LENet
CENet

Meta-RangeSeg

SPVNAS@65
SPVNAS@35

MinkUNet@114

MinkUNet@46

SPVCNN@119

Cylinder3D

SPVCNN@47

Ours

PMF

GFNet

RangeNet53

RangeViT

50

55

60

65

70
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Io

U
 (

%
)

Hybrid based
Polar based

Point based

Range based

Figure 7.4: mIoU vs. runtime on SemanticKITTI. Our method balances mIoU and inference time
better than other state-of-the-art methods. Best viewed in color.

7.3.4 Impact of other factors

Effect of frame numbers. In Figure 7.6 (a), we analyze the impact of the length L of the sliding
window update discussed in Section 7.2.3. It shows that L “ 10 is a reasonable choice.
Effect of grid size resolution. As discussed in Section 7.2.3, we quantize the aggregated scans
into a voxel grid with a fixed resolution. Note that the resolution needs to be appropriate since the
underlying assumption is that all points inside a voxel share the same semantic class. This assumption
is violated if the voxel size is too large and the estimates become noisy when it is too small. We
evaluate the impact of different resolutions in Figure 7.6 (b). The results show that a voxel size of
0.10m works best.
Qualitative evaluation. We provide a visual comparison of two point clouds in Figure 7.5. The
impact of the “many-to-one" problem is evident when there is no post-processing technique applied,
shown in Figure 7.5 (a). Specifically, points of the trunk of the tree inherit the predictions from
points of the traffic sign and vegetation since they are projected to the same range pixel. In Figure
7.5 (b), the widely-used k-NN (Milioto et al., 2019c) refines the predictions, but it cannot correct false
predictions when larger areas are occluded. In contrast, our method corrects false predictions in the
single scan by keeping a consistent prediction across previous scans, as shown in Figure 7.5 (c). This
demonstrates the benefit of introducing temporal information in the post-processing step to resolve
the “many-to-one" problem.
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(a) No Processing (b) k-NN (c) Ours (d) GT

■ bicycle ■ car ■ motorcycle ■ truck ■ other vehicle ■ person ■ bicyclist ■ motorcyclist ■ road ■ parking
■ sidewalk ■ other ground ■ building ■ fence ■ vegetation ■ trunk ■ terrain ■ pole ■ traffic sign

Figure 7.5: Qualitative analysis of the post-processing scheme. (a) The “many-to-one” issue is
evident without post-processing, e.g., the trunk is partially segmented as traffic sign and vegetation
as they project onto the same range pixel (row 2). (b) k-NN (Milioto et al., 2019c) smooths the
semantic labels locally, but it cannot resolve ambiguities by objects that are close or prediction errors.
(c) Our method exploits temporal information to resolve false predictions (row 1) or ambiguities due
to occlusions (row 2). Best viewed in color.
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(a) Effect of number of scans. (b) Effect of grid size.

Figure 7.6: Effect of window size and grid size resolution.
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7.4 Conclusion

In this chapter, we introduced a novel solution named TFNet to tackle the issue of boundary blur-
riness, also called “many-to-one”, in projection-based LiDAR semantic segmentation tasks. Our
approach leverages temporal information by proposing temporal fusion layers during the training
process and a sequential max voting strategy during inference. The experiments on two bench-
marks demonstrate the advantages of TFNet. In particular, integrating temporal information enables
TFNet to exhibit robustness in scenarios with significant occlusion while maintaining real-time per-
formance. Furthermore, we conducted comprehensive ablation studies to validate the design, as well
as the generalization of the proposed post-processing to other networks.

For now, we have presented several solutions for efficient LiDAR point cloud semantic segmen-
tation. The core idea behind these methods is the utilization of projection maps of LiDAR scans.
We start with an efficient architecture in Chapter 4 which directly operates on the projection map.
Then we explore the relationship between point-based methods and projection-based methods for
LiDAR point cloud semantic segmentation in Chapter 6. We have figured out the reason for the poor
performance and low efficiency of point-based methods for this task and proposed a general strategy
to improve the performance. In Chapter 7, we investigate projection-based methods and voxel-based
methods and try to find the reason that projection-based methods usually cannot achieve similar per-
formance to voxel-based methods. We found this is usually caused by “many-to-one” issue and we
proposed to utilize the temporal information to fix it. The temporal information is also utilized in
Chapter 5 where we propose a new data representation to compress moving information. With this
data representation, we can achieve moving object segmentation accurately and efficiently.





CHAPTER 8

Spatial-Temporal Consistency Network
for Low-Latency Trajectory Forecasting

Individual Contribution

The following chapter is based on the publication:

Spatial-Temporal Consistency Network for Low-Latency Trajectory Forecasting
ShiJie Li, Yanying Zhou, Jinhui Yi, Juergen Gall
International Conference on Computer Vision (ICCV), 2021.
doi:10.1109/ICCV48922.2021.00195

Below we will summarize the contributions of each author.

• Shijie Li
Shijie proposed the main idea of the paper and implemented the whole method. Shijie per-
formed the experiments and conducted the qualitative and quantitative analysis. Shijie also
wrote most of the paper.

• Yanying Zhou
Yanying contributed to the main idea and writing. Yanying also helped to draw the figures in
the paper.

• Jinhui Yi
Jinhui contributes to writing.

• Juergen Gall
Juergen supervised the project. He contributed with discussion and writing.

In the previous chapters, we present some solutions for efficient LiDAR point cloud semantic
segmentation. At this stage, the vehicles can understand the nearby environment. Based on this, we
go one step further and conduct research on motion forecasting, which is important for ensuring the
safety of autonomous driving. In the following, we convert our focus to motion forecasting in this
chapter. Trajectory forecasting is a crucial step for autonomous vehicles and mobile robots in order to
navigate and interact safely. In this chapter, we mainly focus on mapless human trajectory prediction
as the safety of humans is the highest priority. In order to handle the spatial interactions between
objects, graph-based approaches have been proposed. These methods, however, model motion on a
frame-to-frame basis and do not provide a strong temporal model. To overcome this limitation, we
propose a compact model called Spatial-Temporal Consistency Network (STC-Net). In STC-Net,
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((a)) Social-STGCNN (Mohamed et al., 2020) ((b)) Ours

Figure 8.1: State-of-the-art graph-based approaches like (Mohamed et al., 2020) do not model the
temporal motion of the trajectories well, which results in shaky and unrealistic trajectories (dashed
yellow) as shown in (a). In this figure, red denotes the observed trajectory and blue is the ground-truth
future trajectory. Our approach addresses this issue and forecasts spatially and temporally consistent
trajectories (b).

dilated temporal convolutions are introduced to model long-range dependencies along each trajectory
for better temporal modeling while graph convolutions are employed to model the spatial interaction
among different trajectories. Furthermore, we propose a feature-wise convolution to generate the
predicted trajectories in one pass and refine the forecast trajectories together with the reconstructed
observed trajectories. We demonstrate that STC-Net generates spatially and temporally consistent
trajectories and outperforms other graph-based methods.
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8.1 Introduction

Intelligent agents like autonomous vehicles and mobile robots navigate and interact in spaces that
are shared with humans. The safety of humans is therefore of the highest priority. To this end,
agents are required to understand and forecast the trajectories of surrounding pedestrians or vehicles
such that they can make the right decisions and for instance navigate safely and smoothly through a
crowd. Trajectory forecasting, however, is challenging due to the complex behavior and interactions
of humans in crowds. Furthermore, the available resources will always be a limiting factor as the
agents are equipped with energy-efficient hardware. Hence, there is a need for compact forecasting
models with a very low latency. In practice, low latency is required for most applications since there
is otherwise not enough time to adjust the motion and any millisecond can save lives.
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Figure 8.2: The proposed spatial-temporal consistency network takes observed trajectories (solid
curves) of N objects as input and forecasts the future trajectories (dashed curves). It combines graph
convolutions (GC) for modeling interactions of trajectories in close proximity and dilated temporal
convolutions (DTCs) for capturing temporal relations over the entire trajectories. The feature-wise
convolution (FWC) forecasts the features in one pass and the final refinement ensures the consistency
of the reconstructed and forecast part of a trajectory.

Over the last few years, several approaches have been proposed for trajectory forecasting. RNN-
based methods (Alahi et al., 2016; Liang et al., 2019; Zhang et al., 2019b) utilize a recurrent model
to model the trajectory of each pedestrian in the scene, and their interactions are taken into account
by a pooling operation. GAN-based methods (Gupta et al., 2018; Li et al., 2019; Sadeghian et al.,
2019) enable RNN-based methods to produce multiple socially plausible trajectories. Graph-based
methods (Kosaraju et al., 2019; Williams and Li, 2018; Mohamed et al., 2020) model spatial relations
as a graph and utilize graph convolutions. These methods, however, have in common that they use
recurrent neural networks to generate future trajectories, which results in a relatively high latency. To
address this issue, Social-STGCNN (Mohamed et al., 2020) proposed a CNN for time-extrapolation.
As a result, Social-STGCNN achieves a very low latency of 2ms. This, however, comes at the cost
that the forecast trajectories are noisy and not temporally consistent as shown in Figure 8.1(a).

In this work, we therefore address this issue and present an approach that generates spatially and
temporally consistent trajectories with a latency of less than 2ms. To achieve this, the proposed
Spatial-Temporal Consistency Network (STC-Net), which is shown in Figure 8.2, utilizes graph
convolutions for spatial modeling and dilated temporal convolutions for temporal modeling. Our
network generates trajectories that are consistent over the past and the future. This consistency is
implicitly enforced by reconstructing the past, jointly refining the reconstructed past and forecast
future, and computing the loss over the entire trajectory. In order to achieve a very low latency,
we do not use any recurrent layers but propose feature-wise convolutions that generate the future
trajectories with variable length in one pass. The proposed network design yields very compact
networks with only 0.7k parameters and 1.3ms latency.

