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Introduction

All three chapters of this dissertation deal with the question of how individuals behave

and interact in markets. Nevertheless, they are only loosely related, everyone of them

exploring a very different aspect of the same broad theme. For this reason, they have

been designed to form independent and self-contained units. The main purpose of

this introduction is to give potential readers an idea of what they can expect from

reading the subsequent chapters at full length.

Chapter 1 takes the following observation as its starting point: In many cases, an

individual’s willingness to pay for a certain unit of a good does not only depend on

her valuation of the good, but also on what she thinks its going price is. In order to

understand why this statement should be true, let us consider the following example:

Imagine an employee who wants to buy a bike for her daily way to work. To make

matters stark, let us assume that the employee will lose her job if she does not get

a bike. May this dependency lead her to accept straightaway if she is offered a bike

at the price of a car? The answer to this question is “no”, because the employee will

feel very confident that a much better deal is available at the next bike store. Hence,

there is no reason for her to behave as if the only alternative to buying the overpriced

bike was not to buy any bike at all. This simple insight applies not only to bikes, but

to all goods for which a sufficiently liquid market exists.

Assume next that the employee from our example only has a vague idea of how

expensive bikes usually are. It is probably clear to her that bikes are much cheaper

than cars, but she may still be uncertain about whether a given price is relatively

high or low. One way to overcome this lack of information - the one we focus on - is
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to pay attention to the behavior of her “competitors” (i.e. other potential buyers).

If, for example, a given bike sells within minutes after it has first been offered, she

can conclude that the bike most likely was relatively cheap. This piece of information

allows her to form a more accurate belief about what a low price is and adjust her

willingness to pay accordingly. At the same time, her own behavior serves as a signal

to other potential buyers.

Our goal in the first chapter is to conduct a formal analysis of how potential buyers

behave and interact in the presence of uncertainty about the distribution of prices. To

this end, we consider a model of a big, decentralized auction market (akin to eBay).

Two types of agents are active in this market: buyers and sellers. Buyers want to buy

one unit of the good under consideration, while sellers have one to offer. Buyers can

successively participate in more than one auction. After every auction, however, they

face some probability of “dying”, so there is pressure on them to win an auction as

soon as possible. The idiosyncratic feature of our model is that no buyer knows how

many other buyers there are. Hence, there is some uncertainty about how intensely the

buyers compete against each other. The auctions in our model are assumed to be of

the second-price, sealed-bid type, and the buyers cannot directly observe each other’s

behavior, but if they lose an auction, they can conclude that the highest competing

must have been higher than their own one. This insight allows them to update their

belief about the “state of the world”.

We characterize the equilibrium behavior of the buyers in our model. Our main

result is that the buyers in our dynamic model behave the same as the buyers in a

standard (static) common value auction (i.e. an auction for a good with unknown

characteristics). Thus, much of what is known about common value auctions also

applies to environments in which goods with known characteristics are for sale, but

buyers do not know the distribution of winning bids.

In Chapter 2 we analyze the effect of redistribution on the demand for “status

goods”. Doing so requires us to first make precise what status goods are and why

there is demand for them. We assume that individuals want to be perceived as attrac-

2



tive. No individual, however, has an opportunity to directly show off her qualities.

Yet, there is a positive correlation between a person’s attractiveness and her income.

The income itself is unobservable as well, but an individual can publicly “burn” part

of it so as to let everyone know how rich - and, hence, attractive - she is. Consuming

status goods (like, for example, Rolex watches) is one way of publicly burning money.

(In the model we consider it is the only one.) How does the positive relationship

between affluence and attractiveness come about? In our model it is not true that a

person’s attractiveness directly depends on her income. Rather, the causal relation-

ship runs the other way round: We assume that attractive (i.e. handsome, intelligent,

eloquent, entertaining) individuals make more money than others. This assumption

is important, as it implies that redistributing income does not affect the distribution

of attractiveness in the population. Even if all differences in income were eliminated,

some individuals would remain more attractive than others.

Our analysis reveals that redistribution has two contrarian effects on the demand for

status goods: On the one hand, redistribution (from the rich to the poor) increases

the demand for status goods, as it makes it more difficult for the rich to set themselves

apart from the poor. This result is very intuitive: In a society with a very unequal

income distribution, the rich need to spend only a small share of their income on

status goods in order to make clear “who is who”. The poor do not have any chance

to behave as if they were rich.

There is, however, a second effect which works in precisely the opposite direction. This

second effect is based on the assumption that an individual’s propensity to consume

the status good does not only depend on her income, but also on some other factors

like, for example, personal preferences. Redistribution increases the importance of

these “noise” factors, thereby reducing the reliability of consumption patterns as

signals of attractiveness. Again, this effect is intuitive: If differences in income are

largely taxed away, even individuals with modest gross income can afford a Rolex if

they make this a high priority. Conversely, the rich are not as rich as they used to

be, so they may well do without a Rolex if they do not care much about how they

are perceived by others anyway. Therefore, we cannot be sure anymore that whoever

3



owns a Rolex must be a member of the upper class. Everyone knows this, so there

is no reason to buy a Rolex. While this mitigating effect matters little when income

differences are large, we demonstrate its power in egalitarian societies. Hence, the

consumption of status goods is highest at intermediate levels of income inequality.

In Chapter 3 of this thesis we turn to the question of whether (and, if so, how)

the information contained in individual schooling decisions can help us to estimate

the so-called “returns to schooling”, i.e. the causal effect of schooling on earnings. In

order to understand why this is an interesting question, we need to reach back into the

history of micro-econometric thought: The traditional and obvious way of estimating

the returns to schooling is to compare the wages of individuals with different schooling

achievements. There is, however, a major problem associated with this approach: as

people, rather than being randomly assigned a certain level of schooling, decide them-

selves when to enter the labor market, individuals with high schooling attainments

systematically differ from those with low ones. Hence, it is not clear what accounts

for the observed positive relationship between schooling and earnings. In econometric

terms the problem is said to lie in the “endogeneity”of the schooling variable.

One way to overcome this problem is to look for an observable “random component”

in individual schooling decisions, i.e. a variable which has an influence on the timing

of school exit, but is unrelated to any student’s personal characteristics. If such a vari-

able is available, one can estimate the returns to schooling by essentially comparing

the earnings of students who have different schooling attainments, but do not sys-

tematically differ otherwise. Finding an observable random component in schooling

decisions, however, is usually very difficult.

For this reason, we examine an alternative way of getting around the endogeneity prob-

lem, advocated by Belzil and Hansen (2002). The basic idea behind their approach

is to exploit the information that is contained in individual schooling decisions. Intu-

itively, this can be done as follows: If an individual incurs certain observable costs in

order to (voluntarily) go to school, we learn something about the returns to schooling:

These must be at least as high as the costs, for otherwise the individual would not
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have chosen to go to school. Conversely, every decision to exit school indicates that

the costs of remaining in school would have been higher than the benefits.

While the identification strategy we have just sketched sounds appealing, we show

it to have several important weaknesses. In particular, the strategy only works if

the costs of going to school are observable. Since going to school has a number of

non-monetary costs and benefits, this is generally not the case. In fact, even the

monetary costs of going to school are often difficult to observe. This insight leads us

to investigate the way in which Belzil and Hansen identify the returns to schooling.

We show that their identification strategy crucially relies on the assumption that

individual schooling decisions are partly driven by (observable) random wage shocks.

Thus, while the approach of Belzil and Hansen is an interesting one, it has much more

in common with the traditional “random components” method than one might think

at first glance.
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Chapter 1

Sequential Common Value

Auctions with Purely Private

Valuations

1.1 Introduction

Over the past two decades the common value (or “mineral rights”) model has be-

come one of the most commonly used tools in auction theory. Its popularity mainly

stems from two sources: First, the model is mathematically convenient and makes

for a number of elegant theorems. Second, its applicability is widely believed to go

beyond auctions for drilling rights or industrial procurement. More specifically, many

economists hold that the common value (CV) model provides a useful description of

auctions with resale opportunities1 and, conversely, interpret observed common value

elements as evidence of resale-motivated buyers.2 This view, however, is largely based

on simple reinterpretations of the standard CV model, i.e. on analyses which take the

resale value of a good as exogenously given. Studying a model in which that value is

endogenously determined, Haile (2003) does not only conclude that “standard models

will often miss important aspects of bidding strategies” (in auctions with resale), but

1Examples include McAfee and McMillan (1987), Milgrom (1989), and Crampton (1995).

2See, for example, Bajari and Hortacsu (2003).
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also remarks that “resale does not always create common or affiliated values”.

In this chapter we consider a dynamic equilibrium model of an auction market to

study a phenomenon closely related to, but still distinct from, auctions with resale.

Rather than assuming that the winner of an auction has a chance to resell the good,

we allow the losers to bid for an identical item in another auction, i.e. we assume

that the item currently for sale has substitutes. As others have noted before us, the

buyers’ optimal strategy in such a setting is to shade their bids, i.e. to account for

the possibility of future gains (in case of a loss) by bidding less than they would do

in the absence of any alternative opportunities.3 More precisely, the buyers should

simply subtract the opportunity cost of winning from their valuation. In the case of

a second-price sealed-bid auction, the optimal bidding function then takes the form

b = v − V , where V denotes the value of bidding in future auctions.

Novel to our paper is the assumption that the buyers are imperfectly informed about

how valuable the option of participating in future auctions is, because they do not

know how scarce the good under consideration is. The main result of our paper is that

this uncertainty transforms otherwise private value auctions into standard common

value auctions. Thus, the failure of the CV model to accurately describe auctions

with resale does not extend to the seemingly similar case of sequential auctions with

aggregate uncertainty.4

Since both assumptions - substitutability and information imperfectness - seem to be

rather generic, our results make a strong case for the CV paradigm. In particular,

non-negligible common value elements can be expected to be the norm (rather than

an exception) in most online-auctions where similar or even identical items are often

sold at high frequency. This may help to explain the empirical findings of Bajari and

Hortacsu (2003) and Roth and Ockenfels (2002) who discover evidence of common

3See, for example, Milgrom and Weber (1999).

4The term “aggregate uncertainty” (as opposed to “idiosyncratic uncertainty”) refers to uncer-

tainty about the distribution of buyer’s characteristics (rather than uncertainty about any agent’s

individual characteristics).
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values in data from auctions for goods with known characteristics like computers (i.e.

“private value goods”).

To be sure, the idea that aggregate uncertainty may induce a common value element to

an otherwise “private value” trading environment is not entirely new to the literature5.

So far, however, it has never been scrutinized, i.e. there does not yet exist a dynamic

model of decentralized trading in which a common value component arises out of

buyers’ uncertainty about future prices (i.e. highest competing bids) and in which

the distribution of prices is an equilibrium object of the model. The purpose of this

paper is to fill this gap.

The structure of our model heavily borrows from the literature on dynamic matching

and bargaining games:6 There is an infinite sequence of time periods, and in every

one of them continuums of buyers and sellers are born into the model. All buyers

(the new ones and those inherited from the previous period) then get randomly and

independently matched to one of the sellers. Every seller conducts a second-price,

sealed bid auction. After the auction she gives notice to the winner and tells her how

much to pay. Other than that, however, no buyer gets to know anything about the

number or bids of her respective opponents. At the end of each round all successful

agents (i.e. those buyers who managed to buy an item and the sellers who sold theirs)

leave the model. All other agents can try their luck again in the next round unless

they get “discouraged” which happens with exogenously given probability 1−δ. While

the sellers do not exhibit any strategic behavior (they do not take any decisions), the

buyers aim at maximizing expected utility which is their valuation minus the payment

if they manage to win an auction and zero if they get discouraged.

The defining feature of our model is that the mass of inflowing buyers can (depending

on the “state of the world”) be either large or small; it does not change over time,

5Serrano (1995), for example, refers to aggregate uncertainty as “common value uncertainty”.

6Important references include Gale (1987), Wolinsky (1990), McAfee (1993), and Satterthwaite

and Shneyerov (forthcoming). The seminal paper on dynamic matching and bargaining under ag-

gregate uncertainty is Wolinsky (1990).
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though. Competition among buyers is more intense in the high state, so the “continu-

ation value” of participating in future auctions is lower. Therefore, the buyers would

like to bid more in the high state than in the low one. They are, however, assumed

not to know the state in which they are. Upon birth, every buyer forms an initial

belief about the state of the world. Moreover, after every auction the losing buyers

get additional information regarding the state, because they are able to make some

inference about the bidding behavior of their opponents. Thus, the buyers’ beliefs are

endogenous and evolve over time. A common value component arises in the auctions

of our model, because the value a buyer puts on winning an auction depends on her

opponents’ private information about the state of the world.

In our analysis of the model, we focus on equilibrium steady states, i.e. on distributions

of buyers’ beliefs which do not change over time, because the buyers’ learning process

is just evened out by the turnover among them. What we demonstrate below is that

an equilibrium pair of steady-state belief distributions (one for each state of the world)

exists and that it is unique within a certain class of equilibria.

In contrast to many other models of dynamic auctions, we do not assume the number

of buyers and sellers active in the market to be finite i.e. our analysis mainly applies

to large auction markets like ebay. Consequently, the probability of any two agents

meeting more than once is zero, so no buyer can possibly gain from deliberately

manipulating other buyers’ beliefs (using her bid as a signal). This simplification

allows us to focus exclusively on the role of buyers’ uncertainty about the state of the

world.

We argue that our model can be used to analyze a wide range of applied questions.

One of them is whether the revenue of a seller would change if she revealed the size

of some bids or the number of bidders after her auction (and the buyers knew this

beforehand). We show that, for any given distribution of buyers’ types, announcing

the winning bid has an adverse affect on revenue. The intuition behind this result

is that any (ex-post) revelation of information only serves to increase the buyers’
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continuation payoff, thereby lowering all bids.7

The chapter is organized as follows: In Section 1.2 we formalize the ideas laid out

in this introduction by setting up a model of sequential auctions with uncertainty

about the ratio of buyers to sellers in the market (“aggregate demand uncertainty”).

In Section 1.3 we show that this model has a unique steady state equilibrium and

characterize some of its properties. Section 1.4 asks whether sellers could increase

their revenue by employing a more transparent informational regime than the one

assumed in Section 1.3. Finally, a discussion of the model and some conclusions are

presented in Section 1.5.

1.2 The Model

1.2.1 Basics

The model we consider is set up in discrete time going from t = −∞ to t = ∞, and

the arena in which all of its action takes place is a big, decentralized market place

(akin to a bazar) at which an indivisible, homogeneous good is traded. There are

continuums of two types of agents active in the market: buyers and sellers. Every

seller offers one unit of the good for sale, while every buyer seeks to purchase one. The

timing within every period is as follows: At the beginning of every period exogenously

given masses of buyers and sellers are born into the model. All buyers (new and old

ones) are then independently and randomly matched to one of the sellers. The sellers

allocate their goods by means of second-price sealed-bid auctions. At the end of the

period all agents who have managed to trade leave the market. In addition, all other

agents face some risk of being forced to leave. Technically, each of them is removed

with exogenously given probability 1 − δ. The purpose of δ is to make the agents

“impatient”, i.e. its role is similar to that of a discount factor.8

7This result is reminiscent of the findings of Mezzetti, Pekec, and Tsetlin (2004) who make a

similar point in the framework of a more stylized, two-period model.

8While we assume δ to be the same for both buyers and sellers, that assumption could easily be

relaxed.

10



1.2.2 The Sellers and their Problem

The sellers do not face any decision problem at all, i.e. their role is that of an “auction

running robot”. In particular, we do not allow the sellers to set a reserve price. This

assumption is made for simplicity only and does not drive any of the results in the

paper. Nevertheless, it is likely to be perceived as restrictive. Therefore, we provide

an extensive discussion in Section 1.5.

