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ich in jederlei Hinsicht und für den Beistand in allen Bereichen danke.



Introduction

Topological-antitopological fusion or tt∗-geometry is a topic of mathematical and physi-
cal interest. In about 1990 physicists studied topological-field-theories and their moduli
spaces, in particular N = 2 supersymmetric field-theories and found a special geometric
structure called topological-antitopological fusion (see the works of Cecotti and Vafa [CV]
and Dubrovin [D]). These geometries are realized on the tangent bundle of some manifold
and part of their data is a Riemannian metric. One can replace the tangent bundle by
an abstract vector bundle. This step allows to consider tt∗-bundles as a generalization of
variations of Hodge structures, as it was done in Hertling’s paper [Her].

The starting point of this thesis is a correspondence between tt∗-bundles and pluri-
harmonic maps into the space of positive definite metrics found by Dubrovin [D]. The
aim is to find a version of this correspondence for tt∗-bundles on abstract vector bundles.
The obvious interest of this correspondence is either to construct pluriharmonic maps or
to construct tt∗-geometries. We first analyze pluriharmonic maps which are associated
to solutions of tt∗-bundles coming from already known geometries. Famous examples of
such solutions are harmonic bundles, variations of Hodge structures, special complex and
special Kähler manifolds and flat nearly Kähler manifolds. In the last two cases indefinite
metrics appear. This means one needs to understand the above-mentioned correspon-
dence for tt∗-geometries with pseudo-Riemannian metrics.

Recently, special para-Kähler geometry was introduced in [CMMS]. It arises as one
of the special geometries of Euclidean supersymmetry. This motivates us to search for
para-complex versions of tt∗-geometries and for a correspondence to the para-complex
analogue of pluriharmonic maps. In fact, we introduce the para-complex notion of tt∗-
geometry, which we call para-tt∗-geometry and establish a correspondence to the para-
complex analogue of pluriharmonic maps. This result leads to the question, if there
exist para-complex versions of the above-mentioned solutions of tt∗-geometry: harmonic
bundles, variations of Hodge structures, special complex and special Kähler manifolds and
flat nearly Kähler manifolds and if they are solutions of para-tt∗-geometry. We answer
positively to this question in this thesis, since we show, that one can generalize all these
geometries to the para-complex category and that these generalizations supply solutions
of para-tt∗-geometry.

Let us describe the results of the work. It is a compilation of already published results
and of newer unpublished ones. To compress this work we treat at places, where it does
not impose too much confusion, the complex case and the para-complex case at the same
time. The needed notions of para-complex geometry are introduced in chapter 1. For the
rest of the introduction we may ask the reader who is not familiar with these notations

11



12 Introduction

to skip the prefix ’para’ if it disturbs him.

We explain the structure of a (para-)tt∗-bundle: A (para-)tt∗-bundle (E,D, S) con-
sists of a (real) vector bundle E over a (para-)complex manifold (M,J) endowed with a
connection D and a section S of T ∗M ⊗ End(E), such that the family of connections

Dθ :=

{
D + cos(θ)S + sin(θ)SJ , θ ∈ R, for M complex,

D + cosh(θ)S + sinh(θ)SJ , θ ∈ R, for M para-complex,

is flat. A metric (para-)tt∗-bundle (E,D, S, g) is a (para-)tt∗-bundle (E,D, S) endowed
with a D-parallel metric g, such that S is symmetric with respect to g.
First, we establish the correspondence between (para-)tt∗-bundles on abstract vector
bundles over simply connected manifolds and (para-)pluriharmonic maps, generalizing
Dubrovin [D]. In fact we show the following result in theorem 4.1 and in theorem 4.2.:

Theorem 1

(i) A metric (para-)tt∗-bundle with a metric of signature (p, q) over a simply connected
(para-)complex manifold (M,J) gives (after fixing a D0-parallel frame) rise to an
admissible (para-)pluriharmonic map f from M to GL(r,R)/O(p, q).

(ii) An admissible (para-)pluriharmonic map f from a simply connected (para-)complex
manifold (M,J) to GL(r,R)/O(p, q) gives rise to a metric (para-)tt∗-bundle (E =
M × Rr, D, S).

For the definition of admissible (para-)pluriharmonic maps we refer to definition 2.9.
In other words we could roughly say, that our construction defines a bijection

Φ : { framed metric (para-)tt∗-bundles → { admissible (para-)pluriharmonic maps

of rank r and sign. (p, q) } into GL(r,R)/O(p, q) }. (0.0.1)

from the space of framed metric (para-)tt∗-bundles of rank r over a simply connected
(para-)complex manifold (M,J) to the space of (para-)pluriharmonic maps from (M,J)
to GL(r,R)/O(p, q). The case of a metric tt∗-bundle of rank r with metric of signature
(r, 0) follows from this theorem, since in this case the pluriharmonic maps are shown to
be admissible using a result of Sampson [Sam]. Our correspondence contains the classical
correspondence shown by Dubrovin [D]. If the manifold M is not simply connected,
one has to replace the (para-)pluriharmonic maps by twisted (para-)pluriharmonic maps.
We also show a version for unimodular oriented metric tt∗-bundles. The target space of
the (para-)pluriharmonic maps is for unimodular oriented metric tt∗-bundles the space
SL(r,R)/SO(p, q).
Adapting a rigidity result of Gordon [G] about harmonic maps to pluriharmonic maps
we are able to prove a rigidity result for tt∗-bundles with a positive definite metric over a
compact Kähler manifold (cf. theorem 4.6 and [Sch5]). Further we apply this to special
Kähler manifolds and obtain a new proof Lu’s theorem [Lu] in the case of a simply
connected compact special Kähler manifold (cf. theorem 4.7 and [Sch5]).

We now shortly discuss the above-mentioned classes of tt∗-bundles:

From [Her] and [Sch1, Sch2] we knew, that harmonic bundles are objects, which are
closely related to tt∗-bundles. A correspondence between these bundles and harmonic
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maps from compact Kähler manifolds to GL(r,C)/U(r) was given in Simpson’s paper
[Sim]:

Ψ : { harmonic bundles { harmonic maps

with pos. def. metric over → from

comp. Kähler manifolds M } M to GL(r,C)/U(r) }.

From Sampson’s theorem [Sam] it follows that in this case the notion of harmonic map and
pluriharmonic map coincide. In other words there exists a correspondence between har-
monic bundles and pluriharmonic maps from compact Kähler manifolds to GL(r,C)/U(r).
This correspondence can be recovered from a more general result, discussed in this thesis,
which is an application of our theorem 1. This is described briefly in the next paragraph
and was published in [Sch4].
We generalize the notion of a harmonic bundle by admitting indefinite metrics. With this
definition we construct metric and symplectic tt∗-bundles from harmonic bundles and we
apply the correspondence of theorem 1 to prove that the target space of the admissible
pluriharmonic maps can be restricted to the totally geodesic subspace GL(r,C)/U(p, q) of
GL(2r,R)/O(2p, 2q). This means, that the application of our construction roughly gives
rise to a map:

Ψ : { framed harmonic bundles → { admissible pluriharmonic maps

over complex manifolds M } from M to GL(r,C)/U(p, q) }.

Simpson’s result for positive definite signature is recovered, since for positive definite
signature the above map Φ (cf. equation (0.0.1)) is essentially bijective. Our result is a
generalization of Simpson’s work (for more information compare section 5.5), as arbitrary
signature of the bundle metric is admitted and the compactness and the Kähler condition
are not needed. We restrict to simply connected manifolds M, since the case with non-
trivial fundamental group can be obtained by utilizing the corresponding theorems in
chapter 4. The pluriharmonic maps are then replaced by twisted pluriharmonic maps.
Moreover, we introduce the notion of para-harmonic bundles, i.e. harmonic bundles in
para-complex geometry (cf. [Sch9]). We use the same recipe as in complex geometry to
relate these bundles to para-pluriharmonic maps into GL(r, C)/Uπ(Cr), where GL(r, C)
is the para-complex analogue of the general complex linear group and Uπ(Cr) is the para-
complex version of the unitary group. Hence we extend the map Ψ to para-harmonic
bundles:

Ψ : { framed para-harmonic bundles → { admissible para-pluriharmonic maps

over para-complex manifolds M } from M to GL(r, C)/Uπ(Cr) }.

The next class of solutions are variations of Hodge structures (VHS). These are by
Hertling’s work [Her] tt∗-geometries. Locally VHS are described by their period map,
i.e. a holomorphic map into the so-called period domain, which is an open set in a flag
manifold. We weaken the second Riemannian bilinear relation. Then we relate the pluri-
harmonic map associated to a tt∗-bundle, which comes from a given VHS of odd weight,
to the period map of this VHS. Likewise we introduce a para-complex version of VHS
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and associate to this a kind of period map. The para-complex version of a VHS carries a
metric para-tt∗-bundle. For odd weight we express the para-pluriharmonic map associated
to this para-tt∗-bundle in terms of the para-complex period map.

In all these examples of (para-)tt∗-geometries the (para-)complex structure of the
base manifold (M,J) has been integrable. However, in the study of (para-)tt∗-bundles
(TM,D, S) on the tangent bundle TM it is reasonable to consider almost (para-)complex
manifolds, since like this nearly (para-)Kähler manifolds with flat Levi-Civita connection
arise as solutions of (para-)tt∗-geometry. We give a constructive classification of Levi-
Civita flat nearly (para-)Kähler manifolds in a common work with V. Cortés [CS2].
Let us explain the structure of this part of the thesis, which is also subject of [Sch7, Sch8].
Part of the tt∗-bundle (TM,D, S) is now a one-parameter family of flat connections Dθ

on the tangent bundle TM. Every almost (para-)complex manifold (M,J) endowed with
a flat connection ∇ carries a natural one-parameter family of flat connections given by

∇θ = exp(θJ) ◦ ∇ ◦ exp(−θJ), with θ ∈ R.

We study (para-)tt∗-bundles for which the families Dθ and ∇θ are equivalent in the sense
of the following:

Definition 1 Two one-parameter families of connections ∇θ and Dθ on some vector
bundle E with θ ∈ R are called (linearly) equivalent with factor α ∈ R if they satisfy the
equation ∇θ = Dαθ.

To consider such one-parameter families of connections is motivated by our previous
study of special (para-)Kähler solutions of (para-)tt∗-bundles. Like this we obtain a
duality between Levi-Civita flat nearly (para-)Kähler manifolds and special (para-)Kähler
manifolds, which are both of importance in mathematics and theoretical physics.

Afterwards we restrict to (para-)tt∗-bundles (TM,D, S) as above such that the con-
nection D is (para-)complex, i.e. satisfies DJ = 0. These are recovered uniquely from the
(para-)complex structure J and the connection ∇. In addition compatibility conditions
on the pair (∇, J) are given and it is shown that for special (para-)complex and nearly
(para-)Kähler manifolds these compatibility conditions on (∇, J) hold.
More precisely, we give a class of tt∗-bundles (TM,D, S), which corresponds to special
(para-)complex manifolds with torsion and non integrable almost (para-)complex struc-
ture J and a class of solutions which corresponds to flat almost (para-)complex manifolds
satisfying the nearly Kähler condition (with torsion).
In the sequel we study whether the above (para-)tt∗-bundles (TM,D, S) (over almost
(para-)complex manifolds) provide metric and symplectic (para-)tt∗-bundles, respectively.
Solutions of the first type are, for example, given by special (para-)Kähler manifolds and
solutions of the second kind arise on flat nearly (para-)Kähler manifolds. Otherwise,
neither the nearly (para-)Kähler condition is compatible with metric (para-)tt∗-bundles
nor the condition to be special (para-)complex is compatible with symplectic (para-)tt∗-
bundles.
Finally it remains to analyze if one can transfer the relation between (para-)pluriharmonic
maps and (para-)tt∗-geometry to the case of (non-integrable) almost (para-)complex struc-
ture of the base (M,J).
Since the (para-)complex structures are no longer integrable, we generalize the notion
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of (para-)pluriharmonic maps to the case of a source manifold (M,J) with an (non-
integrable) almost complex structure J : This is done by using the (para-)pluriharmonic
map equation, where a nice connection (cf. definition 2.6) on M is chosen. Then we
introduce S1

ε -pluriharmonic maps which generalize the notion of associated families of
pluriharmonic maps from complex manifolds (see for example [ET]) to maps from almost
(para-)complex manifolds into pseudo-Riemannian manifolds. We give conditions for an
S1

ε -pluriharmonic map to be (para-)pluriharmonic and a result, which relates general-
ized (para-)pluriharmonic maps to harmonic maps. With these notions and results we
associate pluriharmonic maps into Sp(R2n)/U(p, q), respectively SO0(2p, 2q)/U(p, q), to
the above metric and symplectic tt∗-bundles. Similiarly we associate para-pluriharmonic
maps into Sp(R2n)/Uπ(Cn), respectively into SO0(n, n)/Uπ(Cn), to the above metric and
symplectic para-tt∗-bundles.

As already mentioned, special (para-)complex and special (para-)Kähler manifolds
are an interesting class of εtt∗-bundles, respectively metric εtt∗-bundles. In the complex
case this follows from the results of Hertling [Her] who associated a VHS of weight 1 to
any special complex manifold. We give a direct differential geometric approach and a
characterization of the tangent bundles of special complex and special Kähler manifolds
as special tt∗-bundles (cf. [CS1]). The associated pluriharmonic map is expressed in terms
of the dual Gauß map, which is a holomorphic map into the pseudo-Hermitian symmetric
space Sp(R2n)/U(k, l), where n = k + l. These results are generalized to para-complex
geometry. This is done in [Sch3] and is detailled in this thesis. The approach, which uses
a VHS of weight 1, has also been successfully transferred to (para-)complex geometry and
is part of this thesis.
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Introduction

La fusion topologique-antitopologique est un sujet d’interêt en physique comme en mathé-
matique. Dans les années 1990, les physiciens ont étudié les espaces modules au sein des
théories des champs topologiques et plus particulièrement dans celle des champs N=2-
supersymétriques (cf. les travaux de Cecotti et Vafa [CV] et de Dubrovin [D]). Au cours
de leur étude, ils ont découvert une structure géométrique, appelée fusion topologique-
antitopologique, ou géométrie tt∗. À la base, cette géométrie était réalisée sur le fibré tan-
gent à une variété et une métrique Riemannienne faisait partie des données géométriques.
Mais on peut également remplacer le fibré tangent par un fibré vectoriel abstrait. Ce point
de vue, que l’on trouve dans l’article de Hertling [Her], permet de considérer la géométrie
tt∗ comme une généralisation des variations de structures de Hodge.

Le point de départ de cette thèse est la correspondance existant entre les fibrés tt∗ sur
le fibré tangent et les applications pluriharmoniques dans l’espace des métriques définies
positives. Cette correspondance a été découverte par Dubrovin [D]. Son intérêt est d’une
part de construire des applications pluriharmoniques, d’autre part des fibrés tt∗. Nous
analyserons les applications pluriharmoniques associées à des fibrés tt∗ provenant de solu-
tions déjà connues de la géométrie tt∗. Des exemples célèbres sont: les fibrés harmoniques,
les variations de structures de Hodge, les variétés spéciales Kählériennes et les variétés
approximativement Kählériennes plates. Dans les deux derniers cas les métriques peuvent
être indéfinies. Il est donc nécessaire de généraliser la correspondance précédente pour le
cas des fibrés tt∗ avec des métriques indéfinies.

Plus récemment, la géométrie spéciale para-Kählérienne a été introduite par [CMMS]
comme une des géométries spéciales de la supersymétrie Euclidienne. Notre motivation
est d’étudier s’il existe des versions para-complexes des géométries tt∗ et si l’on peut
trouver une correspondance entre ces versions et les analogues para-complexes des ap-
plications pluriharmoniques. Nous répondons par l’affirmative à ces deux problèmes. Se
pose alors la question de savoir s’il existe des versions para-complexes des solutions citées
ci-dessus: des fibrés harmoniques, des variations de structures de Hodge, des variétés
spéciales Kählériennes et des variétés approximativement Kählériennes plates, et de savoir
si leurs généralisations sont des solutions de la géométrie para-tt∗. Nous démontrons en
effet que ces exemples peuvent être généralisés dans le cadre para-complexe et qu’ils sont
des solutions de la géométrie para-tt∗.

Décrivons les résultats de cette thèse. Ce travail rassemble des résultats publiés et
des résultats plus récents. Pour comprimer le texte, nous avons, lorsque le risque de
confusion n’est pas trop grand, traité les cas complexe et para-complexe en même temps.
Les notions de base de géométrie para-complexe sont détaillées dans le premier chapitre.
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Pour l’introduction, le lecteur peu habitué aux notions de la géométrie para-complexe,
pourra supprimer le préfixe ’para’.

Expliquons la structure d’un fibré (para-)tt∗ : un fibré (para-)tt∗ (E,D, S) est la
donnée d’un fibré vectoriel sur une variété (para-)complexe (M,J), muni d’une connexion
D, et d’une section S dans T ∗M ⊗ End(E), pour lesquels les connexions de la famille

Dθ :=

{
D + cos(θ)S + sin(θ)SJ , θ ∈ R, pour M complexe,

D + cosh(θ)S + sinh(θ)SJ , θ ∈ R, pour M para-complexe,

sont plates. Un fibré (para-)tt∗ métrique (E,D, S, g) est un fibré (para-)tt∗ (E,D, S) muni
d’une métrique parallèle pour D et pour laquelle la section S est g-symétrique.

Généralisant Dubrovin [D], nous établissons d’abord la correspondance entre les fibrés
(para-)tt∗, définis sur des fibrés vectoriels abstraits et des applications (para-)pluriharmoni-
ques. En fait, nous démontrons dans les théorèmes 4.1 et 4.2 le résultat suivant :

Théorème 1

(i) Un fibré (para-)tt∗ métrique (E,D, S, g) sur une variété (para-)complexe simplement
connexe (M,J) induit (après avoir choisi un répère D0-plat de E) une application
(para-)pluriharmonique admissible de la variété M dans GL(r,R)/O(p, q).

(ii) Une application (para-)pluriharmonique admissible d’une variété (para-)complexe
simplement connexe (M,J) dans GL(r,R)/O(p, q) induit un fibré (para-)tt∗ métrique
(E,D, S, g).

Pour la définition des applications (para-)pluriharmoniques admissibles, nous faisons ré-
férence à la définition 2.9.
Pour résumer, on pourrait dire que nous avons trouvé une bijection

Φ : { fibrés (para-)tt∗ métriques → { applications pluriharmoniques admissibles

de rang r et sign. (p, q) } dans GL(r,R)/O(p, q) }. (0.0.2)

entre l’espace des fibrés (para-)tt∗ métriques (avec repère fixé) de rang r et signature (p, q)
sur une variété (para-)complexe (M,J) et l’espace des applications pluriharmoniques ad-
missibles de (M,J) dans GL(r,R)/O(p, q). Le cas d’un fibré (para-)tt∗ métrique avec une
métrique de signature (r, 0) ou (0, r) est une conséquence de notre théorème, puisque
dans ce cas, on peut montrer, en utilisant un théorème de Sampson [Sam], que les appli-
cations pluriharmoniques sont admissibles. Si la variété M n’est pas simplement connexe,
il faut remplacer les applications (para-)pluriharmoniques par des applications (para-
)pluriharmoniques twistées. Nous établissons également une version de ce résultat pour
des fibrés (para-)tt∗ métriques orientés unimodulaires. Pour des fibrés (para-)tt∗ métriques
orientés unimodulaires, l’espace cible des applications (para-)pluriharmoniques est donné
par l’espace symétrique SL(r,R)/SO(p, q).

En adaptant au cas des applications pluriharmoniques un résultat de rigidité de Gor-
don [G] concernant les applications harmoniques, nous sommes capables d’obtenir un
résultat de rigidité pour des fibrés tt∗ métriques sur des variétés Kählériennes compactes
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(cf. théorème 4.6 et [Sch5]). Nous appliquons ensuite ce résultat au cas spécial Kählérien
et nous obtenons une nouvelle preuve du théorème de Lu [Lu] dans le cas d’une variété
spéciale Kählérienne compacte simplement connexe (cf. théorème 4.7 et [Sch5]).

Nous allons à présent examiner les classes de fibrés (para-)tt∗ citées ci-dessus :

Grâce au travail de Hertling [Her] et en utilisant [Sch1, Sch2], nous savions jusqu’alors
que les fibrés harmoniques étaient des objets reliés à la géométrie tt∗. Une correspondance
entre les fibrés harmoniques et les applications harmoniques des variétés Kählériennes
compactes dans GL(r,C)/U(r) était donnée par Simpson [Sim]:

Ψ : { fibrés harmoniques { applications harmoniques

avec métrique pos. déf . sur → de M dans

des var. Kähler. comp. M } GL(r,C)/U(r) }.

Le théorème de Sampson [Sam] implique que dans ce cas, les notions d’harmonicité
et de pluriharmonicité coincident. Ainsi, il existe une correspondance entre les fibrés
harmoniques et les applications pluriharmoniques des variétés Kählériennes compactes
dans GL(r,C)/U(r). On peut également déduire cette correspondance d’un résultat plus
général, qui est une application de notre théorème 1. Cette correspondance est explicitée
brièvement dans le paragraphe suivant et a été publiée dans [Sch4].

Dans cette thèse, nous généralisons la notion de fibré harmonique en incluant le cas
des métriques indéfinies. À partir de cette généralisation, nous construisons des fibrés tt∗.
En appliquant alors notre correspondance donnée dans le théorème 1, nous demontrons
que l’on peut restreindre les applications pluriharmoniques au sous-espace totalement
géodésique GL(r,C)/U(p, q) de GL(r,R)/O(2p, 2q). Ainsi, notre construction induit, sans
détailler, une application

Ψ : { fibrés harmoniques { applications harmoniques admissibles

avec métrique de sign. (p, q) → de M dans

sur des var. complexe M } GL(r,C)/U(p, q) }.

Notre résultat est une généralisation du travail de Simpson (plus d’informations se trou-
vent dans la section 5.5.) : en effet, d’une part, on peut retrouver son résultat avec une
application Φ essentiellement bijective, et d’autre part, nous admettons des métriques
à signature arbitraire et nous n’avons besoin ni de la condition de compacité ni de la
condition Kählérienne. Nous traitons le cas des variétés simplement connexes, le cas
général pouvant être obtenu facilement en utilisant les théorèmes correspondants dans le
chapitre 4 et en remplaçant les applications pluriharmoniques par des applications pluri-
harmoniques twistées.

Nous introduisons de plus la notion de fibré para-harmonique, c’est-à-dire de fibré
harmonique en géométrie para-complexe (cf. [Sch9]). Nous utilisons par la suite une
technique analogue afin d’obtenir une correspondance entre les fibrés para-harmoniques
et des applications para-pluriharmoniques à valeurs dans GL(r, C)/Uπ(Cr). On désigne
par GL(r, C) la version para-complexe du groupe linéaire général complexe et par Uπ(Cr)
l’analogue para-complexe du groupe unitaire. Nous généralisons ainsi l’application Ψ aux
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fibrés para-harmoniques:

Ψ : { fibrés para-harmoniques { appl. para-pluriharm. admissibles

sur des var. → de M dans

para-complexes M } GL(r, C)/Uπ(Cr) }.

La prochaine classe de solutions est celle des variations de structures de Hodge (VHS). On
sait d’après les travaux de Hertling [Her] qu’elles sont en effet des géométries tt∗. Locale-
ment, une VHS est décrite par son application de périodes, qui est une application holo-
morphe sur le domaine des périodes, sous-ensemble ouvert dans une variété de drapeaux.
Nous affaiblissons la deuxième relation riemannienne bilinéaire. Nous donnons ensuite
l’expression explicite de l’application pluriharmonique associée à la géométrie tt∗ donnée
par une VHS, en termes de l’application de périodes de cette VHS. De la même manière,
nous introduisons une version para-complexe des variations de structures de Hodge, ap-
pelée les para-VHS. Nous associons une application de périodes à ces para-VHS. Les
para-VHS sont des solutions de la géométrie para-tt∗. L’application para-pluriharmonique
associée à une géométrie para-tt∗, qui provient d’une para-VHS, est exprimée à l’aide de
l’application de périodes.

Dans tous les exemples des géométries (para-)tt∗ discutés ci-dessus, la structure (para-
)complexe de la variété (M,J) était intégrable. Dans l’étude des fibrés (para)-tt∗ (TM,D, S)
sur le fibré tangent TM il était nécessaire d’analyser des variétés presque (para-)complexes,
car des variétés approximativement Kählériennes plates apparaissaient alors comme so-
lutions de la géométrie (para-)tt∗. Une classification constructive des variétés approxima-
tivement Kählériennes plates est le sujet d’un travail en commun avec V. Cortés [CS2].
Expliquons la structure de cette partie de la thèse, dont le sujet est également développé
dans [Sch7, Sch8]. La donnée d’un fibré (para-)tt∗ induit une famille à un paramètre de
connexions plates Dθ. D’autre part, chaque variété presque complexe (M,J) munie d’une
connexion plate porte une famille naturelle à un paramètre de connexions défini par

∇θ = exp(θJ) ◦ ∇ ◦ exp(−θJ), avec θ ∈ R.

Nous étudions les fibrés (para-)tt∗ pour lesquels les deux familles à un paramètre de
connexions sont equivalentes dans le sens de la définition suivante:

Définition 1 Deux familles à un paramètre de connexions sont dites équivalentes linéaires
avec facteur α ∈ R, si elles satisfont à l’équation ∇θ = Dαθ.

Nos études précédentes des solutions des fibrés (para-)tt∗ provenant des variétés spéciales
(para-)Kählériennes ont motivé l’examen de ces familles à un paramètre de connexions.
De cette manière, nous avons obtenu une dualité entre des variétés approximativement
Kählériennes plates et des variétés spéciales (para-)Kählériennes. Dans les deux cas, il
s’agit de géométries importantes en mathématique et en physique théorique.
Nous considérons ensuite comme ci-dessus la restriction du problème aux fibrés (para-)tt∗

du type (TM,D, S) pour lesquels la connexion D est (para-) complexe, c’est-à-dire vérifie
DJ = 0. Ces fibrés sont donnés de façon unique par la structure (para-)complexe J et
la connexion ∇. De plus, on trouve des conditions de compatibilité pour (∇, J) et on
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peut montrer que dans le cas des variétés spéciales (para-)complexes et approximative-
ment (para-)Kählériennes ces conditions sont remplies. Plus précisément, nous donnons
deux classes de solutions correspondant respectivement à des variétés spéciales (para-
)complexes avec torsion d’une part, et à des variétés plates presque (para-)complexes
satisfaisant la condition approximativement Kählérienne (avec torsion) d’autre part. Par
la suite, nous étudions si ces fibrés (para-)tt∗ (TM,D, S) peuvent donner des fibrés (para-
)tt∗ métriques (TM,D, S, g) ou symplectiques (TM,D, S, ω). Les solutions du premier
type proviennent par exemple des variétés spéciales (para-)Kählériennes et celles du second
type de variétés approximativement (para-)Kählériennes. En effet, les variétés spéciales
(para-)Kählériennes (M,J,∇, g) n’admettent pas de fibré tt∗ symplectique (TM,D, S, ω =
g(J ·, ·)), de même que les variétés approximativement (para-)Kählériennes (M,J, g) n’ad-
mettent aucun fibré (para-)tt∗ métrique (TM,D, S, g). Plus précisément, la condition
pour une variété d’être approximativement (para-)Kählérienne n’est pas compatible avec
des fibrés (para-)tt∗ métriques, et celle d’être spéciale (para-)complexe n’est pas compat-
ible avec des fibrés symplectiques (para-)tt∗.
En conclusion, il reste à analyser si l’on peut obtenir la même relation entre les applica-
tions (para-)pluriharmoniques et la géométrie (para-)tt∗ dans le cas où l’on a comme base
une variété presque (para-)complexe (M,J).
Comme les structures (para-)complexes ne sont alors plus intégrables, il faut généraliser
la notion d’application pluriharmonique au cas d’une variété de départ (M,J) avec une
structure presque complexe J : on y parvient en choisissant une connexion idoine (cf.
définition 2.6) sur la variété M et en utilisant l’équation (para-)pluriharmonique. Nous
introduisons ensuite la notion d’application S1

ε -pluriharmonique qui généralise la notion
de famille associée à une application pluriharmonique (cf. [ET]) dans le cas des applica-
tions de variétés presque (para-)complexes vers des variétés pseudo-Riemanniennes. Nous
donnons des conditions pour lesquelles une application S1

ε -pluriharmonique est (para-
)pluriharmonique et nous trouvons des conditions d’harmonicité pour des applications
(para-)pluriharmoniques. Ces notions nous permettent d’associer des applications pluri-
harmoniques vers Sp(R2n)/U(p, q) (respectivement vers SO0(2p, 2q)/U(p, q)) aux fibrés
tt∗ métriques (respectivement symplectiques) du dernier paragraphe. Nous associons
également des applications pluriharmoniques vers Sp(R2n)/Uπ(Cn) (respectivement vers
SO0(n, n)/Uπ(Cn)) aux fibrés para-tt∗ métriques (respectivement symplectiques) décrits
ci-dessus.

Comme nous l’avons déjà remarqué, les variétés spéciales (para-)complexes et spéciales
(para-)Kählériennes forment une classe intéressante de fibrés (para-)tt∗, respectivement
de fibrés (para-)tt∗ métriques. Dans le cas complexe, c’est une conséquence d’un travail
de Hertling [Her], qui associe une VHS de poids 1 à chaque variété spéciale Kählérienne.
Dans [CS1], nous donnons une approche utilisant la géométrie différentielle et une car-
actérisation des fibrés tangents des variétés spéciales complexes et spéciales Kählériennes
comme des fibrés tt∗. L’application pluriharmonique associée peut être exprimée avec
l’application de Gauß duale, qui est une application holomorphe dans l’espace symétrique
pseudo-Hermitien Sp(R2n)/U(k, l) avec n = k + l. Ces résultats ont été généralisés à
la géométrie para-complexe et publiés dans [Sch3]. Également, nous avons généralisé
l’approche avec des VHS de poids 1. Plus précisement, on peut construire des para-VHS
de poids 1 à partir d’une variété spéciale para-complexe. Les détails se trouvent dans
cette thèse.
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Chapter 1

Differential geometry on εcomplex
manifolds

In this chapter we recall some definitions and results of special εcomplex geometry given
in [CMMS] and prove some results which are analogous to those proven for special Kähler
manifolds in [ACD]. We give here just a sketch of the results needed in this thesis. The
interested reader can find further information in [CMMS].

1.1 εcomplex manifolds

Definition 1.1

(i) A complex structure on a (real) finite dimensional vector space V is a linear map
J ∈ End(V ) satisfying J2 = −IdV . A complex vector space (V, J) is a vector space
endowed with a complex structure J. A complex subspace of the complex vector space
V is a subspace W of the real vector space V, such that the restriction of J to W is
a complex structure, i.e. W is J-invariant.

(ii) A para-complex structure on a (real) finite dimensional vector space V is a non-
trivial involution τ ∈ End(V ), i.e. τ 2 = IdV and τ 6= IdV , such that the two
eigenspaces V ± := ker(Id ∓ τ) of τ have the same dimension. A para-complex
vector space (V, τ) is a vector space endowed with a para-complex structure τ. A
para-complex subspace of the para-complex vector space V is a subspace W of the
real vector space V, such that the restriction of τ to W is a para-complex structure.

Remark 1.1 It is well-known, that the eigenspaces of a complex structure have the same
dimension. We remark, that for para-complex structures the condition on the eigenspaces
to have the same dimension is not trivial. This condition can also be restated by requiring
that the para-complex structure τ is trace-free.

In the rest of this work we want to enrich our language by the following ε-notation:
If a word has a prefix ε with ε ∈ {±1}, i.e. is of the form εX, this expression is replaced
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by

εX :=

{
X, for ε = −1,

para-X, for ε = 1.

Using this construction we denote an εcomplex structure on the vector space V by the
symbol J ε, where J ε satisfies J ε2 = εIdV .

Definition 1.2

(i) An almost εcomplex structure on a smooth manifold M is an endomorphism field
J ε ∈ Γ(End(TM)), p 7→ J ε

p, such that J ε
p is an εcomplex-structure for all p ∈M .

(ii) An almost para-complex structure is called integrable if the eigendistributions T±M
are both integrable.

(iii) An integrable almost εcomplex structure is called εcomplex structure. A manifold
with an εcomplex structure is called εcomplex manifold.

We remark, that the integrability of an almost εcomplex structure J ε is equivalent to the
vanishing of the Nijenhuis1 tensor of J ε defined by

NJε(X, Y ) := [J εX, J εY ] + ε[X,Y ]− J ε[X, J εY ]− J ε[J εX, Y ],

where X, Y ∈ Γ(TM).
This is a well-known result in complex geometry. More information can be found in [KN]
chapter IX. The para-complex case is done in [CMMS].

