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Summary

One of the main problems in cosmology is to understand the formation and evolution
of galaxies, galaxy clusters, and large-scale structure. Whereas the basics of the cur-
rent Cold Dark Matter (CDM) paradigm for structure formation are widely accepted,
some controversial issues for CDM (e.g. cuspiness of dark-matter halos, substructure
crisis) still remain. In order to test CDM predictions, one needs to investigate bound
objects from the smallest (dwarf galaxies) to the largest (galaxy clusters) scales at
different redshifts. In particular, their matter-content, luminous and dark, has to be
studied in detail. We address these issues by using gravitational lensing. Specific-
ally, we explore the properties of mass-substructure and the mass-profiles of galaxies,
as well as the mass-profiles of galaxy clusters, using strong and weak gravitational
lensing.

In the beginning we give a short preface to the subject, intended for a non-expert
reader. Following the general introduction to gravitational lensing we address the
lens properties of quadruply imaged systems, lensed by numerically simulated galax-
ies. We focus on the substructure in the lens galaxies. We compare signatures of
substructure on gravitational lensing properties and compare these with the observed
lensed systems. The second part of this work deals with clusters of galaxies. We
describe a method that improves the mass estimates of clusters considerably and de-
velop a new cluster mass reconstruction technique which combines strong and weak
lensing. We test our method using simulations and find that it can very successfully
reconstruct both the enclosed mass and the mass distribution of a cluster. Finally we
apply this technique to an observed cluster RX J1347—1145, the most X-ray luminous
cluster.

The signature of substructure on gravitational lensing in the ACDM
cosmological model: We present a study of the lens properties of quadruply im-
aged systems, lensed by numerically simulated galaxies. We investigate a simulated
elliptical and disc galaxy drawn from high-resolution simulations of galaxy forma-
tion in a concordance ACDM universe. The simulations include the effects of gas
dynamics, star formation and feedback processes. Flux-ratio anomalies observed in
strong gravitational lensing potentially provide an indicator for the presence of mass
substructure in lens galaxies relative to that predicted from CDM simulations. We
concentrate in particular on the prediction that, for an ideal cusp caustic, the sum of
the signed magnifications of the three highly magnified images should vanish when
the source approaches the cusp. Strong violation of this cusp relation indicates the
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presence of substructure, regardless of the global, smooth mass model of the lens
galaxy. We draw the following conclusions: (1) the level of substructure present in
simulations produces violations of the cusp relation comparable to those observed, (2)
higher-order catastrophes (e.g. swallowtails) can also cause relative changes of the
order of 0.6 in the cusp relation as predicted by a smooth model, (3) the flux anomaly
distribution depends on the image parity and flux, and both the brightest minimum
and saddle-point images are more affected by substructure than the fainter images.
In addition, the brightest saddle point is demagnified w.r.t. the brightest minimum.
Our results are fully numerical and properly include all mass scales, without mak-
ing semi-analytic assumptions. They are ultimately limited by the mass resolution
of single particles in the simulation determined by current computational limits, ho-
wever show that our results are not dominated by shot-noise due to the finite number
of particles.

Mass-sheet degeneracy: Fundamental limit on cluster mass reconstruc-
tion from statistical (weak) lensing: Weak gravitational lensing is considered
to be one of the most powerful tools to study the mass and the mass distribution
of galaxy clusters. However, weak lensing mass reconstructions are plagued by the
so-called mass-sheet degeneracy — the surface mass density x of the cluster can be
determined only up to a degeneracy transformation £ — k' = Ak + (1 — A), where A
is an arbitrary constant. This transformation fundamentally limits the accuracy of
cluster mass determinations if no further assumptions are made. We describe here
a method to break the mass-sheet degeneracy in weak lensing mass maps using the
distortion and redshift information of background galaxies and illustrate this by two
simple toy models. Compared to other techniques proposed in the past, it does not
rely on any assumptions about the cluster potential; it can be easily applied to non-
parametric mass-reconstructions and no assumptions on boundary conditions have to
be made. In addition it does not make use of weakly constrained information (such
as the source number counts, used in the magnification effect). Our simulations show
that we are effectively able to break the mass-sheet degeneracy for supercritical lenses,
but that for undercritical lenses the mass-sheet degeneracy is very difficult to break,
even under idealised conditions.

Strong and weak lensing united I: the combined strong and weak lensing
cluster mass reconstruction method: Here we present a novel method for a
cluster mass reconstruction which combines weak and strong lensing information on
common scales. We extend the weak lensing formalism to the inner parts of the
cluster, use redshift information of the background sources and combine these with the
constraints from multiply-imaged systems. We demonstrate the quality of the method
with simulations, finding an excellent agreement between the input and reconstructed
mass also on scales that differ from the Einstein radius. Using a single multiple image
system and photometric redshift information of the background sources we find that
we are effectively able to break the mass-sheet degeneracy, therefore removing the
main limitation on cluster mass estimates. We conclude that with high resolution
(e.g. HST) imaging data the method can more accurately reconstruct cluster masses
and their profiles than currently existing lensing techniques.

Strong and weak lensing united II: the cluster mass distribution of the



most X-ray luminous cluster RX J1347—1145: We apply the method described
above to the ground-based multi-colour data of RX J1347—1145, the most X-ray
luminous cluster known to date. The analysis of the data revealed an additional arc
to those that were previously known for this cluster. The combined strong and weak
lensing reconstruction confirms that the cluster is indeed very massive. If the redshift
and identification of the multiple-image system as well as the redshift estimates of the
source galaxies used for weak lensing are correct, we determine the enclosed cluster
mass to M (< 360 h~'kpc) = (1.2 4 0.3) x 10" M. The reconstruction also shows a
south-east mass extension that is compatible with X-ray measurements. With higher
resolution (e.g. HST) imaging data, reliable multiple imaging information could be
obtained and the reconstruction further improved.
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Preface

Incidentally, disturbance from cosmic background radiation is
something we have all experienced. Tune your television to any
channel it doesn’t receive, and about 1 percent of the dancing
static you see is accounted for by this ancient remnant of the
Big Bang. The next time you complain that there is nothing on,
remember that you can always watch the birth of the universe.

Bill Bryson, A Short History of Nearly Everything

This short introduction is intended to explain the topics of this work for a non-
expert reader. A person who is familiar with the field of cosmology and gravitational
lensing might want to skip this chapter and start reading in the next one.

The Hot Big Bang Model assumes that the universe was born from a very dense
and hot state. Shortly afterwards it consisted of a mixture of many interacting ele-
mentary particles. Under these conditions electromagnetic radiation was scattered
very efficiently by matter and this kept the universe in thermal equilibrium. After
380,000 years the Universe had cooled enough (to 3000 K) for the electrons and nuc-
lei to combine into atoms. When this process, called recombination, completed the
mean-free-path of the photons became large and they began to propagate (nearly)
freely through the Universe. Before recombination the photons were in thermal equi-
librium, thus having a black-body spectral distribution corresponding to a temperat-
ure of 3000 K. Since the universe expands the temperature of the radiation changes
and so we see today (13.6 Gyrs after the Big Bang) the photons having a black-body
spectrum corresponding to a temperature of 2.728 K. These photons in fact give a
snapshot of the universe in its infancy and are seen today in the form radiation in the
microwave regime, called Cosmic Microwave Background radiation (CMB). There-
fore the CMB has provided us with an excellent diagnostic to study the history of
the universe.

While the existence of the background radiation itself was originally discovered
by Penzias & Wilson in 1965, the first instrument to measure the CMB temperature
on the whole sky was the COBE satellite. It confirmed the result of other CMB
probes, that we observe a black body spectrum with a temperature of 2.728 K on
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the whole sky. In addition, however, each pointing COBE made showed slightly
different temperature; these small fluctuations have been measured on the level of
AT/T ~ 1075. Such fluctuations in temperature across the sky are the precursors
of structures we see today (galaxies, galaxy clusters, etc.); they have grown through
gravitational instability from Ap/p ~ 107° to the highly concentrated structures we
observe around us. These results, however are in contradiction with the hypothesis
that the universe consist only of the matter we see (i.e. luminous matter, also called
baryonic). Namely we observe structures today with density contrast Ap/p > 1. For
these structures the fluctuations should be at least 102 at the time of recombination.
This is, however, not what we observe. The solution to the problem is given by the
presence of dark-matter which dominates the matter content in the universe and has
Ap/p ~ 1073 at the epoch of recombination (i.e. they started to grow at earlier
times). Baryons on the other hand were coupled to the photons up to that time,
and the pressure kept the baryons from collapsing under their own gravity. The idea
of the existence of dark matter has become increasingly accepted in cosmology, with
CMB measurements giving strong evidence for the presence of dark matter at the
largest scales.

The first evidence for the existence of dark matter is however much older than
CMB results, it came from dynamical studies of astronomical objects with Zwicky’s
estimation of the mass of Coma cluster in 1937. In addition the idea of the existence of
dark matter is supported from other fields of research; X-ray studies and gravitational
lensing among others. Unfortunately, we still do not know what the nature of dark
matter is. Nowadays the most probable candidates are considered to be elementary
particles that rarely interact with ordinary matter (e.g. weakly interacting massive
particles or WIMPs); but such a particle has not been detected as of yet. The interface
of particle physics and cosmology is therefore a fruitful field of research. Cosmologists
need to study the properties of dark-matter on macroscopic scales, while a suitable
candidate particle fitting these constraints needs to be detected in particle physics
research.

One of the most recent successes in measuring the temperature over the whole sky
with an exquisite sensitivity and resolution was achieved by the WMAP satellite. The
results of WMAP together with studies of large scale structure strengthened the idea
that the sum of luminous and dark matter does not represent the total matter and
energy content in the universe. In addition to ordinary (luminous and dark) matter,
there exist an additional form of matter or energy. In particular, the measurement
that the universe is accelerating has come as a great surprise, since gravitational
pull exerted by the matter in the universe slows down the expansion. The amazing
conclusion was that the universe contains a combination of dark matter and dark
energy, the latter being gravitationally repulsive, and the nature of both we do not
understand. Cosmologists gave it the name dark energy (or also the cosmological
constant A).

We argue that one of the best tools to study the dark matter distribution from
the scales corresponding to stars to the large-scale-structure is gravitational lensing.
In addition lensing can also be used to investigate the nature of dark energy, by
studying the evolutionary effects of dark matter. We will focus on dark matter only,



in particular we will study the mass and the mass distribution in galaxies and galaxy
clusters. In this chapter we will give a very short introduction to both in the context
of structure formation, mostly illuminating the problems of determining the mass
distributions of galaxies and galaxy clusters and highlighting the questions we want
to address in this work.

1.1 Structure formation in the universe

We have briefly mentioned before that the structures in the universe we see today
grew from the primordial density fluctuations. However we did not explain their
origin. The most probable (but not necessary correct) explanation we have to date is
that they result from quantum vacuum fluctuations which were amplified by a rapid
accelerated expansion (called inflation) in the very early universe (1073° s after the
big bang).

The model of structure formation, which describes how these fluctuations grew
to the present state has three key ingredients. One needs to specify the cosmological
model (the expansion rate, which follows from the cosmological density parameters)
to define the background geometry of the universe. Further, a model for fluctuation
generation and the amount and type of dark matter need to be known. For example
light neutrinos might be considered as dark matter particles, however since they were
relativistic when their thermal equilibrium was frozen as well as at the time the
structures started to form, they can easier escape the gravitational potential than
non-relativistic particles. This influences the growth of structures and the results
show that neutrinos are not a suitable candidates for a dark matter particle.

Having specified these ingredients one is able to predict the evolution of dark
matter. If the underlying assumptions are correct, the predicted structure formation
scenario matches the observations, i.e. the CMB fluctuations and the matter structure
we see in the universe today. The most successful model nowadays is the cold dark
matter theory including dark energy (ACDM), with initial conditions from inflation.
Although it might still be proven incorrect in detail, it at present the model that most
comprehensively explains the observations. It assumes nearly scale-invariant initial
fluctuations resulting from inflation and a type of dark matter that is cold, meaning
that particles are non-relativistic at the time the structures started to form and can
not free-stream out of the potential wells at the scales of cosmological interest. Since
the density fluctuations can only start growing when the universe is matter dominated,
the growth process depends upon the cosmological parameters.

In the framework of this model we can now investigate how the structures evolve
to the present state (galaxies, clusters, large-scale-structure). In the ACDM model
the numerical simulations predict that we have a so-called bottom-up or hierarchical
scenario of structure formation. This means that the small-scale structures formed
first and the more massive clumps were assembled in the process of merging. By com-
paring the predictions from N-body simulations to observed systems we can test the
hypotheses of the structure formation model and make a step further in understanding
the cosmological history and future of the universe.
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1.2 Gravitational lensing

A consequence of an inhomogeneous universe is the effect of gravitational lensing.
Light bundles travelling through an inhomogeneous universe will be deflected and
therefore focused (or defocused). The inhomogeneities in fact act as a gravitational
telescope (thus the term lensing). The gravitational lensing effects offer an excellent
tool to study the matter in the universe, since it is independent of whether the matter
is luminous or dark. Since other methods to determine the mass distribution depend
on the information we get from objects through their luminous parts, it is usually
difficult to convert this information to reveal the total matter distribution. Gravit-
ational lensing, on the other hand, probes the distribution directly and therefore it
has become one of the major tools in cosmology.

In this thesis we mostly concentrate on two applications of lensing; measuring the
mass distribution of individual galaxies and galaxy clusters. In the case where source,
observer and the lens are aligned, and the lens is strong enough, the light bundles
can travel on different paths to the observer, and multiple images of the same source
can be seen. Such systems are of particular interest in gravitational lensing. To date
about 100 such systems with galaxies acting as lenses have been discovered. The
properties of these multiple images (their positions w.r.t. the lens galaxy centre and
fluxes) can be used to draw conclusions about the mass distribution of the lens galaxy.
In particular, it turns out, that the flux ratios of the images are sensitive not only
to the main lens potential but also to its small-scale structure (i.e. dwarf galaxies
orbiting the main galaxy). Their properties can thus be investigated. An example of
such a lens system is presented in Fig. 1.1. Four quasar images belong to the same
source. The lens galaxy is seen as a green shade in the figure.

In clusters of galaxies the same effect can be observed as well. In addition to
these strong distortions (also called strong lensing effect), many background sources
are weakly distorted (weak lensing effect). The statistical analysis of such distortion
can give us further information (up to larger radii than strong lensing) about the
mass and mass distribution of clusters. The latter can not be used to detect galaxies
as lenses individually, since only the cluster potential is strong enough for this effect
to be observed in practice. An excellent example is given in Fig. 1.2. The latest
camera, ACS, on board the Hubble Space Telescope offers an exquisite resolution and
many strongly distorted multiply imaged sources can be seen. The weakly distorted
sources can not be readily recognised by eye, only when their statistical properties
are studied do they reveal information about the mass-distribution of the cluster.

1.2.1 Gravitational lensing by galaxies as cosmological probes

The main evidence in the past that large amounts of dark matter exist in galaxies
is their flat rotation curves. The constant rotation velocities in the outer parts of
the galaxy, instead of a Kepplerian decline (typical if only visible matter is taken
into account), indicate that each galaxy is surrounded by significant amounts of dark
matter. This has made galaxies particularly interesting in terms of cosmological
research.



Figure 1.1: The footprint of a Yeti: a galaxy acting as a lens. The gravitationally
lensed system B1422+231 with a quasar being lensed to four images. The green shade
is the light from the galaxy acting as a lens (from CASTLES webpage).

We argued that the standard CDM paradigm is very successful in predicting the
observed properties of dark matter on different mass scales. Therefore results that
are in apparent contradiction with this theory are of extreme interest. In galaxies we
seem to be facing two problems of this kind.

From the numerical simulations one can identify collapsed structures (also called
halos) and study their properties. It turns out that the density profile of halos has a
universal form, almost independent of the mass of the halo. This result was first found
by Julio Navarro, Carlos Frenk & Simon White in the nineties, and the functional
form of the profile is simply referred to as the NF'W profile. It is a very remarkable
result, since if the simulations are correct, galaxies and clusters of galaxies should have
the same universal form (NFW) of the dark matter density distribution. In the very
centre of the halos the density distribution is especially sensitive to the assumed nature
of the dark matter. The CDM paradigm predicts a very steep dark matter profile in
the centres of halos. This seems to be at odds with what we observe. However, on
galaxy scales it is difficult to test this prediction accurately both from observations
and simulations. Namely, these simulations were done with dark matter only and,
especially on galaxy scales, the baryons are believed to play a very important role. Not
only would they modify the density profile we measure (with gravitational lensing we
measure together dark and luminous matter), they also influence the density profile
of dark matter itself throughout the process of halo formation.

The second problem is the substructure problem. In simulations representing
halos similar to our Galaxy, the number of substructures (halos with mass smaller
than the main galaxy) does not match to what we observe in the Milky Way. The
problem is especially striking for low mass halos (10° times less massive than the main
galaxy). This problem was independently discovered by Ben Moore and Anatoly
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Figure 1.2: A galaxy cluster acting as a lens. Many strongly distorted multiply
imaged sources (arcs) can be seen (from HST press release).



Klypin and colleagues in 1998 and has ever since posed a serious challenge to the
CDM paradigm. The solution to this problem is that either the simulations and/or
assumptions entering the structure formation model are wrong on these scales, or
the sub-halos are indeed present in the Milky Way, however they have lost baryons
in the past and are too dark to be observed. In Chapter 3 we will investigate this
discrepancy for galaxies other than the Milky Way using the gravitational lensing
technique.

1.2.2 Gravitational lensing by clusters of galaxies as cosmological
probes

Galaxy clusters have been the focus of a very intense ongoing research in the past
decades. They are the most massive bound structures in the Universe; moreover,
their large dynamical time scale allows them to retain the information about their
formation history. A cluster contains hundreds or even thousands of galaxies, which
however do not contain a large fraction of cluster mass. The galaxy clusters are
believed to be a “fair sample” of the matter content of the universe, therefore the
ratio of their baryonic (i.e. luminous) mass to their total mass resembles the overall
baryonic fraction in the universe. In addition the evolution in their number density
as a function of mass and the time of their formation is a very important probe which
can help us determine the matter content as well as the dark energy content in the
universe.

It is therefore crucial to be able to make reliable estimates of cluster masses. This
can be achieved by e.g. measuring the velocities of individual galaxies or from the
properties of the X-ray emission of the intra-cluster gas. The latter technique has
been successfully applied to many clusters. Unfortunately assumptions about hy-
drostatic equilibrium and spherical symmetry need to be made for to convert the
luminosity of the X-ray emitting gas to the cluster mass. Gravitational lensing can
also measure cluster mass to high accuracy and is free of the assumptions of baryonic
physics. The problems of using gravitational lensing to determine the cluster mass
are not in the underlying physics, which is well understood, but rather in the tech-
nical implementation. However, such problems are being resolved with advancing
observational techniques and at present the measurements of cluster masses with
gravitational lensing are a great success.

In this work we try to improve the existing methods and develop a new method
to determine the enclosed mass and mass distribution of galaxy clusters using gravit-
ational lensing. In Chapter 4 we discuss a method to overcome the largest technical
difficulty of the reconstructions, the mass-sheet degeneracy. In Chapter 5 we develop
a method which combines the two regimes of lensing, the regime where images are
highly distorted and the one where lensing needs to be treated in the statistical sense.
We show that accurate determination of the mass distribution can be performed. In
Chapter 6 we apply this method to the data for the most X-ray luminous cluster at
present and successfully measure its mass and mass distribution.



Introduction to gravitational lensing

Gravitational lensing theory rests on one of the main predictions of Einstein’s theory
of General Relativity, namely that light rays are bent when they propagate through
an inhomogeneous medium. More precisely, light propagates along null-geodesics of
the space-time metric, i.e. along the curves in the space-time with minimum ‘length’
between the two points.

Using the full theory, the exact calculations are hardly manageable. Fortunately,
in all situations relevant to this work (as well as in most of the ones relevant for
astrophysics) the corresponding equations can be linearised and the propagation of
the light ray is well described by the thin lens and small angle approximations. For
the description of lensing by galaxy clusters and individual galaxies these are sufficient
since the deflecting mass is localised in a region much smaller compared to the distance
between the observer and the source.

2.1 Gravitational lensing theory

The geometry of gravitational lensing is presented in Fig. 2.1. The mass distribution
is located in the deflector plane D at the redshift z4, corresponding to the angular
diameter distance Dy from the observer O. The source is located in the source plane
S, at a redshift z;, with angular diameter distances D from the observer and Dy from
the lens. Following the thin lens approximation, the light ray between the observer
and the lens plane and between the lens plane and the source plane is described by a
straight line with a kink near the deflector. The effects of the space-time curvature due
to a smooth homogeneous Universe are then all incorporated in the angular diameter
distances. The kink is represented by the deflection angle vector &, which depends
on the mass distribution in the lens plane and the impact vector & of the light ray.

2.1.1 Lens properties

We define the optical axis to be the line connecting the observer and centre of the
mass distribution (note that the precise choice of the optical axis is arbitrary). The
source would be seen at an angular position 3 in the absence of the lens. Further we
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Figure 2.1: A sketch of a typical gravitational lens situation.

denote 1 to be the distance of the source from the optical axis in the source plane,
and & the ‘impact parameter’ (more precisely the impact vector) in the lens plane.
We can write by pure geometrical considerations, assuming a single lens plane

Dy «
n= D—E — Das &(§) (2.1)
d
or equivalently
B-6- %dSa(Dde) P~ (2.2)

S

a(0) is referred to as the scaled deflection angle. The last equation is very important
for lensing, thus its name lens equation or ray-tracing equation. It gives us the angular
position 8 at which we see the lensed images for a given source that is located at (3.
The scaled deflection angle a(8) usually depends on @ in a non-linear fashion, and
therefore it is possible to obtain multiple solutions of 8 for a single source position
3; in such case we are talking about multiple imaging or strong lensing.

Consider now the deflection angle of a point mass M. If the impact parameter
¢ (i.e. the absolute value of &) of a light ray is much larger than the Schwarzschild
radius of the lens, then from GR it follows that:

|A| 4G M
al=———.
2§

As already mentioned before, the thin-lens approximation is justified here, and we
can calculate the deflection angle of a three-dimensional mass distribution by adding
up (integrating) the contributions of individual mass elements (each regarded as a
point mass) resulting in a two-dimensional deflection angle. Defining the projected
mass density X(&):

(2.3)

$(€) = / drs p(€,7s) (2.4)
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the deflection angle can be written in a compact form as

~ _4G ! ! 5_5,
a(g) = 0_2/3%2 d*¢ Z(ﬁ)m : (2.5)

The properties of the mass distribution of the lens enter the lens equation only
in the form of a scaled deflection angle a, which depends in turn on the projected
mass density %(Dq0) and on the geometry of the system (i.e. on angular diameter
distances between source, observer, and the lens). The ‘strength’ of the lens can be
described in terms of a scaled surface mass density x(6) where

5(0) = E(gc ie) | (2.6)

where Y., is the critical surface mass density given by

c? Dy

Dor = o
47TGDdDdS

(2.7)

For k(0) < 1 we are dealing with the weak lensing regime. Such a lens namely can
not produce multiple images. A sufficient (but not necessary) condition for producing
multiple images is x(6) > 1 for at least one 6, this lensing regime is called the strong
lensing regime. The distinction between the two regimes is not always sharp and we
will elaborate on this later.

Yo depends upon the cosmological parameters. Rewriting a in terms of s gives

_1 2/ / 60— 6

™

Now recall that 6 is a dimensionless quantity (it is a vector measured in radians).
Since the lens equation (2.2) depends only upon (@), one cannot measure the physical
surface mass density X, without knowing X, thus without knowing the redshifts of
the lens and source. In addition, there is a (relatively weak) dependence on the
cosmological parameters in >,.

The form of the equation (2.8) implies that deflection angle can be written in the
gradient form

() = Vi (0), (2.9)

with ¢ (8) given as
1
¥(0) = —/ 4’0’ k(') In|6 — 0| . (2.10)
™ JR2
Lens equation (2.2) thus represent the gradient mapping, analogous to what we are
used to in optics. Further the gradient of the deflection vector and thus ¢ (0) satisfies

the analogue to the Poisson equation from the Newtonian gravitational theory:

V2(0) = 2k(0) . (2.11)
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For a source with a size much smaller than the typical length on which the lensing
properties change, the lens equation can be linearised. The lens mapping can then
be described by Jacobian matrix .A(€)

0B (. PO)\ _ [(1-k—-m —Y2
A(B)—%—(&] ae,»ae)_( s 1_/”%), (2.12)

where the complex quantity v = 1 + i, is called shear and is defined using second-
order derivatives of

1= %(@@11 - ¢,22) y V2= ¢,12 = @/),21 . (2-13)

The interpretation of shear and scaled surface mass density (also called convergence)
now becomes clear. Consider a small circular source and a lens with v, (0) = 1,(0) =
0. The source would only scale in size and remain circular. In the presence of shear,
however, the source shape (as well as size) will changed (this is presented later also
in Fig. 2.5). We define shear as a complex quantity, in addition we remind the reader
that shear is not a vector. Since it transforms as v — |y|e%¥ under the rotation of
coordinate system, the shear can also be represented as a rank two symmetric tensor.

Note that the above approach is valid only in the case of a single lens-plane; in the
case of multiple lens planes the potential v is in general not sufficient to describe the
lens system, and the Jacobian matrix is no longer symmetric (Blandford & Narayan,
1986).

Lensing locally transforms circular sources into ellipses with semi axes being the
eigenvalues of Jacobi matrix A(@). The ratio of the solid angles a source occupies in
the source plane § and in the lens plane D is given by the determinant of the matrix
A. Therefore the determinant corresponds to the inverse of the magnification factor

W, 1.e.
1 1

no) =g~ 1—rZ—]P

In other words, if an isophote in the source plane encloses an area a (small enough,
so we can apply local linearisation), the area enclosed by the same isophote in the
lensed image will be pa. This comparison can be made, since lensing conserves the
surface brightness.

