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Introduction

"Nature makes no jumps," according to a famous saying - but what about economies? Is
economic welfare continuous in the size of the frictions of trading and do the welfare the-
orems hold approximately when frictions are small? We will look at a speci�c institution
- a decentralized market - and at a speci�c problem in decentralized markets that might
be induced by frictions - market power. We will ask: When frictions in the decentralized
market are small, will the trading outcome be approximately e¢ cient?

Suppose you are looking for a job that pays a good wage. Most likely, you will have
to exert e¤ort to �nd some vacancies - these are the frictions of trade. Once you have
found some vacancies, you will have to bargain with each single employer separately -
this is the decentralized nature of the market: Despite the fact that there are potentially
hundreds of other employers and workers in the market, within each negotiation, you
will �nd yourself in a bilateral, one-on-one relationship. In this relationship, each of you
might enjoy some market power and the outside option of searching for a new partner
is of limited help since search is costly. In addition, both of you might not know how
important a deal is to the other, and both of you are probably low-balling: The employer
o¤ers only low wages (since, unfortunately, he can hardly a¤ord a new employee), while
you ask for a high wage (since, actually, you do not really need the job right now). Is
there reason to believe that a labor market can nevertheless be well approximated by a
general equilibrium model, which assumes that wages will be market clearing and which
predicts that the trading outcome is e¢ cient?

Situations as described before can be modeled as dynamic matching and bargaining
games, which have been introduced by Gale (1987).1 He considers bilateral trade between
one buyer and one seller and embeds it into a larger dynamic market game as follows:
There is a continuum of buyers and sellers who are matched into pairs at the beginning
of each period. Within each pair, they bargain over the terms of trade. The pairs are
connected by allowing an unsuccessful trader to be matched with another partner in a
new pair in the next period. However, there is a friction that makes waiting for the next
period costly, so the integration of the market is not perfect. Here, this friction is an
exogeneous probability � 2 (0; 1) that a trader cannot enter the next period and exits
(dies).

Formally, we will look at the limit of the equilibrium outcomes of such setups when
� converges to zero. The �rst chapter of this thesis illustrates how market power in the
bilateral bargaining situation can make the overall trading outcome ine¢ cient. We show
that if sellers can observe the valuation of the buyers, i.e., if information is symmetric,
and if sellers make price o¤ers, then the overall surplus is increasing in the size of frictions
�. In particular, the outcome does not become e¢ cient when � converges to zero. The
second chapter shows that the outcome does become e¢ cient if sellers can not observe
the valuation of the buyers, i.e., contrary to intuition, asymmetric information makes
trading more e¢ cient. We relate the positive convergence result in this second chapter to
the informal reasoning that prices must be market clearing (implying an e¢ cient trading
outcome) since otherwise sellers would be rationed, giving them an incentive to o¤er
lower prices. The third and �nal chapter of this thesis explores the general structure

1This description is taken from the introduction of Chapter 1.
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of the �rst two results. We observe that each speci�cation of a dynamic matching and
bargaining game together with a decreasing sequence of frictions de�nes a sequence of
trading outcomes. We will discuss structural properties of such sequences, which on the
one hand ensure that its limit is e¢ cient, while relating on the other hand to economic
properties of the underlying games. Thereby, we highlight a common cause behind existing
positive convergence results, e.g., those by Gale (1987) and Satterthwaite and Shneyerov
(2007). We also illustrate the structural properties of some other speci�cations for which
trading outcomes fail to converge to e¢ ciency, e.g., Serrano (2002) and DeFraja and
Sakovics (2001).

Although we will concentrate on the characterization of trading outcomes in the limit,
it should not go unnoticed that the �rst two chapters provide characterizations of trading
outcomes for every level of frictions. The �rst main result is that asymmetric information,
i.e., consumer privacy, can be good for e¢ ciency in a market: In contrast to bilateral
interaction, in a market the distribution of rents between the trading partner matters,
and this distribution of rents is in�uenced by the degree of information. The second main
result is the provision of a generalized Lerner formula for dynamic markets in which buyers
can time their purchases. We show that the markup of prices over costs is proportional
to the dynamic elasticity of demand. Nevo and Hendel (2006) empirically analyse the
market for laundry detergents and show that the possibility to store these goods makes
demand more elastic. Both results of these chapters are of direct relevance for economic
policy evaluation.
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1 When Less Information is Good for E¢ ciency: Private
Information in Bilateral Trade and in Markets

We consider a simple bilateral trading game between a seller and a buyer
who have private valuations for an indivisible good. The seller makes a price
o¤er which the buyer can either accept or reject. If the seller can observe the
valuation of the buyer (if information is symmetric), the trading outcome is
trivially e¢ cient. With asymmetric information, the outcome must be ine¢ -
cient, as is known from the Myerson-Satterthwaite Theorem. We embed this
bilateral trading game into a matching market and show that this relation
between information and e¢ ciency is reversed. In particular, if information is
symmetric, trading in the market is ine¢ cient.

1.1 Introduction

Asymmetric information makes bilateral trade ine¢ cient, as is known from the Myerson-
Satterthwaite impossibility theorem. With symmetric information however, bilateral
trade is e¢ cient. Embedding a bilateral trading game into a larger market, we show
that this connection between e¢ ciency and information is reversed: With symmetric
information, the market outcome is bounded away from the e¢ cient one, even when trad-
ing frictions are small. In the same model, trading with asymmetric information becomes
e¢ cient once frictions vanish, as shown in chapter two.

To model a decentralized market, we use a steady state, dynamic matching and bar-
gaining game with an exogeneous in�ow, building on Gale (1987). He considers bilateral
trade between one buyer and one seller and embeds it into a larger dynamic market game
as follows: There is a continuum of buyers and sellers who are matched into pairs at the
beginning of each period. Within each pair, they bargain over the terms of trade. The
pairs are connected by allowing an unsuccessful trader to be matched with another part-
ner in a new pair in the next period. However, there is a friction that makes waiting for
the next period costly, so the integration of the market is not perfect. Here, this friction
is an exogeneous probability � 2 (0; 1) that a trader cannot enter the next period and will
exit (die).

The equilibrium outcome of versions of the dynamic matching and bargaining game
have been shown to be e¢ cient if frictions are small and any of the following three market
clearing forces is present: if bargaining power is symmetric between buyers and sell-
ers (e.g., Gale (1987)); if there is a chance that one buyer receives prices from several
competing sellers (Satterthwaite and Shneyerov (2005));2 or if information is asymmetric
(chapter two). Formally, with � converging to one, equilibrium outcomes of these models
become e¢ cient. Here we show the opposite: If sellers have all the bargaining power, if
bargaining takes place only in pairs, and if information is symmetric, then the outcome
can never become e¢ cient, not even for small frictions when � converges to zero.

The intuition for the negative result is the following: If sellers can observe the buyers�
willingness to pay and if sellers have all the bargaining power, then sellers will be able to

2Satterthwaite and Shneyerov (2005) assume that there is an exogeneous exit rate, as we do here. In
their later 2007 paper, they assume that there is no exogeneous exit, see the discussion in Section 1.3.1.
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perfectly price discriminate among buyers. This allows sellers to make strictly positive
pro�ts - even in the limit for small �. Thus, sellers are not willing to trade with those
buyers whose valuations are just above the cost of the sellers. Therefore, marginal buyers
who should trade in the e¢ cient allocation do not �nd a trading partner, and the allocation
is ine¢ cient.

The �rst step of the intuition is well-known from the Diamond paradox (Diamond
(1971), see the discussion in the next section). But note that price discrimination by
itself does not create ine¢ ciencies. Ine¢ ciencies arise only because the bilateral bargaining
problem is part of a market in which sellers can make pro�ts on other buyers in the market
in the future.3

On an applied level, our result suggests that, in a market with a very skewed distri-
bution of market power, the ability of the stronger side to price discriminate is harmful.
Therefore, our results suggest the economic importance of private information, i.e., "con-
sumer privacy" (see Varian (1996)). This paper is also related to the literature on em-
bedding problems of "contract design" into (matching) markets (see e.g., Inderst (2001,
2004) or Felli and Roberts (2002)). As in their models, a property of exchange between
a small set of agents in isolation is fundamentally altered when considered as part of the
equilibrium of a market.

To further analyze the role of information, we change the model slightly and assume
that sellers do not observe the type of the buyer directly but only a noisy signal of it.
Thereby, buyers of di¤erent types can mimic each other. With the possibility of mimicry
in place, the reasoning put forth in chapter two implies that prices converge to their
competitive level of zero. We sketch out this model and the proof of the convergence
result in the appendix.

1.2 Model and Analysis

1.2.1 The Model

The model is taken from chapter two, adding the assumption that sellers can observe
buyers�types:4 There is a continuum of buyers and sellers. Sellers are endowed with one
unit of an indivisible good, and their costs of trading are c = 0. Buyers want to buy
one unit of the good, and their valuation for the good is v 2 [0; 1]. Buyers and sellers
interact in a repeated market over in�nitely many periods, with time running from minus
to plus in�nity. At the beginning of each period, there is some pool of buyers and sellers.
All traders from this pool are matched into pairs consisting of one seller and one buyer.
Within each pair, the seller observes the type of the buyer and then announces a price
p. The buyer announces whether he accepts or rejects the o¤er. If he accepts, the seller
receives a payo¤ p , while the buyer receives v � p; If he rejects, they receive nothing.
Then, all those agents who have traded leave the market together with a share � of those
who have not. After that, new players enter the market. The in�ow of buyers and the
in�ow of sellers has mass one each. The distribution of valuations among entering buyers

3 In Diamond�s orginal paper, it is the assumption of linear prices, coupled with elastic demand, which
causes the ine¢ ciency of the equilibrium outcome.

4 In addition to the di¤erent bargaining protocol, another main di¤erence from Gale (1987) is the
existence of an exit rate � 2 (0; 1). If traders can leave the market only through trading, as in Gale, our
results do not hold, see Section 1.3.1.
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is given by the c.d.f. G (�). With the in�ow of new traders, the period ends, and the next
period starts according to the same rules. Finally, we describe the pool byM , and �B (�):
M denotes the mass of buyers in the pool at the beginning of each period. This mass is
equal to the mass of sellers. The c.d.f. �B (�) describes the distribution of buyers�types
v in the pool.

The mass of entering buyers with valuations above some given v, (1�G (v)) 2 [0; 1]
can be interpreted as "demand," and we assume that it is strictly decreasing, i.e., its
density g (�) is strictly positive. "Supply," i.e., the mass of entering sellers, is equal to
one. Let pw be the Walrasian price at which demand is equal to supply, i.e.,

1�G (pw) = 1,

and this price is clearly pw = 0. In a more complicated model, sellers could be heteroge-
neous as well, and in this case pw would be interior (see Section 1.3.3).

We restrict attention to equilibria in which sellers use symmetric and stationary pricing
strategies P (�; �), where P (p0; v) is the probability to o¤er a price p � p0 to a buyer
of type v, i.e., P (�; v) is a c.d.f.. The payo¤ to a seller in a steady state (see below)
who uses a pricing strategy P (�; �) can be derived as follows. Denote by qS (P (�; �)) the
probability that this seller can trade some time during his entire lifetime. Let r (v) be
the highest price accepted by a buyer with valuation v (see below). With D (P (�; �)) =R 1
0 P (r (�) ; �) d�

B (�) being the probability to trade in any given period, we can derive
qS (P (�; �)) recursively from

qS (P (�; �)) = D (P (�; �)) + (1�D (P (�; �))) (1� �) qS (P (�; �)) ;

as

qS (P (�; �)) � D (P (�; �))
1� (1� �)D (P (�; �)) .

Denote by E [pjP (�; �)] the expected price conditional on being able to trade.5 Then ex-
pected pro�ts �(�) are

�(P (�; �)) = qS (P (�; �))E [pjP (�; �)] :

To derive the optimal search strategy of a buyer, observe that he is essentially sampling
without recall from a known and constant distribution of prices. For this problem, it is
well known that the optimal solution can be described by a threshold, a reservation price
r, such that a price p is accepted if and only if p � r (see McMillan and Rothschild (1994)).
The payo¤ to a buyer of type v with a reservation price r depends on the expected price
o¤er, E [pjp � r; v],6 and the probability to trade some time during his lifetime, i.e., to
receive an acceptable o¤er p � r in any period, denoted by qB (r; v):

UB (r; v) = qB (r; v) (v � E [pjp � r; v]) :

Let V (v) = maxr UB (r; v) be the maximized expected lifetime payo¤. At the reservation
price r (v), buyers must be indi¤erent between acceptance and rejection, so v � r (v) =

5Let E [pjP (�; �)] = 0 if qS (P (�; �)) = 0.
6Let E [pjp � r; v] = r if qB (r; v) = 0.
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(1� �)V (v). Rewriting yields

r (v) = v � (1� �)V (v) : (1.1)

We will require the price o¤er P (�; v) to be optimal for every possible type v. For
this, let US (p; vjP (�; �)) be the pro�t of a seller who o¤ers a price p to a buyer of type v
and continues according to the strategy P (�; �), i.e.,

US (p; vjP (�; �)) =
�
p if p � r (v)
(1� �)� (P (�; �)) if p > r (v) :

Formally, we require that every price in the support of P (�; v) be optimal:

p 2 argmaxUS (p; vjP (�; �)) for all v and p 2 suppP (�; �) : (1.2)

The market is in a steady state if the in�ow is equal to the out�ow. The in�ow of
buyers with valuations below v is G (v), while the out�ow consists of all buyers who trade
plus those buyers who die. Equality of in- and out�ows holds if

G (v) =M

Z v

0
[P (r (�) ; �) + � (1� P (r (�) ; �))] d�B (�) ; (1.3)

and similarly for sellers:

1 =M [D (P (�; �)) + � (1�D (P (�; �)))] : (1.4)

We de�ne a steady state equilibrium as a vector consisting of a pair of two strategies,
P (�; �) and r (�), the steady state distribution �B (�), and the mass M of traders, such
that P (�; �) 2 argmax� (�), (1.2) holds, reservation prices satisfy (3.5), and the steady
state conditions (1.3) and (1.4) hold.

1.2.2 Results

We want to characterize the set of equilibria with � ! 0. For this, we will look at a
strictly decreasing sequence of exit rates f�kg1k=1 with limk!1 �k = 0. We will see that
for each k at least one equilibrium exists, and we �x one equilibrium for each k, yielding
a sequence

��
Pk (�; �) ; rk (�) ;�Bk (�) ;Mk

�	1
k=0
. Let lk (v) denote the lowest price o¤ered

to a type v, de�ned as lk (v) � inf fp : Pk (p; v) > 0g.

Our main result is this: No buyer receives a price o¤er that is strictly below his
valuation, i.e., lk (v) � v for all v. And for every k; the pricing strategy is characterized
by a unique cuto¤ �vk: The price o¤er is unacceptable for all buyers with a valuation
below �vk, i.e., the probability to o¤er a price at or below the valuation v, P (v; v) is zero
for all v < �vk. For all other buyers the price o¤er is just acceptable, i.e., P (v; v) = 1
for all v > �vk. This cuto¤ type is decreasing in �k. Therefore, more buyers can trade
when frictions are large and the equilibrium outcome is more e¢ cient. Finally, �vk does
not converge to the e¢ cient level (zero) for vanishing frictions:
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Proposition 1 For every �k and in every equilibrium, lk (v) � v and rk (v) = v. In
addition, there is a unique cuto¤ �vk 2 (0; 1) such that

Pk (v; v) =

�
0 if v < �vk
1 if v > �vk:

The cuto¤ �vk is decreasing in �k, and limk!1 �vk � �v� > 0.

We prove the proposition in the remainder of this section. The �rst statement, lk (v) �
v, follows from reasoning familiar from the Diamond paradox: Suppose there is some
equilibrium with a pricing strategy P (�; �) such that lk (v) < v for some v and �k. Because
of the probability to die while waiting, a buyer of type v is willing to pay a price above
lk (v): rk = v�(1� �k)Vk (v) and Vk (v) � (v � lk (v)) together imply that rk (v) > lk (v).
So by de�nition of lk (v), there is some p0 2 suppP (�; �) such that p0 < rk (v). However,
o¤ering a price p equal to the reservation price would strictly increase pro�ts, i.e.,

US
�
p0; vjP (�; �)

�
= p0 < rk (v) = U

S (rk (v) ; vjP (�; �)) ;

and so P (�; �) fails the optimality condition (1.2). Thus, lk (v) � v. Noting that buyers
reject all prices p > v, lk (v) � v implies that in every equilibrium sellers either o¤er an
acceptable price p = v or some unacceptable price. In both cases payo¤s to the buyer are
zero. Hence, rk (v) = v.

The intuition for the remainder of the results is this: If sellers are able to price
discriminate among buyers, they can o¤er a price equal to their valuation, p (v) = v. Given
p (v) = v for all v, the expected pro�t of sellers is strictly positive in every equilibrium,
because the expected valuation of a buyer is strictly positive, E [v] > 0. For the outcome
to become e¢ cient, however, sellers must be willing to trade with all types v 2 (0; 1]. But
if their expected continuation pro�ts are strictly positive, no seller is willing to trade with
a buyer with a valuation close to zero. Thus, the equilibrium outcome does not become
e¢ cient.

Next we go into the details. Suppose there is some equilibrium given �k (we will prove
existence of equilibrium below) and let ��k be the associated pro�t of sellers. Given these
pro�ts, suppose a seller is matched with a buyer with a valuation v0: If this valuation
is strictly above the continuation value of the seller, i.e., if v0 > (1� �k)��k, then the
optimal o¤er is clearly a price p = v0; in this case, the seller makes more revenue from
trading than from waiting further. If the valuation is below the continuation value, then
any unacceptable price p > v0 is optimal (recall v0 = rk (v0)). Let �v�k � (1� �k)��k be the
cut-o¤ type, then every strategy in this equilibrium is characterized by lk (v) � v (from
before) and

P �k (v; v) =

�
0 if v < �v�k
1 if v > �v�k:

(1.5)

Note that the exact unacceptable o¤er is not speci�ed uniquely, and the optimal o¤er to
the type �v might or might not be acceptable.

Take any pricing strategy that has this structure, i.e., take any P (�; �) such that
lk (v) � v and such that P (v; v) = 1 if v > �v and P (v; v) = 0 if v < �v, as in (1.5). Denote
this strategy by a subscript �v, P�v (�; �). If sellers use this strategy, we can calculate expected
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pro�ts and denote them by �k (P�v (�; �)). A strategy P�v (�; �) is part of an equilibrium if
and only if

�v = (1� �k)�k (P�v (�; �)) ; (1.6)

where the "only if" part was shown before; the "if" part follows from the one time deviation
principle. To derive �k (P�v (�; �)), we need the trading probability of a seller and we
need the expected price he receives. For the former, note that all entering buyers with
valuations above �v will trade immediately; no other buyer can not trade. So the total
mass of buyers who enter the market and who trade is (1�G (�v)). In a steady state, this
mass of trading buyers must be exactly equal to the mass of trading sellers. Therefore, a
mass (1�G (�v)) of all sellers in the in�ow will trade, and hence7

qSk (P�v (�; �)) = 1�G (�v) :

The expected price a seller receives conditional on trading, E [pjP�v (�; �)], is simply the
expected valuation conditional on v � �v. Note that buyers with such a valuation remain
in the market only for one period; consequently, the distribution of their types is given
by G (�). Thus:

E [pjP�v (�; �)] =
1

1�G (�v)

Z 1

�v
vg (v) dv;

and pro�ts are

�k (P�v (�; �)) = qSk (P�v (�; �))E [pjP�v (�; �)] =
Z 1

�v
vg (v) dv: (1.7)

Using this observation and condition (1.6), �v = (1� �k)�k (P�v (�; �)), we �nd that P�v (�; �)
is an equilibrium pricing strategy if and only if �v satis�es

�v = (1� �k)
Z 1

�v
vg (v) dv: (1.8)

A solution to this equation exists by the intermediate value theorem: Both sides are
continuous; at �v = 0 the right hand side is strictly above zero, and at �v = 1 the right
hand side is zero. Therefore, an equilibrium exists. Furthermore, the right hand side is
strictly decreasing in �v, so the solution is unique. Denoting this value by �vk for given �k,
an inspection of (1.8) reveals that �vk must be decreasing in �k.

Finally, let �v� be the limit of �vk as �k becomes zero, �v� = limk!1 �vk with �k ! 0.
This limit exists by �vk being decreasing in �k. In the limit, (1.8) becomes

�v� =

Z 1

�v�

vg (v) dv;

and clearly �v� = 0 is not a solution by g (v) > 0 for all v (from the assumption that "de-
mand" (1�G (�)) is strictly decreasing). Because the right hand side of (1.8) is continuous
in �k and in �vk, this implies �v� > 0. This completes the proof.

7Although intuitive, the identity of the masses of trading buyers and sellers must be proven. This is
done in chapter two. The formula for qS , however, can also be derived directly by rewriting the steady
state conditions (1.3) and (1.4) (see again chapter two). The same is true later for the expected price
E [pjPv (�; �)].
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1.3 Remarks and Conclusion

1.3.1 In�nitely Lived Agents

In some set-ups of dynamic matching and bargaining games, traders never die (i.e., � =
0); so they can exit the market only through trade (e.g., Gale (1987) or Satterthwaite,
Shneyerov (2007)). In these models, the frictions (search costs) stemming from the exit
rate are replaced by frictions stemming from discounting. On the individual level, this
replacement does not change the incentives of the traders. But the absence of an exit
rate does change the composition of the pool. In particular, in a steady state of such a
model, all traders who choose to enter must be able to trade at some point, for otherwise
they would accumulate over time. To ensure the existence of a steady state, one therefore
has to introduce an entry stage at which traders can decide whether they want to enter
the market. Without going into the very subtle details of such models, we can already
see that our line of reasoning does not apply here: Suppose we would like to support
some ine¢ cient equilibrium in which only buyers with valuations above some threshold
�v > 0 trade. So, at most, buyers with such a valuation can enter the market, and the
total mass of buyers who enter in every period is strictly below one, since by assumption
(1�G (�v)) < 1 for all �v > 0. In a steady state, the mass of entering buyers must be equal
to the mass of entering sellers. Hence, only a mass (1�G (�v)) of sellers becomes active.
This, however, requires that some sellers stay out - which they do only if their expected
pro�ts are zero. Of course, if sellers make zero expected pro�ts, then they are willing
to trade with all buyers, including those with a valuation close to zero. So the proposed
threshold �v > 0 is upset by the "free entry condition," which is implicitly included in the
assumption of in�nitely lived agents (see also the discussion in Chapter 2).

1.3.2 Asymmetric Information and Bargaining Power

As said in the introduction, the equilibrium becomes e¢ cient with � ! 0 if information
is asymmetric, i.e., if sellers do not observe the valuation of buyers before they make an
o¤er. Recall that the source of the ine¢ ciency in our model is the possibility of sellers
to make strictly positive pro�ts. This is true even if sellers are willing to trade with all
buyers since the expected pro�t from price discrimination is E [vjv � 0], which is strictly
positive (see Equation 1.7). This is di¤erent with asymmetric information: If the sellers
are willing to trade with all buyers, they must be o¤ering a uniform price p = 0 to
all buyers. This implies that their pro�ts are zero, and they would indeed be willing
to trade with low valuation buyers. This is the reason why asymmetric information is
important for e¢ ciency: With asymmetric information, (perfect) price discrimination
becomes impossible; so pro�ts when trading with all types above some threshold �v are at
most �v itself. With symmetric information, pro�ts when trading with all buyers with a
valuation above some threshold �v might be strictly larger than �v.

Similarly, perfect price discrimination becomes impossible if the bargaining power of
sellers is reduced. This is the case if buyers themselves can make counter o¤ers (as in Gale
(1987)) or if several sellers are directly competing for a single buyer, as in Satterthwaite
and Shneyerov (2005, 2007)). This explains why in Gale (1987) the outcome becomes
e¢ cient with vanishing frictions. It is an open question whether the equilibrium outcome
converges to e¢ ciency in the setup by Satterthwaite and Shneyerov (2005) if we assume
that information is symmetric. However, in the much simpler setup by Burdett and Judd
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(1983), who also analyse competing o¤ers, it is possible to show that prices do become
competitive, even though the valuation of the buyer is known.

1.3.3 Heterogeneous Sellers and One-Time Entry

The ine¢ ciency result hinges on the fact that sellers can make pro�ts in the future on
newly arriving buyers. What will happen if traders enter the pool only in the �rst period
and if there is no in�ow in the subsequent periods? While one will have to adjust several
details of the model, the result will be that trading becomes e¢ cient. Essentially, there
will be a sequence of cuto¤s for each period,

�
�vt
	1
t=1
, such that in period t sellers trade

with all buyers with v � �vt and with t ! 1, �vt ! 0. To simplify the analysis, however,
we assume in our model that sellers are homogeneous with costs c = 0.8 If sellers are
heterogeneous, with costs distributed according to some smooth c.d.f. GS (�), then trading
is not e¢ cient in the limit. First, there will be a "market-clearing" price pw such that
GS (pw) = 1 � G (pw), and in the e¢ cient allocation all buyers with v � pw must trade
with sellers with c � pw - and no one else. Second, by the same reasoning as in our
model, buyers will make zero payo¤s and accept all prices below their valuation. Thus,
sellers with costs above pw can trade (although they should not) with all those buyers
who have a valuation above their own costs, i.e., with all v � c > pw. Basically, price
discrimination allows unproductive sellers to trade, which makes the outcome ine¢ cient.
This is yet another reason for ine¢ ciencies arising from symmetric information, which is
distinct from the one analyzed in our main model.

8 If we allow for heterogeneous costs in the main model, then we can no longer provide simple closed
form solutions for the equilibrium outcome. Furthermore, we would intermingle two separate sources of
ine¢ ciency; see the end of this section.
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2 A Dynamic Matching and Bargaining Game with Asym-
metric Information and Price O¤ers

We study a dynamic matching and bargaining game in which traders are
matched into pairs and sellers make price o¤ers. Traders exit the market with
a constant rate �. We show that for every �, an equilibrium exists. With
vanishing �; the market converges to the competitive outcome. Additional
assumptions that can be found in the literature and that are favorable to the
competitive outcome are not needed.

2.1 Introduction

It is a common claim that decentralized markets clear and become e¢ cient as frictions
vanish. Decentralized markets include the markets for housing, used cars, and labor.
Economists refer to the following informal story: Suppose prices in a market are constantly
too high. Then some sellers must be rationed and trade less than they desire. This gives
them an incentive to decrease their price in order to increase the trading volume by making
the o¤er acceptable to more buyers. This incentive upsets any equilibrium candidate in
which prices are too high.

The story relies on two ingredients: the rationing of sellers, and the existence of
additional buyers at lower prices. Here, we show that one can model the story formally,
i.e., the two ingredients are indeed su¢ cient for a decentralized market to become e¢ cient
once frictions vanish. Additional assumptions which are favorable to the competitive
outcome that are not part of the story but that are made in the existing literature on
decentralized trading are not needed for the convergence result. The results of this paper
suggest that convergence to e¢ ciency is a robust property of decentralized trading that
is largely independent of the exact trading rules.

