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aus

Wissen

Bonn, 2005



Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn.
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss online elektronisch publiziert.

1. Referent: Univ.-Prof. Dr. Joachim M. Buhmann
2. Referent: Univ.-Prof. Dr. Armin B. Cremers

Tag der Promotion: 05. 01. 2005



I

Acknowledgements

This thesis draws upon the advice, constructive criticism and support by so many
people, that it would be impossible to mention everyone in this acknowledgment.
Nevertheless I would like to express my gratitude to all of them.

Very special thanks go to Prof. Joachim M. Buhmann. First of all, I am deeply
indebted to him for the thorough foundation in statistical pattern recognition and
image processing / computer vision that I received from his lectures. Moreover,
he created a unique research atmosphere in his very lively and active group. His
scientific advice and the engaged discussions helped immensely to shape the ideas
that finally led to this thesis. Additionally, he generously provided funding for
the participation in international conferences and workshops.

Furthermore, I would like to thank Prof. Armin B. Cremers for the evaluation
of this thesis. Apart from this, I greatly enjoyed the time at his well organized
department. The competent support team and secretarial staff contributed a lot
to this positive experience.

I really appreciated the lively discussions with Prof. Anil K. Jain during his
visit as a Humbold fellow at our research group, from which I immensely bene-
fitted. Thank you !

Over the years, my work has been funded by the DFG under grant # BU
914/3-1 (DFG-Schwerpunktprogramm Echtzeitoptimierung großer Systeme), by
Infineon Technologies and by Infoterra GmbH. I am very grateful for that.

The Computer Vision group at the University of Berkeley, California under
Prof. Jitendra Malik has put a considerable amount of time and effort in the
compilation an publication of a common standard test-set for edge-detection and
image segmentation algorithms. Without this test-bed, the quantitative per-
formance assessment of the PDC segmentation method would not have been
possible.

My fellow PhD students Bernd Fischer and Peter Orbanz took the burden of
proof-reading large parts of this thesis. I am deeply indebted to them. Also, many
thanks go to Dr. Lothar Hermes, with whom I closely collaborated especially
during the development of the basic PDC approach.

Last, but definitely not least, I would like to thank my wife Simone for her
patience, understanding and love. Without her support, this thesis would not
have been written.



II

to my parents



III

Contents

1 Introduction 1

2 The Parametric Distributional Clustering Model 5
2.1 The Data Acquisition Process . . . . . . . . . . . . . . . . . . . . 5
2.2 The Generative Model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 A different view on the PDC cost function . . . . . . . . . . . . . 12
2.5 Model Identification . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 E-Step–Equations . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 M-Step–Equations . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Multi-Scale Techniques . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 18
2.7.2 Test-Set and Evaluation Methodology . . . . . . . . . . . . 18
2.7.3 Color Segmentation . . . . . . . . . . . . . . . . . . . . . . 21
2.7.4 Combined Color and Texture Segmentation . . . . . . . . 25

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Incorporating Topological Constraints 33
3.1 Spatial Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 The Cost Function for Spatially Coupled PDC . . . . . . . 34
3.1.2 Model Identification for sPDC . . . . . . . . . . . . . . . . 35
3.1.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 36

3.2 Topology in Cluster-Space . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 The Segmentation Model . . . . . . . . . . . . . . . . . . . 43
3.2.2 TPDC Model Identification: . . . . . . . . . . . . . . . . . 45
3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 46

3.3 Combining Spatial and Group Topology . . . . . . . . . . . . . . 52
3.3.1 The sTPDC Model . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 sTPDC Model Identification . . . . . . . . . . . . . . . . . 53
3.3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 54

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 Bibliographic Remarks: . . . . . . . . . . . . . . . . . . . . . . . . 58



IV Contents

4 Robustness and Generalization 59
4.1 Bootstrap Resampling . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 The Resampling Strategy . . . . . . . . . . . . . . . . . . 59
4.1.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Generalizing Segmentation Solutions . . . . . . . . . . . . . . . . 76
4.2.1 The Generalization Problem . . . . . . . . . . . . . . . . . 76
4.2.2 Experimental Setup and Results . . . . . . . . . . . . . . . 76

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Shape Constrained Segmentation 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Representing Shape Knowledge . . . . . . . . . . . . . . . . . . . 90
5.3 Aspect Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4 Combining Shape and Segmentation . . . . . . . . . . . . . . . . 94
5.5 Implementation and Experimental Results . . . . . . . . . . . . . 96

5.5.1 Dataset and Features . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Shape Prior Construction . . . . . . . . . . . . . . . . . . 97
5.5.3 Aspect Model Generation . . . . . . . . . . . . . . . . . . 98
5.5.4 Prior Alignment . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.5 Shape Constrained Image Segmentation . . . . . . . . . . 102
5.5.6 Generalization To Other Semantic Categories . . . . . . . 107

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.7 Bibliographic Remarks . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion 113

A Box-Plots for recall, precision, and F-measure distributions 117



V

List of Figures

2.1 The real-part of an example Gabor-function. . . . . . . . . . . . . 6
2.2 Illustration of the data acquisition process. . . . . . . . . . . . . . 8
2.3 Graphical model of the image formation process. . . . . . . . . . . 10
2.4 Effects of the number of data groups on color-only PDC image

segmentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Comparison between segmentation results of the human subjects

and color-only PDC (first collection). . . . . . . . . . . . . . . . . 22
2.6 Comparison between segmentation results of the human subjects

and color-only PDC (second collection). . . . . . . . . . . . . . . . 23
2.7 Effects of the number of data groups on PDC image segmentations

according to color and texture cues. . . . . . . . . . . . . . . . . . 25
2.8 Comparison between human and PDC segmentations based on

color and texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Result comparison of color-only PDC and PDC using color and

texture features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Examples of sPDC vs. PDC image partitions. . . . . . . . . . . . 37
3.2 Comparison of sPDC segmentation results and human image par-

titions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Empirical CDFs of performance measure differences between sPDC

and PDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Topological coupling between neighboring clusters. . . . . . . . . . 43
3.5 TPDC segmentation result on artificial test-data. . . . . . . . . . 47
3.6 TPDC with chain topology applied to real-world data. . . . . . . 50
3.7 TPDC segmentation results with five clusters. . . . . . . . . . . . 51
3.8 sTPDC segmentations compared to human image partitions (result

collection 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.9 sTPDC segmentations compared to human image partitions (result

collection 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.10 Empirical CDFs of performance measure differences between sTPDC

and TPDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Visualization of the bootstrap sampling process. . . . . . . . . . . 60
4.2 Second stage of resampling process for image data. . . . . . . . . 61



VI List of Figures

4.3 Joint recall-precision-curve for the discussed resampling examples. 68

4.4 Human segmentation compared to aggregated bootstrap edges for
image 58060. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Human segmentation compared to aggregated bootstrap edges for
image 66053. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Human segmentation compared to aggregated bootstrap edges for
image 134035. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Human segmentation compared to aggregated bootstrap edges for
image 253027. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Human segmentation compared to aggregated bootstrap edges for
image 296059. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Human segmentation compared to aggregated bootstrap edges for
image 299086. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 Human segmentation compared to aggregated bootstrap edges for
image 361010. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Generalizing sPDC solutions, example image pair one. . . . . . . . 81

4.12 Generalizing sPDC solutions, example image pair two. . . . . . . 82

4.13 Generalizing sPDC solutions, example image pair three. . . . . . . 83

4.14 Generalizing sPDC solutions, example image pair four. . . . . . . 84

4.15 Generalizing sPDC solutions, example image pair five. . . . . . . . 85

4.16 Generalizing sPDC solutions, example image pair six. . . . . . . . 86

4.17 Generalizing sPDC solutions, example image pair seven. . . . . . 87

5.1 Prior shape model construction. . . . . . . . . . . . . . . . . . . . 91

5.2 Graphical model of the SCS approach. . . . . . . . . . . . . . . . 93

5.3 SCS processing pipeline. . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Sketchy hand-segmentations in shape prior construction. . . . . . 97

5.5 Symbolic depiction of the geometry in PDC cost-space. . . . . . . 99

5.6 Aspect likelihoods in comparison to PDC costs. . . . . . . . . . . 100

5.7 Results of the scaled prior alignment procedure. . . . . . . . . . . 102

5.8 Shape constrained segmentation results, (example set one). . . . . 103

5.9 Shape constrained segmentation results (example set two). . . . . 104

5.10 Comparison between segmentations with and without shape con-
straints (example set one). . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Shape constrained segmentation results (example set three) . . . . 108

5.12 Comparison between segmentations with and without shape con-
straints (example set two). . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Recall, precision and F-measure distributions for color-only PDC
with three clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2 Recall, precision and F-measure distributions for color-only PDC
with five clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures VII

A.3 Recall, precision and F-measure distributions for color-only PDC
with eight clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.4 Recall, precision and F-measure distributions for PDC with three
clusters using color and texture features. . . . . . . . . . . . . . . 119

A.5 Recall, precision and F-measure distributions for PDC with five
clusters using color and texture features. . . . . . . . . . . . . . . 120

A.6 Recall, precision and F-measure distributions for PDC with eight
clusters using color and texture features. . . . . . . . . . . . . . . 120

A.7 Recall, precision and F-measure distributions for sPDC with three
clusters using color and texture features. . . . . . . . . . . . . . . 121

A.8 Recall, precision and F-measure distributions for sPDC with five
clusters using color and texture features. . . . . . . . . . . . . . . 121

A.9 Recall, precision and F-measure distributions for sPDC with eight
clusters using color and texture features. . . . . . . . . . . . . . . 122

A.10 Recall, precision and F-measure distributions for TPDC with three
clusters using color and texture features. . . . . . . . . . . . . . . 122

A.11 Recall, precision and F-measure distributions for TPDC with five
clusters using color and texture features. . . . . . . . . . . . . . . 123

A.12 Recall, precision and F-measure distributions for TPDC with eight
clusters using color and texture features. . . . . . . . . . . . . . . 123

A.13 Recall, precision and F-measure distributions for sTPDC with
three clusters using color and texture features. . . . . . . . . . . . 124

A.14 Recall, precision and F-measure distributions for sTPDC with five
clusters using color and texture features. . . . . . . . . . . . . . . 124

A.15 Recall, precision and F-measure distributions for sTPDC with
eight clusters using color and texture features. . . . . . . . . . . . 125



VIII List of Figures



IX

List of Tables

2.1 Recall, Precision and F-value summary for color-only PDC. . . . . 24
2.2 Recall, Precision and F-value summary for combined color & tex-

ture PDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Recall, Precision and F-value summary for sPDC. . . . . . . . . . 41
3.2 Recall, Precision and F-value summary for TPDC. . . . . . . . . . 52
3.3 Recall, Precision and F-value summary for sTPDC. . . . . . . . . 56

4.1 Resampling evaluation summary for image 58060. . . . . . . . . . 63
4.2 Resampling evaluation summary for image 66053. . . . . . . . . . 63
4.3 Resampling evaluation summary for image 134035. . . . . . . . . 64
4.4 Resampling evaluation summary for image 253027. . . . . . . . . 65
4.5 Resampling evaluation summary for image 296059. . . . . . . . . 66
4.6 Resampling evaluation summary for image 299086. . . . . . . . . 66
4.7 Resampling evaluation summary for image 361010. . . . . . . . . 67



X List of Tables



XI

Symbols and Abbreviations

Abbreviations

fig. figure
eq. equation
tab. table
SA Simulated Annealing
DA Deterministic Annealing
MFA Mean Field Annealing
ICM Iterated Conditional Mode
RV random variable

General Symbols

N natural numbers
R real numbers
D data domain
‖ · ‖ L2–Norm of ·
| · | L1–Norm of · / set cardinality
[a, b] closed interval of real numbers between a and b
(a, b) open interval of real numbers between a and b
argmax f(·) argument maximizing f(·)
argmin f(·) argument minimizing f(·)
sgn sign function
DKL Kullback–Leibler divergence
δ(·, ·) Kronecker delta function⊗

Cartesian product



XII Symbols and Abbreviations

Probability Theory and Statistics

E expectation value
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Chapter 1

Introduction

Enabling the automated interpretation of visual scenes, which comprises the prob-
lem of machine vision, has been in the focus of artificial intelligence research for
a long time. In his influential book Vision[Mar82], Marr identified three main
stages in visual scene interpretation: 1) the primal sketch (edges, segments); 2)
the 21

2
d sketch (which makes explicit assumptions about surface orientations etc.);

and 3) the full 3d sketch, containing information about the full three-dimensional
structure of a scene. A human subject, as well as any higher animal, effortlessly
performs this processing chain in a fraction of a second. Even if one does not
subscribe to Marr’s paradigm, one has to concede, that the problem of reliable
interpretation of visual scenes is solved with remarkable performance by all higher
organisms. Otherwise, the mere struggle for existence, that Darwin proposed as
the driving force of biological evolution, would have eliminated those species, that
fail to extract the relevant information concerning their natural environment.

Taking the immense computational power of modern computers into account,
it seemed a trivial task to achieve and even to improve the performance of bi-
ological systems. This assumption led Minsky to frame the design of a general
purpose computer vision system as a summer-project for one of his students in
the late fifties of the previous century. Not only did Minsky’s student fail to
do his homework, the posed problem still remains largely unsolved even today
after several decades of research by a growing community of computer-scientists,
applied mathematicians, electrical engineers and researchers from related fields.

Clearly, substantial progress has been achieved, nevertheless, the majority of
approaches capitalize on some narrow sub-domain or specific instances of the gen-
eral computer vision problem. Even for arguably the most basic and fundamental
processing step of image segmentation, on which image understanding and object
recognition crucially rely upon for the provision of an intermediate representation
of image content, most of the suggested algorithms lack the potential to extend
them beyond a narrow scope of application. Examples of this phenomenon in-
clude thresholding techniques, which, despite having a long standing tradition in
color image segmentation [SSWC88], completely fail on textured images. More-
over, split-and-merge techniques [HS85], still being widely applied in standard
image segmentation algorithms, suffer from their inherent greedy strategy and
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are not able to support non-local a priori information.
Apart from a principled interest in the nature of the vision process, the growing

amount of pictorial material that we are faced with today demands for automated
processing techniques. For example, large images data-bases, available today,
together with the increasing ability to acquire images in digital form can only
be coped with, when reliable techniques for content-based retrieval exist. Image
processing techniques, in particular segmentation approaches, are needed in order
to arrive at intermediate representations of image content, on which a meaningful
retrieval strategy can operate.

Approaches to image segmentation which lack supervision information in the
form of ground-truth labels are often formulated as data clustering problems
[JD88]. Regardless of the particular nature of the image primitives in question,
these methods share as a common trait that they search for a partition of pixels or
pixel blocks with a high degree of homogeneity. The specific choice of a clustering
algorithm, however, depends on the nature of the given image primitives which
might be feature vectors, feature relations or feature histograms. In this thesis,
I advocate to characterize an image site by the empirical color distributions ex-
tracted from its neighborhood, which is regarded as a robust and statistically
reliable descriptor of local feature properties.

One way to design a clustering technique for this type of data is to apply a
statistical test to the measured histograms. This processing step yields pairwise
dissimilarity values, for which a multitude of grouping techniques can be found in
the literature (e.g.[JD88, PHB00, SM00]). Alternatively, feature histograms can
be grouped directly by histogram clustering [PTL93, PHB99]. This approach
characterizes each cluster by a prototypical feature histogram, and it assigns
local histograms measured at image sites to the nearest prototype. Closeness is
measured by the Kullback–Leibler–Divergence. As a consequence, this method
retains the efficiency of central clustering approaches like k-means clustering, but
it avoids the restrictive assumption that features are vectors in a Euclidean space.

Discrete representations of feature distributions are often inadequate for the
underlying type of measured data. Color, although discretized in standard image
file formats is a continuous phenomenon. Also, the filter responses proposed in
this contribution for the measurement of texture characteristics are real-valued
entities. Moreover, histogram clustering in its original form is invariant to permu-
tations of histogram bins. In computer vision where the histogramming process
is prone to noise induced errors, this invariance neglects information about the
order of bins and the distance of bin centers in feature space. As an example, con-
sider two image sites, which differ only in one particular feature, in the sense that
the corresponding values are assorted in neighboring, albeit different, bins by the
histogramming process. For the associated cost function, the entries for the af-
fected bins are maximally dissimilar. Consequently, the clustering approach does
not have an incentive to attribute the corresponding sites to the same cluster. It
could equally well merge two sites having a comparable difference of counts in
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completely unrelated bins of the pertaining histograms, without incurring higher
cost.

It is, therefore, suggested to replace the non-parametric density estimation
via histograms by a continuous mixture model, which no longer suffers from the
shortcomings. This constitutes the key modeling idea behind the Parametric
Distributional Clustering (PDC) model, which is discussed in chapter 2. Despite
being a well founded clustering technique, PDC also defines a generative model
of image features. Moreover, the clustering cost function, which is derived in a
strict maximum likelihood framework, can also be shown to achieve the minimum
KL-divergence between the site-specific histograms and the associated continuous
model distributions of the inferred clusters.

In this setting, the search for a good grouping solution is posed as a mixed
combinatorial optimization problem. Due to the fact that the cost landscape
may have a very jagged structure, powerful optimization techniques with regu-
larization or smoothing behavior should be applied to avoid poor local minima.
Consequently, deterministic annealing (DA) techniques are utilized, which have
been shown to achieve superior solution quality [Hof97] compared to other op-
timization techniques. In order to further increase the computational efficiency,
multi-scale techniques [Puz99] are brought to bear in order to speed up the cor-
responding computations. The validity of the achieved segmentation results is
exemplified in a qualitative fashion by the provision of representative image par-
titions. Moreover, a thorough quantitative performance evaluation in terms of
the quality measures precision, recall and F-value, well-known from the field of
information retrieval, has been conducted.

In chapter 3, the basic PDC approach is augmented by topological constraints.
PDC itself is a generic clustering procedure for histogram data. As such, it does
not make any assumptions about the structure of the space, from which the
grouped entities emerge. In image segmentation, however, one deals with image
sites. In this domain, there clearly exists a topological structure in the sense
that neighboring sites have a high probability of belonging to the same segment,
unless artificially created images are considered, which are specifically designed
to violate that property. Consequently the introduction of spatial topological
constraints in the cost-function is a viable means of improving the quality of
image partitions. This extension is the subject of section 3.1. As has already
been stated, one of the main goals in the design of the PDC cost function was to
overcome the permutation invariance of histogram bins. Apart from this, another
invariance still persists, which affects the cluster labels. Exchanging the labeling
of data-groups in the PDC approach does not affect the clustering solution. In
order to address this second permutation invariance, topological constraints in
the cluster-domain are introduced in section 3.2. This approach is inspired by
Kohonen’s self-organizing maps [Koh95], which have received considerable inter-
est in the neural-computation community. Finally, section 3.3 takes the next
logical step by demonstrating the joint application of both kinds of topological
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constraints in the PDC framework.
All proposed PDC variants share as a common trait, that they are clustering

procedures, and as such unsupervised learning approaches. For any learning
algorithm, the problems of robustness towards small fluctuations in the data as
well as the generalizability of inferred solutions to previously unseen instances
of data-sets from the covered domain are highly relevant [Vap98]. For PDC,
these issues are addressed in an empirical manner. Section 4.1 puts a focus
on robustness. To this end, a variant of bootstrap sampling for image data
is introduced. Apart from demonstrating the robustness of PDC-based image
partitions, the bootstrap approach provides for a viable means of finding the
most pronounced, and thus most important, boundaries between image regions.
Section 4.2 examines the transferability of segmentation solutions between images
of similar content. Here, a PDC model is inferred on the basis of a single image.
Then, this model is applied without modification to another picture of comparable
content, producing a segmentation of this second image.

Image segmentation solely based on low-level features clearly has its limitations.
There is strong evidence, that a substantial performance increase can only be
achieved by incorporating higher-level knowledge. For example, it is a well-known
finding from the field of neuro-anatomy, that there is a considerable amount of
neurons projecting from higher-level brain regions back to the visual cortex V1.
In order to make a first step to bridge this apparent gap between low-level bottom-
up approaches and higher-level knowledge about probable image configurations,
the incorporation of shape knowledge in the segmentation process is addressed
in chapter 5. Here, a probabilistic representation of the shape of objects from a
certain semantic category is derived as a first step. Then, corresponding likelihood
maps for the low-level features are established by developing the notion of aspect-
sets. These two sources of information about the presence of objects from a given
category of interest are fused in a Bayesian setting in order to arrive at image
segmentations that faithfully capture the semantic content of the depicted scene.
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Chapter 2

The Parametric Distributional
Clustering Model

The objective of this chapter is to introduce the basic Parametric Distributional
Clustering (PDC) model. The exposition is structured as follows: At first, the
data acquisition process is examined in section 2.1. Then, the generative model
for the observed feature values is introduced in section 2.2. With these prere-
quisites at hand, one can derive the complete data log-likelihood in section 2.3,
which serves as the cost function for our clustering model. An interesting al-
ternative interpretation of the PDC cost function is then introduced in section
2.4. The optimization of this objective function including the derivation of the
E- and M-step equations is the subject of section 2.5. Moreover, closedness of
the cost function under the operation of multi-scale operators is demonstrated in
section 2.6, which is a mandatory pre-condition for the application of multi-scale
optimization schemes. Finally, section 2.7 contains a discussion on implementa-
tion questions together with a comprehensive overview on segmentation results
including a quantitative performance evaluation.

2.1 The Data Acquisition Process

Despite the fact that the PDC clustering model can be applied to any kind
of histogram data, the focus will be put on the application domain of image
processing.

While color features for all pixels are available in any standard image format
in the form of RGB triplets, the situation concerning texture cues is not so sim-
ple. Despite the intuitive clarity of the notion of texture, no precise definition
is universally agreed upon to date. Clearly, texture is not a phenomenon that
is localized point-wise, as is the case with color measurements. It is inherently
spatial in nature. Texture can be described as any form of regular or irregular
pattern. Thus, the notion of texture includes all kinds of relatively small-scale
non-uniformity present in images. For the experiments concerning segmentation
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based on texture features, it is proposed to employ Gabor filters as derived in
[MM96]. This family of filters consists in principle of complex sinusoids modu-
lated by Gaussian functions. The real-part of a Gabor function can be found as
an example in figure 2.1. Due to the construction of the filter function, Gabor

Figure 2.1: The real-part of an example Gabor-function.

filters provide responses that are spatially localized by virtue of the Gaussian
modulation, while being tuned to a particular spatial frequency f . The frequency
tuning operation [tHR94] can be formalized in the context of scale-space theory
[FtHRKV92], leading to the following functional form of the Gabor-filters at a
particular location x in the image plane:

Gσ,f (x) =
1

2πσ2
exp(−xtx/2σ2) exp(2πif tx), x ∈ R2. (2.1)

In the equation above, σ denotes the localization parameter, which is typically
chosen proportional to the wavelength 1

||f || . It is impossible, to simultaneously
localize a signal in the spatial and the frequency domain due to the fundamental
uncertainty relation. It can, however, be shown, that Gabor filters are optimal in
the sense that they achieve the lower bound for simultaneous localization [Dau85].
Moreover, they exhibit very good discrimination properties for a broad variety of
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textures [BCG90, FS89, HPB98, JF91, MM96]. Psycho-physical and electrophys-
iological experiments suggest, that the human visual system also employs such a
filtering method [FS89]. In accord with the majority of the pertaining literature,
which puts a strong emphasis on response strengths, the phase information is dis-
carded, retaining only the magnitudes of the filter-responses at any given image
pixel as our texture features. Due to the scale and orientation selectivity of the
Gabor functions, a bank of filters spanning two octaves in scale while using four
orientations at each scale is employed. Thus, one arrives at an eight-dimensional
texture feature vector for each image pixel.