Finally a semantic remark. Above we have shortly mentioned the question of
which lenses are called weak, and which are called strong. In general, there is no
strict definition of weak lensing and strong lensing. For our purposes however, we
will call studies where we deal with multiple imaging ‘strong lensing’, and ‘weak
lensing’ corresponds to analyses where lensing needs to be treated in statistical sense.
In practice, if we can observe only single images of the sources (as in the case of weak
lensing), we need to consider an ensemble of such sources to estimate the properties of
the lens. For multiple imaging only a single source is sufficient. Now we see that even
if lens is ‘strong’ enough to produce multiple images, one can treat the background
population of sources by either using strong lensing (for sources that happen to form
observable multiple images, thus using images which are not independent) or weak

(2.14)
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lensing principles (for all sources that are independent from each other). In the ideal
case one combines both methods to obtain detailed results on the lensing properties.
This is particularly useful for clusters where we observe many background sources
that (projected onto the lens plane) lie within distances from the cluster centre where
lensing effect is still noticeable, even though the sources are not multiply imaged.

2.2 Strong gravitational lensing

Now we concentrate on the lensing regime where multiple images are formed. Math-
ematically this means that multiple solutions of the lens equation (2.2) exist and the
topic of this section will be to introduce the formalism of strong lensing.

For convenience we introduce dimensionless coordinates

] (2.15)

r=—_— )
&o o

where the length scale in the image plane & can be chosen arbitrarily and the cor-
responding length scale in the source plane 7 is given by 1y = £ Ds/Dq4. The lens
equation in new coordinates reads

y=z—az) (2.16)

and can be rewritten in terms of a gradient mapping x +— y. Introducing a scalar
function ¢ (also called Fermat potential for lensing)

b(@.y) = 5 (@~ y)* ~ v(a) (217)
we see that images of a source located at y are formed at those points £ where V¢ = 0
and det.A does not vanish. In a typical non-singular elliptical lens (having monotonic-
ally declining density profile) with a source, lens centre and the observer aligned, the
equation V¢ = 0 would have five distinctive solutions mgo), each corresponding to one
of the images. At critical curves, i.e. where det. A = 0, the lens mapping properties

change and we will study them in the next section.

2.2.1 Lens mapping close to the critical curves

In general, the Jacobian matrix .A(@) is not necessary invertible, i.e. there may exist
points in the lens plane 8 where the determinant of the matrix vanishes. They form
closed curves and are called critical curves. If we map them back to the source plane
we obtain caustic curves. The image of a point source that lies on the caustic curve is
formally infinitely magnified. In practice, any deviation from a source being point like
causes a finite (still very high) magnification. Physically, however, even point sources
would have finite magnification, since in all derivations we use a description of lensing
based on geometrical optics, which fails very close to critical curves. Namely two
images located close to the critical curve have a very small differential time delay and
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one expects interferences to occur if this time delay is smaller than the coherence time
of the light (Schneider et al., 1992). Nevertheless, the corrections in the framework
of wave optics are very small and the geometric description is more than adequate
for the purposes we are dealing with here.

We illustrate the image formation for a source crossing the caustic curve in Fig. 2.2
through an example of a typical non-singular isothermal elliptical (NIE) lens. An
isothermal lens model throughout this work refers to a lens whose 3-D density follows
p(r) o< 72 and the surface mass density scales as x(0) o |@]~" (in the spherically
symmetric case). An NIE model is an approximate description for the projected mass
density of a typical elliptical galaxy. In the left panel the lens plane is plotted and
the critical curves are presented as solid lines. Through the lens mapping, the inner
critical curve (i.e. inner ellipse) transforms onto the outer caustic curve (see right
panel of the same figure, presenting the source plane) and the outer critical curve
transforms into the inner, asteroid caustic. The asteroid caustic has four fold caustics
(curved lines) and where two fold caustics join we get a so-called cusp.

The sketch of the formation of such asteroid caustic is given in Fig. 2.3. It shows
a region of the lens plane around the critical curve which is pleated and projected
onto the source plane, forming the caustic. If one now considers a source inside such
a caustic (denoted as a small ellipse in the plot), it will correspond to two extra
images in the lens plane. Therefore at each caustic crossing the image multiplicity
changes by two. The ‘inside’ of a caustic is defined in such a way that the number of
images is bigger than the number of images ‘outside’. A typical circular symmetric,
singular lens (with an isothermal or steeper profile) has two critical curves where the
determinant vanishes. The caustic of the inner critical curve is a circle and the caustic
of the outer critical curve degenerates into a point due to the circular symmetry. In
Fig. 2.2 we present the case of a non-singular elliptical lens, whose critical curves
are ellipses. The caustic of the inner critical curve is an ellipse and the caustic of the
outer critical curve has the before mentioned asteroid shape. Since images forming
close to the inner critical curve are distorted preferentially in the radial and those
forming close to the outer critical curve preferentially in the tangential direction, the
inner critical curve is called ‘radial’ and the outer one ‘tangential’.

A source located in the centre of the asteroid caustic (c.f. green or dark blue
image in Fig. 2.2) lies inside the inner as well as the outer caustic and therefore we
observe 2 times 2 extra images, in total thus five. They are presented in the left panel
and the fifth image (close to the centre) is highly demagnified. For the source close to
a cusp (dark blue image, top panel) three of the images get highly magnified (which
will eventually merge into a single remaining image when the source crosses the cusp).
In the case of the source moving close to the fold (dark-blue image, bottom panel)
two of the images are highly magnified and will eventually merge and dissappear
on the fold caustic crossing. Finally we concentrate on sources located close to and
inside a fold (dark blue source in the lower panel of Fig. 2.2) or a cusp (dark blue
source in the upper panel of Fig. 2.2). For the non-singular elliptical lens both source
positions will have five solutions of the lens equation (i.e. five images) correspond to
two minima, two saddle points and a maximum of the Fermat potential. The Fermat
potential ¢ for two different source positions is represented in Fig. 2.4. For both
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Figure 2.2: Compact source crossing a cusp caustic (top) and a fold caustic (bottom)
of a non-singular elliptical lens. The diagram on the left shows critical curves and
image positions and the diagram on the right shows caustics and source positions.

%

configurations (fold in panel (a) and cusp in (b)) one can clearly see how images
form at the minima (red) and saddle points in both cases. The maximum is in both
cases highly demagnified and presented by a single dot (barely visible) close to the
centre. In summary:

Saddle point images are images corresponding to the saddle points of ¢ and have
negative parity, i.e. det 4 < 0. As a consequence their magnification factor is negative
(which can sometimes be a source of confusion, as we will speak then of images with
negative magnifications - though their flux is proportional to the absolute value of
magnification). They are also sometimes referred to as Type II images.

Minima or Type I images have a positive parity and trace, i.e. det. A > 0 and
trA > 0. They are never demagnified; i.e. |u| = p > 1 (for an infinitesimal source).
Maxima are Type III images and also have a positive parity, i.e. det A > 0, however
trA < 0. For example, in the case of a non-singular isothermal lens the central
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/ \ caustic

curve

critical
curve

Figure 2.3: A sketch of the process of an asteroid caustic formation. A local region
of the lens plane gets pleated and projected onto the source plane. A single source
in the source plane (ellipse) has two extra corresponding images in the image plane
(adapted from Petters et al., 2001; Gilmore, 1981).

image, corresponding to a maxima, will be highly demagnified and will in general
escape observations.

Cusp and fold relations

These two specific configurations are interesting, since the images form in a con-
figuration satisfying model-independent predictions for the magnifications of highly
magnified images (Blandford & Narayan, 1986; Blandford, 1990; Schneider & Weiss,
1992; Mao, 1992).

These types of images form at positions x satisfying det.A(x) ~ 0. For such
images the general mapping can be approximated by Taylor expanding the Fermat
potential ¢ around CBEO) (exactly on the critical curve) including the third order in
(for details on the rules for this truncation and for full derivation of what follows see
Chapter 6 in Schneider et al., 1992).

Fold images: The approximation of the general mapping around the fold is
thus given by a second order polynomial mapping. By studying the inversion of
this transformation the properties of the two images that form close to the fold can
then be studied. If the source approaches the fold from the ‘inner’ side, two of the
lensed images form closer and closer together and finally merge and disappear when
the source crosses the caustic. In the limit of the source approaching the fold, the
magnifications of the two merging images (denoted by A and B) have opposite parity,
however the same absolute value. Therefore asymptotically the following relation
holds,

—0. (2.18)
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e

(a) (b)

Figure 2.4: The Fermat potential ¢(z, y) for two different source positions y plotted
in colour (red = most negative) and contours. Panel (a) represents a source close to
a fold, and (b) close to the cusp.

We scaled the relation for convenience, since we only observe fluxes and not magni-
fications. The absolute value of magnification close to the fold varies inversely as the
square root of the distance between the source and the (closest) point on the caustic.

Cusp images: Similarly the properties of the mapping near a cusp can be
considered. The resulting mapping is a third order polynomial mapping. For a given
source position (close to the cusp) three solutions represent the three merging images.
Two of them will have the same parity (we denote these two by A and C), and the
third one (B) the opposite parity. If the source approaches the cusp from inside, image
B will move on a line perpendicular to the critical curve, and A and C approach the
critical curve tangentially. The sum of magnifications of all three images vanish when
the source approaches the cusp,

Rcusp = |,U/A Al s MCl — 0. (219)

|al + |ps] + [pcl

Both, the fold and cusp relations are a very powerful, model independent predic-
tions. It would be useful to know more accurately the asymptotic behaviour of Reysp,
unfortunately the mathematics is too cumbersome for this to be done in practice. In
the next chapter we study the behaviour of R.us, numerically. In particular we study
to what extent this relation is broken when moving the source further away from the
cusp and how much it can be influenced by the substructure on scales smaller than
the image separation in the main lens potential.

2.3 Statistical (weak) gravitational lensing

In the strong lensing regime we were dealing with the multiple images of a single
source. Although we do not know the properties of the source itself, this unknown
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can be eliminated through constraints from multiple images. In weak lensing this
is no longer the case. The weak lensing sources are background galaxies and they
are intrinsically elliptical. An elliptical source transforms into an elliptical image
under the influence of lensing and therefore we have almost no extra information to
constrain the underlying mass distribution using individual images. For this reason
lensing effects need to be treated in a statistical sense (performing ensemble averaging
over the images) and is often also called statistical (weak) lensing.

Throughout this thesis we use the complex ellipticity € = €; + i€y defined in terms
of the second brightness moments Q;; as

Q11 — Qa2 + 21Q12

= 2.20
‘ Qi1 + Qa2 + 2(Q11Q22 — Q)12 ( )
(see e.g. Blandford et al., 1991), where
d26 q,[1(0)] (0, — 6,) (0, — 0,

Jd*0.q1[1(6)] ’

1(0) is the surface brightness of a galaxy image at the position 8 and ¢;(I) is a suitably
chosen weight function (for practical reasons this definition is usually modified such
that the weight function only depends on the position @ and not on the surface
brightness). For an image with circular isophotes we thus have Q11 = @2 and
(12 = 0. The trace of ();; corresponds to the size of the image, if ¢;(/) = H(I — Io)
is a Heaviside step function and the size is given by the solid angle enclosed by the
limiting isophote Ij.

In terms of semi-major axis a and semi-minor axis b of an ellipse, the absolute
value of the ellipticity is given by |¢| = Zj’j and ¢ is the angle between the x; axis of
the coordinate frame and the semi major axis (see Fig. 2.5). Note that an ellipse turns
into itself by a rotation of 180°, therefore we have similar transformation properties
as in the case of the shear, thus € = |e| e%¥. For visualisation of € see the left panel of
Fig. 2.6.

We have already noted that under the influence of convergence and shear, images
are anisotropically stretched. Using the fact that the surface brightness of a source
is conserved when lensed, the second brightness moments of the source Q® and its

image () at position @ are related through the transformation
QB =AQAT = AQ A, (2.22)

where A = A(0, z) is the Jacobi matrix of the lens equation. We include the redshift
dependence here to remind the reader that v and k in general depend upon the
redshift of the source and the lens.

For convenience we rewrite the Jacobi matrix in the following form

L D B

where we introduced the reduced shear g(8, z) as

9(6,2) = % (2.24)
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convergence and
shear

convergence only

Figure 2.5: Circular source €® transforms into an ellipse under the influence of con-
vergence and shear (adapted from Narayan & Bartelmann, 1997).

Figure 2.6: (left) Visualisation of components of the ellipticity e = e; + ey = 42e%%.

(right) Visualisation of the tangential ¢; and cross ex component of the ellipticity.
They are defined as ¢, = —R [e e7¢] and e, = =5 [e e 2?]. ¢y is the angle from the
tangent to the major axis of the source (adapted from Courbin & Minniti, 2002).
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The transformation between the source ellipticity €*) and image ellipticity € is given
as a function of reduced shear g(8, z) (see Seitz & Schneider, 1997)

€ — g(07 Z)
— = i (7] <1
= G forla®)] <1,
e = (2.25)
1—g(0,2)e
for |g(0,2)] > 1.
o O
The inverse transformation is simply given by swapping € with € and by substituting

—g with g.
Since we will work with sources at different redshifts, we factorize the redshift
dependence of the lens convergence x and of the shear v as

w(6,2) = Z(2)r(6) 1(6,2) = Z(2)1(6) . (2.26)

where Z(z) is the so-called ‘cosmological weight’ function:

lim, 0 Ber (24, 2)

Ecr(zdv Z)

Z(z) = H(z — zq) . (2.27)

The Heaviside step function H(z — z4) accounts for the fact that the sources that are
in front of the lens plane are not lensed. Note that, as suggested by its name, Z(z)
is cosmology dependent. For an Einstein-de Sitter cosmology it becomes

_\/1—|—Z—\/1+Zd
vVi+z—1

In Lombardi & Bertin (1999) cosmological weights were calculated for different cos-
mologies. The authors have shown that the differences between Einstein-de Sitter
and the nowadays assumed standard cosmology (i.e. 2 =1, O, = 0.3, Qy = 0.7) are
not significant for the purpose of cluster-mass reconstructions.

Following (2.24) the redshift-dependent reduced shear ¢(8, z) is given by

Z(2)7(0)
1— Z(2)r(6)

Z(z) H(z — zq) - (2.28)

9(0,z) = (2.29)

For an intrinsically circular source ¢ = 0, the image ellipticity for |g(0, z)| < 1 case
is simply € = g. Reduced shear is thus a measure for the image ellipticity of an
intrinsically circular source. As mentioned before, background sources in the case of
statistical (weak) lensing are galaxies and therefore thir intrinsic ellipticities are far
from circular. However, the orientations of galaxies is very close to random, there is
no preferred direction in the sky to point at (an exception being possibly the galaxies
that belong e.g. to the same cluster, the effect of this intrinsic alignment is however
negligible in the case of cluster lensing). Therefore by performing ensemble averaging
of the image ellipticities the properties of the lens can be studied. More precisely, we



20 2. Introduction to gravitational lensing

can Taylor expand the expression (2.25) (for the case of |g(6,2)] < 1 and || < 1
by definition)

) 2z >
)= {5 g = (€ +900.2) )2V )

The consequence of isotropic distribution of intrinsic galaxy ellipticities can be re-
worded by stating that the source ellipticity distribution ps(e®) depends only on the

modulus of €°. Equivalently this implies <e(s)k> = 0 for each k > 0, where <> denotes
the ensemble averaging. By performing ensemble averaging of (2.30) we note that all
terms except k = 0 vanish. The expectation value for the image ellipticity at redshift
z becomes

g9(0,z) if }g(@,z)‘ <1
(e(2)) = (2.31)

m otherwise .

This relation is particularly simple due to the convenient definition of € in terms of
Q.

Finally a note on the tangential and cross component of the ellipticity. Sup-
pose that in a given direction ¢ (see Fig. 2.6) we observe an image with ellipticity
€. We then define the tangential ¢ and cross component e, of the ellipticity as
& = —R[ee ] and e, = —J [ee?]. In some cases it is more convenient to
work with these components, since for a circularly-symmetric mass distribution the
resulting expectation value of lensed ellipticity will be always oriented tangent to the
direction of the lens centre (i.e. centre of symmetry) and therefore (ex) = 0. Even
without assuming circular symmetry of the lens, the images will still be preferentially
tangentially aligned to the direction of the mass concentration and so (¢) > 0 and
(ex) ~ 0. In practice, the signal in the (e,) component indicates the presence of
systematic (noise) effects in the data.



Strong Gravitational Lensing & CDM
substructure

Whereas the current Cold Dark Matter (CDM) paradigm for structure formation is
widely accepted, two major problems for CDM still remain. While simulations pre-
dict cuspy dark matter halos (Moore, 1994), observed rotation curves of low surface
brightness galaxies indicate that their dark matter halos have cores (Kravtsov et al.,
1998; Swaters et al., 2000; van den Bosch & Swaters, 2001; de Blok & Bosma, 2002).
The other is the apparent over-prediction of the small-scale power in CDM simula-
tions. As was shown by Moore et al. (1999) and Klypin et al. (1999), the number of
satellite halos seen in N-body simulations appears to far exceed the number of dwarf
galaxies observed around the Milky Way. Particular discrepancies have been found
for satellite masses < 109 M.

If one takes the observed satellites of the Milky Way as the total amount of
substructure present, one needs to modify the CDM paradigm and include e.g. self-
interacting dark matter (Spergel & Steinhardt, 2000) or a cut-off in the power spec-
trum (which might occur in a warm dark matter-dominated universe, Bode et al.
2001; Colin et al. 2000). Another possibility pointed out by Stoehr et al. (2002) and
Hayashi et al. (2003) is that the problem might be the misidentification of the ob-
served satellites with the substructure seen in N-body simulations. Many mechanisms
have been proposed which might prevent star formation in halos of mass < 10°M,
making them too dim for observations (Bullock et al., 2000; Benson et al., 2002;
Somerville, 2002; Springel & Hernquist, 2003). Zentner & Bullock (2003) investigate
a semi-analytic model that describes the properties of galaxy-sized halo substructure.
The effects of the “tilt” and overall normalisation of the primordial power spectrum
are discussed. All these predictions need to be tested within our own Galaxy as well
as at cosmological distances.

Gravitational lensing is at present the only tool for investigating CDM substruc-
ture in galaxies outside the local group. As first noted by Mao & Schneider (1998),
mass-substructure other than stars on scales less than the image separation can sub-

stantially affect the observed flux ratios in strong gravitational lens systems. Chiba
(2002), Dalal & Kochanek (2002), Metcalf & Madau (2001), Metcalf & Zhao (2002),

21
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Keeton (2001), Mao & Schneider (1998) and Bradac et al. (2002) have argued that
substructure can provide the explanation for the flux anomalies in various systems.
Dalal & Kochanek (2002) further conclude that the amount of substructure needed
to explain the flux ratios of quadruply-imaged systems broadly agrees with the CDM
predictions. At least for some systems the flux mismatches are probably not just an
artifact of oversimplified macromodels of the main lens galaxy (see e.g. Evans & Witt
2003; Metcalf & Zhao 2002). As discussed by Keeton (2003) and Chen et al. (2003),
fluxes can be further affected by clumps of matter at a redshift different from that of
the lens, lying along the line of sight between the observer and the source; however,
this effect is not dominant. It is also possible that the small scale structure does not
consist of compact CDM clumps, also tidal streams or offset disc components can
affect the flux ratios (see Méller et al. 2003; Quadri et al. 2003).

Keeton (2001) and Gaudi & Petters (2002) recently focused on the magnification
relations that should be satisfied by particular four-image geometries (so called “fold”
and “cusp” configurations, described in detail in Sect. 2.2.1). Cusp and fold relations
are model-independent predictions for the magnifications of highly magnified images
(Blandford & Narayan, 1986; Blandford, 1990; Schneider & Weiss, 1992; Mao, 1992).
Strictly speaking, however, they hold only for ideal “fold” or “cusp” configurations
and it is therefore difficult in some cases to disentangle the effects of the source being
further away from the cusp from that of substructure, purely by employing these
relations.

The influence of substructure can not only be seen on image flux ratios, but also
in the structure of multiple-imaged jets. The lens system B1152+199 is a case of
doubly-imaged jets, one of which appears bent, whereas the other is not (Metcalf,
2002). Another explanation is that an intrinsic bend in the jet is simply magnified in
one image, and produces only a small effect in the other.

Flux ratio anomalies can also be introduced by propagation effects in the interstel-
lar medium (ISM) in the lens galaxy. Microlensing can change the flux ratios not only
in the optical (e.g. Wozniak et al. 2000), but also at radio wavelengths (Koopmans
& de Bruyn, 2000). Flux ratios can further be affected by galactic scintillation and
scatter broadening (Koopmans et al., 2003). Fortunately, these effects are frequency
dependent and one can recognise them using multi-frequency observations.

These electromagnetic phenomena are similar for images of different parities. For
substructure, however, Schechter & Wambsganss (2002) found that magnification
perturbations should show a dependence on image parity. Microlensing simulations
showed that the probability distributions for magnifications of individual images are
no longer symmetric around the unperturbed magnification. The distribution can,
depending on image parity, become highly skewed in the direction of demagnification.
This skewness causes a substantial probability for the brightest saddle point image
to be demagnified. The two saddle point images in the quadruply-imaged system
are the ones with negative parity, the other two have positive parities and are called
minima (they correspond to the local minima and saddle points in the arrival time
surface - see Sect. 2.2.1 for details). Observed lens systems seem to show this image
parity dependence (Kochanek & Dalal, 2004), and this indicates that the flux ratio
anomalies arise from gravitational lensing, rather than propagation effects.
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All these possible effects on flux ratios have placed some doubt as to whether the
existence of substructure can be rigorously tested with strong lensing and on what
the expected signal is. Several groups have been testing these predictions using a
semi-analytic prescription for substructure (Metcalf & Madau, 2001; Keeton et al.,
2003; Dalal & Kochanek, 2002; Kochanek & Dalal, 2004).

In this thesis, however, we use the direct output of different halos and projections
of a galaxy obtained in N-body+gasdynamics simulations as a lens galaxy. By us-
ing a semi-analytic prescription one overcomes the biggest problem we face, namely
the problem of shot-noise in N-body simulations. Further, the problem of model-
ling becomes simpler, because one has an analytic model for the underlying smooth
component of the mass distribution of the lens. However, by using the direct output
of an N-body simulated galaxy, one does not make any assumption about the mass
profiles of the macro model, or the substructure. Down to the resolution scales of the
simulation we therefore believe we have a better comparison with a realistic galaxy.

This chapter of the thesis is in large extent published in Bradac et al. (2004d).
In what follows we will first describe in more detail the theory of the influences
of substructure on strong gravitational lensing. Further we will present the N-body
simulations and the methods we used to predict its strong lensing properties. Results,
comparison to the observational data, and conclusions are presented at the end of the
first part.

3.1 The influence of substructure on strong gravitational lens-

ing

It was first noted by Mao & Schneider (1998) that gravitational lensing is a unique
tool for detecting substructure at cosmological distances. The underlying theory for
this is simple. Consider first a lens system with multiple images, where the lens can
be described by a smooth macromodel. With smooth we refer to a model which does
not show structure in the potential on scales smaller than typical image separation.
An image forming at position € thus has magnification 1(?) given by

1
0 _ : 3.1
LT =@ —yop .

where (9 and 49 are calculated at the position of the image. Without loss of gener-
ality we chose the coordinate system such, that only the 7; component contributes to
the total shear. Consider now a perturber, located close to where the image is formed
and for simplicity assume it is causing perturbations v, = dx and 4, = 0 to the un-
perturbed convergence and shear at the image position. The perturbed magnification
is then given by

1

(1= (8O + k)" = (yO + 6m1)*

p= (3.2)
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The ratio /u(? is, up to the first order in dx, given by

W 1

W =1- 25/@1 — (,i(o) —i—’y(o)) .

(3.3)

For a typical lens (such as the first example used to detect substructure B1422+4-231)
we have at the position of the image showing the largest (~ 20%) deviation in flux
from what the smooth model predicts v? 4+ x(© ~ 0.9. Thus for a 20% change in
magnification, we typically need very small perturbations, dx ~ 0.01.

The magnification of multiple images is therefore very sensitive to the small-
scale perturbation in the lens potential. This makes lensing a golden tool to detect
substructure. By measuring flux ratios of images (together with image positions
to constrain the macro-model) we can in principle directly constrain the presence
of the substructure. Unfortunately, the flux measurements are not as reliable as
the position measurements. Therefore one would think it would be much easier to
detect substructure by simply measuring image positions. However they are a lot less
sensitive to small scale perturbations as compared to the fluxes.

To explain this we look at the gravitational potential in Fourier space. Equation
(2.9) can be rewritten in the Fourier space as

a(k) = —ikd(k) (3.4)

where ¥ (k) and &(k) are the Fourier transforms of the potential and the deflection
angle, respectively. Similarly, the Fourier transforms of the convergence £ and shear
7 can be calculated by considering Eqs.(2.11) and (2.13) resulting in

Rk) = —5 (K4 R) (k) (3.5)
k) = 5 (R a), (3.6
’71("’) = —klkz&(k’), (3-7)

where k = (kq, k2) is the wave vector. The norm of k is inversely proportional to the
length scale; thus smaller scale fluctuations correspond to large k.

This excursion to Fourier space now helps us understand why small-scale variations
in the potential affect the fluxes of the images more than their positions. Namely,
the absolute value of deflection angle |&(k)| is proportional to |k|, while the inverse
of magnification factor contains terms proportional to |k:]4. Therefore, although the
measurements of the image positions can be done with higher accuracy than the
measurements of the fluxes, measuring the flux ratios is up to now a more promising
tool to directly detect the substructure.

To express this last statement in numbers, a typical 10°M(10° M) clump causes
a shift in source position of typically ~ 1 mas(~ 30 mas), whereas it can in principle
change the fluxes by an arbitrary factor. Unfortunately, measuring the fluxes can of-
ten be affected by microlensing (especially optical flux ratios) (Wozniak et al., 2000)
and galactic scintillation (Koopmans et al., 2003). With high-resolution VLBI obser-
vations,however, we will be able to measure the influence of substructure on image
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position in the near future as well and this will offer a more robust method for direct
detection on substructure.

Finally a word on measuring the Hubble constant with gravitational lensing.
Strong lensing can be used to measure the Hubble constant Hj (see Refsdal 1964).
From positions and fluxes of individual images, one can constrain the mass model
of a galaxy and from the measured time delays between the light curves of images,
the Hubble constant can be determined. Since the time delay is proportional to the
gravitational potential 1, the small-scale perturbations due to the substructure in a
lens galaxy change it at only a per cent level. The difficulty, however, lies in con-
straining the smooth mass model of a galaxy. One needs to constrain the average
surface density (k) near the images for which the time delays are measured. These
predictions can vary substantially depending on the assumptions entering the lens
model. At present therefore the way forward is to fix the Hubble constant to the
value from e.g. HST key project and use the time delays to put tight constraints on
e.g. the profile of the galaxy mass distribution.

