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Die molekular-genetischen Analysen von positionellen Kandidatengenen für 

Zitzenmerkmale beim Schwein 

 

Stülpzitzen reduzieren die Anzahl funktionierender Zitzen in betroffenen Sauen und 

führen zum Rückgang der Produktivität der Ferkelerzeugung und des Ferkelwachstums 

während der Laktation. Stülpzitzen findet man in kommerziellen Schweinerassen mit 

Frequenzen von 8 bis 30 %. Da von Defekten betroffene Tiere selektiert werden, wird 

also auch eine wirtschaftliche Produktion in Zuchtprogrammen berücksichtigt.  

Die vorliegende Arbeit zielt darauf ab, Punktmutationen (SNPs) in den positionellen 

Kandidatengenen für den Gendefekt Stülpzitze im Schwein zu finden und die 

physikalische Lokalisation der Gene TGFB1, RLN und PTHLH zu untersuchen bzw. 

den Genort über Kopplung zu bestimmen. Weiterhin wurde die Assoziation der Gene 

TGFB1, RLN und PTHLH zum Merkmal Stülpzitze errechnet. Das Transforming 

Growth Faktor Beta 1 Gen (TGFB1) und das Relaxin Gen (RLN) wurden mit dem 

positionellen Kandidatengenansatz, welcher die Kopplungsinformation für den 

Stülpzitzendefekt und die Kartierungsinformation eines Kandidatengens verknüpft, auf 

Assoziation getestet. Beide Gene, welche in den QTL Regionen für Stülpzitze kartieren, 

die in der Bonn-Berlin Ressourcen Familie gefunden wurden, sind an Proliferations- 

und Differenzierungsprozessen der Milchdrüsen beteiligt. Der Familien-basierte 

Assoziationstest (FBAT) wurde verwendet, um die allele Assoziation zwischen dem 

Defekt Stülpzitze und den Genotypen zu untersuchen. Die hohe Signifikanz belegt die 

Assoziation zwischen der Affektion des Defektes Stülpzitze und des Genotyps von RLN 

in der Bonn-Berlin Dumi Ressource Population. Es wurden keine signifikanten Effekte 

von TGFB1 auf den Defektstatus gefunden. Des weiteren wurde das Parathyroid 

Hormon Like Hormon Gen (PTHLH) als ein funktionelles Kandidatengen erwählt, das 

Epithel - Mesenchymale Interaktionen während der Bildung der Milchdrüsen reguliert. 

Es wurde ebenfalls eine hoch signifikante Assoziation mit dem Defektstatus gezeigt. 

Eine hoch signifikante Assoziation wurde ebenfalls zwischen den Genorten TGFB1, 

RLN und PTHLH und der Anzahl Zitzen und Anzahl Stülpzitzen gefunden. 

 



 

The molecular genetic analyses of positional candidate genes for mammary gland 

characteristics in pigs 

 

Inverted teat reduce the number of functional mammary complexes in affected sows 

leading for reduction of piglet productivity and litter growth during the lactation period. 

This detect occures in commercial pig breeds with frequencies between 8 to 30%. Due 

to selection of affected animals economic consequences in the breeding programm are 

considerate. The study aims to identify single nucleotide polymorphism (SNPs) in the 

positional candidate genes for the inverted teat defect in porcine, and to determine the 

linkage and physical location of TGFB1, RLN and PTHLH gene. Moreover the 

association of TGFB1, RLN and PTHLH gene on inverted teat trait were evaluated. The 

transforming growth factor beta 1 gene (TGFB1) and relaxin gene (RLN) were 

proposed to be tested for association in a positional candidate gene approach which 

combines linkage information for inverted teat defect and mapping information of a 

candidate gene. Both genes mapped in QTL regions for inverted teats discovered in the 

Bonn-Berlin resource family and involved in proliferation and differentiation processes 

of mammary gland. The family-based association test (FBAT) was used for allelic 

association between inverted teat defect and genotype. Highly significant evidence for 

association of RLN and the inverted teat defect affection in the Bonn-Berlin DUMI 

resource population was found. No significant effects of TGFB1 on affection status 

were detected. In addition, parathyroid hormone like hormone gene (PTHLH) was 

proposed as a functional candidate gene that regulates epithelial mesenchymal 

interactions during the formation of mammary gland. It could also been shown to be 

highly significantly associated with affection status. Highly significant association was 

also found between TGFB1, RLN and PTHLH loci and number of teats and number of 

inverted teats. Further confirmation of these results in independent samples of other 

populations will be conducted. 
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1. Introduction 

The inverted teat defect in pigs occurs in many breeds and herds. This disorder results 

in non-functional teats with canals that are shortened. Inverted teats cannot be suckled 

by the piglets. As a consequence the number of piglets raised is reduced for sows 

suffering from inverted teats. This disorder has a considerable negative impact in pig 

production. It occurs in different commercial pig breeds with frequencies between 8 to 

30 % (Blendl et al. 1981, Mayer and Pirchner 1995). The mode of inheritance is not 

fully understood. This disorder has a genetic cause, but the number of genes involved is 

unknown. It is most likely that a major gene and a few modifying minor genes are 

involved. There are heritability estimates ranging from 0.2 to 0.5 (Brevern et al. 1994, 

Mayer 1994). Because of the uncertainty of the genetics of this trait, culling of parents 

and littermates is not recommended. Individuals with a high proportion of inverted teats 

should not be placed in the breeding herd. 

In order to efficiently select against this disorder the availability of a DNA-test would 

be of great advantage since this disorder is in contrast to many other disorders difficult 

to diagnose and is only visible late in life. There are new techniques in molecular 

genetics are being developed, aimed at the isolation and identification of DNA markers 

linked to genes or representing genes for disease resistance, disorders and economically 

important production traits. When available, these markers will provide animal breeders 

with an objective test system to identify, at birth or even earlier, animals carrying 

desirable genes. 

The search for this trait centres on two major techniques, linkage mapping and the 

candidate gene approach. The candidate gene approach is based on knowledge of 

physiology, biochemistry or pathology which clearly indicates the mechanism of the 

trait (Rothschild and Soller 1997). They may be structural genes or genes in regulatory 

or biochemical pathways affecting trait expression as functional candidate genes. Some 

genes may be excellent candidate genes based on similar phenotypes seen in other 

species. To date, several major genes affecting quantitative traits have been found with 

the candidate gene approach. Following to this strategy, Parathyroid hormone like 

hormone gene (PTHLH) is proposed as a candidate gene for inverted teat defect. 



Introduction   2 
 

The positional candidate gene approach (Ballabio 1993) combines linkage information 

for a particular trait and mapping information of a candidate gene, i.e. if, for a particular 

trait, the genetic linkage data implicate a specific region of a chromosome, the genes 

located in this region are therefore potentially candidates for the phenotype, if additional 

facts support the hypothesis that the gene is the QTL. Supporting data are often those 

about the pattern of expression of the gene. Additional information may also be 

obtained from comparative mapping data, if a candidate has been mapped in another 

species in a region of conserved synteny which corresponds to the QTL region in the 

interested species as positional comparative candidate gene. A combination of linkage 

mapping and a candidate gene approach has been the most successful method of 

identifying disease genes to date. This approach has certain advantages over traditional 

linkage mapping or positional cloning approaches. According to this strategy are 

proposed here transforming growth factor beta 1 gene (TGFB1) and Relaxin gene 

(RLN) as candidate genes for inverted teat defect. 

The association studies are now widely accepted as an important complement to linkage 

analysis. Single nucleotide polymorphisms (SNPs) are thought to be ideally suited as 

genetic markers for establishing genetic linkage and as indication of genetic disease. In 

some case a single SNP is responsible for a genetic disease. 

The objective of this study was (1) to identify single nucleotide polymorphism (SNPs) 

in the positional and functional candidate genes for the inverted teat defect in porcine, 

(2) to determine the linkage and physical location of TGFB1, RLN and PTHLH gene, 

(3) to evaluate the association of TGFB1, RLN and PTHLH gene on inverted teat trait, 

and (4) to improve the comparative pig gene map. Ultimately, the goal will be to 

identify genes or DNA markers, which can be used to select against the inverted teat 

defect. 
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2. Literature review  

 

2.1 Experiments to address the roles of candidate genes in the mammary gland 

The endocrine system coordinates development of the mammary gland with 

reproductive development and the demand of offspring for milk. Three categories of 

hormones are involved, reproductive hormones, metabolic hormones and mammary 

hormone (Neville et al. 2002). 

Plath et al. (1997) have shown expression of transforming growth factor beta 1 

(TGFB1) in the bovine mammary gland during mammogenesis, lactogenesis, 

galactopoiesis and involution. Both specific receptor binding and expression of TGFB1 

mRNA was higher during the prepubertal and pubertal periods than during lactation. 

These data support a role of TGFB1 in regulation of pubertal mammary growth and 

development. TGFB1 had a striking biphasic effect: whereas relatively high 

concentrations of this cytokine inhibited colony formation, lower concentrations 

stimulated extensive elongation and branching of epithelial cords. Taken together, these 

studies indicate that HGF/SF is a stromal-derived paracrine mediator of mammary 

ductal morphogenesis, and that when present at low concentrations, TGFB1 can 

contribute to this process (Soriano et al. 1998). The TGFB is at least in part responsible 

for restricting the formation and growth the lateral buds, and functions normally to 

maintain the open pattern of branching that is required for alveolar development during 

pregnancy. TGFB does not, on the other hand, restrict the development of alveolar 

structures (Daniel et al. 1989). The effects of overexpression of TGFB1 in the 

mammary epithelium have been evaluated more extensively. TGFB1 has been targeted 

to the mammary epithelium from different transcriptional promoters in two transgenic 

mouse models (Smith 1996). 

During gestation, estrogens are known to be required for mammary development and 

relaxin is also needed to stimulate total mammary gland growth (Farmer and Sørensen 

2000). Relaxin acts synergistically with estrogens and progesterone to develop the 

mammary apparatus and at the same time to suppress lactation. Removing the inhibitory 

effects of relaxin at parturition may be an important prelude to lactogenesis (Harness 

and Anderson 1975). Relaxin play a major role during pregnancy in promoting 
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connective tissue remodelling including cervical ripening and relaxation of pubic 

ligament. Min and Sherwood (1996) have been reported that the relaxin promotes 

growth and softening of cervix and development of mammary gland in pregnant pig.  

In mice relaxin is required for development of the mammary gland and the nipple 

during pregnancy. Second, relaxin is required for relaxation of the pubic ligament 

during the second half of pregnancy; third relaxin is involved in Posmol (basal plasma 

osmolality) regulation in pregnancy. Finally, relaxin is not necessary for maintaining 

pregnancy and does not appear to affect the length of gestation, but does seem to affect 

normal delivery in some animals (Zhao et al. 1999). 

In rodent, it was confirmed that the relaxin promotes growth and differentiation of the 

mammary parenchyma (epithelial and myoepithelial cells) and the mammary stroma 

(fibroblatas, adipocytes and collagen) (Bani et al. 1985, Bianchi et al. 1986). Moreover, 

relaxin was demonstrated to be essential for development of normal mammary nipples 

and nipple function in pregnant rats (Kuenzi and Sherwood 1992, Kuenzi et al. 1995). 

Relaxin knockout mice have been developed and are fully fertile. Zhao et al. (1999) 

used gene targeting to generate Rln -/- mice. These mice were fertile but had deficient 

mammary development such that pups were unable to suckle and died within 24 hrs 

unless cross-fostered with a wildtype foster mother. 

Parathyroid hormone like hormone (PTHLH) is produced in the mammary gland during 

late pregnancy and lactation and is postulated to have multiple effects in the mammary 

gland as well as the neonate, including regulation of calcium transport, relaxation of 

smooth muscle, and regulation of cell growth and differentiation (Ratcliffe 1992, Thiede 

1994). Therefore, PTHLH produced by the lactating mammary gland very likely 

modulates the activity of mammary epithelial and myoepithelial cells as well as local 

vascular tissues (Thiede 1994). Recent experiments have demonstrated that PTHLH and 

the PTHR1 (parathyroid hormone receptor 1) comprise one are important signal 

pathway involved in this exchange. Both are necessary for mammary development, and 

in their absence, although the mammary buds initially form, they fail to undergo the 

expected androgen-mediated destruction in males or the initiation of ductal branching 

morphogenesis in females (Wysolmerski et al. 1998, Dunbar et al. 1999). Instead, the 



Literature review  5 

mammary epithelial cells disappear and the nipple sheath fails to form, leaving neonates 

without mammary glands or nipples. During the early stages of mammary bud 

formation, PTHLH is expressed within mammary epithelial cells and the PTHR1 is 

expressed in the condensed mammary mesenchyme as well as in the presumptive 

dermis (Wysolmerski et al. 1998, Dunbar et al. 1999). It appears that PTHLH from the 

epithelial cells acts on the mesenchyme in close proximity to the mammary 

mesenchyme and involved in supporting the initiation of branching morphogenesis 

(Wysolmerski et al. 1998). 

 

Table 1: Heritability of teat number 

Breed         No.     No.  Heritability           Reference 

     of animals   of teats 

Iberian      26,913     11  0.33-0.42        Bejar et al. 1993 

Lacombe, York.  27,000     14  0.27-0.47  Mckay and Rahnefeld 1990 

Iberain      30,271     11  0.35-0.46        Toro et al. 1986 

Landrace        1,370     14.27 0.20         Smith et al. 1986 

L.White          456     14.44 0.20         Smith et al. 1986 

L.White        2,148     14  0.10-0.20        Clayton et al. 1981 

Brit. Landrace       3,200      13.70 0.20-0.30        Clayton et al. 1981 

 

2.2 Genetic background of teat number and inverted teat 

The teat number is an important trait regard to the mothering ability of sows, the pig 

industry has traditionally applied selection pressure to teat number (Pumfrey et al. 

1980). In particular, teat number plays an important role when the number is less than 

the litter size. Nevertheless, information about the inheritance of teat number is limited 

in comparison to other reproductive traits of pigs (Hirooka et al. 2001). 
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The factors that affect the number of teats in pigs are of interest for both biological and 

practical reasons. Previous work indicates that there is a genetic component, principally 

from the dam. The proportion of males in a litter appears to be related to the anogenital 

distance of the gilts in the litter, possibly as a result of the intrauterine position effect. 

Drickamer et al. (1999) indicated that the teat number in female pigs is related to the 

proportion of males in the litter. 

The number of glands which develop on a pig will be mostly affected by genetics of the 

animal, but this occurs within a range of teat numbers; in the case of the pig this is a 

fairly wide range compared to most species. Heritability of teat number is low to 

medium as shown in table 1. Also, there is little relationship between teat number and 

maternal performance. Nevertheless, gilts are still chosen for breeding based partially 

on the number of teats. Most breed associations require 12 functional teats for pure bred 

registry. Fernandez et al. (2004) studied to evaluate heterosis and recombination effects 

in a crossing experiment involving two distinct European and Asian breeds (Iberian and 

Jiaxing). Teat number was recorded in the right and left sides of piglets and analysed by 

fitting a mixed linear model including the Dickerson's crossbreeding parameters. The 

result confirms that the rupture by recombination of coadapted genomes decreases 

developmental stability in domestic pigs. 

The inverted teat is characterised by failure of nipples to protrude from the udder 

surface. The teat canal is held inward, forming a small crater so that normal milk flow is 

prevented (Figure 1). This abnormality has a genetic cause, but the number of pairs of 

genes involved is unknown. The heritability is estimated to be 0.1-0.6 (Table 2). The 

wide distribution of teat abnormalities is shown by investigation of slaughter pigs: 17% 

of boars and 6% of sows were affected by inverted teats. 75% of the inverted teats were 

seen periumbilical (Beilage et al. 1996). An interesting observation from the study by 

Labroue et al. (2001) was that almost all of the inverted teats become functional and 

give milk at the time of lactation. Therefore, both normal and inverted teats should be 

considered as functional teats. The small, supernumerary and blind teats should be 

considered as non-functional and should be excluded from the counts.  
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Table 2: Heritability of inverted teat 

Reference      Heritability  

Molenat and Thibault 1977   0.30-0.65 

Clayton et al. 1981    0.21 

Hittel 1984     0.32 

Mayer 1994     0.19 

Brevern et al. 1994    0.50 

 

 

 

A C

Lobules or glands 

Ducts 

Milk collecting 
      ducts 

Papilla 
Cavity 

 B         D 

Figure 1: Ultrastructure and scheme of normal teat (A, B) and inverted teat (C, D) 

(Steffens 1993, Beilage et al. 1996)  
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2.3 The candidate gene approach 

The candidate gene approach is based on knowledge of physiology, biochemistry or 

pathology which clearly indicates the mechanism of the trait (Rothschild and Soller 

1997). They may be structural genes or genes in regulatory or biochemical pathways 

affecting trait expression as functional candidate genes. Some genes may be excellent 

candidate genes based on similar phenotypes seen in other species. 

The most general approach is that of "positional cloning" (Collins 1992) or QTL 

mapping. It is based on the search of regions containing QTL through linkage mapping 

to anonymous markers approaching the unknown gene more and more closely, fine 

mapping the QTL region and finally cloning the QTL. 

A number of QTL for different traits have been identified in different resource 

populations that were subjected to genome scans (Andersson et al. 1994, Rothschild et 

al. 1995, Bumstead 1998, Walling et al. 1998, Wang et al. 1998, Yonash et al. 1999, 

Marklund et al. 1999, Harlizius et al. 2000, de Koning et al. 2001, Malek et al. 2001a). 

Unfortunately, genome-wide scans cannot resolve the location of a QTL more precisely 

than 10-30 cM (Darvasi and Soller 1997). As this is equivalent to a region containing 5-

15 MB of deoxyribonucleic acid (DNA) and 300-900 genes, on average, it is a major 

task to fine map the QTL region in order to finally positional clone the gene.  

The “positional candidate” gene approach (Ballabio 1993) combines linkage 

information for a particular trait and mapping information of a candidate gene, which 

may be identified because of its specific expression pattern (functional candidate); i.e. 

if, for a particular trait, the genetic linkage data implicate a specific region of a 

chromosome, the genes located in this region are therefore potentially candidates for the 

phenotype, if additional facts support the hypothesis that the gene is the QTL. 

Supporting data are often those about the pattern of expression of the gene. Additional 

information may also be obtained from comparative mapping data, if a candidate has 

been mapped in another species in a region of conserved synteny which corresponds to 

the QTL region in the interested species as positional comparative candidate gene.  

The functional candidate approach benefits from the fact that it only deals with cDNA, 

devoid of intronic and intergenic sequences, which represent only a few percent of the 
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total genome (about 3% in mammals). Differential expression screening approaches are 

therefore more closely associated to gene function. Since it is logistically near 

impossible to sequence the 100,000 different genes in a pig, the next best approach is to 

sequence only parts of the genes called express sequence tags (ESTs).  

A combination of linkage mapping and a candidate gene approach has been the most 

successful method of identifying disease genes to date. The candidate gene approach is 

useful for quickly determining the association of a genetic variant with a disorder and 

for identifying genes of modest effect. This approach has certain advantages over 

traditional linkage mapping or positional cloning approaches. 

 

2.4 Single nucleotide polymorphism (SNP) 

SNPs are major contributors to genetic variation, comprising some 80% of all known 

polymorphisms, and their density in the human genome is estimated to be on average 1 

per 1,000 base pairs. SNPs are mostly biallelic, more frequent, mutationally and more 

stable, making them suitable for association studies in which linkage disequilibrium 

(LD) between markers and an unknown variant is used to map disease-causing 

mutations. In addition, because SNPs have only two alleles, they can be genotyped by a 

simple plus/minus assay rather than a length measurement, making them more 

amenable to automation. 

SNPs promise considerable advantages over microsatellite markers: (1) lower mutation 

rates, (2) more robust in laboratory handling and data interpretation (Krawczak 1999), 

(3) suitability for standardized representation of genotyping results as a digital DNA 

signature (Fries and Durstewitz 2001) and (4) suitability for various genotyping 

techniques and high potential for automation (Kruglyak 1997). One disadvantage is that 

any SNP has lower information content, compared with a highly polymorphic 

microsatellite. But this disadvantage can be compensated for by a higher number of 

markers. 

Individual SNPs are less informative than other marker systems, especially as the 

widely used microsatellites, but they are more abundant and have a great potential for 

automation (Wang et al. 1998, Cronin et al. 1996). Markers used for genome scans 
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should allow the polymorphisms to be typed quickly, accurately and inexpensively. 

SNP markers possess the properties that fulfil these requirements. First, DNA sequence 

variations, based on point mutations are estimated to occur once every 500 to 1000 bp 

when any two chromosomes are compared (Harding et al. 1997). Second, SNPs are 

diallelic in populations, and their allele frequencies can be estimated easily in any 

population through a variety of techniques (Kwok et al. 1994). Third, the mutation rate 

per generation of SNPs is low compared to tandem repeat markers where the high 

mutation rates can confound genetic analysis in population (Hastbacka et al. 1992). 

Fourth, many of the mutations of the trait result from single nucleotide changes in 

genes; it is likely that a subset of SNPs is functionally important in complex traits. Last, 

promising high-throughput genotyping methods are now available for efficient 

genotyping of SNPs (Wang et al. 1998).  

