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Introduction

Strategically interacting individuals often lack knowledge about each others’ actions or attributes.

This may introduce incentive problems into the interaction. Economists already realized for quite

some time that it is important to analyze how incentive problems are dealt with in reality and how

one can solve or mitigate incentive problems. Incentive problems are present in many different

contexts in real life like insurance contracts, taxation, the provision of public goods, auctions,

compensation schemes, and incentive schemes for employees.

Incentive problems induce, for instance, shirking on the part of employees when their actions are

not observable or verifiable. Implications are, for example, that contracts can no longer condition

on actions if these are not observable (or not verifiable). Instead, the contract may condition on

(observable) outcomes (Chapter 2). Another alternative can be to change the compensation scheme

to some relative compensation scheme like a tournament (Chapter 1). Relative compensation

schemes can in particular be useful if individuals have to fear not to be paid as agreed upon

since indicators of performance are not verifiable. The tournament structure then commits the

organizer (principal) to pay the prize to one of the contestants. Relative compensation schemes

can be useful if the production technologies of individuals are dependent

In the first two chapters of this thesis, we consider relative compensation schemes and incentive

schemes when information asymmetries are present. In the first chapter, individuals have private

information about their abilities. In the second chapter, the actions of individuals cannot be

observed (moral hazard). In both chapters, we analyze whether and how intermediate information

changes incentives. Here, intermediate information arises endogenously in the game when we

change the timing of the game such that individuals act sequentially instead of simultaneously.

If they act sequentially, the second mover can observe the action (Chapter 1) or the outcome

(Chapter 2) of the first mover.

In Chapter 1, we consider contests, in which two players compete for an exogenously given

prize by exerting efforts. The player, who exerts an higher effort, wins the contest with a higher

probability. We do not derive the optimal prize scheme here, but focus on incentive effects caused

by intermediate information, when contestants act sequentially instead of simultaneously. We
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compare contests, in which players either move simultaneously or sequentially, under different

information settings: Contestants’ types are either publicly known or private information. Players

are ex ante symmetric, but realized types may be heterogeneous. The joint distribution of types

allows for correlation of the players’ types.

The combination of private information and sequential moves (as defined above) in contests as

well as the comparisons of sequential contests under private and complete information are novel

to the literature.

We find that the expected effort sum in sequential contests is higher than in simultaneous contests

irrespective of the information setting. Hence, incentives increase (from an ex ante perspective),

when intermediate information is available, not only under complete information but also under

private information. It is known that sequential contests Pareto dominate simultaneous contests

under complete information. We can extend this result to private information, when contestants’

types are sufficiently negatively correlated. Then, also the second mover prefers sequential

contests. This is due to an efficiency gain effect together with an ability effect. The latter effect

implies higher bids by “better” contestants, who value the prize more or are of higher ability. The

more negatively types are correlated, the higher is the probability that types differ. Given the

same probability for high and low types, it thus becomes more likely that the player, who values

the prize more, wins the contest (ability effect). In addition, the efficiency gain effect increases

expected payoffs in this situation. When this effect becomes sufficiently strong, the second mover’s

expected payoff increases enough so that he prefers sequential contests. The first mover, however,

still prefers sequential contests (ex ante) irrespective of the information setting.

It has already been shown that for simultaneous contests the information setting does not matter

from an ex ante perspective: The ex ante expected effort sum as well as ex ante expected payoffs

for the contestants do not change. Comparing the two information settings given sequential

contests, we can show, however, that the ex ante expected effort sum is higher under private

information, whereas contestants’ expected payoffs are higher under complete information. Hence,

incentives under complete and private information change when intermediate information is

available. Incentives rise (from an ex ante perspective), when there is private information. This

result is novel to the literature on contests and is due to a commitment effect for the first mover

that offsets the usual competition intensity effect. The latter effect implies that contestants exert

more effort, the more similar their types are.

In Chapter 2, we consider a model of team production under moral hazard. Again, we an-

alyze incentive effects of intermediate information. We investigate whether the principal prefers

his agents to work simultaneously or sequentially. In case agents act sequentially the second mover

can observe the quality of the first mover’s contribution to the joint (team) project. This means
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that the second mover receives intermediate information, on which he can condition his action.

Irrespective of the timing structure, the principal only observes the value of the joint project in

the end.

In contrast to the first chapter, agents no longer compete against each other, but jointly work on

a project. We derive the optimal wage scheme for both structures of the game, in which wages

condition on the value of the joint project. The optimal structure for the principal depends on

whether the agents’ contributions are complements or substitutes in his production function: A

sequential structure is optimal when the agents’ contributions are perfect complements, whereas a

simultaneous structure is optimal when they are perfect substitutes.

So far, the literature on teams only considered effort complementarities and two possible values of

the joint project: The project either fails or succeeds. We introduce output complementarities and

an intermediate value of the project. In contrast to findings in the literature on teams, we find

that intermediate information does not necessarily increase incentives and is thus not necessarily

favorable to the principal.

While we deal with an exogenously fixed wage scheme in the first chapter, we derive optimal wage

schemes in the second chapter. We find that results in the second chapter hinge on a change in

the feasible wage scheme between both timing structures and as well between contributions being

either substitutes or complements. In the first chapter, however, results depend on four “strategic

effects” that we identify.

Both Chapters 1 and 2 aim at studying the interaction between intermediate information

and incentives. We believe that this is an important issue in many economic situations, and we

hope to provide some new insights into the interplay of intermediate information and incentives

when information asymmetries are present.

In the third chapter of this thesis, we deal with a different topic. Nevertheless, the topic is

related to the first two chapters as we explain below. In the third chapter, we experimentally

investigate what people know about the bias of other people. We focus on people’s self-assessment

of their abilities. We consider a situation, in which people do not know the ability (or type) of

others and in addition, they do not even know their own ability (type) for sure. We can say that

people have private information on their belief about their own type. If people interact with each

other in such a situation, people have to form beliefs about other people’s self-assessment. We do

not consider the interaction itself, but we elicit beliefs people hold about the own ability. This

issue is, for example, considered in experiments on overconfidence.1 Moreover, we go one step

1For an overview on overconfidence see Englmaier (forthcoming).
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further, which is novel to the literature in this context: We elicit beliefs people have about the

beliefs of others.

If we think of the issues considered in the first two chapters, this new issue seems to be an

important extension. If we do not know the attributes or actions of people with whom we interact,

we form beliefs about it. People’s actions usually depend on their type (or attributes). If people

do not perfectly know their type, actions will depend on their perceived type. Hence, if we interact

with them, we have to form beliefs about their perceived type to be able to infer their behavior

and act optimally. We do, however, not consider how optimal behavior or contracts change when

such higher order beliefs are important, but analyze whether people are aware that other people’s

self-assessment might be biased and what they think about the others’ true ability. Thus, we

investigate how accurate beliefs about other people’s attributes and about their beliefs are.

More precisely, we consider people’s self-assessment about their number of correct answers when

answering a set of multiple choice questions. While different types of individuals exist (they

either underestimate, correctly estimate or overestimate their ability), our results confirm that

people tend to overestimate their ability, i.e. the population – on average – is biased. We then

test whether individuals are aware of other people’s bias and what they think about the relation

between their own and other people’s bias. We find that most individuals do not think that

other people have a bias. The more information subjects receive about the task, which the other

group handles, the more subjects realize that others are on average biased. Moreover, people

tend to think that their own self-assessment is better (they make less likely a mistake) than the

self-assessment of others. They believe this, even if “the others” are a group of people such that

(random) mistakes cancel out. We observe, however, that subjects partly revise this judgement if

they receive more information about the task or are incited to reason about mistakes or biases in

people’s self-assessment.

Hence, in the third chapter, we again observe effects of information: Information helps subjects to

make better judgements.
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Chapter 1

Sequential versus Simultaneous

Contests

1.1 Introduction

Contests are situations in which agents spend resources (they make a bid or exert an effort) in

order to win a prize. This expenditure influences an agent’s probability of winning the prize.

The bid is irreversible and contestants bear the costs of their action independent of whether they

win a prize or not. A contestant’s reward in this competitive scheme depends on his relative

performance. The contestant with the highest performance, however, does not necessarily win the

contest. Only in a perfectly discriminating contest the contestant with the highest performance

wins for sure. A perfectly discriminating contest is known as an all-pay auction.

In this paper, we consider imperfectly discriminating contests, which means that the winner of the

contest is determined probabilistically and needs not be the one with the highest performance.

These contest models capture essential features of rent-seeking competition, patent races, job

promotion or sports contests. They are also used to model incentive schemes in organizations.1

Tullock (1980) proposed the traditional contest-framework: He considered imperfectly discrimi-

nating contests with symmetric contestants who move simultaneously and in which no agent is

able to commit to an expenditure level. This standard framework has been extended in many

ways. For an overview on rent-seeking competition see, for example, Nitzan (1994) or Nti (1999).

For a review of the literature on sports contests see Szymanski (2002). Even if there are various

extensions of the standard framework, the main focus of the literature is on simultaneous (i.e.

Cournot-type) contests and on symmetric contestants or at least the agents’ types are publicly

known. In the following, we refer to the case in which the realizations of types are publicly known

1For tournaments as incentive schemes in organizations see, e.g., Lazear and Rosen (1981) or – for a review of the

literature – see Prendergast (1999).
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as the “public information” setting. This means that not only the contestants but also the designer

of the contests know the types.

Compared to contests in reality, the assumptions of simultaneity and symmetry seem very

strict. A first observation is that in most sports contests (e.g. skiing championships), contestants

move one after the other such that contestants who move later can observe the action(s) of their

predecessor(s) before it is their own turn. In other contests – for instance, the Tour de France or

triathlon competitions – each contestant can observe his opponent(s) during the ongoing contest

and react to his (their) action(s). Purely simultaneous contests are rare in sports. In weight

lifting or high jump championships, for example, contestants act “in turns”. Here, one can observe

that actions are often adjusted to the action of the predecessor or that athletes try to preempt

their competitors. Other examples for sequential structures include rent-seeking payments in

case institutions announce the contributions publicly during the ongoing process. Similarly, in

tendering procedures, it is often the case that one company has some “priority”2: Knowing the

offers of its competitors, this company is asked to make a (final) offer. Also in court proceedings

it is common that plaintiff and defense act sequentially: In general, the plaintiff first submits

evidence and then the defense reacts.

The question we are interested in, is whether the sequential order of moves in contests arises just

because of outside restrictions (e.g. a ski jump can only be used by one athlete at a time) or

whether agents can be better incentivized in this setting compared to simultaneous contests.

A second important observation is that in real life contestants not only tend to be asymmetric,

but – more importantly – they do not necessarily know their rivals’ abilities or valuations of the

prize. Like in auctions, it is realistic to assume that valuations are the agents’ private information.

Regarding an agent’s ability – which can be interpreted as the effectiveness of an agent’s effort

or lower effort costs – there are many examples showing that the relevant (actual) ability may

not be publicly known: Even in professional sports, where abilities of athletes are in principle

publicly known, athletes only have some vague belief about their opponents’ current form as

temporary fluctuations are common. One often observes that a designated favorite (e.g. because

of his pre-championship performance) in a championship does not win because he performs worse

than expected by others. Of course, there are also random factors (changing weather conditions

during a contest, pressure of being the favorite, physical injuries etc.), which influence an athlete’s

performance. The actual ability, however, is not random in the sense that it may well be known

to the athlete himself but not publicly.

Furthermore, the agents’ actual abilities may be correlated: In many disciplines athletes prefer

2In general, such prior claims may be due, for example, to close collaboration with one company.
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Figure 1.1: The Four Institutional Settings
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some venues, techniques or equipment, which is more or less helpful under certain conditions (e.g.

weather conditions). Hence, given these conditions, one contestant’s ability might be positively or

negatively correlated with his opponent’s ability.

In this paper, we take into account these two aspects, private information (where we allow

for correlation of the agents’ types) and a sequential order of moves. The combination of both

aspects is novel to the literature on contests in this form.

The sequential setting that we consider is a Stackelberg game: The second mover can perfectly

observe the first mover’s action and thus reacts to this action.3 When, in addition, contestants’

types are private knowledge (and correlated), the second mover cannot only react to the first

mover’s action, but also update his prior about the first mover’s type. Besides the combination of

these two aspects itself and the analysis of this institutional setting, we compare the four possible

institutional settings by two approaches: We compare the two timing structures, i.e. the order of

moves is sequential or simultaneous, from an ex ante perspective given the information setting,

i.e. agents’ types are either public or private information. Then, given the timing structure, we

compare the two information settings from an ex ante perspective. The four institutional settings

and the aforementioned comparisons (indicating related literature) are illustrated in Figure 1.1.

Our main results are that the risk neutral designer of the contest – when he wants to max-

3Fudenberg et al. (1983) deal with the case of imperfect observability of the rival’s action in an R&D race where

the favorite makes the first move.
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imize the expected effort sum – and the first mover prefer the sequential setting irrespective of the

information setting. For the second mover, this only holds true for the case of public information.

Whether he prefers the sequential or simultaneous contest under private information depends on

the distribution of types. When agents’ types are sufficiently negatively correlated, the second

mover prefers the sequential structure, otherwise he prefers the simultaneous one. The intuition

for this result is an efficiency gain effect together with an ability effect : The more negatively

contestants’ types are correlated, the higher is the probability that they are heterogeneous.

Moreover, the agent with the higher ability bids more than his rival (ability effect). In our model

the agent with the higher ability is the one who values the prize more.4 Hence, the probability

that the agent with the higher valuation wins the prize increases. This efficiency gain effect

increases the surplus of both agents in the sequential contest. If the effect is sufficiently strong,

expected payoffs of the second mover become larger under the sequential contest than under the

simultaneous contest. As these results suggest, we find that in the sequential contest with private

information a first-mover advantage exists.5

When comparing the information settings for simultaneous contests, an effort maximizing designer

as well as the contestants are indifferent between both informational settings. This result has

been shown by Malueg and Yates (2004). The result for sequential contests is new and different:

An effort maximizing designer prefers the private information setting, whereas contestants prefer

public information from an ex ante perspective. This result is driven by a commitment effect for

the first mover that is only present if contestants act sequentially. The high type of the first mover

commits to a higher effort level when the second mover is a low type than if the second mover

is a high type. This commitment effect thus offsets the usual competition intensity effect for the

high type of the first mover. The latter effect implies that the more similar agents are, the higher

is their effort as competition becomes more intense. Moreover, the commitment effect drives up

expected efforts and thus lowers the agents’ expected payoffs and enhances the designer’s payoff.

In case the designer only cares about a close race and not the effort sum, we find that he prefers

simultaneous to sequential contests irrespective of the information setting. Given a sequential

order of moves, he prefers private information to public information and vice versa if the order of

moves is simultaneous.

The structure of the paper is as follows. Before we compare the different settings, we deal

with all four settings separately. We begin with reviewing the two public information settings

4We show later that we can equivalently model this with agents who differ in their effort costs.

5Interestingly, in an experimental analysis of sequential tournaments by Weimann et al. (2000) with symmetric

agents – where the first mover advantage is even more pronounced – a second mover advantage is observed.
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where we make in particular use of results by Morgan (2003) and Leininger (1993). Next, we

consider private information. First, we summarize results on simultaneous contests with private

information where we rely on results by Malueg and Yates (2004). Afterwards, we introduce

sequential contests with private information. Using these results, we compare the institutional

settings from an ex ante perspective as mentioned before. The comparison for the case of sequential

contests, however, is novel to the literature. We also extend the previous literature by analysing

the effects of the timing assumption given private information on equilibrium actions and on which

structure the designer – who maximizes the ex ante expected effort sum – and the contestants,

respectively, prefer. Finally, we consider the case that the principal wants to have a “close race”

and does not maximize the expected effort sum.

Dixit (1987) was the first who analyzed the impact on incentives, when contestants can

precommit to their effort levels. He shows that the favorite (i.e. the player whose winning

probability in equilibrium is larger than one half) – when given the chance to move first –

overcommits to effort compared to the case without commitment, whereas the underdog (the one

with the lower probability of winning) undercommits to effort. While in Dixit the order of moves

is exogenously given, Baik and Shogren (1992) determine the order of moves endogenously. They

show that the underdog chooses to move first and the favorite to move second. Moreover, they find

that both players’ equilibrium efforts are lower in the sequential setting than in the simultaneous

move game. An extension to n identical players who move sequentially is numerically investigated

by Glazer and Hassin (2000). They find that the first mover makes higher profits than later movers

– independent of whether these move sequentially or simultaneously. The profit of the first mover,

however, needs not be higher than in a simultaneous n player contest. Aggregate efforts of the

contestants are at least as high as in a simultaneous n player contest, and hence their aggregate

payoffs are smaller than in the simultaneous contest (or at best equally high).

Most closely related to our paper regarding the timing structure are the studies by Yildirim (2005),

Morgan (2003), Linster (1993) and Leininger (1993). In contrast to our paper, all four studies

restrict to public information.6 Linster (1993) as well as Leininger (1993) contrast Cournot and

Stackelberg contests with two players, who can be either homogeneous or heterogeneous, which is

publicly known. In addition, Leininger endogenizes the order of moves by considering a game in

which two players can choose whether to move first or second knowing their own and the rival’s

valuation. He finds that if players are asymmetric, then equilibrium play will be in a particular

order. When players are symmetric, both a simultaneous and a sequential order of moves form

6Linster (1993) briefly addresses the case of one-sided asymmetric information but does not analyze implications

or compare different settings at all.
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an equilibrium. Morgan (2003) extends this analysis by allowing for ex ante uncertainty about

the players’ types. His main result is that the designer of the contest – who maximizes the effort

sum – and the contestants (ex ante) prefer a sequential order of moves under public information.

Morgan also endogenizes the order of moves: He shows that sequential play arises in equilibrium

when the timing decision is endogenously determined prior to the realization of valuations (when

agents decide on effort, however, types are publicly known). For the comparison under public

information, we rely on results by Morgan. We, however, extend the analysis of Morgan by

allowing for two-sided asymmetric information during the contest. We find that the result that

the principal and the first mover prefer the sequential order of moves is still true for the case of

private information. For the second mover it depends on the distribution of types, whether he

prefers the sequential or simultaneous setting. As aforementioned, he only receives a higher ex

ante expected payoff if the correlation between types is sufficiently negative.

Yildirim (2005) considers contests with multiple rounds and public information about the players’

types. Both players choose an effort in each round. His main result stands in contrast to Baik

and Shogren (1992) and Leininger (1993). They examine a game, in which agents simultaneously

commit to the period in which they want to exert an effort. Given the resulting order of moves,

either a Cournot-Nash or one of two possible Stackelberg contests is played. Baik and Shogren as

well as Leininger find that the unique equilibrium implies that first the underdog (i.e. the player

who wins the contest with a lower probability) and then the favorite moves. In Yildirim (2005),

equilibrium outcomes for heterogeneous contestants contain a notion of “leadership” of the favorite

in the sense that his effort lies on the other player’s reaction function. Hence, in settings where

contestants exert effort in multiple rounds, it cannot happen that the underdog moves first in

equilibrium. Furthermore, Yildirim finds that the total equilibrium effort is – in general – weakly

higher than in equilibrium of the simultaneous game. The latter finding is perfectly in line with

the results by Morgan (2004) for public information and our results for private information.

Jost (2001) and Jost and Kräkel (2005) consider sequential tournaments with symmetric and

also with asymmetric agents and public information.7 Jost (2001) studies risk neutral as well

as risk averse agents. With risk neutral contestants, equilibrium outcomes do not change when

intermediate information is available or not. When agents are risk averse, however, the designer

rather prefers a sequential order of moves. This means that risk aversion – similar to private

information in our model – makes the setting with intermediate information more favorable

compared to the setting without from the point of view of the designer. Another study that

analyzes the optimality of intermediate information within a tournament model and symmetric

7We stick here to the usual terminology that uses “tournaments” to refer to models that use a probit form contest

success function, in contrast to “contests” with a logit form contest success function.
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agents is Aoyagi (2003). Here, both agents act in each period. Aoyagi shows that the optimality of

providing intermediate information depends on the shape of the marginal cost function for effort

in the second period. If the marginal cost function is concave (convex), then it is optimal for the

principal to choose a setting where (no) intermediate information is provided.

Romano and Yildirim (2005) derive equilibrium outcomes for a very general class of games –

so-called games of accumulation – under public information about the players types. Each player

has a fixed amount of a strategic variable. After observing first period choices, a player can adjust

his strategic variable in a second period, but he can only add on the initial amount. These games

are related to this paper since contests are one possible application and accumulation games have

both sequential and simultaneous features.

All the papers mentioned so far consider either symmetric players or assume complete information

about each contestant’s type. The only exception, we are aware of, is Münster (2004). He examines

signaling issues in repeated contest, in which agents act simultaneously in both rounds. Before

the second round starts, first round effort choices are revealed. This means that in contrast to

our setting, both agents receive intermediate information and both can react in the second period.

Münster finds that high ability contestants might put in little effort in the first round to make their

opponents believe that they are of low ability. He compares expected efforts in the repeated game

to twice the expected effort in the one-shot game with asymmetric information. This corresponds

to a comparison of settings with and without intermediate information. In contrast to our result,

intermediate information leads to lower expected equilibrium efforts.

Other papers, which compare simultaneous and sequential contests, are Moldovanu and Sela (2006)

(who study an all-pay auction), Gradstein (1999) and Rosen (1986). The difference of these papers

to ours is that they focus on a different notion of ‘sequentiality’: In these papers an elimination

tournament is played where the losers of each round are eliminated. Our notion of sequentiality,

in contrast, is ‘moving one after the other’.8

Sequential games have also been studied in the industrial organization literature, examining the

behavior of oligopolists. See, for example, Saloner (1987) who solves a Cournot duopoly with two

production periods and a homogeneous product. Pal (1991) extends Saloner’s work by allowing

for cost changes over time.

Regarding asymmetric information, there is only few related work. Hurley and Shogren (1998a)

consider asymmetric information in contests. They study a simultaneous two-player contest with

one-sided asymmetric information. More precisely, one contestant is uninformed about his rival’s

valuation, whereas the other one has complete information. Results for total effort are mostly

ambiguous. If contestants’ efforts are strategic complements, unambiguous results are possible in

8Also related are the studies on racing by Harris and Vickers (1985) and (1987) that offer dynamic features.
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case the uninformed players’ beliefs change (in the sense that the variance increases or decreases).

If contestants’ efforts are strategic substitutes, unambiguous results are possible in case relative

abilities change (and induce a change in the uninformed players’ beliefs). The case of one- as well

as two-sided asymmetric information in simultaneous contests when valuations are independently

drawn is, in general, analytically intractable, but Hurley and Shogren (1998b) approach this case

numerically. Similar to the one-sided asymmetric information case, general conclusions are mostly

ambiguous. The driving forces of behavior are again perceptions of relative abilities and risk. These

forces can be related to the competition intensity effect that we identify as driving effect. Most

closely related to our analysis is the study by Malueg and Yates (2004). They derive a Bayesian

equilibrium in a simultaneous contest with private information solving the aforementioned problem

by the assumption of a distribution that allows for correlation of the valuations. We adopt this

distributional assumption for our analysis of sequential and simultaneous contests in order to be

able to derive explicit solutions. Malueg and Yates main result is that the ex ante expected effort

sum under private and public information is the same. We review their results in detail when

analyzing the simultaneous contest with private information.

As aforementioned, Münster (2004) studies repeated contests (two rounds) with asymmetric

information about the agents’ types. Agents simultaneously choose an effort each round and both

receive intermediate information before they enter the second round. In a separating equilibrium,

second round efforts are identical to efforts in the one-shot game under complete information, since

there is complete information in this case. He does, however, not compare the expected effort sum

to the complete information case for any kind of equilibrium.

Closely related is also the paper by Wärneryd (2003). He deals asymmetric information in the

sense that one player knows the common value of the prize whereas the other player is uncertain

about it (he knows the prior distribution). In contrast to the current paper, he only considers

simultaneous contests. For contests with a Tullock contest success function, the effort sum in

equilibrium is lower when one agent is informed and the other one uninformed than when either

both are informed or both uninformed. Like in our simultaneous contest, the expected effort sum

is identical under public and private information (if both agents are uninformed).

The remainder of this paper is organized as follows: In Section 1.2, we present the basic model. In

Section 1.3, we review results concerning the public information settings. In Section 1.4, we turn

to private information first considering simultaneous contests. Then, we introduce the new setting

of sequential contests under private information and derive results for this setting. In Sections 1.5

and 1.6, we compare the four institutional settings. In Section 1.7, we briefly discuss other aims

of the designer than maximizing the expected effort sum and finally, we conclude in Section 1.8.
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Table 1.1: Probability distribution of valuations

V1

V2

VL VH

VL
1
2r 1

2 (1− r)

VH
1
2 (1− r) 1

2r

1.2 Setting

We consider two risk neutral agents i = 1, 2 who are competing for one prize by making irreversible,

non-negative bids xi. These bids can be viewed as effort levels or amounts of money. Henceforth, we

interchangeably use the terms bids or effort. We consider two different settings: Contestants either

make their bids simultaneously or sequentially.9 In the latter case, the second mover can observe

the bid of the first mover. Agent i’s valuation of the prize is Vi. We model V1 and V2 as random

variables, which take on either a low value, VL, or a high value, VH , where 0 < VL ≤ VH . We refer to

the agents’ valuations as the agents’ types. The prior probability distribution of valuations (V1,V2) is

common knowledge and is given in Table 1.1. As this distribution is symmetric, agents are identical

from an ex ante perspective. The distribution, however, allows for heterogeneity in valuations and

correlation between the valuations.10 We consider two different settings in the following: Either

agents’ types are public information or they are private information. The parameter r (see Table

1.1) is monotonically related to the correlation coefficient ρ of the valuations as ρ = 2(r − 1
2).

Therefore, we can use both r and ρ as a measure of correlation of the valuations: When valuations

are perfectly negative correlated (i.e. ρ = −1) r = 0, and when valuations are perfectly positive

correlated (i.e. ρ = 1) we have r = 1. r = 1
2 corresponds to independence (i.e. ρ = 0) of

the valuations. When addressing the degree of correlation of the valuations, we refer to ρ in the

following if not stated otherwise.

9When agents act sequentially, we abstract from discounting.

10This distribution allows us to calculate equilibrium bids explicitly. It does not allow, however, for more general

cases of independently drawn valuations since simultaneous contests with private valuations become – in general –

analytically intractable in the sense that we cannot derive explicit solutions. This is attributable to the fact that

equilibrium efforts of each type of agent depend on the best reply of each type of his opponent, and moreover, they

(indirectly) depend on the best reply of the other type of the first agent (as the opponent’s best reply depends on

it). A numerical analysis of simultaneous contests with two-sided incomplete information that also allows for more

general cases of independence is conducted by Hurley and Shogren (1998b).
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The probability that agent i wins the prize is given by Tullock’s logit form contest success function,

where x denotes an agent’s bid (or effort outlay)11

πi(x1, x2) =


xi

x1+x2
if (x1, x2) 6= (0, 0)

1
2 otherwise.

(1.1)

The contest is imperfectly discriminating. This means the winner is determined probabilistically: A

higher effort compared to the opponent makes winning more likely but does not guarantee success.

An axiomatic foundation for the contest success function having this specific form is given by

Skaperdas (1996) for symmetric contests and by Clark and Riis (1998) for asymmetric contests.

If an agent does not win the prize, he earns zero but has to pay his bid. The expected payoff of

agent i given both agents’ bids and agent i’s valuation Vi is then

Ψi(x1, x2,Vi) =
xi

x1 + x2
Vi − xi. (1.2)

Note that the contest success function given in (1.1) is discontinuous at (x1, x2) = (0, 0). This

implies that the best reply of an agent to zero effort of the other agent is not well-defined

(as the first agent can win for sure by exerting any strictly positive effort ε > 0 and – by

continuity – his payoff is larger: Vi − ε > 1
2Vi − 0). We solve this problem by assuming that

there is some smallest unit of effort (e.g. a smallest unit of money if we think of monetary

investments). This means that a contestant has to exert at least some strictly positive amount

of effort, ε > 0 – if he wants to exert a positive amount of effort – where ε can be arbitrarily small.12

The timing of the game is as follows. First, the risk neutral designer of the contest fixes

whether agents act simultaneously or sequentially. Then, the agents’ types are drawn according to

the distribution described above and each agent learns his own type. In the public information

setting, agents learn the opponent’s type, too. Next, given a simultaneous structure, contestants

simultaneously choose their bid. In a sequential setting, first, agent 1 chooses his bid. Agent 2 can

observe the first mover’s bid before he decides on his own bid. Finally, payoffs realize.

Instead of modelling heterogeneous types by different valuations of the prize, we can also

model different abilities of the agents in terms of different effort costs. It is possible to do this

11For simplicity, we consider a discriminatory power equal to one. Regarding simultaneous contests, one could

easily generalize the analysis. Malueg and Yates (2004) consider more general levels of discriminatory power in

simultaneous contests with private information.

12An alternative approach to solve the discontinuity problem are endogenous tie-breaking (or sharing) rules in the

sense as proposed by Simon and Zame (1990) – for the case of complete information – and by Jackson et al. (2002)

for the case of incomplete information.
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in a way such that both notions are strategically equivalent: The reason is that preferences are

invariant with respect to affine transformations of the expected utility (Expected Utility Theorem).

Instead of using the expected payoff function as given in (1.2), we could consider the following

function

Ψ̃i(x1, x2, τi) =
xi

x1 + x2
V − τixi,

where heterogeneity is captured by different effort costs, with τi ∈ R+. Let Vi = V
τi

. Then

Ψi(x1, x2,Vi) =
1
τi

Ψ̃i(x1, x2, τi). (1.3)

Hence, whether we model heterogeneity by different valuations or by different effort costs does not

matter for equilibrium outcomes, as long as we assume Vi = V
τi

. We only scale expected payoffs by
1
τi

. For ease of presentation we restrict to the case of different valuations as described above but

call it also different abilities.

In the following, we analyze the four institutional settings, beginning with the two public informa-

tion settings.

1.3 Contests with Public Information

In this section, we review the standard contest where agents’ valuations are common knowledge

and agents move simultaneously. Equilibrium bids of this Cournot-Nash contest are well-known

and given as follows.

Proposition 1 [Morgan (2003)] In a two-player contest with public information about the contes-

tants’ types (V1,V2) and simultaneous moves the unique Nash-equilibrium in pure strategies is

x∗1 = V1
V1V2

(V1 + V2)2
=: ωV1 and x∗2 = V2

V1V2

(V1 + V2)2
=: ωV2. (1.4)

Obviously, both agents bid the same fraction 0 < ω = V2V1
(V1+V2)2

< 1 of their own valuation. Hence,

equilibrium bids are proportional in that x∗1
V1

= x∗2
V2

; meaning that identical agents make the same

bid in equilibrium and the agent with the higher valuation spends more than the one with the

lower valuation. Moreover, an agent’s bid is rising in his own valuation (as ∂x∗i
∂Vi

=
2ViV2

j

(Vi+Vj)2
> 0

where i, j = 1, 2 and i 6= j). We refer to the well-known effect that an agent bids more when

he is a high type than when he is a low type as ability effect. In the simultaneous contest with

public information, the only reason why one agent bids more than the other one is the ability

effect : the one who has the higher valuation bids more. Equilibrium bids are strictly increasing in

the opponent’s valuation if the opponent has a ‘lower’ type, otherwise bids decrease in the rival’s

valuation (strictly if the other’s type is strictly ‘higher’) as ∂x∗i
∂Vj

> (≤) 0 is equivalent to Vi > (≤) Vj

where i, j = 1, 2 and i 6= j. This means, equilibrium effort increases in the opponent’s valuation
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when the contest evens out (valuations become closer) and thus, there is more competition. We

call this competition intensity effect in the following. This also explains that in a contest with

homogeneous contestants each contestant bids more than when the contest is heterogeneous.

In the second setting, the Stackelberg-contest, agents’ types are common knowledge, but

contestants make their bids sequentially. Let agent 1 denote the first mover and agent 2 the second

mover. The second mover can perfectly observe the bid of the first mover before he decides on his

bid. The following subgame perfect equilibrium bids are derived, for example, in Leininger (2003)

and also in Romano and Yildirim (2005).

Proposition 2 In the two-player contest with public information about the contestants’ types

(V1,V2) and sequential order of moves – agent 1 is the first mover and agent 2 the second mover –

the unique pure strategy subgame perfect equilibrium outcome is

x∗1 =
V1

2

(
V1

2V2

)
and x∗2 =

V1

2

(
1− V1

2V2

)
if V1 ≤ 2V2, (1.5)

x∗1 = V2 and x∗2 = 0 otherwise. (1.6)

In case valuations are rather “close” (i.e. V1 ≤ 2V2) all types of players spend a positive amount of

effort, i.e. we have an interior solution, whereas in case valuations are not “close” (i.e. V1 > 2V2)

and the first mover has the higher valuation, he can preempt the second mover such that the latter

spends zero, i.e. we have a boundary solution.

It can easily be seen that the more the first mover bids, the less bids the second. The follower only

responds with a positive bid if the leader bids less than the follower’s valuation. The maximum

bid of the leader is V2 (even if his own valuation is higher): by bidding V2, the leader already wins

with certainty.13 Because of this strategic behavior, contestants no longer bid the same fraction of

their valuation as we have seen in the Cournot-Nash contest.

Comparing the agents’ bids, we see that as in the simultaneous contest, symmetric agents exert the

same effort in equilibrium and this effort is, moreover, the same as in the simultaneous contest.14

Given an equally strong opponent, no contestant is able to make a strategic gain by moving first,

which implies that Cournot-Nash and Stackelberg contests lead to identical outcomes in such a

case.15 This can be intuitively explained by considering the Nash-equilibrium of the simultaneous

contest: Departing from the Nash-equilibrium, a small change in an agent’s bid does not induce

13Since the first mover bids V2 in the boundary solution, this implies that his maximum bid cannot be higher than

VL.

14As agents are symmetric, the case V1 ≤ 2V2 is the relevant one. Hence, we only have to analyze the interior

solution.

15See also Romano and Yildirim (2005) and Morgan (2003).
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the other agent to change his bid. Therefore, although the leader can commit to a bid in the

sequential contest, this does not change the follower’s behavior.

For asymmetric contestants – like in the simultaneous contest – the first mover exerts more (less)

effort than the second mover when he has the higher (lower) valuation as this is equivalent to
V1
V2
≥ (≤) 1.16 This means that the first mover does not preempt the follower when the latter has

the higher valuation as this becomes too costly for him given the follower’s high incentives to win

the prize. Hence, although agents are no longer completely homogeneous in the sequential contests

as they differ in the their role of being the first or second mover, we see that it is still the ability

effect that determines which agent bids more (like in the simultaneous contest): equilibrium efforts

rise in an agent’s valuation such that the agent with the higher valuation bids more aggressively

than his rival (independent of the agent’s role).17

Moreover, we can verify that an agent receives a higher expected payoff than his opponent if

and only if he has the higher valuation and, therefore, bids more aggressively: Comparing the

first mover’s expected payoff – which is given by V2
1

4V2
– with the follower’s expected payoff –

which is given by V2 − V1 + V2
1

4V2
– immediately gives the result. Like Morgan (2003) finds for

independently drawn valuations, it also holds true for our distributional assumption that from

an ex ante perspective, expected payoffs of the first and second mover are identical for V1 ≤ 2V2

(otherwise the expected payoff of the first mover is higher). Committing to a publicly observable

bid does not lead to a first mover advantage for the interior solution (from an ex ante perspective).

This observation can easily be verified: Symmetric agents make the same expected payoff as they

make equal bids. Given asymmetric contestants, expected payoffs of the first mover are given by
V1
4V2

and for the follower by V2 − V1 + V1
4V2

where V1 6= V2. Obviously, it is – in general – not the

case that the high (low) type receives the same expected payoff independent of whether he moves

first or second. The second mover, however, looses exactly as much compared to the first mover

when he is the low type as he wins when he is the high type. Since each contestant is a high or a

low type with equal probabilities, their ex ante expected payoffs are identical.

The crucial effect of the sequential order of moves is that it offsets the competition intensity effect

for the high type of the first mover: When the first mover is a high type, he invests more when

the follower is a low type than when he is a high type as well. This means that the first mover

profits from increasing the distance between himself and the follower, such that this increase

even outweighs the competition intensity effect. More precisely, for the interior solution, we see

16Regarding the boundary solution (in which the first mover necessarily has the higher valuation), the first mover

obviously bids more than the second mover.

17For the boundary solution, bids do not change with the own valuation as long as V1 > 2V2 still holds. Nevertheless,

it is the agent with the higher valuation who bids more.
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that the first mover’s effort falls in the second mover’s valuation as ∂x∗1
∂V2

= − V2
1

4V2
2

< 0. As long

as V2 ≥ V1, this can be explained by less competition. For V2 < V1, however, competition rises

and nevertheless the leader’s effort decreases, which contradicts the competition intensity effect.

For the boundary solution, V1 > 2V2, the effect that the first mover’s effort rises in the second

mover’s valuation is again due to intensified competition. By the commitment of the first mover

to a publicly observable bid he can realize a first-mover advantage when he is a high type and

the competition intensity effect is offset by this commitment effect.18 The low type of the first

mover, however, cannot make use of the chance to commit to an effort level. As aforementioned,

his expected payoff is (weakly) lower than the follower’s expected payoff. For the second mover,

observations are quite similar to the simultaneous contest: His effort rises in the first mover’s

valuation if the first mover has the lower valuation19 – thus, if the contest evens out – since
∂x∗2
∂V1

= 1
2(1− V1

V2
). Otherwise, the second mover’s effort decreases in V1 (or remains equal to zero iff

V1 > 2V2).

Similar to our observation for the first mover, Jost and Kräkel (2005) who analyze a sequen-

tial rank-order tournament with heterogeneous agents find a first mover advantage, too. In

their setting, the first mover can have a higher expected payoff than the second mover even if

he has the lower ability (given that the prize spread between winner and loser prize is not too large).

Next, we consider contests with private information starting with the simultaneous setting and then

introducing the sequential setting. Afterwards, in Section 1.5, we analyze whether simultaneous or

sequential contests are preferred by the designer and the contestants from an ex ante perspective

conditional on the information setting and finally, in Section 1.6, we analyze which information

setting is preferred.

1.4 Contests with Private Information

Now, we vary the information regime and consider the settings, in which valuations are private

information. The aforementioned prior distribution of valuations is publicly known. At first, we

consider simultaneous contests again. We restrict attention to the analysis of symmetric pure

strategy Bayesian equilibria. The following result for a discriminatory power of one follows from

Malueg and Yates (2004) who consider more general cases of the discriminatory power. We denote

18For the boundary solution it is still the competition intensity effect that dominates as preempting the second

mover is profitable.

19 For V1 ≥ 2V2, i.e. in particular V1 > V2 , the second mover exerts zero effort and at V1 = 2V2 the second mover’s

bid decreases in the first mover’s valuation. The latter observation is intuitively plausible as competition gets less

intense.
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by x∗it (where i = 1, 2 and t = L,H) the equilibrium bids of agent i when he has type t.

Proposition 3 There exists a unique symmetric pure strategy Bayesian equilibrium of the simul-

taneous contest with private information. In this equilibrium

x∗iL =
(

r

4
+ (1− r)

VHVL

(VH + VL)2

)
VL =: λVL (1.7)

x∗iH =
(

r

4
+ (1− r)

VHVL

(VH + VL)2

)
VH =: λVH (1.8)

for i = 1, 2.

Proof.

See Malueg and Yates (2004). As existence for general levels of discriminatory power is not guaranteed,

existence for the special case considered here (discriminatory power equal to one) is shown in the appendix.

Remember that for r = 1 and r = 0 we are back to public information20 as types are perfectly

positive or negative, respectively, correlated. r = 1 implies that agents 1 and 2 have identical

valuations (V1 = V2) and r = 0 implies that they have different valuations (V1 6= V2). Additionally,

if high and low valuation are identical (VL = VH), valuations are common knowledge, too. Note

that for these three cases, equilibrium bids coincide with the public information setting.

Obviously, as in the case with public information, equilibrium bids are proportional in the sense

that x∗iL
VL

= x∗iH
VH

. Like in the contest with public information, the bid of a high type is larger than

the bid of a low type (ability effect), and agents invest a fraction, here denoted by λ, of their own

valuation, which is the same for a high and a low type. It can easily be verified that 0 < λ < 1.

Thus, like in the public information setting, agents never bid zero or exactly their valuation. If

we compare λ to the fraction ω which is invested in the public information case, we receive the

following result.21

Proposition 4 Consider simultaneous contests and let ρ ∈ (−1, 1) and VH > VL. Under public

information, the fraction invested in equilibrium (according to Propositions 1 and 3) is smaller than

under private information if the contest under public information is asymmetric (i.e. V1 6= V2) and

it is larger if the contest under public information is symmetric (i.e. V1 = V2).

20To be precise, it is not exactly public information for r = 0: The agents know each other’s valuation. An

outsider, however, only knows the realization of valuations but does not know which agent is the high or low type.

Nevertheless, we make no further differentiation here as this is not the point of the paper.

21We restrict here to r ∈ (0, 1) and VH > VL as r = 0, r = 1 and VH = VL are equivalent to public information. As

aforementioned, for these cases bids and hence the fraction λ that is invested coincide in the contests under public

and private information.
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Proof.

Suppose the contest under public information is asymmetric (i.e. V1 6= V2). We have to verify that

λ > VHVL

(VH+VL)2 . This is equivalent to r(VH −VL)2 > 0 which always holds as VH > VL and ρ ∈ (−1, 1) (which

is equivalent to r ∈ (0, 1)).

Suppose now the contest under public information is symmetric (i.e. V1 = V2). We have to verify that

λ < 1
4 . This is equivalent to −(1 − r)(VH − VL)2 < 0 which is always fulfilled as VH > VL and ρ ∈ (−1, 1)

(which is equivalent to r ∈ (0, 1)).