We thoroughly evaluate the approach on three datasets with six different scenes and analyze
its generalization ability by performing a cross-dataset experiment and evaluating the approach for
different temporal sampling rates. The proposed approach outperforms other graph-based methods
in terms of accuracy, model size, and latency. It is also important to note that most approaches cannot
keep up with the frame rate, i.e., the forecasting cannot be performed until the next frame is captured.
This means that these methods are not fast enough for real-world applications. Even for a very slow
frame rate of 2.5 frames per second, only Gupta et al. (2018); Monti et al. (2020); Mohamed et al.
(2020) are able to process the data fast enough. Compared to these methods, our approach is not only
faster, but it is also far more accurate.
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8.2 Method

The goal of trajectory forecasting is to predict the upcoming trajectories given past observed trajec-
tories. We denote the observed trajectory of each object n, which are commonly pedestrians but
can also be other objects like vehicles, by T n

o “ tpn
t “ pxnt , y

n
t q | t P t1, ..., Touu and the future

trajectory by T n
f “ tpn

t “ pxnt , y
n
t q | t P tTo ` 1, ..., To ` Tfuu, where pn

t is the location of the
object n at time t.

For forecasting, we use a Gaussian distribution Npn
t

pµ̂n
t , Σ̂

n
t q, i.e.we estimate for each pn

t P T n
f

the mean µ̂n
t and the covariance matrix Σ̂n

t . In order to vectorize the covariance matrix, we use

Σ̂ “

ˆ

σ̂2
1 ρ̂σ̂1σ̂2

ρ̂σ̂1σ̂2 σ̂2
2

˙

. (8.1)

The covariance matrix is then defined by the three-dimensional vector pσ̂1, σ̂2, ρ̂q.
For training, we minimize the negative log-likelihood, i.e.given for each trajectory the ground-

truth position pn
t , we minimize

Lf “ ´

N
ÿ

n“1

To`Tf
ÿ

t“To`1

log
´

Npn
t

pµ̂n
t , Σ̂

n
t q

¯

, (8.2)

where N is the number of present objects.
In contrast to previous works, our proposed network not only estimates the future trajectory T n

f ,
but also reconstructs the observed trajectory T n

o and refines them both as a single trajectory as it is
illustrated in Figure 8.2. This helps to learn a better representation that is spatially and temporally
consistent as we will show in the experiments. For the observed trajectory T n

o , we use the squared
error as reconstruction loss:

Lo “

N
ÿ

n“1

To
ÿ

t“1

}p̂n
t ´ pn

t }
2 , (8.3)

where p̂n
t is the reconstructed position for object n at frame t and pn

t is the observed position.
For training the network, we sum the two loss functions Equation 8.2 and Equation 8.3 with equal

weights, i.e.
L “ Lf ` wLo. (8.4)

where w “ 1. For the ablation study, however, we also investigate different values of w.

8.2.1 Spatial Graph Representation

As in other graph-based approaches (Kosaraju et al., 2019; Williams and Li, 2018; Mohamed et al.,
2020), we use a graph structure to model the spatial relations between the objects. Since we focus on
the temporal modeling, we use for a fair comparison the graph representation that has been proposed
in Mohamed et al. (2020). At each timestamp t, a spatial graph Gt “ pVt, Etq is constructed where
Vt “ tvnt | n P t1, ..., Nuu are the vertices corresponding to the N objects and Et “ tenmt | n,m P

t1, ..., Nuu denote the edges that encode the spatial relationship between object n and m. For each
edge, the affinity anmt is computed by

anmt “

"

}pn
t ´ pm

t }
´1 , if }pn

t ´ pm
t } ą 0

0 , otherwise.
(8.5)
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Figure 8.3: We model the observed trajectories (green) and forecast trajectories (blue) together by
using dilated temporal convolutions that are stacked with increasing dilation rates. This provides
a very strong temporal model for trajectories since the motion is modeled over a large temporal
receptive field.

This means that the objects influence each other when they are close. Suppose V plq is the stack of
V

plq
t , that is the vertices at time step t and network layer l. The features of the vertices fpV plqq are

updated in a graph convolution layer as follows:

f
´

V pl`1q
¯

“ ReLU
´

D̃´ 1
2 ÃD̃´ 1

2 f
´

V plq
¯

W plq
¯

(8.6)

where W plq are the learnable convolution weights, Ã is the stack of Ãt “ At ` I , and the diagonal
matrix D̃ is the stack of d̃nnt “

ř

m ãnmt .
While Equation 8.6 describes the layer for a single frame t, some works simply stack the features

and matrices for multiple frames in order to extend the graph to the temporal domain. This, however,
results in a poor temporal model that generates noisy trajectories that are not very consistent over
time as we show in the experiments. In this work, we, therefore, propose to use dilated temporal and
feature-wise convolutions for forecasting trajectories and combine them with graph convolutional
layers. In the experiments, we will show that this results in forecast trajectories that are spatially and
temporally more consistent.

8.2.2 Architecture

In order to forecast spatially and temporally consistent trajectories, we propose to combine different
convolutions as shown in Figure 8.4. While graph convolutions model the relations of objects that
are close, they are not the best choice for temporal modeling as discussed previously. We there-
fore propose graph convolutions for spatial modeling and dilated temporal convolutions for temporal
modeling. In contrast to graph convolutions that only consider neighbors based on the affinity matrix
A, dilated temporal convolutions with gradually increasing dilation rates capture long-range depen-
dencies as it is illustrated in Figure 8.3.

For our network, which is shown in Figure 8.2, we first aggregate spatial information among
different observed trajectories at each frame using graph convolutions. We then aggregate temporal
information using dilated temporal convolutions (Li et al., 2020a). We use 3 dilated temporal con-
volutions with kernel size 3 and dilation rates 2l´1, where l is the layer number, and apply it to each
trajectory. Finally, we use a graph convolution to aggregate again the spatial information. In this
way, the network is able to consider the interaction of trajectories that are in close proximity as well
as the full temporal information that is available for each trajectory.
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Figure 8.4: The four different convolutions that are used in STC-Net. For the illustrations, the input
tensor is pCin, To, Nq where To are the observed frames, N denotes the number of objects, and Cin

is the dimensionality of the input features. (a) Vanilla 1 ˆ 1 convolutions map the feature to another
space with dimensionality Cout. The output tensor is thus pCout, To, Nq. (b) In contrast, the pro-
posed feature-wise convolutions keep the feature dimensionality but adjust the temporal dimension.
Since the predicted length Tf is variable, it is suitable for forecasting and we use them to forecast
the future features. The output tensor is pCin, Tf , Nq. (c) Graph convolutions aggregate the features
at a frame based on the spatial relations of the objects and they are used to model interactions be-
tween objects. Depending on the number of kernels, the feature dimensionality can change and the
output tensor is pCout, To, Nq. (d) Temporal convolutions operate over time and aggregate for each
trajectory temporal information. Due to dilated convolution kernels, the temporal convolutions can
take the entire trajectory into account. While graph convolutions model spatial relations, temporal
convolutions model temporal relations.

After the interaction of both spatial and temporal information, the initial trajectory prediction is
generated by a feature-wise convolution, which is illustrated in Figure 8.4. It is similar to a 1 ˆ 1

convolution, but the main difference is the information aggregation dimension. At this stage of the
network, the size of the feature tensor is pCin, To, Nq where Cin is the feature dimension, To is the
length of the observed trajectories, and N is the number of objects in the current scene. While a
vanilla 1 ˆ 1 convolution changes the feature dimensionality and aggregates the information across
the features, a feature-wise convolution aggregates for each channel in the feature vector all observed
information along the temporal dimension and can be used to predict the future for each channel
with variable length. After the feature-wise convolution, the size of the feature tensor is pCin, Tf , Nq

where Tf is the length of the future trajectories. In contrast to recurrent or auto-regressive approaches,
feature-wise convolution predicts the future in one pass.

Different from previous works that only predict future trajectories, we also reconstruct the ob-
served trajectories to ensure that the observed and forecast parts of a trajectory are consistent. As
shown in Figure 8.2, we refine both parts as a single consistent trajectory. In particular, the features of
the observed and forecast trajectories are concatenated and refined by dilated temporal convolutions
as before. The only difference is that we use 5 layers since the concatenated trajectory is longer than
the observed one. For training, we use the loss Equation 8.4.
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ETH HOTEL UNIV ZARA1 ZARA2 AVG
S-LSTM (Alahi et al., 2016) 1.09 / 2.35 0.79 / 1.76 0.67 / 1.40 0.47 / 1.00 0.56 / 1.17 0.72 / 1.54

PIF (Liang et al., 2019) 0.73 / 1.65 0.30 / 0.59 0.60 / 1.27 0.38 / 0.81 0.31 / 0.68 0.46 / 1.00
SR-LSTM (Zhang et al., 2019b) 0.63 / 1.25 0.37 / 0.74 0.51 / 1.10 0.41 / 0.90 0.32 / 0.70 0.45 / 0.94

DS-LSTM (Chaofan Tao and Luo, 2020) 0.66 / 1.21 0.27 / 0.46 0.50 / 1.07 0.33 / 0.68 0.28 / 0.60 0.41 / 0.80
FvTraj (Bi et al., 2020) 0.56 / 1.14 0.28 / 0.55 0.52 / 1.12 0.37 / 0.78 0.32 / 0.68 0.41 / 0.85

S-GAN (Gupta et al., 2018) 0.81 / 1.52 0.72 / 1.61 0.60 / 1.26 0.34 / 0.69 0.42 / 0.84 0.58 / 1.18
SoPhie (Sadeghian et al., 2019) 0.70 / 1.43 0.76 / 1.67 0.54 / 1.24 0.30 / 0.63 0.38 / 0.78 0.54 / 1.15

CGNS (Li et al., 2019) 0.62 / 1.40 0.70 / 0.93 0.48 / 1.22 0.32 / 0.59 0.35 / 0.71 0.49 / 0.97
Social-Ways (Amirian et al., 2019) 0.39 / 0.64 0.39 / 0.66 0.55 / 1.31 0.44 / 0.64 0.51 / 0.92 0.46 / 0.83
Goal-GAN (Dendorfer et al., 2020) 0.59 / 1.18 0.19 / 0.35 0.60 / 1.19 0.43 / 0.87 0.32 / 0.65 0.43 / 0.85

TPNet (Fang et al., 2020) 0.84 / 1.73 0.24 / 0.46 0.42 / 0.94 0.33 / 0.75 0.26 / 0.60 0.42 / 0.90
AgentFormer (Yuan et al., 2021) 0.31 / 0.18 0.16 / 0.09 0.35 / 0.15 0.37 / 0.18 0.73 / 0.21 0.38 / 0.16
PECNet (Mangalam et al., 2020) 0.54 / 0.87 0.18 / 0.24 0.35 / 0.60 0.22 / 0.39 0.17 / 0.30 0.29 / 0.48

