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Abstract

By extending Feynman’s path integral calculus to fields which respect orbifold
boundary conditions we provide a straightforward and convenient framework for
loop calculations on orbifolds. We take advantage of this general method to
investigate supersymmetric Abelian and non-Abelian gauge theories in five, six
and ten dimensions where the extra dimensions are compactified on an orbifold.
We consider hyper and gauge multiplets in the bulk and calculate the renorma-
lization of the gauge kinetic term which in particular allows us to determine the
gauge coupling running. The renormalization of the higher dimensional theories
in orbifold spacetimes exhibits a rich structure with three principal effects: Be-
sides the ordinary renormalization of the bulk gauge kinetic term the loop effects
may require the introduction of both localized gauge kinetic terms at the fixed
points/planes of the orbifold and higher dimensional operators.
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Chapter 1

Introduction

The Standard Model of Particle Physics

The Standard Model of particle physics describes the fundamtental particles
that physicists today believe the world is made of. In this sense, it is a modern
analog of Mendeleev’s periodic table of the elements in which the atoms were
considered to be the indivisible elementary building blocks of nature. The ana-
lysis of the Standard Model advances to even smaller structures: Its spectrum
contains quarks, leptons, gauge bosons and a Higgs particle. While quarks and
leptons are matter particles, the gauge bosons describe the mediation of forces
between them and the Higgs particle fulfills a special task that is described be-
low. Quarks appear in six different flavors belonging to two groups: They are
either up-type quarks (up, charm, top) or down-type quarks (down, strange,
bottom). There are two possibilities for quarks to form stable bound states,
namely mesons that are a combination of a quark and an antiquark (qq̄) and
baryons that are composed of three quarks (qqq) or antiquarks (q̄q̄q̄). Well-
known examples for baryons are the proton (uud) and the neutron (udd) that
form the atomic nuclei. Leptons are also divided into two categories, they either
belong to the electron and its heavier counterparts (electron, muon, tauon) or
to the neutrinos (electron-neutrino, μ-neutrino, τ -neutrino). Quarks and leptons
are the constituents of all matter so far observed, for example all the atoms in the
periodic table of the elements are made up from protons and neutrons confined
in a nucleus with electrons orbiting around them. The other matter particles
are found naturally in radioactive decays or cosmic rays or can be produced in
collider experiments.

But the Standard Model is not merely a collection of particles, it also provides
the rules how these particles interact with each other. It describes three of the
four forces that are realized in nature (electromagnetic, strong and weak force)
by the exchange of gauge bosons. The gauge group of the Standard Model is
SU(3)C × SU(2)L ×U(1)Y . Here the SU(3)C factor of the gauge group belongs
to the theory called quantum chromodynamics (QCD) that describes the strong
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4 1. Introduction

force and is responsible for the fact that the quarks can bind together to a
proton and that protons (which would repel due to their electromagnetic charge)
are bound together in a nucleus. The dimension of SU(3)C (the number of its
generators) is eight, therefore there are eight QCD gauge bosons which are called
gluons.

The electromagnetic and the weak force are combined in the SU(2)L×U(1)Y

factor of the Standard Model gauge goup. This sophisticated construction is
the electroweak theory that was formulated by Glashow, Weinberg and Salam
(GWS). The dimension of SU(2)L × U(1)Y is four and hence this theory con-
tains four electroweak gauge bosons (three of them conventionally called W and
one called B). This unified description of the electromagnetic and weak inter-
actions is the valid picture at energies above roughly 100 GeV (the weak scale).
Below the weak scale one encounters electroweak symmetry breaking which is
implemented in the Standard Model via the Higgs effect: It is assumed that
a Higgs particle exists which is not in its true potential minimum. Therefore,
one has to shift the field by a vacuum expectation value with the result that
the electroweak symmetry is broken. In this process three combinations of the
electroweak gauge bosons become massive and form the W+, W− and Z0 vector
bosons of the weak interaction. A fourth combination is identified as the photon
which is the massless gauge boson of the electromagnetic interaction. This is the
way how Feynman’s quantum electrodynamics (QED), the theory that describes
the electromagnetic interaction separately, is embedded in the Standard Model.
The Higgs mechanism is also responsible for giving mass to the fermions via
Yukawa couplings. This Higgs particle which is of strong conceptual importance
has not been observed yet and is thus the last missing piece for the confirmation
of Standard Model physics. Collider experiments which have been conducted so
far could only show that the Higgs, if it exists, has to be heavier then 114 GeV.
On the other hand, electroweak precision data suggests an upper bound on the
Higgs mass of around 200 GeV. Particle physicists hope to discover the Higgs in
this mass window at the Large Hadron Collider (LHC) that is currently under
construction at the European laboratory for particle physics (CERN)1.

The theoretical framework of the Standard Model is that of a quantum field
theory (QFT) which treats particles as point-like objects. The quantum aspect
of a theory becomes important when one describes physics at small scales or in
other words at high energies. The theory allows the calculation of cross-sections
of particle reactions and particle lifetimes and has been tested up to roughly 100
GeV. So far no deviations to the theory have been found and it seems to describe
nature extremely well. This is in spite of the fact that the Model has conceptual

1Originally, the abbreviation CERN referred to the Conseil Européen pour la Recherche
Nucléaire, a council that was founded in 1952 with the aim to establish a fundamental physics
research organization in Europe. The council was dissolved two years later, when the European
Organization for Nuclear Research came into existence which hosts the European laboratory
for particle physics.
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drawbacks if one wants to regard it as a universal theory of nature.

One tends to assume that the Standard Model is not the final theory. One
reason for this is that the Standard Model has of the order 20 free parameters
and one thinks that a fundamental theory of nature should be a unified concept
with less parameters. The expectation is that in a unified theory new physics
comes into play at some high energy scale (e.g. a GUT scale of the order of 1016

GeV or an even higher string scale, see below). The question of why there is such
a big difference between this high scale and the weak scale of fourteen orders of
magnitude or more and how this can be implemented consistently into a single
theory is called the hierarchy problem. One aspect of the hierarchy problem is
that if the theory contains two scales, they should not mix with each other. This
problem manifests itself in the question of how the Higgs mass can be kept at
the order of the weak scale, because the mass receives large loop corrections that
are quadratic in the high energy scale and is thus driven to very high values.

The Standard Model describes only three of the four forces that are realized
in nature. The missing item here is the gravitational force and it is this force
around which Einstein’s theory of general relativity is centered. While being a
theory that can look back at remarkable successes of its own, general relativi-
ty seems to be incompatible with the Standard Model. The reason is that the
mathematical framework of Einstein’s theory is that of a classical field theory
and it is not known how to quantize general relativity consistently in order to
combine it with the Standard Model. The consistent quantization of general
relativity which would allow to enlarge the Standard Model to a theory which
would encompass gravitation together with the other three forces in a unified
setup is one of the greatest puzzles of theoretical physics today.

Beyond the Standard Model: Grand Unified Theories, Supersymme-
try, Extra Dimensions and Strings

One attempt to reduce the number of parameters of the Standard Model is in-
spired by the success of the GWS theory of the electroweak interactions which
successfully unifies the electromagnetic and weak interactions as we have seen
above. With this idea in mind, one can look for a gauge group that contains the
Standard Model gauge group as a subgroup and thus describes the three forces
within the framework of a Grand Unified Theory (GUT). It is necessary for this
process to work, that the gauge couplings coincide at a certain energy scale. The
renormalization group running of the gauge couplings determines the GUT scale
at which this unification is supposed to take place to lie around 1016 GeV. In the
Standard Model, however, the gauge couplings come only close to each other at
these high energies, but they fail to meet in a point. (The three graphs cut out
an area which is called the GUT triangle.) An answer to this problem might be
provided by supersymmetry.

Supersymmetry is a symmetry that relates bosons and fermions. In four di-
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mensions it has in its simplest version (N = 1) four supercharges such that it
associates to every particle one supersymmetric partner. These particles together
form a supersymmetry multiplet which is conveniently described in terms of a
superfield, because this notation makes cancellations explicit that appear when
both particles run around in a loop. In this way a spin-0 boson and a spin-1/2
fermion are described as a chiral superfield and a spin-1 vector boson and a spin-
1/2 fermion as a vector superfield. The analog of the Standard Model that is
enlarged by this minimal supersymmetry is called the Minimal Supersymmetric
Standard Model (MSSM). The spectrum of the MSSM thus consists of the usual
Standard Model particles plus their partners: quarks and leptons are accompa-
nied by squarks and sleptons which are spin-0 bosons, and the gauge bosons by
the gauginos which are spin-1/2 fermions. While the Standard Model involves
only one Higgs field, the MSSM needs two Higgs fields which give mass to the up-
type and down-type quarks separately. Their two supersymmetric partners, the
higgsinos, are also required because of anomaly cancellation. This setup has re-
markable advantages: Quadratic divergences in the loop corrections to the Higgs
mass are absent and only a logarithmic divergence appears due to the fact that
loops involving particles are cancelled by loops involving their supersymmetric
partners. Therefore, supersymmetry solves the aspect of the hierarchy problem
that the scales should not mix with each other. In addition, the gauge coupling
running shows the beautiful feature that the gauge couplings unify in a point
which motivates the consideration of supersymmetric GUTs. Another motiva-
tion for supersymmetry comes from string theory (see below), which, when one
wants to regard it as the fundamental theory of nature, only makes sense in its
supersymmetric version. In a theory where supersymmetry is intact, a particle
and its partner possess the same mass. However, no supersymmetric particles
have been observed experimentally so far. This means that supersymmetry, if it
exists, must be broken somewhere above the presently accessible energy scales.
It is the hope of many particle physicists to find indications of supersymmetry
at the LHC. For textbook introductions to supersymmetry consider [1–5], the
standard review articles are [6–8].

Another approach to resolve the hierarchy between the Planck scale and
the weak scale is the introduction of (large) extra dimensions [9, 10]. In this
setup the four dimensional Planck mass is given by a product of two factors, one
involving a higher dimensional fundamental mass scale and the other the volume
of the extra space. By considering large extra dimensions of the order TeV−1

the fundamental scale can be chosen of the order of the weak scale and still
reproduce the correct four dimensional Planck scale. Hence, there is only one
fundamental scale (the weak scale) and no hierarchy at all. In order to stabilize
this construction one can consider supersymmetric theories in extra dimensions.
For overviews on extra dimensions see e. g. [11, 12].

From the higher dimensional supersymmetric theories that exist those with
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a minimal amount of supersymmetry in five, six and ten dimensions will be rele-
vant for our work. We briefly discuss the supersymmetry multiplets that appear
and indicate how they can be described in terms of four dimensional superfields:
In five and six dimensions the minimal amount of supercharges is eight and
(besides the supergravity and tensor multiplet that are irrelevant for our dis-
cussion) the possible supersymmetry multiplets are hyper and gauge multiplets.
The hyper multiplet is described in the four dimensional language by two chiral
superfields and the gauge multiplet by one four dimensional gauge superfield
and a chiral superfield that transforms in the adjoint of the gauge group. In the
ten dimensional theory with the minimal amount of sixteen supercharges there
are no hyper multiplets and hence the only multiplet that is important for our
discussion is the vector multiplet which contains the ten dimensional gauge fields
and gauginos. The four dimensional description consists of one four dimensional
gauge superfield and three chiral superfields in the adjoint of the gauge group.
The four dimensional language for higher dimensional superfields was introduced
in [13] for ten dimensions, before it was developed for the vector multiplet in five
dimensions [14] and, finally, for the vector and matter multiplets in five, six and
ten dimensions [15]. A gauge covariant formalism for five dimensions was given
in [16, 17].

The most promising candidate for a theory that could unify the three forces
of the Standard Model with general relativity seems to be string theory. In
fact, string theory combines all the ideas of grand unification, supersymmetry
and extra dimensions. The theory had originally been developed to describe
the confinement of quarks due to the strong force by a string that stretches be-
tween them. The existence of a massless spin-2 particle in its spectrum which
is not realized in the hadronic world was troublesome in this respect, but could
eventually be turned into a success when it was realized that this particle could
be reinterpreted as the mediator particle of the gravitational force, the graviton,
thus giving rise to a theory that could possibly contain both the Standard Model
and general relativity [18]. String theory gives up the concept of QFT that parti-
cles are essentially point-like objects and proposes instead that the fundamental
building blocks of our world are one dimensional strings. The different elemen-
tary particles that are observed in nature are then supposed to be described by
the different vibrational modes of the string. The string is a mapping from two
coordinates (world-sheet coordinates) to a D-dimensional target space. While
a string moves in the target space it sweeps out a world sheet just as a point
particle sweeps out a world line. Strings can be open and closed and during their
propagation in spacetime they can split and merge. For textbook introductions
to string theory consider [19–23].

Simple bosonic string theory can only be formulated consistently in 26 space-
time dimensions. It contains a tachyon as the lowest lying state which signals an
instability of the theory, and so string theory needs to include fermions. This is



8 1. Introduction

solved by the implementation of supersymmetry, and hence a consistent string
theory has to be supersymmetric. There are five different supersymmetric string
theories (superstring theories): type I, type IIA and IIB and heterotic E8 × E8

and SO(32). All of them can only be formulated consistently in ten dimensions.
In our work we have applications in the context of the heterotic theories in mind,
so we will describe these in a bit more detail. Heterotic string theory was con-
structed by Gross, Harvey, Martinec and Rohm [24–26]. The heterotic theories
involve only closed oriented strings and are hybrid constructions of right-movers
from a ten dimensional type II superstring [27,28] and left-movers from a 26 di-
mensional bosonic string. Although the bosonic string is involved, the complete
theory is free of tachyons. This is achieved, because a tachyon on the supersym-
metric side is projected out by the so-called GSO projection [29, 30] such that
the tachyon on the bosonic side does not have a counterpart on the superstring
side and is removed by level-matching. Sixteen of the left-mover dimensions are
compactified on a sixteen dimensional torus giving rise to the gauge group. The
possible gauge groups that are consistent with the requirement of anomaly can-
cellation are E8 ×E8 and SO(32) [31]. The heterotic string theories have N = 1
supersymmetry in ten dimensions corresponding to sixteen supercharges. Their
low-energy limits at weak coupling are given by N = 1 supergravity coupled to
E8 × E8 and SO(32) super Yang-Mills theory (SYM), respectively.

Although it is far beyond the scope of this thesis, let us also say a few
words about the question how string theory can be the fundamental theory of
nature when there are actually five different theories. In fact, it was found out
that all five string theories are related among each other by a web of duality
transformations. The two heterotic theories for example are T-dual to each
other which means that if one compactifies the theories on a circle, they can
be mapped to each other when one replaces the radius by its inverse [32, 33].
Furthermore, the low energy limit of heterotic E8×E8 theory at strong coupling
is given by eleven dimensional supergravity [34, 35] on an interval where each
of the E8 factors is restricted to a ten dimensional boundary [36, 37]. It has
been conjectured that a theory called M-theory might exist which would be the
underlying unified theory for the five string theories as well as eleven dimensional
supergravity.

To make contact to the world around us string theory should provide us
with the correct four dimensional physics. The large symmetry groups should
be broken to the Standard Model gauge group and the correct particle spectrum
should be obtained. A solution might be provided by compactification of the
six extra dimensions on a compact manifold whose volume is so small that the
extra space is not observable. Hence the quest for the correct description of na-
ture is translated into the the task to choose the right compactification manifold
that reproduces the correct low energy physics. Let us consider heterotic string
theory for concreteness. Compactification on a six-dimensional torus leaves all
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sixteen supersymmetries unbroken such that the resulting four-dimensional the-
ory corresponds to N = 4 supersymmetry in four dimensions [38]. We would,
however, rather have N = 1 in four dimensions with the remaining supersym-
metry broken at energies lower than the compactification scale by some field
theoretic formalism. Then one possibility for a class of manifolds that one can
choose are the so-called Calabi-Yau manifolds [39]. These manifolds are very
hard to describe mathematically. But Dixon, Harvey, Vafa and Witten [40, 41]
found out that one can compactify strings on orbifolds which represent a certain
limit of Calabi-Yaus. An orbifold is a modification of a torus where certain points
of the torus are identified under a symmetry of the torus lattice and a number of
fixed points on the torus is invariant under this symmetry. It is not a manifold,
because of singularities arising at these fixed points. Nevertheless, string theory
can be described consistently on orbifolds. The existence of fixed points is re-
flected in the spectrum of the string theory. Besides those states that correspond
to the dimensionally reduced theory and that are free to propagate through the
whole orbifold bulk (untwisted states) there are additional states whose center
of mass is localized at the fixed points (twisted states). The existence of theses
states is enforced by a string symmetry called modular invariance.

After they were introduced in the context of string theory, orbifold com-
pactifications became popular within higher dimensional field theories to adress
questions like supersymmetry and gauge symmetry breaking [14,42,43] and the
doublet-triplet splitting problem that arises in GUTs [44, 45]. While field the-
ory orbifolds do not have modular invariance at their disposal some information
about states that are localized at the fixed points can be obtained from the
requirement of local anomaly cancellation [46]: In order for the theory to be
consistently defined the anomalies must cancel in the bulk and at each of the
fixed points separately. For this purpose one has to place fields at the fixed points
by hand which are then regarded as analogs of the twisted states in string theory.
String theory orbifolds were already known to be globally anomaly-free, and the
fact that the twisted states that string theory proposes to live at the orbifold
fixed points also meet the stronger requirement of local anomaly cancellation
could be shown for prime orbifolds in [47] and for non-prime orbifolds in [48].
The local picture has also become important for string theory phenomenology.
By choosing the compactification parameters appropriately, one can ensure that
certain GUT gauge groups live locally at the different fixed points of the orbi-
fold. In the limit where the compactification radius goes to zero the global four
dimensional gauge group (hopefully that of the Standard Model) arises as the in-
tersection of the local gauge groups. Therefore, string models can be interpreted
as orbifold GUTs where GUT gauge groups are localized at lower dimensional
subspaces of the string theory orbifold [49–51]. An important issue in string the-
ory model building is to develop good search strategies in order to find realistric
models [52–56]. It is especially in the context of the local GUT picture of string
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theory orbifolds where the results of this thesis about the local gauge coupling
running can be applied.

Higher dimensional operators and localization of quantum corrections
at orbifold fixed points

We have tried to sketch the picture of high-energy physics phenomenology to-
day. Now we want to introduce some concepts that are relevant in particular for
this thesis. The starting point may be seen in the papers by Dienes, Dudas and
Gherghetta (DDG) who began to make the extra dimensions scenario fruitful for
Grand Unification [57,58]. They proposed to place the MSSM on a higher dimen-
sional spacetime, where the extra space is compactified on an orbifold. Taking
only Kaluza-Klein modes up to a certain energy threshold into account, DDG
found that the gauge coupling running is modified by a term which goes with
a power-law in the cutoff scale (in addition to the usual MSSM gauge coupling
running). It was argued that this term would help to realize a low-scale gauge
coupling unification. However, it has been observed that neglecting the Kaluza-
Klein modes above a certain energy threshold bears difficulties with respect to
the consistency of the analysis, because the running is strongly sensitive to the
precise choice of the cutoff [59–61]. Later it could be shown that within the
framework of spontaneously broken GUT models power-like corrections to the
differences of the gauge couplings can be calculated consistently [62–64]. In this
setup a discrete symmetry that is realized at high energy scales ensures that the
gauge coulings are related to each other such that the sensitivity to the choice
of the cutoff vanishes in their difference.

During the investigation of the consistency of the regularization procedure
in the DDG model it was realized that taking into account the full tower of
Kaluza-Klein modes can lead to the appearance of higher dimensional opera-
tors in the renormalization process [65]. This effect will be important for our
discussion. In [66] Ghilencea considered a toy model of QED in five and six
dimensions with the extra dimensions compactified on an orbifold. In this setup
the self-energy of the four dimensional zero-mode photon due to a fermion and
its associated Kaluza-Klein tower in the loop was calculated for off-shell external
momentum q2 �= 0. It turned out that in the case of two compact dimensions
the quantum effects involve divergent terms that are proportional to q2. As
the external momentum corresponds to a derivative operator in position space,
the one-loop counterterms that are necessary to cancel the divergences involve
higher dimensional (derivative) operators. These counterterms are not present
if the Kaluza-Klein towers are truncated to any large number of modes (as it
had been the case for example in the DDG analysis) and obviously could not
have been observed in earlier on-shell analysis. It was shown later that higher
derivative operators can also be generated in five dimensional models [67]. Here
they appear as one-loop counterterms to the mass of a zero-mode scalar field
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due to the existence of a superpotential that is localized on the (Z2) fixed points
of an S1/(Z2 × Z

′
2) orbifold and couples the scalar field to Kaluza-Klein towers

of hyper multiplets in the bulk. Other setups showed the generation of higher
derivative operators as counterterms to the mass of a zero-mode scalar field from
a localized superpotential and also from bulk gauge interactions on the orbifold
S1/Z2 in [68] and on T 2/ZN in [69]. (For gauge coupling renormalization in
warped geometry see [60].)

Another effect that is important for our discussion is the fact that the re-
normalization of a theory in a (higher-dimensional) space induces effects that
are localized on lower-dimensional subspaces. As the authors of [70] found out,
loop corrections to a bulk theory that is compactified on a orbifold can give rise
to infinities that must be renormalized by terms that are localized on a brane.
They considered a simple model of fermions and scalars interacting on a five
dimensional space with the fifth coordinate compactified on an S1/Z2 orbifold
and concluded that even when one chooses a brane localized action to be absent
in the first place, the loop corrections of the five-dimensional theory induce non-
trivial physics on the fixed points and are responsible for a running of the four
dimensional couplings that belong to a theory located at the fixed points.

Local gauge coupling running in supersymmetric theories on orbifolds

Based on the publications [71, 72] this thesis investigates the renormalization of
supersymmetric theories in orbifold spacetimes in five, six and ten dimensions.
Publication [71] considered for the first time the renormalization of the gauge ki-
netic term in a theory of bulk hypermultiplets that are coupled to Abelian gauge
multiplets in five and six dimensions where the extra dimensions are compacti-
fied on an orbifold. Publication [72] extended the same analysis to the situation
where the gauge group is non-Abelian. The investigation of the ten dimensional
case with the extra six dimensions compactified on an orbifold and a ten dimen-
sional gauge multiplet in the bulk is presented in this thesis for the first time.
In order to perform the calculations of supersymmetric Feynman graphs on or-
bifolds in a straightforward way, in [71,72] a general method was developed that
conveniently extends the path integral calculus of Feynman to fields that respect
the orbifold boundary conditions. As a consequence, this allows for a straight-
forward calculation of loop effects in orbifold field theories. The renormalization
of the gauge kinetic term that we pursue here is to be seen as just one applica-
tion of this method whose advantage over the usual approach lies primarily in
the fact that the necessary Kaluza-Klein expansion of the fields is performed at
a very late stage of the calculation. This is very helpful, because cancellations
within the loop effects can be seen at a very early stage and no unnecessary
expansions have to be performed. With the help of this formalism we determine
in each of the above cases the renormalization of the kinetic term of the gauge
field, which means that we can in particular derive the gauge coupling running.
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As explained above, besides the renormalization of the bulk kinetic term of the
gauge field, the quantum corrections can give rise to a renormalization of kinetic
terms of the gauge field that are localized on the fixed points/fixed planes of
the orbifold. In addition, higher dimensional operators can be generated. We
investigate these effects.

The thesis is organized as follows:

Chapter 2 contains an introduction to the basic notions of supersymmetric
field theory: superspace, superfields and supersymmetric actions. Starting from
the supersymmetry algebra we present the well-known central technical identities
that are used throughout the thesis.

Chapter 3 provides standard material on the renormalization of the gauge
coupling in supersymmetric Abelian and non-Abelian gauge theories in four di-
mensions. Besides the reproduction of the standard results we exemplify the
method of renormalizing in the generating functional of the theory as it is used
later in more complicated setups.

Chapter 4 presents the five dimensional calculations from publications [71,72].
We consider a five dimensional spacetime with the fifth dimension compactified
on S1/Z2 and a hyper and a gauge multiplet in the bulk. The method of cal-
culating Feynman graphs is used to calculate the self-energy graphs directly on
the orbifold. We find that while the bulk hyper multiplets generate a linearly
divergent loop correction in the bulk, they do not give rise to a renormalization
of the four dimensional gauge coupling at the fixed points. This is in particular
true for the Abelian theory, where the complete result vanishes, whereas in the
non-Abelian case only those terms of the higher dimensional theory are renor-
malized that do not contribute to the four dimensional gauge coupling. The
non-Abelian gauge multiplet, however, induces renormalizations of both bulk
and brane gauge couplings. Its loop effects are such that at the fixed points
only the four dimensional gauge superfield receives a loop correction. A higher
dimensional operator is not generated in the five dimensional setup.

Chapter 5 presents the six dimensional calculations from [71,72]. The analysis
of the preceeding chapter is generalized to six dimensions with the extra two
dimensions compactified on a T 2/ZN orbifold and a hyper and a gauge multiplet
in the bulk. The cancellation of the loop corrections due to a hyper multiplet that
we encountered at the fixed points of S1/Z2 is translated into the fact that the
four dimensional gauge coupling does not receive loop corrections from a bulk
hyper multiplet at the Z2 fixed points of an even ordered orbifold. Again we
observe that in the Abelian case the complete self-energy vanishes, while in the
non-Abelian theory only those terms are renormalized that do not contribute to
the four dimensional gauge coupling. However, the bulk hyper multiplet induces
quantum corrections at those fixed points of T 2/ZN that do not belong to a Z2

subset. The gauge mutiplet induces quantum corrections at all fixed points. At
the Z2 fixed points, however, only the kinetic operator of the four dimensional
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gauge superfield is renormalized. Another issue encountered in six dimensions
is the generation of higher derivative operators at one loop. The operators are
generated from loops that involve the hyper multiplet both in the Abelian and in
the non-Abelian theory and the gauge superfield in the non-Abelian theory. As
our formalism works in position space, we have a resolution where the quantum
effects are located: We can see that the higher dimension operators are generated
in the bulk, while the fixed points contribute just the usual four dimensional
logarithmic running.

Chapter 6 contains unpublished work on gauge coupling renormalization in
a ten dimensional spacetime with the six extra coordinates compactified on a
T 6/ZN orbifold and a gauge multiplet in the bulk. Here we compute the renor-
malization of the kinetic term of the four dimensional gauge multiplet due to
the self-interactions of the ten dimensional bulk gauge multiplet. We find that
the renormalization in the bulk vanishes identically. This is a good cross-check,
because we reproduce the well-known result that due to the high amount of
supersymmetry there is no gauge coupling running in ten dimensions. But the
implications of our result are even stronger, because the calculation reveals the
fact that no higher dimensional operators are generated as loop counterterms in
the bulk. Then we present for the first time the analysis how the theory renor-
malizes on the lower dimensional subspaces of the orbifold. As the amount of
supersymmetry on the lower dimensional subspaces is reduced, certain operators
in the action of the ten dimensional vector multiplet are renormalized while oth-
ers are projected out. Higher dimensional operators are also generated, but this
time they are not localized in the bulk of the orbifold, but on its six dimensional
subspaces.

Chapter 7 concludes this thesis with a summary and a brief outlook. The
technicalities are organized in the appendices.





Chapter 2

Supersymmetric field theory

In this chapter we recapitulate N = 1 supersymmetry in four dimensions. In
the context of this thesis, this is important because the higher dimensional su-
persymmetric multiplets which are considered later can be expressed in a four
dimensional language. The emphasis in this chapter is on the technical side,
since it provides the notions and identities that will be used in the rest of the
thesis. We start with the supersymmetry algebra and its linear representation
on superfields living on superspace. The supercovariant derivatives are given to-
gether with helpful identities. The chiral and vector superfields form irreducible
representations of the supersymmetry algebra. Their restrictions to component
fields are discussed. The F -term of a chiral superfield and the D-term of a vector
superfield are used to construct invariant actions. It is shown how the funda-
mental restrictions of the superfields are used to rewrite a superfield action into
its component field form. All this material is standard. Textbook introductions
to four dimensional supersymmetry can be found in [1–5].

2.1 Supersymmetry algebra and superspace

Our starting point is the N = 1 supersymmetry algebra, which is given by the
following commutators and anticommutators of the supersymmetry generator Q
and the four momentum P {

Qα, Q̄α̇

}
= 2σαα̇

mPm,{
Qα, Qβ

}
=
{
Q̄α̇, Q̄β̇

}
= 0, (2.1)[

Pm, Qα

]
=
[
Pm, Q̄α̇

]
= 0.

The notion N = 1 refers to the fact that we have only one supersymmetry
generator. The Greek indices α, β, α̇, β̇ run from one to two and label the two
components of Weyl spinors, while the Latin indices m, n run from one to four

15
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and refer to Lorentz four vectors. With the help of parameters ξα, ξ̄α̇ that
anticommute with other spinors and commute with bosonic quantities{

ξα, ξβ
}

=
{
ξ̄α̇, ξ̄β̇

}
=
{
ξα, ξ̄β̇

}
= 0,[

ξα, am
]

=
[
ξ̄α̇, am
]

= 0, (2.2){
ξα, Qβ

}
=
{
ξα, Q̄β̇

}
=
[
ξα, Pm

]
= 0,{

ξ̄α̇, Qβ

}
=
{
ξ̄α̇, Q̄β̇

}
=
[
ξ̄α̇, Pm

]
= 0.

the supersymmetry algebra is represented in terms of commutators only[
ξQ, ξ̄Q̄

]
= 2 ξσmξ̄Pm,[

ξQ, ξQ
]

=
[
ξ̄Q̄, ξ̄Q̄

]
= 0, (2.3)[

P m, ξQ
]

=
[
P m, ξ̄Q̄

]
= 0,

where the following summation convention for spinorial quantities has been em-
ployed: Undotted indices are summed from upper left to lower right such that
ξQ := ξαQα, whereas dotted indices are summed from lower left to upper right
ξ̄Q̄ := ξ̄α̇Q̄α̇. Indices are raised and lowered with the help of the antisymmetric
ε-tensor with ε12 = ε21 = 1 as

ξα = εαβξβ, ξ̄α̇ = εα̇β̇ ξ̄β̇, (2.4)

and two ε-tensors are contracted to a Kronecker symbol as εαβεβγ = δα
γ and

εα̇β̇εβ̇γ̇ = δα̇
γ̇ . Summing over the indices in the “wrong” direction brings in a

minus sign: ξαηα = −ξαηα and ξ̄α̇η̄α̇ = −ξ̄α̇η̄α̇. The Pauli matrices σm have the
fixed index structure σαα̇

m such that, for example, the product with spinors in
the first line of (2.3) reads ξσmξ̄ = ξασαα̇

mξ̄α̇.

Representation of the supersymmetry algebra on superfields

In the form (2.3) the supersymmetry algebra may be viewed as a Lie algebra
with anticommuting parameters. Hence a group element is defined in the usual
way

G
(
xm, θ, θ̄

)
= exp
(− ixmPm + iθQ + iθ̄Q̄

)
. (2.5)

The representation space for the supersymmetry transformation is therefore an
8-dimensional manifold parameterized by the coordinates xm, θα and θ̄α̇. This
manifold is called superspace. Functions which live on superspace are called su-
perfields. A unitary representation of the supersymmetry algebra on superfields
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is constructed in the following. The multiplication of two group elements gives

G
(
am, ξ, ξ̄

)
G
(
xm, θ, θ̄

)
= G
(
am + xm + iθσmξ̄ − iξσmθ̄, θ + ξ, θ̄ + ξ̄

)
. (2.6)

where Hausdorff’s formula eAeB = eA+B+ 1
2
[A,B]+... has been used. The group

multiplication law (2.6) induces a motion in the parameter space(
xm, θ, θ̄

)→ (am + xm + iθσmξ̄ − iξσmθ̄, θ + ξ, θ̄ + ξ̄
)
. (2.7)

Hence even a pure supersymmetry transformation with am = 0 induces a motion
in the Minkowski coordinates. A superfield F transforms under the motion (2.7)
as

F
(
xm, θ, θ̄

) → F
(
xm + am + iθσmξ̄ − iξσmθ̄, θ + ξ, θ̄ + ξ

)
= F
(
xm, θ, θ̄

)
+
(
am + iθσmξ̄ − iξσmθ̄

) ∂F

∂xm
+ ξa ∂F

∂θα
+ ξ̄α̇

∂F

∂θ̄α̇

(2.8)

≡ UF
(
xm, θ, θ̄

)
,

where U is the unitary representation that we are looking for. The ansatz

U = exp
(
iamPm + iξQ + iξ̄Q̄

)
(2.9)

allows to determine by identification the realization of the supersymmetry alge-
bra on superfields

Pm = −i∂m

iQα = ∂α − iσαα̇
mθ̄α̇∂m (2.10)

iQ̄α̇ = −∂̄α̇ + iθασαα̇
m∂m.

One checks explicitly that P , Q and Q̄ fulfill the supersymmetry algebra (2.1).
The derivatives w.r.t. Minkowski coordinates and the dotted and undotted spino-
rial coordinates, respectively, in (2.10) are defined as

∂m =
∂

∂xm
, ∂α =

∂

∂θα
, ∂̄α̇ =

∂

∂θ̄α̇

. (2.11)

Differentiation of spinorial coordinates is defined as

∂αθβ = δβ
α, ∂̄β̇ θ̄α̇ = δβ̇

α̇ (2.12)

and the squares of the derivatives ∂2 = εαβ ∂β∂α and ∂̄2 = εα̇β̇ ∂̄β̇ ∂̄α̇ fulfill

∂2 θ2 = ∂̄2 θ̄2 = −4, (2.13)

which will allow us to establish a connection between differentiation and inte-
gration w.r.t. Weyl spinors in (2.44).
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2.2 Supercovariant derivatives

Supercovariant derivatives Dα and D̄α̇ which anticommute with the supersym-
metry generators {

Dα, Qβ

}
=
{
Dα, Q̄β̇

}
= 0, (2.14){

D̄α̇, Qβ

}
=
{
D̄α̇, Q̄β̇

}
= 0,

and hence commute with an infinitesimal supersymmetry transformation are
then defined as

Dα = ∂α + iσm
αα̇θ̄α̇∂m, (2.15)

D̄α̇ = −∂̄α̇ − iθασm
αα̇∂m.

