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Abstract 

The separation of the deformations and measurement noise of GPS coordinate time series and accu-

racy improvement of GPS real-time coordinates are major aspects of the thesis. In order to reduce the 

influence of the colored noise in the GPS position time series, three different methods have been 

compared: the Finite Impulse Response (FIR) filter, the Kalman filter model, and the sequential algo-

rithm. Among these three methods, the Kalman filter is investigated in detail. The GPS real-time 

series contains the colored noise, yet the Kalman filter model requires white noise. The state vector 

can be augmented by appending to the state vector components of the shaping filter which can de-

scribe the long term movement of the colored noise. Thus the deformation analysis based on the 

Kalman filter model with a shaping filter technique, has been applied in the different movement 

trends of GPS real-time series. From the results, the Kalman filter model with a shaping filter can be 

widely used to process the GPS short baseline time series in real-time. The precise position coordi-

nate can be obtained and the deformation epoch can be detected in time and with high reliability. It 

can be applied in the early warning system of the natural hazards.  

The detection of a deformation with less time delay and the improvement of reliability of detecting 

deformation epoch is another key issue of the investigation. The proposed model makes use of the 

statistical criterion (MDL criterion) comparison instead of the hypothesis test. Considering the affec-

tion of colored noise in the GPS time series the multiple Kalman filters model was augmented by 

shaping filters which describe the long-term movement of the colored noise. By the GPS experiments, 

it has been verified that the proposed models have the ability to better capture the deformation epoch 

and to improve the reliability of detecting the deformation epoch. The proposed models can be used 

to detect stepwise changes of a variety of fields in real-time or near real-time. 

Zusammenfassung 

Schwerpunkte dieser Arbeit sind die Trennung von tatsächlicher Bewegung und Messrauschen in 

GPS-Koordinatenzeitreihen und die Genauigkeitssteigerung von Echtzeit-GPS-Koordinaten. Zur 

Verringerung des Einflusses von farbigem Rauschen bei Zeitreihen von GPS-Positionen wurden drei 

verschiedene Verfahren verglichen: FIR-Filter (Finite Impulse Response),Kalman-Filter-Modell und 

Sequentielle Ausgleichung. Von diesen drei Verfahren wird das Kalman-Filter genauer untersucht. In 

Echtzeit-GPS-Datenreihen ist farbiges Rauschen enthalten, das Kalman-Filter hingegen erfordert 

weißes Rauschen. Die Zustandsschätzung erfolgt durch die Erweiterung des Zustandsvektors um die 

shaping-Filter-Komponenten, die den langfristigen Einfluss des farbigen Rauschprozesses beschrei-

ben. Dementsprechend wurde die Bewegungsanalyse durch ein Kalman-Filter-Modell mit shaping-

Filter-Verfahren auf verschiedene Rauschprozesse von Echtzeit-GPS-Zeitreihen angewandt. Das 

Ergebnis ist, dass ein Kalman-Filter mit shaping-Filter kann häufig zur Echtzeitauswertung von Zeit-

reihen kurzer GPS-Basislinien genutzt werden. Die genauen Positionskoordinaten lassen sich be-

stimmen, und, eine Bewegungsepoche kann rechtzeitig und mit einer hohen Zuverlässigkeit be-

stimmt werden. Ein Einsatz in Frühwarnsystemen vor Naturgefahren ist möglich. 

Die Erkennung von Bewegung mit geringer Zeitverzögerung und die Steigerung der Detektionszu-

verlässigkeit von Bewegungsepochen sind weitere Untersuchungsschwerpunkte. Der vorgeschlagene 

Ansatz nutzt statt eines Hypothesentests den Vergleich eines statistischen Kriteriums (Minimum 

Desciption Length). In Anbetracht des farbigen Rauschens, das in GPS-Zeitreihen enthalten ist, wur-

de das multiple Kalman-Filter um shaping-Filter erweitert, die den langfristigen Einfluss des farbigen 

Rauschens beschreiben. Durch GPS- Experiment konnte nachgewiesen werden, dass die vorgeschla-

genen Modelle eine verbesserte Deformationserkennung und eine Steigerung der Zuverlässigkeit 

bezüglich der  Deformationsepochendetektion ermöglichen. Diese erlauben die Erkennung stufen-

förmiger Änderungen bei vielfältigen Anwendungen und zur Vorhersage einiger Naturkatastrophen-

ereignisse in Echtzeit beziehungsweise Nahezu-Echtzeit. 

http://www.dict.cc/deutsch-englisch/Experiment.html
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1 Introduction 

This chapter gives an introduction to the thesis. First, the motivation to the subject and the rele-

vant research are given. Secondly the research objectives are stated and finally the thesis outline 

is given. 

1.1 Background and relevant research 

Landslide is one of the natural disasters, which causes the fatalities and severe economic loss. 

Therefore, early warning systems are the efficient tools to face landslide hazards and reduce the 

risk landslides, especially where no other mitigation strategies are suitable. The project of devel-

oping an integrated early warning system of landslides is funded by the Federal Ministry for 

Education and Research (BMBF). In the project terrestrial observations and measurement net-

works are coupled with different techniques. GPS is one of the important sensors to obtain the 

surface deformations of the landslide areas.  

GPS is weather independent, capable of autonomous operation, and does not require a line-of-

sight between target points. GPS is actively and broadly used for positioning in geodetic applica-

tions. A typical and highly challenging application – in terms of positioning accuracy –is defor-

mation monitoring (Schüler 2007). Recent advances in GPS technology and data processing 

software have made GPS a much more convenient, accurate and cost-effective tool for deforma-

tion monitoring of natural hazards and man-made structures. To date, GPS is widely used to 

monitor volcano eruptions (Rizos et al. 2000; Roberts and Rizos 2001; Janssen 2002 & 2007), 

crustal movements (Qiao et al. 2002; Moghtased-Azar and Grafarend 2009), vertical land 

movements (Teferle et al. 2001), landslides (Brunner et al. 2000; Singer et al. 2009), the open-pit 

mine (Forward et al. 2001), dams (Hudnut and Behr 1998; Radhakrishnan 2006), buildings 

(Lovse et al. 1995; Guo and Ge 1997; Chen et al. 2001; Ogaja et al. 2002), and bridges (Roberts 

et al. 1999; Fujino et al. 2000; Wong et al. 2001; Roberts et al. 2004). A monitoring system for 

deformation of structures like bridges with real-time capabilities is described by Hein and Riedl 

(2003). The GPS-based monitoring system GOCA (GNSS based online Control and Alarm Sys-

tem) developed at the applied university of Karlsruhe can be applied to observe dams, landslides, 

etc (Jäger et al. 2006). Deformation experiments and GPS deformation monitoring applications 

have shown that GPS is capable to monitor deformations. 

It’s very important to monitor the deformation of the landslide area that threatens the lives or 

constructions. There are some successful applications in landslide deformation using GPS. For 

example, the GPS continuous deformation monitoring system, which employed the time stacking 

technique and the sigma models, was applied in Gradenbach landslide (Brunner et al. 2000). The 

authors present an application of GPS to monitor the La Valette landslide, located in the Ubaye 

Valley in the southern French Alps (Squarzoni et al. 2005); a low-cost GNSS system is devel-
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oped to continuously record movements on the surface of the Hornbergl landslide (Glabsch et al. 

2009).  

The availability of precise and reliable deformation information in real-time is critical for gene-

rating warnings in time for the early warning systems. The Kalman filter model is one of the 

optimal methods to process the GPS position time series in real-time (Brown and Hwang 1992; 

Grewal and Andrews 2001; Yang et al. 2001). The Kalman filter model calculates the optimal 

value of the state vector in the recursive least square manner. The elements of the state vector in 

the Kalman filter are the unknowns of the kinematic/dynamic system. These are typically the 

position of the object, or also the variation of the position. This property of the Kalman filter is 

important for studying the behavior of deformations (Ince and Sahin 2000).  

However, the Kalman filter model is used under the assumption that only white noise exists in 

this algorithm. But in the real-time application it requires high sampling rates of GPS receivers;  

in the case of the high sampling rate, time dependent systematic deviations arise in the observa-

tions between neighboring epochs in a similar way. Therefore, the correlated errors exist in the 

GPS measurement time series. The GPS measurement deviations can be divided into correlating 

errors and non-correlating errors. The colored noise influence the results of deformation analysis 

and the accuracy, sensitivity and separability criteria of GPS-control measurements (Schwieger 

1999). The conventional Kalman filter cannot serve as the appropriate tool to process the GPS 

observations with colored noise.    

Significant work has been done to reduce the colored noise using various methods which can be 

categorized as two main approaches: one approach uses measurement differencing to remove the 

colored noise (Minkler and Minkler 1993; Petovello et al. 2009), for example, Petovello et al. 

have presented a new Kalman filter formulation that considers time-correlated errors in the ob-

servations. The proposed method is also based on measurement differencing but does not have 

inherent time latency, nor are any redefinitions of the traditional Kalman filter parameters re-

quired (Petovello et al. 2009); the other approach augments the state vector with the correlated 

noise terms (Gelb 1974; Maybeck 1994; Grewal and Andrews 2001; Kuhlmann 2003).  For ex-

ample, Gelb presents that it can be useful to generate an autocorrelation function from real data 

and develop an appropriate noise model. The model can describe the movement of the colored 

noise, which is called a shaping filter. The state vector can be augmented by appending the shap-

ing filter to the state vector components of the Kalman filter, with the resulting model having the 

form of a linear dynamic system driven by white noise. Additionally, Yang and Zhang proposed 

the Kalman filter model based on an adaptive fitting of systematic error and covariance matrices 

to control the influences of systematic error of the state equation in the Kalman filter model 

(Yang and Zhang 2005). Based on these approaches, the appropriate approach needs to be se-

lected to reduce the colored noise in the GPS time series. 
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During the deformation analysis, deformation identification is of great importance and false 

warning should be given as few as possible. Therefore how to detect the deformation epoch and 

improve the reliability of detecting deformation epoch are other key issues. Previous work using 

statistical tests has been done to detect the changes in the time series. For example, the multiple 

hypothesis filter (Willsky 1976), the generalized likelihood ratio test by using the Kalman filter 

innovation (Willsky 1976; Teunissen 1990; Okatan et al. 2007), the cumulative sum test (Merti-

kas and Rizos 1997; Mertikas 2001). Since the detection of deformation epochs is important for 

the early warning system, more detailed research is needed to improve the accuracy and the re-

liability of the detected deformation epoch. 

1.2 Research objectives  

GPS can be used to monitor hazards, such as landslides and volcano eruptions. In order to reduce 

any human losses and economic damages, it is necessary to develop an early warning system for 

landslides. The real-time data processing with both high precision and high reliability is of great 

importance in the planed early warning system.  

The main objective of the thesis is the development of the methodology which can separate GPS 

noise and deformation in the GPS coordinate time series, improve the accuracy of the GPS real-

time series and improve the reliability of detecting deformation epochs. 

The Kalman filter can be employed as the method to process the real time series. The deforma-

tion and outlier have some similarity but also some differences in the GPS observations so that 

they can be detected and distinguished simultaneously. It will be discussed in detail how to de-

termine the state vector when an outlier and a deformation occur. Hence, monitoring and control-

ling the quality of the GPS observation series is one of the main objectives. 

GPS observations obtained from GPS experiment at a high sampling rate needed to be studied. 

The noises in the GPS observations needed to be classified and separated. The autocorrelation 

function and the stochastic model are the main methods to analyze and determine the distribution 

of the GPS observations noise. The study on the effective method to separate the noise from the 

GPS observations is one of the research emphases in this thesis. 

Many monitoring problems can be stated as the problem of detecting a change. It is very impor-

tant to detect small changes in some applications, because some economic or catastrophic conse-

quences that result from an accumulation of small changes can be avoided. False warnings 

should also be made to occur as little as possible. Therefore, the timely detection of any defor-

mation with high reliability is very important.  The model which can capture the deformation 

epochs and improve the reliability of detecting the deformation epoch should be proposed. 
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1.3 Dissertation outline 

There are six chapters in this thesis. The general structure of the thesis is described as follows: 

The first chapter is a brief introduction of the research background and the objective of the re-

search. 

Chapter 2 provides the introduction of the project Integrative Landslides Early Warning Systems 

(ILEWS) and the subproject: Geodetic monitoring and modeling. 

Chapter 3 describes the GNSS status and analyzes the noise of GPS real-time series. 

Chapter 4 provides three different methods that will be used to reduce the colored noise in the 

GPS time series: the Finite Impulse Response (FIR) filter, the Kalman filter model with a shap-

ing filter, and the sequential algorithm. The merits and the limitations of each method will be 

discussed in detail based on the GPS real-time series analysis. The Kalman filter model with a 

shaping filter is investigated in detail. It is not only applied to process the stepwise changes but 

also different forms of the deformation time series. 

Chapter 5 is concerned with designing algorithms to detect the deformation epoch, in order to 

improve the quality of GPS measurements for the real-time deformation applications. In this 

regard, the multiple Kalman filters model based on the idea of model selection is proposed to 

improve the reliability of the detection of the deformation epoch. Because of the affection of the 

colored noise in the GPS time series, the proposed model can be augmented by shaping filters. 

The simulated data and the GPS time series are used to verify the effectiveness of the proposed 

models. 

Chapter 6 is composed of the conclusions and the suggestions for the future work. 
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2 Integrative Landslides Early Warning Systems 

(ILEWS) 

2.1 ILEWS introduction  

Landslides cause economic damage and fatalities all over the world. In most of the cases, severe 

consequences could have been reduced if a reliable and understandable warning had been pro-

vided in time. Since both the possibilities to predict landslides as well as the early warning of 

landslides vary significantly, early warning of landslides is a challenging topic. New technolo-

gies are needed to set up reliably an early warning system. However, a well working technical 

early warning system might not be sufficient if the issued warning is not understood by the 

threatened people. Thus, the effective early warning system must integrate social science, hu-

manities and decision making as well ensure that the early warning system meets the needs of 

the involved players and the threatened people (Glade et al. 2007). 

The main aim of the project ILEWS is to design and implement an integrative early warning 

system for known and new landslides and debris flows, which provides information on future 

events with regard to local and regional requirements. One study area is in the community of 

Lichtenstein-Unterhausen in Germany. In this area regularly occurring house damages and incli-

nometer measurements show a recent but very slow sliding activity of the slope. Therefore the 

slope represents ideal conditions to test modern measurement technology. The other is South 

Tyrol in Italy. The early warning systems are to be implemented in these two european test 

areas(Glade et al. 2007). 

The subprojects are composed of  

 Monitoring of landslide movement and early warning modeling 

 Coordination, integration and optimization of a multi-sensor system for monitoring of 

landslides 

 Cooperative risk communication 

 Historical comparative regional analysis of frequency and magnitude of landslides 

 Integration of early warning into an integrated risk management  

 Central spatial data infrastructure, open web services and web processing services and 

web processing services for the development of an information management in early 

warning systems for landslides 

 Development of an adequate data model schema for an information and decision support 

system for risk management in landslides early warning systems 

 Geodetic monitoring and modeling  

 Spatial monitoring of soil parameters with geophysical survey methods 
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 Standardized, wireless sensor networks for the efficient acquisition, transmission, storage 

and visualization of geodata (Glade et al. 2007). 

2.2 Subproject: geodetic monitoring and modeling 

The main task of geodetic monitoring measurements is to ''get a confirmation of predictable 

changes (e.g. subsidence behavior of structures) or the proof for a non-expected or non-

predictable change of an object (e.g. landslide). Information is generally being supplied through 

selected measuring points. The behavior of the object can be quantified by analyzing the move-

ments over time. Closely related with the determination of movements is also the question of 

reasons in order to derive a causal connection'' (Glade et al. 2007). 

A specially created geodetic point network spreads over stable as well as critical slope areas. 

Those areas should be identified whose movement intervals differ significantly from other areas 

due to certain other effects (e.g. change of pore water pressure, increase of humidity, etc.). Via 

measuring methods such as GPS and electronic precision tacheometry, absolute movements of 

ground points in slope areas are being recorded and compared to reference points. Besides those 

geodetic network points, further measuring stations are being created which are equipped with 

sensors for relative measurements. The relative measurements can be linked with the movement 

of the geodetic measuring points in order to get best redundant but assignable measuring infor-

mation on movements (Glade et al. 2007). 

Both geodetic measuring methods can be applied one after another. It is supposed that the 

movement intervals are about 0.3mm/month, the measuring resolution of the precision tacheo-

meter of about 0.2-0.3mm will be sufficient if episodic measurements are carried out and mea-

surements are repeated about every 2-3 months. Both the monitoring of the geodetic point net-

work and the respective integration of all measuring stations for relative measurements are cov-

ered. The redundant information is delivered on areas close to each other. The automatic relative 

measurements can serve as indicators for beginning movements in order to possibly initiate mon-

itoring measurements outside the scheduled measuring epochs (Glade et al. 2007). 

Although it is not the focus of this thesis, it should be mentioned here. A regular examination of 

the measuring instrument will be necessary in order to get a relative precision of tacheometric 

measurement clearly less than 1 ppm. It is also not sufficient to introduce the gained meteorolog-

ical parameters of the end point as representative factors for the entire measuring distance. The 

determination of the refractive index is the precision limiting factor for the distance measuring 

especially in mountained areas. Hence it is important to determine the refractive index (Glade et 

al. 2007). 

In the 1990s the high-precision distance measuring was taken successfully. Based upon the light 

dispersion in a turbulent medium, the fluctuations due to atmospheric exchange processes are 
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described in a model by means of statistic factors. Suitable commercial systems, which can 

measure these atmospheric fluctuations, have been developed by Scintec/Tübingen in the form of 

the scintillometer measuring systems. Regarding the chosen study areas a scintillometer will be 

used, which can do measurements up to 4-5 km. A significant improvement in the application of 

the modeling of the refractive index has been achieved.  Its application therefore covers huge 

parts of the refractive components which have previously been difficult to determine (Müller 

2010). 

In the chosen study areas, changes are being expected that have an explicit time connection. The 

movements collected can be modeled together as a function of pore water pressure, rainfall, 

ground parameters and slope inclination, etc. This will then be the basis for an early warning 

system via which an according measure and emergency concept should be initiated in order to 

best handle the current situation (Glade et al. 2007; Thiebes et al. 2010). 

2.3 Main work: GPS real-time series processing and analysis 

GPS has been used to monitor landslide over last couple of years. The landslide monitoring de-

mands the observations in real-time and with high accuracy. The demand for increasing accuracy 

in this application has required a deeper understanding of GPS positioning errors and methods to 

reduce or eliminate them.  

GPS measurements can be carried out with the same measuring epoch. They have advantages 

with continuous monitoring methods over several weeks, if they are being carried out as static 

measurements. The data collected in the local network come together in a central control and 

evaluation unit, in that it is possible to calculate the baselines between the network points auto-

matically and continuously in order to obtain station movements (Glade et al. 2007). 

The GPS observation deviations demonstrate a certain auto-correlation in the range of a few mi-

nutes up to a few hours. The auto-correlation of GPS measurement observations are caused by 

the multipath, propagation effects of the electromagnetic waves and so on. The dimension of the 

deviations lies above the point movement to be expected. The GPS observation deviations can be 

reduced during long observation periods and an analysis using post processing method. Because 

of the planned early warning system a real time process is required here which analyze that a 

separation of measurement deviations and point movements will be done in a filter approach 

(Glade et al. 2007). 

Although GPS cannot be used in the Schwabian Alb area, the related research works need to be 

done.  The main works should be done as described in the following: 

 Analysis of GPS noise 

 Separation of colored noise from GPS real-time series 

 Accuracy improvement of the GPS real-time series 

 Reliability improvement of detecting deformation epochs.   
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3 GNSS Overview and Noise Analysis  

3.1 GNSS introduction  

Global Navigation Satellite Systems (GNSS) are designed to provide position, velocity, and tim-

ing capabilities to users all over the world. The GNSS combine GPS, GLONASS, GALILEO, 

COMPASS, etc.  

It is originally designed that GPS consists of 24 satellites orbiting the earth at an altitude of about 

20200 km. The satellites are distributed in six equally spaced orbit planes of inclination of 55 

degrees with respect to the equator. Every satellite circulates the earth in a period of 12 hours 

sidereal time. The satellite sends timed signals at two L-band frequencies, 1.57 and 1.22 GHz, 

namely L1 and L2. The signals contain codes which can identify every satellite, satellite clock 

corrections of the satellite, time of the emitted signal, position, and other data related to ionos-

phere and satellite. The L1 signals are modulated by a Coarse/Acquisition (C/A) code, which is 

available for civilian use, and a more precise P(Y) code, which is available only for authorized 

users. The C/A code, which is for the civilian use, has a unique sequence of 1023 chips with a 

width of 300m and repeats every 1ms. The P code, which is for the military use,  is extremely 

long (
1410 chips) but with a smaller chip width, 30m, and repeats itself every one week. Several 

techniques such as squaring and cross correlation were taken by high quality receivers in order to 

acquire the P code on L1 and L2 but with noise characteristics compared with the original codes 

(Hoffmann-Wellenhof 2001). 