MemoNet (Xu et al., 2022) 0.13 / 0.07 0.09 / 0.06 0.19 / 0.13 0.20 / 0.11 0.40 / 0.16 0.20 / 0.11
MID (Gu et al., 2022) 0.39 / 0.66 0.13 / 0.22 0.22 / 0.45 0.17 / 0.30 0.13 / 0.27 0.21 / 0.38

Leapfrog (Mao et al., 2023) 0.39 / 0.58 0.11 / 0.17 0.26 / 0.43 0.18 / 0.26 0.13 / 0.22 0.21 / 0.33
STSGN (Zhang et al., 2019a) 0.75 / 1.63 0.63 / 1.01 0.48 / 1.08 0.30 / 0.65 0.26 / 0.57 0.48 / 0.99

Social-BiGAT (Kosaraju et al., 2019) 0.69 / 1.29 0.49 / 1.01 0.55 / 1.32 0.30 / 0.62 0.36 / 0.75 0.48 / 1.00
RSBG (Sun et al., 2020) 0.80 / 1.53 0.33 / 0.64 0.59 / 1.25 0.40 / 0.86 0.30 / 0.65 0.48 / 0.99

Social-STGCNN (Mohamed et al., 2020) 0.64 / 1.11 0.49 / 0.85 0.44 / 0.79 0.34 / 0.53 0.30 / 0.48 0.44 / 0.75
STGAT (Huang et al., 2019) 0.65 / 1.12 0.35 / 0.66 0.52 / 1.10 0.34 / 0.69 0.29 / 0.60 0.43 / 0.83

STC-Net 0.66 / 1.28 0.33 / 0.58 0.41 / 0.78 0.29 / 0.51 0.27 / 0.45 0.39 / 0.72
STC-Net-NAS 0.64 / 1.18 0.33 / 0.54 0.39 / 0.74 0.29 / 0.49 0.26 / 0.45 0.38 / 0.68

Table 8.1: Results on the ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) datasets.

8.3 Experiment

8.3.1 Datasets

We evaluate our method on three common trajectory forecasting datasets which are described below.
As in previous works, 8 frames are used as observation and the following 12 frames need to be
forecast. All trajectories are provided in 2D coordinates.

The ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) datasets aim at pedestrian
trajectory forecasting. ETH contains 2 top view scenes with 750 trajectories and UCY contains
3 scenes close to the top view with 786 trajectories. The data processing is done as Gupta et al.
(2018). The sampling rate is 2.5 frames per second (one frame per 0.4s), which means that the model
observes 3.2 seconds and predicts the trajectories for the next 4.8 seconds.

The Stanford Drone Dataset (Robicquet et al., 2016) includes a series of videos captured by a
hovering drone from 8 different college campuses with more than 10,000 trajectories. The dataset is
much larger than ETH and UCY and includes other objects like bikes or cars apart from pedestrians.
The frame rate is 2.5 frames per second, which is the same as for ETH and UCY. We evaluate our
approach as Monti et al. (2020) for two protocols, namely 2D world and 2D image coordinates.

8.3.2 Metrics

There are two commonly used metrics to evaluate the performance of trajectory forecasting methods:
average displacement error (ADE) and final displacement error (FDE) (Pellegrini et al., 2009).
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ADE FDE
Social LSTM` (Alahi et al., 2016) 0.73 0.96

Social-STGCNN` (Mohamed et al., 2020) 0.71 1.14
Social-Ways (Amirian et al., 2019) 0.62 1.16

STGAT (Huang et al., 2019) 0.58 1.11
STGAT` (Huang et al., 2019) 0.63 1.19
DAG-Net (Monti et al., 2020) 0.54 1.05
DAG-Net˚ (Monti et al., 2020) 0.53 1.02

STC-Net 0.51 0.85
STC-Net-NAS 0.49 0.82

Table 8.2: Results on the Stanford Drone dataset (world coordinates) (Robicquet et al., 2016). `

means that we train the model with the code offered by the authors. ˚ denotes that we use the pre-
trained model offered by the authors.

To NLL NLL L2 L2
Tf NLL L2 NLL L2

ADE / FDE 0.63 / 1.09 1.00 / 1.95 0.51 / 0.85 0.93 / 1.79

Table 8.3: Impact of different loss terms for the reconstructed (To) and forecast (Tf ) trajectory. While
NLL denotes the negative log-likelihood in Equation 8.2, L2 denotes the L2 loss in Equation 8.3.

The average displacement error is defined as:

ADE “

řN
n“1

řTo`Tf

t“To`1 }p̂n
t ´ pn

t }2

N ˆ Tf
, (8.7)

where p̂n
t is the estimated position of object n at frame t and pn

t is the ground-truth position. It
measures the average prediction performance along the whole trajectory. The final displacement
error (FDE) is defined as:

FDE “

řN
n“1

›

›

›
p̂n
To`Tf

´ pn
To`Tf

›

›

›

2

N
. (8.8)

In contrast to ADE, it only measures the prediction accuracy at the endpoint. Because the prediction
of our method is a distribution, we follow the evaluation protocol used in Social-LSTM (Alahi et al.,
2016) to compare the predicted distribution with the ground truth value. Specifically, we sample 20
predictions from the predicted distribution and take the closest sample to the ground truth to compute
ADE and FDE.

8.3.3 Ablation Study

We conduct the ablation study on the Stanford Drone Dataset (Robicquet et al., 2016) since it is the
largest dataset and has the highest diversity. We first evaluate the proposed loss function Equation
8.4, which uses the L2 loss for reconstructed trajectory in Equation 8.3 and negative log-likelihood
(NLL) for the forecast trajectory in Equation 8.2. The results are shown in Table 8.3.

From the table we can see that applying the L2 loss on the reconstructed observed trajectory
and the negative log-likelihood on the forecast trajectory achieves the lowest error (col 3). This is
reasonable because the observed trajectory is determined, which means that there is no uncertainty in
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w 0.5 0.7 1.0 1.3 w/o obs w/o refine
ADE / FDE 0.55 / 0.91 0.54 / 0.87 0.51 / 0.85 0.54 / 0.91 0.58 / 0.97 0.60 / 1.04

Table 8.4: Impact of w in Equation 8.4. While ‘w/o obs’ denotes a setting where the reconstructed
observed trajectories are not concatenated with the forecast trajectories, ‘w/o refine’ uses the fore-
cast trajectories directly after the feature-wise convolution without the last layer of dilated temporal
convolutions.

ADE FDE
SoPhie (Sadeghian et al., 2019) 16.27 29.38
Social GAN (Gupta et al., 2018) 27.23 41.44

CF-VAE (Bhattacharyya et al., 2019) 12.6 22.3
P2TIRL (Deo and Trivedi, 2020) 12.58 22.07
SimAug` (Liang et al., 2020a) 10.27 19.71

PECNet (Mangalam et al., 2020) 9.96 15.88
STC-Net 11.96 20.12

STC-Net-NAS 11.88 20.08

Table 8.5: Results on the Stanford Drone dataset (image coordinates) (Robicquet et al., 2016). ` the
approach uses additional training data.

the ground truth. In contrast, the future trajectory can be uncertain since the future is not necessarily
determined and several trajectories might be plausible. If we use the L2 loss for the forecast trajectory
(col 2 and 4), the error drastically increases since the L2 loss does not handle the uncertainty of the
future. On the other hand, if we use only the negative log-likelihood (col 1), the error is higher
than for the proposed setting (col 3). This is expected since the L2 error enforces a more accurate
reconstruction of the observed trajectory, which is beneficial for the forecasting task.

As discussed previously, we do not weigh the two loss terms in Equation 8.4. Nevertheless,
we evaluate in Table 8.4 the impact of an additional weighting parameter w. We can see that the
error first decreases as w increases to 1.0 and then increases again when w is larger than 1.0. This
shows that there is no need to weight the two loss functions. In the second to last column, we show
why it is important to take the observed trajectory for the final estimate into account. If we do not
concatenate the reconstructed observed and the forecast trajectories (w/o obs) but refine only the
forecast trajectory, the error increases. If we do not refine the trajectories at all (w/o refine), the error
even increases further. This shows the importance of the additional refinement layers.

In Table 8.9, we analyze the impact of the used convolutions on the latency as well as accuracy.
Since we cannot simply remove the convolutions, we replaced them by other operations. We used
pooling instead of graph convolutions (w/o GC), temporal convolutions instead of dilated temporal
convolutions (w/o DTC), and the TXP-CNN of Social-STGCNN (Mohamed et al., 2020) instead of
the feature-wise convolution (w/o FWC). The results show that both graph convolutions and dilated
temporal convolutions are required in order to achieve accurate predictions. It also shows that the
graph convolutions take more than 50% of the processing time. Furthermore, the proposed feature-
wise convolution is much more efficient and effective compared to TXP-CNN.
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0.4s 0.8s 1.2s 1.6s 2.0s AVG
Social-STGCNN (Mohamed et al., 2020) 0.71 / 1.15 0.73 / 1.14 0.69 / 1.10 0.61 / 0.92 0.67 / 1.01 0.68 / 1.06

DAG-Net (Monti et al., 2020) 0.53 / 1.02 0.53 / 1.01 0.58 / 1.14 0.56 / 1.11 0.82 / 1.64 0.60 / 1.18
STGAT (Huang et al., 2019) 0.63 / 1.19 0.64 / 1.17 0.61 / 1.14 0.51 / 0.92 0.57 / 1.05 0.59 / 1.09

STC-Net 0.51 / 0.85 0.50 / 0.80 0.50 / 0.83 0.43 / 0.69 0.50 / 0.80 0.49 / 0.79
STC-Net-NAS 0.49 / 0.82 0.49 / 0.80 0.48 / 0.82 0.41 / 0.67 0.47 / 0.78 0.47 / 0.78

Table 8.6: Temporal robustness. The errors (ADE / FDE) for different sampling rates on the Stanford
Drone dataset (Robicquet et al., 2016).