3.2 Strong lensing by a simulated galaxy

N-body simulations can provide a powerful benchmark for testing the effects of sub-
structure on strong lensing. One can simulate ideal conditions in which propagation
effects of the ISM can be ignored and search for the signature of substructure. The
drawback of this method at present lies in the resolution available for simulations
that include dark matter, gas and star particles. This limits our analysis to mass
clumps of masses > 107 M. However, since the mass resolution is advancing rapidly,
this will soon no longer be a problem.

We use the cosmological N-body simulation data for several realisations of galaxies
including gas-dynamics and star formation (Steinmetz & Navarro, 2003). We invest-
igate two different halos, each of them in three different projections. The simulations
were performed using GRAPESPH, a code that combines the hardware N-body in-
tegrator GRAPE with the Smooth Particle Hydrodynamics technique (Steinmetz,
1996).

In Table 3.1 the properties of the halos are listed. In both cases the original
simulated field contains approximately 300 000 particles. The simulation is contained
within a sphere of diameter 32 Mpc which is split into a high-resolution sphere of
diameter 2.5 Mpc centred around the galaxy and an outer low-resolution shell. Gas-
dynamics and star formation are restricted to the high-resolution sphere, while the
dark matter particles of the low-resolution sphere sample the large scale matter dis-
tribution in order to appropriately reproduce the large scale tidal fields (see Navarro
& Steinmetz 1997 and Steinmetz & Navarro 2000 for details on this simulation tech-
nique). From the original simulated field we take a cut-out cube of size ~ 2003 kpc?
centred on a single galaxy. This area lies well within the high-resolution sphere and
is void of any massive intruder particles from the low-resolution shell.

All simulations were performed in a ACDM cosmology (£ = 0.3, Q4 = 0.7,
O, = 0.019/h%, 0 = 0.9). They have a mass resolution of 1.26 x 10" M, and a spatial
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resolution of 0.5 kpc. A realistic resolution scale for an identified substructure is
typically assumed to be ~ 40 particles which corresponds to 5 x 108M. The quoted
mass resolution holds for gas/stars. The high-resolution dark matter particles are
about a factor of 7 (= Qy/€,) more massive. A detailed analysis of the photometric
and dynamical properties of the simulated halos we used here was carried out in Meza
et al. (2003) for the elliptical and Abadi et al. (2003a,b) for the disc galaxy.

3.2.1 Delaunay tesselation smoothing technique

From the particle distribution, irregularly sampled in the simulation box, we need to
construct the underlying convergence k field. In general, determining a continuous
field from discretely sampled measurement points is a non-trivial process and is often
discussed in various astrophysical applications.

In Bradac et al. (2002) we used a very simple approach, namely smoothing the field
using the Gaussian kernel of a fixed size. Albeit simple, this method did not perform
too well. In the high particle density regions (e.g. close to the central cusp) it smooths
out the overall profile making it more core-like and thus changes the overall strong-
lensing properties of the galaxy. This can be cured by choosing a smaller smoothing
scale; however in this case the shot noise of individual particles is not effectively
smoothed out and can influence the magnifications of a lens substantially (as discussed
in Sect. 3.1). Third, when dealing with disc galaxies we need to be careful not to
smooth out the disc (especially when seen edge on) as the disc contributes to the
small-scale structure in our potential and thus again effects the lensing properties.

Therefore a method is needed that adapts the kernel size and shape in order to
increase the signal to noise of the reconstructed field, while we still represent the
strong lensing properties of the simulation correctly. For this purpose, we make use
of the Delaunay tesselation technique from Schaap & van de Weygaert (2000), (see

Table 3.1: Properties of the two simulated halos we used. z denotes the redshift of
the halo, z, is the redshift of the source. Ny.., Npy, and Ny, are the numbers of
baryonic, dark matter particles and “stars” respectively, present in the cut-out of the
simulation we used (note that even within one family particles have different masses).
M is the total mass of the particles we used.

Halo Elliptical Spiral

2 0.81 0.33

Zs 3.0 3.0
Npar 12000 20000
Npum 17000 26 000
Ngtr 70000 110000
Mot 1.5102M, 0.5 1020,




27

o - RN
R R S
/o 2 Dl A N AN
;o\ \ / A\ R N A N
;o \ VA FANY I I A DA A
/ \ / \ / \/;\/\ \ ‘}/ / A\ \‘
/ < v \ e SO N vl
RN v/ \ NN TN\ /L v
;s ~_ IS IS\ ~\/
/ | P 2 I B PXANN
| PR AN ,J( \ L LTINS == N
\ A
N | . \ VAR N / Ao N
~ 7 \ / )Y N L / ).
N \ / NN D 0 / J
- ~ e \ ~ )
o A e Vv T
\\\\ \ /// \ \\\\\\\\ /// /o,
T \ R
\\ Pl

Figure 3.1: Sketch of dividing up space into Delaunay polygons. The space is divided
into polygons with M + 1 vertices, where M is the dimensionality of the problem. In
this simple case we have M = 2, the space is divided up into triangles (left) such,
that in each circumecircle (right) there is no extra point.

also Lombardi & Schneider (2002) for more detailed explanations).
We decided to use the Delaunay tesselation technique over other adaptive smooth-
ing techniques for the following reasons:

e Neither the shape nor the size of the smoothing kernel is a free parameter. The
method automatically probes the high density regions at the maximum possible
resolution; while it effectively smooths the low density regions, thus minimising
the effects of the shot noise. It is also very successful in recovering anisotropic
features, because the kernel shape is adaptive (in our case this is extremely
important for the simulated disc galaxy we use).

e [t is superior over the adaptive smoothing techniques where smoothing length
depends on the distance to the nearest neighbours. In Delaunay tesselation,
each point is connected to its nearest neighbour by a side in the triangulation.
Delaunay triangulation is a planar graph with at most 3N — 6 edges and at
most 2N —5 triangles in 2-D. Therefore if you want to find the closest neighbour
to each of the vertices, you only have to look at 3N — 6 pairs, instead of all
N(N—1)/2 possible pairs, where N is the number of all vertices. Since Delaunay
Tesselation is itself O(N) routine (Schaap & van de Weygaert, 2000), the full
process performs much faster than conventional adaptive smoothing techniques.

The density estimation then proceeds as follows. We have N simulation particles
(vertices) in M-dimensional space (M = 3). The space is then tiled with polygons
consisting of M + 1 vertices, in our case we are thus dealing with tetrahedra. This
is done in such a way that the circumsphere defined by the vertices does not contain
any extra vertex (see Fig. 3.1 for explanation). For this process we make use of the
QHULL algorithm (Barber et al., 1996).

Having done the tiling, we write down the density estimator p(x;) at each vertex
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Figure 3.2: Comparison of the k maps smoothed using a Gaussian smoothing kernel
characterised by og ~ 1 kpc (left), and smoothed using the Delaunay smoothing
technique (right). Colour coding and contour levels are equal for both panels. One
arcsecond in the lens plane corresponds to approximately 6 kpc.

x; as
m (14 M)

W , (3.8)

pla;) =
where m is the mass of the ¢-th vertex and W, is the sum of volumes of all K
tetrahedra sharing this vertex, i.e. W; = Zngl Vperj- Using the volume W; in the
density estimator guarantees the mass conservation. We need to properly normalise
the estimate by recalling that each Delaunay tetrahedron is used for the density
estimates at 1 + M points, we get the pre-factor in the above expression.
In order to obtain the xk-map on a grid we first interpolate values of the density
at each three-dimensional grid point. Finally, we project the resulting values onto a
two-dimensional grid and scale 3J;; with ¥ for a source at a redshift z; = 3 to obtain
the convergence r;;.1 Since the N-body simulations contain three independent classes
of particles (gas, stars, and dark matter particles, each having different masses), we
perform the procedure described above for each group separately and obtain the final
x map by adding up the contributions from all three classes. The Delaunay tessela-
tion method performs very well in comparison to the standard Gaussian smoothing
technique used in Bradac et al. (2002), or an adaptive Gaussian smoothing technique
(see also Schaap & van de Weygaert 2000). In Fig. 3.2 we show a qualitative result of
both methods. While in the case of Gaussian smoothing we still see the effects of the
shot noise in the outer parts, the parts with high particle density are over-smoothed,
the steep profile became shallower (compare the contour levels between left and right
panel). This is not the case for the smoothing using Delaunay Tesselation.

'For distance calculations throughout this chapter we assume for simplicity an Einstein-de-Sitter
Universe and the Hubble constant Hy = 65 kms~! Mpc~!.
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3.2.2 Estimating the noise properties

A drawback of using the Delaunay tesselation method is that the noise evaluation for
the final surface mass density map is non-trivial. For example, with a Gaussian kernel
one can get an estimate for the noise by simply looking at the number of particles
in a smoothing area (for a more detailed estimate, see Lombardi & Schneider 2002).
When using the tesselation technique, such an approach is not viable.

One possible approach for estimating the error is to use the bootstrapping tech-
nique (see e.g. Heyl et al. 1994). Ordinarily we calculate physical properties (e.g.
r-map) by using all N particles from the simulation. In order to create a bootstrap
image one has to randomly select N particles out of this simulation with replacement;
i.e. some of the particles from the original simulation would be included more than
once, some not at all. In other words, we randomly generate N numbers from 1 to N
and they represent the bootstrapped set of particles. E.g. if a particle is included x
times in a bootstrapped map, we put a particle at the same position with x times its
original mass. After creating an ensemble of such images and calculating the desired
physical quantity for each of them, one can then make an error estimation.

A problematic issue in our case is the creation of an ensemble of k-maps from the
bootstrapped images. Whereas the tesselation itself is done very quickly, the inter-
polation of density on a grid is a slow process. For each tetrahedron we need to find
all grid points (in 3-D) that belong to the tetrahedron and estimate the contribution
to its density by linear interpolation. Since the number of grid points needs to be
large to retain the resolution, the process is computationally expensive. We therefore
limit ourselves to 10 bootstrapped maps, as described above, and compare them with
the original maps. We perform this analysis for the elliptical halo only, because it is
computational expensive and we do not expect systematic differences.

For each pixel ¢ we calculate the associated error using

2 1 q 2
o (ki) = 0-1 D (k= (ki) (3.9)

where (k;) is the average value of k at pixel ¢ averaged over all ¢ = @) bootstrapped
maps; in our case () = 10.

This procedure gives us an estimate for the error on x. Within the critical curves,
i.e. k2 0.5 the average noise o(k;)/ (k) is of the order of < 5%. We will return to
this bootstrapping technique later on in this chapter.

q=1

3.2.3 Strong lensing properties

Having obtained the xk-map, we then calculate the lens properties on the grid (2048 x
2048 pixels). The lensing potential 1 (and therefrom all the lensing properties) can
be calculated directly by performing the integration in (2.10). This is however time
consuming.

A far better approach is suggested by the fact that a and 1 are convolution-type
integrals over k. In Fourier space, the differentiation by x; is replaced by multiplic-
ation by —ik; and therefore Eqs.(3.5),(3.6), (3.7) are easy to deal with. In practice
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Figure 3.3: The magnification map of the simulated elliptical (a) and edge-on spiral
(b) galaxy. External shear is added in the evaluation of the magnification map to
account for neighbouring galaxies (see text). Lighter (red) regions represent high
magnifications. The units on the axes are arcseconds, one arcsecond in the lens plane
corresponds to approximately 7 kpc in (a) and 5 kpc in (b).

one thus performs the Fourier transformation on x and therefrom obtain the Fourier
transforms of the potential 1) by simple multiplication for k # 0. For k = 0 the ¢ is
undetermined, however since this corresponds to a constant in ¢ it is not important
(a constant in ¢ does not change 7, k or &) and can be set to zero.

From this point one can proceed in two ways. One can calculate the two com-
ponents of the shear 7,2 and the deflection angle a by multiplying the potential
in Fourier space by an appropriate kernel. However, since we calculate the Fourier
transform of the potential on a grid with cells of finite size, we effectively filter out
high spatial frequency modes. By multiplying the transform with different kernels for
7,2 and o, these final maps do not necessarily correspond to the same x map. The
effect is in most cases very small, but as we approach the critical curves it influences
the calculations of image positions and fluxes substantially. Therefore, it is better to
only calculate the lens potential ¢ in the Fourier space and obtain the lens properties
by finite differencing of ¥ in the real space. The latter method is also less CPU-time
and memory consuming.

We perform the transformation by the DFT (Discrete Fourier Transformation)
method. In the definition of Fourier transform the integrals extend over the whole
R? space; therefore we can use the DFT provided s decreases “fast enough” toward
the boundaries of our field. Further, the discrete Fourier transform & is in fact the
periodic continuation of the mass distribution in the real space. As a consequence the
calculated lensing properties are the properties of the considered mass distribution
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plus all its periodic continuations. In order to reduce these periodic effect, padding
was introduced. More precisely, the DFT was performed on a 4096 x 4096 grid,
where one fourth of the grid contains the original x map and the rest is set to zero.

Finally, if we calculate ¢)(z) from (k) via the inverse Fourier transform, we get
a potential that does not correspond to x but rather to x — k, where & is the average
value of xk on the grid. This is due to the fact that when we calculate & from x on
a grid using the discrete Fourier transform we in fact calculate the transform of
plus all its periodic continuations in x-space. A periodic mass distribution with all
elements having a positive total mass will have an infinite mass and as a consequence
a diverging deflection angle. Therefore at the end, one has to add a term 7 |2|* /2 to
the potential ¢(x).

The biggest advantage of performing the calculation of ¢ in Fourier space is that
the calculations can be performed using Fast Fourier Transform (FFT) routines. This
also allows us to choose large field sizes and large number of grid points. For the
practical calculations, we use the publicly available C library FFTW (“Fastest Fourier
Transform in the West”) written by Frigo & Johnson (1998).

The simulated galaxy is a field galaxy. However, most of the lenses in quadruple
image systems are members of groups. To make our simulated galaxies as closely
related to realistic systems as possible, we add external shear to the Jacobi mat-
rix (evaluated at each grid point). The shear components were the same for each
projection and all halos, and chosen to be

W= —0.04, 5= -0.16;

they correspond to the shear of the best-fit singular-isothermal ellipse model with
external shear for the lens B1422+4-231 in Bradac et al. (2002). Figure 3.3 show the
magnification maps of the elliptical and edge-on spiral galaxy. The corresponding
caustic curves (for a source at z; = 3) were obtained by projecting the points of
high magnification from the image plane to the source plane using deflection angle
information. The critical curves are plotted in red in Fig. 3.3a for the elliptical and
Fig. 3.3b for the edge-on spiral galaxy. The corresponding caustic curves are plotted
in Fig. 3.6a and 3.9c respectively.

Four-image systems of N-body simulated galaxies

Finally we generate different four-image systems using individual simulated galaxies.
For each halo and projection direction, regions in the source plane where five images
form were determined. At first glance this seems to be straightforward, all you need
to do is look for all solutions 8; of the lens equation (2.2) belonging to the source
position B3, thus in other words simply solve the equation

18(6:) — B, =10, — a(8,) = B.)> =0, (3.10)

Since 0; enters the equation in a non-linear manner, more than one solution is possible,
giving rise to the multiple images as we mentioned before. No robust algorithms are
available to deal with problems of this sort in general, and therefore there is no
guarantee of finding all solutions (and the number of them).
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The best guess one can make is to scan the grid of solutions. In the context of
lensing the grid search method has been described by Blandford & Kochanek (1987).
For this method one defines a grid in the image plane (m,n) with positions 6,, ,, and
each grid point is projected back onto the source plane using the lens equation (2.2),
yielding B3(0,,). For each grid point we now define two triangles with vertices (m, n)
(m+1,n) (m+1,n+1)and (m+1,n+1) (m,n+1) (m,n) respectively. These two
triangles, when projected back, correspond to two triangles in the source plane. Each
grid point in the source plane that lies within the projected triangle gets assigned
the label (m,n). After the whole lens-plane grid is transformed, points in the source
plane get assigned one or more labels (provided the physical size of the lens plane grid
has been chosen large enough), their number corresponding to the image multiplicity
for this source position. Labels (m,n) also correspond to the approximate image
positions 6, ,,.

Since we are only interested in the four image systems (i.e. those that have fold
and cusp configurations), we choose all the source positions with image multiplicity
of five. Namely, what are called quadruply imaged systems are actually five imaged
systems. However the fifth image is in most cases highly demagnified and escapes the
observations. The approximate image positions provide the initial conditions for the
MNEWT routine from Press et al. (1992), which is used to search for the roots of
equation (3.10). Because the deflection angle needs to be defined for arbitrary 8, we
need to make use of interpolation. We use bilinear interpolation and bicubic spline,
and both methods give comparable results. Once we have the image positions, the
magnification factors are calculated and the four brightest images are selected; these
then represent the “observable” images.

3.2.4 The importance of baryons

As mentioned above, the effect of baryons is very important in lens galaxies. Since we
are interested in the effects of substructure, it is desirable to use N-body simulations
that have the highest possible dynamical range in density. At present this is achieved
in high-resolution N-body simulations that only include dark matter. However, if
baryons are not included, the central regime of the lens potential is more shallow
than what is typically observed in lens galaxies. All quadruply-imaged systems for
which the inner slope of the mass distribution has been measured, are well described
by a total mass density profile ~ =7 with 7 ~ 2 (Kochanek, 1995; Cohn et al., 2001;
Treu & Koopmans, 2002a,b; Koopmans & Treu, 2003; Treu & Koopmans, 2004),
consistent with the combined mass distribution of dark matter and baryons seen in
the simulations. Hence, dark matter-only simulations do not accurately represent
the overall properties of lens galaxies, and instead we need to use hydro-dynamical
simulations.

To investigate the importance of baryons we simulated an elliptical halo using only
dark matter particles and performed the same lensing analysis as described above. We
project the density distribution approximately along the long axis of the halo, thus
maximising the central density. In Fig. 3.4 we show the corresponding caustic curves
for the halo simulations; in (a) the simulation includes baryons (DM+B), in panel (b)
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Figure 3.4: The caustic curves of two simulated galaxies. For panel (a) we use
the simulation which includes baryonic and dark-matter particles, whereas for panel
(b) the simulation includes dark-matter particles only. The radial caustic for the
dark-matter only simulation is almost entirely enclosed within the asteroid caustic,
prohibiting formation of quadruply-imaged systems with cusp images. For simulation
which include baryons the radial critical curve is located close to the galaxy centre,
thus the corresponding caustic would lie well outside the asteroid caustic.

we use the DM-only simulation (DM). The radial critical curve in the DM+B halo
is located close to the galaxy centre and is not well resolved (but also not important
for our purposes) - the corresponding caustic is therefore not plotted.

The two caustic curves are very different, indicating very different overall strong
lensing properties of these two simulations. Whereas the DM+B simulation has
a steep inner mass profile (very close to singular isothermal), the DM simulation
has a caustic configuration typical for a lens with a shallow density profile (see e.g.
Wallington & Narayan, 1993). The radial critical curve is smaller compared to the
DM+B halo and the corresponding caustic curve is almost entirely enclosed by the
asteroid caustic. The prominent naked cusp region is a three-image region. This
configuration is extremely rare, if not absent among the observed lensed systems. For
a source located in such a region one observes three highly magnified images. There is
only one possible example of a triply imaged quasar out of ~ 50 doublets and triplets
(Evans & Hunter, 2002), APM 0827545255 (Ibata et al., 1999). The vast majority of
systems similar to B1422+231 can not be generated by such a potential. We conclude
that baryons have to be included in the simulations, and we use in the rest of this
chapter DM+B simulations only, discussing their limits where necessary.
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3.3 Cusp relation in N-body simulated galaxy

In the previous section we have discussed a method to generate synthetic four-image
systems from N-body simulations. There are three basic configurations of four image
systems as presented in Fig. 2.2: the fold, cusp, and cross configurations. They
correspond to a source located inside the asteroid caustic, close to a fold (dark blue
source in the lower panel of Fig. 2.2), a cusp (dark blue source in the upper panel) or
near the centre (green source) respectively. Analogous to classical geometric optics,
images form at the local extrema of the Fermat potential ¢ (see Eq. 2.17 and Fig. 2.4).
In a four-image system (with a generic elliptical lens) two images form at the minima
and two at the saddle points of ¢. A minimum thus has positive parity, i.e. © > 0
and a saddle point has negative parity p < 0. If the lens has a non-singular mass
distribution or mass-distribution more shallow than isothermal at the centre, the fifth,
highly demagnified image would correspond to a maximum. All configurations have
been observed, and even though one would naively think that fold and cusp images
are rare among observed lenses, they are in fact frequently observed due to the large
magnification bias in flux-limited samples. In this section we will mainly concentrate
on cusp image configurations.

The behaviour of gravitational lens mapping near a cusp was first studied by
Blandford & Narayan (1986), Blandford (1990), Schneider & Weiss (1992), and Mao
(1992), who investigated the magnification properties of the cusp images and con-
cluded that the sum of their signed magnification factors approaches zero as the
source approaches the cusp. For completeness we repeat here the equation (2.19),
namely

Rcusp - |NA + IUB + ,uC| - 07 fOI‘ ,U/tot — 0 9
|al =+ lus| + [pucl
in which g is the unsigned sum of magnifications of all four images, and A, B and
C is the triplet of images forming the smallest opening angle 0,pen - see Fig. 3.5. The
opening angle is measured from the galaxy centre and is the smallest angle that is
spanned by the two images of equal parity. The third image lies inside this opening
angle.

3.3.1 The cusp relation of an N-body simulated elliptical galaxy

The cusp relation (3.3) is an asymptotic relation and holds when the source ap-
proaches the cusp from inside the asteroid. One can derive the properties of lens
mapping close to critical curves using a Taylor expansion of the Fermat potential
around a critical point (see e.g. Schneider & Weiss 1992). Such calculations are very
cumbersome and therefore it is difficult (if not impossible) to analytically explore the
influence of arbitrary substructure. In practice, we can numerically calculate Rc,qp
for the N-body simulated systems. Smoothing the original x-map on different scales
then gives an indication of the influence of substructure of different length or mass
scales on Reysp-

The three cusp images [designated as A, B and C in (2.19)] are chosen according
to the image geometry. Since we know the lens position, this procedure is straight-
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Figure 3.5: A lensed image configuration of a compact source close to a cusp caustic
(left) and a fold caustic (right) of a typical non-singular elliptical lens. The panels also
show critical curves (red) and the opening angle ,pe,. In gray scale the convergence
k is plotted.

forward and foolproof. We identify the triplet of images belonging to the smallest
opening angle (described above). Since we know the image parities and magnifica-
tions, one is tempted to identify the three brightest images as the cusp images and
assign different parity to the brightest one than to the other two (e.g. as in Méller
et al. 2003). However, due to the presence of shear and substructure this could lead
to misidentifications.

Figure 3.6a shows the caustic curve in the source plane for the simulated elliptical
at a redshift of z; = 0.81. The source is at a redshift of z; = 3. Approximately
30000 independent lens systems are generated with source positions inside the aster-
oid caustic. Reugp is plotted in colour. The apparent discontinuities originate from
different image identification. In the very centre of the caustic the meaning of “cusp
image” is ill defined. As the source moves in the direction of the minor or major axes
we chose different triplet of images to calculate R, and therefore the discontinuity
arises.

The remaining panels of Fig. 3.6 show the effect of smoothing the small-scale
structure in the surface mass density x map with Gaussian kernels characterised by
standard deviation og. The values for og were chosen to be o ~ 1,2,5 kpc for
panels (b), (¢) and (d) respectively. Note that we do not smooth the xk-map directly.
First we obtain the smooth model Kgyo0tn for the k-map by fitting elliptical contours
to the original map using the IRAF.STSDAS package ellipse. We subtract Kgmooth
from x and smooth the difference using different Gaussian kernels. We then add the
resulting map back to the Kgnootn. In this way the overall radial profile of the mass
distribution is not affected.

The effect of smoothing on the cusp relation is clearly visible. In Fig. 3.6d one
sees that the substructure is completely washed out when smoothing on scales of
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Figure 3.6: The cusp relation R, for the N-body simulated elliptical galaxy at a
redshift of z; = 0.81. The sources were put at a redshift of z; = 3 and approx. 30000
source positions that lie inside the asteroid caustic were used. R, is plotted in col-
our, for sources close to the cusp the smooth models would predict Reysp ~ 0 (i.e. red
colour). The deviations are due to the substructure. Due to magnification bias most
of the observed lenses correspond to the fold and cusp configurations. Discontinuities
in the maps arise when the source moves in the direction of the minor or major axes,
since a different triplet of images needs to be considered to calculate Rc,sp. On top we
plot the caustic curve. Panel (a) shows R, for the original image, whereas panels
(b)—(d) show the cusp relation for the models where we additionally smoothed the
substructure (see text) with a Gaussian kernel characterised by standard deviation
og ~ 1kpe (b), og ~ 2kpc (c) and o ~ 5kpe (d).
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Figure 3.7: A sketch of a formation of a swallowtail. A local region of the lens plane
gets pleated and projected onto the source plane forming a swallowtail (blue) - from
http://mathworld.wolfram.com.

oc ~ b kpc is applied. As we go to smaller smoothing scales, the effects of substruc-
ture become clearly visible. The caustic structure in Fig. 3.6a shows swallowtails, a
singularity of the lens mapping, presented in Fig. 3.7 (note that they are “thinner” in
Fig. 3.6a and thus seen mostly as lines close to a fold). In their extension there is a re-
gion where the cusp relation is strongly violated (with Reysp ~ 0.6, where the smooth
model predicts Reusp < 0.1). However, further out, a swallowtail can cause the cusp
relation to change the trend and go to zero (due to high-magnification systems being
formed in such region).

Finally, the cusp relation behaves differently for the source on the major or the
minor axis (see especially Fig. 3.6d). This is a generic feature for smooth elliptical
models and can easily be calculated for e.g. an elliptical isopotential model (see
e.g. Schneider et al. 1992). We use this model since it is analytically tractable for
source positions along the major and minor axis. In Fig. 3.8 we plot the cusp relation
for the source moving along the major (minor) axis as a thick (thin) solid line for
the elliptical isopotential model with ¢ = 0.15. As the source approaches the cusp,
Reusp — 0 for both source positions, however the slope is different. We also plot the
total magnification factor of the three cusp images, i.e. paiprc = |pual + |ps| + |uc|
as a thick(thin) dashed line.

