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1. Introduction

This thesis consists of two parts. In the �rst part we develop a general machinery
to study operads, algebras and modules in symmetric monoidal model categories.
In particular we obtain a well behaved theory of E1-algebras and modules over
them, where E1-algebras are an appropriate substitute of commutative algebras in
model categories. This theory gives a derived functor formalism for commutative
algebras and modules over them in any nice geometric situation, for example for
categories of sheaves on manifolds or, as we show in the second part of the thesis,
for triangulated categories of motivic sheaves on schemes. As our main application
of this theory we construct a so called limit motive functor, which is a motivic
analogue and generalization of the limit Hodge structures considered by Schmid,
Steenbrink et.al. and can also be viewed as a re�nement of the vanishing cycle
functor. As a corollary one can obtain motivic tangential base point functors for
triangulated categories of Tate motives on rational curves. This answers a question
of Deligne asked in [Del2].

We start with a brief historical review. Recently important new applications of
model categories appeared, for example in the work of Voevodsky and others on
the A 1 -local stable homotopy category of schemes. But also for certain questions
in homological algebra model categories became quite useful, for example when
one deals with unbounded complexes in abelian categories. In topology, mainly in
the stable homotopy category, one is used to deal with objects having additional
structures, for example modules over ring spectra. The work of [EKMM] made it
possible to handle commutativity appropriately, namely the special properties of
the linear isometries operad lead to a strictly associative and commutative tensor
product for modules over E1-ring spectra. As a consequence many constructions
in topology became more elegant or even possible at all (see [EKM]). Moreover
the category of E1-algebras could be examined with homotopical methods because
this category carries a model structure. In [KM] a parallel theory in algebra was
developed (see [May]).

Parallel to the achievements in topology the abstract model category theory
was further developed (see [Hov1] for a good introduction to model categories, see
also [DHK]). Categories of algebras and of modules over algebras in monoidal
model categories have been considered ([SS], [Hov2]). Also localization techniques
for model categories have become important, because they yield many new useful
model structures (for example the categories of spectra of [Hov3]). The most general
statement for the existence of localizations is given in [Hir].

In all these situations it is as in topology desirable to be able to work in the
commutative world, i.e. with commutative algebras and modules over them. Since a
reasonable model structure for commutative algebras in a given symmetric monoidal
model category is quite unlikely to exist the need for a theory of E1-algebras
arises. Also for the category of modules over an E1-algebra a symmetric monoidal
structure is important. One of the aims of this paper is to give adequate answers
to these requirements.

E1-algebras are algebras over particular operads. Many other interesting oper-
ads appeared in various areas of mathematics, starting from the early application
for recognition principles of iterated loop spaces (which was the reason to introduce
operads), later for example to handle homotopy Lie algebras which are necessary
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for general deformation theory, the operads appearing in two dimensional conformal
quantum �eld theory or the operad of moduli spaces of stable curves in algebraic
geometry. In many cases the necessary operads are only well de�ned up to quasi
isomorphism or another sort of weak equivalence (as is the case for example for
E1-algebras), therefore a good homotopy theory of operads is desireable. A re-
lated question is then the invariance (up to homotopy) of the categories of algebras
over weakly equivalent operads and also of modules over weakly equivalent algebras.
We will also give adequate solutions to these questions. This part of the paper was
motivated by and owes many ideas to [Hin1] and [Hin2].

So in the �rst half of Part I we develop the theory of operads, algebras and
modules in the general situation of a co�brantly generated symmetric monoidal
model category satisfying some technical conditions which are usually ful�lled. Our
�rst aim is to provide these categories with model structures. It turns out that in
general we cannot quite get model structures in the case of operads and algebras,
but a slightly weaker structure which we call a J-semi model structure. A version
of this structure already appeared in [Hov2]. To the knowledge of the author no
restrictions arise in the applications when using J-semi model structures instead of
model structures. The J-semi model structures are necessary since the free operad
and algebra functors are not linear (even not polynomial). These structures appear
in two versions, an absolute one and a version relative to a base category.

We have two possible conditions for an operad or an algebra to give model
structures on the associated categories of algebras or modules, the �rst one is being
co�brant (which is in some sense the best condition), and the second one being
co�brant in an underlying model category.

In the second half of Part I we demonstrate that the theory of S-modules of
[EKMM] and [KM] can also be developed in our context if the given symmetric
monoidal model category C either receives a symmetric monoidal left Quillen functor
from SSet (i.e. is simplicial) or from Comp�0(Ab). The linear isometries operad L
gives via one of these functors an E1-operad in C with the same special properties
responsible for the good behavior of the theories of [EKMM] and [KM]. These
theories do not yield honest units for the symmetric monoidal category of modules
over L-algebras, and we have to deal with the same problem. In the topological
theory of [EKMM] it is possible to get rid of this problem, in the algebraic or
simplicial one it is not. Nevertheless it turns out that the properties the unit
satis�es are good enough to deal with operads, algebras and modules in the category
of modules over a co�brant L-algebra. This seems to be a little counterproductive,
but we need this to prove quite strong results on the behavior of algebras and
modules with respect to base change and projection morphisms. These results are
even new for the cases treated in [EKMM] and [KM].

In a remark we show that one can always de�ne a product on the homotopy
category of modules over an O-algebra for an arbitrary E1-operad O without
relying on the special properties of the linear isometries operad, but we do not
construct associativity and commutativity isomorphisms in this situation! In the
case when S-modules are available this product structure is naturally isomorphic
to the one de�ned using S-modules.
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Certainly this general theory will have many applications, for example the ones
we give in the second part of this thesis or to develop the theory of schemes in
symmetric monoidal co�brantly generated model categories (see [TV]).

Part II of the thesis is concerned with the applications of the general theory of
Part I to A 1 -local homotopy categories of schemes and of sheaves with transfers
introduced by Vladimir Voevodsky. Our main application will be the construction
of what we call limit motives. This construction has predecessors in the world of
Hodge structures, the so called limit Hodge structures, and for special cases in other
realization categories, for example the l-adic one, as introduced by Deligne in [Del].
He considers sheaves on a pointed curve and de�nes a functor which associates to
such a sheaf another sheaf on the pointed tangent space at the point missing on
the curve. This functor computes the local monodromy around the point. Deligne
also describes a more general geometric situation of a smooth variety and normal
crossing divisors on it for which he conjectures the existence of a local monodromy
functor which associates to a sheaf on the open variety a sheaf on the product of
the pointed normal bundles of the divisor over the intersection of the divisors. We
will de�ne such a functor for this situation over a general base for some class of
triangulated categories of motivic sheaves. We will compare this construction with
the classical ones in a forthcoming paper.

The �rst section of Part II briey sketches in a topological context the way we
construct the local monodromy functor. The construction makes use of a general
principle which enables one to identify a certain subcategory of (some sort of)
sheaves on a scheme X over a base S consisting of generalized unipotent objects
relative to S with the category of modules over the relative cohomology algebra of
X on S. The abstract version of this principle is given in the second section.

We then introduce in a uniform way the A 1 -local model categories we consider.
We use cd-model structures throughout, which are �nitely generated model struc-
tures using the special properties of the Nisnevich or cdh-topology. There are two
types of these model categories. The �rst one is based on simplicial sheaves on
some site of schemes. The corresponding model categories will give A 1 -local ho-
motopy categories of schemes, for example the stable motivic homotopy category.
The second sort of model categories involve complexes of sheaves with transfers.
They give triangulated categories of motives or motivic sheaves. We compare these
categories over a �eld of characteristic 0 to the categories constructed in [Vo3] and
give some properties of the behaviour of their T-stabilizations.

The construction of the local monodromy functor producing limit motives works
in enrichments of the stable motivic homotopy categories (i.e. in modules over
algebras in there). We restricted to this case because for the triangulated categories
of motives we do not know the gluing exact triangles. Working with modules over
the motivic Eilenberg Mac Lane spectrum gives a substitute for the triangulated
categories of motives in some interesting cases.

Finally we sketch the proofs of the statements about the behaviour of the local
monodromy functor with respect to composition.

I would like to thank Bertrand Toen for many useful discussions on the subject.
My special thanks are to Prof. Dr. G. Harder who supported my work and drew
my attention to many interesting questions.
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Part I

2. Preliminaries

We �rst review some standard arguments from model category theory which we
will use throughout the paper (see for the �rst part e.g. the introduction to [Hov2]).

Let C be a cocomplete category. For a pushout diagram in C

A
f // B

K

'

OO

g // L

OO

we call f the pushout of g by ', and we call B the pushout of A by g with attaching
map '. If we say that B is a pushout of A by g and g is an object of C rather than
a map then we mean that B = g and A need not be de�ned in this case (we need
this convention to handle pathological cases in the statements describing pushouts
of operads and algebras over operads in C correctly).

Let I be a set of maps in C. Let I-inj denote the class of maps in C which have
the right lifting property with respect to I , I-cof the class of maps in C which have
the left lifting property with respect to I-inj and I-cell the class of maps which are
trans�nite compositions of pushouts of maps from I . Note that I-cell � I-cof and
that I-inj and I-cof are closed under retracts.

Let us suppose now that the domains of the maps in I are small relative to I-cell.
Then by the small object argument there exists a functorial factorization of every
map in C into a map from I-cell followed by a map from I-inj. Moreover every map
in I-cof is a retract of a map in I-cell such that the retract induces an isomorphism
on the domains of the two maps. Also the domains of the maps in I are small
relative to I-cof.

Now let C be equipped with a symmetric monoidal structure such that the prod-
uct 
 : C � C ! C preserves colimits (e.g. if the monoidal structure is closed). We
denote the pushout product of maps f : A! B and g : C ! D,

A
D tA
C B 
 C ! B 
D ,

by f�g.

For ordinals � and � we use the convention that the well-ordering on the product
ordinal � � � is such that the elements in � have higher signi�cance. We will need
the

Lemma 2.1. Let f : A0 ! A� = colimi<�Ai and g : B0 ! B� = colimi<�Bi be a
�- and a �-sequence such that the transition maps Ai ! Ai+1 and Bi ! Bi+1 are
pushouts by maps 'i : Ki ! Ki+1 and  i : Li ! Li+1. Then the pushout product
f�g is a (� � �)-sequence M0 ! M��� = colimi<���Mi such that the transition
maps M(i;j) !M(i;j+1) are pushouts by the maps 'i� j .
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Proof. For any (i; j) 2 �� � de�ne M(i;j) to be the colimit of the diagram

A� 
B0 Ai+1 
Bj Ai 
B�

Ai+1 
B0

ffMMMMMMMMMM

77ppppppppppp
Ai 
Bj

ffMMMMMMMMMM

99rrrrrrrrrr

.

Clearly M(0;0) = A� 
B0 tA0
B0 A0 
B� is the domain of f�g. We have obvious
transition maps M(i;j) ! M(i;j)+1 induced by the maps Ai ! Ai+1 and Ai+1 !
Ai+2. For �xed i 2 � both colimj<�M(i;j) and M(i+1;0) are canonically isomorphic
to the pushout of the diagram A� 
B0  Ai+1 
B0 ! Ai+1 
B�. From this and
the fact that 
 commutes with colimits it follows that the assignment (i; j) 7!M(i;j)

is a (���)-sequence. It also follows that the limit of this sequence is A�
B� and
the map from M(0;0) to this limit is f�g. We have to show that a transition map
M(i;j) !M(i;j+1) is a pushout by 'i� j . To do this one shows that in the obvious
diagram

Ki+1 
 Lj tKi
Lj Ki 
 Lj+1 //

��

Ki+1 
 Lj+1

��
Ai+1 
Bj tAi
Bj Ai 
Bj+1 //

��

Ai+1 
Bj+1

��
M(i;j) // M(i;j+1)

the upper and the lower square are pushout squares. �

The pushout product is associative. For maps fi : Ai ! Bi, i = 1; : : : ; n, in C

giving a map from the domain of g :=�
n

i=1fi to an object X 2 C is the same as
to give maps 'j from the

Sj := (

j�1O
i=1

Bi)
Aj 

nO

i=j+1

Bi

to X for j = 1; : : : ; n such that 'j and 'j0 (j
0 > j) coincide on

Ij;j0 := (

j�1O
i=1

Bi)
Aj 
 (

j0�1O
i=j+1

Bi)
Aj0 

nO

i=j0+1

Bi

after the obvious compositions. We call the Sj the summands of the domain of g
and the Ij;j0 the intersections of these summands. Sometimes some of the fi will
coincide. Then there is an action of a product of symmetric groups on g, and the
quotient of a summand with respect to the induced action of the stabilizer of this
summand will also be called a summand (and similarly for the intersections).

For the rest of the paper we �x a co�brantly generated symmetric monoidal
model category C with generating co�brations I and generating trivial co�brations
J . For simplicity we assume that the domains of I and J are small relative to the
whole category C. The interested reader may weaken this hypothesis appropriately
in the statements below.
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For a monad T in C we write C[T] for the category of T-algebras in C. The
following theorem summarizes the general method to equip categories of objects in
C with \additional structure" with model structures (e.g. as in [Hov2, Theorem
2.1]).

Theorem 2.2. Let T be a monad in C, assume that C[T] has coequalizers and
suppose that every map in TJ-cell, where the cell complex is built in C [T], is a
weak equivalence in C. Then there is a co�brantly generated model structure on
C[T], where a map is a weak equivalence or �bration if and only if it is a weak
equivalence or �bration in C.

Proof. We apply [Hov1, Theorem 2.1.19] with generating co�brations TI , generat-
ing trivial co�brations TJ and weak equivalences the maps which are weak equiv-
alences in C.

By [McL, VI.2, Ex 2], C[T] is complete and by [BW, 9.3 Theorem 2] cocom-
plete. Property 1 of [Hov1, Theorem 2.1.19] is clear, properties 2 and 3 follow by
adjunction from our smallness assumptions on the domains of I and J . Since each
element of J is in I-cof, hence a retract of a map in I-cell, each element of TJ is
in TI-cof, hence together with our assumption we see that property 4 is ful�lled.
By adjunction TI-inj (resp. TJ-inj) is the class of maps in C[T] which are trivial
�brations (resp. �brations) in C. Hence property 5 and the second alternative of 6
are ful�lled. �

In most of the cases we are interested in the hypothesis of this theorem that
every map in TJ-cell is a weak equivalence won't be ful�lled. The reason is that
we are considering monads which are not linear. The method to circumvent this
problem was found by Hovey in [Hov2, Theorem 3.3]. He considers categories which
are not quite model categories. We will call them semi model categories.

De�nition 2.3. (I) A J-semi model category over C is a left adjunction F : C ! D
and subcategories of weak equivalences, �brations and co�brations in D such that
the following axioms are ful�lled:

(1) The adjoint of F preserves �brations and trivial �brations.
(2) D is bicomplete and the two out of three and retract axioms hold in D.
(3) Co�brations in D have the left lifting property with respect to trivial �bra-

tions, and trivial co�brations whose domain becomes co�brant in C have the
left lifting property with respect to �brations.

(4) Every map in D can be functorially factored into a co�bration followed by a
trivial �bration, and every map in D whose domain becomes co�brant in C
can be functorially factored into a trivial co�bration followed by a �bration.

(5) Co�brations in D whose domain becomes co�brant in C become co�brations
in C, and the initial object in D is mapped to a co�brant object in C.

(6) Fibrations and trivial �brations are closed under pullback.

We say that D is co�brantly generated if there are sets of morphisms I and J in
D such that I-inj is the class of trivial �brations and J-inj the class of �brations
in D and if the domains of I are small relative to I-cell and the domains of J are
small relative to maps from J-cell whose domain becomes co�brant in C.

D is called left proper (relative to C) if pushouts by co�brations preserve weak
equivalences whose domain and codomain become co�brant in C (hence all objects
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which appear become co�brant in C). D is called right proper if pullbacks by �bra-
tions preserve weak equivalences.

(II) A category D is called a J-semi model category if conditions (2) to (4) and
(6) of De�nition 2.3 are ful�lled where the condition of becoming co�brant in C is
replaced by the condition of being co�brant.

The same is valid for the de�nition of being co�brantly generated and of being
right proper.

(Note that the only reasonable property to require in a de�nition for a J-semi
model category to be left proper, namely that weak equivalences between co�brant
objects are preserved by pushouts by co�brations, is automatically ful�lled as is
explained below when we consider homotopy pushouts.)

Alternative: One can weaken the de�nition of a J-semi model category (resp.
of a J-semi model category over C) slightly by only requiring that a factorization
of a map in D into a co�bration followed by a trivial �bration should exist if the
domain of this map is co�brant (resp. becomes co�brant in D). We then include
into the de�nition of co�brant generation that the co�brations are all of I-cof.
Using this de�nition all statements from section 3 on remain true if one does not
impose any further smallness assumptions on the domains of I and J as we did at
the beginning. This follows in each of the cases from the fact that the domains of
I and J are small relative to I-cof.

Of course a J-semi model category over C is a J-semi model category. There is
also the notion of an I-semi (and also (I; J)-semi) model category (over C), where
the parts of properties 3 and 4 concerning co�brations are restricted to maps whose
domain is co�brant (becomes co�brant in C).

We summarize the main properties of a J-semi model category D (relative to C)
(compare also [Hov2, p. 14]):

By the factorization property and the retract argument it follows that a map is
a co�bration if and only if it has the left lifting property with respect to the trivial
�brations. Similarly a map is a trivial �bration if and only if it has the right lifting
property with respect to the co�brations. These two statements remain true under
the alternative de�nition if D is co�brantly generated.

A map in D whose domain is co�brant (becomes co�brant in C) is a trivial
co�bration if and only if it has the left lifting property with respect to the �brations,
and a map whose domain is co�brant (becomes co�brant in C) is a �bration if and
only if it has the right lifting property with respect to the trivial co�brations whose
domains are co�brant (become co�brant in C).

Pushouts preserve co�brations (also under the alternative de�nition if D is co�-
brantly generated). Trivial co�brations with co�brant domain (whose domain
becomes co�brant in C) are preserved under pushouts by maps with co�brant
codomain (whose codomain becomes co�brant in C).

In the relative case the functor F preserves co�brations (also in the alterna-
tive de�nition if D is co�brantly generated), and trivial co�brations with co�brant
domain.



11

Ken Brown's Lemma ([Hov1, Lemma 1.1.12]) remains true, and its dual version
has to be modi�ed to the following statement: Let D be a J-semi model category
(over C) and D0 be a category with a subcategory of weak equivalences which
satis�es the two out of three property. Suppose F : D ! D0 is a functor which takes
trivial �brations between �brant objects with co�brant domain (whose domain
becomes co�brant in C) to weak equivalences. Then F takes all weak equivalences
between �brant objects with co�brant domain (whose domain becomes co�brant in
C) to weak equivalences.

We de�ne cylinder and path objects and the various versions of homotopy as in
[Hov1, De�nition 1.2.4]. Cylinder and path objects exist for co�brant objects (for
objects which become co�brant in C).

We give the J-semi version of [Hov1, Proposition 1.2.5]:

Proposition 2.4. Let D be a J-semi model category (over C) and let f; g : B ! X
be two maps in D.

(1) If f
l
� g and h : X ! Y , then hf

l
� hg. Dually, if f

r
� g and h : A! B,

then fh
r
� gh.

(2) Let h : A! B and suppose A and B are co�brant (become co�brant in C)

and X is �brant. Then f
l
� g implies fh

l
� gh. Dually, let h : X ! Y .

Suppse X and Y are co�brant (become co�brant in C) and B is co�brant.

Then f
r
� g implies hf

r
� hg.

(3) If B is co�brant, then left homotopy is an equivalence relation on Hom(B;X).

(4) If B is co�brant and X is co�brant (becomes co�brant in C), then f
l
� g

implies f
r
� g. Dually, if X is �brant and B is co�brant (becomes co�brant

in C), then f
r
� g implies f

l
� g.

(5) If B is co�brant and h : X ! Y is a trivial �bration or weak equivalence
between �brant objects with X co�brant (such that X becomes co�brant in
C), then h induces an isomorphism

Hom(B;X)=
l
�

�=�! Hom(B; Y )=
l
� .

Dually, suppose X is �brant and co�brant (becomes co�brant in C) and
h : A ! B is a trivial co�bration with A co�brant (such that A becomes
co�brant in C) or a weak equivalence between co�brant objects, then h in-
duces an isomorphism

Hom(B;X)=
r
�

�=�! Hom(A;X)=
r
� .

This Proposition is also true for the alternative de�nition of a J-semi model
category (over C). We changed the order between 4 and 5, because it is a priori
not clear that right homotopy is an equivalence relation (under suitable condition),
this follows only after comparison with the left homotopy relation.

As in [Hov1, Corollary 1.2.6 and 1.2.7] it follows that if B is co�brant and X
is �brant and co�brant (becomes co�brant in C), then left and right homotopy
coincide and are equivalence relations on Hom(B;X) and the homotopy relation on
Dcf is an equivalence relation and compatible with composition. The statement of
[Hov1, Proposition 1.2.8] that a map in Dcf is a weak equivalence if and only if it
is a homotopy equicalence is proved exactly in the same way. The same holds for
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the fact that HoDcf is naturally isomorphic to Dcf= � ([Hov1, Corollary 1.2.9]).
Finally the existence of the co�brant and �brant replacement functor RQ implies
that the map HoDcf ! HoD is an equivalence.

De�nition 2.5. A functor L : D ! D0 between J-semi model categories is a left
Quillen functor if it has a right adjoint and if the right adjoint preserves �brations
and trivial �brations.

Of course in the relative situation F is a left Quillen functor. We show that a
left Quillen functor induces an adjunction between the homotopy categories (also
when we use the alternative de�nition). L preserves (trivial) co�brations between
co�brant objects, hence by Ken Brown's Lemma it preserves weak equivalences
between co�brant objects. This induces a functor HoD ! HoD0. By the dual
version of Ken Brown's Lemma the adjoint of L preserves weak equivalences between
�brant and co�brant objects which gives a functor HoD0 ! HoD. One easily
checks that L preserves cylinder objects on co�brant objects and that the adjoint
of L preserves path objects on �brant objects. As in Lemma [Hov1, Lemma 1.3.10]
it follows that on the derived functors between HoD and HoD0 there is induced a
natural derived adjunction.

Next we are going to consider Reedy model structures and homotopy function
complexes. We have the analogue of [Hov1, Theorem 5.1.3]:

Proposition 2.6. Let D be a J-semi model category and B be a direct category.
Then the diagram category DB is a J-semi model category with objectwise weak
equivalences and �brations and where a map A! B is a co�brations if and only if
the maps Ai tLiA LiB ! Bi are co�brations for all i 2 B.

Proof. As in [Hov1, Proposition 5.1.4] one shows that co�brations have the left
lifting property with respect to trivial �brations. Then it follows that if A ! B
is a map in DB with A co�brant such that the maps Ai tLiA LiB ! Bi are
(trivial) co�brations then the map colimA ! colimB is a (trivial) co�bration in
D. So a good trivial co�bration (de�nition as in the proof of [Hov1, Theorem
5.1.3]) with co�brant domain is a trivial co�bration and trivial co�brations with
co�brant domain have the left lifting property with respect to �brations. We then
can construct functorial factorizations into a good trivial co�bration followed by a
�bration for maps with co�brant domain as in the proof of [Hov1, Theorem 5.1.3])
and also the factorization into a co�bration followed by a trivial �bration (for the
alternative de�nition for maps with co�brant domain). It follows that a trivial
co�bration with co�brant domain is a good trivial co�bration. All other properties
are immediate. �

Similarly but easier we have that for an inverse category B the diagram category
DB is a J-semi model category.

We can combine both results as in [Hov1, Theorem 5.2.5] to get

Proposition 2.7. Let D be a J-semi model category and B a Reedy category.
Then DB is a J-semi model category where a map f : A! B is a weak equivalence
if and only if it is objectwise a weak equivalence, a co�bration if and only if the
maps Ai tLiA LiB ! Bi are co�brations and a �bration if and only if the maps
Ai ! Bi �MiB MiA are �brations.
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It is easily checked that cosimplicial and simplicial frames (see [Hov1, De�nition
5.2.7]) exist on co�brant objects. In the following we denote by A� and A� functorial
cosimplicial and simplicial frames on co�brant A 2 D. We are going to equip the

category Dcf with a strict 2-category structure D�2cf with underlying 1-category

Dcf and with associated homotopy category HoDcf . Let A;B 2 Dcf . As in [Hov1,
Proposition 5.4.7] there are weak equivalences

HomD(A
�; B)! diag(HomD(A

�; B�)) HomD(A;B�)

in SSet which are isomorphisms in degree 0, and we de�ne the morphism category
HomD�2

cf

(A;B) to be the groupoid associated to one of these simplicial sets. By the

groupoid associated to a K 2 SSet we mean the groupoid with set of objects K[0]
and set of morphisms Hom(x; y) for x; y 2 K[0] the homotopy classes of paths from
x to y in the topological realization of K. We have to give composition functors

HomD�2
cf

(A;B)�HomD�2
cf

(B;C)! HomD�2
cf

(A;C) .

These are the normal composition on objects and are induced on the morphisms
by the map of simplicial sets

HomD(A
�; B)�HomD(B;C�)! diag(HomD(A

�; C�)) .

In the following we write Æ
0
for the composition of 2-morphisms over objects and Æ

1
for

the composition of 2-morphisms over 1-morphisms. We claim that for A;B;C 2
Dcf , morphisms f; g : A ! B, f 0; g0 : B ! C and 2-morphisms ' : f ! g,
 : f 0 ! g0 we have

 Æ
0
' = (Idf 0 Æ

0
') Æ

1
( Æ

0
Idg) = ( Æ

0
Idf ) Æ

1
(Idg0 Æ

0
') .

This follows from the corresponding equation of homotopy classes of paths in
HomD(A

�; B) � HomD(B;C�). Moreover for a 1-morphism f 00 : C ! D we
have (Idf 00 Æ

0
 ) Æ

0
Idf = Idf 00 Æ

0
( Æ

0
Idf ), and the assignments HomD�2

cf

(B;C) !