The methods for genotyping of single nucleotide polymorphisms include gel-based and 

non-gel-based approaches. The gel-based genotyping approaches are for example DNA 

sequencing, RFLP and single-strand conformation polymorphism (SSCP) analysis 

(Orita et al. 1989). All non-gel-based genotyping approaches achieve allelic 

discrimination by one of four mechanisms: allele-specific hybridization, allele-specific 

primer extension, allele-specific oligonucleotide ligation and allele-specific cleavage of 

a flap probe. By combining one of these allelic discrimination mechanisms with either a 

homogeneous or solid-phase reaction format or a detection method such as fluorescence 

intensity, fluorescence polarization or mass spectrometry fast, reliable, automated and 

large-scale genotyping is warranted (Kwok 2000, Griffin et al. 1999, Li et al. 1999). 

 

2.5 Linkage and association analysis in complex disease 

Porcine genome maps have been constructed based mainly on three methods: genetic 

linkage mapping, RH panal mapping and cytogenetic mapping. The current numbers of 

markers place on the porcine genome are over 1800 in linkage map from (Archibald et 

al. 1995, Marklund et al. 1996, Rohrer et al. 1996), 900 in RH map form (Hawken et al. 

1999), and 700 in cytogentic map form (Yerle et al. 1995, 1997). 
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Genetic linkage techniques are powerful tools for analyzing complex disease-related 

genes because they detect genes that have a major influence on the development of a 

disease (Greenberg 1993). However, linkage studies are less sensitive than association 

studies because they do not detect less influential genes (Greenberg 1993). A linkage 

study, therefore, may be negative in the absence of major genes contributing to disease 

susceptibility. The principle of linkage analysis is based on the fact that if two genes or 

markers are close together on a chromosome, they will cosegregate because the 

likelihood that a recombination will occur between them during meiosis is low. 

Therefore, if a tested marker is close to a disease susceptibility gene, its alleles will 

cosegregate with the disease in families. The logarithm of odds (LOD) score is the 

measure of the likelihood of linkage between a disease and a genetic marker (Ott 1996). 

The LOD score is the base-10 logarithm of the odds ratio in favour of linkage. In 

Mendelian disorders, a LOD score of greater than 3 (i.e., odds ratio greater than 1000) is 

considered strong evidence for linkage (Ott 1996). 

Association studies are more sensitive than linkage studies and therefore are better for 

fine-mapping of linked genetic regions, because the association signal increases as the 

markers get closer to the susceptibility gene. Association analysis is highly sensitive and 

may detect genes contributing less than 5% of the total genetic contribution to a disease 

(Risch and Merikangas 1996).  

Association analyses are performed by comparing the frequency of the allele studied in 

family. This is usually performed by typing each individual of each for the tested 

marker, but recently, methods for DNA pooling have been developed, which could 

simplify large-scale association studies (Sham et al. 2002). There are at least two 

possible explanations for the existence of an association between an allele and a disease: 

1) the associated allele itself is the genetic variant causing an increased risk for the 

disease; and 2) the associated allele itself is not causing the disease but rather a gene in 

linkage disequilibrium (LD) with it (Hodge 1994). Linkage disequilibrium exists when 

chromosomes with the mutant allele at the disease locus carry certain marker alleles 

more often than expected.  

The population-based association method may produce spurious associations if the 

patients and controls are not accurately matched (population stratification) (Spielman   
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et al. 1993). Therefore, new association tests have been developed that are family-based 

and use an internal control group from within each family, thus avoiding the necessity to 

match patients and controls altogether. The most widely used family-based association 

test is the transmission disequilibrium test (TDT) (Spielman et al. 1993, Falk and 

Rubinstein 1987, Schaid and Sommer 1994). The TDT is based on comparison of 

parental marker alleles that are transmitted and those that are not transmitted to affected 

offspring. The TDT can also serve as a linkage test if there is a known LD between the 

tested marker and the disease.  

 

2.6 Candidate genes for inverted teat defect 

 

2.6.1 Transforming growth factor beta 1 gene (TGFB1) 

Transforming growth factor beta belongs to a large family of at least 40 related 

polypeptides. There are three TGFB isoforms in mammals – TGFB1, TGFB2, and TGF 

B3. The three isoforms are encoding separate genes that share a common gene structure 

and encode highly homologous polypeptides, in which an amino-terminal signal 

sequence and prodomain precede the carboxyl-terminal active domain (Fitzpatrick and 

Bielefeldt-Ohmann 1999). 

 

2.6.1.1 Gene structure 

TGFB1 is a homodimic protein of Mr 25000 synthesized by most eukaryotic cells. Each 

chain of TGFB1 is first synthesized as a 390 amino acid precursor protein and later 

cleaved to generate the C-terminal mature protein of 112 amino acids. The porcine 

TGFB1 nucleotide sequence has been reported (Derynck and Rhee 1987, Kondaiah et 

al. 1988). The TGFB1 gene consists of 7 exons. Exon 1 exhibits the translation start and 

encodes the 5´-untranslated region and a part of the amino propeptide. Exons 2, 3, 4 and 

5´-region of exon 5 code for the propeptide domain of the TGFB1 molecule and the 3´-

end of exon 5 along with exon 6 and the 5´-region of exon 7 code for amino acids of the 

mature peptide. The remaining 3´-region of exon 7 encodes the 3´untranslated sequence. 
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Two alternate polyadenylation signals and alternative splicing of the porcine TGFB1 

have been observed in the pig (Kondaiah et al. 1988).  

 

2.6.1.2 Polymorphism in TGFB1 gene 

In porcine, no polymorphism was observed for TGFB1 with endonucleases AluI, 

BamHI, BglII, DraI, EcoRI, HaeIII, HindIII, MspI, PstI, PvuII, RsaI, and TaqI (Hu et al. 

1997). The human TGFB1 gene consists of seven exons encompassing 23.5 kb on 

chromosome 19q13.1. Three SNPs in the promoter region, one insertion/deletion in the 

5’ untranslated region, two SNPs in the signal peptide sequence, one SNP in intron4 and 

one SNP in exon 5 have been identified previously (Cambien et al. 1996). 

Polymorphism at position +869 T/C and +915 G/C in the signal protein sequence of the 

human TGFB1 gene change codon 10 (Leu-Pro) and codon 25 (Arg-Pro) respectively, 

and polymorphism in exon 5 at position+1632 C/T changes codon 263 (Thr-Ile) This 

study suggests that the polymorphisms within the TGFB1 gene play at most a small role 

in ankylosing spondylitis is involved in susceptibility to the disease (Jaakkola et al. 

2004). 

 

2.6.1.3 Mapping  

The TGFB1 has been localized by in situ hybridisation in the q2.2----q2.4 and cen----

q2.1 regions of pig chromosome 6 and the chromosomal locations of their human and 

murine homologues are on chromosome 19q13.1 and 7 respectively. The porcine 

TGFB1 has been allocated to Sscr6q11-q21 (Yerle et al. 1990a, b). 

 

2.6.1.4 Association 

Several polymorphisms in the human TGFB 1 have been identified (Cambien et al. 

1996) and TGFB 1 is also a candidate gene for Alzheimer’s disease which is located on 

chromosome 19q13.1-3 (Fujii et al. 1986). Luedecking et al. (2000) reported that the 

polymorphism in TGFB1 may be modestly associated with the risk of AD. 
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From the study of Pulleyn et al. (2001), they suggest that one or more polymorphism in 

the TGF beta1 gene acting to increase the level or the function of the protein may be 

associated with asthma severity. These results suggest that the allele is associated with 

the severity rather than the initiation of the asthma or atrophy, in contrast to studies 

where polymorphism have been compared between asthmatics and controls such as in 

IL-3. Zhou et al. revealed no evidence that genetic polymorphisms of the TGFB1 of the 

PDGF families are associated with systemic sclerosis in the Native American 

population (Zhou et al. 2000). The study show that certain common polymorphism 

influence blood levels of TGFB1. As it likely that TGFB1 has a role in a number of 

common important disease, predisposition to these conditions may be associated with 

alleles at the TGFB1 locus (Grainger et al. 1999). 

Several host genetic association studies with polymorphism of the TGFB1 gene have 

been performed for elucidating the function of polymorphism of the TGFB1 gene. 

Regarding osteoporosis, the concentration of TGFB1 in human bone tissue was 

positively related to bone turnover and a large part of the variability of TGFB1 in bone 

tissue is thought to be due to differences in bone resorption (Pfeilschifter et al. 1998). 

The substitution proline to leucine at codon 10 in signal sequence of the TGFB1 gene 

was significantly associated with higher bone mineral density at the lumbar spine, lower 

spinal bone loss, and a lower susceptibility to vertebral fractures (Yamada et al. 1998). 

 

2.6.2 Relaxin gene (RLN) 

The peptide hormone relaxin was discovered in 1926. Hisaw was first to show that 

relaxin causes relaxation and softening of the pubic ligaments of the guinea pig. Relaxin 

is a 6000-d polypeptide, structurally related to insulin and the insulin-like growth 

factors. Unlike insulin, the structure of which is remarkably well conserved among the 

vertebrates, relaxin sequences can vary by more than 50% between different species. 

Despite these large sequence variations, relaxins (with few exceptions) have very 

similar biologic activities in animal test systems. Circulating relaxin is secreted by the 

corpus luteum. The placenta, decidua, or both also produce relaxin, which does not 

enter the circulation but may act in an autocrine or paracrine fashion. hCG is a stimulus 

to luteal relaxin secretion (Goldsmith et al. 1995). 
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The source of RLN that is secreted into the periperal blood varies among species. For 

example, the source of relaxin is the corpara lutea in rats (Fields 1984, Golos et al. 

1984) and pig (Anderson et al. 1973, Fields and Fields 1985) the placenta in rabbits 

(Eldridge and Fields 1985), and the uterus in guinea pig (Pardo and Larkin 1982). 

 

2.6.2.1 Gene structure 

The porcine relaxin gene contains two exons, separated by a large intron of 5.5 kb. The 

preprorelaxin coding region, are comprising a signal peptide of 24 amino acids, a B 

chain of 32 amino acids, a large C peptide of 104 amino acids, and an A chain of 22 

amino acids (Haley et al. 1987). The relaxin of all species is containing two chains, A 

and B covalently linked by two disulfide bonds (the C peptide is trimmed off in the 

processing of prorelaxin to produce relaxin (John et al. 1981). 

Human, porcine and rat preprorelaxins contain a single peptide followed by a B chain 

19-35 amino acids, a connecting ‘C’ peptide of approximately 105 amino acids and an 

A chain of 22 or 24 amino acids. Processing of preprorelaxin to the active form involves 

removal of the signal and C peptides, and formation of one intra and two interchain 

disulphide bonds. The positions of these bonds are highly conserved amongst 

mammalian species (Kemp and Niall 1984), but only 11 amino acids from mature 

relaxin are conserved in all species studied. Among species, the sequence homology of 

relaxin is remarkably low, with differences of 30-60%, but the localization of the 

disulfide bonds and the cysteines is very similar, thus suggesting similar tertiary of the 

different forms of relaxin (Bryant-Greenwood and Schwabe 1994). 

 

2.6.2.2 Polymorphism 

Within the coding sequence, a single base change of (C <-> T) relative to the cDNA 

sequence (Haley et al. 1982) is observed at position 7041, resulting in a Ser <->Leu 

change in the carboxyl-terminal peptide at residue 116. There are no known mutations 

at loci on either mouse chromosome 19 or human chromosome 9 which affect aspects 

of fertility, pregnancy or parturition (Fowler et al. 1991). 
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2.6.2.3 Mapping 

By study of mouse-human cell hybrids, Crawford et al. (1984) found that both relaxin 

genes are on 9p (9pter-9q12). Only a single relaxin gene is found in the pig, rat and 

mouse. In the case of the growth hormone genes, 'extra' genes not predicted by known 

gene products are found in man only. Structural similarities of relaxin to insulin exist at 

the level of both the gene and the product. Naggert and Mu (1994) stated that the relaxin 

gene maps to mouse chromosome 19 near D19Mit23. The human relaxin gene encoding 

H1 and H2 are localized in close proximity on chromosome 9 at 9p24 whereas the H3 

gene is on chromosome 19 at 19p13.3. 

 

2.6.3 Parathyroid hormone like hormone gene (PTHLH) 

A PTHLH has been purified (Burtis et al. 1987, Moseley et al. 1987, Strewler et al. 

1987) and its cDNA cloned (Suva et al. 1987, Mangin et al. 1988b, Thiede et al. 1988) 

from malignant tumors associated with the syndrome of HHM. The PTHLH and PTH 

genes appear to be related on the basis of an ancient duplication event, following which 

they have clearly evolved separately. 

 

2.6.3.1 Gene structure 

The human PTHLH gene structure has been identified in several investigations. Initial 

studies of the human PTHLH gene structure reported it to be a complex transcriptional 

unit spanning more than 12 kilobases (kb) of genomic DNA and containing six exons. 

Exon 4, 5 and 6 are alternatively spliced to generate three classes of PTHLH mRNAs 

with distinct 3’ends, each encoding unique C-terminal PTHLH sequences (Mangin et al. 

1988a). Yasuda et al. (1989) isolated a single-copy PTHLH gene from a human 

placental genomic library. They found that the gene spans 13 kb and contains 7 exons. 

The organization was closely similar to that of the parathyroid (PTH) gene, suggesting a 

common evolutionary origin. Exon 1 and exon 2 encode two alternative 5’ untranslated 

regions each driven by different promoters. Exon 3 encodes a leader sequence and the 

majority of the pro sequence, and exon 4 encodes the remainder pro sequence and 139 

amino acids representing the majority or all of the mature peptide. These two exons 6 
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and 7 each encode potential alternative carboxyl – terminal extensions to the peptide (of 

34 and 2 amino acids respectively) as well as alternative 3’ untranslated regions. 

Consequently, as a result of alternative splicing, mRNAs may result which encode at 

least 2 different 5’ untranslated regions, 3 different 3’ untranslated regions and 3 

isoforms of the mature peptide of 139, 141, and 173 amino acids (Goltzman et al. 1992). 

Mangin et al. (1990b) reported that human PTHLH gene contain 8 exons and spans 

more than 15 kb of genomic DNA with apparent promoter elements lying immediately 

up-stream of exon 1A and 2. The TATA box is present approximately 25 bp upstream 

of exon 1A. Various consensus sequences for transcription factors, such as AP-1, AP-2 

and SP1 can be localized. All exon-intron junctions have the consensus GT-AG 

sequence, including the splice junction at the end of exon IV which contains a GT 

beginning in the Arg codon for amino acid 139 of the mature peptide. 

Suva et al. (1989) investigated the alternate cDNA species isolated were representative 

of functional BEN cell mRNAs. Thus, BEN cells produce four major PTHLH mRNA 

species which are alternately spliced at both the 5’ and 3’ ends. Clearly, the two 

separate PTHLH promoters produce multiple mRNA species.  

Mouse exon 1 and exon 2 correspond to 5’ exon 1C and 2 of human gene and are 

separated by a 46 bp putative promoter region. Exon 3 encodes prepro PTHLH 

sequence. These organization features are similar to those of the human gene, except 

that the 5’ flanking region of the mouse gene appears to be less complex. The 

organization of the remaining portions of the mouse gene was found to be simpler than 

that of the human gene (Mangin et al. 1990a). The bovine has also a genomic 

organization similar to the gene of the rat and mouse (Wojcik et al. 1998). 

 

2.6.3.2 Polymorphism 

Pausova et al. (1993) have characterized a VNTR polymorphism in the hPTHLH gene 

that is located in an intron 100-bp downstream of exon VI that encodes a 3' untranslated 

region. By PCR analysis eight different alleles were identified in a group of 112 

unrelated individuals. All eight alleles were sequenced and the repeat unit was identified 

as the general sequence [G(TA)nC]N, where n = 4 to 11 and N = 3 to 17. This 
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polymorphic sequence-tagged site will be useful for mapping chromosome 12p and will 

aid in testing for linkage of genetic diseases to the hPTHLH gene.  

Human PTHLH alternative 3’mRNA splicing results in transcripts, which encode three 

PTHLH isoforms and have been identified in amnion (Curtis et al. 1998). Alternative 3’ 

splicing to exons VII, VIII and IX produces transcripts encoding three different 

isoforms of the protein, PTHLH 1-139, 1-173 and 1-141 respectively (Mangin et al. 

1988b). As compared to the complex hybridization pattern observed on Northern 

analysis of human RNAs (Ikeda et al. 1988a, b, Mangin et al. 1988b, 1989), RNAs 

prepared from rodent tumors and tissues appear to contain a single broad hybridization 

band (Ikeda et al. 1988a, b, 1989, Thiede and Rodan 1988, Drucker et al. 1989, Yasuda 

et al. 1989), suggesting that the mouse and rat PTHLH genes might have a simpler 

organization than the human gene. 

 

2.6.3.3 Association 

The PTHLH gene is a candidate gene for a skin carcinogenesis susceptibility locus 

mapping to distal chromosome 6 (Manenti et al. 2000b). PTHLH shows a Thr166Pro 

amino acid polymorphism in inbred mouse strains. The PTHLHPro and PTHLHThr alleles 

are linked with high and low genetic susceptibility to two-stage skin carcinogenesis of 

outbred Car-S (susceptible) and Car-R (resistant) mice, respectively (Manenti et al. 

2000b, Dragani 2003). Allele 2 at a VNTR polymorphism in the PTHLH gene showed 

borderline statistically significant associations with lung cancer risk. Furthermore, the 

same alleles were significantly associated with tumour prognosis. Studies on association 

were then performed in the Japanese and in European populations (Manenti et al. 

2000a). 

 

2.6.3.4 Mapping 

Mangin et al. (1988a) assigned the human PTHLH gene to 12p12.1-p11.2 by a 

combination of Southern analysis of somatic cell hybrid DNA and in situ hybridization. 

Hendy et al. (1989) and Hendy GN and Goltzman D (1990) assigned the corresponding 
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gene in the mouse to chromosome 6 by means of Southern blot analysis of DNAs 

isolated from a panel of mouse/chinese hamster cell hybrids. 
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3 Material and Methods 

 

3.1 Material  

 

3.1.1 Experimental animals 

 

3.1.1.1 Unrelated animals  

For polymorphism screening in three candidate genes, one individual from each of pig 

breeds namely Duroc, Hampshire, German landrace, Pietrain and Miniature pig, was 

used in this study. 

 

3.1.1.2 Bonn-Berlin DUMI resource population  

The resource population was developed from a reciprocal cross between Duroc and 

Berlin-miniature pig (Hardge et al. 1999) as diagrammed in figure 2. The Berlin 

miniature pig is a cross of Vietnamese Pot Belly, Saddle Back and German Landrace 

pigs. Five sows of Berlin miniature pigs were crossed with a Duroc while four Duroc 

sows were crossed with a Berlin miniature boar to produce parental generation animals 

(F1). Forty seven F1 animals generated the F2 animals (n=902) of Berlin-Bonn-DUMI 

resource population. About half of the F2-population (n=485) were reared at the 

research station of the Humboldt University, Berlin (F2-Berlin-DUMI). F2 animals 

(F2=417), that are reared and performance tested at the research farm of Frankenfrost, 

Institute of Animal Science, University of Bonn, were generated from 11 sows and 3 

boars of the F1 generation and were used to investigate in this study. 

Animals of this population have been inspected for traits of mammary gland phenotype 

including the scoring of the appearance of inverted teats. Within this resource 

population the disorder occurs with a frequency of 42%. That provides excellent 

conditions for detecting of the responsible genetic factors.  
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Figure 2: Bonn- Berlin DUMI resource population 

 

3.1.1.3 Commercial pigs 

Tissue samples of commercial pig breeds including the German Landrace (n=30), Large 

White (n=30) and Pietrain (n=30) were obtained from the Landesverband Rheinischer 

Schweinezüchter, Bonn Germany. The Genomic DNA was isolated and used for 

determining the polymorphism in this study. 