3.3.2 The cusp relation in an N-body simulated disk galaxy

The procedure described above was applied to three different projections of the el-
liptical halo and very similar conclusions can be drawn. Another question is how
much these conclusions depend on the specific morphological type of the galaxy. To
investigate this, we follow a similar procedure for a simulated disk galaxy.

In this case, however, we do not look at the effects of additional smoothing. It
is difficult to subtract a smooth mass model, since the galaxy consists of a bulge,
warped disk and extended halo, which can not simply be fitted by ellipses. If we were
to smooth the edge-on projection with a Gaussian kernel, we would also wash out the
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cusp

Figure 3.8: R..sp for a simple elliptical isopotential lens model with € = 0.15. Reygp
is plotted as a thick (thin) solid line for sources along the major (minor) axis. Gpen
represents the angle measured from the position of the galaxy, spanned by two “outer”
cusp images (A and C). The opening angle m means that the source is located at the
centre (images A, C and the galaxy lie on the same line). When the source approaches
the cusp, Oopen — 0. The total magnification for the three cusp images pai+pic is
plotted as a thick (thin) dashed line for sources along the major (minor) axis.

(in our case warped) disc. We only include the analysis of the cusp relation for this
halo only to show the effect of the disc on Reygp.

Figure 3.9 shows the cusp relation of an N-body simulated disk galaxy in three
projections. The disc clearly plays a role for the edge-on projection (see Fig. 3.9b,c),
whereas the face-on projection is similar to the elliptical galaxy. Especially in Fig. 3.9c¢,
where the disc extent in projection is smaller than the typical image separation, the
cusp relation in the upper-right and lower-left cusp is strongly violated. This direction
corresponds to the orientation of the disc.

3.3.3 Observed cusp relation

Unfortunately the number of observed systems is not large; seventeen four-image
systems have been published (see Keeton et al. 2003 for a summary), and four of them
are believed to show a typical cusp geometry (see Table 3.2). Even so, a comparison
between these observations and our simulations can be made.

Note that the relation (3.3) is model independent and can only be broken in
the presence of substructure on scales smaller than the image separation. Hence,
if a smooth model provides an adequate description of the lens galaxy, one expects
Reusp ~ 0 for these lenses. This is clearly not the case and it is therefore difficult to
explain their flux ratios with simple, smooth mass models.

If we make a comparison with simulations, one can see that the pattern in Fig. 3.6d
clearly does not explain the observed Ry, of these four lenses. On the other hand,
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Figure 3.9: The cusp relation for the N-body simulated spiral galaxy at a redshift of
z1 = 0.33. The source was put at a redshift of z;, = 3 and approx. 10000 0 source
positions that lie inside the asteroid caustic were used. R, is plotted in colour.
On top we plot the caustic curve. Panels (a), (b), and (c) show three different
orthogonal projections of the halo, (a) corresponds to the face-on, (b) and (c) to the
edge-on projection. Panel(c) corresponds to the magnification map in Fig. 3.3b.
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substructure on few kpc scales and below provides enough perturbations to explain
the observed values of Reysp.

The question arises, however, whether we can conclude from the value of Ry
that we indeed see the effects of CDM substructure. Keeton et al. (2003) argue that
the cusp relation alone does not reveal anomalous flux ratios in B1422+231. Still,
detailed modelling for this system shows that the flux ratios are anomalous. The
difficulties in modelling B1422+231 are not only a consequence of a violation in cusp
relation, but also that image D is a fainter than predicted from smooth models. On
the other hand, the simulated disk galaxy shows violation of R..s, even though there
are no clear mass clumps present in the region where images are formed. Hence one
has to be cautious when making conclusions about the presence of CDM substructure
based on the value of R, alone.

3.3.4 The influence of noise in simulations on the cusp relation

The simulated cusp-relation can be reliably compared with observations only if we
know the noise properties (i.e. fluctuations in the potential due to the finite number
of particles) of our simulations. The effects of noise and physical substructures need
to be disentangled.

From the bootstrapping procedure (Sect. 3.2.2) we also get an estimate of the
rms fluctuations in R,sp. We estimated the rms on Rc,sp using a similar technique
as for k in (3.9). We do not perform the analysis directly in the source plane by
subtracting the maps pixel-by-pixel. The problem is that bootstrapping somewhat
changes the shape of the caustic curve (see also Fig. 3.11). Since we never observe
the source plane directly, we can not distinguish between two shifted, but identical
caustics. We therefore have to match different bootstrap maps in the image plane.
We compare the image positions generated by each source in the original frame with
those generated by bootstrapped lenses. Thus for each source position in the original
map (see Fig. 3.6a), we search for the source position in the bootstrapped map such
that the four image positions from both maps differ as little as possible.

In principle, one can redo the ray-tracing and calculate image fluxes for the posi-
tion in the original map using the bootstrapped-lens properties. However this is not

Table 3.2: The values for R, taken from Keeton et al. (2003) for four lens systems
showing a typical cusp geometry.

Lens Rcusp

B2045+4-265 0.52 £0.04
B07124-472 0.26 + 0.06
RX J0911+40551 0.22 4+ 0.06

B1422+231 0.18 = 0.06




41

necessary, since the pixel size in the source plane is small enough and we only need an
approximate error estimate. Figure 3.10 shows the estimated absolute error o(Rcusp.;)
for the elliptical halo from Fig. 3.6a. As described above, each value of o(Reusp.i),
plotted in colour, does not correspond to the error for a source position, but refers to
the error of the system with image positions similar to the original ones 2.

The absolute error becomes slightly larger in the regions of the swallowtails. This
is, however, not the effect of substructure vanishing in individual bootstrapped realisa-
tions. It is rather the effect of slight position changes of individual clumps. If one looks
at the individual caustic curves of bootstrapped halos (see Fig. 3.11) the swallow-tails
are present in all realisations, although they change their positions slightly. Since this
hardly affects the image positions we cannot perfectly match the source positions 4’
with the original source position ¢ in these regions; thus we are overestimating the
true error.

We conclude that the values of R, in the close proximity of the cusp can be as
high as Reusp = 0.6, with the error of £0.1 as determined from the bootstrapping.
Smoothing the substructure on scales as large as ~ 1 kpc does not remove this effect,
but reduces it. This is expected, since smoothing changes the profile of substructures.

Finally, we investigate how well we can sample the smooth mass distribution given
the number of particles in the original simulation. We take an ellipsoidal power-law
density profile following p(r) oc 7=*9. The power-law index was chosen to closely
reproduce the surface mass density s of the simulation which follows k() oc 61
in the vicinity of the critical curve (see Sect. 3.4.1 for more details). The number of
particles we use is the same as in the original N-body simulation. To each particle
we assign the average mass of the original sample, leaving the total mass of the lens
galaxy unchanged. We sample the density profile using a rejection method (e.g. Press
et al., 1992). The resulting particle distribution was again adaptively smoothed using
Delaunay tesselation, and we perform the lensing analysis as in all previous cases.

The resulting cusp relation is given in Fig. 3.12a. We have chosen the profile such
that the particle densities around the outer critical curves are similar in both cases.
Only in that case can we reliably compare the noise properties of R..s,. The fact that
the caustic is larger than in the case of the N-body simulated elliptical halo (compare
to Fig. 3.6a) is here of lesser importance; it arises due the difference in the central
profile, far from the critical curve.

The absence of strong violations of R, close to the caustic in Fig. 3.12 as com-
pared to Fig. 3.6a also confirms that deviation of R..s, from zero is not dominated
by the shot noise of the particles, but is due to genuine substructure in the N-body
simulation. For a more quantitative comparison we show the probability distribu-
tion of Reusp for systems with pey > 20 in Fig. 3.12b as a solid line for the sampled
smooth halo and as a dashed line for the original. The much tighter distribution for
the sampled halo confirms the absence of strong violations of R, in the sampled
smooth halo compared to the original simulation.

Finally we note that by randomly sampling the density profile using rejection

2Note that this is precisely the procedure that is followed in lens modelling when fitting smooth
models to lens galaxies with non-smooth potentials.
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method the noise is Poissonian, i.e. behaving as oc 1/ V/N. In reality, however, studies
of errors of N-body simulations using smoothed particle hydrodynamics (Monaghan,
1992) show that the errors are significantly smaller, and behave as « log N/N. There-
fore our calculations give an upper limit on the expected noise.

This analysis also shows the advantage in smoothing with Delaunay tesselation.
If we only use a Gaussian kernel (of the same size as in Fig. 3.6b), the deviations in
the cusp-relation for the sampled particle distribution are much larger.
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Figure 3.10: The estimated absolute uncertainty o(Reusp;) of the cusp relation, cal-
culated using the bootstrap analysis described in Sect. 3.2.2. Note that the colour
coding has changed as compared with the other figures in this chapter. The errors
plotted for each source position were calculated using the systems from bootstrapped
maps having similar image positions as the system generated by the original lens; i.e.
from Fig.3.6a (see text).

3.4 Saddle point demagnification in N-body simulated galaxy

As we have seen in the previous sections the presence of substructure in the smooth
macro-potential can cause additional magnification or demagnification of images. In
addition, however, these perturbations depend upon the image parity.

It was first noted by Witt et al. (1995) that the expected flux changes due to
stellar-mass perturbers differ between saddle points and minima images. This was
further investigated by Schechter & Wambsganss (2002) who conclude that for fold
images a stellar-mass component added to a smooth mass distribution can cause a
substantial probability for the saddle point image to be demagnified w.r.t. what
smooth model would predict. Whereas the saddle point images (negative parity) can
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Figure 3.11: The original caustic curve (thick line) of the halo from Fig. 3.6a and the
corresponding caustic curves from the ten bootstrapped maps plotted on top (thin
lines).

also become brighter, the probability that they are demagnified is substantially larger
(Keeton, 2003). This effect is referred to as saddle point demagnification.

The saddle point demagnification is observed in many lens systems and is espe-
cially noticeable in the systems showing a fold configuration. For a fold configuration
one expects the two highly magnified images to have the same unsigned magnifica-
tions (in the absence of substructure). In the presence of substructure, this is not
only violated, but in almost all cases the brightest saddle point image is fainter than
the brightest minimum (see e.g. Kochanek & Dalal, 2004).

For these studies it is preferable to use lenses observed in radio frequencies; a
typical quasar is believed to have a much larger radio emission region than its optical
continuum counterpart. For this reason the radio-fluxes are less susceptible to stellar-
mass microlensing which can mimic variations due to the CDM substructure. At
present, there are ~ 20 published quadruply imaged systems, and only a subsample
of them is detected at radio frequencies. Kochanek & Dalal (2004) used 8 radio lenses,
potentially introducing problems of “small number statistics”. However, if the saddle
point demagnification shows up in a large sample of observed lenses (available in the
future), this would be a major step forward in identifying flux anomalies either with
substructure, or with propagation effects. If the observed flux anomalies depend on
the image parity and its magnification we can set limits on the influence of the ISM;
which influence fluxes of e.g. radio observations independent from the image parity.

To further study the effect of the saddle point demagnification, we fit all synthetic
image systems using a singular isothermal ellipse model with external shear (SIE4SH)
(Kormann et al., 1994). We do not include the flux ratios in the fit, since they are
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Figure 3.12: (a) The cusp relation for the smooth ellipsoidal model sampled with
the same number of particles as present in the original N-body simulated elliptical
galaxy. The redshifts of the source and the lens were kept at 2 = 0.81 and z5 = 3.
Reusp is plotted in colour. On top we plot the corresponding caustic curve. The
absence of large fluctuation in R, as compared to Fig. 3.6a shows that the signal
is not dominated by the shot noise of the particles. (b) The probability distribution
of Reusp for systems with juor > 20. The solid line gives the probability distribution
for the sampled smooth ellipsoidal model, while the dashed line corresponds to the
original N-body simulation (cf. Fig. 3.6a).

affected by the substructure. We also keep the lens position fixed. Using only image
positions we have 7 free fitting parameters and 8 constraints. The parameters that we
used are lens strength, two components of the ellipticity of the lens, two external shear
components and the source position. The 4 image positions provide 8 constraints.

3.4.1 Surface mass density profile

We find that the average unsigned magnifications predicted by the SIE4+SH model
are higher than those from N-body simulations. This is true for all systems generated
with the same halo; a consequence of the mass profile being steeper than isothermal
around the typical position where the images are formed.

We have calculated the x profile for the N-body simulated elliptical by fitting it
with elliptical contours. For this purpose we use the IRAF.STSDAS package ellipse.
In the inner region r < 500 pc the profile is very close to isothermal with the slope
—1.0£0.2. In the outer parts the profile becomes steeper than isothermal with slope
—1.9 4+ 0.2. The break radius, where the profile becomes steeper than isothermal, is
smaller than the radius where images form.

We therefore over-predict the magnifications using an isothermal profile. In order
to deal with this problem, one would preferably use a power-law profile with the
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index mentioned above for the lens modelling, instead of SIE. However, these profiles
require the evaluations of hypergeometric functions and/or numerical integrations
(Grogin & Narayan, 1996; Barkana, 1998). Modelling is therefore computationally
too expensive to apply to several 10 000 sources. However, this is not critical, since we
are not searching for the best fit macro-model, but rather pretending that we observe
the systems and try to fit them with the generic model used for many observed
lenses. Since we only observe the flux ratios and not directly the magnifications, it is
impossible to compare magnification factors in practice. Thus one cannot determine
the difference in profiles using only this consideration when dealing with real lens
systems.

3.4.2 Suppressed saddle points

Having obtained the best-fit SIE4SH model parameters for the simulated synthetic
systems we proceed as follows. As in Kochanek & Dalal (2004) we define the cu-
mulative probability distribution of flux residuals C' (< In(fiobs/ttmod)), Where fiops is
the “observed” magnification of a simulated image and fi,,04 is the magnification pre-
dicted by the best-fitting smooth SIE+SH model (as described above). In Fig 3.13a
we plot C' (< In(gobs/tmoa)) for the systems with “observed” total unsigned magni-
fications ot > 20 for the simulated elliptical halo (see also Fig. 3.6a). We choose
systems that have highly magnified images, because they are affected by substructure
the most. We repeat the whole procedure with the same halo, but smoothed on a
scale of og ~ 5 kpc; in this case essentially no difference is seen between images of
different parity, as expected.

For the original halo the cumulative distribution is much broader for the brighter
minimum and saddle point. This is in accordance with the conclusions from Mao &
Schneider (1998); the higher the magnification, the more is the image flux affected by
substructure. Among the two most magnified images, the saddle point is on average
more demagnified compared to the brighter minimum. We have examined the two
other orthogonal projections of the mass density of the same halo and we find that
qualitatively the results do not change with projection.

The effect, however, is not as pronounced as in Kochanek & Dalal (2004). The
reason is two-fold. First, our simulations have a resolution of ~ 10® M, and structure
at this scale and below is suppressed when using Delaunay tesselation. Kochanek &
Dalal (2004), however, used SIS clumps with masses of 10° M. Since these are more
numerous, they can enhance the effect. Further, fitting SIE to the global mass profile
is not fully justified. The mass profile is known only for a handful of observed lens
galaxies. Whereas the lens galaxies in MG1654+4134, MG2016+112, 0047—281, and
B1933+503 have a nearly isothermal profile (see Kochanek 1995; Cohn et al. 2001;
Treu & Koopmans 2002a,b; Koopmans & Treu 2003), the one of PG1115+080 seems
to be steeper (Treu & Koopmans, 2002b). Besides the absence of substructure on
scales < 10® M, our synthetic systems and their modelled quantities closely resemble
the properties of realistic lenses and the way they are modelled.

In the analysis of Kochanek & Dalal (2004) the synthetic images were gener-
ated using an SIE macromodel with SIS substructure. This simplifies the model
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fitting and explains why they get a transition of cumulative distribution exactly at
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Figure 3.13: (a) The cumulative flux residuals for each type of image. Synthetic
image systems were taken from the elliptical halo (see also Fig. 3.6a). Only image
positions from the systems with gy, > 20 generated from the elliptical halo were
fitted using SIE+SH. pops are the magnification factors taken directly from N-body
simulations and piyeq are the ones from best fit SIE4+SH models. (b) The difference
of the cumulative distribution of flux residuals AC (< In(fobs/tmod)) between the
brightest saddle point and the brightest minimum images calculated using the original
halo (solid line with dots, which also indicate the grid points used to evaluate AC),
bootstrapped images (solid lines), and additionally smoothed halo on a scale of o ~
5 kpc (dashed line).

In addition, we have looked at the cumulative flux mismatch distribution in the
bootstrapped maps, to investigate the significance of our results. In the bootstrapped
images we confirm the broader distribution for bright minimum and saddle point im-
ages. In Fig 3.13b we plot the difference of the cumulative distribution of flux residuals
AC (< In(pobs/ ftmoa)) between the brightest saddle point and the brightest minimum
images for the original halo (solid line with dots), bootstrapped images (solid lines)
and halo when additionally smoothed on a scale of o ~ 5kpc (dashed line). Positive
values of AC' thus denote saddle point demagnification. In all bootstrapped images
AC' is positive, except for few points (corresponding to AC (< In(pobs/fmod)) ~ 1).
This confirms that the effect of the saddle point demagnification is present and com-
parable to the original halo, whereas in the smoothed halo this effect is not seen. We
conclude that substructure on mass scales > 108 M, significantly contributes to the
saddle point demagnification.
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3.5 Conclusion

In this part of my thesis we have studied strong gravitational lensing properties
of N-body simulated galaxies. In particular, we concentrated on the influence of
substructure on flux ratios in lens systems with high (unsigned) magnifications. This
analysis is crucial to fully understand the lensing signal that we observe in real lenses
and to disentangle the influence on lensed-image fluxes due to propagation effects in
the ionised ISM and mass substructure.

We have examined two strong lensing signatures of substructure, i.e. the violation
of cusp relation observed in images that show a typical cusp configuration and the
saddle point suppression. The saddle point suppression has been previously studied
using semi-analytic prescriptions of substructure (e.g. Schechter & Wambsganss, 2002;
Kochanek & Dalal, 2004). The effect of substructure on the cusp relation, however,
has up to now not been studied in detail.

To determine the magnitude of both effects we use N-body simulated galaxies. The
difference compared to the works of Schechter & Wambsganss (2002) and Kochanek
& Dalal (2004) is that we are using a representation of substructure that is as realistic
as possible and does not make any assumptions on the mass function and abundance
of sub-halos. The drawback, however, is the resolution of the simulations. We are
therefore not able to extrapolate the analysis to masses < 10 M. Still, the signatures
of both effects are clearly present, and in the future we plan to use higher-resolution
N-body plus gasdynamical simulations to explore their effects in even greater detail.

The main question when dealing with N-body simulations is how much are the
magnification factors, that we use for synthetic image systems, affected by noise
which can mimic substructure of < 108 M. We show that the average relative noise
in the surface mass density o(x)/k lies below the ~ 5% level for x 2 0.25. Second,
in Sect. 3.3.4 we show that the results for R ., are not significantly affected by the
noise, and are dominated by physical substructure. The signal is dominated by several
resolved mass clumps, which in projection lie close to the Einstein radius. Similarly,
in the case of the phenomenon of suppressed saddle points, the bootstrap analysis
shows that the signal is not dominated by noise.

The behaviour of R, for sources close to a cusp is a very promising tool to
detect substructure. Its main advantage is that it makes definite, model-independent
predictions for the image magnifications. These predictions can only be broken in
the presence of structure in the potential on scales smaller than the image separation
or propagation effects. In Fig. 3.6, where we used a simulated elliptical galaxy to
calculate R ., we clearly see these effects. When smoothing the substructure on
larger scales we witness the transition to what is common for generic smooth SIE lens
model.

However, the disk in the disk galaxy can also help to destroy the cusp relation
for sources in the vicinity of a cusp. We have calculated the cusp relation pattern
for the simulated disk galaxy, and even in the absence of obvious substructure in the
form of clumps we can see strong violations of the cusp relation. Since the edge-
on disk gives k-variations on scales smaller than the image separation, violations of
Rusp are expected. However, one cannot conclude from a broken cusp relation alone
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that we observe the signatures of mass substructure in the form of clumps. Since
the observations show that most observed lenses are ellipticals we have concentrated
on this morphology. Despite the apparent simplicity of such lens galaxies, detailed
modelling is required in most cases (e.g. B1422+231) to clearly see the effect.

The phenomenon of suppressed saddle points is a very strong prediction that rules
out a significant influence of the ISM on flux anomalies, if confirmed by other observa-
tions of more lens systems. If flux anomalies depend on parity and magnification, they
must clearly be caused by lensing of galaxies with significant substructure present.
Observations so far show a clear parity dependence, which is more obvious for highly
magnified images.

Finally, our analysis shows that the two brighter images are more affected by sub-
structure than the two fainter ones. We confirm that the brightest saddle point image
in N-body simulated systems has a higher probability to be demagnified, in accord-
ance with predictions from microlensing and from semi-analytic work by Kochanek
& Dalal (2004). It is therefore necessary that all mass scales are properly accounted
for in these calculations, in order to correctly compare observations with theoretical
predictions in detail.

For future work, we plan to study jet curvature using N-body simulations. At
present, there is only one case of a curved jet observed that might be caused by
gravitational lensing (Metcalf, 2002). It will be interesting, however, to investigate
the probability of more of these occurrences. We plan to investigate the signal one
expects on average for multiple-imaged jets; this signal is also less affected by noise
in the simulation and low-mass substructure, since it depends mostly on first order
derivatives of the potential.

In summary, gravitational lensing is a very powerful tool for testing the existence
of CDM substructure. N-body simulated galaxies seem to produce similar effects as
seen in observed lens systems. In addition, systematics on flux anomalies (scatter
broadening, scintillation, microlensing) can be efficiently ruled out or confirmed by
multi-frequency observations of lenses. The statistical analysis of large samples of
lenses can directly probe the properties of CDM substructure in galaxies to a redshift
of z ~ 1. This provides a unique tool to measure the evolution of these structures
with cosmic time, as predicted in the hierarchical structure formation scenario.



Weighing galaxy clusters using statistical
(weak) lensing

Galaxy clusters have been the focus of a very intense ongoing research in the past
decades. As we note in the introduction, the mass distribution of galaxy clusters is
particularly important for cosmological studies because they provide a critical test of
the Cold Dark Matter (CDM) paradigm.

Statistical (weak) lensing offers an extremely useful tool to measure the cluster
mass distribution. Clusters are massive enough to be detected individually by the
statistical weak lensing effect, in contrast to individual galaxies where the combined
signal from an ensemble of galaxies acting as a lens (for an ensemble of sources) is
investigated and only the distribution function of galaxy properties can be inferred.
This technique is also known as galaxy-galaxy lensing and is not a subject of this
thesis.

I will concentrate on the cluster-mass reconstruction method that uses image
distortion information. In the introduction, the theory on how an elliptical source is
transformed under the influence of lensing is explained; in this chapter we discuss the
practical approaches.

The effect of statistical weak lensing has long been known and observed (see Tyson
et al., 1990). However it was only after the pioneering work of Kaiser & Squires (1993;
see e.g. Clowe & Schneider, 2001, 2002 for further applications) that the field began
to flourish. Since then several other mass reconstruction techniques and applications
of weak lensing have been developed (see e.g. Kaiser et al., 1995; Lombardi & Bertin,
1999; Seitz & Schneider, 1997; Bridle et al., 1998; Marshall et al., 2002; Hoekstra
et al., 1998).

The dominant problem one needs to overcome in the case of cluster mass recon-
struction is to separate the distortion effects due to lensing from secondary effects
caused by e.g. light propagation through the atmosphere and through the telescope
optics. This separation can be done by measuring the shapes of the stars in the field,
for which we can assume that they are intrinsically circular. The correction applied is

highly technical and was developed especially for the weak lensing purposes by Kaiser
et al. (1995).

49
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An alternative to using the image distortion is to use the magnification properties
of lensing (see Broadhurst et al., 1995). The local number count of background sources
is directly related to the magnification of the lens, which to first order is given by
142k (for k < 1). As a result, a careful estimate of the local density of background
sources can lead to a direct measurement of the projected density x (see Fort et al.,
1997; Taylor et al., 1998 for reported detections of this effect). In addition, other
methods to measure cluster masses via magnification effects have been proposed (e.g.
Bartelmann & Narayan, 1995 suggested to use the sizes of galaxies at a given surface
brightness as a measure of the local lens magnification). All these methods, however,
require a precise calibration of external parameters, for example the number counts
of unlensed sources, which is very difficult to obtain with desired accuracy (Schneider
et al., 2000). Hence, we concentrate only on methods using image distortions and
discussing the possible use of magnification methods where necessary.

This chapter of the thesis is in large extent published in Brada¢ et al. (2004a).

4.1 Cluster mass reconstruction methods

The basic idea of using image distortions for cluster mass reconstructions was de-
scribed in Sect. 2.3. From the measured image ellipticities one can obtain an unbiased
estimate of the reduced shear by performing ensemble averaging —c.f.(2.31). The re-
duced shear depends on the shear « and the surface mass density x; both can be
iteratively determined. From k one can in principle determine the mass distribution
if there were not for the mass-sheet degeneracy. This very important issue of weak
lensing is described in the next section.

4.1.1 The problem of the mass-sheet degeneracy

Unfortunately, all statistical weak lensing can determine the projected surface mass
density k only up to a degeneracy transformation k — k' = Ak + (1 — \), where \ is
an arbitrary constant. This invariance (first recognised by Falco et al. 1985) funda-
mentally limits the accuracy of cluster mass determinations if no further assumptions
are made. In particular, this transformation leaves the relation between the intrinsic
and observed ellipticity unchanged and therefore it can not be broken by using only
measurements of the distortion of the background sources, if these all lie at the same
distance from the observer.

A naive solution to this problem is to constrain A by making simple assumptions
about k. For example, one can assume that the surface mass density is decreasing
with distance from the centre, implying A > 0. In addition, « is likely to be non-
negative, and so one can obtain an upper limit on A (for k < 1). More quantitatively,
with the use of wide field cameras one might try to assume that k£ ~ 0 at the boundary
of the field, far away from the cluster center. However, if we consider for example
a M, = 10Y° M, cluster at redshift z = 0.2, we expect from N-body simulations to
have a projected dimensionless density of about x ~ 0.005 at 15 arcmin from the
cluster center (Douglas Clowe, private communication). Hence, even with the use of
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a 30 x 30 arcmin camera we expect to underestimate the virial mass of such a cluster
by ~ 20%.