One of the most important issues in GPS positioning is to observe the time difference between 

the satellites and users; therefore, GPS satellites use high quality redundant atomic clocks. The 

structure of GPS system is composed of three main segments which are customary for navigation 

satellites: space segment, control segment and user segment. The space segment consists of dif-

ferent generations of active satellites. The constellation was changed to a non-uniform arrange-

ment with the increased number of satellites. The reliability and availability of the system have 

been improved in such an arrangement. The responsibility of control segment is to maintain the 

satellites in orbits, adjust satellite clocks, and upload navigation data. The control segment is 

composed of the master operational control center, six monitoring stations, four ground antenna 

upload stations and an alternate master control station.  The user segment is to receive the GPS 

signals by different satellite receivers. 

GPS has been used for the solution of geodetic problems since about 1983 (Seeber). GPS is 

weather independence, capable of autonomous operation, and does not require a line-of-sight 

between target points. Because of the mentioned advantages, GPS can be used to continuously 

monitor deformations even during unfavorable weather conditions such as rain, snow and fog. 

The developments of GPS receivers, antennas, and data processing software have made GPS as a 
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very effective tool for deformation monitoring with sub-centimeter accuracy. GPS receivers 

measure the satellite signals at a high sampling rate. GPS technique is widely used to monitor the 

deformations of all kinds of buildings and constructions.  

As any other developing technology, GPS technology has its own disadvantages when it is ap-

plied in the precise engineering applications. A major barrier is the achievable accuracy of GPS 

positioning solution, which is affected by many factors and restraints. In particular, multipath is 

one of the major limitations. Usually the systematic effects in the position results are amplified 

by weak satellite constellations. An effective solution is still elusive, although many efforts have 

been made in multipath mitigation (Meng 2002). Multipath and significant signal diffraction 

effects are often unavoidable in complicated GPS environments. Therefore, noise reduction of 

GPS observations, improvement of the accuracy of the GPS time series and detection of defor-

mation epochs are the key issues of deformation analysis.  

Currently GNSS are modernized. Until now (May. 2011) GLONASS has 23 operational satel-

lites. Three other satellites are in maintenance and one satellite is in commissioning phase. Gali-

leo positioning system is scheduled to be operational in 2014 (Öhler et al. 2009). China has indi-

cated it will expand its regional Beidou navigation system into the global Compass navigation 

system by 2020 (Cao 2009).  

The combined use of navigation systems will increase the overall performance, robustness, and 

the inherent safety of the services achieved from GNSS. It will allow for worldwide acceptability 

of the exploitation and use of satellite navigation for the benefit of all potential users. All these 

changes and improvements of the navigation systems will undoubtedly have a positive effect on 

Geodetic GNSS positioning.  

3.2 GPS observation errors 

A lot of error sources affect the accuracies of GPS measurements. The error sources can be 

grouped into three categories, the satellite related errors, the atmosphere related errors, and the 

receiver related errors. The satellite related errors include satellite clock error, satellite orbit er-

ror, and satellite inter-frequency bias. Atmosphere related errors consist of ionospheric delay 

error and tropospheric delay error. Receiver related errors are comprised of antenna phase center 

variations, receiver clock error, multipath, receiver inter-frequency bias, and receiver noise.  

Generally, if the appropriate procedures or models are adopted, the error sources can be miti-

gated or corrected. Most of them can also be mathematically modeled and alleviated to a mini-

mum degree. For instance, the tropospheric delay error can also be effectively corrected using 

certain models (Hopfield 1969; Saastamoinen 1973; Black and Eisner 1984). The multipath error 

can be reduced by the careful selection of GPS site, GPS receiver and antenna (e.g. choke ring) 

(Langley 1998). Most of the error sources variate only very slowly in real-time and may be can-

http://en.wikipedia.org/wiki/Galileo_positioning_system
http://en.wikipedia.org/wiki/Galileo_positioning_system
http://en.wikipedia.org/wiki/Beidou_navigation_system
http://en.wikipedia.org/wiki/Compass_navigation_system
http://en.wikipedia.org/wiki/Compass_navigation_system
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celled by differential observation techniques, for example, the ionospheric error and the tropos-

pheric error. The following subsections describe the characteristic of each type of error sources. 

Ephemeris errors 

When the GPS message does not transmit the correct satellite location it will result in ephemeris 

errors (Parkinson 1996). The navigation messages, which are generated at control segment and 

uploaded by the four ground antennas of the control segment's monitor stations, are prediction 

results based on the past tracking information. Therefore, based on the navigation messages, the 

calculated GPS satellite positions are different from their true positions. Now the accuracy of 

broadcast orbit provided by International GNSS Service (IGS) is about 1 m (IGS).  

If the satellite ephemeris data contain the errors, then the validity of the corrections will decrease 

as the distance between the user and the reference station increases (Parkinson and Enge 1996). 

The ephemeris errors are nearly the same for neighboring stations as long as they are sufficiently 

close. This is a negligible source of error for DGPS, provided the user is within 500 km of the 

reference station.  

Satellite clock errors 

Even though all the GPS satellites are equipped with atomic clocks for the generation of GPS 

signals, the atomic clock performance still results in an error to the GPS frequency standard be-

cause of its instability. A quadratic function of time is used to model the deviation of a particular 

clock from GPS system time. The parameters of the model are estimated, uploaded to the satel-

lite, and are broadcast within the navigation message. The satellite clocks can be kept synchro-

nized within 5 to 10 ns according to the parameters in the broadcast message (Misra and Enge 

2001). 

The actual behavior of each clock slightly differs from this model, because there are some un-

predictable, correlated frequency errors. These errors are small and change slowly. The clock 

corrections are valid with time and not with the distance between the reference station and the 

user. The satellite clock errors can be cancelled by differencing the GPS observations between 

two satellites.   

Ionosphere errors 

The ionosphere layer is the higher stratum of the atmosphere with an extension from about 40 to 

1000 km, which contains ionized particles created by sun's ultraviolet. When GPS signals transit 

this region, they don't travel at the vacuum speed of light because of free electrons in the ionos-

phere. The modulation on the signal is proportional to the inverse of the carrier frequency 

squared and is also delayed in proportion to the number of free electrons encountered.  

The propagation delay in the ionosphere depends on the electron content along the signal path 

and also depends on the frequency selected. The influencing parameters are mainly solar activity 
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and the frequency used. Therefore, ionospheric refraction varies with geographic location, time, 

and frequency. For the GPS frequencies, the resulting error can vary from less than 1 m to more 

than 100 m (Wells 1986; Klobuchar 1996). 

With differential corrections, the separation of the user and the reference station and the eleva-

tion angles of the satellites will affect the size of residual pseudorange error for the ionosphere. 

The ionosphere is not a significant problem for kinematic DGPS system under 50-km separation 

of reference station and the user. Usually, the effects of the ionosphere on differential GPS users 

are small, at least when the relative geographic area of the differential region used is small (Par-

kinson and Enge 1996). 

Troposphere errors 

Troposphere is the lower layer of atmosphere, extending from the sea level up to about 40 km 

(Hofmann-Wellenhof 2001). The troposphere causes another deviation from the vacuum speed 

of light. The variations in the speed of light of radio waves are caused by variations in tempera-

ture, pressure, and humidity. Usually, the influence of the neutral atmosphere on range mea-

surements to satellites in the radio frequency domain can be divided into two integral terms: the 

dry component and the wet component. The wet component is caused by the lower portion of 

troposphere, 11 km from sea level, and it contains most of the water vapor. The modeling of the 

wet component is difficult, because of the variation of water vapor density with position and 

time. The wet component represents 10% of the total troposphere delay (Misra and Enge 2001). 

The dry component represents the remaining 90% of the troposphere and can be easily modeled. 

Unlike the wet component, the dry component is caused by the higher portion of atmosphere 

lying directly above the wet components, and it contains mainly gases. The average total tropos-

phere delay at zenith is about 2.5 m. It changes but does not suffer much from rapid change or 

large variation.  

The tropospheric propagation delay is critical for the determination of precise position and base-

line, in particular in the height component, because the tropospheric parameters are only poorly 

correlated over larger distances. Furthermore, it is difficult to separate error components stem-

ming from the radial orbital errors, signal propagation errors, clock errors, antenna phase center 

variation, and errors in the station height. 

This model typically removes 90% of the delay, but the unmodeled error can reach 2-3 m about 

5 deg elevation without differential corrections. The residual error is almost always very small 

with differential corrections (Parkinson and Enge 1996). If the stations are close together, the 

tropospheric residual error almost completely disappears by differencing in the relative observa-

tion mode. The troposheric errors are highly correlated over short distances, thus, most of their 

delays are common to both stations. An exception to this rule might apply to nearby stations that 

are located at significantly different elevations in terms of the tropospheric effect. 
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The error could be troublesome for demanding applications if the signal ray paths to the user and 

reference station traverse volumes with significantly different meteorological parameters. In 

these cases, a differential tropospheric model that accounts for the altitude difference can be se-

lected by the DGPS user (Parkinson and Enge 1996). 

Multipath errors 

Multipath propagation means that one or more reflected signals reach the antenna, in addition to 

the direct signal. It is possible that the antenna only receives the reflected signal under particular 

circumstances. There can be reflection off horizontal, vertical and inclined surfaces, which can 

be streets, buildings, waterways, and vehicles. When choosing observation sites, in particular for 

permanent reference stations, it must be considered. Multipath propagation affects both code and 

carrier measurements (Seeber 2003). 

Multipath is the error caused by reflected signals entering the front end of the receiving antenna 

and masking the real correlation peak. In a static receiving antenna near large reflecting surfaces 

these effects tend to be more pronounced. 15 m or more in ranging error can be found in extreme 

cases (Parkinson 1996).  

A variety of techniques, most notably narrow correlator spacing, have been developed to miti-

gate multipath errors. The receiving antenna itself can recognize the wayward signal and discard 

it for long delay multipath. Regarding shorter delay multipath from the signal reflecting off the 

ground, specialized antennas (e.g., a choke ring antenna) could be used to reduce the signal pow-

er as received by the antenna. Because short delay reflections interfere with the true signal, caus-

ing effects almost indistinguishable from routine fluctuations in atmospheric delay, it is harder to 

filter them out. 

Multipath is a function of the specific receiver-satellite-reflector geometry and it doesn't cancel 

in the double-difference observable. It is the major error source for DGPS. 

Receiver errors 

The main error sources in the receiving system are antenna phase center variations, receiver 

noise, interchannel bias and oscillator instability. 

The phase center positions of all antennas are very important for the determination of the height 

component. The phase center variations can reach millimeters to a few centimeters. Different 

antenna calibration procedures have been developed and a laboratory procedure was developed 

at the University of Bonn and a new anechoic chamber is operable since February 2009 (Zeimetz 

and Kuhlmann 2010). 

The measurements of GPS receivers refer to the electronic center of the antenna. A receiver's 

antenna phase center is not a physical mark that GPS users can refer to. Additionally, according 

to the elevation of the incoming GPS signals, the receiver's antenna phase center changes, and 

http://en.wikipedia.org/w/index.php?title=Narrow_correlator_spacing&action=edit&redlink=1
http://en.wikipedia.org/wiki/Choke_ring_antenna
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this variation is a function of the antenna fabrication. As a result, every GPS antenna will have 

an offset in addition to a variable element because of the elevation angle of the satellite. 

The remaining phase center offsets and variations are eliminated in the differencing process, if 

antennas of the same type are used within one observation session over short baselines. If differ-

ent antenna types are selected within the same project, the observations have to be corrected for 

the phase center variations. 

GPS phase and code observables cannot be measured perfectly but are subject to random influ-

ences. For instance, the observations are influenced by unwanted disturbances in the antenna, 

amplifiers, cables, and the receiver itself. The double difference observations make the cancella-

tion of the large receiver clock errors. The receiver clock errors cancel completely as long as 

observations to satellites are taken at the same time. 

Different signal propagation delays for each hardware channel can be exhibited by multichannel 

receivers. The instrument makers try to calibrate and to compensate these interchannel biases. It 

is suggested that the parameter estimation models include the parameters for satellite and receiv-

er hardware delays (Seeber 2003). Oscillator instabilities play only a minor role in carefully de-

signed. 

In case of landslide monitoring by GPS, the baselines are usually short baselines and the diffe-

rential GPS measurements are computed in real-time.  Most of the errors can be cancelled by 

differencing GPS observations, but the remaining system errors are correlated when the GPS 

observations are collected with a high sampling rate. Multipath effect is one of the reasons for 

interepochal correlations. Therefore the autocorrelation of GPS time series should be investi-

gated in the following section. 

3.3 Autocorrelation analysis of the GPS time series 

With the electronic technology development, the GPS receivers can provide three-dimensional 

positions with high sampling rates. Because of the high sampling rate, time dependent systematic 

deviations arise in neighboring epochs in a similar way, resulting in autocorrelation (Schwieger 

1999). Therefore, GPS measurements contain colored noise which negatively affects the defor-

mation analysis. The assumption of white noise is not justified. The noise property must be taken 

into account in the high-precision GPS real-time positioning applications. 

The distribution of the GPS colored noise has been analyzed by the autocorrelation function. 

Firstly the autocorrelation function (Strang and Borre 1997) is introduced as follows. 

3.3.1 Introduction of the autocorrelation function 

In statistics, the autocorrelation of a random process describes the correlation between values of 

the process at different points in time as a function of the two times or of the time difference. 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Random_process
http://en.wikipedia.org/wiki/Correlation
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The observation time series is described as (l1, l2, l3, , lk,, lN), which are made at equidistant 

time intervals t . N is the total number of the observations. Firstly, we compute the mean val-

ue M of all observations; secondly, we compute the autocovariance coefficient ˆ ( )C i of the ob-

servation series according to the definition below. 

                                
1

ˆ (0) ( )( ) / ( 1)
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k k

k

C l M l M N
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The normalized autocorrelation coefficient iR  is defined by the following formula, 

ˆ ( )

ˆ (0)
i

C i
R

C
                                                                        (3.4) 

Where i is the normalized autocorrelation coefficient’s index, the time lag between kl  
and k il   is

i t . The autocorrelation coefficients for varying i of the GPS static observations are obtained 

by the Equations 3.1-3.4. The plot of iR  for varying i is called the correlogram for the random 

process lk.  One simple use of the correlogram is to check whether there is evidence of any serial 

dependence in an observed time series. 

3.3.2 GPS experiment and results analysis 

In order to analyze the GPS observation noise, a GPS experiment is needed. The sites were se-

lected on the roofs of the Institute of Geodesy and Geoinformation (IGG) and the Max-Planck 

Institute (MPI) in Bonn, Germany. The baseline was about 1.2 km. The GPS equipment (Fig. 3.1) 

consisted of Trimble 5700 receivers and Zephyr antennas. A cut-off angle of 10° was chosen and 

the sampling rate t   was 1 second.  The kinematic observations of 9 hours with both fixed an-

tennas (Fig. 3.2, Fig. 3.3 and Fig. 3.4) have been used for the noise analysis of GPS time series. 

 

Fig. 3.1 GPS experiment 
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Fig. 3.2 GPS static X-coordinate time series 

 

Fig. 3.3 GPS static Y-coordinates time series 

 

 

Fig. 3.4 GPS static Height time series 
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Fig. 3.5a Correlogram of X-coordinate  

 

Fig. 3.5b Correlogram of X-coordinate 

(time lag: 0 to 600 second) 

 

Fig. 3.6a Correlogram of Y-coordinate  

 

Fig. 3.6b Correlogram of Y-coordinate (time 

lag: 0 to 600 second) 

 

Fig. 3.7a Correlogram of Height  

 

Fig. 3.7b Correlogram of Height 

(time lag: 0 to 600 second) 

The autocorrelation functions of the GPS static coordinate time series (X, Y, H) (Fig. 3.2, Fig. 

3.3 and Fig. 3.4) have been separately shown in Fig. 3.5, Fig. 3.6 and Fig. 3.7. In order to get a 

better understanding of the autocorrelation function, the autocorrelation coefficients of all the 

GPS static observations (X, Y, H) were zoomed to the first 600 autocorrelation coefficients 
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It is known that the autocorrelation of a continuous-time white noise signal will have a strong 

peak at 0i t   and will be absolutely 0 for all other i t . The results in Fig. 3.5b, Fig. 3.6b 

and Fig. 3.7b demonstrate that, the autocorrelation functions take the maximum values 0 1R   at 

zero shift. But at all other time lag i t  in Fig. 3.5b, Fig. 3.6b and Fig. 3.7b, these values de-

crease exponentially. These are colored noise in the GPS observations. 

In Fig. 3.5b, Fig. 3.6b and Fig. 3.7b, it is obtained that the GPS measurement deviations are 

composed of white noises and colored noises. The colored noises follow the exponential distri-

bution, resulting in a correlated coefficient of about 0.6 at 1i t  . When the time lag i t  is 

larger, for example 400 seconds, the autocorrelation of the observations is not so obvious. But 

when the time lag is smaller, for example 1 second, the autocorrelation coefficient between these 

two observations becomes larger ( 1 0.6R  ). Therefore if the GPS receiver collects the observa-

tions at a high sampling rate (such as the sampling rate 1i t  second), the auto-correlated error 

should be taken into account when processing the GPS coordinate time series. The white noise 

can be described by the difference of the value 1 at 0i t    and 0.6  at 1i t  . As analyzed 

above, GPS measurements contain white noise and colored noise which decreases exponentially 

when the time lag is larger. 

3.4 Stochastic model determination of GPS time series 

The GPS measurement deviations can be divided into correlating errors and non-correlating er-

rors (Schwieger 1999). The magnitude of the non-correlating and correlating errors can be de-

scribed by the standard deviations   and  .  

As shown in Fig. 3.5b, Fig. 3.6b and Fig. 3.7b, the correlating deviations follow a Gauß-Markov-

process with exponentially decreasing autocorrelation function 

( ) i t

lC i e     .                                                         (3.5) 

The stochastic model of the measurement deviation is given by (Schwieger 1999; Kuhlmann 

2003) 
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3.4.1 Parameter estimation of the stochastic model 

In order to calculate three parameters  ,    and   in Equation 3.6, the basic idea of the pa-

rameter estimation of the stochastic model (Kuhlmann 2003) should be first briefly introduced. 

The mean value of n observations is given by  

http://en.wikipedia.org/wiki/White_noise
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According to the variance propagation law, 
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The numerator T

ll
U U  in Equation 3.9 is the sum of elements of ll .  

Supposing a Gaussian white noise process with variance 2 , the covariance matrix of observa-

tions is 2
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In case of colored measurement noise in Equation 3.6 this leads to (Meier and Keller 1990) 
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As shown in Equation 3.10, the theoretical standard deviation M  
is the function of the elements 

of  ,  ,  which are unknowns for observations l . Ms  can be calculated empirically from 

different new generating samples of observations. Taking the app. 32400 observations of time 

series separately in Fig. 3.2, Fig. 3.3 and Fig. 3.4, new samples can be generated by calculating 

mean values of each group composed of m observations. For m=10 this leads to a new sample 

with 3240 mean values. Out of this new sample of mean values, an empirical standard deviation 

Ms
 
can be calculated. If different numbers m have been chosen, all the corresponding empirical 

standard deviations of the new generating samples can be calculated. Therefore, these three un-

known parameters can be estimated by least square adjustment by observed empirical variances
2

Ms .  

3.4.2 Experiment and result analysis 

The GPS observations selected from the GPS static experiment shown in Fig. 3.2, Fig. 3.3 and 

Fig. 3.4, can be used to estimate of the parameters of the stochastic model for GPS time series. 

The stochastic model illustrates the noise property of the chosen GPS time series.  

3.4.2.1 Calculation of the statistical parameters  

 



23 

 

The unknown parameters in the statistical model (Equation 3.10) are described as the standard 

deviation of the uncorrelating errors  ,
 
the standard deviation of the correlating errors    and 

  .  

The known parameters 
2

Ms  can be computed from the selected samples from the GPS experiment 

given the different numbers m. The process to compute the empirical standard deviation Ms  is 

described as follows: first 9 hours observations have been chosen to compute these unknown 

parameters. As we know, in this GPS static experiment, the sampling rate is 1 second, therefore, 

32400 observations are used in total. Given the different numbers m, the different new samples 

can be generated. In each new generating sample, the degree of freedom and the variance can be 

computed. 

