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”And if I know of a flower which is unique in the world and grows nowhere

other than on my planet and that a small sheep can destroy it with a

single bite, just like that, without realising what it is doing, is that not

important?”

The Little Prince, Antoine de Saint-Exupéry, 1944
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Very special thanks to Birte Schöttker for patience, motivation, critical thematic

discussions, figure and text editing support.

Thanks to Dr. M. McCabe for reading few chapters at an early stage of the

writing process. Many thanks for the enormous work of Dr. E. King for the help in

improving the text, editing and laying out of the final version and to my housemates

Cath, Emily and Duncan for the warm welcome in Canberra. And thanks to all the

people that I forgot to mention at this stage but helped or supported me in any way.

5



Contents

1 Introduction 1

1.1 Project framework of this study . . . . . . . . . . . . . . . . . . . . . 3

1.2 Central objectives and research goals of this study . . . . . . . . . . . 6

1.3 Structural composition of the work . . . . . . . . . . . . . . . . . . . 8

2 Regional settings 11

2.1 The Dra catchment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fieldwork and ground truth data . . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Low, Medium, High or Very High Resolution for land cover mapping? 28

3.1 Scale in land cover mapping . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Vegetation mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Classification schemes and implications for this study . . . . . . . . . 34

3.4 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Remote sensing in 2, 3 and 4 dimensions 41

4.1 Photogrammetric background . . . . . . . . . . . . . . . . . . . . . . 43

4.2 3D Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.5 Co-registration . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Multi-temporal 3D analysis - or 4D remote sensing? . . . . . . . . . . 57

4.4 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 58

i



Contents

5 Pre-processing - How much is necessary? 60

5.1 Satellite data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Geometric correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Reference system . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Geometric correction of (very-) high resolution Satellite Data . 64

5.3 Radiometric correction . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Relative radiometric normalisation . . . . . . . . . . . . . . . 68

5.3.2 Absolute calibration . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Illumination and terrain correction . . . . . . . . . . . . . . . . . . . 86

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Vegetation classification in an arid environment 91

6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.1 Combined classification approach and materials . . . . . . . . 93

6.1.2 Spectral Mixture Analysis . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Spectral Angle Mapper . . . . . . . . . . . . . . . . . . . . . . 100

6.1.4 Fuzzy classification and knowledge based decision rules . . . . 101

6.1.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Results from the Dra catchment - South Morocco . . . . . . . . . . . 105

6.2.1 Basin of Tazenakht . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.2 The Dra valley . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3 High Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.4 Basin of Ouarzazate . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.5 Crystalline Anti-Atlas . . . . . . . . . . . . . . . . . . . . . . 132

6.2.6 Sedimentary Anti Atlas . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Change Detection: what to detect? 140

7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Methods and results . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2.1 Visual interpretation and object digitalisation . . . . . . . . . 142

7.2.2 Analysis of multitemporal NDVI data . . . . . . . . . . . . . . 146

ii



Contents

7.2.3 Post classification change detection . . . . . . . . . . . . . . . 147

7.2.4 Multivirate Alternate Detection . . . . . . . . . . . . . . . . . 162

7.3 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 164

8 Biophysical analysis and land use derivation 166

8.1 Biophysical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.1.1 Leaf area index derivation from IKONOS-2 data . . . . . . . . 167

8.1.2 Interpretations of the LAI density information . . . . . . . . . 169

8.1.3 Transfer of LAI measurements . . . . . . . . . . . . . . . . . . 172

8.2 An integrated approach: the Basin of Fezuata . . . . . . . . . . . . . 174

8.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 182

9 Overall Discussion, Conclusions and Outlook 185

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.2 Outlook and recommendations for further research . . . . . . . . . . . 190

References 194

10 Appendix 215

iii



List of Figures

1.1 Interrelations and structure of the CLIMBER earth system model . . 2

1.2 Schematic overview of the IMPETUS project structure . . . . . . . . 5

1.3 Flow chart of the satellite data used and the processing steps applied 10

2.1 Location and overview of the Dra catchment . . . . . . . . . . . . . . 13

2.2 Annual average precipitation of Ouarzazate and Zagora . . . . . . . . 13

2.3 Sub-regions of the Dra catchment based on the PMU mapping . . . . 16

2.4 Landscape examples of the six sub-regions of the Dra catchment . . . 20

2.5 GCP documentation for the very high resolution CORONA data . . . 24

2.6 Ground truth data stored in a GIS (ArcView) database . . . . . . . . 25

2.7 The real time GPS link of ERDAS imagine in the field . . . . . . . . 26

2.8 Position shift of the ground truth data due to geo-location errors . . . 27

3.1 Spatial and temporal resolution of satellite data . . . . . . . . . . . . 31

3.2 Estimated size of a LANDSAT pixel in an oblique terrestrial photo . 36

3.3 Schematic relation of pixel size, numbers of classes and estimated

accuracy dependent on the classification level . . . . . . . . . . . . . 37

4.1 Relief displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Parallax displacements . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Image orientation process . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Coverage of derived photogrammetric products . . . . . . . . . . . . . 48

4.5 Sensor geometry of CORONA and ASTER . . . . . . . . . . . . . . . 49

4.6 Image pre-orientation along the flight-line . . . . . . . . . . . . . . . 50

4.7 Processing steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Lines of equal parallax difference . . . . . . . . . . . . . . . . . . . . 52

4.9 Image drape of CORONA data . . . . . . . . . . . . . . . . . . . . . 53

iv



List of Figures

4.10 Mosaiced DEM of three processed ASTER scenes . . . . . . . . . . . 54

4.11 Image swipe of an ASTER orthoimage and a topographic map . . . . 56

4.12 Co-registered CORONA and IKONOS image . . . . . . . . . . . . . . 57

5.1 Overview of the IKONOS-2 and LANDSAT data coverage . . . . . . 62

5.2 PIFs regression of LANDSAT data from 1999 and 2000 . . . . . . . . 74

5.3 MAD regression of 1999 on 2000 using training pixels . . . . . . . . . 76

5.4 LANDSAT ETM+ image mosaic from May 2000 . . . . . . . . . . . . 78

5.5 Example of an image mosaic of two adjacent LANDSAT ETM+ scenes 80

5.6 Unnormalised and normalised mean pixel intensities for six Landsat

TM images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Examples of NDVI composites from AVHRR and MODIS data . . . . 85

5.8 Examples of NDVI composites from MODIS and ETM+ data . . . . 86

5.9 Example of an illumination correction approach . . . . . . . . . . . . 88

6.1 Flow chart of the combined classification procedure . . . . . . . . . . 94

6.2 Concept of spectral mixtures . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Concept of linear spectral unmixing . . . . . . . . . . . . . . . . . . . 99

6.4 Principle of spectral angle mapping . . . . . . . . . . . . . . . . . . . 100

6.5 Schematic representation of the membership functions in LSU and in

SAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Distribution of the validation data within the Dra catchment used in

the classification approach . . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 LANDSAT ETM+ false colour composite of the Basin of Tazenakht . 106

6.8 Abundance channels of the endmembers . . . . . . . . . . . . . . . . 108

6.9 Knowledge based fuzzy decision rules for land cover class differentia-

tion in the Basin of Tazenakht . . . . . . . . . . . . . . . . . . . . . . 109

6.10 Two example images of an RGB FCC, the corresponding classification

and a ground truth image . . . . . . . . . . . . . . . . . . . . . . . . 110

6.11 Classification rules for the class 1120 - discontinuous urban fabric . . 110

6.12 Land cover/land use classification for the Basin of Tazenakht . . . . . 112

6.13 Overview of the mapping area . . . . . . . . . . . . . . . . . . . . . . 115

6.14 Visual comparison of the overlaid classification polygon on a RGB

FCC and NDVI image subset of IKONOS-2 data . . . . . . . . . . . 116

6.15 Visual comparison of the Quarzite mask and the geological map . . . 117

6.16 Endmember spectra used in the image decomposition of the Dra valley118

v



List of Figures

6.17 Examples of the background influence on the NDVI . . . . . . . . . . 118

6.18 Reference spectra used in the SAM on the vegetation pixels . . . . . 120

6.19 Flow chart of the land cover classification decision rules for the Dra

valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.20 Examples of the classification result in the Dra valley . . . . . . . . . 122

6.21 Object oriented post-classification decision tree . . . . . . . . . . . . 123

6.22 Example of object oriented post-classification . . . . . . . . . . . . . 124

6.23 Flow chart of the land cover classification decision rules for the High

Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.24 Flow chart of the land cover classification decision rules for the Basin

of Ouarzazate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.25 Flow chart of the land cover classification decision rules for the Crys-

talline Anti-Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.26 Flow chart of the land cover classification decision rules for the Sedi-

mentary Anti-Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 LANDSAT MSS and ETM+ RGB image subsets of the region around

the Lac Iriki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2 Photos of the region around the Lac Iriki in 1969 . . . . . . . . . . . 143

7.3 Photos of the region around the Lac Iriki in 2000 . . . . . . . . . . . 144

7.4 The size of the town M’hamid in 2001, 1972 and 1964 . . . . . . . . . 145

7.5 Test area of the ORMVAO in a LANDSAT ETM+ subset . . . . . . 146

7.6 Comparison of NDVI values inside and outside the testplot at different

time steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.7 Example of an oasis protection against mobile sand . . . . . . . . . . 148

7.8 Image displacements by CORONA and IKONOS satellite viewing

geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.9 Example of the tamarisk coverage of 1972 and 2001 . . . . . . . . . . 151

7.10 Endmember spectra used in the LSU . . . . . . . . . . . . . . . . . . 153

7.11 Visualisation of change in the vegetation abundance displayed as a

RGB image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.12 Representative vegetation abundance values of the three time steps

of investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.13 Irrigation area near the town of Zagora . . . . . . . . . . . . . . . . . 156

7.14 Flow chart of the post classification change detection approach . . . . 158

vi



List of Figures

7.15 Classification of the Basin of Tazenakht from LANDSAT TM5, April

1987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.16 RGB FCC and classification example of the Basin of Tazenakht, from

May 2000 and April 1987 . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.17 MAD based changes April 1987 - May 2000 . . . . . . . . . . . . . . 162

8.1 Regression between field measured LAI and NDVI values derived from

IKONOS-2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2 LAI values as derived from IKONOS-2 data . . . . . . . . . . . . . . 168

8.3 Example of disturbed tamarisk trees . . . . . . . . . . . . . . . . . . 169

8.4 Interpolated LAI values derived from IKONOS-2 data . . . . . . . . . 172

8.5 Regression between field measured LAI and vegetation abundance . . 173

8.6 Overview of the Basin of Fezuata . . . . . . . . . . . . . . . . . . . . 175

8.7 Visualisation of three binary classifications for the Basin of Fezuata . 178

8.8 Examples of a cultivated and saline field . . . . . . . . . . . . . . . . 180

8.9 Vicious circle of nomadic people in the Basin of Fezuata . . . . . . . 181

8.10 Example of field size and intensity of land use from Fejia and Tiguida 182

vii



List of Tables

2.1 DGPS points obtained during field observations . . . . . . . . . . . . 25

3.1 Land use/land cover classification scheme . . . . . . . . . . . . . . . . 37

4.1 Characteristics of CORONA and ASTER stereo images. . . . . . . . 49

4.2 Errors in the photogrammetric restitution - CORONA . . . . . . . . 54

4.3 Errors in the photogrammetric restitution - ASTER . . . . . . . . . . 55

5.1 Characteristics of the utilised and processed multispectral satellite data 61

5.2 Attributes of Lambert Conical Conform projection . . . . . . . . . . . 63

5.3 Geometrically corrected LANDSAT images within the Dra catchment 66

5.4 Pseudo-invariant features chosen for normalisation to the 1999 scene . 69

5.5 Ordinary least squares regression on training PIFs . . . . . . . . . . . 73

5.6 Comparison of mean intensities of PIF test pixels . . . . . . . . . . . 75

5.7 Comparison of variances of PIF test pixels . . . . . . . . . . . . . . . 75

5.8 Regression of the MAD approach of LANDSAT data from 1999 and

2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Comparison of mean intensities of MAD test pixels . . . . . . . . . . 76

5.10 Comparison of variances of MAD test pixels . . . . . . . . . . . . . . 77

5.11 Regression of test pixels of the image mosaicing . . . . . . . . . . . . 79

5.12 Coefficients for DN to at sensor radiance for 11bit IKONOS-2 data . . 81

5.13 Calibration coefficients for LANDSAT ETM+ data . . . . . . . . . . 81

5.14 Coefficients for the exoatmospheric irradiance for LANDSAT ETM+ 82

6.1 Confusion matrix of ground truth pixels and the classified image of

the Basin of Tazenakht, in percent and in pixels . . . . . . . . . . . . 111

6.2 Meta information of the two IKONOS-2 image tiles used in this study 114

viii



List of Tables

6.3 Confusion matrix of the IKONOS-2 mapping . . . . . . . . . . . . . . 116

6.4 Confusion matrix of the LANDSAT ETM+ land cover classification

in the Dra valley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5 Validation data of the intersection of the classes 3261, 3262 and 3263

with the vegetation mask . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Land cover classification accuracies of the High Atlas with 6 validated

classes (next page) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.7 Land cover classification accuracies of the Basin of Ouarzazate with

9 validated classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Land cover classification accuracies of the Crystallin Anti-Atlas with

8 validated classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Land cover classification accuracies of the Sedimentary Anti-Altas

with 6 validated classes . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.10 Classification accuracies of the six sub-regions of the Dra catchment . 137

7.1 Meta information of CORONA KH4B (26.05.1972) and IKONOS-2

(23.11.2001) data used in this study . . . . . . . . . . . . . . . . . . . 150

7.2 Land cover changes as mapped with CORONA and IKONOS-2 data . 152

7.3 Accuracy assessment for the three classification time steps . . . . . . 155

7.4 Correlations of the relative radiomentic normalisation of TM (April

1987) towards ETM+ (May 2000) . . . . . . . . . . . . . . . . . . . . 157

7.5 Class coverages [%] of 1987 and 2000 of the Basin of Tazenakht, ac-

cording to the post classification . . . . . . . . . . . . . . . . . . . . . 161

7.6 Correlation coefficients for the MADs of the change pixels and the

image DNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.1 Land cover changes and mean LAI values mapped with CORONA

and IKONOS-2 data . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.2 Validation of the binary classification . . . . . . . . . . . . . . . . . . 177

8.3 Colour representation in the additive colour scheme . . . . . . . . . . 178

9.1 Classification accuracies of the six sub-regions of the Dra catchment . 188

ix



Abbreviations
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1 Introduction

”Sustainable development at local, regional and global scales represents

perhaps the most daunting challenge that humanity has ever faced.”

Global Change Newsletter, 2002

One of the most obvious changes during the last three centuries is the direct hu-

man modification and conversion of land cover (Richards, 1990; Ramankutty et al.,

2001). During this time period, for example, the amount of land used for agricul-

ture has increased five-fold. Furthermore, large areas have been lost to degradation.

Agricultural yields have increased due to the application of fertilisers, pesticides and

irrigation techniques for the benefit of humankind, with negative consequences for

the Earth system. The global population exceeded 6 billion in October 1999 (UN,

1999) and increased form the pre-industrial phase by a factor of about twelve (see

Klaus, 1994). The supply of the basic needs for the increasing population as well as

the rising living standards resulted in a major interaction with the natural environ-

ment. Global energy consumption increased by 84% between 1970 and 1997 (von

Weizäcker et al., 1997). The implications of human activities on the earth system

become apparent when the enormous amounts of small human-driven changes are

aggregated globally over a long time period. Although human-driven changes are not

easy to identify and attribute in a cause-effect paradigm, they are superimposed on,

and usually interact with, natural patterns of variability within the earth system

(Hulme, 2000). The world actually faces changes in the human-nature relation-

ship at a speed that exceeds the natural changes and variability (Trenberth et al.,

1996; IPCC, 2001). Environmental problems due to these changes are: shortages of

clean and accessible freshwater, degradation of terrestrial and aquatic ecosystems,

increases in soil erosion, loss of biodiversity, changes in chemistry of the atmosphere,

declines in fisheries, and the possibility of significant changes in climate (Steffen and

Tyson, 2001).

In order to understand the complex feedback mechanisms of the Earth system and
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1 Introduction

to identify potential sources of these problems interacting sub-systems of the earth

are usually examined (Houghton, 1997). Environmental systems are characterised

by multiple non-linear internal interactions and external forcing; as a consequence

they do not behave predicably on long terms (Lorenz, 1963; Klaus, 1999). The

chaotic behavior of the dynamic Earth system might, by exceeding certain thresholds

led, the system to another state (see Klaus et al., 1994, for further discussion) with

environmental conditions that can only be estimated. The description and modelling

of potential scenarios of changes for the Earth system as a whole is thus a surpassing

challenge. Figure 1.1 shows an example of the linkages between different components

within an earth system model (Petoukhov et al., 2000).
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Figure 1.1: Interrelations and structure of the CLIMBER earth system model

(Petoukhov et al., 2000)

During the last decade, research in the International Geosphere-Biosphere Pro-

gramme (IGBP), the project Biospheric Aspects of the Hydrological Cycle (BAHC)

investigated the role of biophysical and biogeochemical feedbacks of the terrestrial

biosphere to the climate system. ”This understanding has allowed the importance

of feedbacks of land use and land cover change to the physical climate system to

be understood in ways not appreciated a decade ago.” (Kabat et al., 2002). So, it

was understood that the biosphere and land cover are ’active players’ in the Earth

system (Steffen and Tyson, 2001) and that these contribute importantly to the de-

scription of the hydrological cycle and the quality of climate models (Crossley et al.,
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2000).

The amount of available fresh water is controlled by the hydrological cycle. Fresh

water has already become critically scarce in many regions of the world. It is pro-

jected for the first quarter of the 21st century, that about one-quarter of the world

population will suffer from severe water shortage (IMPETUS, 2003).

Actual conflicts about the freshwater resource and existing potentials for further

conflicts show a demand for management strategies. Population pressure will in-

evitably increase and therefore the aim of research projects should be to contribute

not only to an understanding of the complex feedback mechanisms (especially with

respect to ecological and human constraints) but also to establish a decision support

system for food and water supply, and a better land and resource management.

Earth observation from space has revolutionised human perspectives and under-

standing of the planet (Steffen and Tyson, 2001). With data from the successful

CORONA missions in 1960 and the initiation of the LANDSAT program in the early

1970’s, satellite data are globally available and deliver an extraordinary amount of

information about the Earth surface and the biosphere, thereby opening enormous

monitoring potential (Botkin et al., 1984; Campbell, 1996; Jensen, 2000). To iden-

tify and monitor changes, in the first instance the state of the monitored object

must be known at a specific time. From this point onwards or backwards hot spots

of changes are interpretable. For this reason an image classification as a thematic

interpretation of the satellite data recorded is a very useful mapping product. Image

classifications from different time steps can reveal, by the application of the same

classification technique, changes in the thematic maps. This detailed and potentially

validated source of information can be used to initiate and validate environmental

models describing and projecting changes to the Earth system. Integrated studies

and analysis for regional adjusted development on the basis of sustainable usa of

resources are necessary to manage the expected changes in the Earth system.

1.1 Project framework of this study

The German federal ministry of education and research (BMBF) announced the

GLOWA projects in 2000. ”The aim of GLOWA is the development of strategies for

sustainable and future-oriented water management on a regional level while taking

into account global environmental changes and socio-economic framework condi-
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tions. The programmatic orientation of GLOWA focuses on case studies for large

river catchment areas (i.e. some 100000km2), where simultaneous research is done

in a collaborative research programme on interrelations between changes in the hy-

drological cycle and the large-scale climate and precipitation variability, changes in

the biosphere (in particular caused by changes in land use) as well as the effects on

water availability and related conflicts of use” (GLOWA, 2002). Within GLOWA,

five large cluster projects have been promoted. Two of them are located in Germany

(Danube, Elbe), while the others are investigating river catchment areas in North

and West Africa (Dra, Queme, Volta) as well as in the Near East (Jordan) (see

GLOWA, 2002, for further reading).

In Northwest and West Africa since the early 1970’s an increased occurrence of

years of drought resulted in serious problems related to the supply of fresh water (IM-

PETUS, 2003). The general precipitation decline in subtropical Northwest Africa

and tropical West Africa are probably related. Investigation with an integrated ap-

proach including several aspects of the hydrological cycle is performed within the

IMPETUS project: an integrated approach to the efficient management of scarce

water resources in West Africa.

Two study areas north and south of the Sahara desert were chosen for intensive

investigation by means of a transect between the High Atlas mountains and the Gulf

of Guinea. This transect contains two reasonably-sized river catchments, represen-

tative in the sense that the Dra catchment, in the south east of Morocco, exhibits a

typical gradient from humid/subhumid subtropical mountains to the arid foothills.

The Oueme basin in Benin is typical of an alternating subhumid climate of the outer

tropics. West Africa was chosen because (i) it has experienced the most pronounced

interdecadal variability of climate in the world during the 20th century, (ii) relations

to the climates of Europe might exist via complex atmosphere ocean interactions,

and (iii) the regions north and south of the Sahara might be linked via atmospheric

teleconnection processes with regard to precipitation anomalies (IMPETUS, 2003).

During the first project phase (May 2000 - May 2003) factors influencing the hy-

drological cycle have been identified and analysed. Different global change scenarios

(IPCC, 2001) will, in the second phase (June 2003- June 2006), be used to project

the bandwidth of consequences and feedback mechanisms regarding the fresh wa-

ter supply on the local and regional scale. Therefore, in the IMPETUS-project an

interdisciplinary approach was chosen. In addition to the scientists from the basic

physical sciences, such as geology, hydrology, biology, remote sensing, etc. anthro-
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1.1 Project framework of this study

pologists are working within the project group (Thamm et al., 2000). The variability

of the hydrological cycle and environmental consequences are is monitored, includ-

ing social-economic impacts. Figure 1.2 shows the structure of the interdisciplinary

approach within the IMPETUS project from Benin (A) and Morocco (B).
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Figure 1.2: Schematic overview of the IMPETUS project structure (IMPETUS,

2001)

The different components and their interactions are considered in individual sub-

projects: the atmospheric variability in subprojects A1/ B1, the continental hydro-

sphere in subprojects A2/ B2 and the land surface processes in subprojects A3/

B3. Human activities related to fresh water are investigated in subprojects A4/ B4

and A5 (IMPETUS, 2001). The investigations are performed in different spatial and

temporal scales. The spatial scales range from local- over regional- to subcontinental

scale. It is a challenging task to build up interfaces between the different operational

scales, such as integration of micrometeorological measurements in a mesoscale cli-

mate model or the linkage of biomass production of a single field with vegetation

parameters derived by remote sensing techniques. The temporal scales investigated

range from minutes for the measurements of runoff and meteorological parameters

to more than three decades for the detection of changes in land cover with remote

sensing data. Underlying the analysis of climatological and hydrological parameters

(e.g. precipitation, runoff), the documentation of changes in land cover/land use

with remote sensing is one of the main topics of the project.
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With regard to the assembled knowledge about the hydrological cycle, a man-

agement scheme and the installation of operational tools for the decision making

process, a ”Decision Support System” for the use of fresh water in the study areas

is aimed to be established in 2006. An estimate of the effects of changes in the

variability of the hydrological cycle and a related risk assessment are other research

goals.

Local project partners are principally the Office Régional de Mise en Valeur Agri-

cole Ourazazate (ORMVAO) and the Association de Developpement de la Vallée du

Dra (ADEDRA), Zagora (for further details see IMPETUS, 2003).

1.2 Central objectives and research goals of this study

Electromagnetic energy, as emitted from the sun in form of photons, reaches the

Earth’s surface after travelling through the atmosphere and interacting with surface

components. Reflection of the photons and interaction with surface components re-

sults in information that, after the second passage through the atmosphere, reaches

a satellite sensor and is recorded as intensity values. These intensity values are

stored in 2-dimensional data arrays for each recorded spectral band. Analysis and

interpretation of these data can contribute to extracting useful thematic information

- thus transforming data into information. The extraction of the specific informa-

tion of interest requires an understanding of the radiation interactions with those

elements that characterize the surface conditions. To make use of this information

it is necessary to locate the data exactly. This leads to the requirement of the

geometric registration of the obtained data. During their passage through the at-

mosphere, photons interact with the atmospheric constituents (aerosols and gases).

These interactions make direct comparisons of satellite data that are not obtained

at the same atmospheric conditions difficult. Algorithms that minimise these effects

within multi-temporal datasets are thus required. Once these steps are performed,

multi-temporal analysis of satellite data can commence.

The derivation of different thematic information from satellite data requires the

use of different techniques and data (see chapter 3), so a multi-sensor approach was

chosen. In accordance with the thematic focus of the IMPETUS sub-projects are

four main topics identified and addressed:

1. The generation of a land cover classification in high spatial detail. For
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1.2 Central objectives and research goals of this study

the Dra catchment, one of the biggest oasis systems in Saharian North Africa

(Pletsch, 1971), no land cover or vegetation map presently exists. Some parts

of the Dra catchment are mapped with varying approaches, data, thematic

focus and quality levels. Zillbach (1984), for example, mapped the Basin

of Ouarzazate (see chapter 2) on the basis of geo-ecological characteristics,

Zouri (1992) used SPOT satellite images for a local vegetation study, Ben-

nouna et al. (2000) described the vegetation within the Basin of Tazenakht

by a pedological surface characterisation on the basis of SPOT data. In the

Basin of Ouarzazate and near Zagora, unpublished local studies on the basis

of SPOT and LANDSAT data were performed by ORMVAO and the German

Technical Cooperation (GTZ), but not with focus on vegetation or land cover

classification.

Within this study, a land cover classification of the Dra catchment with high

heterogeneity of the land surface as well as in the vegetation associations, with

28419km2 is performed with focus on a detailed description of vegetation as-

sociations. This work aims not only to assess the oasis systems, but also the

rangeland vegetation, which implies a dedicated approach to assess the often

sparse vegetation coverage (see chapter 6). The high heterogeneity in the veg-

etation associations and the complex landscape implied that, for a detailed

land cover analysis, standard classification procedures need to be extended

or adjusted for this application. To access and classify the sparsely vege-

tated rangelands, fuzzified sub-pixel information were utilised to implement

classification decision rules in an expert system based on terrain observations

(Wharton, 1994; Hung and Ridd, 2002).

Due to this discussion, the following research question was formulated : Is it

possible to map this large and heterogeneous catchment using sub-pixel infor-

mation by means of an expert classification system of high resolution data and

gain a high thematic content with high classification accuracy?

2. The detection and analysis of changes in land cover. Change detec-

tion techniques suitable for the analysis of specific land cover changes are

purpose-dependent to identify and to evaluate. The research question is: Is it

is possible to establish an automatic, operational change detection system for

high resolution satellite data without loss of thematic content?
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3. Analysis of the dynamic behaviour of vegetation associations or land

cover classes. A prerequisite for the analysis of dynamic behaviour is a data

time series suitable for the identification of changes in the objects of interest.

The research question pursued in this context is: Is it possible to analyse the

dynamic behaviour of land cover classes and vegetation associations on the

basis of daily satellite data in the Dra catchment?

4. The derivation of bio-physical parameters. Biophysical parameters are

of major importance for the estimation of biomass or net primary productiv-

ity and are input parameters for environmental models (see chapter 8). The

research question followed is: Is it possible to derive bio-physical parameters

on the basis of single species or vegetation associations with satellite data?

To achieve these main goals several intermediate research steps need to be achieved.

These steps were followed with the objective to automate processing as much as pos-

sible.

• establishment of a transferable classification scheme for the whole

catchment

• elaborated fieldwork and data storage in a GIS

• automatic generation of base material of satellite imagery in high

geometric accuracy (DEM and ortho-photomap)

• automatic radiometric normalisation of (mulitemporal) satellite im-

ages

• generation of a radiometrically correct satellite image mosaic of the

Dra catchment

• development of decision rules for a hybrid classification system

1.3 Structural composition of the work

Chapter 2 introduces the study area and describes field observation techniques and

the assessment of validation data. In chapter 3, land cover classification schemes are

discussed and the specifications of the land cover classification scheme used within
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this study are described. Chapter 4 introduces techniques of modern photogram-

metry applied to remote sensing satellite images for the automatic generation of

cartographically correct base material. Chapter 5 discusses the pre-processing tech-

niques applied to the satellite images in order to obtain data with low calibration

errors as a prerequisite for data interpretation and comparison. In the data process-

ing emphasis was put on the geometric and radiometric accuracy of the processed

data. Different processing steps for very high (CORONA KH4B, IKONOS-2), high

(ASTER, LANDSAT MSS/TM/ETM+) and low resolution data (NOAA/AVHRR)

are outlined. With chapter 6 the thematic interpretations begin in the form of the

generation of a land cover map. The theoretical background and applied methods

are discussed. In chapter 7, purpose dependent change detection techniques for the

comparison of historic and recent satellite data are discussed. Chapter 8 discusses

the derivation of a locally obtained bio-physical parameter and the transfer to the

Dra catchment. A change detection application to the Basin of Fezuata reviews

the complex social and economic interactions of human-induced land cover change

and outlines the possibility of using historical land cover information and change

detection to derive land use information.

Figure 1.3 shows a flow chart of the work structure and the interrelation of pro-

cessed satellite data (next page).
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Figure 1.3: Flow chart of the satellite data used and the processing steps applied

within this study. The numbered text boxes correspond directly to the

chapters within this thesis.

10



2 Regional settings

”Desertification means a long term change in the characteristics of a

biome. Plant life, vegetation and soil changed and impoverished, and so

desertification should not be confused with short term drought; although

drought can be a causal factor.”

S. Mayhew, 1997

Dryland areas cover approximately one third of the solid earth surface. Arid and

semiarid regions belong to drylands, which are permanently, seasonally or temporar-

ily subject to deficit in moisture availability. This regions are especially vulnerable

to natural climatic and man made changes and are identified as areas at risk in the

global climate change discussion. The importance of monitoring the desertification

dynamics in these areas has long been recognised (see e.g. Hill, 2000).

Considering the spatial extent, the need to observe some areas frequently, and the

difficulty of access it is clear that a ground survey alone would be incapable for a

monitoring process. Graetz (1987) postulates that, in order to obtain information

of the surface ”in the Australian semi-arid rangelands remote sensing provides the

only possibility in a reasonable temporal resolution”. Due to the generally low cloud

coverage in arid areas, optical remote sensing data is well suited for land cover/land

use analysis (Hill, 2000).

2.1 The Dra catchment

The Dra catchment appears extremely heterogeneous with more than 4000m of el-

evation in the High Atlas, compared to the lowest region of the project area of

Lac Iriki, 300km distant, at an elevation about 450m. The northern and south-

ern parts not only have different geologic and geo-morphologic regimes, but also

differ in climate conditions (Mediterranean and Saharan), thus affecting the veg-

etation distribution, characteristics, and their annual seasonal behavior. Houérou
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(2001) describes the study area generally as part of the semi-arid steppeland north

of the Sahara, with a more propitious regime for perennial species due to a bi-

modal climate regime with higher amounts of precipitation in March/April and Oc-

tober/November. The catchment itself is located in a transition zone with mediter-

ranean influenced subhumid steppeforest and the mountain-ecosystem vegetation

associations in the northern parts, semi-arid vegetation in the central parts, and

the arid desert ecosystems of the pre-saharan vegetation types in the southern parts

(Finckh and Staudinger, 2002).

The scarcity of water and the temporal and spatial distribution of this limited

resource determines vegetation growth and agricultural production to a large extent.

Runoff from the High Atlas mountain chain, which acts as an orographic barrier,

is drained by two major river systems: the Qued Dades and the Qued Ouarzazate,

which join in the Basin of Ouarzazate. From this point, one river system transports

water further south to the Dra valley (see Figure 2.1). In in recent times water

from the Atlas mountains rarely reaches the southernmost oasis of the Dra valley,

the oasis of M’hamid. Figure 2.1 shows the catchment area of 28419km2 size with

assumed sink of the Lac Iriki.

The system of the river Dra, at the fringe of the Sahara desert, with potential

evapotranspiration of about 2000mm per year and 70mm of annual precipitation

at Zagora (Pletsch, 1971), depends to a high extent on water runoff from the High

Atlas mountain chain, as well as on the highly variable local precipitation. The

bimodal annual precipitation regime peaks in spring and autumn but there is a

significant amount of summer precipitation about 10-20% (Houérou, 2001). The

mean annual precipitation values differ regionally from 54mm in the region of the

Lac Iriki (Hnichi, 1989) to 150mm in Ouarzazate (see Figure 2.2). The mean an-

nual precipitation estimations in the High Atlas mountains vary: Messerli (1967)

describes measurements from the 1950’s to 1960’s of 550mm annual precipitation

on the southern slope of the Jebel Mgoun. (Youbi, 1990) describes 518mm of an-

nual precipitation. The climate station installed by the IMPETUS project at the

Jebel Mgoun recorded form October 2001 until October 2002 520mm (pers. comm.,

O. Schultz, University of Bonn). The highest temperatures in the southern parts

during the summer months range between 40◦C and 55◦C, creating an evaporation

rate that far exceeds the precipitation (see IMPETUS, 2001, for furher discussion).
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The runoff from the High Atlas mountains since 1972 is retained in an artificial

lake near Ouarzazate by the dam Al Mancour ad Dehbi. Since 1972, the water

flow has been regulated, so that floods in the river Dra after snow melt or intensive

precipitation events are controlled. Water is released at certain periods according to

an agricultural and water management plan, to optimize production and guarantee

water availability in the growing town of Ouarzazate (Bencherifa, 1990). Before

the dam was constructed, the major water loss for agricultural production was that

water drained in the ground aquifers during periods of high discharge. Nowadays

the major loss is due to evaporation of lake water. The hydrological system of the

Dra valley has changed since 1972 when the dam was constructed. Most wells have

lower water levels as the groundwater table dropped, due to increased irrigation

and water consumption and less re-filling of the aquifers (M. Sabbar, Servicé Hy-

dolique Ouarzazate, pers comm.; K. Goldnick, GTZ Zagora, pers. comm.). The

Dra catchment generally drains into the Atlantic ocean. Since human interference

was made to the hydrologic system in 1972 spring floods were regulated, water only

reached the region south of the Lac Iriki in 1989 (O. Abellaoi pers. comm, ORM-

VAO, Ouarzazate). Currently the relevant hydrological processes and major land

cover changes take place in the upper part of the Dra catchment. This part of the

catchment, with the assumed sink of the Lac Iriki, is referred to as the study area

or Dra catchment (see Figure 2.1).

The oasis systems oriented along rivers in mountainous areas with small artifi-

cial terrace systems have a width of few meters (Spaeth, 1997), while in the less

elevated parts in the Qued Dra, wider oasis up to 6km (near Zagora) exist. In

the northern Atlas Mountain oasis, major agricultural communities are influenced

by mediterranean vegetation associations consisting of: poplar, ash, maple, fruit

trees ( such as apple, almond, olive, peach, walnut, figs, pomegranate) and crops

(including maize, wheat, oats, radish, potatoes, alfalfa, carrots). In the southern

oasis of the Dra valley the classical production method includes the use of different

agricultural levels (Müller-Hohenstein, 1997). The palm trees (Phoenix dactylifera)

produce not only dates, but also protect the lower vegetation from direct sunlight,

thereby reducing evaporation. In the shade of the palms, olive trees, pomegranate,

figs or grapes are cultivated. The third layer consists mostly of vegetables and crops

such as potatoes, maize, wheat, henna or alfalfa (Pletsch, 1971).

The vegetation coverage is sparse, apart from the river oasis or irrigated areas.

Pastoral nomadism in the rangelands has been a traditional and sustainable form of
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2.1 The Dra catchment

land-use over several centuries (Hammoudi, 1985; Zainabi, 1989). Some nomads still

practice a certain form of transhumance (Pletsch, 1971; Houérou, 2001), staying in

the mountainous areas during the hot summer months and migrating to the lower

elevations in winter. Due to overgrazing and fuel-wood extraction, the inhabitants

are interfering intensively with the natural environmental system. Herds of goats

and sheep further degrade the landscape. Population growth and land use conflicts

between sedentary and nomadic people additionally increase the degradation pres-

sure by reducing the vegetation coverage (see section 8.2). The extreme climate

and varieties of geomorphology have assisted in developing a significant diversity of

landscapes and habitats that are adapted to the semi-arid conditions. Despite the

human impact, even in areas of extreme climate conditions (less than 70mm annual

precipitation), natural wood and shrub vegetation types such as Acacia raddeana

and Tamarix aphylla still exist within the catchment.

The high surface heterogeneity within the catchment led to the decision to divide

the Dra catchment into sub-regions of similar geological and ecological characteristics

for the purposes of conducting a vegetation and land cover description. The first

step towards this was to digitise the borders of the catchment on the basis of existing

topographic maps on a scale of 1:100000. Lac Iriki was considered as the lowest point

or sink in the catchment (see Figure 2.3). Reflection of soil material was considered

to discriminate the background information into units. The method applied for this

differentiation of image units is referred to as photomorphic unit (PMU) mapping

(Daels and Antrop, 1977). The PMUs are described by 1) dominating tonality or

colour, 2) patterns (dots, lines, patches etc.) and c) texture. Landscape elements are

characterised by combinations of similar colour, shape, sizes and patterns. This is

represented in the PMUs (Daels and Antrop, 1977). The mapping and the mapping

criteria of the PMUs depend on the scale and resolution of the image and need to

be adapted for each purpose. For each type of analysis an interpretation key is

necessary. What in a courser resolution is described as texture, might in a finer

resolution become a pattern, or even a single object. PMUs or sub-units of the

catchment were digitized on the basis of the colour differences, texture and pattern

of a LANDSAT ETM+ mosaic (section 5.3). This mapping was also guided by the

use of field data, topographic maps at a scale of 1:100000 and a geological map at a

scale of 1:500000.
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2 Regional settings

Figure 2.3: Sub-regions of the Dra catchment based on the PMU mapping displayed

in a LANDSAT ETM+ true colour mosaic

From north to south, the sub-regions (see Figure 2.3) are described below with re-

spect to geological origin and the dominant (rangeland) vegetation types (M. Finckh,

M. Staudinger pers. comm, 2000-2003). For further reading on the vegetation com-

position of the catchment see Emberger (1939); Ozenda (1977); Fennane and Tattou
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2.1 The Dra catchment

(1998); Houérou (2001).

