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Introduction

Let F = Quot(W (Fq)) or F = Fq((t)) where q = pr for some prime p. Let L be
the completion of the maximal unramified extension of F . Let OF and OL be the
valuation rings. We denote by σ : x 7→ xq the Frobenius of Fq over Fq and also
of L over F .

Let G = GLn over F and let A be the diagonal torus. Let B be the Borel
subgroup of lower triangular matrices. For µ, µ′ ∈ X∗(A)Q we say that µ ≥ µ′

if µ − µ′ is a non-negative linear combination of positive coroots. An element
µ = (µ1, . . . , µn) ∈ X∗(A) ∼= Zn is dominant if µ1 ≤ · · · ≤ µn. We write µdom for
the dominant element in the orbit of µ ∈ X∗(A) under the Weyl group of A in
G. For α ∈ X∗(A) we denote by tα ∈ A(F ) the image of the uniformiser of OF

under the homomorphism α : Gm → A.
We recall the definitions of affine Deligne-Lusztig sets and closed affine Deligne-

Lusztig sets from [Ra1], [GHKR]. Let K = G(OL) and let X = G(L)/K. For
b ∈ G(L) and a dominant coweight µ ∈ X∗(A), the affine Deligne-Lusztig set
Xµ(b) is the subset of X defined by

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KtµK}. (0.0.1)

The closed affine Deligne-Lusztig set is the subset of X defined by

X≤µ(b) =
⋃

µ′≤µ

Xµ′(b).

Let ν ∈ Qn be the Newton vector associated to b. In [KR] Kottwitz and Rapoport
prove that Xµ(b) is nonempty if and only if ν ≤ µ. From now on we assume this.

If F is a function field, then Xµ(b) and X≤µ(b) have the structure of reduced
subschemes of the affine GrassmannianX. Both are locally of finite type. Besides,
Xµ(b) is a locally closed subscheme and X≤µ(b) is a closed subscheme of X. We
call this the function field case or the equal characteristic case.

If F = Quot(W (Fq)), a scheme structure on the affine Deligne-Lusztig sets
is in general not known. However, if q = p and if µ = (0, . . . , 0, 1, . . . , 1) is
minuscule, Xµ(b) has an interpretation as the set of geometric points of a moduli
space of quasi-isogenies of p-divisible groups.

We now describe these moduli spaces. Let k be a perfect field of characteristic
p and W = W (k) its ring of Witt vectors. Let σ : x 7→ xp be the Frobenius
automorphism on k as well as onW . By NilpW we denote the category of schemes
S over Spec(W ) such that p is locally nilpotent on S. Let S be the closed
subscheme of S that is defined by the ideal sheaf pOS. Let X be a decent p-
divisible group over k.

We consider the functor

M =M(X) : NilpW → Sets,
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which assigns to S ∈ NilpW the set of isomorphism classes of pairs (X, ρ), where
X is a p-divisible group over S and ρ : XS = X ×Spec(k) S → X ×S S is a
quasi-isogeny. Two pairs (X1, ρ1) and (X2, ρ2) are isomorphic if ρ1 ◦ ρ

−1
2 lifts

to an isomorphism X2 → X1. Rapoport and Zink prove that this functor is
representable by a formal scheme M =M(X), which is locally formally of finite
type over Spf(W ) (see [RZ], Thm. 2.16). Let Mred be its reduced subscheme.
The irreducible components of Mred are projective varieties ([RZ], Prop. 2.32).

Let (N,F ) be the rational Dieudonné module of X and M0 its Dieudonné
module. Assume k = Fp and let G = GL(N). We write F = bσ with b ∈ G. Let
µ = inv(M0, F (M0)) be the relative position of M0 and F (M0). Then

Xµ(b) → Mred(Fp)

g 7→ gM0

is a bijection. As µ is minuscule, we have Xµ(b) = X≤µ(b). This case is called
the unequal characteristic case.

Both in this and in the equal characteristic case, Xµ(b) and X≤µ(b) are called
affine Deligne-Lusztig varieties. From now on we only consider these two cases
where Xµ(b) has the structure of a reduced scheme.

Left multiplication by g ∈ G(L) induces an isomorphism between Xµ(b) and
Xµ(gbσ(g)

−1). Thus the isomorphism class of the affine Deligne-Lusztig variety
only depends on the σ-conjugacy class of b.

We write π1(G) for the quotient of X∗(A) by the coroot lattice of G. In [K2]
Kottwitz defines a homomorphism

κG : G(L)→ π1(G)

which induces a locally constant map κG : X → π1(G). For G = GLn we have
π1(G) ∼= Z and κG(g) is the valuation of det(g).

Let P be a standard parabolic subgroup of G. Then P = MN , where N

is the unipotent radical of P and where M is the unique Levi subgroup of P

containing A. Applying the construction of κ to M rather than G we obtain
a homomorphism κM : M (L) → π1(M). The inclusion M (L)/M (OL) ↪→
G(L)/G(OL) induces for each µ and each b ∈ M (L) an inclusion XM

µ (b) ↪→
XG

µ (b). Here X
M
µ (b) denotes the affine Deligne-Lusztig variety for M .

Let AP denote the identity component of the center of M . Let

a
+
P = {x ∈ X∗(AP )⊗Z R | 〈α, x〉 > 0 for every root α of AP in N}.

In [K2] it is shown that there is a unique standard parabolic P b = M bN b of
G such that the σ-conjugacy class of b contains an element b′ with the following
properties: b′ is basic in M b and κMb

(b′), considered as an element of aP b
, lies

in a
+
P b
. We assume that b = b′. The proof of the Hodge-Newton decomposition
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by Kottwitz (see [K3]) yields: Let P = MN ⊆ G be a standard parabolic
subgroup with P b ⊆ P . If κM (b) = µ, then the morphism XM

µ (b) ↪→ XG
µ (b)

is an isomorphism. We call a pair (µ, b) indecomposable with respect to the
Hodge-Newton decomposition if for all standard parabolic subgroups P with
P b ⊆ P = MN ( G we have κM (b) 6= µ. Given G, µ, and b we may always pass
to a Levi subgroup M of G in which (µ, b) is indecomposable. For a description of
the affine Deligne-Lusztig varieties it is therefore sufficient to consider pairs (µ, b)
which are indecomposable with respect to the Hodge-Newton decomposition.

Let
J = {g ∈ GLn(L) | g ◦ bσ = bσ ◦ g}.

Then there is a canonical J-action on Xµ(b).
In this thesis, we study the global structure of affine Deligne-Lusztig varieties.

More precisely, we address the following questions.

Question 1: What are the sets of connected components of Xµ(b) and X≤µ(b)?

For the closed affine Deligne-Lusztig varieties we prove both in the equal and
in the unequal characteristic case that J acts transitively on the set of connected
components. We obtain the following description of π0(X≤µ(b)).

Theorem. Let (µ, b) be as above and indecomposable with respect to the Hodge-
Newton decomposition.

(i) Either κM (b) 6= µ for all proper standard parabolic subgroups P of G with
b ∈M or the σ-conjugacy class [b] is central and equal to [tµ].

(ii) In the first case, κG induces a bijection between π0(X≤µ(b)) and π1(GLn) ∼=
Z.

(iii) In the second case, Xµ(b) = X≤µ(b) ∼= J/(J ∩K) ∼= GLn(F )/GLn(OF ).

For the moduli spaces M(X) this result leads to an explicit description of
the set of connected components without assuming that (µ, b) is indecomposable:
Let X = Xm × Xbi × Xet be the decomposition of X into its multiplicative, bi-
infinitesimal and étale part. Then M(Xm) and M(Xet) are discrete and as sets
isomorphic to GLht(Xm)(F )/GLht(Xm)(OF ) and GLht(Xet)(F )/GLht(Xet)(OF ).

Theorem.

π0(M(X)) ∼=

{
M(Xm)×M(Xet) if X is ordinary

M(Xm)×M(Xet)× Z else.

The factors on the right hand side correspond to the indecomposable factors
of (µ, b) after applying the Hodge-Newton decomposition.

For the non-closed varieties our calculations seem to support the following
conjecture.
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Conjecture. The action of J on π0(Xµ(b)) is transitive.

We do not have a precise conjecture for π0(Xµ(b)). The theorem implies that the
map π0(Xµ(b))→ π0(X≤µ(b)) induced by the inclusion is surjective. We give an
example to show that in general it is not injective.

Question 2: What is the set of irreducible components of Xµ(b)?

For the moduli spaces M we show

Theorem. There is a bijection between the set of irreducible components of M
and J/(K ∩ J).

Guided by this result we arrive at the following conjecture about the set of irre-
ducible components of Xµ(b).

Conjecture. The action of J on the set of irreducible components of Xµ(b) has
only finitely many orbits.

However, we give an example to show that in general the action of J on the set
of irreducible components is not transitive for non-minuscule µ.

Question 3: What is the dimension of Xµ(b)?

Affine Deligne-Lusztig varieties Xµ(b) can also be defined as in (0.0.1) when
GLn is replaced by an unramified connected reductive group G. There is a con-
jectural formula for the dimension of Xµ(b) by Rapoport (see [Ra2], Conj. 5.10).
For split groups G it takes the form

Conjecture. (Rapoport)

dimXµ(b) = 〈2ρ, µ− ν〉+
∑

i

[〈ωi, ν − µ〉]

Here ρ is the half-sum of the positive roots and ωi are the fundamental weights
of Gad. By [x] we denote the greatest integer which is less or equal to x.

In [GHKR], Görtz, Haines, Kottwitz, and Reuman reduce the proof of the
dimension formula for Deligne-Lusztig varieties in the function field case to the
case that G = GLn and that the σ-conjugacy class of b is superbasic. Here super-
basic means that no σ-conjugate element is contained in a proper Levi subgroup
of G. They prove the conjecture for b ∈ A(L). For moduli spaces of p-divisible
groups whose isocrystal is simple, the conjecture is shown by de Jong and Oort in
[JO]. We prove the dimension conjecture for moduli spaces of p-divisible groups
without this restriction. For the relation to results of Chai and Oort see the
introduction to Section 1.
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Theorem. Let ν be the Newton vector of X and µ = (0, . . . , 0, 1, . . . , 1) minuscule.
Then

dimMred = 〈2ρ, µ− ν〉+
∑

i

[〈ωi, ν − µ〉] .

The conjecture leads to the following conjectural description of the set of pairs
(µ, b) with dimXµ(b) = 0. It is a modification of a conjecture by Rapoport.

Conjecture. (Rapoport) Let G be split. Assume that Xµ(b) is nonempty and
that (µ, b) is indecomposable with respect to the Hodge-Newton decomposition.
Then dimXµ(b) > 0 unless either [b] is µ-ordinary or the adjoint group Gad is
equal to PGLn and µ = (0, . . . , 0, 1) or µ = (0, 1, . . . , 1).

Our methods seem to give lower bounds on dimXµ(b). One instance is given
by the following result on affine Deligne-Lusztig varieties in the function field
case, which proves the preceding conjecture for G = GLn.

Theorem. Let G = GLn and let (µ, b) be indecomposable with respect to the
Hodge-Newton decomposition. Then dimXµ(b) = 0 if and only if µ is of one of
the following forms: µ = (a, . . . , a), µ = (a, . . . , a, a + 1) or µ = (a− 1, a, . . . , a)
for some a ∈ Z.

Question 4: Which of the moduli spaces Mred are smooth?

Our results on the sets of connected components and of irreducible components
show that the connected components of a moduli spaceM(X) are not irreducible
and thus not smooth unless the isocrystal of the bi-infinitesimal part of X is
simple. In this case, the connected components of the moduli space are irreducible
and projective. By M0

red we denote the connected component of the identity in
the reduced subscheme of the moduli space M.

Theorem. Let X be bi-infinitesimal and let its isocrystal be simple. Let l 6= p be
prime. Then for all j

H2j+1(M0
red,Ql) = 0

H2j(M0
red,Ql) = Ql(−j)

d(j),

for some d(j) ∈ Z.

A combinatorical description of the dimensions d(j) in terms of the slope of the
isocrystal is given. The proof of this theorem uses a paving of M0

red by affine
spaces which resembles the description of the geometric points in [JO], 5. As an
application we show

Theorem. Let X be a p-divisible group over k. Then M0
red is smooth if and only

if one of the following holds: dimM0
red = 0 or the isocrystal N of Xbi is simple

of slope 2
5
or 3

5
. In these last cases, M0

red
∼= P1.
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In this situation our description of the set of zero-dimensional affine Deligne-
Lusztig varieties takes the following form: The condition dimM0

red = 0 holds
if and only if X is ordinary or the isocrystal of Xbi is simple of slope m

m+n
with

min{m,n} = 1.
We obtain our results by explicit calculations for the elements of Xµ(b). For

these calculations it is essential to find bases for the isocrystal (N, bσ) and the
lattices in which the different problems raised above take a particularly simple
form. To obtain a basis for the isocrystal we choose a decomposition into simple
summands. For each simple summand of N we take the basis defined in [JO],5.
Then bσ only permutes the basis elements and multiplies them by powers of the
uniformising element. The bases for the lattices are adjusted to the different
questions. As an example we sketch how to choose the basis for the description
of the irreducible components ofM: Results of Oort [O1] and Oort and Zink [OZ]
show that the Dieudonné lattices that are generated by a single element form a
dense subset. Thus it is enough to consider these lattices. We define a normal
form of the generator of such a lattice. Then a suitable basis for the lattice is
given by the images of the normalised generator under powers of F and V .

This paper consists of two parts: In the first section we answer the above ques-
tions for moduli spaces of p-divisible groups. In the second section we consider
generalisations of these results to affine Deligne-Lusztig varieties for the function
field case. Each section has its own introduction where one can find more precise
versions of the theorems stated above.

Acknowledgements. I am grateful to M. Rapoport for introducing me to these
problems and for his interest and advice. I thank Th. Zink for his interest in my
work and T. Wedhorn for many helpful discussions.
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1 Moduli spaces of p-divisible groups

In this section we study the global structure of moduli spaces of quasi-isogenies
of p-divisible groups introduced by Rapoport and Zink. We determine their
dimensions and their sets of connected components and of irreducible components.
If the isocrystals of the p-divisible groups are simple, we compute the cohomology
of the moduli space. As an application we determine which moduli spaces are
smooth.

1.1 Introduction

Let k be a perfect field of characteristic p and W = W (k) its ring of Witt vectors.
Let σ be the Frobenius automorphism on k as well as on W . By NilpW we denote
the category of schemes S over Spec(W ) such that p is locally nilpotent on S.
Let S be the closed subscheme of S that is defined by the ideal sheaf pOS. Let
X be a decent p-divisible group over k.

We consider the functor

M : NilpW → Sets,

which assigns to S ∈ NilpW the set of isomorphism classes of pairs (X, ρ), where
X is a p-divisible group over S and ρ : XS = X ×Spec(k) S → X ×S S is a
quasi-isogeny. Two pairs (X1, ρ1) and (X2, ρ2) are isomorphic if ρ1 ◦ ρ

−1
2 lifts to

an isomorphism X2 → X1. This functor is representable by a formal scheme
M, which is locally formally of finite type over Spf(W ) (see [RZ], Thm. 2.16).
Let Mred be its reduced subscheme. The irreducible components of Mred are
projective varieties ([RZ], Prop. 2.32).

These moduli spaces and their generalisations for moduli problems of type
(EL) or (PEL) serve to analyse the local structure of Shimura varieties which
have an interpretation as moduli spaces of abelian varieties. In [RZ] they are
used to prove a uniformization theorem for Shimura varieties along Newton strata.
Mantovan (see [Ma]) computes the cohomology of certain (PEL) type Shimura
varieties in terms of the cohomology of Igusa varieties and of the corresponding
(PEL) type Rapoport-Zink spaces. In [F], Fargues shows that the cohomology of
basic unramified Rapoport-Zink spaces realises local Langlands correspondences.

For p-divisible groups whose rational Dieudonné module is simple, the moduli
spaces have been studied by de Jong and Oort in [JO]. They show that the
connected components are irreducible and determine their dimension. In the
general case very little is known besides the existence theorem. This section is
directed towards a better understanding of the global structure of Mred.

We now state our main results.
Let X = Xm×Xbi×Xet be the decomposition of X into its multiplicative, bi-

infinitesimal, and étale part. To formulate the result about the set of connected

8



components we exclude the trivial case Xbi = 0.

Theorem A. Let X be non-ordinary. Then

π0(Mred) ∼= GLht(Xm)(Qp)/GLht(Xm)(Zp)×GLht(Xet)(Qp)/GLht(Xet)(Zp)× Z.

