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The Hubble Ultra Deep Field is an roughly one million seconds exposure of a virtually star-
empty area in the sky taken by the Hubble space telescope (ACS). This picture exhibits the
deepest view into the visible Universe ever taken. Although of a size of just one-tenth of the
apparent diameter of the full moon, it still hosts about 10,000 galaxies of various sizes, shapes
and colours. Some of the galaxies may belong to the very first generation of galaxies formed
in Universe.






Introduction and overview

Cosmology studies the distribution, dynamics and origin of matter on the largest scales known
in nature. The basic building blocks of structure are galaxies. Billions of galaxies fill the
observable Universe forming a network of filaments, galaxy clusters and voids, the so-called
cosmic web. Galaxies are, compared to cosmic scales, compact and isolated objects comprising
millions to billions of stars. However, they are not all alike. Today a confusing wealth of
different types of galaxies are known.

Except for very thin gas the vast space between galaxies appears at first sight to be empty.
The observed dynamics of large-scale objects have led most cosmologists to the conclusion
that there is, distributed inside and between galaxies, a lot more matter, dark matter, in the
Universe than seen as stars, galaxies or gas. As J. Silk remarked, galaxies are just “the cream
on the chocolate pie”. In the modern paradigm of cosmology, dark matter is the main driver
for the formation of cosmic structure. Within this paradigm, we now understand fairly well
the basics of the formation of structure on cosmological scales, but have been less successful
in explaining the diversity in morphology, mass, chemistry and colour of galaxies. How can
an initially quite featureless Universe, as seen in the cosmic microwave background, evolve
to give galaxies, still further, to produce such a diversity in galaxy properties? The main
underlying physical processes seem to be identified: the primordial baryonic matter, left-over
from the Big Bang, is flowing in an external gravitational field set by the dark matter. Under
suitable conditions the baryonic matter condensates into stars within the dark matter field
making the first generation of galaxies. Hierarchal merging progressively builds up larger and
larger objects, such as more massive galaxies, clusters of galaxies or super-clusters of galaxies.
However, these physical processes are waiting for a detailed explanation; some processes may
even still be missing in this picture.

In the early days of observational cosmology, galaxies were often seen just as signposts of the
total mass distribution. The uncertainty in how they trace the dark matter was simply coined
galazy bias, and was initially more of a nuisance than anything else; the main interest was to
unravel the statistical properties of the total matter distribution, and galaxies were the only
means by which this could be achieved. This is changing, since we now have other means to
study the mass distribution directly. Weak gravitational lensing allows us to probe the large-
scale dark matter distribution without the need for any luminous tracer. The gravitational
field of the large-scale matter distribution deflects light that is traversing space so that images



of distant galaxies become distorted. Coherent distortions of the shapes of distant galaxies
—so-called cosmic shear— are used to measure the distribution of the total matter content in
the Universe. The distortions of galaxy images imprinted by the gravitational lensing effect
are, except in rare cases, small and can only be revealed statistically by averaging over many
galaxies.

Everything contributes to the light deflection, whether it is directly visible or not. Weak
gravitational lensing therefore provides a unique method to study the dark matter distribution
independently from the galaxy distribution, and to compare the two in order to measure
the galaxy bias. By looking at galaxy bias we can learn about the formation and evolution of
galaxies: differences in the distribution of dark matter and galaxies, or special types of galaxies,
hint at the conditions that have to be fulfilled to form galaxies.

The following gives a broad overview of the thesis:

e Chapter 1 sets the framework for describing cosmic structure formation. In particular, it
introduces statistical quantities that are commonly employed to quantify clustering and
galaxy bias. Another aim of the chapter is to outline the definitions of the key quantities
in weak gravitational lensing.

e Chapter 2 derives a phenomenological model for the evolution of galaxy bias on large
scales. The important bottom line of this model is that the evolution of galaxy bias is
sensitive to the details of the physical process that locally adds galaxies to, or removes
galaxies from, a population of galaxies.

e The aperture statistics incorporating weak gravitational lensing, that can be used to
measure the galaxy bias from contemporary wide-field galaxy surveys, are explained and
discussed in Chapter 3. The main effort is to draw a comparison between two practical
estimators of the aperture statistics on the basis of simulated weak lensing surveys.
Under realistic circumstances both estimators yield clearly different results. Only the
most reliable estimator is used in the remainder of the thesis.

e In Chapter 4, the aperture statistics are applied to the Garching-Bonn Deep Survey
(GaBoDS). Using these data the dark matter-galaxy bias is measured for a range of scales
and three typical redshifts. The galaxy samples are found to be differently clustered with
respect to the dark matter. Various practical aspects of the technique are discussed here.
The survey does not allow, however, to select galaxies from a narrow redshift range or to
distinguish between different types of galaxies because only the apparent brightnesses of
galaxies in one filter band are available. Such a selection would be required to investigate
galaxy bias as a function of redshift and galaxy type.

e The data of COMBO-17 do not have these limits, but is, however, limited by the relatively
small survey area. It is analysed with focus on galaxy bias in Chapter 5. The aperture
statistics is used there to measure the dark matter-galaxy bias for early-type and late-
type, broadly selected by colour, galaxies belonging to four distinct narrow redshift bins.
Moreover, the aperture statistics is extended so that it can also be employed to measure
the relative bias between the two galaxy populations. By applying this extension it
is shown that the spatial distributions of both populations are significantly different.
An evolution of galaxy bias with redshift larger than the statistical uncertainties of the
measurement is not found.
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e Leaving the topic of galaxy bias, Chapter 6 studies how constraints on the redshifts of
source galaxies improve the confidence on cosmological parameters derived from second-
order cosmic shear correlations. A new method is introduced, based on the recipe for
Monte Carlo simulation in Chapter 3, to estimate the covariances of the statistical errors
in measured cosmic shear correlations.

This thesis concludes with an outlook and a final summary.
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CHAPTER 1

Scientific framework

1.1. Structure formation in the universe

Gravity is the dominating force on large scales in the Universe. It made cosmic structures
such as galaxy (super)clusters, galaxies, stars, planets, etc. from small inhomogeneities that
emerged from a very early phase in cosmic history. Moreover, gravity dictates the global
expansion or contraction of the Universe as a whole.

The standard model of cosmology rests on two pillars: Finstein’s General Relativity (GR),
and the Cosmological Principle that states that at every epoch the Universe presents the same
aspect from every point, except for local irregularities. In other words, the Universe is homo-
geneous and isotropic on large scales. This assumption derives largely from two fundamental
observations: most galaxies appear to be receding from us and the distribution of distant
objects on the sky is isotropic. Based on these pillars, structure —local irregularities— grows un-
der the influence of self-gravity on top of a homogeneous and isotropic large-scale background
cosmology.

1.1.1. The standard model of cosmology

In GR, gravity is a geometrical property of a (3 + 1)-dimensional metric space-time in which
particle trajectories are geodesics of stationary Eigenzeit (cf. Weinberg 1972). The workplace
of GR is a Riemannian manifold whose metric g, defines the infinitesimal line element by

ds? = g, dat dz” . (1.1)
The infinitesimal ds indicates the change of Eigenzeit obtained from an infinitesimal displace-
ment dz* in the space-time coordinate frame z*.
Friedmann equations

It is an important conclusion of the theory of relativity that measurements of lengths and
time differences depend on the reference frame of the observer. For a universe in which the
Cosmological Principle applies, events are witnessed by a set of fundamental observers. The

13



SCIENTIFIC FRAMEWORK

fundamental observers see local isotropy and measure time as cosmic time. They are said to
be comoving with the Hubble flow. The spatial coordinate system in which the fundamental
observers are at rest is the Hubble frame. Coordinates defining the position within the Hubble
frame are so-called comoving coordinates. In 1935 and 1936, Robertson and Walker showed
independently of each other that in a perfectly homogeneous and isotropic universe the space-
time metric has to be maximally-symmetric,

ds® = ®dt? — a®(t) [dw® + f (w) (d6? + sin® 6de?)] | (1.2)

where w is the comoving radial distance, c¢ is the vaccum speed of light and 6, ¢ are angular
coordinates; they together form spherical coordinates relative to a fixed but arbitrary origin.
The variable a is the scale factor, and t is the cosmic time. The expression fx (w) is the
comoving angular diameter distance

K12 sin(K'/?w) (K >0)

w dw’
. Cdw " K=0) |, 1.3
fK( ) /0 m (—K)_1/2 sinh[(—K)l/Qw] EK < 03 ( )

where K is the curvature. The curvature discriminates between three different geometries of the
three-dimensional spacelike hypersurfaces defined by t = const: K = 0 for Euclidean surfaces,
K > 0 for a spherical geometry and K < 0 for a hyperbolic geometry. The metric is therefore
parametrised by only two parameters: the curvature and the scale factor.

The tensor field equations of GR connect the space-time metric to the energy-momentum

tensor T,

Ry — %QMVR + g/WA = 8:—40Tl“’ ) (1.4)
where R, = R}, and R = g'*R,, are the Ricci tensor and Ricci scalar, G is Newton’s
constant of gravitation. The tensor R}, . is the Riemann tensor describing the differential
curvature of space-time; it is essentially a function of the metric g, and its partial derivatives
(first and second order). The expression A is the cosmological constant. Einstein introduced
the cosmological constant to admit a static universe, thus a universe that is neither expanding
nor contracting, i.e. a = const. Later, as it was discovered that the Universe is actually
dynamic and expanding, Einstein regretted A as his “biggest blunder”.

Likewise, as for the metric, the highly idealised assumption of the Friedmann cosmology
allows only an energy-momentum tensor that is independent of position and orientation. In
1932, Weyl suggested that for cosmological applications the most suitable form for 7, is that
of a perfect fluid, that fills space, obeying

TVM = [p(t)/cz + p(t)]UuUu - p(t)g;w ) (15)
where p is the pressure, p the comoving density and U, the fluid 4-velocity. In general we
have U = 7 (¢, ') where v = (1 — |7]2/c2)"%/2 and @ the bulk velocity of the fluid. As the
fluid is here considered at rest in the Hubble frame, v" = 0, we have simply U, = ¢ 0. Both
energy density and pressure may evolve with cosmic time but do not change with comoving

position. The Friedmann equations are obtained by applying the field equations (C4]) of GR
to the idealised space-time metric and energy-momentum tensor:

.\ 2 2
a G Ke A
(‘) -3 ety (16)
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STRUCTURE FORMATION IN THE UNIVERSE

a 4G 3p A
Z = = = — 1.
a 3 (p—l— 02> T3 (L7)

The dot in, for example, @ is an abbreviation for the derivative with respect to the cosmic
time. Differentiating Eq. (L) and inserting it into Eq. (L) results in a conservation law for
the energy density

d(pa®)c® = —pd(a?) . (1.8)

This last equation together with (L@) and an equation of state p(p) completely determines the
evolution of the scale factor a.

Redshift

In 1929, Slipher and Hubble observed that the emission and absorption lines of distant galaxies
are at longer wavelengths than found in the laboratory, they are said to be redshifted. The
conclusion was that the redshift (“recession velocity”) increases linearly with the distance of
the galaxies.

The standard model of cosmology attributes this observation to a scale factor that changes
with cosmic time. Light travelling large distances in the universe is affected by a varying a(t):
the electromagnetic spectrum is shifted in wavelength by the factor a(t)/a(t") where t' is the
cosmic time of the light emission and ¢ the cosmic time of the observation. For a(t) > a(t') the
spectrum is shifted towards longer wavelengths by the factor 1+ z = a(t)/a(t’), where z is the
redshift.

Energy density

In a cosmological context, we have for the fluid filling space an equation of state of the form p =
a pc?, with o being constant. The complete cosmic fluid is a mixture of different components
having different . For a single component with such an equation of state, (LH) directly implies

poca 3@t (1.9)

This covers all components of importance. It is adequate for particles or objects with a low
velocity dispersion (“dust”), a = 0, and radiation or relativistic particles, a = 1/3.

Terms in the Friedmann equations involving the cosmological constant, A, can formally also
be attributed to a hypothetical fluid with negative pressure & = —1 and density pp = A/(87G).
In cosmological measurements (see below), one finds a clear contribution to the cosmic expan-
sion from A or some something with an equation of state close or equal to a = —1 but its nature
remains completely unclear (“Dark energy” or “Phantom energy”). Particle physicists noted
that the vacuum energy may behave as pp (c¢f. Caroll et al. 1993). Moreover, inflationary
theories which have become an important part of the modern paradigm of cosmology predict
fields with similar properties. However, so far cosmology is far from providing a convincing
explanation for the observed A-component in the cosmic fluid.

The total energy density pc? is in general a mixture of several components each with a
different equation of state:

p=pm+pr+pa- (1.10)
We use pn, pr and pp for dust-like matter, radiation and dark energy, respectively. Note that
in the following we consider solely dark energy with exactly « = —1. For a different dark

energy equation of state the equations are easily modified using Eq. (C3).

15



SCIENTIFIC FRAMEWORK

Density parameters

It is common in cosmology to rewrite the Friedmann Eq. ([CH) with the above specified p in a
different form:

H(t) = Ho/O+(1—Q)a2+ Qa3+ Qat (1.11)
Qo = W+ 0m -+, (1.12)
where H(t) = a/a is the Hubble function expressing the cosmic expansion rate at cosmic

time t. As initial conditions for this first-order differential equation one uses a(tp) = 1 and
Hy = H(ty) for the present scale factor and the Hubble parameter. The parameters §2; are the
density parameters at present times which for i € {A,r,m} are generally defined by Q;(t) =

pi(t)/ perit (t) where

3H?(t)
8tG

is the critical density. A universe with an average density above this threshold will be spatially

closed, while a lower-density universe will be spatially open.

Perit(t) = (1.13)

Cosmic horizons

The size of causally connected regions in the Universe is called the particle horizon size. It
determines the maximum, in this form comoving, distance of two points that can have com-
municated with each other by the exchange of light signals emitted at cosmic time ¢g:

t a4
dt
wpp(t) = c/ — . (1.14)
P to CL(t/)
Another horizon scale of importance in cosmology is the comoving Hubble radius that is
defined as the (comoving) distance at which fundamental observers see other fundamental
observers recede at the speed of light

(1.15)
It defines the size of the visible universe at a given time.

Hot big bang

Lately different methods for determining the cosmological density parameters have reached a
concordance constraining the density parameters (Seljak et al. 2004b; Tegmark et al. 2004a;
Spergel et al. 2003). The consensus reached so far is that we have today a flat, i.e. QA+Q, =1,
or almost flat A-cosmology with Hy = 100k kms~' Mpc~!' where h ~ 0.7, Qx ~ 0.7 and
Qm ~ 0.3. The relativistic density parameter including photons and neutrinos is roughly
Qh% ~ 4.2 x 107° (cf. Peacock 2001) and therefore at present times of no importance.

With these density parameters the Friedmann equations demand that the scale factor was
a = 0 about 14 Gyrs ago; this is taken to be the age of the Universe. Moreover, this implies
that the Universe had a hot and compact beginning since the energy densities scale with a=3
and a~* for matter and radiation, respectively. This scenario was coined the hot big bang
(Kolb & Turner 1990). In this scenario, the Universe, filled with radiation and elementary

16
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ME Big Bang TEmp

Spid Fdnibiniy

PRESENT
13.7 Billion Years
after the Big Bang

Figure 1.1.: Sketch of the thermal history in the hot big bang scenario. The figure is from the WMAP
mission webpage htt p: /[ map. gsf c. nasa. gov.
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particles, evolved through a sequence of states of thermal equilibrium which finally has resulted
in the state that we observe today. The phases in the thermal history were characterised by
the masses, interaction cross-sections between the particles and/or radiation, and the cosmic
expansion rate. In the proceeding of cosmic expansion, the Universe continuously cooled and
particles decoupled from the thermal equilibrium with other particles once their interaction
rates fell below the cosmic expansion rate. After decoupling the particles cooled adiabatically
isolated from the rest. A sketch of the timeline of phases is shown in Fig. [Tl

Primordial nucleosynthesis

Gamow proposed in 1946 that about 100 seconds after the big bang at a temperature of
about T' ~ 10° K the first light nuclei were formed. Shortly before this point, at T ~ 10K,
neutrinos that kept protons and neutrons in equilibrium by weak interactions had decoupled.
This effectively froze the neutron to proton ratio in to [n/n + p| ~ 0.16. Coincidently, this
temperature is right about at a level at which a bound state between one proton and one
neutron, namely deuterium, can form, so that many proton-neutron pairs could be converted
into deuterium before all neutrons (3-decayed away into protons. Since deuterium is a good
neutron absorber, the primordial deuterium allowed the first simple chemical reactions by which
it was mainly processed into *He and other light elements. Considering the chemical reactions
the predicted mass fraction of helium is about 24% which is roughly observed, such as in the
interstellar medium, stellar atmospheres and in the gas between galaxies. The conversion from
hydrogen to helium via deuterium is not perfect, leaving some tiny fractions of other light
elements behind. The precise predictions for the primordial abundances of deuterium and
other light elements can be obtained by numerical modelling of the coupled chemical reactions
taking into account the general cooling due to the cosmic expansion. This was first achieved
by Wagoner et al. (1967). One finds that the fractions

4 3 3 7T

E, w, He and i (1.16)

H H H H

all depend in a different way on Qph?, on the density parameter of the baryons. By measuring
these ratios we can infer the baryon content in the Universe; each light-element abundance

yields an estimate for Qph? individually. Recent measurements found close agreement between
the estimates for €2, and conclude that 0.015 < Qph% < 0.023 (Olive et al. 2000).

The Cosmic Microwave Background

The decoupling of the photons happened about 380.000 yrs after the big bang at the epoch
of recombination where the Universe was cool enough, T" ~ 3000 K, to allow electrons and
nuclei to combine into atoms. From that time onwards the Universe has become transparent
for photons. Gamow postulated in 1949 that the decoupled photons should still be observable
today as microwave background radiation with a Planck spectrum. Penzias & Wilson accidently
discovered in 1965 this radiation, the cosmic microwave background (CMB), and made one of
the most important discoveries in cosmology of the 20th century. The space-based experiment
COBE made the first full-sky map of the CMB that is almost perfectly fit by a Planck function
with characteristic temperature 7" = 2.728 £ 0.004 K (Fixen et al. 1996).

Moreover, by transforming the measurements into a reference system of a fundamental ob-
server and by subtracting the galactic foreground the CMB is almost isotropic. This suggests

18
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Figure 1.2.: The microwave sky image from the WMAP Mission. Red colours indicate regions warmer
than average, blue colours regions cooler than average. The temperature fluctuations are on a level of
ST /T ~ 1075, The figure is from the WMAP mission webpage ht t p: / / map. gsf c. nasa. gov.

an extragalactic origin of the radiation. A full-sky picture of the corrected CMB is shown in
Fig. Apparently, it is not completely isotropic: one does not observe exactly the same
black body temperature along every direction. The remaining temperature fluctuations, how-
ever, are tiny, namely on a level of §T/T ~ 10~°. They reflect the fluctuations in the baryonic
density field at the time of recombination. Despite of their smallness they are though to be the
precursors of the structures we observe today. The change of temperature fluctuations with
scale depends sensitively on cosmological parameters. The so far most accurate constraints
on cosmological parameters were obtained from the CMB measurements of the Wilkinson
Microwave Anisotropy Probe (WMAP, Spergel et al. 2003). In particular, the WMAP mea-
surements yield Q,h% = 0.0224(9) in agreement with estimates obtained from the abundances
of light elements, which is a completely different kind of observation and which originates from
a different epoch in cosmic thermal history.

Dark matter

Zwicky discovered in 1933 that galaxies in the Coma cluster are moving faster than one would
expect if the gravitational field that is holding the cluster together was solely due to the
luminous mass in galaxies. He attributed the missing mass to the probable existence of a non-
luminous matter component, which has become known as dark matter. A similar effect was
noticed in the density profiles of hot X-ray gas filling rich galaxy clusters. On galactic scales, it
was found that the rotation speed of spiral galaxies as a function of distance from the rotation
centre —the rotation curve— does not decline as expected from the starlight distribution of the
galaxy. Instead, the rotation curve often remains flat out to large radii implying some sort of
spherical dark matter halo in the outer parts of spiral galaxies. Another evidence for a dark
matter component comes from the already mentioned CMB measurements and the abundance
of light elements which imply a matter density parameter of ;,, ~ 0.3 in contrast to a baryonic
density parameter of 2y, ~ 0.04. According to these findings, stars and gas can make up only
about 10% of the mass necessary to explain the dynamics of stars, galaxies or the anisotropies
in the CMB. Moreover, the dark matter component cannot be ordinary, baryonic matter made
out of electrons, protons and neutrons.

19
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1.1.2. Growth of structure in a Friedmann background

In the modern paradigm of structure formation, the galaxies and their distribution on large
scales are a result of primordial inhomogeneities that collapsed by the influence of gravitation
in a globally expanding universe. Mainly responsible for the collapse is the pressureless dark
matter component in the cosmic fluid. This section is dedicated to the question how we can
describe the growth of perturbations in the matter density.

Classical approximation

The true universe is obviously not perfectly homogeneous and isotropic in the sense of the
Friedmann models. The Friedmann models are still valid, however, if the universe complies
with the cosmological principle on large scales. This means that the global expansion (or
collapse) according to H (a) is observable by averaging over many objects; the energy density
and pressure in the Eqs. ([C8l), (L) are the average density and pressure in the universe.
Local inhomogeneities are modelled as fluctuations about the average density with velocities
measured relative to the Hubble flow frame (peculiar velocities). Although set in a cosmological
context, for scales less than the cosmic horizon scale the physics of structure formation is
well modelled by classical, non-relativistic Newtonian physics. Newtonian physics still holds
on these scales because inhomogeneities in the gravitation field, §¢, and the peculiar bulk
velocities, dv, are small, §¢/c?> < 1 and dv/c < 1. The background cosmology is included into
the Newtonian picture by expressing spatial coordinates, 7, as comoving coordinates &

r=aft (1.17)
and velocities, 7, as deviations, 7 = a & (proper), from the Hubble flow, H(a)7, namely
F =4 +aH(a)f . (1.18)

The scale factor a in the resulting equations is evolved according to Eq. ([CI).

N-body simulations of structure formation

The “dark matter gas” is a many particle system. In classical statistical mechanics, a system
with N particles is described by the BBGKY hierarchy. It is a set of N coupled equations
that relates the phase-space probability distribution of n < N particles to the distribution of
n — 1 particles in terms of integral equations. Theoretically, in order to model the phase-space
distribution of the dark matter, the BBGKY hierarchy has to be put into the cosmological
context (cf. Peebles 1980).

The most successful approach so far for getting approximate solutions is the N-body approach
(¢f. Jenkins et al. 1998). Here, the dark matter gas is represented by superparticles whose tra-
jectories are followed numerically in phase-space on a computer. Due to hardware limitations,
the number of superparticles is relatively small and the simulation volume is ﬁniteﬂ There-
fore, the N-body simulations can only make reliable predictions on a limited range of scales.
Nevertheless they have shown, among many quantitative predictions, that our paradigm of
structure formation can explain the filamentary structure —the cosmic web— that is observed
in the distribution of galaxies (see Fig. and Fig. [[7).

!The current record is 10243 particles in the Millennium-run simulations with a simulation volume of
500 x 500 x 500 h~3Mpc3.
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ST T2 1M

ACDM QCDM

The VIRGO Collaboration 1996

Figure 1.3.: The simulated density distribution of dark matter in a box of 240 x 240 x 240 Mpc?
at redshift z = 0 for four different cold dark matter models: ACDM (Q,, = 0.3,Qy =
0.7,T' = 0.21,08 = 0.9,h = 0.7), SCDM(1.0,0.0,0.5,0.51,0.5), OCDM(0.3,0.0,0.21,0.85,0.7) and
7CDM (1.0,0.0,0.21,0.51,0.5) (Jenkins et al. 1998).
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Figure 1.4.: Clustering of galazies in two thin strips, 75° x 4° (galactic north: left) and 75° x 4°
(galactic south: right), of the local universe (median redshift (z) = 0.11) as observed in the 2dFGRS
(Peacock et al. 2001). The figure shown contains about 63.000 galaxies which is only a fraction of
the total survey. The galaxies presumable roughly trace the structure of the total matter field which is
mainly made up by the invisible dark matter. Note that this is the distribution in redshift space which
depends on both the distance and the peculiar velocities of the galaxies.

Eulerian fluid approximation

As an alternative to the numerical approach, one may seek analytic solutions to the structure
formation problem. Due to its intractability, this inevitable means breaking down the BBGKY
hierarchy in some way. One way is to neglect the graininess of the dark matter gas and to
approximate it by collisionless fluid. This results in the collisionless Boltzmann or Vaslov equa-
tion. Another Ansatz, the hierarchal Ansatz, is motivated by the observed spatial correlation of
galaxies. All higher-order correlation functions are expressed in terms of products of two-point
correlations (cf. Balian & Schaeffer 1989).

In this thesis, we will make analytical predictions for the structure formation on large scales
with emphasis on the time after recombination. As many other authors we will use the fluid
dynamical approach and focus only on the local density, pp,, and (comoving) bulk velocity, v", of
the dark matter. We do not attempt to model the full phase-space distribution of dark matter.
As long as no shell-crossing occurs, i.e. no crossing of the trajectories that belong to different
particles, we can employ the Euler equation of hydrodynamics and the continuity equation for
that purpose. It is customary to express the system in terms of the density contrast oy,

P = (pm) (1 + 6m) - (1.19)
In comoving coordinates cosmological hydrodynamics is (Peebles 1980):
ov 1 Vop
— +H V)0 + —— + — V5 = 0, 1.20
G+ @7 + (V)i + ] 0 (1.20)
% + Vv + - V (0m?) = 0 (1.21)
ot  a - '
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V25¢—ga2H2(a)Qm(a)5m = 0. (1.22)

Note that the pressure term can be set to zero, dp = 0, for a dark matter component with
negligible velocity dispersion (random motions), i.e. for “cold” dark matter. Eq. (LZJ), is the
classical Poisson equation for the perturbations d¢ in the gravitational field produced by the
density fluctuations dy,. Eqs. (C20) and (C2ZT]) are the Euler equation and continuity equation,
respectively.

Linear Eulerian fluid equations

Solutions to cosmological hydrodynamics (L20)-([CL22) can be found by expanding d,,, and ¢ as
perturbation series in terms of powers of the initial conditions, which are small in amplitude,
or in powers of the growing mode of the linearised equations of hydrodynamics (c¢f. Fry 1984;
Goroff et al. 1986; Bernardeau 1994). The linearised equations are obtained by neglecting the
rotational part of the velocity field, V x @ = 0, all terms containing products of &,, with ¢
and products of vU':

0?6m 0m 1 2 3 97
2 + 2H(a)ﬁ = = <pm>V dp + 24 H?(a)Qm(a) o (1.23)
O | 1,
3H?(a)
(pm) = ——7Stm(a). (1.25)

The growing mode solution of 0y, in the linearised equations is (¢f. Carol et al. 1992):

5m(7?7a) = %5m(77,ainit)y (1.26)
Dy (a) = H(a)/oada’m, (1.27)

where 0y, (7, ainit) are the initial density fluctuations. The scaling of D (a) preserves the struc-
ture of the density perturbations since only the perturbation amplitude is affected, independent
of the position in the field. See Fig. for the time-dependence of the linear growth factor
D, (a).

Fluctuations are small on large scales, |0, < 1 and || < 1. Therefore, the linear solution
is a good description for the growth of the density contrast on large smoothing scales. As a
rule-of-thumb, by large scales we mean scales larger than about 8k~ 'Mpc which corresponds
to the typical size of rich galaxy clusters.

Dark matter flavours

The way structures form in this paradigm depends on the velocity dispersion of the dark
matter; it is determined by the mass of the dark matter particles and whether they were
relativistic or non-relativistic at the time of decoupling. There are two extremes: in cold
dark matter scenarios (CDM), the velocity dispersions are non-relativistic, dp = 0. Here,
structure forms first on small scales, larger structures form later on by merging of smaller
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Figure 1.5.: FEwvolution of some global parameters assuming the concordance ACDM (Spergel et al.
2003). t(z) is the look-back time in units of 1/Hy ~ 14 Gyrs. “fx(w)” is the comoving angular
diameter distance as function of the comoving radial distance w (in units of ¢/Hy ~ 4.2 Gpc). The
Hubble horizon defines the comoving size of the visible universe (in units of ¢/Hop =~ 4.2 Gpc). D4 (z)
denotes the linear growth factor relative to the growth factor at z = 0. On linear scales, fluctuations
have grown by a factor of about 10® since recombination.

objects (hierarchical clustering or bottom-up structure formation). This is in contrast to hot
dark matter scenarios (HDM) where the velocities of the dark matter particles are relativistic
at decoupling; a candidate for hot dark matter particles are neutrinos. Small-scale fluctuations
are wiped out due to diffusion (“free-streaming mixing”) of the “fast” particles. Structures
form therefore first on larger scales by gravitational collapse that at later times fragment into
smaller objects (top-down). CDM and HDM scenarios are extreme cases. Also hybrid scenarios
are discussed in cosmology, such as the warm dark matter model (WDM).

Strong constraints from observations, in particular the CMB observations, (e.g. Tegmark et
al. 2004a; Seljak et al. 2004b) favour the CDM scenario, although there are concerns about
its detailed predictions. For example, the predicted number of small, compact dark matter
on sub-galactic scales appears to be too high compared to observations. On the other hand,
maybe the numerical simulations making the CDM predictions are flawed in that respect, or the
interpretation of the observations, that never directly observe dark matter clumps, is wrong.
Another issue is that the rotation curves of dwarf galaxies imply density profiles that seem to
be at odds with the universal, cuspy, density profiles of the CDM picture.

1.2. Quantifying structure with correlation functions

Cosmology cannot explain the detailed appearance of the Universe. For example, it does not
say why the Andromeda galaxy M31 is at the position where it is currently observed, neither
why it has its measured mass or age. Instead, cosmology makes statistical statements, e.g.
about the mass distribution of galaxies, the probability to obtain a galaxy within a certain
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distance of another galaxy, the angular correlation of the CMB temperature anisotropies, etc.

In the statistical approach of cosmology, we consider the observed universe as realisation
of a random field (see Appendix [A3)), as a cosmic random field. Owing to the Cosmological
Principle, statistical quantities of cosmic fields have certain symmetries which are going to be
listed in the following.

The presence of structure generates correlations between values, §(z'), at different positions
in the cosmic field. Studying cosmic structure can therefore be achieved by looking at the
correlators

EMN(Z1, To . T0) = (6(F1) 6(F2) ... 6(T0)) , (1.28)

where §(Z';) are values of the random field at the positions & ;B The operator (...) denotes
the average over all possible field configurations, the ensemble average. Alternatives aimed
at quantifying the structure are the genus statistics or, more generally, Minkowski functionals
(Mecke, Buchert & Wagner 1994; Hamilton, Gott & Weinberg 1986; Gott, Melott & Dickinson
1986); they quantify the topology of iso-density surfaces in the random fields.

1.2.1. Symmetries of cosmic fields

The Cosmological Principle implies fundamental symmetries for the n-point correlation func-
tions £ of random fields in cosmology:

1. Cosmic fields are statistically homogeneous,
€ (F 4T, T+ )= (T, T, (1.29)
where ¢ is an arbitrary constant translation vector in space.

2. Cosmic fields are statistically isotropic,
EM (AT, .. AT, =N (T, T, (1.30)
where A is an arbitrary spatial rotation.

3. Cosmic fields obey the fair-sample hypothesis, meaning that averaging over a large enough
volume of one field realisation is, in principle, equivalent to performing an ensemble
averageﬁ

Items 1 and 2 have as consequence that the values of n-point correlators only depend on the
relative distances of the points &'; with respect to each other. They therefore depend neither
on the absolute position nor on the orientation of the polygon defined by &';. Item 3 allows us
to estimate £(™, in fact all statistical quantities, from one single realisation alone by averaging
over all possible polygon orientations and positions. Therefore, we can interpret the ensemble
average (...) as average over all possible rotations A and translations ¢ in one single random
field realisation if the realisation area is sufficiently large enough.

2In general, the values 6(Z';) could be from different or partly from different random fields. As this case
does, mathematically, not make much difference we consider here only one random field. However,
later on we will encounter cross-correlations, such as by looking at correlations between spatial
distributions of different galaxy populations.

3This item is not completely independent from the statements 1 and 2.
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1.2.2. Polyspectra of cosmic fields

Equivalent to the correlators €™ we can study the correlations of the Fourier transforms of
the (here: three dimensional) random fields

Eo]

~ - . - 3 ~ = 7 o
5(k):/d3x5(f)e+‘ T 5(5):/%5(1@6—1“ (1.31)

by means of the Fourier space correlator
A oy k) = <S(k; D8(Ks) ... S(En)> . (1.32)

This definition is fairly general. If we consider Fourier space correlations in cosmology we can
make use of the statistical homogeneity which makes almost all values for A zero, namely

A, oK) = (2r)3 6% (Zk) k1, ko, ... kn), (1.33)

where (5(3) is the Dirac delta function. Thus, statistical homogeneity dramatically reduces the
number of non-zero entries in A(™. They can p0551bly only be non-zero if their corresponding
wave-vectors k: form a closed polygon, i.e. ), l~1:Z = 0. The newly introduced P are called
the polyspectra of the cosmic fields

The isotropy argument also has an impact on the symmetry of the polyspectra. It makes
them independent of the orientation of k i-polygon. The polyspectra are only functions of the
internal angles ak Z-,k_; ; and side lengths of the polygon; this further reduces the degrees of
freedom of the polyspectra.

Power spectrum and bispectrum

It is a convention to define the power spectrum, P(k),

—

PRk, ~k) = P(Ik|) = P(k) , (1.34)

and the bispectrum, B(ky, ko, @),

— — —

PO Kk, —k 1 —ka) = B(lk1|, k2|, <k 1,k2) = B(k1, k2, 9) | (1.35)

where ¢ € [0, 2] is the angle between the two k-vectors k1 and k 5.

In this thesis, we give sometimes polyspectra or random fields an additional index that is used
to parametrise their time-dependence, for example as in P (k,w) or 6(@,w). The comoving
distance, w, is used in this context to specify the time ¢(w) in the past at which a photon had
to be emitted at distance w to arrived at w = 0 today.

4Due to the constraint of closed polygons 1mposed by statistical homogeneity, P(™ depends actually
only onn — 1 k -vectors since, k,, = — 2?71 k.
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1.2.3. Polyspectra of projected cosmic fields

The cosmic fields are observed as two-dimensional projections & (5 ) on the sky, where the vector
6 defines the direction in which we are looking. An example may be the angular distribution
of galaxies on the sky. Now consider a three-dimensional random field §(z', w) for which the
coordinate system is chosen such that w is a comoving distance along some fixed reference line-
of-sight and & a 2D-vector perpendicular to the reference line-of-sight. Let ) (5 ) be a general
projection of field § seen through a radial selection filter ¢(w):

5(8) = /O " dw q(w) 8(fi (w) ) (1.36)

where fx(w) is the comoving angular diameter distance.

Since §(#,w) is a random cosmic field also §(F) will be a statistically homogeneous and
isotropic random field, but living on the unit-sphere. In this thesis, we assume that we always
observe only small patches of this sphere; small enough to approximate the topology of the
patch by a tangential, Cartesian plane (flat-sky approximation). How do the polyspectra of
the projected fields in the flat sky approximation look? The answer to that question is given
by the general form of Limber’s equation in Fourier space (Kaiser 1998). It states how one can

transform the time-dependent 3D-polyspectra P?Eg)

into the 2D-polyspectra P (¢1,...,4,):

() " g iz @) oo (4 b
Py, ... 0,) /0 d [fK(w)]2("_1) Py <fK(w)"“’fK(w)’ >, (1.37)

where ¢; (w) are the (possibly different) selection filters for the n projected random fields.
Note that the P(™ can also be cross-correlation polyspectra. The quantity wy, is the comoving
Hubble radius, thus the farthest distance in space we can possibly look at. The arguments ¢;
are angular wave modes; they are the Fourier space counterparts of angular distances 6; in the
tangential plane.

Throughout this thesis, we use this equation only for projecting power spectra:

_ " g 1(w)e(w) .
P(ﬁ)—/o d 7}0}2{(10) Psp <fK(’LU)7 > . (1.38)

(k1,...,kp,w) (in comoving coordinates)

1.3. The dark matter power spectrum

The gravitational collapse of the dark matter is the main reason for the formation of structure
in the Universe. The dark matter structure can be quantified by the mode correlations —
the polyspectra— of the over- and underdensities in the density field. What does the power
spectrum —the simplest of all polyspectra— of the dark matter density perturbations look and
how does it evolve with time?

1.3.1. The linear power spectrum

Egs. (C20)-([22) provide a model for the evolution of the dark matter density contrast on
large scales. As the polyspectra of the density perturbations, and in particular the power
spectrum, are functions of d,,, this model also predicts their time evolution, starting from a
given initial condition. The initial condition is given by the primordial power spectrum.
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Figure 1.6.: Depending on the cosmic scale factor, a, the cosmic expansion is dominated by different
components of the cosmic fluid which has an impact on how structure grows. To illustrate this effect
this figure plots the contribution of Q; to the total Hubble function H(a) evaluated by H;(a)/H (a) with
Hi(a) = VQa", Q = Q0 Qp,Qm and n = —4,0, -3 for radiation, dark energy and dark matter,
respectively. As values for the density parameters the results from Spergel et al. (2003) are taken. In
the redshift range plotted are three typical epochs of the cosmic expansion: the dark energy dominated era
(z < 1), the dark matter dominated era 1 < z < 1.2x 10* and the radiation dominated era z < 1.2 x 10

Primordial power spectrum

The shape of the primordial power spectrum is not a priori clear. As educated guess one
assumes a featureless power law without any preferred scale (Kolb & Turner 1990)

Pprim (k) oc k" ) (139>

where n is the primordial spectral index. This index is, besides a possible tilt, predicted by
inflationary models. In these models, the origin of the primordial fluctuations are quantum
fluctuations that had been blown up to macroscopic scales during a phase of exponential
expansion in the very early universe shortly after the Planck time, ¢, ~ 107%2 s, (Fig. [T
ignited by a phase-transition that released latent heat (Guth 1981). Inflationary cosmology
was originally developed as a clever way to solve some problems in the classical standard big
bang model, and has now become an important part in the modern cosmological paradigm
furnishing us with an elegant picture of the early Universe. For a review we refer the reader
to Liddle & Lyth (1993).

Growth of perturbations

Until the epoch of recombination, z, = 1000, the fluctuations were small enough to apply the
linearised theory of structure formation. In the linearised model, the different modes of the
fluctuation field grow independently from each other, o, (k ,a) &< D (a). Yet the physics is not
straightforward since one has in a general model a) to distinguish between different epochs of
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cosmic expansion (Fig. [CH), b) between possible different components like hot /warm /cold dark
matter, radiation and baryonic matter and c¢) between different possible modes of perturbations
referring to the relation between the perturbation in the matter and radiation field (adiabatic,
isothermal, iso-curvature perturbations). The following discussion briefly outlines some of the
relevant physics that took place.

During the radiation dominated era, modes of all components with a wavelength A = 27 /k
greater than the Hubble radius wy grow roughly with D, (a) x a®. Once 6 (k) enters the
Hubble horizon, A < wy, the growth becomes stagnated by the Mészards effect (Mészards
1974) since the cosmic expansion time scale exceeds the free-fall time-scale; the modes are said
to be “frozen in”. In addition, for baryonic components that fall below the Jeans length scale

during this era,
T
> A = , 1.40
wn > A=y f3e (1.40)

the modes also start to oscillate: due to their own gravitation field, py, is the baryon density,
they try to collapse further, but the radiation pressure of the photon field forces them back. As
the photons are diffusing during the process of oscillation, there is Silk damping that dissipates
energy and on average reduces the amplitude of the oscillating modes (Silk 1968). Damping can
also occur for relativistic particles due to the random motions of fast particles. This diffusion
process is called free-streaming damping.

By the time toq at which the radiation domination ends, the Mészarés effect has thus im-
printed a characteristic peak at k ~ 2m/dy,(teq) on the primordial power spectrum of the dark
matter. In the following time, the universe is then matter dominated. Now, modes inside the
Hubble horizon can grow since the cosmic expansion has slowed down. Dark matter modes
both inside and outside the Hubble horizon grow with roughly D, (a) « a. Baryonic modes,
on the other hand, are only allowed to continue growing if A > Aj, otherwise they carry on
oscillating and dissipating because they are still coupled to the radiation pressure by Thomson
scattering. After the recombination, during which the nuclei and free electrons form neutral
atoms, the coupling between the baryonic component and the photons stops. From then on-
wards, the baryonic component only feels its own gas pressure which dramatically lowers the
Jeans length scale. Now the baryonic modes can grow on almost all scales giving birth to the
first generation of stars. As a further complication, at all times components are coupled with
each other by the gravitational field they generate.

Transfer function

This interplay of constituents and effects shaped the original post-inflation primordial dark
matter fluctuations to a new fluctuation spectrum B, after the recombination; see e.g. Pea-
cock (2001) for a detailed description. The shape of the (linear) power spectrum P}, can be
simulated by elaborated numerical codes like CMBFAST (Zaldarriaga & Seljak 2000). The
outcomes of such simulations have been fitted for particular component models by analytic
formulae, the transfer function T'(k):

Piin (k) o< Pyyim (k) T?(k) (1.41)
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In this thesis, we extensively use the adiabatic CDM transfer function from Bardeen et al.
(1986) to model Pyjy:

In (14 2.34q)

T(k) = —= T (14 3.89¢ + (16.1¢)* + (5.46¢)" + (6.71¢)"] , (1.42)
where ¢ = %pc_l with I' being the so-called shape parameter. The value of I' is roughly

Qmh ~ 0.21, provided the baryonic component €y, is very small compared to Q, (Efstathiou et
al. 1992). Also the Bardeen at al. transfer function assumes a negligible fraction of baryonic
matter. The acoustic oscillations imprinted by baryonic component before the recombination
are therefore not included in this power spectrum model. For a more accurate prescription of
T'(k) including the baryonic effect see Eisenstein & Hu (1999).

Power spectrum normalisation

Nothing has been said about the normalisation of the power spectrum so far. This parameter
has to be obtained from observations, usually by measuring the variance J§ of the galaxy num-
ber inside spheres of 8h~'Mpc ~the typical size of large galaxy-clusters— in the local universe
(¢f. White, Efstathiou & Frenk 1993), or by measuring the amplitude of the temperature
fluctuations in the CMB on a particular scale. Either way, both methods observe (indirectly)
the fluctuations of 0, through a smoothing window W (r):

(82) = <[/ d%%W <§> 5m(F)]2> - % /dkk2 V7 (RE) 2P (R) | (1.43)

where W(m) denotes the Fourier transform of the window function and is R its characteristic
size. By definition, for oy a top-hat window with size R = 8 h~!Mpc has to be used:

3 forx<l1
— 4m
Wix) = { 0  otherwise (1.44)
W(z) = 3 (sinx —zcosx) . (1.45)

3

The window size for og is large enough to take essentially only modes into account for which
linear theory roughly still applies; it has a value of about og ~ 0.9. Therefore, og can be
used to fix the amplitude of the linear power spectrum linearly evolved to the present day,
PBin(k,a = 1). In conclusion, the transfer function, the primordial power spectrum and the
normalisation completely defines the linear dark matter power spectrum.

1.3.2. The non-linear power spectrum

The effect of the physics in the early universe on the spectral shape of the primordial power
spectrum is encoded in the transfer function. How does the dark matter power spectrum evolve
afterwards up to the present time? A first guess is to apply, as before, the linear theory of
structure formation. The theory predicts that the amplitude of the power spectrum scales with
Piin(k,a) oc D% (a)Pin(k, 1). However, this is a good approximation only on large scales where
(02) < 1.
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Figure 1.7.: The dark matter power spectrum for two different models: LCDM (Qn, = 0.3,Qx =
0.7,T = 0.21,05 = 0.9), SCDM (1.0,0.0,0.70,0.6) and h = 0.7 for both models. The thinner lines are
the linear power spectra while the thicker lines indicate the non-linear power spectra as predicted by
Peacock € Dodds (1996).

Can we also work out the dark matter power spectrum on non-linear scales? To make
predictions on non-linear scales one has to solve the full problem of structure formation which
until today can only be achieved using N-body simulations. An interesting semi-analytical
prescription for the evolution of the dark matter power spectrum seen in such simulations has
been proposed by Peacock & Dodds (1996, PD96). Their prescription is based on the “HKLM
procedure” (Hamilton et al. 1991) which suggests a way to model the transition between the
linear regime —large distances r— and the highly non-linear regime —small distances r— in the
2-point correlation &) (r) of the dark matter clustering. As for the linear regime, the highly
non-linear regime can also be understood analytically. PD96 used the HKLM prescription,
modified for the power spectrum, and supplemented it by generic functions fitted to the N-
body results. The practical result is an algorithm that maps the linear power spectrum, Py, to
the non-linear power spectrum. The accuracy achieved by PD96 is about 10 percent, which for
the purpose of this thesis is accurate enough. A more accurate prescription has been recently
proposed by Smith et al. (2003). In Fig. [ we plotted two examples for the linear and
corresponding non-linear dark matter power spectrum at z = 0. As can be seen in the plot,
the linear and non-linear power spectra agree on large scales but disagree clearly on small
scales where the linear theory underestimates the fluctuations.

1.4. Galaxies and their relation to the dark matter

In comparison to the total mass in the universe, galaxies take, considering their mass, only a
minor part in the big picture of structure formation. They formed from the perturbations in
the baryonic component whose total mean density is very much lower than that of dark matter.
Not even all of the baryonic matter has been converted into galaxies. Most of it is residing as
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Figure 1.8.: A collection of galaxy morphologies as observed in the GEMS survey (cf. Rix et al. 2004).
The survey consists of one 28" x 28" field patched with 120 HST images; it is centred on the Chandra
Deep Field South providing structural parameters and morphologies of about 10.000 galazies. Already
in the optical we observe a large diversity in galaxzy morphologies.

hot gas between galaxies. Due to their relatively easy observability, it would be very convenient
if galaxies were perfect tracers —unbiased tracers— of the total mass distribution; all statistical
properties of the mass structure could then be derived from galaxy catalogues (Fig. [C4).

Indeed, it is rather unlikely that galaxies are unbiased tracers, because the laws determining
the galaxy distribution are very complex and highly non-linear. The primordial gas from
which they form requires special conditions to be able to cool and fragment into galaxies
(White & Frenk 1991; White & Rees 1978). Due to shock heating of the baryons and energy
feedback between galaxies and baryons, the properties of the gas feeding galaxy formation have
been gradually changing with time. Furthermore, galaxies interact with each other or with the
baryonic intergalactic medium, merge or get accreted into other more massive galaxies (Cole et
al. 2000). These mechanisms probably produced the large diversity in galaxy masses, colours,
morphologies (Fig. [[F]) and chemistry we observe today. The processes are subject of current
research but the details remain as yet unknown. Based on our current knowledge it would
be very surprising if this complexity would eventually result in a simple, linear, one-to-one
relationship between the galaxy density and total matter density, making galaxies unbiased
tracers.

But this should not be seen as a disadvantage, because by studying this dark matter-galaxy
relationship we can learn more about galaxies. Observing the relation between the invisible
dark matter field and the galaxies is a particularly tough problem. However, with gravitational
lensing at hand and upcoming wide-field galaxy surveys, we now have a technique to directly
unravel this relationship. This thesis will focus on the lensing technique.

From the point of view of statistics, quantifying galaxy bias leads to the question how one
can parametrise differences in the statistical properties —not the obvious differences between
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two particular realisations— of two random fields; both the distribution of galaxies and the
distribution of dark matter are thought to be realisations of statistcially homogeneous and
isotropic random fields. Naturally, since random fields are being described by correlation func-
tions, or equivalently powerspectra or aperture moments (see Appendix[A3), bias parameters
are expressed in terms —in fact as ratios— of these basic quantities. In the following, two con-
cepts are going to be introduced: the linear stochastic bias, which takes into account only the
two-point statistics of randoms fields and is blind with respect to hight-order correlations, and
the non-linear stochastic bias.

1.4.1. Classification of galaxies

Galaxies can, at the crudest level, be divided into two basic types: spiral galaxies and elliptical
galazies (Fig. [LH). Their morphological appearance is mainly due to a central bulge, which
is close to spherically symmetric, and a disk component. The motion of stars in the bulge
component is anisotropic, while disk stars move in circular orbits about the galaxy centre.
Depending on how pronounced the components are in an individual galaxy the whole range
from spirals, with dominating disks, to ellipticals, with dominating bulges, is covered. For
historical reasons (Hubble 1936), spirals are also called late-type galaxies, whereas ellipticals
are called early-type galaxies.

Elliptical galaxies are usually red in colour, harbour little dust and interstellar gas and show
no sign of active star formation. Their spectrum has no or only weak emission lines in the
optical. Stars are formed in the disk components of spiral galaxies usually giving them a blue
appearance and, depending on the rate of star formation, strong emission lines.

The ratio in numbers of spiral and elliptical galaxies strongly depends on the local galaxy
density (Dressler 1980; Dressler et al. 1997). Spiral galaxies tend to be depleted in clusters
relative to ellipticals, while few elliptical galaxies are found in low density regions. Outside of
galaxy clusters about 3/4 of galaxies are spirals and 1/4 are ellipticals.

The distribution of masses of ellipticals is broad, extending from 10° to 10'? M, including
the mass of globular star clusters, where My ~ 2 x 1030 kg is the mass of the sun. Spiral
galaxies have a smaller spread in masses, with a typical mass of 10! M. Elliptical galaxies
tend to be more massive than spiral galaxies.

The differential distribution of galaxy luminosities, L, is well described by the functional
form (Schechter 1976)

dL L\ L\ dL
s E = (1) e (-£)F. (146
with the parameters (e.g. Efstathiou et al. 1988; Marzke et al. 1994a; Marzke et al. 1994b)
val11, L,~11x10"Lg, ¢~ 1.5x 107 2h3Mpc 2, (1.47)

where Le ~ 4 x 1026 W is the solar luminosity. Due to the sharp cutoff in ¢(L) only few
galaxies with luminosities beyond ~ L, are found.

1.4.2. Explaining galaxy bias

Simple models for galaxy biasing

A plausible simplification of this complicated physics justifying biased galaxies is the natural
bias introduced by White et al. (1987). It relies on the idea that galaxies form inside dark
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matter halos. In regions of large-scale overdensities, halos form earlier by gravitational collapse
than halos of the same mass in large-scale underdensities. Therefore, galaxies form first in
overdense regions and are thus similarly clustered as the large-scale peaks of the dark matter
density field. However, this can explain biasing only for some limited period of time, since
sooner or later dark matter halos will have collapsed even in the large-scale low-density regions.
A very simple version of this model is the high-peak bias. It assumes that galaxies can form
only in dark matter density regions above a certain density threshold. This automatically
relates the clustering of galaxies to the clustering of high-density regions the dark matter field
(Coles 1993; Bardeen et al. 1986; Kaiser 1984). However, justifying this threshold on physical
grounds is difficult (for discussion see Peacock 2001, page 578).

Numerical models for the galaxy bias

A more sophisticated approach is to include baryonic matter in N-body simulations along with
the dark matter; galaxies are “formed” in these simulations according to phenomenological
local conditions that have to be fulfilled by the baryonic matter in order to condense into stars
(Weinberg et al. 2004; Yoshikawa et al. 2001; Pearce et al. 2001; Cen & Ostriker 2000; Blanton
et al. 2000; Katz, Hernquist & Weinberg 1999). However, gas cooling, shocks and feedback
with galaxies (metal enrichment, winds) are difficult issues in these simulations and not easily
accounted for. Furthermore, the spatial resolution of the simulations is yet not good enough
to properly resolve single galaxies nor to model interactions between galaxies.

Another numerical model approach for predicting galaxy clustering is also based on N-body
codes. However, no baryonic matter is included. Galaxy mock catalogues are generated by
identifying virialised dark matter halos in the simulations and by populating them with galax-
ies according to a prescription taken directly from semi-analytic models of galaxy formation
(Somerville et al. 2001; Benson et al. 2001; Benson et al. 2000b; Kauffmann et al. 1999a,b)ﬁ
See Fig. for an example. The parameters for populating the halos with galaxies depend
solely on the halo mass. If the mass of the halo is too large, then, according to the model, due
to shock heating the primordial baryonic matter will be too hot to collapse into stars. On the
other hand, in halos that are too small gas gets easily reheated by feedback processes which
prohibits further galaxy formation. Between these two extremes halos of mass ~ 102 M, are
most efficient in producing galaxies (Benson et al. 2000). Another variant of the numerical
approach is to run high-resolution N-body simulations with dark matter particles only and to
identify small sub-halos with galaxies (Colin et al. 1999; Kravtsov & Klypin 1999).

All computational models are quite successful in reproducing many aspects of the observed
galaxy population and relating them to fundamental physical quantities. In particular, they
predict a galaxy biasing that evolves with time and depends on the type of galaxies. But
the models have many parameters, not all of them have been measured in observations. A
lot more observational input is needed to constrain and test the model assumptions. Such
input are parameters —bias parameters— quantifying the difference in dark matter and galaxy
clustering as a function of scale, galaxy type and redshift, or clustering differences between
galaxies populations.

5The halo model is an analytical prescription that was motivated by this type of simulations
(Cooray & Sheth 2002 and references therein).
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Figure 1.9.: Simulated position of galazies (differently coloured dots) that have formed in the dark
matter density field (blurry grey colours) according to a semi-analytical recipe for galazy formation
(Kauffmann et al. 1999a,b). The galazies tend to form at the highest density regions of the dark
matter. Each panel corresponds to a simulated volume of 42 x 42 x 16 Mpc3. This picture was created
by A. Diaferio and J. Colberg.
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1.4.3. Quantifying galaxy bias

To measure galaxy bias we have to know how to quantify it properly. It is worthwhile to
have look at the scientific development in the field of biasing. The first bias description was
introduced by Kaiser (1984, 1987) as a single parameter that rescales the two-point correla-
tion function (2PCF) of the galaxy density field to yield the expected 2PCF for dark matter
clustering. In the case of galaxy clustering, the 2PCF is a measure for the probability to find
a galaxy within a certain distance of another galaxy. One way to justify such a rescaling is if
the fluctuation field, or density contrast d,, = pm/pm — 1, of the matter density field is a linear
function of the galaxy density contrast, d; = ng/ng — 1, thus

St = bl - (1.48)

The parameter b is called deterministic linear bias or sometimes simply “the bias factor”. The
densities py, and ng are the matter and galaxy number density fields, respectively. The bar
denotes the mean density.

Along this line of arguing, motivated by the idea that the galaxy number density may
be described as a simple local function of the dark matter density field, other more general
descriptions were sought. Fry & Gaztanaga (1993) proposed the field of d, to be an arbitrary,
not just linear, analytic local function of ¢, (local Fulerian biasing) opening the door to,
in principle, arbitrarily many bias parameters which can be measured only if higher-order
statistics are invoked. Moreover, these parameters can be different if different smoothing scales
of the density fields are considered (scale-dependence of bias). An alternative picture to the
Eulerian bias model is to assume that the galaxy distribution or a part of it (like recently formed
galaxies), is only a local function of the dark matter field at one particular time (Lagrangian
bias: e.g. Catelan et al. 2000).