A High Atlas (4643km2), with Jebel Mgoun as the highest mountain at 4058m, has

a variscan mountain basement with overlying, mesozoic carbonate dominated

layers. The High Atlas is an ancient rift system which formed in a plate

tectonic driven orogeny that resulted in a complex structure (Froitzheim et al.,

1988; IMPETUS, 2001) with a variety of rock types (Abdeljali et al., 1959).

The dominant vegetation types in this region are comprised of characteristic

species such as:

Tall shrubs or trees: Juniperus phoenicea, Juniperus thurifera, Juniperus

oxycedrus, Fraxinus xanthoxyloides, Quercus rotundifolia, Pinus halepensis.

Bushes and shrubs: Ephedra nebrodensis, Tamarix africana, Nerium olean-

der, Buxus balearica.

Dwarf shrubs: Convolvulus trabutianus, Zilla spinosa, Hammada scoparia,

Artemisia herba-alba, Artemisia atlantica, Launaea acanthoclada, Salvia ae-

gyptiaca, Marrubium desertii, Cytisus balansae, Astragalus spinosus, Astra-

galus ibrahimianus, Genista scorpius, Ormenis scariosa, Erinacea anthyllis,

Bupleurum spinosum, Ribes uva-crispa, Teucrium malenconianum, Alyssum

spinosum, Ormenis scariosa, Adenocarpus bacquei, Helianthemum ellipticum,

Hertia maroccana, Thymus spec., Vella mairei

Grasses and herbs: Stipa barbarta, Stipa parviflora, Stipa tenacissima,

Lygeum spartum, Dactylis hispanica, Scorzonera pygmaea, Carduncellus pin-

natus, Jurinea humilis, Festuca hystrix, Arenaria pungens

B Basin of Ouarzazate (2651km2) is a basin of up to 3000m thick tertiary sed-

iments with origins in the High Atlas mountains. The elevation ranges from

1200m - 1500m (IMPETUS, 2001). The dominant vegetation types in this

region are comprised of characteristic species such as:

Bushes and shrubs: Ziziphus lotus

Dwarf shrubs: Convolvulus trabutianus, Zilla spinosa, Hammada scoparia,

Antirhinum ramosissimum, Artemisia herba-alba, Gaillonia reboudiana, Lau-

naea arborescense, Farsetia hamiltonii, Gymnocarpus decander, Salvia aegyp-

tiaca, Marrubium desertii, Astragalus spinosus, Genista scorpius, Helianthe-

mum ellipticum, Teucrium polium, Zygophyllum gaetulum
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2 Regional settings

Grasses and herbs: Stipa retorta, Stipa parviflora, Stipagrostis obtusa, Pe-

ganum harmala, Cymbopogon schoenanthus

C Crystalline Anti-Atlas (2651km2), consists of mainly Precambrian crystalline

formations of volcanic and magmatic origin. Elevations range from 1100m up

to 2900m (IMPETUS, 2001). The dominant vegetation types in this region

include characteristic species such as:

Tall shrubs or trees: Juniperus thurifera

Bushes and shrubs: Atriplex glauca, Tamarix africana, Nerium oleander,

Ziziphus lotus, Withania adpressa, Vitex agnus-casti, Buxus balearica

Dwarf shrubs: Anvillea radiata, Convolvulus trabutianus, Zilla spinosa, Ham-

mada scoparia, Antirhinum ramosissimum, Artemisia herba-alba, Artemisia

atlantica, Gaillonia reboudiana, Launaea arborescens, Launaea acanthoclada,

Lavandula mairei, Lavandula tenuisecta, Farsetia hamiltonii, Gymnocarpus

decander, Salvia aegyptiaca, Marrubium desertii, Cytisus balansae, Astragalus

spinosus Genista scorpius, Ormenis scariosa, Erinacea anthyllis, Bupleurum

spinosum, Ribes uva-crispa, Helianthemum ellipticum

Grasses and herbs: Stipa barbarta, Stipa parviflora, Lygeum spartum, Dactylis

hispanica, Scorzonera pygmaea, Carduncellus pinnatus

D Sedimentary Anti Atlas (3706km2) rocks are mainly deposits of the late Pro-

terozoic at elevations up to 2600m (Emran et al., 1996). The dominant vege-

tation types in this region are comprised of characteristic species such as:

Bushes and shrubs: Atriplex glauca, Tamarix africana, Nerium oleander,

Ziziphus lotus, Withania adpressa, Acacia raddiana, Vitex agnus-casti

/textbfDwarf shrubs: Anvillea radiata, Convolvulus trabutianus, Zilla spinosa,

Hammada scoparia, Antirhinum ramosissimum, Artemisia herba-alba, Gaillo-

nia reboudiana, Launaea arborescens, Launaea acanthoclada, Lavandula mairei,

Lavandula tenuisecta, Farsetia hamiltonii, Gymnocarpus decander, Carthamus

fruticosus, Salvia aegyptiaca, Marrubium desertii, Ormenis scariosa, Genista

scorpius, Teucrium malenconianum, Adenocarpus bacquei, Withania adpressa

E Basin of Tazenakht, (920km2) with a mean elevation of 1500m is a region em-

bedded in the Anti-Atlas. The surrounding rocks are predominantly Cambrian
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2.1 The Dra catchment

and carbonatic. In the interior of the basin are outcrops of pre-cambrian crys-

talline and magmatitic rocks with quaternary deposits (Abdeljali et al., 1959).

The dominant vegetation types in this region are comprised of characteristic

species such as:

Bushes and shrubs: Atriplex glauca, Ziziphus lotus, Withania adpressa,

Vitex agnus-casti

Dwarf shrubs: Convolvulus trabutianus, Zilla spinosa, Hammada scoparia,

Antirhinum ramosissimum, Artemisia herba-alba, Gaillonia reboudiana, Lau-

naea acanthoclada, Farsetia hamiltonii, Gymnocarpus decander, Salvia aegyp-

tiaca, Marrubium desertii, Astragalus spinosus, Genista scorpius, Helianthe-

mum ellipticum, Helianthemum croceum, Teucrium polium

Grasses and herbs: Stipa retorta, Stipa parviflora, Stipagrostis obtusa, Pe-

ganum harmala

F Dra Valley (9286km2). At the northern limit, where the river Dra breaks

through the crystalline Anti Atlas, the elevation is 850m, compared with the

lowest point in the south near Lac Iriki of about 450m. The landscape is dom-

inated by quartzite lineaments of up to 1150m height with quarternary basin

fillments. Since 2000, the Qued Dra has been part of the UNESCO World

Heritage Program: Man and Biosphere (UNESCO, 2003). The dominant veg-

etation types in this region comprise characteristic species such as:

Tall shrubs or trees: Maerua crassifolia, Acacia ehrenbergiana, Tamarix

aphylla, Acacia raddiana.

Bushes and shrubs: Tamarix africana, Nerium oleander, Ziziphus lotus,

Calligonum comosum, Retama raetam, Retama monosperma, Rhus tripartita,

Withania adpressa, Randonia africana, Callotropis procera, Salsola tetragona,

Anabasis articulata

Dwarf shrubs: Ephedra alata, Anvillea radiata, Convolvulus trabutianus,

Zilla spinosa, Hammada scoparia, Nitraria retusa, Fagonia zilloides, Anabasis

articulata, Antirhinum ramosissimum, Zygophyllum gaetulum

Grasses and herbs: Panicum turgidim , Pennisetum dichotomum, Pergu-

laria tomentosa, Pulicaria crispa
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2 Regional settings

a) High Atlas b) Basin of Ouarzazate c) Basin of Taznakht

d) Crystlline Anti-Atlas f) Dra valleye) Sedimetary Anti-Atlas

Figure 2.4: Landscape examples of the six sub-regions of the Dra catchment (Photos:

M. Schmidt, 2000-2002)

2.2 Fieldwork and ground truth data

”Remote Sensing is nothing without ground truth and ground truth is

nothing without remote sensing”

G. Konecny, 2000

The quality of a classification result is not only dependent on the skills and ex-
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2.2 Fieldwork and ground truth data

periences of an operator, but also to a high degree on the knowledge of the terrain

and the eco-system interactions and feedback mechanisms. Lillesand and Kiefer

(2000) state that ”The acquisition of reference data involves collecting measure-

ments or observations about the objects, areas, or phenomena that are being sensed

remotely.” Reference data, including training and test data, are of great importance

in a supervised classification: without training pixels no supervised classification is

possible and without validation a classification is useless. Prior to the collection

of a large amount of field data, the identification of the potential land cover/land

use classes and the thematic content that a classification can or should incorporate

is required. In fact a classification should be the thematic interpretation of the

landscape (Jensen, 1996a). For the establishment of such an interpretation factors

that influence and determine the appearance of objects or phenomena need to be

identified and understood. For this purpose, field observations are necessary for a

supervised and knowledge based classification approach (Richards and Jia, 1999). If

the thematic content, and thus a classification scheme, is defined, field data can be

obtained and assigned for the classification purposes. For this reason three field cam-

paigns were conducted in the years 2000 (October 9 - November 11), 2001 (March

10 - April 19) and 2002 (February 2 - April 9). Spring and autumn were chosen to

observe the vegetation at different phenological stages. Field data of the different

vegetation states were obtained, although the vegetation onset in the mountainous

areas and the lower areas are slightly different.

Vegetation analysis

The first field trip in October/November 2000 served to identify the vegetation

cover and composition and to identify the potential land cover and land use classes.

Vegetation data were obtained for the purpose of:

• identification of vegetation associations;

• identification of the physical plant properties/requirements;

• to obtain vegetation density information.

Within the interdisciplinary approach of the IMPETUS subproject B3, a close

collaboration with botanists (N. Jürgens, M. Finckh and M. Staudinger) was estab-

lished. This collaboration resulted in the identification of vegetation associations,

and finally the definition of a classification scheme (see chapter 3). As a standard,
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for every field observation, in addition to site and vegetation descriptions, at least

one GPS point and one digital image was taken. Botanic vegetation reveals, ob-

tained during the project, of representative 10m × 10m rasters (IMPETUS, 2001;

Finckh and Staudinger, 2002) could be used as independently obtained data.

The time consuming Leaf Area Index (LAI) measurements were concentrated on

one vegetation class to test whether this approach is suitable in this environment.

Measurements were performed with a hand-held digital plant canopy imager (CI-

110) device from CID, INC. Species of Tamarix aphylla individuals were chosen as

a suitable study class, due to the extended coverage within the Dra valley and the

importance of the species e.g. in fixing mobile sand. LAI measurements, estima-

tions of plant coverage, and density for the individuals in different test plots were

performed (see subsection 8.1.1). The amount of accumulated sand beneath the

Tamarisks was estimated due by measurements of the length, height and width of

the Tamarisk hills (see subsection 8.1.1).

Soil/background analysis

The main focus of this study is a vegetation description. Therefore a categorisation

of the soil/background information in five classes was found to be sufficient: 1. sand,

which describes all kinds of loose sands including dunes and surface components

associated with the arabic terms ”Nebkha” and ”Erg”. 2. Desert Crust, which

is a description of sandy materials fixed by a calcium carbonate crust. 3. Playa

describes areas of high clay content, which are often also saline. 4. Gravel/pediment

includes the arabic terms ”Reg” or ”Hammada”, which describe (weathered) loose

stone material. 5. Rock, representing all kinds of solid outcrops.

Analysis of the soil was performed for the purpose of identifying different surface

components and their spectral response pattern. The presence of a calcium carbon-

ate (CaCO3) crust was tested in the field with a HCl reaction test for the identifi-

cation of desert crust (Press and Siever, 1995). The existence of desert varnish and

the amount of gravel were parameters used to differentiate between pediment/gravel,

rock and sand. Electrical conductivity of some wells and the top-soils was used as

proxy information on soil salinity (see e.g. Fogarty et al., 1993). This was measured

with an Eijkelkamp L17p device. Clay content and salinity information were used

to identify areas grouped as playa.
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Interrelation of geo-factors

Analysis of the environmental conditions in terms of soil information, water avail-

ability and quality, elevation etc. contributed to the identification and formulation

of interrelations that determine the vegetation distribution. The incorporation of

these rules is important for the detailed class differentiation and the classification

approach. These rules were formulated by close collaboration within the sub project

B3 and are discussed for each sub-region within chapter 6.

Ground Control Points

During the field campaigns Ground Control Points (GCPs) were obtained for a

number of purposes:

• to locate ground truth data

• for the photogrammetical restitution of CORONA and ASTER data

• geo-coding LANDSAT and IKONOS-2 data

The polygon, line and point data were recorded, depending on purpose, by dif-

ferent GPS systems and devices. The accuracy of the GPS systems is dependent

on the availability, distribution and signal intensity of satellites in the sky. A Leica

300 and a TRIMBLE PATHFINDER Pro XS differential GPS were used to meet

the requirements for high geometric accuracy GCPs in x, y and z coordinates (see

chapter 4). The different GPS systems used are:

• a LEICA 300 system requires a ground based reference station for the dif-

ferential correction of the GPS signal from the satellites. The position must

either be known or measured over a certain time interval (e.g. 2h). The rel-

ative accuracy of the receiver signal is in the range of centimeters, while the

absolute point accuracy is dependent on the accuracy of the reference station.

A high GCP accuracy is necessary for the photogrammetrical restitution of

CORONA data (see chapter 4).

• a TRIMBLE PATHFINDER Pro XS system uses a geo-stationary satellite for

the differential correction of the position signal and has a signal accuracy of

less than 1m (Trimble, 2003). This accuracy was necessary for the geometric

correction of IKONOS-2 data and the photogrammetric restitution of ASTER

data (see chapter 4 and chapter 5).
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• a Garmin III plus GPS with an accuracy of 4− 10m (Garmin, 1999) was used

for obtaining GCPs for geo-referencing and ground truth data for the analysis

with LANDSAT data (see chapter 5).

The identification of GCPs is scale dependent and requires good documentation,

otherwise the information is imprecise, or even useless, for later applications. Fig-

ure 2.5 shows a documentation example of a GCP obtained on 17.04.2000, near

Zagora for the restitution of CORONA data. Full documentation requires the stor-

age of meta information such as the cartographic and the observation datum and

the measurement accuracy.

Point id Coordinates (x,y,z)
49 236247.53     3361032.25     870.40

Figure 2.5: Example of a GCP documentation for the very high resolution CORONA

data (displayed coordinates are in UTM WGS84), the location of the

GCP is indicated

Table 2.1 shows the region, number and overall accuracy (in x, y and z) of the

differential GPS (DGPS) points obtained during the field campaigns.

Although the DGPS points in the region of Toundoute were obtained with high

precision (< 0.5m), due to an insufficient documentation, the quality of the data

was reduced. Due to interference of the GPS signal by sandstorms, leading to

inconsistent and inaccurate results, measurements in the K’tauer area were repeated.

Besides GCPs terrain check points were recorded.
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Table 2.1: DGPS points obtained during field observations

Region No. of GCPs accuracy device

Zagora 19 < 0.5m Leica

Toundoute 18 < 3m Leica

K’tauer 15 < 1m Trimble

Basin of Ouarzazate 31 < 1m Trimble

The field derived point data or line segments were downloaded from the GPS

devices, transformed into vector data, re-projected (if necessary) and stored in a

GIS database together with digital images and a short description of the area (see

Figure 2.6). Polygons obtained as points were recorded as fixed time interval, fixed

distance interval or manually.

M. Schmidt 2001

Figure 2.6: Ground truth data stored in a GIS (ArcView) database (screen-print)

In combination with geo-referenced datasets, the GPS link in ERDAS Imagine

and ENVI/IDL was a useful and efficient tool to locate the positions within the
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dataset of interest in real time and store the ground truth information directly in a

vector layer, together with field notes (see Figure 2.7).

Figure 2.7: Example of the real time GPS link of ERDAS imagine in the field

(adapted from Thamm and Schmidt, 2001)

Information from the GPS tracks was used to compile a road network and super-

impose this on the classification, as all major sealed routes within the catchment

were recorded.

For the orientation in the field and object identification LANDSAT and ASTER

data were used. The very high resolution CORONA KH4B mission DS-1117 data

from 1972 were used for visual identification of sub-pixel objects, such as species of

Acacia raddiana. The data were scanned and archived for the whole catchment (for

further descriptions on CORONA see chapter 4).

Post-processing and problems

The ground truth information from the field trips were integrated and used for

defining the land cover/land use classification scheme. Ground truth information

were assigned either in the field, or in a post-processing step, to the specific land

cover class. Experience after the first field trip showed that the reference polygons

are better for object identification in the context of the terrain as, especially in the

rugged terrain, deviations of map and GPS data are often evident. Incorrect or

inaccurate geo-location polygons that it was not possible to correct by reference to

the contextual situation, or that were ambiguous, were removed. Consequently on
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the reliable fraction of the ground truth data were used as either test or validation

data in the image classification (see chapter 6). Figure 2.8 shows an example of a

polygon shift.

Figure 2.8: Position shift of the ground truth data due to geo-location errors. The

yellow points represent the data obtained in the field, the green poly-

gon represents the shifted dataset. Coordinates of the photo (UTM):

809370/3348542

A homogeneous distribution of the validation data within the catchment was ham-

pered by the large catchment size and variable accessibility to some areas, especially

in the rugged mountain terrains.

2.3 Conclusions

Field observations underpin the understanding of the complex ecosystem interac-

tions and driving forces for the occurrence of vegetation patterns and their changes.

Due to the size and heterogeneity of Dra catchment, six sub-regions were identified

according to similar ecological and geological constraints, which were delimited into

PMUs. Field measurements and ground truth data were stored in a GIS database

for later use. The GIS database of the ground truth data served as data source of

the compilation of the test and validation dataset used in the image classification in

chapter 6.
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3 Low, Medium, High or Very High

Resolution for land cover mapping?

”The higher a land cover classification is in resolution the more specific

it is and lesser the possibility of transfer is given.”

G. Menz, 2003

Land cover and land use information of the earth surface is a key source of informa-

tion for many scientific, resource management and policy purposes (Jensen, 1996a;

Cihlar et al., 2000). Critical biophysical parameters that determine ecosystem func-

tionality, hydrological processes and interactions between surface and atmosphere

can be derived from land use and land cover information. This information of the

earth surface is therefore of strong interest for studies aiming at interaction, dynam-

ics and feedback mechanisms of terrestrial processes, at all scales from regional to

global (Cihlar et al., 2000). Loveland et al. (2000) denotes that land cover data are

among the most important terrestrial data. While the term land cover relates to

the type of features on the earth surface, it also relates to human activity on surface

areas (Lillesand and Kiefer, 2000). Usually supplementary information is needed

to determine land use information. In land cover classification spectral information

are generally transferred into thematic information. Ideally a classification process

should be operator-independent running objectively according to pre-defined rules

and a prescribed taxonomy: a classification scheme.

Land cover analysis can be performed either by classical cartography, interpre-

tations of aerial pictures, as introduced by the German geographer Troll (1939),

or since the launch of the early LANDSAT 1 satellite in 1972, by satellite data.

Land cover mapping has become probably the most widely applied in remote sens-

ing studies (Cihlar, 2000). In terms of cost-effectiveness satellite data provides the

most efficient alternative (Konecny, 1999).
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3.1 Scale in land cover mapping

3.1 Scale in land cover mapping

”The question of scale is one that bedevils all spatial analysis”

P.Mather, 1999

As environmental planning and management became attractive the demand for

land cover information increased, and thus this topic became probably the most

widely applied in remote sensing (Cihlar, 2000). Large area observations with rea-

sonable repetition intervals allows multispectral and multitemporal analysis without

physical contact with the ’sensed’ objects. In certain areas this might be the only

rational observing possibility (Hill, 2000). The concept of land cover is not stan-

dardised in terms of parameters or units and in reality a land cover classification is

always operator-dependent (Foody, 2002). Thus the planning of a land cover map-

ping needs careful attention. Based on Cihlar (2000) there are certain considerations

that need to be made:

• Purpose. Resource management, land planning, policy, and/or science use

different levels of information depending on the required content and detail.

• Thematic content. It is necessary to define the degree of generalization and

thematic clusters in which the surface components can be classified.

• Scale. Differing operational scales, from global to regional can not impart the

same level of detail. A classification should therefore be hierarchical and scale

dependent (Lillesand and Kiefer, 2000).

• Data. Data with the appropriate information content should be chosen, de-

pendent on scale, purpose and content.

• Processing and Analysis. Techniques to derive the desired information need to

be identified. The accuracy level required should be defined.

• Environmental conditions. The physical and ecological settings depend on the

choice of data, methods and level of detail. For example, tropical environment

mapping during the wet season would require atmospheric independent data

such as radar, while in an arid environment hyperspectral data would serve

best for geologic mapping.
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Purpose and thematic content help to define the land cover classes that need to be

differentiated i.e. the mapping legend. The scale and the legend point out the spatial

and spectral resolution of the remote sensing data. Data from different sensors are

widely available, the choice of which is primarily dependant on the purpose. Data

and algorithms need to be sufficient for the desired scale and legend in the area of

investigation. Over-determined data might introduce even an inner class variability

(Atkinson and Curran, 1997; Nagendra, 2002). The terms are not disjunct and might

overlap in their meaning. Data availability, not only due to budget constraints, is

usually also a part of the decision making process.

Temporal Resolution

Land cover changes over time. Therefore, it is the temporal aspect which is of most

interest in data identification - with regard to the purpose. Some information cannot

be obtained by the classification of one single scene. The dynamics or changes over

time are often the only way to differentiate classes if spectral information is not

sufficient. Region A in Figure 3.1 displays satellite data with high temporal and

low spatial resolution. Sensors such as NOAA/AVHRR, TERRA/MODIS, SPOT

VEG, SeaWifs record daily scenes of the earth surface. This is possible due to a

large swath width and thus large area coverage (Richards and Jia, 1999). Data

from the sensors in Region B, like LANDSAT, ASTER, IKONOS or Quickbird

cover a smaller area with higher spatial but lower temporal resolution. The term

medium high resolution data describes usually sensors in the resolution between

high and low (spatial) resolution, such as the instrument MISR (Multiangle Imaging

SpectroRadiometer).

Optical data in Region B are obtained once every 14-16 days, but because of cloud

coverage, scenes are more often available on a monthly time scale. The advantage of

higher spatial resolution is due to the smaller sensor’s swath angle. However there are

some draw-backs: for example, large areas are usually covered by a mosaic of several

scenes at different times, potentially including images with vegetation at different

phenological stages. Data of Region A cover large areas with one single scene, but the

larger the observed area the higher is the probability of cloud contamination. The

generation of composites from daily cloud masked images over periods of 5-16 days

is achieved by methods such as the maximum (pixel) value composite or spatio-

temporal interpolation (Addink and Stein, 1999). Earth observation data from

Region D are not available, being primarily the domain of government and military
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Figure 3.1: Relationship between spatial and temporal resolution of satellite data

(Cihlar, 2000)

operations. Small satellites might overcome this scale gap in the near future and

give the opportunity of a new land cover mapping age. The commercial company

RapidEye promises to do this by monitoring daily multispectral information at 6.5m

pixel resolution (Scherer and Krischke, 2001).

Spatial Resolution

The amount of information in a remotely sensed scene is to a certain extent de-

termined by the spatial resolution. The spatial resolution should be such that the

desired objects can be identified using the least amount of data; if the spatial resolu-

tion is too low, objects of interest cannot be identified. If the spatial resolution is too

high, inter and intra class variability might increase and decrease the classification

accuracy (Atkinson and Curran, 1997; Nagendra, 2002).

Spectral Resolution

Individual images are separately recorded in discrete spectral bands. The position

and the width of the spectral bands is determined by the degree to which certain

targets can be distinguished in the multispectral image space. Multispectral imagery

can lead to a higher degree of discrimination power than a single band (Mather,

1999). The draw-back is that with narrow bands the signal to noise ratio decreases

(Smith et al., 1996). Multispectral information can be used for classification, product
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3 Low, Medium, High or Very High Resolution for land cover mapping?

derivation (albedo etc.) or for sub-pixel analysis. The latter is discussed in chapter 6.

To incorporate the best available information content, data from Regions A and

B (see Figure 3.1) can be used in a synergetic way (Cihlar, 2000) for an improved

data analysis. This is possible either by integrating products from Region A with

data of Region B or to improve classifications of Region B by incorporating tempo-

ral/dynamical aspects recorded by sensors in Region A (e.g. see Graetz, 1987).

For land cover mapping five processing steps are usually applied:

1. data acquisition,

2. pre-processing,

3. analysis and classification,

4. product generation,

5. validation and documentation.

Apart from step 1, these topics are discussed in the following chapters. According

to project and scientific requirements NOAA/AVHRR, MODIS, LANDSAT (MSS,

TM, ETM+), ASTER, CORONA and IKONOS data were used in various analysis

throughout this research.

3.2 Vegetation mapping

The identification of surface vegetation in the remote sensing literature is often de-

scribed by Vegetation Indices (VI). The most prominent of these is the Normalised

Differenced Vegetation Index (NDVI), being sensitive to the photosynthetic active

biomass (Jensen, 2000). Thresholding a VI is a simple binary decision to classify the

earth surface as either vegetated or non-vegetated. Any further vegetation differ-

entiation requires a more detailed knowledge of the vegetation characteristics. The

existence of any type of vegetation in a specific region is determined by the bio-

physical environment and the ecological conditions. These conditions can be seen

as a sum of different ecological factors like geological subsoil, soil type, irradiation,

temperature, precipitation, nutrient supply or salinity, all of which contribute to the

allocation of species over the land surface. Each species shows, due to its evolution-

ary history, a certain reaction to resources and the physical environment, called the
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3.2 Vegetation mapping

fundamental niche (Hutchinson, 1957) or the species ecological amplitude. If species

overlap in their fundamental niches (in their abilities to exist under certain environ-

mental conditions), they will compete with each other and their fundamental niche is

reduced to a realised niche (Hutchinson, 1957). This multidimensional niche is what

we can detect in the three dimensions of the land surface (see Braun, 1996). Knowl-

edge about the autecology of the vegetation composing species (i.e. the physiological

and the ecological optima) is an important contribution to improve satellite derived

vegetation or land-cover classifications. Pure spectral differentiation is not always

possible and thus combinations with knowledge-based discrimination rules can serve

to better optimise results. This knowledge can either be implemented in a post pro-

cessing step or incorporated directly in the classification scheme (see chapter 6).

In reverse, remote sensing by mapping vegetation distribution has the potential to

identify habitats in remote areas and contribute to identifying the species’ tolerances

i.e. Zygophyllum gaetulum as a salt tolerant species.

The appearance of the multidimensional realised niche on the earths surface has

for a long time, but most severely during the last decades, been influenced by a

particular species; the humans.

Grazing, and potentially overgrazing, with herds of sheep, goats and camels has

led to the vegetation appearance of single species, or even vegetation associations,

to be altered significantly. Degradation is a potential result of this process, but

also accounts for the natural causes of degradation such as drought (see Thomas

and Middleton (1994); Nicholson et al. (1998); Katyal and Vleck (2000) for further

reading).

The term landscape ecology was introduced by Troll (1939) using mapping ap-

proaches of aerial pictures and accounts for the human impact on the landscape. The

potential of vegetation mapping contributing to landscape ecology in remote areas

was outlined by Naveh and Liebermann (1984) and Leser (1991). The discipline of

qualitative landscape ecology formed during the 1980’s and 1990’s. North American

ecologists Forman and Godron (1986) defined landscape ecology as: ”exploring how

a heterogeneous combination of ecosystems - such as woods, meadows, marshes,

corridors and villages - is structured, functions and changes. From wilderness to

urban landscape, our focus is on a) the distribution patterns of landscape elements

or ecosystems b) the flows of animals, plants, energy, mineral nutrients, and water

among these elements and c) the ecological changes in the landscape mosaic over

time”.
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3 Low, Medium, High or Very High Resolution for land cover mapping?

Within this framework the mapping of vegetation and their spatial distribution,

especially in combination with change detection, can be interpreted as applied land-

scape ecology.

3.3 Classification schemes and implications for this

study

”If a reputable classification system already exists, it is foolish to develop

an entirely new system that will probably only be used by ourselves.”

J. R. Jensen, 1996

Classification schemes

Every land cover classification is performed according to a classification scheme. For

the purpose of comparability and data homogeneity attempts were made to initiate

a common classification system that the remote sensing community could use. These

schemes were designed usually with differing thematic or spatial (resolution) focus.

Hierarchical classification schemes have the advantage of a homogeneous structure

and different levels of class detail. The level of detail can then be adapted to the

desired scale of the mapping product. US Geological Survey (USGS) together with

the European Joint Research Center, in the framework of the IGBP, established a

global land cover classification scheme and a global land cover map compiled from

1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data in 1.1km

pixel size (Belward et al., 1999; Scepan, 1999). On a quarterly basis the MODIS

Land Cover Product supplies a land cover classification with 17 classes based on the

IGBP system, globally, in 1km resolution (Strahler et al., 1999). Global land cover

data are important for purposes such as, global change research. For some purposes

land cover data in finer resolution are necessary, as within several sub-projects of

the IMPETUS project of which this study is a part. Applications are eg regionalised

climate models which require more detailed input data.

The hierarchical USGS land use/land cover classification system(Anderson et al.,

1976) for mapping with high resolution data was developed for the United States

with scale dependent levels of classes. Level one and two are pre-defined, levels

three and four can be user defined according to the hierarchical structure and re-

quire higher resolution information, like aerial photography (Lillesand and Kiefer,
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3.3 Classification schemes and implications for this study

2000; Jensen, 1996a). The Coordinated Information on the Environment (CORINE)

land cover classification scheme from the European Environment Agency is also an

example of a hierarchical classifier, designed for European countries by using LAND-

SAT TM/ETM+ data focusing on agricultural and forested areas. The first level

differentiates five general cover types: 1. artificial surfaces, 2. agricultural areas 3.

forest and semi-natural areas, 4. wetlands and 5. water bodies. The second, more

detailed level with 15 classes is designed for scales between 1:500000 and 1:1000000.

The third level incorporates 44 levels and is designed for mapping scales of 1:100000.

Although the structure of the CORINE classification scheme was designed for Eu-

ropean countries, most coastal parts of Morocco and Tunisia are mapped using this

classification scheme.

The land cover classification system of the Food and Agricultural Organisation

(FAO) of the United Nations , as part of the IGBP land use and cover change(LUCC)

imitative AFRICOVER, developed a highly flexible scheme of several environmental

layers including soil, lithology, climate, plant physiology etc., with the overall aim

of establishing an environmental database. This scheme seems to be a prosperous

initiative, despite that ”The land cover is mainly derived from visual interpretation

of recent high resolution satellite images digitally enhanced”. (Africover, 2003).

Discussions concerning the Dra catchment

The heterogeneous vegetation patches of the often sparsely vegetated rangelands re-

quire, for an adequate mapping, high or very high resolution images. Requirements

of the related meteorological models and botanic arguments led to a similar decision,

that precise mapping with multispectral high resolution data would be necessary.

The only reasonable option at the beginning of the project was to use LANDSAT

ETM+ due to the higher spectral resolution in comparison to SPOT images (ASTER

data was, at this stage, not available). A great advantages is the good calibration,

geometrical accuracy and availability of the MSS, TM and ETM+ satellite data,

over three decades. Parts of Morocco are already mapped with LANDSAT data

based on the CORINE land cover scheme, including the coastal areas, also also the

nearby Sous valley which has comparable environmental conditions to those in parts

of the Dra catchment. These circumstances led to the decision to adopt the nation-

ally recognised CORINE classification scheme with modifications (Jensen, 1996a).

As already stated, the CORINE land cover classification scheme was designed for

European surfaces. Thus certain modifications were necessary to adopt this scheme
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3 Low, Medium, High or Very High Resolution for land cover mapping?

to the arid environment of the Dra valley of South Morocco. Three new units were

introduced on the third level: steppe vegetation, savanna vegetation and riparian

vegetation. The level two class, shrub and/or herbaceous vegetation, was extended

by the first two, while riparian vegetation was introduced as supplement of the level

two class, inland wetlands. Thus the originally 44 CORINE level three classes were

expanded to 47. This was found to be useful as the arid character of the existing

classes was not found to be sufficient, as revealed by field observation. Following

the concept of the USGS system, a major change was the introduction of a forth

level to further differentiate land cover. This would imply either the use of higher

resolution data (e.g. 10m) or the use of more dedicated classification methods. In

order to produce a land cover map with the highest possible detail, and due to sub-

pixel object size (Figure 3.2), sub-pixel analysis methods were applied to increase

the spatial interpretation possibilities of the LANDSAT TM/ETM+ data.

Figure 3.2: Estimated size of a LANDSAT pixel in an oblique terrestrial photo. Trees

of Acacia raddiana in the valley of pediment fields (Photo: M. Schmidt,

2000), coordinates of the rectangle center (in UTM): 829045/3314167

It should be recognised that with this step not only were the number of possible

classes enlarged to 64 (see Table 3.1), and so the probability of misclassification

increased, but also that sub-pixel analysis additionally incorporates a source of un-

certainty itself. Figure 3.3 depicts this relationship schematically.
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Figure 3.3: Schematic relation of pixel size, numbers of classes and estimated accu-

racy dependent on the classification level

Figure 3.3 a) indicates the increasing number of classes with increasing level of

classification detail in relation to the necessary pixel size. Figure 3.3 b) shows

a similar relationship but with a schematic representation of the expected error

increase by increasing classification level with respect to the sub-pixel analysis of

LANDSAT TM/ETM+ data.

The extension of the existing CORINE land cover classification scheme up to the

forth level was performed in close collaboration within the IMPETUS sub-project

B3. Profound knowledge of the terrain allowed this approach by incorporating sup-

plement information of plant properties. The level four classes can be merged to

the higher levels due to the hierarchic structure of the classification scheme (see Ta-

ble 3.1). Modifications on level three can also be merged with the existing classes of

level three in order to contribute to land-cover mappings on the basis of CORINE in

Morocco. The complete classification scheme is shown in Table 3.1. The vegetation

classes within this land cover/land use classification scheme usually represent plant

associations. These are detailed in Appendix A.

Table 3.1: Land use/land cover classification scheme used within this study, based

on CORINE land cover (next page)
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3 Low, Medium, High or Very High Resolution for land cover mapping?

3.4 Conclusions and discussion

Large catchment-wide mapping was performed in the late 1960s and early 1970s

resulting in the presently used topographic maps in the study area. Recent studies

involving satellite data are either locally used or never integrated into a common

GIS database system. For the vegetation mapping approach LANDSAT ETM+ data

were found to be suitable with respect to spatial and spectral resolution. The level

of detail to be mapped was identified in accordance with project requirements and

ecological characteristics. It seemed appropriate to adopt and refine the existing

CORINE land cover classification scheme as large parts of Morocco have already

been mapped with this scheme. This way the whole catchment can be mapped

according to one classification scheme, even if, due to surface heterogeneity, sub units

needed to be classified separately. Nevertheless, related to the enlarged number of

classes, the probability for mis-classifications potentially rises.

The integration of the classification products/results with different methodological

origin and local modifications and accuracy is a difficult task and is a question of

database homogeneity and management. The additional classes can be merged and

incorporated in the standard CORINE system.

New environmental satellite data, such as ASTER or SPOT 5, which have in-

creased resolution (spatial and/or spectral), also increase the expected classification

detail and accuracy. Consequently a fourth classification level of the CORINE land

cover scheme might well become standard in the near future, especially if classifi-

cations of very high resolution data, such as IKONOS or QUICKBIRD were to be

incorporated. Otherwise these mappings would be performed with different, more

flexible and/or more detailed classification schemes.
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4 Remote sensing in 2, 3 and 4

dimensions

”A mind that is stretched by a new experience can never go back to its

old dimensions.”

O. W. Holmes, 1841-1935

Satellite images appear as two dimensional maps with pixels organised in regular

grided 2D data array. Across track scanners provide this data recorded by a rotating

mirror or a linear detector array in an across track direction of the swath (Richards

and Jia, 1999). The size of a pixel is determined by the focal length, the flight

height and the view angle, and the Instantaneous Field Of View (IFOV) of the

recording system (Mikhail et al., 2001). The projection of a pixel to the earth

surface, referred to as the Ground Sampling Distance (GSD), is influenced by the

local relief. Thus, only in rare occasions truly a 2D image information obtained

if e.g. a LANDSAT satellite would fly along the center of an ideal shaped valley

with the valley walls curved in the same angle as the recording mirror of the sensor

moves. In all other instances, elevation effects and thus the third dimension, is

image inherent by incorporating larger GSD off NADIR (Richards and Jia, 1999) or

relief displacements of the pixels (Mikhail et al., 2001; Schmidt et al., 2003a). Image

displacements, d, are a function of the view angle α, object height ∆h, and, in the

case of mountains, dependent on slope and aspect (Mikhail et al., 2001). Figure 4.1

shows this principle. Point P of an object with height h above the reference plane, is

recorded in the image plane at position p. Distances can be expressed from similar

triangles (Goossens, 2002):

pp′

pw
=

d

OP ′′ =
h

H
or

h = H
pp′

OP ′′
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4 Remote sensing in 2, 3 and 4 dimensions

If the points p and p’ are clearly to be identified in the image plane and the flight

height above the same datum as the object is known, then the object height can be

calculated.