Next we consider the set of irreducible components of Mred. From now on
we assume that k is algebraically closed. Let (N,F ) be the rational Dieudonné
module of X and

JN = {g ∈ GL(N) | g ◦ F = F ◦ g}.

We choose a decomposition N =
⊕l

j=1 Nj with Nj simple of slope λj =
mj

mj+nj

with (mj, nj) = 1 and λj ≤ λj′ for j < j ′. Let M0 ⊂ N be the lattice associated
to a minimal p-divisible group (see [O2] or Definition 1.4.2).

Theorem B. (i) There is a bijection between the set of irreducible components
of Mred and JN/(JN ∩ Stab(M0)).

(ii) Mred is equidimensional with

dimMred =
∑

j

(mj − 1)(nj − 1)

2
+
∑

j<j′

mjnj′ . (1.1.1)

Let G = GL(N) and let ν = (λ1, . . . , λl) be the Newton vector associated
to N . Here each λj occurs mj + nj times. Let µ = (1, . . . , 1, 0 . . . , 0) be the
corresponding minuscule Hodge vector. Let ρ be the half-sum of the positive
roots and let ωi be the fundamental weights of Gad. Then one can reformulate
(1.1.1) as

dimMred = 〈2ρ, µ− ν〉+
∑

i

[〈ωi, ν − µ〉] . (1.1.2)

Here [x] denotes the greatest integer which is less or equal to x.
In [O3], Oort defines an almost product structure (that is, up to a finite

morphism) on Newton strata of moduli spaces of abelian varieties. It is given
by the corresponding Rapoport-Zink space and a central leaf for the p-divisible
group. He announces a joint paper with Chai, in which they prove a dimension
formula for central leaves (compare [O3], Remark 2.8). The dimension of the
Newton polygon stratum itself is known from [O1]. Then the dimension ofMred

can also be computed as the difference of the dimensions of the Newton polygon
stratum and the central leaf.

Let G be an unramified connected reductive group over a finite extension
F of Qp and K a parahoric subgroup. Let L be the completion of the maximal
unramified extension of F . Let µ be a conjugacy class of one-parameter subgroups
of G and b ∈ B(G,µ) (compare [Ra2], 5). Let

Xµ(b)K = {g ∈ G(L)/K | g−1bσ(g) ∈ KpµK} (1.1.3)

9



be the generalised affine Deligne-Lusztig set associated to µ and b. In general it
is not known whether Xµ(b)K is the set of F-valued points of a scheme, where F
is the residue field of OL. In our case choose G = GL(N) and K = Stab(M0).
Let µ be as above. We write F = bσ with b ∈ G. Then

Xµ(b)K → Mred(k)

g 7→ gM0

is a bijection. If K is a hyperspecial maximal parahoric, there is a conjecture
of Rapoport ([Ra2], Conj. 5.10) for the dimension of generalised affine Deligne-
Lusztig varieties. In our case this conjecture is (1.1.2).

Reuman considers Deligne-Lusztig sets for the cases b = 1, G = SL2, SL3, or
Sp4 and various parahoric subgroups K (compare [Re1] and [Re2]). For hyper-
special K, his explicit calculations support the conjecture for the dimension of
Xµ(b)K . In [GHKR] the proof of the dimension formula for Deligne-Lusztig vari-
eties in the function field case is reduced to the case that G = GLn and that the
σ-conjugacy class of b is superbasic. In our situation, this is the case considered
in [JO]. Hence this is another approach to proving (1.1.2).

If the isocrystal of Xbi is not simple, Theorems A and B imply that the con-
nected components of the moduli space are not irreducible and thus not smooth.
Now assume that the isocrystal of Xbi is simple of slope m

m+n
. Then the connected

components are irreducible and projective. By M0
red we denote the connected

component of the identity in the moduli space.
Letm,n ∈ N with (m,n) = 1 be as above. A normalised cycle is am+n-tuple

of integers B = (b0, . . . , bm+n−1) with b0 > bi, bm+n−1 +m = b0,
∑

i bi =
∑

i i and
bi+1 ∈ {bi +m, bi − n} for all i (compare [JO], 6). There are only finitely many
such cycles. Let B+ = {bi ∈ B | bi +m ∈ B} and B− = {bi | bi − n ∈ B}. Then
B = B+ tB−. For j ∈ N let d(j) be the number of cycles B such that

V(B) = {(d, i) | bd ∈ B+, bi ∈ B−, bi < bd}

has j elements.

Theorem C. Let X be bi-infinitesimal and let its isocrystal be simple. Let m,n
and d(j) be as above. Let l 6= p be prime. Then

H2j+1(M0
red,Ql) = 0 (1.1.4)

H2j(M0
red,Ql) = Ql(−j)

d(j), (1.1.5)

for all j.

This description uses a paving of M0
red by affine spaces which resembles the

description of the geometric points in [JO], 5. As an application we show

10



Theorem D. Let X be a p-divisible group over k. Then M0
red is smooth if and

only if one of the following holds: dimM0
red = 0 or the isocrystal N of Xbi is

simple of slope 2
5
or 3

5
. In this case, M0

red
∼= P1.

The condition dimM0
red = 0 holds if and only if X is ordinary or the isocrystal

of Xbi is simple of slope m
m+n

with min{m,n} = 1.

1.2 Review of methods

Let R be a commutative ring of characteristic p > 0.

1.2.1 Witt vectors

Let W (R) be the ring of Witt vectors of R. The Frobenius operator σ : R → R
with α 7→ αp induces an operator W (R) → W (R) which we also denote by σ.
We will also write aσ instead of σ(a).

Let a ∈ R. By [a] = (a, 0, . . . ) ∈ W (R) we denote the Teichmüller represen-
tative of a. This defines a multiplicative embedding R→ W (R).

Remark 1.2.1. Let a = (a0, a1, . . . ), b = (0, . . . , 0, bn, bn+1, . . . ) ∈ W (R) and λ ∈
R. Then

a+ b = (a0, . . . , an−1, an + bn, cn+1, . . . ) (1.2.1)

[λ]b = (0, . . . , 0, λp
n

bn, dn+1, . . . ) (1.2.2)

with ci, di ∈ R for i ≥ n + 1. Assume that bn ∈ R× and −anb
−1
n = λp

n

for some
λ ∈ R. Then from (1.2.1) and (1.2.2) we get that

a+ [λ]b = (a0, . . . , an−1, 0, cn+1, . . . )

with ci ∈ R.

1.2.2 Dieudonné modules

Let

D(R) = W (R)[F, V ]/(FV = V F = p, Fα = ασF, αV = V ασ) (1.2.3)

be the Dieudonné ring of R. Then each element A ∈ D(R) has a normal form

A =
∑

i,j≥0

V iaijF
j

with aij ∈ W (R). If R = K is a perfect field, A can also be written as

A =
∑

i,j≥0

[aij]V
iF j (1.2.4)
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with aij ∈ K and | i− j | bounded.
Let M be a Dieudonné module over a field k of characteristic p and N its

rational Dieudonné module. For a k-algebra R denote

MR = M ⊗W (k) W (R)

NR = N ⊗Quot(W (k)) W (R)[1/p].

A lattice in N which is also a Dieudonné module is called a Dieudonné lattice.

1.2.3 Displays

To fix notation we give a summary of some definitions and results of [Z] on
displays of p-divisible groups.

Let R be an excellent p-adic ring and let p be nilpotent in R.

Definition 1.2.2. A display over R is a quadrupel P = (P,Q, F, V −1), where P
is a finitely generated projective W (R)-module, Q ⊆ P is a submodule and F
and V −1 are σ-linear maps, F : P → P and V −1 : Q→ P , such that the following
properties are satisfied:

(i) Let IR be the ideal in W (R) defined by the condition that the first Witt
polynomial w0 vanishes. Then IRP ⊆ Q ⊆ P and there exists a decomposition
P = L ⊕ T into a direct sum of W (R)-modules such that Q = L ⊕ IRT . It is
called a normal decomposition.

(ii) V −1 : Q→ P is a σ-linear epimorphism.

(iii) For x ∈ P and w ∈ W (R) we have V −1(Vwx) = wFx where V · : W (R)→
W (R) is the Verschiebung.

Besides, a nilpotence condition for V is required, see [Z], Def. 11.

Example 1.2.3. If M is the Dieudonné module of a formal p-divisible group
X over a perfect field k, then (M,VM,F, V −1) is a display over k. We refer
to it as the display associated to M . In this case a normal decomposition is
easily obtained: We choose representatives w1, . . . , wm in VM of a basis of the
k-vector space VM/pM and set L = 〈w1, . . . , wm〉W (k). Similarly, we choose
representatives v1, . . . , vn of a basis of M/VM and set T = 〈v1, . . . , vn〉W (k).

If R is an excellent local ring or if R/pR is of finite type over a field, there
is an equivalence of categories between the category of displays over R and the
category of p-divisible formal groups over Spec(R). ([Z], Thm. 103)

To the base change of p-divisible groups corresponds a base change for dis-
plays. More precisely, let S be another excellent ring and ϕ : R→ S a morphism.
Then for any display P = (P,Q, F, V −1) over R there is an associated display

PS = (PS, QS, FS, V
−1
S )
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over S with PS = W (S) ⊗W (R) P , called the base change of P with respect to
ϕ. We call the second component of the base change QS, although in general, we
only have QS ⊇ W (S)⊗W (R) Q. For a definition of the base change see [Z], Def.
20.

Definition 1.2.4. An isodisplay over R is a pair (I, F ) where I is a finitely
generated projectiveW (R)⊗Q -module and F : I → I is a σ-linear isomorphism.

Let P = (P,Q, F, V −1) be a display over R. Then the pair (P ⊗Q, F ), where
F is the extension to P ⊗Q, is an isodisplay over R.

Let X be a p-divisible group over k and N its rational Dieudonné module. Let
R be a k-algebra of finite type and let P = (P,Q, F, V −1) be a display over R with
P ⊗ Q ∼= NR. Then by [Z], Prop. 66, this isomorphism induces a quasi-isogeny
between XR and the p-divisible group corresponding to P .

1.3 Connected Components

In this section we determine the set of connected components ofMred. ByM
0
red

we denote the connected component of (X, id) in Mred.
Let X = Xm × Xbi × Xet be the decomposition of X into its multiplicative,

bi-infinitesimal and étale part. The moduli spaces M(Xm) and M(Xet) corre-
sponding to Xm and Xet are discrete. As sets,

M(Xm) ∼= GLht(Xm)(Qp)/GLht(Xm)(Zp)

and
M(Xet) ∼= GLht(Xet)(Qp)/GLht(Xet)(Zp).

We define

∆ =

{
M(Xm)×M(Xet)× Z if Xbi is nontrivial

M(Xm)×M(Xet) else.
(1.3.1)

Let S ∈ NilpW and let ρ : XS → XS be a quasi-isogeny where X is a p-divisible
group over S. From [Me], Lemma II.4.8 we get a factorisation X ³ Xet → S such
that X → Xet is infinitesimal and Xet → S is étale, as well as a quasi-isogeny
ρet : Xet,S → Xet,S, functorially in ρ. This defines a morphism

κet :Mred →M(Xet).

By duality one also gets a morphism

κm :Mred →M(Xm).

Finally, the morphism ht :Mred → Z maps a quasi-isogeny to its height. Let

κ : Mred → ∆

κ =

{
(κm, κet, ht) if Xbi is nontrivial

(κm, κet) else.
(1.3.2)
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Theorem 1.3.1. κ identifies ∆ with the set of connected components of Mred.

This follows from Lemma 1.3.2 and Proposition 1.3.3.

Lemma 1.3.2. κ is surjective.

Proof. It is enough to show that for nontrivial Xbi there is a quasi-isogeny Xbi,K →
X of height 1 over some algebraically closed field K. There is a quasi-isogeny ρ
from Xbi,K to a product of groups that are up to isogeny simple. If we restrict F
and V to such a factor, the greatest common divisor of their heights is 1. Thus
there are integers a and b such that V aF b is a quasi-isogeny of this factor of
height 1. By extending this map by the identity on the other factors we obtain a
quasi-isogeny Xbi,K → X of height 1 for some p-divisible group X over K.

Proposition 1.3.3. Let K over k be a perfect field and (X, ρ), (X ′, ρ′) two K-
valued points of Mred with κ((X, ρ)) = κ((X ′, ρ′)). Then the two points are in
the same connected component of Mred.

For the proof we need the following lemma.

Lemma 1.3.4. Let M ⊂ NK be a Dieudonné lattice and

v1, v2 ∈ (F−1M ∩ V −1M) \M.

Then 〈M, v1〉 and 〈M, v2〉 are Dieudonné lattices and the corresponding points of
Mred lie in the same connected component.

Here 〈M, v〉 denotes the W (K)-module generated by M and v.

Proof. We may assume that 〈M, v1〉 6= 〈M, v2〉. We define a quasi-isogeny of
p-divisible groups over Spec(K[t]) such that 〈M, v1〉 and 〈M, v2〉 are the lattices
corresponding to the specialisations at t = 1 and t = 0, respectively. To do this
we describe the corresponding subdisplay (P ′, Q′, F, V −1) of the isodisplay NK[t]

of XK[t]. We use the notation of 1.2.3. Let

T = 〈V v1, V v2, w1, . . . , wn−2〉 (1.3.3)

L = 〈pv1, pv2, x1, . . . , xm−2〉 (1.3.4)

be a normal decomposition of the display associated to M . As the classes of V v1

and V v2 in M/VM are linearly independent over K, we can choose such wi, xi
that the elements on the right hand sides of (1.3.3) and (1.3.4) are representatives
of bases of the K-vector spaces T/pT and L/pL. We now set

T ′ = 〈[t]σ ⊗ v1 + [1− t]σ ⊗ v2, 1⊗ (V v1 − V v2), 1⊗ w1, . . . , 1⊗ wn−2〉W (K[t])

L′ = 〈[t]⊗ V v1 + [1− t]⊗ V v2, p⊗ (v1 − v2), 1⊗ x1, . . . , 1⊗ xm−2〉W (K[t])
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and further P ′ = L′ + T ′ and Q′ = L′ + IK[t]T
′. Here 〈·〉W (K[t]) denotes the

W (K[t])-submodule of NK[t] generated by the elements in the brackets. In every
closed point of Spec(K[t]), the two modules L′ and T ′ of rank m and n generate
a lattice, which is equivalent to the fact that their intersection is trivial. To show
that P ′ and Q′ define a subdisplay we have only to verify that V −1 is a σ-linear
epimorphism from Q′ to P ′. This follows from

V −1([t]⊗ V v1 + [1− t]⊗ V v2) = [t]σ ⊗ v1 + [1− t]σ ⊗ v2.

The specialisations of this display for t = 0 and t = 1 are as desired.

Proof of Proposition 1.3.3. As K is a perfect field, we can decompose X and ρ
into

ρ = (ρm, ρbi, ρet) : Xm,K × Xbi,K × Xet,K → Xm ×Xbi ×Xet,

and similarly for ρ′. The morphism κ maps ρ to (ρm, ρet, ht(ρ)). The assumption
implies ρm = ρ′m, ρet = ρ′et and ht(ρ) = ht(ρ′). Assume that the proposition is
proved for Xbi. Then we can construct a quasi-isogeny over a connected base
S = S with fibres ρ and ρ′ by extending a quasi-isogeny with fibres ρbi and ρ′bi

on Xbi,S by the constant isogeny (ρm× ρet)S = (ρ′m× ρ′et)S on (Xm×Xet)S. Thus
for the rest of the proof we may assume that X = Xbi.

From the two quasi-isogenies we get Dieudonné lattices M,M ′ ⊂ NK with
vol(M) = vol(M ′). We prove the proposition by induction on the length of
M ′/M ∩M ′. If the length is 0, the lattices are equal and the statement is trivial.
Let now M ′ 6= M . As X is bi-infinitesimal, both F and V are topologically
nilpotent on M . As M ∩M ′ ( M , there is an element

v1 ∈M \ (FM + VM +M ′). (1.3.5)

Let further v′ ∈M ′ \M . Let i′ be maximal with F i′v′ /∈M and j ′ maximal with
V j′F i′v′ = v2 /∈M . Then

v2 ∈M ′ ∩ F−1(M ′ ∩M) ∩ V −1(M ′ ∩M) \M. (1.3.6)

Let {v1, x1, . . . xl} be a basis of the K-vector space M/(FM + VM + (M ′ ∩M)).