1.2.3 The Buyers and their Problem

The mass of sellers who enter the market every period is known and normalized to

one. The mass of incoming buyers (denoted as d), on the other hand, can, depending

on the state of the world, be either large (d = dh) or small (d = dl). The state does not

change throughout. Both states are (ex ante) equally likely to occur, and the buyers

do not know in which one of them they are. Thus, one important characteristic of

every buyer is the probability she attaches to being in the high state, denoted as

θ. Upon birth, all buyers receive two pieces of information about the state of the

world: First, the mere fact of being alive allows them to conclude that - leaving other

sources of information aside - the probability of being in the high state is equal to

dh/(dh +dl). Second, we assume that every buyer receives an additional, idiosyncratic

signal regarding the state of the world. Since the only purpose of these private signals

is to order buyers’ starting beliefs, we take them to be continuously distributed (which

implies that the distribution of starting beliefs is continuous as well). In addition, we

assume the signals to be sufficiently noisy that all buyers’ starting beliefs are “close”

to dh/(dh + dl). The questions of (a) how small precisely the range of starting beliefs

needs to be and (b) why we do not want it to be larger will be answered in due course.

Why do buyers’ beliefs about the state of the world (which we are also going to refer

to as their respective types) matter at all? Given that the mass of new-born buyers

is different in the two states, the same will (as we shall see) hold true for the degree

of competition among buyers, i.e. winning an auction at a given price will be more

valuable in the high state than in the low one. Hence, buyers would ideally like to
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condition their bids on d. As nobody of them actually knows d, θ is used as a proxy.

Consider next the evolution of buyers’ beliefs over time: We assume that no informa-

tion regarding the number of competing bidders or their bids is revealed to the losers

of an auction. Nevertheless, they learn something about the state of the world: The

fact that at least one competing bid must have been higher than their own one allows

them to draw some conclusions about the state of the world. More specifically, let

Gt
k(b) denote the probability of winning an auction with bid b in state k and period

t. This probability depends on the size and number of other buyers’ bids. Assuming

that Gt
k(b) is known (for all b, t, and k), a bidder can, upon losing an auction in period

t− 1 with bid b, update her belief θ according to Bayes’ rule:

zt(θ, b) =
θ · (1−Gt−1

h (b))

θ · (1−Gt−1
h (b)) + (1− θ) · (1−Gt−1

l (b))
. (1.1)

It bears emphasis that the current belief of a buyer contains all information she has

ever received. For this reason, the belief of a buyer in period t − 1 does not matter

anymore once she has used it to compute that in period t.

Every buyer’s goal is to maximize her expected lifetime-payoff which is equal to the

difference between valuation and payment if she manages to win an auction and zero

otherwise. Matters are complicated, however, by the fact that buyers can successively

participate in more than one auction. What keeps the buyers’ optimization problem

tractable is our assumption that the matching of buyers to auctions occurs randomly

and independently. As there are continuums of agents this assumption implies that

the probability of any two buyers meeting more than once is zero. Therefore, it

appears reasonable to posit that all buyers take Gt
h(b) and Gt

l(b) as given and never

try to manipulate other buyers’ beliefs.

As buyers’ past beliefs do not contain any information over and above their current

ones, all they need to know in order to bid optimally in period t is their belief in that

period and the winning probability functions Gt
h(b) and Gt

l(b) in all future periods.

The number of competing bidders is assumed to be unobservable and, hence, cannot
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be conditioned on. The recursive structure of the buyers’ problem allows us to describe

the value of being able to participate in the game by the Bellman equation

V t(v, θ) = max
b

U(b, v, θ), (1.2)

where the utility function U(·, ·, ·) is the same for all buyers and can be written as

U(b, v, θ) =

∫ b

0

(v − x)gt(x, θ)dx + δ · Lt(b, θ) · V t+1(zt+1(θ, b), v). (1.3)

Here, gt(x, θ) ≡ θ · gt
h(x) + (1 − θ) · gt

l (x) is the density function of winning bids as

perceived by a buyer with belief θ and Lt(b, θ) ≡ θ · (1−Gt
h(b)) + (1− θ) · (1−Gt

l(b))

denotes the probability a buyer with belief θ attaches to not winning an auction with

bid b. For now we simply conjecture gt(x, θ) to exist, this claim will be confirmed

in Proposition 1. The integration variable x denotes the highest competing bid. As

apparent from equation (1.3), the utility function consists of two parts: The first one

captures the utility drawn from the opportunity to win the next auction. The second

one reflects the fact that bidders may, if they are lucky, get more than one chance to

buy the good. Thus, every buyer has to trade off the risk of being eliminated (a good

reason not to bid too low) against the opportunity cost of making a better deal in the

future (a good reason not to bid too high).

In order to solve the buyers’ problem we first have to find out more about the prop-

erties of Gt
h(·), Gt

l(·), and V t(·, ·). This is the job of the next section.

1.2.4 Stocks and Flows of Buyers and Sellers

Our first goal in this subsection is to examine how the stocks of buyers and sellers

evolve over time. Given our assumption that buyers are independently and randomly

matched to sellers, the number of bidders participating in any given auction is a

random variable following a Poisson distribution with parameter µ, where µ ≡ D/S

denotes the ratio of buyers to sellers in the market.9 The share of auctions not even

9Strictly speaking, the number of buyers per seller follows a Binomial distribution. As is well

known, however, the Binomial distribution converges to the Poisson distribution as n (the number
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attracting one single buyer is thus given by e−µ, the value of the Poisson distribution

function at zero. Recall that the inflow of new buyers is equal to dk, whereas the

outflow consists of the winning bidders and a fixed fraction of the losers. The mass

of buyers thus obeys the law of motion

Dt
k = dk + δ · (Dt−1

k − St−1
k · (1− exp(−St−1

k /Dt−1
k )

))
(1.4)

The first term on the right hand side of equation (1.4) captures the mass of agents

who get born in period t, the second one describes the agents who get inherited from

the previous period. As for the sellers, we can write down the analogous equation

St
k = 1 + δ · (St−1

k − St−1
k · (1− exp(−St−1

k /Dt−1
k )

))
(1.5)

The assumption that buyers are independently matched to sellers entails a key ad-

vantage: It implies that Gt
h(b) and Gt

l(b) can be interpreted both as the distributions

of highest competing bids and as the distributions of winning bids.

We have stressed above that all buyers take Gt
h(b) and Gt

l(b) as given. Nevertheless,

both of them are endogenous, and our next goal will be to show how they derive from

the model’s fundamentals. In the general case of heterogeneous valuations, this is an

extremely ambitious quest, because the agents already differ along another dimension,

their belief about the state of the world. This makes it difficult to say anything about

what their bidding function will look like.10 With homogeneous valuations, on the

other hand, it is natural to guess that, in equilibrium, higher types will submit higher

bids. Why does this presumption appear to be reasonable? Higher beliefs should

translate into higher bids, because agents who are relatively certain to be in the high

state cannot expect to make a good bargain in the future, so the opportunity cost of

winning is relatively low for them. In what follows we therefore assume that valuations

are homogeneous and restrict attention to equilibria in strictly increasing strategies.

Consequently, v is dropped as an argument from both V (·) and U(·, ·).

of buyers) goes to infinity while np (the number of buyers per seller) is bounded.

10The difficulties associated with the analysis of two-dimensional auctions are discussed in Pe-

sendorfer and Swinkels (2000).
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This restriction on the set of candidate equilibria simplifies the derivation of Gt
h(b)

and Gt
l(b) considerably, as it implies that a buyer’s bid always reveals her respective

type. Thus, the question of how an agent updates her belief after having lost an

auction with a certain (equilibrium) bid essentially reduces to how the agent updates

her belief after having lost an auction as a certain type. Accordingly, we can separate

the dynamics of buyers’ types from their equilibrium bidding strategy, i.e. we do not

have to solve the buyers’ problem in order to derive the distribution function of their

types in any given period. Formally, equation (1.1) can be written as

ζt(θ) =
θ · (1− Γt−1

h (θ))

θ · (1− Γt−1
h (θ)) + (1− θ) · (1− Γt−1

l (θ))
(1.6)

where Γt
k(θ) ≡ Gt

k (b∗t (θ)) denotes the distribution function of winning types (rather

than bids), and b∗t (·) : [0, 1] → R+ is the buyers’ equilibrium strategy in period t.

Note that - given our focus on strictly increasing strategies - the probability of an

agent with type θ̂ to win a given auction solely depends on (a) the mass of agents

whose type is larger than θ̂ and (b) the mass of sellers. Formally,

Γt
k(θ) = exp(−µt

k(θ)) ≡ exp(−Dt
k(θ)/S

t
k), (1.7)

where D(θ) denotes the mass of buyers whose type is larger than or equal to θ. This

insight allows us to rewrite equation (1.6) further as

ζt(θ) =
θ · (1− exp(−µt−1

h (θ)))

θ · (1− exp(−µt−1
h (θ))) + (1− θ) · (1− exp(−µt−1

l (θ)))
(1.8)

Before we can proceed, we need to impose one additional restriction on the model’s

equilibrium objects: We conjecture that in all periods an agent’s posterior is a differ-

entiable and strictly increasing function of her prior, i.e. ζ ′t(θ) > 0 ∀ θ. Thus, ζt(·) is

ensured to be invertible.

Our first step towards deriving the distribution of winning bids in any given period is

to give a recursive formulation of the density function of all buyers’ types (not only

the winning ones) in period t, denoted as φt(·). To this end, note first that our focus

on strictly increasing strategies implies that φt(·) exists if and only if this is the case
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for gt(·). As mentioned above, we will show the distribution of buyers’ types / bids to

be differentiable in Proposition 1. The stock of buyers with belief θ in period t is made

up of two groups: The buyers whose belief in period t− 1 was ζ−1
t (θ) = z−1

t (θ, b∗t (θ))

and who survived the end of that period and the buyers who are born in period t with

a belief of θ. Leaving this latter group aside the mass of buyers with type smaller

than of equal to θ is given by

Dt
k · Φt

k(θ) ≡ Dt−1
k · δ ·

∫ ζ−1
t−1(θ)

0

φt−1
k (x) · (1− Γt−1

k

(
ζ−1
t−1(x)

))
dx, (1.9)

where Φ(·) denotes the distribution function of all buyers’ types (not just the winning

ones).11 Taking the derivative of the identity (1.9) we get that

Dt
k · φt

k(θ) =
Dt−1

k · φt−1
k

(
ζ−1
t−1(θ)

) · δ · (1− Γt−1
k

(
ζ−1
t−1(θ)

))

ζ ′t−1(ζ
−1
t−1(θ))

(1.10)

The denominator of the second term on the right hand side of (1.10) corrects for the

fact that the difference between two similar (but not identical) priors may be bigger or

smaller than the difference between the corresponding posteriors. One and the same

mass of buyers can thus get either concentrated in a small or spread out over a large

interval. The derivative in the denominator of (1.10) adjusts the density function by

the ratio of the two differences.

Deriving the density function of winning types, γ(θ), is somewhat tricky, because the

number of buyers participating in any given auction is a random variable. Letting n

denote the number of bidders in an auction, γ(θ) can be written as

γk
t (θ) =

∞∑
n=1

exp(−µt
k) ·

(
µt

k

)n
/n! · n · [Φk

t (θ)
]n−1 · φk

t (θ), (1.11)

We now have collected all ingredients which are necessary to formally define an equi-

librium of our model. This task will be tackled in the next section.

11In our notation Greek letters are always associated with buyers’ types, while Latin letters are

associated with their bids.
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1.3 Steady State Equilibrium

1.3.1 Steady State Type Distributions

Our main goal in this section is to prove equilibrium existence and - within a certain

class of equilibria - uniqueness for the model presented in the previous section. In

addition, we want to characterize some properties of this equilibrium. For the sake

of tractability our analysis will focus on steady-state equilibria, i.e. on equilibria in

which the model’s endogenous variables remain constant over time. Accordingly, we

will sometimes talk about the “steady state version” (ssv) of an equation, meaning a

version of the respective equation where all time indices have been dropped. Before

we can start proving the existence of a steady state equilibrium we first have to make

precise what we are talking about. This is the job of the following

Definition 1 A steady state equilibrium of the model is a tuple {Dk, Sk, φk(θ), γk(θ),

b∗(θ), fk(b), gk(b), V (θ); k = h, l} such that

• Dh, Dl, Sh, and Sl satisfy the ssv’s of equations (1.4), (1.5) in both states.

• φh(·), φl(·), γh(·), and γl(·) satisfy the ssv’s of equations (1.6), (1.10), and

(1.11).

• b∗(θ) is payoff maximizing, i.e. b∗(θ) ∈ arg max U(b, θ) ∀ θ

• gk (b∗′(θ)) = γk(θ) and fk (b∗′(θ)) = φk(θ), k = h, l

• V (θ) satisfies the ssv of equation (1.2)

As mentioned before, we will restrict attention to equilibria in strictly increasing

strategies. The plan of this section is as follows: We first — in Lemma 1 and Propo-

sitions 1 to 3 — examine the mass of buyers and the distribution of their types. We

then — in Propositions 4 to 6 — turn to buyers’ optimal bidding behavior and finally

— in Proposition 7 — analyze the value function V (θ). Thus, we once again exploit

the fact that under the assumption of strictly increasing strategies we do not need
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to know buyers’ equilibrium bidding function in order to characterize the updating

process.

In a steady state the inflow of new buyers needs to equal the outflow of exiting ones

(in both states of the world), i.e.

dk − (1− δ) ·Dk − Sk · δ · (1− exp(−Dk/Sk)) = 0 (1.12)

For every mass of buyers Dk ∈ [dk, dk/(1− δ)] we can find a unique value of Sk such

that equation (1.12) holds. Let Pk : (dk, dk/(1− δ)] → R+ denote the function which

gives us this value. The mass of sellers is in steady state if and only if

1− (1− δ) · Sk − Sk · δ · (1− exp(−Dk/Sk)) = 0 (1.13)

Let Q : (dk, dk/(1−δ)] → R+ denote the function which, for any given mass of buyers,

gives us the value of S which ensures that the mass of sellers is in steady state. We

can now state our first Lemma:

Lemma 1: There is a unique tuple (Dk, Sk) such that equations (1.12) and (1.13)

both hold, i.e. a unique steady state with respect to the masses of buyers and sellers

exists. Moreover, µh > µl.

Proof. The two sister functions Pk(·) and Q(·) exhibit the following set useful properties:

First, limD→dk
Pk(D) = ∞, whereas limD→dk

Q(D) < ∞. Second, Pk(dk/(1 − δ)) = 0,

whereas Q(dk/(1−δ)) > 0. Third, P ′
k(D) < Q′(D) ∀ D. The first two properties imply that

- by the intermediate value theorem (de la Fuente, 2000, p.76) - there exists an equilibrium.

The third property tells us that this equilibrium must be unique. In addition, we know

that Ph(D) > Pl(D), implying that Dh > Dl, whereas Sh < Sl. It immediately follows that

µh > µl, i.e. the ratio of buyers to sellers is larger in the high than in the low state.

Both the steady state’s uniqueness and the effect of a change in dk are graphically

depicted in Figure 1.
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Figure 1: Equilibrium Loci with Respect to Buyers and Sellers

Deriving the steady state density functions of buyers’ types is a much more ambitious

quest, and we cannot complete it without confining the space of candidate functions.

In what follows we will therefore restrict our attention to equilibria in which the

function 1−Γ(θ) has the Monotone Likelihood Ratio Property (MLRP), i.e. in which

the derivative of (1− Γh(θ)) / (1− Γl(θ)) with respect to θ is strictly positive. This

restriction has two important implications: First, it implies that an agent’s posterior is

a strictly increasing function of her prior, i.e. no agents’ types can ever “cross”. (We

have already conjectured this property of ζ(θ) in our derivation of equation (1.9)).