Trivially, this result implies that when the fraction invested is higher (lower) under public informa-

tion, then also the bid – conditional on an agent’s type – is higher (lower) under public information.

The intuition for the result is that contestants bid more aggressively, the more ‘similar’ their types

are. This means a competition intensity effect drives the result: The “closer” the contest, the higher

the bids. To see this, we consider first the fraction ω = V2V1
(V1+V2)2

, which is invested of the own val-

uation in the public information case. When types are symmetric (i.e. V1 = V2), then ω = 1
4 .

For asymmetric types (i.e. V1 6= V2) the invested fraction ω is smaller than for symmetric types

(as V2V1
(V1+V2)2

≤ 1
4 is equivalent to 0 ≤ (V1 − V2)2 which holds with strict inequality for V1 6= V2).

Note that this holds independent of whether two low or two high types compete against each other.

Hence, an even contest implies higher competition, which is reflected by higher bids.

Under public information contestants know for sure whether they have the same type or different

ones. Under private information, however, agents do not know for sure the type of their opponent

(as long as ρ ∈ (−1, 1) and VL < VH). Therefore, competition intensity increases relative to a public

information contest with asymmetric types and decreases relative to one with symmetric types. It

follows that the fraction that is invested under private information is higher (lower) compared to

the fraction under a public information contest with asymmetric (symmetric) types.

In order to see the effects of ‘more similar’ types on competition and bids more clearly, consider now

how the agents’ bids vary with the degree of correlation of their valuations. The invested fraction

λ in a private information contest becomes larger (smaller) the more positively (negatively) the

agents’ types are correlated. Conditional on an agent’s valuation, these results hold true for the

bids as well. A stronger positive correlation between the contestants’ types (i.e. an increase in ρ)

can be interpreted as a more even contest since – given that an agent knows his own valuation –

this corresponds to a higher probability of the opponent having the same valuation. Hence, there

is more aggressive bidding if the contest gets closer.

In the limit – for perfect positive or negative correlation, respectively – the fraction invested under

private information coincides with the corresponding bid under public information. This means

that if under private information uncertainty about the opponent’s type diminishes, bids under

private information approach the corresponding bids under public information.
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Proposition 5 Bids in the symmetric Bayesian equilibrium in pure strategies of simultaneous

contests with private information are weakly larger (smaller) than the Nash-equilibrium bids of

asymmetric (symmetric) simultaneous contests with public information. They approach the bids of

asymmetric (symmetric) contests with public information the more negatively (positively) types are

correlated and coincide for perfect negative (positive) correlation.

Proof.

As already shown, equilibrium bids in an asymmetric simultaneous contest with public information are

smaller than in the symmetric one. Moreover, from Proposition 4 we know that for ρ ∈ (−1, 1) and VH > VL

the fraction invested under public information is larger (smaller) than under private information if the

contest under public information is symmetric (asymmetric). Conditional on an agent’s type this also holds

for equilibrium bids. For ρ = 1, ρ = −1 or VH = VL invested fractions coincide under both settings. Using

ρ = 2(r − 1
2 ), we have ∂λ

∂ρ = 1
8 −

VHVL

2(VH+VL)2
. It follows ∂λ

∂ρ ≥ 0 if and only if (VH − VL)2 ≥ 0 (with strict

inequality if VL > VH) and the result follows.

An interesting result that is intuitively appealing is that the bid of a high (low) type under private

information is the same as the expected bid of a high (low) type under public information – i.e.

the expected bid of an agent under public information conditional on this agent being a high (low)

type – as Malueg and Yates (2004) show. Therefore, also the ex ante expected effort sum of both

agents is the same under public and private information. This immediately implies that a designer

who aims at maximizing the ex ante expected effort sum is indifferent between the two settings.

We now turn to sequential contests with private information. Afterwards, in Section 1.5,

we compare the four different institutional settings from the point of view of the designer and the

contestants.

In sequential contests with private information, the second mover perfectly observes the

first mover’s action before he decides on his bid – exactly like under public information. The

agents’ types, however, are private information. We consider symmetric perfect Bayesian equilibria

in pure strategies. In a weak perfect Bayesian equilibrium, the bid of each type of the first mover,

x∗1t (t = L,H), maximizes this type’s expected payoff given his beliefs about the second mover’s

type and the best response of each type of the second mover. The conditional probabilities, which

are obtained from the prior probability distribution of the contestants’ types, determine the first

mover’s equilibrium beliefs about the second mover’s type22: With probability r the second mover

22Observe that both information sets of the first mover (and as well those of the second mover) are always reached

with positive probability.
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is of the same type as the first mover and with probability 1− r he is of a different type.

Equilibrium bids of each type of the second mover maximize this type’s expected payoff contingent

on the observed action of the first mover. We denote equilibrium bids of type k = L,H of the

second mover by xt∗
2k. t = H,L indicates the type (and therefore the bid) of the first mover.23

It is important to note that the beliefs of the second mover about the type of the first mover do

not influence equilibrium outcomes. The perfectly observable action of the first mover completely

determines the optimal reaction of the second mover (irrespective of the first mover’s true type):

The second mover responds to the first mover’s action in a way that maximizes his expected

payoffs. His payoffs only depend on the first mover’s action that he observes but not on the first

mover’s true type (except that the first mover’s action may depend on the first mover’s type in

equilibrium). As the optimal action of the second mover is independent of his beliefs, they can

be arbitrary, and we do not need to specify his beliefs in the following. Moreover, because of this

independence, we can solve the game backward, starting with the second mover. In the following

derivation of equilibrium bids, we do not provide a complete proof. All missing steps are in the

appendix (see proof of Proposition 6).

The second mover maximizes his expected payoff given the action of the first mover, which he

observes, and given his own type k = H,L. First note that we do not need to consider the case

that nobody exerts a positive amount of effort as this cannot happen in equilibrium: Suppose

the first mover exerts zero effort. Then, the second mover can ensure winning the prize with an

arbitrarily small effort ε > 0. This dominates exerting no effort at all and winning only with

probability one half. Furthermore, in equilibrium, as we show in the appendix, the first mover’s

bid is strictly positive for each type t = L,H. Hence, the relevant best response of the second

mover (i.e. given x1t > 0) can be derived from the following maximization problem

max
x2k≥ε

x2k

x2k + x1t
Vk − x2k.

It can easily be verified that the maximization problem is concave in the second mover’s bid given

the first mover’s bid. Thus, the best response function of the second mover is given by the first

order condition, as long as the first order condition results in a non-negative bid of the second

mover, otherwise the optimal bid is zero:

x2k(x1t) = max{
√

x1t

√
Vk − x1t, 0} for x1t > 0. (1.9)

We can see from the best response function in (1.9) that the second mover completely drops out

of the contest – i.e. both types bid zero – when the first mover bids more than the high valuation.

23Of course, the second mover actually observes the leader’s action but not his type. In equilibrium, however, the

two types of the first mover “separate” in their actions – as we show in the appendix. Hence, the second mover can

in principle infer the first mover’s type from the observed action. For ease of presentation, we therefore denote the

observed action by the first mover’s type.
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When VH > x1t ≥ VL only the low type of the second mover drops out.

Regarding the first mover, this implies two different cases: Either he faces an active second mover

(i.e. both types of the second mover make a positive bid) or he faces an (partly) inactive second

mover (i.e. at least the low type bids zero).

Knowing his own type, the first mover updates his beliefs about his rival’s type and hence his

rival’s bid. As aforementioned, the conditional probability that the second mover is a low (high)

type given that the first mover is a low (high) type – i.e. agents are homogeneous – is given by r.

(1 − r) denotes the conditional probability that the second mover is a low (high) type given that

the first mover is a high (low) type – i.e. agents are heterogeneous. The first mover maximizes

his expected payoff conditional on his own type t = L,H and on each type of the second mover

reacting according to his best response function given in (1.9).

Suppose first that both types of the second mover are active. We know from (1.9) that

this is not possible if the first mover bids the low valuation or more. Hence, both types of the first

mover have to bid less than VL, which implies that the best response of the second mover is given

by x2k(x1t) =
√

x1t

√
Vk−x1t. Moreover, we disregard here the case that the first mover in inactive.

As argued above, in this case, the second mover’s best response is to bid an arbitrarily small

amount ε > 0, which ensures that he wins the prize and hence the first mover’s payoff from being

inactive is zero. In the appendix we show, that the first mover is never inactive in equilibrium as

he can insure a positive expected payoff by actively taking part in the contest. The maximization

problem of type t = L,H of the first mover for the case that both types of the follower are active

is as follows where n = L,H:

max
VL>x1t>0

(
x1t

x1t + x2t(x1t)
r +

x1t

x1t + x2n(x1t)
(1− r)

)
Vt − x1t with t 6= n.

Plugging in the relevant best response of the second mover yields

max
VL>x1t>0

(
1√
Vt

r +
1√
Vn

(1− r)
)
√

x1tVt − x1t with t 6= n. (1.10)

This maximization problem is concave in x1t. Therefore, the first order condition is sufficient if

we consider the unconstrained maximization problem (neglecting the constraints on x1t for the

moment). The optimal bid, x∗1t, is given by

x∗1t =
V 2

t

4

(
r

(
1√
Vt
− 1√

Vn

)
+

1√
Vn

)2

=: α2
t with t 6= n. (1.11)

Obviously, x∗1t is always strictly positive. Hence, the only constraint that remains to check is

whether x∗1t < VL. Otherwise, at least the low type of the second mover exerts zero effort and –

for α2
t > VL – (1.10) is no longer the corresponding maximization problem of the first mover and

α2
t not the optimal bid. To check this, we consider both types of the leader separately.
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For the low type of the first mover, it can never be optimal to bid more than VL. The reason

is that if he invests more than VL his payoff is negative for sure and, for example, investing zero

– yielding zero payoff – is better. In fact, the first mover can ensure a positive expected payoff

(as is shown in the appendix) by bidding α2
L, which is strictly smaller than the low valuation

(α2
L < VL ⇔ (1−r)V

1
2

L < (2−r)V
1
2

H ). Thus, the low type of the first mover bids strictly less than the

low valuation in equilibrium, implying that we always have an interior solution – i.e. all contestants

spend a positive amount of effort – when the first mover is a low type. The corresponding best

responses of type k = L,H of the second mover are determined according to (1.9). Hence, his

equilibrium bids given that the first mover bids x∗iL = α2
L are given by xL∗

2k = αL(
√

Vk − αL).

When the first mover is a high type, however, he may bid more than the low valuation. Hence, we

have to verify for an interior solution under which condition α2
H < VL. This holds if and only if

VH

(
r

(
1√
VH

− 1√
VL

)
+

1√
VL

)
< 2
√

VL. (1.12)

Intuitively, when the high and low valuation coincide (i.e. VH = VL) condition (1.12) holds, which

means that both types of the first mover bid less than the low valuation. For VH > VL we can

rewrite (1.12) as

r >
2VL − VH√

VH

(√
VL −

√
VH

) =: r̃. (1.13)

Since the denominator of r̃ is negative, r > r̃ is fulfilled in case 2VL > VH as then r̃ < 0 but

r ∈ [0, 1]. For 4VL < VH , we get r̃ > 1, implying that there cannot be an interior solution in

this case as r > r̃ is impossible. Hence, we always have an interior solution if 2VL > VH . When

2VL < VH ≤ 4VL, we have an interior solution if r > r̃. Otherwise, there is a boundary solution

in which at least one type of the second mover bids zero. The bid of type k = L,H of the

follower in an interior solution when the leader is a high type is determined according to (1.9), i.e.

xH∗
2k = αH(

√
Vk − αH).

Up to now, we considered the case that both types of the second mover are active. Sup-

pose now that the second mover is (partly) inactive, i.e. we have a boundary solution. We know

from (1.9) that this happens if and only if the leader bids at least the low valuation (i.e. if VL < VH

and r ≤ r̃).

Since the low type of the follower drops out first, this implies that xt∗
2L = 0 (for x1t ≥ VL) where

t denotes the type of the leader . Therefore, we only consider the high type of the follower, who

may still make a positive bid. With a similar argument as given above for the low type of the first

mover, we obtain that the leader invests less than VH when he is a high type. This means that the

second mover is never completely inactive and the relevant best response of the high type of the

second mover is given by x2H(x1t) =
√

x1t

√
VH − x1H . The reduced maximization problem of the
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first mover, when the low type of the follower is inactive, is

max
VH≥x1H≥VL

(
x1H

x1H + x2H(x1H)
r + (1− r)

)
VH − x1H . (1.14)

Plugging in the relevant best response of the high type of the second mover, we can rewrite the

maximization problem as follows

max
VH≥x1H≥VL

r
√

x1H

√
VH + (1− r)VH − x1H . (1.15)

Consider for the moment only the unconstrained maximization problem (neglecting the restrictions

VH ≥ x∗1H ≥ VL). The unconstrained problem is concave in x1H and thus the first order condition,

1
2
r
√

VH −
√

x1H = 0, (1.16)

is also sufficient. Solving for x1H yields x1H = r2VH
4 . As argued above, the restriction limiting x1H

from above is always fulfilled ( r2VH
4 < VH). Hence, the equilibrium bid of the high type of the first

mover, x∗1H , is given by (1.16) if r2VH
4 ≥ VL. This condition is equivalent to

r > 2
√

VL√
VH

=: ˜̃r. (1.17)

If (1.17) is not satisfied (as well as if it is satisfied with equality), we have x∗1H = VL. This follows

from the concavity of the objective function, and since the first mover’s payoff from bidding VH is

zero whereas the payoff from bidding VL is strictly positive as is shown in the appendix.

As aforementioned, equilibrium bids of the high type of the second mover are determined according

to the follower’s relevant best response function. The bid is xH∗
2H =

√
VL(

√
VH −

√
VL) if the high

type of the first mover bids exactly the low valuation and is xH∗
2H = rVH

2

(
1− r

2

)
if the first mover

bids more than the low valuation. Thus, for a boundary solution the conditions VL < VH and

r ≤ r̃ have to be satisfied and the bids of the high types depend on whether r ≷ ˜̃r. These results

are summarized in the following proposition.

Proposition 6 The unique symmetric weak perfect Bayesian equilibrium outcome in pure strate-

gies of sequential contests with private information with belief r of the high (low) type of the first

mover that the second mover is high (low) and belief 1− r that he is low (high) and arbitrary beliefs

of the second mover is as follows (t = H,L denotes the type of the first mover and k = H,L the

type of the second mover):

Interior solution if either (i) VL = VH or if (ii) r > r̃ and VL < VH :

x∗1L = α2
L

xt∗
2L = αt

(√
Vk − αt

)
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Boundary solutions if r ≤ r̃ and VL < VH :

Boundary case (i) if r ≤ min{r̃, ˜̃r}:
x∗1L = α2

L, x∗1H = VL,

x∗L2L = αL

(√
VL − αL

)
, x∗H2L = 0,

x∗L2H = αL

(√
VH − αL

)
, x∗H2H =

√
VL

(√
VH −

√
VL

)
Boundary case (ii) if ˜̃r < r ≤ r̃:

x∗1L = α2
L, x∗1H = r2VH

4 ,

x∗L2L = αL

(√
VL − αL

)
, x∗H2L = 0,

x∗L2H = αL

(√
VH − αL

)
, x∗H2H = rVH

2

(
1− r

2

)
with αL = VL

2

(
r( 1√

VL
− 1√

VH
) + 1√

VH

)
, αH = VH

2

(
r( 1√

VH
− 1√

VL
) + 1√

VL

)
,

r̃ = 2VL−VH√
VH(

√
VL−

√
VH) , and ˜̃r = 2

√
VL√
VH

.

Proof.

See appendix.

Notice that we can easily rewrite the conditions on r for the interior and boundary solutions in

terms of the correlation coefficient ρ using the relation ρ = 2r − 1. The condition r > r̃ for an

interior solution if VL < VH becomes then

ρ >
4VL − VH −

√
VL

√
VH + VH√

VH(
√

VL −
√

VH)
=: ρ̃. (1.18)

This implies that for an interior solution valuations have to have a sufficiently “strong tendency

to positive correlation”, which does not mean that ρ̃ necessarily has to be positive. It follows that

expected valuations of the contestants have to be sufficiently close to each other for an interior

solution: Given an agent’s valuation, the expected valuation of the opponent must be sufficiently

close, which is just an extension of the condition under public information to private information.

Remember that in the sequential contest with public information the condition for an interior

solution is that valuations are rather close (V1 ≤ 2V2).

Similar to the results under public information, we know from the second mover’s best response

function that the more the first mover bids, the less bids the second. Again, the follower only

responds with a positive bid if the leader bids less than the follower’s valuation. Like before,

only the low type of the second mover can be preempted such that he drops out of the contest in

equilibrium. In contrast to the setting under public information, the maximum bid of the leader

under private information can exceed VL when he is a high type and tries to preempt the second
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mover. The reason is that the first mover faces uncertainty about the second mover’s type. With

bidding VL he can in general not be sure to win. Because of the strategic effect when contestants

move sequentially, they no longer bid the same fraction of their valuation, like we have seen for the

case of public information.

Furthermore, it is again the ability effect that drives behavior in equilibrium:

Proposition 7 Let VL < VH and r ∈ (0, 1). In the interior solution of a weak perfect Bayesian

equilibrium of the sequential contest with private information (see Proposition 6)

(i) a contestant bids strictly more when he has the high valuation than when he has the low

valuation and

(ii) the first mover bids strictly more (less) than the second mover when he is a high (low) type.

Proof.

See appendix.

We show within the proof that these results hold true for the boundary solutions as well with one

exception: It need not be true that the high type of the first mover bids more than the high type

of the second mover.

In the limit, when there is either perfect positive or negative correlation or the high and low val-

uation is identical (i.e. r = 1, r = 0 or VL = VH), i.e. there is actually complete information,

equilibrium bids coincide with the corresponding bids of the sequential contest under public infor-

mation. As long as valuations are not perfectly correlated, bids of identical types, however, differ,

which follows from Proposition 7 part (ii).

It follows from Proposition 7 that in the sequential contest with private information, the dominant

force for bidding behavior is still the ability effect independent of whether an agent is the leader

of the follower. In addition, bidding more than the rival (having the higher type) translates again

into higher expected payoffs for the interior solution.24

Moreover, the more positively valuations are correlated, the more the second mover bids in equilib-

rium. The more positively valuations are correlated, the more (less) the first mover bids when he

is a low (high) type. For the second mover, the intuition for this result is the competition intensity

effect. As we have already seen, a closer contest – in the sense that the contestants have “more

similar” valuations – leads to more aggressive bidding. A stronger positive correlation between the

contestants’ types (i.e. an increase in ρ) implies as well that the contest under private informa-

tion evens out from a contestant’s perspective: given the own type, a stronger positive correlation

corresponds to a higher probability that the opponent has the same type. For the first mover,

24See Proof E in the appendix.
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however, the result can only partly be explained by the competition intensity effect. Like in the

sequential contest with public information, only the behavior of the low type can be explained by

higher competition. The high type, in contrast, bids less when there is higher competition. The

competition intensity effect is again offset by the commitment effect. These results are summarized

in the following proposition.

Proposition 8 In a weak perfect Bayesian equilibrium of the sequential contest with private infor-

mation (see Proposition 6)

(i) the bid of the first mover is increasing (decreasing) in the correlation coefficient ρ when the

first mover is a low (high) type and

(ii) bids of the second mover are increasing in ρ.

Proof.

See appendix.

In the following section, we compare the four different institutional settings for the designer and

the contestants from an ex ante perspective.

1.5 Sequential versus Simultaneous Contests

We begin the comparison of the different institutional settings by comparing simultaneous and

sequential contests given the information setting and afterwards contrast private and public in-

formation given the order of moves. Here, and in the remainder of the paper we assume for the

sequential settings that the conditions for interior solutions are satisfied if not stated otherwise.

Moreover, we assume that in every setting, contestants make the corresponding equilibrium bids

as given in Propositions 1, 2, 3 and 6. In the following comparison of sequential and simultaneous

contests, we first refer to public information, then we turn to private information.

1.5.1 Sequential versus Simultaneous Contests given Public Information

The comparison of the oder of moves given public information leads to the following insights.

We have seen in Section 1.3 that bids of homogeneous types in the sequential and simultaneous

contest with public information are identical as the first mover’s commitment to a bid does not

affect equilibrium behavior in this case. Regarding the Stackelberg and Cournot-Nash equilibrium

outcomes when types are heterogeneous, the outcomes no longer coincide: Morgan (2003) shows

that a first mover who has a high valuation commits to a higher bid in the sequential contest than

in the simultaneous contest, whereas a first mover who has a low valuation commits to a lower bid.
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Intuitively, this can be explained as follows. The high type of the first mover anticipates that the

low type of the follower reduces his bid when he faces a higher bid of the first mover. Hence, the

leader can profit from increasing his bid as his probability of winning rises. In contrast, the low

type of the leader knows that a reduction in his bid induces the high type of the follower to reduce

his bid as well as the marginal gain in his probability of winning decreases for higher bids.25

Hence, in a heterogeneous contest, the sum of efforts is lower (in equilibrium) in the sequential

contest, when the low type moves first as both agents reduce their efforts compared to the

simultaneous contest. When the high type moves first, the sum of efforts is higher in the sequential

contest as the first mover’s increase in his effort outweighs the decrease of the follower (see Morgan

(2003)). As aforementioned, for homogeneous contests equilibrium efforts under both timing are

identical. Therefore, to conclude under which timing structure the ex ante expected effort sum is

higher, we only need to compare the expected effort sum when the first mover is a high type and

the second mover a low type and vice versa. Ex ante, both situations are equally likely as each

contestant is with provability one half a high or a low type, respectively. This property is also

satisfied for the symmetric distribution with independently drawn valuations that is considered by

Morgan. Thus, his result that the ex ante expected effort sum is higher in the sequential contest

can be extended to our distributional assumption. A designer who wants to maximize the expected

effort sum, hence prefers the sequential contest to the simultaneous one under public information.

Regarding the contestants’ payoffs, we already know that in simultaneous contests ex ante expected

payoffs of both agents are identical as well as in sequential contests (for the interior solution).

Although there is no difference between the contestant’s expected payoff given a timing structure,

ex ante expected payoffs are higher in sequential contests than in simultaneous contests.26 Taken

together, this implies that sequential contests Pareto dominate simultaneous contests from an

ex ante perspective. This may be a bit surprising since agents spend more effort from an ex

ante perspective. The intuition for the result is an efficiency gain effect : the agent with the

higher valuation wins “more often” in the sequential setting since the gap between the bid of

heterogeneous types becomes larger27. This efficiency gain effect increases the surplus of both

agents and outweighs the effect of higher expected efforts.

25It is straightforward to verify the follower’s reactions by differentiating the best response function of the follower

(that is identical to (1.9)) w.r.t. the leader’s bid and evaluating the derivative at the equilibrium bid of agent 1 in

the simultaneous contest (as given in Proposition 1).

26The proof is omitted since the result can straightforwardly be derived from Morgan (2003) by changing the

distributional assumption.

27It immediately follows from above that equilibrium bids in a heterogeneous contest are more unequal in the

sequential contest than in the simultaneous contest when the high type moves first. For the low type see the proof

of Proposition 16.
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Baik and Shogren (1992) and Leininger (1993) show that the sequential contest also arises

endogenously in the following two-stage game. In stage 1, knowing their own and the opponent’s

type, agents decide simultaneously whether to move “early” or “late”. Timing decisions are

publicly announced and afterwards, knowing the decision of the opponent, contestants choose their

bid in the period they committed to. In this game, agents move sequentially in equilibrium if types

are heterogeneous with the low type being first mover, otherwise sequential and simultaneous

order of moves form an equilibrium.28

Morgan (2003) finds that the sequential contest also arises endogenously when the timing decision

is taken before contestants know their valuations. In stage 1, agents decide simultaneously whether

to move “early” or “late” before knowing their valuations. Then valuations realize, are publicly

announced, and according to the timing decision in stage 1, effort is exerted in the period agents

committed to before. In this game, the only possible outcome of a subgame perfect equilibrium in

pure strategies is that agents act sequentially. This result also holds for the joint distribution of

valuations considered in this paper.29 Although a sequential order of moves is the only equilibrium

outcome, a drawback of this game is that it involves a coordination problem: one agent has to

move first and the other one second.

1.5.2 Sequential versus Simultaneous Contests given Private Information

In this section, we compare simultaneous and sequential contests when valuations are private in-

formation. We find that with private information – like in the public information setting – the ex

ante expected effort sum is (weakly) higher in the sequential contest than in the simultaneous one,

which implies the following result.

Proposition 9 Suppose contestants bid in each setting according to the corresponding equilibrium

outcomes in Propositions 1, 2, 3 and 6. Then the designer of the contest (weakly) prefers a se-

quential setting when he aims at maximizing the expected effort sum (strictly so if correlation is

not perfectly positive or VH > VL).

28Baik and Shogren (1992) consider “favorites” and “underdogs” where the underdog (favorite) wins with the lower

(higher) probability in equilibrium. This is equivalent to a heterogeneous contest in our setting, in which the high

type bids more than the low type and therefore, wins with a higher probability. Leininger (1993) considers both

cases, heterogeneous and homogeneous contestants.

29The proof is omitted as the result can straightforwardly derived from Morgan (2003) by replacing the distribution

with the one used here.
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Proof.

See appendix.

Moreover, if we think of the prize agents win as money the designer spends, the sequential contest

is “cheaper” for the designer. He can extract the same effort sum that he extracts under the

simultaneous contest but at a lower price. This may be crucial for the institutional choice if the

sequential contest is – in some other sense – more expensive than the simultaneous contest. For

example, it might take longer to carry out a sequential contest, which may cause higher costs.

Hence, even if one includes discounting, there will be parameter combinations in which sequential

contests dominate simultaneous ones.

Our result thus differs from Münster (2004). He considers repeated contests, in which contestants

twice choose an effort simultaneously and both receive intermediate information before they enter

the second stage. In contrast to our result that the sequential contest (in which intermediate

information is available to the second mover) leads to a higher expected effort sum, intermediate

information leads to lower expected equilibrium efforts in his setting. The main reason for this

difference is that in Münster high ability contestants might put in little effort in the first round to

make their opponents believe that they are of low ability.

The result that sequential contests Pareto dominate simultaneous ones can only partly be

extended to the case of private information. Higher expected efforts lead to higher expected effort

costs for the contestants. For the first mover, the effect of an increased probability of winning

prevails such that he nevertheless prefers the sequential contest. The second mover prefers the

sequential contest only when ρ is sufficiently “negative”. We call the correlation sufficiently

“negative” although this does not mean, that correlation needs to be actually negative. By

sufficiently negative, we mean that there is a sufficiently strong tendency to negative correlation

between both agents’ valuations, the threshold, however, can be strictly positive.

The intuition for this result is an efficiency gain effect. Suppose the first mover is a high type. We

know that he bids more than his rival because of the ability effect. Moreover, his bid is increasing

the smaller ρ (commitment effect). The bid of the second mover is decreasing the smaller ρ

(competition intensity effect) and the higher the bid of the first mover. Hence, the first mover, who

is a high type, wins with a higher probability the smaller ρ. Suppose the leader is a low type. Then

his bid is decreasing the smaller ρ and also the bid of the follower is decreasing (as ρ decreases and

as the first mover bids less). When the second mover is a high type, his bid decreases less than the

first mover’s bid and he bids more than the first mover (ability effect). Hence, the probability that

the second mover – who is the high type – wins the prize increases. Taken together, this implies

that the agent with the higher valuation is expected to win more often.
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In addition, the smaller the correlation, the higher the probability that valuations actually differ.

Note that in case contestants have the same type, it does not matter in terms of allocative

efficiency which one of them wins. Thus, the smaller the correlation (“the more negative”), the

more important the efficiency gain effect becomes. The second mover needs to be compensated

for increased effort outlays under the sequential structure to prefer the sequential structure. When

the correlation is sufficiently “negative”, and thus the efficiency gain effect is sufficiently strong,

the second mover can be compensated.

Hence, the result that the sequential contest Pareto dominates the simultaneous one under

public information still holds under private information if valuations are sufficiently “negatively”

correlated. These observations are summarized in the following proposition.

Proposition 10 Consider equilibrium outcomes of simultaneous and sequential contests as given

in Proposition 3 and 6. In the interior solution of sequential contests with private information

(i) the first mover always receives a higher ex ante expected payoff than in simultaneous contests,

(ii) the second mover receives a higher ex ante expected payoff than in simultaneous contests for

VL < VH and ρ < 1 if the correlation is sufficiently “negative”, i.e. if

ρ ≤ ρ̃c :=

(
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√
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√

VH+VH√
VH(

√
VL−

√
VH)

.

For VH = VL or ρ = 1 his ex ante expected payoffs in simultaneous and sequential contests

are identical.

Proof.

See appendix.

Comparing the numerator and denominator of ρ̃c, it is straightforward to verify |ρ̃c| < 1 (see Proof

of Proposition 10).

Note that the critical value of ρ is derived from the interior solution of equilibrium bids. Therefore,

we have to make sure that the condition for an interior solution (r ≥ r̃) is satisfied as well. The

result is illustrated in Figure 1.2 for the case that the low valuation equals 1.5. The solid line

describes the critical value of the correlation coefficient. Below this line the sequential contest leads

to higher expected payoffs for the second mover and above the simultaneous contest. The dashed

line marks the threshold for the interior solution. Unlike Münster (2004), the setting with interme-

diate information (i.e. a sequential contest) is not necessarily favorable to both contestants. This

difference is due to the fact that in Münster, agents act simultaneously. They play two stages and
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Figure 1.2: Critical Value ρ̃c for VL = 1.5

both receive intermediate information after the first stage. This means no first mover advantage

arises – which reduces the second mover’s payoff – as in our case.

Another criterion for the institutional choice is the overall (ex ante) expected payoff of the contes-

tants. Suppose contestants have the choice whether they want to play a simultaneous or sequential

contest. Moreover, they have to decide on it before they know their valuation and whether they

move first or second – because of ex ante symmetry they are assigned to the role of being the first

mover and the opponent the second mover (and vice versa) with probability one half. In this set-

ting, whether contestants prefer a simultaneous or sequential setting depends on where the overall

expected payoff is larger. Although the first mover always prefers the sequential setting, this cannot

outweigh the fact that the second mover prefers the simultaneous contest for sufficiently “positive”

correlation.

Proposition 11 Consider equilibrium outcomes of simultaneous and sequential contests under pri-

vate information (interior solution) as given in Propositions 3 and 6. The overall expected payoff

of the contestants is higher in sequential contests for VL < VH and ρ < 1 if the correlation is

sufficiently “negative”, i.e. if

ρ ≤ ρc := V 3
L+V 3
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√
VL
√
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VH(

√
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VH)

.

For VH = VL of ρ = 1 the overall expected payoff is identical in simultaneous and sequential contests.

Proof.

See appendix.
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Figure 1.3: Critical Value ρc for VL = 1.5

Comparing the numerator and denominator of ρc, it can be seen that |ρc| < 1.

Again, the intuition for the result is an efficiency gain effect like for the comparison of individual

expected payoffs in Proposition 10. Evidently, the critical value for the overall expected payoff

being higher in the sequential contest is larger than the critical value for the expected payoff of the

second mover being higher (because of the influence of the expected payoff of the first mover).

Note that the critical value of ρ is derived from the interior solution of equilibrium bids. Therefore,

we have to make sure that the condition for an interior solution (r ≥ r̃) is satisfied as well. The

result is illustrated in Figure 1.3 (for the case that the low valuation equals 1.5), where we plot

the critical value of the correlation coefficient (solid line). Below this line the sequential contest

leads to higher overall expected payoffs for the contestants and above the simultaneous contest.

The dashed line marks the threshold for the interior solution.

Under public information, we have seen that sequential contests arise endogenously. For the case of

private information, we consider again the aforementioned two-stage game in which agents 1 and

2 simultaneously decide whether they want to move ‘early’ or ‘late’ in stage 1, these choices are

publicly announced and valuations realize. In stage 2, knowing the own valuation – but not the

opponent’s type – and the period choice of the opponent, contestants make their bid in the period

they committed to. This means that if both agents announce the same period, the subsequent sub-

game is the simultaneous contest with private information and if they announce different periods,

it is the corresponding sequential contest with private information.

Assuming that contestants bid in each subgame according to the corresponding equilibria in Propo-
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Table 1.2: Ex ante expected payoffs

2

1

early late

early Ψsim,Ψsim Ψ1st,Ψ2nd

late Ψ2nd,Ψ1st Ψsim,Ψsim

sitions 1, 2, 3 and 6, we have already analyzed all possible outcomes in stage 2 and know the ex

ante expected payoffs for each timing choice, it remains to investigate the simultaneous move game

in stage 1. Table 1.2 summarizes the ex ante expected payoffs of agent 1 and 2 given their choices

whether to make their bid ‘early’ or ‘late’. Ψsim denotes the ex ante expected payoff in the simul-

taneous contest with private information, Ψ1st and Ψ2nd denote the ex ante expected payoff in the

sequential contest with private information of the first mover and the second mover, respectively.

Regarding these payoffs, the only relationship, we did not analyze up to now is whether the first

or second mover has a higher ex ante expected payoff. Intuitively appealing, it turns out that the

first mover has a higher (ex ante) expected payoff than the second mover.

Lemma 1 In the interior solution of a weak perfect Bayesian equilibrium of the sequential con-

test with private information (see Proposition 6) a first mover advantage exists from an ex ante

perspective.

Proof.

See appendix.

Using this result, we find that in the private information case the sequential contest does not

necessarily arise endogenously in the aforementioned two-stage game:

Proposition 12 Suppose contestants bid in each subgame of the proposed two-stage game according

to the corresponding equilibrium outcomes in Propositions 3 and 6, respectively. In the subgame

perfect equilibria in pure strategies of the proposed two-stage game, contestants choose a sequential

order of moves when the correlation between types is “sufficiently negative”, i.e. ρ < ρ̃c. If ρ > ρ̃c,

both agents choose to move “early” in equilibrium. If ρ = ρ̃c, both simultaneous moves at the early

stage and sequential order of moves arise in subgame perfect equilibria.

Proof.

The only step that is left to show is to solve for the (pure strategy) Nash equilibria of the simultaneous-move
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game in the first stage. Table 1.2 shows the payoff matrix of this game. To derive the Nash equilibria, the

relationship between Ψsim and Ψ2nd is crucial. If Ψ2nd < Ψsim, which holds when ρ < ρ̃c (as we have shown

for Proposition 10), the only equilibrium is that both contestants choose to move “early”. If Ψ2nd > Ψsim,

which holds when ρ > ρ̃c (as we have shown for Proposition 10), sequential play forms an equilibrium. If

Ψ2nd = Ψsim, which holds for ρ = ρ̃c, sequential order of moves as well as both contestants choosing to move

early forms an equilibrium.

1.6 Private versus Public Information

Finally, we compare the different information regimes given the order of moves. In the simultaneous

contest a high (low) type bids more (less) if he knows that the opponent is also a high type, than

when the opponent is a low type (i.e. there is public information) compared to the bid of a high

(low) type under private information. Conditional on an agent’s type, the expected bid of an agent

is the same under public and private information as we have seen in Section 1.4. Therefore, a risk

neutral designer, who wants to maximize the ex ante expected sum of efforts, is indifferent between

both information regimes. If we refer to the effort sum as the revenue of the designer, we can say

that revenue equivalence holds for the designer. Moreover, the contestants’ conditional probability

of winning the prize is equal under both regimes in the simultaneous contest. Malueg and Yates

(2004) derive these results, which we summarize in the following proposition.

Proposition 13 [Malueg and Yates (2004)] Given the corresponding equilibrium outcomes of si-

multaneous contests (see Propositions 1 and 3), contestants’ ex ante expected payoffs are identical

under public and private information and revenue equivalence holds for a risk neutral designer, who

maximizes the expected effort sum.

For simultaneous contests with a Tullock contest success function in which agents are either both

uninformed or informed about the common value of the prize, Wärneryd (2003) finds as well that

the expected effort sum is identical under both settings. If, however, only one player is informed and

the other one not, expected efforts decrease. Proposition 13 implies that – from an ex ante point

of view – there is no incentive for the agents to share their private information in the simultaneous

contest.

When we compare sequential contests given private or public information, respectively, results

change: Here, the different information setting matters from an ex ante perspective. Intuitively,

private information dampens the differences between ex ante expected efforts of the first and second

mover. As under public information, the first mover exerts a higher expected effort than the second

mover. The expected effort of the first mover is, however, lower than under public information.

The second mover’s expected effort is higher than under public information. The effect on the
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second mover’s expected effort compensates for the first mover’s effort reduction given private

information.30 These results are driven by the commitment effect for the high type of the first

mover, who exerts more effort when the second mover is a low type than when he is a high type

under public information. This deters the second mover when the first mover is a high type such

that the distance in expected efforts between public and private information is larger for the second

mover. Thus, we have the following proposition.

Proposition 14 Given the corresponding equilibrium outcomes of sequential contests (see Propo-

sitions 2 and 6), a risk neutral designer, who maximizes the expected effort sum, prefers a private

information setting to a public information setting from an ex ante perspective.

Proof.

See appendix.

This means that revenue equivalence across information regimes does not hold for sequential con-

tests. When agents move simultaneously, no commitment effect – which drives up the expected

effort sum – is present.

Suppose that the designer knows the realization of types when the contest is played. We can con-

clude from Proposition 14 that the designer has no incentives to reveal his information from an ex

ante perspective (i.e. when he can commit to an order of moves and an information policy before

he knows the realization of types).

Regarding the contestants’ overall expected payoff, we can immediately conclude that it is smaller

under private information. Remarkably, this result also holds true for individually expected payoffs

of the first as well as of the second mover. This is due to the dampening effect of private informa-

tion: Ex ante expected bids of the contestants are more similar, which we can interpret as higher

competition, which reduces the agents’ payoffs. Although the first mover saves effort costs since his

expected effort is lower, his “overall expected” probability of winning decreases disproportionately

as the second mover’s expected effort is higher under private information. For the second mover,

effort costs drive up because his expected bis is higher.

Proposition 15 Given the corresponding equilibrium outcomes of sequential contests (see Propo-

sitions 2 and 6), contestants prefer public information to private information.

Proof.

See appendix.

30It is straightforward to verify these results but not necessary for the proof of Proposition 14. Therefore, we omit

the proofs.
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Thus, there is an incentive for the contestants to share the information about their types in the

sequential contest. If they could commit to information disclosure, contestants would like to do so

(ex ante). Whether contestants would like to disclose their private information at the time they

know the realization is an interesting question but we do not want to address it in this paper.

1.7 Other Aims of the Designer

1.7.1 Minimizing the Expected Effort Sum

Up to now, we assumed that the principal wants to maximize the expected effort sum. There are

of course settings in which this is not true. If we think of wasteful expenditures, like in the rent-

seeking literature, then the principal in contrast aims at minimizing the expected effort sum. From

our analysis, we can immediately conclude that in this case the principal prefers simultaneous

contests (compare Proposition 9). Regarding the contestants nothing changes to before. Given

public information, they still prefer the sequential setting as well. Given private information, the

first mover still prefers the sequential setting and for the second mover the result depends on the

correlation of valuations. This implies that it is never possible to align preferences of all three.

Regarding the information setting, nothing changes when agents move simultaneously. All parties

are indifferent between public and private information from an ex ante perspective. When agents

act sequentially, however, all three would then prefer public information (compare Propositions 14

and 15).

1.7.2 Close Race

There may be different aims of the designer of a contest than maximizing or minimizing the effort

sum. In particular, when we think of sports contests, it may be that a designer aims at having a

close race between athletes in order to attract the audience rather than to maximize the sum of

efforts.31 The gap between high and low types is larger in sequential contests under public infor-

mation than in simultaneous contests (compare Section 1.5.1). Similarly, the expected gap in the

sequential contest is also higher than in the simultaneous contest in case of private information.32

31Another aim in sports contests would be that athletes break records. In this case the designer would like to

maximize “the highest effort” in the contest. See e.g. Moldovanu and Sela (2006). Given public information, the

sequential contest would then be preferred since for homogeneous types efforts are identical but for heterogeneous

types either the high type in the sequential contest makes a higher bid than in the simultaneous contest. This result

will at least partly hold true for private information since the expected gap between low and high types is larger in

the sequential contest and also the expected effort sum can be larger.

32We assume that agents are randomly assigned to be the first or second mover. Also under public information,

the designer fixes the order of moves before he knows the realization of types. This means that when types are
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The reason is that in the sequential contest with private information there is not only a gap between

the efforts of heterogeneous types, but also between the efforts of homogeneous types as the first

and second mover do no longer exert the same effort.

For simultaneous contest, the ex ante expected gap between the efforts of the contestants is higher

under private information than under public information. Irrespective of the information setting,

homogeneous types exert the same effort in equilibrium in simultaneous contests. Thus, no gap

arises with homogeneous types. When types are heterogeneous, then the gap under private infor-

mation is larger. This is due to increased competition under private information when types are

actually heterogeneous: Under private information contestants are not sure that their types differ.

Thus, the bid of a low (high) type under private information is larger than the bid of a low (high)

type under public information who knows that his opponent is a high (low) type. This effect is

larger for the high type than for the low type. We can say that the ability effect increases the effect

of more competition when agents do not know that their types actually differ.33

For sequential contests it is the other way around. The ex ante expected gap is larger under public

information. For the sequential setting private information dampens the differences, although no

gap arises for homogeneous types under public information but a gap arises under private informa-

tion. The reason is the additional commitment effect that offsets the competition intensity effect

when the first mover is a high type. Under public information this effect is stronger than under

private information: The high type of the first mover makes a very large bid, when the second

mover is a low type and correspondingly the second mover makes a low bid in this case. Private in-

formation dampens this result as contestants do not know the type of the opponent with certainty.

This yields the following proposition.