H

h

Reference plane 0

f

P‘ P‘‘

P

pp‘
w

d

Image plane

a

Figure 4.1: Relief displacements (Goossens, 2002, modified)

The interrelation between the object height and view angle α and image displace-

ments is expressed as:

d = ∆h ∗ tan(α)

In rugged terrains, such as the High Atlas Mountains with ∆h = 1500m the dis-

placements even for satellites with narrow swath e.g. LANDSAT with α = 7.7◦ at

the image edges, can contribute to displacements of more than 200m (equating to

6-7 pixels). The problems of image displacements are ubiquitous for satellite data as

for aerial pictures recorded in conic projection. These basic photogrammetric prin-

ciples became with the advent of the very high resolution data, such as IKONOS-2

or Quickbird-2 particularly important to the remote sensing community (Konecny,

2001; Andresen et al., 2001; Kim and Muller, 2001; Lohmann, 2001). The very high

resolution sensors were built to record images oblique with certain view angles (Fig-

ure 4.1). The displacement increases non-linearly with increasing view angle due to

the hyperbolic behavior of the Tangents function (Schmidt et al., 2003a).

Image displacements of an monoscopic IKONOS-2 scene are in a case study in

South Morocco with ∆h = 300m and α = 27.9◦ at d = 158m, which is in the case of

42



4.1 Photogrammetric background

IKONOS-2 panchromatic 158 pixels. The dilemma of this situation is that not only

maps on the necessary scale are missing, but also that the data can not be rectified to

real world coordinates simply by recording GCPs in the field. In working monoscop-

ically the operator only has the chance to indicate the correct GCP coordinate to the

displaced point in the image. So that the Root Mean Square (RMS) error is in fact an

estimator of the mean image displacement at these points within the image, plus the

registration error in finding the corresponding pixel position (Schmidt et al., 2003a).

A solution is, as applied in most studies, to work with ortho-rectified products like

topographic maps or true ortho-photos section 4.4. Within this cartographic docu-

ment the 3D information is provided by the use of a Digital Elevation Model (DEM)

and is employed to correct the distortions resulting from the view geometry. Jensen

(1996b) stated that the ”geometric accuracy (x,y) of a photogrammetrically terrain

corrected orthoimage is superior to the normal remote sensing image rectification”.

Often orthorectified base material is not at an adequate scale, or more generally, is

just not available. In cases where such data does exist, it is often high in errors -

especially in the case of areas close to political borders e.g. in developing countries

or where borders are (still) under discussion as in Morocco/Algeria. The demand

for adequate and correct map products with displacement free x and y coordinates

is not only from the geometric and cartographic aspects of remote sensing heigh.

Mapping with remote sensing data is cost and time efficient (Konecny, 1999) and,

due to stereo coverage of sensors as CORONA, SPOT or ASTER, possible.

This, and the following discussion and the basic trigonometric context (explained

below), immediately demonstrates the potential for what was recently called pho-

togrammetric remote sensing or 3D remote sensing (Goossens et al., 2002a, Goossens,

pers. comm.) and the necessity to be able to apply methods and knowledge of pho-

togrammetry to stereo data of satellite images. These methods were basically de-

veloped for use with aerial photography when remote sensing and photogrammetry

were one discipline (Goossens et al., 2002a).

4.1 Photogrammetric background

Projective geometry was introduced by renaissance artists as Filippo Brunelleschi

(1377-1446) and later by Leonardo da Vinci in his image the ’last supper’ and Al-

brecht Dürer. Photogrammetric methods are based on the principles of projective

43



4 Remote sensing in 2, 3 and 4 dimensions

geometry (McGlone, 1996). A traditional definition of photogrammetry is ”the pro-

cess of deriving (usually) metric information about an object through measurements

made on photographs of the object” (Mikhail et al., 2001). This includes the stereo

viewing of image pairs and the derivation of an ortho-projetion out of two conic

projections (Goossens, 2002). Sensing techniques provided images in multispectral

ranges with a broader pixel resolution in the early 1970s. Photogrammetrists fol-

lowed the framework of projective geometry and worked with aerial photographs,

while operation with satellite images and their interpretation is called remote sens-

ing. The evolution of photogrammetry can basically be divided in three successive

stages; the analog stage, the analytical stage and the digital stage (Zhang et al.,

1996). The analog stage, started about 1900, was determined by the utilisation of

the optical-mechanical instrument: the stereo-plotter. Aerial pictures were oriented

to a perspective center according to the flight line and the rotation angles kappa

phi and omega of the recording system. The stereo-view allowed the operator to

draw contour lines and to generate analog topographic maps. The analytical stage,

which arose in the 1970s (Goossens, 2002), allowed manual drawings and elevation

information be stored directly in a computer, although the analysis was still depen-

dent on the operator and his/her interpretation. The advent of the digital stage

in the late 1990s changed the possibilities tremendously. Automatic photogram-

metric analysis is now also possible with scanned and digital recorded non-metric

images. The major advantage is that labour, time, and thus, cost intensive analysis

can be performed automatically, and to a greater extent, independent from human

interpretation (Zhang et al., 1996; Mikhail et al., 2001).

Modern photogrammetry deals with several types of digital images, including

both classical metric images and non-metric images (Mikhail et al., 2001). The

major progress was the reliable processing of automatic image matching and orien-

tation procedures (Zhang et al., 1996; Heipke, 1997; Wang, 1998). With the launch

of the IKONOS-2 satellite in 1999 and the availability of 1m pixel resolution (po-

tentially stereoscopic) the scale gap between remote sensing and photogrammetry

was bridged: scientists from formerly disparate disciplines worked again with the

same actual data on similar topics. The release of the CORONA data in 1995 is an-

other important step towards the intersection of these disciplines and will surely lead

to the incorporation of methods from both to maximise the usage of the inherent

information.
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4.1 Photogrammetric background

Parallax and stereo view

Applications in classical photogrammetry incorporate the use of stereo-image pairs

and the principle of parallax. Parallax refers to the relative position change of a

stationary object due to the position shift of the observer (Lillesand and Kiefer,

2000; Mikhail et al., 2001). Figure 4.2 shows this graphically. Images as taken from

the points o and o’ display the points A and B different in the image space as a and

b. The parallax pa of point A is the sum of the measured x coordinate xa of the

left image of the stereo-pair and the measured x coordinate x′
a of the right image.

Which can due to the negative sign of x′
a be expressed as:

pa = xa − x′
a

The parallax difference on vertically overlapping photographs is shown in Fig-

ure 4.2.

f

A

bo
Image plane

B
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Figure 4.2: Parallax displacements on overlapping vertical photographs (Lillesand

and Kiefer, 2000, modified)

The principle of parallax and floating points (Mikhail et al., 2001) allows the

calculation of object heights within stereo models with known focal length of the

observing camera system. Ideally, and as shown in Figure 4.2, with a flight line along

the x and x’ axis, the distance between o and o’ is called the photogrammetrical
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4 Remote sensing in 2, 3 and 4 dimensions

base. A non stable platform is additionally moving in three possible directions as

described usually with the angles kappa, phi and omega (Mikhail et al., 2001). So

that in reality the base also has a y component, with a y parallax resulting from

y movement of the platform plus the recoding distortions due to kappa, phi and

omega. The base to height ratio, as the distance between the obtained images

and their recording height above the ground determines the amount of parallax

and consequently the precision of the object height that can be obtained. Relative

model orientation incorporates estimation of the parameters kappa, phi and omega

(McGlone, 1996). Conjugate image points allow the image orientation along so

called epipolar lines and the elimination of the image y parallax (Mikhail et al.,

2001). These orientations were classically performed with a stereo-plotter. With

the absolute model orientation an operator could measure distances and heights and

analog topographic maps can be produced. This was a manual and labor intensive

process. With these concepts, using stereoscopic data, relief or object displacements

can be resolved.

Digital photogrammetry

The concepts of analog and analytical techniques were transferred to digital pho-

togrammetric software systems, which was a major step in automation of the in-

formation extraction of stereo data (Baltsavias, 1996; Mikhail et al., 2001). Funda-

mental to the digital stereo-image analysis is the image matching process (Schenk,

1996; Wang, 1998; Mikhail et al., 2001)within which conjugate points are found in

the corresponding image. Matching algorithms can generally be categorised into

(Schenk, 1996):

• area based matching works on matching of grey level distributions by image

correlation on small windows (Schenk, 1996)

• feature based matching matches image derived primitives, e.g. grey level con-

tour lines (Li et al., 1997)

• structural matching or relational matching establishes a correspondence be-

tween image primitives and their interrelationships (Wang, 1998)

Combinations of these algorithms are mostly applied, with respect to pyramid layers

(Heipke, 1996; Baltsavias, 1996). Due to image matching algorithms the process of

relative orientation runs fully automatically and parameter free, even with non-

metric recorded images (Wang, 1998; Zhang et al., 1996). This relative orientation
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4.2 3D Remote Sensing

of the stereo images and the relative DEM of the so called image space can be

transferred into the object space of real coordinates (Figure 4.3). To solve the

transformation problem three GCPs in x,y,z and two planimetric GCPs are necessary

(Jacobsen, 2001).

Figure 4.3: Image orientation process (Mikhail et al., 2001)

4.2 3D Remote Sensing

Remotely sensed images usually have no fiducial marks, unlike aerial photographs,

as most sensors record images pixel-wise line after line. These images are recorded in

the so called non-metric way (Mikhail et al., 2001). Camera parameters of satellite

observing systems are often not available or remain secret as in the case of CORONA

(by the United States Central Intelligence Agency (Ruffner, 1995)) or in the case
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4 Remote sensing in 2, 3 and 4 dimensions

of IKONOS and SPOT by their companies SpaceImaging (SI) and EURIMAGE

respectively. Recent developments allow image matching and relative orientation

of non-metric recorded images without an internal orientation (Zhang et al., 1996).

With this achievement the camera information is no longer necessary for the gener-

ation of 3D corrected products and satellite data serve as an effective data-source

for DEM generation.

4.2.1 Data

For orthographic mapping and DEM generation stereo-image pairs of CORONA

KH4B recordings (mission DS-1117) dating from 26 May 1972 were used in test

and evaluation areas. First approaches were conducted at an area near the town

of Zagora while the evaluation took place near the town of Toundoute. ASTER

data were also evaluated first in the area of K’tauer and applied then to three

adjoining ASTER scenes of April 12, 19 and July 6, 2001 of the basin of Ouarzazate

(Figure 4.4).
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Figure 4.4: Coverage of CORONA and ASTER derived photogrammetric products

Both satellites observe overlapping images due to two recording systems on-board.

While CORONA has two panchromatic cameras forward and a backwards viewing

each 15◦ off NADIR (Campbell, 1996), ASTER records 14 spectral bands at NADIR

and additionally has a backwards viewing camera in the VNIR with a view angle of

27.9◦ (NASA, 2002a). The geometry of the image recording systems are shown in

Figure 4.5.
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4.2 3D Remote Sensing

a)

27.6

55 sec.

b)

Figure 4.5: Sensor geometry of a) CORONA (Campbell, 1996) and b) ASTER satel-

lite

The characteristics of the data are displayed in Table 4.1 and are discussed in fur-

ther detail, e.g. by Ruffner (1995); MacDonald (1995); Campbell (1996); Goossens

et al. (2003).

Table 4.1: Characteristics of CORONA and ASTER stereo images.

CORONA ASTER

Ground resolution ≈ 1.8m (in the center) 15m

Operation time 1960-1972 since 1999

Spectral properties panchromatic VNIR (760-860 nm)

Camera type Panorama (KH4B) CCD

Spatial coverage ≈ 14km × 188km 60km × 60km

Storage Film (black and white) Digital

The CORONA images were scanned with a Z/I (Zeiss/Integraph) imaging Photo-

Scan scanner with absolute position accuracy of 2µ at resolution of 7µ, at the Insti-

tute of Photogrammetry, University of Bonn, Germany, for further digital analysis.

The position accuracy and thus distortion reduction compared to a desktop scanner

is about a factor of 100 higher (K.H. Ellenbeck, University of Bonn, 2003, pers.
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4 Remote sensing in 2, 3 and 4 dimensions

comm). First tests were performed by photographic enlargement of the CORONA

strips on photo-paper and scanning afterwards which resulted in less accurate prod-

ucts (Schmidt et al., 2001b,a).

4.2.2 Methods

The photogrammetric software package VirtuoZo requires aerial pictures to be ori-

ented along the flight line Lp, which is in this case defined as an E-W direction.

CORONA and ASTER are mounted on satellites with a N-S flight direction, Ls.

Thus is it necessary to rotate the images 90◦ anti-clockwise (Figure 4.6a). This is

important because the component along the flight line contains the parallax and

thus the height information. The the left image in the stereo model must be the

forward image of CORONA and the nadir image of ASTER (n) (Figure 4.6b) while

the backwards image (b) must be the right image.

n

b

N

X

Y

Y‘=X

X‘=-Y

X‘

Y‘

N

a) b)

Ls

Lp

Figure 4.6: ASTER image pre-orientation along the E/W flight-line

The image rotation implies a rotation of the object coordinate system. All analysis

is then performed in the new coordinate system spanned by X’ and Y’. The re-

transformation to real world coordinates can be performed in a GIS system during

post-processing. Figure 4.7 outlines the processing steps which are necessary to

produce an orthoimage and DEM using VirtuoZo (Version 3.2).
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4.2 3D Remote Sensing

1. Image preparation
• import of raster files
• image enhancement
• orientation along the flight line

2. Relative orientation
• automatic generation of matching points
• manual check of the matching points
• automatic calculation of kappa, phi, omega and RMS error
• indicating the zone of interest

3. Absolute orinentation
• inserting of 6 (or more) GCPs in x,y and z
• calculation of the RMS error

5. Image matching and edit match
• matching of epipolar images
• stereo view
• quality check of the pegs
• check of lines of equal parallax difference
• check of lines of equal height with the topography
• digitising of problematic surfaces (e.g. water)

6. Product generation and data export
• DEM on desired scale
• orthophoto and image drape on the DEM
• contour lines and orthophoto-map on scale

4. Epipolar resampling
• removing the y parallax
• calculation of left and right epipolar images

Figure 4.7: Processing steps within VirtuoZo

VirtuoZo applies a combination of image matching based on area correlation

within moving windows of 9 × 9 pixel size (Baltsavias et al., 1996), and feature

based matching using probability relaxation and neuronal network techniques (see

Zhang et al., 1996, for further discussion) for the automatic generation of match-

ing points (red points in Figure 4.6b) in pyramid layers. A minimum of 6 GPS in

x,y and z coordinate are required by VirtuoZo for the absolute orientation (yellow

points in Figure 4.6b). The accuracy in x,y and z of the GCPs is crucial for the

resulting DEM accuracy. Therefore the GCPs need to be recorded in the field at
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sub-pixel level. For the CORONA restitution a Leica 300 differential Global Po-

sitioning System (GPS) with an accuracy of less than half a meter was used. In

the case of the ASTER data, a TRIMBLE Pathfinder PRO XRS differential GPS

with an accuracy of less than one meter provided a sufficient retrieval accuracy (see

section 2.2). These points should be evenly distributed over the image overlapping

area in the three dimensions (Baltsavias et al., 1996; Mikhail et al., 2001). Epipolar

resampling creates left and right epipolar images and contributes by the use of the

matching points and the inserted GCPs to the calculation of epipolar planes and

the removal of the image y parallax. VirtuoZo offers the ability to check matching

quality of the epipolar images by the gridded ’pegs’ in which coefficients from the

matching algorithm are displayed (Zhang et al., 1996). For every peg is the parallax

calculated and lines of equal parallax difference are interpolated. Problematic areas,

such as water bodies, can be edited by polygon digitising and assigning a constant

elevation value. Figure 4.8 shows the calculated lines of equal parallax difference of

an ASTER scene and the digitised lake near Ouarzazate.

Figure 4.8: Lines of equal parallax difference in an ASTER scene near Ouarzazate.

The collinearity equations (Mikhail et al., 2001, see e.g.) transform lines of equal

parallax difference to contour lines of the surface elevation. The fitting of the contour

lines with the relief should finally be controlled with polarisation glasses in a 3D view
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(Zhang et al., 1996).

4.2.3 Results

DEM

DEMs were generated with CORONA images (Figure 4.9) and with ASTER data

and represent the terrain surface. In the areas of the river oasis with dense and high

vegetation, an elevation greater than the true relief is to be expected.

Figure 4.9: Image drape of CORONA data, near the town of Zagora

The first tests of the CORONA restitution were performed in a 5km × 5km area

near Zagora Figure 4.4. The RMS errors from the relative and absolute orientation

are shown in Table 4.2. The DEM accuracy was evaluated with 49 field measured

GPS points which resulted in a mean vertical accuracy ∆z = 9.54m and with a

standard-deviation σ = 13.74m. The sandy test area (Figure 4.9) not only resulted

in a rather poor image matching due to lack of image contrast, but also there

were few infrastructure lines existing for reliable GCP recording. The best mean

vertical accuracy of a CORONA derived DEM was obtained in a subset of roughly

10km×10km near Toundoute (Table 4.2), with ∆z = 3.6m and σ = 13.2m according

to 146 GCPs.
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Table 4.2: Errors in the photogrammetric restitution - CORONA

Area Zagora Toundoute

Relative orientation

Number of points 58 98

RMS error (m) 0.0189 0.008

Absolute orientation

RMS x (m) 9.83 8.87

RMS y (m) 9.17 2.18

RMS xy (m) 13.45 9.14

RMS z (m) 3.38 0.70

Number of GCPs 8 7

This high standard deviation can potentially be reduced with more identifiable

and better documented GCPs. The possibility of using ASTER data for DEM and

orthoimage generation was tested in the area of K’tauer with an area of 30km ×
60km and verified in the basin of Ouarzazate Figure 4.4, where three full ASTER

scenes were processed independently by the use of 29 GCPs and merged afterwards

(Figure 4.10).
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Figure 4.10: Mosaiced DEM of three processed ASTER scenes from the basin of

Ouarzazate on scale 1:10000

The relative error estimation of the restitutions are shown in Table 4.3. For
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K’tauer, were 15 check points were available with ∆z = 3.6m and σ = 7.8m. The

mean height difference of the ASTER DEM in the basin of Ouarzazate to 1439

validation points was ∆z = 1.6m with σ = 11.9m, while the DGPS points were

obtained in a small hilly region and were interpolated to a 5m grid.

Table 4.3: Errors in the photogrammetric restitution - ASTER

Data K’tauer East West Middle

Relative orientation

Number of points 89 158 231 246

RMS error 0.0079 0.0064 0.0049 0.0049

Absolute orientation

RMS x (m) 17.81 12.77 13.54 9.32

RMS y (m) 22.02.18 18.38 16.81 11.21

RMS xy (m) 28.33 22.38 21.59 14.58

RMS z (m) 4.76 5.44 10.40 5.87

Number of GCPs 7 12 10 11

Ortho-image

Orthoimages, as displacement free and cartographic correct products, could be gen-

erated at a scale of 1:10000 (keeping in the case of ASTER, the original resolution

of 15m). The orthoimages from CORONA, as well as of the ASTER data, could be

superimposed with contour lines of desired interval generated from the DEMs and

thus be utilised as topographic-orthophoto maps. These maps offer more detailed

information than the best available topographic maps at scale of 1:100000 and on

smaller scale. The only drawback is that the user of these documents must be able

to interpret the black and white ortho-images, or in the case of ASTER, even a

VNIR image.

4.2.4 Post-processing

To make use of the generated data the products need to be exported and re-

transformed to a real world coordinate system Figure 4.6. The products were fur-

ther processed with other software packages; ERDAS imagine was used to mosaic
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the individual ASTER ortho-photomaps. The ortho-image mosaic was the basis for

digitising clouds and their shadows. The DEM was imported to ArcView and man-

ually cloud masked. The three ’cleaned’ DEMs were merged and converted to one

grid file, removing some corner effects in the DEMs. These products are available for

validation and further analysis. The ortho-images were compared with scanned and

geo-referenced topographic maps at scale of 1:100000. Visual inspection indicated

very good matching with topographic maps (Figure 4.11).

Topographic map 1:100000

Figure 4.11: Image swipe of an ASTER orthoimage overlaid on the topographic map

Ouarzazate on scale 1:10000

4.2.5 Co-registration

Constructed orthoimages served as a basis for image co-registration. This is espe-

cially important for the very high resolution data as recorded obliquely. Figure 4.12

shows an example of an IKONOS-2 image, with a large view angle (chapter 4),

and therefore strong relief displacement (Schmidt et al., 2003a). An ortophoto of

CORONA data was produced (subsection 4.2.3) and was used as a cartographic

basis due to the lack of orthographic material at the desired scale.
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Figure 4.12: Co-registered CORONA (26.05.1972) and IKONOS (24.06.2001)

panchromatic image - pixel size 1m near Toundoute

The images were co-registered with 90 control points and a high RMS error (44.3

pixel), as the terrain difference is about 150m in this area, which served to a good

matching. As discussed in chapter 4, in this case error estimations need to be

introduced other than the classical RMS error.

4.3 Multi-temporal 3D analysis - or 4D remote

sensing?

Incorporating a DEM is a 3D analysis and provides very useful data for many ap-

plications. The integration of time series data recorded in 2D, such as images of

NOAA-AVHRR or LANDSAT, would result in an analysis with a dimension higher

than 3. Real 4D analysis by the incorporation of DEMs over time is certainly possi-

ble: DEMs and orthophotos of large areas can be generated in almost real time after

a stereo-satellite overpass using a set of updated GCPs. Monitoring surfaces with

DEMs can improve early warning systems, e.g. in vulcanology or geo-morphology.

Especially with very high resolution, combining the elevation information with mul-

tispectral information, can serve to better identify and predict hazard events.
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4.4 Discussion and Conclusions

High quality DEMs are important for several environmental applications, e.g. hy-

drology, botany, illumination correction in remote sensing etc. Recent progress in

remote sensing as well as in Photogrammetry allows one to generate DEMs from

non-metric data and to produce up-to-date cartographic base material. Solution of

the photogrammetrical equations in VirtuoZo requires the insertion of a minimum of

6 GCPs in x,y and z coordinate within a stereo data-set. The quality of the ASTER

DEM was checked in a small test area, with good results, where a GCP for the

photogrametric restitution was used in the neighborhood. Further field work in the

remote areas can only serve to improve the overall validation of the derived DEM

and ortho-product. The incorporation of additional GCPs in the existing VirtuoZo

projects is possible so that the automatic product generation is not time consuming.

The quality of the photogrammetrically results is dependent on the quality of the

input GCPs and the image matching based on the image contrast.

Images co-registered to orthographic base material permit further analysis and

image interpretations, change detection or object recognition applications e.g. see

Mueller and Segl (1999). The interface to other software systems and the export

of products into GIS systems is an important component of the photogrammetric

packages necessary to make the information available to users.

A methodology was proposed, in which the use of CORONA satellite images,

available globally between the years 1960-1972, is possible. In difficult terrains,

such as mountainous or urban areas, if very high resolution oblique data such as

IKONOS or Quickbird are integrated in mapping activities, a correction for image

displacement is necessary if the result is to have accurate geo-information.

It was and is possible to combine SPOT P images of 10m pixel size obtained from

different orbits (and dates) to use for DEM generation. This was in historic times

only possible for companies with knowledge of the camera parameters for an internal

orientation. These camera parameters are no longer needed and historical satellite

data, as well as recent data, can, with digital photogrammetric methods, now also be

used for a DEM and orthophoto generation of non-metric images. Modern sensors,

such as ASTER, provide satellite data with which a 3D remote sensing analyst

can produce his/her own cartographic base material together with a DEM of high

quality and potentially multispectral channels for image interpretation. The great

advantage of the recording system of ASTER is that both images are recorded
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with a time interval of only 55 seconds under effectively the same environmental

conditions. Consequently surface changes and atmospheric variations can in most

cases be disregarded; the author can only propose considering this advantage for

future satellite missions, as the so called 3D remote sensing becomes, with finer

spatial resolution, more and more important.
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5 Pre-processing - How much is

necessary?

”A good player never makes more effort than he needs to win”

- old arabic wisdom

According to Mather (1999) the term pre-processing is understood as the correc-

tion of geometric and radiometric deficiencies and the removal of data errors. It

seems natural that errors within the data are removed, if possible, before image

interpretations start. The choice of methods to do so is always purpose dependent.

If, for instance, a check of a certain land cover or object with an satellite image is

the purpose, visual interpretation might be sufficient and even geometric correction

not necessary (Jensen, 1996b). In our opinion the operator should define precisely

the demands on the data and chose the necessary processing steps to achieve his

specific task. The importance of pre-processing methods becomes obvious in change

detection or monitoring applications, where the operator must be able to distinguish

data noise, pre-processing and data handling errors from real changes. Song et al.

(2001) discuss this topic in more detail.

For high and very high spatial resolution data are currently no automatic or

fully operational pre-processing programs available as there are for high temporal

resolution data such as NOAA/AVHRR and TERRA/MODIS. One emphasis of this

work outlined in the following sections was an attempt to automate pre-processing

steps for high resolution data (LANDSAT TM/ETM+) as much as possible and to

integrate these routines in standard software packages.

5.1 Satellite data

The data to be processed, within this study, have a variety of different resolutions

and characteristics (Table 5.1).
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5.1 Satellite data

Table 5.1: Characteristics of the utilised and processed multispectral satellite data

Satellite NOAA TERRA LANDSAT TERRA IKONOS CORONA
Sensor AVHRR MODIS MSS/TM/ETM+ ASTER KH4B/KH4A
Pixel size [m] 1100 250/500/1000 79/28.5/28.5 (25) 15/30/90 4 ~1.8/~`4
Spectral channels 5 36 4/7/7+pan 14 4+pan pan
Flight height [km] 860 705 706 705 680 180
Satellite 14,16 1 1,3,4,5,7 1 2 18/14
Data Distributor SAA NASA RADARSAT/USGS NASA SI USGS
Processing level 1b MOD13Q1 1R/1G 1b Geo raw
Delivery media ftp ftp Cdrom ftp CDrom filmstrips
Storage 10bit 16bit 8bit 8bit 11bit 64 lines/mm
Dataformat LAC/HRPT HDF (geo-) tif/NLAPS HDF (geo-) tif dia-positive

AVHRR level 1b data from NOAA 14 and 16 in local area coverage (LAC) and

high resolution picture transmission-station (HRPT) format were obtained by the

NOAA satellite active archive (SAA). The data are delivered daily by file transfer

protocol (ftp). NOAA records daily data for a crop monitoring project in north

Africa. The Dra valley is located at the edges of the recorded coverage, resulting in

a data coverage less than daily.

The MODIS MOD13Q1 product (USGS, 2003b) of the MODIS Level 3 16-day

composite of NDVI at 250m resolution were downloaded (USGS, 2003a) and re-

projected for the comparison with NOAA/AVHRR data (NASA, 2003b).

LANDSAT level 1R data are radiometrically corrected, while 1G data are ra-

diometrically and systematically corrected. Level 1R and 1G data undergo a two-

dimensional resampling according to user-specified parameters including output map

projection, rotation angle and pixel size (NASA, 2001).

ASTER data were obtained (NASA, 2002b), the level 1b data are systematically

corrected and transformed to a map projection. All available level 1b data for the

Dra valley were downloaded and stored.

The IKONOS product GEO is radiometrically and systematically corrected and

delivered as map product in a user-specified map projection. The product speci-

fication 90ME guarantees a horizontal map accuracy of 90% of all pixels with a

accuracy of 25m (SpaceImaging, 2002). It is also guaranteed, that the view angle is

less that 27◦, which happens often to be not the case in the delivered products (see

e.g. subsection 6.2.2).

Figure 5.1 shows the coverage of IKONOS-2 data and the LANDSAT path and

row values necessary for the catchment coverage, according to the world reference
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5 Pre-processing - How much is necessary?

system II. The LANDSAT data were in a first step roughly cut to the extent of the

Dra catchment to reduce the data volume.
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Figure 5.1: Overview of the IKONOS-2 and LANDSAT (WRS2) data coverage

within the Dra catchment, overlayed on GTOPO30 DEM (Projection:

UTM

CORONA satellite images were transferred into digital data in tagged image file

(tif) format, as described in chapter 4. The data coverage includes 38 image strips

for the whole catchment in forward and afterward view.

5.2 Geometric correction

5.2.1 Reference system

Integration of data from various sources, such as topographic maps, GPS data from

field survey, satellite images etc. require that this data are stored in the same

reference system. This is essential for the use of a homogeneous and operational GIS
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5.2 Geometric correction

database. Prior to the geo-correction of the satellite data a carthographic reference

system was defined. The available topographical maps are in a Lambert Conic

Conformal projection (Mugnier, 1999) with spheroid CLARKE 1880 and datum

Merchich. The Dra catchment is located within two different projections the Zones:

Maroc Nord and Maroc Sud. Table 5.2 shows the projection parameters.

Table 5.2: Attributes of Lambert Conical Conform projection, for Zone Maroc Nord

and Maroc Sud

Attribute Zone Maroc Nord Zone Maroc Sud

(35.55◦ − 31.05◦) (31.05◦ − 27.45◦)

1st standard parallel 31.785◦ 28.107◦

2nd standard parallel 34.875◦ 31.293◦

Central meridian −5.4◦ −5.4◦

Latitude of projection origin 33.3◦ 29.7◦

False easting 500 000 500 000

False northing 300 000 300 000

Scale factor at origin 0.9996 0.9996

For the delivery of a final map product of the whole catchment the mapping with

two different projections not found to be a satisfactory solution. For this reason

a Universal Transverse Mercator (UTM) metric projection was chosen. The

whole catchment was mapped within the Zone 29 with −9◦ as central meridian

and 500000m as false easting. To simplify the data exchange spheroid and datum

of the local reference systems were chosen: CLARKE 1880 and Merchich.

Topographic maps on scale 1:100000 are available for the whole catchment (IMPE-

TUS, 2001). The scanned maps (300dpi) were geo-referenced with ERDAS Imagine

to the corresponding Lambert Conic Conformal projection and projected to UTM.

The topographic maps served as orthographic base material for further mapping

and display purposes.

For the purpose of data integration and GIS analysis, all raster and GIS data with

related geo-information within this work were registered in this projection.
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5 Pre-processing - How much is necessary?

5.2.2 Geometric correction of (very-) high resolution Satellite

Data

Raw digital images obtained by air- or spacecraft usually contain geometric distor-

tions so significant that they need subsequent processing before usage (Lillesand

and Kiefer, 2000). These distortions can either be systematic and induced by fac-

tors, such as panoramic effects, earth rotation, change in platform velocity etc. (for

further discussion see Jensen, 1996b) or non systematic. Non systematic distortion

include platform variations in altitude and attitude, with changes in kappa, phi,

omega and the image scale, or terrain induced effects (see chapter 4). Confusion of

terms geo-rectification, geo-registration, geo-coding, geometric correction in litera-

ture is not discussed here. In the following the term geometric correction will be

used.

Geometric correction is usually a two step process, where the systematic errors can

be reduced directly after image recording by modelling the sources of errors math-

ematically (Lillesand and Kiefer, 2000). Most data are distributed as systematic

corrected products. Non systematic distortions are corrected by the co-registration

to an orthographic reference map or, in the case of a moderate or flat terrain, by

field measured GCPs. The different satellite data require different treatment.

CORONA images can due to the availability of stereo-coverage serve by a pho-

togrammetrical restitution to generate orthophoto-maps which can is a distortion

free base material e.g. for image to image co- registration, as discussed in detail

in chapter 4. A prerequisite of this approach is the availability of accurate GCPs

in x,y and z. The acquisition of GCPs is a crucial analysis step and is at historic

images sometimes a difficult task. CORONA orthophotos were generated for two

test regions within the study area, as shown in Figure 4.4.

One way to derive a geometric corrected image, even in a rugged terrain, of

IKONOS-2 data is an image to image/map co-registration to an orthographic prod-

uct, as proposed in chapter 4. This approach was followed in the study area near

Skoura (see Figure 5.1). Within a study area located near the town of M’hamid

(see Figure 5.1), in a sand dune dominated landscape was in absence of any infras-

tructure the identification of GCPs within the CORONA images not possible. The

terrain is generally flat, so that the multispectral image of a 10km × 10km were

geometrically corrected by an affine transformation, as proposed by Baltsavias et al.

(2001). They propose that a set of 3 GCPs is sufficient. 20 GCPs were collected
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5.2 Geometric correction

in the field with an accuracy of less than one meter (Trimble, 2003). 5 GCPs were

used for the affine transformation, while 15 GCPs were used as test points. The

RMS error in the 15 test points was less than one pixel.

ASTER data within this study are only used for the generation of DEMs and

ortho-photos as discussed in detail in chapter 4. The ortho-photos can, in a second

step, be used for the co registration of the multispectral bands to the ortho-photo.

The base material can be generated from the same data source as the multispectral

bands which has great advantages for image matching algorithms to perform an

automated image co-registration.

The topographic maps in UTM projection served as base material for an image

to map registration of LANDSAT TM/ETM+ data covering the Dra catchment

(see Figure 5.1). A set of LANDSAT TM/ETM+ data available at the beginning

of the project were registered and mosaiced to a master image used for the image

co-registration (see Table 5.3). Problems arose due to the difficult identification of

GCPs in rugged terrain, especially in areas close to the Algerian border. The cause of

this effect is most probably lack of readily identifiable infrastructure lines, but might

potentially be due to inaccurate maps at the border for military purposes. These

circumstances led to the decision to integrate an ASTER panchromatic ortho-image

of this region K’tauer, see subsection 4.2.3. The co-registration to this ortho-image

resulted in a better fitting with the ground truth data.

An image matching algorithm for the automatic and independent matching points

generation due to Li et al. (1997) was used for GCP identification at the image to

image registration of LANDSAT data to the LANDSAT mosaic. The contour based

image matching algorithm is based on a Laplacian-of-Gaussian filter (Li et al., 1997)

where a chain encoding of closed contour lines is used to identify matching points

(Canty, 2002). This algorithm is implemented within the freeware package CDSAT

as described in Canty (2002). The matching point generation as performed in CD-

SAT was integrated in ERDAS Imagine, where the potential matching points were

imported and checked for plausibility. In image areas with poor GCP representation

GCPs were manually inserted. The image matching algorithm identifies matching

points in mountainous areas better than in flat terrains (Li et al., 1997). This is

especially of advantage in the Dra catchment as in the remote mountainous areas

GCPs accuracy was in this way improved in comparison to the operator dependent

identification. The images were registered with a nearest neighbour resampling with

a second order polynominal transformation. Table 5.3 shows the number of points
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5 Pre-processing - How much is necessary?

and the RMS error used for the image geometric corrections.

Table 5.3: Geometrically corrected LANDSAT images within the Dra catchment, the

scenes displayed in bold letters represent the data used to generate the

initial LANDSAT mosaic. The pixel size describes the output resampling

(see text)

manual automatic total
MSS 216-38 08.09.1972 28.5m 21 21 0.3264
MSS 216-39 08.09.1972 28.5m 48 48 0.3500
MSS 216-38 25.01.1974 28.5m 26 26 0.2943
MSS 216-39 25.01.1974 28.5m 52 52 0.3400
MSS 201-39 05.04.1987 28.5m 51 51 0.4322

TM 201-38 18.08.1984 28.5m 23 23 0.4423
TM 201-39 18.08.1984 28.5m 23 23 0.4423
TM 200-39 27.08.1984 28.5m 50 50 0.4656
TM 200-39 08.01.1987 28.5m 46 86 132 0.4209
TM 200-39 09.02.1987 28.5m 23 103 126 0.4934
TM 201-39 05.04.1987 28.5m 14 33 47 0.3200
TM 202-38 17.07.1987 28.5m 10 10 0.2227
TM 200-39 07.10.1987 28.5m 49 92 141 0.4000
TM 201-38 14.10.1987 28.5m 37 59 96 0.3985

ETM+ 201-38 24.11.1999 28.5m 28 28 0.2913
ETM+ 201-39 10.12.1999 28.5m 20 20 0.4374
ETM+ 200-39 19.12.1999 28.5m 88 88 0.4604
ETM+ 200-39 18.10.2000 28.5m 18 98 116 0.4875
ETM+ 201-39 25.10.2000 28.5m 38 0.3921

ETM+ 201-38 02.05.2000 25m 28 28 0.3576
ETM+ 201-39 02.05.2000 25m 40 125 165 0.3989
ETM+ 202-38 25.05.2000 25m 28 0.4596
ETM+ 202-39 25.05.2000 25m 18 18 0.2848
ETM+ 200-39 27.05.2000 25m 55 77 132 0.4583

path/row
WRS I

GCPssensor date RMS errorpath/row
WRS II

pixel size

A catchment coverage of LANDSAT ETM+ data in 25m resolution was obtained

from the Canadian company RADARSAT. For the image to image registration of

this 25m resolution data the 28.5m image mosaic was resampled to 25m in order to

use the automatic GCP generation and maintain the higher resolution.

Data processing of NOAA/AVHRR data was performed with the software package

TERASCAN. Parameter files of orbital elements provide in a first positional image

66



5.3 Radiometric correction

estimate as a starting point for the geo-rectification algorithm. This algorithm works

without GCPs and integrates a feature based matching technique (see section 4.1)

to existing vector information. For example coastlines are used for matching pur-

poses and can be chosen either from Digital Chart of the World or from the World

Database II (Seaspace, 2000). Each image is, within this algorithm, segmented in

predefined boxes within which the matching is performed. The number of boxes

used is dependent on the cloud coverage. This is done to make registration possible

even with a high cloud content. A check of each processed scene accompanied with

modifications in the box size is advisable if no matching was found and often results

in a registration improvement. The geometric image correction and projection to

UTM projection performed for a bounding box (N-S 37◦ − 27◦N, W − E0 − 15◦E)

in 1.1km × 1.1km pixel resolution. Depending on the distance to the coastline, the

registration accuracy ranges usually from sub-pixel up to 2.5 pixels (Dech, 1997).