In order to look at general features of the statistics of transformed random fields, Coles (1993)
derived constraints for the clustering of galaxies that follow from a local mapping of a Gaussian
random field. It was found that on large scales, where clustering is small, the shape of the 2PCF
of the matter and the galaxies is then identical, so that here a simple linear bias scheme may
still be used here (see also Narayanan, Berlind & Weinberg 2000 and Mann, Peacock & Heavens
1998). This is even true for non-Gaussian fields d,, (Coles, Melott & Munshi 1999) provided
the n-point correlations of d,, behave like products of 2PCFs (clustering hierarchy). The most
general attempt to study the correlations of a number density field of galaxies obtained as a
local or non-local mapping of a dark matter density field has been undertaken by Matsubara
(1995).

Another degree of freedom had to be inserted into the biasing schemes once it was realised
that a deterministic mapping between the matter and galaxy distribution does not suffice: The
relation between the matter and the galaxy density field is very likely a stochastic one (Weinberg
et al. 2004; Somerville et al. 2001; Blanton 2000; Benson et al. 2000; Tegmark & Bromley
1999; Dekel & Lahav 1999; Matsubara 1999; Scherrer & Weinberg 1998; Cen & Ostriker 1992)
due to “hidden parameters” of galaxy formation/evolution that cannot be incorporated into a
simple picture that involves only the densities.

One therefore employs a statistical approach to relate d,, and %H The pair of values of
the density contrasts d,, and J, found at one point in space is thought to be a realisation

6In the following various definitions of bias parameters, we will discuss d,, and J, as being the density
contrast of the dark matter and galaxies. But, naturally, these definitions do not depend on these

36



GALAXIES AND THEIR RELATION TO THE DARK MATTER

r=+0.5, b=1 r=+0.8, b=1

| r==0.5, b=1 r=—0.8, b=1

Figure 1.10.: Ezample illustrating the linear stochastic bias (scale-independent). The (Gaussian)
random field in the centre is statistically related to the other (Gaussian) random fields according to six
different combinations of bias factors, b, and correlation coefficients, v, Eqs. [I234). The fields could
be models for the large-scale density contrast of galaxies or dark matter. The contours encircle regions

with positive values for the density contrast (overdensity regions). The contour levels are the same for
all fields.

of an underlying probability distribution function P(dy,ds) (PDF); the density contrasts are
statistically homogeneous and isotropic random fields (Sect. [[2)). Studying the stochastic
biasing between J, and d,, thus means quantifying their joint PDF. The density contrasts are
smoothed to a certain scale before looking at the PDF'; by varying the smoothing scale we can
scan through the different scales.

Linear stochastic bias

Characterising the stochastic biasing, using two-point statistics only, boils down to two bias
parameters, which define a linear stochastic bias:

b(R) = %) r(R) = —Oms) (1.49)

Ol V@@

These parameters differ from unity in the case of two biased fields. They depend in general on
scale, since the joint PDF is a function of the smoothing applied to the density contrasts of

specific fields; they may be the density contrasts of any random field, such as of two different galaxy
populations as in Chapter 5 for the relative galaxy bias.
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the fields. This is expressed by the variable R which denotes the typical smoothing scale. The
values for the biasing parameters obviously depend on the details of the applied smoothing
window. Often in the literature, as in the Kaiser (1984) for b, we find b and r in terms of the
2PCFs §m(R) = (Om(z + R)0m (), Egm(R) = (Og( + R)om(x)) and Em(R) = (65 (z + R)dg(x)),

_JE® e (B
W= \em S e )

instead of the smoothed, second-order moments <5r2n>, (0mdg) and <5§>, respectively. Although
this alternative definition of linear bias is equivalent to the foregoing definition —one can be
transformed into the other— it gives in general different values for the same scale R (Dekel & La-
hav 1999). Moreover, an important difference is that r(R) as defined in ([CA0) can assume values
larger than 1, whereas r(R) as in ((CZ9), which is based on rms-fluctuations in the density fields,
must always lie in the range [—1, 1].

Another equivalent definition of linear stochastic bias is to express the bias parameters in
terms of power spectra:

(u(®)5n(E)) = @mPop(F - F')Pu(lF]), (1.51)
()5 (k) = @n)*on(k — ) Pyn(IF), (1.52)
(3(B)S5(K)) = @man(k — F)R(IE]) (153)

The quantities op, (k ) and Sg(g ) are the Fourier mode representation of the density contrasts oy,
and d,, respectively, at the spatial frequency k. The expression d0p is the Dirac delta function,
c* is the complex conjugate of c. By, P; and Py, are the power spectra of the fluctuations in
the dark matter density, galaxy number density and their cross-power, respectively. The linear
stochastic bias in Fourier space is defined as follows

P = B NAOIAGE

(1.54)

If both 4, and J, are Gaussian random fields, then P(dy,dg) is a bivariate Gaussian and is
hence completely determined by its second-order moments. This is approximately the case for
large smoothing scales where the fluctuations are small, thus for <5§,m> < 1. Therefore, the
linear stochastic bias is a good candidate for describing biasing on large scales. Examples for
scale-independent linear stochastic bias between Gaussian random fields is given in Fig.

Non-linear stochastic bias

The linear stochastic bias picture is incomplete if the relation between 4, and 4, differs from a
bivariate Gaussian. Due to the constraint dg , > —1 this is necessarily the case where |dg m| < 1
no longer holds. In particular, bias and correlation factor mix non-linear and stochastic effects:
The correlation factor is no longer a unique measure for stochasticity because it can become
|r| # 1 even in a completely deterministic case, d; = f(dm), since in general

)
VR R (5%
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As example, take the purely non-linear mapping 6, = f(dn) = 63, and a normal Gaussian PDF
P[om]. In this (made up) case we have r ~ 0.77 although the relation between é,, and d, is
strictly deterministic! In addition, we have b = /([f(6m)]2) / (62,) ~ 3.87 which means that
the “linear” bias factor is also sensitive to non-linear terms.

In order to clearly separate stochasticity from a non-linear but deterministic biasing relation,
Dekel & Lahav (1999) introduced the non-linear stochastic bias. In this scheme, one defines
a typical value for d, that is found at positions in the field where the dark matter density
contrast has a particular value 6,,. The characteristic value is defined to be the conditional
mean

(04]0m) = / 6, 85 P(3g|0m) (1.56)

where P(04|0m) denotes the conditional PDF, thus the probability to obtain a particular value
0g for a given dy,. In the case of deterministic biasing, we will find always the same value d, for
a given value 0y, namely exactly (0g|dm). For stochastic biasing, this relationship only exists
on average with a residual scatter of

€2(0m) = ((Ogldm — (Igl0m))?) = /d5g (Jg — (3gl0m))* P(0g|om) - (1.57)

Using these quantities, one can define bias parameters that distinguish between stochastic-
ity and non-linearity: non-linearity is given if the conditional mean is a non-linear function,
(0g|0m) # bdm with b constant, or if equivalently

{95 0m)
Om

is not a constant. b(dy,) has been coined the biasing function. It is the local slope in the
relation between (0g|0m) and dy,. Thus, the biasing function generalises the local mapping
function considered in the deterministic biasing schemes. Stochasticity is given if the scatter
¢2(0,,) about the biasing function is non-vanishing. The non-linear stochastic bias expresses
this concept in terms of three numbers 13, b and ab%

b OB o GG | () (150
(0%) (0%) (0%.)

These numbers globally average the non-linearity and stochasticity over all possible values dy,.

As before, the bias parameters are in general a function of the typical scale of the smoothing

kernel applied to dy, and 6g. The operator “(...)” should here be understood as ensemble

average over the one-dimensional PDF of d,,, P(dy,). For stochastic biasing, we have 02 # 0.

b(0m) =

(1.58)

A non-linear biasing relation is given if the ratio lN)/ b differs from unity.
The linear stochastic bias parameters of the foregoing section are functions of the three
non-linear bias parameters:

N 1/2 - ~1/2
. b2 2 b2 2
b:b<g—2+g§) : r=<5—2+%) . (1.60)

"The parameter b is the slope of the regression line b, least-square fitted to (dg|dm); this can be
seen by the Eq. (Ad). The parameter b, used to quantify the non-linearity, is obtained by fitting
a straight line 620y, to <§g|§m>2 /6m which only for a strict linear relation between (dg|0m) and om
results in b2.
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This again shows that the correlation coefficient r, Eqs. ([CZ9), mixes non-linear and stochastic
effects. But also the linear bias coefficient b, picking up differences in the rms-fluctuations, of
the fields obviously is affected by non-linearity and stochasticity and does therefore not measure
the statistical average b in “0g = bdy”; in fact, it is always larger than or equal that value since
b=b/r.

For b = 13, the formalism of Dekel & Lahav naturally reduces to the linear stochastic bias
with b = br and oy, = b(1 — r?)1/2. For deterministic biasing, o, = 0, we find b="band as
usual b = br. For linear and deterministic biasing, o, = 0 and l~)/ b= 1, we recover the linear
deterministic bias factor b = b. See Appendix [ for a general relation between the joint PDF
P(0g4,6m) and the non-linear stochastic bias.

1.4.4. Galaxy bias in observations and simulations

Observationally, the bias can be measured by redshift space-distortions (Sigad, Branchini &
Dekel 2000; Pen 1998; Kaiser 1987), weak gravitational lensing (Sheldon et al. 2004; Seljak
et al. 2004a; Pen et al. 2003; Hoekstra et al. 2002; Wilson et al. 2001; van Waerbeke
1998; Schneider 1998) and counts-in-cells statistics (Conway et al. 2004; Tegmark & Bromley
1999; Efstathiou et al. 1990). The count-in-cells statistics can only be applied to measure the
bias between galaxy populations, though. Additionally, the large-scale flow of galaxies can be
used to make a POTENT reconstruction of the total mass field on large scales which can be
compared to the galaxy distribution (e.g. Sigad et al. 1998; Dekel et al. 1993).

The current status of the observational results is summarised in the following. Note that the
given conclusions to some extend depend on the assumed cosmological model. We quote only
the conclusions given by the listed authors for the concordance ACDM model.

In the local universe, L, galaxies are almost unbiased tracers on linear scales of about
8h~'Mpc and larger (Seljak et al. 2004a; Verde et al. 2002; Lahav et al. 2002; Loveday et al.
1996). However, this is probably not true on smaller scales. A comparison of the theoretical
dark matter clustering —which is constrained by the cosmic microwave background anisotropies,
gravitational lensing and the Lyman-« forest (¢f. Tegmark et al. 2004a)— and the observable
galaxy clustering suggests that on smaller scales 7 ~ 1~ 'Mpc galaxies are less clustered than
the dark matter (“anti-biased”) becoming positively biased, b > 1, on even smaller scales
below 7 ~ 0.1h~'Mpc. This is because the observed galaxy spatial 2PCF is approximately a
power law over a scale range of 0.02h~!Mpc < r S 20h~'Mpc (Zehavi et al. 2002) while the
theoretical dark matter 2PCF clearly deviates from a power law due to the non-linear evolution
of the clustering on small scales (see Fig. [LTT], left panel). If this is true, then we should expect
a “dip” in the bias factor on intermediate scales.

In their work on the VIRMOS-DESCART (van Waerbeke et al. 2001b) survey and RCS
(Gladders & Yee 2001), Hoekstra et al. (2001,2002) use weak gravitational lensing to measure
the linear stochastic bias for galaxies with a median redshift of (z) = 0.35 covering a range from
0.1h~'Mpc to 6.3h " 'Mpc. They claim to have observed such a dip in the linear bias factor,
Eq. ([CX4), with a minimum of b = 0.71 as well as a dip in the correlation factor r = 0.57,
both minima at about 0.7h 'Mpc < 7 S 1.4h~'!Mpc. As mentioned earlier, a value of 7 less
than unity is an indication for either a non-linear bias or a stochastic bias or both. Moreover,
Hoekstra et al. conclude that their data is consistent with no biasing on scales of about
8h~'Mpc. However, due to the technique applied (see Sect. B22Z3)) the statistical uncertainties
are largest on this scale; a linear bias factor between 0.7 < b < 1.3 is still possible within 1o
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Figure 1.11.: Left and upper right panel: Theoretical evolution of the dark matter correlation
function, &m(r) = (0m(x)0m(x + 1)), with redshift compared to the observed galaxy clustering, &(r), in
the APM survey. The difference in shape of the galaxy and dark matter correlation function results
in a scale-dependence of the bias factor b(r) = [£4(r)/&m(r)]Y/? (upper right panel). Both figures are
from Jenkins et al. (1998). Bottom right panel: Fvolution of the galaxy clustering amplitude T
with redshift in comoving h™*Mpc for a power law & (r) = (r/ro)" fitted to the 2PCF of the simulated
galazy catalogue; vy does not change much with redshift (not shown). The solid line is for all galaxies,
the dashed line for the 500 most massive galazies and the dashed-dotted line for the 200 most massive
galazies. The dotted line is the dark matter clustering amplitude. The figure is from Weinberg et al.

(2004).

confidence. Also based on gravitational lensing there is evidence that the ratio b/r stays close
at unity from submegaparsec scales up to ~ 8h~!Mpc (Sheldon et al. 2004; Hoekstra et al.
2002; Guzik & Seljak 2001; Fisher et al. 2000), thus from non-linear to linear scales.

The analysis of the bispectrum of the galaxy clustering in the 2dFGRS (Colless et al. 2001)
lead Verde et al. (2002) to the conclusion that on scales between 5h~'Mpc and 30h~!Mpc
the biasing relation between dark matter and galaxies is linear (see also: Lahav et al. 2002).
The same conclusion was drawn several years earlier by Gaztanaga & Frieman (1994) based on
the APM survey (Maddox et al. 1990). However, recently the work of Kayo et al. (2004) has
questioned a strict linear relation on scales < 10h~'Mpc by studying the three-point correlation
of galaxy clustering as a function of morphology, colour and luminosity, this time in SDSS (York
et al. 2000).

A complex biasing relation is definitely found by subdividing the galaxy catalogues into
various subsets. It has long been known that the clustering of galaxies depends on the prop-
erties of the galaxies, namely on galazy morphology (e.g. Hubble 1936; Zwicky et al. 1968;
Davis & Geller 1976; Dressler 1980; Postmann & Geller 1984; Lahav & Saslaw 1992; Santi-
ago & Strauss 1992; Iovino et al. 1993; Hermit et al. 1996; Guzzo et al. 1997; Willmer et
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al. 1998; Zehavi et al. 2002; Goto et al. 2003), colour (e.g Le Févre et al. 1996; Tucker et
al. 1997; Willmer et al. 1998; Brown et al. 2000; Norberg et al. 2001; McKay et al. 2001;
Zehavi et al. 2002; Wild et al. 2004; Sheldon et al. 2004), spectral type (e.g. Loveday et
al. 1999; Shepherd et al. 2001; Norberg et al. 2002; Budavari et al. 2003; Madgwick et al.
2003), selection passband (e.g. Lahav et al. 1990; Peacock 1997; Baker et al. 1998; Hoyle et al.
1999) and luminosity (Davis et al. 1988; Hamilton 1988; White et al. 1988; Park et al. 1994;
Loveday et al. 1995; Benoist et al. 1996; Guzzo et al. 1997; Small et al. 1999; Norberg et al.
2001; Zehavi et al. 2002; Firth et al. 2002; Kayo et al. 2004;). The more luminous galaxies
are, the stronger is their spatial clustering (Norberg et al. 2001):

(L) L
Ly = 085+ 0157, (1.61)

where b is the linear bias factor for low-redshift galaxies on intermediate non-linear scales and
L the luminosity of the galaxies. A similar result has been found by Tegmark et al. (2004b),
while the work of Benoist et al. (1996) on the Southern Sky Redshift Survey 2 (da Costa et al.
1988) concluded a somewhat steeper slope in this empirical relation. Note that there has been
a long debate on this issue because no dependence on luminosity was found by some authors
(e.g. Hawkins et al. 2001; Szapudi et al. 2000; Loveday et al. 1995; Hasegawa & Umemura
1993; Philips & Shanks 1987) based on older surveys with relatively small galaxy numbers
and limited volumes. Nowadays with the upcome of large galaxy surveys such as SDSS and
2dFGRS this dispute seems to be settled.

Late-type, blue, spiral or star forming galaxies are less clustered than early-type, elliptical or
red galaxies (e.g. Wild et al. 2004; Connay et al. 2004; Zehavi et al. 2002; Norberg et al. 2002).
On large scales, the biasing between red and blue galaxies does not seem to be well described by
a linear bias model which, according to Wild et al. (2004, see also Conway et al. 2004), is ruled
out with high significance using counts-in-cells statistics in redshift space. Their statement is
that a bivariate lognormal model for the joint PDF P(6yeq, Oplue) describes best the measured
non-linear stochastic biasing between red, 6.4, and blue, dpue, galaxies (scales 7h~!Mpc <
L < 31h'Mpc). In the same work, Wild et al. observe a scale-dependent non-linear bias
between red and blue galaxies with stochasticity O‘b/i) = 0.44 + 0.02,0.27 £+ 0.05 and non-
linearity l~)/ b= 1.054,1.003 (no errors given in paper) for typical physical scales of 7h~!Mpc and
31h~!Mpc, respectively. Observational evidence that the relation between red and blue galaxies
is non-deterministic was already given some years ago by the work of Tegmark & Bromley
(1999), which was based on the Las Campas Redshift Survey (Shectman et al. 1996), and by
Blanton (2000).

Observations also suggest that on large scales the bias factor b increases with redshift up
to a value of about b ~ 4 at z ~ 3 (Hildebrandt et al. 2005; Magliocchetti et al. 2000;
Adelberger et al. 1998; Steidel et al. 1998; Wechsler et al. 1998; Matarrese et al. 1997). Thus,
at redshifts of z ~ 3 galaxies are more clustered than the dark matter by a factor of about
b? ~ 16. Intriguingly, the galaxy clustering —expressed by the spatial galaxy 2PCF as function
of comoving separation— evolves only little. See Fig. [LTIl, bottom right panel, for a simulated
evolution of the galaxy clustering that is supported by observations (see references in Weinberg
et al. 2004). Even at high redshifts z ~ 3 the Lyman-break galaxies are as much clustered
as the galaxies today. It is the clustering of the dark matter that grows with time reducing
the bias factor of the galaxies (Fig. [[I12). However, interpretations of biasing in the high-
redshift universe are difficult since the surveys get increasingly affected by selection effects.
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Figure 1.12.: Fwvolution of the non-linear stochastic bias, Eqs. (L24), of galazies (solid lines) and
dark halos (dotted lines) for three different smoothing scales (columns) as predicted by the simulations
of Yoshikawa et al. (2001). beoy is the non-linear bias factor b and reorr = (14€2 00 +€2) 72 the linear
correlation factor (Eqs. [[L5A); Yoshikawa et al. use the definitions €2, = o2/b® and €2, = b2/b? — 1
for the stochasticity and non-linearity parameter, respectively. Ng is a simulation parameter having
an influence on the gas mass threshold for galaxies to form; they are not of importance in here. The
bias factor displays a clear evolution with redshift but only with a weak dependence on scale. On large
scales, stochasticity, €scatt, and non-linearity, en, are small, stochasticity effects are always larger than
non-linearity.
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For instance, due to the limiting magnitude of a survey, one is systematically only looking
at galaxies brighter than the magnitude limit. Therefore, the median rest-frame luminosity
of the detected galaxies increases at higher redshifts. As biasing is a function of the galaxy
luminosity, this affects the observed galaxy bias by overestimating its value (Magliocchetti et
al. 2000).

In conclusion, biasing of galaxies is a function of scale, redshift and galaxy type (age, lumi-
nosity, colour and metallicity). At the end of the day, the measurements of observables like the
linear or non-linear stochastic bias have to be interpreted in terms of physical quantities and/or
to be compared with numerical models for galaxy formation and evolution (cf. Weinberg et al.
2004; Somerville et al. 2001; Yoshikawa et al. 2001, Blanton et al. 2000, see Fig. [LT2]) in order
to gain insight in the physics of galaxies. The most promising quantity in that respect seems
to be the halo occupation distribution of galaxies (Blanton et al. 2004; Seljak et al. 2004a;
Berlind et al. 2003; Berlind & Weinberg 2002).

1.5. Gravitational lensing

As outlined in the foregoing sections, we cannot rely on galaxies being perfect tracers of the
total matter distribution. Moreover, the dark matter which accounts for most of the matter
is really dark: it neither emits nor absorbs light. So, how can we then study the matter
distribution?

1.5.1. Light propagation in the universe

The propagation of light through the universe is affected by inhomogeneities in the matter
field: light rays are pulled towards matter overdensities and pushed away from underdensity
regions. The cumulative result of all light-ray deflections is that the images of distant galaxies
become distorted as through an optical lens; large-scale matter inhomogeneities are imprinted
in the images of galaxies. Therefore, one can investigate the matter distribution indirectly by
analysing the shapes of galaxy images. In order to quantify the lensing effect on the images of
galaxies, which are essentially bundles of very close light rays, we consider in the following the
propagation of close single light rays.

Consider two photons emitted at the observer’s position, one into direction ] o =0 and
the other one into a slightly (|f| < 1) different direction o + 6. The vector § is a two-
dimensional vector in the plane perpendicular to g o- The photon initially travelling into
direction @ o is a fiducial photon defining the reference direction for a bundle of light rays
travelling into approximately the same direction. In a perfectly homogeneous universe (Sect.
[CTT)), after travelling a comoving distance w the two photons have a comoving separation of
Z (0, w) = fx (w) @ where fx(w) is the angular diameter distance (Eq. [3); for a flat universe
we recover the well-known Euclidean case fx(w) = w. The relation for the comoving separation
of the photons can also be expressed as a solution of the following differential equation that
propagates T to a certain comoving distance w:

2 =
%—l—Kf:O, (1.62)
where K is the curvature of the universe; for the initial condition at w = 0, we have & = 0
and % =4.
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In a slightly perturbed universeﬁ, equation (C62) can no longer be true because the inho-
mogeneities deflect the photons. It can be shown (cf. van Waerbeke & Mellier 2003) that for
slight perturbations in the gravitational field, ¢, Eq. ([CEZ) becomes modified to

d%z . 2 . 0
T KT =5 [vﬂs(p( )(w) — V1 56 >(w)] : (1.64)
where Vﬁ)écf) denotes the 2D gradient of the potential perturbations perpendicular to either
path of the photons, V| §¢() for photon “1” and V8¢ for the fiducial photon “0”. The
solution to Eq. (L&) is the integral (cf. Schneider et al. 1998)

70, w) = fic(w)d — 3 /Ow du fic(w — w')[V 1 66(& (0, w'),u') = V1660 ()], (1.65)

where §o (& (5 ,w'),w’) is the perturbation potential at comoving distance w’ and comoving
separation I’ (5 ,w') perpendicular to the fiducial line-of-sight.

Eq. (L6 states that a light source with “true” position at ﬁ on the sky is in general
observed at a different position g if the perturbations, d¢, are “switched on”. This is because
light deflections due to d¢ lead to a different physical separation, & (5 Jw) # fK(w)ﬁ , at
comoving distance w. In this sense, d¢ defines a mapping between the unperturbed, ﬁ , and
perturbed, g , coordinate frame: .

= T(0,w)

I} () (1.66)
This equation is called the lens equation. For d¢p = 0, we obtain trivially ﬁ = @ since in that
case we have Z(6,w) = fx(w)f. In general, the solution for § does not have to be unique.
Photons from the same source, 5 , could arrive from different directions giving rise to multiple
images. This, however, is never the case in the regime relevant for this thesis where the light
deflections are assumingly small.

We will only be interested in local properties of the mapping. Locally about the direction g
this mapping is described by the Jacobian matrix

0 aﬂz

J

(1.67)

By means of Eq. (LG3) one obtaind]

0 2 v /f - /f ! 2 S0 / / 0 /
Ay ow) == 5 [ aur L le;’Ij)KW)l;w,ik(x(e,w),w)Akj(e,w), (169

8By a “slightly perturbed” universe we mean specifically a universe with metric

ds? = ¢? (1 + 25¢) dt? — a®(t) (1 - @) [dw? + f (w)(d6” + sin® 0 d¢?)] | (1.63)

2 c?
and d¢/c? < 1. For ¢ — 0 the metric approaches asymptotically the Robertson-Walker metric

9Note that the term fK(w’)Akj((?,w’) = %zﬁ]w/) (from Egs. and [CE7A) on the RHS of this
AV L §¢(& (7 ,w'),w')
- 00 :

equation appears according to the chain rule that is applied to -
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Figure 1.13.: Transformation of a circular source (left) under the influence of a linear transformation
A. The convergence of A changes the size of the image, while the shear stretches the image along a
particular direction ¢ (from Bradac¢ 2004).

where ¢ ;1. is the Hessian matrix of d¢ using spatial partial derivatives perpendicular to the
fiducial light ray. This equation is not easily solved, since in order to work out Aij(g ,W) we
need to know Aij(g,w’) and & (0, w) for v < w.

Numerically, for a given d¢ or 6y, (Eq. [L2), it is possible to find solutions of A;; using the
lens-plane approach (Jain, Seljak & White 2000). This approach approximates the continuous
field of d¢ ;; by a discrete set of IV flat planes and successively works out over some area in the
sky, the distortion A;; after every following lens plane starting from the plane closest to the
observer.

Analytically, we can approximate the solution of A;; to lowest-order by setting A;; (5 Jw') =
0;; and & = fx(w)f in the RHS of Eq. (CBR):

Ay, w) % 65— /0 ouf 22 ;K@)f KU 15 ic(w')d ) (1.69)

This approximation is called the lowest-order Born approzimation of A;;.

1.5.2. Weak gravitational lensing

In a regime where the light deflections are small, the distortion matrix A;; is invertible,
det A # 0, and the lens equation possesses only one solution [ for a given 6. We call this
regime the weak lensing regime.

Convergence and shear of the gravitational tidal field

Weak gravitational lensing (Schneider 2004; van Waerbeke & Mellier 2003; Bartelmann & Schnei-
der 2001) uses the shapes of distant galaxies, the source galazies, to infer the distribution of the
total matter. This is based on the fact, as explained in the last section, that light is deflected
by mass overdensities so that the gravitational tidal field of the matter density inhomogeneities
along the line-of-side towards a galaxy changes the shape of its image. This distortion effect of
the tidal gravitational field is, for small ¢, well described by a two-dimensional linear mapping
over the whole apparent size of one galaxy, hence by the matrix A in Eq. (LCGS]).
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A linear mapping does not have many ways to change the shape of a galaxy. The relevantd
components of the linear transformation A are the convergence x, which magnifies or demag-
nifies the size of a galaxy, and the shear, v = 1 + iv2, which stretches the image of a galaxy
along some direction:

7 l—k=m —7 l—g1 —g2
A0 = =(1- 1.70
(6, w) <—72 1—/~€+’Yl> ( H)<—92 1—1—91) ’ (170)

where g = v/(1 — k) is the reduced shear. See Fig. for an illustration of the action of such
a linear transformation. The linear transformation, and also convergence and (reduced) shear,
is a function of the direction § and the distance w of the source galaxy. If the exact radial
distance w of a source galaxy is not known, we have to consider the expected distortion A for
a (normalised) distribution py(w) of galaxies:

A(d) = /Owh dw py(w) A(F,w) . (L.71)

This is the case in most of the contemporary weak lensing galaxy surveys, and the following
formulae also assume this case. We can, however, always recover the corresponding expressions
for an exactly known source galaxy distance, simply by setting p,(w) = op(w — w') where w’
is the comoving distance of the galaxy.

With the approximation ([LEY) at hand, we can relate convergence and shear in the direction
of § to the three-dimensional matter density contrast o, (7,w). The vector 7 is a 2D-vector
perpendicular to the fiducial light ray. Employing the Born approximation and the Poisson
equation, Eq. (L22), yields for convergence and shear

R() = %(1 — A — Ag) (1.72)
2 i -
- g%Qm/de%(ﬁ( (w)§,w)
W (w) = /dw’pg (w") % (1.73)
¥(0) = % [A2g — A1 —i(A12 + A1) (1.74)
L[ e o 05 — 0 — 21010}
— ﬂ/d@ k(@O —0) ‘§,|4 ,

where a (w) corresponds to the scale factor at comoving radial distance w.

These equations say that the convergence of the mapping in some direction g on the sky is
proportional to the weighted matter density contrast towards that direction, and that the shear
is a convolution of the convergence; the weight solely depends on the large-scale geometry of
the universe and the distribution of the source galaxies in distance. As convergence and shear
are projections of oy, Eq. (L30]), the polyspectra of d,, and the convergence/shear polyspectra
are related according to the Limber’s equation, Eq. (LC37).
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Figure 1.14.: The shape of image ellipses for a circular source, in dependence of the ellipticity com-
ponents x1 and X2; a corresponding plot for €1 and €2 would look similar (source: D. Clowe, see also
Schneider 2004).

Connection to the real world

We now define a quantity for the shape of a galaxy. A single galaxy ellipticity € is defined as

—

a complex number in terms of the (central) quadrupole moment @Q;; of the light profile I(6) of
the observed image with =0 sitting at the centre,

G eon = /d29 1aHw@)e (1.75)
of the galaxy image:
_[d% 1(0)W(0)6; v,  _ Q11 — Q22 +2iQ12
Qij = = = , €= 5 (176)
[d20 1(0)W(9) Q11 + Q22 + 21/Q11Q22 — QF,

—

The function W (0 ) denotes an appropriate aperture mask within which the quadrupole moment

is measured. For circular isophotes, one has Q11 = Q22 and @12 = 0 and therefore ¢ = 0; the

trace of Q defines the size or area of the isophotes. Another common definition for the ellipticity

in gravitational lensing is

Q11 — Q22 + 2iQ12
Q11 + Q22 ’

10We only consider the symmetric part of the Jacobian A, i.e. %(Aij + Aji), because the asymmetric,
rotational part, i.e. $(A;; — Aji), of the transformation is irrelevant for gravitational lensing.

X = (1.77)
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which has the same phase as ¢ but a different modulus. The orientation and ellipticity of the
isophotes for various complex ellipticities is plotted in Fig. [LT4l Note that complex ellipticities,
x and €, are polar quantities and hence do not transform like vectors under rotation: They
transform according to € = e~2% ¢ where 1) is the rotation angle.

Seitz & Schneider (1997) showed that under the action of a linear transformation A the
intrinsic ellipticity, i.e. unlensed galaxy ellipticity, €5 of a source galaxy image is transformed
into €; according to

€&+ 9

_ 1.
1+g%e’ (1.78)

€
if the reduced shear of the linear transformation is |g| < 1, or into 1/€ otherwise. In the weak
lensing regime, the projected dy, is small: |y| < 1, K < 1, thus |g| < 1 and 1+ g% ¢ =~ 1.
Therefore, we can make a further approximation:

GRE+GRE+T. (1.79)

Furthermore, we make the fundamental assumption that the unlensed ellipticities €4 of galaxies
that are not physically close are randomly oriented with no preferred direction in the sky, i.e.
(€5) = 0, yielding .

(e) = 7(0) (1.80)

for an average over the ellipticities of source galaxies lying in the same line-of-sight direction g.
Therefore, we come to the conclusion that the ellipticities ¢; of the source galaxies themselves
are unbiased estimators of the shear.

Of course, galaxies are in general not intrinsically round objects, € # 0. In fact, the
ellipticities of galaxies have typically |es| &~ 0.3. This makes them very noisy estimators of
the shear considering that the shear signal induced by (weak) gravitational lensing is typically
about one percent of this value. Therefore, an average over many galaxy ellipticities in weak
lensing applications is required.

The shear is a function of the convergence, and the convergence is related to the projected
Odm. Consequently, is should be possible to make, to some extent, a reconstruction of the
total matter distribution based on the observed ellipticities of source galaxies. With such a
reconstruction a direct comparison with the galaxy distribution for investigations of the galaxy
bias is possible, as will be shown in Chapter Bl
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CHAPTER 2

A model for the evolution of galaxy bias on linear scales

2.1. Introduction

As mentioned in the Sect. [ the relative clustering of galaxies compared to the dark matter
seems to be a function of redshift. Apparently, galaxies were biased in the past but are little
biased today. Moreover, biasing of galaxies depends on the galaxy type. A natural question to
ask is whether the bias evolution, if observed for different galaxy types, can reveal something
on the nature of the evolution and formation of a particular class of galaxies. Lead by this
question, we develop in this chapter a time evolution model for the linear stochastic bias, Eq.
(CH4), of galaxies on linear (large) scales. This model demonstrates that bias evolution can
depend on the details how galaxies are formed from, or transformed into, another class of
objects.

Analytical models for the bias evolution fall into two categories: test particle models and
halo models. Test particle models (Basilakos & Plionis 2001; Matsubara 1999; Taruya & Soda
1999; Taruya et al. 1999; Tegmark & Peebles 1998, hereafter TP98; Fry 1996, hereafter
F96; Nusser & Davis 1994) assume that galaxies passively follow the bulk flow of the dark
matter field. A common characteristic of these models is that they use perturbation theory
for modelling structure formation and are, therefore, at most applicable to weakly non-linear
scales like in Taruya et al. (1999). Halo models (Berlind & Weinberg 2002; Taruya & Suto
2000; Seljak 2000; Peacock & Smith 2000; Kauffmann et al. 1999a,b; Sheth & Lemson 1999;
Bagla 1998; Catelan et al. 1998; Matarrese et al. 1997; Mo & White 1996), on the other hand,
picture the dark matter density field to be made up out of typical haloes that host galaxies,
so that the clustering of galaxies is related to the clustering of their hosts and typical halo
properties (dark matter density profiles and clustering of the halo centres as function of halo
mass; these parameters are taken from N-body simulations). They also make predictions on
non-linear scales, but, certainly, at the cost of several assumptions. Overall the halo model
together with the galaxy halo occupation statistics seems to be a fairly good description (cf.
Seljak, Makarov & Mandelbaum 2004). Both model concepts —halo-model and test particle
models— agree on a debiasing of the galaxy field with time, but there are differences in the
details (Magliocchetti et al. 2000).

We extend the test particle model of TP98 for the linear stochastic parameter evolution and
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include several galaxy populations that are allowed to interact with each other. By “interac-
tion” we mean the local change of the number of galaxies. The rate of galaxy interaction is
assumed to be a function of all density fields. Treated is also the evolution of the relative bias
of the populations with respect to each other, not only the bias relative to the dark matter
field.

The structure of this chapter is the following. The second section develops a model based on
the bulk flow hypothesis including a general sink/source term for galaxy destruction/creation.
We derive differential equations for the auto- and cross-correlation power spectra (galaxy-
galaxy, galaxy-dark matter), valid on scales where the fields are Gaussian, thus on linear scales
(Sect. Z223)). The equations are then transformed to obtain differential equations for the linear
stochastic bias parameters (Sect. EZ2Z4). In Sect. B33 scenarios conserving galaxy-number are
briefly visited. In Sect. B-4l, we focus on linear and quadratic interaction rates and work out
the relevant terms needed for the bias model equations based on this interaction (Table EI).
Furthermore, we demonstrate in Sect. for a few toy models the effect on the evolution of the
large-scale bias in the presence of these specific galaxy interactions. This chapter is concluded
with a discussion.

2.2. Derivation of the bias model

Here we derive differential equations for the density contrasts of a set of galaxy populations
based on the central assumption that the velocity fields of the galaxies are identical to that of
the dark matter. This bulk flow hypothesis is shared by other similar models (cf. TP98; F96).

2.2.1. Evolution of density contrasts

The dark matter peculiar bulk velocity ¢ is on large scales described by the Eqs. ([C20)-
(CZ2) and ([CII). Solutions to these differential equations have been extensively studied in
the literature, especially using the perturbation approach (e.g. Bernardeau et al. 2001 for a
review; Goroff et al. 1986) and therefore will not be discussed here. We simply assume in the
following that the solutions for é,, and ¢" are (approximately) known.

As well as the perturbations in the dark matter density we express the inhomogeneities in
the distribution of galaxies as density contrast ¢; of a galaxy number density field n;:

n; = T_Lz'(l + 52) . (2.1)

The index i is used to distinguish between different galaxy populations. Generally, every galaxy
population has its own bulk velocity field vy and set of Euler equations for their evolution.
The fundamental assumption on the galaxy bulk flow, however, reduces the treatment for
the galaxy number density evolution solely to the number conservation equation, which for a
conserved number of galazies looks as Eq. (LZII) (TP98):

o6, 1. 1_ .

since we set the galaxy bulk flow equal to the dark matter bulk flow, vy = ¢". The term %Vﬁ'
can be removed by subtracting Eq. (CZI]), arriving at an equation that clearly shows how the
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galaxies are coupled to the dark matter field

06; O06m 1_

E = W + av (7) [(5m — 5z]) . (23)
fOur main modification in this continuity equation consists of dropping the constraint that the
mean number of galaxies —expressed by 7,— is conserved. We allow for a sink/source term ®;
in the conservation equation for the galaxy population n; that incorporates galaxy-galaxy and
galaxy-dark matter interactions, and is thought to be a function of all the density fields. Note
that in this formalism interaction is equivalent to a change in galaxy number density.

In order to include ®; in Eq. (Z2) and to eventually obtain a modified formula [Z3), we
have to start with the number conservation equation for the galaxies plus the new interaction
rate @iﬂ

8’1%‘
ot
The term ®; locally creates or destroys galaxies belonging to the population n;. Later on, we
will relate this term to the number densities of other galaxy populations and the dark matter
density. Setting ®; = 0 would result again in Eq. Z3). Substitution of n; by the definition in

&) yields:

1

00; 1 1 on;
— + Vv V () — | ®; — (1+9;) —
5 TV (00:) = = | @i = (L4 0i)
For the last step we had to take into account that the mean galaxy density n; is a function
of time. Compared to Eq. (Z2), we obviously have a new term on the right hand side (RHS)
that has to be accounted for. Again, subtracting Eq. (LCZI) from the last equation gives the
time evolution equation for the density contrasts of the galaxies but this time accounting for
the impact of a varying mean galaxy density due to ®;
06; 0oy 1 1

(2.5)

8} 1 on; (2.6)

ot n; Ot

2.2.2. Evolution of mean densities

In order to get the time-dependence of the (comoving) mean galaxy density n;, we take the
ensemble averageﬁ .y of Eq. (Z8):
on;
ot
where we used (9;) = (0m) = (V (00;)) = V (070;) = 0.
The terms V (00,) and V (0'd;) vanish, because the net flux

= () , (2.7)

(@) = A (F8) + A (T) =0 (2.8)

of any population n over the whole volume has to be zero, since we work in the rest frame of
the Hubble expansion. In particular, Eq. (Z7) has general validity and is not restricted to
Gaussian fields only.

'We use comoving number densities, i.e. n, = a~3n; where n} is the proper galaxy density. The

source term ®; also prescribes the change in number of galaxies per comoving volume, i.e. ®;(n;) =
a® @ (a3 n;) where @/ is per proper volume.
2Due to the ergodicity of the random fields involved, volume and ensemble average are identical.
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2.2.3. Linear scale evolution of correlation power spectra

We will primarily be interested in the evolution of the linear stochastic bias which may be
expressed in terms of the cross- and auto-correlation power spectra. Therefore, the next logical
step is to work out the time dependence of these power spectra. For that reason, we decompose
the density perturbation into Fourier modes,

5(i) = / By § (7) eHFT (2.9)

to obtain the corresponding equation for the Fourier coefficients

o rn bR L@ s e

where the irrelevant terms at & = 0 have been neglected. For convenience, we omit the
arguments in the brackets of the Fourier coefficients. By the asterisk “x” we denote the
convolution of two fields in Fourier space

- -/

(Fea)(®) = [ aWFE 3 - ) (211)
that enter when products of fields are Fourier transformed. A tilde “~7
Fourier transform of a random field or function beneath the tilde.

We restrict ourselves to the case of strictly Gaussian fields, which is a reasonable assumption
on linear scales (see e.g. Bernardeau et al. 2002). As a consequence, all connected higher-order
correlation terms like bispectra vanish, which makes the following equations a lot simpler. Fur-
ther, in the cosmological context the density fields are statistically isotropic and homogeneous
random fields.

always denotes the

The correlation power spectrum P (k) between two real homogeneous random fields with the
Fourier coefficients 01 (k) and d5(k ) is defined by

(2m)* Sp (K = KPR = (51 (R)35(5) ) - (2.12)

This relation also states that the power spectrum P(k) is related to the correlator, RHS, in
the following way

. 3./ Y e Ly
PO = [ %@mm ). (2.13)

Due to this relation, we are going to use a slightly different definition (...)
average:

" of the ensemble

(BEEE) = [ T8 GwaE) | (2.14)

which in the following is useful to derive the differential equations for the correlation power
spectra. We also introduce the convention to omit the k- arguments for the correlators and the
power spectra. Instead, we use the following notation: Power spectra have as Well as the first
field in the two-point correlator (in the above definition 51) as argument always k: whereas the
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=/
second field in the correlator has the argument k . For example, according to this convention
the following two lines are identical:

Py = (5i(0)3HFE)) (2.15)

~ ~ /
P = <515;> .
After explaining the notation, we now accordingly define the correlation power spectra be-
tween the model random fields by

Py=Pi={(55) P=(58) Pu={5ui) (2.16)

where P;; is the correlation power spectrum between galaxy population n; and n;, thus for i = j
the auto-correlation of population n;. P; denotes the cross-correlation between the population
n; and the dark matter field pn,. Py is the dark matter auto-correlation.

To work out their evolution, we first multiply both sides of Eq. @I0) by 6% (k /), take the
(modified) ensemble average (...)" and use the definition of the power spectra to get

db; O 1 on;
—5*> - <—5*> <q> 5*> —pl 2.17
< ot ™ ot ™ M "ot (2.17)
Note that all terms containing bispectra (three-point correlations) have been neglected. They
turn up when the correlation of two convolved fields with a third field is calculated (see Ap-
pendix [BJ)) as for the velocity term in Eq. (ZI0).

The equation simplifies further, if we use the following two relations, obtained by taking the
time derivative of the power spectra definitions (ZTHI)

8{% - <%5;> <5m8§§1> _2<%5;> (2.18)
<%;t§;> - 88? - <8§?Si>/' (2.19)

Eq. (ZI8) utilises the fact that the power spectra are real number functions, thus identical to
its complex conjugate. Eq. ([ZI1) can according to Eq. [ZI8]) and I9) be written as

0P, _10Py 1 KMQ’_PZ,%] +<85*5> (2.20)

ot 2 ot ot ot

leaving us with an equation for the dark matter-galaxy power spectrum.
As a second step, we try to do something similar for the galaxy-galaxy power spectra P;;.

Multiplying both sides of ([ZI0) by Sj(/; ,) and taking the ensemble average yields:

i\ yBuz\ L[z s\, O
(G%) = (5h) +x [<q’i5j> - Pw’ﬂ | (2.21)
This is already the first term out of two we need for the time evolution of F;;:
OP; ;06 < D9,
= Ly, ¥ 2.22
ot <at J> <8tdl> (2:22)
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The second is obtained by swapping the indices ¢ and j and taking the complex conjugate of
Egs. (Z1). Combining these eventually gives

8§t¢j _ <%5*> ;Z [<@{;>'_p.%] (2.23)

o (G () - n]

For the next step, we would like to approximate in Eqs. (220) and 23] the time derivative
ag—gl using perturbation theory. For our purposes, the lowest-order approximation of O 1S
sufficient, because we have restricted the model to large (linear) scales. Considering only the

growing mode, we have according to Eqs. ([LZ0)

Sm = D+ Sm|t1
m  ODy 1 0Dy = 0lnDy -
= — o5 Omlhi= Dy ot ™ o ™ (2.24)

where 5;1|ti denotes the density perturbation mode at some initial time and Dy = gj((ﬁ) the

linear growth factor (see Eq. [[27)). Employing the lowest-order approximation of d,, yields for
the terms in question

5%, _ /mDig <\ 9D, R(Y)
< ot 5> - < ot 2 5> ot D) P
8Pm _ 81nD+ % T / *81HD+ /
ot < ot O 0m > +<5m ot o >
- 281]((;?* Pn=R(t) Py . (2.25)

The newly introduced function

1 0Pn Ol D,
R(t) = — =2 2.26

®) P, ot ot (2:26)
is the rate at which the power spectrum of the dark matter is growing on linear scales.

Plugging this expression into Eqs. (Z20) and 23] enables us to write the differential

equations for the correlation power spectra in a closed form

- o~ !
OP; Pn+ P <q”'531> (@)
_ t = - P 2.2
ot R( ) 2 n; n; ( 7)
- o~ / - o~ /
OF;; P+ P <q>i5;> <(I);5i> (@i) | (D))
- = — P | L+ 20 2.2
5~ R~ P " i P (2.28)

The terms on the left hand side (LHS) containing R (t) are responsible for driving a biased
galaxy distribution towards the dark matter distribution. Setting these terms to zero, switches
off the coupling to the dark matter field due to the bulk flow assumption. The expressions on
the RHS encode the impact on the power spectra due to the creation or destruction of galaxies.
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2.2.4. Linear scale evolution of linear stochastic bias

We define the bias parameters with one index, thus r; and b;, to be the bias of the i-th galaxy
population with respect to the dark matter, whereas two indices, b;; and r;;, denote the relative
bias between the i-th and j-th galaxy population:

Py P
by =4 — ; = 2.29
VR T VR (2:29)
Py Py
bij = T = ——.
K Py Y P Pj;

Using these definitions, we can write down differential equations for (b, 7, b;j,7i;) based on
Eqgs. Z27) and ([Z2]). Appendix [B2 shows how this is done in detail. The main result there
is the following set of equations (the equation for the mean density 7; has been added for the
sake of completeness) showing the evolution of the bias parameters for any kind of interaction
term P;:

0b;

= = R)— + 1} (2.30)
a;zj _ R()le;b:b:]bzbij‘i‘bm 2_1_2_5] (2.31)
% = R(t)lz_—b:?JrIf (2.32)
887? — (@) = (&) o (2.34)

where we used the following definitions for interaction terms arising if the number of galaxies
is not conserved

~ o~ /
1 <q’z‘ 2"> 1
Y = = — 2.
b; b; =
I = 19 - 2(®) =1 - = (9,
b= e =1 2|
B = =, / = =, /
o [@a), @y,
Yy P, b P, bf
- = o, / = =, /
po_ L |8) 1 (8,
“ n; P, bibj Pa bzz

The interaction terms I}, IZ-2 and If’j vanish for ®; = 0; they are responsible for deviations from

the interaction-free evolution of the linear bias parameters. In Eq. (Z34]), we equivalently
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expressed the interaction rate in terms of the Fourier representation of ®;. Depending on
the definition of ®; this representation can be mathematically of advantage, especially when
derivatives or integrals are involved.

2.2.5. Constraints on correlation factors

As initial condition, one can set the bias parameters b; freely in the Eqs. Z30)-Z33). The
relative bias b;; between the different galaxy populations is thereby also fixed, namely b;; =
bi/b;.

The choice of the initial conditions of the correlation coefficients (r;,7;;) is not free, however.
For example, we cannot demand population A, say, to be 100 percent correlated to both
population B and population C, but, at the same time, population B to be not correlated to C.
To be more general, we arrange the density contrasts of the dark matter and N galaxy fields
in terms of one single vector

F(F) = (BulF) 5i(F) . SN(/Z))t, (2.36)

with &' being the transpose of #. Concerning the bias parameters, we are restricted by the
— — —/ /
fact that the covariance matrix C(k) = <:E’ (k)[x (k )]t> has to be positive semidefinite, thus

the determinant of

1 r1b1 T2by .. TNDN
) = Pof) | M0 M1 bz bibami
rNby  bibyTin . . by

has to be greater than or equal to zero (as before, we have left out the k -dependence of the
bias parameter in the notation).
For three random fields (or two galaxy populations plus the dark matter field), this statement
is equivalent to
2r1roris > 12 s iy — 1, (2.37)

if the definitions of C, 71, r2, 712 are used (calculation not shown here). It holds for all scales
and the large-scale parameter considered in particular. Going back to the example above, it
follows immediately from this equation that if we fix two of the three correlation coefficients
with one, say r1 = ro = 1, the third automatically is also forced to be one. Even more general,
if only one of the correlations is set to one, say r1, then the other two have to be equal, since
we are told by the above constraint that

(ra—7112)> <0 (2.38)

Already for four random fields (or three galaxy populations plus the dark matter field) this
condition of positive semi-definiteness becomes rather lengthy:
123y 4 roris + rard, + (2.39)
2[r172r12 + 7173713 + rar3Te3 + 112713723 —
T1T9T13T23 — T1T3T12T23 — T2T3712713]
>ri+ri i +rfy iy i — 1.
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By setting all correlations with the third population to zero (rs = 13 = ro3 = 0), one can
see that this reduces to the forgoing inequality (Z37). Thus, the constraint for three galaxy
populations is a more general expression that simplifies to the condition for two populations if
one of the three galaxy populations is not all correlated to the two others and the dark matter;
it is in a statistical sense disconnected from the others.

2.3. Galaxy-number conserving bias evolution

With no interaction present, ®; = 0, the number of galaxies is conserved. Such models are
treated in the second section of TP98. Fig. ] shows a diagram similar to the one in their
paper: it can be seen that an initially biased galaxy distribution is more and more relaxing
towards the dark matter distribution, asymptotically closing in to 7 = 1 and b = 1 (“debias-
ing”). That this is indeed a stationary state, i.e. %I? = %’;i = 0, can be seen from Eqs. ([Z30)
and ([Z32) for which the only stationary solutions are b; = r; = £1 (without interaction, hence
Il =12 =0).

The second solution with b; = r; = —1 has to be excluded, because the bias factor is by
definition always positive. The only possible way to be attracted by this stationary point is
that we have r; = —1 at all time. For all other values r; > —1, the correlation parameter is
an increasing function with time, inevitably approaching the other stationary solution. This
peculiarity is therefore avoided if we exclude r; = —1 as initial condition.

The bias between two galaxy populations also has a stationary solution at b;; = b;/b; = 1;; =
1. This follows from Eqs. @31) and @33 (I2 = Iig’j =0). Fig. shows as an illustration the
evolution of the relative bias between two galaxy populations while they are getting debiased
with respect to the dark matter.

2.4. Toy models not conserving galaxy number

In this section, we present a few examples to illustrate the impact on the evolution of the
linear bias parameters of interactions that destroy or produce galaxies. These include the bias
of each galaxy population with respect to both the dark matter and all other populations. For
predicting the bias evolution on large scales, we incorporate the model Eqs. (Z30) to (234).

2.4.1. Modelling galaxy interactions

Linear and quadratic interaction terms

To be specific about the interaction term in Eq. (Z4), we make the following Ansatz for ®;,
namely a series expansion in n; and py, up to second order:

o, =A; + Bjn, + C’ipm + D*nyns + E'Zp?n + Ffpmnr . (2.40)

A;, B], C’i, Dy?, E; and FZ" are phenomenological coupling constants. Note that we are using
the Einstein summing convention that abbreviates e.g. the expression ), . Di*n,n, through
D7*n,ns. As before, we skip the position arguments of the density fields.

This particular ®; is motivated by the idea that locally the galaxy density may be changed
—apart from converging or diverging bulk flows— by galaxy collisions or mergers with interaction
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Figure 2.1.: Ewvolution of the linear bias with no coupling between the galaxy species or to the dark
matter present; the number of galazies is hence conserved. One curve from the right and one curve
from the left panel always belong together for one plotted model, twelve models are presented (roman
numbers). The left panel shows the bias b evolving for three quadruples of models from the initial values
b=2,1,0.5 at redshift z =5 to z = 0; the curves of each quadruple belong to initially (from upper to
lower): 7 =0.75,0.5,—0.5,—0.75. In the right panel we depict the corresponding correlation parameter.
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Figure 2.2.: FEvolution of the relative linear bias between two galazy species, both starting off at z = 10
with by = ba = 4. The correlation of one species to the dark matter is always r1 = 1, whereas the second
species has ro = 0.6,0.4,0.2,0.0, —0.2, —0.4, —0.6 for the curves in the left panel (upper to lower). The
initial correlations between the galaxies where chosen to be r12 = 0.6,0.4,0.2,0.0,—0.2, —0.4, —0.6. The
left panel plots the evolution of bio, the right panel r12, same roman numbers correspond to one model.
No coupling is present, hence the galaxy number is conserved.
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rates proportional to the product of the density fields involved (D}*, F; and Iﬁl’“) In addition,
we also include all lower-order terms, like, for instance, a constant rate of galaxy production
A; or a rate that is linear with some density field (B and C;). As the non-linear, quadratic
couplings linear couplings may also have a physical interpretation in this context: a galaxy of
one population is with a constant probability —independent of its environment— transformed
into a member of another population (passive evolution).

Interaction correlators

Actually needed inside Eqgs. ([Z30) to ([234)) are, however, not the ®; but the interaction terms
in Egs. @35). Those are mainly functions of the interaction correlators (®;67)" and (®;dy,)’
whose evaluation can be found in Appendix [B3

Number density evolution

We have to evaluate the interaction rate per unit volume in Eq. ([Z34), too:

(®;) = Ai+Ci+E;+ (B} + F])n, + Dj°nyns (2.41)
+ DZ;ST_LTT_LS <57«53> —|— EZ <5§1> _|_ F‘Z]“T—LT <5m5r> ,

where the mean dark matter density p, has been absorbed inside the coupling constants
(Appendix [B3]). Note that the density contrasts here are in real space. For linear couplings
only, Di® = E; = F]" = 0, the evolution of the mean volume density of galaxies is apparently
independent from the way the galaxies are clustered, because then Eq. (Z34)) only depends
on n;. Quadratic couplings, however, introduce terms like (d;0;), so that the mean density
evolution gets linked to the correlations between 9; and d,,, and the fluctuations of these fields.
The meaning of this is, that under quadratic couplings the mean density of highly clustered
galaxies evolves in a different way than a completely homogeneous galaxy field.

To develop the last equation a bit further, we now would like to express the (real space) fluc-
tuations/correlations (6;0;) and (6md;) in terms of linear bias parameters and the dark matter
density fluctuations <5r2n> only. Expanding the correlator (d;0;) in Fourier space employing

Eqgs. (C24) gives
(685) = 5z [ K2 [ ()] b )y (1) v () Pos () = By (82 (2.42)

with
(62) = %/dk w (k) , (2.43)

and using the definitions

bt = J dk w(k‘f) sz(lz E)li)(k) rij (k) 7 (2.44)
wk) = K (W(k;)fpm (k) . (2.45)

We have introduced a window function W (k) to account for the fact that the density fields
0; and &y, entering the interaction rate ®; as quadratic coupling terms in general may be
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Figure 2.3.: Estimated fluctuations <5fn>, Eq. ZZ3), of the dark matter density field seen through
differently sized windows (comoving) using the PD96 prescription for the non-linear clustering regime;
see Sect. [24 for cosmological parameters.
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Figure 2.4.: Weighting factors w(k) (in arbitrary units, see Eq. [B43) for different redshifts, the
window W(k) was set to one. The weight mazimum stays roughly at the same scale in the plotted
redshift interval; the peak is quite broad however. Also plotted here is the window function |V~V(k)|2
(not normalised) of a top-hat W (r) with Rin, = 100 h~'kpc which would cut-off the weights beyond

Kint/2m = 10 hMpc—'. See Sect. [ZZ) for cosmological parameters; the PD96 prescription was used for
non-linear regime.