Proposition 16 Suppose contestants bid according to the corresponding equilibrium outcomes of

simultaneous and sequential contests (see Propositions 1, 2, 3 and 6). Then a risk neutral designer

who aims at having a close race, prefers simultaneous contests to sequential contests from an ex

ante perspective. Given a simultaneous setting, he prefers public information to private information

and given a sequential setting he prefers private information to public information from an ex ante

perspective.

heterogeneous, the 1st mover in the sequential contest is with probability one half the high and the low type,

respectively. This assumption does not change the result for public information. With private information, if the

probability that the 1st mover is the high type is larger than 1/2, the result still holds, too. We can show that –

given heterogeneous types – the expected effort difference in the sequential contest is larger than in the simultaneous

contest, when the 1st mover is the high type. If the probability is lower than 1/2, however, it is possible that the

expected gap in the simultaneous contest is larger.

33These results follow from the observations in Proposition 4.
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Proof.

See appendix.

1.8 Conclusion

In this paper we compare a two-player contest under four different institutional settings: We

consider simultaneous and sequential orders of moves and public as well as private information

about the player’s types. Ex ante, sequential contests are preferred to simultaneous contests by an

effort-maximizing designer and also by the first mover irrespective of the information setting. The

second mover, however, does not necessarily prefer the sequential contest in the private information

setting. Whether he prefers the simultaneous or sequential setting depends on the distribution of

types. When correlation between types is sufficiently negative, he prefers a sequential order of

moves (ex ante), too. In the setting with public information sequential contests arise endogenously.

This result can only partly be extended to private information since there exists a first mover

advantage and therefore a strong incentive to move first.

Furthermore, an effort-maximizing designer ex ante prefers private information given a sequential

contest, whereas contestants prefer public information when the order of moves is sequential. Given

simultaneous contests, the designer as well as the contestants are indifferent between public and

private information from an ex ante perspective.

This result may no longer hold when we include considerations of time. A sequential order of moves

prolongs the contest. Depending on the type of contest, this may be a crucial feature reducing

or even offsetting the aforementioned advantage of sequential contests. It may be expensive to

organize a contest that lasts longer. Sequential contests,however, are also “cheaper” for the effort-

maximizing designer in the sense, that he can reduce the prize up to some point and his expected

revenue in the sequential contest still equals his expected revenue in the simultaneous one. This

advantage may outweigh the costs of the extra time.

Hence, we can conclude that it is not only outside restrictions that determine the timing structure

of contests we observe in reality, but the combination of both these restrictions and the differing

incentive effects of the structures.
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Chapter 2

Teams and Intermediate Information1

2.1 Introduction

This paper studies the issue of how to organize the information structure between agents who

jointly work on a project. Should the principal instruct his agents to work simultaneously (i.e. no

intermediate information is available to the agents) or is it better when they work sequentially (i.e.

intermediate information is available)? When analyzing this question, we take the team structure

as given and focus on the effect the informational change has on incentives.

In real life, we frequently observe team production or problem-solving teams. Osterman (1994,

2000) estimates in a survey that in 1992 and 1997 about 40 percent of the manufacturing

establishments (that have more than 50 employees) in the U.S. have more than half of their

employees working in teams. Hence, teams became important work practices. A recent trend

is the assignment of software development teams instead of single agents. Teasley et al. (2002)

conduct an empirical study on the performance of software development teams working either in

open space offices or private offices.

Team members are, in general, paid according to some joint performance evaluation scheme.

Therefore, team performance suffers from free-riding problems. Nevertheless, teams may be

performance enhancing in reality for other reasons like synergy effects or increased employee

satisfaction. The free-riding problem, however, may still remain. There are studies that examine

how team production can be improved by circumventing the free-riding problem. One argument

is that a sequential order of moves – where the second mover receives non-verifiable information

about the first mover’s action – reduces shirking (see Winter (2005)) and may attain efficient

production under budget-balancing (see Strausz (1999)). In line with these approaches, we

compare two settings: one in which intermediate information is available as agents act sequentially

and one in which it is not. In contrast to the literature, we allow that the joint project takes

1This chapter is based on joint work with Julia Nafziger.
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an additional intermediate value. This means that the project cannot only succeed or fail, but

can also take an intermediate value. We show that in this case it need no longer be true that

the sequential setting with intermediate information is necessarily better: The principal prefers a

simultaneous setting (i.e. no intermediate information is available) if individual contributions are

perfect substitutes rather than perfect complements regarding the joint output. If we depart from

the case of perfect complements, it is possible that the simultaneous structure becomes optimal

for complementary contributions.

The problem of how to design team production is, for instance, known from the automobile

production. On the one hand, there is the assembly line approach, where all agents act sequentially

but can observe their predecessors’ performance. On the other hand, there is the possibility that

several agents work simultaneously on the product before it passes to the next production stage.

BMW, for example, uses the latter structure, where several teams work sequentially.

Another example of team production, mentioned above, are software development teams. It is

possible that agents work simultaneously on the project but perform different tasks. Explicit

agreements on different working hours may induce a sequential setting. In the latter setting, it

might well be that the second mover can evaluate the performance of his colleague (since he is

involved in the same project), but for a third person it might be very difficult to evaluate the

performance on some program that is not yet finished. Similar issues arise with other kinds of

joint research projects.

Our setting corresponds to such projects where it is difficult or prohibitively costly (at least

compared to the projects value) to evaluate intermediate results for a person that is not directly

involved, but easy to evaluate the whole project.

We consider the question of the optimal information structure in a moral hazard model

with a risk neutral principal and two agents, who are risk neutral but protected by limited

liability. The agents jointly work on a project. Each agent’s contribution to the joint project can

be either of high or low quality. The quality of an agent’s contribution depends on this agent’s

(unobservable) effort. In the following we denote the probability that a contribution is of high

quality by success probability of an agent. As agents work in a team, the principal can only

observe the (verifiable) joint output – i.e. the value of the project – and not the quality of each

agent’s contribution. The principal can, however, instruct his agents to make their contributions

simultaneously or sequentially. This means he can specify ex ante which agent is in control. In

case agents work sequentially, the second mover (agent 2) can perfectly observe the quality of

the first mover’s (agent 1) contribution. Thus, the second mover can condition his effort on the

quality the first mover provided. Since effort is unobservable, the principal offers an incentive

scheme to each agent to implement the desired effort. We derive the optimal wage scheme for
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both information scenarios – either agents move simultaneously or they move sequentially. When

analyzing the effects of the information structure on incentives and on the principal’s expected

payoff, we find that the optimal structure depends on whether the individual contributions enter

the principal’s production function in a complementary or substitutable way. Our main result

is that the sequential structure is superior if contributions are perfect complements, while the

simultaneous structure is superior when contributions are perfect substitutes.

When contributions are complements, an agent’s contribution is more effective regarding the

value of the whole project, the higher the quality of the other agent’s contribution. We begin

by analyzing the special case of perfect complements, in which a low quality contribution of one

agent leads to a failure of the whole project. This means, the principal only observes whether both

agents’ contributions are of high quality (hence the project succeeded) or whether the project

failed, i.e. at most one agent’s contribution is of high quality. In this special case, the project is of

no value if at least one agent’s contribution is of low quality. Under the sequential structure, the

principal cannot incentivize the second mover when the first mover provided low quality. Hence,

the second mover exerts no effort when the first agent provided low quality and the principal pays

a wage of zero. The second mover only needs to be paid in case the first mover’s contribution

is of high quality. This enables the principal to better incentivize him: The principal saves

implementation costs. Moreover, his revenues do not decrease since a high quality contribution

from both agents is needed to generate revenues. This implies that expected revenues are not

influenced by the effort the second mover exerts in case the first mover provides low quality. Thus,

if contributions are perfect complements, the principal prefers the sequential structure. In an

extension, we also consider more general cases of complements. Here, it may happen that the

simultaneous structure becomes optimal.

For the case of substitutability, we assume that one agent’s contribution is equally (or less) effective

irrespective of the quality of the other agent’s contribution. When contributions are substitutes,

the principal observes three different values of the project. Either it is of high value (i.e. both

contributions are of high quality), low value (both are of low quality) or of intermediate value (one

contribution is of high, one of low quality). In the latter case, the principal does not know, whose

contribution has which quality (as agents work in a team). We find that the principal prefers the

simultaneous structure when contributions are perfect substitutes (which we define as an agent’s

contribution is equally effective irrespective of the quality of the other agent’s contribution). There

are two driving forces for this result: On the one hand, the feasible wage scheme changes between

the structures as soon as the principal implements a positive effort for the second mover in case the

first mover provided low quality. This change drives up implementation costs. On the other hand,

a negative effect on expected revenues arises if the principal conditions the second mover’s effort

to the state of the world. When the effort of the second mover differs contingent on the quality of
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the first mover’s contribution, the value of the concave expected revenue function decreases. This

implies that irrespective of whether the principal implements zero effort for the second mover after

a low quality contribution of the first mover or not, the simultaneous structure leads to higher

expected profits. The negative revenue effect of the sequential structure that is crucial for our

result has not been considered in the literature by now to the best of our knowledge. This effect

only arises when different values of the project are taken into account, which has been ignored so

far. In an extension, we also consider more general cases of substitutability.

The literature on multi-agent moral hazard problems started with Holmström (1982). In

Holmström’s partnership model, agents jointly produce and commonly share an output. The

output deterministically depends on the agents’ efforts, which are unobservable. Holmström shows

that such form of organization is inefficient if budget-balancing is required for the sharing rule.

The reason is that a team member shirks as he has to bear the cost for his effort himself, while

the marginal benefits of his effort are shared.2 For such partnerships, Rasmusen (1987) finds that

with risk-averse agents efficiency can be reached by allowing for random punishments. Legros and

Matthews (1993) show that with Leontief production functions (i.e. effort are complements) the

inefficiency resolves as well.

The literature on team production under moral hazard discusses various mechanisms to alleviate

the problem of free-riding. As a means to solve the free-riding problem in one-shot interactions,

Kandel and Lazear (1992) consider how teams generate social pressure. They analyze how the

disutility from such social pressure can be optimally exploited. This peer pressure may, for

example, arise from the possibility that team members can monitor each other. If they can do so,

the principal could also implement a mechanism that induces agents to report on their colleague’s

effort to reduce incentives to free-ride (see Marx and Squintani (2002)). Miller (1997) analyzes such

a message game in case that a single agent can observe his colleagues’ efforts and can report his

observation to the group. He shows that efficiency can be sustained by a budget-balancing sharing

rule. When teams are subject to moral hazard and adverse selection, McAfee and McMillan

(1991) show that – under some conditions – it does not matter whether the principal observes

the final output or individual contributions to the output. Hence, monitoring is not necessary to

prevent shirking in this case. In this paper, we abstract from the possibility of monitoring and

reporting but instead change the production process such that the second mover can observe the

first mover’s contribution. Che and Yoo (2001) consider repeated interactions and find that if an

agent can observe after each period whether the colleague shirked or not, free-riding decreases.

Most closely related to our paper is the paper by Winter (2005). He compares different information

2The basic model is extended by Battaglini (2004) to a multi-dimensional strategy and output space.
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structures when a sequence of agents collectively works on a project and moral hazard is present.

Winter consideres any information structure in between (and including) the following two extreme

cases. One extreme case is that agents are not able to observe effort decisions of their predecessors

(corresponding to simultaneous effort choices). The other extreme case is that each agent knows

the effort decision of all his predecessors (corresponding to sequential effort choices). More (less)

transparency then corresponds to more (less) agents being able to observe the effort of more

(less) of their predecessors. There is no mutual knowledge about effort decisions in the sense

that an agent who acts earlier does not know the effort of an agent who acts later. In contrast

to our model, Winter analyzes the case that agents are only rewarded in case of a success of the

joint project. When agents have a binary effort choice – either they exert effort or not – more

transparency is always favorable to the principal if he wants to induce all agents to exert effort.

This result holds irrespective of whether the agents’ efforts are complements or substitutes (i.e.

whether the production technology possesses decreasing or increasing returns to scale). When

more agents make their effort choice contingent on the decision of (more of) the other agents,

shirking is more harmful to the probability that the joint project succeeds. Hence, incentives

increase and implementation costs decrease. Winter’s result stands in sharp contrast to our result

that a sequential structure needs not be optimal when different values of the project are considered

(and can be rewarded). The reasons for these different results are the aforementioned change in

the feasible wage scheme and the revenue effect.

For the case that agents move sequentially and each agent can observe the effort decision of all his

predecessors, Winter (forthcoming) shows that agents who move later (i.e. their effort is observed

by less agents) should receive (weakly) higher rewards. Agents who move later, face a minor threat

that their own shirking induces their followers to shirk as well.3

Similar to our approach, Gould and Winter (2005) consider a model, in which an agent’s wage

depends on the vector of the agents’ performances. They show that positive as well as negative

peer effects may arise under team production without behavioral effects as peer pressure. A

positive peer effect means that a high (low) performance of one agent increases (decreases) the

other agent’s effort. Depending on whether agents deal with complementary or substitutable

tasks, respectively, positive or negative peer effects arise. Task complementarities are reflected

by the wage scheme. These properties of the wage scheme are imposed and are not part of the

optimal wage scheme (which they do not derive).4 In contrast to our paper, Gould and Winter do

not compare different information structures and do not include complementarities of the agents’

performances. They present empirical evidence for their theory using data on the performance of

3Winter (forthcoming) also shows that agents with a lower effort costs (i.e. a higher ability) should move later.

4The optimal wage scheme that we derive, satisfies their definition of complementary tasks.

45



professional baseball players.

We do not analyze whether it is optimal to employ a team, but assume that this is an existing

relationship that cannot be changed for the project. The question of how to optimally structure

agents’ interaction, is, for instance, considered by Goldfain (2006) and Hemmer (1995). Goldfain

(2006) analyzes in an R&D setting when it is optimal to employ a team (where synergy effects

are present), two competing agents or only one agent. Regarding the team, Goldfain (2006)

distinguishes between simultaneous and sequential effort choices. She presents numerical results,

which suggest that when efforts are strategic substitutes, the performance of the team is not

increased under the sequential structure compared to the simultaneous one. This is in line with

our result when contributions are substitutes. Hemmer (1995) approaches the question how to

assign agents to a sequence of tasks. He finds that it is optimal to organize agents in a team to

deal with these subsequent tasks instead of assigning different agents to single tasks, when there

exist synergies from dealing with several tasks.

The question whether to provide intermediate information is optimal is also considered by Lizzeri et

al. (2002) and Ludwig and Nafziger (2006). Lizzeri et al. (2002) analyze the question whether the

principal should provide a single agent (who works for two periods) with intermediate information

about his output or not. In contrast to Winter (2005), they find that it is always optimal for

the principal not to provide feedback. The driving force that turns intermediate information

unfavorable, is a change in the wage scheme as it also arises in our setting: The agent has to be

rewarded after a failure in the first period, too, otherwise he does not exert any effort when he

gets the “negative” feedback.

Ludwig and Nafziger (2006) consider two agents who do not work on a joint project, but separately

produce an output. The agents’ success probabilities are allowed to be dependent. Like in the

current paper, the principal can instruct his agents to work simultaneously (i.e. no intermediate

information is available) or sequentially (i.e. intermediate information is available to the second

mover). In the latter case, the second mover can observe the output of the first mover. Which

information structure is optimal, depends on whether the colleague’s output is informative

about an agent’s effort or not. If it is uninformative, a sequential structure is optimal. If the

colleague’s output is informative, the simultaneous structure can be optimal as well. Independent

success probabilities – like we consider in the current paper – imply that the colleagues output is

uninformative and thus that a sequential structure is optimal. Similarly to the present paper, one

driving force is a (possible) change in the feasible wage scheme.

Another field that is related to our issue, is the literature on how to design jobs or allocate

tasks when moral hazard is present (see e.g Prescott and Townsend (2006), Schmitz (2005) or

Itoh (1994)). Furthermore, the literature on sequential tournaments is related to this paper. In

tournaments, agents generally compete against each other and do not form a team. Contrary to
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the current paper, in the tournament literature, the wage scheme is often exogenous (e.g. Aoyagi

(2003), Ederer (2004) or Morgan (2003)) or it is solely a strategic effect that drives the result (e.g.

Jost (2001) or Jost and Kräkel (2000)), which means that the first mover tries to influence the

action of the second mover.

The paper is structured as follows. In Section 2.2, we present the basic model. In Section 2.3,

we first derive the optimal wage scheme for the simultaneous and sequential structure given

that contributions are perfect complements. Then, in Section 2.4, we analyze which of the two

structures the principal prefers. In Section 2.5, we consider the case that contributions are perfect

substitutes. Again, we derive the optimal wage schemes and, in Section 2.6, we analyze which

structure the principal prefers. Afterwards, in Section 2.7, we extend the analysis to more general

cases of complementarities. In Section 2.8, we discuss our results and relate them to the literature.

We conclude in Section 2.9.

2.2 The Model

There are two agents, i ∈ {1, 2}, and a risk neutral principal. Both agents jointly work on a

project. They are risk neutral but protected by limited liability. The value of their outside option

is zero. If both agents accept to work for the principal production takes place, otherwise the

relationship terminates and the payoff of every player is zero. In the former case, each agent

makes a contribution Yi ∈ {L,H} to the joint project. The contribution is either of high quality

(H) or of low quality (L). We refer to a specific quality realization as “state of the world”. The

probability that an agent’s contribution is of high quality depends on his effort ei ∈ [0, ē] ≡ I

where p(ei) := Pr(H|ei), p : I → (0, 1). Moreover, p ∈ C3, concave and strictly increasing in effort.

The probability that the contribution has low quality is 1− p(ei). We refer to the probability that

an agent’s contribution has high quality as this agent’s success probability.

The quality combination YiY−i realizes with probability pYiY−i(ei, e−i) := Pr(YiY−i|ei, e−i), where

pYiY−i : I × I → (0, 1) and pYiY−i ∈ C3. We consider independent individual success probabilities.

This implies that pYiY−i(ei, e−i) is equal to the product of the respective individual probabilities.

Hence, an agent’s individual success probability p(ei) = pHH(ei, e−i) + pHL(ei, e−i) depends only

on his own effort and not on the other agent’s effort.

Denoting by pHH
ei

(ei, e−i) the derivative of pHH(ei, e−i) with respect to agent i’s effort, it follows

that p
HY−i
ei (ei, e−i) > 0, p

LY−i
ei (ei, e−i) < 0, p

HY−i
eiei (ei, e−i) ≤ 0, and p

LY−i
eiei (ei, e−i) ≥ 0.

Providing effort is costly for the agents. The cost to provide effort e is c(e), where c : R+
0 → R+

0 ,

c ∈ C3 with c′(·) > 0 ∀ei > 0, c′′(·) > 0 and c(0) = c′(0) = 0.

The revenue of the principal is πY(Yi, Y−i), where π is some strictly positive constant and Y(Yi, Y−i)

is the value of the project (or the agents’ joint output), which depends on both agents’ contributions

47



Yi and Y−i. We distinguish between two cases: Contributions are either complements or substitutes.

When contributions are complements, the quality of an agent’s contribution is more effective, the

higher the quality of the other agent’s contribution, i.e. Y(H,H)− Y(H,L) > Y(L,H)− Y(L,L).

When contributions are substitutes, Y(H,H) − Y(H,L) ≤ Y(L,H) − Y(L,L). In the main part

of the paper, we consider perfect complements and perfect substitutes as introduced below. In an

extension, we refer to more general cases of complements and substitutes.

First, we analyze the case that agents’ contributions are perfect complements. This means

Yc(Yi, Y−i) := Y(Yi, Y−i) = min{Yi, Y−i}. For simplicity, we assume H = 1 and L = 0. In

case agents’ contributions are perfect complements, a high quality contribution of both agents

is needed for the project to be of high quality (which we denote by H), otherwise the project

is of low quality (which we denote by L). Therefore, Yc(Yi, Y−i) ∈ {0, 1} ≡ {L,H}. Secondly,

we consider that the agents’ contributions are perfect substitutes. Again, we assume H = 1

and L = 0. Substitues imply that the value of the project can take three values: It can be of

high value when both agents contribute high quality, which we denote by H. If only one agent

contributes high quality, it takes an intermediate value (which we denote by M) and if both agents

contribute low quality, the project is of low value (which we denote by L). The value of the joint

project when individual contributions are perfect substitutes is Ys(Yi, Y−i) := Yi + Y−i. Thus,

Ys(Yi, Y−i) ∈ {0, 1, 2} ≡ {L,M,H}. We change the notation here only to not confuse both cases

later on. Hence, the set of possible values of the project differs for the case of perfect complements

and substitutes.

The timing and the information structure of the game are as follows. At date 0, the prin-

cipal decides whether agents move sequentially (we denote the first mover by agent 1 and the

second mover by agent 2) or simultaneously. At date 1, the principal offers to each agent i a wage

scheme w(O). This scheme conditions on all observable and verifiable variables (O). If agents

move simultaneously, both agents provide unobservable effort at date 2. If they move sequentially,

only agent 1 provides unobservable effort at date 2. Agent 2 can observe the realization of the

quality of the first mover’s contribution5 and then provides effort as well. The principal, however,

can neither observe the quality of the first mover’s contribution nor the agents’ efforts, but only

the value of the project Y(Yi, Y−i) (which is also verifiable). Finally, the project’s value and payoffs

realize: The principal receives his revenues and pays the wages to the agents as specified in the

wage scheme. Each agent receives his wage minus his effort costs.

5We show later that it does not matter for our results whether the second mover also observes the effort of the

first mover or not.
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2.3 Contributions are Complements

In this section, we consider the case that agents’ contributions are perfect complements in the prin-

cipal’s production function. This means that the value of the project is Yc = min{Yi, Y−i}. Hence,

the principal observes whether both agents perform well or whether at least one of them performs

poorly. Note that we stick to the case of perfect complements in the whole section. Whenever we

refer to complements, we indeed mean perfect complements in this section.

The principal maximizes his expected profit (i.e. expected revenues minus implementation costs)

with respect to wages and efforts, subject to the incentive, participation and limited liability con-

straints of the agents.6 Since agents are protected by limited liability, their expected payoff in

equilibrium is at least zero. Hence, by entering the relationship, they cannot be worse off than by

not entering it (the outside option is zero). We assume that agents accept to work for the principal

when they are indifferent between accepting or not accepting.

As usual in a moral hazard model, we can decompose the principal’s maximization problem into

two parts. In the first part, we take the efforts the principal wants to implement as given and max-

imize profits with respect to wages subject to the three constraints. As expected revenues (which

are π times the probability that both agents provide high quality) do not depend on wages, this is

equivalent to minimizing the expected wage payment. The solution to the problem is the optimal

wage scheme. In the second part of the problem, the principal maximizes his expected revenues

minus the wages (which depend on effort) with respect to effort. We do not investigate whether

it is indeed optimal for the principal to employ both agents (by implementing zero effort/paying a

wage of zero he can ensure a payoff of zero).

2.3.1 The Wage Scheme for the Simultaneous Structure

In this section, we consider the first part of the principal’s problem and derive the optimal wage

scheme for the simultaneous structure to implement any desired effort level (êi, ê−i). Under the

simultaneous structure (as well as under the sequential one), the principal offers a wage scheme to

each agent that depends on the value of the project, which is the only observable and verifiable

variable: w(Yc) = {wL
i , wH

i }. In the appendix we argue that the participation constraint of each

agent is satisfied if the limited liability constraint (which requires wYc
i ≥ 0 ∀i, ∀Yc(Yi, Y−i)) and

the agent’s incentive constraint are satisfied. Hence, we can drop the participation constraint in

the following and consider only the incentive and limited liability constraint. Using this result, the

problem of the principal (under the simultaneous structure) is to minimize expected wage payments

6For the sequential structure we require that the ex ante participation constraint is satisfied.

49



subject to the incentive and limited liability constraints.

max
wH

i ,wL
i

−
∑

i

pHH(êi, ê−i)wH
i −

∑
i

[1− pHH(êi, ê−i)]wL
i

s.t. êi ∈ argmax
ei∈I

pHH(ei, ê−i)wH
i + (1− pHH(ei, ê−i))wL

i − c(ei), ∀i (ICsimc
i )

s.t. wYc
i ≥ 0 ∀i, ∀Yc,

where êi and ê−i denote the Nash-equilibrium effort levels.7

From the incentive constraint (ICsimc
i ), we see that setting wL

i > 0 decreases incentives as (1 −

pHH(ei, ê−i)) is decreasing in ei. Moreover, it lowers the principal’s profits. Hence, setting wL
i = 0

is optimal. Using this result, we can derive the optimal wage when both agents provide high quality

from the agent’s incentive constraint. The solutions to the principal’s problem are summarized in

the following lemma.

Lemma 2 Suppose Y(Yi, Y−i) = Yc(Yi, Y−i) and agents move simultaneously. Then the wage for

agent i to implement effort êi is zero when at least one agent fails to provide high quality, i.e.

wL
i = 0. If both agents perform well, the wage is non-negative: wH

i = c′(êi)
pHH

ei
(êi,ê−i)

.

It straightforwardly follows from Lemma 2 that expected costs to implement effort êi for agent i –

given an effort ê−i of the other agent – are

Wsimc
i :=

pHH(êi, ê−i)
pHH

ei
(êi, ê−i)

c′(êi) =
p(êi)
p′(êi)

c′(êi). (2.1)

2.3.2 The Wage Scheme for the Sequential Structure

In this section, we derive the wage scheme for the sequential structure, starting with the second

mover. Note that in the sequential structure, the second mover only observes the first mover’s

performance and not his effort before he decides on his own effort.8 Hence, he forms beliefs about

the first mover’s effort that have to be correct in equilibrium. The principal does neither observe

the first mover’s effort nor his performance. As the second mover learns the quality Y1 ∈ {H,L}

of the first mover’s contribution, he can update his success probabilities:

Pr[Y2|H, ê1, e2] =
pHy2(ê1, e2)

p(ê1)
and Pr[Y2|L, ê1, e2] =

pLy2(ê1, e2)
1− p(ê1)

. (2.2)

7Note that the chosen effort needs not only be the maximizer of the agent’s profit, but also that an agent’s beliefs

have to be correct in equilibrium, i.e. the agent correctly predicts the effort level ê−i of his colleague. A Nash-

equilibrium in pure strategies of this game exists as the strategy space is is compact and convex and the objective

function is quasi-concave. Concerning uniqueness, we follow Mookherjee (1984) and assume that Nash-equilibrium

implementation is possible.

8We can also allow the second mover to additionally observe the effort of the first mover without changing our

results as we show in the appendix (See Proof A.).
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Moreover, the second mover can condition his effort on the observed quality. Thus, we have to

consider two incentive constraints – one for the case that the first mover’s contribution is of high

quality and one when it is of low quality:

After seeing H : eH
2 ∈ argmax

e2∈I
Pr[H|H, ê1, e2]wH

2 + Pr[L|H, ê1, e2]wL
2 − c(e2),

After seeing L : eL
2 ∈ argmax

e2∈I
wL

2 − c(e2).

After observing a low quality contribution of the first mover, the second mover receives the failure

wage wL
2 for sure. This implies that it is not possible to set incentives for the second mover to exert

any positive amount of effort in state L. Thus, eL
2 = 0 irrespective of wL

2 . The failure wage also

enters the incentive constraint of the second mover after having observed a high quality contribution

of the first mover. Here, we can see that setting wL
2 larger than zero, decreases incentives of the

second mover in state H since Pr[L|H, ê1] = 1 − p(e2) decreases in e2. Taken both observations

together, we have that wL
2 = 0 is optimal for the principal. Using wL

2 = 0, the second order

conditions of the maximization problems are obviously satisfied as the cost function is strictly

convex and pHH is concave in e2. Therefore, we can derive the optimal wage for the second mover

when both agents perform well, i.e. wH
2 , from the incentive constraint in state H. This yields that

wH
2 = p(ê1)

pHH
e2

(eH
2 ,ê1)

c′(eH
2 ) is optimal to implement effort levels (eL

2 , eH
2 ), given the effort ê1 of the first

mover. From this we obtain the following lemma.

Lemma 3 Suppose Y(Y1, Y2) = Yc(Y1, Y2) and agents move sequentially. Then the wages for the

second mover satisfy wL
2 = 0 and wH

2 = c′(eH
2 )

p′(eH
2 )

. This yields expected implementation costs for the

second mover – given an effort ê1 of the first mover – of Wseqc
2 := p(ê1)

p(eH
2 )

p′(eH
2 )

c′(eH
2 ).

As intuition suggests, the second mover only receives a positive wage if the joint project is of high

value (like under the simultaneous structure). Compared to expected implementation costs under

the simultaneous structure (see (2.1)), however, the second agent can be easier incentivized under

the sequential structure. In order to implement the same effort for the second agent, the principal

has to pay (weakly) less under the sequential structure. This stems from the fact that the second

mover has to be incentivized only in case the first mover provided high quality. Hence, when the

second mover observes the first mover performing well, he knows that the success of the project

and thus his payment only depends on his own contribution. This means that free-riding is not

profitable for the second mover. This result is similar to the result of Winter (2005), when he

compares structures with different degrees of transparency. A more transparent structure in his

model, is a structure that allows more agents to condition their effort decision on the decision of

(more of the) other agents. He shows that it is cheaper to incentivize agents, whose decisions are

observed by (more of) the others, as it makes shirking less attractive to them. The reason for his

result is that shirking induces the later moving agents to shirk as well. Therefore, the probability
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that the project succeeds decreases even more.

The derivation of the wage scheme for the first mover is analogue to the simultaneous case. What

changes is the first mover’s belief about the second agent’s effort: He anticipates correctly that the

second mover provides effort eH
2 after observing a high performance and eL

2 = 0 after observing a

poor performance. Hence, his incentive constraint becomes

ê1 ∈ argmax
e1∈I

pHH(e1, e
H
2 )wH

1 + (1− pHH(e1, e
H
2 ))wL

1 − c(e1). (2.3)

It follows (analogue to the proof of Lemma 2) that the first mover’s wage if at least one agent

performs poorly is zero and if both agents perform well it is wH
1 = c′(ê1)

pHH
e1

(ê1,eH
2 )

. Hence, expected

implementation costs for the first mover are Wseqc
1 = p(ê1)

pe1 (ê1)c
′(ê1). Comparing the expected wage

payment for the first mover with the one under the simultaneous structure (see (2.1)), we see that

it is identical under both structures if the first agent’s Nash-equilibrium effort levels are identical.

Consider the first agent’s incentive constraints under both structures for fixed and equal wages: The

only difference stems from the second agent’s Nash-equilibrium effort levels ê2 and eH
2 , respectively.

If these effort levels differ, the first agent’s effort levels differ under both structures, otherwise they

are identical. For fixed and equal wages for the second agent under both structures, ê2 and eH
2

differ.9

2.4 Comparison of the Structures for the Case of Complements

After having derived the optimal wage scheme, the next step in solving the principal’s problem

would be to maximize the principal’s profits (expected revenues minus implementation costs) with

respect to effort – given expected implementation costs as derived in Lemma 2 and 3, respectively.

We do not derive these optimal effort levels, but compare the problems for the sequential and

simultaneous structure to make statements about the optimal information structure.

The principal’s maximization problem for the sequential structure is

max
e1∈I,eH

2 ∈I
2pHH(e1, e

H
2 )π − p(e1)

p′(e1)
c′(e1)− p(e1)

p(eH
2 )

p′(eH
2 )

c′(eH
2 ),

and for the simultaneous structure it is

max
e1∈I,e2∈I

2pHH(e1, e2)π −
p(e1)
p′(e1)

c′(e1)−
p(e2)
p′(e2)

c′(e2).

Comparing these two problems, we see that for all effort pairs (e1, e2) the expected profit function

for the sequential structure cannot lie below the one for the simultaneous structure since p(e1) ≤ 1.

Hence, the two functions never (strictly) cross and the maximum of the expected profit function

9In principle, it is possible that the principal implements ê2 = eH
2 (and thus wages differ for the second agent

under both structures), but in general, as we will see in Section ??, the implemented effort levels differ.
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for the sequential structure has to lie above the one for the simultaneous structure. It follows that

– in general – the principal implements different effort levels under both structures (at least for one

of the two agents). Thus, we have the following proposition.

Proposition 17 Suppose Y(Y1, Y2) = Yc(Y1, Y2). Then the sequential structure leads to higher ex-

pected profits than the simultaneous structure given the optimal wage schemes and efforts. Expected

profits are strictly higher if (eH
2 , e2) 6= (0, 0).

Intuitively, this can be explained as follows. Under the sequential structure, the principal pays a

wage of zero and the second mover exerts no effort when the first agent provided low quality. This

saves implementation costs, but does not decrease revenues since high quality contributions from

both agents are needed to generate the revenue π. As already mentioned in Section 2.3.2, the fact

that the second mover only needs to be incentivized in case the first mover’s contribution is of high

quality, enables the principal to better incentivize him.

The only possibility that both structures do equally good is that it is optimal to implement zero

effort for the second agent under both structures, i.e. eH
2 = eL

2 = e2 = 0. This means that for

the sequential structure to do strictly better than the simultaneous one, the principal necessarily

tailors the second mover’s efforts to the quality states under the sequential structure (i.e. he sets

eH
2 6= eL

2 = 0) as otherwise eH
2 = e2 = 0.

This result confirms the result by Winter (2005) in a model with a binary effort decision: Winter

finds that the principal always (weakly) gains from a more transparent structure (a structure that

allows more agents to observe more of their predecessors). In Winter’s model, however, the agents’

efforts are complementary and not the quality of the individual contributions to the joint project.

Hence, Winter does not consider different “values” of the joint project. When contributions are

complements in our model, our results are thus similar to Winter as the project is of no value if at

least one agent fails to contribute high quality. For a model of team production with synergy effects,

Goldfain (2006) provides numerical results that are similar: If efforts are strategic complements, a

sequential structure is beneficial for the principal. For the case of independent success probabilities

(which we consider in the current paper), the result that the sequential structure cannot be worse

than the simultaneous structure is also present in Ludwig and Nafziger (2006) with two agents,

who do not form a team. Independent success probabilities imply that the output is uninformative

in Ludwig and Nafziger.10

Moreover, we can relate this result to the literature on contests, where the reward for the winning

agent is exogenously given. Morgan (2004) compares simultaneous and sequential moves of contes-

tants in a model with complete information about the players’ types. He shows that from an ex

10In Ludwig and Nafziger (2006), we consider also dependent success probabilities. For dependent success proba-

bilites, it is possible (when output is informative) that a simultaneous structure is optimal.
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ante perspective a sequential structure even Pareto dominates a simultaneous one. With private

information about the players’ types this result can be extended if types are sufficiently negatively

correlated. The principal, however, always prefers the sequential structre (see Ludwig (2006)). In

a tournament model with risk averse agents, Jost (2001) finds that for optimal prizes, the principal

prefers a sequential structure.

Hence, the finding that a sequential structure is (weakly) beneficial for the principal seems to be

quite robust across different types of models. In the following section, we show that this is no

longer the case, when the agents’ contributions are substitutes.

2.5 Contributions are Substitutes

We now turn to the analysis for the case that agents’ contributions are perfect substitutes in the

principal’s production function. The difference to perfect complements is that a contribution of

low quality of a single agent does not necessarily lead to a value of zero of the team’s project. If

the other agent performs well, the project is still of some strictly positive value. This means that

the project can generate revenues for the principal although one agent performed poorly. This

implies that the principal can distinguish a complete failure of the team (i.e. both agents provide

low quality) from the case that only one agent fails to provide high quality. In the latter case he

cannot, however, observe which agent provides high and which one low quality, respectively: The

principal does not observe individual performances, but the joint output Ys(Yi, Y−i) =
∑

i Yi. This

change implies that the wage scheme offered differs from the case of complements as it now specifies

three wages w(Ys) = {wLi , wMi , wHi } for each agent i.

2.5.1 The Wage Scheme for the Simultaneous Structure

Like for the case of complements, we begin by considering the first part of the principal’s maximiza-

tion problem. In the following section, we derive the optimal wage scheme for the simultaneous

structure to implement any desired effort level (êi, ê−i). As before, the problem of the principal is

to minimizing the wage payments to the agents, subject to the incentive, participation and limited

liability constraints. Analogue to the analysis with complements, we can drop the participation

constraints and restrict to the limited liability and incentive constraints. Again, we can set the

failure wages equal to zero (wLi = 0 for i = 1, 2). Hence, the problem of the principal is:

max
wHi ,wMi

−
∑

i

pHH(êi, ê−i)wHi −
∑

i

[pHL(êi, ê−i) + pLH(êi, ê−i)]wMi

s.t. êi ∈ argmax
ei∈I

pHH(ei, ê−i, )wHi +
[
pHL(ei, ê−i) + pLH(ei, ê−i)

]
wMi − c(ei) ∀i

s.t. wYs
i ≥ 0 ∀i, ∀Ys(Yi, Y−i).

In the appendix, we show that the solution to the principal’s problem is as follows.
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Lemma 4 Suppose Y(Yi, Y−i) = Ys(Yi, Y−i) and agents move simultaneously. To implement effort

level êi, the wage for agent i if both agents or only one of them performs poorly is equal to zero, i.e.

wLi = 0 and wMi = 0. The optimal wage if both agents provide high quality is wHi = c′(êi)
pHH

ei
(êi,ê−i)

.

In line with our result for complementary contributions in Lemma 2, only the wage if the joint

project has a high value can be positive in the simultaneous setting with substitutes. The intuition

for this result is that if agents are paid a positive wage in case only one of them performs well, each

agent will try to free-ride on the other agent’s effort as agents work in a team and the principal

cannot observe which agent performs well. Therefore, it cannot be optimal to implement some

kind of relative performance scheme by setting wMi > 0. The literature on tournaments uses

relative performance schemes to create incentives but, in general, the wage scheme is exogenously

given in this literature. In Ludwig and Nafziger (2006), with two agents, who do not work in a

team, the optimal wage scheme can be one of relative performance payment contingent upon the

informativeness of the colleague’s output about an agent’s effort.11 With two agents, who do not

form a team, the principal can observe which agent contributes high quality and hence only pay

this agent. This counteracts free-riding and can make relative performance schemes profitable.

It follows from Lemma 4 that the expected wage payment for agent i is

Wsims
i =

p(êi)
p′(êi)

c′(êi). (2.4)

The expected wage equals the expected wage Wsimc
i when contributions are complements and

agents move simultaneously. Hence, contribution complementarities make no difference for the

wage scheme when agents move simultaneously. Winter (2005), in contrast, finds that with effort

instead of performance complementarities, the optimal wage scheme differs. This is due to the fact

that with complementary efforts implicit incentives are more effective in his model compared to the

case of substitutes. This change in incentives is not present in our model. Irrespective of whether

contributions are substitutes or complements, the agents’ efforts are complements in Winter’s sense.

In Winter’s model, efforts are complements when an agent’s effort is more effective, the more of

his colleagues exert effort.12 In our model this means that the cross derivative of pHH(ei, e−i) is

positive, which is satisfied by assumption.

11As mentioned earlier, the case of independent success probabilities, we consider in the current paper, implies

that output is uninformative in Ludwig and Nafziger (2006). For this case, the optimal wage scheme can be one of

relative performance payment.

12Winter (2005) considers a binary effort choice and multiple agents.
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2.5.2 The Wage Scheme for the Sequential Structure

In the sequential setting, the second mover again learns the quality Y1 ∈ {H,L} of the first mover

(like in Section 2.3.2).13 He updates his success probabilities as given in (2.2) and can condition his

effort on the observed quality. By an analogue argument as for complements, it is optimal to set

an agent’s wage equal to zero in case both agents fail (i.e. wLi = 0). Thus, the incentive constraints

for the second mover are as follows (where we already used wLi = 0):

After seeing H : eH
2 ∈ argmax

e2∈I
Pr[H|H, ê1, e2]wH2 + Pr[L|H, ê1, e2]wM2 − c(e2),

After seeing L : eL
2 ∈ argmax

e2∈I
Pr[H|L, ê1, e2]wM2 − c(e2).

The crucial change compared to the case of complements is that the principal can set incentives for

the second mover in state L. By setting wM2 > 0, he can implement a positive effort for the second

mover. Note that this decreases incentives in state H: The probability that the second mover fails

to provide high quality given that the first mover succeeded decreases in the second mover’s effort.

Later, we also ask when it is optimal to implement eL
2 > 0.

As the second mover’s maximization problem in state L is strictly concave in e2, the first order

condition – wM2 = c′(eL
2 )

p′(eL
2 )

– yields a global maximum. One can easily check (by plugging in the

conditional probabilities) that the first order condition of the agent’s maximization problem in state

H is also sufficient when wH2 ≥ wM2 . We show below that this holds in equilibrium. Plugging in

the optimal wage that is derived from state L into the latter first order condition yields the optimal

wage when the value of the project is high.

Regarding the wage scheme of the first mover, the same argument applies as for the sequential

structure in Section 2.3.2. Hence, the first mover’s wages are as for the simultaneous structure (see

Lemma 4) but with the Nash-equilibrium effort level ê2 of the second mover replaced by eL
2 and

eH
2 , respectively. In the appendix, we derive the optimal wages as follows.

Lemma 5 Suppose Y(Y1, Y2) = Ys(Y1, Y2) and agents move sequentially.

(i) For the first mover, wages if at least one agent contributes low quality are zero: wM1 = wL1 = 0.

When the value of the joint project is high, the wage satisfies wH1 = c′(ê1)

pHH
e1

(ê1,eH
2 )

.

(ii) For the second mover, the wage if the joint project fails is equal to zero wL2 = 0. If only one

agent contributes low quality, his wage is positive if the principal implements eL
2 > 0 and is

then wM2 = c′(eL
2 )

p′(eL
2 )

. The wage when both agents provide high quality is wH2 = c′(eH
2 )

p′(eH
2 )

+ c′(eL
2 )

p′(eL
2 )

.