 Degree of freedom of the new samples 

According to the different chosen number of m, the degree of freedom  of each sample can be 

obtained as 

1
N

m
    

Table 3.1 Degrees of freedom 

ID Nr. 1 2 3 4 5 6 7 8 9 10 

Number(m) 1 2 3 4 5 6 8 9 10 12 

Freedom 

degree 
32399 16199 10799 8099 6479 5399 4049 3599 3239 2699 

ID Nr. 11 12 13 14 15 16 17 18 19 20 

Number(m) 15 16 18 20 24 25 27 30 36 40 

Freedom 

degree 
2159 2024 1799 619 1349 1295 1199 1079 899 809 

ID Nr. 21 22 23 24 25 26 27 28 29 30 

Number(m) 45 50 54 60 72 75 80 81 90 100 

Freedom 

degree 
719 647 599 539 449 431 404 399 359 323 

ID Nr. 31 32 33 34 35 36 37 38 39 40 

Number(m) 108 135 162 200 225 270 300 400 450 600 

Freedom 

degree 
299 239 199 161 143 119 107 80 71 53 

Variance of the new samples  

According to different number m, the variance of each new generating sample is shown in Table 

3.2, Table 3.3 and Table 3.4. 

The equation of the variance is given as  
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2 2

1

1
( )

1

n

i

i

s x M
n 

 

  

where ix
 
denotes the mean value of every group of m observations and n is the number of ele-

ments in each new sample,  Nn
m

   

Table 3.2 Empirical variances of the new samples (X-coordinate) 

 1 2 3 4 5 6 7 8 9 10 

Number(m) 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variance (mm
2
) 

25.03 19.60 17.80 16.81 16.23 15.89 15.34 15.10 15.01 14.77 

 11 12 13 14 15 16 17 18 19 20 

Number(m) 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variance (mm
2
) 

14.45 14.39 14.22 14.15 13.93 13.84 13.72 13.69 13.40 13.20 

 21 22 23 24 25 26 27 28 29 30 

Number(m) 45 50 54 60 72 75 80 81 90 100 

Variance (mm
2
) 13.14 12.91 12.83 12.78 12.32 12.43 12.06 12.11 11.82 11.60 

 31 32 33 34 35 36 37 38 39 40 

Number(m) 108 135 162 200 225 270 300 400 450 600 

Empirical  

Variance (mm
2
) 

11.52 10.69 10.21 9.67 8.58 7.94 7.34 5.26 5.02 3.91 

Table 3.3 Empirical variances of the new samples (Y-coordinate) 

 1 2 3 4 5 6 7 8 9 10 

Number(m) 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variance (mm
2
) 

6.65 5.10 4.59 4.31 4.16 4.04 3.89 3.86 3.81 3.74 

 11 12 13 14 15 16 17 18 19 20 

Number(m) 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variance (mm
2
) 

3.66 3.64 3.59 3.56 3.51 3.50 3.47 3.43 3.37 3.33 

 21 22 23 24 25 26 27 28 29 30 

Number(m) 45 50 54 60 72 75 80 81 90 100 

Empirical  

Variance (mm
2
) 

3.28 3.24 3.21 3.15 3.06 3.05 2.98 2.99 2.91 2.85 

 31 32 33 34 35 36 37 38 39 40 

Number(m) 108 135 162 200 225 270 300 400 450 600 

Empirical  

Variance (mm
2
) 

2.84 2.64 2.48 2.20 2.19 1.94 1.85 1.48 1.45 0.96 
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Table 3.4 Empirical variances of the new samples (Height-coordinate) 

 1 2 3 4 5 6 7 8 9 10 

Number(m) 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variance (mm
2
) 

55.14 44.44 40.91 38.90 37.98 37.23 36.25 35.86 35.62 35.14 

 11 12 13 14 15 16 17 18 19 20 

Number(m) 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variance (mm
2
) 

34.58 34.45 34.29 34.04 33.54 33.47 33.38 33.06 32.58 32.37 

 21 22 23 24 25 26 27 28 29 30 

Number(m) 45 50 54 60 72 75 80 81 90 100 

Empirical  

Variance (mm
2
) 

32.17 31.74 31.69 31.20 30.47 30.22 29.87 29.60 29.65 29.04 

 31 32 33 34 35 36 37 38 39 40 

Number 108 135 162 200 225 270 300 400 450 600 

Empirical  

variance(mm
2
) 

28.11 26.81 25.28 24.25 21.15 20.97 19.29 16.47 15.47 13.65 

 

  

Fig. 3.8 Empirical standard deviations of X-coordinate 

 

Fig. 3.9 Empirical standard deviations of Y-coordinate 

5 12 24 40 72 100 225 600
1

2

3

4

5

6

Number of m

[m
m

]

 

 

Empirical standard deviation

5 12 24 40 72 100 225 600
0.5

1

1.5

2

2.5

3

Number of m

[m
m

]

 

 

Empirical standard deviation



26 

 

 

Fig. 3.10 Empirical standard deviations of Height-coordinate 

Results of the three parameters in the stochastic model 

The results of the parameters of stochastic model for the coordinates (X, Y, H) are calculated 

based on least square adjustment, neglecting that variances 2

M  follow a 
2  distribution. For 

10  , 
2  distribution is asymptotically equal to normal distribution (Mikhail 1976).These re-

sults are shown as follows:  

                                    Table 3.5 Parameters results (X coordinate) 

Unkown 

parameters 

Results Standard deviations 

(mm) 
  0.0090 0.00066 1/s 

  3.21 0.18 

   3.68 0.098 

 

                                    Table 3.6 Parameters results (Y coordinate) 

Unkown 

parameters 

Results Standard deviations 

(mm) 
  0.0089 0.00066 1/s 

  1.71 0.085 

   1.86 0.045 

                                    Table 3.7 Parameters results (Height) 

Unkown 

parameters 

Results Standard deviations 

(mm) 
  0.0062 0.0004 1/s 

  4.53 0.18 

   5.75 0.12 

To show the quality of the adjustment, the adjusted standard deviations are shown in Table 3.8, 

Table 3.9 and Table 3.10. 
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Table 3.8 Empirical and adjusted variances under different numbers m (X-coordinate time series) 

Number 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variances(mm
2
) 

25.03 19.60 17.80 16.81 16.23 15.89 15.34 15.10 15.01 14.77 

Adjusted  

Variances(mm
2
) 

23.83 18.63 16.87 15.97 15.41 15.03 14.52 14.34 14.18 13.94 

Number 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variances(mm
2
) 

14.45 14.39 14.22 14.15 13.93 13.84 13.72 13.69 13.40 13.20 

Adjusted  

Variances(mm
2
) 

13.65 13.57 13.42 13.29 13.06 13.00 12.90 12.76 12.49 12.32 

Number 45 50 54 60 72 75 80 81 90 100 

Empirical  

Variances(mm
2
) 

13.14 12.91 12.83 12.78 12.32 12.43 12.06 12.11 11.82 11.60 

Adjusted  

Variances(mm
2
) 

12.13 11.94 11.79 11.58 11.19 11.10 10.94 10.91 10.65 10.37 

Number 108 135 162 200 225 270 300 400 450 600 

Empirical  

Variances(mm
2
) 

11.52 10.69 10.21 9.67 8.58 7.94 7.34 5.26 5.02 3.91 

Adjusted  

Variances(mm
2
) 

10.15 9.48 8.88 8.14 7.70 7.02 6.62 5.53 5.10 4.12 

Table 3.9 Empirical and adjusted variances under different numbers m (Y-coordinate time series) 

Number 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variances(mm
2
) 

6.65 5.10 4.59 4.31 4.16 4.04 3.89 3.86 3.81 3.74 

Adjusted  

Variances(mm
2
) 

6.38 4.90 4.40 4.15 3.99 3.89 3.74 3.69 3.65 3.58 

Number 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variances(mm
2
) 

3.66 3.64 3.59 3.56 3.51 3.50 3.47 3.43 3.37 3.33 

Adjusted  

Variances(mm
2
) 

3.50 3.48 3.44 3.41 3.35 3.33 3.30 3.27 3.20 3.15 

Number 45 50 54 60 72 75 80 81 90 100 

Empirical  

Variances(mm
2
) 

3.28 3.24 3.21 3.15 3.06 3.05 2.98 2.99 2.91 2.85 

Adjusted  

Variances(mm
2
) 

3.10 3.05 3.02 2.96 2.86 2.84 2.80 2.79 2.72 2.65 

Number 108 135 162 200 225 270 300 400 450 600 

Empirical  

Variances(mm
2
) 

2.84 2.64 2.48 2.20 2.19 1.94 1.85 1.48 1.45 0.96 

Adjusted  

Variances(mm
2
) 

2.60 2.42 2.27 2.08 1.97 1.80 1.69 1.42 1.31 1.06 
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 Table 3.10 Empirical and adjusted variances under different numbers m (Height-coordinate time 

series) 

Number 1 2 3 4 5 6 8 9 10 12 

Empirical  

Variances(mm
2
) 

55.14 44.44 40.91 38.90 37.98 37.23 36.25 35.86 35.62 35.14 

Adjusted  

Variances(mm
2
) 

53.57 43.22 39.72 37.94 36.84 36.09 35.10 34.74 34.45 33.97 

Number 15 16 18 20 24 25 27 30 36 40 

Empirical  

Variances(mm
2
) 

34.58 34.45 34.29 34.04 33.54 33.47 33.38 33.06 32.58 32.37 

Adjusted  

Variances(mm
2
) 

33.43 33.28 33.01 32.77 32.34 32.24 32.05 31.79 31.30 31.00 

Number 45 50 54 60 72 75 80 81 90 100 

Empirical  

Variances(mm
2
) 

32.17 31.74 31.69 31.20 30.47 30.22 29.87 29.60 29.65 29.04 

Adjusted  

Variances(mm
2
) 

30.64 30.30 30.04 29.65 28.92 28.75 28.46 28.40 27.90 27.36 

Number 108 135 162 200 225 270 300 400 450 600 

Empirical  

Variances(mm
2
) 

28.11 26.81 25.28 24.25 21.15 20.97 19.29 16.47 15.47 13.65 

Adjusted  

Variances(mm
2
) 

26.95 25.62 24.41 22.85 21.92 20.38 19.46 16.84 15.75 13.13 

3.4.2.2 Results analysis 

Fig. 3.8, Fig. 3.9, and Fig. 3.10 illustrate that the decrease of empirical standard deviation is less 

than it should be for white noise. It also demonstrates that the colored noise exists in GPS obser-

vations. The similar conclusion can be obtained from the results in Table 3.8, Table 3.9 and Ta-

ble 3.10. In order to have an in-depth understanding of the colored noise, the correlation coeffi-

cients of the colored noise of GPS observations at different time intervals are shown in Table 

3.11. Table 3.11 demonstrates that there is high auto-correlation of the colored noise. However 

when the time interval is more than 5 min, the correlation coefficient of the colored noise is near-

ly zero; the white noise assumption is fulfilled in practice. In our case the sampling rate 1t 

second belongs to the high sampling rate, the colored noise of the measurement deviations 

should be taken into account. 

Table 3.11 Autocorrelation coefficients of the coloured noise of GPS observations at different 

time intervals 

t    1 s 5 s  10 s 30 s 1min 5min 10min 

x  0.0089 0.99 0.96 0.91 0.76 0.58 0.06 0.004 

y  0.0090 0.99 0.96 0.91 0.76 0.59 0.07 0.005 

h  0.0062 0.99 0.97 0.94 0.83 0.69 0.16 0.02 
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According to the results above, the autocorrelation coefficients of the colored noise in X-

coordinate observations are similar to that of Y-coordinate observations. The coloured noise of 

height observation time series has a higher autocorrelation than that of the coordinate compo-

nents X and Y time series. That is because the height is more easily affected by the systematic 

error sources, for example, troposphere propagation errors and multipath errors. The autocorrela-

tion of height observations is stronger than the autocorrelation of X or Y observations. 

Summary 

The GPS coordinate real-time series are analyzed by the autocorrelation function. The GPS real-

time measurement deviations are correlated. Therefore in the deformation data analysis it is not 

proper to just take the measurement deviations as the white noise. The property of the noise has 

been explored in detail, especially the determination of the correlated error property of the GPS 

coordinate time series. The methods of determining the stochastic model of GPS coordinate (X, 

Y, H) measurement deviations are discussed in detail. The results show that the GPS real–time 

measurement deviations have a high autocorrelation, which should be considered in the GPS 

high-precision positioning.   
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4 Models to Process GPS Real-time Series  

Real-time GPS technology is an important tool to monitor continuous deformation of natural 

disasters and structures. In these applications, it requires GPS position coordinates with high 

accuracy. However, as analyzed in the last chapter, the error sources that restrain the accuracy of 

the GPS positioning solutions are the multipath effect, the atmosphere propagation error, inaccu-

rate orbits information, etc. Because of the high sampling rate, time dependent systematic devia-

tions arise in neighbouring epochs in a similar way, which results into autocorrelation. Thus GPS 

observations contain colored random noise which negatively affects the deformation analysis. 

Three different methods will be used to reduce the colored noise in the GPS time series: the 

Kalman filter model with a shaping filter, the Sequential algorithm and the Finite impulse re-

sponse (FIR) filter. The merits and the limitations of each method will be discussed in detail 

based on the GPS coordinates time series analysis. 

4.1 Kalman filter model with a shaping filter  

The Kalman filter is an important tool for deformation analysis combining information on object 

behavior and measurement quantities. System and measurement equation are combined in a 

well-known algorithm for estimating an optimal state vector X, containing parameters describing 

deformation behavior (Welsch et. al. 2000). Due to the recursive algorithm -working from epoch 

tk-1 to tk - the Kalman filter is applicable in real time. 

However, the Kalman filter requires white noise. As mentioned in Chapter 3, it is proved that the 

GPS observations with high sampling rates are correlated. If there are non-white noises in the 

system model or measurement model, the state vector can be augmented by appending the shap-

ing filter to the state vector components of Kalman filter (Grewal 2001; Kuhlmann 2003). In this 

way a shaping filter can describe long movement of the colored noise. Therefore, Kalman filter 

model with a shaping filter can be applied to process the GPS observations with high sampling 

rates. The principle of Kalman filter model with a shaping filter is introduced. 

4.1.1 Principle of Kalman filter model with a shaping filter 

In order to have a better understanding of the principle of Kalman filter model with  a shaping 

filter, the principles of Kalman filter and Shaping filter should be explained in detail separately, 

and then comes to the introduction of the modified Kalman filter model. 

4.1.1.1 Principle of Kalman filter   

The Kalman filter, first derived by Kalman (1960) for use in electrical control systems, is a wide-

ly used method to process the real-time series nowadays. The Kalman filter is an optimal recur-
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sive data processing algorithm. The user does not need to save previous observations; instead, all 

previous information is carried forward in the filter. 

Let us start with a continuous process described by the linear, time varying mathematical model    

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( )X t F t X t G t U t C t t                                          (4.1) 

where F(t) denotes the coefficient matrix of state vector; U(t) is input forces of the system equa-

tion; G(t) is the coefficient matrix of the input forces; Ω(t) is the system noise and C(t) denotes 

its coefficient matrix Ω. 

The solution of the general mathematical model is composed by the solution of the homogeneous 

part ( ) ( ) ( )X t F t X t and the particular solution of Equation 4.1. First if an matrix-valued func-

tion ( )t satisfies the conditions ( ) ( ) ( )t F t t    and (0) nI  , the n n  identity matrix, then 

( )t  is a fundamental solution of the homogeneous part ( ) ( ) ( )X t F t X t  on the interval 

 0,t T . Additionally, for any possible initial vector (0)X , the vector ( ) ( ) (0)X t t X  satisfies 

the equation ( ) ( ) ( )X t F t X t . That is, ( ) ( ) (0)X t t X is the solution of the homogeneous eq-

uation ( ) ( ) ( )X t F t X t  with initial value (0)X . ( )t transforms any initial state (0)X  of the 

dynamic system to the corresponding state ( )X t at time t . If ( )t  is nonsingular, then the prod-

ucts 
1( ) ( ) (0)t X t X    and 

1( ) ( ) ( ) ( )t X t X     . That is, the matrix product 

1( , ) ( ) ( )t t       transforms a solution from time t to the corresponding solution at time τ. 

The matrix ( , )t   is called the state transition matrix. The state transition matrix demonstrates 

the transition to the state at time τ from the state at time t  (Grewal and Andrews 2001). 

The solution of Equation 4.1 is given 

  

 

 

0

0

0 0

1 1

0 0

( ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

t

t

t

X t t t X t t G U C d

t t X t t G U C d

     

      

     

     




             (4.2)

 

If there are no input forces then the solution of this linear differential equation can be written as 

0
0( ) ( , ) ( ) ( , ) ( ) ( )

t

t
X t t t X t t C d                                          (4.3)

                                 
 

Discrete-time processes may arise in either of two following ways. First, a sequence of events 

takes place naturally in discrete steps. A sequence of chance experiments, such as the discrete 

random-walk problems of statistics, might occur in discrete steps. Discrete-time processes may 

also arise from sampling a continuous process at discrete times. One possibility is that the sam-

pling is intentional and is under the control of the designer, as is the case when analog data are 

converted to digital form. Or another possibility is that the sampling is unintentional and forced 

on us by a measurement constraint that allows observation of the process only at discrete points 

in time (Brown and Hwang 1997).  
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If one is only interested in the system state at discrete time epochs 0 1, , , kt t t , then one can 

use the formula 

1
1( ) ( , ) ( ) ( , ) ( ) ( )

k

k

t

k k k
t

X t t t X t t C d   


   
                  

(4.4) 

Let
1

( ) ( , ) ( ) ( )
k

k

t

k
t

t t C d    


   , 
 

where ( )kt  is a white sequence in the discrete model. 

Shorthand notation for discrete time system  

It is more efficient to shorten ( )kX t  to kX , so long as it is understood that it stand for ( )kX t , 

and not the kth component of  X. If one must refer to a particular component at a particular time, 

one can resort to writing ( )iX k to remove any ambiguity. It is better to drop t as a symbol when 

we are talking about discrete-time systems.  

The system equation is described by (Welch and Bishop 2006) 

1, 1k k k k kX X                                                          (4.5) 

where kX , 1kX   are the state vectors at different epochs kt and 1kt  which represent all the main 

characteristics of the dynamic system. The measurement of the process is assumed to occur at 

discrete points in time in accordance with the linear relationship 

k k k kL H X                                                             (4.6)    

where kL  is the measurement vector at epoch kt ; kH  is the observation transition matrix; k  is 

the measurement noise. 

The covariance matrices for the k and k are given by 

,

0,

kT

k i

Q i k
E

i k
 


     

                                                 (4.7) 

,

0,

kT

k i

R i k
E

i k
 


     

                                                  (4.8) 

  

0T

k iE       
for all k and i                                     (4.9) 

The Kalman filter recursively evaluates an optimal estimate of the state of a linear system (Kal-

man 1960; Gelb 1974; Strang and Borre 1997; Welch and Bishop 2006). The Kalman filter 

process consists of two sub-processes: i.e. the time update process and the measurement update 

process (Welch and Bishop 2006). The time update equations are  

1, 1
ˆ

k k k kX X                                                                (4.10)   

                                                
1

ˆ1, 1,
k k

T

k k k k kX X
P P Q


                                                    (4.11)                                                                                     

where kX  is the predicted value of the state vector, and 1
ˆ

kX   is the optimal estimator of the state 

vector at the previous epoch 
1kt 
; 

kX
P is the covariance matrix of kX , and 

1
ˆ

kX
P



 is the covariance 

matrix of 
1

ˆ
kX 

;  The measurement update equations are: 
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1( )
k k

T T

k k k kX X
G P H H P H R                                       (4.12) 

k k k kV L H X                                                         (4.13) 

k k

T

V k kX
Q H P H R                                                    (4.14) 

1
ˆ

k k k kX X G V                                                        (4.15) 

ˆ ( )
kk

k k XX
P I G H P                                                   (4.16) 

where kG  is the Kalman gain matrix; kV
 
is the prediction error between the measurement vector 

and the predicted measurement which is called the innovation and 
kVQ is the covariance matrix of 

kV . 

In the measurement update process, the newest updated state estimate ˆ
kX  is computed by using 

the predicted value of the state vector 
kX  and the newest observations. The minimum mean-

square error is used as the performance criterion. The generalized likelihood ratio test using the 

Kalman filter innovation kV  is one of the approaches to detect the changes in the time series
 

(Willsky 1976; Teussian 1990; Okatan et al. 2007).  