The mass-sheet degeneracy can not be lifted by using the shapes of the background
sources alone (Seitz & Schneider, 1997), and so one needs to make use of additional
information. One promising solution to this problem is provided by the so-called
magnification effect (see Broadhurst et al., 1995). Indeed, as mentioned before the
local number counts of background sources is directly related to the magnification
of the lens, which to first order is given by 1 4 2x. As a result, a careful estimate
of the local density of background sources can lead to a direct measurement of the
projected density s and therefore breaks the mass-sheet degeneracy. However, all
these methods require a good knowledge of external parameters, and the accuracy
needed to break the mass-sheet degeneracy is extremely high and therefore it is more
favourable to use distortion information (Schneider et al., 2000).

Here I focus on the possible methods to break the mass-sheet degeneracy using
both distortion and redshift information of background sources. Seitz & Schneider
(1997) already considered this problem and showed that the mass-sheet degeneracy
can be weakly broken, provided that the probability distribution of the redshifts for
the observed sources is known with good accuracy. Photometric redshifts based on
multi-band photometry can be extremely accurate (see e.g. Benitez, 2000). Hence, it
is sensible to assume that the individual redshifts of all background sources can be
known in weak lensing studies. We make use of this information in order to investigate
to what extent the mass-sheet degeneracy can be broken in practice.

4.1.2 The mass-sheet degeneracy in theory

In the simple case of background sources all having the same redshift, the mass-sheet
degeneracy can be understood just using equations given in Sect. 2.3. Indeed, consider
for a moment the transformation of the potential 1)

(0, 2) —'(0,2) = ?02 + (0, 2) (4.1)

where A is an arbitrary constant. s and v are related to the potential ¢ through its
second partial derivatives (denoted by subscript), namely

K= %(w,n +Y2), 1= %(w,n —22), Y2 =Yz (4.2)
From (4.2) it follows that x transforms as
k(0,2) — K'(0,2) = k(0,2) + (1 =N\, (4.3)
and similarly the shear changes as
v(0,z) — A\y(0,z) . (4.4)

Therefore the reduced shear g(6, z) remains invariant.
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Figure 4.1: The surface mass density x(6) and reduced shear g(#) for a spherically
symmetric power law model with amplitude a and slope ¢g. The models are pair-

wise nearly degenerate, i.e. different mass profiles have very similar reduced shear
(Schneider et al., 2000).

This is in addition presented in Fig. 4.1 on an example of a simple spherically-
symmetric power-law model with

5(0) = a (%) 7 for 0> 05 (4.5)

and having mean surface mass density inside the Einstein radius (k) = 1. In Fig. 4.1
(calculated for fg = 0.5 arcmin) the models with very different slopes ¢ would have
very similar reduced shear and thus we would not be able to distinguish these models
using weak lensing (if all sources would lie at the same redshift, thus reduced shear g
would depend on 6 only).

Seitz & Schneider (1997) have shown that in the case of a known redshift distribu-
tion, a similar form of the mass-sheet degeneracy holds to a very good approximation
for non-critical clusters; i.e. for clusters with |g(8,z)| < 1 for all source redshifts
z. In such a case the standard weak-lensing mass reconstruction is affected by the

degeneracy

(2%(2))
where (Z"(z)) denotes the n-th order moment of the distribution of cosmological
weights. As a result, standard weak-lensing reconstructions are still affected by the
mass-sheet degeneracy even for sources at different redshifts; moreover, simulations
show that the degeneracy is hardly broken even for the lenses close to critical.

In this work we therefore use the information of individual redshifts of background
sources to break this degeneracy. Suppose for simplicity that half of the background
sources are located at a known redshift ("), and the other half at another known
redshift 2(?. The weak lensing reconstructions based of the two populations provides
two different mass maps, #'(0, 2(Y) and (0, 2(?)), leading to two different forms of

Kk — K ~ Mk +
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the mass-sheet degeneracy. In other words, the two mass reconstructions (i = 1,2)
are given by ' 4 ' '
(0, 29) = \Dk (0, 20) + (1 - AD) (4.7)

where we have denoted with x(8, 2(?)) the true projected r of the lens at the angular
position @ for sources at redshift z(¥). Since the transformation (4.7) holds for any 6,
we have a system of equations to be solved for A and A®. The relation between
k(0,21) and k¢ (0, 2?) is known, namely from Eq. (2.26) follows

ke (0, 20 Z(2Y) = ke (0,22) Z(2W). (4.8)

Suppose one measures both «/(0,z") at N different positions 0;, this gives us a
system of 2N equations to be solved for A\ and k;(6;). This theoretically allows us
to break the mass-sheet degeneracy.

It is interesting to observe that this argument only applies to relatively “strong”
lenses. For “weak” lenses, i.e. lenses for which we can use a first order approximation
in k and +, the expectation value of measured image ellipticities is (€(z)) = (8, z).
In such case the degeneracy of the form

»(0,2) = Y'(0,z2) = %02 + (0, z) (4.9)

leaves the observable v(8, z) unchanged. As a result, the method described above
cannot be used to break the mass-sheet degeneracy for these lenses. Only when
the (1 — Z(z)k) term in the reduced shear becomes important and ¢(@, z) can be
distinguished from (0, z) in the (noisy) data, will we be able to make unbiased
cluster mass reconstructions.

The aperture mass measures are very convenient for measuring the weak lensing
signal. A simple form of such measures is the so-called ¢ statistics (Kaiser, 1995),

It measures the difference between the mean surface mass densities in a circle of radius
¥ at position @ and in an annulus between the radii ¥y and 9. As a consequence
it measures the weighted lensing signal (in the weak lensing limit) and can not be
used to determine the true k. Therefore despite the fact that it is not affected by
the mass-sheet degeneracy transformation of the form (4.9), it can not be used for
determining the cluster mass.

The use of individual redshifts of background sources therefore provides the most
direct method to break the mass-sheet degeneracy. The simple argument sketched
above for two redshift planes is therefore considered in more detail in this thesis
and generalised to background galaxies at different redshifts. In this chapter we
use mock catalogues of image ellipticities, generated under optimistic assumptions.
Such an approach allows us to investigate the minimum lensing strength needed in
order to lift the degeneracy in forthcoming observations. As we will see below, this
straightforward method can be successfully used to break the mass-sheet degeneracy
in the strong lensing regime, and is particularly effective for critical lenses. In the
next chapter we describe a new non-parametric cluster mass reconstruction method
and apply the approach of breaking the mass sheet degeneracy to real data.



54 4. Weighing galaxy clusters using statistical (weak) lensing

4.1.3 2 approach

For the purpose of making the mass reconstruction it is very useful to adopt a Bayesian
approach and to write the likelihood function of a given observed configuration of
galaxy ellipticities. Here we will start with the simplest approach. Consider a set of
N observed (complex) ellipticities ¢; and let us assume for a moment that the errors
on their distribution only originate from the intrinsic ellipticity distribution. Each
component of the intrinsic ellipticity distribution is, to a very good approximation,
distributed according to a Gaussian with dispersion ¢ = o= = 0. Under these
assumptions one can define a x? function for the |g| < 1 case through the difference
between the observed ellipticity (in our case ¢;) and the expectation value ¢(8, z)

& e — g(6,2)]
€ — 9
Xalm) =) —— . (4.11)
i=1 €

2

The total intrinsic ellipticity dispersion is 0% = 0% + 04 = 20%. If the cluster mass
distribution is parametrised by a set of model parameters 7, minimising x2, with
respect to these will give a best-fit model to the data. As long as x2, is of the order
of the number of degrees-of-freedom (Ngot = Ng), the model fits the data well.
However, in the regime where the |g| < 1 approximation does not hold, x2, needs
to be rewritten. First, the expectation value of image ellipticities needs to be inserted
from (2.31) and the observed ellipticity dispersion needs to be properly accounted for.

x? is therefore given by

) = e — ()
YA(m) = Z — (4.12)
i=1 i
where
2 2\2 9 2
o = (1= |(e)]") 02 + 0l - (4.13)

However, simulations show that such approach does not give an unbiased result for
critical lenses. This has two main reasons. First, the expression (4.13) is only an
approximation for the true variance, that contains higher (even) order moments of
the distribution of |e*| (Lombardi, 2000). Second and more important, ellipticity
errors are not normally distributed for lenses with large reduced shears, |g| ~ 1 (see
Geiger & Schneider, 1998, Fig. 5). The real distribution of errors are cumbersome to
evaluate, but need to be properly accounted for.

4.1.4 Maximume-likelihood approach

The maximum-likelihood approach is simply a generalisation of the y2-fitting. Indeed
they are the same in the case when ellipticity errors are normally distributed. As I
mentioned above, this is the case only if we work in the regime where the weak lensing
approximation is valid. In the general case, however, the probability distribution of
observed ellipticities needs to be properly accounted for.
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Let us call pes(€®) the probability distribution of intrinsic source ellipticities. For
simplicity and better understanding we will assume here the following truncated Gaus-
sian distribution

1

" 2102 [1— exp(—1/20?)]

S S 2
Pes(€7) exp(—|e*|"/207) . (4.14)
Note, however, that the results in this section are independent of the particular choice

for pes. The observed distribution p.(e | g) is related to the intrinsic one by (see Geiger
& Schneider, 1998)

s d?es
pe(e] 9) = pe(€(e] 9)) || (€1 9) - (4.15)
The Jacobian determinant from the previous equation is given by
2 _ 1 2
o= for gl <1,
q265 leg* — 1]
—-|(elg9) = (4.16)
de (IgP* — 1)*
= for[g] > 1.
e =g

In the weak lensing limit, |g| < 1, the Jacobian determinant is simply unity.
In general, the measured ellipticity €™ will differ from e because of measurement
errors:
€' =e4 €. (4.17)

The error € is a random variable whose distribution depends on the details of the
ellipticity measurement algorithm. In the following, for simplicity we will assume
that € is distributed according to a Gaussian distribution (4.14) with dispersion
Oerr- Note that the actual shape measurement which corrects for PSF smearing (see
e.g. Kaiser et al., 1995) can yield measured ellipticities with |¢™| > 1. In our case,
we write the probability distribution for the measured ellipticities as

wﬁﬂmz/ﬂkmmmkﬁﬂﬁ, (4.18)

where peerr (€°7) is the probability distribution of measurement errors. This convolu-

tion takes into account the aforementioned measurement errors and therefore we do
not need to discard galaxies with |e™| > 1.

The likelihood function L is the product of probability densities for observed image
ellipticities €", and depends on the model parameters m = {m;} through the reduced
shear at the image positions {g;}:

Ng

L(m) = [[pen(e [ 93) - (4.19)

i=1
Here N, is the number of observed galaxies with measured ellipticities €;*. It is more
convenient to deal with the log-likelihood function, defined as

I(m)=—InL(r) = —ilnpe(ei | g) = ili : (4.20)
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By minimising /(7) we obtain the most likely parameters my., given the observations.

For each of the N, galaxies we need to calculate the probability distribution
Pem (€™ | g) [cf. Eq. (4.18)] of measured image ellipticity €/* given the reduced shear g.
The evaluation of the full likelihood function is therefore non-trivial, since /N, integ-
rals need to be calculated. On one hand, we are dealing with two Gaussian probability
distributions for source ellipticities € and the measurement error €. However, the
final measured errors for observed image ellipticities are not distributed according to
a Gaussian in general, since the source ellipticities are first being lensed and only
then the measurement errors are added (i.e. the Jacobian determinant in (4.15) is
not unity).

If the reduced shear is small (i.e. for undercritical lenses), this problem can be
solved by including the measurement errors in the source probability distribution p.s:
in other words, if |g| < 1, the Jacobian determinant is unity and pe(e | ) = pe (€%(€ |
g)) We can therefore interchange the convolution with per appearing in Eq. (4.18)
with the lensing transformation of Eq. (4.15). The calculations are then trivial, since
pes and peerr can be taken to be Gaussians with dispersions 02 and o2 respectively;
hence, we can just use for ps a Gaussian with dispersion o2 + o2

This is, however, not the case for critical lenses. As we mentioned, the approxim-
ate form for the measured ellipticities [cf. Eq. (4.15)] gives biased results for lenses
with a large fraction of background sources having |g| ~ 1. For the same reason,
we should not discard galaxies with |¢™| > 1 without properly accounting for their
removal in Eq. (4.18). Therefore, unless otherwise stated, we will use the probability
distribution for measured ellipticity given in Eq. (4.18). It still does not account for
the measurement errors on the redshifts of background sources, however these are less
important.

4.1.5 Parametric vs. non-parametric reconstruction

In Sect. 4.1.3 and 4.1.4 we have assumed that the lens is described by a family of
models with model parameters m,. The resulting mass-model will therefore depend
upon the special parametrisation we chose in each case, the reconstruction is thus
parametric. This is a drawback with respect to the inversion techniques (e.g. Kaiser
& Squires, 1993) where & is calculated directly by performing a linear inversion of the
~ field which is readily obtained from image ellipticities (for the weak lensing case; it
can, however, also be extended to the non-weak case). These inversion methods for
mass reconstructions are in theory non-parametric; however since a smoothing scale
is needed to obtain e.g. continuous shear maps the methods are not non-parametric
in practice.

In addition, the methods presented in Sect. 4.1.3 and 4.1.4 can easily be improved
by using ‘generalised’ lens models; we will refer to them as non-parametric. The
simplest way is to put the potential ¢) on a regular grid, each pixel value 7, = ¥y
is a free parameter. x and 7 can then be obtained by finite differencing methods.
This method will be described in more detail in Chapter 5. An alternative of putting
a potential on a grid is to use directly k on a grid. However, using the potential is
preferable; since xk and v depend locally on the potential 1) and therefore both can
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be readily obtained. 7, on the other hand, is a non-local quantity of x and can be
calculated from x only if we have an infinite field. Needles to say that this is in
practice not the case.

4.2 Generating mock catalogues for weak lensing

To test whether we can break the mass-sheet degeneracy by using redshift information
on the background sources, we first need to generate a mock catalogue on which the
parametrised model fitting will later be applied.

The general idea of generating the weak lensing catalogues is to assume a back-
ground galaxy population, transform their source ellipticities into image ellipticities
using the lensing transformation (assuming a certain lens potential) and then add
measurement errors on the ellipticities.

In more detail, we proceeded as follows:

1. 2000 galaxies are distributed randomly across the field of 6 x 6 arcmin?, giving

a density of 55 galaxies arcmin 2.

2. The intrinsic ellipticities € are drawn from a Gaussian distribution (4.14) char-
acterised by o = o = 0.15.

3. We draw the redshifts of the background sources from a gamma distribution
(Brainerd et al., 1996)

22

= 2—%))exp(—z/zo) : (4.21)

p(2)

with zo = 2/3; the mean redshift is (z) = 3zp = 2, and the mode is zy04e =
229 = 4/3. For simplicity the corresponding cosmological weights are evaluated
assuming an Einstein-de Sitter cosmology. We put the lens at redshift zq4 = 0.2.
To break the mass-sheet degeneracy one might think it is advantageous to have
a higher redshift lens, e.g. zq4 = 0.4, in which case most of the galaxies lie on the
steep part of the function Z(z) and have a higher scatter of Z; values. However,
this effect is compensated for by the fact that the average reduced shear is lower
for a lens at higher redshift. What further favours the low redshift cluster is
the fact that more galaxies we can observe lie in the background of the cluster,
although this is only a marginal effect.

4. For each galaxy, we evaluate the local shear according to the lens model, its
position and redshift; then we lens the galaxy ellipticities. Note that the po-
sitions of the source galaxies are not transformed, i.e. we neglected here the
magnification effect of the lens.

5. The measurement error €¢" on the observed ellipticities is drawn from the dis-
tribution (4.14) with 0 = 0y = 0.1 and added to the lensed ellipticities.
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6. In most cases we consider measurement errors on the redshifts of the galaxies
to simulate the use of photometric redshifts. These errors are drawn from
a Gaussian distribution with o, = 0.06 (1 + 2z;) (see Benitez, 2000); when
adding the errors we ensure that the resulting redshifts are always positive.

In generating the mock catalogues we have tried to simulate an ideal case, since
we are trying to answer the question of whether and in which situations the mass-
sheet degeneracy can be broken in statistical lensing mass reconstructions. From a
comparison between independent observations of the same galaxies in the COMBO-
17 survey, o >~ 0.1 — 0.15 (for each component of the ellipticity) can be estimated
(Kleinheinrich, 2003). The typical values of o are optimistically ~ 0.2. However
even in a less optimistic case (s = 0.3, 0oy = 0.15) our conclusions are not changed.

4.2.1 Lens models

For transforming source ellipticities to image ellipticities one needs to assume an
underlying mass distribution. As illustration of the method, we assume two simple
lens models; a lens with a constant x and a spherically symmetric lens with isothermal
profile at a large distance. The same models are also used for the maximum-likelihood
minimisation. The model parameters that can vary are the ones most closely related
to the mass-sheet degeneracy transformation.

We consider first the simplest model possible; a constant sheet of mass with ex-
ternal shear (Family I). More precisely, we set k(0) = Cy, 71(0) = Cs, and v,(0) = Cs,
with C; being constants. In this model the convergence and shear for each galaxy
depend only on the redshift of the source and not on its position. Although this model
is unrealistic, it is very useful as a test of our method. It is reasonable to assume that
if we are not able to break the mass-sheet degeneracy in this simple and favourable
situation, it is unlikely that we can break it in more realistic and complicated cases.
This simple model can also be used as an indicator of how strong the lens should be
in order to obtain a reliable estimate for the average surface mass density x across
the field.

The second family we used is a non-singular model that approximates an iso-
thermal sphere at large distances (see Schneider et al., 1992) plus a constant sheet of
surface mass density (hereafter Family II). The dimensionless surface mass density is
given by

1+ 6%/ (20%)

T 32 K1,
(1462/62)

where kg, k1 are dimensionless constants and 6, is the core radius.

When fitting these two models to the simulated data, we vary the parameters that
most closely resemble the mass-sheet degeneracy transformation for the case when
the redshift distribution is not known; i.e. k(@) — «/(0) = \k(60,2) + (1 — \) and
7(0) — +'(8) = Ay(0). These are the scaling of x and « and the constant sheet in
k. In other words, we allow all three constants for model Family I and k¢ and x; in
Family II to vary; the remaining parameters are kept fixed at the values that were
used to generate the data.

K(0/0.) = ko (4.22)
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If the mass-sheet degeneracy is still present, this would show up in the distribution
of the best-fit parameters. Namely, for a single redshift plane we expect a linear
dependence between e.g. x and |y| for Family I. More precisely, eliminating A from
(4.3) and (4.4) we get the correlation:

7'(6) = +'(6) (Kﬁ 1) - <ﬂjj 1) , (4.23)

where quantities with subscript “t” denote the input (true) values. A similar relation
can be derived for the Family II, in the case of kg vs. K1.

In the case of a known redshift distribution for non-critical lenses Eq. (4.6) needs
to be used. The two transformation to consider in this case are

/

v

12

M

(1-A) (Z(2))
20, (4.24)

The correlation is expected to be of the form

/ ~ K Tt — T . .
7(6) = w(6) <mt—<Z<z>>/<Z2<z>>> (ﬁt<Z(2)>/<ZQ(Z)>—1) (4.25)

Note that the mass-sheet degeneracy transformation in (4.24) is only an approximate
relation and has been derived by Seitz & Schneider (1997) for non-critical lenses
only. In the case of a single source redshift the mass-sheet degeneracy transformation
keeps the reduced shear, and therefore the probability distribution of the observed
ellipticities invariant. For the sources distributed in redshift this is however no longer
the case. Thus in principle the mass sheet degeneracy is broken when more than
a single source redshift is used. In practice, however, the effect on the probability
distribution of observed ellipticities is very small. Using simulations we will therefore
test whether the correlation described in (4.25) is still present if we use information
on individual redshifts.

From the discussion in Sect. 4.1.3, it is apparent that galaxies with |g| ~ 1 con-
tribute significantly to the removal of the mass-sheet degeneracy for two reasons:

K~ Ak +

e The dispersion of the observed ellipticities is proportional to (1 — ‘(e>2|)2 [cf.
Eq. (4.13)], and so galaxies with |g| ~ 1 provide more accurate estimates of the
local reduced shear;

e Recalling the argument discussed after Eq. (4.7), galaxies with |g| < 1 present
a simple mass-sheet degeneracy [cf. Eq. (4.9)] which cannot be broken using the
method described here. Therefore one needs the information from galaxies with
lg| ~ 1 to break the degeneracy.

It is important to realize that the likelihood function calculated using (4.18) already
takes into account the first point mentioned above. As a result, galaxies with |g| ~ 1
contribute most to the breaking of the mass-sheet degeneracy, while those with |g| < 1
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do not contribute at all (as sketched in Sect. 4.1.1). It is sensible, therefore, to take
into account this point when using the approximate form of the mass-sheet degeneracy
presented in Eq. (4.6). When calculating moments of distribution of cosmological
factor (Z"(z)), we will use the weighted averaging;

N,
Ne 4, 20
i w2 (4.26)
Dt W

where w; are the weight factors. E.g. if w; = const. is chosen, we recover the results
of Seitz & Schneider (1997).

As mentioned above, however, galaxies with |g| ~ 1 are expected to contribute
more to the signal. Therefore they are expected to play a dominant role in breaking
the mass-sheet degeneracy. For this reason we also use a different weighting scheme
with w; = 1/0? (where o; is the the observed ellipticity dispersion defined in (4.13)).
o; is only an approximation of the true dispersion, however, as we show later it is
adequate enough to describe the approximate behaviour of the mass-sheet degeneracy.
For galaxies with |g| ~ 1 the w; will therefore be larger than for the rest and this
will reflect into a different linear relation between x and v as given in (4.25). In the
following we will investigate both schemes with w; = const. and w; = 1/0? weighting.

(2"(2)) = (2"(2)) =

4.3 Results of the model fitting to the simulated data

For each set of true model parameters my we generate 100 mock catalogues. Using
these, we search for the most likely parameters .« by minimising the log-likelihood
function (4.20). We perform the minimisation with C-minuit (James & Roos, 1975),
a routine which is part of the CERN Program Library. C-minuit is designed to
minimise a multi-parameter function and analyse its shape around the minimum. It
simultaneously makes use of the gradient as well as downhill simplex method.

Despite the robustness of the routine, one has to be very careful when performing
the minimisation, because the function (4.20) has logarithmic singularities for |g| = 1
if ooy = 0 is assumed. If, for a particular parameter set, a background galaxy happens
to have |g| ~ 1, the log-likelihood function (4.20) diverges and the minimisation
procedure has difficulties to “climb” over such regions, possibly leading to convergence
to secondary minima.

In the case of ¢, # 0 this is less likely to happen, as the convolution with peer in
(4.18) is effectively smoothing the probability distribution. Unfortunately the integ-
ration in (4.18) has to be performed numerically. The noise resulting from numerical
calculations is therefore present in the log-likelihood function and the minimisation
routine is not able to search for a minimum, since the function is not smooth. In
addition, the integrations are very CPU time consuming; one needs to perform them
for each galaxy separately. To avoid these problems, we note that function pem (4.18)
depends on three parameters (without a loss of generality we can assume g to be real
and accordingly transform ™). We therefore evaluate p.m on a three-dimensional grid
(with GNU Scientific Library qags routine, http://www.gnu.org/software/gsl)
and use tri-linear interpolation to evaluate the log-likelihood.
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Finally, we stress that the model fitted to the data belonged, for all simulations, to
the same family as the original model used to generate the galaxy catalogue. Although
unrealistic, this assumption allows us to directly compare the deduced parameters
with the original ones, and thus simplifies the evaluation and interpretation of the
simulation results. The free parameters of both models are 7 = {k, v1, 72} for Family
I, m = {Ko, K1} for Family II. As mentioned before, these correspond to the mass sheet
degeneracy transformation for the case where redshift information is not known. By
investigating the distribution of best fit parameters 7 for both models, we can answer
the question of how strong the lens needs to be to lift the abovementioned degeneracy
under idealised conditions.

Family I: Lens model with uniform x and

We first generate mock catalogues using a lens model with constant x and . In
particular we use 73 = 72 = 0.1 (see Fig. 4.2, panel a) and 73 = 72 = 0.2 (panel
b). Ten different values of k ranging from 0.5 to 1.5 were chosen for both sets,
they are given as squares in both plots. For each model we fit 100 simulated mock
catalogues (generated as described above) and we mark with crosses the resulting
best fit parameters (the original values of the parameters are represented as squares).

In bottom panels we plot the relative bias and variance for the recovered values of k
defined as

TR ST R (G S ) S (Y

where we sum over N, mock catalogues and (k) is the mean of best fit values ;. In
order to explore the importance of redshift measurement errors we generate catalogues
with and without redshift errors as described above (in Fig. 4.2 we show only the
latter).

Surprisingly, even for a relatively strong lens with k = 0.5 we are not able to
break the mass-sheet degeneracy with good accuracy. For this model, the relative
error on k is of the order of 20%-40%, which should be considered very large, given
the idealised conditions used in our simulations. Hence, the results of our simulations
suggest that it is wvery difficult to break the mass-sheet degeneracy for non-critical
lenses using shape information only. As expected, for data without redshift errors the
fit slightly improves, although not significantly.

On the other hand, for critical and close to critical lenses, we are effectively able
to break the mass-sheet degeneracy. The surface mass density is well constrained for
k 2 1. The resulting best fit parameters lie along the line calculated using (4.26) and
w; = 1/0? rather than w; = const. For one, this tells us that we still see a (rather
weak) correlation left over from the mass-sheet degeneracy. More importantly, the
results show that galaxies with |g| ~ 1 contribute substantially to the removal of
the degeneracy. If the redshift uncertainty is not added the fit improves and the
constraints are tighter.