The supercovariant derivatives fullfil the following anticommutation relations
among themselves {

Dα, D̄α̇

}
= −2iσm

αα̇∂m, (2.16){
Dα, Dβ

}
=
{
D̄α̇, D̄β̇

}
= 0.

It is useful to write out the products D2 and D̄2 explicitly

D2 = εαβ
(
∂β∂α − 2i σαα̇

mθ̄α̇∂β∂m + σαα̇
mθ̄α̇ σββ̇

nθ̄β̇ ∂m∂n

)
, (2.17)

D̄2 = εα̇β̇
(
∂̄α̇∂̄β̇ + 2i θασαα̇

m ∂̄β̇∂m − θασαα̇
mθβσββ̇

n ∂m∂n

)
,

in order to note that D2 (D̄2) is equal to ∂2 (∂̄2) up to terms that contain a
total spacetime derivative ∂m. This means that we can replace ordinary against
covariant derivatives as long as we work under a spacetime integral∫

d4xD2 =

∫
d4x ∂2 ,

∫
d4x D̄2 =

∫
d4x ∂̄2. (2.18)

From (2.17) one reads off that the replacement of ordinary against covariant
derivatives is also possible when an expression is restricted to θ̄ = 0 for D2 or
to θ = 0 in the case of D̄2. Straightforward application of the D-algebra (2.16)
leads to the following helpful identities[

Dα, D̄2
]

= −4iεα̇β̇σαα̇
mD̄β̇∂m, DαDβDγ = 0,[

D̄α̇, D2
]

= 4iεαβσαα̇
mDβ∂m, D̄α̇D̄β̇D̄γ̇ = 0, (2.19)[

D2, D̄2
]

= −4iεαβεα̇β̇σαα̇
m∂m

[
Dβ, D̄β̇

]
, DαD̄2Dα = D̄α̇D2D̄α̇,{

D2, D̄2
}

= 2DαD̄2Dα + 16�,

where the box in the last line is the d’Alembert operator � = ∂m∂m.
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2.3 Superfields

A power series expansion of a superfield F = F (x, θ, θ̄) in the variables θα

and θ̄α̇ yields, due to the anticommuting nature of these variables, only a finite
number of terms

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θ2m(x) + θ̄2n(x) + θσmθ̄Am(x) (2.20)

+ θ2θ̄λ̄′(x) + θ̄2θψ′(x) + θ2θ̄2d(x).

As θ and θ̄ can appear at most twice in each of the terms, a superfield is a
collection of nine x-dependent component fields. One can now read off that a
superfield accommodates four complex scalars f , m, n and d with two bosonic
degrees of freedom each, four complex Weyl spinors φα, χ̄α̇, λ̄′

α̇ and ψ′
α with four

fermionic degrees of freedom each and a complex vector Am with eight bosonic
degrees of freedom, such that we have both sixteen bosonic and fermionic degrees
of freedom altogether.

While (2.20) is a space saving notation for the relation between a superfield
and its component fields, it turns out that for many calculations a different
notation is more convenient. For this notation we act with a certain number of
covariant derivatives on the superfield F and subsequently take the restriction
to θ = θ̄ = 0. (This will be denoted by a vertical line.) From the expansion
(2.20) we calculate the following expressions for F

F
∣∣ = f(x),

DαF
∣∣ = φα(x), D̄α̇F

∣∣ = χ̄α̇(x), (2.21)

D2

−4
F

∣∣∣∣ = m(x), −1

2
[Dα, D̄α̇] F

∣∣∣ = σm
αα̇Am(x),

D̄2

−4
F

∣∣∣∣ = n(x),

−1

4
D2D̄α̇ F

∣∣∣ = λ̄α̇(x), −1

4
D̄2Dα F

∣∣∣ = ψα(x)

1

8
DαD̄2Dα F

∣∣∣ = D(x),

where we have performed the field redefinitions

λ̄α̇(x) = λ̄′
α̇(x) +

i

2
σm

αα̇ ∂mφα(x),

ψα(x) = ψ′
α(x) − i

2
σm

αα̇ ∂mχ̄α̇(x), (2.22)

D(x) = 2d(x) − 1

2
�f(x).
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We will refer to the expressions (2.21) as the fundamental restrictions of F .
Other restrictions with different combinations of covariant derivatives either
vanish or are not independent of the restrictions (2.21) and in this sense not
fundamental. It is clear that the definition of the component fields is to a cer-
tain degree arbitrary. For example, the overall normalization of the component
fields can be adjusted for convenience. And the admixture of component fields
from lower restrictions in the definition of component fields from higher restric-
tions (i. e. the admixture of φ(x), χ̄(x) and f(x) in the definitions of λ̄(x), ψ(x)
and D(x)) are artifacts which can be absorbed in a redefinition of the fields as
in (2.22). In this thesis we will use this freedom to achieve agreement with the
conventions of [1]. We also note here that a superfield does not necessarily have
to be a Lorentz scalar as the notation F (x, θ, θ̄) may seem to suggest. In fact,
for the supersymmetric generalization of the field strength a superfield will be
employed that transforms as a Weyl spinor under Lorentz transformations.

The supersymmetry variations of the component fields are now easily ob-
tained from the supersymmetry variation of the superfield: Using (2.9) a pure
supersymmetry variation and its infinitesimal version are

F → exp
(
iξQ + iξ̄Q̄

)
F � F + i

(
ξQ + ξ̄Q̄

)
F ≡ F + δξF . (2.23)

From this prescription one can identify the supersymmetry transformation of
the component fields using the fundamental restrictions (2.21). The calculation
is simplified by the observation that, as far as the restriction is concerned, the
supersymmetry generator is proportional to the covariant derivative

δξF
∣∣ = i
(
ξQ + ξ̄Q̄

)
F
∣∣ = (ξD + ξ̄D̄

)
F
∣∣ , (2.24)

which is true for any restriction and not only for F
∣∣.

Chiral superfields

Superfields form a representation of the supersymmetry algebra, but they are not
irreducible representations. To find irreducible representations, we impose con-
straints on superfields. One possible constraint is to require that the superfield
vanishes upon application of a supercovariant derivative operator

D̄α̇Φ = 0. (2.25)

A superfield which fulfills this condition is called a chiral superfield. For a chiral
superfield there are only three fundamental restrictions

Φ
∣∣ = A(x), DαΦ

∣∣ = √
2ψα(x),

D2

−4
Φ

∣∣∣∣ = F (x). (2.26)

Hence this supermultiplet accomodates a Weyl fermion ψα together with its
bosonic superpartner A plus a (bosonic) auxilliary field F . The two complex
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scalars A and F both carry two bosonic degrees of freedom, while ψα contributes
four fermionic degrees of freedom. Thus, bosonic and fermionic degrees of free-
dom match within the multiplet. With respect to (2.26) we remark that all
other restrictions vanish under the condition (2.25) except for the commutator.
But the commutator restriction is for a chiral field not independent of the other
restrictions and hence need not be mentioned separately. We see this, because
for a chiral superfield the commutator can be replaced by the anticommutator

−1

2

[
Dα, D̄α̇

]
Φ
∣∣∣ = 1

2

{
Dα, D̄α̇

}
Φ
∣∣∣ = −iσαα̇

m∂mΦ
∣∣∣ (2.27)

and thus, upon making use of the algebra for the covariant derivatives, can
be traced back to the restriction Φ

∣∣ in (2.26). The supersymmetry variations
of the component fields are calculated by applying the operator (2.24) on the
component fields, using the fundamental restrictions (2.26) and the relations for
the covariant derivatives (2.19), and we find

δξA(x) =
√

2 ξψ(x),

δξψα(x) = i
√

2 σαα̇ξ̄α̇∂mA(x) +
√

2 ξαF (x), (2.28)

δξF (x) = i
√

2 ξ̄σ̄m∂mψ(x).

We observe that a supersymmetry transformation always maps fields on linear
combinations of fields in the multiplet and hence the multiplet forms a represen-
tation of the supersymmetry algebra. We also note that the highest component
F of the chiral multiplet is mapped to a total derivative by the supersymmetry
variation which is important for the construction of invariant actions.

Antichiral superfields

In the same way one defines an antichiral superfield which fulfills

DαΦ̄ = 0. (2.29)

Its fundamental restrictions are consequently given by

Φ̄
∣∣ = A∗(x), D̄α̇Φ̄

∣∣ = √
2 ψ̄α̇(x),

D̄2

−4
Φ̄

∣∣∣∣ = F ∗(x). (2.30)

Again all other restrictions vanish except for the commutator of two covariant
derivatives which is proportional to the restriction Φ̄

∣∣. All expressions for the
antichiral superfield are given by the hermitean conjugate of the corresponding
expressions of the chiral superfield.
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Vector superfields

A vector superfield V = V (x, θ, θ̄) is defined by the constraint that the field be
real

V ∗ = V. (2.31)

This requirement relates also the component fields, so that the fundamental
restrictions of the vector superfield are defined for convenience as

V
∣∣ = C(x),

DαV
∣∣ = iχα(x), D̄α̇V

∣∣ = −iχ̄α̇(x), (2.32)

D2

−4
V

∣∣∣∣ = m(x), −1

2

[
Dα, D̄α̇

]
V
∣∣∣ = σαα̇

mAm(x),
D̄2

−4
V

∣∣∣∣ = m∗(x),

−1

4
D2D̄α̇ V

∣∣∣ = iλ̄α̇(x), −1

4
D̄2Dα V

∣∣∣ = −iλα(x)

1

8
DαD̄2Dα V

∣∣∣ = D(x),

where the complex field is split into real and imaginary parts m(x) = i
2

[
M(x)+

iN(x)
]

in the conventions of [1]. With respect to a general superfield, the number
of degrees of freedom of a vector superfield is cut in half by the reality condition,
i.e. there are eight bosonic and fermionic degrees of freedom: χα and ψα are
complex Weyl spinors with four fermionic degrees of freedom each and C, M ,
N and D are real scalars with a single bosonic degree of freedom each. Am is
a real vector with four bosonic degrees of freedom and it will be argued in the
following that one can identify Am(x) with a gauge field. Thus, we may also
speak of a gauge multiplet. Usually, a gauge field transforms as

Am(x) → Am(x) + ∂mω(x), (2.33)

where ω(x) is another real field. This concept is generalized to a supersymmetric
gauge transformation by the definition that a vector superfield transforms as

V → V + Λ + Λ̄, (2.34)

where Λ is a chiral and Λ̄ an antichiral superfield. The combination Ω (x, θ, θ̄) :=(
Λ+Λ̄
)
(x, θ, θ̄) is real and hence a vector superfield. Its restrictions are calculated
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to be

Ω
∣∣ = A(x) + A∗(x),

DαΩ
∣∣ = √

2 ψα(x), D̄α̇Ω
∣∣ = √

2 ψ̄α̇(x), (2.35)

D2

−4
Ω

∣∣∣∣ = F (x), −1

2

[
Dα, D̄α̇

]
Ω
∣∣∣ = σαα̇

m ∂m ω(x),
D̄2

−4
Ω

∣∣∣∣ = F ∗(x),

−1

4
D2D̄α̇ Ω

∣∣∣ = 0, −1

4
D̄2Dα Ω

∣∣∣ = 0

1

8
DαD̄2Dα Ω

∣∣∣ = 0,

where ω(x) = 2 ImA(x) in the vector field component such that (2.33) is fulfilled
under the gauge transformation (2.34). The other component fields transform
under (2.34) as

C(x) → C(x) + Re A(x),

χα(x) → χα(x) − i
√

2ψα(x), (2.36)

M(x) + iN(x) → M(x) + iN(x) − 2iF (x),

while the component fields λα(x) and D(x) are invariant under the generalized
gauge transformation. With the help of these gauge transformations, we can fix
the Wess-Zumino (WZ) gauge where the components fields C(x), χ(x), M(x)
and N(x) are all identical to zero. For easier reference, we take down again the
restrictions of the vector superfield in WZ gauge

−1

2

[
Dα, D̄α̇

]
V
∣∣∣ = σαα̇

mAm(x),

−1

4
D2D̄α̇ V

∣∣∣ = iλ̄α̇(x), −1

4
D̄2Dα V

∣∣∣ = −iλα(x), (2.37)

1

8
DαD̄2Dα V

∣∣∣ = D(x),

while all other restrictions vanish. In WZ gauge the only non-vanishing powers
of the vector superfield are V and V 2. This observation will be useful for Taylor
expanding the exponential of V , where the series breaks down after the quadratic
term. We determine the supersymmetry variation of the component fields by
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application of the supersymmetry transformation (2.24) on the component fields

δξA
m(x) = iξσmλ̄(x) + iξ̄σ̄mλ(x) + ξ∂mχ(x) − ξ̄∂mχ̄(x),

δξλα(x) = iξD(x) + σmnξFmn(x), (2.38)

δξD(x) = −ξσm∂mλ̄(x) + ξ̄σ̄m∂mλ(x),

where Fmn = ∂mAn − ∂nAm is the field strength tensor and we have defined
σmn

α
β = 1

4

(
σαα̇

mσ̄n α̇β − σαα̇
nσ̄m α̇β
)
. From the first line we can also determine

the supersymmetry variation of F mn

δξF
mn(x) = i∂m

(
ξσnλ̄(x) + ξ̄σ̄nλ(x)

)− i∂n
(
ξσmλ̄(x) + ξ̄σ̄mλ(x)

)
. (2.39)

Thus we have checked explicitly that the fields Am (or Fmn), λα and D form a
representation of the supersymmetry algebra by themselves. We also note that
the supersymmetry variation of the highest component D is a total divergence
which will help us to establish invariant actions in section 2.4.

Projection operators

With the help of the supercovariant derivatives (2.15) one defines the following
projection operators on superfields

P0 =
DαD̄2Dα

−8�
, P+ =

D̄2D2

16�
, P− =

D2D̄2

16�
, (2.40)

which are idempotent P 2
0 = P0, P 2

+ = P+, P 2
− = P− and which fulfill the com-

pleteness relation P0 + P+ + P− = 11. The projector P0 is referred to as the
transversal projector, P+ and P− are referred to as the chiral and antichiral
projector, respectively. Their action on chiral and antichiral superfields is

P0 Φ = 0, P+ Φ = Φ, P− Φ = 0,

P0 Φ̄ = 0, P+ Φ̄ = 0, P− Φ̄ = Φ̄.
(2.41)

2.4 Supersymmetric actions

Supersymmetric actions are most conveniently formulated by an integral over
superspace. Therefore, we have to introduce integration over the Grassmann
variables θα and θ̄α̇. We define anticommuting volume elements{

dθα, dθβ
}

=
{
dθα, θβ
}

= 0,
{
dθ̄α̇, dθ̄β̇

}
=
{
dθ̄α̇, θ̄β̇

}
= 0.

Integration with respect to the components of the Weyl spinors is defined as in
the usual way for Grassmann variables∫

dθα = 0,

∫
dθα θα = 1,

∫
dθ̄α̇ = 0,

∫
dθ̄α̇ θ̄α̇ = 1, (2.42)
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where no summation over α, α̇ is implied. This defines a translation invariant
integral over Grassmann variables. In the literature one often refrains from
raising or lowering the indices of the volume elements (2.4). Instead, one defines
the two-dimensional volume elements d2θ and d2θ̄ explicitly such that one can
easily include a nontrivial normalization factor of −1

4
and the four-dimensional

volume element is defined as the product of the former two

d2θ = −1

4
εαβ dθαdθβ, d2θ̄ = −1

4
εα̇β̇dθ̄α̇dθ̄β̇ , d4θ = d2θ d2θ̄.

As we have not defined how to raise or lower the indices of the volume elements,
we explicitly write out the summation over the spinor indices d2θ = 1

2
dθ1dθ2 and

θαθα = −2 θ1θ2 for the undotted indices and d2θ̄ = −1
2
dθ̄1̇ dθ̄2̇ and θ̄α̇θ̄α̇ = 2 θ̄1̇θ̄2̇

for the dotted indices in order to calculate∫
d2θ θ2 =

∫
d2θ̄ θ̄2 = 1. (2.43)

In this sense, integration and differentiation w.r.t. Grassmann variables are
equivalent, because comparing (2.43) with (2.13) one identifies.∫

d2θ =
∂2

−4
,

∫
d2θ̄ =

∂̄2

−4
. (2.44)

As we noted already below (2.17), we are allowed to replace ordinary derivatives
with covariant derivatives as long as we work under a spacetime integral and so
we write down the technically very important equations∫

d4x d2θ =

∫
d4x

D2

−4
,

∫
d4x d2θ̄ =

∫
d4x

D̄2

−4
,

∫
d4x d4θ =

∫
d4x

D2D̄2

16
. (2.45)

These equations allow us to manipulate integrands comfortably by employing the
identities (2.17) for the covariant derivatives. They represent the link between
a supersymmetric action and the restrictions of the superfields as we will see
below. Note that under the spacetime integral D2 and D̄2 in the last equality
commute.

Invariant actions

With the help of Grassmann integration we can now define actions invariant
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under supersymmetry by integrating a functional of superfields P
[
Φ, Φ̄, V

]
over

superspace. As P is constructed from chiral and vector superfields, it is itself a
superfield which might also be chiral or vectorial. In (2.46) and (2.49) we will
first give the actions for the two cases and then show that the so-constructed
actions are indeed supersymmetry invariants. The action for a chiral functional
D̄α̇ Pchiral = 0 is given by

Schiral =

∫
d4x d2θ Pchiral + h.c.. (2.46)

One easily verifies that the action does not depend on the spinorial coordinates

∂α Schiral =

∫
d4x Dα

D2

−4
Pchiral + h.c. = 0, (2.47)

∂̄α̇ Schiral =

∫
d4x

D2

−4
D̄α̇ Pchiral + h.c. = 0,

where we have written the ordinary derivative as a covariant derivative under
the integral sign and used (2.45). In the second line we used the chirality of
Pchiral. Hence we can also evaluate the action at θ = θ̄ = 0 without changing
anything

Schiral =

∫
d4x

D2

−4
Pchiral

∣∣∣∣+ h.c. . (2.48)

When we compare the integrand to the last equation of (2.26), we see that we
have exactly projected out the F -term of the chiral superfield Pchiral. As we
know from (2.28) that the F -term transforms with a total derivative under su-
persymmetry transformations, the action as defined in (2.46) is invariant under
supersymmetry transformations. Expression (2.48) is also the first step in or-
der to expand the superfield action into the component field action. This is
simply done by applying the covariant derivatives on a given function P by
using the product rule for anticommunting derivatives and then identifying the
fundamental restrictions. An example for this will be given in (2.52).

The action for a vectorial functional P†
vector = Pvector is given by its integral

over the whole superspace

Svector =

∫
d4x d4θ Pvector. (2.49)

Obviously, the action is independent of θ and θ̄ such that we can take the re-
striction to θ = θ̄ = 0 and not change anything. Under the spacetime integral,
D2 and D̄2 commute and so we can use the last line of (2.19) in order to find
that

Svector =
1

2

∫
d4x

DαD̄2Dα

8
Pvector

∣∣∣. (2.50)
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With the help of the fundamental restrictions (2.32), we identify the integrand
as the highest component (the D term) of the vector superfield Pvector. We have
already seen in (2.38) that D transforms into a total derivative under supersym-
metry transformations, therefore Svector is invariant.

Component field action

As we remarked above, the identities (2.45) are the starting point for the extrac-
tion of the action in component fields from an action formulated in superfields.
Let us consider a standard example in all detail: Take P

[
Φ, Φ̄, V

]
= Φ̄ Φ. Here

P is a vector superfield, so the action is

S =

∫
d4x d4θ Φ̄ Φ. (2.51)

We rewrite the superspace integration with the help of covariant derivatives and
take the restriction as in (2.50). Then we distribute the covariant derivatives
according to the product rule

S =
1

16

∫
d4x D̄2D2

(
Φ̄ Φ
) ∣∣∣ = 1

16

∫
d4x D̄2
(
Φ̄D2Φ
) ∣∣∣

=
1

16

∫
d4x
(
D̄2Φ̄ D2Φ + 2εα̇γ̇D̄α̇Φ̄ D̄γ̇D

2Φ + Φ̄ D̄2D2Φ
) ∣∣∣

=
1

16

∫
d4x
(
D̄2Φ̄ D2Φ + 2εα̇γ̇D̄α̇Φ̄

[
D̄γ̇ , D

2
]
Φ + Φ̄
{
D̄2, D2

}
Φ
) ∣∣∣

=
1

16

∫
d4x
(
D̄2Φ̄ D2Φ + 8i εαβεα̇γ̇σαγ̇

mD̄α̇Φ̄ ∂mDβΦ + 16 Φ̄�Φ
) ∣∣∣

=

∫
d4x
(
F ∗(x)F (x) + i ∂mψ̄α̇(x) σ̄m α̇β ψβ(x) + A∗(x)�A(x)

)
. (2.52)

In lines one and three we made use of the chirality of the superfield. In the last
but one line we took advantage of identities (2.19). Then we used the funda-
mental restrictions for chiral and antichiral fields in (2.26) and (2.30). Thus,
we find that the term Φ̄Φ comprises the kinetic terms of the fields in the chiral
multiplet.

Delta functions

We conclude this section with a few identities that are extremely useful for Feyn-
man graph calculations in superspace. These identities concern certain combina-
tions of covariant derivatives with delta functions of the Grassmann coordinates.
From (2.43) we read off that the two dimensional superspace delta functions are
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given by

δ2(θ) = θ2, δ2(θ̄) = θ̄2, δ4(θ) = δ2(θ) δ2(θ̄) (2.53)

and the four dimensional delta function is the product of the former two. In
Feynman graph calculations these four dimensional delta functions arise from
functional differentiation w.r.t. the source terms of superfields as we will see in
the next chapter. In the calculation one often encounters the situation that
a number of covariant derivatives is sandwiched between two four dimensional
delta functions. Then the following identities are extremely useful

δθ
21 δθ

21 = δθ
21 Dα δθ

21 = δθ
21 Dα̇ δθ

21 = δθ
21 D2 δθ

21 = δθ
21 D̄2 δθ

21 = 0,

δθ
21 DαD̄2 δθ

21 = δθ
21 Dα̇D2 δθ

21 = 0, (2.54)

δθ
21

D2D̄2

16
δθ
21 = δθ

21

DαD̄2Dα

16
δθ
21 = δθ

21

D̄2D2

16
δθ
21 = δθ

21

where we have used the short hand δθ
21 = δ4(θ2−θ1) for the four dimensional delta

function. The general rule is that such expressions vanish unless the number of
D’s and D̄’s between the delta functions is equal and there are at least two
D’s and two D̄’s between the two delta functions. In the next chapter these
techniques are applied to Feynman graph calculations in superspace.



Chapter 3

Supersymmetric theory in four
dimensions

In this chapter we demonstrate how loop calculations are performed in supersym-
metric gauge theories. To this end we consider standard N = 1 supersymmetry
in four dimensions that was reviewed in the preceeding chapter. We discuss
the well-known actions of a chiral multiplet that is coupled to an Abelian and
a non-Abelian gauge multiplet, respectively, both in the superfield and in the
component field representation. Then we quantize the theory using the path
integral approach. We determine the one-loop corrections to the gauge kinetic
term and describe in detail the method of renormalizing ’within the generating
functional’ as it will be used later on in the thesis in more complicated situa-
tions. The difference between the Abelian and the non-Abelian calculation lies
in the fact that in the Abelian calculation only the chiral multiplet contributes
in the loops whereas in the non-Abelian calculation contributions from the gauge
and ghost multiplets have to be added. In both cases we infer the appropriate
counterterms and reproduce the standard results for the gauge coupling running.

3.1 Chiral multiplet coupled to an Abelian

gauge multiplet

In this section we consider a chiral multiplet that is coupled to an Abelian gauge
multiplet in four dimensions. We present the classical action first, then we quan-
tize the theory. In the gauge sector the quantization requires the introduction of
Faddeev-Popov ghosts which have a kinetic term but no interaction with the rest
of the fields and therefore decouple from the theory. We calculate the loop cor-
rections to the gauge kinetic term due to the hyper multiplet and give a detailed
account of how the renormalization ’in the generating functional’ is performed.
After regularization we infer the counterterm and determine the gauge coupling
running in terms of the beta function.

29
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3.1.1 Classical action

First we consider the action for a massless chiral multiplet Φ that is coupled to
an Abelian gauge multiplet V on the classical level. The superfield action for
these multiplets is given by

S 4D
Abelian

(
Φ, V
)

= SΦ

(
Φ, V
)

+ SV

(
V
)
, (3.1)

where SΦ

(
Φ, V
)

is the kinetic action of a chiral multiplet of charge q with its
coupling to the gauge multiplet

S 4D
Φ =

∫
d4x d4θ Φ̄ e2qV Φ (3.2)

and SV

(
V
)

is the kinetic action for the gauge multiplet

S 4D
V =

1

4g2

∫
d4x

{∫
d2θ W αWα +

∫
d2θ̄ W̄α̇W̄ α̇

}
. (3.3)

This action is invariant under the following super-gauge transformation

Φ → e−2qΛ Φ, Φ̄ → e−2qΛ̄ Φ̄, V → V + Λ + Λ̄, (3.4)

where Λ is a chiral superfield D̄Λ = 0 and Λ̄ its chiral conjugate. As Λ is a
superfield that depends on a point in superspace, the transformation is local.
Wα and W̄α̇ are the gauge invariant supersymmetric field strengths that are
constructed from the gauge multiplet V

Wα = −1

4
D̄2DαV, W̄α̇ = −1

4
D2D̄α̇V. (3.5)

Because the application of three covariant derivatives of the same type in a row
vanishes identically, Wα and W̄α̇ are chiral and antichiral superfields, respectively.

Component fields

The fundamental restrictions of the supersymmetric field strength are found by
exploiting the fundamental restrictions for the gauge multiplet (2.32). The field
strength contains the following component fields

Wα

∣∣ = −iλα(x),

DβWα

∣∣ = −εβαD(x) − iσmn
β

δεδα Fmn(x), (3.6)

D2

−4
Wα

∣∣∣ = σαα̇
m∂mλ̄(x).
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In contrast to a scalar chiral field in (2.26) the fermionic terms reside in the
lowest and highest restriction, while the restriction with one covariant derivative
contains the bosonic terms. The component field action is calculated as demon-
strated in Section 2.4 with the help of the fundamental restrictions (3.6). One
obtains for the kinetic terms of the chiral multiplet

SΦ =

∫
d4x
(
− (DmA(x)

)∗(DmA(x)
) − iψ̄(x)σ̄mDmψ(x) + F ∗(x)F (x)

+ q D(x)A∗(x)A(x) − i
√

2 q
(
A(x)ψ̄(x)λ̄(x) − A∗(x)λ(x)ψ(x)

))
(3.7)

and for the gauge kinetic action

SV =
1

g2

∫
d4x

(
− 1

4
Fmn(x)F mn(x) − iλ̄(x)σ̄m∂mλ̄(x) +

1

2
D2(x)

)
, (3.8)

where the covariant derivatives are defined as

DmA(x) =
(
∂m + iqAm(x)

)
A(x),

Dmψ(x) =
(
∂m + iqAm(x)

)
ψ(x).

(3.9)

The gauge field Am(x) and the gaugino λ(x) have the standard kinetic terms.
Supersymmetry generates a coupling between the scalar A(x), the fermion ψ(x)
and the gaugino λ(x). As this action is off-shell, we have a couple of terms that
describe the auxilliary fields F (x) and D(x). These can be integrated out via
their purely algebraic equations of motion

F (x) = 0,
1

g2
D(x) + q A∗(x)A(x) = 0 (3.10)

which leaves us with an additional four-point self-coupling of the scalar A(x)∫
d4x
(
F ∗(x)F (x) +

1

2g2
D2(x) + q D(x)A∗(x)A(x)

)

= −q2g2

2

∫
d4x
(
A∗(x)A(x)

)2
. (3.11)

This completes the classical discussion of the four dimensional Abelian action
both in the superfield and in the component field language.
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3.1.2 Quantization of the action

We want to calculate loop corrections to the gauge kinetic term (3.3), so we have
to quantize the action. For our purpose Feynman’s path integral approach will
prove to be most convenient, so the action (3.1) is quantized by inserting it into
the path integral thus defining the generating functional Z of the theory

Z
[
J, JV

]
=

∫
DΦ DV exp

{
i

∫
d4x

(
L 4D

Abelian

(
Φ, V
)
+

+

∫
d4θ JV V +

∫
d2θ JΦ +

∫
d2θ̄ J̄Φ̄

)}
, (3.12)

which is a functional of the source terms in the second line. The sources are
superfields: JV is a vector superfield and J and J̄ are chiral and antichiral su-
perfields, respectively. Note that for notational simplicity we do not indicate the
dependence of the action and the generating functional on the antichiral super-
fields explicitly and that the functional integration runs also over DΦ̄. Moreover,
the generating functional is normalized to unity in the limit of vanishing sources
which we do not indicate explicitly. The source terms of the chiral and antichiral
fields in (3.12) can be rewritten such that they also fit under the

∫
d4θ integral∫

d2θ JΦ +

∫
d2θ̄ J̄Φ̄ =

∫
d4θ

(
D2

−4�
J Φ + Φ̄

D̄2

−4�
J̄

)
, (3.13)

where first the chiral projection operators (2.40) have been used to insert the
identity in the form P+ J = J and P− J̄ = J̄ and then equations (2.45) have been
used under the

∫
d4x integral to pull the covariant derivatives into the Grassmann

integration.
The action (3.1) is split into free and interacting parts leading to the propa-

gators and vertices, respectively

S 4D
Abelian

(
Φ, V
)

= SΦ2

(
Φ
)

+ SV 2

(
V
)

+ SΦ int

(
Φ, V
)
. (3.14)

In the Abelian theory the gauge field action (3.3) is quadratic in the gauge fields
and therefore indentical to SV 2

(
V
)
. (In the non-Abelian theory we will have

an additional term due to the self-interactions of the gauge field.) The free field
part of the action (3.1) is given by

SΦ2

(
Φ
)

+ SV 2

(
V
)

=

∫
d4x d4θ

(
Φ̄Φ +

1

8
V DαD̄2DαV

)
, (3.15)

where the terms involving the gauge multiplet were rewritten with the help of
(2.45) and a subsequent integration by parts.
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�Φ̄ Φ �V V �C̄′ C �C′ C̄

Figure 1: The four dimensional Abelian theory contains one propagator for the chiral
superfield and one for the gauge superfield. There are in principle also two propagators
for the ghost superfields, but these fields decouple from the theory.

Chiral field propagator

To find the propagator of the chiral field we consider its free field generating
functional

Z0

[
J
]

=

∫
DΦ exp

{
i

∫
d4x d4θ

(
Φ̄Φ +

D2

−4�
J Φ + Φ̄

D̄2

−4�
J̄

)}
. (3.16)

For later use we denote the integrand under the path integral by K0

[
Φ, J
]
. Under

the shift in the integration variable

Φ → Φ − D̄2

−4�
J̄ , (3.17)

which has a trivial Jacobian we obtain the result

Z0

[
J
]

= exp

{
− i

∫
d4x d4θ J̄

1

�
J

}
, (3.18)

where we have absorbed the constant factor from the Gauss integral in the
normalization of the generating functional Z0

[
J
]
.

Gauge superfield propagator

Next we consider the free field generating functional of the gauge superfield and
determine the gauge superfield propagator

Z0

[
JV

]
=

∫
DV exp

{
i

∫
d4x d4θ

(
1

8
V DαD̄2DαV + JV V

)}
. (3.19)

For later use we denote the integrand under the path integral by K0

[
V, JV ]. We

would like to perform a shift and a Gauss integration as we have done in the
case of the chiral field, but a complication arises, because the quadratic operator
1
8
DαD̄2Dα is not invertible. That this is the case can be seen by showing that

the quadratic operator has zero modes, namely the chiral and antichiral fields
which it annihilates

DαD̄2DαΛ = 0, DαD̄2DαΛ̄ = 0. (3.20)
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Therefore, one has to perform a gauge fixing. For gauge theories the method of
choice to employ a gauge fixing is the Faddeev-Popov method. One defines the
Faddeev-Popov determinant by employing a chiral superfield F

Δ[V ] =

∫
DΛ̄ DΛ δ

(
Θ(Λ,Λ̄)[V ] − F

)
δ
(
Θ̄(Λ,Λ̄)[V ] − F̄

)
. (3.21)

We choose for the gauge fixing functional the chiral superfield Θ[V ]

Θ[V ] =
D̄2

−4

√
2 V. (3.22)

Its highest component is

D2

4
Θ[V ]

∣∣∣∣ = 1√
2

(
�C(x) + D(x) − i ∂mAm(x)

)
(3.23)

and thus the imaginary part is chosen such that the gauge fixing implements the
Lorentz gauge ∂μAμ = 0. We insert the identity in the form Δ−1[V ] Δ[V ] into
the path integral

Z0

[
JV

]
=

∫
DV DΛ̄DΛ Δ−1[V ] δ

(
Θ(Λ,Λ̄)[V ] − F

)
δ
(
Θ̄(Λ,Λ̄)[V ] − F̄

)
ei S [V ]

=

∫
DV DΛ̄DΛ Δ−1[V ] δ

(
Θ[V ] − F

)
δ
(
Θ̄[V ] − F̄

)
ei S [V ] (3.24)

=

(∫
DΛ̄ DΛ

)∫
DV Δ−1[V ] δ

(
Θ[V ] − F

)
δ
(
Θ̄[V ] − F̄

)
ei S [V ]

=

∫
DV Δ−1[V ] δ

(
Θ[V ] − F

)
δ
(
Θ̄[V ] − F̄

)
ei S [V ].

