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List of  symbols  and abbreviations 

 
 
 
HPLC: high perfomance liquid chromatography 

RRT: relative retention time 

TLC: thin layer chromatography 

MS: mass spectroscopy 

ESI: electrospray ionisation in MS 

CI: chemical ionisation in MS 

LD50 = IC50 : lethal dose/ inhibitory concentration, that inhibits 50% growth of soredia 

spp.: different subspecies 
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Introduction 
 
 
Allelochemicals are defined as plant secondary metabolites, that are released components from 

certain plant parts, that enhance or inhibit growth of plants of the same and other species in its 

surrounding (Molisch,1930). Today vegetational mapping and classification of plant communities do 

not imply allelopathic constraints of the substratum or solutes. Instead nutrient availability, espacially 

of nitrogen, phosphorus, kalium and trace elements are evaluated and widely used markers for plant 

growth under varying conditions. On the other hand, organic metabolites of the substratum are of 

interest as inhibitory residues in agricultural soils, or in evaluation of successional stages, e.g. after fire 

in different ecosystems. 

Some physiological responses of allelochemicals, for example during seed germination can be 

attributed to general mechanisms, like osmosis or pH (Evenari, 1949), as has been analysed by 

germination tests with artificial solutions of defined pH and osmotic potential but without addition of 

secondary metabolites. 

Still, none of the artificial solutions could account for the same strength of growth retarding effects 

similar to those obtained with solutions containing allelochemicals, indicating physiological interactions 

with target plant cells (Harborne, 1995; Evenari, 1949). 

 

Our interest is directed towards allelochemical interactions between epiphytic lichens and bark 

phenolic allelochemicals. 

Dürr, (1992) classified the preferences of different lichen species according to Ellenbergs system, 

using the criteria: light, humidity, nutrients, salt tolarance, pH and other general characteristics, while 

Barkman (1958) evaluates both physical, chemical and ecological factors in his extensive study on 

european epiphytic lichens. Although he already discussed the important role of total ectrolyte 

concentration, water capacity and pH of bark, he proposed a low impact of bark resins and tannines 

on lichen growth, while selective occurance of lichen – tree pairs were supposed to rely on specialized 

adaptation of lichens to tree allelochemicals. 
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Today, lichens and bryophytes are important monitoring organisms in the framework of environmental 

research. Eutrophication, air pollution, especially with SO2 and the impact of heavy metals are 

described by cryptogamic plants, as they are very sensitive towards pollutants due to a lack of 

protective cuticular structures, their growing season, that extends to autumn and winter months and 

their slow growth. 

Field monitoring of epiphytes has been described with respect to site selection and detailed 

procedures (VDI,2004)and the impact of eutrophication has been added to present guidelines, 

recently. (Franzen-Reuter, 2004). 

The impact of tree age, annual precipitation rates of the study area and underlying allelochemical 

mechanisms have been evaluated during the present study, as natural implications for plant growth 

are important for our understanding of vegetational zonation. 

 

Therefore, we analyzed allelopathic effects of bark phenols  on epiphytic lichens on the basis of  

natural  conditions and vegetation in different areas of North-Rhine-Westphalia  (chapter 3), and on 

the microhabitat of a single tree (chapter 4).  

Chemical and biochemical investigations on tissue distribution of endogenous phenols in the  

abundant lichen species: Hypogymnia physodes (chapter 1) and on allelopathic effects of natural bark 

phenols of the widely used tree species Populus canadensis acting on juvenile tissues of the lichen 

species: Physcia tenella in vitro (chapter 2) were carried out in order to understand the physiological 

basis of allelochemical interactions in epiphytes. 
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Aim of the study and Working programme: 

 

 

1.) Analysis of natural concentrations of endogenous lichen phenols from epiphytic species  

      in both reproductive (apothecia and soredia) and somatic tissues (main thalli). 

 

 

2.) Development of an in-vitro test system for the evaluation of possible allelopathic 

effects of single bark phenols on reproductive lichen stages (soredia). 

 

 

3.) Analysis of natural concentrations of bark phenols in trees of different age classes 

      and at different sample sites in North-Rhine-Westphalia 

 

 

4.) Analysis of natural concentrations of bark phenols in different parts of a single tree  

      (height on the trunk, branch versus main trunk, stemflow areas versus dry areas) 
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1 Tissue distribution of  phenols in epiphytic lichens: 

Implications for growth and establishment of juvenile stages 

 

 

 

1.1 Abstract: 

In the present study we evaluated the distribution of  endogenous lichen phenols within different tissue 

types in the epiphytic species Hypogymnia physodes  (Lecanorales, Ascomycetes) growing on Betula 

pubescens in northern Finland. Both reproductive soredia  and somatic thalline structures showed the 

same spectrum of phenols with a ratio of cortical atranorin to medullar physodic acids of 1: 4, but a 

significantly higher total content of phenols in soredial lobe ends (7,0 +/- 1,2% d.w.) compared to non 

soredial lobe ends (2,7 +/- 0,7% d.w.). 

The influence of thallus age on total phenol contents was studied and varied between 6,0 % and  3,0% 

in whole thalli  of  different sizes and branching patterns. Water capacity of lobe ends was lower than 

water capacity of inner thalline structures: 95% versus 200%. 

Physiological and ecological aspects of lichen phenol distribution and tissue development are 

discussed. 
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1.2 Introduction: 

Lichen phenols comprise about 1 to  10 % of thallus dry weight, so that their total contents are much lower 

than concentrations of phenoles in higher plants. Lignin amounts to 20 % d.w. in tree tissues (Fengel, 

1984). Although lichen thalli contain much less phenolic constituents than higher plants, the biological 

activity of their strongly hydrophobic phenolic metabolites is very high (Lawrey, 1995; Lauterwein, 1995).  

The epiphytic lichen species Hypogymnia physodes is able to synthesize four phenolic metabolites, which 

can be found in the cortical (atranorin) and the medullar tissue (physodic acids) as excreted crystalls on the 

outer surface of fungal hyphae (Kauppi, 1990). Their biosynthesis requires both algae and fungi, although a 

variety of typical lichen phenols can be produced by mycobiont cultures, only (Yoshimura, 1994)  

Depsides and depsidones function as UV protectants and feeding deterrents in the  surface tissue layers -

additionally a regulating role within symbiosis can be deduced from in-vitro experiments with isolated 

symbionts. Backor (1989) showed a pH dependend inhibition of algal cell cultures by lichen phenols and 

various studies showed their ability to inhibit fungal growth (Ruotsalainen, 1999; Halama, 2004; 

Vainshtein,1992).  

Still, there are only few investigations on the distribution and concentration of lichen phenols in 

differentiated thallus structures, like reproductive apothecia or soredial lobe ends or in thalli of different age 

classes (Laakso, 1952; Manriqe, 1991). The focus on recent studies has been related to the UV protective 

role of phenols in differently exposed  parts of podetia in Cladoniaceae and to a survey of a correlation 

between phenol content and sample sites at varying degree of incident radiation throughout Finland 

(Huovinen,1985). 

Epiphyte vegetation establishes within the microhabitat of tree bark. Therefore allelopathic constraints of the 

adjacent substratum mediated by bark allelochemicals have to be evaluated with respect to the physiology 

and regulating role of endogenous secondary metabolites within reproductive structures and juvenile thalli. 

Soredia are small (25-100um) balls of a few phycobiont cells wrapped in mycobiont hyphae. They 

originate in the medulla and algal layer and are released through pores or cracks in the upper surface 

of the thallus. In most species, soredia are produced in deliminated zones called soralia(Lawrey,1984). 

We investigated the composition and total concentration of lichen phenols in reproductive and somatic 

thallus structures of the sorediate species Hypogymnia physodes in order to evaluate factors that are 

important for  internal regulation of symbiosis and for allelopathic inhibition by phenols from internal and 

external sources. 
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1.3 Materials and methods 

 

Sampling of lichen thalli: 
 
Lichen thalli of Hypogymnia physodes were collected from Betula pubescens growing on the island Hailuoto 

in the Gulf of Bothnia near Oulu, Finland (64°45`N; 26° 00`E). 

Five thalli were sampled from each tree at locations in mixed forest stands further than  5 km apart. 

Lichen for the isolation of atranorin and physodic acids were sampled from trunks of  Pinus sylvestris in a 

forest site with a stand of Picea abies and Pinus sylvestris near Muhos, thirty km east of Oulu. 

 

Sample pretreatment: 

Samples for isolation of lichen phenols were cleaned from bark residues and air dried for 5 days at room 

temperature. Storage of air dried thalli did not exceed two months. 

Samples for tissue analysis were rehydrated over night in water saturated air at 5°C,  

and then sprayed with deionised water and subsequently dissected using a stereo microscope.  

Lobe ends were defined as the outer 2 mm wide periphery of thalli both in soredial and non soredial parts. 

Dry weight was determined from subsamples after air drying for two days at room temperature. 

 

Isolation of  lichen phenols: 

10 g of  dried thalli were extracted for three days in a soxhlett extractor using ethylacetate as solvent. 

After evaporation of  the solvent at temperatures < 50 °C, the dry residue was subjected to flash 

chromatography (column: 25 cm x 5 cm) using silica gel (mesh 0,063 – 0,2) and the eluent:  

ethylacetate 20 / acetone 15 / methylenchloride 6 / methanol 6 / water 4 . 

Fractions were tested on TLC sheets Polygram Sil G/UV 40 x 80 mm, coated with 0,25 mm silica containing 

fluorescence indicator. (Macherey & Nagel). All solvents used were purchased from Merck and were of 

HPLC grade. Visualization of spots was done by spraying with 10% H2SO4 in ethanol. 

Fractions obtained after evaporation of the eluent were of yellow – grey colour. The first fraction contained 

thermolabile, unknown apolar compounds and following fractions 10  to 120 mg of single lichen phenols. 