Areas recorded with high zenith angles (greater than 55◦) were excluded as proposed

by Cracknell (1997).

5.3 Radiometric correction

Absolute radiometric correction of multi-temporal satellite imagery requires atmo-

spheric corrections associated with the atmospheric properties at the time of the

image acquisition. Data for the characterisation of the relevant atmospheric pro-

cesses modulating the incoming radiation at the satellite sensor require auxiliary

data of parameters, such as the content of aerosols, ozone or water vapor in differ-

ent atmospheric layers (see e.g. Kaufmann, 1989; Mitchell and O’Brien, 1993, for

further discussion). For historic satellite data such data are often difficult or impos-

sible to obtain. Whenever atmospheric parameters are not available and/or absolute

surface radiances are not necessary, a relative normalisation of the satellite images

to a master scene, based on the radiometric information intrinsic to the images, is an

alternative (Furby and Campbell, 2001). This is especially true in land cover clas-

sifications and post classification change detection applications (Song et al., 2001).

Radiometric normalisation, either relative or absolute, of imagery is important for

many other applications, such as image mosaicing or tracking vegetation indices over

time etc. (see Yang and Lo, 2000, and chapter 7). Furthermore, if change detection

procedures, such as image differencing or change vector analysis, is preferred it must
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generally be preceded by radiometric normalisation (either absolute or relative).

5.3.1 Relative radiometric normalisation

Several methods as of Schott et al. (1988); Hall et al. (1991); Moran et al. (1995);

Furby and Campbell (2001); Du et al. (2002) have been proposed for the relative

radiometric normalisation of multispectral images taken under different conditions

at different times. All proceed under the assumption that the relationship between

the at-sensor radiances recorded at two different times from regions of constant

surface reflection can be approximated by linear functions. The most difficult and

time-consuming aspect of all of these methods is the determination of suitable time-

invariant features upon which the normalisation is based.

Relative radiometric normalisation methods are not implemented in the standard

software tools, such as ENVI 3.5 and ERDAS Imagine 8.5. This led to the decision to

program two relative radiometric normalisation algorithms within the environment

of ENVI/IDL. The methods were evaluated and tested on a bitemporal image pair

of Landsat ETM+ data acquired over south Morocco on December 19, 1999 and

October 18, 2000. The images were subset with dimensions 729 × 754 pixels. The

first method follows the approach of Schott et al. (1988) and is based on the selection

of so called pseudo-invariant features, which need to be selected manually from the

image. The pseudo-invariant features are assumed to undergo no changes in the

interval between the acquisition of the images. The pseudo-invariant features are

used for a stochastic estimation of regression coefficients for an image to image

radiometric normalisation (see Equation 5.1). The second algorithm is new and fully

automatic, although the principle is similar: invariant pixels are used in an regression

approach. The main progress is the automatic identification of ”no change pixels”,

that are homogeneously distributed over the entire image and different surface types.

5.3.1.1 Pseudo-Invariant Feature approach

Schott et al. (1988) proposed that in the case of the availability of a large amount of

homogeneously distributed invariant pixels, a regression of would produce the best

results, but assumed that these pixels are not identifiable. This would be satisfied if

ground truth data of the true invariant pixel were available, which is rarely the case.

Thus their idea was to introduce the term pseudo-invariant feature (PIF). PIFs are

areas, assumed to be invariant but potentially exhibit some change pixels. PIFs need
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to be identified manually within bi- or multi-temporal images. Schott et al. (1988)

proposed the usage of band ratios, Hall et al. (1991) a tasseled cap transformation to

identify potential no-change pixels a priori (Crist and Cicone, 1984). The approach

of Schott et al. (1988) is based on the assumption that PIFs are used to estimate

a linear regression for the relative radiometric image normalisation. The ’master’

image is denoted with DN1, the image that is normalised to the master image is

DN2, and DN ′
2 the normalised image; i represents the spectral bands. The following

expression from Schott et al. (1988) was used for a radiometric normalisation:

DN ′
2i =

σ1i

σ2i

DN2i + DN1i − σ1i

σ2i

DN2i (5.1)

where DN1i and DN2i are the means of the pseudo-invariant pixels of image 1

and 2. σ1i and σ2i are the respective standard-deviations.

This formula can be reduced to a simplified expression of an independent variable

x and a dependent variable y in the sense:

y = ax + c, (5.2)

with slope a = σ1i

σ2i
and intercept c = DN1i− σ1i

σ2i
DN2i. PIFs were manually selected

from the ground truth data of non-vegetated surfaces. Table 5.4 shows the number

of pixels distributed across different the surface types to obtain the best regression

estimation.

Table 5.4: Pseudo-invariant features chosen for normalisation to the 1999 scene

Feature No. pixels appearance

playa 213 bright

sand 183 bright

desert crust 9347 medium

gravel 301 medium

quarzite 117 medium

pediment 365 dark

dark stones 233 dark
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5.3.1.2 Multivariate Alteration Detection

This section is the result of a close collaboration with M. Canty, KFA, Jülich (Ger-

many) and A.A. Nielson, School of Mathematics, Copenhagen (Denmark). Results

of this work can be found in Canty et al. (2003, for furhter reading).

Selecting invariant pixels

Nielsen et al. (1998) recently proposed a change detection technique, called mul-

tivariate alteration detection (MAD), which is invariant to radiometric linear and

affine scaling. Thus, if one uses MAD for change detection applications, preprocess-

ing by linear radiometric normalization, whether absolute or relative, is superfluous.

However, in this application are the no-change pixels in a bitemporal scene of in-

terest. Therefore are first linear combinations formed of the intensities for all N

channels in the two images, acquired at times t1 and t2. Representing the intensities

by the random vectors F and G, respectively, we have

U = a� ·F = a1F1 + a2F2 + . . . aNFN

V = b� ·G = b1G1 + b2G2 + . . . bNGN ,

where a and b are constant vectors. Nielsen et al. (1998) suggest determining

the transformation coefficients so that the positive correlation between U and V

is minimized. This means that the difference image U − V will show maximum

spread in its pixel intensities. If we assume that the spread is primarily due to

actual changes that have taken place in the scene over the interval [t1, t2], then this

procedure will enhance those changes as much as possible.

Specifically we seek linear combinations such that

var(U − V ) = var(U) + var(V ) − 2cov(U, V ) → maximum, (5.3)

subject to the constraints

var(U) = var(V ) = 1 (5.4)

and with cov(U, V ) > 0. Note that under these constraints

var(U − V ) = 2(1 − ρ), (5.5)

where ρ is the correlation of the transformed vectors U and V ,

ρ = corr(U, V ) =
cov(U, V )√

var(U)var(V )
.
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For multivariate normally distributed data the combined random vector for the

bitemporal scene is distributed as

(
F

G

)
∼ N

[(
0

0

)
,

(
Σff Σfg

Σgf Σgg

)]
,

where

var(U) = a�Σffa, var(V ) = b�Σggb, cov(U, V ) = a�Σfgb.

Extremalising the covariance cov(U, V ) under the constraints Equation 5.4 is equiv-

alent to extremalising the unconstrained function

L = a�Σfgb − ν

2
(a�Σffa − 1) − µ

2
(b�Σggb − 1),

where ν and µ are Lagrange multipliers. This leads to the coupled generalized

eigenvalue problems

ΣfgΣ
−1
gg Σgfa = ρ2Σffa

ΣgfΣ
−1
ff Σfgb = ρ2Σggb.

(5.6)

Thus the desired projections U = a�F are given by the eigenvectors a1 . . . aN cor-

responding to the generalized eigenvalues

ρ2
1 ≥ . . . ≥ ρ2

N

of ΣfgΣ
−1
gg Σgf with respect to Σff . Similarly the desired projections V = b�G are

given by the eigenvectors b1 . . .bN of ΣgfΣ
−1
ff Σfg with respect to Σgg corresponding

to the same eigenvalues. Nielsen et al. (1998) refer to the N difference components

MADi := Ui − Vi = ai
�F − bi

�G, i = 1 . . . N, (5.7)

as the multivariate alteration detection (MAD) components of the combined bitem-

poral image. The covariances of the MAD components are given by

cov(Ui − Vi, Uj − Vj) = 2δij(1 − ρj),

where δij denotes Kronecker’s delta,

δij =

{
1 for i = j

0 for i �= j
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The components are orthogonal (uncorrelated) with variances

var(Ui − Vi) = σ2
MADi

= 2(1 − ρi). (5.8)

The last MAD component has maximum spread in its pixel intensities and, ideally,

maximum change information. The second-to-last component has maximum spread

subject to the condition that the pixel intensities are statistically uncorrelated with

those in the first MAD component, and so on.

The MAD components are invariant under linear transformations of the original

image intensities. We can see this as follows. Suppose the second image G is trans-

formed according to some linear transformation H = TG. The relevant covariance

matrices are then
Σ′

fg = 〈FH�〉 = ΣfgT
�

Σ′
gf = 〈HF�〉 = TΣgf

Σ′
ff = Σff

Σ′
gg = 〈HH�〉 = TΣggT

�.

The eigenvalue problems (4) are therefore equivalent to

ΣfgT
�(TΣggT

�)−1TΣgfa = ρ2Σffa

TΣgfΣ
−1
ff ΣfgT

�c = ρ2TΣggT
�c,

where c is the desired projection for H. These in turn are equivalent to

ΣfgΣ
−1
gg Σgfa = ρ2Σffa

ΣgfΣ
−1
ff Σfg(T

�c) = ρ2Σgg(T
�c),

which are identical to Equation 5.6 with b = T�c. Therefore the MAD components

in the transformed situation are

a�
i F − c�i H = a�

i F − c�i TG = a�
i F − (T�ci)

�G = a�
i F − b�

i G

as before. Given this scale invariance, we can select for radiometric normalisation

all pixel coordinates which satisfy

N∑
i=1

(
MADi

σMADi

)2

< t,

where t is a decision threshold. Under the hypothesis of no-change, the above sum of

squares of standardized MAD variables is approximately chi-square distributed with
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N degrees of freedom. We therefore choose t = χ2
N,P=0.01 where P is the probability

of observing that value of t or lower.

The pixels thus selected should correspond to truly invariant features so long as

the overall radiometric differences between the two images can be attributed to linear

effects. Since this method usually identifies quite a large number of no-change pixels

we can, without serious penalty, reserve some fraction of for subsequent testing and

use the remaining pixels for performing the actual linear regressions.

Comparison of the methods

Schott et al. (1988) do not use ordinary linear regression, but rather assume a direct

(error-free) estimated linear relation between digital numbers recorded from man-

made features at two times (see Figure 5.2). The regression coefficients are compared

to a linear regression with the PIF pixels (see Equation 5.3.1.2), which represent the

PIF pixels best. Figure 5.2 shows the point distribution and a regression line of a

ordinary least square regression (OLS), based on 2/3 of the no-change pixels (referred

to henceforth as ”training pixel”) determined from the pseudo-invariant features (see

Table 5.4). The fitted intercepts (c) and slopes (a) are shown in Table 5.5 for the

7200 training pixels.

Table 5.5: Ordinary least square regression on training PIF pixels c is the fitted

intercept, a is the fitted slope, r is the correlation and RMSE the root

mean square error. In comparison the regression estimated by Schott

et al. (1988)

OLS regression regression by

Schott et al. (1988)

Band a c r RMSE a c

1 1.081 8.60 0.818 2.019 1.297 -4.843

2 1.184 -3.00 0.928 1.845 1.264 -7.730

3 1.198 -7.09 0.947 2.761 1.256 -11.867

4 1.258 -6.37 0.961 2.020 1.203 -9.115

5 1.081 4.76 0.927 2.891 1.162 -1.546

7 1.077 5.31 0.910 2.870 1.178 -2.079
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Figure 5.2: Regression of the 1999 reference scene on the 2000 target (uncalibrated)

scene using manually selected training pixels. The dotted lines show the

regression followed Schott et al. (1988)

Table 5.6 and Table 5.7 show, respectively, the means and variances of the 1999

scene before and after normalisation to the 2000 scene with the approach of Schott

et al. (1988). The means and variances were determined with the 3600 holdout test

pixels.
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5.3 Radiometric correction

Table 5.6: Comparison of mean intensities of hold-out test PIF pixels for the 2000

scene before and after normalisation to the 1999 scene with OLS regres-

sion

TM Band 1 2 3 4 5 7

Uncorrected(2000) 62.080 59.898 81.975 62.612 77.989 72.898

Normalised(2000) 75.720 67.969 91.143 72.400 89.117 83.820

Reference(1999) 75.650 67.969 91.115 72.455 89.114 83.771

Difference -0.069 0.000 -0.027 0.055 -0.003 -0.049

Table 5.7: Comparison of variances of hold-out test PIF pixels for the 2000 scene

before and after normalisation to the 1999 scene with OLS regression

TM Band 1 2 3 4 5 7

Uncorrected(2000) 6.96 14.48 44.93 29.60 40.692 31.70

Normalised(2000) 8.14 20.34 64.52 46.85 47.60 36.77

Reference(1999) 10.88 22.09 68.98 49.16 54.16 43.27

In contrast with the PIF data, Figure 5.3 displays least squares regressions for

normalisation of the two Morocco images based on 11260 no-change training pixels

derived from the MAD procedure. Table 5.8 through Table 5.10 give the corre-

sponding information on regression statistics and on the comparisons of means and

variances with 5630 test pixels.

Table 5.8: OLS regression on training MAD pixels for the two scenes

Band a c r RMSE

1 1.230 -1.56 0.966 1.074

2 1.191 -4.68 0.978 1.372

3 1.194 -8.88 0.983 2.109

4 1.265 -8.31 0.987 1.546

5 1.148 -2.22 0.981 2.244

7 1.146 -1.33 0.976 1.983
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Table 5.9: Comparison of mean intensities of hold-out test MAD pixels for the 2000

scene before and after normalisation to the 1999 scene with OLS regres-

sion

TM Band 1 2 3 4 5 7

Uncorrected(2000) 62.734 61.544 83.894 64.573 88.128 80.094

Normalised(2000) 75.577 68.621 91.319 73.345 98.936 90.441

Reference(1999) 75.576 68.595 91.279 73.323 98.905 90.414

Difference -0.001 -0.026 -0.039 -0.022 -0.032 -0.027
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Figure 5.3: Regression of the 1999 reference scene on the 2000 target (uncalibrated)

scene using the MAD training pixels.
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5.3 Radiometric correction

Table 5.10: Comparison of variances of hold-out test MAD pixels for the 2000 scene

before and after normalisation to the 1999 scene with ordinary least

squares regression

TM Band 1 2 3 4 5 7

Uncorrected(2000) 10.58 28.71 86.99 54.45 95.67 59.79

Normalised(2000) 15.99 40.72 124.11 87.06 126.05 78.50

Reference(1999) 16.92 42.43 128.44 89.26 131.27 82.86

The MAD based regression of the no-change pixels shows for all image bands of

the two LANDSAT scenes higher regression coefficients and lower RMSE values than

regression line based on the PIF pixels, as Table 5.5 and Table 5.8 show. The mean

pixel intensities of the no change pixels for the PIF and MAD approach are shown

in Table 5.6 and Table 5.9. Generally the mean values after the image normalisation

in both approaches are well represented. The variances of the no change pixels in

both normalisation approaches are slightly underestimated.

Comparison of the plots in Figure 5.2 and Figure 5.3 clearly show a more scatter

in the no-change pixels for the PIF method corresponding to lower correlations as

seen in Table 5.5 and Table 5.8.

The MAD based normalisation and the PIF based normalisation technique gen-

erally produce comparable results. The regression parameters on the no change

pixels are slightly better represented in the MAD based approach. Due to its com-

pletely automatic operation, and because it is parameter free and fast, the MAD

based normalisation technique was favored. All relative radiometric normalisations

with this work were performed with this technique. Since an OLS assumes that

one parameter is independent and the other is dependant, which is in the case of a

relative normalisation not given, (Canty et al., 2003) the MAD based normalisation

procedure is improved with an orthogonal regression approach.

The reliable normalisation offers numerous advantages in change detection or

consistent time series analysis (see chapter 7).

Image mosaic

An image mosaic of 5 different LANDSAT ETM+ scenes with 25m pixel resolution,

each acquired in May 2000 (see Table 5.3), was generated for the Dra catchment

and used as basis for an image classification (as shown in Figure 2.1). The images
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5 Pre-processing - How much is necessary?

were chosen within the same month (May 2000) and to minnimise cloud coverage

and atmospheric noise. The center scene of path/row 201/39 was used as the master

scene in the image normalisations. Areas in the image overlap zones of the adjacent

scenes (see Figure 5.1) were used to calculate regression coefficients, that were ap-

plied in a second step to the whole sub-scene. The overlapping areas were chosen to

represent the the surface variability within the image scenes.

Figure 5.4: LANDSAT ETM+ mosaic from May, 2000. The cyan rectangles indicate

the overlap areas used for the relative radiometric normalisation, in white

is the extent of the center scene 201-39 displayed. In yellow is an example

area marked as shown in Figure 5.5

Regression coefficients of 1/3 of the MAD based no change test pixels and the size
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of the overlap areas are shown in Table 5.11.

Table 5.11: Regression of test pixels of the MAD normalisation within the represen-

tative overlap areas with scene 201/39 of the image mosaicing

scene 200/39 201/38 202/38 202/39

band 1 0.9880 0.9995 0.9841 0.9880

band 2 0.9882 0.9999 0.9879 0.9882

band 3 0.9878 0.9998 0.9901 0.9878

band 4 0.9888 0.9997 0.9921 0.9888

band 5 0.9810 0.9997 0.9610 0.9810

band 6 0.9531 0.9999 0.9862 0.9531

band 7 0.9817 0.9996 0.9845 0.9817

overlap area 412 × 1907 2831 × 295 961 × 559 412 × 1907

nr. of test pixels 4571 69550 8887 4571

The regression coefficients of the single scenes with the master scene (201/39) are

generally high, indicating a good fit especially with the scene 201/38. Both images

were recorded at the same overpass, but delivered with different gain and offset

values.

Figure 5.5 (next page) shows an example of two adjacent paths (201-39 and

200-39) dating from May 02, 2000 and May 25, 2000. In the left image the non-

normalised scenes were mosaiced; in the right image a normalisation was performed

prior to the mosaicing. Real changes in the surface reflectance result from rainfall

prior to the recording of the 2nd scene.

5.3.2 Absolute calibration

Dimensionless DNs of satellite imagery represent the radiation recorded at the sen-

sor. The calculation of parameters where absolute values, or the multitemporal

comparison are of interest, such as the NDVI or other indices and band ratios,

require that the data are transformed to the same units e.g. at-sensor radiance

(referred to as RAD) in units of W
m2sr

. The conversion from DNs to RAD is usually

possible by applying a linear formula (Richards and Jia, 1999; Lillesand and Kiefer,

2000).
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a) Image mosaic without normalisation b) Image mosaic with normalisation

Figure 5.5: Example of an image mosaic of two adjacent LANDSAT ETM+ scenes:

paths-row 201-39 and 200-39 dating from May 02, 2000 and May 25,

2000. The image examples are both stretched linear.

The conversion to unitless planetary reflectance (referred to as REF) or albedo

requires the consideration of atmospheric effects at the time of the image acqui-

sition (Kaufmann, 1989; Rahman and Dedieu, 1994). A method to derive REF

values for relatively clear LANDSAT or IKONOS scenes is outlined in the follow-

ing, based on NASA (2001); Fleming (2001). The path through the atmosphere is,

within this approach, assumed to be without modulation. This huge simplification

of the photon interactions and the complex atmospheric physics can be interpreted

as a simple estimation of the surface reflectance. For a more accurate derivation of

surface parameters is a calibration including the atmospheric conditions necessary.

The conversion was applied to IKONOS-2 data and a test data-set of LANDSAT

TM/ETM+ data in order to reduce the inter-scene spectral differences due to vary-

ing illumination conditions in different days of the year.
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IKONOS

Coefficients for the calculation of RAD were in the case of 11 bit IKONOS-2 data

applied, as proposed by SI (SpaceImaging, 2002):

RADi =
DNi

calcoef i

where i stands for the spectral bands (Table 5.12).

Table 5.12: Coefficients for DN to at sensor radiance for 11bit IKONOS-2 data

(SpaceImaging, 2002)

Band 1 (blue) 2 (green) 3 (red) 4 (near infrared)

Value [ W
m2sr

] 72.8 72.7 94.9 84.3

LANDSAT

In the case of LANDSAT data the formula for calculation of RAD is generally (see

e.g. Lillesand and Kiefer, 2000):

RADi = gaini ·DNi + offset i

The gain and offset values are sensor specific and change with sensor age and

over different recoding intervals. Values for gain and offset are either delivered with

the data itself or can be found at the web-pages of the EROS data center, or for

LANDSAT ETM+ from for the specific scene meta files. The USGS delivers the

coefficients for the conversion of LANDSAT ETM+ scenes with LMIN and LMAX

values NASA (2001), as shown in Table 5.13. The calibration expression is:

RADi = (
(LMAXi − LMINi)

255
) ·DNi + LMINi (5.9)

Table 5.13: Calibration coefficients for LANDSAT ETM+ data [ W
m2sr

] (from NASA,

2001)
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Band LMIN LMAX LMIN LMAX LMIN LMAX LMIN LMAX
1 -6.20 297.50 -6.20 194.30 -6.20 293.70 -6.20 191.60
2 -6.00 303.40 -6.00 202.40 -6.40 300.90 -6.40 196.50
3 -4.50 235.50 -4.50 158.60 -5.00 234.40 -5.00 152.90
4 -4.50 235.00 -4.50 157.50 -5.10 241.10 -5.10 157.40
5 -1.00 47.70 -1.00 31.76 -1.00 47.57 -1.00 31.06
6 0.00 17.04 3.20 12.65 0.00 17.04 3.20 12.65
7 -0.35 16.60 -0.35 10.93 -0.35 16.54 -0.35 10.80
8 -5.00 244.00 -5.00 158.40 -4.70 243.10 -4.70 158.30

After July 1, 2000
Low Gain High GainHigh GainLow Gain

 Before July 1, 2000

NASA (2001); Fleming (2001) describe a correction of the differing illumination

and reflectance conditions for images acquired on different dates of the year. Their

approach to the conversion to REF is:

REFi =
π × RADid

2

Esuni × cos(ϕs)
(5.10)

with d = earth-sun distance in astronomical units (see Iqbal, 1983), Esuni =

mean solar exoatmospheric irradiances as shown in Table 5.14 ϕs = solar zenith

angle in degrees.

Table 5.14: Coefficients for the exoatmospheric irradiance for LANDSAT ETM+

Band 1 2 3 4 5 7

Value [ W
m2sr

] 1969.00 1840.00 1551.00 1044.000 225.70 82.07

Canty et al. (2003) have demonstrated with a time series of LANDSAT TM data

acquired over Nevada, that the relative normalisation of the multitemporal data

results in a better comparability as with the absolute calibration formula as proposed

by NASA (2001); Fleming (2001). The TM data used in their study were recorded

with identical gain settings, so that for purposes of comparison Equation 5.9 was not

applied and only the earth sun distance and the solar zenith angle were considered,

which simplifies the conversion formula to

DN ′
i = DNi × d2

cos(ϕs)
. (5.11)

Figure 5.6 shows a plot of the mean DN values averaged over all non-thermal

image channels.
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Figure 5.6: Unnormalised (stars) and normalised (boxes) mean pixel intensities (in

DN) for six Landsat TM images over Nevada from July to December,

1991. The July image was taken as reference. The diamonds are the

unnormalised mean values corrected for sun elevation and earth-sun dis-

tance (see text), adapted from (Canty et al., 2003)

Figure 5.6 clearly shows that the normalisation considering the earth sun dis-

tance has an effect on the data values towards a reduction of the illumination effects

(diamonds),but the MAD based normalisation (boxes) results in an improved nor-

malisation of this time series.

NOAA/AVHRR

Data, recorded from the AVHRR sensor, were converted to planetary reflectance

and brightness temperature with built-in routines of TERASCAN (Seaspace, 2000).

Cloud detection and the masking of the latter are based on the algorithm of Saunders

and Kriebel (1988). Generally cloud detection can differentiate between, land, water

and clouds/snow. Confusions of detected clouds and snow were of not relevance,

therefore that both themes were masked out. NDVI datasets were produced on the

basis of this geometric and radiometric corrected datasets. The NDVI data were

reduced to 10 day and monthly composites using the maximum value composites

(see e.g. Dech, 1997).

Following the approach of Sobrino and Raissouni (2000), who analyzed NOAA/AVHRR

data of Morocco, the land surface temperature (LST) was calculated from brightness
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temperature, with a standard error of 0.6K (due to their analysis) as follows:

LST = 1.40(T4 − T5) + 0.32(T4 − 55)
2 + 0.83

where T4 and T5 are brightness temperatures recorded by the AVHRR channels 4

and 5.

The NOAA/AVHRR data processing is fully automatic, but inspection of the

scenes is necessary as a quality control. With a developed processing chain of Teras-

can scripts organised in a UNIX c-shell environment products were generated that

could be used for analysis. The data were used for the generation of a land cover

map of Morocco on the basis of monthly composites. This study was performed

in the framework of the IMPETUS project and was related to the Masters the-

sis of Dominik Vogt (Vogt, 2002). The resulting map is a regionalisation of the

NOAA/AVHRR IGBP land cover classification. The generation of composites of

less than monthly resulted, due to the infrequent data coverage, not in products

suitable for analysis on sub-pixel level. The processed data were intended for the

analysis of the vegetation dynamics of land cover types in the Dra valley. For this

reason a time series of NDVI and LST data from January 01, 2000 to July 30,

2002 was processed. The Terascan processed data have an inherent positional ac-

curacy between 0.5 and 2.5 pixels, but in extreme cloudy scenes even worse (see

subsection 5.2.2).

Figure 5.7 shows an example of monthly NDVI data calculated from calibrated

(RAD) AVHRR data and the positional shift in the time series data near the town

of Zagora. For comparison an accurate geometrically corrected MODIS NDVI image

product (see USGS, 2003b, for further description), as obtained from NASA (NASA,

2002b) and projected (see NASA, 2003b) to the UTM projection used in this study

(see subsection 5.2.1), is displayed.

The width of the Dra oasis near the town of Zagora is at the widest ≈ 6km

(see Figure 5.7). In this area, with a clear difference between vegetated and non-

vegetated areas, a positional shift is visible in some months. This is unsuitable

especially for a sub-pixel analysis of smaller vegetation patches. In the nine month

shown only three (8/00, 3/01 and 4/01) have an adequate geometric correction.

The higher cloud coverage in the winter month at the coastline, the distance of the

Dra catchment from the coastline and the elevation of the High Atlas mountains

all negatively influence the the position accuracy. Due to the low data coverage

only a limited number of scenes were for the generation of composites available so
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that dropping of poorly navigated scenes would have caused data gaps of almost the

whole season (see Figure 5.7). These circumstances led to the decision that the data

quality for was inadequate for an analysis of the dynamic behavior of land cover

classes derived from a LANDSAT image classifications (see chapter 6). MODIS

comprises with the 250m NDVI dataset, a highly accurate geometric corrected data

with an positional accuracy of about 50m at nadir (Wolfe et al., 2002). This data

seems more suitable for the integration of spatial high resolution data and potentially

for a subpixel analysis. Figure 5.8 demonstrates the spatial relationship between

NDVI data calculated from calibrated (RAD) LANDSAT ETM+ and MODIS data.

-0.03        0.81 -0.07        0.29
8/00 9/00

-0.06        0.33 -0.14        0.33

0.04        0.71-0.14        0.33 -0.14        0.33 0          0.57

-0.14        0.33

0          0.45
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0             10km
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AVHRR AVHRR AVHRR AVHRR

AVHRR AVHRR AVHRR

MODIS

Figure 5.7: Examples of NDVI MVC composites of the oasis of Zagora from monthly

AVHRR and 16 day MODIS data (indicated is month/year)
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97/02
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145/02
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-0.18               0.56LANDSAT ETM+
122/00

Figure 5.8: Examples of NDVI MVC composites of the oasis of Zagora from 16

day MODIS data and a single day NDVI image of the ETM+ sensor

(indicated is the day/year)

5.4 Illumination and terrain correction

In flat areas with lambertian surfaces reflectance properties represent the pixel in-

tensities of the surface. Reality shows that this ideal condition are the exception

(Leroy and Roujean, 1994). Different surfaces types result in different mostly non-
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lambertian surface reflectances, so that the varying illumination conditions need con-

sideration. Bidirectional reflectance distribution functions (BRDF) are an attempt

to model these effects (Deering, 1989). While BRDF effects are less pronounced with

high resolution data such as LANDSAT due to the low swath angle. With increasing

image resolution terrain induced modulations become more important. Relief effects

are severe and directly visible in the satellite image if parts of the image are shaded.

The correction of topographic induced shade requires a DEM in the same (or even

better) pixel size than the satellite image. A DEM of insufficient quality causes a

correction algorithm to introduce errors in these image areas. Several approaches

to correct for relief effects have been used (Smith et al., 1980; Civco, 1989; Parlow,

1991; Banko, 1997; Gu and Gillespie, 1998; Fahsi et al., 2000; Herold et al., 2000).

These algorithms are based on the cosine, c, Mineart correction or the approach of

Civco (1989) and modifications of these. All of which utilise correction factors based

on slope and aspect values of a DEM (Mather, 1999). These corrections work in

moderate reliefs. Figure 5.9 shows an example where the algorithm of Civco (1989)

was applied. The approach corrects for terrain induced illumination differences due

to the integration of the shaded relief as calculated from slope and aspect values of

a DEM under the same sun illumination as the satellite data are acquired:

DN ′
λij = DNλij + DNλij

MS − Xij

MS

,

where X = pixel value of the shaded relief, MS = mean value of the entire illu-

mination model (see Civco (1989)). λ represents the wavelength and ij the pixel

position in a 2D image array. Figure 5.9 shows the result of this approach in the

area where the Dra breaks through the Crystalline Anti Atlas.

The correction alters the pixel values in the center of the shaded area, see Fig-

ure 5.9 b). The image parts were the shadow reaches the sun faced slope on the

opposite wall are not further corrected. This is due to the circumstance, that this

areas are not considered as shaded by the shades relief or any other algorithm that

only used slope and aspect values (see 3D view in Figure 5.9). Thus are these areas

not corrected adequate. Shaded image parts with low slopes seem with the applied

coefficients to underestimate the correction. Civco (1989) introduced for this reason

a correction coefficient Cλ, which was not generated after the general lack of the

method became obvious. This example shows the need for improved illumination
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correction algorithms in steep terrains, such as the Crystallin Anti-Atlas and the

High Atlas Mountains. An integration of the true shaded relief including param-

eterisations of diffuse and direct radiation seems in this case more promising, as

recently proposed by Schmidt (2003). The development of improved correction al-

gorithms was not further preserved, because that no DEM in adequate quality was

available for the whole catchment.

a) channel 3 uncorrected b) channel 3 corrected

c) perspective 3D surface view
as FCC 432 

(vertical exaggeration factor: 3)

Figure 5.9: Raw a) and illumination corrected b) LANDSAT ETM+ channel 3 with

the approach of Civco (1989). The arrow in c) indicates the view direc-

tion indicated in b) in a 3D view

5.5 Discussion

In combination with the generated orthophoto-maps of ASTER data in chapter 4,

the integration of an automatic algorithm for GCP generation and image matching

algorithm is a big step forward toward the improvement of the geometric accuracy

and automation of high resolution data. The implementation of these algorithms in
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either the standard photogrammetric or remote sensing software packages would be

advantageous.

The results of the relative radiometric normalisation obtained with the PIF ap-

proach are of high quality, because during field campaigns data were especially

obtained for this purpose. This manual and time consuming process can be avoided

by the new, reliable and fast MAD based algorithm for relative radiometric normal-

isation. This full automatic approach is senor independent and works slightly better

than the PIF approach, and is thus a significant improvement as it operates fully

automatically and operator independent. This is especially an improvement if PIFs

were not obtained carefully during field visits or not available for historic data.

For the overall project requirement to classify the land cover of the whole Dra

catchment on the basis of a LANDSAT image classification was assumed, that either

image classifications could be performed scene by scene and by merging the results

afterwards or that this step could potentially be achieved with a decent radiometric

normalisation in one step on one image mosaic. For this reason the generation of

the radiometrical corrected image mosaic was a crucial improvement.

A further data improvement, especially of the relief induced shades, might be

obtained by the incorporation of a better relief correction algorithm, potentially in

combination with BRDF corrections as proposed by Gu and Gillespie (1998). A

perquisite for an operational algorithm is the availability of DEM in decent quality

for the whole catchment. For the image classification process (see next chapter)

were shaded pixels masked.

Due to the better geometric correction of the images, MODIS seems to be the

better dataset compared to AVHRR data for the analysis of dynamic surface pro-

cesses. But for historic data and long time series, NOAA/AVHRR data are valuable

dataset. Improvements of the AVHRR data processing can potentially result from

better navigation algorithms and a better data coverage of the Dra catchment. Data

integration and the dynamic behavior of surface variables, such as vegetation cov-

erage or salinisation processes are substance for further research in the follow up

phase of the IMPETUS project starting in May 2003.
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5.6 Conclusion

A precise geo-information of map products determines the quality of cartographic

documents and is important for (geo-) data integration in a (GIS-) database. This

goal could be achieved by the registration of topographic maps on scale 1:100000, the

generation of CORONA and ASTER orthophoto-maps and co-registration of LAND-

SAT or IKONOS data to this base material. All spatial data were transformed and

geometrically corrected to a common reference system: a UTM projection of Zone

29 with the local common spheroid CLARKE 1880 and datum Merchich. Multitem-

poral LANDSAT data were geometrically corrected and co-registered by the usage

of an automatic GCP generation tool (CDSAT). The autonomous generated points

were integrated in the geometric correction process in ERDAS Imagine and resulted

in more reliable GCPs and better point distribution, especially in the rural areas.

In contrast to common image mosaicing algorithms, an image mosaic was gener-

ated where not e.g. the histograms were matched for a nice presentation: a radio-

metric consistent mosaic over large scale for further mapping and image classification

was applied to 5 LANDSAT scenes. The MAD based relative radiometric calibration

method makes a data calibration with linear values as gain and offset coefficients

superfluous, which is not only convenient, but also makes scene comparison possible

even if these values are not available or wrong. This normalisation technique can be

applied for the generation and comparison of consistent data time series.

The discussed pre-processing steps for the high resolution LANDSAT data are

a major improvement of the existing pre-processing techniques towards a (semi-)

automatisation of the image pre-processing in a high data quality.

90



6 Vegetation classification in an arid

environment

”The overall objective of image classification procedures is to automati-

cally categorize all pixels in an image into land cover classes or themes”

Lillesand and Kiefer, 2000

This study aims to derive a vegetation- and land cover/land use map. In order to

achieve this the surface needs to be classified, which poses a problem for the sparsely

vegetated rangelands. A question that inevitably arises when mapping vegetation

using optical remote sensing data in arid or semi-arid regions is: to what degree is

green vegetation detectable and how to distinguish it?

Siegel and Goetz (1977) have demonstrated that significant changes in the re-

flectance characteristics require a vegetation cover of more than 10% and that a

vegetation signal tends to become more important than the soil signal with a veg-

etation coverage of more than 30%. Hill (2000) proposes that this does not mean

that vegetation coverages of less than 30% are not detectable by remote sensing.

They also state that ratio based vegetation indices do not provide the best esti-

mates. Vegetation estimates under the spectral unmixing paradigm provide better

estimates of the true vegetation coverage (Smith et al., 1996; Hurcom and Harrison,

1998; Hill, 2000).

Classification methods generally produce discrete information classes from input

data. In remote sensing, spectral signatures of different materials in one or more

spectral bands are recorded by a sensor and stored as image pixels. The spectral

bands span the so called feature space, in which each pixel represents the spectral

signal of an observed surface area. One assumption in the analysis is that similar

surfaces induce a similar spectral response pattern (Campbell, 1996). Unsuper-

vised classification algorithms identify autonomous clusters of signatures within the

feature space. These methods can be used to locate areas with similar spectral
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properties without a priori terrain knowledge. Supervised classification methods

require a priori terrain knowledge and the specification of representative areas of

the various land cover types in a scene (Lillesand and Kiefer, 2000). One advantage

is that an operator can concentrate on the land-cover classes of a particular interest

(Lillesand and Kiefer, 2000). Jensen (1996a) differentiates supervised classification

methods into three categories:

• hard classifiers which are classically single stage classifiers with a one-pixel-

one-class relation e.g. the Maximum Likelihood Classifier (MLC),

• sub-pixel or soft classifiers which compute one or more channels with fuzzy

class membership grades e.g. with ranges [1..0]. In a second step the real

(fuzzy) classification occurs due to a set of decision rules,

• hybrid classification which includes existing classifications as well as ancil-

lary information e.g. hydrological maps or a DEM in the classification process.

Hard classifiers require that class memberships are clearly defined and that only

one theme, either a land cover/land use class or an object, is allowed at one pixel

(Maselli et al., 1996; Hung and Ridd, 2002). This is true if all pixels are smaller than

the targets to be classified. In other cases the problems of mixed pixels arise (Lille-

sand and Kiefer, 2000). These problems are addressed by soft classifiers, through

which further class differentiation is possible. Soft classifiers evaluate and utilise

uncertainties in class differentiation (Eastman and Laney, 2002): the spectral in-

formation is first transformed into a set of membership grades or fuzzy sets rather

than discrete classes, together with an error term (e.g. see Equation 6.2). These

layers can potentially be interpreted as thematic information (see subsection 6.1.2).