Obviously, the second mover’s wage when the project has a high value is at least as large than the

wage when the project has an intermediate value, as we claimed above. This result is also intuitive

13Like for the case of complements in Section 2.3.2, it does not matter for our results if the second mover also

observes the first mover’s effort besides his performance. See Proof B in the appendix.
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since two high quality contributions are more valuable for the principal than only one (at least if

we abstract from implementation costs).

Note that only the second mover’s effort in state H, eH
2 , influences the first mover’s incentives

since the principal sets wM1 = wL1 = 0. If also the effort in state L entered, we would have a

strategic effect in the sense of the first mover attempting to influence the action of the follower:

When deciding on his effort, the first mover takes into account that if he exerted more effort,

it would be more likely that he produces high quality and therefore, the second mover provides

effort eH
2 (instead of eL

2 if he performs poorly).14 The optimal wage scheme, however, is such

that no strategic effect arises. This stands in contrast to the literature on sequential tournaments

– for example, Aoyagi (2003) or Ederer (2004) – where agents compete against each other (and

do not form a team). In this literature the relative performance scheme (which is comparable

to wMi > 0 in this model) is mostly exogenously given and (only) a strategic effect drives the results.

Comparing the wage scheme for the second mover under the sequential structure to the

one under the simultaneous structure, we find that the wage scheme changes: Firstly, under the

simultaneous structure (compare Lemma 4), the principal does not want to set incentives for the

case that only one agent performs well. Under the sequential structure with substitutes, however,

if he wants to implement a positive effort for the second mover in state L, he can (and has to)

set incentives in this state. Hence, the question arises whether it is optimal for the principal

to implement a strictly positive effort after a poor performance by setting wM2 > 0. In the

appendix15, we show that if the revenue parameter π is sufficiently large (Condition Z), it is

indeed optimal to implement a strictly positive effort for agent 2 after a low quality contribution.

The second change arises irrespective of whether eL
2 = 0 or not. Suppose that eL

2 = 0, then

under the simultaneous structure, the wage for the second agent is wH2 = c′(ê2)
pHH

e2
(ê1,ê2)

and under the

sequential structure it is wH2 = c′(eH
2 )

pe2 (eH
2 )

. The wage under the simultaneous structure is larger, when

the same effort for the second agent is implemented (i.e. ê2 = eH
2 ). Intuitively, agent 2 can be

easier incentivized under the sequential structure given the first mover provided high quality since

his action is conditional on the high performance of agent 1. This ignores, however, the low state

of the world. To implement the same expected effort for agent 2 under both structures needs not

be less expensive under the sequential structure. We show this in the following section, when we

compare both information structures in more detail.

Note the difference to Winter (2005): When efforts instead of contributions are substitutes, there

is no change in the optimal wage scheme between the different information structures. We analyze

14Of course, this strategic effect does only play a role if eH
2 6= eL

2 .

15See Condition Z in the appendix.
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the implications of this change in the wage scheme on the optimal information structure in Section

2.6.

Moreover, we can compare the optimal wage scheme for the sequential structure with sub-

stitutes to the setting with complements. In the latter case, we have seen that the principal

cannot set incentives for the second mover when the second mover sees the first mover failing

(compare Section 2.3.2). Consequently, the second mover exerts zero effort in this state. The

optimal wage scheme for the case of complements is wH2 = c′(eH
2 )

pe2 (eH
2 )

if the project is of high value

and otherwise zero. This scheme is identical to the one with substitutes (see Lemma 5) if and only

if the effort for the second mover after a poor performance of agent 1 is zero. Thus, when agents

move sequentially and Condition Z is satisfied, the optimal wage schemes for complements and

substitutes differ as well. In the following, we will also see how this change in the optimal wage

scheme drives the optimality of the information structures.16

2.6 Comparison of the Structures for the Case of Substitutes

As the wage schemes differ between the sequential and simultaneous structure, deriving the optimal

structure is more complicated for the case of substitutes than for the case where contributions are

complements. In particular, we cannot immediately see from the two maximization problems which

structure does better.

One way to determine the optimal structure would be to proceed with the next step of the principal’s

problem and derive the optimal effort levels. Given these values we could then compare total

profits. This comparison would yield necessary and sufficient conditions for the optimal structure.

As usual in a moral hazard problem, we skip this step and take the effort vector the principal wants

to implement – denoted by (e?
1, e

?
2) for the simultaneous structure and by the triple (e?

1, e
L?
2 , eH?

2 )

for the sequential structure – as given. As long as we do not restrict the effort choice, these effort

levels can also involve the optimal ones.

To compare the two information scenarios, we restrict, however, the choice for one structure. More

specifically, we assume that the principal implements the same expected effort for both structures.

This means, we assume that he implements e?
1 for the first mover and an expected effort of e?

2 =

p(e?
1)e

H?
2 + (1− p(e?

1))e
L?
2 for the second mover (i.e. under the sequential structure, he implements

eH?
2 after a high quality contribution and eL?

2 after a low quality one). Thus, for example, (e?
1, e

?
2) can

be any effort vector under the simultaneous structure (which includes the optimal one). This effort

vector determines the effort triple under the sequential structure. Since efforts under the sequential

structure are restricted by this assumption, the optimal efforts may be excluded. Therefore, the

16Remember that the wage scheme for the first agent does not change from the case of complements to substitutes.
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following analysis gives us sufficient conditions for one structure to be optimal.

When eH?
2 = eL?

2 , then not only expected efforts for the second mover, but also the effort in each

state is identical to the one under the simultaneous structure. Some of our results will depend

on whether efforts of the second mover are state-contingent or not. Therefore, we first consider

whether the principal tailors the effort of the second mover to the state of the world under the

sequential structure.

Then, we proceed as follows. We analyze for the “fixed” effort levels under which structure expected

revenues of the principal are larger. Afterwards, we examine under which structure expected wages

are lower for the first and second agent. Finally, we calculate overall profits to make statements

about the optimal structure.

2.6.1 Tailoring of Efforts

Before we compare revenues and implementation costs of the two information structures, we con-

sider an important issue regarding the sequential structure: Does the principal tailor the effort of

the second mover to the state of the world? Tailoring implies that eH
2 and eL

2 are set differently.

Concerning the case of complements, we have already seen that the principal cannot set incentives

for the second mover after a poor performance of the first mover. Hence, the second mover exerts

zero effort and the principal necessarily tailors the efforts to the state of the world as soon as he

implements any positive level of effort for the second mover. When contributions are substitutes,

the result is not obvious. For the analysis of this question when contributions are substitutes, we

make the following assumption, which is sufficient for the principal’s maximization problem to be

concave in effort:

Assumption C c′(e)
p′(e) is convex in e.

Using this assumption, we show the subsequent result in the appendix.

Lemma 6 Suppose the principal wants to implement an effort of e?
1 for the first mover and an

expected effort of e?
2 = p(e?

1)e
H?
2 + (1− p(e?

1))e
L?
2 for the second mover. Let in addition Assumption

C be satisfied. Then the optimal wage scheme induces the second mover to exert more effort after

having observed a high performance of the first mover than after having observed a poor one.

Hence, the principal optimally tailors the efforts of the second mover to the state of the world

and does not set them equally given the assumptions of Lemma 6. More precisely, he induces the

second mover to work harder after a high quality contribution in the first period than after a low

quality contribution. If additionally Condition Z holds, the ranking of efforts of the second mover

is eH
2 > eL

2 > 0.
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2.6.2 Expected Revenue

When agents’ contributions are substitutes, the principal’s expected revenue under the sequential

structure – if he implements (e?
1, e

L?
2 , eH?

2 ) – is π(2pHH(e?
1, e

H?
2 )+ pHL(e?

1, e
H?
2 )+ pLH(e?

1, e
L?
2 )). For

the simultaneous structure, we only have to replace eL?
2 and eH?

2 by e?
2 = p(e?

1)e
H?
2 +(1− p(e?

1))e
L?
2 .

Using that the effort that is implemented for the first agent is the same under both structures (e?
1),

the difference in expected revenues (denoted by ∆R) between the simultaneous and the sequential

structure becomes

∆R =
[
p(e?

2)−
(
p(e?

1)p(eH?
2 ) + (1− p(e?

1))p(eL?
2 )
)]

π.

The sign of this difference depends on the curvature of the success probability p as the following

lemma summarizes. The proof is in the appendix.

Lemma 7 Suppose Y(Y1, Y2) = Ys(Y1, Y2) and the principal wants to implement effort levels e?
1

and e?
2 = p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 . Then expected revenues for the simultaneous structure are

higher, strictly so if p is strictly concave and eH?
2 6= eL?

2 .

The first agent’s contribution is with probability p(e?
1) = p(e?

1)p(ẽ2)+p(e?
1)(1−p(ẽ2)) of high quality,

where ẽ2 equals eH?
2 for the sequential structure and equals e?

2 for the simultaneous structure. Hence,

we can say that agent 1 generates revenue π for the principal when performing high. Since the

effort that is implemented for the first agent is the same under both structures (e?
1), he performs

well with the same probability. Thus, expected revenues “from the first agent” are the same under

both structures. The difference in expected revenues is, therefore, exactly the difference in expected

revenues generated by the second agent. He contributes high quality with probability p(e?
2) under

the simultaneous structure and with probability p(e?
1)p(eH?

2 )+(1−p(e?
1))p(eL?

2 ) under the sequential

structure.

The main difference between the two information settings is that under the sequential structure

efforts can be made state-contingent (by allowing eH?
2 to differ from eL?

2 ). There is no difference

in expected revenues if efforts are not tailored to the state of the world. Tailoring is, however,

optimal for the principal under Assumption C (compare Lemma 6). Lemma 7 shows that for state-

contingent efforts (eH?
2 6= eL?

2 ) under the sequential structure, the simultaneous structure leads to

higher expected revenues since the probability of success function is concave (strictly higher for

strict concavity and eH
2 6= eL

2 ). Why is this the case? Conditioning effort on the state of the

world implies that expected revenue is uncertain in effort from an ex ante perspective . Since

the individual probability of success function is concave in an agent’s effort, Jensen’s Inequality

implies that the value of the convex combination of expected revenues (having with probability

p(e?
1) revenues arising from eH

2 and with probability 1 − p(e?
1) from eL

2 ) is smaller than the value

60



expected revenue that arises from the convex combination of efforts – i.e. e∗2.
17

When the probability of success function is linear in effort, then revenues for both structures are

the same as linearity implies that the convex combination of the values is equal to the value of the

convex effort combination. Hence, conditioning effort on the state of the world does not influence

expected revenues in this case.

2.6.3 Implementation Costs for Agent 1

We now consider the implementation costs for agent 1. As we have shown in Sections 2.5.1 and

2.5.2, the expected wage payment for each structure (e?
1 is implemented for the first agent under

both structures) is

W1 := pHH(e?
1, e

?
2)w

H
1 =

p(e?
1)

p′(e?
1)

c′(e?
1). (2.5)

This means that for agent 1 implementation costs are identical under both information structures

as the same effort is implemented. This result is in line with Winter (2005), who finds no difference

in wages under both structures when efforts are substitutes. Furthermore, we see from (2.5) that

the expected wage is independent of the second agent’s effort. This establishes the following lemma.

Lemma 8 Suppose Y(Y1, Y2) = Ys(Y1, Y2) and the principal implements for both structures the

same effort e?
1 for the first agent. Then expected implementation costs for the first agent are equal

under both structures.

2.6.4 Implementation Costs for Agent 2

Next, we turn to the comparison of expected implementation costs for agent 2. These are under

the simultaneous structure

W sims
2 := pHH(e?

2, e
?
1)w2 =

p(e?
2)

p′(e?
2)

c′(e?
2). (2.6)

The expected wage payment for agent 2 under the sequential structure is18

W seqs
2 := p(e?

1)
p(eH?

2 )
p′(eH?

2 )
c′(eH?

2 ) + (1− p(e?
1))
(

p(eL?
2 )

p′(eL?
2 )

+
p(e?

1)
p′(eL?

2 )(1− p(e?
1))

)
c′(eL?

2 ). (2.7)

For the comparison of expected implementation costs for agent 2, we again use Assumption C.

Under this assumption, expected implementation costs for agent 1 and 2 are convex as we show in

17For dependent success probabilities this “uncertainty effect” may be outweighed by an informational effect the

sequential structure provides as is shown in Ludwig and Nafziger (2006): It might pay in terms of expected revenues

to condition the second agent’s effort on the state of the world (the quality of the first agent) since this state of the

world contains information about the second agent’s success probability conditional on this state.

18Note that wM2 is paid if exactly one agent provides high quality and the other one low quality.
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the appendix (see Proof C).19

Comparing expected implementation costs for agent 2, we can derive the following lemma. The

proof is in the appendix.

Lemma 9 Suppose Y(Y1, Y2) = Ys(Y1, Y2) and the principal implements e?
1 and e?

2 = p(e?
1)e

H?
2 +

(1 − p(e?
1))e

L?
2 . Let Assumption C be satisfied, then the simultaneous structure has lower expected

implementation costs for agent 2. 20 They are strictly lower if

(i) efforts for the second mover are state-dependent: eL?
2 6= eH?

2 ,

(ii) the effort implemented in state L is strictly positive: eL?
2 > 0.

Regarding part (i), recall that we have shown (Lemma 6) that state dependent efforts are optimal

when agents move sequentially, Assumption C holds, and the principal implements the same

expected effort for agent 2 under both information structures. Concerning part (ii), we have seen

before, that the principal optimally implements a strictly positive effort for the second mover in

the low state of the world if condition Z is satisfied.

Furthermore, note that any effort vector (e?
1, e

L?
2 , eH?

2 ) implemented under the sequen-

tial structure (including the optimal one), can be implemented in expectation (e?
1 and

e?
2 = p(e?

1)e
L?
2 + (1 − p(e?

1))e
L?
2 ) at (strictly) lower expected implementation costs under the

simultaneous structure. These efforts need, however, not be optimal for the simultaneous

structure. Regarding optimal effort levels (i.e. profit-maximizing efforts), we cannot conclude

here, which structure leads to lower implementation costs without knowing the optimal efforts.

There are two driving forces behind the result that the simultaneous structure leads to

strictly lower expected implementation costs: state-dependent efforts for the second mover (part

(i) of Lemma 9) and – more importantly – a change in the feasible wage scheme when a strictly

positive effort is implemented for the second mover in state L (part (ii) of Lemma 9). The latter

effect is due to the change in incentives for the second agent under the sequential structure. The

principal has to pay agent 2 a positive wage in both states of the world (to induce a positive effort

in both states), whereas under the simultaneous structure he only pays a positive wage if the value

of the joint project is high.

Under the simultaneous structure, expected implementation costs are the costs to implement the

convex effort combination e?
2 = p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 . In order to compare these costs to the

ones under the sequential structure, let first eL?
2 = eH?

2 = e?
2, i.e. efforts are not state-contingent.

19We could rewrite our results for concave expected implementation costs. We believe, however, that convex

implementation costs are the most relevant case and restrict to this case in the following.

20In the appendix, we show that Assumption C implies that p(e)
p′(e) c

′(e) is strictly convex (see Proof C).
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Comparing (2.6) and (2.7) for this case, we see that costs under the sequential structure equal the

costs under the simultaneous structure plus an additional non-negative cost term p(e?
1)

p′(eL?
2 )

c′(eL?
2 ).

This additional term results from the change in the wage scheme: As soon as the principal

implements a positive effort for the second mover after a poor performance of the first mover,

implementation costs for agent 2 are strictly higher under the sequential structure if the principal

does not tailor the efforts.

Suppose now, the principal tailors the second mover’s effort to the (ex ante uncertain) state of the

world, i.e. eL?
2 6= eH?

2 (compare Lemma 6). The expected effort of agent 2 is, however, the same

as under the simultaneous structure. Can tailoring reduce expected implementation costs? With

tailoring, expected implementation costs under the sequential structure (compare (2.7)) consist

of two parts again: One part is again the additional cost term p(e?
1)

p′(eL?
2 )

c′(eL?
2 ). The other part is

the convex combination of the costs that would arise if eH?
2 and eL?

2 had been implemented under

the simultaneous structure. Dropping the additional term – but noting that this additional term

is non-negative and therefore, cannot decrease costs – Jensen’s Inequality implies that expected

implementation costs under the simultaneous structure are strictly lower (given strict convexity

of p(e)
p′(e)c

′(e), which follows from Assumption C). Hence, convex implementation costs cannot be

reduced by tailoring the effort to the state of the world, but are even further increased.

It is important to note that our result of lower implementation costs for the simultaneous structure

does not only hinge on this “convexity effect”. The crucial difference between the simultaneous

and sequential structure that drives our result, stems from the change in the feasible wage

scheme (paying a positive wage in state L) as we have seen above: Irrespective of whether the

principal tailors or does not tailor the second mover’s effort to the state of the world, expected

implementation costs are higher under the sequential structure because of the change in the

feasible wage scheme (as long as eL?
2 > 0).

Ludwig and Nafziger (2006) find for two agents, who do not work in a team, that even if success

probabilities are dependent – which leads to an informational gain under the sequential structure

– the negative effect of the change in the feasible wage scheme (paying a positive wage after a low

quality contribution) under the sequential structure prevails.

2.6.5 Overall Effect

From the analysis in the previous sections, we can derive the following general result for the overall

effect of the information setting on expected profits by combining Lemma 7, 8 and 9.

Proposition 18 Suppose Y(Y1, Y2) = Ys(Y1, Y2) and p(e)
p′(e)c

′(e) is convex. Then any effort vector

(e1, e
L
2 , eH

2 ) implemented under the sequential structure (including the optimal effort vector) yields

higher expected profits when implemented in expectation under the simultaneous structure. Expected
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profits are strictly higher if

(i) p(e)
p′(e)c

′(e) is strictly convex and eL
2 6= eH

2

(ii) p is strictly concave and eL
2 6= eH

2

(iii) eL
2 > 0.

This implies that any effort vector (e1, e
L
2 , eH

2 ) implemented under the sequential structure (includ-

ing the optimal effort vector) leads to higher expected profits when implemented in expectation (i.e.

e1, e2 = p(e1)eH
2 + (1 − p(e1))eL

2 ) under the simultaneous structure (if Assumption C is satisfied).

The latter efforts need, however, not be optimal under the simultaneous structure. With optimal

efforts, the simultaneous structure can only do better but not worse. Therefore, the result also

holds true for optimal efforts.

Using the results of the previous sections, the finding can be explained as follows. On the one hand,

if the principal implements eL
2 = 0, then there is no difference in the feasible wage schemes of both

information structures. The principal pays each agent only a positive wage if the value of the team

project is high. Hence, it is not the wage scheme effect that drives the result but the revenue effect.

If eL
2 = 0, and a positive effort is implemented for the second mover after a high performance of

the first mover, the principal tailors the efforts to the state of the world. This reduces revenues

compared to the simultaneous structure since the probability of success function is concave. On

the other hand, if the principal implements eL
2 > 0, then the change in the wage scheme makes the

sequential structure less attractive. The principal has to reward the second agent also after a low

quality contribution in the first stage, whereas under the simultaneous structure he only pays him if

both agents perform well.21 Compared to the case when eL
2 = 0, tailoring is less “strong” now: The

same expected effort for the second mover can be implemented with a smaller gap between eL
2 and

eH
2 if eL

2 is positive. Regarding expected revenues, this leads to a less pronounced negative effect.

The driving force for the sequential structure performing worse than the simultaneous structure

is, therefore, the wage scheme. Hence, irrespective of whether the principal implements a positive

effort for the second mover or not, one of the two effects reduces expected profits when agents move

sequentially compared to the simultaneous structure.

In contrast, when contributions are complements, the sequential structure does (strictly) better

than the simultaneous one when contributions are substitutes. The intuition is the following:

When agents move sequentially and contributions are complements, the principal still rewards the

21Note that as soon as the principal implements eL
2 > 0, the wage scheme for the sequential structure also differs

compared to the one for the sequential structure with complements. This is similar to Winter (forthcoming), who

finds a change in the wage scheme when the production technology possesses either increasing or decreasing returns

to scale given a sequential structure.
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second agent only if both agents perform well. He cannot set incentives after a low quality con-

tribution in the first period. Hence, there is no change in the feasible wage scheme between both

information structures. Zero effort of the second mover after a poor performance of the first mover

here decreases implementation costs. Moreover, the aforementioned negative revenue effect is not

present here as revenue is only generated if both agents contribute high quality. The fact that the

second agent exerts zero effort after a low quality contribution in the first period does not matter

for revenues. Revenues may even be positively influenced if the effort of the second agent after a

high performance in the first period under the sequential structure is higher than the second agent’s

effort under the simultaneous structure depending on the effort of the first agent (2p(e1)p(eH
2 )π

versus 2p(ê1)p(ê2)π). Overall, the sequential structure outperforms, therefore, the simultaneous

structure if contributions are complements.

2.7 Extension

Up to now, we considered special examples for contributions being perfect substitutes or perfect

complements. We now extend the preceding analysis to more general cases.

The value of the joint project is Y(Y1, Y2). If the quality of an agent’s contribution is more effective,

the higher the quality of the other agent’s contribution, i.e. Y(H,H)−Y(H,L) > Y(L,H)−Y(L,L),

the qualities of the agents’ contributions are complements. Accordingly, if Y(H,H) − Y(H,L) ≤

Y(L,H)− Y(L,L) the qualities of the agents’ contributions are substitutes.

We assume that it does not matter for the value of the project, which agent provides low or high

quality. Hence, there is exactly one intermediate value of the project Y(H,L) = Y(L,H) = M.22

Moreover, we assume that the values of the project satisfy H = Y(H,H) ≥M ≥ Y(L,L), and we

normalize the value of the project if both agents provide low quality to zero (L = Y(L,L) = 0).

These assumptions imply that qualities of the individual contributions are complements if H > 2M

and otherwise substitutes.

Note that in Section 2.3, we analyzed perfect complements with H = 1 and M = L = 0 and in

Section 2.5 perfect substitutes with H = 2, M = 1, L = 0.

We begin with the analysis of the general case of substitutes, i.e. H ≤ 2M, where H ≥M ≥ 0. It is

important to note that there is no change regarding the feasible wage scheme for both information

structures compared to the special case in Section 2.5. Only expected revenues are influenced. For

the analysis of expected revenues, we proceed exactly like in Section 2.6.2. This means, the principal

implements the same expected effort for agent 2 under both information structures and the same

effort for agent 1. When the principal implements (e?
1, e

L?
2 , eH?

2 ) under the sequential structure,

22Note that otherwise, it would be possible for the principal to infer from the projects value, which agent provided

low or high quality. Thus, the team production problem would resolve.
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expected revenues are π[pHH(e?
1, e

H?
2 )H + (pHL(e?

1, e
H?
2 ) + pLH(e?

1, e
L?
2 ))M]. For the simultaneous

structure, we only have to replace eL?
2 and eH?

2 by e?
2 = p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 . Hence, we can

write the difference in expected revenues between the simultaneous and the sequential structure as

follows:

∆R = π
[
p(e?

1)(H−M)
(
p(e?

2)− p(eH?
2 )
)

+ (1− p(e?
1))M

(
p(e?

2)− p(eL?
2 )
)]

. (2.8)

By Jensen’s Inequality, we know that p(e?
2) ≥ p(e?

1)p(eH?
2 )+(1−p(e?

1))p(eL?
2 ) (with strict inequality

for strict concavity of p). Using this and simplifying, we get

∆R ≥ π[p(e?
1)(1− p(e?

1))(2M−H)
(
p(eH?

2 )− p(eL?
2 )
)
]. (2.9)

Since 2M−H ≥ 0, the difference in expected revenues is non-negative (strictly positive for p strictly

concave and for 2M−H > 0), as long as eH?
2 ≥ eL?

2 . Hence, if it is optimal for the principal to

implement a (weakly) larger effort in state H, results are the same as for the special case analyzed

in Section 2.5: Any effort vector implemented under the sequential structure yields higher expected

profits when implemented in expectation under the simultaneous structure (compare Proposition

18). As we show in the appendix (see Proof G), it need, however, no longer be optimal to implement

a higher effort in state H. In case it is optimal to implement a higher effort in state L, it can be

that the sequential structure does better than the simultaneous one. The revenue effect works in

favor of the sequential structure, but the wage scheme effect (which is like in Section 2.5) works

still in favor of the simultaneous structure.

Consider now the general case of complements, i.e. H > 2M with M > 0. Here, not only the rev-

enue effect might change, but the optimal wage scheme changes for the sequential structure changes

as well (compared to the special case in Section 2.3). Since there are now three possible values of

the project, the optimal wage scheme looks exactly like for the case of substitutes. Remember that

the only difference between the case of complements and the one of substitutes when deriving the

optimal wage scheme was that the project could take two or three different values, respectively.

This wage scheme effect works against the sequential structure (as we have seen already when

analyzing substitutes in Section 2.5). Regarding expected revenues, there is also a crucial change

compared to the special case. In Section 2.3, we have seen that the difference in expected revenues

does not depend on the effort of the second mover in state L. This is no longer true for the general

case. The difference in expected revenues is now given by (2.8). We can again infer from inequality

(2.9) in which direction the revenue effect works. Since for complements H > 2M, the difference

in expected revenues becomes negative for eH?
2 > eL?

2 . Thus, if it is still optimal to implement a

higher effort for the second mover in the high state of the world, the revenue effect works in favor
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of the sequential structure.23 We show in the appendix (see Proof G) that this still holds given

Assumption C (i.e. Lemma 6 still applies for the case of complements). If the negative effect of the

change in the wage scheme is outweighed by the positive revenue effect, the sequential structure

can, therefore, lead to higher profits for the principal. But otherwise the simultaneous structure

becomes optimal even for the case of complements.

2.8 Discussion

Contrary to our result that intermediate information is rather disadvantageous when contributions

are substitutes, Winter (2005) finds that observability (i.e. the sequential structure) always yields

higher expected profits: when efforts are complements as well as when they are substitutes.24 What

drives the different result? Intuitively, if we take intermediate values of the project into account,

the second agent’s incentives decrease if the principal pays a positive wage for the intermediate

outcome. Since the principal does not know which agent provided high or low quality, he always

pays the wage if exactly one agent performed poorly. Therefore, the second mover gets for sure

a positive wage when the first agent provided high quality. In Winter, there is no difference in

the wage scheme between the different information structures when efforts are substitutes and

the project cannot take intermediate values. Hence, the negative effect on the sequential setting

stemming from the change in the wage scheme – that we observe – is not present. Furthermore,

also the revenue effect does not arise (only a successful project generates a payoff, there is no

intermediate value). Concerning the free-riding problem within teams, our results thus imply that

intermediate observation (or more transparency) does not necessarily work in favor of the principal

as it has been shown by Winter. This result is similar to Goldfain (2006). She presents numerical

results for an R&D model, which suggest that when agents’ efforts are strategic substitutes, the

performance of the team does not increase under the sequential structure.

Lizzeri et al. (2002) derive in a related setting that it is not optimal to provide an agent with

intermediate information. They consider a moral hazard model with a single agent, who works for

two periods, and either receives intermediate information about his performance (corresponding to

the sequential structure considered here) or does not receive it (corresponding to the simultaneous

structure). In contrast to our result, providing intermediate information can never be optimal in

their setting as there are no informational gains from it. Like in our paper, a comparable change

in the wage scheme is the driving force that turns intermediate information disadvantageous. The

23Remember that for the special case considered in Section 2.3, the second mover always exerted zero effort in the

low state of the world.

24Winter finds that when efforts are substitutes, the effect is less strong.
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same expected effort can be implemented at lower cost if no intermediate information is provided.25

A change in the feasible wage scheme between the settings, in which either intermediate information

is available or not, is also crucial for the results in Ludwig and Nafziger (2006). When the feasible

wage scheme does not necessarily change (i.e. the same wage scheme can be optimal as well), a

sequential structure is optimal (i.e. intermediate information is available), otherwise a simultaneous

structure can also be optimal.

Moreover, Schmitz (2005) finds similar effects than we do. He analyzes whether integration (i.e. one

agent is in charge for two production stages) or separation (i.e. two different agents are responsible

for stage one and two) is optimal in sequential production processes. Consider first the case that the

principal wants to implement zero effort after a poor performance in the first period (like in the case

of complementary contributions) and high effort after a high performance in the first period. Under

separation, each of the two agents receives a positive wage if performance in both stages is high.

Integration, however, is cheaper. As Schmitz shows, under integration it suffices to pay the agent

a wage to induce effort in the second stage. The agent works hard in the first period since by not

working hard he loses the chance to receive the positive wage. Hence, it is a cost-saving argument

that drives the result like we have seen for the case of complements. If the principal, however,

wants to implement high effort after a poor performance in the first period as well, the result in

Schmitz changes as it does with substitutes in our case: It becomes more expensive to induce a

single agent to work hard irrespective of the first-period outcome than it is under separation.

2.9 Conclusion

In this paper, we analyze whether it is profitable for the principal if he instructs his two agents

– who are responsible for a joint project – to work simultaneously or sequentially. If agents work

sequentially, the second mover (but not the principal) can observe the quality of the contribution

of the first mover. Hence, the second mover can condition his effort on the first mover’s outcome.

The value of the joint project depends on the qualities of the two agents’ contributions. These

contributions can be either complements or substitutes. When the agents’ contributions are perfect

complements, the project is of no value as soon as one agent provides low quality. Only if both

agents perform well, the joint project succeeds. In case the agents’ contributions are substitutes,

however, the joint project takes a strictly positive value also if only one agent provides high quality.

We find that when contributions are perfect substitutes, it is optimal to instruct the agents to work

simultaneously. When contributions are perfect complements, however, the sequential structure is

optimal. The reason for this change is that between the two information settings a change in the

feasible wage scheme can arise when contributions are substitutes: If agents act sequentially, the

25Lizzeri et al. (2002) abstract from revenue effects.
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principal has to pay a positive wage to the agent 2 not only if the realized value of the project

is high but also if it has an intermediate value (if he wants to implement a positive effort for the

agent 2 in the low state of the world). When contributions are perfect complements, however, the

principal cannot set incentives in the low state of the world. Therefore, the second mover exerts no

effort, when the first mover performed poorly. This reduces wage payments for the principal, but

does not reduce his expected revenues. A zero effort after observing low quality of the first mover

does not reduce revenues when the project is only of some positive value if both agents perform

well. In this case, expected revenues are not influenced by the effort the second mover exerts in

the low state of the world.

The change in the feasible wage scheme when contributions are substitutes, however, only matters

if the principal implements a strictly positive effort for the second mover under the sequential

structure. It can be optimal for the principal to implement zero effort. Although there is no effect

on the feasible wage scheme in this case, there is a negative revenue effect. In contrast to the case

of complements, the effort the second mover exerts in the low state of the world influences expected

revenues: The joint project is of some positive value also if only one agent provides high quality.

Thus, allowing for different values of the project works against the principal under the sequential

structure. The finding that providing intermediate information is disadvantageous is new to the

literature in this context. Of course, if one adds informational gains that arise in the sequential

structure (e.g. dependent success probabilities), the sequential structure might gain an advantage

over the simultaneous structure. Then, depending upon which of the opposing effects is larger,

either the sequential or the simultaneous structure will be optimal.
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Chapter 3

My and Your Bias – What Do You

Know About Them?1

3.1 Introduction

Knowledge about other people’s attributes is important in many economic situations. Imagine you

hire a manager, give him a perfectly designed incentive contract, and after some time you wonder

why things go wrong in your firm. The manager may have invested in too risky projects, made

insensible acquisitions or hired wrong people. What went wrong – according to your incentive

contract he shouldn’t have done all these things! Well, maybe you did not know that your manager

is overconfident. We are interested in whether people know that biases like overconfidence exist in

the population.

Overconfidence can be defined and measured in different ways. On the one hand, one can define

overconfidence in own knowledge or ability or one can define it as being too optimistic regarding

the own performance (“optimistic overconfidence”), which does not necessarily depend on own

knowledge. An example of “optimistic overconfidence” is that people assess the likelihood that

they get divorced too optimistically. On the other hand, overconfidence can refer to absolute

abilities as well as to relative abilities, i.e. people make assessments either regarding their own

ability or regarding their ability compared to other people’s ability (like estimating their rank

or percentile in a distribution). Much of the evidence for overconfidence comes from calibration

studies by psychologists, in which subjects make probability judgements, e.g., that their answer to

a question is correct. People’s confidence often exceeds their actual accuracy (for a review of this

literature see Yates (1990)). Besides being poorly calibrated, people also state confidence intervals

that are too narrow.

The fact that individuals are overconfident – in the sense that they overestimate their absolute or

1This chapter is based on joint work with Julia Nafziger.
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relative abilities – is confirmed by economists (see e.g. Camerer and Lovallo (1999) or Hoelzl and

Rustichini (2005)), who also point out that the presence of overconfident individuals in economic

settings has far going implications. For example, if you know that your opponent or employee is

overconfident you should adjust your behavior in contests accordingly (Ando (2004) or Santos-Pinto

(2005b)), write different incentive contracts (Santos-Pinto (2005a) or De La Rosa (2005)), or choose

different strategies in Bertrand and Cournot Competition (Englmaier (2004) or Eichberger et al.

(2005)). Malmendier and Tate (2005a, 2005b) observe that managers are indeed overconfident

and that this characteristic is a disadvantage to the firm, whereas in Kyle and Wang (1997), for

example, overconfidence is unilaterally beneficial.

The cornerstone of all these models is that people know that other people have a bias. In some

models it is also important that people know whether they have a bias themselves and that they

know about the relation of these biases (and that all this is common knowledge). Suppose you do

not know that others are overconfident. Why should you behave differently in a contest if you

have no idea that your opponent is overconfident? Why would you write a non-standard incentive

contract if you have no idea that your manager is overconfident? Why do you hire overconfident

managers in case this is a disadvantage for your firm – don’t you know that they have a bias?

The aim of our experiment is to examine what people know about such biases: Are individuals

aware that others have a bias in assessing their (absolute) abilities? What do they think about

the relation of their and other people’s biases? Are there some hints that they know about their

own bias and correct for it?

Since overconfidence is a common phenomenon, we consider a bias that is one possible in-

terpretation of overconfidence: over-or underestimation of one’s absolute ability. Subjects assess

their number of correct answers to a set of questions, which means they assess their absolute

ability in this task. In contrast to calibration studies, we cannot claim that a subject is biased

when her self-assessment is wrong, she might just make a mistake. If a group of subjects, however,

tends to either over- or underestimate their abilities (i.e. their mistakes do not cancel out), we can

say that the group is biased.

In order to avoid to influence people in their reasoning (and thus, their choice) by asking them

the questions what they think about biases explicitly, we construct simple decision problems to

elicit beliefs. Moreover, we conduct another treatment to see whether choices differ, when subjects

face either these decision problems or the explicit questions. To analyze the effects of such framed

instructions (i.e. asking the subjects explicitly) compared to the neutral way (i.e. the decision

problems) is – besides the two questions above – another topic of our paper. So far, relatively little

research in the overconfidence field considers whether asking subjects directly (as psychologist do
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it) changes behavior. For an overview on framing effects in other fields see Rabin (1998). Asking

people directly whether others over- or underestimate or correctly estimate their abilities might

cause that people become aware of problems like over- or underestimation. Therefore, subjects

may adjust their beliefs or people may start to overrate the relevance of wrong estimates. This

may lead to “over-adjustment” of beliefs.

The design of our basic experiment is as follows. At first, subjects in the reference treatment (

R) answer seven general knowledge questions (multiple choice) – we refer to these subjects as

Rs in the following. Then, the Rs choose an action, where the optimal choice depends on R’s

belief about her number of correctly answered questions. Subjects in another treatment ( T ) are

informed about the questions (not the correct answers) the Rs had to answer and the ‘average

action’ the Rs have chosen. This average action reflects the Rs’ average assessment of their

number of correctly answered questions. Given this information, subjects in T have a choice

between three actions. The chosen action reveals whether subjects in T think the Rs are either

underconfident, rational or overconfident. Further, subjects in T choose a number reflecting their

belief about the true average number of correct answers of the Rs.

Besides this baseline treatment we explore several extensions. In the first one, subjects in T

answer the questions themselves and assess their own number of correct answers before evaluating

the Rs. This does not only give subjects a better feeling for the plausibility of the estimate of

others, but also enables us to compare the own bias of a subject and the belief about the bias of

others (the Rs): Do people, who are more biased themselves, also think that others are more

likely to be biased or is it just the other way round? In another extension we test (as mentioned

above) the impact of using a non-neutral language in the instructions. Furthermore, we consider

whether subjects could be forced to recognize that the Rs are biased. To analyze this issue, we

let the Rs answer very tricky questions instead of the hard ones, and subjects in T also see

the correct answers to the tricky questions before they judge the Rs. These tricky questions are

designed in a way to increase subject’s confidence that they answered correctly but are in fact

wrong with their answer (i.e. the correct answer is rather surprising). Lastly, we confront subjects

in T not with the average guess of the Rs, but with single Rs. By doing so, we can infer whether

subjects know that others make mistakes (these mistakes need not be systematic as they need to

be to form a bias), even though they do not know that others are biased. In this treatment, we

apply the strategy method to elicit the beliefs of subjects given any possible belief R can have.

Concerning relative biases, we add in several of the above treatments an additional decision

problem. Here, subjects evaluate the relation of their own bias or mistakes and the average bias

of the subjects in the reference treatment.

We observe that there are different types of subjects: Subjects who overestimate their number of
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correct answers as well as subjects who underestimate or correctly estimate it. The largest group

is – with more than 50 and up to 90 percent – the group that overestimates the own ability. Our

first result is that even if overestimation frequently occurs in the population (like previous studies

have shown), a majority of subjects does not know that others have (on average) a bias. This

result is striking as overestimation of one’s own ability seems to be such a prevalent phenomenon

in our experiment (and in the real world) that it should be self-evident that people are also aware

of it. The more familiar subjects are with a task, however, the more subjects learn that others are

on average biased. We cause this familiarity in our experiment by letting the subjects answer the

questions themselves, by framed instructions (asking the subjects explicitly as explained above) or

by letting them evaluate Rs who answered tricky questions and showing them the correct answers

to these questions.

We observe that asking subjects explicitly whether they think that others estimate their ability

correctly gives subjects a hint about the existence of erroneous self-assessments: in contrast to

the setting where subjects are confronted with the neutrally framed decision problem, more of

them recognize that others are biased. Moreover, subjects in the framed session are less biased –

indicating that the wording does not only make them recognize that others are biased, but also

that they are biased themselves (for which they then correct). Finally, when confronted with single

Rs, subjects recognize that those might make mistakes. Combining our observations indicates that

subjects think that Rs make unsystematic mistakes (which cancel out on average), but not that

these mistakes are systematic (implying that the Rs are really biased).

An important question is how subjects make their judgement of the Rs (or a single one). In

those treatments, where subjects answer the questions themselves, we see that they think that

others are similar to them: if subjects think, for example, 2 is a good guess for their own ability,

they also guess that 2 is the (average) number of correct answers of a single R (the group of

Rs). This result can be interpreted in the way that subjects show a “false consensus bias” (see

Mullen et al. (1985)): subjects’ estimates of others are biased in the direction of their own belief

about themselves. Even more interestingly, subjects think that similar2 Rs are very likely to be

correct with their choice. One possible interpretation of this finding is that a similar R is just a

projection of the own self, i.e. subjects think about themselves that they are correct.

The largest group of subjects thinks that they are themselves more likely to judge their ability

correctly than is the average population.3 This assessment of relative biases is consistent with

2“Similar” subjects in the sense that R has the same belief about the number of correct answers as the subject

in T has about herself. This can be seen in the treatment, where subjects are faced with single Rs and where we

applied the strategy method.

3Some might be surprised that the largest groups thinks that others are biased, while oneself is not, did we state

before that the majority of subjects does not know that others are biased. One should be careful here with “largest”
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observations that people are overconfident in the sense that they think they are better than the

average, where “better” in our case means to be less biased. Although this finding can be explained

by the “better-than-average” effect – or more precisely by a self-serving bias4 – it is surprising,

since “the others” represent an average here. For this average, mistakes should cancel out (in case

mistakes were just random), while for a single subject they do not.5 Furthermore, we relate this

“better-than-average” bias with the bias when assessing the own number of correct answers. The

result is that subjects, who are biased in the question task, also have a “better-than-average” bias.

The main question of our paper – what people know about about themselves and others – is also

prominent in other fields in economics and psychology like the hyperbolic discounting model, game

theory (where we especially mention beauty-contest experiments) and divorce statistics.

The hyperbolic discounting model was developed to explain time-inconsistent preferences (see, e.g.,

Laibson (1997) and O’Donoghue and Rabin (1999)). It is usually distinguished between people

who are sophisticated, which means that they know that they have a bias6, and people who are

(partially) naive, i.e. they are (partially) not aware of their bias. Empirical evidence suggests that

people are (partially) naive and not sophisticated (see, e.g., Della Vigna and Malmendier (2005)).

It seems to be an open topic for future research to examine further the degree of “partiality”.

Although, the overconfidence bias and the hyperbolic discounting bias have many conceptual

differences, we think that we contribute to this debate with our observations. Our results show

that people do not even partially know that others are biased and suggest that people are not

aware of their own bias.

The assumption that rationality of players is common knowledge is crucial for game theory and

has been tested, for example, in so called beauty-contest experiments (see, e.g., Nagel (1995),

Bosch-Domenech et al. (2002) or Ho et al. (1998)). In these experiments subjects play a game

that is solvable by iterated deletion of strictly dominated strategies. Here it is interesting to

observe how many iteration steps subjects are typically perform. The number of steps depends

and “majority”. A minority (35 percent) states that they are more likely to be correct than others, but this minority

still forms the largest group compared to those subjects who think that others are rational and they are biased

themselves (33 percent) or who think that others and they themselves are rational (32 percent).

4For a general discussion on self-serving biases see Rabin (1995).

5Svenson (1981) conducted the well-known study showing that people think they are better drivers than is an

average person. Here, it is not clear what the reference group and reference ability of agents is. In contrast to our

study, the average in Svenson is not likely to be better as there are no mistakes that could cancel out.