In the second line we have performed a gauge transformation (which leaves
DΛ, DV and S [V ] invariant). Then the integrand does no longer depend on
Λ, Λ̄, such that we can factor out the integration with respect to those fields.
The integration just gives an infinite factor which is absorbed in normaliza-
tion of the path integral. Next, we integrate with a Gaussian weighting factor∫
DF DF̄ exp

(−i ξ
∫

d4x d4θ F̄F
)

over Z0

[
JV

]
Z0

[
JV

]
=

∫
DF DF̄ DV Δ−1[V ] δ

(
Θ[V ] − F

)
δ
(
Θ̄[V ] − F̄

)
(3.25)

× exp

{
− i ξ

∫
d4x d4θ F̄F

}
ei S [V ]

=

∫
DV Δ−1[V ] exp

{
− i ξ

∫
d4x d4θ Θ[V ]Θ̄[V ]

}
ei S [V ], (3.26)
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where ξ is the gauge fixing parameter. When we insert the gauge fixing fuctional
(3.22) we are able to identify the gauge fixing action as

Z0

[
JV

]
=

∫
DV Δ−1[V ] ei S [V ]+iSgf , Sgf = −ξ

8

∫
d4x d4θ D̄2V D2V.

(3.27)

We write the gauge fixed generating functional as

Z0

[
JV

]
=

∫
DV exp

{
i

∫
d4x d4θ

(
V AξV + JV V

)}
. (3.28)

Here we have dropped the factor Δ−1[V ], because (as will be shown below) it
turns out not to be dependent on V and can thus be drawn out of the path
integral and absorbed in the normalization of the generating functional. The
quadratic operator Aξ is invertible

Aξ =
1

8
DαD̄2Dα − ξ

16

(
D2D̄2 + D̄2D2)

= −�P0 − ξ�
(
P+ + P−), (3.29)

which is most easily seen when Aξ is expressed in terms of projection operators
as in the second line of (3.29). So it is easy to show that its inverse is given by

A−1
ξ = − 1

�
P0 − 1

ξ�

(
P+ + P−)

=
1

8�2

(
DαD̄2Dα − 1

2ξ

(
D2D̄2 + D̄2D2

))
. (3.30)

We perform in (3.28) the shift V → V − 1
2
A−1

ξ JV that has a trivial Jacobian
and absorb the constant factor in the normalization of the path integral. Taking
ξ = 1 gives a particularly simple choice of the propagator

Z0

[
JV

]
= exp

{
i

∫
d4x d4θ

(
1

4
JV

1

�
JV

)}
. (3.31)

By choosing a definite gauge, however, we lose the information on the gauge
invariance of the result. If one wants to have this feature, one would have to
perform the calculation with the gauge parameter left undetermined. Then gauge
invariance could be checked, because in the matrix elements any dependence on
the artifact ξ must cancel.
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Ghost propagator

The inverse of the Faddeev-Popov determinant can be represented in terms of
an integral over anticommuting chiral superfields C and C ′ (ghost superfields)

Δ−1[V ] =

∫
DC DC ′ exp

{
i√
2

∫
d4x

(∫
d2θ C ′δCΘ +

∫
d2θ̄ C̄ ′δCΘ̄

)}
,

(3.32)

where the integration over DC̄ and DC̄ ′ is understood and where the ghost
superfields C and C ′ are independent of each other. In order to make these
fields dynamical, the following source terms are introduced

Ssource =

∫
d4x

(∫
d2θ
(
JCC + JC′C ′

)
+

∫
d2θ̄
(
JC̄C̄ + JC̄′C̄ ′

))
. (3.33)

The infinitesimal version of the Abelian gauge transformation of the vector mul-
tiplet (3.4) and the analog in Grassmann fields are

δΛV = Λ + Λ̄ → δCV = C + C̄. (3.34)

The infinitesimal gauge variation δC of the gauge fixing functional is

δCΘ =
√

2
D̄2

−4

(
C + C̄
)
, δCΘ̄ =

√
2

D2

−4

(
C + C̄
)
. (3.35)

The complete generating functional for the ghost superfields including the source
terms can then be represented as

Z0

[
JC , JC′

]
=

∫
DC DC ′ exp

{
i

∫
d4x d4θ

(
C ′C̄ + C̄ ′C +

+
D2

−4�
JC C +

D2

−4�
JC′ C ′ − C̄

D̄2

−4�
J̄C − C̄ ′ D̄2

−4�
J̄C′

)}
, (3.36)

where purely chiral terms vanish under the full superspace integral. The source
terms (3.33) have been rewritten to fit under the

∫
d4θ integral. We perform the

shifts

C → C +
D̄2

−4�
J̄C′ , C ′ → C ′ − D̄2

−4�
JC (3.37)

in (3.36) and absorb the constant factor in the normalization of the path integral.
Hence we obtain the propagators for the ghost superfields

Z0

[
JC , JC′

]
= exp

{
i

∫
d4x d4θ

(
− J̄C′

1

�
JC − JC′

1

�
J̄C

)}
. (3.38)
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Figure 2: In the four dimensional Abelian theory there are only interactions between
the chiral superfield and the vector superfield. Up to fourth order in the fields we have
one three point coupling and one four point coupling.

Hence, in the Abelian case, the Faddeev-Popov Lagrangian leads to propagators
for the ghost fields, but (3.38) contains no vertices that would connect the ghosts
with the rest of the theory. This means that the ghosts are decoupled. In
particular, Δ−1 is independent of V such that Z0

[
JC , JC′

]
can be absorbed in

the normalization of the path integral as mentioned below (3.28).

Interaction vertices

Next we determine the interaction vertices. Since our aim is the renormalization
of the gauge coupling at one loop, we need vertices up to fourth order in the
fields. Then the relevant part of the action (3.14) is

SΦ int

(
Φ, V
) ⊃ ∫ d4x d4θ Φ̄

(
2qV + 2q2V 2

)
Φ. (3.39)

This gives a three point coupling that involves the vector superfield and two
chiral superfields and a four point coupling that connects two gauge superfields
and two chiral superfields. The interactions are depicted in Fig. 2. As we already
mentioned above, there are no couplings that would involve ghost superfields.

3.1.3 Renormalization of the gauge kinetic term due to
the chiral multiplet

In this section we determine the renormalization of the gauge kinetic term (3.3).
In particular, we derive the counterterm which enables us to infer the gauge
coupling running. We show in detail how one renormalizes ’in the generating
functional’ without being forced to calculate really the two-point function to the
end. We start with the generating functional of the interacting theory (3.12)
where we split the action according to (3.14). Factorizing the different exponen-
tials it is cast into the form

Z
[
J, JV

]
=

∫
DΦ DV exp

{
i

∫
d4x LΦ int

(
Φ, V
)}

K0

[
Φ, J
]
K0

[
V, JV ]. (3.40)

Here K0

[
Φ, J
]

and K0

[
V, JV ] are the integrands under the path integral in the

free field generating functionals for the chiral superfield (3.16) and the gauge
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Φ
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Figure 3: In the Abelian theory, the renormalization of the gauge kinetic term receives
contributions only from the chiral superfield in the loop: The tadpole contribution is
labelled 3.A and the genuine self-energy graph is denoted as 3.B.

superfield (3.19), respectively, that contain the exponentials of the free field
actions and the source terms. Next we insert the expansion of the interaction
part (3.39) into (3.40) and expand the exponential that contains this part up to
terms that are quadratic in the gauge field V

Z
[
J, JV

]
=

∫
DΦ DV

(
1 + i

∫
d4x d4θ

(
2q Φ̄ V Φ + 2q2 Φ̄ V 2Φ

)
+

− 1

2

∫ (
d4x d4θ

)
1

2q Φ̄1V1Φ1

∫ (
d4x d4θ

)
2

2q Φ̄2V2Φ2 + . . .

)

× K0

[
Φ, J
]
K0

[
V, JV ], (3.41)

where an index i at the superfields denotes the dependence on the coordinates
(xi, θi, θ̄i). The first term in the first line of (3.41) is just the identity. When
only this term is present in the expansion, the generating functional corresponds
to the free theory for which we know the generating functionals already. The
first term under the spacetime integral in the first line Φ̄ V Φ is only the three-
point coupling itself which is not interesting for us here and which we neglect.
The remaining two terms give rise to self-energy loop corrections to the gauge
multiplet that renormalize the gauge kinetic term depicted in Fig. 3. The former
of these two terms involves a four-point coupling and corresponds to the tadpole
graph 3.A and the latter involves two three-point couplings and corresponds to
the genuine self-energy graph 3.B. In order to calculate these graphs, we replace
the superfields travelling in the loop by the corresponding functional derivatives
w.r.t. the source terms

Φ → δ

δ
(
iJ
) , Φ̄ → δ

δ
(
iJ̄
) . (3.42)

For the superfields on the external lines such a replacement is tacitly assumed,
but their corresponding functional derivatives will not be performed in the cal-
culation and in the end they will be replaced back against the fields. Therefore,



3. Renormalization due to the chiral multiplet 39

in order to distinguish external from internal lines, we leave the gauge fields in
the expression, thinking of them for now as replaced by functional derivatives.
Having said this, the expression in the big round brackets in (3.41) does not
depend on the fields anymore and we are allowed to pull the functional inte-
gration through the round brackets right in front of the K0 factors. Here the
integrals over the fields recombine with the respective K0 factor to give us back
our free-field generating functionals Z0

Z
[
J, JV

]
=

(
1 + 2iq2

∫
d4x d4θ V 2 δ

δ
(
iJ̄
) δ

δ
(
iJ
) +

− 2q2

∫ (
d4x d4θ

)
12

V1V2
δ

δ
(
iJ̄1

) δ

δ
(
iJ1

) δ

δ
(
iJ̄2

) δ

δ
(
iJ2

) + . . .

)

× Z0

[
J
]
Z0

[
JV ]. (3.43)

These derivatives w.r.t. the chiral sources act on the free-field generating func-
tional of the chiral superfield. Performing the functional derivatives leads to the
appearance of the chiral delta functions

δJ2

δJ1
=

D̄2

−4
δ21,

δJ̄2

δJ̄1

=
D2

−4
δ21, (3.44)

where we have defined a short hand for the superspace delta function δ21 =
δ4(x2 − x1) δ4(θ2 − θ1). The covariant derivatives that are associated to the
delta functions ensure that chirality is preserved. The tadpole diagram 3.A is
calculated to be

3.A = +2iq2

∫
d4x d4θ V 2 δ

δ
(
iJ̄
) δ

δ
(
iJ
)

= −2q2

∫ (
d4x d4θ

)
12

V 2
1 δ21

1

�2

D2
2D̄

2
2

16
δ21 (3.45)

= −2q2

∫ (
d4x
)
12

d4θ V 2
1 δ

(4)
21

1

�2
δ
(4)
21 ,

where the derivatives in the first line act on the Z0

[
J
]

outside the big round
round bracket in (3.43). In the second line we are only interested in keeping
terms that do not contain sources anymore as usual. We use (2.54) and integrate
out the remaining Grassmann delta function such that in the last line only the
four dimensional delta function appears δ

(4)
21 = δ4(x2 − x1). The final expression

is local in the Grassmann coordinates and therefore an index i of a field refers
at this stage of the calculation only to the dependence on the Minkowski part of
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the coordinate (xi, θ, θ̄). In the same way, the genuine self-energy graph 3.B is
calculated to be

3.B = − 2q2

∫ (
d4x d4θ

)
12

V1V2
δ

δ
(
iJ̄1

) δ

δ
(
iJ1

) δ

δ
(
iJ̄2

) δ

δ
(
iJ2

)
= 2q2

∫ (
d4x d4θ

)
1234

V1V2 δ32
1

�3

D̄2
3D

2
3

16
δ31 δ41

1

�4

D̄2
4D

2
4

16
δ42 (3.46)

= 2q2

∫ (
d4x d4θ

)
12

V1V2
1

�2

D̄2
2D

2
2

16
δ21

1

�2

D̄2
2D

2
2

16
δ21,

where we have integrated out the leading delta functions in the second line. The
final step is to take advantage of the identities (2.54) and to integrate out the
dependence on one of the θ-coordinates

3.B =q2

∫ (
d4x
)
12

d4θ
(− V1�P0V2

) 1

�2
δ
(4)
21

1

�2
δ
(4)
21 (3.47)

+ 2q2

∫ (
d4x
)
12

d4θ V 2
1

�2

�2
δ
(4)
21

1

�2
δ
(4)
21 .

The first term in (3.47) is (up to the fact that the superfields depend on different
coordinates) proportional to the kinetic action of the gauge field. The second
term is cancelled by the tadpole contribution (3.45) such that the total self-
energy (the sum of the graphs) of the vector multiplet due to graphs with the
chiral multiplet in the loop is given by

Σchiral
VV = 3.A + 3.B = q2

∫ (
d4x
)
12

d4θ
(− V1�P0V2

) 1

�2

δ
(4)
21

1

�2

δ
(4)
21 . (3.48)

Note that the self-energy is not local, because the external line gauge fields
depend on the different coordinates x1 and x2. Having determined the self-
energy of the gauge multiplet due to the chiral multiplet in the loop we bring
back the functional integration to the front in expression (3.43) and we can
finally think of the gauge superfields V on the external lines in the self-energy
(3.48) as fields again (and not as replaced by derivatives). So the loop correction
to (3.40) due to the chiral multiplet in the loop is given by

Z
[
J, JV

]
=

∫
DΦ DV

(
1 + Σchiral

VV + . . .

)
K0

[
Φ, J
]
K0

[
V, JV ]. (3.49)

Finally, we expand the exponentials in K0 and retain the terms in (3.49) that
are quadratic in the gauge field. These are the gauge kinetic term and its loop
correction

Z
[
J, JV

]
=

∫
DΦ DV

(
i μd−4

∫
ddx d4θ

1

8g2
V DαD̄2DαV + Σchiral

VV + . . .

)
,

(3.50)
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where we have extended the spacetime integration to d = 4 − 2ε dimensions
and introduced the factor μd−4 that keeps the mass dimensions of the fields and
couplings as they were in four dimensions. This is a necessary step that appears
also in the regularization of the divergent self-energy (3.48) with the help of App.
D.3. There we extract the divergence and find

Σchiral
VV

∣∣∣
div

= i μd−4 q2

(4π)2

(
1

ε̄
+ ln

μ2

m2

)∫
ddx d4θ

(− V �P0V
)
, (3.51)

where 1
ε̄

= 1
ε
−γ+ln 4π. The divergent part of the self-energy is local. We require

the renormalized generating functional to be finite, hence we have to introduce a
counterterm that cancels the divergence. We choose to work in the MS scheme,
where the counterterm cancels exactly the pole part 1

ε
of the self-energy. From

(3.12) and (3.50) we can read off that the counterterm which enters as a part
of the action into the generating functional is given by the pole piece of the
self-energy times a factor of i

ΔS chiral
VV = −μd−4 q2

(4π)2ε

∫
ddx d4θ

(− V �P0V
)
. (3.52)

Bare action, renormalized action and counterterm are related by

SB = S + ΔS . (3.53)

Hence, for the corresponding couplings, we infer the relation

1

g2
B

=

(
1

g2
− q2

(4π)2ε

)
μ−2ε. (3.54)

Taking the derivative w.r.t. μ on both sides and then the limit ε → 0 gives the
beta function of the inverse coupling squared

β1/g2 ≡ μ
∂

∂μ

(
1

g2

)
= − 2q2

(4π)2
. (3.55)

Here we have used that the bare coupling does not depend on μ. This equa-
tion can be integrated and yields the gauge coupling renormalization due to
corrections that involve the chiral superfield

1

g2
=

1

g2
0

− q2

(4π)2
ln

μ2

μ2
0

. (3.56)

The reproduction of this standard result closes this section where we have demon-
strated the renormalization procedure that will be used throughout this thesis
with a concrete example.
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3.2 Chiral multiplet coupled to a non-Abelian

gauge multiplet

In this section we consider a chiral multiplet that is coupled to a non-Abelian
gauge multiplet in four dimensions. We present the classical action first, then
we quantize the theory and calculate loop corrections to the gauge kinetic term.
There are two major differences compared to the Abelian discussion in the last
section. First, the non-Abelian action contains gauge multiplet self-interactions
which give rise to additional loop corrections to the gauge kinetic term. Second,
the Faddeev-Popov ghosts couple to the gauge multiplet and also contribute to
loops. We calculate their contributions to the loop correction of the gauge kinetic
term in addition to the non-Abelian version of the hyper multiplet corrections.
The latter require only minimal modifications w.r.t. the Abelian calculation in
the previous section. We discuss briefly the renormalization process and its
differences compared to the preceeding section. After regularization we infer the
counterterms and determine the gauge coupling running in terms of the beta
functions due to the different contributions.

3.2.1 Classical action

We consider a chiral multiplet that is coupled to a non-Abelian gauge multiplet.
The gauge multiplet is represented by a Lie-algebra valued superfield, i.e. the
gauge superfield is contracted with the Hermitean generators of the gauge group
V = V i Ti, and it transforms in the adoint representation. The algebra of the
generators [Ti, Tj ] = fij

k Tk defines the purely imaginary structure coefficients.
The Killing metric, denoted by ηij , is used to raise and lower adjoint indices, for
example fijk = fij

	 η	k. We denote the trace in the representation of the chiral
multiplet by tr and the trace in the adjoint representation by trAd. The latter is
given by trAd(XY ) = −fijkf	mn ηjmηkn X iY 	, where the matrices X and Y are
defined in the adjoint: (X)jk = X i(Ti)jk = X ifijk, etc. Then the action that
describes this theory is given by

S 4D
non-Abelian

(
Φ, V ) = SΦ

(
Φ, V
)

+ SV

(
V
)
, (3.57)

where SΦ

(
Φ, V
)

is the kinetic action of the chiral multiplet with its coupling to
the gauge multiplet

SΦ =

∫
d4x d4θ Φ̄ e2qV Φ (3.58)

and SV is the kinetic action of the gauge multiplet

SV =
1

4g2

∫
d4x tr

[ ∫
d2θ W αWα +

∫
d2θ̄ W̄α̇W̄ α̇

]
. (3.59)



3. Classical action 43

Note that Φ is a vector and Φ̄ a transposed vector with respect to the gauge
group. The action is invariant under the following supergauge transformation

Φ → e−2Λ Φ, Φ̄ → Φ̄ e−2Λ̄, e2V → e2Λ̄ e2V eΛ, (3.60)

where Λ = Λi Ti is a Lie algebra-valued chiral superfield and Λ̄ its chiral con-
jugate. The transformation law for e2V implies in particular that its inverse
transforms as e−2V → e−2Λe−2V e−2Λ̄ such that the product e2V e−2V = 1 is in-
variant under the gauge transformation. The non-Abelian supersymmetric field
strengths are defined as

Wα = −1

8
D̄2
(
e−2V Dαe2V

)
, W̄α̇ = −1

8
D2
(
e−2V D̄αe2V

)
(3.61)

and transform covariantly under a gauge transformation

Wα → e−2Λ Wα e2Λ, W̄α̇ → e2Λ̄ W̄α̇ e−2Λ̄. (3.62)

Wα and W̄α̇ are chiral and antichiral superfields, respectively.

Component fields

The fundamental restrictions of the chiral spinor field have the same form as
their Abelian counterparts in (3.6)

Wα

∣∣ = −iλα(x),

DβWα

∣∣ = −εβαD(x) − iσmn
β

δεδα Fmn(x), (3.63)

D2

−4
Wα

∣∣∣∣ = σαα̇
mDmλ̄α̇(x),

with the difference that they contain the non-Abelian component field strength
and the gauge covariant derivative of the gaugino λ̄ defined as

Dmλ̄α̇(x) = ∂mλ̄α̇(x) + i
[
Am(x), λ̄α̇(x)

]
,

Fmn(x) = ∂mAn(x) − ∂nAm(x) + i
[
Am(x), An(x)

]
.

(3.64)

The restriction reveals the component field action for the kinetic term of the
chiral multiplet

SΦ =

∫
d4x
(
− (DmA(x)

)†(DmA(x)
)− iψ̄(x)σ̄mDmψ(x) + F †(x)F (x)

+ A†(x)D(x)A(x) − i
√

2
(
ψ̄(x)λ̄(x)A(x) − A†(x)λ(x)ψ(x)

))
(3.65)
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and for the gauge multiplet

SV =
1

g2

∫
d4x tr

[
− 1

4
Fmn(x)F mn(x) − i λ̄(x)σ̄mDmλ̄(x) +

1

2
D2(x)

]
. (3.66)

The covariant derivatives for A(x) and ψ(x) are defined as

DmA(x) =
(
∂m + iAm(x)

)
A(x),

Dmψ(x) =
(
∂m + iAm(x)

)
ψ(x)

(3.67)

and the non-Abelian field strength tensor Fmn(x) and gauge covariant derivative
of the gaugino Dmλ were defined in (3.64).

3.2.2 Quantization of the action

Many things are just as in the Abelian case, so we restrict ourselves to present the
results where everything is the same or present the deviations. The action (3.57)
is quantized by inserting it into the path integral thus defining the generating
functional of the theory

Z
[
J, JV

]
=

∫
DΦ DV exp

{
i

∫
d4x

(
L 4D

non-Abelian

(
Φ, V
)
+

+

∫
d4θ tr
[
JV V
]
+

∫
d2θ JΦ +

∫
d2θ̄ J̄Φ̄

)}
, (3.68)

where the source terms JV , J and J̄ represent a matrix, a transposed vector
and a vector w.r.t. the gauge group. The action (3.57) is split into free and
interacting parts leading to the propagators and vertices, respectively

S 4D
non-Abelian

(
Φ, V
)

= SΦ2

(
Φ
)

+ SV 2

(
V
)

+ SΦ int

(
Φ, V
)

+ SV int

(
V
)
. (3.69)

The difference to the Abelian theory is that the non-Abelian action (3.69) con-
tains a self-interaction part SV int

(
V
)

of the gauge multiplet. The quadratic part
of the action is given by

SΦ2

(
Φ
)

+ SV 2

(
V
)

=

∫
d4x d4θ

(
Φ̄Φ + tr

[
1

8g2
V DαD̄2DαV

])
. (3.70)

Chiral field propagator

The chiral superfield propagator has the same form as in the Abelian case (3.18)

Z0[J, J̄ ] = exp

{
i

∫
d4x d4θ

(
− J̄

1

�
J

)}
. (3.71)
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Gauge superfield propagator

As in the Abelian case, also here the gauge fixing has to be performed to ob-
tain an invertible quadratic operator for the gauge superfield. The gauge fixing
functional is the same,

Θ[V ] =
D̄2

−4

√
2 V, (3.72)

only that it is now Lie algebra valued Θ = Θi Ti and so is the field F = F i Ti

that is used for the integration with a Gaussian weighting factor in the form∫
DF DF̄ exp

{−i ξ
∫
d4x d4θ tr

[
F̄F
]}

over Z0

[
JV

]
with the result

Z0[JV ] =

∫
DV Δ−1[V ] exp

{
− i ξ

∫
d4x d4θ tr

[
Θ[V ] Θ̄[V ]

]}
eiS [V ]. (3.73)

Then the gauge fixing action is the non-Abelian version of (3.27)

Sgf = −ξ

8

∫
d4x d4θ tr

[
D̄2V D2V

]
. (3.74)

In the non-Abelian case the factor Δ−1[V ] depends on V and the ghost super-
fields. However, it does not contain a term purely quadratic in V . Therefore,
it does not contribute to the gauge superfield propagator which turns out to be
the non-Abelian version of (3.31),

Z0[JV ] = exp

{
i

∫
d4x d4θ tr

[
1

4
JV

1

�
JV

]}
. (3.75)

Ghost propagator

The inverse of the Faddeev-Popov determinant can be represented in terms of
an integral over anticommuting Lie algebra valued chiral superfields C = Ci Ti

and C ′ = C ′ i Ti

Δ−1[V ] =

∫
DC DC ′ exp

{
i√
2

tr

∫
d4x

[ ∫
d2θ C ′δCΘ +

∫
d2θ̄ C̄ ′δCΘ̄

]}
,

(3.76)

where the integration over DC̄ and DC̄ ′ is understood. A difference to the
Abelian calculation comes about, because the non-Abelian gauge variation of
the gauge multiplet (3.60) enters in (3.76) which is different from the Abelian
gauge variation (3.4). The infinitesimal non-Abelian gauge variation reads

δΛV = LV (Λ − Λ̄) + coth (LV (LV (Λ + Λ̄))), (3.77)
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Figure 4: Besides the interactions of the vector superfield with the chiral superfield
that are also present in the Abelian theory and were depicted in Fig. 2, there are
self-couplings of the vector superfield in the non-Abelian case, too.

where LV (X) = [V, X] is the Lie derivative and the hyperbolic cotangent is
defined via its power series

coth (LV (LV (X))) = X +
1

3

[
V, [V, X]

]
+ . . . . (3.78)

Taking a look at the power series expansion we note that the leading term of the
non-Abelian gauge variation (3.77) contains its Abelian counterpart Λ + Λ̄ from
(3.34). The infinitesimal gauge variation δCV is defined with Λ (Λ̄) replaced by
C (C̄) in (3.77). With the infinitesimal gauge variation δC of the gauge fixing
functional

δCΘ =
√

2
D̄2

−4

(
LV (C − C̄) + coth (LV (LV (C + C̄)))

)
(3.79)

we rewrite the inverse of the Faddeev-Popov determinant as

Δ−1[V ] =

∫
DC DC ′ exp

{
i Sgh

(
C, C ′, V

)
]
}
, (3.80)

where Sgh is the ghost action that involves the ghost and gauge multiplets

Sgh

(
C, C ′, V

)
=

∫
d4x d4θ tr

[
(C ′ + C̄ ′)

[
LV (C − C̄) + coth (LV (LV (C + C̄)))

]]
. (3.81)

We separate the ghost action into quadratic and interaction terms

Sgh

(
C, C ′, V

)
= Sgh2

(
C, C ′)+ Sgh int

(
C, C ′, V

)
. (3.82)

Inserting the definition of the Lie derivative and the expansion of the hyperbolic
cotangent in (3.80) we see that the quadratic part of the non-Abelian generating
functional for the ghost fields agrees with the Abelian version. Thus, after adding
source terms (which are Lie algebra valued) nothing changes for the propagators
except for the obligatory trace

Z[JC ] = exp

{
i

∫
d4x d4θ tr

[
− J̄C′

1

�
JC − JC′

1

�
J̄C

]}
. (3.83)
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Figure 5: In the non-Abelian theory the ghost superfields couple to the vector su-
perfield. There are two interactions involving two ghost superfields and one vector
superfield and two interactions involving two ghost superfields and two vector super-
fields.

Interaction vertices

The couplings of the chiral superfield to the vector superfield up to fourth order
in the fields that stem from the kinetic term of the chiral superfield SΦ int in
(3.58) are the same as in the Abelian case without the charge q

SΦ int (Φ, V ) ⊃
∫

d4x d4θ Φ̄
(
2V + 2V 2

)
Φ. (3.84)

The vector superfield interaction SV int is expanded to fourth order in the fields

SV int (V ) ⊃
∫

d4x d4θ tr

[
1

4

[
V, DαV

]
D̄2DαV − 1

8

[
V, DαV

]
D̄2
[
V, DαV

]
− 1

6

[
V,
[
V, DαV

]]
D̄2DαV

]
. (3.85)

These self-interactions have been depicted in Fig. 4. In the non-Abelian theory
there are also ghost superfield interactions. The expansion of (3.81) with the
help of (3.78) to fourth order in the fields yields the following interaction part
of ghost superfields with the gauge superfield

Sgh int (V, C, C ′) ⊃
∫

d4x d4θ tr

[
(C ′ + C̄ ′)[V, C − C̄] +

1

3
(C ′ + C̄ ′)

[
V, [V, C + C̄]

]
.

(3.86)

This means that we have a three point coupling between two ghosts and one
gauge superfield and a four point coupling between two ghosts and two gauge
superfields. Via these interactions that are depicted in Fig. 5 the ghosts will
affect graphs in which gauge superfields appear.

3.2.3 Renormalization of the gauge kinetic term due to
the chiral multiplet

Here we discuss the renormalization of the gauge kinetic term due to the chi-
ral multiplet. The interactions are contained in SΦ int (Φ, V ) in analogy to the
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Abelian calculation. The graphs that arise from these interactions are the same
as in the Abelian case and were depicted in Fig. 3. The calculation proceeds
along the same lines as in Section 3.1.3. The source terms of the chiral super-
field are now vectors w.r.t. the gauge group. Hence the chiral superfields have
to be replaced against derivatives w.r.t. source terms in the following way

Φa → δ

δ
(
iJa

) , Φ̄a → δ

δ
(
iJ̄a
) . (3.87)

where a is now an index in the representation of the chiral multiplet. The
functional derivatives w.r.t. the sources that lead to the chiral delta functions
are defined as

δJ2b

δJ1a
=

D̄2

−4
δ21 δa

b ,
δJ̄ b

2

δJ̄a
1

=
D2

−4
δ21 δb

a. (3.88)

The results for the graphs from the calculation in Section 3.1.3 can be taken
over when the square of the charge of the chiral superfield q2 is formally replaced
against the trace in the representation of the chiral multiplet ’tr’. Hence, the
self-energy due to the chiral multiplet in the loop is given by

Σchiral
VV =

∫ (
d4x
)
12

d4θ tr
[
− V1�P0V2

] 1

�2
δ
(4)
21

1

�2
δ
(4)
21 . (3.89)

The path from the self-energy to the counterterm is the same as in 3.1.3 with the
exception that we have only obtained the quadratic part of the full gauge kinetic
term. Hence, in order to write down a well-defined counterterm, we promote the
operator tr

[− V1�P0V2

]
to the full kinetic term for the gauge superfield

ΔS chiral
VV = −μd−4 1

(4π)2ε
tr

∫
ddx

[
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇

]
. (3.90)

The gauge coupling running is found in the same way as in Section 3.1.3 to be

1

g2
=

1

g2
0

− 1

(4π)2
ln

μ2

μ2
0

. (3.91)

This result finishes the discussion of the loop corrections to the gauge kinetic
term due to the chiral multiplet in the non-Abelian theory.

3.2.4 Renormalization of the gauge kinetic term due to

the gauge multiplet

Now we turn to the renormalization of the gauge kinetic term due to interactions
in the gauge sector, namely gauge multiplet self-interactions and interactions of
the gauge multiplet with the ghosts. The interactions are contained in SV int (V )
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Figure 6: In the non-Abelian case the vector superfield self-energy receives contri-
butions also from loop graphs that involve both the vector superfield itself and ghost
superfields. In each case there is one genuine self-energy graph and one tadpole con-
tribution. The graphs are labelled 6.A to 6.D.

and in Sgh int (V, C, C ′), respectively. Four graphs that contribute to the renor-
malization can be constructed. Two of them contain the gauge multiplet in the
loop and the other two involve the ghosts. In each case there is one genuine
self-energy graph and one tadpole. The graphs are depicted in Fig. 6. The cal-
culation is straightforward. After expanding the exponential that contains the
interactions in the generating functional as described in (3.41) and picking out
the terms that correspond to the graphs, one selects two of the gauge multiplets
as the external line. The rest of the fields that propagate in the loop are replaced
against the derivatives w.r.t. the corresponding source terms

V i → δ

δ
(
iJV

)
i

, Ci → δ

δ
(
iJC

)
i

, C ′i → δ

δ
(
iJ ′

C

)
i

. (3.92)

where i is an adjoint index. For the antichiral ghost fields the rules involve a
hermitean conjugation. The functional derivatives are applied to the propagators
that contain the source terms. They lead to the following delta functions

δJV 2
i

δJV 1
j

= δ21 δi
j ,

δJC2
i

δJC1
j

=
D̄2

−4
δ21 δi

j ,
δJC′2

i

δJC′1
j

=
D̄2

−4
δ21 δi

j . (3.93)

The genuine self-energy graph with the gauge multiplet in the loop gives the
result

6.A =
1

2
fijkf	mn ηknηmj

∫ (
d4x
)
12

d4θ V i
1 �2

((
P+ + P−

)− 5P0

)
V 	

2

× 1

�2
δ21

1

�2
δ21. (3.94)
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The genuine self-energy graph with the ghost in the loop amounts to

6.B = fijkf	mn ηknηmj

∫ (
d4x
)
12

d4θ
[
V i

1 V 	
2

�2

�2
δ21

1

�2
δ21

− 1

2
V i

1 �2

(
P+ + P− + P0

)
V 	

2

1

�2

δ21
1

�2

δ21

]
. (3.95)

The tadpole graph which involves the gauge multiplet gives

6.C = −1

3
fijkf	mn ηknηmj

∫ (
d4x
)
12

d4θ V i
1 V 	

2 δ21
1

�2

δ21 (3.96)

and the tadpole graph with the ghost in the loop leads to

6.D = −2

3
fijkf	mn ηknηmj

∫ (
d4x
)
12

d4θ V i
1 V 	

2 δ21
1

�2
δ21. (3.97)

The sum of the two tadpole graphs cancels against the first line of graph 6.B.
In the sum of the remaining terms the dependence on the transversal directions
cancels. Only the longitudinal contribution is left and therefore the sum of the
graphs corresponds to the following self-energy due to the vector superfield V
and the ghost superfields C

Σ
(V,C)
VV = −3

∫ (
d4x
)
12

d4θ trAd

[
− V1�2P0V2

] 1

�2
δ
(4)
21

1

�2
δ
(4)
21 . (3.98)

For the reproduction of the standard results assume that the chiral multiplets are
in the fundamental representation. Then we use that trAd

[
TaTb

]
= C(A) tr

[
TaTb

]
to rewrite the trace in the adjoint into the trace in the fundamental where C(A)
is the coefficient in trAd

[
TaTb

]
= C(A) ηab. Then we obtain the following diver-

gence in position space

Σ
(V,C)
VV

∣∣∣
div

= −i
3 C(A) μd−4

(4π)2

(
1

ε̄
+ ln

μ2

m2

)∫
ddx d4θ tr

[
− V1�2P0V2

]
. (3.99)

The corresponding counterterm is obtained after the quadratic operator has been
promoted to the full gauge kinetic term as explained above (3.90)

ΔS (V,C)
VV = μd−4 3 C(A)

(4π)2ε
tr

∫
ddx

[
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇

]
. (3.100)

Then the gauge coupling running is given by

1

g2
=

1

g2
0

− C(A)

(4π)2
ln

μ2

μ2
0

. (3.101)

This result concludes our discussion of the renormalization of the gauge kinetic
term in four dimensional supersymmetric theories.