Finally, it is interesting to observe that in some cases (e.g. kK =1 and |y| = 0.14)
we obtain biased results if we use p, instead of peerr for calculating log-likelihood (see
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Figure 4.2: Top: Recovered parameter values (crosses) as a result of minimising
the log-likelihood function (4.20). For each of the ten sets of parameters (panel (a)
7 =72 = 0.1, panel (b) 71 = 72 = 0.2) — denoted by squares — 100 mock catalogues
were created using model Family I and the same family was used to fit the data. We
use 3 free parameters (k, 71, and 72) for fitting; we plot k and |y| = /4% + 73. Lines
correspond to the expected mass-sheet degeneracy calculated using the weighting
scheme given by w; = 1/0? (solid lines) and w; = const. (dashed lines) in (4.26).
Bottom: Bias and variance for the recovered values of x for the data described above.

Fig. 4.3). For example, in Fig. 4.3a we use the likelihood function that first convolves
the data with peerr and only then performs the lensing transformation [see discussion
after Eq. (4.20)]. This can severely bias results for lenses where we have many galaxies
for which |g| ~ 1. Note that the expected mass-sheet degeneracy, calculated using
w; = 1/0? in Eq. (4.26), needs to be calculated with oo, = 0, because we are not
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Figure 4.3: Recovered parameter values (crosses) as a result of minimising the log-
likelihood function Eq. (4.20). Panel (a) shows results obtained using p.(e | g) —
Eq. (4.15) — for the observed probability distribution for ellipticities, while for the
panel (b) we use (as in the rest of this Chapter) pem(e™ | g) — Eq. (4.18). For the
parameter set kK = 1.0, 73 = 75 = 0.1 — denoted by a square — 100 mock catalogues
were created using model Family I and the same family was used to fit the data.
Redshift errors were not added. We use 3 free parameters (k, 71, and ~,) for fitting,
here we plot x and |y|. Lines correspond to the expected mass-sheet degeneracy
calculated using Eq. (4.26). We used the weighting scheme given by w; = const.
for the dashed lines. For the solid lines w; = 1/0? was used, however g, = 0 was
employed for panel (a) only. This is due to the fact that we are using p.(e | g) in (a)
for the observed probability distribution for ellipticities, rather than pem(e™ | g).

correctly accounting for the measurement errors in this case.

In addition to the global, mass sheet invariance, there is a local point invariance.
Looking at a single image ellipticity we can not distinguish between g and 1/g*
(Schneider & Seitz, 1995). This invariance is in practice easily broken, either by
assuming a profile or simply by stating that s increases towards the cluster centre (as
is expected from the simulations). Now consider all sources being at the same redshift
and we use the model Family I, i.e. x = const.. The invariance becomes a global
invariance (we can not distinguish between g and 1/g* over the whole field). In this
case the log-likelihood function has two equivalent minima, one corresponding to ¢
and one to 1/g*. However, since we do have the redshift information, this invariance
is broken in most cases.

For our special case with x = 1 and |y| = 0.14 this is not so simple. The average
absolute value of reduced shear for the galaxies is (|g|) ~ 1 and therefore for most
galaxies the two minima lie close together. If the probability distribution of lensed
ellipticities is properly accounted for, the resulting solutions give an unbiased estimate
of the input parameters (see Fig. 4.3b). If this is not the case, as in Fig. 4.3a, the
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results can be biased.

This special case was presented as an extreme example. In reality such lenses
do not exist. However, it clearly shows that critical lenses need to be treated with
caution when using statistical lensing.

Family IlI: “isothermal” lens model

Mock catalogues for Family II were generated using ko = 0.9, . = 1.5 arcmin, and
4 different values of x; ranging from 0.2 to 0.5. We fit these data with the same
family of models and use ko and k; as free parameters; note that we fixed the core
radius to the same value as the original profile. Figure 4.4a shows the results of
log-likelihood minimisation for the data with added redshift errors. Solid and dashed
lines in the figure correspond to the expected mass-sheet degeneracy calculated using
the weighting of w; = 1/0? and w; = const. in Eq. (4.26) respectively; dot-dashed
lines give kg + k1 = const.

Finally we show the bias and the variance of the recovered values for x; in Fig. 4.4b.
When the lens becomes critical, the errors are small enough and we are able to
constrain x; with high accuracy. For these lenses we are therefore effectively able to
break the mass-sheet degeneracy. This result is in accordance with the conclusions
from the constant-lens model.

Surprisingly, for the case kg = 0.9 and x; = 0.2 we do not see the expected mass-
sheet degeneracy, rather, the best-fit parameters lie along the line ko3 + k1 = const.
Likely, this is due to the fact that for this model we have galaxies with |g| ~ 1 close
to the centre, where the surface mass density is x(0) = ko + k1. Since the galaxies
with |g| ~ 1 are the ones that contribute most in breaking the mass-sheet degeneracy,
it is not surprising for this model to see a degeneracy along the line kg + k1 = const.

If we take 6. to be a free parameter in the fitting, we obtain the degeneracy
Ko + k1 = const for all four sets of true model (input) parameters 7. Since 6, is
allowed to vary, it can adjust so that the resulting best-fit model has, for lower values
of kg, lower values of .. The region of |g| ~ 1 is then approximately unchanged as
long as kg + K1 = Kot + Kit-

4.3.1 Ensemble-averaged log-likelihood

It is common to summarise the properties of a distribution in terms of confidence lim-
its. Knowing the confidence limits of the distribution one can than make statements
such as “there is 99% chance that the true parameter value falls within this given
region”. An example of a two-dimensional distribution and the confidence limits is
presented in Fig. 4.5.

Using the log-likelihood function (4.20) we can therefore in principle obtain the
best fitting parameters 7. given the observations and the confidence regions on
these parameters. To obtain the expected errors of parameters obtained from a single
realization of data, one can calculate the ensemble-averaged log-likelihood (to simu-
late e.g. multiple repetition of the measurement of model parameters). Ensemble-
averaging also provides a useful test for the behaviour of the log-likelihood function
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Figure 4.4: (a) Recovered parameter values (crosses) as a result of minimising the
log-likelihood function Eq. (4.20). For each of the four sets of parameters (denoted by
squares) 100 mock catalogues were created . We use model Family IT and the same
family was used to fit the data. The model has 2 free parameters (ko and k1) — see
Eq. (4.22). Solid and dashed lines correspond to the expected mass-sheet degeneracy
calculated using w; = 1/6? and w; = const. in Eq. (4.26) for the weighting scheme
respectively (both almost overlap). Dot-dashed lines are given by ko + £1 = const.
(b) Relative bias and variance for the recovered values of k.

in the asymptotic limit.

The log-likelihood function depends upon the source positions, ellipticities, and
redshifts, as well as the lens properties. Using the true model values (denoted by the
subscript “t”, used to calculate the probability distributions) the ensemble average
quantity (1) is then given by (Schneider et al., 2000)

(I)(m) = ﬁ/dzp(z)/dQQi pt(az‘)/d2€i pe(e) | (), (4.28)

where p(z) is the redshift distribution of the background sources (which is model
independent), p;(8;) is the probability that galaxy ¢ lies at 8; (in our case a constant)
and p(e€;) is the probability for galaxy i to have a measured ellipticity ¢;, given the
true model. The operator in the brackets is understood as

[ﬁl / d:cip(xi)] X(z;) = / dzip(z1) / daop(xy) - - - / deyp(zn) X (2z1,...,25) .

(4.29)
This means that in order to evaluate (4.28) one would need to evaluate an 5 X Nga—
dimensional integral. However, since the log-likelihood function is a sum over all
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contributions /; — c.f. (4.20), the integration operators work term by term, and we in
fact get a sum of Ny, equal contributions. The ensemble-average is thus given by

O =ne [0 [ azp.(c) [ depdelglitm. (4.30)

where ng gives the number of galaxies per unit area, and p.(e|g) is the probability
distribution of lensed ellipticities calculated using lens parameters .

Asymptotically (i.e. when the number of source galaxies N, is very large), the

quantity 2Al, where

Al = (1y(x) — (I)(m) (4.31)
behaves as a random variable following a x3, distribution, where M is the number
of free parameters. In particular, for Family I, where M = 3, we expect 68.3%,
90%, 95.4%, and 99% points within the levels 2 Al = {3.53,6.25,8.02,11.2}, while for
Family II (M = 2) the corresponding levels are 2 Al = {2.30,4.61,6.17,9.21}. It is
interesting to test the behavior of this quantity and the accuracy of the asymptotic
limit in our case. Note that we also do not expect any bias if we are indeed in
asymptotic regime; namely the log-likelihood is by definition asymptotically unbiased.

As shown by Geiger & Schneider (1998), the ellipticity distribution is generally
skewed even for relatively small reduced shears (|g| ~ 0.6); hence, we need to evaluate
all integrations of Eq. (4.30), including the one on €, numerically. The integration has
been carried out using the GNU Scientific library. In Fig. 4.7 we show an example
of the ensemble-average log-likelihood for one set of simulated parameters for model
Family II; the other sets give similar results. We simulated the data using parameters
ko = 0.9 and k7 = 0.2 without adding the redshift errors. This is the extreme case
mentioned above, where the distribution of recovered parameters lies in a very narrow
valley along the line where ko + k1 = const (dash-dotted line) rather than along the
expected mass-sheet degeneracy line (solid line and dashed line for different weighting
schemes). The ensemble-average log-likelihood calculations confirm the anomalous
behavior of the degeneracy.

The 2 Al = 9.21 contour in Fig. 4.7 should enclose 99% of all points. This is not
satisfied in our case; this is mainly due to the fact that we are not in the regime of
the asymptotic limit (seen by the fact that the points in the plot are not distributed
according to a two dimensional Gaussian distribution). On the other hand, we observe
that our results are unbiased and that the data are well described by the probability
distribution pem (€™ | g) given in (4.18) that we use.

4.4 Conclusions

In this chapter we consider a new method to break the mass-sheet degeneracy in weak
lensing mass reconstructions using shape measurements only. A detailed analysis
of this method has shown that breaking the mass-sheet degeneracy is very difficult
even in optimal conditions; arguably, it is extremely difficult in normal observational
conditions.

Our main conclusions are:
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Figure 4.5: Describing a distribution in terms of confidence limits for a two dimen-
sional space of parameters a. If the points in the plot are distributed according to a
Gaussian, 68% of all points should lie in the shaded confidence interval. The shape of
the confidence region is ellipsoidal, which is due to the fact that we are dealing with
Gaussian distribution here. (taken from Press et al., 1992)

1. The mass-sheet degeneracy can be broken by using the redshift information of
the individual sources. However, this is effective for critical clusters only, i.e. for
clusters that have sizable regions where multiple imaging is possible (and thus
perhaps observed). The statistical lensing analysis has to be extended close
to and inside the critical curves of the cluster. In the regions far outside the
critical curve, where weak lensing mass reconstructions are normally performed,
the lens is too weak for the mass-sheet degeneracy to be broken by using redshift
and distortion information only, even when idealised conditions are employed.

2. Using simulations we find that the correlation remaining from the mass-sheet
degeneracy transformation for critical lenses is well described by Eq. (4.6), k —
K ~ Xi+(1=X)(Z(2))/(Z*(2)), where the moments of the cosmological weights
are calculated using w; = 1/0? in (4.26).

3. In order to break the mass-sheet degeneracy with current data it is necessary
to extend the statistical lensing analysis closer to the cluster centre and to
simultaneously perform a weak and strong lensing analysis of the cluster. This
will be subject of the next chapter.

In the next chapter we will describe a method which combines weak and strong
lensing mass reconstruction techniques simultaneously in a non-parametric fashion.
Weak and strong lensing data has been previously combined by e.g. Kneib et al.
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Figure 4.6: Asymptotically, the ensemble-averaged log-likelihood 2Al behaves as a
random variable following a x3, distribution, where M is the number of free para-
meters. If we reached the asymptotic limit (having large enough number of galaxies)
we expect 68.3%, 90%, and 99% points within the levels 2 Al = {2.30,4.61,9.21} for
Family II (M = 2). The ellipse that contains 68.3% of normally distributed data is
shown here dashed. The solid curves with 2 Al = {1.00,2.71,6.63} project onto one
dimensional intervals AA’, BB’, and CC’. These intervals (not ellipses) also contain
68.3%, 90%, and 99% of distributed data and give 1-dimensional confidence intervals
on y-axis parameter (taken from Press et al., 1992).

(2003); however, only the combination of weak lensing signal on scales > 500 kpc with
the strong lensing signal at ~ 100 kpc was taken into account. The non-parametric
statistical lensing reconstruction technique needs to be extended to within the critical
regions, only then the breaking the mass-sheet degeneracy is possible in practice. Such
a method does not rely on any assumption of the parametric form of the potential.
In summary, although breaking the mass-sheet degeneracy has proven to be sur-
prisingly difficult, we have shown that it is in principle possible if one combines
constraints on different scales (note that we assumed the knowledge of the cluster-
mass profile; in practice one obtains the profile by using standard weak-lensing mass
reconstructions). The mass-sheet degeneracy is probably the most severe limit of cur-
rent weak lensing mass reconstructions, and is generally responsible for a significant
fraction of the final error on the “total” mass of the cluster. Hence, breaking the
mass-sheet degeneracy in practice is one of the most important challenges of weak
lensing studies of clusters in the near future and is the subject of the next chapter.
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Figure 4.7: Ensemble-averaged log-likelihood for model family IT with kg = 0.9 and
k1 = 0.2 (square). The elliptical contour gives the difference of ensemble-averaged log-
likelihoods with a level of 2 Al = 9.21. In contrast to previous figures, 1000 recovered
model parameters are plotted as dots and kg+k; vs. Ky is plotted (note the small range
on y axis). The solid line gives the expected mass-sheet degeneracy line calculated
with w; = 1/02 in Eq. (4.26) and the dashed line is calculated with w; = const. (both
almost overlapping). The dash-dotted line is given by k¢ + £ = const.



Strong and weak lensing united |: Cluster
mass reconstruction using combined strong
and weak lensing

In this chapter we develop a new cluster mass reconstruction technique using com-
bined strong and weak lensing. Such a method is applicable to many known clusters
that show highly distorted images, i.e. arcs. With upcoming higher resolution obser-
vations their number will increase substantially (see Fig. 1.2 for the first example of
cluster being imaged with the new ACS camera).

We have shown in the previous chapter that the main limitation for a precise
weak lensing mass-estimate is the mass-sheet degeneracy. The transformation of the
surface mass-density K — k' = Ak + (1 — A), where A # 0 is an arbitrary constant,
leaves the observable g unchanged in the absence of redshift information. We show
that this degeneracy can be lifted using information on individual source redshifts
and by extending the weak lensing reconstruction to the critical parts of the cluster.
However such a reconstruction has proven to be surprisingly difficult.

In order to successfully perform the cluster mass reconstruction in practice we
need to include additional information to the weak lensing data. The most natural is
to use strong lensing (i.e. multiple image system) information. Since we have shown
that we need clusters which have critical regions to break the mass-sheet degeneracy,
it is very likely that these clusters will also show observable multiple image systems.

Only a combination of strong and weak lensing might be the key to success.
Note that a single multiple-image system does not by itself break the degeneracy,
since the transformation does not affect the image positions (and the same is true
for the magnification ratios). However with (even a single) multiple image system
with known redshift of the lens and the source we can determine the enclosed mass
within the Einstein radius, giving less freedom for the weak lensing constraints. We
perform a reconstruction of the gravitational potential v, since it locally determines
both the lensing distortion (for weak lensing) as well as the deflection (for strong
lensing). The method follows the idea from Bartelmann et al. (1996); Seitz et al.
(1998). TIts novel feature is that we directly include strong lensing information and
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the weak lensing reconstruction is extended to the critical parts of the cluster. We
also include individual redshift information of background sources as well as of the
source(s) being multiply imaged.

The results of this part of the thesis are currently in preparation to be submitted
to A&A (Bradac et al., 2004b).

5.1 The cluster mass reconstruction methods

The idea of combining strong and weak lensing constraints is not new, it has been
previously discussed by Abdelsalam et al. (1998); Kneib et al. (2003); Smith et al.
(2004) and others. The method presented here has however some important advant-
ages. E.g., in Abdelsalam et al. (1998) the authors reconstruct the pixelized version
of the surface mass density k. We argue, however, that using the potential v is fa-
vourable, since k, v, and a locally depend upon the potential ¢ — c.f. (2.11), (2.13),
(2.9) — and all can be readily obtained. 7 and a on the other hand are a non-local
quantities of x and can be calculated from s only if we have an infinite field. If a
finite field is used, one usually employs Fourier analysis and in this case v in fact
corresponds to original x and all its periodic continuations.

Further, even though not easy to implement, we decided to keep the parametrisa-
tion of the mass-distribution as general as possible. In Kneib et al. (2003) and Smith
et al. (2004), on the other hand, the strong and weak lensing constraints were com-
pared in Bayesian approach in the form of parametric modelling (c.f. Sect. 4.1.5). In
addition, the weak lensing constraints were not used to the very centre of the cluster
and individual redshift information was not included.

5.1.1 The outline of the method

Following the idea of Bartelmann et al. (1996) we parametrise the cluster mass-
distribution by the values of a potential 1, on a regular grid. We determine x, ~, and
a on a grid by replacing derivatives in (2.11), (2.13), and (2.9) with finite differencing
method. Finally we evaluate (@), v(6), and a(8) at any position in the image plane
0 using bilinear interpolation. The reduced shear ¢(0;,z;) at each galaxy position
0; and redshift z;, as well as the deflection angle a(8,,, z5) at the positions 6,, and
redshift z corresponding to the multiple-image system can thus be readily evaluated.
We define a x2-function as follows

X (k) = X2 (Wr) + X3 (Ve) + nR(Ur) - (5.1)

X2(¢r) contains information from statistical weak lensing, whereas in x%;(¢x) we
include the multiple imaging properties. R(1y) is a regularisation term multiplied by
the regularisation parameter n. The regularisation is a function of the potential and
disfavours any small-scale fluctuations in the potential.

The method described in Bartelmann et al. (1996) minimises the x?(¢3) w.r.t.
the parameters ¢, using standard numerical routines. However, if the number of grid
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points is large such an approach is not practical. We intend to solve the following
system of equations

NEW) _ (5.2)

Oy,

This is in general a non-linear system of equations (as will be shown in Sect. 5.1.3). We
linearise the equations in terms of 1, and keep the terms not linear in ¢, fixed at each
iteration step. Before each iteration these terms are “updated” with the solution from
the previous iteration (or from initial conditions in the first step) and the process is
repeated until convergence. On the first sight it seems that we turned the problem of
Ngim-dimensional minimisation to a more difficult problem in general, namely solving
a linear system of equations with Ng;,, unknowns. Inverting the resulting matrix of
~ Ngﬁd elements is even for grids with small number of grid cells difficult in general.
However, as it turns out, the resulting matrix is sparse and therefore is solving the
resulting system computationally inexpensive.

The reconstruction is performed in a two-level iteration process, outlined in Fig. 5.1.
We will refer to the iteration process mentioned above for solving the linear system
of equations as first-level, where steps n; are repeated until convergence of k. The
second-level iteration is performed for the purpose of regularisation (as described in
detail in Sect. 5.1.3). In order to penalise small-scale fluctuations in the potential,
we start the reconstruction with a coarse grid (large cell size). Then for each ny step
we increase the number of grid points in the field and compare the new reconstructed
#("2) with the one from the previous iteration £~V (or with initial input value x®
for ng = 0). The second-level iterations are performed until the final grid size is
reached and the convergence is achieved.

5.1.2 The technical aspects

In this section we will briefly describe some technical aspects of how we calculate
the lensing quantities k, v, and a at an arbitrary position within the field from the
potential ¢, on a grid.

We consider the potential ¢ on an equidistant grid of (Ny + 2) x (N, + 2) points.
On the inner Ny x Ny grid one can calculate x, v and o using differencing methods;
the extention by one row and column at each side is needed to be able to perform
the finite differencing at each inner grid point. We use the finite differencing method
with 9 grid points to calculate , 5 points for 7, and 4 points for a (see Abramowitz
& Stegun, 1972). The coefficients used for x and 7 are given in Fig. 5.2, the case of
a is discussed in the Sect. 5.2.2. To evaluate k(0), v(0), and «(0) at a position 6,
bilinear interpolation is used. E.g. the value of k(0) is expressed in terms of values of
 on four nearest-neighbouring grid points using bilinear interpolation. Since for each
of these four values we need 9 (partly common) points with v, we express x(6) in
terms of 1, at 16 grid points. The coefficients in this expression also depend upon the
relative distance of 8 to the nearest grid point (needed to do bilinear interpolation).

Note, however, that the dimensionality of the problem is not (Nx +2) x (Ny +2).
Namely, the transformation ¥(0) — ¥(0) + ¥y + a - 0 leaves £ and + invariant,
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Figure 5.1: The outline of the two-level iteration process.

and therefore the potential needs to be fixed at three points (see Seitz et al., 1998;
Bartelmann et al., 1996). In addition, even though the transformation ¢(8) — ¥ (0)+
a - 0 affects the deflection angle «, it only causes a translation of the source plane,
which is not an observable. Therefore, even in the presence of strong lensing, three
points of the potential need to be held fixed.

Our ultimate aim is to make a reliable estimate for the cluster mass, therefore
the mass-sheet degeneracy needs to be lifted. The degeneracy transformation of the
potential is given by (4.1), thus ¢ — ' = 0.5(1 — X\)8? + \). The degeneracy
can, however, be broken if the reconstruction is extended to the regime where the
lens becomes critical and by using individual redshifts of background sources (see
Chapter 4). Hence in contrast to Seitz et al. (1998) the potential ¢, is not held fixed
at an additional, fourth point. The dimensionality of the problem is thus Ny, =
(Nx +2)(Ny +2) — 3.

5.1.3 The y2-function

In this section we will describe each contribution to the y?-function in turn, starting
with the statistical weak lensing.

For N, galaxies with measured ellipticities ¢; the x? was defined in equation (4.12),
for completeness we simply rewrite the definitions here.

Ng

e =y b 5:3)
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Figure 5.2: The finite differencing coeflicients for s (left), 7 (middle) and -,
(right). E.g. for k we use a formula including 9 points, the multiplicative factor is
given on the bottom, the individual coefficients in the circle. Thus for the middle
point (0,0) we get x(0,0) = 32 (2[¥(=1,1) + (1, 1) +¥(=1,-1) +¥(1,-1)] -
[(0,1) +(=1,0) +9(1,0) + (0, =1)] — 44(0,0)).

where ,
0'1-2 = <1 — }<e>|2> 0623 + agrr . (5.4)

is (approximately) the variance of the measured ellipticities. The expectation value
of measured ellipticities (€) is given in (2.31). In Chapter 4 we also argue that x>
can give biased results for lenses for which many galaxies have |g| ~ 1. It would
be better to work with a log-likelihood function with probability distribution that
properly describes the distribution of observed ellipticities. Unfortunately such an
approach is not viable here (as will become obvious later on). However, in general
clusters do not have a large fraction of galaxies with |g| ~ 1 and we showed that for
these lenses the y2-minimisation is sufficient.

One of the major strengths of this statistical weak lensing reconstruction technique
is the possibility to simultaneously include constraints from multiple images to the
weak lensing data in a relatively straightforward manner. The simplest approach to
strong lensing is to perform the so-called “source plane” modelling; i.e. to minimise
the projected source position difference. Consider a multiple image system with the
source at a redshift z, and with Ny images located at 8,,. The corresponding x2-
function is given by

XIQ\/I _ XM: |0m - Z(ZS)a(om) - /85’ (5.5)

2 )
Us,m

where oy ,,, are the errors on image positions, projected to the source plane. 3 is the
average source position and we calculate it using the deflection angle information from
previous iteration n; — 1. For simplicity, however, we do not perform a projection of
the error ellipse from the image plane onto the source plane. Instead, we keep o,
constant throughout the reconstruction. Therewith we avoided the numerical problem
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of having the x%; function diverging when one of the images would lie close to the
critical curve. We are aware of the fact that the approach we use is not optimal (see
e.g. Kochanek, 2004). If only multiple imaging is used, the resulting best-fit model
would be biased towards high magnification factors, since errors on the source plane
are magnified when projected back to the image plane (this information we do not
use). In our case, however, the model also needs to take into account the constrains
from statistical (weak) lensing and therefore the high magnification models will in
fact be discarded. In addition, if e.g. for an elongated image error on its positions
is considered isotropic, this would in general mean a highly anisotropic error in the
source plane. We therefore argue that considering errors in the source plane to be
isotropic is in fact a better approximation, since sources are on average more circular
than their multiple images.

Regularisation needs to be employed, since the minimisation of x? would other-
wise lead to a potential which closely follows the noise pattern of the data. Even
without the measurement errors, the intrinsic ellipticities would still produce pro-
nounced small-scale noise peaks in the final reconstruction. In addition, the method
presented here has an intrinsic invariance if no multiple imaging information is used
and the weak lensing approximation g ~ v applies. Namely, we can alternately
add/subtract a constant a along diagonals of the potential (as sketched in Fig. 5.3).
This transformation would on the one hand not affect v, but on the other it would
cause a similar change (with a constant 2a/3) in k — compare with Fig. 5.2. Thus in
the |g| < 1 regime, where (¢) = g ~ 7 these stripes will show up in the resulting
map. This problem can, however, be very efficiently cured with regularisation.

Figure 5.3: The intrinsic invariance of the method. If we alternately add/subtract
a constant a along the diagonals the shear v does not change (cf. Fig. 5.2), but &
changes in the similar way with a constant now being 2a/3 .

Since we want to measure the cluster mass, the regularisation should not influence
breaking of the mass-sheet degeneracy. For example, one of the possibilities proposed
in Seitz et al. (1998) for regularisation function was R = 34 IVk|*. However,
as the authors mentioned such regularisation would tend to flatten the profile and
therefore affect the mass-sheet degeneracy breaking. Their maximum entropy (ME)
regularisation is more suitable for this purpose, however it is very cumbersome to
express its derivative in linear terms of ¢,. Motivated by the success of moving prior
in ME regularisation, we choose a very simple prescription for the regularisation
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function. We start off by a relatively coarse grid. Namely if the number of grid
points Ngim is much smaller than the number of galaxies, the resulting reconstruction
will not be able to follow the noise pattern. In each second-level iteration step we
increase the grid size and compare the resulting x map (™) with that from the
previous iteration ("2~ interpolated on a finer grid, thus

Ny, Ny )
_ (n2) (n2—1)
ij=1
For the case of ns = 0 we use an initial guess for x which can in practice be

obtained from strong lensing, direct finite-field reconstruction, parametrised (non-
general) model fitting to weak lensing data, or also simply set to a constant. This
method is very easy to implement and is in addition very efficient to remove the
stripes (mentioned above) in the final reconstruction. If enough ny iteration steps
are used it also does not substantially affect the mass-sheet degeneracy, since the
information of initial £ is lost.