Definition 1.3 A smooth map f : (M,J ε) → (N, J̃ ε) from an εcomplex manifold (M,J ε)
to an εcomplex manifold (N, J̃ ε) is called εholomorphic if df ◦ J ε = J̃ ε ◦ df and anti-
εholomorphic if df ◦ J ε = −J̃ ε ◦ df.

To go further we introduce the algebra Cε of εcomplex numbers. This is the real
algebra generated by 1 and the symbol î subject to the relation î2 = ε. As one observes
for ε = −1 this algebra coincides with the complex numbers C. For ε = 1 the symbol î is
also denoted by e. We use the notation

Cε =

{
C, for ε = −1,

C, for ε = 1.

If one regards e as a unit vector in a one-dimensional R-vector space with negative definite
scalar product, then C is the (real) Clifford algebra Cl0,1 = R⊕R. In the same manner we
obtain Cl1,0 = C by considering the complex unit i as a unit vector in a one-dimensional
R-vector space with positive definite scalar product (Here we used the sign convention of
[LM].).
As for complex numbers we define the εcomplex conjugation by

·̄ : Cε → Cε, x+ îy 7→ x− îy, for x, y ∈ R, (1.1.1)

1In [KN] the Nijenhuis tensor was defined with a factor 2.
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which is a Cε-anti-linear involution, i.e. îz = −îz̄.
Real and imaginary parts are defined as

x = Re z := (z + z̄)/2 and y = Im z := ε̂i(z − z̄)/2. (1.1.2)

One has zz̄ = x2 − εy2 where z ∈ Cε. Therefore the algebra C is sometimes called the
hypercomplex numbers.
The circle

S1
−1 := S1 = {z = x+ iy ∈ C |x2 + y2 = 1}

is replaced by the four hyperbola

{z = x+ ey ∈ C |x2 − y2 = ±1}.

We define S1
1 to be the hyperbola given by the one parameter group z(θ) = cosh(θ) +

e sinh(θ), θ ∈ R :
S1

1 := {z(θ) = cosh(θ) + e sinh(θ) | θ ∈ R}

and use the notation

S1
ε =

{
S1
−1 = S1, for ε = −1,

S1
1, for ε = 1.

In addition we define

cosε(x) :=

{
cos(x), for ε = −1,

cosh(x), for ε = 1

and

sinε(x) :=

{
sin(x), for ε = −1,

sinh(x), for ε = 1

to obtain with zε(θ) = cosε(θ) + î sinε(θ) :

S1
ε =

{
zε(θ) with θ ∈ [0, 2π], for ε = −1,

zε(θ) with θ ∈ R, for ε = 1.

Every εcomplex vector space V is isomorphic to a trivial free Cε-module Ck
ε for some k.

Obviously εcomplex subspaces W ⊂ V correspond to free submodules of V.

We regard further the εcomplexification

TMCε = TM ⊗R Cε

of the tangent bundle TM of an almost εcomplex manifold (M,J ε) and extend

J ε : TM → TM

Cε-linearly to
J ε : TMCε → TMCε .
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Then for all p ∈ M the free Cε-module TpM
Cε decomposes as Cε-module into the direct

sum of two free Cε-modules

TpM
Cε = T 1,0

p M ⊕ T 0,1
p M, (1.1.3)

where

T 1,0
p M := {X + ε̂iJ εX|X ∈ TpM} and T 0,1

p M := {X − ε̂iJ εX|X ∈ TpM}.

The subbundles T 1,0
p M and T 0,1

p M can be characterized as the ±î-eigenbundles of the

linear map J ε : TMCε → TMCε , i.e. J ε = î on T 1,0M and J ε = −î on T 0,1M.
In the same manner we decompose

T ∗MCε = Λ1,0T ∗M ⊕ Λ0,1T ∗M

into the ±î-eigenbundles of the dual εcomplex structure

(J ε)∗ : T ∗MCε → T ∗MCε .

This decomposition induces a bi-grading on the Cε-valued exterior forms

ΛkT ∗MCε =
⊕

k=p+q

Λp,q T ∗M.

We remark that the vector bundles Λp,0 T ∗M are εholomorphic vector bundles in the sense
of the following definition (cf. [AK] for ε = −1 and [LS] for ε = 1):

Definition 1.4

(i) Let (M,J ε) be an εcomplex manifold. An εcomplex vector bundle of rank r is a
smooth real vector bundle π : E →M of rank 2r where the total space E is endowed
with a fiberwise εcomplex structure J εE ∈ Γ(End (E)). We will denote it by (E, J εE).

(ii) An εholomorphic vector bundle is an εcomplex vector bundle π : E →M whose total
space E is an εcomplex manifold, such that the projection π is an εholomorphic map
and admits local εholomorphic trivializations.
An (local) εholomorphic section of an εholomorphic vector bundle π : E → M is a
(local) section of E which is an εholomorphic map. The set of εholomorphic sections
of E will be denoted by O(E).

Finally we obtain a bi-grading on the Cε-valued differential forms on M

Ωk
Cε

(M) =
⊕

k=p+q

Ωp,q(M).

In para-complex geometry there exists another bi-grading:
The decomposition of TM over a para-complex manifold M in T+M and T−M induces
a bi-grading on exterior forms

ΛkT ∗M =
⊕

k=p+q

Λp+,q−T ∗M. (1.1.4)
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We remark that for the cases (1, 1) and (1+, 1−) the two bi-gradings coincide in the sense
that

Λ1,1 T ∗M =
(
Λ1+,1− T ∗M

)
⊗ Cε.

In complex geometry it is well-known, that every complex manifold admits a complex
torsion-free connection (see for example [KN] chapter IX). We generalize this theorem to
the εcomplex case, which was done in [Sch3]:

Theorem 1.1 Every almost εcomplex manifold (M,J ε) admits an almost εcomplex
affine connection with torsion T satisfying

NJε = −4εT,

where NJε is the Nijenhuis-tensor of the almost εcomplex structure J ε.

Proof: Let ∇ be a torsion-free connection on M. We define Q ∈ Γ((T ∗M)2 ⊗ TM) as

4Q(X, Y ) := [(∇JεY J
ε)X + J ε((∇Y J

ε)X) + 2J ε((∇XJ
ε)Y )]

and further
∇̃XY = ∇XY + εQ(X,Y ).

Now we compute

(∇̃XJ
ε)Y = ∇̃XJ

εY − J ε∇̃XY = ∇XJ
εY + εQ(X, J εY )− J ε∇XY − εJ εQ(X, Y )

= (∇XJ
ε)Y + ε (Q(X, J εY )− J εQ(X, Y ))︸ ︷︷ ︸

=:A(X,Y )

.

Hence we have to show εA(X,Y ) = −(∇XJ
ε)Y. It is

4Q(X, J εY ) = ε(∇Y J
ε)X + J ε((∇JεY J

ε)X) + 2J ε((∇XJ
ε) J εY ),

4J εQ(X, Y ) = J ε(∇JεY J
ε)X + ε((∇Y J

ε)X) + 2ε((∇XJ
ε)Y ).

With J ε2 = ε1 we get J ε[(∇XJ
ε) J εY ] = −J ε[J ε(∇XJ

ε)Y ] = −ε(∇XJ
ε)Y and we obtain

finally
4A = 4(Q(X, J εY )− J εQ(X,Y )) = −4ε(∇XJ

ε)Y.

It remains to compute the torsion of ∇̃ :

T ∇̃X,Y = T∇X,Y + ε(Q(X,Y )−Q(Y,X)) = ε(Q(X, Y )−Q(Y,X)).

With the definition of Q we find

4εT ∇̃
X,Y = (∇JεY J

ε)X + J ε((∇Y J
ε)X) + 2J ε((∇XJ

ε)Y )

− ((∇JεXJ
ε)Y + J ε((∇XJ

ε)Y ) + 2J ε((∇Y J
ε)X))

= (∇JεY J
ε)X − (∇JεXJ

ε)Y + J ε((∇XJ
ε)Y )− J ε((∇Y J

ε)X)

= (∇JεY J
εX)− (∇JεXJ

εY )− J ε(∇JεYX −∇JεXY )

+ J ε[∇X(J εY )− J ε∇XY ]− J ε[∇Y (J εX)− J ε∇YX]

= [J εY, J εX] + ε[Y,X] + J ε[∇X(J εY )−∇JεYX] + J ε[∇JεXY −∇Y J
εX]

= [J εY, J εX] + ε[Y,X]− J ε[J εY,X]− J ε[Y, J εX] = NJε(Y,X) = −NJε(X, Y ).

If the εcomplex structure is integrable we get a usefull corollary:
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Corollary 1.1 Every εcomplex manifold (M,J ε) admits an εcomplex torsion-free affine
connection.

An important question in εcomplex geometry is which kind of connections on a given
εcomplex vector bundle give rise to an εholomorphic structure. To answer to this question
we first need the definition of adapted connections, which can be found in [AK] for ε = −1
and in [LS] for ε = 1.

Definition 1.5

1. A connection ∇ on an εcomplex vector bundle (E, J εE) is called εcomplex if it com-
mutes with the εcomplex structure on E, i.e. J εE is ∇-parallel. The set of all such
connections will be denoted by P(E, J εE).

2. Let (E, J εE) be an εholomorphic vector bundle over an εcomplex manifold (M,J ε)
and U ⊂ M be an arbitrary open set. Let ∇ be a connection on the vector bundle
(E, J εE).
Then ∇ is called adapted if the following equation

∇JεXξ = J εE∇Xξ (1.1.5)

is satisfied for all X ∈ Γ(TM |U), ξ ∈ O(E|U).

Conversely, let (E, J εE) be an εholomorphic vector bundle over an εcomplex manifold
(M,J ε) endowed with an adapted connection ∇ ∈ P(E, J εE), then a section ξ ∈ Γ(E|U),
where U ⊂M is an open set, is εholomorphic if and only if it satifies equation (1.1.5) for
all X ∈ Γ(TM |U) (cf. Lemma 3 of [LS]).

The following proposition is well-known in complex geometry, compare for example
the work of Atiyah, Hitchin and Singer [AHS] theorem 5.2 or proposition 3.7 in the book
of Kobayashi [K]. The variety of its applications in complex geometry motivated us to
search for a generalization.
For vector bundles over real surfaces this proposition was generalized to para-complex
geometry by Erdem [E]. We gave in [LS] a different proof and more general result by
adapting the methods of complex geometry to the para-complex setting.

Proposition 1.1 Let (E, J εE) be an εcomplex vector bundle over an εcomplex manifold
(M,J ε) and ∇ be a connection in P(E, J εE) with vanishing (0, 2)-curvature then there
exists a unique εholomorphic vector bundle structure on (E, J εE) such that ∇ is adapted
to this εholomorphic vector bundle structure.

1.2 εKähler manifolds

The notion of a (pseudo-)Kähler manifold is classical and the notion of a para-Kähler
manifold can be found in [CMMS].
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Definition 1.6 Let (V, J ε) be an εcomplex vector space. An εhermitian scalar product
g on V is a pseudo-Euclidean scalar product for which J ε is an ε-isometry, i.e.

(J ε)∗g = g(J ε·, J ε·) = −εg(·, ·).

An εhermitian vector space (V, J ε, g) is an εcomplex vector space (V, J ε) endowed with an
εhermitian scalar product g. The pair (J ε, g) is called εhermitian structure on the vector
space V .

Definition 1.7 Let (V, τ, g) be a para-hermitian vector space. The para-unitary group
of V is the automorphism group

Uπ(V ) := Aut(V, τ, g) = {L ∈ GL(V ) | [L, τ ] = 0 and L∗g = g}.

Its Lie-algebra will be denoted by uπ(V ).

Definition 1.8 An almost εhermitian manifold (M,J ε, g) is an almost εcomplex mani-
fold (M,J ε) endowed with a pseudo-Riemannian metric g such that (J ε)∗g = −εg. If J ε

is integrable, we call (M,J ε, g) an εhermitian manifold. The two-form ω := g(J ε·, ·) is
called the fundamental two-form of the almost εhermitian manifold (M,J ε, g).

Definition 1.9 An εKähler manifold (M,J ε, g) is an εhermitian manifold such that J ε

is parallel with respect to the Levi-Civita-connection D of g, i.e. DJ ε = 0.

Remark 1.2 The fundamental two-form ω satisfies (J ε)∗ω = −εω and hence is of type
(1, 1) (considered as Cε-valued two-form).
Since DJ ε = 0 implies NJε = 0 and dω = 0, any εKählerian manifold is an εhermitian
manifold with closed fundamental two-form.
On an εKähler manifold the fundamental two-form ω is called εKähler-form. In fact,
εKähler manifolds are characterized to be εhermitian manifolds with closed fundamental
two-form (compare [CMMS] for the para-complex case).

1.3 Nearly εKähler manifolds

In this section we introduce some notions and results of nearly εKähler geometry. The
complex case is due to Gray in his classical papers [G1, G2, G3]. Recent studies are the
works Friedrich and Ivanov [FI] and Nagy [N1, N2]. The para-complex version is very
recent and to our knowledge first appeared in the paper of Ivanov and Zamkovoy [IZ].

Definition 1.10 An almost εhermitian manifold (M,J ε, g) is called nearly εKähler man-
ifold, if its Levi-Civita connection ∇ = ∇g satisfies the equation

(∇XJ
ε)Y = −(∇Y J

ε)X, ∀X, Y ∈ Γ(TM). (1.3.1)

A nearly εKähler manifold is called strict, if ∇J ε 6= 0.
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We recall that the tensor ∇J ε defines two tensors A and B by

A(X,Y, Z) := g((∇XJ
ε)Y, Z) and B(X, Y, Z) := −εg((∇XJ

ε)Y, J εZ) with X, Y, Z ∈ TM,

which are both (real) three-forms of type (3, 0) + (0, 3).
A connection of particular importance in nearly εKähler geometry is the connection ∇̄
defined by

∇̄XY := ∇XY − 1

2
ε(∇XJ

ε)J εY, for all X, Y ∈ Γ(TM). (1.3.2)

The torsion of the connection ∇̄ is given by

T ∇̄(X, Y ) = −ε(∇XJ
ε)J εY, for all X, Y ∈ Γ(TM) (1.3.3)

and it vanishes if and only if (M,J ε, g) is an εKähler manifold.
We remark, that the connection ∇̄ can be characterized to be the unique connection with
totally skew-symmetric torsion (cf. Friedrich and Ivanov [FI] for case ε = −1 with a
Riemannian metric.). In [CS2] we give a self-contained proof of this result using direct
arguments for nearly pseudo-Kähler and nearly para-Kähler manifolds.

Proposition 1.2 Let (M,J ε, g) be a nearly εKähler manifold. Then there exists a
unique connection ∇̄ with totally skew-symmetric torsion T ∇̄ satisfying ∇̄g = 0 and ∇̄J ε =
0.
More precisely, it holds

T ∇̄ = −2S with S = −1

2
εJ ε∇gJ ε (1.3.4)

and {SX , J
ε} = 0, for all vector fields X.

1.4 Affine special εcomplex and special εKähler man-

ifolds

Definition 1.11 An affine special εcomplex manifold (M,J ε,∇) is an εcomplex mani-
fold (M,J ε) endowed with a torsion-free flat connection ∇ such that ∇J ε is a symmetric
(1, 2)-tensor field, i.e. (∇XJ

ε)Y = (∇Y J
ε)X for all X, Y ∈ TM.

An affine special εKähler manifold (M,J ε, g,∇) is an affine special εcomplex manifold
(M,J ε,∇), such that (M,J ε, g) is an εKähler manifold and ∇ is symplectic, i.e. ∇ω = 0,
where ω is the εKähler-form.

Since projective special εcomplex and projective special εKähler manifolds do not occur
in this thesis, we omit the adjective affine. The definition of a special εKähler manifold
can be found in [ACD, F] for ε = −1. Special para-Kähler manifolds were first considered
in [CMMS] and special para-complex manifolds in [Sch3].
In the following part of this subsection we are going to generalize some results to εcomplex
geometry, which are known from the affine special and the affine special Kähler case (see
[ACD]). The para-complex results were published in [Sch3].
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Remark 1.3 Given a linear connection ∇ on the tangent bundle TM of a manifold M
and an invertible endomorphism field A ∈ Γ(End(TM)) we define the connection

∇(A)X = A∇(A−1X).

This connection is flat if and only if the connection ∇ is flat, since

∇X = 0 ⇔ ∇(A)(AX) = 0,

where X is a local vector field on M .
Again, given a linear flat connection on the real tangent bundle TM of an εcomplex
manifold (M,J ε), we define a one-parameter family of flat connections by

∇θ = ∇(eθJε
) = ∇(cosε(θ) Id+sinε(θ) Jε) for θ ∈ R. (1.4.1)

Lemma 1.1 Let ∇ be a flat connection with torsion T on an εcomplex manifold (M,J ε).
Then it is

∇θ = ∇+ Aθ, where Aθ = eθJε∇(e−θJε

) = −sinε(θ) e
θJε∇J ε

and the torsion T θ of the connection ∇θ is given by

T θ = T + alt(Aθ) = T − sinε(θ) e
θJε

d∇J ε. (1.4.2)

Proposition 1.3 Let ∇ be a torsion-free flat connection on an εcomplex manifold
(M,J ε). Then the triple (M,J ε,∇) defines a special εcomplex manifold if and only if
one of the following conditions holds:

a) d∇J ε = 0.

b) The flat connection ∇θ is torsion-free for some θ with{
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1.

b’) The flat connection ∇θ is torsion-free for all θ with{
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1.

c) There exists an element θ with{
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1,

such that [eθJε
X, eθJε

Y ] = 0 for all ∇-parallel local vector fields X and Y on M .
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c’) It holds [eθJε
X, eθJε

Y ] = 0 for all θ with{
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1

and for all ∇-parallel local vector fields X and Y on M .

d) There exists an element θ with{
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1,

such that d(η ◦ e−θJε
) = 0 for all ∇-parallel local one-forms on M.

d’) It holds d(η ◦ e−θJε
) = 0 for all θ with{

θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1

and for all ∇-parallel local one-forms on M .

Proof: The property a) defines special εcomplex manifolds.
As ∇ is torsion-free, the torsion of ∇θ is by equation (1.4.2):

T θ = −sinε(θ) e
θJε

d∇J ε.

Since sinε(θ) 6= 0 for θ with {
θ 6= 0, for ε = 1,

θ 6≡ 0 mod π, for ε = −1,

we get the equivalence of a) and b) respectively b’).
Let X and Y be ∇-parallel local vector fields. Then eθJε

X and eθJε
Y are ∇θ-parallel, by

the definition of ∇θ. Therefore

T θ(eθJε

X, eθJε

Y ) = [eθJε

X, eθJε

Y ].

This gives b) ⇔ c) and b′) ⇔ c′).
For a ∇-parallel one-form η and X, Y as before we compute:

d(η ◦ e−θJε

)(eθJε

X, eθJε

Y )

= eθJε

Xη(Y )− eθJε

Y η(X)− η(e−θJε

[eθJε

X, eθJε

Y ])

= −η(e−θJε

[eθJε

X, eθJε

Y ]),

as the functions η(X) and η(Y ) are constant. This proves c) ⇔ d) and c′) ⇔ d′).

Proposition 1.4 If (M,J ε,∇) is a special εcomplex manifold, then (M,J ε,∇θ) is a
special εcomplex manifold for any θ.
If (M,J ε, g,∇) is a special εKähler manifold, then (M,J ε, g,∇θ) is a special εKähler
manifold for any θ.
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Proof: From above we know, that the connection ∇θ is torsion-free and flat.
In order to prove this proposition we compute ∇θJ ε and ∇θω.
Let X, Y, Z ∈ Γ(TM) :

(∇θ
XJ

ε)Y = ∇θ
X(J εY )− J ε∇θ

XY = eθJε∇X(e−θJε

J εY )− J εeθJε∇X(e−θJε

Y )

= eθJε∇X(J εe−θJε

Y )− eθJε

J ε∇X(e−θJε

Y )

= eθJε

(∇XJ
ε)e−θJε

Y
(∗)
= e2θJε

(∇XJ
ε)Y.

At (∗) we have used J ε(∇J ε) = −(∇J ε)J ε, which follows from J ε2 = εId.
This shows d∇

θ
J ε = e2θJε

d∇J ε = 0.
Further we find utilizing ω(·, eθJε ·) = ω(e−θJε ·, ·), which is a consequence of (J ε)∗ω = −εω :

∇θ
Zω(X, Y ) = Zω(X, Y )− ω(∇θ

ZX, Y )− ω(X,∇θ
ZY )

= Zω(X, Y )− ω(eθJε∇Ze
−θJε

X, Y )− ω(X, eθJε∇Ze
−θJε

Y )

= Zω(X, Y )− ω(∇Ze
−θJε

X, e−θJε

Y )− ω(e−θJε

X,∇Ze
−θJε

Y )

= Zω(X, Y )− Zω(e−θJε

X, e−θJε

Y ) = 0.

Given an εcomplex manifold with a flat connection ∇, we define the conjugate con-
nection via

∇c
XY = ∇(Jε)

X Y = εJ ε(∇XJ
εY ) = ∇XY + εJ ε(∇XJ

ε)Y for X, Y ∈ Γ(TM).

Proposition 1.5 Let (M,J ε) be an εcomplex manifold with a torsion-free flat connection
∇. Then the following statements are equivalent:

a) (M,J ε,∇) is a special εcomplex manifold.

b) The conjugate flat connection ∇c is torsion-free.

Proof: The torsion of the connection ∇c is

T∇
c

= T∇ + ε alt(J ε(∇J ε)) = εJ εd∇J ε.

Therefore ∇c is torsion-free if and only if d∇J ε = 0.

Proposition 1.6 Let (M,J ε,∇) be a special εcomplex manifold. Then D := 1
2
(∇+∇c)

defines a torsion-free εcomplex connection, i.e. a torsion-free connection such that DJ ε =
0.

Proof: As it is a convex combination of torsion-free connections, D is a torsion-free
connection. For any X ∈ Γ(TM) we compute:

DXJ
ε = ∇XJ

ε +
1

2
ε[J ε∇XJ

ε, J ε] = ∇XJ
ε −∇XJ

ε = 0.
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Proposition 1.7 Let (M,J ε, g,∇) be a special εKähler manifold and ∇g the Levi-Civita
connection of g. Then the following hold:

(i) ∇g = 1
2
(∇+∇c) = D.

(ii) The conjugate connection ∇c is g-dual, i.e.:

Xg(Y, Z) = g(∇c
XY, Z) + g(Y,∇XZ).

Equivalently
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇c

XZ)

for all vector fields X,Y, Z ∈ Γ(TM).

(iii) The tensor ∇g is completely symmetric.

Proof: (i) follows immediately from (ii) and proposition 1.6.
(ii) follows from a direct calculation which only uses the fact that ω is ∇-parallel and
J ε-ε-anti-invariant: With X, Y, Z ∈ Γ(TM) one finds

Xg(Y, Z) = X(εω(J εY, Z)) = εω(∇XJ
εY, Z) + εω(J εY,∇XZ)

= −ω(J ε∇XJ
εY, J εZ) + g(Y,∇XZ)

= ω(J εZ, J ε∇XJ
εY ) + g(Y,∇XZ)

= g(Z, εJ ε∇X(J εY )) + g(Y,∇XZ)

= g(∇c
XY, Z) + g(Y,∇XZ).

Finally we show (iii): From part (ii) it follows

(∇Xg)(Y, Z)− (∇Y g)(X,Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ)

−Y g(X,Z) + g(∇YX,Z) + g(X,∇YZ)
(ii)
= − g(∇XY, Z) + g(∇c

XY, Z)

+ g(∇YX,Z)− g(∇c
YX,Z)

= g(−[X, Y ] + [X, Y ], Z) = 0.

The symmetry of g finishes the proof.

Proposition 1.8 Let (M,J ε, g,∇) be a special εKähler manifold and D the Levi-Civita
connection of g. Define the endomorphism field S as

S := ∇−D = ∇− 1

2
(∇+∇c) =

1

2
(∇−∇c) = −1

2
εJ ε(∇J ε).

Then S is

(i) symmetric, i.e. SXY = SYX; ∀X, Y ∈ Γ(TM),

(ii) ω-skew-symmetric, i.e. ω(SX ·, ·) = −ω(·, SX ·),

(iii) g-symmetric, i.e. g(SX ·, ·) = g(·, SX ·) for all X ∈ Γ(TM) and
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(iv) anti-commutes with J ε, i.e.

{SX , J
ε} := SXJ

ε + J εSX = 0 for all X ∈ Γ(TM). (1.4.3)

Proof: Let X, Y, Z ∈ Γ(TM).
(i) For a special εcomplex manifold ∇ and ∇c are torsion-free (by definition and propo-
sition 1.5), so ∇−∇c = −εJ ε(∇J ε) = 2S is symmetric.
(ii) In fact Dg = 0 (proposition 1.7) and DJ ε = 0 (proposition 1.6) imply Dω = 0. In
addition ∇ω = 0 yields

ω(SXY, Z)+ω(Y, SXZ) = ω((∇−D)XY, Z)+ω(Y, (∇−D)XZ) = (∇−D)Xω(Y, Z) = 0.

(iii) Using Xg(Y, Z)− g(∇XY, Z) = g(Y,∇c
XZ) we prove the g-symmetry of S

2g(SXY, Z) = g((∇−∇c)XY, Z) = g(∇XY, Z)− g(∇c
XY, Z)

= Xg(Y, Z)− g(Y,∇c
XZ)−Xg(Y, Z) + g(Y,∇XZ)

= g(Y, (∇−∇c)XZ) = 2g(Y, SXZ).

(iv) Now we need only the ω-skew-symmetry of S, the g-symmetry of S and ω = g(J ε·, ·) =
−g(·, J ε·) to get for all X, Y, Z ∈ Γ(TM)

g(SXJ
εY, Z) = g(J εY, SXZ) = ω(Y, SXZ) = −ω(SXY, Z) = −g(J εSXY, Z)

and consequently {SX , J
ε} = 0.

1.5 The extrinsic construction of special εKähler

manifolds

Now we shortly explain the extrinsic construction of special εKähler manifolds given in
[ACD, CMMS].

1.5.1 The special Kähler case

We consider the complex vector space V = T ∗Cn = C2n with canonical coordinates
(z1, . . . , zn, w1, . . . , wn) endowed with the standard complex symplectic form

Ω =
n∑

i=1

dzi ∧ dwi

and the standard real structure κ : V → V with fixed points V κ = T ∗Rn. These define a
hermitian form γ := iΩ(·, κ·).
Let (M,J) be a complex manifold of complex dimension n. We call a holomorphic im-
mersion φ : M → V non-degenerate (respectively Lagrangian) if φ∗γ is non-degenerate
(respectively, if φ∗Ω = 0). If φ is non-degenerate it defines a (possibly indefinite) Kähler
metric g = Reφ∗γ on the complex manifold (M,J) and the corresponding Kähler form
g(J ·, ·) is a J-invariant symplectic form.

The following theorem gives a description of simply connected special Kähler manifolds
in terms of the above data:
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Theorem 1.2 [ACD] Let (M,J, g,∇) be a simply connected special Kähler manifold
of complex dimension n, then there exists a holomorphic non-degenerate Lagrangian im-
mersion φ : M → V = T ∗Cn inducing the Kähler metric g, the connection ∇ and the
symplectic form ω = g(J ·, ·) = 2φ∗ (

∑n
i=1 dx

i ∧ dyi) on M. Moreover, φ is unique up to an
affine transformation of V preserving the complex symplectic form Ω and the real structure
κ. The flat connection ∇ is completely determined by the condition ∇φ∗dxi = ∇φ∗dyi = 0,
i = 1, . . . , n, where xi = Re zi and yi = Rewi.

1.5.2 The special para-Kähler case

First we have to introduce a canonical non-degenerate exact C-valued two-form Ω of type
(2,0) on the cotangent bundle N = T ∗M of an arbitrary para-complex manifold (M, τ),
which is para-holomorphic, i.e. it is a para-holomorphic section of the para-holomorphic
vector bundle Λ2,0T ∗N. Its explicit form is given by the following consideration:

We take local para-holomorphic coordinates (z1, . . . , zn) on an open subset U ⊂ Mn.
Any point of T ∗pM

∼= Hom(T ∗pM,R) ∼= HomC(T ∗pM,C), p ∈ U, where HomC(T ∗pM,C)
are the homomorphisms from the para-complex vector space (T ∗pM, τp) to C, can be ex-
pressed as

∑
wi dz

i
|p. The coordinates zi and wi can be regarded as local para-holomorphic

coordinates of the bundle T ∗M|U . The coordinates wi induce linear para-holomorphic co-
ordinates on each fiber T ∗pM for p ∈ U. In these coordinates the two form Ω is given
by

Ω =
n∑

i=1

dzi ∧ dwi = −d

(
n∑

i=1

widz
i

)
.

We observe, that
∑n

i=1widz
i does not depend on the choice of coordinates and hence

Ω does not depend on the choice of coordinates, too. The form Ω will be called the
symplectic form of T ∗M.
In the following, we denote by V the para-holomorphic vector space T ∗Cn = C2n, endowed
with its standard para-complex structure τV , its symplectic form Ω and the para-complex
conjugation ·̄ : V → V, v 7→ v̄ with fixed point set T ∗Rn ∼= R2n. On this space we take
a system of para-holomorphic linear coordinates (zi, wi) which are real-valued on T ∗Rn.
The algebraic data (Ω, τV ) defines a para-hermitian scalar product on V via

gV (v, w) = Re γ(v, w) = Re(eΩ(v, w̄)), ∀v, w ∈ V with γ(v, w) = eΩ(v, w̄)

and (V, τV , gV ) is a flat para-Kähler manifold, whose para-Kähler form is given by

ωV (v, w) := gV (τV v, w) = Im(eΩ(v, w̄)), ∀v, w ∈ V.

Let (M, τ) be a para-complex manifold. We call a para-holomorphic immersion φ : M →
V para-Kählerian if g = φ∗gV is non-degenerate and Lagrangian if φ∗Ω = 0. Any para-
Kählerian immersion φ : M → V induces on M the structure of a para-Kähler manifold
(M, τ, g) with para-Kähler form ω(·, ·) = g(τ ·, ·) = φ∗ωV . For a para-Kählerian Lagrangian
immersion the para-Kähler form ω = g(τ ·, ·) of M is given by

ω = 2
n∑

i=1

dx̃i ∧ dỹi,



Differential geometry on εcomplex manifolds 37

where x̃i = Re(φ∗zi) and ỹi = Re(φ∗wi). Additionally, a para-Kählerian Lagrangian
immersion φ : M → V induces a canonical flat torsion-free connection ∇ on M which is
characterized by the condition, that ∇(Reφ∗df) = 0 for all para-complex affine functions
f on V.
With this information we now can give the extrinsic description of para-Kähler manifolds:

Theorem 1.3 [CMMS] Let φ : M → V be a para-Kählerian immersion with induced
geometric data (τ, g,∇). Then (M, τ, g,∇) is a special para-Kähler manifold. Conversely,
any simply connected special para-Kähler manifold (M, τ, g,∇) admits a para-Kählerian
Lagrangian immersion inducing the special geometric data (τ, g,∇) on M. The para-
Kählerian Lagrangian immersion φ is unique up to an affine linear transformation of
V whose linear part belongs to the group Aut(V,Ω, ·̄) = AutR(V, τV ,Ω, ·̄) = Sp(R2n).

1.6 Variations of εHodge structures

In this section we introduce the notion of variations of εHodge structures in para-complex
geometry and recall variations of Hodge structures which are classical objects in complex
geometry. We follow the notations of [CMP] which is a reference for further study of
variations of Hodge structures. The para-complex version seems to be new.

1.6.1 εHodge structures and their variations

Definition 1.12

(a) A real εHodge structure of weight w ∈ N is a real vector space H on the εcomplexification
of which there is a decomposition into εcomplex vector spaces

HCε =
⊕

w=p+q

Hp,q with p, q ∈ N (1.6.1)

and where
Hp,q = Hq,p with p, q ∈ N. (1.6.2)

The εcomplex conjugation ·̄ is relative to the real structure on HCε = H ⊗ Cε.

(b) Suppose, that an εHodge structure of weight w carries a bilinear form b : H×H → R
which satisfies the following Riemannian bilinear relations

(i) The Cε-linear extension of the bilinear form b, also denoted by b, satisfies
b(x, y) = 0 if x ∈ Hp,q and y ∈ Hr,s for (r, s) 6= (w − p, w − q) = (q, p),

(ii) The bilinear form b defines an εhermitian sesquilinear scalar product (compare
definition 2.10) on Hp,q by

h(x, y) = (−1)w(w−1)/2îp−qb(x, ȳ).