RRT (relative retention times) were: atranorin: 0,90; physodalic acid: 0,68, physodic acid: 0,59; hydroxy-

physodic acid: 0,52. Chemical characterization was confirmed by RP-HPLC according to Huovinen (1985) 

and EI-MS. 
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pH of lichen extracts in water: 

The pH was determined from air dried lichen thalli by immersion in destilled water 

in a ratio of 1 : 10 (w/v) over night. After filtration of lichen thalli pH was determined by a glass 

electrode. 

 

Water capacity of tissues: 
 
Water capacity was determined by determination of the ratio of weight at water saturation 

and weight after air drying. Water capacity = 100 (fresh weight – dry weight / dry weight) 

 

Extraction and Analysis of  small sample sizes: 

Tissue fractions of  4 – 15 mg were weighed into  tubes, 2 x 5 ml of diethylether was added and each 

extraction was performed by ultrasonication for 5 min at room temperature. 

The combined extracts were filled to 10 ml and an aliquot used for photometrical and HPLC analysis 

according to Huovinen, 1985. 

Photometric analysis was performed at 270 nm using isolated physodic acid mix as standard. 

The ratio of atranorin to physodic acids was determined using TLC separation and quantification 

by digital imaging of spot fluorescence.  

 

Analysis of total phenols: 

Total phenols were analyzed in a modified price-butler method photometrically as iron-phenol complex at a 

wavelength of 700 nm from crude extracts. The standard used was atranorin (synth.)  
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1.4 Results and Discussion: 

 

Analysis of total phenols in soredial lobe ends compared to non soredial lobe ends in thalli of the same 

age class revealed a significant difference in total contents, while there was no difference in the 

spectrum of phenolic constituents. Significant differences of total contents were obvious in all thalli 

analyzed (total number: 19), irrespective of sample site characteristics.  While mean contents in 

soredial lobe ends were 7,0 % d.w. (+/- 1,2 %) mean contents in non-soredial lobe ends were 2,7 % 

d.w. (+/- 0,7%). (Table 1). 

Nevertheless, the ratio of atranorin to physodic acids was about 1 : 4  (mean of  5 extractions) 

irrespective of reproductive or somatic thallus part analyzed, indicating the same ratio of cortical to 

medullar tissues both in soredial and non-soredial lobe ends. (Table 2) 

Thallus age had a significant influence on total phenol contents. Thalli of three different diameters 

were investigated: Age class I (0,2 – 0,5 cm): 6 % d.w.; age class II (0, - 2,0 cm): 5 %. d.w. and age 

class III ( 2,0 – 5,0 cm): 3 % d.w. (mean of three sample extractions) (Table 3) 

Water capacity of  thalli was higher in the inner part of thalli in age class III compared to soredial lobe 

ends in the same age class of thalli: 200 % versus 95 % and pH of whole thallus extracts in water was  

4,0. (single analysis with a biomass > 10 g) 

 

We found twice as high phenol contents in soredial lobe ends compared to contents in non soredial 

lobe ends. This indicates a high biosynthetic activity and high stability of depsides and depsidones in 

soredial tissue.  Previous studies showed , that lichen spore germination is inhibited by lichen acids of 

other species (Whiton, 1982) and bryophyte spore germination is inhibited by lichen acids from 

adjecent lichens species (Frahm, 2000) In the present case, inhibition of germination and growth by 

high contents of lichen acids of the same species to adjacent lichens or from parental plants towards 

propagules can be termed autotoxicity. 

Here, increased contents of lichen phenols prevent premature germination at unfavorable conditions, 

e.g at insufficient air humidity and water supply. Furthermore, reproductive tissues with high phenol 

contents at exposed thallus structures, like apothecia, isidia and soredia are well defended against 

herbivores (Hyvärinen, 2000), e.g. snails (Hesbacher, 1995) or saprotrophic fungi (Lawrey, 1995). 

A low internal pH and low water capacity in soredial tissues are additional factors, that prevent growth,  

increase the ability of dispersal of dry soredia and increase defense against fungal pathogens. 
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Environmental conditions change when soredia establish at bark microsites. 

Biosynthesis of lichen acids may be of  importance within the microhabitat of bark, that generally 

shows higher pH values than pH 4,0  in deciduous trees - for example pH  6,0 in Populus canadensis 

(Franzen-Reuter, 2004). Here, biosynthesis of lichen acids within thallus tissues creates an internal pH 

that is different from bark pH and allows higher ability of defense against pathogens. Bark phenols and 

nutrients in stemflow are further allelochemical factors of importance during epiphytic lichen growth 

and establishment. Specific lichen - phorophyte associations have been described by Barkman, 1958 

and we propose to analyse specific enhancement or inhibition of soredial growth in adapted and 

absent lichen species by whole extracts or isolated tree  phenols at natural bark pH. 

 

Acknowledgement: The present work describes preliminary experiments of the author for an extended 

cooperative study on the chemical ecology of three epipyhtic lichen species published elsewhere 

(Hyvärinen,2000). The present study has been carried out at the university of Oulu during 1998.  

The author whishes to thank Päivi Joensuu, Dept Chemistry for obtaining MS spectra of isolated lichen 

compounds and Dr Marko Hyvärinen, Plant Ecology Group for help in lichen collection and for  discussion.  

 

 

1.5 Figures and Tables 

Table 1.1 

Phenol contents in Hypogymnia physodes 

 

Sample  site No. Total phenols % d.w. 

Soredial tissue 

Total phenols % d.w. 

Non-soredial tissue 

1 8,3 3,0 

2 6,8 2,2 

3 5,8 2,0 

4 6,8 3,4 

Mean 7,0 +/- 1,2 2,7  +/- 0,7 

 

Data are mean values of  five extractions and analysis ; thallus diameter varied between 2 – 5 cm 
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Table 1.2 

Phenol ratios in Hypogymnia physodes (reproductive / somatic tissues) 

 

Sample  No. Atranorin : Physodic acids  

Soredial tissue 

Atranorin : Physodic acids 

Non-soredial tissue 

1 1 : 4,5 1 : 4,0 

2 1 : 4,2 1 : 5,7 

3 1 : 3,8 1 : 3,6 

4,. 1 : 4,7 1 : 4,4 

5 1 : 3,7 1 : 2,7 

Mean 1 : 4,2   (+/- 0,5) 1 : 4,1   (+/- 1,5) 

 

 

 

 

Table 1.3 

Phenol ratios in Hypogymnia physodes (age classes) 

Age class Total phenols  d.w. 

I    (0,2 – 0,5 cm) 6,0  +/- 1,0 

II   (0,5 – 2,0 cm) 4,8  +/- 0,5 

III  (2,0 – 5,0 cm) 3,0 +/- 0,5 

 

Data are mean values of three extractions and analysis 
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2  In –vitro inhibition of soredial growth in the epiphytic lichen: 

Physcia tenella (Lecanorales, Ascomycetes) by a variety of bark phenols 

 

 

2.1 Abstract: 

We tested the in-vitro growth rate of soredia from the common epiphytic lichen species: Physcia 

tenella at different concentrations of added phenols in an experimental design previously described by 

Hauck (2000)  in order to evaluate the allelopathic effects of bark derived substances in stemflow.  

The conditions used (pH = 6,0, endogenous phenols) were designed to resemble those found on bark 

of  Populus x canadensis, as this tree species has been widely used for lichen mapping studies in 

Germany. Phenolic glycosides, flavonoids and tannines undergo hydrolytic decomposition in stemflow, 

resulting in a variety of  monomeric phenolic acids, aldehyds and alcohols. Here  we tested 11 

phenolic substances of different biosynthetic origin in the concentration range between 10 –6M and  

10-3M . LD50 values were calculated for each substance - inhibition was highest for catechol, 

substituted phenolic glycosides, benzoic and ellagic acid and moderate for flavonoids, gallic acid, 

salicylic  alcohol, salicylic aldehyd and low for salicylic acid. 
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2.2  Introduction: 

Though it has been found, that lichen acids inhibit germination and growth of  phanerophytes 

(Follmann, 1963) bryophytes (Frahm, 2000), algae (Backor, 1998), soil- and wood decaying and plant 

pathogenic fungi ( Vainshtain, 1992, Halama, 2004) and other lichens (Whiton, 1984), the allelopathic 

effect of leachable organic compounds from phanerophytes on growth and establishment of lichens 

has been investigated in only a few studies (Pyatt, 1973; Ostrofsky, 1980).  Nevertheless, especially 

epiphytic lichens may be influenced markedly by soluble substances in stemflow and throughfall. 

Leachates originating from tree bark contain a variety of plant metabolites: Sugars and sugar alcohols, 

amino acids, metal- and nutrient ions and plant secondary metabolites, like phenoles, alkaloids, and 

others (Hauck, 2002, Fengel, 1984) 

In allelophysiology, phenolic metabolites are investigated due to their high degree of species  specifity 

(Hegnauer, 1962) and their endogenous role as protective agents against herbivores  (Clausen, 

1989), while their antimicrobial and antifungal activity has important  implications in development of 

resistence against plant pathogens (Hakulinen, 1999). Soil properties, like microbial respiration, or 

inoculation rate with myccorhizal fungi are influenced by secondary metabolites in leaf litter 

decomposition (Olsen, 1971) 

Endogenous lichen phenols are hydrophobic depsides, dibenzofuranes or anthroquinones. They are 

widely used for chemotaxonomical studies (Lawrey, 1984). Their localization within the lichen thalli 

shows typical medular and cortical substances (Kauppi, 1989), which differ in their hydrophobicity.  

They are qualitatively equally distributed throughout reproductive and somatic structures. 