62



TOY MODELS NOT CONSERVING GALAXY NUMBER

smoothed with some kernel W (r). It is, for instance, plausible that fluctuations of the fields
much smaller than the typical size of a galaxy are not relevant for galaxy interactions, although
mathematically the density fields may have an infinite resolution. In that particular case, W (r)
could be modelled as a top hat of some typical width R;,; with the following 1174 (k)

3 .
W(y) = 7 (siny —ycosy) , (2.46)

where y = kRiy, (e.g. Peacock 2001, page 500).

The expression bz/b;r\” is the weighted mean of b; (k) b; (k) r;; (k) over all scales. Fig. B4l
shows for W (k) = 1 the weights w (k) for some redshifts and one particular cosmological model.
In the plotted redshift range, the weight peaks at about 1 A~ Mpc, but has a considerable width
though. In an analogue manner, we obtain

— [k w (k)b (k)i (k)

0:0m) = byri (62 bir; = 2.47
Eq. (2Z1) hence can be written as
(@) = Ai+Ci+E;+ Bjn, (2.48)

+ D [1 ¥ b <5§]>} Fiy g

+F L br (03)| s+ B (02

Interaction terms for bias evolution

Table 2Tl summarises the final result for I?, T2, If’j and (®;) as list of contributions stemming
from the various linear and quadratic interaction terms in 40). As both the interaction terms
and the mean galaxy interaction rate are linear in ®;, all different coupling contributions of
interest are simply added in order to obtain the final terms.

To give an example, assume that the change of number of galaxies ny and ny depends linearly
on both ny and ngy. These are interactions of the B;-type. In our notation, (b, r1), (b2, r2) and
(b12,712) are the linear bias parameters of population ny with respect to the dark matter, of
population ns with respect to the dark matter and of population ny with respect to population
ngy respectively. According to Table 27l the interaction terms are explicitly (after some algebra
using 711 =192 = 1 and r19 = 791):

I? = Bll b1 + EB% r12b9; IS = B% by + gBé r12b1
ni ny
Tioby niby
112 = B% m (rg —riri2); 122 = B% @ (ry —rori2)
) n1by
If’zzB%ﬁ(l—sz); 15’1:35@(1—7’%2)

=0, I3=0
(®1) = Biny + Bing;  (®2) = Bing + By
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Table 2.1.: Three tables listing the contributions
of the different couplings in Sect. [Z{1] to the inter-
action terms I?, IZ, Iz?’j and the mean interaction
rate (®;) sorted by the coupling constants; they are
required by Eqs. (Z30) to (2.34)). Ai corresponds
to a constant galaxy production/destruction, Bll»
couples galaxy field n; to n; (linear), C; n; to the
dark matter field py (linear), DY couples n; and n
to n; (quadratic), E; couples p2, to n; (quadratic),
and Fil couples n; to n; and the dark matter field
pm (quadratic). The whole expression contributing
is the product between the coupling constant, first
column, and the expression in the second column or
third column. Different contributions from different
couplings are just added; we are using FEinstein’s
summation convention for the wvariables | and s.
Note that we have the special case r;; = 1 by
definition of the correlation parameter. The bias
parameters Z;E and bﬁj?ij, and <5r2n> are explained
in Sect. [Z41l They are only needed for modelling
the mean galaxy density in the presence of quadratic
couplings.

term Ii2

Ay 0

B! DYy — i)
i n; b W1 il'ly

G a1

1s 77Llﬁs l
D; n; b <

E; %%@—@)
F} Z_ib_lz (1 —r; + [7“1 — le] bl)
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term I? (P;)
Ay 0 1
B% Z—imbl ]
(O 7T 1
D I Tigfis X
(r13by + 7sibs) (1 + bibsris <5r2n>)
B En 1)
F! ?L—i (ri + b)) (1 +byry <6r2n>)
term I%
Ay 0
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Figure 2.5.: FEzample evolutionary tracks of two galaxy populations POPI and POPII subject to differ-
ent interactions. All scenarios share same initial conditions at z =2 (POPI: by =4, r; = 0.5; POPII:
brr =2, rrr = 0; vy = 0.5). Depicted are as a function of redshift (upper to lower row): bias factors
by and bry with respect to dark matter, correlations r; and ry; to the dark matter field, and correlation
r1/11 between the two galaxy fields (see Sect. 2.4.2 for details)

left column (linear couplings): (arbitrary units) MO: interaction free case; MA: constant cre-
ation of galaxies with Ay = Ay = 10; MB: POPII galaxies being transformed to POPI galaxies
with B = —BH = 10; MC: linear coupling of both POPI and POPII to dark matter field with
C[ = C[] =10

right column (quadratic couplings): (arbitrary units) MO: interaction free evolution; MD: “col-
liding” POPII galazies are transfered to POPI with DH 11 = —DIIIT = 10=4: ME: both populations
are coupled to p%l with Ef = Erp = 1; MF: POPI galazies are produced by ®; « nrrp,, as much as
POPII galazies are destroyed, FI1 = —FIF =0.1.
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2.4.2. Models with linear and quadratic couplings

Owing to the large number of free parameters and ways to combine them, there are many
models to look at in Eq. (240). To explore some of them, we focus on two galaxy populations
and “switch on” only one parameter out of A; — F/ while setting the others to zero. This allows
us to look at the effect of the coupling parameters separately. For the discussion of these toy
models see Sect.

The evolution is plotted in redshift. Therefore, we have to transform derivatives which are
with respect to cosmic time t¢:

0
2 (2.49)

0 0Oa0d 8_@%&_H(a)
E_E%_aﬂ(a)aa_ ot Hadz  a

a:(l—i—z)_1

The dark matter growth rate defined in Eq. ([Z20]) is accordingly as function of redshift

(2.50)

R(2) = R(t) |i=e() = 2 {CLH (@) algf +]

a:(l—l—z)*l

which then may be evaluated using Eqs. (L21); the Hubble parameter, H (a), is defined in Eq.
I

It may be useful to have these expressions for a simple cosmology, like for the Einstein-de
Sitter Universe for which D = a and H (a) = Hpa=%/? (a =1 at z = 0):

3/2

Ra(z) B +]2LIH0 (1+ z5)/2/ 8 } Einstein — de Sitter . (2.51)
il = —Ho(1+2)"" g

Our cosmology in the examples stated here is a ACDM model with Q, = 0.3, Q5 = 0.7,
Hop = 70 kms~'Mpc~!. Furthermore, a scale-invariant, n = 1, Harrison-Zel’dovich spectrum
for the primordial fluctuations is assumed. For the 3D power spectrum of the matter fluc-
tuations we use the fitting formula of Bardeen et al. (1986) for the transfer function, and
the Peacock & Dodds (1996), hereafter PD96, prescription for the evolution in the non-linear
regime. The power spectrum normalisation is parameterised with og = 0.9 and the shape
parameter is assumed to be I' = 0.21 (the 3D matter fluctuations spectrum is needed for the
quadratic coupling models only).

Linear couplings

We first focus on the linear couplings by the A;, Bij and C; interaction terms. For these three
scenarios (MA, MB and MC respectively), we plot in Fig. the evolutionary tracks of the
linear bias of two different galaxy populations.

The first population, hereafter POPI, has initially at redshift z = 2 a bias factor by = 4 and
correlation r; = 0.5 with respect to the dark matter. The second population, hereafter POPII,
has b;; = 2 and r;; = 0 at z = 2; it is thus initially not correlated to the dark matter. The
relative correlation between POPI and POPII we set to r;/r; = 0.5, well below the maximum

3An excellent approximation is R(t) = 2H(a) 3(;13; ~ 2H (a)f(Qm, Q) with f(Qm, Q) = Q%6 +
£a(1+ %) (Peebles 1980).
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possible value of r;,;; = 0.87 (according to Eq. EZ37). The number density (not plotted) of
galaxies is not constant due to the interaction.

For the scenario MB, we assume that POPI is coupled to POPII such that galaxies are
transfered from POPII to POPI, BH < 0 and B{I > 0, keeping the overall galaxy number
unchanged, thus B{I = —BH . Moreover, for that particular scenario we set the initial number
of POPII galaxies so that ny; = 10n;. In all other scenarios we used n;y = ny;. Everywhere we
use ny = 1 in arbitrary units.

Quadratic couplings

For the toy models in this section, we assume that the bias parameters are scale-independent, so
that bzbj/r\m = b;bjr;; and bj/r\m = b;ri;j, where (b;, b;j,74,7;5) are the large-scale bias parameter
as described in Sect. ZZZ4 Furthermore, we model the window W (k) (see Sect. EZI) as a
constant function with a cutoff beyond a typical interaction scale kiny = 27/ Ry, here chosen
to be Ryt = 1 Mpc. We use the PD96 approximation for the non-linear evolution of the dark
matter power spectrum to estimate

1 kint
(62,) = ﬁ/o dk k* Py, (k) . (2.52)

Fig. shows the estimates for different scales.

Fig. shows examples of non-linear (quadratic) couplings as conveyed by the interaction
terms D;®, F; and F; . These interactions lead to the scenarios MD, ME and MF respectively.
Again, as in the foregoing section, we have two galaxy populations POPI and POPII with the
aforementioned initial conditions for biasing. For the mean galaxy density we set ny; = 1001y,
except for ME where we assumed the same initial density for both populations.

As before, we do not plot the evolution of the number densities. MD couples POPI to POPII
such that galaxies are added to POPI by “collisions” of POPII galaxies, while the same amount
of galaxies is taken from POPII (D{I T — —DH T all others are zero). MF transfers galaxies
from POPII to POPI by a quadratic coupling of the dark matter and POPII density field,
hence creating new POPI galaxies everywhere where the density of both the dark matter and
POPII galaxies is high. Here, we also adjust the coupling constants F such that the overall
galaxy density remains constant (F{! = —F[F).

2.5. Discussion and conclusions

Taking the hypothesis for granted that the bulk flow of galaxies is identical to the bulk flow of
the dark matter field, we derive a set of differential equations that describe on linear scales the
evolution of the two-point correlations between different galaxy populations and the dark mat-
ter density field in terms of correlation power spectra (Eqs. 2227, and Z7). Incorporated
into this model is an “interaction” ®; that allows for the destruction or creation of galaxies;
the term interaction is used equivalently to a local change of the galaxy number density. It
may have explicit time dependence.

The model is valid only on scales where three-point correlations of all cosmological fields
(density and velocity fields) are negligible. This is fulfilled on large scales where the fields are
Gaussian due to the initial conditions of structure formation at high redshifts (as seen in the
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CMB) and due to the fact that the field evolution is essentially linear on large scales. On
small scales, this assumption is definitely wrong, because gravitational instability has been
destroying Gaussianity proceeding gradually from smallest to larger scales. The present stage
of structure formation in the local Universe is such that this transition form linear to non-linear
scales occurs at about 10h~"Mpc; at earlier times, this scale was smaller. A linear model based
on the bulk-flow hypothesis is a good approximation, even on mildly non-linear scales, as has
been pointed at by Blanton et al. (2000) for the galaxy-number conserved case.

We closely study an interaction rate ®; that is a local function of the (smoothed) dark mat-

ter density field and the galaxy number density fields up to second order; within the model,
the choice of the interaction is completely free though. With this interaction, we introduce
the coupling constants A;, B}, C;, D}*, E; and F] (see Eq. Z40). Generally, this interaction
term may be pictured as the series expansion of some complicated interaction ®; (n;, pm) up
to second order. Nevertheless, some of the terms associated with the coupling constants taken
alone bear a simple interpretation. D]® may be used to describe interaction rates of galaxy-
galaxy collisions or mergers. Merging is an important process in the currently favoured ACDM
Universe (e.g. Lacey & Cole 1993). Linear couplings between the galaxy fields, B], have a
physical analogue as well: they describe processes that transfer a certain fraction of one galaxy
population to another population per volume and time, making the local creation/destruction
rate of galaxies proportional to the local density of the other population (passive evolution).
A constant production/destruction rate of galaxies, A;, is just a special case as it acts like a
linear coupling to a completely homogeneous field of galaxies.
The second-order couplings between dark matter and galaxy fields, E; and F], and the lin-
ear coupling between dark matter and galaxies, C;, may be used, for instance, to describe
formation processes that directly require the presence of dark matter overdensities, albeit the
interpretation of these terms alone is less clear. At least, one can say that linear couplings to
the dark matter field produce galaxies that are not biased with respect to the dark matter,
while a quadratic coupling makes relatively more galaxies in overdensity regions.

General descriptions of a local stochastic bias like the one from Dekel & Lahav (1999) are
based on the joint PDF of the (smoothed) density contrasts of the considered fields. Therefore —
whatever the defined bias parameters may look like— they have to be functions of the cumulants
(o ... 07 e of this PDF, so that these are the basic quantities that should be examined. Due
to the Gaussianity of the fields on linear scales only the second-order cumulants are non-
vanishing and hence only the linear stochastic bias parameters in ([LZ4]) are relevant; the first-
order cumulants vanish according to the definition of the density contrasts. Their evolution
is described by means of Eqs. (Z30) to (Z34)); Table ZT lists the interaction terms based
on the interaction correlators for the second-order power series expansion of ®;. Our model
distinguishes between the linear bias (b;,r;) of a galaxy population with respect to the dark
matter field and the linear bias (b;j,7;;) between two galaxy populations. The bias factor “b”
can be pictured as the ratio of the clustering strengths of the two fields, whereas the correlation
parameter “r” measures how strongly the peaks and valleys of the density fields coincide. Note,
however, that also a possible non-linearity in the relation between d; and J; affects the bias
parameters (Dekel & Lahav 1999). On the large smoothing scales considered in this chapter
this is negligible though.

For all fields perfectly correlated to the dark matter field, thus r; = r;; = 1, the interaction
terms I? and If’j always vanish and therefore all correlations (r;,r;;) are “frozen in” according
to Egs. [Z32) and ([Z33)). In that case, the model reduces basically to Eq. ([Z30) and 34)
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Figure 2.6.: Sketch illustrating the effect of clustering and correlation on the mean interaction rate
(D), thus mean density evolution for quadratic couplings (“collisions”) ®12 o ning between bright
and dark particles. The space is divided into two cells only whose size corresponds to some typical
interaction distance Ring; interactions take place between particles within the same cell. From top
to bottom: homogeneous distribution, strong clustering and high correlation between particles, strong
clustering and high anti-correlation between particles. Strong clustering and high correlation obviously
results in the highest interaction rate and hence influences the mean density evolution the most.

with all correlations set to one (b;; = b;/b;):

ob; 1—b 1
o= R(t) 5 + I
The bias b; is then called deterministic, since there is no randomness in the relationship of the
local density contrasts. For highly correlated fields, this can be a good approximation.

With no interaction present (Sect. E3]), we obtain as TP98 and others a debiasing of an
initially biased galaxy field; this makes the galaxy distribution looking more and more like
the distribution of the underlying dark matter distribution (Fig. ). The bias factor b; > 1
of a galaxy population that is less correlated to the dark matter field declines faster than a
more correlated population (Fig. EZ2)). The figure also demonstrates that differently correlated
galaxy populations can temporarily evolve a relative bias factor b;; # 1 with respect to each
other even though they may have had b;; = 1 at some time and they are not interacting.
Moreover, characteristic for an only slightly correlated population, r; < 1, is an “overshoot”
that makes the population anti-biased, i.e. b; < 1, after some time. Later on, the bias factor
increases again thereby producing a relative minimum in b;. This minimum is clearly seen in
Fig. ZZ according to Eq. (Z30) it has to occur at the time where r; = b;, because %ﬁi vanishes
there. On the other hand, this means that a possible local minimum of b; always has to be
smaller than one since r; < 1. In the absence of any interaction, the relative correlation is a
monotonic, always increasing function; this is due to the RHS of Eq. ([Z32) which always has
a positive sign as long as R (t) > 0.

A few examples for linear couplings are plotted in Fig. A linear coupling of a field “IT”
to a field “I” via ®; o« ny; has the effect that the field of newly formed or recently destroyed
galazies type “I”, dn;y = ®;dt, has the same bias than the field of the galaxies “II”. In case of
the formation of galaxies “I” (positive sign in ®;), this enriches the population “I” with new

(2.53)

7‘7;27‘1']':1 :

69



A MODEL FOR THE EVOLUTION OF GALAXY BIAS ON LINEAR SCALES

galaxies having the same correlations as the galaxies in field “II”. Therefore, the bias factor
between “I” and “II” is being reduced while their correlation is being increased. A positive
linear coupling to the dark matter field hence debiases a galaxy field quicker than without
interaction (like the populations POPI and POPII in scenario MC). The linear coupling of
POPII to POPI literally “drags” the population POPI towards POPII as can be seen in MBI,
while POPII (MBII), even though loosing galaxies, shows the same behaviour as without
interaction in MOII; this is because it is linearly coupled to itself. The interaction A; creates or
destroys galaxies (depending on the sign) with the same rate everywhere; this can be pictured
as a linear coupling to an absolutely homogeneous, fluctuation free field, having b = 0 with
respect to any other field. Iio for B] in Table EZT] indeed reduces up to a everywhere constant
to the IZO for A;, if we set b; = 0. It is therefore not surprising that a constant production
of galaxies pulls the bias towards zero (see MAI and MAII), more and more suppressing the
density fluctuations.

In conclusion, a linear coupling of a field “II” to field “I” only influences the bias evolution
of “I” if “II” is biased with regard to “I”. In particular, a new population “I” being created
solely from a linear coupling to some other population “II” can never become biased with
respect to “II”. Early-type galaxies that may be formed from spiral galaxies can therefore not
be produced by a linear coupling to the spiral galaxy field if they are biased with respect
to spirals as observations imply (Norberg et al. 2002). The fact that values for 3 = Q%6 /b
derived from the IRAS (preferentially spiral galaxies) and the ORS (optically selected galaxies)
are consistent if a relative bias of bors/biras = 1.4 is assumed (Baker et al. 1998), also implies
a bias between spirals and ellipticals on large scales. If this is the case then following the above
arguments, ellipticals cannot simply be passively evolved spirals.

Quadratic interactions, physically interpreted as collisions or mergers, could do the job
however. The reason is that the field of newly formed or recently destroyed galaxies of type
“I”, coupled quadratically to “II” is proportional to n%l. These galaxies have therefore the
bias factor of n% 7> which in general is different from the bias factor of “II”; in fact, the density
contrast dpew Of the newly formed galazies type “I” is then

5new = n—%l — 1= 2511 * 5%1 _ <5%I> (254)
(nir) 1+ (37;)
Smoothing dpew out to sufficiently large scales gives
2
o1t (2.55)

5new N5
1+ (d7;)

because 5% 1 smoothed on large scales is approximately <(5% I> due to the ergodicity of the random
field. Small fluctuations <5%I> < 1 make the newly formed galaxies biased with a bias factor
of about bpew =~ 2 since 1 + <(5I2> ~ 1 and pew =~ 2017. Intriguingly, this is roughly the relative
bias factor between early- and late-type galaxies found (see references in Sect. BZNl). For
non-negligible fluctuations, on the other hand, this bias is roughly bpeyw = 2/ (1 + <5121>), thus
taking a value between 0 and 2. This particular example, as a side remark, demonstrates
nicely that interactions on very small scales can have an impact on the large-scale bias. As an
example, see Fig. 71 Here we have a hypothetical population of galaxies (POPI) unbiased
with respect to another population (POPII). Collisions of POPII galaxies add galaxies to POPI
which then become biased or anti-biased depending on whether <5121> < 1 (scenario MX) or
(0%) > 1 (scenario MY).
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Figure 2.7.: Fwvolutionary tracks of the bias factor with respect to the dark matter of two galazy
populations POPI and POPII for two scenarios MX and MY (initially at z = 1: deterministic bias
br=bir=12,ny=1and nr; = 10’1), Both scenarios assume that collisions of POPII galazies create
POPI with D{I 1 — —D% ' = D; colliding galazies are removed. MX: sets <5r2n> = 0 or equivalently
bﬂ@n =0and D =0.1; MY: sets <5r2n> according to Fig. 223 with Riny = 1Mpc and D = 0.01 in
order to have roughly the same evolution of ny and ny; as MX.

Quadratic interactions present a challenging problem to the model since one has to know the
fluctuations of the density fields on small scales, or equlvalently (See Eq. BZ22)) the dispersion

of the dark matter (2, the linear bias parameters b= (b bjrij, b 7“]) and a window function

W (r); the linear bias parameters b are the weighted means of the bias parameters over all scales
k, or the (real space) bias parameter on a typical scale defined by W (r) (like in Eq. [C49]). The
window function actually defines what is meant by fluctuations on small scales by introducing
a smoothing scale Rj,; of the (real space) fields entering ®;, like for instance n; and n; in
®; o< nyn;. This scale is determined by the physical process underlying the interaction and
therefore lies presumably deep in the non-linear regime. Why are these additional parameters
needed for quadratic couplings? This can be seen by the following argument. One could think
of the whole model volume being subdivided into small cubic cells with side length Rj,; a cell
contains N; = nZ-Rmt “particles” of the i-th population. Roughly speaking, the model predicts
the evolution of the correlations between the particle numbers IV; of cells which are far apart
(large scale) and the mean number of particles (V;) inside the cells taking into account the
gravitational field of the dark matter, its increasing clustering and the background cosmology.
The interaction term ®; changes the number of galaxies N; inside a particular cell depending
on the number of galaxies and/or dark matter mass present in the same cell by dN; = Rmtq)idt.
For linear couplings ®; o n;, the size of these cells does not have an impact on ( Z) and thus
(n;) since (®;) depends only on the total number of particles inside all cells; hence Rj,; does
not turn up in the model Eq. (Z34). For non-linear couplings, however, the mean interaction
rate indeed depends on how the particles are distributed among the cells which is expressed
by b.

To be able to explore a toy model including quadratic couplings, we made the assumption
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that the small-scale bias parameters are identical to the bias parameters on large scales; we
hence assumed no scale-dependence for the linear bias. In fact, this is not what is expected
for some galaxy populations: on large scales early and late type galaxies share approximately
the same distribution (more galaxies inside super-clusters, less in the voids outside), while
on smaller, cluster-scales the distribution of early- and late-types decorrelate as seen in the
density-morphology relation (Dressler et al. 1997).

The terms containing elements of b only have an impact if Ry, is small enough making
(62) R 1 (see Eq. EZ3) and if the correlations ‘bz/b;r\w‘ and
from zero. The strength of these terms can change the evolution of the linear bias completely,
as can be seen in Fig. Bl There, galaxies of a population I (POPI) are created by the
collision/merger of galaxies of another population II (POPII). The difference between the
models MX and MY is that the former switches off the <5§1> terms while the other takes them
into account. Both scenarios predict the emergence of a bias of POPI relative to POPII at
z = 0. However, in MX we finally have b; > by at z = 0 while in MY we have by < byy. This
demonstrates that for second-order interactions, the evolution of the mean densities depends
strongly on the homogeneity of the “soup” of the interacting populations. The mean density
of a completely homogeneous mixture of galaxies evolves slower than for a mixture of galaxies
with some substructure/clustering, if the interacting populations are highly correlated (Fig.
24 for an illustration). Therefore, to predict the bias evolution in the context of quadratic
interactions the knowledge of both <5§1> and the small-scale bias may be crucial.

Fitting the model presented in this chapter to observed large-scale bias parameters with the
intention to look for quadratic couplings states therefore a practical problem: the weighted
bias b and <512n> are required. The weighted bias parameters 13, however, are beyond the scope
of the model of this chapter, since the model is valid only on large scales. However, the
knowledge of b is only needed for the mean density evolution (see Eq. BE34)). In practice,
both the bias parameter and the galaxy number densities are, at least principally, observables.
Therefore, this problem may be disarmed by directly estimating n; and (®;) = % through, for
instance, fitting generic functions to the observed mean galaxy number density (polynomials,
for example). An estimate of the number densityﬂ, however, requires the knowledge of the
galaxy luminosity function at different redshifts for every preferred galaxy population which is
a formidable task —but not impossible (Bell et al. 2004). Measuring the scale-dependence of
the bias parameters (e.g. Hoekstra et al. 2002, H02) is another option here. The bias at and
about the scale of maximum weight w (k) (see Eq. EZH) could be used as an estimate for b
which then is inserted as a constraint into the fitting procedure for the large-scale bias; <5§1>
may be predicted using the PD96 prescription along with assumptions on Rjyt.

ZZE‘ are significantly different

Compared to TP98, we did not include a random component for the galaxy formation
(their Sect. Z4Tl); the production/destruction of galaxies is always a deterministic function of
the density fields. However, such an random element could by included by a coupling to an
additional field that is only weakly or not all correlated to the dark matter field. The effect of
this is that a galaxy population gets more and more polluted by newly formed galaxies that
are not or only weakly correlated to the dark matter (Blanton et al. 2000, 1999). Thereby the
relaxation to the dark matter field gets retarded or even reverted. This scenario has a physical
analogy if one imagines the newly formed galaxies as a condensate from a baryonic matter

4We would like to remind the reader here that the mean densities are comoving mean densities which
for number conserved populations is constant for all time.
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field at places of high density but low temperature in order to meet the Jeans criterion for self-
collapse (White & Frenk 1991; White & Rees 1978). At early time, these places were inside
dark matter haloes; massive enough to attract the appropriate amount of baryonic matter and
to let it cool efficiently, thus at positions highly correlated to the peaks of the dark matter
density field. Later on, however, the intergalactic medium probably got too hot inside the
haloes to form more galaxies, so that the formation of galaxies may have been shifted outside
the highest density peaks. Consequently, the formation sites of later formed galaxies may have
not been as much correlated to the dark matter field as the sites of the galaxies made earlier on
(Blanton et al. 1999). The construction of Appendix [B:4 may be used to mimic the behaviour
of this baryonic field.

The practical application of this or similar models may be to work out the relation between
galaxy populations in terms of fundamental coupling constants attached to the galaxies based
on observations of the bias evolution. These parameters may help to disentangle the zoo of
galaxy types and to reconstruct evolutionary paths. Such observations could be extracted, for
instance, from weak gravitational lensing surveys (H02) or from the redshift space distortion
in galaxy redshift surveys (Pen 1998). In order to recover the redshift evolution of the bias, it
is however necessary to subdivide the data set into redshift bins and even further into galaxy
population bins. Considering that recent works (H02) focus on the bias of the galaxies on the
whole at one average redshift, it is clear that this cannot be done with currently available data.
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CHAPTER 3

Studying two estimators for the linear stochastic bias

3.1. Introduction

Different techniques were used in the past to measure the galaxy bias (Sect. [L4]). A relatively
new approach using weak gravitational lensing was proposed by Schneider (1998) and van
Waerbeke (1998). The method exploits the fact that the biasing is reflected by the way the
projected galaxy number density is related to the cosmic shear field. Particularly useful in this
context is the aperture statistics that examines the galaxy number density fluctuations and
the fluctuations in the cosmic shear field inside a circular aperture. With the right choice of an
aperture filter, that weights the number density and shear depending on the aperture centre
distance, the bias can be observed on a very narrow range of scales. By varying the aperture
radius one can scan through different scales. Moreover, this method is somewhat special
compared to other techniques, because a scale-dependence of bias can be inferred without
knowing the fiducial cosmology (van Waerbeke 1998).

Hoekstra et al. (2001) applied the technique for the first time analysing the Red-Sequence
Cluster Survey (RSCS) taken with the Canada-France-Hawaii Telescope. The authors used
practical estimators for the aperture statistics that had been introduced by Schneider (1998).
The estimates are obtained from single circular apertures placed into the data field, taking
into account the positions of “foreground” galaxies and the ellipticities and positions of “back-
ground” galaxies inside the aperture; estimates from different apertures are combined to get
the final estimate. In a subsequent work, Hoekstra et al. (2002) applied aperture statistics
to the RSCS combined with the VIRMOS-DESCART survey in order to measure the linear
stochastic bias of galaxies. The practical estimators of the aperture statistics they used this
time, however, were different. They were transformations of two-point correlation functions
of the foreground galaxy clustering, galaxy-galaxy lensing and cosmic shear. In this chapter,
both estimator approaches are introduced in detail and compared with each other by applying
them to Monte Carlo samples of simulated weak lensing surveys. The focus is on the questions
a) how well the estimators recover the statistics in the data, b) how sensitive they are to gaps
in the data field, and ¢) which estimator outcomes have less statistical noise. Furthermore, the
simulated data is a crucial test for the computer codes that implement the estimators. The
implementations are employed in the following chapters of this thesis to make measurements
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on real data.

For the purpose of this chapter, a generic algorithm is proposed that quickly generates
mock catalogues of galaxy positions and their ellipticities based on arbitrary correlation power
spectra for cosmic shear, galaxy clustering and galaxy-galaxy lensing. There is no physics
in this algorithm; the physics enters with the power spectra for the cosmic shear and galaxy
clustering that are fed into the algorithm. The emphasis of the mock data is on two-point
statistics only.

The outline of this chapter is as follows. We start in Sect. B2l with a definition of the
aperture statistics and explain in Sect. how the local second-order aperture moments are
related to the linear stochastic bias. In Sect. BZZ4l two practical estimators for the second-
order moments are defined and scrutinised using simulated weak lensing surveys, Sect. B4l
The details on the Monte Carlo sampler generating the simulated data are given in Sect.

3.2. Aperture statistics as a means of measuring galaxy bias

It was discussed in Sect. that due to gravitational lensing inhomogeneities in the matter
distribution shear the images of galaxies. Based on this effect lensing can be used to obtain
information on the total matter distribution between us and a population of source galaxies,
provided we are able to measure the shapes of the galaxies accurately enough. The bias in
the distribution between galaxies and matter, which is mainly dark matter, can therefore be
measured. For this purpose, we introduce the aperture statistics.

3.2.1. Aperture mass

In weak gravitational lensing, the convergence is a measure for the line-of-sight matter density.
In order to probe the bias of galaxies as a function of smoothing scale we do not need to know

the convergence field itself but the convergence field k(6 ) smoothed to some typical scale. The
appropriate quantity for this purpose is the aperture mass (Schneider et al. 1998) defined as

Mo (@, 00) = /d29' Up, (10 — 7)) w() (3.1)
" -
| 7\
= L (g (120 (3.2)
i, ( o )

where we assumed for the smoothing kernel, i.e. for the filter Us,,, the following scaling

behaviour .
Uy, (&) u <i> : (3.3)

02, \ap
Such a functional form applies for virtually all filters considered in the literature, such as the

polynomial filters of Schneider (1998) or the exponential filter of van Waerbeke (1998). The
quantity 6, is the aperture radius defining the filter scale. The value of the aperture mass

depends on the direction § of the line-of-sight. It has been shown that if the filter u (x) is

compensated, [ dx x u(z) =0, then the aperture mass can be determined from the shear field
itself (Schneider 1996):

— —/

- 1 0 —0 1

Map(9,0ap) = 55~ d*0' q (%) Y(6) (3.4)
ap Q)
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Figure 3.1.: Aperture number count (left panel) and aperture mass map (right panel) of the A901
field in the COMBO-17 survey. Near the centre is the location of the Abell A901/A902 supercluster,
z = 0.16, which is visible as a density peak in M,,. The angular size of the maps is 22’ x 21’. The
intensity levels span an interval of N € [—0.3,40.7] (left) and M., € [—0.04,0.04] (right), the contour
levels are {0,0.1,0.2,0.3,0.4} (left) and {0,0.01,0.02,0.03,0.04} (right). All foreground galazies with
photometric redshifts between 0.4 < z < 0.6 (left) and background galazies with R-band magnitude
21.5 < R < 24.5 were chosen. The aperture filter is a polynomial filter, Eq. {Z3ZA), the aperture radius
3.8 arcmin. Note that both maps are noisy.

2 X

= dssu(s) —u(zx) . (3.5)
0

q(z) =

We use the following definitions for the tangential, vy, and cross component, v, of a complex
quantity v = v1 4 ive with respect to a centre 6 = 61 + i6s:

, . 1( § g
—- —2iargf) _ _ — v * 7
(@) = —Re (z/e ) 5 (1/ 7 +v §*> (3.6)
, . 1( 0 g
—- —2iargf) _ _ — ook
ve(@) = —Im (Ve ) 5 (1/ 7 v 0_,*> , (3.7)

— —

where “arg#” is the argument of the complex number 61 + if;. Accordingly, (6 ) and v (9)
are the tangential and cross component, respectively, of the shear v relative to the aperture
centre 0.

Since the ellipticity of a_’galaxy in the direction § is, in the weak leAnsing regime, an unbiased

estimator of the shear (), we naturally also have an estimator M, for the aperture mass
that can be calculated directly from a galaxy catalogue:

A T , 60— 0|
Mop (0, 0ap) = m Z;q T Wj € - (3.8)

Ny, is the number of source galaxies to be considered for the aperture, g ; the position of the
i-th galaxy and e;; its tangential ellipticity with respect to the aperture centre ¢. The wj
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Figure 3.2.: top: Local shear patterns allowed by gravitational lensing around a matter overdensity
(left) and underdensity (right). bottom: B-mode shear patterns that are not produced by means of
lensing. The figure is from van Waerbeke & Mellier (2003).

are statistical weights of the individual galaxies which are used to account for the fact that
the values of the image ellipticities, ¢;, of the galaxies do not have all the same confidence.
Ellipticities of fainter and smaller galaxies are determined with a lower confidence than for
larger and brighter galaxies. The value of Map for different positions § can be used to make
aperture mass maps, see Fig. Bl for an example. Such maps have been used to search for
galaxy clusters or to constrain the density profiles of galaxy clusters.

E-modes and B-modes

The cosmic shear v is related to the convergence k by the convolution (LZZ]). As the shear
originates from a single scalar field x the two shear components are related to each other (cf.
Schneider et al. 2002a). Therefore not all conceivable shear field configurations are allowed
in gravitational lensing. The allowed configurations of v are called E-modes, while the other
independent configurations are called B-modes. For an illustration of E-mode and B-mode
configurations see Fig. If we substitute the tangential component of ellipticity or shear in
the foregoing and following equations by the cross components, € <> €x or v <> vx, then we
will obtain the signal originating from the B-mode component of the shear field instead of the
E-mode signal, such as a B-mode aperture mass in Eq. (). Ideally, in gravitational lensing
applications the B-mode should vanish since lensing is only capable of producing E-modes.

!The E-mode configurations in this figure are obtained from Eq. ([CZ4) by assuming a convergence

field that is non-zero only in one single point, k(0 ) = £Jp (0 ), where the positive and negative sign
are for an overdensity and underdensity, respectively.
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For that reason, a signature of B-modes can be used as a measure for the signal noise level
and as an indicator for systematics in the data reduction, especially the point-spread function
(PSF) correction, which has to be performed to compensate the instrumental and atmospheric
influence on the galaxy image (¢f. Kaiser et al. 1995). Note however, that on small scales
a non-zero B-mode can be produced by intrinsic alignments of the source galaxieﬂ (Heavens
et al. 2000; Crittenden et al. 2001; Croft & Metzler 2000; Catelan et al. 2000) or spatial
clustering of the source galaxies (Schneider et al. 2002a). The B-mode contamination due to
the intrinsic alignments of the source galaxies is uncertain, whereas the contamination due to
the source clustering is expected to become significant on scales below about 1’.

3.2.2. Aperture number count

In a similar fashion to the aperture mass, we can define (¢f. Schneider 1998; van Waerbeke
1998) the aperture number count N(6,6,,) which measures the fluctuations of the galazy
number density with the same filter u (x) as M, for the convergence ﬁeldE

— —/
. 1 _ .
N O) = o / @20 v (%}f') on (@) (3.9)
ap a

o o/ /
1 _

_ _/d29’ u (=01 o) (3.10)
02, Oap ng

where n¢(6) and ¢ denote the (projected) number density of galaxies in some direction §
and the mean number density of galaxies, respectively. The quantity dn = ng/ng — 1 is the
projected number density contrast of the galaxies. As the number of galaxies inside an angular
area is an estimate for ny we can write down an unbiased estimator of the aperture number
count based on galaxy positions (Schneider 1998):

- o (16, -4
N(@,Hap):ﬁfz:u o | (3.11)

i=1

where 6 ; are the positions of the galaxies having to be considered for the aperture number
counts mapfl The number N; = ﬂﬁgpﬁf is the average number of galaxies inside the aperture.
See Fig. Bl for an example of an aperture number count map.

2By intrinsic alignments one means non-vanishing correlations between the intrinsic ellipticities, €5, of
different source galaxies, thus (egl)e§2)> # 0. Intrinsic alignments are expected for physically close
galaxies, hence for galaxies that have essentially identical redshifts.

$We have used [ d?¢’ u(|§/|) =2r [d#' 0’ u(¢') = 0 since u(z) is compensated.

41t is also possible to define an aperture number count estimator that weighs galaxies as the estimator
for the aperture mass [BX) does:

- o (1, -6
N(a,aap):mz;u el KR (3.12)

where w; are the statistical weights for the galaxy positions ) i- A nice application of this is to choose
for w; the luminosities of the individual galaxies. Thereby N can be used to map the luminosity
distribution of a galaxy sample. However, note that the estimator [BIZ) is different from (BT
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Usually, the galaxies probed with N (6, 0,p) and those galaxies used to construct Map(§ Oap)
maps are different; the M,,-galaxies tend to be more in the background as their purpose is to
probe the matter field the N-galaxies are located in. For that reason, we call the N-galaxies
foreground galazies and the M,,-galaxies background galaxies.

3.2.3. Linear stochastic bias using aperture statistics

To summarise, the aperture mass M,,, Eq. ([B4)), is proportional to the (weighted) projected
total matter density contrast dy,, whereas N, Eq. (B3), is proportional to the number density
contrast of the galaxy distribution dn. Both aperture measures are defined on some scale by
the filter function u (z) and the aperture size 6,,. This is exactly what we need to study the
biasing of the galaxy distribution with respect to the matter distribution, as has been pointed
out by Schneider (1998) and van Waerbeke (1998). Therefore we can define biasing parameters
in analogy to Eqs. (LZ9) (Hoekstra et al. 2002)

(N2 (Oap))
<Ma2p (eap)>
(N (Bap) Map (0ap))

VN2 (0ap)) (M2, (0up))

b(eap) = fl (eap) (3.13)

7 (0ap) = f2(0ap)

In practice, the ensemble average (...) has to be understood as the average of all aperture
positions ] (fair sample hypothesis). The factors f; and fy are needed for calibration because
the three-dimensional number density that N is sensitive to covers in general not the same
volume that is probed by M,,. The calibration is discussed in more detail in Sect. EZ32 where
we apply these statistics to real data.

3.2.4. Practical estimators for the second-order aperture statistics

To determine the linear stochastic bias parameters in practice, we require estimators for the
second-order moments (N" (6.p) M™ (0,p)) with n+m = 2. From the statistical point of view,
the moments are fluctuations, for m,n = 2, and correlation, for n = m = 1, of smoothed
random fields. They are therefore auto- and cross-correlation power spectra seen through a
filter [I (z))? (Hoekstra et al. 2002)

(M, (0)) = 2 [ dssPu(o) [ (s0u) (3.14)
(N (Oup) Map (0n)) = 27 /O " 455 o (3) [T (56ap)]?
(N?(0)) = on /O T ds 5 Py () [T (s6ap))?

(@) = /Omdyyuwwo(yx),

which implicitly weighs all galaxies with w; = 1. The subtle difference between the estimators is
that BI2) estimates Nt by the actual number of galaxies inside the aperture, N¢, which only on
average is identical with Ny = (Nf). This can be seen by setting w; = 1 in (BI2).
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where P, Py, and P, are the convergence auto-correlation, convergence/galaxy number density
contrast cross-correlation and the galaxy number contrast auto-correlation power spectrum,
respectively. Analytical expressions for these power spectra are given in Sect. The
function J,(x) denotes the n-th order Bessel function of the first kind.

There are two principle ways to estimate the second-order moments: either by placing aper-
tures at different positions into the field (Hoekstra et al. 2001), or indirectly by estimating and
transforming the two-point correlation function of the galaxy number density, cosmic shear
and their cross-correlation (Hoekstra et al. 2002). We are going to present both approaches in
the following.

Placing apertures into the field

In the first approach, apertures at all positions 6 in the field-of-view of a survey are estimates
of the moments of the local joint PDF of N and M,,. As estimators of the second-order
moments one can use the followingﬁ

2 Ny,
12 a ™
N2, (0.0) = mgqiqjem,j (3.15)
JF
- o 2 Ny N¢
NMap(0,0ap) = NbeZZqiujet,i (3.16)
i
L a2 M
N2(0,93p) = W U;Uyj (317)
£izj

where J\//.Tgp is discussed in Schneider et al. (1998), whereas the two other estimators are defined
in analogy to M a2p (Hoekstra et al. 2001). The expression € ; denotes the tangential ellipticities

of the background galaxies relative to the aperture centre 0 . The variables q; and u; are the
values of the filters u(x) and ¢(x) at the galaxy positions 6 ;:

¢ = a0 —0:l/0ap) (3.18)
ui = u(|f —6i|/0ap) (3.19)

with respect to the aperture centre ] E

Each aperture placed into the field yields one moment estimate. All estimates gathered from
different positions g are averaged to obtain the combined final result. The final result can be
optimised if the average is weighted with the number of galaxies inside the apertures (Schneider
et al. 1998).

5These estimators give all galaxies the same statistical weight. As they are only going to be applied
to simulated data a weighting scheme is not necessary.

6The “size” of an aperture is defined by the smallest distance from the aperture centre at which the
filters u(z) and g(x) either vanish or where they become sufficiently small. The polynomial filters
proposed by Schneider (1996) all vanish at = > 1, so that the size of the aperture is 6,p.
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Using two-point correlators

An alternative approach described in Hoekstra et al. (2002) relates the second-order moments
in <N "Mg;> to two-point correlators. These correlators are a) the spatial clustering of the
foreground galaxies, w (6), b) the galaxy-galaxy lensing between the foreground galaxies and
the source galaxies, (1) (f), and c) the shear-shear correlations {1 () as determined from the
ellipticities of the background galaxies:

w(@) = (n(@+z)on(x)) = /OOO %Pm (s)Jo(s8), (3.20)
() = (Gn O+ )2 0) = [ G P (5) I (s8).

£ (0) = hue+xynw»i¢w<ﬂ+@vXw»=1/md8%%@»mA@m.

o 2T
The correlator w(f) is a measure for the probability of finding a galaxy in a distance 6 from
another galaxy. The galaxy-galaxy lensing, (), is the mean tangential shear around a fore-
ground galaxy at a distance 6, and the two-point shear-shear correlations, £+, quantify the
correlations of the cross- and tangential shear components relative to the line connecting two
background galaxies with a angular distance 6.

The relations between the correlators and the power spectra ([B20) can be inverted with
respect to the power spectra due to the closure relation of the Bessel functions J,:

/000 dz x Jp (ux) J,(ve) = %5]3(11 -v), (3.21)

which holds for n > —1/2. The resulting expressions for the power spectra inserted into the
Eqs. (BI3) yield the second-order aperture moments in terms of the two-point correlators:

(M, 60)) = 5 [ Ao (6 () T2 (@) 4 € o) T- (2)], (322
(N (6a) Moy (o)) = [z (00) (@0i0) F (@), (3.23)
(N? (0ap)) = /000 dz z w (2bap) T4 (2), (3.24)

where we introduced the auxiliary functions

=
—~
8
~
Il

(272 /O T ds s [1(S)]2 o (s2), (3.25)

!
—~
8
~
Il

(2r)? / Tds s 1) (1), (3.26)
0
I(z) = /0 dssu(s)Jy (sz) . (3.27)

In practice, the correlators are estimated by using

S0 = 22 97 4, (3.28)
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—~ iy eiwidy; (6)
<’Yt> (9) = JNf,Nb ) (329)
Zz’,j w;iAij (0)
Ny,
— 'LUZ’LUZAZQ EiE'iE 1€x.j
s (0) _ ZZ,J NJb( )( t,2t,7 X, ><7])’ (3.30)
Zz’,j wiw;Ag; (0)
1 0<10;—0;] <6+60
0 otherwise

The estimator of the spatial correlation @ () has been introduced by Landy & Szalay (1993).
It requires to count the number of galaxy pairs with a distance between 6 and 6 + §0, namely
the number of pairs in the data (foreground galaxies), denoted by DD, the number of pairs
in a random mock catalogue, RR, and the number of pairs that can be formed with one data
galaxy and one mock data galaxy, DR. The random mock catalogue is computed by randomly
moving around the data galaxies taking into account the geometry of the data field, i.e. by
avoiding outmasked regions. In this thesis, we make 25 random galaxy catalogues and average
the pair counts obtained for DR and RR.

Concerning the estimator for mean tangential shear, (y;) (6), all pairs between foreground
and background galaxies within a distance of 6 and 6 + 60 have to be considered; ¢;; is the
tangential ellipticity component of the background galaxy with respect to the line connecting
the foreground and background galaxy. Similarly, for {1 (0) all pairs of background galaxies
within some distance interval are considered (¢f. Schneider et al. 2002b); €r,i/5 and €y j/;
are the tangential and cross ellipticity components relative to the line connecting the pair,
respectively.

—

3.3. Monte Carlo simulations of weak lensing surveys

After shortly reviewing in the following section how single Gaussian random fields can be
simulated, we introduce in Sect. a general algorithm that can be used to make realisations
of a set of correlated Gaussian random fields. This algorithm is employed in Sect. B4l to make
simulated number density and shear fields of various galaxy sets; number density and shear
fields are distinct random fields. The auto- and cross-correlation power spectra of these fields
needed as necessary input parameters of the algorithm are calculated in Sect.

3.3.1. Realisation of a single Gaussian random field

Consider a statistically homogeneous and isotropic random Gaussian field §(r). The vector r
has n dimensions. Let us further assume that the random field is finite with “volume” V; for
n = 2 we have a two-dimensional random field and V denotes the area of the random field.
Since the field is Gaussian and homogeneous, the Fourier coefficients,

ck) = / d"r d(r)exp(ik-r), (3.32)
1%
are only correlated as pairs (see Sect. [[22)

(e(K)e(~K)) = 30 P) (333
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where Jyy is the Kronecker delta and P(k) is the power spectrum of the random field. All
higher-order moments can be traced back to second-order correlations, or, equivalently, all
connected moments vanish (Appendix [A3)). In addition, the Fourier coefficients, real and
imaginary part separately, are Gaussian random variables because they are linear combinations
of the field variables 6(r). As we will see soon, this simplicity makes the realisation of a Gaussian
random field relatively easy if it is done in Fourier space, i.e. for the coefficients c(k). We only
have to take care of the fact that the real and imaginary parts of just two Fourier coefficients
are statistically correlated to each other. How does this correlation look like?

It follows for k # 0 from Eq. ([B33]) that (c(k)c(k)) = 0, or if we split the equation into real
and imaginary part

([Re ¢(k)]?) = ([Im ¢(k)]?)  (Re ¢(k)Im ¢(k)) =0. (3.34)

This means that in a homogeneous random field, real and imaginary part of c¢(k) are not
correlated and both, individually, must have the same variance. Furthermore, we can deduce
quite generally that for k # 0

P(k)

(e(k)e(—k)) = —> = (3.35)
(Re c¢(k) Re ¢(—=k)) = —(Im ¢(k) Im ¢(-k)) = %‘jk)] (3.36)
(Re ¢(k) Im ¢(—k)) = +(Im c(k) Re ¢(—k)) % . (3.37)

This confines the correlations between all combinations of real and imaginary parts of the
coefficient pair c(k) and ¢(—k). As we consider only cases in which the power spectrum is
purely real, Re P(k) = P(k) and Im P(k) = 0, the imaginary and real parts of ¢(k) and ¢(—k)
in Eq. B317) are not correlated. Generally, if §(r) is a complex field with unrelated real and
imaginary parts this has not necessarily to be case.

The strategy for a Gaussian field realisation would be to make a random number generator
that yields as output four numbers, namely the real and imaginary parts of ¢(k) and ¢(—k),
that have as joint PDF a multivariate Gaussian with the covariance B34), (B308) and B31).
This generator would then used to obtain values —independently for different positive modes
k— for all ¢(k) and ¢(—k) included in the random field.

We consider a more specialised case by restricting ourselves to real Gaussian fields with
0 (r) = 0* (r). This introduces an additional condition that follows from the definition ([B32)
of the c(k):

Re ¢(k) = +Re c(—k)

clk) =c'(-k) = {Im c(k) = —Im c(—k)

(3.38)
This further simplifies the task of making a field realisation. We will only need a random
number generator that makes a realisation of one single number based on a Gaussian PDF.
The conditions [B33)) and [B38]) are easily accounted for if, say, only the c(k) for half of the
spatial frequencies k are worked out and the c¢(—k) frequencies are set accordingly. Hence,
for our choice, whenever we talk about c¢(k) we actually mean only Fourier coefficients in the
right half-plane. Furthermore, the real and imaginary parts of ¢(k) are uncorrelated, and both
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follow the same Gaussian PDF. This PDF has zero meanﬁ and a variance

1

sl (3.39)

ot =
according to Eq. ([B30).

The procedure for making one Gaussian field realisation thus requires two steps: 1. drawing
numbers for the real and imaginary parts for every c¢(k) with a Gaussian random number
generator, and 2. transformation of this Fourier space representation to real space in order to

obtain the field realisation. For the second step we used an FFT algorithm from Press et al.
(1992).

3.3.2. Realisation of correlated Gaussian fields

The procedure of making one Gaussian random field realisation also holds when realisations of
more than one, but uncorrelated Gaussian fields are desired. “Uncorrelated” means that if we
denote the Fourier coefficients of, say, N Gaussian random fields by cl(f) with ¢ € [1, N] then
for those fields the relation

(0[] = 5P )51 (3.40)

holds, where J;; is also a Kronecker symbol, this time for the Gaussian field indices. The expres-

sion PIEM) is the previously introduced power spectrum, or auto-correlation power spectrum, of
the i-th random field. Thus, correlations between c(k) of different random fields vanish.

For the purposes of this work, however, we need to be able to allow for cross-correlations
between different random fields ¢ # j in a defined manner, like

() [] ) = %P(ij)(k)dkk/ . (3.41)

The function P(ij)(k) is, for ¢ # j, the cross-correlation power spectrum. Like for the auto-
correlations, only certain pairs of Fourier coefficients of different Gaussian fields are correlated.
This follows from the assumption that the cross-correlations are also statistically homogeneous.
Note that P (k) = PU? (k).

In order to find a recipe for making realisations of that kind, we make the Ansatz that the N

Fourier coefficients cl(f ) are a linear transformation Ay of N different uncorrelated coefficients

dl(z) with an equal Gaussian PDF for the real and imaginary parts, zero mean and a 1/y/2
dispersion

(df) [dfj)]*> — bt o) =S [Ax], 42 . (3.42)
q

The matrix Ay is a N x N linear transformation matrix. The linearity of this transformation
guarantees that the resulting set of coefficients cl((z) still obeys a Gaussian statistics, because
linear combinations of Gaussian random variables are also Gaussian.

Since for real Gaussian fields real and imaginary parts of the Fourier coefficients are not

)

correlated, and by our Ansatz neither are the real and imaginary parts of dl(f , only real

In the case that 6 (r) has a non zero mean, (c(k)) for k = 0 becomes different from zero.
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numbers for the components [Ak]i q are allowed; an additional imaginary part of Ay would
mix real and imaginary parts of dl((i), thereby possibly introducing correlations between real
and imaginary parts in cx. A matrix Ay that is purely imaginary would be an alternative
choice, though.

Egs. (B22)) can now be combined to give

(@)Y = S (and,a? gy, [
_ Z [Ak]iq [Ak]jr <d1(<q) [dkT)} % >
= YA, A, 6y

= > (A, ALY (3.43)

where Al denotes the transpose of Ay. Hence, together with equation (BZ1)) this puts another
constraint on the matrix Ay, namely

% PO (k) =3 [Ad]', [AL]Y) (3.44)

For convenience we introduce the power matriz defined as [Py]’ ;= %P(ij)(k) to abbreviate

this equation:
Py = ALA} . (3.45)

The power matrix is the covariance matrix between the Fourier coefficients of a set of Gaussian
fields for a certain k.

This shorthand of N? equations does not uniquely determine the matrix Ay, because it
contains only N (N + 1)/2 linearly independent equations, since both the matrix on the LHS
and the matrix product on the RHS are symmetric. As there are no further constraints on Ay,
we are allowed to set the remaining N2 — N(N 4 1)/2 = N(N — 1)/2 constraints of Ay as we
like. We do this by assuming that Ay is symmetric, so that we finally obtain

P,=A] = Ay=+Pg. (3.46)

In general the square root is not unique (see e.g. Higham 1997). However, we are already
satisfied with one particular solution to this problem. In order to determine such a solution,
note that Py is a symmetric positive (semi)definite matrix, which is ensured by the properties
of the power spectra the power matrix consists of:

PU(k) = PUIK), (3.47)
[P“J’Nk)]2 < PO (k) PUD (k) . (3.48)

Therefore, this matrix can uniquely be decomposed into

Py = R} Dy Ry, (3.49)
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where Ry is an orthogonal matrix whose column vectors are the eigenvectors of Py, while their
corresponding, real and non-negative, eigenvalues \; are the elements of the diagonal matrix
Dy = diag (A1, A2, ..., AN ). As one particular square root we pick out

Ax = RL /Dy Ry

Dy = diag<\/71,\/A_,...,\/E) (3.50)

which is a solution due to v/Dyv/Dy = Dy.

To sum up, for every k mode considered, the process for the realisation of correlated Gaus-
sian random fields requires one to find the square root Ay of the power matrix Py. This
defines a linear transformation for a vector of uncorrelated random complex numbers (real
and imaginary part of the same coefficient are also uncorrelated) with zero mean, real and
imaginary parts obeying a Gaussian PDF with variance 1/v/2. Applying Ay yields a vector of
Fourier coefficients belonging to the realisations of the correlated Gaussian random fields. Due
to (B3Y)) this is performed only for one half of the spatial frequencies considered. The other
half is set accordingly to fulfil this condition.

3.3.3. Power spectra

The algorithm of the forgoing section is the backbone of the Monte Carlo method for weak
lensing surveys presented in the following. In order to put this algorithm into a cosmological
context, we have to specify and compute all relevant correlation power spectra which include
the auto-correlation of all participating fields and the cross-correlations between them. We
distinguish between two kinds of random fields: 1. the convergence (shear) fields, and 2. the
galaxy number density fields. The fields will be realised on a two-dimensional grid representing
the field-of-view of the survey. Different sets of galaxies are allowed. Every set of galaxies is
associated with its own shear and number density field that depend on the redshift distribution
of the galaxy set and their bias with respect to the dark matter and the other galaxy sets.