Then we call this εHodge structure weakly polarized.
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(c) Suppose, that a Hodge structure of weight w carries a bilinear form b : H ×H → R
which satisfies the following Riemannian bilinear relations

(i) The C-linear extension of the bilinear form b, also denoted by b, satisfies
b(x, y) = 0 if x ∈ Hp,q and y ∈ Hr,s for (r, s) 6= (w − p, w − q) = (q, p),

(ii) The bilinear form b defines a positive definite hermitian sesquilinear form on
Hp,q by

h(x, y) = (−1)w(w−1)/2îp−qb(x, ȳ).

Then we call this Hodge structure strongly polarized.

(d) An εHodge structure of weight w is called polarized if it is weakly polarized or strongly
polarized.

Closely related to the εHodge decomposition is the εHodge filtration

F p =
⊕
a≥p

Ha,b, p = 0, . . . , w, (1.6.3)

which satisfies for an εHodge structure of weight w the relation

HCε = F p ⊕ Fw−p+1, p = 1, . . . , w. (1.6.4)

Any filtration which obeys equation (1.6.4) is called an εHodge filtration.
Such as an εHodge decomposition induces an εHodge filtration we obtain from an εHodge
filtration an εHodge decomposition by

Hp,q = F p ∩ F q, with p+ q = w.

This εHodge decomposition satifies the relation (1.6.3).
We remark further, that the first Riemannian bilinear relation (cf. definition 1.12) is
equivalent to

(F p)⊥ = Fw−p+1, p = 1, . . . , w,

where ⊥ is taken with respect to the bilinear from b.

Now we are going to consider deformations of these structures:

Definition 1.13 A (real) variation of εHodge structures (εVHS) is a triple (E,∇, F p),
where E is a real vector bundle over an (connected) εcomplex base manifold (M,J ε), ∇ is
a flat connection and F p is a filtration of ECε by εholomorphic subbundles of ECε , which
is a point-wise εHodge structure satisfying the infinitesimal period relation or the Griffiths
tranversality

∇χF
p ⊂ F p−1, ∀χ ∈ T 1,0M. (1.6.5)

A polarization of a variation of εHodge structures (E,∇, F p) consists of a non-degenerate
bilinear form

b ∈ Γ(E∗ ⊗ E∗) (1.6.6)

having the following properties
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(i) b induces a polarization on each fiber obeying the first and the second bilinear rela-
tion.

(ii) b is parallel with respect to ∇.

1.6.2 εVHS and special εKähler manifolds

Each fiber of the εcomplex tangent bundle

TMCε = T 1,0M ⊕ T 0,1M

carries a natural εHodge structure of weight 1 :

0 = F 2
x ⊂ F 1

x = T 1,0
x M ⊂ F 0

x = TCε
x M. (1.6.7)

The complex version of the next lemma and proposition was proven in [Her] and we
generalize it to the para-complex case.

Lemma 1.2 Let ∇ be a torsion-free flat connection on the εcomplex manifold (M,J ε).
Then F 1 = T 1,0M is an εholomorphic subbundle of F 0 = TCεM with respect to the
εholomorphic structure defined by ∇ (compare proposition 1.1) if and only if (∇, J ε) is
special (see definition 1.11).

Proof: The condition of F 1 to be εholomorphic is equivalent to

∇ȲX = 0 for all X, Y ∈ O(T 1,0M)

and the condition of (∇, J ε) to be special is equivalent to

(∇XJ
ε)(Ȳ ) = (∇Ȳ J

ε)(X) for all X, Y ∈ O(T 1,0M),

due to the following short argument :
Let X, Y ∈ Γ(T 1,0M)

(∇XJ
ε)(Y ) = ∇XJ

εY − J ε∇XY = î∇XY − J ε∇XY,

which is symmetric as one sees by choosing vector fields X and Y such that [X,Y ] = 0.
Let X, Y ∈ Γ(T 0,1M)

(∇XJ
ε)(Y ) = ∇XJ

εY − J ε∇XY = −î∇XY − J ε∇XY,

which is again symmetric as one sees by choosing vector fields X and Y such that [X, Y ] =
0.
Let now X,Y ∈ Γ(T 1,0M) be εholomorphic vector fields, i.e. LX(J ε) = 0 where L is the
Lie-derivative. Then it holds

0 = LX(J ε)Ȳ = [X, J εȲ ]− J ε[X, Ȳ ]

= ∇XJ
εȲ −∇JεȲX − J ε∇X Ȳ + J ε∇ȲX

= (∇XJ
ε)Ȳ − (∇Ȳ J

ε)X +∇Ȳ J
εX −∇JεȲX

= [(∇XJ
ε)Ȳ − (∇Ȳ J

ε)X] + 2̂i∇ȲX.
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This finishes the proof.

From the lemma we obtain:

Proposition 1.9 Let (M,J ε) be an εcomplex manifold, ∇ be a torsion-free flat connec-
tion and F • defined as in equation (1.6.7).

1. Then (M,J ε,∇) is an affine special εcomplex manifold if and only if ∇ and F • give
a variation of εHodge structures of weight 1 on TMCε .

2. Then (M,J ε,∇, g) is an affine special εKähler manifold if and only if ∇, F • and
ω(·, ·) = g(J ε·, ·) give a variation of polarized εHodge structures of weight 1 on
TMCε .
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Harmonic and εpluriharmonic maps

In this chapter we introduce the notion of harmonic maps and εpluriharmonic maps. We
discuss the relation between them and we give a generalization of εpluriharmonic maps
and of associated families of pluriharmonic maps to maps from almost εcomplex manifolds
into pseudo-Riemannian manifolds. Afterwards we discuss the target spaces which are of
importance in the context of εplurihamonic maps associated to εtt∗-geometry.

2.1 Harmonic maps

First we recall the notion of a harmonic map.

Definition 2.1 Let (M, g) and (N, h) be pseudo-Riemannian manifolds and f : M → N
be a C2-map.

(i) One defines the energy density of f by

e(f) =
1

2
G(df, df), (2.1.1)

where df is seen as a section in T ∗M ⊗ f ∗TN and G is the metric on T ∗M ⊗ f ∗TN
induced by the metrics g and h.

(ii) If the energy density e(f) is integrable we define the energy E(f) of f as

E(f) =

∫
M

e(f) vol g . (2.1.2)

(iii) The critical points of E(f) with respect to compact supported C∞-variations are
called harmonic maps where the variation of E(f) with respect to the family of maps
ft with t ∈ (−ε, ε) is defined by

δE(f) =

∫
M

∂te(ft) vol g .

41
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The following proposition states the well-known harmonic map equations, which are the
Euler-Lagrange equations of the harmonic functional.

Proposition 2.1 Let (M, g) and (N, h) be pseudo-Riemannian manifolds and f : M →
N be a C2-map. Denote by ∇g the Levi-Civita connection of g, by ∇h the Levi-Civita
connection of h and by ∇ the connection induced by ∇g and ∇h on T ∗M ⊗ f ∗TN. Then
f is harmonic if and only if it satisfies the equation

tr g ∇df = 0. (2.1.3)

First we recall a result about a special class of harmonic morphisms which is needed
later:

Proposition 2.2 Let M,X and Y be pseudo-Riemannian manifolds and Ψ : X → Y
be a totally geodesic immersion. Then a map f : M → X is harmonic if and only if
Ψ ◦ f : M → Y is harmonic.

Proof: Note τ(f) = tr g ∇df and let Ψ : X → Y be an arbitrary map. Then we calculate

tr (∇Xd(Ψ ◦ f)) = tr g(∇XdΨ ◦ df) = tr g(dΨ(∇Y df)) + trg(II(df, df)),

where II is the second fundamental form of Ψ, which vanishes, if Ψ is totally geodesic.
This shows

τ(Ψ ◦ f) = dΨ ◦ τ(f).

The proof is finished, since Ψ is an immersion and therefore has maximal rank.

We now restrict to compact source manifolds and to Riemannian metrics to obtain a
theorem which is due to Gordon [G]. First we need a definition:

Definition 2.2 A subset U of a manifold Y is said to be convex supporting if and
only if every compact subset of U has a Y -open neighborhood admitting a strictly convex
C2-function F. The function F is called support function and it is in general not globally
defined.

Theorem 2.1 (cf. [G] p. 434.) Let M and N be Riemannian manifolds with M
compact and connected.

(A) The image of any harmonic map f : M → N cannot be contained in any convex
supporting subset of N unless it is constant. Hence, any harmonic map from M to
N is necessarily constant if N is convex supporting.

(B) If π1(M) is finite and N has a covering space which is convex supporting with respect
to the lifted metric of N, then every harmonic map from M to N is necessarily
constant.
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Remark 2.1 As also discussed in Example (a) in [G] (p. 434) a complete simply con-
nected Riemannian manifold M with non-positive Riemannian sectional curvature is con-
vex supporting. In fact, for a fixed p0 ∈ M the squared geodesic distance from p0 to
p is strictly convex and hence a support function. We are especially interested in the
space GL(r,R)/O(r) and in the space SL(r,R)/SO(r), which is a Riemannian symmet-
ric space of non-compact type. As Riemannian symmetric spaces of non-compact type
are non-positively curved, they are convex supporting (compare also [BR] p. 71). For
GL(r,R)/O(r) we have the de Rham-decomposition GL(r,R)/O(r) = R×SL(r,R)/SO(r),
where R corresponds to the connected central subgroup R>0 = {λId|λ > 0} ⊂ GL(r,R).
Therefore GL(r,R)/O(r) is non-positively curved.

2.2 εpluriharmonic maps from εcomplex manifolds

In this section we discuss general results about εpluriharmonic maps from εcomplex man-
ifolds into pseudo-Riemannian manifolds.

Definition 2.3 An εcomplex curve or εRiemannian surface is an εcomplex manifold of
εcomplex dimension one. An εcomplex curve in an εcomplex manifold M is an εcomplex
curve Σε which is an εcomplex submanifold of M .

Definition 2.4 A map f : (M,J ε) → (N, h) from an εcomplex manifold (M,J ε) to a
pseudo-Riemannian manifold (N, h) is εpluriharmonic if and only if the restriction of f
to any εcomplex curve Σε in M is harmonic.

Remark 2.2 Notice that the harmonicity of f restricted to Σε is independent of the choice
of a (pseudo-)Riemannian metric in the conformal class induced by J ε on Σε, by conformal
invariance of the harmonic map equation for (real) surfaces.

The following notion was introduced in [AK] for holomorphic and in [LS] for para-
holomorphic vector bundles.

Definition 2.5 Let (M,J ε) be an εcomplex manifold. A connection D on TM is called
adapted if it satisfies

DJεYX = J εDYX (2.2.1)

for all vector fields which satisfy LXJ
ε = 0 (i.e. for which X + ε̂iJ εX is εholomorphic).

On every εcomplex manifold (M,J ε) there exists an εcomplex torsion-free connection, as
we have shown in corollary 1.1. The following proposition ensures now the existence of
an adapted connection.

Proposition 2.3 (cf. [CS1] for ε = −1, [Sch3] for ε = 1)

(i) Every εcomplex torsion-free connection D on an εcomplex manifold (M,J ε) is adapted.

(ii) On every εcomplex manifold there exists an adapted connection.
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Proof: (i) The conditions TD = 0 and DJ ε = 0 yield

DJεYX − J εDYX = [J εY,X] +DX(J εY )− J εDYX = [J εY,X]− J ε[Y,X] = −(LXJ
ε)Y.

(2.2.2)
The right-hand side vanishes if LXJ

ε = 0.
(ii) The existence of an εcomplex torsion-free connection D on (M,J ε) follows from corol-
lary 1.1. Part (i) implies now the statement (ii).

Proposition 2.4 (cf. [CS1] for ε = −1 and [Sch3] for ε = 1) Let (M,J ε) be an εcomplex
manifold and (N, h) be a pseudo-Riemannian manifold with Levi-Civita connection ∇h,
D an adapted connection on (M,J ε) and ∇ the connection on T ∗M ⊗ f ∗TN which is
induced by D and ∇h.
A map f : M → N is εpluriharmonic if and only if it satisfies the equation

∇′′∂f = 0 , (2.2.3)

where ∂f = df1,0 ∈ Γ(
∧1,0 T ∗M ⊗Cε (TN)Cε) is the (1, 0)-component of (df)Cε and ∇′′ is

the (0, 1)-component of ∇ = ∇′ +∇′′.
Equivalently one regards α = ∇df ∈ Γ(T ∗M ⊗ T ∗M ⊗ f ∗TN).
Then f is εpluriharmonic if and only if

α(X, Y )− εα(J εX, J εY ) = 0

for all X,Y ∈ TM. This can also be expressed as

α1,1 = 0.

Moreover, the εpluriharmonic equation (2.2.3) is independent of the adapted connection
chosen on M .

We recall, that in the case (1,1) and (1+,1-) the two gradings defined for differential forms
on para-complex manifolds in section 1.1 coincide in the sense that

Λ1,1 T ∗M = (Λ1+,1− T ∗M)⊗ Cε.

Proof: The fact that D is adapted implies D′′Z = 0 for all local εholomorphic vector
fields Z, i.e. Γγ

ᾱβ = Γγ̄
ᾱβ = 0 in terms of Christoffel symbols of D with respect to εholo-

morphic coordinates zα. This implies that the Christoffel symbols of the connection D do
not contribute to the εpluriharmonic equation (2.2.3). Therefore the εpluriharmonicity is
independent of the adapted connection chosen on M . In the rest of the proof we suppose
the connection D to be torsion-free (see proposition 2.3).
Let Σε ⊂ M be an εcomplex curve in (M,J ε). On Σε an εhermitian metric g in the
εconformal class of J ε is chosen. As g is εhermitian it is of type (1, 1). Hence the trace of
∇df|Σε with respect to g is zero if and only if ∇′′∂f|Σε = 0, as ∇df is symmetric. Since
this holds for all curves Σε in M the proposition is proven.

From the definition of εpluriharmonic maps and proposition 2.2 we obtain:
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Corollary 2.1 Let (M,J ε) be an εcomplex manifold, X and Y be pseudo-Riemannian
manifolds and Ψ : X → Y a totally geodesic immersion. Then a map f : M → X is
εpluriharmonic if and only if Ψ ◦ f : M → Y is εpluriharmonic.

Applying Theorem 2.1 to pluriharmonic maps we find:

Corollary 2.2 Let (M,J, g) be a connected compact Kähler manifold and N be a Rie-
mannian manifold.

(i) The image of any pluriharmonic map f : M → N cannot be contained in any convex
supporting subset of N unless it is constant. Hence, any pluriharmonic map from
M to N is necessarily constant if N is convex supporting.

(ii) If π1(M) is finite and N has a covering space which is convex supporting with respect
to the lifted metric of N, then every pluriharmonic map from M to N is necessarily
constant.

Proof: Since (M,J, g) is Kähler, the metric g is hermitian and the Levi-Civita connection
D on M is adapted. Therefore we find

tr g ∇df = tr g(∇df)1,1 = 0,

as (∇df)1,1 vanishes by the pluriharmonic map equation (2.2.3).

2.3 A generalization of εpluriharmonic maps from al-

most εcomplex manifolds into pseudo-Riemannian

manifolds

In this section, which is also subject of [Sch7, Sch8], we generalize the notion of an
εpluriharmonic map to maps from almost εcomplex manifolds into pseudo-Riemannian
manifolds. Afterwards we show that maps admitting a generalization of an associated
family (compare the paper of Eschenburg and Tribuzy [ET]) give rise to an εpluriharmonic
map and we give conditions under which an εpluriharmonic map is harmonic.
Let (M,J ε) be an almost εcomplex manifold of real dimension 2n. From theorem 1.1
we know that on every almost εcomplex manifold there exists a connection with torsion
T = −1

4
εNJε where NJε is the Nijenhuis tensor of J ε.

Definition 2.6 Let (M,J ε) be an almost εcomplex manifold. A connection D on the
tangent bundle of M is called nice if it is εcomplex and its torsion satisfies T = λNJε for
some function λ ∈ C∞(M,R).

We introduce the notion of an εpluriharmonic map from an almost εcomplex manifold:
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Definition 2.7 Let (M,J ε, D) be an almost εcomplex manifold endowed with a nice
connection D on TM and N be a smooth manifold endowed with a connection ∇N . Denote
by ∇ the connection on T ∗M ⊗ f ∗TN which is induced by D and ∇N .
A smooth map f : M → N is εpluriharmonic if and only if it satisfies the equation

(∇df)1,1 = 0. (2.3.1)

We recall, that in the case (1,1) and (1+,1-) the two gradings defined for differential forms
on para-complex manifolds in section 1.1 coincide in the sense that

Λ1,1 T ∗M = (Λ1+,1− T ∗M)⊗ Cε.

As preparation for associated families we recall an integrability condition satisfied by the
differential of a smooth map. Let N be a smooth manifold with a connection ∇N on
its tangent bundle having torsion tensor TN . Given a second smooth manifold M and a
smooth map f : M → N, the differential F := df : TM → f ∗TN = E induces a vector
bundle homomorphism between the tangent bundle of M and the pull-back of TN via f.
The torsion tensor TN of N induces a bundle homomorphism TE : Λ2E → E satisfying
the identity

∇E
V F (W )−∇E

WF (V )− F ([V,W ]) = TE(F (V ), F (W )), (2.3.2)

where ∇E = f ∗∇N denotes the pull-back connection, i.e. the connection which is induced
on E by ∇N and where V,W ∈ Γ(TM).
In the rest of the section we denote by D a nice connection on the almost εcomplex
manifold (M,J ε). Under this assumption we restate the condition (2.3.2)

TE(F (V ), F (W )) = ∇E
V F (W )−∇E

WF (V )− F ([V,W ]) (2.3.3)

= ∇E
V F (W )−∇E

WF (V )

− F (DVW ) + F (DWV ) + F (T (V,W ))

= ∇E
V F (W )−∇E

WF (V )

− F (DVW ) + F (DWV ) + λF (NJε(V,W ))

= (∇V F )W − (∇WF )V + λF (NJε(V,W )),

where ∇ is the connection induced on T ∗M ⊗ E by D and ∇E.
Later in this work we consider the case where N is a pseudo-Riemannian symmetric space
with its Levi-Civita connection ∇N .
Given an element α ∈ R we define Rα : TM → TM as

Rα(X) = cosε(α)X + sinε(α)J εX.

This defines a parallel endomorphism field on the tangent bundle TM of M. The eigen-
values of which are eîα on T 1,0M and e−îα on T 0,1M, as one sees easily.
An associated family for f is a family of maps fα : M → N,α ∈ R, such that

Φα ◦ dfα = df ◦ Rα, ∀α ∈ R, (2.3.4)

for some bundle isomorphism Φα : f ∗αTN → f ∗TN, α ∈ R, which is parallel with respect
to ∇N in the sense that

Φα ◦ (f ∗α∇N) = (f ∗∇N) ◦ Φα.

One observes, that each map fα of an associated family itself admits an associated family.
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Theorem 2.2 Let (M,J ε) be an almost εcomplex manifold endowed with a nice con-
nection D, N a smooth manifold endowed with a torsion-free connection ∇N and let
f : (M,D, J ε) → (N,∇N) be a smooth map admitting an associated family fα, then f is
εpluriharmonic. More precisely, each map of the associated family fα is εpluriharmonic.

Proof: As Φα is parallel with respect to ∇N , ∇N is torsion free and D is nice, we can
apply equation (2.3.3) to the family dfα = Fα = Φ−1

α ◦ df ◦ Rα to obtain

(∇V Fα)W − (∇WFα)V + λF (NJε(V,W )) = 0.

Since Rα is D-parallel we obtain

(∇XFα) = Φ−1
α ◦ (∇XF ) ◦ Rα. (2.3.5)

If Z = X − ε̂iJ εX and W = Y + ε̂iJ εY have different type it holds NJε(Z,W ) = 0, where
we have extended the Nijenhuis tensor εcomplex linearly. This implies

(∇ZFα)W = (∇WFα)Z, ∀α ∈ R

and using equation (2.3.5) we obtain

(∇ZFα)W = eîα Φ−1
α (∇ZF )W

(∇WFα)Z = e−îα Φ−1
α (∇WF )Z = e−îα Φ−1

α (∇ZF )W

for all α ∈ R. Since this should coincide, it follows (∇df)(1,1) = 0, i.e. f : (M,D, J ε) →
(N,∇N) is εpluriharmonic. The rest follows, since each map of the associated family fα

admits an associated family gβ = f(α+β).

This motivates the definition

Definition 2.8 Let (M,J ε) be an almost εcomplex manifold endowed with a nice con-
nection D and N be a smooth manifold endowed with a torsion-free connection ∇N . A
smooth map f : (M,D, J ε) → (N,∇N) is said to be S1

ε -pluriharmonic if and only if it
admits an associated family.

Given an εhermitian metric g on M then in general a nice connection D is not the
Levi-Civita connection ∇g of g. Therefore the εpluriharmonic equation (2.3.1) does not
imply the harmonicity of f. But if the tensor D − ∇g is trace-free the εpluriharmonic
equation implies the harmonic equation. This is true in the case of a special εKähler
manifold (M,J ε, g,∇) and for a nearly εKähler manifold (M,J ε, g), where D = ∇ and
∇−∇g is skew-symmetric.

Proposition 2.5 Let (M,J ε, g) be an almost εhermitian manifold endowed with a nice
connection D and N be a pseudo-Riemannian manifold with its Levi-Civita connection
∇N . Suppose that the tensor S = ∇g −D is trace-free.
Then an εpluriharmonic map f : (M,D, J ε) → N is harmonic.
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Proof: We consider

tr g(∇df) =
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df(Dei

ei)
]

=
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df((∇g − S)ei

ei)
]

=
∑

i

g(ei, ei)
[
∇E

ei
df(ei)− df(∇g

ei
ei)
]

= tr g(∇̃gdf)

where ∇̃g is the connection induced on T ∗M ⊗ E by ∇g and ∇E and ei is an orthogonal
basis for g on TM. From the εpluriharmonic equation and since g is εhermitian we obtain

tr g(∇df) = tr g(∇df (1,1)) = 0.

2.4 Special targets

In this subsection we discuss the manifolds, which are the target spaces of the εpluriharmonic
maps associated to εtt∗-bundles later in this work.

2.4.1 The space of pseudo-Riemannian metrics

To unify the results we use the notations

G0(r) = GL(r,R), G1(r) = SL(r,R),

g0 = glR(r), g1 = slR(r),

K0(p, q) = O(p, q), K1(p, q) = SO(p, q),

k0 = k1 = so(p, q),

S0(p, q) = S(p, q) = GL(r,R)/O(p, q), S1(p, q) = SL(r,R)/SO(p, q).

These objects are also written with an index i ∈ {0; 1}.

Let Sym0
p,q(Rr) be the symmetric r×r matrices of symmetric signature (p, q) in G0(r)

and Sym1
p,q(Rr) the elements of Sym0

p,q(Rr) with determinant (−1)q. These define pseudo-
scalar products of same symmetric signature (p, q) by

〈·, ·〉A = 〈A·, ·〉Rr ,

where 〈·, ·〉Rr is the Euclidean standard scalar product. The natural action of an element
g ∈ Gi(r) is given by 〈g−1·, g−1·〉A = 〈(g−1)tAg−1·, ·〉Rr . This gives an action of Gi(r)
A 7→ (g−1)tAg−1 on Symi

p,q(Rr) which we use to identify Symi
p,q(Rr) with Si(p, q) in the

following proposition:
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Proposition 2.6 (cf. [Sch3, Sch6]) Let Ψi be the canonical map

Ψi : Si(p, q)→̃Symi
p,q(Rr) ⊂ Gi(r)

where Gi(r) carries the pseudo-Riemannian metric induced by the Ad-invariant trace-
form. Then Ψi is a totally-geodesic immersion and a map f from an εcomplex manifold
(M,J ε) to Si(p, q) is εpluriharmonic if and only if the map Ψi ◦ f : M → Gi(r) is
εpluriharmonic.

Proof: The proof is done by expressing the map Ψi in terms of the well-known Cartan
immersion. For further information see for example [Hel], [CE], [GHL], [KN].

1) First we study the identification Si(p, q) →̃Symi
p,q(Rr).

The group Gi(r) operates on Symi
p,q(Rr) via

Gi(r)× Symi
p,q(Rr) → Symi

p,q(Rr), (g,B) 7→ g ·B := (g−1)tBg−1.

The stabilizer of the point Ip,q = diag(1p,−1q) is Ki(p, q) and the above action is
transitive by Sylvester’s theorem. Therefore by the orbit-stabilizer theorem (com-
pare the book of Gallot, Hulin, Lafontaine [GHL] 1.100) we obtain a diffeomorphism

Ψi : Si(p, q) →̃Symi
p,q(Rr), g Ki(p, q) 7→ g · Ip,q = (g−1)tIp,qg

−1.

2) We recall some results about symmetric spaces (For more information we refer to
[CE] theorem 3.42 and [KN] volume II chapter X and XI and [Lo] to extend the
proof of [CE] to non-compact groups G. A further reference is [ON].). Let G be a
Lie-group and σ : G → G a group-homomorphism with σ2 = IdG. Let K denote
the subgroup K = Gσ = {g ∈ G |σ(g) = g}. The Lie-algebra g of G decomposes
in g = h ⊕ p with dσIdG

(h) = h, dσIdG
(p) = −p. Moreover we have the following

information: The map φ : G/K → G with φ : [gK] 7→ gσ(g−1) defines a totally
geodesic immersion called the Cartan immersion.
We want to utilize this:
Therefore we define

σ : Gi(r) → Gi(r), g 7→ (g−1)†

where g† = Ip,qg
tIp,q is the adjoint with respect to the pseudo-scalar product 〈·, ·〉Ip,q =

〈·, Ip,q·〉Rr .
σ is obviously a homomorphism and an involution with Gi(r)

σ = Ki(p, q). By a
direct calculation one gets dσIdGi

= −h† and hence

h = {h ∈ gi(r) |h† = −h} = o(p, q) = so(p, q),

p = {h ∈ gi(r) |h† = h} =: symi(p, q).

Thus we end up with

φi : Si(p, q) → Gi(r), (2.4.1)

g 7→ gσ(g−1) = gg† = (gIp,qg
t)Ip,q = RIp,q ◦Ψi ◦ Λ(g). (2.4.2)

Here Rh is the right multiplication by h and Λ is the map induced by Λ : Gi →
Gi, h 7→ (h−1)t on Gi/Ki. Both maps are isometries of the invariant metrics. Hence
Ψi is a totally-geodesic immersion.
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3) Using point 1) and 2) corollary 2.1 finishes the proof.

Remark 2.3 (cf. [CS1, Sch3, Sch6])
Above we have identified Gi(r)/Ki(p, q) with Symi

p,q(Rr) via Ψi.
Let us choose o = eKi(p, q) as base point and suppose that Ψi is chosen to map o to I =
Ip,q. By construction Ψi is Gi(r)-equivariant. We identify the tangent-space TSSymi

p,q(Rr)

at S ∈ Symi
p,q(Rr) with the (ambient) vector space of symmetric matrices:

TSSymi
p,q(Rr) = Symi(Rr) := {A ∈ gi(r)|At = A} . (2.4.3)

For Ψi(S̃) = S, the tangent space TS̃S
i(p, q) is canonically identified with the vector space

of S-symmetric matrices:

TS̃S
i(p, q) = symi(S) := {A ∈ gi(r)|AtS = SA} . (2.4.4)

Note that symi(Ip,q) = symi(p, q).

Proposition 2.7 The differential of ϕi := (Ψi)−1 at S ∈ Symi
p,q(Rr) is given by

Symi(Rr) 3 X 7→ −1

2
S−1X ∈ S−1Symi(Rr) = symi(S) . (2.4.5)

Using this proposition we relate now the differentials

dfx : TxM → Symi(Rr) (2.4.6)

of a map f : M → Symi
p,q(Rr) at x ∈M and

df̃x : TxM → symi(f(x)) (2.4.7)

of a map f̃ = ϕ ◦ f : M → Si(p, q): df̃x = dϕ dfx = −1
2
f(x)−1dfx.

One can interpret the one-form A := −2df̃ = f−1df with values in gi(r) as connection
form on the vector bundle E = M × Rr. We note, that the definition of A is the
pure gauge. This means, that A is gauge-equivalent to A′ = 0, as for A′ = 0 one has
A = f−1A′f + f−1df = f−1df . The curvature vanishes, since it is independent of gauge.
Thus we get:

Proposition 2.8 Let f : M → Gi(r) be a C∞-mapping and A := f−1df : TM → gi(r).
Then the curvature of A vanishes, i.e. for X, Y ∈ Γ(TM) it holds

Y (AX)−X(AY ) = A[Y,X] + [AX , AY ]. (2.4.8)

In the next proposition we give the equations for εpluriharmonic maps from an εcomplex
manifold to Gi(r).
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Proposition 2.9 Let (M,J ε) be an εcomplex manifold, f : M → Gi(r) a C∞-map and
A defined as in proposition 2.8.
The εpluriharmonicity of f is equivalent to the equation

Y (AX) +
1

2
[AY , AX ]− εJ εY (AJεX)− ε

1

2
[AJεY , AJεX ] = 0, (2.4.9)

for εholomorphic X, Y ∈ Γ(TM).

Proof: Again the εpluriharmonicity of the map f does not depend on the adapted connec-
tion chosen on M . This means, that we can take it torsion-free and εcomplex (compare
proposition 2.3 and proposition 2.4). We calculate the tensor

∇df(X, Y ) = ∇N
X(df(Y ))− df(DXY ).

for (real parts of) εholomorphic vector fields X, Y . The contribution to the (1,1)-part of
the second term vanishes for (real parts of) εholomorphic X, Y, since

DXY − εDJεXJ
εY = DXY − εJ εDJεXY = DXY − εJ ε2DXY = 0.

Therefore we only have to regard the pulled back Levi-Civita connection ∇ on Gi(r).
Let X, Y ∈ Γ(TM). To find the εpluriharmonic equations we write df(X) and df(Y ) that
are sections in f ∗ T Gi(r), as linear combination of left invariant vector fields f ∗Ẽij =
Ẽij ◦ f , with Ẽij(g) = gEij, ∀g ∈ Gi(r) and a basis Eij, i, j = 1 . . . r of gi(r).
In this notation we have

df(X) =
∑
ij

aij Ẽij ◦ f =
∑
ij

aij fEij and df(Y ) =
∑
ij

bij Ẽij ◦ f =
∑
ij

bij fEij,

with functions aij and bij on M and further

AX = f−1df(X) =
∑
ij

aij Eij and AY = f−1df(Y ) =
∑
ij

bij Eij.

With this information we compute

(f ∗∇)Y df(X) = (f ∗∇)Y

∑
ij

aij Ẽij ◦ f

=
∑
ij

Y (aij) Ẽij ◦ f +
∑
ij

aij (f ∗∇)Y Ẽij ◦ f

=
∑
ij

Y (aij) Ẽij ◦ f +
∑
ij

aij ∇df(Y )Ẽij ◦ f

=
∑
ij

Y (aij) fEij +
∑
abij

aij bab (∇Ẽab
Ẽij) ◦ f︸ ︷︷ ︸

1
2
f [Eab,Eij ]

= f

(
Y (AX) +

1

2
[AY , AX ]

)
.

Therefore the εpluriharmonicity is equivalent to the equation

Y (AX) +
1

2
[AY , AX ]− εJ εY (AJεX)− ε

1

2
[AJεY , AJεX ] = 0

for εholomorphic vector fields X, Y.
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2.4.2 A remark on the space of Riemannian metrics

In the complex case pluriharmonic maps into locally Riemannian symmetric spaces of
non-compact type have a nice property.
Suppose that N is a locally Riemannian symmetric space with universal cover G/K with a
non-compact semi-simple Lie group G, a maximal compact subgroup K and an associated
Cartan decomposition g = h⊕ p. In each point one identifies the tangent space of N with
p. This is unique up to right action of K and left action of the fundamental group. All
relevant structures are preserved by these actions. Therefore, given a map f : M → N ,
we can regard dfx(T

1,0
x M), x ∈ M as a subspace of pC. For the ‘complexified’ sectional-

curvature of N holds using the Killing-form b

b(R(X, Y )Ȳ , X̄) = −b([X, Y ], [Ȳ , X̄]) ≤ 0. (2.4.10)

It is a well-known result of Sampson [Sam], that a harmonic map of a compact complex
manifold to a locally symmetric space of non-compact type is pluriharmonic and that its
differential sends T 1,0M to an Abelian subspace of pC. The second claim, that the image
of T 1,0M under the differential of a pluriharmonic map is Abelian is true on non-compact
manifolds, too. We are going to prove, that the pluriharmonicity implies this property.