We choose representatives of the xi in M , which we also denote by xi. Let M̃
be the smallest D(K)-module containing FM, VM,M ′ ∩M , and all xi. By the

choice of the xi we have v1 /∈ M̃ . As M̃ ⊂ M we have v2 /∈ M̃ . We also get
Fv2, V v2 ∈ M ′ ∩M ⊆ M̃ . Thus the tuple (M̃, v1, v2) satisfies the assumption of

Lemma 1.3.4. Hence 〈M̃, v1〉 = M and 〈M̃, v2〉 correspond to points in the same

connected component of the moduli space. As M ′ ∩M ⊆ M̃ and v2 ∈ M ′ \ M̃ ,

the length of M ′/(〈M̃, v2〉 ∩M
′) is smaller than that of M ′/(M ′ ∩M). Thus the

assertion follows from the induction hypothesis.
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1.4 Irreducible Components

From now on we assume that k is algebraically closed.

1.4.1 Statement of the Theorem

To formulate the main theorem of this section we need some notation. We intro-
duce a system of generators for the rational Dieudonné module N of X. Let

N =

j0⊕

j=1

Nλj (1.4.1)

be the isotypic decomposition of N with λj < λj′ for j < j ′. There are coprime
integers 0 ≤ mj ≤ hj with hj > 0 and λj =

mj

hj
. Let nj = hj −mj. For each j we

choose aj, bj ∈ Z with
ajhj + bjmj = 1. (1.4.2)

We define additive maps πj : N → N by

πj |Nλ
j′
=

{
pajF bj if j ′ = j

idNλ
j′

else
(1.4.3)

and σj : N → N by

σj |Nλ
j′
=

{
V −mjF nj if j ′ = j

idNλ
j′

else.
(1.4.4)

There is an algebraic group J = JN over Qp associated to the moduli problem
and the isocrystal N , see [RZ], 1.12. For each Qp-algebra R its R-valued points
are defined as

JN(R) = {g ∈ GL(N ⊗Qp
R) | g ◦ F = F ◦ g}.

In the following we will write JN instead of JN(Qp) to simplify the notation.

Remark 1.4.1. Let g ∈ GL(N). Then g ∈ JN if and only if g commutes with all
πj and σj. Indeed, g ∈ JN if and only if g =

⊕
j g|Nλj

and g|Nλj
∈ JNλj

for all j.

On Nλj we have πj = pajF bj and σj = p−mjFmj+nj , and for the other direction
F = π

mj

j σ
aj
j .

Let

Nλj =

lj⊕

i=1

Nj,i (1.4.5)

be a decomposition into simple isocrystals. Let eji0 ∈ Nj,i \ {0} with

F hjeji0 = pmjeji0. (1.4.6)
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For l ∈ Z let
ejil = πljeji0. (1.4.7)

By (1.4.6) the ejil are independent of the choice of aj and bj in (1.4.2). Besides

ej,i,l+hj = π
l+hj
j (eji0)

= πljp
hjajF hjbjeji0

= πljp
1−mjbjF hjbjeji0

= pejil (1.4.8)

and analogously

F (ejil) = ej,i,l+mj
, (1.4.9)

V (ejil) = ej,i,l+nj , (1.4.10)

σj′(ejil) = ejil (1.4.11)

for 1 ≤ j ′ ≤ j0. The ejil with 0 ≤ l < hj form a basis of Nj,i over Quot(W (k)).
Let K | k be a perfect field. For a ∈ K let [a] ∈ W (K) be the Teichmüller

representative as in 1.2.1. By (1.4.8) each v ∈ NK can be written as

v =

j0∑

j=1

lj∑

i=1

∑

l∈Z
[ajil]ejil (1.4.12)

with ajil ∈ K and ajil = 0 for l small enough.

Definition 1.4.2. (i) Let M0 ⊂ N be the lattice generated by the ejil with
l ≥ 0.

(ii) For a lattice M in some sub-isocrystal Ñ ⊆ N let

volÑ(M) = lg((M0 ∩ Ñ)/(M0 ∩M))− lg(M/(M0 ∩M)). (1.4.13)

If Ñ = N we write vol instead of volN .

Then πj(M0) ⊆M0 and σj(M0) ⊆M0 for all j, and vol(M0) = 0.
Using this notation we can formulate the main result of this section.

Theorem 1.4.3. (i) There is a bijection between the set of irreducible compo-
nents of Mred and JN/(JN ∩ Stab(M0)).

(ii) Mred is equidimensional with

dimMred =
∑

j

lj
(mj − 1)(nj − 1)

2
+

∑

(j,i)<(j′,i′)

mjnj′ ,

where the pairs (j, i) are ordered lexicographically.

To prove this theorem, we define an open and dense subscheme S1 of Mred

and show the corresponding results for this subscheme. We assume until Section
1.4.5 that X is bi-infinitesimal. The general case is discussed in Section 1.4.5.
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1.4.2 Definition of the stratum S1

Definition 1.4.4. Let S1 ⊆Mred be the open subscheme defined by the following
condition: Every point on S1 has an open affine neighbourhood Spec(R), such
that the display (P,Q, F, V −1) over R of the corresponding p-divisible group has
the property that there is an element in P generating P/(Q + F (P )) as W (R)-
module. Here, (Q+F (P )) denotes the W (R)-submodule of P generated by F (P )
and Q.

Recall that the a-invariant a(M) of a Dieudonné latticeM ⊆ NK over a perfect
field K is defined as the dimension of the K-vector space M/(FM + VM). As
we assumed X to be bi-infinitesimal, the a-invariant is always positive.

Lemma 1.4.5. Let K | k be a perfect field and let M ⊂ NK be the lattice asso-
ciated to a K-valued point x of Mred. The following statements are equivalent.

(i) x ∈ S1

(ii) a(M) = 1

(iii) There is a v ∈ M such that M is the D(K)-submodule of NK generated
by v.

Proof. As F and V are topologically nilpotent on M , (ii) and (iii) are equivalent.
It remains to show that the second assertion implies the first. Let Spec(R) be
an open affine neighbourhood of x inMred and (P,Q, F, V −1) the corresponding
display. Then F (Q) ⊆ pP ⊆ Q, and F : P/Q → P/Q is a σ-linear morphism of
R-modules of constant rank. As the rank of its cokernel in x is a(M) = 1, it is
also 1 in an open neighbourhood of x, implying the first assertion.

Lemma 1.4.6. The open subscheme S1 ⊆Mred is dense.

Proof. Let X0 be the p-divisible group of a K-valued point in Mred \ S1. By
Proposition 2.8 of [O1], there exists a deformation of X0 with constant Newton
polygon such that the a-invariant at the generic fibre is 1. By [OZ], Cor. 3.2 we
get a deformation of the quasi-isogeny after a suitable base change preserving the
generic fibre.

1.4.3 K-valued points of S1

Let K | k be a perfect field. In this section we classify the K-valued points of S1

by introducing a normal form for the corresponding lattices in NK . We will write
Nj,i instead of (Nj,i)K .
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Lemma 1.4.7. Let M ⊂ NK be the lattice associated to a K-valued point of S1

and v a generator of M as D(K)-submodule of NK as in Lemma 1.4.5 (iii). Let
g ∈ JNK

with M ⊆ gM0 and maximal vp(det(g)). Then

v =

j0∑

j=1

lj∑

i=1

∑

l≥0

[ajil]g(ejil) (1.4.14)

with ajil ∈ K and

for each j, the aji0 for 1 ≤ i ≤ lj are linearly independent over F
p
hj . (1.4.15)

Proof. We may assume that N is isoclinic: Otherwise we can write v as a sum of
elements of the (Nλj)K and show the claim for each summand separately. Assume
that there is a nontrivial relation

l1∑

i=1

αia1i0 = 0 (1.4.16)

with αi ∈ Fph1 . After permuting the simple summands of NK we may assume that
α1 is nonzero. Then we may also assume that α1 = −1. We define δ ∈ GL(NK)
by

δ(e1il) =

{
e1,1,l+1 if i = 1

e1il + [αi]
σlb1e1,1,l if i ≥ 2

(1.4.17)

for l ∈ Z. This map is well defined as

δ(pe1il) = δ(e1,i,l+h1)

= pe1il + [αi]
σ(l+h1)b1e1,1,l+h1

= pe1il + [αi]
σlb1e1,1,l+h1

= pδ(e1il)

for i > 1. We also have

δ ◦ F (e1il) = δ(e1,i,l+m1)

= e1,i,l+m1 + [αi]
σ(l+m1)b1e1,1,l+m1

= e1,i,l+m1 + [αi]
σlb1+1−a1h1e1,1,l+m1

= F (e1il + [αi]
σlb1e1,1,l)

= F ◦ δ(e1il),

for i > 1 and δ ◦ F (e11l) = F ◦ δ(e11l) = e1,1,l+m1+1, so δ ∈ JNK
. Besides,

vp(det(δ)) = 1. (1.4.14) and (1.4.16) imply that v ∈ g ◦ δ(M0). As v generates
M , we have M ⊆ g ◦ δ(M0) in contradiction to the maximality of vp(det(g)).
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Let M ⊂ NK be a Dieudonné lattice. Let P (M) be the smallest D(K)-
submodule of NK containing M with

σj(P (M)) ⊆ P (M)

and
πj(P (M)) ⊆ P (M)

for all j. There exists a c ∈ Z with M ⊆ pcM0. As πj(M0) ⊆ M0 and σj(M0) ⊆
M0 for all j, we get M ⊆ P (M) ⊆ pcM0. Hence P (M) is also a lattice in NK .
As all πj and σj commute with JNK

, we have P (gM) = gP (M) for all g ∈ JNK
.

Lemma 1.4.8. Let M be the Dieudonné lattice corresponding to a K-valued point
of S1 and let v ∈M be a generator. Let g be as in Lemma 1.4.7. Then

P (M) = gM0. (1.4.18)

Especially, the class of g in JNK
/(Stab(M0)∩JNK

) is uniquely determined by M .

Proof. The inclusion P (M) ⊆ gM0 follows from v ∈ gM0 and P (gM0) = gM0.
As πj commutes with g, the other inclusion follows as soon as we know g(eji0) ∈
P (M) for all i and j. We show this by induction on

∑j0
j=1 lj, the number of simple

summands of N . As all πj and σj commute with J we may assume g = id.
For j0 = l1 = 1 we have v =

∑
l≥0[a11l]e11l with a11l ∈ K for all l and a110 6= 0.

This implies

πk1v =
∑

l≥0

[aσ
b1k

11l ]e1,1,l+k.

By Remark 1.2.1, e110 is a linear combination of these elements, hence in P (M).
Let now

∑j0
j=1 lj > 1. On Nλj , the map πj is elementwise topologically nilpo-

tent, while it is the identity on each Nλj′
with j ′ 6= j. Thus v ∈ P (M) implies

that its image vj =
∑

i,l[ajil]ejil under the projection to (Nλj)K is in P (M) for
each j. If N is not isoclinic, we may apply the induction hypothesis to each
vj ∈ Nλj . Let Mj be the D(K)-submodule of (Nλj)K generated by vj. By induc-
tion eji0 ∈ P (Mj) ⊂ P (M) for all i, which shows the claim in this case. Let now
NK be isoclinic. By multiplying v with [a−1

110] and subtracting multiples of the
πk1(v) for k > 0 as in the case j0 = l1 = 1, we may assume that

v = e110 +
∑

i>1

∑

l≥0

[a1il]e1il. (1.4.19)

Here 1 and the a1i0 with 2 ≤ i ≤ l1 are again linearly independent over Fph1 .
Then

σ1(v)− v =

l1∑

i=2

∑

l≥0

([aσ
h1

1il ]− [a1il])e1il ∈ N ′ =

l1⊕

i=2

N1,i. (1.4.20)
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By Remark 1.2.1 the new coefficient of e1i0 is [aσ
h1

1i0 −a1i0]. We have to check that
the aσ

h1

1i0 − a1i0 for i ≥ 2 are linearly independent over Fph1 . Otherwise we would
have a nontrivial relation

∑

i>1

αi(a
σh1

1i0 − a1i0) = 0. (1.4.21)

As αi ∈ Fph1 this yields ∑

i>1

αia1i0 ∈ Fph1 .

This is a contradiction as we assumed a110 = 1 and as the a1i0 for 1 ≤ i ≤ l1
were linearly independent over Fph1 . Let M(σ1(v) − v) be the D(K)-submodule
of N ′ ∩ P (M) generated by σ1(v) − v. The induction hypothesis shows that all
e1i0 for i > 1 are in P (M(σ1(v)−v)) ⊂ P (M). Thus

∑
i>1

∑
l≥0[a1il]e1il ∈ P (M),

and (1.4.19) implies e110 ∈ P (M).

Theorem 1.4.9. Let

v =

j0∑

j=1

lj∑

i=1

∑

l≥0

[ajil]g(ejil) ∈ NK (1.4.22)

with ajil ∈ K and g ∈ JNK
such that (1.4.15) is satisfied. Let M be the smallest

D(K)-submodule of NK containing v. Then

(i) M is a lattice in NK.

(ii)
vol(M) = vp(det(g)) + c (1.4.23)

with

c =
∑

j

lj
(mj − 1)(nj − 1)

2
+

∑

(j,i)<(j′,i′)

mjnj′ , (1.4.24)

where the pairs (j, i) are ordered lexicographically.

(iii) Let I = I(N) ⊂
∐

j,i N with

(
∐

j,i

N) \ I = {(j, i, l) | l = amj + bnj +
∑

(j′,i′)<(j,i)

mj′nj for some a, b ≥ 0}.

(1.4.25)
Then | I |= c and (1, 1, 0) /∈ I, but (j, i, 0) ∈ I for (j, i) 6= (1, 1). There is an
element w ∈M such that

w =
∑

(j,i)

∑

l≥0

[bjil]g(ejil) (1.4.26)
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with (1.4.15), b110 = 1, and bjil = 0 if (1, 1, 0) 6= (j, i, l) /∈ I. This element w is
a generator of M as D(K)-module, and is called a normalised generator. It only
depends on the choice of the representative g ∈ [g] ∈ J/(J ∩ Stab(M0)).

(iv) Let

x =
∑

j,i,l

[bjil]g(ejil) ∈M. (1.4.27)

We order the set
∐

j,i N lexicographically. Then the index of the first nonzero
summand of x is not in I.

(v) For all (j, i, l) /∈ I there is an x ∈ M as in (1.4.27) such that [bjil] is its
first nonzero coefficient.

For the proof of the theorem we need two technical lemmas.

Lemma 1.4.10. Let a, b,m, n ∈ N with an + bm > mn and λ = m′

m′+n′
∈ (0, 1).

Then
an′ + bm′ > min{nm′,mn′}.

Proof. We may assume 0 < a ≤ m and b > 0, because otherwise the implication
is evident. If the claim were false, there would be some λ with λ(n+ a− b) ≥ a
and λ(m + b − a) ≤ m − a. Especially, this implies n + a − b > 0. From our
assumptions we get m+ b− a > 0. Thus

a(m+ b− a) ≤ λ(m+ b− a)(n+ a− b) ≤ (m− a)(n+ a− b),

in contradiction to an+ bm > mn.

Lemma 1.4.11. Let v and M be as in the theorem and assume g = id and
a110 = 1. Then there is an A ∈ D(K) of the form

A = F n1 − V m1 +
∑

k>m1n1

[αk]V
a(k)F b(k)

with αk ∈ K and the following properties:

(i) For k > m1n1, the exponents a(k), b(k) are the unique positive integers with
−n1 < a(k)− b(k) ≤ m1 and a(k)n1 + b(k)m1 = k.

(ii) Av ∈ N ′ =
⊕

(j,i)6=(1,1) Nj,i.

(iii) Av generates M ∩N ′ as a Dieudonné lattice in N ′.
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(iv) Let g′ ∈ JN ′(K) with

g′(ejil) = ej,i,l+m1nj .

Then
Av =

∑

(j,i)6=(1,1)

∑

l≥0

[a′jil]g
′(ejil),

with a′jil ∈ K such that for each j all a′ji0 (with 1 ≤ i ≤ lj if j 6= 1 and 2 ≤ i ≤ l1
if j = 1) are linearly independent over F

p
hj .