Hom
D�2
cf

(B;D), a 7! Idf 00 Æ
0
a, and Hom

D�2
cf

(B;C) ! Hom
D�2
cf

(A;C), a 7! a Æ
0
Idf ,

are functors. From these three properties it follows that Æ
0
is associative and that

Æ
0
and Æ

1
are compatible. Hence D�2cf is a strict 2-category. We set Ho�2D := D�2cf .

One can show that this 2-category is weakly equivalent to the 2-truncation of the
1-Segal category (see [Hi-Si]) associated to D.

Let x be the category whose diagrams (i.e. functors into another category) are
the \lower left triangles", and � the category whose diagrams are the commutative
squares like the square at the beginning of this section. There is an obvious inclusion
functor x! �. For a category D denote by Dx (resp. D�) the category of x-
diagrams (resp. of �-diagrams) in D. There is a restriction functor r : D� ! Dx.

Let D be a J-semi model category. Then there is a canonical way to de�ne a
homotopy pushout functor

t : (HoD)x ! (HoD)�
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which sends a triangle B

A

OO

// C

to the square B // BtAC

A

OO

// C

OO , together with a

natural isomorphism from r Æt to the identity. This is done by lifting a triangle to
a triangle in D where all objects are co�brant and at least one map is a co�bration.
Then by the cube lemma ([Hov1, Lemma 5.2.6]), which is also valid for J-semi
model categories, the pushout does not depend on the choices and indeed yields a
well-de�ned square in HoD. We call a square in HoD a homotopy pushout square
if it is in the essential image of the functor t. A homotopy pushout square in D is
de�ned to be any commutative square weakly equivalent to a pushout square

B // D

A

f

OO

g // C

OO

where all objects are co�brant and f or g is a co�bration.

Taking A to be an initial object in HoD (i.e. the image of an initial object in
D) the product tA gives the categorical coproduct on HoD. For general A the
homotopy pushout need not be a categorical pushout in HoD.

A commutative square

B
g0 //

'

�$
@@

@@
@@

@

@@
@@

@@
@ D

A

f

OO

g // C

f 0

OO

in Ho�2D is called a homotopy pushout square if it is equivalent to the image of a
homotopy pushout square in D. Note that a homotopy pushout square in Ho�2D
need not be a categorical homotopy pushout.

Note that it follows that for any T 2 HoD and homotopy pushout square as
above the map

Hom(B tA C; T )! Hom(B; T )�Hom(A;T ) Hom(C; T ) ,

where all homomorphism sets are in HoD, is always surjective.

There is a dual homotopy pullback functor � and the dual notion of a homotopy
pullback square in both HoD and Ho�2D.

For any homotopy pushout square 41

B // D

A

OO

// C

OO

in HoD and object T 2 HoD the square induced on homotopy function complexes

map(B; T )

��

map(D;T )oo

��
map(A; T ) map(C; T )oo
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in HoSSet is a homotopy pullback square. If we have another homotopy pullback
square 42

B0 // D0

A0

OO

// C 0

OO

in HoD and a map 41 ! 42 such that the maps A ! A0, B ! B0 and C ! C 0

are isomorphisms then the map D ! D0 is also an isomorphism, since an analogous
statement is valid for the diagrams of homotopy function complexes.

We remark that it is possible to lift any commutative square

B // D

A

OO

// C

OO

in HoD to a commutative square in Dcf by �rst lifting it to a square in Dcf with
co�brations as morphisms starting at A with a homotopy between the two compo-
sitions and then replacing D by a path object on D.

It follows that for any such square in HoD there is a map BtAC ! D compatible
with the squares. Hence such a square is a homotopy pushout if and only if the
induced squares on homotopy function complexes are homotopy pushouts for all
T 2 HoSSet.

For a co�brant object A 2 D the category A # D of objects under A is again a
J-semi model category. The 2-functor

D ! Cat ,

A 7! Ho ((QA) # D)

where QA! A is a co�brant replacement, descents to a 2-functor

Ho�2D ! Cat ,

A 7! D(A # D)

such that the image functors f� of all maps f in Ho�2D have right adjoints f�.
The functor f� preserves homotopy pushout squares, and the functor f� preserves
homotopy pullback and homotopy pushout squares. For f : 0 ! A the map from
an initial object to an object in Ho�2D the functor f� : D(A # D) ! HoD
factors through A # HoD and the map from A to the image of the initial object in
D(A # D) is an isomorphism.

Consider a commutative square

B
g0 //

'

�$
@@

@@
@@

@

@@
@@

@@
@ D

A

f

OO

g // C

f 0

OO

in Ho�2D. Let E 2 D(B # D). There is a base change morphism

g�f
�E ! f 0

�
g0�E
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adjoint to the natural map f�E ! f�g0
�
g0�M

'
�= g�f 0

�
g0�M . This base change

morphism applied to diagrams

B //

�#
@@

@@
@@

@

@@
@@

@@
@ C

A

OO

Id // A

OO

enables one to construct a 2-functor

(A # Ho�2D)! D(A # D)

which gives an equivalence after 1-truncation of the left hand side.

Remark 2.8. The above construction should generalize to give functors between
(weak) (n+ 1)-categories

Ho�n+1D ! n�Cat

A 7! D�n(A # D) ,

where Ho�n+1D is the (n+ 1)-truncation of the 1-Segal category associated to D,
n�Cat is the (n+1)-category of n-categories and D�n(A # D) := Ho�n(QA # D)
for QA! A a co�brant replacement.

There are dual constructions for objects over an object in D.

The following theorem is the main source to obtain J-semi model categories.

Theorem 2.9. Let T be a monad in C and assume that C[T] has coequalizers. Sup-
pose that every map in TJ-cell whose domain is co�brant in C is a weak equivalence
in C and every map in TI-cell whose domain is co�brant in C is a co�bration in C
(here in both cases the cell complexes are built in C[T]). Assume furthermore that
the initial object in C[T] is co�brant in C. Then there is a co�brantly generated J-
semi model structure on C[T] over C, where a map is a weak equivalence or �bration
if and only if it is a weak equivalence or �bration in C.

Proof. We de�ne the weak equivalences (resp. �brations) as the maps in C[T] which
are weak equivalences (resp. �brations) as maps in C. By adjointness the �brations
are TJ-inj and the trivial �brations are TI-inj. We de�ne the class of co�brations
to be TI-cof. Since the adjoint of T is the forgetful functor property 1 of De�nition
2.3 is clear.

The bicompleteness of C[T] follows as in the proof of Theorem 2.2. The 2-out-
of-3 and retract axioms for the weak equivalences and the �brations hold in C[T]
since they hold in C, the retract axiom for the co�brations holds because TI-cof is
closed under retracts. So property 2 is ful�lled.

The �rst half of property 3 is true by the de�nition of the co�brations. By our
smallness assumptions we have functorial factorizations of maps into a co�bration
followed by a trivial �bration and into a map from TJ-cell followed by a �bration.
We claim that a map f in TJ-cell whose domain is co�brant in C is a trivial
co�bration. f is a weak equivalence by assumption. Factor f as p Æ i into a
co�bration followed by a trivial �bration. Since f has the left lifting property with
respect to p, f is a retract of i by the retract argument, hence also a co�bration.
Hence we have shown property 4.

Now let f be a trivial co�bration whose domain is co�brant in C. We can factor
f as p Æ i with i 2 TJ-cell and p a �bration. p is a trivial �bration by the 2-out-of-3
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property, hence f has the left lifting property with respect to p, so f is a retract of
i and has therefore the left lifting property with respect to �brations. This is the
second half of property 3. Property 5 immediately follows from the assumptions,
and property 6 is true since limits in C[T] are computed in C. �

Alternative: Assume that C[T] has coequalizers, that sequential colimits in
C[T] are computed in C and that the pushout of an object in C[T] which is co�brant
in C by a map from TI (resp. from TJ) is a co�bration (resp. weak equivalence) as
a map in C. Then the same conclusion holds as in the Theorem above. Moreover
the conclusion also holds for the alternative de�nition of J-semi model category
without the smallness assumptions on the domains of I and J which we made at
the beginning of this section.

Example 2.10. Let Ass(C) be the category of associative unital algebras in C. Then
Ass(C) is a J-semi model category over C (see [Hov2, Theorem 3.3]).

Will will need the

Lemma 2.11. Let R be a ring with unit in C, i a map in (I 
 R)-cof (taken in
R{Modr) and j a map in R{Mod which is a (trivial) co�bration in C. Then i�Rj
is a (trivial) co�bration in C. If i is in (J
R)-cof, then i�Rj is a trivial co�bration
in C.

Proof. This follows either by [Hov1, Lemma 4.2.4] applied to the adjunction of two
variables R{Mod r �R{Mod ! C, (M;N) 7!M 
R N , or by Lemma 2.1. �

3. Operads

For a group G write C[G] for the category of objects in C together with a right
G-action. This is the same as 1l[G]{Mod r, where 1l[G] is the group ring of G in
C. Let CN be the category of sequences in C and C� the category of symmetric
sequences, i.e. C� =

`
n2N C[�n]. Finally let CN;� (resp. C�;�) be the category of

objects X from CN (resp. from C�) together with a map 1l! X(1).

Proposition 3.1. For any group G the category C[G] has a natural structure of
co�brantly generated model category with generating co�brations I [G] and generat-
ing trivial co�brations J [G].

Proof. Easy from [Hov1, Theorem 2.1.19]. �

Hence there are also canonical model structures on CN, CN;�, C� and C�;�. For
each such model category C� and n 2 N there is a left Quillen functor in : C ! C�

adjoint to the forgetful functor at the n-th place. C� is co�brantly generated with
generating co�brations

`
i2N in(I) and generating trivial co�brations

`
i2N in(J).

We denote them by NI , N�I , �I and ��I respectively (similarly for J).

Note that a map of groups ' : H ! G induces a left Quillen functor C[H ] !
C[G]. If ' is injective the right adjoint to this functor preserves (trivial) co�brations.

Let Op(C) be the category of operads in C, where an operad in C is de�ned as
in [KM, De�nition 1.1]. Let F : CN ! Op(C) be the functor which assigns to a
sequence X the free operad FX on X . This functor naturally factors through CN;�,
C� and C�;�, and the functors starting from one of these categories going to Op(C)
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are also denoted by F . The right adjoints of F , i.e. the forgetful functors, map O
to O].

For any object A 2 C there is the endomorphism operad EndOp(A) given by

EndOp(A)(n) = Hom(A
n; A).

We come to the main result of this section:

Theorem 3.2. The category Op(C) is a co�brantly generated J-semi model cate-
gory over C�;� with generating co�brations F (NI) and generating trivial co�brations
F (NJ). If C is left proper (resp. right proper), then Op(C) is left proper relative to
C�;� (resp. right proper).

We �rst give an explicit description of free operads and pushouts by free operad
maps, which will be needed for the proof of this Theorem.

De�nition 3.3. (1) An n-tree is a �nite connected directed graph T such that
any vertex of T has � 1 ingoing arrows, the outgoing arrows of each vertex
v of T are numbered by 1; : : : ; val(v), where val(v) is the number of these
arrows, and there are n arrows which do not end at any vertex, which are
called tails and which are numbered by 1; : : : ; n. By de�nition the empty
tree has one tail, so it is a 1-tree.

(2) A doubly colored n-tree is an n-tree together with a decomposition of the
set of vertices into old and new vertices.

(3) A proper doubly colored n-tree is a doubly colored n-tree such that every
arrow starting from an old vertex is either a tail or goes to a new vertex.

We denote the set of n-trees by T (n), the set of doubly colored n-trees by Tdc(n)
and the set of proper doubly colored n-trees by T pdc(n). Set T :=

`
n2N T (n) and

T (p)
dc :=

`
n2N T

(p)
dc (n).

The n-trees will describe the n-ary operations of free operads, and indeed T (�)
is endowed with a natural operad structure in Set. Let n;m1; : : : ;mn 2 N, m :=Pn

i=1mi and T 2 T (n), Ti 2 T (mi), i = 1; : : : ; n. Then the corresponding structure
map  of this operad sends (T; T1; : : : ; Tn) to the tree which one obtains from T by
glueing the root of Ti to the i-th tail of T for every i = 1; : : : ; n. The previously

j-th tail of Ti gets the label j +
Pi�1

k=1mk. The free right action of �n on T (n)

(which is also de�ned on T
(p)
dc (n)) is such that � 2 � sends a tree T 2 T (n)

to the tree obtained from T by changing the label i of a tail of T into ��1(i).
So (T; T1; : : : ; Tn)

�(m�(1) ;:::;m�(n)) = (T �; T�(1); : : : ; T�(n)), where �(m1; : : : ;mn)
permutes blocks of lenth mi in 1; : : : ;m as � permutes 1; : : : ; n.

Note that an n-tree has a natural embedding into the plane and this embedding
is equivalent to the numbering of the arrows. It follows that there exists a canonical
labelling of the tails of an n-tree, namely the one which labels the tails succesively
from the left to the right in the planar embedding of the tree.

For T an element of T or T (p)
dc let V (T ) denote the set of vertices of T (this is

de�ned up to unique isomorphism, since our trees do not have automorphisms) and
let u(T ) be the number of vertices of T of valency 1 and U(T ) be the set of vertices

of T of valency 1. For T 2 T (p)
dc write Vold(T ) (resp. Vnew(T )) for the set of old

(resp. new) vertices of T and Uold(T ) (resp. Unew(T )) for the set of old (resp. new)
vertices in U(T ) and uold(T ) (resp. unew(T )) for their number.
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Proposition 3.4. (1) The free operad FX on X 2 CN is given by

(FX)(n) =
a

T2T (n)

O
v2V (T )

X(val(v)) .

(2) The free operad FX on X 2 CN;� is given by an !-sequence

FX = colimi<!FiX

in CN, where (FiX)n is a pushout of (Fi�1X)n by the map

a
T 2 T (n)
u(T ) = i

0@ O
v2V (T )nU(T )

X(val(v))

1A
 e�(U(T )) ,
where e is the unit map 1l! X(1).

(3) The free operad on X 2 C� is given by

(FX)(n) =

0@ a
T2T (n)

O
v2V (T )

X(val(v))

1A = � ,

where the equivalence relation � identi�es for every isomorphism of directed
graphs ' : T ! T 0, T; T 0 2 T (n), which respects the numbering of the
tails but not necessarily of the arrows, the summands

N
v2V (T )X(val(v))

and
N

v2V (T 0)X(val(v)) by the map
N

v2V (T ) �v, where �v : X(val(v)) !

X(val('(v))) = X(val(v)) is the action of the element �v 2 �val(v) such
that ' maps the i-th arrow of v to the �v(i)-th arrow of '(v).

(4) The free operad FX on X 2 C�;� is given by an !-sequence

FX = colimi<!FiX

in CN, where (FiX)n is a pushout of (Fi�1X)n by the map0@ a
T2T (n);u(T )=i

0@ O
v2V (T )nU(T )

X(val(v))

1A
 e�(U(T ))
1A = � ,

where e is as in 2 and the equivalence relation � is like in 3.

In cases 2 and 4 the attaching map is induced from the operation of removing
a vertex of valency 1 from a tree. Note that the morphism in 4 and the attaching
morphism respects the equivalence relation. The �n-actions are induced from the
�n-action on T (n).

Proof. We claim that in all four cases the functors F de�ne a monad the algebras
of which are the operads in C. So we have to de�ne in all four cases maps m :
FFX ! FX and e : X ! FX satisfying the axioms for a monad. We will restrict
ourselves to case i) and leave the other cases to the interested reader.

The domain of the map m(n) is a coproduct over all T 2 T (n), Tv 2 T (val(v))
for all v 2 V (T ) of the O

v2V (T );w2V (Tv)

X(val(w)) ,

and the map m sends such an entry via the identity to the entry associated to the
tree in T (n) obtained by replacing every vertex v of T by the tree Tv in such a way
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that the numbering of the arrows starting at v and the numbering of the tails of Tv
correspond. The map e sends X(n) to the summand X(n) in FX which belongs to
the tree with one vertex and n tails such that the labelling of the arrows coincides
with the labelling of the tails (which are of course all arrows in this case) (i.e. the
labelling of the tails is the canonical one). It is clear that m is associative and e is
a two-sided unit. To see that an F -algebra is the same as an operad one proceeds
as follows: Let X be an F -algebra. Let O(n) := X(n). The structure maps of
the operad structure we will de�ne on O are obtained from the algebra map by
restricting it to the summands belonging to trees where every arrow starting at
the root goes to a vertex which has only tails as outgoing vertices and where the
labelling of the tails is the canonical one. The unit in O(1) corresponds to the empty
tree. The right action of a � 2 �n on O(n) is given by the algebra map restricted
to the tree with one vertex and n tails such that the i-th arrow simultaneously is
the ��1(i)-th tail. That 1 acts as the identity is the unit property of X , and the
associativity of the action follows from the associativity of X . It is easy to see that
the associativity and symmetry properties of O also follow from the associativity
of X . The unit properties follow from the behaviour of the empty tree.

On the other hand let O be an operad. We de�ne an F -algebra structure on
X := O]: Let T 2 T (n) be a tree with canonical labelling of the tails. Then it is
clear how to de�ne a map from the summand in FX corresponding to T to X(n)
by iterated application of the structure maps of O (the unit of O is needed to get
the map for the empty tree). The map on the summand corresponding to T � for
� 2 �n is the map for T followed by the action of � on X(n) = O(n). One then can
check that the associativity, symmetry and unit properties of the structure maps
of O imply that we get indeed an F -algebra with structure map FX ! X just
described. �

For describing pushouts by free operad maps we need an operation which changes
a new vertex in a tree in T pdc(n) into an old vertex and gives again a tree in T pdc(n).
This is given by �rst making the new vertex into an old vertex to get an element
of Tdc(n) and then removing all arrows joining only old vertices and identifying
the old vertices which have been joined. The numbering of the arrows of the new
tree is most easily described by noting that this numbering corresponds to a planar
embedding of the tree and the operation of removing the arrows and identifying
the vertices can canonically be done in the plane. For T 2 T pdc and v 2 Vnew(T )
denote by chT (v) 2 T

p
dc the tree obtained by changing the new vertex v in T into

an old vertex. Note that for O 2 Op(C) there is a concatenation map

concOT (v) : O(val(v)) 

O

v02Vold(V )

O(val(v0)) �!
O

v02Vold(chT (v))

O(val(v0))

induced by applying the operad maps of O.

Proposition 3.5. Let O 2 Op(C) and f : A ! B and ' : A ! O] be maps in
CN. Then the pushout O0 of O by Ff with attaching map the adjoint of ' is given
by an ! � (! + 1)-sequence O0 = colim(i;j)<!�(!+1)O(i;j) in CN, where for j < !
O(i;j)(n) is a pushout of O(i;j)�1(n) in C by the quotient of the map

a0@ O
v2Vold(T )nUold(T )

O(val(v))

1A
 e�(Uold(T ))� �
v2Vnew(T )

f(val(v)) ,
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where the coproduct is over all T 2 T pdc(n) with ]Vnew(T ) = i and uold(T ) = j,
with respect to the equivalence relation which identi�es for every isomorphism of
doubly colored directed graphs ' : T ! T 0, T; T 0 2 T pdc, which respects the labeling
of the tails and of the arrows starting at new vertices, the summands corresponding
to T and T 0 via a map analogous to the map in Proposition 3.4.3. Here e is the
unit 1l ! O(1) and the attaching map is the following: The domain of the above
map is obtained by glueing i+ j objects together, hence we have to give i+ j maps
compatible with glueing. The �rst i maps are induced by removing one of the vertices
in Uold(T ) from T , and the other j maps are induced by changing one of the vertices
in Vnew(T ) into an old vertex and applying the maps concOv (T ), v 2 Vnew(T ). (Note
that for n = 1 the operad O appears in the second step of the limit, in all other
cases in the �rst.) The �n-actions are induced from the ones on T pdc(n).

There are similar descriptions of pushouts of O by free operad maps on maps
from CN;�, C� and C�;�.

Proof. Let eO(n) be the colimits described in the Proposition. First of all we check
that this is well de�ned, i.e. that �rstly the i + j maps we have described glue
together. This is the case because the processes of removing old vertices of valency 1
and/or changing a new vertex into an old one and concatenating commute with each
other. Secondly this map factors through the quotient described in the Proposition
because of the symmetry properties of O and because of the fact that in previous
steps quotients with respect to analogous equivalence relations have been taken.

Next we have to equip eO 2 CN with an operad structure. The unit is the one

coming from O. We de�ne the structure map  : eO(n)
 eO(m1)
 � � � 
 eO(mn)!eO(m) (m =
Pn

i=1mi) in the following way: For T 2 T pdc(n) let

S(T ) :=

0@ O
v2Vold(T )

O(val(v))

1A
 O
v2Vnew(T )

B(val(v)) .

First one de�nes for trees T 2 T pdc(n), Ti 2 T
p
dc(mi), i = 1; : : : ; n, a map

�(T;T1;:::;Tn) : S(T )
 S(T1)
 � � � 
 S(Tn)!
eO(m) .

Therefore one glues the tree Ti to the tail of T with label i and concatenates such

that one gets a tree eT 2 T pdc(m). Then by applying structure maps of O one gets

a map S(T )
 S(T1) 
 � � � 
 S(Tn) ! S( eT ) and composes this with the canonical

map S( eT )! eO(m).

Let m0 := n. Suppose we have already de�ned for a 0 � k � n and for all trees

Ti 2 T
p
dc(mi), i = k; : : : ; n, a map (

Nk�1
i=0

eO(mi)) 
 S(Tk) 
 � � � 
 S(Tn) ! eO(m).
From this data one then obtains the same data for k+1 instead of k as follows: Let
Ti 2 T

p
dc(mi), i = k+1; : : : ; n. One de�nes the map ' : (

Nk
i=0

eO(mi))
S(Tk+1)


� � �
S(Tn)! eO(m) by trans�nite induction on the terms of the !�(!+1)-sequence

de�ning eO(mk): So let (
Nk�1

i=0
eO(mi))
O(i;j)(mk)
S(Tk)
 � � � 
S(Tn)! eO(m)

be already de�ned and let  be the map by which O(i;j+1)(mk) is a pushout of

O(i;j)(mk). We de�ne ' on (
Nk�1

i=0
eO(mi))
O(i;j+1)(mk)
S(Tk)
� � �
S(Tn) by

using the data described above for k to get the map after taking the appropriate
quotient on the codomain of  . One has to check the compatibility of this map
with the given map via the attaching map. To do this for one of the i+j summands
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of the domain of  one uses the fact that the same kind of compatibility is valid ineO(m). Finally when arriving at k = n we get the desired structure map.

The associativity of the structure maps follows by proving the corresponding
statement for the �(T;T1;:::;Tn). This one gets by �rst glueing trees without con-
catenating and then observing that the concatenation processes at di�erent places
commute. The symmetry properties follow in the same way as for free operads, the
unit properties are forced by the fact that in the  's the pushout product over the

unit maps is taken. Hence eO is an operad. It receives canonical compatible maps
in Op(C) from O and FB.

In the end we have to show that our operad eO indeed satis�es the universal
property of the pushout by Ff . We need to show that a map g : O ! O00 in
Op(C) together with a map h : B ! (O00)] compatible with the attaching map is

the same as a map g0 : eO ! O00. To get g0 from g and h one �rst de�nes for any
T 2 T pdc(n) a map S(T ) ! O00 using the structure maps of O00. Then one checks
that these maps indeed glue together to a g0. To get g and h from g0 one composes

g0 with O ! eO and B ! FB ! eO. These processes are invers to each other. �

Lemma 3.6. Let O, f , ' and O0 be as in Proposition 3.5, assume that O 2 Op(C)
is co�brant as object in C�;� and that f is a (trivial) co�bration. Then the pushout
O ! O0 is a (trivial) co�bration in C�;�. There is an analogous statement for f a
(trivial) co�bration in CN;�, C� and C�;�.

The proof is given after the next Lemma. In this Lemma we use the fact that if
we have a G-action on an object L and a �n-action onM , then there is a canonical
action of the wreath product �n nGn on M 
 L
n.

Lemma 3.7. Let n1; : : : ; nk 2 N>0 , let G1; : : : ; Gk be groups and gi be a co�bration

in C[Gi], i = 1; : : : ; k. Let f be a co�bration in C[
Qk
i=1�ni ]. Then the map

h := f��
k

i=1 g
�ni
i

is a co�bration in C[(
Qk
i=1 �ni)n (

Qk
i=1G

ni)]. If f or one of the gi is trivial, so is
h.

Proof. We restrict to the case k = 1, the general case is done in the same way.
Set n := n1, G := G1 and g := g1. We can assume that g 2 I [G]-cell and
f 2 I [�n]-cell (or f 2 J [G]-cell or g 2 J [�n]-cell). Let g : L0 ! colimi<�Li
and f : M0 ! colimi<�Mi such that Li ! Li+1 is a pushout by  i 2 I [G]
and Mi ! Mi+1 is a pushout by 'i 2 I [�n]. Then by Lemma 2.1 f�g�n is a
� � �n-sequence, and the transition maps are pushouts by the 'i� i1� � � �� in ,
i < �; i1; : : : ; in < �. We can modify this sequence to make it invariant under the
�n-action: Let S be the set of unordered sequences of length n with entries in �,
and for s 2 S let js be the set of ordered sequences of length n with entries in �
which map to s. Let s; s0 2 S. In the following let us view s and s0 as monotonly
increasing sequences of length n. We say that s < s0 if there is a 1 � i < n such
that s(j) = s0(j) for i < j and s(i) < s0(i). With this order S is well-ordered. Now
g�n is an S-sequence with s-th transition map  0s :=

`
w2js

 w(1)� � � �� w(n), so

f�g�n is the corresponding ��S-sequence with transition maps the 'i� 0s, i < �,
s 2 S. Note that on these maps there is a �nnGn-action. Now to prove our claim
it suÆces to show that every 'i� 

0
s is a (trivial) co�bration in C[�n nGn], which
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can easily be seen by noting that every 'i and  i is of the form h[G] for h 2 I (or
h 2 J). �

Proof of Lemma 3.6. Let � be the equivalence relation on T pdc which identi�es T
and T 0 in T pdc if there is an isomorphism of directed graphs T ! T 0 which respects
the labeling of the arrows starting at new vertices. Let C be an equivalence class
of � in T pdc(n). The �n-action on T

p
dc(n) restricts to a �n-action on C. We have to

show that the part of the map in Proposition 3.5 given as the appropriate quotient
of a

T2C

0@ O
v2Vold(T )nUold(T )

O(val(v))

1A
 e�(Uold(T ))� �
v2Vnew(T )

f(val(v)) (*)

is a (trivial) co�bration in C[�n]. Let � be a doubly colored directed graph, where
the arrows starting at new vertices are labelled, isomorphic to the objects of the
same type underlying the objects from C. Set

' :=

0@ O
v2Vold(�)nUold(�)

O(val(v))

1A
 e�(Uold(�))� �
v2Vnew(�)

f(val(v)) .