First we state a definition in a more general context, i.e. for εcomplex manifolds and
locally pseudo-Riemannian symmetric spaces:

Definition 2.9 Let (M,J ε) be an εcomplex manifold and N a locally pseudo-Riemannian
symmetric space with universal cover G/K and associated Cartan decomposition g = p⊕k.
A map f : (M,J ε) → N is said to be admissible, if for all x ∈ M the εcomplex linear
extension of its differential maps T 1,0

x M (equivalenty T 0,1
x M) to an Abelian subspace of

pCε .

Theorem 2.3 (compare [Sam]) Let (M,J) be a complex manifold and N be a locally
Riemannian symmetric space with universal cover G/K and associated Cartan decompo-
sition g = p⊕ k.
Then a pluriharmonic map f : M → N is admissible.
The differential of a pluriharmonic map f : M → N obeys the equation

[dfx(X), dfx(Y )] = [dfx(JX), dfx(JY )]

with X, Y ∈ TxM,x ∈M.

Proof: The strategy is to show the vanishing of the curvature.
Let X, Y, Z,W ∈ Γ(T 1,0M) be holomorphic

RN(f∗X, f∗Y )f∗Z̄ = Rf∗∇N

(X, Y )f∗Z̄

= (f ∗∇N)X(f ∗∇N)Y f∗Z̄ − (f ∗∇N)Y (f ∗∇N
X)f∗Z̄ − (f ∗∇N)[X,Y ]f∗Z̄

We remark now, that the pluriharmonic equation for holomorphic vector fields does not
depend on the adapted connection chosen on the manifold M. Hence it reduces to the
equation (f ∗∇N)Xf∗Ȳ = 0, which implies RN(f∗X, f∗Y )f∗Z̄ = 0. From equation (2.4.10)
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we get b([f∗X, f∗Y ], [f∗Z̄, f∗W̄ ]) = 0 and in the end [f∗X, f∗Y ] = 0 for all X, Y.
Let Z,W ∈ Γ(T 1,0M) be of the form Z = X−iJX and W = Y −iJY withX, Y ∈ Γ(TM)
and compute [f∗Z, f∗W ] = [f∗X, f∗Y ]−[f∗JX, f∗JY ]−i([f∗X, f∗JY ]+[f∗JX, f∗Y ]).Hence
we conclude [df(X), df(Y )] = [df(JX), df(JY )].

Corollary 2.3 Let (M,J) be a complex manifold, f : M → Symi
r,0(Rr) ⊂ Gi(r) a

pluriharmonic map induced by a pluriharmonic map to Gi(r)/Ki(r) and A defined as
in proposition 2.8. If f is a pluriharmonic map, then the operators A satisfy for all
X, Y ∈ TxM, with x ∈M, the equation [AX , AY ] = [AJX , AJY ].

Proof: First, we apply theorem 2.3 to A = −2df̃ with a map f̃ : M → G1/K1. This
yields the corollary for G1 = SL(r,R).
For S0(r, 0) = S(r, 0) we have the de Rham decomposition S(r, 0) = R × S1(r, 0), where
R corresponds to the connected central subgroup R>0 = {λId|λ > 0} ⊂ G0 = GL(r,R).
Hence we have the decomposition of glR(r) = R ⊕ slR(r), where the R-factor is central.
Therefore we are in the situation to apply the result for G1.

Remark 2.4 Since the trace-form on SL(r,R) is a multiple of the Killing-form and
on GL(r,R) it corresponds to the metric on the decomposition S(r, 0) = R× S1(r, 0), we
can choose the trace-form as metric and obtain the same result as in theorem 2.3 and
corollary 2.3.

2.4.3 The space of hermitian metrics

This subsection is published in [Sch4].
Let Hermp,q(Cr) be the complex hermitian r × r matrices with hermitian signature (p,q)
and I = Ip,q = diag(1p,−1q).
Claim: GL(r,C) operates on Hermp,q(Cr) via

GL(r,C)× Hermp,q(Cr) → Hermp,q(Cr),

(g,B) 7→ g ·B := (g−1)HBg−1,

where gH is the hermitian conjugate of g.
The stabilizer of I is

GL(r,C)I = {g ∈ GL(r,C) | g · I = (g−1)HIg−1 = I} = U(p, q)

and the action is transitive due to Sylvester’s theorem. This yields, by identifying orbits
and rest classes, a diffeomorphism

Ψ : GL(r,C)/U(p, q) →̃Hermp,q(Cr) ⊂ GL(r,C),

gU(p, q) 7→ g · I = (g−1)HIg−1.

Proposition 2.10 The map Ψ : GL(r,C)/U(p, q) →̃Hermp,q(Cr) is totally geodesic,
where the target-space is carrying the (pseudo-)metric induced by the Ad-invariant trace-
form (i.e. A,B 7→ tr (AB)) on gl(r,C).



54 Chapter 2

Let (M,J) be a complex manifold. Then a map φ : M → H(p, q) := GL(r,C)/U(p, q) is
pluriharmonic if and only if

ψ = Ψ ◦ φ : M → GL(r,C)/U(p, q)→̃Hermp,q(Cr) ⊂ GL(r,C)

is pluriharmonic.

Proof: Like in the last section the idea is to relate Ψ to the totally geodesic Cartan
immersion. Therefore we define

σ : GL(r,C) → GL(r,C),

g 7→ (g−1)†.

Here g† denotes the adjoint of g with respect to the hermitian scalar product defined by
< ·, · >=< Ip,q·, · >Cr , where < ·, · >Cr is the hermitian standard scalar product on Cr

and I = Ip,q. Explicitly it is g† = IgHI.
σ is a homomorphism and an involution satisfying GL(r,C)σ = U(p, q).
Hence the Cartan immersion can be written as

i : GL(r,C)/U(p, q) → GL(r,C),

g 7→ gσ(g−1) = gg† = gIgHI = RI ◦Ψ ◦ Λ(g),

where Rh is the right-multiplication with h ∈ GL(r,C) and Λ the map induced on
GL(r,C)/U(p, q) by Λ̃ : GL(r,C) → GL(r,C), g 7→ (g−1)H . Both maps are isometries of
the invariant metrics and therefore Ψ is totally geodesic. Corollary 2.1 finishes the proof.

To be complete we mention the related symmetric decomposition:

h = {h ∈ glr(C) |h† = −h} = u(p, q)

and
p = {h ∈ glr(C) |h† = h} =: hermp,q(Cr). (2.4.11)

Later in this work we need the relation between (pluriharmonic) maps coming from
hermitian metrics and these coming from their real part. We are going to study their
relation now:
In the rest of this subsection we identify Cr with Rr ⊕ iRr = R2r. In this model the

multiplication with i coincides with the automorphism j =

(
0 1r

−1r 0

)
and GL(r,C)

(respectively glr(C)) consists of the elements in GL(2r,R) (respectively gl2r(R)), which
commute with j.
An endomorphism C ∈ End(Cr) decomposes in its real part A and its imaginary part B,
i.e. C = A + iB with A,B ∈ End(Rr). In the above model C is identified with a real
2r × 2r-matrix. This identification we denote by ι, i.e.

ι(C) =

(
A −B
B A

)
.
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The complex conjugated of C is identified with

ι(C̄) =

(
A B
−B A

)
,

the transpose Ct = At + iBt yields

ι(Ct) =

(
At −Bt

Bt At

)
and consequently the hermitian conjugated is identified with

ι(C̄t) =

(
At Bt

−Bt At

)
.

We observe, that ι(C̄t) = ι(C)T where ·T is the transpose in End(R2r).
The hermitian matrices Hermp,q(Cr) of signature (p, q) are identified with the subset of
symmetric matrices H ∈ Sym2p,2q(R2r), which commute with j, i.e. [H, j] = 0. Likewise,
TIp,qHermp,q(Cr) coincides with the symmetric matrices h ∈ sym(R2r), which commute
with j, i.e. the hermitian matrices in gl2r(R) which we denote by hermp,q(Cr).
A hermitian scalar product h of signature (p, q) corresponds to a hermitian matrix H ∈
Hermp,q(Cr) of hermitian signature (p, q) defined by h(·, ·) = (H·, ·)Cr . The condition
C̄t = C, i.e. C hermitian, means in our model, that C has the form

ι(C) =

(
A −B
B A

)
with A = At and B = −Bt.
Finally we find the explicit representation of the map R, which corresponds to taking the
real part of a hermitian metric h, i.e. Reh = (R(H)·, ·)R2r :

R : Hermp,q(Cr) → Sym2p,2q(R2r),

H 7→ ι(
1

2
(H + H̄ t)) =

1

2
(ι(H) + ι(H)T ) = ι(H).

This map has maximal rank and is equivariant with respect to GL(r,C).
Further we claim, that it is totally geodesic: The decomposition

gl2r(R) = sym2p,2q(R2r)⊕ o(2p, 2q)

is a symmetric decomposition of the symmetric space GL(2r,R)/O(2p, 2q) and hence

[[sym2p,2q(R2r), sym2p,2q(R2r)], sym2p,2q(R2r)] ⊂ sym2p,2q(R2r).

From [A, j] = [B, j] = [C, j] = 0, we conclude with the Jacobi identity [[A,B], j] = 0
and [[[A,B], C], j] = 0. Consequently TIp,qGL(r,C)/U(p, q) = hermp,q(Cr) is a Lie-triple-
system1 in T12p,2qSym2p,2q(R2r) = sym2p,2q(R2r), i.e.

[[hermp,q(Cr), hermp,q(Cr)], hermp,q(Cr)] ⊂ hermp,q(Cr).

1We refer to [Hel] Ch. IV.7, [KN] vol. 2, ch. XI.4 and [Lo] ch. III for more information on Lie-triple-
systems and totally geodesic subspaces of symmetric spaces and [KN] vol. 2, ch. XI.2 for the (canonical)
symmetric decomposition of a symmetric space.
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Therefore GL(r,C)/U(p, q) is totally geodesic in GL(2r,R)/O(2p, 2q) and we have the
commutative diagram:

GL(r,C)
U(p,q)

[i] //

Ψ

��

GL(2r,R)
O(2p,2q)

Ψ0

��

M

h̃

99sssssssssss

h
%%KKKKKKKKKKKK

Hermp,q(Cr) R // Sym2p,2q(R2r),

(2.4.12)

where [i] is induced by the inclusion i : GL(r,C) ↪→ GL(2r,R). Since all other maps in
the square of this diagram are totally geodesic, the map R : Hermp,q(Cr) → Sym2p,2q(R2r)
is a totally geodesic map. This gives the proposition:

Proposition 2.11 A map h : M → Hermp,q(Cr) is pluriharmonic, if and only if
g = Reh : M → Sym2p,2q(R2r) is pluriharmonic.

A map h̃ : M → H(p, q) is pluriharmonic, if and only if g̃ = [i] ◦ h : M → S(2p, 2q) is
pluriharmonic.

Proof: As discussed above the map R : Hermp,q(Cr) → Sym2p,2q(R2r) is totally geodesic
and an immersion. This means that we are in the situation of corollary 2.1.
The second claim follows from the square commutative diagram (2.4.12) and the state-
ments of proposition 2.10 and proposition 2.6, that the composition of a map f from M to
Hermp,q(Cr) (respectively Sym2p,2q(R2r)) with Ψ−1 (respectively (Ψ0)−1) is pluriharmonic,
if and only if f is pluriharmonic.

2.4.4 The space of para-hermitian metrics

In the following subsection we identify Cr with Rr ⊕ eRr = R2r. The multiplication with

e equals the automorphism E =

(
0 1r

1r 0

)
and GL(r, C) (respectively glr(C)) consists

of the elements in GL(2r,R) (respectively gl2r(R)) commuting with E.
First, we introduce the notion of para-hermitian sesquilinear scalar products on para-
complex vector spaces

Definition 2.10

1. A para-hermitian sesquilinear scalar product is a non-degenerate sesquilinear form
h : Cr × Cr → C, i.e.

(i) h is non-degenerate: Given w ∈ Cr such that for all v ∈ Cr h(v, w) = 0, then
it follows w = 0,

(ii) h(v, w) = h(w, v), ∀ v, w ∈ Cr,

(iii) h(λv, w) = λh(v, w), ∀ λ ∈ C; v, w ∈ Cr.
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2. Let z = (z1, . . . , zr) and w = (w1, . . . , wr) be two elements of Cr, then one defines
the standard C-bilinear scalar product on Cr by

z · w :=
r∑

i=1

ziwi

and the standard para-hermitian sesquilinear scalar product by

(z, w)Cr := z · w̄.

3. Given a matrix C of End(Cr) = EndC(Cr), we define the para-hermitian conjugation
by C 7→ Ch = C̄t. We call C para-hermitian if and only if Ch = C. We denote by
herm(Cr) the set of para-hermitian endomorphisms and by Herm(Cr) = herm(Cr)∩
GL(r, C).

Remark 2.5 We remark, that there is no notion of para-hermitian signature, since from
h(v, v) = −1 for a v ∈ Cr we obtain h(ev, ev) = 1.

Proposition 2.12

(a) Given an element C of End(Cr) then it holds (Cz,w)Cr = (z, Chw)Cr , ∀z, w ∈ Cr.

(b) The set herm(Cr) is a real vector space.

(c) There is a bijective correspondence between Herm(Cr) and para-hermitian sesquilin-
ear scalar products h on Cr given by

H 7→ h(·, ·) := (H·, ·)Cr .

An endomorphism C ∈ End(Cr) decomposes in its real part A and its imaginary part
B, i.e. C = A+eB where A,B ∈ End(Rr). In the above identification the endomorphism
C is identified via a map, which we denote by ι, with the matrix

ι(C) =

(
A B
B A

)
.

The para-complex conjugation of C, i.e. C̄ = A− eB, corresponds to

ι(C̄) =

(
A −B
−B A

)
,

the transposition Ct = At + eBt yields

ι(Ct) =

(
At Bt

Bt At

)
= ι(C)T

and the adjoint with respect to (·, ·)Cr is Ch = C̄t which corresponds to

ι(Ch) =

(
At −Bt

−Bt At

)
(∗)
= 1r,r ι(C)T

1r,r,
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where ·T is the transposition2 in End(R2r). The equality in (∗) is due to the calculation:

ι(Ch)1r,r =

(
At −Bt

−Bt At

)
1r,r =

(
At Bt

−Bt −At

)
(2.4.13)

= 1r,r

(
At Bt

Bt At

)
= 1r,r ι(C)T = 1r,r ι(C

t)

with

1r,r =

(
1r 0
0 −1r

)
.

A para-hermitian sesquilinear scalar product h corresponds to a para-hermitian matrix
H ∈ Herm(Cr) (compare with proposition 2.12) defined by h(·, ·) = (H·, ·)Cr . The
condition Ch = C, i.e. C para-hermitian, means in our model that C is of the form

ι(C) =

(
A B
B A

)
with A = At and B = −Bt.
Using this information we find the explicit representation of the map which corresponds
to taking the real part Reh of h. This is the map R satisfying

Reh = (R(H)·, ·)R2r ,

where (·, ·)R2r is the Euclidean standard scalar product on R2r.
With z, w ∈ Cr we have

β(z, w) := Re (z, w)Cr =
1

2
(z · w̄ + z̄ · w)

and

Reh(z, w) = Re (Hz,w)Cr

=
1

2

[
(Hz) · w̄ + (Hz) · w

]
= β(Hz,w).

Further we remark that β(·, ·) = Re (·, ·)Cr = (·, ·)Rr,r , where (·, ·)Rr,r = (1r,r·, ·)R2r is the
(pseudo-)Euclidean standard scalar product of signature (r, r) on R2r.
This yields

Reh(z, w) = (Hz,w)Rr,r = (1r,rHz,w)R2r

and for H = A+ eB with A,B ∈ End(Rr)

R(H) = 1r,rι(H) = 1r,r

(
A B
B A

)
=

(
A B
−B −A

)
.

Since H is para-hermitian, we obtain R(H)T = R(H). The symmetric signature of the

2To rest in the same notation as in the last section we use two symbols for the transposition, even if
it here seems to be overkill.
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symmetric matrix R(H) is (r, r), as it is the real part of a para-hermitian sesquilinear
scalar product.
Summarizing we have

R : Herm(Cr) → Symr,r(R2r),

H 7→ R(H) = 1r,rι(H).

The map R has maximal rank.
Claim: GL(r, C) operates on Herm(Cr) via

GL(r, C)× Herm(Cr) → Herm(Cr),

(g,B) 7→ g ·B := (g−1)hBg−1,

g ·B is para-hermitian, since one has g ·B = (g ·B)h.
We now show that R is equivariant with respect to this GL(r, C)-action on Herm(Cr) and
the GL(2r,R)-action on Symr,r(R2r) given by

(g−1, S) 7→ g−1 · S = gTSg

with g ∈ GL(2r,R) and S ∈ Symr,r(R2r). In fact,

R(g−1 ·H) = R(ghHg) = 1r,r ι(g
hHg)

= 1r,r ι(g
h) ι(H) ι(g)

(2.4.13)
= ι(g)T

1r,r ι(H) ι(g)

= ι(g)T R(H) ι(g) = ι(g)−1 · R(H).

Our aim is to show, that this map is totally geodesic:
The decomposition

gl2r(R) = symr,r(R2r)⊕ o(r, r),

where symr,r(R2r) are the symmetric matrices with respect to (·, ·)Rr,r , is a symmetric
decomposition associated to the symmetric space GL(2r,R)/O(r, r) and hence

[[symr,r(R2r), symr,r(R2r)], symr,r(R2r)] ⊂ symr,r(R2r).

Let A,B,C ∈ herm(Cr). From [A,E] = [B,E] = [C,E] = 0, we conclude with the Jacobi
identity [[A,B], E] = 0 and [[[A,B], C], E] = 0. Hence

T1rGL(r, C)/Uπ(Cr) = herm(Cr)

is a Lie-triple-system in T1r,rSymr,r(R2r) = symr,r(R2r), i.e.

[[herm(Cr), herm(Cr)], herm(Cr)] ⊂ herm(Cr)

and consequentlyGL(r, C)/Uπ(Cr) is a totally geodesic submanifold ofGL(2r,R)/O(r, r).

The stabilizer of 1r under the GL(r, C)-action on Herm(Cr) is

GL(r, C)1r = {g ∈ GL(r, C) | g · 1r = (g−1)h
1rg

−1 = 1r} = Uπ(Cr).
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If the operation · is transitive we obtain, by the orbit stabilizer theorem, a diffeomorphism

Ψ : GL(r, C)/Uπ(Cr) →̃Herm(Cr) ⊂ GL(r, C), (2.4.14)

gUπ(Cr) 7→ g · 1r = (g−1)h
1rg

−1 = (g−1)hg−1.

The transitivity is due to the following argument: Any para-hermitian sesquilinear scalar
product is uniquely determined by its real part, which lies in Symr,r(R2r). On this space
GL(2r,R) acts transitively.
We claim: h′ = g · h with some para-hermitian sesquilinear scalar product h and
an element g ∈ GL(2r,R) is a para-hermitian sesquilinear scalar product if and only if
g ∈ GL(r, C).
Proof: This claim follows from a short calulation: Let v, w ∈ Cr and λ ∈ C :
On the one hand it holds

h′(λv, w) = λh′(v, w) = λ(g · h)(v, w) = h(λg−1v, g−1w)

and on the other hand

h′(λv, w) = (g · h)(λv, w) = h(g−1λv, g−1w).

Subtracting these two equations yields

h((g−1λ− λg−1)v, g−1w) = 0.

Setting w = gw′ with arbitrary w′ ∈ Cr we obtain

h((g−1λ− λg−1)v, w′) = 0.

Since g is invertible and h is non-degenerate we conclude g−1λv = λg−1v, which implies
the C-linearity of g.

We are now going to analyze para-pluriharmonic maps into these spaces

Proposition 2.13 Let (M, τ) be a para-complex manifold and endow GL(r, C)/Uπ(Cr)
with the (pseudo-)metric induced by the trace-form on GL(r, C). Then the map Ψ :
GL(r, C)/Uπ(Cr)→̃Herm(Cr) defined in equation (2.4.14) is totally geodesic and a map
φ : M → GL(r, C)/Uπ(Cr) is para-pluriharmonic if and only if

ψ = Ψ ◦ φ : M → GL(r, C)/Uπ(Cr)→̃Herm(Cr) ⊂ GL(r, C)

is para-pluriharmonic.

Proof: To prove this we define

σ : GL(r, C) → GL(r, C),

g 7→ (g−1)h.

σ is a homomorphism and an involution satisfying GL(r, C)σ = Uπ(Cr).
Hence the Cartan immersion can be written as

i : GL(r, C)/Uπ(Cr) → GL(r, C),

g 7→ gσ(g−1) = ggh = ggh = Ψ ◦ Λ(g),
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where Λ is the map induced onGL(r, C)/Uπ(Cr) by Λ̃ : GL(r, C) → GL(r, C), g 7→ (g−1)h

which is an isometry of the invariant metric, since g 7→ gh = 1r,rg
T
1r,r and g 7→ g−1 are

isometries of the invariant metric. Therefore Ψ is totally geodesic, since i is totally
geodesic. Corollary 2.1 finishes the proof.

To be complete we mention the related symmetric decomposition:

h = {A ∈ glr(C) |Ah = −A} = uπ(Cr)

and
p = {A ∈ glr(C) |Ah = A} = herm(Cr).

Summarizing our knowledge, we have the commutative diagram:

GL(r,C)
Uπ(Cr)

[i] //

Ψ

��

GL(2r,R)
O(r,r)

Ψ0

��

M

h̃

::uuuuuuuuuu

h
$$JJJJJJJJJJJ

Herm(Cr) R // Symr,r(R2r),

(2.4.15)

where [i] is induced by the inclusion i : GL(r, C) ↪→ GL(2r,R). Since all other maps in
the square of this diagram are totally geodesic, the map

R : Herm(Cr) → Symr,r(R2r), H 7→ 1r,rι(H)

is a totally geodesic map.
Using the commutative diagram gives the proposition:

Proposition 2.14 A map h : M → Herm(Cr) is para-pluriharmonic, if and only if
g = Reh : M → Symr,r(R2r) is para-pluriharmonic.

A map h̃ : M → H(r) = GL(r, C)/Uπ(Cr) is para-pluriharmonic, if and only if g̃ =
[i] ◦ h : M → S(r, r) is para-pluriharmonic.

Proof: As discussed above in this section the map R : Herm(Cr) → Symr,r(R2r) is totally
geodesic and an immersion. This means that we are in the situation of corollary 2.1.
The second claim follows from the square of the commutative diagram (2.4.15) and from
the statements of proposition 2.13 and proposition 2.6, that the composition of a map f
from M to Herm(Cr) (respectively Symr,r(R2r)) with Ψ−1 (respectively (Ψ0)−1) is para-
pluriharmonic, if and only if f is para-pluriharmonic.

Notation: In the following work we use the notation H(r) = GL(r, C)/Uπ(Cr) and

Hε(p, q) =

{
H(p, q), for ε = −1,

H(r), for ε = 1.
(2.4.16)

Further we introduce the notation for the εunitary groups

U ε(p, q) =

{
U(p, q), for ε = −1,

Uπ(Cr), for ε = 1.
(2.4.17)
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2.5 The Lagrangian Grassmanians

2.5.1 Definition and homogeneous model

Complex version

Like in section 1.5.1 we consider the complex vector space V = T ∗Cn = C2n with canonical
coordinates (z1, . . . , zn, w1, . . . , wn) endowed with the standard complex symplectic form
Ω =

∑n
i=1 dz

i ∧ dwi and the standard real structure κ = ·̄ : V → V with fixed points
V κ = T ∗Rn and the induced hermitian form γ := iΩ(·, κ·).

Definition 2.11 The subset of the Grassmannian of Lagrangian subspaces L of the
symplectic vector space (V,Ω), such that γ restricted to L defines a hermitian metric of
hermitian signature (k, l), with n = k+ l is called the hermitian Lagrangian Grassmannian
of signature (k,l) and is denoted by Grk,l

0 (C2n).

We remark thatGrk,l
0 (C2n) is an open subset of the Grassmannian of Lagrangian subspaces

of (V,Ω) and hence a complex submanifold of it.

Proposition 2.15 The real symplectic group Sp(R2n) acts transitively on Grk,l
0 (C2n)

and we have the following identification:

Grk,l
0 (C2n) = Sp(R2n)/U(k, l) . (2.5.1)

Here U(k, l) ⊂ Sp(R2n) is defined as the stabilizer of

Wo = span{ ∂

∂z1
+ i

∂

∂w1

, · · · , ∂

∂zk
+ i

∂

∂wk

,
∂

∂zk+1
− i

∂

∂wk+1

, · · · , ∂

∂zn
− i

∂

∂wn

} . (2.5.2)

The Grassmannian Grk,l
0 (C2n) is a pseudo-hermitian symmetric space and, in particular,

a homogeneous pseudo-Kähler manifold.

Proof: Let L,L′ ∈ Grk,l
0 (C2n).

Since γL = γ|L defines a hermitian sesquilinear form, we obtain from the definition of γ
that

L ∩ L = {0}.

This means
V = L⊕ L

defines an orthogonal decomposition with respect to γ.
The same applies to L′.
Choosing a γ-hermitian base (fi)

n
i=1 (respectively (f ′i)

n
i=1) of L (respectively L′) and ex-

tending it to a base of V by (
√
−1f̄i)

n
i=1 (respectively (

√
−1f̄ ′i)

n
i=1) we construct two

symplectic bases (fi,
√
−1f̄i)

n
i=1 and (f ′i ,

√
−1f̄ ′i)

n
i=1 of V and consider the base-change β

from (f ′i ,
√
−1f̄ ′i)

n
i=1 to (fi,

√
−1f̄i)

n
i=1. β respects Ω and the real structure κ. This means

it is an element of Sp(R2n). Hence the action of Sp(R2n) on Grk,l
0 (C2n) is transitive.
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If one considers the base point Wo one finds by a short calculation (see in the proof of
theorem 5.5)

(γ|Wo)ij =

(
1k 0
0 −1l

)
.

Para-complex version

In the para-complex setting (compare section 1.5.2) we denote by V the para-holomorphic
vector space T ∗Cn = C2n, endowed with its standard para-complex structure τV , its
symplectic form Ω, the para-complex conjugation κ = ·̄ : V → V, v 7→ v̄ with fixed point
set T ∗Rn ∼= R2n and with the para-hermitian sesquilinear scalar product on V defined by
γ(v, w) := eΩ(v, w̄).On this space we take a system of para-holomorphic linear coordinates
(zi, wi) which are real valued on T ∗Rn.

Definition 2.12 The subset of the Grassmannian of Lagrangian subspaces L of the sym-
plectic vector space (V,Ω), such that γ restricted to L defines a para-hermitian sesquilin-
ear scalar product is called the para-hermitian Lagrangian Grassmannian and is denoted by
Grn

0 (C2n).

Proposition 2.16 The real symplectic group Sp(R2n) acts transitively on Grn
0 (C2n) and

we have the following identification:

Grn
0 (C2n) = Sp(R2n)/Uπ(Cn),

where Uπ(Cn) is the stabilizer of

Wo = spanC{
∂

∂z1
+ e

∂

∂w1

, . . . ,
∂

∂zn
+ e

∂

∂wn

}. (2.5.3)

Proof: Let L,L′ ∈ Grn
0 (C2n).

Since γL = γ|L defines a para-hermitian sesquilinear scalar product, we obtain from the
definition of γ

L ∩ L = {0}.

This means
V = L⊕ L (2.5.4)

defines an orthogonal decomposition with respect to γ.
The same applies to L′.
The decomposition (2.5.4) and the fact that L is Lagrangian implies γ(v, v) = eΩ(v, v̄) 6= 0
for all 0 6= v ∈ L. This allows us to choose a para-hermitian base (fi)

n
i=1 (respectively

(f ′i)
n
i=1) of L (respectively L′). We extend this base to a base of V by (ef̄i)

n
i=1 (respec-

tively (ef̄ ′i)
n
i=1) and obtain in this way two symplectic bases (fi, ef̄i)

n
i=1 and (f ′i , ef̄

′
i)

n
i=1 of

V. Further we consider the base-change β from (f ′i , ef̄
′
i)

n
i=1 to (fi, ef̄i)

n
i=1. β respects Ω and

the real structure κ. This means it is an element of Sp(R2n). Hence the action of Sp(R2n)
on Grn

0 (C2n) is transitive.



64 Chapter 2

If one considers elements β which leave the base point Wo invariant, one finds [β, τCn ] = 0
and β∗gCn = gCn with gCn = Reγ|Wo .

Notation: To unify the notation we introduce

Grk,l
0 (C2n

ε ) :=

{
Grk,l

0 (C2n) for ε = −1,

Grn
0 (C2n) for ε = 1.

2.5.2 Holomorphic coordinates on the complex Lagrangian Grass-
mannian

In this section (cf. [CS1]) we shall introduce a local model for the GrassmannianGrk,l
0 (C2n)

and determine the corresponding local expression for the dual Gauß map. This model is
a pseudo-Riemannian analog of the Siegel upper half-space

Sym+(Cn) := {A ∈ Mat(n,C)|At = A and ImA is positive definite} . (2.5.5)

Our aim is to construct holomorphic coordinates for the complex manifold Grk,l
0 (C2n)

in a Zariski-open neighborhood of a point W0 of the Grassmannian represented by a
Lagrangian subspace W0 ⊂ V of signature (k, l). Using a transformation from Sp(R2n)
we can assume that W0 = Wo, see equation (2.5.2). Let U0 ⊂ Grk,l

0 (C2n) be the open
subset consisting of W ∈ Grk,l

0 (C2n) such that the projection

π(z) : V = T ∗Cn = Cn ⊕ (Cn)∗ → Cn (2.5.6)

onto the first summand (z-space) induces an isomorphism

π(z)|W : W
∼→ Cn . (2.5.7)

Notice that U0 ⊂ Grk,l
0 (C2n) is an open neighborhood of the base point Wo. For elements

W ∈ U0 we can express wi as a function of z = (z1, . . . , zn). In fact,

wi =
∑

Cijz
j , (2.5.8)

where

(Cij) ∈ Symk,l(Cn) = {A ∈ Mat(n,C)|At = A and ImA has hermitian signature (k, l)}.
(2.5.9)

Proposition 2.17 The map

C : U0 → Symk,l(Cn) , W 7→ C(W ) := (Cij) (2.5.10)

is a local holomorphic chart for the Grassmannian Grk,l
0 (C2n).

Remark 2.6 The open subset Symk,l(Cn) ⊂ Sym(Cn) = {A ∈ Mat(n,C)|At = A} is a
generalization of the famous Siegel upper half-space Symn,0(Cn) = Sym+(Cn), which is
a Siegel domain of type I. In the latter case, we have U0 = Sp(R2n)/U(n) and a global
coordinate chart

C : Grn,0
0 (C2n) = Sp(R2n)/U(n)

∼→ Symn,0(Cn) . (2.5.11)



Harmonic and εpluriharmonic maps 65

2.5.3 Para-holomorphic coordinates on the para-complex La-
grangian Grassmannian

In this section (cf. [Sch3]) we introduce a local model of the Grassmannian Grn
0 (C2n) of

para-complex Lagrangian subspaces W ⊂ V of signature (n, n), i.e. such that gV = Reγ
restricted to W has signature (n, n).
This model is a para-complex pseudo-Riemannian analog of the Siegel upper half-space

Sym+(Cn) := {A ∈ Mat(n,C)|At = A and ImA is positive definite} . (2.5.12)

Given a point W ∈ Grn
0 (C2n) we claim, that V = T ∗Cn decomposes into the direct

sum
V = W ⊕ W̄ ∼= W ⊕W ∗. (2.5.13)

Let γW = γ|W , ω
W = (ωV )|W and gW = (gV )|W . Then the non-degeneracity of γW , gW

and ωW are equivalent. One sees from the definition of γW that it is non-degenerate if
and only if W ∩ W̄ = {0}. Further it is dimR(W ) = dimR(W̄ ) = dimR(V )

2
, where the last

equation follows since W is Lagrangian. This proves the claim.
One computes easily γ(v̄, w̄) = −γ(w, v), ∀v, w ∈ W. Hence gW̄ has signature (n, n),
since gW has signature (n, n). Since γ = eΩ(·, ·̄) and W is Lagrangian, it follows that the
decomposition (2.5.13) is γ-orthogonal. Using the isomorphism induced by the symplectic
form Ω on V = W ⊕ W̄ yields an isomorphism of W⊥ = W̄ ∼= W ∗ where ·⊥ is the
orthogonal complement taken with respect to γ.