Proof. As a110 = 1 and F n1(e110) = V m1(e110) = e1,1,m1n1 , we have

F n1v − V m1v =
∑

l>m1n1

[c11l]e11l +
∑

(j,i)6=(1,1)

∑

l≥0

[cjil]ejil (1.4.28)

with cjil ∈ K for all j, i, l. For each k > m1n1 choose a(k) and b(k) as in (i).
Then

V a(k)F b(k)v =
∑

j,i

∑

l≥0

[aσ
b(k)−a(k)

jil ]ej,i,l+a(k)nj+b(k)mj

= e11k +
∑

l>k

[d11l]e11l +
∑

(j,i)6=(1,1)

∑

l≥0

[djil]ejil

with djil ∈ K. By Remark 1.2.1 we can inductively define αk ∈ K for k > m1n1

such that

(F n1 − V m1 +

k0∑

k=m1n1+1

[αk]V
a(k)F b(k))(v)

is a linear combination of the e11l with l > k0 and of an element of N ′. Thus the
element

A = F n1 − V m1 +
∑

k>m1n1

[αk]V
a(k)F b(k) (1.4.29)

satisfies Av ∈ N ′. As a(k)− b(k) is bounded, we have A ∈ D(K).
Let B =

∑
a,b≥0[βab]V

aF b ∈ D(K) with βab ∈ K and Bv ∈M ∩N ′. We want
to show that B = CA for some C ∈ D(K). We assume B 6= 0. For each k ∈ N
such that there exists a βab 6= 0 with an1 + bm1 = k let

dk(B) = min{a− b | an1 + bm1 = k, βab 6= 0}

and
dk(B) = max{a− b | an1 + bm1 = k, βab 6= 0}.

Furthermore let

d(B) = min{dk(B)} (1.4.30)

d̃(B) = max{dk(B)} (1.4.31)

23



The existence of this minimum and maximum is equivalent to B ∈ D(K). Induc-
tively we construct Ck ∈ D(K) with the following properties:

(a) The coefficient of V cF d in the representation of B−
∑

k′≤k Ck′A as in (1.2.4)
vanishes for all c, d with cn1 + dm1 ≤ k.

(b) If there exists a βab 6= 0 with an1 + bm1 = k, then d(Ck) ≥ d(B) and
d̃(Ck) ≤ d̃(B). Otherwise, Ck = 0.

(c) If B −
∑

k′≤k Ck′A 6= 0 then

d(B) ≤ d(B −
∑

k′≤k

Ck′A)

d̃(B) ≥ d̃(B −
∑

k′≤k

Ck′A).

If C =
∑

k≥0 Ck exists in D(K), then this implies B = CA. By replacing B by
B−

∑
k′<k Ck′A we may assume that k is the least integer such that there exist a, b

with an1 + bm1 = k and βab 6= 0. We want to show that dk(B) 6= dk(B). Assume
that dk(B) = dk(B). Then there is only one βa0b0 6= 0 with a0n1 + b0m1 = k.
Denote by p1 the projection to N1,1. We have

0 = B(p1(v))

= [βa0b0 ]V
a0F b0(p1(v)) +

∑

{(a,b)|an1+bm1>k}

[βab]V
aF b(p1(v))

=
∑

l≥0

[βa0b0a
σb0−a0
11l ]e1,1,l+k +

∑

{(a,b)|an1+bm1>k}

∑

l≥0

[βaba
σb−a

11l ]e1,1,l+an1+bm1 .

Hence the coefficient of e1,1,k in the expression above is [βa0b0a
σb0−a0
110 ] = [βa0b0 ].

This implies βa0b0 = 0, a contradiction. Thus dk(B) > dk(B). Note that m1 + n1

divides dk(B)−dk(B). Let a, b with a− b = dk(B) be the pair of indices realising
the maximum. Let Ck,1 = [βab]V

a−m1F b. From dk(B) ≥ dk(B) + m1 + n1 we
see that dk(B) < a − b − m1 < dk(B) and that dk(B) > dk(B − Ck,1A) and
dk(B) ≤ dk(B−Ck,1A). Hence d

k(B)− dk(B) > dk(B−Ck,1A)− dk(B−Ck,1A).
Using a second induction on this difference, we can construct Ck as a finite sum
of such expressions Ck,1. The fact that each pair (a, b) occurs at most once in the
construction of some Ck together with (b) implies that the sum C =

∑
k≥0 Ck

exists in D(K). This proves (iii).
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Now we want to show (iv). We have

Av = F n1v − V m1v +
∑

k>m1n1

[αk]V
a(k)F b(k)v

=
∑

(j,i)6=(1,1)

∑

l≥0

(
F n1 [ajil]ejil − V m1 [ajil]ejil +

∑

k>m1n1

[αk]V
a(k)F b(k)[ajil]ejil

)

=
∑

(j,i)6=(1,1)

∑

l≥0

(
[aσ

n1

jil ]ej,i,l+n1mj
− [aσ

−m1

jil ]ej,i,l+m1nj

+
∑

k>m1n1

[αka
σb(k)−a(k)

jil ]ej,i,l+a(k)nj+b(k)mj

)

For each j and i we determine the first nonvanishing coefficient of some ejil. First
we consider summands with j = 1 and i > 1. In this case V a(k)F b(k)e1i0 = e1ik

with k > m1n1. Thus a candidate for the first coefficient is that of e1,i,m1n1 , namely
[aσ

n1

1i0 − aσ
−m1

1i0 ]. (Here we used Remark 1.2.1 to determine w0([a
σn1

1i0 ] − [aσ
−m1

1i0 ]).)
As in the proof of Lemma 1.4.8 one sees that these coefficients are again linearly
independent over Fph1 . Now we consider summands with j > 1. From Lemma
1.4.10 and the ordering of the λj we get

a(k)nj + b(k)mj > min{n1mj,m1nj} = m1nj.

Thus the first nonzero coefficient is that of ej,i,m1nj , namely aσ
−m1

ji0 . For fixed j the
aji0 were linearly independent over F

p
hj , hence the new first nonzero coefficients

are again linearly independent. This proves (iv).

Corollary 1.4.12. Let N be bi-infinitesimal and simple and v ∈ NK \{0}. Then
Ann(v) ⊂ D(K) is a principal left ideal.

Proof of Theorem 1.4.9. Both F and V commute with g. Thus M = gM ′ where
M ′ is generated by

g−1v =
∑

j,i

∑

l≥0

[ajil]ejil.

Hence we may assume that g = id.
Assertion (iii) is implied by (iv) and (v). We show that (i) and (ii) also follow

from (iv) and (v): We consider the D(K)-modules

M j0i0l0 = 〈M, {ejil | (j, i, l) ≥ (j0, i0, l0), l ≥ 0}〉W (K). (1.4.32)

Then
M110 = M0.

Using (v) one sees
M j0,lj0 ,d = M
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where d =
∑

(j,i)6=(j0,lj0 ) mjnj0 +(mj0−1)(nj0−1). For (j, i, l) < (j ′, i′, l′) we have

M jil ⊇M j′i′l′ with equality if and only if

I ∩ {(j1, i1, l1) | (j, i, l) ≤ (j1, i1, l1) < (j ′, i′, l′)} = ∅.

Indeed, by (iv) and (v) this is equivalent to the condition that for each (j1, i1, l1)
with (j, i, l) ≤ (j1, i1, l1) < (j ′, i′, l′), there is already an element of M whose first
nonzero coefficient has index (j1, i1, l1). As the colength of M j,i,l+1 in M jil is at
most 1, this implies vol(M) =| I |= c.

We now prove (iv) and (v) using induction on
∑j0

j=1 lj, the number of simple
summands of NK .

By multiplying v with [a−1
110] ∈ W (K)× we may assume that a110 = 1. First

we consider the case that N is simple. We have

V aF bv = e1,1,an1+bm1 +
∑

l>0

[aσ
b−a

11l ]e1,1,l+an1+bm1 .

Thus for all l that can be written as l = an1 + bm1 with a, b ≥ 0 there is an
element in M of the form e11l +

∑
l′>l[bl′ ]e11l′ , proving (v). Let now x ∈M \ {0}

and assume that
x =

∑

l≥0

[b11l]e11l

such that (iv) is not satisfied for x. Let [b11l0 ] with (1, 1, l0) ∈ I be the first
nonvanishing coefficient. We also have a representation x =

∑
a,b≥0[ca,b]V

aF b(v).
Let (a0, b0) be a pair with ca0,b0 6= 0 and minimal a0n1+b0m1. Then a0n1+b0m1 ≤
l0. As no l > (m1 − 1)(n1 − 1) is in I, we get a0n1 + b0m1 ≤ (m1 − 1)(n1 − 1).
Especially, (a0, b0) is the unique pair of nonnegative integers (a, b) with an1 +
bm1 = a0n1 + b0m1. Hence the coefficient of e1,1,a0n1+b0m1 is the first nonzero
coefficient of x, proving (iv).

Let now N be the sum of more than one simple summand. Let p1 : NK → N1,1

be the projection and

N ′ =
⊕

(j,i)6=(1,1)

Nj,i.

Note that p1(M) is the lattice in N1,1 generated by p1(v). Thus the theorem
applied to the simple isocrystal N1,1 yields that each x ∈ M \ (M ∩N ′) satisfies
(iv), and that for each (1, 1, l) /∈ I there is an element x ∈ M as in (v). We now
consider elements of M ∩N ′. Let I(N ′) be the index set corresponding to N ′ as
in (1.4.25), viewed as a subset of

∐
(j,i)6=(1,1) N. Then one easily checks that

I ∩
∐

(j,i)6=(1,1)

N = {(j, i, l) | (j, i, l −m1nj) ∈ I(N ′)}. (1.4.33)
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In Lemma 1.4.11 we proved that M ∩N ′ is generated by Av for some A ∈ D(K)
and determined the corresponding g′ ∈ JN ′ , which only shifts the last indices
of the basis by m1nj. Thus the induction hypothesis implies that there is an
x ∈ M ∩ N ′ with x =

∑
(j,i)6=(1,1)[cjil]ejil and first nonzero coefficient [cjil] if

and only if (j, i, l − m1nj) /∈ I(N ′). Together with (1.4.33), this implies the
theorem.

1.4.4 Irreducible subvarieties of S1

Let I be the index set defined in Theorem 1.4.9(iii). Denote the coordinates of
a point in AI

k by ajil with (j, i, l) ∈ I. Let U = U(N) ⊆ AI
k be the affine open

subvariety defined by (1.4.15). Let a110 = 1. Then U is defined by the condition
that for each j, the aji0 for 1 ≤ i ≤ lj have to be linearly independent over F

p
hj .

We write U = Spec(R).
For each g ∈ J we want to define a morphism

ϕg : U → S1.

For g = id we describe the corresponding quasi-isogeny of p-divisible groups over
U via the display of the p-divisible group. As J acts on Mred we can define ϕg

for general g as the composition of ϕid and the action of g.
Let (P,Q, F, V −1) be the base change of the display of X from k to R. Let

v = e110 +
∑

(j,i,l)∈I

[σ
∑

j,imj(ajil)]ejil ∈ P ⊗Q = NR

and

T̃ = 〈v, Fv, . . . , F
∑

i,j nj−1v〉W (R) (1.4.34)

L̃ = 〈V v, . . . , V
∑

i,j mjv〉W (R) (1.4.35)

as W (R)-submodules of P ⊗ Q. Let P̃ = L̃ + T̃ and Q̃ = IRT̃ + L̃. We have to
show that (P̃ , Q̃, F, V −1) is a display where F and V −1 are the restrictions of F
and V −1 on P ⊗ Q. By construction we have IRP̃ ⊂ Q̃ ⊂ P̃ and P̃ and Q̃ are
finitely generated W (R)-modules. The results of the preceding section show that
the reduction of P̃ ⊗Q in a K-valued point of U is NK . Thus P̃ ⊗Q ∼= P ⊗Q,
and for dimension reasons, P̃ has to be free and L̃∩ T̃ = (0). Hence L̃ and T̃ form
a normal decomposition. The third condition for a display and the nilpotence
condition on V are satisfied because they were satisfied on P . We now determine
the matrix associated to F |T̃ and V −1|L̃ as in [Z],(9) to show that the image of
F is again in P̃ and that V −1 : Q̃→ P̃ is a σ-linear epimorphism. The matrix is
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of the following form:




0 · · · 0 ∗ 1

1
. . .

...
...

. . . 0
... 0

1 ∗

∗ 0 1

0
...

. . . . . .
... 0

. . . 1
∗ 0




All columns except the one corresponding to F
∑

j,i nj−1v have exactly one nonzero
entry, which is 1. We now have to show that the remaining column has entries in
W (R). We use induction on

∑
lj, the number of simple summands of N , to show

the following property: Let v =
∑

j,i,l≥0[bjil]ejil ∈ NR for some R such that for
each j all non-trivial linear combinations of its coefficients bji0 with coefficients
in F

p
hj are in R× and that b110 = 1. Assume furthermore that the coefficients of

v are in σ
∑

j,imj(R). Then

F
∑

j,i njv =
∑

0<k<
∑

j,i nj

γ−kF
kv +

∑

0≤k≤
∑

j,imj

γkV
kv

with γk ∈W (R).
Let A ∈ Ann(p1(v)) ⊆ D(R) of the same form as in Lemma 1.4.11. The

construction for this over R is the same as over K. As we chose a(k)−b(k) ≤ m1,
all coefficients of (F n1 − V m1)(v) and V a(k)F b(k)(v) are in σ

∑
(j,i)6=(1,1) mj(R). Thus

the coefficients of A are also in σ
∑

(j,i)6=(1,1) mj(R). We can write A in the form

A =
∑

0<k≤n1

α−kF
k +

∑

0≤k≤m1

αkV
k (1.4.36)

with αk ∈ W (σ
∑

(j,i)6=(1,1) mj(R)) and α−n1 = 1. Hence if N is simple, the equation
Av = 0 gives the desired relation for F n1v. We now consider the case thatN is not
simple. As in (1.4.21), the linear independence condition on the coefficients of v
implies a similar condition for Av: For each j, all non-trivial linear combinations
of the first coefficients of the projections ofAv on all (Nj,i)R ⊆ N ′

R with coefficients
in F

p
hj are invertible in R. Especially the projection of Av on the second simple

summand of NR is nonzero, and its first nonzero coefficient [β] is invertible. This
implies that [β−1]Av is (up to an index shift as in Lemma 1.4.11(iv)) an element
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of N ′
R satisfying the conditions needed to apply the induction hypothesis. Thus

F
∑

(j,i)6=(1,1) nj([β−1]Av)

=
∑

0<k<
∑

(j,i)6=(1,1) nj

γ−kF
k([β−1]Av) +

∑

0≤k≤
∑

(j,i)6=(1,1) mj

γkV
k([β−1]Av)

with γk ∈ R. Together with (1.4.36) this leads to the desired relation for F
∑

j,i njv.
Hence F

∑
j,i njv ∈ P̃ and (P̃ , Q̃, F, V −1) is a display.

This display, together with the identity as isomorphism of isodisplays, induces
a quasi-isogeny of p-divisible groups over U , that is a morphism ϕid : U →Mred.
For all g ∈ J let

S(g) = ϕg(U) = g ◦ ϕid(U).

As can be seen on K-valued points, the subvarieties S(g) and S(g ′) for g, g′ ∈ J
are equal if and only if [g] = [g′] in J/(J ∩ Stab(M0)).

Lemma 1.4.13. For all g ∈ J/(J∩Stab(M0)), the subscheme S(g) is a connected
component of S1.

Remark 1.4.14. Let M ⊂ N be a lattice and let P = (P,Q, F, V −1) be the display
associated to an S-valued point of Mred. We consider P as a submodule of NS.
Then the condition that P is contained in MS is a closed condition on S.

Proof of Lemma 1.4.13. Let B be a set of representatives of J/(J ∩ Stab(M0)).
Then the S(g) for g ∈ B are disjoint and cover S1. This holds as it is true for
their sets of K-valued points for every algebraically closed K, compare Lemma
1.4.8. The height of the quasi-isogeny is constant on each connected component
ofMred and thus of S1. Let M be a lattice associated to a K-valued point of S1.
Then vol(M)− vol(P (M)) = c is a constant only depending on N . If M ⊆ gM0

for some g ∈ J with vp(det(g)) = vol(P (M)), then P (M) = gM0. Thus S(g)(K)
consists of the lattices M with vol(M) = vp(det(g)) + c and M ⊆ gM0. Hence
S(g) is closed. The fact thatM is locally formally of finite type implies that the
disjoint union is locally finite. Thus the S(g) are also open.

1.4.5 The general case

Now we consider the case of general X over k, that is we do not assume that X is
bi-infinitesimal. The results obtained for the set of irreducible components and
the dimension in the bi-infinitesimal case also hold in this more general context.
To see this we again consider the set of K-valued points for an algebraically
closed field K. Over K each quasi-isogeny ρ : XK → X splits into a product
of quasi-isogenies between the étale, multiplicative, and bi-infinitesimal parts
of XK and X. The results of Section 1.3 show that the connected component
of the point x ∈ Mred(K) corresponding to ρ is given by fixing the étale and

29



multiplicative part of the quasi-isogeny and its height. Thus all points of one
connected component may be classified by considering the bi-infinitesimal parts of
the quasi-isogenies. Quasi-isogenies corresponding to the irreducible subvarieties
ofMred of Section 1.4.4 can be defined in this context as a product of a constant
quasi-isogeny of the étale and multiplicative parts of XK and the quasi-isogeny
of Section 1.4.4 for the bi-infinitesimal part.