ETH HOTEL UNIV ZARA1 ZARA2 AVG
Social-STGCNN (Mohamed et al., 2020) 0.64 / 0.88 0.44 / 0.67 0.50 / 0.79 0.53 / 0.71 0.48 / 0.70 0.52 / 0.75

STGAT (Huang et al., 2019) 0.71 / 1.31 0.33 / 0.61 0.61 / 1.26 0.43 / 0.83 0.38 / 0.75 0.49 / 0.95
DAG-Net (Monti et al., 2020) 0.71 / 1.23 0.22 / 0.41 0.70 / 1.47 0.43 / 0.88 0.29 / 0.60 0.47 / 0.92

STC-Net 0.61 / 1.10 0.20 / 0.27 0.43 / 0.79 0.35 / 0.59 0.28 / 0.47 0.37 / 0.64
STC-Net-NAS 0.59 / 1.12 0.20 / 0.25 0.40 / 0.75 0.33 / 0.55 0.27 / 0.46 0.36 / 0.63

Table 8.7: Cross-scene robustness. For this experiment, the approaches are trained on the Stanford
Drone dataset (Robicquet et al., 2016) and evaluated on the ETH (Pellegrini et al., 2009) and UCY
(Lerner et al., 2007) datasets.

8.3.4 Comparison with state-of-the-art methods

Accuracy. We compare our method with other state-of-the-art methods on the ETH (Pellegrini et al.,
2009), UCY (Lerner et al., 2007), and Stanford Drone (Robicquet et al., 2016) datasets. The results
for the ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007) datasets are shown in Table 8.1.
When we compare our approach to other graph-based methods (Zhang et al., 2019a; Kosaraju et al.,
2019; Sun et al., 2020; Mohamed et al., 2020; Huang et al., 2019), we observe that our approach
achieves the lowest average (ADE) and final displacement error (FDE) among graph-based methods.
When we compare our approach to the state-of-the-art, we observe that only PECNet (Mangalam
et al., 2020) achieves a lower error. PECNet uses a two-step approach that first predicts the end-
points and then the trajectories based on the predicted endpoints. While predicting end-points is
complementary to our approach, the high accuracy comes at a high computational cost as shown in
Table 8.8. PECNet requires 3,000 times more parameters and is 467 times slower. In fact, a latency
of over 600ms is too high for applications. With recent progress of the diffusion model, MID (Gu
et al., 2022) and Leapfrog (Mao et al., 2023) also achieve good performance. However, they need to
recursively produce predictions thus inefficient.

As discussed previously, we also generated an instance of the spatial-temporal consistency net-
works by network architecture search. It needs to be noted that we used only the Stanford Drone
Dataset (Robicquet et al., 2016) for the network optimization since it is the largest dataset. If we
use this instance, which is denoted by STC-Net-NAS, for the other two datasets, we observe that the
error is slightly reduced.

The results for the Stanford Drone dataset (Robicquet et al., 2016) are reported in Table 8.2 and
Table 8.5, respectively. The results confirm the very good results from ETH and UCY. Our approach
achieves a much lower error compared to other graph-based approaches. Only the recent approaches
(Liang et al., 2020a; Mangalam et al., 2020) achieve a lower accuracy. While PECNet (Mangalam
et al., 2020) uses a much bigger network and is much slower than our approach as discussed before,
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Parameters Inference time
PECNet (Mangalam et al., 2020) 2.10M (3000x) 0.6070s (467x)
Social LSTM (Alahi et al., 2016) 264K (377.1x) 1.1800s (907.7x)
SR-LSTM (Zhang et al., 2019b) 64.9K (92.7x) 1.1789s (906.8)

STGAT (Huang et al., 2019) 44.6K (63.7x) 1.3497s (1038.2x)
DAG-Net (Monti et al., 2020) 2.35M (3357.1x) 0.0463s (35.6x)

PIF (Liang et al., 2019) 360.3K (514.7x) 0.1145s (88.1x)
Social GAN (Gupta et al., 2018) 46.3K (66.1x) 0.0968s (74.5x)

Social-STGCNN (Mohamed et al., 2020) 7.6K (11x) 0.0020s (1.5x)
STC-Net 0.8K (1.1x) 0.0015s (1.2x)

STC-Net-NAS 0.7K 0.0013s

Table 8.8: Model size and efficiency. Only (Monti et al., 2020; Liang et al., 2019; Gupta et al., 2018;
Mohamed et al., 2020) achieve a latency that is lower than the frame-rate.

w/o GC w/o DTC w/o FWC Ours
ADE 0.64 0.59 0.55 0.51
FDE 1.02 0.99 0.91 0.85

Latency 0.7ms 1.4ms 2.3ms 1.5ms

Table 8.9: Impact of the different types of convolutions.

the numbers of Liang et al. (2020a) are not comparable since the approach uses additional training
data.

Efficiency. Since methods for forecasting trajectories need to be compact and to have a very
low inference time, we compare the size and inference time of STC-Net with other state-of-the-
art methods in Table 8.8. For measuring the inference time, we used a single 1080Ti GPU. In contrast
to previous works, our approach is very compact and comprises less than 1K parameters. From the
state-of-the-art methods, only Social-STGCNN (Mohamed et al., 2020) achieves a very low inference
time. STC-Net, however, not only achieves a much lower forecasting error than Social-STGCNN, it
is even more compact and has a lower latency. It is interesting to note that the neural network search
finds an instance that not only makes more accurate predictions, but also reduces the model size and
inference time. STC-Net-NAS runs with more than 750 frames per second on a low-budget GPU,
yielding a latency of less than 2ms.

Furthermore, we evaluated on the Stanford Drone dataset (image coordinates) the impact of the
model size by increasing the number of dilated convolutional layers before the feature-wise convo-
lution and/or the number of channels. The results are shown in Table 8.10. The results show that the
error can be further reduced by adding more layers or increasing the number of channels per layer at
the cost of increasing the number of parameters or the inference time. Note that for all configurations
the approach is still faster than previous works.

Temporal Robustness. We used a sampling rate of 2.5 frames per second, which corresponds
to one frame every 0.4 seconds, for training and inference. In Table 8.6, we report the results when
we use a lower sampling rate during inference while keeping the number of frames the same. When
the sampling rate is higher, we simulate the case when the objects move faster than observed during
training. Note that the numbers for different sampling rates are not directly comparable since the
sampled trajectories also differ for the different sampling rates, but they indicate how robust the
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((a)) Social-STGCNN (Mohamed
et al., 2020)

((b)) STGAT (Huang et al., 2019) ((c)) STC-Net

Figure 8.5: Qualitative results. The red line is the observed trajectory, the blue line is the ground
truth of the future trajectory, and the yellow dashed line is the prediction.

L CH ADE FED Params Inf time
3 1ˆ 11.96 20.12 0.8K 0.0015s
6 1ˆ 11.61 18.79 1.0K 0.0017s
3 2ˆ 11.65 19.79 2.6K 0.0015s
3 4ˆ 11.49 19.04 10.0K 0.0015s
6 4ˆ 11.34 18.65 13.6K 0.0017s

Table 8.10: Changing the size of the model. From top to bottom, we show the results of the original
model, a deeper model, a wider model, and finally a combination of them. L denotes number of
layers and CH means increase of number of channels, i.e., Kˆ means increasing the number of
channels by K times compared to the original model.

methods are. The results show that our and the other graph-based approaches (Mohamed et al., 2020;
Huang et al., 2019) are very robust and can handle objects that are 5 times faster than the ones in the
training set. Only for Monti et al. (2020), we observe a drastic increase in the error for 2.0 seconds.

Cross-scene Robustness. In Table 8.7, we evaluate how robust the methods are across dif-
ferent scenes. This means that we train the approaches on the Stanford Drone dataset (Robicquet
et al., 2016) and evaluate them on the ETH (Pellegrini et al., 2009) and UCY (Lerner et al., 2007)
datasets. We use the Stanford Drone dataset for training since it is the largest dataset and contains
not only pedestrians but also other objects. Compared with Table 8.1, the average error of Social-
STGCNN (Mohamed et al., 2020) and STGAT (Huang et al., 2019) is only slightly higher. While
the error increases for most scenes, it even decreases for the HOTEL scene. This is reasonable since
the Stanford Drone dataset provides a larger dataset and the trajectories of the HOTEL scenes are
relatively simple. This shows that these methods are quite robust to scene changes. Our approach,
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however, performs even better and the error even slightly decreases in average. This shows that our
approach models the motion very well, is very robust to changes of the sampling rate, and generalizes
to new scenes.

Qualitative Analysis. We show some qualitative results in Figure 8.5 and compare our approach
to the graph-based approaches Social-STGCNN (Mohamed et al., 2020) and STGAT (Huang et al.,
2019). From the images, we can see that the predictions of Social-STGCNN are not smooth and
some trajectories even cross which is implausible. The predictions of STGAT are nearly linear,
which results in larger errors when the direction changes. In contrast, our method forecasts more
plausible trajectories.

8.4 Conclusion

In this chapter, we proposed a highly efficient forecasting model that generates spatially and tempo-
rally consistent trajectories without the usage of map information. The network utilizes graph and
dilated temporal convolutions to model the spatial and temporal relations of each trajectory. Further-
more, a feature-wise convolution is utilized to forecast trajectories in one pass, and the reconstructed
observed and forecast trajectories are jointly refined. By using a neural network architecture search,
the network is further optimized. The proposed approach outperforms most other methods in terms
of accuracy, is very compact, and achieves a very low latency. In our evaluation, we also demonstrate
that the approach is robust to changes in the sampling rate and to scene variations. This makes the
proposed approach perfectly suitable for realistic applications.





CHAPTER 9

Aggregation-Interaction Transformer for
Efficient Trajectory Forecasting

Although the STC-Net proposed in Chapter. 8 works well for human trajectory prediction which is
a low-speed scenario, it is not suitable for autonomous driving where the agents are at high speed.
In this case, the map can provide meaningful information as the drivers usually need to follow some
driving rules. However, modeling all the interactions between different road users and drivable lanes
in an efficient way remains a challenging problem. To address this issue, we propose an efficient ar-
chitecture that introduces an additional aggregation token per lane and trajectory. It allows to model
global dependencies within each lane or trajectory and global dependencies between the lanes or tra-
jectories. We thus term the network Aggregation-Interaction Transformer. As a second contribution,
our approach learns intention seeds that are used as queries to generate diverse future trajectories in
a very efficient way. We conduct comprehensive experiments on two challenging datasets where our
method achieves state-of-the-art performance both in terms of accuracy and efficiency.
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9.1 Introduction

Trajectory forecasting plays an essential role in many applications like mobile robots or autonomous
driving. The future trajectory, however, not only depends on the past trajectory of the vehicle itself,
but also on the other agents like other road users. The third aspect that has an impact on the future
trajectory is the environment.
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In the context of autonomous driving, a bird-view map (Gilles et al., 2022; Phan-Minh et al.,
2020) can be used to model the nearby environment. A bird-view map, however, is not an efficient
representation for providing the information where a vehicle can drive. This is in particular an issue
for autonomous driving where the environmental information comes often from a vector-based street
map that is also used for navigation. It is therefore very practical to use such compact representation,
where vectors represent the drivable lanes, also for trajectory forecasting (Kim et al., 2021; Gao et al.,
2020).