We use the following dynamic matching and bargaining game, similar to the model
used by Gale (1987): There are in�nitely many periods, and in each period there is a large
pool of traders who want to trade an indivisible good. The pool consists of a continuum
of buyers and sellers: Sellers have costs c 2 [0; 1] and buyers have valuations v 2 [0; 1].
These types are private information. At the beginning of every period, all sellers and all
buyers from the pool are matched into pairs. In each pair, the seller makes a price o¤er
to the buyer. If the buyer accepts the price, the pair exits the market. If he declines, the
match is broken up, and both traders return to the pool and wait to be rematched with
new partners in the next period. While waiting, traders exit with a constant hazard rate
�. The hazard rate introduces costs of waiting for better o¤ers, and we say that � is the
friction in the market. At the end of every period, an equal mass of new buyers and new
sellers enters the market.

Let pw be de�ned as the price at which the mass of entering sellers with costs below pw

is equal to the mass of entering buyers with valuations above pw. So pw is the competitive
or market clearing price relative to the in�ow. The trading outcome is Walrasian if all
buyers with valuations above pw and all sellers with costs below pw can trade. Our main
result characterizes the trading outcome with small �: With � ! 0, all trade happens at
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the price pw (Proposition 3), and the trading outcome becomes the Walrasian outcome
(Corollary 1).

To illustrate the result, it is helpful to consider the case where sellers are homogeneous
and their costs are c = 0. Buyers are assumed to be heterogeneous. The unique market
clearing price is zero, pw = 0: At any price pN above zero, the mass of the sellers is
strictly larger than the mass of buyers in the in�ow with valuations above pN . We show
that if sellers set a price pN > 0, then some of them will be rationed, where rationing
means that the probability to trade some time during their life must be strictly smaller
than one. However, setting any price p0 < pN , would in addition allow them to trade with
those buyers who have valuations v 2

�
p0; pN

�
. Because these buyers never trade, they

make up a strictly positive share of the pool. When � becomes small, sellers are matched
with more and more buyers; in the limit, a seller will become certain to be matched with
a buyer of type v 2

�
p0; pN

�
, who accepts his price p0 below pN . Because p0 is arbitrarily

close to pN , for � small enough, this implies that already an in�nitesimal decrease of the
price ensures a trading probability close to one. At pN , however, the trading probability
is bounded away from one because of rationing. This incentive to decrease prices upsets
every equilibrium candidate with pN > 0.

The convergence result is not immediate: Diamond (1971) shows that even with small
trading frictions sellers can have considerable market power: Given any common price
pN set by sellers and any arbitrarily small friction �, buyers with valuations v > pN

are willing to pay an additional premium of �
�
vpN

�
to save on waiting costs. This

allows all sellers to mark up the price pN and provides incentives to increase their prices.
With homogeneous buyers, this implies that sellers o¤er monopolistic prices in the unique
equilibrium. This is known as the Diamond paradox. Here, prices are not monopolistic
because buyers are heterogeneous, and sellers have a countervailing incentive to decrease
their price to reach additional buyers with valuations below pN . This becomes apparent
when we construct an equilibrium in the example in Section 2.3: We prove that for each
� there exists a common price p� (�) set by all sellers, at which the incentives for sellers to
mark up the price by the waiting costs are just balanced by the incentives to decrease the
price to reach additional buyers. With decreasing �, the potential premium � (v � p� (�))
decreases, while the incentives to reach additional buyers remain and lim�!0 p� (�) = 0.

When sellers have heterogeneous costs, however, we have an additional complication:
sellers with di¤erent costs might set di¤erent prices, i.e., we need to account for price
dispersion. With dispersed prices, it might be the case that sellers set prices just in the
right way to give incentives to buyers to accept high prices (by setting high prices most
of the time), while balancing the distribution of buyers to avoid accumulation of low
valuation buyers (by setting low prices some of the time). The main part of the proof
with heterogeneous sellers consists in showing that price dispersion does not occur with
vanishing �.

The fact that we give sellers all the bargaining power is our crucial departure from the
existing literature; our model is standard in most other respects: The basic framework of
the steady state model with heterogeneous agents, pairwise matching, and an exogeneous
in�ow of agents was introduced by Gale (1987). Recent models like those of Inderst (2001)
and Satterthwaite and Shneyerov (2005, 2007) have extended this framework to asym-
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metric information.9 Following McAfee (1993) and Satterthwaite and Shneyerov (2005),
we introduce an exogeneous exit rate. Given the exit rate, we drop time discounting as
an additional friction.

We start with a section introducing the model. Then we illustrate the model by assum-
ing homogeneous sellers, and we characterize the unique equilibrium in pure strategies.
Then we go on to the heterogeneous case. First, we show that an equilibrium exists for
all levels of �. Second, we prove our main result, showing convergence to the competitive
outcome. We go on to an extensive discussion of our modelling choices and extensions.
In particular, we show which additional assumptions the existing literature makes to
ensure convergence, and how these assumptions translate into forces promoting market
clearance. We also discuss extensions to the analysis of non-steady states, the relation
to the non-convergence result in chapter two, the role of the assumption that buyers are
heterogeneous, and the role of the exit rate.

2.2 Model

There is a continuum of buyers and sellers who interact in a repeated market over in�nitely
many periods. Sellers have one unit of an indivisible good and their costs of trading are
c 2 [0; 1]. Buyers want to buy one unit of the good and their valuation for the good
is v 2 [0; 1]. At the beginning of each period there is some pool of buyers and sellers.
The traders from this pool are matched into pairs consisting of one seller and one buyer.
Within each pair the seller announces a price o¤er p 2 [0; 1] and the buyer announces
whether he rejects or accepts the o¤er. If he accepts, the seller receives p � c while the
buyer receives v�p. Next, all buyers and sellers who have traded exit the pool. Likewise,
a share � of all those traders who failed to trade exits. Finally, new players enter the
market and the period ends. The next period starts according to the same rules.

The in�ow of buyers and the in�ow of sellers has mass one each. The distribution of
valuations among buyers in the in�ow is exogeneously given by some c.d.f. GB (�) and
similarly, the distribution of costs is given by some distribution GS (�). We assume that
GB (�) has a continuous and strictly positive density gB (�).10 The function GS (�) can
be interpreted as supply, and 1 � GB (pw) can be interpreted as demand. Let pw be the
Walrasian price at which demand is equal to supply, i.e.,

GS (pw) = 1�GB (pw) . (2.1)

Since the former is weakly increasing and the latter is strictly decreasing by our assump-
tions, the solution to (3.1) is the unique.

The market constellation is characterized by a vector � =
�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
where p (c) 2 [0; 1] is the price o¤ered by a seller of type c, r (v) 2 [0; 1] is the highest
price accepted by a buyer of type v, �S (�) is the cumulative distribution function of costs
in the pool of sellers, �B (�) is the corresponding distribution function for buyers, and
M is the total mass of buyers in the pool which is equal to the total mass of sellers in

9Moreno and Wooders (2001) also analyse convergence with asymmetric information but in a non-
stationary market with one-time in�ow and only two types.
10We do not assume that GS (�) is strictly increasing, since we want to give an example with homogeneous

sellers where c � 0.
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a steady state. For the analysis, we assume that all functions under consideration are
measurable. With �M being the set of measurable functions f : [0; 1] ! [0; 1], � is an
element of � � �4M � [0; 1].

We say that a vector � constitutes an equilibrium if strategies are mutually optimal
given the distribution of types and if the distribution of types in the pool is consistent
with the trading strategies and the exogeneous in�ow. These conditions are now spelled
out in detail.

First we turn to the sellers. Let us denote by D (pj�) the probability that the buyer
in any given pair accepts an o¤er p. Buyers accept a price p if p � r (v) (see below) so
D (pj�) is

D (pj�) �
Z
fvjp�r(v)g

d�B (v) .11 (2.2)

Let qS (pj�) be the probability that a seller can trade some time during his lifetime

qS (pj�) � D (pj�)
1� (1�D (pj�)) (1� �) , (2.3)

which is the solution to the recursive formula

qS (pj�) = D (pj�) + (1�D (pj�)) (1� �) qS (pj�) .

The expected payo¤ to a seller when o¤ering a price p is de�ned as

US (p; cj�) � qS (pj�) (p� c) ;

and we require that p (c) 2 argmaxUS (�; cj�) for all c in equilibrium.

To derive the optimal search strategy of a buyer, note that he is essentially sampling
without recall from a known and constant distribution of prices. For this problem, it is
well known that the optimal solution can be described by a threshold, a reservation price
r, such that a price p is accepted if and only if p � r (see McMillan and Rothschild (1994)).
The payo¤ to a buyer of type v with a reservation price r depends on the expected price
o¤er, E [pjp � r; �] and the probability to trade some time during his lifetime, i.e., to
receive an acceptable o¤er p � r in any period, denoted by qB (rj�) and derived just as
qS (pj�) as

qB (rj�) � S (rj�)
1� (1� S (rj�)) (1� �) .

Payo¤s are given by

UB (r; vj�) � qB (rj�) (v � E [pjp � r; �]) . (2.4)

Let V B (vj�) � maxr U
B (r; vj�) be the maximized expected lifetime payo¤. At the

reservation price r (v) buyers must be indi¤erent between acceptance and rejection, so
v � r (v) = (1� �)V B (vj�). Rewriting yields

r (v) = v � (1� �)V B (vj�) . (2.5)

11 If r (�) is monotone, D (pj�) simpli�es to
�
1� �B

�
r�1 (p)

��
.
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As said in the introduction, we restrict attention to equilibria in which the pool does
not change over time. If the distribution at the beginning of a period is given by �St (�)
and the trading strategies are r (�) and p (�), then the distribution of sellers at the end of
the period is sum of the entering sellers and the initial sellers who did neither trade nor
die:

�St+1 (cj�) = GS (c) + (1� �)
Z c

0
(1�D (p (�))) d�St (�) .

The pool is in a steady-state distribution of sellers if and only if the distribution does not
change over time that is if �St+1 (cj�) = �St (c) = �S (c) for all c. This condition can be
written as12

�S (c) =

Z c

0

dGS (�)

M (D (p (�) j�) + � (1�D (p (�) j�))) for all c. (2.6)

A similar condition can be obtained for buyers:13

�B (v) =

Z v

0

dGB (�)

M (S (r (�) j�) + � (1� S (r (�) j�))) for all v. (2.7)

Summing up, we say � is an equilibrium if it satis�es the above conditions:

De�nition 1 A steady-state equilibrium vector �� 2 � consist of an optimal pair of
strategies and a corresponding steady-state pool, i.e., �� =

�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
such that

� p (c) 2 argmaxUS (p; cj��) for all c;

� r (v) = v � (1� �)V B (vj��) for all v;

� �S (�), �B (�), and M satisfy the steady-state conditions (3.6), (3.7).

We will show that an equilibrium exists in Section 2.3. Since the proof is quite technical
and non-constructive, we will use the next section to introduce a simpler case to prove
existence and also to provide a characterization of equilibrium.

2.3 Homogeneous Sellers: Existence and Characterization

In this section we analyze an example in which all sellers in the in�ow have costs of
zero, i.e., GS (c) = 1 for all c 2 [0; 1]. We keep the assumption that buyers�valuations
are smoothly distributed according to some continuously di¤erentiable, strictly increasing
c.d.f. GB (�). We assume in addition that demand

�
1�GB (�)

�
is concave which allows us

to utilize the su¢ ciency of the �rst order condition. In this example, the market clearing
price pw is zero.

Let � (p�) be an equilibrium in which sellers o¤er the price p�, p (0) = p�. A necessary
condition that must be satis�ed by � (p�) is that p� is a best response to itself, i.e.,
p� 2 argmaxUS (�; 0j� (p�)). We will see that US (�; 0j� (p�)) is continuously di¤erentiable
12Rewriting �S (c) = �St+1 (c) asR c
0
d�S (�) =

R c
0
dGS (�) +

R c
0
(1� �) (1�D (p (�) )) d�S (c) we get

R c
0
d�S (�)� dGS(�)

1�(1��)(1�D(p(�))) = 0.
13 Implicitly, these conditions imply mass consistency, see lemma 2 and they imply �B (1) = �S (1) = 1

by reasoning similar to A.5.

15



and strictly concave in p. Hence, a necessary and su¢ cient condition for p� to be a best
response to � (p�) is that the �rst order condition @

@pU
S (�; 0j� (p�))p=p� = 0 holds. This

�rst order condition can be written similar to the familiar Lerner pricing formula (see
equation (2.15) in the proof below):

p� � ~c (p�)
p�

=
1

~" (p�jp�) ; (2.8)

where ~" (�jp�) is equal to � @
@pD (�j� (p

�)) pD (�j� (p�))�1, the dynamic elasticity of demand
that accounts for the possibility of buyers to substitute intertemporally. The function
~c (p�) is equal to (1� �) qS (p�j� (p�)) p�, with qS (p�j� (p�)) being the lifetime trading
probability when setting p�. It can be interpreted as dynamic opportunity costs of selling
the good: By not selling today and o¤ering the good at a price p� from tomorrow onwards,
a seller would get ~c (p�). We will prove that there exists indeed an equilibrium � (p�). The
proof essentially uses the intermediate value theorem to show that (2.8) has a solution.
Furthermore, we show that concavity of demand

�
1�GB (�)

�
implies that this solution

is unique and decreasing in �.

Now, suppose there is some sequence of exit rates f�kg1k=1 such that �k ! 0. Let p�k be
the unique price o¤ered by the sellers for given �k. We prove that the price p�k converges to
zero, i.e., the price converges to the market clearing price pw = 0 with vanishing frictions
�k. The proof of p�k ! 0 is by contradiction: If it does not converge to zero, then there
is some (sub-)sequence such that p�k converges to p

N 2 (0; 1] by the Bolzano-Weierstrass
theorem. For �k close enough to zero, we show that this implies that (2.8) is violated and
p�k is not be a best response to itself, i.e., sellers have an incentive to deviate. To see why,
let us rewrite (2.8) by cancelling p�k on the left hand side:

1� (1� �) qS (p�k) =
1

~"
�
p�kjp�k

� : (2.9)

The intuition for this equality not to hold if p�k converges to some p
N > 0 is nothing

more than the formalization of the intuition for convergence given in the introduction.
We said that if sellers o¤er a price p�k > 0, then some of them must be rationed. Formally,
their lifetime trading probability qS (p�k) must be below one. In the proof we show that
qS (p�k) is simply the mass of entering buyers with a valuation above p

�
k, independent of �

(see equation (2.11) and the subsequent remark):

qS (p�k) = 1�GB (p�k) :

By assumption, the mass of buyers with valuations above any p�k > 0 is smaller than
one and hence qS (p�k) =

�
1�GB (p�k)

�
< 1. Then we went on in the introduction and said

that sellers would have an incentive to decrease their price marginally, because this would
increase their trading probability strictly. Formally, the elasticity ~" (p�kjp�k) of demand
becomes in�nite and hence the right hand side becomes zero. Therefore, whenever p�k
converges to some pN > 0 we have

lim
k!1

1� (1� �) qS (p�k) = GB
�
pN
�
> 0 = lim

k!1

1

~"
�
p�kjp�k

� :
Hence, for �k small enough, the condition (2.8) is violated. But this condition is necessary
for p� 2 argmaxUS (�; 0j� (p�)) and therefore sellers deviate from the proposed equilib-
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rium. In the remainder of this section we provide the proof of the following proposition
which summarizes our �ndings:

Proposition 2 If GS (c) = 1 for all c 2 [0; 1], then there exists a steady-state equilibrium
for any � 2 (0; 1). For each � 2 (0; 1) there is a unique p�� 2 [0; 1] such that p (0) = p��
in every equilibrium. The price p�� is strictly decreasing in �. For every sequence f�kg

1
k=1

with �k ! 0, limk!1 p��k = 0.

For the proof, we �rst reduce the problem of �nding an equilibrium in the function
space � to the simpler problem of �nding an equilibrium price p0 in the unit interval. For
this we de�ne the function � (�) : [0; 1]! � with

�
�
p0
�
�
�
p
�
�jp0
�
; r
�
�jp0
�
;�S

�
�jp0
�
;�B

�
�jp0
�
;M

�
p0
��
;

derived from the equilibrium implications of p (0) = p0 as follows: For reservation prices,
note that V B

�
vjp0

�
= 0 for all v < p0 and V B

�
vjp0

�
= v � p0 otherwise. Therefore the

unique function satisfying the equilibrium condition (3.5) for reservation prices is

r
�
vjp0

�
� min

�
v; p0 + �

�
v � p0

�	
:

By GS (c) = 1 for all c, (3.6) implies

�S
�
cjp0

�
= 1 8c:

The trading probability of buyers is S (r (�)) = 1v�p0 . So (3.7) implies

�B
�
vjp0

�
=

�
GB (v) = (�M) if v � p0
GB

�
p0
�
= (�M) +

�
GB (v)�GB

�
p0
��
=M if v > p0;

and from �B
�
1jp0

�
= 1 we get

M
�
p0
�
= GB

�
p0
�
=� + 1�GB

�
p0
�
:

Finally, let p
�
0jp0

�
= p0 and for c > 0 let p

�
cjp0

�
be any optimal price for type c. (The

prices set by these sellers do not matter since they have zero measure). Taken together,
for every p0, the other components of any equilibrium vector are �xed via � (�). We have
found an equilibrium if and only if p0 2 argmaxUS

�
�; 0j�

�
p0
��
. Thus, the problem of

�nding an equilibrium �� in � is reduced to the relatively straightforward one-dimensional
�xed point problem for the correspondence argmaxUS

�
�; 0j�

�
p0
��
in [0; 1].

To tackle the maximization problem, we derive the trading probability per period,
D
�
pj�

�
p0
��
and its derivative @

@pD
�
pj�

�
p0
��
. Reservation prices are r

�
vjp0

�
= p0 +

�
�
v � p0

�
for v � p0. So the reservation price is increasing in v and for p 2

�
p0; r (1)

�
,

r (v) � p if and only if v � v
�
pjp0

�
� p0 +

�
p� p0

�
=� (the inverse of r

�
vjp0

�
). We

set v
�
pjp0

�
� 1 for all p > r (1). For v � p0 reservation prices are r

�
vjp0

�
= v and so

v
�
pjp0

�
� p for p 2

�
0; p0

�
. Note that v

�
pjp0

�
is continuous at p0. The trading probability

is
D
�
pj�

�
p0
��
= 1� �B

�
v
�
pjp0

�
jp0
�
;
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and thus for p 2
�
p0; r (1)

�
@

@p
D
�
pj�

�
p0
��

=
@

@p

�
1�

�
GB

�
p0
�
= (�M) +

�
GB

�
v
�
pjp0

��
�GB

�
p0
���
=M

�
;

= �gB
�
v
�
pjp0

��
= (�M) ;

with M =M
�
p0
�
. For p 2 [0; r (1)), with d

�
pj�

�
p0
��
� @

@pD
�
pj�

�
p0
��

d
�
pj�

�
p0
��

=
@

@p

�
1�GB

�
v
�
pjp0

��
= (�M)

�
= �gB

�
v
�
pjp0

��
= (�M) ; (2.10)

and for p > r (1), d
�
pj�

�
p0
��
� 0. This implies that d

�
pj�

�
p0
��
is continuous at

p0 and hence US
�
�; 0j�

�
p0
��
is continuously di¤erentiable on [0; r

�
1jp0

�
). To derive

qS
�
p0j�

�
p0
��
, note that D

�
p0j�

�
p0
��
=
�
1�GB

�
p0
��
M
�
p0
��1. Substituting this and

the de�nition of M
�
p0
�
into the de�nition of qS in (3.3) yields

qS
�
p0j�

�
p0
��
= 1�GB

�
p0
�
: (2.11)

For the intuition behind (2.11), note that qS
�
p0j�

�
p0
��
is equal to the share of entering

sellers who will be able to conduct a trade. In a steady state this share is equal to the
entering share of buyers who can actually trade at p0 (see Lemma 2). This share of buyers
is
�
1�G

�
p0
��
, and thus, qS

�
p0jp0

�
= 1�G

�
p0
�
.

Existence. We want to �nd some p0 such that p0 2 argmaxUS
�
�; 0j�

�
p0
��
. From

US
�
p; 0j�

�
p0
��
= D(p)

D(p)+���D(p)p we get

@

@p
US

�
p; 0j�

�
p0
��
= [D (p) + � � �D (p)]�2 [d (p) �p+D (p)� (1� �) d (p) q (p) p] ;

with d (p) = @
@pD

�
pj�

�
p0
��
. In the appendix, we show that @

@pU
S
�
p; 0j�

�
p0
��
is strictly

concave on [0;
�
1jp0

�
). Together with US

�
r
�
1jp0

�
; 0j�

�
p0
��
, @
@pU

S
�
p; 0j�

�
p0
��
= 0 is

therefore a necessary and su¢ cient condition for an optimum. We use the intermediate
value theorem to show that there exists some p� such that @

@pU
S (pjp�) jp=p� = 0. Let

X
�
p0
�
be the second term of the derivative of @

@pU
S
�
�jp0
�
at p0:

X
�
p0
�
=

�
d
�
p0
�
�p0 +D

�
p0
�
� (1� �) d

�
p0
�
q
�
p0
�
p0
�

(2.12)

=

"
p0
�
1� (1� �)

�
1�GB

�
p0
���

�
�
1�GB

�
p0
��
�

gB (p0)

#
d
�
p0j�

�
p0
��
:

Because the �rst term of @@pU
S
�
p; 0j�

�
p0
��
is strictly positive for all p, @@pU

S
�
�jp0
�
jp=p0 =

0 if and only if X
�
p0
�
= 0. The function X (�) is continuous by GB (�) and gB (�) being

continuous. Inspection of (2.10) shows that d
�
p0j�

�
p0
��
< 0 for all p0 which implies

X (0) =

�
0 (��)� �

gB (0)

�
d (0j� (0)) > 0;

and X (1) =

�
1� 0

gB (1)

�
d (1j� (1)) < 0:
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So we can apply the intermediate value theorem and conclude that there is some p� such
that X (p�) = 0. By de�nition of X (�) ; this implies that @

@pU
S (pjp�) jp=p� = 0 and hence,

p� 2 argmaxUS (p; 0j� (p�)). Thus, there is an equilibrium ��, with �� � � (p�).

Uniqueness. Rewriting (2.12) with p0 = p� we get as a necessary condition for an
equilibrium

p�
�
� + (1� �)GB (p�)

�
=

�
1�GB (p�)

�
�

gB (p�)
: (2.13)

Note that the left hand side is strictly increasing in p�, while the right hand side is strictly
decreasing since g0 (p�) > 1. So there can be at most one price p� satisfying this equality.

Decreasing Prices. Rewriting (2.12) further shows that X
�
p0
�
= 0 requires

1 =
1�G

�
p0
�

G (p0)
�

�
1

g (p0) p0
� 1
�
: (2.14)

The right hand side of this condition is strictly increasing in � and strictly decreasing in
p0. So if � increases, p0 = p�� has to increase for compensation.

Convergence. Let p�k = p
�
�k
. Rewrite (2.13) to get the necessary condition

�
1� (1� �)

�
1�GB (p�k)

��
=

�
1�GB (p�k)

�
�

gB
�
p�k
�
p�k

; (2.15)

which is equivalent to the Lerner formula (2.8).14 If limk!1 p�k 6= 0, then for some (sub-
)sequence, p�k0 ! pN > 0, and the right hand side becomes

lim
k0!1

1�GB
�
p�k0
�

gB
�
p�k0
�
p�k0

� =
1�GB

�
pN
�

gB (pN ) pN
0 = 0;

by continuity of GB (�) and gB (�). The left hand side becomes

lim
k0!1

�
1� (1� �)

�
1�GB (p�k0)

��
= GB

�
pN
�
> 0;

and thus, the necessary condition (2.13) cannot hold for k�large enough, a contradiction
to p�k0 being part of an equilibrium. This completes the proof.

2.4 Heterogeneous Sellers: Existence and Consistency

In this section, we prepare the analysis of the model with heterogeneous sellers. Here
and in the following, we assume that GS (�) and GB (�) are strictly increasing and have
continuous, strictly positive densities gS (�) and gB (�), respectively. In particular, we
do no longer assume that

�
1�GB (�)

�
is concave. We prove �rst that we can restrict

attention to equilibria in which prices p (�) and reservation prices r (�) are monotone.
Then we show that for every monotone strategy combination p (�) and r (�) (not just
equilibrium strategies) there exists a steady-state pool of traders. We also show that for

14Multiplying the left hand side by p�k
p�
k
and observing that the right hand side is the elasticity ~" because

@
@p
D (p�kjp�k) p�kD (p�kjp�k)�1 = gB (p�k) ��1p�k

�
1�GB (p�k)

��1
.
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every monotone strategy combination and for every corresponding steady-state pool, the
transfers collectively made by sellers are equal to the transfers received by buyers. And
�nally, we prove that an equilibrium exists for all �.

First, we prove that we can restrict attention to a subset of � when analyzing equi-
librium outcomes. We use this to ease notational burden, for the proof of Proposition
3, and to prepare the existence proof by restricting the set of equilibrium candidates.
Let �� =

�
p�; r�;�S�;�S�;M�� 2 � be an equilibrium. Then the equilibrium conditions

imply a restriction on these functions: We show that by r� (~v) = ~v� (1� �)V (~vj��) from
condition (3.5), r� (�) must have a slope in [�; 1], i.e., r� (�) is in the set

�r(�) = ff : [0; 1]! [0; 1] jf (a)� f (b) 2 [� (a� b) ; (a� b)]g :

For this, note that if the value function is di¤erentiable at some point ~v, then V 0 (~vj��) =
QB (r� (~v) j��) by the envelope theorem (see e.g., Milgrom and Segal (2002)). Therefore,
r (�j��) is di¤erentiable at ~v as well and r0 (~vj��) = 1 � (1� �)QB (r� (~v) j��); Hence,
r0 (~vj��) 2 [�; 1] at all di¤erentiability points. This can be generalized to all points.15

Inspecting the steady-state conditions (3.6) and (3.7), shows thatM� must be in
�
1; ��1

�
:

Rewriting (3.7) at v = 1, with �B� (1) = 1 and observing that
(S (r (�) j��) + � (1� S (r (�) j��))) 2 [�; 1]:

M� =

Z 1

0

dGB (�)

(S (r� (�) j��) + � (1� S (r� (�) j��)))d� 2
�
1; ��1

�
:

The distribution functions are strictly increasing with a slope in
�
�gL; gH�

�1�: For �B (�),
note that the density dGB (v) is strictly positive and continuous by assumption, so
dGB (v) 2 [gL; gH ] for some (gL; gH) 2 (0; 1)2. Rewriting (3.7) shows that

�B� (a)� �B� (b) =

Z a

b

dGB (�)

M� (S (r� (�) j��) + � (1� S (r� (�) j��)))d�

2
�
�gL; gH�

�1� [a� b] :
where we used already thatM� 2

�
1; ��1

�
. So �B� (�) and �S� (�) (by analogous reasoning)

are in the set

�� =
�
f : [0; 1]! [0; 1] jf (a)� f (b) 2

�
�gL (a� b) ; gH��1 (a� b)

�	
:

Given monotonicity of reservation prices, we want to show monotonicity of prices
p� (�). For this, we use that payo¤s satisfy the strict single crossing property. To show
that this is true, note that a seller who o¤ers a price p trades with all buyers with
a valuation above v (pj��) � inf fv; 1jr� (v) � pg by monotonicity of r (�). Therefore
D (pj��) = 1 � �B� (v (p)). By �B� (�) and r� (�) being both continuous and strictly
increasing, the trading probability D (�j��) is strictly positive at all prices below the
highest reservation price r (1): for all p < r (1), we have v (pj��) < 1 and therefore
1� �B (v (pj��)) = D (pj��) > 0. Hence, for these prices the lifetime trading probability
qS (pj��) is strictly positive. For all prices above r� (1) trading probabilities are zero: by
15By rewriting the optimality condition V B (a)�V B (b) � UB (r (b) ; a)�UB (r (b) ; b) and its symmetric

analogue and by using the de�nition of UB (�; �).
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v (p) = 1 for all p � r� (1) we have 1 � �B� (1) = 0. So the relevant range of optimal
prices for sellers with costs below r� (1) is [0; r (1)). Now we show that pro�ts US (�; �j��)
satisfy the strict single crossing condition on the domain [0; r� (1))2, i.e., we show that
for all pH > pL and cH > cL with (pL; cL; pH ; cH) 2 [0; r� (1))4:

US (pH ; cLj��)� US (pL; cLj��) � 0 ) US (pH ; cH j��)� US (pL; cH j��) > 0:

Rewriting shows that the left hand side is equivalent to

cL
�
qS (pLj��)� qS (pH j��)

�
� qS (pLj��) pL � qS (pH j��) pH :

Now, observe that qS (�j��) is strictly decreasing in p on [0; r� (1)) by v (�j��) and �B� (�)
being strictly increasing. Therefore,

�
qS (pLj��)� qS (pH j��)

�
> 0, which implies that

the left hand side is strictly increasing in costs and hence

cH
�
qS (pLj��)� qS (pH j��)

�
> qS (pLj��) pL � qS (pH j��) pH ;

which implies US (pH ; cH j��)�US (pL; cH j��) > 0 as claimed. By the monotone selection
principle of Milgrom and Shannon (1994), the strict single crossing property implies that
all selections from the maximum correspondence argmaxp US (p; cj��) are weakly increas-
ing. Therefore, p� (�) is weakly increasing on [0; r� (1)). But we cannot use optimality
conditions to extend monotonicity of p� (�) to types beyond r� (1): Every price p � r� (1)
is optimal for a type c � r� (1) since at every such price trading probabilities and pro�ts
are zero while at every price p < r� (1) pro�ts would be strictly negative. Nevertheless,
we may simply assume that these types set monotone prices and without further loss of
generality, we may assume that they set prices equal to their costs: This will not change
the steady-state distribution (because trading probabilities are unchanged for all traders)
and this will not change the optimality condition of buyers (because given the prices set
by the other sellers and the distribution of their price o¤ers, accepting any p � r� (1)
would make any buyer v 2 (0; 1) strictly worse o¤).