Finally a word on the regularisation constant 7. This parameter should in theory
ensure x?/Ngot ~ 1, however it is in practice difficult to determine (in the critical
lensing regime). As outlined in Geiger & Schneider (1998) the errors on measured
ellipticities are not normally distributed and therefore the actual value of x? at its
minimum has no particular meaning. In practice, however, setting n such that the
resulting x2/Ngor ~ 1 is valid is a good guess for this parameter. In addition, one
adjusts 1 low enough for the method to have enough freedom to adapt to the in-
formation in the data and large enough for not allowing the solutions that follow the
noise pattern. As a rule of thumb it is usually better to set n high and increase the
number of iteration, allowing s to change only slowly. Since the reconstruction is
done in a two-level iteration and in addition multiple-image information is included,
the method can successfully adapt to the data and the results are not very sensitive
to the precise value 7.

5.1.4 Initial conditions

The initial conditions are needed for the regularisation method as given by (5.6). As
we will show later, this point is not very important if multiple imaging is included
directly in 2. In that case one can simply use x(°) = const.

However, the initial conditions can be very helpful to break the internal degener-
acy, i.e. to distinguish galaxies that have |g| < 1 from those with |g| > 1 in the first
step, and thus allow for a faster convergence. Breaking this degeneracy is desirable,
since otherwise the method has difficulties in “climbing” over the |g| = 1 region (es-
pecially if no multiple-image systems are included). Since we use individual redshifts
of background galaxies we do not have well defined critical curves (i.e. positions in
the source plane where |g| = 1), since their position depends on the source redshift.
In spite of this fact, the transition still poses a difficulty.

The possible presence of multiple image systems in a cluster can be used to provide
the initial conditions. In particular if the redshift and identification of some of the
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systems is not completely secure and one would not like to include it in the x3
directly, the information can still be added for to calculate k. Throughout this
work we will use multiple imaging directly in the y2-function and in certain cases also
for the initial values of k, 7, and a (used to calculate the initial coefficients of the
linear system).

5.2 The linear problem for 1/,

In this section we present details of the method outlined in Sect. 5.1. They are highly
technical and the fast reader might skip this part and go directly to the Sect. 5.3.
We aim to solve the equation

3x?(wk) +naR(¢k) +0X12v1("¢k)

Oy, oYy, Oy,

As outlined in Sect. 5.1 this is in general a non-linear system of equations. We try to
solve it in an iterative way by linearising the equation in terms of 1, and keeping the
non-linear terms fixed at each iteration step. The resulting system will be written in
the form

~0. (5.7)

Biwhr =V, (5.8)
where the matrix elements Bj; and vector V; will contain the contributions from

non-linear part. In the following sections we will describe contributions to (5.7) in
turn.

5.2.1 The weak lensing analysis

The x? for the weak lensing case is given in (5.3). From now on we will consider in
detail only the |g| < 1 case; for |g| > 1 the calculations are done in the same fashion.
First we plug into (5.3) the expectation value of observed ellipticities (i.e. the reduced
shear ¢) giving

Z72

| |e — Zek — ny|
Z o Z L (5.9)

U

where k, 7, and ¢ depend on 6; only and Z depends on the redshift of the -th
source. Note that for simplicity we omit writing the index ¢ to €, s, v, 0 and Z,
although they are different for every galaxy and thus depend on ¢. As we described in
Sect. 5.1.2 using finite differencing and bilinear interpolation we can write x and v at
each galaxy position as a linear combination of ¢,. This is expressed in the following
matrix notation

1(0:) = G %r, 72(0:) = G, K(6:) = K , (5.10)
where the matrices Qi(,i), Qi(,f), and K;, are composed of numerical factors described
in Sect. 5.1.2. Now we consider the denominator of (5.9) 62 = (1 — Zk)? o? fixed at
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each iteration step (the subscript < denotes the |g| < 1 case) and differentiate the
following term of (5.9)

1 0 |e—Zek— Zv|
2 Oy, 0%
Z ok Om
- — —Zek — Z
6% {(61 €1k 71) (618¢k awk)
Ok 07
+ (e €2K V2) (6281/% + awk)}

[gfj G + 9568 + e1 (9K + K304

+ € (gff K+ KiyGly) ) + (6 + ¢3) ’%"Cik] (o

2

fz (@G + eGP + (& + &) Ky (5.11)
where €; and €, are the two components of measured ellipticity of galaxy ¢ (again
omitting the index and dividing (5.9) for simplicity). We sum over all galaxies used
for the weak lensing analysis and obtain a linear problem for 1, at each iteration
step. The same approach can be made for |g| > 1 case, where 62 kept constant is
given by 62 = Z2 |y|* 0.

5.2.2 The strong-lensing term

Following the prescription from the previous section we now write the deflection angle
in a matrix form
a1(0m) = Dy, s(6,,) = DDy . (5.12)

Both matrices give the finite differencing form for the gradient of the potential, in par-
ticular we use the central differencing formula, i.e. a1(0,0) = 5% (¥(1,0) — ¢(—1,0))
and as(0, 0) = 5~ (¥(0,1) — 4(0,—1)).

The x? contrlbutlon to strong lensing is given in (5.5). The source position G
is kept constant at every iteration step, and is evaluated using the deflection angle
information ™~ from previous iteration

1 Nm

B = 2 (6 — Z(2)a™1(0,,)) (5.13)

We differentiate the following term in x3; for the x;-coordinate

1 0 (g — Z(2)on(8m) = Ben)®  (Bma = Bo1) DY) = Z(2) D D oy

2 Oy o2 02 (1)

The expression for zo-coordinate is obtained by exchanging 1 < 2. After summation
of both terms over all images m we get a set of equations which is linear in v, and
can be readily included in (5.8).
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5.2.3 The final result

Describing a way to linearise the contributions of weak and strong lensing, we can
write the coefficients in the equation (5.8). Note that the contribution of the regular-
isation term (with y?-contribution given in (5.6)) is already linear in 1)), and therefore
the full matrix Bj;, from is given in the form

Ngal
Bie = Y |an()G9 + an()GP G + (i) (6 Ko + G Ky )
i=1
+ a23<i) (gz(]) ik + gzk ) + CL33( ) (ICZjK:zk)i|
+ nzlcgjlcgk + Z bii(m mk + baz(m )D( )Dgl)g )

where indices 7, ¢ and m denote summation over all galaxies with ellipticity meas-
urement, all grid points, and all images in the multiple imaged system, respectively.
The V; vector carries the information of all constant terms in (5.7)

gal

Zal + ax(1) gi(]?) + as(i) Kij +

Num

n Z:‘in2 U’Cg]—i‘Zbl D +b2( )Dg;

The coefficients @ now differ depending whether we are in the |g] < 1 or |g| > 1
regime. For |g| <1 the coefficients are given by

2 Z2
an(i) = a22(i) = %9 als(i) 5 €1
0< <
‘ Z? . Z?
ags(@) = Z3€; a33(z) = =3 |€|2 )
< O<
‘ Z A , A
ai1(i) = e a(l) = e as(i) = €] (5.14)
< 0< 0<
Similarly for |g| > 1
. A N
ann(i) = an(i) = 52 lel” 5 ais(i) = gel ;
. Z? . Z?
a23(z) = g@ ) 033(1) = g ;
. A Z , A
CL1(Z) = 0_% 5 €1, (IQ(Z) = EGQ ) Cl3(Z) = 6‘% . (515)
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The coefficients b are the coefficients carrying the information about the multiple

imaged system:

72 (2 72 (2
bn(m) = 2( ); bzz(m):#;
Us,m(l) s,m(2)
Z ZS em S
iy = 2=
s,m(1)
Z ] em — Ms
im) = 2N ma = Boz) (5.16)
Us,m(2)

where 0,1 and 0,, 2 are booth coordinates of image m and o (1) and o () are the
corresponding measurement errors projected to the source plane (the latter are in our
case set equal). z; is the redshift of the source being multiply imaged.

5.3 Cluster mass reconstruction from simulated data

5.3.1 Mock catalogues

f,(arcmin)
6,(arcmin)
0

6,(arcmin)

() (b)

Figure 5.4: The gravitational lensing properties of a simulated cluster used for gener-
ating mock catalogues for statistical weak lensing and for the multiple image system.
a) The surface mass density x, b) the absolute value of the reduced shear |g| for a
source at zg — 00 are given in gray-scale and contours. The stars in a) denote the
image positions of a four-image system at z; = 1.76 we use for the reconstruction.

To generate the mock catalogues we use a cluster from the high-resolution N-body
simulation by Springel et al. (2001). The cluster we use is taken from the S4 simulation
(for details see the aforementioned paper) and was simulated in the framework of the
ACDM cosmology with density parameters €2, = 0.3 and €2, = 0.7, shape parameter
I' = 0.21 and the normalisation of the power spectrum og = 0.9 and Hubble constant
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Hy = 70km s~! Mpc™!. The cluster simulation consists of almost 20 million particles,
each with a mass of 4.68 x 107 M, and a gravitational softening length of 0.7 h~!kpc.
Due to the high mass resolution, the surface mass density xk-map can be obtained by
directly projecting the particles (in our case along the z-axis) onto a 1024% grid (of a
side length 4 Mpc) using the NGP (nearest gridpoint) assignment.

In what follows we have tried to generate the weak and strong lensing data such
as to resemble as close as possible the data on cluster RX J1347—1145 we will use
in Chapter 6. The surface mass density of the cluster was therefore scaled such as
to have a sizeable region where multiple imaging is possible within 3.8 x 3.8 arcmin?
field for sources at redshifts z 2> 1 and a cluster at zg = 0.4. The Einstein radius for
a fiducial source at z — oo is roughly 0 ~ 1’, giving a mass within this radius of
~ 5 x 10" M. The resulting x map we use can be seen in Fig. 5.4a.

The lensing properties are calculated as described in detail in Chapter 4. The
Poisson equation for the lens potential ¢ — c.f. Eq. (2.11) — is solved on the grid
in Fourier space with a DFT (Discrete Fourier Transformation) method using the
FFTW library written by Frigo & Johnson (1998). The two components of the shear
7,2 and the deflection angle o are obtained by finite differencing methods applied to
the potential 1. These data are then used to generate the weak lensing catalogues as
well as the multiple image systems. The absolute value of the reduced shear (for a
source with z — oo, thus Z(z) = 1) is given in Fig. 5.4b.

The weak lensing data are obtained by placing N, galaxies on a 3.8 x 3.8 arcmin
field. We have simulated two different catalogues, one with N, = 145 galaxies
with positions corresponding to those from R-band weak lensing data of the cluster
RX J1347—1145 and one with N, = 210 galaxies corresponding to the I-band data
used in the following Chapter. In this way we simulate the effects of “holes”, resulting
from cluster obscuration and bright stars in the field.

The intrinsic ellipticities €5 are drawn from a Gaussian distribution, each compon-
ent is characterised by 0 = o = 0.2. We use the same redshifts as those measured in
the R and I-band data respectively, both catalogues have average redshifts for back-
ground sources of (z) = 1.3. The corresponding cosmological weights were evaluated
assuming the ACDM cosmology (the same parameters were used as for the cluster
simulations).

The lensed ellipticities are obtained using (2.25) and interpolating the quantities
k, and v at the galaxy position using bilinear interpolation. The measurement errors
€ on the observed ellipticities were drawn from a Gaussian distribution with o =
Oerr = 0.1 (each component) and added to the lensed ellipticities. We considered
also the measurement errors on the redshifts of the galaxies to simulate the use of
photometric redshifts. These have o,e, = 0.06 (1 + 2;) (see Benitez, 2000); in adding
the errors we ensured that the resulting redshifts are always positive.

2

5.3.2 Multiple imaging

To obtain a four-image system from the simulation we used the method described in
detail in Chapter. 3. We use the MNEWT routine from Press et al. (1992) to solve
the lens equation for a given source position inside the asteroid caustic. The source
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was assumed at the redshift of z; = 1.76. We interpolate the deflection angle between
the grid points using bilinear interpolation. Once we have the image positions, their
magnifications are calculated and the four brightest images are chosen.

The errors on image positions can be conservatively estimated (for the data we
use latter on) to ~ 03. Since we need errors in the source plane, we set them by a
factor of five smaller, oy, = 0706 for each coordinate. The errors are assumed to be
the same in both coordinates (see discussion in Sect. 5.1.3).

We also use this system to obtain one of the k() models. We fit (in the image
plane) a non-singular isothermal ellipsoid model (Kormann et al., 1994) where we
allow the scaling by, ellipticity |e,| and position angle ¢, to vary. The best fit model
for this system has values of {by, |&], ¢y} = {0'97,0.30,1.01}. We fix the core radius
re to (1. For model fitting throughout this Chapter we use C-minuit (James & Roos,
1975), a routine which is part of the CERN Program Library.

5.3.3 Weak lensing mass-reconstruction using simulated data

We used the mock catalogues to test the performance of the reconstruction method.
For the initial model £ we use three different scenarios: x® = 0 (and v = 0)
across the whole field (here after 10), £(*) taken from the best fit model for the multiple
image system (here after /M), and a non-singular isothermal sphere model NIS with
scaling and core radius being the same as in IM (here after IC). The same models
were used also to obtain the initial coefficients of the linear system (c.f. Sect. 5.2) at
each galaxy position (for /0 we use y; 2 = 0). These initial models will help us explore
the effects of regularisation and the capability of the reconstruction method to adapt
to the data.

Finally, the linear system is solved using the UMFPACK routine for solving asymmet-
ric sparse linear systems (Davis & Duff, 1999). We perform 30 second-level iterations,
each time increasing Ny and Ny by one, starting with an initial 20 x 20 grid. The
results of the reconstructions are shown in Fig. 5.5 for IV, = 210 galaxies distributed
in the same manner as the I-band data and N, = 145 galaxies distributed as the R-
band data of the cluster. The regularisation parameter was set to = 400 for I-band
n = 200 for R-band data. The different regularisation parameters are used since the
numbers of galaxies are different. In such a case the model has enough freedom to
change, the final x? had a value of the order of Ny.¢. It is very comforting to observe
that the reconstructed maps do not depend crucially on the initial k-model we use.
This also indicates that we have broken the mass-sheet degeneracy.

From the reconstructed maps we have also estimated the mass within the radius of
1’5 around the cluster centre (for a redshift zq = 0.4 this corresponds to 340h~! kpc).
For this purpose we generated 10 mock catalogues for each band and did the re-
construction again with three different initial conditions. We list the resulting mass
estimates in Table 5.1 for both the I and R-band mock catalogues. All the mass
estimates are similar, note, however, that the two galaxy catalogues have galaxies
partly in common and the errors are therefore correlated. We determine the enclosed
mass of the simulated cluster to be (1.0 &= 0.1) x 10 My, which is very close to the
input value of My(< 340h~! kpc) = 0.99 x 10" M. The error has been estimated
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Figure 5.5: k-maps obtained from statistical lensing reconstruction using simulated
data. Left panels show the reconstructions using N, = 210 galaxies distributed in
the same manner as the I-band, while for the right panels we use Ny = 145 galaxies
distributed in the same manner as the R-band weak lensing data for RX J1347—1145
(see Chapter 6). The galaxies have been lensed with an N-body simulated cluster.
Different initial conditions were used for the reconstruction. In al-a2) we use best
fit model from the multiple image system IM (see Sect. 5.3.2) in b1-b2) we use the
IC model, an NIS model with the same scaling and core radius as I[M and in c1-c2)
we use 10, i.e. kK = 0 on all grid points. The regularisation parameter was set to
1 = 400 for the left panel and n = 200 for the right panel. The positions of the cluster
centre and two major subclumps are plotted as white circles.
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from the variance of mass determinations form different mock catalogues.

The results shows that our method is effectively able to break the mass-sheet
degeneracy and is, as a consequence, very efficient in reproducing the cluster mass.
Note that a single multiple-image system does not by itself break this degeneracy,
since the transformation does not affect the image positions (and the same is true for
the magnification ratios). We would need at least two multiple image systems with
sources at different redshifts to be able to break the mass-sheet degeneracy using
strong lensing data alone.

Unfortunately we can not resolve both clumps present in the simulations. This is
due to the fact that the number density of background sources is low and the internal
smoothing scale (i.e. the average distance between two source galaxies) is large. If
one increases the number density to ~ 100/arcmin? the clumps can be resolved.

We have also performed additional reconstructions in which we increased /decreased
the original k of the simulated cluster by 25%. This enables us to confirm that the
agreement between input mass and reconstructed mass is not just accidental. We
have generated new multiple image systems and new mock catalogues as before. We
however do not perform a new strong-lensing reconstruction, for £(*) we intentionally
use the same (i.e. in this case “wrong”) initial conditions as before. The old IM model
would not fit the image positions any longer, since they have changed with the scaling
of k. The reconstructed masses of the increased x simulation are in excellent agree-
ment with the input values. The differences between different models are comparable
(slightly smaller) to the ones shown in Table. 5.1. For the lower s simulation, the
reconstructed values are on average the same as the input value, however the scatter
is higher. This is expected, since the lens is in this case weaker and the region where
we are able to break the mass-sheet degeneracy is smaller than before.

For an additional test we modified the redshift distribution of the source galaxies
used for weak lensing by placing some galaxies at higher redshift (with the resulting
average distribution of (z) = 1.6) and regenerated the mock catalogues. While this
does not change substantially the accuracy of the determination of the enclosed mass,
it does help to better reconstruct the shape of the mass distribution. This is expected,
since high-redshift galaxies (when their shape is measured reliably) contribute most
to the signal and improve the accuracy of the reconstruction.

5.4 Conclusions

In this Chapter we have developed a new method based on Bartelmann et al. (1996)
to perform combined weak and strong lensing cluster mass reconstruction. The par-
ticular strength of our method is that we extent the weak lensing analysis to the
critical parts of the cluster. In turn, this enabled us to directly include multiple ima-
ging information to the reconstruction. Both are performed on the same scales, in
contrast to similar methods proposed in the past where weak lensing on radii larger
than the Einstein radius 0 was combined with strong lensing information (see e.g.
Kneib et al., 2003).

We have tested the performance of the method on simulated data and conclude
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that when a quadruply imaged system combined with weak lensing data and indi-
vidual photometric redshifts is used, the method can very successfully reconstruct
the cluster mass distribution. With a relatively low number density of background
galaxies, 15/ arcmin® we are effectively able to reproduce the main properties of the
simulated cluster. In addition, with larger number densities ~ 100/ arcmin? of back-
ground sources accessible by HST, the substructure in the cluster can be resolved.

We determine the enclosed mass of the simulated cluster to be (1.040.1) x 10'°* M,
which is very close to the input value of M(< 1’5) = 0.99 x 10 M. Again, the
accuracy of the mass-distribution determination can be further improved by using
higher number densities of the sources already available to date. However, even with
the data quality we use we are effectively able to break the mass-sheet degeneracy and
therefore obtain the mass and mass-distribution estimates without prior assumptions
on the lensing potential.

This method can be improved in many ways. First, we have used for the mul-
tiply imaged system only the information of the image positions. The reconstruction
method can, however, be modified to include the morphological information of each
extended source. Instead of using a regular grid, one would have to use adaptive
grids and decrease the cell sizes around each of the images. This will be a subject of
future work. Second, the photometric redshift determination does not only give the
most likely redshift given the magnitudes in different filters, but also the probability
distribution for the redshift. This information can be included in the reconstruction.
In addition, source galaxies without redshift information can be used and different
regularisation schemes can be considered.

Table 5.1: Reconstructed cluster mass within 340h~! kpc radius around the cluster
centre from simulations using mock catalogues resembling I-band (left) and R-band
(right) weak lensing data and one 4-image system. Three different initial conditions
have been used. We use best fit model from the multiple image system IM (see
Sect. 5.3.2), the IC'model (NIS with same scaling and core radius as IM) and 10 with
x(© = 0 on all grid points. In the last line the input mass from the simulation M,
is given. In brackets we give for comparison the velocity dispersion of an SIS having
the same enclosed mass within 340h~! kpc.

M (< 340h~ ' kpe)  [osis) Mps(< 340h~ ! kpe)  [osis)
(1015 M) [kms™!] (1015 M) [kms™!]

M 1.04 [1720] 1.03 [1710]
Ic 1.02 [1700] 0.99 [1670]
10 0.85 [1560] 0.83 [1530]
M,(< 340k~ kpc) 0.99 [1670]




Strong and weak lensing united Il: Cluster
mass reconstruction of the cluster

RX J1347—-1145

Encouraged by the success of our combined cluster mass reconstruction present in
Chapter 5, we here apply the method to the weak and strong lensing data for the
redshift zq = 0.451 cluster RX J1347—1145 (Schindler et al., 1995). Due to its record
holding, this cluster has been a subject of many studies in X-ray (Schindler et al.,
1995, 1997; Ettori et al., 2001; Allen et al., 2002) and optical (Fischer & Tyson,
1997; Sahu et al., 1998; Cohen & Kneib, 2002; Ravindranath & Ho, 2002). It has
also been detected through the Sunyaev-Zel'dovich effect (Pointecouteau et al., 2001;
Komatsu et al., 2001; Kitayama et al., 2004). Unfortunately, studies based on X-ray
properties, SZE effect, velocity dispersion measures, strong and weak lensing have
all yielded discrepant results for the mass estimate (see Cohen & Kneib, 2002 for a
summary of the results).

For the purpose of mass reconstruction we use VLT /FORS data on the field of 3.8 x
3.8 arcmin? in UBVRI bands. We also use J and H-band data from NNT/SOFI and
K-band data from VLT /ISAAC to make more reliable photometric redshift estimates.
The shape measurements for the weak lensing reconstruction is performed on two
FORS bands, R and I. The strong lensing properties of this cluster are analysed.
From previous data sets five arc candidates were reported (Schindler et al., 1995; Sahu
et al., 1998); using multi-colour data we conclude that only two possibly belong to the
same multiple imaged system. We search for additional images possibly belonging to
this system and present what we think is the most probable candidate. In addition
we report a discovery of a new arc with two components, located at a distance of
1 arcmin from the brightest cluster galaxy.

This Chapter is organised as follows. In Sect. 6.1 we describe the observations
and give a brief outline of the data reduction process. In Sect. 6.2 we describe how
we search for multiply imaged systems. In Sect. 6.3 we give the results of combined
strong and weak lensing reconstruction and we conclude in Sect. 6.4. The results of
this part of the thesis are currently in preparation to be submitted to A&A (Bradac

36
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et al., 2004c).

6.1 Observations and data reduction process

The observations were obtained in UBVRI bands with FORS1IQVLT /UT1 instrument
in high resolution mode in the semester between April and September 2001. The field-
of-view (FOV) of the FORS instrument is 3.4 x 3.4 arcmin®. In addition we took from
the ESO archive the J and H band images from SOFIQNTT (with the FOV 5.5 x
5.5 arcmin?) and K band from ISAACQVLT/UT1 (with the FOV 2.5 x 2.5 arcmin?).

The data reduction was performed with the data reduction pipeline also used for
the Garching-Bonn Deep Survey (Schirmer et al., 2003). We describe here briefly the
essential steps of this reduction:

1. Flatfielding: CCD pixels have different sensitivity, and to account for that the
flatfielding needs to be performed. In our particular case a combination of
skyflats and smoothed superflats were used to calibrate the pixel sensitivity.

2. Masking: Bad pixels, cosmic rays, satellite tracks were identified and masked
before co-addition.

3. Defringing: Fringe pattern can form due to reflections within the CCD (espe-
cially problematic for instruments observing in longer wavelengths and having
thinner CCDs). For the FORS1IQVLT this is however not an issue (see e.g.
Maoli et al., 2001).

4. Co-addition: after pre-processing individual exposures are co-added into a so-
called sum-frame. An astrometric solution was obtained by comparing sim-
ultaneously object positions with standard sources from USNO-A2 catalogue
(Monet et al., 1998) and with overlap objects in the individual frames. The
IRAF package DRIZZLE (Fruchter & Hook, 2002) was used to align different
pointings in sub-pixel accuracy. Since dithering was used (individual frames
were slightly offset w.r.t. each other to avoid having gaps in the final image)
the resulting image (for UBVRI bands) has a size of 3.8 x 3.8 arcmin?, which
is larger than the individual frames.

6.1.1 Redshift distribution of background sources

For the photometric redshift determination we estimate magnitudes of each object
using SExtractor (Bertin & Arnouts, 1996). This program is designed to build a
catalogue of objects from an astronomical image. We use it in double-image mode,
meaning that the I-band image serves as a reference to build the object catalogue,
ant the other images are used to measure properties of these selected ones. The
magnitudes of the objects are measured (in different filters) by placing apertures
around each of them in different images. Using the resulting magnitudes we determine
the photometric redshifts of the objects using the HyperZ package (Bolzonella et al.,
2000).
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Special care needs to be taken when doing photometry for the purpose of the
photometric redshift determination. Especially important is the choice of the aperture
size SExtractor is using. For cluster members, due to their large apparent size, we
argue that it is best to use SExtractor in Magiso mode, meaning that the magnitude
will be measured within an isophote level that depends on the photometric error
information. To measure the magnitudes of the faint sources, we use the Magaper
mode, meaning that we give a fixed size for the aperture. The aperture was set to
twice the FWHM of the seeing disc. In our case the seeing was (.7 in BVRIK, 1’0 in U
and J, and 1’1 in H. The reason for doing photometry in this way is that the use of the
Magiso algorithm is not appropriate for measuring the magnitudes of faint sources.
The noise for these objects is usually underestimated and the resulting aperture would
be too large. On the other hand the small aperture used for background sources is not
applicable for the large cluster members and their analysis was therefore performed
separately.
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Figure 6.1: The redshift distributions of background sources used for weak lensing
analysis (only sources with zpnet > 0.6 were considered) for I-band a) and R-band
catalogue b). The mean photometric redshift of both samples is (z) = 1.3.

6.1.2 Final weak lensing catalogues

For the weak lensing analysis the R and I band exposures were used. The I-band
exposure is the deepest and has the best seeing of all and as a consequence has
the highest number-density of sources that can be used for weak lensing. Special
care needs to be taken when measuring the galaxy shapes and doing PSF correction
for weak lensing analysis. Although SExtractor does measure ellipticities of objects
as well, it does not take into account the PSF variation across the images. These
measurements are thus not optimal for weak lensing. Instead special software packages
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have been developed in last 10 years that measure the shapes of the objects and
simultaneously correct for the PSF anisotropy. We use the IMCAT software from
Nick Kaiser (http://www.ifa.hawaii.edu/ kaiser), which is based on the KSB
method described in Kaiser et al. (1995). The catalogues were obtained as described
in Erben et al. (2001).