Chapter 4

Supersymmetric theory in five
dimensions

In this chapter we consider a five dimensional spacetime with the fifth dimen-
sion compactified on the orbifold S1/Z2. The field content under consideration
consists of a hyper multiplet and a gauge multiplet in the bulk. As in the four
dimensional analysis of the preceeding chapter, we aim at the renormalization
of the gauge kinetic term. The orbifold bulk can be considered as a flat five
dimensional Minkowski space and the determination of the five dimensional re-
normalization is straightforward. But due to the existence of the orbifold fixed
points the spacetime does not have a trivial structure as in the four dimensional
calculation. This gives rise to the possibility that the bulk gauge fields may in-
duce quantum corrections that are localized at the fixed points. As we deal with
a higher dimensional theory there is in principle the chance that higher dimen-
sional operators are generated in the renormalization process. We will see that in
five dimensions this is not the case. As has become apparent from the discussion
in the last chapter, in the Abelian case it is only the hyper multiplet that leads
to loop corrections of the gauge kinetic term, while in the non-Abelian case also
the particles from the gauge sector contribute to the loop effects. We discuss the
Abelian case in the first and the non-Abelian case in the second section. This
chapter introduces our method of calculating Feynman graphs directly on the
orbifold. The method is discussed in most detail in Section 4.1.3 for the simple
orbifold S1/Z2 and will be applied to more complicated orbifolds in the following
chapters.

4.1 Hyper multiplet coupled to an Abelian

gauge multiplet

In this section we consider a hyper multiplet coupled to an Abelian gauge mul-
tiplet in five dimensions with the fifth dimension compactified on the orbifold

51



52 4. Classical action in five dimensional Minkowski space

S1/Z2. We begin our discussion with a review of the five dimensional multiplets
and how they are described in a four dimensional superfield language. In the
Abelian theory only the hyper mutiplet contributes to the renormalization of the
gauge kinetic term, so we quantize only the hyper multiplet part of the action.
We present our method how the theory on flat space can be extended to the five
dimensional orbifold S1/Z2. To this end we introduce orbifold compatible delta
functions that arise from functional differentiation. We show that the renorma-
lization of the gauge kinetic term due to the hyper multiplet vanishes both in
the bulk and at the fixed points but for different reasons.

4.1.1 Classical action in five dimensional Minkowski space

We consider a classical supersymmetric theory of a hyper multiplet that is cou-
pled to an Abelian gauge multiplet in five dimensional Minkowski space in the
language of four dimensional superfields [13, 15, 16, 73]. The degrees of freedom
of the five dimensional hyper multiplet are described by two four dimensional
chiral multiplets Φ+ and Φ− and the degrees of freedom of the five dimensional
gauge multiplet are contained in one four dimensional vector multiplet V and one
four dimensional chiral multiplet S. The superfield action for these multiplets is
given by

S 5D
Abelian

(
Φ+, Φ−, V, S

)
= SH

(
Φ+, Φ−, V, S

)
+ SV

(
V, S
)
, (4.1)

where SH is the kinetic action of the hyper multiplet with its coupling to the
five dimensional gauge multiplet

SH =

∫
d5x

{∫
d4θ
(
Φ̄+e2qV Φ+ + Φ̄−e−2qV Φ−

)
(4.2)

+

∫
d2θ Φ−

(
∂5 +

√
2 qS
)
Φ+ +

∫
d2θ̄ Φ̄+

(− ∂5 +
√

2 qS̄
)
Φ̄−

}
.

The five dimensions are described by the coordinates (xm, y), the integration
runs over the five dimensions

∫
d5x =

∫
d4x dy and the derivative into the fifth

direction has been denoted by ∂5 = ∂
∂y

. This action is invariant under the
following supergauge transformation

Φ+ → e−2qΛΦ+, V → V + Λ + Λ̄,

Φ− → e+2qΛΦ−, S → S +
√

2 ∂5Λ,
(4.3)

where Λ is a chiral superfield and Λ̄ its conjugate. The kinetic action SV for
the five dimensional gauge multiplet in a four dimensional superfield language
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comprises the standard terms for the four dimensional gauge field V and one
extra term for the four dimensional chiral multiplet S

SV =
1

g2

∫
d5x

{
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇ +

∫
d4θ V 2

5

}
, (4.4)

where Wα, W̄α̇ are the gauge invariant Abelian field strengths as defined in four
dimensions (3.5) and V5 is a gauge invariant combination of the superfields V
and S

V5 =
1√
2

(
S + S̄
)− ∂5V. (4.5)

It is straightforward to rewrite the gauge kinetic action in the following form

SV =
1

g2

∫
d5x d4θ

{
1

8
V DαD̄2DαV + ∂5V ∂5V −

√
2 ∂5V
(
S + S̄
)

+ S̄S

}
.

(4.6)

This is the gauge kinetic term for which we want to determine the renormaliza-
tion. Expression (4.6) is obtained from (4.4) by using the identities (2.45) and
some partial integrations. There is a mixing between the four dimensional vector
multiplet V and the chiral multiplet S. This mixing is of importance when one
wants to obtain the propagators for V and S, but as we do not have loop cor-
rections from the gauge sector in the Abelian theory, we will refrain from doing
this here. We come back to this issue when we consider the non-Abelian theory
in Section 4.2.

This description clearly does not bear manifest five dimensional Lorentz in-
variance. Lorentz invariance is recovered after the auxiliary fields are eliminated
by their equations of motion. Therefore, this description is not an off-shell for-
mulation of the five dimensional supersymmetric theory. However, for us the
main advantage of this approach is that perturbation theory is greatly simpli-
fied over a component approach and all kinds of cancellations due to N = 1
supersymmetry are built in.

4.1.2 Quantization of the action

After this strictly classical discussion of the five dimensional hyper and vector
multiplets we now turn towards the quantization of the theory using path integral
methods. To this end we insert the action into the path integral thus defining
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�Φ̄± Φ± �Φ+ Φ−

Figure 7: Here we depict the drawing conventions for the propagators of the two
chiral multplets that compose the five dimensional hyper multiplet. There are two
chiral multiplet propagators: The first one corresponds to the diagonal terms in (4.8),
the second one refers to the off–diagonal parts.

the generating functional of the theory

Z
[
J+, J−, JV , JS

]
=∫

DΦ+ DΦ− DV DS exp

{
i

∫
d5x

(
L 5D

Abelian

(
Φ+, Φ−, V, S

)
+

+

∫
d2θ J+Φ+ +

∫
d2θ̄ J̄+Φ̄+ +

∫
d2θ J−Φ− +

∫
d2θ̄ J̄−Φ̄− +

+

∫
d4θ JV V +

∫
d2θ JSS +

∫
d2θ̄ JS̄S̄

)}
, (4.7)

that involves the sources J+, J−, JV and JS. In the following we determine only
the propagators of the four dimensional chiral superfields Φ+ and Φ−. Then the
interactions involving these fields can be obtained by functional differentiation
with respect to the chiral sources J+ and J−. As there are no graphs involving
the vector superfield that would lead to a renormalization of the gauge kinetic
term, we do not discuss the vector superfield propagators here.

Hyper multiplet propagator

By considering the quadratic part of the hyper multiplet action (4.2) and using
some standard superspace identities, we obtain

Z0

[
J+, J−
]

=

∫
DΦ+DΦ− exp

{
i

∫
d5x d4θ

(
J+J̄−
) −1

� + ∂2
5

(
1 ∂5

D2

−4�

−∂5
D̄2

−4�
1

)(
J̄+

J−

)}
.

(4.8)

Hence as for massive chiral multiplets in four dimensions we have both non-chiral
propagators between J̄± and J±, as well as chiral propagators between J+ and J−
and their conjugates. In Fig. 7 we depict our drawing conventions of these chiral
propagators: The first propagator in this picture gives the correlation between
the sources J̄± and J±, and the second one between J+ and J−. Obviously, there
is also the conjugate propagator between J̄+ and J̄−.
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Figure 8: These interaction vertices involve the coupling of the gauge superfields V
and S to the hyper multiplet chiral superfields Φ+ and Φ−.

Interactions

The only interactions in the Abelian theory are given by vertices that involve the
coupling of the five dimensional hyper multiplet to the five dimensional gauge
multiplet, i.e. the coupling of the chiral superfields Φ+ and Φ− to the vector
superfield V and the chiral superfield S. The expansion of the hyper multiplet
action (4.2) up to fourth order in the fields gives rise to the interactions

SH ⊃
∫

d5x

{∫
d4θ Φ̄±(±2qV + 2q2V 2)Φ± (4.9)

+

∫
d2θ

√
2 qΦ−SΦ+ +

∫
d2θ̄

√
2 qΦ̄+S̄Φ̄−

}
,

which have been depicted in Fig. 8. This finishes the discussion of propagators
and vertices of the five dimensional Abelian theory.

4.1.3 Orbifold compatible calculus for S1/Z2

Up to now, the treatment was completely standard with no deviation to a treat-
ment in uncompactified five dimensional Minkowski space and the orbifold has
not been mentioned yet. Starting from the action (4.1) where the integration∫
dy runs over the non-compact fifth dimension and where general superfields

Φ+(x, y), Φ−(x, y), V (x, y) and S(x, y) are allowed in the Hilbert space (we drop
the dependence on the Grassmann coordinates for a while) we will now render
the action compatible with the orbifold M4 × S1/Z2. Details on the geometry
of S1/Z2 and its eigenfunctions can be found in App. A.1. The first step is to
put the action on a circle of radius R. This means that now the integration in
the extra dimension runs over the circle

∫ 2πR

0
dy. From the Hilbert space of fields

that live on the uncompactified space only those fields form the Hilbert space
on the circle that fulfill the periodic boundary condition

Φcircle
+ (x, y + 2π) = Φcircle

+ (x, y), V circle(x, y + 2π) = V circle(x, y),

Φcircle
− (x, y + 2π) = Φcircle

− (x, y), Scircle(x, y + 2π) = Scircle(x, y),
(4.10)

while all non-periodic fields are projected out. The usual explicit mode expansion
of the periodic fields involves infinite sums over cosine and sine modes. In our
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formalism we will not perform an explicit mode expansion of the fields at this
stage. We will simply restrict the fields in the action (4.1) to the fields on the
circle which respect equations (4.10).

The second step is to place the theory on the orbifold. The fundamental
domain of the S1/Z2 is the interval from 0 to πR and thus a calculation on
the orbifold would require half the integration range of the circle. However, we
choose to keep working on the circle (the ’covering space’ of the orbifold). This
means in particular that we have to describe fields living on the orbifold in terms
of fields living on the circle as we will see now. Placing fields on the orbifold
amounts to a second projection. First the orbifold action has to be implemented
such that the action S is left invariant. We implement the Z2 orbifold twist on
the fields by requiring that the fields transform as

Φorbifold
+ → Φorbifold

+ , V orbifold → V orbifold,

Φorbifold
− → −Φorbifold

− , Sorbifold → −Sorbifold,
(4.11)

under the Z2 orbifold twist y → −y. (Please keep in mind that the subscripts
at the fields Φ+ and Φ− refer to the sign of the charge in the action (4.2) and
have nothing to do with the parity under the orbifold twist.) The Hilbert space
on the orbifold only contains fields from the Hilbert space on the circle that
fulfill the requirement (4.11), i.e. that are orbifold compatible, all other fields
from the Hilbert space of the circle are projected out. In the conventional mode
expansion the orbifold even fields Φ+ and V are described only by the cosine
modes (they have a zero mode with a KK tower on top) and the orbifold odd
fields Φ− and S only consist of the sine modes (they only have a KK tower, but
no zero mode). In order to be able to work on the covering space the fields on
the orbifold are expressed as linear combinations of the fields living on the circle.
This is achieved as follows

Φorbifold
+ (x, y) =

1

2

(
Φcircle

+ (x, y) + Φcircle
+ (x,−y)

)
,

Φorbifold
− (x, y) =

1

2

(
Φcircle

− (x, y) − Φcircle
− (x,−y)

)
,

V orbifold(x, y) =
1

2

(
V circle(x, y) + V circle(x,−y)

)
,

Sorbifold(x, y) =
1

2

(
Scircle(x, y) − Scircle(x,−y)

)
,

(4.12)

Clearly, these combinations of fields are orbifold compatible, i.e. they obey (4.11).
This construction generalizes straightforwardly to more complicated situations.
Next we read off the required orbifold transformation behaviour of the sources
from corresponding terms in (4.7). The sources have to transform as

Jorbifold
+ → Jorbifold

+ , Jorbifold
− → −Jorbifold

− , (4.13)
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under the orbifold twist y → −y. Therefore, also the orbifold compatible sources
can be constructed from the sources living on the circle as

Jorbifold
+ (x, y) =

1

2

(
Jcircle

+ (x, y) + Jcircle
+ (x,−y)

)
,

Jorbifold
− (x, y) =

1

2

(
Jcircle
− (x, y) − Jcircle

− (x,−y)
)
.

(4.14)

With this knowledge we come to the central point, namely the definition of the
functional derivatives w.r.t. these sources

δJorbifold
+2

δJorbifold
+1

=
D̄2

−4
δ̃
(+)
21 ,

δJorbifold
−2

δJorbifold
−1

=
D̄2

−4
δ̃
(−)
21 . (4.15)

Here the appropriate covariant derivatives have been included in the definition
to maintain chirality. The twiddle on the delta functions indicates the fact that
these are orbifold compatible delta functions, i.e. they are in accordance with the
transformation behaviour of the source terms on the l.h.s. of equations (4.15) as
it was specified in (4.13). The orbifold compatible delta functions for the Abelian
theory on the S1/Z2 look as follows

δ̃
(+)
21 =

1

2

(
δ(y2 − y1) + δ(y2 + y1)

)
δ4(x2 − x1) δ4(θ2 − θ1),

δ̃
(−)
21 =

1

2

(
δ(y2 − y1) − δ(y2 + y1)

)
δ4(x2 − x1) δ4(θ2 − θ1).

(4.16)

These delta functions are the key elements of our formalism of calculating Feyn-
man graphs directly on the orbifold, since they contain all the geometric in-
formation about the orbifold compatible superfields. Therefore, it is important
to develop some of their properties: We first check that the delta functions
transform in the same way as the corresponding sources. Under an orbifold
transformation y2 → −y2 of the second coordinate the delta functions transform
as the sources in the numerators in (4.15)

δ̃
(+)
21 → δ̃

(+)
21 , δ̃

(−)
21 → −δ̃

(−)
21 . (4.17)

Under an orbifold transformation y1 → −y1 of the first coordinate, the orbifold
compatible delta functions transform inversely, corresponding to the sources in
the denominators of (4.15). In this simple situation of a Z2 symmetry the inverse
transformation is the same as (4.17).

Then we want to mention also a helpful technical detail: In the calcula-
tion of a graph on an orbifold one frequently encounters derivative operators
that act on orbifold compatible delta functions. Then it is often helpful to
switch the variable w.r.t. which the derivative acts. For derivatives w.r.t. the
uncompactified coordinates this gives just the ordinary minus sign, because of
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∂
∂x2

δ4(x2 − x1) = − ∂
∂x1

δ4(x2 − x1). However, for derivatives w.r.t. the fifth co-
ordinate changing a spacetime index of the y-derivative also changes the type of
orbifold compatible delta function(

∂5

)
2
δ̃
(+)
21 = −(∂5

)
1
δ̃
(−)
21 . (4.18)

Identities analogous to (4.18) will appear in the non-Abelian and higher dimen-
sional cases in more complicated forms.

Going through the construction again, we notice that the important objects
for a Feynman graph calculation are the orbifold compatible delta functions.
Their transformation properties were derived from the transformation proper-
ties of the source terms which in turn were derived from the transformation
properties of the fields. The explicit definition of orbifold compatible fields in
(4.12) and orbifold compatible sources in (4.14), however, is not important for
the calculation at all. We will therefore not construct orbifold compatible fields
and orbifold compatible sources anymore, but instead only infer the orbifold
compatible delta functions from the required transformation behaviour of the
fields and source terms. This remark completes the discussion of the Abelian
supersymmetric field theory on the orbifold S1/Z2. The method is extended to
cover the non-Abelian case in Section 4.2.3.

4.1.4 Renormalization of the gauge kinetic term due to
the hyper multiplet

In this section we calculate the hyper multiplet contributions to the gauge ki-
netic term of the Abelian supersymmetric theory in five dimensions with the
fifth dimension compactified on the orbifold S1/Z2. The gauge kinetic term for
the five dimensional gauge multiplet (4.6) contains four different parts in the
four dimensional superfield language. Therefore, we have to determine four dif-
ferent self-energies. By ΣV V we denote the self-energy which contains the loop
corrections for the first two terms in (4.6) that involve only the four dimensional
gauge multiplet V . The self-energies that contain the loop corrections to the
terms which mix the four dimensional gauge field with the chiral adjoint field S
and its conjugate S̄ are denoted by ΣVS and ΣVS̄, respectively. The last term in
(4.6) involves only the chiral adjoint field and is loop corrected by the self-energy
ΣSS̄. For each part the loop corrections are determined separately.

From now on we will assume that the theory has been placed on the orbifold
as described in the preceeding Section 4.1.3. All fields are now considered to
be orbifold compatible and we forget about the superscript at the fields that
indicated this explicitly. In the following calculation of Feynman graphs the
only place where the orbifold compatibility appears is in the fact that we have
to use the orbifold compatible delta functions (4.16) instead of the usual delta
functions.
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�
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V V

A± B C±

Figure 9: The five dimensional gauge multiplet receives V V self-energy corrections
from the hyper multiplet. The proper self-energy graphs are labeled 9.A± and 9.B.
The tadpole graph is denoted by 9.C±.

The first step of the calculation proceeds along the same lines as it was worked
out in detail in Section 3.1.3 for an analogous calculation in four dimensional
Minkowski space. The interactions that involve the coupling of the hyper mul-
tiplet to the gauge multiplet in (4.9) are used to construct the relevant terms
in the expansion of the generating functional which correspond to the graphs
with the hyper multiplet in the loop. Those graphs that contribute to the ΣV V

self-energy have been depicted in Fig. 9. Graph 9.A± contains the propagators
that connect the chiral sources J± with the anti-chiral sources J̄±, while diagram
9.B involves the chiral sources J+ and J−. This diagram also has a hermitean
conjugate partner, which we refer to as 9.B. The tadpole graphs are given as
diagrams 9.C±. Those graphs which contribute to the ΣVS̄ and ΣSS̄ self-energies
are depicted in Fig. 10. The ΣVS self-energy is given by the complex conjugate
of ΣVS̄ . In order to calculate these graphs the chiral fields on the internal lines
are replaced by the functional derivatives w.r.t. the chiral source terms

Φ+ → δ

δ
(
iJ+

) , Φ− → δ

δ
(
iJ−
) . (4.19)

These functional derivatives act on the exponential of the propagators as de-
scribed in Section 3.1.3. The only difference to a calculation in Minkowski space
is that the functional differentiation w.r.t these orbifold compatible sources pro-
duces orbifold compatible delta functions (4.16) according to (4.15) and not the
usual delta functions.

The second step of the calculation is concerned with reducing the number of
orbifold compatible delta functions in the amplitude (9.A± and 9.B for example
contain four of them) and replacing them by ordinary delta functions. This step
is plausible when one regards the twiddle on the delta function as a projector
that projects the amplitude from uncompactified space to the orbifold. (In fact,
formally taking away all twiddles obviously just reproduces the amplitude in
Minkowski space.) Because the square of a projector gives the projector again,
it is possible to ’remove’ superfluous twiddles from the amplitude leaving only
usual delta functions. A worked out example how the reduction of the orbifold
compatible delta functions to ordinary delta functions is performed in a loop am-
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Figure 10: The five dimensional gauge multiplet receives S̄S self-energy corrections
from the hyper multiplet as is depicted in figure 10.A±. In addition the hyper multiplet
gives rise to mixing between the four dimensional superfields V and S in Fig. 10.B±.

plitude can be found in App. B. The reduction of all but two orbifold compatible
delta functions is always unambiguous and therefore we present all amplitudes
at the level of two orbifold compatible delta functions. The amplitudes which
correspond to the graphs with the hyper multiplet in the loop in Figs. 9 and
10 are provided in App. C.1. There we employ a six dimensional non-Abelian
notation which has a straightforward reduction to the five dimensional Abelian
notation as is explained in the appendix. The sum of the amplitudes due to the
graphs in Fig. 9 is the V V self-energy which takes the form

ΣV V = q2

∫ (
d5x
)
12

d4θ
{
− V1 �2P0 V2

1

(� + ∂2
5)2

δ̃
5(+)
21

1

(� + ∂2
5)2

˜̄δ
5(+)

21

− V1 �2P0 V2
1

(� + ∂2
5)2

˜̄δ
5(−)

21

1

(� + ∂2
5)2

δ̃
5(−)
21 (4.20)

+ 2 ∂5V1 ∂5V2
1

(� + ∂2
5)2

δ̃
5(+)
21

1

(� + ∂2
5)2

δ̃
5(−)
21

}
and the graphs in Fig. 10 constitute the VS̄ and SS̄ self-energies

ΣVS̄ = − 2
√

2 q2

∫ (
d5x
)
12

d4θ ∂5V1 S̄2
1

(� + ∂2
5)2

δ̃
5(+)
21

1

(� + ∂2
5)2

δ̃
5(−)
21 , (4.21)

ΣSS̄ = 2 q2

∫ (
d5x
)
12

d4θ S1S̄2
1

(� + ∂2
5)2

δ̃
5(+)
21

1

(� + ∂2
5)2

δ̃
5(−)
21 . (4.22)

The ΣVS self-energy is given by the complex conjugate of (4.21).
The third step involves the remaining two orbifold compatible delta functions

and requires a little more care. We see that the expressions in the first two lines
of (4.20) employ the same orbifold compatible delta function twice. In such a
situation we can simply replace one of the two orbifold delta functions against an
ordinary delta function as in the second step. This last orbifold delta function
cannot be replaced anymore and it gives the information how the amplitude is
distributed on the orbifold. In the rest of the terms of the self-energies, however,
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two different types of delta functions appear and in this situation cancellations
can appear. There are two ways to proceed: The first one is to simply insert the
definitions of the orbifold delta functions (4.16) and to multiply the terms out.
Then all cancellations are explicit. For this simple case of a Z2 orbifold this is
a viable method. The second way is equivalent and more convenient especially
in the case of more general ZN symmetries where the orbifold compatible delta
functions are sums of N terms. In this way one takes one half times the sum
of the linear combination of both possibilities to replace an orbifold compatible
delta function against an ordinary delta function. Then, for example, the SS̄
self-energy reads

ΣSS̄ = q2

∫ (
d5x
)
12

d4θ S1S̄2

(
1

(� + ∂2
5)2

δ̃
5(+)
21

1

(� + ∂2
5)2

δ
(5)
21 +

+
1

(� + ∂2
5)2

δ
(5)
21

1

(� + ∂2
5)2

δ̃
5(−)
21

)
, (4.23)

where the second and the first orbifold delta functions have been replaced against
an ordinary delta function in the first and the second lines, respectively. Here
δ
(5)
21 = δ4(x2 − x1) δ(y2 − y1) is the ordinary five dimensional delta function. It is

clear from (4.16) that in the SS̄ self-energy the dependence on δ(y2 +y1) cancels

ΣSS̄ = 2q2

∫ (
d5x
)
12

d4θ S1S̄2
1

(� + ∂2
5)2

δ
(5)
21

1

(� + ∂2
5)2

δ
(5)
21 . (4.24)

So for these terms we are left with a pure bulk amplitude that has no fixed point
contribution.

Bulk renormalization

In the first two lines of (4.20) the reduction to an expression with just one
orbifold delta function is straightforward as described in the last paragraph.
Expanding the last orbifold delta function with (4.16) and picking out the terms
with two ordinary delta function corresponds to the bulk amplitude. For the
rest of the terms of the self-energies we have just discussed that they give a pure
bulk contribution. Then we add all terms to find the correction to the gauge
kinetic term

Σhyper
bulk = q2

∫ (
d5x
)
12

d4θ
(− V1 �2P0 V2 + ∂5V1 ∂5V2 −

√
2 ∂5V1

(
S2 + S̄2

)
+ S1S̄2

)
× 1

(� + ∂2
5)2

δ(y2 − y1)
1

(� + ∂2
5)2

δ(y2 − y1). (4.25)

Note that all terms appear with the correct coefficients to recombine to an expres-
sion which is proportional to the gauge kinetic term. The complete self-energy
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is divergent and we can extract the leading terms with the help of the identities
in App. D.1. It is a well-known fact that dimensional regularization in five di-
mensions hides a linear divergence and does not produce a divergent pole piece.
Hence, the leading term of the self-energy reads

Σhyper
bulk = −i|m|q2μ−2ε

(4π)2

∫
ddx d4θ

(−V �P0 V + ∂5V ∂5V −
√

2∂5V (S + S̄ ) + SS̄
)
,

(4.26)

where d = 5− 2ε and m is an infrared regulator mass which is introduced in the
appendix. In the MS scheme only a pole part leads to a counterterm. Hence,
there is no renormalization of the gauge kinetic term and no influence on the
gauge coupling running in the five dimensional bulk.

Fixed point renormalization

In order to find the amplitude at the fixed points, we pick out the terms with
one delta function δ(y2 − y1) and one delta function δ(y2 + y1) in the first two
lines of (4.20). We find that the fixed point contributions of the first and the
second line cancel each other. For the rest of the terms it was shown that they
are pure bulk amplitudes. Therefore, the self-energies (4.20) - (4.22) vanish at
the fixed points and there is no renormalization of the gauge coupling at the
fixed points of S1/Z2. This is a different statement than that for the bulk result,
where no counterterm is obtained because of the properties of the regularization,
but the self-energy (4.25) is non-zero. In the next chapter this result will be
generalized to the statement that for an Abelian gauge theory in the bulk there
is no gauge coupling renormalization at the Z2 fixed points of a T 2/ZN orbifold
in six dimensions.



4. Hyper multiplet coupled to a non-Abelian gauge multiplet 63

4.2 Hyper multiplet coupled to a non-Abelian

gauge multiplet

In this section we consider a hyper multiplet that is coupled to a non-Abelian
gauge multiplet in five dimensions with the fifth dimension compactified on the
orbifold S1/Z2. We discuss the five dimensional action in terms of four dimen-
sional superfields and quantize the theory. As in the four dimensional setup
the quantization of the gauge sector of the non-Abelian theory requires gauge
fixing and leads to the introduction of ghost superfields. We build our presenta-
tion on the argumentation and notions of the four dimensional discussion that
is provided in Section 3.2. We place the theory on the orbifold S1/Z2 with the
method developed in the preceeding Section 4.1 and calculate the loop correc-
tions to the gauge kinetic term due to graphs that involve the hyper, gauge and
ghost multiplets.

4.2.1 Classical action in five dimensional Minkowski space

In this section we consider the classical supersymmetric theory of a hyper multi-
plet that is coupled to a non-Abelian gauge multiplet. The description in terms
of four dimensional superfields [13, 15, 16, 73] involves the same superfields Φ+,
Φ−, V and S as in the Abelian case of the preceeding Section 4.1. The chiral
fields Φ+ and Φ− transform in a given representation (for example the fundamen-
tal or adjoint representation) of the gauge group. The four dimensional gauge
multiplet V = V i Ti and the four dimensional chiral multiplet S = Si Ti both
transform in the adjoint representation of the gauge group. The notation for
the algebra, the Killing metric and the different traces has been introduced in
Section 3.2. The superfield action for the various multiplets is given by

S 5D
non-Abelian

(
Φ+, Φ−, V, S

)
= SH

(
Φ+, Φ−, V, S

)
+ SV

(
V, S
)
, (4.27)

where SH is the kinetic action of the hyper multiplet with its coupling to the
five dimensional gauge multiplet

SH =

∫
d5x

{∫
d4θ
(
Φ̄+e2V Φ+ + Φ−e−2V Φ̄−

)
+ (4.28)

+

∫
d2θ Φ−

(
∂5 +

√
2 S
)
Φ+ +

∫
d2θ̄ Φ̄+

(− ∂5 +
√

2 S̄
)
Φ̄−

}
.

This action is invariant under the following super-gauge transformation

Φ+ → e−2Λ Φ+, e2V → e2Λ̄ e2V e2Λ,

Φ− → Φ− e2Λ, S → e−2Λ
(
S + 1√

2
∂5

)
e2Λ,

(4.29)
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where Λ is a chiral superfield and Λ̄ its conjugate. The kinetic action SV for
the five dimensional gauge multiplet in a four dimensional superfield language
comprises the standard terms for the four dimensional gauge field V and one
extra term for the four dimensional chiral multiplet S

SV =
1

g2

∫
d5x tr

[
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇ +

+
1

4

∫
d4θ e2V5e−2V e2V5e−2V

]
, (4.30)

where the non-Abelian field strengths Wα, W̄α̇ are defined as in the four dimen-
sional case (3.61) with the same gauge transformation properties (3.62). The
superfield V5 is a combination of the superfields V and S such that e2V5 also
transforms covariantly

e2V5 = ∂5 e2V −
√

2 e2V S −
√

2 S̄e2V , e2V5 → e2Λ̄ e2V5 e2Λ, (4.31)

so that the vector multiplet action is gauge invariant. The reduction to the
Abelian case in Section 4.1 is trivial, where we found in particular that the
super field strengths Wα and V5 are gauge invariant. When we compute the
renormalization of the vector multiplet at one loop, we perform a direct com-
putation rather than a background field method. Therefore, we will be able to
recover only the quadratic part of the vector multiplet action

SV 2 =
1

g2

∫
d5x d4θ tr

[
1

8
V DαD̄2DαV + (∂5V )2 −

√
2∂5V
(
S + S̄
)

+ S̄S

]
.

(4.32)
In the non-Abelian discussion we quantize also the gauge sector. Therefore, we
have to care about the mixing between the four dimensional gauge multiplet
V and the chiral adjoint multiplet S that we already observed in the Abelian
quadratic action in Section 4.2. The presence of this mixing would complicate
the calculations, but luckily, it can be removed by a suitable choice of gauge
fixing, as we discuss below. For the non-Abelian action the same comments
about five dimensional Lorentz invariance apply as for the Abelian action (4.27).

4.2.2 Quantization of the action

Now we turn to the quantization of the theory using the path integral approach.
The generating functional reads



4. Quantization of the action 65

�Φ̄± Φ± �Φ+ Φ− V V ÆS̄ S

�C̄′ C �C′ C̄

Figure 11: Here we depict our drawing conventions for the propagators in the non-
Abelian theory. The chiral multiplet propagators have the same form as in the Abelian
case in (4.8). The first chiral multiplet propagator corresponds to the diagonal terms
in (4.8), while the second refers to the off–diagonal parts. In the gauge sector we have
propagators for the V and S multiplets presented in (4.41) and the ghost multiplets
(4.45).

Z
[
J+, J−, JV , JS

]
=∫

DΦ+ DΦ− DV DS exp

{
i

∫
d5x

(
L 5D

non-Abelian

(
Φ+, Φ−, V, S

)
+

+

∫
d2θ J+Φ+ +

∫
d2θ̄ J̄+Φ̄+ +

∫
d2θ J−Φ− +

∫
d2θ̄ J̄−Φ̄− +

+ tr

[ ∫
d4θ JV V +

∫
d2θ JSS +

∫
d2θ̄ JS̄S̄

])}
. (4.33)

As usual the interactions can be obtained by functional differentiation with re-
spect to the sources, after the original superfields are integrated out using their
corresponding quadratic actions.

Hyper multiplet propagator

By considering the quadratic part of the hyper multiplet action (4.28) we find
the same hyper multiplet propagator as in the Abelian case (4.8).

Gauge multiplet propagator

For the five dimensional gauge multiplet we need to do more work because of
gauge invariance. The problem of resulting zero modes can be made manifest
by representing the quadratic action (4.32) in the following matrix form

Z0

[
JV , JS

]
=

∫
DV exp

{
i

∫
d5x tr

[ ∫
d4θ

1

g2
v̄ A v +

∫
d4θ JV V

+

∫
d2θ JSS +

∫
d2θ̄ J̄SS̄

]}
, (4.34)
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where the vector v and the hermitean matrix A are given by

v =

⎛⎜⎝V

S

S̄

⎞⎟⎠ , A =

⎛⎜⎜⎝
−�P0 − ∂2

5
1√
2
P+∂5

1√
2
P−∂5

− 1√
2
P+∂5

1
2
P+ 0

− 1√
2
P−∂5 0 1

2
P−

⎞⎟⎟⎠ . (4.35)

Here P0 is the transversal projector and P+ and P− are its chiral counterparts
defined in (2.40). The operator A has chiral zero modes corresponding to the
gauge directions x. Indeed, we see that

Ax = 0 for x = δΛv =

⎛⎜⎝ Λ + Λ̄√
2 ∂5Λ√
2 ∂5Λ̄

⎞⎟⎠ . (4.36)

This shows explicitly that also in five dimensions in order to define the propagator
of the vector multiplet, we need to perform a gauge fixing to modify the quadratic
form A so that it becomes invertible.