6They could not perfectly correct for their bias in these models because the player today and tomorrow are typically

modelled as two different players. With biases like overconfidence one typically assumes in case people “know their

bias” that they are uncertain about the exact size and direction of their bias and could hence not always perfectly

correct for it.
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on a subject’s own depth of thinking, what she knows about the depth of her opponents (“their

bias”), the relation between the two (“relative bias”) and that all of this is common knowledge.

From observing the choice of a subject, however, it cannot be fully disentangled for which reasons

this choice is made in beauty-contests: Is it her own limited depth of reasoning or that she thinks

the others do – on average – not think as many steps ahead as she does or that the others do not

know that she thinks so many steps ahead (and she either knows this or not)? Thus, we cannot

unambiguously conclude from beauty-contests what people think about other people’s reasoning

(or “bias”) or about the relation between one’s own and the others’ reasoning. As aforementioned,

we consider a much more simple decision problem without strategic interaction. We are able to

certainly identify individuals who are aware of other people’s bias and those who are not and what

people think about the relation between the own and other people’s bias.

A study by the psychologists Baker and Emery (1993) suggests that people may be better at

detecting “biases” of other people than biases of themselves. While individuals know quite

accurately the likelihood of divorces (about 50 percent of U.S. couples who marry), they have

extremely optimistic expectations assessing the likelihood that they get divorced themselves.

People think that a divorce is rather unlikely to happen to them. Although our subjects have to

go one step further in their reasoning, i.e. we ask subjects whether they think that others know

their likelihood of divorce correctly (translated to the divorce example), some of our results are

related. The finding by Baker and Emery indicates that many people think that they are “better”

than – or different from – the average. This is related to our result that subjects say that similar

subjects are unbiased, while other subjects might be biased. The phenomenon that people think

they are better than others also arises in the second part of our study, where we examine relative

biases. Here, people think that they are “better than the average” in the sense that they are less

biased. Again, one can explain this result by a self-serving bias.

In a study by Frederick (2005), subjects face questions that induce “intuitive mistakes”.

This means that the answer that comes first to one’s mind is wrong. Frederick does not aim at

analyzing what subjects think about others, but on the influence of cognitive ability on decision

making. Nevertheless, there is one similarity to our experiment. Subjects judge the difficulty

of the questions by estimating the proportion of others who answered them correctly. Those

who correctly answered the questions state that they are more difficult (as they are aware of

the possible “intuitive mistakes”) than do those who failed to answer correctly. This result is in

line with our result that more information helps subjects to realize that others are wrong. The

information in Frederick is, however, endogenous: it is only available to subjects who solved the

questions correctly. Concerning our tricky questions, subjects cannot realize the trickiness (or the

find correct answer) just by thinking a bit longer about the question.
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The issue that the type of questions that subjects answer matters for overconfidence has been

intensively investigated in the literature with different results. A well-known result is the

hard-easy effect. Lichtenstein and Fischhoff (1977), for instance, show that with easy questions

overconfidence vanishes and even turns into underconfidence. Gigerenzer (1993) claims that the

type of questions does not matter, but that it matters whether questions are randomly selected or

not. If they were selected randomly, overconfidence would vanish. Among others, Brenner et al.

(1996) show that this is not true. We do not want to add to this discussion. The tricky questions

that we use are just a means to be able to provide subjects with a strong signal (by showing them

the correct answers) that others might be wrong with their assessment.

The paper is structured as follows. In Section 3.2, we describe the experimental design for the

treatments that deal with the question whether people know that others have a bias (or make

mistakes). We first present the basic and the reference treatment, before we explain the extensions.

In Section 3.3, we derive and discuss the theoretical predictions and present the results in Section

3.4. Afterwards, in Section 3.5, we analyze the question whether subjects are aware that others

make mistakes. In Section 3.6, we consider the question what people think about their relative

bias - first presenting the design, then the predictions and finally the results. In the last section,

we conclude.

3.2 Experimental Design

The experiment was conducted at the University of Bonn. A total of 116 subjects participated

in six sessions (with 18 to 22 participants each) - one session for each treatment (T Average, T

AveragePlus, T Frame, T Individual) and one for each reference treatment (R Hard, R Tricky).

Each subject participated in only one of the treatments. Note that we refer to a subject, who

participated in one of the four T treatments, as “he” in the following and to one in the R treatments

as “she”. The experiment was programmed with the software z-Tree (Fischbacher (1999)). Subjects

have been recruited via the internet by using the software ORSEE (Online Recruitment System

for Economic Experiments) developed by Greiner (2004). The instructions7 have been read out

loudly before the experiment started and the subjects answered clarifying questions to make sure

that they understand the experimental procedure. The wording of all but one instructions (see

later) was kept neutral to avoid framing effects. We did not use terms like self-assessment, type,

overconfidence, etc. which we use in the following to describe the design. Subjects could earn

Tokens during the experiment, where 210 Tokens = 1 Euro. Average hourly earnings were 8 Euros.

7Instructions are in the appendix (translated from German).
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3.2.1 Treatment Design - The Basics (T Average and R Hard)

In our baseline treatment, T Average, 20 subjects have to state whether they think “others” are

on average overconfident, underconfident or rational. The “others” are 20 subjects (we call them

Rs or she in the following) from the reference treatment R Hard, who answered seven very hard

multiple choice questions from different fields of general knowledge. They were paid 190 Tokens

for each correct answer.8 After having answered these questions, R had to estimate her number

of correctly answered questions – we denote this estimate by q ∈ {0, 1 . . . 7} – without knowing

her true number of correctly answered questions t ∈ {0, 1 . . . 7}. The resulting payoff, π(t, q), from

her estimate q depends on whether her guess is correct, i.e. equal to her true number of correctly

answered questions questions, or not correct:

π(t, q) = 525− 495 1(t 6= q)

where 1(·) = 1 if and only if t 6= q and 0 otherwise. This means that R is punished if she over- or

underestimates her number of correctly answered questions t.9 As we will show later, her estimate

q should be equal to her belief about t (i.e. the t she considers as most probable). When answering

the questions, she knows that she has to make a decision later on, where her payoff depends on her

number of correctly answered questions. She does not know yet, however, the task and the relevant

payoff table. With this procedure, we avoid that Rs try to game the experiment by deliberately

giving wrong answers (e.g. by giving no answer at all) to be able to make the correct guess.10

We did not ask the Rs explicitly what they think how many questions they have answered correctly

for not influencing their choice. Instead we let them choose between eight actions and show them

the corresponding payoffs in a payoff table (see Table 3.1). From this payoff table one can easily

infer that it is optimal, for example, to choose “Action 3” if one thinks it is most probable that

one answered three questions correctly.

In the instructions for a subject in T Average (he), we explained him what the Rs had to do, how

they were paid for this and we also showed him the multiple choice questions (without indicating

the correct answers). In order to elicit whether he thinks she is over-, underconfident or rational

on average, we told him the average q (average estimate of number of correct answers) of the Rs

rounded to one decimal place, which is denoted by q̄ in the following. Similarly, we denote by t̄ the

average t (average true number of correct answers), however, he is not told t̄. Then, he has to state

8Subjects are free not to give an answer at all, which leads to a payoff of zero for this question.

9One might wonder why we did not punish more, the larger the deviation of an estimate q from t is. The answer

is that with risk averse subjects, one can then no longer be sure whether they choose the number q that equals t if

and only if they think their true number is t.

10As we pay subjects for each correctly answered question and for their estimate, this problem should be alleviated,

but we wanted to avoid such motivations completely. In fact, all subjects gave an answer to all questions.
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Correct Answers (t)

0 1 2 3 4 5 6 7

Action 0 525 30 30 30 30 30 30 30

Action 1 30 525 30 30 30 30 30 30

Action 2 30 30 525 30 30 30 30 30

Action 3 30 30 30 525 30 30 30 30

Action 4 30 30 30 30 525 30 30 30

Action 5 30 30 30 30 30 525 30 30

Action6 30 30 30 30 30 30 525 30

Action 7 30 30 30 30 30 30 30 525

Table 3.1: Payoffs - How Many Questions Do You Think You Have Correct?

whether he thinks that t̄ is smaller than q̄ − 0.5 (which means thinking the Rs are overconfident),

that t̄ is between q̄ − 0.5 and q̄ + 0.5 (Rs are rational) or that t̄ is larger than q̄ + 0.5 (Rs are

underconfident). By adding/subtracting 0.5 we capture rounding effects and small mistakes which

remain on, even though the Rs are rational on average. A subject in T Average receives 1680

Tokens if he is correct, which means he states that the Rs are overconfident (underconfident or

rational, resp.) when they are indeed, otherwise he earns 315 Tokens. Note that we did not ask a

subject in T Average explicitly whether he thinks that the Rs are underconfident, overconfident or

rational, but gave him the choice between three actions left, middle and right. It could be inferred

from the payoff table (see Table 3.2) that it is optimal to choose, for example, action middle if one

thinks that the Rs estimated the number of questions correctly.

Moreover, a subject in T Average states how many questions he thinks the Rs answered on average

correctly, i.e. how large he thinks t̄ roughly is. For this statement, he chooses a number z out

of the set {0, 0.1, 0.2, . . . , 6.9, 7}. Of course, he could only choose a number smaller than q̄ − 0.5

if he stated before that the Rs are underconfident and correspondingly if he stated that they are

overconfident or rational, respectively. He receives 105 Tokens in case his guess z of the average

number of correct answers t̄ is almost perfect – which means that the distance between his guess z

and the true average t̄ is smaller than 0.5 – and 20 Tokens otherwise.

For the estimation of t̄ we implemented a similar procedure than before: We did not ask “How

large do you think is t̄?”, but let subjects choose a number and let them infer from the payoffs

what this choice means.

In the following sections, we describe all other treatments that extend the baseline treatment T

Average in various ways.
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Action

left middle right

t̄ < q̄ − 0.5 315 315 1680

q̄ − 0.5 ≥ t̄ ≤ q̄ + 0.5 315 1680 315

t̄ > q̄ + 0.5 1680 315 315

Table 3.2: Payoffs - Are The Others Biased?

3.2.2 Extension – Impact of Answering The Questions Oneself (T AveragePlus)

We are interested in the question whether a subject’s belief about the Rs being underconfident,

overconfident or rational is influenced, when he answers the questions himself and estimates his

own true number of correct answers. By completing these tasks he might get a better feeling for

the difficulty of the questions and whether the average guess of the Rs is realistic. Therefore, in the

treatment T AveragePlus, 17 subjects answered the same multiple choice questions, estimated their

number of correct answers and stated whether they think that others are under-, overconfident or

rational.11

3.2.3 Extension – Hard versus Tricky Questions (R Tricky and T Frame)

With another treatment, we want to test whether some form of feedback helps subjects to recognize

that others are biased. To test this, we first conducted the treatment R Tricky, which is identical

to R Hard, except that these new 20 Rs answered different multiple choice questions. Instead of

the hard ones, we selected “tricky” ones, i.e. questions that look very simple, but are in fact very

difficult: subjects are quite certain that they choose the right answer, but actually select the wrong

one.

Subjects in the treatment T Frame (where we use non-neutral wording in the instructions; see the

next subsection) answered both the hard and the tricky questions and performed all the tasks as

subjects in T AveragePlus. They had, however, not only to judge the Rs in R Hard but as well those

in R Tricky. In addition, they state how many questions they think the Rs (in R Hard and R Tricky,

respectively) have on average correct by choosing a number z for subjects in both R treatments.

Note that we want to highlight the trickiness of the questions to see whether subjects are forced by

this kind of information to recognize problems like overestimation. Therefore, we showed subjects

in T Frame the correct answers to the tricky questions before they assessed whether the Rs are

under-, overconfident or rational (but of course after they answered the questions). In order to

avoid hedging effects, we randomly selected for the payment one block of questions (either the hard

11These 17 subjects did, however, not state z, i.e. how many questions they think R answered on average correctly.
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or the tricky ones) and one block of decisions (corresponding to the hard or tricky questions) after

subjects finished all decisions.

3.2.4 Extension – Impact of Framing (T Frame)

Psychologists generally use a non-neutral language in their experiments. We want to see whether

such framing12 has some impact on our results. Subjects might think differently about a problem

when they read the word “overestimate” instead of “action right”. By reading the word “overesti-

mate” a subject might get an idea that overestimation is a problem (why else should he read this

word in the instructions?). To analyse the impact of the wording, we “framed” the instructions

in T Frame. The main differences are as follows: in T Frame we explicitly asked subjects “How

many questions do you think you have correct?”, while in all other treatments we let them choose

between eight actions.13 Furthermore, subjects had to state whether they think that the Rs under-

or overestimate the true number of correct answers or estimate it correctly. In the treatments with

neutral instructions, however, subjects choose between three corresponding actions left, right and

middle. Similarly, for the statement of the belief about the Rs’ average number of correct answers,

we explicitly asked in T Frame “How many questions do you think the others answered on average

correctly?”, while in the neutral treatments we let subjects choose a number z and they have to

infer the meaning from the payoffs.

3.2.5 Extension – Single Subject versus The Average (T Individual)

Does it make a difference whether the “others” represent the average of the Rs or a single R? As

we explain more precisely in the next section, in theory it does: For a single subject one cannot

distinguish by observing the guess q and the true number t of correct answers whether she makes

just an unsystematic mistake or is really biased if the numbers differ. By observing the average

numbers q̄ and t̄ of a group of subjects, however, one can conclude that these subjects are on

average biased if the averages differ.

From the treatments described above, in which subjects face the average of the Rs, we can infer

whether subjects think others are on average biased or not, but we cannot infer whether they

think others make unsystematic mistakes. Yet, we are also interested in whether subjects think

that Rs just make mistakes but are not biased, do not even make mistakes, or that they are biased

12The term framing should not be misleading here. We just mean by it that we use a non-neutral language which

hints at problems like a wrong self-assessment.

13Note that subjects in the R Treatments faced a different decision problem when estimating their number of

correct answers as they face a payoff table and have to infer the meaning. This decision problem was explained to

the subjects in T Frame and we made clear that it meant the same as the question “How many questions do you

think you have correct?”.
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R Hard R Tricky T Average T AveragePlus T Individual T Frame

Hard Questions
√ √ √ √

Tricky Questions
√ √

Estimate Own t
√ √ √ √ √

Others Biased?
√ √ √ √

Relative Bias?
√ √ √

Guess z of t̄ (t)
√ √ √

Info about q̄
√ √ √

Table 3.3: Overview of the Tasks in the Treatments and in which Treatment Subjects Receive Information about the

Rs’ Average Belief q̄. “Hard/Tricky Questions” means that subjects answer the hard/tricky questions.

(i.e. mistakes are systematic). Regarding the first case, for example, subjects would be aware that

a single subject might make mistakes, but that these cancel out for a group of subjects. Thus, the

group is unbiased.

To analyze the issue, we additionally conducted the treatment T Individual, in which subjects

state beliefs about single Rs and not the complete group. In T Individual, 20 subjects have to

perform all the tasks subjects in T AveragePlus have to. A difference to T AveragePlus is that

we implemented the strategy method in T Individual. Thus, subjects do not receive specific

information about a single R, but they state for every possible estimate q ∈ {0, 1, . . . , 7} of R

whether they think she is under-, overconfident or rational (strictly speaking: makes mistakes or

not – see Section 3.3.1). For the numbers 0 and 7 on the boundary, subjects only choose between

the two appropriate possibilities. In case he thinks R is under- or overconfident, he has to choose

a number z ∈ {0, 1, . . . 7}, z 6= q, that mirrors his belief about her true number of correct answers.

A subject in T Individual was not paid for all his decisions, but for his decision when facing a

particular estimate q of an R. For his payment, one R was randomly selected. Her q and t –

together with his decision when facing her estimate q – determined his payment. Again, we did

not ask all these questions directly, but confronted subjects with simple decision problems to infer

their beliefs.

In Table 3.3, we provide an overview of all the tasks subjects have to complete in each treatment.

We also indicate, in which treatment we inform subjects about the average estimate q̄ of the Rs. In

Table 3.4, we list the timing of the single tasks and when we inform subjects about q̄. Since not all

stages are present in all treatments, the corresponding timing of a treatment follows by skipping

the missing stages. In these tables, we show already the “relative bias” task that is explained in

more detail in Section 3.6.
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T = 1 T = 2 T = 3 T = 4 T = 5

Questions Estimate Own t Relative Bias? Info about q̄ Others Biased? & Guess z

Table 3.4: Timing

3.3 Predictions

3.3.1 Definitions and Assumptions

For the theoretical predictions of our experiment, we need some weak assumptions and definitions

about the players’ behavior. We assume that individuals are subjective expected utility maximiz-

ers, with a strictly increasing utility function, i.e. they prefer more money compared to less.14

Next, we define what we mean by an under- or overconfident individual – i.e. a biased individual

– or by a rational individual. Biased means that an agent’s self-assessment is wrong – he system-

atically under- or overestimates his number of correct answers and is thus under- or overconfident,

respectively. By systematically we mean that the mistakes an individual makes when estimating

her ability are not random, in the sense that they do not cancel out on average. A rational agent

in contrast makes on average no mistakes.15 Thus, we can identify whether a population of indi-

viduals is rational – if they were rational, then t̄ = q̄ (roughly) holds.16 If they were not rational,

then t̄ 6= q̄. In the latter case, we define the bias as b := t̄ − q̄ and say that a population with

b < 0 is overconfident (or overestimates its ability, i.e. the true number of correct answers) and one

with b > 0 is underconfident (or underestimates its ability). For a single individual, however, we

cannot infer from observing her t and q that she is biased or not, since she could have made only

an unsystematic mistake (b < 0: negative mistake, b > 0: positive mistake).

Note that in T Individual, we ask subjects whether they think that a single subject R is right with

her self-assessment. Thus, we can in general not conclude from T Individual whether subjects think

14This seems reasonable since here are no concerns for concepts like fairness. Note that we make no assumptions

regarding the curvature or differentiability of the utility function. Thus, we could – by an appropriate definition of

the reference point – also think of the utility function as a value function in the spirit of Kahneman and Tversky

(1979) to capture concepts like gain-loss utility.

15Statistical: A rational individual estimates that her type is E[t|ξ], when her true type is t with E[t|ξ] = t − ε

and ξ is the available information of the individual. Hence, E(ε) = 0, i.e. a rational individual makes on average no

mistakes. Assuming that across individuals (i ∈ I) the εi’s are uncorrelated random variables, one could apply the

weak law of large numbers to see that limI→∞
1
I

∑
i εi = E(ε) = 0. For a biased individual E(ε) = b 6= 0, i.e. on

average it makes mistakes.

16In the experiment, we allow for small deviations from t̄ = q̄ for a rational group.
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that a single R is biased or not, but only whether it makes (systematic or unsystematic) mistakes

or not.17

Our main interest is whether subjects think others are biased or not. Hence, in most treatments,

we consider averages over the beliefs q. Nevertheless, we want to know whether subjects think

others make mistakes and thus discuss most results of T Individual separately in Section 3.5.

3.3.2 Eliciting Beliefs

In the following, we look at individuals’ choices and explain how these mirror a subject’s beliefs.

In our experiment, all decision problems the individuals face have the same structure: A subject

has the choice between several alternatives (J = {2, 3, 4, 8, 70}). For example, a subject has eight

alternatives for the statement how many questions she thinks she answered correctly. If a subject

makes the “right” choice (e.g., she states the right number of correctly answered questions), she

receives a high payoff and if her choice is not correct, she receives a low payoff. Of course, an indi-

vidual might be uncertain which alternative is true, and hence forms beliefs about the probabilities

of the different alternatives being true. We show in the appendix that an individual chooses the

alternative on which she puts the largest probability to be the correct one (Proposition 19 in the

appendix).18

This proposition implies that subjects should state the number of questions they think they an-

swered most likely correctly. As explained above, the average values of stated and true number

should not differ much in case individuals are roughly rational and only make random mistakes.

When individuals tend to be biased in a certain direction (i.e. either over- or underconfidence),

however, these numbers differ even on average.

3.3.3 Hypotheses on the Beliefs About the Bias of the Average

Based on previous studies by psychologists and economists (see introduction), we predict the fol-

lowing.

Hypothesis 1 Subjects overestimate their abilities on average – more so with the tricky questions.

The fact that subjects overestimate their abilities and that the degree of overestimation depends

on the type of questions is a well known result from psychology. In the psychological literature on

17In Section 3.5 we also try to infer whether subjects think mistakes are systematic or not.

18So called “probability matching” (see e.g. Shanks et al. (2002)) could occur in our decision problem. Suppose

the majority of subjects chooses the action “the others are biased”. Then also if probability matching happens the

results should imply that subjects put the largest probability on this action (similar for the other tasks). Shanks et

al. show that this anomaly occurs less often in case financial incentives are provided. Thus, “probability matching”

should not be a severe problem for our experiment.
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overconfidence the so-called “hard-easy” effect arises: People have been found to be underconfident

for “easy” questions and overconfident for “hard” ones (see, e.g., Juslin (1994)). Our tricky

questions are designed in a way that provokes more negative mistakes: Subjects are more sure

that they selected the right answer but, in fact, this answer turns out to be wrong. This means

that confidence rises and the number of correct answers decreases compared to the hard questions.

This effect of such “surprising” questions is also addressed in Juslin (1994).

Whether one can say that subjects are more overconfident with the tricky questions depends on

the way one defines overconfidence. On the one hand, one can simply say that a population is

more biased (here: overconfident) if and only if the absolute value of their bias is larger – i.e.

t̄ − b̄ is smaller – the statement is correct. On the other hand, one can argue that subjects are

not more biased because they really are more biased, but because the tricky questions make them

more biased, i.e. subjects only seem more biased (see Brenner et al. (1996)). We do not deepen

this discussion as our main point is not the influence of the tricky questions on the degree of

overconfidence – instead, we want to see whether subjects can be induced by these questions to

recognize that Rs are overconfident. Whenever we say in this context that overestimation is more

pronounced with the tricky questions, we do not want to claim that these subjects have a stronger

bias.

Under the assumption of a symmetric distribution of mistakes, one could for instance use a

Wilcoxon Test (to test the hypothesis that the difference between q and t has median value zero

given the pairs (qi, ti) of individuals i) for testing whether subjects are rational or biased.

Proposition 19 (see appendix) also implies that whenever a subject believes that the Rs are

more likely to be either over-, underconfident or unbiased, he also states this when asked for his

assessment. Further, his guess of t̄ (the average of the true number of correct answers) should be

the number that he thinks mirrors t̄ most likely. Therefore, for agents who are uncertain between

positive and negative biases or between different sizes of biases (including positive, negative and

zero biases), we interpret their choice as reflecting what they think to be most likely true (and say

sometimes for simplicity “they think”, without the most likely). Obviously, we cannot distinguish

between agents who are certain or uncertain about their statement being true.

We predict that at least some subjects know that the population is biased. A priori, it is not clear

whether more subjects think that Rs are biased or more of them think that they are rational.

From experiments and field evidence about hyperbolic discounting we know that some individuals

are only “partially naive” and not fully naive (see e.g. Della Vigna and Malmendier (2006)).

Partially naive means that they know their own bias to some extent. In case people know that

they are biased themselves, there is some chance that they also know that others are biased. Note

that in our experiment a wrong guess could just be a mistake and not a bias, while hyperbolic
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discounters are always biased. Thus, subjects in our experiment might be aware that people make

mistakes (un-, or systematic), but many might expect mistakes to cancel out on average.

Concerning our different treatments we make the following prediction:

Hypothesis 2 The more information subjects receive about the problem (no information in T

Average, answering questions themselves in T AveragePlus, seeing the correct answers and framed

instructions in T Frame), the more subjects state that others are biased.

This hypothesis seems evident in the (theoretical) sense that subjects, who can use more informa-

tion, can update their beliefs and thus, make better decisions. Experimental studies on whether

subjects update information according to Bayes’ rule, however, rather provide evidence that

subjects are not “perfect Bayesians” (e.g. Kahneman and Tversky (1972) or Zizzo et al. (2000)).

Nevertheless, we think that in our experiment, more information works in the stated direction.

Subjects are forced to reason better how realistic it is that the Rs have on average q̄ questions

correct, once they answered the questions themselves and recognize that it is indeed very hard to

give so many correct answers. This effect is reinforced when they see the correct answers of the

tricky questions – here they could recognize that these tricky questions induce overestimation.

Effects of better reasoning on decisions are for instance explored by Croson (2000). She finds that

the frequency of equilibrium play in prisoner’s dilemma and public good games increases when first

subject’s beliefs about the actions of others are elicited before the game is played. It is a priori not

clear whether the effect of framing is stronger or weaker than the one of answering the questions

oneself. Nevertheless, we think that there is an effect – reading words like “overestimation” gives

subjects a hint that such things could occur. Hence, we predict that more subjects state that the

Rs are biased.

When thinking about others, individuals often tend to conclude from their own behavior or

own beliefs on others. This is the so-called false consensus effect, see e.g. Mullen et al. (1985).19

We expect this effect to be crucial, when subjects judge the others. Thus, we have the following

hypothesis.

Hypothesis 3 When making statements about the Rs (about their bias or about their average

number t̄ of correct answers), this statement tends in the direction of the own behavior (own bias

or guess of own number of correct answers).

19Note that doing this need not be suboptimal, especially when subjects have no further information on the identity

or characteristics of others. Therefore, the term “false” can be misleading.
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t̄ q̄ Bias p

R Hard 2.3 3.4 -1.1 0.006

R Tricky 1.2 4.6 -3.4 0.000

T AveragePlus 2.1 3.5 -1.4 0.005

T Individual 1.7 2.7 -1.0 0.068

T Frame Hard 2.6 3.1 -0.5 0.207

T Frame Tricky 1.6 3.2 -1.6 0.001

Table 3.5: Reported and True Number of Correct Answers

3.4 Results

In the following, we first discuss the results on the own bias of subjects. This refers to the first part

of the experiment, the question task and the self-assessment, which is present in all treatments but

T Average. Note that in T Frame we pose both types of questions and subjects have to evaluate

both reference groups R Hard and R Tricky, respectively. When presenting the results, we therefore

split this treatment into T Frame Hard and T Frame Tricky, where each part refers to either the

hard or tricky questions and the corresponding decisions. Since overconfidence has already been

extensively investigated in the psychological literature, our discussion is very brief.

We then turn to our results on the new issues – the knowledge about other people’s bias and the

belief about the relation between own and other people’s biases.

3.4.1 The Own Bias (Hypothesis 1)

Table 3.5 shows the average type t̄ and the average estimate q̄ for each treatment, the difference

between the two (bias) and the p-values from a Wilcoxon Test. With the hard questions the bias

ranges from -0.5 to -1.4, with the tricky ones from -1.6 to -3.4. The p-values indicate significant

differences between t̄ and q̄ for all treatments except for T Individual and T Frame Hard. Although

not significant in T Individual, the average bias is -1 which is quite large.

Even if the average bias of the whole group indicates overestimation, different types of individuals

exist. Figure 3.1 illustrates the percentage of subjects that are under-, overconfident or rational

(make positive, negative or none mistakes) in the different treatments. The fraction of subjects,

who are overconfident (make negative mistakes), ranges from 53 to 90 percent in the different

treatments. As intended, with the tricky questions the percentage of those, who overestimate their

number of correct answers, is higher. Moreover, it is interesting to see that on average 75 percent

of subjects in R Tricky focused on one and the same answer for each question. With the hard

questions, in contrast, the answer that has been chosen most often for a question, has on average
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Figure 3.1: Percentage of Subjects Being (Not) Correct in the Treatments

only chosen by 44 percent of the subjects in R Hard. One could take this as a vague hint that

subject’s confidence in an answer also increased with the tricky questions. How does the type

of questions influence the true number of correct answers and the belief about it? As discussed

in Section 3.3.3, the size of the bias cannot necessarily be interpreted as stronger overconfidence.

Nevertheless, the effect of the type of questions on the true and believed number of correct answers

is important. It might be that subjects recognized that these questions are tricky and adjusted

their beliefs accordingly. As argued in Section 3.3.3, we find that in R Tricky the true numbers of

correct answers t are significantly smaller than in R Hard, whereas the estimated numbers q and

thus the mistakes are significantly larger in R Tricky (Mann-Whitney U test: p = 0.009, p = 0.001

and p = 0.000, respectively). This indicates that people in R Tricky seem not to recognize the

trickiness of the questions. Similarly, within the two parts in T Frame (hard and tricky questions),

true numbers of correct answers t′s are significantly larger and mistakes are significantly smaller

for the hard questions (Mann-Whitney U test: p = 0.026 and p = 0.03, respectively).

Moreover, we are interested in the effects of framing. We observe that the estimates q are larger

and that overestimation is much more pronounced in R Tricky compared to the framed treatment

T Frame Tricky. The q′s and also the mistakes of subjects are significantly different across these

treatments (Mann-Whitney U test: p = 0.001 and p = 0.002, respectively). This result is (to

our knowledge) new in this context. A possible explanation for it is what psychologists call self-

impression management: “[This concept] suggests that a person acts to show himself in a positive

light, even when he is the only observer of his own behavior.” (Murnighana et al. (2001)). Compar-
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ing the neutral with the framed treatment, subjects in the neutral treatment do not have as strong

emotions when their decision turns out not to be optimal as subjects in the framed treatment who

are forced to think of terms like self-assessment. The latter subjects feel ashamed or more stupid

when they are wrong or they even do not want to appear themselves arrogant. Therefore, in the

framed treatment, subjects are reluctant to make overly optimistic guesses – instead they make

more realistic guesses such that overestimation is reduced.

3.4.2 What Do You Think about the Bias of Others? (Hypothesis 2)

In this subsection we analyze the subjects’ perception of the Rs’ bias.

Result 1 Without further information, a majority of the subjects thinks that others estimate their

ability correctly. The more familiar subjects are with the task or the more information they re-

ceive (answering the questions themselves, framed instructions, seeing the correct answers of the

questions), the less subjects think that others estimate their ability correctly.

This result is illustrated in Figure 3.2. The figure shows the percentage of subjects in the different

treatments believing that the Rs are underconfident, rational or overconfident. Except for the

second part in the framed treatment, where subjects saw the correct answers before evaluating the

Rs’ average estimate, a majority of subjects states that the Rs are rational. Being asked for their

choice in a questionnaire after the experiment, subjects say that they made this choice because they

either think the mistakes the Rs make cancel out on average or that the Rs have better information

about their own number of correct answers, or that the Rs are simply able to make the correct

choices.

Next, we explore the impact of a single piece of information. First, we ask about the effect of

answering the questions oneself. Does this induce more subjects to recognize that others are

biased? As aforementioned, answering the questions oneself gives subjects a better feeling for

the difficulty of the task. Hence, subjects get a better impression how realistic it is that the Rs

indeed answered q̄ questions correctly on average as these estimate. In Figure 3.2, we see that

the percentage of subjects, who think that the Rs are biased, is slightly higher in T AveragePlus

compared to T Average. We cannot reject, however, the hypothesis that there is no relation

between the number of subjects in the two treatments, who think that the Rs are rational or

biased, according to a Fisher’s exact test (p = 0.234 one-sided).

Framing and answering the questions together, in contrast, (i.e. comparing T Frame Hard and T

Average) has a significant effect (Fisher’s exact test: p = 0.038 one-sided). It increases (decreases)

the percentage of subjects who think the others are biased (unbiased). Nevertheless, no significant

difference arises, when only framing is added given that subjects answer the questions themselves:

Comparing T AveragePlus and T Frame yields no significant effect (p = 0.252). In Figure 3.2, we
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Figure 3.2: Beliefs About Others’ Self-Assessment

can see, however, that the percentage of subjects thinking that the Rs are biased is larger in T

Frame Hard than in T Average/T AveragePlus. This increase in the percentage of people thinking

that the Rs are biased might be caused by the frame – by reading words like “overestimate” and

“underestimate” subjects get forced to recognize that people’s self-assessment might be wrong.

Does it have an effect when subjects see the correct answers to the tricky questions? This kind of

feedback has a significant effect – provided with this information, almost all subjects believed that

the Rs are overconfident.20 Psychologists have shown (for an overview see Pulford and Colman

(1997)) that feedback in form of giving the correct answers has the greatest impact on a subject’s

own bias when feedback contradicts a subject’s belief most. Our result indicates that this also holds

for giving feedback when evaluating others and not oneself. This is interesting since here the ad-

justment has to proceed in two steps as subjects conclude from their own bias on the bias of others:

At first, subjects recognize that it is impossible for themselves to have as many questions correct

as the Rs think they have on average in R Tricky, i.e. q̄. In a second step, subjects conclude from

their own ability that it must also be impossible for the Rs to answer that many questions correctly.

What do the subjects guess is the average true number of correct answers t̄ of the Rs given the

feedback q̄ they receive about the others’ average belief about t̄? This means, we consider the

20Comparing T Frame Tricky to T Frame Hard/T AveragePlus/T Average, there are more (less) subjects who

think that the Rs are biased (rational) according to a Fisher’s exact test (p = 0.0015/0.0001/0.00 one-sided).
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Feedback q̄ Guess z p-value (Mann-Whitney U test)

T Average 3.4 3.2 0.002

T Frame Hard 3.4 3.4 0.138

T Frame Tricky 4.6 2.9 0.000

Table 3.6: Belief z about the Others’ Average Number of Correct Answers (t̄)

versus the Others’ Average Belief q̄ about Their Own Number of Correct Answers (t)

subjects’ estimate z given information q̄ of the reference treatments (this information thus differs

whether the hard or tricky questions are considered). The result is summarized in Table 3.6. The

figure shows the average estimate q̄ chosen by the Rs for the tricky and hard questions, respectively,

the estimates z and the p-values from a Mann-Whitney U test – testing whether z and q̄ are different

from each other.

For T Average, we see that although subjects think that the Rs are roughly correct when evaluating

their abilities, they think that the Rs are a little bit overconfident (q̄ > z). With the tricky

questions, where subjects recognized after seeing the correct answers that the Rs are overconfident,

they adjust their estimate z of t̄ downward to 2.9. Although this is significantly smaller than

q̄ = 4.6, the estimate is still higher than the true average t̄ = 1.2. Interestingly, the estimate

z is not that much smaller than 3.4, which was the subject’s guess for the hard questions in T

Frame. Thus, subjects recognize that the Rs overestimate their abilities, but are still not aware

that overestimation is such a severe problem.

3.4.3 Why Do You Think What You Think About the Bias of Others? (Hy-

pothesis 3)

In the last section, we already got some hints that subjects conclude from their own behavior on

the behavior of others. Now, we want to investigate the reasons for the subjects’ choices in more

detail.

First, we have a closer look at the relationship between the bias a subject in T AveragePlus has

himself and the belief he has about the bias of the Rs. The cumulative distribution functions of

the average value of the bias of subjects who either think that the Rs are correct, overestimate or

underestimate their ability is shown in Figure 3.3. The cumulative distribution function of those

subjects who think that the Rs are on average correct is always below the other two functions.

Hence, those subjects have less extreme (negative) biases. From the average biases, we see that in T

AveragePlus those who think the Rs are overconfident have on average a bias of -2, those who think

that the Rs are roughly unbiased have a bias of -0.7 and the rest has a bias of -3. The difference

91



0

0,2

0,4

0,6

0,8

1

Bias ≤ -5 Bias ≤ -4 Bias ≤ -3 Bias ≤ -2 Bias ≤ -1 Bias ≤ 0 Bias ≤ 1 Bias ≤ 2

C
um

ul
at

iv
e 

Pe
rc

en
ta

ge
 o

f S
ub

je
ct

s

Belief Others Overestimate Belief Others Correct
Belief Others Underestimate

Figure 3.3: Own Bias given Belief About Others’ Self-Assessment

between the biases of subjects who say that others are biased and those who say they are rational

are according to a Mann-Whitney U test significant (p=0.033). Moreover, in T AveragePlus 85

percent of the subjects having a “small” bias (larger or equal to -1) think that others are rational,

while 60 percent of those who have a bias smaller than -1 (i.e. who overestimate more heavily) say

that others are biased. This result is striking since we cannot directly explain it by a false consensus

effect. Recall that subjects do not know how good their own self-assessment is. The result can,

however, be taken as evidence that subjects have some21 knowledge about the degree of their own

bias. Subjects may conclude from their bias onto the bias of others. For instance, a subject may

reason as follows: “I am rational and I know this, so the others are rational, too”. These findings

are summarized more generally in the following:

Result 2 Those who think that others make on average the correct choice, make on average better

choices themselves; while those who think that others are biased, make on average more biased

choices. Moreover, the other way around, most subjects that are unbiased also think that others are

unbiased.

This result is also striking in another aspect. It gives us some hint that the choice of subjects

is not driven by a “better than the average effect” (or self-serving bias), but by their implicit

21If we sometimes say a subjects “knows about his bias”, we mean the following: The subject knows that he is, e.g.,

overconfident to some extent, but he does not know the exact magnitude of this bias. Would he know the magnitude,

he could perfectly correct for the bias.
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self-knowledge as described above. What do we mean by “better than the average effect” in this

context? After subjects estimated their own number of correct answers to be q, they learn the

estimate q̄ of the Rs. Thus, subjects can see whether – according to their own and the Rs’ beliefs –

they are better or worse than the average. If they think that they are better than the average but

q ≤ q̄, they can simply state that the others are overconfident in order to sustain their self-image

of being better than the average, as this means the others are actually worse than q̄ and thus

maybe even worse than q. There is not a large difference, however, between the percentage of those

stating that others are overconfident or rational: q ≤ q̄ holds for 40 percent of the subjects stating

that others are rational and for 50 (33) percent of those, who say that others are overconfident

(underconfident). Hence, we find no clear evidence that subjects try to fool themselves to make

them better than the average by stating others are overconfident.

In T Frame Hard Result 2 is slightly different. Those saying that the Rs underestimate their

ability, have on average a bias of -1.2. Those saying that the Rs are roughly correct, have a bias of

-0.75. And those, who say that the Rs are overconfident, are in fact (on average) underconfident

with a bias of 0.5.22 In T Frame Hard subjects, who say that the Rs are overconfident, could be

aware (and this awareness could be caused by the frame) that overconfidence not only exists in

the population but also for themselves. Hence, they might adjust their choice accordingly, which

leads to a less severe bias (and even underconfidence). With those, who say that the Rs tend to be

underconfident, it is exactly the other way around (as well as in T AveragePlus). These subjects

have the most severe bias. Thinking that they are underconfident themselves might induce them

to choose an estimate q that is too high such that overconfidence arises.

How does the belief z about the (average) true number of correct answers t (t̄) of the Rs relate to

a subject’s own stated number of correct answers q? We can analyze this issue in the treatments

T Average, T Frame and T Individual. We find that subjects think that others have a similar

(average) number of correct answers than they have themselves and – assuming some implicit self-

knowledge when subjects make their choice – they think that the others are rational (or do not

make mistakes). Hence, we can also see the following result as a strengthening of our interpretation

of Result 2: Subjects may not only think that others have a similar bias, but also that they have

a similar (average) number of correct answers.

Result 3 Subjects think that others are similar to them, i.e. they have a belief z about the others’

average ability t̄ that is close to the belief q about their own ability. Moreover, they think that

22The estimate q of those subjects, who say that others are over- or underconfident, is significantly smaller than the

estimate q of those, who say that others are rational (according to a Mann-Whitney U test p = 0.004 and p = 0.011,

respectively).
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Figure 3.4: Average Belief z about the Others’ Ability given the Belief q about the Own Ability

similar subjects are likely to be correct when estimating their ability.

The first part of this result can be explained by the false consensus effect, which says that people

tend to overestimate the degree to which, for example, their own behavior or beliefs are shared by

other people (compare our prediction). Hence, by the false consensus effect people overestimate the

frequency with which their own estimate q is present in the population. Therefore, it is likely that

subjects in our experiment adjust their estimate z of t̄ in the direction of their own estimate q –

under the restriction that they think that the Rs are roughly rational. This is illustrated in Figure

3.4, which shows the average estimate z chosen by the subjects in T Frame given their belief q of

the own number of correct answers and the information the subjects receive (i.e. the Rs’ average

belief q̄ which is 3.4). It can be seen that subjects with lower q’s (up to 3) choose on average an

estimate z that is lower than 3.4, whereas subjects with higher beliefs about the own ability t (from

4 on) choose on average a higher z.

The first part of Result 3 is further supported by the following observations. The average difference

between a subject’s q and the chosen z is only -0.09 in T Frame Hard (and for the tricky questions

it is still only 0.41). According to a Wilcoxon Test there is no significant difference in the median

of the chosen number and the chosen action (p = 0.647 and p = 0.155). Furthermore, in T Frame

Hard the estimates q and z are correlated: The Spearman rank order correlation coefficient is

0.737 (with p = 0.0002).

The second part of the result can be derived from T Individual. Recall that a subject in T
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Individual states a belief z about an R’s true number of correct answers t for each possible belief

R can have about her t. This means that a subject in T Individual, which states a belief z that

equals R’s belief q, believes that this R is correct.

We compare a subject’s estimate z of R’s true number of correct answers t with this R’s estimate

q of the own number of correct answers given that R is similar. A similar R has exactly the

same belief q about her number of correct answers than the subject in T Individual has about

his number of correct answers. For example, an R who thinks she has three questions correct is

similar to a subject in T Individual that thinks he has three questions correct himself. Given

such a similar R, we consider the estimate z a subject in T Individual has about this R’s number

of correct answers. The average difference between the estimate z for a similar subject and this

similar subject’s belief q about his own number of correct answers is -0.05. The medians of these

numbers do not differ significantly (p = 0.476, Wilcoxon test). Moreover, the belief about a similar

individual and the Rs own belief are correlated (Spearman rank order correlation coefficient is

0.59 with p = 0.00323). This implies that a subject thinks that the similar subject is correct with

her self-assessment. Subjects even think that similar Rs are likely to be correct if these Rs hold

“extreme” beliefs, for which most other subjects say that this extreme belief must be mistaken.24

What can we learn from this? Baker and Emery (1993) showed that individuals know that the

average married person in their country gets divorced, but state at the same time that they

themselves will not get divorced. If we replace “getting divorced” by “being biased”, we get a

similar result in our experiment. In case subjects make their statement because they think similar

subjects are like them – not only with respect to their ability, but also with respect to their bias

(see Result 2 and the first part of Result 3) – we can conclude that subjects also think about

themselves that they are unbiased or do not make mistakes as they think that others are unbiased.