Quantitatively, reproductive structures, like soredia or ascospores contain significantly higher amounts 

of phenols than somatic, thalline structures (Hyvärinen, 2000). 

Wether this increased concentration determines lichen establishment in vivo is unknown. In vitro 

studies indicate inhibition of soredial growth by lichen acids of other lichen species (Whiton, 1977),  

supporting  the theory of  allelopathic interaction among lichen species. 

The effects of water based bark extracts have been investigated on lichen ascospore germination. 

Both enhancement and inhibition have been found (Pyatt, 1973; Ostrofsky, 1980). 

Our study is the first work using distinct organic compounds originating from tree bark in evaluating 

growth inhibition of epiphytic lichen soredia in vitro.  
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2.3 Materials and methods: 

 

Plants: Saplings of Populus x canadensis were purchased from a tree nursery near Hannover in 

February 2004. Plants were two years old and had a stem length of about 1.50 m. After two days of 

plant storage at 10 °C,  the stem was cut into pieces of about 3 cm length, and dried in an oven at  

a maximum temperature of 33 °C for 4 days. This material was used without further separation of 

wood and bark for isolation of salicortin and tremulacin. The epiphytic lichen Physcia tenella  was 

collected in May on 60 years old cherry and apple trees near Gummersbach and stored in a paper bag 

at room temperature. Soredia for in vitro germination were used fresh one day after collection of thalli. 

Isolation of  soredia was done by scrapping the tissue gently with a steel needle. 

 

Chemicals: 

All solvents and reagents used were purchased by Roth KG, Karlsruhe. Solvents used were of HPLC 

grade, reagents for preparation of nutrient solutions or for spectrophotometry were of analytical grade. 

Synthetic phenols used in tests had a purity of 98% to 99,5 %.  

 

Culture medium: 

A  0,8% agar was used containing 4ml/l of the following nutrient solution: 

 (0,1 g/l KCl; 1,5 g/l NH4NO3 ; 0,1 g/l MgSO4 ; 0,5 g/l KH2PO4 ; 0,04 g/lCaSO4  + 2 ml/l ( 1,35 g/l FeCl3 ; 

1,86 g/l EDTA)  +  2ml/l of a trace element solution pH 4,6 (given in Hauck, 2002): 

(containing: 2,68 g/l H3BO3, 1,18 g/l MnCl2x4H20, 0,22 g/l ZnSO4x7H20, 0,012 g/l MoO3,  

0,079 g/l CuSO4x5H2O)).  

The agar solution was adjusted to pH: 6.0 with 1M HCl. 

 

Chromatography: 

Preparative column chromatography was done using a glass column with an internal diameter of 6 cm 

and a length of 34 cm (Volume = 960 cm3) connected to a fraction collector. TLC analysis was  

done using  Macherey & Nagel 10x5 cm Alugram SIL UV 254 sheets and the eluent described in the 

isolation procedure.  
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Isolation of Salicortin and Tremulacin: 

175g of dried twigs of Populus x canadensis  were extracted three times with 0,5 l methanol at room 

temperature for 1h in an ultrasonication bath. After evaporation of methanol at a maximum 

temperature of 50°C, the dark green, crude extract was subjected to preparative column 

chromatography using silica gel 60 (mesh.: 0,063-0,2 mm ). The eluent used was: 

dichlormethan/ethylacetate/methanol/water (50/30/20/5). Fractions were evaporated to dryness, 

yielding a honey-coloured compound. Phenolic glycosides could be detected on TLC plates after 

spraying with 10% sulphuric acid in ethanol by their red coloured spots in contrast to other phenols 

with brown spots. Synthetic D-(-)-salicin was chosen as standard, which had a lower Rf value than 

isolated salicylates: tremulacin (own: RRT = 2,1 ; Lit.: Meier, (1988) : RRT = 2,3) and salicortin (own: 

RRT = 1,4 ; Lit.: Meier (1988): RRT = 1,4). Additionally,  basic mass spectral data were obtained by 

direct injection of tremulacin and salicortin dissolved in methanol (see Annex). Mass spectra indicated 

slight deviation of real structures from given structures by side chain methylation or acetylation of 

tremulacin and salicortin. Still we continued to describe the isolates as “salicortin” and “tremulacin” in 

the following section. 

 

Soredia-Agar test: 

Aliquots of 150 ml of culture medium were prepared and sterilzed in erlenmeyer flasks, sufficient for 

preparation of 5 conventional steril petri dishes with a diameter of  8,5 cm. Phenols were weighed and 

added in solid form to the culture medium after cooling to 50 – 40°C. After solidification of the agar 

plates, 15 µl of suspended soredia in steril water were placed on top of the agar plate and spread onto 

the surface with sterile equipment. Plates were sealed with parafilm and incubated at 23 °C for 7 days 

at a natural light intensity lasting 12 hours in 24 hours. After incubation, the plates were unsealed and 

the upper plate lifted, in order to prevent counting mismatches due to visual interferences on the upper 

plate. Counting was done using a magnifying glass of 20 dpt (Eschenbach GmbH). Growing soredia 

could be detected by a small whitish ring of hyphae around the central core. Few contaminating fungi 

occurred, but did not interfere with soredial growth. Each concentration of added phenol was tested on 

5 replicate plates. Altogether 11 compounds in four different concentrations:  5x 10-3 M; 5 x 10-4 M,  

5 x 10-5 M and 5 x 10-6 M were tested. Concentrations refer to the final agar solution used in tests. 

Soredial growth rate was expressed as % growth compared to control plates without addition of 

phenoles.  
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LD50 values were calculated by doing graphical regression analysis of mean results for  

three different concentrations of each compound, representing high, medium and low inhibtion rates. 

Accuracy of the counting method was estimated to be 15 % using counting deviation from two 

investigations, weighing and dilution accuracy. 

 

 

 

 

2.4 Results: 

Table 1 shows LD50 values for all substances tested. The concentration, that is needed to obtain 50% 

inhibition of soredial growth differs from 10-3M to 10-6M. Scheme 1 shows the order of inhibitory action. 

Both hydrophobic (ellagic acid) and hydrophilic (benzoic acid) phenols are effective growth inhibitors at 

pH 6,0 with LD50 values lower than 10-4 M. Toxicity is highest for the main endogenous phenolic 

glycoside in young saplings of Salicaceae:  tremulacin (LD50 = <1 x 10-6 M) and its main degradation 

products: catechol  (LD50 =  1 x 10-5 M) and benzoic acid (LD50 =  2 x 10-5 M). 

The biosynthetic precursors of  tremulacin: salicortin and salicin are strong inhibitors with both  

LD50 values of  4 x 10-5 M. 

Salicylic aldehyde, salicylic alcohol and (+)-catechin are moderate inhibitors with LD50 = 3 x 10-4M 

Salicylic acid and gallic acid are weak inhibitors of soredial growth compared to other salicylates:  

LD50 = 2 x 10-3 M. 
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2.5 Discussion: 

In vitro tests of toxicity can only be  model systems for  environmental effects. Our choice of phenols 

represents a few characteristic substances of the whole spectrum of phenolic metabolites and 

biodegradation products occurring in bark of Salicaceae. We used substituted salicylates and their 

metabolic degradation products, ranging from the simple  phenolic glycoside: salicin to catechol, 

benzoic acid and others (Ruuhola, 2003) Nevertheless, it has  to be kept in mind, that all species 

specific secondary metabolites  from Salicaceae have been isolated from young tissue, mainly leaves, 

twigs or bast (Julkunen, 1989). The spectrum of phenolic constituents in cork layers of aged trees of 

Populus  spp. has not been investigated, so far. Comparable studies on cork extractives of Quercus 

suber, show a complex spectrum of extractable suberin, lignin-derived phenols and polysaccharides 

(Cordeiro, 2002) 

Gallic and ellagic acid were included in our study, as they are widespread in woody plants though 

ellagic acid does not occur in Salicaceae (Hegnauer, 1962) . 

Aromatic aldehydes and phenolic hydroxyls are biochemically reactive  towards amino groups, both in 

biopolymers, like proteins, DNA and chitine and in related monomers, like amino acids, DNA bases or 

N-acetylglucosamine. Structural alterations of polymers and formation of toxic metabolites like 

aromatic amines inhibit cell division and differentiation. Furthermore, aromatic allelochemicals act as 

chelating agents, interacting with metal ions in biochemical complexes, like enzymes or membrane 

bound systems of energy and light acquisition (Parlar, 1991). 

Highest toxicity in our test system was found for both hydrophilic (tremulacin, benzoic acid) and 

hydrophobic (ellagic acid) phenolic compounds. Previous studies focusing on antifungal components 

of Populus spp, indicated high toxicity both for phenolic glycosides and their degradation products: 

benzoic acid and catechol (Olsen, 1971; Butin, 1969) but did not analyze the effects of hydrophobic 

metabolites.  

Uptake of allelochemicals into lichen algae or lichen fungi has to be evaluated under the specialized 

physiology of symbiosis. Lichen fungi are able to produce gelatinous layers around those hyphae, 

which are not in ultimate contact to algal cells. Furthermore, crystalline deposits of lichen acids and a 

chitine layer accompany polysaccharides -  the major constituents of cell walls in lichen fungi. Algal 

cells in lichen symbiosis are surrounded by a trilaminar layer, containing an amorphous, 

polysaccharide derived matrix (Lawrey, 1984, Honegger, 1991). 
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Therefore it can be assumed, that allelochemicals acting on mature lichen thalli react with a variety of 

membrane polymers in a first step. Soredia are juvenile lichen thalli with less differentiated tissues, 

therefore highly susceptible to the uptake of allelochemicals. 

Early stages of plant development are one of the main research areas in the field of allelophysiology  

(Evenari, 1949) and further work on lichen establishment and growth will have to show, wether  

studies on phanerophyte development are comparable to symbiotic organism. 