However, it remains a major research question how such a representation can be efficiently used
for trajectory forecasting. In principle, we need to model the interactions of the agents between them.
For instance, not only a vehicle in front of a car has a major impact on the trajectory of the car, but
also a vehicle coming from the opposite direction if the car aims to turn left. In the latter case, the
other car might be still far away but depending on the speed of the car it can have a strong impact
on the future trajectory. Due to the high speed of vehicles, we need to model the global interaction
between all agents. In addition, we need to model the interaction between agents and lanes since the
lanes define the possible future drivable directions.

The lanes are commonly sub-sampled and convolutional and recurrent neural networks are used
to aggregate a global feature for each lane (Kim et al., 2021; Salzmann et al., 2020). The interac-
tion between agents and lanes is then only modeled using these global lane features. This approach,
however, is not optimal since RNNs are not capable of modeling long-range dependencies and rela-
tions between lanes are not modeled. The latter is very important since lanes are often subdivided
into smaller parts and some streets have multiple lanes that can be used. In order to consider spatial
relations between lanes, (Ye et al., 2021) consider the sampled points of all lanes as an unstructured
2D point set and use standard point-based methods (Qi et al., 2017d) to process the points. This,
however, discards the sequential structure of lanes and an additional module is required to extract
sequential information from the points.

In our method, we alleviate the above issues by proposing an efficient transformer architecture
for trajectory forecasting. We use the same block both for modeling relations between lanes and
between agents. Instead of aggregating the features per lane or trajectory as in Kim et al. (2021) or
discarding the sequential structure of lanes as in Qi et al. (2017d), we aim to model the interactions
between all points of all sequences. Since this is computationally infeasible, we introduce an addi-
tional aggregation token for each lane or trajectory. The proposed approach then iterates between
updating the features of each point of the lane or trajectory and updating only the aggregation token
for all lanes or trajectories by modeling the interaction between lanes or trajectories. In this way, the
features of the points of the lanes or trajectories are updated based on the entire context of the scene,
i.e., taking into account all other lanes or trajectories. Since the steps of aggregation and interac-
tion are repeated, we call it an Aggregation-Interaction Block (AI-Block). The proposed approach is
also very practical since the AI-Block provides a unified model that can process spatial (lanes) and
temporal sequences (trajectories) in the same way.

As a second contribution, we address the ambiguity of the future and generate multiple predic-
tions for the same observation. A common approach to generating multiple predictions is the use of
conditional variational autoencoders, which have been combined with a transformer in (Yuan et al.,
2021). In order to generate multiple sequences, (Yuan et al., 2021) requires a diversity sampling tech-
nique to generate a latent code and a conditional variational decoder to generate a future trajectory.
In this work, we propose an approach that is much more efficient. Instead of a sampling approach,
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Figure 9.1: Given the lanes (gray) of the map and the past trajectory (yellow), our approach forecasts
multiple future trajectories (blue). Red points are ground truth future positions. For better readability,
we plot only the five trajectories with the highest score. The approach also considers the trajectories
of the other vehicles (green). We can observe that our method can forecast diverse plausible trajec-
tories.

we propose to learn a set of intention seeds, which reflect the different intentions of a driver. These
seeds are used as queries and the encoded lanes and trajectories as values and keys. The decoder
predicts then for each intention query a future trajectory and a score, which reflects the probability
of this trajectory, as it is shown in Figure 9.1. We term the decoder Multi-Intention Decoder since it
generates for different learned intention seeds different future trajectories.

We evaluate the proposed approach on the challenging nuScenes (Caesar et al., 2020) dataset
where the approach achieves state-of-the-art results. The approach is also very efficient and requires
only 1.22 ms for inference, which is 52 times faster than Yuan et al. (2021). In summary, the contri-
butions of the work are:

• We propose the Aggregation-Interaction Block, which models global dependencies of points
between and within sequences. The block unifies the processing of spatial and temporal se-
quences.

• We propose the Multi-Intention Decoder, which generates diverse predictions in a very efficient
way by learning intention seeds.

9.2 Method

In order to forecast the future trajectory of a vehicle, we need to model the interaction with other
road users as well as the available possibilities, which are provided by the drivable lanes. While the
information of the road users is provided by a trajectory or temporal sequence for each agent, the
lanes are presented as lines or curves in the street map, which are spatial sequences.

Modeling all the interactions of spatial and temporal sequences, however, is non-trivial since
there can be many agents and lanes. Furthermore, the position of the vehicle changes over time
and the vehicle can change the lane. Figure 9.2 illustrates how lanes are commonly modeled. For
instance, RNNs (Kim et al., 2021) have been used to aggregate the information of a single lane.
However, RNNs are are not a suitable approach for spatial sequences since they do not capture the
global context compared to transformers. Other approaches consider the sampled points of all lanes
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Figure 9.2: Different ways to model lanes. Left: RNNs consider lanes like temporal sequences and
aggregate the information in sequential order to compute a single feature per lane. RNNs, however,
do not model the global context of a lane and they compute the feature without taking other lanes into
account. Middle: Considering the points of lanes as 2D point cloud allows to model spatial relations
between lanes locally, but the specific curve structure of lanes gets lost and there is no global feature
per lane. Right: Our proposed approach models relations between lanes as well as the relations of
points within an entire lane. This is achieved by introducing an additional aggregation token (purple),
such that the transformer computes a global feature per lane, and a second transformer that models
the global relations between the lanes.

in a map as an unstructured 2D point cloud (Ye et al., 2021). While they model locally the relation of
points of different lanes that are spatially close, the lane structure gets lost and the relation is modeled
locally at points and not globally at lanes.

We thus propose a new approach that models the relations of lanes globally. While this could
be achieved by feeding all sampled points of all lanes into a transformer to compute the attention
between all points, this approach is computationally infeasible since there are simply too many points.
To address this issue, we introduce an aggregation token per lane to gather the features of each lane
and to model the global relations between all lanes as in Figure 9.2. This means that we compute
the feature of the aggregation token first for each lane, using all points of a single lane, and then
update the aggregation token using the self-attention of all aggregation tokens. These two operations
are iterated such that the global context of all lanes is modeled. Besides of being able to model the
global context of all lanes and thus the future possibilities a vehicle can move, the approach has the
advantage that it can be used for trajectories as well to model the global context along a trajectory and
the relations between multiple trajectories. The approach is thus a unified model for spatial (lanes)
and temporal (trajectories) sequences.

Before we describe in Section 9.2.2 the block, which we denote by Aggregation-Interaction Block
(AI-Block), more in detail, we will introduce some notations in Section 9.2.1. Finally, we describe
the full network for trajectory forecasting.

9.2.1 Task Definitaion

Trajectory forecasting for vehicles, as it is defined for datasets like nuScenes(Caesar et al., 2020),
requires to forecast the future trajectory of a vehicle. We denote by

T h “ txt : t P t´Th ` 1, . . . , 0uu
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Figure 9.3: Aggregation-Interaction Block (AI-Block). We add to each sequence tokens (circles)
an aggregation token (square). The AI-Block computes first the self-attention for each sequence
including the aggregation token and updates the features for each token. In the next step, the self-
attention is computed across all aggregation tokens (purple square). While the second step only
updates the aggregation tokens (red square), the sequence tokens (blue circle) are taken from the
previous step. The block is repeated Nx times.

the past ego trajectory of the vehicle where 0 is the current timestamp and xt is the 2D vehicle
position at timestamp t. In addition, the past trajectories of the other road users are provided. We
denote them by

T1:N “ txt : t P t´Th ` 1, . . . , 0uu1:N .

In our approach, we consider only the closest N vehicles at timestamp 0. If there are less than N

other agents, we mask the empty entries in T1:N .
The lanes are denoted by

L “ txi : i P t1, Nptuu1:Nl

where each lane is represented by Npt 2D points that are uniformly sampled from its center line.
Note that long lanes are split into multiple lanes such that the distance of the sampled points remains
the same. For shorter lanes, the missing points are masked as illustrated by the striped circles in
Figure 9.2. As for the vehicles, we take only the Nl closest lanes.

While the ground-truth future trajectory of the vehicle is denoted by

T f “ txt : t P t1, . . . , Tfuu

our approach predicts K potential future trajectories to deal with the ambiguity of the future:

T̂ f
1:K “ tx̂t : t P t1, . . . , Tfuu1:K

where a probability score ŝk is predicted for each future trajectory. The task of trajectory forecasting
is thus formulated as:

pT̂ f
k , ŝkq1:K “ ModelpT h, T1:N ,Lq. (9.1)
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9.2.2 Aggregation-Interaction Block (AI-Block)

Since the Aggregation-Interaction Block (AI-Block) unifies the processing of spatial and temporal
sequences we will apply it to the lanes and trajectories. For the notation, we first discuss the process-
ing of the lanes L and then the processing of the trajectories T h and T1:N .

The AI-Block illustrated in Figure 9.3 takes as input the lanes L “ tLlu, where each point is
processed by a multilayer perceptron (MLP), and an additional aggregation token Al that will be
used to store the aggregated feature for each lane:

Fl “ Concat pMLP pLlq, Alq for l “ 1, . . . , Nl. (9.2)

The AI-block then updates for each lane the Npt sequence tokens and the aggregation token:

FA
l “ TFEncpPEpFlqq for l “ 1, . . . , Nl (9.3)

where PE denotes positional encoding (Vaswani et al., 2017b) to maintain the sequential information
within each lane and TFEnc is a standard transformer block with self-attention. After this step, not
only the features of each point of the lane are updated based on the context of the entire lane, but the
aggregation token contains additionally the information of the entire lane.