Note again that a similar R has the same belief about her number of correct answers than has the

subject in T Individual about himself. If this is true, it also implies that we can explain the second

part of Result 3 by a false consensus bias: Subjects conclude from their own beliefs on others. If

they think they are correct, then also a similar individual is correct.

As the estimates z are significantly different from the beliefs q′s of a single R for all her estimates

q besides 2,3 and 4 (p ≤ 0.002, Mann-Whitney U test), subjects in T Individual know that the Rs

make mistakes.

23If we exclude one subject (that always chose 0 for high q’s of the other person), the numbers are even more

similar to T Frame Hard.

24For Rs that are not similar and who have belief q ∈ {0, 4, 5, 6, 7}, the absolute values of the differences between

q and z are significantly larger than than they are for similar Rs (p ≤ 0.02). Dissimilar Rs with belief q ∈ {1, 2, 3},

however, are most often considered to be correct, too.
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Furthermore, we are interested in the question whether subjects make the same mistakes (or have

the same bias) when evaluating themselves and when evaluating the Rs. On the one hand, subjects

have better information about themselves than about the Rs and this should make it easier to

judge themselves. On the other hand, individuals often reject information about themselves, such

that they could see themselves in a good light (see, e.g., Bénabou and Tirole (2002)). This should

make evaluating the Rs easier since a subject does not care about the implications of his choice

(which the Rs will never get to know) on R’s self-image.

In T Frame, we find no significant difference between the own bias and the bias in assessing the

average number of correct answers t̄ of the Rs by choosing z. On average, the own bias in T Frame

Hard is about 0.26 larger in absolute terms (it is more negative) than the bias in assessing t and in

T Frame Tricky the own bias is about 0.24 larger in absolute terms (it is more negative again). The

latter finding is surprising as with the tricky questions the subjects see the correct answers to the

questions after having assessed the own ability t, but before assessing t of the Rs. This additional

information seems not to improve the subjects’ assessment about the others.

Finally, we compare the own bias (mistake) and the bias in guessing the ability of a similar R in T

Individual.25 We find that the own bias is significantly larger – in the sense that overestimation is

more pronounced – according to a Wilcoxon test (p = 0.024). The average own bias is -1.8, whereas

the average bias when assessing a single R is -0.87.

3.5 T Individual

For T Individual one should be aware that one should replace “over-, underconfident or unbiased”,

by “negative, none or positive mistake”, as we explained in Section 3.3.1. Even for a rational

subject the true and stated number of correct answers can differ – the subject might simply make

(unsystematic) mistakes. In the following, we try to disentangle what subjects think about the bias

or mistake of single subjects.

3.5.1 Beliefs About the Bias/Mistake of Single Subjects

Consider a subject that assesses the Rs. He might think that “each R is rational” (and only makes

unsystematic mistakes). If he thinks each R is rational, this is consistent with the belief that the Rs

are unbiased on average. Yet, if he thinks (some) single Rs are biased this can still be consistent

with a belief that the whole population of Rs is on average unbiased: He might think that the

25As in R Hard no one has belief zero or one, we have to skip those subjects in T Individual who have a belief of

zero or one.
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biases cancel out for the population, i.e. “the population is rational”.26 Under some assumptions,

we can calculate, which choices of subjects in T Individual are consistent with a belief that Rs are

rational on average. We present two alternative ways to do this. The first alternative corresponds

to the possibility “each subject is rational”, the second one to “the population is rational” as just

explained.

Regarding the first alternative, we assume that if an individual is rational the distribution of the

mistake is uniform and symmetric around zero. This implies that the precision of Rs that state

extreme q’s is higher - for example, someone who says “I answered zero questions correctly” is always

right (since he e.g. did not mark any answer). Denote the possible beliefs of R about her number of

correct answers by {zero, . . . , seven}. The choices of the subject in T Individual are left, middle

and right, which mean that a subject thinks the other subject overestimates, correctly estimates or

underestimates her correct answers. Given a specific belief of R, which (rough) choices of a subject

in T Individual are consistent if he believes R is rational? We can infer that the following (rough)

choices27 are consistent given a belief {zero, . . . , seven}: for belief zero and one action right (i.e.

underestimation), for two, three, four and five action middle (i.e. correct estimation) and for six

and seven action left (i.e. overestimation). For example, an R, who states she has one question

correct, how many questions could it actually have correct? Under the assumption that mistakes

are uniformly and symmetrically distributed around zero, a subject that has actually one, two,

three or four questions correct could state that it has one correct (i.e. have the belief one). Then

the average of actually correct questions is 2.5 (remember that we assume different mistakes are

equally likely). This is by 1.5 larger than 1 what the subject guessed herself. Hence, one should

choose for such an R right (i.e. underestimation).

Concerning the second alternative, we assume that single subjects can be biased, but that their

(systematic) mistakes cancel out in the population (“the population is rational”). Thus, a subject

that states q = 0 can make a mistake. We assume that the absolute value of mistakes is at most

three and that all mistakes have the same probability. We can derive (similar to above) that the

prediction, when a subject in T Individual should choose left, middle or right, is exactly the same

as for the first alternative.28

Similarly, one can see, which choice of subjects in T Individual is consistent with his belief that Rs

are unbiased on average, when they are asked to guess the number of correct answers of R (making

26Note that a subject in T Individual does not know the distribution of types of the Rs, i.e. he does not know how

many Rs think they have one question correct etc. Therefore, we make assumptions on a subject’s belief about this

distribution in the following.

27These are “rough” choices in the sense that we calculate averages and round these to receive the choice.

28To be precise, only rough choices are the same, i.e. when we consider the rounded values. The unrounded values

differ.
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the same assumptions as above). Namely, if a subject believes that each R is rational but makes

mistakes, he should choose the following numbers for each of R’s beliefs {zero, . . . , seven}: zero:

2, one: 2.5, two: 2.5, three: 3.5, four: 3.5, five: 4.5, six: 4.5, and seven: 5.5. If a subject believes

that the population of Rs is rational but single Rs are biased, he should choose the following

numbers for each of R’s beliefs {zero, . . . , seven}: zero: 1.5, one: 2, two: 2.5, three: 3, four: 3,

five: 4.5, six: 5, and seven: 5.5.

Hence, given the assumption that subjects think the others are rational on average29, we can

compare how the two alternative approaches (assumptions see above) fit the experimental data:

Given subjects think that others are rational on average, is it rather the case that they think that

each individual is rational or that individuals might be biased but the population is, nevertheless,

rational?

3.5.2 Results on Knowledge About Mistakes

When analyzing T Individual in more detail, we are interested in the question whether subjects are

aware that others make mistakes and whether (and when) they think such mistakes are unsystematic

or systematic. In order to investigate these questions, we compare the two different approaches

explained in the preceding section: We assume that subjects either think that each R is rational

or that the population of Rs is rational. Regarding the belief in T Individual about the goodness

of the Rs’ guess, we can infer the following from the solid line in Figure 3.530: For low stated q’s

of R, subjects think that she has more likely a higher q than she stated, while Rs with high q’s are

expected to have more likely a lower q than stated. This means that especially Rs with extreme

beliefs are considered to be wrong. Remarkably, no subject states for all possible estimates q’s of

R that she makes the correct choice. For each value of the belief q, 50 – 95 percent of subjects

state that R is wrong. Thus, subjects know that Rs make mistakes when these assess their q.

Furthermore, we compare the average choice of subjects in T Individual with the predicted choice

that would be consistent with subjects in T Individual thinking that the Rs are rational. In Figure

3.5, we derive the predicted choice under the assumption that the population is rational and in

Figure 3.6, we derive it under the assumption that each single individual is rational and just make

mistakes. We see in both figures that the curves for the predicted and actual choice are close. The

second prediction fits, however, better for small qs.

Figures 3.7 and 3.8 again differ only in the predicted choices, but the actual considered choice is

the same (i.e. the solid line). We see from the solid line that for more extreme beliefs of R, the

29We only consider this case here as it turned out that a majority of subjects thinks that the Rs are rational on

average.

30The solid line is the same in Figure 3.6
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Figure 3.7: Average Value of Absolute Distance Between a Subject’s Belief z about R’s Ability t for Each of R’s

Possible Beliefs q about Her Own Ability. Assumption: “Population is Rational”

average distance between the estimate z about R and the stated belief q of this R is increasing.

Consistently with the choice above, subjects think that mistakes are more severe for Rs with

extreme beliefs: The higher q, the more overestimation is pronounced and similarly, the lower q,

the more underestimation is pronounced. We compare these actual choices to the predicted choice

that would be consistent with subjects thinking that the Rs are rational but make mistakes. We see

that the predicted curve in Figure 3.8 – where the assumption is that a subject thinks “each subject

is rational but makes mistakes” – and the true curve are quite close for stated beliefs smaller than 4.

In Figure 3.7 – where the assumption is that subjects think the population is rational – this is not

true. For higher beliefs, the true curve and the predicted one diverge (under both assumptions).

One possible interpretation of this is that subjects rather think that “pessimists” (those with low

qs) are rational and just making mistakes instead of being biased. Whereas for “optimists” (those

with high qs), we cannot infer which assumption fits observed behavior better.

3.6 Relative Bias

Finally, we want to analyze what subjects think about the relation of their own possible bias or

mistake when assessing the number of correct questions and the bias or mistake of the Rs.
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Figure 3.8: Average Value of Absolute Distance Between a Subject’s Belief z about R’s Ability t for Each of R’s

Possible Beliefs q about Her Own Ability. Assumption: “Each Subject is Rational”

3.6.1 Experimental Design

An additional task is included in the following treatments: T AveragePlus, T Frame, T Individual.

In T Frame, we explicitly asked subjects whether they think that “I and others made the correct

choice” (or both are wrong/ others right/ I am right). If subjects are right with their statement, they

receive 400 Tokens, otherwise they receive 50 Tokens. In T AveragePlus and T Individual, subjects

choose between two alternatives (in T Individual, with the strategy method, they choose for each of

the eight possible estimates q of R between the two alternatives). Subjects in T AveragePlus made

this decision based on a payoff table (see Table 3.7). This payoff table shows that the payoffs of the

alternatives I and II for the four possible events, where q = t (q 6= t) refers to the self-assessment

of a subject in T AveragePlus and |q̄ − t̄| ≷ 0.5 refers to the average self-assessment of the Rs.

We see in Table 3.7 that payoffs of the two alternatives only differ for the second and third case,

i.e. for the event that the subject is correct himself while the Rs are wrong on average or when

the subject is wrong but the Rs are correct on average. In case that both are correct or both are

wrong the alternatives lead to identical payoffs. Combining this with the statement whether he

thinks that Rs are under-, overconfident or rational, one can see whether he thinks that both make

the right/wrong decision or only one is wrong while the other is right (we will explain this in more

detail below).

The decision of subjects in T Individual between the two alternatives is exactly the same as in T

AveragePlus besides a difference in the payoff table. In T Individual, |q̄ − t̄| ≷ 0.5 is replaced by
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Alternative I Alternative II

q = t and |q̄ − t̄| < 0.5 800 800

q = t and |q̄ − t̄| > 0.5 500 300

q 6= t and |q̄ − t̄| < 0.5 300 500

q 6= t and |q̄ − t̄| > 0.5 210 210

Table 3.7: Payoffs - Relative Biases

q = t and q 6= t, i.e. whether the self-assessment of single R is correct or wrong instead of the

average self-assessment.

3.6.2 Predictions

In this context, Proposition 19 (see appendix) is to be interpreted as follows. Define two states

of the world: state 1 is the state in which a subject guesses his number of right answers correctly

and the Rs are biased (|q̄ − t̄| > 0.5). State 2 is the state in which the subject guesses his number

of right answers not correctly and the Rs are (roughly) unbiased (|q̄ − t̄| < 0.5). According to

our Proposition, this subject should choose alternative I if he believes that state 1 occurs with

a strictly larger probability than state 2 and otherwise alternative II. Combining the choice of

alternative I or II with the statement that others are over-, underconfident or rational, we can

deduce what individuals in T AveragePlus think about their mistakes or biases and others’ biases.

If, for example, a subject says that others are biased and chooses alternative I, this means that

he thinks that he makes more likely the right decision himself, while the Rs do not, i.e. he is

rational (or does not make a mistake) but the Rs are biased. If he says others are rational and

chooses alternative I, this can be translated into the statement that the subject thinks that it is

more likely that both are unbiased (or he makes no mistake). Saying that others are biased and

choosing alternative II implies that a subject thinks that both, himself and the Rs are biased (he

may only make a mistake). And finally, saying that others are rational and choosing alternative II

suggests that the Rs are unbiased, while oneself might be more likely biased (or make more likely

a mistake).

In T Frame the inference about relative biases is easier as subjects immediately choose between

the four alternatives “both are right/wrong”, “only oneself is right”, “only the others are right”.

Given these four alternatives, our proposition implies that a subject chooses the alternative with

the statement, he believes most likely to occur.

As it is known from psychologists (see, e.g., Svenson (1981)), people tend to say that they are

better than the average in ability tasks. As mentioned earlier, one can explain this observation by
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a self-serving bias. The tasks in our experiment do not require to say who is better in answering

questions, but who is better in estimating the own ability or who is more rational. This is not the

same but similar. Hence, we expect that subjects tend to indicate that they are rational (or do not

make mistakes), while others are biased or that they at least state (by choosing alternative I) that

this is more likely than the converse. Even though a subject may think that he makes better choices

than a single R, this belief, however, seems surprising when he faces the complete group of Rs and

their average estimate. The reason is that for him – even though he is rational – mistakes do not

cancel out while for a rational average mistakes should (roughly) cancel out. Thus, we predict the

following:

Hypothesis 4 When facing a single R a majority of subjects tends to say that she is biased, while

oneself is not (does more likely (not) make a mistake). When facing the average of the Rs it is the

other way round.

Applying again the assumption that “each subject is rational”, it can further be seen that if a

subject believes that an R is rational, then for the Rs that indicate that they have q ∈ {2, 3, 4, 5}

questions correct, the average deviation between stated and true number of correct answers is 0.5,

while for the remaining q’s it is strictly larger than 1. Thus, if one thinks that oneself and R are

rational but make/s mistakes, then it could be plausible31 to state that it is more likely that oneself

is wrong and R is correct than is the converse (i.e. choosing alternative II) for q ∈ {2, 3, 4, 5} and

to state that it is more likely that oneself is correct and she is wrong than is the converse (i.e.

alternative I) for the remaining actions q.

3.6.3 Results (Hypothesis 4)

In this section, we present the results on the question what individuals think about the relation

between their own bias and others’ biases. Who is more likely to be biased or make mistakes?

Figure 3.9 shows the percentages of subjects in T AveragePlus and T Frame (Hard and Tricky)

thinking that oneself does not make a mistake and the Rs are biased, that oneself and the Rs are

correct, that oneself makes a mistake while the Rs are rational or that both are wrong (make a

mistake/have a bias).

In T AveragePlus, we observe that 65 percent of the subjects choose alternative I – i.e. they rather

think that they are correct themselves and the Rs are wrong – and 35 percent choose alternative II.

Combining this choice with their statement about the rationality of Rs, we get the percentages in

Figure 3.9. In the part of T Frame with the hard questions the percentage of those, who think that

their self-assessment is better, is lower. In both treatments roughly the same percentage of subjects

31One could not say what is implied here, since it depends on the belief about the size of the own mistake relative

to the other one.
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Figure 3.9: Relative Beliefs

thinks that they are rather wrong themselves. In T AveragePlus, however, 35 percent think that

the Rs are rather better, while in T Frame Hard 16 percent think that the Rs are better or that

both are biased/make mistakes, respectively. With the tricky questions, less subjects think that

both are correct (21%), slightly less think that they are better themselves (32%), and many more

think that both are wrong (32%). Thus, with the tricky questions, we find that the percentage of

those, who think that oneself (not neccessarily the Rs) is right, decreases.32 We summarize these

findings in the following result:

Result 4 The majority of subjects thinks that it is more likely that they do not make a mistake,

while the others are biased. This percentage decreases as subjects receive more information (i.e.

framing and seeing the correct answers).

This result is somehow surprising. If one thinks that all subjects (oneself and the others) are

rational, one should tend to choose alternative II since a single rational individual makes mistakes,

while for the average they cancel out. The choice of alternative I is only consistent with the beliefs

“I do not make mistakes at all” or “the average is very likely biased and I am unlikely to make a

mistake”. The first belief is surprising as it implies that subjects are not aware that they might make

32We can, however, not reject the hypothesis that there is no relation between the number of subjects who think

that oneself is correct or wrong according to Fisher’s exact tests (p > 0.05 one-sided). If we consider only those, who

think that the Rs are wrong, there are significantly less (more) who think that they are correct (wrong) themselves

than in T AveragePlus (Fisher’s exact test, p=0.034 one-sided).
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mistakes. Also the second belief is surprising as subjects seem to be aware that there is something

like a bias in the population, but are not aware that they are biased (or make a mistake).33 From

the analysis of T Individual we already know, that subjects are aware that others make mistakes.

Although subjects are aware of it, they do not think that they make mistakes themselves. We can

explain this again by a self-serving bias. Subjects think that they are different from the others or

better than these are.

Next, we consider how the own bias is related to the belief about the relative bias. When evaluating

the relative bias, subjects may be reluctant to say that they are better than others in their self-

assessment. This behavior would reveal overconfidence of the type “I think I am better than

the average”. It is hence interesting to see whether subjects, who have a bias when evaluating

absolute abilities (here: answering questions), also have a bias when assessing relative abilities

(here: evaluation of relative bias). In T AveragePlus, for those, who choose alternative I (i.e. they

rather think that they are correct themselves and the Rs are wrong), the difference between true

type and believed type is on average -2.18, while for those, who choose alternative II it is 0 (meaning

that they are unbiased).34 According to a Mann-Whitney U test, subjects who think that they are

more likely to be correct, are significantly more biased than those who think that rather the Rs

are correct whilst oneself is wrong (p = 0.007). Remarkably, all subjects who choose alternative I

– i.e. who rather think that they are correct themselves and the Rs are wrong – are overconfident

themselves.

The pattern in T Frame is similar. Those subjects, who think that they are right, while the Rs have

a bias, have the largest bias (average bias is -1 with the hard questions, -2 with the tricky ones).

Those, who say that they as well as the Rs are likely to be wrong, are either underconfident (with

the hard questions their bias is 1) or have the smallest bias with the tricky questions. This may

be due to the fact that subjects, who know that individuals are biased, try to behave accordingly

and adjust their guess of the number of correct answers downward. Those, who say that both are

correct, have roughly the same bias as those, who say that the Rs may make better guesses (-0.5

(-1.75) versus -0.67 (-1.7) for hard (tricky) questions).

Finally, we turn to the analysis of T Individual. The average choice of alternatives I or II of the

subjects for every single belief of an R is shown in Figure 3.10. Here we see again, that subjects

33They might think that the only possible state of the world is that both are wrong. Hence, they are indifferent

between the two alternatives. We think, however, that subjects put some (small) positive probability on the other

states of the world such that the choice of alternative I reveals that they think they are correct, while the others are

not.

34Since positive and negative biases cancel out, also the average absolute values of the biases are interesting. These

are 2.18 given alternative I and 1.33 given alternative II, i.e. they are still lower for alternative II.
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Figure 3.10: Average Choice of Alternatives in T Individual

tend to think that they are more likely to make the correct self-assessment themselves, i.e. they

tend to choose more often alternative I (confirming our Hypothesis). Moreover, for low beliefs of

an R about her type (i.e. pessimistic Rs), subjects in T Individual tend even more to alternative I

than for high beliefs of R (i.e. optimistic Rs). Thus, it seems that they trust an optimist more to

make the right decision than a pessimist. This observation is interesting since subjects think that

both, optimists as well as pessimists make mistakes as we have also seen in Section 3.5.2. This

means that although subjects realize that Rs with high qs might just appear to be a good type

(since they might be actually worse then they think), subjects still seem to believe that these “high

types” are somehow better than others.35

As we have mentioned before, if one thinks that oneself and R are rational (but make/s mistakes),

one should choose for q ∈ {2, 3, 4, 5} alternative II. We see in the figure that the proportion of

subjects that chooses alternative I is always larger than the proportion choosing alternative II. For

q ∈ {4, 5, 6, 7} the proportions are close. Thus, there is again a tendency that subjects think that

they are better (more rational) than others (here: better than single individuals in R Hard).

35A According to a Wilcoxon test the medians of the number of subjects choosing alternative I/alternative II when

q is lower than 4 or at least 4 significantly differ (p = 0.05, two-sided).
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3.7 Conclusion

Empirical studies show that overconfidence occurs in various settings: People overestimate their

driving abilities, students their scores in exams or their rank in the distribution, couples the likeli-

hood of not getting divorced, and portfolio managers their prediction abilities. In our experiment,

subjects estimated how many out of seven multiple choice questions they answered correctly. Our

observations confirm that overestimation of the own ability is a prominent phenomenon in the

population. As overconfidence is such a common characteristic of people’s behavior and is observed

so frequently in real life, it seems obvious that people are also aware of this bias. Remarkably, we

find that a majority of subjects does not think or know that others have a bias.

What are the consequences of this ignorance? If we think of economic interactions, it is often impor-

tant that agents are aware that others are biased in order to make optimal decisions. For instance,

an agent who is not aware that his opponent in a contest is biased or who does not know at least,

which belief the opponent has about his type, cannot adjust his effort optimally, as is assumed

in Ando (2004). Malmendier and Tate (2005a, 2005b) observe that managers are overconfident

and that this is disadvantageous for the firm. Thus, principals should be aware of overconfident

managers in order to be able to counteract possible decision defects. Santos-Pintos (2005a) show

that incentive contracts should be designed in a special way for overconfident agents. Given that a

majority of subjects tends to be overconfident, ignorance of this bias leads to suboptimal contracts

for a majority of agents.

Our results indicate that the more information subjects receive on the task the others have to com-

plete – i.e. the more familiar they are with the task – the more subjects learn that others are on

average biased regarding this task. Hence, more familiarity with the task others have to complete

might help subjects to recognize that others are biased. Therefore, it helps to make better decisions

when subjects face biased individuals. This highlights the importance of information and feedback

to make better economic decisions.

Moreover, we observe that when subjects are confronted with the question what they think about

the relation between their own and others’ biases, a majority states that they are more likely able

to estimate their ability correctly than is the population. This has, for example, implications for

decision making in firms: Suppose a principal has to decide whether to delegate to subordinates or

not. In real life, it is often observed that people do not want to delegate even though there is no

incentive or verifiability problem. Our results indicate that one explanation for this phenomenon is

that either the principal believes that other agents are not able to make the right decision as they

have a bias while he has no bias himself or that his bias is smaller.

We have also seen that individuals think that similar subjects are very likely not to make mistakes,

while they, nevertheless, know that mistakes occur. This indicates that subjects are not only un-
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aware of the bias in the population, but also of their own bias (or mistakes). Although we think

that this can be taken as some evidence, we think it is a topic for future research to investigate the

knowledge about own biases (like hyperbolic discounting or overconfidence) further.
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Appendix

Proof of Proposition 3 (Existence of equilibrium).

For existence we have to verify that the expected payoffs of a low and a high type are non-negative

when bidding x∗iL and x∗iH , respectively. Otherwise it would be better to bid zero and make an expected

payoff of zero. The expected payoff of a low type is(
1
2
r +

x∗iL
x∗iL + x∗iH

(1− r)
)

VL − x∗iL

=
(

1
2
r +

VL

VL + VH
(1− r)− λ

)
VL (A.1)

and of a high type (
1
2
r +

x∗iH
x∗iL + x∗iH

(1− r)
)

VH − x∗iH

=
(

1
2
r +

VH

VL + VH
(1− r)− λ

)
VH . (A.2)

If the expected payoff of the low type is non-negative, then also the expected payoff of a high type is non-

negative. Therefore, it is sufficient to check whether (A.1) is non-negative. Plugging in λ and rearranging

yields (
1
4
r +

V 2
L

(VL + VH)2
(1− r)

)
VL

which is strictly larger than zero.

Proof of Proposition 6.

In order to prove existence, we have to verify that expected payoffs of both contestants are non-

negative for each type. Starting with the first mover, we calculate his expected payoff, Ψ1st
t , in the interior

solution when his type is t = L,H.

Ψ1st
t = Vt

(
r

αt√
Vt

+ (1− r)
αk

Vk

)
− α2

t with t 6= k

= α2
t =

V 2
t

4

(
r(V − 1

2
t − V

− 1
2

k ) + V
− 1

2
k

)2

with t 6= k (A.3)

Hence, Ψ1st
t is strictly larger than zero.

The expected payoff of the first mover in the two boundary cases, when he is the low type, is exactly the
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same as in (A.3). It remains to check whether the high type makes non-negative expected payoff in these

cases. We first consider the case, in which the first mover bids exactly VL.

Ψ1st
H = VH

(
r

√
VL√
VH

+ (1− r)
)
− VL

=
√

VL +
√

VH + (1− r)
(√

VH −
√

VL

)
.

Obviously, Ψ1st
H > 0 as r ∈ [0, 1] and VH ≥ VL.

In the second boundary case, the expected payoff of the first mover is

Ψ1st
H = VH

(
r
r2

2
+ (1− r)

)
− r2VH

4

=
(

r2

4
+ (1− r)

)
VH .

As r ∈ [0, 1], the first mover’s payoff is strictly positive.

Turning to the second mover, we first check his expected payoff Ψ2nd
k , in the interior solution, when

his type is k = H,L and the first mover has with probability r the same type, t = k, and with probability

1− r a different type, t 6= k.

Ψ2nd
k = Vk

(
r

(√
Vk − αk√

Vk

)
+ (1− r)

(√
Vk − αt√

Vk

))
− r

(√
Vkαk − α2

k

)
− (1− r)

(√
Vkαt − α2

t

)
where t 6= k.

This can be rewritten as

Ψ2nd
k = r

(√
Vk − αk

)2

+ (1− r)
(√

Vk − αt

)2

, (A.4)

which is non-negative as r ∈ [0, 1].

In the boundary solutions, the expected payoff of the low type of the second mover is zero, as he

exerts zero effort. For the high type of the second mover, there are two cases:

In case the high type of the first mover bids VL, the high type of the second mover expects

Ψ2nd
H = VH

(
r

√
VH −

√
VL√

VH

+ (1− r)
√

VH − αL√
VH

)
− r
√

VH

(√
VH −

√
VL

)
− (1− r)αL

(√
VH − αL

)
.

This can be rewritten as

Ψ2nd
H = r

(√
VH −

√
VL

)2

+ (1− r)
(√

VH − αL

)2

,

which is non-negative as r ∈ [0, 1].

In case the high type of the first mover bids r2VH

4 , the high type of the second mover expects

Ψ2nd
H = VH

(
r(1− r

2
) + (1− r)(1− αLV

− 1
2

H )
)
− r

(
rV
H

2
(1− r

2
)
)
− (1− r)(αL(V

1
2

H − αL)).

Plugging in αL and rearranging yields

Ψ2nd
H = −VH

4

(
(1− r)

(
−4V

3
2

H (V
1
2

H − rV
1
2

L )− 2rVLV
1
2

H (2V
1
2

H − V
1
2

L (1 + r))− rVL(VH + rVL)
)

−VH(VL + r3(VH − VL))
)
.
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This is non-negative as VH ≥ VL and r ∈ [0, 1].

Proof that the first mover makes a strictly positive bid in equilibrium:

Suppose type t = H,L of the first mover bids zero. Then his payoff is zero as the second mover bids ε > 0

and wins the prize. If type t of the first mover, however, bids α2
t , his expected payoff is strictly larger than

zero as shown before.

Proof that equilibrium bids of the high and low type of the first mover differ:

In order to show that the first mover’s bid signals his type, we have to show for VL 6= VH (for VL = VH there

is only one type and therefore the first mover’s bids coincide for “both” types, L and H) that αH 6= αL for

the interior solution. Suppose αH = αL. This is equivalent to

r
(
V

1
2

H − V
− 1

2
L VH

)
+ V

− 1
2

L VH = r
(
V

1
2

L − V
− 1

2
L VH

)
+ V

− 1
2

H VL.

This can be rewritten as

V
− 1

2
L V

− 1
2

H

(
V

3
2

H − V
3
2

L

)
+ V

1
2

H − V
1
2

L = 0.

The left hand side is obviously larger than zero for VL 6= VH which is a contradiction, hence αH 6= αL.

Regarding the two boundary cases, we know that the low first mover bids strictly less than VL and the high

type bids at least VL. It follows immediately, that low and high type never bid the same amount. Hence,

the bid of the first mover reveals his type.

In case that r ≤ r̃ and r < 2
√

VL√
VH

, the first order condition (1.16) does not yield the optimal bid of the

constrained maximization problem. Because of concavity of the objective function in the first mover’s bid,

the optimal bid is a corner solution. Hence, it is either VL or VH . If the high type of the first mover bids

VH , his payoff is zero as the second mover bids zero, and the first mover wins the prize. In contrast, if the

high type of the first mover bids VL, his expected payoff is strictly larger than zero as shown above. Hence,

we have x∗1H = VL in case r ≤ r̃ and r < 2
√

VL√
VH

.

Proof of Proposition 7.

(i) For the second mover we have to verify αt(
√

VL − αt) ≤ αt(
√

VH − αt) (where t = L,H) for the

interior solution. This obviously holds as VH ≥ VL (with equality for VH = VL). For the boundary solutions

the result is trivial as the second mover exerts zero effort, when he is a low type, and a non-negative effort,

when he is a high type, which follows from the derivation of equilibrium bids.

For the first mover, we have to verify αL ≤ αH . This is equivalent to

r(
1√
VL

− 1√
VH

) (VL + VH) ≤ VH√
VL

− VL√
VH

.

Rearranging yields

r
1√

VH

√
VL

(
√

VH −
√

VL) (VL + VH) ≤ 1√
VH

√
VL

(V
3
2

H − V
3
2

L ).
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This holds with equality if VL = VH . For VL < VH , we can simplify this to

r (VL + VH) ≤ (VH +
√

VH

√
VL + VL)

which always holds.

For the boundary solutions we have to check VL ≥ α2
L, which is equivalent to

2 ≥
√

VL

(
r

(
1√
VL

− 1√
VH

)
+

1√
VH

)
.

This can be simplified to

1 ≥
(√

VL√
VH

− 1
)

(1− r) ,

which is always fulfilled (for r = 1 with equality).

Since r2VH

4 ≥ VL for the relevant range (as r > 2
√

VL√
VH

), it holds that r2VH

4 > α2
L (as α2

L < VL). Hence, the

first mover exerts more effort when he is a high type.

(ii) To show that the first mover exerts (a) more effort than the second mover when he is a high

type and (b) less when he is a low type it suffices to check that he makes more (less) effort than the high

(low) type of the second mover (as we know from part (i) that the high type makes a higher effort than the

low type).

(a) x∗1H ≥ x∗H2H is equivalent to 2αH ≥
√

VH for the interior solution. This is equivalent to (1−r)(
√

VH√
VL
−1) ≥ 0

which is fulfilled (for VL = VH and r = 1 with equality). As x∗H2H ≥ x∗H2L , it follows x∗1H ≥ x∗H2L .

For the first boundary case, we have to verify VL ≥
√

V L(
√

V H −
√

V L), which is equivalent to

2
√

V L ≥
√

V H . This need not hold since it is possible that 2
√

V L ≤
√

V H for the first boundary case. Note

that the high type of the first mover exerts a positive amount of effort, hence more than the low type of the

second mover.

For the second boundary case, we have to verify r2VH

4 ≥ rVH

2 (1 − r
2 ), which is equivalent to r2 ≥ r. As

r ∈ (0, 1), this is never fulfilled. Thus, the high type of the first mover exerts less effort than the high type

of the second mover in this case. Nevertheless, the high type of the first mover exerts a positive amount of

effort, hence more than the low type of the second mover.

(b) x∗1L ≤ x∗L2L is equivalent to 2αL ≤
√

VL for the interior solution. This is equivalent to (1 − r)V
1
2

L ≤

(1− r)V
1
2

H , which holds with equality for VL = VH and for r = 1. For VL < VH and r < 1 the left hand side

is strictly smaller than the right hand side. As x∗L2H ≥ x∗L2L, it follows x∗1L ≤ x∗L2H .

Note that we do not have to check the boundary cases when the first mover is a low type as there is no

difference to the interior solution for the low type and hence, there is also no difference for the second mover

who observes this action.

Proof E.
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For the interior solution, the first mover’s expected payoff when he has type t = L,H is given by

α2
t and the follower’s expected payoff when the follower has type k = H,L is given by (

√
V k − αt)2

when the first mover has type t = L,H (compare (A.4). In order to show that the first mover receives a

higher expected payoff than the second mover when he is a high type, we have to verify that 2αH >
√

V k

for k = H,L. As VH ≥ VL, it suffices to check 2αH >
√

V H . substituting α and rearranging yields
√

V H

(
(1− r)(1−

√
V H√
V L

)
)
≤ 0, which holds (with strict inequality for VL < VH and r < 1). In order to

show that the first mover receives a lower expected payoff than the second mover when he is a low type, we

have to verify that 2αL <
√

V k for k = H,L. As VH ≥ VL, it suffices to check 2αL >
√

V L. substituting α

and rearranging yields
√

V L

(
(1− r)(1−

√
V L√
V H

)
≥ 0, which holds (with strict inequality for VL < VH).

Proof of Proposition 8.

In order to show that equilibrium bids are non-decreasing in the correlation coefficient ρ, we first

show that bids are non-decreasing in r.

Low type of the first mover, interior (hence, also boundary) solution:

∂x∗1L

∂r = αLVL

(
1√
VL
− 1√

VH

)
≥ 0 since VL ≤ VH and αL ≥ 0.

High type of the first mover, interior solution: ∂x∗1H

∂r = αHVH

(
1√
VH

− 1√
VL

)
≤ 0 since VL ≤ VH

and αH ≥ 0.

High type of the first mover, boundary solution:

(i) ∂x∗1H

∂r = rVH

2 ≥ 0 and (ii) ∂x∗1H

∂r = 0.

Low type of the second mover, interior solution if the first mover is a low type:

∂x∗L
2L

∂r = ∂αL

∂r (
√

V L − 2αL) = V
3
2

L

2 (V − 1
2

L − V
− 1

2
H )(1− r)(1− V

1
2

L V
− 1

2
H ) ≥ 0.

Low type of the second mover, interior solution if the first mover is a high type:

∂x∗H
2L

∂r = ∂αH

∂r (
√

V L − 2αH) = VHV
− 1

2
L

2 (V − 1
2

H − V
− 1

2
L )(V

1
2

L − V
1
2

H )((1− r)V
1
2

H + V
1
2

L ) ≥ 0.

In the boundary solutions, the low type of the second mover exerts zero effort, hence his bid does not

change when ρ rises.

High type of the second mover, interior solution if the first mover is a low type:

∂x∗L
2H

∂r = ∂αL

∂r (
√

V H − 2αL) = VLV
− 1

2
H

2 (V − 1
2

L − V
− 1

2
H )(V

1
2

H − V
1
2

L )((1− r)V
1
2

L + V
1
2

H ) > 0.

High type of the second mover, interior solution if the first mover is a high type:

∂x∗H
2H

∂r = ∂αH

∂r (
√

V H − 2αH) = V
3
2

H

2 (V − 1
2

H − V
− 1

2
L )(1− r)(1− V

1
2

H V
− 1

2
L ) ≥ 0.

High type of the second mover, boundary solution:

(i) ∂x∗H
2H

∂r = VH

2 (1− r) ≥ 0 and (ii)∂x∗H
2H

∂r = 0.

Note that we can immediately conclude from the sign of the derivatives of the contestants’ bids with respect
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to r whether the bids are increasing or decreasing in ρ as r = 1
2 (ρ + 1): The signs of the derivatives with

respect to r and to ρ are identical. Hence, we have established the proposition.

Proof of Proposition 9.

For the case of public information see Morgan (2003). Thus, it remains to verify the case of private

information.

The ex ante expected effort sum in the sequential contest with private information (restricting to the

interior solution) is

ξpriv
seq : =

1
2

[
α2

L + α2
H + rαL

(√
VL − αL

)
+ (1− r)αH

(√
VL − αH

)
+rαH

(√
VH − αH

)
+ (1− r)αL

(√
VH − αL

)]
.

Simplifying yields

ξpriv
seq =

1
2

[
r(αH − αL)

(√
VH −

√
VH

)
+ αL

√
VH + αH

√
VL

]
.

Substituting αL = VL

2

(
r( 1√

VL
− 1√

VH
) + 1√

VH

)
and αH = VH

2

(
r( 1√

VH
− 1√

VL
) + 1√

VL

)
and rearranging

yields

ξpriv
seq =

1
4

[
VL + VH + r(1− r)

(
2
(
V

1
2

L V
1
2

H − (VL + VH)
)

+ V
− 1

2
L V

− 1
2

H

(
V 2

L + V 2
H

))]
. (A.5)

The ex ante expected effort sum in the simultaneous contest with private information is

ξpriv
sim : = λ(VL + VH)

=
1

4(VL + VH)
[
r(VL − VH)2 + 4VHVL

]
.

Routine transformations yield that ξpriv
seq ≥ ξpriv

sim is equivalent to

(1− r)
[
(VL − VH)2 + r(VL + VH)(2

√
VLVH − 2VL − 2VH +

1√
VLVH

(V 2
L + V 2

H))
]
≥ 0.

This holds with equality for r = 1. The term

2
√

VLVH − 2VL − 2VH +
1√

VLVH

(V 2
L + V 2

H)

can be written as

1√
VLVH

(VL + VH)
(√

VH −
√

VL

)2

,

which is non-negative. Thus, we have for r 6= 1 that ξpriv
seq ≥ ξpriv

sim (with equality for VL = VH).

Proof of Proposition 10.

The ex ante expected payoff, Ψ, of a contestant in the simultaneous contest with private informa-

tion is the sum of his expected payoff when he is a low and a high type respectively, each with probability

one half:

Ψ =
1
2

(
VL

(
xiL

xiL + xjL
r +

xiL

xiL + xjH
(1− r)

)
− xiL + VH

(
xiH

xiH + xjH
r +

xiH

xiH + xjL
(1− r)

)
− xiH

)
.
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Plugging in equilibrium bids and simplifying yields

Ψ =
1
2

[
V 2

L − VHVL + V 2
H

VL + VH
− 3

4
r
(VL − VH)2

VL + VH

]
. (A.6)

The ex ante expected payoff of the first mover in the sequential contest with private information is the sum

of his expected payoff when he is a low and a high type respectively, i.e. Ψ1st
H and Ψ1st

L as given in (A.3),

each with probability one half:

Ψ1st =
1
2
(α2

L + α2
H).

Plugging in αL and αH yields

1
8VLVH

[
(V 2

l + V 2
H)(V

1
2

L − V
1
2

H )2
(
r2 − 2r(V 2

L + VLVH + V 2
H + V

1
2

L V
1
2

H (VH + VL))
)

+ V 3
L + V 3

H

]
(A.7)

The ex ante expected payoff of the second mover is the sum of his expected payoff when he is a low and a

high type respectively, i.e. Ψ2nd
L and Ψ2nd

H as given in (A.4), each with probability one half:

Ψ2nd =
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+

r

((√
VL − αL

)2

−
(√

VL − αH

)2

+
(√

VH − αH

)2

−
(√

VH − αL

)2
)]

=
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+ 2r (αH − αL)2
(√

VL −
√

VH

)2
]

. (A.8)

(i) Routine transformations yield that

Ψ1st ≥ Ψ is equivalent to z + ry + r2x ≥ 0

where

z =
(
V

1
2

L − V
1
2

H

)2 (
V

1
2

L + V
1
2

H

)2 (
V 2

H − VHVL + V 2
L

)
y = −

(
V

1
2

L − V
1
2

H

)2
[
VLVH(VL + VH) +

(
V

3
2

H − V
3
2

L

)2

+ 2V
1
2

L V
1
2

H

(
V 2

L + V 2
H

)
+ V 3

H + V 3
L

]
x =

(
V

1
2

L − V
1
2

H

)2 (
V 2

H + V 2
L

)
(VH + VL) .

Obviously, x ≥ 0 and z ≥ 0 both with strict inequality for VL < VH . Moreover, y ≤ 0 (with strict inequality

for VL < VH). Note that for VL = VH we have z = w = x = 0 and hence expected payoffs of the first

mover are identical to his payoffs under the simultaneous structure. For the rest of the proof, we restrict to

VH > VL, which implies x > 0, z > 0 and y < 0.

Consider the function f̂(r) = z + ry + r2x for r ∈ [0, 1]. f̂(r) ≥ 0 is equivalent to Ψ1st ≥ Ψ. As x > 0, and

hence, f̂(0) > 0, we have (by continuity) for “sufficiently small”r that Ψ1st ≥ Ψ. f̂ is decreasing in r for

r ≤ −y
2x =: r̂∗ and increasing for r > r̂∗. Depending on the sign of f̂(1), whether r̂∗ is larger or smaller than

one, and the roots of f̂ , we can determine the regions of r for which Ψ1st ≥ Ψ.

First, we check whether r̂∗ > 1:

This is equivalent to −y > 2x. Plugging in y and x and simplifying yields (for VH > VL)

2V
5
2

L V
1
2

H + 2V
1
2

L V
5
2

H − 2V
3
2

L V
3
2

H − V 2
LVH − VLV 2

H > 0.