The next question which now has to be answered is how to reliably represent
local image content. Point measurements at the various pixel locations in the
image suffer from noise, which is invariably present in all image data. In order to
counter this problem, it is proposed to use histograms of feature measurements,
which provide a more robust description of the prevailing local feature charac-
teristics. These histograms are gathered at image locations, so-called sites s.,
which are arranged on a regular grid superimposed on the image. The set of all
sites is denoted by S = {si : i = 1, . . . , n}. Each site has a local neighborhood
of pixels which are taken into account when computing the histogram for that
particular site. The feature values at each pixel could in principle be arbitrary
elements of the data domain D ⊂ Rd, where d denotes the dimensionality of the
underlying feature-space. However all current image formats are based on some
kind of quantization of this continuous domain in order to arrive at a discrete
representation for the given image at hand. This corresponds to the introduction
of coherent intervals of feature values I ⊂ D, the so-called bins. When this quan-
tization is done uniformly, the resolution solely depends on the number of bins m.
An elementary observation x is then given by the measurement of a feature value
inside the corresponding bin for the current image site. The set of all observations
belonging to site s is denoted by Xs = {xs1, . . . , xsr}, where observation sets from
different sites are considered to be statistically independent. The limiting case of
bin-size converging to zero is treated in [Her03].

Consequently, the parameters governing the data acquisition process are the
number of sites on the grid, the size of the local neighborhood for each site and
the number of bins covering the data domain. When these values are fixed, the
histogram at site s is given by the number of occurrences for each elementary
observation in the neighborhood of that site, denoted by ns. The counts for bin
j are then referenced as nsj.

This process is visualized in fig. 2.2. Here, an example grey-level image is
visualized together with a very coarse grid of sites, which are depicted as dots on
the cross-points of the grid. For one particular site in the lower part of the image,
the local neighborhood is shown in magnification in the lower left of the figure.
The corresponding grey-level histogram for that image region is depicted on the
lower right. These histograms form the input to the PDC clustering model, which
is described in the following sections.
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Figure 2.2: Illustration of the data acquisition process: a) image with overlaid
grid, b) close-up of image data in the vicinity of a site, c) corresponding local
histogram.

2.2 The Generative Model

One of the main advantages of generative models is given by the fact that they
treat data-sets as the result of a stochastic sampling process. Therefore, such a
model exhibits a high degree of descriptive power. Unlike many other approaches
for image segmentation or clustering, the PDC model is based on a generative
model for the observed data.

The basic assumption is that the given image, or more generally speaking, the
dataset at hand, can be described by a fixed number of k different data sources,
the so-called clusters, which in turn are characterized by Gaussian mixture dis-
tributions. Each of the n image sites is associated with one of these clusters by
means of a mapping function m : S → {1, . . . , k}, which can also be regarded as
an element in the combinatorial optimization space Mn,k, where

Mn,k =
⊗
s∈S

{1, . . . , k} = {1, . . . , k}n ⊂ Nn. (2.2)
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The explicit dependency on the indices n and k is dropped due to reasons of
notational convenience, whenever it is clear from the context. The term m(s) = c
denotes that site s is mapped to cluster c.

Each site is equipped with a set of observations. The distribution of these
feature values is considered to be independent from the site given its group mem-
bership assignment, i.e. the local feature measurements solely depend on the
characteristics of the associated data-group in the clustering model and not on
other properties of the site, e.g. its spatial position. Therefore, the measured ob-
servation histogram at a given grid position depends only on the cluster-specific
distribution of features, which is assumed to be a Gaussian mixture model. Thus,
the generative model for an individual observation xs ∈ Xs given the group mem-
bership m(s) of its associated site s is defined as

p(xs|m(s)) =
l∑

α=1

pα|m(s)gα(x). (2.3)

Here, gα(x) = g(x|µα,Σα) denotes a multivariate Gaussian distribution with
mean µα and covariance matrix Σα. Although each of the cluster could in prin-
cipal be equipped with its unique set of Gaussians, the Gaussians are restricted
to form one common alphabet {gα : α = 1, . . . , l} for all data groups in order to
infer parsimonious models. The cluster specific distributions are then synthesized
by a particular choice of mixture coefficients pα| c. As has already been stated
in section 2.1, the observations are assumed to be discretized, which discards
differences between observations falling into the same bin. Consequently, the
probability of observing a feature value inside bin Ij is given by

p(j|m(s)) =
l∑

α=1

pα|m(s)Gα(j), where

Gα(j) =

∫
Ij

g(x|µα,Σα)dx. (2.4)

In terms of the PDC model, image formation can be regarded as a two stage
process: In the first stage, the various sites, which in total comprise the image,
are assigned to clusters according to a probability distribution p(c). Once this
assignment is completed, the mapping function m(·) is fixed. The second stage
consists of the sampling of feature values for the mapped sites according to the
characteristic distributions of the clusters. Due to the fact that the feature dis-
tributions are statistically independent of the sites given their group assignment,
this image formation process is Markovian. The corresponding graphical model
is visualized in fig. 2.3.
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Figure 2.3: The image formation process as a graphical model. Random vari-
ables are denoted by circles, observed quantities are depicted bold. Statistical
dependencies are expressed in the usual way via solid arrows, while frames in-
dicate multiple instances. The probabilities governing the process are shown as
ellipses.

2.3 The Likelihood Function

Having specified the generative model for the data acquisition process in the
previous section, the complete data likelihood function is now being derived, i.e.
the likelihood of the joint occurrence of all observed and unobserved variables
given the parameters of the data generation process. As figure 2.3 indicates, the
first step in the generative model is given by the assignment of image sites to
cluster labels. This process is governed by the probabilities p(c). Consequently,
the probability of observing a certain group assignment at site s can be expressed
as

p(m(s)) =
k∑

c=1

δ(c,m(s))p(c) =
k∏

c=1

p(c)δ(c,m(s)). (2.5)

Here, the well-known Kronecker delta function of two variables is denoted by
δ(·, ·). The identity of the sum and the product in eq.(2.5) is valid due to the
Boolean nature of the delta function which selects one out of k terms. As a
consequence of the assumed conditional independence of sites given their group
assignments, the probability of the complete configuration of site assignments m



2.3 The Likelihood Function 11

for a given image is given by

p(m) =
n∏

s=1

k∏
c=1

p(c)δ(c,m(s)). (2.6)

Having determined the association of sites to clusters, the second step of the gen-
erative model consists of the sampling of feature values according to the cluster-
specific Gaussian mixture models. In the quantized representation, the set of
observations at a given site s is summarized in the histogram ns. Therefore, the
probability of the observation set at the given site can be expressed as

p(Xs|m(s)) =
m∏

j=1

(
l∑

α=1

pα|m(s)Gα(j)

)nsj

. (2.7)

Consequently, the probability of the complete set of observations at all sites given
the cluster assignments is

p(X|m) =
n∏

s=1

k∏
c=1

[
m∏

j=1

(
l∑

α=1

pα|m(s)Gα(j)

)nsj
]δ(c,m(s))

. (2.8)

Combining eq.(2.6) and eq.(2.8) one arrives at the complete data likelihood:

p(X ,m) = p(m)p(X|m)

=
n∏

s=1

k∏
c=1

[
p(c)

m∏
j=1

(
l∑

α=1

pα|m(s)Gα(j)

)nsj
]δ(c,m(s))

. (2.9)

In order to simplify subsequent computations, the corresponding log-likelihood
L(X ,m) will be considered, where the unwieldy products change into sums due
the application of the logarithm. Apart from this, results from large deviation
theory also suggest that the transformation of sums into products is beneficial.
Large sums behave as Gaussian random variables with small variance whereas
large products can have strange distributions, e.g. the most likely value is not
equal to the average value. Please note that the use of the logarithm does not
affect the location of the optima because it is a monotone transformation. As the
goal is to pose the search for optimal parameter values as a minimization problem,
the negative log-likelihood is regarded as the natural cost function HPDC of the
PDC approach:

HPDC = −L(X ,m), where

−L(X ,m) = −
n∑

s=1

k∑
c=1

δ(c,m(s))

[
log p(c) +

m∑
j=1

nsj log

(
l∑

α=1

pα| cGα(j)

)]

= −
n∑

s=1

log p(m(s))−
n∑

s=1

m∑
j=1

nsj log

(
l∑

α=1

pα|m(s)Gα(j)

)
. (2.10)



12 The Parametric Distributional Clustering Model

2.4 A different view on the PDC cost function

In the previous section, the cost function of the PDC approach has been derived
from a maximum likelihood perspective on the image formation model. There
exists, however, another interpretation of the cost function that provides inter-
esting insights in the nature of the PDC image segmentation model. Please note,
that the histogram of observations ns at a given site s, which has been used in
the previous derivation of the cost function, can be turned into the empirical
distribution p̂s of observations by mere re-normalization: p̂s = 1

r
ns. Therefore,

denoting the empirical distribution over bin j at site s by p̂s(j), the PDC cost
function can be re-written as

HPDC = −
n∑

s=1

log p(m(s))− r
n∑

s=1

m∑
j=1

p̂s(j) log

(
l∑

α=1

pα|m(s)Gα(j)

)
. (2.11)

In the next step, a constant (i.e. 0) is added to the cost function, arriving at

HPDC =
n∑

s=1

log p(m(s))

− r
n∑

s=1

m∑
j=1

p̂s(j) log

(
l∑

α=1

pα|m(s)Gα(j)

)

+ r
n∑

s=1

m∑
j=1

p̂s(j) log(p̂s(j))

− r
n∑

s=1

m∑
j=1

p̂s(j) log(p̂s(j)). (2.12)

With a little algebra, eq.(2.12) can be transformed into

HPDC =
n∑

s=1

log p(m(s))

+ r
n∑

s=1

m∑
j=1

p̂s(j)

[
log(p̂s(j))− log

(
l∑

α=1

pα|m(s)Gα(j)

)]
︸ ︷︷ ︸

(∗)

− r
n∑

s=1

m∑
j=1

p̂s(j) log(p̂s(j))︸ ︷︷ ︸
(∗∗)

. (2.13)

Clearly, the term (∗∗) does not depend on the parameters of the cost function,
but solely on the input data. Therefore, it can be safely dropped in the optimiza-
tion process. Moreover, using the short-hand p̃s(j) =

∑l
α=1 pα|m(s)Gα(j) while
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denoting the Kullback-Leibler divergence between two distribution by DKL(·||·),
one arrives at

(∗) = r

n∑
s=1

m∑
j=1

p̂s(j) log

(
p̂s(j)∑l

α=1 pα|m(s)Gα(j)

)

= r
n∑

s=1

DKL(p̂s(·)||p̃s(·)). (2.14)

Summing up the derivations given above, the PDC cost function can be expressed
as the sum of Kullback-Leibler divergences between the empirical distributions
of features in the local neighborhood of the sites and the prototypical Gaussian
mixture distributions of the clusters, which are associated with the sites, and
additive contributions from the negative logarithm of the cluster probabilities :

HPDC = r
n∑

s=1

DKL(p̂s(·)||p̃s(·))−
n∑

s=1

log pm(s). (2.15)

2.5 Model Identification

After having specified the cost function for the standard PDC approach in eq.
(2.10), it remains to be shown, how its free parameters are adapted to the ob-
served image data in order to arrive at the cluster-model and thus at the sought
segmentation of the input image at hand. Determining the values of the free
parameters is the key problem in model identification for a given data set, which
is accomplished by maximum likelihood estimation. For the PDC approach, the
set of free parameters is given by

1. the cluster mapping function m,

2. the second order mixture coefficients (i.e. the cluster probabilities)
{pc : c = 1, . . . , k},

3. the mixture coefficients for the cluster-specific models
{pα| c : c = 1, . . . , k, α = 1, . . . , l},

4. the means of the Gaussian alphabet {µα : α = 1, . . . , l} and

5. the corresponding variances {Σα : α = 1, . . . , l}.

The means and variances of the Gaussian alphabet are initialized by a con-
ventional mixture model estimation step which is performed prior to the PDC
inference. Despite the fact that in principle all the parameters listed above
could be re-estimated during the optimization of the PDC model, the variances
{Σα : α = 1, . . . , l} are excluded in order to alleviate the computational burden.
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The remaining parameters fall into two distinct categories. On the one hand,
one has the cluster assignment mapping, which is of a binary nature. Opposed
to this, items 2 to 4 comprise the set of continuous model parameters which are
summarized in the set Θ, i.e. Θ = {pc, pα| c, µα : 1 ≤ c ≤ k, 1 ≤ α ≤ l}.

Due to the fact that one has to solve a statistical inference problem with hidden
variables (i.e. the cluster assignments), the method of choice is the well known
Expectation–Maximization–Algorithm (EM) [DLR77]. EM proceeds iteratively
by computing posterior probabilities P (m|Θold) in the E-step and maximizing
the averaged complete data log–likelihood E[L(Θ|m)] with respect to Θ in the
M-step. Extending this interpretation, EM can be viewed as maximizing the
following joint function of the parameters Θ and the hidden states m (see [CT84,
Hat86, NH99]):

F ′ = E [log p(X ,m|Θ)− log p(m)] . (2.16)

Apart from a difference in the sign, this equation is identical to the generalized
free energy F at temperature T = 1 known from statistical physics. Insert-
ing the corresponding cost function HPDC = −L, the free energy for arbitrary
temperatures T is given by the following expression:

F = E[HPDC]− T ·H. (2.17)

Here, H denotes the entropy of the distribution over the states m. This for-
mal equivalence provides an interesting link to another well known optimization
paradigm called Deterministic Annealing (DA) [RGF90]. The key idea of this
approach is to combine the advantages of a temperature controlled stochastic
optimization method with the efficiency of a purely deterministic computational
scheme. A given combinatorial optimization problem over a discrete state space
M is relaxed into a family of search problems in the space P(M) of probability
distributions over that space. In this setting, the generalized free energy takes
the role of the objective function. The temperature parameter T controls the in-
fluence of the entropic term, leading to a convex function in the limit of T →∞.
At T = 0 the original problem is recovered. The optimization strategy starts
at high temperature and it tracks local minima of the objective function while
gradually lowering the computational temperature. An in-depth description of
DA as well as its relation to Simulated Annealing (SA) techniques and Maximum
Entropy (MA) methods can be found in [Hof97] and [Puz99].

Setting qsc = E[δ(c,m(s))] = p(δ(c,m(s)) = 1), the expected costs of a given
configuration is given by:

E[HPDC] = −
∑

s

∑
c

qsc

[
log pc +

∑
j

nsj log

(∑
α

pα| cGα(j)

)]
. (2.18)
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2.5.1 E-Step–Equations

Maximizing eq. (2.18) with respect to P (M), which basically recovers the E-Step
of the EM–scheme, requires to evaluate the partial costs of assigning a site s to
cluster c. The additive structure of the objective function allows us to determine
these partial costs h as

hsc = − log pc −
∑

j

nsj log

(∑
α

pα| cGα(j)

)
. (2.19)

Utilizing the well known fact from statistical physics that the generalized free
energy at a certain temperature is minimized by the corresponding Gibbs distri-
bution, one arrives at the update equations for the various qsc:

qsc ∝ exp(− 1

T
hsc) = exp

(
1

T

(
log pc +

∑
j

nsj log

(∑
α

pα| cGα(j)

)))
. (2.20)

2.5.2 M-Step–Equations

In accordance with [NH99], the estimates for the class probabilities pc must satisfy

∂

∂pc

F − λ ·

(
k∑

c̃=1

pc̃ − 1

)
= 0 , (2.21)

where λ is a Lagrange parameter enforcing a proper normalization of pc. Ex-
panding F and solving for pc leads to the M-step formulae

pc =
1

n

n∑
s=1

qsc , c = 1, . . . , k. (2.22)

While lacking a closed-form solution for the second set of parameters pα| c, their
optimal values can be found by an iterated numerical optimization. Instead of
directly solving

∂

∂pα| c
F − λ ·

(
l∑

γ=1

pγ| c − 1

)
= 0 , (2.23)

which would be the analog to eq. (2.21), we repeatedly select two Gaussian
components α1 and α2. Keeping pγ| c fixed for γ /∈ {α1, α2}, pα2| c is directly
coupled to pα1| c via

pα2| c = 1−
∑

γ /∈{α1,α2}

pγ| c − pα1| c , (2.24)
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so that only one free parameter remains. Inserting (2.24) into (2.23), one obtains

∂

∂pα1| c
F (α1, α2) = −

m∑
j=1

(
n∑

s=1

qscnsj

)
Gα1 (j)−Gα2 (j)∑l

γ=1 pγ| cGγ (j)
, (2.25)

and

∂2

∂p2
α1| c

F (α1, α2) =
m∑

j=1

(
n∑

s=1

qscnsj

)
(Gα1 (j)−Gα2 (j))2(∑l

γ=1 pγ| cGγ (j)
)2 ≥ 0 . (2.26)

The joint optimization of α1 and α2, therefore, amounts to solving a one-dimensional
convex optimization problem. The optimal value of α1 is either located on the

boundary of the interval
[
0; 1−

∑
γ /∈{α1,α2} pγ| c

]
, or is equal to the zero-crossing

of (2.25). In the latter case, it can be determined by the Newton method or by an
interval bisection algorithm, which were both found to achieve sufficient precision
after few optimization steps. The computational demands of this algorithm are
dominated by the evaluation of

∑n
s=1 qscnsj, which is linear in the number of sites,

n. The computation of the remaining parts of (2.25) scales with the number of
clusters, k, and the number of bins, m, and can thus be done efficiently.

Some care should also be spent on the selection of α1 and α2. Although the
free energy will monotonously decrease even if α1 and α2 are randomly drawn,
the convergence can be enhanced by choosing, in each iteration, α1 and α2 such

that
∥∥∥ ∂

∂pα1| c
F (α1, α2)

∥∥∥ is maximum. To adjust the mixture distribution pα| c for

a fixed cluster c, it is usually sufficient to repeat the selection and subsequent
optimization of pairs (α1, α2) for const. · l times, where const. is a small constant
(e.g. const. = 3). Although the optimization process might not have found the
exact position of the global cost minimum at this time (incomplete M-step), any
further optimization is unlikely to substantially influence the M-step result, and
can thus be skipped.

Finally it is possible to adapt the means µα. To improve the readability, the
calculations are restricted to one-dimensional data (when operating in d dimen-
sions, diagonal covariance matrices are assumed, so that the estimation of the
d-dimensional vector µα reduces to d one-dimensional optimization problems).
Denote by x	j and x⊕j the boundaries of the interval Ij =

[
x	j ; x⊕j

]
, so that

Gα(j) =
∫ x⊕j

x	j
gα(x)dx. µα can then be determined by gradient or Newton de-

scent, the first derivative of F being given by

∂

∂µα

F = −
k∑

c=1

m∑
j=1

(
n∑

s=1

qscnsj

)
pα| c

gα

(
x	j
)
− gα

(
x⊕j
)∑l

γ=1 pγ| cGγ (j)
. (2.27)

It has been observed in the segmentation experiments, that fixed means µα, ini-
tialized by a conventional mixture model procedure, produced satisfactory seg-
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mentation results. Adapting the means, however, can improve the performance
of PDC when used as a generative model.

2.6 Multi-Scale Techniques

As has been demonstrated in [Puz99], the performance of Deterministic Anneal-
ing, which is already good in comparison to stochastic search algorithms like
Simulated Annealing, can be significantly improved by multi-scale techniques.
The idea of multi-scale optimization is to lower the computational complexity by
decreasing the number of considered entities in the object space. In most appli-
cation domains for image segmentation it is a natural assumption, that neigh-
boring image sites contain identical, or at least similar, feature histograms. This
domain–inherent structure is exploited to create a pyramid of coarsened data
and configuration spaces by tying neighboring assignment variables. However,
this approach can only be brought to bear, if the relevant cost function is closed
under the pertaining coarsening operations, which means that the cost functions
for all coarsened levels in the hierarchy are of the same algebraic type as the
original.

In keeping with the notations introduced in [Puz99], it is now shown, that
the PDC cost function as given in eq.(2.10) is indeed closed under multi-scale
coarsening for arbitrary coarsening structures. This amounts to prove, that the
PDC cost functions for all layers of the coarsened assignment variables remain
of the same algebraic type. To this end, the definition of the PDC cost function
from eq.(2.10) is repeated first:

HPDC = −
n∑

s=1

m∑
j=1

nsj log

(
l∑

α=1

pα|m(s)Gα(j)

)
−

n∑
s=1

log p(m(s)). (2.28)

Next, one has to define how the data belonging to sites on layer ` of the multi-
scale hierarchy is transferred to the next coarser layer ` + 1. As one is concerned
with non-normalized histograms, it is only natural to set the data on the coarser
level as the sum of the observational data for all pertaining sites on the finer
layer. Thus one arrives at the following recursive definition:

n`+1
sj =

∑
s′∈I−1

` (s)

n`
s′j. (2.29)

Having specified the way the feature information at finer layers in the multi-
scale coarsening hierarchy is collected, one can now enter the recursive definition
from eq.(2.29) in the equation describing the generation of coarse-grained cost
functions for PDC clustering. Here, the set of sites at a given layer of the multi-
scale structure is denoted by S(·), whereas the inverse coarsening map is denoted



18 The Parametric Distributional Clustering Model

by I−1
(·) :

HPDC
`+1 = −

∑
s∈S`+1

∑
s′∈I−1

` (s)

m∑
j=1

n`
s′j log

(
l∑

α=1

pα|m(s)Gα(j)

)
−
∑

s∈S`+1

log p(m(s))

= −
∑

s∈S`+1

m∑
j=1

n`+1
sj log

(
l∑

α=1

pα|m(s)Gα(j)

)
−
∑

s∈S`+1

log p(m(s)). (2.30)

As the equation given above clearly demonstrates, the algebraic form of the origi-
nal PDC cost function HPDC is preserved on all levels of the multi-scale hierarchy.
Consequently, multi-scale DA optimization as described in [Puz99] can be applied
to speed up the optimization of the PDC cost function and thus the inference of
segmentation solutions. Analogous results can be obtained for all PDC variants
discussed in subsequent chapters.