1.5 Cohomology

1.5.1 A paving of Mred for N simple

Let X be a bi-infinitesimal p-divisible group over an algebraically closed field k of
characteristic p whose rational Dieudonné module N is simple. In the following
we use el instead of e1,1,l for the basis of N and n = n1, m = m1. Let π ∈ GL(N)
with π(el) = el+1 for all l. The description of J in Remark 1.4.1 shows that an
element of J is determined by the image of e0. As F h1e0 = pm1e0, the image
has to be invariant under σh1 . Thus J ∼= Quot(W (Fph1 )[π]) and Stab(M0) ∩ J ∼=
W (Fph1 )[π]

×. Therefore J/(Stab(M0) ∩ J) ∼= Z. Theorem 1.3.1 and Theorem
1.4.3 then show that M0

red is irreducible. This implies that M0
red is projective

(compare [RZ], Prop. 2.32). We now pave M0
red with affine spaces to compute

its cohomology. This is inspired by a description of the geometric points ofMred

by de Jong and Oort, see [JO].
Let K be a perfect field over k. We recall a combinatorical invariant for K-

valued points of Mred from [JO], 5. A subset A ⊆ Z is called a semimodule if it
is bounded below and satisfies m+A ⊆ A and n+A ⊆ A. It is called normalised
if | N \ A(M) |=| A(M) \ N |. One easily sees that there are only finitely many
normalised semimodules. In fact, their number is

(
m+n
m

)
/(m + n), see [JO], 6.3.

For every semimodule A, there is a unique integer l such that l+A is normalised.
We call l+A the normalisation of A. Each element of NK can be uniquely written
as
∑

l[al]el with al ∈ K and al = 0 for l small enough. We call the least l ∈ Z
with al 6= 0 the first index of the element. Let M ⊂ NK be the lattice associated
to x ∈Mred(K). As M is a Dieudonné lattice,

A = A(M) = {l ∈ Z | l first index of some v ∈M} (1.5.1)

is a semimodule called the semimodule of x or M . From the definition of the
volume we get

vol(M) =| N \ A(M) | − | A(M) \ N | . (1.5.2)

We may assume that idX corresponds to a lattice of volume 0. Then the semi-
modules of K-valued points of M0

red are normalised.

Proposition 1.5.1. For each normalised semimodule A there is a constructible
subscheme MA ⊆ M0

red which is defined by the property that for each perfect
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field K, the set MA(K) consists of the points with semimodule A. The MA are
disjoint and cover M0

red.

Proof. It is enough to show that for every normalised semimodule A there is
an open subscheme M≤A of M0

red, such that for every perfect field K the set
M≤A(K) consists of all points whose semimodules A′ satisfy the following condi-
tion: There is a bijection f : A′ → A with f(a) ≥ a for all a. A Dieudonné lattice
M of volume 0 corresponds to an element ofM≤A(K) if and only if for all a ∈ A,
the length of M/〈ea+1, ea+2, . . . 〉W (K) is at least | A ∩ Z≤a |. Every normalised
semimodule A′ contains an element a0 ≤ 0. All a > mn−m−n ≥ a0+mn−m−n
can be written as a = a0 + αm + βn with α, β ≥ 0. Thus a ∈ A′ for all
a > mn−m− n and all normalised semimodules A′. Hence the condition above
is an intersection of finitely many open conditions on M0

red.

We want to identify eachMA with an affine space. To do this we need further
combinatorical invariants from [JO]. Let A be a semimodule. We arrange the
m + n elements of A \ (m + n + A) in the following way: Let b0 be the largest
element. For i = 1, . . . ,m+n−1 we choose inductively bi ∈ A\ (m+n+A) to be
bi−1− n or bi−1 +m, depending on which of the elements lies in A \ (m+ n+A).
Then b0 = bm+n−1 +m. The tuple

B = B(A) = (b0, . . . , bm+n−1) (1.5.3)

is called the cycle of A. One can recover A as A = {bi+ l(m+n) | bi ∈ B, l ≥ 0}.
This defines a bijection between the set of semimodules and the set of cycles,
that is of m + n-tuples of integers bi satisfying b0 > bi, bm+n−1 + m = b0 and
bi ∈ {bi−1−n, bi−1+m} for all i 6= 0. The normalisation condition for semimodules
is equivalent to the condition

∑

i

bi =
(m+ n− 1)(m+ n)

2
. (1.5.4)

We split each cycle B in two parts:

B+ = {bi | bi +m ∈ B} (1.5.5)

B− = {bi | bi − n ∈ B}. (1.5.6)

Let
V(B) = {(d, i) | bd ∈ B+, bi ∈ B−, bi < bd} (1.5.7)

and
R = k[ad,i | (d, i) ∈ V(B)], (1.5.8)

S = Spec(R) = AV(B)
k . (1.5.9)
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We define a quasi-isogeny XS → X by describing the display of X as a subdisplay
of the isodisplay NR of XS. For each bi ∈ B we want to define an element vi ∈ NR

which has first index bi and first coefficient 1 in all closed points of S. We want
the vi to satisfy the following relations:

v0 = eb0 (1.5.10)

and

vi+1 =





Fvi if bi, bi+1 ∈ B+

Fvi +
∑

(d,i+1)∈V(B)[ad,i+1]vd if bi ∈ B+, bi+1 ∈ B−

V −1vi if bi ∈ B−, bi+1 ∈ B+

V −1vi +
∑

(d,i+1)∈V(B)[ad,i+1]vd if bi, bi+1 ∈ B−.

(1.5.11)

We set

vi =
m+n−1∑

j=0

ci,jebi+j

with ci,j ∈W (R) and write ci,j = (ci,j,l)l∈N. Let

ϕ(j, l) = j + l(m+ n). (1.5.12)

As ϕ is a bijection between {0, . . . ,m + n− 1} × N and N, we may write c̃i,ϕ(j,l)

instead of ci,j,l. Let c̃i,0 = 1 for all i. Then in every point of S, the first index
of vi is bi, and its first coefficient is 1. We define the c̃i,ϕ by induction on ϕ(j, l),
and for fixed ϕ by induction on i: For ϕ > 0 let c̃0,ϕ = 0 to satisfy (1.5.10). If
bi+1 ∈ B+, (1.5.11) implies that c̃i+1,ϕ = c̃σi,ϕ. If bi+1 ∈ B−, then c̃i+1,ϕ is equal to
c̃σi,ϕ plus a polynomial in the c̃i′,ϕ′ with ϕ′ < ϕ and coefficients in R. Hence we
can inductively define c̃i,ϕ(j,l) = ci,j,l ∈ R, and obtain ci,j = (ci,j,l) ∈ W (R).

With these vi let

L = 〈vi | bi ∈ B−〉W (R)

T = 〈vi | bi ∈ B+〉W (R)

P = L⊕ T

Q = L⊕ IRT.

The first indices bi of the vi are pairwise non-congruent modulo m + n, hence
the vi are linearly independent over W (R)[1/p] and P ⊗Q = NR. To show that
this defines a display over S, we have to verify that F (P ) ⊆ P and that V −1(Q)
generates P . The only assertions that do not immediately follow from (1.5.11)
are Fvm+n−1 ∈ P and v0 ∈ 〈V

−1(Q)〉W (R). As l ∈ A for all l ≥ b0, all those

el are in P . As bm+n−1 + m = b0, we have Fvm+n−1 =
∑m+n−1

j=0 cσm+n−1,jeb0+j
with w0(cm+n−1,0) = 1. Therefore, Fvm+n−1 ∈ P , and Fvm+n−1 =

∑
i∈B δivi
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with δi ∈ W (R) and w0(δ0) = 1. All vi with i > 0 are in 〈V −1(Q)〉W (R) and
Fvm+n−1 = V −1(pvm+n−1). Thus also v0 ∈ 〈V

−1(Q)〉W (R).
Let B be the cycle corresponding to a normalised semimodule A. Then this

display induces a quasi-isogeny and thus a morphism

fA : AV(B) →MA. (1.5.13)

Lemma 1.5.2. Let R be an excellent local ring and a k-algebra. Let x ∈MA(R)
and let P = (P,Q, F, V −1) be the corresponding display over R. Assume that
for every bi ∈ B+ there is a w0

i ∈ P and for every bi ∈ B− a w0
i ∈ Q with

w0
i =

∑m+n−1
j=0 c0i,jebi+j with c

0
i,j ∈ W (R) and the following properties: w0(c

0
i,0) = 1

for all i and the w0
i generate P . Then there is a unique x̃ ∈ AV(B)(R) with

fA(x̃) = x.

Proof. We want to show that there exist unique ad,i ∈ R such that for the cor-
responding display P ′ = (P ′, Q′, F, V −1) we have that P ′ ⊆ P and Q′ ⊆ Q. As
x and fA((ad,i)) are in the same connected component of M, the displays then
have to be equal.

We show by induction on h that for each bi ∈ B− there is a wh
i ∈ Q and for each

bi ∈ B+ a wh
i ∈ P of the form wh

i =
∑m+n−1

j=0 chi,jebi+j with chi,j = (chi,j,l) ∈ W (R)

and the following property: The coefficients chi,j,l for ϕ(j, l) ≤ h are equal to those

of the basis vi of the display of a point of AV(B) which only depends on P and
not on the chosen basis w0

i . The coordinate ad,i of the point of AV(B) will be
determined in the step where h = bd − bi. Especially, the point is fixed after
finitely many steps.

For h = 0 the claim follows from the assumptions of the lemma. As b0 +N ⊆
n+ A, we can choose wh

0 = eb0 = v0 ∈ Q for all h. Now suppose that the wh
i are

defined for some fixed h. We use a second induction on i to define

w̃h+1
i+1 =

{
Fwh+1

i if bi ∈ B+

V −1wh+1
i if bi ∈ B−.

From wh+1
i ∈ Q for bi ∈ B− we obtain that w̃h+1

i+1 ∈ P also for those i. If bi+1 ∈ B+

let
wh+1
i+1 = w̃h+1

i+1 .

If bi+1 ∈ B−, we modify w̃h+1
i+1 ∈ P to obtain an element of Q: A basis of the free

R-module P/Q ∼= T/IRT is given by the wh
d with bd ∈ B+. As the first indices of

the elements of Q are in n+ A, there are unique αh+1
d,i+1 ∈ R with

wh+1
i+1 = w̃h+1

i+1 +
∑

bd>bi+1,bd∈B+

[αh+1
d,i+1]w

h
d ∈ Q. (1.5.14)
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By the induction hypothesis, the coefficients ch+1
i,j,l of wh+1

i with ϕ(j, l) ≤ h + 1

and the coefficients of all wh
d with ϕ(j, l) ≤ h are uniquely defined by P and

independent of the chosen w0
i . This implies ch+1

i,j,l = chi,j,l for all j, l with ϕ(j, l) ≤

h. Especially, αh+1
d,i+1 = ad,i+1 for all bd ≤ bi+1 + h. If (d, i + 1) ∈ V(B) with

bd − bi+1 = h + 1, then let ad,i+1 = αh+1
d,i+1. Then ad,i+1 also only depends on P .

This defines wh+1
i for all i and unique ad,i satisfying the condition above for h+1.

Each coefficient chi,j,l remains fixed after ϕ(j, l) steps. Hence the sequences wh
i

converge in P , and their limits wi are as desired.

Theorem 1.5.3. Let A be a normalised semimodule. Then fA : AV(B) →MA is
an isomorphism.

Proof. If K | k is a perfect field, each lattice corresponding to an element of
MA(K) has a basis satisfying the assumptions of Lemma 1.5.2. Hence fA(K) :
AV(B)(K)→MA(K) is a bijection.

We want to show that fA is proper by verifying the valuation criterion. Let
x ∈ MA(k[[t]]) and let xη and x0 be its generic and special point. Let x̃η ∈
AV(B)(k((t))) be a point mapping to xη. Let P = (P,Q, F, V −1) be the display
of x. The W (k[[t]])-module P is a submodule of Pη = P ⊗W (k[[t]]) W (k((t))), the
first component of the display Pη of xη. As x̃η maps to xη, we can describe Pη as
generated by elements vi as above. By Lemma 1.5.2, x0 ∈ MA(k) is also in the
image of fA. Hence we can choose generators v′i of P which for bi ∈ B− are in
Q, and which modulo (t) reduce to the standard generators of the display of the
inverse image of x0 under fA. Let y be the minimal element of B. As v′i ∈ Nk[[t]],
there is an a ∈ N such that v′i ∈ 〈ey, . . . , ey+m+n−1〉W (k[[s]]) where sp

a

= t. In
the following we consider x as a k[[s]]-valued point of MA. The reduction of
v′i modulo (s) has first index bi. As xη ∈ MA, the index of the first nonzero
coefficient of each v′i is in A. Thus we can modify each v′i by a linear combination
of the v′j with bj < bi and coefficients in W (k[[s]]) which reduce to 0 modulo (s)
such that the new first nonzero coefficient is that of ebi . Besides, we only have to
modify the elements vi ∈ Q by other elements of Q. Therefore we may in addition
assume that the first nonzero coefficient of v′i has index bi, and is 1. After passing
to a larger a we may assume that v′i ∈ 〈ebi , . . . , ebi+m+n−1〉W (k[[s]]). By Lemma
1.5.2 for w0

i = v′i we obtain a unique point x̃′ = (bd,i) ∈ AV(B)(k[[s]]) mapping to
x. But as its generic point x̃′η maps to xη, the uniqueness in Lemma 1.5.2 implies

that x̃′η = x̃η ∈ AV(B)(k((t))). Hence bd,i ∈ k[[s]] ∩ k((t)) = k[[t]], and x is in the
image of fA(k[[t]]).

Lemma 1.5.2 further implies that the tangent morphism of fA is injective at
every closed point. The theorem now follows from [V], Lemma 5.13.

Using the paving of M0
red by affine spaces and that M0

red is projective, one
obtains the following result about its cohomology.
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Theorem 1.5.4. Let l 6= p be prime. Then

H2i+1(M0
red,Ql) = 0 (1.5.15)

H2i(M0
red,Ql) = Ql(−i)

d(i), (1.5.16)

for all i, where d(i) is the number of normalised cycles B with | V(B) |= i.

Proposition 1.5.5. (i) d(0) = d( (m−1)(n−1)
2

) = 1 for all m and n. If m,n > 1,
also d(1) = 1.

(ii) Let min{m,n} = 2. Then d(i) = 1 for 0 ≤ i ≤ dimM0
red.

(iii) Let min{m,n} > 2. Then d( (m−1)(n−1)
2

− 1) > 1.

Proof. The equation d( (m−1)(n−1)
2

) = 1 is shown in [JO], 6. They also show that
for a semimodule A, the dimension | V(B(A)) | is bounded below by the number
of positive integers s such that there exists an a ∈ A with a + s /∈ A (see [JO],
6.12). Let A be a normalised semimodule with | V(B(A)) |= 0. Then a ∈ A
implies a′ ∈ A for all a′ > a. Thus A = N. One easily sees that this semimodule
indeed leads to a zero-dimensional subscheme. Let now A be normalised with
| V(B(A)) |= 1. Then a ∈ A implies that there is at most one element of Z \ A
that is larger than a. Analogously, for a /∈ A there is at most one element of
A smaller than a. This leaves only A = {−1, 1, 2, 3, . . . } as a candidate for a
contribution to d(1). It is a semimodule if and only if m,n > 1. Again one can
see (using the combinatorics explained in [JO], 6) that | V(B(A)) |= 1.

To show (ii), we may assume that m = 2 and n = 2l + 1 for some l. Each
normalised semimodule is of the form A = Ai = (2N− i) ∪ (N + i + 1) for some
i ∈ {0, . . . , l}. The cycle Bi = B(Ai) is

(2l + 2 + i, i+ 1, i+ 3, . . . , 2l − i− 1, 2l − i+ 1,−i,−i+ 2, . . . , 2l + i)

with B− = {2l+2+ i, 2l− i+1}. The element 2l+2+ i is the largest element of
Bi, so it does not contribute to V(Bi). The other element of B− is smaller than
the i elements 2l − i+ 2, . . . , 2l + i of B+. Hence | V(Bi) |= i.