We can write this as

V
1
2

L V
1
2

H (V
1
2

L − V
1
2

H )2
[
(VL + V

1
2

L V
1
2

H + VH) +
(
V

1
2

L + V
1
2

H

)2
]

> 0,

115



which is obviously satisfied as VH > VL. Hence, r̂∗ > 1.

Next, we check whether f̂(1) = x + y + z:

It is straightforward to verify x + y + z = 0, hence f̂(1) = 0. This means that r = 1 is one of the roots of

f̂ . As r̂∗ > 1, f̂ decreasing in r for r ≤ r̂∗, and f̂(1) = 0, it must be that the second root (r̂2) of f̂ is larger

than r̂∗ > 1. It follows that for all r ∈ [0, 1] we have r2x + ry + z ≥ 0 and hence, Ψ1st ≥ Ψ (with equality

for r = 1 and VL = VH as shown before).

(ii) For the second mover, we receive (by plugging in αL and αH) that

Ψ2nd ≥ Ψ is equivalent to a + rb + r2c ≥ 0

where

a : =
1

4VHVL

[
4V 2

HV 2
L − 3

(
V 3

HVL + V 3
LVH

)
+ V 4

H + V 4
L

]
,

b : = − (
√

VL −
√

VH)2

4VHVL

[
2
(
V 3

H + V 3
L

)
+ VHVL (VH + VL) + 6

√
VL

√
VH

(
VHVL + V 2

H + V 2
L

)]
c : =

(
1√
VL

− 1√
VH

)2 (VH + VL)
4

[
V

3
2

H

(√
VH + 4

√
VL

)
+ V

3
2

L

(√
VL + 4

√
VH

)]
.

Obviously, b ≤ 0 and c ≥ 0 (with equality if VL = VH). We can rewrite a as follows:

a =
1

4VHVL
(VH − VL)

[
V 3

H − V 3
L − 2VHVL (VH − VL)

]
=

1
4VHVL

(VH − VL)2
(
V 2

H − VHVL + V 2
L

)
.

Hence, a is larger than or equal to 1
4VHVL

(VH − VL)4, which is non-negative (and strictly positive if VH > VL).

Thus, a ≥ 0.

Note that for VL = VH we have a = b = c = 0 and hence Ψ2nd = Ψ. For the rest of the proof, we restrict to

VH > VL.

Consider f̃(r) = a + rb + r2c for r ∈ [0, 1]. Note that f̃(r) ≥ 0 (≤) is equivalent to Ψ2nd ≥ Ψ (≤). Hence,

since a is positive, we have (by continuity) for “sufficiently small” r that f̃(r) ≥ 0 and therefore Ψ2nd ≥ Ψ.

f̃ is decreasing in r for r ≤ − b
2c =: r̃∗ and increasing for r > r̃∗.

Depending on the sign of f̃(1), whether r̃∗ > 1 or r̃∗ ≤ 1, and the roots of f̃ , we can determine the regions

of r for which Ψ2nd ≥ Ψ.

First, we check whether r̃∗ ≤ 1:

This is equivalent to −b ≤ 2c. Plugging in b and c and simplifying yields (for VH > VL)

VLVH

(
V

1
2

L + V
1
2

H

)2

+ 2V
1
2

L V
1
2

H (V 2
L + V 2

H) ≥ 0.

Note that this is always fulfilled with strict inequality. Hence, r̃∗ < 1.

Next, we check whether f̃(1) = a + b + c ≥ 0:

It is straightforward to verify a + b + c = 0. Hence, f̃(1) = 0. This means that r = 1 is one of the roots of f̃ .

As r̃∗ < 1, f̃ decreasing in r for r ≤ r̃∗, and f̃(1) = 0, it must be that the second root (r̃2) of f̃ is smaller

than r̃∗ ≤ 1. Moreover, it follows that r̃2 is the critical value of r, i.e. r̃c, such that we have Ψ2nd ≥ Ψ for

r ≤ r̃c = r2 (as f̃(r) ≥ 0 for r ≤ r̃c = r̃2).

The roots of f̃(r) are given by r̃1,2 = 1
2c

[
−b±

√
b2 − 4ac

]
.
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We know that the first root is equal to one. As 1
2c

[
−b +

√
b2 − 4ac

]
> 1

2c

[
b−

√
b2 − 4ac

]
, we have that

r̃1 = 1
2c

[
b +

√
b2 − 4as

]
= 1, and hence r̃c = r̃2 = 1

2c

[
b−

√
b2 − 4ac

]
. By substitution of a, b and c, and

simplifying we can derive

r̃c = r̃2 =

(
V

3
2

L − V
3
2

H

)2

+ 2V
1
2

H V
1
2

L (V 2
H + V 2

L )

(VL + VH)
(
V 2

H + 4V
1
2

H V
1
2

L (VH + VL) + V 2
L

) . (A.9)

Summarizing the results, it follows that for VL = VH and for perfect positive correlation (i.e. r = 1 or

equivalently ρ = 1) expected payoffs of the second mover are identical under the simultaneous and sequential

structure. For VL < VH and for r < 1 the sequential structure leads to higher expected payoffs if and only

if r ≤ r̃c.

Since r = 1
2 (ρ + 1), we can rewrite the results in terms of ρ. For ρ < 1 and VL < VH we receive from

condition (A.9) that expected payoffs are higher under the sequential structure if

ρ ≤
2
((

V
3
2

L − V
3
2

H

)2

+ 2V
1
2

H V
1
2

L (V 2
H + V 2

L )
)

(VL + VH)
(
V 2

H + 4V
1
2

H V
1
2

L (VH + VL) + V 2
L

) − 1

This is equivalent to

ρ ≤

(
V

3
2

L − V
3
2

H

)2

− VHVL(VH + VL)− 10V
3
2

H V
3
2

L

(VL + VH)
(
V 2

H + 4V
1
2

H V
1
2

L (VH + VL) + V 2
L

) =: ρ̃c.

Comparing the denominator and numerator of ρ̃c, it is easy to see that ρ̃c is strictly smaller than one.

Moreover, it can be easily verified that ρ̃c > −1 is equivalent to 2(V
3
2

H − V
3
2

L )2 + 4V
1
2

L V
1
2

H (V 2
H + V 2

L ) > 0,

which is satisfied as VL < VH .

Proof of Proposition 11.

The ex ante expected payoff sum of the contestants in the simultaneous contest with private infor-

mation is

W sim :=
V 2

L − VHVL + V 2
H

VL + VH
− 3

4
r
(VL − VH)2

VL + VH
.

The ex ante expected payoff sum in the sequential contest with private information is given by the sum of

payoffs of the first and second mover, Ψ1st and Ψ2nd, respectively:

W seq := Ψ1st + Ψ2nd,

where the ex ante expected payoff of the first mover is (as given in (A.7))

Ψ1st =
1
2
(α2

L + α2
H)

=
1

8VLVH

[
(V 2

l + V 2
H)(V

1
2

L − V
1
2

H )2
(
r2 − 2r(V 2

L + VLVH + V 2
H + V

3
2

L V
1
2

H + V
3
2

H V
1
2

L )
)

+ V 3
L + V 3

H

]
.

The ex ante expected payoff of the second mover is (as given in (A.8))

Ψ2nd =
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+

r

((√
VL − αL

)2

−
(√

VL − αH

)2

+
(√

VH − αH

)2

−
(√

VH − αL

)2
)]

=
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+ 2r (αH − αL)2
(√

VL −
√

VH

)2
]

.
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The rest of the proof works like the proof of Proposition 10.

By standard transformations we can show that

W seq ≥ W sim

is equivalent to

u− rv + r2w ≥ 0

where

u : =
1

VLVH
(V 2

L − VLVH + V 2
H) (VL − VH)2 ,

v : =
1

VLVH

[(
V 2

L − V 2
H

)2
+
(
V 3

H − V 3
L

)
(VH − VL) + 4VLVH

(
V

3
2

L − V
3
2

H

)(
V

1
2

H − V
1
2

L

)]
,

w : = 2 (VL + VH)
1

VLVH

(√
VL −

√
VH

)2
(

V 2
L

2
+

V 2
H

2
+
√

VL

√
VH (VL + VH)

)
.

Obviously, u ≥ 0 and w ≥ 0 (strictly for VL < VH). Moreover, we can write v as

v =
1

VLVH

[(
V 2

L − V 2
H

)2
+
(
V

3
2

H − V
3
2

L

)(
V

1
2

H − V
1
2

L

)3 (
VH + 3V

1
2

L V
1
2

H + VL

)]
,

which is larger than or equal to zero as VH ≥ VL > 0 (with equality for VH = VL).

Note that for VL = VH the ex ante expected payoffs under the simultaneous and sequential structure are

identical as u = v = w = 0. We restrict to VH > VL for the rest of the proof.

Consider the function f(r) = u− rv + r2w for r ∈ [0, 1]. f(r) ≥ 0 is equivalent to W seq ≥ W sim. As u > 0

for VH > VL and hence, f(0) > 0, we have (by continuity) W seq ≥ W sim for “sufficiently small”r. f is

decreasing in r for r ≤ v
2w =: r∗ and increasing for r > r∗. We can determine the regions of r for which

W seq ≥ W sim if we know the roots of f , the sign of f(1), and whether r∗ ≤ 1 or r∗ > 1.

First, we check whether r∗ ≤ 1:

This is equivalent to v ≤ 2w. Plugging in v and w and simplifying yields

10V 2
LV 2

H − V 3
LVH − VLV 3

H − 4V
5
2

L V
3
2

H − 4V
3
2

L V
5
2

H ≤ 0.

We can write this as

VLVH

[
−(VL − VH)2 − 4V

1
2

L V
1
2

H

(
V

1
2

L − V
1
2

H

)2
]
≤ 0,

which is obviously fulfilled with strict inequality for VH > VL. Hence, r∗ < 1.

Next, we check whether f(1) = u− v + w ≥ 0:

It is straightforward to verify u − v + w = 0. Hence, f(1) = 0 and r = 1 is one of the roots of f . This

means that for perfect positive correlation overall expected payoffs are identical under the simultaneous and

sequential contest.

As r∗ ≤ 1 and f is decreasing in r for r ≤ r∗ and f(1) = 0, it must be that the second root (r2) of f is smaller

than r∗ ≤ 1. Moreover, it follows that r2 is the critical value of r, i.e. rc, such that we have W seq ≥ W sim

for r ≤ rc = r2 (as f(r) ≥ 0 for r ≤ rc = r2).

The roots of f(r) are given by r1,2 = 1
2w

[
v ±

√
v2 − 4uw

]
. We know that the first root is equal to one.

As 1
2w

[
v +

√
v2 − 4uw

]
> 1

2w

[
v −

√
v2 − 4uw

]
, we have that r1 = 1

2w

[
v +

√
v2 − 4uw

]
= 1, and hence

rc = r2 = 1
2w

[
v −

√
v2 − 4uw

]
. By substitution of w, u and v, and simplifying we can derive

rc = r2 =
V 3

L + V 3
H + 2V

1
2

H V
1
2

L (V 2
H − VLVH + V 2

L )

V 3
L + V 3

H + V
1
2

H V
1
2

L (VL + VH)
(
2(VH + VL) + V

1
2

H V
1
2

L )
) . (A.10)
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Summarizing the results, it follows that for VL = VH and for perfect positive correlation (i.e. r = 1 or

equivalently ρ = 1) overall expected payoffs are identical under the simultaneous and sequential structure.

For VL < VH and for r < 1 the sequential structure leads to higher expected payoffs if and only if r ≤ rc.

Since r = 1
2 (ρ + 1), we can rewrite the results in terms of ρ. For ρ < 1 and VL < VH , we receive from

condition (A.10) that overall expected payoffs are higher under the sequential structure if

ρ ≤
2(V 3

L + V 3
H + 2V

1
2

H V
1
2

L (V 2
H − VLVH + V 2

L ))

V 3
L + V 3

H + V
1
2

H V
1
2

L (VL + VH)
(
2(VH + VL) + V

1
2

H V
1
2

L

) − 1

This is equivalent to

ρ ≤
V 3

L + V 3
H + 2V

1
2

H V
1
2

L (VH − VL)2 − VLVH(VL + VH)− 4V
3
2

L V
3
2

H

V 3
L + V 3

H + V
1
2

H V
1
2

L (VL + VH)
(
2(VH + VL) + V

1
2

H V
1
2

L

) =: ρc.

Comparing the denominator and numerator of ρc, it is easy to see that ρc is strictly smaller than one and

larger than minus one.

Proof of Lemma 1.

The ex ante expected payoff of the first mover in the interior solution of the equilibrium of the

sequential contest with private information is

Ψ1st =
1
2
(α2

L + α2
H)

as given in equation (A.7). The ex ante expected payoff of the second mover is (as given in equation (A.8))

Ψ2nd =
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+

r

((√
VL − αL

)2

−
(√

VL − αH

)2

+
(√

VH − αH

)2

−
(√

VH − αL

)2
)]

=
1
2

[(√
VL − αH

)2

+
(√

VH − αL

)2

+ 2r (αH − αL)2
(√

VL −
√

VH

)2
]

.

Routine transformations yield that

Ψ1st ≥ Ψ2nd

is equivalent to

α2
L + α2

H ≥
(√

VL − αH

)2

+
(√

VH − αL

)
+ 2r (αH − αL)2

(√
VL −

√
VH

)2

.

Rearranging leads to

r
(√

VLαL +
√

VHαH

)
+ (1− r)

(√
VLαH +

√
VHαL

)
≥ VH + VL

2
.

Substituting αL and αH and simplifying, it is straightforward to verify that for VL = VH or r = 0 or r = 1

(i.e. each other’s types are known to the contestants) ex ante expected payoffs of the first and second mover

are identical. For r ∈ (0, 1) and VL > VH we have that Ψ1st ≥ Ψ2nd is equivalent to

V
3
2

H − V
3
2

L + V
1
2

H VL − V
1
2

L VH ≥ 0.
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This can also be written as (
V

1
2

H − V
1
2

L

)
(VH + VL) ≥ 0,

which is satisfied with strict inequality as VL > VH . Hence, for VL > VH and r ∈ (0, 1), the ex ante expected

payoff of the first mover is strictly higher than of the second mover in the interior solution.

Proof of Proposition 14.

The ex ante expected effort sum in the sequential contest with public information is

ξpub
seq : =

1
2
r

(
VL

2
+

VH

2

)
+

1
2
(1− r)

(
VL

2
+

VH

2

)
=

VL

4
+

VH

4
,

and in the sequential contest with private information it is (for the interior solution) as given in (A.5)

ξpriv
seq =

1
4

[
VH + VL + r(1− r)

(
2
(
V

1
2

H V
1
2

L − VL − VH

)
+ V

− 1
2

L V
− 1

2
H

(
V 2

H + V 2
L

))]
.

It follows that ξpriv
seq ≥ ξpub

seq is equivalent to

r(1− r)
[
2
(
V

1
2

H V
1
2

L − VL − VH

)
+ V

− 1
2

L V
− 1

2
H

(
V 2

H + V 2
L

)]
≥ 0 (A.11)

It can be seen from (A.11) that for r = 0 and r = 1 the ex ante expected effort sum is identical under both

information settings. This is intuitive since in these cases there is public information about the valuations.

For r ∈ (0, 1) we can simplify (A.11) to

V
− 1

2
L V

− 1
2

H (VH + VL)2 − 2 (VL + VH) ≥ 0

and further to (
V

1
2

H − V
1
2

L

)2

≥ 0,

which is fulfilled (with equality for VL = VH). Hence, we have shown ξpriv
seq ≥ ξpub

seq .

Proof of Proposition 15.

As we have already seen in Section 1.3, the ex ante expected payoff for the first mover, Ψ1st/pub,

and the second mover, Ψ2nd/pub, in the sequential contest with public information is identical. The expected

payoffs are given by

Ψ1st/pub = Ψ2nd/pub =
1
2

[
r

(
VL

4
+

VH

4

)
+ (1− r)

(
V 2

L

4VH
+

V 2
H

4VL

)]
.

The ex ante expected payoff of the first mover in the sequential contest with private information is Ψ1st as

in (A.7) and for the second mover it is Ψ2nd as in (A.8). By rearranging and simplifying, we can show for

r ∈ (0, 1) that Ψ1st/pub ≥ Ψ1st is equivalent to(
V

1
2

H − V
1
2

L

)2 (
V 2

H + V 2
L

)
≥ 0, which always holds.
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For r = 1 and r = 0, we have Ψ1st/pub = Ψ1st – which is intuitive as in these cases agents know each other’s

valuations. Thus, the first mover prefers public information from an ex ante point of view given that a

sequential contest is played.

Ψ2nd/pub ≥ Ψ2nd is equivalent to

0 ≤ r

[
−7

4
(VH + VL) +

3
4
(
V 2

HV −1
L + V 2

LV −1
H

)
+

1
2

(
V

3
2

H V
− 1

2
L + V

3
2

L V
− 1

2
H

)
+ 2V

1
2

L V
1
2

H

]
−r2

(
V
− 1

2
L − V

− 1
2

H

)2
[
V

1
2

L V
1
2

H (VH + VL) +
1
4
(
V 2

H + V 2
L

)]
. (A.12)

For r = 0 we have Ψ2nd/pub = Ψ2nd.

For r 6= 0 we can divide (A.12) by r. Then, the right-hand side of the inequality is decreasing in r as

−
(
V
− 1

2
L − V

− 1
2

H

)2 [
V

1
2

L V
1
2

H (VH + VL) + 1
4

(
V 2

H + V 2
L

)]
is non-positive. This implies that if (A.12) holds for

r = 1, we have Ψ2nd/pub ≥ Ψ2nd. For r = 1 and VH > VL (for VH = VL we get Ψ2nd/pub = Ψ2nd), we can

simplify (A.12) to

1
2

[(
V

3
2

H + V
3
2

L

)
+
(
VHV

1
2

L + VLV
1
2

H

)
+ V 2

HV
− 1

2
L +

1
2
V 2

LV
− 1

2
H

](
V
− 1

2
L − V

− 1
2

H

)
+

1
4
V −1

H V
3
2

L

(
V

1
2

L + V
1
2

H

)
≥ 0,

which is always satisfied. Hence, Ψ2nd/pub ≥ Ψ2nd.

Proof of Proposition 16.

In the simultaneous contest with public information, homogeneous types exert the same effort. Thus, the

effort difference in this case is equal to zero. When types are heterogeneous, the high type exerts a higher

effort and the effort difference is

∆xpub
sim :=

VHVL (VH − VL)
(VH + VL)2

.

In the sequential contest with public information, homogeneous types exert identical efforts as well, i.e. the

effort difference is zero again. Hence, for homogeneous types there is no gap in both settings.

When types are heterogeneous in the sequential contest under public information, the effort difference is

∆xpub
seq := |x∗1 − x∗2| =


x∗1H − x∗2L = VH

2

(
VH−VL

VL

)
when 1st mover is a high type

x∗2L − x∗1H = VL

2

(
VH−VL

VH

)
when 1st mover is a low type.

It can easily be seen that the gap is larger, when the 1st mover is a high type as VH

VL
≥ VL

VH
.36 Therefore, if

∆xpub
seq ≥ ∆xpub

sim when the 1st mover is a low type, it also holds when the 1st mover is a high type.

It remains to show that ∆xpub
seq ≥ ∆xpub

sim holds when the 1st mover is a low type. Trivially, for VH = VL we

obtain ∆xpub
seq = ∆xpub

sim since then types are homogeneous. For VH > VL, ∆xpub
seq ≥ ∆xpub

sim is equivalent to

(VH + VL)2 ≥ 2V 2
H .

36Compare Section 1.5.1.
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This can be written as

V 2
L + VH (2VL − VH) ≥ 0,

which holds as (2VL − VH) ≥ 0 for the interior solution. Hence, we have shown that a risk neutral designer,

who aims at a close race, prefers a simultaneous contests given public information.

In the simultaneous contest with private information, homogeneous types exert the same effort.

Thus, the effort difference is equal to zero. Given heterogeneous types, the effort difference is

∆xpriv
sim : = x∗iH − x∗iL

= (VH − VL)

(
r

4
+ (1− r)

VHVL

(VH + VL)2

)

= r
(VH − VL)3

4 (VH + VL)2
+

VHVL (VH − VL)
(VH + VL)2

.

Using (3.7), it follows that

∆xpriv
sim = ∆xpub

sim + r
(VH − VL)3

4 (VH + VL)2
.

Hence, ∆xpriv
sim ≥ ∆xpub

sim (with strict inequality if VH > VL and r > 0). This gives us the result that a risk

neutral designer, who aims at a close race, prefers public information to a private information given that a

simultaneous contest is played.

In the sequential contest with private information, homogeneous types do not exert the same effort,

unless VH = VL or r = 0. This means that there is a gap between efforts of the first and second mover.

Thus, the effort difference for homogeneous types is larger than in the simultaneous contest with private

information and in the sequential contest with public information. Using the results from Proposition 7,

where we show that the first mover makes a higher (lower) bid than the second mover when he is the high

(low) type, we can derive the following gaps in the contestants’ bids:

∆xhom
seq :=


x∗1H − x∗H2H = αH

(
2αH −

√
VH

)
when contestants are high types

x∗L2L − x∗1L = αL

(√
VL − 2αL

)
when contestants are low types.

For heterogeneous types, the effort difference is

∆xhet
seq :=


x∗1H − x∗H2L = αH

(
2αH −

√
VL

)
when the 1st mover is a high type

x∗L2H − x∗1L = αL

(√
VH − 2αL

)
when the 1st mover is a low type.

Hence, the ex ante expected gap in case of private information is given by

∆̃xpriv
seq : =

1
2
r
(
x∗1H − x∗H2H + x∗L2L − x∗1L

)
+

1
2
(1− r)

(
x∗1H − x∗H2L + x∗L2H − x∗1L

)
=

1
2

[
2(α2

H − α2
L)− αHV

1
2

L + αLV
1
2

H + r(αH + αL)
(
V

1
2

L − V
1
2

H

)]
.

Plugging in α and rearranging yields

∆̃xpriv
seq = (1− r)

VH − VL

4VHVL

[
(1− r)(V 2

H + V 2
L ) + rV

1
2

H V
1
2

L (VH + VL)
]
.
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The ex ante expected gap in case of public information is

∆̃xpub
seq : =

1
2
r · 0 +

1
2
(1− r)

(
VH

2

(
VH − VL

VL

)
+

VL

2

(
VH − VL

VH

))
=

1
4VHVL

(1− r)(VH − VL)
(
V 2

H + V 2
L

)
.

Comparing the ex ante expected gaps under public and private information, we see that for VL = VH as

well as for r = 0 and r = 1 they are equally large. This is intuitive as in these cases there is in fact public

information. Let now V<VH and r ∈ (0, 1). It is straightforward to verify that ∆̃xpriv
seq < ∆̃xpub

seq is equivalent

to

r2
(
V
− 1

2
H − V

− 1
2

L

)2 [
V

1
2

H V
1
2

L (VH − VL) + V 2
H − V 2

L

]
+ r

(
V
− 1

2
H − V

− 1
2

L

) [
2V

3
2

L + VHV
1
2

L + VLV
1
2

H

]
< 0.

This can be rewritten as (
V

1
2

H − V
1
2

L

)(
V

3
2

L − V
3
2

H

)
< 0,

which is obviously true. Thus, ∆̃xpriv
seq ≤ ∆̃xpub

seq is always satisfied (with equality for r = 0, r = 1 and

VH = VL). This implies that given a sequential contest is played, the designer prefers private information

from an ex ante perspective if he wants to have a close race.

The last step of the proof is to show that in the private information setting for heterogeneous types, the

designer prefers the simultaneous contest, when he aims at a close race. In order to show this, we consider

the expected effort difference ∆̃xpriv
seq in the sequential contest and show that this difference is larger than

in the simultaneous contest, i.e.

∆̃xpriv
seq ≥ 1

2
(1− r)2∆xpriv

sim +
1
2
r · 0 =: ∆̃xpriv

sim (A.13)

using the result that the effort difference for homogeneous types is zero in the simultaneous contest. Evidently,

for VL = VH and also for r = 1 the expected gaps are identical. Suppose now VL < VH and r < 1. Then,

(A.13) is equivalent to

(VH + VL)2
[
(1− r)(V 2

H + V 2
L ) + rV

1
2

H V
1
2

L (VH + VL)
]
≥ rVHVL(VH − VL)2 + 4V 2

LV 2
H .

We can rewrite this as

2VHVL(VH − VL) + (1− r)(V 4
H + V 4

L + 2V 3
LVH) + r

(
V 2

H(V
1
2

H − V
1
2

L )2 + V 2
HV

1
2

L (2V
1
2

L − V
1
2

H )

+V 2
LV

1
2

H (V
1
2

H − V
1
2

L ) + V 3
L + 2V 2

LVH

)
≥ 0. (A.14)

Note that for the interior solution r ≥ r̃ = 2VL−VH√
VH(

√
VL−

√
VH)

has to be satisfied. This can only be

satisfied if r̃ ≤ 1, which is equivalent to 4VL ≥ VH . Hence, for 4VL < VH we cannot have an interior

solution. This implies that V
1
2

H ≤ 2V
1
2

L holds for the interior solution. Using this observation and

VL ≤ VH , it can be seen that (A.14) is satisfied and thus, ∆̃xpriv
seq ≥ ∆̃xpriv

sim . Hence, given private infor-

mation, the designer prefers simultaneous contests from an ex ante perspective when his aim is a close race.
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Proof of Lemma 2.

The participation constraint for agent i if the principal wants to implement the effort vector (êi, ê−i) is

pHH(êi, ê−i)wH
i + (1− pHH(êi, ê−i))wL

i − c(êi) ≥ 0.

If the agent provides zero effort, he can ensure an expected payoff of zero. Moreover, the incentive constraint

is the maximizer of the agent’s expected payoff, hence, the agent cannot earn a negative expected payoff.

Note that a sufficient condition for the agent’s problem (the incentive constraint) to be concave in ei is

wH
i ≥ wL

i as the probability of success function is concave and the cost function convex in ei. For the

optimal wage scheme, wH
i ≥ wL

i – as we show below. Thus, a global maximum of the agent’s problem exists.

The principal’s problem is a linear optimization problem, where the feasible set is convex and the objective

function is continuous and linear in wYc
i .

As already mentioned in the text, setting wL
i > 0 decreases incentives compared to setting wL

i = 0 as
∂pHL(êi,ê−i)

∂ei
< 0 (which can be seen from the incentive constraints). Thus, êi has to be smaller, too. This

cannot be profit maximizing for the principal since effort is smaller and the principal pays the agent more

by setting wL
i > 0, which reduces his profit. Therefore, wL

i = 0.

It remains to solve for the optimal wage if the project succeeds, wH
i , to implement efforts (ê1, ê2), which we

can derive from the incentive constraints. Using wL
i = 0, we can write the incentive constraints (ICsimc

i ) as

∂pHH(êi, ê−i)
∂ei

wH
i = c′(êi) ∀i. (A.15)

This first order condition yields a global maximum since the second order conditions

∂2pHH(êi, ê−i)
∂e2

i

wH
i − c′′(êi) < 0 ∀i (A.16)

are satisfied for the optimal wage scheme as the cost function is strictly convex, pHH(ei, e−i) is concave in

ei by assumption, and wH
i ≥ 0 must hold true by the limited liability constraint. Assuming for the moment

that the limited liability constraints are met, the optimal wage for agent i to implement an effort level of

êi when both agents perform well (given an effort level ê−i) has to satisfy wH
i = c′(êi)

pHH
ei

(êi,ê−i)
as stated in

Lemma 2. Note that this wage is non-negative and strictly larger than zero for ei > 0. Hence, the limited

liability constraints are satisfied and wH
i ≥ wL

i = 0.

Note that the principal pays the wage for a project with high value with probability pHH(êi, ê−i) to agent

i. Thus, expected implementation costs for effort êi are Wsimc
i = pHH(êi,ê−i)

pHH
ei

(êi,ê−i)
c′(êi) = p(êi)

p′(êi)
c′(êi).

Proof A.

In order to show that our results do not change if the second mover can also observe the effort of the first

mover, it suffices to consider the incentive constraints of the second mover (which we give later in Section

2.3.2):

After seeing H : eH
2 ∈ argmax

e2∈I
Pr[H|H, ê1, e2]wH

2 + Pr[L|H, ê1, e2]wL
2 − c(e2),

After seeing L : eL
2 ∈ argmax

e2∈I
wL

2 − c(e2).

Obviously, the effort of the first mover does not enter the incentive constraint of the second mover when he

observes low quality. Hence, only the incentive constraint after having observed a high quality contribution
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can be affected when effort is observable. Plugging in the conditional probabilities according to (2.2), we

can write the incentive constraint as follows:

After seeing H : eH
2 ∈ argmax

e2∈I
p(e2)wH

2 + (1− p(e2))wL
2 − c(e2).

Thus, this incentive constraint is also independent of the effort of the first mover. This implies immediately

that our results do not change when the second mover can also observe the effort of the first mover.

Proof of Lemma 4.

Like for the case of complements, the principal’s problem is a linear optimization problem, where the feasible

set is convex and the objective function is continuous and linear in wYs
i . By a similar argument than for the

case of complements, we can drop the participation constraints and focus only on the incentive and limited

liability constraints. The incentive constraint (ICsims
i ) for agent i is:

êi ∈ argmaxei∈I pHH(ei, ê−i, )wHi + pHL(ei, ê−i)wMi + pLH(ei, ê−i)wMi

+pLL(ei, ê−i)wLi − c(ei),

where we denote Nash equilibrium effort levels by êi. We can rewrite this problem as

∑
Y−i

∑
Yi

∂pYiY−i(êi, ê−i)
∂ei

wYs
i − c′(êi) = 0. (A.17)

Like we have seen in the proof of Lemma 2 for the case that contributions are complements, wLi > 0 cannot

be optimal by the same argument: it decreases incentives and reduces profits. Thus, wLi = 0. By the

same argument, it cannot be optimal to set wMi > 0 if ∂(pLH
i (êi,ê−i)+pHL

i (êi,ê−i))
∂ei

≤ 0 (condition A). Thus,

wMi = 0 under condition A.

If the wages in case that at least one agent contributes low quality are zero, we can derive the wage when

both agents perform well from the incentive constraint in (A.17). If condition A is, however, not satisfied,

i.e. ∂(pLH
i (êi,ê−i)+pHL

i (êi,ê−i))
∂ei

> 0, we have to consider the problem of the principal.

Let first condition A be satisfied. Using wMi = wLi = 0, the problem of the agent simplifies to

∂pHH(êi, ê−i)
∂ei

wHi − c′(êi) = 0. (A.18)

The second order conditions
∂2pHH(ei, e−i)

∂e2
i

wHi − c′′(ei) < 0 (A.19)

are satisfied as the cost function is strictly convex, pHH(ei, e−i) is concave in ei, and wHi ≥ 0 by the limited

liability constraint. Hence, (A.18) yields a global maximum: The wage for agent i to implement effort êi

(given the other agent’s effort e−i) has to be wHi = c′(êi)
pHH

ei
(êi,ê−i)

. Note that wHi is non-negative (strictly

positive for êi > 0). Thus, the limited liability constraints are met.

If condition A does not hold, i.e. ∂(pLH
i (êi,ê−i)+pHL

i (êi,ê−i))
∂ei

> 0 (condition B), we cannot (immedi-

ately) conclude that wMi = 0, but have to consider the problem of the principal. The problem of the
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principal under condition B is

max
wHi ,wMi

−
∑

i

pHH(êi, ê−i)wHi −
∑

i

[pHL(êi, ê−i) + pLH(êi, ê−i)]wMi

s.t êi ∈ argmaxei∈I pHH(ei, ê−i, )wHi + (pHL(ei, ê−i) + pLH(ei, ê−i))wMi − c(ei) ∀i,

s.t wYs
i ≥ 0 ∀Ys(Yi, Y−i), ∀i

Denoting by δ the Lagrange multiplier, the first order conditions with respect to wages are

wHi : −pHH(ei, ê−i) + δ

(
∂pHH(ei, ê−i)

∂ei

)
≤ 0, wHi

∂L
∂wHi

= 0,

wMi : −[pHL(ei, ê−i) + pLH(êi, ê−i)] + δ

(
∂(pHL(ei, ê−i) + pLH(êi, ê−i))

∂ei

)
≤ 0, wMi

∂L
∂wMi

= 0.

It follows from these first order conditions that if

pHH(ei, ê−i)
pHH

ei
(ei, ê−i)

<
pHL(ei, ê−i) + pLH(ei, ê−i)
pHL

ei
(ei, ê−i) + pLH

ei
(ei, ê−i)

, (A.20)

then wHi > 0 and wMi = 0.37 We refer to condition (A.20) as condition W .

If condition W is not satisfied, but (A.20) holds instead with equality, then all wHi – wMi combinations that

satisfy the incentive constraint (A.17) are optimal. If the inequality in (A.20) is reversed, then wHi = 0 and

wMi > 0.

Using independence of individual success probabilities, condition B simplifies to p′(ei)(1 − 2p(ê−i)) > 0

and condition W to p(ei)
p′(ei)

< p(ei)(1−2p(ê−i))+p(ê−i)
p′(ei)(1−2p(ê−i))

.38 Since p′(ei)(1 − 2p(ê−i)) > 0, we can further simplify

condition W to p(ê−i) > 0.

Hence, for p(ê−i) > 0, we have that pHH(ei,ê−i)
pHH

ei
(ei,ê−i)

≥ pHL(ei,ê−i)+pLH(ei,ê−i)
pHL

ei
(ei,ê−i)+pLH

ei
(ei,ê−i)

cannot be satisfied. Thus, we have

wHi > 0 and wMi = 0 (like under condition A). Moreover, we can derive wHi – exactly like under condition

A – from the agent’s incentive constraint (A.18) and hence, wHi = c′(êi)
pHH

ei
(êi,ê−i)

.

Proof B.

Exactly like for the case of complements, we can show that the incentive constraints of the second mover

(see Section 2.5.2) are independent of the first mover’s effort by plugging in the conditional probabilities:

After seeing H : eH
2 ∈ argmax

e2∈I
p(e2)wH2 + (1− p(e2))wM2 − c(e2),

After seeing L : eL
2 ∈ argmax

e2∈I
(1− p(e2))wM2 − c(e2).

Again, it immediately follows, that observability of the first mover’s effort does not change our results.

Proof of Lemma 5.

As argued in the text, the wage for the second mover when both agents fail is equal to zero (compare the

37We assume here that pHH
ei

(ei, ê−i) > 0 and pHL
ei

(ei, ê−i) + pLH
ei

(ei, ê−i) > 0 such that (A.20) is always defined.

We see below that this holds under condition B.

38Note that condition B implies p′(ei) > 0 and hence condition W is always defined.
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argument in Section 2.3.2.). We can rewrite the incentive constraint of the second mover after observing a

poor performance of the first mover as

pLH
e2

(ê1, e
L
2 )

1− p(ê1)
wM2 − c′(eL

2 ) = 0. (A.21)

As mentioned in the text, the second order condition is satisfied for the optimal wage scheme since the cost

function is strictly convex, pLH(ê1, e2) is concave in e2, and given that the limited liability constraint is

satisfied (what we assume for the moment and show in the following that it is indeed true). Hence, the first

oder condition in (A.21) yields the optimal wage

wM2 =
c′(eL

2 )
pLH

e2
(ê1, eL

2 )
(1− p(ê1)) =

c′(eL
2 )

p′(eL
2 )

.

This wage is non-negative and strictly positive for eH
2 > 0. Thus, the limited liability constraint is satisfied.

We can write the incentive constraint of the second mover after observing a high performance of the first

mover as follows:

p′(eL
2 )
[
wH2 − wM2

]
− c′(eL

2 ).

Note that the second order conditions are satisfied if wH2 ≥ wM2 , which is satisfied in equilibrium as we show

below. Hence, we can derive from the first order condition the optimal wage for the case that the project

has a high value. Plugging in wM2 into the other first order condition in state H and solving for wH2 yields

wH2 =
c′(eH

2 )
p′(eH

2 )
+

c′(eL
2 )

p′(eL
2 )

.

Obviously, wH2 ≥ wM2 as wH2 = c′(eH
2 )

p′(eH
2 )

+ wM2 . Since wM2 ≥ 0, also wH2 ≥ 0, which satisfies the limited

liability constraint.

By an analogue argument as given for the simultaneous structure (see Proof of Lemma 5) and for the

sequential structure when contributions are complements (see Section 2.3.2), the first mover’s wages are

wH1 = c′(ê1)

pHH
e1

(ê1,eH
2 )

, wM1 = wL1 = 0. Similar to the observation when contributions are complements, however,

as mentioned earlier in Section 2.3.2, equilibrium efforts of the first mover need not be identical under both

structures when eH
2 differs from ê2.

Condition Z.

Consider the sequential structure when contributions are substitutes. Given the optimal wage scheme, the

problem of the principal is to maximize his expected profits with respect to efforts:39

max
e1∈I,eH

2 ∈I,eL
2∈I

[(
2p(e1)p(eH

2 ) + p(e1)(1− p(eH
2 )) + p(eL

2 )(1− p(e1))
)
π − p(e1)p(eH

2 )
c′(e1)

p′(e1)p(eH
2 )

−p(e1)p(eH
2 )
(

c′(eH
2 )

p′(eH
2 )

+
c′(eL

2 )
p′(eL

2 )

)
−
[
(1− p(e1))p(eL

2 ) + p(e1)(1− p(eL
2 ))
] c′(eL

2 )
p′(eL

2 )

]
Summarizing yields

max
e1∈I,eH

2 ∈I,eL
2∈I

[(
p(e1)p(eH

2 ) + p(e1) + p(eL
2 )(1− p(e1))

)
π − p(e1)

c′(e1)
p′(e1)

−p(e1)p(eH
2 )

c′(eH
2 )

p′(eH
2 )

−
[
(1− p(e1))p(eL

2 ) + p(e1)
] c′(eL

2 )
p′(eL

2 )

]
(A.22)

39Note that wM2 is paid in case the first mover provides high quality and the second mover low quality as well as

when the first one performs poorly and the second one performs well.
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Suppose now that the principal implements eL
2 = 0. Denote by e◦1 and eH◦

2 the profit-maximizing efforts for

this case. Note that e◦1 and eH◦
2 need not be profit-maximizing for the case that eL

2 > 0. We calculate the

difference in expected profits when either eL
2 > 0 or eL

2 = 0. For both cases, we evaluate expected profits

at e◦1 and eH◦
2 , which are optimal for eL

2 = 0, but not necessarily for eL
2 > 0. If this difference in expected

profits is, nevertheless, positive, it is also positive for the optimal efforts e1 and eH
2 given eL

2 > 0. Hence, if

the difference is positive, eL
2 > 0 is optimal. The difference in expected profits is40

(1− p(e◦1))
(
p(eL

2 )− p(0)
)
π −

[
(1− p(e◦1))p(eL

2 ) + p(e◦1)
] c′(eL

2 )
p′(eL

2 )
.

Thus, the difference in expected profits is larger than zero under the following condition (Condition Z):

π >
c′(eL

2 )
p′(eL

2 )

[
p(e◦1) + (1− p(e◦1))p(eL

2 )
(1− p(e◦1))

(
p(eL

2 )− p(0)
)] .

Hence, if π is sufficiently large it is optimal to implement a strictly positive effort for the second mover after

a poor performance of the first mover.

Proof of Lemma 6.

Suppose the principal wants to implement an effort level of e?
1 for the first mover and an expected effort of

e?
2 = p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 for the second mover. Given the optimal wage scheme, the problem of the

principal becomes (compare (A.22))

max
eL?
2 ∈I

[(
p(e?

1)p(eH?
2 ) + p(e?

1) + p(eL?
2 )(1− p(e?

1))
)
π − p(e?

1)
c′(e?

1)
p′(e?

1)

−p(e?
1)p(eH?

2 )
c′(eH?

2 )
p′(eH

2 )
−
[
(1− p(e?

1))p(eL?
2 ) + p(e?

1)
] c′(eL?

2 )
p′(eL

2 )

]
s.t. e?

2 = p(e?
1)e

H?
2 + (1− p(e?

1))e
L?
2 .

The first order condition to this problem is

[
(1− p(e?

1))
(
p′(eL?

2 )− p′(eH?
2 )
)]

π + (1− p(e?
1))
[
c′(eH?

2 )− c′(eL?
2 )
]

−(1− p(e?
1))p(eH?

2 )
[
−p′(eH?

2 )c′′(eH?
2 ) + c′(eH?

2 )p′′(eH?
2 )

p′(eH?
2 )2

]
− p(e?

1)
[
p′(eL?

2 )c′′(eL?
2 )− c′(eL?

2 )p′′(eL?
2 )

p′(eL?
2 )2

]
−(1− p(e?

1))p(eL?
2 )
[
p′(eL?

2 )c′′(eL?
2 )− c′(eL?

2 )p′′(eL?
2 )

p′(eL?
2 )2

]
= 0.

The first order condition is also sufficient (since p is strictly increasing and concave and c is strictly convex)

if Assumption C is satisfied. This is evident from the maximization problem if we note that under our

assumptions on p and c it follows from Assumption C that p(e) c′(e)
p′(e) is strictly convex. To see this implication

of Assumption C, let f(e) := c′(e)
p′(e) and g(e) := p(e) c′(e)

p′(e) = p(e)f(e). Hence, g′(e) = p′(e)f(e) + p(e)f ′(e)

is strictly positive by the assumptions on p and c. These imply, in particular, f(e) ≥ 0 and f ′(e) =
p′(e)c′′(e)−p′′(e)c′(e)

p′(e)2 > 0. Consider now the second derivative of g:

g′′(e) = p′′(e)f(e) + 2p′(e)f ′(e) + p(e)f ′′(e).