 

3.1.2 Chemicals and equipments 

 

3.1.2.1 Chemicals 

Biozym Diagnotik (Hessisch-Oldendorf, Germany) 

- Sequagel Complete Buffer Reagent  

- Sequagel XR (6%) (SQG-XR-842)  

Carl Roth GmbH (Karlsruhe, Germany)  

 - Agar-Agar 
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 - Acetic acid 

- Ampicillin sodium salt 

- Chloroform  

- Glacial Acetic Acid  

- Nitric acid  

- Phenol/Chloroform (50:50)  

- Silver Nitrate  

- Sodium carbonate  

- TEMED (C6H16N2)  

- Tris (hydroxymethyl)-aminomethane  

- X-Gal: C14H15BrCINO6;  

- IPTG dioxanfrei (Isopropyl β−D –Thiogalactosid)  

- N, N’-Dimethylformamide  

Gibco BRL, Life Technologies (Karlsruhe, Germany) 

- TRIzol Reagent  

Sigma-Aldrich GmbH (Taufkirchen, Germany) 

- Agarose  

- Isopropanol  
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3.1.2.2 Reagents 

40% acrylamide/bis-acrylamide (49:1) : 

Acrylamide    39.2 g 

N, N-methylene-bisacrylamide 0.8 g 

Distilled water to 250 ml  

Agarose gel loading buffer : 

0.25% Bromophenol blue 

0.25% Xylene cyanol 

120 mM EDTA 

Ampicillin (10 mg/ml) : 

Ampicillin powder    2 g 

Sterile, distilled water,   40 ml 

Filtrate with 0.45 µl filter 

Blue dextran loading buffer : 

 Blue dextran     50 mg 

 EDTA (0.5M)    50 µl 

 Water      950 µl 

 Formamide    5 ml 

DEPC-treated water : 

 DEPC     1 ml/l water 

 Incubation at 37 oC and heat inactivated by autoclaving (121 oC for 30 min) 
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1.2% FA gel : 

 Agarose     1.2 g 

 10x FA buffer    10 ml 

 37% formaldehyde   1.8 ml 

 Ethedium bromide    1 µl 

 Fill up to 90 ml with DEPC-treated water and boil 

Proteinase K :     10 mg/ml 

SDS :      1% (w/v) 

SSCP loading buffer (per 50 ml) : 

 Formamide     47.5 ml 

Sodium hydroxide   200 mg 

Bromophenol blue   125.0 mg 

Xylenecyanol    125.0 mg 

X-Gal (50 mg/ml) : 

X-Gal      50 mg  

N, N-dimethylformamide.  1 ml 

 Stored at -20 oC 

 

3.1.2.3 Buffers 

10x FA buffer: 

 MOPS     200 mM 

 Sodium acetate    50 mM 
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 EDTA     10 mM  

50x TAE (per litre)  

Tris base    242 g 

Glacial acetic acid   57.1 ml 

0.5 M EDTA pH 8.0   100 ml 

10x TBE (per litre) 

Tris borate, pH 8.0   90 mM 

EDTA, pH 8.0   20 mM 

10x TE (per 500 ml)  

1 M Tris pH 8.0    50 ml 

0.5M EDTA pH 8    0.5 ml 

ddH2O     445 ml 

Autoclave to sterilize (121 oC for 30 min) 

 

3.1.2.4 Competent cells  

 E.coli strain DH5α (Stratagene, Amsterdam), JM109 (Promega, Mannheim) 

 

3.1.2.5 Medium 

LB-agar plate 

Sodium chloride   8.0 g 

 Peptone    8.0 g 

Yeast extract    4.0 g 

Agar-Agar    12.0 g 
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Sodium hydroxide (40.0 mg/ml) 480.0 µl 

Water added to   800.0 ml 

 Autoclave (121 oC for 30 min) 

LB-broth 

 Sodium chloride   8.0 g 

 Peptone    8.0 g 

Yeast extract    4.0 g 

Sodium hydroxide (40.0 mg/ml) 480.0 µl 

Water added to   800.0 ml 

Autoclave (121 oC for 30 min) 

 

3.1.2.6 Commercial kits 

SequiTherm EXCELTMII (Biozym Diagnostic) 

PGEM-T and PGEM-T Easy Vector Systems (Promega) 

Gen EluteTM Plasmid Miniprep Kit (Sigma) 

Recombinant RNasinRibonuclease Inhibitor (Promega) 

RNeasy Mini kit (Qiagen GmbH) 

RQ1 RNase-Free DNAse (Promega) 

SMARTTM RACE cDNA Amplification Kit (BD Biosciences Clontech USA) 
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3.1.2.7 Enzymes 

SuperScriptTM II Rnase H-Reverse Transcriptase (Gibco BRL, Karlsruhe), (Invitrogen 

life technologies, Karlsruhe) 

Restriction enzyme: CfoI (Promega) 

Pfu DNA polymerase (Promega) 

Taq DNA polymerase (Sigma) 

PLATINUM Taq DNA polymerase (GibcoBRL) 

AccuTaq DNA polymerase (Sigma) 

 

3.1.2.8 Equipments 

- Centrifugation 

HERMLE Z 323K, Wehingen 

- Electrophoresis/DNA Analyzer: Automated sequencer 

LI-COR, DNA Analyzer, GENE READER 4200 (MWG-BIOTECH) 

- Electrophoresis system 

 For agarose gel: BioRad, Göttingen 

 Vertical apparatus: Consort, Turnhout 

 Power supply: PAC 3000 BioRad 

- Gel Dry (BioRad, München) 

- Spectrophotometer 

 PM 2K (ZEISS, Germany) 

 Beckman, Unterschleissheim-Lohhof 
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-Thermocycler: 

 PTC-100 Programmable Thermal Controller (MJ Research, Inc. USA) 

-UV Transilluminator (Uvi-tec)  

Uni Equip, Martinsried 

 

3.1.2.9 Used software 

BLAST program  

http://www.ncbi.nlm.nih.gov/BLAST/ 

DNA alignment 

http://searchlauncher.bcm.tmc.edu/ 

FBAT statistic analysis 

http://www.biostat.harvard.edu/~fbat/fbat.htm 

Image analysis program (Version 4) 

Li-COR Biotechnology, USA 

Multiple Sequence Alignment 

http://pbil.ibcp.fr/htm/index.php 

Restriction enzyme 

http://rebase.neb.com/rebase/rebase.html 

Tm determination 

http://alces.med.umn.edu/rawtm.html 

 

 

http://www.ncbi.nlm.nih.gov/BLAST/
http://searchlauncher.bcm.tmc.edu/
http://rebase.neb.com/rebase/rebase.html
http://alces.med.umn.edu/rawtm.html
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3.2 Methods 

 

3.2.1 RNA isolation and cDNA synthesis 

 

3.2.1.1 RNA isolation 

Liver tissue samples of five pig breeds (Hampshire, Duroc, German Landrace, Pietrain 

and Miniature pigs) were used for RNA isolation. Freezed tissue samples (1 to 10 mg) 

were powdered by mortar and pestle, 1 ml of TRIZOL  reagent was added and 

homogenised by using syringe. The homogenised samples were incubated for 5 min at 

room temperature. Then 0.2 ml of chloroform was added to homogenised samples, 

mixed thoroughly by shaking and incubated for 15 min at 15 – 30 °C. Samples were 

centrifuged at 12,000 g for 15 min at 2 to 8 °C. The RNA remains exclusively in the 

upper aqueous phase which was transferred to a fresh tube. The RNA in the aqueous 

phase was precipitated by adding 0.5 ml of isopropyl alcohol. The samples were 

incubated at room at room temperature for 10 min and centrifuged at 12,000 g for 10 

min at 2 to 8 °C. The supernatant was removed and the RNA pellet was washed once 

with 1 ml of 75 % ethanol. After centrifugation and removal of supernatant the RNA 

pellet was air dried and dissolved in 50 µl RNase-free water and stored at –80 °C for 

further use. The RNA was treated with DNase to remove residual DNA. The DNA 

digestion was performed by mixing following components in a 0.5 ml RNase free tube: 

25 µl RNA, 5 µl 10X buffer, 2 µl RQ1 RNase-Free DNase, 1 µl RNase inhibitor (40 

U/µl), and 17 µl RNase-free water and incubated at 37 °C for 1 hour. After incubation, 

the RNA was purified by RNeasy Mini Kit (Qiagen). To assess the quality of RNA, 2 µl 

RNA sample was electrophoresed in duplicate on 0.66 M formaldehyde/1.2 % agarose 

gel. RNA was checked for any DNA contamination by performing PCR with Beta-actin 

primer (beta actin Fw -GAG AAG CTCT GCT ACG TCG C, beta actin Rw-CCA GAC AGC ACC 

GTG TTG GC). The purified RNA was used to synthesize cDNA. 
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3.2.1.2 cDNA synthesis 

The total RNA was used to synthesize first strand cDNA. The reaction was performed 

in a nuclease-free microcentrifuge tube, 1 µl oligo dT (11)N (500 µg/ml), 1 ng to 5 ng 

total RNA, 1 µl 10 mM dNTP mix and 12 µl sterile water was added in 0.2 ml PCR 

tube. The mixture was heated at 70 °C for 10 min and immediately chilled on ice. The 

contents of the tube were collected in bottom by brief centrifugation and 4 µl 5 X first-

strand Buffer (Gibco BRL, Karlsruhe Germany), 2 µl 0.1 M DTT, and 1 µl RNase OUT 

Recominant Ribonuclease Inhibitor (40 U/µl) was added. The reaction was gently 

mixed and incubated at 40 °C for 2 min. One microlitre (200 units) of SuperscriptTM II 

RNase H reverse transcriptase was added and further incubated at 42 °C for 90 min. The 

reaction was inactivated by heating at 70 °C for 15 min. The cDNA was diluted 1:4 in 

RNase free water and was used as a template for subsequent PCR amplifications. The 

cDNA samples were stored at -20 oC for further use. 

 

3.2.2 DNA isolation from agarose gel 

The band of interest was excised with a sterile razor blade, placed in a microcentrifuge 

tube, frozen at –20 oC for at least 1 hour. Chopped by blue pipet tip and 500 µl TE 

buffer was added. The gel was homogenized by repeated pipeting using syringe 

attached with a needle. Five hundred microlitres of phenol-chloroform (1:1) was added 

to the DNA solution and vigorously vortexed for a few seconds to form an emulsion. 

After centrifugation at 12,000 g for 15 min the upper aqueous layer was carefully 

removed to a new tube. Equal volume of chloroform was added to the aqueous phase, 

vortexed and centrifuged for 15 min at 12,000 g to allow phase separation. The aqueous 

layer was transferred to a new tube. One-tenth volume of 3M sodium acetate (pH 5) and 

two volumes of cold 100 % ethanol were added to the DNA sample in a microcentrifuge 

tube and mixed by inversion. This precipitation was performed by incubation at –20 oC 

overnight or at –80 oC for at least 30 min. To recover the precipitated DNA, the mix 

was centrifuged at 12,000 g in a microcentrifuge for 20 min at 4 oC. After the  

supernatant was discarded, the DNA pellet was washed with a cold 75 % ethanol 

(corresponding to about two volume of the original sample) being first incubated at 

room temperature for 5-10 min and centrifuged again for 5 min. The supernatant is 
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drained being inverted on a paper towel until DNA pellet is air dried. Finally, DNA 

pellet is dissolved with 5 µl of distilled H2O. 

 

3.2.3 Ligation 

The PCR fragment was ligated with pGEM-T vector (Promega, Mannheim Germany). 

The reaction was performed in 5 µl total volume, which contained 2.5 µl 2 X Ligation 

buffer, 0.5 µl pGEM – T Vector, 1.5 µl PCR products and 0.5 µl T 4 DNA Ligase. The 

reaction was gently mixed and incubated for 1 hour at room temperature or at 4 °C 

overnight. 

 

3.2.4 Transformation 

Competent E.coli DH5α was aliquoted to chilled polypropylene tubes and 3 µl of 

pGEM ligation reaction mix was added per 60 µl cells. The mixture was incubated on 

ice for 30 min. The cells were then heat shocked at 42 oC for 90 sec, incubated on ice 

for a further 2 min, and 700 µl LB medium was added at room temperature. The culture 

was incubated at 37 oC in shaking incubator for 90 min. For each ligation reaction, two 

LB plates supplemented with ampicillin (100 µg/µl) were prepared by adding 0.10M 

IPTG and 20 µl of X-Gal and spreaded with glass pipett being allowed to absorb for 20 

min prior to use. The transformed bacterial culture was plated to the prepared plates in 

duplicate and incubated at 37 oC overnight. Successful cloning of the insert will produce 

white colonies as it interrupts the coding of ß-galactosidase as against the blue colonies 

which does not have any insert. The presence of DNA insert in these colonies was 

confirmed by PCR of the supernatant following lysis (cell suspension was boiled at 95 
oC for 15 min). Each of the 20 µl PCR reaction contained 10 µl lysated supernatant as 

template DNA, 0.2 µM of M13 primer (Fw: TTGTAAAACGACGGCCAGT, Rw: CAGGAAAC 

AGCTATGACC), 50 µM of each dNTP and 0.5 U of Taq polymerase (Sigma) in 1 X PCR 

reaction buffer with 1.5 mM MgCl2 (Sigma). The PCR was performed at 94 oC for 5 

min, followed by 35 cycles of 94 oC for 30 sec, 65 oC for 30 sec and 70 oC for 30 sec 

following by final extension at 70 oC for 5 min. The extension time may be longer than 

30 sec for a longer fragment. 
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3.2.5 Sequencing  

Each positive clone was sequenced by chain-termination procedures using SequiTherm 

Excel II DNA sequencing Kit (Epicentre Technologies, Biozym). The 4 termination 

mixtures were prepared by dispensing 1 µl of the ddGTP, ddATP, ddTTP, ddCTP mix 

into four correspondingly marked tubes. The 2 µl reaction of premix (3.6 µl of 3.5X 

Sequencing Buffer, 0.25 µl 10 µM SP6 primer-800 IRD-labeled (AATTAACCTCACTAA 

AGGG), 0.25 µl 10 µM T7 primer-700 IRD-labeled (TAATACGACTCACTATAGGG), 0.5 µl 

Taq DNA polymerase, 3 µl template DNA, 0.9 µl deionized water) was added into the 

different termination mix. PCR was performed for 29 cycles at 94 ° C for 30 sec, 59 - 

60 °C  for 30 sec, 70 °C for  1 min and  1.5 µl of the stop solution was added to all 

samples, after the thermal cycling is completed. If the samples cannot be analysed 

immediately, the samples were stored at -20 °C. About 1.5 µl of heat denatured samples 

were loaded on a standard 6 % polyacrylamide sequencing gel (30 ml SequaGel XR, 

7.5 ml SequaGel Complete Buffer, 400 ml DMSO, 300 µl 10 % APS). Electrophoresis 

was performed on LI-COR model 4200 automated DNA sequencer in 1 X TBE buffer 

at a power of 1500 V, 50 mA, 50 W and 50 oC temperature. Sequence data were 

analyzed by Image Analysis program, version 4.10 (Li-COR Biotechnology). 

 

3.3 Screening for polymorphism in genes 

 

3.3.1. Transforming growth factor beta 1 gene (TGFB1) screening 

The porcine TGFB1 gene has been published by Kondaiah et al. in 1988. Specific 

primers were designed based on the published TGFB1 sequence (Accession number 

AF461808) that reveal overlapping fragments of about 400 bp in size covering the 

cDNA sequence from exon 1 to the 3´-UTR. Primer sequences are shown in table 3 

below. The cDNA fragments obtained from liver of five pig breeds namely: Hampshire, 

Duroc, Pietrain, German Landrace and Berlin-Miniature pig –were comparatively 

sequenced which were described in section 3.2.1-3.2.5. The sequences were aligned by 

using BLAST or Multiple alignment programs to find the polymorphism. 

 



Material and Methods   33 

3.3.1.1 PCR condition 

Each of the 25 µl of PCR reaction contained 50 ng genomic DNA, 0.2 µM of each 

primer, 50 µM of each dNTP, 0.5 U of Taq polymerase (Pfu) and 1.5 mM MgCl2 in 1 X 

PCR buffer. PCR was performed in the thermal cycler PTC 100 (MJ Research USA) at 

94 oC for 5 min, followed by 35 cycles at 94 oC for 30 sec, 62 oC for 30 sec, 72 oC for 

30 sec and final extension at 72 oC for 5 min.  

 

Table 3: Primer sequence for SNP identification in TGFB1 gene 

Primer Sequence Annaling  

Temperature (oC) 

Product size 

(bp) 

Tgf1Fw 

Tgf1Rw 

TGCTGTGGCTGCTAGTGCTG 

CAATGATTCCTGGCGCTACC 

62 501 

Tgf2Fw 

Tgf2Rw; 

AAGTGGAGCAGCACGTGGAG 

GAACCCAAGGGCTACCATGC 

62 469 

Tgf3 Fw 

Tgf2066Rw 

ACTTCCGGAAGGACCTGG 

GCAGGAACGCACGATCATGT 

60 260 

Tgf2047 Fw 

Tgf32346Rw 

ACATGATCGTGCGTTCCTGC 

GTTCACCAGGAGTACCTGCT 

60 186 

Tgf4Fw 

Tgf4Rw 

GTCTTCCTTCGGACGTTACC 

CCACTATGGGCTTCCTTTTC 

62 480 

Tgf5Fw 

Tgf5Rw 

TTCCATATGTCTCAGGTGCG 

ATTTACAGAAACAGGCAGCG 

62 389 

 

3.3.1.2 PCR condition and single strand conformation polymorphism (SSCP) analysis 

Primers covering the polymorphism site (or SNP) were designed to amplify a fragment 

length of 200 bp to perform SSCP. Each 10 µl of PCR reaction contained 25 ng 

genomic DNA, 0.2 µM of each primer (Fw: CTACTCATCCATCTGAGTG, Rw: GAAGCAGT 

AGTTGGTATCCA), 50 µM of each dNTP, 0.5 U of Taq polymerase (Sigma) in 1 X PCR 

reaction buffer with 1.5 mM MgCl2 (Sigma). PCRs were performed at 94 oC for 5 min, 

followed by 35 cycles at 94 oC for 30 sec, 65 oC for 30 sec, 72 oC for 30 sec and final 
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extension at 72 oC for 5 min. The PCR products were diluted 1:1 with loading buffer 

(95 % formamide, 10 mM NaOH, 0.25 % bromophenol blue, and 0.25 % xylene 

cyanol), denatured at 95 oC for 5 min, chilled on ice and loaded on 12 % polyacryamide 

gel (acrylamide:bisacrylamide = 49:1) containing 5 % glycerol/formamide (3:1). Gels 

were run at 15 W for 3 hours at room temperature in 0.5 X TBE. The DNA was 

visualized with silver staining technique. 

 

3.3.1.3 Silver staining procedure 

Electrophoresis was performed till bromophenol blue runs to the end of gel. The gel was 

fixed for 20 min in 10 % glacial acetic acid. Then moved to 0.2 % nitric acid for 15 min 

and rinsed 2 times with deionized water. The gel was stained for 20 min with 0.2 % 

silver nitrate (w/v in H2O), rinsed in deionized water and developed in 3% sodium 

carbonate containing 8 ml/l of 37 % formaldehyde and 520 µl/l of 0.1 N sodium 

thiosulfate which were cooled down to 4oC before use. The development times were 

between 3-5 min. After visualization of the bands, the reaction was stopped by 

immersion of the gel in 10 % glacial acetic acid for 3 min. Then the gel was washed 

with distilled water 3 times and dried at 80 oC for 2 hours on Gel-Blotting paper (Roth, 

Karlsruhe Germany) for analysis and documentation. 

 

3.3.2 Relaxin gene screening 

The Relaxin gene has been published by Haley et al. in 1987. Three pairs of primers 

were designed based on the published relaxin sequence (Accession number J02792) 

(Table 4) that reveal overlapping fragments of about 300-500 bp in size covering the 

DNA sequence from part of 5´-UTR to the 3´-UTR. Genomic DNA from 5 breeds 

(Hampshire, Duroc, Pietrain, German Landrace and Berlin-Miniature pig) were used for 

screening a polymorphism of this gene. All DNA fragment were cloned and 

comparatively sequenced as described in section 3.2.1-3.2.5. 
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Table 4: Primer sequence for SNP identification in RLN gene 

primer sequence  annealing temperature 

(oC) 

Product size 

(bp) 

RLN6880Fw 

RLN7076Rw 

CACAGGAGCTGAAGGCAACA 

CGCTCAGTGTCATACGGAAC 

59.4 216 

RLN1070Fw 

RLN1381Rw 

TGAAACGCCTGGAGCAGAAG 

CAGCCAATTAGGTCTCGAGC 

59.4 331 

RLN7070Fw 

RLN7561Rw 

GAGACTGTTCCGTATGACAC 

GAAGACTTTGGGCATCAGGT 

57.3 541 

RLN1070FW 

RLN1278Rw 

TGAAACGCCTGGAGCAGAAG 

GTTTCCAGCTGAGGCTCTTC 

59.4 228 

 

3.3.2.1 PCR condition 

PCR amplification was performed in 20 µl reaction volume using 25 ng of genomic 

DNA, 0.2 µM of each primer (Table 4), 50 µM of each dNTP, 0.5 U of Taq polymerase 

(Sigma) in 1 X PCR reaction buffer with 1.5 mM MgCl2 (Sigma). Thermalcyling was 

performed using the following touchdown program; initial denaturation for 5 min at 95 
oC, 10 cycles each 30 sec at 95 oC, 30 sec at 65-60 oC (-0.5 per cycle), and 30 sec at 72 
oC, followed by 35 cycles of 30 sec at 95 oC, 30 sec at 60 oC and 30 sec at 72 oC and 5 

min final extension at 72 oC. 

 

3.3.2.2 Genotyping the porcine RLN gene polymorphism 

 

Single strand conformation polymorphism (SSCP) 

The SSCP analysis was performed to detect polymorphism in PCR product. The PCR 

was performed by using Exn22 primer (Table 5) and a standard PCR condition. The 

products were diluted 1:1 with loading buffer (95 % formamide, 10 mM NaOH, 0.25 % 

bromophenol blue and 0.25 % xylene cyanol), denatured at 95 oC for 5 min, chilled on 

ice and loaded on 12 % polyacryamide gel (acrylamide:bisacrylamide = 49:1). Gels 
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were run at 12 W for 2.5 hours at room temperature in 0.5 X TBE buffers (4 oC). The 

DNA was visualized by silver staining technique. 

 

Table 5: The primer and method of genotyping for RLN gene 

Primer    sequences     Method 

Int9  Fw:   TGAAACGCCTGGAGCAGAAG   RFLP 

 Rw:   CAGCCAATTAGGTCTCGAGC 

Exn 22  Fw:   TGAAACGCCTGGAGCAGAAG   SSCP 

 Rw:   GTTTCCAGCTGAGGCTCTTC 

 

Restriction fragment length polymorphism (RFLP) 

The fragment covering the polymorphic site was amplified by using specific primer 

(Table 5) and standard PCR condition. Restriction digestion of the product was carried 

out in 10 µl reaction volume containing 1 U of CfoI enzyme per µg of starting DNA. 1 

µl of 10 X restriction buffer and incubated at 37 oC overnight to ensure complete 

digestion. The digestions were assayed by 2 % agarose gel electrophoresis versus non-

digested DNA and marker. 