Let �+ be the set of weakly increasing functions and de�ne the set ~� � �

~� � �+ � �r(�) � �� � �� �
�
1; ��1

�
:

We summarize our �ndings in a proposition. It states that every equilibrium �� is equiv-
alent to an equilibrium ~� which is in the set ~�, changing p� (�) to ~p (�) on [r� (1) ; 1] as
described before:

Lemma 1 If �� =
�
p�; r�;�S�;�S�;M�� is a steady-state equilibrium, then with

~p (c) �
�
p� (c) 8c 2 [0; r (1))
c 8c 2 [r� (1) ; 1] ;

~� =
�
~p; r�;�S�;�S�;M�� is a steady-state equilibrium and ~� 2 ~�.

Remark 1 The outcome of the equilibrium ~� is equivalent to the outcome of ��: For all
c, qS (p� (c) j��) = qS (~p (c) j~�) and V S (cj��) = V S (cj~�) and similarly for buyers. Hence,
if we have proven convergence to e¢ ciency for outcomes of equilibria ~� 2 ~�, we have
proven convergence to e¢ ciency for outcomes of equilibria � 2 �.
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Now we show that for every strategy combination (p (�) r (�)) 2
�
�+;�r(�)

�
we can

�nd a pool characterized by
�
�B (�) ;�S (�) ;M

�
such that the steady-state conditions

(3.6) and (3.7) hold. So these steady-state conditions do not restrict the strategy set�
�+;�r(�)

�
further. In models without an exit rate, this is not true and for some strategies

a steady-state pool fails to exist. If this is the case, the steady-state assumption implies
a restriction on the strategies (see the discussion of models with in�nitely lived players in
Section 2.6.1).

Proposition 3 For every strategy combination (p (�) ; r (�)) 2 �p(�) � �r(�) we can �nd
are monotone functions �B (�) 2 ��B and �S (�) 2 ��S , and M 2

�
1; ��1

�
such that the

steady-state conditions (3.6) and (3.7) hold.

Proof: See the remark following Lemma (8) on page 27 �

This theorem suggests to de�ne the subset �� of ~�, consisting of all � such that �S ;�B

and M are a steady state given p (�) and r (�), i.e.,

�� �
n
� 2 ~�jConditions (3:6), (3:7)hold

o
:

Take some � 2 ��, i.e., some strategy combination and some steady-state pool that is
consistent with it. Intuition suggests, that the expected payments made by buyers is equal
to the expected payments received by sellers. In addition, the mass of buyers who expect
to trade is equal to the mass of sellers. Indeed, straightforward algebraic manipulation of
the conditions (3:7) and (3:6) show that this is the case (see the appendix, Section A.3
for details):

Lemma 2 Mass Balance. Expected payments and the mass of expected trades are equal
on both sides of the market, i.e., for all � 2 ��:Z 1

0
qS (p (c) j�) p (c) gS (c) dc =

Z 1

0
qB (r (v) j�)E [pjp � r (v) ; �] gB (v) dv

and
Z 1

0
qS (p (c) j�) gS (c) dc =

Z 1

0
qB (r (v) j�) gB (v) dv:

Finally, we show that for every � an equilibrium exists. With heterogeneous sellers, we
cannot reduce the existence problem to a one-dimensional �xed point problem; we have to
prove the existence of a �xed point in the function space. Instead of the intermediate value
theorem, we therefore use the Kakutani-Fan-Glicksberg theorem. We �rst introduce some
notation: We describe the pool by the mass of buyers with valuations above v, MB (v)
and the mass of sellers with costs below c, MS (c). The total mass of buyers is MB (0)
and the total mass of sellers is MS (1). Throughout the proof we do not require MB (0)
to be equal to MS (1) but we show that if we have found an equilibrium such that the
steady-state conditions hold, these two masses must be equal. With this new notation,
the market is characterized by a quartuple of functions ! =

�
r (�) ; p (�) ;MS (�) ;MB (�)

�
.

Given !, we now derive a response operatorK. This operator consists of the best response
(correspondence) for sellers and buyers, Kp [!] and Kr [!], and the pool response KS [!]
and KB [!]. The former will consist of ex ante optimal strategies p (�) and r (�). The
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pool responses are the masses of traders in the pool that will result in period t+ 1, if the
pool in period t is described by MS (�) ; MB (�) and if they trade according to p (�) and
r (�). If !� is a �xed-point of K, !� 2 K [!�], traders play mutual best responses and the
pool is in a steady state, i.e., !� is an equilibrium. We show that such a �xed point exist
and show that !� corresponds to an equilibrium �� as originally de�ned in 2. The main
technical di¢ culty is the proof of continuity of the pool-response operators.

To prepare for the �xed point theorem, we restrict the set of candidate strategies and
distributions under consideration. The restrictions on distributions of types becomes now
a restriction on masses by observing that MS (�) corresponds to �S (�)M . So we have

�MS �
�
MS (�) : [0; 1]!

�
0; ��1

�
jM

S (a)�MS (b)

a� b 2
�
gl; gh�

�1� , 8a 6= b�
�MB �

�
MB (�) : [0; 1]!

�
0; ��1

�
jM

B (b)�MB (a)

a� b 2
�
gl; gh�

�1� , 8a 6= b� ;
and the domain of K is

�� � �p(�) � �r(�) � �MS � �MB : (2.16)

Because all functions in �� are integrable, we use the integral norm kf (�)k1 =
R 1
0 jf (t)j dt

such that �� becomes a compact subspace of L1.16

To de�ne payo¤s, note that the share of buyers with valuations above v is given by
the expression MB (v)MB (0)�1 and we may de�ne D (pj!) � MB (v (p))M (0)�1 and
similarly S (rj!) �MS (c (r))MS (1)�1 with the generalized inverses c (�) and v (�) de�ned
as before. Lifetime trading probabilities for a given ! are

qB (rj!) � S (rj!)
1� (1� S (rj!)) (1� �) and q

S (pj!) � D (pj!)
1� (1�D (pj!)) (1� �) ;

and payo¤s are

US (p; cj!) � qS (pj!) (p� c) and UB (r; vj!) � qB (rj!) (v � E [pjp � r; !]) :

Ex ante expected payo¤s to sellers are �(p (�) j!) and interim maximized payo¤s to buyers
are V B (v):

�(p (�) j!) �
Z 1

0
qS (p (c) j!) (p (c)� c) g (c)

and V B (v) � max
r
UB (r; vj!) :

Now we de�ne the operator K. The sellers�best response correspondence is de�ned
as

Kp [!] � arg max
p(�)2�p(�)

�(p (�) j!) ;

16As usual, we continue working with the function space itself, rather than the corresponding space of
equivalence classes. Two functions are equivalent under k�k1 if they are equal almost everywhere.
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and Kp [!] 2 �p(�) by de�nition. With r (vj!) = v � (1� �)V B (vj!) ; buyers� best
response is given by

Kr [!] � r (�) :

Inspection of V B (vj!) = qB (r (v) j!) (v � E [pjp � r (v) j!]) shows that r (�j!) must have
a slope between � (if qB (r (v) j!) = 1) and 1 (if qB (r (v) j!) = 0), i.e., Kr [!] 2 �r(�).

De�ne pool response operators by

KS (cj!) � GS (c) +

Z c

0
(1� �) (1�D (p (t) j!)) dMS (t) (2.17)

KB (pj!) �
�
1�GB (v)

�
+

Z 1

v
(1� �) (1� S (r (t) j!))� dMB (t) ; (2.18)

where KS (cj!) is the mass of sellers at the end of the period, consisting of the in�ow
GS (c) and the remaining mass of sellers from the beginning of the period, i.e., those
sellers who neither trade nor die. Similarly, KB (vj!) is the mass of buyers at the end of
the period, consisting of the new in�ow and the remaining buyers from the mass at the
beginning. To check thatKS maps �MS into itself, note thatKS (1j!) attains its maximal
value if no sellers trades and then KS (1j!) � 1 + (1� �)MS (1) � ��1. The slope of
KS (�j!) is maximal at dKS (t) = gh�

�1 and minimal at dKS (t) = gl + 0. Therefore,
KS [!] 2 �MS . Reasoning similarly for buyers and adding our observations on the best
response operators, we have that K [�] is a self map of ��:

K [!] � Kp �Kr �KS �KB : ��� ��:

We want to prove that K has a �xed point !� using the Kakutani-Fan-Glicksberg
�xed point theorem. The theorem states that if 
 is a non-empty, convex, and compact
subset of a locally convex Hausdor¤ space, and if K has a closed graph and non-empty,
convex values, then K has a �xed point (see Aliprantis, Border, 1994, p484). In the
following lemmas, we show that the functions Kr;KS ;KB are continuous in ! and that
the correspondence Kp has convex values and a closed graph.

We apply Berge�s Maximum Theorem to show that the best response correspondence
Kp is upper hemicontinuous with compact non-empty values. This implies that Kp has
a closed graph (see Aliprantis, Border, p. 473 and p. 465, respectively). To apply
Berge�s Theorem, we need to show that expected pro�ts are continuous in p (�) and !,
which will follow from reservation prices being continuous and strictly increasing. Then
we show convexity, utilizing that the best response correspondence is essentially unique
for all c 2 [0; r (1)] (because payo¤s satisfy the strict single crossing condition) and for
c 2 (r (1) ; 1], all elements and all convex combinations of elements ofKp yield zero pro�ts:

Lemma 3 Kp [�] has a closed graph and is non-empty, and convex valued.

Proof: Trading probabilities qS (pj�) are continuous for all p in !; because MB (v (p) j�)
is continuous in !. By the dominated convergence theorem, expected payo¤s �(p (�) j�)
are therefore continuous in ! for given p (�). Similarly, expected payo¤s are continuous in
the own price function p (�). Therefore Berge�s maximum theorem applies.
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Now we want to show convexity. Let the highest type who can possibly trade with
positive payo¤s be �c = sup

�
cjqS (cj!) > 0

	
. As a �rst step, we show that every two

interim optimal pricing functions are equivalent (a.e. identical) on [0; �c]. Take any p (�) 2
Kp [!]. Then p (c) is ex ante optimal for almost every type, i.e., p (c) 2 argmaxUS (c; pj!)
for almost every c, and in particular, at every point of continuity: Suppose not, then for
some pair p0, and c0, US (c0; p (c0) j!) < US (c0; p0j!). By continuity of US (�; �j!) in p
and c, and by continuity of p (�) at c0, there is a neighborhood B� (c0) of c0 such that
US (c; p (c) j!) < US (c; p0j!) for all c 2 B� (c0). Because B� (c0) has strictly positive mass,
this implies that p (�) is not pro�t maximizing ex ante, a contradiction.

Now take two functions p1 2 Kp [!] and p2 2 Kp [!] and some c0 < �c such that
p1 (c

0) and p2 (c0) are (interim) optimal, i.e., pi (c0) 2 argmaxUS (p; c0j!). Suppose that
p1 (c

0) 6= p2 (c
0) and without loss of generality, suppose p1 (c0) � p1 < p2 � p2 (c

0).
We show that c0 must be a jump point of both functions: For all prices p+ above p1,
p+ > p1, the optimality of p1 implies US (p1; c0j!) � US (p+; c0j!). Since payo¤s have
the strict single crossing property, all types c� below c0 strictly prefer p1 to any such
p+, i.e., US (p1; c�j!) > US (p+; c�j!). Similarly, the optimality of p2 for c0 implies
that all types c+ 2 (c0; �c) prefer p2 strictly to any p� < p2. Hence, optimal prices
to the left of c0 are below p1 and optimal prices to the right are above p2. Finally,
if some (single) type c� < c0 plays a suboptimal price p2 (c�) > p1, all c 2 (c�; c0)
must play prices above p1 by monotonicity of p2 (�). But then a strictly positive mass
of types sets a strictly suboptimal price and p2 (�) fails ex ante optimality. Therefore
pi (c

0 � 0) � p1 < p2 � pi (c0 + 0), i 2 f1; 2g and c0 is a jump point as claimed. Note that
the set of jump points has zero measure and together with pi (c) 2 argmaxUS (p; cj!)
a.e., we conclude that p1 (c) = p2 (c) for almost all c 2 [0; �c]. Therefore, every convex
combination p� (�) � �p1 (�) + (1� �) p2 (�) will be equivalent on c 2 [0; �c]. For c 2 (�c; 1];
note that by prices and ultimate trading probabilities being monotone, it must be that
for all such c, qS (p1 (c)) = 0 and qS (p2 (c)) = 0 and so qS (p� (c)) = 0 for all � 2 [0; 1]
and for all c 2 (�c; 1] Therefore, we have �(p� (�) j!) = � (p1 (�) j!), i.e., p� (�) 2 Kp [!].
�

The next lemma states that reservation prices are continuous in !. With r (vj!) =
v � (1� �)V B (vj!) we need to show continuity of the value function V B (�j!) which
basically follows from Berge�s Maximum theorem. Payo¤s U (r; vj!), however, do not
need to be continuous in !, because, for given r, the mass of sellers who o¤er p � r,
MS (c (r) j!), can have a discontinuity. Therefore, we use the following trick : instead
of choosing a reservation price r, buyers are thought to choose a threshold seller cx and
trade with all sellers with c � cx:

Lemma 4 Kr [�] is continuous in !.

Proof: Given cx 2 [0; 1], let the ultimate trading probability be de�ned as the function
qBx (cx; !) �

MS(cx)MS(1)�1

1�(1��)(1�MS(cx)MS(1)�1)
and let expected prices be given by Ex [pjcx; !] �

1
MS(cx)

R cx
0 p (c) dMS (c). Then payo¤s from trading with all c � cx are

UBx (cx; vj!) � qBx (cx; !) (v � Ex [pjcx; !]) ;

and clearly UBx (cx; vj!) is continuous in cx, v; and !. Thus, V Bx (vj!) = maxcx UBx (cx; vj!)
is continuous in ! by the Maximum theorem. In addition, payo¤s from maximizing
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over cuto¤ types cx are equal to payo¤s from maximizing over cuto¤ prices r, i.e.,
V Bx (vj!) = V B (vj!): Whenever pS (�) is increasing at cx, this follows immediately by
setting r (v) = p (cx) ; if pS (�) is �at at cx, the buyer is indi¤erent between accepting and
rejecting pS (cx). Thus, continuity of V Bx (�j�) carries over to V B (�j�) �

Now we want to show that the pool responses KS and KB are continuous. This is
the main technical problem of the existence proof. The problem here is that we need
to evaluate composite functions. In particular, to calculate the trading probability of a
type v, we need to evaluate the shareMS (c (r (v)) j!)MS (1j!). However, the type c who
trades with v, c (r (v)), does not need to be continuous in !. Therefore, we need to state
�rst three auxiliary lemmas to deal with the problem of composite (inverse) functions.
The �rst lemma states a partial converse to Lebesgue�s bounded convergence theorem:

Lemma 5 Let ffNg be a sequence in �M such that fN ! �f in L1. Then fN (x)! �f (x)
pointwise for almost all x 2 [0; 1] if a) all fN and �f are weakly increasing or if b) the
family ffNg is equicontinuous.

Proof: For the �rst part. We show convergence at all interior continuity points �f which
implies the statement. Let x0 be such a point and suppose there is some subsequence
such that lim fN 0 (x0) � fH 6= �f (x0) � �f . Suppose fH > �f (the other case is sym-
metric). Choose � such that for all x 2 B� (x

0),
�� �f (x0)� �f (x)

�� � ��fH � �f
�� =2, and

choose any xH 2 B� (x
0) such that xH > x0. By monotonicity of each element fN 0 ,

fN 0 (x) � fN 0 (x0) for all x 2 [x0; xH ] and for all N 0. Thus, lim inf fN 0 (x) � fH . Hence,
lim inf

R xH
x0

��fN 0 (x)� �f (x)
�� � (xH � x0)

��fH � �f
�� =2 > 0, contradicting fN ! �f . The

second part is immediate �

Take a sequence !N =
�
pN ; rN ;M

S
N ;M

B
N

�
with !N ! �!: we want to show convergence

of the composite functions MB
N (vN (pN (�))) and MS

N (cN (rN (�))). The former composite
function is not a problem: the families

�
MB
N (�)

	
and fvN (�)g are equicontinuous by the

assumptions that MB
N 2 �MB and rN 2 �r, which imply that they are globally Lipschitz

continuous. Lipschitz continuity of rN carries over to its inverse vN ; by rN being strictly
increasing. Therefore, the family of composite functions

�
MB
N (vN (�))

	
is equicontinuous

and henceMB
N (vN (pN (c))) converges pointwise. The next lemma states that cN (rN (v))

converges pointwise almost everywhere, which is su¢ cient for pointwise convergence of
MS
N (cN (rN (v))):

Lemma 6 Given a sequence fpN (�)g1N=1 with pN 2 �p(�) and a sequence frN (�)g1N=1
with rN (�) 2 �r(�). Suppose pN (c)! �p (c) and rN (v)! �r (v) pointwise for almost every
c and v. Then cN (p) � c (pjpN (�)) ! �c (p) � c (pj�p (�)) a.e. and c (rN (v) jpN (�)) !
c (�r (v) j�p (�)) a.e..

Proof: See Appendix.

Pool response operators KS and KB are integrals over functions of ! and integrals are
taken with respect to measures induced by !. To prove continuity of this operator, we need
the following technical lemma which combines the idea of Lebesgue�s convergence result
for a sequence of functions with Helly�s convergence result for a sequence of measures:

Lemma 7 Let FN be a sequence of c.d.f.s converging to some c.d.f. F almost every-
where and let gN : [0; 1]! [0; 1] be a sequence of measurable functions converging almost
everywhere to some function g (�). Then

R 1
0 gNdFN !

R 1
0 gdF
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Proof: Note that
R 1
0 gNdFN �

R 1
0 gdF =

R 1
0 (gN � g) dFN +

R
gdF �

R
gdFN . The second

term converges to zero by Helly�s convergence theorem (Kolmogorov, Fomin p.370), noting
that monotone functions are of totally bounded variation. For the �rst term note that
by Egorov�s theorem (Kolmogorov, Fomin, p.290), for every " > 0, gN converges to g
uniformly on a measurable subset A � [0; 1] such that the remaining set is of measure
"=2 , i.e., "=2 �

R
[0;1]�A dF (x). By Helly�s convergence theorem,

R
x2[0;1]�A dFN (x) !R

x2[0;1]�A dF (x) and thus for some N
0, " �

R
x2[0;1]�A dFN (x) which is larger thanR

x2[0;1]�A jgN (x)� g (x)j dFN (x) for all N � N 0. By gN ! g uniformly on A, there
is some N 00 such that jgN (x)� g (x)j � " for all x 2 A and N � N 00. Thus, for all
N � max fN 0; N 00g,

R 1
0 (gN � g) dFN =

R
A (gN � g) dFN +

R
[0;1]�A (gN � g) dFN � 2" and

by " being arbitrary the claim follows �

From the latter two lemmas, we get

Lemma 8 KS and KB are continuous.

Proof : From Lemma 6, we know that D (p (c) j�) � MB (v (p (c) j�))MB (1) and that
S (r (v) j�) � MS (c (r (v) j�))MS (1) are pointwise continuous in !. From Lemma 7, this
carries over to KS [�] and KB [�] �

Theorem 1 For every � there exists an equilibrium ��.

Proof: Monotone functions are compact in the locally convex Hausdor¤ space L1 by
Helly�s selection principle (Kolmogorov Fomin, p. 372) and sequential compactness is
su¢ cient for compactness in metric spaces (see Aliprantis, Border, p. 84). Monotone
functions with a bounded slope as de�ned here form a closed subset of the monotone
functions, and hence, these sets are compact. Therefore, the set 
 � L1 endowed with
the integral norm is compact. Convexity of 
 is immediate. Together with the above
Lemmas, the correspondence K satis�es the conditions of the Kakutani-Fan-Glicksberg
�xed point theorem. Thus, there exists some !� 2 
 such that !� � K [!�].

The �xed point !� corresponds to a steady-state equilibrium ��: Let M� �MS� (1) ;
�S� (c) � MS (c)M��1, and �B� (v) �

�
M� �MB (v)

�
M��1.17 The identity MS� (1) =

MB� (1) follows similar to Lemma (2), see Section A.5 in the appendix for details. Let
�p (�) be a monotone function which is equal to p� (�) whenever p� (c) is interim optimal.
Since p� (c) is interim optimal almost everywhere, �p (�) is equivalent to p� (�). For all
other points c 2 [0; 1), take the right limit, �p (c) = lim"!0;">0 p� (c+ ") which preserves
monotonicity and optimality by continuity of US (�; �). Let �p (1) = lim"!0;">0 p� (1� ").
Changing prices for a measure zero set of sellers does not change the distribution of price
o¤ers; so neither steady-state conditions nor buyers�optimality conditions are a¤ected and
hence, �� �

�
�p (�) ; r� (�) ;�S� (�) ;�B� (�) ;M�� is a steady-state equilibrium ��

Remark 2 Lemma 8 implies Proposition 3 together with the reasoning in the proof of the
theorem: For �xed p (�) and r (�), the joint pool response

�
KS ;KB

�
[p (�) ; r (�) ; �; �] de�nes

a function which maps the compact subset �MS ��MB � L1 into itself. In particular, for
�xed p (�) and r (�), the pool response

�
KS ;KB

�
[p (�) ; r (�) ; �; �] is continuous in MS and

MB. Thus, according to the Kakutani-Fan-Glicksberg theorem, there exists a �xed point,

17Note that �B (v) is the share of types below v while MB (v) is the mass of types above v.
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i.e., some
�
�MB; �MS

�
such that

�
KS ;KB

� �
p (�) ; r (�) ; �MB; �MS

�
=
�
�MB; �MS

�
. As shown

in the preceding proof, if KS
�
�MB; �MS

�
= �MS and KB

�
p (�) ; r (�) ; �MB; �MS

�
= �MB, then�

�M; ��S ; ��B
�
- de�ned by �M � �MS (1), ��S (c) � �MS (c) �M , and ��B (v) � �MB (v) �M -

satisfy the steady-state conditions (3.6) and (3.7) for given p (�) and r (�).

2.5 Main Result

We want to characterize the set of equilibria with � ! 0. For this, we will look at a
strictly decreasing sequence of exit rates f�kg1k=1 with limk!1 �k = 0. For each �k; we
know from the preceding section that at least one equilibrium ��k 2 �� as de�ned in (2.16)
exists. We select one equilibrium for each k, which gives us a sequence f��kg

1
k=1with

elements (pk (�) ; rk (�) ; Sk (�) ; Dk (�) ;Mk). We will show that for every such sequence the
support of prices at which trade happens, shrinks to a singleton, i.e., a law of one price
holds. This is the �rst theorem. Given that this law holds, we then show that the one
price must be the Walrasian price pw, which is stated in the second theorem. During
this section, we often refer to the lifetime trading probabilities of a type and we denote
these probabilities by capital letters, i.e., we de�ne QS (cj�) � qS (p (c) j�) and similarly
QB (vj�) = qB (r (v) j�). For notational convenience, we abbreviate QS (cj��k) � QSk (c)
and QB (vj��k) � QBk (v).

2.5.1 The Law of One Price

To de�ne the support of trading prices, let hk be the highest accepted price, hk � rk (1)
and let lk be the lowest o¤ered price, lk � pk (0). Now we state the law of one price:

Theorem 2 For every sequence of steady-state equilibria with hk � rk (1) and lk �
pk (0) :

lim
k!1

(hk � lk) = 0:

We prove the theorem by contradiction: Suppose that, contrary to the theorem, there
is some (sub-)sequence along which the cuto¤ prices hk and lk converge to two di¤erent
limits, i.e., limk!1 hk = h and limk!1 lk = l with h > l. As said in the introduction, to
sustain price dispersion in equilibrium, two opposing conditions must hold: For rk (1) = hk
to be optimal (i.e., for hk to be incentive compatible), intermediate prices p 2 (l; h) must
be rare so that the buyer v = 1 accepts rk (1) = hk instead of waiting for better prices.
For pk (0) = lk to be optimal for sellers, intermediate prices must be o¤ered frequently
enough: Otherwise, buyers with intermediate valuations do not �nd trading opportunities
and accumulate in the market. And then, a seller of type c = 0 would deviate from the
low price lk to o¤ering some intermediate price. When �k is small, the two incentive
constraints for the buyers and for the sellers cannot both be satis�ed. The following three
lemmas formalize this idea and together they imply the theorem.