2.7 Experimental Results

2.7.1 Implementation Details

For the evaluation of the basic PDC approach, two test scenarios have been
examined. One is the segmentation of images according to color information
alone, the other is given by the segmentation taking color and texture features
into account. In the first case, the elementary features are given by the three
dimensional color vectors at each pixel. In the latter case, this information is
augmented by the magnitudes of a Gabor filter-bank as described in section
2.1. Therefore, one arrives at an eleven-dimensional feature vector at each image
pixel. For every image in the test-set, a mixture model with 32 clusters has then
been trained on these vectorial features to estimate the Gaussian alphabet. For
reasons of computational efficiency, the alphabets have not been altered in the
subsequent PDC model estimation.

As has been stated in section 2.1, the input data for the PDC approach to
image segmentation are histograms of feature values taken at image sites which
are located on a regular grid. For the experiments described here, a fine grid
with an inter-site spacing of two pixels has been used. The local neighborhoods
from which the histograms have been drawn had a size of 11 × 11 pixels, while
discretizing the feature values for each dimension into 48 bins.

2.7.2 Test-Set and Evaluation Methodology

Judging the quality of a given segmentation can be considered a difficult problem,
because a certain amount of subjectivity concerning the assessment can not be
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entirely avoided. Even when this limitation is neglected, ground truth is unavail-
able in most cases. Furthermore the segmentation is often only one item in a
larger context of processing steps. In those cases it is only natural, as Borra and
Sakar point out [BS97], to judge the segmentation quality with respect to the
overall task.

In contrast to this view, Martin et al. examined human image segmentation
[MFTM01a] experimentally. Their results indicate a remarkable consistency in
the segmentation of given images among different human observers. This finding
motivates their ongoing effort to construct a database of human segmented images
from the Corel collection [Cor] for evaluation purposes, which is publicly available
together with a set of software tools which aid the analysis process. This set of
images has been chosen as our testbed, making a direct comparison between our
segmentation model and human performance possible.

It is therefore advisable, to briefly describe this evaluation framework before
introducing the corresponding results. A more detailed description can be found
in [MFM04]. The data-base consists of two sets of images. The first one contains
200 images which can be used to tune the parameters of the analyzed segmen-
tation method. Consequently, these pictures are labeled as the training set. As
ample experiential knowledge of the behavior of the PDC method on real-world
images has already been gathered, this set has been entirely neglected in our per-
formance assessment. The second collection, including 100 images, comprises the
test set. For each item in the latter set, 5-10 segmentations by human subjects are
available. The instructions for these individuals were brief: You will be presented
a photographic image. Divide the image into some number of segments, where
the segments represent ”things” or ”parts of things” in the scene. The number of
segments is up to you, as it depends on the image. Something between 2 and 30
is likely to be appropriate. It is important, that all of the segments have approxi-
mately the same importance. These instructions clearly encourage the subjects to
mark image regions based on semantic knowledge. Therefore, achieving a compa-
rable performance by automated methods operating on low-level features alone
can be considered a hard task.

The quality assessment of the machine-inferred boundaries between sub-parts
of the depicted scenes is based on the performance measures precision, π, and
recall, ρ, which have evolved into a standard evaluation technique in the informa-
tion retrieval community [Rij79]. Their use in the quantification of edge detector
performance dates back to the work of Abdou and Pratt [AP79]. Denoting the
set of retrieved edge pixels which are also true boundary elements according to
the ground-truth by RETREL and the set of true boundary pixels by REL,
while labelling the set of retrieved boundary elements by RET , one arrives at
the following definition:

ρ =
|RETREL|
|RET |

, π =
|RETREL|
|REL|

. (2.31)
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Phrased in probabilistic terms, recall is the probability that a valid boundary
pixel gets detected by the algorithm in question, where precision denotes the
probability that a detected edge element lies at a true segment border. Clearly,
there is a trade-off between the quantities recall and precision. If one can define a
relative weight α between these entities, the so-called F -measure (c.f. [MFM04]
or [Rij79]) provides a summary of precision and recall in those cases, where a
single performance measure is required or sufficient. This entity is defined as
follows:

F =
πρ

αρ + (1− α)π
. (2.32)

As one can see from eq.(2.32), the F -measure is the harmonic mean of precision
and recall for a particular weighting factor α, which is set to 0.5 for the evaluations
presented in the following sections.

In order to make the notion of precision and recall and their summary statistic,
the F -measure operational, the correspondence between the machine generated
boundary pixels and those of the human segmentations has to be established.
To this end, the correspondence problem is posed as a minimum cost bipartite
assignment problem. In this scenario, the matching costs are given by the relative
distance in the image plane between the border pixels. Furthermore, this enables
one to declare all edge pixels, whose distance is beyond a pre-defined threshold
to be non-hits.

As the data-base of human segmentations provides more than one segmen-
tation solution for each of the images, a method for combining the results of
different comparisons has to be found. Certainly, such an approach should have
the desirable property to match human intuition of quality assessment by vi-
sual inspection as closely as possible. In particular, the expected properties of a
boundary detector – detection, localization and uniqueness – should be encour-
aged. Therefore, as a first step, the human boundary maps are related to the
machine output individually. The hit-rate is then averaged over the edge maps of
the different human subjects. Consequently, perfect recall can only be achieved,
when the machine generated segment borders match all of the boundaries found
by the human observers.

Moreover, the whole evaluation approach is geared towards probabilistic edge
maps. In this setting, the edge strengths are thresholded in order to arrive at a
collection of binary boundary maps. The performance measurement as outlined
above is then carried out at all levels of edge probability. In such a way, one
arrives at precision and recall curves for each image as a function of the threshold.
As PDC produces hard segment borders, this step cannot be carried out in our
setting. Consequently, one can only provide single performance measures for each
image and in summary for each of the tested algorithms, instead of complete
precision and recall graphs.
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2.7.3 Color Segmentation

In this section, the application of the PDC approach to image segmentation
based solely on color features will be examined. With the settings for the data
acquisition and pre-processing as described in section 2.7.1, the only remaining
parameter, which has to be determined by user interaction, is the number of
clusters. Please note, that this quantity refers to the partition of the data-space
and therefore does not directly correspond to the number of segments in the PDC
solutions. Clearly, the latter number is related to the former in the sense that
higher cluster numbers always lead to higher numbers of image segments. In
order to provide a reasonable overview concerning the performance of PDC color
segmentation, solutions with three, five and eight clusters have been computed
for each of the images in the Berkeley test-set.

(a) (b) (c)

Figure 2.4: Effects of the number of data groups on the image segmentations:
a) three, b) five and c) eight clusters.

The effects of increasing the number of clusters for a given image at hand
is demonstrated on four examples depicted in figure 2.4, where the borders be-
tween segments are indicated by thick white lines. Here one can observe, that
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pronounced differences in terms of feature content result in the formation of sep-
arate clusters and thus in distinct segments even when only a small number of
data groups is inferred. When the number of clusters is increased, more and more
details of the structure, which is inherently present in the image data, emerge as
unique segments in the PDC solutions. When a certain number of data groups
is exceeded, one can notice the phenomenon of over-segmentation, i.e. the seg-
mentation solutions show far too much detail than a human observer would deem
appropriate given the semantic image content. Clearly, the point on the grouping
granularity axis at which this actually happens is highly depending on the given
image at hand.

(a) (b)

Figure 2.5: a) PDC color segmentations, b) overlaid segmentations of the human
subjects.
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(a) (b) (a) (b)

Figure 2.6: a) PDC color segmentations with three data groups, b) overlaid
segmentations of the human subjects.

In order to provide a qualitative overview on the segmentation performance of
the PDC approach for color features, a representative set of example segmenta-
tion results is depicted in the figures 2.5 and 2.6 under item a). For all of the
pictures shown here, the segmentations are based on clustering solutions with
three data groups, except for the image of the elephants in 2.5, for which the
PDC segmentation with five clusters is depicted. Item b) in the aforementioned
figures exhibit the results of the human subjects for the particular images. As
there is always more than one human segmentation for each image in the Berkeley
test-set, the results of the different subjects are overlaid. Due to small variations
in boundary location, some of the edges are depicted by heavy white lines.

The first two segmentation results depicted in figure 2.5 show a remarkable
consistency with the human segmentations for those images in question. For
the city-scene example, some of the semantically motivated segment boundaries
(e.g. treating the two neighboring trees on the right as independent regions, or
differentiating between structural parts of the building on the left) could not be
recovered by PDC, simply because of the fact that they are not warranted by the
low-level color information. On the other hand, some small segments that have
been inferred by PDC do not show up in the human image partitions because
they are not semantically meaningful (e.g. around the lower parts of the trees on
the right). The picture of the snake is even more striking, as the human image
partitions are much more inconsistent with respect to the small object in front of
the animal than the PDC solution. The last example in this collection, however,
has been included here in order to demonstrate that there are cases, in which
the partitions motivated by the image semantics and those which stem from the
feature information noticeably disagree. Although the PDC segments spanning
the group of elephants as a whole are well separated from the image background,
the interior structure extracted by PDC and the one found by the human subjects
are in pronounced discord.
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Figure 2.6 shows another two comparison results between human and PDC
segmentations. In the first image, which depicts a bridge over a pond, the PDC
segmentation solution corresponds well to the human segmentations. However,
small differences of the sort that has already been described in the commentary
on the first image in figure 2.5 can also be noted here. In terms of segmentation
quality, the results for the second picture, showing a portrait, are comparable to
those of the last one in figure 2.5 in the sense that feature values and semantic
content give rise to different image partitions.

# clusters Ê[ρ] D̂[ρ] Ê[π] D̂[π] Ê[F-value] D̂[F-value]

3 55.0 11.9 50.0 15.4 50.4 10.5
5 71.4 10.0 43.1 13.8 51.9 11.4
8 82.3 7.1 37.7 12.1 50.2 11.5

Table 2.1: Recall, Precision and F-value summary for PDC color segmentation
experiments with three, five and eight clusters. Values have been multiplied by
102 for better readability.

For the quantitative analysis, all results of the color segmentation experiments
with three, five and eight clusters respectively have been subjected to the evalua-
tion in terms of precision, recall and F-values. The achieved performance is sum-
marized in table 2.1, where the means (denoted by Ê[·]) and standard deviations
(denoted by D̂[·]) for the segmentation quality indicators are given, which have
been computed over the entire set of 100 test images. A more detailed graphical
account of the corresponding distributions of the performance measures is given
in the appendix. As expected, the recall measure increases with the growing num-
ber of inferred data groups. This is due to the fact that the number of segment
boundaries grows accordingly. The precision, however, consecutively decreases,
strongly indicating that the additional edges which show up at higher cluster
numbers fail to provide additional information, which is relevant in terms of the
semantically motivated image segmentations of the human subjects. According
to the F-measure, the jointly optimal results in terms of precision and recall are
generated for image partitions with five clusters. At a first glance, the overall
performance of the PDC approach seems relatively low. Keeping in mind, how-
ever, that the median F-value for the human subjects lies at 0.8 (c.f. [MFM04]),
one has to assert, that PDC achieves more than half of the segmentation quality
than the human subjects. Taking the discussion in the paragraph on the quali-
tative evaluation of the PDC results into account, this can be considered rather
remarkable. While PDC solely operates on low-level features, a human observer
has many higher level knowledge sources to draw upon when producing an image
segmentation. Moreover, the subjects who contributed to the image data-base
were explicitly instructed to find partitions which are semantically meaningful.
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2.7.4 Combined Color and Texture Segmentation

After having examined the performance of the PDC model for image segmentation
based on color features alone, the results for image partitions which are based on
the combination of color and texture features as outlined in section 2.7.1 are now
being described.

The presentation of the corresponding findings is oriented at the scheme of
the previous section. Consequently, the behavior of PDC solutions for growing
numbers of inferred clusters is examined first. As in the case of the color image
partitions, segmentation solutions for three, five and eight clusters have been de-
termined for the 100 images in the Berkeley test-suite. An exemplary comparison
of image partitions can be found in figure 2.7.

(a) (b) (c)

Figure 2.7: Effects of the number of data groups on the image segmentations:
a) three, b) five and c) eight clusters.
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In principle, the same effects as in the case of color only partitions can again be
observed here. Markable feature differences lead to deviating group assignments
and therefore to the formation of different segments even when the number of
inferred clusters is small. With the rising number of clusters, the PDC model
gains the necessary additional degrees of freedom for the faithful representation
of minor feature differences in terms of independent data groups and thus as
individual segments in the image partition. Moreover, in comparison with the
corresponding findings for color only partitions, one can observe that the ten-
dency of generating fragmented segments at higher cluster numbers is somewhat
alleviated. This result is explained by the large support of the Gabor filters,
which effectively operates as a spatial smoothing of features. The downside of
this property is given by the fact that image sites at the boundary between re-
gions of differing feature content possess ambiguous statistical descriptions, as
the pertaining histograms integrate information from both sides of the bound-
ary. This effect is mainly responsible for the formation of double, or even triple,
borders between image segments, which are also visible in the depicted results.

A qualitative comparison for the combined PDC color and texture segmenta-
tions is shown in figure 2.8. Here, image partitions with three clusters are opposed
to their counterparts from the set of overlaid human segmentations. As in the
previously given examples for color PDC, the overall agreement between human
and machine generated boundaries is remarkable. For the picture in the first row
of figure 2.8 one has to assess, that the PDC solution is even better than the
summarized human image segmentations, due to their pronounced inconsistency
concerning the partition of the background. However, there are again semanti-
cally motivated segment borders in the segmentations of the test-subjects, which
cannot be reproduced by PDC because they do not correspond to differing feature
content. The pictures in the second, third and fourth row provide good examples
of this phenomenon.

# clusters Ê[ρ] D̂[ρ] Ê[π] D̂[π] Ê[F-value] D̂[F-value]

3 52.8 11.8 50.0 16.1 49.3 10.7
5 69.9 9.0 43.2 13.8 51.7 11.0
8 80.7 7.7 38.1 12.4 50.3 11.7

Table 2.2: Recall, Precision and F-value summary for combined color & texture
PDC segmentation experiments with three, five and eight clusters. Values have
been multiplied by 102 for better readability.

As the judgment of the qualitative results is always subjective, a quantitative
analysis of the PDC segmentation performance has been conducted for the case
of combined color and texture features as well. The findings are summarized in
table 2.2. Boxplots of the pertaining distributions are given in the appendix.
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(a) (b)

Figure 2.8: a) Combined color & texture PDC segmentations, b) overlaid seg-
mentations of human subjects.
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Although the incorporation of the additional information given by the tex-
ture features has been expected to improve the segmentation performance, the
quantitative analysis shows, that this anticipation has not been warranted. The
main reason for this failure is given by the fact that the test-suite of pictures
does not contain a sufficient amount of examples, for which texture provides a
relevant segmentation cue. The vast majority of samples can be sufficiently well
described in terms of the color features alone. In order to demonstrate, that the
incorporation of texture features can indeed lead to an improved segmentation
performance, an additional collection of results for other images taken from the
Corel image gallery is shown in figure 2.9. Here, the image content is chosen such
that the texture features contain a large amount of relevant information in terms
of the data grouping structure and thus for the image partition problem. On the
left hand side, results for PDC segmentations based solely on color features are
depicted, whereas the right hand side exhibits those image partitions which are
based on the joint color and texture feature set. In all cases, segmentations with
three clusters are shown.

In the first example in figure 2.9, one can observe, that in the color-only seg-
mentation, the image part covering the tiger is bleeding out into the background
near the animals tail. This effect is caused by the shadow that covers the tiger
as well as the image region in the lower left. Opposed to this, the segmenta-
tion based on color and texture cues does not fail to identify the tiger as an
independent image part.

The next picture shows two zebras, where color PDC fails to segment out the
animals from the background. Including both color and texture features in the
data-set, the results become markably different. The zebra on the right hand
side is found with high accuracy as an unique image part. The segment for the
animal on the left hand side still covers some minor part of the background. The
segmentation is, however, much better in comparison with the image partition
ignoring the texture cues.

In principle, the same observation holds true for the next example, in which two
groups of zebras are shown. In the case of PDC segmentation based only on color
features, the segments covering the groups of animals also contain substantial
parts of the background. Taking the texture features into account, the zebras are
identified precisely as individual segments. Moreover, the image partition as a
whole is far less cluttered.

Finally, the last row exhibits the test case of a single zebra in front of a savannah
background. Again, a faithful representation of the animal as an image segment
of its own can not be achieved in the case of color-only PDC. When the texture
features are included in the data-set, one finds that the zebra is inferred as an
individual image part, for which the corresponding segment boundaries closely
match the zebra’s contour. Again, the full-featured segmentation solution for
this image is much smoother and less contaminated by clutter than in the case
of PDC image partition based solely on the color information.
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(a) (b)

Figure 2.9: a) PDC color segmentations, b) Combined PDC color & texture
segmentations.
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2.8 Summary

In this chapter, a novel model for unsupervised image segmentation has been pro-
posed. It is based on robust measurements of local image characteristics given by
feature histograms. As one of the main contributions, it contains a continuous
model for the group-specific distributions. In contrast to many other approaches,
our method thus explicitly models the noise-induced errors in the histogramming
of image content by the introduction of continuous model distributions for the
inferred data groups. Being based on the theoretically sound maximum likeli-
hood framework, our approach makes all modeling assumptions explicit in the
cost function of the corresponding generative model. Moreover, there exists an
informative interpretation of the PDC cost function in terms of the minimization
of KL-divergences between the empirical distributions of features in the local
vicinity of sites and the prototypical Gaussian mixture distributions of the data
groups. Finally, the experimental results demonstrate the good performance of
our model, often yielding close to human segmentation quality on the testbed.
Moreover, a comprehensive quantitative performance evaluation of PDC has been
conducted.

2.9 Bibliographic Remarks

For the problem of image segmentation, a large variety of approaches has been
proposed. Correspondingly, a vast amount of literature on this topic exists to-
day. Among the most well-known methods are region splitting and merging
techniques [GPGSRC01, Pav72, VNBF00] including the watershed transform
[Ols97, Wei98]. Graph partitioning, especially the normalized cut is also very
popular [MSBL99, MBSL99, MBLS01, SM00, SBB01]. Moreover, variational
methods, in particular in the level-set-framework, provide the basis of many seg-
mentation algorithms [MS95, PD99, PD02, Par02]. Apart from this, image par-
tition techniques applying concepts from the field of Markov chain Monte-Carlo
(MCMC), e.g. [TZ02], and information theory [Lec89, NNF01, NNB+01] are pro-
posed. Novel image data domains like synthetic aperture radar outputs further
stimulate the development of segmentation approaches [Fjø99, DMF01]. Using
clustering techniques as a means of image partitioning also has a long standing
history, recent approaches include [BCGM98, PF00, FZB01].

Data clustering as an unsupervised learning technique is extensively treated
in [JD88] and other textbooks like [DHS01] and [Web99]. Concerning the opti-
mization of objective functions in the DA framework, [Hof97, HPB98] provide
excellent references. Multiscale-annealing as a means to speed-up DA computa-
tions is covered in [Puz99, PB99].

Numerous approaches to the quantitative measurement of texture properties
have been proposed in the literature. The variety of methods reaches from the
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parameters of explicit Markov random field models [CJ83], over fractal dimension
[CS95], and wavelet coefficients [PTH96], to the means and variances of filter-
bank outputs [DHW94, JF91].

The pioneering work of [PTL93] introduced the concept of histogram-based
clustering. This idea has then been developed further in [PHB99] and [HP98].
Being build on these foundations, PDC using color features has been published in
[HZB02], while the incorporation of the texture modality is described in [ZHB02].
Apart from the interpretation of the PDC cost function as the KL-divergence
between site-specific empirical feature distribution and the cluster-specific proto-
typical distribution, another interesting connection to the Information Bottleneck
principle [TPB99, TS01] is established in [Her03].

The validation of image segmentation results is a critical problem for the fu-
ture development of this research field. Most often, only a small number of ex-
perimental results are given in the presentation of a new algorithm. Judging the
quality of these results is frequently depending entirely on subjective criteria. Al-
though some efforts are made towards a more objective performance assessment
(c.f. [YMB77, CK97, CP02, SG95, SJK02]), most of the proposed approaches
are tailored towards a certain application domain or employ disputable quality
measures. Related survey articles are [BS97, Zha96]. On the other hand, the
computer vision group at UC Berkeley offers a large test-bed of example images
together with quality measures that clearly proved their worth in the validation
of information retrieval approaches [MFTM01b, MFTM01a, MFM04].
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Chapter 3

Incorporating Topological
Constraints

In the preceding chapter, the basic Parametric Distributional Clustering (PDC)
model has been introduced. Although the presentation of the approach has been
geared towards the main application domain of image segmentation, PDC itself
is a generic clustering model for any kind of histogram data. In this chapter,
three modifications of PDC will be described, which constrain the data-grouping
method in a topological way. First, the introduction of topological constraints
in the spatial domain is examined, effectively coupling assignments for neighbor-
ing sites on the image grid. This approach will prove exceptionally valuable in
relation to the performance of PDC as an image segmentation tool, due to the
fact that one thereby captures the inherent smoothness of natural images. In-
spired by approaches like Kohonen’s self-organizing maps, topological constraints
in cluster-space will then be examined. This leads to image segmentations which
possess the property that similarity between prototypical feature distributions for
the various clusters are made explicit in the ordering of data-groups in the sense
that similar clusters are neighbors in the index space of data-groups. Finally,
both kinds of topological couplings are combined in a single framework in the
last section of this chapter.

3.1 Spatial Topology

The basic PDC model treats objects as independent entities, e.g. the grid sites
for image segmentation are independent random variables without any mutual
interactions. This is warranted, whenever no other relation between the relevant
objects exists, which is not already accounted for by the similarity of the associ-
ated feature histograms. In the case of image segmentation, this assumption is
not valid. Letting aside artificially created images, pictures of natural scenes are
usually characterized by large homogeneous parts or regions. Therefore, neigh-
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boring sites on the image grid tend to have a significantly larger probability of
belonging to the same segment than sites which are separated by a considerable
distance. Consequently, a better segmentation performance can be expected by
taking this spatial topological relation into account.

3.1.1 The Cost Function for Spatially Coupled PDC

In order to make the notion of local spatial homogeneity mathematically pre-
cise, the following topological cost function is suggested, which explicitly couples
assignments in a local neighborhood Ns around each site s on the grid:

Hs =
n∑

s=1

∑
s̃∈N(s)

λt(1− δ(m(s̃),m(s)))

=
n∑

s=1

k∑
c=1

δ(m(s), c)λt
∑
s̃∈Ns

(1− δ(m(s̃), c)). (3.1)

In the equation above, the weighting factor λt is introduced to control the extend,
to which the homogeneity of local assignments is enforced. On the other hand,
the basic unconstrained PDC cost function is of the following form:

HPDC =
n∑

s=1

k∑
c=1

δ(c,m(s))hsc, where

hsc = −
∑

j

nsj log

(∑
α

pα| cGα(j)

)
− log pc. (3.2)

The cost function HsPDC of a PDC model in which highly fragmented image
partitions are discouraged can thus be described by the combination of the two
terms given in eq.(3.1) and eq.(3.2):

HsPDC = HPDC +Hs

=
n∑

s=1

k∑
c=1

δ(c,m(s))hsc +
n∑

s=1

k∑
c=1

δ(m(s), c)λt
∑
s̃∈Ns

(1− δ(m(s̃), c))

=
n∑

s=1

k∑
c=1

δ(c,m(s))

(
hsc + λt

∑
s̃∈Ns

(1− δ(m(s̃), c))

)
︸ ︷︷ ︸

:=hs
sc

. (3.3)

The abbreviation sPDC has been chosen for this clustering model because it
describes a spatially smooth variant of PDC. As the derivation in the equation
above shows, one is able to formulate the cost function for PDC with spatial
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topological coupling in direct analogy to the algebraic form of eq.(3.2). For
HsPDC, however, the local assignment cost for a site s do not only depend on the
data and the continuous model parameters, but also on the assignment of the
other sites in the local neighborhood.