Second, the agents always update their beliefs upwards. Why does this need to be the

case? We have just seen that µh > µl, implying that (1− Γh(0)) / (1− Γl(0)) > 1. By

the MLRP this allows us to conclude that (1− Γh(θ)) / (1− Γl(θ)) > 1 ∀ θ. Hence,

agents always update their beliefs upwards. Let the highest and lowest type within

the first generation of buyers be denoted as θ and θ, respectively. For θ − θ small

enough it must be true that ζ(θ) > θ.12 The distribution functions of buyers’ types

12The assumption that ζ(θ) > θ is not essential, but it simplifies the exposition of the model.
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then looks as follows: There is perfect sorting with respect to agents’ age, i.e. agents

who have spent more time in the market attach a higher probability to being in the

high state. Moreover, there can (and generally will) be gaps in between any two

generations, i.e. there are intervals of beliefs which are “leapfrogged” by all buyers so

that nobody holds them. We are now in a position to derive the equilibrium functions

φl(θ) and φh(θ).

Intuitively, our strategy looks as follows: From Lemma 1 we know µh(θ) and µl(θ) for

all θ > θ > θ. Since both the survival probability of an agent and her posterior type

solely depend on µh(θ) and µl(θ), our knowledge about the first generation buyers (and

the total number of buyers per auction) is sufficient to determine the distribution of

the second generation buyers. Since no agent ever updates her belief downwards, this

process can be repeated over and over again until we know the entire distribution of

buyers’ types.

Proposition 1: Under the assumptions that (a) the agents use strictly increasing

strategies, (b) 1 − Γ(θ) has the MLRP, and (c) ζ(θ) > θ, there exists - for given

Sk and Dk - a unique pair of functions φl(θ) and φh(θ) which is consistent with our

definition of an equilibrium.

Proof. The proof is by construction: Consider first the sequence {ζn(θ)}∞n=0. The nth

element of this sequence gives us the type of an agent who, starting from a belief of θ, has

lost n auctions. Accordingly, ζn+1(θ) is recursively defined as

ζn+1(θ) = ζ(ζn(θ)) (1.14)

where ζ0(θ) denotes the (known) belief of a first-generation buyer and ζ(θ) is the steady

state analogue of ζt(θ) (as defined in equation (1.8)), so ζn+1(θ) solely depends on ζn(θ)

and on µh(ζn(θ)) and µl(ζn(θ)). From equation (1.4) we know that

µk

(
ζn+1(θ)

)
= δ · (µk(ζn(θ))− 1 + exp(µk (ζn(θ))) (1.15)

Hence, µk(ζn+1(θ)) only depends on µk(ζn(θ)). Therefore, once µh(ζn(θ)), µl(ζn(θ)), and

ζn(θ) are known, we can compute ζn+1(θ), µh

(
ζn+1(θ)

)
and µl

(
ζn+1(θ)

)
. This allows us to

iterate on equations (1.14) and (1.15).
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If there exists no n such that ζn(θ) < θ0 < ζn(θ), we know that φl(θ0) = φh(θ0) = 0. If, on

the other hand, there is some n such that ζn(θ) < θ0 < ζn(θ) (denoted as n̄), we have to

look for ζ−n̄(θ0), i.e. the “ancestor” of θ0. As we know ζ−n̄(θ0) to lie somewhere between θ

and θ and ζn(θ) is a continuous and strictly increasing function of θ, ζ−n̄(θ0) is known to

exist and to be unique.

Once we know ζ−n̄(x0), φl(θ0) and φh(θ0) can be found by considering the sequence

{φk(ζn(θ))}∞n=1, which is - as we know from equation (1.10) - recursively defined as

φk(ζn(θ)) =
φk(ζn−1(θ)) · δ · (1− Γ(ζn−1(θ))

)

ζ ′ (ζn−1 (θ))
, (1.16)

where ζ−n̄(θ0) is used as the starting value. The n̄th element of this sequence gives us the

desired densities. Note that, as (1− Γh(0)) / (1− Γl(0)) > 1, ζ ′ (θ) is bounded away from

zero for all θ < 1. Hence, the finiteness of φk(·) is preserved by iterations on equation

(1.16). Therefore, it is admissible to characterize the distribution of buyers’ types by a

density function (as we have conjectured above).

The basic intuition behind Proposition 1 is that, since any loss provides evidence in

favor of the high state, no agent ever updates her belief downwards. Thus, we can

construct the distribution function of buyers’ types “from bottom to top”.

Having derived the equilibrium distributions of buyers’ types our next goal is to say

more about their properties. In particular, we want to check whether the distribution

function of winning types generated by φl(θ) and φh(θ) has the MLRP (as we have

assumed above). To this end, note first that φl(θ) and φh(θ) themselves necessarily

have the MLRP. Why does this need to be the case? Every buyer’s belief about the

state of the world results from a sequence of signals, it depends on the likelihood of

that sequence occurring in each of the two states. If a sequence is R-times as likely

to occur in the high state than in the low one, all buyers who have experienced it will

hold a belief of θ = R/(R + 1). At the same time, we know that the mass of these

buyers must be R-times as large in the high state than in the low one. Hence, θ, φh(θ),

and φl(θ) are linked by the following equation: (Dh · φh(θ)) / (Dl · φl(θ)) = θ/(1− θ).

Since the right hand side of this equation is increasing in θ, φ(θ) must have the MLRP.

Our next goal is to show that the same holds true for γ(θ).
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Proposition 2: γ(θ) has the MLRP if this is the case for φ(θ).13

Proof. Note first that, as the number of buyers in any given auction is Poisson-distributed,

the distribution function of the first order statistic of buyers’ types in state k is given by

Γk(θ) =
∞∑

n=0

e−µk · µn
k

n!
· [Φk(θ)]

n (1.17)

Taking the derivative of this expression we get that

γk(θ) =
∞∑

n=1

e−µk · µn
k

(n− 1)!
· [Φk(θ)]

n−1 · φk(θ) (1.18)

In order for γ(θ) to have the MLRP it must hold that γ′h(θ)/γh(θ) > γ′l(θ)/γl(θ). As for

γ′k(θ), we know that

γ′k(θ) =
∞∑

n=1

e−µk · µn
k

(n− 1)!
[Φk(θ)]

n−1 · φ′k(θ) +
∞∑

n=2

e−µk · µn
k

(n− 2)!
[Φk(θ)]

n−2 · [φk(θ)]
2

The second term on the right hand side of this equation can be written as

µk · φk(θ) ·
∞∑

n=2

e−µk · µn−1
k

(n− 2)!
Φn−2

k (θ) · φk(θ) (1.19)

which is equal to µk · φk(θ)· γk(θ). Thus, a sufficient condition for γ(θ) to have the MLRP

is that
γ′h(θ)
γh(θ)

= µh · φh(θ) +
φ′h(θ)
φh(θ)

> µl · φl(θ) +
φ′l(θ)
φl(θ)

=
γ′l(θ)
γl(θ)

(1.20)

A sufficient condition for this inequality to hold is that (a) φ′h(θ)/φh(θ) > φ′l(θ)/φl(θ)) and

(b) µh ·φh(θ) > µl ·φl(θ). Condition (a) clearly is satisfied as φ(θ) has the MLRP. Condition

(b) posits that the mass of buyers within any interval of types is larger in the high state

than in the low one. From our discussion above we know that this condition is tantamount

to requiring that no buyer holds a belief of less than one half. If all newborn buyers’ types

are sufficiently close to dh/(dh + dl), this is indeed the case.

13It is important to recall that some auctions do not even attract a single buyer. Therefore, the

distribution of winning bids has a mass point at zero. In Lauermann and Merzyn (2006) we show

that Γl(0)/Γh(0) > γl(θ)/γh(θ) for some θ, i.e. even a generalized MLRP does not hold at θ = 0.

This however, does not affect the agents’ bidding strategy, for if an agent is the only bidder, she will

get the item for free anyway.
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The final step is to show that the MLRP of 1− Γ(θ) results from that of γ(θ).

Proposition 3: If γ(θ) has the MLRP, this is also true of 1 − Γ(θ). Moreover,

(1−Γh(θ))/(1−Γl(θ)) > γh(θ)/ γl(θ) whenever the latter ratio is defined (i.e. whenever

γl(θ) > 0).

Proof. 14 The derivative of (1− Γh(θ))/(1− Γl(θ)) (whenever it exists) is given by

d

dθ

1− Γh(θ)
1− Γl(θ)

=
γl(θ) · (1− Γh(θ))− γh(θ) · (1− Γl(θ))

(1− Γl(θ))2
(1.21)

This derivative is positive if and only if (1− Γh(θ))/(1− Γl(θ) > γh(θ)/ γl(θ). Thus we can

prove both parts of our proposition at once.

1− Γh(θ)
1− Γl(θ)

=
∫ 1

θ

γh(x) · γl(x)
γl(x) · (1− Γl(θ))

dx >

∫ 1

θ

γh(θ) · γl(x)
γl(θ) · (1− Γl(θ))

=
γh(θ)
γl(θ)

(1.22)

This inequality completes our proof. Note that γh(x)/ γl(x) > γh(θ)/ γl(θ) for all x > θ,

because γh(θ)/ γl(θ) is increasing in θ.

Propositions 2 and 3 do not only show that there exists a steady state distribution of

buyers’ beliefs such that 1 − Γ(θ) has the MLRP, but also that in this steady state

γ(θ) likewise has the MLRP. This result will prove useful in our analysis of buyers’

optimal bidding strategies which is the subject of the next section.

1.3.2 Optimal Bidding Strategies and Equilibrium Payoffs

Our first goal in this section is to characterize the shape of the value function V (θ). As

Γh(θ) first-order stochastically dominates Γl(θ) and the agents use strictly increasing

strategies, V (θ) is decreasing, i.e. the more likely an agent is to be in the high state,

the worse off she is. In addition, the following proposition reveals that V (θ) is convex.

Proposition 4: The value function is convex, i.e. α · V (θ1) + (1 − α) · V (θ2) ≥
V (α · θ1 + (1− α) · θ2) ∀ θ1, θ2, α ∈ [0, 1]

Proof. Let Wk(θ) denote the expected lifetime payoff of a buyer who is known to be in

state k, but uses the equilibrium strategy of type θ. The expected lifetime payoff of a buyer

14The proof is adopted from Milgrom (1981, p. 926)
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who is of type θ1, but behaves (i.e. bids) as if he was of type θ2 (denoted as W (θ2, θ1) can

then be rewritten as

W (θ2, θ1) =
∫ b∗2

0
(v − x)g(x, θ1)dx + δ · L(b∗2, θ1) ·W (b∗ (z(θ2, b

∗
2)) , z(θ1, b

∗
2)) (1.23)

where b∗2 = b∗(θ2) and W (θ2, θ1) = θ1 ·Wh(θ2) + (1 − θ1) ·Wl(θ2). Let us now get back to

our initial problem: Defining θ3 = α · θ1 + (1− α) · θ2 we have

α ·W (θ3, θ1) + (1− α) ·W (θ3, θ2) = V (θ3) (1.24)

In addition, it by definition holds true that V (θ1) ≥ W (θ3, θ1) and V (θ2) ≥ W (θ3, θ2) which

completes the proof of the proposition.

The convexity of the value function mirrors the fact that the value of information in

our game cannot be negative. Hence, whenever there is uncertainty about the true

state of the world, well informed buyers have a comparative advantage over their

competitors. Now we can finally turn to the problem of examining buyers’ bidding

behavior. There are two different ways of approaching this issue, and since they both

have distinct advantages, we will pursue them subsequently.

One way to find the first-order condition for a bid to be optimal is to maximize the

utility function (1.3) subject to the updating formula (1.1), i.e. to substitute for z(θ) in

(1.3) and to then look for the optimum with respect to b. This approach is complicated

by the fact that the value function may not be differentiable everywhere. Being a

convex function, however, V (θ) does have a subderivative everywhere which we denote

as ∂V (θ).15 Thus, we can find a candidate equilibrium bidding function by taking the

subderivative of the utility function (1.3) with respect to b and looking for the bid b∗

at which it is zero. Letting K ≡ θ ·(1−Gh(b)), L ≡ θ ·(1−Gh(b))+(1−θ) ·(1−Gl(b)),

K ′ ≡ −θ · gh(b), and L′ ≡ −θ · gh(b)− (1− θ) · gl(b) we have that

d

db

∫ b

0

(x− v) · (θ · gh(b) + (1− θ) · gl(b)) dx + δ · L · V (K/L)

15The subderivative of the function f : X → R at x0, denoted as ∂f(x0), is the set of all numbers

p ∈ R such that f(x0) + p · (x− x0) ≤ f(x) for all x ∈ X (de la Fuente, 2000, p. 248).
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= (b− v) · L′ + δ · (L′ · V (K/L) + L · V ′(K/L) · (K ′ · L− L′ ·K) /L2
)

= L′ (b− v + δ · V (K/L) + V ′(K/L) · (K ′/L′ −K/L)) = 0 (1.25)

The resulting first-order condition can be written as

b∗(θ) = v − δ · (V (ζ(θ)) + ∂V (ζ(θ)) · (λ(θ)− ζ(θ))) (1.26)

where λ(θ) = θ · γh(θ) · (θ · γh(θ) + (1− θ) · γl(θ))
−1 is the posterior of an agent with

prior θ who has observed that the highest competing type in an auction was equal

to her own one. The term in brackets on the right hand side of equation (1.26) is

graphically depicted in Figure 2.

Figure 2: The Relationship between V (θ) and b∗(θ)

Equation (1.26), however, is just a first-order condition, and, therefore, the strategy it

prescribes is just an equilibrium candidate. We still need to verify that this candidate
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indeed constitutes an equilibrium. This is what the proof of our next proposition

does.

Proposition 5: Symmetric equilibrium bidding strategies are given by b∗(θ), i.e. if

all buyers bid according to b∗(θ), the value function V (θ) is maximized by that choice.

Proof. What we want to prove here is that, whenever all buyers bid according to b∗(θ), the

subderivative of a buyer’s payoffs with respect to b is positive for all b < b∗(θ), whereas it is

negative for all b > b∗(θ). To this end, consider first two different beliefs θ1 and θ2, where

θ1 > θ2. Note that

b∗(θ1) > v − δ · (V (ζ(θ2)) + ∂V (ζ(θ2)) · (λ(θ1)− ζ(θ2))) > b∗(θ2) (1.27)

The first inequality sign in (1.27) follows from the convexity of V (θ) and the fact that ξ(θ) is

- by Proposition 4 - smaller than ζ(θ), the second one is simply due to λ(θ) being increasing

in θ. Thus, the bidding strategy b∗(·) is strictly increasing in θ. This confirms our guess

that, in the equilibrium we consider here, all buyers employ strictly increasing strategies.

Let’s now look at what happens when a buyer unilaterally deviates from the strategy given

by (1.26) and bids as if her belief was θ2, even though it is θ1, where, again, θ1 > θ2. (Thus,

she underbids, as b∗(θ) is increasing in θ.) The subderivative of this buyer’s payoffs with

respect to b is given by

v − b∗2 − δ · (V (z(θ1, b
∗
2)) + ∂V (z(θ1, b

∗
2)) · (l(θ1, b

∗
2)− z(θ1, b

∗
2))) > 0 (1.28)

Note that (by construction) the subderivative would be zero if the buyer’s type was θ2.

The inequality sign follows from the fact that z(θ1, b
∗
2) > ζ(θ2) and l(θ1, b

∗
2) > λ(θ2). The

argument that a buyer who unilaterally over-bids will gain from an incremental decrease of

her bid is analogous.

As we have hinted at above, there is an alternative way of deriving buyers’ equilibrium

bidding strategies. It is based on the function W (·, ·) which we have introduced in

the proof of Proposition 4. (Recall that W (θ2, θ1) is the expected lifetime utility of a

buyer who is of type θ1, but bids as if she was of type θ2.)