The procedure to determine the gauge fixed action follows the conventional
four dimensional superfield methods for gauge multiplets as they were reviewed
in Chapter 3. In generalization of (3.72) we choose the gauge fixing functional
[17, 74]

Θ =
D̄2

−4

(√
2V +

1

�
∂5S̄

)
. (4.37)

To motivate this choice, we observe that taking the imaginary part of the highest
restriction

D2

−4
Θ

∣∣∣∣ = 1√
2

(
�C + D + ∂5ϕ − i∂MAM

)
(4.38)

reveals that the gauge fixing functional Θ incorporates the five dimensional
Lorentz invariant gauge fixing ∂MAM = 0. The gauge fixing condition Θ = F ,
with F an arbitrary chiral superfield, is implemented into the path integral via
the standard procedure as the argument of a delta function together with a com-
pensating Fadeev-Popov determinant Δ(Θ). We include the Gaussian weighting
factor exp i

∫
d5xd4θ trF̄F and perform the functional integration over F . Be-

cause of the delta functions, that implement the gauge fixing, this Gaussian
integration is trivial and results in the gauge fixing action

Sgf = − 1

g2

∫
d5x d4θ tr

[
V
(
� +

1

8
DαD̄2Dα

)
V +

√
2V ∂5

(
S + S̄
)

+ ∂5S̄
1

�
∂5S

]
(4.39)
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in extension of (3.74). Combining this gauge fixing action with (4.34) into the
gauge fixed action gives rise to invertible quadratic operators

SV2 + Sgf =

∫
d5x d4θ tr

[
− V
(
� + ∂2

5

)
V + S̄

(
1 +

∂2
5

�

)
S

]
. (4.40)

Here we see a further motivation for the gauge fixing functional (4.37): The
mixing between the V and the S and S̄ fields, which was present in (4.34), has
been removed. Consequently, the propagators for V and S are decoupled

Z0

[
JV , JS

]
= exp

{
i

∫
d5x d4θ tr

[
1

4
JV

1

� + ∂2
5

JV + J̄S
−1

� + ∂2
5

JS

]}
. (4.41)

This decoupling amounts to a major simplification of the supergraph compu-
tations performed in Section 4.2.5. Notice that the nonlocal term in (4.40) has
given rise to a perfectly regular propagator for the S superfield. The propagators
are depicted in Fig. 11.

Ghost propagator

To finish the description of the gauge fixing procedure, we rewrite the Faddeev-
Popov determinant Δ(Θ) using anti-commuting Lie algebra valued ghost super-
fields C and C ′ as demonstrated in Chapter 3. The central point for determining
their action are the infinitesimal versions of the gauge variations (4.29) of the
fields V and S

δΛS =
√

2 ∂5Λ + 2
[
S, Λ
]
, (4.42)

δΛV = LV (Λ − Λ̄) + coth(LV )LV (Λ + Λ̄),

that are present in the gauge fixing functional (4.37). The variation of the four
dimensional vector multiplet is of course the same as in the four dimensional
procedure, cf. (3.77). Then the infinitesimal gauge variation δC of the gauge
fixing functional reads

δCΘ =
√

2
D̄2

−4

(
LV (C − C̄) + coth (LV (LV (C + C̄))) +

+
∂5

�

(√
2 ∂5C̄ − 2

[
S̄, C̄]
))

(4.43)

and the ghost action Sgh

(
C, C ′, V

)
is determined straightforwardly in analogy

to (3.81).

Sgh =
1√
2

∫
d5x d4θ tr

[√
2 (C ′ + C̄ ′)

(
LV (C − C̄) + coth (LV (LV (C + C̄)))

)

+ C ′ ∂5

�

(√
2 ∂5C̄ − 2

[
S̄, C̄
])

+ C̄ ′ ∂5

�

(√
2 ∂5C + 2

[
S, C
])]

. (4.44)
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Figure 12: These interaction vertices involve the coupling of the gauge superfields V
and S to the hyper multiplet chiral superfields Φ+ and Φ−.

From this action the ghost propagators are determined easily

Z0

[
JC , J ′

C

]
= exp

{
i

∫
d5x d4θ tr

[
− J̄ ′

C

1

� + ∂2
5

JC − J ′
C

1

� + ∂2
5

J̄C

]}
. (4.45)

Again, even though the (quadratic) action (4.44) appears to include non-local
terms, the ghosts have perfectly normal 5D propagators. These propagators are
given in Fig. 11. Even though there are two types of propagators, we use only
one notation for both of them, because the two propagators are the same.

This completes our description of the quantum field theory of hyper and gauge
multiplets in five dimensions. The vertices can be obtained straightforwardly by
expanding the various actions. In the following we will only give those interaction
terms that will be relevant for the computations of the gauge kinetic action at
one loop.

Interactions

For the hyper multiplet action (4.28) the expansion to fourth order gives rise to
the interactions

SH int ⊃
∫

d5x tr

[ ∫
d4θ Φ̄±(±2V + 2V 2)Φ±

+

∫
d2θ

√
2Φ−SΦ+ +

∫
d2θ̄

√
2Φ̄+S̄Φ̄−

]
. (4.46)

We have depicted the corresponding vertices in Fig. 12. Performing the expan-
sion to fourth order in the gauge sector (4.30) leads to the following interactions

SV int ⊃
∫

d5x d4θ tr

[
1

4

[
V, DαV

]
D̄2DαV − 1

8

[
V, DαV

]
D̄2
[
V, DαV

]
− 1

6

[
V,
[
V, DαV

]]
D̄2DαV +

√
2 ∂5V
[
V, S̄ − S

]− 2 S
[
V, S̄
]

+
1

3
∂5V
[
V,
[
V, ∂5V
]]− 2

√
2

3
∂5V
[
V,
[
V, S + S̄

]]
+ 2 S
[
V,
[
V, S̄
]]]

. (4.47)
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Figure 13: These vertices encode the self-interactions of the gauge multiplet involving
the vector superfield V and the chiral superfield S.

To indicate that we display interaction terms of the expansion up to fourth order
we use the notation “⊃”. In deriving (4.47) from (4.30) we have rewritten the
(anti-)chiral superspace integrals into full superspace integration in the standard
way. We use the convention that the derivative operator ∂5 only acts on the
field it is immediately adjacent to. The interaction vertices have been collected
in Fig. 13.

In the ghost sector we obtain the following interactions from the expansion
of (4.44)

Sgh int ⊃
∫

d5x d4θ tr

[(
C ′ + C̄ ′)[V, C − C̄

]
+

1

3

(
C ′ + C̄ ′)[V,

[
V, C + C̄

]]
+
√

2
∂5

�
C ′[S̄, C̄

]−√
2

∂5

�
C̄ ′[S, C

]]
. (4.48)

These vertices are depicted in Fig. 14. One might worry about a possible non-
locality of the interaction of a V field with two ghosts C ′ and C̄ in (4.48),
because the term contains a four dimensional d’Alembertian operator � in the
denominator. But such terms do not necessarily pose a problem, because physical
amplitudes may also contain a bunch of supercovariant derivatives, which give
rise to additional � operators in the numerator so that cancellations can take
place. In our calculation this issue does not arise at all, because it is impossible
to construct one loop corrections to the S̄S self-energy with ghosts in the loop.
The only graphs that could be constructed would be one loop contributions that
are purely chiral, such that they vanish upon superspace integration.

4.2.3 Orbifold compatible calculus for S1/Z2

In this section we extend the method of rendering a theory orbifold compatible
as it was presented in detail in Section 4.1.3 to cover the non-Abelian case. The
fields of the non-Abelian theory are allowed to transform with a rotation in the
gauge degrees of freedom under the orbifold twist. The matrix that represents
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Figure 14: The ghosts C and C ′ only interact with the vector multiplet superfields V
and S.

this rotation enters in the orbifold compatible delta functions. We start with
the transformation behaviour of the fields under the orbifold twist. They have
to be orbifold compatible such that their action is invariant under the orbifold
symmetry. This means that they must transform covariantly under the orbifold
action

Φ+ → ZΦ+, V → ZV Z,

Φ− → −Φ−Z, S → −ZSZ,
(4.49)

where Z is the rotation in the gauge degrees of freedom. As we indicated in Sec-
tion 4.1.3 such orbifold compatible fields and sources can always be constructed
by taking suitable linear combinations of the fields defined on the covering space
and their Z2 reflections. Invariance of the action implies that the transformation
of the hyper and vector multiplets are encoded in a single unitary matrix Z.
Because this is a Z2 action, the matrix Z fulfills Z2 = 11. Hence Z is a real
symmetric matrix with the eigenvalues ±1. As it is often convenient to make
the adjoint indices on V and S explicit, we introduce the matrix Qi

j to write
the transformation rules for the V and S superfields as

V i → Qi
jV

j , Si → −Qi
jS

j, Qi
j = tr
[
T iZTjZ

]
. (4.50)

The invariance of the action requires that the matrix Q fulfills

Qi
i′ Qj

j′ η ij = η i′j′, fijk Qi
i′ Q

j
j′ Q

k
k′ = fi′j′k′ , (4.51)

such that it is orthogonal with respect to the Killing metric ηij . We infer that
all matrix elements Qi

j are real. And due to the Z2 symmetry we know that
Q2 = 11 and hence Q is a real symmetric matrix. In the computation of the
one loop self-energies we will be making frequent use of the properties of the
matrices Z and Q. The Z2 properties of orbifold compatible fields imply that
orbifold compatible source terms have to transform as

J+ → J+Z, JV
i → Qi

j JV
j,

J− → −ZJ−, JS
i → −Qi

j JS
j,

(4.52)
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where we have used the orthogonality of Q in (4.51). For Feynman supergraph
computations that employ the path integral formalism it is important to know
the orbifold compatible delta functions obtained by functional differentiation
w.r.t. orbifold compatible sources:

δJ+2b

δJ+1a
=

D̄2

−4
δ̃
(+)
21

a
b,

δJV 2
i

δJV 1
j

= δ̃
(V )
21

i
j ,

δJ−2
b

δJ−1
a

=
D̄2

−4
δ̃
(−)
21

b
a,

δJS2
i

δJS1
j

=
D̄2

−4
δ̃
(S)
21

i
j.

(4.53)

Because (except for JV ) all these sources are chiral, the functional differentiation
w.r.t. them leads to chiral delta functions in superspace: −1

4
D̄2δ4(θ2 − θ1). For

later convenience we have defined the superspace orbifold compatible delta func-
tions, indicated as δ̃, containing full Grassmann delta functions δ4(θ2 −θ1). As a
consequence, the factor −1

4
D̄2 appears explicitly for the chiral sources in (4.53).

From the transformation properties of the sources we infer that the orbifold
compatible delta functions are given by

δ̃
(+)
21

a
b =

1

2

(
δa

b δ(y2 − y1) + Za
b δ(y2 + y1)

)
δ4(x2 − x1)δ

4(θ2 − θ1),

δ̃
(−)
21

b
a =

1

2

(
δb

a δ(y2 − y1) − Zb
a δ(y2 + y1)

)
δ4(x2 − x1)δ

4(θ2 − θ1),

δ̃
(V )
21

i
j =

1

2

(
δi

j δ(y2 − y1) + Qi
j δ(y2 + y1)

)
δ4(x2 − x1) δ4(θ2 − θ1),

δ̃
(S)
21

i
j =

1

2

(
δi

j δ(y2 − y1) − Qi
j δ(y2 + y1)

)
δ4(x2 − x1) δ4(θ2 − θ1).

(4.54)

Note that, since the matrix elements of Q are real, the orbifold delta function
for S̄ is the same as the orbifold delta function for S in five dimensions. These
delta functions are the key elements of our formalism for calculating Feynman
graphs directly on the orbifold, since they contain all the geometric information
about the orbifold compatible superfields. Therefore, it is important to develop
some of their properties: All delta functions are symmetric in their spacetime
and gauge indices, while under a reflection of either y1 or y2 the delta functions
transform as

δ̃
(+)
21

a
b → +Za

a′ δ̃
(+)
21

a′
b, δ̃

(V )
21

i
j → +Qi

i′ δ̃
(V )
21

i′
j,

δ̃
(−)
21

a
b → −Za

a′ δ̃
(−)
21

a′
b, δ̃

(S)
21

i
j → −Qi

i′ δ̃
(S)
21

i′
j .

(4.55)

In calculating amplitudes one often makes use of partial integration. But as the
delta function is a function of two coordinates (x2, y2) and (x1, y1), one sometimes
needs to change the coordinate w.r.t. which a derivative ∂5 acts before one can
perform the partial integration. When this ∂5 acts on the delta function, the
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Figure 15: The gauge multiplet receives V V self-energy corrections from the hyper
multiplet. The proper self-energy graphs are labeled 15.A± and 15.B. The tadpole
graph is denoted by 15.C±.

change of the coordinate may not only bring in a minus sign as one expects, but
may also switch between the types of delta functions:

(∂5)2 δ̃
(+)
21

a
b = −(∂5)1 δ̃

(−)
21

a
b , (∂5)2 δ̃

(V )
21

i
j = −(∂5)1 δ̃

(S)
21

i
j ,

(∂5)2 δ̃
(−)
21

a
b = −(∂5)1 δ̃

(+)
21

a
b , (∂5)2 δ̃

(S)
21

i
j = −(∂5)1 δ̃

(V )
21

i
j .

(4.56)

With this technology we are ready to perform supergraph calculations in the
non-Abelian theory in five dimensions with the extra dimension compactified on
the orbifold S1/Z2.

4.2.4 Renormalization of the gauge kinetic term due to
the hyper multiplet

The calculation of the hyper multiplet contributions to the gauge kinetic term
follows closely the computation of the hyper multiplet loop corrections in the
Abelian case that were performed in Section 4.1. The supergraphs that are
necessary for the calculation are the same as in the Abelian case and are depicted
again for easier reference in Figs. 15 and 16. The results for these graphs are
provided in App. C.1, where a six dimensional notation is employed that has
a straightforward reduction to five dimensions. On the level of two orbifold
compatible delta functions the V V self-energy takes the form

ΣV V =

∫ (
d5x
)
12

d4θ tr
[
− V1

1

(� + ∂2
5)2

δ̃
5(+)
21 �2P0 V2

1

(� + ∂2
5)2

˜̄δ
5(+)

21

− V1
1

(� + ∂2
5)2

˜̄δ
5(−)

21 �2P0 V2
1

(� + ∂2
5)2

δ̃
5(−)
21 (4.57)

+ 2 ∂5V1
1

(� + ∂2
5)2

δ̃
5(+)
21 ∂5V2

1

(� + ∂2
5)2

δ̃
5(−)
21

]
.



4. Renormalization due to the hyper multiplet 73

!
Φ±

Φ±

S̄ S "
Φ±

Φ±

V S

A± B±

Figure 16: The gauge multiplet receives S̄S self-energy corrections from the hyper
multiplet as is depicted in figure 16.A±. In addition the hyper multiplet gives rise to
mixing between the four dimensional superfields V and S, see 16.B±.

The VS̄ and SS̄ self-energies are given by

ΣVS̄ = − 2
√

2

∫ (
d5x
)
12

d4θ tr
[

∂5V1
1

(� + ∂2
5)2

δ̃
5(+)
21 S̄2

1

(� + ∂2
5)2

δ̃
5(−)
21

]
,

(4.58)

ΣSS̄ = 2

∫ (
d5x
)
12

d4θ tr
[

S1
1

(� + ∂2
5)2

δ̃
5(+)
21 S̄2

1

(� + ∂2
5)2

δ̃
5(−)
21

]
(4.59)

and the VS self-energy is just the complex conjugate of the result for VS̄.
Equipped with the terminology of Section 4.1 we can head directly for the re-
normalization of the non-Abelian theory in the bulk and at the fixed points.

Bulk renormalization

The bulk amplitude is found by picking out the terms with two ordinary delta
functions from the self-energies (4.57)-(4.59). We add all terms to find the cor-
rection to the gauge kinetic term in the bulk

Σhyper
bulk =

∫ (
d5x
)
12

d4θ tr
[
− V1�2P0V2 + ∂5V1∂5V2 −

√
2∂5V1(S2 + S̄2 ) + S1S̄2

]
× 1

(� + ∂2
5)2

δ(y2 − y1)
1

(� + ∂2
5)2

δ(y2 − y1). (4.60)

All terms appear with the correct coefficients to recombine to an expression
which is proportional to the gauge kinetic term. The extraction of the leading
terms of this divergent self-energy with the help of the identities in App. D.1
leads to the same observation as in the Abelian calculation in Section 4.1.4,
namely that dimensional regularization hides the linear divergence. The leading
term of the self-energy reads

Σhyper
bulk = −i|m|μ−2ε

(4π)2

∫
ddx d4θ tr

[
− V �P0V +

(
∂5V
)2−√

2∂5V (S + S̄ ) + SS̄
]
,

(4.61)
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where d = 5 − 2ε and m is an infrared regulator mass. Therefore, in the same
way as in the Abelian calculation, we do not obtain a counterterm in the MS
scheme. Hence, also here we do not have a renormalization of the gauge kinetic
term and there is no effect on the gauge coupling running in the five dimensional
bulk.

Fixed point renormalization

In order to find the amplitude at the fixed points, we pick out the terms with one
delta function δ(y2 − y1) and one delta function δ(y2 + y1) from the self-energies
(4.57) - (4.59). We add all terms to find the self-energy at the fixed points

Σhyper
fp =

1

2

∫ (
d5x
)
12

d4θ tr
[
[∂5V1, Z]∂5V2 −

√
2 [∂5V1, Z](S̄2 − S2 ) + [S1, Z]S̄2

]
× 1

(� + ∂2
5)2

δ(y2 − y1)
1

(� + ∂2
5)2

δ(y2 + y1). (4.62)

Note that for the kinetic term of the four dimensional gauge multiplet the cancel-
lation at the fixed points is complete and this term is absent in (4.62). We obtain
the remaining terms of the five dimensional gauge kinetic action with the fields
enclosed in commutators. This shows that in the case when Z is proportional to
the identity and in the Abelian case the amplitude vanishes at the fixed points
which is consistent with our previous findings in Section 4.1.4. The divergent
part of this amplitude is found to be

Σhyper
fp

∣∣∣
div

=
iμ−2ε

2(4π)2

(1
ε̄

+ ln
μ2

m2

) ∫
d5x d4θ tr

[
Z
[
S̄ −

√
2 ∂5V, S −

√
2 ∂5V
]]

δ(2y).

(4.63)

As we saw at the level of the amplitude, in the Abelian case the hyper multi-
plet does not induce a correction at the fixed points. The (∂5V )2 parts of this
expression have been obtained before, see [75]. As explained in Section 3.2 in
the non-Abelian theory the counterterm is only well defined when we take the
nonlinear extension. So we arrive at the expression

ΔS hyper
fp = − μ−2ε

2(4π)2ε

∫
ddx d4θ tr

[
Z
[(

S̄ − 1√
2
∂5

)
e2V ,
(
S + 1√

2
∂5

)
e−2V
]]

δ(2y).

(4.64)

From the counterterm (4.64) we can read off that there is no renormalization
of the gauge kinetic term of the four dimensional gauge multiplet at the fixed
points. The only renormalization effects involve the other operators from the five
dimensional gauge kinetic term. Hence, the counterterm (4.64) does not lead to
a running of the four dimensional gauge coupling at the fixed points.
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We remark that (4.64) is gauge invariant only w.r.t. the zero mode supergauge
group defined by ∂5Λ = ∂5Λ̄ = 0 and [Z, Λ] = [Z, Λ̄] = 0. The second condition
is a consequence of the orbifold projection at the Z2 fixed points. However, for
the full supergauge group at the fixed points ∂5Λ and ∂5Λ̄ do not necessarily
vanish nor commute with Z. Consequently this expression, as it stands, is not
gauge invariant under the full bulk gauge transformations. As we will speculate
below (5.79) this might be cured by a Wess-Zumino-Witten-like term.

4.2.5 Renormalization of the gauge kinetic term due to

vector multiplet self-interactions

In this section we compute the one loop corrections to the gauge kinetic term
due to the particles from the gauge sector. Because of the gauge fixing described
in Section 4.2.2 we encounter the superfields V , S and the ghosts C, C ′ in the
loops.

The supergraphs that give the loop corrections to the self-energy ΣV V have
been depicted in Fig. 17 and those that give loop corrections to the ΣV S and
ΣV S̄ self-energies are displayed in Fig. 18. In the first two lines of Fig. 17 the
genuine self-energy graphs are labeled 17.A to 17.D. Because there are two ghost
propagator diagrams, 17.D gives rise to four contributions. We use the notation
17.E to 17.G to indicate the tadpole supergraphs in Fig. 17. The contributions
from these tadpole graphs are necessary to cancel non-gauge invariant terms from
the total amplitude. The first graph in Fig. 18 is the SS̄ self-energy diagram.
Finally, diagrams 18.B and 18.C give the self-energy due to the mixing between
S and V . The results of these graphs are given on the level of two orbifold
compatible delta functions in App. C.2 in a six dimensional notation which has
a straightforward reduction to five dimensions as explained in the appendix.
The explicit calculation of graph 17.A can be found as a worked out example
in App. B to illustrate the main steps that are required for the calculation of
such supergraphs on orbifolds. The sum of the respective graphs gives the self-
energies which we present at the level of two orbifold compatible delta functions.
The V V self-energy is found to be

ΣV V =

fijkf	mn

∫ (
d5x
)
12

d4θ
[
− 3 V i

1�2P0V
	
2

1

(� + ∂2
5)2

δ̃
5(V )
21

mj 1

(� + ∂2
5)2

δ̃
5(V )
21

nk

+ V i
1 �2P0V

	
2

1

(� + ∂2
5)2

δ̃
5(S̄)
21

mj 1

(� + ∂2
5)2

δ̃
5(S)
21

nk (4.65)

+ 2 ∂5V
i
1 ∂5V

	
2

1

(� + ∂2
5)2

δ̃
5(V )
21

mj 1

(� + ∂2
5)2

δ̃
5(S̄)
21

nk
]
.
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Figure 17: The gauge contributions to the V V part of the gauge multiplet self-energy
are due to the V self-coupling , the interactions with the chiral superfield S and the
ghost superfields C and C ′. The genuine self-energy graphs are labeled 17.A to 17.D.
The tadpole graphs are referred to as 17.E to 17.G.
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Figure 18: The SS̄ self-energy graph is given in figure 18.A. The mixing between
the four dimensional superfields V and S corresponding to the third term of (4.32) is
renormalized by the diagrams 18.B and 18.C. The last diagram has ghosts in the loop.

As we have explained in Section 4.1.4, the last two orbifold delta functions
have to be handled with care. In the first two lines of (4.65) the same orbifold
compatible delta function is employed twice, since in five dimensions the orbifold
delta functions for S and S̄ are equal. Hence, in the first two lines one of these
orbifold delta functions can be straightforwardly reduced to an ordinary delta
function. But for the last line in (4.65) cancellations appear. As we explained in
Section 4.1.4 it is convenient to write the amplitude as half of the sum of both
possibilities to reduce one delta function. Then the fixed point contribution of
the last term in (4.65) vanishes, leaving only a bulk contribution. For the same
reason also the VS, VS̄ and SS̄ self-energies, given in Fig. 18, only have a bulk
contribution, because their two orbifold compatible delta function expressions
are given by

ΣV S̄ = −2
√

2 fijkf	mn

∫ (
d5x
)
12

d4θ ∂5V
i
1 S̄	

2

1

(� + ∂2
5)2

δ̃
5(V )
21

mj 1

(� + ∂2
5)2

δ̃
5(S̄)
21

nk

(4.66)

for VS̄, the complex conjugate for VS, and

ΣS̄S = 2 fijkf	mn

∫ (
d5x
)
12

d4θ Si
1S̄

	
2

1

(� + ∂2
5)2

δ̃
5(V )
21

mj 1

(� + ∂2
5)2

δ̃
5(S̄)
21

nk

(4.67)

for the SS̄ self-energy. By combining these results and expanding the final
orbifold compatible delta functions according to their definitions in (4.54), we
can identify the bulk and fixed point contributions.

Bulk renormalization

The bulk amplitude is the sum of all terms with two ordinary delta functions
from the self-energies (4.65)-(4.67). We find the following correction to the gauge
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kinetic term in the bulk

Σgauge
bulk = fijkf	mnηmjηnk

∫ (
d5x
)
12

d4θ
[
− V i

1 �2P0 V 	
2 + ∂5V

i
1 ∂5V

	
2 + (4.68)

−
√

2 ∂5V
i
1 (S	

2 + S̄	
2 ) + Si

1S̄
	
2

] 1

(� + ∂2
5)2

δ(y2 − y1)
1

(� + ∂2
5)2

δ(y2 − y1).

Dimensional regularization of this linearly divergent result with the help of the
identities in App. D.1 gives the following leading terms in analogy to the other
bulk results that we found in five dimensions

Σgauge
bulk =

i|m|μ−2ε

(4π)2

∫
ddx d4θ trAd

[
−V �P0V +

(
∂5V
)2 −√

2∂5V (S + S̄) + SS̄
]
,

(4.69)

where d = 5 − 2ε and m is an infrared regulator mass. Therefore, in the MS
scheme there is no counterterm to the gauge kinetic term in the five dimensional
bulk and no running of the gauge coupling due to this contribution.

Fixed points renormalization

The fixed point amplitude is obtained as the sum of all terms with one delta
function δ(y2−y1) and one delta function δ(y2+y1) from the self-energies (4.65)-
(4.67). We find the following self-energy at the fixed points

Σgauge
fp = 2fijkf	mn ηmj Qnk

∫ (
d5x
)
12

d4θ
[
− V i

1 �2P0 V 	
2

]
× 1

(� + ∂2
5)2

δ(y2 + y1)
1

(� + ∂2
5)2

δ(y2 − y1). (4.70)

As we remarked above, except for the first two lines in (4.65), all self-energy
contributions are purely bulk and vanish at the fixed points. Only the kinetic
term of the four dimensional gauge superfield is loop corrected by a non-vanishing
self-energy. The divergent piece of this self-energy reads

Σgauge
fp

∣∣∣
div

= −2iμ−2ε

(4π)2

(1
ε̄

+ ln
μ2

m2

)∫
d5x d4θ trAd

[
− Q V (x, y) �P0 V (x.y)

]
δ(2y).

(4.71)

As explained in Section 3.2 in the non-Abelian theory the counterterm is only well
defined when we take the nonlinear extension. So we arrive at the counterterm

ΔS gauge
fp =

2μ−2ε

(4π)2ε

∫
ddx d4θ trAd

[
Q
(1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇

)]
δ(2y).

(4.72)
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This counterterm involves the gauge kinetic term of the four dimensional gauge
multiplet. Hence, there is a running of the four dimensional gauge coupling at the
fixed points which is read off from the general expression (4.72) as demonstrated
in the final equations of Section 3.1.3 after one has chosen the representation of
the chiral multiplet and the matrix Q for a specific orbifold theory.





Chapter 5

Supersymmetric theory in six
dimensions

In this chapter the results of the preceeding chapter are generalized to a six di-
mensional spacetime with the two extra dimensions compactified on the orbifold
T 2/ZN . Again we consider a hyper multiplet and a gauge multiplet in the bulk
and aim at the renormalization of the gauge kinetic term. We determine the
counterterms in the bulk and at the fixed points. We find that in even ordered
T 2/ZN orbifolds those fixed points that form a Z2 subset must be distinguished
from the other fixed points, because at these fixed points special cancellations
appear. Moreover, we observe the generation of a higher dimensional opera-
tor as loop counterterm in the six dimensional bulk. We consider the Abelian
theory in which only the hyper multiplet leads to loop corrections in the first
section. The non-Abelian theory in which also the particles from the gauge sec-
tor contribute to loop effects is discussed in the second section. Our method of
calculating Feynman graphs directly on the orbifold is adjusted to cover the case
of this more complicated orbifold. For a study of supersymmetric gauge theory
on T 2/Z2 which has been performed in the component field formalism and is
thus complementary to our superfield approach we refer the reader to [76].

5.1 Hyper multiplet coupled to an Abelian

gauge multiplet

In this section we consider a hyper multiplet coupled to an Abelian gauge multi-
plet in six dimensions with the extra two dimensions compactified on the orbifold
T 2/ZN . The six dimensional multiplets have the same decomposition into four
dimensional multiplets as in five dimensions, but their superfield action is slightly
changed. In the Abelian theory only the hyper mutiplet contributes to the re-
normalization of the gauge kinetic term, so we quantize only the hyper multiplet
part of the action. Then we extend our orbifold compatible calculus for Feyn-

81
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man graphs to the case of T 2/ZN . This involves a generalization of the orbifold
compatible delta functions that arise from functional differentiation w.r.t. the
preceeding chapter. We determine the renormalization of the gauge kinetic term
due to the hyper multiplet in the bulk and at the two classes of fixed points.

5.1.1 Classical action in six dimensional Minkowski space

First we consider the classical action for a hyper multiplet that is coupled to
an Abelian gauge multiplet in six dimensions. The action in terms of four di-
mensional superfield [13,15] is similar to the five dimensional action and we will
indicate the deviations. The hyper multiplet action with its coupling to the
gauge multiplet takes the form

SH =

∫
d6x

{∫
d4θ
(
Φ̄+e2qV Φ+ + Φ−e−2qV Φ̄−

)
+

+

∫
d2θ Φ−

(
∂ +

√
2 qS
)
Φ+ +

∫
d2θ̄ Φ̄+

(− ∂̄ +
√

2 qS̄
)
Φ̄−

}
. (5.1)

Here we employ complex coordinates z = 1
2
(x5 − ix6) and z̄ = 1

2
(x5 + ix6) such

that the six dimensional derivative operators are ∂ = ∂5 + i∂6 and ∂̄ = ∂5 − i∂6.
Most of the changes w.r.t. the five dimensional case have to do with the question
if the five dimensional derivative operator ∂5 has to be replaced by ∂ or ∂̄. So
the only terms in the hyper multiplet action that are changed w.r.t. the five
dimensional action (4.2) are those that contained the five dimensional derivative
operator ∂5. The action is invariant under the super-gauge transformation

Φ+ → e−2qΛΦ+, V → V + Λ + Λ̄,

Φ− → e+2qΛΦ−, S → S +
√

2 ∂Λ.
(5.2)

Notice that in both expressions (5.1) and (5.2) the holomorphic derivative ∂
appears only in those places where chiral superfields are present. The kinetic
action SV for the six dimensional gauge multiplet involves the four dimensional
gauge multiplet V and the chiral multiplet S as in five dimensions

SV =
1

g2

∫
d6x

{
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇ +

+

∫
d4θ
[(√

2 ∂̄V − S̄
)(√

2 ∂V − S
)
− ∂V ∂̄V

]}
, (5.3)

but in six dimensions it is not possible to represent this result in terms of a
single gauge invariant vector superfield like the superfield V5 defined in (4.5). It
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is straightforward to rewrite the gauge kinetic action in the following form

SV =
1

g2

∫
d6x d4θ

[
1

8
V DαD̄2DαV + ∂̄V ∂V −

√
2 ∂̄V S −

√
2 ∂V S̄ + S̄S

]
.

(5.4)

In this form it is clear that the same self-energies ΣV V , ΣVS, ΣVS̄ and ΣSS̄ as in
five dimensions have to be calculated in order to determine the renormalization
of the gauge kinetic action.

5.1.2 Quantization of the action

The generating functional looks exactly the same as in five dimensions (4.7) with
the five dimensional action replaced against the six dimensional action.

Hyper multiplet propagator

The propagators for the two chiral multiplets that form the six dimensional hyper
multiplet,

Z0

[
J+, J−
]

=

∫
DΦ+DΦ− exp

{
i

∫
d6x d4θ

(
J+J̄−
) −1

� + ∂∂̄

(
1 ∂̄ D2

−4�

−∂ D̄2

−4�
1

)(
J̄+

J−

)}
,

(5.5)

are the direct generalizations of their five dimensional counterparts given in
(4.8). The six dimensional propagators are depicted in the same way as in five
dimensions in Fig. 7. As the multiplets from the gauge sector do not lead to
a renormalization of the gauge kinetic term in the Abelian theory, we do not
discuss the gauge and ghost superfield propagators here.

Interactions

The interactions of the hyper multiplet with the gauge multiplet do not contain
any derivatives in the extra dimensions and are therefore just the six dimensional
version of (4.9) depicted in Fig. 8.