We now construct para-holomorphic coordinates for the para-complex Grassmannian
Grn

0 (C2n) in an open neighborhood of a point W0 of the Grassmannian represented by a
Lagrangian subspace W0 ⊂ V of signature (n, n). Using the transitive action of the group
Sp(R2n) on Grn

0 (C2n) we may assume W0 = Wo, see equation (2.5.3). Let U0 ⊂ Grn
0 (C2n)

be the open subset consisting of W ∈ Grn
0 (C2n) such that the projection

π(z) : V = T ∗Cn = Cn ⊕ (Cn)∗ → Cn (2.5.14)

onto the first summand (z-space) induces an isomorphism

π(z)|W : W→̃Cn. (2.5.15)

Observe, that U0 ⊂ Grn
0 (C2n) is an open neighborhood of the base point Wo. For elements

W ∈ U0 we can express wi as a function of z = (z1, . . . , zn). In fact,

wi =
∑

Cijz
j (2.5.16)

where

Cij ∈ Symn,n(Cn) = {A ∈ Mat(n,C)|At = A and Im(A) has sym. signature (n, n)}.
(2.5.17)

Proposition 2.18 The map

C : U0 → Symn,n(Cn), W 7→ C(W ) := (Cij) (2.5.18)

is a local para-holomorphic chart for the Grassmannian Grn
0 (C2n).
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2.6 The space of compatible εcomplex structures

In this section (cf. [Sch7, Sch8]) we study the differential geometry of the spaces of
εcomplex structures, which are compatible with a given metric or a given symplectic
form. First we recall the definition of these spaces:

Definition 2.13

(i) Let (V, ω) be a real (finite dimensional) symplectic vector space. An εcomplex struc-
ture J ε is called compatible if and only if it satisfies

J ε∗ω = −εω. (2.6.1)

The set of such εcomplex structures is denoted by Jε(V, ω).

(ii) Let (V, 〈·, ·〉) be a real (finite dimensional) pseudo-Euclidean vector space. An εcomplex
structure J ε is called compatible if and only if it satisfies

J ε∗〈·, ·〉 = −ε〈·, ·〉. (2.6.2)

The set of such εcomplex structures is denoted by Jε(V, 〈·, ·〉).

We use with g = 〈·, ·〉 the following notations

Jε(V, ω) =

{
J(V, ω), for ε = −1,

P(V, ω), for ε = 1

and

Jε(V, g) =

{
J(V, g), for ε = −1,

P(V, g), for ε = 1.

One easily shows the next proposition.

Proposition 2.19 Let ωJε := g(J ε·, ·) and gJε := εω(J ε·, ·). Then it holds:

(a) Given J ε ∈ Jε(V, ω) then it is J ε ∈ Jε(V, gJε).

(b) Given J ε ∈ Jε(V, g) then it is J ε ∈ Jε(V, ωJε).

2.6.1 Differential geometry of the sets of compatible complex
structures

The metric case

One can consider J(V, 〈·, ·〉) = J−1(V, 〈·, ·〉), where V = Cn = (R2n, j0) is endowed with its
standard complex structure j0 and its standard scalar product 〈·, ·〉 of hermitian signature
(p, q), as a subset in the vector space so(2p, 2q) = so(V ) ⊂ Mat(R2n) characterized by the
equations

f(j) = −12n, (2.6.3)
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where f : Mat(R2n) → Mat(R2n) is given by f : A 7→ A2. The differential of this map
is dfA(H) = {A,H} for A,H ∈ Mat(R2n). In addition, df has constant rank in points j
satisfying equation (2.6.3), since one sees

ker dfj = {A ∈ so(V ) | {j, A} = 0},
im dfj

∼= {A ∈ so(V ) | [j, A] = 0} ∼= u(p, q).

Applying the regular value theorem J(V, 〈·, ·〉) is shown to be a submanifold of so(V ). Its
tangent space at j ∈ J(V, 〈·, ·〉) is

Tj J(V, 〈·, ·〉) = ker dfj = {A ∈ so(V ) | {j, A} = 0}. (2.6.4)

Moreover, J(V, 〈·, ·〉) can be identified with the pseudo-Riemannian symmetric space
SO0(2p, 2q)/U(p, q), where SO0(2p, 2q) is the identity component of the special pseudo-
orthogonal group SO(2p, 2q) and U(p, q) is the unitary group of signature (p, q), by the
map

Φ : SO0(2p, 2q)/U(p, q) → J(V, 〈·, ·〉),
gK 7→ g j0 g

−1,

which maps the canonical base point o = eK to j0.
Any j ∈ J(V, 〈·, ·〉) defines a symmetric decomposition of so(V ) by

p(j) = {A ∈ so(V ) | {j, A} = 0},
k(j) = {A ∈ so(V ) | [j, A] = 0} ∼= u(p, q).

In particular k(j0) = u(p, q). Moreover, one observes Tj J(V, 〈·, ·〉) = p(j).
Let j̃ ∈ SO0(2p, 2q)/U(p, q) and j = Φ(j̃), then Tj̃SO0(2p, 2q)/U(p, q) is canonically
identified with p(j). We determine now the differential of the above identification:

Proposition 2.20 Let Ψ = Φ−1 : J(V, 〈·, ·〉) → SO0(2p, 2q)/U(p, q). Then it holds at
j ∈ J(V, 〈·, ·〉)

dΨ : Tj J(V, 〈·, ·〉) 3 X 7→ −1

2
j−1X ∈ p(j). (2.6.5)

The symplectic case

Now we discuss the differential geometry of J(V, ω0) = J−1(V, ω0), where ω0 is the stan-
dard symplectic form on V = Cn = (R2n, j0).
First, we consider J(V, ω0) as a subset of the vector space sp(R2n) ⊂ Mat(R2n) character-
ized by the set of equations

f(j) = −12n, (2.6.6)

where f : Mat(R2n) → Mat(R2n) is given as above. Again, df has constant rank in points
j satisfying equation (2.6.6), since one sees

ker dfj = {A ∈ sp(R2n) | {j, A} = 0},
im dfj

∼= {A ∈ sp(R2n) | [j, A] = 0} ∼= u(p, q).
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Applying the regular value theorem we obtain that J(V, ω0) is a submanifold of sp(R2n).
Its tangent space at j ∈ J(V, ω0) is

Tj J(V, ω0) = ker dfj = {A ∈ sp(R2n) | {j, A} = 0}. (2.6.7)

In addition the manifold J(V, ω0) can be identified with the pseudo-Riemannian symmetric
space Sp(R2n)/U(p, q), where (p, q) is the hermitian signature of the hermitian metric
g(·, ·) = ω(J ·, ·), by the map

Φ : Sp(R2n)/U(p, q) → J(V, ω0),

gK 7→ g j0 g
−1,

which maps the canonical base point o = eK to j0.
Any j ∈ J(V, ω0) defines a symmetric decomposition of sp(R2n) by

p(j) = {A ∈ sp(R2n) | {j, A} = 0},
k(j) = {A ∈ sp(R2n) | [j, A] = 0} ∼= u(p, q).

In particular k(j0) = u(p, q). Moreover, one observes Tj J(V, ω0) = p(j).
Let j̃ ∈ Sp(R2n)/U(p, q) and j = Φ(j̃), then Tj̃Sp(R2n)/U(p, q) is canonically identified
with p(j) and for the differential of the identification one obtains:

Proposition 2.21 Let Ψ = Φ−1 : J(V, ω0) → Sp(R2n)/U(p, q). Then it holds at j ∈
J(V, ω0)

dΨ : Tj J(V, ω0) 3 X 7→ −1

2
j−1X ∈ p(j). (2.6.8)

2.6.2 Differential geometry of the sets of compatible para-complex
structures

The metric case

One can consider P(V, 〈·, ·〉) = J1(V, 〈·, ·〉), where V = Cn = Rn ⊕ eRn = (R2n, j0) is
endowed with its standard para-complex structure j0 and its standard scalar product
〈·, ·〉, as a subset in the vector space so(n, n) = so(V ) ⊂ Mat(R2n) characterized by the
equations

f(j) = 12n, (2.6.9)

where f : Mat(R2n) → Mat(R2n) is given in the last subsection. We remark, that elements
satisfying equation (2.6.9) define automatically para-complex structures, since they are
trace-free and hence their eigenspaces to the eigenvalues ±1 have the same dimension. As
before df has constant rank in points j satisfying equation (2.6.9), since one sees

ker dfj = {A ∈ so(V ) | {j, A} = 0},
im dfj

∼= {A ∈ so(V ) | [j, A] = 0} ∼= uπ(Cr).

Applying the regular value theorem P(V, 〈·, ·〉) is shown to be a submanifold of so(V ). Its
tangent space at j ∈ P(V, 〈·, ·〉) is

Tj P(V, 〈·, ·〉) = ker dfj = {A ∈ so(V ) | {j, A} = 0}. (2.6.10)
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Moreover, P(V, 〈·, ·〉) can be identified with the pseudo-Riemannian symmetric space
SO0(n, n)/Uπ(Cn), where SO0(n, n) is the identity component of the special pseudo-
orthogonal group SO(n, n) and Uπ(Cn) is the para-unitary group, by the map

Φ : SO0(n, n)/Uπ(Cn) → P(V, 〈·, ·〉),
gK 7→ g j0 g

−1,

which maps the canonical base point o = eK to j0.
Any j ∈ P(V, 〈·, ·〉) defines a symmetric decomposition of so(V ) by

p(j) = {A ∈ so(V ) | {j, A} = 0},
k(j) = {A ∈ so(V ) | [j, A] = 0} ∼= uπ(Cr).

In particular k(j0) = uπ(Cr). Moreover, one observes Tj P(V, 〈·, ·〉) = p(j).
Let j̃ ∈ SO0(n, n)/Uπ(Cn) and j = Φ(j̃), then Tj̃SO0(n, n)/Uπ(Cn) is canonically identi-
fied with p(j). We determine now the differential of the above identification:

Proposition 2.22 Let Ψ = Φ−1 : P(V, 〈·, ·〉) → SO0(n, n)/Uπ(Cn). Then it holds at
j ∈ P(V, 〈·, ·〉)

dΨ : Tj P(V, 〈·, ·〉) 3 X 7→ −1

2
j−1X ∈ p(j). (2.6.11)

The symplectic case

Now we discuss the differential geometry of P(V, ω0) = J1(V, ω0), where ω0 is the standard
symplectic form on V = Cn = (R2n, j0).
First, we consider P(V, ω0) as a subset of the vector space sp(R2n) ⊂ Mat(R2n) charac-
terized by the set of equations

f(j) = 12n, (2.6.12)

where f : Mat(R2n) → Mat(R2n) is given as above. Again, df has constant rank in points
j satisfying equation (2.6.12), since one sees

ker dfj = {A ∈ sp(R2n) | {j, A} = 0},
im dfj

∼= {A ∈ sp(R2n) | [j, A] = 0} ∼= uπ(Cr).

Applying the regular value theorem we obtain that P(V, ω0) is a submanifold of sp(R2n).
Its tangent space at j ∈ P(V, ω0) is

Tj P(V, ω0) = ker dfj = {A ∈ sp(R2n) | {j, A} = 0}. (2.6.13)

In addition the manifold P(V, ω0) can be identified with the pseudo-Riemannian symmetric
space Sp(R2n)/Uπ(Cn) by the map

Φ : Sp(R2n)/Uπ(Cn) → P(V, ω0),

gK 7→ g j0 g
−1,
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which maps the canonical base point o = eK to j0.
Any j ∈ P(V, ω0) defines a symmetric decomposition of sp(R2n) by

p(j) = {A ∈ sp(R2n) | {j, A} = 0},
k(j) = {A ∈ sp(R2n) | [j, A] = 0} ∼= uπ(Cr).

In particular k(j0) = uπ(Cr). Moreover, one observes Tj P(V, ω0) = p(j).
Let j̃ ∈ Sp(R2n)/Uπ(Cn) and j = Φ(j̃), then Tj̃Sp(R2n)/Uπ(Cn) is canonically identified
with p(j) and for the differential of the identification one obtains:

Proposition 2.23 Let Ψ = Φ−1 : P(V, ω0) → Sp(R2n)/Uπ(Cn). Then it holds at j ∈
P(V, ω0)

dΨ : Tj P(V, ω0) 3 X 7→ −1

2
j−1X ∈ p(j). (2.6.14)

2.6.3 Lagrangian Grassmannians and εcomplex structures

We are now going to identify the spaces of compatible εcomplex structures Jε(V, ω) on
V = Cn

ε = (R2n, jε
0) with the above discussed Lagrangian Grassmannians.

Given an element J ε ∈ Jε(V, ω) we define g(·, ·) = εω(J ε·, ·).
The data (g, ω) defines on V an εhermitian sesquilinear scalar product by

h = g + îω. (2.6.15)

In the complex case, i.e. for ε = −1, the hermitian signature (k, l) of which is determined
by the symmetric signature (2k, 2l) of g.

Proposition 2.24 (cf. Woodhouse [W] ch. 5 for ε = −1) Let V Cε = V ⊗ Cε be
the εcomplexifaction of V . Then there is a bijective correspondence between Lagrangian
subspaces L ∈ Grk,l

0 (C2n
ε ) and compatible εcomplex structures in Jε(V, ω).

Proof: First, let a compatible εcomplex structure J ε be given.
The map

Γ : V → V Cε

X 7→ 1

2
(X + ε̂iJ εX)

identifies the εcomplex vector space (V, J ε) with the Lagrangian subspace

LJε = {X + ε̂iJ εX |X ∈ V } ⊂ V Cε ,

i.e. the maximal subspace W satisfying J ε
|W = î, in such a way, that h coincides with

the product
〈Z,Z ′〉 = −2̂iω(Z, Z̄ ′).

Conversely, we start with a Lagrangian subspace L ⊂ V Cε such that h|L is non degenerate.

This is equivalent to the condition L ∩ L = {0}.
Claim: L defines a unique J ε such that L = LJε .
From L ∩ L = {0} we get V Cε = L ⊕ L. Therefore J εX is uniquely given by expressing
X as X = Z + Z̄ with Z ∈ L and defining J ε(X) = î(Z − Z̄).
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2.7 Period domains of variations of εHodge struc-

tures

We recall some information about period domains of variations of εHodge structures
and have a closer look at the description of these either as homogeneous spaces or as flag
manifolds, since this is crucial to understand our later results. A reference for the complex
case is the book [CMP]. Again the complex case is classical and the para-complex case is
new.
We introduce the period domain parameterizing the set of polarized εHodge structures
on a fixed real vector space H having a fixed weight w and fixed εHodge numbers hp,q.
Such an εHodge structure is determined by specifying a flag Fw ⊂ Fw−1 ⊂ . . . ⊂ F 0 of
fixed type satisfying the two bilinear relations. The set of such flags satisfying the first
bilinear relation is usually called D̃ and can be described in a homogeneous model GCε/B
where GCε is the group of automorphisms of HCε fixing the polarization b and B is the
stabilizer of some given reference structure F •

o .

Proposition 2.25 The set D̃ classifying εHodge decompositions of weight w with fixed
εHodge numbers hp,q which obey the first bilinear relation is a flag manifold of type
(fw, . . . , fv), fp = dimF p, v =

[
w+1

2

]
, such that

(i) in the case of even weight w = 2v each F p, for p = w, . . . , v + 1, is isotropic with
respect to the bilinear form b.

(ii) in the case of odd weight w = 2v − 1 each F p, for p = w, . . . , v, is isotropic with
respect to the bilinear form b.

It can also be identified with the homogeneous manifold GCε/B.

Proof:

(i) In the case of even weight we recover the spaces F p, for p = 0, . . . , (w−v+1) = v+1,
from F p, for p = w, . . . , v, by using the decomposition

HCε = F p ⊕⊥ Fw−p+1,

where ⊥ is taken with respect to the non-degenerate εhermitian sesquilinear form
b(·, ·̄). The condition on F p, for p = w, . . . , v+1, to be isotropic is the first Rieman-
nian bilinear relation.

(ii) In fact, for odd weight, one can recover the whole flag from F p for p = w, . . . , v, by
using the decomposition

HCε = F p ⊕⊥ Fw−p+1,

where ⊥ is taken with respect to the non-degenerate εhermitian sesquilinear form
b(·, ·̄). The condition on F p, for p = w, . . . , v, to be isotropic is in the case of odd
weight w inherited from the first Riemannian bilinear relation.
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In the complex case B is a parabolic subgroup. There seems to be no equivalent para-
complex notion in the literature.
The subset of D̃ classifying εHodge structures which also satisfy the second bilinear rela-
tion is called D. As a non-degeneracy or a positivity condition the second bilinear relation
defines an open subset of D̃.

Proposition 2.26 The period domain D classifying εHodge filtrations F • of fixed di-
mension fp = dimF p satisfying both bilinear relations is an open subset of D̃ and it is a
homogeneous manifold

D = G/V,

where G is the group of linear automorphisms of H preserving b and V = G ∩B.

We consider the case of Hodge structures which are strongly polarized. Given the
space G/V, we call G/K where K is the maximal compact subgroup of G the ‘associated
symmetric space’ and denote the canonical map by

π : G/V → G/K.

The case of odd weight

We now have a glance at the groups G, V and K and the associated flag manifolds for
Hodge structures of odd weight. Using this we describe for strongly polarized variations of
Hodge structures the map π at the level of flag manifolds. This description is needed later
to relate the (classical) period map to the εpluriharmonic maps appearing in εtt∗-geometry.

In the case of odd weight w = 2l + 1 for l = v − 1 the form b is anti-symmetric due
to the first Riemannian bilinear relation. In particular the real dimension of H is even.
Hence the group G is the symplectic group Sp(H, b) ∼= Sp(Rr) with r = dimRH ∈ 2N.
The maximal compact subgroup of Sp(Rr) is K = U(r).
We define the b-isotropic εcomplex vector space

L =
l⊕

p=0

Hw−p,p = Fw−l = F v.

One sees by equation (1.6.4)
HCε = L⊕ L. (2.7.1)

Since they have the same dimension, L and L are, by the first bilinear relation, Lagrangian
subspaces.
We further fix a reference structure F •

o .
Taking successively εunitary bases3

{f i}dim(L)
i=1

3This means a basis with h(fi, fj) = ±δij .
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and
{f i

o}
dim(Lo)
i=1 (2.7.2)

with respect to the εhermitian sesquilinear scalar product

h(·, ·) = (−1)w(w−1)/2îp−qb(·, ·̄)

of the flags
Hw,0 ⊂ Hw,0 ⊕Hw−1,1 ⊂ . . . ⊂ L

and
Hw,0

o ⊂ Hw,0
o ⊕Hw−1,1

o ⊂ . . . ⊂ Lo

and extending these with {f̄ i}dim(Lo)
i=1 and {f̄ i

o}
dim(Lo)
i=1 to symplectic bases of L and Lo one

sees that Sp(Rr) acts transitively by change of the basis from {f i
o}

dim(Lo)
i=1 to {f i}dim(Lo)

i=1 .

(i) First we discuss the complex case.
If we have a strongly polarized variation of Hodge structures, then the stabilizer of
F •

o is the group V = Πl
p=0 U(hw−p,p). The map π : G/V → G/K is at this level

nothing else than the forgetful map from the flag Hw,0 ⊂ Hw,0 ⊕Hw−1,1 ⊂ . . . ⊂ L

to the subspace L. We remark, that the stabilizer of Lo is contained in the group
U(r), if we assume the variation of Hodge structures to be strongly polarized.
If we consider a weakly polarized variation of Hodge structures, then the stabilizer
of F •

o is the group V = Πl
p=0 U(kp, lp), where (kp, lp), with hp,q = kp + lp, is the

hermitian signature of h restricted to Hw−p,p with q = w − p.
The stabilizer of Lo is in this case an element of the group U(k, l), where r = 2(k+l)
and (k, l) is the hermitian signature of h on Lo, i.e. k =

∑
kp and l =

∑
lp.

Given a variation of Hodge structures of odd weight over the complex base manifold
(M,J) we denote by L the (holomorphic) map

L : M → Sp(Rr)/U(k, l), (2.7.3)

x 7→ Lx. (2.7.4)

The Grassmannian of Lagrangian subspaces, on which h has signature (k, l) will
be denoted by Grk,l

0 (Cr) and on which h is positive definite will be denoted by
Gr0(Cr) = Grr,0

0 (Cr).

(ii) In the para-complex case the stabilizer of Lo is the group Uπ(Cn), with r = 2n,
compare definition 1.7. As before given a variation of para-Hodge structures of odd
weight w over the para-complex base manifold (M, τ) we denote by L the (para-
holomorphic) map

L : M → Sp(Rr)/Uπ(Cn), (2.7.5)

x 7→ Lx. (2.7.6)

The associated Grassmannian of Lagrangian subspaces will be denoted by Grn
0 (C2n)

with r = 2n.
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Chapter 3

tt*-geometry and some of its
solutions

In the first part of this chapter we introduce εtt∗-bundles and characterize these in terms
of explicit geometric data and equations on this data. In the second section we study
εtt∗-bundles on the tangent bundle TM of a given almost εcomplex manifold (M,J ε). In
particular special εcomplex, special εKähler and Levi-Civita flat nearly εKähler manifolds
are solutions of tt∗-geometry on the tangent bundle TM. These three classes of solutions
are discussed separately. The last two sections of this chapter deal with variations of
εHodge structures and εharmonic bundles as solutions of tt∗-geometry.

3.1 tt*-bundles

In this section we introduce the real differential geometric definition of an εtt∗-bundle. For
integrable εcomplex structures the complex geometric version was given in [CS1, Sch6]
and the para-complex geometric version was introduced in [Sch4]. The non-integrable
case and the symplectic version were first considered in complex geometry in [Sch7] and
in para-complex geometry in [Sch8].

Definition 3.1 An εtt*-bundle (E,D, S) over an almost εcomplex manifold (M,J ε) is
a real vector bundle E → M endowed with a connection D and a section S ∈ Γ(T ∗M ⊗
EndE) satisfying the εtt*-equation

Rθ = 0 for all θ ∈ R , (3.1.1)

where Rθ is the curvature tensor of the connection Dθ defined by

Dθ
X := DX + cosε(θ)SX + sinε(θ)SJεX for all X ∈ TM . (3.1.2)

A metric εtt*-bundle (E,D, S, g) is an εtt*-bundle (E,D, S) endowed with a possibly in-
definite D-parallel fiber metric g such that S is g-symmetric, i.e. for all p ∈M

g(SXY, Z) = g(Y, SXZ) for all X, Y, Z ∈ TpM . (3.1.3)

75
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A unimodular metric εtt*-bundle (E,D, S, g) is a metric εtt*-bundle (E,D, S, g) such that
trSX = 0 for all X ∈ TM .
An oriented unimodular metric εtt*-bundle (E,D, S, g, or) is a unimodular metric εtt*-
bundle endowed with an orientation or of the bundle E.
A symplectic εtt∗-bundle (E,D, S, ω) is an εtt∗-bundle (E,D, S) endowed with the struc-
ture of a symplectic vector bundle1 (E, ω), such that ω is D-parallel and S is ω-symmetric,
i.e. for all p ∈M

ω(SXY, Z) = ω(Y, SXZ) for all X, Y, Z ∈ TpM . (3.1.4)

In the case of moduli spaces of topological quantum field theories [CV, D] and the
moduli spaces of singularities [Her], the complexified tt∗-bundle EC (This means we con-
sider ε = −1.) is identified with T 1,0M and the metric g is positive definite. The case
E = TM , and hence EC = T 1,0M + T 0,1M includes special complex and special Kähler
manifolds, as we have proven in [CS1] and follows from [Her] in the complex situation.
This was shown in [Sch4] in the para-complex framework. We discuss this later in more
details.

Remark 3.1
1) If (E,D, S) is an εtt*-bundle then (E,D, Sθ) is an εtt*-bundle for all θ ∈ R, where

Sθ := Dθ −D = cosε(θ)S + sinε(θ)SJε . (3.1.5)

The same remark applies to metric and symplectic εtt*-bundles.
2) Notice that an oriented unimodular metric εtt*-bundle (E,D, S, g, or) carries a canon-
ical metric volume element ν ∈ Γ(∧rE∗), r = rkE, determined by g and or, which is
Dθ-parallel for all θ ∈ R.
Further, a symplectic εtt∗-bundle (E,D, S, ω) of rank 2r carries a D-parallel volume given
by ω ∧ . . . ∧ ω︸ ︷︷ ︸

r times

.

The following proposition characterizes εtt*-bundles (E,D, S) in form of explicit equa-
tions for D and S. These equations are important in the later calculations.

Proposition 3.1 Let E be a real vector bundle over an (almost) εcomplex manifold
(M,J ε) endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ EndE).
Then (E,D, S) is an εtt∗-bundle if and only if D and S satisfy the following equations:

RD + S ∧ S = 0, (3.1.6)

S ∧ S is of type (1,1), (3.1.7)

[DX , SY ]− [DY , SX ]− S[X,Y ] = 0, ∀X,Y ∈ Γ(TM), (3.1.8)

[DX , SJεY ]− [DY , SJεX ]− SJε[X,Y ] = 0, ∀X,Y ∈ Γ(TM). (3.1.9)

Fixing a torsion-free connection on (M,J ε) the last two equations are equivalent to

dD S = 0 and dD SJε = 0. (3.1.10)

1see D. Mc Duff and D. Salamon [McDS]
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Proof: As the attentive reader observes, it is easier to show this proposition after εcomplexi-
fying TM. But since one idea of this work was to formulate these results in terms of real
differential geometry, we give a real version of the proof.
To prove the proposition, we have to compute the curvature tensor of Dθ.
Let X, Y ∈ Γ(TM) be arbitrary:

Rθ
X,Y = RD

X,Y

+ [DX , cosε(θ)SY + sinε(θ)SJεY ]

+ [cosε(θ)SX + sinε(θ)SJεX , DY ]

+ [cosε(θ)SX + sinε(θ)SJεX , cosε(θ)SY + sinε(θ)SJεY ]

− cosε(θ)S[X,Y ] − sinε(θ)SJε[X,Y ]

= RD
X,Y

+ sinε
2(θ)[SJεX , SJεY ]

+ cosε
2(θ)[SX , SY ]

+ cosε(θ)sinε(θ) ([SX , SJεY ] + [SJεX , SY ])

+ cosε(θ)
(
[DX , SY ] + [SX , DY ]− S[X,Y ]

)
+ sinε(θ)

(
[SJεX , DY ] + [DX , SJεY ]− SJε[X,Y ]

)
.

We recall the theorems of addition

cosε(θ)sinε(θ) =
1

2
sinε(2θ), (3.1.11)

cosε
2(θ) =

1

2
(1 + cosε(2θ)) and

sinε
2(θ) =

1

2
ε(cosε(2θ)− 1)

to find

Rθ
X,Y = RD

X,Y +
1

2
([SX , SY ]− ε[SJεX , SJεY ])

+ cosε(θ)
(
[DX , SY ] + [SX , DY ]− S[X,Y ]

)
+ sinε(θ)

(
[SJεX , DY ] + [DX , SJεY ]− SJε[X,Y ]

)
+

1

2
cosε(2θ) ([SX , SY ] + ε[SJεX , SJεY ])

+
1

2
sinε(2θ) ([SX , SJεY ] + [SJεX , SY ]) .

Taking ’Fourier-coefficients’ yields

RD
X,Y +

1

2
([SX , SY ]− ε[SJεX , SJεY ]) = 0,

[SX , SY ] + ε[SJεX , SJεY ] = 0,

[SX , SJεY ] + [SJεX , SY ] = 0,

[DX , SY ] + [SX , DY ]− S[X,Y ] = 0,

[SJεX , DY ] + [DX , SJεY ]− SJε[X,Y ] = 0.
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The first three equations give

RD
X,Y + [SX , SY ] = 0, S ∧ S(X,Y ) = [SX , SY ] = −ε[SJεX , SJεY ].

Choosing a torsion-free connection on M the last two equations yield

dDS = 0 and dDSJε = 0.

3.2 Solutions on the tangent bundle of an almost

εcomplex manifold

The following sections are contained in [Sch7, Sch8].

3.2.1 Solutions without metrics

Given an almost εcomplex manifold (M,J ε) with a flat connection ∇ it is natural to
consider the one-parameter family of connections ∇θ, which is defined by

∇θ
XY = exp(θJ ε)∇X(exp(−θJ ε)Y ) for X, Y ∈ Γ(TM), (3.2.1)

where exp(θJ ε) = cosε(θ)Id+ sinε(θ)J
ε.

Recall, that the flatness of ∇ implies the flatness of the family of connections ∇θ (compare
remark 1.3).

Let us recall a definition

Definition 3.2 Two one-parameter families of connections ∇θ and Dθ on some vector
bundle E with θ ∈ R are called (linearly) equivalent with factor α ∈ R if they satisfy the
equation ∇θ = Dαθ.

We are now going to analyze the form of εtt∗-bundles (TM,D, S) on the tangent
bundle TM of M for which the family of connections Dθ defined in equation (3.1.2) is
linearly equivalent to the family of connections ∇θ defined in equation (3.2.1).

Proposition 3.2 Given an almost εcomplex manifold (M,J ε) with a flat connection ∇
and a decomposition of ∇ = D+S in a connection D and a section S in T ∗M⊗End (TM).
Then (TM,D, S) defines an εtt∗-bundle, such that the family of connections Dθ is linearly
equivalent to the family of connections ∇θ with factor α = ±2 if and only if S and D
satisfy

SJεX = ±J εSXY

and
−(DXJ

ε)Y = J εSXY + SXJ
εY = {SX , J

ε}Y
for all X, Y ∈ Γ(TM).
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Proof: First one has to analyze the family of connections ∇θ for X, Y ∈ Γ(TM)

∇θ
XY = exp(θJ ε)(DX + SX)[(cosε(θ)Id− sinε(θ)J

ε)Y ]

= DXY − exp(θJ ε)sinε(θ)(DXJ
ε)Y

+ (cosε(θ)Id+ sinε(θ)J
ε)SX(cosε(θ)Id− sinε(θ)J

ε)Y

= DXY − (cosε(θ)sinε(θ) + sinε
2(θ)J ε)(DXJ

ε)Y + cosε
2(θ)SXY

− sinε
2(θ)J εSXJ

εY − cosε(θ)sinε(θ)[SX , J
ε]Y,

which yields with the theorems of addition (see equation (3.1.11)), the identity

∇θ
XY = DXY − 1

2
sinε(2θ)(DXJ

ε)Y − 1

2
ε(cosε(2θ)− 1)J ε(DXJ

ε)Y

+
1

2
(1 + cosε(2θ))SXY − 1

2
ε(cosε(2θ)− 1)J εSXJ

εY − 1

2
sinε(2θ)[SX , J

ε]Y

= DXY +
1

2
[SX + εJ εSXJ

ε + εJ εDXJ
ε]Y

+
1

2
sinε(2θ) [[J ε, SX ]−DXJ

ε]Y

+
1

2
cosε(2θ) [SX − εJ εSXJ

ε − εJ εDXJ
ε]Y

!
= DXY + cosε(ϑ)TXY + sinε(ϑ)TJεXY with ϑ = ±2θ,

where we have to determine T ∈ Γ(T ∗M ⊗ End (TM)).
Comparing coefficients of 1, cosε(nϑ), sinε(nϑ) with n = 1, 2 yields

−εJ ε(DXJ
ε)Y = SXY + εJ εSXJ

εY , or equivalently (3.2.2)

−(DXJ
ε)Y = J εSXY + SXJ

εY = {SX , J
ε}Y,

TXY =
1

2
(SXY − εJ εSXJ

εY − εJ ε(DXJ
ε)Y )

(3.2.2)
= SXY, (3.2.3)

TJεXY = ±1

2
([J ε, SX ]Y − (DXJ

ε)Y )

(3.2.2)
= ±1

2
(J εSXY − SXJ

εY + J εSXY + SXJ
εY )

= ±J εSXY. (3.2.4)

The last two equations yield the constraint on S

SJεX = ±J εSXY

and the first equation the one on D and S.

Now we suppose the connection D to be εcomplex. Such a connection exists on every
almost εcomplex manifold, as we have shown in theorem 1.1.

Corollary 3.1 Given an almost εcomplex manifold (M,J ε) with a flat connection ∇ and
a decomposition of ∇ = D + S in a connection D and a section S in T ∗M ⊗ End (TM),
such that J ε is D-parallel, i.e. DJ ε = 0. Then (TM,D, S) defines an εtt∗-bundle, such
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that the family of connections Dθ is linearly equivalent to the family of connections ∇θ

with factor α = ±2 if and only if S satisfies

SJεX = ±J εSX and {SX , J
ε} = 0.

Proof: The second constraint in proposition 3.2 is forDJ ε = 0 the condition {SX , J
ε} = 0.

The first constraint of proposition 3.2 is exactly SJεX = ±J εSX
{SX ,Jε}=0

= ∓SXJ
ε.

We are going to show some uniqueness result. Therefore we prove the

Lemma 3.1 Let (M,J ε) be an almost εcomplex manifold. Given a connection ∇ on M
which decomposes as ∇ = D + S, where D is a connection on M and S is a section in
T ∗M ⊗ End (TM), such that J ε is D-parallel, i.e. DJ ε = 0 and S anti-commutes with
J ε, i.e. {SX , J

ε} = 0 for all X ∈ Γ(TM). Then S and D are uniquely given by

SXY = −1

2
εJ ε(∇XJ

ε)Y and DXY = ∇XY − SXY for X, Y ∈ Γ(TM). (3.2.5)

Otherwise, given a connection ∇ and define D and S by equation (3.2.5), then D and S
satisfy DJ ε = 0 and {SX , J

ε} = 0.