Because of the presence of the system's noise, the predicted state is usually less precise than the 

previous filtered results. Due to the additional measurements, however, the filtered results are 

usually of a better precision than its predicted counterpart. 

The Kalman filter satisfies the three general optimality conditions as given in the Equations 4.17-

4.19 (Mikhail 1976) 

Consistence        

                                               ˆlim ( ) 1k
n

P X X 


                                                       (4.17)
                                                                                        

 

Unbiased    

ˆ( )kE X X                                                                       (4.18)    

Minimum mean square error 

 ˆ ˆ ˆ ˆ( ( )) ( ( )) minT

k kE X E X X E X                                   (4.19)
             

where  n  denotes  the sample size;   denotes  a very small value;  P  is the statistical probabili-

ty and E  is the statistical expectation. 

4.1.1.2 Shaping filter 

The demand for increasing accuracy has required a deeper understanding of GPS position errors 

and methods to reduce or eliminate them. It is known that for the standard Kalman filter model, 

the noises in the system model and measurement model are white Gaussian noises which are not 

correlated with any other random variables. But in many real cases, it may not be justified to 

assume that all noises are white Gaussian noise processes. It is useful to generate an autocorrela-

tion function from real-time series and then develop an appropriate noise model using differen-

tial or difference equations. These models are called shaping filters. If there are non-white noises 
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in the system model or measurement model, the state vector can be augmented by appending the 

shaping filter to the state vector components of the Kalman filter (Grewal 2001).  

In case the GPS receiver provides the real-time measurements with the sampling rate, the time-

correlated measurement noise exists in the measurement equation. The measurement equation 

includes not only the white noise but also the colored noise. The state vector is augmented by 

another variable sfx that is used to describe the long term movement of correlating measurement 

deviations. 

The new augmented state vector is defined as 

 
1( )

( )k

sf

x k
X

x k

 
  
 

                                                           (4.20) 

where 1( )x k  denotes the state vector of GPS coordinates or other vectors (velocities, accelera-

tions). 

The measurement equation can be augmented as 

1( ) ( )k k sf kL H x k x k                                                     (4.21)                      

Let the colored noise of the measurements be modeled by the difference equations 

2( ) ( 1, ) ( 1) ( ) ( )sf sf sf sfx k k k x k B k k                                  (4.22) 

where ( 1, )sf k k   and ( )sfB k are the coefficient matrices, 2 ( )k  denotes the zero-mean white 

noise. 

The system equation can be augmented by the shaping filter 
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        (4.23) 

4.1.1.3 Different Kalman filter models with shaping filters 

The motivation for this investigation is a landslide problem. GPS can be used to monitor the 

movement of a landslide. With the development of the electronic technologies, GPS receivers 

can provide positions with high sampling rates. Due to the high sampling rates used today, time 

dependent systematic deviations arise in neighboring epochs in a similar way resulting into auto-

correlation. Because of the correlated noise in GPS real-time measurements, the shaping filter 

sfx
 
is used to describe the long-term movement of correlated measurement deviations.  

In our case, short measurement periods deviations are following a Gauss-Markov-process with 

correlation function 

                                                        ( )C e
 




  

For a Gauss-Markov-Process with auto-correlation function, the following differential equation 

representing a linear dynamic system is suitable (Schrick 1977) 

                              2( ) ( ) ( )sf sfx t x t t   
                                                     (4.24)

 

The piecewise solution leads to the following equation as second part of the system equation 
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                              2( 1) ( ) ( )t t

sf sfx k e x k e k       
                                      (4.25)

 

where the state variable 
sfx  describes the long term movement of correlating measurement devi-

ations. The system noise 2  is a white noise process. Equation 4.25 can be considered as the 

second part of the system equation.  

The deformation models can be classified into the identity model, the static deformation model, 

the kinematic deformation model and the dynamic deformation model. In the dynamic deforma-

tion model, the deformations as the output signal are a function of time and (varying) loads; in 

the static systems the deformations are a function of (varying) loads only; in the kinematic de-

formation model the deformation can be described as a function of time; in the identity deforma-

tion model the motion is random, a function of time cannot be established (Kuhlmann and Pelzer 

1997). The landslide in Schwabian Alb area moves very slow, e.g. the velocity is 12 cm/year. 

When the GPS is used to observe the movement of the surface, there are no acting forces availa-

ble, the deformation can be considered as a random-walk-process (Identity model) or a kinematic 

model. 

The identity model with a shaping filter can be described as follows: 
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                   (4.26)                       

   
1( )

( ) ( )
( )sf

x k
l k I I k

x k


 
  

 
                                                   (4.27) 

If state vector includes the position coordinates and their velocities or if the state vector contains 

the position coordinates, velocities and accelerations, then the kinematic model can be chosen. 

For example, the kinematic model with a shaping filter whose state vector contains positions and 

velocities is shown as follows 
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               (4.28)                         
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                                                   (4.29) 

Note that the size of I is same to the dimension of state vector 1( )x k . In the following application 

1( )x k is selected as the height component of GPS coordinates. 

4.1.2 Application in the stepwise deformation time series 

The deformation time series includes different types of movements. The stepwise change is one 

type of the landslide deformation (e.g. Fig. 4.2). When GPS measurements are taken, an observa-

tion may be for any reason grossly falsified. Such an observation is said to contain an outlier. In 
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case of high sampling rates, the GPS time series could be composed of white noise, colored 

noise, outliers and deformations. The main tasks of this subsection are how to reduce the affec-

tions of the white noise, colored noise and outliers of the GPS time series and how to detect the 

smaller deformation with less time delay. 

Kalman filter with a shaping filter is used to reduce the white noise and the colored noise in the 

GPS time series. If there are outliers in the time series, the outliers must be detected and the af-

fections must be reduced. In case of the stepwise deformations, there are some similarities and 

differences between the stepwise deformations and outliers in the GPS time series, so the Kal-

man filter model with a shaping filter can be modified to detect deformations and outliers simul-

taneously. The simulated time series and the GPS time series have been used to test the modified 

algorithm and the results demonstrate that the robustness of the proposed algorithm has been 

improved and the deformation epochs have been detected with short time delay. The modifica-

tion of the Kalman filter with a shaping filter and the result analysis of the experiment will be 

given in the following parts. 

4.1.2.1 Modification of the Kalman filter model with a shaping filter  

In order to monitor and control the quality of the GPS stepwise time series, the modified algo-

rithm aims at detecting the deformation and the outlier with short time delay. It is described in 

detail in the following. 

Algorithm of detecting deformations and outliers 

It aims at developing algorithms which can detect the deformation and the outlier with short time 

delay when processing the stepwise deformation time series. In this case the residuals 1( ( ) )x k u  

are defined as the differences between the filtered results and the true values and are assumed to 

follow the normal distribution, neglecting the processed results of the correlation between differ-

ent epochs . If there are no changes in the time series, for example no deformation or no outlier 

in the GPS time series, the residual 1( ( ) )x k u  between the filtered results 1( )x k and the esti-

mated true value u , from a statistical point of view, should follow the normal distribution with a 

zero mean  and a variance σ². If the GPS time series contains stepwise deformations or outliers, 

the residual 1( ( ) )x k u does not follow the normal distribution at the epoch k when a stepwise 

deformation or an outlier occurs. 

When the hypothesis test is applied to test the changes in the GPS time series, firstly, the statis-

tical properties of the residual time series should be computed based on large data samples. For 

example, n static GPS observations have been chosen and processed by the Kalman filter model 

with a shaping filter. The empirical variance s² of the residual time series is obtained by the Equ-

ation 4.30 
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                                             (4.30)                                                

where 1( )x k  denotes the filtered result of the selected GPS  time series; u is the mean value of 

the filtered results in the GPS static time series 
1

1

1
( )

n

k

u x k
n 

  . In case of the GPS time series the 

mean value of the residual result 0  . 

Because of the large data set collected during the static GPS experiment in Chap.3.3.2, the em-

pirical determined covariance factor is determined as a priori known quality. 

The test factor          

                                                  
1 0( )

est

x k u
T

s


                                                      (4.31)       

is used to detect these changes. Here 0u
 
is the initial value of the state vector x1 which can be 

computed as the mean value of the former epoch's filtered results.   

By the hypothesis testing, the null hypothesis 0H  1 0( )x k u
 
seeks to test that the distribution of 

the residual time series is equal to some a priori known distribution. In this case it follows a 

normal distribution. The alternative hypothesis aH 1 0( )x k u  means that Test doesn’t follow the 

normal distribution at the epochs when a deformation or an outlier occurs. With a given signific-

ance level , we can get the boundary zα of Test from the normal distribution table. 

When the null hypothesis is rejected, this means that it is possible to detect the residual time se-

ries which does not follow the normal distribution. The change may be caused by a deformation 

or an outlier. This test can detect the change but it cannot distinguish if it is caused by an outlier 

or a deformation. 

The difference between the deformation and the outlier is that the outlier occurs isolated, that 

means that the test should be accepted at the next following epochs. The test factor Test will 

change suddenly and then still follow the normal distribution for the next following epochs. The 

situation is different when a deformation occurs. If there is a deformation, the observations at 

this epoch and the next following epochs are all changed and as a consequence the test factor Test  

will not follow the normal distribution any more at the following epochs.  

To make use of the described behavior another factor j is used. J is the number of continuous 

rejected tests. If j is smaller than a chosen boundary J, it means that an outlier occurs. If j is larg-

er than the boundary J, a deformation is found.  

Thus, the test factors Test and J are two factors to distinguish outliers and deformations. The test 

factors Test and J should detect the deformation epochs with short time delay and generate less 

false alarms (when a deformation is detected, the system will generate an alarm). Hence, a suita-

ble decision for the factors is important. Of course according to different significance levels and 
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different sampling rates, J is selected as different numbers. The selection of J requires consider-

able experience and the knowledge of the GPS time series. 

The above hypothesis test are carried out with defined some a priori known distribution. Al-

though it is possible to develop other statistic test factor, we will restrict ourselves to the defined 

distribution in the thesis. 

Modification of the filtered results when an outlier is detected  

Generally, there are two different concepts for dealing with the outliers in the observations. One 

basic attempt is to try to identify and eliminate outliers and blunders within the input observa-

tions. The alternative way is to use robust methods, which are less sensitive to outliers. Such 

robust methods have been extensively studied during the last two or three decades and were suc-

cessfully applied in various geodetic fields. 

In this case the robust method is selected to modify the Kalman filter with a shaping filter and 

reduce the outlier’s influence on the estimation of the state vector after the detection of the out-

lier. The gain matrix must be modified, because the outlier affects the filtered results by the gain 

matrix. The method accepted here is based on the idea of the equivalent weights function (Yang 

2002). If an outlier occurs, the modified Kalman gain matrix kG  is constructed as follows: 
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                                 (4.32)                                                        

wherec 0c and 1c  are two constants, usually chosen as 2.0-3.0 and 4.5-8.5 respectively;      

( ) ( ) ( )i i i kV k L k H k X   and 
1/2

,| ( ) | ( )
i ik i V VC V k Q k  ; ( )iH k  is the ith row vector of the observa-

tion transition matrix; ( )iV k  and ( )iL k  are ith element of V and L at epoch k .  

Determination of the new initial value at the epoch when a deformation is detected   

As we know, if a deformation is detected, the initial state value 0  is changed to a new value 

which should be equal to the new deformation result 1 ( )newx k . Another stepwise change can be 

found afterwards. Three different methods are discussed to determine the new deformation value 

as the new initial mean value (Li and Kuhlmann 2008a). 

a) 1st Method  

According to the idea of the equivalent weight function, the weight of the observations can be 

changed. When a deformation occurs, the observations play a main role. Hence, the weight of the 

observations should be increased. Because the gain matrix can be considered as the weight of the 

observations, the gain matrix of 1( )x k  is modified as follows: 
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where 0u  is the initial value of 1( )x k . 

The new state vector ( )newX k can be obtained as  
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(4.34) 

b) 2nd Method  

If a deformation occurs at epoch tk, the system equation does not describe the transformation 

between two neighboring state vectors correctly. But the state vector’s value at epoch tk can be 

obtained from the measurement equation. As we know, the colored noise is correlated and fol-

lows the exponential function; we can get the predicted colored noise’s value at epoch tk 2 ( )x k . 

That is 2 2( ) e ( 1)tx k x k   . 

From the measurement equation, 
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the state vector’s approximate value at epoch tk  can be obtained 
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                      1 2( ) ( ) ( )new newx k l k x k                                                                   (4.36) 

The new state vector ( )newx k can be obtained as  
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c) 3rd Method  

Because the shaping filter 2 ( )x k  follows the exponential distribution, 2 ( )x k  can be obtained

2 2
ˆ( ) e ( 1)tx k x k   . Furthermore, the new state vector 1 ( )newx k can be obtained by 

                                          1 1̂( ) ( 1)newx k x k velocity                                                    (4.38) 

The velocity was determined by the observation equations, 
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                          (4.39) 

The new state vector ( )newx k at this epoch tk can be described as follows, 
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Final results computation 

Three different filtered results including the state vector and the covariance of the state vector are  

obtained. Considering the weight affection of filtered results of different methods, the final result 

at epoch tk is computed by the weighted average method which is described by the following 

equation 

ˆ
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1

ˆ ( ) / ( )

1/ ( )

k

k

n

k x
j

k n

x
j

x j p j

X
p j
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





                                                           (4.41) 

where n means the amount of different models. In this case n (the maximum j) equals to 3.  

4.1.2.2 Flowchart of the modified Kalman filter model with a shaping filter 

The flowchart of this algorithm is described in Fig. 4.1.  

4.1.2.3 Experiment and results analysis 

Simulation Test 

The time series (Figs 4.2, 4.3 and 4.4) were simulated from the simple to the complicated cases. 

Different simulated time series were used to verify the abilities of deformation detection, outlier 

detection and the noise reduction of the proposed model.  

a) Simulated deformation time series with white noise 

The white noise was simulated by the Matlab function which can generate the normally distri-

buted random numbers with the specific mean and variance. The simulated deformation time 

series was composed of 3600 observations. The identity Kalman filter model has been modified 

to process the simulated observation time series. 

Fig. 4.2 shows that the time series was simulated by the white noise and 3600 observations. In 

this time series the first half (from epoch 1 to epoch 1800) was set as 0 mm and the other half 

(from epoch 1801 to epoch 3600) was set as 10 mm. The deformation 10 mm occurred at epoch 

1801. No outliers were added into the time series. The variance of the simulated normally distri-

buted random noise was 1 mm
2
. 

The standard deviation is calculated based on the equation   

2

1

1
( ( ) ( ))

1

n

filter

i

s x i x i
n 

 

  

where: filterx
 
denotes the processed time series by the modified Kalman filter, x  is the simulated 

true deformation time series, n is the size of the simulated time series. 

The standard deviation of the processed time series is 0.48 mm. The deformation epoch 1801 has 

been detected by the modified Kalman filter model. 
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          Fig. 4.1 Flowchart of the test procedure for the modified Kalman filter 

Test factor: Test=|x1(k)-u0|/ s ; J: the time span of Test  when deformations occur (|Test|>tα) 
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Fig. 4.2 Simulated time series and processed results 

The time series shown in Fig. 4.3 was simulated by the white noise and added outliers. No step-

wise deformation occurred in this time series. The outliers were added into the time series at 

epochs 500, 1000, 2500 and 3000. In this case if an outlier occurs, its affection can be reduced 

by the modified Kalman gain matrix kG . The modified Kalman gain matrix kG  is constructed as 

follows: 
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where 0c and 1c  are chosen as 2.0 and 5.0 respectively; 
1 1 1( ) ( ) ( ) kV k L k H k X  , 

1 1

1/2

1 ,| ( ) | ( )k V VC V k Q k  .    

The processed results are shown in Fig. 4.3. The standard deviation of the processed time series 

is 0.48 mm. All the added outlier epochs have been detected and reduced by the modified Kal-

man filter.  

   

Fig. 4.3 Simulated time series and processed results 
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The time series composed of the white noise, outliers and the step deformation was shown in Fig. 

4.4. The outliers were added into the time series at epochs 500, 1000, 2500 and the deformation 

epoch was added at the epoch 1801. The processed results were demonstrated in Fig. 4.4. In Fig. 

4.4 the deformation epoch has been detected and the outliers have been detected and the affec-

tions have been reduced. 

In Fig.4.2, Fig. 4.3 and Fig. 4.4, all the added outlier epochs and the deformation epochs have 

been detected by the proposed Kalman filter model. The standard deviations of the processed 

time series are 0.48 mm.  

 

Fig. 4.4 Simulated time series and processed results 

b) Simulated deformation time series with colored noise 

The colored noise and the white noise were added into the deformation time series. This simu-

lated time series was processed by the Kalman filter model with a shaping filter. The white nois-

es followed the normally distributed random numbers with the variance 1 mm
2
. The colored 

noise followed the exponential distribution: 0.008e t  .  The standard deviation of the colored noise 

was 1 mm. The simulated deformation time series were composed of 3600 observations. The 

three parameters of the time series      and   were given as 1 mm, 1 mm and 0.008. The 

identity Kalman filter model (Equations 4.26-4.27) has been used to process the followed simu-

lated observation time series (Fig.4.5-4.7). 

The simulated time series (Fig. 4.5) was composed of the white noise, the colored noise and the 

outliers. In Fig. 4.5 the deformation were set as 0 mm and no deformation epoch was added into 

the simulated time series. 

Based on parameter estimation of the stochastic model in Chapter 3, the standard deviations of 

the colored noise and the white noise of the processed static time series by Kalman filter with a 

shaping filter can be computed.  The standard deviation of the white noise and the colored noise 

in the processed static time series are 0.3 mm and 0.6 mm.  is 0.0018. Fig. 4.5 and Table 4.1 

show the processed results by the Kalman filter model with a shaping filter.  
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Table 4.1  Stochastic model paramenters of the original and processed  

simulated time series  

 

 

 

 

 

Fig. 4.5 Simulated time series and processed results 

Fig. 4.6 shows that the observations are composed of the white noise, the colored noise and 3600 

deformation values. In this time series the first half (from epoch 1 to epoch 1800) was set as 0 

mm and the other half (from epoch 1801 to epoch 3600) was set as 10 mm. The deformation 10 

mm occurred at epoch 1801. No outliers were added into the time series.  

The processed time series by the Kalman filter model with a shaping filter is shown in Fig. 4.6. 

The deformation epoch 1801 has been detected. Based on the differences between the processed 

time series and the true observations, the standard deviation of the processed time series is 0.67 

mm. 

 

Fig. 4.6 Simulated time series and processed results 
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Fig. 4.5      0.3    0.6  0.0018 
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In Fig. 4.7 the simulated time series was composed of the white noise, the colored noise, the 

added outlier epochs and the added deformation epoch. This time series was used to check the 

efficiency of the modified Kalman filter model with a shaping filter.  

 

Fig. 4.7 Simulated time series and processed results 

All the outlier epochs and the stepwise deformation epochs added in all the simulated time series 

have been detected. The colored noise can be reduced by a shaping filter which can describe long 

movement of the colored noise. Compared to the true observations, the standard deviation of the 

processed time series is 0.67 mm. 

Fig. 4.5, Fig. 4.6 and Fig. 4.7 demonstrate that the noises of the simulated time series have been 

reduced by the Kalman filter model with a shaping filter and the accuracy has been improved. 

All the processed results of the simulated observations demonstrate the validity of the proposed 

Kalman filter model with a shaping filter.  

The GPS experiment and result analysis 

The GPS experiment was carried out on the roofs of the Institute of Geodesy and Geoinforma-

tion and the Max-Planck Institute in Bonn, Germany. The baseline was about 1.2 km. The GPS 

equipment consisted of Trimble 5700 receivers and Zephyr antennas. A cut-off angle of 10° was 

chosen and the sampling rate t   was 1 second. During the GPS kinematic measurements, the 

height of the rover station which was on the roof of the Institute of Geodesy and Geoinformation 

was changed with a crank every 30 minutes in steps of 12.5 mm. The kinematic measurement 

lasted for 6 hours (Fig. 4.8). The static observations which are illustrated in Chapter 3 are used 

for the estimation of the parameters of the stochastic model. The static observations time series 

and the kinematic observations time series can be used to verify the feasibility of the proposed 

approach. 
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Fig. 4.8 GPS kinematic height observation time series 

 

 

Fig. 4.9 GPS static height observation time series 

a) Results analysis of the static time series  

As shown in Table 3.7 in Chapter 3, the colored noises in the GPS height observations time se-

ries follow the exponential distribution. The standard deviation of colored noise is 5.75 mm and 

  is 0.0062 and the standard deviation of white noise is 4.53 mm. The shaping filter is used to 

describe the long term movement of the colored noise. 