3.1.2 Model Identification for sPDC

The identification of the relevant model parameters follows the same theoretical
framework, which has already been used in the optimization of the PDC cost
function (c.f. 2.5). Consequently, the derivation starts with the generalized free
energy of the sPDC objective function:

F sPDC = E[HsPDC]− T ·H. (3.4)

Setting qsc = E[δ(c,m(s))] = p(δ(c,m(s)) = 1), one arrives at

E[HsPDC] =
n∑

s=1

k∑
c=1

qsc

(
hsc + λt

∑
s̃∈Ns

(1− qs̃c)

)
. (3.5)

sPDC E-Step Equations: The computation of the cluster assignment probabil-
ities qs

sc is based on the local costs hs
sc as defined in eq.(3.3). In the case of sPDC,

these local costs are true meanfields due to the topological coupling of neigh-
boring sites. Therefore, the assignment probabilities are computed according to
a factorial model for the corresponding probability distribution which approxi-
mates the true non-factorial distribution (c.f. [Hof97] for details of the mean field
approximation and mean field annealing (MFA)). Nevertheless, the assignment
probabilities are given by the corresponding Gibbs distributions in the following
way:

qsc ∝ exp(− 1

T
hs

sc). (3.6)

sPDC M-Step Equations: In complete analogy to the derivation of the M-step
formulae for PDC, the cluster probabilities are computed by

pc =
1

n

n∑
s=1

qsc , c = 1, . . . , k. (3.7)

For the cluster-specific mixture weights pα| c, the numeric optimization scheme
outlined in 2.5.2 has to be applied. This amounts to repeatedly selecting pairs
of coefficients pα1| c and pα2| c for which the optimization procedure is carried out.
The optimal value of pα1| ν either satisfies

−
k∑

c=1

m∑
j=1

(
n∑

s=1

qscnsj

)
Gα1 (j)−Gα2 (j)∑l

γ=1 pγ| cGγ (j)
= 0, (3.8)
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and can be determined by interval-bisection, or – if no unique optimum can be

found in the interval
[
0; 1−

∑
γ /∈{α1,α2} pγ| c

]
– it is equal to one of the interval

boundaries. Once pα1| c has been determined, pα2| c can be computed from

pα2| c = 1−
∑

γ /∈{α1,α2}

pγ| c − pα1| c . (3.9)

The optimization of the Gaussian means µα can also be accomplished in ac-
cordance with the approach outlined at the end of section 2.5.2. However, the
initialization of the Gaussian alphabet with a standard mixture model estimation
procedure has proven to yield satisfactory results for all practical applications.
Thus, the adaptation of these parameters has not been utilized in the experi-
ments, which are described in the ensuing section.

3.1.3 Experimental Evaluation

For the experiments which were conducted to test the sPDC approach to image
segmentation, the basic settings for the data-acquisition and pre-processing steps
are as described in section 2.7.1. Although the incorporation of texture features
has not significantly improved the segmentation performance on the Berkeley
test-bed, they have been included nevertheless due to the fact that the utilization
of these segmentation cues has been shown useful for those cases, where texture
is a prominent characteristic of the depicted scenes. Consequently, it can be
considered inappropriate for a general purpose segmentation approach to neglect
this information source. Moreover, the scheme of producing image partitions
based on data-groupings with three, five, and eight clusters is abided by in order
to get an impression of the image partition results at a reasonable variety of
grouping granularities. The influence of the local assignment coupling on the
segmentation solution is dependent on two parameters: the size of the local
neighborhood Ns around a site s, and the weighting factor λt. For all of the
experiments described in this section, the neighborhood size has been fixed to
5× 5 sites, which leads to a reasonable amount of local smoothing. The setting
of the weighting factor will be discussed in the next paragraph in the context of
the comparison between spatially constrained and unconstrained segmentation
results.

At first, a direct comparison of segmentation results for unconstrained PDC and
sPDC is examined in order to demonstrate the qualitative performance difference
between these two approaches. A collection of results is depicted in figure 3.1.
Here, the first column shows image partitions by basic PDC, whereas the second
column depicts the segmentations of the spatially coupled sPDC method. In the
first row at the top of fig. 3.1, an example of a very irregular image is shown.
The maze of branches together with the leopard, whose fur provides for a very
effective natural camouflage, poses a very hard segmentation problem.
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(a) (b)

Figure 3.1: Image partitions with five clusters based on color and texture features.
a) PDC segmentations, b) sPDC segmentations.
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Consequently, the image partition produced by the standard PDC approach is
highly fragmented. Opposed to this, the incorporation of the spatial constraints
on the group assignment variables leads to a much smoother result. Nevertheless,
the major image structures like the leopard and the bigger branches are still
represented very accurately. The next row depicts an image, which is much
simpler in the sense that it it is inherently smooth. Yet, the application of
the basic PDC method still leads to a certain number of small segments, while
producing double edges at the boundaries between different image regions. These
adverse effects are almost totally cured in the sPDC result. Image regions are
separated by single borders and only one small region survives the smoothing
induced by the spatial constraints. The third row contains another example
of an image with a highly irregular feature content. Especially the straw in the
birds nest provides for a large variability in terms of the measured image features.
It does not come as a surprise that PDC, which solely optimizes the structural
properties of the clustering solution in feature space, produces a fragmented image
partition. Utilizing spatial constraints, however, sPDC is able to infer a much
less cluttered segmentation solution. Finally, the last image in this collection
again shows a rather difficult segmentation problem. As expected, the basic
PDC approach leads to a highly irregular segmentation, while sPDC provides
a substantially less cluttered image partition result. However, even the sPDC
segmentation shows a certain amount of fragmentation. Clearly the influence of
the spatial coupling is dependent on the magnitude of the weighting factor λt in
the sPDC cost function. This factor has been set on an experiential basis, trying
to strike for a balance between spatial smoothing and structure preservation of the
clustering solution in feature space. In this respect, setting λt = 0.15 · h̄s, where
h̄s denotes the mean of the local costs hsc at site s, has proven to be a reasonable
choice. As this setting has been fixed for all depicted segmentation results, a
perfect solution for all images cannot reasonably be expected. Nevertheless, the
yielded improvement is clearly visible from all of the presented image partition
results.

In the next collection of segmentation results for sPDC shown in figure 3.2, a
qualitative overview of segmentations with five clusters opposed to image parti-
tions of the subjects in the Berkeley study is given. In the first image in this
figure, a segmentation result is depicted for which the human subjects have pro-
duced largely differing segmentations concerning the objects in the foreground.
sPDC on the other hand reliably separated the rock and the tree from the sky
background. It fails, however, to identify the bushes in the foreground as inde-
pendent segments but incorporates them in larger structures covering wider areas
of the depicted scene. Moreover, the sky gets split into different image parts due
to the apparent gradient in the blue hues. These differences are typical exam-
ples of segmentation based on low-level features alone as opposed to partitions
including semantic knowledge. The overall agreement between the sPDC result
and the human made segmentations is still very good.
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(a) (b)

Figure 3.2: Qualitative performance overview of sPDC vs. the results of the
human subjects. a) sPDC image partitions, b) overlaid segmentations of the
human subjects.
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The next picture in the second row shows a result, in which sPDC accurately
infers the semantically meaningful image parts like the group of trees in the back-
ground and the buffalo in the foreground. Given the granularity of the clustering
solution, the segregation of the background into the various parts is in good
agreement with the local feature content. On the other hand, the corresponding
background segmentations of the human subjects seem somewhat subjective and
alternative solutions might also be acceptable. This observation is especially ob-
vious when one focuses on the mountains in the far background of the depicted
image. In the third row, we see a case in which sPDC also achieved a very good
representation of the semantic content of the depicted scene, as the camel-rider
and his animal are accurately separated from the background. The semantically
motivated fine-structure of this image part and the separation of the pyramid
from the background cannot be reproduced by sPDC. First of all, these parti-
tions are not completely warranted from the feature information. Second, the
data on which the machine segmentations are based is gathered from a spatial
support of some extend. This fact is pronounced in sPDC by the spatial cou-
pling of assignments. Therefore, there exists a certain limit of resolution or scale,
at which independent image parts can still reliably be inferred. This effect also
prevents sPDC to identify some of the bigger stones in the foreground as inde-
pendent image regions, like the human subjects did. Keeping these limitations in
mind, the correspondence between the sPDC segmentation and the human image
partition is remarkable. Finally, the last image in this figure depicts an image, for
which the agreement between the human and machine generated segmentations
is even better. Here, even some of the internal fine-structuring of the depicted
bird into various segments is largely identical. Moreover, despite some minor
differences, the segregation of the background is in very good correspondence.
Summing up the findings, one has to conclude that the smoother results of the
sPDC approach correspond much better to the human image partitions than the
more cluttered segmentations of the basic PDC method.

Apart from the impression that a direct comparison between human and ma-
chine results as given in figure 3.2 provides, the quantitative performance of sPDC
on the Berkeley data-base has also been determined. The measured values for the
segmentation quality indicators precision, recall, and F-value are shown in table
3.1. A more detailed graphical account of the corresponding distributions in form
of a box-plot can be found in the appendix. The first important observation is
that the recall values for all clusters numbers are noticeably lower than in the case
of unconstrained PDC for color and texture features. This finding is explained by
the fact that the topological coupling in the spatial domain significantly reduces
the number of inferred segment boundaries and thus the clutter in the image
partition results. This effect is amply visible in fig. 3.1 and has also already been
noted in the corresponding discussion of the depicted results. Clearly, the prob-
ability of detecting a valid boundary pixel decreases to some extend when the
number of inferred segment borders is remarkably lower. On the other hand, the
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# clusters Ê[ρ] D̂[ρ] Ê[π] D̂[π] Ê[F-value] D̂[F-value]

3 44.2 11.3 56.3 16.5 47.8 10.2
5 55.4 11.2 50.9 15.0 51.5 10.8
8 62.8 10.0 46.6 13.1 52.1 10.0

Table 3.1: Recall, Precision and F-value summary for sPDC segmentation ex-
periments with three, five and eight clusters. Values have been multiplied by 102

for better readability.

precision values, and thus the probability that a detected edge pixel lies at a true
boundary between different image parts is noticeably increased. Consequently,
the incorporation of spatial topological constraints seems to provide a strong ad-
vantage whenever the maximization of precision is required from the context in
which the segmentation is applied. Moreover, judging the segmentation quality
on a subjective basis, it seems that high precision values better correspond to
the intuitive notion of a good segmentation result than the recall measure, which
produces high values even for very fragmented image partitions. Keeping the
variance of the precision values in mind, one has to observe that the precision
distributions for the unconstrained case and the spatially coupled sPDC are not
completely separated. Therefore, in order to determine the significance of the
precision increase, a statistical test on the differences between the precisions for
the constrained and unconstrained PDC variant has to be applied. In particular,
the null-hypotheses that the empirical distribution of ∆π = π(sPDC)−π(PDC)
for the Berkeley test-bed has mean zero is evaluated.

To this end, the statistics toolbox of the Matlab mathematical programming en-
vironment offers a test function, which is derived from the standard t-test known
from the theory of statistical hypothesis testing. In this particular function, an
empirical distribution of unknown variance is tested for the null-hypothesis of
having a certain mean, which has to be specified as an input parameter. More-
over, that function provides for an additional parameter, which can be used to
explicitly test the null-hypothesis against the case that the empirical distribution
has a mean greater than the one suggested by the null-hypothesis. As this test
function is ideally suited for the test that one has to perform on the difference
values, it has been utilized to determine the significance of the increase in terms
of the precision measure for spatially coupled PDC. The test has been performed
for all data-grouping granularities, i.e. the results for sPDC with three, five, and
eight clusters were tested against their unconstrained counterparts. In all cases,
the null hypothesis of zero-mean for the precision differences could be rejected at
a significance level of 0.01. The empirical distributions for the precision differ-
ences is depicted in figure 3.3. As one can see from this diagram, almost all of the
probability mass is located in the interval above zero, clearly demonstrating that
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the spatial coupling of assignment variables indeed offers a pronounced advantage
over the standard PDC approach.

Figure 3.3: Empirical cumulative density functions of the precision differences
between spatially constrained and standard PDC with three, five, and eight clus-
ters.

3.2 Topology in Cluster-Space

The main contribution of this section is the consideration of the locality of seg-
ments in the space of mixture models. This is taken into account by the topolog-
ical coupling of cluster assignments analogous to self-organizing maps in Neural
Computation. In cases where the prototypical mixture distributions of clusters
become similar, the noise, which is invariably present in the observational data,
may lead to ambiguous cluster assignments which in turn are characterized by
noise dependent transition probabilities between those data-groups. Therefore,
the permutation symmetry of cluster indices is broken and a topology in the do-
main of data-groups is induced. Consequently, one can expect a better model
adaptation by taking the resulting additional distortions into account when es-
timating the most likely group assignments. Thus, a connection to the field of
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Self Organizing Maps [Koh95] is established. An analogous approach for the
ACM histogram clustering model has first been suggested in [Buh98]. In figure
3.4 the underlying idea is visualized by depicting three data groups (each one
being a mixture model with three components) in feature space. Neighboring
clusters are connected by the topological coupling (visualized as arcs), thereby
forming a chain in cluster space. Enforcing the data grouping solution to obey to
such a simple neighborhood structure, similarities between clusters can be read
of directly from the indices of the groups. Moreover, each cluster-specific mix-
ture model is optimized in such a way, that it also to some extend accounts for
measurements from neighboring data-groups.

Figure 3.4: Topological coupling between neighboring clusters.

3.2.1 The Segmentation Model

For the derivation of the objective function for PDC with topological coupling in
cluster-space, one starts from the cost function for the basic PDC model, which
is repeated here in order to increase the clarity of presentation:

HPDC =
n∑

s=1

k∑
c=1

δ(c,m(s))hsc, where

hsc = −
∑

j

nsj log

(∑
α

pα| cGα(j)

)
− log pc. (3.10)

As has been stated in the introduction of this section, the cost function as given
above does not take the locality of data-groups in cluster-space into account.



44 Incorporating Topological Constraints

Consequently, the probability of confusing any two indices c̃ and c has to be
specified, which is accomplished by the introduction of the matrix Tcc̃. The
coupling itself is formulated on the level of the local grouping cost, i.e. the
following transition has to be made:

hsc → hT
sc, where

hT
sc =

k∑
c̃

Tcc̃hsc̃. (3.11)

Thus, the objective function for PDC with topological coupling in cluster-space
(TPDC) is given by

HTPDC =
n∑

s=1

k∑
c=1

δ(c,m(s))hT
sc. (3.12)

As one can immediately see from the equation above, the TPDC cost function
is still linear in the assignments of sites to clusters. That is, the assignment
of any particular site is independent of the assignments of all other sites given
the continuous model parameters. On the other hand, one can re-formulate the
objective function in such a way that the topological coupling is made explicit
in terms of the assignment variables, while the problem itself remains linear. To
this end, one has

HTPDC =
n∑

s=1

k∑
c=1

δ(c,m(s))
k∑
c̃

Tcc̃hsc̃

=
n∑

s=1

k∑
c=1

k∑
c̃

δ(c,m(s))Tcc̃hsc̃

=
n∑

s=1

k∑
c̃

k∑
c=1

Tcc̃δ(c,m(s))hsc̃. (3.13)

Here, the transition from the second to the last row is just a re-arrangement of
the summation order. Setting

δT(c̃,m(s)) =
k∑

c=1

Tcc̃δ(c,m(s)), (3.14)

while exchanging the cluster summation indices c and c̃, one arrives at

HTPDC =
n∑

s=1

k∑
c=1

δT(c,m(s))hsc. (3.15)
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3.2.2 TPDC Model Identification:

The identification of the correct settings for all relevant model parameters is
treated like in the cases of PDC and sPDC. Thus, the alternating optimization
scheme of EM is embedded in the DA framework. Consequently, one has to start
from the generalized free energy:

FTPDC = E[HTPDC]− T ·H. (3.16)

In the equation above, H again denotes the entropy of the distribution over the
states in M, while the computational temperature is given by T . For TPDC, the
expected cost are given by

E[HTPDC] =
n∑

s=1

k∑
c=1

qsch
T
sc

= −
n∑

s=1

k∑
c=1

qsc

k∑
c̃

Tcc̃hsc̃. (3.17)

TPDC E-Step–Equations: Maximizing eq.(3.16) with respect to P (M) cor-
responds to the E-Step of the EM–scheme. To this end, the partial costs of
assigning a site s to cluster c, i.e. hT

sc in eq.(3.17), have to be evaluated. Setting
qsc = E[δ(c,m(s))] = p(δ(c,m(s)) = 1) and utilizing the well known fact from
statistical physics that the generalized free energy at a certain temperature is
minimized by the corresponding Gibbs distribution, i.e. qsc ∝ exp(− 1

T
hT

sc), one
arrives at the following set of update equations:

qsc ∝ exp

(
− 1

T

k∑
c̃

Tcc̃hsc̃

)
. (3.18)

TPDC M-Step–Equations: In the M-step, one has to solve the stationary equa-
tions for the model parameters pc and pα| c, given the estimated assignment prob-
abilities qsc. For pc, a closed-form solution is obtained by taking the derivative of
eq.(3.16) while introducing Lagrange parameters to ensure a proper normaliza-
tion:

pc =
1

n

n∑
s=1

qsc , c = 1, . . . , k. (3.19)

The second set of parameters pα| c is updated by the iterative selection of pairs
of Gaussian components α1, α2, as has already been described in the previous
sections on the M-Step equations for the other PDC variants. Fixing pγ| c for all
γ /∈ {α1, α2}, the optimal value of pα1| c is determined by solving the following
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equation via interval bisection:

−
k∑

c=1

m∑
j=1

(
n∑

s=1

qscnsj

)
Gα1 (j)−Gα2 (j)∑l

γ=1 pγ| cGγ (j)
= 0. (3.20)

If no unique optimum can be found in this way, i.e. it is outside the interval[
0; 1−

∑
γ /∈{α1,α2}, pγ| c

]
, the mixture coefficient is equal to one of the interval

boundaries. Once pα1| c has been determined, pα2| c can be computed from

pα2| c = 1−
∑

γ /∈{α1,α2}

pγ| c − pα1| c . (3.21)

3.2.3 Experimental Results

So far, the principle ansatz for PDC with topological constraints in cluster-space
has been outlined. For concrete experiments, however, the topology has to be
given by specifying a coupling matrix Tcc̃. Clearly, there are numerous possible
topologies which could be explored. For the sake of conciseness in description, two
choices have been made for the experiments which are presented in this section.
One is a chain-like relationship T chain

cc̃ between the clusters, the other is a circular
structure T circle

cc̃ , which couples the data-group with the highest index back to the
one with the lowest. These coupling structures are made mathematically precise
by the following definitions for the cluster confusion matrices:

T chain
c̃c =


1− ε ε 0 . . . 0

ε 1− 2ε ε
. . .

...

0
. . . . . . . . . 0

0
. . . . . . ε 1− ε

 , (3.22)

and

T circle
c̃c =


1− 2ε ε 0 . . . ε

ε 1− 2ε ε
. . .

...

0
. . . . . . . . . 0

ε
. . . . . . ε 1− 2ε

 . (3.23)

In both of the equations given above, the topological structure is determined
by the layout of the coupling matrices. The strength of the coupling, however,
can be influenced by the parameter ε, which provides for an additional degree of
freedom in the specification of the concrete TPDC cost function.
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Chain Topology: In order to evaluate TPDC for the chain structure in cluster-
space, i.e. TPDC utilizes the matrix T chain for the specification of the topological
structure, a segmentation result for an artificial data set is examined first. Due
to the fact that this first test should be kept simple, it is chosen to work with
color features only. The image data itself has been specified in HSV color space,
because it is linear in the sense that perceptual color differences correspond to
Euclidean distances of the color vectors, which does not hold true for the RGB
color space. This linearity alleviated the design of a generative data model with a
certain inherent neighboring structure in terms of the usual Euclidean distances
between the modes of the Gaussian alphabet, which is at same time meaningful in
terms of perceptual differences. The data set consists of eight groups, such that
neighboring segments in the image have colors generated by neighboring mixture
distributions in color space. To be precise, the H channel is divided into 24
equally spaced angles while keeping the S and V channels fixed to 0.75. Thus one
arrives at a set of 24 color vectors, which defines the alphabet of Gaussians for the
image. The image itself is divided into eight regions. For each of these regions, a
prototypical mixture model is given by taking three consecutive Gaussians from
the underlying alphabet with equal weighting. Any two consecutive mixtures
thus have two Gaussians lying very closely together in feature space. With this
construction, the topological structure for the data groups is given by a chain.
From this model, an image is generated by sampling from the region specific
mixture distributions. The result of this procedure is depicted on the left hand
side of fig. 3.5. Here, the input image is opposed to the segmentation result of

(a) (b)

Figure 3.5: TPDC applied to artificial test-data: a) image data, b) segmentation.
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TPDC, where the parameter for the strength of the topological coupling has been
set to ε = 0.08. For the visualization of the image partition, group memberships
are encoded by grey values in such a way that two consecutive indices have
consecutive shades of grey. As can be seen from the grouping result, the chain
topology of the clusters has been correctly identified.

Encouraged by this positive result on the artificially created data, TPDC has
been applied to a set of 100 images from the Corel Image Gallery taking both color
and texture features into account. One of the corresponding segmentations is
depicted in fig. 3.6. Others can be found in [ZB02]. For this particular clustering
solution, the number of data-groups has been fixed to four while limiting the set of
Gaussian modes to 16 and setting ε = 0.1. The resulting segments are grey level
coded like in the case of the artificial data set, thus visualizing the topological
structure in cluster space. The first segment covers the cat and the part of the
tree with low texture content. Following in the chain topology of clusters is
the segment in light grey, covering the rest of the tree (with more pronounced
texture). Then comes the segment of the smaller branches of the tree above
and below the cat, depicted in dark grey. Due to the finite support of the local
histograms, the corresponding region statistics contain both contributions from
the branches themselves and from the blue sky in the background. Topologically,
this segment should lie between the tree and the sky segment, which is exactly
what our algorithm yields. Finally, there is the sky segment in black, which
lies topologically correct at the other end of the inferred chain structure. This
interpretation is backed up by the underlying prototypical mixture models of the
various groups. In order to visualize the distributions, the fact has been utilized
that keeping the alphabet of Gaussians fixed, the mixtures are characterized
completely by their coefficients pα| c, which are depicted in the diagrams. The
visually apparent topological relations between the inferred data groups can be
easily verified by looking at salient correspondences in the distributions, which
are depicted by arrows.

