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ABSTRACT

In the frame of this thesis novel concepts for the functionalization of nanotubes and

fabrication of optimized, homogeneous MWNT/polymer heterostructures are presented.

The effects of various dispersion states and morphologies of carbon nanotubes on me-

chanical, rheological, and electrical properties of the CNT-based nanocomposites were in-

vestigated. Additionally, a new approach for the fabrication of CNT/quantum-dots het-

erostructures for potential photoelectric and optical applications is shown.

The tensile strength and elastic modulus of polymeric systems are shown to be signifi-

cantly improved (even by more than 1500 %) after introducing the MWNT-filler by using

the layer-by-layer assembly technique. However, nanoindentation experiments reveal that

the presence of MWNTs within the polymeric host material do not have any impact on the

hardness of such composites. Furthermore, shear oscillatory tests show that the viscosity of

MWNT/polymer composites increases together with the concentration of the nanotubes in

polymer.  The  rheological  percolation  threshold  is  shown  to  be  as  low  as  0.5  wt%  of

MWNTs.

Investigations of electrical properties of MWNT/polymer heterostructures show a sig-

nificant increase of electrical conductivity with the increase of the MWNTs’ content. The

conductivity of the sample with only 8 wt% MWNTs load is as high as 10-2 S/cm which is

four orders of magnitude higher than that of the neat polymer. The electrical percolation

threshold is reached at 1.48 wt%.

Investigation of MWNT/quantum dots heterostructures reveal a complete quenching of

the PL-bands, presumably through an electron transfer between QDs and MWNTs. The

deposition of a silica shell (with thicknesses >20nm) around the CNTs preserves the fluo-

rescence properties by insulating the QD from the surface of the CNT.

It is shown that carbon nanotubes as components of various nanocomposites have a

significant effect on the mechanical, electrical, and optical properties of these hybrid mate-

rials. The results of this thesis indicate the potential of utilizing CNT-based nanocompo-

sites towards mechanical, electrical, sensing, optical, and actuating applications.
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CHAPTER I

INTRODUCTION

One goal of today’s technology is the miniaturization of the electronic, actuating, sens-

ing, and optical devices and their components; hence, nanotechnology attracts much atten-

tion from the worlds of the science and industry. Nanotechnology offers new design, char-

acterization, production, and application of systems, devices and materials at the nanome-

ter scale. A nanocomposite is defined as a material of more than one solid phase, where at

least one dimension falls into the nanometer scale. The fabrication of nanocomposites

opens up an attractive route to obtain novel, optimized, and miniaturized compounds that

can meet a broad range of applications. In this context, the exceptional properties of

nanoparticles have made them a focus of widespread research in nanocomposite technol-

ogy. Since composites consist of several different components, superior physical and

chemical characteristics of novel materials can be achieved. Therefore, the development of

nanoparticle modified composites is presently one of the most explored areas in materials

science and engineering [1].

Nowadays polymers play a very important role in numerous fields of everyday life due

to their advantages over conventional materials (e.g. wood, clay, metals) such as lightness,

resistance to corrosion, ease of processing, and low cost production. Besides, polymers are

easy to handle and have many degrees of freedom for controlling their properties. Further

improvement of their performance, including composite fabrication, still remains under

intensive investigation. The altering and enhancement of the polymer’s properties can oc-

cur through doping with various nano-fillers such as metals, semiconductors, organic and

inorganic particles and fibres, as well as carbon structures and ceramics [2-5]. Such addi-

tives are used in polymers for a variety of reasons, for example: improved processing, den-

sity control, optical effects, thermal conductivity, control of the thermal expansion, electri-

cal properties that enable charge dissipation or electromagnetic interference shielding,
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magnetic properties, flame resistance, and improved mechanical properties, such as hard-

ness, elasticity, and tear resistance [6-8].

Unique properties of carbon nanotubes (CNT) such as extremely high strength, light-

weight, elasticity, high thermal and air stability, high electric and thermal conductivity, and

high aspect ratio offer crucial advantages over other nano-fillers. The potential utility of

carbon nanotubes in a variety of technologically important applications such as molecular

wires  and  electronics,  sensors,  high  strength  materials,  and  field  emission  has  been  well

established. Recently, much attention has been paid to the use of carbon nanotubes in con-

jugated polymer nanocomposite materials to harness their exceptional properties [9,10].

CNT-based composites have attracted great interest due to an increasing technological de-

mand for multifunctional materials with improved mechanical, electrical, and optical per-

formance, complex shapes, and patterns manufactured in an easy way at low costs. How-

ever, several fundamental processing challenges must be overcome to enable applicable

composites with carbon nanotubes. The main problems with CNTs are connected to their

production, purification, processability, manipulation and solubility. Because of these dif-

ficulties, to date, the potential of using nanotubes as polymer composite has not been fully

realized. There are only few nanotube-based commercial products on the market at present,

which are in fact CNT/polymer composites with improved electrical conductivity [Hype-

rion Catalysis International]. This still requires intensive studies in order to compromise

expectations with technological achievements in CNT composites. Since 1994, when

Ajayan et al. [11] have firstly introduced multiwall carbon nanotubes (MWNTs) as filler

materials in a polymer matrix, numerous projects have been focused on the fabrication,

improvement, modeling, and characterization of such heterostructures [12-14].

The main objective of this study was to produce and investigate MWNT-based nano-

composites as candidates for next generation of high-strength, lightweight, and conductive

plastics. However, the effective utilization of CNTs in composite applications strongly de-

pends on the ability to disperse them homogeneously throughout the matrix[10,12,13].

The surface of CNTs has to be modified in order to overcome their poor solubility. In this

context, several problems and issues concerning functionalizations and dispersion of

MWNTs in solvents and polymers were addressed and discussed here. Various covalent

and non-covalent approaches for efficient functionalization such as polymer wrapping, sur-

factant adsorption, oxidation, and silica coating are shown.
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A uniform distribution of nanotubes within a polymer matrix and strong adhesion between

structural components are necessary conditions for the effective improvement of the prop-

erties of the composites [13,15,16]. On this basis, we present in this work novel concepts

for the fabrication of optimized, homogeneous CNT/polymer heterostructures, and show

that the remarkable properties of carbon nanotubes can efficiently be transferred to the lo-

cal matrix.

In order to fully understand the impact of carbon nanotubes on the performance of

polymeric materials various characterization, tests have to be performed. Thus, the second

part of the thesis is focused on the examination of the structural and physical properties of

MWNT/polymer composites.

The effects of various dispersion states and morphologies of carbon nanotubes on me-

chanical, rheological, and electrical properties of the MWNT-based nanocomposites were

investigated. Nanoindentation, tensile tests, and rheology were employed in order to evalu-

ate the hardness, Young’s modulus, tensile strength, and viscoelastic response of diverse

heterostructures composed of the MWNTs and polymers, respectively.

Technological applications in many cases require reinforced polymers that are able to

dissipate charge and reduce dangerous spark discharge, as well as to act as an electromag-

netic interference shielding unit. In this context the use of metallic carbon nanotubes as

fillers  in  dielectric  hosts  opens  up  possibilities  for  the  fabrication  of  a  new class  of  rein-

forced, lightweight, conductive materials. Electrical properties of CNT/polymer het-

erostructures were investigated in this study by means of dielectric spectroscopy.

The formation of CNT/nanoparticle heterostructures is both of fundamental and tech-

nological interest. Combining unique properties of CNTs and nanoparticles, a new class of

nanocomposites can be made meeting a broad range of advanced applications [17-19].

The last part of this thesis shows a novel approach for the fabrication of nanocomposites

composed of carbon nanotubes and semiconducting nanocrystals. The structural and opti-

cal properties of such heterostructures were investigated.
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CHAPTER II

BASIC CONSIDERATION

2.1 Carbon nanotubes

The  carbon nanotubes (CNT) were discovered in 1976 when Endo [20] synthesized

vapour-grown carbon fibres, however at the time, it was not given any thought and focus.

It was only after Iijima’s work in 1991 [21] that global scientific attention was turned to

these interesting carbon structures and intense studies on the properties [10,12,22], struc-

ture [23-25], and applications [10,13,26] of these unique materials have been carried

out.

CNTs are considered to be a rolled-up graphene sheet that forms long concentric cylinders.

Bonding in CNTs is essentially sp2; the circular curvature causes  bonds to be slightly out

of plane, the  orbital is more delocalized outside the tube [13]. The properties of nano-

tubes depend on the structure, morphology, diameter, and length of the tubes. The structure

of carbon nanotubes is described in terms of the tube chirality, which is defined by the

chiral vector hC  and the chiral angle  (Figure 2.1). The chiral vector indicates the way, in

which graphene is rolled-up to form a nanotube.  The chiral vector is described as [10]:

21 amanCh (2.1)

where the integers (n, m) indicate the number of steps along the zigzag carbon bonds of the

hexagonal lattice, 1a  and 2a  are  unit  vectors  (Figure  2.1).  The  chirality  of  the  carbon

nanotubes has a huge impact on their properties, especially electronic ones.

There are two main kinds of CNTs:

 Singlewall carbon nanotubes (SWNTs) are hollow single cylinders of a graphene

sheet, which are defined by their diameter and their chirality [12,13]. The diame-

ter of SWNTs varies from 0.5 to 5 nm. Depending on the chirality SWNTs may ei-

ther be metallic or semiconducting.
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Multiwall carbon nanotubes (MWNTs) are a group of concentric SWNTs

(Figure  2.2)  often  capped  at  both  ends,  with  diameters  in  the  range  from  several

nanometers up to 200 nm [10,13]. These concentric nanotubes are held together

by van der Waals bonding. MWNTs form complex systems with different wall

numbers, structures, and properties and additional features such as: tips, internal

closures within the central part of the tube, forming a so called “bamboo” structure

(Figure 2.2), and even an angle Y-junction formation of MWNTs.

Figure 2.1  By rolling a graphene sheet in different directions typical nanotubes can be obtained:
zigzag (n, 0), armchair (m, m), and chiral (n, m), where n>m>0[10]. Integers (n, m) are the num-
bers of steps along which the zigzag carbon bonds of the hexagonal lattice, 1a  and 2a  are unit vec-
tors, hC  is the chiral vector, and  is the chiral angle (equation (2.1)).

 Due to their properties CNTs have become very promising fillers for the fabrication of

new advanced composite systems. It is commonly understood that carbon nanotubes can-

not be utilized without any supporting medium, such as a matrix, to form structural com-

ponents. Therefore, significant developments have been the subject of numerous studies in

processing CNTs and CNT/polymer composite films or fibers [15,27-32]. The effective

utilization of CNTs in composite applications depends strongly on the ability to disperse

them homogeneously throughout the matrix. Chemical modifications have become an im-

portant issue due to the poor solubility of the CNTs in almost any solvent. Therefore, vari-

ous functionalization strategies of the surface of the carbon nanotubes have been developed

[10,16,33,34]. Chemical modification of CNTs ensures good dispersion of nanotubes in a

medium, and enhances the interfacial bonding between filler and matrix, which is crucial

to achieve a load transfer across the CNT/matrix interface. This is a necessary condition

for the improvement of the mechanical properties of such composites and better stability of



7

the systems. Various studies include amorphous [35], semicrystalline [36], thermoplas-

tic[26,37,38], water-soluble [39-41] and conjugated [29] polymers; resins [28,42];

ceramics [43,44], and metal matrices [45,46] as  a  supporting  material  for  CNTs  were

shown. As a result of the presence of CNTs in composite, improvements of the properties

of the matrix material such as: enhanced mechanical performance [27,30,39], high elec-

trical conductivity [47-50], better thermal conductivity [51,52], and anisotropic optical

properties [53,54], were shown.

Figure 2.2  High resolution transmission electron microscope images of MWNTs used in this
study: A) multiwall carbon nanotube (“hollow”) and B) “bamboo” type of MWNT (www.nano-
lab.com).

2.1.2 Manufacturing methods

At present carbon nanotubes are manufactured by different methods in laboratories and

industry. The production of CNTs with a high order of purity, large amount, low costs, and

uniformity are still one of the biggest issues in the carbon nanotube society. The most

common techniques are (Table 2.1):

Chemical vapor deposition (CVD): This technique involves the decomposition of

hydrocarbon gases on the substrate in the presence of metal catalyst particles (Fe,

Ni,  Co).  The  synthesis  of  CNTs is  often  thermally  or  plasma-enhanced.  MWNTs

are mainly obtained by this method, with high purity but with limited control of the

structure and diameter. Long nanotubes with diameters ranging from 0.6 - 4 nm

50nm10nm

A B
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(SWNTs) and 10 - 200 nm (MWNTs) can be produced. The CVD technique is

suitable for a large-scale industrial production of nanotubes. If plasma is generated

by the application of a strong electric field during the growth process (plasma en-

hanced  CVD),  then  the  nanotube  growth  will  follow  the  direction  of  the  electric

field [55] forming vertically aligned carbon nanotubes (e.g. perpendicular to the

substrate).

High pressure conversion of carbon monoxide (HiPCO): This method is considered

as an improved CVD process which bases on the gas-phase growth of singlewall

carbon  nanotubes  with  carbon  monoxide  as  a  carbon  source  at  high  temperature

and pressure. This technique is suitable for the production of large quantities of

SWNTs with high purity [56].

Arc discharge method: This bases on an electric arc discharge generated between

two graphite electrodes under an inert gas atmosphere (argon, helium). This

method requires very high temperatures (>5000 oC) and produces a mixture of dif-

ferent components (including fullerenes, amorphous carbon, and some graphite

sheets) [57,58]. The carbon nanotubes need to be separated from the soot and the

catalytic metals present in the crude product. Depending on the variation of the pa-

rameters (e.g. temperature, pressure, different gases and catalytic metals) employed

in this technique, it is possible to selectively grow SWNTs or MWNTs. CNTs pro-

duced this way are normally tangled with poor control over the length and diame-

ter.  CNTs  are  short  with  diameters  ranging  from  1.2  -  1.4  nm  (SWNTs)  and

1 - 3 nm (MWNTs).

Laser ablation: A graphite target is vaporized by laser irradiation under flowing in-

ert gas atmosphere at high temperature [59,60]. Nanotubes produced in this way

are very pure but the process is not effective for a large scale synthesis. Only bun-

dles of individual SWNTs of 5 - 10 m in length and 1 - 2 nm in diameter are be-

ing fabricated in this way.

All of these methods are still under development; there are numerous variations of

these techniques operating under different conditions, with different set-ups, and process

parameters. Every technique provides diverse advantages and disadvantages over the qual-

ity and kinds of synthesized CNTs. An overview of these techniques is given in Table 2.1.

Nowadays, the main issue concerns the large-scale and low-cost production of nanotubes

for industrial applications.
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Table 2.1  An overview on the most common CNTs synthesis techniques and their advantages and
disadvantages.

Method CVD Arc Discharge Laser Ablation HiPCO

Basics

Decomposition of
hydrocarbon

gases in the pres-
ence of metal

catalyst particles

Electric arc dis-
charge generated

between two
graphite elec-

trodes under an
innert atmosphere
(argon, helium)

Graphite target is
vaporized by laser
irradiation under
flowing innert

atmosphere and
high temperature

Gas-phase growth
of singlewall car-

bon nanotubes
with carbon mon-
oxide as a carbon

source at high
temperature and

pressure

SWNT long, 0.6 - 4 nm
diameter

short, 1.2 - 1.4 nm
diameter

long, 1-2 nm di-
ameter

~0.7 nm diameter,
various lengths

MWNT long, 10-200 nm
diameter

short, 1-3 nm
diameter

not applicable but
possible

not applicable

Yield up to 100 % up to 90% up to 65 % up to 70 %

Advantages
high purity, large
scale production,

simple

easy, defect-free
nanotubes, no

catalyst

high purity, defect
free SWNTs

large scale, high
purity

Disadvantages
limited control
over the struc-
tures, defects

short, tangled
nanotubes, ran-
dom structures

expensive, low
scale production

defects

2.1.3 Properties of CNTs

Carbon nanotubes have gained in interest as nanoscale materials due to their excep-

tional, outstanding properties such as: extremely high Young’s modulus and ultimate

strength, high electric and thermal conductivity. Moreover, CNTs provide a remarkable

model  of  a  1D system.  More  details  on  the  properties  of  carbon nanotubes  are  presented

below.

2.1.3.1 Mechanical properties

 The structural properties of CNTs with strong  bonds between the carbon atoms give

nanotubes a very high Young’s modulus and tensile strength. The strength of the carbon-

carbon bonds in-plane, along the cylinder axis, retains the structure exceptionally strong

resistance to any failure. CNTs also have very good elasto-mechanical properties. The two-

dimensional (2D) arrangement of the carbon atoms in a graphene sheet permits a large out-

of-plane distortion. Both experimental and theoretical investigations show extraordinary

mechanical properties of individual MWNTs with Young’s modulus being over 1 TPa and
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a tensile strength of 10 - 200 GPa [61-63], which is several hundred times more than that

of steel, while they are only one-sixth as heavy. The elastic response of a nanotube to de-

formation is also remarkable: CNTs can sustain up to 15 % tensile strain before fracture.

Nanotubes are shown to be very flexible, with the reversible bending up to angles of 110º

for both SWNT and MWNT [64]. Due to the extremely high strength of CNTs, they can

bend without breaking. All of these properties open up broad possibilities for the use of

CNTs as lightweight, highly elastic, and very strong composite fillers [30,43,47,56,65].

2.1.3.2 Electrical properties

Carbon nanotubes possess unique electrical properties. The diameter being in the

nanometer range gives rise to quantum effects. The differences in the conducting proper-

ties are caused by the molecular structure. CNTs can either be conducting or semiconduct-

ing, depending on their chirality [62]. They are metallic if the integers of equation (2.1)

are: n=m (armchair structure) and n-m=3i (where i is an integer). All other structures are

predicted to be semiconducting [13]. The geometry of the nanotubes determines band

structures and thus the energy band gap. The energy band gap of semiconducting CNTs

highly depends on the nanotube diameter and is given by [66]:

d
a

E CC
gap

02
(2.2)

where 0 denotes the C-C tight binding overlap energy (2.45 eV), aC-C the nearest neighbor

C-C distance (~1.42 Å), and d is the diameter of a nanotube.

Multiwall carbon nanotubes are expected to behave like quantum wires due to the con-

finement effects on the tube circumferences. The conductance for carbon nanotubes is

given by [10]:

G=G0M=(2e2/h)M (2.3)

where G0=(2e2/h)=(12.9k )-1 is the quantum unit of the conductance, e is electron charge,

h is Planck's constant, M is an apparent number of conducting channels including electron-

electron coupling and intertube coupling effects in addition to intrinsic channels.

In  general,  MWNTs are  quite  often  found to  be  one-dimensional  conductors  with  a  high

electrical conductivity (even >103 S/cm) [49]. The metallic properties of the MWNTs are

due to their multiple-shell structure consisting of tubes with various electrical properties,
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where additional electronic coupling between shells takes place. Moreover, MWNTs are

predicted to have ballistic electron transport at room temperature (it refers to conduction

where Ohm’s law does not apply; the resistance is not dependent on the CNT’s length)

[67-69].

The electrical current that could be passed through a multiwall nanotube corresponds to a

current density in excess of 107 A/cm2. If nanotubes were classical resistors, the power dis-

sipated by such a current would heat the nanotube so much that it would vaporize. The fact

that this does not happen suggests that the electrons in nanotubes are strongly decoupled

from the lattice [70].

2.1.3.3 Chemical properties

Functionalization of the carbon nanotubes (chemical or physical modification of the

surface of CNTs, e.g. by the attachment of certain molecules or functional groups) is a very

important issue in order to overcome their poor solubility in solvents (see 2.2.1). Function-

alized CNTs are very attractive for chemical and biological applications because of their

strong sensitivity to chemical or environmental interactions. This leads to a broad range of

applications, e.g. as sensors. Covalent and non-covalent functionalization, doping, decora-

tion with organic as well as inorganic species of the surface of CNTs lead to direct changes

of the properties of carbon nanotubes (optical, electrical, and mechanical) [71-75].

2.1.3.4 Other properties

Besides the outstanding mechanical and electrical properties, CNTs exhibit interesting

thermal  and  optical  properties.  Defect-free  nanotubes,  especially  SWNTs,  offer  a  direct

band gap and a well defined band and sub-band structure, which is ideal for optical and

optoelectronic applications. The experimental measurements of the optical absorption of a

bundle of single-walled carbon nanotubes show that there are several groups of absorption

peaks and each group is closely related to the nanotube geometry [22,71,76]. Typically,

the optical absorption spectra of the SWNTs reveal peaks that correspond to the transition

between the density of states (DOS), which strongly depends on the structure of nanotubes,

e.g. chirality and the diameter.

CNTs are thermally stable up to 2800 °C in vacuum; their thermal conductivity in the

axial direction is about twice as high as of present commercial synthetic diamond

(6000 W/mK) but has very small values in the radial direction [77,78].  CNTs with high
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aspect ratio and small tip radius of curvature are found to be excellent field emitters (elec-

tron emission). It was shown that relatively low voltages are needed for effective field

emission with a high field amplification factor, this offers an advantage over other metallic

emitters which need a high voltage for emission [79].

2.2 CNT-based composites

The outstanding properties of the carbon nanotubes make them promising filling mate-

rial for the fabrication of new advanced composite systems for a broad range of applica-

tions. Efficient chemical functionalization of CNTs, homogeneous dispersions in solvents

and supporting media, and good interconnectivity with matrix still remain very important

issues that must be considered in order to achieve heterostructures with enhanced or even

new properties. There are numerous methods and approaches for functionalization and fur-

ther  efficient  dispersion  of  the  carbon  nanotubes  in  different  media.  More  details  on  the

chemical modification of CNTs, the fabrication of various CNT-based composites, and

their possible applications are presented below.