On ' there is an action of Aut(�). Let t be the set of tails of �. There is an
action of Aut(�) on t. It is easily seen that the quotient of the map (*) we are
considering is isomorphic to ' �Aut(�) �t. Hence we are �nished if we show that
' is a (trivial) co�bration in C[Aut(�)]. This is done by induction on the depth
of �. Let �1; : : : ;�k be the di�erent isomorphism types of doubly colored directed
graphs, such that the arrows starting at new vertices are labelled, sitting at the
initial vertex of � with multiplicities n1; : : : ; nk and set Gi := Aut(�i), i = 1; : : : ; k.

Then, if the initial vertex of � is old, Aut(�) = (
Qk

i=1�ni)n (
Qk

i=1G
ni
i ), otherwise

Aut(�) =
Qk

i=1G
ni
i , and the map ' is given like the map h in Lemma 3.7. Now

the claim follows from Lemma 3.7 and the induction hypothesis. �

Proof of Theorem 3.2. We apply Theorem 2.9 to the monad T which maps X to
(FX)]. It is known that Op(C) is cocomplete. Since �ltered colimits in Op(C)
are computed in CN, it follows from Lemma 3.6 that those maps from FI-cell
(resp. FJ-cell) whose domain is co�brant in C�;� are co�brations (resp. trivial
co�brations) in C�;�.

It is clear that Op(C) is right proper if C is. If C is left proper, then C�;� is left
proper, and the pushout in Op(C) by a co�bration whose domain is co�brant in
C�;� is a retract of a trans�nite composition of pushouts by co�brations in C�;�,
hence weak equivalences are preserved by these pushouts. �

Remark 3.8. Let R be a commutative ring with unit and C be the symmetric
monoidal model category of unbounded chain complexes of R-modules with the
projective model structure. Here the generating trivial co�brations are all maps
0 ! DnR, n 2 Z. The DnR are clearly null-homotopic. From this it follows that
for a generating trivial co�bration f in CN the codomain of the maps in Proposition
3.5 along which the pushouts are taken (these maps have domain 0, so the pushouts
are trival) are also null-homotopic by the homotopy which is on the summand cor-
responding to a tree T 2 T pdc the sum over the homotopies from above over all new
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vertices of T (this homotopy factors through the quotient which is taken). Hence
the conditions of Theorem 2.2 are ful�lled, so we get a model structure on Op(C)
which is the same as the one provided by [Hin1, Theorem 6.1.1].

Remark 3.9. One can use exactly the same methods as above to give the category
of colored operads in C for any set of labels the structure of a J-semi model category.
In the case of unbounded complexes over a commutative unital ring as above this
J-semi model structure is again a model structure.

4. Algebras

For an operad O 2 Op(C) let us denote by Alg(O) the category of algebras over
O. Let FO : C ! Alg(O) be the free algebra functor which is given by

FO(X) =
a
n�0

O(n)
�n X

n .

The right adjoint of FO maps A to A].

Remark 4.1. An O-algebra structure on an object A 2 C is the same as to give a
map of operads O ! EndOp(A).

Lemma 4.2. Let I be a small category and let D : I ! Op(C), i 7! Oi, be a
functor. Set O := colimi2IOi and let A;B 2 C. Then the following is valid.

(1) To give an O-algebra structure on A is the same as to give Oi-algebra
structures on A compatible with all transition maps in D.

(2) Assume that A and B have O-algebra structures and let f : A ! B be
a map in C. Then f is a map of O-algebras if and only if it is a map of
Oi-algebras for all i 2 D.

Proof. The �rst part follows from the Remark above.

Let f be compatible with all Oi-algebra structures. Then it can be checked
directly that f is also compatible with the algebra structure on O0 :=

`
i2D Oi. But

since the maps O0(n)! O(n) are coequalizers in C the claim follows. �

The �rst main result of this section is

Theorem 4.3. Let O 2 Op(C) be co�brant. Then the category Alg(O) is a co�-
brantly generated J-semi model category over C with generating co�brations FOI
and generating trivial co�brations FOJ . If C is left proper (resp. right proper),
then Alg(O) is left proper relative to C (resp. right proper). If the monoid axiom
holds in C, then Alg(O) is a co�brantly generated model category.

We want to describe pushouts by free algebra maps. The following de�nition
has its origin in [Hin2, De�nitions 3.3.1 and 3.3.2].

De�nition 4.4. (1) A doubly colored am-tree is the same as a doubly colored
n-tree except that instead of the labeling of the tails every tail is marked by
either a or m.

(2) A proper doubly colored am-tree is a doubly colored am-tree such that every
arrow starting from an old vertex is either a tail or goes to a new vertex
and every vertex with only tails as outgoing arrows is new and at least one
of the outgoing tails is marked by m.
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Note that in particular a proper doubly colored am-tree has no vertices of valency
0.

Let Tam be the set of isomorphism classes of doubly colored am-trees and T pam
the set of isomorphism classes of proper doubly colored am-trees. For T 2 Tam let
a(T ) be the set of tails of T marked by a and m(T ) the set of tails of T marked by
m.

Let T 2 T pam. Similarly as in the case of operads there is the operation of
changing a new vertex v of T into an old vertex and also of changing a tail marked
by m into a tail marked by a. Denote the resulting trees in T pam by chT (v) for
v 2 Vnew(T ) and by chT (t) for t 2 m(T ). For O 2 Op(C) and A 2 Alg(O) there is
as in the operad case a concatenation map

concOT (v) : O(val(v)) 

O

v02Vold(T )

O(val(v0))
A
(a(T )) �!

O
v02Vold(chT (v))

O(val(v0))
A
(a(chT (v)))

induced by the operad maps of O and the structure maps of A. There is also a
concatenation map

concO;AT (t) : A 

O

v2V (T )

O(val(v)) 
A
(a(T )) �!
O

v2V (chT (t))

O(val(v))
A
(a(chT (t)))

induced by the structure maps of the algebra A.

Proposition 4.5. Let O 2 Op(C) and f : X ! Y and ' : X ! O] be maps in
CN. Let O0 be the pushout of O by Ff with attaching map the adjoint of '. Let A
be an O0-algebra and let g : M ! N and  : M ! A] be maps in C. Let B be
the pushout of A as O-algebra by FO(g) with attaching map the adjoint of  and
B0 the pushout of A as O0-algebra by FO0(g). Then the canonical map h : B ! B0

is given by an ! � ! � (! + 1)-sequence B0 = colim(i;j;k)B(i;j;k), where for (i; j; k)
a successor B(i;j;k) is a pushout of B(i;j;k)�1 by the quotient of the map

a0@ O
v2Vold(T )nUold(T )

O(val(v))

1A
A
(a(T ))
e�(Uold(T ))�g�(m(T ))
� �
v2Vnew(T )

f(val(v)),

where the coproduct is over all T 2 T pam with ]Vnew(T ) = i, ]m(T ) = j and
uold(T ) = k, with respect to the equivalence relation which identi�es for every iso-
morphism of directed graphs ' : T ! T 0, T; T 0 2 T pam, which respects the labeling of
the tails and of the arrows which start at new vertices, the summands corresponding
to T and T 0 by a map which is described on the 
-part of the summands involving
vertices from Vold(T ) n Uold(T ) as in Proposition 3.4.3 and on the other parts by
the identi�cation of the indexing sets via '. The attaching map is induced on the
di�erent parts of the domain of the above map by either the operation of removing
a vertex of valency one, by changing a new vertex into an old vertex or by changing
a tail labelled by m into a tail labelled by a and then by applying either a unit map,
a map concT (v) or a map concT (t).

Proof. We have to do the same steps as in the proof of Proposition 3.5. Let C
be the colimit described in the Proposition. The attaching maps are again well-
de�ned because the various concatenation processes commute with each other and
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because of the symmetry properties of O and the equivalence relations appearing
in previous steps.

We equip C with an O0-algebra structure: Let us de�ne the structure map
O0(n) 
 C
n ! C. For T 2 T pdc(n) let S(T ) be as in the proof of Proposition 3.5.
For T 2 T pam let

Sa(T ) :=

0@ O
v2Vold(T )

O(val(v))

1A
A
(a(T )) 
N
(m(T )) 

O

v2Vnew(T )

Y (val(v)) .

Let T 2 T pdc(n) and Ti 2 T
p
am, i = 1; : : : ; n. We obtain a tree eT 2 T pam by glueing

Ti to the tail of T labelled by i and then concatenating. By applying operad and

algebra structure maps we get a map S(T ) 
 Sa(T1) 
 � � � 
 Sa(Tn) ! Sa( eT ).
It is then possible by similar considerations as in the proof of Proposition 3.5 to
get from these maps the desired structure map of C. It is easy to see that these
structure maps are associative and symmetric. Hence C is an O0-algebra which
receives an O-algebra map from B and O0-algebra maps from A and FO0(N) which
are compatible with each other in the obvious way.

We have to check that for an O0-algebra D a map c : C ! D is the same as a
map of O0-algebras a : A! D and a map n : N ! A] which are compatible with
each other. We get the maps a and n from c by the obvious compositions. Given a
and n we �rst obtain a map of O-algebras B ! D. Moreover for any T 2 T pam there
is a map Sa(T ) ! D by applying the O0-algebra structure maps of D. It is then
easy to check that these maps glue together to give the map c. These processes are
invers to each other. �

Lemma 4.6. Let the notation be as in the Proposition above. If O is co�brant as
an object in C�;�, A is co�brant as an object in C, f is a co�bration in CN and g
is a co�bration in C then the map h : B ! B0 is a co�bration in C. If f or g is a
trivial co�bration then so is h. If f or g is a trivial co�bration and A is arbitrary,
then h lies in (C 
 J)-cof, hence is a weak equivalence if the monoid axiom holds
in C.

Proof. Let � be the equivalence relation on T pam which identi�es T and T 0 in T pam if
there is an isomorphism of directed graphs T ! T 0 which respects the labeling of
the tails and of the arrows starting at new vertices. Let C be an equivalence class
of � in T pam. We have to show that the appropriate quotient of the map

a
T2C

0@ O
v2Vold(T )nUold(T )

O(val(v))

1A
A
(a(T ))
e�(Uold(T ))�g�(m(T ))
� �
v2Vnew(T )

f(val(v))

is a (trivial) co�bration in C (or lies in (C 
 J)-cof under the assumptions of the
last statement). This is done as in the proof of Lemma 3.6 by induction on the
depth of the trees in C. This time instead of using Lemma 3.7 it is suÆcient to use

Lemma 2.11 applied to rings of the form 1l[
Qk
i=1�ni ]. �

Proof of Theorem 4.3. We apply Theorem 2.9 to the monad TO which maps X to
(FOX)]. It is known that Alg(O) is cocomplete. Since �ltered colimits in Alg(O)
are computed in C we are reduced to show that the pushout of an O-algebra A
which is co�brant as an object in C by a map in FOI (resp. in FOJ) is a co�bration
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(resp. trivial co�bration) in C. Since O is a retract of a cell operad (i.e. a cell
complex in Op(C)) such a pushout is a retract of a pushout of the same kind with
the additional hypothesis that O is a cell operad. So let O be a cell operad. Then
the pushout in question is a trans�nite composition of maps h as in Proposition
4.5, hence by Lemma 4.6 it is a (trivial) co�bration.

It is clear that Alg(O) is right proper if C is. The pushout in Alg(O) by a
co�bration whose domain is co�brant in C is a retract of a trans�nite composition
of pushouts by co�brations in C, hence if C is left proper weak equivalences are
preserved by these pushouts, so Alg(C) is also left proper.

The last statement follows again from Lemma 4.6. �

The second result concerning algebras is

Theorem 4.7. Let O be an operad in C which is co�brant as an object in C�. Then
Alg(O) is a co�brantly generated J-semi model category with generating co�brations
FOI and generating trivial co�brations FOJ . If C is right proper, so is Alg(O).

The next result enables one to control pushouts of co�brant algebras by free
algebra maps.

For an ordinal � denote by S� the set of all maps f : �! 1
2N such that f(i) is

6= 0 only for �nitely many i < �, if f(i) =2 N then i > 0 and f(i0) = 0 for all i0 < i
and if � is a successor then f(�� 1) = 0. For f; f 0 2 S� say that f < f 0 if there is
an i < � such that f(i0) = f 0(i0) for all i0 > i and f(i) < f 0(i). With this ordering
S� is well-ordered. For i < � denote by fi the element of S� with fi(i) =

1
2 and

fi(i
0) = 0 for i0 6= i. Set S�;+ := S� tf�g, where � is by de�nition smaller than any

other element in S�;+. Note that f 2 S�;+ is a successor if and only if f 6= � and
f(�) � N. For f 2 S�;+ a successor let jf j :=

P
i<� f(i) 2 N and �f :=

Q
i<� �f(i).

Proposition 4.8. Let O 2 Op(C) and A = colimi<�Ai be a FO(Mor(C))-cell
O-algebra (Mor(C) is the class of all morphisms in C) with A0 = O(0), where the
transition maps Ai ! Ai+1 are pushouts of free O-algebra maps on maps gi : Ki !

Li in C by maps adjoint to 'i : Ki ! A]i . Then A is a trans�nite composition
A = colimf2S�;+Af in C such that

(1) A� = 0 and Afi = Ai for i < �,
(2) for f 2 S� such that for an i0 < � we have f(i0) =2 N, there is for all

m 2 N, successors l 2 S�;+ with l < f and n := m+ jlj a map

	f;m;l : O(n) 
(�m��l)

 
A
mi0 


O
i<�

L

l(i)
i

!
! Af

compatible with the structure map O(n) 
�n A

n ! A. By applying per-

mutations to O(n) and the big bracket there are similar maps for other
orders of the factors in the big bracket. These maps satisfy the following
conditions:
(a) They are compatible with the maps Li ! Ai0 for i < i0. Moreover, if

we replace a factor Li0 by Ki0 we can either go to Li0 or to Ai0 and
apply suitable maps 	. Then the two compositions coincide.

(b) They are associative in the following sense: Let f1; : : : ; fk 2 S� be
limit elements with fi < f , i = 1; : : : ; k, and let for each fi be given
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mi, li and ni satisfying the same conditions as m, l and n for f . Let
Di be the domain of 	fi;mi;li . Then the two possible ways to get from

O(n)


 
kO
i=1

Di

!

A
mi0 


O
i<�

L

l(i)
i

to Af given by either applying the 	fi;mi;li and then 	f;m+k;l or by
applying the obvious operad structure maps and a suitable permutation
of 	f;m+

P
k
i=1mi; l+

P
k
i=1 li

coincide.

(3) For any successor f 2 S�;+ the map Af�1 ! Af is a pushout by

O(jf j)
�f �i<� g
�f(i)
i ,

where the attaching maps on the various parts of the domain of this map
are induced from the maps in (2) (see below).

Proof. The whole Proposition is shown by induction on �, so suppose that it is
true for ordinals smaller than �. We construct the map in 2, prove its properties
and de�ne the attaching map in 3 by trans�nite induction: Suppose f 2 S�;+ is a
successor, that Af 0 is de�ned for f 0 < f and that the map in 2 is de�ned for all

limit elements ~f 2 S� with ~f < f . Let i0 2 � with f(i0) > 0 and let f 0 coincide
with f except that f 0(i0) = f(i0)� 1. The attaching map on the summand

S := O(jf j) 
�f0

  O
i<i0

L

f(i)
i

!

Ki0 
 L


(f(i0)�1)
i0



O

i0<i<�

L

f(i)
i

!
of the domain of

O(jf j)
�f �i<� g
�f(i)
i

is given as follows: Let ~f; l 2 S� be de�ned by ~f(i0) = f(i0)�
1
2 , l(i0) = f(i0)� 1,

~f(i) = l(i) = 0 for i < i0 and ~f(i) = l(i) = f(i) for i > i0. Let m := 1+
P

i<i0
f(i).

There is a canonical map

S ! O(jf j)
�f0

 
A

(m�1)
i0


Ai0 
 L

(f(i0)�1)
i0



O

i0<i<�

L

f(i)
i

!
whose codomain maps naturally to the domain of 	 ~f;m;l. So we get maps S !
A ~f ! Af�1 the composition of which is the attaching map on the summand S.
These maps glue together for various summands S: There are two cases to dis-
tinguish. In the �rst one the intersection of two summands contains Ki0 twice.
Then the two maps on this intersection coincide because of the symmetric group
invariance. In the second case the intersection I contains Ki00

and Ki0 with i
0
0 < i0.

Let ~f be as above and ~f 0 be similarly de�ned for i00. Now the two properties 2(a)
of the maps 	 state that both maps I ! Af are equal the map induced by �rst
mapping both Ki00

and Ki0 to Ai0 and then applying a suitable map 	.

Now suppose f 2 S� is a limit element with f(i0) =2 N for some i0 < �. De�ne Af
as the colimit of the preceeding Af 0 , f

0 < f . Let m, l and n be as in 2. We de�ne
	f;m;l by induction on m and on Si0 using the fact that Ai0 = colimf 02Si0

Af 0 by

induction hypothesis for the induction on �. For abbreviation set L :=
N

i<� L

l(i)
i .

Let f 0 2 Si0 be a successor and let a map

 f 0�1 : O(n)

�
A

(m�1)
i0


Af 0�1 
L
�
! Af
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be already de�ned. Af 0 is a pushout of Af 0�1 by

' : O(jf 0j)
�f0 �i<i0 g
�f 0(i)
i .

Let C :=
N

i<i0
L

f 0(i)
i . Then the codomain of ' is O(jf 0j) 
�f0 C. Moreover by

induction hypothesis for the m-induction there is a map

O(n+ jf 0j � 1)

�
A

(m�1)
i0


 C 
L
�
! Af ,

hence by plugging in O(jf 0j) into the m-th place of O(n) we get a map

O(n) 

�
A

(m�1)
i0


O(jf 0j)
 C 
L
�
! Af .

This map and  f 0�1 glue together to a map  f 0 : We have to show that they coincide
after composition on domains of the form

O(n)
A
(m�1)i0

O(jf 0j)
�f00 S

0 
L

for O(jf 0j)
�f00 S
0 a summand of the domain of ' containing Ki00

for some i00 < i0
(the de�nition of f 00 is similar to the one of f 0). To do this we can restrict for every
Ai0 to objects O(jf

0
i j)
�f0

i

Ci, i = 1; : : : ;m� 1, for Ci of the same shape as C and

f 0i 2 Si0;+ successors. Then the two possible ways to get from

O(n)


 
m�1O
i=1

O(jf 0i j)
�f0
i

Ci

!

O(jf 0j)
�f00 S

0 
L

to Af can be compared by mapping Ki00
to Ai00 , unwrapping the de�nitions of Af

and 	f 0�1 and using associativity of O. We arrive at a map O(n)
A
mi0 
L ! Af .

That it factors through the (�m � �l)-quotient follows after replacing A
mi0 by�Lk
i=1O(jf

0
i j)
�f0

i

Ci

�
m
(the Ci and f 0i as above) in the domain of this map

since then the (�m ��l)-relation is obviously also valid in Af .

Both properties 2(a) and (b) follow easily by the technique of restricting any
appearing Ai by a factor O(jf 0j)
�f0 C.

Now using the maps 	 and property 2(b) we can equip eA := colimf2S�;+ with
an O-algebra structure (to do this accurately we have to enlarge � a bit and the
corresponding sequence by trivial pushouts).

We are left to prove the universal property for eA by trans�nite induction on �.
So let it be true for ordinals less than �. If � is a limit ordinal or the successor
of a limit ordinal there is nothing to show. Let � = � + 2, let B be an O-algebra
and A� ! B a map in Alg(O) and L� ! B] a map in C such that these two maps
are compatible via the attaching map. We de�ne maps Af ! B by trans�nite
induction on S�;+, starting with the given map on Af� = A�. So let f� < f < �
be a successor. Since for any i � � there is a map Li ! B] we have a natural map

O(jf j)
�f

O
i<�

L

f(i)
i ! B

using the algebra structure maps of B. We have to show that this is compatible

via the attaching map from the domain D of O(jf j)
�f�i<� g
�f(i)
i to Af�1 with

the map Af�1 ! B coming from the induction hypothesis. We check this again on
a summand S of D containing some Ki0 . The attaching map on S is induced from
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	 ~f;m;l as above. The canonical map from the domain of 	 ~f;m;l to B is compatible

with A ~f ! B (as one checks again by replacing any Ai0 by essentially products of

Li's as above), which together with the fact that Li0 ! B and Ai0+1 ! B coincide
on Ki0 implies the compatibility. By construction and the de�nition of the algebra
structure on A�+1 the map A�+1 ! B just de�ned is an O-algebra map.

If we have on the other hand a map of O-algebras A�+1 ! B we can restrict it
to get compatible maps A� ! B and L� ! B]. These two assignments are inverse
to each other. �

Proof of Theorem 4.7. Let O 2 Op(C) be co�brant in C�. We have to show that
the pushout of an O-algebra such that the map from the initial O-algebra to A is in
FOI-cof by a map from FOI (resp. FOJ) is a co�bration (resp. trivial co�bration)
in C. We can assume that A is a FOI-cell O-algebra, since in the general situation
all maps we look at are retracts of corresponding maps in this situation. But if A
is a cell O-algebra our claim immediately follows from Proposition 4.8 and Lemma
2.11. �

5. Module structures

In this section we want to show that if C is simplicial Alg(O) is also a simplicial
J-semi model category in the cases when the assumptions of Proposition 4.3 or
Proposition 4.7 are ful�lled. Also Op(C) is simplicial if C is.

De�nition 5.1. Let D and E be J-semi model categories (maybe over C) and let S
be a model category. Then a Quillen bifunctor D � S ! E is an adjunction of two
variables D � S ! E such that for any co�bration g : K ! L in S and �bration
p : Y ! Z in E, the induced map

Homr;�(g; p) : Homr(L; Y )! Homr(L;Z)�Homr(K;Z) Homr(K;Y )

is a �bration in D which is trivial if g or p is.

(See also [Hov1, Lemma 4.2.2].)

It follows that for f a co�bration in D and g a co�bration in S both of which
have co�brant domains the pushout f�g is a co�bration in E which is trivial if f
or g is.

De�nition 5.2. Let D be a J-semi model category (maybe over C) and let S be
a symmetric monoidal model category. Then a Quillen S-module structure on D
is a S-module structure on D such that the action map 
 : D � S ! D is a
Quillen bifunctor and the map X 
 (QS) ! X 
 S �= X is a weak equivalence for
all co�brant X 2 D, where QS ! S is a co�brant replacement.

If D has a Quillen S-module structure we say that D is an S-module.

Let now S be a symmetric monoidal model category where the tensor product
is the categorical product on S, so let us denote this by � (e.g. S = SSet). Let be
given a symmetric monoidal left Quillen functor S ! C.

Proposition 5.3. Let the situation be as above and assume that either 1l is co�brant
in S or that C is left proper and the maps in I have co�brant domains. Let O be
an operad in C which is either co�brant in Op(C) or co�brant as an object in C�.
Then the J-semi model category (in the �rst case over C) Alg(O) is naturally an
S-module and the functor C ! Alg(C) is an S-module homomorphism.
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Proof. Let A 2 C and K 2 S. We denote by AK the homomorphism object
Hom(K;A) 2 C. There is a map of operads

EndOp(A)! EndOp(AK) ,

which is described as follows: We give the maps

Hom(A
n; A)! Hom((AK)
n; AK)

on T -valued points (T 2 C): A map T 
A
n ! A is sent to the composition

T 
 (AK)
n ! T 
 (A
n)K
n

! T 
 (A
n)K ! AK ,

where the second map is induced by the diagonal K ! Kn.

Hence for objects K 2 S and A 2 Alg(O) the object (A])K has a natural

structure of O-algebra given by the composition O ! EndOp(A) ! EndOp(AK).
We denote this O-algebra by AK .

For a �xed K 2 S the functor Alg(O) ! Alg(O), A 7! AK , has a left adjoint
A 7! A
K, which is given for a free O-algebra FO(X), X 2 C, by FO(X)
K =
FO(X 
K) and which is de�ned in general by be requirement that 
K respects
coequalizers (note that every O-algebra is a coequalizer of a diagram where only
free O-algebras appear). So we have a functor Alg(O) � S ! Alg(O).

Let now B 2 Alg(O) be �xed. By a similar argument as above the functor

Sop ! Alg(O), K 7! BK , has a left adjoint A 7! HomS(A;B), which sends a free
O-algebra FO(X), X 2 C, to the image of Hom(X;B]) in S.

One checks that the functor Alg(O) � S ! Alg(O) we constructed de�nes an
action of S on Alg(O).