Circular Topology: For the segmentation experiments using TPDC to infer
a circular topology in cluster-space as defined by the coupling matrix given in
eq.(3.23), the settings for the data acquisition and pre-processing stages were kept
fixed as described in section 2.7.1, while fixing the coupling strength to ε = 0.08.
Moreover, the Berkeley image data-base has been used as the test-bed for this
particular variant of TPDC. In order to provide a qualitative overview concerning
the influence of the topological coupling on the arrangement of clusters in index
space, fig. 3.7 shows two representative image partition solutions with five clus-
ters. In the left column of this figure, outline visualizations of the segmentations
are shown. The right column shows the underlying TPDC clustering solutions in
form of color-coded images. The color code itself is explained by the schematic
in the first row of fig. 3.7, which also shows the topological relations between
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the clusters. For the depicted images, texture is negligible. The first example is
a portrait image. The dominating colors are brownish hues of varying lightness,
while the hat and throat areas show a darker tone, which in case of the hat has a
reddish touch. The relations between the color distributions of the inferred seg-
ments are perfectly represented in the topological structure in index space. The
segment marked in black in the color-coded visualization of the segmentation re-
sult mostly covers areas in between the ecru parts of the image (blue cluster) and
the dark regions (yellow cluster). Therefore, a mixture statistic of these image
parts is predominant for the black cluster. For the data-groups marked in blue,
green, red, and yellow, the lightness of the brown hues, which are covered by
the respective regions in the picture, is continually decreasing, making the corre-
sponding clusters perfect neighbors in the sense of the topological coupling. The
second picture in fig. 3.7 shows a mushroom on forest soil. Here, the first cluster
covers the image areas of a light brown hue tending to ecru, whereas the blue
segment, which immediately follows in the topological ordering mainly covers the
ecru parts. The next segment in the topological structure is the one which is color
coded in green. The characteristic property of the corresponding image region is
its dark brown color. The similarity to the preceding segment is given by the fact
that the brown hue is related to ecru, while the link to the following segment is
visible in terms of the lower lightness. The next cluster (shown in red) primarily
covers the darkest regions of the picture, while also containing the overshadowed
parts of the moss in the image background. Finally, the cluster, being depicted
in yellow, contains the regions which cover the lighter part of the moss. This
increased lightness then justifies the closing of the circular topological structure
to the black segment.

For the quantitative performance evaluation of the circularly coupled TPDC,
segmentation experiments for the Berkeley test-bed have been run for three, five
and eight clusters in the TPDC data-grouping. For all cluster numbers, the
coupling strength has been fixed to ε = 0.08. The achieved recall, precision
and F-measure values are summarized in table 3.2. Corresponding box-plots are
given in the appendix. As this table clearly shows, the segmentation performance
indicators are not better than in the case of topologically unconstrained PDC.
One thus has to conclude that the introduction of couplings between clusters is
not a viable means of progressing towards image segmentation methods which
come closer to human performance standards for this task. On the other hand,
the examples presented in this section amply demonstrate that the similarity
between the inferred clusters in terms of their feature distributions is faithfully
reflected in the index space of cluster numbers. This additional information
which supplements the mere segmentation solution might prove very valuable for
potential application contexts.
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Figure 3.6: TPDC with chain topology applied to real-world data: Input image,
segmentation, and model parameters.
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(a) (b)

Figure 3.7: TPDC segmentation results with five clusters. a) outline visualiza-
tion, b) color coded cluster assignments.
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# clusters Ê[ρ] D̂[ρ] Ê[π] D̂[π] Ê[F-value] D̂[F-value]

3 53.0 11.4 49.1 15.4 49.1 10.6
5 67.3 11.3 43.6 13.9 51.3 11.5
8 78.0 9.2 38.6 12.0 50.2 11.0

Table 3.2: Recall, Precision and F-value summary for TPDC segmentation ex-
periments with three, five and eight clusters. Values have been multiplied by 102

for better readability.

3.3 Combining Spatial and Group Topology

After having introduced topological constraints in the spatial domain as well as
in the cluster realm, it suggests itself to merge these two separate approaches
into a variant of PDC that equally enforces both types of topological couplings.
Thereby, one can combine the advantage of an explicitly given topology in the
space of feature distributions with the increased precision of the spatially smoothed
segmentations.

3.3.1 The sTPDC Model

In principle, the construction of the cost function for Parametric Distributional
Clustering with topological coupling of data-groups as well as coupling in the
spatial domain is analogous to the derivation of sPDC in section 3.1.1. Here,
however, the TPDC objective function provides the starting point:

HTPDC =
n∑

s=1

k∑
c

δ(m(s), c)hT, where

hT =
k∑
c̃

Tcc̃hsc̃. (3.24)

In the equation above, the notations, which have already been introduced before
are used again. I.e. hT denotes the local assignment cost for TPDC, while
hsc̃ stands for their counterparts in the basic PDC model. Finally, Tcc̃ denotes
the matrix of coupling strengths between the clusters. The spatial coupling of
assignments can now be encouraged as before by setting

Hs =
n∑

s=1

k∑
c=1

δ(m(s), c)λt
∑
s̃∈Ns

(1− δ(m(s̃), c)). (3.25)
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The two types of topological constraints are combined in the following way:

HsTPDC = HTPDC +Hs

=
n∑

s=1

k∑
c

δ(m(s), c)hT +
n∑

s=1

k∑
c=1

δ(m(s), c)λt
∑
s̃∈Ns

(1− δ(m(s̃), c))

=
n∑

s=1

k∑
c=1

δ(c,m(s))

(
hT

sc + λt
∑
s̃∈Ns

(1− δ(m(s̃), c))

)
︸ ︷︷ ︸

:=htT
sc

. (3.26)

3.3.2 sTPDC Model Identification

The optimal values for the free parameters in the sTPDC model are found ac-
cording to the scheme which has already been used to derive the update equations
of PDC, sPDC, and TPDC. Again, one starts from the generalized free energy
functional of the problem at hand. In the case of sTPDC, one has

F sTPDC = E[HsTPDC]− T ·H. (3.27)

Denoting the assignment probabilities by qsc = E[δ(c,m(s))] = p(δ(c,m(s)) = 1),
the expected cost are given by

E[HsTPDC ] =
n∑

s=1

k∑
c=1

qsch
tT
sc

=
n∑

s=1

k∑
c=1

qsc

(
hT

sc + λt
∑
s′∈Ns

(1− qs̃c)

)
. (3.28)

sTPDC E-Step–Equations: The assignment probabilities qsc are found by eval-
uating the Gibbs distribution corresponding to the local costs of the sTPDC
model. Consequently, one arrives at

qsc ∝ exp

(
− 1

T

(
hT

sc + λt
∑
s̃∈Ns

(1− qs̃c)

))
. (3.29)

sTPDC M-Step–Equations: For the second order mixture coefficients pc, up-
date equations in closed form can be derived by differentiating eq.(3.27). Again,
Lagrange parameters have to be introduced in order to enforce a proper normal-
ization. This procedure leads to

pc =
1

n

n∑
s=1

qsc , c = 1, . . . , k. (3.30)
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The coefficients of the Gaussian mixture models of the various clusters, pα| c, can
again only be computed via a numeric optimization step. To this end, pairs of
coefficients pα1| c and pα2| c are repeatedly selected. The optimal value of pα1| ν is
characterized by

−
k∑

c=1

m∑
j=1

(
n∑

s=1

qscnsj

)
Gα1 (j)−Gα2 (j)∑l

γ=1 pγ| cGγ (j)
= 0, (3.31)

where the root is again determined by interval-bisection. If no unique optimum

can be found inside the interval
[
0; 1−

∑
γ /∈{α1,α2} pγ| c

]
, pα1| ν is equal to one of

the interval boundaries. Once the optimal value of pα1| c has been computed, pα2| c
must satisfy

pα2| c = 1−
∑

γ /∈{α1,α2}

pγ| c − pα1| c . (3.32)

3.3.3 Experimental Evaluation

In order to ensure the comparability of experimental results, the settings for the
data acquisition and pre-processing stages have been kept fixed as described in
section 2.7.1. Moreover, the practice of computing image partitions based on
data groupings with three, five and eight clusters has been continued. For the
topology in cluster space, the circular structure defined by T circle

c̃c in eq.(3.23)
has been used with ε = 0.08. Due to the fact that the influence of the spatial
coupling as well as the cluster ordering according to the enforced topological
constraints has already been outlined in the previous sections, the presentation
of qualitative segmentation results for sTPDC is limited to the comparison with
those of the human subjects of the Berkeley study. To this end, the figures 3.8
and 3.9 offer two collections of representative results for sTPDC segmentations
and their counterparts from the set of human generated results.

(a) (b) (a) (b)

Figure 3.8: a) sTPDC segmentations with three (left) and eight (right) data
groups, b) overlaid segmentations of the human subjects.
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In the first picture of fig. 3.8 one has a striking example of the phenomenon
that segmentations motivated by the low-level feature content and those arrived
at by semantic considerations do not necessarily agree. Although the sTPDC
result based on a grouping with five clusters captures the differences in terms of
feature content very well while avoiding fragmented over-segmentation of image
details due to the spatial coupling of assignments, it does not infer the statue, let
alone its sub-parts, as independent regions. For the second picture, feature- and
semantic-based image partition are in much better accordance. Here, the depicted
sTPDC segmentation is based on a cluster-model with eight data groups. Nev-
ertheless, the semantically motivated sub-structure in the human segmentation
(e.g. separating architecturally different parts of the building in the background
and the segregation of the group of flowers in individual blossoms and stems) can
not be reproduced by sTPDC, simply because it is not supported by the low-level
feature information.

(a) (b)

Figure 3.9: a) sTPDC segmentations, b) overlaid segmentations of the human
subjects.
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In fig. 3.9, the first two sTPDC results are based on data-groupings with five
clusters, while the last image has been partitioned according to a sTPDC model
with eight data-groups. Again, the overall agreement with the human segmen-
tations is very good. As in the previous examples, however, minor differences
of sTPDC as compared to the human segmentations are also visible in these
examples.

In order to arrive at quantitative measurements of sTPDC’s image segmen-
tation performance, the precision, recall, and F-measure determination for data
partitions with three, five, and eight clusters has been conducted for all of the
100 images in the test-bed. The pertaining results are summarized in table 3.3,
whereas a box-plot of the performance indicator distributions is shown in the ap-
pendix. Here, one can note again the decrease in recall compared to the spatially
unconstrained case of TPDC. On the other hand, the precision values are notice-
ably better. As in the case of sPDC vs. standard PDC, the distributions for the
precision values at the various cluster granularities are not completely separated
due to the comparatively large variances. One, therefore, has to resort to the
technique that has already been used in the determination of the significance
of the precision increase in the case of sPDC as opposed to basic PDC. Conse-
quently, the differences ∆π = π(sTPDC) − π(TPDC) have been computed for
all inferred cluster numbers. Then, the t-test variant from the Matlab statistics
toolbox is utilized again, which has already been described in section 3.1.3, in
order to test against the null-hypothesis of zero-mean for the empirical distribu-
tions of difference values. For all numbers of clusters, the null-hypothesis could
be rejected at a significance level of 0.01, proving that the incorporation of spatial
topological constraints has again increased the performance in terms of the preci-
sion measure. The empirical distributions of the precision differences are shown
in fig. 3.10, visually demonstrating that the vast majority of the probability mass
is located above zero.

# clusters Ê[ρ] D̂[ρ] Ê[π] D̂[π] Ê[F-value] D̂[F-value]

3 41.0 11.7 45.0 12.7 41.6 9.7
5 49.3 11.4 44.4 12.7 45.5 10.1
8 54.6 13.1 43.4 12.3 47.4 10.5

Table 3.3: Recall, Precision and F-value summary for sTPDC segmentation ex-
periments with three, five and eight clusters. Values have been multiplied by 102

for better readability.
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Figure 3.10: Empirical cumulative density functions of the precision differences
between sTPDC and TPDC with three, five, and eight clusters.

3.4 Summary

In this chapter, three different variants of PDC with topological constraints have
been introduced. The first one (sPDC) addressed the characteristic property of
natural images to consist of large continuous regions by discouraging highly frag-
mented image partitions. For this method, the significant increase in performance
has been demonstrated visually by the depiction of image partition results and
statistically by evaluating the gain in terms of the precision quality measure.

The second derivative (TPDC) of the basic PDC approach explicitly accounts
for the similarity between the Gaussian mixture models of different clusters by
enforcing a topological coupling of data-groups. For the experiments described
herein, two reasonable choices for the topology have been explored, namely a
chain-like and a circular structure, while the coupling strengths have been fixed.
An interesting direction for further investigations is given by the possibility to
learn the topology of the cluster coupling together with the respective coupling
strengths. As the strength of the coupling should be related to the difference of
the group specific mixture models, choosing the former entities proportional to
the Kullback-Leibler divergences between the feature distributions of the clusters
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provides for a promising possibility. Concerning the quantitative performance
evaluation, it has to be admitted that the achieved results stayed virtually the
same as compared to standard PDC. Nevertheless, the correct identification of
the neighborhood structure in cluster space can be a valuable additional informa-
tion for some application contexts. Here, one might think of an image-database
solution, where the user selects a segment and wants to quickly retrieve simi-
lar image parts. For standard PDC, KL-divergences between all inferred group
models would have to be computed, for TPDC, a simple look-up of neighboring
indices is sufficient.

Finally, both kinds of topological constraints were unified into a single frame-
work. The corresponding experimental evaluation demonstrated by qualitative
and quantitative means that the resulting sTPDC approach combines the good
segmentation performance of spatially coupled sPDC with the explicit represen-
tation of cluster similarities.

3.5 Bibliographic Remarks:

The application of topological constraints in the spatial domain lies at the core
of Markov random field approaches to image segmentation [GG84, DMZB99,
KBZ96, SS02, SBK+02]. Text books on this subject are [Li01] and [Win02].
The idea of self-organizing maps was first introduced by Kohonen [Koh81]. A
comprehensive overview including the subsequent developments is provided by
[Koh95]. Convergence properties of self-organizing maps are discussed in [YA98],
while the application to clustering problems is the subject of [MJ96, BK93]. The
TPDC approach as presented in this chapter, was first published in [ZB02].
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Chapter 4

Robustness and Generalization

In the preceding two chapters, various methods for image segmentation by vari-
ants of parametric distributional clustering have been introduced. All these ap-
proaches share as a common trait that the segmentation solution is achieved by
a clustering of image sites according to the similarities of the corresponding local
feature histograms. Therefore, a clustering procedure and thus an unsupervised
learning problem comprises the core of all the discussed segmentation methods.
The quality of the proposed approaches has been demonstrated by examples as
well as by the statistical evaluation of performance measures, comparing the ma-
chine generated image partitions to those chosen by human subjects. For many
learning procedure, there exist, however, other quality criteria, which are not
directly connected to the results on single instances of the processed datasets.
In particular, the stability of the inferred clustering solutions against small vari-
ations in the processed data and the transferability of data groupings to new
problem instances, i.e. the generalization ability, are widely considered in the
machine learning community. In principle, these questions are relevant for all
PDC variants introduced in this thesis. For conciseness of description, however,
the focus of attention is put on the sPDC approach, as it has proven to be su-
perior in terms of the quality measure evaluation. The problem of stability of
sPDC with respect to small changes in the given image data will be treated in
the first section of this chapter. Then, section 4.2 will deal with the transfer of
segmentation solutions between images of similar content.

4.1 Bootstrap Resampling

4.1.1 The Resampling Strategy

The problem of over-fitting is of major importance for all machine learning tasks,
regardless whether they are supervised, i.e. ground-truth label information is
available, or unsupervised, i.e. one has to rely solely on the measured features.
The learning procedure is supposed to infer the structural characteristics of the
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dataset in question while avoiding to represent the statistical fluctuations, and
thus the noise, which is invariably present in all measurements. The main as-
sumption is, that the data at hand has been generated by a source which is
characterized by a certain distribution law. Consequently, the measured feature
information is considered to be the result of a sampling process from this distri-
bution. Ideally, the learning algorithm would have access to that source, from
which individual samples could be drawn in an arbitrary and thus possibly infi-
nite amount. According to the law of large numbers, fluctuations are eventually
averaged out, facilitating the estimation of the true structural properties. For
most applications, however, this ideal situation is not given. On the contrary,
the amount of data is usually limited and often enough rather scarce.

Figure 4.1: Visualization of the bootstrap sampling process.

In order to alleviate the problem, resampling techniques can be used to generate
multiple instances of the given dataset at hand. One of the most prominent
techniques in this respect is the bootstrap1 method. Suppose one is given a data
set D with n elements. Any new instance of the set, the bootstrap sample, is
then created by drawing n items from D with replacement. Due to the fact that
D itself contains only n items, there will almost always be duplications, while
some of the items will be missing in the sampled dataset. The selection process
is independently repeated B times in order to produce B bootstrap datasets.
This procedure is visualized in fig. 4.1. These re-sampled datasets can then be
utilized, for example, to improve the estimation of some statistic θ. In this case,
the bootstrap estimate θ̂∗ is simply the mean of the B individual estimates of the

1The name ”bootstrap” comes from subsequent versions of Rudolph Erich Raspe’s novel ”The
Adventures of Baron Münchhausen”. In one of these tales, the hero was able to pull himself
up onto his horse by lifting his bootstraps.



4.1 Bootstrap Resampling 61

statistic θ̂∗(b) based on the bootstrap samples, i.e.:

θ̂∗ =
1

B

B∑
b=1

θ̂∗(b). (4.1)

Our goal is to utilize the bootstrap framework in order to assess the stability of
segmentation solutions generated by the sPDC approach with respect to varia-
tions in the input image data. To this end, the bootstrap sampling technique has
to be adapted to the case of image data. Here, the direct application of resam-
pling by drawing with replacement cannot be applied. This is due to the fact that
some of the pixels will be drawn more than once, while others are not chosen at
all. Therefore, the basic bootstrap sampling scheme will lead to images in which
a certain fraction of pixels that are not set (i.e. blank, or black pixels). Based on
such image data, a reasonable application of sPDC, or any other segmentation
technique, is impossible. In order to remedy this adverse situation, it is proposed
to utilize a two stage sampling process. In the first step, the basic bootstrap
resampling technique is applied. Then, in the ensuing second stage, the holes in
the sampled image data are filled by a local re-shuffling of pixels. To be precise,
for any empty pixel, a replacement is randomly drawn from the 3× 3 vicinity of
that pixel in the original image data. A visual description of this procedure can
be found in fig. 4.2.

Figure 4.2: Selection of replacements for pixels which have been left empty in
the first bootstrap resampling stage: a) empty pixel (red), b) a replacement has
been determined via sampling from the vicinity in the original image (blue), c)
the gap in the bootstrap-sample is closed by the chosen replacement.

4.1.2 Evaluation Results

In order to gain insight in the stability of sPDC solutions, a collection of seven
example images from the Berkeley test data-base has been selected. For each
of these pictures, 100 samples have been generated by means of the bootstrap-
based strategy outlined in the previous section. Then, sPDC with five clusters
has been applied to all of these images. The segmentation solutions for each
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image were aggregated into a probabilistic edge map for that particular image in
question. This has been achieved by counting the number of times that any pixel
has been located at a boundary between different image regions and dividing
this sum by the total number of resampling instances. Consequently, those edges
which turned out to be most stable across the samples have received the highest
probability mass. As one can see from eq.(4.1), the averaging procedure is in
complete analogy to the generic derivation of bootstrap estimates of statistics.

The achieved results are shown in figures 4.4 to 4.10. These depictions are
structured as follows: On the left hand side of the top row, the overlaid seg-
mentations of the human subjects from the Berkeley evaluation study are shown.
Next to it, a visualization of the edge probabilities is given, in which higher
probability mass is indicated by darker tones of grey. Below these images, a
graph depicting the achieved recall, precision and F-measure values is shown. To
arrive at this graph, the threshold concerning the normalized frequency, from
which on an edge is counted in the evaluation process, is varied between the
extremal values zero and one. Thus, the curve is parametrized by edge proba-
bility threshold. The best F-measure value along the graph together with the
corresponding recall and precision values at which it has been achieved and the
pertaining threshold are shown in the legend. The general behavior of precision
and recall as functions of the detection threshold t and the mutual relationship
between these functions has been extensively studied in the information science
literature (e.g. [BG94, GK89]). Generally, ρ(t) monotonously decreases, while
π(t) monotonously increases as t approaches 1 (c.f. [Zhu04] for a nice derivation
of this connection). Consequently, one would expect a monotonous decrease of
the combined precision recall graphs in the result figures. As the graphs clearly
show, this presumption is violated in some of the presented examples. Unfortu-
nately, the cause of this irregularities could not be determined. The evaluation
of precision and recall relies on code that is provided as part of the utilized test
suite. Apart from the fact that crucial parts of the code are undocumented and
thus hard to read and understand, altering the code amounts to a deviation from
the public test platform. Therefore, this route was not pursued as it would have
endangered the comparability of the achieved results.

The first example picture (given in fig. 4.4) shows a pile of corn on a blanked.
To its right, one can find a bowl of other fruits, whereas the lower part of the
image is dominated by some small twigs on the soil. As the aggregated edge
image clearly shows, the most stable boundaries are those between the most dis-
similar image parts. In particular, the border of the corn pile, the outline of the
large bowl on the right, the shadowed regions, the area of the small branches at
the bottom of the image, and the soil segments on the upper right and the left
of the picture produce very stable segment boundaries across all segmentations
of the re-sampled images. On the other hand, the fine structure of the blanket,
on which the corn is piled up is mostly averaged out, indicating that the sPDC
segmentations produced differing segmentations on the different bootstrap in-
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stances of the picture. Table 4.1 compares the best F-measure value achieved by
resampling and the pertaining recall and precision values with the corresponding
results of a sPDC segmentation with five clusters on the original input picture.
This table documents, that the resampling approach has been able to rise all of
the performance measures slightly but noticeably.

ρ π F-measure

single sPDC segmentation 0.56 0.61 0.59
aggregated bootstrap edges 0.58 0.68 0.63

gain (%) 4 11 7

Table 4.1: Resampling evaluation summary for image 58060.

The next image (fig. 4.5) shows three piglets on muddy, dark brown soil. For
this picture, the stable edges for the segmentation of the far background are in
excellent accordance with those arrived at by the human subjects. Opposed to
this, the piglets are not reliably inferred as independent segments in the sPDC
solutions for the re-sampled image instances. On the contrary, sPDC seems
to prefer a segmentation, in which the upper light pink part of the piglets is
separated from the lower parts of the animals, which show a darker hue of pink
due to dirt and shadows. Moreover, the hard shadows below the animals are
reliably inferred as separate image parts. This partition cannot be found in the
human segmentations, as shadow seems not to be a semantically relevant category
for the individuals who produced the reference image partitions. A comparison
of the performance measures for the aggregated bootstrap edges and the single
sPDC segmentation of the discussed image can be found in tab. 4.2. While the
recall quality stayed the same, the precision increased 17 %. As a consequence,
the F-measure improved by 7 %.