Mature lichen thalli are subjected to allelochemicals from bark by direct attachment of lichen rhizines 

to the outer cork layer and by leachable components of bark in stemflow. 80 years old trees of Populus 

x canadensis show a bark pH of 6.0 (Franzen-Reuter, 2004). In lichen mapping studies focusing on air 

pollution, tree species with acidic and neutral to subneutral bark are analyzed in different groups as 

they host different lichen communities (VDI RL3957) Therefore our in vitro study evaluates the action 

of allelochemicals on tree species with subneutral bark, only: Populus spp., Acer spp. , Fraxinus spp. , 

Ulmus spp. , or Malus spp. Stability of phenolic glycosides and net charge of carboxylic acids, like 

benzoic or gallic acid will be altered at acidic pH, so that LD50 values obtained in our study can not be 

used to discuss allelopathy on trees with acidic bark. Furthermore, each tree species contains specific 

endogenous phenols in young bark and leaves, that contribute to stemflow chemistry by leaching 

processes. In Salicaceae phenolic glycosides represent less than 1% of dry weight of bark in saplings, 

while the amount of total phenols is about 5% (Julkunen, 1989). Salicylates, like tremulacin and 

salicortin are easily degraded in aqueous or buffered solution (Ruuhola, 2003). The resulting catechol, 

benzoic acid and salicin have been shown to be potent inhibitors of soredial growth in our test system. 

Therefore highest toxicity of the species specific tremulacin and salicortin in aqueous nutrient solution 

can be attributed to the combined action of their degradation products. Leachable degradation 

products from widespread tannines and proanthocyanidines, like gallic acid and catechin are less 

potent inhibitors of soredial growth (Table 1).  

Physico-chemical parameters often named in relation to epiphyte growth are: Water holding capacity 

of bark, cation- and nutrient content. A prominent example of a tree lichen pair, that depends on 

nutrient rich bark near urban centres is: Xanthoria parietina on Populus tremula (Kuusinen,1994). 

Height on the tree trunk is another important factor determining site characteristics for epiphytes 

beneath snow cover in winter and in moist dripping zones during the growing season (Hyvärinen, 

1992; Hauck, 2003). Ecological studies focus on forest stand characteristics, like shading from 

adjecent trees, tree age, (Hyvärinen, 1992) and soil properties (Gustaffson, 1995).  
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Hauck, (2002) found a negative relationship between the concentration of sulfate in bark tissues  

and vegetational cover with the common epiphytic lichen: Hypogymnia physodes on Picea abies, 

which he related to the influence of air pollution. 

So far, ecological studies did not include the influence of allelochemicals into explanations about 

epiphytic lichen abundance. 

Tertiary growth of the cork layer in aged trees leads to the formation of dead, suberinized and air filled 

cork cavities (Fengel, 1984) Concentration of total phenols in the outer 0,5 cm of cork layer of 80 years 

old Populus x canadensis amounts to about 6 mg/g dry weight (own data, not shown) corresponding 

to 3,5 x 10-5 mol gallic acid equivalents. 

Inhibition of soredial growth in-vitro was measured at concentrations ranging from 10-6 M to 10-3 M in 

0,8% agar – nutrient solution. Therefore our in-vitro test can be used as a model system for natural 

conditions occuring on the abundant tree-lichen pair: Populus x canadensis and Physcia tenella. 

Further studies focusing on allelophysiology of lichen propagules  will have to consider  both natural 

concentrations of allelochemicals in bark and corresponding vegetational patterns of epiphytic 

lichens. 
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2.6 Figures and Tables 

 

Table 2.1 

LD50-values for selected phenols on the growth rate of Soredia  

from Physcia tenella in-vitro 

 

Chemical substance LD50 (mol/l) x 10 
–6

M 

Tremulacin            < 1        

Salicortin             40  (+/-10)           

D-(-)-Salicin             40 (+/-10)            

Salicylic acid         2000 (+/- 1000)            

Salicylic alcohol           300  (+/-100)             

Salicylic aldehyd           180 (+/-80)           

Catechol             10 (+/- 3)      

Gallic-acid          1700 (+/-800)         

Ellagic-acid              20 (+/-5)      

(+)-Catechin            400 (+/-100)     

Benzoic acid              20 (+/-5)       

 

 

 

Scheme 2.1  

Order of toxicity in Soredia-agar test 

 

tremulacin   (10-6 M ) 

benzoic acid, ellagic acid, catechol, salicortin, salicin (10-5M ) 

salicylic aldehyde, salicylic alcohol, catechin (10-4M)                                                                     

salicylic acid , gallic acid  (10-3 M ) 
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Figure 2.1 

Chemical structures of salicylate glycosides 
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Figure 2.2 Chemical structures of bark phenols

 

 

I      Salicin 

II     Salicortin 

III    Tremulacin 

IV    Salicylic alcohol 

V     Salicylic aldehyde 

VI    Salicylic acid 

VII   Catechol 

VIII  Benzoic acid 
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3 Bark phenols in relation to tree age and site factors: 

Allelopathy on epiphytic lichen vegetation ? 

 

 

 

3.1 Abstract: 

Populus x canadensis  is a  tree species widely used for lichen mapping studies in Germany. 

We studied the influence of tree age, height on the main trunk and sampling site characteristics on 

concentrations of  total phenols in outer bark of  Populus x canadensis, in order to evaluate possible 

allelopathic effects of leachable plant phenols on species richness and abundance of epiphytic lichens 

and bryophytes. Species richness correlated to site factors, but did not correlate to phenol content of 

bark. Epiphyte cover was inversely correlated to phenol content in bark, though exceptional sites 

showed no correlations. Concentration of total phenols decreased with tree age. Cork layers of  80 

years old trees contained between 2 mg/g d.w. and 10 mg/g d.w., while 2 years old trees contained 30 

mg/g d.w. in outer cork layers of bark. Variation in concentrations of phenols in trees of the same age 

class could be correlated to annual precipitation along an altitudinal transect throughout North-Rhine - 

Westphalia in central Germany. A low content of phenols correlated with high precipitation rates as a 

result of  outwashing of easily leachable phenolic bark constituents. Epiphyte cover inceased on trees 

in montane regions with high precipitation rates and on old compared to young trees. Height and 

azimuth on the main trunk had significant influence on community structure of epiphytes, but no 

statistically significant influence on concentrations of phenols could be found within the basal trunk 

area. Ecological and physiological parameters acting on epiphytic communities are discussed. 
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3.2 Introduction: 

Epiphytic lichens may be influenced by soluble substances in stemflow, as they lack protective 

cuticular tissues. In vitro studies indicate, that whole bark extracts exhibit antifungal activity both to soil 

saprophytic, mycorrhizal- and plant pathogenic fungi (Butin, 1969 ; Olsen, 1971, Yang, 2004). Both 

enhancing and inhibiting effects of bark extracts have been found for lichen ascospore and soredial 

growth in-vitro (Pyatt,1973 ; Ostrofsky, 1980; own data presented elsewhere). Tree response to 

pathogenic fungi include structural and induced mechanisms, both mediated by secondary plant 

phenolics. Epiphytic lichens and bryophytes are attached to outer cork layers of adult trees. Though 

their ecological niches differ markedly from parasitic plant pathogenes, they may be subjected to the 

same defense related allelochemicals. 

While induced defense relies on pathways forming intracellular phenolic glycosides, coumarines and 

cinnamic acid derivates, structural defense is established continously during tree ageing by 

lignification. The latter aspect has to be evaluated using different time scales for different plant parts: 

leave tannine concentration increases during the growing season (Harborne, 1995), while the 

concentration of bark tannines changes significantly during several decades of tree growth. 

Furthermore allelopathic interactions mediated by secondary phenoles are well known for the 

vegetational process of litter decomposition in forest soils (Souto, 2000) and plant community 

succession (Harborne, 1995). The allelopathic effects of tree phenols on epiphytes have  been studied 

only in a single case (Frahm, 2000). We followed the hypothesis, that old trees show increased 

epiphyte growth, partly favored by outwashing of inhibitory allelochemicals from outer bark. 

Furthermore, increased annual precipitation was expected to favor epiphyte growth by decreased 

concentrations of  leachable allelochemicals. This hypothesis was investigated, using Populus x 

canadensis, a cultured tree species widely used for lichen mapping studies in Germany  (Franzen-

Reuter, 2003).  
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3.3 Materials and methods: 

 

Bark sampling:  

Two samples were taken from the outer 0,5 cm cork layer  of  Populus x canadensis at 30 cm, 85 cm, 

1.25 cm and 1.55 cm on the north-west and south-east slope of the main trunk.  

Samples were dried at 30 °C for three days and stored in paper bags at room temperature. 

They were analyzed no later than 6 weeks after collection.  

Samples for photometrical analysis were prepared by careful dissection of outer cork layers from cork 

attached lichens. Lichen tissue was excluded from any analysis and only bare cork layers were used. 

Small cork fractions of few mm diameter were scrapped of, resulting in similar sample sizes for 

extractions. 

 

Sample sites: 

Sampling sites were located near  Düren (2540600/5629000), Königswinter (2584470/6167500) and 

Winterberg (3467500/5673200). Sites with Populus x canadensis in  Düren were located at the edge 

of hayfields or small streets, while sites in Bonn were located near the river Rhine or at the edge of 

forests. Sites near Winterberg and Lennestadt were located near forests or meadows. 

All trees investigated originated from cultured stands. Both solitairy trees and trees in stands 

were included. Tree age was estimated according to stem diameter at a height of 1.25 cm.  