It remains to show that this functor is a Quillen bifunctor and that the unit
property is ful�lled. So let g : K ! L be a co�bration in S and p : Y ! Z a
�bration in Alg(O). We have to show that Hom�;r(g; p) is a �bration in Alg(O), i.e.
lies in FOJ-inj. By adjointness this means that p has the right lifting property with
respect to the maps (FOf)�g = FO(f�g) for all f 2 J , which is by adjointness the
case because f�g is a trivial co�bration. When p or f is trivial we want to show
that Hom�;r(g; p) lies in FOI-inj, so p should have the right lifting property with
respect to the maps FO(f�g) for all f 2 I , which is again the case by adjointness.

If 1l is co�brant in S we are ready. In the other case the unit property follows by
trans�nite induction from the explicit description of algebra pushouts, and hence
the structure of cell algebras, given in Proposition 4.5 and the structure of cell
algebras given in Proposition 4.8. �

In a similar manner one shows

Proposition 5.4. Let the situation be as before Proposition 5.3 and assume that
either 1l is co�brant in S or that C is left proper and the maps in I have co�brant
domains. Then Op(C) is naturally an S-module and the functor C ! Op(C) is an
S-module homomorphism.
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6. Modules

Let O 2 Op(C) and A 2 Alg(O). We denote the category of A-modules by
(O; A){Mod , or A{Mod if no confusion is likely. Let F(O;A) : C ! A{Mod (or FA
for short) be the free A-module functor. It is given by M 7! UO(A) 
M , where
UO(A) is the universal enveloping algebra of the O-algebra A. Recall that Ass(C)
denotes the category of associative unital algebras in C, and let FAss be the free
associative algebra functor C ! Ass(C).

The main result of this section is

Theorem 6.1. Let O 2 Op(C) and A 2 Alg(O). Let one of the following two
conditions be satis�ed:

(1) O is co�brant as an object in C� and A is a co�brant O-algebra.
(2) O is co�brant in Op(C) and A is co�brant as an object in C.

Then there is co�brantly generated model structure on A{Mod with generating co�-
brations FAI and generating trivial co�brations FAJ . There is a right C-module
structure on A{Mod.

This theorem will follow from the fact that in each of the two cases the en-
veloping algebra UO(A) is co�brant in C, since A{Mod is canonically equivalent to
UO(A){Mod .

Note that there is a canonical surjection from the tensor algebra to the universal
enveloping algebra

TO(A) :=
a
n2N

O(n+ 1)
�n A

n ! UO(A) .

Proposition 6.2. Let O 2 Op(C) and f : X ! Y and ' : X ! O] be maps
in CN. Let O0 be the pushout of O by f with attaching map the adjoint of '.
Let A be an O0-algebra. Then UO0(A) is a pushout of UO(A) in Ass(C) by the
map FAss(

`
n2N f(n+1)
A
n) with attaching map the adjoint to the composition`

n2NX(n+ 1)
A
n !
`

n2NO(n+ 1)
�n A

n ! UO(A).

Proof. (Compare to [Hin1, 6.8.1. Lemma.]) A (O0; A)-module structure on a
(O; A)-module M is given by maps Y (n + 1) 
 A
n 
 M ! M for n 2 N

such that the compositions with f(n + 1) 
 A
n 
 M equals the composition
X(n+1)
A
n
M ! O(n+1)
A
n
M !M . The same statement is true for
a module structure under the described pushout algebra on a UO(A)-module. �

Corollary 6.3. Let O 2 Op(C) be co�brant and let A be an O-algebra which is
co�brant as an abject in C. Then UO(A) is co�brant in Ass(C), in particular is
co�brant as an object in C.

Hence the second part of Theorem 6.1 is proven.

Corollary 6.4. Let C be left proper, let O 2 Op(C) be co�brant and let A! A0 be
a weak equivalence between O-algebras both of which are co�brant as objects in C.
Then the map UO(A)! UO(A

0) is a weak equivalence.

We have an analogous result to Proposition 4.8 for the enveloping algebra of a
cell algebra.
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Proposition 6.5. Let O 2 Op(C) and A = colimi<�Ai be a FO(Mor(C))-cell O-
algebra with A0 = O(0), where the transition maps Ai ! Ai+1 are pushouts of free

O-algebra maps on maps gi : Ki ! Li in C by maps adjoint to 'i : Ki ! A]i .
Then U := UO(A) is a trans�nite composition U = colimf2S�;+Uf in C such that

(1) U� = 0 and Ufi = UO(Ai) for i < �,
(2) for f 2 S� such that for an i0 < � we have f(i0) =2 N, there is for all

m 2 N, successors l 2 S�;+ with l < f and n := m+ jlj a map

O(n+ 1)
(�m��l)

 
A
mi0 


O
i<�

L

l(i)
i

!
! Uf

compatible with the map O(n+ 1)
�n A

n ! U and

(3) for any successor f 2 S�;+ the map Uf�1 ! Uf is a pushout by

O(jf j+ 1)
�f �i<� g
�f(i)
i ,

where the attaching maps on the various parts of the domain of this map
are induced from the maps in (2).

Proof. This Proposition is proven in essentially the same way as Proposition 4.8
except that this time we have to de�ne associative algebra structures on the Ufi
and to verify the universal property stating the equivalence of module categories.
For the associative algebra structure one uses the same formulas as for the tensor
algebra and checks that they are compatible with the attaching maps. For the
universal property one uses the fact that an A-module M is given by maps

O(jf j+ 1)
�f

 O
i<�

L

f(i)
i

!

M !M

which are compatible in various ways the explicit formulation of which we leave to
the reader. �

Corollary 6.6. For O an operad in C which is co�brant in C� and A a co�brant
O-algebra the enveloping algebra UO(A) is co�brant as an object in C.

Hence also the �rst part of Theorem 6.1 is proven.

Corollary 6.7. Let C be left proper, let f : O ! O0 be a weak equivalence between
operads in C both of which are co�brant as objects in C� and let A be a co�brant
O-algebra. Let A0 be the pushforward of A with respect to f . Then the induced
maps A! A0 and UO(A)! UO0(A

0) are weak equivalences.

De�nition 6.8. Let C be left proper and let 1l and the domains of the maps in I
be co�brant in C.

(1) For O 2 Op(C) de�ne the derived category of O-algebras DAlg(O) to be
HoAlg(QO), where QO ! O is a co�brant replacement in Op(C). De�ne
the derived 2-category of O-algebras D�2Alg(O) to be Ho�2Alg(QO).

(2) For O 2 Op(C) and A 2 Alg(O) de�ne the derived category of A-modules
D(A{Mod ) to be Ho (QA{Mod ), where QA! A is a co�brant replacement
of A in Alg(QO) with QO ! O a co�brant replacement in Op(C).
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Note that these de�nitions do not depend (up to equivalence up to unique iso-
morphism or up to equivalence up to isomorphism, which is itself de�ned up to
unique isomorphism in the case of D�2Alg(O)) on the choices by Corollary 6.7 and
[Hov2, Theorem 2.4], that if O 2 Op(C) is co�brant in C� there is a canonical equiv-
alence DAlg(O) � HoAlg(O) and that for a co�brant O 2 Op(C) and A 2 Alg(O)
which is co�brant in C there is a canonical equivalence D(A{Mod ) � Ho (A{Mod ).

7. Functoriality

In this section let C be left proper and let 1l and the domains of the maps in I
be co�brant in C.

Proposition 7.1. (1) There is a well de�ned 2-functor

Ho�2Op(C)! Cat ,

O 7! DAlg(O)

such that for any co�brant operad O in C there is a canonical equivalence
DAlg(O) � HoAlg(O) and every functor in the image of this 2-functor has
a right adjoint.

(2) For O 2 Op(C) there is a well de�ned 2-functor

D�2Alg(O)! Cat ,

A 7! D(A{Mod)

such that for any co�brant A 2 Alg(QO) (QO ! O a co�brant replace-
ment) there is a canonical equivalence D(A{Mod) � Ho (A{Mod ) and every
functor in the image of this 2-functor has a right adjoint.

Remark 7.2. The 2-functor in the second part of the Proposition should be well
de�ned for an object O 2 Ho�3Op(C) and should depend on O functorially.

Proof. We prove the �rst part of the Proposition, the second one is similar. Let
O;O0 2 Op(C)cf , f; g 2 Hom(O;O0) and ' a 2-morphism from f to g in Ho�2Op(C).
First of all it is clear that the pushforward functor f� : Alg(O)! Alg(O0) is a left
Quillen functor between J-semi model categories by the de�nition of the J-semi
model structures. We have to show that ' induces a natural isomorphism between
f� and g� on the level of homotopy categories. So let O� be a cosimplicial frame on
O. ' can be represented by a chain of 1-simplices in Hom(O�;O0), and a homotopy
between two representing chains by a chain of 2-simplices. So we can assume that

' is a 1-simplex, i.e. ' 2 Hom(O1;O0). We have maps O t O
i0ti1�! O1 p

! O,
and HoAlg(O1) ! HoAlg(O) is an equivalence. Hence for A 2 HoAlg(O) there
is a unique isomorphism '0(A) : i0�(A) ! i1�(A) with p�('

0(A)) = Id. Then the
'('0(A)) de�ne a natural isomorphism between (' Æ i0)� and (' Æ i1)�. Now if we
have a homotopy � 2 Hom(O2;O0), the three natural transformations which are
de�ned by the three 1-simplices of � are compatible, since on a given object they
are the images in HoAlg(O0) of three compatible isomorphisms between the three
possible images of A in HoAlg(O2). �

Let f : O ! O0 be a map of operads in C and let A 2 D�2Alg(O). Then there
is an adjunction

D(A{Mod )
//
D(f�A{Mod )oo .
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It follows that for B 2 D�2Alg(O0) there is also an adjunction

D(f�B{Mod )
//
D(B{Mod )oo .

Of course for A and B as above and a map f�A! B there is a similar adjunction.

Now let D be a second left proper symmetric monoidal co�brantly generated
model category with suitable smallness assumptions on the domains of the gener-
ating co�brations and trivial co�brations (depending on which de�nition of J-semi
model category one takes) and with a co�brant unit. Let L : C ! D be a symmet-
ric monoidal left Quillen functor with right adjoint R. For objects X;Y 2 D there
is always a natural map

R(X)
R(Y )! R(X 
 Y )

adjoint to the map

F (R(X)
R(Y )) �= FR(X)
 FR(Y )! X 
 Y

which respects the associativity and commutativity isomorphisms (so R is a pseudo
symmetric monoidal functor). It follows that L can be lifted to preserve operad,
algebra and module structures.

Hence there is induced a pair of adjoint functors

Op(C)
LOp //

Op(D)
ROp

oo ,

which is a Quillen adjunction between J-semi model categories by the de�nition of
the model structures.

For O 2 Op(C) there is induced a pair of adjoint functors

Alg(O)
LO //

Alg(LOp(O))
RO

oo ,

which is a Quillen adjunction between J-semi model categories in the cases where
O is either co�brant in Op(C) or co�brant as an object in C�.

So for O 2 Op(C), O0 2 Op(D) and f : LOp(O) ! O0 a map there are induced
adjunctions

DAlg(O) //
DAlg(O0)oo and

D�2Alg(O)
	 //

D�2Alg(O0)oo .

Now let A 2 D�2Alg(O), B 2 D�2Alg(O0) and g : 	(A) ! B be a map. Then
there is induced an adjunction

D(A{Mod )
//
D(B{Mod )oo .

All the adjunctions are compatible (in an appropriate weak categorical sense)
with compositions of the maps which induce these adjunctions.
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8. E1-Algebras

LetN be the operad in C whose algebras are just the commutative unital algebras
in C, i.e. N (n) = 1l for n 2 N, and let P be the operad whose algebras are objects
in C pointed by 1l, i.e. P(n) = 1l for n = 0; 1, P(n) = 0 otherwise. There is an
obvious map P ! N .

De�nition 8.1. (1) An E1-operad in C is an operad O in C which is co�brant
as an object in C� together with a map O ! N which is a weak equivalence.

(2) A pointed E1-operad in C is an E1-operad O in C together with a map
P ! O such that the composition with the map O ! N is the canonical
map P ! N .

(3) A unital E1-operad in C is a pointed E1-operad in C such that the map
P(0) ! O(0) is an isomorphism (this is the same as an E1-operad O in
C such that the map O(0)! N (0) is an isomorphism).

The unit 1l is an N -algebra, hence it is an algebra for any E1-operad. Let O
be a pointed E1-operad. Then an O-algebra A is naturally pointed, i.e. there is a
canonical map 1l! A, but note that this need not be a map of algebras. If it is, we
say that A is a unital O-algebra. Let us denote the category of unital O-algebras
by Algu(O). This is just the category of objects in Alg(O) under 1l. If O is unital,
then every O-algebra is unital.

We �rst want to show that under suitable conditions unital E1-operads always
exist.

ForO 2 Op(C) let us denote byO�1 the operad with O�1(0) = O(0), O�1(1) = 1l
and O�1(n) = 0 for n > 1. There is a canonical map O�1 ! O in Op(C). If O is

an E1-operad there is also a map O�1 ! P in Op(C), and we denote by eO the
pushout of O with respect to this map.

Lemma 8.2. Let O be an E1-operad which admits a pointing.

(1) Then there is a canonical equivalence Algu(O) � Alg( eO), in particular an

O-algebra is unital if and only if it comes from an eO-algebra.
(2) Assume that C is left proper, that 1l is co�brant in C and that O is co�brant

in Op(C). Then eO is a unital E1-operad in C.

Proof. By Lemma 4.2(1) an eO-algebra A is the same as an O-algebra A together
with a map 1l ! A such that the structure map O(0) ! A is the composition

O(0) ! 1l ! A. Hence a unital O-algebra comes from an eO-algebra. On the

other hand if A is an eO-algebra we have to show that the induced pointing 1l! A
is a map of algebras. This follows easily from the fact that the map O(0) has a
right inverse (a pointing of O). For the �rst part of the Lemma it remains to prove

that an O-algebra morphism between eO-algebras is in fact an eO-algebra morphism,
which follows from Lemma 4.2(2).eO is unital by the last part of Lemma 8.3 and co�brant as object in C� by

Corollary 8.4. We have to show that eO ! N is a weak equivalence. Consider the
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commutative square

O(0) //

��

FO(1l)

��
1l // F eO(1l)

of O-algebras and let P be the pushout of the left upper triangle of the square. We
want to show that the canonical map P ! F eO(1l) is an isomorphism. By the �rst

part of the Lemma P is an eO-algebra. Now again by the �rst part of the Lemma

it is easily seen that P has the same universal property as eO-algebra as F eO(1l).
So the above square is a pushout square in Alg(O), and hence by left properness

of Alg(O) over C (Theorem 4.3) the right vertical arrow is a weak equivalence. This

implies that O ! eO is a weak equivalence. �

Let us call a vertex v 2 V (T ) of a tree T 2 T a no-tail vertex if one cannot reach
a tail from v. Let us call T 0-special if the only no-tail vertices of T are vertices of
valency 0. A proper 0-special doubly colored tree is a proper doubly colored tree

which is 0-special such that any vertex of valency 0 is old. Let eT pdc(n) be the set of
isomorphism classes of such trees with n tails.

Lemma 8.3. Let O = colimi<�Oi be an operad in C such that the transition maps
Oi ! Oi+1 are pushouts of free operad maps on maps gi : Ki ! Li in CN and such
that O0 is the initial operad. Let E 2 C and let O(0)! E be a morphism in C. LeteE be the operad with eE(0) = E, eE(1) = 1l and eE(n) = 0 for n > 1. Let the squares

Oi;�1 //

��

Oi

��eE // eOi
be pushout squares in Op(C), where either i < � or i is the blanket. Then eO =

colimi<�
eOi, and every map eOi ! eOi+1 is an ! � (! + 1)-sequence in CN as in

Proposition 3.5, where for j < ! O(i;j)(n) is a pushout of O(i;j)�1(n) in C by the
quotient of the map

a0@ O
v2Vold(T )nUold(T )

eOi(val(v))
1A 
 e�(Uold(T ))� �

v2Vnew(T )
gi(val(v)) ,

where the coproduct is over all T 2 eT pdc(n) with ]Vnew(T ) = i and uold(T ) = j,
with respect to an equivalence relation analogous to the one in Proposition 3.5. In

particular we have eOi(0) = E for all i < � or i the blanket.

Corollary 8.4. Let the notation be as in the Lemma above and assume that the

maps gi are co�brations in CN and that E is co�brant in C. Then the operad eO is
co�brant in C�;�.

Proof. The proof is along the same lines as the proof of Lemma 3.6. �

For the rest of this section let us �x a pointed E1-operad O in C.
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Lemma 8.5. If 1l is co�brant in C and O is co�brant in Op(C) there is a J-semi
model structure on Algu(O) over C.

Proof. In any J-semi model category D over C the category of objects under an
object from D which becomes co�brant in C is again a J-semi model category over
C. �

Lemma 8.6. Assume that C is left proper and that the domains of the maps in I
are co�brant. Let A 2 Alg(O) be co�brant. Then the canonical map of A-modules
UO(A)! A adjoint to the pointing 1l! A is a weak equivalence.

Proof. We can assume that A is a cell O-algebra. It is easy to see that the map
UO(A)! A is compatible with the descriptions of A and UO(A) in Proposition 4.8
and Proposition 6.5 as trans�nite compositions, and the map  from the map of
part (3) of Proposition 6.5 to the map of part (3) of Proposition 4.8 is induced by
the map O(jf j+1) = O(jf j+1)
1l
jf j
1l! O(jf j+1)
O(1)
jf j
O(0)! O(jf j),
which itself is induced by the unit, the pointing and a structure map of O. Since O
is an E1-operad this is a weak equivalence, hence since the domains of the maps
in I are co�brant  is a weak equivalence. Now the claim follows by trans�nite
induction and left properness of C. �

Corollary 8.7. Assume that C is left proper, that the domains of the maps in I are
co�brant and that O is co�brant in Op(C). Let A 2 Alg(O) be co�brant as object
in C. Then the canonical map of A-modules UO(A) ! A adjoint to the pointing
1l! A is a weak equivalence.

Proof. Let QA! A be a co�brant replacement. Then in the commutative square

UO(QA) //

��

UO(A)

��
QA // A

the horizonrtal maps are weak equivalences (the upper one by Corollary 6.4) and
the left vertical arrow is a weak equivalence by the Lemma above, hence the right
vertical map is also a weak equivalence. �

Corollary 8.8. Assume that C is left proper and that the domains of the maps in
I are co�brant. Let A ! A0 be a weak equivalence between co�brant O-algebras.
Then the map UO(A)! UO(A

0) is also a weak equivalence.

Proof. This follows immediately from Lemma 8.6. �

This Corollary has the consequence that under the assumptions of the Corollary
there is a canonical equivalence D(A{Mod ) � HoA{Mod for a co�brant O-algebra
A.
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9. S-Modules and Algebras

In this section we generalize the theories developed in [EKMM] and [KM].

De�nition 9.1. (I) A symmetric monoidal category with pseudo-unit is a category
D together with

� a functor � : D �D ! D,
� natural isomorphisms (X � Y ) � Z ! X � (Y � Z) and X � Y ! Y �X
which satisfy the usual equations and
� an object 1l 2 D with morphisms 1l�X ! X (and hence morphisms X�1l!
X induced by the symmetry isomorphisms) such that the diagram

1l� (X � Y )

��

// X � Y

(1l�X)� Y

88qqqqqqqqqqq

commutes and such that the two possible maps 1l� 1l! 1l agree.

(II) A symmetric monoidal functor between symmetric monoidal categories with
pseudo-unit D and D0 is a functor F : D ! D0 together with natural isomorphisms
F (X) � F (Y ) ! F (X � Y ) compatible with the associativity and commutativity
isomorphisms and with a map F (1lD)! 1lD0 compatible with the unit maps.

De�nition 9.2. (I) A symmetric monoidal model category with weak unit is a
model category D which is a symmetric monoidal category with pseudo-unit such
that the functor D � D ! D has the structure of a Quillen bifunctor ([Hov1, p.
108]) and such that the composition Q1l�X ! 1l�X ! X is a weak equivalence
for all co�brant X 2 D, where Q1l! 1l is a co�brant replacement.

(II) A symmetric monoidal Quillen functor between symmetric monoidal model
categories with weak unit D and D0 is a left Quillen functor D ! D0 which is a
symmetric monoidal functor between symmetric monoidal categories with pseudo-
unit such that the composition F (Q1lD)! F (1lD)! 1lD0 is a weak equivalence.

The homotopy category of a symmetric monoidal model category with weak unit
is a closed symmetric monoidal category.

Let us assume now that C is either simplicial (i.e. there is a symmetric monoidal
left Quillen functor SSet ! C) or that there is a symmetric monoidal left Quillen
functor Comp�0(Ab) ! C, where Comp�0(Ab) is endowed with the projective
model structure. In both cases we denote by L the image of the linear isometries
operad in Op(C) via either the simplicial complex functor or the simplicial complex
functor followed by the normalized chain complex functor. Clearly L is a unital
E1-operad. Let S := L(1). S is a ring with unit in C which is co�brant as an object
in C.

As in [EKMM] or [KM] we de�ne a tensor product on S{Mod by

M �N := L(2)
S
SM 
N .

[KM, Theorem V.1.5] and [KM, Lemma V.1.6] also work in our context, hence
S{Mod is a symmetric monoidal category with pseudo-unit.
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There is an internal Hom in S{Mod given by

Hom�(M;N) := HomS(L(2)
SM;N) ,

where, when forming L(2)
SM , S acts on L(2) through S= 1l
S! S
S, when
forming HomS, S acts on L(2) 
SM via its left action on L(2) and the left action

of S on Hom�(M;N) is induced through the right action of S on L(2) through
S= S
 1l! S
 S.

There is an augmentation S! 1l which is a map of algebras with unit.

Proposition 9.3. The category S{Mod is a co�brantly generated symmetric mono-
idal model category with weak unit with generating co�brations S
I and generating
trivial co�brations S
 J . The functor C ! S{Mod, X 7! S
 X, is a Quillen
equivalence, and its left inverse, the functor S{Mod ! C, M 7! M 
S 1l, is a
symmetric monoidal Quillen equivalence. Moreover there is a closed action of C on
S{Mod.

Proof. That R{Mod is a co�brantly generated model category together with a
closed action of C on it is true for any associative unital ring R in C which is
co�brant as an object in C.

Let f and g be co�brations in C. The �-pushout product of S
 f and S
 g is
isomorphic to L(2)
(f�g). As a left S-moduleL(2) is (non canonically) isomorphic
to S, hence L(2) 
 (f�g) is a co�bration S{Mod , and it is trivial if one of f or g
is trivial. To show that for a co�brant S-module M the map Q1l �M ! M is
a weak equivalence we can assume that M is a cell S-module and we can take
Q1l = S. Then M is a trans�nite composition where the transition maps are
pushouts of maps f : S
 K ! S
 L, where K ! L is a co�bration in C with
K co�brant. But the composition S� S ! 1l � S ! S is a weak equivalence
between co�brant objects in S{Mod , hence the composition S� f ! 1l� f ! f is
a weak equivalence between co�brations in S{Mod . So by trans�nite induction the
composition S�M ! 1l�M !M is a weak equivalence between co�brant objects
in S{Mod . �

Note that in the simplicial case 1l � S is co�brant in C, hence for co�brant M
both maps S�M ! 1l�M !M are weak equivalences.

Let S{Modu be the category of unital S-modules, i.e. the objects in S{Mod under
1l 2 S{Mod . ForM 2 S{Modu and N 2 S{Mod there are the products M C N and
N BM , and for M;N 2 S{Modu there is the product M �N . These products are
de�ned as in [KM, De�nition V.2.1] and [KM, De�nition V.2.6].

S{Modu is a symmetric monoidal category with � as tensor product.

Analogous to [KM, Theorem V.3.1] and [KM, Theorem V.3.3] we have

Proposition 9.4. � Alg(L) is naturally equivalent to the category of com-
mutative rings with unit in S{Modu. Hence for A;B 2 Alg(L) there is a
natural isomorphism A t B �= A�B.
� For A 2 Alg(L) an A-module M is the same as an S-module M together
with a map A CM !M satisfying the usual identities.

De�nition 9.5. For A 2 Alg(L) let Comm(A) be the category of commutative
unital A-algebras in S{Modu, i.e. the objects in Alg(L) under A. In particular
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we have Alg(L) � Comm(1lS) =: CommC, where we denote by 1lS the algebra 1l in
S{Modu. Finally set DCommC := HoCommC and D�2CommC := Ho�2CommC .

For the rest of the section let us make the following

Assumption 9.6. The model category C is left proper and 1l and the domains of
the maps in I are co�brant in C.

Corollary 9.7. � CommC is a co�brantly generated J-semi model category.
� For any co�brant A 2 CommC the category Comm(A) is also a co�brantly
generated J-semi model category.
� If A! B is a weak equivalence between co�brant A;B 2 CommC, then the
induced functor Comm(A)! Comm(B) is a Quillen equivalence.

Proof. Follows from Theorem 4.7. �

De�nition 9.8. For A 2 CommC let DComm(A) be HoComm(QA) for QA! A a
co�brant replacement in CommC, and let D

�2Comm(A) := Ho�2Comm(QA). The
2-functor CommC ! Cat, A 7! DComm(A), descents to a 2-functor D�2CommC !
Cat, A 7! DComm(A).

Let A 2 CommC and M;N 2 A{Mod . As in [KM, De�nition V.5.1] or [KM,
Remark V.5.2] we de�ne the tensor product M �A N as the coequalizer in the
diagram

(M B A)�N �=M � (A C N)
m�Id //
Id�m

// M �N // M �A N or

M �A�N
m�Id //
Id�m

// M �N // M �A N .

With this product the categoryA{Mod has the structure of a symmetric monoidal
category with pseudo-unit, where the pseudo-unit is A. As for S-modules one can
de�ne products CA, BA and �A. There is also an analogue of Proposition 9.4 for
A-algebras and modules over A-algebras.

The free A-module functor S{Mod ! A{Mod is given by M 7! A C M . More
generally for A ! B a map in CommC the pushforward of modules is given by
M 7! B CA M . In particular there is a canonical isomorphism of A-modules
UL(A) �= A C S.