2.2.1 Functionalization and dispersion of carbon nanotubes

CNTs in all their forms are difficult to disperse and dissolve in any organic and aque-

ous medium. Due to the strong attractive long-ranged van der Waals interaction, nanotubes

tend to aggregate and form bundles or ropes, usually with highly entangled network struc-

tures. This attraction is fundamental for many body particles and well known for colloids

dispersed in polymers [80]. When suspended in a polymer, an attractive force between

fillers also arises due to the entropic effects [81]. Polymer chains in the region of the col-

loidal  filler  suffer  an  entropic  penalty  since  roughly  half  of  their  configurations  are  pre-

cluded. Therefore, there is a depletion of the polymer in this region, resulting in an osmotic

pressure forcing the filler particles to come together [10,16,72,82].

  Homogenous dispersion of CNTs within a supporting medium is crucial for the fabri-

cation of composites with improved properties, well defined and uniform structures. This

issue stimulates intensive studies on the exfoliation of carbon nanotubes. Dispersion

broadly falls into two main categories: mechanical/physical and chemical methods. The
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mechanical techniques involve physically separating the tubes from each other. The

chemical methods often use surfactant or chemical treatment of the tube surface. However,

certain types of aggressive chemical treatment can lead to the key nanotube properties be-

ing compromised.

In general, the functionalization of CNTs requires chemical modifications of their sur-

face supported by the mechanical agitation methods such as ultrasonication and shear mix-

ing [23,37,69,83]. Several functionalization strategies have been reported recently. They

are mainly based on the covalent (“grafting-to” and “grafting-from”) [84-86], and non-

covalent (polymer wrapping [33,87,88],  stacking interaction [89], adsorption of sur-

factants [34])  coupling  of  surfactants  and  functionalities  to  CNTs,  and  are  described  as

follows:

Covalent functionalization: Covalent methods refer to a treatment that involves

bond breaking across the surface of the CNTs (e.g. by oxidation) which disrupts

the delocalized -electron systems and fracture of -bonds and hence leads to in-

corporation  of  other  species  across  the  CNTs’  surface.  Introducing  defects  to  the

CNT’s shell significantly alters the optical, mechanical and electrical properties of

the nanotubes and leads to an inferior performance of the composites [90]. The

advantage is that this kind of modification may improve the efficiency of the bond-

ing between nanotubes and the host material (cross-linking). Therefore, the interfa-

cial stress transfer between the matrix and CNTs may be enhanced leading to better

mechanical performance.

Non-covalent functionalization: This modification of the carbon nanotubes is of

great advantage because no disruption of the sp2 graphene structure occurs and the

CNT properties are preserved. Its disadvantage concerns weak forces between

wrapped/coupled molecules that may lower the load transfer in the composite.

The chemical modification of the CNTs’ surface improves solubility/separation of the

nanotubes in a given solvent.  A proper functionalization ensures homogenous and stable

dispersion throughout the solvent and in the composite host material. Moreover, function-

alities on the surface of CNTs may lead to enhanced interactions between filler and matrix

due to the presence of the interfacial bonds between components.
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2.2.2 CNT/ Polymer composites

Nowadays polymers play a very important role in numerous fields of everyday life due

to their advantages over conventional materials (e.g. metals) such as lightness, resistance to

corrosion, low-cost production, and ease of processing. Further improvement of their per-

formance is still being intensely investigated. Altering and enhancement of the polymers’

properties occur, for example, through doping with various fillers such as metals, semicon-

ductors, organic and inorganic particles and fibers, as well as carbon structures and ceram-

ics; thereby enabling polymers to be used as a structural unit [2-5].

Fillers are used in polymers for a variety of reasons: improved processing, density con-

trol, optical effects, thermal conductivity, control of thermal expansion, electrical proper-

ties, magnetic properties, flame resistance, and improved mechanical properties, such as

hardness, elasticity, and tear resistance. Polymer composites can be used in many different

forms in various areas ranging from structural units in the construction industry to the

composites of the aerospace applications [10,13].

The extraordinary properties of carbon nanotubes make them very promising and fa-

vorable as fillers for fabrication of a new class of polymeric heterostructures. Polymer ma-

trices have been widely exploited as a medium for CNTs. Research projects are focused on

the development of CNT-based polymer materials that utilize the carbon nanotubes charac-

teristics and properties, such as [26]:

The high strength and stiffness of the CNTs are used for developing superior

polymer composites for structural applications which are lighter, stronger, and

tougher than any polymer-based material [25,47,65,83,91]. The exemplary results

of the mechanical properties of CNT/polymer composites are summarized in

Table 2.2.

Effort is being made to exploit the electrical conductivity of the CNTs to develop

new materials e.g. electromagnetic interference (EMI) shielding, conductive poly-

mers, or antistatic coatings [92-95].

The efficient thermal conduction of the CNT improves the high temperature char-

acteristics of the polymer matrix, by dissipating the heat through the CNTs that

prevents the degradation of the surrounding polymer [96].
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The alignment of CNTs in composites provides enhanced anisotropic characteris-

tics of materials due to the anisotropic properties of 1D structure of the CNTs. The

alignment of CNTs improves also the mechanical properties of composites

[97,98].

Table 2.2 Mechanical properties of various CNT/polymer composites evaluated from tensile tests.
Ep, Tp, Ec, Tc indicate elastic modulus and tensile strength of the polymer and composite, respec-
tively. PMMA - poly(methyl methacrylate) PS - polystyrene, HDPE - high density polyethylene,
PP - polypropylene, PVA - polyvinyl alcohol, PA6 - polyamide 6,  PA12 - polyamide 12, PBO -
Poly(p-phenylene benzobisoxazole), PEI polyethyleneimine.

CNT
type Polymer Preparation

method
Ep

[GPa]
Tp

[MPa]
Ec

[GPa]
Tc

[MPa]
CNT

content Ec/Ep Tc/ Tp Ref.

MWNT PS solution
processing 1.19 12.8 1.69 16 1 wt% 1.42 1.25 [99]

MWNT PS solution
processing 1.53 19.5 3.4 30.6 5 wt% 2.22 1.57 [48]

MWNT HDPE solution
processing 0.98 20 1.35 25 1 wt% 1.38 1.25 [100]

MWNT PVA solution
processing 1.9 81 7.4 348 0.6 vol% 3.9 4.29 [101]

MWNT PMMA melt
processed 2.7 64 3.7 80 10 wt% 1.37 1.25 [102]

MWNT PA6 melt
processed 2.6 - 4.2 - 12 wt% 1.61 - [103]

MWNT Nylon melt
processed 0.4 28 1.24 58 2 wt% 3.13 2.07 [104]

MWNT PA12 melt
processed fibers 0.8 - 1.6 - 10 wt% 2 - [105]

MWNT Polyimide
triple A PI

thermoset
resin/hardener 2.84 115 3.9 95 14.3 wt% 1.37 0.83 [106]

MWNT Epon
828/T-403

thermoset
resin/hardener 2.15 64.6 2.16 63.9 1 wt% 1.01 0.99 [107]

MWNT Nylon 610 in situ polym-
erization 0.9 35.9 2.4 51.4 1.5 wt% 2.66 1.46 [108]

SWNT PVA solution
processing 2.4 74 4.3 107 0.8 wt% 1.81 1.45 [109]

SWNT PP melt
processed 0.85 30.8 0.93 33.7 0.75 wt% 1.09 1.09 [110]

SWNT PP melt
processed fibers 6.3 709 9.8 1032 1 wt% 1.55 1.45 [111]

SWNT PA6 in situ polym-
erization 0.44 40.9 1.2 75.1 1.5 wt% 2.73 1.83 [112]

SWNT PBO in situ polym-
erization 138 2600 167 4200 10 wt% 1.21 1.61 [25]

SWNT PEI LBL assembly - 9 - 220 ~50 wt% - 24.4 [113]



16 Basic consideration

There are several important requirements for an effective improvement of CNT-based

composites’ properties, such as: a large aspect ratio of a filler, good exfoliation and disper-

sion of nanotubes, and good nanotube-nanotube and nanotube-polymer interfacial bonding.

Numerous studies have shown already, that an effective performance of the carbon nano-

tubes in composites for a variety of applications strongly depends on the ability to disperse

the CNTs homogenously throughout the matrix [24,100,114]. Good interfacial bonding

and interactions between nanotubes and polymers are also necessary conditions for im-

proving mechanical properties of the composites. Due to the nanoscale size of the CNTs

the active CNT/matrix interface is significantly higher than that of other conventional fill-

ers.

Various approaches for the fabrication of CNT/polymer composites were shown in-

cluding different functionalization and dispersion methods of nanotubes [26]. The most

important are:

Solution processing of composites: The most common method based on the mixing

of the CNTs and a polymer in a suitable solvent before evaporating the solvent to

form  a  composite  film.  The  dispersion  of  components  in  a  solvent,  mixing,  and

evaporation are often supported by mechanical agitation (e.g. ultrasonication, mag-

netic stirring, shear mixing) [26,48,99].

Melt processing of bulk composites: This method concerns polymers that are in-

soluble in any solvent, like thermoplastic polymers [26,37,38]. It involves the

melting of the polymers to form viscous liquids to which the CNTs can be added

and mixed.

Melt processing of composite fibers: CNTs are added to the melts of the polymers.

The formation of CNT/polymer fibers from their melts occurs through e.g. the

melt-spinning process [115].

Composites based on thermosets: A thermoset polymer is one that does not melt

when heated such as epoxy resins. The composite is formed from a monomer (usu-

ally liquid) and CNTs, the mixture which is cured with crosslinking/catalyzing

agents [51,73].

Layer-by-layer assembly (LBL): CNTs and polyelectrolytes are used to form a

highly homogeneous composite, with a good dispersion, good interpenetration, and

a high concentration of CNTs. This method involves alternating adsorptions of a
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monolayer of components which are attracted to each other by electrostatic interac-

tions resulting in a uniform growth of the films [113].

In-situ polymerization: The polymer macromolecules are directly grafted onto the

walls of carbon nanotubes. This technique is often used for insoluble and thermally

unstable polymers which cannot be melt processed. Polymerization occurs directly

on the surface of CNTs [10,13].

In  general,  all  of  these  different  techniques  give  various  results  in  terms  of  the  effi-

ciency of the nanotubes’ dispersion, interfacial interaction between components, properties

of the composites, and possible applications.

2.2.3 CNT/nanocrystals nanocomposites

The formation of CNT/nanoparticle heterostructures is of both fundamental and tech-

nological interest. Combining the unique properties of CNTs and nanoparticles (NPs) a

new class of the nanocomposites can be made meeting a broad range of advanced applica-

tions [17-19].

Recently, it was shown, that the physical properties of CNTs can be significantly af-

fected, not only by the chemical surface modifications, but also by the attachment of inor-

ganic, organic, and biological objects [116-119].  The  decoration  of  the  surface  of  the

CNT  with  a  variety  of  elements  creates  new  ways  for  the  invention  of  novel  one-

dimensional (1D) hybrid materials. Different strategies were presented for the decoration

of CNTs with various compounds including metals Ag, Pd, Pt, Si, Fe, Au, Ni, Co [120-

122] and semiconductor nanocrystals (NCs) [90,123-132]. Enhanced or even new prop-

erties of these CNT heterostructures were reported; this opens up new potential for applica-

tions including electronic and optic devices [90,119,127], sensors [133,134], and solar

cells [119,135].

Colloidal semiconductor nanocrystals are of great interest due to the size-dependent

photoluminescence tunable across the visible spectrum [136-139]. The band gap of these

materials increases with decreasing particle size, the electronic structure exhibits typical

quantum confinement effects. It is possible to manipulate nature, and thus the optical prop-

erties  of  the  quantum dots  (QDs)  by  surface  modification  such  as:  attachment  of  various

organic capping groups or covering the nanoparticles with inorganic semiconductor shells,

where the band gap of the core lies energetically within the band gap of the shell material.
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These core-shell NCs have been shown to be in general highly resistant to chemical degra-

dation or photo-oxidation [140]. Due to these remarkable properties of semiconducting

nanocrystals various studies have focused on the fabrication of the CNTs/quantum dots’

complexes. Different semiconductor nanoparticles were attached to the surface of carbon

nanotubes utilizing various methods: CdSe [141,142], CdSe-ZnS [90,129], CdS [130]

have been covalently bound to the surface of CNTs; CdTe [119] and CdSe-ZnS [143]

have been attached by electrostatic attraction; ZnO and ZnS [128,144] have been used as

a template for direct thermal growth of nanocrystals; an in-situ chemical-solution synthesis

of crystalline CdTe [125], CdSe [124], ZnS [126,132], and CdS [131]on CNTs also

was shown.

2.2.4 Potential applications of CNTs and their composites

Carbon nanotubes are being wildly considered for the use as energy storage materials

(fuel cells), advanced aerospace composites, co-axial cable, field emitting devices, transis-

tors, EMI shielding in electronic devices, nanoprobes and sensors, composite materials, to

name a few. The potential applications of carbon nanotubes and their composites are listed

below:

Field emitters: Carbon nanotubes have been shown to have excellent emission

characteristics: emission has been observed at fields lower than 1 V/ m, and high

current densities of over 1 A/cm2 have been obtained [79,145].

Energy storage: The advantages of considering CNTs to store energy are their cy-

lindrical and hollow geometry, nanometer scale diameter, and perfect surface

specificity. Energy carriers such as hydrogen can be stored in an adsorbed form on

CNTs, which are capable of absorbing and releasing large quantities of this ele-

ment easily and reliably [146].

Sensors: Strong dependence of the properties of CNTs on surface modification,

mechanical deformation, doping, coating, etc. make them a very attractive material

for chemical, biological, and physical sensors. Small changes in the environment of

the CNT can cause drastic changes to its electrical properties [147-150].

High strength composites: The outstanding properties of CNTs have enabled the

development of composite systems with improved mechanical performance

[27,30,99,113].
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Conducting polymer composites: A high aspect ratio of CNTs allows for lower

percolation than other fillers [47,151,152].

Heat dissipation coatings: Extraordinary thermal properties make CNTs a promis-

ing filler for heat dissipating materials [35,96].

EMI shielding materials: CNTs act as an absorber/scatterer of radar and microwave

radiation [23,153].

Aligned  CNT systems for  data  storage,  optical  transmitters,  detector  sensory  sys-

tems etc. [15,35,53].

2.3 Theoretical background

Different theoretical models have been used to explain experimental results and to pre-

dict new applications of composite materials. Besides others, the effective medium theory

(EMT) and the modeling of the electrical and rheological percolation threshold are of the

focus of the work presented here.

The EMT is essential for the evaluation of the electromagnetic properties of compos-

ites composed of an insulating matrix and conducting inclusions e.g. carbon nanotubes.

The effective dielectric constant of such composites can be determined this way. The

analysis of the propagation of electromagnetic waves in different media can be performed.

Systems composed of two materials, in particular, polymeric matrix and its filler may

experience the percolation transition, which refers to the critical concentration of the filler

at which the rheological or electrical properties of the composite are significantly changed.

In this study, rheological and electrical percolation thresholds of CNT-based nanocompo-

sites are described and further experimentally characterized. More details on EMT and

rheological and electrical percolation threshold are given below.

2.3.1 Effective medium theory

The effective medium theory can be used to calculate the effective properties of com-

posites with located symmetric inclusions. EMT can be applied to a wide variety of prob-

lems in the general area of condensed matter. It is used to analyze the propagation of elec-

tromagnetic waves in heterogeneous media. In the case of the composite systems consist-
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ing of a random distribution of fillers, the properties of the composite can be evaluated

from equations describing the dielectric response [154].

Composites containing conducting fibers are advantageous over conventional powder

or particle-filled composites, because they allow for high values of dielectric constant at

low concentration of the filler to be obtained [155]. This opens up promising applications

of fiber-filled systems as antistatic materials, electromagnetic shields, and radar absorbers

[156]. The EMT considers a model that describes dielectric properties of composites with

a concentration of the filling fibers below or near the electrical percolation threshold. In the

vicinity of the percolation threshold the complex dielectric constant may reach high values

at low frequencies [50,157].

The Maxwell-Garnett (MG) and the Bruggeman effective medium theories are the

most widely used methods for calculating the dielectric properties of the composites

[154,158,159]. In the MG method, the complex dielectric function *( )= ’( )-i ’’( ) of

the bulk material can be evaluated from the expression for the effective (e.g. measured)

dielectric function eff which is related to the dielectric function of the polymer d and the

dielectric function of a spherical filler m:

)1()2(
)21()1(2
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md
deff (2.4)

where f  is a volume fraction of the filler in the composite given by f=(4 /3)na3, which de-

fines the volume or filling fraction of the spheres (with radius a and density n) . This model

is generally used in the case of particles of a randomly distributed filler in the continuous

medium and sufficiently far from each other to avoid direct interactions. The MG approach

for fiber-like fillers (however with a low aspect ratio) was found to be a good approxima-

tion for large distances between fibers, where the interaction between them can be ne-

glected [156]. The Bruggeman model is generally calculated for the composite composed

of two kinds of spherical particles (1 and 2) being randomly distributed in the sample:
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Since the MG and Bruggeman models describe the dielectric function of the materials

composed of particles in a continuous medium and particle-particle mixture, respectively,

new theoretical approaches were necessary for the evaluation of the properties of the com-

posites with carbon nanotubes as fillers, where longitudinal conductive inclusions with
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high aspect ratio are considered. Therefore, more theoretical studies based on the MG and

Bruggeman models have been carried out recently to calculate the dielectric function of the

composite consisting of stick-like fillers with a high aspect ratio that represents the metal-

lic nanotubes in a polymer medium.

Lagarkov et al. [160] presented the calculation of the permittivity spectra of a com-

posite material comprising of conducting elongated stick-like inclusions with large aspect

ratios (where the length and the radius of conductive filler can be defined) dispersed inside

a dielectric matrix. Grimes at al. showed results on the complex permittivity of multiwall

carbon nanotubes/polystyrene composite[161,162]. The experimental data were fitted to

the theoretical predictions of EMT of Lagarkov et al. The results of experimental and cal-

culated spectra correspond relatively well to each other.

Alvarez et al. studied the nature of the electric field screening of the metallic single-

wall carbon nanotubes ropes [158]. Different factors contributing to the longitudinal di-

electric response of the system were considered such as: intratube and intertube Coulomb

interaction, the presence of a glassy graphite environment and the influence of a weak re-

laxation effects produced by impurities or defects.

Garcia-Vidal et al. presented an effective medium approach to analyze the optical

properties of aligned CNTs in composites [156]. It considers electromagnetic interactions

between fillers as a function of the volume fraction. This type of model was used to ana-

lyze spectroscopic properties of nanostructured materials. The numerical results were con-

sistent with experimental data obtained.

Kempa et al. demonstrated theoretically and experimentally that the dielectric function

of the composites can be significantly enhanced through a careful choice of the insulated

metallic nanostructures, like silica coated multiwall carbon nanotubes [163]. Carbon

nanotubes were found to markedly improve the dielectric properties of the polymer matrix

at low loading level. The experimental results conformed to the theoretical dielectric func-

tion of composites based on elongated carbon nanotubes incorporated in a polymeric ma-

trix. For the composites with a broad range distribution of filler length, the dielectric con-

stant is given by:
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where m is matrix dielectric constant, plasma frequency of the metal mnep /4 2 , n

and m are electron density and mass, respectively;  the damping constant, f(x) distribution

function of the nanotube lengths (with a different resonant frequency for a given length).

Assuming that the distribution is uniform, e.g. f(x)=p/(xmax-xmin) equation (2.6) is given by:

2

2( ) ln( )
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x ip
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(2.7)

where xmax and xmin are the maximum and minimum values of lengths x in the size distribu-

tion, p is a filler concentration.

Various studies have shown that the complex permittivity of the CNT/polymer systems

reaches high values in the vicinity of the percolation threshold. Even small weight percent-

age additions of the nanotubes to the polymer were found to increase the magnitude of the

permittivity spectra [50,160,161,163-166].

2.3.2 Percolation theory

The percolation theory may be used to describe the structure and properties’ transitions

in the filled polymers. The structure and properties changes of such composites can usually

be referred to the concentration of the filler at which the interconnected clusters of the fill-

ing material reach a well defined threshold. For concentrations above this threshold it can

be seen to be an infinite cluster (formed by filler) that connects two sides of an arbitrarily

large sample. This work is focused on the percolation theory in terms of transition of the

rheological and electrical properties of the CNT/polymer composites.

  Systems composed of an insulating material and a conductive filler experience an insu-

lator-conductor transition at the electrical percolation threshold. The electrical percolation

threshold is the minimal volume fraction of fillers so that a continuing conductive network

exists in the composite. Above this volume fraction, the electrical resistivity of the com-

posite  is  relatively  low.  Below  the  electrical  percolation  threshold,  the  compound  essen-

tially behaves as an insulator. There are different models and theories that define an insula-

tor-conductor transition and a corresponding percolation threshold of the conductive filler

concentration with regard to the DC and AC conductivity [165,167,168].
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The liquid-solid transition of melt polymer composites is described by the rheological

percolation threshold. The viscoeleastic properties significantly change while increasing

the concentrations of the filler within the host material.

 It has been shown, that the rheological percolation threshold may significantly differ

from the electrical one; as a result many studies were focused on these phenomena. Fun-

damentally, polymer chain immobility and the distance between neighboring nanotubes

determine the rheological and electrical percolation threshold, respectively [168-172].

 The rheological and electrical percolation thresholds of CNT-based polymeric com-

posites and differences between them are described below.

2.3.2.1 Electrical percolation threshold of CNT/polymer composites

The compositions of different materials have, in the past, been of great significance

and attract a great deal of interest in the physics. Various properties can be attained by the

formation of hybrid systems. The presence of conductive fillers like CNTs within an insu-

lating matrix material alters the electric properties of the composite [49,94].  The compos-

ite becomes conductive above a critical value – percolation threshold that defines the insu-

lator-conductor transition. The electrical percolation threshold depends on many factors

including the size and shape of the filler, matrix properties, preparation method, filler

properties, dispersion of the filler within matrix, interaction between compounds etc. A

high aspect ratio and a good dispersion of CNTs in a matrix enable percolation at  a very

low weight fraction of nanotubes.