Proof: First we observe ∇ = D + S and

SXJ
εY = −1

2
εJ ε(∇XJ

ε)J εY =
1

2
εJ ε2(∇XJ

ε)Y = −J εSXY,

where the second equality follows from deriving J ε2 = εId. Further it is

(DXJ
ε)Y = (∇XJ

ε)Y − [SX , J
ε]Y

{SX ,Jε}=0
= (∇XJ

ε)Y + 2J εSXY = 0.

Now we prove the uniqueness: Suppose there exist D′ and S ′ with the same properties.
Thus we get

0 = (D′
XJ

ε)Y = (∇XJ
ε)Y − [S ′X , J

ε]Y = (∇XJ
ε)Y + 2J εS ′XY

and consequently

S ′XY = −1

2
εJ ε(∇XJ

ε)Y = SXY and D′
XY = ∇XY − S ′XY = ∇XY − SXY = DXY.

Summarizing corollary 3.1 and lemma 3.1 we find the following uniqueness result:

Theorem 3.1 Given an almost εcomplex manifold (M,J ε) with a flat connection ∇ and
a decomposition of ∇ = D + S in a connection D and a section S in T ∗M ⊗ End (TM),
such that J ε is D-parallel, i.e. DJ ε = 0. If (TM,D, S) defines an εtt∗-bundle, such that
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the family of connections Dθ is linearly equivalent to the family of connections ∇θ with
factor α = ±2, then D and S are uniquely determined by the equations

S = −1

2
εJ ε(∇J ε) (3.2.6)

and
D = ∇− S. (3.2.7)

Moreover, (TM,D, S) as given by equation (3.2.6) and (3.2.7) defines an εtt∗-bundle,
such that the family of connections Dθ is linearly equivalent to the family of connections
∇θ with factor α = ±2, if and only if J ε satisfies (∇JεXJ

ε) = ±J ε(∇XJ
ε) and D and S

are given by S = −1
2
εJ ε(∇J ε) and D = ∇− S.

In the following propositions we are going to give some classes of examples which satisfy
the condition SJεX = ±J εSX .

Proposition 3.3 Given an almost εcomplex manifold (M,J ε) with a connection ∇ and
let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
εJ ε(∇J ε). (3.2.8)

If the pair (∇, J ε) satisfies one of the following conditions

(i) (∇, J ε) is special, i.e. (∇XJ
ε)Y = (∇Y J

ε)X for all X, Y ∈ Γ(TM),

(ii) (∇, J ε) satisfies the nearly εKähler condition, i.e. (∇XJ
ε)Y = −(∇Y J

ε)X for all
X, Y ∈ Γ(TM),

then it holds SJεXY = −J εSXY.

Proof: If the condition (i) or (ii) holds, we obtain the identity

(∇JεXJ
ε)Y = ±(∇Y J

ε)J εX = ± [ε∇YX − J ε∇Y (J εX)]

= ∓J ε [∇Y (J εX)− J ε∇YX] = ∓J ε(∇Y J
ε)X = −J ε(∇XJ

ε)Y.

The following calculation finishes the proof

SJεXY = −1

2
εJ ε(∇JεXJ

ε)Y =
1

2
εJ ε2(∇XJ

ε)Y = −J εSXY.

Proposition 3.4 Given an εcomplex manifold (M,J ε) with a connection ∇ and let S
be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
εJ ε(∇J ε). (3.2.9)

If ∇ is (anti-)adapted, i.e. ∇JεXY = ±J ε∇XY for all εholomorphic vector fields X,Y,
then it holds SJεXY = ±J εSXY.
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Proof: Since ∇ is (anti-)adapted, we obtain for all εholomorphic vector fields X, Y

(∇JεXJ
ε)Y = ±J ε(∇XJ

ε)Y.

The following computation gives the proof

SJεXY = −1

2
εJ ε(∇JεXJ

ε)Y = ∓1

2
εJ ε2(∇XJ

ε)Y = ±J εSXY.

Remark 3.2
One sees easily that condition (i) of proposition 3.3 is the symmetry of SXY and condition
(ii) is its anti-symmetry. We recall that if the connection ∇ is torsion-free, flat and special
then (M,J ε,∇) is a special εcomplex manifold, see subsection 1.4. εtt∗-bundles coming
from special εcomplex manifolds and special εKähler manifolds were studied in [CS1, Sch3]
and are discussed later in subsection 3.2.4.
Further we want to remark that the second condition arises in nearly εKählerian geometry
and therefore is quite natural. These geometries as solutions of tt∗-geometry are discussed
in subsection 3.2.3.
Finally, the notion of adapted connections appeared in the study of decompositions on
(εholomorphic) vector bundles over εcomplex manifolds, compare the paper of Abe and
Kurosu [AK] for the complex and a common paper with M.-A. Lawn-Paillusseau [LS] for
the para-complex case.

3.2.2 Solutions on almost εhermitian manifolds

In this section we consider almost εcomplex manifolds (M,J ε) endowed with a flat con-
nection ∇ such that (∇, J ε) is special or satisfies the nearly εKähler condition and analyze
under which assumptions these define symplectic or metric εtt∗-bundles.

First, we recall a lemma from tensor-algebra:

Lemma 3.2 Let V be a vector space α ∈ T 3(V ∗) an element in the third tensorial power
of V ∗, the dual space of V . Suppose that α(X, Y, Z) is symmetric (resp. anti-symmetric)
in X,Y and Y, Z and α(X, Y, Z) is anti-symmetric (resp. symmetric) in X,Z then α = 0.

Proof: It is
α(X, Y, Z) = σα(Y,X,Z) = σα(X,Z, Y )

with σ ∈ {±1} which implies

α(X, Y, Z) = σα(Y,X,Z) = σ2α(Y, Z,X) = σ3α(Z, Y,X).

But further it holds
α(X, Y, Z) = −σα(Z, Y,X)

and consequently
−α(Z, Y,X) = σ2α(Z, Y,X) = α(Z, Y,X).
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This shows α = 0.

The subsequent proposition shows that the condition to be special is not compatible with
symplectic εtt∗-bundles:

Proposition 3.5 Given an almost εhermitian manifold (M,J ε, g) with a flat connection
∇, such that (∇, J ε) is special. Define S, a section in T ∗M ⊗ End (TM), by

S := −1

2
εJ ε(∇J ε), (3.2.10)

then (TM,D = ∇− S, S) defines an εtt∗-bundle. Suppose, that (TM,D, S, ω = g(J ε·, ·))
is a symplectic εtt∗-bundle, then it is trivial, i.e. S = 0.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (TM,D, S) is an
εtt∗-bundle.
Suppose, that (TM,D, S, ω = g(J ε·, ·)) is a symplectic εtt∗-bundle. To finish the proof,
we define the tensor

α(X, Y, Z) := ω(SXY, Z) = g(J εSXY, Z), with X, Y, Z ∈ TpM.

α(X, Y, Z) is symmetric in X, Y, since ∇J ε is special, i.e. is symmetric in X,Y.
Further it holds

α(X, Y, Z) = ω(SXY, Z) = −ω(Z, SXY )

= −ω(Z, SYX) = −ω(SYZ,X) = −ω(SZY,X) = −α(Z, Y,X),

which is the anti-symmetry of α(X, Y, Z) in X,Z. Finally

α(X, Y, Z) = ω(SXY, Z) = ω(Y, SXZ)

= ω(Y, SZX) = −ω(SZX,Y ) = −α(Z,X, Y ) = −α(X,Z, Y ),

i.e. the anti-symmetry of α(X,Y, Z) in Y, Z.
Hence α vanishes and consequently S.

Otherwise, the nearly εKähler condition is not compatible with metric εtt∗-bundles:

Proposition 3.6 Given an almost εhermitian manifold (M,J ε, g) with a flat connection
∇, such that (∇, J ε) satisfies the nearly εKähler condition. Define S, a section in T ∗M ⊗
End (TM), by

S := −1

2
εJ ε(∇J ε), (3.2.11)

then (TM,D = ∇− S, S) defines an εtt∗-bundle. Suppose, that (TM,D, S, g) is a metric
εtt∗-bundle, then it is trivial, i.e. S = 0.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (TM,D, S) is an
εtt∗-bundle.
Suppose, that it is a metric εtt∗-bundle. To finish the proof, we define the tensor

α(X, Y, Z) := g(SXY, Z), with X,Y, Z ∈ TpM.
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α(X, Y, Z) is anti-symmetric in X,Y, since ∇J ε is anti-symmetric in X, Y by the nearly
εKähler condition.
Further it holds

α(X, Y, Z) = g(SXY, Z) = g(Z, SXY )

= −g(Z, SYX) = −g(SYZ,X) = g(SZY,X) = α(Z, Y,X)

which is the symmetry of α(X, Y, Z) in X,Z. Finally

α(X, Y, Z) = g(SXY, Z) = g(Y, SXZ)

= −g(Y, SZX) = −g(SZX, Y ) = −α(Z,X, Y ) = α(X,Z, Y ),

i.e. the symmetry of α(X, Y, Z) in Y, Z.
Hence α vanishes by the above lemma and so does S.

The following theorem gives solutions of symplectic εtt∗-bundles on the tangent bundle,
which are more general then the later discussed nearly εKähler manifolds in the sense,
that we admit the connection ∇ to have torsion, but more special in the sense, that our
connection ∇ has to be flat.

Theorem 3.2 Given an almost εhermitian manifold (M,J ε, g) with a flat metric con-
nection ∇, such that (∇, J ε) satisfies the nearly εKähler condition. Define S, a section in
T ∗M ⊗ End (TM), by

S := −1

2
εJ ε(∇J ε), (3.2.12)

then (TM,D = ∇ − S, S, ω = g(J ε·, ·)) defines a symplectic εtt∗-bundle. In addition,
it is DJ ε = 0. Moreover, the torsion TD of D and the torsion T∇ of ∇ are related by
TD = T∇ − 2S.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (TM,D, S) is an
εtt∗-bundle.
It remains to check Dω = 0 and that S is ω-symmetric.
First we remark, that, since g is εhermitian and ∇g = 0, ∇XJ

ε is skew-symmetric with
respect to g. Using this we show by the following calculation, that S is skew-symmetric
with respect to g:

−2εg(SXY, Z) = g(J ε(∇XJ
ε)Y, Z) = −g((∇XJ

ε)Y, J εZ)

= g(Y, (∇XJ
ε)J εZ) = −g(Y, J ε(∇XJ

ε)Z) = 2εg(Y, SXZ).

The definition of ω = g(J ε·, ·) and {SX , J
ε} = 0 yield the ω-symmetry of SX .

Further it holds D = ∇+ 1
2
εJ ε∇J ε, which implies

DJ ε = ∇J ε +
1

2
ε[J ε∇J ε, J ε] = 0.

Hence we see, that Dω = 0 if and only if Dg = 0. But ∇g = 0 and S is skew-symmetric
with respect to g, so g is parallel for D = ∇− S.
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This shows, that (TM,D = ∇− S, S, ω) is a symplectic εtt∗-bundle.
Calculating the torsion we find TD(X, Y ) = T∇(X, Y )−SXY +SYX = T∇(X,Y )−2SXY.

The next theorem gives solutions of metric εtt∗-bundles on the tangent bundle, which
are more general then special εKähler manifolds in the sense, that we admit connections
∇ with torsion.

Theorem 3.3 Given an almost εhermitian manifold (M,J ε, g) with a flat connection
∇, such that (∇, J ε) is special and the fundamental two-form ω = g(J ε·, ·) is ∇-parallel.
Define S, a section in T ∗M ⊗ End (TM), by

S := −1

2
εJ ε(∇J ε), (3.2.13)

then (TM,D = ∇− S, S, g) defines a metric εtt∗-bundle. In addition, it is DJ ε = 0 and
the torsion TD of D equals the torsion T∇ of ∇.
Suppose that ∇ is torsion-free, then D is the Levi-Civita connection of g, (M,J ε, g) is an
εKähler manifold and (M,J ε, g,∇) is a special εKähler manifold.

Proof: In fact we know from theorem 3.1 and proposition 3.3, that (TM,D, S) is an
εtt∗-bundle.
It remains to check Dg = 0 and that S is g-symmetric.
First we remark that ω(J εX, Y ) = −ω(X, J εY ) as g is εhermitian. This yields using
∇ω = 0 the ω-skew-symmetry of ∇XJ

ε, which implies that SX = −1
2
εJ ε(∇J ε) is ω-skew-

symmetric, since J ε(∇XJ
ε) = −(∇XJ

ε)J ε. Finally {SX , J
ε} = 0 shows the g-symmetry

of SX .
Further it is

DJ ε = ∇J ε +
1

2
ε[J ε∇J ε, J ε] = 0

and consequently Dg = 0 is equivalent to Dω = 0.
From ∇ω = 0 and the ω-skew-symmetry of S it follows Dω = (∇− S)ω = 0.
The symmetry of∇J ε, i.e. (∇XJ

ε)Y = (∇Y J
ε)X for allX, Y ∈ TM implies SXY = SYX.

This shows using D = ∇− S that TD = T∇.
Suppose now that ∇ is torsion-free, then D is torsion-free and consequently the Levi-
Civita connection of g. Therefore DJ ε = 0 implies the vanishing of the Nijenhuis tensor.
Further the equation ∇ω = 0 implies dω = 0 since ∇ is torsion-free. Hence (M,J ε, g) is
εKähler. In addition (M,J ε,∇) is special εcomplex by the conditions on ∇ and J ε. As it
holds ∇ω = 0, (M,J ε,∇, g) is special εKähler.

In [CS1, Sch3] we studied special εKähler solutions of εtt∗-geometry in more details. The
results are discussed in subsection 3.2.4.

3.2.3 Nearly εKähler manifolds

In this section we want to apply the above results to nearly εKähler manifolds and we use
the notation of subsection 1.3.
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Corollary 3.2 Given a nearly εKähler manifold (M,J ε, g) such that its Levi-Civita
connection ∇ = ∇g is flat and let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
εJ ε(∇J ε), (3.2.14)

then (TM, ∇̄, S) defines an εtt∗-bundle. Suppose, that (TM, ∇̄, S, g) is a metric εtt∗-
bundle, then it is trivial, i.e. S = 0 and consequently (M,J ε, g) is εKähler.

Proof: By setting D = ∇̄ we are in the situation of proposition 3.6.

Theorem 3.4 Given a nearly εKähler manifold (M,J ε, g) such that its Levi-Civita
connection ∇ is flat. Let S be the section in T ∗M ⊗ End (TM) defined by

S := −1

2
εJ ε(∇J ε), (3.2.15)

then (TM, ∇̄, S, ω := g(J ε·, ·)) is a symplectic εtt∗-bundle. Further it holds

B(X, Y, Z) = −2g(SXY, Z) and ∇̄J ε = 0. (3.2.16)

Proof: By setting D = ∇̄ we are in the situation of theorem 3.2. In addition it holds

2g(SXY, Z) = −εg(J ε(∇XJ
ε)Y, Z) = εg((∇XJ

ε)Y, J εZ) = −B(X,Y, Z).

Remark 3.3
Nearly Kähler manifolds (M,J, g) such that their Levi-Civita connection ∇g is flat were
characterized in common work with V. Cortés [CS2]. More precisely, a constructive classi-
fication of nearly Kähler manifolds with flat Levi-Civita connection was given. We further
recall that a Levi-Civita flat nearly Kähler cannot be strict. This means that the more in-
teresting examples appear for non definite signature.

3.2.4 Special εcomplex and special εKähler manifolds

In this subsection we consider another time εtt∗-bundles on the tangent-bundle TM of
an εcomplex manifold (M,J ε) and discuss the results which were published in [CS1] for
ε = −1 and [Sch3] for ε = 1. More precisely, we analyze solutions coming from special
εcomplex and special εKähler manifolds. In this context it is natural to restrict to εtt∗-
bundles, such that the family of connections Dθ is torsion-free.

Definition 3.3 An εtt∗-bundle (TM,D, S) over an εcomplex manifold (M,J ε) is called
special if Dθ is torsion-free and special, i.e. DθJ ε is symmetric, for all θ ∈ R.

Proposition 3.7 An εtt∗-bundle (TM,D, S) is special if and only if D is torsion-free
and DJ ε, S and SJε are symmetric.
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Proof: The torsion T θ of Dθ equals

T θ(X, Y ) = T (X, Y ) + cosε(θ)(SXY − SYX) + sinε(θ)(SJεXY − SJεYX) (3.2.17)

where T is the torsion-tensor of D. This implies, that T θ = 0 for all θ ∈ R if and only if
T = 0 and S and SJε are symmetric.
The equation

(Dθ
XJ

ε)Y = (DXJ
ε)Y + cosε(θ)[SX , J

ε]Y + sinε(θ)[SJεX , J
ε]Y (3.2.18)

{SX ,Jε}=0
= (DXJ

ε)Y − 2cosε(θ) J
ε SXY − 2sinε(θ) J

ε SJεXY

shows that DθJ ε is symmetric if and only if DJ ε, S and SJε are symmetric.
Conversely, let T θ = 0 and DθJ ε be symmetric: Then the first part of the proof yields,
that S and SJε are symmetric and T = 0. Equation (3.2.18) implies finally the symmetry
of DJ ε.

Theorem 3.5

(i) Let (M,J ε,∇) be a special εcomplex manifold. Put S := −1
2
εJ ε∇J ε and D := ∇−S.

Then (TM,D, S) is a special εtt∗-bundle with the following additional properties:

a) SXJ
ε = −J εSX for all X ∈ TM and

b) DJ ε = 0.

This defines a map Φ from special εcomplex manifolds to special εtt∗-bundles.

(ii) Let (TM,D, S) be a special εtt∗-bundle over an εcomplex manifold (M,J ε). Then
(M,J ε,∇ := D+S) is a special εcomplex manifold. This defines a map Ψ from spe-
cial εtt∗-bundles to special εcomplex manifolds such that Ψ◦Φ = Id. If (TM,D, S) is
a special εtt∗-bundle satisfying the conditions a) and b) of (i), then Φ(Ψ(TM,D, S)) =
(TM,D, S).

(iii) Let (M,J ε, g,∇) be a special εKähler manifold with S and D as in (i). Then
(TM,D, S, g) defines a special metric εtt∗-bundle satisfying a) and b) of (i). This
defines a map, also called Φ, from special εKähler manifolds to special metric εtt∗-
bundles.

(iv) Let (TM,D, S, g) be a special metric εtt∗-bundle over an εhermitian manifold
(M,J ε, g) satisfying the conditions a) and b) in (i). Then (M,J ε, g,∇ := D + S)
is a special εKähler manifold. In particular, we have a map Ψ from special metric
εtt∗-bundles over εhermitian manifolds (M,J ε, g) satisfying the conditions a) and b)
in (i) to special εKähler manifolds. Moreover Ψ is a bijection and Ψ−1 = Φ.

(v) Let (TM,D, S, g) be a metric εtt∗-bundle over an εhermitian manifold (M,J ε, g)
satisfying the conditions a) and b) in (i) and such that D is torsion-free. Then it is
special if and only if (M,J ε, g,∇ := D + S) is a special εKähler manifold.
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Proof:
(i) From theorem 3.1 and proposition 3.3 we know, that (TM,D, S) is an εtt∗-bundle. This
εtt∗-bundle is special, since the family of connections Dθ and the family of connections
∇θ are linearly equivalent and since by proposition 1.4 (M,J ε,∇θ) is a special εKähler
manifold. The additional properties hold, as (M,J ε,∇) is a special εcomplex manifold
(compare proposition 1.6 and 1.8).
(ii) In order to prove the second statement, let (TM,D, S) be a special εtt∗-bundle, i.e.
Dθ is flat, torsion-free and special. In particular, ∇ = D+S = D0 is flat, torsion-free and
special. Hence (M,J ε,∇) is a special εcomplex manifold. Obviously we have Ψ ◦Φ = Id.
Conversely, let (TM,D, S) be a special εtt∗-bundle satisfyingDJ ε = 0 and SXJ

ε = −J εSX

for all X ∈ TpM. Then we use lemma 3.1 to recover D and S uniquely from ∇ = D + S
by the formulas S = −1

2
εJ ε∇J ε and D = ∇− S.

(iii) Let (M,J ε, g,∇) be a special εKähler manifold with D and S defined as in (i). Then
(TM,D, S) is a special εtt∗-bundle satisfying a) and b), due to (i). Proposition 1.7 im-
plies, that Dg = 0 and proposition 1.8 implies, that S is g-symmetric and hence that
(TM,D, S, g) is a special metric εtt∗-bundle.
(iv) Let (TM,D, S, g) be a special metric εtt∗-bundle over an εhermitian manifold (M,J ε, g)
satisfying a) and b) in (i). By (ii), we know already, that (M,J ε,∇ := D+S) is a special
εcomplex manifold. Therefore it remains to prove ∇ω = 0. This implies dω = 0, as
∇ is torsion-free. We have Dg = 0 and DJ ε = 0 (property b) in (i)) and consequently
Dω = 0. As Dω = 0, ∇ω = 0 is equivalent to the ω-skew-symmetry of S and finally to
the g-symmetry of S, since {J ε, SX} = 0. But by the definition of a metric εtt∗-bundle S
is g-symmetric. Therefore (M,J ε,∇, g) is a special εKähler manifold. The rest of part
(iv) follows from part (ii).
(v) It remains to show the direction which does not follow from (iv). Let (TM,D, S, g)
be a metric εtt∗-bundle over an εhermitian manifold (M,J ε, g), such that (M,J ε, g,∇ =
D+S) = Ψ(TM,D, S, g) is a special εKähler manifold. If D is torsion-free, then it is the
Levi-Civita connection of g, and therefore D = ∇ + 1

2
εJ ε∇J ε, see proposition 1.7. This

shows, that Φ(M,J ε, g,∇) = (TM,D, S, g) and that (TM,D, S, g) is a special metric
εtt∗-bundle.

Corollary 3.3 A special metric εtt∗-bundle (TM,D, S, g) over an εhermitian manifold
(M,J ε, g) which satisfies a) and b) in theorem 3.5 is oriented and unimodular.

Proof: By theorem 3.5, (M,J ε, g,∇ = D + S) is a special εKähler manifold. Hence we
can orient it by ω ∧ . . .∧ω, where ω is its εKähler-form. Its εKähler-form is parallel with
respect to the connections D and ∇ and therefore invariant under SX = ∇X −DX . This
shows trSX = 0.

3.3 Variations of εHodge structures

In this section we recall the result of Hertling [Her] that variations of Hodge structures
give solutions of metric tt∗-bundles and generalize it to para-complex geometry and sym-
plectic εtt∗-bundles. Our presentation differs form that of [Her], since we give this result
in the language of real differential geometry. Again, the para-complex version seems to
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be new.

Let (E,∇, F p) be a (real) variation of εHodge structures of weight w. The εcomplexified
connection of ∇ on ECε = E ⊗Cε will be denoted by ∇c. Griffiths transversality and the
εholomorphicity of the subbundles F p gives

∇c : Γ(F p) → Λ1,0(F p−1) + Λ0,1(F p) (3.3.1)

and εcomplex conjugation yields

∇c : Γ(F
p
) → Λ0,1(F

p−1
) + Λ1,0(F

p
). (3.3.2)

Summarizing one obtains with Hp,w−p = F p ∩ Fw−p

∇c : Γ(Hp,w−p) → Λ1,0(Hp,w−p) + Λ0,1(Hp,w−p)︸ ︷︷ ︸
D

+ Λ1,0(Hp−1,w+1−p) + Λ0,1(Hp+1,w−1−p)︸ ︷︷ ︸
S

.

(3.3.3)
Using the decomposition induced by the εHodge structure and by the bi-degree of dif-
ferential forms, one can find, that the curvature of ∇c vanishes if and only if (Ec, D, S)
defines an εtt∗-bundle. In addition the εcomplex conjugation κ = ·̄ respects the εHodge
decomposition and it is ∇cκ = 0. Again the decomposition induced by the εHodge struc-
ture and by the bi-degree of differential forms implies that Dκ = 0, i.e. D leaves E
invariant and that Sκ = κS, i.e. S leaves E invariant, too.
If b is a polarization of the above variation of εHodge structures (E,∇, F p), then ∇b = 0
and ∇cκ = 0 yield after decomposing with respect to εHodge structure the equations
Dg = 0 and g(S·, ·) = g(·, S·) with g = Reh. Concluding we obtain the proposition

Proposition 3.8 Let (E,∇, F p) be a (real) variation of εHodge structures of weight w
with a polarization b, then (E,D, S, g = Reh) with D and S as defined in equation (3.3.3)
is a metric εtt∗-bundle.

The above consideration holds for Ω = Imh, too. This implies DΩ = 0 and Ω(S·, ·) =
Ω(·, S·). Hence we have proven

Proposition 3.9 Let (E,∇, F p) be a (real) variation of εHodge structures of weight
w with a polarization b, then (E,D, S,Ω = Imh) with D and S as defined in equation
(3.3.3) is a symplectic εtt∗-bundle.

3.4 Harmonic bundles

In this section (cf. [Sch4] for the complex case, i.e. ε = −1) we introduce the notion
of an εharmonic bundle and show that every such bundle gives two solutions of the εtt∗-
equations. The first is a metric and the second is a symplectic εtt∗-bundle.

To introduce the notion of an εharmonic bundle we need a definition:
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Definition 3.4 An εhermitian sesquilinear metric h on an εcomplex vector bundle E
over an εcomplex manifold (M,J ε) is a smooth fiberwise εhermitian sesquilinear product.

Definition 3.5 An εharmonic bundle (E → M,D,C, C̄, h) consists of the following
data:
An εcomplex vector bundle E over an εcomplex manifold (M,J ε), an εhermitian sesquilin-
ear metric h on E, a metric connection D with respect to h and two C∞-linear maps
C : Γ(E) → Γ(Λ1,0T ∗M ⊗E) and C̄ : Γ(E) → Γ(Λ0,1T ∗M ⊗E), such that the connection

D(λ) = D + λC + λ−1C̄

is flat for all λ ∈ S1
ε and h(CZa, b) = h(a, C̄Z̄b) for all a, b ∈ Γ(E) and Z ∈ Γ(T 1,0M).

Remark 3.4
In the case ε = −1 and positive definite metric h, this definition is equivalent to the
definition of a harmonic bundle given in Simpson’s paper [Sim]. Equivalent structures
with metrics of arbitrary signature have been also considered in [Her].

Theorem 3.6 Let (E → M,D,C, C̄, h) be an εharmonic bundle over the εcomplex
manifold (M,J ε), then (E,D, S, g = Reh [ω = Imh]) with SX := CZ + C̄Z̄ for X =
Z + Z̄ ∈ TM and Z ∈ T 1,0M is a metric [symplectic] εtt∗-bundle.

Proof: For λ = cosε(α) + î sinε(α) ∈ S1
ε we have a look at D(λ) :

D
(λ)
X = DX + λCZ + λ̄C̄Z̄ = DX + cosε(α)(CZ + CZ̄) + sinε(α)(̂iCZ − îCZ̄)

= DX + cosε(α)SX + sinε(α)(CJεZ + CJεZ̄)

= DX + cosε(α)SX + sinε(α)SJεX = Dα
X .

Hence we have
Dα = D(λ) (3.4.1)

and Dα is flat if and only if D(λ) is flat.
Further we claim, that S is g-symmetric [ω-symmetric]. With X = Z + Z̄ for Z ∈ T 1,0M
one finds

h(SX ·, ·) = h(CZ + CZ̄ ·, ·) = h(·, CZ + CZ̄ ·) = h(·, SX ·)
and consequently the symmetry of S with respect to

g = Reh

and
ω = Imh.

Finally we show Dg = 0 and Dω = 0

X(h(e, f)± h(f, e)) = (Z + Z̄)(h(e, f)± h(f, e))

= h(DZe, f) + h(e,DZ̄f) + h(DZ̄e, f) + h(e,DZf)

± [h(DZf, e) + h(f,DZ̄e) + h(DZ̄f, e) + h(f,DZe)]

= h((DZ +DZ̄)e, f) + h(e, (DZ̄ +DZ)f)

± [h((DZ +DZ̄)f, e) + h(f, (DZ̄ +DZ)e)]

= h(DXe, f) + h(e,DXf)± h(DXf, e)± h(f,DXe).
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Summarizing we obtain

Xg(e, f) = g(DXe, f) + g(e,DXf)

and
Xω(e, f) = ω(DXe, f) + ω(e,DXf).

This proves, that (E,D, S, g = Reh [ω = Imh]) is a metric [symplectic] εtt∗-bundle.
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Chapter 4

εtt∗-geometry and εpluriharmonic
maps

In this section we are going to state and prove the central results which give the corre-
spondence between εpluriharmonic maps and εtt∗-bundles. In the first section we consider
εtt∗-bundles over simply connected manifolds. The case of non trivial fundamental group
is dicussed in the second section. These results are part of [Sch6, Sch3].The third section
deals with a kind of rigidity result for tt∗-bundles over compact Kähler manifolds with
finite fundamental group. Applying this rigidity result to simply connected compact spe-
cial Kähler manifolds in the fourth section we obtain a special case of Lu’s theorem for
simply connected compact special Kähler manifolds.

4.1 The simply connected case

Let (M,J ε) be an εcomplex manifold and let f be a map f : M → Gi(r). Like in section
2.4.1 one regards the mapping A = f−1df = −2df̃ as a flat connection A : TM → gi(r)
on the bundle E = M × Rr.

Theorem 4.1 (cf. [Sch6, Sch3]) Let (M,J ε) be a simply connected εcomplex manifold.
Let (E,D, S, g [, or] ) be a metric [an oriented unimodular metric] εtt∗-bundle where E has
rank r and M dimension n.
Then the matrix representing the metric g in a Dθ-flat frame of E f : M → Symi

p,q(Rr)

induces an admissible εpluriharmonic map f̃ : M
f→ Symi

p,q(Rr) →̃Si(p, q), where Si(p, q)
carries the metric induced by the bi-inariant pseudo-Riemannian trace-form on gi(r).
Let s′ be another Dθ-flat frame. Then s′ = s·U for a constant matrix and the εpluriharmonic
map associated to S ′ is f ′ = U tfU.

Remark 4.1 (cf. [CS1, Sch6, Sch3])
Before proving the theorem we make some remarks on the condition that the map f̃ is
admissible. Let x ∈M and f̃(x) = uo. If df̃(T 1,0

x M) consist of commuting matrices, then

93
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dL−1
u df̃(T 1,0

x M) is commutative, too. This follows from the fact, that

dLu : ToS
i(p, q) → TuoS

i(p, q) = Tf̃(x)S
i(p, q)

equals
Adu : symi(p, q) = symi(Ip,q) → symi(u · Ip,q) = symi(f̃(x)),

which preserves the Lie-bracket.

Proof: Using remark 3.1.1) it suffices to prove the case θ = π for ε = −1 or θ = 0 for
ε = 1.
We first consider a metric εtt∗-bundle (E,D, S, g).
Let s := (s1, . . . , sr) be a Dθ-flat frame of E (i.e. Ds = −εSs), f the matrix g(sk, sl) and
further Ss the matrix-valued one-form representing S in the frame s. For X ∈ Γ(TM) we
get:

X(f) = Xg(s, s) = g(DXs, s) + g(s,DXs) (4.1.1)

= −ε(g(SXs, s) + g(s, SXs))

= −2εg(SXs, s) = −2εf · Ss(X) = −2εf · Ss
X .

Consequently AX = −2εSs
X . We now prove the εpluriharmonicity using

dDS(X,Y ) = DX(SY )−DY (SX)− S[X,Y ] = 0, (4.1.2)

dDSJε(X,Y ) = DX(SJεY )−DY (SJεX)− SJε[X,Y ] = 0. (4.1.3)

The equation (4.1.3) implies

0 = dDSJε(J εX, Y ) = DJεX(SJεY )− εDY (SX)︸ ︷︷ ︸
(4.1.2)

= ε(DX(SY )−S[X,Y ])

−SJε[JεX,Y ]

= DJεX(SJεY )− εDX(SY ) + εS[X,Y ] − SJε[JεX,Y ].

In local εholomorphic coordinate fields X, Y on M we get in the frame s

J εX(Ss
JεY )− εX(Ss

Y ) + [Ss
X , S

s
Y ]− ε[Ss

JεX , S
s
JεY ] = 0.