Lemma 9.9. Let A ! B be a map in CommC, let M;N 2 A{Mod and P 2
B{Mod. Then there are canonical ismorphisms

M �A P �= (B CA M)�B P and

(B CA M)�B (B CA N) �= B CA (M �A N) .

Proof. Similar to the proof of [KM, Proposition V.5.8]. �

For M;N 2 A{Mod de�ne the internel Hom Hom�A(M;N) in A{Mod as the
equalizer

Hom�A(M;N) // Hom�(M;N)
//// Hom�(A CM;N)

like in [KM, De�nition V.6.1].
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Proposition 9.10. For a co�brant A 2 CommC the category A{Mod is a co�-
brantly generated symmetric monoidal model category with weak unit with gener-
ating co�brations A C (S
 I) and generating trivial co�brations A C (S
 J).
If f : A ! B is a map in CommC between co�brant algebras the pushforward
f� : A{Mod ! B{Mod is a symmetric monoidal Quillen functor which is a Quillen
equivalence if f is a weak equivalence.

Proof. A{Mod is a co�brantly generated model category by Theorem 6.1(1). Let
f and g be co�brations in C. By Lemma 9.9 the �A-pushout product of the maps
A C (S
 f) and A C (S
 g) is given by A C (L(2)
 (f�g)), hence since L(2) �= S

as S-modules this is a co�bration in A{Mod , and it is trivial if one of f or g is
trivial.

Note that A C S is co�brant in A{Mod and that the map A C S�= UL(A) ! A
is a weak equivalence by Lemma 8.6. So we have to show that for co�brant M 2
A{Mod the map (A C S)�A M ! M is a weak equivalence, which follows from
the fact that the maps of the form (A C S)�A (A C (S
 f)) ! A C (S
 f) for
co�brations f 2 C with co�brant domain are weak equivalences between co�brations
in A{Mod . The �rst part of the last statement follows from Lemmas 9.9 and 8.6,
and the second part by Corollary 8.8. �

De�nition 9.11. For any algebra A 2 CommC set D(A{Mod) := Ho (QA{Mod )
and D�2(A{Mod ) := Ho�2(QA{Mod ) for QA! A a co�brant replacement.

D(A{Mod ) is a closed symmetric monoidal category with tensor product 
A
induced by �A. The assignment A 7! D(A{Mod ) factors through a 2-functor
D�2CommC ! Catsm, A 7! D(A{Mod ), where Catsm is the 2-category of sym-
metric monoidal categories, such that the image functors of all maps in D�2CommC
have right adjoints.

We �nally consider base change and projection morphisms. Let

B
g0 //

'

�$
AA

AA
AA

A

AA
AA

AA
A B0

A
g //

f

OO

A0

f 0

OO

be a commutative square in D�2CommC . Let M 2 D(B{Mod). Then we have a
base change morphism

g�f
�M ! f 0

�
g0�M

de�ned to be the adjoint of the natural map f�M ! f�g0
�
g0�M

'
�= g�f 0

�
g0�M or

equivalently of the map f 0�g�f
�M

'
�= g0�f�f

�M ! g0�M .

The base change morphism is natural with respect to composition of commuta-
tive squares.

The following statement is trivial in the context of usual commutative algebras,
but is a rather strong structure result in our context.

Proposition 9.12. Let the notation be as above. If the square is a homotopy
pushout, then the base change morphism g�f

�M ! f 0
�
g0�M is an isomorphism.
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The proof will be given in the next section.

Let A! B be a map in D�2CommC . LetM 2 D(A{Mod ) and N 2 D(B{Mod ).
There is a projection morphism

M 
A f
�N ! f�(f�M 
B N)

adjoint to the natural map f�(M 
A f�N) = f�M 
B f�f�N ! f�M 
B N . Note
that for B-modulesM 0; N 0 there is a natural map f�M 0
A f�N 0 ! f�(M 0
BN 0),
and the projection morphism is equivalently described as the composition M 
A
f�N ! f�f�M 
A f�N ! f�(f�M 
B N).

Proposition 9.13. Let the notation be as above. Then the projection morphism
M 
A f�N ! f�(f�M 
B N) is an isomorphism.

We give the proof in the next section.

Let a square in D�2CommC be given as above and let M 2 D(B{Mod ), N 2

D(A0{Mod ) and P 2 D(A{Mod ). Set M 0 := f�M , N 0 := g�N , fM := g0�M ,eN := f 0�N and eP := g0�f�P
�= f 0�g�P .

Lemma 9.14. Let the notation be as above. Then the diagram

(M 0 
A P )
A N 0 // g�(g�(M 0 
A P )
A0 N) // g�f 0�((fM 
B0 eP )
B0 eN)

M 0 
A (P 
A N 0)

OO

// f�(M 
B f�(P 
A N 0)) // f�g0�(fM 
B0 ( eP 
B0 eN))

OO
,

where in the �rst two horizontal maps the projection morphism is applied and in
the second two an adjunction and the base change morphism, commutes.

Proof. Let F := g�f 0�
'
�= f�g0�. One checks that both compositions are equal to

the compositionM 0
AP 
AN 0 ! F �fM 
AF � eP 
AF � eN ! F �(fM
B0 eP 
B0 eN),
where the �rst arrow is a tensor product of obvious objectwise morphisms. �

Let A 2 D�2CommC . We can use the two Propositions above to give the
natural functor M : DComm(A) ! D(A{Mod) a symmetric monoidal struc-
ture with respect to the coproduct on DComm(A) and the tensor product 
A on
D(A{Mod): We use the fact that DComm(A) is equivalent to the 1-truncation of
A # D�2CommC . So let B  A ! C be a triangle in D�2CommC and complete
it by a homotopy pushout to a square with upper right corner B tA C. First we
apply the base change isomorphism to the unit 1lB in D(B{Mod ), which says that
there is a natural isomorphism

(C ! B tA C)
�(1lBtAC)

�= (A! C)�(M(B)) .

Applying (A ! C)� to the left hand side of this isomorphism we get M(B tA C),
applying this map to the right hand side we get M(B)
AM(C) by the projection
formula. This establishes the isomorphism M(B) 
A M(C) �= M(B tA C). That
this isomorphism respects the commutativity isomorphisms follows from Lemma
9.14 with P = 1lA. That it respects the associativity isomorphisms for objects
f : A ! B, h : A ! C and g : A ! A0 in A # Ho�2D also follows from Lemma
9.14 with M = 1lB , N = 1lA0 and P = h�1lC and a diagram chase.
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10. Proofs

In this section we give the proofs of Propositions 9.12 and 9.13. Assume through-
out that Assumption 9.6 is ful�lled.

We need the concept of operads in A{Mod for A 2 CommC . We also give the
de�nition of a pointed operad, because it is needed in the Remark. In the context
of symmetric monoidal categories with pseudo-unit a pointed operad is not just an
operad O together with a pointing of O(0), the domains of the structure maps also
have to be adjusted (see below).

So let us �x A 2 CommC . Let A{Modu be the category of pointed A-modules,
i.e. the category of objects in A{Mod under A. For M a pointed or unpointed
A-module and N a pointed or unpointed A-module let M ~N be either M �A N ,
M CA N , M BA N or M �A N , depending on whether M and N are unpointed,
M is pointed and N is unpointed, M is unpointed and N is pointed or M and N
are pointed. M ~N is an object in A{Mod unless both M and N are pointed in
which case it is an object in A{Modu. Note that forM1; : : : ;Mn A-modules each of
them either pointed or unpointed the productM1~ � � �~Mn is well de�ned, despite
the fact that for di�erent bracketings of this expression the symbols for which ~
actually stands can be di�erent.

De�nition 10.1. An operad O in A{Mod is an object O(n) 2 (A{Mod )[�n] for
each n 2 N, where O(1) is pointed, together with maps

O(m) ~O(n1)~ � � �~O(nm)! O(n) ,

where m;n1 : : : ; nm 2 N and n =
Pm

i=1 ni, such that the usual diagrams for these
structure maps commute. A pointed operad in A{Mod is the same as above with
the exception that O(0) is also pointed.

Let Op(A{Mod) be the category of operads in A{Mod and Opp(A{Mod ) the
category of pointed operads in A{Mod . A pointed operad O in A{Mod is called
unital if the pointing A ! O(0) is an isomorphism. Let Opu(A{Mod ) be the
category of unital operads in A{Mod .

Let (A{Mod )�;�� be the category of collections of objects O(n) 2 (A{Mod )[�n],
which are pointed for n = 0; 1 and unpointed otherwise. As for ordinary operads
we have free (pointed) operad functors F starting from the categories (A{Mod )N,
(A{Mod)�, (A{Mod)�;�� in the pointed case and various other pointed versions of
these categories to Op(A{Mod) or Opp(A{Mod ). Note that if A is co�brant all
these source categories of the functors F are model categories.

Theorem 10.2. Let A be co�brant in CommC. Then the category Op(A{Mod )
(resp. Opp(A{Mod )) has the structure of a co�brantly generated J-semi model
category over (A{Mod )�;� (resp. over (A{Mod )�;��) with generating co�brations
F (N(FA I)) and generating trivial co�brations F (N(FAJ)). If C is left proper, then
Op(A{Mod ) (resp. Opp(A{Mod)) is left proper relative to (A{Mod )�;� (resp. rel-
ative to (A{Mod)�;��). If C is right proper, so are Op(A{Mod ) and Opp(A{Mod ).

Let f be a map in A{Mod or A{Modu and let g be a map in A{Mod or A{Modu.
Let f��g be the pushout product of f and g with respect to the product ~. f��g
is a map in A{Mod unless both f and g are maps in A{Modu in which case f��g
is a map in A{Modu.
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Note that if A is co�brant the category A{Modu has a natural model structure
as category of objects under A in the model category A{Mod . Note however that
A{Modu is not symmetric monoidal (with potential tensor product �A), since this
product is not closed.

Lemma 10.3. Let A be co�brant in CommC, let f be a co�bration in A{Mod or
A{Modu, let g be a co�bration in A{Mod or A{Modu let M be co�brant in A{Mod
or A{Modu and let N be co�brant in A{Mod or A{Modu. Then

� the pushout product f��g is a co�bration in A{Mod or A{Modu which is
trivial if f or g is,
� the product M ~ f is a co�bration in A{Mod or A{Modu which is trivial if
f is and
� the product M ~N is co�brant in A{Mod or A{Modu.

There is also a version of this statement when the map or object in A{Mod has a
right action of a discrete group G and the other map or object is in A{Modu (resp.
when both maps or objects are in A{Mod and have actions of discrete groups G
and G0). The resulting map or object is then a co�bration or co�brant object in
(A{Mod)[G] (resp. (A{Mod)[G�G0]).

Note that in a symmetric monoidal category cases 2 and 3 would be special cases
of case 1.

Proof. It suÆces to show this for relative cell complexes f and g and cell complexes
M and N , for which it follows for the �rst case by writing the pushout product of
a �-sequence and a �-sequence as a � � �-sequence. Let M 2 A{Modu. Then if
A ! M is a �-sequence, M itself is a (1 + �)-sequence in A{Mod . One concludes
now by writing the products in cases 2 and 3 again as appropriate sequences. The
cases with group actions work in the same way. �

We remark now that there are versions of Proposition 3.4 and Proposition 3.5 for
Opp(A{Mod) where all tensor products are repaced by ~-products and all pushout
products by the ~-pushout product ��. There is also a version of Lemma 3.6, from
which Theorem 10.2 follows in the same way as Theorem 3.2.

De�nition 10.4. Let O 2 Op(A{Mod ) (resp. O 2 Opp(A{Mod)).

(1) An O-algebra is an object B 2 A{Mod (resp. B 2 A{Modu) together with
maps

O(n)~B~n ! A

satisfying the usual identities. The category of O-algebras is denoted by
Alg(O).

(2) Let B 2 Alg(O). A B-module is an object M 2 A{Mod together with maps

O(n+ 1)~B~n ~M !M

satisfying the usual identities. The category of B-modules is denoted by
B{Mod.

Let O 2 Op(p)(A{Mod). The free O-algebra functor FO : A{Mod ! Alg(O) is
given by

FO(M) =
a
n�0

O(n)~�n M
�An .
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In the pointed case FO factors through A{Modu.

As in section 4 one shows the

Theorem 10.5. Let A be co�brant in CommC and let O 2 Op(A{Mod ) (resp.
O 2 Opp(A{Mod)).

(1) If O is co�brant the category Alg(O) is a co�brantly generated J-semi model
category over A{Mod with generating co�brations FOFAI and generating
trivial co�brations FOFAJ . If C is left proper (resp. right proper), then
Alg(O) is left proper relative to A{Mod (resp. right proper).

(2) Let O be co�brant as an object in (A{Mod )�;� (resp. in (A{Mod)�;��).
Then Alg(O) is a co�brantly generated J-semi model category with gener-
ating co�brations FOFAI and generating trivial co�brations FOFAJ . If C
is right proper, so is Alg(O).

Let NA 2 Op(A{Mod ) (resp. N u
A 2 Op

u(A{Mod )) be the operad with NA(n) =
A (resp. N u

A(n) = A) for n 2 N and the natural structure maps. Note that both

categories Alg(u)(NA) are not equivalent to the category Comm(A) but there are
functors

C
(u)
NA

: Alg(N (u)
A )! Comm(A) ,

which are de�ned to be the left adjoints of the pullback functors Comm(A) !

Alg(N (u)
A ). These adjoints exist since they exist on free algebras and every algebra

is a coequalizer of two maps between free algebras (as is always the case for algebras
over a monad).

Let O 2 Op(p)(A{Mod ) and B 2 Alg(O). As for ordinary algebras one de�nes
the universal enveloping algebra UO(B) as the quotient of the tensor algebraa

n�0

O(n+ 1)~�n B
~n

by the usual relations. UO(B) is an associative unital algebra in A{Mod , hence it
is an A1-algebra in C (i.e. an algebra over the operad L considered as a non-�
operad), which also has a universal enveloping algebra UL(UO(B)) 2 Ass(C). One
has canonical equivalences

B{Mod � UO(B){Mod � UL(UO(B)){Mod .

Let FB : A{Mod ! B{Mod be the free B-module functor.

As in section 6 one shows the

Theorem 10.6. Let A be co�brant in CommC, let O 2 Op(A{Mod) (resp. O 2
Opp(A{Mod)) and B 2 Alg(O). Let one of the following two conditions be satis�ed:

(1) O is co�brant as an object in (A{Mod)�;� (resp. in (A{Mod )�;��) and B
is a co�brant O-algebra.

(2) O is co�brant in Op(A{Mod ) (resp. Opp(A{Mod )) and A is co�brant as
an object in A{Mod (resp. in A{Modu).

Then there is co�brantly generated model structure on B{Mod with generating co�-
brations FBFAI and generating trivial co�brations FBFAJ .
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De�nition 10.7. An E1-operad (resp. pointed E1-operad) in A{Mod is an object
O 2 Op(A{Mod) (resp. O 2 Opp(A{Mod )) which is co�brant as an object in
(A{Mod)�;� (resp. in (A{Mod )�;��) together with a map O ! NA which is a weak
equivalence. A pointed E1-operad O is called unital if it is unital as an object in
Opp(A{Mod).

For O a pointed E1-operad in A{Mod let us de�ne the operad eO in the same
way as in section 8. Then we have analogues of Lemmas 8.2 and 8.3 and Corollary
8.4. So we are able to construct a unital E1-operad in A{Mod by �rst taking a

co�brant resolution O ! NA in Op(A{Mod) and then forming eO. This will be
relevant in the Remark.

Let B 2 Alg(O) be co�brant. As in Lemma 8.6 one can show that the map
UO(B)! B adjoint to the pointing A! B is a weak equivalence.

For the rest of this section let us �x an unpointed E1-operad O in A{Mod (we
could also take a pointed one). Let � be the map O ! NA.

Lemma 10.8. Let A be co�brant in CommC. Then the composition

Alg(O)
�� // Alg(NA)

CNA // Comm(A)

is a Quillen equivalence.

Proof. This follows from the fact that for a co�brant A-module M the map

O(n)~�n M
�An !M�An=�n

is a weak equivalence. �

Lemma 10.9. Let A be co�brant in CommC and let B 2 Alg(O) be co�brant. Then
the functor

B{Mod ! (CNA
Æ �)�(B){Mod

is a Quillen equivalence.

Proof. This follows from the fact that the map UL(UO(B)) ! UL((CNA
Æ �)�(B))

is a weak equivalence, which follows itself from the description of these algebras in
terms of trans�nite compositions as in Propositions 4.8 and 6.5. �

Lemma 10.10. Let A be co�brant in CommC and let B 2 Alg(O) be co�brant.
Then UO(B) is co�brant as object in A{Modu.

Proof. Follows by the description of UO(B) as in Proposition 6.5. �

Corollary 10.11. Let A be co�brant in CommC. Then for co�brant B 2 Alg(O)
and co�brant M 2 B{Mod the underlying A-module M is co�brant in A{Mod.

Proof. Follows from Lemmas 10.10 and 10.3 and trans�nite induction. �

Lemma 10.12. Let � and � be ordinals and let S�;+ and S�;+ be as in Proposition
4.8. Then there is a (necessarily unique) isomorphism

' : S�+�;+ �= S�;+ � S�;+

of well-ordered sets.
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Proof. There is a natural inclusion S�;+ ,! S�+�;+, and ' maps its image to
f�g�S�;+ in the natural way. Now let f 2 S�+� with f(i) =2 N for some i 2 �. There
is a segmentMf � S�+� starting at f which is isomorphic to S�;+ as a well-ordered
set. Via this identi�cation S� corresponds to all f 0 2 S�+� with f 0j� = f j� +

1
2 .

Then ' maps Mf to ff j�g � S�;+ if i > 0 and to ff j� �
1
2g � S�;+ if i = 0. It is

easy to see that this way ' is well-de�ned, bijective and order-preserving. �

Remark 10.13. If f 2 S�;+ and g 2 S�;+ are successors, then ' maps (f t g)� 1
to (g � 1; f � 1).

Proof of Proposition 9.12. By Lemmas 10.8 and 10.9 we can work in Alg(O). So
let B;C 2 Alg(O) be co�brant. Let us denote the coproduct in Alg(O) by tA. We
have to prove the base change isomorphism for the diagram

B
g0 // B tA C

A

f

OO

g // C

f 0

OO .

LetM 2 B{Mod be co�brant. Then f�M is co�brant in A{Mod by Corollary 10.11.
Hence the base change morphism is represented by the morphism of UO(C)-modules
UO(C) CA M ! UO(B tA C) CUO(B) M which is adjoint to the map M �= A CA

M ! UO(B tA C) CUO(B) M . We can assume that M is a cell module. Then by
trans�nite induction we are reduced to the following statement: Let K 2 A{Mod
be co�brant. Then the map UO(C) CA (UO(B) CA K) ! UO(B tA C) CA K
is a weak equivalence. By Lemma 10.3 this follows if we show that the map of
B-modules  : UO(B)�A UO(C) ! UO(B t C) (where we exchanged the roles of
B and C) is a weak equivalence. It suÆces to prove this for cell algebras B and
C. So let B = colimi<�Bi, where the transition maps are given by pushouts by
co�brations gi : Ki ! Li in A{Mod with co�brant domain as in Proposition 4.8.
Similarly let C = colimi<�Ci, where the transition maps are given by pushouts
by co�brations hi : Mi ! Ni in A{Mod with co�brant domain. Then the map
0 ! UO(B tA C) is described as in Proposition 6.5 by a S�+�;+-sequence (1).
Since the maps 0 ! UO(B) resp. 0 ! UO(C) are S�;+- resp. S�;+-sequences,
the map 0! UO(B) �A UO(C) is a S�;+ � S�;+-sequence (2) by Lemma 2.1 (this
also holds in the case of a symmetric monoidal category with pseudo-unit). Let
� : S�;+ � S�;+ ! S�+�;+ be the isomorphism of well-ordered sets of Lemma
10.12. Let f 2 S�;+ and f 0 2 S�;+ be successors. Then � identi�es (f t f 0)� 1 and
(f 0� 1; f � 1), and the relevant pushouts in the sequences (1) and (2) are by maps

O(jf t f 0j+ 1)~�ftf0 ��i<�g
��f(i)
i ����i<�h

��f
0(i)

i and

O(jf j+ 1)~O(jf 0j+ 1)~�f��f0 ��i<�g
��f(i)
i ����i<�h

��f
0(i)

i .

It is easy to see by trans�nite induction that the map  is compatible with sequences
(1) and (2) via the identi�cation � on the indexing sets and with the above pushouts
by the map induced by the tensor multiplication map O(jf j + 1) ~ O(jf 0j + 1) !
O(jf [ f 0j+1) which inserts the second object into the last slot of the �rst object.
This map is a weak equivalence because O is an E1-operad, hence the claim follows
by trans�nite induction. �
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Proof of Proposition 9.13. By Lemmas 10.8 and 10.9 we can assume that we have

a co�brant eB 2 Alg(O), a co�brant eN 2 eB{Mod and a co�brant M 2 A{Mod and

prove the projection isomorphism for M and the image N of eN in B{Mod , where

B is the image of eB in Comm(A). Since eN is co�brant as A-module by Corollary
10.11 the projection morphism is represented by the composition

M �A
eN !M �A N �= (B CA M)�B N ,

where the isomorphism at the second place is from Lemma 9.9. So we have to show

that the �rst map is a weak equivalence. We can assume that eN is a cell module.
Then by trans�nite induction one is left to show that for a co�brant A-module K

the map M �A (UO( eB) CA K) ! M �A (B CA K) is a weak equivalence. But

this map is the map from the free eB-module on M �A K to the free B-module on
M �A K, which is a weak equivalence by Lemma 10.9. Hence we are �nished. �

11. Remark

Assume that Assumption 9.6 is ful�lled.

In this section we give an alternative de�nition of a product on the derived cat-
egory of modules over an algebra in D�2CommC := D�2Alg(N ) without using
the special properties of the linear isometries operad. Unfortunately it seems to
be rather ugly (or diÆcult) to construct associativity and commutativity isomor-
phisms, and we did not try hard to do this! Note that D�2CommC is the same up
to canonical equivalence as the category denoted with the same symbol in section
9. If O is a unital E1-operad and A 2 D�2CommC , then there is a representativeeA 2 Ho�2Alg(O) which is well de�ned up to an isomorphism which itself is well
de�ned up to a unique 2-isomorphism. There is a similar statement for a lift of A
into Alg(O).

Let us �rst treat the case where C is simplicial, since it is a bit nicer. Let O be
a pointed E1-operad in SSet and denote by O also its image in Op(C). In SSet

the diagonal 4 : O ! O �O is a map of operads, hence we also have a map of
operads O ! O
O in Op(C).

We will de�ne a tensor product on HoA{Mod for a co�brant O-algebra A.

First note that for O-algebras A and B the tensor product A 
 B is a O 
 O-
algebra, hence also a O-algebra via 4. Also for an A-module M and a B-module
N the tensor product M 
 N has a natural structure of an A 
 B-module. If
A;B are unital there are induced maps in Algu(O) A = A 
 1l ! A 
 B and
B = 1l
B ! A
B.

Proposition 11.1. Assume that O is either unital or co�brant in Op(C). Let
A;B 2 Algu(O) be co�brant. Then the canonical map A tB ! A
B in Algu(O)
induced by the maps A! A
B and B ! A
B is a weak equivalence.

Proof. This proof is very similar to a part of the proof of Proposition 9.12. By
Lemma 8.2 we are reduced to the case where O is unital. It suÆces to prove the
claim for cell algebras A and B. So let A = colimi<�Ai, where the transition
maps are given by pushouts by maps gi : Ki ! Li as in Proposition 4.8. Similarly
let B = colimi<�Bi, where the transition maps are given by pushouts by maps
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hi :Mi ! Ni. Then the map 0! AtB is described by Proposition 4.8 by a S�+�;+-
sequence (1). Since the maps 0 ! A resp. 0 ! B are S�;+- resp. S�;+-sequences,
the map 0! A
B is a S�;+�S�;+-sequence (2). Let � : S�+�;+ ! S�;+�S�;+ be
the isomorphism of well-ordered sets of Lemma 10.12. Let f 2 S�;+ and f 0 2 S�;+
be successors. Then � identi�es (f t f 0) � 1 and (f 0 � 1; f � 1). The relevant
pushouts in the sequences (1) and (2) are by maps

O(jf t f 0j)
�ftf0 �i<�g
�f(i)
i ��i<�h

�f 0(i)
i and

O(jf j)
O(jf 0j)
�f��f0 �i<�g
�f(i)
i ��i<�h

�f 0(i)
i ,

and again one shows by trans�nite induction that the map  : A t B ! A
B is
compatible with sequences (1) and (2) via the identi�cation � on the indexing sets
and with the above pushouts by the map induced by

O(jf j+ jf 0j)
4 // O(jf j+ jf 0j)
O(jf j+ jf 0j)

�
 // O(jf j) 
O(jf 0j) ,

where � inserts the pointing 1l ! O(0) into the last jf 0j slots of O(jf j + jf 0j)
and  inserts the pointing into the �rst jf j slots. This map is a weak equivalence
since O is an E1-operad, so our claim follows by trans�nite induction and the
assumptions. �

Assume that O is either unital or co�brant in Op(C). For any co�brantO-algebra
A let QA denote a co�brant replacement functor in A{Mod . Let A 2 Algu(O) be
co�brant. Then the map A t A ! A 
 A is a weak equivalence. Now de�ne a
functor

T : A{Mod �A{Mod ! A{Mod by

T (M;N) := (A tA! A)�(Q(AtA)(QAM 
QAN)) .

It is clear that T descents to a functor

T : D(A{Mod )�D(A{Mod)! D(A{Mod ) .

We will see that this functor is naturally isomorphic to the tensor product de�ned
in section 9.