Galaxy - dark matter bias

The dark matter power spectrum Py, Sect. [[3] is the central quantity for the Monte Carlo
sampler. Any power spectrum involving galaxy number density fields is referred to Py, in
terms of the stochastic linear bias r;, r;; and b; (Eq. [C54):

ch:r)l,n (k7 ’UJ) = T (kv ’UJ) b; (kv ’UJ) Py (k‘, ’UJ) (351)
P (k,w) = 14 (k,w) b; (k,w) bj (k,w) Pam (k,w) |, (3.52)
where Pcﬁ!)l’n is a cross-correlation power spectrum between the galaxy number density contrast

on; (T,w) = -1 (3.53)

)

and the dark matter density contrast, and Prgij the correlation between the density contrasts
of two galaxy number density fields.
Note that the power spectra are for three-dimensional (comoving coordinates) random fields

that may have a time-dependence. The parameter w denotes the lookback time #p,qc in terms
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of the comoving distance light can travel over a time span tpacc. Therefore, w = 0 is the present
time.

The functions r; and r;; are correlation parameters which have values in [—1, 1]; r;; denotes
the correlation between two galaxy sets, ¢ and j, and r; denotes the correlation between the
i-th galaxy set and the dark matter field; we have r;; = 1 by definition. The bias factor b; may
assume any value greater than 0. For r; = b; = 1, we call the i-th galaxy set unbiased with
respect to the dark matter field.

For convenience and to save space, we will omit in the following the arguments k and w in
the bias functions. By definition we demand that they have the same argument as the adjacent
power spectrum. For example,

We have thus defined the three-dimensional power spectra of the galaxy and dark matter
density fields. In order to simulate the angular distribution of galaxies and the weak gravita-
tional lensing effect on the images of the galaxies —the shear— as realisations of random fields
we have to project the power spectra onto the sky. This is done in the following.

Galaxy power spectra

Consider a very small volume Az x Ay x Aw of comoving space that is located at a co-
moving distance of w; Aw is the extent of the the volume in radial direction. If n;(w)
is the comoving number density of galaxies at the position of the cube, then we observe
N = n;(w)AzAyAw galaxies inside the cube. The area of the cube seen as projection on
the sky is A = Azx/fx(w) x Ay/ fx(w). Therefore, the observed projected number density of
galaxies inside the volume element equals approximately 7;(6) = N/A = ni(w)] fx(w)?Aw.
Summing up the contributions from all cubes along the line-of-sight in direction 6 gives in the
limit Aw — dw a total galaxy number density of

ii(0) = /Owh dw [fic (w)]* Ss(w) ni(fx (w)f , w) - (3.55)

We introduced a selection function, S;(w) < 1, to account for the fact that we may not see all
galaxies n;(w) from w € [0, wy] (incompleteness), or/and for the fact that we may select only
galaxies from a certain redshift range.

The angular number density can be transformed to obtain the density contrast, én; =
ni/ (n;) — 1, of the galaxy number density on the sky in terms of the three-dimensional, time-
dependent density contrast dn; (Eq. Bh3):

51a(6) = /0 ™ duwp® (w) i (fic(w)F ) (3.56)

where we included the combined effect of the selection S;(w), the mean number of galaxies per

comoving volume (n;) (w) and the geometrical (selection) factor [fi (w)]? in

Jo " dw [fic(w)]? Si(w) (ng) (w)

pY)

(3.57)
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We use the function pg) (w) for the distribution of the i-th galaxy set in comoving distance; this
distribution is by definition normalised, [;"* dw pf(f) (w) = 1, and p(z)( )dw is the probability
of finding a galaxy within comoving distance w and w + dw. The PDF pg) (w) will be given to
the algorithm as parameter.

According to Eq. (BX16) the density contrast of the galaxy number density on the sky is a
projection of the three-dimensional density contrast, thus it is equivalent to Eq. (L36]) with
the radial filter set to q(w) = péi) (w). We can therefore apply Limber’s equation (L38) to
obtain the auto-correlation power spectrum of the projected galaxy number density

2N

P (0) = / dv =y Fp <f;<4;w)w> (3.58)

(
(
2
= [aw B 8 pan ()

Likewise, also using the Limber equation, we can write the cross-correlation between the i-th
and j-th galaxy set taking into account that they have different radial filters:

@ () oY) (w

where the three-dimensional cross-correlation power spectrum (B:h2) has been inserted. Clearly,
Eq. (B58) is a special case of Eq. ([B29) since r;; = 1 for i = j.

(@) (0

?

w

F

)
)
)
)

Cosmic shear power spectra

The fluctuations in the dark matter density field imprint by means of gravitational lensing
different shape distortions on the various galaxy sets. Thus, the galaxies “see” in general
different convergence and shear fields, ;(f) and ~;(6 ), respectively. The index i denotes the
galaxy set.

The convergence and shear of the gravitational lensing are according to Eq. (LZ4) related to
each other by a convolution. In Fourier space, the convolution is equivalent to the multiplication
with the Fourier transform of the convolution kernel:

- R _f —52—1—215152 = > El

(3.60)

where 7 is the Fourier mode associated with the direction 6. The functions k; and 7; are
the Fourier coefficients of the convergence and shear, respectively. As we are working in the
flat- Sky approxunatlon the vectors § and ¢ are Cartesian vectors.

For { = 0 the convolution kernel is not defined so that we have an additional degree of
freedom between convergence and shear, called the mass-sheet degeneracy. As we exclude
any external shear, our choice is 4; = 0 for 7 = (0. Note that the Fourier transform of the
convolution kernel is a simple phase factor with modulus unity. This implies that the power
spectra of the convergence and shear are identical.

In our Monte Carlo recipe, we are going to make realisations of the convergence on a grid,
one field for each galaxy set, that is transformed later on to obtain the complex shear fields.
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As in Eq. (), the convergence exerted on the i-th galaxy population is, for a given dark
matter density contrast dgm, (7, w),

7 _ 3 H, W (w) fig (w) 7
k() = OQ/ (—w)Kédm<fK(w)9,w>, (3.61)

70 (0 W p) N s —w)

In words, the convergence k; is the dark matter density contrast seen trough the radial

filter q(w) = 3H0 Qm % This, again, is a projection in the sense of Eq. ([L30) so that

Limber’s equatlon ([C3]) can be employed to write down the auto-correlation of the convergence

field:
2

- V@ (w

Note that even though the z'-th galaxy set may be biased with respect to the dark matter
density field it has no impact on the measured convergence or cosmic shear. Equivalently, we
have for the cross-correlation between the different convergence fields:

g 4 VO () W (w

Cosmic shear-Galaxy cross correlation

Applying for a last time the Limber equation, we also can write down the cross-correlation
between the various galaxy number densities, Eq. (B50]), and the convergence, Eq. (B&1); they

are projections of dn; and dqy, with the radial filters g(w) = pg )( ) and g(w) = 318 Qm WO (w) fic(w)

2c2 a(w)

respectively. We thereby obtain:

@)y 3H§ py (W)W (w) L

PR = 5o [ PEEE Pdmn<f1<<w>’ > (3.64)
_ 3H8 Py’ (W)W (w) L
= SO faw? a(w) frc(w) DT Fim (fKuu)’“’)'

Note that this power spectrum is not symmetric in ¢ and j. This correlation between galaxy
positions (number density) and cosmic shear is called “galaxy-galaxy lensing”. A non-zero

(%)

Prg,g ) requires that at least some galaxies in py’(w) are in front of some galaxies contained in
the distribution pg )( ), otherwise pé)( YW (w) = 0.

3.3.4. Monte Carlo sampler

We now explain in detail how the power spectra [B29), BE63), B64) and the algorithm in
Sect. are combined to make a mock weak lensing survey with i € [1, Nyets] distinct sets of
galaxies distributed in comoving radial distance according to pg) (w). As additional parameters,
one has to define for every galaxy set the linear stochastic bias relative to the dark matter,
b; and 7;, and the correlation r;; relative to any other j-th set of galaxies. The latter only,
however, if the distributions pg) (w) and pgj )(w) overlap, otherwise their cross-correlation P( 2
is zero. An example of the various power spectra that need to be taken into account for two
galaxy sets is plotted in Fig.
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Figure 3.3.: left panel: Correlation power spectra between the cosmic shear, denoted as “k” and
galazy number density fields, denoted as “n”, of two galaxy sets having different distributions in redshift.
“00), kk” means P,S‘,lo), “01),nk” means P(gl) and so on. right panel: Distribution in redshift of the

n
two galaxy sets. Both galary sets are assumed to be unbiased with respect to the dark matter.

Convergence and galaxy number density contrast

A full Monte Carlo realisation requires 2 X Nggts random fields: Ngets galaxy number density
contrast fields, 6n;(6 ), plus the same number of convergence fields r;(# ). The fields are realised
on a regular grid; they are two-dimensional matrices whose sizes are determined by the number
of grid points ] ;- Usually, the grids have square geometry with, say, width L. Realistic
parameters for the grid are 1024 x 1024 grid points and L ~ 60’.

We arrange the grid values as a 2Ngqs-dimensional vector

- - - - - - - t
R(T3) = (k1(03), 52(02), - v (03), 60 (02), 0ma (03, ma (0)) o (3.65)

where dn; and k; are the number density contrast and convergence of the i-th galaxy set,

—

respectively. We define the Fourier transform of R(6;) by

- - - - - - - t
R(3) = (RT3 Fall), v (03), 67 (03), 670(03), - O (61)) (3.66)

meaning the vector of the separately Fourier transformed components of R(g i)-

Now, the procedure is to browse through half of all grid points 7 ; in Fourier space and to
make realisations of the vector R(£;). For this task the power matrix P(]¢;]) is required, which
is the covariance of the R(f;):

P(0)= (R (OR (1)) = ( 2: gg N ) , (3.67)

where we used the following definitions for the sub-matrices:
Py ... pMes) ()

A (0) = (3.68)
Pngsetsl) (g) . Pngsetstets) (g)
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Y@ .. BN (o)
A () = .. .. .. (3.69)
Prg’]ivsetsl) (ﬁ) . Prgévsetstets) (ﬁ)
rwy .. M) (g
A () = . (3.70)
PISNsetsl) (E) . PrgNsetstets) (E)

They are the correlations between the different convergence fields, convergence and galaxy
fields, and galaxy fields, respectively. The matrices A, and A,, are symmetric, while the
matrix Ay, is not due to P (0) # pirm (¢). By A!, we denote the transpose of Ap.
According to the Sect. a realisation of R (¢) can then be found by means of

. 1 .

R (Y) NoTE PW) U, (3.71)
where U is a 2 x N sized vector of uncorrelated complex random variables with real and
imaginary parts independently drawn from a Gaussian PDF with mean zero and unity variance.

After the full Fourier representation of all involved fields %; and dn; for all 7 ; has been
calculated, we transform the convergence realisations to the shear realisations 4; according to
Eq. (B60). Finally, the fields are transformed from Fourier to real space.

Depending on the number of grid points and galaxy sets the memory demand can be high.
We handled this problem by storing the realisations of the individual Fourier coefficients R(Z i)
to disk immediately after they have been calculated. After all coefficients have been computed,
the fields can be processed separately, restoring only one field at one time from the disk.

Improving the statistics for the galaxy clustering

The number density fields of the galaxy sets on the sky emerging from the foregoing section
are, as the convergence fields, Gaussian random fields. For high-amplitude fluctuations (§ ~ 1)
in the galaxy number density, however, the Gaussian model is a bad description. Since density
contrasts always have to be § < —1, in reality the one-dimensional density contrast PDF of
fields with large fluctuations necessarily becomes skewed —a feature that is not contained in
a Gaussian distribution. Instead, a Gaussian description allows values for § < —1 (negative
densities) which make realisations of mock galaxy catalogues including discrete galaxy positions
(next section) impossible. In particular, this insufficient description poses a problem for the
highly clustered galaxy distributions at low redshift. Hence, the above algorithm has to be
modified for the on;.

Our modification consists in realising the galaxy fields as lognormal random fields. Lognor-
mal fields have two important properties: first, their field values d;, are always greater than
some minimum value and, second, they can be obtained by locally transforming an underlying
Gaussian field 65. One special case from the whole class of lognormal fields is:

1
Sln = exp <5g -3 <5§>> —1. (3.72)
It is always &1, < —1 and has a variance ((512n> that asymptotically approaches <5§> for 64| < 1.

This type of statistics is attractive because it is a good approximation to the real galaxy fields
(Coles & Jones 1991; Colombi 1994). See Fig. B4l for illustration.
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Figure 3.4.: A lognormal probability distribution in comparison to a Gaussian distribution for two
different variances o = 0.5 (wide) and o = 0.2 (narrow). For o getting smaller the lognormal and
Gaussian profile approach each other. The lognormal PDF is always zero for values smaller than —1.

Moreover, most conveniently, lognormal fields require only a slight extension of the algorithm
presented in the foregoing section which, originally, is only suitable for Gaussian fields: We are
using last section’s recipe to make the realisations of the convergence fields and the Gaussian
fields of the galaxy distributions’ underlying the lognormal realisations. After applying the
algorithm, we perform the local transformation ([BZ2) to obtain the final galaxy field density
contrasts. Therefore, all we have to change, apart from adding the final transformation, is to
work out the correlation power spectra of the Gaussian fields underlying the lognormal galaxy
fields. How do those power spectra look like?

First of all, we have three kinds of power spectra to distinguish: 1. correlations between

)

Gaussian fields, P,.gij ), 2. correlations between lognormal fields, Prgij , and 3. correlations
between lognormal and Gaussian fields, Prg,?). The P,gij ) spectra remain unaffected since we do
not change the statistics of the convergence fields; they are considered Gaussian fields.

Let us turn first of all to Prgij ), Imagine we have two statistically homogeneous and isotropic
random Gaussian fields living in the same space with coordinates g. The average of the values
in both fields is assumed to be zero, like for the convergence and galaxy number density. We
pick one field value §; at g 1 from one random field and another value d; at g o from the
other field. The correlation £ = (§1d2) of the two field values depends only on the distance

0= |§ 1 — g 2| since the fields are statistically homogeneous and isotropic; this is the spatial

8A lognormal statistics may even be a better approximation for the statistics of convergence fields
(Taruya et al. 2002). If so, it can easily be included in the algorithm outlined in this chapter, simply
by treating the convergence fields the same way as the galaxy number density fields. As in this case
all fields have lognormal statistics, all power spectra will have to be transformed by the procedure
described below.
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two-point correlation between the fields at the distance 6. Moreover, the joint PDF P(d1,d2)
of both points has to be a bivariate Gaussian since both fields are Gaussian random fields:

1 ox <_5%0‘%—|—5§U%—2£5152>
2101094/ 1 — P(€)? 20703(1 —(£)?) 7

P(8y,8) = (3.73)

where we are using the definitions o} = (67), 03 = (63) and (§) = £/(0102). Now we apply
the local transformation [BZ2), symbolically denoted by f[01] and f[d2], in order to convert
both Gaussian fields to lognormal fields Ay = f[d1] and Ag = f[d2]. How are the values Aq
and As between the lognormal fields correlated? The answer to this question is the following
integral (see Peacock 2001)E

flog = (A1) = (f[&1]f[b2]) (3.75)
= <exp (61 + 02 — %[a% + ag])> - <exp (61 — %a%)> — <exp (62 — %a§)> +1
= exp(P()oroy) —1—1+1=¢€" -1,

where the ensemble average of an arbitrary g(d1,02) is defined as

(9(61,82)) = / d61d6, P(81,62) 961, 65) - (3.76)

As the transformation to the lognormal fields has not changed the distance 6 of the field
values, &log is the two-point correlation at distance 6 between the lognormal fields. This re-
sult, therefore, states that the two-point correlation function between the lognormal fields and
the two-point correlation function between the Gaussian fields underlying the lognormals are
related by

§=In(§og+1) - (3.77)

Using the relation between the two-point correlation £ (f) and the power spectrum P (¢) (a
2D-Fourier transform assuming isotropy), see (AZ46):

c0) = % /OOOdMP(K)JO(EG) (3.78)
PU) = 2n / T 400 £ (6) Jo (10) | (3.79)
0

we can translate this result into the language of power spectra which are the important quanti-
ties in the Monte Carlo recipe to make the random fields. The required steps for transforming
PIE” ) are:

1. calculating &og from pli ), Eq. @89), via Eq. B13),
9We extensively make use of:

1 1
(exp (aby + B2 +7)) = exp (507 0] + 557

B 5 Ug +w(§)01020lﬂ+’)/) 5 (374)

where a, § and y are constant.
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2. application of Eq. (BXZ1) for obtaining & which is the two-point correlation between the
underlying Gaussian fields, and

3. performing the integral (B79) to get the power spectrum of the underlying Gaussians for
the Monte Carlo sampler.

How do we have to modify the cross-correlation power spectra P§?’ between lognormal and
Gaussian fields? Surprisingly, they can be left unchanged as can be shown by the following
argument. As before, we pick two values §; and Jo with distance 6 from two Gaussian random
fields; their correlation is £ = (0102). If one of the field values, dy say, is transformed according
to Eq. BZ2) by Ag = f[d2] their correlation becomes

¢ = (6182) = (01 f[d2]) (3.80)
- <exp (65 — %ag) 51> — (5 = % <exp (b1 + bz — %a§)>

- [(040% + ¥ (§)o102) e@’/2 a%+aw(5>am]

-0

a=0

=¢.

a=0

This means that the two-point correlation between a Gaussian and a lognormal field is actually
identical to the correlation of the same Gaussian field and the Gaussian field underlying the
lognormal field!

One last comment on the integrals (BZ8) and (BZ3). They have to be handled with care
because the Bessel function kernel Jy is oscillating. The fast Hankel transforms (Hamilton
2000), briefly presented in Appendix [AJ] are well suited for this task, especially because in
our case the integral transformation has to be performed over many orders of magnitude in
both direc‘cionsl@g

Galaxy mock catalogue

The next step is to convert the density contrasts én; to a catalogue of galaxy positions sampling
the realised number density field; observed are galaxy positions and not number density fields
of galaxies. The number density is related to the density contrast by

ni(0) = () [L 4 0ni(9)] (3.81)

the absolute number of galaxies in a particular field-of-view is N; = (f;) x L? where L? is the
area of the square field-of-view.

The positions of the N; galaxies belonging to the i-th set are random, with a PDF that is
dictated by the density contrast realisation. In order to obtain a random position of a galaxy
based on the number density field we incorporate a rejection method: a particular realisation
of 1+ 0n; is normalised to the maximum value n[*®** = max (1 + dn;) of the field, so that all
values of [1+ 0n;]/n"®* lie between 0 and 1. In the next step, we chose from a uniform random
number generator a candidate position g " in the field. This candidate is accepted as the final

galaxy position if another random variable drawn from a uniform PDF with values between
0 and 1 is less or equal [0n;(6’) + 1]/n**. Otherwise, the last step is repeated. The whole

10Tn detail, we performed an unbiased Hankel transform, ¢ = 0, with & (r) = %a(:) and P (k) = @
in the notation of Hamilton (2000), Appendix therein.
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Figure 3.5.: Example output of one simulation run. The upper left panel shows the density contrast
(lognormal) of one galaxy set with redshifts between 0 and 0.5 unbiased with respect to the dark matter;
the field-of-view has a size of 30" x 30’. In the upper right, we have displayed the cosmic shear (white
sticks) and smoothed convergence (grey colour) imprinted in the image shapes of this galaxy set. The
lower left is a scatter plot of the galaxy positions produced using the rejection method applied to the
density contrast in the panel above. The lower right panel is a obscuration mask calculated from a real
survey that is used here to include masking.
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procedure is repeated N; times for every set of galaxies. The result is a catalogue of galaxy
positions sampling the number density field of the corresponding galaxy set. As in practice,
this catalogue allows at best the reconstruction of the original galaxy density field only up to
the shot noise uncertainty.

Fig. shows an example for a simulated galaxy density contrast field and a scatter plot
of the computed galaxy positions and cosmic shear field.

Assembling the galaxy shape

The final step is to assemble the shape information —the ellipticity— of the galaxies whose
angular positions ¢ are now known from the last section. The ellipticity of a galaxy is computed
from the cosmic shear signal v = ’yz(g ) at the position of the galaxy in the shear field belonging
to the corresponding galaxy set , and the intrinsic ellipticity, €, of the galaxy. In the weak
lensing regime, both can be combined to obtain the final galaxy ellipticity € by (follows from
Eq. [CT79)

e=¢e+7. (3.82)

For the intrinsic ellipticity ¢; we draw for both imaginary and real part a random number x
from a Gaussian PDF, P[z], truncated beyond 1 and below —1, with variance o:

pla = — @ (/o) (3.83)

mo. [l —exp (—1/02)]
An implementation of a Gaussian random number generator could be the Box-Miiller Method
(Press et al. 1992).

Sometimes it is desired to simulate a survey whose galaxy ellipticities “look” like in a par-
ticular real survey. In that case, the galaxy ellipticities of the real survey could serve as a
bootstrap sample; simulated e are randomly drawn from the scrambled real data set (and
put back into the bootstrap sample). The cosmic shear correlations in the real data set are
destroyed due to the shuffling of the galaxy positions.

Masking

Foreground stars, large galaxies, galaxy clusters or gaps in the CCD coverage obscure in practice
parts of the fields. This effect is easily included by putting a defined obscuration mask on top
of the simulated fields, taking away all galaxies lying inside gap regions. Such an obscuration
mask is displayed in Fig. in the lower right. It was obtained from real data (AXAF in
GaBoDS, see Chapter H).

3.4. Comparing two estimators for aperture statistics

The Monte Carlo mock data, whose generation has been outlined in the foregoing section, is
used here to compare two different estimator approaches for the second-order aperture statistics
(Sect. B2ZA). In particular, we would like to compare the effectiveness of both approaches in
the presence of gaps in the data field.
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3.4.1. Parameters of the simulated data
Geometry and galaxy parameter

Overall, we made 4 x 500 different statistically independent Monte Carlo realisations of a square
field, 30 x 30 arcmin in size, as described in Sect. one set of 500 fields with the field mask
in Fig. (gap area about 15 percent of total area), another set without any gaps, and both
sets without and with intrinsically circular source galaxies (o = 0.3). The field size is typical
for the current wide field surveys. In order to include also spatial modes greater than v/2 x 30
arcmin, this field is chopped out of a 60 x 60 arcmin field realised on a 2048 x 2048 pixel grid.
For the redshift distribution of the galaxies, we assumed an empirical distribution (Smail et al.
1995; Baugh & Efstathiou 1993) which is appropriate for a flux-limited survey

1

Py (2)dz = < T7a a3 &XD
0

r@//s | <%>6] dz . (3.85)

We chose § = 1.5 and zp = 0.602 as in the COMBO-17 survey (Brown et al. 2003); this
corresponds to a mean redshift of (z) = 0.85. We consider two galaxy sets with non-overlapping
redshift distributions, namely z € [0.2,0.6] and z € [0.6, 2.0] for the foreground and background,
respectively; within the redshift bins galaxies are distributed according to [B8H]). In the mock
data, the galaxies perfectly trace the dark matter distribution, thus we have r;; = r; = b; =1
for all scales. Using the estimators, we correlate the aperture mass map of the background
galaxies with the aperture number count map of the foreground galaxies, and we measure the
variance of both maps on different scales.

The overall galaxy density, which is the sum of background and foreground, was set to
n = 30 galaxies arcmin~2. Typically, this figure gives about 7500 foreground galaxies, mean
redshift (z) = 0.44, and 19300 galaxies in the background, mean redshift (z) = 1.0.

22

Fiducial cosmology

Our cosmology throughout is a ACDM model with Q,, = 0.3, Qz = 0.7. A scale-invariant
(n = 1, Harrison-Zel’dovich) spectrum of primordial dark matter fluctuations is assumed.
Predicting the shear correlation functions requires a model for the redshift evolution of the
3-D dark matter power spectrum. We use the fitting formula of Bardeen et al. (1986) for the
transfer function (adiabatic CDM), and the Peacock & Dodds (1996) prescription for evolution
in the non-linear regime. For the power spectrum normalisation we have og = 0.9, and as shape
parameter I' = 0.21.

3.4.2. Aperture filter and related functions

For the aperture statistics, a polynomial filter is used (Schneider et al. 1998)

9 1
u(z) = =(1- :c2) <— - x2> H(l-=x), (3.86)
T 3
HThe transformation between a PDF in redshift, p.(z), and a PDF in comoving distance, p,,(w), is as
follows: d Hz)
z z
pul) = p2(2) = = p.(z) L (3.8)
where the differential transformations cdt = adw = — H(ca)a da = H(Z)fl ey dz are used.
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Figure 3.6.: Polynomial filter used and the auziliary functions Ty(x) and F(x) derived from the
aperture filter. The filter u(x) and q(x) vanish beyond x > 1, whereas the auxiliary functions, needed
for transforming the two-point correlators to <N"M§;>, n+m = 2, are zero beyond r > 2.

q(z) = gm2 (1—3:2)H(1—m),

where H(x) denotes Heaviside Step Function. Adopting these aperture filters results in the
following auxiliary functions required for transforming the two-point correlators to the second-
order aperture statistics (Hoekstra et al. 2002, see Sect. B2 for definitions)

I@) = %%hu% (3.87)
T (x) = M [1 — %arcsin (m/2)} H2—-2z)+

%\/? x (120 + 23202° — 7542 4 1322° — 92°%) H(2 — ),
T (2) — §§ﬁ<1_§>U2ﬂ2—@,

F@)=5%Amgb@@m@W-

The auxiliary function F'(z) has to be worked out numerically, as no analytic solution to this
integral is known. All auxiliary functions vanish outside the interval x € [0, 2] due to the finite
support of u(z) and g(x). See Fig. for a plot of all functions.

The aperture filter choice for u(z) makes the integral kernel [I(x)]? in the analytical expres-
sions of (N?), (NM,p) and <M32p>, Eqgs. (BId), oscillating. A convenient way to work out
these equations numerically are the fast Hankel transforms (Appendix [AT]).
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Figure 3.7.: Ezamples illustrating the tolerance scheme for placing apertures. Displayed are allowed
aperture positions (dark grey disks) in the field area if at mazimum an overlap (light grey) with the gaps
(black) of 10% is tolerated. Note that the regions outside the square field also count as gap.

3.4.3. Technical aspects of the estimators

As estimators of (N?), (NM,,) and <M§p> we applied the two methods described in Sect.
BZA which either estimate two-point correlation functions being transformed to the aperture
statistics afterwards, or which place circular apertures into the field and obtain estimates from
every individual aperture being combined for a final estimate. All galaxies in the synthetic
data have equal weight, w; = 1. In the following section, we denote the estimator methods by
“I” and “II”, respectively. If possible, estimates were taken for 40 equally spaced angular bins
ranging between 0 and 20 arcmin. The program code implementing the estimators invokes
data structures based on the tree-code data structure (Pen & Zhang 2003; Moore et al. 2001)
to reduce the computation time, which is mostly due to finding pairs of galaxies at a certain
distance (“I”) or to finding galaxies inside the apertures (“II”).

Estimator “I”

The two-point correlators for the angular galaxy clustering, Eq. (B28), galaxy-galaxy lensing,
Eq. B2Z9), and shear-shear correlations, Eq. ([B30), are estimated from the data of each field
realisation inside 600 logarithmic 6-bins ranging between 1”.74 and 42’.19. For the transfor-
mation of the two-point correlators to the corresponding apertures statistics, we approximate
the transformation integrals (B22)-(B24]) by a sum.

Estimator “II” with tolerance scheme

For the estimators placing apertures into the field, Eq. BI5)-@BI1), we introduce a tolerance
scheme. An additional parameter defines a tolerance threshold that determines how much
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maximum overlap between a circular aperture and the gap mask is allowed. Values for the
tolerance parameter range between 100% and 0% corresponding to total ignorance with respect
to gaps and no allowed gap overlap, respectively. Apertures exceeding the tolerance limit are
rejected fore the final average. As an example, see Fig. Bl with some allowed aperture positions
for a tolerance level of 10%. Below we assume a tolerance level of 20% but also, for comparison,
evaluate the estimates with a tolerance of 100% (all apertures are accepted). For the aperture
centres, we take the grid points of a 128 x 128 grid (maximum 16384 apertures) which is laid
on top of the field of view.

3.4.4. Results and discussion

In every Monte Carlo sample, we measure the second-order aperture statistics <N "M;@, n 4+
m = 2, for a range of aperture radii using the estimators “I” and “II”. The averages of all
measurements are summarised by the Figs. and The samples without gaps are a test
for the Monte Carlo code and the codes implementing the estimators. Here, both estimators
should on average reproduce the theoretical values (BI4]) of the power spectra Py, Py, and P,
having been put into the simulated data. As the deviations from theory are too small to be
clearly visible in the left column of Fig. B8 we made the plot in Fig. (top row) which
displays the relative deviations of the estimates. These plots have error bars which indicate
the remaining statistical uncertainty expected from 500 Monte Carlo samples; similar errors
bars for Fig. would be barely visible and are therefore not plotted. First of all, we conclude
from Fig. that the ensemble averages of the estimators “I” and “II” are broadly consistent
considering the statistical errors. Second, both estimators fairly well agree with theory for
<N 2> (upper left panel). However, the estimates are clearly offset by about 2% — 4% in the
case of <Ma2p> and maybe offset by < 2% for (N M,p). As both estimators are consistent with
each other and are the results of independent computer codes and different algorithms, we
suspect that this small offset originates from the Monte Carlo samples. To check this suspicion
we looked at the average power spectra P,, P, and P, of all field realisations. We find that
they differ from the desired power spectra, Eqs. BI4), by about 1%, 1% — 3% and 3% — 4%,
respectively, with a slight dependence on scale. Therefore, the apparent inaccuracy of the
estimators can indeed be attributed to the Monte Carlo samples and is probably not a real
estimator effect. By scrutinising the Monte Carlo sampler code we traced the cause of the
inaccuracy back to the power matrix, Eq. (B:61), which is employed for the sample realisation
process. It turned out that a small inaccuracy in the numerical calculation of the power spectra
makes the power matrix slightly negative-definite so that, in principle, a real square root of
the power matrix cannot be found. The computer code copes with this problem by assuming
that all negative Eigenvalues of the power matrix are actually very close to zero and sets them
to zero. This results in an offset of a few percent of the power spectra in the Monte Carlo
samples. Since our main focus is on the manner with which the estimates of the aperture
statistic change in the presence of gaps, we correct for this small offset by relating all estimates
to the average of “I” from the non-gap case instead of the theoretical, mathematically correct
values. For future work, however, the sampling inaccuracy should be removed.

The effect of gaps is strikingly visible in Fig. B8 right column, and Fig. B9, middle row.
Clearly, the ensemble average for “II”, obtained by placing apertures into the field, suffers by
loosing signal for <N 2>, (NM,,) and artificially gaining signal for <Ma2p>. The signal can be
biased as much as 60%, 30%, 20% for (N?), (NM,p) and <M§p>, respectively, if the presence
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Figure 3.8.: Ensemble average (z (6;)) and field-to-field variance Az (6;) = \/(:UQ (6:)) — (x (6:))* of
estimates for x = N2, NMgp, Mgp (top to bottom row), respectively, based upon 500 Monte Carlo sam-
ples; estimator “I” uses two-point correlators, while “II” places apertures into the field. left column:
without gaps, the gap tolerance of “II” is 0%. right column: with gaps (about 15% coverage, the gap
tolerance of “II” is 20%. The sudden stop of the curves belonging to “II” occurs beyond apertures radii
where no more apertures complying with the tolerance level can be found (left column: 14.0 arcmin,
right column: 16.0 arcmin). Variances involving the aperture mass are plotted twice in the same line

style: once with intrinsically circular source galaxies and one with intrinsically elliptical source galazies
(oe =0.3).
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Figure 3.9.: top and middle row: Comparison of Monte Carlo averaged estimates of <N2>, (NMap)
and <Ma2p> (left to right) obtained with the estimators “I” and “II”. The figures show the relative
deviation (x — &) /& of the estimates x with respect to the expected theoretical value T. The top row has
been calculated from fields without gaps, while the middle row is based upon simulated fields covered by
the mask in Fig. [374; the percentage values denote the gap tolerance threshold of method “II”. bottom
row: Deviation from theory of the estimated linear stochastic bias between the aperture number count
and aperture mass maps for data with gaps using the estimators “I” and “II”. The percentage values

denote the gap tolerance threshold of method “II”. From left to right: bias factor b = /(N?)/ <M§p>,
correlation factor r = (NMap) /4/(N?) <M§p> and the ratio b/r = (NM,y,) / (N?). all figures: The

error bars (1o) indicate the remaining statistical uncertainty due to the finite number of Monte Carlo
samples (500).
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of the gaps is completely ignored. If we, however, discard apertures with a gap overlap of more
than 20%, the bias in the estimator “II” is reduced to 20%, 10% and 10%, respectively. The
estimates from “I” are obviously much less affected by the presence of gaps. Here the bias is
always less than 3% with a maximum bias on intermediate scales, ~ 10’. Like for “II” the
signal decreases for <N 2> and (N M,p) but also becomes lower for <M§p>.

Why are “I” and “II” so differently biased although they both work on the same data and
are both closely related to each other? The problem is that a gap region overlapping with
the aperture disk (method “II”) in general immediately means a violation of the assumption
underlying Eq. ([B4]) which relates the aperture mass to the tangential shear about the aperture

—

centre. The underlying assumptions for this relation are: a) a compensated filter U, () ,

and b) a radial symmetry of the filter. As a gap can be expressed as a function fgap(g )
which assumes the value 1 where are no gaps and 0 where are gaps, an overlap modifies the
effective filter used to Uéap (W) = Up,, () fgap(ﬁ ). Usually this new, effectively used filter is
neither compensated nor radially symmetric. Therefore, relation ([B4)) is no longer true. By
ignoring this fact, however, we pretend that it still is which introduces a bias in (NM,,) and
<M32p>. Another cause for an estimator bias is given for <N 2> and (NM,,) because both
estimators “II” for these statistics depend on N;. The average number of foreground galaxies,
N¢, certainly becomes smaller if the aperture is obscured by a gap. As we have not accounted
for this fact, we underestimate <N 2> and (N M,p) by dividing by a too large N in the case
of apertures overlapping with gap regions. For (N M,p), the bias is smaller compared to <N 2>
for two reasons: first, Ny enters the estimator linearly and not quadratically, and second the
bias due to Uéap (ﬁ ) causes an overestimation, as clearly seen in <M§p>, which counteracts the

underestimation caused by a too large N;.

We now turn to estimators based on method “I”. These estimators rely on the two-point
correlators which are derived just from pairs of points in the random fields; the definitions do
not care about gaps possibly being between these points. But yet, we observe that the aperture
statistics is underestimated. This may be partially understood by the following discussion.
Mathematically, the correlators probe a random field that is multiplied with a selection function
fgap(ﬁ ). In the absence of phase correlations between the cosmic shear and galaxy number
density fields with the mask fgap(ﬁ ) (¢f. Feldmann et al. 1994), this has the effect that we
actually observe the convolved power spectrum

P'(0) = (P | faap|*)(£) (3.88)

where P(¢) the power spectrum without gaps and fgap(f) the Fourier transform of the mask.
To have a quantitative estimate of the relative change, AP(¢)/P(¢) = (P'(¢) — P(¢))/P(¥),
caused by the gap pattern we computed two power spectra of the foreground galaxy number
density for various field realisations: one spectrum without gaps, P(¢), and one from fields
with gaps, P'(£). The power spectrum was estimated by means of the dispersion of the Fourier
coefficient moduli in bins of |¢|. Finally, we averaged the relative change, AP(¢)/P(¢), for all
field realisations. The result can be seen Fig. On the one hand, one can see that the
power is indeed reduced by applying the gap mask to the random field. Moreover, the relative
decrease is scale-dependent with a maximum decrease on intermediate scales. On the other
hand, the amplitude of the decrease is larger by a factor ~ 2 compared to Fig. (very left
panel in the middle row) which may mean that we have not found the reason for the power
decrease yet. A definite answer to this problem is therefore left to future work.
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Figure 3.10.: Relative change in the number density power spectrum of the foreground galazies if our
gap mask is applied. The plotted data points are the average of five random field realisations.

Fig. B3 bottom row, translates the estimator averages fore the aperture statistics into the
linear stochastic bias between the aperture number count and aperture mass map. They can
be employed to study the linear stochastic bias between the foreground galaxies and the total
matter distribution. As for the bias parameters obtained with the estimator “II”, the accuracy
is about 10% and 5% for the bias factor and correlation factor, respectively, if a gap tolerance
of 20% is used. For “I”, we see no systematics in the bias parameter estimates within the
statistical uncertainties of a few percent. Obviously, in the estimates for the linear stochastic
bias parameter the systematics of the individual second-order moments partly compensate each
other. This means that even under realistic conditions we can principally recover the galaxy
bias parameters with high accuracy.

In order to quantify the estimators’ noise properties we plotted the field-to-field variance of
the estimates as a function of aperture radius in Fig. Contributions to the total noise
come from a) the positional shot noise of the foreground and background galaxies, b) the cosmic
variance and c¢) from intrinsically non-circular source galaxies, o, < 0, wherever weak lensing
is involved (van Waerbeke 1998; Schneider 1998). There are two curves for both “I” and “II”
in the diagrams for (NM,,) and <Ma2p>: one without, o = 0, and one with, o = 0.3, intrinsic
ellipticities of the source galaxies. This shows, not surprisingly, how the noise is increased by
intrinsically non-circular source galaxies. To quantify this increase and for a comparison with
the literature, we plot in Fig. BI1l, bottom row, the function

o(X,0=0)

pX) = o(X,0#0)—o(X,0=0)"’ (3:89)

where o(X,0 = 0) and o(X,0. # 0) denote the field-to-field variance of the estimates of
X € {{(NM,y,), <Ma2p>} for circular and non-circular sources, respectively. The function p(X)
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Figure 3.11.: top row: Ratio II/I of the field-to-field variances of the statistical errors of <N2>,
(NMa,p) and <Ma2p>, respectively. The result for the Monte Carlo samples without gaps is plotted in the
left panel, with gaps in the right panel. bottom row: Monte Carlo average of p - Eq. {Z3Z49) - for the
estimators “I” and “II” of (N M,p) and <Ma2p>, The left panel is for the data set without gaps, the right
panel for data with gaps. The curve indicated by “SvWJK” is the theoretical p(MaQP) for estimator “I”,
thus Eq. (1), divided by 3.
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was introduced in Schneider et al. (1998, SYWJK hereafter) for the estimator of <M§p>, type
“IT”, for the following reason. According to SYWJK the variance of the <Ma2p>-estimate is for
fields with negligible kurtosis (like for our Gaussian convergence fields):

oG

J(<M§p>) ~ \/§7ﬂ9§pﬁ

+V2(ML) (3.90)

where G = 6/5 for our polynomial ﬁlter Bap is the aperture radius and 7 the mean galaxy
number density. The first term on the RHS is the shot noise due to non-circular sources, the
second term is noise due to cosmic variance. The variance due to positional shot noise of the
sources is subdominant and can be neglected (SvWJK). Therefore, p((MZ,)) quantifies the
ratio between the o.-term and cosmic variance term:

2( M2\ w0%n

p((MZ,)) ~ % . (3.91)
If p < 1 the distribution of the intrinsic ellipticities of the source galaxies mostly contributes
to the variance, whereas in the opposite case cosmic variance is the dominating source of the
statistical uncertainty. As noted in Schneider et al. (2002a), a type “I” estimator for <Ma2p>
has, in absence of a kurtosis in the convergence field, the same p but lower by a factor of 3.
This corresponds to the curve “SvWJK” plotted in Fig. Bl in the two bottom panels. Our
Monte Carlo average for p(<Ma2p>), type “I”, agrees very well with this prediction. The curve
of p but for estimator “II” is found to be larger in amplitude, but not by a factor of 3 as in
SvWJK. This can be explained, however, by the fact that we placed the aperture centres at
the grid points of a 128 x 128 grid. This leads for our range of aperture radii to an overlap
of neighboured apertures, while the expression for p in SYWJK is strictly only for the case of
non-overlapping, in fact statistically independent, apertures. The presence of gaps (bottom
right panel) appears to tilt ,0(<M§p>), estimator “I”, by a small amount compared to SvWJK.
However, the impact of gaps seems to be small so that more Monte Carlo samples are needed
to obtain more significant results. Plotted in the same panels are p((NM,p)) for the gap and
non-gap case. They have roughly the same shape as ,0(<M§p>) but are larger in amplitude.
Although detailed expressions remain to be worked out, we expect that the analytic expression
of 0((IN M,p)) is similar to a(<Ma2p>), Eq. (B90), however with an additional noise term related
to the positional shot noise of the foreground galaxies. In direct comparison (top row of Fig.
B1T), the variance of estimator “II” is always higher than the variance of “I” (roughly by a
factor between 1 and 3). This also favours the usage of estimators “I”.

The impact of noise on a single measurement is illustrated by Fig. (for the “I” es-
timator). Realistic measurements on 30" x 30’ fields are obviously far from looking like the
expected theoretical curve, at least for the measurements involving the aperture mass. Even
the B-mode signals in (N M,;,) and <M§p>, usually employed as indicator for systematics in the
PSF-correction of the lensing catalogues, scatter heavily about zero. Thus, there is no point in
using the B-mode signal of a single field of this size as a quality indicator for PSF-correction.
Such a decision can only be found by averaging the B-mode signal over many fields.

Figs. BI4 and display the correlations, r(61,6s), of the estimates belonging to different
aperture radii, #; and 6>. Note that the correlation matrices are based on the Monte Carlo

2 According to SYWJK one has G = 763, [ df Q2(|f]?) = 22 fol dz z ¢?(x).
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Figure 3.12.: Correlation coefficient r(01,02) of the estimators <N2>, (NM,p) and <Ma2p>, type “I”,
with no gaps, with 01 = 0'.42,17.61,6".14 fized. The curves present cuts through the matrices in Fig.
left column.

samples without intrinsic ellipticities of the background source galaxies in order to obtain a
better signal-to-noise for the matrices. We observe several things: a) On scales where mea-
surements from both estimators “I” and “II” are accessible, the estimator correlations of both
methods are basically the same (in areas where the correlation is larger than r ~ 0.25), b) our
gap pattern has but little effect on the correlations, and c) the correlations are essentially only
large, » £ 0.5, within a strip about the diagonal. Cuts, i.e. keeping 6 fixed while varying -,
through the correlation matrices r(6;,03) are plotted in Fig. We find that almost inde-
pendent of 0 the correlation decreases to r ~ 0.5 once a certain ratio 61 /0y = f or 03/6, = f is
reached, namely f ~ 1.78,1.74,1.77 for <Ma2p>, (NM,p) and <N2>, respectively. For the case
of <Ma2p>, this is in good agreement with Schneider et al. (2002a), see their Fig. 3.

Although the presented results are for a very specific set of parameters (field size, cosmol-
ogy, redshift bins, galaxy number density, gap pattern, etc.), we think that they are roughly
representative for the general picture. The general conclusion is that the estimators “I” should
be the first choice, while “II” can only reach an accuracy of about 10% — 20% under realistic
circumstances. However, the approach “II” has a technical advantage compared to “I” due to
which it should not be completely banned: it is easily extended to higher-order statistics as,
for example, the estimator for <M§’p> in Schneider et al. (1998) shows. General estimators
for <N ”M;@ surely can equally easily be written down. This is not the case for the approach
“I”, where, first of all, a sensible definition for n-point correlators between shear and galaxy
number density has to be found; not mentioning the transformation to the aperture statistics
that has to be worked out in the second step. To get an idea of this effort, we refer the reader
to Schneider & Watts (2005), Schneider, Kilbinger & Lombardi (2004), Jarvis et al. (2004)
and Schneider & Lombardi (2003). Most of these references involve even only the third-order
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statistics.

109



STUDYING TWO ESTIMATORS FOR THE LINEAR STOCHASTIC BIAS

0.00012 T T T le-04

. 30 e 30 e
le-04 average 4 8e-05 average 1
i single fields % single fields
8e-05 i 6e-05 |t
3 | 3
g 6e-05 R g 4e-05
u 4e-05 : & 2e-05
& 2e-05 & 0
o o
© ©
S 0 S -2e-05
\2 \2
-2e-05 -4e-05
-4e-05 | -6e-05 |
_6e-05 L -8e-05
5 10 15 20 5 10 15 20
aperture size [ARCMIN] aperture size [ARCMIN]
0.0015 : : : 0.001
3G ke
_ average 0.0008 _ average
0.001 single fields 0.0006 single fields
3 3 0.0004 |:
o =}
= 0.0005 | £ 0.0002 f;
L 0 ]
A A 0k
i & 0.0002 i
= 0 = - Vi
Z Z -0.0004 -
-0.0005 -0.0006
-0.0008
-0.001 - -0.001
5 10 15 20 5 10 15 20
aperture size [ARCMIN] aperture size [ARCMIN]
0.02
3G skt
~ average
0.015 single fields
0.01
A H
N
4
\"

0.005

-0.005

5 10 15 20
aperture size [ARCMIN]

Figure 3.13.: Compilation of some individual simulated measurements of <M§p>, (NM,p) and <N2>
(top to bottom row) in the mock data applying the estimator method “I” only; the fields have been
covered by a mask to mimic realistic conditions. The source galaxies are intrinsically elliptical with a
variance of o. = 0.3. The right column displays the B-modes of the quantities involving the aperture
mass. Note that the B-modes in individual fields are by no means vanishing compared to the E-mode,
but are expected to scatter symmetrically about zero so that they are on average vanish.
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Figure 3.14.: Correlations (without gaps in the field) r;; = (x (0i)$(9j)>Ax(0i)_1Ax (Oj)_l
of the estimates for (x (0;)) between different angular bins 6; = 1.0,1.5,...,21.0 arcmin (40 bins); z

denotes N?, N Map, M2, (top to bottom row), respectively, Ax (6;) = \/<$2 (6,)) — (x (6;))* denotes the
variance of x. The matrices in the left column are for estimates based upon method “I”, the matrices
in the right column are for estimates based upon method “II” (gap tolerance 0%). For each matriz, the
angular size 0; of the aperture is increasing from left to right and 0; is increasing from bottom to top;
the overlaid contours are for the levels r;; = 0.75,0.5,0.25,...,—0.5. The matrices in the right column
are smaller than the matrices in the left column because apertures with radii greater than 14.0 arcmin
could not be found in the field. The intrinsic ellipticities of the source galazies were set to zero (o, =0).
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Figure 3.15.: As in Fig. except that the correlation matriz is obtained from fields that are obscured

by a mask. The adopted gap tolerance for estimator “II” is 20%. The impact of the gap mask on the
correlation matriz is relatively small.
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CHAPTER 4

Galaxy bias in GaBoDS

4.1. Introduction

In this chapter, we use the technique outlined and tested in detail in the foregoing Chapter
to probe the galaxy distribution relative to the dark matter distribution in the Garching-Bonn
Deep Survey. The applied technique analyses fluctuations of the projected galaxy number and
dark matter density within circular apertures. The galaxy sample for which the galaxy bias is
measured is split into three magnitude bins. The bins have increasingly fainter median R-band
magnitudes and thus represent different typical redshifts. So far, this type of analysis has been
applied only once in the VIRMOS-DESCART survey and the Red-Sequence Cluster Survey
(Hoekstra et al. 2001; Hoekstra et al. 2002, HO2 hereafter).

The following Sect. introduces the Garching-Bonn Deep Survey which is used for the
analysis. Technical details of our analysis are summarised in Sect. 23] such as used aperture
filter and the calibration of the galaxy bias estimates. We discuss our results, presented in
Sect. B4 in the final Sect.

4.2. GaBoDS: The Garching-Bonn Deep Survey

Here we will give only a brief account of the GaBoDS. For details concerning the GaBoDS and
its data reduction we refer the reader to Schirmer et al. (2003).

4.2.1. The GaBoDS fields and their reduction

The GaBoDS comprises roughly 20 deg? of high-quality data (seeing better than one arcsec) in
R-band taken with the Wide Field Imager (WFI) mounted on the 2.2m telescope of MPG/ESO
at La Silla, Chile; the 34’ x 33’ field of view, subject to the dither pattern applied, is covered
with 8 CCD chips. The data set was compiled by Mischa Schirmer and Thomas Erben mostly
from archival ESO data (for which the archive utility quer at or has been developed), partly
with about 4 square degree coming from own observations. The positions of the fields were
chosen randomly from regions of small stellar densities at high galactic latitudes. The limiting
magnitudes of the fields is inhomogeneous, ranging between 25.0 mag and 26.5 mag (50) in the
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Figure 4.1.: Magnitude vs. half-light radius plot of objects found by SExt ract or in one particular
field. Stars appear as almost vertical branch and can be separated from galazies with high confidence.
The solid and dashed box roughly encircles objects excluded for the lensing catalogue (for details, see
Schirmer et al. 2003). Going to the faint bottom of the diagram one finds more and more noise peaks
misidentified as objects. Therefore, we do not take into account objects fainter than 24 mag. For the
classification of foreground objects, the SExt r act or CLASS-STAR parameter is used.

R-band depending on the observation time and during what fraction of this time the seeing
was acceptable for gravitational lensing applications. The data set can roughly be categorised
into a shallow (t < 7 ksec, total 9.6 deg?), medium (7 ksec < t < 10 ksec, total 7.4 deg?) and
deep (10 ksec < t < 56 ksec, total 2.6 deg?) set depending on the total usable integration time
t for each field (the fields are co-additions from single observational frames obtained according
to a certain dither pattern). For this chapter, we used only the deep and medium deep part of
GaBoDS amounting in total to about 10 deg?. Note that due to the dithering, the co-added
image of one field can be larger than the WFT field of view.

For the data reduction [involving overscan correction, debiasing, flat fielding, weighted co-
adding using the dr i zz| e package (Fruchter & Hook 2002), creation of a superflat, defringing,
astrometric calibration, determination of the photometric zero point], the data imposed new,
high demands which resulted into the development of a data reduction pipeline whose usage is
not restricted to the aforementioned instrument only; it has successfully been tested on data
from various other instruments (Erben et al. 2005).

4.2.2. Selection of the lens and object catalogues

After the data reduction process, SExt r act or (Bertin & Arnouts 1996) was used to compile a
catalogue of source galary candidates needed for the shear analysis. For the rather conservative
selection of source candidates, the final co-added science frames are first smoothed with a
Gaussian kernel of 4 pixel FHWM. One pixel corresponds to 0”7.238. A source candidate
further needs to consist of at least 5 contiguous pixels with a total flux greater than 2.5¢
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Table 4.1.: Fields belonging to the deep (upper half) and medium (lower half) part of the GaBoDS.
Note that the listed numbers of objects are based upon specific SEXt ract or parameters (Sect. [{.2.3)
which are different for background and foreground galazies. Fields indeved with a dagger' (5 fields) are
not considered for the estimation of <Ma2p>; the asterisks® fields are heavily contaminated by stars and
are therefore not taken into account for <N2> (2 fields). For (NMap) neither asterisks® nor daggert
fields are used (7 fields). « and § denote the equatorial coordinates of the fields’ centres in degree,
latitude and longitude, respectively.

Field «(2000.0) 4(2000.0)  [ksec] #total #FORE-I  #FORE-II  #FORE-III  #BACK-I
A1347_P1 175.25702 —25.51474 13.5 34949 242 468 1732 6639

A901 149.07771 —10.02734 18.1 47150 729 1168 3146 15617
AXAF 53.13344 —27.82255  57.2 62277 445 1060 3388 17125
CAPO_DF 186.03787  —13.10764 13.0 29712 794 1372 3174 4630

FDF 16.44541  —25.85742 11.8 33964 668 1236 3061 15168
NDF 181.36237 —7.65226 21.8 22840 634 1204 2713 11138
S11 175.74860 —1.73458 21.5 45313 645 1157 3346 15444
SGP 11.49852  —29.61047 20.0 47072 630 1293 3537 16051
SHARC2 76.3333  —28.81805 11.4 37576 669 1336 3431 14684
F4_P3 322.32389  —39.72689 10.0 32832 672 1254 3123 10789
F17_P1* 216.41916  —34.69460 10.0 30662 2000 2848 4701 9210

F17_P3* 217.02611 —34.69463 10.0 35722 1276 2061 4826 12476
A1347_P2 175.79254  —25.50918 7.5 46439 646 1516 4633 6435

A1347_P3 175.23976  —25.00933 7.0 27107 809 1429 3356 12236
A1347 P4 175.79459  —24.99836 8.0 27166 1094 1683 3485 10717
AM1 58.81181 —49.667762 7.5 27478 682 1409 3105 11207
B8pOf 340.34886 —-9.59009 7.2 23208 789 1195 2624 10586
Deeple 341.96679  —39.52874 9.0 27157 1008 1555 3288 9076

Deep2ef 53.12291  —27.30467 7.5 25939 794 1413 3111 13413
Deep2f 53.66995  —27.32400 7.0 23263 1044 1583 3311 11789
Deep3b 170.66159  —21.70969 9.3 30624 861 1549 3392 5235

Deep3c 170.01909  —21.69960 9.0 30529 912 1562 3510 12629
Deep3d 169.42875  —25.85742 9.3 31188 945 1555 3317 13042
Deepla 343.79506  —40.19886 7.2 28852 987 1384 3348 12503
Deep3a 171.24559  —21.68289 7.2 27472 990 1503 3266 11945
F4. P1t 321.65611 —40.25193 9.5 29424 1165 1839 3937 13177
F4_ P2t 321.71942 —39.76761 7.0 26540 1207 1791 3632 11163
F4_p4f 322.32389 —39.72689 7.5 22706 1223 1678 3257 9977

> 28 fields 9x10° 3x10* 4x10* 1x10° 3x10°
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Foreground object catalogue

sample bin limits [mag] #objects (z)

FORE-I 195 <R <21.0 25x10* 0.3440.09
FORE-II 21.5<R <220 4.1x10* 0.4940.12
FORE-III 225<R<23.0 9.5x10* 0.65+0.14

Background source catalogue

sample bin limits [mag] #objects (z)

BACK-I 215<R<24.0 3.2x10° 0.67+0.15

BACK-II 220<R<24.0 29x10° 0.69+0.15
BACK-III 23.0<R<24.0 1.8x10° 0.7440.15
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Figure 4.2.: Redshift distribution of the foreground and background galaxy R-band bins as estimated
from the photometric redshifts in the COMBO-17 fields A901, AXAF (CDFS) and S11 (Wolf et al.
2004). The upper table lists the limits of the magnitude bins, the total number of objects for all 28 fields
(deep and medium deep fields in GaBoDS), the mean redshift and the lo-variance inside each bin.
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above the background noise level, and it has to possess a clearly defined quadrupole moment
(cl # 0, anal ysel dac) and position (USNO-A2 as reference catalogue, Mario Radovich’s
astrometri x). Stars and galaxies are distinguished in a magnitude vs. half-light radius plot
of the selected objects (see Fig. Bl for an example). In this scatter plot, stars that are not too
faint are clearly identified as a column of objects with roughly identical half-light radius r.
Objects with a half-light radius smaller than r, plus some safety offset are rejected as source
candidates. An exception are objects in the faint part (fainter than 23.5 mag in R-band) near
this column.