The identity Kalman filter model with a shaping filter (Equation 4.26) has been used to process 

the GPS observation time series.  It is specified as 

1 1 1
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where 1( )x k  is the processed results and u  is the true deformation time series, the standard devi-

ation s of the static time series processed by the Kalman filter model with a shaping filter is ob-

tained as 2.5 mm. 

The method to detect the deformation epoch described above is applied to the static time series 

and the kinematic time series in order to check whether it works. In this example, the signific-

ance level is selected as 5%, J is selected as 3 epochs, s is 2.5 mm obtained from the static height 

time series processed by the Kalman filter model with a shaping filter. 

 

Fig. 4.10 Processed GPS Static time series 

As mentioned above, there are three different methods to process the time series, so three differ-

ent results are obtained. According to Equation 4.41, the final results are shown in Fig.4.10. 

                     Table 4.2 Static data processing results from three different methods 

 

 

 

 

 

As we know, the time series processed is static time series; there should be no deformation 

epochs detected. But from the Table 4.2, epoch 25339 was detected in the results of every me-

thod. Therefore, more attention should be paid to this epoch. It was discovered that at epoch 

25339 the satellite geometry became poor. Geometric Dilution of Precision (GDOP) was about 

20. That is why the result at this epoch is not accurate and this epoch is taken as the deformation 

epoch.  Fig. 4.10 shows that the noise has been reduced a lot and the accuracy has been improved. 

The standard deviation of GPS static time series is 7.3 mm. The standard deviation of the 

processed time series by the modified Kalman filter with a shaping filter has been improved to 

2.7 mm. 
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 Detected Epochs 

(height changed ) 

Standard Deviations 

(mm) 

True epoch No deformation epoch  

1
st
 method 25339 25413 2.67 

2
nd

 method 25339  2.68 

3
rd

 method 25339  2.72 
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b) Results analysis of Kinematic time series 

For the kinematic time series, the height was changed by the crank every 30 minutes. The de-

formation epochs are known. J=3 is the best chosen number compared to the other numbers and 

s  is computed as 2.5 mm. 

For the kinematic time series, it is more important to determine the new deformation value. Be-

cause the new deformation value will be set as the new initial value in order to detect the next 

deformation epoch. We can compare the results from three different methods in order to obtain 

more accurate deformation epochs with short time delay. Table 4.3 shows the epochs detected by 

three different methods.  

In this experiment, the height was changed every half an hour. The epoch should be detected at 

epochs1800, 3600, 5400,, 21600, which are described in the first column of the Table 4.3. In 

fact, the epochs are detected with different time delay by different methods. The principle to get 

more accurate epochs is to choose the earliest epoch among three different detected results. For 

example, at the epoch 3600, the height was changed, but from the results, the detected results 

with different time delay were 3633, 3601, 3604. We chose the earliest epoch 3601 with the least 

time delay as the best result. The last column of the Table 4.3 shows the results with the least 

time delay when the height was changed every time. From the last column of the Table 4.3, we 

can see that the fastest detection is with 1 second time delay, the slowest detection is with 433 

seconds time delay.  

The processed filtered results (Fig 4.11) can describe the deformation tendency more precisely 

than the observations because the noise in the time series is reduced from the observation time 

series. 

 
Fig. 4.11 Kinematic data processing results 
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            Table 4.3 Kinematic data processing results from  three different methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Application in the continuous deformation time series 

In the last section deformation appears suddenly and stepwise. In reality deformations often ap-

pear more slowly. The deformation time series includes different types of movements (Fig. 4.12-

Fig. 4.15). A series of simulated observations were processed by the Kalman filter model with a 

shaping filter in order to illustrate the algorithm's efficiency. The true deformation time series 

were simulated by matlab functions. The simulated GPS observation time series consist of the 

simulated true deformation time series and the GPS noise obtained from the GPS static observa-

tions. 

Four different deformation trends were simulated. They are shown in Fig. 4.12-Fig. 4.15. The 

identity model with a shaping filter (Equations 4.26-4.27) and the kinematic model with a shap-

ing filter (Equations 4.28-4.29) were selected to process the different simulated continuous de-

formations. The kinematic model describes the deformation as a function of time and in the iden-

tity model the motion is random, a function of time cannot be established. The observations and 

the processed time series are shown in Fig. 4.12a-Fig. 4.15a and Fig. 4.12b- Fig. 4.15b. The 

standard deviations of the processed time series by these two algorithms have been shown in 

Table 4.4 and Table 4.5. In order to compare the effectiveness of the shaping filter, the observa-

tions also have been processed with the standard Kalman filter models without shaping filters 

(the identity model and the kinematic model). Fig. 4.12c-Fig. 4.15c and Fig. 4.12d-Fig. 4.15d 

demonstrate the processed results by the standard Kalman filter models. 

Epochs when height was changed 
Earliest 

detection 

Earliest time 

delay True Epochs 
detected epoch  results from 3 methods 

1
st
 method 2

nd
 method 3

rd
 method 

1800 1847 1847 1847 1847 47 

3600 3633 3601 3604 3601 1 

5400 6015 5833 5833 5833 433 

7200 7243 7476 7525 7243 43 

9000 9314 9379 9367 9314 314 

10800 Not detected 11026 10932 10932 132 

12600 12776 13465 12811 12776 176 

14400 14540 14512 14612 14512 112 

16200 16477 16377 16893 16377 172 

18000 18128 18327 18297 18128 128 

19800 20011 19899 20675 19899 99 

21600 21650 22098 22530 21650 50 

 Max time 

delay 
      615s         865s       930 s                     433s 
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Fig. 4.12a Processed results by the identity 

model with a shaping filter 

 

Fig. 4.12b Processed results by the kinemat-

ic model with a shaping filter 

 

Fig. 4.13a Processed results by the identity 

model with a shaping filter 

 

Fig. 4.13b Processed results by the kinemat-

ic model with a shaping filter 

 

Fig. 4.14a Processed results by the identity 

model with a shaping filter 

 

Fig. 4.14b Processed results by the kinemat-

ic model with a shaping filter 

 

Fig. 4.15a Processed results by the identity 

model with a shaping filter 

 

Fig. 4.15b Processed results by the kinemat-

ic model with a shaping filter 
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Fig. 4.12c Processed results by the 

identity model 

 

Fig. 4.12d Processed results by the 

kinematic model 

 

Fig. 4.13c Processed results by the  

identity model 

 

Fig. 4.13d Processed results by the  

kinematic model 

 

Fig. 4.14c Processed results by the identity 

model 

 

Fig.4.14d Processed results by the  

kinematic model 

 

Fig. 4.15c Processed results by the identity 

model 

 

Fig. 4.15d Processed results by the  

kinematic model 
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Fig. 4.12a-Fig. 4.15a and Fig. 4.12b-Fig. 4.15b demonstrate clearly that the differences be-

tween the processed time series and the simulated series are significantly smaller than the dif-

ferences between the observations and the simulated series. The influence of the GPS colored 

noise is reduced significantly by the shaping filter in the identity model and the kinematic 

model. 

In Fig. 4.12c-Fig. 4.15c and Fig. 4.12d-Fig. 4.15d, the identity model without shaping filter and 

the kinematic model without shaping filter cannot reduce the colored noise. The results of the 

identity model with a shaping filter and kinematic model with a shaping filter are superior to 

those of the standard Kalman filter models (the identity and the kinematic models without 

shaping filter). Obviously, the shaping filter does reduce the GPS colored noise. Without the 

shaping filter the colored noise remains in the processed time series. 

Based on the difference between the processed time series and the simulated true time series, 

the standard deviation of the processed time series is calculated. The standard deviations of the 

time series processed with the identity model with a shaping filter and the kinematic model 

with a shaping filter are shown in Table 4.4 and Table 4.5 separately.  

              Table 4.4 Results of four simulation time series processed with the identity model 

               with a shaping filter 

Time series 
Std of observations 

(mm) 

Std of processed 

time series(mm) 

Improved 

percentage(%) 

Fig. 4.12 5.72 2.72 52.4 

Fig. 4.13 5.72 2.95 48.4 

Fig. 4.14 5.72 2.34 59.1 

Fig. 4.15 5.72 2.59 54.7 

              Std: standard deviation 

              Table 4.5 Results of four simulation time series processed with the kinematic model  

              with a shaping filter 

Time series 
Std of observations 

(mm) 

Std of processed 

time series(mm) 

Improved 

percentage(%) 

Fig. 4.12 5.72 2.98 47.9 

Fig. 4.13 5.72 2.67 53.3 

Fig. 4.14 5.72 2.49 56.5 

Fig. 4.15 5.72 3.01 47.4 

             Std: standard deviation 

             Table 4.6 Results of four simulation time series processed by different models  

             without shaping filter 

Models 
Std of observation 

(mm) 

Std of processed 

time series(mm) 

Improved 

percentage(%) 

Identity model 5.72 4.14 27.6 

Kinematic model 5.72 4.24 25.9 

           Std: standard deviation 
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Relative to the simulated time series (the true value), the standard deviations of the processed 

time series are from 2.34 mm to 2.95 mm in Table 4.4, and, thus are smaller than the standard 

deviations of the observations (5.72 mm which is roughly estimated). It is obvious that the 

noise of the observations can be significantly reduced in different continuous time series by 

using the identity model with a shaping filter. As a consequence the accuracy of the deforma-

tion time series greatly improves. 

As shown in Tables 4.4 and 4.5, the identity model with a shaping filter and the kinematic 

model with a shaping filter can reduce the colored noise in the GPS observations and improve 

the accuracy of the position coordinates. Table 4.6 illustrates that the identity and the kinematic 

models without shaping filter can reduce the noise to some extent. But when comparing the 

standard deviations of the processed time series in Table 4.4 and Table 4.5 to those in Table 

4.6, the identity and the kinematic models with a shaping filter are found to be better in reduc-

ing the GPS colored noise than the models without shaping filters.  

Table 4.7 Deformation epoch detection of different time series processed by the identity 

model without a shaping filter 

Time se-

ries 

 Standard dev-

iation of the 

processed time 

series 

(mm) 

Detected defor-

mation epoch (the 

true time series) 

 (s) 

Detected deforma-

tion epoch (the 

processed  time 

series) 

(s) 

Time delay 

(s) 

Fig. 4.12a 2.72 3160 3160 0 

Fig. 4.13a 2.95 4493 4495 2 

Fig. 4.14a 2.34 938 1004 66 

Fig. 4.15a 2.59 665 938 273 

 

Table 4.8 Deformation epoch detection of different time series processed by the kinematic  

model without a shaping filter 

Time se-

ries 

 Standard 

deviation of 

the processed 

time series 

(mm) 

Detected defor-

mation epoch (the 

true time series) 

 (s) 

Detected defor-

mation epoch (the 

processed time 

series) 

(s) 

Time delay 

(s) 

Fig. 4.12b 2.98 4496 4822 326 

Fig. 4.13b 2.67 4434 4436 2 

Fig. 4.14b 2.49 983 1021 38 

Fig. 4.15b 3.01 782 995 213 
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Table 4.9 Deformation epoch detection of different time series processed by the identity 

model with a shaping filter 

Time  

series 

Standard  

deviation of 

the processed 

time series 

(mm) 

Detected defor-

mation epoch 

(the true time 

series) 

 (s) 

Detected deforma-

tion epoch (the 

processed time 

series) 

(s) 

Time delay 

(s) 

Fig. 4.12c 4.14 4830 4830 0 

Fig. 4.13c 4.14 4642 4709 67 

Fig. 4.14c 4.14 1489 1507 18 

Fig. 4.15c 4.14 1123 1123 0 

 

Table 4.10 Deformation epoch detection of different time series processed by the kinemat-

ic model with a shaping filter 

Time  

series 

 Standard 

deviation of 

the processed 

time series 

(mm) 

Detected defor-

mation epoch 

(the true time 

series) 

 (s) 

Detected deforma-

tion epoch (the 

processed time 

series) 

(s) 

Time delay 

(s) 

Fig. 4.12d 4.24 4851 4851 0 

Fig. 4.13d 4.24 4624 4805 181 

Fig. 4.14d 4.24 1525 1544 19 

Fig. 4.15d 4.24 1156 1156 0 

 

Detected deformation epoch in the column of Tables 4.7-4.10 is defined as the first detected 

deformation epoch in the time series. The movement should be paid more attention after this 

epoch. Time delay is the difference between the detected epoch of the true time series and the 

detected epoch of the processed time series. 

The detection of a deformation epoch is based on the hypothesis testing with a given signific-

ance level . Given a significance level 0.05  , the difference between the magnitude of the 

deformations at the current epoch and the first epoch, is larger than zα times the measuring pre-

cision, it is defined that a deformation epoch is detected. The epoch indicates that a significant 

deformation occurs. The deformation at a magnitude of 4.5 mm-8.3 mm in Tables 4.7-4.10 can 

be detected by the statistical method. 

The accuracies of the processed time series are different when different models process the 

same time series. By the hypothesis testing, the significance deformations of the true time se-

ries are detected at different epochs by different models. For the same time series, when the 

accuracy of the processed time series is higher, smaller deformations can be detected and the 

epoch of the deformation event can be detected earlier. 
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For example, four different models are used to process the time series shown in Fig. 4.14. The 

processed results by the identity model with a shaping filter are with highest accuracy. Given a 

significance level 0.05  , of the hypothesis testing, the detected epoch of the deformation 

with the identity model with a shaping filter is epoch 1004, which is earlier than the epoch 

1021 detected with the kinematic model with a shaping filter, the epoch 1507 obtained with the 

identity model without shaping filter and the Epoch 1544 obtained with the kinematic model 

without shaping filter. Given a significance level 0.05  , by the hypothesis testing, the iden-

tity model with a shaping filter can detect the smallest deformation (4.6 mm), which is smaller 

than the magnitude of the deformation (4.9 mm) by the kinematic model with a shaping filter 

and the magnitude of the deformation (8.1 mm) by the identity model and the magnitude of the 

deformation (8.3 mm) by the kinematic model. 

As shown in Tables 4.7-4.10, the Kalman filters with shaping filters (the identity model with a 

shaping filter and the kinematic model with a shaping filter) can detect the smaller deforma-

tions earlier. The Kalman filters with shaping filters perform better than the standard Kalman 

filters when they are used to process the real-time deformation series. 

4.1.4 Summary 

From the experiment computation and comparison, the following conclusions can be drawn. 

The standard Kalman filter can reduce the white noise and improve the precision of GPS ob-

servations, but the coloured noise remains in the processed time series. A deformation analysis 

based on Kalman filters with shaping filters, which uses the identity model and the kinematic 

model, was applied to GPS time series with different movement trends. Not only stepwise de-

formations but also the continuous deformations can be processed by Kalman filters with shap-

ing filters. The results show that the Kalman filters with shaping filters can reduce the coloured 

noise, improve the accuracy of the coordinates and estimate the movement closer to the true 

trajectory. The Kalman filters with shaping filters can detect smaller deformations earlier and 

perform better than the standard Kalman filters without shaping filters when used to process 

deformation time series. 

The Kalman filter with shaping filter can be used to process GPS short baseline time series in 

real-time to obtain precise positions and detect deformation events in time and with a high re-

liability. Its use is recommended for the following applications: dam deformation monitoring, 

bridge deformation monitoring, landslide deformation monitoring, etc. 

4.2 Sequential algorithm  

When an older adjustment has been performed and new observations become available, it is 

rather uneconomical  that if we combine the new information with all the old information and 
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perform a complete readjustment, especially, if the new information is relatively limited com-

pared to the old information. Instead of performing a complete readjustment, it would be better 

to perform a sort of an ‘add-on’ adjustment because of the computational saving (Mikhail 

1976). Therefore, we can use the sequential algorithm to process the data. 

4.2.1 Principle of sequential algorithm 

Firstly, all the preceding derivations were completed using some matrix relationships. 

a) Give the matrix expression 

, , , , ,n n n n n p p p p nX Y U Z V                                                 (4.42) 

then  
1 1 1 1 1 1 1( )X Y Y U Z VY U VY                                          (4.43) 

provided that all inverses of matrixes X, Y, U, Z and V in Equation 4.43 do exist. 

b) 

 
  1 1 1 1 1 1

1 1 1 1 1

( )

( )

A B A A B B

B A B A

     

    

  

 
                                           (4.44) 

provided that all inverses of matrixes A and B exists (Mikhail 1976). 

The derivation of the Sequential algorithm is described as, 

At the epoch kt , the conditional equations are given 

1

2

1 1 1

2 2 2

k

l

l

k k k l

H X l W

H X l W

H X l W







 

 

 

                                                      (4.45) 

where  kl is the observations, 
kl

W  is the weight matrix of the observations kl , kH is the mea-

surement transition matrix. X  is the unknown parameters, its expectation and the variance of 

the parameters X  are given as 0
ˆ( ) , var( ) XE X X X P  . k  is the residual, its expectation 

value and the variance are ( ) 0,var( ) .E R   The covariance of i and j  is 

cov( , ) 0 ( )i j i j    . 

The least square solution of the given observation equations is given as, 

1

k
T

i i

i

N H WH


                                                     (4.46) 

1

k
T

i i

i

S H Wl


                                                        (4.47) 

1X N S                                                             (4.48)                                                       

Stopping the summation at an intermediate step and denoting the partially formed (or incom-

plete) normal equations by 
1

1

1

k
T

k i i

i

N H WH






                                                 (4.49) 
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1
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





                                                  (4.50) 

 It then follows from Equations 4.46 and 4.47 that the succeeding step would be  

1

T

k k k kN N H WH                                              (4.51) 

1

T

k k k kS S H Wl                                                   (4.52) 

A possibility now arises if a solution is supposed possible from both pairs of Equations 4.49-

4.50 and Equations 4.51-4.52, respectively, that is  
1

1 1 1k k kX N S

                                                          (4.53) 
1

k k kX N S                                                           (4.54) 

Supposing that both inverses
1

1kN 

 and 
1

kN 
exist. The possibility is to find the value of kX  from 

a previous solution vector 1kX   , not from 
1

kN 
 and kS .  

The case of getting 
1

kN 
 from 

1

1kN 

  for the addition of conditions is shown. 

First the matrix inversion Equations 4.42 and 4.43 are applied to the Equation 4.51, then,  

   1 1 1 1 1

1 1 1( )T T

k k k k k k k kN N I H R H N H H N    

  
                             (4.55) 

The updated constant term vector can be written as 

1

T

k k k kS S H Wl                                                     (4.56) 

Using Equations 4.55 and 4.56 into Equation 4.54 results in  
1 1 1 1 1

1 1 1 1 1( ) ( )T T T

k k k k k k k k k k k kX N N H R H N H H N S H Wl    
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                     (4.57) 

kX can be obtained as, 
1

1 1

1 1 1 1

1 1 1 1

1

1

1 1 1 1

1 1 1

( )

( )

k k k

T T

k k k k k k k k

T

k k k

T T T

k k k k k k k k k

X N S

N H R B N B H N S

N H Wl

N H R B N B H N H Wl



 

   

   





   

  



 



 

                             (4.58) 

The last term in Equation 4.58 is defined as 
1 1 1 1

1 1 1( )T T T

k k k k k k k k k kG N H R B N B B N B Wl   

      

which when using Equation 4.44 leads to 
1 1 1 1

1 1( ( ) )T T

k k k k k k kG N H W W B N B Wl   

     

and applying Equation 4.43, realizing that U V I  in the present case, gives 
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which when used in Equation 4.59 leads to 
1 1 1 1 1 1

1 1 1 1 1 1( ) ( )t T t T

k k k k k k k k k k k k k k kX X N H R B N B H X N H R B N B l     

           

Finally 
1 1 1

1 1 1 1( ) ( )T T

k k k k k k k k k kX X N H R H N H l H X  

                            (4.59)  

Including the case of condition deletion yields 
1 1 1

1 1 1 1( ) ( )T T

k k k k k k k k k kX X N H R H N H l H X  

                            (4.60) 
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thus with 1kX  , 1

1kN 


 known, the new matrices kX  and 1

kN   can be computed from the recur-

sive formulas. 

The sequential equations can be described as 

1 1 1 1

1

1 1 1 1

1 1 1

( )

( )

T

k k k k k k

T T

k k k k k k

T

k k k k k

X X G l H X

G P H R H P H

P P G H P

   



   

  

  


  


  

                                              (4.61) 

where 
1 k k

T

k k k l l kX P H W l , 1( )
k k

T

k k l l kP H W H  , 1kG   is the gain matrix of the Sequential algo-

rithm, 1kX  , kX  are optimal values at epoch tk and tk+1, 1kP   , kP  are the covariance matrixes of 

1kX  , kX ,  R is the covariance of the residual. 