By incorporating knowledge based decisions, fuzzy rules can help to optimise the

identification of the surface objects and land-cover classes by their grade member-

ships of different surface components (Eastman and Laney, 2002). Hybrid classifiers

may combine all kinds of spatial GIS-information layers to derive, according to the

knowledge of interdependence of the available information layers, a set of classifica-

tion rules.

In hybrid classifications, satellite derived Vegetation Indices (VI) (see Purevdorj

et al., 1998; Jensen, 2000, for further discussions), soil descriptions or band ratios

are often used to assess certain surface components as information sources. The fact

that either soil influences VIs, especially at low vegetation coverage, or that natural
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vegetation can mask or significantly alter the spectral ground response, makes the

development of separate vegetation and soil related indices difficult. It seems more

natural and promising to utilise dedicated spectral decomposition techniques to

derive this information in one step e.g. by spectral unmixing techniques (Hill, 2000).

Spectral unmixing, like other (sub-pixel) classifiers, describes spectral data in terms

of membership grades to a cluster or a reference spectrum. These membership

grades can be interpreted as fuzzy sets (see Figure 6.5 for more details). A complex

of rules that emulate the decision process of human experts in from of procedures are

called expert systems (see Wharton, 1994, for further discussion). Expert systems

generally include three major components: a knowledge base, a rules interpreter and

a memory (Wharton, 1994). Hung and Ridd (2002) use if-then-else clauses in an

expert system based on sub-pixel classifier information. Penaloza and Welch (1996);

Metternicht (2001) use the term fuzzy expert system for image feature selection by

implemented decision rules based on fuzzified descriptions of cloud and land surface

parameters. According to this discussion, within this study an expert system was

implemented based on fuzzy descriptions of the feature space derived by spectral

unmixing, and including auxiliary information layers. The approach is discussed in

detail in the following section.

6.1 Methods

6.1.1 Combined classification approach and materials

Figure 6.1 depicts an overview of the classification process used in this study, dis-

played in the from of a flow-chart. The individual methods referred to in the overall

approach in Figure 6.1 are described in detail in the following subsections. The

LANDSAT ETM+ image mosaic from May 2000 as described in section 5.3 was

utilised as data source for the image classification of the Dra catchment.

The backbone of the classification procedure is a Linear Spectral Unmixing (LSU)

technique (see subsection 6.1.2). If photons interact with only a single component

(e.g. sand) then is this a pure spectrum within the IFOV. A set of ”pure” spectra

need to be identified to account for the image inherent surface variability. These

pure spectra are referred to as endmembers (Adams et al., 1986, 1995; Roberts et al.,

1998; Hill, 2000). Endmember spectra should potentially be identified at the edges

of a multidimensional scatter-plot. Price (1994) also refers to spectral unmixing as
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6 Vegetation classification in an arid environment

”end points analysis”. Linear combinations of this set of pure spectra are used in

the LSU to model in a mixture space all other spectra in terms of fractions of the

pure spectra. Figure 6.3 illustrates this concept theoretically while in Figure 6.16

an example of the Dra valley is given.
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Figure 6.1: Flow chart of the combined classification procedure for the generation

of a (monotemporal) land cover map of the Dra catchment (explanation

in the text)
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The number of endmember spectra normally can not exceed the number of bands

plus one (Hill, 1998). Identifying a suitable set of endmembers for an acceptable

image decomposition is a trial and error process. If the surface variability of the

image to be classified is too high no suitable set of endmembers for an LSU can be

identified, resulting in incorrect abundance values and high RMS errors (see sub-

section 6.1.2). In this case a reduction of the feature space was performed (e.g. see

subsection 6.2.2). The catchment was, in a first step, segmented in sub-regions of

similar geological and ecological conditions resulting in six PMUs of similar domi-

nating tonality, patterns and texture (see section 2.1). The LSU of the individual

sub-units resulted in improved surface descriptions. For the classification of the

whole catchment separate classifications of the six sub-regions were performed and

then merged afterwards. A prerequisite for a consistent classification of the catch-

ment is a classification scheme for the whole catchment, as described in Table 3.1.

If the heterogeneity within the sub-regions was still too high the sub-regions were

further subset following the same principle (see first IF statement and loop in Fig-

ure 6.1).

If LSU resulted in a satisfying solution (expressed by a low RMS error) fuzzy

decision rules for class discrimination were formulated and applied with programmed

codes in ENVI/IDL (e.g. see subsection 6.2.1). Non-vegetation abundances were

utilised to describe the soil layer (referred to as background information), according

to the land-cover classification scheme (Table 3.1), while vegetation is referred to as

foreground information.

If the information content of the LSU is (still) too high for the discrimination of

the desired vegetation and land cover classes, the integration of auxiliary information

sources was evaluated (second IF statement in Figure 6.1), such as a river network

or elevation information. Due to the lack of a complete DEM of sufficient quality,

riverbeds were, in some places, digitised manually. Elevation information was either

extracted from the generated ASTER DEMs (see subsection 4.2.3) or from the

GTOPO30 DEM which has a 1km resolution. Elevation information were used

to formulate vegetation class differentiation rules e.g. that Acacia raddiana can

not grow on elevations higher than 1000m. Due to the coarse DEM resolution

and in some places, imprecise elevation information, manual changes to the DEM

derived contour lines in accordance to the terrain morphology were made. The

auxiliary information layers contributed in most cases to the desired vegetation

differentiation (see e.g. subsection 6.2.1). If the auxiliary information content was
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not available or sufficient (e.g. subsection 6.2.2), the spectral information of the

vegetated surface was utilised to differentiate further vegetation classes (third IF

statement in Figure 6.1).

For this reason the vegetated pixels were extracted from the vegetation abundance

channel by applying a vegetation mask, so that only pixels that contain vegetation

fraction above a certain, empirically found threshold, remain (see Figure 6.17). As a

consequence, a segmented multispectral image was retained with only the vegetated

pixels. The spectral information of the vegetated pixels was further evaluated and

classified with a second supervised classification method: the spectral angle mapper

(SAM). Reference spectra of the vegetation classes, representing the spectral com-

pound of the surface, serve in calculating the spectral similarity, by ignoring the

intensity values (length of the vector). Information from SAM, LSU and supple-

mentary sources can be used to derive the desired vegetation class differentiation

followed by post-processing steps.

6.1.2 Spectral Mixture Analysis

The term ”mixed pixels” describes an effect that occurs when different surface ma-

terials or land cover types comprise the spectrum measured within satellite’s IFOV.

Spectral mixture analysis is based on the assumption that the spectrum recorded

from the satellite is a linear or non-linear combination of each of those components

(Adams et al., 1986; Roberts et al., 1998). The decomposition of a surface area

within the IFOV or a pixel, into proportional abundance of a finite number of end-

members assumes that most of the spectral variation in a multispectral image can

be described, in a first approximation, by additive (linear) spectral mixtures (Hill,

2000). Figure 6.2 illustrates this concept.

a

b
c

d

pixel

Endmember Area [%]
a 65
b 8
c 7
d 20

Figure 6.2: Concept of (linear) spectral mixtures
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In the case of multiple scattering the mixture has the potential to be non-linear

and the mixture would need non-linear mixture models (Roberts et al., 1998), which

can be important for certain vegetation types (see Ray and Murray, 1996). In

most applications of spectral mixtures, especially in arid and semi-arid regions,

multiple scattering is assumed to be negligible (Smith et al., 1996; Adams et al.,

1995; Ustin et al., 1996; Roberts et al., 1997; Hill, 2000; Elmore et al., 2000; Hung

and Ridd, 2002). Gilabert et al. (2000) states that the mixture of vegetation and

soil spectra tends to be more linear and that leaf spectra within a canopy have non-

linear behavior. Based on these arguments, especially with respect to the sparsely

vegetated areas, a linear spectral unmixing technique was used, as implemented in

ENVI/IDL 3.5 with the ’sum to unity constraint’, which means that the endmember

fractions of each pixel sum to 1 (100%). The LSU is mathematically described by

Equation 6.1 and Equation 6.2.

A mixed spectrum Pλ of a given pixel is modelled by the sum of the fractions f of

the n endmembers Ei in the IFOV (Roberts et al., 1997):

Pλ =
n∑

i=1

fiEiλ + ελ (6.1)

where λ represents a spectral band, n the number of endmembers and ε the residual

term. Thus for a given set of endmembers their fractions within a pixel can be

modelled. The model fit is expressed either as error in the fractions f or ελ at each

wavelength or across all bands as global RMS error (Roberts et al., 1998).

RMS =
1

m

√√√√ n∑
i=1

εiλ (6.2)

where m is the number of bands. The process of the LSU creates the endmember

fractions for every pixel in the image and each endmember, referred to as endmem-

ber abundance (see e.g. Hill, 1998; Eastman and Laney, 2002). The identification of

potential endmembers and the choice of endmembers in this way, such that the spec-

tra of most pixels are explained properly, is the key issue in spectral unmixing. The

endmembers in the case of calibrated and atmospheric corrected satellite images can

be extracted from spectral libraries data of ground measurements. An alternative

to the usage of absolute calibrated data is to extract the spectra from the image

itself, independent of image calibration or atmospheric correction (Adams et al.,

1986). In hyperspectral data analysis, methods like the ”pixel purity index” are
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prominent for the identification of extreme spectra within the feature space (Board-

man et al., 1995) to automatically provide an analyst with potential endmembers.

Tompkins et al. (1997) propagates an endmember selection based on a principal

component analysis and points out that difficulties might arise for a data scattered

not in straight lines in the data space, such that an adequate endmember fit cannot

be found. The reason for a manual endmember selection within this study was that

if endmembers were selected automatically the decomposition did not result in end-

members that could be interpreted in a physical sense (Tompkins et al., 1997) or

that were useful for the image classification. However, these tools to automatically

provide potential endmembers were designed for hyperspectral data and are less

useful for multispectal data (J. Hill, University Trier, pers. comm.). Therefore the

endmembers were selected manually per sub-region based on terrain knowledge and

extracted from the satellite image directly. The spectra were visually inspected to

be at the edges of the data cloud of a multidimensional scatterplot (see Figure 6.16).

The RMS error provides a measurement for how much the spectral variability was

explained by the selected endmembers. Pixels with high RMS error help to identify

which spectral components are not well represented in the model (Bateson and Cur-

tiss, 1996). The quality of the LSU is dependent on the ability of the endmember

spectra to represent each image pixel in a linear combination. The RMS error and

ελ are important diagnostic tools, as Hill (2000) state that positive residuals occur

when the sensor-measured spectra has higher reflectance than Pλ, indicating that

Pλ contains absorption features which were lacking in the measured signature. Neg-

ative ελ indicate the presence of absorption features in the measured spectrum that

are absent or less pronounced in the modelled spectrum Pλ. Figure 6.3 depicts an

example of a three endmember modelling and the possible combination of materials

in the mixture space within the LSU model concept.

Hill et al. (1994) propose a method that aims to optimise the number of end-

members, since it is not advisable in vegetation abundance estimates to simply add

other background endmembers to compensate for RMS errors. Their approach is

based on the assumption that the mixed spectrum of a pixel is conditioned by three

primary components: ”foreground” materials, ”background” materials and shade.

Vegetation is thus constantly the foreground material, while background materials

may be different soil types, rocks or leaf litter or senescent vegetation.
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Figure 6.3: Concept of linear spectral unmixing with an example of two image bands

and a three endmember (EM) mixture space. The dots represent pixels

in the data and mixture space (adapted from Hill, 1998)

Following this concept a vegetation abundance channel was used as vegetation

information and compared with vegetated areas as obtained during the ground truth

campaigns. Endmembers were repeatedly selected and used in the LSU until the

vegetation abundance matched best with the true vegetation coverage, as did the

ground truth data of the background (see section 2.2). The vegetation abundance

was used in combination with the non-vegetation abundances to discriminate the

desired vegetation classes by formulating knowledge based decision rules e.g. by

the knowledge that a species of Tamarix aphylla cannot grow on rock material.

LSU can be used for the estimation of the abundances of certain materials within a

spectrum, but it is not a classification procedure (Roberts et al., 1997; Hill, 1998).

LSU decomposes the multispectral data space into layers of material abundances

that can serve for a more physically based interpretation of the membership grades.

For this reason decision rules were formulated based on field knowledge as shown in

section 6.2.
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6.1.3 Spectral Angle Mapper

The Spectral Angle Mapper (SAM) determines the spectral similarity between two

spectra by calculating the angle Θ (in radians) between two spectra in the multi-

dimensional data space. The angles between spectra v1 and v2 in an n-dimensional

data space can be calculated as follows (Fischer, 1986):

Θ = cos−1(
v1v2

‖v1‖‖v2‖) (6.3)

Let v1 denote the reference spectra and v2 image spectra. By calculating the

spectral angle between v1 and v2 smaller angles represent closer matches to the

reference spectrum while the maximum angle is π
2
. The length of the vectors is not

taken into consideration (Figure 6.4). Following that the SAM is not sensitive to

the signal intensity (Kruse et al., 1993), which was found to be useful in vegetation

analysis due to varying vegetation density of specific classes. The reference spectra

are either obtained from a spectral library in the case of calibrated data or extracted

from the image itself. A ’rule image’ per reference spectrum is calculated (RSI, 2002),

containing per pixel the spectral angle to the reference spectrum. SAM does not

require a normal distribution of training pixels, as the angle between a reference

spectrum and image spectra is calculated.

v1
v2

Band 1

Band 2

Figure 6.4: Principle of spectral angle mapping, (Kruse et al., 1993, modified)

Within this study SAM was used to differentiate between vegetated pixels. For

this reason the vegetated pixels were extracted from the multispectral image by a

vegetation mask and only these pixels were used in the supervised SAM classification

(see subsection 6.2.2).
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6.1.4 Fuzzy classification and knowledge based decision rules

”As its name implies, the theory of fuzzy sets is, basically, a theory of

graded concepts - a theory in which everything is a matter of degree [..].”

H.-J. Zimmermann, 1996

The beginnings of fuzzy logic date back to the time of Plato (427-347 AC) who

suspected that between the true or false of dual logic must lie a third possibility.

These thoughts were later brought up by philosophers like Hegel (1770-1831). The

Polish mathematician Lukasiewicz (1878-1956) developed the ”Lukasiewicz logic”

in which between true=1 and false=0 additionally indifferent=0.5 is differentiated.

His theories are seen as the precursors of fuzzy logic, in which he used later all real

numbers in the interval [0,1]. Fuzzy sets were introduced by Zadeh (1965) to express

ambiguous terms and based on inexact reasoning. (Zimmermann, 1996) defines a

membership function as follows:

Definition 1: If X is a collection of objects denoted generally by x, then a fuzzy

set A in X is a set of ordered pairs:

A = (x, µA(x)| x ε X),

µA(x) is called the membership function or grade of membership of x in A that maps

X to the membership space M. The range of the membership function is a subset of

the non-negative real numbers whose supremum, supxµA(x), is finite.

Thus the image abundances can be interpreted as the membership function and

M can be interpreted as the mixture space. The terminology from fuzzy logic can

generally be applied to the LSU results as Kruse (1993) generally stated that fuzzy

logic can be applied to raster images. The constraint on the values of the member-

ship function can be met by setting potential negative values of the LSU to zero.

Definition 1 reveals that a membership function is not limited to values between 0

and 1. If supxµA(x) = 1 the fuzzy set is called normal (Zimmermann, 1996). A

non-empty fuzzy set A, can always be normalised by dividing µA(x) by supxµA(x).

Thus, for convenience, in the following notation we generally assume we are working

with normalised fuzzy sets.

A classification of the background information from the LSU was derived by ap-

plying the fuzzy ”AND” in from of the maximum operator to the background abun-

dances (all except vegetation), while in some cases the membership function was
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modified in such a way that values below a certain threshold were set to zero (see

Figure 6.5 a)).

Definition 2: The membership function µC(x) of the union C = A
⋃

B is defined

pointwise by

µC(x) = max{µA(x), µB(x)} x ε X).

In subsection 6.2.1 this concept is discussed in more detail with an example. With

similar arguments results from the SAM can be interpreted as values in the interval

[0, π
2
] are within the rule images (see subsection 6.1.3). The fuzzy ”OR” or the

minimum operator as defined in Definition 3 (Zimmermann, 1996), is used to assign

the vegetated pixels to their respective class.

Definition 3: The membership function of the µD(x) of the intersection D = A
⋂

B

is pointwise defined by

µD(x) = min{µA(x), µB(x)} x ε X).

The incorporation of the fuzzy theory provides the opportunity to incorporate

other (fuzzy) layers of information and leads to a fuzzy classification approach as

defined by Jensen (1996b). Knowledge based identification of image thresholds were

used to modify the membership function, so that values above a certain threshold

were set to zero (see Figure 6.5). The maximum angle up to which a vegetation

spectrum should be assigned to a reference spectra was class dependently derived

(see subsection 6.2.2). Figure 6.5 shows the types of membership functions used in

this study and the modifications.

b) Spectral angle mappinga) Linear spectral unmixing

Material 1 Material 2 Vegetation 1 Vegetation 2

1

0

1

0

1

0

1

0

Figure 6.5: Schematic representation of the membership functions (left) and the

modification (right) with a linear relationship in the LSU (a) and of

vegetation spectra in SAM with a cosine-behavior (b)
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6.1.5 Post-processing

The terms post processing or post classification is used here in the term of improving

a classification result by the following techniques:

Object oriented class discrimination

In some cases classes are, by their pure spectral information, hard to differenti-

ate. The neighbourhood of single pixels or their aggregation is often characteristic

for class determination. For this post-classification analysis, the software package

eCognition was used (Definiens, 2002). Objects as patches of a certain class can

be described by fuzzy membership functions (common border length, shape/width

etc.) and can be further differentiated by theses attributes (Definiens, 2002; Ivits

and Koch, 2002). This analysis is described in subsection 6.2.2.

Majority and minority filter

In situations where classes are lacking spatial coherence, a clumping or sieving pro-

cedures, such as a majority or minority filter, can be applied to either group neigh-

bouring pixels or to remove isolated pixels (RSI, 2002). These procedures were only

applied to non-vegetated classes such as settlements.

6.1.6 Validation

Validation of the classification is generally performed with ground truth polygons

obtained during field campaigns, as described in section 2.2. The ground truth data

consisting of about 2100 samples stored as point, line and polygon data were used

to compile a set of 559 validation polygons according to the land cover classification

scheme. Figure 6.6 shows the location of the polygons within the (sub-) catchment.

Additionally 399 botanic vegetation reveals (see section 2.2 or Finckh and Staudinger

(2002)) were assigned with the corresponding land cover class as an independent data

source and could be incorporated in the validation dataset.

Foody (2002) briefly reviews the history of image classification accuracy assess-

ment. In their opinion, at present the confusion matrix is the most objective way to

validate remote sensing image classifications. Additionally they state that: ”Indeed,

the confusion matrix provides the basis on which to both describe classification accu-

racy and characterise errors, which may help to refine the classification or estimates

derived from it.”. For this reason the classified data were validated with a set of

data compiled from the ground truth information in from of a confusion matrix.
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Figure 6.6: Distribution of the validation data within the Dra catchment used in the

classification approach

After the first attempt at classification the confusion matrix indicated a low accu-

racy for the Acacia raddiana classes in the sparsely vegetated rangelands of the Dra

valley. The growth of Acacia raddiana is controlled by the surplus water in linear

depression lines and so they are distributed linearly rather than homogeneously. The

polygons obtained during the field work were usually measured around the vegetated

areas and were designed to incorporate natural variability of the vegetation. Thus,

not all pixels with the validation polygons are purely vegetated and not all pixels

within the polygons were identified as vegetated areas. Therefore an intersection of

the vegetation mask and the validation polygons was used to derive the validation

pixels in the quality assessment for classes where it is necessary e.g. the associations

with thin, small leaves and low green vegetation content of the hardwood dominated

Acacia raddiana classes (see subsection 6.2.2).
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6.2 Results from the Dra catchment - South Morocco

The classifications of the sub-regions within the Dra catchment (as defined in sec-

tion 2.1) are described within this section. Two sub-regions covering all method-

ological aspects are discussed in more detail. The Basin of Tazenakht (Region E)

was chosen as an example where the abundance of information and supplementary

information enabled the derivation of a land cover classification. The Dra valley

(Region F) is an example of a large area mapping of a complex environment with

a differentiated vegetation coverage, in which a combination of LSU and SAM was

applied. The classification and validation results of all 6 sub-regions are discussed.

The six classifications were merged to create one land cover classification map of the

Dra catchment. The described classification was performed on the geometrically cor-

rected (see subsection 5.2.1) and relative radiometric normalised LANDSAT ETM+

image mosaic, dating from May 2000 (see subsubsection 5.3.1.2). A shade mask was

applied by removing pixels falling below a threshold (varying with sub-region) in

band 4. In areas of bright surfaces, a saturation in channel 3 was recognised in the

images and the corresponding pixels in this channel were masked out and assigned

as unclassified.

6.2.1 Basin of Tazenakht

The Basin of Tazenakht is characterised by arid conditions: an an-

nual average rainfall of 119mm, an annual average temperature of

20.3◦, and potential evapotranspiration of 1600mm. With an av-

erage elevation of 1500m above sea level (Bennouna et al., 2000)

the basin, with 920km2, is the smallest of the mapped sub-regions

in the catchment. Land-use is characterised by areas of intensive

agriculture, predominantly on loamy/sandy river terraces, irrigated

agriculture and areas of rainfed agriculture. The rangelands are

mostly overgrazed and sparsely vegetated (see section 2.1). Areas of potentially

good growing conditions for natural vegetation are, in most cases, fields ploughed

for seeding in case of rainfall for rainfed agriculture. The extensively used fields

increase the grazing pressure for the natural vegetation on the remaining grazing

ground, so that this type of agriculture is a forcing factor for land degradation.

Often these fields are not used for several years in the absence of precipitation.
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Figure 6.7: FCC of the Basin of Tazenakht with ETM+ (RGB 431) from May 2000

Land cover classes within this region are, according to the classification scheme

defined in chapter 3: 1120 - discontinuous urban fabric, 1220 - road and rail net-

works and associations, 2111 - rainfed agriculture, 2342 - mountainous oasis, 3251

- Hammada scoparia - Artemisia steppe, 3312 - desert crust, 3322 - rock, 4131 -

106



6.2 Results from the Dra catchment - South Morocco

Atriplex glauca, 4132 - Tamarix africana - Oleander, photos of which can be seen in

Appendix A for a better surface impression.

The most recent vegetation mapping analysis in this region was performed by

Bennouna et al. (2000), who tried to assess the surface vegetation by classifying

pedologically homogenous regions within the Basin of Tazenakht using SPOT XS

data (not mentioning the date of the image acquisition). Their approach is in fact

more of a potential vegetation mapping based on morphological descriptions, which

was improved by visual analysis. A broad landscape and vegetation characterization

is given by Houérou (2001). Mappings to assess the actual vegetation distribution in

this region, especially with respect to remote sensing, are not known to the author.

Figure 6.7 shows a False Colour Composite (FCC) of Basin of Tazenakht. The

main features visible in the composite include the red areas which represent dense

vegetated areas, rocks (grey/blue) and fields (brownish).

Linear Spectral Unmixing

In accordance with Figure 6.1, endmembers were selected and identified to explain

the surface variability. An adequate solution, according to field observations, was

found with a four endmember model consisting of vegetation, soil, desert crust and

rock. Figure 6.8 shows the abundance channels and the RMS error as calculated

from the image derived endmembers.

In the first step of the analysis the abundances of the background endmembers

(subsection 6.1.2) were classified with the fuzzy AND as defined in subsection 6.1.4.

In order to map the ploughed fields the membership function of the soil abundance

was modified to be zero below an empirically derived threshold of 0.7 (Figure 6.9).

Areas with high RMS errors contributed to the rock class. Vegetation abundance was

differentiated by setting up and applying knowledge-based rules, incorporating the

background information. Figure 6.9 reveals the applied rules in from of a diagram

and the derivation of the classes 3322 (rock) and 3312 (desert crust). In this case the

soil abundance was directly assigned to the land cover class 2111 (rainfed agriculture)

as recent ploughed areas.
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6 Vegetation classification in an arid environment

a) R/G/B composite 4/3/1

d) Soil abundance

c) Desert crust abundance

f) RMS errore) Rock abundance

b) Vegetation abundance

b)

d)

c)
e)

Figure 6.8: a) FCC of LANDSAT ETM+ (approximately indicating the location of

the endmembers), b - e the abundance channels of the endmembers used

in the decomposition and f) the RMS error (bright pixels refer to high

abundance/RMS values)

The class 3251 (Hammada scoparia - Artemisia steppe) is derived if the vegetation

abundance lies between 0.035 and 0.18, while the class 2342 (mountainous oasis) was

derived by the abundance threshold of greater than 0.18. Due to the orientation

of Atriplex glauca and riparian vegetation along the river network, steam-lines were

identified as a useful source of information. The available GTOPO30 DEM (in 1km

resolution) is too coarse for calculating this information on the required level of

detail. Thus the main river-beds were digitised from the Tazenakht topographic

map at a scale of 1:100000. Atriplex glauca is characterised by sandy/loamy soils

on river terraces (M. Finckh, pers. comm, 2003). Figure 6.9 illustrates the decision
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6.2 Results from the Dra catchment - South Morocco

rules implemented to identify this vegetation class: potential terraces were identified

by a 10 pixel buffer zone around the river network. A 5 pixel buffer zone was used

to describe the potential areas for riparian vegetation. Materials present in the

sandy and loamy terraces are similar to the surface areas classified as desert crust.

Vegetation with an abundance threshold between 0.035 and 0.45 on desert crust in

a potential terrace area is assigned to the class 4131 (Atriplex glauca). The class

4132 (Tamarix africana - Oleander) is derived from the condition of being on areas

of potential riparian vegetation and on rocky ground with a vegetation abundance

threshold between 0.035 and 0.30.

and

Background abundances

Knowledge based rules of vegetation pattern 

vegetation abundance 0.035 - 0.18
not rainfed agriculture

Hammada scoparia –
Artemisia steppe

vegetation abundance > 0.18 mountainous oasis

vegetation abundance 0.035 - 0.45
river buffer zone < 10 Pixel
desert crust

Atriplex glauca

vegetation abundance 0.035 - 0.30
river buffer zone < 5 Pixel
stones

Tamarix africana –
Oleander

desert crust
rock
RMSE

soil

Foreground abundance

vegetation

river network

rainfed agriculture
desert crust
rock

Background Classification

Auxillary information

water courses

Figure 6.9: Knowledge based fuzzy decision rules for land cover class differentiation

in the Basin of Tazenakht

Figure 6.10 shows two examples of the classification result: Example 1 of class

4131 (Atriplex glauca), the indicated photograph shows species of Atriplex glauca in

the foreground on a river terrace. The photograph in Example 2 shows class 2111

(rainfed agriculture) with ploughed fields. The class 1120 (discontinuous urban

fabric) describes within this study area exclusively the town of Tazenakht, built

predominantly of modern stone houses. Most smaller and older settlements in rural

areas are mostly traditionally built with clay and straw materials and these are

much harder to detect and to differentiate from surface materials. They are also less

aggregated. The complex mixture of urban pixels can be directly discriminated by
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6 Vegetation classification in an arid environment

thresholds from the abundances channels. For the class 1120 (discontinuous urban

fabric) a 3 × 3 majority filter was applied in a post processing step. The decision

rules of the image classification are shown in Figure 6.11.

a) LANDSAT RGB (4/3/1)

a) LANDSAT RGB (4/3/1)

Example 1

Example 2

b) Classification (cyan: class 4131)

b) Classification (brown: class 2111)

c) Terrestrial photo of class 4131 (view direction North)

c) Terrestrial photo of class 2111 (view direction South/West)

Figure 6.10: Two example images of an RGB FCC (a), the corresponding classifi-

cation (b)(for the legend see Figure 6.11) and a ground truth image

(c). Example 1: class 4131 (Atriplex glauca) coordinates of the photo-

location: 665270/3362542 (UTM) and Example 2: class 2111 (rain-

fed agriculture), coordinates of the photo-location: 677620/3379242

(UTM)

field abundance < 0.1
sand abundance 0.3 - 0.8
stone abundance < 0.9
RMSE > 4.5

discontinuous urban fabric

Figure 6.11: Classification rules for the class 1120 - discontinuous urban fabric

Table 6.1 shows the confusion matrix of the image classification in percent. Train-

ing pixels were excluded in the validation.
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Table 6.1: Confusion matrix of ground truth pixels and the classified image of the

Basin of Tazenakht, in percent and in pixels
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The overall accuracy of 96.53% and a Kappa coefficient of 0.951 (Jensen, 1996b)

is remarkably high. 9.55% of the class 1120 (discontinuous urban fabric) was mis-

classified as 3322 (rock) because rock and concrete have similar spectra. Table 6.1

shows that for the two classes 4133 (Tamarix africana - Oleander) and 4131 (Atriplex

glauca) the number of validation pixels is especially low, particularly for the latter.

This class was only identified during the last days of the final field campaign with

very localised ground truth measurements. Consequently a more thorough validation

of this class needs to be performed during a future field campaign.
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6 Vegetation classification in an arid environment

The final classification for the Basin of Tazenakht with 9 land cover classes is

presented in Figure 6.12.

Figure 6.12: Land cover/land use classification for the Basin of Tazenakht on the

basis of LANDSAT ETM+ data from May 2000
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6.2 Results from the Dra catchment - South Morocco

6.2.2 The Dra valley

Landscape

The Oued Dades and Oued Ouarzazate merge to Oued Dra, which

gives the name for the landscape dominating river oasis downstream

(Pletsch, 1971). Agricultural production in this arid environment,

with an annual average precipitation of 70mm and annual poten-

tial evaporation of 2000mm, is to a high degree dependent on the

availability of freshwater. Water is taken either from the river and

distributed with a historically evolved, complicated system of water

rights and water channels (arabic ”Seguia”) or from the groundwater

with wells and pumps (Müller-Hohenstein, 1997). This system often results in inten-

sive socio-economic and ethnic complications and conflicts. For example the owner

of the land is not necessarily the owner of the palm trees and in some instances, the

owner of the water is another person (O. Abellaoui, ORMVAO Ouarzazate, pers.

comm). Population growth combined with freshwater water scarcity, reinforces prob-

lems such as irrigation or an increased grazing pressure on the rangelands due to

increased number of domestic animals.

The rangeland vegetation is characterised in section 2.1. Dominant vegetation

associations were categorized according to the classification scheme as described in

section 3.3 and displayed in Appendix A. Classes within the sub-region are: 3312 -

desert crust, 3321 - gravel/pediment, 3311 - sand, 3323 - playa, 3322 - rock, 3332 -

Zygophyllum gaetulum, 3331 - sanddune vegetation, 3264 - Tamarix aphylla, 3263

- Acacia raddiana - Panicum - Zilla, 3261 - Acacia raddiana - Ziziphus - Mearua,

4132 - Tamarix africana - Oleander, 3251 - Hammada scoparia - Artemisia steppe,

2341 - palm oasis, 5110 - water courses, 3262 - Acacia raddiana - Retama, 3255 -

Pulicaria steppe, 1120 - discontinuous urban fabric, 3256 - Anvilea - Convolvulus

steppe and 1220 - road and rail networks and associations .

The land cover classification was performed on the basis of LANDSAT ETM+

data. In a high resolution case study with IKONOS-2 data and an intensive field

campaign in February 2002 results from the detailed mapping of one land cover

class: 3264 (Tamarix aphylla) were integrated in the validation of the LANDSAT

ETM+ land cover classification.
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6 Vegetation classification in an arid environment

Case study with very high resolution data, near M’hamid

This section illustrates how very high resolution IKONOS-2 data were used to assess

the coverage of one land cover class. Multispectral IKONOS-2 data were geometri-

cally and radiometrically corrected as described in section 5.3 and subsection 5.2.1.

The aim of this mapping is a detailed study of high spatial detail in a 10km×10km

study area. The image was delivered in two tiles from November 23, 2001 (left im-

age) and November 26, 2001 (right image). The meta information of the images are

listed in Table 6.2.

Table 6.2: Meta information of the two IKONOS-2 image tiles used in this study

left scene scene right

Date of Acquisition 23.11.2001 26.11.2001

Collection Azimuth 347.2◦ 272.15◦

View angle 21.8◦ 29.3◦

Sun azimuth 164.3◦ 167.2◦

Sun elevation 38.4◦ 38.3◦

Figure 6.13 shows an image-subset of the study area. The town of M’hamid

and five representative test plots from which validation data were obtained are

indicated. In this case ground truth data were obtained on the basis of DGPS

point measurements of single trees.

The vegetation coverage within this area consists, with the exception of the oasis,

of the vegetation association grouped in class 3264 (Tamarix aphylla) and 4132

(Tamarix africana - Oleander) along the river Dra. Species of Tamarix aphylla

usually build up and grow on sandy hills, which can be up to 10m in height. Their

size varies from single tree examples to associations of more than 25m in diameter.

Consequently in this case the objects to be mapped are mostly larger, or at least

similar, to the size of the IKONOS-2 pixels. This forested area is basically flat

and sandy and is located west of the town of M’hamid. (A photo of a healthy

and undisturbed tamarix tree can be seen in the extended classification scheme in

Appendix A).
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6.2 Results from the Dra catchment - South Morocco

Figure 6.13: Overview of the mapping area

The vegetation distribution was determined by the NDVI as the objects of interest

are in the order of the size of a pixel or larger. The NDVI was calculated from the

third IKONOS channel in the red (RED) and the forth channel in the near infrared

(NIR) spectrum (The recoded wavelength in this bands is exactly the same as in

the case of LANDSAT ETM+).

NDV I =
RED − NIR

RED + NIR

Due to the recoding of view angle and azimuth angle, parts of the trees are covered

by shade. Lillesand and Kiefer (2000) stated, that the NDVI in a shaded surface

remains stable within the same vegetation cover type. Their explanation is that the

pixel intensities for both bands are reduced similarly in the shade. As a consequence

an index derived from band ratios should remain stable. NDVI was calculated

from the IKONOS data and thresholded, resulting in an image classification. These

pixels classified as 3264 (Tamarix aphylla) by applying an empirically derived NDVI

threshold of greater than 0.05. The polygons with a common border to the digitised

river Dra were assigned as individuals of Tamarix africana and excluded from the
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6 Vegetation classification in an arid environment

classification and validation.

a) IKONOS-2  FCC RGB  4/3/2 b) IKONOS-2  NDVI

-0.23           0.45 

Figure 6.14: Visual comparison of the overlaid classification polygon on a RGB FCC

and NDVI image subset of IKONOS-2 data

Minor amounts of grasses and herbs were excluded by the NDVI threshold. The

classification was validated with 104 DGPS points (see section 2.2) obtained for

single tamarisk trees. The validation points were taken without regard to the size

of the individual trees. As a result small or degraded exemplars with a low NDVI

signal resulted in classification errors. The validation points resulted in an overall

accuracy of 94.2%, as shown in Table 6.3.

Table 6.3: Confusion matrix of the IKONOS-2 mapping, the horizontal axis is the

ground truth data

Class 3264 Total

Unclassified 5.8 5.8

3264 94.2 94.2

Total 100.0 100.0

The classification result was exported as vector polygons to be utilised to enlarge

the amount of validation data for the accuracy assessment of the LANDSAT ETM+

classification for the class 3264 (Tamarix aphylla) (see subsection 6.2.2).

116



6.2 Results from the Dra catchment - South Morocco

Image processing and LSU of LANDSAT ETM+ data

For the sub-region as a whole no endmember combination was found to be satis-

factory. A reduction of the feature space, as discussed in subsection 6.1.1, was a

practical solution: a mask for the solid rocks, predominantly consisting of quartzites

(Jebel Bani) and Precambrian sediments was generated on the basis of a regular

MLC for one class (see Figure 6.15). Visual comparisons with the geologic map on

a scale of 1:500000 indicated sufficient matching.

a) Quarzite mask, obtained with a MLC (border of
the sub-region in red)

b) Geologic map on scale 1:500.000

Figure 6.15: Visual comparison of the Quarzite mask and the geological map Ab-

deljali et al. (1959)

The masked image segments were treated separately with different endmember

sets, resulting in improved abundance representations. The endmember combination

used in the remaining ”non-quarzite” image were spectra of vegetation, playa, desert

crust, sand and pediment/gravel. Figure 6.16 shows the endmember spectra and

locations at the corners of the scatterplot.

Vegetation types of sparsely vegetated areas could be identified as vegetation by

the vegetation abundance information, which was difficult to achieve with the NDVI.

The vegetation abundance was compared with ground truth information obtained

during field campaigns (see section 2.2) and NDVI values. The correspondence be-

tween the NDVI and the vegetation abundance was generally high, but on some

surfaces the NDVI appeared to be strongly influenced by the background. Fig-

ure 6.17 shows two image examples of surface vegetation representations derived

from the NDVI (from calibrated data) and the vegetation abundance. In both ex-

amples the same threshold values were used, above which the image pixels appear

colored: 0.022 for the vegetation abundance and -0.104 for the NDVI.
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6 Vegetation classification in an arid environment

Figure 6.16: Endmember spectra used in the image decomposition of the Dra valley

(white pixels represent samples of the feature space)

a) Vegetation abundance

a) Vegetation abundance

b) NDVI 

b) NDVI 

c) FCC RGB 4-3-2

c) FCC RGB 4-3-2

d) Terrestial photo( view direction North)Example 1

Example 2

N

N

d) Terrestial photo( view direction South)

3246

3246

3323

3263

0          200m

Figure 6.17: Examples of the background influence on the NDVI. The location of the

photograph is indicated with the land cover class of the ground truth

polygon Example 1 c) with coordinates (UTM): 817195/3308992 and

Example 2 c): 827920/3355617.
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Example 1 shows the NDVI bare surfaces as vegetated ares, while in Example 2

less vegetation is recognised. As a consequence of this the vegetation abundance

was used for further analysis and vegetation differentiation.