5.1.3 Orbifold compatible calculus for T 2/ZN

The properties of T 2/ZN are more complicated than those of S1/Z2, they are
described in App. A.2. The hyper and gauge multiplets on the orbifold need to
be covariant w.r.t. the ZN orbifold action. Hence, their transformation behaviour
under z → e−iϕz is found to be

Φ+ → ein±ϕΦ+, Φ− → e−in±ϕΦ−, V → V S → eiϕS, (5.6)
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where n± are integers between 0 and N − 1 such that

ei(1+n++n−)ϕ = 1. (5.7)

is fulfilled. As the two numbers are related by (5.7), we need only one of them in
principle. However, it turns out to be convenient to keep using the notation n±.
The reduction to the Z2 orbifold group is attained for n+ = 0 and n− = 1. Then
many of the properties of the five dimensional case, discussed in Section 4.1,
are recovered. To obtain the orbifold compatible delta functions for the chiral
superfields, we write down the transformation behaviour of orbifold compatible
sources under z → e−iϕz

J± → e−in±ϕJ±, J̄± → ein±ϕJ±. (5.8)

Then we define the functional derivatives w.r.t. the sources with the appropriate
factors of D2 and D̄2 to maintain chirality

δJ±2

δJ±1

=
D̄2

−4
δ̃
(±)
21 ,

δJ̄±2

δJ̄±1

=
D2

−4
˜̄δ
(±)

21 . (5.9)

These definitions have to be in accordance with the transformation behaviour of
the source terms (5.8). The following orbifold compatible delta functions ensure
that this is the case

δ̃
(±)
21 =

1

N

N−1∑
b=0

eibn±ϕ δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1),

˜̄δ
(±)

21 =
1

N

N−1∑
b=0

e−ibn±ϕ δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1).

(5.10)

One checks that the so-defined delta functions transform in the same way as
the corresponding sources under an orbifold transformation z2 → e−iϕz2 of the
second coordinate

δ̃
(±)
21 → e−in±ϕ δ̃

(±)
21 , ˜̄δ

(±)

21 → ein±ϕ ˜̄δ
(±)

21 (5.11)

and inversely under an orbifold transformation z1 → e−iϕz1 of the first coordinate

δ̃
(±)
21 → ein±ϕ δ̃

(±)
21 , ˜̄δ

(±)

21 → e−in±ϕ ˜̄δ
(±)

21 . (5.12)

Derivatives with respect to the compactified coordinates always act on the δ2(z2−
eibϕz1) factor. Therefore, changing a spacetime index of such a derivative also
changes the type of delta function and implies a complex conjugation

∂̄2 δ̃
(±)
21 = −∂̄1

˜̄δ
(∓)

21 . (5.13)

This completes the discussion of the supersymmetric Abelian gauge theory on the
six dimensional orbifold T 2/ZN . We have seen, that even though many properties
are very similar to the ones encountered for the S1/Z2 orbifold discussed in
Section 4.1, there are also some important additional complications in the six
dimensional case.
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5.1.4 Renormalization of the gauge kinetic term due to

the hyper multiplet

The calculation of the renormalization of the gauge kinetic term in six dimensions
with the two extra dimensions compactified on T 2/ZN parallels the procedure
described for five dimensions with the extra dimension compactified on S1/Z2

carried out in Section 4.1.4. The expansion of the hyper multiplet action to
fourth order in the gauge coupling (4.46) remains valid in six dimensions. This
means that we have to calculate the same set of graphs as in five dimensions
depicted in Figs. 9 and 10. The replacement of fields against the derivatives
w.r.t. the corresponding source terms is performed as

Φ± → δ

δ
(
iJ±
) , Φ̄± → δ

δ
(
iJ̄±
) . (5.14)

The results for the graphs are provided in App. C.1 in a non-Abelian notation
which has a simple reduction to the Abelian calculation performed here. The
self energies ΣV V , ΣV S, ΣV S̄ and ΣS̄S are similar to those that we found in five
dimensions. The differences arise from the changes of the derivative operators
in the quadratic part of the gauge multiplet action and from the fact that the
orbifold compatible delta functions are no longer real and we have to distinguish

between δ̃ and ˜̄δ

ΣV V = q2

∫ (
d6x
)
12

d4θ (−V1 �2P0 V2)
1

(� + ∂∂̄)2

δ̃
6(+)
21

1

(� + ∂∂̄)2

˜̄δ
6(+)

21

+ (−V1 �2P0 V2)
1

(� + ∂∂̄)2

˜̄δ
6(−)

21

1

(� + ∂∂̄)2

δ̃
6(−)
21 (5.15)

+2 ∂V1 ∂̄V2
1

(� + ∂∂̄)2

δ̃
6(+)
21

1

(� + ∂∂̄)2

δ̃
6(−)
21 ,

ΣV S̄ = −2
√

2 q2

∫ (
d6x
)
12

d4θ ∂V1 S̄2
1

(� + ∂∂̄)2

δ̃
6(+)
21

1

(� + ∂∂̄)2

δ̃
6(−)
21 ,

(5.16)

ΣSS̄ = 2q2

∫ (
d6x
)
12

d4θ S1S̄2
1

(� + ∂∂̄)2

δ̃
6(+)
21 S̄2

1

(� + ∂∂̄)2

δ̃
6(−)
21 . (5.17)

After the reduction of one more orbifold compatible delta function following the
three steps described in Section 4.1.4 we split the amplitude into three different
contributions. The bulk amplitude has two ordinary delta functions and is recov-
ered for b = 0 in the expansion of the last orbifold delta function. The amplitude
at the Z2 fixed points of an even ordered orbifold is obtained for b = N/2. It is
related to the amplitude at the fixed points of S1/Z2. The sum in the last delta
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function that runs over all values of b except for 0 and N/2 gives the contribu-
tions of the amplitude at those fixed points that are not in a Z2 subsector of the
ZN action. These three different contributions are presented separately.

Bulk renormalization

The bulk contribution of the self-energies (5.56)-(5.58) is given by the b = 0
contribution from the delta functions. We extract the divergence with the help
of App. D.1 and determine the local bulk counterterm in six dimensions. It con-
sists of a sum of two terms. The first term in the sum is the counterterm to the
six dimensional gauge kinetic term and the second term is a higher derivative
operator that is generated in the renormalization process

ΔS hyper
bulk = ΔS hyper

gkt + ΔS hyper
HDO . (5.18)

The piece of the counterterm that renormalizes the bulk gauge kinetic term reads

ΔS hyper
gkt = −2q2m2μ−2ε

(4π)3Nε

∫
ddx

{
1

4

∫
d2θ W αWα + h.c. +

+

∫
d4θ
[(√

2 ∂̄V − S̄
)(√

2 ∂V − S
)
− ∂V ∂̄V

]}
(5.19)

and the higher derivative operator that is generated as loop counterterm is also
localized in the bulk

ΔS hyper
HDO =

q2μ−2ε

3(4π)3Nε

∫
ddx

{
1

4

∫
d2θ W α

(
�+∂∂̄
)
Wα + h.c. +

+

∫
d4θ
[(√

2 ∂̄V − S̄
)(

�+∂∂̄
)(√

2 ∂V − S
)
− ∂V
(
�+∂∂̄
)
∂̄V
]}

, (5.20)

where d = 6 − 2ε. From (5.19) we can read off the gauge coupling running in
the six dimensional bulk. The relation between bare coupling and renormalized
coupling is given by

1

g2
B

=

(
1

g2
− 2 q2m2

(4π)3Nε

)
μ−2ε (5.21)

such that the beta function of the inverse coupling squared is found to be

β1/g2 = − 4 q2m2

(4π)3N
(5.22)

and the running

1

g2
=

1

g2
0

− 2 q2m2

(4π)3N
ln

μ2

μ2
0

. (5.23)
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Next we discuss the conterterms at the two classes of fixed points.

Fixed point self-energy

First we display the divergent self-energy contributions at all fixed points com-
bines. We take one half of both possibilities to reduce one of the two delta
functions as described in Section 4.1.4 and extract the four dimensional diver-
gence at the fixed points according to App. D.2. After expansion of the last
orbifold compatible delta function with (5.10) and integration over the ordinary
delta function δ2(z2 − z1) the self-energies at the fixed points read

ΣVV , fp

∣∣∣
div

=
iμ−2ε

(4π)2Nε

N−1∑
b=1

∫
ddx d4θ

{
− 1

2

(
p(b) + p(−b)

)
V �P0 V +

+ p(b)
(
∂̄V ∂V −

√
2 ∂̄V S −

√
2 ∂V S̄ + SS̄

)}
δ2
(
(1 − eibϕ)z

)
, (5.24)

where d = 6 − 2ε and p(b) is a sum of phase factors p(b) = eibn+ϕ + eibn−ϕ. Now
we separate the contributions at the different fixed points.

Z2 fixed point renormalization

The contribution of the self-energies located at the Z2 fixed points of even ordered
orbifolds can be read off from (5.24) for b = N/2. Due to the fact that the
numbers n+ and n− are related to each other by (5.7) the quantities p(b) and
p(−b) vanish for b = N/2 and so does the divergent self-energy at these fixed
points (5.24). Therefore, in the Abelian case, there is no renormalization at the
Z2 fixed points due to the hyper multiplet at all. This is the generalization of
the result that we found a vanishing self-energy due to the hyper multiplet in
the Abelian theory at the fixed points of S1/Z2 in Section 4.1.4.

Non-Z2 fixed point renormalization

Now we consider the contributions at the rest of the fixed points which do not
lie in a Z2 subsector of an even ordered orbifold. Their contribution can be read
off from (5.24) for b �= N/2. The condition eibϕz = z that is implemented by
the remaining delta function describes the same fixed point set for b and −b.
Therefore, we sum the contributions to b and −b explicitly in the form

N−1∑
b=1

b�=N/2

A(b) δ2
(
(1 − eibϕ)z

)
=

[N/2]∗∑
b=1

(
A(b) + A(−b)

)
δ2
(
(1 − eibϕ)z

)
. (5.25)
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The symbol [N/2]∗ is defined via

[N/2]∗ =

{ 1
2

(
N − 2
)

if N even

1
2

(
N − 1
)

if N odd
(5.26)

and we have used that the delta function δ2
(
(1 − eibϕ)z

)
is symmetric under a

reflection of b. Then the local counter term is written as

ΔS hyper
non-Z2

= − 2 μ−2ε

(4π)2Nε

[N/2]∗∑
b=1

c(b)

∫
ddx

{
1

4

∫
d2θ WαW α + h.c. +

+

∫
d4θ
[(√

2 ∂̄V − S̄
)(√

2 ∂V − S
)
− ∂V ∂̄V

]}
δ2
(
(1 − eibϕ)z

)
. (5.27)

where c(b) is defined as the combination of phase factors

c(b) = cos
(
bϕ n+

)
+ cos
(
bϕ (n+ + 1)

)
. (5.28)

The gauge coupling running of the four dimensional gauge coupling at the fixed
points is read off from this general counterterm as demonstrated in Section 3.1.3
after one has chosen the order N of the orbifold and specified the orbifold twist
phase n+. This Abelian result will also serve as a cross check for the non-Abelian
result in Section 5.2.4.
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5.2 Hyper multiplet coupled to a non-Abelian

gauge multiplet

In this section we consider a hyper multiplet which is coupled to a non-Abelian
gauge multiplet in six dimensions with the two extra dimensions compactified
on T 2/ZN . In the non-Abelian discussion we quantize also the gauge sector of
the theory and extend the six dimensional orbifold compatible calculus that was
discussed for the Abelian case in Section 5.2.3 to cover the non-Abelian case.
We calculate the loop effects for the gauge kinetic term due to to hyper, gauge
and ghost multiplets and distinguish contributions in the bulk and at the two
classes of fixed points.

5.2.1 Classical action in six dimensional Minkowski space

The classical action for a hyper multiplet that is coupled to a non-Abelian gauge
multiplet in six dimensions in terms of four dimensional superfields [13, 15] has
many similarities both with the six dimensional Abelian action and the five
dimensional non-Abelian action. The kinetic action of the hyper multiplet with
its coupling to the six dimensional gauge multiplet SH is given by the same
expression as in the six dimensional Abelian theory (5.1) for unit charge. The
kinetic action for the six dimensional gauge multiplet is given by

SV =
1

g2

∫
d6x

{
tr

[
1

4

∫
d2θ W αWα +

1

4

∫
d2θ̄ W̄α̇W̄ α̇

]
+ (5.29)

+ tr

∫
d4θ

[(
− 1√

2
∂̄ + S̄
)

e2V
(

1√
2
∂ + S
)

e−2V +
1

4
∂̄e2V ∂e−2V

]}
with the notation for the complex coordinates given below (5.3). This means
that w.r.t. the five dimensional non-Abelian action (4.30) the second line is
modified. The non-Abelian super-gauge transformation for the six dimensional
theory reads

Φ+ → e−2qΛΦ+, e2V → e2Λ̄e2V e2Λ,

Φ− → Φ−e+2qΛ, S → e−2Λ
(
S + 1√

2
∂
)

e2Λ.
(5.30)

The action (5.29) reproduces the six dimensional non-Abelian SYM theory when
its restriction to component fields with V in WZ gauge is taken. To render the
action fully gauge invariant, a Wess-Zumino-Witten term has to be added [13].
This term, however, does not have a quadratic piece and therefore does not
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influence the quadratic part of the gauge multiplet action

SV 2 =
1

g2

∫
d5x d4θ tr

[
1

8
V DαD̄2DαV + ∂̄V ∂V −

√
2 ∂̄V S −

√
2 ∂V S̄ + S̄S

]
.

(5.31)

This is the straightforward extension of the five dimensional quadratic piece
(4.32). Therefore, in order to determine the renormalization of the gauge kinetic
term, we have to find the same self-energies as in the five dimensional case.

5.2.2 Quantization of the action

The theory is quantized by inserting it into the path integral. The generating
functional is the same as in five dimensions (4.33) with the five dimensional non-
Abelian action replaced against the six dimensional non-Abelian action.

Hyper multiplet propagator

The propagator for the hyper multiplet in the six dimensional non-Abelian theory
is the same as the propagator in the six dimensional Abelian theory (5.5) and
we can use the drawing conventions of the five dimensional non-Abelian theory
in Fig. 11.

Gauge multiplet propagator

The quadratic part of the vector multiplet action can be represented as

Z0

[
JV , JS

]
=

∫
DV exp

{
i

∫
d6x tr

[ ∫
d4θ

1

g2
v̄ A v +

∫
d4θ JV V

+

∫
d2θ JSS +

∫
d2θ̄ J̄SS̄

]}
, (5.32)

where the vector v and the hermitean matrix A are given by

v =

⎛⎜⎝V

S

S̄

⎞⎟⎠ , A =

⎛⎜⎜⎝
−�P0 − ∂∂̄ 1√

2
P+∂̄ 1√

2
P−∂

− 1√
2
P+∂ 1

2
P+ 0

− 1√
2
P−∂̄ 0 1

2
P−

⎞⎟⎟⎠ . (5.33)

The operator A has chiral zero modes corresponding to the gauge directions x

Ax = 0 for x = δΛv =

⎛⎜⎝Λ + Λ̄√
2 ∂Λ√
2 ∂Λ̄

⎞⎟⎠ . (5.34)
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This shows explicitly that also in six dimensions in order to define the propa-
gator of the vector multiplet, we need to perform a gauge fixing to modify the
quadratic form A so that it becomes invertible. In six dimensions, the gauge
fixing functional (4.37) is generalized to

Θ =
D̄2

−4

(√
2V +

1

�
∂S̄

)
(5.35)

and the restriction to the highest component now yields

D2

−4
Θ

∣∣∣∣ = 1√
2

(
�C + D + ∂6A5 − ∂5A6 + i∂MAM

)
. (5.36)

Hence the imaginary part gives rise to a six dimensional Lorentz invariant gauge
fixing for the vector field AM . The gauge fixing action is

Sgf = − 1

g2

∫
d6x d4θ tr

[
V
(
� +

1

8
DαD̄2Dα

)
V +

√
2V
(
∂S̄ + ∂̄S

)
+ ∂S̄

1

�
∂̄S

]
,

(5.37)

such that the gauge fixed action finally involves an invertible quadratic operator

SV2 + Sgf =

∫
d6x d4θ tr

[
− V
(
� + ∂∂̄

)
V + S̄

� + ∂∂̄

�
S

]
. (5.38)

The propagators for the four dimensional superfields V and S are decoupled

Z0

[
JV , JS

]
= exp

{
i

∫
d6x d4θ tr

[
1

4
JV

1

� + ∂∂̄
JV + J̄S

−1

� + ∂∂̄
JS

]}
. (5.39)

Since the five dimensional propagators (4.41) contain only ∂2
5 , this six dimen-

sional result is precisely as expected.

Ghost propagator

Finally, in order to determine the ghost propagators in six dimensions we have
to take into account the following modifications: The infinitesimal version of the
six dimensional transformation law (5.30) for the superfield S reads

δΛS =
√

2 ∂Λ + 2
[
S, Λ
]
, (5.40)

This leads to the infinitesimal gauge variation δC of the gauge fixing functional

δCΘ =
√

2
D̄2

−4

(
LV (C − C̄) + coth (LV (LV (C + C̄))) +

+
∂

�

(√
2 ∂̄C̄ − 2

[
S̄, C̄]
))

. (5.41)
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The ghost action is determined straightforwardly in analogy to (4.44)

Sgh =
1√
2

∫
d6x d4θ tr

[√
2 (C ′ + C̄ ′)

(
LV (C − C̄) + coth (LV (LV (C + C̄)))

)

+ C ′ ∂

�

(√
2 ∂̄C̄ − 2

[
S̄, C̄
])

+ C̄ ′ ∂̄

�

(√
2 ∂C + 2

[
S, C
])]

, (5.42)

which means that w.r.t. the five dimensional version (4.44) only the last two
terms are modified. The ghost propagators are therefore the straightforward
generalization of the five dimensional version (4.45)

Z0

[
JC , J ′

C

]
= exp

{
i

∫
d6x d4θ tr

[
− J̄ ′

C

1

� + ∂∂̄
JC − J ′

C

1

� + ∂∂̄
J̄C

]}
. (5.43)

Thus, we see that the propagators in six dimensions are to a large extent sim-
ple generalizations of the five dimensional propagators given in Section 4.2.2.
Therefore, we use the same conventions to draw the six dimensional propagators
as given in Fig. 11.

Interactions

The interactions that involve the hyper multiplet are the same as in five dimen-
sions. They can be found in (4.46) and are depicted in Fig. 12. The following
interactions from SV involve the gauge multiplet and the chiral adjoint multiplet
S

SV int ⊃
∫

d6x d4θ tr

[
1

4

[
V, DαV

]
D̄2DαV − 1

8

[
V, DαV

]
D̄2
[
V, DαV

]
+

− 1

6

[
V,
[
V, DαV

]]
D̄2DαV +

√
2 ∂V
[
V, S̄
]−√

2 ∂̄V
[
V, S
]
+

− 2 S
[
V, S̄
]
+

1

3
∂̄V
[
V,
[
V, ∂V
]]− 2

√
2

3
∂V
[
V,
[
V, S̄
]]

+

− 2
√

2

3
∂̄V
[
V,
[
V, S
]]

+ 2 S
[
V,
[
V, S̄
]]]

. (5.44)

For these interactions we use the drawing conventions of Fig. 13 also in six
dimensions. In the ghost sector the following interactions which are depicted in
Fig. 14 are obtained from the expansion of the ghost action (5.42)

Sgh int ⊃
∫

d6x d4θ tr

[(
C ′ + C̄ ′)[V, C − C̄

]
+

1

3

(
C ′ + C̄ ′)[V,

[
V, C + C̄

]]
+
√

2
∂

�
C ′[S̄, C̄

]−√
2

∂̄

�
C̄ ′[S, C

]]
. (5.45)
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We already mentioned above that in six dimensions gauge invariance requires
the presence of an additional WZW term for the gauge multiplet V [13]. This
term leads in principle to a three point gauge field self-interaction. However, it
turns out that all graphs that can be constructed with this additional interaction
add up to zero because of the symmetry of the structure constants. Thus, for
our calculation, we do not need these interactions and are left with the same set
of relevant graphs in six dimensions as in the five dimensional situation.

5.2.3 Orbifold compatible calculus for T 2/ZN

We will now describe which boundary conditions the fields have to fulfill in
order to live on the orbifold T 2/ZN instead of uncompactified Minkowski space.
The hyper and gauge multiplets on the orbifold need to be covariant w.r.t. the
ZN orbifold action. Hence, their transformation behaviour under z → e−iϕz is
required to be

Φ+ → Z+Φ+, V → Z+V Z̄+,

Φ− → Φ−Z−, S → Z̄−SZ̄+,
(5.46)

with the properties ZN
+ = ZN

− = 1, because the transformations are ZN actions.
Invariance of the action requires in addition that the matrices Z+ and Z− be
unitary and that they are related to each other via

Z+Z−eiϕ = 11. (5.47)

Therefore, we only need the matrix Z+ in principle. However, it turns out to be
convenient to keep using the notation Z±. The transformation rules for the V
and S superfields with the adjoint indices made explicit are given by

V i → Qi
j V j, Si → e+iϕ Qi

j Sj, Qi
j = tr[T iZ+TjZ̄+]. (5.48)

This implies that all matrix elements Qi
j are real. Invariance of the action

requires Q to have the properties (4.51) and QN = 11 as it defines a ZN action.
The reduction to the Z2 orbifold group with ϕ = π and Z+ = −Z− = Z is
interesting, because then many of the properties of the five dimensional case,
discussed in Section 4.2.3, are recovered.

To obtain the orbifold compatible delta functions for the various superfields,
we write down the transformation behaviour of orbifold compatible sources under
z → e−iϕz

J+ → J+Z−1
+ , JV

i → Qi
j JV

j ,

J− → Z−1
− J−, JS

i → e−iϕ Qi
j JS

j,
(5.49)
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where the orthogonality property of Q in (4.51) has been used. This is also
reflected in the orbifold compatible delta functions for the T 2/ZN orbifold

δ̃
(+)
21

a
b =

1

N

N−1∑
b=0

[
Zb

+

]
a
b δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1),

δ̃
(−)
21

b
a =

1

N

N−1∑
b=0

[
Zb

−
]

b
a δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1),

δ̃
(V )
21

i
j =

1

N

N−1∑
b=0

[
Q−b
]

i
j δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1),

δ̃
(S)
21

i
j =

1

N

N−1∑
b=0

eibϕ
[
Q−b
]

i
j δ2(z2 − eibϕz1) δ4(x2 − x1) δ4(θ2 − θ1).

(5.50)

We check the orbifold compatibility: Under z2 → e−iϕz2 these delta functions
transform in the same way as the corresponding sources

δ̃
(+)
21

a
b →
[
Z−1

+

]a
a′ δ̃

(+)
21

a′
b, δ̃

(V )
21

i
j → Qi

i′ δ̃
(V )
21

i′
j ,

δ̃
(−)
21

a
b →
[
Z−1

−
]a

a′ δ̃
(−)
21

a′
b, δ̃

(S)
21

i
j → e−iϕ Qi

i′ δ̃
(S)
21

i′
j.

(5.51)

Under z1 → e−iϕz1 they transform as the inverse of the corresponding sources,
so that these delta functions are indeed orbifold compatible

δ̃
(+)
21

a
b →
[
Z+

]a
a′ δ̃

(+)
21

a′
b, δ̃

(V )
21

i
j →
[
Q−1
]
i
i′ δ̃

(V )
21

i′
j,

δ̃
(−)
21

a
b →
[
Z−
]a

a′ δ̃
(−)
21

a′
b, δ̃

(S)
21

i
j → eiϕ [Q−1] i

i′ δ̃
(S)
21

i′
j .

(5.52)

In contrast to the orbifold compatible delta functions (4.54) in five dimensions,
these delta functions are no longer symmetric in their indices: The exchange of
the spacetime labels results in

δ̃
(+)
12

a
b = ˜̄δ

(+)

21
a
b, δ̃

(V )
12

i
j = δ̃

(V )
21 j

i,

δ̃
(−)
12

a
b = ˜̄δ

(−)

21
a
b, δ̃

(S)
12

i
j = δ̃

(S̄)
21 j

i,

(5.53)

because Z+ and Z− are unitary and Q is orthonormal. Derivatives with respect to
the compactified coordinates always act on the δ2(z2 − eibϕz1) factor. Therefore,
changing a spacetime index of such a derivative also changes the type of delta
function as

∂̄2 δ̃
(+)
21

a
b = −∂̄1

˜̄δ
(−)

21
a
b, ∂2 δ̃

(V )
21

i
j = −∂1 δ̃

(S̄)
21

i
j ,

∂̄2 δ̃
(−)
21

a
b = −∂̄1

˜̄δ
(+)

21
a
b, ∂2 δ̃

(S)
21

i
j = −∂1 δ̃

(V )
21

i
j .

(5.54)
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Notice that for the hyper multiplet delta functions a complex conjugation is
involved in (5.53) and (5.54). We are now ready to perform loop calculations
also in the non-Abelian theory in six dimensions with the extra two dimensions
compactified on the orbifold T 2/ZN .

5.2.4 Renormalization of the gauge kinetic term due to
the hyper multiplet

In this section we determine the renormalization of the gauge kinetic term in
the non-Abelian theory in six dimensions where the extra dimensions are com-
pactified on the orbifold T 2/ZN . There are many similarities to the calculation
in the five dimensional non-Abelian theory on the orbifold S1/Z2 which we de-
scribed in Section 4.2.4. Therefore, it will suffice for us to indicate the points
that deviate from our treatment in this section. The expansion of the hyper
multiplet action to fourth order in the gauge coupling (4.46) remains valid in
six dimensions. Hence, we have to calculate the same set of graphs as in five
dimensions that was depicted in Figs. 15 and 16. The results for these graphs
are provided in App. C.1. The replacement of the fields on the external lines
against the derivatives w.r.t. the corresponding source terms is performed as

Φa
+ → δ

δ
(
iJ+a

) , Φ̄+a → δ

δ
(
iJ̄a

+

) , Φ−a → δ

δ
(
iJa−
) , Φ̄a

− → δ

δ
(
iJ̄−a

) . (5.55)

Then the self-energies ΣV V , ΣV S, ΣV S̄ and ΣS̄S are calculated as

Σhyper
V V =

∫ (
d6x
)
12

d4θ tr

[
− V1

1

(� + ∂∂̄)2

δ̃
6(+)
21 �2P0 V2

1

(� + ∂∂̄)2

˜̄δ
6(+)

21

− V1
1

(� + ∂∂̄)2

˜̄δ
6(−)

21 �2P0 V2
1

(� + ∂∂̄)2

δ̃
6(−)
21

+ 2 ∂V1
1

(� + ∂∂̄)2

δ̃
6(+)
21 ∂̄V2

1

(� + ∂∂̄)2

δ̃
6(−)
21

]
, (5.56)

Σhyper
VS̄

= −2
√

2

∫ (
d6x
)
12

d4θ tr

[
∂V1

1

(� + ∂∂̄)2

δ̃
6(+)
21 S̄2

1

(� + ∂∂̄)2

δ̃
6(−)
21

]
, (5.57)

Σhyper

SS̄
= 2

∫ (
d6x
)
12

d4θ tr

[
S1

1

(� + ∂∂̄)2

δ̃
6(+)
21 S̄2

1

(� + ∂∂̄)2

δ̃
6(−)
21

]
. (5.58)

We reduce one more orbifold compatible delta function in the by now familiar
three steps of Section 4.1.4. In the same way as in the Abelian calculation in
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Section 5.1.4 we distinguish self-energy contritutions in the bulk, at Z2 fixed
points and non-Z2 fixed points.

Bulk renormalization

The bulk contribution of the self-energies is extracted for the term with b = 0 in
the expansion of the last orbifold delta function. We extract the divergence with
the help of App. D.1 and determine the local bulk counterterm in six dimensions.
In the same way as in the Abelian calculation the counterterm splits into a piece
that renormalizes the bulk gauge kinetic term and a higher derivative operator

ΔS hyper
bulk = ΔS hyper

gkt + ΔS hyper
HDO . (5.59)

The first term which renormalizes the bulk gauge kinetic term reads

ΔS hyper
gkt =

−2m2μ−2ε

(4π)3Nε

∫
ddx

{∫
d2θ tr

[
1

4
W αWα

]
+ h.c. +

+

∫
d4θ tr

[(
− 1√

2
∂̄+S̄
)

e2V
(

1√
2
∂+S
)

e−2V +
1

4
∂e−2V ∂̄e2V

]}
(5.60)

and the second term which is the higher derivative operator is given by

ΔS hyper
HDO =

μ−2ε

3(4π)3Nε

∫
ddx

{∫
d2θ tr

[
1

4
W α
(
�+∂∂̄
)
Wα

]
+ h.c. +

+

∫
d4θ tr

[(
− 1√

2
∂̄ + S̄
)

e2V
(
�+∂∂̄
)(

1√
2
∂ + S
)

e−2V +

+
1

4
∂e−2V
(
�+∂∂̄
)
∂̄e2V

]}
, (5.61)

where d = 6 − 2ε. The counterterm (5.60) to the bulk gauge kinetic term
influences the six dimensional gauge coupling running. The six dimensional bare
gauge coupling is related to the renormalized gauge coupling and the counterterm
by

1

g2
B

=

(
1

g2
− 2m2

(4π)3Nε

)
μ−2ε. (5.62)

Then we find that the beta function reads

β1/g2 = − 4m2

(4π)3N
. (5.63)
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Integration between the energy scales μ0 and μ determines the running

1

g2
=

1

g2
0

− 2m2

(4π)3N
ln μ2. (5.64)

This concludes the discussion of the bulk results.

Fixed point self-energy

The fixed point self-energy is the sum over all values of b without the bulk
contribution at b = 0. After we integrate out the ordinary delta function δ2(z2−
z1), we obtain

Σfp

∣∣∣
div

=
iμ−2ε

(4π)2Nε

N−1∑
b=1

∫
ddx d4θ tr

[
− 1

2
V
(
Zb

+ + Z̄b
− + Zb

− + Z̄b
+

)
�P0V +

+ ∂V Zb
+∂̄V + Zb

−∂V ∂̄V −
√

2 ∂V Zb
+S̄ −

√
2Zb

−∂V S̄ −
√

2 Z̄b
+∂̄V S +

−
√

2 ∂̄V Z̄b
−S + +SZb

+S̄ + Zb
−SS̄

]
δ2
(
(1 − eibφ)z

)
, (5.65)

where d = 6 − 2ε. Now we distinguish the contributions at the two classes of
fixed points.

Z2 fixed point renormalization

For even ordered orbifolds we have Z2 fixed points. The contribution of the self-
energies located at these fixed points is given for b = N/2. When the matrices
Z+ and Z− are taken to this power, they have special properties

Z
N/2
+ = −Z

N/2
− , Z̄

N/2
+ = Z

−N/2
+ = Z

N/2
+ , Z̄

N/2
− = Z

−N/2
− = Z

N/2
+ , (5.66)

which are a consequence of the relation between the matrices Z+ and Z− (5.47)

and the unitarity of Z+ and Z−. This means that the matrix Z
N/2
+ has the same

properties as the matrix Z in the five dimensional case that we considered in
Section 4.2.3. Hence, we observe special cancellations in the self-energies at the
Z2 fixed points of an even ordered orbifold

ΔS hyper
Z2

= − μ−2ε

(4π)2Nε

∫
ddx d4θ tr

[
Z

N/2
+

[(
S̄ − 1√

2
∂̄
)
e2V ,
(
S + 1√

2
∂
)
e−2V
]
+

+
1

4
Z

N/2
+

[
∂̄e2V , ∂e−2V

]]
δ2
(
2z
)
. (5.67)
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In particular, the part of the self-energy proportional to the kinetic term of
the four dimensional gauge multiplet vanishes. This means that there is no
renormalization of the four dimensional gauge coupling at the Z2 fixed points of
an even ordered orbifold.

We note that we recover the rest of the operators in the gauge kinetic term
(5.29) enclosed in commutators. In the same way as discussed below (4.64) the
counterterm is invariant under the zero mode gauge group, but it is not gauge
invariant under the full bulk gauge transformation.

Non-Z2 fixed point renormalization

Now we regard the terms of the divergent self-energies with b �= N/2. As in the
Abelian calculation we sum the contributions to b and −b in the form (5.25).
We introduce the algebra element A+ that corresponds to the unitary matrix Z+

via Z+ ≡ eiA+ to write the local counterterm as

ΔS hyper
non-Z2

=
−2 μ−2ε

(4π)2Nε

[N/2]∗∑
b=1

∫
ddx

{
1

4

∫
d2θ tr

[
P1(b) WαW α

]
+ h.c. +

+

∫
d4θ tr

[
P2(b)

((
− 1√

2
∂̄ + S̄
)

e2V
(

1√
2
∂ + S
)

e−2V +
1

4
∂̄e2V ∂e−2V

)]
+

+

∫
d4θ tr

[
P3(b)

((
1√
2
∂ + S
)

e−2V
(
− 1√

2
∂̄ + S̄
)

e2V +
1

4
∂e−2V ∂̄e2V

)]}
×

× δ2
(
(1 − eibϕ)z

)
. (5.68)

Here Pi(b) are the following combinations that involve the algebra element A+

P1(b) = P2(b) + P3(b), P2(b) = cos
(
bA
)
+
, P3(b) = cos

(
b (A+ + ϕ)

)
(5.69)

and the counterterm (5.68) is the non-linear extension of the quadratic piece.
We remark that by a formal replacement of the matrix A+ by the product of
a scalar and the orbifold phase a+ϕ and of the trace tr by the square of the
charge q2 one obtains the Abelian result found in Section 5.1. In order to read
off the gauge coupling running of the four dimensional gauge coupling at the
non-Z2 fixed points from the first line of (5.68), one has to specify the order of
the orbifold N and the matrix A+ (or equivalently Z+).