Proposition 6: The buyers’ equilibrium bidding function can be written as b∗(θ) =

v − δ ·W (ζ(θ), λ(θ))
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Proof. We can express the utility function (1.3) as follows:

U(b, θ) =
∫ b

0
(v − x)g(x, θ)dx + δ ·

∫ v

b
W (z(θ, b), l(θ, x))g(x, θ)dx (1.29)

Equation (1.29) differs from its counterpart (1.3) in that we consider all highest competing

bids between b and v separately. This approach may appear somewhat unreasonable, because

the buyers only observe that the highest competing bid was higher than their own one. As

will become clear very soon, it nevertheless makes sense for them to distinguish between

losses against different types. Taking the derivative of U(·, ·) (as defined in (1.29)) with

respect to b gives us the following first-order condition:

b− v + δ ·W (z(θ, b), l(θ, b)) =
d

db

∫ v

b
W (z(θ, b), l(θ, x))g(x, θ)dx (1.30)

The term on the right hand side of (1.30) is equal to

W1(z(θ, b), z(θ, b)) · d

db
z(θ, b) · (1−G(x, θ)), (1.31)

W (·, ·) does not need to be differentiable in its first argument everywhere. It will, however,

be differentiable at W (θ, θ) (in both arguments) whenever V (θ) is differentiable at θ. Being

a monotone function, V (θ) is known to be differentiable almost everywhere (Rockafellar,

1970, p. 246). This does not only ensure that the derivative in (1.30) exists. From the

envelope theorem of Milgrom and Segal (2002) we also know that W1(θ2, θ1|θ2 = θ1) =

V (θ1) − W2(θ2, θ1|θ2 = θ1) = 0, i.e. a buyer’s expected lifetime payoff is unaffected by

marginal deviations from her optimal strategy. Thus, the bidding strategy prescribed by

the first-order condition (1.30) simplifies to

b∗(θ) = v − δ ·W (ζ(θ), λ(θ)) (1.32)

Once again, this first-order condition is insufficient for b∗(·) to describe an equilibrium-

strategy. However, rather than checking that it is indeed an equilibrium for all buyers to

bid according to (1.32) - which would be an exercise similar to that performed in the proof

of Proposition 6 -, we will instead show that the two formulations given in (1.26) and (1.32)

are, in fact, equivalent. To this end, note that W (θ2, θ1) is linear in θ1. Since, in addition,

we know from the envelope theorem that ∂V (θ) = ∂2W (θ2, θ1|θ2 = θ1), it must be true that

W (ζ(θ), λ(θ)) = V (ζ(θ)) + ∂V (ζ(θ)) · (λ(θ)− ζ(θ)) (1.33)

This proves that (1.26) and (1.32) describe the same strategies and, hence, completes the

proof of the proposition.
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The formulation in (1.32) has two advantages over that in (1.26). First, it reveals the

analogy between the auctions considered in our model and standard common value

auction: In both cases the value of winning the item for sale depends not only on the

winner’s type, but also on the types of her opponents. The agents account for this

interdependency by equating their bids to the expected value of winning the auction

conditional on the highest competing type being precisely as high as their own one.

To put it in the words of Krishna (2002):

A bidder with signal θ is asked to bid an amount b(θ) such that if he

were to just win the auction with that bid - if the highest competing bid,

and hence the price, were also b(θ) - he would just “break even”.

In the standard common value model this strategy does not appear peculiar; in our

model, however, it requires the agents to condition their bids on a case of which they

may (in case of a loss) never know whether it has occurred or not. This leads them to

consider situations in which their perception of how likely they are to be in the high

state of the world differs from the actual probability of being there. Nevertheless,

their reasoning is exactly the same as that of bidders in a standard CV auction.

The second advantage of the formulation in (1.32) is that it will prove helpful in

establishing the existence of a unique steady state equilibrium. What we need to

show is the following:

Proposition 7: There exists a unique function W (θ1, θ2) which fulfills the Bellman

equation (1.29) and is consistent with the equilibrium bidding function (1.32).

Proof. The Bellman equation (1.29) can be viewed as an operator (denoted as T ) which

maps value functions into value functions. Letting W1 and W2 denote two different value

functions, we want to show that T has the following two properties:

1. If W1(θ1, θ2) ≤ W2(θ1, θ2) ∀ θ1, θ2, then T [W1(θ1, θ2)] ≤ T [W2(θ1, θ2)] ∀ θ1, θ2

2. T [W (θ1, θ2) + α] ≤ T [W (θ1, θ2)] + α
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Ad 1 (“Monotonicity)”: If W1(θ1, θ2) ≤ W2(θ1, θ2) ∀ θ1, θ2, then - by the bidding function

1.32 - we must have that b∗1(θ) ≥ b∗2(θ) ∀ θ. Thus, no matter whether a buyer wins or

loses an auction, she always benefits from low values of W (··). Ad 2 (“Discounting”): Note

that the derivative of b∗(·) with respect to the value function is −δ. Since the derivative

of T with respect to W (z(θ, b), l(θ, x)) conditional on a loss is δ, while that with respect to

b∗(·) conditional on a win is equal to minus one, a one-point increase of W (θ1, θ2) ∀ θ1, θ2

leads to an increase of T [·] by δ < 1. Taken together, the two properties of Monotonicity

and Discounting mean that T satisfy Blackwell’s sufficient conditions for a contraction (de

la Fuente, 2000). It then follows from the contraction mapping theorem that the Bellman

equation has a unique solution.

Since there is a one-to-one mapping from W (·, ·) to V (·), Proposition 7 also proves

that equation (1.2) has a unique solution. Thus, it completes the proof of our claim

that the model has a steady state equilibrium which is unique in the class of equilibria

under consideration.

1.4 Sellers’ Optimal Information Policy

In the previous section we have made the - rather extreme - assumption that a buyer

who unsuccessfully participates in an auction does not learn anything about her com-

petitors except for the fact that one of them bid higher than she did. Sellers were

forced to stay silent and had no chance to provide buyers with any additional in-

formation. In this section we are going to relax this assumption by letting sellers

choose between two different informational regimes: They may either conduct their

auctions in an intransparent way (as in the previous section) or, alternatively, reveal

the winning bid after each auction to the respective participants.16 The question we

are going to ask is the following one: If sellers are independent of each other and

behave as revenue-maximizers, which regime will they choose? What makes this ques-

16Note that, since we consider second-price auctions, the winning bid is not identical to the price.

Assuming that the latter is revealed would lead to asymmetric learning on the part of the losing

bidders, because one of them would just learn his own bid.
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tion relatively simple is the fact that there is a continuum of sellers and matches occur

independently and randomly. Hence, sellers will take the functions γh(θ) and γl(θ) as

given. It thus appears - at least for now - reasonable to do the same and to directly

proceed with an analysis of buyers’ optimal bidding behavior.

If the winning bid is announced after an auction (to the respective participants)

buyers’ utility function looks as follows:

U(b, θ) =

∫ b

0

(v − x)g(x, θ)dx + δ ·
∫ v

b

V (l(θ, x))g(x, θ)dx (1.34)

Taking the derivative of this function with respect to b, setting it to zero and solving

for b gives us the buyers’ optimal bidding strategy under the transparent regime:

b∗(θ) = v − δ · V (l(θ, b∗(θ))) (1.35)

The fact that it is indeed optimal for the buyers to follow the strategy prescribed by

(1.35) follows - once again - from an argument analogous to that used in the proof of

Proposition 5. We are now in a position to state the major proposition of the current

section:

Proposition 8: For given functions γh(θ) and γl(θ) buyers always bid (weakly) less

under the transparent regime than they do under the intransparent regime. In other

words, it never pays for a seller to reveal the winning bid after an auction.

Proof. The proof is based on a simple comparison of the continuation values in the two

regimes. In the transparent regime the losers of an auction get comparatively well informed

about the state of the world. Thus, they are able to choose their bids in subsequent auctions

more precisely. This means that their continuation payoff is higher than that of the buyers

who have not learned the winning bid. As a result, they submit lower bids. Formally,

W (z(θ, b∗(θ)), l(θ, b∗(θ))) ≤ V (l(θ, b∗(θ))). Since buyers always choose the bids which are

optimal given their current beliefs, a buyer’s payoff is maximized if her belief corresponds

to the actual probability of being in the high state.

Proposition 8 might come as a surprise to those whose intuition - derived from the

Linkage Principle - holds that the seller of common value good should always reveal
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as much information about that good as possible. The contrast between our result

and the Linkage Principle can, however, easily be explained: In our model the buyers

become only informed after the auction has taken place.17 Thus, the only effect of

announcing the winning bid is on the continuation value of the losing bidders. Since

equilibrium bids depend negatively on that value, no seller will ever want to provide

the losers of her auction with any information about the state of the world. By doing

so, she would only make losing more attractive, thereby removing incentives to bid

high.18 Hence, it is an equilibrium strategy for the sellers to reveal as little information

about the state of the world as possible.

1.5 Discussion and Conclusions

In this paper we have pointed out that there is a much broader scope for the common

value model than conventional economic wisdom suggests. More precisely, a common

value component can be expected to be present in any auction which fulfills the

following two conditions: First, the good for sale must have some substitutes, i.e.

buyers must have a relevant alternative (other than not buying at all) to winning the

current auction. Second, there must be some uncertainty among the buyers about

how valuable that alternative is.

Both conditions seem to be relatively weak, so the question is not really whether a

common value component exists, but how strong it is. One area in which it should

matter a lot are internet auction on platforms like ebay: Most of the objects traded

there are everyday items, many of them even have perfect substitutes, because they

are brand-new and have been mass produced. In addition, many buyers on ebay know

17There is a second important, albeit more subtle, difference between the two models: In the

derivation of the Linkage Principle, it is assumed that the auctioneer reduces uncertainty about the

good’s value by making the states of the world more similar to each other. In terms of our model,

she reduces the difference between dh and dl. By contrast, in our model the auctioneer can only

provide the buyers with an additional signal about the state of the world, dh and dl remain the same

as before.

18Mezzetti et al. (2004) find that a result similar to ours holds in a two-period model.
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relatively little about the market in which they are active. Hence, a relatively strong

common value component can be expected there even though the items for sale are

mostly standard, and resale plays only a minor role. Since common value auctions

differ in many respects from their private value counterparts (and it is relatively

difficult to distinguish between them on empirical grounds19), this insight should be

of interest to auction designers and bidders alike.

Of course, our model can be extended in a variety of ways. Its most apparent weakness

lies in the very passive role of the sellers, and attempts to remove this shortcoming

suggest themselves. However, we believe that there are two good reasons not to allow

any seller to set a (secret) reserve price. First, it seems unlikely that doing so would

yield any (substantial) new insights. Second, the incorporation of reserve prices would

inevitably give rise to the following problem: If the sellers have enough commitment

power to set a reserve price ex-ante, we run into a monopoly paradox a la Diamond

(1971), i.e. in every equilibrium the sellers will - in both states - set a reserve price

of v.20 If, on the other hand, the sellers cannot commit to a reserve price (but only

refuse to sell if the price is too low), the buyers’ bidding strategy changes, because the

threshold they have to pass in order to win the auction is no longer identical to the

price they have to pay in case of a win. Thus, introducing reserve prices appears to be

a major technical challenge. An alternative way of “animating” the sellers would be

to let them decide whether or not they want to enter the market (at some cost). This

would yield an additional equilibrium condition (the entrance cost of the marginal

seller has to equal her expected revenue), but the model would not change otherwise.

Our result that it can never be optimal for a seller to provide losing bidders with

any information about what happened in past auctions relies on the assumption that

sellers cannot coordinate on a common informational regime (in which case they would

19The problem of how to distinguish between the private and common value models is, among

others, discussed by Athey and Haile (2002)

20Note that this problem only arises, because buyers’ valuations are all identical. The Diamond

paradox immediately breaks down once the homogeneity assumption is dropped, see Lauermann

(2006).
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not take the distribution functions of buyers’ types as given). One might therefore

wish to relax that restriction.

In our opinion, however, the most promising avenue for future research is to use

our model as a framework for more applied analyses of decentralized markets with

aggregate uncertainty. As pointed out in the introduction we believe such uncertainty

to play an important role in many markets, including those for housing and labor.

Existing models which assume the distribution of types to be common knowledge may

miss important aspects of economic behavior. For example, a considerable share of

observed search activities in all kinds of markets can be attributed to agents trying

to find out what a good price is rather than looking for one. Consequently, in order

to improve our understanding of phenomena like frictional unemployment we need to

get a better grasp of how markets are affected by aggregate uncertainty. It is our hope

that the insights offered in the present paper will help us to achieve this goal.
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Chapter 2

Status, Redistribution, and the

Value of Consumption Signals

2.1 Introduction

Over the past couple of decades economists have accumulated compelling evidence

that people do not only care about their own consumption, but also about the con-

sumption of others. More specifically, while cross section studies consistently find

that rich individuals tend to be happier than poor ones, even long periods of eco-

nomic prosperity seem to leave a society’s average happiness unaffected.1 Hence, it

appears that people compare themselves to their fellow citizens. Being richer than

“the Joneses” makes them happy and vice versa. Technically speaking, most people

seem to care about their respective rank in the income distribution, which one might

call their personal status.

While this fact has been recognized for quite a while, it has only recently started to

play a role in the analysis of redistributive politics. At first glance, one may ask what

role it can play, because redistribution is usually done in an order-preserving way, so

that nobody’s rank in the income distribution changes. However, there are at least

two ways of arguing that status considerations do have an impact on the consequences

1A comprehensive survey of this issue is provided by Frey and Stutzer (2002).
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of redistribution.

One approach, due to Corneo and Grüner (2000), is based on the idea that the value

of status stems from its signaling power. Consider, for example, a marriage market

in which more and less attractive people look for a partner. A person’s “matching

value” cannot be observed, but is assumed to be correlated with her (gross) income,

the rationale behind this assumption being that a number of skills (intelligence, elo-

quence, empathy etc.) are valued both on the labor market and on the marriage

market.2 While people’s incomes are private information as well, this is not true of

their consumption levels. Thus, marriages are arranged on the basis of consumption

signals. Corneo and Grüner argue that the amount of observed consumption is likely

to depend on some factors other than a person’s income. Redistribution increases the

relative importance of these “noise” factors, thereby changing the allocation of status.

A different line of argument is pursued by Hopkins and Kornienko (2004) who take up

Hirsch’s (1976) view that a person’s status does not depend on her total consumption,

but rather on how much of a certain “positional good” she consumes (“conspicuous

consumption”). They consider a status game in which consumption decisions are

taken strategically and show that redistribution leads to an increase in conspicuous

consumption. The intuition behind this result is as follows: When income differences

are large, the rich have to spend only a small fraction of their income on the posi-

tional good in order to set themselves apart from the poor. As income differences

get smaller, social competition gets more intense, because the poor find it easier to

overtake the rich. Since the total amount of status available is fixed, any increase

in conspicuous consumption has a detrimental effect on welfare. Thus, Hopkins and

Kornienko conclude that their model is able to explain the empirical observation that

greater equality does not necessarily lead to a happier society.3

2It should be noted that, while wealth and attractiveness are positively correlated, there is no

causal relationship between the two. Thus, taking away all the money from an initially rich person

would not affect her attractiveness.

3There is a number of studies on this issue, and their results are very mixed. See, for example,

Alesina et al. (2003) and Clark et al. (2005).
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The persuasiveness of this argument partly depends on whether one views the value

of status as being “hardwired” or “instrumental”. If people aspire to higher status

as an end in itself, it may be reasonable to assume that even very small differences

in spending on the positional good can lead to vastly different levels of personal sat-

isfaction (just like, in sports, very small differences in effort or talent can decide on

victory and defeat).4 Many economists, however, are reluctant to directly include

social concerns as an argument in the utility function (Postlewaite, 1998). Instead,

they argue that people care about their status, because a high social standing opens

up additional consumption opportunities. More specifically, status may - as in the

model of Corneo and Grüner - serve as a signal (of attractiveness, for example) ac-

cording to which important non-market goods (like, for example, marriage partners)

are allocated. Taking this line of reasoning seriously, the analysis of Hopkins and

Kornienko only remains valid if one assumes a stable one-to-one relationship between

income and conspicuous consumption. Since such an assumption essentially precludes

any relevant heterogeneity of the agents (except for that in income), we find it rather

hard to swallow.