For (iii) we have to construct two normalised semimodules leading to sub-
schemes of codimension 1. Assume that m < n, the other case is completely
analogous. Let

A1 = {am+ bn | a, b ≥ 0} ∪ {mn−m− n}. (1.5.17)

There are (m−1)(n−1)
2

natural numbers which cannot be written as am + bn with
a, b ≥ 0, and mn−m− n is the largest. Thus the lower bound on | V(A1) | used
in the proof of (i) shows that the codimension of the subscheme corresponding
to the normalisation of A1 is at most 1. But there is only one semimodule
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leading to a subscheme of codimension 0, and this is obtained by normalising
A0 = {am+bn | a, b ≥ 0} (see [JO], 6). Thus the normalisation of the semimodule
A1 leads to a subscheme of codimension 1. The cycle corresponding to A0 is given
by B+ = {0,m, . . . , (n− 1)m} and B− = {n, 2n, . . . ,mn}. Let B+

2 be the index
set obtained from B+ by replacing (n − 1)m by (n − 1)m − 2n, and let B−2 be
obtained from B− by replacing mn by mn−m and mn−n by mn−m−n. One
can easily check that this defines a cycle. A pair of elements (i, j) ∈ B+ × B−

with i > j is then replaced by a pair in B+
2 × B−2 . The pair ((n− 1)m,mn− n)

which is replaced by (mn − m − 2n,mn − m − n) is the only pair with larger
first entry which is replaced by a pair such that the first entry is smaller than
the second. After normalising the cycle we get again a subscheme of codimension
1. The smallest element of A1 and A2 is 0. As mn − m − 2n ∈ A2 \ A1, the
normalisations of the two semimodules are different.

1.5.2 Application to smoothness

In this section we show the following

Theorem 1.5.6. Let X be an arbitrary p-divisible group over an algebraically
closed field of characteristic p. Then M0

red is smooth if and only if one of the
following holds: dimM0

red = 0 or the isocrystal N of Xbi is simple of slope 2
5
or

3
5
.

Remark 1.5.7. The condition dimM0
red = 0 is equivalent to the condition that X

is ordinary or that the isocrystal of Xbi is simple of slope m
m+n

with min{m,n} = 1.

Once we have shown the theorem for bi-infinitesimal X, we can treat the gen-
eral case as in Section 1.4.5. We may thus assume that X is bi-infinitesimal. The
results of Sections 1.3 and 1.4 imply that the connected components ofMred are
irreducible if and only if N is simple. From now on we assume this. Let m

m+n
be

its slope with (m,n) = 1. We also assume that idX corresponds to a lattice of
volume 0. We consider the following cases:

Case 1: min{m,n} = 1.

If m or n is 1, the dimension of M0
red is 0 and the scheme is smooth.

Case 2: {m,n} = {2, 3}.

We assume that m = 2 and n = 3. The case n = 2 and m = 3 is similar and thus
omitted.

Theorem 1.5.8. Let X be bi-infinitesimal and let its rational Dieudonné module
N be simple of slope 2

5
. Then M0

red
∼= P1.
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Proof. Let P1 = U0 ∪U1 be the standard open covering. We denote the points of
P1 by [a−1 : a0]. Over U0

∼= Spec(k[a0]) let

L0 = 〈e2 + [a0]e3, e5〉W (k[a0])

T0 = 〈e−1 + [a0]
σe0, e1, e3〉W (k[a0])

and

P0 = L0 ⊕ T0 = 〈e−1 + [a0]
σe0, e1, e2, e3, e5〉W (k[a0])

Q0 = L0 ⊕ Ik[a0]T0.

On the other hand let P and Q be the display from the definition of fA for the
semimodule A = {−1, 1, 2 . . . }. Then {e1, e2, . . . } ⊂ P and {e4, e5, . . . } ⊂ Q.
Using this and the first steps of the recursion for the generators of P , one can see
that P = P0 and Q = Q0. Thus P0 and Q0 define a display. As A is the minimal
semimodule, the corresponding morphism A1 → M0

red is an open immersion.
Over U1

∼= Spec(k[a−1]) let

L1 = 〈[a−1]e2 + e3, e4〉W (k[a−1])

T1 = 〈[a−1]
σe−1 + e0, e1, e2〉W (k[a−1])

and choose

P1 = L1 ⊕ T1 = 〈[a−1]
σe−1 + e0, e1, e2, e3, e4〉W (k[a−1])

Q1 = L1 ⊕ Ik[a−1]T1.

One easily checks that this defines a display. It is obvious that the corresponding
morphism ϕ1 : A1 → M0

red is injective on R-valued points. As for fA one can
show that ϕ1 is an immersion. The complement of its image consists of the image
of the origin in U0. We can glue the morphisms corresponding to the displays
over U0 and U1 to obtain an isomorphism P1 →M0

red.

Case 3: min{m,n} = 2 and max{m,n} > 3.

We consider the case m = 2 and n = 2l + 1 with l > 1. The case n = 2 and
m = 2l + 1 is similar and thus omitted. We have dimM0

red = l. Let M ⊂ N be
the Dieudonné lattice generated by e−l+2 and el−1. Then this lattice corresponds
to the k-valued point x = fAl−2

(0) ∈ MAl−2
(k) where Al−2 is as in the proof of

Proposition 1.5.5.

Proposition 1.5.9. The dimension of the tangent space of M0
red in x is at least

l + 1.
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Proof. For (a0, . . . , al−1, b0, b1) ∈ kl+2 consider the following submodules of Nk[ε]

where k[ε] ∼= k[t]/(t2). Let

v1 = el+3 + [ε]([a0]el+1 +
l−1∑

i=1

[ai]el+2i) (1.5.18)

and
v2 = e3l + [εb0]el+1 + [εb1]el+2. (1.5.19)

Let

L = 〈v1, v2〉W (k[ε])

T = 〈e−l+2, e−l+4, . . . , e3l−2, el−1, el+1〉W (k[ε]),

then

P = L⊕ T = M ⊗W (k) W (k[ε]) (1.5.20)

Q = L⊕ Ik[ε]T. (1.5.21)

As σ(ε) = 0, this defines a display. For i0 ∈ {l+1, l+2, l+4, . . . , 3l− 2} there is
no element of Q of the form

∑
i≥i0

[δi]ei with δi ∈ k[ε] and δi0 6= 0. This implies
that the display leads to an l + 2-dimensional subspace of the tangent space of
M at x. We now have to construct an l+1-dimensional subspace that lies in the
tangent space of Mred. For a0, a1 6= 0 let

v1 = [ta0]el+1 + [ta1]el+2 + el+3 +
l−1∑

i=2

[tai]el+2i ∈ Nk((t)). (1.5.22)

Let further

L1 = 〈e3l+2, v1〉W (k((t)))

T1 = 〈V −1v1, FV
−1v1, . . . , F

2lV −1v1〉W (k((t)))

P1 = L1 ⊕ T1

Q1 = L1 ⊕ Ik((t))T1.

As a0 6= 0, there is an element of P1 with first index i for all i ≥ l and of Q1 for
all i ≥ 3l + 1. Using this one can easily see that F (P1) ⊆ P1 and that V −1(Q1)
generates P1. Thus P1 and Q1 define a display over k((t)), and a k((t))-valued
point of M0

red. As M0
red is projective this point is induced by a k[[t]]-valued

point. Its display is (P1 ∩ Nk[[t]], Q1 ∩ Nk[[t]], F, V
−1). We want to show that

the special point corresponds to x. The element V −1v1 of P1 ∩ Nk[[t]] reduces to
V −1(el+3) = e−l+2 modulo (t). To show that M is contained in the reduction of
P1 ∩Nk[[t]] modulo (t), it remains to see that el−1 is contained in this reduction.
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For all i ≥ 3l + 1 the vector ei is in Q1. We consider the following element of Q1

modulo the lattice generated by these elements ei:

(F l−1 − [(ta0)
σl−1

]F l−2)v1 ≡ [tσ
l−1

]
(
−[aσ

l−1

0 (ta0)
σl−2

]e3l−3 − [aσ
l−1

0 (ta1)
σl−2

]e3l−2

+([aσ
l−1

1 ]− [aσ
l−1

0 (ta2)
σl−2

])e3l

)

= [tσ
l−1

]v

for some v ∈ Q1 ∩ Nk[[t]]. The reduction of v modulo (t) is [aσ
l−1

1 ]e3l. Thus
el−1 = V −1(e3l) is contained in the lattice at the special point. Hence the special
point of this k[[t]]-valued point is x. If l > 2, the reduction of v modulo (t2)
is [aσ

l−1

1 ]e3l. Hence e3l is in the projection of Q1 ∩ Nk[[t]] to Nk[ε]. If l = 2, the

reduction of ([aσ
l−1

1 ]− [aσ
l−1

0 (ta2)
σl−2

])−1v modulo (t2) is equal to v2 as in (1.5.19)
with b0 = −aσ0a0/a

σ
1 and b1 = −aσ0a1/a

σ
1 . Comparing the image of Q1 ∩ Nk[[t]]

under the projection to Nk[ε] to the definition of Q in (1.5.21) we see that the
tangent vector of this k[[t]]-valued point at x corresponds to the tangent vector
(a0, . . . , al−1, 0, 0) ∈ kl+2 if l > 2 and to

(a0, a1,
−aσ0a0

aσ1
,
−aσ0a1

aσ1
)

if l = 2.
For b0 6= 0 let

v2 = [tb0]el+1 + e3l

and

L2 = 〈e3l+2, v2〉W (k((t)))

T2 = 〈V −1v2, FV
−1v2, . . . , F

2lV −1v2〉W (k((t)))

P2 = L2 ⊕ T2

Q2 = L2 ⊕ Ik((t))T2.

The same reasoning as above shows that this defines a display. To show that
it leads to a k[[t]]-valued point of Mred with special point x, we have to check
that el−1 and e−l+2 are in the lattice at the special point. The reduction of
V −1v2 = [tb0]

σe−l+el−1 modulo (t) is el−1. Besides, Fv2−e3l+2 = [tσbσ0 ]el+3 ∈ Q2,
hence el+3 ∈ Q2 ∩ Nk[[t]]. As e−l+2 = V −1el+3, the lattice M is contained in the
reduction of P2 modulo (t). The fact that el+3 ∈ Q2 ∩Nk[[t]] also shows that the
tangent vector of this k[[t]]-valued point in x corresponds to (0, . . . , 0, b0, 0) ∈ kl+2.
Thus we constructed elements of the tangent space of Mred in x which generate
an l + 1-dimensional subspace.
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Case 4: min{m,n} > 2

In this case Theorem 1.5.4 and Proposition 1.5.5 show that

dimH2(M0
red,Ql) 6= dimH2 dimM0

red−2(M0
red,Ql).

Hence M0
red does not satisfy Poincaré duality and it cannot be smooth.
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2 The function field case

2.1 Introduction

Let k be a finite field with q = pr elements and let k be an algebraic closure. Let
F = k((t)) and let L = k((t)). Let OF and OL be the valuation rings. We denote
by σ : x 7→ xq the Frobenius of k over k and also of L over F .

Let G = GLn over F and let A be the diagonal torus. Let B be the Borel
subgroup of lower triangular matrices. For µ, µ′ ∈ X∗(A)Q we say that µ ≥ µ′

if µ − µ′ is a non-negative linear combination of positive coroots. An element
µ = (µ1, . . . , µn) ∈ X∗(A) ∼= Zn is dominant if µ1 ≤ · · · ≤ µn. We write µdom for
the dominant element in the orbit of µ ∈ X∗(A) under the Weyl group of A in G.
For α ∈ X∗(A) we denote by tα ∈ A(F ) the image of t under the homomorphism
α : Gm → A.

We recall the definitions of affine Deligne-Lusztig varieties and closed affine
Deligne-Lusztig varieties from [Ra1], [GHKR]. Let K = G(OL) and let X =
G(L)/K be the affine Grassmannian. For b ∈ G(L) and a dominant coweight
µ ∈ X∗(A) the affine Deligne-Lusztig variety Xµ(b) is the locally closed reduced
subscheme of X defined by

Xµ(b) = {g ∈ G(L)/K | g−1bσ(g) ∈ KtµK}. (2.1.1)

The closed affine Deligne-Lusztig variety is the closed reduced subscheme of X
defined by

X≤µ(b) =
⋃

µ′≤µ

Xµ′(b). (2.1.2)

BothXµ(b) andX≤µ(b) are locally of finite type. Let ν ∈ Qn be the Newton vector
associated to b. In [KR] Kottwitz and Rapoport prove that Xµ(b) is nonempty if
and only if ν ≤ µ. From now on we only consider this case.

Left multiplication by g ∈ G(L) induces an isomorphism between Xµ(b) and
Xµ(gbσ(g)

−1). Thus the isomorphism class of the affine Deligne-Lusztig variety
only depends on the σ-conjugacy class of b. For each central α ∈ X∗(A) there is
the trivial isomorphism

Xµ(b)→ Xµ+α(t
αb). (2.1.3)

We write π1(G) for the quotient of X∗(A) by the coroot lattice of G. In [K2]
Kottwitz defines a homomorphism

κG : G(L)→ π1(G) (2.1.4)

which induces a locally constant map κG : X → π1(G). For G = GLn we have
π1(G) ∼= Z and κG(g) = vt(det g).

Let P be a standard parabolic subgroup of G. Then P = MN , where N

is the unipotent radical of P and where M is the unique Levi subgroup of P
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containing A. Applying the construction of κ to M rather than G we obtain
a homomorphism κM : M (L) → π1(M). The inclusion M (L)/M (OL) ↪→
G(L)/G(OL) induces for each µ and each b ∈ M (L) an inclusion XM

µ (b) ↪→
XG

µ (b). Here X
M
µ (b) denotes the affine Deligne-Lusztig variety for M .

Let AP denote the identity component of the center of M . Let

a
+
P = {x ∈ X∗(AP )⊗Z R | 〈α, x〉 > 0 for every root α of AP in N}. (2.1.5)

In [K2] it is shown that there is a unique standard parabolic P b = M bN b of
G such that the σ-conjugacy class of b contains an element b′ with the following
properties: b′ is basic in M b and κMb

(b′), considered as an element of aP b
, lies

in a
+
P b
. We assume that b = b′. The proof of the Hodge-Newton decomposition

by Kottwitz (see [K3]) yields: Let P = MN ⊆ G be a standard parabolic
subgroup with P b ⊆ P . If κM (b) = µ, then the morphism XM

µ (b) ↪→ XG
µ (b)

is an isomorphism. We call a pair (µ, b) indecomposable with respect to the
Hodge-Newton decomposition if for all standard parabolic subgroups P with
P b ⊆ P = MN ( G we have κM (b) 6= µ. Given G, µ, and b we may always pass
to a Levi subgroup M of G in which (µ, b) is indecomposable. For a description of
the affine Deligne-Lusztig varieties it is therefore sufficient to consider pairs (µ, b)
which are indecomposable with respect to the Hodge-Newton decomposition.

Let
J = {g ∈ GLn(L) | g ◦ bσ = bσ ◦ g}.

Then there is a canonical J-action on Xµ(b).
In this section we address the following three questions:

Question 1: What are the sets of connected components of Xµ(b) and X≤µ(b)?
For the closed affine Deligne-Lusztig varieties we prove that J acts transi-

tively on the set of connected components. Using this we obtain the following
description of π0(X≤µ(b)).

Theorem E. Let (µ, b) be as above and indecomposable with respect to the Hodge-
Newton decomposition.

(i) Either κM (b) 6= µ for all proper standard parabolic subgroups P of G with
b ∈M or the σ-conjugacy class [b] is central and equal to [tµ].

(ii) In the first case, κG induces a bijection between π0(X≤µ(b)) and π1(GLn) ∼=
Z.

(iii) In the second case, Xµ(b) = X≤µ(b) ∼= J/(J ∩K) ∼= GLn(F )/GLn(OF ).

For the non-closed varieties our calculations seem to support the following
conjecture.
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Conjecture 2.1.1. The action of J on π0(Xµ(b)) is transitive.

We do not have a precise conjecture for π0(Xµ(b)). Theorem E implies that
the map π0(Xµ(b))→ π0(X≤µ(b)) induced by the inclusion is surjective. We give
an example to show that in general it is not injective.

Question 2: What is the set of irreducible components of Xµ(b)?
In Section 1 we showed that J acts transitively on the set of irreducible com-

ponents of the moduli spacesM. Guided by this result we arrive at the following
conjecture about the set of irreducible components of Xµ(b).

Conjecture 2.1.2. The action of J on the set of irreducible components of Xµ(b)
has only finitely many orbits.