As accurate measurements of galaxy shapes are the key in a weak lensing analysis, the
quadrupole moments in the galaxy light profiles of the source candidates have to be corrected
for PSF effects: atmospheric turbulence and instrumental effects also distort the galaxy images.
This is done using the KSB method (Kaiser et al. 1995) by its implementation in the i ncat
software package. A detailed description of the PSF correction procedure may be found in
Erben et al. (2001). The PSF fitting polynomial used is of order 2.

In the estimators of the aperture statistics, every source galaxy is weighted with a statistical
weight. This weight, w;, is defined by the variance o2 in ellipticity of the 12 nearest neighbours
of a galaxy 4 in the magnitude vs. half-light radius diagram: w; = 1/02. In the case that the
ellipticity of a galaxy exceeds |¢| = 0.8 it automatically is attributed the weight zero and is
hence not considered further in the analysis. Applying this cut removes outliers with unrealistic
ellipticities, produced by the KSB technique, which can strongly affect the final results. Since
this removes real high ellipticities as well, we also can expect to slightly bias the final result,
but only on a level smaller than the remaining statistical errors (Marco Hetterscheidt, private
communication). The final lensing catalogue is split into three magnitude bins BACK-I, BACK-
IT and BACK-III, see Fig.

The actual foreground objects, of which the bias parameters are measured, are selected with
less conservative SEXt r act or parameters; only their positions not the shapes are of interest.
For them, we demand a minimum of 3 contiguous pixel for being an object candidate and a
flux larger than 20 above the flux noise background in the field. Foreground galaxies are finally
selected if they have a SExt ract or CLASS STAR parameter less than 0.92 and are brighter
than 24 magnitudes.

For the final analysis, we consider only the medium and deep part of the GaBoDS comprising
in total 28 WFI fields corresponding to an area of about 10 deg?. In order to select for the bias
analysis different mean redshifts of the object (foreground) catalogues we subdivide the object
catalogue into the three different R-band bins FORE-I, FORE-II and FORE-III as stated in
the table in Fig.

To estimate the redshift distribution of the galaxies —both foreground objects and background
sources— we average the photometric redshift distribution in the different magnitude bins of
the fields A901, AXAF and S11 (see Fig. EEZ). These three fields are contained in the deep
part of the GaBoDS and were observed as part of the COMBO-17 Survey (Wolf et al. 2004,
see Sect. B.2) in 17 colours yielding quite accurate photometric redshifts with an uncertainty of
0z ~ 0.02 (1 + z) for objects brighter than R = 24 mag; their redshift distribution is assumed
to be representative for our whole catalogue.

For the source galaxies carrying the M, signal, the magnitude bin BACK-I is used through-
out. As can be seen in the table of Fig. EE2 by varying only the lower limit, but keeping
the upper limit of the magnitude bin fixed to R = 24 mag, one cannot shift the median of
the background redshift distribution to much higher values than z &~ 0.7; essentially, only the
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number of sources in the bin decreases. A large median redshift of the source galaxies is desired
to achieve a good lensing efficiency. Since we do not use objects fainter than 24 mag in order
to maintain good accuracy in the estimate for the redshift distribution of the background, the
bin BACK-I for all three foreground bins FORE-I, FORE-IT and FORE-III is the best choice.

Table LTl summarises the number of foreground galaxies and sources found in the individual
fields and magnitude bins.

4.3. Method details

The method for measuring the linear stochastic bias with aperture statistics is described in
detail in Sects. BZ3 and BZZ4l Based on the conclusion in Chapter Bl we follow H02 who
prefer the estimators based on two-point correlation functions of the galaxies’ spatial clustering,
galaxy-galaxy lensing and cosmic shear. For the GaBoDS analysis, we bin the three correlators
into 7300 linear bins spanning a range between 0/ < 6 < 48’ (the diagonal of a single WFTI field).
In order to reduce the computation time for the correlations, a binary tree data structure as
in Pen & Zhang (2003) is used. See also Moore et al. (2001) and Jarvis et al. (2004).

4.3.1. Aperture filter functions

To weight density fluctuations inside apertures we use a compensated polynomial filter (H02;
Schneider et al. 1998)

u(r) = %(1—3}2) <%—x2> H(l-1z), (4.1)
¢(z) = ggﬁ (1—2%) H(1 ), (4.2)

which by definition vanishes for z > 1. See also Sect. The filter has the effect that
only dark matter or galaxy number density fluctuations from a small range of angular scales
contribute to the N- or M,,-signal as can be seen in Fig. B33 it acts as a narrow-band filter for
the angular modes with highest sensitivityﬂ to le ~ 4.5/0,, = 0.7 x ;T’; (Schneider et al. 1998).
Apertures with radius 0, therefore effectively probe a comoving physical scale of fk (w)8,p/0.7,
if w is the median comoving radial distance of the galaxy sample under examination. For the
effective scales quoted in the following we ignore the small shift due to the factor 0.7 and take

simply fi (0)0ap.

4.3.2. Calibration of the bias estimators

The linear stochastic galaxy bias is estimated according to Egs. (BI3]). The presence of the
calibration factors f}/, in these equations has a simple explanation. Imagine the idealised case
that the foreground galaxies are located at one redshift, z¢. The source galaxies, needed to infer
the matter distribution at the redshift of the foreground galaxies by means of lensing, shall also

L At higher spatial frequencies beyond I, the filter shows wiggles which are due to the finite support of
the polynomial filter. This could be avoided, for instance, by using the exponential filter proposed
by van Waerbeke (1998) which, however, does not have a finite support, i.e. it has no clearly defined
aperture radius.
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Figure 4.3.: Sensitivity of Map (Bap) and N (0ap) to dark matter and galaxy number density fluctu-
ations, respectively, as a function of angular scale { using the polynomial filter in Eq. ({{1)). Most
sensitivity is given to the scales {c ~ 4.5/0a, where Oy, is the aperture radius. For illustration, we
have plotted the power spectrum of the expected galaxy number density fluctuations, Py, of an unbiased
galaxy population with a mean redshift of (z) = 0.28 (see Eq. [Z23).

be located at one redshift, 2y, but farther away than the foreground, 2z, > 2;. Now, the aperture
number count, N, of the foreground contains information on the galaxy distribution at one
redshift only, while the aperture mass M,, —or convergence x— contains contributions from the
matter density field of all redshifts up to z;, (see Eq. BE&l). Quantifying the galaxy bias of the
foreground requires the comparison of the random field N with the dark matter distribution at
2, AM,p, which is contained in My, but only as part of the total signal My, = M.(;p + AM,p,.
Most of the signal in the aperture mass originates from dark matter inhomogeneities outside z,
M;p. Moreover, M, is not a density contrast, as IV is, but proportional to it by some number
depending on the fiducial cosmology. Naively identifying N with the galaxy number density
contrast, oy, and M,, with the matter density contrast, d,,, at redshift z; therefore gives the
wrong linear stochastic bias parameters ([LZd)). The bias parameters have to be corrected, and
this is done by means of the calibration factors fi .

Since M;p and AM,, are related to the dark matter field at different redshifts, they are only
very weakly correlated <MQPAMap> ~ 0. According to H02, the calibration factors fi/, can
therefore be calculated by means of

(ME, (Bap))

fl (aap) W ) (43)
. VIV (Bap)) (M2, (0ap))
s (N (Bap) Map (0p))
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Figure 4.4.: left column: Scale-dependence of the calibration factors fi and fo in Eqs. (EZI3) for
three different cosmological models (Qm,Qn, T, 0, h) with adiabatic CDM: LCDM(0.3,0.7,0.21,0.9,0.7),
OCDM(0.53,0.0,0.21,0.9,0.7) and SCDM(1.0,0.0,0.7,0.6,0.7). For the redshift distributions of the fore-
ground and source galaxies, we assume the distribution in FORE-I and BACK-I, respectively (see Fig.
[£23). The dependence on scale is very weak and mostly in the non-linear clustering regime.

right column: Depicted is the over a range of 10" < 6, < 60' averaged wvalue of fi/5 for
Qm+Qa =1, T = Quh (Efstathiou, Bond & White 1993), s = 0.55 Q.0-°¢ (White, Efstathiou € Frenk
1993) and h = 0.7. All three curves for f1 are fairly well fitted by fi1 (Qm) = a + bQE,, namely
(a = —0.006,b = 0.067,c = 0.6), (—0.013,0.105,0.55), (—0.020,0.137,0.508) for foreground redshift dis-
tributions as in FORE-I, FORE-II and FORE-III, respectively. Fxcept for FORE-I, fo can be fitted
with the same generic function, namely (1.029,0.145,0.790) and (1.122,0.321,0.661) for FORE-II and
FORE-III respectively. FORE-I requires an additional term: fa (Qm) = 3.654 — 2.565 Q%097 4-0.027 Q2.
The deviation from a constant fi is in all three cases less than 1.5 percent only rising to 3.5 percent for
Qm < 0.1; for fo it is always lower than 1.5 percent.
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where <N"(03p)M§;(9ap)>, n +m = 2, in these equations have to be evaluated by Eqs. (BI4),
B1Y), BE2) and BE4), specifically for the redshift distributions of foreground and background
galaxies in the data and for a fiducial cosmological model assuming that galazies are not biased
with respect to the dark matter, i.e. b; = r; = 1. The values f; *(0ap) and f, (0ap) are
consequently the theoretical values of the uncalibrated b(,p) and r(6ap), respectively, for the
case that galaxies are not biased.

Importantly, it turns out (H02; van Waerbeke 1998) that the calibrations f; and fs vary only
slightly for realistic aperture radii 6,, within a fixed fiducial cosmological model. For examples,
see left column diagrams in Fig. L4l where f;/5(0ap) are plotted for three fiducial cosmological
models assuming the redshift distribution of FORE-I and BACK-I. The calibration factors show
very little variance with 6,,. Hence, a scale-dependence of the uncalibrated measurements
already indicates an real scale-dependence in the bias parameter without fixing the fiducial
cosmology.

We calculated the calibration factors f;/, for a range of spatially flat fiducial cosmologies,
Om + Q4 = 1.0, using the redshift distribution in our data set (right column in Fig. E4),
assuming constraints on og from cluster abundances and €2}, =~ 0. Predicting the power spectra
functions requires a model for the redshift evolution of the 3-D power spectrum. For that
purpose, a scale-invariant (n = 1, Harrison-Zel’dovich) spectrum of the (adiabatic) primordial
fluctuations is assumed. We use the fitting formula of Bardeen et al. (1986) for the transfer
function (CDM), and the Peacock and Dodds (1996) prescription for evolution in the non-linear
regime.

It becomes clear from Fig. EA4l that in particular the interpretation of the bias factor, b
(calibration f1), depends on €,. For the final calibration of the GaBoDS measurements we
assume as fiducial cosmological model 2, = 0.3,Q4 = 0.7,08 = 0.9,I' = 0.21,~ = 0.7, which
is in concordance with constraints from the CMB, weak lensing and the Lyman-« forest (cf.
Seljak et al. 2004; Tegmark et al. 2004).

4.3.3. Combining measurements from different fields
Signal average and variance

The whole data set taken into account for the analysis consists of 28 fields from the medium
and deep part of the GaBoDS. For each field, we compute the two-point correlation estimates
as in Sect. BZA and transform them according to the integrals Eqs. B2Z2)-B24]) to the
second-order aperture statistics for radii 0,p; € {1.18',3.45’,...,23.85'} (overall 11 linear bins).
For every individual field, j, we make 100 bootstrap samples of the foreground and background
object catalogues to estimate the statistical error of the measurements for

27 € {(N?(Bup,i)) » (N (Oap i) Map (Oap 5)) (M2, (0 2))} (4.4)

for the various aperture radii. The aperture moments x; from all fields are combined to one
final result by the weighted average
N .
_ > e xz(']) Wy
T; = T . (45)
> it Wi

As weight we use the bootstrapping variance of :L‘Z(-j ) in the individual fields, w; = 1/0? (ajg
This weighting scheme yields the minimum-variance average of the statistically independent

j))'
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variables xl(-j ). In the following results, the assigned lo-error bars Ax; of the combined x;

account for the cosmic variance which is estimated from the variance among the N, GaBoDS

fields:
Np

_ 1 0 _ =Y\
(Az;)* = NV, -1 Z (a:ij - xz) . (4.6)

j=1

Error covariance

To assess the goodness of our fiducial cosmological model and the redshift distribution esti-
mate of the sources we compute the reduced x? of the field averages of <M§p> with respect
to the theoretical model. This requires the knowledge of the covariances between the errors
in the different angular bins, not only the statistical variance inside a bin. We use the covari-
ance, C,gj) = <A(j)mkA(j)ml>, of the bootstrapping errors, AWz, in every individual field j to
estimate the correlation between the statistical errors of the estimates for different aperture
radii:

RY =c /ey . (4.7)

In a second step, we average the correlation matrices from the different fields yielding a com-
bined Ry = N%, Zj R,(jl). The final covariance is obtained by means of Cy; = R/ (Axy,)2(Axz;)?
with (Axzy)? from the cosmic variance error (EH). The resulting covariance matrix has the cos-
mic variance errors on the diagonal.

We evaluate the x? per degree of freedom n by

Nyins
1 _
2 E: T A -1 T 7
= N i (7 = 20) [C7 ] (o0 = B0) (48)

where #; denotes the theoretically expected value for the measurement z; and C~! the inverse
of the error covariance. Ny, is the number of aperture radii bins (here: 11).

4.4. Aperture statistics results

The combined measurements for (N?), (N M,,) and <Ma2p> can be found in Fig. and Fig.
ET respectively. According to the method described in Sect. B2l they are based upon the
two-point correlators w, () and &; the combined measurement of the last two is plotted in

Fig. E£4

4.4.1. Aperture number count dispersion

The aperture number count dispersion, <N 2>, is, except for the lowest angular bin, well de-
scribed by a power law for the angular clustering w (0) (Eq. B28]) with a slope of —0.8, see Fig.
A power-law behaviour with similar slopes is also observed in other surveys (e.g. Zehavi
et al. 2002). The galaxy clustering in FORE-I, a sample roughly comparable to the foreground
sample of HO2, is in agreement with H02. Furthermore, we clearly observe a dependence of the
clustering amplitude on the mean magnitude of the galaxies: the fainter the samples’ median
magnitude, the smaller the clustering. Note that <N 2> is insensitive to the integral constraint
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Figure 4.5.: Plots of the measured (NM.y) (left column: 1o errors) and (NZ,) (right column: 20
errors) for different aperture radii and magnitude bins for the foreground galaxies (top to bottom: FORE-
I, FORE-II and FORE-III). The theoretical curves assume concordance ACDM (Sect. [[.3.3), the redshift
distributions in Fig. [f. and the foreground galazies being unbiased with respect to the dark matter.
Deviations of the E-modes from the “theory” in the left column indicate a biased galaxy population
which is clearly observed. Note that we plotted also the E-modes for the deep and medium data set
separately. The B-modes are consistent with zero on a x%/n level of 0.87,0.98 and 2.68 for FORE-I,
FORE-II and FORE-III respectively. Deviations of the aperture number count dispersion (right) from
the theory also indicates a biased galaxy population on a particular scale. In the upper right panel, we
plotted the best fit w () = (0.115+£0.005) =7 to the measurement result for (N?) of H02, who studied
the same magnitude bin we as in FORE-I. Our measurement is roughly consistent with H02, but declines
a bit faster on larger scales preferring a power law which is a bit steeper; the same steeper slope is also
found in the two other bins (middle and lower panel in right column). Our best-fit parameters for a
power law w (0) = A 0° are 3 = —0.8 and A = 0.096,0.030,0.019 for FORE-I, FORE-II and FORE-III,
respectively.
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Figure 4.6.: Combined estimate, deep and medium set, of the two-point correlators £+ (beyond 6
arcsec) and (v, x) (Egs. and[ZZ9). Underlying the theoretical curves are the redshift distributions
in Fig. {24 and the fiducial cosmological model in Sect. 3.3 Note that the theoretical curve for the
galaxy-galaxy lensing signal assumes a galary population unbiased with respect to the dark matter.

which usually hampers the interpretation of angular clustering measurements (H02), so that
already for the investigation of the spatial clustering alone <N 2> is a very useful statistic. This
will be discussed in more detail in the following Sect.

4.4.2. Aperture mass dispersion

The aperture mass dispersion for the galaxy background sources is depicted in Fig. EE7 In
the first attempt for this measurement, we observed a very steep increase in the signal, both
E-mode and B-mode, below aperture radii of about 5’ in all fields. We traced this effect back
to the estimates for the shear-shear correlations, &4, which have a sharp peak for bins smaller
than 6 arcsec. It seems that this artificially high correlation in ellipticities of very close galaxies
(up to a value of about 0.4 for both £, and £_) is related to the data reduction (dri zzl e)
as it is not seen in data reprocessing currently performed by Marco Hetterscheidt (private
communication). In order to circumvent this problem, we start the binning of {4 from 6 arcsec
and reject all signal on smaller scales (see Fig. EL)).

The correlations between the statistical errors of <M§p> for both E-mode and B-mode signals
can be found in Fig. at the end of this chapter. The correlation matrices are comparable to
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Figure 4.7.: Aperture mass dispersion determined as weighted average over all considered fields (Sect.
[Z53). The theoretical curve assumes the concordance parameters stated in Sect. [[L3.4 Assuming
correlations of the statistical errors as in Fig. LI the data points yield x*/n = 0.37,0.66 (reduced) for
the E-mode and B-mode, respectively; the latter is assumed to be scattered about zero. We also plotted
the E-mode signals of the two data sets “medium” and “deep” separately.
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Figure 4.8.: Plot of measured &4 for all fields in the deep and medium deep GaBoDS. The shear
correlations of all fields rise below 6 arcsec to a level that is orders of magnitude larger than what is
expected by theory (&4 ~ 1075), probably hinting at a problem in the data reduction pipeline; the same
behaviour is observed for £_ (not plotted). We circumvent this problem by ignoring all correlations
smaller than 6 arcsec setting them to zero.
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the matrices found by means of Monte Carlo simulations (Fig. B4 and BTH). The data points
of the E-mode are consistent with the theoretical curve but are less scattered than the error
bars actually imply (x?/n = 0.37). This could mean that the cosmic variance estimated from
the signal variance between the fields overpredicts the true statistical error of the data points.
However, we conclude that the agreement is fair enough to make a reasonable calibration of
the bias parameters. The B-modes of (M2) are consistent with zero (x*/n = 0.66) which
implies that remaining systematics in the shear data are small.

4.4.3. Galaxy-matter cross-correlation

The cross-correlation between the N-maps and the M,,-maps is plotted in Fig. (left
column). The B-modes of the signal are all fairly consistent with zero (x2/n = 0.87,0.98,2.68)
—possibly with some remaining systematics in the faintest bin FORE-III. The correlation of
the statistical errors for the B-mode signal, used for x2/n, can be found in Fig. As to the
striking difference in the E-mode signal of (VM) between the deep and medium data set on
intermediate scales we note that the statistical errors are highly correlated over some arcmin,
especially in the intermediate range (see Fig. ELI0).

The data points (E-mode) are below the theoretical prediction for (N M,,) which is based on
a unbiased galaxy population. This already indicates that the (biasing) correlation parameter
differs from unity. On the largest and smallest scales considered in these measurements, the
data points for FORE-I become consistent with the theoretical curve.

4.4.4. Galaxy bias

The final result of our effort is comprised in Fig. EQ The bias parameters calculated from the
aperture statistics, Eqs. (BI3)), have been calibrated, and the aperture radii have been con-
verted into a typical physical scale based on the mean redshift of the foreground galaxies inside
the various magnitude bins (see figure caption). Over the investigated range of (comoving)
physical scales, between about 0.42h 'Mpc < r < 8.9 h ! Mpc, the bias factor stays remark-
ably constant, possibly rising on the smallest scales. Here the errors are largest, however.
Averaging the measurements for the bias over the range 4’ < 6,, < 18', weighting with the
cosmic variance error, yields b = 0.89 £+ 0.05,0.79 £+ 0.05,0.89 + 0.05 for FORE-I, FORE-II and
FORE-III, respectively. Galaxies are thus less clustered than the dark matter on that particu-
lar scales (anti-biased). The weighted average of r, the correlation factor, over the same range
as before is r = 0.8+0.1,0.8£0.1,0.5 £ 0.1 for FORE-I, FORE-II and FORE-III, respectively.
This means that on average, on these scales, the galaxy distribution is not perfectly correlated
to the dark matter distribution. We are going to discuss our results in the following section.

4.5. Discussion and conclusions

Observationally, the galaxy-dark matter bias can be probed by means of various methods, see
Sect. [LA Gravitational lensing provides a promising new method in this respect. It is special
because it allows for the first time to map the total matter content (mainly dark matter) with
a minimum of assumptions and independent from the galaxy distribution. Such a map can
be compared to the distribution of galaxies or special types of galaxies in order to investigate
the galaxy bias. In particular, correlations between galaxy and dark matter density become
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Figure 4.9.: The linear bias factor (top panel) and correlation factor (lower panel) for the magnitude
bins FORE-I, FORE-II and FORE-III (1o error bars for cosmic variance). The effective comoving
physical scale spanned by the aperture radii, 0,5, can be estimated by the mean redshift of the galazies in
the foreground magnitude bins: 2.66 h='Mpc x (0,p/10'), 3.71 h™'Mpc x (0,,/10") and 4.64 h~'Mpec x
(0ap/10") for FORE-I, FORE-II and FORE-III respectively.
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directly visible. For working out the galaxy-dark matter bias, older methods need as basis
assumptions regarding the lowest-order perturbation terms for structure growth, the peculiar
velocities of galaxies and their correlation to the dark matter density. Moreover, they often only
allow to measure the bias on large (linear) scales, & 8 h~!Mpc, whereas the non-linear regime is
also accessible with lensing. However, gravitational lensing has the disadvantage that it is not
equally sensitive at all redshifts. The background galaxies used for mapping the matter field
is most sensitive to matter fluctuations roughly half-way between z = 0 and the mean redshift
of the background. This defines a natural best-working regime for the method at a redshift
of about z & 0.5, mostly even a bit lower, considering the depth of current galaxy surveys.
It can be expected that the best-working regime will be shifted towards higher redshifts by
future space-based lensing surveys. Lensing observables are quite noisy so that for a good
signal-to-noise large survey areas are required.

In this chapter, we employed aperture statistics to quantify the relation between the dark
matter and galaxy density. The data used is the GaBoDS with restriction to fields having total
integration times larger than 7 ksec (the medium and deep set, overall about 10 deg?); this
allowed us to estimate the redshift distribution of the galaxies on the basis of three COMBO-17
fields (A901, AXAF/CDFS and S11) for which accurate photometric redshifts are available
(Fig. EE2). For all the other fields, only R-band magnitudes can be used to select galaxies.
For this selection, we made foreground galaxy samples by choosing galaxies from three R-
band magnitude bins that have increasingly higher median magnitudes. The sample FORE-I
is comparable to the foreground selection in H02. By means of the photometric redshifts of
the COMBO-17 fields we can translate the magnitude information into redshift information.
However, only as distribution for the whole sample. The fainter the bin gets, the broader the
redshift distribution becomes, while the mean redshift moves to larger values. Therefore, only
FORE-I has a rather sharp peak in redshift, while FORE-III stretches between redshifts of
about z = 0.1 and z =~ 0.9 giving almost equal weight to all redshifts. Hence, FORE-II and
FORE-III are averages over a wide range of redshifts. In order to get narrower distributions
in redshifts with the aim to reconstruct the redshift evolution of biasing, multi-colour surveys
are required.

The second-order aperture statistics are estimated from the angular clustering of the fore-
ground galaxies, the mean tangential ellipticity of background galaxies about foreground galax-
ies (galaxy-galaxy lensing) and the shear-shear correlations of background galaxies. Those two-
point correlators are then transformed into <N 2>, (NM,p) and <M§p> by numerical integration.
We tested the evaluation software against Monte Carlo simulated WFI fields, assuming an un-
biased galaxy population, and found that the software is working to at least a few percent
accuracy.

The B-modes of the aperture statistics (NM,p) and <M§p> are used as an indicator for
systematics in the PSF-corrected shapes of the background galaxies (Figs. EE7 and EEH); they
cannot be produced by gravitational lensing and should therefore be pure noise. Intrinsic
alignments or spatial clustering of the background source galaxies can give rise to B-modes
on small scales, though. We find that the B-modes are fairly consistent with zero, maybe
there are remaining systematics in the (INM,,) signal in FORE-IIL. The fit of a theoretical
<M32p> constructed from our fiducial cosmology and redshift distribution of source galaxies to
the measured <M§p> is an important test for the calibration of the bias parameter; <Ma2p> is
independent of the galaxy bias. Our data points are consistent with the fiducial cosmological
model on a level of x?/n = 0.37. We interpret the somewhat low value for x2/n as an indication
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that we may be overestimating the actual statistical errors of the data points but accept the
fiducial cosmological model and the estimated redshift distributions as sufficiently accurate for
OUr purposes.

The result of the galaxy bias measurement is plotted in Fig. Overall, the galaxy bias
factor and the correlation are smaller than unity. This means that galaxies are less clustered
than dark matter and that the correlation of the dark matter and galaxy distribution is not
perfect. A possible scale-dependence is indicated at small scales for the bias and correlation
factor, and at large scales for the correlation factor only. An anti-bias on the scales considered
here is in concordance with numerical simulations of dark matter structure formation (cf.
Jenkins et al. 1998), although a rise of the bias factor at about our largest scales —also a
theoretical prediction— is not visible in the data. Such a rise of the bias factor, or characteristic
“dip” in the functional form of the bias factor (see Fig. [LI]), is however observed by H02
and Pen et al. (2003) using the same or a similar lensing technique. By looking at the results
of HO2 —comparable to the FORE-I sample results— we notice that the rise of the bias factor
is just about to start at scales where our measurement stops, in particular if the statistical
uncertainties in HO2 are taken in to account. Therefore, it may be that we needed just slightly
larger aperture radii to find the predicted behaviour. This would be possible for adjacent fields
in the survey so that galaxies belonging to different fields could be correlated. As some fields
in GaBoDS are indeed close to each other, we intend to repeat the bias analysis for this subset
of fields in order to estimate the galaxy bias on even larger scales. For the linear correlation
parameter, we observe as HO2 a slight increase towards r ~ 1 in the last angular bin. However,
the statistical uncertainties are large. Comparing the average bias, b ~ 0.9, and correlation
factor, r ~ 0.8, of FORE-I to HO2 near the minimum of the bias “dip” we conclude that our
results are consistent.

Within the uncertainties of our measurement we do not see a difference in the biasing pa-
rameters between the three foreground bins. As the three different foreground bins represent
different median redshifts of the galaxies, we conclude that on the scales considered the redshift
dependence of the linear bias for 0.3 < z < 0.65 has to be smaller than Ab < 0.1 and Ar < 0.2
(20 confidence).

The figures for the correlation parameter —r is smaller than unity— show that the galaxies
on intermediate scales are either stochastically or non-linearly biased, or a mixture of both.
Discriminating between these two cases requires the additional measurement of the non-linear
stochastic bias parameter b or Op, Sect. To achieve this, using approaches similar to ours
where statistical moments of the joint PDF of matter and galaxies are measured, one needs to
invoke higher-order statistics (cumulants), see Appendix[A-4l As the currently ongoing research
is working on the three-point statistics of the aperture mass and the aperture number count
(e.g. Schneider & Watts 2005; Schneider, Kilbinger & Lombardi 2004; Schneider & Lombardi
2003; Jarvis et al. 2004) we can expect to be capable of such task quite soon.
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Figure 4.10.: top row: The correlation of the errors of <M§p> (Fig. ) as estimated by combining the
bootstrap covariances of all indiwidual fields (Sect. [f.3-3). The left panel depicts the correlation between
the E-mode errors of different aperture radii; the correlation, R, of the B-mode errors is plotted in the
right panel. The angular radius of the aperture, 0,p, increases per pizel from left to right and bottom
to top in the following equally spaced steps: 6., = 1'.18,3'.41,...,23'.85 (overall 11 linear bins); the
values on the diagonal correspond to the correlation of the error in the same bin and are consequently
R = 1. The grey scale is linearly stretching from R = —0.1 to R = 1.0; the contours denote R =
0.73,0.45,0.18,—0.1. Note that the contours crossing the diagonal in the lower left corner is a plot
artefact.

bottom row: Same as in the top row, but this time for the E-modes and B-modes (left to right) of
(NMa,p) in FORE-I. For FORE-II and FORE-III the correlation matrices look similar.
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CHAPTER D

Galaxy bias in COMBO-17

5.1. Introduction

A long-standing question is the origin of the diversity in physical properties of galaxies. Mor-
phologically, galaxies fall into two broad classes: early-type galaxies, with almost spheroidally
appearance and none or only very small disk component, and late-type galaxies, with a small
central bulge and a dominating stellar disk exhibiting different degrees of spiral structure.
Within the framework of the cold dark matter paradigm for cosmological structure formation,
galaxies grow and evolve by participating in a hierarchical merging process (e.g. Cole et al.
2000). The hierarchical model predicts that early-type galaxies —formed by mergers— are on av-
erage more massive, more luminous and have an older stellar population than late-type galaxies
because they have lost most of their gaseous component by at least one major merger event.
This is in rough agreement with observations. But doubts remain. It seems, for example, that
individual early-type galaxies formed relatively quickly at high redshift and not quite recently,
z ~ 1, as expected by hierarchical scenarios (see introduction of Bell et al. 2004 and references
therein), although alternative interpretation of the observations leading to this conclusion are
possible (van Dokkum & Franx 2001). An important source of information hinting to the
nature of late-type and early-type galaxies is their spatial distribution. Early-type, reddish,
galaxies are preferentially found in the cores of rich galaxy clusters where their fraction is about
90 percent, whereas outside of galaxy clusters about 70 percent of the field galaxies are bluish
late-type galaxies (e.g. Goto et al. 2003; Dressler et al. 1997; Postman & Geller 1984; Dressler
1980).

One traditional way to study the spatial distribution of galaxies has been to look at cor-
relations in the galaxy distribution, in particular the angular two-point correlation function
(e.g. Peebles 1980; Davis et al. 1977; Totsuji & Kihara 1969). This can be translated into
the correlations of the large-scale matter distribution if one knows the relation between matter
and galaxy distribution, which is commonly known as galaxy bias (e.g. Dekel & Lahav 1999).
In the local Universe, galaxies seem to be unbiased on large scales 2 10 A~ Mpc (Verde et al.
2002). This cannot be true, however, for all scales and all individual populations of galaxies.
Analyses revealed that galaxy clustering depends on the properties of the galaxy population
like morphology, colour, luminosity or spectral type, see Sect. [LZ4 for more details. Therefore,
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different galaxy populations are differently biased with respect to the total matter component
and with respect to each other. The detailed dependence of this relative bias on galaxy char-
acteristics, scale and redshift is a window of opportunity to learn more about the formation
and evolution history of galaxies. For example, the relative clustering and the galaxy-matter
bias can be interpreted in terms of a physical model (Zehavi et al. 2004; Seljak et al. 2004a).

The aim of this chapter is to measure the bias —the relative bias and bias with respect to dark
matter— of early-type and late-type galaxies as function of scale and redshift. For this purpose,
the COMBO-17 Survey (Wolf et al. 2001a) offers an unique opportunity. It provides the so-far
largest galaxy sample in the regime 0.2 < z < 1.1 covering an area of ~ 0.78 deg?, observed
in 5 broad-band and 12 narrow-band filters (c¢f. Wolf et al. 2004). Based on the photometry,
photometric redshifts of galaxies brighter than mgr < 24 mag have been derived within a few
percent accuracy as well as absolute rest-frame luminosities and colours. The survey has also
been designed to fit the requirements of gravitational lensing applications (Kleinheinrich et
al. 2004; Heymans et al. 2004; Brown et al. 2003; Gray et al. 2002). The coherent shear
distortions of images of COMBO-17 background galaxies can therefore be used to infer the total
matter distribution in the survey using the weak gravitational lensing technique (¢f. Gray et
al. 2002).

By correlating fluctuations of the matter density, encoded in the image shear distortions,
with fluctuations in the galaxy number density of a selected galaxy population, the weak lensing
technique has become a relatively new tool to study the galaxy-matter bias (e.g. Sheldon et
al. 2004; Seljak et al. 2004a; Pen et al. 2003; Hoekstra et al. 2002, 2001; McKay et al. 2001;
Wilson et al. 2001; Fisher et al. 2000). The COMBO-17 Survey allows one to apply the bias
analysis to galaxies from a narrow redshift interval searching for a possible redshift dependence.
Furthermore, one has the option to further subdivide the galaxy sample by making cuts using
the available photometric information. This is done in this chapter to distinguish between
a red and a blue galaxy population in the same way as Bell et al. (2004). Out to at least
z ~ 1, the distribution of galaxies in a U — V' vs. My colour-magnitude diagram (CMD) is
bimodal exhibiting a red and blue peak (Bell et al. 2004). The red mode is the well-known
colour-magnitude relation (CMR) of early-type galaxies. The standard interpretation of the
CMR is that more luminous early-type galaxies have more metals and appear therefore redder.
In order to make an approximate cut between early-types and late-types in the CMD a division
line along the CMR is defined. In adopting this division line about 80% of the selected red
galaxies have morphologies earlier than or equal Hubble type Sa (Bell et al. 2004 and references
therein), if z < 1.

The machinery that is applied here to study the matter-galaxy bias is the aperture statistics
(Hoekstra et al. 2002; van Waerbeke 1998; Schneider 1998). It is useful for analysing weak
lensing data and, in particular, to measure the linear stochastic galaxy bias (Hoekstra et al.
2002) as a function of scale. In order to have a compatible statistical quantity that quantifies
the relative bias between red and blue galaxies the formalism is slightly extended.

The structure of this chapter is as follows. In the following Sect. B2, the object and lens
catalogue and their selection criteria are explained. Thereafter in Sect. method details
including estimators and used aperture filter are summarised. Conclusions on the results for
the aperture statistics and galaxy bias, Sect. B4 are drawn in Sect.
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5.2. Galaxy catalogue selection

5.2.1. COMBO-17

The observations and data reduction of the COMBO-17 Survey is described in detail in Wolf et
al. (2001a) and Wolf et al. (2003). Overall the survey consists of four different, non-contiguous
fields observed in 17 optical ﬁlterﬂ, spanning a spectral range from 364 — 914 nm, with the
Wide Field Image (WFI) mounted on the MPG/ESO 2.2m telescope in La Silla, Chile. With a
WFTI field-of-view of about 33’ x 34" and 0”.238 pixel resolution the total survey area amounts
to approximately 1deg?. The four fields are A901, AXAF (or CDFS), S11 and SGP. For the
total exposure time and positions of the fields see Table Tl [the R-band images reduced with
the GaBoDS pipeline (Erben et al. 2005) are also part of the Garching-Bonn Deep Survey].

A901 was primarily chosen for a weak lensing analysis of the Abell 901a, Abell 901b and
Abell 902 supercluster (Gray et al. 2002). The AXAF field was selected because it contains the
Chandra Deep Field South previously studied in the X-ray band and several other wavebands.
SGP is in direction of the Galactic South Pole, whereas S11 was chosen randomly and, by
coincidence, partly overlaps with the Two Degree Field Galaxy Survey (2dFGS).

The fields were observed as sets of several single exposures with ten different telescope
pointings (dithering patterns) and co-added by the data reduction pipeline developed at the
MPIA, Heidelberg. The data reduction process includes bias subtraction, creation of a mosaic
image, flatfielding, super-flatfielding, removal of “cosmics”, defringing, an astrometric and
photometric calibration.

Galaxies were detected in the R-band frames using SExt r act or (Bertin & Arnouts 1996)
(12 contiguous pixels with S/N greater than 3 above the noise background level). The detected
objects are photometrically subdivided into three classes: stars, galaxies and quasars (AGN).
As no morphological information was used misidentifications of the objects are possible. For
example, double stars could be confused with galaxies or compact galaxies with quasars. Statis-
tical uncertainties of the measured total magnitudes (Vega normalised) are dmp ~ 0.01 mag,
dmpyv ~ 0.05 mag, 0y ~ 0.3 mag and values increasing from 6 ~ 0.03 mag (red end) to
0 ~ 0.2 mag (blue end) for the medium passband filters (Bell et al. 2004).

The photometric information has been used to derive for A901, AXAF and S11 photometric
redshifts of galaxies with mp < 24 mag, based on a set of galaxy spectrum templates (see
references in Wolf et al. 2004). The quality of the estimate depends primarily on the apparent
magnitude of the object (Wolf et al. 2001b). For bright galaxies, mr < 20 mag, the accuracy
is 0z ~ 0.01(1 4+ 2z). At median magnitudes, mpr ~ 22 mag, the accuracy is dz ~ 0.02(1 + z),
whereas for the faintest galaxies the photometric redshift has an accuracy of 6z < 0.05(1 + z).
The combined galaxy redshift distribution of all three fields is plotted in Fig. (curve for
data set BACK-I).

Based on photometry, rest-frame colours with accuracy dm ~ 0.1 mag and absolute lumi-
nosities with accuracies dm ~ 0.1 mag (0.2 mag) for redshifts z £ 0.5 (~ 0.3) were calculated.

Our object catalogue consists of galaxies from A901, AXAF and S11 with reliable photomet-
ric redshifts. Galaxies are only contained in the object catalogue if both spectral classification
and estimation of the photometric redshift has been successful. Therefore there is a certain
probability with which a galaxy of some absolute magnitude, My, redshift, z, and tem-
plate spectrum (SED) cannot be identified. This means that the comoving number density,

IThe filters include UBVRI and 12 medium-band filters.
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Table 5.1.: Number of galaxies for all redshift bins and survey fields. Only the median redshifts of the
redshift bins 0.2 < z < 0.4, 0.4 < 2 < 0.6, 0.6 < 2 < 0.8 and 0.8 < z < 1.0 are quoted. The quoted
fractions are red and blue galazies relative to the total number of galaxies in the corresponding redshift
bin. The statistical error on the last digit in the brackets is an estimate assuming Poisson errors for
the absolute galaxy numbers. The meaning of the notation is for example 0.22(1) = 0.22 £ 0.01. The
last column contains the number of source galaxies, with 21.5 < R < 24.5 mag, used for the lensing
analysis. The source galazies have a median redshift of (z) = 0.76.

Field  (z) | #RED Fraction[RED] | #BLUE Fraction[BLUE] | #Sources

A901 031 | 297 0.22(1) 1045 0.78(5) 22099
0.50 | 416 0.24(1) 1305 0.76(4)
0.70 | 413 0.17(1) 2046 0.83(4)
0.90 | 376 0.13(1) 2421 0.87(5)

AXAF 031 ] 118 0.16(2) 621 0.84(8) 21730
0.50 | 352 0.18(1) 1573 0.82(5)
0.70 | 433 0.16(1) 2323 0.84(4)
0.90 | 154 0.11(1) 1263 0.89(8)

S11 031 | 280 0.25(2) 843 0.75(5) 21256
0.50 | 418 0.21(1) 1552 0.79(4)
0.70 | 393 0.18(1) 1832 0.82(5)
0.90 | 367 0.14(1) 2334 0.86(5)

¢o(Miot, 2z, SED), of COMBO-17 galaxies is incomplete. The completeness of COMBO-17 has
been studied using extensive Monte Carlo simulations (Wolf et al. 2003) and has been found
to be a complex function of galaxy type, and redshift. Roughly, the completeness is about
90% for mp < 23 mag and about 50% near mp ~ 23.8 mag (blue, late-type galaxies) or near
mp ~ 23.5 mag (red, early-type galaxies).

5.2.2. Object catalogue of red and blue galaxies

We split the total object catalogue into four distinct redshift bins, namely a) 0.2 < z < 0.4,
b) 0.4 < 2 < 0.6, ¢) 0.6 <z < 0.8 and d) 0.8 < z < 1.0. The median redshifts of galaxies
belonging to a)-d) are (z) = 0.31,0.50,0.70,0.90, respectively. The sizes of the samples are
listed in Table B.11

The galaxy samples are subdivided further by applying a cut in the rest-frame U — V vs.
My — 5 logyg h colour magnitude diagram (Johnson filter) along the line

(U= V)(My,z) =1.15— 0.31 2 — 0.08(My — 5logyo h + 20) . (5.1)

Galaxies above (U — V))(My, z) are dubbed “red galaxies”, “blue galaxies” otherwise. This
model-independent, empirical cut has been chosen by Bell et al. (2004) to study red galaxies
near the galaxy red-sequence. It slices the bimodal distribution of galaxies in the colour-
magnitude diagram between the two modes. For the redshifts considered here, most of the red
galaxies selected this way are morphologically early-type with dominant old stellar populations
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Table 5.2.: Median rest-frame magnitudes and colours (Johnson filter) of different galazy samples for
different redshift bins with median redshift (z). Values in brackets denote the variance between the three
fields, e.g. +0.41(1) = 40.41 £ 0.01. The values for My assume h = 1.

RED BLUE ALL
Field ()| My) (U-V)| My) (U-V)| My) ({U-V)
A901 03] —1988  +135 | —1862 1046 | -—18.90  +0.65
05| —20.02  +1.30 | -1890  +038 | —19.16  +0.60
07| —2035  +1.18 | —1893 4020 | —19.13  +0.34
09| —1996  +1.13 | —1859  —0.01 ~18.73  40.10
AXAF 03] —2005  +125 | —1848  +034 | —1873  +0.49
05| —19.87  +1.24 | —1872  +027 | —18.92  +0.45
07| —-19.78  +1.10 | -1879  +0.19 | —18.94  +0.32
09| —-19.23  +1.06 | —1834  —0.03 | —1846  +0.11
S11 03| —19.91  +134 | —1856 4044 | —18.90  +0.66
05| —20.13  +1.29 | —19.02  +037 | —19.26  +0.57
07| —2006  +1.18 | —1880 4025 | —19.00  +0.39
09| —19.82  +1.11 ~1870  +0.09 | -18.83  +0.21
COMBINED 0.3 | —20.0(1) +1.31(1) | —18.55(1) +0.41(1) | —18.84(2) +0.60(2)
0.5 | —20.0(1) +1.28(2) | —18.88(4) +0.34(1) | —19.11(6) +0.54(1)
0.7 | —=20.1(2) +1.15(2) | —18.84(2) +0.21(1) | —19.02(2) +0.35(1)
0.9 | —19.7(4) +1.10(1) | —18.54(7) +0.02(1) | —18.67(7) +0.14(1)

(Bell et al. 2004 and references therein). As we took only galaxies with reliable photometric
redshifts, we have as further selection rule mr < 24 mag.

The distribution of our samples in a rest-frame CMD is plotted in Fig. Bl Obviously, in
the lowest redshift bin CMD (top row) galaxies populate faint regions in the diagram that
are excluded in the other redshift bins due to the survey flux-limit. We estimate that in
the three deeper redshift bins galaxies have roughly to be brighter than My — 5loggh ~
—17mag — (U — V) in order to be included (see steep black lines in Fig. Bl). To obtain
comparable galaxy samples at all redshifts we artificially apply this limit as cut to all redshift
bins. After applying this cut, the galaxy samples of all redshift bins have comparable absolute
My, luminosities. The average rest-frame luminosities and colours of the various galaxy samples
are compiled by Table .2l The red and blue sample both become bluer towards larger redshifts.
This is partly due to incompleteness effects and partly due to ageing of the star population
building up the galaxies (Bell et al. 2004).

The number of red and blue galaxies found after all cuts in the individual survey fields
are listed in Table Bl The AXAF field catches one’s eye as to the fraction of red galaxies.
Compared to the two other fields AXAF contains significantly fewer red galaxies. A possible
explanation is that the volume seen in the light-cone of AXAF is low in density and contains
only few galaxy clusters. In such a volume, the fraction of red galaxies is low according to
the morphology-density relation (e.g. Dressler et al. 1997). That there are only few galaxy
clusters in AXAF is supported by the fact that the total number of sources (21730) found in
AXAF is comparable to S11 and A901 despite the extremely long exposure time, t ~ 52 ksec.
For comparison, S11 and A901 have t ~ 18ksec and ¢ ~ 22 ksec (Table E.TI).
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Figure 5.1.: Rest-frame U-V colour vs. absolute magnitude in V-band, My —5log,y h, for COMBO-17
galazies inside redshift bins with median redshift (z) = 0.3,0.5,0.7,0.9 (upper to lower row) and for the
three fields A901, AXAF and S11 (left to right column). The galaxy sample is split into a red and blue
population by a division line (light-gray) along (U—V)(My, z) = 1.15—0.31 z—0.08(My —51log;, h+20).
The steep black line is an additional cut applied to obtain comparable magnitude-limits in all bins.
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S11 and A901 additionally exhibit a significant increase in the fraction of blue galaxies from
about 80% to 87% as one goes from low to high redshift. This trend remains even after
correction for incompleteness effects so that it is real (Bell et al. 2004). This increase is not
observed in AXAF.

For illustration, the estimator for the aperture number count, N in Eq. (BII), is used to
map the galaxy number density contrast of the red and blue sample for different redshift bins,
see Figs. and Note that the maps are noisy due to positional shot noise of the galaxies.
In order to measure the linear stochastic bias for each field and redshift bin, these maps —for a
wide range of aperture radii— will in the following be correlated with each other and with the
aperture mass maps.

5.2.3. Lensing catalogue

The three COMBO-17 fields as observed in R-band are included in the GaBoDS (Schirmer
et al. 2003); they have been reduced with the GaBoDS data reduction pipeline (Erben et al.
2005). For the lensing analysis here, the corresponding GaBoDS lens catalogues are used. The
general selection criteria and data reduction steps are listed in detail in Sect. EE2l For the final
lensing catalogue, galaxies with R-band magnitudes between 21.5 < R < 24.5 are chosen. We
allow for a deeper lensing catalogue as in Chapter Bl to increase the yield of source galaxies,
because we now have just ~ 0.78 deg? survey area. Indeed, a comparison of Table Bl and
Table BTl shows the the number of source galaxies has grown by a factor of about 1.36. With
the chosen limits in magnitude, however, we are no longer able to reliably estimate the redshift
distribution of the source galaxies using the photometric redshifts of COMBO-17 galaxies. But
the median redshift of the lensing catalogue can still be estimated using the median R-band
magnitude of the sample. This is found to be (mp) = 23.4. According to Brown et al. (2003)@
one has in the COMBO-17 Survey

(z) = 2.53 — 0.3427 (mg) + 0.0114 (mg)? , (5.2)

and as redshift distribution for the flux-limited sample

p(z)dz = L5 exp [— <£>1.5] dz, (5.3)

where z, = (z) /1.412. Together with our value for (mp) we obtain (z) = 0.76.

For illustration, the aperture mass distribution in the three COMBO-17 fields based on the
lensing catalogue is plotted in Fig B4l For this plot, the estimator (B8] has been used. For
A901, the Abell clusters A901a and A901b near the field centre clearly stick out. They have
been studied by Gray et al. (2001) in detail using a weak lensing mass reconstruction technique.
These maps in Fig. .4 are, however, very noisy so that not every peak is signiﬁcantﬁ

2The coefficients in the fitting formula Eq. (29) in Brown et al. (2003) have not enough digits to fit the
data points in their Table 2 with sufficient accuracy. To have a better accuracy, we fit a second-order
polynomial to the values in their Table 2, taking into account the statistical uncertainties of “zy,”
Thereby we found the formula quoted here.

3The significance of the M,,-maps can be estimated by the signal-to-noise ratio S/N = M,,/o(M.p),
where the noise, o(Map), is obtained using —extended by a weighting scheme— the estimator
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Figure 5.2.: Aperture number count maps of red and blue galazies belonging to different redshift bins
(upper two rows: (z) = 0.3, lower two rows: (z) = 0.5) and fields. The first and third row are
blue galaxies (contours: N € {0,0.1,0.2,...,0.5}), second and forth row are red galazies (contours:
N € {0,0.5,1.0,...,4}). The aperture radius of 3'.8 corresponds to comoving scales of 0.9 h~Mpc
(top) and 1.5 h~ Mpc (bottom). The fields have a size of 22" x 21" (cropped).
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Figure 5.3.: As in Fig. [ except that the redshift bins are now (z) = 0.7 (two top rows) and (z) = 0.9
(two bottom rows). The aperture radius 3'.8 corresponds to effective comoving scales of 1.9 h~*Mpc and
2.3 h~'Mpc, respectively.
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Figure 5.4.: Aperture mass maps (upper row, contours M,, = 0.0,0.1,0.2,0.3,0.4) and signal-to-noise
maps (lower row, contours S/N =0,1,2,3,4) of the aperture mass of the three COMBO 17 fields A901,
AXAF and S11 (left to right). The aperture radius is 3'.8, the aperture filter a polynomial filter, Eq.
W@Q). The fields have a size of 22" x 21" (cropped,).

(Kruse & Schneider 1999; Schneider 1996)

-1

Ny, Ny,
U(Map)(gvoap) = g lz wi] Z[q(I@ - é’|/9ap)]2wi2 lei? (5.4)

where Ny, is the number of galaxies with positions g ; within the aperture, g and 0ap the aperture
centre and radius, respectively. w; are the statistical weights of the individual galaxies used for the
M,p-maps, and €; denotes the complex ellipticities of the source galaxies. The vectors 6 ; denote the
galaxy positions and o, the dispersion of the galaxy ellipticities. Similarly, the significance of the
aperture number count maps may be worked out using as (shot) noise map S/N = N/o(N):

—1

N¢ N¢
o(N)(E, Oap) = [Z w] > (185 = 61/0up)12 w3 (5:5)

where Nt is the number of foreground galaxies inside the aperture, and w; are statistical weights
—usually w; = 1— of the foreground galaxies.
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5.2.4. Merging of object and lensing catalogues

As the object catalogues with red and blue galaxies are the output from a different data
reduction pipeline (MPIA Heidelberg, COMBO-17) than the lens catalogues (IAEF Bonn,
GaBoDS), the spatial pixel coordinate systems are different. In particular, the complex galaxy
ellipticities in the GaBoDS lens catalogue are relative to a coordinate system different than
COMBO-17. We therefore have to either transform the GaBoDS lens catalogue positions (and
ellipticities) into the COMBO-17 coordinate frame or vice versa. We have chosen the second
option by performing the following steps. Galaxy positions in GaBoDS and COMBO-17 are,
besides from their specific pixel coordinates, also given in equatorial coordinates based on
the astrometry in the data reduction pipelines. First, by fitting a fifth-order polynomial as
a function of the equatorial coordinates —a and §— to the pixel coordinates = and y of the
GaBoDS galaxies,

z(a,0) = Z Cnm@" 0", y(o,0) = Z dpma 0™ (5.6)

n4+m<5 n+m<5

with coefficients ¢, and d,,,, we find the transformations, z(«, d) and y(«, d), that translate
between equatorial and GaBoDS pixel coordinates (see Appendix [AZ2] for details). Second, the
transformations z(«,d) and y(«,d) are then employed to transform equatorial coordinates of
COMBO-17 galaxies to GaBoDS pixel coordinates.

5.3. Method details

5.3.1. Linear stochastic galaxy bias

The technique applied in this chapter to study the galaxy clustering and the linear stochastic
bias is the same as in the foregoing Chapter Bl Sect. EE3, and Chapter Bl Sect. B2 We refer
the reader to these sections for details. The program codes performing the measurements on
the data were validated using mock catalogues described in Chapter Bl

5.3.2. Estimation of the aperture statistics’ errors

A small difference to the methodology of the foregoing chapter is, however, in the way how we
estimate the errors of our measurements. Analogous to the method described in Sect. EE33] we
combine the measurements from the three fields weighted with the statistical error, A:c?, which
are estimated by bootstrap resampling (100 times) of the data in every field i. The expression
x has to be understood in this context as a placeholder for <N 2>, (N M) or <M32p> which are
estimated for each field. The bootstrapping procedure estimates for every individual field the
statistical error of x due to the positional shot noise of the galaxies and the intrinsic ellipticity
distribution of the source galaxies. As we have in total only three fields, N, = 3, we take as
total error of the combined value ([EZ0)) the combined statistical error

Np -1

Azx? = Z 1/Ax? (5.7)

i=1

instead of the field-to-field variance (H) of x. In general, this underestimates the actual error
because the cosmic variance —the variance in the measurement due to observing different parts
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Figure 5.5.: Calibration factors, Eqs. {£.3), for the bias estimators {ZI13) applied to our four redshift
bins. The median redshifts of the bins are quoted. The calibration factors assume a spatially flat ACDM
cosmology and adiabatic density fluctuations for the dark matter. The shape parameter, T, assumes a
universe with negligible baryon density, 0, < Qun, and og is constrained by the observed abundance
of galazy clusters. See text for more details. The curves for fi1 are reasonably well fitted by f(Qm) =
a + b0, with (a = —0.005,b = 0.0485, ¢ = 0.580), (—0.009,0.0633,0.510), (—0.010,0.0722,0.496) and
(—0.010,0.0777,0.503) for (z) = 0.31,0.5,0.7,0.9, respectively.

of the Universe— is not contained in Az?. We changed the way of estimating the errors of
our measurements compared to GaBoDS because the field-to-field variance between just three
fields gives sometimes very small, unreliable errorbars. By comparing the combined statistical
error, Eq. (&), and the cosmic variance error, Eq. (0, in the GaBoDS data analysis we
found the cosmic variance error is usually larger by a factor varying between 1 — 2. Therefore,
the errors quoted in this chapter are lower limits of the lo-variance; the true error including
cosmic variance may be larger by up to a factor of roughly 2.

5.3.3. Aperture filter functions

As radial weight for the convergence and galaxy density contrast inside apertures the polyno-
mial filter ([@JJ) is used. The auxiliary functions 74 () and F'(z) required for the transformation
from two-point correlators to the aperture statistics are summarised by Eqs. [B81). The effec-
tive physical scale, in comoving coordinates, that is probed by an aperture with radius 6, is
approximately fi(w)0,, where w corresponds to the median comoving distance of the analysed
galaxy sample. This relation is used in the following to estimate the physical scale for which
bias parameters are measured.

5.3.4. Estimators for galaxy bias and their calibration

As explained in Sect. EE32 the estimators for the linear stochastic bias parameters, quantifying
the difference between the galaxy and dark matter distribution, need calibration factors, fi 2,
that depend on the redshift distribution of the galaxies and the fiducial cosmological model.
They are required because matter inhomogeneities contributing to M, have in general a dif-
ferent distribution in redshift than galaxies contributing to N. Fig. is a plot of fi/p for
the four chosen redshift bins as a function of the matter density parameter €1, assuming the
galaxy redshift distribution in COMBO-17, a spatially flat fiducial cosmology, Q. + Qx = 1,
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with adiabatic CDM density fluctuations (Bardeen et al. 1986), h = 0.7 and a primordial
power law index of n = 1. Furthermore, we use for the shape parameter I' = Q,,h (Efstathiou,
Bond & White 1993) and for the power spectrum normalisation og = 0.55 .90 (White,
Efstathiou & Frenk 1993). The following results are calibrated assuming €, = 0.3 but can
be rescaled to a different matter density according to Fig. For example, the galaxy bias
“increases” for 2, > 0.3 and “decreases” in the opposite case.