 

3.3.3 Identification of parathyroid hormone like hormone gene (PTHLP)  

 

3.3.3.1 Isolation of porcine PTHLP gene by RACE-PCR 

Reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of 

5’- and 3’-cDNA ends (5’- and 3’- RACE)-PCR were performed on mRNA of porcine 

ovary and muscle tissue. The first-strand cDNA synthesis was performed by SMARTTM 

RACE cDNA Amplification Kit (BD Biosciences Clontech, USA) as the manufacture’s 

protocol.  The preparation of 5’/3’RACE cDNAs synthesis, the reactions contained with 

1-3 µl RNA ovary sample (1 µg/µl) then, following to add 1 µl of 5’-CDS primer and 1 

µl SMART II A oligo in 5’-RACE cDNA reaction. For the 3’-RACE cDNA synthesis, 

the reaction was used 1 µl of 3’-CDS primer A. The sequences of primers were shown 
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in table 6. Final reaction volume of each reaction was made up to 5 µl with sterile H2O 

and both reactions were incubated at 70 oC for 2 min and placed on ice for 2 min. Then 

2 µl 5X First-Strand Buffer, 1 µl DTT (20 mM), 1 µl dNTP Mix (10 mM), and 1 µl 

PowerScript Reverse Transcriptase were added to each tube. The contents were gently 

mixed, and spined briefly to collect the contents at bottom. The reactions were 

incubated at 42 oC for 1.5 hr in an air incubator. The first-strand reaction product was 

diluted with Tricine-EDTA buffer, and heated at 72 oC for 7 min. The cDNA was stored 

at –20 oC for further use. 

The RACE-PCR reactions were performed in 25 µl volume, 10X Buffer (minus Mg), 

10mM dNTP, 50 mM MgCl2, 10 X universal primers A Mix (UPM) (Table 6), 0.2 µM 

primer (GSP) (Table 6), and 0.5 U PLATINUM Taq DNA polymerase (GibcoBRL, 

Life Technologies). The 5’-RACE PCR amplification PCR were followed by the 

thermalcycling at 95 oC 3 min, 7 cycles of 94 oC 20 sec, 71 oC 20 sec, 72 oC 2min, and 

38 cycles of 94 oC 20 sec, 68 oC 20 sec, 72 oC 2 min, and final extension by 72 oC for 5 

min. The 3’-RACE PCR amplification were performed by the initiation 95 oC 5 min, 38 

cycles of 94 oC for 30 sec, 68 oC for 30 sec, 72 oC for 2 min and final extension at 72 oC 

for 5 min. 

 

Table 6: List of primers employed for RT-PCR and 5’-and 3’-RACE-PCR 

Primer      sequence 

SMART II A oligo  AAGCAGTGGTATCAACGCAGAGAGTACGCGGG 

5’-CDS primer  5’-(T)25N-1N-3’  (N=A, C, G, or T; N-1=A, G, or C) 

3’-CDS primer A   AAGCAGTGGTATCAACGCAGAGAGTAC(T)30N-1N 

 (N=A, C, G, or T; N-1=A, G, or C) 

UPM Long     TACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGAGT 

Short     ATACGACTCACTATAGGGC 

GSP : PTHLH-RACE-3’  TGTCTGAACACCAGCTCCTCCATGACAAG 

        : PTHLH-RACE-5’  GGTTTCCTGAGTCAGGTATCTGCCCTC 

 

* GSP (Gene specific primer) primers were designed based on EST Accession number 

BI181671 and BI181482 
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Table 7: PTHLH primers for intron isolation 

primer sequence Annealing temperature (oC) 

PTHLP5-73FW  
 
PTHLP5-393RW 

TGCCCTGCTCCCTGAAC  
 
GAGCTCCTCCACCGAGC 

58.6 
 

59.3 
 

 

3.3.3.2 Linkage mapping analysis by radiation hybrid panel 

The sequence from the 3 UTR of the gene was used for primer design. Primer pair was 

first optimized on pig and hamster DNA for determining the annealing temperature that 

reproducibly amplified pig DNA without an interfering product from the hamster. PCR 

was performed on the 118 radiation hybrid cell lines from the RHDF-5000.2 panel. PCR 

reactions were performed in 15 µl reaction volume using 25 ng DNA from each clone in 

a final volume of 15 µL containing 10 pmol of each primer (Pthrp_map3’Rw 

GATTCATTAGAATCAACC, Pthrp_map3’Fw CAGAGACCTTCAGAGACGT), 50 µM dNTPs, 

1.5 mM MgCl2, and 0.5 U Taq DNA Polymerase (Promega). PCR cycles were 

performed using the following touchdown program; initial denaturation for 5 min at 95 
oC, 10 cycles each 30 sec at 95 oC, 30 sec at 60-55 oC (-0.5 per cycle), and 30 sec at 72 
oC, followed by 35 cycles of 30 sec at 95 oC, 30 sec at 55 oC and 30 sec at 72 oC and 5 

min final extension at 72 oC. PCR products were electrophoresed on 2 % agarose gels 

stained with ethidium bromide and visualized under UV light. 

The statistical analysis for placement of marker was done with the whole RH data set by 

using the MultiMap software (http://imprh.toulouse.inra.fr/). Assignment of new marker 

to chromosomes was done by two-point linkage analysis in a two-step process. 
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Table 8: Primer and probe sequences used for SNP genotyping of PTHLH gene 

primer/probe sequence label 

PTHLP-FW GAGCGTCGCGGTGTTC - 

PTHLP-RW AGCGCCCGCAGGAG - 

PTHLP-V2 CTGAGCTATTCGGTGCC VIC/NFQ 

PTHLP-M2 CTGAGCTATTTGGTGCC FAM/NFQ 

 

3.3.3.3 Genotyping method for PTHLH gene 

 

TaqMan allelic discrimination using real-time PCR 

Primers and probe for genotyping polymorphism in the exon2 of PTHLH gene were 

synthesised by 'Assay by design service of SNP genotyping of Applied Biosystems. 

Two alleles were discriminated by two differentially labeled hydrolysis probes: 

Probe #1 – VIC-labeled probe specific for C allele at position 550 in PTHLP 

Probe #2 – FAM-labeled probe specific for T allele at position 550 in PTHLP 

For SNP Genotyping, an allelic discrimination assay was designed to genotype this 

polymorphism using primer PTHLH-FW and RW, primer extension with PTHLH 

(V2&M2) probe (Table 8) (TaqMan® MGB probes, FAM™ and VIC® dye-labeled) by 

Assay-by-DesignSM service (ABI PRISM, Applied Biosystems). Polymerase chain 

reactions were performed on an ABI PRISM 7000 Sequence Detection System in 25 µl 

volume containing 12.5 µl TaqMan Universal PCR Master Mix (2X), 0.625 µl 40X 

Assay Mix, and 25 ng Genomic DNA. Amplification was performed using a thermal 

cycling program of AmpErase UNG activation 2 min 50 oC, AmpliTaq Gold Enzyme 

activation to 10 min 95 oC and 40 cycles of 15 sec at 92 oC and 1 min at 60 oC. The 

reaction mixture was prepared and added to 96 well plate having 0.5 µl genomic DNA 

of 2 positive control for each of the allele, samples to be genotyped and 2 no template 

control. Plates were 'preread' in ABI prism 7000 instrument and  PCR was performed 

(initial denaturation of 95 °C for 10 minutes and 40 cycles of 92 °C for 15 sec and 60 

°C for 1 min). After PCR amplification endpoint plate read was performed. The SDS 

software calculates the fluorescence measurements made during the plate read and plots 



Material and Methods   40 

Rn values based on the signals from each well. Using the software the SNPs were 

determined for each sample  

The process for analyzing data for SNP assays involves the following procedures: 

1. Creating and setting up an allelic discrimination plate read document  

2. Performing an allelic discrimination plate read on an SDS instrument 

3. Analyzing the plate read document 

4. Making manual allele calls 

5. Confirming allele types 

 

3.4 Linkage mapping 

Two-point and multiple procedures of the CRI-MAP package version 2.4 were used for 

linkage mapping (Green et al. 1990). 

 

3.5 Association analysis between the markers and mammary gland trait 

 

3.5.1 Family Based Association Tests (FBAT) 

The Family-Based Association Test (FBAT) is recently developed software 

(http://www.biostat.harvard.edu/~fbat/fbat.htm) that can analyse for association 

pedigrees with heterogeneous family structure. Furthermore, FBAT allows the analysis 

of the phenotype as a qualitative trait. The FBAT statistic is based on a linear 

combination of offspring genotypes and traits; it is calculated under the null hypothesis 

of no association, conditioning on traits and on parental genotypes. In the present study, 

the FBAT program (version 1.4) was used to perform the qualitative and quantitative 

family-based analysis for the Bonn-Berlin DUMI resource population. The quantitative 

analyses were done under the condition of an additive model (Horvarth et al. 2001). 

Significant results were determined by p – value less than or equal to 0.05 for the 

disease allele. 
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4. Results  

4.1 Transforming growth factor beta 1 gene (TGFB1) 

4.1.1 cDNA sequence of porcine TGFB1 and screening SNP in TGFB1 gene 

The porcine TGFB1 sequence was obtained from liver mRNA on primer derived from 

information of Gen Bank (Accession number M23703). The fragments reveal 

overlapping about 400 bp in size covering the cDNA sequence from exon 1 to the 3’-

UTR (Accession number AF461801) (Figure 4). The cDNA fragment was obtained 

from five pig breeds - Hampshire, Duroc, Pietrain, German Landrace and Berlin-

miniature pig – which were comparatively sequenced.  

4.1.2 Polymorphism in the porcine TGFB1 

Comparative sequencing of TGFB1 cDNA fragment obtained from individual of five 

breeds (Duroc, Hampshire, German landrace, Pietrain and Miniature pig) revealed 

‘A/G’ transition in exon 5 at position 797 of the coding sequence (Figure 3). 

 

    
       G  A  T  C  G  A T  C   

 

 
 

 

 

 

 

 

 

 

Figure 3: Sequence analysis of porcine TGFB1 gene revealed single nucleotide 

 polymorphism in exon 5 at position 797 of the coding sequence 



 Results  42  

4.1.3 Development of methods for genotyping the allelic polymorphism 

For genotyping a single strand conformation (SSCP) protocol was established being 

diagnostic for the polymorphism detected within exon 5 at position 797 of the coding 

sequence. A forward primer located in intron 4 (Accession number AF461809) (Figure 

4) and a reverse primer positioned in exon 5 were derived to produce a 218 bp PCR 

product from porcine genomic DNA. 

 
       1  TGAGGCCCGC CTCCCTGGCC CAGCCCTGTG CCCAGCAGTG ACTCTGTGCG 
      51  TGTGTGTGCA CACGGCGTGC GCACGTGCGC GCGGTGGGCG GGTTCTTCCC 
     101  CTGCCCACCC CCTACTCATC CATCTGAGTG TGTGTGTGTA TGTCTCCCCC 
     151  AACCCTATCC GCTCCCTGAC TCGTAAACCA AAGCAG 

 

 

Figure 4: Sequence of intron 4 of TGFB1 gene (Accession number AF461809) 

 

4.1.3.1 Genotyping method by using SSCP analysis 

The PCR fragments of 218 bp were amplified with primer (Table 3) that covers the 

polymorphic sites at position 797 in the exon 5 of the porcine TGFB1. The allelic 

variation was detected by SSCP analysis. Figure 6 shows the SSCP banding pattern of 

this polymorphic sites which are in agreement with the results obtained by DNA 

sequencing analysis.  

4.1.4 Genetic variation of the porcine TGFB1 in the DUMI resource population 

The SNP was genotyped in 400 animals of the F2-DUMI resource population including 

the animals of the grandparental generation (Duroc and Berlin miniature pig) and the F1 

parental generations. Allele frequencies obtained are shown in table 2. Within the 

grandparental generation of the Berlin-Bonn-DUMI resource population all Berlin 

Miniature pigs (four sows, one boar) were found to be homozygous ‘GG’. The 3 

animals of Duroc grandparents (five sows, one boar) were be homozygous ‘AA’ and the 

others 3 animals grandparents were be heterozygous.  
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        1  ATGCCGCCTT CGGGGCTGCG GCTCTTGCCG CTGCTGCTGC CGCTGCTGTG 
      51  GCTGCTAGTG CTGACGCCTG GCCGGCCGGC CGCCGGACTG TCCACCTGCA 
     101  AGACCATCGA CATGGAGCTG GTGAAGCGGA AGCGCATCGA GGCCATTCGC 
     151  GGCCAGATTC TGTCCAAGCT TCGGCTCGCC AGCCCCCCGA GCCAGGGGGA 
     201  CGTGCCGCCC GGCCCGCTGC CTGAGGCCGT ACTGGCTCTT TACAACAGTA 
     251  CCCGCGACCG GGTAGCCGGG GAAAGTGTCG AACCGGAGCC CGAGCCAGAG 
     301  GCGGACTACT ACGCCAAGGA GGTCACCCGC GTGCTAATGG TGGAAAGCGG 
     351  CAACCAAATC TATGATAAAT TCAAGGGCAC CCCCCACAGC TTATATATGC 
     401  TGTTCAACAC GTCGGAGCTC CGGGAAGCGG TGCCGGAACC TGTATTGCTC 
     451  TCTCGGGCAG AGCTGCGCCT GCTGAGGCTC AAGTTAAAAG TGGAGCAGCA 
     501  CGTGGAGCTA TACCAGAAAT ACAGCAATGA TTCCTGGCGC TACCTCAGCA 
     551  ACCGGCTGCT GGCCCCCAGT GACTCACCGG AGTGGCTGTC CTTTGATGTC 
     601  ACCGGAGTTG TGCGGCAGTG GCTGACCCGC AGAGAGGCTA TAGAGGGTTT 
     651  TCGCCTCAGT GCCCACTGTT CCTGTGACAG CAAAGATAAC ACACTCCACG 
     701  TGGAAATTAA CGGGTTCAAT TCTGGCCGCC GGGGTGACCT GGCCACCATT 
     751  CACGGCATGA ACCGGCCCTT CCTGCTCCTC ATGGCCACCC CGCTGGAGAG 
     801  GGCCCAGCAC CTGCACAGCT CCCGGCACCG CCGAGCCCTG GATACCAACT 
     851  ACTGCTTCAG CTCCACGGAG AAGAACTGCT GCGTGCGGCA GCTCTACATT 
     901  GACTTCCGGA AGGACCTGGG CTGGAAGTGG ATTCATGAAC CCAAGGGCTA 
     951  CCATGCCAAT TTCTGCCTGG GGCCCTGTCC CTACATCTGG AGCCTAGACA 
    1001  CTCAGTACAG CAAGGTCCTG GCTCTGTACA ACCAGCACAA CCCGGGCGCG 
    1051  TCGGCGGCGC CGTGCTGCGT GCCGCAGGCG CTGGAGCCAC TGCCCATCGT 
    1101  GTACTACGTG GGCCGCAAGC CCAAGGTGGA GCAGCTGTCC AACATGATCG 
    1151  TGCGTTCCTG CAAGTGCAGC TGAGGCCCCA AGCCCACTTG GGATCGATTA 
    1201  AAGGTGGAGA GAGGACTGGG TCTCCGTGTG TTGGGCACCT GACTGGGGTC 
    1251  TTCTTCGGAC GTTACCGGAC CCCCACTCCC AGCCTCCGCC TGCCTCCGCC 
    1301  TGTGTCTGTC CACCATTCAT TTGTTCCTCC TCCTCATGCA AACGCGTCCT 
    1351  GAGCAGGTAC TCCTGGTGAA CTCTACTTAG ATTTACTTAC TGAGCATCTT 
    1401  GGACCTTATC CTGAATGCCT TATATTAATT AACTCATTTA ACCACCATAA 
    1451  CAAAGCTAAA AGGGACTCTG ATAACACCCA CTTTAAAAAG GAAACGGAAG 
    1501  CTGGAGTTTC CATTGTGGCT CAGTGGTAAC CTACCCGACT GGTATCCTTG 
    1551  AAGACACAGG TTCAATCCCT GGCCCTGTTC TGTAAGTTAA AGGTCCGGCT 
    1601  GTGGCGGCTG TGGTATAGGC CGGCAGCTGC AGCTCCGATT TAACCCCTAG 
    1651  CCTGGGAACT TCCATATGTC TCAGGTGCGG CCCTAAAAAG ACAAAAAGAA 
    1701  AGGAAAAGGA AGCCCATAGT GGTTAAGGGA ATAATTCCTG CCCACCAAGA 
    1751  ACCTGCTTTC GGCTTTCTGG TGGGGAGACA GACATAGCAA AGTTGTGTGA 
    1801  AAACAGGAAG GCAGTGTGGG TCAGAGAGGG CTTTGGGAGG TGGGAGGGCT 
    1851  TCTTGGAGGA GGTGGCACCT GGGCCTTGAA GGAAGCCAAG AAAGCAGCCT 
    1901  AGGGGAGCAT GGGGGAGGGT GTTCATGGTA GGAGGACAAA AGCAAAGTCC 
    1951  TGGAAGTGAA GATGAATTTG GGGTGAGCTA CACCGGCGGG AAAGAGGCCA 
    2001  GTGCGGTTGG AAGGGAGGGG CAAGGGGAAA AGTGTTGGGA TCTGAGTCAG 
    2051  AAAGTAACAC TCACAGGCCA GAGAGTAATA ACAGTTCTCC AGGCTAGGTA 
    2101  TGGAGCTACT AGCTCAAGGC ATTCTTCCCA CAGCCCAGCA GAGCAGAGGT 
    2151  TGTTAAACTA TTGCCTGCAG GCACATTCTG ACCCGCTGCC TGTTTCTGTA 
    2201  AATAAAGTTT TATTGGAGAA C 

 

Figure 5: Nucleotide sequence of TGFB1 gene (Accession number AF461808)  
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        AA     GG      GA    GA    GA    AA     AA    GG     GG    GA    GA     GA 

 
                 1         2        3     4  5         6          7         8   9        10      11      12 

  Lane 1, 6, and 7  homozygous ‘AA’ 

  Lane 2, 8, and 9  homozygous ‘GG’ 

  Lane 3-5 and 10-12  heterozygous ‘GA’ 

 

 

Figure 6: Mendelian inheritance of porcine TGFB1 at exon 5 on position 797 using 

SSCP analysis 

 

Twelve out of the 14 animals of the F1 generation were found to be heterozygous 

animals and only 2 animals were homozygous ‘GG’. Among the 400 F2 animals of the 

DUMI families that were genotyped, 173 (43.25%) animals were found to be 

homozygous ‘GG’, 16 (4%) were homozygous ‘AA’ and 211 (52.75%) were 

heterozygous. Frequencies of the allele ‘G’ and ‘A’ were 0.7 and 0.3 respectively. 
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4.1.5 Genetic variation of the porcine TGFB1 in the commercial breeds.  

No polymorphism was found among commercial breeds German Landrace (n=39) and 

Large White (n=44) for this SNP in TGFB1 gene. Within the breed Pietrain segregation 

of the TGFB1 was found in 67 % of the animals being homozygous GG, and 33% being 

heterozygous. 

 

Table 9: Frequencies of alleles of the TGB1 gene 

Allele Frequency 
Breeds No. of animals

Allele ‘G’ Allele ‘A’ 

German Landrace 39 1.00 0.00 

Large white 44 1.00 0.00 

Pietrain 30 0.82 0.18 

DUMI Resource population 400 0.70 0.30 

 

4.1.6 Linkage mapping 

Linkage mapping analysis was performed using CRI-MAP package (version 2.4). 

Multipoint linkage map was established using the BUILD and FLIPS options. 

Genotyping of 380 F2-individuals from 21 families of the Berlin-Bonn-DUMI resource 

population and subsequent two-point and multipoint procedures of the CRI-MAP 

revealed linkage to loci SO300, SW193, and SW1067 (proximal) and SO220 (distal) 

with distances of 7.3, 13.8, 24.5 and 31.5 cM, respectively, on the sex average map 

(Table 10). SW1067 has been assigned to Sscr6q11-q22 (Yerle et al. 1990a, b). TGFB1 

gene position assigned is in agreement with the published genetic and physical map.  
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Table 10: Two-point link for TGFB1 

 Sex Averaged 

 Recombination fraction LOD scored 

SO300 0.08 44.8 

SW193 0.07 19.2 

SW1067 0.17 21.4 

SO220 0.29 12.9 

 

4.2 Relaxin gene (RLN gene) 

Primers were designed from the published RLN gene sequence (Accession number 

J02792) and used to amplify overlapping fragments of about 300-500 bp in size 

covering part of 5’- untranslated region (UTR), exon 1, part of intron 1, exon 2 and part 

of 3’-UTR.  

4.2.1 Polymorphism in the porcine RLN gene 

Using PCR with primers encompassing the exon 1 to exon 2, DNA fragment of RLN 

gene were amplified from genomic DNA of five pig breeds (Duroc, Hampshire, 

Pietrain, German Landrace and Berlin-Miniature pig). Amplified fragments were 

analysed for polymorphism using the denaturing gel electrophoresis. 