ρ π F-measure

single sPDC segmentation 0.58 0.53 0.56
aggregated bootstrap edges 0.58 0.62 0.60

gain (%) 0 17 7

Table 4.2: Resampling evaluation summary for image 66053.

The third example, shown in fig. 4.6, poses a very hard segmentation problem
for sPDC. Here, a leopard is depicted sitting in a tree amidst a maze of branches
and twigs. The color impression of this image is dominated by grey hues ranging
from lighter to darker shades. Moreover, the fur of the animal and the branches



64 Robustness and Generalization

generate rather similar responses of the texture filters. Consequently, the segmen-
tations of the bootstrap instances of the picture show a large extend of variation.
Nevertheless, the outlines of the major branches turn out to be comparatively
stable across the various segmentations. The aggregated edges along the bound-
ary of the animal receive only medium probability values, demonstrating, that
a considerable amount of insecurity exists concerning the inference of the leop-
ard segment. This situation is even aggravated for the smaller twigs of the tree
and the parts of the sky in the background that show through the branches.
These adverse conditions are reflected in the achieved performance measures for
the aggregation result which are compared to the corresponding values for the
single sPDC segmentation of the original image in tab. 4.3. Opposed to the
other results for the re-sampled images, the recall is increased, while one has to
acknowledge a decrease in the precision performance measure. Nevertheless, the
summary measure of the F-value is still increased compared to the single sPDC
segmentation.

ρ π F-measure

single sPDC segmentation 0.53 0.55 0.54
aggregated bootstrap edges 0.65 0.51 0.57

gain (%) 22 -7 6

Table 4.3: Resampling evaluation summary for image 134035.

In the fourth image (fig. 4.7), that has been chosen to demonstrate the effects
of bootstrap-based resampling strategies in image segmentation, one can see a
group of zebras in front of a savannah background. Here, the difference between
the foreground objects and the background is much more pronounced than in
the previous example. However, the segmentations of the human subjects in
the Berkeley study are rather peculiar in my view. Some of the bigger stripes
in the fur pattern of the zebras are treated as individual image parts, while
the different regions of the background (i.e. grassy soil and small trees) are
merged into one large segment. As the aggregation result clearly demonstrates,
the outlines of the animals are reliably inferred. This is especially valid for the
upper segment borders along the back of the zebras. The separation of the top of
the image, which is due to its dark color, is also very stable across all re-sampled
image instances. On the other hand, some variations in the segmentation of the
medium range background, containing some bushes and small trees is apparent
from the aggregated edges, while other segregations in this image region turn
out to be comparatively stable. Moreover, there are some boundaries in the
interior of the zebra image part, which also receive a considerable amount of
probability mass. These regions, covering major parts of the animal’s bodies, are
separated from the legs, because the horizontal stripe pattern of the limbs changes
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into a vertical pattern with lower frequency on the torso. Therefore, the set of
texture filters which respond most strongly to these patterns is different, thereby
justifying a partition into separate segments. Again, the achieved performance
measures on the aggregated edges are compared to their counterparts from a
single sPDC segmentation in tab. 4.4. Here, one observes an improvement of all
quality measures. Most remarkably, however, is the increase in precision of 52%.
Together with the slightly improved recall, this leads to a raise of the summary
F-measure of 28%.

ρ π F-measure

single sPDC segmentation 0.54 0.40 0.46
aggregated bootstrap edges 0.57 0.61 0.59

gain (%) 6 52 28

Table 4.4: Resampling evaluation summary for image 253027.

The fifth example, shown in figure 4.8, consists of a picture which shows two
elephants standing on dry grass-land. The upper half of the image is covered by
blue sky. Between the soil and the sky, one can see a forest in the far background.
The separation of that forest from the sky as well as from the grass is reliable
inferred in the majority of sPDC segmentations of the re-sampled image instances.
Moreover, the animals are well separated from the other parts of the image, as one
can see from the high edge probabilities at the outline of the group of elephants.
In the interior of that region, stable borders can be found between shadowed,
and thus darker areas, and those parts which exhibit a slightly lighter shade
of brown. Obviously, there has been some amount of variation concerning the
exact localization of the upper part of that segment’s outline, as one can see
from the fuzzy edge probabilities. Furthermore, on can observe that no stable
segmentation of the grass region directly below the animals has been found, which
is indicated by the lack of pronounced edge probabilities in that area. The results
of the quantitative performance comparison between the probabilistic edge map
and the single sPDC segmentation with five clusters of the original input image
from the test-set is given in tab. 4.5. Here, one has to note a decrease in terms
of the recall of 10%. This is contrasted to a gain of the precision performance
measure of 33%. Overall, this amounts to an increase of the F-measure value of
10%.

On the next image that has been evaluated (fig. 4.9), a camel rider is de-
picted in front of a pyramid. The upper part of the background is given by a
mildly clouded sky, whereas the lower regions are dominated by the depiction of
desert sand. The large dissimilarity between the light brown hues of the sand
and the pyramid, and the bluish grey of the sky leads to a very stable separation
of these image parts. Moreover, the rider and his animal are segregated from the
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ρ π F-measure

single sPDC segmentation 0.73 0.55 0.63
aggregated bootstrap edges 0.66 0.73 0.69

gain (%) -10 33 10

Table 4.5: Resampling evaluation summary for image 296059.

other areas with high reliability. Only at the legs, which are very similar in color
impression to the surrounding darker parts of the sand, one can observe some
decrease in terms of edge probability. The inference of the shadow as an inde-
pendent segment also shows a comparatively large amount of stability. Opposed
to this, the separation of the sky region into clouded and unclouded parts, as can
be seen in the human segmentations, could not be reliably reproduced by sPDC.
Apart from this, the separation of the pyramid from the desert sand, which is
visible in the image partitions of the subjects in the Berkeley segmentation study,
also could not be achieved by sPDC, as it is purely semantically motivated. The
same holds true for the identification of the small rocks on the sand as image
parts in their own right. Comparing the quantitative performance measures, one
has to observe a decrease of recall as large as 4%. This is contrasted, however,
by the highly remarkable gain of 63% in terms of the precision quality measure.
The joint criterion of the F-value consequently increases by 24%.

ρ π F-measure

single sPDC segmentation 0.57 0.52 0.54
aggregated bootstrap edges 0.55 0.85 0.67

gain (%) -4 63 24

Table 4.6: Resampling evaluation summary for image 299086.

Finally, the last example depicted in fig. 4.10, shows two polo-players hunt-
ing after a ball, which can be seen in the lower left corner of the image. In the
background, there is a small house on the left, surrounded by dark green forest.
At the very top of the picture, a small strip of sky is also visible. As one can
see from the pertaining edge probability map, both players together with their
horses are reliably segmented. Furthermore, the shadows below the animals are
identified as image parts in the majority of sPDC segmentations. The white ball
also comprises a very stable segment. Apart from this, the separation between
the dark green forest region and the grass area has a large probability too. The
upper boundary of the forest region is separated from the sky with a somewhat
lesser, but still comparatively high probability. As far as the house in the back-
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ground is concerned, the white areas around the windows are reliably inferred
as independent segments. Opposed to this, the distinction between the roof and
the forest is much less stable. This finding is explained by the large similarity in
terms of feature content between the dark brown roof and the dark green forest.
The evaluation of the quantitative performance measures, depicted in tab. 4.7,
shows a 10% decrease of recall. The precision, on the other hand, is raised by as
much as 29% compared to the single sPDC segmentation of the original image
from the Berkeley data-base. Combined in the summary F-measure, a gain of
8% is achieved.

ρ π F-measure

single sPDC segmentation 0.70 0.52 0.60
aggregated bootstrap edges 0.63 0.67 0.65

gain (%) -10 29 8

Table 4.7: Resampling evaluation summary for image 361010.

Summing up the findings of the experiments described above, the conclusion
is that sPDC is a very stable segmentation method in the sense that boundaries
between image regions of pronouncedly varying feature content are reliably in-
ferred. This is reflected in the high edge probabilities between such image parts,
which are amply visible from the depictions of the edge probability maps. Often
these most stable segment borders correspond well to those, which are semanti-
cally meaningful. This is the explanation for the remarkable increase in precision,
which could be found for all but one example (i.e. image 134035). The latter
image must be interpreted as an outlier. Most likely, the complicated image
structure is more susceptible to the distortions produced by the two-stage sam-
pling scheme. Overall, the precision values increased about 28% on average. The
situation for the recall quality measure is somewhat less clear. On the one hand,
one has three examples for which one has to note a decrease, whereas on the
other hand, three examples exhibit a small, but nevertheless noticeable, increase.
Finally, for one example, there has been no difference at all between the result
for the aggregated edges from the resampling experiments and the corresponding
findings for single sPDC segmentation. In contrast to the precision evaluation, a
decrease of recall could have been expected for the aggregated edges. Due to the
averaging process, unstable segment boundaries are diminished. Consequently,
the number of strong edge pixels can be expected to be lesser than in the case of
single sPDC segmentation, where all borders between image parts receive proba-
bility one. This connection in turn leads to a smaller probability, that a retrieved
edge pixel is also relevant, which is exactly what the recall value measures. Nev-
ertheless, one finds an averaged overall increase of recall of about 1%. For the
summary statistic of the F-measure, the gain in terms of precision and recall
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amounts to a mean increase of nearly 13%. The averaged recall-precision-graph
for all the evaluated examples is given in fig. 4.3.

Figure 4.3: Joint recall-precision-curve for the discussed resampling examples.

Finally, a word of caution seems to be in place. When interpreting the results
for the quantitative performance evaluation, one has to distinguish two effects
which influence the recall, precision and F-value performance measures. One is
given by the fact that by means of the averaging of boundaries over the set of
bootstrap-samples, stable edges are emphasized, while those that resulted from
optimization artifacts or specific noise characteristics of the input image are di-
minished. This gain is actually achieved by using the resampling strategy. On
the other hand, however, the aggregated edges are not any longer true image
partitions due to the fact that no closed coherent segments are inferred. This
relaxation of the segmentation constraint also accounts for some part of the per-
formance increase. Unfortunately, there is no simple way of isolating these two
kinds of influences on the quality measures. One could think of a bootstrap-
enhanced version of PDC, which constructs segmentations by computing the av-
eraged group assignments over all sample images. However, the implementation
of such a procedure is rather involved, as it requires to find corresponding as-
signments across different permutations of cluster-indices (c.f. [FB02]). Thus, it
could not be further pursued in this thesis due to time constraints.
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(a) (b)

(c)

Figure 4.4: Human segmentation compared to aggregated bootstrap edges for
image 58060. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.5: Human segmentation compared to aggregated bootstrap edges for
image 66053. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.6: Human segmentation compared to aggregated bootstrap edges for
image 134035. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.7: Human segmentation compared to aggregated bootstrap edges for
image 253027. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.8: Human segmentation compared to aggregated bootstrap edges for
image 296059. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.9: Human segmentation compared to aggregated bootstrap edges for
image 299086. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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(a) (b)

(c)

Figure 4.10: Human segmentation compared to aggregated bootstrap edges for
image 361010. a) overlaid human segmentations, b) aggregated bootstrap edges,
c) precision-recall-curve.
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4.2 Generalizing Segmentation Solutions

4.2.1 The Generalization Problem

Apart from, but closely related to, the issue of stability of inferred grouping
or classification solutions against random fluctuations of the input data, another
major concern for any learning algorithm is the question of generalizability. Com-
monly, a grouping or classification model is determined on the basis of a given
test-set of representative objects from the domain of interest. Once the model is
fixed, it is applied to new, previously unseen, examples. Consequently, the per-
formance on the latter set is usually of much greater importance, than the quality
achieved on the training set. As has already been pointed out in the discussion
of the resampling approach, any dataset does not only contain structural infor-
mation about the nature of the source, but also random fluctuations. Adapting
the learning algorithm perfectly to the training data thus inevitably results in
modeling the aforementioned noise. Consequently, the performance on unseen
examples deteriorates, which constitutes the problem of over-fitting. In the case
of image segmentation, many algorithms are proposed, which arrive at an image
partition by other means than learning procedures. Moreover, in the majority
of cases, only the performance in terms of the segmentation quality on the given
image data is deemed to be of interest. Thus, the application of a trained model
to new data is not widely discussed in the pertaining literature. PDC and its
variants, however, are clustering approaches, representing the data-groups via
continuous models of feature distributions, and as such they are learning algo-
rithms. Therefore, the question to which extend the model fitting stage is able to
identify the true structural properties of these distributions, while ignoring the
noise, is most relevant. In this section, this problem is addressed in an empirical
manner.

4.2.2 Experimental Setup and Results

In order to evaluate the generalization ability of sPDC solutions, experiments
concerning the transfer of models between similar images have been conducted.
As the Berkeley test-set is geared towards offering a great variety of different
images, it has not been considered suitable for this kind of experimental set-
up. Instead, a collection of five pairs of images from the Corel image gallery has
been compiled, which comprises four examples from the sub-directory Zebras and
three image pairs from the sub-directory Cheetahs, Leopards and Jaguars. For
the zebra category, sPDC solutions with four clusters have been produced, while
the results for the other set are based on segmentations with five clusters. The
settings for the data-acquisition and pre-processing steps are the same as for the
sPDC experiments discussed in section 3.1.3. For each image pair, the experimen-
tal procedure is as follows: In the first step, sPDC segmentation solutions have
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been computed independently for both pictures. The relevant model parameters
for the solution of the first image, i.e. the Gaussian alphabet and the specific
mixture weights for each data-group, have been recorded. The second step then
consisted of applying the sPDC model from the first image to the second. To this
end, the data-acquisition process of the second image has been run, followed by a
complete E-Step computation yielding the optimal assignments of all sites in the
second image given the continuous model parameters of the sPDC result from
the first picture. In this way, a transfer of segmentation solutions from the first
to the second image in each pair has been achieved under the assumption, that
everything which can be learned and transferred from one image to the other
is contained in the prototypical group distributions. A pseudo-code version of
the transfer algorithm is shown below. Note that the random permutations are
applied in order to prevent artifacts from a fixed optimization order.

Algorithm 1 Transfer of sPDC segmentation solutions.

Require: sPDC model for first image has been computed
Ensure: segmentation of image two according to the sPDC model of image one

load continuous sPDC model parameters of first image
run data extraction procedure for second image
repeat

generate a random permutation Π of {1, . . . , n}
for i = 1 to n do

set s = Π(i)
for c = 1 to k do

calculate meanfields hs
sc according to eq.(3.3)

end for
for c = 1 to k do

update assignments according to eq.(3.6)
end for

end for
until converged

In the ensuing examples, the first row shows the partition solution of the first
image in the top row. Then, the segmentation of the second image is depicted in
row two. Finally, the result of the solution transfer is shown in the last row. For
all segmentations, outline visualizations are given in the first column, while the
second column exhibits a color coded depiction.

The first image in the first example pair, given in fig. 4.11, shows a herd of
zebras at a small river. The image region covered by the group of animals is
essentially covered by the green cluster, visible in the color coded depiction of
the segmentation result. The black cluster contains regions of high lightness, in
which also zebras are present. The light brown parts of the image at the lower
border are attributed to the red cluster, while the darker regions are assigned
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to the blue data-group. In the second picture, one sees another group of zebras
at approximately the same scale standing on a grass plain. The picture also
contains regions of a light brown hue as well as darker regions especially around
the legs of the animals and in the lower corners. These properties make it an
ideal candidate for the application of the sPDC model from the first picture.
Although the segmentation is of slightly lesser quality than the result of the
specifically optimized model for the second picture, the characteristics of the
inferred clusters of the first image are perfectly reflected in the results of the
model transfer shown in the last row of the figure. The region containing the
torsos of the zebras is attributed to the green and black clusters, which also
covered the corresponding areas in the first image. Moreover, the red data-group
covers the image parts of light brown and green hues, whereas the darker areas
are assigned to the blue cluster, which is again in very good agreement with the
partition of the first picture.

In the next pair of example images shown in fig. 4.12, single zebras are depicted.
In the first image, the region occupied by the animal is essentially represented
by the blue cluster in the pertaining sPDC clustering solution. The region of
lighter brown and green hues is attributed to the data-group visualized in black.
Those parts of the image that are dominated by brown hues of medium lightness
are assigned to the red cluster, whereas the darkest image regions correspond to
the data-group shown in green. The zebra which is depicted in the second image
possesses a strongly differing fur pattern than the one in the first picture. The
spatial frequency of stripes is much higher. Moreover, there is a noticeably lesser
amount of horizontal stripes. Additionally, the second picture is more closely
focused on the animal than in the first case. In summary, the measured texture
features, and thus their distributions show a certain amount of variation. Despite
these restrictions, the transfer of the segmentation model from the first image to
the data of the second still yields a very satisfactory result. The zebra is, except
for some small regions, attributed to the blue cluster, which also represented the
image data of the animal in the first segmentation. The correspondence of the
other clusters is very good too. The data-group depicted in green also covers
the darkest parts of the second picture. The black cluster, being responsible
for the lightest regions in image one, also represents the lightest parts of image
two. Furthermore, the data-group for the segment characterized by intermediate
brown tones in the first image is used to encode those regions of the second
picture, for which the pertaining brown hues lie between the dark colors of the
shadow regions and the light brown or almost ecru hues of the black cluster.

For the third example set, which is depicted in fig. 4.13, the model transfer
starts out from the same image as in the preceding experiment. Here, however,
the pertaining sPDC clustering solution is transferred to another image. The
latter picture shows two zebras, a dam and its foal, standing on a paltry plain.
Obviously, the dissimilarity between the two images in this example set is rather
high. Not only are the two zebras in the second picture farther away from the
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observer, the foal also exhibits a fur pattern with higher spatial frequency com-
pared to a full-grown zebra. Furthermore, the surrounding background sceneries
in the two images are rather distinct. Nevertheless, the transfer of clusters mod-
els turns out to work very well. The vast majority of the area covered by the
two zebras is assigned to the data-group color-coded by blue. This is the same
cluster to which the zebra region in the first image belongs. Apart from this, the
other cluster associations also match those of image one. The regions of light
grayish brown in the second picture are assigned to the black cluster, the one
which encoded the light brown regions in image one. The red cluster, to which
the regions of medium green and brown hues in the first image are attributed to
is also responsible for the areas of medium green and brown tints in image two.
Finally, the darkest regions in both images are attributed to the green cluster.

The fourth example, depicted in fig. 4.14, shows a distant group of zebras. The
corresponding region in the image is mainly attributed to the red cluster, while
some minor parts are also assigned to the black cluster. The other image parts
are dominated by shades of brown, grey, and green hues of varying lightness. The
lightest parts are covered by the blue data group, while the darkest regions are
assigned to the black cluster. The areas of intermediate lightness belong to data-
group color coded by green. The second image of this example pair also depicts a
small group of zebras, which are slightly closer to the observer. The background
of this image mainly exhibits grayish hues of brown and green. The outcome of
the model transfer is again shown in the third row of the image collection. Here,
one has once again to note, that the transfer of segmentation solution provides
for a very good result. The zebras are assigned to the red clusters, just as in
image one. Moreover, the correspondence between the other group-assignments
is as expected. The darkest image regions are attributed to the black clusters,
whereas the lightest ones are associated with the data-group color-coded in blue.
Again, the green cluster is responsible for the segment of intermediate lightness.

In the fifth example, given in fig. 4.15, pictures from the Cheetahs, Leopards,
and Jaguars sub-directory from the Corel image gallery are treated. Conse-
quently, the first image shows a cheetah walking over a grassy plain. The area
occupied by the animal itself is mostly attributed to the black cluster. Some
parts, which are covered by shadows, however, are assigned to the red cluster,
which otherwise covers the darkest green parts of the image. Those areas which
exhibit light green an brown hues belong to the data-group color-coded in green.
The other two clusters separate two regions of varying green hues. In the second
image, one can observe a far less amount of green hues, instead, large parts of the
image exhibit the light brown and ecru tones of dry soil. These colors correspond
much better to the color of the cheetahs fur than the green grass in the first
picture. Nevertheless, the animal is found as an independent segment with great
accuracy. The solution transfer is not trivial in this case, as the cheetah in the
second image is somewhat closer to the observer than the one in the first, lead-
ing to different responses of the texture filter-bank. Moreover, as has just been
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stated, the first image, in contrast to the second, does not contain light brown re-
gions except for the cheetah itself. Nevertheless, the transfer of the sPDC model
distributions from the first image to the second yields very satisfactory results.
Most of the area occupied by the animal is associated to the black cluster, just as
in the segmentation of the first image. Furthermore, the darkest regions of brown
and green hues are assigned to the red data-group, in perfect correspondence to
the clustering solution of the first picture. The visual inspection of the other
image parts shows, that the assignments of remaining regions match those of the
first image in this example pair too.

In the example pair given in fig. 4.16, the same image as in the previous exper-
iment is utilized as the starting-point for the model transfer. This time, however,
its pertaining sPDC model is applied to a different image. Here, the similarity
between the depicted scenes is certainly larger than in the previous experiment,
consequently, an even better transfer result can be expected. Indeed, as the seg-
mentation visualizations show, the image region assigned to the black cluster in
the transfered solution fits the area covered by the cheetah as tightly as the re-
gion of the corresponding data-group in the sPDC model that has been trained
on image two. Moreover, the correspondence between the background clusters in
terms of the visual impression of the associated regions is also remarkable.

Finally, the seventh image pair, given in fig. 4.17, shows jaguars in their natural
environment. In the first picture, one sees a single animal in front of a small cave-
like structure. As the background solely consists of the same type of rock, the
colors are just varying hues of brown, reaching from ecru in the areas of incident
sunlight to almost black in the shadowed regions. As the segmentation result
shows, sPDC is very well able to identify the jaguar as a segment of its own. The
other four data-groups mainly differentiate between the different brown to black
tones of the background. The second image in this pair is remarkably different.
Here, the animal is depicted amidst a variegated background. The range of colors
includes the bluish hues of the water, green tones, and varying shades of brown.
Although this scenery is very cluttered, the jaguar is identified as an independent
segment in the pertaining sPDC segmentation solution. Despite the tremendous
differences between these images, the transfer of the segmentation model from
image one to the second picture works very well. The animal is attributed to the
data-group color-coded in black, just as one would expect from the segmentation
result of the first image. Clearly, the identification precision of the jaguar’s
segment outline does not quite reach the one from the adapted model. But this
could hardly be expected given the differences between the pictures. Moreover,
despite the fact that the other four clusters in the sPDC solution for the first
image had only to differentiate between varying brown hues, the segmentation of
the background in image two is very reasonable.