While the effective medium theory refers to the composites’ dielectric properties be-

low or in the vicinity of the electrical percolation threshold, where the system remains in-

sulating; the electrical percolation theories concern systems with filler concentrations

above the electrical percolation threshold. In the classical electrical percolation theory, the

relationship between the composite direct current (DC) conductivity DC and the concentra-

tion  (p) above the percolation threshold (pc) can be described by a scaling law

[94,165,167]:

0 ( )t
DC Cp p     for p > pc (2.8)

where 0 is a constant parameter and t the critical exponent that is dependent on the dimen-

sion of the lattice. According to the percolation theory, a theoretical value of t 2.0 for a

percolation network in three dimensions was estimated [165,167].  Value  of  the  critical
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exponent t obtained by fitting a power law relation to the experimental data was shown to

lay in the range of 1.1 - 3.1 [49,94,165,167].

In the percolation theory 0 should approach the conductivity of the filler (CNTs) by

itself. However, there is the contact resistance between CNTs or their clusters in the sys-

tem, which decreases the effective conductivity of the CNTs. Moreover, in CNT/polymer

composites, conducting nanotubes are separated by insulating polymers that act as a poten-

tial barrier, so that it is likely that the electrical conductivity is limited by hopping and/or

tunneling of the charge carriers between conductive nanotubes. However, the tunneling

and hopping is temperature-dependent. This behavior is described by the fluctuation in-

duced tunneling model which takes into the account tunneling through potential barriers

due to the local temperatures fluctuations [94,167]:

0 1 0exp[ /( )]DC T T T (2.9)

where T1 represents the energy required for an electron to cross the insulator gap between

conductive clusters and T0 is the temperature above which the thermal activated conduction

over the barrier begins to occur.

 The dielectric properties of the composites are also characterized by means of the dy-

namic dielectric spectroscopy. For the frequency dependent AC conductivity * and  the

real part of the permittivity ’ power law equations are given by [165]:

*( ) s (2.10)

 '( ) u (2.11)

where s and u denote scaling exponents (in range of 0 - 1), which in vicinity of the percola-

tion threshold are related to each other: s + u=1.

The relation between the frequency dependent AC complex conductivity * of a com-

posite  system  and  the  filler  concentration  above  the  percolation  threshold  is  given  by

power law equation:

0( ) ( )t
Cp p (2.12)

where p is the concentration of conducting filler for p>pc, 0 is a constant parameter, t is

critical exponent. This relation is valid for low frequency AC conductivity ( 0) at which

AC approaches the DC conductivity value. Below critical frequency AC becomes fre-

quency independent which refers to DC.
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In this study frequency dependent dielectric spectroscopy was used in order to charac-

terize electrical properties of the CNT/polymer composites. The experimental data were

fitted to the power law equations presented above (equations (2.10), (2.11), and (2.12)).

From the fitting curves the electrical percolation threshold and critical exponents were ob-

tained.

Numerous studies were conducted on the evaluation of the electrical percolation

threshold of CNT/polymer systems. Depending on the functionalization, exfoliation and

dispersion of CNTs, composite processing, properties of components etc., different values

of pc were obtained ranging from 0.005 up to 4 wt% [49-51,151,152,165,167,173,174]

(Table 4.4).

2.3.2.2 Rheological percolation threshold of CNT/polymer composites

Transition from viscoeleastic properties exhibiting liquid-like characteristics to

pseudo-solid-like behavior can be expressed by the rheological percolation threshold. To

determine the rheological percolation threshold of CNTs/polymer composites, the relations

between rheological quantities and the concentration of the filler in a medium are drawn

into two modified power law equations [92,169,171,172]:

( )a
cm m (2.13)

' ( )t
cG m m (2.14)

where,  is the complex viscosity, G’ the elastic (storage) modulus, m CNTs’ loading, mc

the rheological percolation threshold, a and t are the critical exponents, that are dependent

on the oscillatory shear frequency. The percolation theory predicts a=t 2 in three dimen-

sions; however as it is explained in the next paragraph, the rheological percolation thresh-

old does not relate to the geometrical percolation threshold (where the physical contact be-

tween particles is assumed). Thus, this fitting parameter may significantly vary from the

expected theoretical value.

In percolated systems one can observe a drastic change of the storage modulus and viscos-

ity at a fixed shear frequency for a given concentration of the filler. This indicates that the

CNT/polymer composite reaches a rheological percolation threshold at which the nano-

tubes block the motion of the polymer molecules.

The rheological percolation threshold has also been shown to be temperature depend-

ent, which is in contrast to the assumption that the liquid-solid transition originates only
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from the network formation of the filler [169]. This reveals, that rheology reflects a com-

bined network of the polymer chains and nanotubes, not only the interconnection between

CNTs. The entangled nanotube-polymer network dominates the rheological properties of

the composites [92].

The experimental data from the rheological investigation of the CNT/polymer compos-

ites obtained in this study has been fitted to the power law equations (2.13) and (2.14). The

rheological percolation threshold and critical exponents have been calculated.

2.3.2.3 Differences between rheological and electrical percolation thresholds

  There are essential differences between electrical and rheological percolation thresh-

olds, which are basically related to the nanotube-nanotube distances and polymer-nanotube

interactions. It is assumed that for the nanocomposite to reach the electrical percolation

threshold and therefore be electrically conductive, direct connection and overlapping of the

CNTs is not necessary – nanotubes do not need to physically touch each other. Nanotubes

can just be close enough to allow for a hopping/tunneling electron effect; these mecha-

nisms require the CNT-CNT distance to be less than 5 nm [172]. However, CNTs are of-

ten functionalized with different surfactants, polymers, and bio-species; in composite sys-

tem  CNTs  are  also  coated  with  a  layer  of  an  insulating  polymer.  All  of  this  reduces  the

quality and quantity of electrical contacts between the nanotubes, and also diminishes the

tunneling effect; but it does not affect the rheological percolation. It must be noted that in

the batch of synthesized carbon nanotubes, there are always CNTs with various electrical

properties including semiconductors and nanotubes with surface defects (e.g. caused by

functionalization). Such CNTs do not contribute significantly to the electrical conductivity.

As a result, a higher volume fraction of the CNTs’ filler is needed to achieve electrical per-

colation threshold in comparison to the rheological percolation [92,170,172]. The

rheological percolation refers to the system of interconnected polymer chains and carbon

nanotubes. Therefore the distance between nanotubes must be smaller than the average ra-

dius of gyration of polymer chains. The average radius of gyration of polymer chains in the

melt state is estimated to be more than 10 nm [172]. To form the rheological percolating

system, nanotubes can be linked by random coils of polymer chains, which consequently

impede the polymer chains’ mobility. Thus, the CNT-CNT distance required for the

rheological percolation threshold is longer than that for the electrical percolation threshold

(Figure 2.3). Therefore, a lower volume fraction of nanotubes can restrict polymer motion
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in contrast to the higher volume fraction, which is required to form a conductive network

throughout the matrix [168,169].

In general, the values of the rheological and electrical percolation thresholds of CNT-

based nanocomposites are sensitive to:

the electrical and mechanical properties of CNTs,

polymer type (radius of gyration, molecular weight, properties),

interfacial properties between matrix and filler,

aspect ratio of CNTs,

homogenous dispersion of CNTs within polymer matrix,

efficient exfoliation of bundles of nanotubes (functionalization),

filler orientation (it reduces tube-tube interactions).

Figure 2.3 Schematic of CNTs/polymer nanocomposite with isotropic orientation of nanotubes. At
low concentration of CNTs (left), the rheological and electrical properties of the composite are
comparable to those of the host matrix. Rheological percolation threshold takes place when the dis-
tance between nanotubes is comparable to the average radius of gyration of the polymer (center).
Electrical percolation threshold (right) is observed when nanotubes are sufficiently close to each
other to form a percolating conductive path [172].
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Electrical
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CHAPTER III

SAMPLE PREPARATION AND
INVESTIGATION METHODS

3.1 Materials and samples

Multiwall carbon nanotubes were obtained from NanoLab Inc., synthesized by chemi-

cal-vapor deposition in a tube furnace with flowing acetylene gas as the carbon source.

Alumina nanoparticles, coated with iron catalyst, were used as seeds for the CNT growth.

Multiwall carbon nanotubes with “hollow” and “bamboo” morphologies (Figure 2.2) with

a diameter in the range of 15 - 45 nm, lengths between 1 – 20 m, and purities of 95 %,

were used in this study. The chemicals that have been used in the functionalization proc-

esses and composite fabrications are described in the text below.

3.1.1 Functionalization and dispersion of MWNTs

Various methods of functionalization of multiwall carbon nanotubes were used in or-

der  to  achieve  a  good  level  of  exfoliation  of  the  bundles  and  agglomerations  of  CNTs.

Since chemical modification of CNTs is crucial for obtaining uniform dispersions and a

high stability of nanotubes in organic or aqueous solvents, both covalent and non-covalent

functionalizations of the surface of MWNTs were introduced.

3.1.1.1 Adsorption of surfactant

Nanosperse AQ (NaAQ) aqueous dispersant obtained from NanoLab Inc. was utilized

as an agent for the functionalization of carbon nanotubes (www.nano-lab.com). NaAQ is a

http://www.nano-lab.com).
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specially formulated surfactant for creating dispersions of multiwall carbon nanotubes in

aqueous solvents (MWNT-NaAQ).

NaAQ was used to disperse the MWNTs in pure water (Milli-Q, resistivity 18.2 M );

typically: 0.01 g MWNTs and 0.02 g NaAQ in 20 ml of water. The mixture was treated for

0.5 – 3 h in an ultrasonic bath (200 W).  To eliminate non-dispersed agglomerations of

MWNTs, the sample was centrifuged three times (1157g, 20 min.) and the supernatant was

taken. To remove excess surfactant from the solution, the samples were again centrifuged

at 4629g for 2 h; the sediment was then taken and re-dispersed in 20 ml of water by treat-

ment in an ultrasonic bath (200 W, 60 min.). The process was repeated three times. Such

non-covalent functionalization results in the presence of a negative charge on the surface

of carbon nanotubes, which makes the suspensions stable for months [175].

3.1.1.2 Polymer wrapping

MWNTs were non-covalently functionalized by a polymer wrapping method with

poly(allylamine hydrochloride) (PAH) [176,177]. PAH is a positively charged polyelec-

trolyte (PE) (Figure 3.1).

CNTs (50 mg) were dispersed in a 0.5 wt% PAH (Sigma-Aldrich, Mw=70 000) salt

solution (0.5 M NaCl, 500 ml) and sonicated for 5 - 10 h. Excess polymer was removed by

centrifugation (18514g, 90 min.) and the sediment was washed with water (40 ml added to

50 ml plastic tubes); this process was repeated five times. A final residual black solid was

re-dispersed in water (500 ml) by ultrasonication (200 W, 120 min.), forming a stable, ho-

mogenous suspension of nanotubes. The polymer chain is non-covalently adsorbed around

carbon nanotubes due to van der Waals interactions, mechanical wrapping and anchoring.

The charged amine functionalities on the MWNTs surface ensure good separation and sta-

bility due to the electrostatic interactions (repulsions) in aqueous solution.

Figure 3.1 Schematic presentation of poly(allylamine hydrochloride)

PAH-modified CNTs (MWNT-PAH) were further coated with another oppositely

charged polyelectrolyte (polyanion) such as: poly(styrenesulfonate) sodium salt (PSS,

[NH3]
- n

+
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Sigma-Aldrich, Mw=70 000) or polyacrylic acid (PAA, Sigma-Aldrich, Mw=450 000).

Subsequently, different polycations (e.g. PAH, Poly(diallydimethyl-ammonium chloride)

(PDDA, Sigma-Aldrich, Mw=100 000), or polyethyleneimine (PEI, Sigma-Aldrich,

Mw=70 000)) were deposited again, forming a multi-layered structure of polymers on the

surface of the CNTs.

In addition, it was possible to transfer PAH modified carbon nanotubes to organic sol-

vents. First, a 100 ml aqueous suspension of CNTs was precipitated by centrifugation

(18514g, 90 min.) and re-dispersed in 100 ml of ethanol (EtOH) three times. In the final

centrifugation step (18514g, 90 min.), the sediment of PAH functionalized carbon nano-

tubes was transferred into an organic solvent (e.g. chloroform, hexane) and re-dispersed by

a short treatment in an ultrasonic bath (200 W, 30 min.). Due to the branched nature of

PAH, the presence of this polymer on the surface of CNTs allows the preparation of ho-

mogenous and stable dispersions. CNT-PAH suspensions in chloroform remain stable for

weeks.

The  same  protocol  was  employed  for  the  wrapping  of  CNTs  with  PDDA  (Sigma-

Aldrich, Mw=100 000) and PSS (Sigma-Aldrich, Mw=70 000) polyelectrolytes (MWNT-

PDDA, MWNT-PSS). The key advantage of this method is that the bonding symmetry of

CNTs can be preserved and no defects are introduced to the structure.

3.1.1.3 Oxidation with acids

Carbon nanotubes (100 mg) were oxidized with a mixture of sulfuric and nitric acids

(1:3 v/v, 200 ml), (H2SO4: Sigma-Aldrich, >95 %; HNO3: Sigma-Aldrich, >70 %).

MWNTs were suspended in this solution followed by sonication (ultrasonic bath, 200 W)

for 4 h, and left aside for 20 h. Excess concentrated acid was removed by centrifugation

(18514g, 60 min.), and the resulting black solid sediment was washed thoroughly with pure

water (40 ml of water added to 50 ml plastic tubes); this process was repeated five times.

Finally, the nanotubes were re-dispersed in 500 ml of water by a short treatment in ultra-

sonic bath (200 W, 30 min.). Carboxylic, keto, aldehyde, and alcoholic groups are formed

this way on the sides and caps of the carbon nanotubes. Oxidation disrupts the  bonding

symmetry of the sp2 hybridize carbon atoms and therefore leads to numerous side defects

along the entire length of CNTs. Oxidized CNTs (carboxylic groups are dominant, there-

fore the CNT-COOH abbreviation is used to refer to oxidized nanotubes) remain stable in

aqueous solvent for months [175].
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3.1.1.4 Modification of oxidized side-walls

The oxidized CNTs can be further modified by covalent functionalization with various

chemical groups. In this study, oxidized MWNTs (200 mg) were stirred in 100 ml of thio-

nyl chloride (SOCl2, Sigma-Aldrich, >99 %) at 70 °C for 24 h in order to convert surface-

bound carboxylic acid groups into acyl chloride groups. After centrifugation (18514g,

60 min.), the remaining solid was rinsed with 100 ml of anhydrous tetrahydrofuran (THF,

Carl-Roth, >99.9 %) and dried under vacuum at room temperature. A mixture of the result-

ing  MWNTs and  3  g  of  octadecylamine  (ODA,  Sigma-Aldrich,  >99  %)  was  then  stirred

under N2 atmosphere  at  80  °C  (above  melting  point  of  ODA)  for  96  h.  After  cooling  to

room temperature, the excess of ODA was removed by intensive washings with 100 ml of

ethanol by subsequent centrifugation (six times, 18514g, 60 min.) and re-dispersion. A dry

black solid of such functionalized MWNTs (MWNT-ODA) was dispersed in 200 ml of

chloroform by sonication in an ultrasonic bath (200 W, 120 min.), resulting in a stable sus-

pension [176]. This functionalization is shown schematically in Figure 3.2.

Figure 3.2 Schematic of covalent functionalization of the oxidized CNTs with ODA.

3.1.1.5 Silica coating of MWNTs

The surface of multiwall carbon nanotubes was modified by uniform coating with sili-

con dioxide shell. The coating steps were as follows: A MWNT-PAH water dispersion (see

3.1.1.2) was transferred to a silica sol (mixture of tetraethoxysilane (TEOS, Sigma-

Aldrich), H2O, and  EtOH with  mass  ratio  2:1:4)  in  a  5:1  volume ratio  (400  ml  :  80  ml).

The mixture was sonicated (2 h, 200 W) and then left aside overnight at room temperature.

After 12 h, the mixture was centrifuged (18514g, 30 min.), the supernatant removed and

the carbon nanotubes washed with 450 ml of ethanol and centrifuged again. The sediment

was re-dispersed in a solution of ammonia in ethanol (4.2 vol.% ammonia (28 wt% aque-
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ous solution) in ethanol, 450 ml of EtOH). Immediately after this, 5 ml of TEOS solution

(10 vol.% in ethanol) was added under stirring. The reaction mixture was stirred for an-

other 8 h and sonicated (200 W) from time to time (every 20 - 30 min.). Finally, the CNTs

were washed with 400 ml of ethanol and again re-dispersed in an ultrasonic bath (200 W,

15 min.) [176,177].

Silica coated MWNTs (MWNT@SiO2) form stable suspensions in EtOH and water. In

order  to  modify  the  surface  properties  of  the  silica  shell,  an  ethanolic  solution  of  silica

coated CNTs was mixed and stirred with 3-aminopropyl trimethoxysilane (3APTMS,

Sigma-Aldrich, 97 %) or phenyltrimethoxysilane (PhTMS, Sigma-Aldrich, 97 %) (typi-

cally,  to  20  ml  of  MWNT@SiO2 solution  0.1  ml  of  3AMPTMS  or  PhTMS).  The  un-

reacted components were removed by rinsing in 20 ml of chloroform.

3.1.2 Composite preparation

Functionalized carbon nanotubes were incorporated into polymers utilizing different

approaches including layer-by-layer assembly and solution processing. Since various ex-

perimental setups used in this study require different samples (in size and shape, assembled

on different substrates or free-standing films, solution dispersions or solid materials), the

CNTs/polymer composites were suitably processed and prepared to meet all necessary ex-

perimental conditions and requirements of applied investigation methods. A general de-

scription of the preparation techniques that have been used in this study is presented below

and summarized in Table 3.1.

3.1.2.1 Layer-by-layer assembly

The LBL composites were formed on solid substrates by sequential deposition of op-

positely charged polyelectrolytes and functionalized MWNTs [175,178]. Adsorptions of

the materials on glass slides or silicon wafer substrates were carried out at room tempera-

ture in open beakers containing aqueous dispersions of components. Substrates were

cleaned in EtOH, supported by ultrasonic bath (200 W, 30 min.). The samples were pre-

pared either manually by cyclic immersion in polyelectrolytes and MWNTs solutions or by

automated processing using an automatic dipping machine (Dipping Robot DR3, Kirstein

GmbH, Germany). After every layer deposition, samples were rinsed thoroughly with wa-

ter. In a typical experiment, a deposition time of 10 min. was used for the polyelectrolytes,
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20 - 30 min. for carbon nanotubes and 3 min. for rinsing in water. 25 ml beakers were used

with 20 ml of solutions.

Table 3.1 Summary of the different composites prepared in this study and corresponding experi-
mental methods employed to characterize their properties. TT – tensile test, NI – nanoindentation,
RH – rheometry, DS – dielectric spectroscopy, MC – structural characterization with atomic force
or electron microscopes, OS – optical spectroscopy, EL – ellipsometry.

Characterization Methods
Sample Description

TT NI RH DS MC OS EL

LBL assembly:

MWNT-PAH/PSS film on silicon wafer X X X

MWNT-COOH/PAH film on silicon wafer X X X

MWNT-NaAQ/PEI free-standing film X X X X

MWNT-COOH/PEI free-standing film X X X X

PEI/PAA free-standing film X X X X

PEI/PSS film on silicon wafer X X

PSS/PAH film on silicon wafer X X

Solution processed
composites:

MWNT/PMMA spin-coated on silicon
wafer X X

MWNT@SiO2/PMMA spin-coated on silicon
wafer X X

MWNT@SiO2/PMMA-f free-standing film X

MWNT-COOH/PEI viscous fluid X

MWNT-COOH/PDDA pressed disc-shaped
pellets X X
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In this work diverse morphologies and combinations of polyelectrolytes and modified

multiwall carbon nanotubes were used. Typically, composites were fabricated with the fol-

lowing structures: [(PE+/MWNT-)5(PE+/PE-)]n and  [(PE-/MWNT+)5(PE-/PE+)]n, where PE+

and PE- are polycations and polyanions, respectively; MWNT+ and MWNT- are functional-

ized nanotubes with negative and positive functionalities on the surface, respectively; n is

an integer that indicates a number of cycles. Different structures containing 100 bi-layers

and more (n 20) were fabricated (the term bi-layer does not imply real structural proper-

ties of the produced films, but refers to the CNT/PE layers) [175].

LBL composites were additionally cross-linked in order to introduce bonds between

and within polyelectrolyte chains and CNTs. The composites were cross-linked in two

ways:  by  heating  and  chemical  reactions.  After  deposition  of  every  five  cycles

(PE/MWNT)5, the films were heated up to 120 °C for 30 min. The films were also cross-

linked chemically with glutaraldehyde (GA, OCHCH2CH2CH2CHO, Sigma-Aldrich)

0.5 wt% solution in H2O  for  2  h.  After  this  treatment  the  film  was  rinsed  three  times  in

pure water in order to remove un-reacted glutaraldehyde.

In order to obtain free-standing films, the LBL composites were peeled off from the

substrate by chemical delamination. The samples were immersed into 1 % aqueous hydro-

fluoric acid (HF, Sigma-Aldrich, 48 wt%) for 1 - 2 min., and then washed in acetone and

pure water; this resulted in a separation of the multilayer composites from glass. Dry free-

standing films remained stable and could be cut to a desired size or shape.

LBL CNT/polymer composites were investigated in terms of their mechanical proper-

ties. Additionally, the polymer compositions were fabricated and used as reference sam-

ples. Different procedures and structures were engaged to prepare suitable samples for a

given experimental setup (Table 3.1):

MWNT-PAH/PSS: The sequence of [(PSS/MWNT-PAH)5(PSS/PAH)]n was employed

to produce this LBL composite. Solutions were prepared as follows: 0.5 wt% PSS

(Mw=70 000) and PAH (Mw=70 000) salt solutions (0.5 M NaCl) were at pH=6.5;

MWNT-PAH water solutions were at pH=6.5. Samples were deposited on silicon wafers

(1 x 2 cm2). Typically, 200 - 300 deposition cycles were used, resulting in thicknesses of

the samples greater than 3 m.