Sequence comparison of the exon1-intron1 of the RLN gene revealed two 

polymorphisms (Figure 7). First, a transversion (C > A) at position 1 of codon 8 (nt 22) 

in the first exon leading to a amino acid exchange was detected. Another transversion 

(T>G) was found at position 9 of the intron 1. 
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               G  A  T  C  G  A  T  C       G  A  T  C         G  A  T  C 

              
 Exon 1 position 22 C > A    Intron 1 position 9  A > C 

 

Figure 7: Sequence analysis of porcine RLN gene revealed single nucleotide   

         polymorphism  

 

4.2.2 Development of methods for genotyping the allelic polymorphism 

4.2.2.1 Genotyping by using SSCP analysis  

The SSCP analysis was established for exon1 (C/A) SNP genotyping. Banding patterns 

were detected by silver staining (Figure 9). 

4.2.2.2 Genotyping by using RFLP analysis 

Another transversion (T>G) was found at position 9 of the intron 1 altering the 

recognition site of CfoI. For genotyping of this SNP, PCR product of 331 bp was 

incubated with CfoI at 37 oC overnight. The polymorphism were detected in agarose 

gels with 2 alleles, with major band at 298 and 42 bp in length for allele ‘T’ or 209, 80 

and 42 for allele ‘G’. 
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4.2.3 Genetic variation of the porcine RLN gene in the DUMI resource population  

A Mendelian inheritance of both polymorphic sites were observed in full-sib families 

(21 offspring) of Bonn Berlin-DUMI resource population (Figure 8). The SNP in exon 1 

position 22 was genotyped within the grandparental generation of the Berlin-Bonn-

DUMI resource population. All Berlin Miniature pig grandparents (four sows, one boar) 

were homozygous ‘CC’. In 4 animals of Duroc grandparents (five sows, one boar) were 

found homozygous ‘AA’ and one animal was found heterozygous. In parental 

generation (F1), 2 boars were homozygous ‘CC’ and 11 sows were heterozygous. 

Among the 384 in F2 animals of the DUMI families that were genotyped 12 animals 

were found to be homozygous ‘AA’, 175 were homozygous ‘CC’ and 197 were 

heterozygous. Frequency of the A and C alleles at position exon 22 was 0.29 and 0.71 

respectively, in the F2 generation of Bonn-Berlin-DUMI resource population. 

Genotyped frequencies were as follows: 45.57 % CC, 51.30 % CA and 3.13 % AA. 

Another SNP in intron 1 at position 9 was genotyped within the grandparental 

generation of the Bonn-Berlin-DUMI resource population (Figure 9). All Duroc 

grandparents (five sows, one boar) were homozygous (TT), Berlin-Miniature pigs (Four 

sows, one boar) were found to be 4 homozygous (GG) and 1 heterozygous in sow. In all 

parental generation (F1), 14 animals were heterozygous. Among 388 F2 animals of the 

DUMI families that were genotyped, 100 (25.77%) animals found to be homozygous 

‘T’, 87 (22.42%) were homozygous ‘G’ and 201 (51.8%) were heterozygous. Frequency 

of the allele ‘G’ and ‘T’ were 0.48 and 0.52 respectively. 
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Table 11: Frequencies of alleles of the RLN gene 

Allele Frequency 
Breeds No. of animals

Allele ‘A’ Allele ‘C’ 

German Landrace 31 0.06 0.94 

Large white 27 0.02 0.98 

Pietrain 35 0.11 0.89 

DUMI Resource population 384 0.29 0.71 

 

 

 
 
 

 
 

 
  
 
 

          TT    GG   TG    TG    TT   TT    TG    TG   GG   GG    TG   TG  

 

 

 

 

Figu

 

298 bp 
209 bp 
 
80    bp  
42    bp 
 
      1       2       3      4       5     6      7      8       9    10     11     12 

 Lane 1, and 5-6,    homozygous ‘TT’ 

 Lane 2, and 9-10   homozygous ‘GG’ 

 Lane 3, 4 ,7-8 and 11-12  heterozygous ‘TG’ 

 

re 8: Mendelian inheritance of RLN gene in intron1 position 9 using RFLP  

     analysis 
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  AA   CC    AC   CC    AC    AC    CC    CC    CC    CC   AC  AC  

       
           1       2          3      4       5   6 7       8       9     10   11    12 

  Lane 1     homozygous ‘AA’ 

  Lane, 2, 4 and 7-10   homozygous ‘CC’ 

  Lane 3, 5-6 and 11-12   heterozygous ‘AC’ 

 

Figure 9: Mendelian inheritance of relaxin gene SNP in exon 1 position 22 using SSCP 

     analysis 

 

4.2.4 Genetic variation of the RLN gene in the commercial breeds 

The SNP in exon 1 position 22, polymorphism in commercial breed was found among 

93 commercial pigs of the breeds German Landrace (n=31) and Large White (n=27), 

Pietrain (n=35). Allele frequencies are shown in table 12. 

At position 9 on the intron 1, no polymorphism was found among 93 commercial of 

breeds German Landrace (n=31) and Large White (n=27), Pietrain (n= 35) (allele ‘T’ 

=1.00, allele ‘G’ = 0.00) (Table 12). 
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Table 12: Allele frequencies of the RLN gene in the commercial breeds 

 Allele Frequency 

  SNP22 Exon1  SNP9 Intron1 

breeds number of 

animals 

allele 

‘A’ 

allele 

‘C’ 

allele 

‘G’ 

allele 

‘T’ 

German Landrace 31 0.06 0.94 0.00 1.00 

Large White 27 0.02 0.98 0.00 1.00 

Pietrain 35 0.11 0.89 0.00 1.00 

Resource population 384 0.29 0.71 0.48 0.52 

 

4.2.5 Linkage mapping 

Linkage mapping analysis was using CRI-MAP package (version 2.4). Multipoint 

linkage map was established using the BUILD and FLIPS options (SW1515-33.0 cM - 

SW1815-31.4 cM SO155-7.6 cM-RLN 56.5cM-SW1301; sex averaged distances are 

given in Kosambi centimorgan). Two-point linkage analysis revealed a recombination 

fraction of 0.08 between RLN and SO155 (LOD=18.3). The position of RLN gene is in 

good agreement with the published physical assignment to Sscr1q28-29. 

4.3 Parathyroid hormone like hormone gene (PTHLH) 

4.3.1 cDNA sequence of porcine PTHLH 

The complete cDNA sequence of the porcine PTHLH gene was obtained starting with 

heterologous primers designed from conserved regions of the human PTHLH (accession 

number  NM_002820) and porcine EST (Accession numbers BI181671 and BI181482), 

and subsequent 5’ and 3’-RACE using homologous primers (SMART™ RACE cDNA 

Amplification Kit, CLONTECH). The cDNA consisted of a 1,336 bp coding region and 

a 455 bp 3’ UTR (Figure 11). In addition 5’UTR was sequenced in 319 bp lengths and 

separated by intron. This intron sequence is 175 bp in length (Figure12) and showed 

83% homology with human PTHLH intron 2. The C’ terminal portion of PTHLH is 
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94% homologous to exon 6 of human PTHLH (Yasuda et al. 1989) and 94% 

homologous to canine C’terminal (Rosol et al. 1995). 

A comparison with PTHLH sequences from other species indicated a high level of 

sequence conservation. Comparison of the translated sequence of PTHLH with other 

published sequences showed the 91, 87, 92, 91, 92 and 89% similarity to human, 

mouse, bovine, rabbit, canine and equine, respectively (Figure 13). 

4.3.2 SNP screening in PTHLH gene 

Primers were designed from the sequence flanking every 400-500 bp over the entire 

gene sequence to screen for polymorphism. The PCR fragments amplified from liver 

cDNA of five pig breeds-Duroc, Hampshire, German Landrace, Pietrain and Berlin-

Miniature pig were sequenced. The single nucleotide polymorphism was identified 

within coding region. 

4.3.3 Polymorphism in the porcine PTHLH gene 

A T/C (S19L) non-synonymous SNP was detected at nucleotide position 375 of the 

porcine PTHLH cDNA (Figure 10).  

 

 
  

 

 

  

    

  

 

 

 

Figure 1

 p
T C
0: Sequence analysis of porcine PTHLH gene revealed single nucleotide 

olymorphism at position 375 of coding sequence 
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  DNA: GGGAGCAAGACGGCCTAGTTTGCAAAGAAGCTGACTTCGGAGGGGAAAACT 

 

    :   
 DNA: TTCTTTTTTTCAGGAGGGGTTTAGCCCTGCTCCCTGAACCCAGGATAACTG 
    :   
 DNA: CCGGCCAGATTAATTAGACATTGCTATGGGAGACGTGTAAACACGTTGCTC 
    :   
 DNA: ATCATTGATGCCTATATAAAACCATTTCATTTGGGTGATTATTTCGGAGGA 
    :   
 DNA: AGCGCCTCTGATTATTTTTTCTTCTCCTTTTTGGTCCCTTTTTGCCTGTGC 
    :   
 DNA: GGTTTGGAAAAAGCACAGTTGGAGTAACTGGTTCCTAAATAAGTCCCCAGA 
    :   
 DNA: GCCAGAGGATACGATGCTGTGGAGGCTGGTTCAGCAGTGGAGCGTCGCGGT 
  AA:              M  L  W  R  L  V  Q  Q  W  S  V  A  V  
 DNA: GTTCCTGCTGAGCTATTCGGTGCCCTCCTGCGGGCGCTCGGTGGAGGAGCT 
  AA:  F  L  L  S  Y  S  V  P  S  C  G  R  S  V  E  E  L  
 DNA: CGGCCGCCGACTCAAAAGAGCCGTGTCTGAACACCAGCTCCTCCATGACAA 
  AA:  G  R  R  L  K  R  A  V  S  E  H  Q  L  L  H  D  K  
 DNA: GGGGAAGTCCATCCAAGATTTACGGCGACGATTCTTCCTTCACCACCTGAT 
  AA:  G  K  S  I  Q  D  L  R  R  R  F  F  L  H  H  L  I  
 DNA: CGCAGAAATCCACACAGCTGAAATCAGAGCTACCTCGGAGGTTTCCCCCAA 
  AA:  A  E  I  H  T  A  E  I  R  A  T  S  E  V  S  P  N  
 DNA: CTCCAAGCCTGCTCCCAACACCAAGAACCACCCTGTCCGATTTGGGTCTGA 
  AA:  S  K  P  A  P  N  T  K  N  H  P  V  R  F  G  S  D  
 DNA: CGATGAGGGCAGATACCTGACTCAGGAAACCAACAAGGTGGAGACGTACAA 
  AA:  D  E  G  R  Y  L  T  Q  E  T  N  K  V  E  T  Y  K  
 DNA: AGAGCAGCCACTGAAGACACCGGGCAAGAAAAAGAAAGGCAAACCTGGGAA 
  AA:  E  Q  P  L  K  T  P  G  K  K  K  K  G  K  P  G  K  
 DNA: ACGCAAGGAGCAGGAAAAGAAGAAACGGCGAACTCGATCGGCCTGGCTGAA 
  AA:  R  K  E  Q  E  K  K  K  R  R  T  R  S  A  W  L  N  
 DNA: CTGCAGCATGGTCGGGAGTGGGCTGGAAGTGGACCACGTGTCTGATGACTC 
  AA:  C  S  M  V  G  S  G  L  E  V  D  H  V  S  D  D  S  
 DNA: GGAGACCTCACTGGAGCTCAATTCAAGGAGACATTGAAATTTTCAGCAGAG 
  AA:  E  T  S  L  E  L  N  S  R  R  H  *   
 DNA: ACCTTCAGAGGACGTATTGCAGAATTCTGTAATAGTGAAAAGTATTAGAAA 
    :   
 DNA: TATTTATTGTCTGTAAATACTGTAAATGCATTGGAATAAAACTGTCTCCCC 
    :   
 DNA: ATTGCTCTATGAAACTGCACATTGGTCATTGTGAATATATATTTTTTTGGC 
    :   
 DNA: CCAGGCTAATCCAATTATTATTATCACATTTACCATAATTTATTTTGTCAA 
    :   
 DNA: CTGATGTATTTATTTTGTAAATGTATCTTGGTGCTGCTGAATTTCTATATT 
    :   
 DNA: TTTTGTAACATAATGCACTTTAGATATACATATCAAGTATGTTGATAAATG 
    :   
 DNA: ACACAATAAAGTGTCTCTATTTTGTGGTTGATTCTAATGAATGCCTAAATA 
    :   
 DNA: TAATTATCCAAACTGATTTTCCTCTGTGCATGTAAAAATAGCAGTATTTTA 
  
 DNA: AATTTGTAAAGAATGTCTAATAAAATATAATCCAAAAAAAAAAAAAAAAAA 
 
 DNA: AAAAAAAAAA 
 
 

Figure 11: Nucleotide and amino acid (AA) sequences of porcine PTHLH gene 
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       1  AAGTGCCGAG AGGCTCCAGA GAAAGTTTTC TTCTTCTTCT TTGCAACTTT 
      51  GTAGATGCCC TTGAAGTTGA AGAGGCTATT TGAGAGCAAG TGAAGGGGTG 
     101  GAGGGGAGCG GGGTAATGAG GGGAAGTGGA GATGCTGGAT TGACCTTTAG 
     151  GGCCCCTTTC CTTTCCGTCG CAGGT 

 

Figure 12:  Sequence of intron 2A of the PTHLH gene 

 
 
  

  

                       |         |         |         |         |         | 
          10        20        30        40        50        60 

    Porcine   MLWRLVQQWSVAVFLLSYSVPSCGRSVEELGRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 

    Bovine    MLWRLVQQWSVAVFLLSYSVPSCGRLVEELGRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 
   Canine    MLRRLVQQWGVAVFLLSYSVPSCGRSVEELGRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 
   Humanx1   MQRRLVQQWSVAVFLLSYAVPSCGRSVEGLSRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 
   Rabbit    MQRRLVQQWSVAVFLLSYAVPSCGRSVEGLSRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 
   Mousex2   MLRRLVQQWSVLVFLLSYSVPSRGRSVEGLGRRLKRAVSEHQLLHDKGKSIQDLRRRFFL 
 
      70        80        90       100       110       120 
                      |         |         |         |         |         | 
   Porcine   HHLIAEIHTAEIRATSEVSPNSKPAPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLK 
   Bovine    HHLIAEIHTAEIRATSEVSPNSKPAPNTKNHPVRFGSDDEGKYLTQETNKVETYKEQPLK 
   Canine    HHLIAEIHTAEIRATSEVSPNSKPAPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLK 
   Humanx1   HHLIAEIHTAEIRATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLK 
   Rabbit    HHLIAEIHTAEIRATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLK 
   Mousex2   HHLIAEIHTAEIRATSEVSPNSKPAPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLK 
 
      130       140       150       160       170       180 
                      |         |         |         |         |         | 
   Porcine   TPGKKKKGKPGKRKEQEKKKRRTRSAWLNCSMVGSGLEVDHVSDDSETSLELNSRRH--- 
   Bovine    TPGKKKKSKPGKRKEQEKKKRRTRSAWLTSYVAGTGLEEDYLSDISATSLELNSRRH--- 
   Canine    TPGKKKKGKPGKRKEQEKKKRRTRSAWLNSGVAESGLEGDHPYDISATSLELNLRRH--- 
   Humanx1   TPGKKKKGKPGKRKEQEKKKRRTRSAWLDSGVTGSGLEGDHLSDTSTTSLELDSR----- 
   Rabbit    TPGKKKKGKPGKRKEQEKKKRRTRSAWLDSGVTGSGLEGDHLSDTFTTSLGARFTYSTSV 
   Mousex2   TPGKKKKGKPGKRREQEKKKRRTRSAW--PSTAASGLLEDPLPHTSRTSLEPSLRTH--- 
 
                        190       200 
                          |         | 
   Porcine     ---------------------- 
   Bovine      ---------------------- 
   Canine      ---------------------- 
   Humanx1     ---------------------- 
   Rabbit      GFEKKKGKQQKNTSYATNDLII 
   Mousex2     ---------------------- 
 
 

 

 

Figure 13: Comparative amino acid sequence of different species 
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4.3.4 Development of method for genotyping the allelic polymorphism 

4.3.4.1 Genotyping by using Taqman assay 

The genotyping method for the PTHLH gene is an allelic discrimination reporter assay 

developed on the ABI PRISM 7000 (Applied Biosystems, USA). The polymorphism of 

interest in the PTHLH gene involves a single nucleotide change at the 550 position. 

This method involves two reporter oligonucleotide probes (TaqMan® MGB probes, 

labelled with FAM™ or VIC® dyes) that are specific to the polymorphic site. Each 

probe is bound with a unique fluorescent molecule. If an individual is homozygous, 

only one of the two unique reporter molecules will be detected. If an individual is 

heterozygous, both of the unique reporter molecules will be detected. The PCR 

fragment of 50 bp was amplified that cover the polymorphic site (Figure 14). 

 

 

 

Figure 14: Scheme presentation using Taqman assay genotypes of porcine PTHLH gene 

in DUMI resource population 
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4.3.5 Genetic variation of the porcine PTHLH gene in the DUMI resource population  

Mendelian inheritance of this polymorphic site was monitored in 347 individuals of 21 

families of the three generation F2-DUMI resource population. Within the grandparents 

of the DUMI resource population, all Berlin-Miniature pig grandparents (n=4) were 

homozygous for allele ‘TT’, four Duroc grandparents were homozygous for allele ‘CC’. 

This polymorphism was heterozygous in all of 15 F1 generations. Among 347 F2 

animals were genotyped 77 (22.19%) animals found to be homozygous ‘CC’, 76 

(21.9%) were homozygous ‘TT’, and 194 (55.91%) animals were heterozygous. 

Frequency of the ‘C’ and ‘T’ alleles were 0.5 (Table 15). 

4.3.6 Genetic variation of the porcine PTHLH gene in the commercial breeds 

The SNP was found to segregate among pigs of three commercial breeds (German 

Landrace, Large white and Pietrain) with allele ‘C’ being the prominent one (Table 13). 

 

Table 13: Frequencies of alleles of the PTHLH gene 

 Allele Frequency 

 Breeds Number of 

animals 

Allele  

‘C’ 

Allele  

‘T’ 

German Landrace 29 0.93 0.07 

Large White 30 0.95 0.05 

Pietrain 31 0.98 0.02 

DUMI resource population 347 0.5 0.5 
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4.3.7 Linkage mapping 

Radiation hybrid mapping was performed using INRA-Minnesota 7000 rads radiation 

hybrid panel (IMpRH), consisting of 118 hamster-porcine hybrid cell lines. PCR 

products were separated on 2 % agarose gel and visualized by ethidium bromide 

staining (Figure15). The primers designed on the porcine 3’UTR PTHLH sequence 

enabled the amplification of a 358-bp product from porcine genomic DNA and no 

amplification with mouse or hamster DNA. Amplification results were submitted to the 

IMpRH database (http://imprh.toulouse.inra.fr). Two-point linkage analysis identified 

the most significant linkage of PTHLH with SW1134 and SW2033 (LOD=2.74 and 

1.94). The most significantly linked marker (2pt analysis) is SW1319 on chromosome 5 

(73 cR; LOD 4.85).  

For genetic mapping, two-point and multiplepoint procedures of the CRI-MAP package 

version 2.4 revealed linkage to loci SW1134 (proximal) and IGF1 (distal) with distance 

of 24.4 cM (recombination fraction = .23, lods = 17.41), and 48.2 cM (recombination 

fraction = .37, lods = 3.43), respectively, on the sex averaged map. IGF1 has been 

assigned to Sscr5q23. Microsatellites SW1319 and SW1134 mapped in close proximity 

at 49.3 cM on the second release genome-wide linkage map developed by the USDA 

Meat Animal Research Centre (Rohrer et al. 1994, 1996, Alexander et al. 1996). The 

results of RH and genetic mapping are in agreement and correspond with published 

genetic and physical map. 

 

 

 

 

 

 

http://imprh.toulouse.inra.fr/
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Figure 15: Physical mapping of PTHLH gene using radiation hybrid panel (IMpRH) 
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4.4 Family based association tests (FBAT) 

The Family-Based Association Test (FBAT) is recently developed software that can 

analyse association pedigrees with heterogeneous family structure. Furthermore, FBAT 

allows the analysis of the phenotype as a qualitative trait. In the present study, we made 

use of the FBAT program (Version 1.4) to perform the qualitative and quantitative 

family-based analysed of the Bonn-Berlin DUMI resource population. For all the 

quantitative analysis were done under the condition of an additive model. The p-values 

from FBAT for multiple allelic tests are reported in the table 14, 15.  

No significant association was observed between TGF1 and affection of inverted teats 

(p = 0.521) (Table 14). Significant association was found at p value of 0.014, 0.012, and 

0.013 between TGFB1 and the number of teats in the left hand side, number of teats in 

the right hand side and total number of teats, respectively. In addition, the association 

analysis between TGFB1 and number of inverted teats in the left hand side, number of 

inverted teats in the right hand side and total number of inverted teats showed 

significant in p value of 0.004, 0.003, and 0.036, respectively (Table 15). 

The association between PTHLH and affection was highly significant with p value of 

0.000099 (Table 14). Furthermore, the significant association was found at p value of 

0.037, 0.036, and 0.037 between PTHLH and the number of teats in the left hand side, 

number of teats in the right hand side and total number of teats, respectively. In addition 

the significant association was shown between PTHLH and number of inverted teats in 

the left hand side, number of inverted teats in the right hand side and total number of 

inverted teats with a p value of 0.003, 0.0008, and 0.007, respectively (Table 15). 