Now we skip the restriction of C being simplicial. Let O be a unital E1-operad
in C which always exists by Lemma 8.2. Then the operad O 
 O is also a unital
E1-operad. Let A;B 2 Alg(O 
 O). Let �1 : O 
 O ! O 
 N �= O and
�2 : O 
 O ! N 
 O �= O be the two projections and de�ne Ai := �i;�A,
Bi := �i;�B, i = 1; 2. Note that �1 and �2 are weak equivalences. There are maps

A1 
 1l! A1 
B2 and

1l
B2 ! A1 
B2

of O 
 O-algebras and natural isomorphisms of O 
 O-algebras A1 
 1l �= ��1A1

and 1l 
 B2
�= ��2B2, which are on the underlying objects in C the isomorphisms

A1
1l �= A1 and 1l
B2
�= B2. Using the adjunction units A! ��1A1 and B ! ��2B2

we �nally get maps A! A1 
B2 and B ! A1 
B2, hence a map

A t B ! A1 
B2

of O 
O-algebras.

Proposition 11.2. Let A;B 2 Alg(O 
O) be co�brant. Then the map A t B !
A1 
B2 constructed above is a weak equivalence.
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Proof. The proof of this Proposition is exactly the same as the one for Proposition
11.1, except that this time the relevant pushouts in the sequences (1) and (2) are
by maps

(O(jf t f 0j)
O(jf t f 0j))
�ftf0 �i<�g
�f(i)
i ��i<�h

�f 0(i)
i and

O(jf j)
O(jf 0j)
�f��f0 �i<�g
�f(i)
i ��i<�h

�f 0(i)
i .

The map A t B ! A1 
 B2 is again compatible with these pushouts by the map
induced by

O(jf j+ jf 0j)
O(jf j+ jf 0j)
�
 // O(jf j)
O(jf 0j) ,

where � inserts the pointing 1l ! O(0) into the last jf 0j slots of O(jf j + jf 0j) and
 inserts the pointing into the �rst jf j slots. This map is again a weak equivalence
since O is an E1-operad, so we are done. �

Let DCommC := DAlg(N ).

Corollary 11.3. The natural functor M : DCommC ! Ho C has a natural sym-
metric monoidal structure with respect to the coproduct on DCommC and the tensor
product on Ho C.

If S-modules are available in C it is clear that this symmetric monoidal structure
is naturally isomorphic to the one constructed at the end of section 9.

Let now A 2 Alg(O
O) be co�brant. Note that for M;N 2 A{Mod the tensor
product �1;�M
�2;�N is an A1
A2-module, hence also an AtA-module. Consider
the functor

T : A{Mod �A{Mod ! A{Mod ,

(M;N) 7! (A t A! A)�(QAtA(�1;�(QAM)
 �2;�(QAN))) .

It is again clear that T descents to a functor

T : D(A{Mod )�D(A{Mod)! D(A{Mod ) .

To see that this functor is isomorphic to the previous functor T in the simplicial
case one takes the previous O to be O
O and looks at the map of O
O-algebras
(obtained via the diagonal) A 
 A ! (A1 
 1l) 
 (1l 
 A2). The last algebra is
isomorphic to the O 
O-algebra A1 
A2. Hence for A-modules M and N we get
a map of A 
 A-modules M 
N ! M1 
N2 which is a weak equivalence. From
this one gets the natural isomorphism we wanted to construct.

It remains to show that in the cases C receives a symmetric monoidal left Quillen
functor from SSet or Comp�0(Ab) the functor T is isomorphic to the tensor prod-
uct 
A de�ned in section 9.

To do this let O be a unital E1-operad in S{Mod = 1lS{Mod and let O := O
S1l
be its image in Op(C). The operad O~O (which is de�ned componentwise) is also
a unital E1-operad whose image in Op(C) is O
O. Then by the above procedure
one can de�ne a tensor product on Ho (A{Mod) for a co�brant O ~ O-algebra A,
and it is easy to see that this coincides (after the appropriate identi�cations) with
the product T de�ned above on Ho (A{Mod ) (A is the image of A in Alg(O 
O))
on the one hand and with the product �A0 on Ho (A0{Mod), where A0 is the image
of A in CommC , on the other hand.
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Part II

12. A toy model

In the second part of this thesis we want to give applications of the general
theory of the �rst section. Our main application is the construction of what we call
limit motives. They are a motivic analogue of limit Hodge structures considered
by Schmid, Steenbrink, Varchenko, et. al. The basic idea is the following: Let
D := fz 2 C j jzj < 1g and D� := D n f0g. Consider a proper family of complex
algebraic manifolds f : X ! D such that f� : X� := f�1(D�)! D� is smooth and
Y := f�1(0) is a divisor with normal crossings in X . Let Xt := f�1(t) for t 2 D�.
Then the Hn(Xt; C ) are part of pure Hodge structures and there is a way to put a
mixed Hodge structure on limt!0H

n(X; C ) depending on the direction in which t
moves to 0 such that the weight �ltration is given in terms of the monodromy action
around 0. The considerations in [Del] suggest that these limit Hodge structures are
�bers of a unipotent variation of mixed Hodge structures on C � , the pointed tangent
space of D at 0.

Let now C be a smooth curve over a �eld k � C and x0 2 C(k). Let CÆ :=
C n fx0g. We are going to propose a construction which associates to any motivic

sheaf F on CÆ a unipotent motivic sheaf eF on T ÆC;x0 , the pointed tangent space of

x0 in C. Let f : X ! C be a proper morphism such that fÆ : XÆ := f�1(CÆ)!
CÆ is smooth and Y := f�1(x0) is a divisor with normal crossings in X . Let
F := Rf�Z as a motivic sheaf on CÆ, i.e. F is an object in a certain triangulated
category possessing suitable Hodge realizations. Then the Hodge realizations ofeFt, t 2 T ÆC;x0(C ), should give the limit Hodge structures of the Hn(X(C )x ; C ),

x 2 CÆ(C ). We will examine this and further questions in a forthcoming paper.

We now sketch the method of the construction of the functor F 7! eF in a toy
model. Let S be a 2-dimensional real manifold, x 2 S and SÆ = S n fxg. Let D
be a small disc around x in S and DÆ = D n fxg. For a manifold M let DM (M)
be the derived category of the category of sheaves of abelian groups on M . This
is the homotopy category of a symmetric monoidal model category satisfying our
assumptions of Part I. Let UDM (M) be the smallest triangulated subcategory
of DM (M) containing the constant sheaf Z and closed under arbitrary sums. The
objects in UDM (M) should be thought of as generalized unipotent objects. Clearly
we can identify UDM (DÆ) and UDM (T ÆS;x) via some choice of inclusion D ,! TS;x
inducing the identity on the tangent spaces at x and 0.

Let F 2 DM (SÆ) such that FjDÆ 2 UDM (DÆ). Then we get a sheaf eF as
the image of FjDÆ in UDM (T ÆS;x). Unfortunately this assignment is not algebraic
if we replace S by a complex smooth algebraic curve. What we can do is the
following: Let i : fx0g ! S be the closed and j : SÆ ! S the open inclusion. Let
p : T ÆS;x0 ! fx0g be the projection. Then we have two main observations:

There is a canonical isomorphism i�Rj�Z�= Rp�Z in DM (fx0g) = DComp(Ab).
This isomorphism can also be constructed as an isomorphism in DCommComp(Ab)

(for the de�nition of DCommComp(Ab) see 9.5). This isomorphism is not enough
to get an equivalence of the derived categories of modules over these algebras.
But fortunately there is also a chain of weak isomorphisms in D�2CommComp(Ab)
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connecting i�Rj�Z and Rp�Z, which is suÆcient to get a canonical equivalence
D(i�Rj�Z{Mod ) � D(Rp�Z{Mod). (for the de�nition of the module categories see
9.11). The motivic version of these statements is Proposition 15.19.

The second observation is that D(Rp�Z{Mod ) is equivalent to the full subcate-
gory UDM (T ÆS;x0) of DM (T ÆS;x0). This is motivated by the fact that the Ext groups
in both categories between the tensor unit and itself are the same. An abstract
version of this statement is Theorem 13.4 of the next section. The motivic versions
are Corollaries 15.12 and 15.14.

Now we can start with any F 2 DM (SÆ) and form i�Rj�F as a module over
i�Rj�Z. Sending i

�Rj�F further along the two equivalences

D(i�Rj�Z{Mod ) � D(Rp�Z{Mod) � UDM (T ÆS;x0)

de�nes indeed a natural functor

DM (SÆ)! DM (T ÆS;x0)

which now has a motivic analogue as we shall see.

The existence of this motivic local monodromy functor will in particular give
tangential basepoint functors in the motivic setting, for example it will be possible
to de�ne the motivic fundamental group of P1Q nf0; 1;1g with base point ~01 as was
done in [Del] for the realization categories. Then it is not hard to construct motivic
polylogarithm sheaves such that all conditions of [BD] are satis�ed for the motivic
proof of the weak Zagier Conjecture. We will come back to this application in a
future paper.

13. Unipotent objects as a module category

The equivalence D(Rp�Z{Mod ) � UDM (T ÆS;x0) mentioned in the introduction
also has a relative version. In the applications we will need such a relative version
in the following situation: Let f : X ! S be a morphism of schemes. In the next
sections we will consider triangulated categories of motivic sheaves DM (S) and
DM (X). There is a functor f� : DM (S) ! DM (X) which is the functor induced
on the homotopy categories of a symmetric monoidal left Quillen functor between
symmetric monoidal model categories. The statement we are going to formulate is
that under some conditions it is possible to describe the full subcategory of DM (X)
consisting of objects which are unipotent relative to S (which means that they are
successive (possibly in�nitely many) extensions of objects coming from DM (S) via
f�, see below) by the category of modules over the relative cohomology algebra
Rf�1l.

In the following we will replace the notation Rf� etc. by f� for the derived
functors. If f� is taken for the model categories or the homotopy categories will
depend on whether the object f� is applied to is an element of the model or the
homotopy category.

We examine the question above in the following general situation: Let f� :
C ! D be a symmetric monoidal Quillen functor between co�brantly generated
symmetric monoidal model categories satisfying Assumption 9.6. Let f� be the
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right adjoint of f�. Let 1lD ! R1lD be a �brant replacement of the initial object in
CommD and set A := Qf�(R1lD) 2 CommC . We then get an adjunction

D(A{Mod )
~f� //

HoD
~f�

oo ,

where ~f� �rst maps to D(f�A{Mod ) and then to D via pushforward along the
natural map f�A! 1lD.

Our aim is to formulate conditions under which ~f� is an equivalence onto its
image. If this is the case the objects in the image of ~f� can be viewed as generalized
unipotent objects with respect to C, i.e. they are constructed by some iterated
homotopy colimits of objects coming from C, see below.

13.1. Subcategories generated by homotopy colimits. By a homotopy colimit
in HoC we mean the image in Ho C of a homotopy colimit over a diagramD : I ! Cc
(see [Hir, De�nition 20.1.2] for homotopy colimits). By the homotopy colimit of a
diagram D : I ! C we mean the homotopy colimit of the diagram QD. For an
ordinal � a homotopy �-sequence is a homotopy colimit of a diagram D : � ! C
such that for any limit ordinal � < � the map from the homotopy colimit of Dj�
to D(�) is a weak equivalence. We call a full subcategory C0 of C saturated if C0 is
equal to its essential image.

De�nition 13.1. Let C be a class of objects in HoC. By the full subcategory of
HoC C-generated by homotopy colimits we mean the smallest saturated full subcat-
egory hCiHo C of Ho C which contains C and is closed under homotopy colimits, i.e.
contains all homotopy colimits whose terms map to hCiHo C.

13.2. The result. Recall that a model category C is called stable if the suspension
functor on HoC is an equivalence (see [Hov1, De�nition 7.1.1]). In this case Ho C
is a (classical) triangulated category.

Lemma 13.2. Let C be a stable model category and

B
~g // D

A

f

OO

g // C

~f

OO

be a homotopy pushout square in Ho C. Then there is an exact triangle in Ho C of
the form

A
(f;�g) // B � C

~g� ~f // D // A[1] .

There is a dual statement for homotopy pullback squares.

Proof. We have to check that the diagram

0 // D

A

OO

(f;�g) // B � C

~g� ~f

OO
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is a homotopy pushout square in Ho C. Therefore it is suÆcient to check that for
any T 2 Ho C the induced square on mapping complexes

pt

��

map(D;T )oo

��
map(A; T ) map(B; T )�map(C; T )oo

is a homotopy pullback square in HoSSet. Since C is stable we know that map(A; T )
has the homotopy type of a loop space. So we are reduced to the following situation:
Let X , Y and Y 0 be topological spaces and suppose that X is pointed. Let f : Y !

X and f 0 : Y 0 ! 
X be maps. The homotopy �ber product of Y ! 
X  Y 0 is
given by the space E consisting of triples (y; y0; '), where y 2 Y , y0 2 Y 0 and ' is
a homotopy from f(y) to f 0(y0). Let f�1 be the map which is the composition of f
and the automorphism of 
X which sends a path to its invers. Then the homotopy

�ber product of pt ! 
X
(f�1;f 0)
 � Y � Y 0 is given by the space F consisting of

triples (y; y0; '), where y 2 Y , y0 2 Y 0 and ' is a path from f(y)�1 � f 0 to the
identity. Clearly there is a natural homotopy equivalence E � F giving the square
above in HoSSet after the identi�cations 
X = map(A; T ), Y = map(B; T ) and
Y 0 = map(C; T ). This proves our claim. �

Remark 13.3. If we allow for one of the summands ~g or ~f in the map ~g � ~f
appearing in the Lemma to be arbitrary then there is an easy proof of the statement
involving only arguments in the triangulated category HoC.

The main theorem of this section is

Theorem 13.4. Let C, D, etc. be as in the �rst paragraph of this section. Assume
that the following conditions are ful�lled:

(1) For M 2 Ho C the image of a domain or codomain of a generating co�bra-
tion of C the projection morphism M 
A] ! f�(f

�M) is an isomorphism.
(2) The functor f� : HoD ! Ho C commutes with homotopy �-sequences for

all ordinals �.
(3) C (and hence also D) is a stable model category.

Then the symmetric monoidal functor ~f� is an equivalence onto its image and its
essential image is the full subcategory of D f�(D)-generated by homotopy colimits,
where D is the set of all domains and codomains of the generating co�brations of
C. This subcategory is a 
-subcategory.

Proof. For the equivalence it is suÆcient to show that the unit IdHo C ! ~f� Æ ~f� of
the adjunction is an isomorphism. Let I be the generating co�brations of C. Let
X : � ! C be an A C (S
 I)-cell complex in A{Mod (so X0 is the inital object),
such that Xi+1 is a pushout of Xi by a map A C (S
 fi) : A C (S
 Ai) ! A C
(S
Bi) with fi 2 I . Let � : f�A! R1lD be the natural map in CommD. We show
by induction on i 2 � that the map Xi ! f�(R(��f

�Xi)) is a weak equivalence.
For i a limit ordinal this follows from our second condition. Let us prove it for i+1:
Since C is stable Lemma 13.2 gives an exact triangle

41 : A C (S
Ai)! A C (S
Bi)�Xi ! Xi+1 ! (A C (S
Ai))[1]
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in the triangulated category D(A{Mod ) which �� Æ f� maps to the exact triangle

42 : f
�(Ai)! f�(Bi)� ~f�(Xi)! ~f�(Xi+1)! f�(Ai)[1]

in HoD. Now again by stability the unit gives a map of exact triangles 41 !
~f�(42), which is by the projection ismorphism (the condition 1) and by induction
hypothesis an isomorphism on the �rst two terms, hence it is an isomorphism on
the third.

The essential image of ~f� clearly is contained in the full subcategory of HoD
generated by colimits in f�(Ho C). Let D : I ! (R1lD{Mod)cf be a small diagram

which maps on the homotopy level to the essential image of ~f�. Then f�(D) is
a diagram in A{Mod , and the natural map ��f

�(Qf�(D)) ! D is an objectwise
weak equivalence by the �rst part of the Theorem. The claim now follows since
��f

� preserves homotopy colimits. �

14. Examples

Our main examples will be for the A 1 -local homotopy categories of spaces or
of motives over some base scheme, which have all been introduced by Vladimir
Voevodsky. The homotopy categories of spaces will be modeled on the category
of sheaves of simplicial sets on some site of schemes, the homotopy categories of
motives on the category of complexes of sheaves of abelian groups with transfers
on sites as above. The meaning of the various expressions will be explained later.
What is important is that there will be Quillen functors on the corresponding
model categories from spaces to motives and for a change of base schemes. In this
section we will give a general scheme which will set all these model structures and
functorialities on a common footing.

14.1. Basic example. We start with a closed symmetric monoidal bicomplete
category S and a symmetric monoidal complete Grothendieck abelian category A
(which hence is also cocomplete) together with a symmetric monoidal left adjoint
l : S ! A. For example in the case of the toy model of section 12 S is the category
of sheaves of sets on a manifold M , A the category of sheaves of abelian groups on
M and l the functor which sends a sheaf of sets F to the sheaf of abelian groups
freely generated by F . Let Ch(A) denote either Comp(A) or Comp�0(A). We
have an induced pseudo symmetric monoidal functor L : 4opS ! Ch(A) which
is the composition of 4opl and the associated normalized complex functor. Let R
denote the right adjoint of L. LetW �4opS be a subcategory such thatW as weak
equivalences and the monomorphisms as co�brations are part of a left proper model
structure on 4opS. We call this model structure the injective model structure. On
Comp�0(A) and Comp(A) there is also an injective proper model structure as
explained in [Hov4], and the natural embedding Comp�0(A) ! Comp(A) is a left
Quillen functor. We suppose that L(W) consists of quasi isomorphisms, that a map
f in Comp�0(A) is a quasi isomorphism if and only if R(f) 2 W and that for a
trivial co�bration f in SSet and a monomorphism g in S we have f�g 2 W .

Let Is (respectively Ia) be the set of generating co�brations of SSet (respectively
of Ch(Ab)) and Js (respectively Ja) the set of generating trivial co�brations of
SSet (respectively of Ch(Ab)).
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LetM be a set of monomorphisms in S such that l(M) also consists of monomor-
phisms. Set IsM := Is�M, JsM := Js�M, IaM := Ia�M and JaM := Ja�M. Here
one should have in mind the situation of our toy model from section 12 whereM
will be the set of maps [V ]! [U ] for open inclusions V � U � X ([U ] denotes the
sheaf represented by U). We formulate the following conditions forM:

C0 1l 2 S appears as a codomain of a map ofM.
C1 For any domain or codomain X of a map of M the map ; ! X is also

contained inM.
C2 Let f 2 JsM-inj. Then f 2 W if and only if for any codomain X of a map

ofM the map Hom(X; f) is a weak equivalence in SSet.
C3 Any codomain X of a map of M is �nite, i.e. the functor Hom(X; )

commutes with sequential colimits.
C4 For f; g 2M the pushout product f�g is also contained inM.

Then we have

Proposition 14.1. If M satis�es C1� C3 the sets IsM and JsM (respectively IaM
and JaM) form a set of generating co�brations and generating trivial co�brations
for a left proper model structure on 4opS (respectively a proper model structure on
Ch(A)) such that L is a left Quillen functor. The domains and codomains of the
generating (trivial) co�brations of these model structures and, if C0 is ful�lled, the
units of the symmetric monoidal structures are co�brant and �nite. If moreover C4
is valid the model structures are symmetric monoidal and L is a pseudo symmetric
monoidal Quillen functor.

Proof. First we verify the conditions of [Hov1, Theorem 2.1.19] for the two cate-
gories in question. Clearly the domains and codomains of the generating (trivial)
co�brations are �nite, hence properties 2 and 3 are ful�lled. 1 and 4 are true by
our assumptions and by the injective model structures. By C1 a map f 2 JsM-inj
lies in IsM-inj if and only if it has the right lifting property with respect to all maps
(@�n ,! �n) �X for every codomain X of a map of M. Hence condition 5 and
the second alternative of condition 6 follow from C2. These conditions for Ch(A)
follow then by adjunction applying in the case of Comp(A) appropriate shifts of
complexes. If C4 is ful�lled the model structures are symmetric monoidal by [Hov1,
Corollary 4.2.5]. Left properness follows from left properness for the injective model
structures. The remaining statements of the Proposition are clear. �

Remark 14.2. If we enlarge the set of monomorphismsM by maps whose domain
and codomain appears already as a codomain of a map inM the conditions C0�C3
are still ful�lled.

14.2. cd-structures. We give examples of the above situation. S will always be
the category of sheaves of sets on a small site coming from a complete, bounded
and regular cd-structure P on a category C (see [Vo1, Section 2]). If we take as set
of monomorphisms MP all maps �(A) ! �(X) for squares in P as in [Vo1, Def.
2.1] (here �(X) is the sheaf associated to the presheaf represented by X) together
will all maps ; ! �(X) for X 2 C the conditions forM are ful�lled except possibly
C4. Proposition 14.1 yields the model structure of [Vo1, Theorem 4.5]. But also
model structures with enlarged set of monomorphisms are interesting, for example
to ensure C4.
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Let S be a separated Noetherian scheme, Sch=S the category of separated Noe-
therian schemes of �nite type over S, Sm=S the full subcategory of smooth schemes
over S and Prop=S the full subcategory of proper schemes over S. Let C be one of
these categories and P one of the complete cd-structures of [Vo1, Lemma 2.2] on
C. P is also bounded and regular by the results of [Vo1]. In the following S will
always be the category of sheaves on C for the topology generated by P . We call
this topology tP .

For the cd-structures P which are either contained in the upper (respectively the
lower) cd-structureMP also ful�lls C4, since the domain of a pushout product of
maps of MP is again an open (respectively a closed) subscheme of the codomain
by the de�nition of the topology tP . For the combined cd-structures we have to

enlargeMP in the following way: First we build the union over all maps �
n

i=1fi,
fi 2MP to get the setM , and then we adjoin all maps ; ! X toM for all domains
X of maps of M arriving at a setMP;�. We setMP;� :=MP if P is contained in
the upper or lower cd-structure.

Lemma 14.3. MP;� satis�es condition C2.

Proof. The \only if" part is clear. Let f : A ! B be a map in JMP;�
-inj \ W .

The general domain of a map in M (see above) is the domain D of a map (Z �
X)�(U � Y ) for Z � X closed and U � Y open, X , Y of �nite type over S.
We know that Hom(D; f) is a �bration, so to show that it is a weak equivalence
we can choose a point y 2 Hom(D;B) and show that F := Hom(D; f)�1(y) is
contractible. We have Hom(D;A) = Hom(X�SU;A)�Hom(Z�SU;A)Hom(Z�SY;A)
(similar for Hom(D;B)). Let y1, y2 and ~y be the images of y in Hom(X �S U;B),

Hom(Z�SY;B) and Hom(Z�SU;B) and F1, F2 and eF be the corresponding �bers

with respect to the obvious maps. Then F = F1 � eF F2, and the maps Fi ! eF ,
i = 1; 2, are �brations by the following Lemma. Hence F is contractible as well. �

Lemma 14.4. Let M be a set of injections in C, let ' : A ! B be a map in M
and let f : X ! Y be a map in JM-inj. Let y 2 Hom(B; Y ) and y0 be the image
in Hom(A; Y ). Then the map of �bers Hom(B; f)�1(y) ! Hom(A; f)�1(y0) is a
�bration.

Proof. It follows from the de�nition of JM that the map in question has the right
lifting property with respect to the maps �nk � �n. �

SoMP;� is a set of monomorphisms in 4opS satisfying C0-C4.

14.3. Sheaves with transfers. We now have to explain what A will be. We
denote by Cor(C) (respectively Cor equi(C)) the category with the same objects
as C and with homomorphism groups HomCor(C)([X ]; [Y ]) = c(X;Y ) := c(X �S
Y=X; 0) (respectively HomCorequi(C)([X ]; [Y ]) = cequi(X;Y ) := cequi(X �S Y=X; 0))
(for notation see [SV1, after Lemma 3.3.9]).

There is a functor C ! Cor (equi)(C), which sends X to [X ] and a morphism
f : X ! Y to the cycle associated to the closed subscheme Xred � X �S Y ,
the graph of f . A presheaf with (equidimensional) transfers on Cor (equi)(C) is an
additive contravariant functor from Cor (equi)(C) to the category of abelian groups.
It is called a tP -sheaf with transfers if the composite with C ! Cor (equi)(C) is a
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tP -sheaf. The category of presheaves with transfers (respectively of tP -sheaves with
transfers) is denoted by PreShv(Cor (equi)(C)) (respectively ShvP (Cor (equi)(C))).

Assumption 14.5. We have to make the following restrictions to ensure that
there is an exact associated sheaf functor: We use either the Nisnevich topology
with sheaves with equidimensional transfers on Sch=S or Sm=S or the cdh-topology
with sheaves with all transfers on Sch=S.

Assuming this assumption PreShv (Cor (equi)(C)) and ShvP (Cor (equi)(C))) are
Grothendieck abelian categories and there is an exact associated sheaf functor

PreShv (Cor (equi)(C))! ShvP (Cor (equi)(C))

which commutes with the functor which forgets the transfers. Write Ztr(X) for
the corresponding tP -sheaf with transfers associated to the presheaf with transfers
represented by [X ]. Note that the map Ztr(Xred)! Ztr(X) is an isomorphism.

In the following we sometimes abbreviate �S by �.

14.4. The tensor structure for sheaves with transfers.

Proposition 14.6. Cor (equi)(C) is a symmetric monoidal additive category where
the tensor product on objects is given by [X ]
 [Y ] = [X �S Y ].