A stem girth of 150 – 230 cm was correlated to about 80 years; a stem girth of 350 – 420 cm to 140 

years. For the transect study, six sample sites were chosen at locations between 90 m above sea 

height and 650 m above sea height. For the tree age study two age classes at sample sites near Bonn 

were chosen (80, 140 years). Samples for the two years old trees were taken from saplings growing 

along a small stream near Emmerthal.  For the analysis of phenols related to height on the main trunk 

three height classes at one sample site near Bonn were taken (30 cm, 85 cm, 155 cm above ground). 

Analysis of species richness and correlation to trunk azimuth was done on six sample sites near Düren 

and Königswinter, which were more than 5 km apart. Each correlation analysis was based on a 

minimum of  six samples taken from three different trees at one sample site. 
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Chemicals: 

All solvents and reagents used were purchased by Roth KG, Karlsruhe. 

Solvents used were of  HPLC grade, reagents were of analytical grade. 

 

Analysis of total phenols: 

Total phenols were analysed photometrically as described in Hagerman (1995) using a modified Price-

Butler method. Extaction of bark was done by 10 min ultrasonication of 25 mg bark in 2 x 3 ml 70% 

acetone at room temperature. The supernatants were combined and  filled to 10 ml with 70% aceton. 

0,5 to 1ml was used in the test. Gallic acid (3 – 50 µg/ml) was used as standard. 

The procedure follows the preparation steps.: 

1 ml sample solution 

2 ml dest. Water 

1 ml K3Fe(CN)6   0,016M (510 mg ad 100 ml dest H2O) 

1 ml FeCl3 , 0,02M (320 mg ad 100 ml 0,1M HCl ) 

wait for 15 min 

add 1 ml H3PO4 (20%) 

Measurement of the green Fe-tannine complex formed was done using a Perkin Elmer 

spectrophotometer model lambda 11 at a wavelength of 700 nm. 

 

Lichen species richness 

Species richness was measured according to VDI guidelines (VDI, 2004). Measurement of epiphyte 

cover was done using five squares of 10 x 10 cm at a height of 100 to 150 cm on the main trunk in 

northwest and southeast slope resulting in 10 squares per tree.  

Lichen and bryophyte abundance was estimated at a height of 100 cm to 155 cm on the main trunk in 

northwest and southeast slope using the following scale: 

< 10% ; 10 – 20 % ; 20 – 30 % ; 30 – 50% ; 50 – 75% ; 75 – 90 % ; > 90% 
 
Additionally, field estimation of epiphyte abundance was confirmed by using macrophotographs of all  
 
trees investigated. 
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Data treatment: 

Mean values  were  calculated  from data obtained from 3 to 12  trees per sample site. 

Comparison of mean values was done using the t-test (95% confidence). 

Correlation Data were analyzed using graphical plots in linear regression analysis and by calculating  

Pearssons regression coefficient. 

 

3.4 Results: 

Tree age is the most important factor determining concentrations of total phenols in outer bark of 

Populus x canadensis. While bark roughness and thickness increases, phenol content decreases 

considerably. Diagramme 1 shows concentrations of total phenols for  2, 80 and 140 years old trees. 

140 years old trees contain 3,0 mg/g d.w. (+/- 0,9 mg/g d.w.)  in its outer cork layer, while 2 years old 

trees reach 29,0 mg/g d.w. (+/- 4,0 mg/g d.w.). Height on the basal trunk (Diagramme 2) did not 

influence concentrations of total phenols significantly. Nevertheless, a structural differences between 

smooth and moist bark at 30 cm above ground and hard and dry bark in 155cm could be observed. 

Bryophyte cover in semi-dry areas (< 700 mm) near Euskirchen was restricted to trunk areas below 

30cm and to the upper layer of twigs, while bryophytes in areas with high annual precipitation  

(> 1100mm) covered all height zones on the main trunk and twigs. External site factors, like sunshine 

and weathering in north-west and south-east direction did not influence concentrations of total phenols 

in trees of the same age class in a semi dry area (80 years old trees, data not shown), while increased 

annual precipitation (1100 mm versus 700 mm) caused a significant decrease in total phenols in outer 

bark (Diagramme 4). 

Epiphytic lichens responded to external factors, as north-west and south-east azimuth of the trunk and 

total annual pecipitation rates, as these were important variables for the growth of different lichen 

communities (crustose versus foliose lichens in southeast slopes and in dry areas).  

Neither differing phenol concentrations related to tree age, nor variation of phenol content within trees 

of the same age class (80 years) could account for lichen species richness (Diagramme 3). 

Instead, epiphyte abundance and total cover increased in correlation to a) increased annual 

precipitation (Table 1), b) distance to industrial centres (Map 1) and c) decreased content of bark 

phenolic allelochemicals (Diagramme 4, 5). The combined action of all three factors were analyzed 

along an altitudinal transect throughout North-Rhine-Westphalia in  Germany for the first time. 
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3.5 Discussion: 

Secondary metabolites in plant tissues show a high degree of species specifity (Hegnauer, 1962), but 

also high variation in relation to a variety of biotic and abiotic factors. Tissue differentiation, defense 

against pathogens and herbivores, differing nutrient availablity and season are some of the most 

prominent causes of variation of concentrations in single substances (Harborne, 1995; Julkunen-Tiitto, 

1989, Hakulinen, 1998). Light is related to the biosynthesis of plant secondary phenols by enzyme 

activation of the shikimic acid pathway and direct photochemical conversion of metabolites, especially 

in biosynthesis and degradation of lignin (Nuhn, 1990). Biosynthetic mechanisms have to be evaluated 

in the investigation of defense mediated by phenolic metabolites in leaves and current growth twigs. 

Cork evolves from tertiary growth, being comprised of dead suberinized cork cells in its outer layer. It 

functions as protective coat to the tree and due to its high content of suberin (40 – 50%) , a 

polymerized aliphatic acid, lignin, tannines and waxes (30%) and only 12 % of polysaccharides 

(Fengel, 1984) it is of low nutritional value to plant pathogenes. In contrast, it is resistent to 

weathering, deterrent against herbivores (Laitinen, 2004) and plays a role in tissue protection against 

UV radiation (Tegelberg, 2001). Outer bark is subjected to direct contact with its environment. 

Sunshine, rainfall, freezing and biological impact alter cork structure and composition of cork 

chemicals (Fengel, 1984). 

We found high concentrations of phenols in cork tissue of young trees, while old trees showed 

decreased phenol contents, but compensated by development of thick and structured layers. 

Organic extractives such as flavonoids or phenolic acids are located as crystalline deposits within  

cork cells, or they form part of the cell wall, like tannines (Fengel, 1984). Phenolic extractives from  

Populus bark are effective antifungal agents (Yang, 2004 ;Butin, 1969; Olsen,1971). We evaluated 

several site factors on outwashing of phenols from outer bark in order to  analyze allelopathic 

constraints of phenolic bark components on epiphyte growth. While bark moisture and smoothness 

was highest on the stem basis (ground to 35 cm) and increased readily up to 155 cm, no statistically 

significant correlation of trunk height to bark phenol concentration could be found. Slope of the trunk, 

determining weathering influence could not be correlated to phenol content, either. Both results 

indicate, that phenolic constituents in outer bark of forest trees are strongly associated to cell wall 

structures (Fengel, 1984). Though exposed to weathering and moisture, tannines form part of  the cork 

layer. Their ecological function can not be compared to biosynthetically inducable  phenolic acids of  

early defense mechanism against fungal leave pathogenes nor to easily leachable leave litter phenols. 
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Though tannines are less effective feeding deterrents and antifungal agents, they impose stuctural  

strength to exposed tissues (Harbone, 1995; Tegelberg, 2001).   

While whole cork layers are detached in trees with intense bark peeling (Acer spp, Betula spp) outer 

bark in Populus x canadensis shows highly structured layers with deep furrows. Direct rainfall causes 

stemflow in the inner part of  single furrows. In regions with high annual precipitation (> 1100 mm/year) 

cork structure is smoother and furrows are flatened compared to trees in semi-dy regions (< 700 

mm/year) , indicating both  detachment of whole layers on the top of furrows and increased leaching of 

bark constituents in remaining cork layers. Our analysis of epiphyte growth along an altitudinal 

transect indicated considerable increase of epiphyte cover, especially of bryophytes with increasing 

site height above sea level and increasing annual precipitation. While in semi- dry regions bryophytes 

occurred on the lower part of the stem basis (< 35 cm above ground level) and on twigs, increased 

precipitation favored bryophytes on all parts of the main trunk.  

Epiphytic lichens and bryophytes are attached to cork layers by their rhizines. Unlike parasitic 

epiphytes, like mistletoe (Viscum alba), they are autotrophes, which do not root into sieve or bast 

tissues of trees. Nevertheless, lichens and bryophytes are subjected to bark allelochemicals, that   are 

primarily protective against plant pathogenic and wood destroying fungi. In vitro studies indicate 

inhibition of soredial growth by a variety of  plant phenols (own data) and both inhibitory and 

enhancing effects of whole bark extracts on ascospore growth could be found (Pyatt, 1973 ; Ostrofsky, 

1980). Field studies showed low survival for transplanted lichen thalli in regularly moist parts of the 

trunk. Thalli were imbalanced due to extreme algal compared to low fungal growth (Schuster, 1985). 

In general, moisture conditions, rather than allelopathic constraints are used to described zonation of 

different epiphyte communities. The lowest 20-50 cm of the trunk are colonized by moisture tolerant 

bryophtes, the north-west slope of the trunk forms a suitable habitat for bryophytes and foliose lichens 

and the dry and sunny south-east slope hosts a higher percentage of crustose compared to foliose 

lichen species. Highly specialized adaptations to soil allelochemicals have been found for certain 

strains of mycorrhizal fungi cultivated in vitro (Souto, 2000) and on phanerophyte vegetation after for 

example forest fires,  in gardening or in desert plant communities (Harborne, 1995) In contrast, 

allelopathy mediated by secondary phenoles in stemflow has not been studied so far.  