In the next step, we aim to consider the interaction between the lanes. Since this cannot be
computed for all tokens FA

l , we only take the updated aggregation tokens Al of every lane and feed
them to a second transformer block to compute the self-attention between all lanes and update the
aggregation tokens:

pA1, . . . , ANl
q “ TFEncpA1, . . . , ANl

q. (9.4)

After the interaction step, the new features F I
l of the tokens are given by

F I
l “ Concat

`

F̄A
l , Al

˘

for l “ 1, . . . , Nl (9.5)

where F̄A
l denotes the tokens of a lane without aggregation token. The AI-Block is repeated Nx times

such that the aggregation and interaction steps are repeated. In our experiments, we use Nx “ 2.
The AI-Block is applied to the trajectories in the same way. To this end, we concatenate the

trajectory of the ego vehicle T h with the trajectories of the other road users T1:N

T “ ConcatpT h, T1:N q (9.6)

and feed T instead of L to the AI-Blocks. While we denote the lane features after the AI-Block by
F I
L, the features of the trajectories are denoted by F I

T .

9.3 Architecture

After having described how the AI-Block works, we now describe the entire network architecture
that forecasts the trajectory of a vehicle. As illustrated in Figure 9.4, it consists of an encoder with
AI-Blocks for the trajectories and lanes and an decoder that predicts K trajectories T̂ f

k with scores
ŝk. We first describe the full encoder in Section 9.3.1, the decoder in Section 9.3.2, and the loss
function in Section 9.3.3.
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Figure 9.4: Architecture of the proposed method. LA-Interaction denotes the interaction between
lanes and trajectory points of the agents.

9.3.1 Encoder

As shown in Figure 9.4, the encoder outputs the features for the lanes F I
L and the agents F I

T where
each of them models the interactions between lanes and between agents. However, we want to model
the interactions between the agents and the lanes not only in the decoder but already in the encoder.
We therefore introduce a connection between the output of the encoder for the lanes to the input of
the encoder for the agents.

From the output of the encoder of the lanes, we only consider the aggregation tokens AL whereas
FT denotes the trajectories after the first MLP layer, i.e., FT “ MLP pT q. To model the interaction
of the trajectory of an agent n with a lane l, we compute the similarity between each trajectory point
and each lane:

Mn
t,l “ Fn

t ¨ Al for n “ 0, . . . , N (9.7)

where ¨ denotes the dot product, and Fn
t and Al are two vectors of the same size corresponding to

the feature of the trajectory point t of agent n and the aggregated feature of lane l, respectively. The
values of each matrix M are then normalized by

Mn
t,l “

exppMn
tlq

ř

l exppMn
tlq

. (9.8)

In other words, we compute for each trajectory point normalized weights, which indicate how rele-
vant a lane for this point is. Since the similarity is only based on feature similarity, we also consider
spatial proximity by setting Mn

t,l “ 0 if all points xi of a lane l are too far away from the trajec-
tory point xnt . We will evaluate the impact of the spatial proximity in the ablation studies. We then
re-normalize the weights such that they sum to 1.

The input of the AI-Block for the trajectories is thus not FT “ MLP pT q with an additional
aggregation token An for each agent n, but

Fn “ ConcatpFn ` MnAL, Anq for n “ 0, . . . , N (9.9)

where Fn P RThˆd are the trajectory features from FT for agent n, AL P RNlˆd are the aggregation
features of all lanes, and Mn P RThˆNl is the weight matrix.
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ADE1 FDE1 ADE5 FDE5 ADE10 FDE10 MissRate5 MissRate10 OffRoadRate
CoverNet (Phan-Minh et al., 2020) 3.87 9.26 1.96 - 1.48 - 0.67 - -

Trajectron++ (Salzmann et al., 2020) - 9.52 1.88 - 1.51 - 0.70 0.57 0.25
AgentFormer (Yuan et al., 2021) - - 1.86 3.89 1.45 2.86 - - -

MTP (Cui et al., 2019) 4.42 10.36 2.22 4.83 1.74 3.54 0.74 0.67 0.25
MultiPath (Chai et al., 2019) 4.43 10.16 1.78 3.62 1.55 2.93 0.78 0.76 0.36

ALAN (Narayanan et al., 2021) 4.67 10.0 1.77 3.32 1.10 1.66 0.57 0.45 0.01
MHA-JAM (Messaoud et al., 2021) 3.69 8.57 1.81 3.72 1.24 2.21 0.59 0.45 0.07

GOHOME (Gilles et al., 2022) - 6.99 1.42 - 1.15 - 0.57 0.47 0.04
P2T (Deo and Trivedi, 2020) - 10.5 1.45 - 1.16 - 0.64 0.46 0.03

LaPred (Kim et al., 2021) 3.51 8.12 1.53 3.37 1.12 2.39 - - -
WIMP (Khandelwal et al., 2020) - 8.49 1.84 - 1.11 - 0.55 0.43 0.04

CXX (Luo et al., 2020a) - 8.86 1.63 - 1.29 - 0.69 0.60 0.08
SG-Net (Wang et al., 2022a) - 9.25 1.86 - 1.40 - 0.67 0.52 0.04

AutoBot: (Girgis et al.) - 8.19 1.37 - 1.03 - 0.62 0.44 0.02
PGP; (Deo et al., 2022) - - 1.30 - 1.00 - 0.61 0.37 0.03

Ours 3.40 7.75 1.32 2.50 0.97 1.55 0.59 0.37 0.02

Table 9.1: Quantitative results on the nuScenes dataset.The following approaches are not directly
comparable: : uses an ensemble. ; generates more trajectories than other works and clusters them by
K-means.

9.3.2 Multi-Intention Decoder

Since there can be multiple plausible future trajectories for the same vehicle, we aim to model this
uncertainty, which depends on the unknown intention of the driver. For instance, a driver might
drive straight ahead or turn right at a crossing after the traffic light turns green. Without additional
information about the intention of the driver, this ambiguity cannot be resolved. We thus predict K
future trajectories T̂ f

k with scores ŝk that reflect the possibility of each forecast trajectory.
This is achieved by K learnable intention seeds Ik that are used as queries for the decoder. For

each query, we get thus a different prediction T̂ f
k . As keys and values, we use the output of the

encoder for the lanes and agents. We use only the aggregation tokens AL from the lanes and only
the trajectory tokens without the aggregation tokens, which we denote by F̄ I

T , for the trajectories of
the agents. While the trajectory tokens are essential for forecasting since they capture the full history
of the trajectory, we show in the ablation studies that there is no benefit of using additionally the
aggregation token for the trajectories. Vice versa, using all tokens of the lanes increases the inference
time but each token of the lanes is not anymore necessary for the decoder as we show in the ablation
studies. As illustrated in Figure 9.4, AL and F̄ I

T are concatenated and we use Ik as query. The
decoder block is repeated 2 times and we use two MLPs to finally predict the future trajectory T̂ f

k

and its score ŝk for each query.
We provide more details of the architecture in the supplemental material and we will release the

source code in case of acceptance.

9.3.3 Loss Function

For training the network, we use two loss functions as in Liang et al. (2020b). One for the predicted
trajectories T̂ f

1:K and one for the predicted scores ŝ1:K . Since we have only one ground-truth future
trajectory T f for a single scene, we first detect the predicted trajectory that has the lowest final
displacement error (FDE) with respect to the ground-truth trajectory:

k̂ “ argmin
k

}xTf
´ x̂kTf

||2 (9.10)
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Method #Param Speed ADE5 FDE5 ADE10 FDE10

CoverNet (Phan-Minh et al., 2020) 32.2M 11.69 ms 1.96 - 1.48 -
MTP (Chai et al., 2019) 32.1M 25.59 ms 2.22 4.83 1.74 3.54

Trajectron++ (Salzmann et al., 2020) 0.26M 88.40ms 1.88 - 1.51 -
AgentFormer (Yuan et al., 2021) 0.43M 64.19ms 1.86 3.89 1.45 2.86

Ours (0.25ˆ emb.) 0.13M 0.77ms 1.51 2.99 1.12 1.93
Ours (0.5ˆ emb.) 0.48M 0.84ms 1.47 2.92 1.02 1.69

Ours (0.75ˆ emb.) 1.1M 1.04ms 1.47 2.81 0.99 1.60
Ours (1.0ˆ emb.) 1.9M 1.22ms 1.32 2.50 0.97 1.55

Ours (1.25ˆ emb.) 2.9M 1.60ms 1.38 2.72 0.99 1.59

Table 9.2: Efficiency Analysis. We compare our method to image-based methods (CoverNet (Phan-
Minh et al., 2020), MTP (Chai et al., 2019)), an RNN-based method (Trajectron++ (Salzmann et al.,
2020)), and a transformer-based method (Agentformer (Yuan et al., 2021)).

where x̂kTf
is the last point of the predicted trajectory k and xTf

is the last point of the ground-truth
trajectory.

Since we aim that the predicted trajectory with the lowest final displacement error has the highest
score, we use as in (Liang et al., 2020b) the max-margin loss:

Lscore “
1

K ´ 1

ÿ

k‰k̂

maxp0, ŝk ` ε ´ ŝk̂q, (9.11)

i.e., for all other trajectories k ‰ k̂ the score ŝk should be by the margin ε lower than the score of the
best trajectory k̂.

For the forecast trajectories, we use the minimum average displacement error to the ground-truth
trajectory with the smooth L1 loss:

Ltraj “ min
k

$

&

%

1

Tf

Tf
ÿ

t“1

dpxt ´ x̂kt q

,

.

-

(9.12)

with

dpxq “

#

0.5x2 if ||x|| ă 1,

||x|| ´ 0.5 otherwise.
(9.13)

The two loss functions are weighted by w “ 0.4:

L “ Ltraj ` w ¨ Lscore. (9.14)

9.4 Experiments

9.4.1 Datasets and Evaluation Metrics

We evaluate our method on widely used datasets for trajectory forecasting: nuScenes (Caesar et al.,
2020). It provides high-definition (HD) maps associated with the trajectory data. The nuScenes
dataset includes 245,414 trajectory instances across 1,000 different scenes. Each trajectory instance
lasts for 8 seconds sampled at 2Hz. The trajectory forecasting task defined in the nuScenes dataset
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Figure 9.5: Qualitative results for the Nuscenes dataset. Best seen using the zoom function of the
PDF reader. The small gray dots denote the sampled lanes. Yellow dots denote the past trajectory.
Red dots denote the future ground-truth trajectory. Blue dots denote the predicted trajectories where
a darker color corresponds to a higher score. Green dots are trajectories of other agents. Our method
generates diverse yet plausible predictions.

requires to forecast the future trajectory of the ego vehicle for 6 seconds given the first 2 seconds as
observed trajectory. As in previous works (Kim et al., 2021), we train our approach on the training
set and evaluate its performance on the validation set.