5.3.5. Estimating relative galaxy bias

The aperture statistics in Sect. is extended here to also quantify the relative bias between
two galaxy populations, in this case the relative bias between red and blue galaxies. The linear
stochastic bias, Eq. (C449]), between two different galaxy populations can be defined in analogy

to Eq. (B13)

_ < re Oa >
e ol 9

red (Qap) Nblue ( ap )>

\/< red Oap)>< blue( ap)> |

where Nieq and Npjye are the aperture number count maps of red and blue galaxies. In difference
o (BI3) no further calibration is necessary if both galaxy populations have the same selection
probability in comoving radial distance; this is assumed in the following.

Chapter Bl discusses two estimator approaches for <N "M;’;,), n + m = 2, required for a
measurement of the dark matter-galaxy bias. One approach is based on placing apertures into
the field, the other approach is based on two-point correlation functions that are estimated from
pairs of galaxies. Both estimator approaches can be extended to also estimate the aperture
number count correlation

Trel (eap )

(N1 (Bap) Na (0ap)) = 270 /0 s s P2 (3) [T (s00p)] (5.9)

where the integral kernel I(x) is defined in Eq. (BI4). Here pi? (s) corresponds to the
cross-correlation power spectrum of the number densities of two galaxy populations; for an
analytical expression of P see Eq. BX9).

In the previous chapters, we have come to the conclusion that the estimator approach based
on two-point correlation functions is most robust against gaps in the data field. Therefore, we
employ the same technique here. For this task, we require the angular correlation between two
galaxy populations, thus

* dss

o P () Jo (s0) (5.10)

wiz (0) = (dny (x + 0) dny (0)) = /0

where dn; and dns are the number density contrasts of the galaxies on the sky. In the same way
as for (N?), Sect. BZ4] we can invert (EI0) with respect to P and insert the expression

for P2 into (B9). This results in

(N} () No (Bap)) = /0 Y Az w (10) Ty (x) - (5.11)
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The auxiliary function T4 (z) is defined in Eq. (B23)). Therefore, we can find (IN;N2) by
integration over the angular cross-correlation wy2(6). As practical estimator for wi2(0) we use:

g (0) = DDz _ Difte ¥ DoRy (5.12)
R1Ry R1Ry

This is a generalisation of W(#), Eq. (B28), which is used in this thesis to estimate the angular
auto-correlation function of galaxies. This notation has to be understood in the following way:
D1 and D- are catalogues of galaxy positions of two different samples. The mock catalogues
R1 and Ry are obtained from D and Ds, respectively, by randomising the positions of the
galaxies taking into account the geometry of the fields. In the next step, the number of pairs
of galaxies with distances between 6 and 6 + §6 are counted. The number of pairs between
catalogue Dy and Dy is denoted by Dy Dy. Similarly, D1 Ry, DyRq and Ry Ry are the number
of pairs between the other possible combinations of catalogues. In our analysis, we repeat this
procedure 25 times and take the average of all iterautionsﬂg

5.3.6. Clustering correlation function

Here we outline how the aperture number count dispersion can be used to estimate the angular
clustering correlation of galaxies without the need for knowing the so-called integral constraint.
This will be needed for comparison of our intermediate results to the literature.

The two-point angular correlation function w(f) is commonly defined as

dP =72 [1 + w(#)]dQ.dQs , (5.14)

where 7 is the mean number density of galaxies on the sky, dP the excess probability compared
with a random distribution of observing two galaxies within two solid angles d€2; and df2s
separated by the distance #. In an estimate of w(f), e.g. w(0) in Eq. ([B28), there is always
an uncertainty about the mean galaxy density n which is the larger the smaller the area of
the field under consideration. This introduces a bias in @w(#), known as the integral constraint
(Groth & Peebles 1977), that systematically reduces, (&) = w — C, the angular correlation by

a constant value

1
C= Q2/d291d292w(\91—92\) (5.15)

4The estimator approach involving placing apertures is quoted here for the sake of completeness.
Similar to the estimator N2 (4, 0ap), Eq. (BI0), we define an estimator for (N7N2) that is obtained
for one single aperture
N N@

o) Z Z u(l)u , (5.13)

NiNa (6, 0,p) = N“)N

where Nf(l) and Nf(z) are the numbers of galaxies of two distinct populations inside the aperture.
The aperture centre is placed at § and has the radius Bap. The filter values ugl), ugz) are defined as in
Chapter B, u; = u(|§1 — 9_)|/9ap)7 but are here restricted to the positions of either galaxy population.
Similar to the estimator K/'\?, Nf(i) denotes the mean number of galaxies inside the aperture, thus
N @ 7r92 () Where ﬁgi) is the mean galaxy number density. By averaging over many positions

g, one obtalnb a combined, final estimate for (N1 Ng).
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where  is the area of the field from which w(#) is estimated

In this and the foregoing chapter, the angular correlation is used to estimate the dispersion
of the galaxy aperture number count by integrating over w(6), Eq. ([B24]). As pointed out by
Hoekstra et al. (2002) <N 2> is independent of the integral constraint when the aperture filter
u(zx) is compensated because

/ deaxCTy(x C/ deaTi(z)=0. (5.16)
0

Therefore the estimator bias C' does not make any contribution to <N 2> and (N1N2). This
makes the aperture statistics with compensated filter a convenient tool to study galaxy clus-
tering.

Traditionally, however, galaxy clustering is studied using w(#). For a comparison of our
results for the two-point statistics of galaxy clustering in COMBO-17 with the literature it
would be convenient to have w(f) cleaned from the integral constraint. Already from early
studies on galaxy clustering (e.g. Davis & Peebles 1983) up to recent studies (Norberg et al.
2001; Zehavi et al. 2002) it is known that w(#) is close to a power law over many scales up to
~ 10 — 20h"1Mpc (Zehavi et al. 2004 and references therein). The scales considered here are
below ~ 10h~! Mpc so that we can assume to good accuracy that

w(0) = A, <%>_5 , (5.17)

where A, and § are the clustering amplitude at 1’ and the clustering power law index, respec-
tively. Assuming this power law we can calculate the aperture number count dispersion for our
polynomial aperture filter (see Eqs. BT for T, (x))

2 -
<N2>(9):/0 dzzw(0) Ty (z) = £(5) A, (?) , (5.18)

where the following definition has been used (obtained by Mat hemat i caﬁ)

F(5) = —93+0 &

25
r(359)
30 900 151“(%) B 30<(2+5)\F_W> . 1160T(352) N
245 146 JRI(3+ D) (2+06)°/7 JrT(A+9)
5+6)
900<(4+5)\f— T D) > ~ 1508T(2) N 1056 T(%2) 2881 (HF2) 5.19)
(4+06)* V7 VLG +4§)  Val(6+5) Val(T+3))

Thus, <N 2> (0) obeys the same power law as w(f) just with a different amplitude, but inde-
pendent of the integral constraint. Note that the same holds for (N7Nz) (6). In the regime
0 € [0,1.6], the somewhat bulky function f(J) can be approximated by

£(8) = 0.0051 655 4 0.2769 632° + 0.2838 6% (5.20)

5The integral constraint is the expected dispersion of the mean galaxy number density contrast inside
Q in excess of the dispersion due to shot noise, divided by 2.
SWolfram Research: htt p: // www. wol f ram com
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Table 5.3.: Assuming a shifted power law, w() = A, 07° + const, for the spatial clustering of the
galazies, the clustering amplitude at 0 = 1', A.,, and the slope, §, can be determined from <N2>. Upper
half of table: summary of results obtained this way considering values for <N2> out of 6 € [0.6,20']
for red and blue galazies and the combined data set for different median redshifts, (z). The quoted values
of X?/n assume uncorrelated errors. Lower half of table: the fit for w(6) has been transformed into
the 3D-galazy clustering function &(r) = (r/ro)~" using Limber’s equation (Qm = 0.3, Qp =0.7). The
clustering length ro is in units of h~'Mpc; Eivpe denotes £(r) at a comoving length of r = 1 h~!Mpe.
The numbers in brackets are the statistical errors of the last significant digit. e.g. 0.12(1) = 0.124+0.01.

ALL RED BLUE
(z) | Ao §  X*n | A, s X2/n | As 5§ xX*/n
0.31 | 0.12(1) 0.82(4) 0.5 | 050(7) 0.85(8) 1.0 |[0.09(3) 0.7(2) 1.0
0.50 | 0.14(2) 0.84(5) 2.6 | 0.21(6) 0.96(9) 3.7 | 0.11(3) 0.7(1) 3.0
0.70 | 0.11(2) 0.70(6) 25 | 0.37(8) 0.93(6) 2.5 |0.07(2) 0.7(1) 2.1
0.90 | 0.06(2) 0.74(6) 1.6 | 0.25(6) 1.04(7) 15 |0.04(1) 08(1) 1.6
<Z> T0 i glMpc To Y glMpc To Y flMpc
031 | 3(1) 1.82(4) 5(4) | 5(2) 1.85(8) 21(10) | 2.3(8) 1.7(2) 4(3)
050 | 3(1)  1.84(5) 8(4) | 5(1) 1.96(9) 28(15) | 3.0(9) L.7(1)  6(4)
0.70 | 3(1)  1.70(6) 7(4) | 5(2) 1.93(6) 24(14) | 2.4(8) L.7(1) 4(3)
0.00 | 2(1) 1.74(6) 4(3) | 4(1)  2.04(7) 18(11) | L.7(6) 1.8(1) 3(2)

within a few percent accuracy, which covers the commonly observed range of values for the
power law index. Based on this notion we estimate in the following the clustering amplitude,

Ay, and the index, §, of w(f) by fitting a power law to ]ﬁ(@) = A, (%) * and by using the
transformation A, = A/ /f(9).

5.4. Results and discussion

5.4.1. Aperture number count dispersion

The aperture number count dispersion for the red, blue and the combined data set is plotted
in Fig. B8l and the best-fit power-law parameters are summarised by Table How the clus-
tering amplitude and slope are derived from the aperture number count dispersion is described
in Sect. All measurements are reasonably well fitted by a power law over the whole
observed range. Clearly visible in Fig. B0l is that the two-point correlations of the galaxy sets
are different compared to the correlation function expected if galaxies trace the dark matter
distribution (solid line). This suggests that there are two regions in the observed range 6 < 20':
one region at small scales where all galaxies together are more clustered than dark matter and
a region on larger scales where galaxies are less clustered than the dark matter.
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Figure 5.6.: Dispersion of the aperture number count, <N2>, for red, blue galaxies and the complete
data set. The straight lines are the best-fitting power laws to the measurements. “DM” denotes the
theoretical dispersion <N 2> for galaxies unbiased to the dark matter assuming concordance ACDM. For
redshift bins in increasing order, apertures with radii 10" correspond to an effective comoving physical
scale of 2.43 h~'Mpc, 3.85 h~'Mpc, 5.13h~'Mpc and 6.17 h~'Mpc for the smallest to largest redshift
bins respectively.
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Comparison with earlier studies

In the following, we would like to compare the best-fit parameters A, and §, thus clustering
amplitude at 1’ and slope respectively, to the results of other papers. Since the data sam-
ple selections between different surveys are in general not equal, we can only make a crude
comparison to other results.

In the literature, it is common to quote galaxy clustering in terms of the three-dimensional

two-point correlation function
-
r
£(r) = <_> , (5.21)

To

where r is the comoving distance of two galaxies and ry the clustering length, all in units of
h~'Mpc. In order to be able to compare our measurements for the clustering of galaxies to
these papers we transform w(f) to £(r) by the following procedure. The projected angular
clustering of galaxies, w(#), is related to £(r) by means of Limber’s equation (c¢f. Hildebrandt
et al. 2005),
o o
w(f) = / dwp2(w)/ dAw &(+/(00)? + Aw?) (5.22)
0 —00
in which w and Aw are the mean and difference of the comoving distances of two galaxies seen
with angular separation € on the sky. p(w) is the PDF of the galaxies in comoving distance.
According to the Limber equation, a power law £(r) results in a power law w(6), Eq. (B&I1),

with
W= A I'(v/2)(2—7) (1—a/b)? ¥
07 T P T (v/2 — 1/2) 1= (a/b)2—7

where v = § + 1, and A,.;qq is the amplitude of w(f) at a scale of one radian. This formula
assumes that galaxies contributing to w(f) have a flat distribution within the comoving radial
distance interval a < w < b; this is roughly the case for our narrow redshift bins. We employed
this equation for rg to convert the measurements for A, and §, Sect. B30, into 7.

(5.23)

Typical values for the clustering of galaxies at low redshifts are rg = 4 — 6 A~ 'Mpc and
v =1.6 —1.9 (¢f. Hawkins et al. 2003; Norberg et al. 2002; Zehavi et al. 2001 and references
therein). Compared to these values our results are consistent within 1o statistical uncertainty,
although we seem to have somewhat lower values for rg. Hoekstra et al. (2002) quote a value of
A, = 0.115+0.005 for their foreground galaxy sample selected by 19.5 < R < 21.5, (z) = 0.35,
from the RCS. The redshift distribution of this sample is roughly comparable to the lowest
COMBO-17 redshift bin (0.2 < z < 0.4, see distribution of FORE-I in Fig. EEZ). Our value of
A, =0.12 £0.01 is thus in agreement with Hoekstra et al.

Subdividing the galaxy sample of COMBO-17 into red and blue galaxies yields different
clustering properties: red galaxies are more strongly, ro ~ 5h*Mpc and v ~ 0.9, clustered
than blue galaxies, rg ~ 2.5h"'Mpc and v ~ 0.7. At low redshifts, other authors obtain
similar results (e.g. Zehavi et al. 2004; Budavari et al. 2003; Madgwick et al. 2003; Norberg
et al. 2002; Shepherd et al. 2001), in detail depending on how the samples are selected, i.e.
spectroscopically, morphologically or by colour. Again, our values for ry are somewhat lower
than the values of other authors, whereas the values for + are in good agreement.

We now turn to the redshift dependence of clustering. There are not many papers on the
redshift evolution of galaxy clustering to compare with (Phleps & Meisenheimer 2003; Wilson
2003; Firth et al. 2002; Shepherd et al. 2001; Carlberg et al. 2000b; Le Févre et al. 1996).
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Our observation is that the amplitude A, for all galaxies is a decreasing function with median
redshift. If translated into the three-dimensional comoving clustering function, £(r), assuming
Qm = 0.3 and Q) = 0.7, however, the results are consistent with a non-evolution of ry and
within the statistical errors. For the complete galaxy sample, we find 7o = (34 1) A~ 'Mpc and
v = 1.84+0.1 over the whole redshift range. Carlberg et al. (2000b) and Shepherd et al. (2001)
measured in CNOC2 (median redshift (z) ~ 0.4) a correlation length of ry = (4.940.1) h~Mpc
for redshifts between 0 < z < 0.65 which is somewhat larger than our value for ry. Note,
however, that the authors assume a fiducial cosmology of Q,,, = 0.2 and 25, = 0 which increases
ro slightly. Using the data of the Las Campas IR Survey, Firth et al. (2002) found that the
value for A, decreases from ~ (.12 down to ~ 0.07 for a galaxy sample with median redshift
(z) ~ 04, 18 < H < 19, to a sample with median redshift (z) ~ 0.6, 19.5 < H < 0.5,
respectively. This is close to our observations if one considers that fainter magnitude bins
broaden the redshift distribution, whereas our samples have narrow distributions in redshift.
Phleps & Meisenheimer (2003) investigated the clustering of galaxies in the Calar Alto Deep
Imaging Survey (CADIS) up to redshifts z = 1. This is a range comparable to our work, albeit
the mean redshift of COMBO-17 is with (z) = 0.86 (Brown et al. 2002) clearly deeper than
in CADIS, (z) ~ 0.6. Although we are in agreement with their clustering amplitude for the
total galaxy sample at the lower redshifts, we probably —the statistical uncertainties are large—
disagree on the strong evolution of &1y observed in CADIS.

As in the low-redshift Universe the clustering of galaxies at higher redshifts also depends
on colour. We find for the whole redshift range ro = 4 — 5 'Mpc and v = 1.8 — 2.0,
ro = 2 — 3h !Mpc and v ~ 1.7 for the red and blue galaxy sample, respectively. This
allows at most only a moderate evolution with redshift. Shepherd et al. (2001) find for
the comoving correlation length an almost linear increase with redshift for the red and blue
sample in CNOC2 which is not observed here. This increase, however, may be due to SED
misclassifications at larger redshifts, as is pointed out by the authors themselves. In another
paper by Phleps & Meisenheimer (2003), the authors quote slopes for their early-type and
late-type sample that are smaller than ours, namely v ~ 1.5 and v ~ 1.7 for late-type and
early-types, respectively. Moreover, they find, in contrast to Shepherd et al., in their data a
decrease in clustering amplitude, from {ivpe = 15 £ 1 at 2z ~ 0.3 to {ivpe = 9J_r§ at z ~ 0.9, of
the early-type galaxies towards higher redshifts which appears to be in conflict with our data.
Independent of whether there is an evolution of the clustering of red and blue galaxies or not,
we agree with Shepherd et al. and Phleps & Meisenheimer on the statement that red and blue
galaxies are biased with respect to each other up to redshift z ~ 1. This disagrees with Le
Févre et al. (1996) who found that in the Canadian-France Redshift Survey at high redshifts,
0.5 < z < 0.8, the clustering between red and blue galaxies (spectroscopically selected) on
comoving scales 100h 'kpc < r < 2h~'Mpc is indistinguishable, which would suggest an
evolution of their relative bias.

Finally, we compare our results to Wilson (2003) who studied the clustering evolution of red
L.-galaxies in the UHSK Survey. The galaxy sample was selected on the basisof acutina V-1
vs. I diagram taking only galaxies brighter than M, + 1. His observed correlation amplitudes
are A, ~ 0.44,0.28,0.34,0.52 for median redshifts of (z) = 0.3,0.5,0.7,0.9, respectively, see his
Table 9. Note that we obtained these values for A, by averaging over three adjacent redshift
bins in his Table 9 to account for the fact that our redshift bins are wider (Az = 0.2 instead
of Az = 0.1). Except for the highest redshift our results for the clustering of the red galaxy
sample are consistent with these measurements.
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Table 5.4.: Parameters of the best-fitting power-law (v) (6) = A¢ (0/1)7° to measured galazy-galazy
lensing signal. Lens galaxy samples are binned in redshift and colour (Fig. [Z8). For the fit only data
points within 6 € [0./4,10'] are taken into account. “SIS” denotes a fized power-law slope, namely 6 =1,
which corresponds to the shear profile about an overdensity peak with singular isothermal sphere density
profile. “x” indicates that the fitting algorithm did not converge. “x?/n” denotes the residual scatter
per degree of freedom for statistically independent data points.

ALL RED BLUE
(z) | Ae s XP/n | A §  XP/n| A 5 xX*/n
0.3 | 0.003(2) 1.7(9) 1.61 | 0.008(2) 1.5(7) 0.89 | 0.002(2) 2(2) 1.40
0.3 | 0.003(2) SIS 1.57 | 0.007(2) SIS 0.92 | 0.002(2) SIS 1.30
0.5 | 0.001(1) SIS 1.20 | 0.002(2) SIS 1.30 X X X
0.7 X X X 0.005(2) 1.2(8) 1.09 X X X
0.7 | 0.001(1) SIS 1.20 | 0.005(2) SIS 0.96 X X X
0.9 X X X X X X X X X

We conclude, that at low redshift our results are in good agreement with other surveys. At
the high redshifts, however, there are both discrepancies and consistencies with other surveys.
This demonstrates that inferences on the clustering of galaxies at high redshift are probably
still hampered by not fully understood selection effects.

5.4.2. Galaxy-Galaxy lensing

The measured cross-correlation between aperture number count and aperture mass for the red
and blue galaxy sample is plotted in Fig. 7l We note that the B-mode of (NM,,) —an
indicator for remaining statistical noise and systematics— is consistent with zero. Probably
due to the limited survey area and the small number of galaxies in each redshift bin there is
almost no significant detection above the noise background (B-mode, right panels) except at
the smallest scales.

The solid lines in the left panels of Fig. B indicate the signal one would expect if galaxies
perfectly traced mass given our redshift distributions of lens, source galaxies and concordance
ACDM as fiducial cosmological model. As we already know from the last chapter (Fig. EH)
the actual signal for the complete galaxy sample is, except for the smallest scales below about
3/, actually even lower.

Only for the red galaxy sample on scales smaller than ~ 3’ there are detections on a level
of 10 — 20 above the noise level, which is not visible in the blue galaxy sample. This signal
is particularly strong for the lowest redshift bin where we expect the strongest galaxy-galaxy
lensing signal for source galaxies with (z) = 0.76.

Comparison with earlier studies

In order to compare our results to other studies we go one step back and look at the mean
tangential shear about the lens galaxies, (), which is used to estimate (NM,p) (Sect. BZZ4).
The mean tangential shear is a frequently used quantity to analyse the galaxy-dark matter
correlation (c¢f. Seljak et al. 2004b; Sheldon et al. 2004; Kleinheinrich et al. 2004; Hoekstra
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Figure 5.7.: Cross-correlation between aperture number count of galaxies and aperture mass map for
red galazies (top) and blue galazies (bottom) for four redshift bins. The signals’ E-modes are in the
left column, B-modes in the right column. The lines are the theoretically expected signal for galazies
being unbiased with respect to the dark matter assuming concordance ACDM and a median source galazxy
redshift of (z) = 0.76. The only significant signals detected with respect to the residual background noise
(B-mode) are for red galazies on scales smaller than ~ 3'.
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Figure 5.8.: Mean tangential shear about lens galazies binned in redshift and colour. The solid lines
are best-fit power-laws to the data points; they are only present if sensible fits are possible. The best-fit
parameters can be found in Table. [54}

et al. 2003; Guzik & Seljak 2001; McKay et al. 2001; Fisher et al. 2000; Hudson et al. 1998;
Brainerd et al. 1996). Our measurements for (v;) are shown in Fig. Where possible we
fit a power law to the data points. The best-fit parameters can be found in Table B4l

Kleinheinrich (2003) and Kleinheinrich et al. (2004) already studied galaxy-galaxy lensing
in COMBO-17. We do not want to repeat the detailed analysis of Kleinheinrich et al. (2004)
for the sanity check in this section. Instead, we consider only the galaxy-galaxy lensing signal
obtained by Kleinheinrich (2003) by means of a simple R-band magnitude binning. In Chapter
7 of her thesis, the galaxy sample is divided into lens and source galaxies using R-magnitudes
bins, namely 18 < R < 22.5 and 22.5 < R < 24 for the lens and source catalogue, respectively.
To crudely estimate the median redshifts of those magnitude bins we use the results from the
Chapter Bl The bins of lens and source galaxies correspond roughly to the sample FORE-
I/FORE-II (combined) and BACK-II, respectively. From Fig. we estimate (z) ~ 0.4
(average of FORE-I and FORE-II weighted with the number of galaxies) for the median redshift
of her lens galaxy sample and (z) ~ 0.7 for the median redshift of the source galaxy sample.
The foreground sample hence has about the same median redshift as our two lowest redshift
bins combined, whereas the source galaxy sample is in our case slightly deeper, (z) = 0.76. A
quick and dirty calculation yields that the lensing efficiency,

N Jx(w—w') fk(w')
W(w,w") = (o)

with w and w’ being the comoving radial distances corresponding to the median redshifts of
the lens and source sample respectively and fk(w) being the angular diameter distance, is
in our sample a bit larger by about 10%. For that reason, we can expect to find a slightly
larger galaxy-galaxy lensing signal. Furthermore, since we are discarding galaxies fainter than
M, — 5log;gh ~ —17mag the signal should be enhanced even more (McKay et al. 2001).

(5.24)
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By fitting an isothermal sphere profile, (y;) (#) = A¢/(0/1"), Kleinheinrich obtained a value of
(1) = (64 2) x 107 for a lens-source separation of § = 1’; we combined the results for the
fields A901, AXAF and S11 from her Table 7.3 only. Our value of A¢ = (14 &+ 8) x 1074, the
average of the first two redshift bins weighted with the statistical error, is consistent with that
measurement.

We would like to note here that a signal of (INM,,) indistinguishable from noise beyond
aperture radii # ~ 3’ is no contradiction to Kleinheinrich (2003) and Kleinheinrich et al.
(2004). In these studies, only the smallest scales out to about 2" are investigated by means of
galaxy-galaxy lensing with the intention to constrain the dark matter environment in direct
vicinity to a galaxy. At these scales we also find a galaxy-galaxy lensing signal. In our study,
however, we are also interested in the large-scale environment of galaxies, up to 24’, which for
an acceptable signal-to-noise obviously requires a survey area larger than 0.78 deg?, as can be
seen in Chapter @l

For a further crude comparison we consider the observed galaxy-galaxy lensing in CNOC2
(Hoekstra et al. 2003). Among other things the authors measured the mean tangential shear
of galaxies out of 20 < R < 23 (faint sample). As value for the median redshift of the lenses
the authors mention (z) = 0.46. Using the “F-parameter” in Hoekstra et al.,

8= fx(w—w')/fx(w) =W(w,w)/fx(w'), (5.25)

we estimate that the lensing efficiency is about 15% larger than in our measurement. According
to the fit in their Fig. 4 the value for the mean tangential shear in their data is () ~ (1.0 +
0.3) x 1073 at @ = 1’. This is in agreement with our value of A¢ = (1£1) x 1073 for a median
redshift (z) = 0.5. For their bright galaxy sample, 17.5 < R < 21.5 and 22 < R < 26 for lenses
and source respectively, Hoekstra et al. obtain a larger value at 6 = 1/, (1) ~ (16 £4) x 1074
The median redshift of the lens sample is in that case (z) = 0.34 and hence comparable to
our lowest redshift bin; the lensing efficiencies are more or less the same. We therefore can
compare their measurement directly with our result of A¢ = (28 & 15) x 10™* which is in good
agreement.

As to the relative strength of the galaxy-galaxy lensing signal for blue and red galaxies we
compare our results to Sheldon et al. (2004). For blue galaxies, we only found a signal in the
lowest redshift bin. In our sample, at lowest redshift the signal for red galaxies is higher by a
factor of approximately 4 compared to the blue sample signal, whereas Sheldon et al. finds in
SDSS a ratio between 3—4 depending whether the galaxy sample is subdivided morphologically
in early and late types or by colour in red and blue samples. McKay et al. (2001) find similar
values in SDSS. Considering the statistical errors attached to our measurements the results are
in good agreement.

5.4.3. Aperture mass dispersion

The aperture mass dispersion based on our lens catalogue is plotted in Fig. B9 lower right
panel. We find a clear and significant E-mode signal that is slightly above the dispersion
expected from our fiducial cosmological model and a median source redshift of (z) = 0.76.
Considering that cosmic variance is not included in the errors bars, see Sect. 32 the mea-
surement is consistent with the theory. Some systematics indicated by the B-mode remain,
which are, however, always smaller in absolute amplitude with respect to the E-mode beyond
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Figure 5.9.: Linear bias factor relative to the dark matter of the red, blue and combined galaxy sample
in the upper left, upper right and bottom left panel, respectively. For redshift bins in increasing order, the
apertures with radii 10" correspond to an effective comoving physical scale of 2.43 h~*Mpe, 3.85 h~Mpc,
5.13 h~'Mpc and 6.17 h~'Mpc, respectively. The panel in the lower right is the dispersion of the aperture
mass which is used to calculated the bias parameters. Note that the E-mode signal becomes consistent
with zero on scales smaller than about 2'. Therefore, the bias factor can only be inferred for aperture
radii larger than 2'. The solid line is the theoretically exzpected aperture mass dispersion assuming
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concordance ACDM and a mean redshift of the galaxy sources of (z) = 0.76.
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Table 5.5.: Best-fit parameters to the data points, 0 < 15, of the linear bias factor, Fig. 29, as
measured for the red, blue and complete galaxy sample binned in redshift. The values in the column b
are the average bias factor (constant line fit), while by and b' are the parameters of the best-fitting line
b(0ap) = bo + b Oap where 8, is the aperture radius. Note that the bias factor calibration assumes a flat
ACDM with Qy, = 0.3. Statistical errors do not include cosmic variance and the uncertainty concerning
the redshift distributions of lens and source catalogue.

ALL RED BLUE
<Z> E bo b/ E bo b/ E bo b/
0.3 | 0.47(3) 0.58(3) —0.010(2) | 0.95(6) 1.1(1) —0.017(8) | 0.36(3) 0.45(3) —0.008(3)
0.5 | 0.62(5) 0.82(3) —0.018(4) | 1.2(1) 1.6(3) —0.04(2) | 0.55(7) 0.7(2)  —0.02(1)
0.7 | 0.70(3) 0.66(9) +0.004(8) | 1.39(8) 1.6(2) —0.02(2) | 0.58(3) 0.50(4) +0.08(4)
0.9 | 0.63(3) 0.59(7) +0.004(6) | 1.36(3) 1.42(8) —0.005(6) | 0.52(3) 0.50(8) +0.001(8)

an aperture radius of 3’. Below ~ 3’ E-mode and B-mode become comparable and consistent
with zero so that we cannot use the measurements on the these scales.

A large contribution to the <Ma2p> signal comes from the A901 field (not shown). This was
already observed by Brown et al. (2001). Note that the aperture mass dispersion is essentially
the shear power spectrum seen through a narrow band filter. By looking at the shear power
spectra of the fields A901, AXAF (or CDFS) and S11 in their paper, Fig. 15, we expect that a
combined shear power spectrum would yield more power than expected for a cosmic average.
Therefore their measurements for the cosmic shear fluctuations are in qualitative agreement
with our measurement for <Ma2p>, despite the fact that their source catalogue is somewhat
deeper, (z) = 0.86 instead of (z) = 0.76, and the data reduction was done independently with
another pipeline.

5.4.4. Galaxy-dark matter bias

The separate measurements of the aperture statistics are now combined to draw conclusion
about the relative clustering between galaxies and the total matter (mainly dark matter), that
is to say about galaxy bias. On the level of second-order statistics, we are only able to obtain
answers about the linear stochastic bias coefficients, Eqs. (LC54]), which are the ratio of the
rms-values of the aperture number count and aperture mass, and the correlation between both.

For transforming the aperture statistics into linear stochastic bias as function of scale, i.e.
aperture radius, we employ Eqs. [BI3).

Linear bias factor

The linear bias factor is plotted for the red, blue and complete galaxy sample in Fig. The
calibration, Sect. B34l assumes a spatially flat ACDM as fiducial cosmological model with
Q. = 0.3; the bias values need to be scaled up or down for smaller or larger €2, respectively
(Fig. B3). Based on these data points the average bias factor, b, on the scale range 6 € [3/,20/]
is calculated, and linear models, b(8) = by + b’ 0, are fitted to parameterise a possible scale-
dependence (Table BH); by and b are constants. The angular range corresponds to effective
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comoving physical scales of 730h 'kpec < r < 12h~'Mpc, somewhat smaller for the low-
redshift sample and a bit larger for the high-redshift sample.

For all redshift bins, rms-fluctuations in number density of the complete galaxy sample are
smaller than fluctuations in the dark matter density field, b = 0.5—0.7. This was also seen in the
Garching-Bonn Deep Survey (GaBoDS), foregoing chapter, although with a larger value, b =
0.8 —0.9. This small discrepancy may be explained by the fact that the redshift distribution in
GaBoDS has only approximately been estimated, whereas here accurate photometric redshifts
of the individual foreground galaxies are given which makes the calibration more accurate. Our
measurements in the lowest redshift bin are consistent with the results of Hoekstra et al. (2002)
who applied the same technique to the combined VIRMOS-DESCART /RCS survey finding for
aperture radii 3 < 6 < 20" a bias factor of b ~ 0.7. Furthermore, the result of Hoekstra
et al. and ours are consistent with ACDM predictions assuming €2,,, ~ 0.3. An galaxy anti-
bias on intermediate scales is a theoretical necessity in order to reconcile the theoretical dark
matter correlation function with the (nearly) power-law correlation function of the galaxies
(e.g. Jenkins et al. 1998; Jing et al. 1998).

Numerical simulations (Weinberg et al. 2004; Yoshikawa et al. 2001; Somerville et al. 2001;
Blanton et al. 2000; Cen & Ostriker 2000) predict an increase of the linear bias factor (all
galaxies) by a factor of ~ 1.5 within 0 < z < 1 at scales of about 1 — 8 h~!Mpc. In our data,
we may see an overall growth of the bias factor for all galaxy samples, when going to higher
redshifts, that is consistent with this factor . Due to the remaining statistical uncertainties,
however, a non-evolution cannot be ruled out.

In COMBO-17, red galaxies are more or equally clustered than dark matter, b = 1.0 — 1.4,
at all redshifts, whereas the blue sample is clearly anti-biased with b = 0.4 — 0.6. This agrees
quite well with simulations that assume the same fiducial cosmological model as adopted here.
Specifically, Yoshikawa et al. (2001) split the simulated galaxy sample into galaxies formed
early, z > 1.5, and recently formed galaxies, z < 1.5; the samples were denoted as “early
types” and “late types”. The implicit assumption of the authors is that “early-type” galaxies
form earlier than late-type galaxiesﬂ This division line was chosen to obtain a galaxy number
ratio of early- and late-type galaxies of 1/3 at z = 0 which corresponds to the observed ratio
(Loveday et al. 1995). The authors argue that age-splitting is similar to a colour-splitting and
therefore comparable to subdividing the galaxy sample into red and blue galaxies like in our
analysis. Yoshikawa et al. find, for z = 0, byeq ~ 1.4 and by ~ 0.7 for the red (old) and
blue (young) sample near ~ 3h~'Mpc, respectively. Weinberg et al. (2004) quote byq ~ 1.3
and bye =~ 0.7 at about the same scale, adopting age-splitting as well. Somerville et al.
(2001) find qualitatively the same result but less bias/anti-bias because the scales studied are
larger, » ~ 8 h~'Mpc, and the result is slightly different for morphologically selected samples
and samples chosen by colour (bias and anti-bias are larger for the case of colour selection).
The common theoretical explanation (c¢f. Zehavi et al. 2004; Somerville et al. 2001) for the
red(blue) bias(anti-bias) is that the mean dark matter halo mass occupied by red (early-type)
galaxies is larger than the mean halo mass occupied by blue (late-type) galaxies. As low-
mass haloes are less clustered and high-mass haloes are more clustered than the overall dark
matter density field (Mo & White 1996), blue galaxies are anti-biased, whereas red galaxies

"The terminology of “early-type” and “late-type” galaxies in astronomy, however, has purely historical
reasons. At the time of coining these terms nothing was known about the origin of the morphology
of galaxies (Hubble 1936).
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Figure 5.10.: Correlation between dark matter and red, blue and complete galazies sample, respectively,
in the lowest redshift bin, (z) = 0.3. The data points assume a SIS-profile for the mean tangential shear
about a foreground galazy.

are positively biased with respect to the dark matter.

For all samples, there is for 2 < 0.5 a significant scale-dependence of the bias factor that
is increasing towards smaller scales (Table BH). The increase is stronger for the red sample
which is due to their steeper slope of w(#), 6 ~ 0.95, compared to the blue sample, § ~ 0.7. We
do not observe a significant scale-dependence below 20’ at higher redshift, (z) < 0.5. In the
last bin at about 20’, we may see an increase of the bias factor for all samples which, however,
is not very significant. The scale-dependence of the bias factor depends very weakly on the
assume fiducial cosmological model (van Waerbeke 1998) since the calibration virtually only
affects the overall amplitude. A scale-dependence of bias has also been observed by Pen et al.
(2003) and Hoekstra et al. (2002). It is a generic prediction of the CDM paradigm (e.g. Zehavi
et al. 2004; Weinberg et al. 2004; Blanton et al. 1999; Jing et al. 1998; Jenkins et al. 1998).

Linear correlation factor

For the correlation parameter 7(0,p), Eq. ([BI3]), we require both (N M,;,) and <M§p> which are
not, as outlined above, available for an overlapping range of aperture radii: we have significant
detections for <M§p> only for aperture radii larger than 3/, whereas (N M,;,) only for aperture
radii smaller than ~ 3’ and almost only for the red galaxy sample. A larger survey area is
necessary to achieve the require signal-to-noise for performing the full analysis in the sense of
Hoekstra et al. (2002).

The situations improves a bit, however, if we assume that the galaxy-galaxy lensing signal
can be approximated by a power law, (y;) = A¢ (0/1 )79, This seems, at least on small scales, to
be a good approximation (c¢f. McKay et al. 2001). By adding this extra piece of information we
can nevertheless draw some conclusions about the correlation between dark matter and galaxy
distribution. The parameters of the best-fitting power law to the measured mean tangential
are listed in Table B4l Additionally in a second fit, we assume a singular isothermal sphere
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model (SIS), thus a power law with exponent 6 = —1, because the power law slope cannot be
very well constrained for our data. The parameters of the SIS-fit are the only ones used in the
following analysis. We trust only fits for the lowest redshift bin, which is the bin where we find
the most significant signal. The signal for the blue sample seems to be rather weak so that we
consider the corresponding fit just as an upper limit.

The best-fitted SIS-profile for () is transformed to (N M,p,) by virtue of Eq. ([B2Z4]). For the
statistical error of (N M,p) we take into account the uncertainties of the slope and amplitude for
(). Together with <N 2> and <M32p> we are then able to compute the correlation parameter.
Note, however, that the SIS-profile for all scales is a very strong assumption which is likely
to fail on galaxy group and cluster scales. Fig. shows the correlation parameters of the
red, blue and complete sample in the lowest redshift bin. Similar to the bias factor estimate,
the correlation factor depends on the fiducial model used for the calibration (Fig. BH): the
plotted correlation factor increases for €2, > 0.3 and decreases otherwise. For a median redshift
(z) = 0.3, this dependence is very weak, though, because most of the signal contributing to
the aperture mass is from the redshift range 0.2 < z < 0.4 where the galaxies are located in.

We find that, despite the strong assumption about the profile of (), the correlation pa-
rameters of the samples are only poorly constrained. Being very optimistic we take the error-
weighted average of the data points of the red sample, which has the most significant galaxy-
galaxy lensing signal, and estimate that the mean correlation factor of the red sample over
the plotted range is r,eq = 1.1 & 0.2. This value suggests that the correlation factor of red
galaxies is close to unity which means that the red sample is highly correlated to the dark
matter distribution. Wilson et al. (2001) arrive at a similar conclusion for a selected sample
of bright red galaxies.

5.4.5. Relative galaxy bias

We now turn to the relative bias between the red and blue samples. Here we do not need the
information on the dark matter clustering provided by weak gravitational lensing. We employ
the estimators in Egs. (B8] to convert the aperture number count dispersion, <Nr2€d /blue>,
and aperture number count cross-correlation, (NyeqNplue), Of the red and blue sample into the
relative linear stochastic bias.

Relative linear bias factor

As already seen in Fig. red and blue galaxies are differently biased with respect to the dark
matter and therefore have also to be differently biased relative to each other. This difference
is equivalent to a relative bias factor of about b = 2 — 3 which is slightly rising in the regime
1" < 0 < 10’ towards smaller scales (Fig. BId). The rise stems from the different power-law
slopes of (N?) for the two samples (Sect. [EZ1]); red galaxies obey a steeper power-law than
blue galaxies. At 0,, = 1’ we find a bias of b ~ 3 which drops to b ~ 2.2 at § = 20’. For
the lowest redshift bin, this is in good agreement with Madgwick et al. (2003), their Fig. 4.
Furthermore, the observed scale-dependence explains why we find an overall larger value for
the red/blue bias than other authors who determined the relative bias with various different
methods on larger scales, e.g. Conway et al. (2005), b~ 1.3 at 15h~'Mpc, Wild et al. (2005),
b~ 1.8 at 10 h~'Mpc, Willmer et al. (1998), b ~ 1.2 at 8 h~'Mpc, or Guzzo et al. (1997),
b~ 1.7.
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Figure 5.11.: Relative linear stochastic bias between the red and blue galaxy sample for four median
redshifts. For redshift bins in increasing order, apertures with radii 10" correspond to an effective co-
moving physical scale of 2.43 h~'Mpc, 3.85 h~'Mpc, 5.13 h~'Mpc and 6.17 h~'Mpc for the smallest to
the largest redshift bin, respectively.

Within the errors we do not see an evolution of the relative bias with redshift as, for example,
has been reported by Le Fevre et al. (1996). This confirms the finding of Phleps & Meisen-
heimer (2003). On scales smaller than 1, we find that the relative bias decreases again down
to a value of b~ 1.5 — 2 at ~ 0".5.

Relative linear correlation factor

The correlation between red and blue galaxies for four median redshifts is shown in Fig. BTl
We can make out a clear trend of decorrelation, » < 1, between the two samples towards small
scales starting from about 10/, which corresponds to comoving ~ 3 — 6 A~ *Mpc depending
on the median redshift. We estimate that the correlation factor drops to a minimum of r =
0.57 £+ 0.06, 0.52 £+ 0.02,0.56 £ 0.02,0.56 + 0.05 for the median redshifts (z) = 0.3,0.5,0.7,0.9,
respectively. These values were obtained by averaging all data points between [0/.3,2] using
the errors as weights; errors were assumed to be uncorrelated. An evolution with redshift
exceeding the statistical errors is not visible. We note that cosmic variance is particularly
strong on the larger scales which explains the large scatter of the data points beyond 10'. As
many authors find a correlation close to unity on large scales (e.g. Wild et al. 2004; Conway
et al. 2004; Blanton 2000; Tegmark & Bromley 1995) that is decreasing towards smaller scales
(e.g. Wild et al. 2004), we expect our data points to be actually consistent with r ~ 1 beyond
10/,

The decorrelation is probably intimately related to the well established morphology-density
relation of galaxies (e.g. Goto et al. 2003; Narayanan et al. 2000; Dressler et al. 1997;
Dressler 1980), according to which the fraction of red galaxies increases in regions of high galaxy
densities while the fraction of blue galaxies is high in regions of low galaxy density. This relation
defines a mapping, probably with a random component (see next section), between the density
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field of all galaxies and the number density field of red and blue galaxies, respectively. It is
likely that this mapping can be translated into our observed scale-dependence of the correlation
factor. If this is the case, we can conclude from our observation that the density-morphology
relation has to be present up to z ~ 0.9.

Relative non-linear stochastic bias

Is the decorrelation between the density fluctuations of red, d,¢q, and blue, dpye, galaxies a result
of a deterministic non-linear mapping or the result of a real stochastic scatter between dpjye
and d,eq, or both? In the non-linear stochastic bias scheme, see Sect. [LZ3] one can disentangle
contributions to the correlation factor, r, caused by non-linearity, €,, or stochasticity, €scatt,

Trel = (1 + Egcatt + 6?11)_1/2 ) (526>

if we know the joint PDF P(dyed, Oplue). Wild et al. (2004) argue that number densities
of galaxies are well modelled by a lognormal distribution and P(0pjye,dreq) by a bivariate
lognormal distribution. In this case we have (see Appendix [A4):

62 _ L <[f(5red)]2> .
. Tr2e1 <5l%1ue>

o _ L (1_<[f<ared>12>)

eatt : <5glue >

1, (5.27)

where

<[f(5red)]2> 1 (ex [1112 (<5blue5red> + 1)
)

<5l§lue> N <512)lue In (<5r26d> —+ 1) B 1) . (528)

The aperture number count, IV, is a projection of the density contrast smoothed to some
scale depending on the aperture radius, see Egs. ([BA6) and B3). Therefore, (N N1..) with
n +m = 2, which have been measured in this study, are equivalent to (0} ;011,.) smoothed to
some effective scale and averaged over some redshift range. Thus, we can employ (£27), (B25])
and our measurement for the second-order aperture number count statistics of red and blue
galaxies to estimate €gcart and e;1. This has been done for Fig. BET2

We find that both egcatt and €, are decreasing with smoothing scale but are, at equal scales,
indistinguishable between the different redshift bins, meaning that we do not see a redshift
dependence. The ratio €gcatt/€n has a value roughly between 5 — 15 for all scales. This
means that stochasticity in the relation between red and blue galaxies contributes most to
the correlation factor. Wild et al. (2004) find in the 2dFGRS €gcaty = 0.45 + 0.05 and €, =
0.055 4+ 0.005 at a scale of 10 h~'Mpc, which is in agreement with our largest aperture radii
corresponding to ~ 6 h~'Mpc for the lowest redshift bin. Our measurement thus shows that
the trend observed by Wild et al. (2004), namely that escaty and € are increasing towards
smaller scales, continues below 10 h~'Mpc.

Constraining the correlation between blue galaxies and dark matter

Finally, with our measurement for the red/blue correlation and our crude estimate for the
correlation between red galaxies and dark matter, roq = 1.1 + 0.2 (foregoing section), at a

160



€scatt

Sscatt/ €nl

-0.5

35

30 r

25

20 |

15

10

-10

1 10
aperture radius [ARCMIN]

0.05 r

RESULTS AND DISCUSSION

nte
o

Figure 5.12.: Separation of non-linear, €y, and stochastic, €scatt, contributions to the relative linear
correlation factor, rye) = (1—|—6§Cm—|—eil)_l/2, of red and blue galazies by assuming a bivariate lognormal
joint PDF P(0yed, Oblue). Both contributions show an increase towards smaller scales (upper left and
upper right panel). The largest fraction is due to stochasticity with €scatt/€nm ~ 5 — 15 (lower left).
Indicated are the median redshifts of the samples. For redshift bins in increasing order, apertures with
radii 10’ correspond to an effective comoving physical scale of 2.43 h~*Mpc, 3.85 h~'Mpc, 5.13 h~Mpc

and 6.17 h~'Mpc for the smallest to largest redshift bin respectively.
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Figure 5.13.: A-posteriori probability distribution of the correlation between the blue galaxy sample
and dark matter at median redshift (z) = 0.3 and a effective physical scale of ~ 200 h~*kpc based
on red = 1.1 £ 0.2 (Gaussian PDF) and 1o = 0.52 + 0.06 (Gaussian PDF). As additional prior all
correlation factors are assumed to be positive. For comparison, the a-posteriori PDF of rpue assuming
rrel = 1.0 £ 0.1 is plotted as well. Such a value for ry is typically found on larger scales.

median redshift (z) = 0.3 we can constrain the correlation between blue galaxies and dark
matter. That supplements the discussion of the foregoing section where rpe could not be
deduced from the cross-correlation (NM,,) alone. Let req, Thiue and 7 be the correlation
between red galaxies and dark matter, blue galaxies and dark matter, and red and blue galaxies,
respectively. We noted earlier on in this thesis, Eq. (Z31), that the triple {ried, "blue, 'rel }
cannot assume any conceivable combination of values. Instead, they have to fulfil the condition

2 2 2
2T red Tblue Trel 2 Tred T Thiue + Trel — 1 (529)

because the covariance matrix of the density fluctuations of the three fields has to be positive
definite. Apart from 7,4, we also have r,q = 0.57 £ 0.06 at ~ 200h~'kpc. The correlation
factors r..q and 7. plus the inequality in combination constrain the allowed parameter range
of rpue at the same scale as can be seen by the following argument. For a given r.¢q and 7y,
(EZ9) defines an interval [ryin, "max| Of possible values for rpj,e. Since we do not have any other
constraints on rp.e, we assume for fixed values 7y and 7. a uniform conditional a-posteriori
probability distribution,

1 7hlue € [Tmin’ Tmax]
P(Tblue‘rremrrel) X { 0 otherwise , (530)

of Tplue inside this interval. Furthermore, in order to account for the fact that r..q and 7. are
not exactly known we marginalise P(7bue|"red, Trel):

1
P(Tblue) = / drreddrrelP(Tblue|7aredarrel) P(""red) P(rrel) ) (531)
0
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where we assume that the errors of 7¢q and 7, have both a Gaussian PDF, P(7,eq) and P (7)),
and are not correlated. For the level of accuracy we are working on here this is a reasonable
assumption. As additional prior we demand that all correlation factors have to be positive;
negative galaxy-galaxy lensing signals are ruled out on a high confidence level by other studies
(e.g. McKay et al. 2001). Using these arguments we conclude from the marginalised P(rpye),
Fig. BI3l that ruue = 0.5 £ 0.2. Thus, blue galaxies are less correlated to dark matter than
red galaxies, either due to non-linearity, stochasticity or both. Applying the same technique,
we find e = 0.8 £0.2 for r.q; = 1.0 0.1, for the typical correlation found on scales beyond
10" corresponding to ~ 2.4 h~!Mpc for (z) = 0.3.

5.5. Conclusions

We use accurate photometric redshifts to study the linear stochastic bias of galaxies in the
COMBO-17 Survey as a function of scale and median redshift, 0.3 < z < 0.9. This comprises
the bias in the clustering of red and blue galaxies with respect to the total matter (dark matter)
content, on comoving scales 730(1800) h~kpe < r < 6(12) h~*Mpc for (z) = 0.3(0.9), and the
relative bias between red and blue galaxies, on comoving scales from 200(600) h~'kpe < r <
6(12) h~'Mpc.

The red and blue galaxy subsample are selected by a redshift dependent red-sequence cut in a
rest-frame colour magnitude diagram, My vs. U — V. Morphologically, the red sample consist
mainly of elliptical galaxies, the blue sample mainly of (star-forming) spiral and irregular
galaxies. In addition, galaxies are chosen to have apparent magnitudes brighter than mg =
24 mag, which guarantees the photometric redshift accuracy, and absolute magnitudes brighter
than My — 5loggh = —17mag — (U — V) in order to obtain galaxy samples comparable in
median absolute magnitude at all redshifts. The effective area that can be used for this work
is about 0.78 deg?, distributed among three fields: A901, AXAF and S11.

In A901 and S11, the fraction of red galaxies is a decreasing function with median redshift:
~ 23% at (z) = 0.3 down to ~ 14% at (z) = 0.9. In AXAF, the fraction is significantly lower,
and no clear evolution is visible. We interpret the fact that the total number of galaxies in
AXAF is relatively low considering the total observation time as an indication that AXAF is
under-abundant in galaxies and therefore poor in galaxy clusters. In this case, the fraction of
red galaxies has to be small according to the morphology-density relation.

The clustering of galaxies and dark matter is investigated using second-order aperture statis-
tics. This statistics probes density fluctuations inside circular apertures weighted with a poly-
nomial compensated filter. It is applied to the projected galaxy number density, the so-called
aperture number count, and dark matter density, the so-called aperture mass. The aperture
mass is inferred from gravitational shear distortions of images of faint background galaxies.
The linear stochastic bias is estimated using three individual statistical quantities: i) the aper-
ture number count dispersion, ii) the aperture mass dispersion and iii) the cross-correlation
between aperture number count and aperture mass. In order to calibrate the estimates of bias
between galaxies and dark matter we have to assume a fiducial cosmological model. We choose
for the following results a spatially flat ACDM with Q,, = 0.3, Qx = 0.7, I' = 0.21, og = 0.9.
The background galaxies used for the lensing analysis are taken from the Garching-Bonn Deep
Survey; they do not have photometric redshifts since they go deeper than mp = 24 mag.

The obtained aperture number count dispersion is almost consistent with a power law for
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the angular correlation function, w(#), of galaxies; red galaxies obey a power law with a slope,
6 =~ 0.9, steeper than for blue galaxies, § ~ 0.7, and exhibit a stronger clustering, A, than blue
galaxies, by about a factor of 5. Our results for w(f) are in agreement with earlier studies based
on different surveys. The amplitude of angular clustering decreases with median redshift for
the red, the blue and the complete galaxy sample. When converted to the clustering in three-
dimensional comoving space by deprojecting w(f) with Limber’s equation our measurements
are compatible with a non-evolution of clustering. However, statistical uncertainties are large.

We find that red and blue galaxies are differently biased to the dark matter. Red galaxies are
equally or more clustered than dark matter for all redshifts, while blue galaxies are less clustered
than the dark matter. For 2z < 0.5, we see a scale-dependence of the bias factor which is slightly
increasing towards smaller scales; the increase is stronger for the red sample. For the largest
aperture radius we also find a possible increase of the bias factor for all redshifts. Averaging the
bias factor over all observed scales, § < 15, yields b = 0.954-0.06, 1.24-0.1, 1.394-0.08, 1.3640.03
(red) and b = 0.36 £ 0.03,0.55 + 0.07,0.58 4 0.03,0.52 & 0.03 (blue) for the median redshifts
(z) = 0.3,0.5,0.7,0.9, respectively. The figures allow a moderate bias increase with redshift
by a factor of 1 — 2. An increase by a factor of ~ 1.5 and a scale-dependent bias is expected
by the currently favoured ACDM model and therefore is consistent with our measurements.
Moreover, the absolute values of b for red (biased) and blue (anti-biased) galaxies are also
in agreement with cosmological simulations of galaxy formation and evolution assuming the
fiducial cosmology adopted here.

Due to the relatively small survey area, the aperture mass dispersion, <M32p>, and aperture
mass/aperture number count cross-correlation, (NM,p), do not yield significant signals on a
common range of scales. Therefore, the measurement of the dark matter/galaxy correlation
factor is not directly possible. To get at least some answers we assume a template function
(SIS-profile) with one degree of freedom that is fitted to the galaxy-galaxy lensing signal. This
is possible for the samples at lowest median redshift. The signal for red galaxies is strongest
which suggests that red galaxies (early-types) are situated inside dark matter halos that are on
average more massive than the hosts of blue galaxies (mainly late-types). Using the template-fit
we can extrapolate (NM,,) to scales where significant data points of <Ma2p> have been found.
This crude estimate yields a correlation between dark matter and red galaxies of r.q = 1.1£0.2
averaged over the observed range of scales, which implies that red galaxies are highly correlated
to the dark matter distribution; similar constraints for blue galaxies are poor.

Using only the aperture number count statistics of blue and red galaxies we investigated
the relative bias, b, between these two samples. We find that the relative bias factor is a
decreasing function with scale beyond an aperture radius of ~ 1 by &~ 3 at ~ 240(610) h~'kpc
and by ~ 2.2 at ~ 2.4(6.2) h~!Mpc for a median redshift of () = 0.3(0.9). For smaller aperture
radii than ~ 1’, the bias factor decreases. The decrease on scales < 1’ might be a systematic
effect of the used estimators for w(f), Eq. (B28). Within the statistical uncertainties we do
not find a clear evolution with redshift on all scales.

The relative correlation factor relating the distributions of red and blue galaxies is clearly
scale-dependent. It drops from a value close to unity for large aperture radii, & 5(12) h~Mpc
(comoving), to 7. = 0.55 + 0.05 on scales of about ~ 250(600) h~'kpc for the sample with
median redshift (z) = 0.3(0.9). A redshift evolution is not observed within the statistical
errors. These values may be a new constraint for models of galaxy formation. We expect that
the scale-dependence is intimately related to the well known morphology-density relation of
galaxies. If so, then our results show that there is such a relation present up to median redshifts
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of (z) =0.9. This needs further investigation.