Proof. In the following we write c(X;Y ) for either c(X;Y ) or cequi(X;Y ) (similarly
for c(X=S; 0)). Let X;Y;X 0; Y 0 2 C. We de�ne a bilinear exterior product map

� : c(X;Y )� c(X 0; Y 0)! c(X �S X
0; Y �S Y

0)

in the following way: Let W 2 c(X;Y ) and W 0 2 c(X 0; Y 0). Let Z 0 := cycl(X �
X 0 ! X 0)(W 0) 2 c(X � X 0 � Y 0=X � X 0; 0) and Z := cycl (X � X 0 � Y 0 !
X)(W ) 2 c(X � Y �X 0 � Y 0=X �X 0 � Y 0; 0) (see [SV1, p. 29] for the de�nition
of cycl). Then the correspondence homomorphism from [SV1, 3.7] yields a cycle
W �W 0 := Cor (Z;Z 0) 2 c(X � Y �X 0� Y 0=X �X 0; 0), which de�nes the desired
map.

Claim 1: The diagram

c(X;Y )
 c(X 0; Y 0) //

��

c(X �S X 0; Y �S Y 0)

��
c(X 0; Y 0)
 c(X;Y ) // c(X 0 �S X;Y 0 �S Y )

,

where the vertical maps are (induced from) natural commutativity morphisms,
commutes.

Proof. Let W =
Pn

i=1 niWi and W 0 =
Pm

i=1miW
0
i , where the Wi and W 0

i are
integral schemes. Let �1; : : : ; �r be the generic points of X �S X 0. The Wi �S W 0

j

are naturally schemes overX�SX 0, and we denote by (Wi�SW 0
j)�k their pullbacks

to the �k. We show that

W �W 0 =
X
i;j;k

nimjcycl�k�SY�SY 0((Wi �S W
0
j)�k ) 2 Cycl (X � Y �X 0 � Y 0) ,

from which the claim follows because of the symmetry of the expression on the right
hand side (here cycl ( ) is de�ned as in [SV1, 2.3]). First note that cycl(X �X 0 !
X 0)(W 0) =

P
i;kmicycl�k�SY 0((X �S W

0
i )�k ), because every �k lies over a generic
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point of X 0 and so the pullback to a blow-up of X 0 appearing in the de�nition of
cycl does not matter in this case. Let � be a generic point of � 0 := (X �S W 0

i )�k
appearing in there with multiplicity l� and T� be the closure of � in X �X 0 � Y 0.
Then by de�nition of Cor the product W �W 0 is the sum over i; k and all such �
of the mil� � cycl (T� ,! X � X 0 � Y 0)(Z) = mil� � cycl(T� ! X)(W ). As above
we have cycl(T� ! X)(W ) =

P
j njcycl ��SY (� �X Wj). Moreover by comparing

dimensions of vector spaces over �(�k) we have
P

� l� � cycl�k�SY�SY 0(� �XWj) =
cycl�k�SY�SY 0(�

0 �X Wj), where the sum is over all generic points � of � 0, so
because � 0 �X Wj = (Wj �S W 0

i )�k we are �nished. �

Claim 2: Let X;Y; Z;W 2 Cor (equi)(C) and f 2 c(X;Y ) and g 2 c(Y; Z). Then

(g � IdW ) Æ (f � IdW ) = (g Æ f)� IdW .

Proof. First observe that f � IdW = i�(cycl (X �W ! X)(f)), where i : X � Y �
W ,! X � Y �W �W is identity times diagonal. Let gX := cycl(X �Y ! Y )(g).
Then by [SV1, Proposition 3.6.2] (g Æf)� IdW is the pushforward of h := cycl (X�
W ! X)(Cor(gX ; f)) with respect to the natural map ' : X �Y �Z�W ! X �
Z�W�W . Let fW := cycl (X�W ! X)(f) and gXW := cycl (X�Y �W ! Y )(g).
By [SV1, Theorem 3.7.3] we have h = Cor(gXW ; fW ), so one needs to show that
'�(Cor (gXW ; fW )) = (g � IdW ) Æ (f � IdW ), which we leave to the reader since it
is straightforward. �

Claim 3: Let X;Y;X 0; Y 0 2 Cor (equi)(C) and f 2 c(X;Y ), g 2 c(X
0; Y 0). Then

we have

(f � IdY 0) Æ (IdX � g) = f � g .

Proof. Straightforward. �

Now the three claims immediately imply that the exterior product � together
with the obvious associativity and commutativity morphisms de�ne a symmetric
monoidal structure on SmCor(S). �

From now on we assume that the conditions of Assumption 14.5 are ful�lled.

De�nition 14.7. Let F;G;H 2 ShvP (Cor (equi)(C)). A bilinear map F �G! H
is a bilinear map for F , G and H considered as presheaves on C such that the
induced bilinear maps F (U) � G(V ) ! F (U � V ) � G(U � V ) ! H(U � V ) are
functorial in U and V for all maps from Cor (equi)(C). Denote by Bil(F � G;H)
the group of bilinear maps from F �G to H.

Remark. This is the same as giving a system of bilinear maps as in [SV2, Lemma
2.1].

Lemma 14.8. For X;Y 2 C there is a bilinear map

bX;Y : Ztr(X)�Ztr(Y )! Ztr(X �S Y )

which is universal for bilinear maps Ztr(X)�Ztr(Y )! H, H 2 ShvNis (SmCor(S)).
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Proof. For U 2 C the bilinear map c(U;X) � c(U; Y ) ! c(U;X � Y ) is given
as the composition c(U;X) � c(U; Y ) ! c(U � U;X � Y ) ! c(U;X � Y ), where
the �rst arrow is the exterior product map and the second one is composition
with the diagonal U ! U � U . The corresponding bilinear maps Ztr(X)(U) �
Ztr(Y )(V )! Ztr(X�Y )(U�V ) are the exterior product maps, which are functorial
for morphisms from Cor (equi)(C) by Proposition 14.6. This de�nes bX;Y .

Now let ' : Ztr(X) � Ztr(Y ) ! H , H 2 ShvP (Cor (equi)(C)), be a bilinear
map and pX and pY be the projections from X � Y to X and Y . Let  be
the map Ztr(X � Y ) ! H corresponding to h := '(pX ; pY ) 2 H(X � Y ). Let
(f; g) 2 c(U;X)� c(U; Y ). Clearly ( Æ bX;Y )(f; g) = (U ! X � Y )�(h), which is
by the functoriality of ' with respect to morphisms from Cor (equi)(C) also equal to
'(f; g), so ' =  Æ bX;Y . Moreover  is uniquely determined by this equality. �

Lemma 14.9. Let I and J be small categories and F : I ! ShvP (Cor (equi)(C)),
G : J ! ShvP (Cor (equi)(C)) be diagrams. Then for H 2 ShvP (Cor (equi)(C)) we
have

Bil((colimF )� (colimG); H) = lim
(i;j)2I�J

Bil(Fi �Gj ; H) .

Proof. Straightforward. �

Let the notation be as in the Lemma. It follows that if we have universal bilinear
maps Fi � Gj ! H(i;j) then the natural bilinear map (colimF ) � (colimG) !
colim(i;j)H(i;j) is also universal. Since every sheaf is the colimit of sheaves of the
form Ztr(X) for X 2 C and because of Lemma 14.8 we can make the

De�nition 14.10. For F;G 2 ShvP (Cor (equi)(C)) a tensor product for F and G
is a universal bilinear map F � G ! F 
 G. This exists, is unique up to unique
isomorphism and commutes with colimits.

One easily shows that this tensor product de�nes a symmetric monoidal struc-
ture on ShvP (Cor (equi)(C)). The embedding Cor (equi)(C) ,! ShvP (Cor (equi)(C)) ,
[X ] 7! Ztr(X), is symmetric monoidal.

14.5. Spaces and sheaves with transfers. We still work in the situation of
Assumption 14.5 for the abelian side. So let A be either ShvNis (Cor equi(Sm=S)) or
Shvcdh(Cor (Sch=S)) and S either ShvNis (Sm=S) or Shvcdh(Sch=S). The functor
C ! Cor (equi)(C) extends to a left adjoint l : S ! A by requiring that it commutes
with colimits. One easily checks that S, A and l satisfy the conditions of section
14.1. LetMP;� be as in section 14.2.

Lemma 14.11. l(MP;�) consists of monomorphisms.

Proof. A map in l(MP;�) for which we have to prove something is of the form
Ztr((Z � X)�(U � Y )) for Z � X closed and U � Y open. We prove that the
sequence

0! Ztr(Z � U)! Ztr(X � U)�Ztr(Z � Y )
'
! Ztr(X � Y )

is exact as a sequence of presheaves. Let V 2 C. Let � = �1 � �2 2 ker('(V )).
Then the �i, i = 1; 2, consist of integral subschemes supported on V �Z �U , and
by the next Lemma the corresponding cycle on V � Z � U belongs to c(equi)(V �
Z � U=V; 0). �
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Lemma 14.12. Let X 2 Sch=S and Y � X locally closed. Let Z =
P
mizi 2

Cycl(Y ) (see [SV1, Section 2.3]) be a cycle such that the closures of the zi in Y are
proper over S. We denote by Z also the image of Z in Cycl (X).

(1) If Z belongs to Cycl(X=S; r) (respectively to one of the other cycle sub-
groups of Cycl (X) de�ned in [SV1, De�nition 3.1.3]), then Z also belongs to
Cycl (Y=S; r) (respectively to the corresponding cycle subgroup of Cycl (Y )).

(2) If Z belongs to c(X=S; r) (respectively to cequi(X=S; r)), then Z also belongs
to c(Y=S; r) (respectively to cequi(Y=S; r)).

Proof. The �rst point follows from the fact that the pullback of Z along fat points
does not depend on whether we consider Z as a cycle on Y or on X because of the
properness assumption. The other cycle subgroups of [SV1, De�nition 3.1.3] also
do not depend on whether we consider Z on Y or X . For the second point we have
to check that the equivalent conditions of [SV1, Lemma 3.3.9] are ful�lled for Z on
Y if they are ful�lled for Z on X . This is the case since the pullback of Z along
a map T ! S does again not depend on whether we consider Z on Y or X and
because Cycl(Y=S; r)Q \ Cycl (X=S; r) = Cycl (Y=S; r). �

Hence we have all conditions satis�ed forMP;�, so by Proposition 14.1 we get
symmetric monoidal model structures on 4opS and Ch(A) together with a pseudo
symmetric monoidal Quillen functor 4opS ! Ch(A).

14.6. A 1 -localizations. From now on we suppose that C is either Sch=S or Sm=S.

Lemma 14.13. The model structures on 4opS and Ch(A) are cellular.

Proof. Since the model structures are �nitely generated it suÆces to check condition
3 of [Hov3, De�nition A.1], which is immediate. �

Hence by [Hir, Theorem 4.1.1] we can take the left Bous�eld localization of
4opS (respectively Ch(A)) with respect to maps �n � (A 1X ! X), n 2 N (respec-
tively SnZtr(A

1
X ! X), n 2 Z), where X runs through a set of representatives

of isomorphism classes of C. We denote the corresponding model category by
Spc(S) (respectively Me� (S)). These are symmetric monoidal model categories.

LetH(S) := HoSpc(S) and DM e�

(�0)(S) := HoMe� (S) (where (� 0) refers to which

of Comp(A) or Comp�0(A) we have taken for Ch(A)). Note that for C = Sm=S
and P the upper cd-structure H(S) is the motivic homotopy category de�ned in
[MV]. Let Spc�(S) be the pointed version of Spc(S) provided by [Hov1, Proposition
1.1.8] and set H�(S) := HoSpc�(S).

We have symmetric monoidal left adjoints

H(S)! H�(S)! DM e�
�0(S)! DM e� (S) .

14.7. T-stabilizations. Let T be a co�brant object in Spc�(S) weakly equivalent

to (P1;1). Denote by Sp�
T
(S) (respectivelyM(�0)(S)) the symmetric monoidal cat-

egory of symmetric T-spectra in Spc�(S) (respectively of symmetric L(T)-spectra

in Me�

(�0)(S)) provided by [Hov3, Theorem 7.11]. Note that the functor M�0(S)!

M(S) is a Quillen equivalence. We denote the corresponding homotopy categories
by SH(S) and DM (S).
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Very often it is possible to compare symmetric and non-symmetric spectra for
these categories (i.e. to construct equivalences for the homotopy categories), but
up to now not in full generality.

14.8. Functoriality. The model categories Spc(S), Spc�(S), M
e�

(�0)(S), Sp
�
T(S)

and M(�0)(S) depend functorially on S, i.e. they de�ne left Quillen presheaves
on the category of separated Noetherian schemes (see [Hi-Si, Section 17]). The
natural Quillen functors between these model categories extend to morphisms of
left Quillen presheaves.

Let C(S) be one of these model categories and let f : X ! S be an object
of the underlying site C = C(S). We have functors MS : C(S) ! C(S) and
MX : C(X) ! C(X). In this situation f� is also a right Quillen functor with left
adjoint f! which sends MX(Y ) to MS(Y ) for Y 2 C(X).

Proposition 14.14. Let f : X ! S be an object in C(S) and let A;B 2 Ho C(S)
and C 2 HoC(X). Then we have:

(1) There is a canonical isomorphism f�f
�A �= HomHo C(S)(MS(X); A).

(2) The natural map

f!(C 
 f
�A)! f!C 
A

in Ho C(S) is an isomorphism.
(3) The natural map

f�Hom(A;B)! Hom(f�A; f�B)

in Ho C(X) is an isomorphism.

Proof. We prove the third point, the �rst two are similar but easier. Since f� is also
a right Quillen functor it commutes with homotopy limits and �ber sequences, hence
we can assume that A is of the form MS(U), U 2 C(S). Let B 2 C(S) be �brant
and co�brant. The category C(S) consists of sheaves (maybe with transfers) on
C(S) with values in some category V , and there is a functor v : V ! Set such that
for F 2 C(S) and V 2 C(S) we have Hom(MS(V ); F ) = v(F (V )). Let V 2 C(X).
We have

f�HomC(S)(MS(U); B)(V ) = HomC(S)(MS(U); B)(V )

= v(B(U �Y V )) = v(B(UX �X V )) = HomC(X)(MX(UX); f
�B)(V ) ,

which shows the claim. �

15. Applications

In this section we will give applications of the general theory of E1-algebras in
the model categories C(S) as in section 14.8. In particular we use Theorem 13.4 to
construct what we call limit motives. A special case thereof is a motivic de�nition
of tangential basepoints.

We need some preparations.

Let C be a co�brantly generated model category with generating (trivial) co�-
brations I (J) which we assume to be almost �nitely generated (see [Hov3, Section
4], where we use a slightly stronger condition for an object F 2 C to be �nitely
presented, namely we require that Hom(F; ) commutes with �-sequences for all
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ordinals �, not only for � = !. Let J 0 be the second set of trivial co�brations
appearing in the de�nition of almost �nitely generated.

We formulate the following further assumptions on C:

D1 The co�brations in C are monomorphisms. This has the consequence that
any subcomplex of a relative I-cell complex (see [Hir, De�nition 12.5.7]) is
uniquely determined by its set of cells.

D2 There is a class F of �nitely presented objects in C containing the domains
and codomains of maps of I and J and closed under �nite coproducts such
that the following assertion is valid: For any F 2 F , triangle B  A ! C
in C and map ' : F ! B tA C there is an F 0 2 F and a map  : F 0 ! B
such that for any co�bration B0 ! B such that A! B factors through B0

' factors through B0 tA C if and only if  factors through B0.
D3 There is a functorial cylinder object F 7! F 
 I such that F 
 I is �nitely

presented if F 2 F and which preserves co�brant objects.

Lemma 15.1. Let X : �! Cf be a diagram. Then colimXi also belongs to Cf .

Proof. Immediate from the de�nition of almost �nitely generated. �

Lemma 15.2. Let A 2 C be �nitely presented and co�brant with a cylinder object
A
 I which is also �nitely presented and co�brant. Let X : � ! C be a diagram.
Then the natural map

colimiHomHo C(A;Xi)! HomHo C(A; hocolimiQXi)

is an isomorphism.

Proof. We can always achieve that the diagram X is a �-sequence in Ccf and that
the transition maps are co�brations. Then colimXi is �brant by the Lemma above
and computes the homotopy colimit. Because of the assumptions on A the homo-
topy classes of maps from A to colimXi coincides with the colimit of the homotopy
classes of maps from A to the Xi, which is the statement we want to prove. �

Lemma 15.3. Assume that C ful�lls D1 and D2. Let X : � ! C be a relative
I-cell complex, F 2 F and f : F ! colimX a map. Then there is a smallest �nite
subcomplex of X through which f factors.

Proof. By trans�nite induction on �: If � is a limit ordinal or the successor of a
limit ordinal then because F is �nitely presented f factors through some Xi, so
the assertion follows by induction hypothesis. Let � = � + 2 and suppose that f
does not factor through X�. Let X�+1 be a pushout of X� by ' : A ! B in I .
Choose an F 0 as in D2 for the triangle X�  A ! B. Then there is a smallest
�nite subcomplex of X j�+1 through which the map A t F 0 ! X� factors. Then
the pushout of this subcomplex by ' is the desired �nite subcomplex. �

Corollary 15.4. Let D1 and D2 be ful�lled. The intersection of subcomplexes of
a relative I-cell complex (which is de�ned by the intersection of the set of cells) is
again a subcomplex. The union of subcomplexes is a subcomplex.
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Lemma 15.5. Let D1 and D2 be ful�lled. Let L : �! C be an I-cell complex and
X 2 C. Then the map

Hom(colimL;X)! lim
K�L

HomHo C(colimK;X) ,

where K � L runs over the �ltered system of all �nite subcomplexes, is an isomor-
phism.

Proof. Let X be �brant and X� a simplicial frame on X . For a subcomplex K of
L let SK := Hom(colimK;X�) 2 SSet. For inclusions of subcomplexes K � K 0

the map SK0 ! SK is a �bration in SSet. We have to prove bijectivity of the
natural map ' : �0(limK SK) ! limK �0(SK), where K runs through all �nite
subcomplexes. Therefore we choose a well-ordering on the set of �nite subcomplexes
S. Then surjectivity of ' follows like this: Let (cK)K2S be an element in the image
of '. We can choose preimages of the cK in the order of the well-ordering in the way
that they are compatible among themselve, which means that the preimages should
coincide on the intersection of the subcomplexes where they are already de�ned.
Injectivity follows in the same way by lifting homotopies. �

Proposition 15.6. Let C be a left proper cellular symmetric monoidal and let
K 2 C be co�brant. Suppose given a full subcategory A � HoC which contains
the images of all domains and codomains of the generating co�brations of C and is
stable under 
K. Suppose further that 
KjA induces isomorphisms on homotopy
function complexes in HoSSet. Then we have:

(1) The composition

A � HoC ! HoSp�(C;K)

is a full embedding.
(2) Suppose further that C is stable and ful�lls D1-D3. Then the functor

Ho C ! HoSp�(C;K)

is a full embedding.

Proof. First observe that by [Hov1, Theorem 5.6.5] the homotopy function com-
plexes map(A
K;B 
K) and map(A;Hom(K;B 
K)) are naturally isomorphic
in HoSSet for A;B 2 Ho C. From this, our hypothesis on 
KjA and A and from
[Hov4, Proposition 5.2] it follows that the natural map A! Hom(K;A
K) is an
isomorphism for A 2 A (*).

The next Lemma shows that the Proposition will follow from

Claim: The unit map for the adjunction between Ho C and HoSp�(C;K) eval-
uated on objects from A is an isomorphism.

Let A 2 C be a co�brant object which maps to the essential image of A in Ho C.
Let R0FK

0 A be a �brant replacement for FK
0 A for the projective model structure

on Sp�(C;K). From (*) it follows that R0FK
0 A is an 
-spectrum, i.e. is already

�brant for the stable model structure. So the right adjoint to LFK
0 sends R0FK

0 A
to Ev0R

0FK
0 A, and the unit morphism A! Ev0R

0FK
0 A is clearly an isomorphism,

which proves the �rst claim.

For the second claim let X and Y be I-cell complexes in C. For a �nite sub-
complex K � X clearly K and K 
 I are �nitely presented, so by Lemma 15.2
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we have HomHo C(K;Y ) = colimiHomHo C(K;Yi). The same statement is valid in

Sp�(C;K). Now since C is stable it therefore follows by trans�nite induction and the
�rst part of the Proposition that the map HomHo C(K;Y )! HomHoSp�(C;K)(K;Y )
is an isomorphism (we omitted applying the appropriate functor). Finally Lemma
15.5 implies that also the map HomHo C(X;Y ) ! HomHo Sp�(C;K)(X;Y ) is an iso-
morphism. �

Lemma 15.7. Let L : C $ D : R be an adjunction and suppose that the unit map
is an isomorphism on a full subcategory i : A ! C. Then L Æ i is a full embedding.

Proof. This follows immediately from the fact that the counit is also an isomorphism
on the image of A under L because the composition

LA
L(unitA) // LRLA

counitLA // LA

is the identity for all A 2 C. �

15.1. Motives over smooth schemes. For a separated Noetherian scheme set
SmCor(S) = Cor equi(Sm=S). We consider the categories of the last section for this
case. Let k be a �eld and set SmCor(k) = SmCor (Spec(k)).

We �rst want to compare the categories DM e� (k) and DM (k) and the categories
de�ned in [Vo3] (see below).

Recall that a presheaf with transfers F on Sm=k is called homotopy invariant
if for all X 2 Sm=k the map F (X) ! F (X � A 1 ) is an isomorphism. An F 2
ShvNis(SmCor (k)) is homotopy invariant if it is homotopy invariant as a presheaf
with transfers.

Proposition 15.8. For a complex Z 2 D(ShvNis(SmCor (k))) the following condi-
tions are equivalent:

(1) Z is A 1 -local.
(2) The map on homomorphism groups in D(ShvNis (SmCor (k)))

Hom(SnZtr(X); Z)! Hom(SnZtr(X � A
1 ); Z)

is an isomorphism for all X 2 Sm=k and n 2 Z.
(3) The map on homomorphism groups in D(ShvNis (SmCor (k)))

Hom(F;Z)! Hom(F 
 S0Ztr(A
1 ); Z)

is an isomorphism for all F 2 D(ShvNis (SmCor(k))).
(4) The map

Z ! Hom(S0Ztr(A
1 ); Z)

is an isomorphism in D(ShvNis (SmCor(k))).

The equivalent conditions imply:
(5) The cohomology sheaves of Z are homotopy invariant.

If in addition the �eld k is perfect and Z is bounded from below then conditions 1-4
are equivalent to condition 5.
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Proof. The implications 1) 2 and 3) 2 are obvious and the equivalence between
3 and 4 follows from the adjunction between 
 and Hom and the Yoneda Lemma.

2 ) 1: clear.

4 ) 5: Choose a �brant representative Z 0 2 Comp(ShvNis (SmCor(k))) of Z.
Since S0Ztr(A

1 ) is co�brant the internal hom complex ZA := Hom(S0Ztr(A
1 ); Z 0)

in Comp(ShvNis (SmCor (k))) represents Hom(S0Ztr(A
1 ); Z) and is itself �brant.

Observe that ZA sends X 2 Sm=k to the complex of abelian groups Z 0(X � A 1 ).

If we now suppose that Z 0 ! ZA is a quasi-isomorphism it follows that it is al-
ready a quasi-isomorphism for presheaves with transfers since evaluation on objects
is a right Quillen functor. Hence the cohomology presheaves of Z 0 are homotopy
invariant, and by [Vo3, Theorem 3.1.12] the associated sheaves are as well.

The implication 5 ) 2 under the additional assumptions follows from statement
2 in the proof of [Vo3, Proposition 3.2.3].

For the implication 1 ) 4 on uses [Hov4, Proposition 5.2] and adjointness. �

Recall from [Vo3] that DM e�
� (k) is the full subcategory of D(ShvNis (SmCor(k)))

consisting of complexes bounded from below (note that our indexing of complexes
is opposite to that in [Vo3]) and having homotopy invariant cohomology sheaves.
If k is perfect this is a triangulated subcategory. Statement 5 of Lemma 15.8
immediately implies

Proposition 15.9. If k is perfect the composition

DM e�
� (k)! D(ShvNis (SmCor (k)))! DM e� (k)

is a full embedding.

Recall also that DM e�
gm � DM e�

� (k) is the full subcategory generated by bounded
complexes in Comp(ShvNis (SmCor(k))) of representable sheaves. The category

DM gm(k) is gotten from DM e�
gm(k) by Spanier Whitehead stabilization of T.

Theorem 15.10. If k is perfect and admits resolution of singularities all maps in

DM e�
gm(k)! DM e� (k)! DM (k) DM gm(k)

are full embeddings.

Proof. The claim will follow from Proposition 15.6 with A = DM e�
gm(k), [Vo3,

Theorem 4.3.1] if Me� (k) ful�lls D1-D3. Only D2 needs some explanation. We
choose F to be the class of all SnZtr(X) and DnZtr(X) for X 2 Sm=k, n 2 Z.
Let B  A ! C be a triangle in Me� (k), F = SnZtr(X) or F = DnZtr(X) and
' : F ! (B �C)=A a map. Then after a Nisnevich cover U ! X ' lifts to a map
~' : F 0 = DnZtr(U) ! B � C. Let  be the �rst component of ~' and B0 � B
a subobject such that A factors through B0. Suppose that  factors through B0,
hence we have a map F 0 ! (B0 � C)=A, and since F 0 ! F is an epimorphism '
factors through (B0 �C)=A. Suppose that ' factors through (B0 �C)=A. Because

B0
� //

��

B

��
(B0 � C)=A

� // (B � C)=A

is a pullback square  factors through B0. �
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Let k be a �eld of characteristic 0 and X 2 Sm=k. Let � : X ! Spec(k)
be the structure morphism. We are going to apply Theorem 13.4 in the situation
C = M(k) and D = M(X). We have to check conditions 1-3 of Theorem 13.4.
For B 2 DM (k) we have ���

�B �= HomDM (k)(Ztr(X); B). Hence the �rst of the

conditions follows from the rigidity of the tensor category DM gm(k), which means
that for A;B 2 DM gm(k) the natural map A_ 
 B ! HomDM gm(k)

(A;B) is an

isomorphism (here we set A_ = Hom(A;Z)) (see [Vo3, Theorem 4.3.7]).