No significant association was shown between RLN1 and inverted teats affecting trait 

(p = 0.673) (Table 14). The significant association was found at p value of 0.021, 0.020, 

and 0.020 between RLN2 and the number of teats in the left hand side, number of teats 

in the right hand side and total number of teats, respectively. Moreover, the association 

between RLN1 and number of inverted teats in the left hand side, number of inverted 

teats in the right hand side and total number of inverted teats were significant at p value 

of 0.002 (Table 15). 
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The association analysis between RLN2 and affection in inverted teats defect showed 

significant in p value of 0.006 (Table 14). Furthermore, the significant association was 

found at p value of 0.011 between RLN1 and the number of teats in the left hand side, 

number of teats in the right hand side and total number of teats, respectively. In addition 

the association analysis between RLN2 and number of inverted teats in the left hand 

side, number of inverted teats in the right hand side and total number of inverted teats 

showed significant in p value of 0.005, 0.006, and 0.006, respectively (Table 15). 
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Table 14: Result of the FBAT done considering of inverted teat as the affection trait 

 

 

Marker   Allele   Freq  S  E(S)  Z score   p value 

 

 

TGFB1  G  0.70  -0.582  1.062  -0.641  0.521  NS 

 (A797G) A  0.30  2.706  1.062  0.641  0.521 

 

RLN1   C  0.71  -0.658  0.356  -0.422  0.673  NS 

 (A22C)  A  0.29  1.370  0.356  0.422  0.673 

 

RLN2  T  0.52  26.00  61.979  -2.762  0.0057  ** 

 (T9intG) G  0.48  116.00  80.021  2.762  0.0057  ** 

 

PTHLH  C  0.50  -8.673  8.360  -3.893  0.000099 ** 

 (C375T) T  0.50  34.820  17.787  3.893  0.000099 ** 

 

NS = not significant (p >0.05), ** p < 0.01 
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Table 15: Association of each marker in DUMI resource population by FBAT analysis 

 

Characteristic TL       ITL TR ITR TT TIT Affection

Marker             Z ( p) Z (p) Z (p) Z (p) Z (p) Z (p) χ2(df=2) (p) 

 

TGFB 

(A797G) 

 

12.448 (0.014*) 

 

2.873 (0.004**) 

 

2.487 (0.012*) 

 

2.931 (0.003**) 

 

2.469 (0.013*) 

 

2.908 (0.0036**) 

 

NS 

 

RLN1 

(A22C) 

 

2.309  (0.021*) 

 

3.128 (0.002**) 

 

2.330  (0.020*) 

 

3.103 (0.002**) 

 

2.320 (0.020*) 

 

3.120 (0.002**) 

NS 

 

RLN2     

(T9intG) 

 

2.554 (0.011*) 

 

2.765 (0.005**) 

 

2.528 (0.011*) 

 

2.744 (0.006**) 

 

2.541 (0.011*) 

 

2.758 (0.006**) 

 

7.630 (0.006**) 

 

PTHLH    

(C375T) 

 

2.081 (0.037*) 

 

2.711 (0.006**) 

 

2.095 (0.036*) 

 

2.635 (0.008**) 

 

2.088 (0.037*) 

 

2.680 (0.007**) 

 

8.1 (0.004**) 

 

 

TL : left teat number    TR : right teat number   TT : total teat number 

ITL : left inverted teat number   ITR : right inverted teat number  TIT : total inverted teat number 

NS : non significant. 

NS = not significant (p >0.05), *p < 0.05, ** p < 0.01 
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5. Discussion 

 

5.1 Motives to address the inverted teat defect 

The regulation of mammary growth involves complex interactions of many hormones 

and growth factors, of which some are growth–stimulating and others growth-

inhibitory. In particular the influence of the sex hormones and the metabolic hormones 

on the development of the mammary gland have been investigated in different animal 

species. It can be assumed that the emergence of teat anomaly is to due to a 

disregulation of the hormonal control. Hence the genes responsible for these hormones 

(proteohormones), hormone receptors and growth factors can act as candidate genes for 

inherited disorders of the mammary gland. 

Inverted teats are of the great concern in modern pig industry. Teat defects, which 

reduce mostly the number of functional teats, belong to the hereditary defects with a 

substantial influence on the operating economic result in the pig breeding. They lead to 

the reduction of the raising performance (Wiesner and Willer 1978, Matzke 1980) and 

restriction of the selection intensity with other productivity characteristics (Mayer 

1994). Inverted teat is a condition characterised by failure of teats to protrude from the 

udder surface. The teat canal is held inward, forming a small crater so that normal milk 

flow is prevented. This abnormality has a genetic background, but the number of pairs 

of genes involved is unknown. Caution must be exercised in evaluating underlines since 

nipples surrounded by a ring of loose skin are not inverted if the nipple tip is present but 

are due to injuries. Teats located near the sheath of boars are often falsely classified as 

inverted. Because of the uncertainty of the genetics of this trait, culling of parents and 

littermates is not recommended. But individuals with a high proportion of inverted 

nipples should not be placed in the breeding herd. 

The most frequent and most important teat defect represents the inverted teat (Blendl et 

al. 1980). In different investigations in German pig populations affection frequency 

between 7.6 and 20 % were found (Niggemayer 1993, Brevern et al. 1994, Mayer and 

Pirchner 1995). In the DUMI Bonn-Berlin resource population, proportion of mammary 
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gland abnormalities was 53.6 %, the proportion of inverted teats was 42.2 % and of 

extra teats was 17.9 %. 

The hereditary of the teat anomaly is not clearly enlightened and is controversially 

discussed in the literature. The heritability values for the number of inverted teat lies in 

the middle range between 0.2 and 0.5 (Hittel 1984, Mayer 1994, Brevern et al. 1994). In 

comparison to other hereditary caused deformations, inverted teat cannot be determined 

in praxi with same security (Steffens 1993). Therefore the identification of the genetic 

causes of this anomaly an interesting perspective for selection measures for the 

improvement of the quality of teats.  

 

5.2 Strategies to identify genes controlling economically important traits 

The identification of genes controlling economically important traits provides the basis 

for new progress in genetic improvement of livestock species, complementing 

traditional methods based only on measured performance. The identification of these 

genes, whether they are major genes or quantitative trait loci (QTL), directly affecting 

variability in traits to be improved, is an important objective to be pursued.  

Two approaches have been pursued to identify genetic markers for inverted teat traits. 

First, genome scans employing anonymous DNA markers have been used to identify 

quantitative trait loci (QTL) influencing this trait. However, a genome scan will fail to 

detect trait loci with smaller effects if they do not reach the stringent significance 

thresholds that must be applied when doing number of tests in a full genome scan 

(Andersson 2001). Second, physiological candidate gene approaches have utilized 

polymorphisms within or close to genes that are known to play a role during mammary 

gland development in tests for associations with this trait. This candidate gene approach 

might fail to identify a major trait locus simply because of the gap on the present 

knowledge about gene function (Andersson 2001). Hence, in this study, the strategy 

combines these two approaches, identifying QTL through genome scans using interval 

mapping and testing genes identified as candidates on both positional and physiological 

grounds.  
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Another approach to detect candidate genes is based on the analyses of differences of 

the expression profile in particular subsets of cells and/or individuals with certain 

phenotypes. These genes are functional candidate genes because of their temporo-

spatial distribution of expression or their expression in certain phenotypes. The 

functional candidate approach benefits from the fact, which it only deals with cDNA, 

devoid of intronic and intergenic sequences, which represent only a few percent of the 

total genome (about 3% in mammals). Differential expression screening approaches are 

therefore more closely associated to gene function. It is foreseen to also apply this 

functional genomics approach in order to elucidate the aetiology of inverted teats. 

 

5.3 Gene mapping approach 

For gene mapping there are currently two main approaches that have been used in this 

study. One is to use a radiation hybrid panel (IMpRH). The general principle of 

radiation hybrid mapping is to test for the co-retention of genome markers in very small 

chromosome fragments, obtained by X-ray irradiation of donor cells of the species of 

interest and rescued by fusion to recipient cells of another species. IMpRH are an 

attractive tool for mapping arbitrary sequences (such as ESTs) without the need for 

polymorphism and high resolution, and have been important in making a very gene-rich 

human map (Deloukas et al. 1998). This study used the IMpRH panel (7000 rds) 

developed by Yerle et al. (1998), including 118 hybrid clones. The results of radiation 

hybrid PCR products were easily analyzed with the IMpRH mapping tool developed by 

Milan et al. (2000). One limitation of this approach is that RH maps tend to have more 

uncertainty in the order of closely spaced markers than genetic maps, but an important 

advantage is that mapped sequences need not be polymorphic. 

The second approach for mapping gene is called ‘linkage mapping’. The result would 

be developed and mapped markers and test if a marker that is polymorphic "co-

segregates" with the SNP in the gene. Genetic linkage maps have become powerful 

research tools in many organisms (Dietrich et al. 1996, Dib et al. 1997). The 

development of genetic maps in livestock species has allowed the detection of genomic 

regions contributing to the genetic variation of quantitative traits, such as growth, body 
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composition, meat quality, or reproduction (Bidanel et al. 2001, Malek et al. 2001a, b). 

A complete linkage map is necessary in order to efficiently carry out molecular-based 

analyses such as marker-based selection (Cho et al. 1994), quantitative trait locus (QTL) 

analysis (Lander and Botstein 1989) and loss of heterozygosity (LOH) studies in 

tumorigenesis (Dietrich et al. 1994) and for comprehensive investigations of genome 

evolution between lineages (Morizot et al. 1977, Morizot 1983, Lyons et al. 1997). In 

order to link our results of QTL studies and candidate gene analyses it is necessary to 

link genetic map which is mainly based on microsatellites. 

 

5.4 Single nucleotide polymorphism (SNP) and genotyping method 

Regardless of the study design used, single nucleotide polymorphisms (SNPs) may 

provide an important alternative to conventional markers, for genetic mapping studies 

of complex traits. SNPs are sites in the genome that have nucleotide differences. These 

polymorphism are highly abundant, occurring approximately ~ 1/1,000 bp (Wang et al. 

1998). Methods for the genotyping of SNPs are more easily automated and potentially 

less expensive per marker than are conventional methods such as microsatellite markers 

(Nickerson et al. 1990, Pease et al. 1994). Given the large number of markers and 

individuals that must be genotyped for studies of complex traits, SNPs could 

substantially reduce the cost of a genetic mapping study. For these reason, SNPs may 

become a key component in the studies of complex traits. Several studies have 

evaluated SNP characteristics that are important for both association mapping studies, 

including the allele frequencies and the LD between markers. 

The technological and economic goal is accurate, easy, cheap and fast large-scale SNP 

genotyping. Several methods are currently being developed, and it is unclear which 

one(s) will turn out to be the best. The commonly used detection methods such as 

sequencing of an amplified PCR product (e.g. by radiolabelled - or fluorescence-based 

polymerase chain reaction), single-strand conformation polymorphism (PCR - SSCP) or 

restriction fragment length polymorphism (RFLP) are time consuming and therefore not 

suitable for the routine screening of large numbers. PCR - RFLP can be genotyping 

http://jas.fass.org/cgi/content/full/80/9/2276
http://jas.fass.org/cgi/content/full/80/9/2276
http://jas.fass.org/cgi/content/full/80/9/2276
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procedure that is easy to set up in any molecular laboratory. The RLN (T9intG) loci was 

performed this method. The recognition site of CfoI restriction enzyme is GCG▼C. 

Single strand conformation polymorphism (SSCP) is based on the specificity of folding 

conformation of single stranded DNA when placed in non - denaturing condition. The 

TGFB1 loci and RLN (A22C) loci were genotyped by this method, because there were 

non recognition sites of any restriction enzymes. 

In this study a polymorphism in the PTHLH gene was found in coding sequence 

(TTG/TCG: Leu/Ser). A TaqMan assay was used to perform genotyping. It can be used 

for rapid, precise and unambiguous detection and analysis of biallelic SNPs. The 

determination of an optimal condition for the analysis was facile, and typing results 

were judged to be accurate since they were consistent with results obtained by 

sequencing method. Here, we report the use of the Taqman probe in the genetic analysis 

of the PTHLH gene polymorphism to test for association with inverted teat. This 

protocol enabled the fluorescence genotyping of 96 samples in 2 hours without need for 

electrophoresis. 

The SNP assay contains two primers for amplifying the sequence of interest and two 

TaqMan® MGB probes for distinguishing between two alleles. Each TaqMan MGB 

probe contains a reporter dye at the 5´ end of each probe. VIC ™ dye is linked to the 5´ 

end of the Allele ‘C’ probe, 6-FAM ™ dye is linked to the 5´ end of the Allele ‘T’ 

probe and a minor groove binder (MGB) in both the probe. This modification increases 

the melting temperature (Tm) without increasing probe length (Afonina et al. 1997, 

Kutyavin et al. 1997), which allows the design of shorter probes. This results in greater 

differences in Tm values between matched and mismatched probes, which produce 

more accurate allelic discrimination. 

During PCR, each TaqMan ® MGB probe anneals specifically to a complementary 

sequence between the forward and reverse primer sites. When the probe is intact, the 

proximity of the reporter dye to the quencher dye results in suppression of the reporter 

fluorescence primarily by energy transfer (Lakowicz, 1983). AmpliTaq Gold® DNA 

polymerase cleaves only probes that are hybridized to the target. Cleavage separates the 

reporter dye from the quencher dye, which results in increased fluorescence by the 
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reporter. The increase in fluorescence signal occurs only if the target sequence is 

complementary to the probe and is amplified during PCR. Thus, the fluorescence signal 

generated by PCR amplification indicates which alleles are present in the sample. 

Mismatches between a probe and target reduce the efficiency of probe hybridization. 

Furthermore, AmpliTaq Gold DNA polymerase is more likely to displace the 

mismatched probe rather than cleave it to release reporter dye. The detail of SNP assay 

is given below in figure 16. 

 

Figure 16: Overview of SNP assay using TaqMan probe 

 

5.5 Quantitative trait loci for inverted teat defect (and number of teats) 

QTL identification is based on animals from `DUMI´ three generation F2 resource 

population found by reciprocal crossing of Berlin Miniature pig and Duroc at the 

Institute of Animal Science of the Humboldt University of Berlin (Hardge et al. 1999). 

Animals of the DUMI resource population were kept and performance tested at the 

research farm Frankenforst (Institute of Animal Breeding Science, University of Bonn). 

With close to 1000 F2-animals of this experimental population a genetic map has been 

established covering 72 microsatellite markers and some type I marker loci. The 
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evidence of linkage of markers with the appearance of inverted teats was reported in a 

whole genome scan experiments (Ün 2002, Oltmanns 2003). 

The non-parametric analysis of the data of the genome scan within the DUMI 

population identified six QTL regions with significant NPL values (> 4.0) (Table 16). 

The highest linkage was found with marker S0220 on chromosome 6 (NPL score 8.8). 

TGFB1 and RLN are located on chromosome 6q11-q22 and 1q28-29, respectively. 

Therefore, the pervious study proposed TGFB1 gene and RLN gene as candidate genes 

for inverted teat based on the QTL analysis and gene function (Ün 2002). Strong 

evidence of linkage to chromosome 6 was also identified in a linkage analysis for the 

inverted teat defect in commercial breeds (DL, DL*DE). The highest NPL score on 

chromosome 6 was 6.8. On chromosome 2 a NPL score of 2.4 was found when 

analysing affected sibpairs of the crossbreed DL*DE. The results are summarized in 

table 17 (Wimmers, unpublished data).  

The teat number is an important trait with regard to the mothering ability of sows, the 

pig industry has traditionally applied selection pressure to teat number (Pumfrey et al. 

1980). In particular, teat number plays an important role when the number is less than 

the litter size. Nevertheless, information about the inheritance of teat number is limited 

in comparison to other reproductive traits of pigs. Number of teats has not been 

investigated in most previous porcine reproductive QTL studies (Rathje et al. 1997, 

Wilkie et al. 1999, Rohrer et al. 1999). However, QTL affecting number of teats was 

reported on the p arm of SSC8 at the genome-wide significance level (P<0.05) (Cassady 

et al. 2001). The additional evidence for teat number QTL was found in a Meishan X 

Dutch cross on chromosome 10 and 12, with the beneficial alleles from the Meishan 

breed and a QTL on chromosome 2 with a negative effect of the Meishan allele 

(Hirooka et al. 2001). Rohrer (2000) found significant evidence for a QTL for teat 

number in a Meishan X Large White cross on porcine chromosome 10. Neither of these 

studies found evidence for QTL on SSC8 influencing teat number. A suggestive QTL 

for teat number was revealed on the short arm of SSC8. Moreover, Wada et al. (2000) 

reported a putative QTL affecting teat number on Sus scrofa chromosome 1, and 7 in a 

Meishan x Göttingen miniature cross. 
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Table 16: QTL regions for affection of inverted teat within DUMI resource population 

Chromosome 1 2 3 4 5 6 

No. of loci 3 6 4 7 4 11 

max. NPL 4,7 7,8 4,5 5 3,0 8,8 

Position cM 160 20 70 100 0 120 

Microsatellite SW1301 S2443 S0164 S0097 SW1482 S0220 

       

Chromosome 7 8 9 10 11 12 

No. of loci 8 5 5 3 4 4 

max. NPL 2,3 3,9 2,8 2,2 3,0 1,5 

Position cM 140 101 27 72 96 51 

Microsatellite S0115 SW61 SW911 S0070 SW703 SW874 

       

Chromosome 13 14 15 16 17 18 

No. of loci 3 5 4 3 3 3 

max. NPL 2,1 4,8 2,1 4,0 1,2 3,5 

Position cM 79 20 81  54 0 69 

Microsatellite SW398 S0007 SW936 S0026 SW335 SWR414 

 

Table 17: QTL-regions for inverted teat affection within commercial breeds German 

Landrace (DL), Large white (DE), and F1 reciprocal cross German Landrace and Large 

white (DL * DE) 

  Sscr1 Sscr2 Sscr6 

max. NPL 0,4 1,8 2,6 All 

(70 sibpairs) Microsatellite SW1301 S0227 S0035 

max. NPL - 1,9 1,9 DL 

(45 sibpairs) Microsatellite  S0227 S0220 

max. NPL 1,1 2,4 6,8 DL*DE 

(15 sibpairs) Microsatellite SW1515 S0227 S0035 
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Quantitative traits are regulated by many genes and affected by interactions among 

them, and thus, a candidate gene associated with a trait in one population may have a 

different effect, or show no effect at all, in another population due to negative effects of 

other genes and epistatic interactions of the candidate gene with other genes in the 

population (Pomp 1997). This theory is supported by many association studies, in which 

a polymorphism was significantly associated with performance traits in one family or 

breed (Casas et al. 1998, Feng et al. 1997, Knorr et al. 1997). A more complex system 

must be developed to model QTL effects before a genetic marker can be broadly 

applied to breeding schemes in different populations. 

In summary, QTL for inverted teat defect trait have been found in multiple regions of 

the genome (Ün 2002, Oltmanns 2003). TGFB1 and RLN represent biological candidate 

genes for the inverted teat defect. The genes TGFB1 on chromosome 6 as well as RLN 

on chromosome 1 map within QTL regions identified here and thus also represent 

positional candidate genes. This study aims to identify polymorphisms in the candidate 

genes, which were found in the QTL regions. In addition, focus was on a third direct 

biological candidate gene, PTHLH.  

In this study, detailed analyses of three candidate genes were carried out in the Bonn-

Berlin DUMI resource population. The TGFB1 and RLN gene were selected as the 

functional positional candidate genes for molecular investigation, based on the findings 

of the QTL analysis and biological evidence in both human and rodent models. The 

TGFB1 and RLN sequence gene were available in databank. In addition, PTHLH has 

also been characterised in this study. The PTHLH is located on Sscr5q23. Oltmanns 

(2003) identified no significant QTL region on chromosome 5; maximum NPL value on 

chromosome 5 was 3.2. Nevertheless many studies show that the PTHLH gene is 

functionally related in mammary gland development, and hence PTHLH can act as a 

functional candidate gene. Researchers usually choose genes to be "candidate genes" or 

likely genes for a trait because a very similar trait was shown to be caused by that gene 

in another species, such as mouse or humans. It could be that a good functional 

candidate gene for inverted teat defect is PTHLH because that is the gene that effects 

the formation of mammary gland in mice (Foley et al. 2001).  
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5.6 Candidate gene analysis  

 

5.6.1 Transforming growth factor beta 1 gene (TGFB1) 

The TGFB1 gene contains 7 exons separated by six non-coding intron sequences 

ranging in size from 1.9 to 40 kb in human (Derynck et al. 1987). In this study, porcine 

TGFB1 intron 4 was sequenced which is 186 bp in length (Accession number 

AF461809). Recently, intron 6 of TGFB1 gene was sequenced (819 bp) by Kopecny et 

al. (AJ621785: Unpublished). 

 

5.6.1.1 Experimental and functional evidence for an aetiological role in the inverted teat 

defect  

The TGFB1 locus is addressed as a candidate gene because of its location near the QTL 

region, and also based on its role in mammary gland developmental. Developmental 

roles of TGFB1 are reflected in its apparent involvement in the maturation and function 

of the mammary gland (Robinson et al. 1991, Silberstein et al. 1992). Implants 

containing TGF family protein have been introduced into the mammary glands of 

subadult virgin mice directly in front of the mammary end buds so that the effect of the 

peptide on the ductal development of the gland might be studied (Silberstein and Daniel 

1987, Robinson et al. 1991). The implant locally and reversibly inhibited ductal 

penetration of the fatty stromal tissue in juvenile mice. In contrast, introduction of 

similar TGFB implants into hormonally or pregnancy induced mammary glands failed 

to overtly affect lobuloalveolar development (Daniel et al. 1989) and Soriano et al. 