The �rst lemma is based on the following intuition which starts with the observation
that buyers trade only at prices below their valuations. In particular, types v0 2 [l; h)
trade only at prices p < h and thus, their expected trading price E [pjp � rk0 (v0)] will be
strictly below h. So if such a buyer v0 could trade with certainty in the limit, then a buyer
with a valuation v = 1 would be strictly better o¤mimicking v0 by using this lower type�s
reservation price rk0 (v0). Since lim sup rk0 (v0) � v0 < h, contradicting the de�nition of
h as the limiting reservation price for v = 1, it has to be that trading probabilities are
bounded away from one for all types v0 2 [l; h) :
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Lemma 9 For all v 2 [l; h) there is some �QB (v) < 1 such that

lim
k0!1

supQBk0 (v) � �QB (v) < 1:

Proof: The payo¤ to v = 1 from mimicking some v0 2 [l; h) by using the reservation price
rk0 (v

0) are

UBk0
�
rk0
�
v0
�
; 1
�
= QBk0

�
v0
� �
1� E

�
pjp � rk0

�
v0
���

� QBk0
�
v0
� �
1� v0

�
;

since E [pjp � rk0 (v0)] � v0. If QBk00 (v0)! 1 along some subsubsequence k00, then

lim
k00!1

inf UBk00
�
rk00

�
v0
�
; 1
�
� 1� v0

> 1� h

Because V Bk00 (1) � UBk00 (rk00 (v
0) ; 1) for all k00 by de�nition, the above inequality implies

lim inf V Bk00 (1) > 1� h. Thus, we have

lim
k00!1

inf
�
1� (1� �k00)V Bk00 (1)

�
> h

Recall that h = limk00 rk00 (1). Hence, for k00 large enough, the equilibrium requirement
rk00 (1) = 1� (1� �k00)V Bk00 (1) is violated, a contradiction �

As trading probabilities at the very best prices are bounded away from one, some
buyers also accept intermediate prices strictly above l:

Lemma 10 For all v 2 [l; h), there is some �r (v) > l such that

lim
k0!1

inf rk0 (v) � �r (v) > l:

Proof: From the de�nition of reservation prices

rk0 (v) = v � (1� �k0)QBk0 (v) (v � E [pjp � rk0 (v)])
� lk0 +

�
1�QBk0

�
(v) (v � lk0) ;

where we used that E [pjp � rk0 (v)] � lk0 to derive the second line. Thus,

lim
k0!1

inf rk0 (v) � l + lim inf
�
1�QBk0 (v)

�
(v � l)

� l +
�
1� �Q (v)

�
(v � l) > l �

The distribution of types in the pool is proportional to their probability of not trading:
Buyers who trade less frequently make up a larger share, i.e., �B (v) depends positively
on

�
1� qB (r (v))

�
. Rewriting the steady-state condition by substituting S (r (v)) by
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qB (r (v)) shows18

�B (v) =

Z v

0

1� qB (r (�)) + �qB (r (�))
M�

dGB (�) ;

and by �M � 1 we get as lower bound

�B (v) �
Z v

0

�
1� qB (r (�))

�
dGB (�) : (2.19)

Using our knowledge about QB (v) for v 2 [l; h) from the last lemma this implies

Lemma 11 For all v 2 [l; h), there is some �D (v) > 0 such that

lim
k0!1

inf
�
1� �Bk0 (v)

�
� �D (v) > 0:

Proof: Take any v0 2 [l; h) and " 2 (0; h� v0). Then

1� �Bk0
�
v0
�
�
Z v0+"

v0
d�Bk0 (v) ; (2.20)

and, by (2.19), we have d�Bk0 (v) �
�
1�QBk0 (v)

�
gB (v) a.e. Let �Q be the bound on QBk0 (�)

for the type v0 + " from the �rst lemma, �Q � �QB (v0 + ") < 1. With monotonicity and
gB (v) � gl we can bound the limit of d�Bk0 (v):

lim
k0!1

inf d�Bk0 (v) �
�
1� �Q

�
gl 8v � v0 + ";

and thus

lim
k0!1

inf
�
1� �Bk0

�
v0
��
�
Z v0+"

v0

�
1� �Q

�
gl = "

�
1� �Q

�
gl > 0;

so with �D (v0) � "
�
1� �Q

�
gl we have proven the lemma �

Now, we connect to three lemmas to prove the theorem:
Proof of Theorem 2: By contradiction. If the theorem does not hold, then there is
some subsequence, indexed by k0, such that limk0!1 lk0 = l < limk0!1 hk0 = h.19 Then
Lemma 10 and Lemma 11 imply that sellers would want to deviate from pk0 (0) = lk0 to
some intermediate p0 2 (l; h) for k0 large enough: Take any v0 2 [l; h) and choose any
p0 2 (l; �r (v0)) with �r (v0) as de�ned in Lemma 10. Then for some K1 large enough, we
have rk0 (v0) � p0 for all k0 � K1 by Lemma 10. The probability of trading at p0 is

Dk0
�
p0
�
� 1� �Bk0

�
v0
�

for k0 � K1;

and thus by de�nition

qSk0
�
p0
�
� 1� �Bk0 (v0)
1�

�
1�

�
1� �Bk0 (v0)

��
(1� �k0)

;

18The de�nition of qB (�) implies qB(r(v))
S(r(v))

= 1
S(r(v))+���S(r(v)) and S (r (v)) =

�qB(r(v))

(1�qB(r(v))+�qB(r(v)))
.

Together, 1
S(r(v))+���S(r(v)) =

qB(r(v))(1�qB(r(v))+�qB(r(v)))
�qB(r(v))

:
19 If lim (hk � lk) 6= 0, then for some subsequence k0 and some C > 0, (hk0 � lk0) ! C. According to

the Bolzano-Weierstrass theorem, there is some convergent subsubsequence k00 of the cuto¤ prices. With
h � limk00!1 hk00 , limk00!1 lk00 = h� C, from the hypothesis above.
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and by Lemma 9 and Lemma 11:

lim
k0!1

inf qSk0
�
p0
�
�

1� "
�
1� �Q

�
gl

1�
�
1� "

�
1� �Q

�
gl
� = 1:

So the limiting payo¤s at the price p0 are

lim
k0!1

USk0
�
p0; 0

�
= p0 > l � lim

k0!1
supUSk0 (lk0 ; 0) ;

contradicting lk0 2 argmaxp USk0 (p; 0) for k0 large enough ��

2.5.2 Convergence to the Walrasian Price

Theorem 3 For every sequence of steady-state equilibria, prices converge to the Wal-
rasian Price:

lim
k!1

pk (c) = p
w 8c < pw and lim

k!1
rk (v) = p

w 8v > pw

With hk being the highest accepted price in equilibrium no seller of type c < hk o¤ers
a price p > hk: Such an o¤er would yield a pro�t of zero while any price below hk yields
strictly positive pro�ts. So pk (c) 2 [pk (0) ; hk] and by pk (0) = lk ! hk, it is su¢ cient for
proving the theorem to prove that limk!1 hk = pw. To do so, we take some convergent
subsequence of fhkg1k=1, indexed by k0, with limk0!1 hk0 = pc. First, we show that all
sellers with costs below pc must be able to trade for sure in the limit. Second, all buyers
with valuations above pc must be able to trade for sure in the limit. Finally, the only
price at which all buyers with valuations above pc and all sellers with costs below pc can
trade is pw. Therefore, it must be that the limit pc is equal to pw for every convergent
subsequence. And thus, pw must be the limit for the sequence itself.20

For the �rst lemma, observe that along this subsequence, for any p0 < pc, buyers with
v 2 (p0; lk) do not trade but accumulate in the market (this and the following statements
are trivial if pc = 0). Hence, they have a strictly positive share in the pool and they
accept a price p0 � v. Therefore, with �k0 ! 0, a seller o¤ering any p0 below pc can be
sure to trade in the limit, i.e., qSk0 (p

0)! 1 8p0 < pc. Thus, the trading probability at the
equilibrium price pk (c) �= pc must converge to one as well and QSk0 (c)! 1 for all c < pc.
For prices p00 strictly above pc, even the highest reservation price is below p00 when k0 is
large enough, since lim rk0 (1) = pc < p00. Therefore, lim sup qSk0 (p

00) = 0 for all p00 > pc,
which implies that types c > pc cannot trade and QSk0 (c)! 0 for all c > pc. Together:

Lemma 12 For every convergent subsequence fhk0g1k0=1 with limk0!1 hk0 = pc:

lim
k0!1

QSk0 (c) = 1 8c < pc and lim
k0!1

QSk0 (c) = 0 8c > pc:

Similarly, we can show that the trading probabilities of buyers with valuations v > pc

must converge to one. If not, some buyers would be willing to accept prices strictly above
pc, contradicting the de�nition of hk0 :
20By standard reasoning: If limk!1 pk 6= pw, then there is some " > 0 and some subsequence such that

(pk0 � pw) � ". Take any converging subsubsequence k00. By the reasoning before, its limit limk00 pk00 is
pw. Contradiction!
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Lemma 13 For every convergent subsequence with fhk0g1k0=1, limhk0 = pc:

lim
k0!1

QBk0 (v) = 1 8v > pc and lim
k0!1

QBk0 (v) = 0 8v < pc:

Proof: From lk0 ! pc, the trading probability at all r0 < pc is zero for k0 large enough.
Therefore, for all v > pc, lim inf rk0 (v) � pc. From its de�nition, rk0 (v) � hk0 so
limk0!1 rk0 (v) = pc for all v > pc. Together with pk0 (c) � lk0 , E [pjp � rk0 (v)] ! pc

for all v > pc. Recall the de�nition of rk0 (v):

rk0 (v) = v � (1� �k0)QBk0 (v) (v � E [pjp � rk0 (v)]) ;

and note that rk0 (v)! pc if and only if QBk0 (v)! 1 because:

lim
k0!1

rk0 (v) = lim
k0!1

v � (1� �k0)QBk0 (v) (v � E [pjp � rk0 (v)])

= v � pc � v lim
k0!1

QBk0 (v) ;

and therefore
lim
k0!1

rk0 (v) = p
c , lim

k0!1
QBk0 (v) = 1 �

Together, the two lemmas imply the theorem:
Proof of Theorem 3: Because trading probabilities of sellers and buyers in the limit
are given by the step functions 1c�pw and 1v�pw we know the mass of players who trade
in the limit:

lim
k0!1

Z 1

0
QSk0 (c) g

S (c) =

Z 1

0
1c�pwg

S (c) = GS (pc)

lim
k0!1

Z 1

0
QBk0 (v) g

B (v) =

Z 1

0
1v�pwg

B (v) = 1�GB (pc) :

In every equilibrium ��k, the mass of buyers who trade must be equal to the mass of sellers
who trade, as shown in Lemma 2. Therefore,

R 1
0 Q

S
k0 (c) g

S (c) =
R 1
0 Q

B
k0 (v) g

B (v) for all
k; and thus,

lim
k0!1

Z 1

0
QSk0 (c) g

S (c) = lim
k0!1

Z 1

0
QBk0 (v) g

B (v) ;

which implies GS (pc) = 1�GB (pc) at pc. The unique price which satis�es this is pw and
hence all sequences hk and lk converge to pw ��

An immediate corollary of Lemma 12 and 13 is this

Corollary 1 For every sequence of steady-state equilibria, the outcome converge to the
Walrasian allocation, i.e.,

lim
k0!1

QSk0 (c) = 1 8c < pc and lim
k0!1

QSk0 (c) = 0 8c > pc;

lim
k0!1

QBk0 (v) = 1 8v > pc and lim
k0!1

QBk0 (v) = 0 8v < pc:
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2.6 Discussion

2.6.1 Existing Literature and Other Market Clearing Forces

We know that the incentives to reach out for additional buyers is all that is needed to
guarantee the e¢ cient outcome.21 In the existing literature, one can �nd two assumption
that give sellers additional incentives to decrease their prices. In the main strand of the
literature22, within each pair both sides of the market have a chance to make an o¤er. In
recent models only sellers can make the o¤er but in addition, buyers have the chance to
simultaneously receive several o¤ers from competing sellers.23

For illustration, take the model with homogeneous sellers where the market clearing
price is zero. Suppose that sellers would set a common price p0 > 0 even for small �.
At this price, not all sellers will be able to trade so their ultimate trading probability is
bounded away from one. This implies that their pro�ts are strictly smaller than p0. Now
consider a model with a positive chance that a seller competes directly against the o¤er
of another seller. Then we have additional pressure on prices: given the common price
level p0, any incremental decrease below p0 increases the trading probability strictly by
undercutting rivals�prices. And because pro�ts are strictly below p0, this is pro�table.
Again, assuming all sellers o¤er p0, consider a model in which buyers can make o¤ers with
some probability themselves. First, note that a seller would accept a price o¤er p00 from a
buyer even if it is considerably less than p0 in order to avoid rationing. Therefore, buyers
have the possibility to trade at a price p00 in the future when it is their turn to propose,
and given � is close enough to zero, they become certain that they can do so. This makes
them unwilling to accept an o¤er p0 from the seller. Therefore, sellers will decrease their
price o¤er to make it acceptable.24

So we can distinguish three forces towards the competitive price level, the incentive to
reach out for additional buyers analyzed here, the incentive to undercut the competitors,
and the better outside option for buyers if they have some bargaining power. Rationing
on the sellers�side is their common starting point. But there is an important qualitative
di¤erence between the three forces: While the existence of additional buyers at lower
prices is a basic feature shared by most markets, the possibility of directly competing
o¤ers or the distribution of bargaining power between traders depends on the �ne details
of the situation and of the model. By showing that the convergence result does not
depend on these latter details, we provide evidence for the robustness of the prediction
that decentralized trading is e¢ cient.

When modelling the evolution of the pool of traders we follow McAfee (1993) and
assume that there is some death rate, letting the rate converge to zero. This seems a
natural condition when analyzing steady states. The main alternative would be to follow

21Strictly speaking, asymmetric information is also needed as demonstrated in chapter one. However,
asymmetric information might be considered so omnipresent in situations of economic transactions as to
be part of every decentralized market.
22Mortensen (1982), Rubinstein&Wolinsky (1985) and Gale (1986, 1987) initiated the analysis for com-

plete information. Serrano (2002), Moreno&Wooders (2002) and Inderst (2001) extended it towards
incomplete information.
23See Satterthwaite and Shneyerov (2004, 2005). Though without convergence results, this structure

can be found in the literature on nosiy search, e.g., in Burdett and Judd (1983) .
24Of course, in both kinds of models it has to be proven that there is no price dispersion. Our proof of

the law of one price can be applied to both situations to yield this conclusion.
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Gale (1987) and later authors who assume that traders are literally in�nitely lived. With
this assumptions, agents can leave the market only through trading and agents who do
not trade would accumulate in the market and have mass in�nity. Therefore, to ensure
the existence of a steady state with �nite masses, these authors include an entry decision.
This assumption of in�nitely lived agents has direct implications for the set of possible
equilibria by introducing a sort of zero pro�t condition for sellers: To ensure a steady
state, the in�ows of buyers and sellers must be identical with in�nitely lived agents. In
addition, all traders who decide to enter the market must trade at some point. Now there
are two possible equilibrium scenarios: Either all buyers enter, including those with zero
valuation. Because even these buyers must be able to trade, sellers must o¤er prices close
to zero. Since sellers would not do so otherwise, this requires that sellers earn zero pro�ts.
In the other case, not all buyers enter but only a mass strictly below one. Then some
of the sellers must also choose to stay out of the market to balance the in�ows of sellers
and buyers. But sellers will stay out only if their equilibrium pro�ts are zero. So for
both cases the seemingly minor assumption of in�nitely lived agents implies immediately
that sellers must make zero pro�ts. Note well, that this observation is independent of
any further strategic considerations and it is true even away from the limit for all levels
of frictions. Models with in�nitely lived agents can therefore not include the idea that
frictions allow traders to enjoy market power in a decentralized market and that therefore
trading is ine¢ cient unless the market becomes frictionless.25 Formally, with in�nitely
lived agents, the analogue of Proposition 3 does not hold, so that a steady state exists
only for some strategies. This restriction on strategies turns out to be a force towards
market clearance.

With in�nitely lived agents, the inclusion of an entry decision is necessary for technical
reasons. We can dispense with it here. If, however, we would include such a decision,
we could have sustained multiple equilibria:26 For example, there will always be a trivial
equilibrium in which no trader enters and no trade takes place. In addition, for � small
enough there will be equilibria in which only buyers above some arbitrary threshold
pc 2 (0; 1) enter: Given that only such buyers are available in the pool, sellers would
have no incentives to decrease their price below such a threshold pc since they cannot
increase their revenue by selling to addition buyers. Such an equilibrium, however, might
be considered unstable because it relies on the literal impossibility of sellers to reach those
inactive buyers with valuations v < pc who accumulate outside the market. If sellers could
for example advertise their prices at some cost k per ad to buyers and k ! 0 we could
restore the convergence result.

Finally, our model might be considered as going back to the very roots of the dynamic
matching and bargaining literature. Already in the seventies and long before Wolinsky and
Rubinstein (1985) published their seminal paper on dynamic matching and bargaining,
Gerard Butters (1977) began working on a model where only sellers make price o¤ers
and other market clearing forces are absent. He also allowed for non-stationary in�ows,
a more general matching technique and two-sided heterogeneity. Thus, relative to later

25 In the same spirit, Satterthwaite and Shneyerov (2006, footnote 3) note that their companion paper,
that features positive exit rates, also "[...] demonstrates more clearly [than a model without an exit rate]
the power of supply and demand to force price to converge to pw:"
26Note, that we would need to change the matching technology to accomodate the possibility that the

masses of entering traders on each side of the market are not identical. A simple way would be to follow
Gale (1987) and to assume that matching probabilities are proportional to shares among all traders
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authors building upon his un�nished typescript, his analysis was much more ambitious.
But it remained cumbersome and was not published. Although we have not reached the
level of generality envisioned by Butters yet, this note might be a step in the direction of
the analysis he had in mind.

2.6.2 Conclusion

In our analysis, we checked the robustness of the market clearing hypothesis and the
underlying intuition. We were able to prove asymptotic e¢ ciency of decentralized trading
by appealing to the basic economic forces of rationing of traders at non-market clearing
prices. We have shown that with homogeneous sellers the optimality condition for pricing
looks like the familiar Lerner formula, i.e., the mark up of prices over costs is proportional
to the inverse elasticity of demand. Di¤erent to the static case, costs of trading for sellers
include foregone future pro�ts, and the elasticity of demand includes the possibility of
intertemporal substitution. When frictions become small, we have seen that the increasing
elasticity of demand implies that prices must converge to their competitive level.

Nevo and Hendel (2006) have shown in a recent study of demand for laundry detergents
that indeed the dynamic elasticity of demand is much higher than the static elasticity.
They point out the relevance of this di¤erence for example when using the Lerner formula
for policy problems like merger analysis: They warn that if �rms set prices relative to
the static demand elasticity, then predictions of the mark-up that use estimates of the
dynamic elasticity might be misleading. In our model, however, �rms actually use the
dynamic elasticity. Although we look at the extreme case of a many competing �rms,
our result suggests that oligopolistic pricing decisions might incorporate the dynamic
elasticity as well.

Clearly, open questions about decentralized markets remain: In chapter two and in
Merzyn (2006), we analyze a dynamic matching and bargaining game in which we relax
the assumption that traders know the aggregate supply. We characterize the equilibrium
behavior of buyers who have to learn about the state of the market. It would be interesting
to include such aggregate uncertainty into the present model, in order to analyze whether
decentralized trading becomes e¢ cient even in this case. Another issue is raised by Gale
(2000), who suggests that a complete model of decentralized trading should also include
the problem of coordination across markets (and time) for di¤erent products, e.g., between
the market for labor and the market for consumption goods. This problem is central to a
market economy. The simple dynamic matching and bargaining game that was analysed
in this paper might provide a useful framework for this question.

35



3 A General Approach to Decentralized Markets

Dynamic matching and bargaining games provide models of decentralized
markets with trading frictions. A central objective of the literature is to in-
vestigate how equilibrium outcomes depend on the size of the frictions. In
particular, will the outcome become e¢ cient when frictions become small?
Existing speci�cations of such games give di¤erent answers. To investigate
what causes these di¤erences, we identify four simple conditions on trading
outcomes. We show that for every game which satis�es these conditions,
the equilibrium outcome must become e¢ cient when frictions are small. We
demonstrate that our conditions hold under several speci�cations in the lit-
erature, suggesting a common cause behind their convergence results. These
speci�cations include, for example, the recent contribution by Satterthwaite
and Shneyerov (Econometrica, forthcoming.) For those speci�cations in the
literature for which outcomes do not become e¢ cient, we show exactly which
of our conditions do not hold. These speci�cations include, for example, Ser-
rano (2002, JME) and DeFraja and Sakovics (2001, JPE).

3.1 Introduction

In a dynamic matching and bargaining game, a large population of traders interacts
repeatedly in a decentralized market. Every trading period, traders are matched to form
small groups where they bargain over the terms of trade. If they fail to reach an agreement,
at some cost they can wait until the next period to be rematched into a new group. These
waiting costs are the frictions of trading in the decentralized market. A major question
in the literature concerns the trading outcome when frictions become small: Will the
outcome become e¢ cient? Ideally, one would like not only to �nd answers for particular
trading institutions but also to gain a general understanding of the conditions under which
trading with vanishing frictions has this property and the conditions under which it does
not. This is the task of this paper. Its primary goal is to provide a general, "detail free"
framework for the analysis of decentralized markets. Recent contributions that fall into
the framework of this paper include papers by Moreno and Wooders (2001), Satterthwaite
and Shneyerov (2007), and De Fraja and Sakovics (2001).

As a basic setup we use the following dynamic matching and bargaining environment,
similar to the one used by Gale (1987):27 There is a continuum of buyers who have unit
demand and valuations v 2 [0; 1] for an indivisible good, and there is a continuum of sellers
who have unit capacity and costs c 2 [0; 1]. These traders are matched into small groups.
In these groups they bargain, and if they reach an agreement, they trade. The groups
are connected to form a large market by allowing unsuccessful traders to be matched
into new groups in the next period. Integration, however, is imperfect because there is
a probability � 2 (0; 1) that a trader will die while waiting. These are the frictions of
trading. Finally, at the end of each period, there is an exogeneous in�ow of new buyers
and sellers.

This framework is general with respect to both the matching technology and the
bargaining protocol, i.e., we do not specify how traders are matched into groups. Also,
27The main di¤erence is our assumption that traders have a �nite life expectancy; see Section 3.6.2 for

the case of in�nitely lived traders.
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we do not specify how bargaining within the groups takes place and what information is
released before and during bargaining. We will see how existing models in the literature
di¤er in how they �ll in these details. But no matter how this is done, every speci�cation
of the model will give rise to an outcome which consists of (a) probabilities of trading for
entering types and (b) expected equilibrium payo¤s. Let QS (c) denote the probability
that a seller of type c sells his good, and let QB (v) denote the probability that a buyer
of type v gets the good. Similarly, let V S (c) and V B (v) be the payo¤s to these types.
Taken together, an outcome is a vector A =

�
QS ; QB; V S ; V B

�
.

Now, suppose there is some sequence of exit rates f�kg1k=1, which converges to zero,
�k ! 0. In addition, suppose for each �k, we take an equilibrium outcome of a speci�c trad-
ing game. This gives us a sequence of outcomes fAkg1k=1, with Ak =

�
QSk ; Q

B
k ; V

S
k ; V

B
k

�
.

We state four conditions on this sequence that will ensure that its limit is e¢ cient. The
�rst condition, monotonicity, requires that trading probabilities are monotone, i.e., buy-
ers with higher valuations are more likely to trade while sellers with higher costs are less
likely to trade. The second condition, no rent extraction, requires that traders receive
some part of the surplus that they generate. Technically, this is a condition on the slope
of the payo¤s. The third condition, availability, requires that a trader is matched fre-
quently with those traders who do not trade with certainty and who remain in the pool
for many periods. These traders are said to be available. The fourth condition, weak
pairwise e¢ ciency, requires that for all pairs of buyers and sellers who are available, i.e.,
for all pairs who are matched frequently, the joint surplus is at least their private surplus
and V S (c) + V B (v) � (v � c). Note that the third condition relates to the matching
technology, while the other conditions relate to the bargaining protocol. As we will see,
these conditions hold for a wide range of models.

Next, let S (Ak) be the surplus of an outcome Ak; and let S� be its maximum over
the set of all outcomes satisfying a mass balance condition (see Section 3.3.2). Our main
result is this: Every sequence of outcomes fAkg1k=1 which satis�es the four conditions
becomes e¢ cient when � becomes small, i.e.,

lim
k!1

S (Ak) = S
�.

In the second part of the paper, we discuss speci�c dynamic matching and bargaining
games. In particular, we use these games to discuss the economic meaning of our con-
ditions. To keep this part consistent, we introduce the games by varying a basic model
which we take from chapter two. This model is particularly simple: Groups consist of
just one seller and one buyer. Bargaining takes place by the seller making a price o¤er
to the buyer, which the buyer can either accept or reject. The seller cannot observe the
valuation of the buyer, i.e., information is asymmetric in the basic model. The setup of
this model is introduced in the next section - and before the general framework - to allow
the reader to familiarize himself with the environment.

We introduce the �rst variant of our model to show that our conditions do not only
hold with asymmetric information, but also in a model similar to Douglas Gale�s own spec-
i�cation with symmetric information. We then provide some intuition that the analysis
is not con�ned to steady states by considering the non-steady-state model of Moreno and
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Wooders (2001), where traders enter only in the �rst period. We also provide some intu-
ition for the case of bargaining between one seller and many buyers, assuming that the
seller holds a second price auction.

Auctions are also used to specify the bargaining protocol in the model of Satterthwaite
and Shneyerov (2007). But, like Gale (1987), they include an entry stage and assume
in�nitely lived traders. To show that our approach is also valid with these additional
complications, we extend our general framework by including an entry decision and by
considering the case where the exit rate � is set equal to zero. In this new framework, we
need stronger conditions to ensure convergence to e¢ ciency. This is discussed in detail in
Section 3.6.

Whenever convergence to e¢ ciency fails in some model, at least one of our conditions
must be violated. By pointing out exactly which conditions are violated, we show which
assumptions of the model are the reasons for the non-convergence results. In particular,
we show that the failure in chapter one can be traced back to rent extraction (a failure
of the second condition), the failure in Serrano (2002), to the failure of weak e¢ ciency
(the fourth condition), and the failure in De Fraja and Sakovics (2001), to a failure of a
fundamental mass balance condition.

The rest of the paper is structured as follows. First, we introduce the basic model
as an example in Section 3.2. Then we provide the general framework in Section 3.3.1,
and in Section 3.3.2 we discuss necessary and su¢ cient conditions for outcomes to be
e¢ cient. In Section 3.3.3 we introduce the four conditions on outcomes. We prove our
main result in Section 3.4: every sequence of outcomes that meets the four conditions
becomes e¢ cient. In Section 3.5 we demonstrate that the conditions are met in some
examples. We introduce some variations of the general framework by adding an entry
stage (Section 3.6.1) and assuming that traders are in�nitely lived (Section 3.6.2). Failures
of convergence to e¢ ciency are discussed in Section 3.7.

3.2 The Basic Model - An Example of a Dynamic Matching and Bar-
gaining Game

In this section, we introduce a speci�c dynamic matching and bargaining game. We will
use this game to motivate and illustrate the general framework.