Now A = −2εSs gives equation (2.4.9) and proves the εpluriharmonicity of f.
Using AX = −2εSs

X = −2df̃(X), we find the property of the differential, as S ∧ S is of
type (1,1) by the εtt∗-equations, see proposition 3.1.
The last statement is obvious.
In the case of an oriented unimodular metric εtt∗-bundle (E,D, S, g, or) we can take the
frame s to be oriented and of volume 1, with respect to the canonical Dθ-parallel-metric
volume ν. Therefore the map f takes values in Sym1

p,q(Rr) and the above arguments show
the rest.

Theorem 4.2 (cf. [Sch6, Sch3]) Let (M,J ε) be a simply connected εcomplex manifold
and put E = M × Rr.
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Then an εpluriharmonic map f̃ : M → Si(p, q) gives rise to an εpluriharmonic map

f : M
f̃→ Si(p, q)→̃Symi

p,q(Rr) ⊂ Gi(r).

If the map f̃ is admissible, then the map f induces a metric εtt∗-bundle [an oriented
unimodular metric εtt∗-bundle ] (E,D = ∂ − εS, S = εdf̃ , g = 〈f ·, ·〉Rr [, or]) on M where
∂ is the canonical flat connection on E and or is the canonical orientation on E.

Remark 4.2 We observe, that for εRiemannian surfaces M = Σ the condition on the
differential holds, since T 1,0Σ is one-dimensional.

Proof:
Let f̃ : M → Si(p, q) be an εpluriharmonic map. Then by proposition 2.6 we know, that
f : M→̃Symi

p,q(R) ⊂ Gi(r) is εpluriharmonic.
Since E = M × Rr, we can regard sections of E as r-tuples of C∞(M,R)-functions.
In the spirit of section 2.4.1 we regard the one-form A = −2df̃ = f−1df = −2εS with
values in gi(r) as a connection on E. We remind, that the curvature of this connection
vanishes (proposition 2.8).

a) First, we check the conditions on the metric:

Lemma 4.1 The connection D is compatible with the metric g and S is sym-
metric with respect to g.

Proof: This is a direct computation with X ∈ Γ(TM) and v, w ∈ Γ(E) using
the relations (∗) S = −1

2
εf−1df, (∗∗) dfx : TxM → Tf(x)Symi

p,q(Rr) = Symi(Rr)
(compare remark 2.3) and g = 〈f ·, ·〉Rr = 〈·, f ·〉Rr which follows from f : M →
Symi

p,q(Rr) :

X(g(v, w)) = X(〈fv, w〉Rr) = 〈X(f)v, w〉Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

(∗∗)
=

1

2
〈X(f)v, w〉Rr +

1

2
〈v,X(f)w〉Rr + 〈f(∂Xv), w〉Rr + 〈fv, ∂Xw〉Rr

=
1

2
〈f · f−1(X(f))v, w〉Rr +

1

2
〈v, f · f−1(X(f))w〉Rr

+〈f∂Xv, w〉Rr + 〈fv, ∂Xw〉Rr

(∗),(∗∗)
= g(X.v − εSXv, w) + g(v,X.w − εSXw)

= g(DXv, w) + g(v,DXw).

For x ∈M df̃x takes by remark 2.3 values in symi(f(x)). This shows that S = εdf̃
is symmetric with respect to g = 〈f ·, ·〉Rr .

To finish the proof, we have to check the εtt∗-equations. The second εtt∗-equation

−ε[SX , SY ] = [SJεX , SJεY ] (4.1.4)

for S follows from the assumption that the image of T 1,0M under (df̃)Cε is Abelian.
In fact, this is equivalent to [df̃(J εX), df̃(J εY )] = −ε[df̃(X), df̃(Y )] ∀X, Y ∈ TM.

dDS(X,Y ) = [DX , SY ]− [DY , SX ]− S[X,Y ]

= ∂X(SY )− ∂Y (SX)− 2ε[SX , SY ]− S[X,Y ] = 0
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is equivalent to the vanishing of the curvature of A = −2εS interpreted as a con-
nection on E (see proposition 2.8).
Finally one has for εholomorphic coordinate fields X, Y ∈ Γ(TM)

dDSJε(J εX, Y ) = [DJεX , SJεY ]− ε[DY , SX ]

= [∂JεX − εSJεX , SJεY ]− ε[∂Y − εSY , SX ]

= ∂JεX(SJεY )− ε∂Y (SX)− ε[SJεX , SJεY ]− [SX , SY ]

(4.1.4)
= −1

2
ε (∂JεX(AJεY )− ε∂Y (AX))

(2.4.8)
= −1

2
ε (∂JεX(AJεY )− ε∂X(AY )− ε[AX , AY ])

(4.1.4)
= −1

2
ε

(
∂JεX(AJεY )− ε∂X(AY )− 1

2
ε[AX , AY ] +

1

2
[AJεX , AJεY ]

)
(2.4.9)
= 0.

This shows the vanishing of the tensor dDSJε .
It remains to show the curvature equation for D. We observe, that D + εS =
∂ − εS + εS = ∂ and that the connection ∂ is flat, to find

0 = RD+εS
X,Y = RD

X,Y + εdDS(X,Y ) + [SX , SY ]
dDS=0

= RD
X,Y + [SX , SY ].

b) With the same proof as in part a) we get a metric εtt∗-bundle. The orientation is
given by the orientation of E = M × Rr.
It remains to check the condition on the trace of S. This property is clear, since in
this case df̃x takes values in sym1(f(x)) for all x ∈M .

We want to emphasize the last result in case of metric tt∗-bundles with positive definite
metric over a complex manifold (M,J).

Theorem 4.3 Let (M,J) be a simply connected complex manifold and put E = M×Rr.
Then a pluriharmonic map f̃ : M → Si(r, 0) is admissible. Moreover, it induces a second

pluriharmonic map f : M
f̃→ Si(r, 0)→̃Symi

r,0(Rr) ⊂ Gi(r) and a metric εtt∗-bundle [an

oriented unimodular metric εtt∗-bundle] (E,D = ∂ + S, S = −df̃ , g = 〈f ·, ·〉Rr [, or]) on
M where ∂ is the canonical flat connection on E and or is the canonical orientation of
E.

Proof: In the case of signature (r, 0) corollary 2.3 implies that any pluriharmonic map
f̃ : M → Si(r, 0) is admissible as required in theorem 4.2.

In the situation of theorem 4.2 the two constructions are inverse in the following sense:

Proposition 4.1

1. Let (E,D, S, g [, or]) be a metric [an oriented unimodular metric] εtt∗-bundle on
an εcomplex manifold (M,J ε) and let f̃ be the associated εpluriharmonic map con-
structed to a Dθ-flat frame s in theorem 4.1. Then f̃ is admissible and the metric
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[oriented unimodular metric] εtt∗-bundle (M ×Rr, D̃ = ∂ − εS̃, S̃, g̃, [or]) associated
to f̃ in theorem 4.2 is the representation of (E,D, S, g [, or]) in the frame s.

2. Given an εpluriharmonic map f̃ from an εcomplex manifold (M,J ε) to Si(p, q), then
one obtains via theorem 4.2 a metric [an oriented unimodular metric] εtt∗-bundle
(M×Rr, D, S, g [, or]). The εpluriharmonic map associated to this metric εtt∗-bundle
is conjugated to the map f̃ by a constant matrix in Gi(r).

Proof: Using again remark 3.1.1) we can set θ = π for ε = −1 or θ = 0 for ε = 1.

1. The maps f, f̃ and the metric g̃ = 〈f ·, ·〉Rr express the metric g in the frame s.
In the computations of theorem 4.1 and with theorem 4.2 one finds 2S̃ = −εA =
−εf−1df = 2Ss. From 0 = Dθs = Ds+ εSs we obtain that the connection D in the
frame s is just ∂ − εSs = ∂ + A

2
= ∂ − εS̃ = D̃.

2. To find the εpluriharmonic map associated to (M × Rr, D, S, g [, or]) we have to
express the metric g in a Dθ-flat frame s. But Dθ = ∂− εS+ εS = ∂. Hence we can
take s as the standard-basis of Rr and we get f. Every other basis gives a conjugated
result.

4.2 The general case

In this section we are going to transfer the results in the simply connected case to manifolds
with non-trivial fundamental group.

Definition 4.1 Let p : M̃ →M be the universal cover of an εcomplex manifold (M,J ε)
with the pulled back εcomplex structure.
Let (E,D, S) be an εtt∗-bundle, then we define the pulled back εtt∗-bundle of (E,D, S) to
be given by (p∗E, p∗D, p∗S).
Let (E,D, S, g) be a metric εtt∗-bundle, then we define the pulled back metric εtt∗-bundle
of (E,D, S, g) to be given by (p∗E, p∗D, p∗S, p∗g).
Finally, let (E,D, S, g, or) be an oriented unimodular metric εtt∗-bundle, then we de-
fine the pulled back oriented unimodular metric εtt∗-bundle of (E,D, S, g, or) to be given
by (p∗E, p∗D, p∗S, p∗g, p∗or).

Remark 4.3 The pulled back εtt∗-bundles, metric εtt∗-bundles and oriented unimodular
metric εtt∗-bundles are εtt∗-bundles, metric εtt∗-bundles and oriented unimodular metric
εtt∗-bundles respectively, as one checks easily. This motivates the above definition.

Theorem 4.4 Let (M,J ε) be an εcomplex manifold.
Let (E,D, S, g [, or]) be a [an oriented unimodular] metric εtt∗-bundle where E has rank
r and M dimension n and (p∗E, p∗D, p∗S, p∗g [, p∗or]) the corresponding pulled-back [ori-
ented unimodular] metric εtt∗-bundle on the universal cover M̃ of M .
Denote by f ∗ : M̃ → Si(p, q) the εpluriharmonic map obtained from theorem 4.1 in the
p∗Dθ-flat frame p∗s, where s is a Dθ-flat frame and f : M → Si(p, q) the map obtained
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from the representation of g in the frame s. Then f ∗ is a π1(M)-equivariant map (Here
equivariant means by the left-action on M and via the holonomy on Si(p, q).) and the lift
p∗f of f. In other words f is a twisted εpluriharmonic map.

Proof: The equivariance follows, since we have pulled back all structures. If s is Dθ-flat,
p∗s is p∗Dθ-flat, too.
The map f ∗ at x̃ ∈ M̃ with p(x̃) = x is given by

f ∗(x̃) = p∗g(p∗s, p∗s)(x) = gp(x̃)(s ◦ p(x̃), s ◦ p(x̃)) = f(x) = f ◦ p(x̃) = p∗f(x).

Theorem 4.5 Let (M,J ε) be an εcomplex manifold, p : M̃ →M its universal covering
with the pulled back εcomplex structure, also called J ε. Set E = M̃ × Rr.
Let f̃ ∗ : M̃ → Si(p, q) be an admissible εpluriharmonic map, which is equivariant with
respect to a representation ρ : π1(M) → Gi(r) and f ∗ : M̃ → Symi

p,q(Rr) the correspond-

ing map. Then f̃ ∗ induces by theorem 4.2 a [an unimodular oriented] metric εtt∗-bundle
(E,D = ∂− εS, S = εdf̃ ∗, g =< f ∗·, · >Rr) on M̃ where ∂ is the canonical flat connection
on E. This [oriented unimodular] metric εtt∗-bundle induces a [an oriented unimodular]
metric εtt∗-bundle (F,D = ∂− εT, T, h) on M, such that the [unimodular oriented] metric
εtt∗-bundle (E,D = ∂ − εS, S = εdf̃ ∗, g =< f ∗·, · >Rr) is its pull back.

Proof:

a) We want to regard the action of π1(M) on E, given by

(γ,m, v) ∈ π1(M)× E 7→ (γ.m, ρ(γ)v) =: γ.(m, v) ∈ E (4.2.1)

which induces the action

(γ,m,A) ∈ π1(M)×End(E) 7→ (γ.m, ρ(γ)Aρ(γ)−1) =: γ.(m,A) ∈ End(E) (4.2.2)

of π1(M) on End(E). The quotient of E by the action of π1(E) gives a vector bundle
F →M over M.
The equivariance of the map f̃ ∗ : M̃ → S(p, q) means for m ∈ M̃ :

f̃ ∗(γ.m) = ρ(γ)f̃ ∗(m)ρ(γ)−1, (4.2.3)

which implies for X ∈ TmM̃, m ∈ M̃

df̃ ∗γ.m(dγX) = ρ(γ)df̃ ∗m(X)ρ(γ)−1. (4.2.4)

Equation (4.2.3) is the equivariance of g and equation (4.2.4) is the equivariance
of S. Hence they descend to a metric h on F and an endomorphism field T on F,
which is h-symmetric. Since ∂ is π1(M)-invariant, it defines connection on F and
since S is equivariant D = ∂ − εT defines connection on F which preserves h. With
the same argument the family Dθ = D + cosε(θ)T + sinε(θ)TJε defines a family of
connections on F which is flat. Hence (F,D = ∂ − εT, T, h) is a metric εtt∗-bundle
on F over M.

b) One gets the data (F,D = ∂ − εT, T, h) as in part a). The orientation is given by
the orientation of E = M̃ × Rr, since ρ takes values in SL(r).
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4.3 A rigidity result

In [Sch5] we showed a rigidity result, which will be used later to obtain a new proof of
Lu’s theorem [Lu] in the case of simply connected compact special Kähler manifolds.

Theorem 4.6 Let M be a compact Kähler manifold of dimension n with finite fun-
damental group π1(M) (i.e., the universal cover of M is compact). Let (E,D, S, g) be a
metric tt∗-bundle, where E has rank r, with positive definite metric g. Then (E,D, S, g)
is trivial, i.e. S = 0, D is flat and g Dθ-parallel.

Proof: Pulling back all structures to the universal cover of M we suppose that M is
simply connected. S = 0 if and only if the same holds for its pull back. Let s be a Dπ-flat
frame of E. The associated pluriharmonic map f̃ : M → GL(r,R)/O(r) obtained from
theorem 4.1 is constant by corollary 2.2. Hence, the representing matrix Gs of g in the
frame s is constant. We recall the relation between the representation Ss of S in the
frame s with Gs which we found in equation (4.1.1):

X(Gs) = 2Gs · Ss
X .

This shows Ss = 0 and consequently S = 0 and Dθ = D for all θ ∈ R. Hence D is flat
and Dθg = 0.

4.4 A special case of Lu’s theorem

As a corollary of our rigidity result, theorem 4.6, we obtain Lu’s theorem [Lu] for simply
connected compact manifolds. Another proof of Lu’s theorem was given in [BC1]. The
authors immersed any simply connected special Kähler manifold Mn as a parabolic affine
hypersphere into Rn+1 and obtained Lu’s theorem from a result of Calabi and Pogorelov.

Theorem 4.7 Let (M,J, g,∇) be a simply connected compact special Kähler manifold
of dimension n. Then M is a point.

Proof: Using theorem 3.5 the data (TM,D = ∇ − S, S = 1
2
J∇J, g) defines a metric

tt∗-bundle. Then theorem 4.6 yields S = 0 and hence D = ∇. From Dg = 0 and the
torsion-freeness of ∇ it follows that D is the Levi-Civita connection. Therefore M is
Levi-Civita flat, compact and simply connected, i.e. M is a point.
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Chapter 5

The εpluriharmonic maps associated
to the above examples of εtt∗-bundles

In this chapter we analyze and apply the correspondence between εtt∗-bundles and εplu-
riharmonic maps for the classes of solutions which were discussed in chapter 3. In addi-
tion we associate generalized εpluriharmonic maps to the geometries with non integrable
εcomplex structures.

5.1 Solutions on the tangent bundle

This subsection is also subject of [Sch7, Sch8].

5.1.1 The classifying map of a flat nearly εKähler manifold

In this section we consider simply connected almost εhermitian manifolds (M,J ε, g) en-
dowed with a flat metric connection ∇ such that (∇, J ε) satisfies the nearly εKähler
condition.
In particular, simply connected flat nearly εKähler manifolds (M2n, J ε, g), i.e. nearly
εKähler manifolds (M,J ε, g) with flat Levi-Civita connection ∇g are of this type.
Since (M, g,∇) is simply connected and flat, we may identify by fixing a ∇-parallel frame
s0 its tangent bundle TM with (M × V, 〈·, ·〉), where V = Cn

ε = (R2n, jε
0) is endowed with

the standard scalar product 〈·, ·〉 of the same hermitian signature (p, q) as the hermitian
metric g for ε = −1 and of symmetric signature (n, n) for ε = 1.
The compatible εcomplex structure J ε defines via this identification a map

J ε : M → Jε(V, 〈·, ·〉),

where Jε(V, 〈·, ·〉) is the set of εcomplex structures on V which are compatible with 〈·, ·〉
and the orientation of V = R2n. The differential geometry of this set was discussed in
section 2.5.

Theorem 5.1 Let (M,J ε, g) be a simply connected almost εhermitian manifold endowed
with a flat metric connection ∇ such that (∇, J ε) satisfies the nearly εKähler condition,
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then (TM,D = ∇ − S, S = −1
2
εJ ε(∇J ε), ω = g(J ε·, ·)) defines a symplectic εtt∗-bundle

and the matrix of J ε in a Dθ-flat frame sθ = (sθ
i ) defines an S1

ε -pluriharmonic map

J̃ ε
θ

: M → Jε(V, 〈·, ·〉) → SO0(2p, 2q)/U
ε(p, q).

In particular, given a nice connection D on M the map

J̃ ε
θ

: (M,J ε, D) → SO0(2p, 2q)/U
ε(p, q)

is εpluriharmonic.

Proof: We observe Dθg = 0 since ∇g = 0, D0 = ∇ and Sθ
X := cosε(θ)SX + sinε(θ)SJεX

is skew-symmetric with respect to g. Therefore we can choose for each θ ∈ R the Dθ-flat
frame sθ orthonormal, such that sθ=0 = s0. This yields using DJ ε = 0 (compare theorem
3.1 and lemma 3.1)

Xg(J εsθ
i , s

θ
j) = g(Dθ

X(J εsθ
i ), s

θ
j) = g((Dθ

XJ
ε)sθ

i , s
θ
j) = g([Sθ

X , J
ε]sθ

i , s
θ
j) = −2g(J εSθ

Xs
θ
i , s

θ
j).

Let Ssθ
and J εsθ

be the representation of S and J ε in the frame sθ, then

(J εsθ

)−1X(J εsθ

) = −2Ssθ

or
dJ̃ ε

θ
= (sθ)−1 ◦ Sθ ◦ sθ,

where the frame sθ is seen as a map sθ : M × V → TM. This shows for X ∈ Γ(TM)

dJ̃ ε
θ
(X) = (sθ)−1 ◦ Sθ

X ◦ (sθ) = (sθ)−1 ◦ SRθX ◦ (sθ)

= ((sθ)−1s0) ◦ dJ̃ ε(RθX) ◦ ((s0)−1sθ)

= Ad−1
αθ
◦ dJ̃ ε(RθX) = Φ−1

θ ◦ dJ̃ ε(RθX),

where αθ = (sθ)−1s0 is the frame change from s0 to sθ and Φθ = Adαθ
which is parallel

with respect to the Levi-Civita connection on SO0(2p, 2q)/U
ε(p, q). This shows, that J̃ ε

θ

is S1
ε -pluriharmonic. Given a nice connection D on M theorem 2.2 shows that J̃ ε

θ
is

εpluriharmonic.

We emphasize the nearly εKähler setting:

Corollary 5.1 Let (M,J ε, g) be a flat nearly εKähler manifold and (TM,∇ = ∇g −
S, S = −1

2
εJ ε(∇J ε), ω(·, ·) = g(J ε·, ·)) the associated symplectic εtt∗-bundle, then the

matrix of J ε in a Dθ-flat frame sθ = (sθ
i ) defines an S1

ε -pluriharmonic map J̃ ε
θ

: M →
Jε(V, 〈·, ·〉) → SO0(2p, 2q)/U

ε(p, q).

For nearly εKähler manifolds we have more precise informations about the map J̃ ε
θ
:

Theorem 5.2 Let (M,J ε, g) be a flat nearly εKähler manifold and (TM,∇ = ∇g −
S, S = −1

2
εJ ε(∇J ε), ω(·, ·) = g(J ε·, ·)) the associated symplectic εtt∗-bundle. Then the

connection ∇ is nice and the matrix of J ε in a Dθ-flat frame sθ = (sθ
i ) defines an

εpluriharmonic map J̃ ε
θ

: (M,J ε, ∇̄) → Jε(V, 〈·, ·〉) → SO0(2p, 2q)/U
ε(p, q). Moreover,

the map J̃ ε
θ

is harmonic.
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Proof: First we show, that ∇ is nice. Therefore we rewrite the Nijenhuis tensor

NJε(X, Y ) = (∇JεXJ
ε)Y − (∇JεY J

ε)X − J ε(∇XJ
ε)Y + J ε(∇Y J

ε)X

= −4J ε(∇XJ
ε)Y,

where the second equality follows from the nearly εKähler condition and by

(∇JεXJ
ε)Y = −(∇Y J

ε)J εX = J ε(∇Y J
ε)X = −J ε(∇XJ

ε)Y.

But the torsion of ∇ is by equation (1.3.3)

T∇(X, Y ) = εJ ε(∇XJ
ε)Y.

This shows that ∇ is nice.
By corollary 5.1 the map J̃ ε

θ
is S1

ε -pluriharmonic. Since ∇ is nice, theorem 2.2 implies

that J̃ ε
θ

is εpluriharmonic. From the skew-symmetry of S and proposition 2.5 we obtain

that J̃ ε
θ

is harmonic.

5.2 The dual Gauß map of a special εKähler manifold

with torsion

In this subsection we consider a simply connected almost εhermitian manifold (M,J ε, g)
with a flat connection ∇, such that (∇, J ε) is special and the two-form ω = g(J ε·, ·) is
∇-parallel.
Using the flat connection ∇ we identify by fixing a ∇-parallel symplectic frame s0 the
tangent space (TM,ω) with (M×V, ω0) where V = R2n and ω0 is its standard symplectic
form.
The compatible εcomplex structure J ε is seen as a map

J ε : M → Jε(V, ω0),

where Jε(V, ω0) is the set of εcomplex structures on V which are compatible with ω0.
The differential geometry of this set was discussed in section 2.5.
Recall, that under the above assumptions (TM,D = ∇− S, S = −1

2
εJ ε(∇J ε), g) defines

a metric εtt∗-bundle. Analogous to the last section we obtain:

Theorem 5.3 Let (M,J ε, g) be a simply connected almost εhermitian manifold with
a flat connection ∇, such that (∇, J ε) is special and the two-form ω = g(J ε·, ·) is ∇-
parallel and let (TM,D = ∇ − S, S = −1

2
εJ ε(∇J ε), g) be the associated metric εtt∗-

bundle. Then the matrix of J ε in a Dθ-flat frame sθ = (sθ
i ) defines an S1

ε -pluriharmonic

map J̃ ε
θ

: M → Jε(V, ω0) → Sp(R2n)/U ε(p, q).

In particular, given a nice connection D on (M,J ε) then the map J̃ ε
θ

: (M,J ε, D) →
Sp(R2n)/U ε(p, q) is εpluriharmonic.
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Proof: Since D0ω = ∇ω = (D + S)ω = 0 and Sθ
X := cosε(θ)SX + sinε(θ)SJεX is skew-

symmetric with respect to ω, we obtain Dω = 0 and Dθω = 0. Therefore we can choose
for each θ ∈ R the Dθ-parallel frame sθ as a symplectic frame, such that sθ=0 = s0. This
yields using DJ ε = 0 (compare theorem 3.1 and lemma 3.1)

Xω(J εsθ
i , s

θ
j) = ω(Dθ

X(J εsθ
i ), s

θ
j) = ω((Dθ

XJ
ε)sθ

i , s
θ
j) = ω([Sθ

X , J
ε]sθ

i , s
θ
j) = −2ω(J εSθ

Xs
θ
i , s

θ
j).

Let Ssθ
and J εsθ

be the representation of S and J ε in the frame sθ, then

(J εsθ

)−1X(J εsθ

) = −2Ssθ

or
dJ̃ ε

θ
= (sθ)−1 ◦ Sθ ◦ sθ,

where the frame sθ is seen as a map sθ : M × V → TM. This shows for X ∈ Γ(TM)

dJ̃ ε
θ
(X) = (sθ)−1 ◦ Sθ

X ◦ (sθ) = (sθ)−1 ◦ SRθX ◦ (sθ)

= ((sθ)−1s0) ◦ dJ̃ ε(RθX) ◦ ((s0)−1sθ)

= Ad−1
αθ
◦ dJ̃ ε(RθX) = Φ−1

θ ◦ dJ̃ ε(RθX),

where αθ = (sθ)−1s0 is the frame change from s0 to sθ and Φθ = Adαθ
which is parallel

with respect to the Levi-Civita connection on Sp(R2n)/U ε(p, q). In other words we have
found an associated family. Given a nice connection D on (M,J ε) theorem 2.2 shows that

J̃ ε
θ

is εpluriharmonic.

If the above εtt∗-bundle comes from a special εKähler manifold we have the

Theorem 5.4 Let (M,J ε, g,∇) be a special εKähler manifold and (TM,D = ∇−S, S =
−1

2
εJ ε∇J ε, g) the associated metric εtt∗-bundle, then the matrix of J ε in a Dθ-flat frame

sθ = (sθ
i ) defines an εpluriharmonic map J̃ ε

θ
: (M,J ε, D) → Sp(R2n)/U ε(p, q). Moreover,

J̃ ε
θ

is harmonic.

Proof: By theorem 5.3 the map J̃ ε
θ

is S1
ε -pluriharmonic. In the special εKähler case we

know that D is the Levi-Civita connection and hence torsion-free. The εcomplex structure

J ε is integrable and so NJε = 0. This means, that D is nice and theorem 2.2 shows that J̃ ε
θ

is εpluriharmonic. Since S is trace-free we get from proposition 2.5 that J̃ ε
θ

is harmonic.

We remark, that the last result can also be obtained by observing, that the map J̃ ε
θ

is
εpluriharmonic and that the manifold M is εKähler, as εpluriharmonic maps from εKähler
manifolds are harmonic.

5.3 The εpluriharmonic map in the case of a special

εKähler manifold

The results of this subsection were published in [CS1] for ε = −1 and in [Sch3] for ε = 1.
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5.3.1 The Gauß maps of a special Kähler manifold

Let (M,J, g,∇) be a special Kähler manifold of complex dimension n = k + l and of
hermitian signature (k, l), i.e. g has symmetric signature (2k, 2l). Let (M̃, J, g,∇) be its
universal covering with the pullback special Kähler structure, which is again denoted by
(J, g,∇). According to Theorem 1.2, there exists a (holomorphic) Kählerian Lagrangian
immersion φ : M̃ → V = T ∗Cn = C2n, which is unique up to a complex affine transfor-
mation of V with linear part in Sp(R2n). We consider the dual Gauß map of φ

L : M̃ → Grk,l
0 (C2n) , p 7→ L(p) := Tφ(p)M̃ := dφpTpM̃ ⊂ V (5.3.1)

into the Grassmannian of complex Lagrangian subspaces W ⊂ V of signature (k,l), i.e.
such that the restriction of γ to W is a hermitian form of signature (k, l). The map
L : M̃ → Grk,l

0 (C2n) is in fact the dual of the Gauß map

L⊥ : M̃ → Grl,k
0 (C2n) , p 7→ L(p)⊥ = L(p) ∼= L(p)∗ . (5.3.2)

Here L(p)⊥ stands for the γ-orthogonal complement of L(p) and the isomorphism L(p) ∼=
L(p)∗ is induced by the symplectic form Ω on V = L(p)⊕ L(p).

Proposition 5.1

(i) The dual Gauß map L : M̃ → Grk,l
0 (C2n) is holomorphic.

(ii) The Gauß map L⊥ : M̃ → Grl,k
0 (C2n) is anti-holomorphic.

Proof: The holomorphicity of L follows from that of φ. Part (ii) follows from (i), since
L⊥ = L : p 7→ L(p).

The Gauß maps L and L⊥ induce Gauß maps

LM : M → Γ \Grk,l
0 (C2n) (5.3.3)

L⊥M : M → Γ \Grl,k
0 (C2n) (5.3.4)

into the quotient of the Grassmannian by the holonomy group Γ = Hol(∇) ⊂ Sp(R2n) of
the flat symplectic connection ∇.

Corollary 5.2

(i) The dual Gauß map LM : M → Γ \Grk,l
0 (C2n) of M is holomorphic.

(ii) The Gauß map L⊥M : M → Γ \Grl,k
0 (C2n) is anti-holomorphic.

If Γ ⊂ Sp(R2n) acts properly discontinuously on Grk,l
0 (C2n) then Γ \ Grk,l

0 (C2n) is a
locally symmetric space of pseudo-hermitian type.
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5.3.2 The local expression of the dual Gauß map

We shall now describe the dual Gauß map L in local holomorphic coordinates in neigh-
borhoods of p0 ∈ M̃ and L(p0) ∈ Grk,l

0 (C2n). Applying a transformation from Sp(R2n), if
necessary, we can assume that L(p0) ∈ U0, where U0 was defined in section 2.5.2. We put
U := L−1(U0). The open subset U ⊂ M̃ is a neighborhood of p0.

Let φ : M̃ → T ∗Cn be the Kählerian Lagrangian immersion. It defines a system of
local (special) holomorphic coordinates

ϕ := π(z) ◦ φ|U : U
∼→ U ′ ⊂ Cn , p 7→ (z1(φ(p)), · · · , zn(φ(p))) (5.3.5)

with π(z) as defined in section 2.5.2.
This yields the following commutative diagram

U
L−→ U0

ϕ ↓ ↓ C
U ′ LU−→ Symk,l(Cn) ,

(5.3.6)

where the vertical arrows are holomorphic diffeomorphisms and LU at z = (z1, . . . zn) is
given by

LU(z) = (Fij(z)) :=

(
∂2F (z)

∂zi∂zj

)
. (5.3.7)

Here F = F (z) is a holomorphic function on U ′ ⊂ Cn, called the prepotential, determined,
up to a constant, by the equations

wj(φ(p)) =
∂F

∂zj

∣∣∣∣
z(φ(p))

. (5.3.8)

Summarizing, we obtain the following proposition:

Proposition 5.2 The dual Gauß map L has the following coordinate expression

LU = C ◦ L ◦ ϕ−1 = (Fij) , (5.3.9)

where ϕ : U → Cn is the (special) holomorphic chart of M̃ associated to the Kählerian
Lagrangian immersion φ, see equation (5.3.5), and C : U0 → Sym(Cn) is the holomorphic
chart of Grk,l

0 (C2n) constructed in equation (2.5.10).

5.3.3 The special Kähler metric in affine coordinates

As before, let (M,J, g,∇) be a special Kähler manifold of hermitian signature (k, l),
k + l = n = dimCM , and (M̃, J, g,∇) its universal covering. As in chapter 4, we shall
now consider the metric g in a∇-parallel frame. Such a frame is provided by the Kählerian
Lagrangian immersion φ : M̃ → V . In fact, any point p ∈ M̃ has a neighborhood in which
the functions x̃i := Re zi ◦ φ, ỹi := Rewi ◦ φ, i = 1, . . . , n, form a system of local ∇-affine
coordinates. We recall that the ∇-parallel Kähler form is given by ω = 2

∑
dx̃i ∧ dỹi.



The εpluriharmonic maps associated to the above examples of εtt∗-bundles 107

This implies that the globally defined one-forms
√

2dx̃i,
√

2dỹi constitute a ∇-parallel
unimodular frame

(ea)a=1,...,2n = (e1, . . . , e2n) := (
√

2dx̃1, . . . ,
√

2dx̃n,
√

2dỹ1, . . . ,
√

2dỹn) (5.3.10)

of T ∗M̃ with respect to the metric volume form ν = (−1)n+1 ωn

n!
= 2ndx̃1 ∧ . . . ∧ dỹn. The

dual frame (ea) of TM̃ is also ∇-parallel and unimodular. The metric defines a smooth
map

G : M̃ → Sym1
2k,2l(R2n) = {A ∈ Mat(2n,R)|At = A , detA = 1 has signature (2k, 2l)}

(5.3.11)
by

p 7→ G(p) := (gab(p)) := (gp(ea, eb)) . (5.3.12)

We will call G = (gab) the fundamental matrix of φ. As before, we identify

Sym1
2k,2l(R2n) = SL(2n,R)/SO(2k, 2l) . (5.3.13)

This is a pseudo-Riemannian symmetric space. For conventional reasons, in this section,
SO(2k, 2l) ⊂ SL(2n,R) is defined as the stabilizer of the symmetric matrix

Ek,l
o := diag(1k,−1l,1k,−1l) . (5.3.14)

The fundamental matrix induces a map

GM : M → Γ \ Sym1
2k,2l(R2n) (5.3.15)

into the quotient of Sym1
2k,2l(R2n) by the action of the holonomy group Γ = Hol(∇) ⊂

Sp(R2n) ⊂ SL(2n,R). The target Γ \ Sym1
2k,2l(R2n) is a pseudo-Riemannian locally sym-

metric space, provided that Γ acts properly discontinuously.