MWNT-COOH/PAH: The compositions of [(PAH/MWNT-COOH)5(PAH/PSS)]n were

fabricated on the silicon wafer substrate (1 x 2 cm2). 0.5 wt% PSS (Mw=70 000) and PAH

(Mw=70 000) salt solutions (0.5 M NaCl) were at pH=6.5; MWNT-COOH water solution
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was at pH=6.5. Thicknesses of the samples greater than 3 m were obtained after 250 - 300

deposition cycles.

MWNT-NaAQ/PEI: LBL composites have been prepared on glass substrates

(2.5 x 5 cm2) with a layer sequence of [(PEI/MWNT-NaAQ)5(PEI/PAA)]n. The 1 wt% PEI

(Mw=70 000) solution was at pH=8.5; 1 wt% PAA (Mw=450 000) solution was at pH=6;

and MWNT-NaAQ solution was at pH=6.5. After the deposition of around 100 - 150 num-

bers of bi-layers (n=20-30), the films were peeled off from the substrate in order to achieve

free-standing composites. Two different morphologies of the multiwall carbon nanotubes

were used: “hollow” and “bamboo” (Figure 2.2). The final thicknesses of free-standing

films were estimated to be in the range of 1.5 - 2 µm.

MWNT-COOH/PEI: LBL assembly of polyelectrolytes and oxidized multiwall carbon

nanotubes  with  the  sequence  of  [(PEI/MWNT-COOH)5(PEI/PAA)]n were produced on

glass substrates (2.5 x 5 cm2). 1 wt% PEI (Mw=70 000) solution was at pH=8.5; 1 wt%

PAA (Mw=450 000) solution was at pH=6; and MWNT-COOH solution was at pH=6.5.

After deposition of 100 - 150 bi-layers of PAH/MWNT-COOH, the composites were de-

laminated from the substrate following the previously described procedure. Composites

with thicknesses of 1.5 – 2 µm were obtained this way.

PEI/PAA: LBL assembly of PEI and PAA polyelectrolytes. 1 wt% PEI (Mw=70 000)

solutions were at pH=8.5; 1 wt% PAA (Mw=450 000) solution was at pH=6. Films of

[PEI/PAA]n with 150 - 200 bi-layers were produced on the glass substrate (2.5 x 5 cm2).

The composite was peeled off from the substrate in order to achieve a free standing film.

PEI/PSS and PSS/PAH:  Layer-by-Layer  compositions  of  polymers  [PEI/PSS]n and

[PSS/PAH]n,  respectively.  0.5  wt% PEI  (Mw=70 000)  salt  solution  (0.5  M NaCl)  was  at

pH=8.5; 0.5 wt% PSS (Mw=70 000) and PAH (Mw=70 000) salt solutions (0.5 M NaCl)

were at pH=6.5. Films were prepared on silicon wafers (1 x 2 cm2) with thicknesses greater

than 3 m.

3.1.2.2 Solution processing

Carbon nanotube dispersions were mixed together with the polymers in suitable sol-

vents. To form a composite, the solvents were then evaporated from the mixture. The for-

mation of a homogeneous mixture was supported by intensive ultrasonic agitation and mix-

ing. Following MWNT-based composites were obtained utilizing this method (Table 3.1):

MWNT/PMMA: An appropriate amount of poly(methyl methacrylate) (PMMA, Carl-

Roth, Mw=320 000) was added to well dispersed MWNT-ODA in chloroform in order to
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achieve a desired weight concentration of CNT with respect to PMMA. The final mixture

was then thoroughly mixed and sonicated (200 W) until a stable, black-colored chloroform

solution  of  MWNT/PMMA  composite  was  formed.  The  MWNT/PMMA  samples  were

prepared with 1, 2, 3, 4 and 5 wt% of MWNT.

MWNT@SiO2/PMMA: To a chloroform solution of the MWNT@SiO2 poly(methyl

methacrylate) (PMMA, Carl-Roth, Mw=320 000) was added. This mixture was further

homogenized in an ultrasonic bath (200 W) and mixed until a uniform blend was obtained.

Different MWNT@SiO2/PMMA composites were prepared with 1, 2, 3, 4 and 5 wt% of

CNTs in a polymer matrix.

Chloroform dispersions of both MWNT/PMMA and MWNT@SiO2/PMMA composites

were spin-coated on silicon wafers. The thickness of the films was controlled by altering

the concentration of composites in the solution, or by the speed of spinning. In general,

thin films with a thickness greater than 3 m were formed at speeds ranging from

1200 - 2500 rpm in 25 s, followed by drying in an oven (100 °C, 3 min.). Furthermore, the

samples were left in an oven at 70 °C for a few days (7 – 9 days) to ensure a full solvent

evaporation [176].

MWNT@SiO2/PMMA-f:  A  1  wt%  sample  of  MWNT@SiO2/PMMA  was  cast  into  a

petri dish that was wrapped with aluminum foil. The sample was then dried (oven, 70 °C,

3 days) and the composite with a thickness of around 1 mm was peeled off from the alumi-

num foil, resulting in a uniform free-standing film.

MWNT-COOH/PEI: Composites composed of MWNT-COOH and high molecular

weight liquid cationic polyethylenimine (H(NHCH2CH2)nNH2, PEI, Sigma-Aldrich,

Mw=25 000, water-free) were fabricated. An aqueous dispersion of nanotubes was mixed

with a suitable amount of the PEI (in order to achieve the desired concentration of nano-

tubes with respect to polymer). The samples were mixed and ultrasonicated (200 W,

60 min.) until uniform and stable dispersions were obtained. The solvent was removed

from the composite by subsequent evaporation in low pressure atmosphere (10 mbar), at

room temperature. After removal of the residual water from the sample, a viscous black

fluid was formed. In general, MWNT-COOH/PEI composites with concentrations ranging

from 0.5 to 8 wt% were produced.

MWNT-COOH/PDDA: Oxidized carbon nanotubes were dispersed in water and an ap-

propriate amount of PDDA (Sigma-Aldrich, Mw=350 000) was added in order to achieve

the desired weight concentrations of the MWNTs in the polymer matrix. The composites

were thoroughly mixed mechanically and sonicated (200 W) until uniform and stable dis-
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persions were obtained. The samples were then left for two weeks in an oven at 100 °C in

order to efficiently evaporate water from the composite. Dry samples were grinded using

an agate mortar and pestle, the powder product was again left in the oven for two days at

100 °C. The composites were then formed to disc-shaped pellets with diameter of 10 mm

utilizing the SPECAC hot-press system at room temperature and a pressure of 2 kPa.

Composite tablets with different nanotube concentrations ranging from 0.5 to 10 wt% were

fabricated.

3.1.2.3 CNT/NPs heterostructures

Semiconductor nanocrystals (NCs) were covalently attached to the functionalized

MWNTs and  MWNT@SiO2 [179].  In  a  typical  experiment,  15  µL of  8  µM solution  of

QDs was added to 2 ml dispersion of PAH functionalized MWNTs. The reaction mixture

was briefly sonicated (200 W, 10 min.) and then stirred for 15 min. [177]. Excess parti-

cles were removed by subsequent centrifugation (1157g, 15 min) and re-dispersion of

sediment  in  5  ml  of  chloroform.  Due  to  the  presence  of  the  amine  functionalities  on  the

surface of CNTs, various colloidal nanoparticles have been attached covalently to

MWNTs. An analogous approach was used for the connection of QDs to silica coated mul-

tiwall carbon nanotubes. The quantum dots were covalently attached to the amine groups

of  3APTMS  functionalized  silica  coated  MWNTs  (see  3.1.1.5).  As  a  result,  the  uniform

coating of QDs on an electrically insulated (SiO2) surface of MWNTs took place [177].

The monodisperse CdSe cores used in this study were synthesized by Joel van Embden

[180]. The over-coating of these cores with both CdS and ZnS was undertaken using an

adaptation of the SILAR technique (successive ion layer adsorption and reaction).

3.2 Experimental techniques

The structural, mechanical, electrical, and optical properties of the MWNT-based

composites were characterized utilizing various experimental techniques including tensile

tests, nanoindentation, rheology, dielectric spectroscopy, electron/atomic microscopes, op-

tical spectroscopy, and ellipsometry. The general description of the experimental setups

used in this study, as well as conditions and parameters of each experiment are the purpose

of the following section.
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3.2.1 Tensile tests

The mechanical properties of MWNT composites were measured using a servo-

controlled electromechanical testing device (100R Test Resources, Shakopee, MN, USA).

In this test the sample is pulled until fracture. The load is applied in the axial direction (in-

plane) of the samples. The composites with size of 2.0 x 4.0 cm2 were stretched at a con-

stant load speed of 0.2 mm/min until the specimen cracked. Load F and strain  were re-

corded by a computer connected to the control unit of the tensile apparatus. From the

stress-strain curve the tensile strength of the samples was estimated and the elastic

modulus calculated. At least three independent samples of particular composite were inves-

tigated.

3.2.2 Nanoindentation

Nanoindentation experiments were carried out using an atomic force microscope

(AFM) (NanoScope IV Digital Instruments) with a conjugated TriboScope Nanomechani-

cal Test Instrument from Hysitron Inc. In this test, hardness and elastic modulus were cal-

culated.  A typical  indentation  test  was  conducted  with  diamond conical  or  Berkovich  in-

denters, using a triangular load profile with an indentation force ranging from 25 to

1500 N and a loading/unloading rate of 40 N/s. In general, indents with a contact depth

ranging from 80 to 500 nm were performed. To minimize the effect of the material’s creep

at the maximum load a hold time of 20 s was introduced. Prior to the indentation, a tip was

used for surface scanning to find reasonably smooth areas of the tested materials. The in-

dentation  depth  was  maintained  to  be  less  than  15  %  of  the  film’s  thickness  in  order  to

avoid or at least minimize substrate contributions to the measured nanomechanical proper-

ties. The average roughness (Ra)  of  the  samples  was  estimated  to  be  in  the  range  of

2  25 nm, which is low enough to avoid major influence of the roughness on the evalua-

tion of the hardness H and the effective elastic modulus Er. At least five indents were per-

formed for each maximum applied load throughout the whole area of the sample. The re-

sults obtained under the same maximum load were averaged; mean and standard deviations

of the measured quantities for all samples were calculated [176].

The tip calibration procedure has to be employed to determine the geometry of the in-

denter tip.  For this purpose a series of indentations at different contact depths were per-

formed in a sample with a known elastic modulus. In this study, the tip calibration was car-
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ried out on poly(methyl methacrylate) with well defined mechanical properties (elastic

modulus of 3.6 GPa) [176,181].

3.2.3 Rheometry

Rheological measurements were carried out in an oscillatory shear mode utilizing the

RheoStress RS600 rheometer (Haake) with a temperature controller (Phoenix RS600). The

cone and plate geometry (Ti, 35 mm diameter, 2º cone angle) was used with a 0.105 mm

gap. All experiments were performed at a constant temperature of 25 °C. Dynamic oscilla-

tory experiments were carried out under controlled stress (CS) and controlled strain (CD)

modes. In CD experiments, a frequency sweep was performed at constant strain, in CS

tests constant stress was used. Frequency sweeps between 0.1 - 100 Hz were performed at

low strain (0.1 - 2 %) or stress (10 - 500 Pa), which were shown to be in the linear elastic

range of the tested samples. To verify the linear viscoelastic regime for every sample, dy-

namic strain sweeps were performed at a constant frequency. In a linear viscoelastic region

the elastic (storage) G’ and loss G’’ moduli were independent of the strain amplitude 0.

The results were reproducible after every frequency sweep, indicating that there is no chain

degradation. Samples were left for 15 min. prior to the measurements in order to reach the

temperature equilibrium. The complex viscosity *, storage modulus G’, and loss modulus

G’’ were calculated and recorded as a function of the oscillation frequency.

3.2.4 Dielectric spectroscopy

AC  dielectric  spectroscopy  was  performed  with  a  dielectric  spectrometer  BDS-80

(Novocontrol) equipped with a Hewlett Packard 4291B probe head operating in the fre-

quency range of 106 to 1.8·109 Hz.  Samples  with  a  diameter  of  10  mm  and  thicknesses

ranging from 1 - 4 mm were placed in the holder between two parallel gold-plated elec-

trodes (10 mm in diameter). All experiments were carried out at a constant temperature of

25 °C – the sample holder was placed in a cryostat that enables the control of the tempera-

tures with an accuracy of 0.1 °C. Prior to each test, a 30 min. time interval was applied in

order to achieve temperature equilibrium. Novocontrol WinDETA software was used for

the  evaluation  of  the  electrical  properties  of  the  samples.  Complex  permittivity  and  con-

ductivity were calculated and plotted as a function of the frequency.
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3.2.5 Structural characterization (TEM, SEM, AFM)

Structural properties of multiwall carbon nanotubes, their heterostructures, and com-

posites were characterized by means of atomic force and electron microscopes.

Atomic force microscope (AFM) investigations were performed, in air, by using a

Nanoscope IV system (Veeco/Digital Instruments, Santa Barbara, California, USA), oper-

ating in the tapping mode.

Scanning electron microscope (SEM) images were taken with a LEO Supra 55, operat-

ing at an acceleration voltage of up to 20 kV (spatial resolution: 1.7 nm at 1 kV, 1nm at

15 kV).

High-resolution transmission electron microscopy (HRTEM) was carried out on a Leo

922A with an acceleration voltage of 200 kV and lattice imaging with 2.9 Å point or 1.9 Å

line resolutions. An attached Oxford X-ray system of TEM was used for Energy Dispersive

X-ray Analysis (EDX) with 136 eV energy resolution.

3.2.6 Ellipsometry

Ellipsometry measurements were taken using an M-44 ellipsometer (J.A. Woollam Co,

Lincoln, NE, USA) set up in a rotating analyzer configuration with a detector array of 44

wavelengths between 428 - 726 nm. The measurements were performed using light of an

Xe arc lamp (with systems of optical and electronic filters). The incident angle onto the

sample is kept fixed at 75°. The WVASE program supplied by J.A. Woollam Co was em-

ployed to determine the thickness of the films with a resolution of a few angstrom. Calibra-

tion was performed on the standard silicon wafer with a well defined layer of silicon diox-

ide.  Ellipsometry was used to determine the thickness of the particular layers of the LBL

structures.

3.2.7 -potential

Electrophoretic mobility of functionalized multiwall carbon nanotubes were measured

using a Malvern Zetasizer 4 operating with a 633 nm He-Ne laser. The mobility is con-

verted into a -potential using the Smoluchowski relation [182]:
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(3.1)

where and are the viscosity and the dielectric constant of the solvent, respectively.

-potential measurements are taken on MWNTs dispersions after further dilution. A stan-

dard 1x1 cm2 cuvette was used in these measurements. -potentials of functionalized

MWNTs with PDDA, PAH, COOH, NaAQ, and PSS were determined.

3.2.8 Optical spectroscopy

UV-vis absorption measurements in the range of 300 - 800 nm were carried out with a

Varian Cary 5000 spectrometer. Dispersions of MNWT/NP heterostructures were investi-

gated in a quartz cuvette. Also, the progress of LBL composite assembled on glass sub-

strates was monitored by UV-vis spectrometry. UV-vis readings were taken after every 5

bilayers of MWNT/PE. The dependence of the adsorption increment on the number of lay-

ers was observed at 550 nm.

Photoluminescence  (PL)  measurements  were  carried  out  by  a  Horiba  Jobin  Yvon

FluoroMax-3 spectrometer. PL spectra of solutions of quantum dots and their heterostruc-

tures with carbon nanotubes were obtained at a suitable excitation wavelength (with ener-

gies above the absorption edge of particular particles). Samples were placed in quartz cu-

vettes (1 cm width).
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CHAPTER IV

RESULTS AND DISCUSSION

4.1 Structural properties of the samples

Prior to the experimental determination of the mechanical, electrical, and optical prop-

erties of MWNT-based composites, the structure and morphology of samples have been

characterized by means of atomic force and electron microscopy. Additionally, UV-vis

spectroscopy, ellipsometry, and  -potential measurements have been employed in order to

achieve a better understanding and control over the fabrication of the composites.

4.1.1 Silica coated MWNTs

The novel method for silica coating of carbon nanotubes presented in this study results

in the formation of a uniform and thick layer of SiO2 on every individual MWNT. A sche-

matic presentation of silica coating is given in Figure 4.1. The key advantage of this tech-

nique is its efficiency and simplicity. TEM investigations confirm that every single nano-

tube in a sample is homogenously coated with a layer of silicon dioxide (Figures 4.2 and

4.3). The method allows coatings in a broad thickness range of SiO2 between 20 nm and

over 100 nm. This can be easily controlled by subsequent addition of TEOS solution to the

CNT@SiO2 (see 3.1.1.5). SEM characterizations also confirm that every single nanotube

has a silica shell (Figure 4.4). The picture demonstrates many MWNT@SiO2 with an aver-

age diameter of 100 nm (pristine non-coated MWNTs are 5 - 35 nm in diameter). Finally,

energy dispersive X-ray analysis (EDX) proves that the obtained heterostructures are com-

posed of carbon, silicon, and oxygen (Figure 4.5). EDX mapping images are selectively

contrasted with the characteristic X-ray radiation emitted by carbon (C), oxygen (O), and

silicon (Si), respectively.
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The functionalization of silica coated nanotubes with 3AMPTMS or PhTMS occurs

through a silanization reaction on the surface of silicon dioxide and results in stable disper-

sions of MWNT@SiO2 in hydrophobic organic solutions (e.g. chloroform).

Figure 4.1  Schematic presentation of silica coating of multiwall carbon nanotubes. The TEM im-
age on the right hand side presents a MWNT coated with silicon dioxide (the image is over-
contrasted in order to expose the core-shell structure).

Figure 4.2 TEM images of the silica coated MWNT (“bamboo”). Right image is over-contrasted in
order to expose the core-shell (MWNT-SiO2) structure.
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Figure 4.3 TEM image of several MWNT@SiO2. The uniform coverage of each individual MWNT
with silica shell can be seen.

Figure 4.4 SEM image of silica coated MWNTs deposited on a substrate. It can be seen that every
carbon nanotube in a sample has a silica shell.

500nm

500nm
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Figure 4.5  EDX mapping of one MWNT@SiO2. The EDX images are contrasted with carbon (C),
oxygen (O), and silicon (Si), respectively.

4.1.2 LBL structures

The LBL assemblies with carbon nanotubes were obtained according to the method

described in chapter (3.1.2.1). In order to perform the cyclic adsorption of the oppositely

charged components, a proper selection of the polyelectrolytes and modified nanotubes is

necessary. The charge of functionalized MWNTs was determined utilizing -potential

measurements. The values of -potentials at pH=6.5 (pH that was established for all

MWNTs aqueous solutions) for particular functionalized CNTs were: MWNT-COOH:

52 mV, MWNT-PAH: +45 mV, MWNT-PDDA: +42 mV, MWNT-PSS: -38 mV, and

MWNT-NaAQ: -49 mV.  The results confirm efficient surface modification of the CNTs

with polyelectrolytes (by polymer wrapping) and indicate the charge of functionalized

nanotubes.

The surface charge and linear charge density of the weak polyelectrolytes (e.g. PAA,

PEI, PAH) depend strongly on the pH of the solution; therefore, the pH of the polymer dis-

persions  was  adjusted  with  0.1  M  HCl  or  0.1  M  NaOH  according  to  the  references

[113,183]. Strong polyelectrolytes (e.g. PSS, PDDA) dissociate completely, independ-

ently on a wide range of pH. The addition of NaCl into the aqueous dispersions of the PEs

changes the ionic strength and leads to the coiling and entangling of chains (e.g. due to

charge screening) that may result in a high interpenetration of the assembled multilayers
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[184]. In this context 0.5 M NaCl solutions were used for the preparation of all polyelec-

trolyte dispersions in this study.

Chemical cross-linking of LBL assemblies with GA results in covalent links (forma-

tion of imines) between amino groups of carbon nanotubes and polyelectrolytes. Modifica-

tion of the LBL films by heating leads to the formation of amide bonds between function-

alities of polyelectrolytes and nanotubes (between amine and carboxylic groups) enhancing

the interfacial interactions between these components [175,178].

Figure 4.6   UV-vis absorbance spectra of the MWNT-NaAQ/PEI LBL composite. The spectra
were taken for a total number of MWNT/PE bi-layers as indicated in the graph (A). (B) shows the
dependence of the absorbance at 550 nm of growing films on a number of absorbed MWNT layers.
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The  growth  of  MWNT/PE  multilayer  films  was  examined  using  UV-vis  absorption

spectroscopy. Figure 4.6 (A) shows typical spectra of the LBL composites after every five

deposition cycles (MWNT/PE)5. The absorption edge of the glass substrate is at 280 nm.

The spectra of MWNT/polymer composites are featureless in the employed wavelength

region; a modest monotonic increase of absorption occurs with decreasing wavelength,

which is characteristic behavior related to the MWNTs in the UV-vis-NIR region [185].

Figure 4.6 (B) shows the dependence of the absorption (at wavelength of 550 nm) on the

number of LBL cycles. The linear increase confirms a reproducible growth of MWNT lay-

ers from cycle to cycle, as every assembling step results in the deposition of essentially the

same amount of nanotubes in the composite. This trend was also confirmed by ellipsomet-

ric measurements of multilayer films prepared on silicon wafers. The results again show a

linear growth of composites with basically similar thicknesses of every MWNT/PEI bi-

layer. Specifically, for films made of MWNT-COOH/PEI, the average thickness of each

bi-layer was measured to be d=13±2 nm; for MWNT-NaAQ/PEI films, d=14±2 nm.

AFM studies on the LBL assemblies of PE and CNTs deposited on silicon wafers re-

veal the presence of well-dispersed and exfoliated carbon nanotubes. Figure 4.7 (A) shows

randomly  orientated  carbon nanotubes,  uniformly  covering  the  entire  surface  of  the  sam-

ple.  Subsequent treatments of films with PE and MWNT layers makes the films rougher,

with interweaved CNTs covered with the polymer (Figure 4.7 (B)). As a consequence, a

porous film, containing voids between layers and bundles of nanotubes was formed. The

image after three assembling steps (Figure 4.7 (B)) confirms the film growth due to the ad-

sorption of the carbon nanotubes in every deposition cycle. The carbon nanotubes appeared

to be interweaved with each other and with the polyelectrolyte chains, forming a reasona-

bly homogeneous structure. These observations are supported by SEM investigation.