Specifically, the result for r.. demonstrates that blue galaxies are not correlated the same
way to the dark matter distribution as red galaxies. In fact, our measurement at (z) = 0.3 for
Tred, Which is based on galaxy-galaxy lensing, and for 7., can be combined to constrain rpjye.
We find 7pige = 0.5 + 0.2 at ~ 500 b~ 'kpc and 7 = 0.8 £0.2 at ~ 5h~ ' Mpc. Assuming a
bivariate lognormal joint PDF for the smoothed density contrasts of red and blue galaxies, we
can estimate the contributions of stochasticity, €scatt, and non-linearity, €,;, to the correlation
factor r.o within the framework of the non-linear bias scheme. We find that although both
variables €gcaty and €y increase from large to small aperture radii their ratio is roughly constant
between 5 — 15 on all scales at all redshifts. Consequently, a random scatter between the local
densities of red and blue galaxies, €gcatt, mostly contributes to r.¢. Accepting that red galaxies
are highly correlated to the dark matter distribution, this result means that blue galaxies also
have to some degree to be randomly scattered with respect to the dark matter field as expected
by some numerical models of galaxy formation (e.g. Blanton et al. 2000, 1999).
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CHAPTER 6

Constraints on cosmology using shear tomography correlations

6.1. Introduction

The statistics of the distorted images of distant galaxies, gravitationally lensed by the tidal
gravitational field of intervening matter inhomogeneities, contain a wealth of information about
the power spectrum of the dark and luminous matter in the Universe, and the underlying cos-
mological parameters. The importance of “cosmic shear” as a cosmological tool was proposed
in the early 1990s by Blandford et al. (1991), Miralda-Escudé (1991) and Kaiser (1992). Fur-
ther analytic and numerical work (e.g.. Kaiser 1998; Schneider et al. 1998; White & Hu 2000)
took into account the increased power on small scales, resulting from the non-linear evolution
of the power spectrum (Hamilton et al. 1991; Peacock & Dodds 1996).

The feasibility of cosmic shear studies was demonstrated in 2000, when four teams announced
the first observational detections (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al.
2000; Wittman et al. 2000). Upcoming surveys will cover much larger areas, and multicolour
observations will enable photometric redshift estimates for the galaxies to be obtained. For
example, the CFHT Legacy surveyﬂ will cover 172 deg? in 5 optical bands, with a smaller area
to be observed in J and K bands.

In order to compare these observations with predictions for various cosmological models and
matter power spectra, different two-point statistics of galaxy ellipticities can be employed,
all of which are filtered versions of the convergence power spectrum. Here, we focus on the
gravitational shear correlation functions, which can be directly obtained from the data as
described in Sect.[G.2.2

This quest for the parameters describing the matter content and geometry of the Universe
is limited by several sources of error, dominated by the dispersion in the intrinsic ellipticities
of galaxies and by cosmic (sampling) variance. The covariance (error) matrix is thus an es-
sential ingredient in the extraction of parameters from data, or in parameter error estimate
predictions. Schneider et al. (2002a) provide analytical approximations for the contributions
to the covariance matrix. They consider the case when the mean redshift of the population is
known, and data taken in a single contiguous area. Kilbinger & Schneider (2004) use a numer-

Lhttp://wwv. cf ht. Hawai i . edu/ Sci ence/ CFHLS
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ical approach to investigate the impact of survey geometry on parameter constraint. Using a
Fisher matrix approach, which provides a lower-bound estimate of covariance, Hu (1999) has
shown that even crude redshift information enables much tighter constraints to be placed on
cosmological parameters, compared with the case when only the mean redshift of the popula-
tion is known. This study concentrated on the convergence power spectrum as the vehicle of
cosmological information.

Motivated by these studies, in this chapter we demonstrate how numerical simulations can be
used to estimate the full covariance matrix for the shear correlation functions in the presence
of redshift information, and for arbitrary survey geometries. We consider auto- and cross-
correlations for redshift bins (as in Hu 1999) and in addition allow for cross-correlations between
measurements of the shear signal at different angular scales. With covariance matrices at hand,
we then investigate the improvement in parameter estimates due to redshift binning.

6.2. Power spectra and correlation functions

Access to cosmological parameters is provided through the observable two-point statistics of
the ellipticities of distant galaxies. In this section, we describe how these are related to the
matter power spectrum, and to the underlying density field.

6.2.1. The convergence power spectrum

The power spectrum P, (¢) of the effective convergence (see Eq. [L72), or equivalently of the
shear P,(¢) (e.g. Bartelmann & Schneider 2001), is related to that of the density fluctuations,
Ps(k,w), through the Limber equation (Eq. [C38]):

OHAOZ (™ T (w ¢
Py = 2 /0 dw a2(§u)) P5<fK(w),w> (6.1)
W(w) = / hdw'p(w’)%, (6.2)

where £ is the angular mode, Fourier space conjugate to the angle ; w is the comoving radial
distance. The function W (w) accounts for the sources being distributed in redshift, where
p(w')dw' is the comoving distance probability distribution for the sources. a (w) is the scale
factor normalised to a (w = 0) = 1 and Hj is the Hubble constant.

Splitting up the weak lensing survey in redshift, as in Figli2l defines a set of effective
convergence and shear maps instead of a single one, giving more information on the evolution
of the dark matter fluctuations and therefore enabling tighter constraints to be placed on
cosmological parameters. Auto- and cross-correlation of these maps introduce a whole set of
power spectra, generalising Eq. (&1]):

Pl () = 4OC - /0 w Z(w) P; ) (6.3)
77(3) Y roG) (o) fx (w—w’)
W (w) /u)il dw' p (w ) 7}%{ Wy
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with p® (w) being the normalised galaxy distribution in comoving distance inside the i-th bin,

)

where 7 runs between 1 and the number of redshift bins IV,. P,.gii are auto-correlation power

)

spectra, whereas P,.g 1) with i # j are cross-correlation cosmic shear power spectra.

6.2.2. Shear correlation functions

Constraints can be placed on cosmological parameters using the directly observable shear cor-
relation functions, which we now turn to.

The basis which underpins the use of the distorted images of distant galaxies in weak lensing
studies is a transformation relating the source, ¢®, and image, e, (complex) ellipticities to
the tidal gravitational field of density inhomogeneities (see Sect. [[HE2). We focus on the
non-critical regime where

e e® 4. (6.4)

Empirically the probability distribution function (PDF) of the galaxies’ intrinsic ellipticities is
a truncated Gaussian like in Eq. (B23]).
As in Schneider et al. (2002b), the shear correlation functions are defined as

*dee
() = () £ (xvxh = | 5 Joa(6) Pu(l) (6.5)
0
where J,, are n-th order Bessel functions of the first kind; +; and v« are the tangential and
cross shear components respectively. From now on we focus on &, since this contains most of
the cosmological information on the scales of interest.

6.2.3. Choice of cosmology and matter power spectrum

Unless otherwise stated, our cosmology throughout is a ACDM model with Q,;, = 0.3, Q) =
0.7 and Hy = 70kms~' Mpc~!. A scale-invariant (n = 1, Harrison-Zel’dovich) spectrum of
primordial fluctuations is assumed. Predicting the shear correlation functions requires a model
for the redshift evolution of the 3-D power spectrum. We use the fitting formula of Bardeen et
al. (1986; BBKS) for the transfer function, and the Peacock and Dodds (1996) prescription for
evolution in the non-linear regime. The power spectrum normalisation is parameterised with
og = 0.9, and I" = 0.21. Quantities calculated for this fiducial cosmology/power spectrum will
be super-scripted with a “t”.

6.3. Simulating cosmic shear tomography

6.3.1. Outline of the technique

Since we consider only the two-point cosmic shear statistics in an area of relatively small angular
size, we can represent the cosmic shear by random Gaussian fields in a flat-sky approximation.
This allows us to reduce the computational effort by expressing the fields of the shear and
convergence as random Gaussian fields having the same power spectrum as the corresponding
fields from the N-body approach. In the weak lensing regime, ray-tracing is well described
by the Born approximation which ignores the effects of lens-lens coupling and deviations of
light rays from the fiducial path (see White & Hu 2000). The task of calculating the required
power spectra then becomes relatively straightforward, because these can be shown to be linear
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30 arcmin

30 arcmin

Figure 6.1.: Realisation of a simulated cosmic shear tomography. Plotted are the shear (white sticks)
and the convergence fields (grey intensity scale in the background) acting on the shape of source galazies
that are binned in redshift z (four bins). See text for simulation details.

functions of the three-dimensional evolving dark matter power spectrum. The accuracy of the
results depends on how accurately that three-dimensional power spectrum is known.

The simulation algorithm is essentially described in Sect. However, we downsize this
algorithm slightly, by restricting ourself to the convergence (shear) fields only neglecting the
number density fields of the galaxies which are used to mimic the spatial clustering of the
galaxies; here the positions of the galaxies are completely random without any clustering
(white noise). This is justified, because we solely focus on the cosmic shear correlations which
are only little affected by the clustering of the source galaxies.

This restriction has the effect that the vector R (6) in Eq. (BBH) no longer contains the
density contrasts on (0) of the galaxy number density fields but only the convergence fields
k(0). Equally, the power matrix in Eq. (B£1) determining the realisation process of the fields
in Fourier space only consists of the correlation power spectra of and between the convergence
fields, thus only of A, (¢). These correlation functions are defined by the Eqgs. [63)). See Fig.
for one simulation output.

6.3.2. Simulation parameters

Each galaxy in the mock galaxy catalogue is defined by an angular position, an ellipticity €
and a redshift bin it belongs to. The ellipticity of the iso-photes of a galaxy is determined by
the intrinsic shape of a galaxy Egs) and the reduced shear g at the position of the galaxy. The
reduced shear is a function of the convergence k and shear v which have to be simulated for
each redshift bin as a map covering the simulated area. Here we assume that the galaxies are

binned into N, pairwise adjacent redshift bins, chopping off the redshift distribution

NS SO B A
PO = aTEmE s p[ (0)] o0

as in Fig.[E2l This empirical distribution with 8 = 1.5 and zy = 1.0 is based on deep field
surveys (see e.g. Smail et al. 1995). The total number of galaxies inside the field, with chosen
size of 5° x 5°, is set to be /&~ 2.7 x 10%, to get an average of 30 galaxies per arcmin?. Moreover,
the galaxies are assumed to be randomly distributed over the field of view.

170



SIMULATING COSMIC SHEAR TOMOGRAPHY

N
(=}

0.4
P
035

0.3
0.25
0.2
0.15
0.1
0.05

O e

05 1 15 2 25 3 35 4

Figure 6.2.: Galaxies are binned together according to their redshift, the boundaries of the pairwise
adjacent redshift bins are w; with i = 0...N, (here as an example N, = 4). For every redshift bin the
reduced shear field is calculated, averaging over the redshift distribution inside the bin.

The method of the last subsection is used to work out the shear and convergence maps in
Fourier space on a grid of 2048 x 2048 pixels. For every galaxy, shear and convergence are
then combined with the intrinsic ellipticity egs), randomly drawn from the PDF (BR3)) using
aﬁ” = 0.3, to compute the final ellipticity of the galaxy via Eq. (€4).

Both angular size A and number of pixels Np along one axis —the sampling size— limits the
number of fluctuation modes accounted for in the simulated data. This means, since we are
lacking fluctuations on scales outside of 5°/ (2Np) < O < 5°, equivalent to lpin < £ < lhpax,
that we have less correlation in the cosmic shear fields than expected (Eq.G.0])

Lmax
0 = [ SEha0) PO (67)

min

T
Kmin = = Kmax
V2A

The values for the limits are estimates for a square field. The limits are not clearly defined,
because the number of /-modes in the FF'T matrix becomes very small near the cutoffs. One so-
lution to this problem is to artificially set a clearly defined range within the interval [(yin, fmax],
or, as we have done, to find a best-fit cutoff. This is found by varying the cutoffs to obtain
closest agreement between the theoretical two-point correlation and the ensemble average of
all Monte Carlo realisations.

In total, we simulated two data sets. The first data set consists of Ny = 795 independent
realisations each 5° x 5°. The redshift distribution of the galaxies was split into 2 bins at a
redshift cut z.¢ = 1.25, and the distribution is truncated at z = 3. For our fiducial surveys,
we randomly selected 10 sub-fields, each of 1.25° x 1.25°, from different large realisations. This
was done for two reasons: 1. to reduce the computation time, since for 10 shear maps we
require only one realisation, and 2. sub-fields are less affected by i, that necessarily enters
the simulations due to the finite realisation area.

= Np luin - (6.8)
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Table 6.1.: The final column denotes the name given to a particular binning of data. The entries in
the columns z; show the corresponding cuts in redshift.

AR ] 29 z3 z4 | Name

0 075 1.5 225 3.0 | 4bins

0 1.5 225 3.0 3binsl

0 075 225 3.0 3binsII
0 07 15 3.0 3binsIII
0 225 3.0 2binsl

0 15 3.0 2binsII
0 075 3.0 2binsIII
0 125 3.0 2binsIV
0 3.0 onebin

The second data set has 4 redshift bins, with z., = 0.75,1.5,2.25, 3.0 where the last value is
the truncation redshift. It has Ny = 266 independent realisations. The fiducial surveys from
this data set consist of single sub-fields of size 1.25° x 1.25°.

For both data sets, £ was estimated (see next section) for Nag = 65 angular separation bins,
ranging from about 20 to 40/0. For the first (second) data set, the correlation functions were
subsequently averaged for 10 (1) sub-fields in order to simulate cosmic shear surveys consisting
of 10 (1) independent data fields.

In a further step, the cross- and auto-correlation of the cosmic shear between the shear maps
were, according to Appendix [Cl combined to yield the cosmic shear correlations for a coarser
redshift binning; in each step the number of redshift bins was reduced by one by combining
two neighbouring bins. This process gave for the first data set, apart from the original data,
the shear correlation of one redshift bin with boundaries z = 0 and z = 3. The second data
set allows more freedom of choice for combining redshift bins, so that we are able to construct
several data sets with three and two redshift bins. Table[e Tl lists the different redshift bins and
reference names, all extracted from the two original data sets.

Below, this data is used to study the improvement in the statistical uncertainties of the
cosmological parameter estimates, if one has more information on the redshifts of the galaxies.

6.4. Estimating &,

To estimate the two-point correlator £, between the galaxy ellipticities ¢; —depending on posi-
tion ©; and redshift bin- inside of the sub-fields we use the estimator in Eq. (@30). Since we
are dealing with simulated data here, there is no need to weight galaxies with respect to their
ellipticity. Therefore, we set w; = 1 for every galaxy.

Although mathematically simple, it takes quite a time to evaluate the estimator due to the
large number of galaxy pairs. To speed up the whole procedure we put a grid of rectangular
cells of size A x Af over the sub-field in question and compute the number V;; of galaxies and
the mean of their ellipticities €; inside every cell. The index ij indicates the position of the
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cell inside the grid. This means we are representing galaxies inside the same cell by a single
data point with weight N;; and ellipticity €;;. In particular, all galaxies inside this cell are
assumed to be placed at the same position. The estimator of &, for this rearranged data set
can be shown to be

&t 0) = N;(@ZNZ'J’NM (€ijt€rit + Eijx€rix) Do (‘6@‘ — ékl‘)
P45kl
N, (0) = > NijNulg (‘éij - éle (6.9)
ij Kl

1 for—A0/2< ¢ <0+ A0/2

Ro(9) = {O otherwise ’ (6.10)

where @ij represents the angular position of cell ij.

The advantage of this approach is obvious: instead of considering N? pairs (NN is the number
of galaxies) we have to consider only N, 62 pairs, where N, is the number of grid cells. Thus, the
number of pairs depends only on the cell size and not on the number of galaxies. Hence, this
method pays off once the cell size becomes large enough, making the number of cells smaller
than the number of galaxies. Moreover, in order to find all galaxies at some distance from a
certain cell we no longer have to check all galaxies, but only neighbouring cells which are easy
to find by the grid index.

The approach becomes inaccurate, however, for small angular bins, because for these the
assumption that cell-galaxies are essentially concentrated into one single point is particularly
inaccurate. By comparing the ensemble average of §+ with the theoretical £, we find that
after the third angular bin this approximation becomes accurate enough. For our purposes,
this approach is completely sufficient. A better and more sophisticated approach can be found
in Pen & Zhang (2003).

For the case with N, = 2, with the division at ze,y = 1.25 (2binsIV), Fig.[E3 shows the
close agreement between the correlation and cross-correlation functions, averaged over 7950
sub-fields, with the analytical prediction for the fiducial ACDM cosmological model, obtained
from Eq. ([3). Shown are comparisons for the lower (L) and upper (U) redshift bins, and
cross-correlation (LU). To account for finite field size in our numerical work, fpin = 27/14.9°
in the integration. As noted above, since there is no well-defined cut-off, this value of £,,;, was

determined by allowing it to vary while performing a least-squares fit of ££7U7LU to <£AL7ULU>,

so obtaining the inverse variance weighted mean ¢,;,. A cut-off at high £ is not critical since
in this regime the power-spectrum amplitude is much lower.

6.5. Estimating the covariance of ¢..

We now outline how the covariance matrix of éi is estimated, for the case of N, = 2 redshift
bins, with the division at z¢u = 1.25 (2binsIV). As described above, our mock survey consists
of 10 uncorrelated fields. An angle bracket denotes averaging over all 7950 sub-fields. Note
that we may drop the L, U and LU sub-scripts for ease of notation.

When no redshift binning is assumed, it is computationally advantageous to determine the
shear correlation function by combining those determined for the case with redshift binning:

€ = niéL + 2nunuéLu + niéu (6.11)
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Figure 6.3.: Comparison of the analytical (lines) and numerical (symbols) shear correlation and cross-
correlation functions &L Luu (lower, middle and upper lines/symbols).

where ng, y are the fraction of sources in the lower and upper bins respectively. A more general

relation between é and the cross- and auto-correlations of the shear from more than two redshift
bins can be found in Appendix

The impact of cosmic variance is taken into account by determining correlation functions
for each of the Ny = 795 independent surveys. The covariance matrix between bin ¢ and j is
determined using

e ([ (9), (- (9),) 022

where the outer average is performed over the Ny = 795 surveys. If redshift binning is con-
sidered, there are N, (N, + 1) /2 combinations of correlation and cross-correlation functions
and hence C is a matrix composed of [N, (N, + 1) /2] blocks. Fig. B4l illustrates this for
the simplified case where N, = 2 and Nag = 5; for example the block in the upper left of
the matrix corresponds to elements C;; = <[5L - (é}L]Z[éL - (é}L]j>, and the shaded entry to
Cs 3. The block in the middle row, left column, corresponds to covariance elements between
the cross-correlation and the lower redshift bin, with the shaded entry being Cgo. The bins
denoted by ¢ and j extend over A# bins, repeated for each redshift auto- and cross-correlation
bin.

A representation of the covariance matrix determined from our simulations with N, = 4 is
shown in Fig.[E0l Note that C has a strong diagonal, although it is not strictly diagonally
dominant.

Our covariance matrix for the case of no redshift binning is consistent (< 10% difference)
with the treatment of Schneider et al. (2002a), and with Kilbinger & Schneider (2004) who
adopted the same assumption of Gaussianity.
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EL E'LU EU

Figure 6.4.: Schematic illustration of the symmetric covariance matriz C for the case where there are
N, = 2 source redshift bins and Nag = 5 angular separation bins. Combinations of &, u.Lu identify
covariance terms of the form given in Eq. (13).

6.6. Constraints on cosmological parameters

The rather featureless two-point shear correlation function & (#) or corresponding convergence
(shear) power spectrum P, (¢) leads to strong degeneracies amongst the parameters that can be
derived from cosmic shear surveys. An indication of the degree of degeneracy is the behaviour
of the partial derivatives of £, with respect to each parameter m; (see King & Schneider 2003
for such a comparison), or using a Fisher matrix analysis as in Sect. G622

External sources of information often provide complementary constraints: for example, con-
fidence regions in the €2, — og plane derived from weak lensing are almost orthogonal to those
from the analysis of CMB data (e.g. van Waerbeke et al. 2002), lifting this well known
degeneracy (e.g. Bernardeau, van Waerbeke & Mellier 1997).

In this section we consider the extent to which crude redshift information for sources used
in a lensing analysis decreases the expected errors in the Q,, — og, O, — I' and og — I planes.
Since we are interested in the influence of redshift binning on parameter degeneracies, hidden
parameters are assumed to be perfectly known. As described above, we focus on the information
provided by the shear two-point correlation function £, (we may drop the “+” subscript). We
restrict this application to the case of N, = 2 (2binsIV). A larger parameter space is then
explored using the covariance matrix derived from simulations in a Fisher analysis for the
cases N, = 2,3, 4.
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Figure 6.5.: The covariance matriz C determined from our simulations, for N, = 4, Nag = 65 and a
survey consisting of 1 sub-field. Different blocks correspond to auto- and cross-correlations between the
redshift bins. Inside these blocks are auto-and cross-correlations for angular separation bins.

6.6.1. Obtaining confidence regions in parameter space

We now determine and compare the likelihood contours in the €, — og, QO — ' and 0g — T
planes for the cases with and without redshift binning. The likelihood function is given by

L(m) = W HGXP [—% (€' =€), [C7],; (€ —€m), |, (6.13)

where n is the number of rows (or columns) of the covariance matrix C and £(7) are theoretical
correlation functions determined on a grid in parameter space.
The log-likelihood function is distributed as x?/2 so that

X(m) =D (€ = ¢m), [C71],; (€ =€), - (6.14)

Confidence contours can be drawn in this y2-surface, relative to the minimum (zero) at &(7) =
&', In Figs.EBBR the confidence contours are shown for each of the Q,, — g, Q, — I' and
I' — og planes, with and without redshift binning. Note that while ,, is varied, we keep
Qum + Q4 = 1. To highlight the difference and avoid confusion, we plot contours for a single
value of Ax? = 4.61 (90% confidence).
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Figure 6.6.: Ezxpected constraints in the Q, — og plane plotted for Ax? = 4.61 (90% confidence)
with (inner contour) and without (outer contour) redshift binning. The survey consists of 10 square
uncorrelated sub-fields, each 1.25° on a side. The redshift distribution and binning are described in the
text.

6.6.2. Fisher Information

The Fisher matrix (Fisher 1935) gives a handle on the question as to how accurately model
parameters can be estimated from a given data set. It is helpful to get a lower limit for the
statistical errors of the inferred model parameters underlying the observed set of data points
(posterior probability) other than tediously evaluating the likelihood function £ on a fine grid
in some volume of the parameter space

In this section, we will use this method to examine quantitatively the increase of information
on the cosmological parameters §2,,, {2p, 0g and I' when the number of redshift bins, thus the
knowledge of the three-dimensional distribution of the galaxies, is increased. Note that we no
longer impose the condition Q,, + Qx = 1. After a brief introduction to this topic we apply
the Fisher statistics to our simulated data.

Fisher Formalism

In general, one uses data points §; from a measurement to infer parameters m; based on a
theoretical model. As the measurements are polluted by noise, we cannot expect to exactly
obtain the data points £ (7) predicted by our model. Instead, one obtains & = &;(m) + €;(m)
where ¢€;(7) is random noise, (¢;(m)) = 0. The noise can in principle depend on the parameters
of the theoretical model. One calls the probability distribution for the data points based on
theoretical model parameters the likelihood function L[m, ] which is essentially the PDF of
the data noise e(m). We may not be able to find from the data &; the true model parameters,
but we can try to find a combination of model parameters 7; that predict data points as close
as possible to the actual measurement. The closeness is decided on the grounds of a statistical
estimator. It is clear, that due to the noise a new realisation of data points yields a new

2More advanced techniques use Markov chain methods based on the Metropolis-Hastings algorithm to
sample the posterior probability; they are getting more and more applied in cosmology (cf. Tereno
et al. 2004; Lewis & Bridle 2002; Christensen et al. 2001).
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Figure 6.7.: Expected constraints in the I' — Q. plane plotted for Ax? = 4.61 (90% confidence) with
(inner contour) and without (outer contour) redshift binning. The survey is the same as in Fig.[0

estimate of the model parameters, so that as a consequence the estimates for m; are random
variables as much as the data points are.

Imagine we have got a concrete measurement é The mazimum likelihood estimator takes
the most likely set of parameters & inferred from f to be at the position where E[fr,é] has a

maximum, or equivalently where the log-likelihood L[, £] = —log L[#, £] has a minimum. This
means we have to solve %Z{ﬂ = 0 with é as given parameters. Note that one assumes here as

a working hypothesis that the particular measurement é is actually the most likely.
Of course, not only the most likely model parameters are of interest but also the statistical

uncertainty
1/2

o = <<ﬁ§> - <7%i>2> (6.15)
of our estimates, or, put in a more general way, the covariance of the model parameter estimates
Qi = ( (s = (7)) (7 — (7)) = (ARAT) (6.16)

where A7r; = &; — (7;). Interpreting £ as a Bayesian PDF in parameter space (e.g. Tegmark
et al. 1997), one can show that

[Q_l]i' _ 82L[7T75]

A
J 87@-87@ ’ (6 7)

T=T

which is the Hessian of L[m, ] at the position of the maximum-likelihood parameters #. The
covariance Q is a function of the concrete set of data points &.
The important tool in this context is the Fisher information matriz, defined by

0? 7T,A _
Fyj = <#9Wf]>g - <[Q 1]Z,j>£ , (6.18)

Note that the Fisher matrix is dgﬁned as the expected average, over all possible measurements
€, of the Hessian matrix of L[m, £] at the position of the true model parameters m in parameter
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Figure 6.8.: Expected constraints in the I' — og plane plotted for Ax? = 4.61 (90% confidence) with
(inner contour) and without (outer contour) redshift binning. The survey is the same as in Fig.[0

space, whereas (Q;; is the Hessian matrix at the position of the mazimum likelihood parameters
#. On average F and Q! are identical, however, so that one can use the inverse of the Fisher
matrix as an estimate for the parameter covariance. This is an important conclusion for our
following analysis.

It follows from theory that the lo-scatter of the estimated parameters is (Cramer-Rao in-
equality)

o; > +/[F1] (6.19)

i

where commonly the lower limit is taken to be the estimate for A7;. To quantify the degen-

eracies in the parameter estimate, we evaluate the correlation of the estimate’s uncertainty

contained in F: [ 1]

A7 A F .

(ATAR) _ - (6.20)
003 [F—l] )

rij

as, for example, in Huterer (2002). Highly correlated or anti-correlated A#; and A7; are called
degenerate, whereas no correlation means no degeneracy (for the adopted fiducial model).
Another piece of information that can be extracted from the Fisher matrix is the orientation
of the error ellipsoid in parameter space, which is defined by the eigenvectors of F. This
corresponds to the directions of degeneracies.

In the application of this formalism below, we will look at situations where some of the
model parameters are assumed to be known a-priori. In this case, they are no longer free
parameters that have to be estimated from measured data points, so that the size of the Fisher
matrix reduces according to the number of parameters fixed. This amounts to removing rows
and columns from the general Fisher matrix, one for each fixed parameter, so that these cases
can be considered by simply looking at sub-matrices of the largest Fisher matrix. Taking all
conceivable sub-matrices enables the exploration of all possible combinations of fixed (strong
prior) and free parameters.

Since the log-likelihood L[m,&] is usually not exactly known, one Taylor expands L[, ¢]
near its local maximum, L[m, &(m)], taking only the two leading terms. These are the zeroth
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and the second order, because the first order vanishes for a local extremum: the likelihood
Lr, €] o« exp (—L[m,&]) is therefore approximated by a multivariate Gaussian, Eq. (B:[S])E
The covariance of the likelihood L is C;;(m) = (€;(m)e;(m)), which is the covariance of the data
noise €(7). Employing this approximation the Fisher information matrix is (Tegmark et al.
1997)

Ej = %tr (AZAJ + C_l(ﬂ')MZ’j) , (621)
where “tr” denotes the trace of a matrix; as further definitions we have
_ 0C(m)
A, = C(m) o (6.22)
¢ (m) [9¢(m)]", 9 (m) [9¢(m)]"
J 871'2' aﬂ'j + 871']' 871'@' (6 3)

The superposed index! in M;; denotes the transpose. The expression for the Fisher matrix
simplifies if we can neglect, as in our work here, the derivatives of the covariance matrix C.
This leaves us with the well known result

Fy =t (cMy) =Y [85 (”)L e, {8’5 (”)L | (6.24)

il orn 3 o 5

Again, C is the covariance of the data noise and £ () the vector of modelled data points in
absence of noise.

Application of the Fisher formalism

Now we use the Fisher formalism to estimate constraints on various combinations of parameters,
with different degrees of redshift binning. First, we evaluate Eq. {624]) using the covariance
matrix from our fiducial survey consisting of 10 independent sub-fields, N, = 2 (with z¢y, =
1.25), and Nag = 65. The procedure is repeated for the covariance matrix for the coarser
N, = 1 binning. TablelE2 shows the percentage error for N, = 2 as opposed to N, = 1 for the
same set of free and fixed parameters.

We extend the treatment to a larger number of redshift bins, in the context of the survey
consisting of 1 sub-field. Again Eq. ([624)) is calculated, this time using the covariance matrices
from the simulations with N, = 4, and those from coarser binning (N, = 3,2,1) of this data
set. Tableld lists the errors for NV, = 4, 3,2 as a percentage of the N, = 1 error.

In order to investigate the degeneracies of the parameter estimates, we concentrate on the
case that no priors are given. For this particular situation, the gain by introducing redshift
binning is largest (see Tablesli2 and B.3)). In Fig. 59 we plot the correlations of the errors
in the parameter estimates for different pairs of parameters and different numbers of redshift
bins. If more than one redshift binning for the same number of redshift bins is available in our
data set, we indicate the scatter of correlation coefficients by error bars. Some scatter indicates
that the correlations can be changed slightly by varying the bin limits. The strong correlation
between the estimates of €2, and og is only marginally affected by redshift binning. This is
also the case for fixed I and/or Q5 (not shown).

3We would like to stress the slight change in notation: & = £* here.
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Table 6.2.: Uncertainties in the parameter estimates according to the Fisher formalism, for our
fiducial survey of 10 uncorrelated sub-fields. The first data set (2binsIV) with N, = 2 and zcy, = 1.25
is used. Columns with dots “” denote fixed parameters (strong priors). Uncertainties in the top
half are absolute values for a single redshift bin. Those in the lower half are for N, = 2, quoted
as a percentage of the single redshift bin (N, = 1) case. For instance, with no fized parameters,
AQp = 0.26 with N, =2 (i.e. 18% of the N, =1 error). |[F~!| denotes the determinant of the inverse
of the Fisher matriz; its square root is proportional to the volume of the error ellipsoid in parameter
space. The n-th root, with n being the number of free parameters, defines a typical size of the er-
ror ellipsoid; this size is proportional to the geometric mean of the lengths of the principal ellipsoid axes.

AQ, AQx Aoy AT JF-TY"

0.9 2.0 1.2 04 0.16
. 0.5 01 0.1 0.09
0.2 . 0.4 0.2 0.04
0.09 0.7 . 0.08 0.08
0.3 1.0 0.3 . 0.13
0.06 0.5 . . 0.09
0.08 . 0.1 . 0.05
0.02 . . 0.07 0.03
0.3 0.06 . 0.09

0.1 . 0.06 0.08

0.03 0.07 0.04

0.02 . . . 0.15
0.10 . . 0.10

0.02 . 0.02

0.06 0.06

13%  13% 17% 26% 47%
52% 57% 64% 72%

53% . 52%  49% 73%
43%  38% . 68% 65%
2%  24% 46% . 57%
50%  45% . . 64%
86% . 85% . 88%
89% . . 81% 85%

65% 71% . 76%

80% 81% 81%

87% 80% 84%

85% . . . 85%
81% . . 81%

89% . 89%

82% 82%
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Table 6.3.: The notation is identical to Table [A The second data set was used to obtain these
values, with various binnings in redshift denoted by the final column, and with covariance matrices
calculated for 1 sub-field. Uncertainties are again quoted as a percentage of that for N, = 1.

AQ,, AQx Aocg AT \/|F—1\1/n data set

16%  14% 19% 26% 41% 2binsl
17%  14% 21% 32% 42% 2binslI
21%  18% 30% 53% 49% 2binsIII

85% . 84% . 88% 2binsI
80% . 80% . 85% 2binslI
88% . 89% . 91% 2binsIII
4% . . 70% 79% 2binsl
75% . . 74% 82% 2binsII
92% . . 91% 92% 2binsIII
67% 63% 76% 2binsl

1%  69% 79% 2binsII

. . 90% 8% 91% 2binsIII
13%  11% 16% 23% 34% 3binsl
13%  12%  16% 22% 36% 3binsIl

14% 11% 18% 2% 36% 3binsIII

73% . 75% . 79% 3binsl
73% . 73% . 79% 3binsII
72% . 73% . 78% 3binsIII
68% . . 65% 73% 3binsl
67% . . 64% 74% 3binslI
69% . . 67% 74% 3binsIIT
62% 58% 70% 3binsl

61% 57% 70% 3binsII

. . 656% 61% 72% 3binsIIT
1% 9% 14% 19% 31% 4bins
65% . 67% . 1% 4bins
61% ) ) 57% 66% 4bins
55% 51% 63% 4bins
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Figure 6.9.: Correlations of the errors in the parameter estimates for different pairs of parameters
and numbers of redshift bins as derived from the Fisher matriz; only the case with no fized priors is
considered. Error bars denote the variance in the correlations for the different redshift binnings for the
same number of bins (only for 2 and 3 bins). The data points are slightly shifted to avoid overlapping.

6.7. Discussion

The average shear correlation functions obtained from our numerical simulations are in good
agreement with those obtained analytically, as was illustrated in Fig.E3l We also pointed
out that their covariance is compatible with Schneider et al. (2002a), SYWKO02 hereafter, and
Kilbinger & Schneider (2003).

Our treatment is only strictly valid for Gaussian density fields and is hence a good approxi-
mation for scales greater than ~ 10/, but giving a lower limit on the covariance at smaller scales
(e.g. van Waerbeke et al. 2002). A more accurate covariance matrix may be possible, though.
According to SYWKO02 (Section 4 therein), the covariance matrix of £, can be decomposed
into three terms

Cij = 02 Xij + 0iYij + Zij (6.25)
where X, Y and Z are some functions. X is a function of the two-point correlation of cosmic
shear while Y depends on the weights of the data points. Consequently, X and Y are insensitive
to non-Gaussian features of the field. Z, however, depends linearly on the four-point correlation
of cosmic shear which in SYWKO02 is worked out by assuming a Gaussian field; this factorises
Z into a sum of products of two-point correlators only. In the hierarchical clustering regime,
the four-point correlation of the random field differs from that value only by a constant scale-
independent factor @, the so-called hierarchical amplitude (see e.g. Bernardeau et al. 2002).
Thus, hierarchical clustering increases the component Z simply by the factor ). This could
be included in Cj; by the following two steps: i) calculating Cj; = Ci(jl) by setting the intrinsic

noise o, = 0, ii) recalculating Cj; = C’Z(J2 ), this time with the intrinsic noise turned on. The
final covariance matrix Cj;, accounting for (), is obtained by

Ci; =00 Q-1 +07. (6.26)

As an illustration of the use of numerically derived covariance matrices, we have considered
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to what degree redshift information tightens the confidence regions on cosmological parameters.
Note that we required rather crude redshift information: photometric redshift estimates for
sources can be obtained from multi-colour observations, with typical accuracies in o, of ~ 0.1
or better (e.g. Bolzonella et al. 2000).

We have investigated the information contained in &, rather than the shear (or equivalently
convergence) power spectrum P since it is directly obtained from the statistics of the distorted
images of distant galaxies. Various estimators of P, have been proposed, requiring the spatial
distribution of the shear (e.g. Kaiser 1998; Hu & White 2001) or the shear correlation functions
(SYWKO02). Note that a calculation similar to ours but using B, would formally require one
to use the full covariance matrix for the associated estimator. However, as noted in SYWKO02,
the band-power estimates for B, do decorrelate rather quickly.

The first data set consists of 2 redshift bins, and covariance matrices estimated with and
without binning for a survey with 10 uncorrelated (1.25° on a side) sub-fields (i.e. selected
from different realisations). Constraints on pairs of cosmological parameters using a likelihood
treatment, with and without redshift information, are shown in Figs.[E6HE.8 Since our goal
here is to study the benefit of redshift information in cosmic shear studies, we do not adopt
priors from WMAP or other probes of large scale structure which might confuse the issue. In
both cases the redshift distribution is assumed to be known. Assigning sources to 2 redshift
bins tightens the confidence regions in all cases.

Noteworthy are the tightened upper limits on I' in the I'—og and €, — I planes when binning
is employed. The constraints on I' in both planes are rather asymmetric, with the confidence
regions being more extended towards high I' values. I' determines the location of the peak in
the matter power spectrum, and having extra redshift information places tighter constraints
on this —there is a degeneracy between I' and the mean source redshift (z) such that a larger
I" would be compensated for by a smaller (z). Recall that ' is not a fundamental quantity; in

the limit of zero baryons, I' = Q,h, which is modified to I' = Q,, hexp (—Qb (1 + \/ﬁ/Qm)),
if Qy, the present baryon density, is accounted for in the transfer function (Sugiyama 1995).
With our strong priors (hence fairly tight constraint on €, or og), the error in I' roughly
translates into an error in h, so redshift binning decreases the upper limit on h.

In the Q,, — og plane we obtain the familiar “banana” shaped confidence regions, tightened
with the inclusion of redshift binning. It is difficult to directly compare our constraints to real
surveys with different observational conditions; however, our confidence regions are roughly
compatible with those of van Waerbeke et al. (2001) allowing for these differences.

To explore a wider range of parameter combinations, we employed the Fisher formalism
since this allows one to easily obtain error estimates and investigate degeneracies. We used
the covariance matrices estimated from the first data set, again for 10 sub-fields as described
above. Table shows to what extent the errors on various parameters are improved for
N, = 2 compared with N, = 1. Note that these results depend on the cosmological model
and power spectrum of our fiducial model. Redshift binning is particularly helpful when fewer
strong priors are assumed, compared with the case when only one or two of the parameters are
allowed to vary. In the case where Q,,, Qa, og and I' are free, errors are a factor of roughly
4 to 8 smaller when N, = 2. As we adopt more strong priors, redshift binning becomes
progressively less beneficial. For example, if we consider parameter combinations where either
O, or og are assumed to be perfectly known, this breaks a strong degeneracy otherwise present;
the decrease in errors when N, = 2 are therefore not so great as one might have anticipated.
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Another interesting trend is that the constraint of {25 seems to be most favourably affected by
redshift binning, perhaps because it is important to the growth rate of structure at redshifts
z~ 1.

How does Fisher analysis compare with the likelihood treatment? Fisher analysis should
be seen as a way to estimate errors and investigate degeneracies, but does not propose to
reveal the detailed behaviour of confidence regions far from the fiducial model —for instance
the asymmetric constraints in the I' — Q;,, or —og planes, or the “banana” shaped constraints
in the Q,, — og plane. Nevertheless, the differences in the constraints on the parameter pairs
drawn from ,, og and I' are roughly consistent with the full likelihood treatment discussed
above.

Using the second data set consisting of 4 redshift bins, for a survey consisting of 1 sub-field,
we obtained covariance matrices corresponding to various redshift cuts for 2 and 3 redshift
bins. Parameter constraints are again tightened going from N, = 1 to N, = 4. Considering
again for example the case where all parameters are free, the most dramatic change is already
seen going from N, = 1 to N, = 2. In the case of N, = 2, with the lowest redshift cut
Zewt = 0.75 (2binsIII), parameter constraints are weakest. When higher redshift sources are
isolated (zcyt = 1.5,2.25) the constraints are similar, and which is the better choice depends
on the combination of parameters considered. For 3 redshift bins, the combinations of cuts in
redshift lead to very similar error estimates.

At some point further sub-division into redshift bins does not lead to improved constraints
on parameters (Hu 1999). This limit must be determined for the survey and cosmological
parameters in question. For simplicity consider the case of N, = 2: £, and &y are correlated
since sources in the upper redshift bin are also sensitive to lensing by structure at z < z¢ut. A
measure of this correlation is provided by a correlation parameter, p = {py/ ({LfU)O‘S, also used
by Hu (1999) in the context of power spectra. p = 1 and p = 0 indicate complete correlation
and lack of correlation respectively. For our simulations, 0.83 < p < 0.93 for the range over
which the correlation functions are calculated, with p = 0.87 taking the mean over all A# bins.

The improvement of the parameter constraints is clearly also a function of how the redshift
intervals are set. This can already be seen in Table where we calculated different binnings
with two and three redshift bins. We expect that there is an optimal way to bin the data. The
intention of this chapter, however, is to present a fast method for calculating the covariance
matrix of the cosmic shear correlation estimator. This issue will be explored in a forthcoming
publication. In practise, this question probably does not arise anyway, because there one would
take as many redshift bins as possible, their number being determined by the accuracy of the
redshift estimator.

As described above, one of our fiducial surveys is composed of 10 uncorrelated sub-fields.
Another possibility is that a single contiguous patch of sky is targeted primarily for another
science goal; such a survey might consist of 10 sub-fields drawn from the same large field.
The sub-fields might in that case be selected so as to avoid bright stars, chip boundaries or
defects. These sub-fields would be correlated to some extent, meaning that taking m rather
than n(< m) sub-fields does not decrease the covariance by a factor of m/n, which would
be the case if they were independent. The degree to which the sub-fields are correlated is
accounted for directly in the covariance matrix. However, it is instructive to have an estimate
of this, using the (ensemble average) covariance matrix for a survey composed of 10 correlated
as opposed to 10 uncorrelated sub-fields. The ratio of the diagonal elements of the correlated
and uncorrelated geometry covariance matrices ranges between ~ 1.1 — 1.4, from the lower to
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upper redshift bin. Of course, the amount of correlation between sub-fields also depends on
their geometry, so this has to be estimated for the survey in question.

6.8. Conclusions

In preparation for upcoming cosmic shear surveys, the main purpose of this paper was to
demonstrate that it is possible to rapidly simulate surveys using a Monte Carlo method. This
enables one to obtain accurate full covariance matrices for the shear two-point correlation
function £, estimated from arbitrary survey geometries and with the sources binned in redshift.
Averaging over many independent realisations enables us to take into account cosmic variance.
As a first application, we estimated the extent to which redshift information for sources used in
a cosmic shear analysis improves constraints on parameters derived from the estimated shear
two-point correlation function f+.

A likelihood analysis in the Q,, — 0g, Oy — ' and I' — og planes shows that separating
the sources into two redshift bins enables tighter constraints to be placed on parameters.
Considering a wider range of parameter combinations in the context of a Fisher analysis reveals
that redshift information is particularly advantageous in cases where few strong priors are
assumed. When €y, og, I' and Q are free parameters, having 2 (4) redshift bins tightens
errors on parameters by a factor of ~ 4 — 8 (~ 5 — 10). Most improvement on error estimates
occurs going from N, = 1 to N, = 2. In general, for the combinations of free and fixed
parameters explored, {25 seems to benefit most from redshift binning,

One might ask why cosmic shear is of interest, in the light of the recent WMAP results (e.g.
Bennett et al. 2003), which suggest that the era of precision cosmology is already upon us; there
are several facets to consider. Cosmic shear has the power to break degeneracies inherent to
CMB data (e.g. Hu & Tegmark 1999), for instance the angular diameter distance degeneracy
(e.g. Efstathiou & Bond 1999). It also provides a completely independent cross-check of
cosmological parameters, based on equally well understood but different physical principles.
Besides this, as is the case with the CMB, the interpretation of results requires no assumption
about the bias between luminous tracers and the underlying dark matter distribution which
plagues, for example, galaxy redshift surveys. In addition, with redshift estimates for sources
in upcoming large cosmic shear surveys, lensing has the potential to see beyond the radially
projected convergence power spectrum, becoming sensitive to the evolution and growth of
structure in the Universe.
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Summary

In the following, a summary of the individual foregoing chapters is given.

Chapter 1: Scientific framework

The chapter briefly reviews the standard model of cosmology. Cosmic structure grows by
purely gravitational collapse from initially tiny density perturbations in an almost homoge-
neous universe. The observed fluctuations in the matter density require that the largest mass
fraction is only interacting gravitationally and has non-relativistic velocities. Only a small
fraction of mass is given as baryonic matter in gas, dust and galaxies. This is the cornerstone
of the cold dark matter (CDM) models. Relatively simple physics is sufficient to describe the
growth of density perturbations. Explicit solutions to the equations modelling structure growth
are currently only found by computationally expensive N-body simulations. Approximate an-
alytical solutions are also available, however, only for scales where fluctuations are small, for
linear or quasi-linear scales.

Commonly, cosmological structure is measured in terms of correlation functions (real space)
or polyspectra (Fourier mode representation). Cosmic fields, such as the distribution of matter
or galaxies, are pictured as realisations of a random process. Relevant statistical quantities to
describe random processes, in particular random fields, are introduced. A statistical quantity
of great interest is the power spectrum. It completely determines the so-called second-order
statistics of random fields, e.g. the dispersion of field values smoothed to some arbitrary scale
or the probability to find a given pair of values with a given distance in a random field. The
power spectrum of fluctuations in the dark matter density field is presented for ACDM-type
models.

The correlations of galaxy number densities are in general different compared to the cor-
relations of the dark matter densities. This difference is called galaxy bias. The standard
explanation for galaxy bias is that galaxies require special conditions in order to form and
evolve in the dark matter field. Parameters —bias parameters— that quantify the difference
between two random fields are introduced. In the linear stochastic bias scheme, two parame-
ters, the bias factor b and correlation factor r, are defined. The bias factor can be pictured as
the ratio of the clustering strengths of two fields, whereas the correlation parameter, broadly
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speaking, measures how strongly the peaks and valleys of two density fields coincide. Both
parameters are completely determined by second-order statistics and are the most frequently
measured bias parameters in practice. Almost everywhere in this thesis, the linear stochastic
bias parameters are used. The linear stochastic bias scheme has a shortcoming because it can-
not distinguish whether a bias is non-linear or stochastic. This distinction may be important to
constrain models of galaxy formation. The shortcoming is removed by the non-linear stochastic
bias scheme which involves three different bias parameters. However, for a measurement these
parameters require either the knowledge of higher-order correlations in the random fields, or
assumptions about higher-order correlations that relate them to second-order statistics.
Further on, the chapter compiles measurements and predictions for the galaxy bias as found
in the literature. Essentially, galaxy bias depends on galaxy type, redshift and scale. Depend-
ing on the applied method for measuring the galaxy bias, the results often depend on strong
assumptions on the dark matter component. The effect of gravitational lensing allows us to
map the dark matter distribution and thus to measure galaxy bias without strong assumptions.
The principles and formalism of gravitational lensing are explained at the end of this chapter.

Chapter 2: Evolution of galaxy bias on linear scales

The time dependent bias model of Tegmark & Peebles (1998) is extended. The extended
model now makes predictions on the large-scale evolution of the linear stochastic bias of dif-
ferent galaxy populations with respect to both the dark matter and each other. The model
equations contain a general expression, coined the “interaction term”, accounting for the de-
struction or production of galaxies. This term may be used to model couplings between different
populations that lead to an increase or decrease of the number of a galaxies belonging to a
population, e.g. passive evolution or merging processes. This is explored in detail using toy
models. Strictly speaking, a non-linear interaction term cannot be treated within the frame-
work of this model because it requires in general the knowledge of the bias parameters on
non-linear scales. This is demonstrated by assuming a quadratic interaction term. If, however,
the number densities or small-scale bias parameters of non-linearly coupled galaxy populations
that are given as a constraint, the model equations can still be used for predicting the large-
scale bias evolution. According to the model if no interactions are present, meaning the number
of galaxies is conserved, a debiasing of a biased galaxy population with time is to be expected
due to the gravitational pull of the dark matter field. After a sufficiently long time galaxies
become unbiased perfect tracers of the total matter density. It is shown that the presence of in-
teractions, that change the number of galaxies, can modify the evolution of the bias parameters
compared to an interaction-free evolution. It is argued that the observation of the evolution
of the large-scale bias and galaxy number density with wide-field surveys may be used to infer
fundamental interaction parameters between galaxy populations, possibly giving an insight in
their formation and evolution. It is argued on the basis of this model that early-type galaxies,
known to be more clustered than late-type galaxies, are not likely to have formed by passive
evolution from late-type galaxies. Non-linear interaction terms like the considered quadratic
interaction (“collision” or “merging”) are required.
The core of this chapter has been published in Simon (2004a).
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Chapter 3: Studying two estimators for the linear stochastic bias

This chapter introduces a new statistical measure —the aperture statistics— that is used in weak
gravitational lensing. It can be employed to examine the distribution of galaxies on the sky,
the projected dark matter density and the cross-correlation of both. Therefore, the aperture
statistics provide means to probe the galaxy bias. This technique basically averages the fluctu-
ations in the projected density of dark matter and galaxies over the area of a circular aperture.
The (second-order moments of the) joint probability distribution of aperture-averages are the
quantities being looked at. “Joint” in this context means that aperture-averages of different
density fields but for the same apertures are analysed. The size of the aperture determines the
effective physical scale that is probed. In order to apply this technique in practice to weak lens-
ing surveys, estimators for the rms-fluctuations and cross-correlations of the aperture-averages
are required. In the recent years, authors have proposed and used two classes of estimators.
One class, nicknamed here “I”, first of all measures the probability to obtain a certain pair of
values with a given relative distance in the density fields. These so-called two-point correlation
functions are then transformed to obtain the rms-fluctuations as a function of aperture radius.
Another class, nicknamed here “II”, explicitly places aperture into the field and averages over
the field values within the aperture. Each aperture gives one average. The scatter of averaged
values for different aperture positions yields also an, maybe more intuitive, estimate of the
rms-fluctuations. However, for Class II, it is not clear how to cope with cases where parts
of the data field within the aperture are missing due to masking (gaps). Both estimator ap-
proaches are presented in detail and compared by applying them to simulated weak lensing
surveys. The algorithm for generating the mock data is developed here and explained. The
chosen parameters of the simulated data fields are inspired by real wide-field image galaxy
surveys. Considering one particular survey geometry we find that estimators from Class I yield
the most reliable results with an inaccuracy of less than 3%. In the presence of gaps, estimators
from Class II are inaccurate by up to 60%. However, if only apertures are taken whose area
has at most 20% overlap with a gap region the inaccuracy is reduced to about 10% — 20%.
Moreover, the variance of the statistical noise of estimators Class I is lower by a factor of
1 — 3 compared to Class II. The results are therefore clearly in favour of estimators of Class
I. Class I estimators are applied to real data in the following two chapters of this thesis. For
the future, higher-order moments of the aperture statistics, such as the skewness or kurtosis,
will become important. This may make an improvement of estimators of Class II worthwhile.
Estimators of Class II are namely easily extended to higher-order statistics, while estimators of
Class I require a lot more effort for an extension. Finally, a minor but important conclusion is
that the program code implementations of the estimators, used further on in this thesis, yield
computational results that are accurate within at least 1% — 2%.

Chapter 4: Galaxy bias in GaBoDS

The GaBoDS comprises roughly 20 deg? of high-quality data in R-band taken with the Wide
Field Imager at the 2.2m telescope of MPG/ESO at La Silla, Chile. Fields with long exposure
times, total area about 10 deg?, are chosen for the analysis in this chapter. The bias and corre-
lation factor, b and r respectively, of galaxies with respect to the dark matter is measured using
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the aperture statistics as described in Chapter 3. This includes the aperture mass from weak
gravitational lensing. The analysis is performed for three galaxy samples selected by R-band
magnitudes; the median redshifts of the samples are (z) = 0.34,0.49 and 0.65, respectively.
The brightest sample has the strongest peak in redshift and can therefore be most accurately
represented by a single redshift. The COMBO-17 Survey is used for an accurate estimate of the
redshift distribution of the galaxies. Assuming the currently favoured ACDM model as fiducial
cosmology, in particular ,, = 0.3 and Qx = 0.7, values for the linear stochastic galaxy-dark
matter bias on angular scales 1’ < 6 < 20’ are obtained. At 10’, the median redshifts of the
samples correspond to a effective physical scale of 2.66,3.71,4.64 h~'Mpc, respectively. Over
the investigated range of physical scales the bias factor b stays almost constant, possibly rising
on the smallest scales. Here the errors are largest, however. Averaging the measurements for
the bias factor over the range 4’ < 6,, < 18', weighting with the cosmic variance error, yields
b = 0.89 + 0.05, 0.79 £ 0.05, 0.89 £ 0.05, respectively (1o). Galaxies are thus less clustered
than the total matter on that particular range of scales (anti-biased). As for the correlation
factor, r a slight increase to r = 1 in the last angular bin from an almost constant value on
smaller scales is found; the weighted average over the same range as before is r = 0.8 + 0.1,
0.8 £0.1, 0.5 £ 0.1, respectively. Therefore, on these scales a degree of stochasticity or/and
non-linearity in the relation between dark matter and galaxy density has to be inferred. On
the largest scales considered, the correlation between dark matter and galaxy distribution is
high. Within the measurement uncertainties and over the redshift range represented by the
galaxy samples no evolution with redshift of the bias is observed. It is concluded that on the
scales considered the redshift dependence of the linear bias for 0.3 < z < 0.65 has to be smaller
than Ab < 0.1 and Ar < 0.2 (20 confidence).
A shortened version of this chapter been published in Simon et al. (2004b).

Chapter 5: Galaxy bias in COMBO-17

In this chapter the bias —the relative bias and bias with respect to dark matter— of red and
blue galaxies as function of scale and redshift is measured. For this purpose, the COMBO-17
Survey offers an unique opportunity. It provides the so-far largest galaxy sample in the regime
0.2 < z < 1.1 covering an area of ~ 0.78 deg?, observed in 5 broad-band and 12 narrow-band
filters. Based on the photometry, photometric redshifts of galaxies brighter than mpr < 24 mag
have been derived within a few percent accuracy as well as absolute rest-frame luminosities
and colours.

The full galaxy sample with photometric redshift information is split into a red and a blue
sample by applying a redshift-dependent cut in a U —V vs. My (rest-frame) colour-magnitude
diagram. In adopting this specific cut about 80% of the selected red galaxies have morphologies
earlier than or equal to Hubble type Sa. Most of the blue galaxies are (star-forming) late-
type galaxies. In addition, galaxies are chosen to have apparent magnitudes brighter than
mgr = 24mag, which guarantees the photometric redshift accuracy, and absolute magnitudes
brighter than My —5logoh ~ —17mag— (U —V') in order to obtain galaxy samples comparable
in median absolute magnitude at all redshifts. The aperture statistics as described in Chapter
3 is employed to measure the linear stochastic bias of the red and blue galaxy sample as a
function of scale and redshift. In order to have a compatible statistical quantity that quantifies
the relative bias between red and blue galaxies the formalism is slightly extended, estimators for
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the relative bias are explained. The data set is subdivided into four redshift bins with median
redshifts (z) = 0.3,0.5,0.7,0.9 and widths Az = 0.2. The effective comoving physical scales
probed at 10’ aperture radius are 2.43 h~*Mpc, 3.85 h~'Mpc, 5.13 h~'Mpc and 6.17 A~ Mpc,
respectively. Aperture radii between (/.5 < €, S 24" are used.