Still, the effects of mineral composition have been analyzed by Hauck (2002) , who found ratios of 

Mn/Ca and Mn/Mg in dripzones to be essential for establishment of cyanolichens on bark of unusual 
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host trees and established concentrations of SO4
2- to be important in imposing stemflow 

characteristics in temperate spruce forests (Hauck, 2002). 

Eutrophication by nitrogenous air pollutants has been considered in new methods for lichen monitoring 

in Germany (Franzen-Reuter, 2003; VDI) as lichen abundance of nitrophileous species increased 

during recent years. 

Detailed chemical analysis of single phenolic allelochemicals originating from  different plant parts or 

stem areas with increased stemflow or the  analysis of  bark phenols at a trunk height in greater 

distance to ground level might reveal more specialized adaptation of single epiphyte species than has 

been possible in our pilot study. 

Stemflow and stemflow characteristics within cork structures impose a characteristic vegetational 

pattern to trees. The abundant  Physcia tenella on Populus x canadensis preferably grows in trunk 

areas with high probability of  stemflow. This pattern may reflect areas of high dispersal and high 

survival rate of lichen propagules. Further factors influencing soredial dispersal are seasonal effects 

(Armstrong, 1991; Tormo, 2001), and moisture of the substrate during soredial establishment and 

during thallus growth (Schuster, 1995). Ecological factors imply the involvement of bark insects in 

dispersal of  soredia. (own observations). Previous studies on allelopathic interactions mediated by 

plant phenolic metabolites between the host plant Ecklonia radiata, a sublitoral kelp and its attached 

epiphytes (Jennings, 1997) describe tissue specific levels of phlorotannines, but correlation to 

epiphyte growth is low and age dependend structural characteristics but not chemical factors are 

made responsible for enhanced growth of epiphytic species on certain plant parts. Still, this lack of 

correlation between epiphyte abundance and content of leachable allelochemicals may be due to  

a) high variation in plant metabolites among individual trees  and b) site factors acting on both tree and 

epiphyte growth.  Tree age and tree species diversity in old growth forests are generally accepted as 

most important factor for the establishment of a rich and diverse epiphyte vegetation in boreal 

(Hyvärinen, 1992 ; Hyvärinen, 1993 ; Kuusinen, 1994 ; Gustaffson, 1995 ; Boudreault, 2000 ; Benson, 

2002 ) temperate (Eckhardt, 2003); mediterranian (Loppi, 2004) and tropical forests (Zotz, 2003).  

 

Our study shows a statistically significant decrease of bark phenols in aged trees and in trees 

subjected to high annual precipitation, closing a gap between biochemical processes acting on single 

tree tissues and biological field data, which correlate increased epiphyte cover with site characteristics, 

like stand age.  
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Our further work will be focused on the biochemistry of phenolic allelochemicals and the ecology of 

different epiphyte communities in microhabitats on different plant parts of an individual tree. As a result 

of our study, lichen mapping studies in germany (VDI) will include detailed guidelines for selection of 

sampling sites with similar conditions of annual precipitation. 

 

3.6 Figures and Tables 

Map 3.1:  Sampling Sites in Central Europe  

 

 

E : Euskirchen (160m above sea level) ; W : Winterberg (840 m above sea level) 
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Table 3.1 

Climatic characteristics of sampling areas: 

 

 

Site/climate Bonn  

(90m) 

Euskirchen  

(160m) 

Lennestadt 

(300m) 

Winterberg  

(840m) 

Mean annual 

Temp. 

11,2 11,4 9,9 6,2 

Mean annual 

precipitation 

922 653 1128 1283 

Days with 

precipitation   

> 0,1mm 

208 203 243 238 

Days with ground 

snowcover > 50% 

4 7 15 98 

 

Source: Deutscher Wetterdienst, Essen ;  Jahresreport 2000 
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Diagramme 3.1 

Tree age versus phenol content 
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Mean values are calculated from data obtained from five trees. Bark samples were taken at 1.25 cm 

on the main trunk.  
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Diagramme 3.2 

Trunk height versus phenol content  
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Mean values were obtained from data obtained from five trees at one sample plot  (Königswinter). 

Bark samples were taken at  the northwest slope of the main trunk. 
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Diagramme 3.3 

Correlation of phenol content and lichen species richness  
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Data were taken at one climatic  site at different sample plots near Düren.  

Each phenol concentration represents the  mean of two samples (bark sample northwest slope and 

bark sample southeast slope) taken from one tree. 
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Diagramme 3.4 

Site characteristics versus phenol content 
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Mean values are calculated from  data obtained from five trees at each sample plot. 

Samples were  taken on the northwest slope at 1.25 cm on the main trunk. 

The sampling sites: Winterberg, Westfeld and Saalhausen are located higher than 400 m. above sea 

level and annual precipitation exceeds 1100 mm. Waldbröl, Königswinter and Euskirchen are located 

between 90 m and  300 m above sea level and annual precipitation is lower than 900 mm. 
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Diagramme 3.5 

Correlation of phenol content and epiphyte cover 
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Correlation Data (linear) : Cover% = - 10,4 x  c (Phenoles) + 94,7 ;  Pearsson-Coefficient: r =  - 0,85  

 

Each data point represents the analysis of three trees at one sample site. Trees  at each  site were 

less than 50 m apart. Both northwest and southeast slopes on the main trunk are included.  

Tree age was about 80 years at all sample plots. Sampling sites near Bonn and sites near Winterberg 

are included. 
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4 Crown architecture and bark chemistry in Quercus robur: 

Determinants of epiphyte vegetation ? 

 

 

4.1 Abstract: 

 

Vegetational mapping studies in epiphyte research generally exclude stem areas with high probability 

of stemflow. These areas are characterized by high epiphyte cover, which is explained by high nutrient 

loads during rainfall. Still, these exceptional sites may serve as model for general mechanisms acting 

on epiphyte communities. We analyzed additional chemical and structural site factors in stemflow 

areas on a single tree (Quercus robur). We found bark tannine concentrations to be reduced by ten 

times compared to stem areas without stemflow (1-3 mg/g d.w. (stemflow area) versus 10 – 25 mg/g 

d.w. (dry stem area)) This was true both for stemflow areas at the southeast and northwest slope of 

the tree. Structure and hardiness of outer cork layers differed markedly. We therefore discuss 

allelopathic factors originating from tree bark in addition to nutrients in explaining vegetational cover 

with epiphytic bryophytes and lichens. 
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4.2 Introduction: 

 

Epiphyic lichens and bryophytes are strongly dependend on microclimatic conditions of the host tree. 

Different parts of a tree form distinct habitats with great variation in moisture content, incident 

radiation, rainfall, nutrient availability and concentrations of leachable alellochemicals. 

While ecological- and physico-chemical parameters (Harris, 1971; Jahns, 1983; Eckhardt, 2003; 

Loppi, 2004) found wide attentention in epiphyte research, allelopathic interactions have been 

investigated to much less extent. In most cases, the  focus in studies on allelopathy lies on the 

interaction of  lichens or lichens and bryophytes as competitors (Whiton, 1984; Frahm, 2000).  

The host tree is regarded as indifferent system without any mode of allelochemical interactions  with 

epiphytic species. This point of view is supported by the fact, that lichens and bryophytes do not use 

tree tissue as source of  nutrients. Unlike parasitic plants, like mistletoe (Viscum alba)  they obtain 

nutrients from stemflow, dust, fog or insect residues in throughfall (Frahm, 2001).  

The annual growth rate of lichens and bryophytes is small (Hakulinen, 1966) and their ecological 

niches are characterized by low nutrient loads and continuous cycles of wet and dry periods. Both 

factors are essential for the normal function of photosynthesis and metabolism (Farrar, 1976). 

Water is taken up by the whole organism, without any discrimination of soluble substances , which 

makes them effective cation exchangers for nutrients, but also effective accumulators of heavy metals 

and  radionuclides (Masuch, 1992; Frahm, 2001) 

Different hypothesis are used to explain generally high epiphyte cover in stemflow areas: 

  

- high input of nutrients and water favour growth and dispersal ; 

- stemflow causes outwashing of bark allelochemicals (organic and inorganic substances)  and          

  favor growth and establishment due to a decrease in  habitat toxicity.  

- certain conditions of light and temperature favor growth of adapted epiphyte 

        species on certain zones of the trunk. 
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While the allelochemical effects of inorganic ions, especially manganese have received much attention 

during recent years (Hauck, 2003), organic bark extractives have not been analyzed in connection  

with lichenological  field data. 

We investigated epiphyte cover and concentrations of total phenols in basal stemflow  areas  of  

Quercus robur and the upper and lower part of a single branch. The sample site was located in North-

Rhine-Westphalia in an area with high annual precipitation.    

Further physico-chemical parameters acting on epiphyte communities are disussed. 

 

4.3 Materials and Methods 

 

Bark sampling and site description: 

Bark samples were taken in october 2004 from a solitairy Quercus robur (circumference: 480 cm) 

located near Gummersbach at 340 metres above Sea height in North-Rhine-Westphalia, Germany. 

The area receives annual precipitation of 1000 to 1300 mm (Deutscher Wetterdienst, 2000). Forest 

sites are characterized by high abundance of cultured Picea abies and more natural sites are mixed 

stands of  Betula pubescens , Sorbus aucuparia and  Ilex aquifolium.  Fagus sylvatica and  Quercus 

spp. occur only randomly in forests, but have been planted more frequently at the edge of forests and 

meadows. 