Figure 4.8 shows the top-layer of MWNTs after 100 deposition cycles. The picture dis-

plays a large amount of nanotubes covering the entire film. The individual carbon nano-

tubes are interpenetrated, and homogenously dispersed within the polyelectrolyte, without

any sign of phase segregation. Nanotubes are uniformly distributed across the matrix; there

is no clear indication of the preferred orientation of nanotubes or island formation. It is

evident that, as the number of the absorption cycles was increased, an increased layering of

the film was observed.
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Figure 4.7  Tapping mode AFM images of the LBL of a MWNT-NaAQ/PEI composite prepared on
a silicon wafer after various numbers of deposition cycles. One bi-layer of MWNT-NaAQ/PEI (A)
and  three bi-layers of MWNT-NaAQ/PEI (B).

Figure 4.8  SEM image of a MWNT-PAH/PSS composite after 100 deposition cycles.
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Tensile tests were carried out on free-standing LBL composites. Therefore, films were

peeled off from the substrate (see 3.1.2.1). As a result compact, black films were achieved.

Figure 4.9 shows an LBL composite deposited on a glass substrate (A) and a free-standing

composite film after delamination from the substrate (B).

Figure 4.9 Digital camera pictures of MWNT-COOH/PEI composite fabricated on a glass substrate
(A), and its free-standing film after delamination (B).

TEM examinations show the morphology of the multilayer assemblies in cross section.

The composites are compact and fairly homogenous throughout the whole sample

(Figure 4.10). There are some darker inclusions and also a small amount of air pockets,

which basically can be attributed to the deformations created during the preparation of the

cross-sectional sample of the LBL film. The inset in Figure 4.10 shows a magnified part of

the film. Individual multiwall carbon nanotubes can be seen clearly. The MWNTs are

mainly oriented parallel to the substrate, which reflects the layered structure of the films.

The sides of the free-standing film are different in roughness.  As expected, the one that

was attached to the substrate is smoother.

A

B
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Figure 4.10 TEM image of cross section of the free-standing MWNT-COOH/PEI composite. The
inset represents a five times magnified part of the film.

4.1.3 Solution processed composites

Solution mixed composites of MWNTs and polymers (PMMA, PDDA and PEI) (see

3.1.2.2) were found to be relatively homogeneous without any obvious phase segregation

of the components. The mixtures were black and uniform in color, stable for weeks, indi-

cating efficient dispersions of CNTs in polymeric matrices. The solution mixtures of the

compounds remain stable until complete evaporation of the solvents. Only composites of

MWNT@SiO2/PMMA at 5 wt% of nanotubes revealed some phase segregation while

 300 nm
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evaporating  the  solvent  from the  mixture.  This  is  due  to  the  moderate  solubility  of  silica

coated CNTs in chloroform; at higher concentrations particles tend to aggregate during the

evaporation process.

In order to confirm the homogeneity of the composites, samples were investigated by

means of SEM. Various CNT-polymer mixtures were spin coated on the silicon wafers and

subsequently dried in an oven. The SEM investigation confirmed good exfoliation and a

homogeneous distribution of multiwall carbon nanotubes within a polymer matrix.

Figures 4.11 and 4.12 show exemplary images of 3 wt% of CNT@SiO2 in PMMA and

3 wt % of MWNT-ODA in PMMA, respectively. Individual carbon nanotubes are inter-

woven with each other, forming the interconnected network within the host material. In

general, nanotubes are fairly uniformly dispersed across the matrix. There are no obvious

indications of any phase segregation between the CNTs and the polymer. It is confirmed

that functionalization methods employed in this study result in good exfoliation of bundles

of both, MWNTs and MWNT@SiO2.

Figure 4.11 SEM image of the silica coated carbon nanotubes in PMMA (3 wt%) deposited on a
silicon wafer, showing relatively uniform distribution of the filler throughout the polymer.

1 µm
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Figure 4.12 SEM image of MWNT-ODA incorporated into the PMMA (3 wt%) matrix by the solu-
tion mixing technique and deposited on silicon wafer. A relatively good dispersion of nanotubes
can be observed without any obvious phase segregation.

4.1.4 CNT/NPs

The novel and versatile technique for the attachment of nanocrystals to CNTs is intro-

duced in this study (see 3.1.2.3). A schematic presentation of the functionalization of car-

bon nanotubes and the coupling of nanocrystals to the amine functionalities is shown in

Figure 4.13. Different nanocrystals were covalently bonded to PAH-modified MWNTs in a

uniform and controllable manner, independent of their size, charge, or surface properties

(e.g. hydrophilic or hydrophobic). The direct evidence for the conjugation of NCs to func-

tionalized carbon nanotubes was given by the transmission electron microscopy.

Figure 4.14 shows TEM images of diverse nanoparticles conjugated to the surface of

MWNTs. CNTs are homogeneously coated with nanocrystals and no obvious clustering of

the attached species was observed. The density of the nanoparticles can easily be con-

trolled by changing the concentrations of the mixed dispersions of nanotubes and

nanocrystals. The coupling of NCs to CNTs may be performed either in hydrophilic (e.g.

4 µm
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aqueous) or hydrophobic (organic) solvents. This is of major advantage, since both aque-

ous syntheses and organometallic approaches for the fabrication of different nanoparticles

offer various benefits.

Figure 4.13  Schematic presentation of the functionalization of MWNTs with PAH and the cou-
pling of nanoparticles to the amine group functionalities.

Figure 4.15 presents heterostructures of MWNTs and MWNT@SiO2 decorated with

diverse semiconducting nanoparticles: ZnO, CdSe, and CdSe-CdS. Again, TEM pictures

provide evidence for the formation of the homogeneous hybrid systems composed of nano-

tubes and particles. Individual quantum dots are uniformly coupled to the surface of func-

tionalized MWNTs and MWNT@SiO2.

Figure 4.16 displays several CNTs decorated with CdSe-ZnS core-shell semiconduct-

ing nanocrystals. This image clearly indicates that every individual nanotube within the

sample is decorated with nanoparticles.

The technique presented here offers a lot of advantages. In a simple way different NCs

can be homogenously bonded to the carbon nanotubes, therefore heterostructures of vari-

ous compositions and morphologies can be achieved [179]. The formation of the

CNT/NCs composites may take place in many commonly used solvents, since the PAH-

functionalized MWNTs are stable in aqueous and some organic solvents like chloroform,

toluene, and hexane.
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Figure 4.14  TEM images of the MWNTs decorated with: Fe2O3 – reaction performed in H2O (A),
Au in water (B), and FePt in toluene (C).
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Figure 4.15  TEM images of the MWNT and MWNT@SiO2 coated with: ZnO reaction performed
in EtOH (A) and (B); CdSe in chloroform (C) and (D); CdSe-CdS core-shell QDs in chloroform
(E) and (F).
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Figure 4.16  TEM image of the multiwall carbon nanotubes decorated with CdSe-ZnS core-shell
semiconducting nanocrystals.

The step-by-step process presented here gives the flexibility to tailor the QDs prior to

conjugation. This is advantageous over the other reported methods for the formation of

CNT/QDs heterostructures. In example, the in-situ chemical synthesis of QDs directly on

the surface of carbon nanotubes, usually leads to the formation of inhomogeneous crystal-

line structures with large poly-dispersity in shape and size [123,132,186]. Furthermore,

the utilization of oxidized CNTs (which is commonly used by different groups) leads to

non-uniform coverage of the surface as particles tend to be attached at the ends of carbon

nanotubes and defect sides, where the concentration of carboxylic groups is the largest

[90,141,142]. The TEM images of Figures 4.14 and 4.16 confirm that the QD nanoparti-

cles are homogeneous in size and shape, with coatings along the entire lengths of the

MWNTs. Notably, there are scarcely any unbound QDs with a few of the QDs making het-

ero-junctions between individual carbon nanotubes. Besides, different procedures for the

formation of CNT/QDs nanocomposites involve complex reactions and functionalizations,

making these strategies more complicated and time consuming [90,129,142,187].  The

50 nm
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new strategy introduced here allows for straight coupling of QDs to CNTs in a simple and

quick way.

4.2 Tensile strength of LBL composites

Due to their exceptional mechanical properties multiwall carbon nanotubes have been

employed as reinforcing fillers for high-strength polymeric composites. In this context,

various polymers have been used as matrix materials, and different preparation techniques

were employed. In general, the tensile moduli and ultimate strengths of CNT-based com-

posites are reported to increase compared to neat polymer, however below the level of ex-

pectation (Table 2.2). The assessment of the data accumulated in numerous studies on car-

bon nanotube composites revealed that effective reinforcement of these materials strongly

depends on several factors such as: a high aspect ratio of the CNTs, good dispersion of the

nanotubes in a matrix, good interfacial bonding, interactions and mechanical anchoring

between CNTs and polymer molecules. These fairly simple design guidelines for carbon

nanotube composites may permit substantial advances in the composites’ mechanical prop-

erties [31,91,188,189].

The layer-by-layer deposition technique reduces the phase segregation and makes

composites highly homogeneous (see 4.1.2), with particles and polymers well dispersed

and interpenetrated [190-192]. Recently, it was demonstrated that it can be very success-

fully applied to the preparation of single wall nanotube (SWNT) composites [113,114].

The LBL assembly technique allows the fabrication of heterostructures with high nanotube

contents, even up to 50 wt% [113], which is substantially higher than in any typical nano-

tube composite (Table 2.2). Even when the concentration of nanotubes in LBL systems is

high, the uniform distribution of the filler in the polymer matrix is retained. This is a sim-

ple way to produce fundamentally and practically interesting multilayer structures with

unique mechanical properties and precise control over film composition and thickness.

More importantly, this technique offers a possibility of multifunctional composites in

which the strength will be only one of the factors determining its applications.

There are two main motivations for using MWNTs instead of SWNTs in the fabrica-

tion of reinforced composites: (1) MWNTs are more resistant to chemical modification and

mechanical agitation than SWNTs due to their multiwalled structure. In many cases, even

extensive surface modification of MWNTs does not significantly harm the aromatic bonds



59

inside the multiwall “onion” structure which may preserve their mechanical properties; (2)

MWNTs are substantially less expensive than SWNTs, which can accelerate the practical

utilization of these composites. 1 g of a high purity sample of SWNTs costs 200 - 1000 $,

while 1 g of MWNTs may be purchased for 1.5 $ (October 2006). The synthesis of

MWNTs is simple and cheap, which allows the fabrication of large quantities at a low cost.

Nowadays, the amount of 250 kg of MWNTs can be purchased, while it is still difficult to

buy 1 kg of SWNTs due to the synthesis difficulties [193].

While the LBL assembly technique offers vast advantages, it became very attractive to

utilize this method for fabricating the multilayered structures composed of multiwall car-

bon nanotubes and polyelectrolytes and investigate their mechanical properties. In this

study the tensile tests were performed on LBL assemblies of MWNT-NaAQ/PEI, MWNT-

COOH/PEI, and PEI/PAA. MWNT-NaAQ/PEI films were prepared using two different

types of multiwall carbon nanotubes: “bamboo” and “hollow” (Figure 2.2). CNT/polymer

composites prepared in a solution mixing process have not been investigated in this work,

since numerous studies have already been focused on the characterization of tensile proper-

ties of such composites (Table 2.2). The main goal of this work is to present novel compos-

ites with significantly improved mechanical performance; elastic modulus and tensile

strength of various composites have been determined.

The elastic modulus E and tensile strength T were evaluated from the recorded stress-

strain  curves.  The  Young’s  modulus  was  obtained  by  analysis  of  the  elastic  part  of  the

stress-strain curve and calculated from [194]:

0

0

/
/

F AE
l l

(4.1)

where and  indicate stress and strain in the elastic region of the stress-strain curve, re-

spectively. F is the force applied to the sample, A0 is the original cross-sectional area, l is

the length change of the specimen, while l0 is the original length of the sample. The ulti-

mate tensile strength was calculated using the equation:

MAX
T

F
A

(4.2)

where FMAX is the maximum load prior to break and A is the cross-section area of the sam-

ple.
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Figure 4.17   SEM images of the rapture region of a MWNT-NaAQ/PEI free-standing film after the
stretching test.

In order to understand the mechanisms of the tensile fracture of LBL composites made

from MWNTs, SEM studies of ruptured areas of the free-standing films were carried out.

Figure 4.17 shows SEM pictures of such a rupture region with individual nanotubes or

their bundles pulled out or still bridging the break region, mostly aligned perpendicularly

to the break face. Recent structural studies [48,113] of  the  rupture  regions  showed that

carbon nanotubes can even break under a stretching force due to the structural defects

which make them drastically weaker. There are many reasons for fractional defects exist-

ing on the nanotubes walls such as impurity, chemical oxidation, and synthesis imperfec-

tions [99,195]. While oxidized carbon nanotubes were used in many studies, non-

m30 m
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covalently functionalized MWNTs are of main interest in this work. SEM examinations of

rupture areas show that many MWNTs have rather been just pulled out of the matrix, indi-

cating  that  the  used  dispersant  does  not  reduce  the  strength  of  MWNTs.  In  comparison,

oxidized MWNTs (“hollow”) were also used to produce the LBL films; as expected a dras-

tic decrease of the tensile strength was observed. It is worthy noting that the images of

pulled-out MWNT strands also suggest a solution to the efficient reinforcement problem

(Figure 4.17). The interfacial stress transfer remains the key issue for the efficient en-

hancement of the mechanical performance of the composites. The external load applied to

the composite should be transferred to the nanotubes; therefore, only strong interconnec-

tions between CNTs and polymers may lead to the great mechanical improvement of het-

erostructures. This is the clue to fully utilize the outstanding mechanical performance of

CNTs in a composite system.

The stress-strain curves of investigated films are given in Figure 4.18. Plots show a

clear fracture point in the elastic part of the stress-strain curve, without any plateau area

that would indicate a plastic deformation. Two distinct elastic regions can be resolved in

every graph and have been marked in Figure 4.18 (A). These regions are related to the

complex behaviour of the composite under external stress applied to the sample. Initially

(region I) randomly orientated and curvy MWNTs tend to align along the stretching direc-

tion under the load. Consequently, the composite becomes more compact and MWNTs be-

come  more  interwoven  and  knotted.  Region  II  reflects  the  tensile  properties  of  compact

and packed composite with aligned and taut nanotubes; the slope becomes much steeper

than in region I, resulting in a higher value of the elastic modulus.

The tensile modulus (obtained from region II), ultimate strength, and elongation up to

the breaking point are: 5.5 ± 0.8 GPa, 160 ± 35  MPa, 0.03 - 0.07 % for the “bamboo”; and

2.7  ± 0.7 GPa, 110 ± 30 MPa, 0.03 - 0.06 %, for the “hollow” nanotubes, respectively.

Young‘s  modulus  and  tensile  strength  of  the  PEI/PAA  composite  were  estimated  to  be:

0.26 ± 0.03 GPa and 8.5 ± 3.0 MPa, respectively [113]. These results show that the pres-

ence of carbon nanotubes is crucial for achieving improved mechanical properties of

polymer-based multilayer stacks. The tensile strength of the neat polymers increased

roughly from 8.5 to 160 MPa (around 20 times); the elastic modulus increased from

0.26 GPa to 4.0 GPa (16 times), when “bamboo” MWNTs were incorporated into the host

material.
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Figure 4.18 Exemplary  stress-strain  curves  of  LBL  assemblies:  (A)  MWNT-NaAQ/PEI  with
“bamboo” nanotubes; (B) MWNT-NaAQ/PEI with “hollow” nanotubes; (C) MWNT-COOH/PEI
(“hollow”)

The mechanical properties of the LBL structures with MWNTs have been found to ex-

ceed the tensile strength of some MWNT composites made by mixing, extruding, or po-

lymerization (Table 2.2). The absolute increase of the elastic modulus and tensile strength

of those composites has been shown to change by a factor in the range of 1.09 – 4.29

(Ec/Ep and Tc Tp), indicating relatively modest reinforcement of the polymeric systems

with CNTs. Only LBL assemblies demonstrate a great increase of the ultimate strength

from 9 to 160 MPa (around 20 times stronger polymeric system after CNT addition).

These results indicate the remarkable effect of carbon nanotubes on the tensile properties

of  LBL  composites.  The  LBL  technique  can  be  efficiently  applied  for  the  fabrication  of

strong, homogeneous composites with carbon nanotubes as filler. This is achieved by

strong interfacial bonding between MWNTs and polyelectrolytes, mediated by electrostatic

attraction, van der Waals adhesion, mechanical interlocking, and chemical bonding. The

multilayer films with “bamboo” MWNT are substantially mechanically stronger than com-
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posites with “hollow” nanotubes. The “bamboo” morphology provides structural anchors,

which enhance the mechanical bonds between MWNTs and the polymer. “Hollow” nano-

tubes have smooth walls, which reduce the friction forces with the matrix; these nanotubes

can be pulled out of the matrix more easily, resulting in the reduction of the film strength.

As mentioned above, LBL multilayer films with oxidized “hollow” MWNTs have also

been investigated. The stretching results show, as expected, a drastic decrease in the

strength of the composites (Figure 4.18 (C)). Young’s modulus, tensile strength, and elon-

gation at break are: 1.1 ± 0.3 GPa, 40 ± 15 MPa, and 0.03 – 0.05 %, respectively. This con-

firms that composites with oxidized nanotubes are far weaker than films with non-

covalently functionalized MWNTs. Oxidation and any further covalent functionalization of

carbon nanotubes apparently reduces the mechanical performance of nanotubes due to the

disruption of the aromatic bonds of the CNTs. Oxidation also cuts carbon nanotubes, thus

reducing the mechanical bonds between shorter nanotubes.

On the basis of the investigated structural and mechanical properties of LBL

MWNT/polymer films, one can see that the tensile strength increase is much greater than

that of nanotube composites made by solution mixing, melt-mixing, and the in-situ polym-

erization of monomers in the presence of nanotubes (Table 2.2). Additionally, it has been

shown that the morphology of MWNTs can also result in a big difference of their me-

chanical performance. The replacement of standard, “hollow” MWNTs with “bamboo”-

type MWNTs results in a significant improvement of composites’ ultimate strength.  The

“knots” on the “bamboo”–like MWNTs stem afford a tighter matrix connectivity with the

polymer, thus reducing the pull-out of the nanotubes from the polymer.

4.3 Nanoindentation experiments

On the basis of the mechanical performance of the CNT-based composites obtained in

tensile tests, it has become interesting to study the properties of various polymeric het-

erostructures with MWNT fillers by means of nanoindentation. The nanoindentation tech-

nique has been proven as a useful tool for the determination of the mechanical properties

of thin films, coatings, and composites, including polymers [181,196-200]. Depth-sensing

indentation allows a displacement of the indenter to be measured as a function of an ap-
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plied, controlled load. The resulting load vs. displacement curves, together with the in-

denter geometry, are used to evaluate the elastic modulus and hardness of tested samples.

Nanoindentation experiments have been carried out on different MWNT- and

MWNT@SiO2-based polymer composites with different morphologies, polymers and

nanotubes compositions, and fabricated utilizing diverse processes (Table 3.1) [201]. The

obtained values of hardness H and elastic modulus Er have been plotted as a function of the

contact depth.

4.3.1 Data analysis and discussion on instrument calibration

The hardness and elastic modulus of the composites were evaluated from the recorded

unloading slope of the depth-displacement curve, based on the method of Oliver and Pharr

[202]. A general relation between the penetration depth h and the load P is given by:

P=D (h - hf)m (4.3)

where D contains all the geometric constants, sample elastic modulus, Poisson's ratio, the

indenter elastic modulus, and the indenter Poisson's ratio, hf is the final unloading depth,

and m is  the  power  law exponent  that  is  related  to  the  geometry  of  the  indenter  (e.g.  for

flat-ended cylindrical punch m=1, cone m=2, paraboloid of revolution  m=1.5, approxima-

tion of paraboloid of revolution is taken when considering Berkovich tip [202]). Hardness

and reduced modulus are defined as:

CA
FH max (4.4)

S
A

E
C

r 2
1 (4.5)

where H is the local hardness, Ac is the contact area between indenter and sample, S is the

contact stiffness, defined as a slope of the unloading curve fitted to the power law equation

(4.3), Er is the reduced Young’s modulus (effective elastic modulus) that combines the

properties of the indenter and the tested sample, and is given by:
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where i and s are the Poisson’s ratios for the indenter and the sample, respectively,  and

Ei and Es are the respective elastic moduli. Since we used a diamond tip with high elastic

modulus Ei=1170 GPa and low Poisson’s ratio i=0.07, the second term in equation (4.6)

can be neglected. The Poisson’s ratio of most polymers lies in the range of 0.25 – 0.45,

therefore, the elastic modulus of the structures investigated here is numerically equal to the

80 – 95 % of the calculated reduced (effective) modulus from the indentation experiments

(equation (4.6)). Since the accurate values of Poisson’s ratio of polymers and their compo-

sitions with CNTs are not known, the values of reduced modulus have been used in this

study to quantitatively describe the mechanical properties of the samples. In this work the

term “reduced modulus” is alternately used with the terms: “elastic modulus” or “Young’s

modulus” – meaning the same quantity of Er obtained in the nanoindentation test and cal-

culated from equation (4.5).

Since the contact area is a function of the contact depth, a tip calibration procedure has

to be employed to determine the geometry of the indenter tip.  For this purpose a series of

indentations  at  different  contact  depths  were  made  in  a  sample  with  a  known  elastic

modulus. The dependence of the contact area as a function of contact depth was plotted

afterwards, and the area function was found using the following polynomial expression:

...8
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2

CCcCCOC hChChChChCA (4.7)

where Cn (n=0,1,2…) are the fitting coefficients, and hc is the contact depth, being deter-

mined from:

max
MAX

c
Fh h

S
(4.8)

where hmax is the maximum displacement at maximum load,  is a function of the particular

tip geometry (e.g. for flat-ended cylindrical punch =1, cone =2( -2)/ , paraboloid of

revolution =0.75, the approximation of a paraboloid of revolution is taken when consider-

ing the Berkovich tip [202]).