5.2.5 Renormalization of the gauge kinetic term due to
the gauge multiplet

Here we determine the renormalization of the gauge kinetic term due to the loop
corrections that involve the gauge and ghost multiplets. The relevant interactions
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are contained in SV int and Sgh int. Because the graphs that involve interactions
from the WZW term vanish identically, as remarked in Section 5.2.2, we are
left with the same set of graphs as in the five dimensional non-Abelian theory.
The graphs are depicted in Figs. 17 and 18. The results for these graphs are
presented in App. C.2. Here we display the self-energies at the level of two
orbifold compatible delta functions. The V V self-energy reads

Σgauge
V V =

fijkf	mn

∫
(d6x)12 d4θ

[
− 3 V i

1�2P0V
	
2

1

(� + ∂∂̄)2

δ̃
6(V )
21

mj 1

(� + ∂∂̄)2

δ̃
6(V )
21

nk

+ V i
1 �2P0V

	
2

1

(� + ∂∂̄)2

δ̃
6(S̄)
21

mj 1

(� + ∂∂̄)2

δ̃
6(S)
21

nk

+ 2 ∂V i
1 ∂̄V 	

2

1

(� + ∂∂̄)2

δ̃
6(V )
21

mj 1

(� + ∂∂̄)2

δ̃
6(S̄)
21

nk
]

(5.70)

and the VS̄ self-energy is given by

Σgauge
VS̄

=

− 2
√

2 fijkf	mn

∫
(d6x)12 d4θ ∂V i

1 S̄	
2

1

(� + ∂∂̄)2

δ̃
6(V )
21

mj 1

(� + ∂∂̄)2

δ̃
6(S̄)
21

nk, (5.71)

with the complex conjugate result for the VS self-energy. Finally,

Σgauge
S̄S

= 2 fijkf	mn

∫ (
d6x
)
12

d4θ Si
1S̄

	
2

1

(� + ∂∂̄)2

δ̃
6(V )
21

mj 1

(� + ∂∂̄)2

δ̃
6(S̄)
21

nk

(5.72)

is the result for the SS̄ self-energy. We reduce one more orbifold compatible
delta function and distinuish the contributions in the bulk and at the two classes
of fixed points

Bulk renormalization

The bulk counterterm for b = 0 in the expansion of the remaining orbifold
compatible delta function is again a sum a of counterterm to the gauge kinetic
term and a higher derivative operator

ΔS gauge
bulk = ΔS gauge

gkt + ΔS gauge
HDO . (5.73)
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The counterterm to the gauge kinetic term is given by

ΔS gauge
gkt =

2m2μ−2ε

(4π)3Nε

∫
ddx

{∫
d2θ trAd

[
1

4
W αWα

]
+ h.c. +

+

∫
d4θ trAd

[(
− 1√

2
∂̄ + S̄
)

e2V
(

1√
2
∂ + S
)

e−2V +
1

4
∂e−2V ∂̄e2V

]}
. (5.74)

And the higher dimensional operator that is generated as a loop counterterm in
the bulk reads

ΔS gauge
HDO = − μ−2ε

3(4π)3Nε

∫
ddx

{∫
d2θ trAd

[
1

4
W α
(
�+∂∂̄
)
Wα

]
+ h.c. +

+

∫
d4θ trAd

[(
− 1√

2
∂̄ + S̄
)

e2V
(
�+∂∂̄
)(

1√
2
∂ + S
)

e−2V +

+
1

4
∂ e−2V
(
�+∂∂̄
)
∂̄ e2V

]}
, (5.75)

where d = 6−2ε. The gauge coupling running in the six dimensional bulk can be
read off from the counterterm to the gauge kinetic term in (5.74). To this end the
trace in the adjoint representation of the gauge group has to be rewritten into the
trace in the representation of the hyper multiplet which appears in the action.
Then the running of the six dimensional bulk gauge coupling is obtained in the
same way as in the preceeding Section 5.2.5 for the hyper multiplet calculation.

By gauge invariance we can infer some additional effects. As we remarked
above, the action is not gauge invariant unless also a Wess-Zumino-Witten term
is added [13]. Therefore, to preserve supergauge invariance, also this Wess-
Zumino-Witten term has to be renormalized. Moreover, because a higher deriva-
tive operator is generated, also a higher derivative analogue of the Wess-Zumino-
Witten term must exist and renormalize. We have not performed an explicit
calculation to confirm the renormalization. However, we can say that the Wess-
Zumino-Witten term and its higher derivative counterpart will have to renor-
malize with the same multiplicative coefficients as the corresponding terms in
the quadratic part of the action in order for the theory to be gauge invariant at
the one-loop level.

Fixed point self-energy

The self-energy at the fixed points is obtained for the terms with b �= 0 in the
expansion of the last orbifold compatible delta function. After the extraction
of the four dimensional divergence and the integration over the ordinary delta
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function we obtain

Σgauge
fp

∣∣
div

= − iμ−2ε

(4π)2Nε

N−1∑
b=1

∫
ddx d4θ

{
p1(b) trAd

[
− 1

2
Q−bV �P0V

]
+

+ p2(b) trAd

[
Q−b
(
∂V ∂̄V −

√
2 ∂V S̄ −

√
2 S∂̄V + SS̄

) ]}
δ2
(
(1 − eibϕ)z

)
,

(5.76)

where the quantities p1(b) and p2(b) involve sums of phases

p1(b) = 6 − eibϕ − e−ibϕ, p2(b) = 1 + e−ibϕ (5.77)

and d = 6 − 2ε. Now we distinguish the contributions at the different fixed
points.

Z2 fixed point renormalization

Also in the loop correction from the gauge sector we observe special cancellations
at the Z2 fixed points of an even ordered orbifold that are not present at the
other fixed points. This is because at the Z2 fixed points that are given for b = N

2

all combinations proportional to p2(b) vanish and only the counterterm to the
gauge kinetic term of the four dimensional gauge field survives

ΔS gauge
Z2

=
4 μ−2ε

(4π)2N ε

∫
ddx

{
1

4

∫
d2θ trAd

[
QN/2W αWα

]
+ h.c.

}
δ2
(
2z
)
.

(5.78)

As always, after one has specified the representation of the hyper multiplet, the
order of the orbifold and the transformation matrix Q, one can read off the
running of the four dimensional gauge coupling at the Z2 fixed points from the
general counterterm (5.78).

Non-Z2 fixed point renormalization

As usual the contributions of the last orbifold compatible delta function with
b �= 0 and b �= 1

2
give the counterterm at the non-Z2 fixed points. We sum the

contributions to b and −b in the form (5.25) and obtain the result

ΔS gauge
non-Z2

=
μ−2ε

(4π)2Nε

[N/2]∗∑
b=1

∫
ddx

{
1

4

∫
d2θ trAd

[
P1(b) W αWα

]
+ h.c. +

+

∫
d4θ trAd

[
P2(b)

((
1√
2
∂+S
)
e−2V
(
− 1√

2
∂̄+S̄
)
e2V +

1

4
∂e−2V ∂̄e2V

)]}

× δ2
(
(1 − eibϕ)z

)
, (5.79)
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where d = 6 − 2ε and the expressions P1(b) and P2(b) are defined as

P1(b) = 6 cos bH − cos b(H + ϕ) − cos b(H − ϕ),

P2(b) = cos bH + cos b(H + ϕ). (5.80)

Here we have introduced the hermitean matrix H via Q = eiH . To arrive at this
expression we have used that the matrices cos bH , etc. are symmetric, which is
a consequence of the fact that Q is orthogonal. The symbol [N/2]∗ has been
defined below (5.25). The gauge coupling running of the four dimensional gauge
coupling at the non-Z2 fixed points can be read off from the first line of (5.79)
after the orbifold has been specified.

The counterterm (5.79) is gauge invariant under the zero mode supergauge
group, as defined below (4.64). However, as we discussed there also this term
is not gauge invariant under the full supergauge transformations. This is not
surprising when one takes into account that (5.29) is also not gauge invariant by
itself: One needs to add a Wess-Zumino-Witten term to make the theory gauge
invariant. Therefore we expect that also the expression above can be made gauge
invariant by adding a suitable extension of a Wess-Zumino-Witten interaction.



Chapter 6

Supersymmetric theory in ten
dimensions

In this chapter we consider a gauge multiplet in a ten dimensional spacetime
where the extra six dimensions are compactified on the orbifold T 6/ZN . For
completeness we start by presenting briefly the Abelian action where it is im-
mediately clear that no renormalization of the gauge kinetic term takes place.
Then we focus on the non-Abelian case and calculate loop corrections to the
gauge kinetic term due to the gauge multiplet self-interactions and ghost multi-
plets in the loop. We check the well-known fact that there is no renormalization
of the gauge coupling in the ten dimensional bulk because of the high amount
of supersymmetry. In addition, we find that no higher dimensional operator is
required as loop counterterm in the ten dimensional bulk. We derive a general
expression for the divergent amplitude at the fixed points/planes of the orbifold.
Then we specify to the case of a T 6/Z4 orbifold in order to obtain a definite
result for the counterterms. We find that on the six dimensional fixed torus a six
dimensional higher derivative operator has to be introduced as loop counterterm
in addition to an ordinary six dimensional counterterm. The four dimensional
fixed points of the orbifold support a counterterm for the kinetic term of the
four dimensional gauge multiplet.

6.1 Abelian gauge multiplet

The action for an Abelian gauge multiplet in ten dimensions represented in four
dimensional superfields has been derived in [13, 15]. The degrees of freedom of
the ten dimensional gauge multiplet are contained in one four dimensional gauge
multiplet V and three chiral fields SI , where I is the family index. The action
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is then given by

SV =
1

g2

∫
d10x

{∫
d2θ

(
1

4
W αWα +

1

2
εIJKSI∂JSK

)
+ h.c. +

+

∫
d4θ
[ (√

2 ∂̄IV − S̄I

)(√
2 ∂IV − SI

)
− ∂̄IV ∂IV

]}
. (6.1)

Here we employ the following notation for the complex coordinates in the extra
dimensions

zI =
1

2

(
x3+2I − i x4+2I

)
, z̄I =

1

2

(
x3+2I + i x4+2I

)
, (6.2)

where the index I runs from 1 to 3 and is the same index as the family index, be-
cause the derivative operators and the chiral fields S form a covariant derivative
structure. The holomorphic and antiholomorphic derivatives are

∂I = ∂3+2I + i ∂4+2I , ∂̄I = ∂3+2I − i ∂4+2I . (6.3)

The ten dimensional action for the Abelian gauge multiplet (6.1) is closely related
to the six dimensional Abelian action (5.3). In the second line it is only the family
index that has to be added. A new piece that involves the three chiral superfields
is the term in the superpotential. This term is necessary such that the action
in Lorentz invariant in ten dimensions. The action (6.1) is invariant under the
following super-gauge transformation

SI → SI +
√

2 ∂IΛ, V → V + Λ + Λ̄. (6.4)

The action (6.1) involves only kinetic terms for the four dimensional gauge mul-
tiplet V and the three chiral multiplets SI . Hence in the Abelian theory no
renormalization takes place and we proceed directly to the non-Abelian theory
in the next section.
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6.2 Non-Abelian gauge multiplet

In this section we consider a non-Abelian gauge multiplet in ten dimensions with
the extra six dimensions compactified on the orbifold T 6/ZN . We discuss the
ten dimensional action in terms of four dimensional superfields and quantize the
theory. Then we focus on the renormalization of the gauge kinetic term, where
in this discussion we renormalize only the operators that involve the four dimen-
sional gauge multiplet due to loop corrections from gauge and ghost multiplets.
This will suffice for us to check that the renormalization in the bulk vanishes
identically and to obtain a general formula for the gauge coupling running at the
fixed points/planes of the orbifold. In the last section we specify to the orbifold
T 6/Z4 and infer explicit counterterms.

6.2.1 Classical action in ten dimensional Minkowski space

Here we introduce the classical action of a non-Abelian gauge multiplet in ten
dimensions. The decomposition into four dimensional multiplets is the same as
in the Abelian case. The action for the ten dimensional gauge multiplet in terms
of these four dimensional superfields reads [13, 15]

SV =

1

g2

∫
d10x

{∫
d2θ tr

[
1

4
W αWα +

1

2
εIJKSI

(
∂JSK +

√
2

3

[
SJ , SK

])]
+ h.c.

+

∫
d4θ tr

[(
− 1√

2
∂̄I + S̄I

)
e2V
(

1√
2
∂I + SI

)
e−2V +

1

4
∂̄Ie

2V ∂Ie−2V

]}
, (6.5)

where we employ the same notation for the (anti-)holomorphic derivatives as in
the preceeding Section 6.1. The last line is just the generalization of the corre-
sponding part in the six dimensional non-Abelian action (6.5). The additional
superpotential term that in the non-Abelian theory also involves a self-coupling
of the chiral adjoint multiplets SI appears only in ten dimensions. The ten
dimensional super-gauge transformation is given by

SI → e−2Λ

(
SI +

1√
2

∂I

)
e2Λ, e2V → e2Λ̄e2V e2Λ. (6.6)

The action (6.5) in its component field form reproduces the ten dimensional
SYM theory when the restrictions of the four dimensional gauge multiplet V
are chosen in WZ gauge. In order for the ten dimensional action to be fully
super-gauge invariant under (6.6) a WZW term has to be added [13] like in the
six dimensional non-Abelian theory discussed in Section 5.2. In the same way
as in six dimensions, this term does not have a quadratic piece such that the
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quadratic action of the gauge multiplet consists only of the quadratic terms in
(6.5)

SV 2 =
1

g2

∫
d10x d4θ tr

[
1

8
V DαD̄2DαV + ∂̄IV ∂IV −

√
2 ∂̄IV SI +

−
√

2 ∂IV SI + S̄IS
I +

1

2
εIJK
(
SI∂J

D2

−4�
SK + S̄I ∂̄J

D̄2

−4�
S̄K

)]
. (6.7)

We note that the new superpotential term gives rise to the last two terms such
that in principle two more self-energy calculations are required to obtain the full
renormalization of the ten dimensional gauge kinetic term. In the following we
will restrict ourselves to determine the loop corrections to the first two operators
in (6.7) that involve only the four dimensional gauge multiplet V . In our notation
this corresponds to the calculation of the self-energy ΣVV .

6.2.2 Quantization of the action

To this end we quantize the action. The generating functional of the theory
reads

Z
[
JV ,
(
JS

)
I

]
=

∫
DV

3∏
I=1

DSI exp

{
i

∫
d10x

(
L 10D

non-Abelian

(
V, SI

)
+

+ tr

[ ∫
d4θ JV V +

∫
d2θ
(
JS

)
I
SI +

∫
d2θ̄
(
J̄S

)
I
S̄I

])}
. (6.8)

The quadratic action (6.7) determines the free-field generating functional from
which we obtain the propagators. As in the preceeding chapters this will require
a gauge fixing and the introduction of ghosts.

Vector superfield propagators

The free-field generating functional that involves the quadratic action (6.7) can
be represented as

Z0

[
JV ,
(
JS

)
I

]
=

∫
DV

3∏
I=1

DSI exp

{
i

∫
d10x tr

[ ∫
d4θ

1

g2
v̄(I) A

(IJ) v(J) +

∫
d4θ JV V +

+

∫
d2θ
(
JS

)
I
SI +

∫
d2θ̄
(
J̄S

)
I
S̄I

]}
, (6.9)
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where the vector v and the hermitean matrix A are given by

v(I) =

⎛⎜⎝V

SI

S̄I

⎞⎟⎠ , A(IJ) =

⎛⎜⎜⎝
−�P0 − ∂I ∂̄

I 1√
2
P+∂̄I ηIJ 1√

2
P−∂I ηIJ

− 1√
2
P+ηIJ∂J

1
2
P+ηIJ −1

2
εIJK ∂̄K

D̄2

−4�

− 1√
2
P−ηIJ ∂̄J −1

2
εIJK∂K

D2

−4�
1
2
P−ηIJ

⎞⎟⎟⎠ .

(6.10)

The operator A has chiral zero modes corresponding to the gauge directions x

A(IJ) x(J) = 0 for x(J) = δΛv(J) =

⎛⎜⎝ Λ + Λ̄√
2 ∂JΛ√
2 ∂J Λ̄

⎞⎟⎠ . (6.11)

Therefore, we have to perform a gauge fixing in order to modify the quadratic
form A so that it becomes invertible. The gauge fixing procedure follows closely
the gauge fixing in six dimensions described in Section 5.2.2. The gauge fixing
functional (5.35) is generalized to

Θ =
D̄2

−4

(√
2V +

1

�
∂I S̄

I

)
(6.12)

and the restriction to the highest component of the gauge fixing functional yields

D2

−4
Θ

∣∣∣∣ = 1√
2

(
�C + D + ∂6A5 − ∂5A6 + ∂8A7 − ∂7A8 +

+ ∂10A9 − ∂9A10 − i∂MAM
)
. (6.13)

Hence the imaginary part gives rise to a ten dimensional Lorentz invariant gauge
fixing for the vector field AM . In extension of the six dimensional result (5.37)
the gauge fixing action is found to be

Sgf = − 1

g2

∫
d10x d4θ tr

[
V
(
� +

1

8
DαD̄2Dα

)
V +

+
√

2V
(
∂I S̄

I + ∂̄IS
I
)

+ ∂I S̄
I 1

�
∂̄JSJ
)]

(6.14)

and the gauge fixed action involves an invertible quadratic operator

SV2 + Sgf =

∫
d10x d4θ tr

[
− V
(
� + ∂I ∂̄

I
)
V + S̄I

� δIJ + ∂I ∂̄J

�
SJ +

+
1

2
εIJK
(
SI∂J

D2

−4�
SK + S̄I ∂̄J

D̄2

−4�
S̄K

)]
. (6.15)
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�V V �S̄I SJ �SI SJ

�C̄′ C �C′ C̄

Figure 19: Only in ten dimensions there is a propagator that connects two chiral
adjoint superfields S corresponding to off-diagonal elements in the quadratic
form A.

Hence the propagator of the four dimensional gauge multiplet V is decoupled
from the propagators of the three chiral adjoint fields SI

Z0

[
JV ,
(
JS

)
I

]
= exp

{
i

∫
d10x d4θ tr

[
1

4
JV

1

� + ∂L∂̄L
JV − (J̄S

)
I

δIJ

� + ∂L∂̄L

(
JS

)
J

+

− (JS

)
I

1
2
εIJK ∂̄K

� + ∂L∂̄L

D2

−4�

(
JS

)
J
− (J̄S

)
I

1
2
εIJK∂K

� + ∂L∂̄L

D̄2

−4�

(
J̄S

)
J

]}
. (6.16)

The first line is the direct generalization of the propagators in the six dimensional
non-Abelian theory (5.39). But the second line which is due to ten dimensional
Lorentz invariance contains new propagators that connect chiral adjoint fields SI

with the same chirality which have no analog in six dimensions (and obviously
vanish when not all three SI fields are present). The propagators are depicted
in Fig. 19.

Ghost superfield propagators

What remains is the determination of the ten dimensional ghost propagators. To
this end it is necessary to consider the infinitesimal version of the ten dimensional
transformation law (6.6) for the three superfields SI

δΛSI =
√

2 ∂IΛ + 2
[
SI , Λ
]
. (6.17)

This determines the infinitesimal gauge variation δC of the gauge fixing functional

δCΘ =
√

2
D̄2

−4

(
LV (C − C̄) + coth (LV (LV (C + C̄))) +

+
1

�
∂I

(√
2 ∂̄IC̄ − 2

[
S̄I , C̄]
))

, (6.18)
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Figure 20: The ten dimensional theory contains a vertex involving three chiral adjoint
superfields S.

which enters in the definition of the ghost action. The ten dimensional ghost
action is a straightforward generalization of its six dimensional counterpart (5.42)

Sgh =
1√
2

∫
d10x d4θ tr

[√
2 (C ′ + C̄ ′)

(
LV (C − C̄) + coth (LV (LV (C + C̄)))

)

+ C ′ ∂I

�

(√
2 ∂̄IC̄ − 2

[
S̄I , C̄
])

+ C̄ ′ ∂̄I

�

(√
2 ∂IC + 2

[
SI , C
])]

. (6.19)

Therefore, the ten dimensional ghost propagators are as simple as in six dimen-
sions (5.43)

Z0

[
JC , J ′

C

]
= exp

{
i

∫
d10x d4θ tr

[
− J̄ ′

C

1

� + ∂I ∂̄I
JC − J ′

C

1

� + ∂I ∂̄I
J̄C

]}
.

(6.20)

The drawing conventions for the ghost propagators are given in Fig. 19.

Interactions

We expand the gauge multiplet action (6.5) to the fourth order in the fields to
obtain the interactions between the four dimensional gauge multiplet V and the
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three chiral adjoint multiplets SI

SV int ⊃
∫

d10x d4θ tr

[
1

4

[
V, DαV

]
D̄2DαV − 1

8

[
V, DαV

]
D̄2
[
V, DαV

]
+

− 1

6

[
V,
[
V, DαV

]]
D̄2DαV +

√
2 ∂IV
[
V, S̄I
]−√

2 ∂̄IV
[
V, SI
]
+

− 2 SI

[
V, S̄I
]
+

1

3
∂̄IV
[
V,
[
V, ∂IV
]]

+

− 2
√

2

3
∂IV
[
V,
[
V, S̄I
]]− 2

√
2

3
∂̄IV
[
V,
[
V, SI
]]

+ 2 SI

[
V,
[
V, S̄I
]]

+

+
1

3
√

2
εIJK D2

−4
SI

[
SJ , SK

]− 1

3
√

2
εIJK D̄2

−4
S̄I

[
S̄J , S̄K

]]
. (6.21)

Most of the interactions are generalizations of the six dimensional case. But only
in ten dimensions there is a three point vertex that connects three chiral adjoint
fields SI of the same chirality (and its hermitean conjugate) in the last line of
(6.21). The interactions are depicted in Fig. 20.

The ghost action (6.19) is expanded in order to find the interactions that
connect the four dimensional gauge multiplet V and the three chiral adjoint
multiplets SI with the ghost multiplets C and C ′ which we depict in Fig. 21

Sgh int ⊃
∫

d10x d4θ tr

[(
C ′ + C̄ ′)[V, C − C̄

]
+

1

3

(
C ′ + C̄ ′)[V,

[
V, C + C̄

]]
+
√

2
∂I

�
C ′[S̄I , C̄

]−√
2

∂̄I

�
C̄ ′[S, C

]]
. (6.22)

In principle there is also a three point self-interaction of the gauge multiplet from
the WZW term which we mentioned above. But in the same way as in the six
dimensional calculation all graphs that can be constructed from this interaction
vanish due to the symmetry of the structure constants. Therefore, we do not
consider this interaction here.

6.2.3 Orbifold compatible calculus for T 6/ZN

Now we extend our orbifold compatible calculus such that it covers the ten
dimensional non-Abelian theory. The four dimensional gauge multiplet V and
the three chiral adjoint fields SI have to be covariant w.r.t. the ZN orbifold action.
Hence, their transformation behaviour under the orbifold twist zI → e−iϕI zI is
found to be

V → Z V Z̄, SI → eiϕI ZSIZ
−1, S̄I → e−iϕI Z̄−1S̄IZ̄ (6.23)
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Figure 21: Those vertices that connect the four dimensional gauge multiplet V with
the ghost multiplets are of the same type as in lower dimensions. A change occurs in
the upper right vertex which connects the ghosts to the family of three chiral adjoint
multiplets SI .

with the properties ZN = 1, because the transformations are ZN actions. Invari-
ance of the action requires in addition that the matrix Z be unitary and that
the sum of the phases fulfills

∑
I

ϕI = 0 mod 2π. (6.24)

The transformation rules for the V and S superfields with the adjoint indices
made explicit read

V i → Qi
j V j , Si

I → eiϕI Qi
j Sj

I , Qi
j = tr
[
T iZTjZ̄

]
. (6.25)

This implies that the matrix Q has the same properties as in the six dimensional
non-Abelian theory considered in Section 5.2.3. To obtain the orbifold compati-
ble delta functions for the various superfields, we write down the transformation
behaviour of orbifold compatible sources under zI → e−iϕI zI

JV
i → Qi

j JV
j ,

(
JS

)i
I
→ e−iϕI Qi

j

(
JS

)j
I
, (6.26)

where the orthogonality property of Q in (4.51) has been used. The orbifold
compatible delta functions arise from functional differentiation w.r.t. the source
terms as

δ
(
JV

)
2
i

δ
(
JV

)
1
j

= δ̃
(V )
21

i
j ,

δ
(
JS

)
2
iI

δ
(
JS

)
1
jJ

=
D̄2

−4
δ̃
(SI )
21

i
j δI

J ,
δ
(
J̄S

)
2
iI

δ
(
J̄S

)
1
jJ

=
D2

−4
δ̃
(S̄I)
21

i
j δI

J ,

(6.27)
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where the orbifold compatible delta functions in (6.27) are defined for the T 6/ZN

orbifold as

δ̃
(V )
21

i
j =

1

N

N−1∑
b=0

[
Q−b
]
i
j

3∏
J=1

δ2
(
z2J − eibϕJ z1J

)
δ4
(
x2 − x1

)
δ4
(
θ2 − θ1

)
,

δ̃
(SI )
21

i
j =

1

N

N−1∑
b=0

eibϕI
[
Q−b
]
i
j

3∏
J=1

δ2
(
z2J − eibϕJ z1J

)
δ4
(
x2 − x1

)
δ4
(
θ2 − θ1

)
,

δ̃
(S̄I )
21

i
j =

1

N

N−1∑
b=0

e−ibϕI
[
Q−b
]
i
j

3∏
J=1

δ2
(
z2J − eibϕJ z1J

)
δ4
(
x2 − x1

)
δ4
(
θ2 − θ1

)
.

(6.28)

We check the orbifold compatibility: Under z2J → e−iϕJ z2J these delta functions
transform in the same way as the corresponding sources in (6.27)

δ̃
(V )
21

i
j → Qi

i′ δ̃
(V )
21

i′
j ,

δ̃
(SI )
21

i
j → e−iϕI Qi

i′ δ̃
(S)
21

i′
j , δ̃

(S̄I )
21

i
j → eiϕI Qi

i′ δ̃
(S)
21

i′
j (6.29)

and under z1J → e−iϕz1J they transform as the inverse of the corresponding
sources in (6.27), such that these delta functions are indeed orbifold compatible

δ̃
(V )
21

i
j →
[
Q−1
]
i
i′ δ̃

(V )
21

i′
j ,

δ̃
(SI )
21

i
j → eiϕI

[
Q−1
]
i
i′ δ̃

(SI)
21

i′
j , δ̃

(S̄I)
21

i
j → e−iϕI

[
Q−1
]
i
i′ δ̃

(SI )
21

i′
j. (6.30)

As the properties of the Q matrix are the same as in six dimensions the exchange
of the spacetime labels results in

δ̃
(V )
12

i
j = δ̃

(V )
21 j

i , δ̃
(SI )
12

i
j = δ̃

(S̄I )
21 j

i, (6.31)

because Z is unitary and Q is orthonormal. Derivatives with respect to the
compactified coordinates always act on the δ2

(
z2J − eibϕJ z1J

)
factor. Therefore,

changing a spacetime index of such a derivative also changes the type of delta
function as

∂2I δ̃
(SI)
21

i
j = −∂1I δ̃

(V )
21

i
j , ∂2I δ̃

(V )
21

i
j = −∂1I δ̃

(S̄I )
21

i
j. (6.32)

This completes the discussion of the supersymmetric non-Abelian field theory
in ten dimensions with the extra six dimensions compactified on the orbifold
T 2/ZN . We are now ready to perform loop calculations in this theory.
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Figure 22: Graphs that contribute to the ΣVV self-energy in ten dimensions. Most of
the graphs are straightforward extensions of the graphs that were calculated in lower
dimensions. A graph that can only be constructed in the ten dimensional theory,
however, is the graph labelled 22.E.

6.2.4 Renormalization of the gauge kinetic term due to

the gauge multiplet

In this section we calculate loop corrections to the gauge kinetic term in the non-
Abelian theory in ten dimensions where the extra six dimensions are compactified
on the orbifold T 6/ZN . As we already remarked below (6.5) we will not perform
the complete renormalization for all operators in the gauge kinetic term, but
instead restrict ourselves to calculate the ΣVV self-energy which renormalizes
the first two operators in (6.5) that contain only the four dimensional gauge
multiplet V . The set of graphs that is relevant for this caclulation can be found
in Fig. 22. Many of these graphs have counterparts that we considered in the
analysis in lower dimensions in Sections 4.2.5 and 5.2.5 and their generalization
to ten dimensions is straightforward. One graph, however, only exists in the ten
dimensional theory. This is the graph 22.E that involves the new propagators
which connect chiral adjoint fields of the same chirality in (6.16). The results
for all graphs from Fig. 22 are provided in App. C.3 on the level of two orbifold
compatible delta functions. The sum of the graphs defines the ΣVV self-energy
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ΣVV = 3 fijkf	mn
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d4θ ∂IV
i
1 ∂̄IV 	

2

1

���2
δ̃

10(V )
21

mj 1

���2
δ̃

10(S̄I )
21

nk

− fijkf	mn

∑
IKCF

εIKCεIKF

∫ (
d10x
)
12

d4θ ∂CV i
1 ∂̄F V 	

2

1

���2

δ̃
10(SI )
21

mj 1

���2

δ̃
10(SK )
21

nk,

(6.33)

where we use the bold box to denote the ten dimensional d’Alembert operator
��� = � + ∂M ∂̄M . Now we reduce one more orbifold compatible delta function to
an ordinary delta function and obtain the results in the bulk and at the fixed
points.

Bulk renormalization

The bulk result is obtained for the b = 0 contribution in the expansion of the
last orbifold compatible delta function (6.28). The bulk contribution of the self-
energy vanishes identically and there is no renormalization at all. This result was
to be expected, since it is known that there is no gauge coupling renormalization
in an N = 1 supersymmetric theory in ten dimensions. Clearly, the presence of
the new graph 22.E that is constructed from the new propagators specific to ten
dimensions is indespensable for this result to hold. Moreover, we note that no
higher dimensional operator is generated in the bulk as loop counterterm.

Fixed point self-energy

The other terms with b �= 0 in the expansion of the last orbifold compatible delta
function constitute the self-energy contributions at the fixed points and planes
of the T 6/ZN orbifold

ΣVV, fp =

−
N−1∑
b=0

P1(b)

∫ (
d10x
)
12

d4θ trAd

[
−Q−b V1�2P0V2

] 1

���2
δ21

1

���2

3∏
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δ2
(
z2J−eibϕJ z1J

)

−
N−1∑
b=0

3∑
I=1

P2(b)

∫ (
d10x
)
12

d4θ trAd

[
Q−b ∂IV1∂̄

IV2

] 1

���2

δ21
1

���2

3∏
J=1

δ2
(
z2J−eibϕJ z1J

)
,

(6.34)
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where we have only indicated the delta functions in the compact dimensions for
notational simplicity. The quantities that involve the phase factors are defined
as

P1(b) =
1

N

(
3 − 1

2

3∑
J=1

(
eibϕI + e−ibϕI

))
, P2(b) =

1

N

(
1 + e−ibϕI −

∑
J �=I

eibϕJ

)
.

(6.35)

Because a T 6/ZN orbifold has a quite complicated geometry with fixed points
and fixed planes, the exact divergence structure of the self-energy depends on
the respective orbifold under consideration, represented by the orbifold twist.
Therefore, we will now consider a specific example with a definite twist.

6.2.5 Renormalization of the gauge kinetic term due to
the gauge multiplet on T 6/Z4

As an example we specify to the orbifold T 6/Z4. For details on the geometry of
this orbifold we refer the reader to [48, 77]. For this orbifold the twist is given
by

ϕ = 2π

(
1

2
,−1

4
,−1

4

)
, (6.36)

thus fulfilling the constraint on the phases (6.24). This means that in the second
twisted sector there is effectively no orbifold action on the first complex torus
and the twist corresponds to a Z2 orbifold action in the remaining two tori

2ϕ = 2π

(
0,−1

2
,−1

2

)
. (6.37)

Hence, in the T 6/Z4 orbifold we have to distinguish six dimensional contribu-
tions which are localized at the fixed torus in the first complex plane for b = 2 in
(6.34) and contributions which are localized at the four dimensional fixed points
in the b = 1, 3 sector from (6.34). The six dimensional fixed torus supports a six
dimensional amplitude whose divergence is the same as that of the bulk contri-
bution in the six dimensional calcuation discussed in Chapter 5. The amplitude
at the fixed points gives rise to the usual four dimensional divergence.

Fixed torus renormalization

The counterterm that is localized at the six dimensional fixed torus in the first
complex plane for b = 2 is a sum of a counterterm to a gauge kinetic term of a
six dimensional gauge multiplet and a higher derivative operator

ΔS gauge
torus = ΔS gauge

gkt + ΔS gauge
HDO . (6.38)
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The counterterm to the gauge kinetic term of the six dimensional gauge multiplet
is given by

ΔS gauge
gkt =

m2μ−2ε

(4π)3ε

∫
ddx

{∫
d2θ trAd

[
1

4
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+
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2
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1√
2
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4
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−2V ∂̄1e
2V

)]}

× δ2
(
(1 − ei2ϕ2)z2

)
δ2
(
(1 − ei2ϕ3)z3

)
. (6.39)

Here we have displayed the full counterterm that is proportional to the action of a
six dimensional gauge multiplet that lives on the first torus. Notice that we have
only calculated explicitly those terms that involve only the four dimensional
gauge multiplet and its derivatives. In order for the theory to reproduce the
complete action for the six dimensional gauge multiplet, also the terms that
involve one of the three chiral adjoint multiplets S and its chiral conjugate S̄
have to be present (the one with the same index as the derivative operator). This
observation is strengthened by our experience from the last chapters where we
saw that the ∂V ∂̄V operator always renormalizes in the same way as the terms
that involved the associated chiral adjoint field S and its chiral conjugate. In
addition, a higher derivative operator is localized at the fixed torus

ΔS gauge
HDO = − μ−2ε

6(4π)3ε

∫
ddx

{∫
d2θ trAd

[
1

4
Q−2W α
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�+∂1∂̄1
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1
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∂1 e−2V

(
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)
∂̄1 e2V

)]}
δ2
(
(1 − ei2ϕ2)z2

)
δ2
(
(1 − ei2ϕ3)z3

)
, (6.40)

where d = 10 − 2ε. The gauge coupling running of the six dimensional gauge
coupling of the theory that is localized at the fixed torus can be read off from
(6.39) after the matrix Q has been specified.