In this ecological extreme most species are specialized in their growing condi-

tions and well adapted to the physical environment. A differentiation of vegetation

classes by their physical properties would be promising. Besides the soil information,

the water availability and quality/salinity is a major factor that determines plant

growth. For example Acacia raddiana can only survive with low salinity ground

water while Tamarix aphylla and Tamarix africana grow better in more saline con-

ditions (El-Addouni, 1989). The vegetation abundance of the two mentioned classes

is similar, as is also the preferred sandy ground, so that on this basis a differentiation

is not possible. A hydrological map of groundwater salinity would be very useful for

the differentiation of these two, and some other vegetation classes. Pletsch (1971)

refers to a groundwater salinity map, dating from 1968. This was before the dam

near Ouarzazate was built, potentially changing the hydrologic system. As auxiliary

information suitable to differentiate the land cover classes of this sub-region were

not available, an attempt to differentiate the vegetation classes by their spectral

properties was performed. SAM was applied to the original 7 channel spectral in-

formation of only the vegetated pixels (see subsection 6.1.1, subsection 6.1.3). The

vegetated pixels were extracted from the multispectral LANDSAT ETM+ image by

the identification on a minimum threshold value of 0.022 of the vegetation abun-

dance above which all pixels contain vegetation information. These multispectral

vegetation pixels were classified by choosing a set of reference spectra per class.

The mean class value of the reference spectra is used in the SAM. The resultant

membership function of each rule image from SAM can be modified by applying

empirically identified threshold values for class differentiation. With the SAM a su-

pervised classification is thus performed through the use of the fuzzy OR, as defined

in subsection 6.1.4. The vegetation reference spectra and corresponding maximum

threshold for the spectral angles Θi, i = [1..9] are shown in Figure 6.18.

The classification of the foreground layer vegetation is incorporated in a clas-

sification procedure based on decision rules and used for class discrimination as

Figure 6.19 shows. The background information are obtained by LSU, resulting in a

background classification by the use of the fuzzy AND operation of the abundance

channels (see Figure 6.16). The membership functions of desert crust, playa and

pediment were set to zero below 0.6, 0.6 and 0.5 respectively.

119



6 Vegetation classification in an arid environment

Figure 6.18: Reference spectra used in the SAM on the vegetation pixels with Θi

values in brackets

The foreground and background classification can be superimposed resulting in a

classified image of the sub-region.

A rainfall event and/or water outlet from the dam near Ouarzazate resulted in

water within the riverbed of the Dra. Streamlines could not be calculated with

sufficient quality from the GTOPO30 DEM of the sub-region. The varying water

depth made a classification of the water pixels difficult. Consequently the river Dra

was manually digitised and attributed to class 5110 (water courses). Pixels with

vegetation abundance between 0.022 and 0.10 within a 3 pixel buffer zone were

assigned to class 4132 (Tamarix africana - Oleander). Daya Chegaga is a depression

90km west of M’hamid, where rainfall water occasionally accumulates, resulting

in specific growing conditions. The vegetation association in this area identified

as 3255 (Pulicaria steppe). A polygon of this geographic region, indicated in the

topographic map Zaouia Sidi abd en Nebi (on scale 1:100000) was used to assign

pixels with vegetation abundance between 0.022 and 0.1 within the Daya Chegaga

to the class 3255 (Pulicaria steppe). The 1120 (class discontinuous urban fabric)

was derived with 21 reference spectral signatures due to the SAM with low angles

Θ (less than 0.03).
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Palm oasis
Tamarix aphylla
.
.
Zygophyllum geatulum

Background abundances

playa
desert crust
pediment

Foreground abundance

vegetation

playa
sand
desert crust
pediment

Auxiliary information

or

Spectral Angle Mapper

Palm oasis
Tamarix aphylla
.
.
Zygophyllum geatulum

Background Classification

Foreground Classification

vegetation mask

Material dependent vegetation discrimination 
– where necessary

Acacia radiana - Panicum - Zilla
pediment

and

Sanddune Vegetation
pediment

Zygophyllum gaetulum
pediment

Acacia raddiana - Ziziphus - Mearua
playa

river Dra

water courses

Acacia raddiana –
Ziziphus - Mearua

Acacia raddiana –
Ziziphus - Mearua

Acacia raddiana –
Ziziphus - Mearua

Zygophyllum
gaetulum

Knowledge based vegetation discrimination 

River buffer zone < 4 Pixel
vegetation abundance 0.022 - 0.1

sand

Tamarix africana - Oleander

Daya Chegaga
vegetation abundance 0.022-0.1
Daya Chegaga Pulicaria steppe

elevation vegetation abundance 0.022-0.1
elevation > 1000m

Anvilea – Convolvulus steppe

Figure 6.19: Flow chart of the land cover classification decision rules for the Dra

valley (explanation in the text)

For the masked areas the background was already pre-classified as quarzitic rock.

An endmember combination of vegetation (same spectrum as in the other Dra re-

gion), bright and dark rocks were selected for the LSU. Vegetation abundances

greater than 0.035 were assigned to class 3262 (Acacia raddiana - Retama). Eleva-

tion information from the GTOPO30 DEM and from the Topographic map Zagora

(scale 1:100000) served as base material to derive areas higher than 1000m ele-

vation. Pixels classified as 3262 (Acacia raddiana - Retama) on elevations above

1000m were classified as 3256 (Anvilea - Convolvulus steppe) and superimposed on

the background information. Figure 6.20 shows examples of the image classification.
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a) class 3263

b) class 2341/4132

c) class 4132

d) class 3264

N

Acacia raddiana - Panicum - Zilla

palm oasis/
Tamarix africana - Oleander

Tamarix aphylla

Tamarix africana - Oleander

0            200m

Figure 6.20: Examples of the classification result in the Dra valley (image size:

188 × 212pixel), view direction in photo a) west (coordinates:

816520/3329536), view direction in photo b) south/west (coordi-

nates: 829351/3344361), view direction in photo c) north (coordi-

nates: 742514/3298805), view direction in photo d) north (coordinates:

810901/3305030)
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Post classification

Confusions in a few classes were recognised, e.g. sanddune vegetation never grows

on pediments. For this reason, an interactive IDL-based Graphical User Interface

(GUI) tool was programmed for foreground class discrimination on certain surfaces.

The applied rules are graphically shown in Figure 6.19.

In some areas close to the river Dra, Tamarix africana has ideal growing condi-

tions, resulting in a dense coverage and thus in a high vegetation abundance. This is

especially the case in some sinks of the riverbed with a high groundwater table and

active salinisation processes. The spectral signatures of these dense coverage are

similar to some signatures of agricultural areas and therefore hard to differentiate

spectrally (Figure 6.22). These areas were mis-classified as palm oasis. Charac-

teristic of these areas is that they are aligned linearly along rivers. This object

characteristic was utilised for an object oriented post classification step within the

software package e-Cognition (Definiens, 2002). As a first step the classified image

was imported into e-Cognition. Objects were identified by image segmentation as

connected pixels belonging to the same class. Objects were hierarchically selected

and identified by certain attributes until the objects to discriminate were selected

unequivocally. Rules for the differentiation of the objects are shown graphically in

Figure 6.21.

not close to water

close to water: distance < 2 pixel

Tamarix africana - Oleander
palm oasis

water

others

background

long: length/width ratio > 5

not long:  length/width ratio < 5

not big < 150000m2

big

common border with water >= 0.25 %

common border with water   < 0.25 %

Object hierarchy - level
0            1            2         3         4

Figure 6.21: Object oriented post-classification decision tree for the differentiation

of the classes 2341 (palm oasis) and 4132 (Tamarix africana - Oleander)
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6 Vegetation classification in an arid environment

In the first level all objects of the class palm oasis were selected. In the second and

third level of hierarchy objects that are close to water (less than 2 pixels) and smaller

than 150000m2 are selected. The attribute that the riparian vegetation often grows

in a linear manner was accounted for with the length/width ratio. So that on the

next level objets with a length/width ratio > 5 were assigned to the class Tamarix

africana - Oleander. Additionally objects with a large common border (> 25%) with

the object water were at the lowest hierarchy level assigned to the class Tamarix

africana - Oleander. Figure 6.22 shows an example of the classification improvement

near the river Dra.

a) R/G/G composite 4/3/2 b) SAM classification result c) Object based post classification

Figure 6.22: Example of object oriented post-classification improvement of the ri-

parian vegetation association 4132 (Tamarix africana - Oleander), co-

ordinartes of the image center (UTM): 833770/3342792 (Legend as in

Figure 6.21

Validation

For a combined validation of the image classifications, the non-quarzite and quarzite

areas were merged. Validation data (see subsection 6.1.6) were not included in the

classification process as reference spectra or endmember. The overall accuracy of

the classification approach is 82.24% with a Kappa coefficient of 0.795. Table 6.4

shows the confusion matrix of the image classification in the Dra valley in percent

and in pixels.

Table 6.4: Confusion matrix of the LANDSAT ETM+ land cover classification in

the Dra valley in percents and in pixels (next page)
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6.2 Results from the Dra catchment - South Morocco
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Classification accuracies of the non-vegetated classes: 3311, 3312, 3321, 3322 and

3323 are generally high. The vegetation classes 2341, 3331, 3332, 3255, 3257 and
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6 Vegetation classification in an arid environment

4132 are represented with relatively high classification accuracies. The class 3264 has

high accuracies and with 2515 test pixels is a reliable statistic. The large number of

test pixels results from the incorporation of classification polygons from the mapping

with IKONOS-2 data within the Dra valley, as described in subsection 6.2.2. The

classes 3256 and 3262 could only be validated with 6 and 45 test pixels respectively

and thus with less reliability. Although for class 3255 only 38 pixels were used

the result is more reliable due to the localised occurrence of the class 3255 (see

Figure 6.19).

The classes 3261, 3262 and 3263 represent with of 45%, 60% and 53% low classi-

fication accuracies, with high errors of commission with the non-vegetated classes.

The classes 3261, 3262 and 3263 summarise different, soil dependent, associations of

Acacia raddiana with low amounts of green biomass. The growth of this association

is oriented along little wadi systems with a surplus of non-saline water. Ground

truth data were mostly obtained as polygons so that only single pixels within the

test or validation polygons are true vegetation pixels, as shown in Figure 6.17. Non

vegetated pixels within these polygons undermine the classification and validation

accuracies. For this reason an intersection of the polygons and the vegetated pix-

els as derived from the vegetation abundance channel was performed. The overall

accuracy was increased by this to 90.14%, with a Kappa coefficient of 0.884. The

confusion matrix (in percent) of the of the class intersection is shown in Table 6.5

a).

The difference between the classes 3261 and 3263 is the amount of sand, stones and

the resultant differing vegetation associations, but both classes are dominated by

Acacia raddiana. These differences are often slight and represent transition examples

which can be attributed of either of the two classes. With respect to the commission

error of the classes 3261 and 3263, these two classes were merged. As a result the

overall accuracy changed to 93.14% with a Kappa coefficient of 0.918. Table 6.5 b)

shows the confusion matrix (in percent) with the merged classes 3261 and 3263.

Summarising it can be stated that the classification accuracies are generally high

for all classes. the classes 3331 with 71.11% was mis-classified to 17.78% with class

3264 as both are growing on sandy substrate; the class 3265 has high confusion with

rock background. The classes dominated by the species Acacia raddiana are caused

by their growth along little linear depression lines and their low green biomass at

the edge of detectability with this classification method. For this class it appeared

to be not suitable to collect the ground truth and validation as polygon data.
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6.2 Results from the Dra catchment - South Morocco

Table 6.5: a) Validation data of the intersection of the classes 3261, 3262 and 3263

with the vegetation mask, b) validation results from the intersection of

the Acacia raddiana classes with the vegetation mask and the merged

classes 3261 and 3263
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6 Vegetation classification in an arid environment

A DGPS point collection of each tree within the polygon would represent the

distribution and density information in a better way. For a detailed calibration

an analysis on this basis, preferably in combination with density estimation of the

individuals, would be advisable.

6.2.3 High Atlas

The surface heterogeneity of the mountain area made a separation

into two more homogenous (see subsection 6.1.1) sub-regions nec-

essary. The result of the differentiation of the (sub-) sub-region is

indicated on the left (blue color) and is based on the principle of

PMU mapping according to Daels and Antrop (1977), as described

in section 2.1. The high remaining background variability made the

use of six backgound endmembers necessary (see Hill, 2000) and

hampered the differentiation of the background information on level

four of the classification scheme (see Table 3.1). The background was thus classified

on hierarchy level three as 3320 (bare surfaces). The normalised differenced snow

index (NDSI) (see e.g. Riggs et al., 1994; Romanov et al., 2000) is by the usage of

LANDSAT ETM+ data defined as:

NDSI =
Band4 − Band2

Band4 + Band2
,

where Band2 and Band4 denote the LANDSAT ETM+ spectral bands 2 and

4 (NASA, 2001). The NDSI was used to generate a snow mask above values of

NDSI > 0.4. Figure 6.23 shows the rules applied for the class differentiation. The

validation resulted in an overall accuracy of 92.43% with Kappa coefficient of 0.898.

The confusion matrix is shown in Table 6.6.

The region of the High Atlas, as described in section 2.1 is characterised by high

elevations and elevation differences, resulting in different illumination conditions.

This different illuminations can potentially be corrected with a decent DEM in

combination with an illumination correction (see section 5.4). This can potentially

improve the classification result and the possibility to differentiate classes better.
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6.2 Results from the Dra catchment - South Morocco

Background abundances

Knowledge based rules of vegetation pattern Foreground abundance

vegetation

Auxillary information

rock 1
rock2
rock3
rock4
pediment1
pediment2

bare surfaces

vegetation abundance 0.1 – 0.24
Elevation 2300m – 2900m

Juniperus thurifera

vegetation abundance 0.05 – 0.24

vegetation abundance        0.09 – 0.24
river

mountainous oasis

vegetation abundance 0.05 - 0.24
Hammada scoparia -
Artemisia steppe

vegetation abundance > 0.075 
elevation > 2900m 

Tamarix africana -
Oleander

oromediterranean
vegetationriver network

elevation

NDSI NDSI > 0.4 snow

Figure 6.23: Flow chart of the land cover classification decision rules for the High

Atlas

Table 6.6: Land cover classification accuracies of the High Atlas with 6 validated

classes (next page)
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6 Vegetation classification in an arid environment

Class 3320 3251 4132 2342 3242 3221  Total
Uncl. 0 0 0 0 0 0 0
3320 98.28 10.1 0 0 1.02 0 9.41
3251 1.72 89.5 8 0 14.32 9.18 29.12
4132 0 0 92 1.26 0 0 3.01
2342 0 0 0 98.74 0 0 34.97
3242 0 0.4 0 0 84.65 0 18.54
3221 0 0 0 0 0 90.82 4.96
Total 100 100 100 100 100 100 100

Class 3320 3251 4132 2342 3242 3221 Total
Uncl. 0 0 0 0 0 0 0
3320 114 51 0 0 4 0 169
3251 2 452 4 0 56 9 523
4132 0 0 46 8 0 0 54
2342 0 0 0 628 0 0 628
3242 0 2 0 0 331 0 333
3221 0 0 0 0 0 89 89
Total 116 505 50 636 391 98 1796

Ground Truth (Pixels)

Ground Truth (Percent)

6.2.4 Basin of Ouarzazate

The heterogeneous source material from the High Atlas mountains

contributes to a complex mixture of background materials so for

this reason five background endmembers were utilised in the spec-

tral unmixing. The abundance information of which resulted in the

differentiation of four background classes. Figure 6.24 shows the

decision rules and the classification procedure in this region. The

differentiation of the three rangeland vegetation classes was achieved

by SAM. The 1120 (class discontinuous urban fabric) was derived

with 17 reference spectral signatures due to the SAM with low angles Θ (less than
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6.2 Results from the Dra catchment - South Morocco

0.03). According to the validation data the overall classification accuracy is 96.8%

with a Kappa coefficient of 0.958.

Background abundances

Foreground abundance

Auxiliary information

Spectral Angle Mapper

Background Classification

vegetation mask

Knowledge based rules of vegetation pattern 

playa
gravel1
gravel2
rock
field

and
playa
gravel/pediment
rainfed agriculture
rock

or

Hammada scoparia - Artemisia steppe
riparian shrublands
Tamarix africana – Oleander

Foreground Classification

Hammada scoparia - Artemisia steppe
riparian shrublands
Tamarix africana – Oleander

vegetation

elevation

vegetation abundance > 0.3
elevation > 1350m

vegetation abundance > 0.3
river buffer zone < 1350m

mountainous oasis

palm oasis

Figure 6.24: Flow chart of the land cover classification decision rules for the Basin

of Ouarzazate

The actual and detectable vegetation distribution of the LSU above a vegetation

abundance threshold of 0.025 was determined and differentiated. From a botanic

point of view, the bare surfaces would also be attributed with names of vegeta-

tion associations, such as 3251 (Hammada scoparia - Artemisia steppe) (M. Finckh,

pers comm.). In the terminology of the classification scheme and from the remote

sensing point of view, these areas are assigned to non-vegetated classes. Class infor-

mation in combination with the sub-region can account for further information of

the vegetation associations. Table 6.7 shows the confusion matrix of the validation

procedure.
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6 Vegetation classification in an arid environment

Table 6.7: Land cover classification accuracies of the Basin of Ouarzazate with 9

validated classes

Class 3321 2111 4133 3251 2341 4132 1420 1111 2342   Total
 Uncl. 0 0 0 0 0 0 0 0 0 0
3321 98.72 0 0 1.3 0 0 0 0.47 0 19.44
2111 0 93.55 0 0 0 0 0 0 0 4.18
4133 0.55 0 97.06 2.6 0 4.55 3.72 0 0.2 2.95
3251 0.73 0 2.94 96.1 0 2.27 0.45 0 0 3.06
2341 0 0 0 0 95.38 0 1 0 0.59 4.97
4132 0 0 0 0 0 93.18 0 0 0 1.48
1420 0 0 0 0 0 0 94.83 0 0 37.65
1111 0 0 0 0 0 0 0 99.53 0 7.56
2342 0 6.45 0 0 4.62 0 0 0 99.22 18.72
Total 100 100 100 100 100 100 100 100 100 100

Class 3321 2111 4133 3251 2341 4132 1420 1111 2342  Total
 Uncl. 0 0 0 0 0 0 0 0 0 0
3321 538 0 0 1 0 0 0 1 0 540
2111 0 116 0 0 0 0 0 0 0 116
4133 3 0 33 2 0 2 41 0 1 82
3251 4 0 1 74 0 1 5 0 0 85
2341 0 0 0 0 124 0 11 0 3 138
4132 0 0 0 0 0 41 0 0 0 41
1420 0 0 0 0 0 0 1046 0 0 1046
1111 0 0 0 0 0 0 0 210 0 210
2342 0 8 0 0 6 0 0 0 506 520
Total 545 124 34 77 130 44 1103 211 510 2778

Ground Truth (Percent)

Ground Truth (Pixels)

6.2.5 Crystalline Anti-Atlas

The Crystalline Anti-Atlas is also a high mountain area with eleva-

tions of more than 3000m. The complex mixture of rock and soil

made the use of five background endmembers necessary and ham-

pered a further background differentiation, except of the ploughed

fields which could be differentiated as rainfed agriculture. Fig-

ure 6.25 shows the applied classification rules. On the south-

ern slopes on high elevated areas species of Juniperus phoeniceae

and Buxus balearica were identified growing locally in reasonable
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6.2 Results from the Dra catchment - South Morocco

amounts and density. The growth area seems to be determined by areas with a

surplus of orographic precipitation (M. Finck, 2001 pers. comm.). The area was

identified according to field observations by IMPETUS botanists and supplied as

a polygon layer. The differentiation between the classes 3243 (Buxus balearica)

and 3242 (Juniperus phoeniceae shrubland) is possible as the class 3243 (Buxus

balearica) is located in shaded areas, for the description of which the RMS error of

the LSU was utilised (see Roberts et al., 1998). Figure 6.25 shows the classification

rule applied within this sub-region.

and

Background abundances

Knowledge based rules of vegetation pattern 

vegetation abundance 0.45
elevation > 2400m mountainous oasis

vegetation abundance > 0.24
elevation <1350m

vegetation abundance >0.05
Buxus/Juniperus area
shaded

Buxus balearica

vegetation abundance >0.05
Buxus/Juniperus area
non shaded

Juniperus thurifera –
Buxus shrubland

rock 1
rock2
pediment1
pediment2
RMS error

Foreground abundance

vegetation

river network

rainfed agriculture
bare surfaces

Background Classification

Auxillary information

vegetation abundance 0.21 – 0.45
elevation > 2400m

oromediterranean
vegetation

vegetation abundance 0.015 - 0.24
elevation <1800m

Hammada scoparia

elevation

Buxus/Juniperus area

palm oasis

vegetation abundance > 0.24
elevation 1350m – 2400m

mountainous oasis

vegetation abundance 0.015 - 0.24/0.21
elevation >1800m

Hammada scoparia -
Artemisia steppe

topographic maps mineral
extraction sites

vegetation abundance 0.1 - 0.24
river buffer zone < 5 pixel

Tamarix africana –
Oleander

vegetation abundance 0.015 - 0.05
Buxus/Juniperus area

Hammada scoparia -
Artemisia steppe

Figure 6.25: Flow chart of the land cover classification decision rules for the Crys-

talline Anti-Atlas

The class 1310 (mineral extraction sites) were identified either during field cam-

paigns or extracted from topographic maps (see section 2.1). The overall accuracy

is 89.89% with Kappa coefficient 0.879.
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6 Vegetation classification in an arid environment

Table 6.8: Land cover classification accuracies of the Crystallin Anti-Atlas with 8

validated classes

Class 3320 3257 3251 4132 2341 3221 2111 2342  Total 
Uncl. 0 0 0 0 0 0 0 0 0
3320 100 13.51 0.55 0 0 0 0 0 10.76
3257 0 86.49 13.66 2.63 1.53 0 3.82 0 7.52
3251 0 0 76.78 1.75 0 5.17 0 0 22.63
4132 0 0 0.27 81.58 0 0 0 1.42 7.59
2341 0 0 0 4.39 98.47 0 0 0 20.81
3221 0 0 0.27 0 0 93.1 0 0.71 4.43
2111 0 0 0 0 0 0 96.18 0 11.95
2342 0 0 8.47 9.65 0 1.72 0 97.87 14.32
Total 100 100 100 100 100 100 100 100 100

Class 3320 3257 3251 4132 2341 3221 2111 2342 Total
Uncl. 0 0 0 0 0 0 0 0 0
3320 129 5 2 0 0 0 0 0 136
3257 0 32 50 3 4 0 6 0 95
3251 0 0 281 2 0 3 0 0 286
4132 0 0 1 93 0 0 0 2 96
2341 0 0 0 5 258 0 0 0 263
3221 0 0 1 0 0 54 0 1 56
2111 0 0 0 0 0 0 151 0 151
2342 0 0 31 11 0 1 0 138 181
Total 129 37 366 114 262 58 157 141 1264

Ground Truth (Pixels)

Ground Truth (Percent)

The classes 3243 (Buxus balearica) and 3242 (Juniperus phoeniceae shrubland)

could not be validated due to a very low number of validation data. The subsequent

field campaigns will reveal the quality of the classification these two classes.
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6.2 Results from the Dra catchment - South Morocco

6.2.6 Sedimentary Anti Atlas

High background heterogeneity resulted in the separate treatment

of two units of reduced variability. This (sub-) sub-regions are in-

dicated on the left and were mapped accoring to the PMU concept

(see section 2.1). The difficult to access mountainous areas were

classified with limited terrain knowledge and low amount of valida-

tion data (see the confusion matrix in pixels). In spite of the small

amount of validation data a land cover classification was performed.

Although the classification accuracy within this region is of less im-

portance for the IMPETUS project, a visit of this region for further validation is

highly advisable. Four background and one vegetation endmember was used in the

LSU. Figure 6.26 shows the flow chart of the applied classification rules.

and

Background abundances

Knowledge based rules of vegetation pattern 

vegetation abundance > 0.3 mountainous oasis

vegetation abundance 0.15 - 0.3
river buffer zone < 10 pixel
desert crust

Atriplex glauca

vegetation abundance 0.15 - 0.30
river buffer zone < 5 pixel
stones

Tamarix africana –
Oleander

rock 1
rock2
pediment1
pediment2

Foreground abundance

vegetation

river network

pediment
rock

Background Classification

Auxillary information

vegetation abundance 0.45 - 0.30
pediment

Hammada scoparia -
Artemisia steppe

elevation

vegetation abundance 0.045 - 0.3
elevation < 1000m

Acacia raddiana -
Ziziphus - Mearua

Figure 6.26: Flow chart of the land cover classification decision rules for the Sedi-

mentary Anti-Atlas

The background information was differentiated in two classes, which were filtered

with a 3× 3 majority filter to improve spatial consistency. The overall accuracy for

this sub-region is 89.19% with Kappa coefficient of 0.870. The confusion matrix for

pixels and in percent is shomwn in Table 6.9.
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6 Vegetation classification in an arid environment

Table 6.9: Land cover classification accuracies of the Sedimentary Anti-Altas with

6 validated classes

Class 3321 3322 3254 2342 3251 2341  Total 
Uncl. 0 0 0 0 0 0 0
3321 100 0 0 0 0 0 20.27
3322 0 100 14.29 0 0 0 18.92
3254 0 0 64.29 0 25 0 16.22
2342 0 0 0 100 0 0 14.86
3251 0 0 21.43 0 75 0 16.22
2341 0 0 0 0 0 100 13.51
Total 100 100 100 100 100 100 100

Class 3321 3322 3254 2342 3251 2341 Total
Uncl. 0 0 0 0 0 0 0
3321 15 0 0 0 0 0 15
3322 0 12 2 0 0 0 14
3254 0 0 9 0 3 0 12
2342 0 0 0 11 0 0 11
3251 0 0 3 0 9 0 12
2341 0 0 0 0 0 10 10
Total 15 12 14 11 12 10 74

Ground Truth (Percent)

Ground Truth (Pixels)

6.3 Discussion and outlook

Image decomposition by spectral unmixing techniques transform multispectral in-

formation in membership grades of endmember spectra. The membership grades

were interpreted as fuzzy sets which allows the interpretation of the inherent infor-

mation in the satellite image in a more physically related sense than dimensionless

DNs. The differentiation of foreground vegetation and background soil information

appeared to be very useful. Knowledge, based on field observations, of the growing

conditions of vegetation associations related to these physical properties, could be

formulated as decision rues. By incorporating auxiliary information in the sense of a

hybrid classifier and knowledge based decision rules of fuzzy sets an expert classifica-

tion system was implemented in IDL program codes within ENVI. The classification

rules were formulated on the basis of the classification scheme (see Table 3.1) for the

Dra catchment. The whole catchment was classified by merging land cover map-

136



6.3 Discussion and outlook

pings from six sub-regions differentiated according to the principle of PMU mapping

(see section 2.1). The overall classification result from the six sub-catchments of the

validated classes is shown in Table 9.1.

Table 6.10: Classification accuracies of the six sub-regions of the Dra catchment

Overall accuracy [%] Kappa coefficient Nr. of classes Size [km2]
High Atlas 92.4 0.898 6 4642.5
Basin of Ouarzazate 96.8 0.958 9 2651.1
Crystallin Anti Atlas 89.9 0.879 8 7213.8
Sedimentary Anti Atlas 89.2 0.870 6 3706.1
Basin of Tazenakht 96.5 0.951 8 919.7
Dra valley 82.2 0.795 18 9286.0

The classification approach is more successful in the basin areas: the Dra valley,

the Basin of Tazenakht and the Basin of Ouarzazate compared to the mountainous

areas. Within these areas the background information is better distinguished com-

pared to the (complex) geology in the mountainous regions. Problems arise if the

background heterogeneity is too high. This resulted in a reduced number of differ-

entiable (background) classes or even class assignment on the hierarchy level three

as in the High Atlas and the Crystalline Anti-Atlas. Regardless of these difficulties,

the vegetation abundance was less background influenced than the NDVI. Within

the land cover classification the actual vegetation coverage is represented, which is

the parameter of relevance for the derivation of biophysical parameters and the data

integration into meteorological models, as required by the IMPETUS project. The

classification accuracy in the Dra valley was improved by merging two classes con-

tain Acacia raddiana (3261 and 3263) and by removing errors due to false ground

truth data collection to 93.1% with Kappa coefficient of 0.918.

Further improvement might be possible by incorporating a dry biomass endmem-

ber as proposed by Roberts et al. (1998); Hill (2000) potentially on smaller areas,

with less heterogeneity and more ground measurements. This could lead to an end-

member combination with different, potentially improved interpretation and classi-

fication possibilities. Especially the difficult to detect Acacia raddiana classes 3261,

3262 and 3263 will most probably improve. Improvements of this approach are most

likely by the use of this classification approach with satellite data in higher spectral

resolution, such as ASTER. Potentially within soil information the degree of salinity

can be estimated.
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6 Vegetation classification in an arid environment

The classification detail and accuracy are very high for a land cover map derived

with LANDSAT data, especially with regard to the large catchment area. For the

mapping with a sub-pixel approach of this large catchment, including five LANDSAT

ETM+ scenes, the use of a radiometrically corrected image mosaic of high quality

was crucial. The status and the density of the vegetation is always dependent on

the image acquisition time and growth status within the phenological cycle of the

plants. The image mosaic was generated from five almost cloud-free LANDSAT

ETM+ images recorded within the same month. The vegetation growth state is

however different in the lower elevated regions than in the mountainous areas and

might also differ due to localised precipitation events.

In theory the presented classification results can also be achieved with classical

classification approaches, such as the MLC. But to achieve a land cover classification

in comparable detail and quality an enormous amount of training and test pixels

would be necessary, not only due to the normal distribution constraint of training

pixels, but also to differentiate between the often similar (vegetation-) class spectra.

During this work, especially with regard to the size and complexity of the region,

this was impossible. This drives also the concept of remote sensing ad absurdum,

therefore, that if during the ground truth campaigns almost the whole area needs

to be sampled or mapped.

One draw-back of the approach of using only relatively normalised data is that the

thresholds within the decision rules are only transferable to data normalised to the

data of this study. Since no atmospheric correction was performed, all thresholds

are based on relative abundances, such that the same thresholds need modification

if they are to be adapted to other regions. On the other hand the creation of a

spectral library requires a perfect atmospheric correction, which is currently not

available from any existing algorithm.

It could be argued that a more suitable result of the spectral decomposition would

be the abundance layers of the endmembers. These could then be used, by applying

user specified decision rules, to serve for a dynamic generation of products. In theory,

this concept would be more flexible, but every mapping product is usually derived

with a certain (main-) focus and only within that focus will the best or most reliable

results be achieved. Nevertheless, an interpretative potential within the abundance

channels that can be utilised for a variety of analysis and interpretations has been

achieved/developed. The approach to incorporate all potential layers of information

into one database would be ideal. The initiative of Africover (2003) is in fact leading
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in this direction.

6.4 Conclusion

A map of the actual vegetation/land-cover of the Dra catchment was successfully

generated and merged of the sub-region classifications and is enclosed as addendum.

A classification approach was presented that produces remarkably good results, as

judged by comparison with the validation dataset. The outlined analysis of the

sub-pixel information above seems suitable for classification purposes in the project

region. The number of classes within the sub-regions is dependant on factors such

as the terrain knowledge, the unmixing quality and the surface heterogeneity.

Apart from adequate terrain and vegetation knowledge as a prerequisite for this

approach, no assumptions are made that limit this approach to the described project

region. For the LSU and SAM no assumption on normal distribution of training

pixels is required, decreasing the number of pixels that are required for the classifica-

tion. The classification approach is based on the decomposition of a remote sensing

image in abundance information that can be more easily interpreted and classified,

even by non remote sensing experts. The approach is deterministic, repeatable, and

offers other differentiation capabilities than conventional hard classifiers. Integra-

tion of data with different resolutions for validation purposes, is only possible with

appropriately geometrically corrected images.

The implementation of an expert classification system requires the knowledge and

understanding of the eco-physical environment and the complex regulation pattern.

A recommendation is therefore that remote sensing should not stand at the begin-

ning of a research project and be designed to purely deliver e.g. NDVI data for

potential users. The amount of information that can be extracted from the data is

much higher if additional ground knowledge is incorporated, as the presented work

has demonstrated. The applied methodology can generally be extrapolated to other

regions of the world with similar environmental conditions.
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7 Change Detection: what to

detect?

”Change is the only constant”

T. McVicar, 2003

Land cover change refers to changes in the attributes of the land surface. Since in

several regions around the world land cover changes occur rapidly, remote sensing

provides a valuable source of information to detect changes, due to the repeating

data recoding and the synoptic view of areas (Singh, 1989). A prerequisite to detect

land cover changes by the use of remote sensing data and methods is, that the

changes in land cover result in changes in the surface spectral properties. These

changes must be significantly larger than data noise, such as those induced by the

recording platform or differing atmospheric influences (Mas, 1999). Donoghue (1999)

states that: ”At a global or regional scale remote sensing offers the only practical

method of change detection.”. With regard to historic data archives remote sensing

data are often the only source of information for detecting long term changes. With

the release of data from the first CORONA missions, satellite data are available to

the public since 1960 (Ruffner, 1995). Multispectral data from the first LANDSAT

missions start in 1972. The comparison of the historic data with recent or actual

data is challenging, not only due to the changed sensor characteristics. Examples of

satellite based change detection applications are reviewed by e.g. Singh (1989) and

Lunetta and Elvidge (1998); Mas (1999).

The assessment and/or quantification of changes in land cover is an important

task, not only in modelling and forecasting studies, but also for the identification of

problematic zones for resource management plans or decision making support.

The task of quantifying changes requires that data are suitable to show the

changed objects and need to be pre-processed in a manner that the data are compa-

rable. Singh (1989) sees as a major problem in change detection studies the accurate
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image (co-) registration. Verbyla and Boles (2000) calculated errors in change de-

tection studies due to mis-registration. Their investigation showed, that a false

change identification due to mis-registration rises with the number of classes within

a classified image and with land cover heterogeneity. This implies that either a care-

ful pre-processing or methods with less sensitivity to mis-registration are necessary

(Singh, 1989).

Different methods of change detection and their specific advantages and problems

are outlined, with reference to the data, application, and purpose.

7.1 Data

For change detection applications using data from different origins and view geom-

etry, such as analog CORONA and digital IKONOS-2, the image characteristics

require special attention (see chapter 4 and subsection 7.2.3). Due to the differing

view geometry, image displacements can become considerable (see chapter 4). The

comparison of multispectral and panchromatic data requires additionally knowledge

of the objects of interest.

Spectral characteristics of data recorded from the same satellite program, such

as SPOT or LANDSAT, changed during the operation time and need consideration

in comparisons. Starting with the MSS sensor, LANDSAT data were recorded in

4 spectral channels with a spatial pixel resolution of 79m × 56m. From 1984 on-

wards the TM sensor obtained images in 7 spectral bands with a spatial resolution

of 28.5m × 28.5m. Due to a shift in the spectral range of the recorded bands the

comparison is not a straightforward process. The characteristics for the multispec-

tral data of ETM+, operating since 1999, are mostly the same as for TM. In order to

compare ETM+ and TM data radiometric normalisation techniques, either relative

or absolute, are common (section 5.3). In the case of an MSS to TM/ETM+ com-

parison, the spectral bands, and thus also the ratios of the bands or common indices

like the NDVI, are not directly comparable. A solution to these problems usu-

ally involve atmospheric corrections or post classification change detection methods

(Singh, 1989). Often information about historic atmospheric conditions and land

cover/land use for an image classification at the time of the image acquisition is dif-

ficult or even impossible to obtain. In these cases robust change detection methods

that overcome these difficulties are needed.
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7.2 Methods and results

In the following sections several change detection methods are outlined. At this

stage of the work methods were identified and evaluated as case studies at ”hot

spots” of change to identify methods to apply potentially for the whole catchment

or certain sub-regions. The applied methods were case dependent to satisfy the

given application.

7.2.1 Visual interpretation and object digitalisation

LANDSAT

Certain changes and processes can be visualised simply by the generation of colour

composites and their interpretations. The representations of 1) colour, 2) patterns

and c) texture as described in section 2.1 and the knowledge about reflectance prop-

erties help the observer to identify objects and interpret satellite data. The inspec-

tion of FCCs is usually the first approach to identify and analyse multi-temporal

data and changes. Figure 7.1 shows an example of the region around the Lac Iriki.

The red colours represent in both images photosynthetically active vegetation due

to the spectral band combination. The visual analysis, in conjunction with historic

data and actual ground truth data can serve to aid understanding and analysis

of environmental changes. Figure 7.2 shows photos of the Lac Iriki in 1969 filled

with water during a wet period in the late 1960s (Hnichi, 1989) and with riparian

vegetation (Tamarix africana).

This vegetation seems to have completely vanished in the image recorded in 2000.

A major cause for this change is the dam built upstream near Ouarzazate in 1972

(see section 2.1). From that time onwards water regulation prevented spring floods

or runoff from heavy rainfall events in the High Atlas mountains from reaching

this area frequently (Hnichi, 1989). The rare local precipitation events are usually

insufficient to contribute to plant existence. An enormous rainfall event in spring

1989 filled the dam so completely that surface water was draining directly through

the Oued Dra in such an amount, that even surface water drained into the Atlantic

ocean. During the 20 years of water absence the natural water course to the Lac Iriki

was filled with sand so that flood water could no longer reach this area. Figure 7.3

shows the actual vegetation situation.
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a) LANDSAT MSS1 RGB 431 FCC (1972) b) LANDSAT ETM+ RGB 432 FCC (2000)

0          2km

Figure 7.1: LANDSAT MSS and ETM+ RGB image subsets of the region around

the Lac Iriki, in a) September 8, 1972 and b) October 25, 2000 (in-

dicated is the area of the photo in Figure 7.3 with UTM coordinates

744299/3300598)

a) b)

Figure 7.2: Photos of the region around the Lac Iriki in 1969, source: O. Abdellaoui
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a) b)

Figure 7.3: Photos of the region around the Lac Iriki in 2000, source: M. Schmidt

Attempts to reactivate the ancient riverbed and the initiative to create a national

park of this area were not supported by the Moroccan government.