The investigated tree grows at the edge of a meadow (southeast to northwest direction) but is affected 

by a small road on its north side. The distance between asphalt layer and tree is small (20 cm to  

40 cm). The north side is shaded in its lower layers by a stand of small trees on the other roadside 

(mainly Salix caprea and Corylus avellana).  Large trees in the near vicinity (< 10m) of the tree are 

absent.  A planted stand of Larix decudia along the road on the north side imposes no shading effect 

on the oak tree.  Samples for stem analysis were taken from the outer 0,5 cm cork layer at 1.50 cm on 

different microsites on the main trunk. Sites with stemflow on the north side originated from a cutted 

branch at a height of about 3 m above ground, that caused continuous spread of water droplets to the 

lower parts of the trunk during rainfall. The southeast side was affected by stemflow caused by 

branches, but to less extent. Dry areas and areas with stemflow could easily be recognized even after 

short periods of rain by  visual inspection of  moisture and colour of bark. Samples for branch analysis 

were taken on the upper and lower side of one branch (circumference = 20 cm), which was growing on 

the south-east side of the tree at a height of 2,30 m above ground. 
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Bark sample praparation: 

Samples were dried at 30 °C for three days and stored in paper bags at room temperature. 

Samples for photometrical analysis were prepared by careful dissection of outer cork layers from cork 

attached lichens and bryophytes. Lichen tissue was excluded from any analysis and only bare cork 

layers beneath lichen and bryophye tissue were used. Small cork fractions of few mm diameter were 

scrapped of, resulting in similar sample sizes for extractions. 

 

Biological mapping: 

The circumference of the tree (480 cm) was described as x- Axis and a height of  150 cm used as 

standard height on the y-Axis. Bryophyte and lichen cover were estimated as % cover on the species 

group level.  

Lichen species were determined according to Kremer, 1991 and Moberg, 1982. 

Areas with stemflow  were determined in october 2004 during rainfall lasting for more than two hours. 

 

 

Chemical Analysis: 

Total phenols were analysed photometrically as described in Hagerman (1995)  using a modified 

Price-Butler method. Extraction of bark was done by 10 min ultrasonication of 25 mg bark in 2 x 2 ml 

70% acetone at room temperature. The supernatants were combined and  filled to 10 ml with 70% 

aceton (sample solution). 0,5 to 1ml was used in the test. Gallic acid (3 – 50 µg/ml) was used as 

standard. The procedure follows the preparation steps.: 

 

1 ml sample solution 

2 ml dest. Water 

1 ml K3Fe(CN)6   0,016M (510 mg ad 100 ml dest H2O) 

1 ml FeCl3 , 0,02M (320 mg ad 100 ml 0,1M HCl ) 

wait for 15 min 

add 1 ml H3PO4 (20%) 

Measurement of the green Fe-tannine complex formed was done using a Perkin Elmer 

spectrophotometer model lambda 11 at a wavelength of 700 nm 
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4.4 Results and Discussion: 

 

Concentrations of total phenols were significantly higher in dry areas of the trunk compared to areas  

with stemflow during rain. Differences were high and varied between 5:1 on the southeast side and  

15:1 on the north-west side. On the north-west side stemflow areas hosted closed cover of bryophytes  

while dry areas were mostly covered by crustose and few foliose lichens. 

On the south-east side crustose lichens could be found on both stemflow and dry areas above a a 

height of 35 cm. Below 35 cm the basal trunk area hosted bryophytes. The inner parts of the cork layer 

on the south-east side differed in cover with crustose lichens – while more than 90 % of stemflow 

areas were covered with crustose lichens, dry areas were covered by only 50%. The top of cork layers 

on the south-east side were almost devoid of lichens in both stemflow and dry areas, due to high 

degree of bark peeling. Both, the west and east slope of the tree were habitats of foliose lichens, like 

Parmeliopsis spp. and Parmelia spp. Both sides showed scattered occurrence of few foliose thalli and 

general occurrence of crustose species. Bryophytes on the east and west slope of the tree occurred 

on basal areas  (< 50 cm). A single habitat on the north side hosted Evernia prunastri on a 20 x 20 cm 

square in a closed cover of bryophytes. Cork structure in the bryophyte area was smooth, almost 

desintigrated on the upper 2 mm. Cork of the dry areas was generally harder, though on the south-

east side both areas showed bark peeling on the top of furrows. 

Twigs were covered with bryophytes in stem near areas of the upper part, and additionally with foliose 

lichens in stem far regions on the upper part. The lower part of the twig was covered with crustose 

lichens. Cover generally exceeded 75% on both parts of the twig. 

In general, crustose lichens with lower ratio of surface to volume are adapted to higher incident 

radiation and to low water availability, as they are able to take up and absorb water more efficiently, 

while foliose lichens can be found in areas with low incident radiation and high probability of water 

saturation (Jahns, 1983, Moberg, 1982). Nevertheless none of the mentioned species can exist in 

ecological niches without cycles of wetting and drying. Transplanted lichen thalli in extraordinarily 

moist areas are easily overgrown by algae, resulting in imbalanced symbiosis (Schuster, 1985). Light 

is important in zonation of different  lichen species in relation to trunk height, as has been shown by 

Harris (1971) for zonation of Parmelia spp. on oak and for epiphyte diversity on deciduous versus 

evergreen trees (Loppi, 2004). 
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Chemical characteristics of  bark, especially in aged trees, can not be seperated from exogenous 

factors. Outer cork layers are no longer biosynthetically active and abiotic constraints, here light and  

moisture as well as biotic impact, e.g. microbial biofilms alter the composition of cork layers. 

Though bark secondary phenols are synthesized in biosynthetically active tissues, their chemical 

structure changes during the formation of bark and cork layers. In Quercus robur catechines are 

transported via the phloem downwards to bark tissues (Hatheway, 1959).  

In a second step phenoloxidases produce dimeric and polymeric phlobatannines starting from 

catechines, like (+)-gallocatechine. Concentrations of Tannines in outer bark of Fagaceae are given in 

Hegnauer, 1966 and vary between 20 mg/g d.w. and 160 mg/g d.w. 

In our study, we found concentrations of tannines in outer cork layers of the tree of investigation to be 

1 mg/g to 25 mg/g. Comparison of concentrations of natural products from different varieties, plant 

parts or plants at different age or sites are problematic. Furthermore tannine contents may have been 

determined by different analytical methods. We previously showed (Koopmann, 2005) that most of all, 

tree age and annual precipitation of the study area had a significant influence on tannine 

concentrations in outer cork layers of  2 – 140 years old Populus x canadensis. The present study has 

focused on the comparison of chemical characteristics in different parts of a single tree. We were able 

to show , that the process of outwashing from rain droplets is able to account for great differences of 

tannine concentrations even within very small microsites on the trunk (1 mg/g in stemflow areas 

versus 10 mg/g – 25mg/g in dry areas). Bryophytes occupy sites with lowest concentrations of 

tannines (1 mg/g – 4 mg/g) and highest degree of shading and moisture (north-west side on the trunk 

with high stemflow during rain and the upper parts of the branches). Trunk areas with higher contents 

of allelochemicals, higher incident radiation and lower moisture content are typical lichen habitats. 

Nevertheless, also lichens prefer microsites with low contents of allelochemicals and increased 

moisture and shelter, as can be seen on the south-east side of the tree, where highest cover of 

crustose lichens inside cork furrows occurs in stemflow areas. The foliose lichen species: Evernia 

prunastri grows in an intermediate area, together with bryophytes. We therefore propose to evaluate 

vegetational zonations not only with reference to abiotic factors - light or nutrients - acting directly on 

epiphyte growth and dispersal, but to add allelopathic constraints, which may not only result in growth 

depression and competition, but are important factors (both positive and negative) in shaping plant 

community structures. 
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4.5  Figures and Tables 

Table 4.1  

Concentrations of total phenols in Quercus robur 

 

Plant part Total phenols (mg/g) 

Main trunk / north-west / stemflow area     1,1   (+/- 0,2) 

Main trunk / east / dry area   17,5   (+/- 7,5) 

Main trunk / south-east / stemflow area     3,7   (+/- 0,3) 

Twig / upper side     3,0   (+/- 0,3) 

Twig / lower side     3,8   (+/- 0,8) 

 

Data are mean values of the analysis of five bark samples, taken at a height of 150 cm above ground. 

Samples for twig analysis were taken at a distance of 1,0 m from the main trunk. 
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Diagramme 4.1  

Biological mapping of epiphytic lichens and bryophytes on Quercus robur 

 

 

 

E: Evernia prunastri; P: Parmelia / Parmeliopsis spp.; K: crustose lichens ; M: bryophytes 

100 cm = north ; 220 cm = east ; 340 cm = south ; 460 = west 

Total circumferene of the tree: 480 cm 
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5 Summary 

Secondary metabolites in the epiphytic lichen Hypogymnia physodes have been studied focusing on 

the within tissue localization of phenols. Though total phenol contents were higher in sorediate 

compared to non-sorediate thallus structures (7 % d.w.vs. 3 % d.w.), the spectrum of phenolic 

constituents did not differ between tissues, indicating the same ratio of cortex to medulla in both tissue 

types analyzed. Higher phenol contents, pH 4,0 and a lower water capacity in soredia compared to 

thalline structures inhibit preliminary germination, act as feeding deterrents and in perception of abiotic 

site factors. External allelopathic phenols were investigated in an in-vitro test system using single bark 

phenols from a Salicaceae (Populus x canadensis) that hosts the lichen species Physcia tenella.  

We found species specific bark phenols (phenolic glycosides) and their degradation products 

(catechol, benzoic acid and salicylic aldehyde) to be most important inhibitors (LD50 = 10-6M – 10-5M) 

of soredial growth at natural bark pH = 6.0. General metabolites of tannine and lignin turnover, (gallic 

acid, catechine, salicylic acid) showed less inhibitory strength (LD50 = 10-4M – 10-3M). As epiphytic 

lichens are only slightly attached to the outer cork layers and do not root deeply into the phloem, they 

are solely subjected to leachable phenols in stemflow. 