We assume that there is a continuum of buyers and sellers who interact in a repeated
market over an in�nite number of periods, with time running from minus to plus in�nity.
Sellers have one unit of an indivisible good, and their costs of trading are c 2 [0; 1]. Buyers
want to acquire one unit of the good, and their valuation for the good is v 2 [0; 1]. At
the beginning of each period, there is some pool of buyers and sellers. The traders from
this pool are matched into pairs consisting of one seller and one buyer. Within each pair,
the seller announces a price o¤er p 2 [0; 1] and the buyer announces whether he rejects
or accepts the o¤er. If he accepts, the seller receives p� c, while the buyer receives v� p.
Next, all buyers and sellers who have traded exit the pool. Likewise, a share � of all those
traders who failed to trade exits. Finally, new players enter the market and the period
ends. The next period starts, using the same rules. We will look at the steady-state
equilibrium of this market.
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The in�ow of buyers and the in�ow of sellers each have mass one. The distribution of
valuations among buyers in the in�ow is exogeneously given by some c.d.f. GB (�) and,
similarly, the distribution of costs is given by some distribution GS (�). We assume that
GB (�) and GS (�) have continuous and strictly positive densities. Let pw be the price at
which the mass of sellers in the in�ow with costs below pw is exactly equal to the mass
of buyers with valuations above pw:

GS (pw) = 1�GB (pw) . (3.1)

Since the left hand side is strictly increasing while the right hand side is strictly decreasing,
the solution to (3.1) is unique. The function GS (�) can be interpreted as supply, and
1 � GB (pw) can be interpreted as demand. So pw is the price at which supply equals
demand, i.e., pw is the Walrasian market clearing price relative to the in�ow.

The market constellation is given by a vector � =
�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
, where

p (c) 2 [0; 1] is the price o¤ered by a seller of type c, r (v) 2 [0; 1] is the highest price
accepted by a buyer of type v, �S (�) is the cumulative distribution function of costs in
the pool of sellers, �B (�) is the corresponding distribution function for buyers, and M is
the total mass of buyers in the pool, which is equal to the total mass of sellers in a steady
state. For the analysis, we assume that all functions under consideration are measurable.
With �M being the set of measurable functions f : [0; 1] ! [0; 1], � is an element of
� � �4M � R.

We say that a vector � constitutes an equilibrium if strategies are mutually optimal
given the distribution of types and if the distribution of types in the pool is consistent
with the trading strategies and the exogeneous in�ow. These conditions are now spelled
out in detail.

First we turn to the sellers. If the seller o¤ers a price p, let us denote by D (pj�) the
probability that the buyer will accept the o¤er. Buyers accept a price p if p � r (v) (see
below), so D (pj�) is

D (pj�) �
Z
fvjp�r(v)g

d�B (v) . (3.2)

Let qS (pj�; �) be the probability that a seller can trade some time during his lifetime

qS (pj�; �) � D (pj�)
1� (1�D (pj�)) (1� �) , (3.3)

which we also call the lifetime trading probability, and which is derived from the recursive
formula

qS (pj�; �) = D (pj�) + (1�D (pj�)) (1� �) qS (pj�; �) .

The expected payo¤ to a seller when o¤ering a price p is his trading probability times his
pro�t, i.e.,

US (p; cj�; �) � qS (pj�; �) (p� c) ;

and we require that p (c) 2 argmaxUS (�; cj�; �) for all c in equilibrium.

For buyers, let S (rj�) denote the probability of receiving an o¤er p � r in any period.
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Again, we de�ne the lifetime trading probability by

qB (rj�; �) � S (rj�)
1� (1� S (rj�)) (1� �) .

The expected price o¤er conditional on p � r is denoted by E [pjp � r; �].28 Payo¤s when
accepting all p � r are given by

UB (r; vj�; �) � qB (rj�; �) (v � E [pjp � r; �]) . (3.4)

Let V B (vj�) � supr UB (r; vj�; �). Suppose that the following condition holds

r (v) = v � (1� �)V B (vj�; �) . (3.5)

Then a buyer who receives an o¤er p = r (v) is just indi¤erent about accepting and
rejecting the o¤er: his payo¤ if accepting the o¤er, v � r (v), is equal to his payo¤ if
rejecting it, which is the continuation payo¤ (1� �)V B (vj�; �). If p < r (v), the buyer
is strictly better o¤ when accepting the o¤er, and when p > r (v), the buyer is strictly
better o¤ rejecting the o¤er. Hence, it is optimal for a buyer to accept a price if it is
below r (v) and to reject the price otherwise.29

We restrict attention to steady-state equilibria in which the pool does not change over
time. If the distribution at the beginning of a period is given by �St (�) and the trading
strategies are r (�) and p (�), then the distribution of sellers at the end of the period is the
sum of the entering and the initial sellers who have neither traded nor died:

�St+1 (cj�) = GS (c) + (1� �)
Z c

0
(1�D (p (�))) d�St (�) .

The pool of traders is in a steady state if and only if the distribution of types does not
change over time. For sellers it is necessary that �St+1 (cj�) = �St (c) = �S (c) for all c.
This condition can be written as30

�S (c) =

Z c

0

dGS (�)

M (D (p (�) j�) + � (1�D (p (�) j�))) for all c. (3.6)

A similar condition can be obtained for buyers:

�B (v) =

Z v

0

dGB (�)

M (S (r (�) j�) + � (1� S (r (�) j�))) for all v. (3.7)

Summing up, we say �� is an equilibrium if it satis�es the above conditions:

De�nition 2 A steady-state equilibrium vector �� 2 � consists of an optimal pair of
strategies and a corresponding steady-state pool, i.e., �� is a vector�
p (�) ; r (�) ;�S (�) ;�B (�) ;M

�
for which

28 If QB (r) = 0, then E [pjp � r] � r:
29 In general, reservation price strategies are the unique optimal sequentially rational strategies when

sampling without recall from a known stationary distribution of prices; see McMillan and Rothschild
(1994). In our model, we nevertheless simply assume that buyers use reservation prices to avoid unneces-
sary notation.
30We get this by an algebraic manipulation of �S (c) = �St+1 (c) ; by observing that for all c,R c
0
d�S (�) =

R c
0
dGS (�)+

R c
0
(1� �) (1�D (p (�) )) d�S (c) and then

R c
0
d�S (�)� dGS(�)

1�(1��)(1�D(p(�))) = 0.
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� p (c) 2 argmaxUS (p; cj��; �) for all c

� r (v) = v � (1� �)V B (vj��; �) for all v

� �S (�), �B (�), and M satisfy the steady-state conditions (3.6), (3.7).

Every equilibrium �� and exit rate �, gives rise to a trading outcome as follows. Let
V S (cj��; �) � US (p (c) ; cj��; �) and V B (vj��; �) � UB (r (v) ; vj��; �) be the equilib-
rium payo¤s and let QS (cj��; �) = qS (p (c) j��; �) and QB (vj��; �) = qB (r (v) j��; �)
be the equilibrium trading probabilities. Then the outcome A =

�
V S ; V B; QS ; QB

�
of

the equilibrium �� is given by the mapping A (�; �) : � � [0; 1] ! �4M , i.e., A (�
�; �) =�

V S (�j��; �) ; V B (�j��; �) ; QS (�j��; �) ; QB (�j��; �)
�
. As we will see in Section 3.5, out-

comes can be identi�ed across a wide range of speci�cations. Therefore, we now turn to
a general discussion of outcomes.

3.3 The General Approach

For the general approach, we introduce the basic notation and make some preliminary
observations in the �rst subsection. In the following subsection, we show that outcomes
are e¢ cient if they are "Walrasian," and we derive a su¢ cient condition for e¢ ciency.
Finally, we introduce the four conditions that we want to use to characterize outcomes.

3.3.1 Outcomes

An outcome is a vector A =
�
V S (�) ; V B (�) ; QS (�) ; QB (�)

�
, where V S (c) is the expected

payo¤ of an entering seller of type c and QS (c) is his (lifetime) trading probability.
Similarly, V B (v) is the expected payo¤ of an entering buyer of type v and QB (v) is his
(lifetime) trading probability. We de�ne TS (�) and TB (�) implicitly by

V S (c) = TS (c)� cQS (c) and V B (v) = v QB (v)� TB (v) . (3.8)

Because we assume that there is no discounting,31 TS (�) and TB (�) can be interpreted
as expected transfers. Given an outcome A, the surplus of entering traders is de�ned as

S
�
AjGS (�) ; GB (�)

�
�
Z 1

0
V B (v) dGB (v) +

Z 1

0
V S (c) dGS (c) .

The distribution of types GS (�) and GB (�), together with the size of the friction � 2
(0; 1), describe our economy.32 We assume that both distributions are smooth and strictly
increasing. In particular, we assume that GS (�) and GB (�) have continuous and strictly
positive densities. This assumption is identical to the one made in the basic model, and it
ensures that there is a unique Walrasian price pw which satis�es GS (pw) = 1�GB (pw).
In the sequel, we take GS (�) and GB (�) as �xed and drop them from the argument.

31When we consider in�nitely lived agents in Section 3.6.2, we also discuss the implications of a model
with discounting. We show that the basic insights still apply.
32The parameters � and GS and GB can be interpreted more broadly. In Section 3.6.2 the exit rate �

is replaced by a discount factor �; and in Section 3.5.3 we suggest that one can interpret GS and GB as
the population at the beginning of a non-steady state dynamic matching and bargaining game that has
no further entry.

41



For our analysis, we assume that all components of A are elements of the set of
measurable functions, i.e., A 2 �4M and S (�) : �4M ! R. With the Lebesgue integral,
we can de�ne a distance between two functions, d (�; �) : �2M ! [0; 1] with d (f1; f2) =R 1
0 jf1 (x)� f2 (x)j dx.

33 We use d (�; �) to de�ne convergence in �M . In many cases, we
can �nd conditions that ensure that the set of functions is restricted to the set of monotone
functions. This will turn out to be helpful because every sequence of monotone functions
has a convergent subsequence, i.e., sets of monotone functions are sequentially compact.34

For future references, let �+ � �M be the subset of weakly increasing functions and let
�� � �M be the subset of weakly decreasing functions.

A natural consistency requirement on an outcome is that total transfers collectively
made by all buyers are equal to total transfers received by all sellers,

R 1
0 T

B (v) dGB (v) =R 1
0 T

S (c) dGS (c). From (3.8), it follows that this is equivalent to the following condition
on A: Z 1

0

�
v QB (v)� V B (v)

�
dGB (v) =

Z 1

0

�
V S (c) + cQS (c)

�
dGS (c) . (3.9)

De�ne

SQ (A) �
Z 1

0
v QB (v) dGB (v)�

Z 1

0
cQS (c) dGS (c) :

Condition (3:9) is equivalent to
S (A) = SQ (A) : (3.10)

This equality re�ects the idea that, for the purpose of welfare analysis, only the allocation
of the good matters while transfers cancel.

Similar to the balance of transfers, the total mass of buyers who trade is required to
be equal to the total mass of sellers who trade:Z 1

0
QS (c) dGS (c) =

Z 1

0
QB (v) dGB (v) . (3.11)

Economically, this condition corresponds to the scarcity of the good: For every buyer who
enjoys consumption, there must be some seller who incurs costs. We de�ne the set Q̂ of
all trading outcomes satisfying the balance of total trades:

Q̂ �
�
QS (�) ; QB (�) 2 �2M j condition (3:11) holds

	
.

An outcome A satis�es mass balance if it satis�es the two consistency conditions:

De�nition 3 Mass balance. An outcome A =
�
V S (�) ; V B (�) ; QS (�) ; QB (�)

�
is said

to satis�es mass balance if

A 2 Â �
n
A j Q 2 Q̂ and S (A) = SQ (A)

o
.

33Note that d (�; �) is only a semimetric: d (f1; f2) = 0 does not imply f1 = f2. Still d (f1; f2) is non-
negative and symmetric, and it sati�es d (f1; f1) = 0 and the triangle inequality. We endow �M with
the semimetric topology (see Aliprantis, Border (1994, p. 23)), de�ned in the usual way by using open
"�balls B" (f1) = ff 2 �M jd (f1; f) < "g, to de�ne open sets just as in a metric space.
34According to Helly�s selection theorem (see Kolmogorov, Fomin (1970, p. 372)), every sequence

ffNg1N=1 of monotone functions has a pointwise convergent subsequence ffN0g1N=1. Lebesgue�s bounded
convergence theorem implies d

�
fN0 ; �f

�
! 0 for some �f . The limit �f is clearly monotone itself.

42



We say that a sequence of outcomes fAkg1k=1satis�es mass balance if each of its mem-
bers Ak is in Â.

3.3.2 E¢ ciency

Our object of interest is the maximal surplus that can be reached subject to the resource
constraint Q 2 Q̂:

S� � sup
A2Â

SQ (�) .

Basic economic intuition suggests that the optimal allocation is the following: All buyers
with valuations above the market clearing price pw get the good, while all sellers with
costs below pw sell theirs; buyers with lower valuations and sellers with higher costs do
not trade. Let QW be the set of Walrasian allocations of the good that are equivalent35

to this rule:

QW �
�
Q 2 Q̂ j

Z 1

0

��QS (c)� 1c�pw (c)�� dc = 0, Z 1

0

��QB (v)� 1v�pw (v)�� dv = 0� .

(3.12)
It is straightforward to prove that indeed an outcome is e¢ cient if and only it is in QW

(see the appendix for details)36:

Lemma 14 For all outcomes that satisfy mass balance, i.e., for all A 2 Â: S (A) = S�
if and only if Q 2 QW .

Accordingly, the maximal surplus S� is given by:

S� =

Z 1

pw
vdGB (v)�

Z pw

0
cdGS (c) . (3.13)

Let Q̂+ be the set of trading probabilities which are monotone and which satisfy mass

balance of trades i.e., Q̂+ �
n
Q 2 Q̂ j QS 2 ��, QB 2 �+

o
. Because Q̂+ is sequentially

compact, we can show that the former lemma also holds in the limit: a sequence of
outcomes fQkg1k=1 becomes e¢ cient if and only if it converges to the set QW . (We say
that a sequence fQkg1k=1 converges to QW if its distance to any element of QW becomes
zero in every component.) The proof of the following lemma is relegated to the appendix:

Lemma 15 For every sequence fAkg1k=1with Ak 2 Â and with Qk 2 Q̂+:

lim
k!1

SQ (Ak) = S
� if and only if lim

k!1
Qk = Q

W .

Next, we derive a simple su¢ cient condition for the e¢ ciency of an outcome: Suppose
an outcome A is such that, for any cost c and for any valuation v, joint payo¤s V S (c) +
V B (v) are weakly larger than the private surplus v�c. It is easy to show that this implies
that A is e¢ cient, i.e., S (A) = S�:

35Two functions Q1 and Q2 are equivalent if d (Qs1; Q
s
2) = d

�
QB1 ; Q

B
2

�
= 0.

36Note, however, that in many models of the literature, this relation between e¢ ciency and the Walrasian
allocation is less straigthforward: With in�nitely lived agents, as, e.g., in Gale (1987) we need to take care
of "Ponzi-Schemes" and with cloning, as e.g., in the model by DeFraja and Sakovics (2001) the de�nition
of surplus itself becomes problematic (see Section 3.6.2 and 3.7.3, respectively).
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Lemma 16 Su¢ ciency. If some outcome satis�es mass balance, i.e., if A 2 Â and if
for all v and c, V S (c) + V B (v) � v � c, then S (A) = S�.

Proof: Let �p � infc�pw
�
V S (c) + c

�
. Then V S (c)+V B (v) � v� c for all v and c implies

V B (v) � v � infc�pw
�
V S (c) + c

�
for all v. Together with the de�nition of �p, we use this

to bound S (A):

S (A) �
Z 1

pw
V B (v) dGB (v) +

Z pw

0
V S (c) dGS (c)

�
Z 1

pw
(v � �p) dGB (v) +

Z pw

0
(�p� c) dGS (c)

= S� + �p
�
GS (pw)�

�
1�GB (pw)

��
= S�,

where the last line follows from the de�nition of pw. By the restriction A 2 Â and by the
de�nition of S�, S (A) � S�. Therefore, S (A) � S� implies S (A) = S�. �

By continuity of S (�), the last lemma carries over to sequences (see the appendix
for details). For technical reasons, we restrict the elements of Ak to be in the set of
outcomes which satisfy mass balance and which are monotone in each component, Â+ �
Â \ [�� � �+ � �� � �+]:

Lemma 17 For every sequence fAkg1k=1with Ak 2 Â+

lim
k!1

S (Ak) = S
� if lim

k!1
inf
�
V Sk (c) + V

B
k (v)

�
� v � c for all v, c.

3.3.3 General Conditions

We take some sequence of exit rates f�kg1k=1 ; and for each exit rate �k we take some
outcome Ak. This gives us a sequence fAkg1k=1. We now de�ne four conditions for this
sequence. In the next section, we show that if the sequence satis�es these conditions, then
its limit is e¢ cient.

In the following, we denote pointwise limits by upper bars. For sequences of trading
probabilities, we de�ne

�QS (c) � lim
k!1

QSk (c) , and �Q
B (v) � lim

k!1
QBk (v) ,

whenever these limits exist. For sequences of payo¤s, we de�ne analogously

�V S (c) � lim
k!1

V Sk (c) and �V
B (v) � lim

k!1
V Bk (v) .

We motivate the �rst two conditions by the trading situation with asymmetric infor-
mation in the basic model. While we provide here only a sketch of the idea, we prove
in Section 3.5.1 in detail that the conditions hold. In Section 3.5.2 we show that the
conditions also hold with symmetric information when bargaining power is intermediate
(see also remark 5).37

37See also Remark 9 in Section 3.7.1 for the case of noisy information.
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The main observation for the basic model is that, with asymmetric information, the
revelation principle requires that the trading outcome is incentive compatible. Intuitively,
a type c can mimic the strategy of another type cx. If he does so, he receives a transfer
TSk (cx) and trades with probability Q

S
k (cx). Thus, for V

S
k (c) to be the equilibrium payo¤

for type c, V Sk (c) must be at least as large as T
S
k (cx)� cQSk (cx). The same observations

apply to buyers.

It is standard to verify that incentive compatibility requires that trading probabilities
are monotone (for details, see Section 3.5.1):

Condition 1 Monotonicity. A sequence fAkg1k=1 satis�es monotonicity if every mem-
ber Ak has monotone trading probabilities:

QSk (�) 2 �� and QBk (�) 2 �+.

Also, by standard reasoning, incentive compatibility imposes a restriction on the slopes
of payo¤ functions: The di¤erence between the payo¤s of two types cannot be too large
for otherwise one of these types would have an incentive to mimic the other (see Section
3.5.1, equation (3.18) for details). This is re�ected in the following condition, which
requires that the slope is bounded between zero and one. We require a tighter bound if a
type cx trades with certainty in the limit. In this case, every other type could mimic him
and receive at least the same revenue. The payo¤ di¤erence would be entirely due to the
di¤erence in their costs, i.e., payo¤s from mimicking the type cx change with a slope of
one.

Condition 2 No Rent Extraction. A sequence fAkg1k=1 satis�es no rent extraction if
for every member Ak of the sequence fAkg1k=1 and for every c, cx 2 [0; 1] and v; vx 2 [0; 1]
there is some a 2 [0; 1] such that

V Sk (c) � V Sk (cx) + a (cx � c) and V Bk (v) � V Bk (vx) + a (v � vx) .

In addition, whenever �QS (cx) and �V S (cx) exist and �QS (cx) = 1, then lim inf V Sk (c) �
�V S (cx) + (cx � c) for all c. Symmetrically, whenever �QB (vx) and �V B (vx) exists and
�QB (vx) = 1 then lim inf V Bk (v) � �V B (vx) + (v � vx) for all v.

The no rent extraction property implies monotonicity and continuity of the payo¤
functions, something we will utilize in the proof. In particular, monotonicity and conti-
nuity carry over to the limiting functions �V S and �V B.38

Remark 3 With asymmetric information, it is well known from the proof of the envelope
theorem (see, e.g., Milgrom and Segal (2002)) that we can state the bound more tightly as
V Sk (c) � V Sk (cx)+QSk (cx) (cx � c) (see inequality (3.18)). The same applies to buyers, of
course. However, here we want to �nd conditions which are just strong enough to imply
the convergence result, but still weak enough so that they hold in a wide range of models.
In particular, we want to include the possibility of symmetric information, and, in this
case, we can only require the weaker bounds that we stated in the condition.
38According to the condition, all payo¤ functions must be Lipschitz continuous with Lipschitz constant

1, since
��V S (c)� V S (cx)

�� � jc� cxj. Therefore, every sequence of such functions is equicontinuous;
hence, its limit must be continuous whenever it exists (see Kolmogorov, Fomin (1970, p. 102)).
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For the next two conditions, we introduce the concept of availability. This is formal-
ized by the introduction of an operator LB (�) : [0; 1]2 � �4M ! [0; 1]. LB (v00; �k; Ak) is
interpreted as the probability that a seller who is just passively waiting in the pool will
be matched at least once with a buyer of type v � v00 before he dies, given the exit rate �k
and the outcome Ak.39 Let LBk (v) � LB (v; �k; Ak) and let �LB (v) = lim infk!1 LBk (v).
As we will demonstrate in the basic model, whenever some set of buyers does not trade
with certainty in the limit, then this set is available, i.e., LB = 1. Introducing a similar
function LS (�) for sellers, we state:

Condition 3 Availability. A sequence fAkg1k=1 satis�es availability relative to some
pair of functions LB and LS if, whenever �QB (v0) exists for some v0 and �QB (v0) < 1,
then �LB (v00) exists and �LB (v00) = 1 for all v00 < v0 ; And if �QS (c0) exists for some c0 and
if �QS (c0) < 1, then �LS (c00) exists and �LS (c00) = 1 for all c00 > c0.

Now, suppose it is commonly known that types cx and vx are available, i.e., buyers
and sellers are mutually sure to meet some c � cx and some v � vx, respectively. Then,
intuitively, their joint payo¤s should be ex ante pairwise e¢ cient. Otherwise, their joint
payo¤s is below the surplus they could realize by trading. So it becomes certain that
(a) between these types there is still "money left on the table," and (b) these types
are certain to meet each other so that they can realize this additional surplus. This
observation motivates the �nal condition:

Condition 4 Weak pairwise e¢ ciency. A sequence fAkg1k=1 satis�es weak pairwise
e¢ ciency relative to some pair of functions LB and LS ; if �LS (cx) = 1 and �LB (vx) = 1
for any pair of types cx and vx implies

�V S (cx) + �V B (vx) � vx � cx.

But note well that the condition requires pairwise e¢ ciency only with respect to those
types which do not trade with certainty and which are available. Payo¤s might still be
ine¢ cient for those pairs of types which trade with certainty and which are not available.

Remark 4 Instead of giving two conditions, we could have stated a single condition that
requires that whenever for some pair vx and cx, �QB (vx) < 1 and �QS (cx) < 1, then for
all pairs v and c with v < vx and c > cx, V S (c) + �V B (v) � v � c. Mathematically, the
functions LS and LB are just arbitrary indicator functions that connect the two condi-
tions. However, we stated them separately, since in the applications the �rst of the two
conditions can be formulated as a condition on the matching technology while the second
condition refers to the bilateral bargaining outcomes (see Section 3.5 and the de�nition of
the functions LS and LB in (3.17) and (3.16)). As discussed in Section 3.7.2, these two
condition can fail separately, i.e., economically, they are separate.

3.4 Main Result

In this section, we state and prove our main result: Suppose there is a pair of functions
LS ; LB and a sequence of exit rates f�kg1k=1 such that a given sequence of outcomes
fAkg1k=1 satis�es the conditions stated before. Then outcomes along this sequence become
e¢ cient:
39For an example, see the de�nition of LB (�) in the basic model in equation (3.16).
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Proposition 4 Suppose some sequence fAkg1k=1 satis�es mass balance, monotonicity, no
rent extraction, and suppose it satis�es availability and weak pairwise e¢ ciency relative
to some sequence of frictions f�kg1k=1 and to some pair of functions LB, LS. Then the
outcome becomes e¢ cient, i.e.,

lim
k!1

S (Ak) = S
�.

Proof : The monotonicity condition and the no rent extraction condition require that
all components of each element Ak are monotone, i.e., Ak 2 Â+. By Helly�s selection
principle (see Kolmogorov, Fomin 1970), we can �nd a pointwise convergent subsequence
fAk0g1k0=1. Let its limit be denoted by

�
�V S ; �V B, �QS ; �QB

�
. We �rst show that

�
�QS ; �QB

�
is

in the set of Walrasian allocations QW for every such subsequence. Then we show that
this is su¢ cient for limk!1 SQ (Ak) = S� for the sequence itself.

Given the subsequence fAk0g1k0=1, de�ne cuto¤ types cx and vx as the lowest cost and
highest valuation, such that traders with these types do not trade with certainty in the
limit, i.e.,

cx � inf
�
c; 1j �QS (c) < 1

	
and vx � sup

�
v; 0j �QB (v) < 1

	
.

First, we show that the no rent extraction conditions implies

�V S (c) � �V S (cx) + (cx � c) for all c,

and �V B (v) � �V B (vx) + (v � vx) for all v.

So the payo¤s to all types can be bounded from below once we know the payo¤s of the
cuto¤ types. The �rst inequality follows directly for all types c 2 [cx; 1] by the no rent
extraction condition, observing that (cx � c) is negative. For types [0; cx], the inequality
is trivially true if cx = 0; if cx > 0, choose some " 2 (0; cx) and note that �QS (cx � ") = 1
by de�nition of cx and by monotonicity of �Q (�) (which is implied by the monotonicity
of each element Qk0). Hence, for all c � cx � ", the no rent extraction condition implies
that �V S (c) � �V S (cx) + (cx � c) � ". Because �V (�) is continuous (see the statements
following the no rent extraction condition), and because " was chosen arbitrary, we get
�V S (c) � �V S (cx) + (cx � c). So the �rst inequality holds for all c 2 [0; 1]. The second
inequality follows for all buyers by symmetric reasoning.

Adding the two inequalities yields a lower bound on the joint surplus of all c and v:

�V S (c) + �V B (v) � v � c+ �V S (cx) + �V B (vx)� (vx � cx) . (3.14)

We use the availability and the weak e¢ ciency conditions to show that the right hand
side is at least (v � c):

We consider two cases for the ordering of cx and vx. First, suppose cx < vx. Take
some " 2 (0; vx � cx). By de�nition of cx and vx, and by monotonicity of �QS (�) and
�QB (�), we have �QS (cx + 0:5") < 1 and �QB (vx � 0:5") < 1. The availability condition
implies that �LS (cx + ") = �LB (vx � ") = 1. By the weak e¢ ciency condition:

�V S (cx + ") + �V B (vx � ") � vx � cx � 2".
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Since the sum �V S (�) + �V B (�) is continuous and " is arbitrary:

�V S (cx) + �V B (vx) � vx � cx.

Now consider the case vx � cx. Since (vx � cx) is non-positive and since payo¤s are
non-negative, we get

�V S (cx) + �V B (vx) � vx � cx.

So for both possible orderings of cx and vx, the sum of the last four terms in (3.14) is
positive. Hence, payo¤s are pairwise e¢ cient, i.e., for all v and for all c:

�V S (c) + �V B (v) � v � c.

According to Lemma 16, pairwise e¢ ciency is a su¢ cient condition for the subsequence to
become e¢ cient since payo¤s V Sk and V Bk are monotone. Therefore limk!1 S (Ak0) = S�

along the subsequence. Hence, the Lemma 15 implies that limiting trading probabilities
must necessarily be Walrasian, i.e.,

�
�QS ; �QB

�
must be in QW .