In addition, casual evidence does not necessarily seem to suggest that people from

Scandinavia (where income inequality is relatively small) spend a much larger share

of their income on Mercedes cars and Rolex watches than those in Singapore or the

United States (where income inequality is high compared to other developed coun-

tries). If anything, the converse appears to be true.

The purpose of this chapter therefore is to investigate some properties of a hybrid

model which features both the concept of conspicuous consumption and the twin-

assumption of (a) (exclusively) instrumental concerns for status and (b) a noisy rela-

tionship between income and status. The value of status in such a model is endogenous

and we show it to depend on the income distribution. When income differences are

large, the correlation between conspicuous consumption and income is almost perfect,

4The main argument in favor of direct rank concerns is that the survival of a person (in times of

food shortage etc.) may crucially depend on her relative fitness. Thus, individuals who care about

their status are likely to have a competitive advantage in the evolutionary process.
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so high status guarantees an attractive partner. In contrast, when income differences

are very small, the marriage market operates almost at random, so people care little

about their status. Put differently, when (almost) everyone can afford a certain sta-

tus good, nobody will buy it, because doing so would convey (almost) no information

about the buyer’s attractiveness.

Thus, our analysis adds a second, countervailing effect to the one identified by Hopkins

and Kornienko: Redistribution does not only make it easier for the poor to compete

with the rich (in the fight for status), it also reduces the value of status altogether.

The relevant question is how strong these two effects are relative to each other. We

show the relationship between income inequality and conspicuous consumption to

be hump-shaped. When income differences are large, the Hopkins-Kornienko effect

dominates, whereas the converse holds true in an egalitarian society. Hence, social

competition is most intense at intermediate levels of income inequality.

At the heart of our analysis lies the assumption that a person’s consumption pattern

does not perfectly reveal her income. One can imagine a number of reasons for why

this should be true, here we will mention just three: First, people generally differ with

respect to their preferences. Some find it extremely important to be matched with an

attractive partner, others do not care about this issue at all. Clearly, the former ones

will tend to spend a higher fraction of their income on the positional good than the

latter, thereby making themselves look more attractive than they actually are. Second,

consumption signals may be noisy in the usual sense, because only some random

fraction of an individual’s (conspicuous) consumption is actually observed. Third,

even when conspicuous consumption is fully observable, different people generally

have to spend different amounts of money in order to acquire the same status. This

fact is not only due to actual price dispersion,5 but also stems from differences in

people’s ability to make others believe that they are rich. For example, some people

are good at finding fashionable clothes even in rather cheap boutiques. Their ability to

5The importance of price dispersion has been recognized by economists at least since the publi-

cation of Varian’s (1980) seminal paper.
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identify goods with a favorable cost-performance ratio effectively makes these people

face lower prices. Essentially, all three types of heterogeneity work into the same

direction, and it is only for technical convenience that, henceforth, we are going to

work with the third one.6

Our contribution differs from that by Hopkins and Kornienko not just in economic

substance, we also employ different analytical tools. Whereas they model social com-

petition as a first-price auction (and then exploit this formal analogy by using insights

from auction theory), we resort to signaling techniques.

The remainder of this paper is organized as follows: In the next section we present

a formal model of noisy signaling in a matching market. The effect of redistribution

on the amount of conspicuous consumption is studied in Section 2.3. Section 2.4

summarizes and concludes.

2.2 The Model

2.2.1 Structure of the Model

We consider an endowment economy which is populated by a unit-mass continuum

of agents. The agents engage in a two-stage game: At the first stage, they split their

wealth between a normal and a positional good. Based on their consumption decisions

and endowments, the agents then - at the second stage - get matched in pairs. The

payoff of an agent depends both on how much of the two goods she consumes and on

whom she gets matched with.

6In contrast to us, Corneo and Grüner employ the more classical second approach, and one

may wonder why we do not follow them. The answer to this question is simple: Our model is more

complicated than theirs in that we have to deal with strategic consumption choices. Thus, additional

feasibility constraints arise which force us to work with the assumption of heterogeneous prices.
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2.2.2 Agent i and her Problem

An agent i ∈ [0, 1] is characterized by a three-dimensional “character” vector ωi =

(vi, wi, pi). We discuss the elements of this vector in turn: vi is a measure of agent

i’s attractiveness, her so-called matching value. wi tells us how much money (income

or wealth) she is endowed with. The money can be divided between a normal good,

cn
i , and a positional good, cp

i . The positional good does not directly yield any utility,

but it relates to xi, the matching value of agent i’s partner. The third and final

dimension along which the agents differ is the price they have to pay in order to

obtain one unit of the positional good, p. The assumption of heterogeneous prices is

certainly unorthodox, it can, however, be defended along the lines described in the

introduction.7

All three elements of the character vector are continuously distributed random vari-

ables with support [0,∞). p is statistically independent of both v and w. In contrast,

there is a strictly monotone and entirely deterministic relationship between v and w.8

For the sake of tractability, we assume that agent i’s preferences can be described by

the log-linear utility function

Vi = vi(xi, c
n
i ) = ln xi + ln cn

i (2.1)

Normalizing the price of the standard good to one, her budget constraint is given by

wi = pi · cp
i + cn

i (2.2)

7An equivalent, more conventional (but notationally more burdensome) way of modeling hetero-

geneity with respect to the cost of status acquisition is to assume that the agents only buy a “raw

material” which serves as an input in the production of the positional good. Assuming that the pro-

duction technology is linear and that the agents differ with respect to their technology parameter,

we get exactly the same results as with heterogeneous prices.

8Given the deterministic relationship between w and v, one may wonder why we consider these

two variables separately. The reason is that we want redistribution (the effects of which are analyzed

in Section 3) to affect the distribution of w, but not that of v.
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Solving equation (2.2) for cn
i , taking logs on both sides, and using the result to substi-

tute for ln cn
i in (2.1), we obtain the following description of agents’ preferences over

bundles of cp and x.

Ui = ln

(
wi

pi

− cp
i

)
+ ln xi + ln pi (2.3)

Equation (2.3) reveals that, while an agent’s utility is a function of both w and p,

these two parameters solely interact with cp through the ratio w/p. Therefore, any

agent’s choice of cp should only depend on θ ≡ w/p. In the jargon of information

economics, w and p can be aggregated into θ. The intuition behind this insight (which

we will take up in the next subsection) consists of two steps: First, two agents with

identical θ have to give up the same proportion of their normal consumption (cn) in

order to gain a one-point increase in conspicuous consumption (cp). Second, as we

work with a log-linear utility function, any decrease in cn by the same proportion

translates into a decrease in U by the same absolute amount. Thus, the two agents

face exactly the same incentives.

The observation that an agent’s behavior is essentially driven by a one-dimensional

variable allows us to cast the model into a relatively standard signaling framework. Let

r : R+ → R+ denote the response function, i.e. a function which tells us how attractive

a partner the agents expect to get in response to a given amount of conspicuous

consumption, x̄ ≡ exp (E [ln x]) = r(cp).9 While the response function is endogenous

to our model, all agents take it as given. Thus, they maximize the function

U = u (cp, θ, r(cp)) = ln (θ − cp) + ln r(cp) (2.4)

where the (constant) term ln pi has been dropped for convenience. In the next sub-

section we will use function (2.4) to characterize the model’s equilibrium.

9In the present context the term “expected” refers to the geometric (rather than the arithmetic)

mean, because the agents’ utility function is log-linear (rather than simply linear).
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2.2.3 The Equilibrium of the Model

We begin our analysis of the model at the matching stage. The marriage market we

consider operates under the assumption that the formation of a partnership requires

both partners to consent. Thus, matchings must be stable in the sense of Gale and

Shapley (1962).10 Under complete information, this would require all couples to con-

sist of equally attractive agents. (Otherwise, the more attractive individual would

have an incentive to break up.) In our game, however, the agents’ characteristics (as

well as their spending on the normal good) are assumed to be unobservable, so we

require partners to be identical in terms of r(cp), i.e. they must be equally “promis-

ing”. In addition, if the function r(·) takes on the same value at different levels of cp,

only the lowest of these levels will be chosen by any agent. Thus, in any equilibrium

all partners must have consumed exactly the same amount of the positional good.

Let us now turn to the first stage: As emphasized above, the marginal utility of

an increase in cp is determined by θ only, neither does it depend on v nor on the

decomposition of θ into its components w and p. Therefore, we refer to θ as an

agent’s type and posit that her strategy, denoted as s : R+ → R+, is a function of θ

only, cp = s(θ). This reduction in dimensionality simplifies our analysis of the model

immensely. Nevertheless, we are faced with a problem to which most signaling games

are prone: multiple equilibria can arise. In what follows we focus on fully separating

equilibria, i.e. on equilibria in which the agents use strictly increasing strategies,11

so that an agent’s action fully reveals her type. This assumption gives rise to the

following equilibrium definition:

Definition 2 (Weak perfect Bayesian equilibrium in strictly increasing strategies):

An equilibrium of the game consists of a response function r(cp) and a strategy s(θ)

such that

10A more formal description of a matching market very similar to ours can be found in Corneo

and Grüner (2000) and Cole et al. (1992).

11In addition we impose the standard assumption that the agents’ strategies are pure and sym-

metric.
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1. The agents have rational expectations about the attractiveness of their partner,

i.e. r (s(θ)) = exp (E [ln(v|θ)]) ∀θ

2. The strategy is utility maximizing for all agents, i.e. for all θ we have that

U(s(θ), θ, r(s(θ))) ≥ U (cp, θ, r(cp)) ∀cp

While Definition 2 tells us what an equilibrium of our game (in strictly increasing

strategies) should look like, we still need to find out whether such an equilibrium

exists at all. To this end, let us first have a closer look at how θ and x̄ relate to each

other. As can be seen from Definition 2, this relationship - denoted as x̄ = h(θ) in

what follows - is exogenously given by E [ln(v|θ)], i.e. we do not need to know the

model’s equilibrium in order to determine the expected attractiveness of an agent’s

partner. This allows us to directly make assumptions on h(·). What we need to ensure

is that high-type agents get some return on their investment in the positional good

(for they would otherwise choose to save that money). Technically speaking, we need

to impose the following

Assumption 1: E[ln v|θ1] > E[ln v|θ2] for all θ1 > θ2, i.e. high types are - on average

- always more attractive than low ones.

In addition, we need to make sure that (dcp/dx̄)ū, the marginal rate of substitution

between an agent’s spending on the positional good and the attractiveness of her

partner, is increasing in θ. This condition - which is nothing but the well-known

single-crossing condition (s.c.c.) - needs to hold, because otherwise low-type agents

would not necessarily suffer more from (increases in) conspicuous consumption than

do high-type agents. Thus, both types would have an incentive to mimic each other.

In our model the s.c.c. holds, because the derivative of U with respect to cp is - as

equation (2.3) reveals - increasing in θ.

The s.c.c. does not only imply that a strictly separating equilibrium exists. Mailath

(1987) has also shown that, in signaling games with a continuous type space (like

the one considered here), the set of strictly separating equilibria contains just one
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element: This is the so-called Riley-equilibrium (Riley, 1979) in which all agents

spend just enough on the positional good to make it unprofitable for lower types to

imitate them. Put differently, all agents are indifferent towards a marginal increase or

decrease in spending on the positional good. Hence, we can characterize the model’s

equilibrium by going back to equation (2.4), taking the derivative of the agents’ utility

function with respect to cp, setting it to zero, and then solving for r′(cp). This gives

us the following implicit expression of an agent’s indifference point:

r′(cp) = r(cp)/ (θ − cp) (2.5)

where r(cp) = 0. The solution to this (linear first order) differential equation can

easily be found by applying the appropriate formula.12 It is given by

r(cp) = exp

(∫ cp

0

1

θ − t
dt

)
(2.6)

Since r(·) and s(·) are interlinked by the identity s(θ) = r−1(h(θ)), equation (2.6)

fully characterizes the equilibrium of the model.

2.2.4 What Drives Social Competition?

The intensity of social competition can best be measured by the level a given type’s

spending on the positional good. This is why, in what follows, our interest focuses on

the agents’ strategy, i.e. on the question of how cp depends on θ. In order to answer

this question we need to carry out some manipulations of equation (2.5). Recall that

r(cp) = h(s−1(cp)). Taking the derivative of this function with respect to cp we get

that r′(cp) = h′(θ)/s′(θ). Substituting for r′(cp) and r(cp) in (2.5) and solving for

s′(θ) yields

s′(θ) =
(θ − s(θ)) · h′(θ)

h(θ)
(2.7)

In principle, this differential equation can be solved in the same way as (2.5). Rather

than doing so, however, we will analyze it directly. To this end, consider the following

reformulation:

12The formula can, for example, be found in Simon and Blume (1994, p. 639).
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cp = s(θ) =

∫ θ

0

(t− s(t)) · h′(t)
h(t)

dt =

∫ θ

0

(1− λ(t)) · ε(h(t), t)dt, (2.8)

where the elasticity ε(x̄, θ) ≡ dx̄
dθ
· θ

x̄
indicates how strongly θ reacts (in equilibrium) to

a change in x̄. A large value of ε(x̄, θ) means that small percentage changes in θ are

sufficient to induces large ones in x̄, i.e. relatively similar types of agents enjoy very

different expected matching values. λ(θ) is defined as λ(θ) ≡ s(θ)
θ

. We are now ready

to state our first lemma:

Lemma 2. Consider two economies, indexed by 1 and 2. If ε1(x̄, θ) < ε2(x̄, θ) ∀ θ,

then s1(θ) ≤ s2(θ) ∀ θ.

Proof. Note first that s(·) is a continuously differentiable function and we have s1(0) =

s2(0) = 0. Thus, if s1(θ) is ever to exceed s1(θ), there must be a region in which (a) s1(θ) >

s2(θ) and (b) s′1(θ) > s′2(θ). However, condition (a) implies that 1 − λ1(θ) < 1 − λ2(θ).

Since we also have that ε1(x̄, θ) < ε2(x̄, θ), s′1(θ) must - by equation (2.8) - be smaller than

s′2(θ). Thus, conditions (a) and (b) cannot be fulfilled simultaneously.

The intuition behind Lemma 2 is as follows: When similar types of agents get partners

with very different (expected) matching values (i.e. ε(x̄, θ) is large), low types find it

very attractive to disguise themselves as high ones. In order to avoid being imitated

(and thus being deprived of their attractive partners), the high types need to spend

a large part of their wealth on the positional good. Conversely, when it is either too

unimportant or too difficult for the poor to outdo the rich, conspicuous consumption

is low.

While Lemma 2 makes clear that the intensity of social competition depends on ε(x̄, θ),

we do not know yet how this elasticity is affected by redistribution. This question

will be addressed in Section 2.3.
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2.3 The Effects of Redistribution

2.3.1 Distributional Assumptions

The proof of Lemma 2 only relies on v, w and p being continuously distributed, it

does not require any specific distributional assumptions. By contrast, in the present

section we will assume that the character vector follows a multivariate log-normal

distribution with parameters σ2
w, σ2

v , σ2
p, µw, µv and µp. The latter two are normalized

to zero, µv = µp = 0, whereas µw may be positive or negative, ln w ∼ N (µw, σ2
w).