The tip calibration was carried out on PMMA with well defined mechanical properties

(see 3.2.2), instead of the commonly used hard standard materials like fused quartz. Klap-

perich et al. called into question the validity of using hard standard materials for tip cali-

brations, when soft materials are investigated [198]. Briscoe et al. remarked that a calibra-
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tion against a hard surface may produce an error and does not represent the contact situa-

tion with softer surfaces [200]. Moreover, contact depths obtained in this study were in

the range of several hundred nanometers. This range cannot be obtained from a calibration

performed on hard materials. The geometries of the used tips (Berkovich and conical) were

estimated in the calibration procedure. The contact area as a function of contact depth was

estimated from equation (4.7). Prior to each experiment, a series of depth-dependent in-

dents in a standard sample were carried out, to ensure that the tips’ shape did not change.

No significant changes in the calibrated tip area had been noticed.

The diamond tips have been used to perform in-situ visualization  of  the  sam-

ples‘surface before the indent in order to find reasonably smooth areas.  The imprints after

indent were also imaged using the same diamond tip. Figure 4.19 shows typical imprints

after indentation performed in PMMA using a conical (A) and a Berkovich (B) tip.

Figure 4.19  Typical imprints after indentation experiments using conical (A) and Berkovich (B)
diamond tips. Images were obtained using the same indent tips. These images were performed on
PMMA sample, with a maximum applied load of 400 N.

There are many factors that have a great influence on the recorded data-points, and

consequently calculated physical quantities in the nanoindentation test. The nanoindenta-

tion results are affected by: machine compliance, roughness of the sample, calibration pro-

cedure, time-dependent behavior of the specimen (thermal drift, creep), sample inhomoge-

neity, and contact area changes [203].  Therefore, the computed values of H and Er are

error-laden and may not reflect the absolute values. However, since all experiments were

A B
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conducted  under  the  same  experimental  conditions,  the  relative  comparison  of  results  of

different samples can be performed. Mechanical responses to the deformation of various

composites have been evaluated in this work.

4.3.2 Nanoindentation of polymeric films

Prior to the experiments performed on CNT-based composites, a series of indents were

carried out on polymeric materials such as PMMA and PS. This was necessary in order to

adapt the finest experimental conditions including area tip calibration, hold time, and

load/unload rate. The results from nanoindentation tests on the polymers were consistent

for PMMA and PS in terms of the general behavior of the H and Er as a function of contact

depth, hold time, and load/unload rate. Due to this consistency and for reasons of clarity,

only data from studies on PMMA is presented here. Nanoindentation on PMMA revealed a

high reproducibility of results and a small data deviation.

Figure 4.20 Load-displacement curves of several indents performed in PMMA at different applied
loads (ranging from 100 to 1300 µN). The graphs depict the typical load, hold, and unload seg-
ments of the nanoindentation experiments.

Typical load-displacement curves of the indents are shown in Figure 4.20. The image

represents data obtained for a PMMA sample at different applied maximum loads ranging
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from 100 to 1200 µN. The absence of steps and discontinuities on the curves indicates that

neither cracks nor fractures occurred during the indentation [204]. The hold time segment

at the peak load is used to minimize the creep effect, that might influence the shape of the

unload curve, and as a result, would affect the calculated values of the Young’s modulus

and hardness [205].

Reduced modulus and hardness as a function of the indentation contact depth for

PMMA are shown in Figures 4.21 (A) and (B), respectively. The data represent nanome-

chanical properties of PMMA obtained from different indenter tip geometries (Berkovich

and conical), with a load/unload rate equal to 40 N and 20 s hold time. Several indents

were performed under the same maximum force and the collected data was then averaged.

The error bars in the graphs represent the standard deviation of calculated mean values of

the hardness and elastic modulus. The indents were performed at a maximum load ranging

from 100 to 1500 µN, resulting in contact depths ranging from 50 to 500 nm.

Figure 4.21 Reduced modulus (A) and hardness (B) as a function of the contact depth. Indents were
performed in PMMA using both, Berkovich and conical tips at load/unload rate of 40 N/s and 20 s
hold time.

Figure 4.21 (A) reveals that the elastic modulus is relatively constant and that there is

no clear relationship between Er and the contact depth of the indentation. This behavior

corresponds to previously reported results by Klapperich et al. [198]. Figure 4.21 (B)

shows, in the initial stage, the decreasing trend of the hardness with increasing contact

depth for both indenter tips. For contact depths greater than 350 nm, the curves smoothly

come into the plateau region. This relationship between H and the contact depth is incon-

sistent with the study on different polymers (including PMMA) of Klapperich et al., who
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showed that the hardness increased with increasing contact depth. The surface roughness,

time dependent plastic deformation (e.g. creep) and nano-structural differences in the mor-

phology of the PMMA films may give rise to such disagreement in the depth-dependent

behavior of the hardness. It is possible that at particular depths, diverse samples may relax

differently or exhibit dissimilar chain slip, resulting in different values and behaviors of H

and even Er.

Both, Berkovich and conical tips are commonly used to investigate soft materials such

as polymers [203]. As shown in Figure 4.21, the hardness and Young’s modulus display a

similar trend for conical and Berkovich tips. All of the tests on the polymers were per-

formed utilizing those two indenter geometries. It was found that results were fairly consis-

tent, and only modest differences in values were recorded. In this context, for reasons of

clarity the following plots present data from the tests carried out using the Berkovich tip

only.

Figure 4.22  Reduced modulus (A) and hardness (B) as a function of the load/unload rate. Indents
were made using a Berkovich tip in PMMA with a maximum load of 500 N and 20 s hold time.

The nanomechanical response of the PMMA was also tested under different

load/unload rates varying in the range from 5 to 100 N/s. All indents were conducted at a

maximum load equal to 500 N, with 20 s hold time. Again, several indentations were per-

formed and data for the same peak load were averaged and the deviation of H and Er calcu-

lated. Figure 4.22 illustrates the behavior of the reduced modulus (A) and hardness (B) as a

function of load/unload rate. The hardness is not significantly affected by the load/unload

rate. On the other hand the Er initially increases with increasing load/unload rate. At rates

greater than 30 N/s, the elastic modulus does not show any dependency on the indentation
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velocity. These investigations show that at low load/unload rates, the mechanical response

may slightly differ from that obtained for higher rates. Such behavior can be explained by

plastic deformation of the material. Under low load/unload rates the indenter‘s volume

may be accommodated by plastic flow of the material that piles up around the tip, so plas-

tic deformation is more prominent in this case.

As mentioned before, in all experiments the hold time of 20 s at maximum load was

employed, which reduces the creep effect. As a consequence, the material has sufficient

time to minimize the mechanical disequilibrium (the delayed response of the material to

the applied stress or strain) before the unloading step begins [198,200]. The creep effect

especially relates to visco-elastic materials like polymers, with time-dependent properties.

The time-dependent creep within the specimen occurs under indentation load and mani-

fests itself as a change (increase) of the indentation depth under a constant load

(Figure 4.20 shows the changes of the displacement at constant maximum load). The creep

has a great influence on the load/unload slope [205]. The level of this influence depends

not  only  on  the  hold  time but  also  on  the  displacement  rate.  If  the  load  rate  is  large,  the

creep is higher than for indentation with a lower load rate, because viscoelastic material

can not keep up with the “fast” indenter, giving a rise to the material’s flow during the in-

dentation test.

Figure 4.23 Reduced modulus (A) and hardness (B) as a function of hold time. Indents were per-
formed using a Berkovich tip in PMMA with a peak load of 500 N, at 40 N/s load/unload rate.

A significant influence of the hold period on the calculated values of H and Er was ob-

served. Indents with peak loads of 500 N at 40 N/s load/unload rate were carried out for

different hold time periods. Figure 4.23 illustrates decreasing values of the hardness and
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reduced modulus while increasing the hold time, until a plateau is reached at around 18 -

20 s (some modest decrease in hardness still exist). On this basis a hold time of 20 s can be

used to diminish the creep effect in nanoindentation tests of the polymeric materials.

To standardize the experimental conditions for all specimens in this study, the hold

time and the load/unload rate of indentations were set to 20 s and 40 N/s, respectively.

4.3.3 Nanoindentation of CNT-based composites

Figures 4.24 and 4.25 show the nanomechanical properties of MWNT/PMMA com-

posites. The tests were performed under fixed experimental conditions (see 4.3.2), using a

Berkovich tip. The homogeneity of our samples is confirmed by the relatively small stan-

dard deviation of data points. The reduced modulus and hardness are shown as a function

of the contact depth for different MWNT content. The nanoindentation studies reveal that

the properties of the MNWT composites are comparable to those of thin films of PMMA.

Moreover, H and Er as a function of contact depth, exhibit exactly the same behavior as

was shown for neat PMMA. The hardness shows a decreasing trend with increasing con-

tact depth. There are no significant changes in H values with increasing concentration of

carbon nanotubes in the polymer. Er of thin films presents independent behavior on inden-

tation contact depth with values close to that obtained for neat PMMA.

Li et al. [204], Dutta et al. [206], and Penumadu et al. [207], investigated CNT-based

composites with different morphologies and content of nanotubes (up to 5 wt%). They re-

ported a modest but quantifiable increase of the hardness and elastic modulus while in-

creasing the content of nanotubes, which is in contrast to our observations. The differences,

in contrast to this study, can arise from the different matrix materials and preparation pro-

cedures used in their studies. In reports of Ref. [204,206,207] singlewall carbon nano-

tubes were introduced into epoxy resins. The presence of nanotubes can influence the po-

lymerization process of the epoxy resulting in different molecular weights and cross-

linking of matrix. On this basis, the mechanical response of the investigated samples can

be mainly affected by the structural changes of the host material. It has been shown that

comparisons of the elastic modulus and hardness are more appropriate for samples with a

similar chemistry, molecular weight, and processing history [198,203,208].  In  this  con-

text, the results of Ref. [204,206,207] can  be  error-laden  due  to  the  differences  in  the

structure of particular composites with various CNT concentrations. Therefore, in this

study, to avoid such uncertainty, MWNTs were incorporated into the PMMA with a well
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defined molecular weight; additionally, every sample was prepared using the same proce-

dure.
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Figure 4.24  Reduced modulus of MWNT/PMMA composites with different CNT concentrations,
as a function of the contact depth. A Berkovich tip was used at a load/unload rate of 40 N/s and
20 s hold time.
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Figure 4.25 Hardness of MWNT/PMMA composites with different CNT concentrations, as a func-
tion of the contact depth. A Berkovich tip was used at a load/unload rate of 40 N/s and 20 s hold
time.



73

Figures 4.26 and 4.27 show data from nanoindentation experiments conducted on vari-

ous LBL structures under the same fixed conditions. Reduced modulus and hardness as a

function of the contact depth are presented.
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Figure 4.26 Reduced modulus as a function of contact depth. Data obtained for different LBL het-
erostructures using a Berkovich tip at a load/unload rate of 40 N/s and 20 s hold time.
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Figure 4.27 Hardness as a function of contact depth. Data obtained for different LBL heterostruc-
tures using a Berkovich tip at a load/unload rate of 40 N/s and 20 s hold time.
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As expected, the behavior of H and Er as a function of the contact depth is consistent with

previous observations (Figure 4.21). Briefly: the elastic modulus is relatively independent

of the contact depth, and hardness initially reveals a decreasing a trend for small loads and

then smoothly attains a plateau (at a contact depth of around 250 nm).

The reduced modulus of PSS/PAH and MWNT-COOH/PAH films (3.8 ± 0.2 GPa and

4.12 ± 0.13 GPa, respectively) is shown to be around 10 times greater than that obtained

for PEI/PSS or MWNT-PAH/PSS composites (0.44 ± 0.02 GPa and 0.37 ± 0.04 GPa, re-

spectively). The same situation refers to the hardness: H=0.09 ± 0.01 GPa of PSS/PAH;

H=0.11 ± 0.03 GPa of MWNT-COOH/PAH; H=0.007 ± 0.002 GPa of PEI/PSS; and

H=0.007 ± 0.003 GPa of MWNT-PAH/PSS. Such a variation of results corresponding to

different LBL structures reveals a significant influence of the sample’s structure (e.g. dif-

ferent polymers) on the mechanical properties.

The investigated materials were composed of diverse polymers and nanotubes, differ-

ent deposition cycles and multilayer combinations were also utilized. It is known that LBL

assemblies form very intricate systems. Thus, it is barely possible to compare the mechani-

cal performance of different LBL assemblies due to their structural complexity. Neverthe-

less, it can be observed that the presence of MWNT fillers within the LBL polymeric struc-

ture does not lead to important changes in the mechanical properties (in terms of through

thickness - perpendicular to the surface properties) of the composites that would differ sig-

nificantly from the properties of  the polymeric LBL systems. Even a high concentration

(~50  wt%)  and  a  homogenous  distribution  of  CNTs  within  a  polymer  matrix,  as  well  as

strong adhesion between the structural components, are insufficient to ensure a significant

improvement of H and Er. It is suggested, that the flexibility of carbon nanotubes and their

curvy morphology reduce the reinforcement action. The carbon nanotubes can easily be

displaced or deflected by the indenter. As a result, the indenter may essentially only “feel”

the resistance of the surrounding matrix. Therefore, the mechanical response of the com-

posite is close to that of the local polymer matrix.

These results are consistent with the study of Pavoor et al. [209]. It was shown that

LBL composites of MWNT/PAH exhibit inferior mechanical performance in comparison

to LBL films consisting of polyelectrolytes (PAH/PAA) only. Heterostructures were sig-

nificantly softer than the corresponding polymeric matrices. Lu et al. [210] have investi-

gated SWNT-based LBL composites. They showed an increase of the elastic modulus (by

a factor of 2.5) of MWNT/PAA/PDDA composites in comparison to a LBL film composed

of only polyelectrolytes (PAA/PDDA). But again, the validity of such a quantitative com-
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parison may be questioned since different deposition cycles and compositions of polymers

and nanotubes were used. It is shown in Figures 4.26 and 4.27 that the mechanical re-

sponses of LBL composites can significantly differ for various LBL assemblies, not only

due to the presence of CNT filler in the host material, but mainly because of the differ-

ences in the structure of the LBL films (various polymers, functionalized nanotubes, mor-

phologies etc.).

In this paragraph, the hardness and elastic modulus of the different MWNT/polymer

composites have been shown. In general, any significant improvement of the mechanical

properties (from indentation tests) of the polymeric matrix with CNT filler was observed in

comparison to the neat polymer. This is in contrast to the stretching experiments (see 4.2)

that have displayed a significant increase of the tensile strength and the tensile elastic

modulus of the MWNT-based heterostructures. CNTs have extraordinary axial mechanical

properties that  play an important role in the reinforcement of the tensile properties of the

materials; but due to their curvy morphology and flexibility, CNTs have a modest impact

on the hardness and Young’s modulus (through thickness) of the polymeric matrices.

To verify our supposition, silica reinforced multiwall carbon nanotubes have been used

to fabricate nanocomposites with PMMA. As shown in Figures 4.28 and 4.29, the

MWNT@SiO2/PMMA heterostructures exhibit much higher values of hardness and elastic

modulus than neat PMMA (the error bars are not shown for reasons of clarity). Both these

quantities increase with an increasing concentration of the MWNT@SiO2 in the host mate-

rial. The results demonstrate the great influence of the silica shell of MWNTs on the me-

chanical response of the composites. This indicates that silica coating of MWNTs changes

their bending properties; such nanotubes are more rigid and thus more resistant to the dia-

mond tip during nanoindentation experiments.

The average standard deviations of the data points of the Young’s modulus

(Figure 4.28) are: 0.27, 1.06, 1.14, and 1.56 GPa for 1, 2, 3, and 4 wt% of the silica coated

MWNT in PMMA, respectively. The average standard deviations of the hardness

(Figure 4.29) are: 0.006, 0.02, 0.03, and 0.02 GPa for 1, 2, 3 and 4 wt% of MWNT@SiO2

in the polymer, respectively. These relatively large data errors (comparing to the

MWNT/PMMA films) are caused by roughness and the presence of inhomogeneities in the

composites. The fabrication method of MWNT@SiO2/PMMA systems does not ensure a

uniform distribution of silica coated CNTs within the film, especially at higher concentra-

tions,  due  to  the  poor  solubility  of  CNT@SiO2 in chloroform.  Thus, agglomerations of
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nanotubes and possible phase segregation can be observed in nanocomposites with higher

CNTs content.
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Figure 4.28  Reduced modulus as a function of contact depth. Data obtained for heterostructures of
MWNT@SiO2/PMMA with different nanotubes’ concentrations using a Berkovich tip at a
load/unload rate of 40 N/s and 20 s hold time. Standard deviations of the data points are not
shown for clarity and are presented in the text. The solid lines are just to guide the eye.
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Figure 4.29  Hardness as a function of contact depth. Data obtained for MWNT@SiO2/PMMA het-
erostructures with different nanotube concentrations using a Berkovich tip at a load/unload rate of
40 N/s and 20 s hold time. Standard deviations of the data points are not shown for reasons of
clarity and are presented in the text.
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MWNT@SiO2/PMMA composites with 5 wt% nanotubes’ load have also been inves-

tigated. The reduced modulus for this specimen varies from 5 to 20 GPa and the hardness

from 0.08 to 0.22 GPa resulting in unreasonable data deviation. As a consequence, these

results are not considered in Figures 4.28 and 4.29. Large systematic errors are also pro-

duced by the fairly substantial roughness of the MWNT@SiO2/PMMA films’ surfaces.

The influence of the roughness on the H and Er is more emphatic at low applied loads

[203]. It was observed that roughness increases with increasing the MWNT@SiO2 con-

centration in the composite: Ra was found ranging from 10 nm even up to 100 nm for

composites with 1 wt% and 5 wt% of MWNT@SiO2, respectively. It is assumed that the

effect of the surface roughness is neglected when Ra is less than 1/10 of the maximum

penetration depth. This eliminates the results of a 5 wt% sample, because indents depths in

the range of 100 – 500 nm do not satisfy this assumption. The significant influence of the

roughness on the nanoindentation results has been a subject of several studies [203,211].

The differences in the mechanical response of the different samples are depicted in

Figure 4.30, where load-displacement curves of PMMA, MWNT/PMMA (3 wt%), and

MWNT@SiO2/PMMA (3 wt%) are shown.
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Figure 4.30 Load-displacement curves of different samples. Hardness and reduced modulus were
calculated from those plots, resulting in: PMMA H=0.09 GPa and Er=4 GPa; MWNT/PMMA
H=0.09 GPa and Er=4.1 GPa; MWNT@SiO2/PMMA H=0.13 GPa and Er=8 GPa.
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PMMA  and  MWNT/PMMA  structures  exhibit  a  softer  nature  than  a  composite  of

MWNT@SiO2/PMMA: at the same maximum indentation load (300 N) the indenter per-

forms deeper penetration, resulting in displacements of 210 nm; for MWNT@SiO2/PMMA

the indenter reaches a depth of 160 nm, which indicates a greater hardness of this sample.

Corresponding values of hardness and reduced modulus confirm those observations:

H=0.09 GPa and Er=4 GPa, for PMMA, H=0.09 GPa and Er=4.1 GPa for MWNT/PMMA

composite, H=0.13 GPa and Er=8  GPa  for  MWNT@SiO2/PMMA.  The  absence  of  steps

and discontinuities on the curves indicates that no cracks and fractures occurred in the

specimen during the indentation.

LBL composites with silica coated multiwall carbon nanotubes were also fabricated in

order to investigate their properties, but due to the large roughness (Ra > 100 nm) of these

hybrid materials it was impossible to obtain reasonable results in nanoindentation tests.

Nanoindentation experiments carried out on the different composition of polymers and

carbon nanotubes reveal that the presence of MWNTs within the polymeric matrices does

not significantly affect the mechanical response of the composites. In general, hardness and

elastic modulus have been found to reflect the mechanical properties of the surrounding

matrix, emphasizing a modest influence of nanotube filler on the mechanical performance

of the heterostructures (even at high concentrations of CNTs in LBL assemblies). This is

explained by the flexibility of MWNTs and their curvy morphology. This supposition was

confirmed while MWNT@SiO2 were employed as a reinforcement filler. The average

Young’s  modulus  for  the  4  wt%  samples  was  found  to  be  approximately  three  times  as

high as that for PMMA. For the same CNT concentration, the average hardness increases

about two times in comparison to the neat polymer. A silica shell changes the bending per-

formance of the CNTs and hence the indentation properties of composites.

Silica coating of MWNTs opens up possibilities for the production of new, advanced,

reinforced materials for a variety of applications.
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4.4 Rheology

Rheological investigations of CNT-based composites, as a complement of tensile and

nanoindentation tests, give a better understanding of the impact of the carbon nanotube

fillers on the mechanical properties of polymeric composites. Dynamic oscillatory rheome-

try was employed to characterize viscoelastic properties and the rheological percolation

threshold of these heterostructures. There are many studies focused on rheometric experi-

ments of CNT/polymer structures [28,38,92,168,169,171,172,210,212-217]. In general, it

was found that the viscosity increases with an increasing concentration of carbon nano-

tubes in the composites. Moreover, liquid-like to solid-like transitions have been observed,

which indicate the formation of a percolating network of the filler. Table 4.1 shows values

of rheological percolation thresholds obtained in various studies. It is known that the per-

colation threshold varies significantly with particles size and shape [218].  Fillers  with  a

large aspect ratio form percolating networks at lower weight fractions. This favors carbon

nanotubes (as fiber with large aspect ratio) as ideal candidates for the fabrication of com-

posites with improved properties or even with new performance.

Table 4.1  The rheological percolation threshold of different CNT-based polymer composites ob-
tained in various studies. PMMA - poly(methyl methacrylate), PET - poly(ethylene terephthalate),
UMWPE - ultrahigh molecular weight polyethylene, PC - polycarbonate, PP - polypropylene,
HDPE - high density polyethylene, PEO - poly(ethylene oxide).