(1996) reported that the low concentrations of TGFB1 promote mammary gland ductal 

morphorgenesis. Furthermore, TGFB inhibited ß-casein expression in HC11 mammary 

epithelial cells and in mammary explants from mid-pregnant mice, providing evidence 

for a role in regulating functional differentiation and lactogenesis (Mieth et al. 1990, 

Robinson et al. 1993). The growth inhibitory effect of TGFB1 in mammary epithelial 

cells was confirmed by study in transgenic mice. The transgenic mice were generated 

by injecting one cell embryos with simian TGFB1 mutated to produce a constitutively 

active product under the control of the MMTV enhancer/promoter. Tissue-specific 
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expression of the transgene in mouse mammary glands resulted in marked ductal 

hypoplasia, suppression of ductal branching, and a concordant reduction in 

bromodeoxyuridine labelling in mammary epithelium. Interestingly, during pregnancy 

alveolar outgrowths developed from the hypoplastic ductal tree and transgenic females 

were able to lactate (Pierce et al. 1993). 

 

5.6.1.2 Polymorphism 

Alternative splicing of the TGFB1 transcript has been described in human and pig. 

Although the frequency of occurrence of the alternate splice from pig is considerably 

less than the dominant splice form, where the exons are retained, the precise frequency 

and distribution of the alternate splice pattern are not well described (Kondaiah et al. 

1988). No evidence for similar splicing patterns in other animal species has been 

defined, nor have the biological implications of this splice variant been extensively 

explored in the pig. An alternative splicing pattern of the amino terminal of the TGFB 

RNA transcript seen in the pig could not be confirmed in the equine TGFB1 precursor, 

despite considerable effort to identify its presence (Nixon et al. 2000). A previous report 

on polymorphism of the porcine TGFB1 was based on Southern blot analysis that 

revealed a polymorphism after hybridisation of DraI digested genomic DNA with a 

human cDNA probe. Two variable fragments, 5.0 kb and 3.6 kb were detected. In six 

three-generation pedigrees of Meishan x Yorkshire pig (n=90) RFLP allele segregation 

was consistent with codominant, autosomal inheritance of the marker (Feltes et al. 

1993). Consistent to the importance of this gene polymorphism study of this gene was 

carried out. A SNP ‘A/G’ transition in exon 5 at position 797 of the coding sequence 

was found. Until now, no polymorphisms causing amino-acid substitution were detected 

in the porcine TGFB1 gene. Furthermore Hu et al. (1997) reported that no 

polymorphism was observed for porcine TGF beta 1 with endonucleases AluI, BamHI, 

BglII, DraI, EcoRI, HaeIII, HindIII, MspI, PstI, PvuII, RsaI, and TaqI. 
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5.6.1.3 Candidate gene for disease in other species 

Human TGFB1 plays an important role in the modulation of cellular growth and 

differentiation in a wide variety of cell types and in the production and degradation of 

the extracellular matrix. Several polymorphism of the human TGFB1 gene were 

identified and elucidated the predisposition to various diseases. Over eight novel 

polymorphisms have been identified (Cambien et al. 1996, Keen et al. 2001), and these 

polymorphisms of TGFB1 might be correlated with atherosclerosis, bone disease, or 

various forms of cancer (Grainger et al. 1999). Two studies have shown the presence of 

an association between polymorphisms of TGFB1 and either osteoporosis or bone 

turnover in the white and Japanese population (Langdahl et al. 1997, Yamada et al. 

1998). Yamada and other (1998) demonstrated that a T to C transition at nucleotide 29 

was associated with both BMD at the lumbar spine and the rate of bone loss in 

postmenopausal Japanese women. A similar association was obtained in an Italian 

population, although a polymorphism (718-8delC) in the gene showing the association 

was different (Bertoldo et al. 2000). Recently, several host genetic association studies 

with polymorphisms of the human TGFB1 gene have been performed for elucidating 

the function of polymorphism of the human TGFB1 gene. Camurati-Engelmann disease 

(CED), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia 

inherited in an autosomal dominant manner. Recently, the gene causing CED has been 

assigned to the chromosomal region 19q13 (Ghadami et al. 2000). Because this region 

contains the gene encoding transforming growth factor-beta 1 (TGFB1), an important 

mediator of bone remodelling, they evaluated TGFB1 as a candidate gene for causing 

CED. A lack of growth inhibition by TGFB leads to carcinogenesis (Massague´ 1998) 

and excess TGFB activity may play a significant role in the pathogenesis of fibrotic 

disorders in the kidney (Border et al. 1992) and inflammatory disorder (Shull et al. 

1992, Kulkarni et al. 1993). 
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5.6.1.4 Gene Mapping 

For linkage mapping of TGFB1 the CRI-MAP package (version 2.4) was used. 

Multipoint linkage map was established using the BUILD and FLIPS options. 

Genotyping of 380 F2-individuals from 21 families of the Bonn-Berlin-DUMI resource 

population and subsequent two-point and multipoint procedures of the CRI-MAP 

revealed linkage to loci S0300, SW193, and SW1067 (proximal) and S0220 (distal) 

with distances of 7.3, 13.8, 24.5 and 31.5 cM, respectively, on the sex average map. 

SW1067 has been assigned to Sscr6q11-q22 (Yerle et al. 1990a). TGFB-1 gene position 

is in agreement with the published genetic and physical map. 

The TGFB1 has also been mapped to human chromosome by somatic cell hybridization 

and in situ hybridization. TGFB1 has been assigned to Hsap 19q13.1-q13.3 in man and 

to chromosome 7 in the mouse (Dickinson et al. 1990, Fujii et al. 1986). Concerning the 

comparative mapping discussion, it is based on comparison with the human genome. 

This result was also consistant with human comparative map result in which TGFB1 

gene was localized to chromosome 6 (Figure 17). 
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Figure 17: A comparative map of TGFB1 and the human genome  

    (http://www.toulouse.inra.fr/lgc/pig/compare/SSCHTML/SSC6S.HTM) 

 

 

 

 

http://www.toulouse.inra.fr/lgc/pig/compare/SSCHTML/SSC6S.HTM
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5.6.2 Relaxin gene (RLN) 

In this study primers were derived based on the published relaxin sequence (Haley et al. 

1987) (Accession number J02792) that reveal overlapping fragments of about 300-500 

bp in size covering the DNA sequence from part of 5´-UTR to the 3´-UTR. DNA 

fragments obtained from five pig breeds - Hampshire, Duroc, Pietrain, German 

Landrace, Berlin-Miniature pig–were comparatively sequenced.  

 

5.6.2.1 Experimental and functional evidence for an aetiological role in the inverted teat 

defect  

Relaxin was chosen as a positional candidate gene. The mammary gland is a target 

organ for Relaxin. In the rodent study, it was confirmed that relaxin promotes growth 

and differentiation of the mammary parenchyma (epithelial and myoepithelial cells) and 

the mammary stroma (fibroblsts, adipocytes and collagen) (Bani et al. 1985, Bianchi et 

al. 1986). Relaxin has been reported to reduce milk yield and decrease mammary RNA 

in lactating rats. Relaxin lengthens the mammary gland ducts in rats and cause growth 

of ducts and alveola in synergy with other mammotropic substances and also relaxin 

stimulates the growth of mammary gland malignancies in vitro in rats (Weiss 1984). 

Relaxin was demonstrated to be essential for development of normal mammary nipples 

and nipple function in pregnant rats (Hwang et al. 1991, Kuenzi et al. 1995). 

Furthermore, the relaxin immunoreactivity was detected in normal as well as in 

neoplastic human mammary tissue (Mazoujian and Bryant-Greenwood 1990) the 

question arose whether relaxin influences the growth of breast neoplasm. In the 

knockout mice experiment, the rln -/- mothers exhibited normal nursing behaviour; 

however pups were not able to suckle milk from the breast because of the 

underdeveloped nipples (Zhao et al. 1999). 
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5.6.2.2 Polymorphism 

The porcine genome was shown to contain only a single relaxin gene in contrast to the 

human, which contains two non allelic genes. The porcine relaxin gene comprises two 

exons separated by a 5.5-kilobase intron. Within the coding sequence, a single base 

change of ‘C  T’ relative to the cDNA sequence (Haley et al. 1982, 1987) is observed 

at position 7041, resulting in a Ser  Leu change in the carboxyl-terminal peptide at 

residue 116. The amino acid sequences of pig, rat and shark relaxin have been 

published. Rat preprorelaxin has been shown to contain a 105 amino acid connecting 

peptide linking the A and B chains (Hudson et al. 1981), and similarly porcine 

preprorelaxin has been shown to comprise a signal peptide of 24 amino acids, a B chain 

of 32 amino acids, and an A chain of 22 amino acids (Haley et al. 1982). A comparison 

of the sheep nucleotide sequence with exon II of pig relaxin revealed homology of 72% 

(Roche et al. 1993). In this study, a transversion (C>A) at position 1 of codon 8 (nt 22) 

in the first exon leading to a amino acid exchange (Leu  Ile) was detected and another 

transversion (T>G) was found at position 9 of the intron 1 altering the recognition site 

of CfoI.  

Human RLN is a peptide hormone that is encoded by two genes referred to as H1 and 

H2, both located into chromosome 9p24.1. D'Elia et al. (2003) searched for 

polymorphisms in the 5'-flanking sequence of these genes. Both genes possess a CT 

repeat followed by a GT repeat. CT and GT repeats of the H2 gene are longer than those 

of the H1 gene. Moreover, CT and GT repeats of the H2 gene, but not those of the H1 

gene, show length polymorphism.  

 

5.6.2.3 Gene Mapping 

For RLN gene linkage mapping analysis was shown SW1515-33.0 cM - SW1815-31.4 

cM SO155-7.6 cM-RLN 56.5cM-SW1301; sex averaged distances are given in 

Kosambi centrimorgan. Two point linkage analysis revealed a recombination fraction of 

.08 between RLN and SO155 (LOD=18.3). The position of RLN gene is in good 

agreement with the published physical assignment to Sscr1q28-29. By study of mouse-

human cell hybrids, Crawford et al. (1984) found that both relaxin genes are on 9p 
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(9pter-9q12). Naggert and Mu (1994) stated that the relaxin gene maps to mouse 

chromosome 19 near D19Mit23. Furthermore, a comparison with the human genetics 

map shows that it corresponded to linkage map (Figure 18). 

 

 

Figure 18: A comparative map of RLN and the human genome  

     (http://www.toulouse.inra.fr/lgc/pig/compare/SSCHTML/SSC1S.HTM) 
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5.6.3 Parathyroid hormone like hormone gene (PTHLH) 

This study presents the first isolation of the PTHLH gene in the pig. The identification 

of porcine PTHLH gene was based on the human published sequence and information 

of ESTs of various species that matched the human PTHLH sequence. PCRs with 

homologoue and heterologoue primers and RACE-PCR were used to isolate gene from 

porcine ovary RNA and to characterise it by nucleotide sequencing. A comparison with 

PTHLH sequences from other species indicated a high level of sequence conservation. 

 

5.6.3.1 Cloning and characterization of cDNA for porcine PTHLH 

Suva et al. (1987) and Mangin et al. (1988a) identified a cDNA clone that encodes 

human PTHLH. The cDNA encodes a protein of 177 amino acids, containing a 

precursor sequence of 36 amino acids followed by the mature peptide of 141 amino 

acids. Eight of the first 13 amino acids in the mature peptide are identical to those of 

PTH. The sequence diverges completely after amino acid 13, and it is this subsequent 

region that must account for the distinctive biologic actions of the 2 peptides. An ORF 

of 177 aa was verified by the presence of 5’ in-from stop codon (TGA) at bp 851-853. 

The porcine 5’-UTR (bp 1-319) is 85 % homologous to the 5’-UTR of exon 2 and 3 of 

human PTHLH (Yasuda et al. 1989) or exon 1b and 2 (Suva et al. 1989). The 5’UTR is 

homologous to exon 1A of human PTHLH homology to this region has not been 

identified in rat, mouse, or chicken sequence. In addition 319 bp of 5’untranslated 

region was sequenced which was separated by intron. This intron sequence is 175 bp in 

length and has 83% homology with human PTHLH intron 2. The C’ terminal portion of 

PTHLH is 94% homologous to human PTHLH exon 6 (Yasuda et al. 1989) and 94% 

homologous to canine C’terminal (Rosol et al. 1995). 

The porcine 3’UTR (bp 854-1308) is 94 % homologous to exon 6 of human PTHLH. 

The 3’UTR portion of PTHLH is highly conserved among reported species. There is 91 

% and 98% homology in the coding region of porcine PTHLH to the exon 3 and 4 

human PTHLH respectively. The biological function of the C-terminal PTHLH peptide 

is not clearly understood and may have divergent functions in different species (Mangin 

et al. 1989). The predicted mature peptide is 91 % homologous to human PTHLH. 
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Comparison of the translated sequence of PTHLH with other published sequences 

showed high similarity with human (91%), mouse (87%), bovine (92%), rabbit (91%), 

canine (92%) and equine (89%).  

 

5.6.3.2 Experimental and functional evidence for an aetiological role in the inverted teat 

defect  

Parathyroid hormone like hormone gene (PTHLH) was chosen as a candidate gene 

based on its role in physiology of reproduction. PTHLH is present in mammary 

epithelial, the maternal circulation during lactation and in the mothers’ milk of various 

species (Moseley and Gillespie 1995, Philbrick et al. 1996). The proposed functional 

roles of PTHLH during lactation include: stimulation of mammary and neonatal cell 

growth and differentiation, increasing calcium transport from blood to milk, influencing 

mammary blood flow and myoepithelial cell tone and regulation of maternal and 

neonatal calcium homeostasis (Philbrick et al. 1996). Wlodek et al. (2003) indicated that 

milk and mammary PTHLH are regulated by different mechanisms but that they are 

influenced by the maternal lactation environment. Recently, overexpression of PTHLH 

has been shown to disrupt branching morphogenesis during mammary gland, PTHLH is 

produced in alveolar epithelial cells and the PTH/PTHLH receptor is expressed in 

adjacent stromal cells (Dunbar et al. 1998, Wojcik et al. 1999). Indeed targeted 

overexpression and knockout studies have revealed the critical importance of PTHLH in 

normal branching morphogenesis and mammary epithelial development. PTHLH 

mRNA and protein expression in rat mammary tissue is dependent upon the suckling 

induced rise in prolactin (Thiede 1989). Furthermore, Foley et al. (2001) used a 

combination of loss-of-function and gain-of function models and reported that PTHLH 

regulates a series of cell fate decision that are central to the survival and morphogenesis 

of the murine mammary epithelium and the formation of the nipple. PTHLH acts as an 

epithelial signal that induces the mesenchyme around the epithelial bud to become 

mammary specific. As a result, the mammary mesenchyme acts on the epithelial bud 

maintain the mammary identity of the epithelium and to support ductal morphogenesis. 

It also acts upon the epidermis around the mammary bud to suppress hair follicle 

formation and trigger nipple sheath formation. 
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5.6.3.3 Polymorphism 

The human PTHLH gene comprises eight exons spanning more than 15 kb of genomic 

DNA. At its 5’ end, the human PTHLH gene contains two apparent promoter elements 

and four exons; at its 3’ end, the gene contains alternatively spliced exons which give 

rise to mRNAs encoding three different deduced products, each with a unique C 

terminus (Suva et al. 1989, Mangin et al. 1990a, b, Thiede et al. 1988, Yasuda et al. 

1989). As compared to the complex hybridization pattern observed on Northern analysis 

of human RNAs (Mangin et al. 1989), RNAs prepared from rodent tumors and tissues 

appear to contain a single broad hybridizing band (Thiede and Rodan 1988, Yasuda et 

al. 1989) suggesting that the mouse and rat PTHLH gene might have a simpler 

organization that the human gene. The completed structure of porcine PTHLH is still 

not available. 

A polymorphism of the variable number of tandem repeat (VNTR) type is located 97 bp 

downstream of exon VI of the parathyroid hormone-related peptide (PTHrP) gene in 

humans (Pausova et al. 1993). The repeat unit has the general sequence G(TA)nC, 

where n equals 4-11. Intra-species variability of the locus was demonstrated only in 

humans and gorilla. The divergence of the TA-dinucleotide repeat sequence and the 

variable mutation rates observed in different primate species are in contrast to the 

relative conservation of the flanking sequences during primate evolution. This suggests 

that the nature of the TA-dinucleotide repeat sequence, rather than its flanking 

sequences, is responsible for generating variability (Pausova et al. 1995). The mouse 

parathyroid hormone-like hormone PthlhPro and PthlhThr variants are linked with 

susceptibility and resistance to skin carcinogenesis of Car-S and Car-R mice, 

respectively, and with in vitro effects (Manenti et al. 2000b). The HindIII and TaqI 

RFLPs were performed in Human PTHLH gene (Hendy and Goltzman 1990). HindIII 

and TaqI identify a multiple allele polymorphism with at 35 unrelated North Americans 

of mixed ethnic origin. No polymorphism for EcoRI, PstI, and BclI was performed by 

RFLP. In this study, C/T non-synonymous SNP was detected at nucleotide 375 of the 

porcine PTHLH cDNA (Accession number AY193782). That only one mutation causes 

an amino acid change from leucine to serine and, therefore, is classified as a 
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conservative mutation. As no structure-function analysis is available, the possible 

functional effects of this mutation are unknown. 

 

5.6.3.4 Gene mapping 

In this study, two-point RH linkage analysis identified the most significant linkage of 

PTHLH with SW1134 and SW2033 (LOD=2.74 and 1.94). The most significantly 

linked marker (2pt analysis) is SW1319 on chromosome 5 (73 cR; LOD 4.85). 

For PTHLH genetic mapping, twopoint and multipoint procedures of the CRI-MAP 

package version 2.4 revealed linkage to loci SW1134 (proximal) and IGF1 (distal) with 

distance of 24.4 cM (recombination fraction = .23, lods = 17.41), and 48.2 cM 

(recombination fraction = .37, lods = 3.43), respectively, on the sex averaged map. IGF1 

has been assigned to Sscr5q23. Microsatellites SW1319 and SW1134 map in close 

proximity at 49.3 cM on the second release genome-wide linkage map developed by the 

USDA Meat Animal Research Centre. The results of RH and genetic mapping are in 

agreement and correspond with published genetic and physical maps. 

Mangin et al. (1988a) assigned the PTHLH gene to 12p12.1-p11.2 by a combination of 

Southern analysis of somatic cell hybrid DNA and in situ hybridization. Hendy et al. 

(1989, 1990) assigned the corresponding gene in the mouse to chromosome 6 by means 

of Southern blot analysis of DNAs isolated from a panel of mouse/Chinese hamster cell 

hybrids. This assignment is in agreement with syntenic localization of PTHLH to 

porcine chromosome 5, mouse chromosome 6 and human chromosome 12, and the 

physical assignment of PTHLH to porcine chromosome 5q23. The comparative 

mapping between human and pigs, it was consistent with RH mapping result 

(Figure19). 
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PTHLH 

Figure 19: A comparative map of PTHLH and the human genome 

     (http://www.toulouse.inra.fr/lgc/pig/compare/SSCHTML/SSC5S.HTM) 

 

5.7 Association and statistic analysis 

The combinations of population genetics and molecular genetics have brought the 

livestock genomic field to a revolutionary time. The association between genotype and 

phenotype can be more completely understood. Some studies of the monogenic traits 

were successful in associating genotype with phenotype such as the porcine ryanodine 

receptor gene with porcine malignant-hyperthermia-susceptible skeletal-muscle (Fujii et 

al. 1991), the protein kinase, AMP-activated, gamma (3)-subunit (PRKAG3) gene with 

muscle glycogen content in pig (Milan et al. 2000) and the myostatin gene with 

excessive muscling in double-muscled cattle (Grobet et al. 1997). By contrast, complex 

traits have proved to be more challenging, because it is impossible to follow all genomic 

regions that are responsible for the complex variation of the trait without some further 

idea of how these regions segregate. The use of association studies to detect QTLs is an 

important component of most strategies for finding the genes for complex traits. 

Complex traits are generally multifaceted and may, in some case, be best described by 

one or more quantitative traits. Although linkage mapping has a long history for 

quantitative traits, interesting association studies with quantitative traits, especially 
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those studies using family-based designs, is more recent. Family-based association tests 

(FBATs)-in particular, those based on the transmission/disequilibrium test (TDT), 

popularized by Spielman and other (1993) are attractive because of their simplicity and 

robustness to spurious association, which can arise with population heterogeneity 

(Lange et al. 2002).  

This study is the first to demonstrate the association of SNPs for TGFB1, RLN and 

PTHLH genes with inverted teat defect in pigs. Individual quantitative phenotypes were 

analysed with the Family-Based Association test (FBAT). In this setting, the phenotypes 

are regarded as fixed variables, and tested for excess transmission of a particular allele 

from parents and offspring. Under the null hypothesis, Mendelian laws are used to 

define the distribution of transmissions. Quantitative traits were analysed in groups 

relating number of teat and number of inverted teat in each side using the FBAT 

statistic. Pfeiffer and Gail (2003) have reported that additive scores applied to the 

marker data can actually be more efficient than dominant scores with dominant 

inheritance, or recessive scored with recessive inheritance. Thus the use of additive 

scores, which do not require knowing which marker allele is in positive linkage 

disequilibrium with the putative disease allele, can be advantageous in many settings. 