As mentioned before, there is perfect correlation between ln w and ln v, whereas p is

independent of the two, ρwp = 0 and ρvp = 0.13

2.3.2 Finding a Parametric Expression for ε(x̄, θ)

Our main goal in this subsection is to express ε(x̄, θ) in terms of σ2
w, σ2

v , σ2
p and µw.

To this end, we first need to know how θ and x̄ are distributed. This is the subject of

our next lemma.

Lemma 3: ln θ is normally distributed with mean µw and variance σ2
w + σ2

p, while

ln x̄ is normally distributed with mean zero and variance σ2
w · σ2

v/(σ
2
w + σ2

p).

Proof. The proof of the Lemma’s first part is straightforward: It directly follows from the

fact that both w and p follow a log-normal distribution and θ = w
p , As for ln x̄, note first

that, since there is a one-to-one relationship between v and w, ln v = σv
σw
·(lnw − µw). Thus,

we have that ln x̄ = σv
σw

E [lnw|θ]. As w and p are both log-normally distributed, we know

what the expectation of lnw conditional on θ looks like (see, for example, Mood, Grabill,

and Boes, 1974, pp.167-168).

E [lnw|θ] = µw +
σ2

w

σ2
w + σ2

p

· (ln θ − µw) (2.9)

Recall next that, when z is a random variable and both a and b are scalars, we have that

V ar [a · (z − b)] = a2 · V ar[z] and E [a · (z − b)] = a · (E[z]− b). Thus, from

E[lnx|θ] =
σv · σw

σ2
w + σ2

p

· (ln θ − µw) (2.10)

13Note that these distribution functions satisfy Assumption 1.
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we get that ln x̄ ∼ N
(
0, σ2

v · σ2
w

σ2
w+σ2

p

)
, because ln θ ∼ N(µw, σ2

w + σ2
p).

Note that the distribution of ln x̄ does not depend on µw in any way. The expression for

the variance of ln x̄ can intuitively be understood as follows: when an agent observes

a high value of θ, she presumes that both w and p account for part of it. How large

a share she attributes to w depends on the relative variances of w and p. When σ2
p

is large relative to σ2
w, the variance of ln x̄ is small, because the signals provided by

θ (regarding v) are so noisy that it would be irrational for an agent to attach strong

meaning to them. The best she can do is suppose that ln x̄ lies somewhere close to

the expectation of ln v. Conversely, when σ2
p is much smaller than σ2

w, the correlation

between ln θ and ln v is almost perfect, so the variance of x̄ is only slightly smaller

than that of v.

The next step is to find out what the function h(·) looks like, i.e. how θ relates to

x̄. Since there is a strictly monotone and positive relationship between the two, we

can construct h(·) as follows: Let the cumulative density functions (c.d.f.) of θ and

x̄ be denoted by Fθ(·) and Fx̄(·), respectively. The functional relationship between θ

and x̄ is then implicitly defined by Fθ(θ) = Fx̄(x̄), i.e. θ = F−1
θ (Fx̄(x̄)). Letting Φ

denote the c.d.f. of the standard normal distribution and recalling that both θ and x̄

are log-normally distributed, we thus have that

x̄ = h(θ) = exp

(
σx̄ · Φ−1

(
Φ

(
ln θ − µw

σθ

)))
= exp(µw)

−σx̄
σθ · θ

σx̄
σθ (2.11)

The elasticity ε(x̄, θ) is found by taking the derivative of this expression (with respect

to θ), multiplying it by θ
x̄

and substituting for x̄ using (2.11). This yields:

ε(x̄, θ) =
σx̄

σθ

· θ
σx̄−σθ

σθ · θ

x̄
=

σx̄

σθ

(2.12)

This result is most easily understood by bringing to one’s mind the fact that

ε(x̄, θ) = ∂ ln x̄
∂ ln θ

. Both ln θ and ln x̄ are normally distributed (and there is a one-to-

one relationship between the two), so it follows that Φ(ln x̄) = Φ (σx̄/σθ · (ln θ − µw)).

Thus, in response to every change of ln θ by one unit, ln x̄ must change by σx̄/σθ units.
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2.3.3 Redistribution and Conspicuous Consumption

We model redistribution as a change in σw. Since the distribution of income is assumed

to be log-normal (and not normal), this entails two problems. First, an isolated change

in σw does not leave the expectation of w unaffected. Thus, every increase in σw

needs to be compensated by a decrease in µw (because we want redistribution to be

budget-neutral). Normalizing average income in the economy to unity, we have that

µw = − σ2
w

2
.14 However, since ε(x̄, θ) is independent of µw, this does not cause any

real difficulties. Second, the redistribution-scheme we consider is non-linear, i.e. it

cannot be interpreted as a proportional income tax whose revenues are spread equally

over all citizens. However, neither do we have the impression that linear schemes

prevail in the real world nor does it seems to us that the assumption of non-linear

redistribution (which is for mathematical convenience only) drives any of the paper’s

qualitative results.

As it is apparent from Section 2.3.2, both σθ and σs depend on σw. Moreover, in both

cases the effect is positive. A high degree of income inequality implies a large variance

of the type distribution, but it also leads to very pronounced social stratification (i.e.

a very close relationship between w and x̄). The following central proposition of this

paper sheds light on the question of how strong these two effects are relative to each

other.

Proposition 9: ∂s(θ, σw)/∂σw < 0 ∀ θ if σw > σp and ∂s(θ, σw)/∂σw > 0 ∀ θ if

σw < σp, i.e. a reduction in income inequality may - depending on the relative size

of σw and σp - either increases or decrease a given type’s spending on the positional

good.

Proof. From Sections 2.2.4 and 2.3.2 we know that

ε(x̄, θ) =
σx̄

σθ
=

σv · σw

σ2
w + σ2

p

(2.13)

14Recall that the expectation of a log-normally distributed random variable z with parameters µ

and σ2 is given by E[z] = exp
(
µ + σ2

2

)
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Simply taking the derivative of this expression with respect to σw yields:

∂ε(x̄, θ)
∂σw

=
σv · σ2

w

σ2
w − σ2

p

(2.14)

Since σv and σw are both positive, this expression is positive if and only if σw is bigger than

σp. Thus, equation (2.14) proves our claim.

Proposition 9 shows that redistribution (from the rich to the poor, i.e. a decrease in

σw) leads to an increase in the intensity of social competition when the variance of

the wealth distribution is larger than that of the price distribution. Yet, it mitigates

social competition when the converse holds true. Thus, the relationship between

economic inequality and social competition is not monotone, but hump-shaped. This

result stands in contrast to the findings of Hopkins and Kornienko who argue that

redistribution always intensifies social competition. Yet, we are able to obtain an even

stronger result:

Proposition 10: For all σp > 0, all agents’ spending on the positional good goes to

zero as differences in income vanish, i.e. lim
σw→0

s(θ) = 0 ∀ θ.

Proof. Key to the proof is the observation that we know from Lemma 3 that lim
σw→0

σx̄ = 0,

whereas lim
σw→0

σθ > 0. As it is apparent from equation (2.11), this implies that h′(θ) = 0 ∀
0 < θ < ∞, i.e. almost all agents get equally attractive partners. Hence, the integrand in

equation (2.7) is equal to zero except at θ = 0 which proves the proposition.

The message contained in Proposition 10 is a strong one: When all agents are endowed

with the same amount of money, social competition completely disappears. The

intuition behind this result is clear: It is the correlation between θ and v that makes

the agents consume the positional good. As this correlation goes down to zero (because

the variation in w is entirely dominated by that in v), consumption signals do not

contain any relevant information anymore. Thus, the agents stop sending them.

2.3.4 Redistribution and Welfare

Our main goal in the present subsection is to analyze the effect of redistribution on Ui,

the individual welfare of our exemplary agent i. Generally, redistribution affects Ui
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through two different channels: It changes the distribution of types in the population

(thereby affecting g(·)), but also i’s own income wi. In principle, these two effects

could be analyzed separately. However, we will link them together by taking i’s rank

in the income distribution as fixed.15 Put formally, we assume that ln wi − µw is

proportional to σw. This allows us to make the following statement about the effect

of redistribution on agent i’s partner:

Proposition 11: Redistribution (from the rich to the poor) enhances the attractive-

ness of agent i’s partner iff ln pi · (σ2
p − σ2

w)− 2 · (ln wi − µw) · σ2
p > 0

Proof. Recall from Lemma 3 that the expected log-attractiveness of agent i’s partner is

given by ln x̄ = σv ·σw/(σ2
w +σ2

p) · (ln θ − µw). We expand this formula by a proportionality

constant, denoted as k, in order to be able to study simultaneous changes in σw and lnwi−
µw. This gives us

ln s(k) =
σv · σw · k · (k · (lnw − µw)− ln p)

k2 · σ2
w + σ2

p

(2.15)

Taking the derivative of (2.15) with respect to k and then setting k to one (which is without

any loss of generality) yields the condition named in the Proposition.

Proposition 11 is easiest to interpret when σ2
w = σ2

p. In that case redistribution in-

creases ln x̄i (the expected matching value of i’s partner) if ln wi lies below average,

i.e. if i belongs to the poorer half of the population. While the intuition that redistri-

bution should be beneficial to low-income agents remains correct when σ2
w 6= σ2

p, the

total effect of a change in σw then also depends on pi. When σ2
p > σ2

w, redistribution

tends to make agents who face a high p better off, because it reduces the variance of

x̄. When σ2
p < σ2

w, on the other hand, agents who enjoy favorable prices gain because

their rank in the distribution of θ improves. When σ2
w = σ2

p, these two effects just

balance off each other.

Let us now turn to the effect of redistribution on cn
i . Here, the following lemma will

prove helpful:

15An alternative approach - pursued by Hopkins and Kornienko - is to fix i’s actual income (rather

than her rank in the income distribution).
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Lemma 4: s′(θ) < 1, i.e. there cannot be pairs of agents such that (after adjusting

for differences in p) cp
1 > cp

2 and cn
1 < cn

2 .

Proof. The proof is similar in style to that of Lemma 2: Since s′(·) is a continuous function,

there must, in order for s′(θ) to get bigger than one, a region in which (a) s′(θ) > 1, i.e.

λ(θ) < 1− ε and (b) s′′(θ) = 1/θ · 1/ε · (λ(θ)− s′(θ)) > 0. Merging these two conditions, we

get that 1/θ · (1/ε · (1− s′(θ))− 1 > 0. As s′(θ) > 1 (by assumption) this inequality cannot

hold. Thus, we have a contradiction which means that conditions (a) and (b) can never be

satisfied simultaneously.

What we learn from Lemma 4 is that increasing an agent’s type by one unit leads

to an increase of that agent’s spending on the positional good by less than one unit.

This insight plays an important role in the proof of the following proposition:

Proposition 12: When σ2
p > σ2

w all agents with w < exp(µ + σ2
w) gain from redis-

tribution in terms of cn. Conversely, all agents with w > exp(µ + σ2
w) suffer from

redistribution when σ2
p < σ2

w.

Proof. We first show that the population group named in the Proposition gains from

redistribution in terms of income. To this end, consider an agent with income exp(µ +

k · σw). By definition (see Section 2.3.3) this amount is equal to exp(−σ2
w/2 + k · σw).

Thus, redistribution increases the agent’s income if k < σw. What remains to be proven

is that (if σ2
p > σ2

w) every rise in income is mirrored by an increase in non-conspicuous

consumption. Consider an agent whose income - in response to redistributive action -

changes from w1 to w2, where w2 > w1. As p is constant the rise in w implies that θ2 > θ1.

By Lemma 2, we have that s2(θ) < s1(θ) ∀ θ, i.e. spending of a given type is lower after

redistribution than before. In addition (as we have just shown) s′(θ) < 1, so it holds that

θ2−s2(θ2) > θ1−s2(θ1) > θ1−s1(θ1). Since x = p·(θ−y(θ)) (where p is a constant unaffected

by redistribution), we can conclude that x2 > x1. The second part of the proposition can

be proven analogously.

Propositions 11 and 12 have an important political-economic interpretation. If redis-

tribution alleviates the intensity of social competition, a sizeable share of the pop-
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ulation (which may - depending on the parameter constellation - well constitute a

majority) should be willing to support it.

So far we have focused on the utility of single agents, our next goal is to say something

about the effect of redistribution on social welfare. As we want our model to be robust

to monotone transformations of the utility function u(·, ·) (i.e. we do not want to rely

on cardinal concepts of utility), it is impossible to set up a utilitarian welfare function.

However, since the status game we consider is zero-sum, the total amount of spending

on the positional good, denoted as Ω(σw) in the following, can be used as a measure of

distance from Pareto optimality, which in turn may serve as an index of social welfare.

Unfortunately, it is not admissible to directly interpret Proposition 9 as a statement

about Ω(·), because redistribution does not only affect ε(θ, x̄), it also changes the

distribution of types in the population. (We will return to this issue in Section 2.3.5.)

In contrast, Proposition 10 directly implies that total spending on the positional good

goes to zero as the income distribution degenerates. Thus, in our model (where social

competition is the only source of economic inefficiency), a Pareto optimum can be

achieved by means of complete redistribution.

2.3.5 Numerical Evidence on the Effects of Redistribution

In Sections 2.3.3 and 2.3.4 we have offered several results on how redistribution affects

individual well-being and the intensity of social competition. A number of important

questions, however, had to be left open, because they are not susceptible to theoretical

analysis. The purpose of the present subsection is to shed light on them by numerical

means. We do not aim to calibrate the model, though, our goal simply is to solve it for

different values of σw (ranging from 0.1 to 10), thereby providing evidence (albeit no

definite proof) on the effects of redistribution. In order to be able to relate our results

to those of the previous subsections, we will stick to the assumption of log-normality.

For simplicity we set both σv and σp to one.

The first question we want to explore is how redistribution affects aggregate consump-

tion of the positional good, i.e. what the function Ω(σw) looks like. Figure 3 reveals
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that (in qualitative terms) the relationship between these two variables differs hardly

from that between σw and individual consumption of the positional good. Thus, the

fact that redistribution changes the distribution of types does not appear to have any

major effects on the shape of Ω(σw).

Figure 3: Relationship between σw and conspicuous consumption

Lower graph: Relationship between σ2
w (x-axis) and the conspicuous con-

sumption of an agent with p = w = 0 (y-axis). Upper graph: Relationship be-

tween σ2
w and society’s aggregate consumption of the positional good. Note that

- in line with Proposition 3 - both graphs peak (approximately) at σw = σp = 1.

At the individual level, we would like to know which agents benefit / suffer from

redistribution. Figure 4 depicts the effect of changes in σw on the utility level of

agents with different levels of income.
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Figure 4: Relationship between σw and agents’ utility

Lower graph: Relationship between σ2
w (x-axis) and the utility of an agent

with ln w = µ− 2 · σw (y-axis). Middle graph: Relationship between σ2
w and

the utility of an agent with ln w = µ. Upper graph: Relationship between σ2
w

and the utility of an agent with ln w = µ− 2 · σw. All three agents face

average prices, p = 1.

Remarkably, even high-income agents suffer from increases in σw when σw already is

relatively large. This is because (as mentioned in Section 2.3.3) we compensate for

every increase in σw by a decrease in µw, and that decrease is proportional to σ2
w

(whereas any agent’s comparative income advantage is only proportional to σw). As

σw approaches infinity, the mass of agents with income above any ε > 0 thus goes to

zero. Therefore, most agents benefit from decreases in σw even when that decrease

entails an increase in conspicuous consumption.
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2.3.6 Testing the Model

Our model predicts that redistribution (from the rich to the poor) may well alleviate

the intensity of social competition. This prediction is contradictory to the conclusions

of Hopkins and Kornienko. In the present section we discuss how the implications of

both models could be tested empirically.