Composite Preparation Method Rheological Percolation
Threshold Ref.

SWNT/PMMA Solution mixing 0.12 wt% [172]

MWNT/PET Solution mixing 0.6 wt% [92]

SWNT/UMWPE Solution mixing 0.6 wt% [170]

MWNT/PC Melt mixing 0.5 wt% [212]

MWNT/PP Melt mixing 2 wt% [217]

MWNT/PC Melt extrusion 2 wt% [168]

MWNT/PC Melt extrusion 0.5 wt % at 280 °C ,
 5 wt% at 170 °C [169]

SWNT/HDPE Melt extrusion 1.5 wt % [38]

SWNT/PEO Solution mixing 0.09 wt% [171]
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The complex viscosity ( *), storage (elastic) modulus (G’), and loss modulus (G’’)

were obtained in dynamic oscillatory experiments. In a controlled strain tests, the strain  is

assigned with an amplitude 0, and an angular velocity  as:

0 sin( )t (4.9)

where is linked to the frequency of the oscillation ( =2 f). The resulting stress is then

calculated as:

0 sin( )t (4.10)

where 0 is the stress amplitude, and  is the phase angle. The complex modulus G* is de-

fined:

* ' ''G G iG (4.11)

with the elastic (storage) modulus given by: G’=G*cos =( 0 0)·cos , and the loss modulus

G’’=G*sin =( 0 0)·sin . The complex viscosity * is evaluated from:

** ' '' Gi
i

(4.12)

where ’=G’’/ =[ 0/( 0  )]·sin  is the real part and ’’=G’/ =[ 0/( 0  )]·cos  is the

imaginary part of the complex viscosity.

The rheological properties of MWNT/PEI composites (in melts) were investigated in

this study. The complex viscosity as a function of the shear frequency is shown in

Figure 4.31. Apparently, MWNTs have a crucial effect on the rheological behavior of the

composites, even at low loadings. The complex viscosity increases with increasing CNT

content in the entire frequency range, but is more pronounced at low frequencies.  At high

frequencies the impact of the carbon nanotubes on the rheological properties is definitely

weaker, which suggests that the nanotubes do not significantly influence the short-range

dynamics of the polymer chains. Generally, CNTs do affect polymer chain relaxation but

with little effect on the local motion at short ranges [172]. The changes in the complex

viscosity of MWNT/PEI composites are caused by similar changes in storage and loss

modulus. The values of both G’ and G’’ at any particular frequency systematically increase

with increasing carbon nanotube loads in the polymer matrices (Figures 4.32 and 4.33).
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But again, these changes are more pronounced at low frequencies. In general, G’ was

found to be more sensitive to the structural changes than G’’.
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Figure 4.31  Complex viscosity ( *) of MWNT/PEI composites versus frequency.
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Figure 4.32  Storage modulus (G’) of MWNT/PEI composites versus shear frequency.
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Figure 4.33  Loss modulus (G’’) of MWNT/PEI composites versus frequency.

The neat PEI polymer (in a melt) behaves like a Newtonian liquid with the visco-

elastic properties exhibiting liquid-like characteristics, described by the following func-

tions: G’ 2, G’’ 1, and * 0 [168,169]. Similar behavior is observed for the low

concentrations of nanotubes (e.g. 0.5 wt %), which is depicted in Figures 4.31, 4.32, and

4.33. Incorporation of MWNTs into the polymer results not only in an increase of the val-

ues of G’, G’’, and * in the entire frequency range, but also leads to the structural transi-

tion in the composite material. The samples with higher nanotube loads exhibit a solid-like

behavior, where *, G’, and G’’ satisfy the following relations: * -1, G’ 0, and

G’’ 0. Table 4.2 depicts the fitting exponents of the power law equations of * ,

G’ , and G’’ for  composites  with  a  different  weight  fractions  of  MWNTs.  The

dependence of these fitting parameters on the concentration of carbon nanotubes indicates

the structural changes in MWNT/polymer composites.

As mentioned above, the behavior of composites with low CNT loads corresponds to

the behavior of a neat polymer (with liquid-like characteristics): the viscosity is nearly in-

dependent of the shear rate ( =0.06 for m=0.5 wt%) (Figure 4.31), G’ and G’’ exhibit prac-

tically linear dependence on the frequency ( =1.1 and =0.93) (Figures 4.32 and 4.33). For
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higher concentrations of MWNTs, * shows a shear thinning behavior, where the complex

viscosity decreases with increasing the shear frequency ( =0.85 for m=8 wt%). The evi-

dent changes are also observed in the behavior of storage and loss moduli. While increas-

ing MWNT loads, G’ and G’’ show weaker dependence on the frequency, until they be-

come nearly independent on the shear rate at high nanotube concentrations. Again, these

changes are more exposed in the low frequency region, due to the critical effect of nano-

tubes on a long-range polymer relaxation. Such changes in the behavior of the viscosity,

storage and loss moduli are related to the structural transition of composites with MWNT

inclusions, from liquid- to solid-like systems.

These results indicate that a large scale polymer relaxation in the composites is effi-

ciently restrained by the presence of the carbon nanotubes. At low concentrations, MWNTs

act as isolated objects and the viscosity and modulus are dominated by the matrix. Near

and above the percolation threshold, the MWNTs form a percolated network which gives

rise to a solid-like behavior of the samples – the filler determines the visco-elastic proper-

ties of the composites.

Figure 4.34 displays fitting exponents  and  as a function of the weight fraction of

MWNTs. The transition point (rheological percolation threshold) can be estimated to lie in

the concentration range between 0.5 to 2 wt%. Especially  (G’) as a function of wt% of

MWNTs demonstrates a sharp decrease at around 0.5-1 wt% MWNTs, which indicates the

percolation threshold.

Table 4.2 Rheological parameters for composites with different wt% of MWNTs obtained by fit-
ting the power law dependence to curves of Figures 4.31, 4.32, and 4.33; respectively.

wt% of MWNTs in PEI

0 % 0.5 % 1 % 1.5% 2 % 2.5% 3 % 4 % 5 % 8 %

* power law dependence
( * ) value of 0.02 0.06 0.20 0.32 0.41 0.47 0.59 0.73 0.74 0.85

G’ power law dependence
(G’ ) value of 1.74 1.1 0.74 0.44 0.44 0.4 0.26 0.19 0.18 0.12

G’’ power law dependence
(G’’ ) value of 0.97 0.93 0.8 0.76 0.67 0.57 0.56 0.43 0.43 0.32
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Figure 4.34  Power law exponents  and  ( *  and G’ ) as a function of MWNT contents.

The rheological percolation threshold can also be roughly estimated from Figures 4.31

and 4.32. Considering the low frequency region only, drastic changes in the behavior of

complex viscosity are observed between samples with 0.5 and 1 wt% of CNT loads.  The

same relates to G’.

However, to be more accurate, the power law equations (2.13) and (2.14) were used to

determine the value of the rheological percolation threshold. The functions were fitted to

the experimental data points of G’ at 0.1 Hz and 1 Hz, and * at 0.1 Hz for m>mc (concen-

trations above percolation threshold). Figures 4.35 and 4.36 show the storage modulus and

complex viscosity as a function of MWNT content at 1 Hz, respectively. The inset plots of

Figures 4.35 and 4.36 present the log-log dependence of the * and G’, as a function of the

reduced mass fraction (m-mc), respectively.

The scaling parameters were found by incrementally varying mc until the best linear fit

to the data points was obtained (with the best achieved, optimal value of correlation coeffi-

cient R).  The red lines represent the best fitting of the power law equations to the G’ and

* versus MWNT concentrations at 1Hz. The overall fitting results are presented in

Table 4.3. The rheological percolation threshold (mc) was found to be at the MWNT con-

centrations of 0.5 – 0.7 wt%. Scaling exponents a=2.8 and t=2.7, differ from the theoretical

value of the percolating systems in three dimensions (a=t 2.0). The rheological percola-

tion threshold does not refer to the geometrical one (see 2.3.2.3), where the filler forms in-

terconnected paths along the entire composite, which is considered in theoretical studies.
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Figure 4.35  Complex viscosity as a function of MWNT contents at 0.1 Hz. Rheological percola-
tion threshold (mc) is obtained from fitting equation (2.13) for m>mc (red line). Inset: log-log plot
of * as a function of the reduced mass fraction.

Figure 4.36  Storage modulus as a function of MWNTs content at 0.1 Hz. Rheological percolation
threshold (mc) is obtained from fitting the equation (2.14) m>mc (red line). Inset: log-log plot of G’
as a function of the reduced mass fraction.
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Table 4.3 Fitting results from the power law relations of viscosity and storage modulus versus
MWNT loadings.

Power law relation Percolation threshold mc (%) Scaling exponent

* (m-mc)a at 0.1 Hz 0.5 2.8

G’ (m-mc)t at 0.1 Hz 0.6 2.7

G’ (m-mc)t at 1Hz 0.7 2.9

The low rheological percolation threshold obtained in this study is attributed not only

to the high aspect ratio of the CNT filler, but also to the good and homogenous dispersion

of MWNTs within PEI. It confirms that our strategy for the functionalization of MWNTs

results in a good exfoliation of nanotubes in a solvent and consequently in a polymer.

There are many factors that may affect the visco-elastic response of the samples, in-

cluding the molecular weight of polymers, their morphology, degree of dispersion of nano-

tubes in the matrix, aspect ratio of the filler, alignment of CNTs (which diminishes forma-

tion of the percolated network), and temperature [169,172]. On this basis it is difficult to

compare the percolation threshold found in this study (0.5 wt%) to earlier reported values

of diverse materials ranging from 0.1 – 5 wt% (Table 4.1). Nevertheless, a percolation

threshold  at  0.5  wt% is  fairly  low,  and  opens  up  possibilities  for  the  formation  of  a  new

class of polymeric composites with advanced mechanical properties at a low weight frac-

tion of nanotubes. Further improvement of the composite fabrication techniques, together

with high aspect ratio of nanotubes can permit the formation of percolated structures even

at a lower load of the filler. This is a simple guideline for the modification of the polymeric

structures with a modest amount of CNTs but resulting in significant changes of the prop-

erties.

4.5 Dielectric spectroscopy

Dynamic dielectric measurements can be used to characterize the electrical properties

of CNT-based composites. The addition of carbon nanotubes as a conductive filler to a di-

electric host (e.g. polymer) has attracted much interest due to the excellent electrical prop-

erties of CNTs and their very large aspect ratio (>1000). The use of carbon nanotubes as
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filler  in  a  polymer  host  opens  up  possibilities  for  the  fabrication  of  a  new  class  of  rein-

forced antistatic films, electromagnetic shielding materials, and conductive polymers at

very low filler content. It was reported that the effective conductivity of such composites

drastically increases with increasing concentration of the carbon nanotubes [49-

51,92,94,152,161,162,165,167,168,172-174,219]. The electrical percolation threshold (in-

sulator – conductor transition) was found at very low CNT loads in the host materials.

Table 4.4 shows values of electrical percolation thresholds and scaling exponents obtained

by fitting the experimental data to the power law equation (2.8), presented in various stud-

ies.

Table 4.4  Electrical percolation threshold and scaling exponent of different CNT-based polymer
composites obtained in various studies. PVDF - poly(vinylidene fluoride), PVA - polyvinylalcohol,
PC - polycarbonate, PET - poly(ethylene terephthalate), P3OT - poly(2-othylthiophene), PMMA -
poly(methyl methacrylate).

Composite Preparation
Method

Electrical Percolation
Threshold

 Scaling
Exponent (t) Ref.

MWNT/PVDF Solution mixing 1.61 vol% 0.85 [50]

SWNT/epoxy In-situ polymerization 0.3 wt% 1.4 - 1.8 [94]

MWNT/PVA Solution mixing 0.055 wt% 1.36 [167]

MWNT/PC Solution mixing 1.44 wt% 2.1 [165]

SWNT/epoxy In-situ polymerization 0.074 wt% 1.3 [152]

MWNT/PET Solution mixing 0.9 wt% 2.2 [92]

SWNT/P3OT Solution mixing 4 wt % 2.0 [173]

SWNT/PMMA Solution mixing 0.39 wt % 2.3 [172]

SWNT/PMMA Solution mixing 0.17 wt% 2.2 [219]

The spectra of the complex conductivity *( ) and dielectric permittivity *( ) are ob-

tained by a dielectric spectrometer which measures the impedance spectrum Z*( ) of  a

sample placed between two electrodes. The impedance is obtained from phase and ampli-

tude sensitive measurements of current I* and voltage U* on  the  electrodes  and  is  given

by:



88 Results and discussion

*
**

I
UZ (4.13)

 The intrinsic electric properties are evaluated from Z*( ) in a given frequency range.

The complex dielectric permittivity is calculated from [194]:

0

1*
*( )i Z C

(4.14)

where, * indicates the experimentally obtained permittivity,  is the  angular frequency,

and i the imaginary unit. C0 0A/d is  the vacuum capacitance of the experimental  setup,

where A is the area of the electrode plates, d is the distance between the electrodes, and

0=8.85x10-12 As/Vm is the permittivity in vacuum. The complex conductivity is related to

the complex dielectric permittivity by:

0* *i (4.15)

where, * denotes the complex conductivity.

In this study, dynamic dielectric measurements have been performed in a frequency

range of 1 MHz – 1.8 GHz. Figure 4.37 shows the real part of the dielectric permittivity as

a function of frequency for MWNT/PDDA composites with different carbon nanotube con-

tents. In general, ’ increases with an increase of MWNT loads in the entire frequency

range. However, this increase is more pronounced at lower frequencies. The real part of the

dielectric permittivity of the 8 wt% composite is two orders of magnitude higher than that

of neat polymer at 1 MHz; and ’ changes by a factor of 10 at 1 GHz . The increase of ’ is

related to the formation of mini-capacitors in composites, which gives rise to polarization.

Neat polymers display behavior of ’ being nearly independent of frequency (which re-

lates to the behavior of dielectric materials). A similar trend is observed for samples with

low MWNT concentrations (e.g. 0.5 wt%). When the MWNT content increases the behav-

ior of ’ changes following the frequency dependent relation ’ -u (where u is a fitting

parameter), which denotes the decreasing trend of ’ as the frequency increases. Table 4.5

shows the values of the scaling exponent u. The imaginary dielectric permittivity ’’ as a

function of frequency (Figure 4.38), exhibits similar dependence on the concentration of

CNTs in the nanocomposite. However, above a concentration of 2 wt%, ’’ shows a much

higher increase of the values than the real permittivity ’. At 1 MHz the imaginary permit-
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tivity is four orders of magnitude higher as the nanotube concentration increases from 0 to

8  wt%;  at  1.8  GHz  it  changes  by  a  factor  of  100.  In  general,  the  dielectric  constant  has

been reported to dramatically increase with higher loading of CNTs above the percolation

threshold, but at the expense of rapidly increasing dielectric loss ( ’’) [161,162,165]. The

large increase of dielectric loss above the percolation threshold is directly related to the DC

conductivity DC ’’ that appears in the percolated network at frequencies below the

critical point at which the conductivity changes its behavior from frequency dependent to

independent (where * comes  into  a  plateau  region  -  Figure  4.39).  Therefore,  above  the

percolation threshold, when conductive paths are formed, ’’ increases rapidly, because the

DC conductivity becomes dominant in electrical response of the samples.

These results emphasize one important issue: the fabrication of composites with a high

dielectric constant but with low losses can be achieved by efficient separation of the indi-

vidual conductive particles in a polymer matrix. Thus, DC conductivity can be preserved,

which diminishes its contribution to the increase of the imaginary part of the dielectric

constant. Well separated conductive inclusions act as capacitors, giving rise to higher val-

ues of ’.
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Figure 4.37 Real permittivity ( ’) of MWNT/PDDA composites versus frequency.



90 Results and discussion

106 107 108 109
10-1

100

101

102

103

104

105

wt% of MWNTs in PDDA:
 0%  3%
 0.5%  4%
 1%  5%
 2%  8%

''

Frequency [Hz]

Figure 4.38  Imaginary permittivity ( ’’) of MWNT/PDDA composites versus frequency.
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Table 4.5 Fitting parameters s and u for composites with different wt% of MWNTs.

wt% of MWNTs in PDDA

0 % 1 % 2 % 3 % 4 % 5 %

* power law dependence
( * s) value of s 0.95 0.86 0.73 0.64 0.54 0.48

’ power law dependence
’ -u) value of u 0.03 0.15 0.28 0.31 0.47 0.50

Figure 4.40 shows dielectric measurements of MWNT@SiO2/PMMA-f (see 3.1.2.2).

Upper and lower curves correspond to the real and imaginary parts of the dielectric con-

stant, respectively. The red line is obtained using equation (2.7) with the following parame-

ters: p=0.5, xmin=2x10-7
p

2, xmax=0.1 p
2, p=0.01.
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Figure 4.40 The frequency dependence of complex permittivity is shown. Theory (red lines) and
dielectric experimental data (black lines) of MWNT@SiO2/PMMA-f composite. Upper and lower
curves correspond to the real and imaginary permittivity, respectively.
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The silica shell on the surface of MWNTs efficiently prevents charge transport be-

tween nanotubes leading to an enhancement of the dielectric function due to the increase of

polarization ( ’). It is difficult to compare these results with that of MWNT/PDDA due to

the diverse morphologies, different polymers, and preparation methods employed for fabri-

cation of these composites. But one important difference in the behavior of the imaginary

permittivity is found (compare with Figure 4.38): ’’ increases with decreasing the fre-

quency in MWNT/PDDA composites (Figure 4.38), in MWNT@SiO2/PMMA-f sample ’’

decreases with decreasing frequency and converges to zero (Figure 4.40). Theory [163]

predicts such behavior of dielectric composites only for well separated (e.g. electrically

isolated) metallic inclusions. Figure 4.40 shows a good fit of the theoretical and experi-

mental data points.

The behavior of ’’ of the MWNT/PDDA composites follows the experimental results

shown  by  Grimmes  et  al. [161,162] which were well fitted to the theoretical functions

proposed by Lagarkov et al. [155,160]. The differences in the behavior of ’’ are ex-

plained by the charge flow (DC conductivity) between adjacent nanotubes. Carbon nano-

tubes in polymers form some bundles or interconnected structures even at low concentra-

tions  which  give  rise  to  electron  flow between them,  and  therefore,  to  high  values  of ’’

(dielectric loss), especially at low frequencies. In the case of MWNT@SiO2, the silica shell

efficiently prevents charge transfer between nanotubes, which diminishes the dielectric

loss and enhances the polarization of capacitor inclusions. Hence, at frequencies converg-

ing to zero, the dielectric loss is predicted to approach zero, too.

Figure 4.39 shows the frequency dependence of the complex conductivity of PDDA

composites  with  different  MWNT  contents.  For  lower  concentrations  (<1  wt%)  the  con-

ductivity is frequency dependent: it increases linearly with increasing frequency which cor-

responds to the behavior of the neat polymer. The curves present typical * s depend-

ence with a scaling exponent approaching 1 (Table 4.5), which is the expected behavior for

insulating materials. In the vicinity and above the percolation threshold the conductivity

becomes frequency independent but only below a critical frequency. The frequency inde-

pendent region of the curve (plateau) is characteristic for conductive materials where *

relates to the DC conductivity. Such a phenomenon confirms the insulator-conductor tran-

sition at the critical concentration of conductive filler – the electrical percolation threshold.

Above the percolation threshold the electrical properties of composites are dominated by

the percolating paths of the conductive MWNTs. Table 4.5 shows the values of scaling ex-

ponents obtained using the frequency relation of * and ’ ( * s and ’ -u). Critical
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exponents should satisfy the relation s+u=1 [50,157,174]. This condition is fullfilled in

this study (Table 4.5). Figure 4.39 shows that the conductivity increases significantly with

increasing MWNT contents in composites. In particular at low frequency, the conductivity

of a 8 wt% composite increased by 4 orders of magnitude in relation to the neat PDDA.

In order to get a more accurate estimation of the electrical percolation threshold, the

power law equation (2.12) was fitted to experimental data points (Figure 4.41). The perco-

lation power law refers to the low frequency AC conductivity (where 0) at concentra-

tions above the percolation threshold. This conductivity was extrapolated from the fre-

quency independent region (plateau) of *( ) (Figure 4.39). As mentioned before, these

values relate to the DC conductivity.

Figure 4.41  Direct current conductivity ( DC) as a function of MWNT content. Electrical percola-
tion threshold (pc) is obtained from fitting the equation (2.12) for p>pc (red line). Inset: log-log plot
of DC as a function of the reduced mass fraction.

The value of the fitting exponent t (equation (2.12)) was estimated from the slope of

the linear relation of DC and p-pc on the log-log scale (inset of Figure 4.41). The scaling

parameters were found by incrementally varying pc until the best linear fit to the data

points was obtained (with the optimal value for the correlation coefficient R). The fitting

line is plotted as a red solid line. The electrical percolation threshold occurs at 1.48 wt%
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MWNTs with a scaling exponent of t=1.86 which is close to the theoretical prediction of

this value in 3D percolated system (t 2). Theoretical predictions of the scaling exponents

refer to these systems, where particles of the filler are in physical contact and form geomet-

rical percolated networks. In insulator-conductor composites clusters of CNTs are sepa-

rated from each other by thin layers of insulating polymers (electrons transport along the

conductive paths occurs through tunneling) [157,165,167]. Therefore, the estimated val-

ues of t may significantly  differ  from the  theoretical  ones.  Similar  observations  were  re-

ported in previous studies (Table 4.4).

According to the percolation theory, 0 (equation (2.12)) should approach the conduc-

tivity  of  the  filler  (in  this  case  MWNTs)  above  the  percolation  threshold.  Here 0 was

found to be 3.9 mS/cm which is much lower than the corresponding conductivity of

MWNTs (~100 S/cm). This difference is caused by the contact resistance between

MWNTs or clusters of MWNTs in the composite, which decreases the effective conductiv-

ity between MWNTs. As mentioned, carbon nanotubes or their bundles are coated with an

insulating polymer layer which results in poor electrical contact between the conductive

species. The conduction of electrons in MWNT/PDDA composites is explained by quan-

tum tunneling in which the barrier height decreases with temperature (equation (2.9))

[49].