Summing up the results for the experiments discussed above, one has to con-
clude, that the sPDC approach to image segmentation is very well able to capture
the structural statistical properties of image regions in the inferred Gaussian mix-
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ture models of the pertaining clusters. The transfer of solutions yields satisfactory
results even for image pairs which exhibit a considerable amount of variation in
terms of the particular feature distributions.

Figure 4.11: Generalizing sPDC solutions, example image pair one.
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Figure 4.12: Generalizing sPDC solutions, example image pair two.
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Figure 4.13: Generalizing sPDC solutions, example image pair three.
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Figure 4.14: Generalizing sPDC solutions, example image pair four.
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Figure 4.15: Generalizing sPDC solutions, example image pair five.
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Figure 4.16: Generalizing sPDC solutions, example image pair six.
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Figure 4.17: Generalizing sPDC solutions, example image pair seven.
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4.3 Summary

In this chapter, two major subjects of learning theory, i.e. the stability of in-
ferred solutions against small variations in the data, as well as the applicability
of learned models to new problem instances, have been empirically evaluated
for the sPDC approach to image segmentation. In both cases, sPDC showed
a remarkable performance. The stability experiments via a variant of bootstrap
resampling for image data clearly demonstrated, that sPDC is capable of produc-
ing robust segmentations of the given image data at hand. All major boundaries
between different image regions have been reliably inferred. Moreover, the av-
eraging process leading to aggregated probabilistic edge-maps of the processed
images yielded a considerable performance increase in terms of the utilized qual-
ity measures precision and F-value, while leaving the recall virtually unchanged.
This finding is explained by the suppression of those segment borders, that did
not prove to be stable across segmentations of different image instances. Conse-
quently, the proposed resampling approach provides for an interesting means of
boosting segmentation performance. The only drawback of such a procedure is
given by the fact that the probabilistic edge maps do not constitute valid image
partitions, since border pieces and edge sets and not necessarily closed, coherent
segments are inferred.

The experiments concerning the generalization ability of sPDC demonstrate,
that the inferred model distributions for each cluster faithfully capture the sta-
tistical properties of the associated regions. Otherwise, the remarkable results
concerning the transfer of segmentation solutions between images of different al-
beit similar content could not have been achieved. In the given examples for the
transfer of segmentation models, not only the cluster of the foreground object,
but also those covering the less specific background regions have been reasonably
matched to the characteristics of the images, to which they have been applied.

4.4 Bibliographic Remarks

The foundations of statistical learning theory including an in-depth discussion of
the problems concerning robustness and generalization ability of machine learn-
ing approaches are laid by Vapnik in [Vap95, Vap98]. The Bootstrap method
has been invented by Efron [Efr82, ET84]. Practical applications are discussed
in [DH97, Goo99]. Bootstrap error estimation is treated in [JDC98]. The related
approaches of bagging and boosting are introduced in [Bre96] and [Fre95] respec-
tively. The application of these methods to the classification of remote sensing
data is discussed in [CHD01]. Finally, [FB02, RBLB02, RLBB02] develop resam-
pling methods for cluster validation and model order selection.
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Chapter 5

Shape Constrained Segmentation

5.1 Introduction

The segmentation of images, e.g. as discussed in the previous chapters, is of
prime importance in low level vision. Besides being a lively field of research in
its on right, it can also be used to arrive at intermediate representations of image
content, which provides an abstracted and simplified model of the depicted scene
compared to the raw image data itself. Having such a representation at hand,
higher level processing, e.g. object recognition and content based image retrieval,
is greatly facilitated.

Full advantage of such an approach is apparent, if the segmentations are in
good agreement with the semantic content of the depicted scene. Unfortunately,
this precondition is frequently violated. Although considerable progress has been
achieved and powerful algorithms are available today, human segmentation qual-
ity is still unmatched, especially when real world imagery defines the application
domain. One of the reasons for this discrepancy is given by the fact that most
of the algorithms in that field rely solely on low-level features, whereas human
segmentation has many higher level knowledge sources to utilize. The central mo-
tivation for this chapter arises from the goal to bridge this apparent gap. To this
end, a novel way of incorporating prior knowledge on the shape of certain objects
of interest in the segmentation process is introduced to facilitate a semantically
correct segmentation.

The structure of this chapter is as follows: First, the probabilistic representa-
tion of shape, which subsequently functions as a prior for the shape constrained
segmentation approach (SCS), is described in section 5.2. Then, section 5.3 will
expand the idea of model transfer as outlined in the previous chapter to the no-
tion of aspect sets. These are collections of prototypical feature distributions for
some given semantic category that reliably capture the essential statistical prop-
erties thereof. From these aspect sets, likelihoods for the presence of an object
from a certain semantic category are derived. With these prerequisites at hand,
the shape constrained segmentation approach is formulated in a Bayesian setting
in section 5.4, combining the category likelihoods with the a priori shape infor-
mation to a posterior occurrence probability of an object from the given semantic
category. Representative experimental results are discussed in section 5.5.
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5.2 Representing Shape Knowledge

In order to integrate shape knowledge into the segmentation process, the problem
of adequate representation has to be addressed. An answer to this question is
highly dependent on the kind of objects one is interested in and the application
domain in general. Rigid objects which are always presented in the same pose
certainly demand a less variegated description than articulated objects that are
depicted in a rich variety of possibly different poses.

Although the method of shape constrained segmentation presented here is by
itself very generic, its application context is restricted to the identification of
certain species of wildcat (cheetahs and jaguars) in images of their natural envi-
ronment (c.f. section 5.5 for details). This setting clearly demands for a highly
adaptive shape representation, as both the multitude of possible poses and the
non-rigidity of the objects in question exclude static approaches. It is also ap-
parent that no single shape representation can at the same time be totally pose
invariant while being still discriminative enough to capture the specific details
which are necessary for a faithful recognition of the given object of interest. For
the sake of simplicity, the emphasis is put on one specific class of poses, namely
wildcats in a sideward standing position. Even under this seemingly limiting con-
straint, the images show a remarkably large diversity of shape instances due to
the non-rigidity of the objects in question. Consequently, it is proposed to repre-
sent the shape information in a probabilistic way. This approach has the further
advantage that it fits well into the statistical framework of the PDC method, as
will be shown in section 5.4.

In order to arrive at such a representation, a number of representative images
of the objects are first segmented in a sketchy way. This step could also be
automated by using a segmentation algorithm. After that, these segments are
centered with respect to the particular image at hand in order to avoid influences
of the relative position on the final shape representation. In a next step, distances
of every pixel in a given image to the now centered region depicting the object of
interest are computed for all the images in the set of representatives by applying
a chamfer transform [SHB98]. These distances themselves could be interpreted
as shape probabilities after an appropriate normalization. This, however, would
yield unsatisfactory results due to the fact that the linear gradient puts too much
emphasis on remote regions.

Therefore, a zero-mean Gaussian model is applied to the distances, which en-
sures an exponential decay of the probabilities for sites which are not part of the
shape areas. A detailed description of the parameters is given in section 5.5. In
order to join the shape information contained in the images of the representative
set into a single shape description, these individual probabilistic shape models are
fused by an averaging process. Finally, the combined probabilistic representation
is subjected to a blurring operation to reduce inhomogeneities which might still
persist after the averaging. The processing pipeline for the construction of the
shape representation is outlined in figure 5.1.
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Figure 5.1: Prior shape model construction: a) sketchy hand segmentations, b)
chamfer transforms, c) final shape prior.

The approach for shape prior generation described above certainly requires
some amount of human interaction. Nevertheless, this is not considered a critical
problem. One can think about a bootstrap procedure, where initial segments
without shape information are used to form the first shape templates; then these
boundaries are averaged after a rough alignment and the automatically synthe-
sized shape priors are then used to identify new shape constrained segments.
Such an approach would not require any human interaction at all.

5.3 Aspect Sets

For real-world applications it is evident that given images not only contain in-
stances of the sought-after objects, but also large amounts of background pixels.
Although this background usually is composed of clutter with little discernible
shape properties, it can embody a broad variety of different distributions of ele-
mentary image features. The PDC segmentation method and its variants char-
acterize image parts by mixtures of Gaussians which define prototypical distri-
butions for the measured features. Hence it concisely summarizes the statistical
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properties of image regions. Once PDC segmentations for a given database of
images at hand have been inferred, representative feature distributions for the
semantic category of interest as well as the background can be selected by user
interaction.

Encouraged by the success of the model transfer as documented in the previous
chapter, this idea is now taken one step further. Despite the satisfactory results
for the direct transfer of segmentation solutions from one image to another, this
approach evidently has its limitations. Clearly, the concrete form of such model
distributions for the foreground object is dependent on a number of influences
like viewing angle, lighting conditions, and the distance between observer and the
depicted object, which may vary widely over different images in a dataset. Thus
it is appropriate to represent a semantic category by more than one distribution,
where these statistical models are interpreted as different aspects of a category.
This situation is even more pronounced for the background, as it is a much less
well-defined concept. Therefore, it is proposed to summarize manually chosen
prototypical feature distributions for background and foreground in a database
A, which is comprised of the set of foreground distributions Af of size nf and
the set of background distributions Ab of size nb:

A = Af ∪ Ab, where

Af = {af
1 , . . . , a

f
nf
}, Ab = {ab

1, . . . , a
b
nb
}. (5.1)

In the derivations given below, a generic aspect in the set A is denoted by a. The
division of the aspect set corresponds to the dichotomy of the set of semantic
categories Ω = {ωf , ωb} into a semantic category representing the foreground
object ωf and another one for the category background ωb. When the approach
is presented with a new input image, it is first processed by the feature extraction
procedure of the PDC framework, i.e. histograms for all image sites are computed.

The goal is now to find the most probable assignment of sites to the semantic
categories given the measured feature histograms. This inference problem is based
on independence assumptions that are summarized in the following graphical
model for the data generation process, which is valid for all image sites: Ω →
A → X . A visualization of this graphical model is depicted in fig. 5.2. In the
first step, a semantic category for the given site is determined by a probability
distribution p(Ω). Then, an aspect is chosen with probability p(A|Ω). Finally, a
concrete realization of the observation data is drawn according to the distribution
p(X|A). Thus one arrives at the following representation for the joint probability:

p(Ω,A,X ) = p(Ω) · p(A|Ω) · p(X|A). (5.2)
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Figure 5.2: Graphical model of the SCS approach.

From this equation, twofold application of Bayes rule leads to

p(Ω,A,X ) = p(Ω) · p(A|Ω) · p(A|X )p(X )

p(A)

= p(Ω) · p(Ω| A)p(A)

p(Ω)
· p(A|X )p(X )

p(A)
(5.3)

= p(Ω| A) · p(A|X ) · p(X ).

The computations detailed in the equation above can be interpreted as the re-
versal of the arrow direction in the graphical model given in fig. 5.2. Thereby,
the perspective on the model changes from a generative to an inference oriented
one. Moreover, one has

p(Ω| X = Xs) =
p(Ω,X = Xs)

p(X = Xs)
, where

p(Ω,X = Xs) =
∑
a∈A

p(Ω,X = Xs,A = a) (5.4)

=
∑
a∈A

p(Ω| A = a) · p(A = a| X = Xs) · p(X = Xs).

Therefore, the probability distribution of the semantic models for a site given a
feature measurement is described by the following expression:

p(Ω| X = Xs) =
∑
a∈A

p(Ω| A = a) · p(A = a| X = Xs). (5.5)

Due to the fact that the set of aspect distributions is divided in the disjunct sets
of foreground and background aspects, one obtains

p(Ω = ωf | A = a) =

{
1 if a ∈ Af ,

0 otherwise
,

p(Ω = ωb| A = a) =

{
1 if a ∈ Ab,

0 otherwise
.
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In order to evaluate eq.(5.5), the probability of an aspect model given the set of
observations has to be specified. To this end, the application of Bayes rule leads
to

p(A = a| X = Xs) =
p(X = Xs| A = a) · p(A = a)∑

ã∈A p(X = Xs| A = ã) · p(A = ã)
. (5.6)

As one can see from eq.(2.20), the probability of a concrete realization of the
set of observations at a certain site given its assignment to one of the aspects
is given by the exponential of the local PDC costs for that aspect. Therefore,
p(X = Xs| A = a) = exp(−hsa). Furthermore, the a priori probability of an
aspect model is considered to be uniform. I.e., p(A = a) = 1/na, where na

denotes the total number of aspects in the set A. Thus one arrives at

p(A = a| X = Xs) =
exp(−hsa)∑

ã∈A exp(−hsã)
. (5.7)

Inserting equations (5.3) and (5.7) in eq. (5.5), one sees that the probabilities of
the two semantic categories given the feature observations are described by the
following expressions:

pωf (s) = p(Ω = ωf | X = Xs) =
∑
a∈Af

exp(−hsa)∑
ã∈A exp(−hsã)

and analogously (5.8)

pωb(s) = p(Ω = ωb| X = Xs) =
∑
a∈Ab

exp(−hsa)∑
ã∈A exp(−hsã)

.

Please note that the short-hand notations pωf (s) and pωb(s) have been introduced
for the probabilities of the semantic categories for a given image site s in the
equation above to facilitate later reference.

5.4 Combining Shape and Segmentation

Up to this point, a statistical representation of shape together with likelihood
maps for the semantic categories foreground object and background have been
established. Now, these two sources of information on object identity have to be
fused to infer a segmentation of a given input image into areas which correspond
to these categories. As both types of information are provided in a probabilistic
form, it is most natural to combine them in the framework of Bayesian statistics.
To this end, the shape information concerning the foreground object is inter-
preted as the prior and will henceforth be denoted by PS. Formally, the posterior
probability Pωf

of the foreground semantic category at site s is computed by

Pωf
(s) =

pωf (s) · PS(s)

pωf (s) · PS(s) + pωb(s) · (1− PS(s))
. (5.9)
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However, to achieve satisfactory recognition performance, the shape information
can be successfully applied in the way given in eq. (5.9) only if the prior prob-
abilities are in accord with the likelihood pωf . In order to strictly adhere to the
Bayesian paradigm, the prior would have to be formulated as a distribution over
entities like position, orientation as well as scale. Due to the fact that the consid-
ered objects can occur in both orientations at almost any location in the image
at any reasonable scale, imposing something different from a flat prior would
overly constrain the applicability of the proposed method on unseen examples.
Furthermore, the computational evaluation would be even more demanding than
it already is, endangering the practical application of the approach in cases where
short response times are crucial.

Thus one seeks for the best alignment of the shape probabilities with those re-
gions in the image which display high likelihood values for the foreground object.
This step requires to shift the cloud of prior probability values to a new location
such that the foreground object is optimally covered. Denoting the shifted prior

probabilities by
→c

PS and its center by c, the optimal position c∗ can be found by
solving the maximization problem

c∗ = max
c

∑
s

pωf (s) ·
→c

PS. (5.10)

Moreover, since the shape prior is not mirror symmetric, both possible orien-
tations are checked during the alignment. The decision concerning the most
probable configuration is met on the basis of highest posterior probability. Small
changes in scale of the object of interest do not significantly affect the segmenta-
tion results due to the probabilistic prior representation. However, if these size
variations exceed a certain limit, they must be accounted for by an appropriate
scaling of the prior. Clearly, enlarging the integrated prior probability mass by a
factor λ always produces a higher posterior for the given alignment. Therefore,
a direct comparison of the posterior probabilities over different scales can not
guide a meaningful decision for the scale parameter. Under the condition that
the scaled prior exclusively covers areas of high likelihood (pωf ≈ 1), the sum of
the posterior probability mass also scales according to λ. In order to take the
scaling-behavior of the posterior alignment score into account, the selection of an
appropriate prior starts with the smallest reasonable size. Alignment scores are
then computed for larger versions, where the range of possible sizes is coarsely
sampled. A larger prior is accepted, if it improves the score by at least 0.8 · λ,
i.e. it almost exclusively covers areas of high likelihood.

One has to be aware of the fact that from a pure Bayesian viewpoint the
priors as proposed above have been adapted to the data and, therefore, do no
longer qualify as true priors. However, the term shape prior still be considered
appropriate, since the a priori selected form is not changed by the adaptation
step but only its relative position to the image. The processing pipeline of the
shape constrained segmentation procedure is outlined in figure 5.3.
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Figure 5.3: SCS processing pipeline.

5.5 Implementation and Experimental Results

5.5.1 Dataset and Features

The images, on which the shape constrained segmentation approach has been
tested, come from the Corel image database. In particular, the set Cheetahs,
Leopards and Jaguars has been used. It contains one hundred images of wildcat
from the aforementioned species, where 34 of them depict cheetahs. Out of this
group, 14 show a single animal in a sideward view, so they where selected as the
actual testbed for our method. The input data for the PDC-based approach to
image segmentation are histograms of feature values taken at image sites lying
on a regular grid. For the experiments which are described here, a fine grid with
an inter-site spacing of two pixels has been used. The local neighborhoods from
which the histograms have been drawn have a size of 11 × 11 pixels. The fea-
tures which were subjected to the histogramming procedure are the values from
the three color channels of the original input images together with the magni-
tudes of the Gabor filter-bank that has already been used for the segmentation
experiments in the previous chapters. Consequently, this procedure yields an
eleven-dimensional feature vector at each pixel.
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5.5.2 Shape Prior Construction

As a first step in the construction of a shape model for a standing cheetah in
sideward view, rather sketchy hand-segmentations for 6 images have been made
using a standard painting application. Some examples are shown in the top row
of figure 5.1 as well as in fig. 5.4. The latter figure in particular demonstrates
the relation between the images from the test-bed and the manually constructed
segmentations of the objects of interest. These hand-segmentations where then

(a) (b)

Figure 5.4: Sketchy hand-segmentations in shape prior construction: a) input
image, b) hand-segmentation.

centered, in order to arrive at a common standard configuration. After that,
the now centered images have been processed by a distance transform (chamfer-
ing). In the next step, a Gaussian probability function with σ = 10 has been
applied to the distances, transforming them into probabilities while leading to a
steep decay of values in the outer regions of the images. Having averaged the
shape probabilities, an additional Gaussian blurring with a stencil size of 10× 10
pixels has been applied. The final probabilistic shape model resulting from this
procedure is depicted in the last row of figure 5.1, where large probabilities are
shown in dark colors. Please note, however, that the procedure described above
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is not the only possible way of arriving at a probabilistic shape description for
the shape constrained segmentation approach. One could as well start with a
single hand-drawn sketch of the object of interest which captures its essential
shape properties, applying the distance transform and the Gaussian model to
this single image. In such a way, the shape constrained segmentation approach
can be utilized in a content based image retrieval system with user interaction.

5.5.3 Aspect Model Generation

As has been outlined before, apart from the probabilistic shape information, one
important building block of the SCS approach is given by the computation of
likelihood maps for the semantic categories. Consequently, the system has to
be provided with a database of probability distributions encoding the statistical
properties of features for these categories. In order to produce such a database,
the test set of images has been segmented by a PDC model of ten clusters. Each
segmented image thus led to a set of ten distributions. Eight out of the total
of 14 images were selected as sources of aspect models. From these remaining
images, a set of 12 distributions for the foreground, and another 12 distributions
for the background have been selected by user interaction. Here, the number of
images as well the number of aspects can be freely chosen. The goal behind the
selection process was to acquire enough models in order to faithfully capture the
variety inherent in the instances of the semantic categories while still demanding
a good generalization performance on unseen examples.

As has been demonstrated in section 5.3, the computation of aspect likelihoods
relies on the local PDC costs of the given input data at a site. Therefore, it is very
instructive to examine the relationship between these two entities. The transition
from the local PDC costs to the likelihoods of a certain semantic category serves
two main purposes. First and foremost, one arrives at a probabilistic measure
of association between the regarded site and the prototypical distributions for
the relevant semantic categories. This association is indispensable for the later
combination with shape-information in the Bayesian setting described in section
5.4. Furthermore, the aspect likelihoods enable a comparison of aspect association
strengths across different sites. This property does not hold for the local PDC
costs themselves. Experiments showed that for each site, the local PDC costs are
in good accordance with the expectations in the sense that a site which belongs
to the semantic category of interest almost always has lesser PDC costs with
respect to the aspects from the foreground-set, than to the background. The
converse holds true for the case of sites from background regions of the test-
images. On the other hand, when one compares local PDC costs across different
sites, the surprising finding was that sites from the background at times had lesser
PDC costs to the foreground aspect set than other sites that clearly belonged to
foreground regions. This means that, although the relative ordering of aspect
costs at any site is in good correspondence to the true semantic category, the
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Figure 5.5: Symbolic depiction of the geometry in PDC cost-space.

costs at different sites are not comparable with each other, due to the lack of a
common scale.

After numerous experimental investigations, the source of this problem could
be tracked down to the employed mode alphabet. For reasons of simplicity, a
common alphabet has been used for all PDC clustering solutions, from which
aspect distributions have been derived. In order to construct this common al-
phabet, the set of chosen example images has been coarsely subsampled. From
the resulting joint set of feature vectors, the mode alphabet has been generated by
a mixture model estimation step with the prescribed number of modes. Clearly,
the images of the test set contained far more feature vectors from the background,
than from the foreground category. Consequently, the background has been far
better represented by the mode alphabet. In order to remedy this situation, an-
other mode alphabet has been constructed, containing sixteen modes that were
solely computed based on background feature vectors and another sixteen modes
that were derived explicitly from data of foreground regions. Using this adapted
alphabet, the problem described above did no longer occur. These findings are
exemplified by three examples given in fig. 5.6. In the top row, the example
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images are depicted. Then, the second row shows the aspect likelihoods derived
according to the approach described in section 5.3. For all subsequent visualiza-
tions in this figure, higher values of the depicted entities are indicated by darker
shades of grey.

Figure 5.6: Aspect likelihoods in comparison to PDC costs. First row: test
images; second row: aspect likelihoods; third row: PDC costs for non-adapted
mode alphabet; fourth row: PDC costs for adapted mode alphabet. For all
visualizations, higher values are indicated by darker shades of grey.

Although a non-adapted mode alphabet has been used, the likelihoods are not
only in good accordance with the true semantic categories, moreover, they are also
comparable across different sites due to the fact that they are true (i.e. normed)
probabilities. The third row shows visualizations of the PDC costs to the nearest
aspect from the cheetah category. Here, one can clearly see that the cheetah
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region is largely inhabited by sites that have higher minimum PDC cost to the
cheetah aspects, than large portions of the background sites. Finally, the last row
depicts the results when using the adapted mode alphabet as described above.
Now, the magnitude of cost terms across different sites is in good accordance to
the true semantics of the input images.

The observed geometry in PDC cost-space is depicted symbolically in fig. 5.5.
Here, an aspect from the foreground as well as one from the background are
shown as black crosses. A site from the background is shown as a red dot, while a
corresponding one from the foreground is visualized as a green dot. The distances
(i.e. the assignment costs) to the aspects are indicated by dashed lines. Although
the relative cost for the foreground site to the foreground aspect is lower than its
distance to the background aspect, it is still larger than than the corresponding
distance of the background site. The same holds true for all data-points inside
the hatched region.