In principle, it is easy to regress the amount of conspicuous consumption (per capita)

on some measure of income inequality (like, for example, the Gini-coefficient). Doing

so, however, requires one to somehow distinguish between “positional” and “non-

positional” goods and to measure spending on them separately. At first glance, this

problem may appear almost impossible to solve, but fortunately there is a nice way to

get around them: One can simply use leisure (arguably the least conspicuous good) as

a proxy for non-positional consumption and take all monetary income (as measured

by the GNP) to be observable.16 The number of annual working hours (divided by the

total number of hours per year) can then be interpreted as the share of (potential)

income spent on positional goods, i.e. it can be used as a measure of conspicuous

consumption.

This kind of analysis could be based on either time-series or cross-section data. Both

kinds of data have certain advantages: Time-series data do not suffer from (essentially

unobservable) cultural differences between countries which may well confound the

relationship between inequality and conspicuous consumption. They can, on the other

hand, be subject to common time trends which may induce spurious correlations.

Ideally, one should use panel data and control for both time trends and country-

specific intercepts by means of dummy variables.

Unfortunately, we do not have enough data to conduct a formal analysis, but the

available evidence is highly suggestive: Over the past 30 years the United States

have experienced a marked increase in income inequality (Katz and Autor, 1999),

16Of course, not all income is consumed, some of it may also be invested (which is not possible in our

model). However, investment (and net lending) can be regarded as measures of future consumption,

so all we do is to interpret dynamic data in a static way.
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while annual working hours have gone up steadily (Schor, 1992). By contrast, in

most European countries income inequality has stayed roughly constant, and annual

working hours have declined considerably. Thus, it appears that redistribution indeed

alleviates the intensity of social competition. This (preliminary) finding corroborates

our analysis while it contradicts the one of Hopkins and Kornienko.

2.4 Summary and Conclusions

We have shown that redistribution has two opposing effects on the intensity of social

competition. On the one hand, the decrease in income differences makes it harder for

the rich to set themselves apart from the poor. Thus, the former need to increase their

investment into status goods in order to preserve their position as the society’s “elite”.

However, as redistribution renders the relationship between a person’s attractiveness

and her status increasingly noisy, it also reduces the value of a high social standing.

Thus, investment into status goods gets reduced. The latter effect dominates in

egalitarian societies, whereas the converse hold true when income inequality is high.

Hence, the relationship between the extent of redistribution and the intensity of social

competition is hump-shaped.

The proofs of all propositions and lemmas in Section 2.3 take w, v, and p to be log-

normally distributed. One important question is to what extent this very specific

assumption drives our results. Fortunately, our propositions all have a very intuitive

economic interpretation, so there is reason to believe that they are valid under much

more general conditions than the ones of our model. Nevertheless, it seems prudent to

reflect on “what can go wrong”. In our view the most critical assumption is that ln p

has unbounded support. In particular, when the support of ln p is bounded from above

(i.e. an agent’s type puts an upper bound on her attractiveness), there are always

some low-type agents who never get matched to an attractive partner. All agents

try to avoid being associated with this group of the “outcast”. At the same time,

its “members” can (in the presence of a linear redistribution scheme, for example)

get relatively wealthy. In that case social competition remains at a high level even
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as income inequality converges to zero. This effect can occur regardless of how w

is distributed. Conversely, when the support of ln p is bounded from below, there is

a group of “elite” agents who always have an attractive partner. However, the size

of this group shrinks to zero as income differences vanish, and it does not have an

influence on the consumption behavior of the masses.

As emphasized in the previous subsection, redistributive politics affect a society’s

well-being through many channels, our model entirely focuses on just one of them. Its

results should therefore be interpreted with care, we certainly do not plead for radi-

calness in the taxation of income. However, our finding that egalitarianism generally

induces low levels of social competition may help to explain why equality (“égalité”)

is widely, though not universally, regarded as a value. In fact, one could go so far as

to say that our model captures the essence of the socialist “Utopia”:17 The creation

of a classless society in which people do not only get according to their needs, but

also - rather than constantly struggling against each other - live together in peace and

harmony.

17The imaginary island of ”Utopia” was described by Thomas More in his classic treatise on the

organization of human societies.
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Chapter 3

Can we Trust Structural Estimates

of the Returns to Schooling?

3.1 Introduction

During the past couple of decades very few economic parameters have attracted as

much attention as the effect of attending school on subsequent earnings, the “returns

to schooling”. There are two reasons for the strong - and continued - interest in this

issue. First, the returns to schooling appear to be an important variable for both

individual decisions and - presuming that earnings are positively related to produc-

tivity - economic policy (Griliches, 1970). Second, it is so difficult to estimate the

returns to schooling that we still do not know very well how large they actually are.

The main econometric challenge lies in the endogeneity of the explanatory schooling

variable: As people, rather than being randomly assigned a certain level of education,

decide themselves when to leave school, those who go there for only, say, nine years

may well be entirely different from those who complete college. Hence, it is not clear

whether the observed positive relationship between schooling and earnings is causal

or spurious, i.e. whether schooling has an effect on earnings or whether both variables

are driven by a third, unseen factor.

In principle, there are two ways to overcome this problem. The first one is to look for

a “random component” in individual schooling choices, i.e. a variable which influences
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the timing of school exit, but is unrelated to any skills which might be valued on the

labor market. If such a variable (an “instrument”) is available, one can consistently

estimate the returns to schooling by instrumental variable (IV) techniques.1 Finding

reliable instruments, however, has turned our to be an extremely ambitious quest:

Most candidate instruments are either “weak” (in the sense that they only have a

very small bearing on schooling decisions)2 or they are still related to agents’ personal

characteristics and, hence, must be counted on as having something to do with their

earnings potential. In sum, while the IV approach has delivered a number of insights

into the relationship between schooling and earnings, it is still met with (possibly

justified) skepticism by many economists.

Building on work by Keane and Wolpin (1997), Belzil and Hansen (2002) have there-

fore proposed a life cycle model of sequential schooling decisions to estimate the

returns to education. As we shall see, it is not easy to give a non-technical account

of how their approach works. One of its central ingredients, however, is to relate the

benefits of education to its costs. More specifically, Belzil and Hansen (BH) draw

conclusions of the following kind: If an individual incurs certain (opportunity) costs

in order to go to school, we get a lower bound on the returns to schooling, for if

those returns were lower than the costs, the individual would not have chosen to go

to school.3 Conversely, every decision to exit school (or university) gives us an upper

bound on the returns to education. One key aspect of this approach is its reliance on

assumptions about the agents’ intertemporal optimization behavior. For this reason,

BH refer to it as “structural”. From an applied perspective, the central result of their

paper is that the returns to high school are much lower than the IV literature suggests.

In fact, Belzil and Hansen claim that “schooling has practically no value until grade

1Popular instruments include household background variables (Rouse and Ashenfelter, 1998),

institutional features of the schooling system (Angrist and Krueger, 1997), and college proximity

(Card, 1995).

2The problem of weak instruments has been analyzed by Stock and Staiger (1997).

3Note that this kind of inference presumes that all individuals know how large the actual returns

to schooling are.
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12”.

While the “revealed preference” argument sketched in the previous paragraph sounds

very appealing, it entails the following problem: As we have already alluded to, the

approach of BH amounts to solving – to the extent possible – a system of inequalities.

The returns to a given grade of schooling should not be too large (for otherwise

everybody should have completed that grade), but they should not be too small

either (for otherwise everyone would have left school before that grade). Thus, the

parameters of the earnings function are estimated in an attempt to rationalize all

agents’ schooling decisions. Accordingly, an upper bound to the returns to schooling

is provided by the decisions of those students who drop out of high school before

grade 12. In our view, it is not clear whether these decisions can be considered as

attempts to maximize expected lifetime income.4 Therefore, it appears prudent to

take non-monetary factors into account. This, however, makes it much more difficult

to measure the costs of schooling, because non-monetary variables are usually difficult

to observe. In fact, BH do not even have data on the monetary income of an agent

while in school. This raises the question of how the returns to schooling are identified

in their model.

One purpose of the present paper is to address this question by examining the role of

the assumption (made by BH) that the timing of an individual’s labor market entry

is partly driven by ex ante observable wage shocks. As it turns out, the model’s iden-

tification gets lost if we abandon this assumption. Put differently, the identification

strategy of BH relies on the existence of a random component in individual schooling

decisions. Hence, while their approach is cast into a structural framework, it can be

argued to also contain elements of the traditional IV method.

A second purpose of this paper is to examine the way in which the BH model is spec-

4According to Eckstein and Wolpin (1999), only 14 percent of all white male high school dropouts

in the US declare to have stopped attending because they were “offered a good job”. The majority

(52 percent) either “did not like school”, suffered from a “lack of ability, poor grades”, or had been

expelled.
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ified. Their estimation strategy requires BH to make assumption on the distribution

of unobservable characteristics in the population of agents. We analyze (computa-

tionally) how restrictive these assumptions are, i.e. whether the model is reasonably

robust to distributional misspecifications. As it turns out, this is not the case. Ac-

cordingly, the estimates found by BH may suffer from a substantial misspecification

bias.5

The organization of this chapter is as follows: In Section 3.2.1 we have a closer look

at the model of Belzil and Hansen and sketch their estimation strategy. Section 3.2.2

forms the core of the paper: It contains a formal analysis of the way in which the BH

model is identified. In Section 3.2.3 we examine the extent to which the estimation

strategy of BH relies on distributional assumptions. Section 3.3 summarizes, discusses,

and concludes.

3.2 The Approach of Belzil and Hansen

3.2.1 The Model

What we present in this section is a slightly simplified version of the empirical dynamic

programming model developed by Belzil and Hansen. None of the details we have

chosen to omit (for the sake of convenience) would affect any of the arguments put

forward in Sections 3.2.2 and 3.2.3.6

5In a series of papers, Belzil and Hansen (2003, 2004, forthcoming) have applied their model to a

number of additional questions. The points we make in what follows essentially apply to those other

papers as well.

6There are three differences between the model of BH and the one we present here: First, in the

model of BH there is some (exogenously given) probability that an individual who still goes to school

cannot enter the labor market in a given period. (It enters an “interruption state” which is meant to

capture events like illness.) Second, individuals in the BH model do not automatically find a job once

they are on the labor market, i.e. there is (involuntary) unemployment. Third, the individuals in BH

are heterogeneous with respect to some observable characteristics. These observable characteristics

are assumed to be othogonal to the unobservable ones discussed below.
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The model is devoted to a life cycle analysis of individual schooling decisions and

has the following basic structure: Every individual enters school at the age of six

and has to go there for at least six years, i.e. schooling is compulsory until the age

of twelve. The maximum number of years of schooling, on the other hand, is 22.

Except for these two requirements, the individuals are free to enter the labor market

whenever they want to. They are assumed to “die” at the age of 65, i.e. attention

is restricted to the individuals’ working lives. Every individual is characterized by a

two-dimensional character vector θ ∈ R2. The first component of θ, denoted as θs,

affects the individual’s utility of going to school, the second one, denoted as θw, affects

the individual’s utility of working. The individuals are assumed to choose the timing

of labor market entry so as to maximize expected lifetime utility.

Individual i’s instantaneous utility of attending school during the tth year of her life

can formally be described as

U s
it = ψ(t) + θs

i + εs
it, (3.1)

The function ψ(·) : t → R measures the (possibly negative) “consumption value” of

going to school. It has one free parameter for every (potential) year of schooling, i.e.

the consumption value of schooling may vary across grades. As t is discrete and finite,

we can think of ψ(·) as a vector of dummy variables. εs
it denotes an i.i.d. error term

with mean zero and distribution function F s(·). The utility of working is equal to the

logarithm of earnings and can be described by the Mincerian (1974) equation

Uw
it = ln wit = φ1(Si) + φ2 · Eit + φ3 · E2

it + θw
i + εw

it, (3.2)

where Si tells us how many years of schooling individual i has completed and - just as

in the case of ψ(·) - no structure is imposed on φ1(·) : S → R, i.e. this function has

as many free parameters as there are different possible values of Si. As is standard in

the human capital literature, the influence of professional experience, E, on earnings

is captured by a quadratic function. εw
it is assumed to be i.i.d. with mean zero, the

distribution function of εw
it is denoted as Fw(·). The individual characteristics θs

i and
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θw
i are distributed according to a joint cumulative distribution function, denoted as

F θ(·). As it will prove useful in what follows, we rewrite equation (3.1) as

U s
it = ψ(t) + θw

i + ∆θi + εs
it, (3.3)

where ∆θi ≡ θs
i − θw

i denotes individual i′s “comparative advantage” at school.

The lifetime utility of individual i is given by Ui =
∑T

t=1 δt ·Uit where T = 53, i.e. we

neglect the individual’s first twelve years of life (because the utility experienced during

those years is exogenously given). Since no agent can ever return to school once she

has entered the labor market and Si (the number of years of schooling) can only take

on a relatively small number of discrete values, we can easily compute the individual’s

expected lifetime utility for all possible values of Si. The problem of maximizing Ui,

however, is complicated by the fact that the realizations of εs
it and εw

it, denoted as εw
it

and εs
it, are assumed to be observable prior to period t, i.e. the individual can condition

her entry decision on these shocks. For this reason, the agents cannot decide ex-ante

for how many years they will go to school, but they have to solve the maximization

problem sequentially.

Individual i decides to enter the labor market in period t if and only if εw
it − εs

it >

V s
it − V w

it (Si = t − 1), where V s
it and V w

it (Si = t − 1) denote the expected values of

going to school and entering the labor market after t−1 years of schooling, respectively.

V w
it (Si) is recursively given by

V w
it (Si) = φ1(Si) + φ2 · Eit + φ3 · E2

it + θw
i + δ · V w

it+1(Si) (3.4)

Since we know that V w
iT+1(·) = 0 ∀ Si, V w

it (·) can easily be computed for all values of

t and Si by means of backward induction. The value of remaining in school can be

expressed by the Bellman equation

V s
it = ψ(t) + θw

i + ∆θi + δ · E [
Max{V s

it+1 + εs
it, V

w
it+1(Si = t) + εw

it}
]

(3.5)

Note that the last term on the right hand side of equation (3.5) does not simplify to

δ ·Max{V s
it+1, V

w
it+1(Si = t)} (even though both εs

it and εw
it have mean zero), because
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the variance of εs
it and εw

it brings about some option value. At this point we can

already make the following useful observation (which is new to our paper):

Lemma 5: The difference V s
it − V w

it (Si = t − 1) only depends on θw and θs through

∆θi. Moreover, V s
it − V w

it (Si = t− 1) is a strictly increasing function of ∆θi.

Proof. The proof is by induction. We first show that the lemma is true for every agent’s

final year of potential schooling, i.e. for t = 16. (Recall that we do not consider the

first six years of schooling, because those are compulsory.) We then go on to show that,

if the lemma is true for any t, then it must also be true for t − 1. As for the first step,

note that all agents have to leave school at the age of 28, so equation (3.5) simplifies to

V s
i16 = ψ(16) + θw

i + ∆θi + δ · V w
i17(16). Taking the difference of this term and V w

i16(Si = 15)

we directly see that the result depends on θw and θs only through ∆θi and is strictly

increasing in ∆θi. Consider next the following reformulation of equation (3.5): V s
it = ψ(t)+

θw
i +∆θi +δ ·(V w

it+1(Si = t) + Max{V s
it+1 − V w

it+1(Si = t) + εs
it; ε

w
it}

)
. Presupposing that the

lemma holds for V s
it+1−V w

it+1(Si = t), the same must - once again by simple inspection - be

true for V s
it − V w

it (Si = t− 1).

Intuitively, Lemma 5 must be true, because θw enters linearly into both (3.2) and

(3.3), whereas θs does not appear in either of the two equations (except through ∆θi).

Hence, no matter what agent i does, she will “get” θw
i in every period of her life and

θs
i in none of them.