40Note that c′(0) = 0.
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Under Assumption C (i.e. f ′′(e) ≥ 0)), for this derivative being positive, it suffices to show that

p′′(e)f(e) + 2p′(e)f ′(e) > 0. p′′(e)f(e) + 2p′(e)f ′(e) is equal to 2p′(e)c′′(e)−p′′(e)c′(e)
p′(e) , which is strictly larger

than zero. Hence, we have by Assumption C that g′′(e) > 0. This establishes that the first order condition

is also sufficient.

Rewriting the first order condition by using k(e) := p(e)
[

p′(e)c′′(e)−c′(e)p′′(e)
p′(e)2

]
yields

(1− p(e?
1))
[(

p′(eL?
2 )− p′(eH?

2 )
)
π +

(
c′(eH?

2 )− c′(eL?
2 )
)
−
(
k(eL?

2 )− k(eH?
2 )
)]

= p(e?
1)k(eL?

2 ). (A.23)

Note that k(e) = p(e)f ′(e) > 0, which implies that the right hand side of (A.23) is strictly positive.

Moreover, under Assumption C it follows that k′(e) = p′(e)f ′(e) + p(e)f ′′(e) > 0.

Suppose now that eL?
2 = eH?

2 . The first order condition then simplifies to

0 = p(e?
1)k(eL?

2 ).

This condition can, however, never be satisfied as the right hand side is strictly larger than zero. Hence, it

cannot be optimal to set eL?
2 = eH?

2 .

In order to show that it is optimal to set eL?
2 < eH?

2 , suppose first eL?
2 > eH?

2 . eL?
2 > eH?

2 im-

plies that the left hand side of (A.23) is strictly negative as p′(eL?
2 ) − p′(eH?

2 ) becomes non-negative,

c′(eH?
2 ) − c′(eL?

2 ) becomes strictly negative, and k(eL?
2 ) − k(eH?

2 ) becomes strictly positive. Since the right

hand side of (A.23) is strictly positive, the first order condition cannot be satisfied for eL?
2 > eH?

2 . Hence,

eL?
2 < eH?

2 must hold true.

Proof of Lemma 7.

The difference in expected revenues between the simultaneous and the sequential structure is

∆R =
[
p(e?

2)−
(
p(e?

1)p(eH?
2 )) + (1− p(e?

1))p(eL?
2 )
)]

π

since e?
1 is implemented for agent 1 under both structures. Suppose now that p is concave and the principal

implements e?
2 = p(e?

1)e
H?
2 + (1− p(e?

1))e
L?
2 under the simultaneous structure. Then, by Jensen’s Inequality

p(e?
2) = p(p(e?

1)e
H?
2 + (1 − p(e?

1)e
L?
2 ) ≤ p(e?

1)p(eH?
2 ) + (1 − p(e?

1))p(eL?
2 ) (with strict inequality for strict

concavity and eL?
2 6= eH?

2 ).

Proof C.

Expected implementation costs for both agents under the simultaneous structure and for the first mover

under the sequential structure (compare (2.5) and (2.6)) are convex if and only if p(e)
p′(e)c

′(e) is convex in

effort. Moreover, the convexity of p(e)
p′(e)c

′(e) is a sufficient condition for expected implementation costs for

the second mover under the sequential structure (compare (2.7)) to be convex.
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Within the Proof of Lemma 6 we show that Assumption C) implies that p(e)
p′(e)c

′(e) is strictly convex. Hence,

under Assumption C, expected implementation costs are convex in effort.

Proof of Lemma 9.

The difference in expected implementation costs for the second agent between the simultaneous and sequential

structure is

∆SM : = W sims
2 −W seqs

2

=
p(e?

2)
p′(e?

2)
c′(e?

2)− p(e?
1)

p(eH?
2 )

p′(eH?
2 )

c′(eH?
2 )− (1− p(e?

1))
p(eL?

2 )
p′(eL?

2 )
c′(eL?

2 )− p(e?
1)

p′(eL?
2 )

c′(eL?
2 ).

Note that the term p(e?
1)

p′(eL?
2 )

c′(eL?
2 ) in ∆SM increases expected implementation costs of the sequential structure

relative to the simultaneous one. Dropping this term, we have

∆SM+ :=
p(e?

2)
p′(e?

2)
c′(e?

2)−
[
p(e?

1)
p(eH?

2 )
p′(eH?

2 )
c′(eH?

2 ) + (1− p(e?
1))

p(eL?
2 )

p′(eL?
2 )

c′(eL?
2 )
]

.

Let Assumption C be satisfied. Under Assumption C, p(e2)
p′(e2)

c′(e2) =: f(e2) is strictly convex (see Proof C).

Suppose the principal implements for the first agent the same effort under both structures (i.e. e?
1) and

for the second agent, he implements the same effort (in expectation), i.e. e?
2 = p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 .

Then, by Jensen’s Inequality, f(e?
2) = f(p(e?

1)e
H?
2 + (1 − p(e?

1))e
L?
2 ) ≤ p(e?

1)f(eH?
2 ) + (1 − p(e?

1))f(eL?
2 ).41

Thus, ∆SM+ ≤ 0 and therefore, ∆SM ≤ 0.

Further on assuming that Assumption C is satisfied, the above result holds with strict inequality if

eH?
2 6= eL?

2 , which establishes part (i) of the lemma.

For part (ii) of the lemma, note that ∆SM+ < ∆SM if eL?
2 >. Since ∆SM+ ≤ 0 when f is convex, it

follows that ∆SM > 0.

Proof G.
We want to check whether Lemma 6 still holds true for the general case of substitutes and complements.

This means whether it is optimal for the principal to implement a higher for the second mover in the high

state of the world than in the low state. We should first note what changes for the general case compared

to the special case considered in the proof of Lemma 6. As the optimal wage scheme does not change, the

only difference is captured by expected revenues. This implies that we just need to plug in the new expected

revenue function and otherwise can stick to the procedure of the proof of Lemma 6. Expected revenues

under the sequential structure are now

π[pHH(e?
1, e

H?
2 )H+ (pHL(e?

1, e
H?
2 ) + pLH(e?

1, e
L?
2 ))M].

We can rewrite expected revenues as follows

π[p(e?
1)p(eH?

2 )(H−M) + (p(e?
1) + p(eL?

2 ) + p(e?
1)p(eL?

2 ))M].

41Note that for this result weak convexity of f is sufficient.
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Hence, the first order condition of the principals maximization problem, which we derived in the proof of

Lemma 6 (see equation (A.23)), becomes

(1− p(e?
1))
[
π[
(
p′(eH?

2 ) + p′(eL?
2 )
)
M−Hp′(eH?

2 )]
]
+ (A.24)

(1− p(e?
1))
[(

c′(eH?
2 )− c′(eL?

2 )
)
−
(
k(eL?

2 )− k(eH?
2 )
)]

= p(e?
1)k(eL?

2 ),

where k(e) = p(e)
[

p′(e)c′′(e)−c′(e)p′′(e)
p′(e)2

]
.

Similar to the proof of Lemma 6, we can again conclude that the first order condition is sufficient given

Assumption C: Since only expected revenues differ here, we just check whether it is still true that the second

derivative of expected revenues with respect to eL?
2 subject to e?

2 = p(e?
1)e

H?
2 + (1 − p(e?

1))e
L?
2 is negative.

This derivative is

π(1− p(e?
1))[Mp′′(eL?

2 ) +
1− p(e?

1)
p(e?

1)
(H−M)p′′(eH?

2 )],

which is smaller than zero since p is concave and H ≥ M. Hence, given Assumption C, the first order

condition is again sufficient.

Can it be optimal to implement eL?
2 = eH?

2 ? If we plug in eL?
2 = eH?

2 into equation (A.24), we have

πp(e?
1)p(eL?

2 )(2M−H)) = p(e?
1)k(eL?

2 ).

Since k(e) > 0, the right hand side is strictly positive. 2M − H is negative for complements, thus the

left hand side is negative. Hence, the first order condition can never be satisfied. This means that for

complements eL?
2 = eH?

2 cannot be optimal. For substitutes, however, 2M−H ≥ 0. Thus, it can be optimal

to set eL?
2 = eH?

2 if 2M−H > 0, otherwise it cannot be optimal.

Is it optimal to implement eL?
2 < eH?

2 ? Consider the first order condition (A.24) and suppose first that the

principal implements eL?
2 > eH?

2 . Given eL?
2 > eH?

2 , we have

[(
c′(eH?

2 )− c′(eL?
2 )
)
−
(
k(eL?

2 )− k(eH?
2 )
)]

< 0

(compare proof of Lemma 6). Moreover, p′(eL?
2 ) ≤ p′(eH?

2 ). This implies that

π[
(
p′(eH?

2 ) + p′(eL?
2 )
)
M−Hp′(eH?

2 )] ≤ π[
(
p′(eH?

2 )
)
(2M−H)].

For complements, π[
(
p′(eH?

2 )
)
(2M−H)] < 0. Hence, the left hand side of (A.24) is negative for complements.

Thus, for complements Lemma 6 still applies, i.e. eL?
2 < eH?

2 is optimal given that Assumption C holds.

Similarly, we can conclude for substitutes that eL?
2 < eH?

2 is optimal given that Assumption C holds if

2M−H = 0. For 2M−H > 0, however, we cannot exclude any case as π[
(
p′(eH?

2 ) + p′(eL?
2 )
)
M−Hp′(eH?

2 )] >

0 holds true for eL?
2 < eH?

2 but can also hold true for eL?
2 > eH?

2 . Thus, for the general case of substitutes

eL?
2 ≥ eH?

2 as well as eL?
2 < eH?

2 can be optimal. This means Lemma 6 only applies for substitutes if

2M−H = 0 (which we earlier denoted by perfect substitutes).

Proof: Subjects Play a Pure Strategy

Before we prove that subjects play (in general) a pure strategy, we first want to define beliefs

and strategies of a subject. We let µj be the individual’s belief that alternative j is true, where
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j ∈ {0, . . . J}, J ∈ {2, 3, 4, 8, 70} with
∑J

j µj = 1. Next, we define a strategy of an individual. A

pure strategy of an individual is an action or alternative a subject can choose, i.e. a pure strategy

is j ∈ J = {0, . . . J}. Given an individual’s pure strategy set J , an individual’s mixed strategy,

σ : J → [0, 1], assigns to each pure strategy j a probability σj ≥ 0 with which j will be played,

where
∑

j σj = 1. Further, we denote by c the high payoff (i.e. 525, 1680, 105, 400 or 500 Tokens)

and by c−κ the low one (i.e. 20, 30, 315, 50 or 300 Tokens). We assume, without loss of generality,

that µ1 ≥ µ2 ≥ · · · ≥ µJ .

Then one can show the following:

Proposition 19 Unless µ1 = µ2, an individual plays a pure strategy. More precisely, the individual

sets σ1 = 1 if µ1 > µj ∀j 6= 1. If µ1 = · · · = µn > µn+1 ≥ · · · ≥ µJ with J ≥ n ≥ 2, then any σ

with σ1 + · · ·+ σn = 1 can be optimal.

This result implies that a mixed strategy is not optimal as long as an individual that is uncertain

about the right action attaches a higher probability to one possible action than to all other actions.

Since all the decision problems in our experiment have this structure – subjects have the choice

between {1, . . . , J} alternatives with J ∈ {2, 4, 3, 8}, we can apply this proposition to all of them.

If subjects make the “right” choice (the right guess for the interval, the right guess for the relative

bias or the right guess for the number of correctly answered questions), they receive a high payoff,

say c, and if the choice is not correct, they receive c− κ.

Proof of Proposition 19.

The subjectively expected utility of an individual from strategy σ is

µ1[σ1u(c) + σ2u(c− κ) + · · ·+ σJu(c− κ)] + µ2[σ1u(c− κ) + σ2u(c) + · · ·+ σJu(c− κ)]

+ · · ·+ µJ [σ1u(c− κ) + σ2u(c− κ) . . . σJu(c)].

Rearranging yields

u(c)
∑

j

µjσj + u(c− κ) [σ1(
∑
j 6=1

µj) + σ2(
∑
j 6=2

µj) + · · ·+ σJ(
∑
j 6=J

µj)]︸ ︷︷ ︸
=

∑
j σj(

∑
i6=j µi)

. (A.25)

Suppose now that subjects never put the same probability on alternatives. Without loss of generality

µ1 > µ2 > · · · > µJ . The expected utility under a strategy that sets σ1 = 1 would be

u(c)µ1 + u(c− κ)
∑
j 6=1

µj . (A.26)

Compare this to a strategy σ′ that puts some positive weight on other alternatives (i.e. σ′1 < 1). This means,

we subtract (A.25) from (A.26), where we, however, replace all σj by σ′j in the latter. This yields

u(c) [(1− σ′1)µ1 −
∑
j 6=1

µjσ
′
j ]︸ ︷︷ ︸

(A)

+u(c− κ) [
∑
j 6=1

µj −
∑

j

σ′j(
∑
i 6=j

µi)]︸ ︷︷ ︸
(B)
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As long as this difference is positive, the strategy that sets σ1 = 1 is optimal. Consider term (A) using that

σ′2 = 1−
∑

j 6=2 σ′j :

(1− σ′1)µ1 −
∑
j 6=1

µjσ
′
j = (1− σ′1)(µ1 − µ2) + µ2(

∑
j>2

σ′j)−
∑
j>2

µjσ
′
j = (1− σ′1)(µ1 − µ2) +

∑
j>2

(µ2 − µj)σ′j .

This is strictly larger than zero since µ1 > µ2 > · · · > µJ . The smallest value it can take is zero if and only

if µ1 = µ2 = · · · = µJ . Consider now term (B):∑
j 6=1

µj −
∑

j

σ′j(
∑
i 6=j

µi) = (1− σ′1)
∑
j 6=1

µj −
∑
j 6=1

σ′j (
∑
i 6=j

µi︸ ︷︷ ︸
1−µj

) = (1− σ′1)(µ2 − µ1) +
∑
j>2

σ′j(µj − µ2).

This term is (strictly) negative (the term equals zero if µ1 = µ2 = · · · = µJ), but the absolute value is the

same for the term (A) and (B). Since the first is weighted by u(c) > u(c− κ), subjectively expected utility

from the strategy setting σ1 = 1 is larger than from σ′ and hence, this is the optimal strategy.

It is easy to see that this result also holds true for µ1 > µ2 ≥ · · · ≥ µJ , since σ′1 < 1. If, however,

µ1 = · · · = µn > µn+1 ≥ · · · ≥ µJ with J ≥ n ≥ 2, then any σ with σ1 + · · · + σn = 1 can be optimal. To

see this, note that term (A) simplifies to ∑
j>n

(µ2 − µj)σ′j

and (B) to ∑
j>n

σ′j(µj − µ2)

as µ1 = µn. Consider a strategy σ′ that sets σ′j = 0 for all j > n (i.e. all j for which µ2 − µj > 0) and∑
j≤n σ′j = 1. Then term (A) and term (B) would be both equal to zero under this strategy σ′. Hence, the

strategy setting σ1 = 1 yields the same expected payoff than σ′. Thus, any strategy that sets σ1+· · ·+σn = 1

can be optimal.
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Instructions (translated from German) 
 

Instructions R Hard – Part 1  
 

In this scientific experiment you can earn money with your decisions. During the experiment your 
payoffs are given in tokens.  
After the experiment this amount of tokens will be converted into euros according to the exchange rate  
of 1 euro for 210 tokens and paid cash to you. 

 
Course of the Experiment: 
 
The experiment consists of two stages. In stage 1 you answer 7 multiple-choice questions. In stage 2 
you make a decision. The payoff for this decision depends among other things on the number of 
multiple-choice questions you answered correctly. You get the instructions for stage 2 after having 
answered the 7 questions.  
 

Stage 1:  

 
• 7 multiple-choice questions are posed. For each question you get 4 possible answers to 

choose from. At a time, only one of these possible answers is correct.  
You choose your answer to a question by clicking on the circle in front of the corresponding 
answer and then clicking “OK”. As soon as you click OK, you cannot change your answer 
any more and the next question appears.  
 

• You have at most 45 seconds to give your answer to each of the questions. During these 45 
seconds you can give your answer at any time. The time that is left for a question is shown on 
the screen. When time has run out, the computer automatically shows the following question. 

• Please note: If you do not click on one answer or not click OK before the time has run 
out, this means the same as if you give a wrong answer. 

• Once you have answered all questions, the computer determines how many questions you 
have answered correctly. You receive the information how many correct answers you 
have after the experiment, i.e. after stage 2.  

 

Payoff for stage 1:  

 
      For each correct answer you receive 190 tokens and for each wrong one you receive 10 tokens. 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Instructions R Hard – Part 2  
 

Stage 2:  

In stage 2 you choose one out of eight possible actions 0, 1, 2, 3, 4, 5, 6, 7.  This is done by entering 
one of these numbers in the corresponding cell on the computer screen and you confirm your choice 
by clicking on “OK”.   

Payoff stage 2:  

The following table shows the payoffs in tokens, which you receive depending on you choice and how 
many questions you answered correctly in stage 1. You are not told until after the experiment how 
many questions you answered correctly.  

 

Number of correct questions  

0 1 2 3 4 5 6 7 

Action 0 525 30 30 30 30 30 30 30 

Action 1 30 525 30 30 30 30 30 30 

Action 2 30 30 525 30 30 30 30 30 

Action 3 30 30 30 525 30 30 30 30 

Action 4 30 30 30 30 525 30 30 30 

Action 5 30 30 30 30 30 525 30 30 

Action 6 30 30 30 30 30 30 525 30 

 

A 
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Action 7 30 30 30 30 30 30 30 525 
        

Calculation of your total payoff: 

 
• Your total payoff from the experiment is given by the number of all your correctly 

answered questions multiplied by 190 tokens and the number of wrong answers 
multiplied by 10 tokens (your payoff in stage 1) and  the payoff from your chosen action 
(your payoff in stage 2). In addition you receive a payment of 525 tokens. 

• This total payoff is converted into euros according to the exchange rate 1 Euro = 210 
tokens. 

 
 

Instructions R Tricky  
 
The instructions for R Tricky are identical to R Hard. The difference is that subjects answer 
the tricky instead of the hard questions. 
 



Hard Questions: 
 
When did the Holy Roman Empire of the German Nation stop existing? 

- 1618 
- 1918 
- 1815 
- 1806 (+) 

 
Which frequency has home power in middle Europe? 

- 220 volt 
- 110 volt 
- 60 hertz 
- 50 hertz (+) 

 
Who wrote „Iphigenie auf Aulis“? 

- Goethe  
- Euripides (+) 
- Schiller 
- Sophokles 

 
How many symphonies wrote Joseph Haydn? 

- 104 (+) 
- 41 
- 21 
- 9 

 
Which is no chemical element? 

- selenium 
- calcium 
- arsenic 
- americium 

 
How do you call the dark spots of the moon? 

- Mare (+) 
- Mire 
- Mure 
- More 

 
Which boxers fought against each other at „Rumble in the Jungle“? 

- Joe Frazier and George Foreman 
- George Foreman and Muhammed Ali (+) 
- Evander Holyfield and Mike Tyson 
- Muhammed Ali and Joe Frazier 

 
 
 
 
 
 
 



Tricky questions: 
 
The most expensive picture, which was bought at a German auction is from: 

- Gerhardt Richter 
- Ottmar Alt 
- Pablo Picasso 
- Max Beckmann (+) 

 
Which metropolis region has the most inhabitants? 

- Ranstad (Netherlands) (+) 
- Johannesburg (South Africa) 
- Dallas (USA) 
- Zurich (Switzerland) 

 
Which of these mountains is the highest? 

- Olymp 
- Sinai 
- Zugspitze 
- Etna (+) 

 
Which sportsman earns the most money (sum of prize money, sponsoring, 
promotion, fan articles etc.) 

- Michael Schumacher 
- Tiger Woods (+) 
- Davis Beckham 
- Lance Armstrong 

 
Which mature animal (male) weighs most on average? 

- tiger 
- domestic pig 
- polar bear 
- giraffe (+) 

 
Who has had his title for the longest period?  

- Helmut Kohl: chancellor 
- Johannes Paul II: pope 
- Bill Gates: Microsoft founder 
- Franz Beckenbauer: „emperor“ (+) 

 
Which food has the most kilocalories per 100g? 

- crispbread (+) 
- apple 
- camembert with 45% fat 
- cured eel 

 
 
 
 
 
 
 



Instructions T Average 
 

Course of the experiment:  
 
You make a decision between three actions and and a decision about a number. In order to make this 
decisions, you receive some information on another experiment (Experiment I), which has been 
conducted a week before.  
 
  
Description of Experiment I 
 
Experiment I had 20 participants. The experiment consisted of two stages.  
 
Stage 1 

• In the first stage, the participants answered 7 multiple-choice questions. For each of the 
questions there have been 4 possible answers. At a time, only one of these possible answers 
was correct. For each of the questions, the participants had at most 45 seconds to give their 
answer. When time had run out, the computer automatically showed the next question. In case 
no answer had been clicked on during this time, this was equivalent to giving a wrong answer. 

• The questions are attached to these instructions and you can look at them later on.  

Stage 2 

• In the second stage the participants have chosen one out of eight possible actions 0, 1, 2, 
3, 4, 5, 6, 7.   

• The payoffs (in tokens) for every possible combination of the “number of correctly 
answered questions” and the “chosen action” have been determined according to the 
payoff table below. The participants of Experiment I had this table in stage 2 in order to 
make their decision.  

 

Number of correct questions  

0 1 2 3 4 5 6 7 

Action 0 525 30 30 30 30 30 30 30 

Action 1 30 525 30 30 30 30 30 30 

Action 2 30 30 525 30 30 30 30 30 

Action 3 30 30 30 525 30 30 30 30 

Action 4 30 30 30 30 525 30 30 30 

Action 5 30 30 30 30 30 525 30 30 

Action 6 30 30 30 30 30 30 525 30 
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Action 7 30 30 30 30 30 30 30 525 

 



 

 

Further relevant information 

• The participants knew in stage 1 (when answering the 7 questions) that they make a 
decision in stage 2 and that the payoff depends on the number of correctly answered 
questions. The payoff table and detailed instructions for stage 2 have not been handed to 
the participants until the beginning of stage 2.  

• The number of correct questions has been determined for each participant by the 
computer. At the end of the experiment, the participants received 190 tokens for each 
correct answer and 10 tokens for each wrong one. Each participant has not been told 
the number of correctly answered questions and the payoff until he/she has chosen 
his/her action in stage 2.  

• At the end of the experiment, the payoff of the participants from answering the questions 
and from their decision, as well as an additional payment of 525 tokens has been 
converted into euros according to the exchange rate 210 tokens = 1 euro and paid cash to 
the participants. 

 
Description of today’s Experiment 
 

Relevant results from Experiment I:

Based on the answers and the decisions of the participants of Experiment I, two averages have been 
calculated after the experiment: 

1. The average number of correct answers “R” of all participants: 

The average is calculated as follows: the number of correct answers of all participants is added 
and then divided by the number of participants (20). The resulting value is rounded on one 
decimal place. Thus, the average can take values from 0 to 7 in steps of 0.1.    

2. The average action “A” chosen by the participants: 

The average is calculated as follows:  each participant chooses an action whereat the actions 
are assigned numbers from 0 to 7 (see table). The numbers of the chosen action of each 
participant are added and then divided by the number of participants (20). The resulting value 
is rounded on one decimal place. Thus, the average action can also take values from 0 to 7 in 
steps of 0.1.    

      
Your decision: 

Before you make your decision, you are told the value of the average action (A) chosen by the 
participants of Experiment I. 

• You choose between three actions: action 1, action 2 und action 3. You select action 1, 2 
or 3 by clicking on the corresponding action on the computer screen. In the following the 
actions are explained more detailed. 

• After you have chosen one of the actions, you choose a number as described in the 
following: 

o If you have chosen action 1, you can choose a number which is larger than or 
equal to A - 0.5 and smaller than A + 0.5. 

o If you have chosen action 2, you can choose a number which is larger than A + 
0.5 and smaller than or equal to 7. 



o If you have chosen action 3, you can choose a number which is larger than or 
equal to 0 and smaller than A - 0.5.  

 

A= average action of the participants of Experiment I 

 

• You can give the number in steps of 0.1. You chose a number by entering the number you 
want to choose in the corresponding cell on the screen.  

• When you have made all decisions, please confirm your choice by clicking on “OK”.  

 

Your payoff consists of the following two components:  

 

Payoff component 1: 

 

Actions  

Action 1 Action 2 Action 3 

R is smaller than  
A-0.5 

315 315 1680 

R is larger/equal A -
0.5  and 
smaller/equal A+0.5  

1680 315 315 

Value of the 

Average number of 

correct questions 

  (R) 

R is larger than 
A+0.5 

315 1680 315 

 

A= Value of the average action of the participants of Experiment I 

 

R= Value of the average number of correct questions in Experiment I 

 

Payoff component 2: 

If the distance (explanation see below) between the number you have chosen and the average number 
of correct questions R is smaller than or equal to 0.5 and your payoff from component 1 is 1680 
tokens, then you receive in addition 105 tokens, if the distance is larger than 0.5 or your payoff from 
component 1 is 315 tokens, you receive 20 tokens.  

 

       Explanation „Distance“: 

       Consider two numbers X and Y. The distance between these two numbers is  

       X-Y if X is larger than Y and Y-X if X is smaller than Y. 

 

 

Total payoff: 
Your total payoff ist he sum of your payoffs from component 1 and 2 and an additional payment of 
625 tokens. 



Instructions T AveragePlus – Part 1  
 

 
Course of the experiment: 
 
The experiment consists of 4 stages. In stage 1 you answer 7 multiple-choice questions. In stage 2 you 
make a decision. The payoff for this decision depends among other things on the number of 
multiple-choice questions you answered correctly. After stage 2 you receive some information on 
another experiment (Experiment I). In Experiment I stage 1 and 2 have been played as well. Having 
received this information, you make a decision between two alternatives in stage 3. The payoff you get 
from the choice of an alternative depends on Experiment I and your decision in stage 2. In stage 4 you 
make a decision between three alternatives, whereat your payoff from the choice of an alternative 
depends on Experiment I. You get the instructions for stage 2, 3 and 4 after having answered the 7 
questions.  
 

 

Stage 1: 
 

Exactly like in R Hard.  
 
 
 

Instructions T Average+  – Part 2  
 

Stage 2: 
 

Exactly like in R Hard.  

 

 

Relevant Information on Experiment I: 
 

In Experiment I there have been 20 participants. The experiment consisted of exactly the same 2 
stages as just described: Answering 7 multiple-choice questions in stage 1 and choice between actions 
0, 1, 2, 3, 4, 5, 6, 7 in stage 2. 

At the end of Experiment I, payoffs of the participants from answering the questions and from the 
decisions as well as an additional payment of 525 tokens have been converted into euros according to 
the exchange rate 1 Euro per 210 tokens and paid cash to the participants. 

Based on the answers and the decisions of the participants of Experiment I, two averages have been 
calculated after the experiment: 

 

 The average number of correct answers “R” of all participants: 
 

The average is calculated as follows: the number of correct answers of all participants is added 
and then divided by the number of participants (20). The resulting value is rounded on one 
decimal place. Thus, the average can take values from 0 to 7 in steps of 0.1.                



 

 The average action “A” chosen by the participants: 
 

The average is calculated as follows: each participant chooses an action whereat the actions 
are assigned numbers from 0 to 7 (see table). The numbers of the action of each participant 
are added and then divided by the number of participants (20). The resulting value is rounded 
on one decimal place. Thus, the average action can take values from 0 to 7 in steps of 0.1.    

Before you make your decision in stage 3 and 4, you are told the value of the average action (A) 
chosen by the participants of Experiment I.          
 

Stage 3: 
 

Decision stage 3: 

In stage 3 you can choose between the following two alternatives. The choice is done by clicking on 
the alternative on the screen and confirming the choice with “OK”. 

Payoff stage 3: 

Your payoff in stage 3 depending on the distance between R and A, your payoff in stage 2 (which you 
are not told until the end of the experiment) and your choice between the two alternatives is:  

 

 Alternative 1 Alternative 2 

Your payoff in stage 2 is 525 and 
the distance between R and A is 
smaller than or equal to 0.5 

800 800 

Your payoff in stage 2 is 525 and 
the distance between R and A is 
larger than 0.5 

500 300 

Your payoff in stage 2 is 30 and  
the distance between R and A is 
smaller than or equal to 0.5 

300 500 

Your payoff in stage 2 is 30 and  
the distance between R and A is 
larger than 0.5 

210 210 

 

Explanation „Distance“: 

       Consider the two numbers R and A. The distance between these two numbers is  

       R-A if R is larger than A and A-R if R is smaller than A. 
 

 

Stage 4: 
 

Decision stage 4: 

You choose between three alternatives: Left, Middle and Right by clicking on the corresponding 
alternative on the computer screen. Please confirm your choice by clicking on “OK”.  
 



 

Payoff stage 4: 

 

Alternatives  

Middle Right Left 

R is smaller than  
A-0.5 

315 315 1680 

R is larger/equal A -
0.5  and 
smaller/equal A+0.5  

1680 315 315 

Value of the 

Average number of 

correct questions 

  (R) 

R is larger than  
A+0.5 

315 1680 315 

 

A= Value of the average action of the participants of Experiment I 

 

R= Value of the average number of correct questions in Experiment I 

 

 

Calulation of your total payoff: 

 
Your total payoff in the experiment is given by the sum of: 

• The number of all your correctly answered questions multiplied by 190 tokens and the 
number of wrong answers multiplied by 10 tokens (your payoff in stage 1).  

• Your payoff in stage 2.  
• Your payoff in stage 3. 
• Your payoff in stage 4. 
• In addition you receive a payment of 725 tokens. 

 
This total payoff is converted into euros according to the exchange rate 1 Euro = 210 tokens. 

 



Instructions T Frame – Part I  
 
Course of the experiment: 
 
The experiment consists of two parts: In part I you answer two blocks of questions A and B each 
with 7 multiple-choice questions. In part II you make 8 decisions. The first four decisions (1A-4A) 
refer to question block A, the next four decisions (1B-4B) to question block B.  
 
The payoff from decision 1A (1B) depends among other things on your number of correctly 
answered multiple-choice questions in block A (B). Afterwards you receive some information 
on another experiment (Experiment I, II resp.). In Experiment I (II) question block A (B) have 
been answered and decision 1A (1B) have been made, too. Having received the information, 
you make decision 2A (2B). The payoff for decision 2A (2B) depends on Experiment I (II) 
and on your decision 1A (1B). Subsequently, you make decision 3A (3B) and 4A (4B), 
whereat your payoffs depend on Experiment I (II).  

Stage 1: 

Exactly like in R Hard except that subjects answer two different blocks of 7 multiple-choice questions 
(the hard and the tricky questions). Subjects are paid like in R Hard but only for one block of 
questions that is randomly selected.  
 
 
 

Instructions T Frame – Part II  
 

Decision 1A: 
Decision 1A:  

You state how many of the 7 questions in question block A you think you have answered correctly. 
For this, you enter a whole number between 0 and 7 in the corresponding cell and then click on „OK“. 

Payoff decision 1A:  

If your statement coincides with the actual number of correctly answered questions in block A („Your 
estimation is correct“), you receive 525 tokens, i fit does not coincide (“Your estimation is not 
correct”), you receive 30 tokens.  
 

Relevant information on Experiment I and II: 

In Experiment I and II respectively there have been 20 participants. These experiments consisted of 
answering the questions of block A in Experiment I and block B in Experiment II and each time a 
statement, how many questions have been answered correctly. For this statement, the participants have 
chosen between eight actions 0, 1, 2, 3, 4, 5, 6, 7. In case the actual number of correctly answered 
questions coincides with the number of the action, a participant received 525 tokens, if there was no 
coincidence he/she received 30 tokens.  

At the end of Experiment I (II) payoffs of the participants from answering the questions and from the 
decisions as well as an additional payment of 525 tokens have been converted into euros according to 
the exchange rate 1 Euro per 210 tokens and paid cash to the participants. 

 

Based on the answers and the decisions of the participants of Experiment I and II respectively, two 
averages for each experiment have been calculated after the experiment: 



 The average number of correct answers “R” of all participants: 

The average is calculated as follows: the number of correct answers of all participants is added 
and then divided by the number of participants (20).  

 The average estimation “E” of the participants: 

The average is calculated as follows: the chosen statements about the number of correctly 
answered questions of each participant are added and then divided by the number of 
participants (20).  

Both averages E and R of Experiment I and II  are rounded on one decimal place. Thus, the averages 
can take values from 0 up to 7 in steps of 0.1.                

 

Decisions 2A, 3A and 4A: 

Before you make decisions 2A, 3A and 4A, you are told the value of the average estimation (E) of 
the participants of Experiment I.          

Decision 2A: 

You decide how good your estimation of the number of correct questions is and how good the average 
estimation (E) of the participants of Experiment I is. There are four alternatives: 

•  “Both estimations are good”: your estimation is correct (see above) and the distance 
(explanation see below) between the average estimation (E) and the average number of correct 
questions (R) in Experiment I is smaller than or equal to 0.5.  

• “My own estimation is better”: your estimation is correct and the distance between E and R in 
Experiment I is larger than 0.5.  

•  „Average estimation is better“: your estimation is not correct and the distance between E and R 
in Experiment I is smaller than or equal to 0.5.  

• “Both estimations are bad”: your estimation is not correct and the distance between E and R in 
Experiment I is larger than 0.5.  

 

Payoff decision 2A: 

If you select the alternative that is actually true, you receive 400 tokens, otherwise you receive 50 
tokens. 

 

Explanation „distance“: 

       Consider the two numbers R and E. The distance between these two numbers is R-E if R is larger 

       than E and is E-R if R iss maller than E.  

 

Decision 3A: 

You state how well you think the participants in Experiment I assess themselves: 

• The participants overestimate their actual number of correctly answered questions on average. 
This means that the average number of correct (R) in Experiment I is by more than 0.5 smaller 
than the average estimation (E). 

• The participants estimate their actual number of correctly answered questions on average almost 
correct. This means that the average number of correct (R) in Experiment I is larger than or equal 
to E-0.5 and smaller than or equal to E+0.5. 



• The participants underestimate their actual number of correctly answered questions on average. 
This means that the average number of correct (R) in Experiment I is by more than 0.5 larger than 
the average estimation (E). 

You choose between the three alternatives (overestimate, correct, underestimate) by clicking on the 
corresponding alternative and confirming with OK.  

Payoff decision 3A: 

When the alternative you have chosen is actually true, then you receive 1680 tokens, when it is not 
true, you receive 315 tokens. 
 

Decision 4A: 

You state, what you think how large the average number of correctly answered questions (R) of 
the participants in Experiment I is. This is done by entering a number between 0 and 7 in steps of 0.1 
in the corresponding cell. 

Take notice of the following conditions:  

o If you have chosen “correct” in decision 3A, you can choose a Number that is larger than 
or equal to E - 0.5 and smaller than or equal to E + 0.5. 

o If you have chosen “underestimate” in decision 3A, you can choose a Number that is larger 
than E + 0.5 and smaller than or equal to 7. 

o If you have chosen “overestimate” in decision 3A, you can choose a Number that is larger 
than or equal to 0 and smaller than E - 0.5.  

 

Payoff decision 4A: 

If the distance between the number you have chosen and the average number of correct questions (R) 
is smaller than or equal to 0.5 and you selected in decision 3A the alternative that is actually true, then 
receive  105 tokens, otherwise you receive 20 tokens. 
 

Decision 1B-4B 

After decisions 1A-4A decisions 1B-4B regarding block B follow. 

Here, the following decisions are equivalent 1A-1B, 2A-2B, 3A-3B, 4A-4B besides that they refer 
now to block B and Experiment II.  

After decision 2B you are told the correct answers to the questions of block B. Afterwards you 
make decision 3B and 4B. 
 

Calculation of your total payoff: 

Your total payoff from the experiment is the sum of: 
• The number of your correctly answered questions in the block of questions randomly 

selected by the computer multiplied 190 tokens and the number of wrong answers in this 
block multiplied by 10 tokens.  

• Your payoff from decisions 1A-4A or 1B-4B: For the payment the computer again 
randomly selects whether decisions 1A-4A or 1B-4B are paid. 

• In addition you receive a payment of 420 tokens. 
 

This total payoff is converted into euros according to the exchange rate 1 Euro = 210 tokens. 



Instructions T Individual – Part 1  
 
Course of the Experiment: 
 
The experiment consists of 4 stages. In stage 1 you answer 7 multiple-choice questions. In stage 2 you 
make a decision. The payoff for this decision depends among other things on the number of 
multiple-choice questions you answered correctly. After stage 2 you receive some information on 
another experiment (Experiment I). In Experiment I stage 1 and 2 have been played as well. Having 
received this information, you make eight times a decision between two alternatives in stage 3. The 
payoff you get from the choice of an alternative depends on Experiment I and your decisions in stage 
2. In stage 4 you make eight times a decision between three alternatives, whereat your payoff from the 
choice of an alternative depends on Experiment I. You get the instructions for stage 2, 3 and 4 after 
having answered the 7 questions.  

Stage 1: 
 

Exactly like stage 1 in R Hard. 
 

 
Instructions T Individual – Part 2  
 

Stage 2: 

Decision stage 2:  

In stage 2 you choose one out of eight possible actions 0, 1, 2, 3, 4, 5, 6, 7.  This is done by entering 
one of these numbers in the corresponding cell on the computer screen and you confirm your choice 
by clicking on “OK”.  

Payoff stage 2:  

The following table shows the payoffs in tokens, which you receive depending on you choice and how 
many questions you answered correctly in stage 1. You are not told until after the experiment how 
many questions you answered correctly.  

 

Number of correct questions  

0 1 2 3 4 5 6 7 

Action 0 525 30 30 30 30 30 30 30 

Action 1 30 525 30 30 30 30 30 30 

Action 2 30 30 525 30 30 30 30 30 

Action 3 30 30 30 525 30 30 30 30 

Action 4 30 30 30 30 525 30 30 30 

Action 5 30 30 30 30 30 525 30 30 

Action 6 30 30 30 30 30 30 525 30 

 

A 

c 

t 

i 

o 

n 

Action 7 30 30 30 30 30 30 30 525 
        



Relevant Information on Experiment I: 

 

In Experiment I there have been 20 participants. The experiment consisted of exactly the same 2 
stages as just described: Answering 7 multiple-choice questions in stage 1 and choice between actions 
0, 1, 2, 3, 4, 5, 6, 7 in stage 2. 

At the end of Experiment I, payoffs of the participants from answering the questions and from the 
decisions as well as an additional payment of 525 tokens have been converted into euros according to 
the exchange rate 1 Euro per 210 tokens and paid cash to the participants. 

Based on the answers and the decisions of the participants of Experiment I, two values have been 
identified after the experiment: 

1. The number of correct answers “R” of a participant. 

2. The action “A” chosen by a participant. The value A of an action is a number between 0 and 
7 next to an action (see table).   

You are randomly assigned to one participant of Experiment I. When you make your decisions, you do 
not know which participant it is. Therefore, you make your decisions in stage 3 and 4 for all possible 
values of A, i.e. 0,1,2,3,4,5,6,7. For none of these values of A you get to know the value of R.  

Stage 3: 

Decision stage 3: 

In stage 3 you choose for every possible A (0,1,2,3,4,5,6,7) between two alternatives – i.e. you make 
eight times a  decision between the two alternatives. The choice is done by clicking on the alternative 
on the screen and confirming the choice with “OK” when you finished all eight decisions.  

Payoff stage 3: 

The following table shows your payoff in stage 3 depending on the values of R and A of the 
participant of Experiment I that is assigned to you, your payoff in stage 2 (which you are not told 
until the end of the experiment) and your choice between the two alternatives:  

 

 Alternative 1 Alternative 2 

Your payoff in stage 2 is 525 and R 
equals A  

800 800 

Your payoff in stage 2 is 525 and R 
is larger or smaller than A but not 
equal to A. 

500 300 

Your payoff in stage 2 is 30 and  R 
equals A. 

300 500 

Your payoff in stage 2 is 30 and  R 
is larger or smaller than A but not 
equal to A. 

210 210 

 

Stage 4: 

Your decision: 

• You make for each possible A (0,1,2,3,4,5,6,7) a decision between three alternatives – i.e. you 
make eight times a decision between three alternatives: Left, Middle and Right by clicking on 
the corresponding alternative on the computer screen. Please confirm your choice by clicking on 
“OK”.  



• Then, you choose a number for each possible A (i.e. you choose eight times a number): 

o When you chose Left, you choose a whole number between 0 and A-1 

o When you chose Right, you choose a whole number between A+1 and 7 

o When you chose Middle, you choose exactly the number A 

A table that shows you all possible numbers you can choose in stage 4 for each possible choice of 
alternatives in stage 4 and all values of A is attached to the instructions.  

• After you have made all sixteen decisions, please confirm your choice by clicking on “OK”.  

 

Payoff stage 4: 

1. You receive 105 tokens, when the number you have chosen coincides with the value R of the 
participant that is assigned to you. If there is no coincidence, you receive 20 tokens. 

2. Based on your decision and the values R and A of the participant that is assigned to you, you 
receive the following payoff:  

 

 

Alternatives  

Middle Right Left 

R is smaller than    A 315 315 1680 

R equal to A  1680 315 315 

Number of 

correct questions 

 (R) of the selected 

 participant  R is larger than A 315 1680 315 

 

A= Action chosen by a participant of Experiment I 

 

 

R= Number of correct questions of a participant in Experiment I  
 

 

Calulation of your total payoff: 

 
Your total payoff in the experiment is given by the sum of: 

• The number of all your correctly answered questions multiplied by 190 tokens and the 
number of wrong answers multiplied by 10 tokens (your payoff in stage 1).  

• Your payoff in stage 2.  
• Your payoff in stage 3. 
• Your payoff in stage 4. 
• In addition you receive a payment of 400 tokens. 

 
This total payoff is converted into euros according to the exchange rate 1 Euro = 210 tokens. 
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