Except for the red sample with (z) = 0.3 it is found that red and blue galaxies are differently
biased with respect to the dark matter, b # 1, at all analysed redshifts. Averaging the bias
factor over all observed scales yields b = 0.95+0.06,1.2+0.1,1.39 £ 0.08,1.36 £ 0.03 (red) and
b=0.36+£0.03,0.55+0.07,0.58 £0.03,0.52+0.03 (blue) for (z) = 0.3,0.5,0.7,0.9, respectively.
The figures allow a moderate bias increase with redshift by a factor of 1 — 2 in concordance
with ACDM predictions. Moreover, a small increase of the bias factor towards smaller scales
is seen in the data for the red and blue sample. A scale-dependence of galaxy bias is also a
prediction of the ACDM model. Due to the relatively small survey area the measurement of
the dark matter-galaxy correlation factor is not directly possible because the signal-to-noise
on the scales of interest becomes too small. By assuming a singular isothermal sphere profile
for the so-called galaxy-galaxy lensing signal, on which the dark matter-galaxy correlation
factor is based, it is crudely estimated that for (z) = 0.3 red galaxies are on all scales highly
correlated, req ~ 1.1 0.2, to the dark matter field while blue galaxies may be less correlated
with rppe = 0.5+ 0.2 for 8, ~ 1" and rpjue = 0.8 £ 0.2 for 0, ~ 20'.

As to the relative bias factor, b, between red and blue galaxies it is found that red
galaxies are more clustered than blue galaxies. The relative bias factor is scale-dependent:
brel = 3.0 £ 0.5 for O, ~ 1’ decreasing to by =~ 2.2 £ 0.5 for 0,, ~ 22'. For scales smaller
than 0,, ~ 1’, the bias factor is decreasing again down to by = 1.5 & 0.2. The relative cor-
relation factor, rye, of the distributions of red and blue galaxies is clearly scale-dependent. It
drops from a value close to unity for large aperture radii to . = 0.55 £ 0.05 on scales of
about @,, ~ 1'. The scale-dependence of 1 is probably intimately related to the well known
morphology-density relation of galaxies. If so, the results show that there is such a relation
present up to (z) = 0.9. This needs further investigation. To address the question whether
rrel < 1 is due to a non-linear relation between the red and blue galaxy density or mainly due
to a random scatter, we assume a bivariate lognormal model for the probability to obtain a
joint pair of values for the densities of red and blue galaxies. This is a common assumption for
galaxy number densities in the literature. With this assumption and the measurements for the
aperture statistics we can disentangle non-linearity, €, and stochasticity, €scatt, contributions
to the correlation factor, 7 = (1 + €2, + 2.att) /2. On all analysed scales, the major con-
tributor to 7y is a stochastic scatter with egcatt/€n1 =~ 5 — 15. Therefore, the bias between red
and blue galaxies is clearly non-deterministic. If red galaxies are highly correlated to the dark
matter field, as indicated by the galaxy-galaxy lensing signal, then blue galaxies have, on small
scales, not only to be randomly scattered with respect to red galaxies but also with respect
to the dark matter density field. This poses a new constraint on models for galaxy formation.
Within the statistical uncertainties we do not find a clear evolution with redshift for r.e, brel,
€nl and €gcatt -

Chapter 6: Constraints on cosmology using shear tomography correlations

Cosmological weak lensing by the large scale structure of the Universe, cosmic shear, is coming
of age as a powerful probe of the parameters describing the cosmological model and matter
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power spectrum. It complements Cosmic Microwave Background studies, by breaking degen-
eracies and providing a cross-check. Furthermore, upcoming cosmic shear surveys with photo-
metric redshift information will enable the evolution of dark matter to be studied, and even
a crude separation of sources into redshift bins leads to improved constraints on parameters.
The evolution of structure can be constrained using so-called cosmic shear tomography, which
is performed by binning the galaxies carrying the lensing signal in redshift. Every redshift
bin yields a different cosmic shear field because source galaxies sitting at different redshifts
preferentially probe the matter distribution at different cosmic times. An important measure
of the cosmic shear signal are the shear correlation functions; these can be directly calculated
from data, and compared with theoretical expectations for different cosmological models and
matter power spectra. However, taking subsets of galaxies decreases the lensing signal-to-noise
of the shear correlation functions so that a natural question to ask is how much does redshift
information improve confidence in cosmological parameter estimates? A Monte Carlo method
to quickly simulate mock surveys of the shear tomography is presented. One application of this
method is in the determination of the full covariance matrix for the correlation functions; this
includes redshift binning and is applicable to arbitrary survey geometries. Terms arising from
shot noise and cosmic variance (dominant on small and large scales respectively) are accounted
for naturally. As an illustration of the use of such covariance matrices, it is considered to what
degree confidence regions on parameters are tightened when redshift binning is employed. The
parameters considered are those commonly discussed in cosmic shear analyses —the matter den-
sity parameter Q,,, dark energy density parameter (classical cosmological constant) 25, power
spectrum normalisation og and shape parameter I'. The computed covariance matrices are
incorporated into a likelihood treatment, and also use the Fisher formalism to explore a larger
region of parameter space. Parameter uncertainties can be decreased by a factor of ~ 4 — 8
(~ 5 —10) with 2 (4) redshift bins.
The core of this chapter has been published in Simon, King & Schneider (2004).
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Outlook

Weak gravitational lensing is a tool with great potential for studying galaxy bias. Chapter
3 shows that with lensing the parameters of the linear stochastic bias can in principle be
measured accurately. Moreover, also with lensing (Chapter 6) the clustering of dark matter
can be analysed separately from the galaxy distribution to put constraints on parameters of
cosmological models. At the moment practical limits mainly originate from statistical noise
due to the relatively small area of available surveys. Ongoing lensing surveys —such as the
Subaru Survey, CFHT Legacy Survey or OmegaCAM Survey— and surveys planned for the near
future —as surveys with SNAP, PANSTARS, VST or LSST- are going to change this situation
completely. Survey areas will comprise hundreds of square degrees observed in multiple colours.
Even higher-order correlations of cosmic shear will be measured with reasonable signal-to-noise
ratios providing independent new constraints for cosmological parameters. We are on the brink
of a very exciting time for observational cosmology.

A galaxy bias analysis like in Chapters 4 and 5 will be possible over a wider range of length
scales with a good resolution in redshift. The expectedly small evolution of bias in the redshift
range accessible with lensing, that is not properly resolved in GaBoDS or COMBO-17, should
then become visible. The bias model in Chapter 2 encourages us that new constraints on
galaxy evolution will be found. However, this model, as being based on linear perturbation
theory, offers only a limited view on the evolution of galaxy bias. Its description is only valid
on linear scales. An improved evolutionary bias model is required, particularly for modelling
the scale-dependence of bias. Currently the most successful analytical model for cosmic large-
scale structure is the halo model. It predicts correlations, including higher-order correlations,
even on non-linear scales. Another advantage is that it relates density correlations to physical
parameters such as dark matter halo profiles and galaxy halo occupation numbers. For an
evolutionary bias model based on the halo model, however, the redshift evolution and, for
practical applications, a translation between halo model parameters and bias parameters needs
to be worked out.

As pointed out in Sect. [LL3] the linear stochastic bias scheme does not distinguish between
a non-linear and stochastic bias. Therefore, we cannot tell whether the observed decorrela-
tion, r < 1, between galaxy number density and dark matter density as measured in GaBoDS
(Chapter 4) and COMBO-17 (Chapter 5) is due to the fact that the galaxy density is random
with respect to the dark matter density, or due to the fact that the number of galaxies at
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some position is actually a deterministic but non-linear function of the underlying dark matter
density. If the galaxy-dark matter relation was completely random, say, we would have to con-
clude that dark matter is irrelevant for galaxy formation. Therefore, the distinction between
non-linearity and stochasticity is important for our understanding of galaxy formation. The
non-linear stochastic bias scheme makes this distinction so that the next step should be to
measure its parameters using weak gravitational lensing. How can this be done? Appendix
[A4 suggests two general possibilities. One way is to specify the type of statistics relating
two biased fields, i.e. specifying the joint PDF for pairs of densities in the smoothed random
fields, and to measure its remaining free parameters. This option is applied in Chapter 5 for
obtaining the relative (non-linear stochastic) bias of red and blue galaxies in COMBO-17. The
assumed model of the joint PDF allows us to estimate the non-linear bias parameters already
from the second-order statistics of the aperture galaxy number count. Lognormal statistics
might also be a valid assumption for the joint PDF of galaxy/dark matter densities, however
so far no observational constraints for this PDF —apart from the second-order cumulants— are
available. A lognormal model is suggested by N-body simulations (e.g. Kayo et al. 2001).
Another possibility is to approximate the joint PDF by its cumulants, for example by means
of a Edgeworth expansion. This seems to be the most practical approach for measuring the
non-linear stochastic galaxy-dark matter bias. For this purpose, one has to find an adaption of
the method in Chapter 3 to third-order aperture statistics. Most of this work has already been
done (Schneider & Watts 2005; Schneider, Kilbinger & Lombardi 2004; Schneider & Lombardi
2003; Jarvis et al. 2004) using estimators of correlations of cosmic shear and galaxy positions
in triangle configurations. However, the remaining details for an explicit application to galaxy
bias still need to be done. In this context, halo model predictions for the non-linear stochas-
tic bias parameters are also something worth considering. Maybe even an analytical model
for the evolution of the non-linear bias can be found. First steps have already been made
(Taruya & Suto 2000; Taruya & Soda 1999).

The upcoming generation of cosmic shear surveys will also greatly improve the derived con-
straints on cosmological parameters since also measurements of third-order statistics of cosmic
shear will become feasible. In addition, multi-colour information of the source galaxies will
confine the redshifts of individual galaxies. As for second-order shear tomography correlations
(Chapter 6) third-order correlations are also very likely to further increase the confidence on
cosmological parameters. The expected gain from these improvements is addressed by ongoing
studies. With these advances we may soon hope to learn more about the mysterious dark
energy that is challenging modern theoretical physics and cosmology.
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APPENDIX A

Appendix: Miscellaneous

A.1. Fast Hankel transformations

This Appendix briefly summarises a method (in detail: Hamilton 2000) that can be used to
tackle integrals numerically, like the biased Hankel transformation

a(r) = /0 Sk (k) g (k) () (A1)

a(k) = /0 Tdrk (rk)*? J, (kr)a(r) . (A.2)

a(r) and a (k) are a Hankel transformation pair, ¢ and p real numbers. ¢ = 0 indicates a
so-called unbiased Hankel transformation. The integrals are numerically troublesome since the
integration kernel —a spherical Bessel function J, of p-th order— is an oscillating function.

Siegmann (1977) noted that this integral transformation, taking a () to a (k) and back, can
actually be pictured as a convolution on a log-scale, Inr and In k respectively. As this not only
holds for integrals of the kind above, we conduct the following derivation for a slightly more
general class of integrals, namely

f k)= / dr kK (kr) f(r) , (A.3)
0
where K (z) is some arbitrary function. In the case of the Hankel transformations, we have

K (z)=2%1J,(z) or K (z) =2"7J, ().
Going from the linear scale to the logarithmic scale, x = Inr and y = In k, Eq. (A3]) becomes

flog (y) = /_+OO dz "™ K (ex+y) fiog (€7) (A.4)
“+oo

= /_ dz K (z 4 y) fiog () (A.5)

= (K fiog) () (A.6)
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where fiog () = f (e*) and ﬁog (z) = f (%) are f and f on a logarithmic scale. This transfor-
mation shows clearly that the Eq. ([A3]) is a convolution on a log-scale with the convolution
kernel

K(z) ="K (e7) . (A7)

From the numerical point of view, convolutions, f * g, are convenient because in Fourier
space they reduce to the simple product, f x g*, of the Fourier transforms ¢ and f according to
the convolution theorem; a Fourier transform is easily implemented using the FFT algorithm
(cf. Press et al. 1992). Thus, the numerical recipe for Eq. (A3 is

1. Evenly sample f(r) on a logarithmic scale by fi = f(roel=NJAITY where Inr, =
(In7rmax + Inrmin)/2, Ne = (N —1)/2 and Alnr = (Inrpax — Inrym)/N. N is the
number of sampling points of the log-scale with index i € {0,1,..., N — 1} stretching
from In rpi, to Inrpax about the centre r..

2. FFT transform f; to obtain f;.

3. Multiply every fl by u;, = F* [K](kz) where k; are the k-modes corresponding to fi; these
are usually integral multiples of the Nyquist frequency 7/(NAlInr) depending on the
conventions of the FFT algorithm. F*[K] denotes the complex conjugate of the Fourier
transform of K.

4. Owing to the peculiarities of the FFT, there are usually Fourier coefficients fz and f]
with k; = —k; in the FFT array that share the same elements; they are transformed
in a special way since the transformed f (r) has to be real: set Im fi =Im f] = 0 and
Re f; = Re f] Re f; x Re u; [real f (x) obey the constraint f(k) = f*(—k)]

5. Re-FFT the product f; x @; to obtain f (k) (Eq. [E3) sampled on a log-scale with
ki = 1/roeNe=DAIT (the exponent has switched sign).

Ways to reduce the systematics —aliasing and ringing— are not discussed here and can be found
in the Appendix of Hamilton (2000).

The expressions for F[K](k) corresponding to thesis relevant kernels K () are summarised in
the following table. The kernel in the first row is required for the actual Hankel transformation,
while the kernel in the second row was required for working out the Eqs. ([BI4]) for the
polynomial filter (B80l); the third row is simply a generalisation of this kernel. T'(z) denotes
the complex Gamma function.

K (z) F[K](k)
iwtq T[5(0+ptq+ik)]
2 Ju () 2 F[g(l—i-u—q—ik)]
9 1 T[=1Gk+9)|T[L (1+ik+2p+q)]
29 [Ju ()] 2V T[S (1—ik— q]l"f% 1—ik+p—q)]

244 [ik—q)T [ 4 (1+ik+p+v+q))

z? J, (x) J, (x) T[L(1—ikt+p—v—q)|T[E —ik—ptv—a)|T[L (1—ik+utv—q)]
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LEAST-SQUARE TEMPLATE FITTING

A.2. Least-square template fitting

Consider the following problem: a set of Ngumple joint data points y; and Z';, where @'; is a
Ngim dimensional vector, are to be best-fitted by a suitable linear combination of Ng; template
functions f,, (#) : RNaim — R:

Ny

m=1

where a,,, denote the linear coefficients of the best-fit. In the following, we will summarise the
well-known solution to this problem.

We encountered this problem in Chapter Bl where we required a transformation from the
equatorial coordinates of the Edinburgh galaxy object catalogue to the pixel coordinates of
the GaBoDS (Bonn). In this case, the y; are either the z- or y-pixel coordinate and #; =
(v, d;) are the corresponding equatorial coordinates, right ascension «; and declination ¢; .
We fitted this transformation with a set of polynomial templates up to the 5th degree, thus
fm (1, 22) = 2'2h? with ny,ne > 0 and n; + ny < 5. For every individual patch —A901,
AXAF and S11- the GaBoDS lens catalogue was used to determine the best-fit coefficients «a;,
so that the equatorial coordinates of the Edinburgh object catalogue, including photometric
redshifts, could be transformed to the GaBoDS pixel coordinate system.

In order to work out the best-fit coefficients «,,, we demand that the weighted mean of the

deviation, A, from the template fit (A is small:

N, Nea . 2
Zz’:simple Wi |Yi — th:tl amfm (x z)]
Zﬁ\;simple w;

where w; > 0 is a statistical weight for the i-th data point. To minimise the deviations we
require for each a,, that Cm =0:

A

: (A.9)

Nsample Nﬁt
> Z[yz-—zamfm @-)] fulE) = (A10
1= m=1
Nsample 1 Nsample;Nat
S wiyi fa (@)= Y Wity o (£0) fu(F) = 0 (A.11)
i=1 i,m=1
Ny
= (i fu (T4) Zam (fn () fu (F3)); (A.12)

where we, for convenience, introduced the expression

sample

Z w; gi (A.13)

to denote the weighted sum of g; over all data points in the sample. The solution to the
problem is therefore finding the roots of the set of Eqs. ([AI2) with respect to the ay, (one
equation for each n = 1... Ng;). This solution can immediately be written down due to the

linearity of the equations, namely
A=FY (A.14)

197



APPENDIX: MISCELLANEOUS

where we use

Ap = oy, (A15)
Y, = <yz fm (fz»z ’ (A'16)

The procedure is therefore to compute F and Y from the set of data points and template
functions and then to numerically invert F, finally working out F~1Y .

A.3. Probability theory in a nutshell

In cosmology, one studies the statistical properties of cosmic fields and relates them to physics,
like, for instance, the correlations in the spatial galaxy distribution or the anisotropies of the
cosmic microwave background. The basic language that is used to describe their characteristics
as random fields is briefly summarised here. A much more detailed account can be found in
e.g. Bernardeau et al. (2002), Bardeen et al. (1986) or Adler et al. (1981).

One dimensional probability distributions

Let 2’ be the outcome of an experiment, an observation, etc. The probability of obtaining a
certain value z < 2/ < z + dx from a continuous set of possible values X is described by the
probability density, probability distribution function (PDF) P (x), in the sense that P (z')dx
is the probability of finding the value z’. The probability density is normalised:

/ de P(z)=1. (A.18)
X

The ensemble average or expectation (f (x)) denotes the average of f (x’) that would one get
by performing an infinite number of trials

(f (@) = /X dz P(z) f(z) . (A.19)

Moments

One special important example of f (z) are the so-called n-th (raw) moments of P (z) defined
as my, = (™) with n being an integer. For n = 1, thus m; = (z), we have the mean of the
PDF. The central moments defined as p,, = ((x — m1)™) describe the scatter 2’ about the mean
(x); 02 = po is called the variance of P (x). The raw and central moments are related to each
other by the following binomial transformation

n
n »
i=1
Often we use the moments of a PDF as a characterisation of the PDF itself because they
capture important properties of the PDF, or because we do not know the complete PDF. For
example, take the Tschebycheff inequality

8N

P(|x—m1|>k)§%, (A.21)
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where k > 0 and P(|z—m1| > k) denotes the probability to obtain a value 2’ with |2’ —m1| > k.
This shows that the average and the variance of a PDF already determines the fraction of trials
x’ that can be expected to be found within the interval (z) — k < 2/ < (x) + k, regardless of
how the PDF in detail looks like.

Finite dimensional probability distributions

We go one step further by introducing events that do not have just one outcome x but a finite
set of outcomes x; with i € {1,2,..., N}. Each of the z; is considered as an individual random
variable. As before we have the joint probability density P (x1,x2,...,zN), or simply P (x;),
describing the statistics of the set x;. The ensemble average of f (x;) is now:

UF (2)) = / ANz P (2i) f(25) - (A.22)
Similarly, we can define moments of P (z;) of the order |n| =ny +ng + ... + nn:

My ng,mn = (TP 2h? . i) raw moments , (A.23)

By gy = (@1 — (x1)™ (m2 — (22))™ ... (28 — (xN)™Y) central moments .

Monte Carlo techniques

Monte Carlo methods approximate the integral ([A22]) by

1 Y :
(Fa) = D fa) (A.24)
7j=1

using a synthetically produced large chain of 1 < j < N different random numbers, mgj ),
employing a simulated random process obeying P(z;). Monte Carlo integrations are applied
if one is interested in (f(z)) but is either unable to perform the integral [A22)), or because
one does not know P(z) analytically. The latter is the case for the Monte Carlo sampler
in Chapter Bl where a realisation of random fields x; is performed by a series of well-defined
steps without the need to explicitly write down or use P(x); the “(f(x))” are in this specific
application, for example, the covariances and averages of estimates for 2-point correlation
functions (galaxy clustering and cosmic shear). The art of Monte Carlo techniques is to build
a random number generator for x;. Common generators are Gibbs sampler and Markov chains.
Random number generators are also a clever way to evaluate integrals numerically, in particular
higher-dimensional integrals.

Bayes’ theorem

Let us say, we consider events that consist of the outcomes, (x;,¥;), of two sets of random
variables x; and y;. If we select just those x; for some fixed y; and focus on this subset of
conditional events, x;|y;, then we are considering the so-called conditional PDF written as
P (xily;). Bayes’ theorem states that

P (x;ly;) do; P (y;) dyj = P (y;]z:) dy; P (2;) do; = P (23, y;) dwgdy; (A.25)
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where P(y;) is the PDF of y; ignoring the values of z;,

P(y;) = / dz; P(xi,y5) (A.26)

while P(z;) is the PDF ignoring the values of y;,

The function P (z;,y;) is the PDF for both z; and y; to occur at the same time, their joint PDF.
For uncorrelated variables x and y, we always have P (z|y)dx = P (z)dz and P (y|z)dy =
P (y) dy, meaning that x and y do not care about the outcomes of the other event y and =z,
respectively.

Moment generating function

As to the calculus in probability theory, it is very convenient to introduce the (raw) moment
generating function ¢p of P (x;) defined as

¢p(Ji)E<eiijij> = / ANz P (z;) et X% (A.28)
— P(x;) = /dNngbp(Ji) e 12Ty (A.29)

where J; is the conjugate variable of z;. If ¢p is known, the raw moments of P (z;) are simply

din!
— _jnl .
mﬂh”%---ﬂN 1 [djlnldjéw . dJ]?[N (bP (Jl)] j_o . (A30)

The power of this representation lies in the fact that we can easily write down the moment
generating function of a PDF, P’(y;), of random variables y; that are transformations of x;:

opr (J;) = /de P (x;) etif@7 (A.31)

The vector of random variables § = f (#') denotes such a transformation of the random vari-
ables & = (z1ay ... xx), and f(£)J indicates its scalar product with J = (JiJo ... Jy).
The new generating function ¢p: allows us to express the moments of P’ (y;) in terms of the
moments of P (x;). The explicit knowledge of P’(y;) is not necessary for that task.

As one illustrative example, consider the generating function of a random variable z =
ax + by + c. It is assumed to be a linear combination of two uncorrelated random variables x
and y, thus (xy) = 0. The coefficients a, b, ¢ are just constants. Let P,(z) be the PDF of z. It
follows from (AZ31]) that

or.(1) = [ dedyPlay)e oo (A.32)
— eicJ /dZL‘ Px(ZL') eiaJr /dy Py(y) eibe (A33)
= &¢p, (at)¢p, (b]) . (A.34)
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The generating function of P,(z) is hence a product of the generating functions of P, (x) = P(z)
and P,(y) = P(y). This decomposition is due to the fact the the joint PDF of z and y, P(z,y),
separates into P (z,y) = P, (x) P, (y). According to (A30) the n-th moment of P, is the n-th
derivative of ¢p, with respect to J at J = 0. As ¢p, is a product of three functions, this n-th
derivative will produce a polynomial in the individual moments of P, and P, with orders less
or equal n.

One may ask whether a more natural definition of the moments can be found that is linear for
a linear combination of uncorrelated random variables and does not mix moments of different
orders in that case? Such a definition is introduced in the following.

Cumulants

Quantities related to the moments but with nicer properties are the cumulants, kp, ny, .. ny, OF
semi-invariants of a PDF; they are defined like the moments in Eq. ([A30) as derivatives of
some generating function Zp (J;):

din!
_ il ,
Rnina,..nn 1 dJlnlngQ - dJ]?[N ZP (Jz) . 5 (A35)
where
> ()™ (1) ... (1Jn)™Y
Zp(J)=ep ()= > Koy my (A.36)

nilna! ... ny!
ni,...nNy=0 1+1%2 N

is the cumulant generating function of P(x;). It follows from this definition that the cumulants
are polynomials of the moments, like, for example, in the case of a one-dimensional PDF

K1 = my (A.37)
Ky = mg—m3 =y (A.38)
k3 = 2mq — 3mims +m3 = us3 (A.39)
Ky = —6mi+12m2my —3m3 — dmyms + my = pg — 313 . (A.40)

In many respects, the cumulants are like the moments. In fact, they are identical to the central
moments for 0 < |n| < 4. However, they are more basic in other respects: the cumulants,
kn[P], of the PDF P, in the last section are

K [Ps] = a"kp [Py] + 0" kp [Py] (A.41)

where k,[P;] and k,[P,] are the cumulants of P,(x) and P,(y) respectively. This means that
the cumulants are “linear” to all orders n which is clearly not the case for the moments. If
we consider sums of uncorrelated random variables, the moments of different orders in the
individual P, and P, mix in the sum-P,. As this is not the case for the cumulants they are
also called unconnected moments or reduced moments of a PDF.

One defines the skewness of a one-dimensional PDF P(z) by S5 = pus/ ,ug/ ? and the kurtosis
by Sy = ps/pu3 — 3 which are the third- and fourth-order cumulants of the normalised PDF
P (z/o,). A non-vanishing skewness indicates an asymmetry about the mean, while the kur-
tosis is a measure of the spread of the distribution relative to a normal Gaussian distribution.
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Multivariate Gaussian probability distribution

From the point of view of the cumulants, the simplest PDF has all cumulants vanishing beyond
second-order, thus Kp, n,..ny = 0 for |n| > 2. According to Eq. ([A23)) and the definition
([AZ36]) we can work out this specific PDF:

Poauss (1) = / dV J exp <i<f>j - %jtc *> e i (A.42)
1 1 1

= TREE exp (-- (7 — (@) C T - (:E))) , (A.43)

where Cj; = ((x; — (z))(z; — (x;))) denotes the matrix of the second-order cumulants of P(x;);
it is the so-called covariance matriz. The PDF Pgauss(z;) is the well known multivariate
Gaussian probability function. Therefore, the Gaussian PDF is in some sense the simplest of
all PDFs. Note that each z; individually obeys a Gaussian distribution.

For PDF's whose other cumulants are not vanishing but negligible with respect to the second
order, t.e.

I K/nl na,...,.nN
A = e <1, A44
n1,12,...,N [Uzl]nl [O_zz]nz o [O':cN]nN ( )
one can find a useful asymptotic expansion of P (x;) about a Gaussian by expressing the
cumulant generating function as a Taylor series in U?Ei = <:1322> — <xz>2 This expansion is known
as the Edgeworth expansion (Blinnikov & Moessner 1998; Juszkiewicz et al. 1995)

Estimators

In practice, we usually would like to evaluate the moments, cumulants or, in general, f(x)
from our subject of observation. However, we never have the opportunity to actually “see”
the ensemble average, (f(z)), over all possible realisations of the stochastic process. Instead,
we have one or a finite set of realisations that we can use to estimate the, say, cumulants k.
Applying the same estimators to a different realisation gives us in general a different estimate
k. Therefore, the outcomes of estimators are random variables on their own obeying their own
PDF P (R).

We call an estimator unbiased if (k) = k. Note that a biased estimator can still converge
towards x with the number of realisations taken into account for the estimation becoming large.
The theory of estimators tries to find unbiased estimators with as small as possible variance
</%2> — (/%}2 An important quantity in this context is the maximum likelihood estimator (cf.
Tegmark et al. 1997).

Random fields

Consider a continuous field of random variables. We attribute to every point & in our N
dimensional index space a random variable or a vector of random variables which is denoted

!The Edgeworth expansion is a special case of the Charlier series by which a PDF, P’, can be expressed
as a series of derivatives of another PDF, P, if the difference between the cumulants of both is known.
Charlier series are used to approximate PDFs P’ which are only slightly differing from a well known
P. For Edgeworth expansions of P’ one assumes a multivariate Gaussian for P which has the same
mean and covariance than P’.
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by d (). A random number generator is attached to every point in the field, so to say. We call
this continuous field of random variables a random field. For our applications, the index space
is usually the four dimensional space-time or a position on the sky, and the random variables
are, for instance, the density contrast of the dark matter or the aperture mass. We will assume
in the following that the average (0(2')) at any point vanishes. This can always be achieved by
a local transformation of the random field, namely by §(Z) — §'(Z) = 0(Z) — (6(Z)).

We can picture a random field as being described by a PDF depending on an infinite set of
variables 0 (). Instead of describing the whole PDF, we can pick out a set of n values 6(%;)
from the random field and study the moments of their joint PDF P(§(%;)), independent from
all the other (infinitely many) variables:

EMN(F, Toy .. T )= (6(F1) 0(F2) ... 0(Zn)) , (A.45)

where £ is a so-called n-point correlation function of the random ﬁeldE.

An important sub-class are random fields that are statistically homogeneous and isotropic
(see Sect. [CZT]). These symmetries greatly simplify the correlation functions that in the
general definition above are functions of the absolute positions of the §(z';).

Random fields in which every individual ¢ (#; ) has a Gaussian PDF (or multivariate Gaussian
PDF if § is a vector), are called Gaussian random fields. Gaussian fields obey the Wick
theorem that (in this case) states that all n-point correlators with n > 2 decompose into
sums of products of two two-point correlators or vanish otherwise. Gaussian random fields are
therefore completely determined by their second-order correlators &) (£'1,72). In particular,
all moments of multivariate Gaussian PDFs decompose into the sum of products of second-
order moments.

In the same manner as above the finite PDF moments, we can express the random field
correlations €™ in terms of a generating function, which is then a generating functional since
we now integrate over a infinite continuous set of random variables (see e.g. Bernardeau et
al. 2001; Matsubara 1995). The correlations & (") are expressed as functional derivatives of the
generating functional. Logically, we can —in analogy to the finite PDF— introduce cumulants
or connected correlations ££n) of random fields. It turns out that, as for the finite PDFs, the
connected n-th order correlations are polynomials in the correlators €™ with m < n. For
Gaussian random fields, higher-order connected correlations with n > 2 vanish in analogy to
the finite multivariate Gaussian PDF.

Polyspectra of random fields

An alternative way other than £ to quantify coherent structure in a random field are the
polyspectra; they are completely equivalent to the real space correlators. In comparison to £
the polyspectra A quantify the correlations of the Fourier coefficients c(k) of the random
field:

Am (Elgzzzn) = <c(z§1)c(z§2)...c(z§n)> (A.46)

N,_. N N [ - i &k
= /d z1dVzy ... dV xy, 5(”)(331,3:2,...,ajn)eﬂzjrﬂ i

21f § is actually a vector of random variables, then the definition of ¢ should be understood as a tensor
product of the §’s.

203



APPENDIX: MISCELLANEOUS

where we are using the following convention

— C 7 N — S o
(k) = / Ve §(@) et R (7)) = / %c(k:)e‘lk'r. (A.47)

—

The Fourier coefficients c(k ) are linear combinations of the random field variables § (£'). There-
fore, if we have a random Gaussian field in real space we automatically also have a random
Gaussian field in Fourier space since linear combinations of Gaussian random variables are
Gaussian as well.

Effect of filters on random fields

Frequently, either on purpose or as a consequence of the means by which we investigate the
statistics of random fields, we smooth or convolve the random field with some filter before we
look at the correlations in the field. The effect of the smoothing with a real filter F' by

§(T) = (0% F) (&) = / dVa' 5(z' — T)F () (A.48)

is that we attenuate or amplify fluctuations (correlations) on characteristic scales, i.e. for
particular k, defined by the filter. The smoothing effectively modifies the polyspectra as
follows from the convolution theorem:

— —

AV K, k) = x Ak, k), (A.49)

[[F %)
i=1

where F* denotes the complex conjugate Fourier transform of the filter F'. In particular, we
modify the power spectrum and bispectrum (for a definition see Sect. [LZ2):

4]3(:) = |{5(€)|2€’(\€|)~ o S (A.50)
B(k1,k2) = F(k)F*(k2)F(k1+k2)B(|k1l kol <k1,k2). (A.51)

Aperture statistics

Yet another way, apart from n-point correlation functions or polyspectra, of characterising
random fields or cross-correlations between different random fields is to use aperture statistics.
That is one considers correlations between values in the random field(s), d;, at the same posi-
tion, &', obtained by convolving the fields with some, usually isotropic, kernel F;(z); thus one
considers the aperture moment

A&, Oap) = (51() ... SN (&)) (A.52)

where 0/(2') = (0; * F;)(Z'); N is the order of the aperture moment. The values 4} are broadly
speaking weighted averages of values §; in the neighbourhood of the aperture centre . The
convolution kernels or aperture filter F; have a free parameter, 6,, say, that parametrises the
typical size of the “neighbourhood”; it is called the aperture radius. For higher-order aperture
moments the aperture radii may be different for different ¢;. This is, however, not the case in
this thesis. Note that the difference to the n-point correlation functions is that A expresses

204



PROBABILITY THEORY IN A NUTSHELL

correlations between values of smoothed random fields in the same point, while £ expresses
correlations of field values at, in general, different points. Moreover, A explicitly depends on
the specific definition of the aperture filter; it quantifies moments of the (one-dimensional)
joint PDF, P(4},...,0%), of values at & of random fields smoothed out to a certain spatial
scale. For concrete examples of random fields, think of galaxy densities, dark matter densities,
gas temperature etc. whose relation between each other may be characterised by the aperture
statistics. In practise, the field quantities, such as the galaxy number density for the aperture
number count or the convergence for the aperture mass (Chapter B), are averaged over the
aperture area, and the moments ([AE2) of many differently placed apertures are averaged
making use of the fair sample theorem. Counts-in-Cell statistics of galaxies (e.g. Wild et
al. 2004) is another example of aperture statistics often employed in astronomy to study the
clustering of galaxies.

In the following discussion we restrict ourselves to statistically homogeneous and isotropic
random fields which are the only relevant for cosmology (Sect. [CZT]). Moreover, F;(x) = F;(|Z|)
is assumed to be isotropic (and real). In adopting these symmetries, A does not depend on &
so that in calculations we are allowed to set # = 0 without loss of generality. Using the fact
that due to the symmetries we can express the n-point correlation function a

(6(£1)...8(FN)) = EN(|&1 — Zol,|To — T3),...,| TN — Z1]) (A.53)

one can show with some algebra that in a two dimensional index space £ A can be calculated
from €W according to the integral transformation
N-1

Albu) = [ ooy Fu IS°00) TLEOF:+ Feal €00 )
0 =1 =1
= / d:L‘llL‘l ...d:L‘N:L‘NK(I‘l,I‘Q,...,.%‘N)S(N)(l‘l,lj,...,l‘]v) s (A.54)
0
where K (x;) is the following integral kernel with Fj[z] = F(\/Z)
2
K(l‘l,...,.%‘]v) = / d¢1...d¢]v>< (A.55)
0
Zaj +2 Z x5 cos (¢; — ¢j)] X (A.56)
i#j=1
N-1
H E; [:L‘ZQ + ac?H + 2zwipq cos (¢i — Piv1)] (A.57)
i=1

A similar integral relation between A and the polyspectra A can be worked out using the
fact that A are the values of the n-point correlators of the filtered random fields at © = 0,
using the polyspectra of the filtered fields, Eq. ([AZ49)), the relation between polyspectra and
n-point correlators, Eq. (A6, and, ﬁnally, the statistical homogeneity of the random fields:

A%k dky_q - . ’ .
A(eap):/(%)lz... N LF Zkl HF DPM (K ENo1), (A.58)
i=1 =

where POY) is defined in (IC33).

3This means that £ is only a function of the side lengths of the polygon spanned by the points #;.
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A.4. Non-linear stochastic bias through higher-order statistics

Two-point statistics without any further constraints allow only for the measurement of the
linear stochastic bias parameters, Eqs. ([[4d). As already pointed out in Sect. this
parametrisation cannot discriminate between non-linear and stochastic effects in the relation
between two random fields. For that reason, Dekel & Lahav (1999) introduced the non-linear
biasing scheme that consists of three (scale-dependent) bias parameters, 13, b and oy, (Sect.
[CA3). They are a specific way to quantify the probability, P(dg,dm), to find a pair of random
field values, d; and dy,, at a point in the fields. In the following, we will focus on the question
of how the non-linear stochastic bias can be estimated.

The non-linear stochastic bias scheme is based on the very general assumption that the
density contrast of galaxies, dg, is a function, f(dy), of the dark matter density contrast, op,
plus a random component €(dy,):

Og = f(0m) + €(0m) , (A.59)

with (¢(dm)) = 0. It follows from the definition of the density contrast that we also must have
(f(0m)) = 0. One can show that

F(Gu) = {6elo) = [ 43,6, P(3iJ5). (A.60)

The expression P(dg|0m) is the conditional PDF of 4, for a fixed 6y,. The function f(dm)
is thus the average value that one should expect to obtain at places where the dark matter
density contrast is d,,; in absence of any stochasticity, €(dy,) = 0, this is exactly the value one
obtains for d;. Non-linearity is indicated by deviations of f(éy,) from a linear function. In the
Dekel & Lahav Ansatz, b is the slope of a linear regression fitted to f(dy,), namely

= (fggfm _ <5§n> / Ao (Bun) O P(Om) (A.61)
= @ / A0 d8g Og O P(0g|0m) P(6mm) (A.62)
_ @ / 600y 5 G P65 6m) (A.63)
_ <‘z§§3> —br, (A.64)

where we applied Bayes’ theorem, P(0g|0m) P(0m) = P(dg,0m), and used Eq. ([AG0). The
variables b and r are the linear stochastic bias parameters, Eqs. ([49). In particular, note
from this small exercise that (f(0m)0m) = (dg0m). The linear regression slope, b, is thus
different from the “linear” bias factor, b, but can easily be computed from b and r.

A decorrelation, r < 1, of two random fields can have two causes, both non-linearity and
stochasticity:

r= (1 + 6gcatt + 6?11)_1/2 ’ (A65)

where €2, and €2 are sensitive to stochasticity and non-linearity, respectively. They are
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defined by Eqs. (L24) and Eqgs. (L&), vieldingd

€l = =~ — 1= 3 = (A.66)
b? (f(6m)0m) (0gOm)
1 ([f (0m)P?
— & = ﬁ<<57§>> -1, (A.67)
o _ o (02) ([0 = fOm)]?) _ (dm) (07 — [F(6)]*)
€scatt — 82 - <f(5m)5m> — <5g5m> (A68)
1 (6m)]?
= 6gcatt = ﬁ (1 - %) : (A69)

Without any further assumptions on P(dg, dr) there is no way to disentangle egcatt and €, from
b and r only. The key quantity in this context is obviously <[ f (5m)]2> because it determines
the contributions to €gcaty and €p:

(F6)?) = [ o (£ PG) (A.70)

2
_ / o,y { / dagagp(agwm)] P(6,) (A7)
_ / A6, d8,48), 65 8, P (34 16m) P(5,16m) P(61m) (A.72)

PO, 6
_ / 15,nd6,d8, 5, 8, gféj?) ](D(gém))P(am) (A.73)
P(6,,6m) P(3,, 6o

_ / d6, 5, / a8, , / ab, L% P()ém()g )

2
= WGP) = b | [ a0, PG| PG (A.75)

If the joint PDF P(dg,0m) is a bivariate Gaussian, Eq. ([BXZ3), the integral becomes <[f(5m)]2> =
72 <(5§> and, therefore, € = 0 and €2.,;; = 1/7%—1 which shows that a Gaussian model is a linear
model in the non-linear stochastic bias scheme. On the other hand, if d is a purely deterministic
function of 6y, §; = f(6m), we have automatically ([f(0m)]*) = (d7) and therefore €2, = 0

and €2 = 1/r? — 1.

Bivariate lognormal model for P (0., d;)

How can we determine <[ f (5m)]2> in practice? The most convenient way is, of course, to
estimate the full P(dg,dr) from the observed set of pairs (dg,dm). This is difficult, however, if

4Note that we have in the notation of Sect. f(0m) = b(6m)0m- Moreover, the original Dekel & La-
hav parameter b, b and o, are in terms of the linear bias parameter b and 7— and the here used
eXpressions €scatt, €nl: 1. b =br, 2. b="br(1+ €22 and 3. 0, = b7 éscatt-
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the number of pairs is small and/or the estimates for d,, and dy are very noisy. This is usually
the case.

Wild et al. (2004) assume that P(dg,0n) is a bivariate lognormal distribution and fit this
template PDF to the counts-in-cell statistics of galaxies, where 6, and d, are here the density
contrasts of two different galaxy types. Their particular bivariate lognormal distribution is the
bivariate Gaussian distribution in Eq. B73l), P(d1,0d2), that is transformed according to the

relations
1

Sm = exp (51 -3 <5‘f’>> —1;  dg=-exp (52 - % <5§>> -1. (A.76)

For more information on lognormal fields, see Sect. B34l The bivariate lognormal PDF seems
to be a realistic assumption to measure the relative bias between galaxies. The authors show
that the non-linear stochastic bias parameters are in this case directly related to the 2nd-order
cumulants of the PDF. Taking the authors’ results of aﬁ and b for a bivariate lognormal PDF
(see their Appendix) we obtain:

([f(6m)]?) B ol 1 In? ((0g0m) + 1)
R =1l =112 = @<exp[ N ]—1) . (AT

For small dispersions, <(5§> < 1 and <5§1> < 1, this expression is approximately r2 as in the
bivariate Gaussian case. This should be expected because lognormal distributions asymptot-
ically reach Gaussian distributions if dispersions becomes small. Two-point statistics are, for
a lognormal model, therefore sufficient to constraint €, and eg.att— however for the price that
we have to assume a particular PDF.

Edgeworth expansion of P(4,,, 6,)

Another way different to assuming a template PDF is to measure the cumulants of the PDF
to increasingly higher orders n + m,

(0mg )
>n/2 <5§>m/2 ’

(A.78)

n,m

(62

m

where n and m are positive integers, and to express P(dg,0m) as a series in terms of A; j,
<5r2n> and <5§>. This is, however, only feasible in the linear or weakly non-linear regime where
(02,¢) < 1 (Blinnikov & Moessner 1998; Juszkiewicz et al. 1995); such an expansion is called
Edgeworth expansion. Using the Edgeworth expansion,

n! (N —n)! oo —m)
P(0m, dg) (1 + Z Z N 7|))\n,N—n W) Pyauss(0m, 0g) (A.79)
N=3n=0 N mere

up to third order, i.e. truncating this series beyond N > 3, we can approximate a slightly
skewed PDF P(0m,dg) parametrised by its third-order cumulants Ay, ,,, n +m = 3; the PDF
Pyauss denotes a bivariate Gaussian PDF, Eq. (BX3). Using this approximation, we calculate

from (A7H):

([F(0m)?) _ /°° ddn [(03 = DArz + 3r(dm +3hos — 662003 + 08 2000))° 152
(62) 2 9(1 — 30mo,3 + 03 00,3) '

(A.80)
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Unfortunately, due to the expression in the denominator of the integrand we are unable to
evaluate this integral analytically. In order to obtain an approximate result, we make a Taylor
expansion of the denominator up to second order in Ag 3 taking for granted that the skewness
is small, A9 3 < 1; this assumption is made in the Edgeworth expansion anyway. Employing
this, we finally get:

({f6m)?) 2
G "y

where r = A1 is the linear correlation factor.

The technique outlined and applied in this thesis determines the second-order cumulants,
1.e. n+m =2, <N"Mg;> and relates them to <5g5$>. On this level, the terms including third-
order M\, ,, are undetermined (zero) and we cannot distinguish, as in Gaussian case, between
non-linearity and stochasticity since ([f(6w)]?) = r? <5§>. This degeneracy can, however, be
broken if we do the next logical step and go over to third-order statistics.

AT o(14186MG 3) + 1873 572 — 4rA1 2 ho 3 + O(N3 3) (A.81)
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Appendix: Bias model

B.1. Correlations of convolved fields with a third field

Here we calculate the ensemble average ([f * §](k )h*(k /)>/, which is the correlator between the
convolution of two random fields with a third random field. We have h*(k ,) = il(—_k/), since
we are exclusively working with real number fields. Writing out explicitly the convolution of

f and g gives

7];_]2)7 (Bl)

where Bjog is the bispectrum of f, g and h. The only assumption that has been made here is
that the considered random fields are homogeneous, for which holds

~ =/

() FENG(E")) = @r)Pop(k + & + & )Bus(k & &) .

For Gaussian fields the bispectrum vanishes, so that on linear scales contributions from these
correlators can be neglected.

B.2. From power spectra evolution to linear stochastic bias evolution

Here we are using the definitions (Z29) of the linear stochastic bias parameter, the model Egs.
&Z0), &2]) and ) to explicitly write down differential equations for the linear stochastic
bias.
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We start with the bias factor b; relative to the dark matter field:

i _ o0 /B 1 oR 1 /B 10k
oo ot\ Py, 2JP;P, 0t 2\ PyP, Ot

b (1 OP; 1 0Py
N _ - Zm B.2
2<Pﬁat Pm8t>’ (B-2)
where the definition of R (¢) in Eq. ([228) has been used. From Eq. ([Z28)) we obtain
1 GPH T 2 Re <(i)z(§*>,
—_— R(t)—+—|——— (D)) , B.3
Py ot ()bz n; Py (@) (B:3)
where Re [z] = %(w + x*) denotes the real part of z. Plugging in this expression into the
previous equation we get
ab; r; — b;
— = R(t)——+1}
ot O == +1
1 |Re (®;6) 1
II' = — |/ (@) b - B.4
We proceed in a similar fashion for the correlation r; to the dark matter field:
87“@' 0 Pl
hU B.5
ot Ot /P; Py, (B-5)
_ 1 o R _[loR 10
- /PiPy, 0t 2/PiPy |P; Ot P, Ot
11 aPl T 1 8Pu T
= LB ot 2o WG
Now we need Eq. ([Z2Z7) to go further:
1 OP 14y 1 (®05) P (D)
— = t — me - — B.
P, ot R() 2 n; Pn Py ny; ( 6)
L+rb 1 [(®:05)
= — + = T — biri (P
R(t) 5 + 7 P bir; (D;)
Plugging these in yields for the correlation parameter
or; R(t)1—r? 9
S MW7 s
ot 2 b; T
1 (<i>l(§* >, 1 Re <§>Z<§*>, T
I = — ml— il L B.7
! n; P, b P, b? ( )

Now we turn to the evolution of the linear bias parameter between two galaxy populations,
starting off with the bias b;;:

b Ot b; Ot

dby; O by 10b; 10b;
= = by - : B.
ot oty ¥ [ ] (B-8)
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INTERACTION CORRELATORS FOR FIRST AND SECOND ORDER ®;

The expressions in the bracket are worked out using Eq. (B4 so that we therefore obtain

abij R (t) Tz'bj — ijz' bz'j 1 bij 1
_ by + 21— 22 1h B.9
at 2 b 9T Tyl (B9)

The correlation 7;; between two galaxy populations is derived in the same way but is in the

end a bit lengthy:

aTZ'j 0 Pij 1 GPU 1 1 aPH 1 aPJJ
- = — |0y 2 P

ot ot \/PP; “Pyot 2V |P; ot Py ot

(B.10)

The expressions in the bracket have been worked out before, so that the only remaining un-
known expression is (uses Eq. 2Z28])

L0B; _ R() bt by 1 [(@3) (@15,
P - — —(®; — —(®;)| . (B.11
Pij ot 2 bz‘bj?“z'j + n; Pij < > + n; Pij < J> ( )
Taking this into account, we finally get
Orij R(t) (ri —rijrj) b+ (rj —rijri) by 3 g1
= I3 1 [13
ot 2 bib; + 14+ [ ]Z] )
1 [(@:0) 1 Re (@:80) 7y
[y = — |~~~y B.12
K n; P bzb] P b? ( )

_The interaction rates ®; and the density contrasts dx are real numbers, so that the correlators
(q)ié;(), have to be real numbers too. For that reason, we are allowed to omit the real part
operator “Re ” in the interaction terms Iil, IZ? and If’j as has been done in Eqs. ([Z33).

B.3. Interaction correlators for first and second order o,

As we are working with the density contrasts §; instead of the densities n; itself, we rewrite the
above expression for ®; in Eq. ([Z40) using the relations py, = pm (1 + d) and n; = n;(1 4 6;):

®; = A+ B+ Cipm (B.13)
D*fipiis + Eiply + F i pm

B0 + Cipmbum + DFiipi (6, + 8)

2E;p2.0m + F¥ pmiiy (0 + 6,

DI, 150,85 + Eip2 02, + El iy prn0m6r -

+ o+ + 4

Where possible, we absorb for convenience all p,, inside the associated coupling constant,
removing the previously introduced hat “~”. This absorption makes sense, because p,, is
supposed to be a constant and therefore produces in this formalism a degeneracy between p,,
and its associated coupling constant. This results in
b, = A+Ci+E;+ (B: + FZT) Ny + D;Sﬁrﬁs (B.14)
+ Bjn;6, + Cidm + D;*nypis (0r + 05) + 2E;0m
+  FTiy (6 + 6,) + DI*Rpns0,0s + B2 + F i 0mo, .
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The Fourier transform of the interaction term is thus, throwing away the terms contributing
only at k = 0:

®; = B0y + Ciom + DI*,iis (6, + 0s) + 2E;i0m
+  Fliip(6m + 6,) + DIy (8, % 05)
+  Ei(6m * O0m) + Fj (6 * ) . (B.15)
The model equations ([220)) and ([23)) require the interaction correlators (@;65,), (®;07)
and <<I>Z-5;>/ to be evaluated. The last two are, of course, the same up to an exchange of the
indices, so that we only have to determine the first two. Using the definition of the correlation
power spectra in (ZI0)) and the restriction to Gaussian fields (bispectra emerging according to
Appendix [B] are zero), we obtain:

(®;0%) = BI'n.P.+ C;Py + DI*n.ng (Pr + P;) (B.16)
+ 2E,Py,+ F/n,(Pn+PF) ,

(8:8%) = Bl P.; + CiPj + D*nyiis (P + Pyj)
+ QEZ'P]' + FiTﬁr (Pj + PTJ) s

(i); i>/ = B;'nﬁrpri + O]-Pz + D;Sﬁrﬁs (Pm + Psz)
+ 2E;P+ Fln, (P + P) .

Eq. (Z34) for the mean density evolution, however, needs the ensemble average of the
interaction term in real space, (®;). Doing so and removing terms linear in the density contrasts
due to (9;) = 0, results in

(®;) = Ai+Ci+ E;i+ (B} + F])n, + D{*n,n, (B.17)
+ DI*nis (6,0s) + E; (62) + Fl iy (Smdy)

B.4. Fields with fixed bias

Here we consider a new class of density fields —static fields— that may serve as a model source
for producing galaxies within the model. Their difference to the already described fields §; in
Sect. is that they are supposed to have a constant bias with respect to the dark matter for
all time; they are therefore some sort of random component 0 as in Tegmark & Peebles (1998,
TP98). They are introduced therein in order to serve as a source for creating new galaxies
with a certain fixed bias at the time of there formation. In contrast to the random component
in TP98, the static fields here do not necessarily have to be totally uncorrelated to the dark
matter field and do not have to be coupled linearly only; hence the static fields are a bit more
general.

As we force this class of fields to have a constant bias relative to the dark matter, they
certainly do not obey Eq. (ZI0) and hence have to be treated differently compared to the
common galaxy fields. As before, we restrict ourselves to the linear regime. To avoid confusion
with the already studied fields, we use Greek letters as indices, like for example d, and 4, for
its Fourier coeflicients.
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FIELDS WITH FIXED BIAS

Demanding the linear bias parameter b, and r, to be constant, immediately fixes the equa-
tions for the correlation power spectra P,, and P, by virtue of the definition ([Z29):

b OPac _ 42 0P

at at ey

The cross-correlation of d, with one of the conventional galaxy number density fields d; (Sect.
E2) is not equally obvious to the eye. But is generally needed to work out the bias evolution of
galaxies coupled to static fields. Since the bias relative to the dark matter stays constant, we
know that fluctuations of the static fields have to grow with the same rate as the dark matter
fluctuations

06a  R(t)

— = —"=6 B.19

ot 2 (B.19)
where R (t) is the rate of structure growth on linear scales (Eq. ZZ26]). This relation yields

0P, _ 9 A 8_SZW*/ ~4882/
o= BB = (S + (652
R(t L&
- Lt R+ o (B - Pa@)]

(2

(B.20)

where Eq. (ZI0) for %‘% has been used (as usual bispectra terms have been neglected: Appendix

BT).

Analogue to Appendix we then have

Pia _ Obi 106 RO rizb 1, (B.21)
ot Otb, b, Ot 2 be, be
and
8’1"2'a 1 8Pia 1 1 GPH 1 8Paa R (t) Ta — TiTia 3
= Tiag 7o, — 3T |5 = + I, ,
ot P, Ot 2 P; 0Ot P, Ot 2 b;
where the definitions of If’a = If’j ~and Iil are used.
j=a
Setting b, = ro, = 1 and r;, = r; reduces agita and agit“ to %bti (Eq. EZ30) and %? (Eq. 232

respectively. This tells us that the dark matter field is just a special case of the here introduced
static fields, since it (trivially) stays unbiased with respect to itself all the time.
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APPENDIX C

Appendix: Shear tomography

C.1. Switching from a finer to a coarser redshift binning

Here we show how the auto- and cross-correlations of the cosmic shear from a finer redshift
binning are related to the auto- and cross-correlations obtained from a coarser redshift binning
(by combining the finer bins). The relations of this section ensure that we only have to make
simulated data of the finest redshift binning, since the corresponding data with less redshift
information can always be related to the 3D-correlations of the cosmic shear of this case.

In a first step, we turn to the auto-correlation &4 of a new redshift bin, neglecting for a
moment the cross-correlations to the other new redshift bins. {4 is according to the Eqgs. (61I)
and () a function that linearly depends on W? (w)

402 wh 2
e - M [0 [0 g ()

If we split the redshift distribution p (w) of the source galaxies into disjunct parts, like
pw) = > ¢ (w)
i

for w € [wi 1,’[02']

¢ (w) = {g(w) else B (C.2)

with w;(2;) in the sense of Fig.lE2, we expand with the notation of Eqgs. (3] the function W
in the following manner

Wiw) = Znn] W@ (w) WO (w) (C.3)
= an [W( w] +22nm] w) W9 (w) .
% 1>]

As the ¢ defined here are not normalised, but the corresponding redshift distributions p@ in
the definition for W® (w) are, we introduce the normalisation factors

n; = /wi dw ¢ (w) (C.4)

Wi—1
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telling us what fraction of the distribution inside the new bin is contained in its subdivisions
¢ . Translating Eq. (C3) to the power spectra gives, leaving out the arguments in ¢:

Po=> niPM +23 nn; B . (C.5)

i>j

Similarly, we get for the cosmic shear auto-correlation & (actually for all linear functions of
P,.g” ); hence the dropped index “+”):

£= an &ii + 2anj &ij » (C.6)

1>7

where &;; are the auto-correlations for the sub-bins, §;; are the cross-correlations of the cosmic
shear between the sub-bins. This equation tells us, therefore, how we have to combine the
cosmic shear correlations of the sub-bins when we are switching from a finer to a coarser
redshift binning of the data.

What about the cross-correlations between the new redshift bins if we decide to switch to a
binning with more than one redshift bin? This case is treated like the foregoing one, except
that it is slightly more general. Assume we focus on two new redshift bins k& and [ consisting
of data from a finer redshift binning:

pe(w) =g (w) ; pr(w) =Y ¢ (w) | (C.7)
i J

where py, is the redshift distribution inside the new bin k£ and p; the same for the new bin [.
Bin k£ combines q,(j) and the bin [ combines ql(j ) from a finer binning, respectively. Using the
same arguments as before, we obtain the following relation between the cosmic shear cross-
correlation between the new redshift bins ékl, and the cross-correlations 52-(;?” between their

components:

gkl _ Z ngk)ngl)gl(fl) ) (C.8)
ij

nz(.k) and ngl) are the normalisations for the sub-bins. This equation is, of course, the generali-

sation of Eq. ([C4).
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