4.2.2 Analysis of sequential algorithm 

The sequential algorithm would be capable of real-time or near real-time computations. The 

sequential algorithm has the capabilities of handling both problems of adding information as 

well as deleting information. The algorithm can be used with only minor sign changes to re-

move the effect of any designated condition equations from the adjustment. The ability of eli-

minating the effect of undesirable information, or to reinstating the effect of that which has 

proven to be useful, sequentially and at the same time of the adjustment, can lead to computa-

tional savings (Mikhail 1976).  

The recursive formulas that have been derived from the above exhibit an apparent advantage in 

avoiding the inversion of the normal equation coefficient matrix. When the system equation of 

the Kalman filter model is to be the equation 1k kx x   without system noise, the Equations 

4.12-4.16 are the same as the Equation 4.61. Therefore, the sequential algorithm is the special 

case of the Kalman filter model. 

4.2.3 Modification of sequential algorithm 

Considering the detection of deformations and outliers by sequential algorithm, it is similar to 

the part of Kalman filter with a shaping filter in previous section 4.1.2. So the main idea is de-

scribed in the following. 

As analyzed in chapter 3, colored noises exist in the GPS time series. Because of colored noise 

in the GPS time series, the state vector is augmented by a shaping filter (Equation 4.25) de-

scribing the long term movement of correlated measurement deviations, which is similar to the 

process of the Kalman filter model with a shaping filter. 

Since the sequential algorithm is the special case of the Kalman filter, its state equation can be 

described as,  

1k kx x                                                          (4.62) 

The augmented state equation can be described as 
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1 1 0 0

( 1) ( )0

k k

kt t
sf sf

x x

x k x ke e 




   

      
       

       
                      (4.63) 

and the observation equation is 

 
1( )

( ) 1 1 ( )
( )sf

x k
l k k

x k


 
  

 
                                        (4.64) 

Algorithm of detecting deformations and outliers 

The basic idea of this algorithm of detecting deformations and outliers is same to the algorithm 

described in section 4.1.2.1. The statistical test can be used to detect the deformations and out-

liers in the time series. When the statistical test is selected to test the distribution of the  resi-

duals 1( ( ) )x k u , firstly, the statistical properties of the GPS time series should be computed 

based on samples.  

For example, n static GPS observations have been chosen and processed by the sequential al-

gorithm with a shaping filter. The mean value of n residuals in the static time series is 0. The 

variance s² is obtained from the GPS static observations time series by the equation 

  2 2

1

1

1
( ( ) )

1

n

k

s x k u
n 

 

                                           (4.65)                                              

where 1( )x k  denotes the processed coordinate result of the selected GPS  time series; u is the 

mean value of the processed results in the GPS static time series.  

The test factor          

                                                  
1 0( )

est

x k u
T

s


                                                   (4.66)                                             

is used to detect these changes. Here 0u is the initial value of the state vector x1 which can be 

computed as the mean value of the former epoch's processed results.   

According to the similarity and difference between deformations and outliers, in the following 

GPS experiment J is selected as 3 during the computation by sequential algorithm with a shap-

ing filter. 

The test factors estT  and J are two factors to distinguish outliers and deformations. The test 

factors estT  and J should detect the deformation epochs with short time delay and generate less 

false alarms.  

Modification of the results when an outlier is detected  

The results sometimes are deteriorated by an outlier. Therefore, after the detection of the out-

lier we should eliminate the outlier’s influence on the estimation of the state vector. The gain 

matrix must be modified, because the outlier affects the results by the gain matrix. The method 
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accepted here is also based on the idea of the equivalent weights function (Yang 2002), which 

is same as last section 4.1. If an outlier occurs, the Equations 4.32 and 4.33 are used here: 

0

0 1
0 1
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1 | |

| |

| |
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k k kG G    

In the following experiment 0c and 1c  are 2 and 5 during the computation by sequential algo-

rithm with a shaping filter. 

Determination of the new initial value at the epoch when a deformation is detected   

If a deformation is detected, the initial state value 0  is changed to a new value which should 

be equal to the new deformation result 1 ( )newx k . Another stepwise change can be found after-

wards. The third method in last section 4.1 is used to determine the new deformation value as 

the new initial mean value. 

The shaping filter 2 ( )x k  follows the exponential distribution, 2 ( )x k  can be obtained

2 2
ˆ( ) e ( 1)tx k x k   . Furthermore, the new state vector 1 ( )newx k can be obtained by 

                                                  1 1̂( ) ( 1)newx k x k velocity    

The velocity is determined by the observation Equation 4.39 and the new state vector ( )newx k at 

this epoch tk can be determined by Equation 4.40. 

4.2.4 Experiment and results analysis 

Data sources: the GPS static height observations from the GPS experiment described in Chap-

ter 4 (Fig. 4.9). 

The processed time series is shown in Fig. 4.16. 

 

Fig. 4.16 Results of static time series processed by sequential algorithm 
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The estimation principle of the statistical model of GPS time series (Equation 3.6) has already 

been introduced in Chapter 3. The unknown parameters in this statistical model (Equation 3.10) 

are described as the standard deviation of the uncorrelating errors  ,
 
the standard deviation of 

the correlating errors    and   . By the estimation of the stochastic model, the three parame-

ters of the stochastic model of the processed time series are obtained as 0.008  mm, 

0.35  mm,  0.00005   1/Second. The differences of the stochastic model between the 

processed time series and the GPS observation time series show the performance of the sequen-

tial algorithm with a shaping filter. 

Table 4.11 Stochastic model parameters of the original and processed GPS time series  

The standard deviation of the colored noise has been reduced from 4.6 mm to 0.008 mm. The 

standard deviation of the non-correlated noise has been reduced from 5.7 mm to 0.35 mm. Ta-

ble 4.11 illustrates that the colored noise of the GPS time series and the white noise have been 

reduced significantly by the Sequential algorithm with a shaping filter. The stepwise deforma-

tion detection by the sequential algorithm is shown in following subsection 4.4. 

Summary 

The principle of the sequential algorithm has been introduced and its modification has been 

given when it was used to process the GPS static time series and the GPS stepwise deformation 

time series. The GPS experiment has been used to test its efficiency. 

4.3 FIR filter model  

When the contaminated GPS time series are obtained, an optimal algorithm should be found to 

extract the noise from the time series. This process can be considered as one simple signal 

processing system.  

From a system-engineering point of view, there are three basic components, an input sequence

( )l k , an operator ( )D  , and an output sequence ( )x k . Their general relationship can be de-

scribed as follows (Dodson et al. 2001; Kuo and Lee 2001; Meng 2002): 

    ( ) ( )x k D l k                                                                        (4.67) 

During the signal processing, there are two kinds of impulse response filters: the Finite Impulse 

Response (FIR) filter, and the Infinite Impulse Response (IIR) filter. The principle of impulse 

response filter is described in the following parts. 

       Static Time series  

Methods  (mm)   (mm) 
  

(1/second) 

2 2

     

(mm) 

Original 4.6 5.7 0.0063 7.3 

Sequential Algorithm 0.008 0.35 0.00005 0.35 
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4.3.1 FIR filter introduction 

In general, a causal IIR filter is represented as 

 
11

0 0

QP

k p k p q k q

p q

x a x b l


 

 

                                                      (4.68) 

where coefficients pa and qb  are used to define the linear operators ( )D  ; the indexes p and q 

start from 0; P and Q are the filter lengths of digital filters. The output at a given epoch is given 

as a linear combination of the input signals and the output signals from previous epochs. The 

IIR filter is demonstrated by and a set of feedforward coefficients  ; 0,1, , 1qb q P   a set 

of feedback coefficients ; 0,1, , 1pa p Q  . Equation 4.68 is also called Auto-Regressive 

Moving Average (ARMA) model (Meng 2002). 

An FIR digital filter is considered as a system with input sequence ( )l k and output sequence

( )x k . The output ( )x k at any discrete epoch tk depends on the present and past values of ( )l k . 

An FIR filter can be represented in the following well-known convolution sum equation form, 

where qb is the filter coefficients, usually we start indexing q at zero; Q is the filter length (Its 

order is 1Q ) and the number of the coefficients. 

1

0

Q

k q k q

q

x b l






                                                                  (4.69) 

The previously determined output signal has no impact on the estimates of the following output 

signal. The output sequence can be expressed as a convolution of filter coefficients and the 

input sequence. The output sequence is a weighted average of the input values. The Equation 

4.69 is also called the Moving Average filter.  

Note that when all the 
pa  are zero, Equation 4.68 is identical to Equation 4.69. Therefore an 

FIR filter is a special case of an IIR filter without feedback coefficients. Thus, this type of sys-

tem is known as a non-recursive system. 

In the frequency domain, the description of the FIR filter (Oppenheim and Schafer 1989) is 

given as follows: 

If the input to a causal linear stationary system kl  is a complex exponential with frequency ,  

j k

kl e                                                                (4.70) 
1 1 1

( )

0 0 0

Q Q Q
j k q j k j q

k q k q q q

q q q

x b l b e e b e  
  

 



  

 
    

 
                                (4.71)                                         

Let 
1

0

( )
Q

j q

q

q

b b e 






 , then ( )k kx b l  where ( )b  represents the frequency response. 

Generally, qb can be represented as the product of the desired impulse response ( )db q  and a 

finite-duration window qw ; i.e., 

( )q d qb b q w                                                        (4.72) 

For the lowpass FIR filter, its cut off frequency is c ,then  

http://www.faqs.org/docs/sp/sp-17.html
http://en.wikipedia.org/wiki/Convolution
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1
( ) ( )

2

c

c

j q

d db q b e d





 

 
                                       (4.73) 

Hamming window is defined by the following equation 

0.54 0.46cos(2 / ) 0

0
q

q Q q Q
w

  
 


                          (4.74) 

The window has the desirable property that their Fourier transforms are concentrated around 

0  . They have a simple functional form that allows them to be computed easily. Finally, the 

impulse response coefficients are described as ( )q d qb b q w . 

4.3.2 Analysis of the FIR filter 

The choice of an FIR filter is determined by practical considerations. Some advantages and 

disadvantages of an FIR filter can be summarized as follows (Kuo and Lee 2001; Elali 2003): 

An FIR filter is always stable,  because there is no feedback of past outputs as defined in Equa-

tion 4.64. That is, a bounded input results in a bounded output; An FIR filter has finite memory 

because all inputs before the (Q-1) th previous one are not considered; The finite-precision 

errors of an FIR filter are less severe than those in an IIR filter; An FIR filter can be easily im-

plemented. 

Compared with an IIR filter, a relatively higher order FIR filter is required to achieve a given 

level of performance. Therefore, more computations are required, and/or longer time delay 

maybe arise in the case of an FIR filter (Rabiner 1975).  

4.3.3 Experiment and result analysis 

The three parameters  ,  ,   in the stochastic model of the processed time series represent 

the performance of FIR filters. Different FIR filters with different orders have been compared 

when processing the GPS time series. The main task is to determine the coefficients of FIR 

filters when FIR filters are used to process the GPS time series and to compare the accuracies 

of the processed GPS time series by FIR filters.  

4.3.3.1 Results analysis of the processed GPS static time series 

 If there is no deformation in the GPS time series, it is that the antennas at the rover station and 

reference station are fixed during the GPS measurement. The time series described in Fig. 3.4 

has been chosen. The purpose is to explore the relationship between the order of an FIR filter 

and the accuracy of the processed time series by an FIR filter. 

Visualising the power spectrum of the static time series (Fig. 3.4), it is necessary to plot the 

figure of the frequency f and the amplitude spectrum y(f) (Fig. 4.17). 

If the noises in the time series are white noise, the spectrum should be very flat. However, in  

Fig. 4.17 and Fig. 4.18, it demonstrates that besides the white noise, there also exist colored 
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noise. In Fig 4.18, it shows that the frequency of the colored noise is mainly below 0.01Hz. 

The high pass filter can be primarily used to reduce the colored noise. 

 

Fig. 4.17 The static time series and its 

amplitude spectrum  

 

Fig. 4.18 The amplitude spectrum (zommed 

to 0.05 Hz)

The spectrum of the white noise is constant. In Fig. 4.17, the white noise of the time series is in 

the higher frequency. So the random noise is eliminated from the coordinates time series using 

the low-pass FIR filter based on Hamming window. The design of the FIR filter employed a cut-

off frequency of 0.1Hz. Different FIR filters with different orders have been used to process the 

static time series. In Chapter 3, the stochastic model of the time series is described as the 

function of the three parameters: the standard deviation of the uncorrelating errors  ,
 
the stan-

dard deviation of the correlating errors    and   . By the estimation of the stochastic model, 

the three parameters of the stochastic model of the processed time series can be calculated. The 

stochastic models of time series processed by different FIR filters show the performance of 

different FIR filters. The results of the parameter estimation of the stochastic model of the 

corresponding processed static time series have been shown in Table 4.12. 

Compared with the three parameters from the original time series 4.6  mm, 5.7  mm,  

0.0063   1/Second, in Table 4.12 it can be seen that the white noise has been reduced a lot. 

Regarding the colored noise, it has been reduced more when the time series is processed by the 

higher order FIR filter. However, the colored noise is not reduced significantly when the order of 

the FIR filter is higher. But the higher order FIR filter causes larger time delay. 

For the GPS static time series, there are no deformations in the time series. The affection of the 

time delay of deformation epochs is not considered in this case. When the order of the FIR filter 

increases, the accuracy of the processed static time series is improved (Fig. 4.19). 
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Table 4.12 Stochastic model of the processed static time series by FIR filters with different 

orders 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.19 Standard deviations of the 

processed GPS static time series  

by different orders FIR filters 

 

 
Fig. 4.20 Distributions of the variances of 

colored noise in the processed GPS static 

timeseries by different orders FIR filters 

4.3.3.2 Stepwise deformation detection using different orders’ FIR filters 

When there is a deformation in the time series, it is necessary to find out the relationship be-

tween the time delay of the detected deformation epoch and the accuracies of the processed time 

series.  

Data sources:  The first hour’s kinematic observations have been selected from the GPS 

experiment described in Chapter 4. 

The standard deviations of the processed time series by different order FIR filter are computed 

based on the differences between the processed time series and the true deformations time series. 
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Original time series

Processed by 10th FIR filter

Processed by 20th FIR filter

Processed by 30th FIR filter

Processed by 40th FIR filter

Processed by 50th FIR filter

Processed by 60th FIR filter

Processed by 70th FIR filter

Processed by 80th FIR filter

Processed by 90th FIR filter

Processed by 100th FIR filter

      Static time series  

FIR 

Order 

  

(mm) 

   

(mm) 

   

(1/second) 

2 2

     

(mm) 

1  4.60 5.70 0.0063 7.30 

10 1.08 5.57 0.0076 5.67 

20 0.04 5.28 0.0076 5.28 

30 0.27 4.97 0.0076 4.98 

40 0.27 4.67 0.0078 4.68 

50 0.65 4.37 0.0080 4.40 

60 0.85 4.09 0.0082 4.18 

70 1.03 3.80 0.0082 3.93 

80 1.13 3.53 0.0085 3.70 

90 1.19 3.26 0.0090 3.47 

100 1.26 3.01 0.0096 3.26 
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Table 4.13 Detected deformation epochs and the accuracies of the processed kinematic time 

series 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.21 GPS kinematic time series 

The kinematic time series was processed by the different order FIR filters, the corresponding 

results have been shown in Table 4.13. Table 4.12 illustrates that the accuracies have been im-

proved with increasing order of FIR filter in the static time series. But as for the kinematic time 

series, it is a different situation. In Fig. 4.21, there is a deformation in the GPS kinematic time 

series. The results in Table 4.13, demonstrate that when the order of FIR filter increases, the time 

delay of the detected deformation epoch will increase. If the deformation epoch is detected with 

time delay, the accuracies of the processed results will be affected by different time delays. It is 

necessary to find the suitable order of FIR filter with the highest accuracy of the processed re-

sults and acceptable time delay. 

Based on the analysis of the static and kinematic GPS time series, two main factors should be 

considered during the order selection of FIR filter. One is the accuracy of the processed time 

series; the other is the time delay of the deformation detection epoch. In Fig. 4.22, the time delay 

will affect the accuracy of the processed kinematic time series. In Fig. 4.22 and Fig. 4.23, when 
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       Kinematic time series  

FIR 

Order 

Detected 

epochs 
 

Time delay 

(Second) 

Standard 

deviation (mm) 

10 1817  17 5.39 

20 1828  28 5.19 

30 1838  38 5.15 

40 1847  47 5.20 

50 1857  57 5.28 

60 1866  66 5.41 

70 1876  76 5.58 

80 1886  86 5.75 

90 1896  96 5.95 

100 1905  105 6.15 
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the order of FIR filter is 30, the processed time series is with the highest accuracy and the time 

delay of the detected epoch is 38 second. So the FIR filter with order 30 can be chosen to process 

the deformation time series.  

  Fig. 4.22 The distribution of the standard 

deviations of the processed kinematic time 

series by different orders of FIR filters 

 

Fig. 4.23 The distribution of the standard 

deviations of the processed kinematic time 

series with different time delay of the de-

tected deformation epoch 

Summary 

The principle of FIR filter has been given and the selection order and coefficients of FIR filter 

have been discussed in detail. The static GPS time series have been used to determine the appro-

priate FIR filter and the kinematic GPS series has demonstrated its efficiency. 

4.4 Comparison of FIR filter, Sequential algorithm and Kalman filter 

4.4.1 Relationship between FIR filter, Sequential algorithm and Kalman filter 

When the Kalman filter model is compared with the sequential algorithm, it is found that if kx  

equals 1
ˆ

kx   and 
kxP  equals 

1ˆkxP


,  then the Equation 4.14 are the same as Equation 4.58. That 

means the sequential algorithm can be considered as one special case of the Kalman filter model 

(Li and Kuhlmann 2008b). 

The IIR filter shows that the state vector at a given epoch is obtained by a linear combination of 

the current observations and the state vectors at previous epochs. The Kalman filter can be con-

sidered as one sort of IIR filter, because, from the Equations 4.12-4.16, the optimal value of the 

current state vector can be obtained from the previous state vector and the new observations (Li 

and Kuhlmann 2008b). 

The FIR filter demonstrates that if the filter length of FIR is Q, the optimal value of the state 

vector at a given epoch is obtained by a linear combination of the newest Q epochs’ observations. 

Only parts of the observations are chosen to compute the optimal value of the newest state vector; 

the other previous observations have no effect on the optimal value of the state vector. An FIR 

filter is a special case of an IIR filter without feedback coefficients. 
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By contrast, the Kalman filter and the sequential algorithm obtain the optimal value of the state 

vector in a least mean square recursive manner based on all the observations. It is another form 

of a complete adjustment. The earlier observations affect the newest state vectors by the earlier 

state vector. To some extent, all the observations with different weights are used to compute the 

newest state vector in these two models (Li and Kuhlmann 2008b).  

4.4.2 GPS experiment  

Three different methods are employed to reduce the colored noise in the GPS real-time series.  

The GPS experiment which the antennas of the reference station and the rover station are fixed is 

needed in order to estimate the stochastic model of GPS time series. All the variations are due to 

measurement deviations leading to the estimation of the stochastic model. The different stochas-

tic models of the processed time series represent the performance of the three different methods. 

Another purpose is to compare the ability of the deformation epoch detection of these three me-

thods, so the kinematic time series which contain one deformation from GPS experiment de-

scribed in Chapter 4 has been chosen (Fig. 4.26). 

 
Fig. 4.24 Kinematic height observation time 

series 

Fig. 4.25 Static height observation time 

series 

 
Fig. 4.26 Selected kinematic time series which includes one deformation 
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4.4.3 Results analysis of the processed GPS static time series   

The three parameters of each stochastic model obtained from the static time series processed by 

different methods are shown in Table 4.14.   

Table 4.14 Standard deviations of the processed time series 

The stochastic models of different time series processed by the three different methods (the FIR 

filter, the Kalman filter model with a shaping filter, and the sequential algorithm) are calculated 

on the basis of the results in Table 4.14. The distributions of the colored noise covariance are 

shown in Fig. 4.27. 

 

Fig. 4.27 Distribution of the variance of colored noises in different processed time series 

In Fig. 4.27, it can be seen that the variances of the colored noises in the processed time series of 

each method decrease when compared to the variances of the colored noise in the original time 

series. It can be easily found that the sequential algorithm reduces the colored noise at the maxi-

mum level and the colored noise left in the processed time series can be neglected. By contrast, 

the colored noise is least reduced by the FIR filter. 