We report the widely used minimum average displacement error ADEK and the final displace-
ment error FDEK of K forecast trajectories with respect to the ground-truth trajectory T f :

ADEKpT̂ f
1:K , T f q “ min

k

$

&

%

1

Tf

Tf
ÿ

t“1

||xt ´ x̂kt ||2

,

.

-

, (9.15)

FDEKpT̂ f
1:K , T f q “ min

k
||xTf

´ x̂kTf
||2. (9.16)

We also report the Miss Rate for different values of K and the Off Road Rate for the nuScenes
dataset (Caesar et al., 2020). The former metric is defined as the proportion of misses over all agents.
If the maximum L2 distance between the best prediction and the ground truth trajectory is larger than
2m, this prediction is defined as a miss. Similarly, if a prediction does not entirely lie in the drivable
area, it is defined as off road. The Off Road Rate is defined as the proportion of off road predictions
over all agents.
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Figure 9.6: Visualization of different intention seeds. Each plot shows for a single intention seed the
endpoints of all predicted trajectories. A darker color means a higher score.

9.4.2 Comparison to State-of-the-Art

We first compare our method to previous state-of-the-art methods on the nuscens dataset. The re-
sults are shown in Tables 9.1. From Table 9.1, we can observe that our method achieves the best
performance for almost all metrics apart from FDE1 and MissRate5. For the FDE1 metric, GO-
HOME (Gilles et al., 2022) achieves the best result. GOHOME predicts a heatmap representing the
spatial distribution of the final trajectory point and then uses a sampling algorithm to generate the
trajectory, which optimizes the Miss Rate for the trajectory. While this approach is optimized for
low FDE1 and MissRate5, it is outperformed by other methods for other metrics. The MissRate5 of
our method is very close to the best performance (Khandelwal et al., 2020) and for MissRate10 our
method outperforms all other approaches by a large margin. In particular, the results for ADEK show
that our approach forecasts very accurate trajectories.

Apart from quantitative results, we also show some qualitative results in Figure 9.5. From these
examples, we can observe that our method can produce diverse plausible predictions. Especially at
crossroads, the predictions of our method can cover almost all possible future situations, like driving
straight and turning left or right.

The efficiency of approaches for trajectory forecasting is an important factor for autonomous
driving. We therefore compare the efficiency of our method with other methods in Table 9.2. All
experiments have been conducted on a single Nvidia Titan RTX GPU. We can see that the methods
that directly process images of the HD map are not very efficient like CoverNet (Phan-Minh et al.,
2020) or MTP (Cui et al., 2019). While Trajectron++ (Salzmann et al., 2020) and Agentformer (Yuan
et al., 2021) use a compact vector representation of the lanes and thus require less parameters, their
inference time is even higher. The RNN-based approach (Salzmann et al., 2020) suffers from the low
efficiency of RNNs, which process data sequentially. The approach (Yuan et al., 2021) uses a com-
bination of a conditional variational autoencoder and a transformer to generate multiple trajectories,
which is by far less efficient than our Multi-Intention Decoder which uses learned intention seeds to
generate multiple trajectories. As a comparison, our approach is 52 times faster than Agentformer
and 72 times faster than Trajectron++. If the size of the model is very important, we can reduce
the feature dimensionality of the embeddings. If we reduce the dimensionality of the embedding by
0.25, the size of the network is smaller than Salzmann et al. (2020) but the forecast trajectories are
still more accurate.
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Agg R ADE5 FDE5 ADE10 FDE10

w/o map - 1.84 3.96 1.26 2.41
w/o LA-Inter. - 1.39 2.69 0.99 1.60

Mbinary

2m 1.57 3.10 1.00 1.60
3m 1.43 2.78 1.00 1.60
4m 1.45 2.80 0.99 1.58
5m 1.47 2.81 1.01 1.60
`8 3.75 6.27 1.94 2.71

Mdist

2m 1.51 2.96 1.01 1.64
3m 1.52 2.96 1.00 1.62
4m 1.45 2.81 1.01 1.63
5m 1.48 2.87 1.02 1.65
`8 1.53 3.71 1.04 1.64

M

2m 1.38 2.64 0.99 1.58
3m 1.40 2.70 0.98 1.57
4m 1.32 2.50 0.97 1.55
5m 1.36 2.62 0.98 1.58
`8 1.45 2.82 0.99 1.61

Table 9.3: Impact of the attention matrix M for modeling the interaction between agents and lanes
in the encoder.

w ADE1 FDE1 ADE5 FDE5 ADE10 FDE10

0.1 3.61 8.28 1.33 2.79 0.94 1.57
0.2 3.97 9.13 1.39 2.68 0.99 1.58
0.3 3.44 7.90 1.48 2.88 0.98 1.56
0.4 3.40 7.75 1.32 2.50 0.97 1.55
0.5 3.42 7.85 1.50 2.94 0.98 1.58
0.6 3.44 7.82 1.48 2.91 0.99 1.59

Table 9.4: Impact of w in Equation (14). Results are reported for the nuScenes dataset.

9.4.3 Ablation Studies

We perform the ablation studies on the nuScenes dataset. As described in Section. 9.3.1, we compute
the attention matrix M in Equation 9.7 between agents and lanes, which is then used to update the
features of the trajectories of the agents in Equaton. 9.9. The interaction is only considered for a
point on a trajectory when the closest point of a lane is within a radius R. In Table 9.3, we report
the results for different values of R. The results show that the impact of R is relatively small, but the
best performance is achieved for R “ 4m, which we use in all experiments. However, if we do not
consider spatial proximity and use R “ 8, the error clearly increases.

We also evaluate two variants where we use only the spatial proximity but we do not compute
the similarity between each trajectory point and each lane in Equation 9.7. In case of Mbinary, all
lanes that are within the radius R of a trajectory point have the same weight. In case of Mdist, we
compute the values of the matrix M based on the inverse distance of a lane to a trajectory point.
We can observe that Mbinary and Mdist perform worse than M . This shows that using only spatial
proximity is insufficient. We also evaluate a setup where the interactions between agents and lanes
are only modeled in the decoder but not in the encoder, i.e., we remove the connection between the
output of the lane encoder to the input of the agent encoder shown in Figure 9.4. We denote this
setting by ‘w/o LA-Inter.’. The errors are higher than in the proposed setting but the results are still
good since the interactions between lanes and agents are still considered in the decoder. When we do
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Agent Lane ADE1 FDE1 ADE5 FDE5 ADE10 FDE10 Speed
TCN

TF
5.11 11.15 1.69 3.20 1.13 1.79 1.19 ms

LSTM 4.33 9.88 1.47 2.83 1.02 1.60 1.22 ms
Bi-LSTM 5.82 13.14 1.51 2.95 1.03 1.68 1.25 ms

TF TF 3.40 7.75 1.32 2.50 0.97 1.55 1.22 ms

TF

TCN+ Maxpool 3.73 8.62 1.59 3.21 1.14 2.03 0.44 ms
TCN + Meanpool 3.63 8.40 1.53 3.07 1.11 1.93 0.44 ms

LSTM 4.49 10.43 1.46 2.89 1.01 1.68 1.51 ms
Bi-LSTM 3.64 8.39 1.48 2.93 1.01 1.67 2.85 ms

Table 9.5: Different variants of the agent and lane encoder.

not consider the interactions between agents and lanes, i.e., we remove the lane encoder completely
(‘w/o map’), the errors increase drastically.

In Table 9.6, we evaluate the impact of the tokens that we feed from the lane and agent encoder to
the decoder. The first row shows the result of the proposed network, i.e., we use only the aggregation
tokens from the lane encoder and the tokens of the trajectory points from the agent encoder. If we use
the aggregation token from the agent encoder, in addition, the results are similar. However, the results
are worse when only the aggregation token from the agent encoder is used. This is expected since the
points encode the full history of the trajectory, which is needed for forecasting. For the lane encoder,
it is the other way around. Using all points of the lanes increases substantially the inference time
due to the large number of lane points. However, they do not decrease the error. This is reasonable
as not all lane points contribute to the final prediction and including such redundant information can
mislead the final prediction. Finally, we report the errors when only the features from the agent
encoder are used. Note that the errors are much lower compared to ‘w/o map’ in Table 9.3 since
the information of the lanes is still used as input to the agent encoder. While using the tokens of the
trajectory points performs in the last setting best as before, it also shows that features both from the
lane and agent encoder are needed for the decoder.

Both for the agent and lane encoder, we use AI-Blocks, which are based on transformers (TF).
In Table 9.5, we evaluate other implementations. For the agent encoder, we replace the transformer
encoder by a temporal convolution network (TCN), RNN with long short-term memory (LSTM), and
a bidirectional RNN with long short-term memory (Bi-LSTM). All variants have a similar inference
time as TF, but the error is much higher, especially ADE1 and FDE1.

Since we use only the aggregated feature of each lane as input to the decoder, we use max-pooling
or mean-pooling at the end of the TCN to aggregate the features of all points of a lane. LSTM
performs worst for the lane encoder. Compared to LSTM, Bi-LSTM achieves a lower error but at
the cost of higher inference time. Note that the differences in inference time for the lane encoder
are larger than for the agent encoder since there are much more lane points than trajectory points of
agents. We also observe that LSTM performs better than Bi-LSTM for the agent encoder, but much
worse than Bi-LSTM for the lane encoder. This shows that Bi-LSTM is useful for processing spatial
(lane) sequences, but not temporal (agent) sequences. TCN with mean-pooling is very fast but the
error is higher compared to TF and ADE10 and FDE10 are even higher than for LSTM and Bi-LSTM.

We also evaluate the impact of parameter w in Equation (14) in Table 9.4. In all other experi-
ments, we use w “ 0.4.