CORONA-IKONOS

For certain analysis, especially with very high resolution data, a visual image in-

terpretation might be sufficient. For example by object identification for military

purposes or if the data quality is too low for automated analysis. As with any sub-

jective interpretation method, an interpretation key must be defined to avoid mis-

interpretations. For the purpose of visual change identification, data from IKONOS-

2 and CORONA were used from 1972 and 2001. As an example the town of M’hamid

was chosen to display the change of the extent of the desert town. The IKONOS-2

multispectral bands were fused with the panchromatic band (see Table 5.1, for the

spectral characteristics) with the Brovey method to obtain an (almost) true colour

composite with 1m resolution (RSI, 2002; Canty, 2002). The i fused bands DNi are

generated as follows:

DNi = DNhighres · DNi∑n
i=1 DNi

where n is the number of bands used, DNhighres denotes the higher resolution

band while DNi are the multispectral bands. The spectral range of the bands

in this approach is assumed to sum up to the high resolution band range. For
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this purpose, calibrated IKONOS-2 bands 1,2 and 3 were used to generate a color

composite of the first three fused bands (n=3) in 1m resolution. With this rather

simple fusion method, colour images in high resolution can be generated, with some

loss of spectral information. These data were used in combination with co-registered

CORONA data for a visual change identification. The town of M’hamid is located

within the CORONA KH4B from mission DS-1117 from 1972 (see chapter 4) at

the fringe of the recorded image strip and inherits large distortions and a decreased

spatial resolution (see Figure 7.4). The CORONA KH4A data were supplied by the

University of Gent, Belgium, where the data on film strips were photographically

enlarged (by a factor of 10) and scanned (at 400 dpi). The extension of the town

M’hamid was digitised in three time steps according to 1) dominating tonality or

colour, 2) patterns (dots, lines, patches etc.) and c) texture following the concept

of PMUs (see section 2.1, (Daels and Antrop, 1977)). The town of M’hamid grew

enormously within the 37 years, similar to the towns of Ouarzazate and Zagora. To

show the changes in Figure 7.4 on the basis of very high resolution satellite images,

a vector layer with the extent of the town in 2001, was overlaid on the images from

1972 and 1964.

a) IKONOS-2 fused true color
composite

c) CORONA KH4A imageb) CORONA KH4B image

Figure 7.4: The size of the town M’hamid in a) 2001 (red), b) 1972 (green) and c)

1964 (blue)

Beside population growth, a reason for this general tendency in the Oasis systems

of Morocco is that people tend to live in modern stone houses rather than in the

traditional Ksars or Kasbah (Ait-Hamza, 1997). Although the sealed road ends in

M’hamid, the town recently became attractive for the growing desert tourism as a

starting point for desert trips (Popp, 2000). The size of the town M’hamid was,
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according to the digitised polygons, in 2001 53.1ha, 25.7ha in 1972 and 10.8ha in

1964 (see Figure 7.4). This implies a growth in area by a factor of 4.9. The left

polygon in Figure 7.4 c) might be part of the town in 1964, but more probably was

an agricultural area. In this case, by excluding this polygon, the size of the town

was only 6.1ha corresponding to a growth factor of 8.7.

7.2.2 Analysis of multitemporal NDVI data

This study aims to investigate if changes in the rangeland vegetation coverage are

potentially detectable with LANDSAT data and the NDVI. Four LANDSAT TM5

image subsets (280 × 232 pixel) from the local project partner ORMVAO were co-

registered with an RMS error of less than 0.5 pixel. Three subsets from LANDSAT

data, as described in chapter 5, were included to build a time series with seven

LANDSAT scenes in total with of 28.5m pixel size. The time series of LANDSAT

TM5/ETM+ data were relatively radiometrically normalised to the ”master” scene

dating from May, 2 in 2000 as described in section 5.3. The area of observation is

a test plantation with species such as Artemisia herba-alba, Anabasis articulata etc.

(see Ouaskioud, 1999, for further details) of the ORMVAO, initiated in 1979, when

fences were built to exclude nomadic grazing. In 1982, a controlled grazing program

was initiated (Ouaskioud, 1999). Figure 7.5 shows the area of the test plantation in

the basin of Ouarzazate (center coordinates: 794940/3475809).

Figure 7.5: Test area of the ORMVAO, displayed in a LANDSAT ETM+ RGB 423

FCC subset of November 24, 1999

146



7.2 Methods and results

The NDVI time series represents a increasing NDVI trend during the time and

generally a higher signal in the inner plot than outside at all time steps. The subre-

gions A and B in Figure 7.5a) represent areas with similar soil type and vegetation

coverage inside and outside the ORMVAO testplot. The image dating from 1999 is

the only scene from winter, showing in this year relatively wet conditions, resulting

in the peak in NDVI.
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Figure 7.6: Comparison of NDVI values inside and outside the testplot at different

time steps. a) shows regions inside and outside the test plot with similar

soil coverage, while b) displays the mean values inside and outside.

This long term vegetation monitoring shows that the exclusion of certain surfaces

for grazing has an effect on the vegetation cover and that the system generally seems

to have the potential to recover and regrow in undisturbed conditions. The test plot

was given up in 2000 and grazing started again (M. Finckh, pers. comm).

The comparison of image ratios, differences and indices is possible due to the

image normalisation. As shown in section 5.3 the effect of illumination differences

on non-shaded surfaces is reduced due to the relative radiometric normalisation.

7.2.3 Post classification change detection

7.2.3.1 Long term change detection with very high resolution data

Background and motivation

Overgrazing or inappropriate land use, together with periods of drought and cli-

matic changes, threaten to destroy the natural resources in south Morocco in an
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irreversible manner. The German Ministry of Economic Cooperation assists the

Moroccan government in the implementation of the project ”Combat Desertifica-

tion in the Dra Valley”. Part of the project is special attention to protect the oasis

of M’hamid, a component which is co-financed by a micro-project of the Global

Environment Facility. One aim of this project is to stop or at least to slow down the

desertification process on a regional basis. This study can be seen in the framework

of the United Nations Convention to Combat Desertification, which is signed and

ratified by the Moroccan and German governments. The objectives in the M’hamid

region are twofold: on one hand to improve the irrigation system of the oasis in order

to protect the oasis from inside and on the other to protect tamarisk plants nearby

the oasis in order to prevent the oasis from mobile sands. The latter objective is fol-

lowed within this study and described in the following section. Figure 7.7 shows an

example of attempts to fix mobile sands that move into a palm oasis. It is especially

important to understand the ecosystem as a whole and to know whether changes

in vegetation cover are due to human actions or due to hydrologic changes as a

consequence of the dam construction further upstream near the town of Ouarzazate

in 1972.

Figure 7.7: Example of an oasis protection against mobile sand, south of Zagora

Photo: M. Schmidt, 2001

Approach

The approach chosen includes mappings on the basis of high resolution satellite

data. Due to the location of the study area close to the Algerian border (≈ 2km)
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aerial photographs are difficult or impossible to access. Until recently the number

of applications dealing with very high resolution datasets is still low. One reason

for this is that IKONOS data have only been available since 1999, but also because

these data have inherent problems due to the oblique viewing angle and the resulting

image displacements (Baltsavias et al., 2001). Hence, very high resolution data need

special attention (Schmidt et al., 2003a) in order to map in real-world coordinates

and integrate the results in a GIS. The aim of this study is to investigate changes

in a natural forest of Tamarix aphylla and Tamarix africana in the northern fringes

of the Sahara in South Morocco (see subsection 6.2.2). To some extent halophytic

tamarisks tolerate a soil salinity of up to 2-3% and accumulate sand in little hills of

clay, sand and nutrients. These trees are growing in extreme ecosystems and fix not

only mobile sand, but also are a rare habitat for the almost extinct local fauna, e.g.

the desert fox. Very high resolution satellite data were chosen to achieve the individ-

ual mapping of the trees. Historic CORONA data with a nominal ground resolution

of 1.8m (see subsection 4.2.1) were used in combination with recent IKONOS-2 data

with a ground resolution of 4m in the multispectral channels (see subsection 6.2.2).

The geometric data properties of the two datasets are discussed briefly in order to

understand and interpret the displayed changes in vegetation cover.

The IKONOS image used in this application was recorded with a satellite view

angle of 21.8◦. Due to the flat surrounding terrain only the object displacements of

the tamarisk hills need consideration. Object displacements can be expressed as a

function of the view angle and the object height (see chapter 4 for further details),

e.g. a 10m object leads to a displacement of 4m a a view angle of 21.8◦ (Figure 7.8).

In the case of CORONA data the image displacements are smaller due to the lower

view angle. The CORONA data were recorded stereoscopically and thus the image

with the best geometric characteristics can be used. Ideally, the approach would

be to record GCPs for a photogrammetrical restitution and the generation of an

orthophoto map. In the sandy terrain with no infrastructure lines, the identification

of GCPs is difficult. The meta-information of the CORONA and the IKONOS data

are shown in Table 7.1.

The CORONA data of the DS-1117 mission have a collection azimuth angle of

approximately 350◦ in the afterwards image, which corresponds well with the values

of the IKONOS scene. This means that by the use of the afterwards image the

objects are displaced in the same direction.

149



7 Change Detection: what to detect?

CORONA
IKONOS

15°
21.8°

h

displacement(IKONOS)

CORONA
IKONOS

15°
21.8°

h

displacement(IKONOS)

Figure 7.8: Image displacements by CORONA and IKONOS satellite viewing geom-

etry, adapted from Schmidt et al. (2002)

Table 7.1: Meta information of CORONA KH4B (26.05.1972) and IKONOS-2

(23.11.2001) data used in this study

Satellite IKONOS-2 CORONA CORONA

Image mode oblique forward afterward

Collection Azimuth 347.2◦ ≈ 170◦ ≈ 350◦

View angle 21.9◦ 15◦ 15◦

Date of Acquisition 26.11.2002 26.05.2001 26.05.2001

Sun azimuth 164.3◦ ≈ 160◦ ≈ 160◦

Sun elevation 38.4◦ ≈ 70◦ ≈ 70◦

The darker pixels in the CORONA image represent the objects (tamarisk and the

hill) plus the object shadow (see Figure 7.8). The sun elevation of approximately 70◦

in May is equivalent to an illumination angle of 20◦. This means that the shadow of

the object on the flat terrain has a larger extent than the object displacement result-

ing from the 15◦ view angle. The sun azimuth angle of approximately 160◦ results in
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an object shadow in the direction of the image displacements. Thus, the dark pixel

can be interpreted as objects plus their own shadow. The view angle of the IKONOS

sensor is 21.8◦ at an collection azimuth of 347.2◦, which results in object displace-

ments in the same magnitude as derived from the CORONA images (Table 7.1).

(The and sun azimuth angle of 164.3◦ of the IKONOS-2 data accounts for the sit-

uation that the IKONOS-2 objects are displaced above the shadow.) Thus, spatial

comparisons between the polygons calculated from NDVI values of the IKONOS-2

data (see subsection 6.2.2) and the tamarisk hills derived from the CORONA image

are possible (Figure 7.9). This is important to recognise because otherwise changes

could not be detected accurately. The classified polygons of the IKONOS-2 data

were (see subsection 6.2.2) used in comparison with polygons of vegetation cover-

age derived by an image threshold of the CORONA data. Polygons covering areas

smaller than one pixel were ignored. The vector layers were analysed in ArcView.

Figure 7.9 shows the two vegetation layers from 1972 and 2001.

N

1972
Tree coverage

2001

Plot 3
piste

100m

Figure 7.9: Example of the tamarisk coverage of 1972 (red) and superimposed in

2001 (green) as derived from CORONA and IKONOS-2 data

The tamarisk coverage as obtained in 2001 is shown in the green polygons, while
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the distribution in 1972 is displayed in a red layer underneath. Thus areas appearing

in red show tamarisks existing in 1972 but not in 2001. The difference in the shape

of the polygons can be explained by the different spatial pixel resolution: 4m in the

case of the IKONOS data, while the CORONA data are displayed in 1m resolution

(although the ground resolution is around 1.8m). In this representative area near

Plot 3 (see subsection 6.2.2) only small changes in the total number of the tamarisks

occurred, as shown in Table 7.2.

A slight decrease in spatial coverage with tamarisks happened in Plots 1-4. Al-

though the total number of tamarisks did not change drastically during the 30 years

of investigation, the total area covered by tamarisk trees in Plot 5 changed enor-

mously. This is due to the growth of the individual tamarisks. Changes in the

hydrological cycle did not lead to a general and dramatic reduction of the number

of tamarisks. In Plot 5 the number and the total coverage of tamarisk trees even

increased.

Table 7.2: Land cover changes as mapped with CORONA KH4B (1972) IKONOS-2

(2001) data in representative test plots (see also subsection 6.2.2)

Plot Satellite Nr. of trees coverage [%] cover change [%]

1/2 IKONOS 31 0.087 -0.83

CORONA 33 0.088

3 IKONOS 60 0.086 -8.70

CORONA 61 0.094

4 IKONOS 79 0.041 -4.54

CORONA 81 0.043

5 IKONOS 48 0.039 98.82

CORONA 43 0.020

7.2.3.2 Case study of multispectral long term change detection of the palm

oasis near Zagora

In order to overcome the problems of different sensor radiometry, a method is pro-

posed that uses a LSU approach by categorising the surface in temporally invariant

features as image derived end-member spectra (see subsection 6.1.2).

Data spanning over three decades of the LANDSAT program, MSS1, TM5 and
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ETM+ of the years 1974, 1984 and 1999 were chosen from a similar time of the

year to have similar vegetation growth states and illumination conditions. The data

were geo-corrected as described in subsection 5.2.1. The LANDSAT MSS image was

resampled to the same spatial resolution of 28.5 meters as TM and ETM+ data. In

order to monitor the changes in land use/land cover a LSU was applied to derive

classifications of the three times by the use of 4 image-derived endmember spectra

(chapter 6). The endmember spectra were chosen as proxies to describe the ground

variability (Adams et al., 1995). Features were selected that could well be identified

in all the images: rock, playa, sand and vegetation. Figure 7.10 shows the spectra of

the image derived endmembers of the LANDSAT TM scene. An LSU was applied

to all three images with the same set of spectra. The endmember spectra vegetation

was taken from densely vegetated palm oasis with high NDVI values in each image.

The variations of the other three endmembers was assumed to be low over time and

were taken from the same location in all the other images.

Figure 7.10: Endmember spectra used in the LSU approach in the case of the LAND-

SAT TM data

The class 2342 (palm oasis) was derived by identifying a threshold value of the

vegetation abundance channel with the same threshold in every image. Pixels with

more than 30% of vegetation abundance were classified as 2342 (palm oasis) areas

(Figure 7.11). Additionally the abundance information was used as density infor-

mation of the class to describe the inner-class changes.

For the class 2342 (palm oasis) several pixels were identified in advance, in order

to compile the endmember spectrum for the LSU and additionally reference pixel for

the class-validation. For the validation, pixels of the scene dating from December 19,

1999, and ground truth data from October 2000 were used, assuming that no major

changes occurred in the intervening period. For the historic data (1974) a validation

153



7 Change Detection: what to detect?

with independent data is more difficult. ”Validation” pixels were identified visually

within the images prior to the classification and a cross check was made with local

authorities (O. Abellaoi, pers. comm.). This was the only possibile approach to

obtain historic information. This method is only possible due to the distinct differ-

ences between the desert and a palm oasis. With this approach only the very dense

vegetated areas were identified explaining the high validation accuracies.

c) 19.12.1999 – LANDSAT ETM+

RGB – 4/3/2 FCC

b) 09.02.1987 – LANDSAT TM5

RGB – 4/3/2 FCC

a)25.01.1974 – LANDSAT MSS

RGB – 4/2/1 FCC

f) 09.02.1987 - 19.12.1999e) 25.01.1974 – 09.02.1987d) 25.01.1974 – 19.12.1999

Positive change

Negative change

No change

Figure 7.11: Visualisation of change in the vegetation abundance (with more

than 30 % of spectral abundance), displayed in a FCC RGB - im-

age1/image2/zero composition; three example areas of change are

marked (explanation in the text)
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Table 7.3: Accuracy assessment for the three classification time steps

class ID 3251 3312 3322

Year 1974 1987 1999

Nr. of training pixels 74 39 111

Nr. of validation pixels 412 71 152

Overall accuracy 100 100 99.2

The validation results are shown in Table 7.3. In 1974 16.7 % of the observed area

was covered with the class 2342 (palm oasis), in 1987 11.6 % and in 1999, after two

successful agricultural years 18.8 % (Figure 7.11). During the drought in the 1980s

(Figure 2.2) production was only possible in areas with deep wells and diesel-pumps

(O. Abellaoi, pers. comm.). Extensions of the traditional palm oasis started when

working emigrants returned from Europe with enough money for diesel-pumps and

wells (marked area in Figure 7.11 e), f)). In the early 1970’s a sedentisarisation

process of nomads began due to population growth and social changes (Ait-Hamza,

1997). Former pasture land became farm land, e.g. the marked area in Figure 7.11

e). Especially in this area many new farms appear 1987. Figure 7.11 f) displays

a negative trend compared to 1999. This is, as discussions with local authorities

revealed, the result of the lowering ground-water level, mainly due to intensive

irrigation by the use of diesel-pumps. Hence many farms had to be given up again

after only a couple of years. For more detailed interpretations the abundance values

of the class 2342 (palm oasis) were used to indicate a density information of this

class. Figure 7.12 a) shows some representative abundance values for parts of a

dense oasis where the vegetation density was always high through the three time

steps.

Figure 7.12 b) shows some abundance values of the indicated area in Figure 7.11

e), where the above mentioned processes can be shown: recently founded farms

usually work with diesel-pumps on former pasture land, were no big palm trees

exist. The irrigation often results in salinisation effects and after a couple of years

this leads to the negative change when comparing 1987 to 1999 in areas of poor

drainage. The corresponding abundances to the area marked in Figure 7.11 f) are

displayed in Figure 7.12 c), where in 1974 no vegetation existed and during the

following 3 decades a large area of irrigation extension was created (Figure 7.13).
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1974 1987 1999 1974 1987 19991974 1987 1999a) b) c)

Figure 7.12: Representative vegetation abundance values of the three time steps of

investigation a), b), c) for the region marked in Figure 7.11 d), e), f)

Figure 7.13: Irrigation area (see Figure 7.11 c), f)) near the town of Zagora (Photo:

M. Schmidt, 2000 - view direction: North/East)

The transfer of this method to the sparsely vegetated rangelands needs further

research and potentially better validation data, especially if LANDSAT MSS data

are incorporated in a change detection study.

156



7.2 Methods and results

7.2.3.3 Case study of operational high resolution post classification change

detection in the Basin of Tazenakht

The aim of this study was to analyse the feasibility of a classification for a sub-

region (see chapter 2) at an historic time step without operator interference with

the same decision rule and abundance thresholds as described in chapter 6. A

LANDSAT5 TM scene obtained on April 5, 1987 was geometrically corrected as

discussed in subsection 5.2.1 with a pixel size of 28.5m and relative radiometric

normalised to the master scene from May 2, 2000. The regression coefficients of

the relative radiometrically normalisation were calculated with 5600 no-change test

pixel of the MAD algorithm and are shown in Table 7.4.

Table 7.4: Slope (a), intercept (c) and the correlations of the relative radiomentic

normalisation of LANDSAT TM5, April 1987 towards LANDSAT ETM+,

May 2000

channel a c correlation

1 0.759 20.106 0.979

2 1.387 22.877 0.984

3 1.225 35.356 0.986

4 0.791 18.999 0.989

5 0.603 16.813 0.988

6 0.685 59.471 0.796

7 0.822 18.184 0.988

The endmember spectra used in the classification of the May 2000 image as de-

scribed in subsection 6.2.1, were extracted and stored in a spectral library. The LSU

of the normalised scene from April 1987 used the spectra from the existing library

only. The identical decision rules and auxiliary data of the classification from the

ETM+ dataset, as described in subsection 6.2.1, were applied. Figure 7.14 shows a

flow chart of the proposed method.
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Figure 7.14: Flow chart of the post classification change detection approach (for

geometrically corrected images)

Figure 7.15 shows the fully automated classification result for the Basin of Tazenakht

of April 1987, based on LANDSAT TM5 data.
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Figure 7.15: Classification of the Basin of Tazenakht from LANDSAT TM5 data,

April 1987 (for comparison see Figure 6.12)

Figure 6.12 shows the classification result from May 2000 for comparison. Main

surface features remained generally within the 13 years, so that the same classifi-

cation scheme was used as in the classification of 2000 (see subsection 6.2.1). For

a good change detection analysis historic ground truth data would be necessary.
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Historic data on land use/land cover might be partly available from regional admin-

istration, potentially photos from tourists might also serve as source of information.

Regardless of the lack of a ”hard” validation an example of the two classifications

is shown in Figure 7.16 (center coordinates: 665025/3352118).

a)
2000 - ETM+
RGB – 431 FCC

c)
1987 – TM5
RGB – 431 FCC

b)
2000 - ETM+
classification

d)
1987 – TM5
classification

Figure 7.16: RGB FCC and classification example of the Basin of Tazenakht, from

May 2000 and April 1987

Visual interpretation shows a good representation of the surface coverage in both

time steps. As a threshold dependent discrete decision assigns pixels to either one or

another class, some changes may only be due to slight differences in the abundance

values. A description of land cover in terms of membership fractions might overcome

this situation. The representation of the surface in the classified images from both

time steps seem plausible although the LANDSAT ETM+ data were delivered as

160



7.2 Methods and results

recorded in 25m pixel resolution and the LANDSAT TM5 data at 28.5m. The

results nevertheless are comparable due to the rather homogeneous and expansed

surface features.

The class coverage of the region as a result of the two classifications is shown in

Table 7.5.

Table 7.5: Class coverages [%] of 1987 and 2000 of the Basin of Tazenakht, according

to the post classification

class id Name 1987 2000

unclassified 44.8488 44.4570

2111 rainfed agriculture 3.9105 5.4147

3312 desert crust 14.2844 13.9107

3322 rock 35.5239 32.4688

4131 Atriplex glauca 0.1002 0.1546

4133 Tamarix africana - Oleander 0.2012 0.2732

2352 mountaneous oasis 0.3063 0.7890

3251 Hammada scoparia - Artemisia steppes 0.7571 2.4541

1120 discontinuous urban fabric 0.0005 0.0189

1221 roads 0.0673 0.0591

An increase in all vegetation classes is evident from Table 7.5, which coincides with

a phase of drought during the 1980s and a more humid period during the 1990s.

The unclassified area changed due to different shade masks and differing amount of

supersaturated pixels in channel three (see chapter 6). It is obvious that the class

2111 (rainfed agriculture) increased towards 2000, corresponding to increases in land

use due to population growth. An example of the spatial occurrence of the class

2352 (mountainous oasis) is visible in Figure 7.16.

Assumptions for this method are, that the thresholds and auxiliary data do not

change and that changes between the scenes due to distortions as atmospheric or

sensor noise can be minimised by the relative radiometric normalisation (see chap-

ter 5).

Further studies (potentially) with improved ground truth would be helpful to

evaluate this method exactly. As the aim of this work was to establish a land cover

map with the best possible result, the decision was taken to map the area with the
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7 Change Detection: what to detect?

highest possible spatial resolution of 25m (see chapter 6). The Basin of Tazenakht

is relatively homogeneous at the resolutions used in each classification, rather than

being dominated by large discrete objects, allowing valid comparison between the

classifications made at different spatial resolutions. The aim was to outline the

possibilities of a post classification approach, which seem more than promising.

7.2.4 Multivirate Alternate Detection

The MAD method as change detection procedure was introduced in section 5.3 for

the identification of no-change pixels. The original application of the method is

to analyse areas of change (Nielsen et al., 1998). Since the MAD components are

approximately normal distributed about zero and uncorrelated threshold for change

or no change pixels can be set in terms of standard deviations about the mean

(Canty, 2002). Figure 7.17 b) shows an example of the first three MAD components

as calculated from co-registered images of May 2, 2000 and April 5, 1987 of the

sensors ETM+ and TM in 28.5m pixels size in RGB space. Two standard deviations

of each MAD component ±σMADi
i=1..7 about the mean were set to the mean value

(appearing as grey values) and were interpreted as areas of no change.

a) 05.04.1987   LANDSAT TM5 
RGB  432 FCC

c) 02.05.2000   LANDSAT ETM+ 
RGB  432 FCC

b) 1987 – 2000   MAD  components
RGB 124 FCC

Figure 7.17: MAD based changes April 1987 - May 2000 (the marked areas are

discussed in the text)
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7.2 Methods and results

Within the marked regions in Figure 7.17 a), b) and c) areas of change are in-

dicated. The red coloured pixels in Figure 7.17 b) can be interpreted as negative

vegetation change while the positive vegetation change is expressed in light blue

tones. If the changes within the image resulted solely from vegetation changes high

correlation of the change pixel with the original bands 3 and 4 would be expected

(Nielsen et al., 1998). The correlations of image 1 (May 2000) and image 2 (April

1987) with the MAD components are shown in Table 7.6. For the change pixels,

positive correlations with band 3 and higher correlations in band 7 and band 2 are

displayed. Since band 7 records radiation in the near thermal infrared, it can be

stated that those changes are not related to vegetation changes. These areas of

change indicated are more probably due to reflection changes of bare surfaces. The

difference in shaded pixels is also recorded as areas of change, which can potentially

be minimised with an illumination correction (see section 5.4).

Table 7.6: Correlation coefficients for the MADs of the change pixels and the image

DNs

ETM+ 2000 1 2 3 4 5 6 7

1 0.08 -0.36 0.39 -0.15 -0.07 0.00 0.76

2 0.09 -0.40 0.41 -0.17 -0.01 0.01 0.68

3 0.14 -0.47 0.40 -0.20 0.04 0.06 0.61

4 -0.14 -0.23 0.20 -0.01 -0.10 -0.06 0.68

5 0.12 -0.51 0.27 -0.11 0.04 0.02 0.66

6 0.05 -0.25 0.33 -0.08 -0.29 0.00 0.85

7 0.19 -0.55 0.27 -0.18 0.07 -0.01 0.61

TM5 1987 1 2 3 4 5 6 7

1 -0.33 0.46 -0.17 0.19 -0.01 -0.10 -0.21

2 -0.33 0.52 -0.18 0.13 0.11 -0.02 -0.08

3 -0.33 0.55 -0.10 0.23 0.15 -0.19 -0.06

4 0.17 0.35 -0.05 -0.01 0.29 0.10 -0.12

5 -0.32 0.56 0.04 -0.06 0.14 -0.06 -0.21

6 -0.30 0.25 -0.05 0.06 0.46 0.04 -0.37

7 -0.40 0.53 0.11 0.22 0.12 0.05 -0.19

The marked regions in Figure 7.17 b) and c) indicate the vegetation change areas
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7 Change Detection: what to detect?

in the river beds as dark blue as change in surface reflectivity, that might be due to

a rainfall event prior to the image acquisition. The dark blue areas in Figure 7.17 b)

are potentially the result of irrigation and salinisation processes. A terrain inspection

for this purpose is thus advised for a subsequent field trip.

The MAD transformation results in orthogonal MAD channels with information

on changes that can be analyzed and interpreted. Cluster analysis can be used for

the verification of areas of changes e.g. in the from of a supervised classification. A

quantification of this change requires a calibration of the MAD bands in each image

and would imply further ground data are required. The identification of historical

records is necessary in this case.

The advantage of the MAD is that it is fully automatic and parameter free. The

method is independent to linear changes, such as gain settings and reveals in com-

bination with an actual classification, areas and classes in which changes occurred.

An advantage of the method is that different categories of changes are sorted in the

MAD components e.g. anthropogenic and climatologically induced changes can be

identified as different categories in differing MAD components (Canty, 2002).

7.3 Discussion and conclusion

In some occasions visual interpretations and manual polygon derivations are the

most effective and precise tools in a change analysis, especially if the data quality

is not sufficient for a descent statistical analysis. This approach is reasonable if the

study area is well known, not too large and the objects of interest are easy to visually

distinguish. This is certainly the case with very high resolution data. Generally

special attention must be paid to the sensor and satellite geometry of very high

resolution data in order to map the desired objects and to interpret changes. If this

step is performed, these data may reveal great mapping accuracy potential.

The LSU with only four endmember spectra works independent of data calibration

so that the historic data of the LANDSAT MSS sensor could be used in a long

term change detection analysis. The extraction of a reliable vegetation coverage

is a very useful application of this method (subsection 6.2.2). For a more detailed

analysis and the application to a larger area the information content may not be high

enough. A possible way to overcome this might be a data fusion with the historic

CORONA ortho-images and co registered LANDSAT MSS data both dating from
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7.3 Discussion and conclusion

1972 e.g. with wavelet transformation Canty (2002), to a spatial resolution similar

to LANDSAT TM/ETM+ potentially. This might reveal more precise land cover

information than treating the two datasets separately.

The MAD method has the advantage of being completely automatic and user

independent. Areas of (potential) change are displayed and can be inspected on

the images. For mapping purposes, the follow-up step of assigning and interpreting

changes to (physical) surface elements and the identification of proper thresholds

is time consuming. This process requires considerable terrain knowledge. An as-

sumption of this approach is that the atmospheric conditions differ only in a linear

manner.

Due to the reliable relative normalisation, simple change detection methods, such

as image differencing or change vector analysis are potentially possible. Also the

analysis of time series becomes feasible and reliable.

An autonomous classification of historic data could be applied to a region where

no further ground spectra were required. This is a great advantage for the estab-

lishment of an operational change detection application with satellite data. This

method can potentially be applied for the remaining sub-regions. In some classes

the adjustment of threshold and decision rules would be necessary, especially if non

linear external image distortions exist, e.g. resulting from atmospheric influences.

For more problematic classes a classification scheme on a lower level of detail may

be more favorable. The quality of this approach needs to be validated, potentially in

a long term project, including repeated compilation of validation data. The poten-

tial errors in change detection quantification need careful and systematic attention

and should be the focus of further studies aiming to quantify changes. The over-

all conclusion remains that with this method a (semi) automatic post classification

change detection in real time, without a loss in classification detail, is feasible if the

classification rules and thresholds are implemented.
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8 Biophysical analysis and land use

derivation

”After all it is land cover that can be sensed remotely, not land use,

which can only be inferred by the interpreter.”

Hung and Ridd, 2002

8.1 Biophysical analysis

Vegetation indices are not a direct measure of biomass or net primary productivity,

but are correlated with variables such as the leaf area index (LAI) or plant biomass

(Todd et al., 1998). The LAI can be described as the projected leaf area per unit

ground surface area and is a key variable in biophysical models used to describe

parameters, such as land surface photosynthesis, transpiration, carbon absorption

and energy balance (Baret and Guyot, 1991; Bonan, 1995; Chen and Josef, 1996;

Jensen, 2000). Satellite remote sensing offers e.g. by the formulation of a VI LAI

relationship, the possibility of deriving LAI values for large areas. Although land

surface observations by satellite data become more and more routine the derivation

of biophysical parameters, such as the LAI, is still in its infancy (Qi et al., 2000;

Gilabert et al., 2000).

Green leaves are selective absorbers of radiation and, in comparison with non-

vegetated areas, absorb more visible and less near infrared radiation (Chen and Josef,

1996). Reflectance in red and near infrared wavelengths have been used to formulate

VIs (see section 3.2). Numerous studies to relate VIs to LAI have been performed

with differing focus (Baret and Guyot, 1991; Bonan, 1995; Asner, 1998; Asner et al.,

2000). For example Chen and Josef (1996) used high resolution LANDSAT data

to derive LAI in Conifer forests, Turner et al. (1999) used the same sensor for LAI

estimation studies in three different climatic zones. Diaz and Blackburn (2003)

discuss the influence of background influenced VIs on the calculation of LAI in
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8.1 Biophysical analysis

Mangrove areas. In other studies results from spectral unmixing are related to

LAI values. Gilabert et al. (2000) postulates that vegetation abundances from LSU

outputs in the form of vegetation fraction maps should not be the final output,

but rather ecological variables as vegetation cover or LAI should be generated. For

example Asner et al. (2000) proposed non linear mixture models to account for

the complex multiple scattering of plant canopies. Gilabert et al. (2000) state that

unmixing canopy and soil spectra tend more to a linear mixture and that leaf spectra

within a canopy are to be modelled as behaving in a non-linear manner.

In this study, multispectral very high resolution data (IKONOS-2) were used to

map individual trees and to derive LAI values per individual tree. The results, on

a scale on which objects can be directly assessed, were transferred to LANDSAT

ETM+ data with which a linear unmixing was performed to account for the objects

sub-pixel size. With very high resolution data an analysis based on single objects

could be performed, while with the coarser resolution data analysis is only possible

on plant associations. Neither applications relating LAI to very high resolution

satellite data nor the fusion of this outcome to high resolution satellite data have

been described in the scientific literature, making this a new approach.

8.1.1 Leaf area index derivation from IKONOS-2 data

Field measured LAI values from a hand-held CID digital plant canopy imager (CI-

110) device were used to identify a relationship between NDVI values derived from

the IKONOS-2 data. This approach was chosen, because the area of investigation

comprises relatively uniform soil materials (mostly clay and sand) and the object

size is in the order of a pixel (4m × 4m) or higher. The trees are located on hills of

varying size consisting of a mixture of sand, clay and nutrients (see subsection 7.2.3).

To reduce LAI measurement errors five measurements of each tamarisk hill were per-

formed: north, west, south, east facing and one in the center. In five representative

test plots (see Figure 6.13) 32 LAI measurements (each as a mean of 5 single mea-

surements) were used for a regression of the mean NDVI values of the corresponding

tamarisk polygon. The NDVI was calculated with IKONOS-2 data calibrated to at-

sensor reflectances (see subsection 6.2.2). A logarithmic regression resulted in a best

fit with correlation coefficient r2 = 0.78 (see Figure 8.1). Analysis of e.g. Chen and

Josef (1996); Turner et al. (1999) with LANDSAT data described the relationship

between the LAI and NDVI similarly with a logarithmic behavior.
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8 Biophysical analysis and land use derivation

y = 0.1273 * Ln(x) + 0.3095
r2 = 0.7828
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Figure 8.1: Regression between field measured LAI and NDVI values derived from

IKONOS-2 data
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Figure 8.2: LAI values as derived from IKONOS-2 data in the area of Plot 3 (in

blue). The piste is displayed in brown.
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8.1 Biophysical analysis

Gilabert et al. (2000) describe that in an LAI and NDVI relation the LAI becomes

almost constant at values between 3 and 4. They explain this is due to the satu-

ration of NDVI at high NDVI values (see also Jensen, 2000, for furter discussion).

This general behavior is also visible in Figure 8.1, but with the maximum recorded

LAI value 2.66 a saturation level was not faced. The functional LAI-NDVI relation-

ship was transferred to tamarisk trees as classified in subsection 6.2.2 by applying

Equation 8.1.

LAI = e
NDV I−0.3095

0.1273 (8.1)

The LAI density information is graphically shown in the area around Plot 3 in

Figure 8.2.

8.1.2 Interpretations of the LAI density information

One aim of this study was to investigate if human induced forcing of the natural

ecosystem contributed to a decrease in the forest density, e.g. by extracting firewood.

In subsection 7.2.3 it was shown that the total number of trees was not significantly

reduced. It was hypothesised that the LAI, as a density measure of the tamarisk

trees, would be related to the distance to the town M’hamid and the distance to the

piste (indicators for potential human interference)(pers. comm. K. Goldnick, GTZ

Zagora). Along the piste, people have easy access to the forest. Figure 8.3 shows

two common examples of human influence in the area: in a) the vegetation cover

was removed almost completely so that sand became mobile while in b) only the big

stems are cut but the remaining smaller branches left so that the sand is still fixed.

a) b)

Figure 8.3: Example of disturbed tamarisk trees, (Photos: B. Ostwald, C. Lauber,

2002)
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8 Biophysical analysis and land use derivation

Figure 8.2 generally confirms the speculation, that the density of the tamarisk

trees is dependent on the distance from the pistes. Another explanation is that in

the recent years more and more tourists drive through this remote area, which is

a challenging route for 4 wheel drivers due to the high amount of sand, collecting

firewood for their camp-fires. In order to assess the degree of human interference

a description of this parameter was categorized by a fuzzy description in 5 groups:

very high, high, medium, low and very low.

Changes in the vegetation coverage (as described in Table 7.2) and the mean LAI

value as an indicator of the vegetation density within the five test plots are shown

in Table 8.1.

Table 8.1: Land cover changes (as described in Table 7.2) and LAI values mapped

with CORONA KH4B (1972) and IKONOS-2 (2001) data in five repre-

sentative test plots

Plot year Nr. of coverage cover change Mean Human

trees [%] [%] LAI interference

1/2 2001 31 0.087 -0.83 0.25 high

1972 33 0.088

3 2001 60 0.086 -8.70 0.29 very high

1972 61 0.094

4 2001 79 0.041 -4.54 0.32 medium

1972 81 0.043

5 2001 48 0.039 98.82 0.73 very low

1972 43 0.020

The tamarisk coverage in the five representative test plots, analysed in subsec-

tion 7.2.3, resulted in a minor change in the coverage within Plot 1 and 2, a coverage

change of -8.7% in Plot 3, a decrease of -4.5 % in Plot 4 and a very high increase in

Plot 5 (see Table 8.1).