The FIR filter model computes the new state vector only by the previous observations and re-

moves the noise by weighting parts of previous observations. The results by the FIR filter illu-

strate that most of the colored noises are still kept in the processed time series. Compared with 

the results in Table 4.14, the denoising performance of the FIR filter is worse than that of the 

Kalman filter model with a shaping filter and the Sequential algorithm. If the order of the FIR 
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       Static Time series  

Methods  (mm)   (mm) 
  

(1/second) 

2 2

     

(mm) 

Original      4.6    5.7  0.0063    7.3 

FIR(order:30)      0.3    5.1  0.0076    5.1 

KFs      0.5    2.6  0.0019    2.6 

Sequential Algorithm      0.008    0.35  0.00005    0.35 

KFs: the Kalman filter model with a shaping  filter 
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filter is large, it causes longer time delay; however, it is stable and robust against temporary un-

certainties and round-off errors. 

In the Kalman filter model, the new state vector is obtained not only by the newest observations 

but also by the previous state vector. The Kalman filter removes noises from the signal by using 

initialization and propagation of error covariance statistics. The shaping filter can be used to re-

duce the correlated noise in the GPS time series.  

The sequential algorithm can be considered as a special case of the Kalman filter. Because of its 

special system equation 1k kx x  , the results of the processed time series are much smoother. 

Much of the white noise and colored noise have been reduced.  

4.4.4 Results analysis of the processed GPS kinematic time series  

For the chosen kinematic GPS time series (Fig. 4.26), the height was changed 12.5 mm after half 

an hour. Based on this principle of the deformation detection described in chapter 4.1.2, three 

different methods are used to process the GPS kinematic time series and detect the deformation 

epochs. The kinematic processed results are shown in the Fig. 4.28-Fig. 4.30 and the detected 

epochs are shown in Table 4.15. 

 
Fig. 4.28 Results of kinematic time series processed by FIR filter 

 
Fig. 4.29 Results of kinematic time series by Kalman filter model with a shaping filter 
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Fig. 4.30  Results of kinematic time series by sequential algorithm 

From the accuracy of the processed results of the GPS static time series (Table 4.15), it can be 

seen that these three models can detect the 12.5 mm deformation. The results in Table 4.16 also 

prove this point. The sequential algorithm can detect smaller deformation when it is compared 

with the FIR filter, and the Kalman filter model with a shaping filter, because the processed re-

sults by the  sequential algorithm have the highest precision (Table 4.15). 

Table 4.15 Detected deformation epochs by FIR filter, the sequential algorithm and the 

Kalman filter model with a shaping filter  

Methods 

Detected  

Deformation 

Epochs(second) 

Time  

Delay 

(second) 

STD of the 

Processed 

Results(mm) 

Notes 

FIR 1838 38 5.1 
Deformation: 12.5 mm 

True deformation ep-

och: 1800 

Sequential 

algorithm 
2096 296 2.5 

KFs 1847 47 3.0 

STD: standard deviation 

KFs:  Kalman filter model with a shaping filter 

Table 4.15 demonstrates that the smallest time delay is 38 seconds, which was obtained by the 

30-order FIR filter. By the Kalman filter model with a shaping filter, the time delay of the de-

formation epoch detection is 47 seconds. Compared the standard deviation, the accuracy of the 

results processed by the Kalman filter model with a shaping filter is higher than that of the FIR 

filter processing results. The largest time delay of the detected deformation epoch was 296 

seconds, which was obtained by sequential algorithm. That is, because during the state vector’s 

computation, the newest observation in the sequential algorithm has the least weight when com-

pared with the other two methods. The previous state vectors play a more important role in the 

Sequential algorithm. When there is no deformation, the sequential algorithm can obtain accurate 

results. But when there is a deformation, the weight of the previous state vector should be re-

duced. According to the sequential algorithm, the weight of the previous state vector still plays 
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an important role in the computation of the new state vector, which causes the deformation to be 

detected very slowly. 

4.4.5 Result analysis of different types of continuous deformation time series 

As described in Chapter 4.1.3, Fig. 4.12-Fig. 4.15 demonstrate different types of movements. 

From the mathematical description of the sequential algorithm, it is can be used for processing 

the stepwise time series as mentioned above (Fig. 4.26), but is not appropriate for processing the 

continuous deformation time series. 

The processed results will be compared between Kalman filter with a shaping filter (the identity 

model) and the FIR filter (order: 30).  

The detection of a deformation epoch is based on the hypothesis testing with a given significance 

level 0.05  . Table 4.16 illustrates the first detected deformation epoch of the time series. The 

movement should be paid more attention after this epoch. 

 
Fig. 4.31  Processed results by the FIR filter 

 
Fig. 4.32  Processed results by the FIR filter 

Fig. 4.33  Processed results by the FIR filter 
 

Fig. 4.34  Processed results by the FIR filter 

 

The accuracies of the processed time series are different when different models process the same 

time series. For the same time series, when the accuracy of the processed time series is higher, 

smaller deformations can be detected and the epoch of the deformation event can be detected 

earlier.    
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Table 4.16 Deformation epoch detection of different time series processed by the FIR filter 

Time se-

ries 

 Standard dev-

iation of the 

processed time 

series 

(mm) 

First detected 

deformation 

epoch (the true 

time series) 

 (s) 

First detected de-

formation epoch 

(the processed 

time series) 

(s) 

Time delay 

(s) 

Fig. 4.32 4.39 4932 4941 9 

Fig. 4.33 4.66 4930 5151 221 

Fig. 4.34 4.54 1663 1710 47 

Fig. 4.35 4.18 1141 1553 412 

Fig. 4.31- Fig. 4.34 and Table 4.16 are compared with Fig. 4.12a- Fig. 4.15a and Table 4.7. The 

processed results by the identity model with a shaping filter are with higher accuracy when com-

pared to the FIR filter. Given a significance level 0.05  , by the hypothesis testing, the first 

detected epoch of the deformation by the identity model with shaping filter (Fig. 4.14) is epoch 

1004, which is earlier than the epoch 1710 detected by the FIR filter (Fig. 4.33). The identity 

model with a shaping filter can detect the deformation at the magnitude of 4.7 mm, which is 

smaller than the deformation at magnitude of 9.1 mm by the FIR filter. 

The Kalman filter with a shaping filter performs better than the FIR filter when they are used to 

process the real-time deformation series. 

4.4.6 Summary 

Three different methods for reducing the colored noise in the GPS time series have been de-

scribed. Regarding the deformation detection and the reduction of the noise and outliers in the 

time series, a thorough comparison of these three methods has been made and the results by the 

three methods has been analyzed in detail. 
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5 Multiple Kalman Filters Model 

5.1 Multiple Kalman filters model  

During the deformation analysis, it is vital to detect the deformation epoch and improve the re-

liability of detecting deformation epoch. Numerous methods have been used to detect the defor-

mation of the time series, for example, the multiple hypothesis filter (Willsky 1976), the genera-

lized likelihood ratio test by using the Kalman filter innovation (Willsky 1976; Teunissen 1990; 

Okatan et al. 2007), the cumulative sum test (Mertikas and Rizos 1997; Mertikas 2001). Normal-

ly these statistical tests were used to detect the changes in the time series (Mikhail 1976). By 

contrast, the multiple Kalman filters model, based on the idea of model selection, is proposed to 

detect the deformation in the time series in order to improve the reliability of the detected epochs. 

The general idea of this algorithm is described as follows: several continuous epochs’ position 

coordinates are saved as the state vector. It is supposed that there are different deformation 

trends when the new observations come. Different Kalman filters are used to describe the differ-

ent possible deformation trends in the GPS real-time series. By comparing the statistical criterion 

value of every Kalman filter in the multiple Kalman filters model, the appropriate Kalman filter 

can be chosen and the deformation epoch can be detected. Because the state vector has the mem-

ory of several successive optimal position coordinates, this deformation epoch can still be de-

tected again in the succeeding following epochs after the deformation epoch has been detected at 

the first epoch. Based on this character, the reliability to detect the deformation epoch can be 

improved (Li and Kuhlmann 2010).  In order to verify the feasibilities and the improvement of 

the reliability of the detected epochs, one GPS experiment has been carried out. 

The Kalman filter algorithm has been described in the previous section (Chapter 4); and, the 

multiple Kalman filters model will be introduced in the next section.  

5.1.1 Principle of multiple Kalman filters model  

In order to meet the requirement for the reliability and the punctuality of detecting the deforma-

tion epoch, the multiple Kalman filters model is proposed. Different Kalman filter state equa-

tions are used to describe the possible tendencies of movements. Considering the affections of 

the observations and the parameters in the state equations, according to the statistical criterion, 

the suitable Kalman filter state equation can be chosen. The detail of this model is introduced 

following. 

5.1.1.1 Multiple Kalman filters 

Each state vector in the Kalman filter takes m former continuous position coordinates into ac-

count; thus, not only the current coordinate but also m former epochs' coordinates are stored in 

the state vector. The choice of m depends on the sampling rate of the time series and what the 
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results of the time series will be used for. When m increases, more former epochs will be in-

cluded into one state vector. In this case, more deformation trends will be needed to describe, 

which increase the computation complexity. When m is too small, it can't improve the reliability 

of the detected deformation epochs and give more false detected deformation epochs. Given the 

observations, it is better to choose the smallest m which can identify the deformation and im-

prove the reliability. From statistical tests I made, m=3 is the smallest number which can identify 

the deformation epochs in the time series. We take m=3 in this case. Another variable the defor-

mation d between the coordinates at two different epochs is added into the state vector. d should 

be described with two indexes k and j. The index k means the current epoch tk, and j indicates the 

time shift between the current epoch tk and the deformation epoch. 
,k jd  is an important variable 

to detect the deformation and determine the deformation epoch. 

The state vector at epoch tk is defined as follows
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k k
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d







 
 
 
 
 
 
 
                                                                         

(5.1)         

 

It is supposed that there are four different deformation possibilities among the four neighboring 

epochs position coordinates. Therefore, four different Kalman filters should be selected. The 

measurement equations in these Kalman filters are the same. The main difference is the system 

equations in the different Kalman filters, namely different system transformation matrixes in the 

Kalman filters' system equations. The measurement equations and the system equations are dis-

cussed in detail in each case. 

The measurement equation in each case can be defined as  

             
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10 0 0 0
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 
 
  
 
 
 
 

                                                                  (5.2) 

where kL  denotes the newest measurement, k  denotes the measurement noise.   

The system equations of four cases are discussed as follows: 

Case 1 There is no deformation among the four neighboring epochs’ position coordinates, which 

means 1 2 3k k k kx x x x      (Fig. 5.1). In this case, there is no deformation and no deformation 

time shift between epoch tk and the former epochs. That is the deformation , 0k jd  , 0j  .                             
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Fig. 5.1 Case 1 

The system equation is described as 
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                                   (5.3) 

Case 2 There is a deformation between kx  and 1kx   among these four neighboring epochs’ posi-

tion coordinates. That indicates the time shift 1j  , 
1 ,1k k kx x d  , and 1 2 3k k kx x x    ( Fig. 

5.2). 

 

Fig. 5.2 Case 2 

The system equation is defined as 
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                                       (5.4) 

Case 3 There is a deformation between 1kx   and 2kx   among these four neighboring epochs’ 

position coordinates. That means compared to the present epoch tk the deformation time shift 

2j  , 1 2 ,2k k k kx x x d     , and 2 3k kx x   (Fig. 5.3). 
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Fig. 5.3 Case 3 

At epoch tk-1 the deformations 
1,1kd 

is detected at case 2, and at the next epoch tk in case 3 the 

deformation
 ,2kd is also detected, the relationship between the deformation vectors 

,2kd  and 

1,1kd 
 should be found. It is known that 

,2 2 1 2 1 2k k k k kd x x x x                                                                 (5.5) 

1,1 1 1 1 1 1 1 2k k k k kd x x x x          
                                                    

 (5.6)
                       

The values of 
,2kd   and 

1,1kd 
both equal 1 2k kx x  , thus it is obtained  

,2 1,1k kd d 
                                                                               

 (5.7)
                        

 

The system equation is defined as   

                                         
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                                        (5.8) 

Case 4   There is a deformation between 2kx   and 3kx   among these four neighboring epochs’ 

position coordinates. That indicates the time shift 3j   when the deformation epoch is compared 

with the present epoch tk. The relationship among these four neighboring epochs can be obtained 

as 1 2 3 ,3k k k k kx x x x d      (Fig. 5.4). 

 

Fig. 5.4 Case 4 

As analyzed above, when the time shift is 3, the formula can be obtained as  
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,3 1,2 2 3k k k kd d x x                                                                       (5.9) 

The system equation is described as follows, 

 
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                                   (5.10) 

5.1.1.2 Model selection 

The multiple Kalman filters model can be considered as the combination of different Kalman 

filter models. In this thesis four continuous position coordinates are contained in the state vector 

of the multiple Kalman filters model. When the new observation comes, it is assumed that there 

are four different deformation possibilities. The different Kalman filters are used to represent 

different deformation trends. Each filter contributes to the description of the specific deformation 

tendency.  In order to describe the deformation process correctly and identify the deformation 

epoch, it is necessary to select the optimal Kalman filter model at each epoch. Therefore a statis-

tical criterion of model selection should be selected.  

The objective is to select the optimal Kalman filter model of describing the deformation process 

correctly. In terms of probability, the model with maximum probability based on the observa-

tions should be chosen. According to Bayes theorem (Berger 1985), it is described as 

   

 
( )

i i

i

P L A P A
P A L

P L
                                                                   (5.11) 

where

 
iA  is the Kalman filter model with i parameters;  P L  is the prior probability of  observa-

tions L;  iP L A is the conditional probability of observations L, given the model iA ;  iP A is 

the prior probability of the model iA ; ( )iP A L is the conditional probability of the model iA , 

given observations L. 

If the model with highest probability is chosen, then  

   

 
max ( ) max

i i

i

P L A P A
P A L

P L

 
     

  

                                                 (5.12) 

 Rissanen applies minimizing the negative logarithm into Equation 5.12 instead of the maximiz-

ing the a posteriori probability, so the equation is obtained as  

min log ( ) min log ( )i iP A L P L A K                                                 (5.13) 

The selection of the minimum of log ( )iP L A K   equals the selection of the model with max-

imum probability.  Therefore the problem turns to be the minimization of log ( )iP L A K   (Ris-

sanen 1983).
 

http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Conditional_probability
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Rissanen provided a simple approximation of logK i N when the model has i parameters and 

the sample size is N. He penalized the model complexity not only according to the number of 

parameters but also according to both parameters and precision. He came up with a reasonable 

figure for the precision any given model needed and postulated it to be log N  per parameter. 

The much more penalty is given to the higher complexity of the model. Given the observations 

L and the likelihood function ( )iP L A , he proposed to minimize  

log ( ) logiP L A i N   

leading to the Minimum Description Length (MDL) (Rissanen 1983). 

The MDL criterion is described as follow 

log ( ) logRis iP L A i N                                           (5.14) 

It is composed of two parts. The first part log ( )iP L A is the complexity of the samples accord-

ing to each model iA ; the second part logi N is the penalty of the complexity of the model. 

One dimensional coordinate time series can be selected as the observation L.  The observations 

kL  of each case at epoch k follows a normal distribution with its own mean value in every differ-

ent model of deformation tendency. The probability density functions of the measurement under 

different models are as follows 
2
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( ) exp
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x
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 
                                               (5.15) 

Based on the Equations 4.13  and 4.14, the Equation 5.15 can be written as  
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        (5.16) 

The term logi N  in the Kalman filter model selection is explained as follows: N is the number 

of the observations used in each Kalman filter model from the first epoch to the current epoch tk, 

i is the number of the unknowns in each Kalman filter model. For example, in the first case, the 

newest state vector at epoch tk is the unknown in the Kalman filters model, so i equals 1. Accord-

ing to the same principle, in the second case two unknowns which are the newest state vector at 

epoch tk and the deformation between kx and 1kx   exist, so k=2; in the third case  i=3, and the 

forth case i=4. logi N  is characterized by the number of the unknowns and the observations. 

Different number of parameters of each model results in different affections to the precisions of 

different model. 

The MDL criterion (5.14) in each case can be obtained as  

11 1
( ) log(2 ) log

2 2k k

T

Ris k V k VV Q V Q i N                                                   (5.17) 
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Based on MDL criterion, the minimization of the
RIS  will find the model with maximum proba-

bility. Given any estimated models, the model with the lower value of the MDL criterion (Equa-

tion 5.17) is to be preferred. Lower value of the criterion implies that the model better fits the 

time series. When the model is the correct one, the value of the statistical criterion should be the 

smallest when compared to the values of the other models. The deformation detection is reflected 

in the process of comparing the statistical criterion. When the smallest criterion is chosen, the 

corresponding Kalman filter and the deformation epoch can be determined. For example, if the 

criterion of the first case is the smallest, it indicates that no deformation is detected. 

5.1.1.3 Program design        

The flowchart of the multiple Kalman filters model has been shown in the Fig. 5.5. 
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Fig. 5.5 Flowchart of the multiple Kalman filters model 
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Note:  N denotes the last epoch of the observations. 

5.1.2 Examples and results analysis 

In this section two examples are presented to verify the effectiveness of the proposed multiple 

Kalman filters model.  

5.1.2.1 First example: simulated time series 

In order to assess the performance of the proposed model, one simulation experiment was carried 

out. The simulated time series was composed of the true positions and the white noise. The white 

noise whose standard deviation was 1 mm
 
was generated by the Matlab function. The original 

coordinate was 0 mm. The deformation epochs occurred at several different epochs in the simu-

lated time series (Fig. 5.6). From epoch 101 to epoch 200, the magnitude of the deformation 

6mm was added into the time series. From epoch 201 to epoch 400, another -5mm deformation 

was added into the time series. From epoch 401 to epoch 500, the last additional deformation -

5mm was added. The final simulated time series has been shown in Fig. 5.6. In the simulated 

time series, during epochs between 100 and 101, epochs between 200 and 201, epochs between 

400 and 401 the deformations occurred. 

Table 5.1  MDL criterion at epochs 101, 102, and 103 

         MDL               

Epoch  

          

Model 

Case 1 Case 2 Case 3 Case 4 

101 19.74     5.97    16.98    24.71 

102       

 

14.77    17.27     8.55    16.32 

103 16.20 16.98    20.80    10.71 

      

Table 5.2  MDL criterion at epochs 201, 202, and 203 

         MDL               

Epoch  

          

Model 

Case 1 Case 2 Case 3 Case 4 

201 16.33     6.35    23.86    20.03 

202 19.06    18.71     9.11    29.07 

203    

 

15.38    18.95    17.95    11.69 

     
 

Table 5.3  MDL criterion at epochs 401, 402, and 403 

         MDL               

Epoch  

          

Model 

Case 1 Case 2 Case 3 Case 4 

401 18.41     7.02    30.48    22.35 

402 15.10      21.71 10.28    29.41 

403 18.23    21.39    28.17    13.02 
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Fig. 5.6 Simulated time series 

From Tables 5.1 to 5.3, the detected results by the multiple Kalman filters model are: 

1
st
: The 2

nd
 case at epoch 101, the 3

rd
 case at epoch 102, and the 4

th
 case at epoch 103; 

2
nd

: The 2
nd

 case at epoch 201, the 3
rd

 case at epoch 202, and the 4
th

 case at epoch 203; 

3
rd

: The 2
nd

 case at epoch 401, the 3
rd

 case at epoch 402, and the 4
th

 case at epoch 403. 

According to the description of the deformation vector
,k jd , it can be obtained that the deforma-

tion epoch occurred between the epochs k jt  and
1k jt  
.  From Fig. 5.2, Fig. 5.3, and Fig. 5.4 it is 

known that the second case means the time shift 1j  , the third case means the time shift 2j  , 

and the forth case means the time shift 3j  . 

Based on the first results, the second case at epoch 201 means the deformation occurred between 

epochs 200 and 201; the third case at epoch 202 means the deformation occurred between epochs 

200 and 201; the fourth case at epoch 203 means the deformation occurred between epochs 200 

and 201. From these different cases at different epochs, the deformation epoch is determined to 

be between epochs 200 and 201. 

In a similar analysis, the other deformation epochs are detected separately as the epoch between 

epochs 200 and 201, and the epoch between epochs 400 and 401. All the detected results by the 

multiple Kalman filters model are the same as the epochs we added in the simulated time series. 

The processed results are shown in Fig. 5.7. Compared to the true time series, the standard devia-

tion of the processed time series is 0.5 mm. 

 

 Fig. 5.7 Processed time series 
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5.1.2.2 Second example: GPS experiment 

Three GPS time series have been chosen from the GPS experiment described in Chapter 3 and 4. 