Finally, we visualize the endpoint of each generated trajectory for each intention seed in Fig-
ure 9.6 where a darker color means a higher score. We only show the endpoints of the forecast
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Lane Agent Speed ADE5 FDE5 ADE10 FDE10

Token Point 1.22ms 1.32 2.50 0.97 1.55
Token Token 1.20ms 1.78 3.28 1.15 1.79
Token Token + Point 1.22ms 1.35 2.57 0.98 1.55
Point Point 3.87ms 1.54 2.99 1.01 1.64

Token + Point Point 3.96ms 1.42 2.73 1.00 1.61
Point 1.15ms 1.46 2.87 1.00 1.64
Token 1.14ms 1.50 2.98 1.05 1.75

Point + Token 1.15ms 1.49 2.97 1.01 1.65

Table 9.6: Impact of the context information for the decoder. While we use from the lane encoder
only the aggregation tokens and from the agent encoder the tokens of the trajectories without aggre-
gation token (first row), we evaluate different other combinations including a setting where only the
tokens of the agent encoder are used (last three rows).

trajectories. We observe that different learned seeds generate different trajectories.

9.5 Conclusion

In this chapter, we proposed an efficient architecture for trajectory forecasting. It models the inter-
actions of points within sequences and between sequences by introducing an additional aggregation
token per sequence. The so-called Aggregation-Interaction Block iterates between computing the
attentions within sequences including the aggregation token and globally between sequences using
only the aggregation tokens. The block unifies the processing of spatial and temporal sequences. In
order to generate multiple future trajectories for the same observation, we propose to learn intention
seeds that are used as queries. We have evaluated the proposed approach on two challenging datasets
and shown that it forecasts diverse plausible trajectories. The approach achieves on both datasets
state-of-the-art performance and requires only 1.22 ms for inference. Compared to STC-Net pre-
sented in Chapter 8, the improvement of this method mainly comes from two factors. First, it is with
the ability to utilize the map information. This becomes more important under autonomous driving
scenarios as the drivers need to follow some traffic guidelines and lane provide strong prior informa-
tion. In the autonomous driving scenario, the driving behavior varies dramatically in a short time,
like acceleration. With a better temporal modeling capacity, the proposed method can outperform
STC-Net.



CHAPTER 10

Conclusion

In this chapter, we summarize the contributions of the thesis for efficient perception and forecasting
for autonomous vehicles. Furthermore, we discuss future directions for research to advance state-of-
the-art approaches for scene understanding and fine-grained motion forecasting.
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10.1 Summary

In this thesis, we proposed approaches that achieve efficient LiDAR point cloud semantic segmenta-
tion and motion forecasting. Compared to previous state-of-the-art methods, our proposed methods
achieve a good balance between performance and efficiency which makes them quite suitable for
realistic applications.

First, we proposed a highly efficient projection-based architecture for LiDAR point cloud seman-
tic segmentation. Apart from semantic information, moving information is also crucial for environ-
ment perception. Thus we proposed a general projection-based LiDAR data representation that can
compress moving information. With this data representation and the above projection-based archi-
tecture, our method can achieve efficient moving object segmentation. Furthermore, we investigated
the relationship among mainstream LiDAR point cloud semantic segmentation methods, including
point-based, projection-based, and voxel-based methods. For point-based methods, we proposed a
general projection strategy on operations in point-based methods, including sampling, grouping, and
propagation. With this projection strategy, we can convert any point-based methods into projection-
based methods thus improving both efficiency and performance a lot. To improve projection-based
methods to achieve the same performance as voxel-based methods, we introduce temporal consis-
tency in both training and inference. Apart from scene understanding, motion forecasting is also
highly important for the safety of autonomous driving. To this end, we propose an efficient architec-
ture that can produce accurate while diverse outputs no matter if the map information is available or
not.

In the following, we will discuss these contributions in detail.
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10.1.1 LiDAR point cloud semantic segmentation

Prior methods aimed at semantic segmentation of LiDAR point clouds typically prioritize accuracy,
often overlooking efficiency which is pivotal for real-world applications. To address this, in Chap-
ter 4, we introduce a highly efficient architecture designed to process 2D projection maps derived
from input LiDAR sensors. By leveraging the inherent characteristics of LiDAR sensors and tran-
sitioning sparse 3D data into a dense 2D format, our approach strikes a favorable balance between
accuracy and efficiency. In Chapter 5, we build upon the aforementioned architecture to ascertain the
motion status of each point within the LiDAR point cloud. This is accomplished by employing a gen-
eralized projection-based LiDAR data representation capable of encapsulating motion information.
Moreover, we have established a new benchmark for LiDAR-driven moving object segmentation,
grounded on the SemanticKITTI dataset.

The discussions above predominantly center on projection-based techniques. In Chapter 6, we
delve into enhancing point-based methods for semantic segmentation of LiDAR point clouds. We
unveil a broad concept of re-engineering 3D point-based operations to function within the projec-
tion space. This innovative design facilitates the transformation of any point-based methods into
projection-based ones, significantly boosting their accuracy and efficiency for LiDAR point cloud
semantic segmentation. A notable challenge with projection-based methods is the discernible dis-
parity between them and voxel-based techniques. In Chapter 7, we identify that this disparity stems
from the “many-to-one” issue, attributed to the limited horizontal and vertical angular resolution of
the range image. To address this, we introduce a temporal fusion layer to glean valuable insights
from previous scans, amalgamating them with the current scan. Additionally, we propose a max-
voting-based post-processing strategy to rectify incorrect predictions.

10.1.2 Motion Forecasting

Apart from scene understanding, accurate and efficient trajectory forecasting is also of vital impor-
tance for the safety of autonomous driving. As the safety of humans is with the highest priority, we
first work on mapless human trajectory prediction which is demonstrated in Chapter 8. We propose an
efficient architecture to enforce the temporal consistency between historical data and predicted future
data. Although this method performs well for low-speed scenarios, it is not suitable for autonomous
driving where the agents are at high speed. In this case, the map can provide meaningful information
as the drivers need to follow some driving rules. One issue here is that modeling all the interac-
tions between different road users and drivable lanes efficiently remains a challenging problem. To
address this issue, in Chapter 9, we propose an efficient architecture that introduces an additional ag-
gregation token per lane and trajectory. It allows to modeling global dependencies within each lane
or trajectory and global dependencies between the lanes or trajectories. We thus term the network
Aggregation-Interaction Transformer. As a second contribution, our approach learns intention seeds
that are used as queries to generate diverse future trajectories in a very efficient way.

10.2 Future Work

In this thesis, I have treated 3D scene understanding and motion forecasting as two separate tasks.
In future research, these two tasks can be merged into a unified framework to achieve precise scene-
level forecasting. To achieve this goal, the implicit representation techniques can be leveraged for 3D
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scene representation. Thus the whole target can be splited into two subtasks: decomposed implicit
representation for large-scale dynamic scenes and fine-grained agent action forecasting.

10.2.1 Decomposed implicit representation for large-scale dynamic scenes

Forecasting tasks play a crucial role in various domains, such as Autonomous Driving and Human-
Object Interaction (HOI). However, previous approaches have primarily emphasized object-level
tasks, such as trajectory prediction and object interaction anticipation. In recent years, there has been
a notable shift in research focus towards scene-level forecasting, encompassing occupancy forecast-
ing and future frame prediction (Pourheydari et al.). These scene-level forecasting tasks provide
intricate future information, making them inherently more challenging.

There has been a notable shift in 3D vision from explicit representations, such as point clouds,
meshes, and voxels, to implicit representations like NeRF (Mildenhall et al., 2021) in recent years.
Implicit representations offer greater flexibility and efficient reconstruction of continuous scenes
compared to explicit representations. However, since implicit representations encode 3D scenes
using MLPs without explicit 3D structures, most existing scene-level forecasting methods cannot be
directly applied to them. One potential strategy is to store the entire scene as a 4D representation
(Pumarola et al., 2021) and then make predictions based on observations. However, this strategy
may yield challenging results due to the lack of constraints, such as ensuring that an observed car
remains recognizable as a car in the prediction.

To address the aforementioned challenges, the entire scene can be divided into two categories:
objects (things) and backgrounds (stuff), with only objects being movable. To efficiently handle
this, a potential solution is to decompose the scene and represent objects and backgrounds sepa-
rately. For handling backgrounds, a key challenge arises due to the often substantial scale of the
scene, which may require significant computation resources. To tackle this issue, efficient structures
can be employed, such as Instant-NGP (Müller et al., 2022), to store the entire scene in a compu-
tationally optimized manner. Regarding objects, each object can be modeled by using a dynamic
implicit representation. This approach can capture the intricate and diverse movements of individual
objects effectively. By employing these strategies, the above challenges related to scene scale can be
overcome.

To make scene decomposition possible, objects need to be separated from backgrounds. This can
be achieved by incorporating semantic information into implicit representations. Several existing
methods (Zhi et al., 2021) incorporate a pre-trained 2D architecture to extract a 2D feature map con-
taining semantic information, as demonstrated in Kirillov et al. (2023). These methods then utilize
implicit representations to predict these features. However, the use of pre-trained 2D architectures
lacks awareness of multi-view constraints, which can lead to suboptimal results. To address this
concern, the future solutions need to align these extracted features before performing fusion.

10.2.2 Fine-grained agent action forecasting

As mentioned earlier, the majority of forecasting methods primarily concentrate on instance-level
forecasting, which involves predicting the trajectory of each individual object. While this approach
suffices for rigid objects like cars, it falls short when dealing with non-rigid objects, such as pedes-
trians. The reason is that by focusing solely on instance-level motion forecasting, a considerable
amount of valuable information is lost. One crucial aspect of non-rigid objects, like pedestrians, is
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that their motion can reveal important future context and actions, such as waiting or turning. How-
ever, this valuable contextual information is overlooked in instance-level prediction.

In the previous chapters, the objects are extracted from the entire scene and represent them sep-
arately. This simplifies the task of forecasting fine-grained motions in the future, the future motion
of each object can be predicted individually. This is in contrast to attempting to forecast the entire
scene or all objects’ motions simultaneously, which can be a more challenging task. Under this set-
ting, information about the nearby environment is encoded for each agent (object) in the scene. The
predictions are conducted based on both scene information and agent history information.
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