Because the choice of the subsequence was arbitrary, this implies that the limit of
every convergent subsequence is in QW . Because Â is sequentially compact, this implies
limk!1

�
QSk ; Q

B
k

�
= QW for the original sequence.40 According to Lemma 15 this is

su¢ cient for the sequence to become e¢ cient and limk!1 S (Ak) = S�, as claimed. �

3.5 Application of the Main Result

In this section we discuss four speci�cations of dynamic matching and bargaining games
to show how to apply and check our conditions: First, we show that the conditions hold
in the basic example introduced already in Section 3.2. Second, we consider a variant of
this speci�cation where we assume symmetric information and intermediate bargaining
power. This variant is essentially a version of the steady-state model in Gale (1987). The
last two speci�cations are only brie�y sketched: We consider a variant where entry occurs
only in the �rst period and another variant where sellers conduct auctions. These variants
similar to the setups in Moreno and Wooders (2002) and in Satterthwaite and Shneyerov
(2007), respectively.

3.5.1 Basic Model

Take a decreasing sequence of exit rates f�kg1k=1 with �k ! 0. As shown in chapter two,
for every k there exists an equilibrium ��k. Fixing one equilibrium for each k yields a
sequence f��kg

1
k=0. With every equilibrium ��k, we associate an outcome Ak, using the

map A (�; �) : �� [0; 1]! �4M de�ned as in Section 3.2.

Now, we want to derive the functions LB and LS . For this, we �rst show how trad-
ing probabilities relate to the distributions of types in the pool; then we show how the
distribution of types in the pool translates into the matching probabilities LB and LS .
First, we substitute QBk into the steady-state condition (3.7), so that we can write the

40 In a sequentially compact space, if all convergent subsequences of some sequence have a common limit,
then the sequence itself converges to that limit (see also Lemma 20 in the Appendix.)
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distribution function �B as a function of Ak:

�B (vj�k; Ak) =
Z v

0

1�QBk (�) + �QBk (�)
Mk�k

dGB (�) ; (3.15)

where Mk is derived from �B (1j�k; Ak) = 1. �S (cj�k; Ak) can be de�ned similarly. Now,
we de�ne LS as the solution to the recursive matching formula:

LS (cj�k; Ak) = �S (cj�k; Ak) + (1� �k)
�
1� �S (cj�k; Ak)

�
LS (cj�k; Ak)

and together with the equivalent formula for LB we get:

LB (vj�k; Ak) =
1� �B (vj�k; Ak)

1� �B (vj�k; Ak) (1� �k)
(3.16)

and LS (cj�k; Ak) =
�S (cj�k; Ak)

1� (1� �S (cj�k; Ak)) (1� �k)
. (3.17)

Now we prove that our conditions hold:

Lemma 18 Given any sequence of exits rates f�kg1k=1 with �k ! 0, every sequence of
equilibrium outcomes fAkg1k=0 satis�es mass balance, monotonicity, no rent extraction,
and it satis�es availability and weak pairwise e¢ ciency with respect to LS and LB as
de�ned in (3.17) and (3.16).

Proof :

Mass Balance: Proven in chapter two (Lemma 2).

Monotonicity. For QSk (�): Suppose the function is not monotone decreasing for
some k and for some cH > cL, QSk (cH) � QH > QL � QSk (cL) by optimality. Then with
pL � pk (cL) and pH � pk (cH), it must be that US (pH ; cH j�k; �k) � US (pL; cH j�k; �k).
This is equivalent to

QH (pH � cH) � QL (pL � cH) ,

and this implies that for costs cL < cH

QH (pH � cL) > QL (pL � cL) ,

and thus, US (pH ; cLj�k; �k) > US (pL; cLj�k; �k) ; This contradicts the optimality of pL �
pk (cL) for cL. Similar reasoning holds for QSk (�).

No Rent Extraction. For V Sk (�): Again, we use a direct implication of optimality:

V Sk (c)� V Sk (cx) � US (pk (cx) ; cj�k; �k)� US (pk (cx) ; cxj�k; �k) ,

which implies that for all c the condition holds, since by de�nition of US (�; �j�k; �k), the
above inequality is equivalent to

V Sk (c) � V Sk (cx) + qS (pk (cx) j�k; ~��k) (cx � c) , (3.18)

and similarly for V Bk .
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Availability. For
�
LBk
	1
k=1

�
�
LB (�j�k; Ak)

	1
k=1
. Evaluating the steady-state condi-

tion (3.15) at �Bk (1j�k; Ak) shows Mk�k � 1: Choosing any v0 < v; we get a lower bound
on 1� �B (v0j�k; Ak):

1� �B
�
v0j�k; Ak

�
�
Z v

v0

�
1�QBk (�)

�
dGB (�) .

Since QBk is monotone, QBk (v
0) � QBk (v) for all v

0 < v. By assumption, the density
dGB (�) is continuous and strictly positive, so there is some gL > 0 such that dGB (v) � gl
for all v. Together:

1� �B
�
v0j�k; Ak

�
�
�
1�QBk (v)

� �
v � v0

�
gl,

and so for all sequences of QBk (v) with a limit �Q
B (v) < 1:

lim
k!1

inf LBk
�
v0
�
�

�
1� �QBk (v)

�
(v � v0) gl

1�
�
1�

�
1�QBk (v)

�
(v � v0) gl

� = 1,
and similarly for

�
LSk
	1
k=1
.

Weak E¢ ciency: Suppose for some cx and vx, �LS (cx) = �LB (vx) = 1. By the
no rent extraction condition, V Bk (�) is increasing with a slope in [0; 1]. Thus, rk (v) is
increasing by rk (v) = v � (1� �k)Vk (v). Therefore, the set of types accepting a price
p = rk (vx) is at least the set [vx; 1]. Therefore, the trading probability D (rk (vx) j�k) is
at least 1� �B (vx). By de�nition of LBk and qS :

qSk (rk (vx) j�k; ~��k) � LBk (vx) ;

and therefore

USk (rk (vx) ; cxj�k; ~��k) � LBk (vx) (rk (vx)� cx)
= LBk (vx)

�
vx � (1� �k)V Bk (vx)� cx

�
,

where the last line follows from the equilibrium condition for rk (vx). Given the equilib-
rium conditions, V Sk (cx) � USk (rk (vx) ; cxj�k; ~��k) for all k. Therefore,

lim
k!1

inf V Sk (cx) � lim
k!1

inf LBk (vx)
�
vx � (1� �k)V Bk (vx)� cx

�
=

�
vx � �V Bk (vx)� cx

�
,

which implies �V S (cx) + �V B (vx) � vx � cx (whenever they exist), as claimed. �

So fAkg1k=1 satis�es our conditions and thus we have:

Corollary 2 For every sequence of exit rates f�kg1k=1 with �k ! 0 and for every sequence
of associated equilibrium outcomes fAkg1k=1 of the basic model:

lim
k!1

S (Ak) = S
�.
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3.5.2 Symmetric Information and Intermediate Bargaining Power

We change the basic model by assuming that traders in each match observe what type of
player they are up against and that both of them, the buyer and the seller, have a chance
to propose a price. Let � 2 (0; 1) be the probability that the seller is chosen to propose a
price, and let (1� �) be the probability that the buyer is chosen. This is similar to the
analysis in Gale (1987).41 We will �rst derive the formal setup and provide an equilibrium
de�nition. Then we sketch why our conditions hold in this setup. A remark at the end
of this section summarizes the intuition.

Strategies now account for the role of the trader and for the type of the oppo-
nent. Let �M2 be the set of measurable functions f : [0; 1]2 ! [0; 1]. Strategies are�
pS ; pB; rS ; rB

�
2 �2M2 � �2M , where pB (v; c) is the price proposed by a buyer of type v

to a seller of type c, and rS (c) is the reservation price of a seller c. pS (c; v) and rB (v)
are the corresponding proposals and reservation prices of sellers and buyers. A market
constellation is a vector �F 2 �F with �F � �2M2 ��4M �R+ and with a typical element
�F =

�
pS ; pB; rS ; rB;�S ;�B;M

�
.

Let PS
�
pS ; cj�F

�
be the probability that a seller who is chosen as a proposer will

trade in a given period when using pS = pS (�; �), de�ned as

PS
�
pS ; cj�F

�
�
Z
vjrB(v)�pS(c;v)

d�B (v) ,

and let RS
�
rS ; cj�F

�
be the probability that the seller will trade when chosen to respond:

RS
�
rS ; cj�F

�
�
Z
vjpB(v;c)�rS(c)

d�B (v) ;

then the per period probability of trading is DS
�
pS ; rS ; cj�F

�
given by the expression

�PS
�
pS ; cj�F

�
+ (1� �)RS

�
rS ; cj�F

�
. Let ERS

�
pjp � rS (c) ; c; �F

�
be the expected

price conditional on trade when responding, and let EPS
�
pjp � rB (v) ; �F

�
be the ex-

pected price conditional on trade when proposing. Expected payo¤s are implicitly de�ned
via

US
�
pS ; rS ; cj�F

�
= �PS

�
pS ; cj�F

� �
EPS [p]� c

�
+ (1� �)RS

�
rS ; cj�F

� �
ERS [p]� c

�
+(1� �)

�
1�DS

�
pS ; rS ; cj�F

��
US

�
pS ; rS ; c

�
, (3.19)

with EPS [p] = EPS
�
pjp � rB (v) ; �F

�
and ERS [p] = ERS

�
pjp � rS (c) ; c; �F

�
. Let

UPS
�
p; vjpS ; rS ; c; �F

�
be the payo¤ when matched with a type v, proposing p and con-

tinuing according to
�
pS ; rS

�
:

UPS
�
p; v; cjpS ; rS ; �F

�
=

�
p� c if p � rB (v) ;
(1� �)US

�
pS ; rS ; cj�F

�
otherwise.

We de�ne the corresponding functions for buyers analogously.

41Di¤erent from Gale we consider a continuum of types. He also assumes that traders are in�nitely
lived and that (therefore) there is an entry stage. In Section 3.6 we cover the latter cases.
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The steady-state conditions do not change. They are

�S (c) =

Z c

0

dGS (�)

M (DS (pS ; rS ; � j�F ) + � (1�DS (pS ; rS ; � j�F )))
8c (3.20)

and �B (v) =

Z v

0

dGB (�)

M (DB (pB; rB; � j�F ) + � (1�DB (pB; rB; � j�F )))
8v:(3.21)

We de�ne an equilibrium, with x and y denoting types of traders. We require that
the price o¤ered by the proposer must be optimal for every possible type of responder,
and we require that the reservation price has the same properties as derived in the basic
model. These requirements incorporate the idea of sequential rationality:

De�nition 4 A steady-state equilibrium vector with full information, ��F 2 �F , consists
of an optimal pair of strategies and a corresponding steady-state pool such that

1.
�
pj ; rj

�
2 argmaxU j (�; �; xj�F ) 8x and j 2 fB;Sg

2. pj (x) 2 argmaxUPj
�
�; x; yjpj ; rj ; �F

�
8x; y and j 2 fB;Sg

3. rB (v) = v � (1� �)UB
�
pB; rB; vj�F

�
and rS (c) = (1� �)US

�
pS ; rS ; cj�F

�
+ c

8v; c

4. �S (�), �B (�), M satisfy the steady-state conditions (3.20), (3.21).

We show that payo¤s can be rewritten very compactly. First, the optimal price o¤er
of a buyer v to a seller of type c is clearly never strictly above rS (c) ; but is either equal to
the reservation price or equal to some unacceptable price below, p < rS (c). Hence, the ex-
pected price o¤er to the seller, conditional upon acceptance, is ERS

�
pjp � rS (c) ; c; �F

�
=

rS (c). This also applies to buyers. This implies in particular that a responder is indif-
ferent about accepting or rejecting an o¤er. Therefore, expected payo¤s do not change if
a trader plans to simply reject all o¤ers. Thus, payo¤s depend only on the price o¤ers a
trader makes when he is a proposer. To derive this payo¤, let qPS be the lifetime trading
probability conditional on trading only as a proposer and using the o¤er strategy pS . We
can derive qPS (�; �j�) as the solution to

qPS
�
pS ; cj�F

�
= �PS

�
pS ; c

�
+ (1� �)

�
1� �PS

�
pS ; c

��
qPS

�
pS ; rS ; cj�F

�
.

where PS
�
pS ; c

�
= PS

�
pS ; cj�F

�
. Rewriting the payo¤ de�nition (3.19), using qPS and

the observation that
ERS

�
pjp � rS (c) ; c; �F

�
= rS (c), yields

US
�
pS ; rS ; cj�F

�
= qPS

�
pS ; cj�F

� �
EPS

�
pjp � rB (v) ; �F

�
� c
�
; (3.22)

and similarly for buyers,

UB
�
pB; rB; vj�F

�
= qPB

�
pB; cj�F

� �
v � EPB

�
pjp � rS (c) ; �F

��
. (3.23)

Now take a sequence of exit rates f�kg1k=1 ; with �k ! 0; as before, and assume that for
every �k; there is some equilibrium. Let this be �Fk; which gives us a sequence f�Fkg1k=1.
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Let Ak be the outcome of equilibrium �Fk; with Ak = A
�
�Fk ; �k

�
de�ned in the obvious

way. We check only the no rent Extraction condition, because the other conditions are
immediate. For this, let US

�
pSk (�; �) ; 1; cj�Fk; �k

�
be the payo¤ to a seller of type c if

o¤ering a price pSk (�; c) when chosen to propose, while rejecting any price o¤er if chosen
to respond. From (3.22):

V Sk (c) = U
S
�
pSk (�; �) ; 1; cj�Fk; �k

�
;

and from optimality

V Sk (cx)� V Sk (c) � US
�
pSk (�; c) ; 1; cxj�Fk; �k

�
� US

�
pSk (�; c) ; 1; cj�Fk; �k

�
� qPS

�
pSk (�; �) ; cj�F

�
(c� cx) , (3.24)

and together with symmetric reasoning for buyers, the �rst parts of the condition hold.
For the limiting part, we show that if the lifetime trading probability QSk converges to one,
then qPS

�
pSk (�; �) ; cj�F

�
converges to one as well. This is proven in detail in the appendix,

Section A.10. Therefore, (3.24) implies that whenever QSk ! 1, we get V Sk (cx)�V Sk (c) �
(c� cx).

Now the other conditions follow, and we sketch out the idea: Given the no rent extrac-
tion condition, payo¤s V S (�) and V B (�) are monotone. From the equilibrium conditions
it follows that two matched traders vx and cx trade if and only if their joint trading surplus
vx � cx is larger than their joint continuation payo¤ (1� �)

�
V S (cx) + V

B (vx)
�
. This,

together with V B (�) being increasing at a rate smaller than one (from the no rent extrac-
tion condition), implies that a buyer with a higher valuation trades with a larger set of
sellers, and hence, the trading probability QBk (�) is monotone increasing in v. Analogous
reasoning implies the same for sellers. Weak pairwise e¢ ciency is a direct implication of
the above observation. Finally, availability follows by the same reasoning as in the basic
model, because we are using exactly the same matching technology. Hence:

Corollary 3 For every sequence of exit rates f�kg1k=1 and equilibrium outcomes fAkg1k=1
of the full information model with intermediate bargaining power � 2 (0; 1) ;

lim
k!1

S (Ak) = S
�.

Remark 5 The crucial step for proving convergence with symmetric information is the
following observation: Although it is true that a trader of type c does not need to receive
the same o¤ers as a trader of type cx, he can make the same o¤ers when chosen as the
proposer. Even more to the point: As we have seen in (3.22) and (3.23), payo¤s depend
only on the o¤ers made as a proposer. Therefore, a seller of type c can mimic the strategy
of another type cx in much the same way as a seller in our basic model can mimic the
pricing strategy of another seller. When � = 1, i.e., when buyers are never chosen to be
the proposer, this reasoning breaks down. In chapter one, I look at this case and I show
that convergence to e¢ ciency does not hold, see also Section 3.7.1.

3.5.3 Further Applications

Two more variants of the basic model that can be analyzed as before include one-time
entry and second-price auctions with reservation prices. Suppose, in the basic model, we
assume that time runs from t = 0 to in�nity. In period zero, a unit mass of buyers and
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a unit mass of sellers arrive with types distributed according to distribution functions
GS and GB; with the same properties as in the basic model. There is no further in�ow
in the subsequent periods. Thus, the pool in t � 1 consists only of those who did not
trade before and who did not die before. So the pool depletes over time.42 Otherwise, we
assume that matching is pairwise, information is asymmetric and sellers make price o¤ers,
just as in the basic model.43 We can characterize outcomes by considering the ex ante
trading probabilities and payo¤s to the entering traders in the �rst period. Their joint
expected surplus is the natural welfare criterion. Clearly, mass balance should hold with
respect to the ex ante outcome. With QS0 ; Q

B
0 denoting the �rst period expected lifetime

trading probabilities, QS0 ; Q
B
0 2 QW is a necessary and su¢ cient condition for e¢ ciency,

with QW as de�ned in (3.12). For this model, one can show that our conditions hold:
By asymmetric information, traders can mimic each other. Just as in the basic model,
this implies that trading probabilities are monotone and ex ante payo¤s have a bounded
slope. For the availability condition, note that if the ex ante trading probability of some
buyers is not one, then these buyers will stay in the market for many periods. One can
show that this implies that a seller is certain to be matched with them some time, i.e.,
availability holds. Finally, weak e¢ ciency holds by similar reasoning to that found in the
basic model. Thus, our main result applies even to non-steady-state markets, and the
outcome will become e¢ cient with � converging to 0.

We can include auctions similar to Satterthwaite and Shneyerov (2007) in the basic
model as follows: Suppose matches consist of one seller and a random number of buyers,
where the number of buyers ("bidders") per seller is Poisson distributed with parameter
one. Further, suppose the seller conducts a second price auction among the bidders:
Upon observing the number of buyers in his match, he announces a reservation price
p. Then the buyers submit their bids r. Restricting attention to equilibria in dominant
strategies, these bids are equal to the reservation prices derived before. This allows a
simple characterization of the equilibrium. Suppose we keep the basic model otherwise
- that is, we retain the assumption that there is an exogeneous in�ow and that there is
some death rate �. Our conditions hold in this model as well: Monotonicity and no rent
extraction follow from asymmetric information, and availability and weak e¢ ciency follow
by reasoning familiar from the basic model. Therefore, if sellers can use auctions to sell
their goods, with vanishing �; the outcome becomes e¢ cient.

3.6 Extensions

To show that our analysis also extends to the original setups by Gale (1987) and Sat-
terthwaite and Shneyerov (2007), we �rst include an entry stage in the next subsection
and then we assume that traders are in�nitely lived.

3.6.1 Including an Entry Stage

Suppose we include an entry stage into the basic model, i.e., suppose that new traders
must decide whether they want to enter the pool or not. If they enter the pool, they must

42The pool cannot deplete fully if prices are individually rational.
43This model with one-time entry would be di¤erent in two aspects: First, instead of a stationary pool,

the pool would depend on the time via some law-of-motion condition. Second, price o¤ers and reservation
prices would depend on time.
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pay some entry costs e 2 (0; 1). Let ZS (�) : [0; 1] ! f0; 1g denote the entry decision,
with ZS (c) = 1 indicating the decision of type c to become active. Let V S (�) denote the
expected payo¤s to a seller if he enters, gross of e: (V S (�) is also calculated for those who
do not actually become active.) Let ZB (�) and V B (�) be the corresponding functions for
buyers.

We assume that sellers enter whenever this is pro�table, i.e., ZS (c) = 1 whenever
V S (c) � e, and we assume ZS (c) = 0 otherwise. For buyers, we assume the same:
ZB (v) = 1 whenever V B (v) � e. Let ce0 be the highest type of a seller for whom entry is
pro�table, ce0 � sup

�
c; 0jV S (c) � e

	
; and let ve0 be the lowest type of a buyer for whom

entry is pro�table, ve0 � inf
�
v; 1jV B (v) � e

	
. By this de�nition, types c > ce0 or v < v

e
0

do not enter.44

Given the entry stage, the matching technology of the basic model has to be changed
to account for the possibility that the masses of the two sides of the market are not
identical. But no matter how this is done, types who do not enter are not available.
Therefore, the probability to match some set of buyers might be zero, even though the
lifetime trading probability of these types is strictly below one. One can show that this
failure of availability leads to a failure of convergence to e¢ ciency in the basic model (see
Section 3.7.) Therefore, stronger forces towards e¢ ciency are needed. In the models by
Gale (1987), as well as in Satterthwaite and Shneyerov (2007), these forces come from
curtailing the bargaining power of the seller. Formally, these models satisfy a stronger
condition than Condition 4 (weak e¢ ciency). Sequences of trading outcomes that satisfy
this stronger condition converge to e¢ ciency even though they satisfy only a weaker
availability condition, due to the entry stage.

An outcome AE of a model with an entry stage is a vector
�
V S ; V B; QS ; QB; ZS ; ZB

�
:

We assume that all components are measurable, i.e., AE � �6M . Surplus conditional on�
QS ; QB; ZS ; ZB

�
and gross of entry costs (which will become zero) is

SEQ
�
AE
�
=

Z 1

0
vZQB (v) dGB (v)�

Z 1

0
cZQS (c) dGS (c) ,

with ZBB (v) � ZB (v)QB (v) and ZQS (c) � ZS (c)QS (c). These latter functions are
the e¤ective trading probabilities, and we work with them throughout this section. Mass
balance with entry is satis�ed if the transfers collectively made by all buyers are equal to
the expected transfers collectively received by all entering sellers. Equivalently, the mass
of sellers who trade must be equal to the mass of buyers who trade:

De�nition 5 Mass Balance with Entry. An outcome AE satis�es mass balance with
entry if

SE
�
AE
�
=

Z 1

0
ZS (c)V S (c) dGS (c) +

Z 1

0
ZB (v)V B (v) dGB (v) = SEQ

�
AE
�
; (3.25)

and if Z 1

0
ZQS (c) dGS (c) =

Z 1

0
ZQB (v) dGB (v) . (3.26)

44 If payo¤s are monotone, all types c below c0 and all type v above v0 enter.
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We say that an outcome AE is Walrasian if the e¤ective trading probabilities are in
QW , i.e., if

�
ZQS ; ZQB

�
2 QW . Reasoning analogously to the case without entry, we

�nd that an outcome is e¢ cient if and only if it is Walrasian:

Lemma 19 For all outcomes that satisfy mass balance with entry, SE
�
AE
�
= S� if and

only if ZQ 2 QW . For every sequence
�
AEk
	1
k=1

which satis�es mass balance with entry
and which has monotone trading probabilities, ZQ 2 �� � �+:

lim
k!1

SEQ
�
AEk
�
= S� if and only if lim

k!1
(ZQk) = Q

W .

Take any sequence of outcomes
�
AEk
	1
k=1

and a sequence of frictions f�k; ekg1k=1 with
(�k; ek) ! (0; 0). If the limits of e¤ective trading probabilities exist, we denote them by

ZQ
S
and ZQ

B
, and if the limits of the cuto¤ types cek0 and vek0 exist, we denote them

by c0 and v0. Now we restate the conditions. The monotonicity condition becomes a
condition regarding e¤ective trading probabilities:

Condition 5 Monotonicity with Entry. For every member AEk ,

ZQ
S
k 2 �� and ZQ

B
k 2 �+.

The no rent extraction condition remains unchanged. But as said in the introduction,
we weaken availability and we assume that it holds only for those types below (above)
the cuto¤s, i.e., for those c � c0 and v � v0. With LjE : [0; 1]

2 � �6M ! [0; 1], j 2 fS;Bg:

Condition 6 Weak Availability. If ZQS (c0) and c0 exist, and if ZQ
S
(c0) < 1 for

some c0 < c0, then
�LSE (c) = 1 for all c 2

�
c0; c0

�
.

If ZQ
B
(v0) and v0 exist, and if ZQ

B
(v0) < 1 for some v0 > v0, then

�LSE (v) = 1 for all v 2
�
v0; v

0� .
We strengthen weak pairwise e¢ ciency by requiring availability only on one side of

the market. But it has to hold only for pairs involving either v0 or c0. As we will see,
the limiting payo¤s of these cuto¤ types are zero. Therefore, �V S (c0) + �V B (v0) � v0 � c0
implies �V S (c0) � v0� c0. The following condition is formulated such that it is met by the
models of Satterthwaite and Shneyerov and by the model of Gale:

Condition 7 Strong Pairwise E¢ ciency. If �LS (c0) = 1 for some c0 and if v0 exists,
then

�V S
�
c0
�
� v0 � c0.

If �LB (v0) = 1 for some v0 and if c0 exists, then

�V B
�
v0
�
� v � c0.

Remark 6 In the basic model, the �rst part of this condition does not hold: Suppose there
is some cuto¤ pN > pw such that all buyers with v � pN and all sellers with c � pN enter
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and no one else. Suppose in addition that all sellers o¤er the common price pN . Since
there are more sellers with costs below pN than there are buyers with valuations above
pN , sellers must be rationed and they do not trade with certainty, i.e., ZQ

S
(c0) < 1 and

�LS (c0) = 1 for c0 � v0 = pN . Payo¤s for sellers become �V S (c0) = ZQ
S
(c0)

�
pN � c0

�
<

pN � c0 = v0 � c0. Nevertheless, they have no incentive to decrease their o¤ers since they
cannot increase their revenue if ZB (v) = 0 for all v < pN . Therefore, strong pairwise
e¢ ciency fails in the basic model.

Note that for all models with entry, there exists an equilibrium in which no trader
enters. If a sequence of outcomes includes such outcomes as subsequence, its limit cannot
become e¢ cient. Hence, we restrict attention to non-trivial sequences, where entry does
not vanish along any subsequence, i.e.,

lim
k!1

sup vek0 < 1 and lim
k!1

inf ceko > 0.

Under the stronger e¢ ciency condition, we can state:

Proposition 5 Suppose some non-trivial sequence
�
AEk
	1
k=1

satis�es mass balance and
monotonicity with entry, no rent extraction, weak availability and strong pairwise e¢ -
ciency for some pair of functions LB and LS and for some sequence f�kg1k=1 and fekg

1
k=1

with ek ! 0. Then the outcome becomes e¢ cient, i.e.,

lim
k!1

SE
�
AEk
�
= S�.

Proof : As before, we take some convergent subsequence of outcomes and denote the limit
by
�
�V S ; �V S ; ZQ

S
; ZQ

B
; �QS ; �QB

�
. Let vx be the lowest valuation and cx the highest cost

that does not trade for sure in the limit:

vx = sup
n
v; 0jZQB (v) < 1

o
and cx = inf

n
c; 1jZQS (c) < 1

o
.

Let us take a further subsubsequence indexed by k0 such that the cuto¤s vek00 and cek00
converge to some v0 and c0. Now we want to show that (ZQk00)! QW . We will argue at
the end of the proof that this implies S

�
AEk
�
! S� for the sequence itself.

Noting that limQSk0 (c) = 1 whenever ZQ
S
(c) = 1, and, symmetrically, limQBk0 (v) = 1

whenever ZQ
S
(v) = 1, the no rent extraction condition has the same implication as in

the proof of the main result, i.e.,

�V S (c) + �V B (v) � v � c+ �V S (cx) + �V B (vx)� (vx � cx) . (3.27)

Now we want to derive again a lower bound on the joint payo¤ of cx and vx by showing
that �V S (cx) + �V B (vx) � vx � cx:

If vx � cx, the desired inequality follows immediately because payo¤s are non-negative.
So suppose vx > cx. We consider three subcases for the relation between cx; c0; v0; vx.
Subcase 1 is cx < c0 < v0 < vx. Then, for all " 2 (0;min fc0 � cx; vx � v0g), by de�nition
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of cx, ZQ
S
(cx + 0:5") < 1. Thus, �LS (cx + ") = 1 by weak availability and, by symmetric

reasoning, �LB (vx � ") = 1. Therefore, strong e¢ ciency implies

�V S (cx + ") � v0 � cx � " and �V B (vx � ") � vx � c0 � ".