One advantage of testing these composite null hypotheses in a family – based test is that 

they protect against type I error arising from population stratification. Rejecting the 

composite null hypothesis of no linkage and no association requires that both condition 

be met, as the test has no power to detect the alternative hypothesis if either condition is 

not met (Laird et al. 2000). When the genetic effect and environmental effects are 

independent, a susceptibility residual method of adjustment for environmental 

covariates reduces the power of the association test (Poisson et al. 2003). 

Association between single SNPs and the inverted teat phenotypes were tested using the 

FBAT program (Horvath et al. 2001). FBAT was used to evaluate all of the markers on 

chromosome 1, 5 and 6 for each of the phenotypes. Multiple-allelic tests were 

performed using an additive genetic model to identify markers with evidence for both 

linkage and association with any of the phenotypes or for association in the presence of 

linkage. Markers significant at P < 0.05 in a multi-allelic test were then evaluated with a 

di-allelic test under an additive genetic model. The di-allelic test compares each allele 
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individually against all others collapsed into a single category to determine which 

specific allele(s) at the marker show association. This study found significantly 

evidence of family-based association in RLN (T9intG) loci (Z = 2.762, P = 0.0057) and 

inverted teat defect affection in the DUMI resource population. No significant 

differences were detected in the affection and TGFB1 (A797G) loci and RLN (A22C) 

loci. In addition parathyroid hormone like hormone gene (PTHLH) was also associated 

affection with PTHLH (C375T) loci (Z = 3.893, P = 0.000099). High significant 

association was also found between TGFB1, RLN and PTHLH loci and number of teat 

(P < 0.05) and number of inverted teat (P < 0.05). Thus far, no other investigations are 

present the candidate in gene association with the inverted teat defect in the pig.  

Although the TGFB1, RLN and PTHLH genes are candidates for the inverted teat on 

positional and physiological arguments, the confidence intervals for the QTL identified 

in the previously study were large, harbouring hundreds of genes. Also a DNA test 

based on the causal genetic variation provides the most powerful tool for marker-

assisted selection, the markers that define the litter-size and prenatal-survival QTL can 

be used for this purpose in the meantime. 

There is no good evidence that identified variants at TGFB1, RLN and PTHLH locus 

are actually the causative mutations. In fact, the location of the site makes it seem 

unlikely that it affects protein structure or expression. Furthermore, the large differences 

in the effect between populations also suggest that it is not the causative mutation. The 

prediction for amino acid changes of interest were analysed by website 

http://blocks.fhcrc.org/sift/SIFT.html. SIFT is based one the premise that important 

amino acids will be conserved among sequences in a protein family, so changes at 

amino acid conserved in the family should affect protein function. SIFT uses sequence 

homology to predict whether an amino acid substitution in a protein will affect protein 

function (Ng and Henikoff 2002). In this study, the substitution of RLN gene at position 

8 from L to I is predicted to affect protein function with a score of 0.00. There is low 

confidence in this prediction. In the same result of PTHLH prediction was analysed by 

SIFT. The substitution PTHLH at position 19 from S to L is not affecting protein 

function.  

http://blocks.fhcrc.org/sift/SIFT.html
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5.8 Future prospects for investigation of candidate genes for inverted teat defect in pigs 

The main goal of genome research in farm animals is to map and characterize trait loci 

that control various phenotypic characters. In addition to the candidate genes study for 

inverted teat defect, the genome wide scanning should be applied to indicate the other 

strongly QTL regions for inverted teat which could be used for selecting more candidate 

genes in this DUMI resource population. Further investigation could be aimed to 

address this inverted teat trait by a unique combination of features, including 

comprehensive SNP discovery in a large number of candidate genes, testing of a large 

number of SNPs, use of the independent or commercial populations, and analysis of 

haplotypes in addition to individual SNPs where possible. 

The present and future approaches to the identification of candidate and disease genes 

will be addressed. These include whole genome-based approaches such as integrative 

genomics as well as functional genomics-based approaches to analyze and model 

complex biological and medical processes (Hieter and Boguski 1997). The animal 

breeding genetics field has advanced considerably in recent years, with new information 

being generated that has led to improved understanding of the pathobiology underlying 

the complex trait defect. This has also generated interest in the study of gene-gene 

interaction and how linkage disequilibrium blocks and haplotypes can be used as 

functional units to pinpoint mutations and capture relative risk of mutated genes in 

complex disorders. 

The term of functional genomics broadly describes a set of technologies and strategies 

directed to determine the function of genes and understanding how the genome works 

together to generate whole patterns of biological function (Hieter and Boguski 1997). 

The most powerful of these functional genomics approaches - expression profiling or 

DNA microarrays - can be used to analyze the expression of thousands of genes 

simultaneously. The current appreciation of the degree of variability (including single-

nucleotide polymorphisms, SNPs) in the human genome is described (Taussig 2003) 

with emphasis on the need to prove that a particular genotype is indeed the cause of a 

specific phenotype; this topic has been termed 'functional genomics'. Future 

investigations will include functional and mutational studies of the novel transcripts 
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mapped or sublocalized within the critical region by this study as well as cloning efforts 

to isolate additional candidate genes. Such technology will be changing livestock 

genomics dramatically and these will be increase efficiency for animal breeding in the 

future. 
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6. Summary 

 

The candidate gene approach has emerged as a promising method of QTL analysis with 

the extension of data available on the cloning and characterization of genes. Here, genes 

potentially involved in the biochemical pathways leading to trait expression are 

employed as molecular markers for QTL. 

This investigation was carried out the candidate genes for inverted teat. Consequently, 

the transforming growth factor gene (TGFB1) and relaxin gene (RLN) were proposed to 

be tested for association in a positional candidate gene approach which combines 

linkage information for inverted teat defect and mapping information of a candidate 

gene. Both genes map in QTL regions for inverted teats discovered in the Bonn – Berlin 

DUMI resource family and are involved in proliferation and differentiation processes of 

the mammary gland. In addition, the parathyroid hormone like hormone gene (PTHLH) 

was proposed as a functional candidate gene that regulates epithelial mesenchymal 

interactions during the formation of mammary gland. The objective of this study are (1) 

to identify single nucleotide polymorphism (SNPs) in the positional candidate genes for 

the inverted teat defect in porcine, (2) to determine the linkage and physical location of 

TGFB1, RLN and PTHLH gene and (3) to evaluate the association of TGFB1, RLN and 

PTHLH gene on inverted teat trait. 

Comparative sequencing of TGFB1 cDNA fragments obtained from individuals of five 

pig breeds revealed A/G transition in exon 5 at position 797 of the coding sequence. 

The segregation of alleles was observed in 21 families of Bonn-Berlin DUMI resource 

population and Mendelian inheritance of the alleles could be demonstrated. 

The SNP was genotyped in 400 animals of the F2-DUMI resource population, 43.25% 

animals found to be homozygous (GG), 4% were homozygous (AA) and 52.75% were 

heterozygous (GA). Frequencies of the allele ‘g’ and ‘a’ were 0.7 and 0.3 respectively. 

No polymorphism was found among commercial breeds German Landrace (n=39) and 

Large White (n=44). Within the breed Pietrain segregation of the TGFB1 was found 

with allele ‘g’ being the prominent one. 
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TGFB1 linkage mapping, using CRI-MAP package version 2.4, revealed close linkages 

to loci S0300, SW193 and SW1067 (distances 7.3 cM, 13.8 cM, 24.5 cM; LOD scores 

44.8, 19.2 and 21.4) with the last being assigned to Sscr6q11-q22. Our results are in 

agreement with published genetic and physical map. 

The porcine relaxin gene, RLN, comprises two exons that are separated by a 5.5 kb 

intron. Primers were designed from the published RLN sequence and used to amplify 

overlapping fragments of about 300-500 bp in size covering part of 5´- untranslated 

region (UTR). Screening for polymorphism of amplicons derived from pigs of five 

breeds (Hampshire, Duroc, Pietrain, German Landrace, Berlin-Miniature pig) reveals 

two SNPs in exon1 and intron 1, respectively. 

A transversion (C > A) at positon 1 of codon 8 (nt22) in the first exon leading to an 

amino acid exchange (L8I) was detected and was used for ‘SSCP’ genotyping this SNP. 

Among the 384 F2 animals of the DUMI families that were genotyped frequencies of 

the ‘a’ and ‘c’ alleles were 0.29 and 0.71 respectively. The SNP was found to segregate 

among pigs of three commercial breeds with allele ‘c’ being the prominent one. 

Another transversion (T > G) was found at position 9 of the intron 1 altering the 

recognition site of CfoI. Frequencies of the ‘g’ and ‘t’ alleles were 0.48 and 0.52 

respectively, in the F2 generation of Bonn-Berlin-DUMI resource population. All 93 

animals of the commercial breeds were found to be homozygous for allele ‘t’. 

RLN gene linkage analysis was performed using CRI-MAP package (version 2.4) 

against four microsatellite markers of chromosome 1. The multipoint linkage map was 

established using the BUILD and FLIPS options (SW1515 – 33.0 cM – SW1851– 31.4 

cM – S0155 – 7.6 cM – RLN – 56.5 cM – SW1301). Two point linkage analysis 

revealed a recombination fraction of 0.08 between RLN and SO155 (LOD=18.3). The 

position of RLN gene is in good agreement with the published physical assignment to 

Sscr1q28-29. 

The complete mRNA sequence of the porcine PTHLH gene was obtained starting with 

heterologous primers designed from conserved regions from human PTHLH and 

porcine EST and subsequent 5’ and 3’ RACE using homologous primers. The cDNA 
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consisted of a 1,336 nucleotide coding region and 455 nt of 3’ UTR. In addition, 

5’untranslated region was sequenced in 319 bp length. The intron sequence was found 

between 5’ UTR with 175 bp in length. A comparison with PTHLH sequences from 

other species indicated a high level of sequence conservation. 

A C/T non-synonymous single nucleotide polymorphism (S19L) was detected at 

nucleotide position 375 of the porcine PTHLH cDNA. Mendelian inheritance of this 

polymorphic site was monitored in 395 F2 individuals of 21 families of the DUMI 

resource population. The SNP was found to segregate among pigs of three commercial 

breeds, German Landrace, Large White and Pietrain, with allele ‘c’ being the prominent 

one (allele frequency =.93, .95, .98, respectively). 

Radiation hybrid mapping was performed using the INRA-Minnesota 7000 rads 

radiation hybrid panel (IMpRH), consisting of 118 hamster-porcine hybrid cell lines. 

Amplification results were submitted to the IMpRH database. The most significantly 

linked marker (2pt analysis) is SW1319 on chromosome 5 (73 cR; LOD 4.85). For 

genetic mapping, twopoint and multipoint procedures of the CRI-MAP package version 

2.4 revealed linkage to loci SW1134 (proximal) and IGF1 (distal) with distances of 24.4 

cM (recombination fraction=.23, lods=17.41), and 48.2 cM (recombination 

fraction=.37, lods=3.43) respectively, on the sex averaged map. IGF1 has been assigned 

to Sscr5q23. Microsatellites SW1319 and SW1134 map in close proximity at 49.3 cM on 

the second release genome-wide linkage map developed by the USDA Meat Animal 

Research Center. The results of RH and genetic mapping are in agreement and 

correspond with the published genetic and physical maps. 

This study is the first to demonstrate the association of SNPs for TGFB1, RLN and 

PTHLH genes with inverted teat defect in pigs. Individual quantitative phenotypes were 

analysed with the Family-Based Association Test (FBAT). Highly significant evidence 

was found for association of RLN and PTHLH and the inverted teat defect affection 

status in the Bonn-Berlin DUMI resource population. No significant effects of TGFB1 

on affection status were detected. Highly significant association was also found between 

TGFB1, RLN and PTHLH loci and number of teats and number of inverted teats.  
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7. Zusammenfassung 

 

Der Kandidatengenansatz hat sich zu einer vielversprechenden Methode für die QTL 

Analyse entwickelt, die mit verfügbaren Daten der Klonierung und Charakterisierung 

von Genen ausgeweitet werden kann. In dieser Studie wurden Gene als molekulare 

Marker für die QTL Analyse verwendet, die in biochemische Abläufe eingebunden 

sind, welche zu der Merkmalsausprägung führen. 

Diese Arbeit untersucht Kandidatengene für den Erbfehler Stülpzitze. Aufgrund der 

Ergebnisse der QTL Analyse wurden das Transforming Growth Faktor Gen (TGFB1) 

und das Relaxin Gen im positionellen Kandidatengenansatz auf Assoziation getestet, 

welcher die Kopplungsinformation für den Stülpzitzendefekt und die 

Kartierungsinformation eines Kandidatengens kombiniert. Beide Gene liegen in den 

QTL Regionen für die Stülpzitze, welche in der Bonn- Berlin DUMI Ressourcen 

Population gefunden wurden und sind eingebunden in Proliferations- und 

Differenzierungsprozesse der Milchdrüse. Zusätzlich wurde das Parathyroid Hormon 

Like Hormon Gen (PTHLH) als funktionelles Kandidatengen untersucht, welches 

Epithel- Mesenchym Interaktionen während der Bildung der Milchdrüse reguliert. Die 

Ziele dieser Untersuchung sind (1) die Identifizierung von Single Nukleotid 

Polymorphism (SNPs) in den positionellen Kandidatengenen für den Stülpzitzendefekt 

im Schwein, (2) die Bestimmung der Kopplung und der physischen Lokalisation vom 

TGFB1, RLN und PTHLH Gen (3) und die Untersuchung der Assoziation der Gene von 

TGFB1, RLN und PTHLH auf das Merkmal Stülpzitze. 

Die vergleichende Sequenzierung der TGFB1 cDNA Fragmente, die aus Schweinen von 

fünf Rassen amplifiziert wurden, ergab eine A/G Transition in Exon 5 an der Position 

797 der kodierenden Sequenz. Die Segregation der Allele wurde in 21 Familien der 

Bonn-Berlin DUMI Ressource Population untersucht und die Vererbung der Allele nach 

Mendel konnte gezeigt werden. 

Bei der Genotypisierung des SNP in 400 Tieren der F2-DUMI Ressource Population 

waren 43,25% der Tiere homozygot (GG), 4% homozygot (AA) und 52,75% 

heterozygot (GA). Die Frequenzen der Allele ‛g’ und ‛a’ waren entsprechend 0,7 und 
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0,3. Es wurde kein Polymorphismus zwischen den kommerziellen Rassen Deutsche 

Landrasse (n=39) und Large White (n=44) gefunden. Innerhalb der Rasse Pietrain 

wurde eine Segregation von TGBF1 mit dem Allel ‛g’ als markantes Allel festgestellt. 

Die TGFB1 Kopplungskartierung mit dem CRI-MAP Paket Version 2.4 ergab eine enge 

Kopplung zu den Genorten S0300, SW193 und SW1067 (Distanzen 7,3 cM 13,8 cM 

24,5 cM LOD Scores 44,8; 19,2; 21,4) wobei letzterer Marker auf dem Genort 

Sscr6q11-q22 kartiert, Unsere Ergebnisse stehen in Übereinstimmung zu den 

veröffentlichten genetischen und physikalischen Genkarten. 

Das porcine Relaxin Gen, RLN, enthält zwei Exons welche durch ein 5,5 Kb Intron 

getrennt werden. Primer wurden mit Hilfe der publizierten RLN Sequenz abgeleitet und 

verwendet, um überlappende Fragmente der Größe 300-500 bp zu amplifizieren, welche 

den 5´- untranslatierten Bereich (UTR) abdecken. Die Amplikons, die man von 

Schweinen der fünf unterschiedlichen Rassen (Hampshire, Duroc, Pietrain, Deutsche 

Landrasse, Berliner Miniatur Schwein) erhielt, wurden auf Polymorphismen untersucht. 

Als Ergebnis konnten zwei SNPs in Exon 1 und Intron 1 gefunden werden. 

Ein Basenaustausch (C > A), der zu einem Aminosäureaustausch (L8I) führt, wurde an 

Position 1 des Codon 8 (nt22) im ersten Exon gefunden und die ‛SSCP’ Methode wurde 

zur Genotypisierung verwendet. Innerhalb der 384 genotypisierten Tieren der F2 DUMI 

Population waren die Frequenzen der ‛a’ und ‛c’ Allele 0,29 bzw. 0,71. Es wurde 

festgestellt, dass der SNP innerhalb der Schweine von drei kommerziellen Rassen 

segregiert, wobei das Allel ‛c’ das markante Allel war. 

Ein anderer Basenaustausch (T > G), welcher die Schnittstelle von CfoI ändert, wurde 

an Position 9 des Introns 1 gefunden. Die Frequenzen von ‛g’ und ‛t’ Allelen waren in 

der F2 Generation der Bonn-Berlin DUMI Ressource Population 0,48 und 0,52. Alle 93 

Tiere der kommerziellen Rassen, welche genotypisiert wurden, waren homozygot für 

das Allel ‛t’. 

Die Kopplungsanalyse des RLN Gens wurde mit dem CRI-MAP Paket (Version 2.4) in 

Abhängigkeit von vier Mikrosatellitenmarkern auf Chromosom 1 durchgeführt. Die 

Multipoint Kopplungskarte wurde mit den Optionen BUILD und FLIPS erstellt 
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(SW1515 – 33,0 cM – SW1851– 31,4 cM – S0155 – 7,6 cM – RLN – 56,5 cM – 

SW1301). Die Kopplungsanalyse zwischen RLN und S0155 ergab eine 

Rekombinationsrate von 0,08 (LOD = 18,3) zwischen den beiden Loci auf dem 

Chromosom. Die Position des RLN Gens stimmt ebenfalls mit der publizierten 

physischen Kartierung an Sscr1q28-29 gut überein. 

Die komplette mRNA Sequenz des porcinen PTHLH Gens wurde untersucht, wobei 

zunächst heterologe Primer, basierend auf die konservierten Regionen des menschlichen 

PTHLH und des EST vom Schwein, abgeleitet wurden und anschließend eine 5´ bzw. 3´ 

RACE-PCR mit homologen Primern durchgeführt wurde. Die cDNA besteht aus einer 

1,336 Nukleotide kodierenden Region und 455 nt der 3´ UTR. Die 5´ untranslatierte 

Region welche durch ein Intron abgetrennt ist, wurde mit einer Länge von 319 bp, 

sequenziert. Die Sequenz dieses Intron ist 175 bp lang. Der Vergleich mit den PTHLH 

Sequenzen anderer Spezies zeigt, dass die Sequenz stark konserviert ist. 

Ein C/T nicht-synonymer Single Nukleotid Polymorphism (S19L) wurde an der 

Nukleotid Position 375 der porcinen PTHLH cDNA gefunden. Die mendelsche 

Vererbung dieser polymorphen Stelle wurde in 395 F2 Individuen von 21 Familien der 

DUMI Ressource Population gezeigt. Dieser SNP segregiert zwischen den Schweinen 

der drei kommerziellen Rassen, Deutsche Landrasse, Large White und Pietrain mit dem 

Allel ‛c’ als das dominierende Allel (Allel Frequenz jeweils 0,93 0,95 0,98) 

Radiation Hybrid Kartierung wurde mit dem INRA-Minnesota 7000 rads Radiation 

Hybrid Panel (IMpRH) durchgeführt, welcher 118 Hamster-Schwein Hybrid Zell-

Linien beinhaltet. Die Ergebnisse der Amplifikation wurden der IMpRH Datenbank 

hinzugefügt. Der Marker SW1319 auf Chromosom 5 ist mit der höchsten Signifikanz 

gekoppelt (2pt Analyse; 73 cR; LOD 4,85). Für die genetische Kartierung  ergaben die 

Twopoint und Multipoint Verfahren des CRI-MAP Paketes (Version 2,4) eine 

Kopplung zu den Loci SW1134 (proximal) und IGF1 (distal) mit den Abständen 24,4 

cM (Rekombinationsrate = 0,23 Lods =17,41) und 48,2 cM (Rekombinationsrate = 0,37 

Lods =3,43) auf der geschlechtsneutralen Karte. IGF1 wurde an Sscr5q23 kartiert. Die 

Mikrosatelliten SW1319 und SW1134 Kartieren dazu in einer Entfernung von 49,3 cM 

auf der zweiten veröffentlichten Genom-weiten KopplungsKarte, welche vom USDA 
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Meat Animal Research Center entwickelt wurde. Die Ergebnisse von RH und 

genetischer Kartierung stehen in Übereinstimmung und korrespondierend mit den 

publizierten genetischen und physischen Karten. 

Diese Untersuchung ist die erste, die eine Assoziation von TGFB1, RLN und PTHLH 

Gen mit dem Stülpzitzendefekt beim Schwein zeigen soll. Individuelle quantitative 

Phänotypen wurden mit dem Familien-basierten Assoziationstest (FBAT) analysiert. 

Eine hoch signifikante Assoziation von RLN und PTHLH und dem Defektstatus der 

Zitze in der Bonn-Berlin Ressource Population konnte bewiesen werden. Es wurden 

keine signifikanten Effekte von TGFB1 auf den Erkrankungsstatus gefunden. Eine hoch 

signifikante Assoziation wurde ebenfalls zwischen den Genorten TGFB1, RLN und 

PTHLH und der Anzahl Zitzen und der Anzahl defekter Zitzen gefunden. 
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