The relatively low value of the electrical percolation threshold (pc=1.48 wt%) is attrib-

uted  to  the  high  aspect  ratio  of  MWNTs  and  the  uniform  distribution  of  well  exfoliated

nanotubes within the PDDA matrix. The experimental values of the electrical percolation

threshold have been shown by different groups to vary between 0.05 – 4 wt% (Table 4.4).

These fairly large differences relate to the degree of CNTs’ dispersions in polymer, aspect

ratio of the filler, polymer properties [29], and temperature [94].

It was found that the rheological percolation threshold mc=0.6 wt% is significantly

lower than the electrical percolation threshold pc=1.48 wt%. This is consistent with earlier

mentioned expectations (see 2.3.2.3). Briefly: to reach the electrical percolation threshold

and therefore be electrically conductive, nanocomposites need filler particles to be in close

vicinity of each other (up to 5 nm), so that the charge flow is possible (e.g. by tunneling).

The rheological percolation refers to systems of interconnected polymer chains and carbon

nanotubes. Therefore, nanotubes can just be linked by random coils of polymer chains

(with distances between CNTs even more than 10 nm) to form the rheological percolating

network (Figure 2.3). Thus, the CNT-CNT distance required for the rheological percolation
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threshold is longer than that for the electrical percolation threshold. Namely, a lower

weight fraction of nanotubes can already restrict the polymer motion in contrast to the

higher weight fraction that is required to form a conductive network throughout the matrix.

In general, polymer chain immobility and the distance between neighboring nanotubes de-

termine the rheological and electrical percolation threshold, respectively.

In this study, different samples were used for dielectric and rheometric measurements, due

to the experimental apparatus limitations, CNT-COOH/PDDA and CNT-COOH/PEI, re-

spectively. This is an additional factor that may affect the final values of percolation

thresholds and makes comparisons difficult. Nevertheless, the theoretically predicted trend

of mc<pc is satisfied here.

The results of this study confirm that the percolation theory well describes the electri-

cal response of the nanocomposites. The critical concentration of the metallic filler at

which the conductive path is formed in the polymer, causing the insulator-conductor transi-

tion, is shown to be at 1.48 wt%. This indicates a broad range of possible applications of

polymeric composites with low loads of nanotubes as antistatic coatings, EMI shields, and

conductive structures.

The fabrication of composites with a high dielectric constant but with low losses can

be achieved by efficient separation of the individual conductive particles in a polymer ma-

trix. This is shown by efficient coating of the conductive carbon nanotubes with insulating

silica shell, which prevents the charge flow (DC conductivity) between filler particles

within the polymer matrices.

4.6 Optical properties of the CNT/QD composites

The formation of CNT/nanoparticle heterostructures is of both fundamental and tech-

nological interest. Combining the unique properties of CNTs and nanoparticles a new class

of the nanocomposites can be made meeting a broad range of advanced applications. In

this study, a novel approach for fabrication of the heterostructures of carbon nanotubes and

semi-conductive nanocrystals has been shown. In particular, optical properties of systems

composed of MWNTs and quantum dots have been determined.

A novel class of MWNT/QDs and MWNT@SiO2/QDs heterostructures (see 3.1.2.3

and 4.1.4) has been characterized in terms of their optical properties using UV-vis and PL

spectroscopy. Figure 4.42 illustrates the UV-vis absorption of MWNTs, and



96 Results and discussion

MWNT@SiO2 before and after coupling reaction with CdSe-CdS quantum dots. The ab-

sorption spectrum of the CdSe-CdS quantum dots is also shown for reference. As expected,

the MWNTs and MWNT@SiO2 give featureless absorption spectra, with a higher degree

of scattering in the MWNT@SiO2 sample  arising  from  the  silica  shell.  Due  to  the  light

scattering of MWNTs and silica, and the low concentration of NCs, the characteristic UV-

vis signal of the QDs cannot fully be resolved. Even so, the spectra of MWNT@SiO2/QD

and MWNT/QD do exhibit weak features directly corresponding to the absorption edge of

CdSe-CdS QDs at around 600 nm. This is consistent with other reports, in which is shown

that UV-vis spectra of CNT/QD systems do not display any extra features that would arise

from charge diffusion or electronic interaction between the CNTs and QDs in their ground

state [131,132,142]. Only selected results obtained from nanocomposites containing

CdSe-CdS quantum dots are shown in Figure 4.42. In spite of this, consistent results were

achieved for all CNT/QD heterostructures fabricated in this study (specifically MWNTs

and MWNT@SiO2 with ZnO, CdSe, CdSe-ZnS).
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Figure 4.42  UV-Vis  absorption  spectrum  of  CdSe-CdS,  MWNT,  MWNT@SiO2, MWNT/CdSe-
CdS, and MWNT@SiO2/CdS-CdSe.

Recently, it has been reported, that carbon nanotubes can act as electron-acceptors in

their photo-excited state, wherein charge and energy transfer between conjugated species

and CNTs may occur [135,220-223]. Given the work function of MWNTs is estimated to
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be in the range of 4.4 - 5.1 eV [224,225] and the Fermi level lies in the HOMO-LUMO

gap  of  the  CdSe  nanoparticles,   MWNTs  are  capable  of  efficient  electron  scavenging

(Figure 4.43). Figure 4.44 represents PL spectra of CdSe (red line), MWNT/CdSe (blue

line), MWNTs (green line), and MWNT@SiO2/CdSe (black line). The characteristic lumi-

nescence peak for CdSe particles with an average size of 4.2 nm is located at 591 nm. It is

observed that the PL band from the QDs disappears after conjugation to MWNTs. There

are two possible explanations for this quenching: charge transfer or non-radiative energy

transfer from the photo-excited semiconducting particles to the carbon nanotubes.
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Figure 4.43 Schematic energetic band positions for MWNTs, SiO2, CdSe, CdS, and ZnS
[226,227].

In contrast, the PL spectrum of MWNT@SiO2/CdSe nanocomposites still displays the

QD  emission  peak  at  591  nm.  As  we  used  similar  concentrations  of  MWNTs  and

MWNT@SiO2 with the same amount of CdSe nanocrystals in each sample, the results

shown in Figure 4.44 clearly demonstrate that the quenching of the QDs emission is sup-

pressed by the presence of the insulating silica shell on MWNTs. The large band gap and

thickness of the SiO2 layer rule out both charge transfer and electron tunneling as possible

quenching mechanisms, further supporting our supposition that quenching may be a result

of electron injection into the MWNTs. Moreover, the observed quenching does not relate

to interactions of QDs with ligand functionalities that covalently link the QDs to the
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MWNTs as amine functional groups were used as the coupling agent in both cases. Sec-

ondly, amine ligands are commonly used for passivation of surface-defects (electron traps)

of CdSe nanocrystals and do not introduce trapping energy levels into the band gap of

these quantum dots [180].
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Figure 4.44  PL  spectra  of  CNT/QD  and  CNT@SiO2/QD heterostructures at ex=440 nm: CdSe
(red line), MWNT (green line), MWNT/CdSe (blue line), and MWNT@SiO2/CdSe (black line).
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Figure 4.45  PL spectra of CNT/QD and CNT@SiO2/QD heterostructures at ex=440 nm: CdSe-
CdS (red line), MWNT/CdSe-CdS (blue line) and MWNT@SiO2/CdSe-CdS (black line).
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In principle, the overcoating of one semiconductor with another of a wider band gap

should completely confine the charge carriers to the core. Interestingly, luminescence

quenching is also observed from the CdS overcoated particles (Figure 4.45). However, the

conduction band offsets between CdSe and CdS are small (~ 0.32 eV), and as such the

lighter, the more mobile electron may tunnel through the shell [228]. Given that MWNTs

are appropriate acceptors, the electron may be scavenged by the MWNTs resulting in non-

radiative decay or even permanent oxidation. Furthermore, the lattice mismatch between

CdSe and CdS, although relatively small (~3.9 %), will inevitably result in dislocations and

other  defects,  which  will  aid  carrier  diffusion  from  the  core  to  the  surface  of  the  QDs

[229]. Therefore, charge carriers are not fully confined in the core of core-shell particles,

due  to  the  relatively  small  band  gap  offset  and  lattice  mismatch  of  the  crystals.  This  en-

ables electrons to be trapped by the carbon nanotubes. Overcoating the MWNTs with silica

is again seen to prevent quenching.

The above suppositions were additionally confirmed by further observations of

MWNT/QDs heterostructures. It turned out that after long light exposition of the compos-

ites, the size of the nanoparticles tends to decrease (some blue-shift of PL peak appeared,

which refers to the size decrease). This is explained by a photo-catalytic redox reaction.

Interactions between MWNTs and QDs involve charge transfer of photo-excited electrons

from the conductive band of the donor (QDs) to the empty electronic states of the acceptor

(MWNTs) resulting in non-radiative decay of the QD excited state. This phenomenon sup-

ports further oxidation and consequently decomposition of the nanocrystals. Earlier inves-

tigations on semiconductor-metal composites have revealed that interactions between these

components enhance the efficiency of photo-catalytic redox process [230,231]. Electron

transfer between photo-excited semiconductor and metal was shown to play an important

role in photo-catalysis. In the case of MWNT@SiO2/QD system, some very slow changes

(decomposition) were also observed but at the same level as for neat QDs.

All of this supports the supposition that quenching most likely occurs by an electron

transfer between QDs and MWNTs. A similar effect has been reported recently: complete

quenching of QDs’ emission has been shown for CNT/QD hybrids, where carbon nano-

tubes acted as an electron acceptor of excited semiconductors [119,232].

Figure  4.43  shows  the  work  function  of  MWNTs  (4.5  –  5.0  eV)  that  lies  in  the

HOMO-LUMO gap of semiconductor nanocrystals. Charge transfer from the QD conduc-

tion band to MWNT conduction band is therefore energetically favorable.
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In summary, a new approach for the preparation of MWNT/NCs heterostructures with

a highly defined morphology is shown. QDs on bare MWNT were found to exhibit no lu-

minescence, while the MWNT@SiO2QD composites retained their luminescence. The

ability to allow or prevent charge transfer from photo-excited QDs to CNT opens up prom-

ising possibilities for applications in photoelectric and optical devices, biological sensors,

and catalytic materials.
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CHAPTER V

SUMMARY

In the frame of this thesis, insights into the fundamental problems in the fabrication of

CNT-based composites are presented. We have introduced novel approaches and solutions

for effective exfoliation and uniform dispersion of carbon nanotubes in solvents and poly-

mers, which are crucial for a further commercial exploitation of these unique materials. It

is shown that carbon nanotubes as components of nanocomposites have a significant effect

on the mechanical, electrical, and optical properties of these hybrid materials. The results

presented here indicate the potential of utilizing CNT-based nanocomposites for mechani-

cal, electrical, sensing, optical, and actuating applications.

The  effective  utilization  of  CNTs  in  composite  applications  strongly  depends  on  the

ability to homogeneously disperse them throughout the matrix. Therefore, various surface

functionalization strategies were employed in order to overcome the poor solubility of

CNTs in solvents and polymers.

Different polyelectrolytes (in particular poly(allylamine hydrochloride)) were non-

covalently adsorbed on the MWNTs’ surface in this study. In a fairly simple process high

stability, good exfoliation, and dispersion of CNT in both organic and aqueous solvents

were achieved. This is advantageous over other reported methods [16], which mainly re-

quire complex chemical treatment, resulting in dispersion in only organic or aqueous sol-

vent.

Multiwall carbon nanotubes were covalently functionalized by commonly used oxida-

tion methods and further modification of oxidized nanotubes. These strategies resulted in a

good dispersion of the nanotubes in various solvents.

Furthermore, a novel and simple strategy for a covalent silica coating of carbon nano-

tubes was introduced. Structural investigations revealed that every individual carbon nano-

tube has been uniformly coated with an insulating layer of silicon dioxide. This efficient

technique is adaptable to a large-scale production of MWNT@SiO2 hybrid structures. Fur-
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ther functionalization of silica coated nanotubes with 3APTMS and PhTMS resulted in

good and stable dispersions in aqueous and organic solvents, respectively.

It could be shown that non-covalent functionalization techniques, in contrast to cova-

lent ones, are non-invasive and do not introduce additional defects to the structure of the

nanotubes.

In order to satisfy the technological demand for lightweight, reinforced, and conduc-

tive polymers, CNTs were employed as a filling component of composites produced by

different approaches.

For the first time, we report the fabrication of high strength, lightweight composites

with multiwall carbon nanotubes by means of the layer-by-layer assembly technique. The

films consist of subsequent layers of polyelectrolytes and carbon nanotubes with a strong

interfacial bonding between the structural components, mediated by electrostatic attraction,

van der Waals adhesion, mechanical interlocking, and chemical bonding. This method as-

sures high concentrations and uniform distributions of nanotubes within a polymer matrix.

Moreover, an alternating adsorption of monolayers of components reduces the phase seg-

regation and makes these composites highly homogeneous, with the nanotubes and poly-

mers being well interwoven and interpenetrated. Various polyelectrolytes and MWNT

morphologies were used in the fabrication of LBL films.

A solution-mixing procedure was also used to form diverse MWNT/polymer and

MWNT@SiO2/polymer nanocomposites with concentrations of nanotubes ranging from 0

to 8 wt%. Structural investigations revealed a high homogeneity of these composite mate-

rials.

Combining the unique properties of both CNTs and nanoparticles enables a new class

of nanocomposites to be developed, meeting the requirements for a broad range of ad-

vanced applications. In this context, we have developed a novel strategy for the fabrication

of MWNT/nanocrystal and MWNT@SiO2/nanocrystal heterostructures with a highly de-

fined morphology. In a fairly simple process, straight coupling of nanocrystals to both sil-

ica coated and PAH-functionalized nanotubes was performed in organic and aqueous sol-

vents.  As a result,  every individual nanotube was uniformly coated with nanocrystals,  in-

dependent of size, charge, or surface properties (e.g. hydrophilic or hydrophobic); this is

advantageous over other reported techniques for decoration of nanotubes with nanocrystals

[123,142,186,187]. The formation of CNT/NC composites occurred through the covalent
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attachment of nanocrystals to amine functionalities of PAH modified carbon nanotubes.

Our step-by-step process offers the flexibility to tailor the nanocrystals prior to the conju-

gation.

The mechanical properties of the LBL assembled nanocomposites with “hollow” and

“bamboo” MWNTs were investigated in tensile tests. Experimental data show that these

composites are strong hybrid films with mechanical properties significantly exceeding

many carbon nanotube composites made by solution-mixing, melt-mixing, or in-situ po-

lymerization. LBL films with “bamboo” type carbon nanotubes display an ultimate tensile

strength of 160 ± 35 MPa (which is 20 times more than LBL of only polymers) and a

Young’s modulus of 5.5 ± 0.8 GPa as compared to 110 ± 30 MPa and 2.7 ± 0.7 GPa of

films made from common “hollow” MWNTs. This is greater than the tensile strength and

Young’s modulus of strong industrial plastics, which are 5 - 60 MPa and below 2 GPa, re-

spectively. Our results indicate that the morphology of the nanotubes can substantially im-

prove interfacial bonds between components, improving the ultimate strength of the com-

posites. The “bamboo” morphology provides structural anchors; this enhances the me-

chanical bonds between the MWNTs and the polymer and reduces the pull-out of the nano-

tubes from the polymer matrix.

The stretching results of LBL multilayer films with oxidized “hollow” MWNTs show

a drastic decrease in the strength of the composites. The tensile strength and Young’s

modulus are 40 ± 15 MPa and 1.1 ± 0.3 GPa, respectively. This indicates that oxidation

and any further covalent functionalization of carbon nanotubes apparently reduces their

mechanical performance due to the disruption of some aromatic bonds of the CNTs in the

oxidation process.

Nanoindentation experiments were carried out on different MWNT/polymer nanocom-

posites, including LBL assemblies and solution-mixed structures. The data reveal that the

presence  of  MWNTs  within  the  polymeric  systems  does  not  significantly  affect  the  me-

chanical response of the composites, even at high concentrations of the MWNTs in LBL

assemblies. In general, hardnesses and elastic moduli were found to reflect the mechanical

properties of the surrounding matrix, emphasizing a modest influence of the nanotube filler

on the mechanical performance of the hybrid materials, due to the flexibility and curvy

morphology  of  the  MWNTs.  This  supposition  was  confirmed  when  MWNT@SiO2 were

employed as reinforcement fillers. The average Young’s modulus for 4 wt% samples was
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found to be approximately three times as high as that for the neat polymer.  For the same

CNT concentration, the average hardness increased about two times in comparison to the

neat polymer. A silica shell on the surface of the MWNTs changes their bending perform-

ance, consequently affecting the mechanical properties of their composites.

CNTs have an extraordinary axial strength that plays an important role in the tensile

reinforcement action of the composites; however due to their curvy morphology and flexi-

bility, carbon nanotubes have a modest impact on the hardness of the polymeric systems. A

silica coating of the MWNTs offers new possibilities for the formation of reinforced het-

erostructures with high strength and hardness.

The visco-elastic properties of MWNT/polyethylenimine composites with MWNT

concentrations ranging from 0 to 8 wt%, were examined by means of the shear oscillatory

tests. The complex viscosity increased as the concentration of the nanotubes increased,

which was, in turn, accompanied by an increase in elastic properties, represented by the

storage modulus G’. This indicates that the polymer mobility is restrained by the presence

of carbon nanotubes in polymeric matrices.

Systems composed of two different components experience property transitions above

a certain weight fraction of the filler known as the percolation threshold. With the increase

of the MWNT load in the composites, the complex viscosity becomes frequency dependent

and the dynamic moduli curves approach a plateau (which is more pronounced at low fre-

quencies).  These changes are related to the structural transition (from liquid-like to solid-

like behaviour) of polymeric melts, indicating the formation of a percolated network of the

filler within the nanocomposites. A rheological percolation threshold mc at 0.5 wt% of

MWNT contents were obtained. This low value of mc relates to a high aspect ratio of the

nanotubes and a homogeneous dispersion of the MWNTs within the polymer matrix.

Our results imply a simple guideline for the modification of the polymeric structures

with a modest amount of CNTs, but resulting in significant changes of the visco-elastic

properties.

The addition of carbon nanotubes as a conductive filler to a dielectric host (e.g. poly-

mer) has attracted much interest due to the excellent electrical properties of CNTs and their

very large aspect ratio (>1000). This opens up possibilities for the fabrication of a new

class of reinforced antistatic films, electromagnetic shielding materials, and conductive

polymers at very low filler contents. In this context, the dependence of the dielectric prop-
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erties of MWNT/PDDA composites on frequency and different volume fraction of the

MWNTs were  studied.  The  presence  of  MWNTs in  the  polymer  significantly  affects  the

permittivity and conductivity spectra; a great increase of the complex conductivity and di-

electric constant as the MWNTs’ concentration increased is shown. The complex conduc-

tivity at 10-2 S/cm of composites with 8 wt% MWNTs content was found to be approxi-

mately four orders of magnitude higher than that for the neat polymer (the electrical con-

ductivities of the intrinsically conducting-polymer systems can reach values up to

104 S/cm, however in many cases the application of these polymers is limited due to the

poor chemical stability, sensitivity to corrosive media, and conductivity variations. Con-

ductivity of composites composed of polymers and other metallic inclusions (carbon black,

metal powder) can reach high values; however, at high concentrations causing the me-

chanical properties of such heterostructures to degrade [233-235]).

The critical concentration of the metallic filler at which the conductive path is formed

in the polymer, causing the insulator-conductor transition, was estimated to be at

1.48 wt%. This is significantly higher than the rheological percolation threshold of

0.5 wt%. To reach the electrical percolation thresholds and therefore be electrically con-

ductive, nanocomposites need filler particles to be in close vicinity of each other, so that a

charge flow is possible (e.g. by tunneling, hopping). The rheological percolation network

refers to systems of interconnected polymer chains and carbon nanotubes, where nanotubes

are linked by random coils of polymer chains. The CNT-CNT distance required for the

rheological percolation threshold is therefore longer than that for the electrical percolation

threshold. Thus, a lower weight fraction of nanotubes can already restrict the polymer mo-

tion in contrast to the higher weight fraction that is required to form a conductive network

throughout the matrix.

Results of this work indicate possible applications of polymeric composites with low

loads of conductive nanotubes as antistatic coatings, EMI shields, and conductive poly-

meric systems.

The fabrication of composites with a high dielectric constant but with low losses can

be achieved by efficient separation of the individual conductive particles in a host material.

Silica coating of the CNTs forms insulating shells that prevent the charge flow between

filler particles in the polymers. It is shown that a super-dielectric can be made in this way,

which can have a very large, low frequency dielectric constant, and low dielectric loss.
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Finally, we presented a new approach for the preparation of MWNT/QDs heterostruc-

tures with highly defined morphologies. The structural and optical properties of these

composites were characterized by electron microscopy and photoluminescence spectros-

copy. A complete quenching of PL bands in both, QD core and core/shell heterostructures

was observed after adsorption to the CNTs, presumably through an electron transfer be-

tween QDs and MWNTs. The deposition of a silica shell (with thicknesses >20nm) around

the CNTs preserves the fluorescence properties by insulating the QD from the surface of

the CNT.

Our results provide evidence that the MWNTs can be efficiently applied for the fabri-

cation of reinforced and conductive polymer composites for biomedical, space, and struc-

tural units as well as for electronic components with high strength requirements. Moreover,

the ability to allow or prevent a charge transfer from photo-excited QDs to CNTs opens up

promising possibilities for applications in photoelectric and optical devices, biological sen-

sors and catalytic materials.

The acquired knowledge can be useful for a further optimization of the CNT nano-

composite materials and towards their practical applications. Outstanding steps in the de-

velopment of this research should entail comprehensive studies on dispersion techniques of

CNTs with different morphologies, optimized large-scale production of CNT/polymer

composites and process automatization. In order to achieve a better understanding as well

as better characteristics of different nanocomposites with MWNTs and MWNT@SiO2

components, further mechanical, electrical, and optical measurements are required.
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