Theorem 5.5 The fundamental matrix

G : M̃ → Sym1
2k,2l(R2n) = SL(2n,R)/SO(2k, 2l) (5.3.16)

takes values in the totally geodesic submanifold

i : Grk,l
0 (C2n) = Sp(R2n)/U(k, l) ↪→ SL(2n,R)/SO(2k, 2l) (5.3.17)

and coincides with the dual Gauß map L : M̃ → Grk,l
0 (C2n) in the sense that

G = i ◦ L.

Proof: The proof will follow from a geometric description of the inclusion i. To any
Lagrangian subspace W ∈ Grk,l

0 (C2n) we can associate the scalar product

gW := Re γ|W

of signature (2k, 2l) on W ⊂ V . The projection onto the real points

Re : V = T ∗Cn → T ∗Rn = R2n , v 7→ Re v =
1

2
(v + v) (5.3.18)
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induces an isomorphism of real vector spaces W
∼→ R2n the inverse of which we denote

by ψ = ψW .
We claim that

i(W ) = ψ∗gW =: (gW
ab ) =: GW . (5.3.19)

To check this, it is sufficient to prove that the map

Grk,l
0 (C2n) 3 W 7→ GW ∈ Sym1

2k,2l(R2n) (5.3.20)

is Sp(R2n)-equivariant and maps the base point Wo with stabilizer U(k, l), see (2.5.2),
to the base point Ek,l

o with stabilizer SO(2k, 2l), see (5.3.14). Let us verify that indeed
GWo = Ek,l

o .

Using the definition of γ, one finds that in the basis of V given by

(e±j ) :=

(
∂

∂zj
± i

∂

∂wj

)
(5.3.21)

the only non-vanishing components of γ are γ(e±j , e
±
j ) = ±2. This shows that gWo =

Re γ|Wo is represented by the matrix 2Ek,l
o with respect to the basis

(e+1 , . . . , e
+
k , e

−
1 , . . . , e

−
l , ie

+
1 , . . . , ie

+
k , ie

−
1 , . . . , ie

−
l ) . (5.3.22)

In order to calculate GWo = (gWo
ab ) = (g(ψea, ψeb)), we need to pass from the real basis

(5.3.22) of Wo to the real basis (ψea).

Recall that the real structure κ is complex conjugation with respect to the coordinates
(zi, wi). This implies that

ψ−1(e+j ) =
∂

∂xj
=
√

2ej , ψ
−1(ie+j ) = − ∂

∂yj

= −
√

2en+j , j = 1, . . . , k,(5.3.23)

ψ−1(e−j ) =
∂

∂xj
=
√

2ej , ψ
−1(ie−j ) =

∂

∂yj

=
√

2en+j , j = 1, . . . , l (5.3.24)

and shows that GWo = Ek,l
o .

It remains to check the equivariance of W 7→ GW = ψ∗Wg. Using the definition of the
map ψ = ψW : R2n → W , one easily checks that, under the action of Λ ∈ Sp(R2n), ψ
transforms as

ψΛW = Λ ◦ ψW ◦ Λ−1|R2n . (5.3.25)

From this we deduce the transformation law of GW :

GΛW = ψ∗ΛWg
ΛW = (Λ−1)∗ψ∗W Λ∗gΛW = (Λ−1)∗ψ∗Wg

W = (Λ−1)∗GW = Λ ·GW . (5.3.26)

The above claim (5.3.19), together with the fact that

gL(p) = gp and GL(p) = G(p) (5.3.27)

for all p ∈ M̃ , implies that
i(L(p)) = GL(p) = G(p) . (5.3.28)



The εpluriharmonic maps associated to the above examples of εtt∗-bundles 109

Corollary 5.3 The fundamental matrix

G : M̃ → Sym1
2k,2l(R2n) (5.3.29)

is pluriharmonic.

Proof: The map G = i◦L is the composition of the holomorphic map L : M̃ → Grk,l
0 (C2n)

with the totally geodesic inclusion Grk,l
0 (C2n) ⊂ Sym1

2k,2l(R2n). The composition of a
holomorphic map with a totally geodesic map is pluriharmonic.

5.3.4 The Gauß maps of a special para-Kähler manifold

Now we are going to introduce the Gauß maps of a special para-Kähler manifold, which
are the para-complex analogue of the Gauß maps introduced in section 5.3.2 and were
introduced in [Sch3].
Let (M, τ, g,∇) be a special para-Kähler manifold of para-complex dimension n. Conse-
quently the metric g has signature (n, n). Let (M̃, τ, g,∇) be the universal cover of M with
the pull-back special para-Kähler structure, which we denote again by (τ, g,∇). Accord-
ing to Theorem 1.3, there exists a (para-holomorphic) Kählerian Lagrangian immersion
Φ : M̃ → V = C2n = T ∗Cn, which is unique up to an affine transformation of V with
linear part in Aut(V,Ω, ·̄) = Sp(R2n).
We consider the dual Gauß map of φ, i.e.

L : M̃ → Grn
0 (C2n), p 7→ L(p) := Tφ(p)M̃ := dφpTpM̃ ⊂ V

into the Grassmannian Grn
0 (C2n) of para-complex Lagrangian subspaces W ⊂ V of sig-

nature (n, n), i.e. gV = Reγ restricted to W has signature (n, n). The map L : M̃ →
Grn

0 (C2n) is in fact the dual of the Gauß map

L⊥ : M̃ → Grn
0 (C2n), p 7→ L(p)⊥ = L̄(p) ∼= L(p)∗.

With L(p)⊥ we mean the γ-orthogonal complement of L(p) and the isomorphism L(p)⊥ ∼=
L(p)∗ is induced by the symplectic form Ω on V = L(p)⊕ L̄(p). The structure of a para-
complex manifold on Grn

0 (C2n) was introduced in section 2.5.3.

Proposition 5.3

(i) The dual Gauß map L : M̃ → Grn
0 (C2n) is para-holomorphic.

(ii) The Gauß map L⊥ : M̃ → Grn
0 (C2n) is anti-para-holomorphic.

Proof: The para-holomorphicity of L follows from that of φ and part (ii) follows from
L⊥ = L̄ : p 7→ L̄(p).

The Gauß maps L and L⊥ induce Gauß maps

L : M → Γ \Grn
0 (C2n),

L⊥ : M → Γ \Grn
0 (C2n)

into the quotient of the Grassmannian by the holonomy group Γ ⊂ Hol(∇) ⊂ Sp(R2n) of
the flat symplectic connection ∇. This yields the
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Corollary 5.4

(i) The dual Gauß map LM : M → Γ \Grn
0 (C2n) is para-holomorphic.

(ii) The Gauß map L⊥M : M → Γ \Grn
0 (C2n) is anti-para-holomorphic.

If Γ ⊂ Sp(R2n) acts properly discontinuously on Grn
0 (C2n) then Γ \Grn

0 (C2n) is a locally
symmetric space and a para-Kähler manifold.

5.3.5 The local expression of the dual Gauß map

We now describe the dual Gauß map L in local para-holomorphic coordinates of p0 ∈ M̃
and L(p0) ∈ Grn

0 (C2n). Utilizing a transformation of Sp(R2n), if necessary, we can assume
L(p0) ∈ U0. For the definition of U0 we refer to section 2.5.3. We put U := L−1(U0). The
set U ⊂ M̃ is an open neighborhood of p0.
Let φ : M̃ → T ∗Cn be the para-Kählerian Lagrangian immersion. It defines a system of
local (special) para-holomorphic coordinates

ϕ := π(z) ◦ φ|U : U →̃U ′ ⊂ Cn, p 7→ (z1(φ(p)), . . . , zn(φ(p)), (5.3.30)

where π(z) was introduced in section 2.5.3.
This means that we have the following commutative diagram

U
L−→ U0

ϕ ↓ ↓ C
U ′ LU−→ Symn,n(Cn) ,

(5.3.31)

where the vertical arrows are para-holomorphic diffeomorphisms and LU at z = (z1, . . . , zn)
is given by

LU(z) = (Fij(z)) :=

(
∂2F (z)

∂zi∂zj

)
. (5.3.32)

Here F (z) is a para-holomorphic function on U ′ ⊂ Cn, called prepotential (see [CMMS]),
which is up to a constant determined by the equations

wj((φ(p)) =
∂F

∂zj

∣∣∣∣
z(φ(p))

. (5.3.33)

Summarizing, we obtain the proposition:

Proposition 5.4 The dual Gauß map L has the following coordinate expression

LU = C ◦ L ◦ ϕ−1 = (Fij) , (5.3.34)

where ϕ : U → Cn is the (special) para-holomorphic chart of M̃ associated to the para-
Kählerian Lagrangian immersion φ, see equation (5.3.30), and C : U0 → Symn,n(Cn) is
the para-holomorphic chart of Grn

0 (C2n) constructed in equation (2.5.18).
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5.3.6 The special para-Kähler metric in an affine frame

In this section we show that the para-pluriharmonic map associated to a para-Kähler
manifold coincides with the dual Gauß map.
As above, let (M, τ, g,∇) be a special para-Kähler manifold of dimension n = dimCM and
(M̃, τ, g,∇) be its universal covering. Like in chapter 4 we now consider the metric g in a
∇-parallel frame. Such a frame is provided by the para-Kählerian Lagrangian immersion
φ : M̃ → V. In fact, an arbitrary point p ∈ M̃ has a neighborhood in which the functions
x̃i := Re zi◦φ and ỹi := Rewi◦φ, i = 1, . . . , n form a system of local ∇-affine coordinates.
We recall that the ∇-parallel Kähler form is given by ω = 2

∑
dx̃i ∧ dỹi. Therefore the

globally defined one-forms
√

2dx̃i and
√

2dỹi constitute a ∇-parallel unimodular frame

(ea)a=1,...,2n := (
√

2dx̃1, . . . ,
√

2dx̃n,
√

2dỹ1, . . . ,
√

2dỹn) (5.3.35)

of T ∗M̃ with respect to the metric volume form ν = (−1)n+1ωn/n! = 2ndx̃1 ∧ . . . ∧ dỹn.
The dual frame ea of TM̃ is also ∇-parallel and unimodular. The metric g defines a
smooth map

G : M̃ → Sym1
n,n(R2n) = {A ∈ Mat(2n,R)|At = A, det(A) = (−1)n of signature (n, n)}

by
p 7→ G(p) = (gab(p)) := (gp(ea, eb)). (5.3.36)

We call G = (gab) the fundamental matrix of φ. As before, we have the identification

Sym1
n,n(R2n) = SL(2n,R)/SO(n, n)

of Sym1
n,n(R2n) with a pseudo-Riemannian symmetric space.

The group SO(n, n) ⊂ SL(2n,R) is in this section considered as the stabilizer of the
symmetric matrix

En
0 = diag(−1n,1n). (5.3.37)

The fundamental matrix induces a map

GM : M → Γ \ Sym1
n,n(R2n)

into the quotient of Sym1
n,n(R2n) by the action of the holonomy group Γ = Hol(∇) ⊂

Sp(R2n) ⊂ SL(2n,R). The target Γ \ Sym1
n,n(R2n) is a pseudo-Riemannian locally sym-

metric space, provided that Γ acts properly discontinuously.

Theorem 5.6 The fundamental matrix

G : M̃ → Sym1
n,n(R2n) = SL(2n,R)/SO(n, n) (5.3.38)

takes values in the totally geodesic submanifold

i : Grn
0 (C2n) = Sp(R2n)/Uπ(Cn) ↪→ SL(2n,R)/SO(n, n)

and coincides with the dual Gauß map L : M̃ → Grn
0 (C2n) in the sense that

G = i ◦ L.
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Proof: The proof follows from a geometric interpretation of the inclusion i. To any La-
grangian subspace W ∈ Grn

0 (C2n) we associate the scalar product

gW := Re γ|W

of signature (n, n) on W ⊂ V. The projection onto the real points

Re : V = T ∗Cn 7→ T ∗Rn = R2n, v 7→ Re v =
1

2
(v + v̄) (5.3.39)

induces an isomorphism of real vector spaces W→̃R2n with inverse ψ = ψW .
We claim that

i(W ) = ψ∗Wg =: (gW
ab ) =: GW . (5.3.40)

To check the claim, we have to show the Sp(R2n)-equivariance of the map

Grn
0 (C2n) 3 W 7→ GW ∈ Sym1

n,n(R2n)

and that it maps the base point Wo, see equation (2.5.3), to En
0 (equation (5.3.37)).

By the definition of γ we find for the basis

e±j :=
∂

∂zj
± e

∂

∂wj

(5.3.41)

of V that the only non-vanishing components of γ are γ(e±j , e
±
j ) = ∓2. This shows that

gWo is represented by the matrix 2En
0 with respect to the real basis

(e+1 , . . . , e
+
n , e e

+
1 , . . . , e e

+
n ). (5.3.42)

In order to calculate GWo = (gWo
ab ) = (g(ψea, ψeb)), we need to pass from the real basis

(5.3.42) to the real basis (ψea) of Wo.
Recall that the real structure is the para-complex conjugation with respect to the coor-
dinates (zi, wi). This implies that

ψ−1(e+j ) =
∂

∂xj
=
√

2ej, ψ−1(e e+
j ) =

∂

∂yj
=
√

2en+j, j = 1, . . . , n, (5.3.43)

ψ−1(e−j ) =
∂

∂xj
=
√

2ej, ψ−1(e e−j ) = − ∂

∂yj
= −

√
2en+j, j = 1, . . . , n. (5.3.44)

This shows that GWo = En
0 .

It remains to show the equivariance of W 7→ GW = ψ∗Wg. Using the definition of the
map ψ = ψW : R2n → W , one easily checks that, under the action of Λ ∈ Sp(R2n), ψ
transforms as

ψΛW = Λ ◦ΨW ◦ Λ−1
|R2n . (5.3.45)

This implies the transformation law for GW :

GΛW = ψ∗ΛWg
ΛW = (Λ−1)∗ψ∗W Λ∗gΛW = (Λ−1)∗ψ∗Wg

W = (Λ−1)∗GW = Λ ·GW . (5.3.46)

The above claim (5.3.40) and the fact

gL(p) = gp and GL(p) = G(p) (5.3.47)

for all p ∈ M̃ imply
i(L(p)) = GL(p) = G(p). (5.3.48)
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Corollary 5.5 The fundamental matrix G : M̃ → Sym1
n,n(R2n) is para-pluriharmonic.

Proof: In fact, G = i◦L is the composition of a para-holomorphic map L : M̃ → Grn
0 (C2n)

with the totally geodesic inclusion Grn
0 (C2n) ⊂ Sym1

n,n(R2n). The composition of a para-
holomorphic map with a totally geodesic one is para-pluriharmonic.

5.4 Variations of εHodge structures

5.4.1 The period map of a variation of εHodge structures

Like period domains describe εHodge structures, εholomorphic maps into period domains
describe variations of εHodge structures, in the sense of the following proposition which
is in the complex case due to Griffiths. We only consider the simply connected case:

Proposition 5.5 Let (M,J ε) be a simply connected εcomplex manifold and G/V the
period domain classifying polarized εHodge structures of given weight and εHodge numbers,
then giving a variation of εHodge structures is equivalent to giving an εholomorphic map
from M to G/V which satisfies the Griffiths transversality condition. Such maps are called
period maps.

The following result is known for strongly polarized complex variations of Hodge struc-
tures and will be generalized for variations of εHodge structures of odd weight later in
this work.

Theorem 5.7 (cf. [CMP] Theorem 14.4.1) Let f : M → G/V be a period mapping and
π : G/V → G/K, as defined in section 2.7, the canonical map to the associated locally
symmetric space. The π ◦ f is pluriharmonic.

5.4.2 The period map of a variation of εHodge structures from
the viewpoint of εtt∗-geometry

Let (E,∇, F p) be a variation of εHodge structures of odd weight w over the εcomplex
base manifold (M,J ε) endowed with a polarization b where E has rank r and where fp =
dimFp. Denote by (E,D, S, g) the corresponding εtt∗-bundle constructed in proposition
3.8. We suppose, that M is simply connected.

Like in chapter 4 we examine the metric g in a D0 = ∇-parallel frame s of E. The
metric g defines a smooth map

G : M → Symp,q(Rr) = {A ∈ Mat(Rr) |A = At and A has signature (p, q)}. (5.4.1)

In the complex case (p, q) = (2k, 2l) is the symmetric signature of g. We remark that
for a variation of para-Hodge structures the metric g is forced to have split signature
(p, q) = (n, n) with n = 1

2
dimRH.
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The map G will be called the fundamental matrix of the variation of εHodge structures
(E,∇, F p) and as above Symp,q(Rr) is identified with the pseudo-Riemannian symmetric
space GL(r,R)/O(p, q).

We recall that for odd weight each fibre of E has the structure of a symplectic vector
space and consequentely it holds rkRE = r = 2n ∈ 2N.

Theorem 5.8 Let (E,∇, F p) be a polarized variation of εHodge structures of odd weight
w with polarization b over the εcomplex base manifold (M,J ε). Let r = 2n be the real rank
of E.
Then the fundamental matrix G takes values in the totally geodesic submanifold

i : Grk,l
0 (C2n) = Sp(R2n)/U(k, l) → GL(r,R)/O(2k, 2l), for ε = −1, (5.4.2)

i : Grn
0 (C2n) = Sp(R2n)/Uπ(Cn) → GL(r,R)/O(n, n), for ε = 1 (5.4.3)

and coincides with the map L, i.e. G = i ◦ L : M → GL(r,R)/O(p, q).

Proof: Given a point x ∈ M we put V = HCε
x and V R = Hx

∼= Rr. To any polarized
εHodge structure F p of odd weight w with polarization b the map L associated a La-
grangian subspace L ∈ Grk,l

0 (V ) in the complex and a Lagrangian subspace L ∈ Grn
0 (V )

in the para-complex case (see section 2.7). We define a scalar product gL = Reh|L on
L ⊂ V. The projection onto the real points

Re : V → V R (5.4.4)

induces an isomorphism L ∼= V R. Its inverse we call Φ = ΦL : V R → L.
We are going to prove

i(L) = Φ∗
L g

L =: GL. (5.4.5)

We first show the Sp(Rr) equivariance of the map

L 7→ GL. (5.4.6)

From the definition of ΦL we obtain with Λ ∈ Sp(Rr) :

ΦΛL = Λ ◦ ΦL ◦ Λ−1
|Rr (5.4.7)

and from this the transformation law of GL

GΛL = Φ∗
ΛLg

ΛL = (Λ−1)∗Φ∗
LΛ∗gΛL = (Λ−1)∗Φ∗

Lg
L = (Λ−1)∗GL = Λ ·GL. (5.4.8)

Let F p
o be the reference flag of V Cε

o = HCε
o with dimF p

o = fp. We calculate GLo in the

basis {f i
o}

dim(Lo)
i=1 constructed in equation (2.7.2)

(GL0(Refi,Refj)) = 1p,q, after permutation. (5.4.9)

This yields
Φ∗

L0
gL0 = 1p,q. (5.4.10)

The proof is finished, since G(x) = GL(x) = i(L(x)).
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Corollary 5.6 Let (E,∇, F p) be a polarized variation of εHodge structures of odd weight
w with polarization b over the εcomplex base manifold (M,J ε). Then the map L : M →
Grk,l

0 (Cr
ε) = Sp(Rr)/U ε(k, l) is εpluriharmonic.

Proof: This follows from the εpluriharmonicity of the fundamental matrix G : M →
GL(r,R)/O(p, q), since G = i ◦ L, where i is a totally geodesic immersion and conse-
quentely, by corollary 2.1, the εpluriharmonicity of L is equivalent to that of G.

The last theorem and the last corollary can be specialized for variations of Hodge
structures (This means ε = −1.), which are strongly polarized:

Theorem 5.9 Let (E,∇, F p) be a strongly polarized variation of Hodge structures of odd
weight w with polarization b over the complex base manifold (M,J). Then the fundamental
matrix G takes values in the totally geodesic submanifold

i : Gr0(Cr) = Grr,0
0 (Cr) = Sp(Rr)/U(r) → GL(r,R)/O(r) (5.4.11)

and coincides with the map L = π ◦P : M → G/K, i.e. G = i ◦L : M → GL(r,R)/O(r).

With the same argument as before, we obtain the

Corollary 5.7 Let (E,∇, F p) be a strongly polarized variation of Hodge structures of
odd weight w with polarization b over the complex base manifold (M,J). Then the map
L : M → Gr0(Cr) = Grr,0

0 (Cr) = Sp(Rr)/U(r) is pluriharmonic.

5.5 εHarmonic bundles

The complex version of this chapter was published in [Sch4].
Collecting our knowledge from the previous chapters we obtain the corollary:

Corollary 5.8 Let (E → M,D,C, C̄, h) be an εharmonic bundle of εcomplex rank r
over the simply connected εcomplex manifold (M,J ε), then the representation of g = Reh
in a D(λ)-flat frame defines an εpluriharmonic map Φg : M → Sε(2p, 2q) where we define

Sε(2p, 2q) :=

{
S(2p, 2q) for ε = −1,

S(r, r) for ε = 1,

where (p, q) with r = p+ q is the hermitian signature of h for ε = −1.

Proof: By theorem 3.6 the εharmonic bundle (E →M,D,C, C̄, h) induces a metric εtt∗-
bundle (E,D, S, g = Reh) with SX := CZ + C̄Z̄ for X = Z + Z̄ ∈ TM and Z ∈ T 1,0M.

The identity (3.4.1), i.e. D
(λ)
X = Dα

X for λ = cosε(α)+ îsinε(α) ∈ S1
ε and theorem 4.1 prove

the corollary.



116 Chapter 5

With our considerations about εpluriharmonic maps we are going to show the next theo-
rem. First we introduce a notion:

Hermε
p,q(Cr

ε) :=

{
Hermp,q(Cr), for ε = −1,

Herm(Cr), for ε = 1.

Theorem 5.10 Let (E →M,D,C, C̄, h) be an εharmonic bundle over the simply con-
nected εcomplex manifold (M,J ε). Then the representation of h in a D(λ)-flat frame de-
fines an εpluriharmonic map φh : M → Hermε

p,q(Cr
ε), which itself induces an admissible

εpluriharmonic map φ̃h : M → Hε(p, q) (The space Hε(p, q) was defined in equation
(2.4.16).).

Proof: The εpluriharmonicity of the map φh follows from corollary 5.8 and propositions
2.11 and 2.14. For the second part we observe, that the differential of R : glr(Cε) → gl2r(R)
is a homomorphism of Lie-algebras and therefore preserves the vanishing of the Lie-
bracket.

The following theorem gives the converse statement:

Theorem 5.11 Let (M,J ε) be a simply connected εcomplex manifold and E = M ×Cr
ε .

An admissible εpluriharmonic map φ̃h : M → Hε(p, q) induces an admissible εpluriharmonic
map φ̃g = [i] ◦ φ̃h : M → Sε(2p, 2q) and an εharmonic bundle (E,D = ∂ − ε(C + C̄), C =
ε(dφ̃h)

1,0, h = (φh·, ·)Cr
ε
), where ∂ is the εcomplex linear extension on TMCε of the flat

connection on E = M × Cr
ε .

If M = Σ is an εRiemannian surface, then every εpluriharmonic map φ̃h is admissible.
If (M,J) is a complex manifold and the signature is (r, 0) or (0, r), then every pluri-
harmonic map φ̃h is admissible.

Proof: Due to proposition 2.11 and 2.14 the map φ̃g is εpluriharmonic. Hence one obtains
from theorem 4.2 an εtt∗-bundle (E = M × R2r, D = ∂ − εS, S = εdφ̃g, g =< φg·, · >R2r),
since the condition on dφ̃g|x is obtained as in theorem 5.10. We are now going to use the
additional information, we have from the fact, that the map φg comes from φh, to show
that (E,D = ∂ − ε(C + C̄), C = ε(dφ̃h)

1,0, h = (φh·, ·)Cr) is an εharmonic bundle.
The εhermitian sesquilinear metric h is given by

h = g + î ω

with ω = g(jε·, ·). This is the standard relation between εhermitian metrics on εcomplex
vector spaces and the εhermitian metrics on the underlying real vector spaces.
We observe Djε = [∂ − εS, jε] = −ε[SX , j

ε] = 0, because S is is the derivation of a map
from M to GL(r,Cε) and hence commutes with jε. Therefore Dω = 0 follows from Dg = 0
and Dh = 0 from Dω = 0 and Dg = 0.
From the definition of S and SJε in theorem 3.6, i.e.

SX = CZ + C̄Z̄ ,

SJεX = CJεZ + C̄JεZ̄
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for X = Z + Z̄ and Z ∈ T 1,0M we obtain the definition of

2CZ = SX + εjεSJεX ,

2C̄Z̄ = SX − εjεSJεX .

In addition we have the identity D
(λ)
X = Dα

X for λ = cosε(α) + î sinε(α) ∈ S1
ε which again

gives the equivalence between the flatness of D(λ) and Dα.
It remains to show

h(CZ ·, ·) = h(·, C̄Z̄ ·).

We recall the relations jε∗g = −εg and (∗) g(jε·, ·) = −g(·, jε·), which implies the anti-
symmetry of ω = g(jε·, ·) and (∗′)ω(jε·, ·) = −ω(·, jε·). Further we use the identities
(∗∗) [S, jε] = [SJε , jε] = 0 and that (∗ ∗ ∗)S, SJε are g-symmetric. Due to (∗∗) and (∗ ∗ ∗)
we get (∗ ∗ ∗∗)S, SJε ω-symmetric. These identities imply

2h(CZ ·, ·) = g(SX + εjεSJX ·, ·) + îω(SX + εjεSJεX ·, ·)
(∗),(∗∗),(∗∗∗)

= g(·, SX − εjεSJεX ·) + îω(SX + εjεSJεX ·, ·)
(∗′),(∗∗),(∗∗∗∗)

= g(·, SX − εjεSJεX ·) + îω(·, SX − εjεSJεX ·)
= 2h(·, C̄Z̄ ·).

Using S = εdφ̃g = εd([i] ◦ φ̃h) = εdφ̃h we find extending S on TMCε to SCε for Z ∈ T 1,0M
the equations CZ = SCε

Z = εdφ̃h(Z) and C̄Z̄ = εdφ̃h(Z̄).

In [Sim] section 1 Simpson studied Higgs-bundles with harmonic positive definite met-
rics, i.e. harmonic bundles, over a compact Kähler-manifold Mn and related these to
harmonic maps from M in GL(n,C)/U(n). From his results one can find, that a given
flat bundle with a harmonic metric induces a harmonic map from M in GL(n,C)/U(n).
Conversely, a harmonic map from M in GL(n,C)/U(n) and a flat bundle give rise to a
harmonic bundle. From Sampson’s theorem [Sam] one obtains, that in the above case the
notion of harmonic and pluriharmonic coincide.
Simpson’s result follows from the theorems 5.10 and 5.11, since the condition on the
differential of φ̃h is satisfied in the case of signature (r, 0) and (0, r). We remark, that
the theorems 5.10 and 5.11 are in fact more general, since the compactness of M and
the Kähler condition are not needed. Simpson uses Kähler-identities for vector bundles
over compact Kähler manifolds in his proof. Further he needs the compactness, since
he uses arguments from harmonic map theory, which are developped from Sius Bochner
formula for harmonic maps to obtain the vanishing of the object which he calls pseudo-
curvature and which is the integrability constraint for a flat bundle to define a Higgs
bundle. Dubrovin’s work [D] and this thesis deal with pluriharmonic maps. The results
are proven by direct calculations using the pluriharmonic and the tt∗-equations, respec-
tively. In the case of signature (r, 0) and (0, r) we needed only the second statement of
Sampson’s theorem [Sam] and therefore compactness is not needed.

The next theorem gives a rigidity result for harmonic bundles:
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Theorem 5.12 Let (M,J) be a compact Kähler manifold of dimension n with fi-
nite fundamental group π1(M) (i.e., the universal cover of M is compact). Let (E →
M,D,C, C̄, h) be a harmonic bundle over (M,J) with positive definite hermitian metric
h. Then (E → M,D,C, C̄, h) is trivial, i.e. C = C̄ = 0, D(λ) = D for all λ ∈ S1, D is
flat and h is D(λ)-parallel.

Proof: Pulling back all structures to the universal cover of M we suppose that M is
simply connected. C = C̄ = 0 if and only if the same holds for its pull back.
Let s be aD(1)-flat frame of E. The associated pluriharmonic map f̃ : M → GL(r,C)/U(r)
obtained from theorem 5.10 is constant by corollary 2.2. We consider again the represen-
tation Hs of h in the frame s to compute the representations Cs and C̄s of C and C̄ in
the frame s for Z ∈ Γ(T 1,0M) :

Z(Hs) = h(DZs, s) + h(s,DZ̄s)

= −h(CZs, s)− h(s, C̄Z̄s)

= −2h(CZs, s) = −2Hs · Cs
Z ,

Z̄(Hs) = h(DZ̄s, s) + h(s,DZs)

= −h(C̄Z̄s, s)− h(s, CZs)

= −2h(C̄Z̄s, s) = −2Hs · C̄s
Z̄ .

This yields Cs = C̄s = 0. It follows C = C̄ = 0 and D(λ) = D.
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[Sch2] L. Schäfer, Higgs-Bündel, nicht-lineare Sigma-Modelle und topologische anti-
topologische Fusion, Diplomarbeit in Physik an der Universität Bonn, July 2004.
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[Sch5] L. Schäfer, A note on tt*-bundles over compact Kähler manifolds, to appear.
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In this work we introduce the real differential geometric notion of a tt∗-bundle (E,D, S), a metric
tt∗-bundle (E,D, S, g) and a symplectic tt∗-bundle (E,D, S, ω) on an abstract vector bundle E

over an almost complex manifold (M,J). With this notion we construct, generalizing Dubrovin
[D], a correspondence between metric tt∗-bundles over complex manifolds (M,J) and admissible
pluriharmonic maps from (M,J) into the pseudo-Riemannian symmetric space GL(r, R)/O(p, q)
where (p, q) is the signature of the metric g. Moreover, we show a rigidity result for tt∗-bundles
over compact Kähler manifolds and we obtain as application a special case of Lu’s theorem.
In addition we study solutions of tt∗-bundles (TM,D, S) on the tangent bundle TM of (M,J)
and characterize an interesting class of these solutions which contains special complex manifolds
and flat nearly Kähler manifolds. We analyze which elements of this class admit metric or sym-
plectic tt∗-bundles. Further we consider solutions coming from varitations of Hodge structures
(VHS) and harmonic bundles.
Applying our correspondence to harmonic bundles we generalize a correspondence given by
Simpson. Analyzing the associated pluriharmonic maps we obtain roughly speaking for special
Kähler manifolds the dual Gauß map and for VHS of odd weight the period map. In the case
of non-integrable complex structures, we need to generalize the notions of pluriharmonic maps
and some results.
Apart from the rigidity result we generalize all above results to para-complex geometry.

Dans cette thèse nous introduisons la notion de fibré tt∗ (E,D, S), de fibré tt∗ métrique (E,D, S, g)
et de fibré tt∗ symplectique (E,D, S, ω) sur un fibré vectoriel E au-dessus d’une variété com-
plexe, dans le langage de la géométrie différentielle réelle. Grâce à cette notion on obtient une
correspondance entre des fibrés tt∗ métriques et des applications pluriharmoniques admissibles
de (M,J) dans l’espace symétrique pseudo-Riemannien GL(r, R)/O(p, q), avec (p, q) la signature
de la métrique g. En utilisant ce résultat on obtient dans le cas où M est compact Kählérienne,
un résultat de rigidité, puis un cas particulier du théorème de Lu.
De plus nous étudions des fibrés tt∗ sur le fibré tangent TM et caractérisons une classe spéciale
qui contient les variétés spéciales complexes et les variétés nearly Kählériennes plates, et la sous-
classe qui admet un fibré tt∗ métrique ou symplectique. En outre on analyse les fibrés tt∗ qui
proviennent de variations de structures de Hodge (VHS) et de fibrés harmoniques. Pour les fibrés
harmoniques, la correspondance permet de généraliser un résultat de Simpson. L’application
pluriharmonique associée à une variété spécialement Kählérienne est reliée à l’application de
Gauß duale, et celle associée à une VHS de poids impair est l’application de périodes. Si la
structure complexe n’est pas intégrable, on doit généraliser la notion de pluriharmonicité.
Hors la rigidité ces résultats sont généralisés au cas para-complexe.

Discipline: Mathématiques
Mots clés: géométrie tt*, applications pluriharmoniques, fibrés harmoniques, géométrie spéciale
complexe et Kählérienne, nearly Kählériennes, espaces symmétriques pseudo-Riemannienes
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