For the final weak lensing catalogue only the sources having photometric redshift
estimate zphot > 0.6 were considered. This conservative cut was done in order to
avoid having foreground sources in the catalogue. For the R-band data we thus have
N, = 145 background sources (giving 10 galaxies per arcmin®, and for the I-band
N, = 210 (15/arcmin?). The resulting distribution for the I and R band catalogues
are given in Fig. 6.1.

6.2 Searching for multiply imaged candidates of
RX J1347—-1145

Up to date, five arcs have been reported in the cluster. The first two were discovered
by Schindler et al. (1995), and the HST images revealed three additional ones (Sahu
et al., 1998). Unfortunately these five arcs (A1-A5 as labelled by Sahu et al., 1998)
do not belong to the same multiple image system. However two of them (A4 and A5)
do have the same colours and we use them for the purpose of multiple imaging. We
note that the arc A3 considered by Allen et al. (2002) to belong to this system as
well has different colours.

The advantage of having J, H, and K band images allows the detection of new
arcs. In particular, we report here on the discovery of a red double-component arc
to the south-west of A4, we designate it with labels B1 and B2. The arc formed
in the middle of a concentration of cluster members. In addition we detect in the
vicinity a long thin arc, which was also presented in Lenzen et al. (2004) as number 3
(see Fig. 6.3). We use SExtractor (note that for the purpose of strong lensing this is
sufficient) to measure the ellipticities of the arcs from the I-band (system A and C)
and K-band images (system B).

We search for additional images in an automated fashion. The magnitudes of an
image in either Ny = 8 of Ny = 5 filters m; ; are compared with the magnitudes m; ;
of all other images in the field. We use again the y? approach

Ny 2
2 (mir — (myr + pij))
Xij = Z 2 2 ; (6.1)

where p; ; is the relative magnification between the images ¢ and j, and o; y and o ¢
are the magnitude measurement errors. Since lensing is achromatic we can evaluate
piy by forcing dx7;/0pmi; = 0 to hold. The resulting x7; function follows a x>
distribution with Ny — 1 degrees of freedom. The best fitting images are then further
visually analysed and tested for the conservation of surface brightness. For the case
of arcs A4 and A5 we find a possible candidate counter image. All three all encircled
dashed-yellow in Fig 6.2.
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Using 8 colours for the redshift determination of A4-A5 and 5 colours for the
counter image (it is located at the edge of the J, H, and K-band images and therefore
the NIR photometry is not reliable) we find all three images are consistent at being at
the redshift of z; = 1.76. This is in agreement with Ravindranath & Ho (2002) who,
based on the absence of O[I1] line in their spectroscopy predict the redshift of A4 to be
> 1.04. Unfortunately our redshift estimate is not very secure and can substantially
influence the combined cluster mass reconstruction (the position of the critical curve
changes with redshift). This is not important for the determination of the initial
lens model £ (we saw in the previous section that the choice of vastly different
x(®)-models does not substantially influence the result), it is however important when
including strong lensing information directly in the reconstruction. There are more
candidate multiple image systems in this field; they will be a subject of a future study.

Table 6.1: The properties of the arcs A4,A5 and the candidate counter-image used in
strong lensing analysis. We also present additional arc candidates (systems B and C).
The properties of systems A and C are measured from the I-band, while B is measured
from the K-band image. The positions are given w.r.t. the brightest cluster member.

Arc 0y [arcmin] 6y [arcmin] ||  PAl[deg]
A4 0.3314 —0.4980  0.713 43.2
A5 —0.2891 —0.7009  0.333  167.9

—1.0241 0.6509  0.327 234
B1 0.7440 —0.6873  0.282 67.5
B2 0.6971 —0.7653  0.593 33.6
C 0.3222 —0.7532

Table 6.2: The photometric properties of the arcs A4 and A5. Given are three colours
(mp —my, my —my, and mg —mp) in magnitudes, and VRI peak surface brightnesses
Sv g (in rel. units). If objects belong to the same source the colours and surface

brightness need to be conserved. We estimate a typical magnitude measurement error
to be 0.05 mag in VRI and 0.1 mag in B-band.

mp—my; My — My MR — Mg SV SR SI

A4 0.99 0.81 0.53 0.32 041 0.37
A5 1.09 0.88 0.57 0.33 0.42 041
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6.3 Cluster mass reconstruction of RX J1347—-1145

In this section we present the mass modelling of the data described above for the
cluster RX J1347—1145. The full account of the method can be found in Chapter 5.

6.3.1 Initial conditions for the method

For the purpose of obtaining the initial values for @, v and a® we investigate
the signal from the averaged tangential ellipticities (hereafter called IS scenario)

e = —R [ee ] (6.2)

where ¢ specifies the direction to the source galaxy w.r.t. the the brightest cluster
galaxy (BCG) (in the case of RX J1347—1145 this is the western of the two central
cluster galaxies). We use the ellipticity measurements in I and R band and in Fig. 6.4
we plot the tangential ellipticity vs. projected radius (#) in radial bins centred on
the BCG, containing 50 (40) galaxies each. Both I and R-band data give comparable
results. We note that the tangential ellipticity signal is high at the edge of the field
(€;) ~ 0.1, thus making this data inaccessible for standard weak lensing techniques
aiming to determine the mass, since on this relatively small field one cannot break
the mass-sheet degeneracy by simply assuming s ~ 0 at the field edges.

We fit the singular isothermal sphere (SIS) profile to the binned tangential ellipt-
icities. The individual redshifts of the sources were therefore not used here, instead
we use the average source redshift of (z) = 1.3 (see Sect. 6.1.1). The resulting
line-of-sight velocity dispersion is o1gis = 1010 £ 60 kms™' for the I-band data and
or,s1s = 1060£90 kms ™! for the R-band (both 1o error bars). In addition, the central
mass concentration is detected with more than 100 significance in both bands.

The estimates for the line-of-sight velocity dispersion are higher than the measured
velocity dispersion from Cohen & Kneib (2002), and lower than previous weak, strong
and X-ray measurements. However, in the optical it is evident that the cluster has a
lot of structure and therefore the SIS profile does not describe the cluster adequately.
It has at least two main components; in addition there is X-ray emission off-centred
from the BCG. Furthermore, at the scales < 400h~! kpc where we measure the profile
of the cluster is probably not isothermal (see e.g. Navarro et al., 2004). Therefore,
the values of ¢ obtained in this manner should not be trusted, we only use them for
one of the initial models for x(®

Another possibility to obtain initial conditions is to use the multiple image inform-
ation for the cluster. We perform a very rough analysis by using the data for the arc
system A presented in Sect. 6.2. In addition to the image positions we also use image
ellipticities as constraints. The model consists of a non-singular isothermal ellipse
(NIE) model in which we allow the centre of the cluster potential 6., the scaling by,
ellipticity ||, and the position angle ¢, to vary, and we fix the core radius to 0/3.
Following the prescription of Kneib et al. (1996) we also include 10 brightest cluster
members (selecting them according to their I-band magnitude and having photomet-
ric redshift estimate between 0.4 and 0.5) to the model. They have been modelled
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as non-singular isothermal spheres with line-of-sight velocity dispersion oy and core
radius 7¢ nis following

Onis X L1/4 ) T'cnis X L1/2 ) (63)

The proportionality constants were chosen such that the I-band magnitude m; =
17.5 galaxy would have o, = 300 km s7! and Tenis = 0.1 (the BCG has m; =
17.8). We also fix the core radius of the cluster to r. = (3. These constants were
not allowed to vary. The particular, best fit model for this system has values of
{0c11, 6012, bo, €], pg} = {—021, —0.10,097,0.3,0.8}.

We stress here that it was not our aim to obtain a detailed strong lensing cluster-
mass model, since it will only be used for the initial values of reconstruction. The
multiple imaged system used here is independently included to the non-parametric
reconstruction. We have shown in Chapter 5 (and will also confirm this in Sect. 6.3)
that the reconstruction depends little upon the details of the initial model we use.
For this reason a detailed modelling is not needed. For the same reason we also do
not include additional multiply imaged candidates to the analysis.

6.3.2 Combined weak and strong lensing mass reconstruction of
RX J1347—1145

We apply the mass-reconstruction method to the I and R-band data of RX J1347—1145.
We again use three different initial models for £(©), IM comes from the best fit model
from the strong lensing analysis of the cluster presented in Sect. 6.3.1, the IS model
is the best fit SIS model to binned tangential ellipticities — see Sect. 6.3.1 (centred on
the brightest cluster member) and 10 has x® = 0. The regularisation parameter is
set to n = 200 for the R-band and n = 400 for the I-band. The resulting x-maps are
given in Fig. 6.6. We also plot the contours from Fig. 6.6 al to the colour compos-
ite image in Fig. 6.2. We estimate the mass within the radius of 1’5 (for a redshift
zq = 0.45 this corresponds to 360h~! kpc). These are given in Table 6.3. Results for
both bands are consistent and mass estimates for different models give similar results.
We estimate the mass of the cluster to be M(< 360 h~'kpc) = (1.2 +0.3) x 10° M.
The error is larger than in the case of simulated images, this is mostly attributed to
the fact that we only use a three-image system. In addition, when computing the
redshifts for the mock catalogues we did not include the outliers (i.e. galaxies with
redshift estimates which can be wrong by more than factor 2). We conclude that the
enclosed mass of the cluster is significantly higher than what is obtained under the
assumption of circular symmetry in Sect. 6.3.1.

In Fig. 6.5 we plot all objects having estimated photometric redshifts 2.05 <
Zphot < 2.15. The figure suggests that they form an arc-like structure 6, ~ 1’ to the
south of the BCG. If these objects trace the critical curve at the redshift of z, = 2.1,
as is suggested by this figure, then to a first approximation the corresponding mass
enclosed within a circle of radius 6, is given by

M(< 0,) = 7 (Dab)’ Sz = 24) (6.4)
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where we assumed the spherical symmetry of the cluster. In our case this yields an
estimate of M (< 240 kpch™') &~ 8 x 10" M. Note that this is a very simple approach
to determine the enclosed mass, its reliability is limited since arcs form preferentially
along the major axis of clusters. The presence of substructure can further bias the
result. In our case, due to the orientation of the two brightest cluster galaxies (east-
west) one might think the galaxies to the south trace the minor rather than the major
axis. However, our detailed mass reconstruction (and X-ray measurements) show a
south-east extention. In addition there are bright cluster members located to the
south-west of the BCG (c.f. Fig. 6.6 and 6.2). Therefore the result should not be
trusted in detail, however it is suggestive of a high mass for RX J1347—1145.

The resulting mass is larger than obtained by velocity dispersion measurement of
Cohen & Kneib (2002). It is, however, consistent with X-ray data by Allen et al.
(2002) and Ettori et al. (2001) and the previous weak-lensing results by Fischer &
Tyson (1997). A possible explanation for the discrepant mass estimates was presented
in Cohen & Kneib (2002). We agree that the cluster is most likely in a pre-merging
process (with clumps merging preferentially in the plane of the sky). In such a
scenario, until the merging is complete and the cluster is virialised, the dynamical
cluster mass will be largely underestimated. The X-ray temperature can be increased
in such merging processes and the high X-ray mass estimate for this cluster further
supports the merger hypothesis. If the hypothesis is correct, gravitational lensing
does provide the most accurate estimate for the cluster mass.

We note however, that our results are dependent upon the correct redshift de-
termination and identification of the members of the multiple image system we use.
If we put the multiple image system to a redshift of ~ 3 (~ 1.3) the estimated mass
decreases(increases) by ~ 10%. If the images do not belong to the same system, the
changes might be even more drastic. However, at least for the two arcs A4 and Ab
we consider this possibility less likely. In Table 6.2 we list the photometric properties
of the two arcs. Within the errors they have the same colours as well as the same
surface brightnesses. In addition, the photometric redshift estimation (using 8 filters)
is the same for both images. Further, our results depend upon the correct determin-
ation of the photometric redshifts for the weak lensing sources. The random error of
the determination is not crucial, the problem are the systematic uncertainties. It is
namely not excluded that some foreground sources get assigned a high redshift and
therefore high weight factor Z(z). If the fraction of such sources compared to the
total number of the sources used is large, the signal can be diluted (assuming these
foreground sources are randomly oriented).

6.3.3 Rest-frame I-band brightness distribution and M/L-ratio of
RX J1347—-1145

In Fig. 6.3.2 we plot the my — m; vs. mp — my colours for the galaxies in our
field. To select cluster members we cut the catalogue at all galaxies having I-band
magnitude up to three magnitudes fainter than the BCG and with distance to the
BCG smaller than 1. These are preferentially the cluster members and form a group
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around my — my ~ 2 and mg — my ~ 1. The BCG (plotted blue in Fig. 6.3.2) is
slightly bluer than the rest. The green polygon indicates the region from which we
selected the cluster members. It is given by:

l<mp—my <2; 0.7(mg—my)+0.7<my—m; <0.7(mg—my)+1.3. (6.5)

To obtain absolute rest-frame I and R-band magnitudes for the cluster members
we apply the appropriate K-correction Kjg(zq) for elliptical galaxies from Poggianti
(1997) and galactic extinction A to the measured isophotal I-band magnitudes. They
are given by

Dd(l + Zd)2

Mir = mir — dlogio ( 10 pe

) — KLR(Zd) — AI,R s (66)
where Kj(zq = 0.45) = 4.13, Kr(zq = 0.45) = 4.28, A; = 0.121, and Ar = 0.166.
We assume zero evolutionary correction. The resulting luminosities of the cluster
members were smoothed using a Gaussian kernel characterised by o = 9”, resulting
in the brightness distribution shown (for I-band only) in Fig. 6.7.

The first concern with luminosity estimates is completeness. In Fig. 6.9 we plot
the luminosity functions as a function of the absolute magnitudes M; and Mg, re-
spectively. We estimate the errors by taking into account the Poissonian fluctuations
of the galaxy counts. From the plot we see that the cluster member counts are
complete to at least the magnitude My — 3 (where M* is the magnitude at the
“break” where the luminosity function changes the slope, see Fig. 6.9) and therefore
the contribution from incompleteness will be negligible. A far larger concern is the
contamination by non-cluster members and rejection of the actual members. In or-
der to check against this one needs to investigate the galaxy population “outside”
the cluster region (on images taken with the same photometric conditions and depth
as the images we use). Unfortunately our observed fields span only ~ 450 kpc h™*

Table 6.3: Reconstructed mass of RX J1347—1145 within 360h~! kpc radius around
the BCG from I-band (left) and R-band (right) weak lensing data and one candidate
3-image system. Three different £ scenarios have been used. We use the best fit
model from the multiple image system IM presented in Sect. 6.2, IS is the best fit
SIS model from the process of parametrised fitting of weak lensing data and [0 has
k() = 0 on all grid points (see Sect. 6.3.1). In brackets we give for comparison the
velocity dispersion of an SIS having the same enclosed mass within 360h~! kpc.

M[(< 360h~1 kpC) [USIS] MR(< 360h~1 kpC) [JSIS]
(1015 M| [kms™1] (1015 M ] [kms™1]

M 1.46 [1950] 1.36 [1880]
Is 1.19 [1770] 1.19 1770]

10 1.10 [1700] 1.03 [1650]
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around the brightest cluster galaxy and therefore this approach can not be used in
our case. We conclude that the error budget on luminosity will be dominated by the
systematics of the cluster member selection and contamination and is difficult to es-
timate. However in order to estimate the mass-to-light ratio the mass determination
will be a dominant source of error.

To estimate the mass-to-light ratio we calculate the aperture luminosity L, by
adding the luminosities of the cluster members within 360h~! kpc radius around the
BCG. The resulting R and I band luminosities are L, (< 360k~ 'kpc) = 2.6 x 10'2L,
and L,r(< 360h~'kpc) = 1.8 x 10" L, respectively. The mass-to-light ratios are
M/Ly =450 £ 150M, /L1 and M/Lg = 650 &+ 150M, /Ly . The high value results
from the fact that the mass of the cluster is high. The cluster has only 200 members
across this field, therefore it is under-luminous in optical bands. This is however not
the case for the X-ray luminosity. In addition we are measuring the M/L ratio in
the inner part of the cluster, which might not reflect the M/L ratios measured out to
~ 2 Mpc distances from cluster centres usually quoted in the literature.

6.4 Conclusions

The case of RX J1347—1145 has been a cause of many puzzles in the past. Very
discrepant mass estimates are given in the literature, and unfortunately ours is not
the only case where the mass measurements have proven to be difficult. We have
applied the reconstruction method to deep optical data using a multiple-image system
with three images selected based on their colours and redshifts.

We make the following conclusions.

1. The combined strong and weak lensing mass reconstruction confirms that the
most X-ray luminous cluster is indeed very massive. If the redshift and identi-
fication of the multiple-image system, as well as redshifts used in weak lensing
data, are correct we estimate the enclosed cluster mass within 360 h~'kpc to

M (< 360 h'kpc) = (1.2 £ 0.3) x 105 M.

2. The reconstruction shows a south-east mass extension, compatible with the
X-ray measurements.

3. A single component weak lensing model is not applicable for this cluster, a
detailed modelling needs to be performed.

4. We have demonstrated the feasibility of breaking the mass sheet degeneracy in
practice by using shape measurements and adding the information on individual
redshifts, without any assumptions regarding the cluster potential.

In addition we measured the corresponding mass-to-light ratio of the cluster within
360 h~'kpc. We find that the cluster is more luminous in the rest-frame I-band,
which is expected due to the presence of many old (red) elliptical galaxies in clusters.
The resulting mass-to-light ratios are high both in rest-frame I and R-band, giving
M/L; = 450£150M /L1 and M/Lg = 650+ 150M /Ly . These values are higher
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than typical values for clusters claimed in the literature (~ 200 for R-band). However
it is difficult to compare our results with existing measurements of the mass-to-light
ratios, since they are usually performed at larger radii not accessible with our data.

In the course of this research we discovered one new extremely red arc (system
B) at ~ 1 arcmin distance from the BCG. In addition we found an overdensity of a
redshift 2.1 sources forming an arc-like configuration. If they indeed trace the z = 2.1
critical curve, the crude mass estimate confirms the detailed mass estimate from
combined strong and weak lensing analysis. In addition, the high mass we obtain
using the combined reconstruction also fits reasonably well the standard mass vs.
X-ray luminosity relation (see Ettori et al., 2004).

One can test the reconstructed potential by using additional galaxies in the field
that have confirmed high redshifts and search for their counter-images. Their image
position (with redshift of the source known) is projected to the source plane and
back to the image plane. If further image positions are possible given our model, the
data can be further inspected there, and if the lens model is correct objects having
the same colours and redshift as the original image should be found. In addition,
in the vicinity of the critical curves background sources can be highly magnified.
Since the critical curves corresponding to high redshift sources can be calculated
from the model, one can search for objects at redshift and luminosity that would not
be observed otherwise. This detailed strong lensing analysis of the multiply-imaged
candidates in the field will be a subject of future work.

The mass-reconstruction of RX J1347—1145 can be significantly improved. Deep
HST imaging would greatly help in identifying and confirming new multiple-image
systems that we can use, thus allowing even more detailed modelling. In addition,
not only the centre of the light for each of the arcs can be used as constraints, but
also their morphology. As mentioned in Chapter 5, the reconstruction technique with
an adaptive grid at the image positions can be used for these purposes. Further,
spectroscopic redshifts need to be obtained for the multiple-image system candidates.
Deep, wide-field imaging data of this cluster will help us improve the weak lensing
constraints and the reconstruction can be performed at larger radii than presented
here.

In conclusion, even without the best data quality currently accessible, we were
able to perform a detailed cluster-mass reconstruction of the most X-ray luminous
cluster RX J1347—1145. The method has also shown a high potential for the future.
If the highest quality data is used, a combination of strong and weak lensing has
proven to offer a unique tool to pin down the masses of galaxy-clusters as well as
their profiles and accurately test predictions within the CDM framework.
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Figure 6.2: The BRK colour composite of the ~ 3 x 3.2 amin? field of the
RX J1347—1145 (from Mischa Schirmer). Overlaid is in white contours the com-
bined weak and strong lensing mass reconstruction from Fig 6.6a. The contour levels
are the same (the field here is smaller), for convenience we plot them with interchan-
ging dashed and solid line. Yellow circles show the multiple image system we use.
North is up and East is left.
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Figure 6.3: a) A ~ 1’0 x (06 cutout of the K-band image of the RX J1347—1145
showing one of the arcs used for strong lensing (top), a newly discovered arc system
B1-B2 (bottom right, c.f. Fig. 6.2) and the long thin arc C (bottom left) b) A
~ 1’0 x 02 cutout of the I-band image of the RX J1347—1145 showing the arc system
D, possibly consisting of two subcomponents(see Table 6.1).
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Figure 6.4: Tangential ellipticity €; vs. projected radius (#) in radial bins centred on
the brightest cluster member containing 50 galaxies each for the I-band data a) and 40
galaxies for the R-band data b). The errors are obtained by randomising the phases of
the measured ellipticities, while preserving their absolute values. 100 randomisations
were performed. Dashed line gives the best fit SIS profile to the data, for the I-band
we obtain oygrg = 1010 £ 60 kms™' and for the R-band orsis = 1060 =90 kms ™!
(both 1o error bars).



99

Figure 6.5: A ~ 35 x 35 cutout of the I-band image of the RX J1347—1145. In circles
we mark all the objects having photometric redshift estimation 2.05 < zyhot < 2.15.
Objects to the south of the BCG are suggestive of a critical curve location for the
sources at z ~ 2.1.
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6. Cluster mass reconstruction of the cluster RX J1347—1145
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Figure 6.6: xk-maps obtained from statistical lensing reconstruction using weak lensing
data of the cluster RX J1347—1145. Left panels show the reconstructions using I-

band data and for the ones on the right we use the R-band data.

For R-band

data we have N, = 145 background source galaxies, and for I-band N, = 210 all with
known photometric redshifts. In al-a2) we use best fit model from the strong lensing
analysis of the cluster IM presented in Sect. 6.3.1, in b1-b2) we use the IS model
(SIS model fitted to binned tangential ellipticities — see Sect. 6.3.1, centred on the
brightest cluster member) and in c1-c2) we use 10, i.e. £ = 0 on all grid points.
The regularisation parameter was set to n = 200 for R and n = 400 for the I-band.
The positions of 10 brightest cluster members are plotted as white circles.
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Figure 6.7: The I-band brightness distribution of the RX J1347—1145 in
10'2Ls/ arcmin®. The cluster members were selected using the colour cuts described
in the text. Their luminosities have been smoothed using a Gaussian kernel charac-
terised by o = 9”.

Figure 6.8: The my —my vs. mg—
"1 my colours for the galaxies in our
1 field. Cluster members were selec-
1 ted to lie inside the green polygon.
S i . 1 BCG colours are given as a blue
— b e — dot. In addition we plot in red
L 1 all the galaxies which have pho-
L : | tometric redshift estimate 0.35 <
i 1 Zphot < 0.55.
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Figure 6.9: The galaxy luminosity function for the rest-frame I-band (left) and R-
band (right) absolute magnitude for the cluster members selected using the colour
cuts described in the text. We fitted (using Mathematica) the Schechter Luminosity
function (Schechter, 1976) to the data, thereby excluding counts fainter than M =
—18 in both bands and the BCG. The resulting characteristic magnitudes are M; =
—22.2 and My = —21.7 and the faint end slopes are given by a; = —0.9, and ag =
—0.9.



Outlook

In this thesis we have studied how gravitational lensing can be used to determine
the total (i.e. luminous and dark) mass distribution on different scales. We have
shown how the small-scale structure in galaxies influences the observables in multiply
imaged systems and how the combination of weak and strong lensing can be used to
determine the mass and mass distribution in clusters of galaxies. Both these probes
can be used to directly test the predictions from the ACDM paradigm. Our main
findings have been summarised at the very beginning of this work, here we give an
outlook and describe future plans.

The prediction of flux ratio anomalies and cusp relation violation has been ob-
served in several systems and subsequently tested in great detail using simulations and
semi-analytic models. There are other signatures of substructures, such as bending
of jets and saddle point demagnification, for which observational evidence is present.
We argue that these signatures of mass-substructure can best be tested using N-body
simulations. However, a detailed numerical analysis has not yet been done. We plan
to use higher-resolution N-body simulations which include baryons, to further test
these predictions and therewith test the ACDM paradigm on these small scales.

Currently strong gravitational lensing is the only tool to directly detect possible
presence of CDM substructure at cosmological distances. Unfortunately, only a hand-
ful of lenses are known which have the correct geometry and data quality (in radio
frequencies) for the substructure to be studied. Therefore, the statistical studies are
currently limited and comparisons with simulations difficult. The planned facilities,
such as SKA, will change the situation dramatically by discovering multiply imaged
systems in a daily pace. Not only large samples, but also the high resolution and mon-
itoring capabilities of SKA will greatly improve the current status of strong-lensing
research.

Turning to the second part of this work, in the two chapters describing combined
strong and weak lensing mass reconstruction we have listed many points where im-
provements can be made. Using the HST ACS excellent imaging properties one can
obtain deep high-resolution images of individual arcs (c.f. Fig. 1.2). We plan to
further improve the method to include this information. In addition, wide-field ima-
ging data is required for the weak lensing analysis of the cluster RX J1347—1145 to
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measure its mass at larger scales. Ultimately, the signals from different clusters need
to be combined and e.g. the cluster mass function as a function of redshift can be
obtained, which is a probe of the dark energy.

Future wide-field missions will therefore open a new window in strong lensing,
weak lensing and cosmology. Two planed missions, namely LSST and SNAP, will
produce complementary high-quality wide-field data especially suitable for weak and
strong lensing analyses. The advantage of the ground-based 8-meter class telescope
LSST over SNAP is that it will have larger field-of-view and faster photometry. On
the other hand SNAP main advantage is high imaging quality, which is not limited by
atmospheric seeing and therefore promises reduced and controlled systematics. In the
future we plan to work on simulating the strong and weak lensing data and developing
techniques particularly suitable for these extremely promising future missions.
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