Summing up the discussion above, the transition from PDC costs to aspect like-
lihoods not only enables the formulation of the shape constrained segmentation
approach in a Bayesian setting, it also leads to association strengths of sites to
aspects that refer to a common scale, even if no specially adapted mode-alphabet
is used.

5.5.4 Prior Alignment

Clearly, the proper alignment of the shape prior is of crucial importance for the
successful application of the shape constrained segmentation approach. In this
respect, the ability to successfully adapt to changes in the scale of the object
plays an important role. Therefore, two examples of the scaled prior alignment
are provided in figure 5.7. Due to the probabilistic nature of the shape prior, it
possesses an inherent robustness towards small changes in the scale of the objects
of interest. Consequently, the option of choosing a scaled prior has been adopted
only for one example in the data set. This particular image shows a close-up of a
cheetah, thereby warranting the selection of an enlarged shape prior. That image
together with the prior alignment and the final shape constrained segmentation
is shown in the first column of figure 5.7. Considering the fact that this image has
not been used for the construction of the shape prior, nor has it contributed to
the aspect data-base, the segmentation quality is very good. In order to provide
another example for the scale selection method, one image of the original data-set
has been manually enlarged to 130 % of its original size. After that, this example
has been cropped to the size of the other pictures in the test-set. The alignment
process has then been run for that image, leading to the results depicted in the
second column of fig. 5.7. In this example, an image of a relatively distant, and
thus small, cheetah has been used. As the alignment procedure is able to cover
almost the complete area depicting the cheetah with the original prior, the shape
representation has not been enlarged by the alignment procedure.
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Figure 5.7: Results of the scaled prior alignment procedure.

5.5.5 Shape Constrained Image Segmentation

To turn the probability assessment for the semantic categories into a segmentation
for the given input image at hand, each image site is assigned a label according to
the maximum of the posterior probability values for foreground and background
respectively. After computing this labeling, one sweep of a post-processing step
has been applied to the segmentations in which each site is relabeled according to
the majority of assignments in a local neighborhood of 7× 7 sites. Thereby, one
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arrives at a mildly smoothed version of the original segmentation. Even after this
step, spurious small regions (consisting of less than 500 sites) might still persist.
Thus, another post-processing step is applied in which all regions with areas
below the aforementioned threshold are eliminated. The result of this procedure
for a collection of images is displayed in figures 5.8 and 5.9. In both figures, the
input images are shown in the first row, followed by the visualization of the prior
alignment in the second row. Finally, the shape constrained segmentation results
are depicted in the third row.

Figure 5.8: Shape constrained segmentation results, (example set one).



104 Shape Constrained Segmentation

The first example in figure 5.8 displays a cheetah from which aspect distribu-
tions have been included in the aspect data-base. Please note, however, that it
is rather similar in color to its brownish background. Moreover, it exhibits an
leaping posture which is not well accounted for by the shape prior. Despite these
restrictions, the final SCS aggregation result precisely segments the animal from
the remaining image. The second picture in this set shows a cheetah which is
better silhouetted against the background. It has been used as a model for the
shape prior and aspect distributions have been drawn from a PDC segmentation
for this image. However, the posture of the head differs from the majority of
examples used for generating the prior, thus this information has been virtually
lost in the averaging process. This shows in up in the final segmentation insofar
as a small part of the head is missed. Apart from this restriction, the cat is very
precisely segmented from the background.

Figure 5.9: Shape constrained segmentation results (example set two).
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The first column of the second result collection in figure 5.9 shows another
example of an image for which no aspect distribution is in the set Af . Moreover,
its hand-segmentation has not been utilized in the formation of the shape prior.
Still, the shape prior alignment process is able to identify the correct orientation,
i.e. the selected prior model is facing leftward, and the area covered by the
animal is represented well. Due to the leaping posture of the wildcat, a minor
part of its forelegs is missed by the prior. This, however, does not adversely
affect the final segmentation based on the posterior probabilities. Only the very
small area of the front feet is not accounted for. This result is contrasted to
the outcome of the shape constrained segmentation process for the image in the
second column. Here, aspect models have been taken from the image. Although it
also contributed to the shape prior construction, the stepping position of the right
hind leg did not prevail in the averaged prior. Consequently, the lower part of this
leg receives comparatively little prior probability mass. Nevertheless, as the last
picture in this column shows, the segmentation achieves a good representation
of the cheetah, although a minor amount of the background is also attributed
to the wildcat. In these parts, small branches of plants account for a rather
strong response of the texture filters which is noticeably higher than in other
regions of the background. Moreover, the applied Gabor filters have a certain
spatial extend proportional to their scale, thereby gathering texture information
not only for one site, but also for other neighboring locations on the site grid.
Therefore, a precise localization of segment borders becomes rather difficult, as
the scale of the responding filter gets larger.

To demonstrate the gain in segmentation performance due to the incorporation
of shape constraints, figure 5.10 shows a comparison between the pure PDC
segmentation without shape information and the results achieved by the SCS
method. In the first row, the original image data is depicted. The second row
shows the segmentations produced by the PDC approach using color and texture
features while partitioning the data into ten clusters. Finally, the last row exhibits
the results of the application of the SCS method.

In all of the results the images neither contributed to the set of aspect models,
nor have they been used in the generation of the shape prior. As one can see
from these examples, the PDC segmentation is able to divide the images into
homogeneous regions based on the low-level features. It fails, however, in iden-
tifying the cheetahs as contiguous segments. These findings are in contrast to
the results of the shape constrained segmentation approach. The images in the
first column of figure 5.10 show results for a particularly interesting case. Here,
the leaping pose of the animal is remarkably different from the pose of the prior.
Nevertheless, the majority of the area belonging to the wildcat is preserved by
the prior. However, some minor amount of background is also contained in the
segment of the cheetah. This observation is explained by the fact that the prior,
not being perfectly adapted to the posture of the animal, puts a considerable
amount of probability mass in this area. Moreover, the low-level features color
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and texture are not very discriminative in this case. The color impression of the
dry mud and that of the animal is very similar. Due to the small irregularities on
the background plain, the texture filters also respond in a similar way. Bearing
these restrictions in mind, the cheetah is identified with a surprising accuracy.

Figure 5.10: Comparison between segmentations with and without shape con-
straints (example set one).

The example in the second column depicts segmentations for a cheetah in
front of a dark green background, while some parts of the animal are covered by
shadows. These differences in terms of the low-level features lead to the very frag-
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mented results achieved by the PDC approach. These adversary conditions also
apply to the SCS method, because no aspect models of this cheetah contributed
to the aspect data-base. Moreover, the pose of the animal does not closely match
the form of the shape prior due to the fact that the second foreleg comprises an
individual part of the cheetahs silhouette. The shape constrained segmentation
approach is nevertheless able to group most part of the animal as the foreground
segment. Only small parts at the head and tail containing no texture information
are missed.

5.5.6 Generalization To Other Semantic Categories

Up to this point, the focus of the experimental evaluation has been put on finding
animals from the zoologic category of cheetahs. In order to demonstrate, that
the proposed SCS approach is of a generic nature, a second test-bed has been
created. Here, the category of interest is given by jaguars. Although this setting
is similar to the first one in the sense that the relevant objects are also wildcats,
the fur pattern and the typical surrounding background are noticeably different.
Therefore, it can be used to demonstrate the application of SCS to novel domains.

As a first step, a second aspect set has been constructed in the same way, as
for the cheetah examples. This time, however, sPDC with eight clusters has been
utilized in order to arrive at the segmentations from which the aspect distributions
have been selected. The data-base of jaguar images consists of sixteen pictures.
From the pertaining segmentations, ten cluster-specific distributions for fore-
and background respectively, were chosen to form the aspect-set. Emphasizing
the generic nature of the approach, no adapted shape-prior for jaguars has been
derived. Instead, the same shape-prior as for the cheetah examples has been used.
Ignoring the special shape properties of jaguars, a noticeably lesser segmentation
quality can be expected.

Nevertheless, figure 5.11 demonstrates that this reduction in quality does not
take place. On the contrary, bearing the restriction in the form of the non-adapted
prior in mind, SCS is still able to identify the objects of interest with remarkable
accuracy. Aspect distribution have been taken from all images, except for those
in the last row.

In the first example on the left of the topmost row, the contour of animal has
been precisely found by SCS, only a very small part of the tail and the snout are
missed due to their high similarity to the surrounding background. The result
for the neighboring image on the right of the first row is even more striking.
Although the identification of the jaguar’s outline around the hind legs is not so
precise as in the previous example, the segmentations is still very good, keeping
the strongly differing pose of the depicted animal to the shape-prior in mind.

The SCS segmentations in the middle row exhibit a quality that is comparable
the the one of the first image in this result collection. Only very small parts
of the animals are missed in the segmentation. Again, these latter regions are
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either very similar to the background (e.g. at the heads and feet of the jaguars),
or constitute narrow, elongated structures (e.g. the tail of the animal in the first
picture of the middle row), which makes them hard to identify because of the
spatial extend of the applied texture filters.

Figure 5.11: Shape constrained segmentation results (example set three)

The results for the examples in the bottom row of fig. 5.11 are noteworthy,
because no aspect distributions have been taken from the pertaining segmenta-
tions. The first image of this row shows an animal that is depicted in front of
a blue sky background. Thus, identification can be considered an easier task
than for the other examples. As a matter of fact, the SCS segmentation for this
particular image shows a very good quality. This finding again demonstrates the
good representation quality of the relevant features of a given semantic category
by the aspect distribution set.



5.5 Implementation and Experimental Results 109

The last image in this result collection exhibits a segmentation that, at a first
glance, does not keep up with the good quality of the other examples. On the
other hand, it is the hardest test-case in the compilation of SCS results. First of
all, the depicted jaguar is standing amidst a very irregular and cluttered back-
ground. Moreover, no aspect distribution has been selected from the correspond-
ing PDC segmentation, consequently, the computation of the likelihood for the
semantic category jaguar has to rely on the similarity to the other feature distri-
butions in the aspect set. Apart from this, the pose of the jaguar is noticeably
different from the shape information encoded in the prior. Taking all of these
restrictions into account, the segmentation reached by SCS is still comparatively
good.

Figure 5.12: Comparison between segmentations with and without shape con-
straints (example set two).
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In the next collection of SCS results for the jaguar data-set, the shape con-
strained segmentation is opposed to sPDC image partitions with eight clusters.
In the first row, the input image is shown. Row two then depicts the sPDC
partitions in segment outline visualization, while the last row shows the results
of SCS. From the segmentation of the image in the left column, no cluster model
has been included in the aspect set. The picture on the right hand side, however,
has contributed to the aspect set. For the first picture, the sPDC segmentation
closely matches the feature content. However, the animal is not inferred as one
contiguous segment, but is assigned to multiple clusters. Opposed to this, SCS
is capable of inferring the jaguar as one segment. Only a small fraction at the
snout is missed. This error is most likely caused by the shape-prior, which favors
a more rounded outline of the head area. The second example is particularly
interesting, because the depicted wildcat is standing behind a tree. Clearly, the
sPDC segmentation assigns the area covered by the tree to a different cluster than
the jaguar. Consequently, the animal is represented by two different segments.
In contrast to this, the SCS image partition is able to identify the jaguar as a
coherent segment by virtue of the shape-prior information. Thereby, the jaguar’s
outline is reliably inferred despite the occlusion.

5.6 Summary

The central motivation for the work described in this chapter stems from the
apparent shortcomings of low-level segmentation techniques to reliably capture
the semantic properties of images. Consequently, bringing higher-level knowledge
sources to bear seems a promising way of significantly enhancing segmentation
performance. This conjecture is particularly evident in those cases, where the
image partition is only an intermediate step in a chain of processes finally lead-
ing to a full scene interpretation. Therefore, I proposed the incorporation of
higher level knowledge in the form of shape information to augment the PDC
segmentation approach. The resulting SCS method is formulated in terms of the
sound theoretical framework of Bayesian statistics, representing both shape and
elementary image features in a probabilistic way. Experiments demonstrating the
effectiveness of the method have been conducted on a hard real-world data-set
(i.e. cheetahs in images of their natural environment). Taking the large diversity
of the images both in terms of shape and of color / texture features into account,
satisfactory results have been achieved. Although only one pose has been used
in the experiments, the generalization to new poses is straightforward. All that
needs to be done is the provision of a shape prior, which can be arrived at either
by averaging over a number of sketchy segmentations (as described in section 5.2)
or by taking a user-drawn shape as the starting point for the computation of prior
probabilities. The successful application of the SCS method to objects from a
different, although similar, semantic category (i.e. jaguars) has been exemplified,
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thereby showing the extensibility to novel target objects. There exists, however,
a drawback that needs to be addressed: The approach is based on the assump-
tion that the objects of interest exhibit a characteristic distribution of elementary
image features like color and texture. Clearly, there exist object categories, for
which this assumption is violated, e.g. cars. The question of how to successfully
incorporate shape knowledge in those cases provides for an interesting direction
of further research.

5.7 Bibliographic Remarks

Shape representation, analysis and matching constitutes a very large and active
field of research. A good introductory book is [dFCC01]. Current developments
are described in [RS98, LL99, LL00, MA02, BMP02]. A relatively recent survey
of the relevant literature can be found in [Lon98]. Shape constrained image
segmentation has recently matured to a very vivid research area too. Rousson
and Paragios [RP02] proposed a relevant approach in the level set framework.
In their model, the region boundary is represented by the zero level set of an
embedding function. Interesting contributions to this domain can also be found
in the work of Cremers et al. [CKS02] and [Cre03]. Here, the segmentation
problem is formulated as a variational approach, where the latter publication
is concerned with using motion information as a segmentation criterion. The
application domain of video segmentation is also addressed by Jehan-Besson et
al. in [JBBAF03]. The pertinent work of Zhu and Yuille [ZY96], which addresses
the problem of shape constrained segmentation from a Bayesian– / MDL– point
of view, should also be noted here. In another recent publication, Galun et al.
[GSBB03] use small scale shape properties of image patches in order to guide a
texture-based segmentation approach.
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Chapter 6

Conclusion

The central theme of this thesis has been to develop robust algorithms for the
task of image segmentation. To achieve this goal, all stages of the segmentation
process have to be addressed. The first question which has to be answered is how
to reliably measure image content. In this respect, the use of local histograms
as proposed in this thesis provides for an substantial advantage over point-wise
measurements of image features, due to the fact that the latter entities are much
more strongly affected by noise, which is invariably present in all observational
data.

Once the form of the input data has been specified, corresponding segmen-
tation algorithms can be developed. All approaches that have been proposed
in this thesis are based on the sound modeling of the image formation process,
i.e. parametric probabilistic models are designed, from which images instances
can be generated by sampling. Therefore, all modeling assumptions are made
explict and cost functions for the segmentation problem can be derived in the
maximum likelihood framework. In my view, this decisive feature sets the image
partition techniques described in this contribution apart from the vast majority
of competing techniques that are based on some kind of heuristics. Moreover, all
elementary segmentation techniques from the PDC family are completely unsu-
pervised, i.e. no label information has to be supplied in the training step of the
pertaining models. This feature contributes to the broad applicability of these
methods, as the labeling of sufficient amounts of data is not only inconvenient,
but usually also implies prohibitively high costs. Furthermore, the methodologi-
cal approach that is advocated here leads to a clean separation of the modeling
step and the subsequent optimization. The latter problem has been addressed by
the application of highly robust Deterministic Annealing (DA) techniques where
the computational demands were further alleviated through the application of
multi-scale techniques.

The basic PDC method was explicitly designed to overcome the insensitivity of
previous approaches to histogram clustering concerning the permutation of bins.
Based on the standard PDC technique, improved variants have been derived,
which incorporate topological assumptions in the corresponding cost functions.
Natural images possess the property of being composed by large, homogeneous
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regions. This valuable prior information clearly should not be neglected in the de-
sign of segmentation techniques. Consequently, the sPDC approach emphasizes
the spatial topological relations between the different images sites. Thereby,
highly fragmented and irregular image partitions are substantially suppressed,
leading to segmentations that show a significant increase in precision, i.e. the
probability, that an inferred boundary between different image regions is valid.
On the other hand, the TPDC approach enforces topological relations in the
cluster-domain. This technique has been inspired by self-organizing maps, dis-
covered and popularized by Kohonen, which stimulated a flurry of research papers
in the neural network community. By means of TPDC, the similarity of cluster
models can be directly read off the cluster labels, thereby making the neigh-
borhood relationship in the cluster domain readily accessible from the indices
of the data-groups. Furthermore, the two types of topological constraints are
simultaneously obeyed by segmentation solutions of the sTPDC technique.

Quantitative measurements and their evaluation provide the basis of the sci-
entific method. Unfortunately, assessing the performance of image segmentation
techniques is treated in a qualitative and subjective way in the majority of the
pertaining literature. In contrast to this attitude, the thorough quantitative eval-
uation of all segmentation methods proposed in this thesis is strongly emphasized.
It has been demonstrated, that the PDC family of image partition techniques is
capable of producing good results throughout the test-runs. The sPDC approach,
which achieves the highest quality among all PDC variants, is able to arrive at an
F-measure of 0.5 at 0.54 recall and 0.51 precision when averaged over the different
cluster numbers in the experimental setting. The human subjects in the Berkeley
study reach an F-measure of 0.8, when results of varying subjects are compared
with each other. The only competitor, for which published test-statistics were
found, is given by the combination of three edge detectors (brightness, color,
and texture gradient), which have been trained in a supervised fashion on the
segment boundaries produced by the human subjects [MFM04]. Moreover, the
best way of combining these aforementioned cues in a single detector was also
found by means of supervised learning. This joint boundary detector achieves an
F-measure of 0.67 with a recall of 0.71 and precision as high as 0.64. Summing
up, sPDC is on average capable of reaching 63% human performance and 75%
of the performance of the best known competitor. The latter quality comparison
might not seem satisfactory at a first glance. On the other hand, it has to be
kept in mind, that the combined edge detector has two distinct advantages when
it comes to the evaluation of quality measures, which are at the same time two
disadvantages concerning its general applicability. First of all, it is not a true seg-
mentation technique as it does not produce coherent image segments. In many
application domains, the latter feature is of prime importance. Second, it relies
on supervision information in the training phase. No matter how well-chosen the
training set might be, there are always novel application scenarios, which have
not been accounted for in the detector’s training. Consequently, the performance
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is prone to deteriorate in those settings. Furthermore, additional training data
(i.e. human segmentations) are not readily available. Methods from the PDC
family, on the other hand, do not need any additional information that is not
already contained in the measured histograms. Moreover, apart from the very
general assumptions that constitute the PDC approach, no further suppositions
concerning the image data are made.

The goal of all machine learning techniques is to faithfully represent the struc-
tural properties of the given input data, while avoiding to fit the random fluc-
tuations, which are inevitably present in all observational data. As all PDC
variants are clustering approaches, and as such unsupervised learning techniques,
the questions of robustness against small fluctuations in the input data and the
generalizability of solutions to new data-sets from the same domain are of prime
importance. In this thesis, these issues have been addressed in an empirical man-
ner, giving comprehensive example sets for both problems. It has been shown,
that the PDC framework is indeed capable of producing highly robust image
segmentations. Moreover, re-sampling techniques like the described bootstrap-
variant for images have been demonstrated to be viable approaches for the further
improvement of PDC based image segmentation. Generalization of PDC models
inferred on one picture, to another, for which only the site assignments have been
re-computed, were also examined. The comparison of the corresponding results
clearly demonstrates, that PDC-based approaches infer the structural properties
of the given data-sets while avoiding to fit the random fluctuations.

Arguably, the strict bottom-up approach to image segmentation, which solely
relies on low-level features, will never achieve human performance levels on this
task. On the one hand, there are findings from the field of neuro-anatomy, con-
cerning the large amount of connections from higher brain regions back to the
early stages of visual signal processing (area V1). Moreover, the large body of
psycho-visual experiments (e.g. from the Gestalt school) also provides strong
evidence for the application of higher-level knowledge in human visual scene in-
terpretation. Consequently, neglecting these information sources about probable
image configurations must be considered a significant drawback. Clearly, knowl-
edge about the shape of the objects of interest in a segmentation or recognition
task belongs to this category of useful higher-level knowledge. In the context of
PDC-based segmentation, a probabilistic representation of shape has been con-
structed. Furthermore, likelihood maps for given objects of interest were derived
from the PDC cost function. Interpreting the shape information as a prior for
the segmentation task, it has been combined with the likelihoods in a Bayesian
setting. The resulting posterior probability for the occurrence of an object of a
specified semantic category has been demonstrated to achieve excellent segmen-
tation quality on very hard testbeds of images from the Corel gallery.
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Appendix A

Box-Plots for recall, precision, and
F-measure distributions

The aim of this appendix is to give an insight into the distribution of the quality
measures recall, precision, and F-value in the quantitative performance assess-
ment for the various PDC variants discussed in this thesis. The empirical means
and variances of these quality indicators, computed over all of the images in the
Berkeley test-set, have been given in the respective sections in the form of ta-
bles. Going beyond the first two central moments, the so-called box-plot gives
a very informative graphical account of a sample’s distribution. Therefore, this
visualization method has been applied to the recorded quality measures in order
to produce the results shown in the subsequent pages. In a box-plot, the mean
is denoted by the central horizontal line inside the box. The outer limits of the
box indicate the lower and upper quartiles. Going out from both ends of the
box, whiskers are marking the extend of the sample. Any data-point outside this
range is considered an outlier and is marked by a cross. If no data-point happens
to be outside the interval indicated by the whiskers, a dot is placed at the lower
whisker.
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Figure A.1: Recall, precision and F-measure distributions for color-only PDC
with three clusters.

Figure A.2: Recall, precision and F-measure distributions for color-only PDC
with five clusters.
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Figure A.3: Recall, precision and F-measure distributions for color-only PDC
with eight clusters.

Figure A.4: Recall, precision and F-measure distributions for PDC with three
clusters using color and texture features.
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Figure A.5: Recall, precision and F-measure distributions for PDC with five
clusters using color and texture features.

Figure A.6: Recall, precision and F-measure distributions for PDC with eight
clusters using color and texture features.
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Figure A.7: Recall, precision and F-measure distributions for sPDC with three
clusters using color and texture features.

Figure A.8: Recall, precision and F-measure distributions for sPDC with five
clusters using color and texture features.
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Figure A.9: Recall, precision and F-measure distributions for sPDC with eight
clusters using color and texture features.

Figure A.10: Recall, precision and F-measure distributions for TPDC with three
clusters using color and texture features.
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Figure A.11: Recall, precision and F-measure distributions for TPDC with five
clusters using color and texture features.

Figure A.12: Recall, precision and F-measure distributions for TPDC with eight
clusters using color and texture features.
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Figure A.13: Recall, precision and F-measure distributions for sTPDC with three
clusters using color and texture features.

Figure A.14: Recall, precision and F-measure distributions for sTPDC with five
clusters using color and texture features.
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Figure A.15: Recall, precision and F-measure distributions for sTPDC with eight
clusters using color and texture features.
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