Since payo¤s are continuous, " is arbitrary, and v0 � c0, we get

�V S (cx) + �V B (vx) � vx � cx + v0 � c0 � vx � cx,

as claimed.

Subcase 2a: cx = c0 and v0 < vx. By de�nition of vx, ZQ
B
(vx � 0:5") < 1, for all

" 2 (0; vx � v0). Then, the availability condition requires that �LB (vx � ") = 1; and the
strong e¢ ciency condition implies

�V B (vx � ") � vx � c0 � "

Since, again, payo¤s are continuous, and since cx = c0, this implies �V B (vx) � vx � cx.
Hence, by �V S (cx) � 0, we get the desired inequality �V B (vx)+ �V S (cx) � vx�cx. Subcase
2b: cx < c0 and v0 = vx. By analogous reasoning: �V B (vx) + �V S (cx) � vx � cx.

Subcase 3: cx = c0 and v0 = vx. Note �rst that marginal types must make zero pro�ts
in the limit: If limk!1 supV Sk (c

ek
o ) > 0, the (Lipschitz-) continuity of payo¤s implies that

for some " small enough, limk!1 supV Sk (c
ek
o + ") > 0. This contradicts the de�nition of

the marginal type. Hence limk!1 V Sk (c
ek
o ) = 0 and, symmetrically, limk!1 V

B
k (v

ek
o ) = 0.

With this observation, we show that this subcase leads to a contradiction: If cx = c0 and
v0 = vx, with cx < vx, then the mass of sellers who trade becomes

lim
k0!1

Z 1

0
ZQSk0 (c) dG

S (c) =

Z cx

0
dGS (c) = GS (cx) ,

and, similarly, the mass of buyers who trade becomes

lim
k0!1

Z 1

0
ZQBk0 (v) dG

B (v) =

Z 1

vx

dGB (v) = 1�GB (cx) .

The mass balance of total trades, see (3.26), requires therefore that the mass of enter-
ing sellers becomes equal to the mass of entering buyers, i.e., GS (cx) = 1 �

�
GB (vx)

�
.

Furthermore, since �QS (c) = 1 for all c < cx = c0, no rent extraction requires that

�V S (c0) � �V S (c) + (c� c0) ,

and thus �V S (c) � �V S (c0) + (c0 � c) for c < c0. From before, we know that �V S (c0) = 0,
so together we have �V S (c) � c0 � c. By symmetric reasoning, �V B (v) � v � v0. We use
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this to get an upper bound on the limit of S
�
AEk0
�
:

lim
k0!1

inf SE
�
AEk0
�
�

Z cx

0
(c0 � c) dGS (c) +

Z 1

vx

(v � v0) dGB (v)

�
Z 1

vx

vdGB (v)�
Z cx

0
cdGS (c)�GS (cx) (vx � cx)

<

Z 1

vx

vdGB (v)�
Z cx

0
cdGS (c) = lim

k0!1
SEQ
�
AEk0
�
,

where we use that GS (cx) is equal to 1�
�
GB (vx)

�
for the second line and the hypothesis

of the subcase, (vx � cx) > 0, for the third line. Since SEQ
�
AEk0
�
has a limit di¤erent from

SE
�
AEk0
�
, the mass balance identity (3.25), SE

�
AEk0
�
= SEQ

�
QS (�) ; QB (�)

�
is violated

for k0 large enough. As a result, this subcase is impossible, since by choice of the (sub-
)sequence

�
AEk0
	
, each of its elements does satisfy mass balance. (Note, that this subcase

is the only place where we need ek ! 0.)

Hence, �V B (vx)+ �V S (cx) � vx�cx in all possible cases. Thus, inequality (3.27) implies
that limiting payo¤s are pairwise e¢ cient for all types c and v:

�V S (c) + �V B (v) � v � c : (3.28)

By reasoning analogously to the second part of the main result, this implies that the
outcomes of the original sequence become e¢ cient and

lim
k!1

SE
�
AEk
�
= S�: �

Remark 7 Since Gale (1987) assumes in�nitely lived agents, he cannot let the entry
fee converge to zero simultaneously with �k for technical reasons (see the next section.)
Note however, that we need the assumption of vanishing entry fees only in Subcase 3 in
the proof. As the reader can immediately verify, if entry costs remain constant, i.e., if
ek = e, this would imply that cuto¤ types might be separated by a wedge of size 2e, i.e.,
(cx � vx) 2 (0; 2e). In this case, the inequality (3.27) would imply that �V S (c) + �V B (v) �
v � c � 2e for all v and c. Hence, with e being small, the outcome is close to being
pairwise e¢ cient. By continuity of S (�), this implies that when e becomes small, the
outcome becomes e¢ cient. Satterthwaite and Shneyerov (2007) assume participation costs
�k per period instead of one-time entry costs ek. It can be easily veri�ed that whenever
the lifetime trading probability converges to one, accumulated lifetime participation costs
become zero. In Subcase 3 this is the case for all entering traders (by de�nition of cx
and vx). Thus, absolute entry costs are zero, and Subcase 3 is impossible in the case of
participation costs as well.

3.6.2 In�nitely Lived Traders and Ponzi Schemes

Suppose the exit rate � is equal to zero. This is a common assumption in the literature,
e.g., it is used in Gale (1987) and in Satterthwaite and Shneyerov (2007). We want to
know whether our approach is still valid. In the case of � = 0, traders are "in�nitely
lived" and they can exit the pool only through trading. Time preferences are introduced
by assuming the presence of a discount factor � 2 (0; 1). Discounting then implies the
existence of search costs and (1� �) corresponds to the size of the friction. Again the
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question is whether the trading outcome becomes e¢ cient when frictions vanish and the
discount factor becomes one, (1� �)! 0.

As we will see, we can indeed apply our approach to such a setup but we �rst need
to take care of the problem of Ponzi Schemes. Because of such schemes, the expected
payo¤ to entering traders can in principle be much higher than S� (as de�ned in (3.13)):
By shifting the timing of the sellers�trade, discounting implies that costs are diminished.
Nevertheless, since sellers are in�nitely lived, a mere shift in the timing of their trading
does not in�uence how many buyers can trade, i.e., a shift does not in�uence the feasibility
conditions. In the extreme, when shifting the timing of trade for all sellers to "in�nity,"
all costs are discounted to zero. For the general problems of Ponzi schemes in economies
with in�nitely lived agent (or dynasties) and discounting, see for example Diamond (1965)
and the subsequent literature.

Nevertheless, we show that Ponzi schemes are not part of equilibrium outcomes if two
conditions hold: The �rst condition is that transfers are made through prices (condition
"prices only"). The second condition is that a seller who trades receives a price above
his cost, while a buyer who trades pays a price below his valuation (condition "individual
rationality"). In outcomes which satisfy these conditions, Ponzi schemes are ruled out and
the maximal surplus that can be attained subject to the conditions is S�. Finally, since
in Gale (1987) and in Satterthwaite and Shneyerov (2007) transfers are actually made
through prices and since traders can reject to trade at unfavorable prices, equilibrium
outcomes of their games satisfy these conditions.

Now, we go into the details. With in�nitely lived agents, every trader who enters the
market must ultimately trade. Otherwise a steady state with a �nite pool is impossible.
This makes the inclusion of an entry stage necessary. As in Section 3.6.1, let Zj (�) 2 f0; 1g
denote the entry decision, with ZS (c) = 1 and ZB (v) = 1 indicating the decision of types
c and v to become active. Let TS1 (�) be a measurable function, mapping [0; 1] into R+,
where TS1 (c) denotes the undiscounted expected payments received by a seller of type
c. Similarly, let TB1 (v) denote the undiscounted payment made by a buyer of type v.
The undiscounted trading probabilities are QS1 (�) 2 �M and QB1 (�) 2 �M . Discounted
transfers and trading probabilities are denoted by TS� (�) ; TB� (�) and by QS� (�), QB� (�),
respectively.45 Expected payo¤s are given by

V S (c) = TS� (c)� cQS� (c) and V B (v) = vQB� (v)� TB� (v) . (3.29)

An outcome is given by A1 =
h
V S ; V B; QS1; Q

B
1; T

S
1; T

B
1; Z

S ; ZB; QS� ; Q
B
�

i
and surplus

is

S (A1) =

Z 1

0
V S (c) dGS (c) +

Z 1

0
V B (v) dGB (v) .

The mass balance condition becomes

Condition 8 Mass Balance with In�nitely Lived Players. An outcome A1 satis-

45Suppose D (p) is the probability of trading per period, then the discounted trading probability is
QS (p) = D(p)

1��(1�D(p)) . Similarly, if t (p) is the expected transfer per period, then discounted expected

transfers are t(p)
1��(1�D(p)) .
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�es mass balance ifZ 1

0
ZS (c)QS1 (c) dG

S (c) =

Z 1

0
ZB (v)QB1 (v) dG

B (v) (3.30)

and
Z 1

0
ZS (c)TS1 (c) dG

S (c) =

Z 1

0
ZB (v)TB1 (v) dG

B (v) . (3.31)

A surplus maximizing outcome A0 which satis�es mass balance is the following: trans-
fers are zero, all sellers and all buyers enter, and discounted trading probabilities are one
for buyers and zero for sellers. Then we have

S
�
A0
�
=

Z 1

0
vdGB (v) > S�.

Note that this corresponds to the extreme case of a Ponzi scheme discussed in the be-
ginning of this section: Since in expectation, sellers trade "in�nitely" many periods after
their entry, costs are discounted to zero.

To rule out outcomes like that, we introduce two conditions that are satis�ed by the
existing models. First, transfers are made only through prices:

Condition 9 Prices only. There are functions pS (�) 2 �M and pB (�) 2 �M such that
for all c and for all v:

TS� (c) = QS� (c) p
S (c) and TB� (v) = Q

B
� (v) p

B (v)

TS1 (c) = QS1 (c) p
S (c) and TB1 (v) = Q

B
1 (v) p

B (v) : (3.32)

Second, we require that for all entering types, prices are individually rational :

Condition 10 Individual Rationality. An outcome is individually rational if

8c st. ZS (c) = 1 : pS (c) � c,
8v st. ZB (v) = 1: pB (v) � v.

Let ÂIR be the set of outcomes which satisfy mass balance, prices only, and individual
rationality. Together with the de�nition of payo¤s in (3.29), surplus for any A 2 ÂIR is
given by

S1 (A) =

Z 1

0
ZS (c)QS� (c)

�
pS (c)� c

�
dGS (c) +

Z 1

0
ZB (v)QB� (v)

�
v � pB (v)

�
dGB (v) .

Now we demonstrate that S�; as de�ned in (3.13), is the constrained maximum. First,
note that the terms in the integral are positive, i.e., for all c such that ZS (c) = 1, we
have

�
pS (c)� c

�
� 0; the same applies to buyers. Hence, in order to maximize Z1 (�),

all entering traders must trade immediately, i.e., QS� (c) = 1 for all c st. Z
S (c) = 1; and

similarly for buyers. In addition, mass balance (3.31) requires
R 1
0 Z

S (c) pS (c) dGS (c) =R 1
0 Z

B (v) pB (v) dGB (v). Together, a necessary condition for an outcome A to be in
argmaxA2ÂIR S

1 (�) is that

S1 (A) =

Z 1

0
v ZB (v) dGB (v)�

Z 1

0
cZS (c) dGS (c) .
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Now the problem of maximizing S1 (�) is similar to our original problem in Section 3.3.2.
Indeed, let QEW be the set of "Walrasian" outcomes,

AEW �
�
A j

Z 1

0

��QS� (c)ZS (c)� 1c�pw (c)�� dc, Z 1

0

��QB� (v)ZB (v)� 1v�pw (v)�� dv = 0� ,
then by reasoning analogously to Lemma 14, AEW is the set of the maximizers of the
surplus, AEW � argmaxA2ÂIR S

1 (�). Thus

S� = sup
A12ÂIR

S1 (�) :

As mentioned in the beginning of this section, in the models by Gale (1987) and
Satterthwaite and Shneyerov (2007) traders are restricted to use prices and bids, respec-
tively. In addition, trade is voluntary so that no seller would agree to trade at a price
below costs and no buyer would agree to trade at a price above his valuation. Thus, the
set of equilibrium outcomes is a subset of ÂIR; and our approach is valid.

To apply our approach to speci�cations with in�nitely lived traders and entry, we need
to rewrite the conditions of Section 3.6.1 by simply substituting Qj� for Q

j .46 Then, the
proof in Section 3.6.1 would imply that S1 (A1k ) ! S� for all sequences fA1k g

1
k=1 that

satisfy the four conditions and that contain only elements from ÂIR. To check whether our
conditions actually hold in the models by Gale (1987) and Satterthwaite and Shneyerov
(2007), note that monotonicity, no rent extraction, and strong e¢ ciency are immediate.

The weak availability condition, however, is somewhat more subtle with in�nitely
lived agents. In particular, if the trading probability for some set of types converges to
zero, then this set might �ood the market. And even if for some other set of types the
limiting trading probability is below one, this other set might make up only a vanishing
fraction of the total pool. To avoid this problem, i.e., to avoid the existence of a set
of types that trade with a probability approaching zero, both papers include a variant
of nonvanishing absolute search costs. The idea is that whenever the limiting trading
probability becomes zero for some types, their expected trading revenues become zero and
therefore they cannot recover any positive entry costs. Thus, lifetime trading probabilities
must stay strictly positive for all entering types. Speci�cally, Gale (1987) assumes that
even as the discount factor converges to one, the entry cost e 2 (0; 1) remains constant.
Therefore, it is not pro�table for agents to enter if they trade only with a probability
close to zero. Satterthwaite and Shneyerov (2007) assume a participation cost � per
period that converges to zero at the same rate as the discount factor. One can verify that
the accumulated lifetime participation costs are strictly positive whenever the limiting
discounted lifetime trading probability becomes zero. Again, this implies that entry is
unpro�table when trading probabilities are close to zero.

3.7 Failures

In this section we demonstrate how to use our approach to understand why convergence
to e¢ ciency fails in some speci�cations of dynamic matching and bargaining games. In

46Monotonicity would be required of �Qj� ; no rent extraction would be a condition on the slope of V
j (�);

weak availability would require that �Lj (x) = 1 whenever �Qj� (x) < 1 and Z
j (x) = 1; and weak e¢ ciency

would still be a condition on the joint surplus of available types.
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the �rst subsection, we discuss how the failure of convergence with symmetric information
can be attributed to the failure of the no rent extraction condition. In the following
section, we discuss how the simultaneity of decisions in double auctions can lead to the
failure of weak e¢ ciency. Finally, we discuss a model with cloning and show that the
mass balance condition does not hold in this case.

We do not provide a speci�cation in which the monotonicity condition is the only
condition that fails, because there is no such model in the literature. The failure of
availability with an entry stage is discussed at the end of the second subsection and
interpreted as a coordination failure when traders have to decide simultaneously whether
to enter the market.

3.7.1 No Rent Extraction fails with Full Information and Asymmetric Bar-
gaining Power

Suppose sellers in the basic model can observe the valuation of the buyer prior to making
an o¤er. Clearly, this makes trading within each pair e¢ cient: They trade whenever the
trading surplus (v � c) is larger than the joint continuation payo¤ (1� �)

�
V S (c) + V B (v)

�
.

But as we will see, overall e¢ ciency of trading in the market as a whole decreases: with
� ! 0, the limiting trading outcome is no longer e¢ cient. Here, we want to show which of
our conditions is violated to explain why convergence to e¢ ciency fails. A full discussion
of the model can be found in the note by chapter one.47

For illustration, we use the setup of Section 3.5.2: There, traders in each pair can
mutually observe their valuations and costs. With probability �; the seller is chosen to be
the proposer of a price o¤er, while with probability (1� �) ; the buyer is chosen. While in
Section 3.5.2 we assume that � must be interior, i.e., � 2 (0; 1), here we assume that the
seller has all the bargaining power, i.e., � = 1. Let

�
AFk
	1
k=1

be a sequence of equilibrium
outcomes of the model of Section 3.5.2, with � set equal to 1. We can characterize the
outcomes by two observations. First, sellers appropriate all the trading surplus: no buyer
receives strictly positive payo¤s and V B (v) � 0. The price o¤er to a buyer is either
equal to his type or too high to be acceptable, i.e., pS (c; v) � v for all c; v.48 Second,
the limiting outcome can be described by a some cuto¤ �v 2 (0; 1) such that the limiting
lifetime trading probabilities of a buyer is zero if v < �v and one if v > �v, i.e., �QB = 1v>�v.49

While the sequence
�
AFk
	1
k=1

can be shown to satisfy monotonicity, availability, and
weak e¢ ciency,50 the no rent extraction condition fails: Since �QB (vx) = 1 for any vx > �v,
the condition requires that payo¤s increase with a slope of one, i.e., for types v0 > vx, it

47 In chapter one, sellers have homogeneous costs c � 0 to ease exposition. Here, sellers are heterogeneous
to retain the consistency of the underlying economy across speci�cations.
48Price o¤ers are always larger than or equal to reservation prices, as argued in Section 3.5.2, i.e.,

pS (c; v) � rB (v). By de�nition, v� rB (v) = (1� �)V B (v) ; and by V B (v) � v� rB (v), v� rB (v) = 0.
49Suppose not. Because trading probabilities �QB (�) can be shown to be monotone, this would imply

that for some interval (a; b), �QB (v) 2 (0; 1) for all v 2 (0; 1) ( �QB (v) � 0 (or � 1) for all v is never
an equilibrium outcome). Then, for any v0 2 (a; b), types v � v0 are available and a seller c = 0 who
trades only with v � v0 at prices pS (0; v) = max fv0; vg would trade with certainty and receive a payo¤
limk!1 U

S
�
0; pS

�
� v0 > a. This is a contradiction.

50Weak e¢ ciency is immediate with symmetric information; availability holds because the matching
technology is unchanged to the case of � 2 (0; 1) ; monotonicity holds essentially because sellers�pro�ts
satisfy the strict single crossing condition, i.e., sellers with lower costs prefer to trade with a higher
probability at a lower price.
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must be that �V B (v0) � �V B (vx) + (v
0 � vx) > 0. However, the payo¤ to any such type v0

is still zero, and his rent (v0 � vx) is extracted : Part of this rent will go to the sellers but
part of it is wasted. Because of this, the equilibrium outcome is not e¢ cient in the limit.

Remark 8 Prices with symmetric information are "monopolistic," i.e., pS (c; v) � v,
by the same reasoning as in Diamond (1971): Sellers can use the waiting costs � 2
(0; 1) to "hold-up" buyers. However, in the models that are used to derive the familiar
Diamond paradox, this outcome is still e¢ cient because buyers and sellers are assumed to
be homogeneous.51 Here, with heterogeneous types, ine¢ ciencies �rst stem from the fact
that sellers rather incur rationing than trading at low prices with low valuation buyers,
and second they stem from the possibility of trading for sellers who have costs above pw

and who should not trade.

Remark 9 One possible way to restore the no rent extraction property while leaving the
bargaining power with sellers (� = 1) is to assume that buyers�valuations are not perfectly
observable (i.e., buyers have some "privacy"): the appendix of chapter one contains an
extension where sellers receive only a signal about the valuation of the buyer and where
this signal contains noise. With � ! 0, buyers can patiently wait until their type is
misconceived as being very low so that they receive a low price o¤er. In particular, suppose
it becomes certain that some buyer of type vx can trade at an expected price p � vx in the
limit. Then any type v0 > vx can wait until he receives the same o¤ers and he can trade at
an expected price p � vx as well. The payo¤ to v0 is therefore at least (v0 � vx) larger than
the payo¤ to vx. Thus, the no rent extraction condition holds, and the outcome becomes
e¢ cient in the limit.

3.7.2 Weak E¢ ciency fails without Sequential Rationality

Serrano (2002) is the �rst to specify the bargaining protocol as a simultaneous double
auction.52 He shows that equilibrium outcomes do not need to become e¢ cient. Without
going into the details, we can replicate his result in our framework: Suppose we assume in
the basic model that the buyer and the seller simultaneously announce a reservation price
r and price o¤er p, respectively. Trade happens at the price p whenever the reservation
price is below the price o¤er. If we leave the rest of the model unchanged, the following
is an equilibrium for every �k: p (c) � 1 and r (v) � 0. In the corresponding equilibrium
outcome Ak; trading probabilities are zero for all types and S (Ak) = 0 for all k.

While the sequence of outcomes satis�es monotonicity, no rent extraction, and avail-
ability, weak e¢ ciency fails: For any pair (v; c) with v > c, the trading surplus (v � c)
is strictly larger than their joint limiting payo¤s, lim inf

�
V Sk (c) + V

B
k (v)

�
; which is 0.

Bargaining is ine¢ cient because of a "coordination failure" between the traders. As ob-
served by Serrano, this failure occurs because we cannot use sequential rationality to rule
out such equilibria.53

51 In the original model, individual buyers have elastic demand for multiple units. Sellers, however, are
restricted to o¤er linear prices. Therefore, they distort the trading quantity downwards. This ine¢ ciency
disappears once the restriction to linerar prices is dropped.
52His interest, however, stems from the prior use of simultaneous auctions in dynamic matching and

bargaining games in the context of common values, see e.g., Wolinsky (1990).
53 In our basic model, sequential rationality enter via the assumption that buyers use a reservation price

that is equal to the continuation payo¤.
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Note the similarity to the failure of convergence with an entry stage: Setting a price
above the highest valuation (and setting a reservation price below the lowest cost) is
similar to deciding to not become an active trader. And just as it is a best response not
to take an interior bargaining position if no other trader does so, it is a best response not
to become active if no other trader does. But note also that just in the same way as we
can restore sequential rationality by introducing "trembles" to the price setting decisions
we can restore equilibria with trading when traders tremble at the entry decision stage.54

3.7.3 Mass Balance fails with Cloning

Cloning refers to the assumption that every trader who leaves the market is replaced by
an exact copy of his type, a clone. With this assumption, the in�ow depends on the
trading outcome and is endogeneous. The pool of traders, however, does not change over
time and is exogeneous. A model with cloning has been recently used by De Fraja and
Sakovics (2001). They use this model to argue that trading outcomes depend sensitively
on the exact speci�cations of the bargaining protocol. Since this contrasts with the view
taken in our paper, we want to understand their result. Throughout the �rst part of this
section, we will follow De Fraja and Sakovics and take the exogeneously given pool (the
"stocks") as the fundamental of our model, i.e., we de�ne the "Walrasian" price and the
surplus both with respect to this distribution. As we will see, with cloning, equilibrium
outcomes generically yield a surplus strictly above S�. This is the analogue to prices not
being Walrasian, which is what De Fraja and Sakovics concentrate on.

Gale (1987) argued that one should de�ne the Walrasian price and, analogously, the
surplus, with respect to the in�ows (see his critique of the model by Rubinstein and
Wolinsky (1985) who use a cloning assumption). We provide a short comment on how to
evaluate the surplus with respect to the in�ow at the end.

To understand how it is feasible with cloning that the surplus of an outcome exceeds
S� we �rst sketch the idea in the following example. In this example, the full consumer
surplus for all v > 0 is realized while expected costs are zero. (Note the similarity with
the Ponzi scheme with in�nitely lived traders): Suppose all buyers who are matched with
a seller with costs c � " can trade at a price ". If " is close to zero and if all buyers can
be certain to be matched with such a seller, then indeed the full consumer surplus for
all v > 0 is realized while costs are zero. Cloning makes it possible: Because of cloning,
the share of sellers in the pool who have costs c 2 [0; "] is exogeneously �xed and strictly
positive. Therefore, buyers have a strictly positive chance to be matched with such a
seller in every single period, and with � ! 0, they become certain to be able to trade
with such a seller in the limit.55

To understand the result in more depth, we use the symmetric information model of
Section 3.5.2.56 To recall the model: All traders from the pool are matched into pairs.
In each pair they observe each others�valuation v and cost c. Then, with probability

54See Gale (1987, p. 30), who argues that equilibria without entry are not stable.
55Note, however, that within every period almost no trade takes place. Therefore, almost no new traders

enter the market and the surplus with respect to the in�ow converges to one (see the comment at the end
of this section).
56The main di¤erences are that DeFraja and Sakovics (2001) include an entry stage and have discounting

instead of an exit rate. In addition, they use a noisy search technology, i.e., they assume that a buyer is
matched with a random number of sellers. None of these di¤erences a¤ects the main conclusions.
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� 2 (0; 1), the sellers is chosen to be the proposer of a price while with probability (1� �)
the buyer is chosen to be the proposer. The other trader, the responder, can either accept
or reject the o¤er. Afterwards, all those pairs in which the responder accepts the o¤er,
trade and leave the pool. An additional share � of those who did not trade leaves (dies).
Now the new traders enter. But di¤erent from the model in Section 3.5.2, the in�ow
consists of exact clones of the leaving traders. Therefore, independent of who actually
traded, the distribution of traders in the pool at the end of the period is always equal to
the distribution in the beginning. Let these distributions be GS (�) and GB (�).

For every �k and for �, we �x an equilibrium outcome ACk (�) =
�
V Sk ; V

B
k ; Q

S
k ; Q

B
k

�
of the cloning variant. Since we are using exactly the same matching and bargaining
technology as in Section 3.5.2, our four conditions still hold. Therefore, from the �rst
part of the proof of the main Proposition 4, we know that the outcome must become
pairwise e¢ cient for every convergent subsequence, i.e.,

�V S (c) + �V B (v) � v � c. (3.33)

Actually, the limiting outcome can be fully characterized quite easily: It is standard to
verify57 that there is a price pN (�) such that, for �k ! 0; limiting payo¤s become �V S (c) =
max

�
pN (�)� c; 0

	
and �V B (v) = max

�
v � pN (�) ; 0

	
. Limiting trading probabilities

become �QS (�) = 1c<pN (�) and �QB (�) = 1v>pN (�). The price pN (�) itself is given as the
unique solution to the following condition:

(1� �)
Z pN (�)

0

�
pN (�)� c

�
dGS (c) = �

Z 1

pN (�)

�
v � pN (�)

�
dGB (v) .

Note that for � = 1
2 , the price p

N
�
1
2

�
equates the expected surplus of buyers and sellers.

The price pN (�) depends on the distribution of bargaining power, and the price is
strictly increasing in �. Thus, generically, the limiting outcome fails to be Walrasian:58

Only for a single point �� does pN (��) equal pw, while for all � 2 (0; 1) n��, pN (�) 6= pw
and hence

�
�QS ; �QB

�
=2 QW . This is not necessarily bad: for every pN (�), the expected

limiting payo¤ is above S�. Simple algebra reveals that for all pN (�) 6= pw

S� <

Z 1

pN (�)

�
v � pN (�)

�
dGB (v) +

Z pN (�)

0

�
pN (�)� c

�
dGS (c) :

To illustrate the failure we look at the extreme case with � ! 0; i.e., when buy-
ers enjoy all the bargaining power. In this case, the condition requires that the price
must become zero, lim�!0 pN (�) = 0. (We take the limit of outcomes with respect to
� ! 0 �rst and with � ! 0 afterwards.) This corresponds to our introductory exam-
ple, with " = pN (�) being small. Thus, expected equilibrium payo¤s among buyers
become approximately

R 1
0 vdG

B (v) while expected payo¤s to sellers become zero. Hence,

57Using the techniques by Gale (1987), see for example the teaching notes by Wright,
http://www.ssc.upenn.edu/~rwright/courses/rw.pdf .
58DeFraja and Sakovics interpret this and similar results as indicating the importance of "local market

conditions" for limiting outcomes, re�ected here in the distribution of bargaining power.