However, we give an example to show that in general the action of J on the
set of irreducible components is not transitive for non-minuscule µ.

Question 3: What is the dimension of Xµ(b)?
Affine Deligne-Lusztig varieties Xµ(b) can also be defined as in (2.1.1) when

GLn is replaced by an unramified connected reductive group G. There is a con-
jectural formula for the dimension of Xµ(b) by Rapoport (see [Ra2], Conj. 5.10).
For split groups G it takes the form

Conjecture 2.1.3. (Rapoport)

dimXµ(b) = 〈2ρ, µ− ν〉+
∑

i

[〈ωi, ν − µ〉]

Here ρ is the half-sum of the positive roots and ωi are the fundamental weights
of Gad. By [x] we denote the greatest integer which is less or equal to x. In
[GHKR], Görtz, Haines, Kottwitz, and Reuman reduce the proof of the dimen-
sion formula to the case that G = GLn and that the σ-conjugacy class of b is
superbasic. Here superbasic means that no σ-conjugate element is contained in
a proper Levi subgroup of G. They prove the conjecture for b ∈ A(L).

Conjecture 2.1.3 leads to the following conjectural description of the set of
pairs (µ, b) with dimXµ(b) = 0. It is a modification of a conjecture by Rapoport.

Conjecture 2.1.4. (Rapoport) Let G be split. Assume that Xµ(b) is nonempty
and that (µ, b) is indecomposable with respect to the Hodge-Newton decomposition.
Then dimXµ(b) > 0 unless either [b] is µ-ordinary or the adjoint group Gad is
equal to PGLn and µ = (0, . . . , 0, 1) or µ = (0, 1, . . . , 1).

Our methods seem to give lower bounds on dimXµ(b). One instance is given
by the second main result of this section, which proves Conjecture 2.1.4 for G =
GLn.
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Theorem F. Let G = GLn and let (µ, b) be indecomposable with respect to the
Hodge-Newton decomposition. Then dimXµ(b) = 0 if and only if µ is of one of
the following forms: µ = (a, . . . , a), µ = (a, . . . , a, a + 1) or µ = (a− 1, a, . . . , a)
for some a ∈ Z.

Theorems E and F together imply that J acts transitively onXµ(b) ifG = GLn

and dimXµ(b) = 0.

Notation and conventions

Our notation in this section will differ slightly from that of the previous section:
Let N = Ln and consider bσ as an automorphism of N . Let N =

⊕l

i=1 Ni be
a decomposition of (N, bσ) into simple summands. Let pi : N → Ni be the
projection. Let hi = dimLNi and let mi/hi be the slope of (Ni, (bσ)|Ni

). As in
Section 1.4.1 we choose a basis ei,0, . . . , ei,hi−1 of Ni with the following property:
For j ∈ Z let ei,j = tei,j−hi . Then

bσ(ei,j) = ei,j+mi
. (2.1.6)

Let M0 = 〈ei,j | j ≥ 0〉OL . Then K = Stab(M0). Mapping g ∈ Xµ(b) to gM0

defines a bijection between the k-rational points of Xµ(b) and the set of lattices
M ⊂ N with inv(M, bσ(M)) = µ. Here inv(M, bσ(M)) = µ = (µ1, . . . , µn) for
some dominant µ ∈ X∗(A) if and only if there is an OL-basis vi for M such that
tµivi is an OL-basis for bσ(M).

A vector v ∈ N has a unique representation

v =
l∑

i=1

∑

j∈Z
ai,jei,j

with ai,j ∈ k and ai,j = 0 for j small enough. Let I(v) ∈ {1, . . . , l} × Z be the
smallest pair (i, j) (in the lexicographic order) with ai,j 6= 0. It is called the first
index of v. If a ∈ Z we write I(v) + a instead of I(v) + (0, a).

Remark 2.1.5. In [KR], 4 it is shown that there is a unique minimal dominant
µmin with µmin ≥ ν. We can inductively define µmin as follows:

µi = max{j |
∑

i′<i

µi′ + j(l − i) ≤
∑

l′≤l

νl′ for all l ≥ i+ 1}. (2.1.7)

The minimality is then easily verified. If νi ∈ Z then µi = νi. Let νi0 , . . . , νi1 be
all entries of ν in the interval (a, a+1) for some integer a. Then µi ∈ {a, a+1} for
i0 ≤ i ≤ i1, with suitable multiplicities of a and a + 1 to ensure that

∑i1
i=i0

νi =∑i1
i=i0

µi. With a formula analogous to (2.1.7) one can for each i0 ∈ {1, . . . , n−1}

find the unique minimal µ(i0) with µ(i0) ≥ ν and
∑i0

i=1 µ
(i0)
i <

∑i0
i=1 νi.
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We haveM0 =
⊕

(M0∩Ni). IfNi has slope in [a, a+1], equation (2.1.6) implies
that pa+1(M0∩Ni) ⊆ bσ(M0∩Ni) ⊆ pa(M0∩Ni). Hence inv(M0, bσ(M0)) = µmin.
As J commutes with bσ, its image J/(K ∩ J) in X is also contained in Xµmin

(b).
The volume of a lattice M is defined as

vol(M) = lg(M0/(M ∩M0))− lg(M/(M0 ∩M)).

Let M ∈ Xµ(b). As in the preceding chapters we denote by P (M) ∈ Xµmin
(b)

the lattice with maximal volume containing M and of the form P (M) = gM0 for
some g ∈ J .

2.2 Connected components of closed affine Deligne-Lusztig

varieties

In this section we determine the set of connected components of X≤µ(b) for G =
GLn.

Theorem 2.2.1. Let µ and b be as above and indecomposable with respect to the
Hodge-Newton decomposition.

(i) Either κM (b) 6= µ for all proper standard parabolic subgroups P of G with
b ∈M or the σ-conjugacy class [b] is central and equal to [tµ].

(ii) In the first case, κG induces a bijection between π0(X≤µ(b)) and π1(GLn) ∼=
Z.

(iii) In the second case, Xµ(b) = X≤µ(b) ∼= J/(J ∩K) ∼= GLn(F )/GLn(OF ).

Proof of Theorem 2.2.1 (i) and (iii). To show (i) we assume that κM (b) = µ for
some M and P as above. After possibly enlarging P we may assume that
M = GLi0 × GLn−i0 for some 0 < i0 < n. Then ν1 + · · · + νi0 = µ1 + · · · + µi0 .
The assumption that (µ, b) is indecomposable implies that M b * M , hence
νi0 = νi0+1. As µ is dominant and µ ≥ ν, we obtain

µi0+1 ≥ µi0 ≥ νi0 = νi0+1 ≥ µi0+1. (2.2.1)

Thus νi0 = νi0+1 = µi0 = µi0+1. Repeating this argument with i0 replaced by
i0 − 1 and i0 + 1 we inductively obtain

ν1 = · · · = νn = µ1 = · · · = µn.

Assertion (iii) is easy.
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The strategy of the proof of the second part of the theorem is as follows:
We first show in Proposition 2.2.5 that each connected component contains an
element of J and afterwards connect elements of J ∩ ker(κ) by one-dimensional
subvarieties in X≤µ(b). To show Proposition 2.2.5 we start with an arbitrary
element M of the affine Deligne-Lusztig variety and define a one-dimensional
connected subvariety which connects M to an element which is in a certain sense
closer to J . As a preparation we define a basis for latticesM ∈ Xµ(b) and consider
a special case.

Lemma 2.2.2. Let M ⊂ N be a lattice with M ∈ Xµ(b). Then there is a basis
v1, . . . , vn of M and µ̃ = (µ̃1, . . . , µ̃n) ∈ X∗(A) with µ̃dom = µ and the following
properties:

(i) 〈{t−µ̃ibσ(vi)}i=1,...,n〉OL = M

(ii) I(v1) = (1, c) for some c ∈ Z

(iii) Let p1 be the projection to N1. Then I(vi) < I(vj) for all i < j with
p1(vi) 6= 0.

(iv) If p1(vi), p1(vj) 6= 0 for some i < j and I(vj) = I(vi) + h1a with a ∈ N,
then µ̃i + a < µ̃j.

Proof. As M ∈ Xµ(b) we may choose a basis vi that satisfies (i) for µ̃ = µ. We
renumber the vi such that I(vi) ≤ I(vj) if i < j. If I(vi) = I(vj) we may further
achieve that for the permuted element µ̃ we have µ̃i ≥ µ̃j. If now (iv) is not
satisfied for some pair i, j, we modify vj by adding ctavi for some c ∈ k such that
I(vj + ctavi) > I(vj). Then the new basis also satisfies (i) and (ii). We permute
the elements again to achieve the weak inequality in (iii) and that µ̃i ≥ µ̃j for
each i < j with I(vi) = I(vj) and p1(vi) 6= 0. As long as (iv) is not satisfied we
can continue enlarging the first indices of basis elements in this way. This process
has to stop as the vi generate the lattice M . Thus after finitely many steps we
obtain a basis satisfying (i), (ii), (iv), the weak inequality in (iii), and µ̃i ≥ µ̃j for
each i < j with I(vi) = I(vj) and p1(vi) 6= 0. But then (iii) holds as well.

Lemma 2.2.3. Let M , vi and µ̃ be as in the preceding lemma. Then ν1 ≥ µ̃1. If
ν1 = µ̃1 then p1(vi) = 0 for all i > 1.

Proof. Let p1(vi) 6= 0 for some i ≥ 1. Then

I(t−µ̃ibσ(vi)) = I(vi) +m1 − µ̃ih1. (2.2.2)

As I(v) ≥ I(v1) for all v ∈ M , this equation for i = 1 implies m1 − µ̃1h1 ≥ 0,
hence ν1 ≥ µ̃1. Assume that ν1 = µ̃1 and that p1(vi) 6= 0 for some i > 1. As
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ν1 ∈ Z, we have h1 = 1 and m1 = ν1. Then I(vi) = I(v1) + ah1 for some a > 0.
Equation (2.2.2) together with Lemma 2.2.2 (iv) yields

I(t−µ̃ibσ(vi)) = I(vi) + ν1 − µ̃i

= I(v1) + a+ µ̃1 − µ̃i

< I(v1).

This is a contradiction to t−µ̃ibσ(vi) ∈M .

Proposition 2.2.4. Let P ⊂ GLn be the parabolic subgroup consisting of the
(gi,j) ∈ GLn with g1,j = 0 for j > 1. Let M be the associated Levi subgroup
containing A. Assume that the first slope ν1 of b is an integer. Let g ∈ P and
assume that g−1bσ(g) = k0t

µ̃ for some k0 ∈ K∩P and µ̃ ∈ X∗(A) not necessarily
dominant. Let µ = µ̃dom.

(i) The connected component of g in Xµ(b) contains some g1 with g−1
1 bσ(g1) =

k1t
µ̃ and k1 ∈ K ∩M .

(ii) Let g1 be as in (i). Then g1 = jg′ with j ∈ J and g′ ∈ M .

Proof. We write all matrices as (1, n−1)×(1, n−1) block matrices. From ν1 ∈ Z
and (2.1.6) we see that bσ is of the form

bσ(ei,j) =

(
b1 0
0 b′

)
ei,j

with b1 = tν1 and b′ ∈ GLn−1(L). Multiplying g ∈ P by a scalar we may assume
that

g =

(
1 0
v0 g′

)

with v0 ∈ Ln−1 and g′ ∈ GLn−1(L). We write

k0 =

(
1 0
y k′0

)

with y ∈ (tcOL)
n−1 \ (tc+1OL)

n−1 for some c ≥ 0. The assumption implies that
µ̃ = (µ̃1, . . . , µ̃n) with µ̃1 = ν1.

It is enough to show that there is an integer a only depending on b and
g′ and an element g(1) in the connected component of g as follows: g(1) is ob-
tained from g by replacing v0 by v0 + x where x ∈ (ta+cOL)

n−1. Besides,
k1 = (g(1))−1bσ(g(1))t−µ̃ ∈ K satisfies (k1)i,1 ∈ tc+1OL for all i > 1. Indeed,
assume that such a g(1) is constructed. Then we may inductively construct
g(i+1) = (g(i))(1). The existence of a ensures that the sequence g(i) converges
in the t-adic topology. Let g1 ∈ GLn(L) be the limit. Then g−1

1 bσ(g1) is the limit
of the (g(i))−1bσ(g(i)), hence of the desired form. Especially, g1 ∈ Xµ(b).
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Let R be an L-algebra and let gw ∈ GLn(R) be obtained from g by replacing
v0 by v0 + w ∈ Rn−1 for some w ∈ Rn−1. Then

g−1
w bσ(gw)t

−µ̃ = g−1bσ(g)t−µ̃ +

(
0 0

(g′)−1(b′σ(w)− wb1)t
−µ̃1 0

)
. (2.2.3)

We write

g′y =
l∑

i=2

∑

j≥j0

ai,jei,j

with j0 ∈ Z and choose j1 > j0 with

(g′)−1(
∑

i

∑

j≥j1

ai,jei,j) ∈ (tc+1OL)
n−1. (2.2.4)

Let β = (g′)−1(
∑

i

∑j1−1
j=j0

ai,jei,j). Then y ∈ (tcOL)
n−1 and (2.2.4) imply that

β ∈ (tcOL)
n−1.

We want to construct a finite connected covering V of A1
k
= Spec(k[s]) and a

morphism V → Xµ(b) such that the points of V correspond to modifications of
g by some w ∈ (OV ((t)))

n−1 as described above. More precisely we want that a
point over s ∈ A1(k) ∼= k corresponds to a modification of g by some w with

(g′)−1(b′σ(w)− wb1)t
−µ̃1 = sβ (2.2.5)

which is equivalent to

b′σ(w)− wb1 = s
∑

i≥2

j1−1∑

j=j0

ai,jei,jt
µ̃1 . (2.2.6)

Besides we require that g itself corresponds to a point of V over 0 ∈ A1. Then
this implies that g lies in the same connected component as a point of V over
−1 ∈ A1. By (2.2.3) and (2.2.5) we see that this point corresponds to an element
g(1) with

(g(1))−1bσ(g(1)) =

((
1 0
y k′0

)
−

(
0 0
β 0

))
tµ̃.

Thus y is replaced by y − β. By (2.2.4) this is an element of (tc+1OL)
n−1.

We now have to construct V and w. Let Ni be a simple summand of N
with i > 1 and bi = b|Ni

. If the slope of bi is ν1 = µ̃1, then dimNi = 1.
In this case let R = k[s, xj0 , . . . , xj1−1]/(x

σ
j − xj − sai,j) and Vi the connected

component of 0 in Spec(R). As the canonical projection Spec(R) → Spec(k[s])
is an étale covering, this induces an étale covering Vi → Spec(k[s]). Over Vi let

48



wi =
∑j1−1

j=j0
xjei,j ∈ Ni,Vi ⊆ NVi . Then

b′σ(wi)− wib1 = (σ(wi)− wi)t
µ̃1

= s

j1−1∑

j=j0

ai,jei,jt
µ̃1 .

If the slope of bi is greater than ν1, we choose Vi = A1 = Spec(k[s]). We set
w =

∑
j δjei,j with δj ∈ sk[s] to be determined. We have b′σ(ei,j) = ei,j+mi

with
mi > ν1hi and b1ei,j = tν1ei,j = ei,j+ν1hi . The projection of (2.2.6) to Ni reads in
this basis

∑

j

(
δσj ei,j+mi

− δjei,j+ν1hi
)
= s

j1−1∑

j=j0

ai,jei,j+ν1hi . (2.2.7)

This is equivalent to
sai,j = δσj−mi+ν1hi

− δj (2.2.8)

for every j. We can solve these equations by induction on j: If j < j0, we choose
δj = 0. In the equation for ai,j we assume that we already know δj−mi+ν1hi ∈ sk[s],
the coefficient with the smaller index. Then we can choose δj ∈ sk[s] such that
(2.2.8) is satisfied.

Let V be the connected component of 0 in the fibre product over Spec(k[s]) of
the Vi associated to the simple summands. This V and w =

∑
iwi are as desired.

For (ii) we may choose j(e1,0) = g(e1,0) and j|Ni
= id for i > 1.

Proposition 2.2.5. Each connected component of X≤µ(b) contains an element
of J .