Lemma 5 has an important implication: Since individual i enters the labor market

in period t if and only if εw
it − εs

it > V s
it − V w

it (Si = t − 1), the probability of an

individual leaving school in any given period (conditional on not having left it before)

is decreasing in ∆θ. Hence, (average) schooling attainments must be increasing in

∆θ. In order to check whether this conclusion is in line with the results of BH, let us

have a look at their estimates of the distribution of unobserved abilities:
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θs θw ∆θ

type 1 θs
1 = −0.732 θw

1 = 2.140 ∆θ1 = −2.871

type 2 θs
2 = −1.102 θw

2 = 1.679 ∆θ2 = −2.781

type 3 θs
3 = −0.879 θw

3 = 1.914 ∆θ3 = −2.792

type 4 θs
4 = −1.321 θw

4 = 1.377 ∆θ4 = −2.698

type 5 θs
5 = −1.182 θw

5 = 1.549 ∆θ5 = −2.730

type 6 θs
6 = −1.490 θw

6 = 1.082 ∆θ6 = −2.572

Table 1: The Distribution of Abilities in Belzil and Hansen

The first two columns of Table 1 are directly taken from Table III in BH, the third

one is based on own computations. As apparent from columns 2 and 3 of the table,

BH find that more able workers have a comparative disadvantage at school. Hence,

we would - by Lemma 1 - expect a negative correlation between market ability and

schooling. Yet, BH find that correlation to be significantly positive (0.26). This

contradiction indicates that, unless Lemma 5 is faulty, something must be wrong with

the estimates of BH.

BH use maximum likelihood techniques in order to jointly estimate ψ(·), φ1(·), φ2, φ3,

δ, F θ(·), Fw(·), and F s(·). This requires them to make assumptions on the functional

forms of F θ(·, ·), Fw(·), and F s(·). They take εw
it and εs

it to be normally distributed

with mean zero, whereas θ is assumed to follow a discrete distribution with six mass

points (Heckman and Singer, 1984). Thus, while Fw(·), and F s(·) have just one free

parameter each, F θ(·) is a very flexible function: 12 parameters are needed in order to

characterize the six two-dimensional values that θ can assume (θ1,..., θ6). In addition,

we need to know the probabilities with which these values occur, denoted as p1,..., p6.

As these probabilities need to add up to one, five additional degrees of arise.

BH only have data on Uw (wages) and S (schooling attainments). Hence, the like-

lihood function for a given agent, Li, consists of three parts: The probability of

remaining at school for (at least) Si years, the probability of entering the labor mar-

ket after Si years of schooling and the likelihood of matching the wage profile wi in
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all subsequent years. Since θ can assume six different values, we need to compute the

likelihood function for all types separately. The complete likelihood function is found

by taking the product of the three parts, weigting it by pk, and then summing up over

all k and i.

3.2.2 Identification

BH claim that “identification of the wage return to schooling [...] is relatively straight-

forward given panel data on wages [...] and, hence, does not require discussion.” By

contrast, we do not find the way in which the BH model is identified to be straight-

forward. Therefore, the present section is devoted to an analysis of the conditions

under which the identification result holds. More specifically, we focus on the role of

the assumption that εw
it and εs

it (the realizations of εw
it and εs

it) are observable prior

to period t. The following proposition shows that, if we relax this assumption, the

model is not identified anymore.

Proposition 13: If εw
it and εs

it were not observable prior to period t, the model of BH

would not be identified.

Proof. The proof consists of showing that, if εw
it and εs

it were not observable, different

sets of parameters could generate exactly the same distribution of observable variables.

For simplicity, we only consider (joint) changes in ψ(·), φ1(·), and F θ(θw|∆θ), taking φ2,

φ3, δ, Fw(·), F s(·), and F∆θ(·) as fixed. Since V s
it − V w

it is - by Lemma 5 - a strictly

increasing function of ∆θi, this simplification implies that we can take the order of schooling

attainments as given. Our argument consists of two parts: We first demonstrate that, no

matter what φ1(·), and F θ(θw|∆θ) look like, we can generate any arbitrary distribution of

schooling attainments (which respects the order prescribed by F∆θ(·)) by means of ψ(·)
alone. We then go on to show that, holding the distribution of schooling attainments fixed,

there are different combinations of φ1(·) and F θ(θw|∆θ) which yield precisely the same wage

profile w. Taken together, the two steps imply that we cannot infer the set of true parameter

values from data on S and w.

The proof of the argument’s first part is by construction: Note that we can characterize

the distribution of schooling attainments by a set of threshold values with respect to ∆θ,
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denoted as τ . All agents with ∆θ > τ16 go to school for 16 years, those with τ16 ≥ ∆θ > τ15

go there for 15 years etc. Students with τ1 ≥ ∆θ complete only the minimum amount of

schooling. In order to find the function ψ(·) which generates a given distribution τ , we need

to do the following: We substitute τ1 for ∆θ in equation (3.5), take the difference V s
i16−V w

i16,

set it to zero, and then solve for ψ(16). Once ψ(16) is known, we can use the same solution

method to determine ψ(15) etc.

As for the proof of the argument’s second part, recall that lnwit = φ1(Si) + φ2 · Eit + φ3 ·
E2

it + θw
i + εw

it (where φ2, φ3, and the distribution of εw
it are all taken as given). We want to

show that different combinations of φ1(·) and F θ(θw|∆θ) generate identical wage patterns.

In doing so, we do not have to take the effect of changes in φ1(·) and θw on schooling

attainments into account (as we have just seen that these effects can always be compensated

for by changes in ψ(·)). Thus, φ1(·) and F θ(θw|∆θ) are not separately identified, as any

increase in φ1(t) can be offset by a decrease in θw for all agents with τt+1 ≥ ∆θ > τt.

Proposition 13 can be strengthened in two respects: First, as long as every level

of schooling attainment is chosen by some individuals, the non-identifiability of the

modified model can also be proven by considering joint changes in φ1(·) and F θ(·, ·).
Second, εw

it and εs
it do not necessarily have to be unobservable prior to period t. It is

enough for them not to have any influence on the individuals’ schooling decisions.

In what way does the observability of εw
it and εs

it help us to identify the returns to

schooling? The answer to this question is most easily understood by bringing to one’s

mind the way in which observable wage shocks influence the timing of labor market

entry: If there is a positive shock, every individual will - ceteris paribus - tend to enter

the labor market, otherwise she will prefer to remain in school. Hence, if an individual

leaves school even though she is subject to a negative wage shock, that individual

probably has spent some time waiting in vain for a good wage offer. Conversely, if an

individual enters the labor market in response to a large positive shock, that individual

may well have left school earlier than expected. Thus, there should - for a given level

of schooling - be a positive correlation between the initial wage shock experienced by

an individual and her comparative advantage at school, ∆θ. This implies that the

random part of an individual’s starting salary can play a role comparable to that of
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a standard instrument in reduced-form models: By bringing about some exogenous

variation in schooling attainments, the observability of εw
it and εs

it allows us to compare

individuals with identical characteristics, but different schooling attainments.

One natural question to ask at this point is whether wage shocks can legitimately be

used as a “quasi-instrument” for schooling attainments. In order for the answer to

this question to be “yes”, two conditions need to be satisfied: First, individual labor

market entry decisions should be related to contemporaneous wage offers. Second,

the nature of this relationship should be independent of an individual’s type. While

we believe that both of these conditions can be checked, it is beyond the scope of this

paper to carry out such an analysis.

3.2.3 Specification

Our focus in this section will be on the assumption that the distribution of unobserved

abilities consists of six mass points. At first glance, this assumption appears to be

relatively weak: After all, F θ(·) has (as we have already noted in Section 3.2.1) no less

than 17 degrees of freedom. Nevertheless, the true distribution of unobserved abilities

is potentially continuous, and it is not easy to cover the whole of R2 by just six points.

The question is how the model rationalizes the choices of those agents whose actual

characteristics are far from any of the estimated mass points. The answer to this

question is simple: These individuals must have experienced very substantial shocks.

Such shocks can only occur if the variances of εw
it and εs

it, denoted as σw and σs in

the following, are sufficiently large. Since the evolution of wages over time provides

direct evidence on the variability of the wage shocks, σw cannot “pick up the burden”.

Therefore, misspecifications of F θ(·) are bound to results in an overestimation of σs.

(According to the estimates of BH, it is more than five times as large as σw.) As

we have already alluded to in Section 3.2.2, this has important consequences for the

agents’ incentives to remain in school. Let us have a closer look at the relationship

between σw and V s
it . From equation (3.5) we know that

V s
it−1 = E

[
Max{V s

it+1 + εs
it, V

w
it+1 + εw

it}
]

(3.6)
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where, for convenience, we have set ψ(t) + θw
i + ∆θi to zero and δ to one. Dropping,

in addition, the subindex i, we can rewrite this equation as

V s
t−1 = E

[
V w

t + εw
t−1 + Max{V s

t − V w
t + εs

t−1 − εw
t−1, 0}

]

= V w
t + E

[
Max{V s

t − V w
t + εs

t−1 − εw
t−1, 0}

]

= V w
t +

E
[
V s

t − V w
t + εs

t−1 − εw
t−1|εs

t−1 − εw
t−1 > V w

t − V s
t

]

P
(
εs

t−1 − εw
t−1 > V w

t − V s
t

)

= V w
t + Φ

(
V s

t − V w
t

σ

)
· (V s

t − V w
t ) +

∫ ∞

V s
t −V w

t

x · exp(−x2/2σ2)

σ · √2π
dx

= V w
t + Φ

(
V s

t − V w
t

σ

)
· (V s

t − V w
t ) +

σ√
2π

· exp

(
−(V s

t − V w
t )2

2σ2

)
(3.7)

where σ =
√

σ2
w + σ2

s . The option value brought about by a large variance of εw
it

is contained in the last term on the right hand side of (3.7): Both σ/
√

2π and

exp(− (V s
t − V w

t )2 /2σ2) are increasing in σ.

Intuitively, the positive effect of σ on V s can be understood as follows: As long as

an agent goes to school, she can, in any given period, choose whether or not to enter

the labor market. This gives her the opportunity to avoid large negative shocks or

take advantage of positive ones, i.e. it generates a positive option value of going to

school. The size of this effect depends on σ, because substantial shocks are more

likely to occur if σ is large. We now come to the point of understanding the link

between misspecifications of F θ(·) and the estimation of the earnings function: Since

both σ and the returns to schooling provide an incentive not to leave school too early,

they are substitutes in explaining agents’ schooling decisions. Therefore, if σ gets

overestimated, the converse must be true of the returns to schooling, for otherwise

the choices of those students who drop out of high school early on could not be

rationalized.
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In order to get an idea of how large this effect is, we apply the BH estimator to

two different sets of artificially generated data. The first data set is well behaved,

i.e. it is generated under the same assumption on which the BH estimator relies.

By contrast, the second data set takes the distribution of agents’ characteristics to

be continuous. Thus, we test whether the BH estimator is able to uncover the true

returns to schooling when the assumption of a discrete type distribution fails, using

the first data set as a control.

The model we consider is a slightly simplified version of the one presented in Section

3.2.1: In order to alleviate the computational burden, every individual is assumed

to live for only 10 periods of which she can spend at most the first three ones going

to school. In the first data set, the distribution of agents’ characteristics consists of

four mass points. The assumption that there are only four different values of ∆θ also

holds true in the second data set. Given any of these four values, however, agents’

labor market ability is normally distributed with mean µk
θ and standard variation

σk
θ . Our estimation procedure (which is the same for both data sets) is based on

the assumption that there are four different types of agents and, for simplicity, takes

the consumption value of schooling, the returns to experience, the discount rate, and

agents’ comparative advantage at school to be known. Thus, we only estimate the

returns to schooling, the standard deviations σw and σs, and the distribution of agents’

market ability.

Our estimates can be found in Table 2. The first column (“estimate 1”) corresponds

to the well-behaved data set while the second column (“estimate 2”) corresponds to

data set which is based on the assumption that the distribution of agents’ types is

continuous.7

7The program used to generate these results was written in MATLAB and is available from the

author upon request.
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Parameter Value Estimate 1 Estimate 2

φ1(1) 0.1 0.099 (0.002) 0.048 (0.008)

φ1(2) 0.2 0.197 (0.003) 0.135 (0.011)

φ1(3) 0.3 0.298 (0.002) 0.289 (0.010)

σw 0.5 0.499 (0.002) 0.682 (0.009)

σs 0.5 0.514 (0.025) 1.130 (0.039)

θw
1 − 1.001 (0.015) 0.402 (0.083)

θw
2 − 1.987 (0.013) 1.843 (0.067)

θw
3 − 3.011 (0.008) 3.219 (0.070)

θw
4 − 4.000 (0.011) 4.714 (0.085)

Table 2: Results of the Computational Experiments

Parameter values: ψ(1) = ψ(2) = ψ(3) = 0, δ = 1, φ2 = φ3 = 0,

µ1
θ = −2, µ2

θ = −1.4, µ3
θ = −0.8, µ4

θ = −0.2, σk
θ = 0 ∀k (first data

set), σk
θ = 1 ∀ k (second data set). Number of observations: n = 1000.

Standard errors are given in parentheses.

The results which are contained in Table 2 confirm our theoretical predictions. If the

data generating process “respects” the assumptions of the BH estimator, all param-

eters are estimated at high precision. Misspecifications of the distribution of agents’

characteristics, however, result in an overestimation of σ which, in turn, brings about

downwardly biased estimates of the returns to schooling. Note that the returns to the

final year of schooling are largely unaffected by this problem. Again, this is in line

with our theoretical considerations. The final year of schooling cannot contain any

option value, because all agents have to enter the labor market afterwards. Overall,

our estimates look very much like the ones of Belzil and Hansen: The returns to

schooling are very low until “grade 2”, and the earnings function is strongly convex in

schooling. This, of course, does not automatically imply that the results of Belzil and

Hansen are biased. It does suggest, however, that the possibility of a specifications

bias needs to be taken seriously.
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3.3 Conclusion

The purpose of this paper has been to critically evaluate the “structural” approach to

estimating the returns to schooling as advocated by Belzil and Hansen. We have first

shown that the identification of the BH model hinges on the assumption that individ-

ual schooling decisions are driven by observable random shocks. If this assumption

fails, the model is not identified. We have then gone on to demonstrate - both theoret-

ically and computationally - that the way in which BH have specified the distribution

function of agents’ characteristics is less flexible than one might think. Accordingly,

the model reacts sensitively to distributional misspecifications. The resulting specifi-

cation biases are able to account for the very low estimates of the returns to schooling

found by BH.

The criticism raised in this paper should not be interpreted as a criticism of struc-

tural estimation in general. It undoubtedly makes sense to estimate the parameters

of an economic model rather than simply positing some – usually linear – causal re-

lationship. Yet, while (micro-)economic models have the virtue of being explicit and

coherent, they cannot bring about any “identification miracles”. Technically, suffi-

ciently complex models may allow us to identify parameters which are not identifiable

in reduced-form models, but these identification strategies are unlikely to be reliable.

Accordingly, our answer to the question asked in the title of this paper reads as follows:

Yes, we can trust structural estimates of the returns to schooling, but we should not

trust identification strategies which are not amenable to economic intuition. Hence,

while structural estimates may help us to refine the insights produced by reduced-form

models, they are unlikely to bring about an econometric revolution.

More radical progress may be achievable if we modify the standard approach to es-

timating the earnings function at a different end. Both Belzil and Hansen and most

of the IV literature make two steps at once by directly considering the relationship

between schooling attainments and subsequent earnings. In our view it would be

more reasonable to first examine to what extent (and in what way) certain (cognitive,

social, or technical) skills are acquired at school and to then analyze the value of these
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skills in a given job. (Clearly, different jobs require different skills, so the returns to

schooling will generally depend on what kind of job we look at.) Not only do we think

that the answers to these two questions are easier to obtain than those sought after

by the existing literature. If we manage to find them, they will also provide us with

a much more complete picture of how our education system works and how we can

improve it.
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