66



lim�!0 lim�k!0 S
�
ACk (�)

�
=
R 1
0 vdG

B (v) � 0. This is strictly larger than S� - how can
this happen?

Note that in the limiting outcome, almost all buyers trade with certainty, while almost
no seller trades. Thus, the mass buyers who trade converges to

R 1
0 1dG

B (v) = 1; while
the mass of sellers who trade converges to

R 1
0 0dG

S (c) = 0. Therefore, for some �k and �
small enough, the mass balance condition (3.11) is violated.

Why is it possible with cloning that all buyers can trade? For any � 2 (0; 1), in any
period, the probability that a buyer is matched with a sellers who accepts to trade at
the price pN (�) is strictly positive, since GS

�
pN (�)

�
> 0. So with �k ! 0, it becomes

certain that a buyer will be matched with a seller who agrees to trade. In the original
model, without cloning, this is not true: If all trade occurs at a price pN (�) close to zero,
sellers with costs c � pN (�) would become scarce, and the share of such sellers in the
pool would become zero.

Since our speci�cation of the matching and bargaining protocol in the above example
is standard, the peculiar results are only due to the cloning assumption. Nevertheless,
De Fraja and Sakovics (2001) explicitly introduce cloning as a technical assumption.59

They do not claim that cloning is meant to re�ect underlying economic conditions. But
because this assumption has such a strong implication for the results, one might try to
use means other than cloning to solve possible technical problems.

Also, one might take the in�ows as fundamental objects as argued by Gale in 1987.
Let us therefore consider the surplus with respect to the entering traders. For this, let
AIN =

�
V S ; V B; GSC ; GBC ; QS ; QB

�
denote an outcome where the c.d.f.s GSC (�) and

GBC (�), refer to the endogeneous in�ows of clones. The expected surplus of the entering
traders is given by

SC
�
AIN

�
=

Z 1

0
V S (c) dGSC (c) +

Z 1

0
V B (v) dGBC (v) .

Thus, maximization of the surplus requires not only maximization with respect to the
expected payo¤ of each type of the clones, i.e., with respect to V S and V B, but also
with respect to their endogeneous distributions GSC and GBC . In particular, an outcome
which satis�es the condition of Lemma 16, i.e., pairwise e¢ ciency for all types, does not
need to be e¢ cient. In fact, the limiting equilibrium outcome associated with small � is
pairwise e¢ cient as we know from (3.33) but it is nevertheless quite ine¢ cient when �
is close to the zero: Then, the share of sellers who actually trade (i.e., those with costs
below �) is almost zero. But then almost no buyer can trade in a given period. Thus,
the in�ow of clones who replace those buyers who trade, must be almost zero. So with
AINk (�) being the equilibrium outcome for given � and k, the limiting surplus is zero for

59DeFraja and Sakovics have in�nitely lived traders and assume an entry stage (see Section 3.6.2 of our
paper). They write that they assume cloning to ensure the stationarity of the mass of traders who decide
not to enter the pool (see p. 846). They do not explicitly state any problem that would arise otherwise.
Actually, in Gale (1987, section 6) and Satterthwaite and Shneyerov (2006), the mass of non-entering
types is "in�nite" without causing problems. (Basically, this mass just plays no role in any of the above
papers and is not even explicitly de�ned.)
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k !1 and �! 0:

lim
�!0

lim
k!1

SC
�
AINk (�)

�
= lim

�!0
lim
k!1

Z 1

0
V Sk (c)| {z }
!0

dGSCk (c)| {z }
!0

+

Z 1

0
V Bk (v)| {z }
!1

dGBCk (v)| {z }
!0

= 0.

This �nding is our analogue to the almost trivial observation that prices are market
clearing with respect to the endogeneous in�ow.

3.8 Conclusion

We have introduced a new approach to the analysis of decentralized markets with van-
ishing frictions. By directly characterizing sequences of trading outcomes independently
of the �ne details of the trading institution, we have shown which conditions imply con-
vergence to e¢ ciency across di¤erent models. We then have validated this approach by
showing that sequences of equilibrium outcomes for models in the literature satisfy these
conditions.

Several open questions remain. First, we assume that pw is known ex ante. In many
markets, however, traders are uncertain about the supply and demand, and pw is a random
variable. Can we expect decentralized markets to converge to e¢ ciency even if traders
have to learn the state of the market? Second, when analyzing trading with an entry
stage we had to exclude by assumption sequences which are trivial and in which no trader
ever enters. Are there conditions on the economic fundamentals that ensure that every
sequence is non-trivial? Finally, what can we say about more general preferences and
production technologies, in particular, what can we say about the interaction of markets
for several di¤erent goods, like, for example, the markets for labor and capital?
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A Appendix

A.1 Chapter 1: Noisy Signals

Suppose sellers do not observe v directly but receive a signal � that is correlated with
v. We look at three signal distributions, denoted by some parameter � 2 f0; ��; 1g: If
� = 0, then the signal is constant and it contains no information. If � = 1, then � = v
and the seller learns v . If � = ��, the signal � is distributed according to some smooth
distribution F (�jv) where F (�jv) has full support and a strictly positive density dF (�jv).
The density is jointly uniform continuous in v and in �. Otherwise, the signal can be
arbitrarily precise, i.e., the posterior variance var [vj�] can be close to zero.

We take the model from before. But now the pricing strategy must depend on �
instead of v, P (p0; �) = prob [p � p0j�]. The per period probability of trading for a
type v with a reservation price r is S (r; v) =

R 1
0 P (r (v) ; �) dF (�jv). Given the dis-

tribution of types in the pool, sellers who receive a signal � use Bayes� rule to update
their belief B (v0j�) = prob

�
v � v0j�;�B; �

�
. An equilibrium is described by the quintu-

ple
�
P (p0; �) ; r (v) ;�B;M;B (v0j�)

	
, where the functions have to satisfy the appropriate

equilibrium conditions described before and in the main text. We assume that for every
� and � 2 f0; ��; 1g there is some equilibrium. Denote by W (�; �) the expected ex ante
welfare of the entering traders in one of these equilibria with

W (�; �) = qS (P (�; �))E [pjP (�; �)] +
Z 1

0
qB (r (v)) (v � E [pjp � r (v) ; v]) g (v) :

The maximal welfare is

W eff �
Z 1

0
vdG (v) = E [v] :

We show that when frictions are large, welfare is higher with precise information: for
� close enough to one, welfare is higher if � = 1 than if � = ��. When frictions are small,
welfare is higher when information is imprecise: for � close enough to zero, welfare is
higher if � = �� than if � = 1:

Proposition 6 There are some �H and �L with 0 < �L < �H < 1 such that

W (�; ��) < W (�; � = 1) 8� � �H ;
W (�; ��) > W (�; � = 1) 8� � �L:

In the remainder we sketch the proof. Note �rst that the outcome of bilateral trade
is clearly e¢ cient with symmetric information and � = 0, i.e., W (1; 1) =W eff and

lim
�!1

W (�; 1) =W eff :

With asymmetric information, the outcome is not e¢ cient, W (1; ��) < W eff and

lim
�!1

supW (�; ��) < W eff ;
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and so the �rst line of the proposition follows. For the second line, note that we have
already proven that the limiting outcome is bounded away from e¢ ciency

lim
�!0

W (�; 1) < W eff ;

and it remains to be proven that every equilibrium with vanishing frictions and with a
noisy signaling technology becomes e¢ cient:

lim
�!0

W (�; ��) =W eff :

To do so, recall that the density dF (�j�) is strictly positive and continuous in v and
�. We show that this implies that if the trading probability of any type v0 who uses a
reservation price rk (v0) converges to one, qk (rk (v0) ; v0)! 1, then the trading probability
of any type v00 who mimics v0 and uses rk (v0) converges to one as well. With this obser-
vation in place, one can use the reasoning put forth in chapter two to show convergence
to e¢ ciency.

We want to show that for every r and v00, v0 the ratio of trading probabilities S(r;v
00)

S(r;v0) is

bounded. For this, we utilize the fact that the ratio of densities is bounded: dF (�jv0)
dF (�jv00) � �S

for some �S > 0 by joint continuity of the density dF (�j�) in v and �. This bound carries
over to the ratio of trading probabilities:

S (r; v0)

S (r; v00)
=

R 1
0 Pk (r; �) dF (�jv

0)R 1
0 Pk (r; �) dF (�jv00)

�
R 1
0 Pk (r; �)

�SdF (�jv00)R 1
0 Pk (r; �) dF (�jv00)

= �S 8r:

We can derive the lifetime trading probability from the recursive formula

qBk
�
rk
�
v00
�
; v00
�
= Sk

�
rk
�
v00
�
; v00
�
+
�
1� Sk

�
rk
�
v00
�
; v00
��
(1� �k) qBk

�
rk
�
v00
�
; v00
�
;

and so

qBk
�
rk
�
v00
�
; v00
�
=

Sk (rk (v
00) ; v00)

�k + Sk (rk (v00) ; v00) (1� �k)

=
1

�k
Sk(rk(v00);v00)

+ (1� �k)
:

Thus, if the trading probability for v00 converges to one, i.e., if limk!1 qBk (rk (v
00) ; v00) =

1, it must be that the ratio �k
Sk(rk(v00);v00)

converges to 0. Thus, the trading probabil-
ity Sk (rk (v00) ; v00) is "large" relative to �k. Now we utilize that the trading probability
for type v0, who waits for prices p � rk (v

00), is at least �SSk (rk (v00) ; v0). Therefore,
Sk (rk (v

00) ; v00) is large relative to �k as well: if
�k

Sk(rk(v00);v00)
! 0, then

lim
k!1

�k
Sk (rk (v00) ; v0)

� lim
k!1

�k
�SSk (rk (v00) ; v00)

= 0:
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Evaluating the limit qBk (rk (v
00) ; v0) with this knowledge, our claim follows:

lim
k!1

qBk
�
rk
�
v00
�
; v0
�
= lim
k!1

1

�k
Sk (rk (v00) ; v0)| {z }

!0

+(1� �k)
= 1:

Now we can use the reasoning of chapter two. We sketch the proof informally: Let
hk � supv rk (v) be the highest accepted price and lk � inf fsuppP (�; �)g be the lowest
o¤ered price.60 Then the law of one price holds and limk!1 (hk � lk) = 0 because the
lemmas supporting that proof hold here as well: Suppose price dispersion did not vanish,
then for some h and l with h > l, hk ! h and lk ! h. Along this (sub-)sequence three
lemmas hold: First, the trading probability of all types v < h must be bounded away
from one in the limit, i.e., Lemma 6 holds and limk!1 inf qBk (rk (v) ; v) < 1 for all v < h.
Suppose not, then some type v00 < h would be able to trade for sure at some expected
price E [pjp � r (v00)] below v00. But then the type who is supposed to accept hk would
want to mimic v00, a contradiction to the de�nition of hk.61 As prices below h are rare
in the limit, types v 2 (l; h) accept intermediate prices and limk!1 inf rk (v) > l for all
v 2 (l; h), corresponding to Lemma 7. And Lemma 8, which states that buyers who do not
trade with certainty make up a strictly positive share of the pool, holds as well. Together,
these lemmas imply that there is some price p0 > l such that a seller who o¤ers this price
is able to �nd a buyer accepting his o¤er with �k ! 0, contradicting the de�nition of
l. Given the law of one price, we can again use the reasoning from chapter two to show
that this price must be 0: Suppose not and suppose prices converge to some pc > 0 along
some (sub-)sequence instead. Then a seller who o¤ers to trade at any p0 < pc would be
able to trade for sure with �k ! 0. Hence, by p0 being arbitrarily close to pc, all sellers
must be able to trade for sure at pc as well. But the mass of sellers is one, while at all
prices pc > 0 only a mass of buyers strictly smaller than one, 1 � G (pc) < 1, can trade.
So more sellers than buyers would have to trade - a contradiction. Hence, pc must be
zero �

A.2 Chapter 2: Proof of Global Concavity

Note that @2

@p2
US

�
p; 0j�

�
p0
��
= q00 (p) p + q0 (p) p + q0 (p), with q0 (p) = @

@pq
S
�
pj�

�
p0
��

and q00 (p) = @2

@p2
qS
�
pj�

�
p0
��
. For the latter, note that

@

@p
qS
�
pj�

�
p0
��

=
d (p) [D (p) + � � �D (p)]�D (p) d (p) [1� �]

[D (p) + � � �D (p)]2

=
d (p)D (p)

[D (p) + � � �D (p)]2
;

60Note that we did not prove that reservation prices are increasing in types. So it might be that
rk (v) > rk (1), for some v and k.
61 If rk (v) < hk for all k, choose any vk such that rk � 0:5 (v00 + hk) and observe that this type would

want to deviate for k large enough.
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and

@2

@p2
qS
�
pj�

�
p0
��
=

d0 (p) [D (p) + � � �D (p)]2 � �2d2 (p) [D (p) + � � �D (p)] (1� �)
[D (p) + � � �D (p)]2

with d0 (p) = �gB0 (v (p)) 1� for p 2 (p
0; r

�
1jp0

�
] and d0 (p) = �gB0 (v (p)) for p 2 [0; p0).

By the assumption that
�
1�GB (�)

�
is strictly concave, gB0 (v) > 0 for all v. Inspection

of the �rst and second derivative of qS (�) show that they are strictly negative, which
implies that payo¤s are strictly concave on the intervals [0; p0) and (p0; r

�
1jp0

�
). By

@
@pU

S
�
p; 0j�

�
p0
��
being continuous at p0 (but not di¤erentiable) this implies that it is

globally strictly concave.

A.3 Chapter 2: Proof of Mass Balance

We show the identity of trading masses by algebraic manipulation, dropping the depen-
dency on �:Z 1

0
qS (r (c)) gS (c) dc =

Z 1

0

D (p (c))

D (p (c)) + � � �D (p (c))dG
S (c)

=

Z 1

0
MD (p (c)) d�S (c)

=

Z 1

0
M

"Z 1

v(c)
d�B (v)

#
d�S (c)

=

Z 1

0
M

"Z 1

v(c)

gB (v)

M (S (r (v)) + � � �S (r (v)))dv
#
d�S (c)

=

Z 1

0

"Z c(v)

0
d�S (c)

#
gB (v)

(S (r (v)) + � � �S (r (v)))dv

=

Z 1

0
S (r (v))

gB (v)

(S (r (v)) + � � �S (r (v)))dv =
Z 1

0
qB (r (v)) gB (v) dv;

and similarly the identity of expected payments follows from:Z 1

0
p (c) qS (p (c)) gS (c) dc =

Z 1

0
p (c)MD (p (c)) d�S (c)

=

Z 1

0
M

"Z 1

v(c)

gB (v)

M (S (r (v)) + � � �S (r (v)))dv
#
p (c) d�S (c)

=

Z 1

0

"Z 1

v(c)

1

S (r (v))
gB (v) qB (r (v)) dv

#
p (c) d�S (c)

=

Z 1

0
gB (v) qB (r (v))

1

S (r (v))

"Z c(v)

0
p (c) d�S (c)

#
dv

=

Z 1

0
qB (r (v))E [pjp � r (v)] gB (v) dv �
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A.4 Chapter 2: Proof of Lemma 6

First, we show convergence of the inverse c (�jp (�)) starting by showing that we can dis-
regard points where p (�) is �at because then the inverse function will have a jump and
these points have zero measure. At all c where p (�) is not �at, convergence of the inverse
function at p (c) is not a problem. Then we prove convergence of the composite making
use of its monotonicity and continuity almost everywhere.

Suppose �p (�) is�at at cf i.e., for some cff 6= cf , �p (cf ) = �p (cff ) � pf and suppose pf 2
(0; 1) and cf < cff (wlog). Then c (pf � 0j�p (�)) < c (pf + 0j�p (�)) because c (pf � ") =
sup fc; 0j�p (c) � pf � "g � cf and c (pf + ") = sup fc; 0j�p (c) � pf + "g � cff . So pf is a
jump point of �c (�) = c (�j�p (�)). Let pl � �p (0) and ph � �p (1), then for all p+ > ph and
" > 0 we have �p (1� ") < p+. Thus, at all c0 2 (1� "; 1) such that pN (c0) converges,
�p (c0) < p+ and for N large enough, pN (c0) < p+. Therefore cN (p+) � c0 > 1�" and with
" arbitrary this implies cN (p+) ! 1 for all p+ > ph. Reasoning similarly for p� < pl we
conclude that c (�jpN (�)) converges on [0; pl) and (ph; 1]. Now, take any p0 2 (pl; ph) such
that p0 is not a jump point of �c (�). Let c0 = �c (p0) and suppose c0 2 (0; 1). Then �p (�) is
not �at at c0, i.e., for all c� < c0 < c+, �p (c�) < p (c0) < �p (c+). Take some c� and c+ such
that pN (�) converges pointwise at these points. Then for some " and N large enough,
pN (c

�) � p0 � " and pN (c+) � p0 + " and so cN (p0) = sup fc; 0jpN (c) � p0g 2 [c�; c+]
and by c� and c+ being arbitrary, cN (p0)! c0. Suppose c0 = 0, then by �p not being �at,
�p (") > p0 for all " > 0. Choose some "1 < " such that pN ("1)! �p ("1). Then for N large
enough, cN (p0) � "1 and by " arbitrary, cN (p0) ! 0. Similar reasoning holds for c0 = 1.
Together, cN (p)! �c (p) for almost all p.

Now we want to show cN (rN (�)) ! �c (�r (�)). By r (�) being strictly increasing we
can disregard the zero measure set of v where �c (�) is discontinuous at �r (v). We also
disregard the two points v 2 f0; 1g and �r (v) 2 (0; 1) at all v 2 (0; 1). Note that at all
remaining v0, �c (�) will be continuous at �r (v0) and therefore cN (�r (v0)) converges pointwise
to �c (�r (v0)) by the reasoning in the preceding paragraph. Take such a type v0 2 (0; 1)
and some �1 < min f�r (v0) ; 1� �r (v0)g. Then we want to show that for every such �1
there is some N large enough such that cN (rN (v0)) is in an open ball with radius �1
around c0 � �c (�r (v0)), i.e., cN (rN (v0)) converges to �c (�r (v0)) pointwise: By continuity of
�c (�) at �r (v0) there are some prices pl, ph around �r (v0) with pl < �r (v0) < ph such that
�c (pl) 2 B�1 (c0) � (c0 � �1; c0 + �1) and �c (ph) 2 B�1 (c0). In addition, we choose these
prices such that cN (�) converges pointwise at pl and ph. Such prices exist within the
open ball because cN (�) converges pointwise almost everywhere. By this choice there is
some N1 large enough st. cN (pl) 2 B�1 (c0) and cN (ph) 2 B�1 (c0) for N � N1. Now
choose N2 � N1 such that rN (v0) 2 (pl; ph) for all N � N2 as well. Monotonicity of cN (�)
implies that we have sandwiched cN (rN (v0)), cN (pl) � cN (rN (v0)) � cN (ph) and from
cN (pl) 2 B�1 (c0) and cN (ph) 2 B�1 (c0) we have cN (rN (v0)) 2 B�1 (c0) with c0 = �c (�r (v0))
for all N � N2. By �1 being arbitrary, it must be that cN (rN (v0))! �c (�r (v0)) �
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A.5 Chapter 2: Proof of the Identity of Pool Sizes

Let xS and xB be the shares of sellers and buyers, respectively, who trade:

xS = MS (1)�1
Z 1

0

"Z 1

v(p(c))

�
�dMB (v)

�
MB (0)�1

#
dMS (c)

xB = MB (0)�1
Z 1

0

"Z c(r(v))

0
dMS (c)MS (1)�1

#
� dMB (v) ;

and note that by the same reasoning as before, the share of sellers and buyers who trade
must be the same:

xS = MS (1)�1
Z 1

0

"Z 1

v(p(c))

�
�dMB (v)

�
MB (0)�1

#
dMS (c)

=

Z 1

0

"Z 1

v(p(c))

��
�dMB (v)

�
MB (0)�1

�#�
dMS (c)MS (1)�1

�
=

Z 1

0

"Z c(r(v))

0

�
dMS (c)MS (1)�1

�#��
�dMB (v)

�
MB (0)�1

�
= xB;

and by rewriting the steady-state conditions we get

GS (1) = xSMS (1) +MS (1)
�
1� xS

�
�

GB (1) = xBMB (0) +MB (0)
�
1� xB

�
�;

so that xS = xB implies MS (1) =MB (0) by rewriting further:

1 = MS (1)
�
xS +

�
1� xS

�
�
�

1 = MB (0)
�
xB +

�
1� xB

�
�
�

�

A.6 Chapter 3: Proof of Lemma 14

Let

SM
�
MT

�
� max

Q2Q̂
SQ (�)

st: MT =

Z 1

0
QS (c) dGS (c) =

Z 1

0
QB (v) dGB (v) ; (A.1)

and note that
max
Q2Q̂

SQ (�) = max
MT2[0;1]

SM (�) .
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Let pS
�
MT

�
be such that GS

�
pS
�
=MT and pB

�
MT

�
be such that 1�GB

�
pB
�
=MT .

Then clearly

Q (M) � argmax
Q2Q̂

SQ (�) st. (A.1)

=

�
Q 2 Q̂j

Z 1

0

���QS (c)� 1c�pS(M) (c)
��� dc+ Z 1

0

���QB (v)� 1v�pB(M) (v)
��� dv = 0�

and thus

SM
�
MT

�
=

Z 1

pB(MT )
vdGB (v)�

Z pS(MT )

0
cdGS (v) .

Note that SM (�) is continuously di¤erentiable inMT and the second derivative of SM
�
MT

�
is �

�
1

dGB(pB(MT ))
+ 1

dGS(pS(MT ))

�
; so the surplus is strictly concave in MT . Therefore,

a necessary and su¢ cient condition for M� 2 argmaxSM (�) is that the �rst derivative is
zero:

pB (M�)� pS (M�) = 0, (A.2)

which implies that the cuto¤s must be the market clearing price pw: By de�nition ofMT ,
MT = GS

�
pS
�
MT

��
= 1 �GB

�
pB
�
MT

��
. This is true at pB (M�) = pS (M�) only for

pB (M�) = pS (M�) = pw. Thus:

QW = Q (Gs (pw)) = argmax
Q2Q̂

SQ (�) : �

A.7 Chapter 3: Proof of Lemma 15

The "if" part follows directly from continuity of SQ (�) and from Lemma 14. For the "only
if" part, recall that we say limk!1Qk = QW if d (Qk; Q0)! 0 for all Q0 2 QW . By Helly�s
selection theorem, every sequence of monotone functions has a convergent subsequence.
Take such a subsequence and let �Q denote its limit. Lebesgue�s bounded convergence
theorem implies that SQ

�
�Q
�
= S�. Therefore �Q 2 QW from Lemma 14. Hence, every

convergent subsequence has its limit in QW ; and thus the sequence itself converges to
QW (see Lemma 20 in the Appendix) �

A.8 Chapter 3: Proof of Lemma 16

Suppose the limiting statement does not hold. According to the Bolzano-Weierstrass
theorem, this implies that there is some " > 0 and some subsequence indexed by k0,
such that S (Ak0) converges and limk0!1 S (Ak0) � S� � ". Take some subsubsequence
indexed by k00 such that V Sk00 , V

B
k00 converge pointwise. Such a subsubsequence exists

by
�
V Sk00 ; V

B
k00
�
2 �+ � �� and Helly�s selection theorem. Let �p be de�ned as before:

�p � infc�pw
�
�V S (c) + c

�
. Along the subsubsequence, limk00!1 V Sk00 (c) � �V S (c) � �p � c

for all c � pw; and similarly, limk00!1 inf V Bk00 (v) � v � �p for all v � pw; by the condition
of the lemma. Hence

lim
k00!1

inf S (Ak00) �
Z 1

pw
(v � �p) dGB (v) +

Z pw

0
(�p� c) dGS (c) = S�;

where the last equality follows the observation in the �rst part of the proof. This contra-
dicts the starting hypothesis limk0!1 S (Ak0) � S� � ": �
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A.9 Chapter 3: Proof of Convergence of Sequences

The sets of monotone functions �+ and �� are sequentially compact and satisfy the
conditions of the following lemma (see footnote 3.3.1). The proof of the �rst part is
standard and the second part is a straightforward extension:

Lemma 20 Let (X; �) be a sequentially compact topological space. Suppose there is some
sequence fxng = x1; x2; :::: in X and some y 2 X such that every convergent subsequence
converges to y. Then

xn ! y:

Similarly, suppose there is some subset Y � X such that every convergent subsequence of
fxng converges to some y 2 Y (possibly y is di¤erent for each subsequence). Then for
every neighborhood G � Y; there is some N (G), st. xn 2 G for all n � N (G), and we
say xn ! Y .

Proof: We prove the �rst part by contradiction: Suppose not, then by the de�nition of
convergence, there is some neighborhood G of y that does not contain all elements of the
sequence from some index onwards, i.e., for every N there is some n0 (N) � N such that
xn0(N) =2 G. This allows the construction of a subsequence fxn0g such that xn0 =2 G for all
n0. By X being sequentially compact, there is some convergent subsubsequence of fxn0g.
By the hypothesis of the lemma, this subsubsequence converges to y. This contradicts
xn0 =2 G for all n0. The second statement follows similarly: Suppose not, then there would
be some neighborhood G � Y and some subsequence fxn0g such that xn0 =2 G for all n0.
Again, we can �nd a convergent subsubsequence by X being sequentially compact; this
implies a contradiction to the de�nition of fxn0g �

A.10 Chapter 3: Proof of qPS ! 1

We want to show that limk!1QSk (c) = 1 implies limk!1 qPS
�
pSk (�; c) ; cj�F ; �k

�
= 1.

Note that V Sk (�) is decreasing and V Bk (�) is increasing. This implies that reservation prices
rSk (�) and rBk (�) are monotone. Furthermore, if rBk (v) = pSk (c; v), then rSk (c) = pBk (v; c)
because pSk (c; v) = r

B
k (v) if and only if the continuation payo¤ is below the reservation

price, i.e., if and only if

(1� �k)US
�
pSk ; r

S
k ; cj�kF

�
� rBk (v)� c
= v � (1� �)UB

�
pB; rB; vj�F

�
� c

and hence v � rSk (c) � (1� �)UB
�
pB; rB; vj�F

�
. Therefore, the probability to trade is

independent of whether one is a proposer or a responder. So DS
�
pSk ; r

S
k ; cj�Fk; �k

�
=

PS
�
pSk ; r

S
k ; cj�Fk; �k

�
. This implies that if limk!1QSk (c) = 1;

then limk!1 qPS
�
pSk (�; c) ; cj�F ; �k

�
= 1: With PSk

�
pSk
�
� PS

�
pSk ; r

S
k ; cj�Fk; �k

�
lim
k!1

QSk (c) = lim
k!1

PSk
�
pSk
�

1� (1� �k)
�
1� PSk

�
pSk
�� = 1

implies limk!1 �k
�
PSk

�
pSk
���1

= 0 and therefore limk!1 �k
�
�PSk

�
pSk
���1

= 0. Thus
qPS

�
pSk (�; c) ; cj�F ; �k

�
! 1 by

qPS
�
pSk (�; c) ; cj�F ; �k

�
=

�PSk
�
pSk
�

1� (1� �k)
�
1� �PSk

�
pSk
�� : �
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