Proof. Recall that J/(K ∩ J) ⊆ Xµmin
(b). Using induction on µ and n we may

assume that the proposition is shown for all components containing an element
of Xµ′(b) for some µ′ < µ or a lattice M with M = p1(M)⊕ (M ∩

⊕
i6=1 Ni) and

p1(M) = g(M0 ∩N1) for some g ∈ JN1 .
Let M ∈ Xµ(b). Let v1, . . . , vn and µ̃ be as in Lemma 2.2.2. If ν1 = µ̃1,

we showed in Proposition 2.2.4 that the connected component of M contains an
element of the form jg′ with j ∈ J and g′ and b in the Levi subgroup M ∼=
GL(N1) × GL(

⊕
i>1 Ni). Thus in this case the proposition follows from the

induction hypothesis. From now on assume ν1 > µ̃1.
Let c ∈ Z with I(v1) = (1, c). Let d be maximal with e1,d /∈ M . Then

d − c ≥ −1. If d − c = −1 then p1(M) = 〈e1,j | j ≥ c〉OL is a direct summand
of M , a case that is covered by the induction hypothesis. Hence we may assume
that d− c ≥ 0.

For s = [s0 : s1] ∈ P1
k
let v1,s = s0v1 + s1e1,d. Let

M ′ = 〈{vi | i > 1} ∪ {tv1}〉OL (2.2.9)
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and
Ms = 〈M

′, v1,s〉OL . (2.2.10)

Note that the minimality of I(v1) implies that an element x ∈ M with I(x) >
I(v1) is contained in M ′. As v1,s ∈ t−1M ′ \M ′ for all s, this defines a morphism
P1
k
→ X. We want to show that its image lies in X≤µ(b). To do this, we show

that for almost all k-valued points s of P1, there are generators vi,s ∈Ms with

〈t−µ̃ibσ(vi,s) | i = 1, . . . , n〉OL = Ms. (2.2.11)

As
∑

µ̃i = vt(det(b)), it is enough to show that the left hand side is contained in
Ms. We have

t−µ̃1bσ(v1,s) = sσ0 t
−µ̃1bσ(v1) + sσ1 t

−µ̃1bσ(e1,d) (2.2.12)

and t−µ̃1bσ(v1) ∈ M . As ν1 > µ̃1, the first index of t−µ̃1bσ(v1) is greater than
that of v1. Thus t−µ̃1bσ(v1) ∈ M ′. On the other hand we have t−µ̃1bσ(e1,d) =
e1,d+(ν1−µ̃1)h1 . The maximality of d implies that this element lies inM . As (1, d) ≥
I(v1), this also shows that t−µ̃1bσ(e1,d) ∈ M ′. Thus t−µ̃1bσ(v1,s) ∈ Ms. Let now
i > 1. For all vi with µ̃i ≤ ν1 and p1(vi) 6= 0, the first index I(t−µ̃ibσ(vi)) = I(vi)+
h1(ν1− µ̃i) is not smaller than I(vi). Hence for all i > 1 with µ̃i ≤ ν1 or p1(vi) = 0
we have I(t−µ̃ibσ(vi)) > I(v1) which implies t−µ̃ibσ(vi) ∈M ′ ⊂Ms. In these cases
we may choose vi,s = vi. Now let µ̃i > ν1. We write t−µ̃ibσ(vi) = εi + λiv1 with
εi ∈M ′ and λi ∈ k. We assume s0 6= 0 and choose

vi,s = vi +

(
λis1

s0

)σ−1

(bσ)−1tµ̃i(e1,d). (2.2.13)

We have (bσ)−1tµ̃i(e1,d) = e1,d+(µ̃i−ν1)h1 . As d+(µ̃i−ν1)h1 > d, this is an element
of M ′, thus vi,s ∈Ms. Besides,

t−µ̃ibσ(vi,s) = t−µ̃ibσ

(
vi +

(
λis1

s0

)σ−1

(bσ)−1tµ̃i(e1,d)

)

= εi +
λi
s0

(s0v1 + s1e1,d) ∈Ms.

For s = [1 : 0], the vi,s = vi generate the lattice Ms = M . Thus for s in an open
dense subvariety of P1, the vi,s ∈Ms generateMs. This implies inv(Ms, bσ(Ms)) =
µ for those s. As X≤µ(b) is closed in X, the family of lattices induces a morphism

P1 → X≤µ(b). For s = [1 : 0], the vi,s generate Ms = M . Let M̃ = M[0:1]. Then

M and M̃ are in the same connected component of X≤µ(b).

For the new lattice M̃ we can similarly define (1, c(M̃)) to be the minimal

first index of an element of M̃ , and d(M̃) to be maximal with e1,d(M̃) /∈ M̃ . Then

d− c > d(M̃)− c(M̃). Thus after finitely many such replacements of the lattice
within its connected component, we arrive at a lattice with d − c < 0. As seen
above, the proposition then follows from the induction hypothesis.
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Proof of Theorem 2.2.1 (ii). By Proposition 2.2.5, the inclusion induces a sur-
jective morphism J → π0(X≤µ(b)). We have to show that ker(κG) ∩ J is in the
kernel of this surjection. For i0 ∈ {1, . . . , l} let xi0 ∈ J with

xi0(ei,j) =

{
ei,j+1 if i = i0

ei,j else.
(2.2.14)

Then ker(κG)∩J is generated by J ∩K and the xi0+1 ◦x
−1
i0

for 1 ≤ i0 < l. As the
surjection factors through J/(J ∩K), it remains to show that xi0+1 ◦ x

−1
i0

is also
mapped to the connected component of the identity. To simplify the notation we
assume that l = 2. We consider the following family over P1

k
: For s = [s0 : s1] let

Ms = 〈M0, s0e1,−1 + s1e2,−1〉OL . (2.2.15)

Then M[1:0] is in the connected component of x−1
1 and M[0:1] is in the connected

component of x−1
2 . It is enough to show that Ms ∈ X≤µ(b) for all s /∈ P1(Fq).

A basis vi for M0 as in Lemma 2.2.2 is given by e1,0, . . . , e1,h1−1, e2,0, . . . , e2,h2−1.
Let m̃i = hi(νi−bνic). Then the corresponding µ̃ consists of h1− m̃1 entries bν1c
and m̃1 entries bν1c+1 followed by h2− m̃2 entries bν2c and m̃2 entries bν2c+1.
We want to construct a basis vi,s of Ms with

〈{t−µ̃s,ibσ(vi,s)}〉OL = Ms. (2.2.16)

We replace e1,h1−1 by s0e1,−1+s1e2,−1. Before the replacement, the corresponding
entry of µ̃ was ν1, if ν1 is an integer and bν1c + 1 otherwise. It is replaced by
µ̃s,h1 = µ̃h1 − 1 = dν1e − 1. Then

t−µ̃s,h1 bσ(s0e1,−1 + s1e2,−1) = sσ0e1,m1−(dν1e−1)h1−1 + sσ1e2,m2−(dν1e−1)h2−1

∈M0 \ tMs.

Let ι = (bν2c+ 1)h2 −m2 = h2 − m̃2. Then we also replace e2,ι−1 by

v = sσ
−1

0 e1,(bν2c+1)h1−m1−1 + sσ
−1

1 e2,ι−1

and let µ̃s,h1+ι = µ̃h1+ι + 1 = bν2c+ 1. Then

bσ(v) = tµ̃s,h1+ι(s0e1,−1 + s1e2,−1).

For all other i we have vi ∈Ms\tMs and t
−µ̃ibσ(vi) ∈Ms\tMs. We thus defined a

basis for Ms as in (2.2.16). The corresponding µ̃s is obtained from µ̃ by replacing
an element dν1e by dν1e − 1 and an element bν2c by bν2c+ 1. Thus µ̃s,dom is the

minimal element of X∗(A) with µ̃s,dom ≥ ν and
∑h1

i=1(µ̃s,dom)i <
∑h1

i=1 νi, compare
Remark 2.1.5. This shows Ms ∈ X≤µ̃s(b) ⊆ X≤µ(b).

If l > 2, the assertion follows similarly by using a sum of the lattices defined
above and a constant family of lattices in the other summands of N .
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2.3 Examples

In this section we discuss two explicit examples. In the first example we describe a
non-closed affine Deligne-Lusztig variety and show that in that case π0(Xµ(b)) 6=
π0(X≤µ(b)). In the second example we show that the action of J on the set of
irreducible components is not transitive.

2.3.1. Let N = L5 with basis e1,0, e1,1, e2,0, e2,1, and e2,2. For i ∈ Z let e1,i =
te1,i−2 and e2,i = te2,i−3. Let b ∈ G(L) with bσ(ei,j) = ei,j+1. Let further µ =
(0, 0, 0, 0, 2). Then Theorem 2.2.1 implies π0(X≤µ(b)) ∼= Z. We prove in this
section that

π0(Xµ(b)) ∼= Z2 ∼= J/(K ∩ J). (2.3.1)

More precisely, we define a morphism
∐

Z2 A2 → Xµ(b) which is a bijection on
k-valued points.

Let M ⊂ N be the lattice corresponding to a point of Xµ(b) and assume
that P (M) = M0. As there is only one µi 6= 0, we have M/(bσ(M) + tM) ∼= k.
Each v ∈ M \ (bσ(M) + tM) generates M as a bσ-invariant OL-module. As
P (M) = M0, we have that v =

∑
i∈{1,2},j≥0 αi,jei,j with αi,j ∈ k and αi,0 6= 0.

By multiplying with α−1
1,0 we may assume that α1,0 = 1. We have (bσ)lv = e1,l +∑

j>0 α
σl

1,je1,j+l +
∑

j≥0 α
σl

2,je2,j+l, hence we can modify v by a linear combination
of these elements for l > 0 to obtain an element of M \ (bσ(M)+ tM) of the form
e1,0 +

∑
j≥0 α2,je2,j. We assume that v is already of this form. Then

w = (bσ)2(v)− tv

= ασ
2

2,0e2,2 + (ασ
2

2,1 − α2,0)e2,3 + · · · ∈ bσ(M) + tM.

By dividing w by ασ
2

2,0 and after subtracting a suitable linear combination of the
(bσ)lw, we obtain that e2,2 ∈ bσ(M) + tM . Hence also e2,j ∈ bσ(M) + tM for all
j ≥ 2. We can now modify v by a suitable linear combination of these vectors to
obtain an element of the form

v′ = e1,0 + a0e2,0 + a1e2,1 ∈M \ (bσ(M) + tM)

for some a0, a1 ∈ k. This implies

(bσ)2(v′)− aσ
2

0 e2,2 − aσ
2

1 e2,3 = e1,2 ∈M.

Finally we obtain

M = 〈e1,0 + a0e2,0 + a1e2,1, e1,1 + aσ0e2,1, ei,j | j ≥ 2〉OL (2.3.2)

for some a0, a1 ∈ k. We can now define a morphism A2 → Xµ(b) by mapping
(a0, a1) to the lattice in (2.3.2). We choose {xa1 ◦ x

a′

2 | (a, a
′) ∈ Z2} as a system of
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representatives of J/(K ∩ J) ∼= Z2 in J (see (2.2.14) for the definition of the xi).
As Xµ(b) is invariant under J , this yields a morphism

∐

Z2

A2 → Xµ(b).

The lattices in the image of the summand (a, a′) satisfy

P (M) = 〈e1,i, e2,j | i ≥ a, j ≥ a′〉OL .

The morphism defines a bijection of geometric points which implies

π0(Xµ(b)) ∼= J/(K ∩ J) ∼= Z2.

2.3.2. Let N = L3 with basis e1, e2, e3. The lattice generated by these basis
elements is again denoted by M0. Let b = t · id and µ = (0, 1, 2). From the results
of [GHKR] it follows that Xµ(b) is equidimensional with dimXµ(b) = 2. We now
construct two subvarieties of Xµ(b) of dimension 2 whose J-orbits are disjoint.

Let U ⊆ Spec(k[a2, a3]) be the open subvariety where 1, a2, and a3 are linearly
independent over Fq. We define a morphism ϕ1 : U → Xµ(b) by describing the
corresponding family of lattices in N ⊗k k[a2, a3]. Let

v = e1 + aσ2e2 + aσ3e3

and let M1 be generated by t−1v, e2, and e3. A different basis of M1 is given
by v1 = t−1v, v2 = e1 and v3 = σ−1(v). One easily sees that t−µibσ(vi) ∈
M1. As vt(det(b)) =

∑
µi, this implies that the t−µibσ(vi) generate M1. Hence

inv(M1, bσ(M1)) = µ. In every point x of U we have P (M1,x) = t−1M0 and
vol(M1,x) = −1. For every g ∈ J one has gP (M1,x) = P (gM1,x). Thus

vol(gM1,x))− vol(P (gM1,x))) = 2.

We now define a second morphism ϕ2 : U → Xµ(b): Let

w = e1 + a2e2 + a3e3 ∈ N ⊗k k[a2, a3]

and let M2 be generated by t−1σ(w) = w1, t
−1w = w2, and σ−1(w) = w3. Then

M0 ⊆ M2. One easily sees that t−µibσ(wi) ∈ M2. Hence inv(M2, bσ(M2)) = µ.
In every point x of U we have P (M2,x) = t−1M0. Thus

vol(gM2,x))− vol(P (gM2,x))) = 1

for every g ∈ J . Especially, the J-orbits of the images of ϕ1 and ϕ2 are dis-
joint. As both morphisms are injective on geometric points, their images are
two-dimensional. As their dimensions are equal to the dimension of Xµ(b), this
shows that the action of J on the set of irreducible components is not transitive.
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2.4 Zero-dimensional affine Deligne-Lusztig varieties

Theorem 2.4.1. If Xµ(b) has an isolated point, then its dimension is 0. This
holds if and only if the following conditions are satisfied:

(i) µ = µmin

(ii) Each slope of b is of the form a+ m
m+n

with a ∈ Z, n > 0, and min{m,n} ∈
{0, 1}.

(iii) For each a ∈ Z, there exists at most one simple summand of (N, bσ) with
slope in (a, a+ 1).

Proof. Let µ 6= µmin and x ∈ Xµ(b). Hence x /∈ J/(K ∩ J). In the proof
of Proposition 2.2.5 we constructed a one-dimensional connected subvariety of
X≤µ(b) containing x and an element of J/(K ∩ J) ⊆ Xµmin

(b). As Xµ(b) is open
in X≤µ(b), we obtain a one-dimensional subvariety of Xµ(b) containing x. This
implies that Xµ(b) has no isolated points.

From now on let µ = µmin. In Proposition 2.2.5 we saw that the action of J
is transitive on the set of connected components of Xµ(b) = X≤µ(b). Thus the
existence of an isolated point is equivalent to dimXµ(b) = 0. The minimality of µ
(compare Remark 2.1.5) implies that the Hodge polygon contains all lattice points
(i0, yi0) on the Newton polygon where νi0 ≤ a and νi0+1 ≥ a for some integer a.
We may assume that (µ, b) is indecomposable with respect to the Hodge-Newton
decomposition. As µ = µmin, this implies that all slopes of b are either contained
in an interval (a, a + 1) or are equal to a. By (2.1.3), we may further assume
that a = 0. If all slopes are equal to 0, then b is σ-conjugate to 1, J = G(F ),
and the condition on g ∈ Xµ(b) reads g

−1σ(g) ∈ K. Hence Xµ(b) ∼= J/(K ∩ J) is
zero-dimensional. Otherwise µ = (0, . . . , 0, 1, . . . , 1) and a lattice M is in Xµ(b)
if and only if pM ⊆ bσ(M) ⊆M .

Assume that N has two simple summands with slope in (0, 1). Then the one-
dimensional family of (2.2.15) is contained in Xµ(b). (In this case dν1e−1 = bν2c,
thus µ is not changed.)

Now assume that (N, bσ) is simple of slope m
m+n

with (m,n) = 1 andm,n ≥ 2.
We consider the family of lattices Ms with s ∈ A1 where Ms is generated by
e1,0 + se1,1, e1,2, e1,3, . . . . As bσ(e1,i) = e1,i+m and p(bσ)−1(e1,i) = e1,i+n with
m,n ≥ 2, one easily sees that Ms ∈ Xµ(b). Thus the dimension of Xµ(b) is at
least 1.

Finally, we consider the case of a single slope 1/h. The case of slope (h−1)/h
is similar and thus omitted. Let M be the lattice corresponding to a point of
Xµ(b). By multiplying with a suitable power of x1 ∈ J (compare (2.2.14)), we
may assume that M ⊆ M0 and that there is an element v ∈ M of the form v =
e1,0 +

∑
j>0 aje1,j with aj ∈ k. Then (bσ)l(v) = e1,l+

∑
j>0 a

σl

j e1,j+l ∈M for each
l ≥ 0. As e1,0 is a linear combination of these elements, we have e1,0 ∈ M . Thus
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e1,l = (bσ)l(e1,0) ∈ M and M = M0. Hence in this case Xµ(b) ∼= J/(K ∩ J) ∼= Z
is zero-dimensional.
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248.

57