In Plots 1 and 2 a high human impact is recorded and coincides with low mean

LAI values. The impact in Plot 3 is more tremendous and rigorous as the total

coverage also decreased between 1972 and 2001. The description of degree of human

interference by comparing the mean LAI values within the test plots coincides, so

that the low mean LAI values can at least be partly explained by wood extraction.
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8.1 Biophysical analysis

The upper piste is only a couple of years old (pers. comm. K. Goldnick , GTZ,

Zagora; Lahbib Naamani, Hotel Sahara, M’hamid) which might explain why the

mean LAI is (still) relatively high. Plot 5 has no direct access by a piste. The

doubling of the tamarisk coverage with almost no visible human interference on the

tamarisks observed supports the conclusion that the human impact is responsible

for the decrease in the areas closer to human influenced areas.

To analyse the relationship between the distance to the piste and the density of the

LAI values, the LAI values of all tamarisks in the mapped area were correlated with

the distance to a piste. The dry river bed of the Dra was in this case also interpreted

as an access to the tamarisks, as it is a route frequently used by nomads. Correlations

with the tamarisk distance to the pistes and the corresponding LAI values were

analysed and were low (0.135). In a second correlation the new upper piste was

neglected and the correlation increased to 0.337. Consequently the hypothesis that

the distance to the piste is dependent on the degree of human influence can not be

directly verified with this method. The absolute value of this statistic is in this case

not a fair indicator, therefore that the tamarisks are inhomogeneously distributed

in the terrain due to natural factors. So a relationship between these two variables

exists which seems to be worth monitoring, in our opinion.

In order to display areas of dense and potentially undisturbed tamarisks the LAI

point data were spatially interpolated with an ordinary Kriging method (see Am-

strong, 1998) as implemented within ArcMap (ESRI, 2003). The interpolated LAI

values can be interpreted as proxy information and where they are large are most

likely areas with potentially less disturbed or undisturbed individuals. The graphic

representation is shown in Figure 8.4.

The tamarisk forest retains sand from the oasis. If this sand becomes mobile it

would endanger the agricultural areas within the oasis (see Figure 7.7) and would

force even more farmers to abandon their fields. Measurements on the tamarisk hills

were conducted to estimate the amount of sand that potentially can become mobile

if the complete tamarisk coverage were removed. Ground measured parameters of

height, length and width of 83 tamarisk hills served as a basis for a first estimation

of the total amount of sand that is fixed by the tamarisk hills within the study area.

The estimation is based on two assumptions: first that the shape of the hills can

be described by an ellipsoid and second, that the 83 measurements of the 5 test

plots are representative for the whole forest. The volume V of the tamarisk hills

was calculated as follows:
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V =
2

3
π × length

2
× width

2
× height

This resulted in a mean volume of 18m3 per tamarisk hill. A total of 23438

tamarisk polygons were calculated resulting in an estimation of the total amount of

about 420000m3 of sand fixed by tamarisks.

Figure 8.4: Interpolated LAI values derived from IKONOS-2 data, the values close

to 1 represent areas with potentially less disturber or undisturbed indi-

viduals (explanation see text)

It seems that changes in hydrology had a minor influence on the growth of the

tamarisk trees in the area. The major influence results from the land use of the local

inhabitants. Local people use the tamarisk forest not only for collecting firewood,

but also as grazing ground for camels and goats. The density of the single tamarisk

hills decreased due to this behaviour in the accessible regions. In remote or difficult

to access regions, the number of tamarisks increased, as in Plot 5. If only the big

stems are taken from the hills and the other branches remain, then at least the sand

is still fixed and the system remains stable.

8.1.3 Transfer of LAI measurements

Due to the large number of vegetation cover classes within the Dra catchment, an

intensive investigation was performed on only one class in a detailed study. The aim
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8.1 Biophysical analysis

was to transfer this locally derived relationship to the land cover classification on the

basis of high resolution data: LANDSAT ETM+. The vegetation abundance infor-

mation, as obtained from the LSU for the Dra valley, described in subsection 6.1.2,

was related to IKONOS-2 derived polygons using LAI values. To ensure that the

tamarisks were mapped by the abundance information of the LSU, tamarisk poly-

gons that are spatially of the same order of a LANDSAT ETM+ pixel (25m× 25m)

were chosen. Polygons with an area of larger than (24m × 24m =)576m2 were

selected and the LAI values were regressed with the abundance values from the

LANDSAT ETM+ data. Figure 8.5 shows the results of this analysis, with a corre-

lation coefficient of r2 = 0.60.

y = 0.0483Ln(x) + 0.1055
r2 = 0.5948
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Figure 8.5: Regression between field measured LAI and vegetation abundance values

from LSU with LANDSAT ETM+ data (May 2000)

The IKONOS-2 data, dating from November 23, 2001, were recorded in autumn,

while the LANDSAT data were recorded in May 2, 2000 at the beginning of the

hot and dry season. The comparison of the data from the two dates is feasible

due to the low seasonal variability of the evergreen Tamarix aphylla. The locally

derived relationship between the vegetation abundance and the LAI incorporates

uncertainties, but might serve as a first approximation of the LAI for the class

3264 (Tamarix aphylla) in the Dra valley. So that Equation 8.2 was applied to the

vegetation abundance (VA) values for class 3264:
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8 Biophysical analysis and land use derivation

LAI = e
V A−0.1055

0.0483 (8.2)

8.2 An integrated approach: the Basin of Fezuata

Remote sensing data and techniques can potentially assist with describing the physi-

cal properties of the earths surface and to group clusters of similar spectral response

to certain land cover classes (Richards and Jia, 1999). The term land use refers

to an interpretation of the thematic information. Within this section an example

is shown where multitemporal land cover information can, by the incorporation of

terrain knowledge, be transferred to land use information.

This section represents a summary of a collaboration with J. Werner from GTZ

Zagora (Schmidt and Werner, 2003).

Motivation for the study in the region of Fezuata

Changes in land use due to population pressure and changes in the socio-economic

situation of the population are characteristic for most developing countries. Since

pastoral land use was the traditional economic strategy in arid regions, change in

land use increases the potential for social conflict. These sensitive ecosystems are es-

pecially affected by climatic variations, desertification processes and land use trans-

formations. The complex structure and dependencies of the problems is outlined in

this section.

The basin of Fezouata is situated near the town of Zagora (see Figure 8.6) and can

be divided into two sub-units, in the areas Feija, west of the river Dra, and Tiguida

east of the river Dra. Besides this, the extensive mobile pastoralism on collective

land is the traditional form of land use in the areas outside of the palm oasis. The

arid pastoralism has been an ecological and economically stable form of land use

(Zainabi, 1989) over decades and centuries. Mayhew (1997) state, that ”[..] that

the pastoral nomadism, once thought to degrade the environment, may represent the

best use of desert areas.”. The herds of mobile pastoral animals consist mainly of

goats and dromedaries, and in some cases, sheep. The rare resource of freshwater is,

on the one hand taken by wells directly from the groundwater, or from surface river

water originating from the upstream dam near the town of Ouarzazate. The dam

water is released during short periods 4-6 times per year and is primarily used in

the palm oasis for agriculture. A complicated and historically developed network of
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water rights regulates the water distribution (for further reading see Pletsch (1971);

Hammoudi (1985); Popp (2000).

Figure 8.6: Overview of the Basin of Fezuata with a LANDSAT ETM+ RGB 432

FCC (October 2000)

During the 1970’s a sedentisarisation process of the mobile pastoralists in the

basin of Fezouata began. Due to technological improvements, in both bore well

drilling and diesel pump installation, areas outside of the historical groundwater

locations became attractive for agriculture and settlements. Socio-economic devel-

opments, governmental and administrative changes promoted this effect (Ormvao,

1981). Beside the rarity of land it was initially forbidden for the Berbers (in this case

the Ait Atta) to own land in the oasis (Zainabi, 1989). The oasis land was owned

and cultivated by families of arabic origin and former slaves (abrabic ”Haratin”) of

either autochthonous black population or brought by caravan trade with origins in

sub-Saharan Africa (Hammoudi, 1985). Historically the Berbers lived as nomads

with herds of goats, sheep and camels in the rangelands surrounding the river oasis,

including Fezouata. The process of change began when communal land, traditionally

used by mobile pastoral people, became, according to Islamic right, property of those

former nomads and other people who could afford to construct a well (Hammoudi,

1985; Zainabi, 1989). This sedentisarisation process and the resulting problems and

conflict potentials are outlined in the following.
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Approach

In this study multispectral satellite data of the LANDSAT program was used in

conjunction with data on household level and ground truth data. In order to analyse

the socio-economic changes at household level, 32 pastoralists and farmers were

chosen as case studies. In these households an evaluation of the present situation as

well as a problem analysis was realized. This contribution is addressed to display

the transformation of a mobile pastoral society to sedentary agricultural level and

its associated consequences.

LANDSAT ETM+ data WRS2 path/row 200/39 and 201/39 from October 18 and

October 25 in 2000 with a ground resolution of 28.5m×28.5m in seven spectral bands

were geometrically corrected (see subsection 5.2.1) and used for calculating an image

mosaic for October 2000 according to the methods described in subsubsection 5.3.1.2.

LANDSAT TM data from August 27, 1984 WRS2 202/39 and LANDSAT MSS

data from September 9, 1972 WRS1 216/39, covering the study region by one scene,

were used to assess multitemporal land cover information. The remote sensing

images were chosen in late summer to avoid confusion and interferences with annual

vegetation and agricultural cycles. Time invariant endmember spectra, according to

the method described in subsubsection 7.2.3.2, were identified for a LSU approach.

The land cover class 2341 (palm oasis) was derived by an vegetation abundance

threshold of 30% (see subsubsection 7.2.3.2), so that three binary classifications

could be generated, independent of interscene radiometric or atmospheric variations.

Methods and tools for data collection on household level

In order to gain insight into the situation of the recently founded farms as well as the

remaining mobile pastoralists, an analysis on household level was undertaken in the

selected area of the basin of Fezouata. The aim of the analysis was to understand

the reasons for the transition from mobile animal husbandry towards a sedentary

agricultural production in the past three decades and the resulting problems of the

changes in land use. Furthermore the potential for conflicts deriving from the change,

as well as already existing conflicts for reasons of natural resources scarcity have

been assessed. For this purpose 16 nomadic and 16 sedentary households installed

on communal pastoral land in the basin of Fezouata were selected and visited in 1998

and 2002. The households were chosen with the objective to cover as far as possible

the levels of transition from mobile pastoral land use towards sedentary agricultural

production. The aim was not to achieve an analysis on a statistical basis but to study
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several households thoroughly as case studies. Different tools of rapid rural appraisal

and participatory rural appraisal (Chambers, 1992, 1994) were used to collect data in

the mobile and sedentary households. Semi-structured interviews with the different

household members as well as other key persons, focussed on prevailing income

sources, and changes in land and water resource use. Defining problems and problem

awareness formed the main part of the analysis at the household level. Furthermore,

observations during several visits as well as transects in the selected area, together

with the involved households completed the analysis and enabled a cross-checking

of the collected information. For the evaluation of the collected data, the data from

each household was organised and thematically summarised. An overall impression

of the situation of each household was written and the conditions of the different

households compared.

Results

Validation results from the binary classifications from three different time steps are

shown in Table 8.2 (see for a further discussion of the method and the ground truth

sampling subsubsection 7.2.3.2).

Table 8.2: Validation of the binary classification

Image 2000 1984 1972

Overall accuracy [%] 99.5 99.4 98.8

Number of test pixels 206 182 164

In 1972 land use in the Basin of Fezuata was characterised by areas of the classical

palm oasis and extensively used rangelands, which could be distinguished with the

binary classification of the LANDSAT MSS image dating from 1972. In combination

with the multi-temporal binary classification, at time steps of 1984 and 2000, areas as

extensions of the traditional palm oasis, or as new farms, were identified. Figure 8.7

Shows the classification results and the temporal information.

The colours in the Figure Figure 8.7 represent the different classifications in an

additive colour scheme: for the class palm oasis, in blue the time step of 1972, green

1984 and red the year 2000 and their mixtures (see Table 8.3).
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Figure 8.7: Visualisation of three binary classifications for the Basin of Fezuata in

an additive colour scheme (see Table 8.3)

Table 8.3: Colour representation in the additive colour scheme

colour 2000 1984 1972

red ×
green ×
blue ×
cyan × ×

magenta × ×
yellow × ×
white × × ×

As an area with permanent vegetation, the palm oasis appears in white. Changes

in the fringes of the oasis are potentially due to variations in water availability for

agriculture, and the extensions of the palm oases and abandoned fields. Large parts

of the traditional palm oasis remain stable over the three decades of investigation.

The magenta tones represent areas with less agricultural production in 1984 due to

a dry period (see Figure 2.2).

Changes in the rangeland areas are displayed in the sense that in the regions of

Feija and Tiguida spots with high vegetation abundance occurred in 1984 and 2000.
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These areas were classified in a mono-temporal classification as palm oasis (2342)

and are totally absent in 1972. In 1984 these spots appear and increase significantly

by the year 2000.

Ground observations revealed that these areas represent new founded farms within

the former rangelands. The overall changes can be expressed in the absolute num-

bers, that in 1972 31.16 km2 of the observed area (1483.67 km2) were covered by the

class palm oasis/agriculture, 1984 32.36km2 and in 2000 39.94km2. Population data

for this region shows a parallel evolution, where in 1972 approximately 20 people

lived in Fejia, the population increased to 1187 people in 1997 (Proludra, 1998).

This population development is far above the regional and national average popula-

tion increase. Data from Proludra (1998) report new farm foundations as 78 in the

time interval 1971 to 1985 and 169 new farms by 1997 in Feija. A similar trend, but

with a later initiation phase, is described for Tiguida.

The trend to found new farms and settlements on the rangelands can be explained

by several interconnected processes. The interviews at the household level revealed

that mostly former mobile pastoral people became sedentary and founded farms

on the collective rangelands. Reasons for this process are manifold. One reason

can be seen in the lack of a functioning pastoral land management in combination

with the disappearance of the nomadic pastoral management tradition (see also

Bencherifa, 1990). Because of the lack of grazing management, pastoralists from

regions up to 1000km away bring their herds, after a rainfall, to the study area

by vehicle (K. Goldnick, GTZ, Zagora, pers. comm.). This leads to an increased

pressure on the collective land and thus reduced forage availability. As a result

of the overgrazing of the collective land, a large part of the mobile pastoralists in

the present situation cannot ensure the survival of their household by the income

of mobile animal production and are forced to find other income sources. The

interviews revealed that farming seems to be the only possible alternative. Often the

poorer pastoralists can not afford vehicular transport of their herd to other distant

regions with rainfall events. These people are usually the first pastoralists to settle

on the collective land. Severe droughts during the last two decades accelerated

this sedentisarisation process. The settlement itself is managed by the different

ethnic groups: it is preserved to the respective ethnic group claiming their collective

land by habitual rights (Zainabi, 1989). Lack of acceptance and consideration of

mobile pastoralists in the national Moroccan legislation and rural policies as well

as on international donor level in the past additionally impeded the mobility of the
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pastoralists (Thomas and Middleton, 1994).

In cases of farms with enough irrigation water, farming in droughts is possible

and high prices for the cultivated cash crop henna in the last five years guaranteed

a more profitable income source than pastoralism. However, sedentisarisation does

not solve the problem of overgrazing of the collective land. Indeed it aggravates

the situation. The fact that mobile pastoralists settle on farms on the collective

land does not mean that they will abandon their herds. Generally the herds will

graze in the neighbourhood of the newly installed farm. This means, because of the

reduced mobility, that the pasture land around the farms is heavily overgrazed, as

ground truth data revealed. The farm land of the former collective pastoral land is

not private land, but is rather cultivated according to the Islamic law referred to as

called ”melk”. This means that the person cultivating the land also owns the land,

with the result that large surfaces are ploughed in order to mark off the property.

In most cases however, only small parts of the ploughed surface can be cultivated

afterwards because of limited irrigation water availability. Large surfaces are thus

left without any vegetation and are prone to erosion, especially during the frequently

occurring sand storms. Furthermore the farmers explained that they use the practice

of ploughing several meters around the cultivated fields with the aim that sand will

be stopped by the rough soil of the ploughed surface and thus will not reach the

cultivated crops (see Figure 8.8 a)). This practice however, further increases wind

erosion because the ploughed surfaces, meant to protect the cultivated crops, are

left without any vegetation either.

a) b)

Figure 8.8: Examples of a cultivated a) and saline field b) (Photos, J. Werner, 2001

and M. Schmidt 2000)
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Farmers reported that the scarcity of irrigation water also had the effect that

after some years, several farmers had to deepen their wells. In years of drought,

cultivation in some cases is no longer possible and farms have had to be abandoned

(see also Schmidt et al., 2003b). The farms are installed on the most fertile parts of

the collective pasture land, which means those closest to the groundwater aquifer.

These surfaces, which are also preferred grazing grounds, are thus no longer available

for the remaining mobile pastoralists. From this scenario it becomes obvious that

conflicts between farmers and pastoralists are frequent and sometimes even violent

(Thomas and Middleton, 1994). In most cases, people prefer the nomadic way of

life, even if this does imply a lower standard of living. Generally it is only the

economic necessity that has forced them to give up mobile pastoralism and to do

sedentary farming. The described vicious circle of problems caused by overgrazing

and farming in this area is graphically shown in Figure 8.9.

Grazing grounds are becoming 
heavily overgrazed

Remaining pastoralists cannot 
find enough fodder for their 

herds

Fertile grazing grounds are 
no longer available for 
remaining pastoralists

Pastoralists see the only 
alternative income source in 

farming

Pastoralists have to search for 
other income sources

Pastoralists cannot survive on 
their income of pastoralism

New farms are installed on 
collective pastoral land

Figure 8.9: Vicious circle of nomadic people in the Basin of Fezuata

The heavily increased construction of wells on the pastoral land further leads to

water use discrepancies with the needs of the nearest town of Zagora with 40,000

inhabitants, where freshwater is obtained by the same aquifer, as used by farmers.
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In periods of drought water limitations restrictions are imposed on the residents

of Zagora, while farming still continues. A problem for the farmers on the new

settlements is the high evaporation rate, as no trees prevent the plants from the

direct sunshine as is common in the traditional oasis. This results in a higher water

consumption which is often accompanied with problems of salinisation.

Intensity of the agriculture production as an indicator of water consumption and

vitality of the farms can be estimated from the vegetation abundance values of the

classification.

Figure 8.10 shows, that fields in Feija are larger and also more intensively used

for production as displayed in the more intense colours.

a) b)

Figure 8.10: Example of field size and intensity of land use from Fejia a) and Tiguida

b). Visualised through vegetation abundance information from the LSU

Similar observations were made in the field; that in Tiguida the amount of avail-

able groundwater is more limited and the production is lower. Tiguida was cultivated

in the mid 1980s and after a couple of years the circle of problems as visualized in

Figure 8.9 arose (see also Figure 8.8 b)) and several farms had to be given up or

are used to a lesser extent. Production is only possible on small patches due to

irrigation induced salinisation and lack of groundwater.

8.3 Discussion and Conclusions

The LAI and NDVI relationship reveals that very high resolution data are generally

suitable for the derivation of biophysical parameters, such as the LAI. One advan-

tage of very high resolution data is that the spatial resolution is in the order of trees

and their canopy so that this data in studies on forested areas potentially delivers

favorable results. Still the amount of field work for the derivation of the LAI, due
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to the ground measurements is very high and as every measurement to a certain

degree subjective. The incorporation of other spectral channels or eco-physical pa-

rameters might contribute to model the LAI in a less labour intensive way. The scale

gap between LANDSAT and IKONOS data was bridged in the formulation of the

relationship between IKONOS derived LAI values and the vegetation abundance

estimation of the LSU with LANDSAT ETM+ data, so that the locally derived

relationship could be transferred to the Dra catchment. Further analysis of other

plant associations with the importance of the eco-system is needed to complete the

description of LAI values or other biophysical parameters such as biomass or tran-

spiration of the land cover in the Dra catchment. This approach is planned to follow

in the second phase of the IMPETUS project, in collaboration with the Institute of

Agricultural Chemistry at the University of Bonn.

The map product of an actual assessment of the tamarisk density and coverage

in combination with a change detection application covering three decades with

historic satellite data was achieved. The original idea of deriving a high resolution

DEM with CORONA data and estimating the changes in the amount of sand had

to be withdrawn to difficulties in the identification of suitable GCPs in the historic

CORONA data in this sand dune-dominated area.

A hydrologic map and future coverage with satellite data, preferably with the

IKONOS-2 sensor, could contribute to an improved and more reliable interpretation

of the human impact in the study region.

The complexity of problems in the area, especially in ethnic context, can not

and was not meant to be discussed completely in this contribution, but the gen-

eral problems that result in the ’circle of poverty’ are obvious. Results from the

Basin of Fezuata demonstrate that in the long term the inhabitants are suffering

from uncontrolled changes in land use. People are forced to strategies of living and

survival that are logical in their situation and, in the short term, are solutions for

their problems. In the long run, the displayed developments result in problems such

that it can be stated that the limited resources are not used in a sustainable way.

This situation might be improved by a management system, which could possibly

reduce the degradation and desertification processes that have already started and

might also reduce the social conflicts.

Census data and socioeconomic analysis are important sources of information to

understand, describe and potentially model past and future changes within a land-

scape. In combination with historical remote sensing data certain land cover/land
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use changes can be described, mapped and quantified. Developments, as described

in the example of the Basin of Fezuata, in combination with further environmental

information of the same time span, such as changes the ground water table (identi-

fied in the archives of the Service Hydrolique, Ouarzazarte) or the number of cattle,

sheep, camels etc. (identified in the archives of the ORMVARO, Ouarzazate) con-

tribute a valuable information source for further research, establishing environmental

models and management plans.
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and Outlook

”If we knew what it was we were doing, it would not be called research,

would it?”

A. Einstein, 1879-1955

The overall objective of this study was to produce an actual and detailed land

cover map of the Dra catchment. This map serves to improve input parameters

for meteorological models and is of fundamental importance for environmental and

resource management. Vegetation has long been recognised as a major component of

water balance in an ecosystem (Troll, 1939; Hill, 2000; Steffen and Tyson, 2001), so

the focus within this classification approach was on the actual vegetation coverage,

with the aim of describing the dominant vegetation associations, their bio-physical

characteristics, and changes over time. Within this study, an excursion into digital

photogrammetry led to the generation of valuable and accurate base material for

environmental studies. Generally it can be stated that all activities and applications

within this work focused finally on obtaining the mapped products at the highest

possible level of accuracy. The identification of methods to achieve this resulted

in the application of several approaches and methods. The results of these can be

concluded as follows:

9.1 Conclusions

DEMs and orthophotos could be generated from historic CORONA data.

Within a test area with high image contrast a DEM could be generated from scanned

CORONA KH4B archive data with 1.8m ground resolution. Accuracy assessment of

the DEM, by comparison with 146 check points, resulted in a mean height difference

of ∆z = 3.6m with a standard deviation of σ = 13.2m. The photogrammetric
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restitution is highly dependent on the quality of GCPs, so that better quality GCPs

in this region will increase the accuracy of the DEM. In addition an ortho-photomap,

as a distortion free document, could be generated on scale of 1:10000 with overlayed

contour lines. The methodology due to modern photogrammetry can be applied to

all kinds of non metric stereo images, including terrestrial pictures.

Image distortions of very high resolution data in a rugged terrain could

be overcome as prerequisite for change detection. Very high resolution satel-

lites such as IKONOS-2 and Quickbird-2 record images in an oblique mode. If the

data are to be used for further mapping purposes or GIS analysis then the resulting

object displacements must be accounted for. An applied solution was image co-

registration to an orthographic map product, derived from CORONA data, which

opens the opportunity for change detection over more than three decades with very

high resolution satellite data.

Large area DEM and ortho-photomaps of ASTER data were generated.

The launching of the TERRA satellite in 1999 with the on-board sensor ASTER

opened new opportunities for remote sensing. A DEM and ortho-photomap of three

adjacent ASTER images could be generated and mosaiced, for an area of 7926km2,

roughly one forth of the project area. The DEM accuracy in the Basin of Ouarzazate

was evaluated with 1439 validation points as obtained in a small area, gridded to

5m. The mean height difference to the DEM is ∆z = 1.6m with σ = 11.9m. The

ortho-photomaps were used to co-register LANDSAT data in a region where the

topographic maps did not inherit sufficient accuracy or detail.

A new, reliable, stable, parameter free, fast and sensor independent

relative radiometric normalisation technique was presented and applied.

The MAD based automatic relative radiometric normalisation was compared with a

PIF approach and was preferred due to the automatic applicability and the slightly

better results. The normalisation algorithm was improved, as described in (Canty

et al., 2003) by an orthogonal regression as a result of a collaboration with M. Canty,

KFA, Jülich (Germany) and A.A. Nielson, School of Mathematics, Copenhagen

(Denmark).

A radiometrically correct LANDSAT image mosaic of the catchment

was produced. Five LANDSAT ETM+ scenes acquired during May 2000 were

calibrated to the center image and mosaciced to one data coverage of LANDSAT

data. Further classifications were generated on the image mosaic.

NOAA/AVHRR data, processed with the software package Terascan,
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in the region of the Dra catchment and the given data coverage are not

suitable for an analysis of the vegetation dynamics. A full automatic process-

ing chain from raw NOAA/AVHRR data was implemented, including the storage

of the meta information automatically in a relational database. The geometric er-

rors due to the navigation and coastline matching algorithm within the software

package resulted in geolocation errors about 2.5 pixels. Consequently the intended

sub-pixel analysis of the vegetation dynamics was not achievable with this dataset.

Improved geometric correction of NOAA/AHVRR are thus necessary, or else the

use of satellite data with more precise geometric information, such as MODIS is

recommended.

Fieldwork was performed by which ground truth data were obtained

and organised in GIS. Fieldwork is essential in remote sensing, not only to val-

idate the mapped products, but also to understand the environmental interplay of

regulation factors. Due to intensive field campaigns ecological interdependence and

potential land use/land cover classes can be identified. The obtained ground truth

data and methods used were documented and stored in a GIS as a data inventory

for further studies.

A hierarchical regional adjusted land cover classification scheme in the

defined operational scale was generated. On the basis of field observations, in

accordance with the IMPETUS project requirements, the land cover classes to be

mapped were identified. A classification scheme for the heterogeneous catchment was

set up on the basis of CORINE landcover, in which large parts of Morocco are already

mapped. Adaptations of this classification scheme, mainly the introduction of a

forth level of detail, permit the mapping on the scale of interest for the IMPETUS

project. The hierarchical structure enables the fusion or reduction to a lower level

to meet the standards of CORINE. The classification scheme was established in

collaboration with M. Finckh and M. Staudinger, Institute of Botany, University

Hamburg (Germany).

The image mosaic of the Dra catchment was segmented in six PMUs.

Due to the high heterogeneity within the Dra catchment the catchment was divided

into six sub-regions, according to similar geologic and ecologic constraints followed

by the concept of PMU mapping (Daels and Antrop, 1977).

LSU and SAM were applied to transform spectral information into sub-

pixel membership descriptions on the basis of fuzzy sets. Two supervised

sub-pixel classifiers were applied to decompose the multispectral information into
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membership grades of pure spectra (endmembers). The membership grades were

interpreted as fuzzy sets which are more readily interpretable in a physical sense.

While the approach works in (semi-) arid environments, applications have also been

found in urban areas using a similar approach with a four endmember LSU model

of LANDSSAT ETM+ data in the metropolitan area of Columbus, USA (Wu and

Murray, 2003).

Fuzzy variables from image decomposition were used as input variables

to implement knowledge based decision rules in an expert classification

system. A combined classification approach incorporating auxiliary information in

the sense of a hybrid classifier and knowledge based decision rules of fuzzy sets were

integrated in an expert classification system. The expert system was implemented

in IDL program codes within ENVI. The decision rules are adapted to the Dra

catchment and the classification scheme.

A land cover map of the Dra catchment based on LANDSAT ETM+

data from May 2000 could be generated. The aim to classify the catchment as

whole on the basis of one classification scheme using data obtained from the same

satellite at a similar time with reported errors could be fulfilled. Before this map

was created, only patches of the catchment were classified, and with varying aims

and approaches. The overall classification result from the six sub-catchments of the

validated classes is shown in Table 9.1.

Table 9.1: Classification accuracies of the six sub-regions of the Dra catchment

Overall accuracy [%] Kappa coefficient Nr. of classes Size [km2]
High Atlas 92.4 0.898 6 4642.5
Basin of Ouarzazate 96.8 0.958 9 2651.1
Crystallin Anti Atlas 89.9 0.879 8 7213.8
Sedimentary Anti Atlas 89.2 0.870 6 3706.1
Basin of Tazenakht 96.5 0.951 8 919.7
Dra valley 82.2 0.795 18 9286.0

The classification accuracy in the Dra valley was improved by merging two classes

contain Acacia raddiana (3261 and 3263) and by removing errors due to false ground

truth data collection to 93.1% with Kappa coefficient of 0.918.

Classification results from different image resolutions could be merged.

Classification results from IKONOS-2 mapping in 4m pixel size could be merged to

the validation data-set of the LANDSAT ETM+ land cover classification.

188



9.1 Conclusions

Land cover data for the input of a regional meteorological model could

be supplied. The achieved land cover information was supplied for updating the

land cover information as input for the non-hydrostatic mesoscale model FOOT3DK

(Flow Over Orographically structured Terrain, 3 Dimensional, Cologne Version) for

the simulation of evapotranspiration for the Dra valley. Results of this collaboration

with H. Hübner, University Cologne (Germany) were presented at the EGS-AGU-

EUG Joint Assembly, April 2003 (Hübener et al., 2003).

The bio-physical parameter LAI could be derived from IKONOS-2 data

and validated with ground truth measurements. LAI measurements during

an intensive field measurement campaign were regressed with NDVI values of an

IKONOS-2 image of November 2001 for the class 3264 (Tamarix aphylla). The log-

arithmic regression resulted in a LAI NDVI relationship with a correlation coefficient

of r2 = 0.78 .

Very high resolution LAI values were used to transfer the results to high

resolution abundance information for the Dra catchment. LAI values of

IKONOS-2 derived polygons with an area of the order of a LANDSAT ETM+ pixel

or larger were regressed with the abundance values of the LANDSAT ETM+ LSU

for the class 3264 (Tamarix aphylla). The correlation coefficient of this regression is

r2 = 0.60. This was used to derive LAI values for the class 3264 (Tamarix aphylla)

for the whole catchment.

A (semi)- automated post classification change detection was applied to

the Basin of Tazenakht without loss of detail. Change detection techniques

were discussed to identify, purpose dependent, an appropriate change detection tech-

nique. For a post classification change detection of LANDSAT TM and ETM+ data

the expert classifier with the same decision rules and thresholds was applied to a

relative radiometrically normalised image from April, 1987. Endmembers were used

from a spectral library containing the endmembers from the classification of the

image of May, 2000.

A time series of (inter-) calibrated high resolution satellite data could

be generated and analysed. A NDVI time series of almost two decades of LAND-

SAT data could be generated and trends in the NDVI trajectory could be interpreted

and related to ground descriptions.

Interpretation of land use information by the integration of a multi-

sensoral time series of more than three decades in high resolution was

performed. The LSU analysis with four time invariant endmembers of LANDSAT
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data, recorded by the three different sensors MSS, TM and ETM+ permitted the

description of changes in land-cover pattern during three decades. The transition

from pastoral land use to agricultural irrigation could be mapped, interpreted and

explained due to collaborative work with J. Werner, GTZ Zagora (Morocco) at the

household level (Schmidt and Werner, 2003).

9.2 Outlook and recommendations for further

research

In 2000, as the IMPETUS projet started, LANDSAT ETM+ and NOAA/AVHRR

data were the available data for land cover mapping and the analysis of vegetation

dynamics. During the first IMPETUS phase MODIS and ASTER data became

available. Data from the two sensors are interesting for comparison studies and

potentially improve some of the shown results. MODIS with 250m pixel size and

the highly accurate geometric correction of about 50m at nadir (Wolfe et al., 2002)

will especially enable or improve the desired study of vegetation dynamics.

ASTER, with 14 spectral bands, offers impressive opportunities for image classi-

fication and surface differentiation. The fusion of the higher spatial resolution data

to the 15m resolution with an appropriate image fusion technique might be chal-

lenging task. For assessing the process and the dynamics of soil salinisation, which

could only discussed marginally in this work, ASTER seems to be a very useful

data source as outlined by Goossens et al. (2002b). The monitoring of this process

with radar data, potentially in combination with optical data might be an approach

worth considering. The understanding and potential modelling or forecasting of soil

salinity is of crucial importance for agricultural production as this process is not

reversible.

The generation of a DEM on the basis of ASTER data for the whole Dra catchment

is approved for the second phase of the IMPETUS project, with reference to results of

the present study. The improvement of terrain or illumination correction algorithms

for an operational data processing of high resolution data and the integration and

mapping of the masked, shades areas, are possible. The DEM will also enable

differentiation of more vegetation classes, especially in the mountainous areas as

more dedicated decision rules including geo-mophometric relief parameters can be

formulated. Further field work for the class identification and ground truth data
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will be necessary for this purpose.

An LAI vegetation abundance relation was derived for one important vegetation

class in the catchment. Further ground measurement on other vegetation asso-

ciations will contribute to the formulation of other relationships. Plant-physical

parameters were measured during the first IMPETUS phase within the sub-projet

B3 by agro-engineers (IMPETUS, 2001). The field and laboratory data can, in the

second IMPETUS phase, be extrapolated for bio-physical parameterisation on the

basis of the image classification and the vegetation abundance information.

With the launch of IKONOS-2 and TERRA in 1999, remote sensing seemed to

enter a new phase after a decade of stagnation. New sensors open new opportunities

but also bring new problems. With increasing resolution, the potential geometric

errors due to the image recording increase, so that slight changes in the satellite view

geometry result in image distortions that are no longer negligible compared with data

with larger pixels. This increases the demand for the remote sensing community

to understand and apply methods of modern photogrammetry for the data pre-

processing as was, for example, identified at the conference of the International

Society for Photogrammetry and Remote Sensing (ISPRS) 2001 in Hannover with

the topic: ”High resolution mapping from space”. In our opinion it is especially in

this field where the two subjects of remote sensing and photogrammetry overlap that

there exists a great demand for further research. So is, for example with the shuttle

radar topograph mission (SRTM) in 2000 the demand for the generation of DEMs

not satisfied. Most of the modern very high resolution data, such as Quickbird,

IKONOS or SPOT5 have the capability to record images stereoscopically, with pixel

resolution that obviously promises higher DEM resolution than the SRTM mission

can provide. Optical data have the additional advantage of generating orthophotos

as cartographic products. With the integration of co-registering or image matching

algorithms for the multispectral channels, potentially of fused datasets, then also the

display of orthophotos in true colours is possible. Co-registered multispectral bands

would also immediately allow work to start with multispectral image interpretations

of highly accurate datasets. It is probably an academic discussion if photogrammetry

and remote sensing should merge again, but it would definitely be an advantage if

certain data processing components of both disciplines could be integrated in one

software package. Trends in this direction are underway, as recently ERDAS imagine

announced the toolkit Orthobase Pro and RSI also produced an ASTER stereo

module for ENVI. Results of the close collaboration with Prof. Goossens, University
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Gent (Belgium) in the subject of 3D remote sensing contributed to an initiative, that

recently became recognised by the European remote sensing community, by setting

up a special interest group within the European Association of Remote Sensing

Laboratories (EARSeL). The first joint ISPRS/EARSeL workshop on 3D remote

sensing will be held in October 2003 at the University of Hannover (Germany).

To build up routines for the generation of consistent time series of very high

resolution data, potentially from satellite missions providing differing view angles,

is a challenge for the future. Potential applications for these data sets include crop

monitoring and precision farming. The recently launched MISR sensor, for example,

views the earth simultaneously at nine different view angles. ”MISR provides new

types of information for scientists studying Earth’s climate, such as the partitioning

of energy and carbon between the land surface and the atmosphere, and the regional

and global impacts of different types of atmospheric particles and clouds on climate.

The change in reflection at different view angles affords the means to distinguish

different types of atmospheric particles (aerosols), cloud forms, and land surface

covers. Combined with stereoscopic techniques, this enables construction of 3-D

models and estimation of the total amount of sunlight reflected by Earth’s diverse

environments.” (NASA, 2003a).

Despite the improved spatial and spectral capabilities of recent and forthcoming

satellites, the temporal aspect of archived data is also a source of highly valuable in-

formation. NOAA/AVHRR has recorded data since the early 1980’s with high tem-

poral resolution. LANDSAT satellites have operated for more than three decades,

including nearly 20 years at high resolution with the advent of the TM sensor in

1984. CORONA data are available since the first successful mission in 1960 in very

high resolution. These historic satellite data promise a huge, but as yet hardly used

potential, for surface monitoring especially in combination with long term ground

and/or atmospheric data, and for environmental monitoring, modelling and decision

support systems for sustainable management.

Since the adoption of the Agenda 21 in Rio de Janeiro more than a decade ago,

the scientific community has increased the knowledge of the driving forces of global

change and contributed to sustainable development. The IMPETUS project is aim-

ing to develop strategies for a sustainable and efficient use of freshwater in two

catchments north and south of the Sahara. The regionally obtained knowledge of

land cover and relevant parameters in this, and other sub-projects, is highly detailed.

With integration in environmental models, especially in combination with informa-
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tion from different time steps, these approaches can potentially be transferred to

the whole of North-West Africa or to comparable regions of the world. This work

is contributing to this ambitious goal with accurate information of the actual land

cover and the detection of changes within the last three decades.
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