For the second condition we have the

Lemma 15.11. Let f : X ! S be a morphism between separated Noetherian
schemes. Then the map f� : HoC(X)! HoC(S) preserves homotopy �-sequences,
where the categories C(X) and C(S) are as in section 14.8.

Proof. We prove the case C(X) =M(X), C(S) =M(S), the other cases are similar
or easier. Suppose given a �-sequence Y : �!M(X)cf with co�brations as tran-
sition maps. Since �ltered colimits in ShvNis(SmCor (S)) are created in presheafs
with transfers f� commutes with �-sequences by de�nition of f�. Hence we have
to check that colimif�Yi 2 M(S) = Sp�TComp(ShvNis (SmCor(S))) computes the

homotopy colimit. We can �nd a �-sequence eY : � ! M(S)cf where all transi-

tion maps are co�brations together with an objectwise weak equivalence eY ! f�Y .
Since these maps are weak equivalences between �brant objects it follows that ev-

ery map eYi ! f�Yi is a level quasi isomorphism. Hence using the injective model

structure on Me� (S) it follows that the map colimi
eYi ! colimif�Yi is a weak

equivalence, what we wanted to show. �

The third condition is clear.

Let f be as in the Lemma above. We denote the full subcategory of Ho C(X)
f�(Ho C(S))-generated by homotopy colimits by UHoC(X=S) (see De�nition 13.1).

Now let again � : X ! Spec(k) be a smooth scheme. Let as aboveA(X) = ��1l 2
D�2CommM(k) be the motivic cohomology of X relative to k as a commutative
algebra in M(k). Then Theorem 13.4 implies

Corollary 15.12. There is a natural equivalence of tensor triangulated categories

~�� : D(A(X){Mod )! UDM (X=k)

such that its composition with DM (k)! D(A(X){Mod ) is naturally isomorphic to
�� : DM (k)! DM (X) and such that the composition of the right adjoint ~�� of ~�

�

with D(A(X){Mod)! DM (k) is naturally isomorphic to ��jUDM (X=k).

Remark 15.13. If we assume Spanier Whitehead duality in SH(k) (which holds)
then a similar statement is valid for the category USH(X=k).

More generally we can state the

Corollary 15.14. Let f : X ! S be a morphism between separated Noetherian
schemes and let C(S) be either M(S) or Sp�T(S) (same for X). Assume that for
any M 2 Ho C(S) the map M 
 f�1l! f�f

�(M) is an isomorphism. Then there is
a natural equivalence of tensor triangulated categories

~f� : D(f�1l{Mod )! UHoC(X=S)

with similar compatibilities as in Corollary 15.12. A similar statement is valid if we
consider categories A{Mod and f�A{Mod for a co�brant algebra A 2 CommC(S).
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There is the following application of the symmetric monoidal functor constructed
after Lemma 9.14 and of duality:

Proposition 15.15. Let X;Y 2 Sm=k. Then the natural map

A(X) tA(Y )! A(X �k Y )

is a (weak) isomorphism in D(�2)CommM(k).

15.2. Limit Motives. In this section we change our notation. We �x a separated
Noetherian base scheme S and a co�brant algebra A 2 CommSp�

T
(S) (here we work

with the site Sm=S and the Nisnevich topology for the de�nition of Sp�
T
(S)). Then

for every X 2 Sch=S with structure map f we denote by M(X) the symmetric
monoidal model category with weak unit f�A{Mod . We set DM (X) := HoM(X).
We set CommM(X) := Comm(f�A) (see De�nition 9.5 for the notation). For ex-
ample if S = Spec(Q) we can take A to be a co�brant resolution of the motivic
Eilenberg-MacLane spectrum HZ on S. The reason that we changed notation is
that morally we would like to work with our previously de�ned DM (X), but we
will need the following exact triangle, which we do not know to hold in the previous
DM (X):

Proposition 15.16. Let X 2 Sch=S. Let i : Z � X be a closed embedding and
j : U � X the complementary open embedding and let F 2 DM (X). Then there is
an exact triangle

j!j
�F ! F ! i�i

�F ! j!j
�F [1]

in DM (X) (as de�ned above).

Proof. We �rst construct a functorial map 'F from the (functorial) co�ber of the
map j!j

�F ! F to i�i
�F . Let F 2 M(X) be co�brant. Then factor the map

j!j
�F ! F functorially as j!j

�F ! eF ! F into a co�bration followed by a weak
equivalence. Let i�F ! Ri�F be the functorial �brant replacement inM(Z). Then

we have a canonical map eF=j!j�F ! F=j!j
�F ! i�i

�F ! i�Ri
�F , which gives the

desired map in the homotopy category.

For the rest of the proof we can forget the A-module structure on F . First we
suppose that F is a domain or codomain of a generating co�bration of Sp�

T
(S).

Then F comes up to a shift with the Tate object from Spc(S) where we have the
homotopy pushout square of [MV, Theorem 3.2.21]. By the next Lemma the image
of this homotopy pushout square in SH(S) gives the sequence we are looking at
(the Lemma ensures that the right lower corner of the homotopy pushout square is
correct).

In general write F as a cell complex in Sp�T(S). Now clearly f!f
� preserves

homotopy �-sequences, and by Lemma 15.11 i� preserves homotopy �-sequences.
Then one shows by induction on � that 'F is an isomorphism applying Lemma
13.2 to the successive pushouts of the given �-sequence. �
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Lemma 15.17. Let i : Z � X be a closed embedding of separated Noetherian
schemes. Then the square

H�(Z)
�1
T //

i�

��

SH(Z)

i�

��
H�(X)

�1
T // SH(X)

commutes (up to a canonical natural isomorphism).

Proof. We can suppose that we work with non-symmetric spectra. Let F 2 Spc�(Z)
be �brant and co�brant. Let r : �1

T
F ! Rp�1

T
F be a �brant replacement for the

projective model structure on spectra, i.e. r is a level weak equivalence and Rp�1
T
F

is level �brant. Clearly the functor R1 of [Hov3, Proposition 4.4] commutes with i�,
hence this Proposition implies that i�(R

p�1
T
F ) computes the derived direct image

of �1
T
F in SH(X). Let Qi�F ! i�F be a co�brant replacement. Then the second

part of the next Lemma shows that the canonical map �1
T
Qi�F ! i�(R

p�1
T
F ) is

a level weak equivalence, which �nishes the proof. �

Let i be as in the Lemma and let j : U ! X be the complementary open
embedding. We denote by H�(X)Z the symmetric monoidal subcategory of H�(X)
consisting of objects F 2 H(X) such that j�F = �. We remark that we have in
H�(X) a homotopy pushout square like in [MV, Theorem 3.2.21].

Lemma 15.18. Let i be as above. Then i�jH�(X)Z is a symmetric monoidal equiva-
lence. In particular for F 2 H�(Z) and G 2 H�(X) we have i�F ^G = i�(F ^ i�G).

Proof. Let F 2 H�(X)Z . By [MV, Theorem 3.2.21] the map F ! i�i
�F is an

isomorphism. Hence i� is an equivalence onto its image and we have to show that
the essential image is everything. First note that for any Y 2 Sm=Z we can �nd

a Zariski cover V ! X such that there is a eV 2 Sm=X with eVZ �= V . Since
Y is gotten from the covering pieces by successive pushouts it follows that Y+ is
in the image of i�. Then given a homotopy �-cell complex C in H�(Z) one shows
inductively on � 2 � that the map i�i�C ! C is an isomorphism on the subcomplex
given by cells < �. The second claim follows like this (we prove it with F replaced
by some i�F ): Let F;G 2 H�(X) with F jU = �. Then (F ^ G)jU = �, hence
i�(i

�F ^ i�G) = i�i
�(F ^G) = F ^G. �

We are now going to construct limit motives. We begin with some preparations.

Proposition 15.19. Let i : Z � X be a closed embedding in Sm=S and let
j : U � X be the complementary open embedding. Let p : N ! Z be the normal
bundle of Z in X and pÆ : NÆ ! Z the complement of the zero section. Then there
is a natural isomorphism i�j�1l �= pÆ�1l in DCommM(Z).

Proof. This combines the next two Lemmas. �

Lemma 15.20. Let Z be a separated Noetherian scheme, p : N ! Z a (geometric)
vector bundle and i : Z � N the zero section. Let j : N n i(Z) � N be the
open inclusion and pÆ : N n i(Z) ! Z the projection. Then there is a natural
isomorphism i�j�1l �= pÆ�1l in DCommM(Z).
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Proof. The base change morphism for the diagram

Z
i //

Id

��

N

p

��
Z

Id // Z

applied to the algebra j�1l gives a map p
Æ
�1l
�= p�(j�1l) ! i�j�1l. We show that this

map is an isomorphism. From now on we can forget that we deal with algebras since
all functors involved commute with forgetting the algebra structure. Proposition
15.16 applied to j�1l yields an exact triangle

j!j
�j�1l! j�1l! i�i

�j�1l! j!j
�j�1l[1] ,

and there is an isomorphism j!j
�j�1l �= j!1l. So the base change morphism applied

to this triangle yields a map of triangles

0 // i�j�1l
Id // i�j�1l // 0

p�j!1l //

OO

pÆ�1l //

OO

i�j�1l //

OO

p�j!1l[1]

OO ,

hence we are ready if we show that p�j!1l = 0. We apply p� to the triangle

j!1l! 1l! i�1l! j!1l[1] .

The second map is mapped to an isomorphism since p is an A 1 -weak equivalence,
hence p�j!1l = 0. �

Lemma 15.21. Let the situation be as in Proposition 15.19 and let i0 : Z � N
and j0 : NÆ � N be the zero section and its complement. Then there is a natural
isomorphism i�j�1l �= i0

�
j0�1l in DCommM(Z).

Proof. We use a similar construction as in the proof of [MV, Theorem 3.2.23]. Let
� : B ! X � A 1 be the blow-up of X � A 1 in Z � f0g, f : Z � A 1 ! B the
canonical closed embedding which splits i(Z) � A 1 and g : X ! B the closed
embedding which splits X�f1g. We have P := ��1(Z�f0g) �= P(N�O) � P(N).

Set eB := B n P(N), so we have a closed embedding h : N ! eB. The maps f and

g factor through eB, and we denote the factor maps also by f and g.

Let eBÆ := eB nf(Z� A 1 ) and j00 : eBÆ � eB the open inclusion. We have pullback
squares

U //

j

��

eBÆ
j00

��
X

g // eB
and NÆ hÆ //

��

eBÆ
j00

��
N

h // eB
.

Claim 1: The two base change morphisms for these diagrams applied to 1l are
isomorphisms, i.e. we have isomorphisms i�j�1l �= i�1f

�j00� 1l and i
0�j0�1l

�= i�0f
�j00� 1l,

where ik : Z � fkg ! Z � A 1 , k = 0; 1, are the two inclusions.
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Let q : Z � A 1 ! Z be the projection. The base change morphisms applied to
the diagrams

Z � fkg
ik //

��

Z � A 1

��
Z

Id // Z

yields maps hk : i
�
kf
�j00� 1l! q�f

�j00� 1l, k = 0; 1.

Claim 2: The maps hk, k = 0; 1, are isomorphisms.

Claim 1 and 2 obviously give the desired isomorphism i�j�1l �= i0�j0�1l, so we are
left with proving the claims.

After Zariski localization onX we can assume that there is an etale map e : X !
A nS such that Z = e�1(A kS ). So by Proposition 14.14 (1) and (3) we are reduced to
the case X = A nS , Z = A kS . By changing S to A kS we can also assume that k = 0.

Let x1; : : : ; xn+1 be coordinates on A
n+1
S and y1; : : : ; yn+1 homogeneous coordinates

on PnS. Then B = f(x; y) 2 (A n+1 � Pn)S j xiyj = xjyi, i; j = 1; : : : ; n + 1g. Let
W � B be de�ned by the equations xi = 0, i = 1; : : : ; n + 1 and y1 = 0. TheneB = B nW . We consider eB and A n+1S as schemes over A 1S via the �rst projection

A n+1S ! A 1S . The assignment x1 7! x1, xi 7!
yi
y1
, i = 2; : : : ; n + 1, yields an

isomorphism ' : eB ! A n+1S over A 1S such that (' Æ f)(A 1S ) is the closed subscheme
de�ned by x2 = � � � = xn+1 = 0. Hence by Lemma 15.20 and Proposition 14.14
(1) we have f�j00� 1l =M((A n n f0g)A1

S
)_ �= 1l� 1l(�n)[�2n+1]. We have analogous

descriptions of i�j�1l and i
�j�1l, so claim 1 follows. Now also claim 2 follows since

f�j00� 1l is a pullback from S and A 1S ! S is an A 1 -weak equivalence. �

Let now i : D � X be a closed embedding in Sm=S such that D is a di-
visor, let J : XÆ ! X be the complementary open embedding and let pÆ :
NÆ ! D be the pointed normal bundle of D in X . The morphism pÆ obvi-
ously satis�es the conditions of Corollary 15.14, hence we have an equivalence
UDM (NÆ=D) � D(pÆ�1l{Mod ). The functor i�j� : DM (XÆ) ! DM (D) factors
through D(i�j�1l{Mod ). Proposition 15.19 suggests that we have a natural equiv-
alence D(i�j�1l{Mod ) � D(pÆ�1l{Mod), but we get such an equivalence only if we
have a morphism from i�j�1l to p

Æ
�1l in the 2-category D�2CommM(D). Reexam-

ining the proofs of Lemmas 15.20 and 15.21 we �nd that we have a chain of weak
isomorphisms i�j�1l ! B  B0 ! pÆ�1l in D�2CommM(D) where all maps are
unique up to unique 2-isomorphism. Since there is no way in a 2-category to �nd
an inverse unique up to unique 2-isomorphism of a weak isomorphism this chain of
weak isomorphisms is the only thing we get. Nevertheless it follows that there is
a natural equivalence D(i�j�1l{Mod ) � D(pÆ�1l{Mod) unique up to unique natural
isomorphism by composing the functors induced by the maps in this chain or their
adjoints. Now we can de�ne the functor

LX;D : DM (XÆ)! DM (NÆ)

to be the composition

DM (XÆ)! D(i�j�1l{Mod ) � D(pÆ�1l{Mod) � UDM (NÆ=D)! DM (NÆ) .

Intuitively the functor does the following: We �rst restrict a given motivic sheaf
on XÆ to a tubular neighborhood of D (which of course does not exist). Then we
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identify this tubular neighborhood with a tubular neighborhood of the zero section
in N (the normal bundle of D in X) and carry over the restricted sheaf. This
we �nally extend to the whole of NÆ. As long as we believe that some sort of
monodromy action around D is unipotent our above de�nition makes perfect sense
to simulate this intuitive description.

We now would like to generalize this construction to the following situation:

Let X 2 Sm=S and D � X a divisor with normal crossings relative to S, i.e.
D =

S
i2I Di with Di 2 Sm=S and locally in the etale topology the intersections

of the Di look like intersections of coordinate hyperplanes in some A nS . Let X
Æ :=

X n D. For J � I let DJ :=
T
i2J Di and D

Æ
J := DJ n

S
i2InJ Di. Let Ni be the

normal bundle of Di in X and NÆ
i the complement of the zero section. Let NJ be

the �ber product of the Ni over DJ for i 2 J and NÆ
J the corresponding product of

the NÆ
i . Finally let N

ÆÆ
J be the restriction of NÆ

J to DÆJ . Our goal is to construct a
functor

LX;J : DM (XÆ)! DM (NÆÆ
J )

for any J � I . Of course the situation for a general J � I is the same as the
situation in which we consider all divisors for X n

S
i2InJ Di.

We would like that various LJ are compatible in the following sense: Consider
disjoint subsets J; J 0 � I . On the one hand side we can consider the functor

LX;J[J0 . For i 2 I n J denote by eDi the restriction of Di to DJ and by D0i the

preimage of eDi in N
Æ
J with respect to the natural projection. The D0i, i 2 I nJ , are

again divisors with normal crossings in NÆ
J relative to DJ with complement NÆÆ

J .
Now we apply the de�nitions above to this situation to get corresponding objects
D0J0 , D

0Æ
J0 , N

0Æ
J0 and N

0ÆÆ
J0 . Clearly we have canonical isomorphisms D0

Æ
J0
�= DÆJ[J0

and N 0ÆÆ
J0
�= NÆÆ

J[J0 .

So on the other hand we have a composition of functors

DM (XÆ)
LX;J // DM (NÆÆ

J )
LNÆ

J
;J0

// DM (N 0ÆÆ
J0 ) � DM (NÆÆ

J[J0) .

We want to have a natural isomorphism 'J0;J between this composition and LX;J[J0 .
Moreover if we have three disjoint subsets J; J 0J 00 � I we want to have

'J00[J0;J Æ ('J00;J0 Æ
0
IdLJ )Æ = 'J00;J0[J Æ (IdLJ00 Æ0

'J0;J) .

This compatibility implies all other possible compatibilities.

Below we will only sketch the construction of the 'J;J0 and only indicate the
proof of the compatibility.

We introduce some further notation: Let j : XÆ ! X , XJ := X n
S
i2J Di and

jJ : XJ ! X be the open inclusion. Let iJ : DJ ! X and iÆJ : DÆJ ! X be the
closed respectively locally closed embedding. Let furthermore pÆJ : NÆ

J ! DJ and
pÆÆJ : NÆÆ

J ! DÆJ be the projections.

Proposition 15.22. Let A 2 DCommM(X) such that Zariski-locally on X A]

is a pullback of an object from DM (S). Then there is a canonical isomorphism
i�Jj

J
� j

J�A �= pÆJ�p
Æ�
J i

�
JA in DCommM(DJ ). Furthermore if A is given as an object in

D�2CommM(X) there is a natural chain of weak isomorphisms in D�2CommM(X)

connecting i�Jj
J
� j

J�A and pÆJ�p
Æ�
J i

�
JA.
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Proof. We have to give analogues of Lemmas 15.20 and 15.21. The analogue of
Lemma 15.20 has the same proof and states in our case that there is a natural
isomorphism i0

�
j0�p

Æ�
J i

�
JA
�= pÆJ�p

Æ�
J i

�
JA, where j

0 : NÆ
J ! NJ is the open inclusion

and i0 : DJ ! NJ the zero section. We prove the analogue of Lemma 15.21: For

every i 2 J let �i, Bi, fi, gi, eBi and eBÆi be as in the proof of Lemma 15.21 for

Z = Di. Let �J : eBJ ! X�A 1 be the �ber product of the eBi overX�A 1 for i 2 J
and eBÆJ the corresponding �ber product of the eBÆi . We have a closed embedding

hJ : NJ ! eBJ . Let j
00
J : eBÆJ � eBJ be the open inclusion and fJ : DJ � A 1 ! eBJ

the intersection of the divisors which build the complement of j00J . Let gJ : X ! eBJ

be the product of the gi. Then we have again pullback squares

XJ //

jJ

��

eBÆJ
j00J

��
X

g // eB
and NÆ

J

hÆJ //

��

eBÆJ
j00J

��
NJ

hJ // eBJ

.

Similarly to the proof of Lemma 15.21 one shows that the base change morphisms
of these diagrams yield isomorphisms i�Jj

J
� j

J�A �= i�1f
�
Jj
00
J��

�
JA and i0

�
j0�p

Æ�
J i

�
JA
�=

i�0f
�
Jj
00
J��

�
JA, ik : DJ � fkg ! DJ � A 1 , k = 0; 1, the inclusions. Also one shows

that the corresponding maps hk : i
�
kf
�
Jj
00
J��

�
JA! q�f

�
Jj
00
J��

�
JA, q : DJ � A 1 ! DJ

the projection, are isomorphisms. �

Hence we can de�ne the functor

LX;J : DM (XÆ)! DM (NÆÆ
J )

as the composition

DM (XÆ)! D(iÆ�J j�1l{Mod) � D(pÆÆJ�1l{Mod ) � UDM (NÆÆ
J =DÆJ)! DM (NÆÆ

J ) .

We are going to sketch the construction of the natural isomorphism 'J0;J . We
can assume that J [ J 0 = I . First consider the cartesian squares

D0J0
i0 //

��

NÆ
J

pÆJ

��

NÆÆ
J = (NÆ

J )
J0

j0oo

��
DI

~i // DJ DÆJ
~joo

.

Let ~pÆ : NÆ
J0 jDI

! DI and p0
Æ
: N 0Æ

J0 ! D0J0 be the projections. We apply

Proposition 15.22 to the algebra A := pÆJ�1l to get an isomorphism ~pÆ�~p
Æ�~i�A �=

~i�~j�~j
�A (*) and also a connecting chain of weak isomorphisms in D�2CommM(DI ).

The same relation for the algebra 1l on NÆ
J yielded the functor LNÆ

J
;J0 . We now get

a diagram of functors with natural isomorphisms in the squares

DM ((NÆ
J )

J0)
i0�j0� // D(i0�j0�1l{Mod)

� // D(p0Æ�1l{Mod)

D(~j�A{Mod)
~i�~j� //

OO

D(~i�~j�~j
�A{Mod )

� //

OO

D(~pÆ�~p
Æ�~i�A{Mod)

OO
,
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where we used appropriate naturality of the equivalence in Corollary 15.14 and of
the constructions in the proof of Proposition 15.22. We also have a cartesian square

N 0Æ
J0 = NÆ

I

p0Æ //

q0

��

D0J0 = NÆ
J jDI

q

��
NÆ
J0 jDI

~pÆ // DI

.

Hence base change morphisms induce isomorphisms pÆI�1l
�= ~pÆ� Æ q

0
�1l
�= ~pÆ�~p

Æ�q�1l �=
~pÆ�~p

Æ�~i�A (**), so we get an equivalence

D(~pÆ�~p
Æ�~i�A{Mod ) � UDM (NÆ

I =DI) .

Collecting together we get a naturally commutative square

DM ((NÆ
J )

J0)
LNÆ

J
;J0

// UDM (N 0Æ
J0=D

0
J0)

D(~j�A{Mod) //

OO

UDM (NÆ
I =DI)

OO
.

Now we use the fact that A �= i�Jj
J
� 1l. Another application of the base change

morphism to the cartesian square in the diagram

DÆJ //

��

XJ0

��

XÆoo

DI
// DJ

// X

yields an isomorphism ~i�~j�~j
�A �= i�Ij

I
�1l. Combining this with (*) and (**) we see

that we obtain in D�2CommM(DI ) a natural (quite long) chain of weak isomor-

phisms connecting pÆI�1l and i�Ij
I
�1l. But also Proposition 15.22 provides us with

such a chain. Our construction of 'J0;J will be �nished if we construct a natural
isomorphism between the two functors induced by these two chains.

Let the notation be as in the proof of Proposition 15.22. Let eB0J0 etc. be the
analogous objects de�ned for the situation on DJ�A

1 with divisors (Di\DJ)�A
1 ,

i 2 J 0. The divisors eDJ;i, i 2 I , on eBJ look as follows: For i 2 J we have eDJ;i =

fi(Di�A
1 )�X�A1 eBJnfig and otherwise eDJ;i = ��1J (Di�A 1 ). Let B := eBJ�X eBJ0

and BÆ := eBÆJ �X eBÆJ0 We have morphisms � : B ! X � A 2 and � : eBI ! B.
Furthermore we have pullback squareseB0J0

�0
J0

��

// B

��
(DJ � A 1 )� A 1 // eBJ � A 1

and eBI
� //

�I

��

B

�

��
X � A 1

Id�4 // X � A 2

.

On B we have the divisors Di := DJ;i �X eBJ0 for i 2 J and Di := eBJ �X DJ0;i

for i 2 J 0. The DI;i are the pullbacks of the Di with respect to �. Let ~q : (DJ �

A 1 ) � A 1 ! DJ � A 1 be the projection. Let A := f�Jj
00
J�1l,

eA := �0�J0 ~q
�A and

B := f 0
�
J0j

000
J0�j

000
J0
� eA, so B is an algebra on DI � A 2 .
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We have canonical isomorphisms i�(0;0)B
�= ~pÆ�~p

Æ�~i�pÆJ�1l, i
�
(0;1)B

�= ~i�~j�~j
�pÆJ�1l,

i�(1;0)B
�= ~pÆ�~p

Æ�~i�i�Jj
J
� 1l and i�(1;1)B

�= ~i�~j�~j
�i�Jj

J
� 1l (***), where i(k;l) : DI �

f(k; l)g ! DI � A 2 , k; l = 0; 1, are the inclusions. We have isomorphisms be-
tween the i�(k;l)B by comparing them to (DI � A 2 ! DI)�B via base change mor-

phisms, and the isomorphisms between the right hand sides of (***) used above
are compatible with these isomorphisms. Again via a base change morphism we
have a canonical isomorphism B �= (DI � A 2 � B)�(BÆ � B)�1l, and the left square
above shows then that we also have canonical isomorphisms i�(0;0)B

�= pÆI�1l and

i�(1;1)B
�= i�Ij

I
�1l. Compatibility of base change morphisms shows now that the two

possible identi�cations of pÆI�1l and i
�
Ij
I
�1l we constructed above actually coincide.

Our arguments have been in homotopy categories and not in homotopy 2-categories,
and we leave it to the reader to really extract from the above arguments the re-
quired 2-morphisms (actually a huge diagram where 2-morphisms connect many
di�erent ways connecting pÆI�1l and i

�
Ij
I
�1l).

For the compatibility of the 'J;J0 one should consider eBJ �X eBJ0 �X eBJ00 and
in there compare the constructed 2-morphisms. This we also leave to the reader.
We have to admit that we did not honestly have checked this, but certainly it is
correct.

Remark 15.23. Instead of divisors Di � X we also can take closed Di � X,
Di 2 Sm=S, such that the intersections of the Di look etale locally like intersec-
tions of orthogonal standard aÆne subspaces of some A nS . For these situations all
constructions above work in exactly the same way, in particular we also get the
functors LX;J .
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