The first GPS time series lasted 3.5 hours, which is 12600 seconds (Fig. 5.8).  Every half hour 

the deformation has been changed by 25 mm. The second time series of GPS static observations 

lasted 17 hours (Fig. 5.9) can also be used to check the efficiency of the multiple Kalman filters 

model. The third time series of GPS kinematic observations include the smaller stepwise defor-

mations of 12.5 mm which have been changed every half hour (Fig. 5.10).  

 

Fig. 5.8 GPS kinematic height time series (25 mm) 

 
Fig. 5.9 GPS static height observation time series 

 

 Fig. 5.10 GPS kinematic height time series (12.5 mm) 
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a) Application in the GPS stepwise deformation at a magnitude of 25 mm 

The principle of determining the deformation epoch is that via the model selection, if at epoch tk, 

case 2 is selected; at epoch tk+1, case 3 is selected; at epoch tk+2, case 4 is selected. During these 

continuous epochs, case 2 , case 3, and case 4 are correspondingly selected at epochs tk, tk+1, and 

tk+2, then there must be a deformation and the deformation epoch occurred between epochs tk-j 

and tk-j+1. Otherwise, it can be only considered that there is an outlier.  

Based on the MDL criterion shown in Tables 5.4 to 5.9, all the detected deformation epochs are 

shown in Table 11. For instance, at epoch 1801, case 2 is chosen, at the following epochs 1802 

and 1803, case 3 and case 4 are chosen. It implies that the deformation can be found under dif-

ferent models. Therefore, there must be a deformation during the epochs 1800 and 1801. But if 

not all of the cases 2, 3 and 4 are selected during three continuous epochs, it can't be determined 

that a deformation exists. For instance, in Table 10 at epoch 9878, case 2 is chosen, but at the 

next two epochs 9879 and 9880, case 1 is chosen, which means no deformation turns out in the 

next epochs. In this example, the jump can't be considered as a deformation (Fig. 5.11).   

Table 5.11 demonstrates that the deformation epochs are detected by the multiple Kalman filters 

model, such as during the epochs 1800 to 1801, epochs 3600 to 3601, epochs 5400 to 5401, 

epochs 7200 to 7201, epochs 9000 to 9001, and epochs 10800 to 10801. All the detected epochs 

are the true epochs when there is really a deformation. No other false deformation epoch are 

found.  

In order to assess the performance of the proposed model, the precision of the time series should 

also be considered. Compared the true value of the time series, the standard deviation of the ac-

tual observations is 6.50 mm. After the time series was processed by the multiple Kalman filters 

model, the standard deviation of the processed time series is 4.87 mm. The precision has been 

improved 25.1%.  From the deformation epoch detection and the precision of the processed time 

series, it is obvious that the multiple Kalman filters model works well. 

Table 5.4  MDL criterion at epochs 1801, 1802, and 1803 

         MDL               

Epoch  

    Model Case 1 Case 2 Case 3 Case 4 

1801 23.11 12.03 27.34 27.81 

1802 28.34 24.71 16.89 35.68 

1803 25.38 27.68 26.16 19.94 

     

Table 5.5  MDL criterion at epochs 3601, 3602, and 3603 

         MDL               

Epoch  

    Model Case 1 Case 2 Case 3 Case 4 

3601 17.60 12.34 22.64 30.54 

3602 19.13 21.45 16.54 27.98 

3603 23.40 22.40 29.46 21.40 

     

http://dict.cn/example
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Table 5.6  MDL criterion at epochs 5401, 5402, and 5403 

         MDL               

Epoch  

     Model Case 1 Case 2 Case 3 Case 4 

5401 21.08 13.63 23.78 31.21 

5402 28. 72 23.06 20.61 33.88 

5403 23.94 27.32 24.04 23.08 

     
Table 5.7  MDL criterion at epochs 7201, 7202, and 7203 

         MDL               

Epoch  

      Model Case 1 Case 2 Case 3 Case 4 

7201 19.41 13.02 24.42 37.81 

7202 20.95 23.76 17.53 30.10 

7203 29. 41 24.73 36.16 23.61 

     
Table 5.8  MDL criterion at epochs 9001, 9002, and 9003 

         MDL               

Epoch  

      Model Case 1 Case 2 Case 3 Case 4 

9001 22.25 13.52 37.04 32.35 

9002 24.30 28.24 17.86 44.02 

9003 25.79 29.60 34.25 22.35 

     
Table 5.9  MDL criterion at epochs 10801, 10802, and 10803 

         MDL               

Epoch  

     Model Case 1 Case 2 Case 3 Case 4 

10801 30.56 13.46 36.22 44.04 

10802 22.40 34.56 18.68 33.50 

10803 23.58 29.21 40.66 23.11 

     
Table 5.10  MDL criterion at epochs 9878, 9879, and 9880 

         MDL               

Epoch  

      Model Case 1 Case 2 Case 3 Case 4 

9878    14.90    13.36    27.51    29.56 

9879     9.10    19.75    22.01    24.01 

 9880     9.42    13.48    25.55    25.75 

      
Table 5.11 Detected deformation epochs in the GPS time series  

True deformation epochs Detected 

epochs tk in  

the second case 

(j=1) 

Detected  

Epochs  tk in 

 the third case 

(j=2) 

Detected 

epochs tk in  

the fourth case 

(j=3) 

Detected  

deformation 

epochs 

(tk-j,tk-j+1) 

During epochs 1800 and 1801  1801 1802 1803 (1800,1801) 

 

 

During epochs 3600 and 3601 3601 3602 3603 (3600,3601) 

During epochs 5400 and 5401 5401 5402 5403 (5400,5401) 

During epochs 7200 and 7201 7201 7202 7203 (7200,7201) 

During epochs 9000 and 9001 9001 9002 9003 (9000,9001) 

During epochs 10800 and 

10801 

10801 10802 10803 (10800,108

01) 
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Fig. 5.11  Processed results by the multiple Kalman filters model 

b)  Application in the GPS static time series 

Table 5.12 demonstrates that the deformation epochs are detected in the GPS static time series 

by the multiple Kalman filters model. In fact, there should be no detected deformation epochs in 

the GPS static time series. But some epochs are detected as the deformation epcohs by the mul-

tiple Kalman filters model. Table 5.12 shows that the detected epochs are in the period from 

epoch 25339 to 27623 (7.04 hour to 7.67 hour). It is found that the satellite geometry is very 

poor during this period, resulting to the higher value of the geometric dilution of precision 

(GDOP). That is why some epochs are detected as deformation epochs. The conclusion here is 

coincidence with that derived by Kalman filter with a shaping filter in section 4.1.2.3. 

The processed time series has been shown in Fig. 5.12. Compared to the true time series, the 

standard deviation of the GPS observations is 7.3 mm. After the time series was processed by the 

multiple Kalman filters model, the standard deviation of the processed time series is 5.3 mm. 

The precision has been improved by 27.4%.   

                   Table 5.12 Detected deformation epochs in the GPS static time series 

                    processed by the multiple Kalman filters model 

True deformation epochs Detected  

deformation epochs 

(tk-j,tk-j+1) 

Note 

 

No deformation epoch (25338, 25339) The detected 

epochs are in 

the period 

Hour (7.04 to 

7.67) if in the 

unit of Hour. 

 

 (25401, 25402)  

 (25412, 25413)  

 (25658, 25659)  

 (26586, 26587)  

 (27145, 27146)  

 

 

(27348, 27349)  

 (27622, 27623)  
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Fig. 5.12  Processed time series by multiple Kalman filters model 

c) Application in the GPS stepwise deformation at a magnitude of 12.5 mm 

The proposed method is used to process the smaller stepwise deformation time series (Fig. 5.10) 

and Table 5.13 illustrates the results of the detected deformation epochs. From Table 5.13, it can 

be seen that not all the deformation epochs are detected by the multiple Kalman filters model. 

Five true deformation epochs have not been detected by the multiple Kalman filters model. 

When the stepwise deformations are smaller, some stepwise changes contaminated by the co-

lored noise are not so obvious. The ability of the multiple Kalman filters model to detect such 

contaminated stepwise changes is limited. The noise affection needs to be reduced and the mul-

tiple Kalman filters model needs modification. 

Compared to the true value of the time series, the standard deviation of the true observations is 

6.5 mm. After the time series was processed by the multiple Kalman filters model, the standard 

deviation of the processed time series is 5.3 mm. 

Table 5.13 Detected deformation epochs in the GPS stepwise time series 

                    processed by the multiple Kalman filters model 

 True deformation 

epochs 

Detected 

deformation epochs 

(tk-j,tk-j+1) 

Time delay 

(s) 

(Hour) (s) 

0.5 1800 (1809 1810) 9 

1.0 3600 (3603,3604) 3 

1.5 5400 Not detected Not detected 

2.0 7200 Not detected Not detected 

2.5 9000 (9052,9053) 52 

3.0 10800 (10834,10835) 34 

3.5 12600 Not detected Not detected 

4.0 14400 (14426,14427) 26 

4.5 16200 Not detected Not detected 

5.0 18000 (10834,108315) 34 

5.5 19800 Note detected Not detected 

6.0 21600 (21603,21604) 03 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-60

-40

-20

0

20

40

60

[Hour]

[m
m

]

 

 

Observations

Processed results

True observations



88 

 

 

 

Fig. 5.13  Processed time series by multiple Kalman filters model 

Summary 

The principle of the multiple Kalman filters model has been described in detail and different time 

series are used to check its efficiency. Its advantages and limitations have been analyzed. 

5.2 Modification of multiple Kalman filters model  

5.2.1 Multiple Kalman filters model with shaping filters 

As we know colored noises exist in the GPS time series and follow an exponential function. In 

order to reduce the affection of the colored noise in the GPS time series, the state vector in the 

multiple Kalman filters model is augmented by a shaping filter ( )sfx k (Equation 4.25) which can 

describe the long movement of colored noise. 

The augmented state equation can be described as 
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The measurement equation in each case can be defined as  
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The system equation in case 1 is described as followed 
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The system equation in case 2 is described as followed 
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The system equation in case 3 is described as followed 
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The system equation in case 4 is described as followed 
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                  (5.22) 

The system equation and the observation equation of each case have been given. The following 

procedures (model selection and its flowchart) are similar to the description of the multiple Kal-

man filters model in section 5.1.  

5.2.2 Application in the GPS time series and result analysis 

Different GPS time series (Fig.5.8, 5.9 and 5.10) are used to check the efficiency of the multiple 

Kalman filters model with shaping filter. 
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5.2.2.1 Application in the GPS time series of stepwise deformations at a magnitude of 

25mm 

Table 5.14 shows that during the detection of the deformation epochs, all the true deformation 

epochs are detected; but two false deformation epochs are detected as deformation epochs. Fig. 

5.14 demonstrates that the colored noises in the GPS time series have been reduced by the shap-

ing filter. 

The standard deviation of the processed time series is 4.0 mm. Compared to standard deviation 

of the observations, the precision of the processed time series has been improved. 

Compared with the multiple Kalman filters model, in case of the stepwise deformation of 25 mm, 

both can detect all the true deformation epochs. But the multiple Kalman filters model with shap-

ing filters can reduce the affection of colored noise and the precision of the processed time series 

is higher than that of the processed time series by multiple Kalman filters model. 

Fig. 5.14a Processed time series 

 

Fig. 5.14b Processed time series (first 

change) 

               Table 5.14 Detected deformation epochs in the GPS stepwise time series  

True deformation 

epochs 

Detected 

deformation epochs 

(tk-j,tk-j+1) 

Time delay(s) Note 

1801 (1801 1802) 0 Two false de-

formation 

epochs  

(7315,7316) 

(10138,10139) 

3601 (3601,3602) 0 

5401 (5403,5404) 2 

7201 (7207,7208) 6 

9001 (9005,9006) 4 

10801 (10802,10803) 1 

 

5.2.2.2 Application in the GPS static deformation time series  

As we know no deformation epochs exist in the static time series (Fig. 5.9). Tables 5.15 illu-

strates the false detected deformation epochs obtained by multiple Kalman filters model with a 
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shaping filter. As analyzed above, during the epoch 25339 to 27623, the satellite geometry is 

very poor. The accuracy of the results is very low. Some results are not reliable so that the dif-

ference between the coordinates becomes large, in that case it can be detected as a deformation. 

That is the reason some epochs are detected as the deformation epochs. The standard deviation 

of the processed time series is 3.0 mm. The accuracy has been improved. 

Compared with multiple Kalman filters model, the same conclusion is that all the detected false 

deformation epochs are during the period when the satellite geometry is poor. The difference is 

that multiple Kalman filters model with shaping filter can reduce the affection of colored noise.  

 

Fig. 5.15 Processed time series 

                Table 5.15 Detected deformation epochs in the GPS static time series 

True deformation epochs Detected  

deformation epochs 

(tk-j,tk-j+1) 

Note 

 

No deformation epoch (25346, 25347) The detected epochs 

are during the period 

when the satellite 

geometry is poor. 

 (25401, 25405) 

 

 

 (26586, 26587) 

5.2.2.3 Application in the GPS time series of stepwise deformations at a magnitude of 

12.5mm 

The standard deviation of the processed time series (Fig. 5.16a) is 4.5 mm. 

Table 5.16 illustrated the results of all the detected deformation epochs and Fig. 5.16 shows the 

processed time series by the multiple Kalman filters model with shaping filters. In case of the 

12.5 mm stepwise deformation time series (Fig. 5.10), all the true deformation epochs have been 

detected by the multiple Kalman filters model with shaping filters. However, not all true defor-

mation epochs have been detected by the multiple kalman filters model. In the regard of defor-

mation epochs detection, the multiple Kalman filters model with shaping filters is better. 
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But at the same time, Table 5.16 shows that more false deformation epochs are detected as the 

deformation epochs by the multiple Kalman filters model with shaping filters when compared to 

Table. 5.13. The false deformation epochs will decrease the precision of the processed results. In 

this point this model still needs further improvement. 

         Table 5.16 Detected deformation epochs in the GPS kinematic time series 

      True deformation 

epochs 

Detected 

deformation epochs 

(tk-j,tk-j+1) 

Time delay(s) Note 

1800 (1835,1836) 35 False detected 

epochs 3600 (3600,3601) 0 

5400 (5410,5411) 10 1547 

7200 (7205,7206) 5 3801 

9000 (9000,9001) 0               9814 

10800 (10823,10824)  23 18240 

12600 (12620,12621) 20 12380 

14400 (14510,14511) 110 21010 

16200 (16386,16387) 186  

18000 (18104,18105) 104  

19800 (19931,19932) 131  

21600 (21606,21607) 6  

   

 
Fig. 5.16a Processed time series 

 
Fig. 5.16b Processed time series  

(first change)

5.3 Summary 

Many monitoring problems can be stated as the problem of detecting a change. It is very impor-

tant to detect small changes in some applications, because some economic or catastrophic conse-

quences that result from an accumulation of small changes can be avoided. False warnings 

should also be given as few as possible.  
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The multiple Kalman filters model has been proposed to capture the deformation epochs and 

improve the reliability of detecting the deformation epoch. The multiple Kalman filters model is 

a simple and adaptable algorithm. In the multiple Kalman filters model different possible defor-

mation trends are represented, and based on the MDL statistical criterion, the appropriate filter of 

modeling the deformation trend can be chosen. The time series can be processed by the multiple 

Kalman filters model in order to assess whether the deformation exists in the time series or not. 

The proposed model makes use of the statistical criterion comparison in each case instead of the 

hypothesis test. In order to reduce the affection of colored noise in the GPS time series, the mul-

tiple Kalman filter model is augmented with a shaping filter which can describe the long term 

movement of the correlated measurement deviations.  

Based on comparisons of the applications in different GPS time series, the effectiveness and the 

limitation of the proposed model have been analyzed. The proposed model can be used to detect 

stepwise changes of a variety of fields and predict some natural catastrophic events in real time 

or near real time, for example, landslide or a cycle slip in the phase data. Yet in the future further 

work need to be done: besides the stepwise deformations, more complicated deformation possi-

bilities, such as the continuous deformation, can be investigated in this model. 
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6 Conclusions and Recommendations  

6.1 Conclusions 

The focus of the thesis was mainly on how to eliminate the affection of colored noise, to improve 

the accuracy of the GPS real-time series and to improve the reliability of detecting deformation 

epochs. The theoretical analysis and field experiments were conducted in this research. The fol-

lowing conclusions can be drawn from the findings of the research: 

1) The GPS coordinate time series are analyzed by the autocorrelation function. The property of 

the noise has been explored in detail, especially how to determine the correlated error property of 

the GPS coordinate time series. The stochastic models to determine the autocorrelation function 

of GPS coordinate(X, Y, H) measurement deviation are discussed in detail. The results demon-

strate that the GPS real–time measurement deviation have a high autocorrelation, which should 

be considered in the GPS high-precision positioning. Thus, in the deformation data analysis it is 

not proper to simply take the measurement deviations as the white noise. 

2) In this thesis, three different methods for reducing the colored noise in the GPS time series 

have been described: FIR filter, the Sequential algorithm and the Kalman filter.  

a) The FIR filter demonstrates that if the filter length of FIR is Q , the optimal value of the state 

vector at a given epoch is obtained by a linear combination of the newest Q epochs’ observations. 

Only parts of the observations are chosen to compute the optimal value of the newest state vector; 

the other previous observations have no effect on the optimal value of the state vector.  

The Kalman filter and the Sequential algorithm obtain the optimal value of the state vector in a 

least mean square recursive manner based on all the observations. It is another form of a com-

plete adjustment. The earlier observations affect the newest state vectors by the earlier state vec-

tor. To some extent, all the observations with different weights are used to compute the newest 

state vector in these two models.  

b) For the magnitude of the detected deformation, the results show that the Sequential algorithm 

can detect the smallest deformation among these three methods. Considering the time delay of 

the detected deformation epoch, the FIR filter has better ability to detect the deformation with 

least time delay.  

c) The deformation analysis based on the Kalman filter model with a shaping filter technique 

which contains the identity model and the kinematic model has been applied in the different 

movement tendencies of GPS time series. Not only the stepwise deformation but also the conti-

nuous deformation can be processed by the Kalman filter model with a shaping filter. From the 

results, it is shown that the Kalman filter model with a shaping filter can reduce the colored noise, 

improve the accuracy of the coordinates and describe the movement closer to the true trajectory.  
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The Kalman filter model with a shaping filter can be widely used to process the GPS short base-

line time series in real-time so that we can obtain the precise positions and detect the deforma-

tions in time and with high reliability. The Kalman filter model with a shaping filter can be wide-

ly used in these following applications: GPS used in dam deformation monitoring, bridge defor-

mation monitoring or landslide deformation monitoring, etc.  

The Kalman filter model with a shaping filter can be used to detect and distinguish the deforma-

tion and outlier simultaneously. How to determine the state vector value when outlier and defor-

mation occur is discussed in detail. An application to the GPS static and kinematic time series 

demonstrates that the method proposed can get the results with short time delay. This proposed 

method is useful to analyze the time series and make the right decision when deformations occur. 

3) The multiple Kalman filters model is proposed to improve the reliability of detecting the de-

formation epochs and detect the deformation epoch with less time delay. In the multiple Kalman 

filters model, different possible deformation trends are represented, and based on the MDL sta-

tistical criterion, the appropriate filter of modeling the deformation trend can be chosen. The 

time series can be processed by the multiple Kalman filters model in order to assess whether the 

deformation exists in the time series or not. The proposed model makes use of the statistical cri-

terion comparison in each case instead of the hypothesis test. In case of colored noise in GPS 

time series, this proposed model can be augmented by shaping filters. By the GPS experiment, 

the effectiveness of the proposed model has been verified. The multiple Kalman filters model 

can be used to detect stepwise changes of a variety of fields and predict some natural catastroph-

ic events in real-time or near real-time, for example, landslide or a cycle slip in the phase data. 

6.2 Recommendations 

The following is a list of some of the areas recommended for future work: 

The Kalman filter model with a shaping filter has been successfully used to isolate the colored 

noise from the time series. It can also be used to detect the deformation epoch with short time 

delay, thus, it can be applied into the landslide early warning system in the future. 

The mathematical algorithm to define the boundary of distinguishing the distributions of outlier 

and deformation needs to be further studied. The robustness of the kalman filter with shaping 

filter needs to be extended in the future. 

The data supporting this research were collected from the GPS experiment with limited magni-

tudes of movements. In the future, more GPS experiments with different sampling rates and dif-

ferent movements can be done. The baseline length and the height difference can also be 

changed.  
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As for the proposed multiple Kalman filter model, in the aspect of detecting smaller deforma-

tions, the proposed model needs further improvement. Besides the stepwise deformation, more 

complicated deformation possibilities, such as the continuous deformation, should be investi-

gated in the future work.  
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