We therefore investigated contents of phenols in different stem areas on trees of different age classes 

(2 – 140 years) and found a correlation between increased epiphyte cover and decreased contents of 

leachable phenols in the outermost 0,3 cm of cork layers of old compared to young trees. Aside tree 

age, annual precipitation was the most important site factor acting on cork phenol contents in trees of 

the same age class. Sample sites studied in central Germany showed precipitation levels between 600 

mm/year and 1300 mm/year. Height on the trunk was studied on the basal stem area and we found 

phenol contents to increase slightly with height. Zonation of lichens and bryophytes was described 

additionally. Bryophytes were most vulnerable to increased phenol contents as a result from both the 

precipitation and zonation study. 

Our results are of importance for site selection in environmental mapping studies.  Sample sites for the 

important mapping tree species: Populus x canadensis should be located at the same height above 

sea level in oder to achieve site characteristics with similar annual precipitation level. Another factor 

already mentioned in VDI guidelines is the exclusion of direct stemflow areas on the trunk. Here, 

epiphyte cover is generally high. In addition to increased water and nutrient supply, we were able to 

show, that phenol contents in cork layers of stemflow areas are about ten to twentyfive times lower 

than contents in dry areas.  
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Apart from the basal trunk, the upper and lower side of a branch were analyzed and showed small 

deviations in contents of allelochemicals, the lower side containing about 25 % less total phenols than 

the upper side. The upper part of  the branch was covered with bryophytes and foliose lichens, while 

the lower part was covered with crustose lichens. 

As a conclusion, crown architecture does not only impose zonation of epiphytes by alteration of  

incident light, but alters rainfall specifically, resulting in zonation of moisture and bark chemicals.  

The  influence of bark phenols on epiphytes may result from general defence mechanisms, that are 

primarily directed against plant pathogenic fungi. Both trees and lichens develop species specific 

mechanisms of protection against saprotrophic fungi. Nevertheless, all defense related allelochemicals 

may act in interspecies selection that favor a certain vegetational community with adapted structures. 

 

Outlook: 

Further  work  on  the  allelopathic effects of bark phenols on epiphytic plants could be directed 

towards the analysis of  specialized  tree-  lichen or bryophyte pairs, investigations of bark constituents 

at different stem heights or  the chemical analysis of  stemflow. 

Botanical studies could be directed to the occcurence of allelopathy in different geographical and 

ecological habitats and  its effects on epiphyte communities. 
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A1: Phenols in lichen tissues 
 
A1/1: Chemical  Structures  of  Lichen  phenols in Hypogymnia physodes 
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A1/2 

Hypogymnia physodes growing on Betula pubescens (near Oulu) 
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A1/3 

Chemical structure of the main lichen phenol in Xanthoria parietina 
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A1/3 

Chemical structure of lichen phenols in Vulpicida pinastri 
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A1/4 

Xanthoria parietina growing on Populus tremula (near Muhos) 
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A1/5 

Vulpicida pinastri  growing on Betula nana (near Oulu) 
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A1/6 

Chemical characterization and analysis of lichen phenols 

 

Methods: 

TLC (Hypogymnia physodes): 

Silica Gel 60, Macherey & Nagel; F254 

Eluent: Ethylacetat 20 / Aceton 15 / Methylenchlorid 6 /Methanol 5 /Water 4 

Visualization: spraying with 10% sulfuric acid in ethanol and heating at 105°C for 3 min 

 

TLC (Vulpicida pinastri) 

Silica Gel:60, Riedel de Häenl F24 

Eluent: n-Hexan 130 / Diethylether 80 / Formic acid 20 

Visualization: spraying with 10 % sulfuric acid in ethanol and heating at 105 °C 

 

HPLC 1 :  (Hypogymnia physodes) 

according to Huovinen (1985), Acta Pharm Fenn.94 : 99-112 

HPLC System: Pharmacia LKB 

Pump: model 2248, detector: UV-VIS model VWM 2141, autosampler 2157 

Column: Inertsil ODS 3 , 150 x 4 mm (with precolumn occasionally) 

Eluent: A:  100 % methanol , B: 0,09g phosphoric acid (85%) / 100 ml water ; filtrated and degassed 

Gradient: 20% methanol -> 1 % methanol -> 100 % methanol ( within 85 min.) 

Flow rate: 1 ml/min 

Detection: 280 nm 

 

HPLC 2 (Vulpicida pinastri / Xanthoria parietina) 

Instrument: see above 

Column: Lichrocart 125-4 (RP18) 

Eluent: isocratic: 100 % methanol  

Detection: 270 nm (usnic acid) / 394 nm (vulpinic / pinastric acid) 

Flow rate: 1 ml/min 

 

UV-VIS:  

Beckmann DU 60 

Scan mode: 220 – 340 nm 

 

MS: 

Kratos MS 80 FF 

EI and CI-NH3 mode ; direct inlet system ; samples were air dried prior analysis 
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Phenols in Hypogymnia physodes 
 
 
Atranorin (C19H18O8)  
(synthetic Sigma) 
MW: 374,3 g/mol 
RRT (TLC) : 0,90 
RT (HPLC) : 70 min 
m/z (CI-MS) : 375, 164, 136 
 
 
 
Physodic acid (C26H30O8) 
(isolated from Hypogymnia physodes, collection in Oulu) 
MW: 470,5 g/mol 
RRT (TLC): 0,59 
RT (HPLC): 56 min 
m/z (CI-MS): 426, 370, 248 
 
 
 
 
Physodalic acid (C20H16O10) 
(isolated from Hypogymnia physodes, collection in Oulu) 
MW: 416, 33 g/mol 
RRT (TLC): 0,68 
RT (HPLC): 62 min 
m/z (CI-MS): 356, 314 
 
 
 
Hydroxy-Physodic acid (C26H30O9) 
(isolated from Hypogymnia physodes, collection in Oulu) 
MW: 486,5 g/mol 
RRT (TLC): 0,52 
RT (HPLC): 49 min 
m/z (CI-MS): 443, 264, 207 
 
 
 
Identification was mainly based on comparison of Rf values in TLC with literature about organic 
synthesis of different physodic acids (J. Elix,Canberra). 
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Phenols in Xanthoria parietina: 
 
Parietin (C16O6H13) 
 
MW: 301,3 g/mol 
 
 
Chemical characterization was not performed, as the substance was obtained as standard 
HPLC analysis was done using isocratic elution and extraction of lichen thalli in methanol instead of 
DMF 20/ethylacetate 40/acetone 40 due to the better solubility of parietin in methanol.compared to  
other lichen substances.. 
 
 
 
 
 
 
 
Phenols in Vulpicida pinastri 
 
 
Vulpinic acid (C19H14O5) 
(isolated from Vulpicida pinastri) 
MW: 322,3 g/mol 
RRT (TLC): 0,56 
Rt (HPLC): 0,85 min 
m/z (CI-MS):322, 290, 145 
 
 
Pinastric acid (C20H16O6) 
(isolated from Vulpicida pinastri, collection in Oulu) 
MW: 352,3 g/mol 
RRT (TLC): 0,49 
Rt (HPLC): 0,85 min (coelution with vulpinic acid) 
m/z (CI-MS): 370, 353, 320 
 
 
Usnic acid (C18H14O5) 
(synthetic Sigma) 
MW: 344,3 
RRT (TLC): 0,60 
Rt (HPLC): 1,1 min (baseline separation from pinastric/ vulpinic acid) 
m/z (EI-NH3): 345, 260, 233 
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A 2 In vitro experiments 

A2/1    

Physcia tenella growing on Malus spp. 
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A2/2 

In-vitro inhibition of soredial growth by a variety of bark phenols:  

Diagramme:  % growth compared to control versus phenol concentration of the substratum 
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                  Each data point represents the mean of five replicate in vitro tests  
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2   

Salicortin 
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3   

Salicin 
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4   

Catechin 
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       5 

Salicylic alcohol 
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6 

Benzoic acid 
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7 

Catechol 
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8 

Gallic acid 
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9 

Ellagic acid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

x 10  -4 M

5
 g

ro
w

th



 
 

79

10 

Salicylic aldehyde 
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11 

Salicylic acid 
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A2/3 

Mass spectral data of samples: Salicortin and Tremulacin 

(Analysis was done by H. Stevens, University of Paderborn) 

 

System: 

LCQ-Advantage (Thermo Finnigan) 

Electrospray Ionisation (ESI) negative mode (M-H)- 

Mass range: 80-2000 m/z 

Sheat gas flow rate: 60 arb 

Auxillary gas flow rate: 4,5 arb 

Ion spray voltage:  5 kV 

Capillary temperature: 280 °C 

Tube Lens: - 20 V 

Lens voltage: 14,25 V 

Multipole Offset: 7 V 

 

Results:  

Sample: “Salicortin” (in methanol): m/z: 447,0 ; 439,1 ; 423,0 

Sample: “Tremulacin”( in methanol): m/z: 585,0 ; 481,0  

 

Salicin MW = 258,2 g/mol 

Salicortin MW = 423,4 g/mol 

Tremulacin MW = 528,5 g/mol 

Acetyltremulacin MW = 570,5 g/mol 
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A3  Lichen Monitoring and Correlation with bark chemistry 

A3/1   

Sample site near Königswinter  

(Populus canadensis and Populus nigra near the river Rhine) 
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A3/2 

Sample Site near Königswinter  

(Populus canadensis in a plantation near a forest site) 
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A3/3 

Sample site near Saalhausen 
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A3/4 

Populus canadensis bark at Winterberg  
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A3/5 

Populus canadensis bark at Düren 
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A3/6 

Diagramme of lichen mapping arrangement 

(taken from Franzen-Reuter, 2004) 
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