Fixed points renormalization

The delta functions
∏3

J=1 δ2
(
(1 − eiϕJ )zJ

)
and
∏3

J=1 δ2
(
(1 − e−iϕJ )zJ

)
describe

the same fixed point set, so we add the contributions to b = 1 and b = 3 to find
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the counterterm at the four dimensional fixed points

ΔS gauge
fp =

μ−2ε

(4π)2ε

∫
ddx

{∫
d2θ trAd

[
1

4
Q−1W αWα

]
+ h.c.

}
(6.41)

3∏
J=1

δ2
(
(1 − eiϕJ )zJ

)
. (6.42)

Here we give only the counterterm to the four dimensional gauge multiplet which
is important for the running of the four dimensional gauge coupling of the theory
that lives at the fixed points. The divergent self-energy piece that involves the
derivatives of the V field has a more complicated structure as we can see from
(6.34). The determination of this self-energy piece is straightforward, but in
order to combine it to a well-defined counterterm, we would have to know the
contributions from the chiral adjoint multiplets SI , too. In any case the running
of the four dimensional gauge coupling of the theory that lives at the fixed points
can be read off from the counterterm (6.41) once the matrix Q has been specified.





Chapter 7

Summary and Outlook

This thesis focused on the renormalization of supersymmetric gauge theories in
higher dimensions where the extra space is compactified on an orbifold. Feyn-
man’s path integral calculus was extended to fields that respect the orbifold
boundary conditions in order to provide a convenient general framework for loop
calculations in field theories on orbifolds. This method was centered around the
notion of orbifold compatible delta functions which arise from functional differen-
tiation and in which the information on the geometry of the orbifold is encoded.
The orbifold compatible calculus was presented in Sections 4.1.3 and 4.2.3 for
the Abelian and non-Abelian theory of a hyper and a gauge multiplet in five
dimensions with the extra dimension compactified on S1/Z2, in Sections 5.1.3
and 5.2.3 for the Abelian and non-Abelian theory with the same field content
in six dimensions with the extra two dimensions compactified on T 2/ZN and in
Section 6.2.3 for the non-Abelian theory of a gauge multiplet in ten dimensions
with the extra six dimensions compactified on T 6/ZN .

The orbifold compatible calculus supported an analysis that focused on the
renormalization of the gauge kinetic term. We showed that the renormalization
of a theory in a higher dimensional non-trivial spacetime exhibits a rich structure
with three principal effects: Besides the fact that loop corrections lead to the
ordinary renormalization of the bulk gauge kinetic term, the introduction of both
localized gauge kinetic terms at the fixed points or planes of the orbifold and
higher dimensional operators may be required as loop counterterms.

In Section 4.1.4 it was shown that the loop corrections to the gauge kinetic
term due to a bulk hyper multiplet in the Abelian five dimensional theory with
the fifth dimension compactified on S1/Z2 only give rise to a linearly divergent
counterterm in the bulk. No localized gauge kinetic terms have to be introduced
as counterterms and no higher dimensional operator is generated. For the non-
Abelian theory on the same orbifold the calculation in Section 4.2.4 showed that
the hyper multiplet induces the same linear divergence in the bulk as in the
Abelian theory. At the fixed points some operators from the action of the five
dimensional gauge multiplet are renormalized, but not the gauge kinetic term of
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the four dimensional gauge multiplet. According to our calculation in Section
4.2.5 the gauge and ghost multiplets also induce a linearly divergent counterterm
in the bulk. It has the opposite sign as compared to the hyper multiplet contribu-
tion. The loop corrections of the gauge and ghost multiplets at the fixed points
are such that from the action of the five dimensional gauge multiplet only the
gauge kinetic term of the four dimensional gauge multiplet is renormalized. No
higher dimensional operators are generated in the five dimensional non-Abelian
theory.

In Section 5.1.4 it was demonstrated that the loop corrections to the gauge
kinetic term due to a bulk hyper multiplet in the Abelian six dimensional the-
ory with the extra two dimensions compactified on T 2/ZN lead to a higher
dimensional operator in the bulk. This higher dimensional operator has to be
introduced as a loop counterterm in addition to the ordinary six dimensional
bulk counterterm to the gauge kinetic term. At the fixed points which form a Z2

subset of an even ordered orbifold no localized renormalization effects appear in
generalization of the five dimensional result. At the non-Z2 fixed points we find
an ordinary four dimensional counterterm. Also in the non-Abelian calculation
on the same orbifold performed in Section 5.2.4 the loop corrections due to the
hyper multiplet generate a higher dimensional operator in the bulk in addition
to the ordinary six dimensional counterterm. At the Z2 fixed points some of the
operators of the six dimensional gauge kinetic term are renormalized, but not
the gauge kinetic term of the four dimensional gauge multiplet. At the non-Z2

fixed points we obtain the usual four dimensional counterterm. As we describe
in Section 5.2.5 the gauge and ghosts multiplets induce a higher dimensional
operator in the bulk as loop counterterm in addition to the counterm to the six
dimensional gauge kinetic term. At the Z2 fixed points only the gauge kinetic
term of the four dimensional gauge multiplet is renormalized. The non-Z2 fixed
points support an ordinary four dimensional counterterm.

In Section 6.2.4 we calculated the loop corrections due to the self-interactions
of a non-Abelian gauge multiplet in the ten dimensional theory where the extra
six dimensions are compactified on T 6/ZN . We checked with our calculation the
fact that the loop corrections to the bulk gauge kinetic term vanish. Moreover,
our analysis revealed that no higher derivative operator is generated in the ten
dimensional bulk and we derived the divergent self-energies at the fixed points
and planes in general. To calculate the divergences and counterterms explicitly,
we specified to the situation that the extra six dimensions are compactified on
T 6/Z4 in Section 6.2.5. We showed that on the six dimensional fixed torus a six
dimensional higher derivative operator has to be introduced as loop counterterm
in addition to an ordinary six dimensional counterterm. The four dimensional
fixed points of the orbifold support a counterterm for the kinetic term of the
four dimensional gauge multiplet.



7. Summary and Outlook 121

The general results presented in this thesis are ready for application once a
concrete orbifold is specified and the local spectra on the fixed points/planes are
known. In particular, they can be applied to obtain the local gauge coupling
running in orbifolds whose spectra are generated from a heterotic string orbi-
fold construction without Wilson lines like the T 6/Z4 spectra considered in [48].
Realistic ’local GUT’ string theory models, however, associate Wilson lines to
the fixed points in order to provide different phenomenologically promising GUT
gauge groups at different fixed points. In order to address the renormalization of
these ’local GUT’ string models our work can be straightforwardly extended to
include Wilson lines. There are two possible paths one can follow: Wilson lines
correspond to non-trivial periodicity conditions of the fields under torus lattice
shifts and so the periodicity conditions of the fields and their sources have to be
modified. This would be reflected in a change of the orbifold compatible delta
functions. The second possibility is to take advantage of the fact that a field
that transforms non-trivially under a torus lattice shift can be expressed as a
periodic field that is minimally coupled to a constant background gauge field. In
this picture the inclusion of Wilson lines requires a minimal modification of the
field content to include these background gauge fields.

Another point is that in this investigation we took only part of the renorma-
lization into account. The fact that higher dimensional operators and localized
gauge kinetic terms are generated as loop counterterms means that they cannot
be set to zero at the tree level and should be considered right from the start in
a fully consistent analysis [78]. The full renormalization of the theory should
include a discussion of all higher dimensional operators. For example, the ope-
rators that can be constructed from a gauge field strength F in six dimensions
involve besides FF and F�F also terms like F 3 where the indices are contracted
in all possible ways. In ten dimensions there are even more complicated struc-
tures, because higher dimensional operators like F 2�F and F�kF with k up to
the value three are allowed. Only the analysis of the full renormalization could
provide an answer to the question how many free parameters the theory actually
contains.

In principle, string theory predicts these higher dimensional operators as
α′-corrections at the tree level. However, explicit loop calculations that are
required to infer the renormalization of the tree level coupling constants are
very difficult. Calculations might be performed at the one-loop level in string
theory, but two loop calculations are technically very hard to manage. Therefore,
for higher loop calculations one has to resort to field theory methods. The
orbifold compatible calculus presented in this thesis represents a fully consistent
framework for calculations at any loop order and seems to be an appropriate
tool to address these questions.





Appendix A

Orbifolds

In this appendix we give a brief definition of orbifolds and discuss the orbifolds
S1/Z2 and T 2/ZN in a little more detail. For the geometry of T 6/Z4 we refer
the reader to [48,77]. An orbifold O is defined as a quotient space of a manifold
M and a discrete symmetry group P

O = M/P, (A.1)

where P is called the point group. We are interested in the situation that the
manifold is an n dimensional torus T n which can be obtained from n dimensional
flat space by dividing it by a lattice Λ

T n = R
n/Λ (A.2)

Then we can write the orbifold in our case as

O = R
n/(P � Λ) = R

n/S (A.3)

where the space group S is the semi-direct product of the discrete symmetry
group and the torus lattice shifts. For more details we refer the reader to the
original literature [40, 41].

A.1 One extra dimension compactified on the

orbifold S1/Z2

To describe the orbifold S1/Z2, we begin by defining the circle S1 by the identi-
fications

y ∼ y + ΛW , ΛW = 2πR Z, (A.4)

where ΛW is the winding mode lattice. The length of the circle (the “volume”
of a fundamental region of the lattice ΛW ) is equal to VolW = 2πR. We denote
the delta function on the torus by δ(y) = δR(y + ΛW ). The momentum in the
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fifth direction p5 is quantized and takes values in the Kaluza-Klein lattice such
that the five dimensional integral is defined as∫

d5p

(2π)5
=

∫
d4p

(2π)4

1

2πR

∑
p5∈ΛK

, ΛK = Z/R. (A.5)

The volume of the Kaluza-Klein lattice is given by VolK = 1
R
.

To construct the orbifold S1/Z2, we need to divide out a Z2 point group. We
implement the Z2 action as a reflection y → −y. This implies that the derivative
in the extra dimension transforms as ∂5 → −∂5. The fundamental domain of the
S1/Z2 orbifold is the interval [0, πR]. It has two fixed points located at y = 0
and y = πR. The delta function that peaks at these two fixed points is given by
δ(2y) and can be expanded into

δ(2y) =
1

2
(δ(y) + δ(y − πR)) . (A.6)

The normalization using the number of fixed points, 2 for S1/Z2, ensures that
the integral of this delta function over the circle is unity.

A.2 Two extra dimensions compactified on the

orbifold T 2/ZN

Next we consider compactification of two dimensions on the orbifold T 2/ZN .
Because the torus T 2 is compact, the only possible values for the orbifold order
N are 2, 3, 4, 6, but we will keep our discussion general here. The torus T 2 is
defined by the identifications

z ∼ z + ΛW , ΛW = π
(
R1Z + R2e

iθ
Z

)
. (A.7)

Here ΛW denotes the winding mode lattice of the torus with the volume VolW =
(2π)2 R1R2 sin θ, where R1 and R2 are the radii of the torus and θ defines its
angle, i.e. θ = π/2 gives the square torus. Inspired by the string literature, we
can introduce the complex structure modulus U and the Kähler modulus T of
the torus

ΛW = π

√
Im (T )

Im (U)
(Z + UZ) , U =

R2

R1
eiθ, T = iR1R2 sin θ. (A.8)

In terms of these variables the volume of the torus reads VolW = (2π)2 Im (T ).
The momenta p and p̄ of the torus mode functions ψp(z, z̄) = ei(pz+p̄z̄) are quan-
tized: p lies on the Kaluza-Klein lattice ΛK (and p̄ on the complex conjugate
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lattice). The six dimensional momentum integral is defined as∫
d6p

(2π)6
=

∫
d4p

(2π)4

1

(2π)2Im (T )

∑
p∈ΛK

, ΛK =
i√

Im (T )Im (U)

(
ZŪ + Z

)
.

(A.9)

The volume of the Kaluza-Klein lattice is given by VolK = 1/Im (T ).
To define the orbifold T 2/ZN , we implement the ZN action of the orbifold

group as z → e−iϕz, with ϕ = 2π
N

. Consequently, the holomorphic derivative ∂
transforms as ∂ → eiϕ∂. The delta function, that peaks at the orbifold fixed
points zf , is given by

δ2
(
(1 − eiϕ)z

)
=

1

4| sin 1
2
ϕ|2
∑

f

δ2(z − zf), (A.10)

in terms of the torus delta function δ2(z). The factor 4| sin 1
2
ϕ|2 equals the

number of fixed points of the T 2/ZN orbifold.





Appendix B

Example of a supergraph
calculation on an orbifold

This appendix contains a worked out example that illustrates the self-energy
calculations on orbifolds that we have performed. We have chosen the V V self
energy contribution due to the chiral superfield S in the five dimensional non-
Abelian theory. The graph is depicted in Fig. 17.A. As a supergraph it is quite
simple and therefore we can focus on the special issues of computing diagrams in
the five dimensional space where the extra dimension is compactified on S1/Z2.
The techniques that we present here can be extended to the higher dimensional
calculations.

From the graph 17.A we see that the corresponding term in the expansion
of the generating functional is the quadratic term that contains the SV S̄ in-
teraction term twice. The interaction term is given in (4.47). To calculate the
self-energy graph the S and S̄ superfields on the external lines are replaced by
the corresponding sources that act on the exponential of the propagators (4.41)
as we showed in detail in Section 3.1.3. After functional differentiations we ob-
tain the orbifold compatible delta functions for the non-Abelian theory in five
dimensions (4.54). The expression for the supergraph 17.A on the orbifold reads

17.A = 2 fijkf	mn

∫ (
d5x d4θ

)
1234

V i
1 V 	

2 δ̃
(S)
31 p

j ηpp′

(� + ∂2
5)2

D̄2
2D

2
2

16
δ̃
(S)
32 p′

n ×

× δ̃
(S)
42 q

m ηqq′

(� + ∂2
5)1

D̄2
1D

2
1

16
δ̃
(S)
41 q′

k. (B.1)

Here we have used that in five dimensions there is no distinction between the
orbifold delta functions for S and S̄ as we remark below (4.54). Now we try to
replace as many orbifold compatible delta functions by ordinary delta functions
as possible. The strategy to replace an orbifold delta function by an ordinary
one is always the same: One expands the orbifold delta function into a sum and
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performs a substitution such that all the summands are equal. For example,
we can replace the first orbifold delta function in the final factor in the expres-
sion (B.1) for diagram 17.A. We begin by expanding the first delta function by
inserting its definition

17.A = 2 fijkf	mn

∫ (
d5x d4θ

)
1234

V i
1 V 	

2 δ̃
(S)
31 p

j ηpp′

(� + ∂2
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D̄2
2D

2
2

16
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(S)
32 p′

n ×

× 1

2

(
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q δ(y4−y2)−Qq

mδ(y4+y2)
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4(θ4−θ2)
ηqq′

(� + ∂2
5)1

D̄2
1D

2
1

16
δ̃
(S)
41 q′

k.

(B.2)

We perform the reflection y4 → −y4 to show that

−Qq
m

∫
dy4 δ(y4 + y2) ηqq′ δ̃

(S)
41 q′

k = δm
q

∫
dy4 δ(y4 − y2) ηqq′ δ̃

(S)
41 q′

k, (B.3)

where we have used the transformation properties (4.55) of δ̃
(S)
41 q′

k and the or-
thogonality of Q in (4.51). Here we have not copied the propagators because they
contain the operator ∂2

5 which is invariant under this reflection. Substituting this
back into the original expression, we obtain

17.A = 2 fijkf	mn

∫ (
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1234
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Hence we have removed the orbifold projection on the first delta function. In
the same fashion we can reduce one of the orbifold delta functions in the first
factor. We choose to make the replacement

δ̃
(S)
31 p

j → δj
p δ(y3 − y1)δ

4(x3 − x1)δ
4(θ3 − θ1). (B.5)

Now we integrate over (x, θ)3 and (x, θ)4 and are left with

17.A = 2 fijkf	mn

∫ (
d5x d4θ

)
12

V i
1 V 	

2 ×

× 1

(� + ∂2
5)2

D̄2
2D

2
2

16
δ̃
(S)
21

nj 1

(� + ∂2
5)2

D2
2D̄

2
2

16
δ̃
(S)
21

mk. (B.6)

We have now arrived at the level of two orbifold compatible delta functions.
In general one must be careful to reduce one more orbifold compatible delta
function as described in Section 4.1.4. But as the remaining two orbifold delta
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functions are of the same type, we are on the safe side and choose to expand the
second delta function

17.A = 2 fijkf	mn

∫ (
d5x d4θ

)
12

V i
1 V 	

2

1

(� + ∂2
5)2

D̄2
2D

2
2

16
δ̃
(S)
21

nj ×

× 1

(� + ∂2
5)2

D2
2D̄

2
2

16

1

2

(
ηmkδ(y2 − y1) − Qmkδ(y2 + y1)

)
δ4(x2 − x1)δ

4(θ2 − θ1).

(B.7)

Performing the transformation y1 → −y1 one shows that

−fijk Qmk

∫
dy1 V i

1 δ(y2+y1) δ̃
(S)
21

nj = fijk ηmk

∫
dy1 V i

1 δ(y2−y1) δ̃
(S)
21

nj. (B.8)

Here we used that both the transformation of V in (4.50) and of the orbifold
compatible delta function in (4.55) bring in a matrix Q. Then we applied the
orthogonality property of Q in (4.51) in order to place the indices of all three
Q’s alike. Subsequently, we took advantage of the fact that three Q’s contracted
with the structure constants leave the structure constants invariant, as found in
(4.51). Thus, we find

17.A = 2 fijkf	mnηmk

∫ (
d5x d4θ

)
12

V i
1 V 	

2 ×

× 1

(� + ∂2
5)2

D̄2
2D

2
2

16
δ
(S)
21

nj 1

(� + ∂2
5)2

D2
2D̄

2
2

16
δ21. (B.9)

Hence we see that in this diagram we have been able to replace all but one orbifold
compatible delta functions by ordinary delta functions. The final step in the
evaluation of this diagram in the coordinate space representation is to make the
expression local in the Grassmann variables. Making use of standard identities
for the covariant supersymmetric derivatives, we perform the integration over θ2

17.A = fijkf	mnηmk

∫
(d5x)12 d4θ

[
− V i

1 �P0V
	
2

1

(� + ∂2
5)2

δ̃
5(S)
21

nj 1

(� + ∂2
5)2

δ5
21

+ 2 V i
1V 	

2

�2

(� + ∂2
5)2

δ̃
5(S)
21

nj 1

(� + ∂2
5)2

δ5
21

]
. (B.10)

Since the expression only contains θ1, it is local in θ1 and we simply dropped the
subscript “1” on θ. The structure of the calculation is the same in higher dimen-
sions except for the fact that the orbifold compatible delta functions involve N
summands on a ZN orbifold instead of two. The result for the six dimensional
counterpart to the graph from this example calculation can be found in (C.6)
in App. C. One observes that the reduction of the six dimensional result to five
dimensions straightforward by making use of the fact that δ̃(S̄) = δ̃(S). Hence we
refer to App. C for the expressions for the other diagrams in Fig. 17.





Appendix C

Explicit results for loop graphs
on orbifolds

This appendix provides the amplitudes for the loop graphs that have been cal-
culated. The amplitudes are presented on the level of two orbifold compatible
delta functions as far as the spacetime part of the delta functions is concerned.
As the Grassmann factor of the orbifold compatible delta functions does not feel
the orbifold we have already integrated out the dependence on one of the Grass-
mann variables thus rendering the expressions local in θ, i.e. the integrands only
depend on one Grassmann variable θ and all indices at the fields refer only to
the spacetime variables, cf. the last line in the example given in (3.45). App. C.1
contains the results for the five and six dimensional loop graphs which involve
the hyper multiplet. The five and six dimensional results for the gauge and ghost
multiplet loops are presented in App. C.2. Finally, App. C.3 provides the results
for the ten dimensional loop graphs due to the ten dimensional gauge and ghost
multiplets.

C.1 Loops in five and six dimensions involving

the hyper multiplet

Here we give the amplitudes for the loop graphs that involve the hyper multiplet
in five and six dimensions. The amplitudes as they stand are taken from the
non-Abelian calculation performed in six dimensions with the two extra dimen-
sions compactified on T 2/ZN . In particular, this means that the expressions
correspond directly to the six dimensional version of the graphs in Figs. 15 and
16 and make use of the orbifold compatible delta functions (5.50). They give
rise to the self-energies (5.56)-(5.58). The Abelian result in six dimensions is ob-
tained by formally replacing the trace ’tr’ against the square of the charge q2 and
interpreting the orbifold delta funtcions as those from the Abelian calculation
defined in (5.10). Then the amplitudes correspond to the six dimensional version
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of the graphs in Figs. 9 and 10 and give rise to the self-energies (5.15)-(5.17).
The amplitudes reduce to those in the five dimensional non-Abelian calcu-

lation when one replaces z = y, neglects any dependence on z̄, changes the
derivatives ∂ and ∂̄ to ∂5 and uses the orbifold compatible delta functions (4.54).
Then the amplitudes correspond to the graphs in Figs. 15 and 16 and give rise
to the self-energies (4.57)-(4.59). The five dimensional Abelian case is obtained
from the five dimensional non-Abelian case by formally replacing the trace ’tr’
against the square of the charge q2 and interpreting the delta functions as those
in (4.16). Then the amplitudes correspond to the graphs depicted in Figs. 9 and
10 and they give rise to the self-energies (4.57)-(4.59).

The graphs which contribute to the ΣVV self-energy are

15.A± = −2

∫ (
d6x
)
12

d4θ tr
[
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1

(� + ∂∂̄)2
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˜̄δ
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6(−)
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2
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) 1

(� + ∂∂̄)2

δ̃
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21

]
, (C.1)

15.B = 4
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)
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, (C.2)

15.C± = −2

∫ (
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]
. (C.3)

The graphs which contribute to the ΣSS̄ and ΣVS̄ self-energies are

16.A± = 2

∫ (
d6x
)
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d4θ tr
[
S1

1

(� + ∂∂̄)2

δ̃
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21 S̄2

1
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, (C.4)

16.B± = −2
√

2

∫ (
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d4θ tr
[
∂V1
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(� + ∂∂̄)2
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6(+)
21 S̄2

1

(� + ∂∂̄)2

δ̃
6(−)
21

]
. (C.5)

C.2 Loops in five and six dimensions involving

the gauge multiplet

Here we provide the amplitudes for the loop graphs from Figs. 17 and 18 that
involve the gauge and ghost multiplets in five and six dimensions. These dia-
grams appear only in the non-Abelian theories. As they are presented here, they
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are obtained in the calculation performed in six dimensions where the extra two
dimensions are compactified on T 2/ZN . This means that the delta functions
are taken to be those in (5.50) and the corresponding self-energies are given in
(5.70)-(5.72).

The result for the five dimensional calculation with the extra dimension com-
pactified on S1/Z2 is obtained by replacing z = y, neglecting any dependence on
z̄, changing the derivatives ∂ and ∂̄ to ∂5 and interpreting the delta functions as
those in (5.50). Then the amplitudes give rise to the self-energies (4.65)-(4.67).

The graphs which contribute to the ΣVV self-energy are

17.A = fijkf	mn

∫
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, (C.6)
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17.C = fijkf	mn
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17.E = −1
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17.F = 2 fijkf	mn ηnk
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The graphs which contribute to the ΣSS̄ and ΣVS̄ self-energies are

18.A = 2 fijkf	mn
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(C.15)

C.3 Loops in ten dimensions involving the gauge

multiplet

Here we provide the amplitudes corresponding to the loop graphs in Fig. 22
which involve the gauge and ghost multiplets. These results are obtained in the
calculation that is performed in ten dimensions where the extra six dimensions
are compactified on the orbifold T 6/ZN . The delta functions are given in (6.28)
and the amplitudes give rise to the ΣVV self-energy in (6.33). The expressions
for the graphs are calculated to be
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The bold box denotes the ten dimensional d’Alembert operator ��� = �+∂M ∂̄M .





Appendix D

Regularization of the divergent
self-energy integrals

In this appendix we provide the regularization of the divergent self-energy inte-
grals that appear in the main text of the thesis.

D.1 Regularization of a divergence in the five

and six dimensional bulk

Here we demonstrate the regularization of the divergent integral in the five and
six dimensional bulk. We want to discuss both five and six dimensions at the
same time and employ a six dimensional notation which has a straightforward
reduction to five dimensions. The divergent bulk self-energies have the structure

ID =

∫ (
dDx
)
12

A(x1)B(x2)
1

(� + ∂∂̄ − m2)2

δ21
1

(� + ∂∂̄ − m2)2

δ21, (D.1)

where we introduced an infrared regulator mass m. A(x1) and B(x2) represent
the operators from the action that depend on the first and the second spacetime
coordinate, respectively, and are local in the Grassmann variables. The delta
functions in (D.1) denote the delta functions on the circle or the torus in the five
and six dimensional cases, respectively. For an application to the five dimensional
bulk self-energies one replaces ∂∂̄ → ∂2

5 and uses z = y, z̄ = 0. We insert a
Fourier transformation (D.21) to represent this integral in momentum space as

ID =
1

22

∫
ddk

(2πμ2)d

∑
	∈ΛK

VolW A(k, l) B(−k,−l) ID, (D.2)

where VolW is the volume of the circle or the torus in the five and six dimensional
cases, respectively. The μ dependence is a result of our Fourier transformation
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conventions D.4. Here k is the continuous external momentum in four dimensions
and n the discrete Kaluza-Klein momentum in the extra dimensions. In order
to find the counterterms, we need to calculate the divergent part of

ID =

∫
ddp

(2π)d

1

VolW

∑
n∈ΛK

1

p2 + |n|2 + m2

1

(p − k)2 + |n − l|2 + m2
. (D.3)

This has been done in App. D.3: We extend the four dimensional momentum
integral to d = 4 − 2ε dimensions. As notation we keep D − d to be either 1
or 2, so that also the total number of dimensions D becomes ε dependent. The
divergent part takes the form

ID

∣∣
div

= iα1 + iα2(k
2 + |l|2). (D.4)

In five dimensions dimensional regularization hides a linear divergence. The
leading term for α1 is found to be

α1 = − 1

(4π)2
|m|, α2 = 0 (D.5)

and the second term α2 is not present in five dimensions. In six dimensions we
obtain the coefficients

α1 =
m2

(4π)3

(
1

ε̄
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μ2

m2

)
, α2 =
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6(4π)3

(
1

ε̄
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μ2

m2

)
, (D.6)

where 1
ε̄

= 1
ε
− γ + ln 4π. In six dimensions α2 �= 0 and the second term in (D.4)

requires the introduction of a higher dimensional operator as loop counterterm
in the action. Transforming back into position space we obtain the local terms

ID
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div

= i

∫
dDx
[
α1 A(x)B(x) − α2 A(x)

(
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)
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]
. (D.7)

D.2 Regularization of a divergence at the four

dimensional fixed points

The structure of a divergent self-energy contribution at a class of four dimen-
sional fixed points which fulfill z = eikϕz is represented as

JD =

∫
(dDx)12 A(x1) B(x2)×

× 1
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)
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D. Regularization of the momentum integral 139

with obvious reduction to five dimensions. In the delta function only the compact
dimensions have been indicated for notational simplicity. In momentum space

JD =
1

22
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ddk

(2πμ)2d

∑
	1,	2

(2π)dA(k, eikϕ�1 + �2)B(−k,−�1 − �2) J0. (D.9)

The divergence is due to the four dimensional integral

J0 =

∫
ddp

(2π)d

1

p2 + |�1|2 + m2

1

(p − k)2 + |�2|2 + m2
, (D.10)

which is calculated in (D.20). One obtains after the transformation into position
space

JD

∣∣
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)∫
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This expression is local in the uncompactified four dimensional directions. In
the compactified dimensions, it is localized at the fixed points, because of the
two delta functions with the two different arguments.

D.3 Regularization of the momentum integral

In order to determine the counterterms, we need to calculate the divergent part
of the integral

ID = i

∫
ddpE

(2π)d

1

VolW

∑
n

1

p2 + |n|2 + m2

1

(p − k)2 + |n − l|2 + m2
, (D.12)

which is obtained after a Wick rotation. We can replace the integration over the
volume of the continuous momenta by the integration over the radius∫

ddpE

(2π)d
=

2(μ)4−d

(4π)d/2 Γ
(

d
2

) ∫ ∞

0

dp pd−1. (D.13)

The non-compact four dimensional integral is extended to d = 4−2ε dimensions
using the standard procedure of dimensional regularization of scalar integrals.
Furthermore we use the identity

1

M2
i

=
1

μ2

∫ ∞

0

dt e−tM2
i /μ2

, (D.14)
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where Mi are the momentum-dependent denominators of (D.12). With the help
of a Feynman parameter s the integral (D.12) can be written as

ID = i
1

(4π)d/2
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(2π)D−d Vol

∫ 1
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where for D − d = 1, 2 we take for θK the θ function of the circle or the torus,
defined in (D.25) and (D.32), respectively. After application of the Poisson
resummation formula (D.38) which is valid both on the circle and on the torus,
we obtain
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(D.16)
Because θW − 1 cannot lead to UV divergencies, we can put θW = 1 in order to
determine the divergent part. We find

ID

∣∣
div

= i
1

μd

(
μ2

m2

)2(
m2

4π

)D
2 ∑

n′≥0

(−)n′ Γ
(
n′ + 2 − D

2

)
Γ(n′ + 1)

Γ(2n′ + 2)

(
K2

m2

)n′

.

(D.17)
In the six dimensional case we obtain

I6−2ε

∣∣
div

=
i

(4π)3

[(1
ε̄

+ ln
μ2

m2

)(
m2 +

1

6
(k2 + |l|2)

)
+ m2
]
, (D.18)

where we have defined 1
ε̄

= 1
ε
− γ + ln 4π. Here only the terms with n′ ∈ {0, 1}

contribute to the divergent part and we have neglected terms with higher n′. In
the five dimensional case the expression reads

I5−2ε

∣∣
div

= −i
1

(4π)2
|m|, (D.19)

where only the n′ = 0 term has been taken into account. The four dimensional
case can also be traced back when one neglects the summation 1

VolW

∑
n′ . This

results in

I4−2ε
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div

=
i

(4π)2

(1
ε
− γ + ln 4π + ln

μ2

m2

)
. (D.20)

D.4 Fourier transformation conventions

In the evaluation of the divergent self-energies we need to perform Fourier trans-
formations between coordinate and momentum space. We describe our conven-
tions for the six dimensional situation compactified on the torus T 2. Because of
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the notation in five and six dimensions introduced in App. A.1 and App. A.2,
respectively, the reduction to the five dimensional integrals on the circle S1 is
straightforward. We define the Fourier transformation as

A(x, z) =

∫
ddp

(2π μ)d

∑
n∈ΛK

A(p, n)ei(px+nz+n̄z̄) (D.21)

and

A(p, n) =
2μd

VolW

∫
ddxd2zA(x, z)e−i(px+nz+n̄z̄). (D.22)

We have introduced the regularization scale μ such that the coordinate and
momentum Fourier transforms have the same mass dimension. The coordinate
space delta function is given by

δd(x2 − x1)δ
2(z2 − z1) =

∫
ddp

(2π)d

1

VolW

∑
n∈ΛK

ei(p(x2−x1)+n(z2−z1)+n̄(z̄2−z̄1)). (D.23)

The delta function in momentum space can be expanded as

δd(p2 − p1)δ
2(n2 − n1) = 2

∫
ddxd2z

(2π)dVolW
ei(p2−p1)x+(n2−n1)z+(n̄2−n̄1)z̄). (D.24)

D.5 Genus one theta functions

The genus one theta function on the Kaluza Klein lattice is defined as

θK

[
α
β

]
(σ|τ) =

∑
n∈Z/R

ei τ
2
(n−α)2+i[(σ−β)(n−α)]. (D.25)

The theta function is translation invariant under a shift of α by an element of
the Kaluza Klein lattice or a shift of β by an element of the winding mode lattice

θK

[
α + n

β

]
(σ|τ) = θK

[
α
β

]
(σ|τ), n ∈ ΛK , (D.26)

θK

[
α

β + w

]
(σ|τ) = θK

[
α
β

]
(σ − w|τ), w ∈ ΛW . (D.27)

The genus one theta function on the winding mode lattice is defined as

θW

[
α
β

]
(σ|τ) =

∑
w∈2πR

ei τ
2
(w−α)2+i(w−α)(−β). (D.28)

The relation between θK and θW is

θK

[
α
β

]
(σ|τ) = R

√
2π

−iτ
e−

i
2τ

τ2+iαβ θW

[
β
−α

](−σ

τ

∣∣∣∣−1

τ

)
. (D.29)
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This can be obtained by using Poisson resummation, which allows us to rewrite
a complex exponential function that is summed over the Kaluza-Klein lattice
ΛK into a delta function that is summed over the winding mode lattice and vice
versa. Concretely, we have

1

2πR

∑
n∈ΛK

einy =
∑

w∈ΛW

δ(y − w), y ∈ R (D.30)

and
R
∑

w∈ΛW

eiwp =
∑

n∈ΛK

δ(p − n), p ∈ R. (D.31)

D.6 Genus two theta functions

The genus two theta function on the Kaluza-Klein lattice ΛK is defined by

θK

[
α
β

]
(σ|τ) =

∑
n∈ΛK

ei τ
2
|n−α|2+i[(σ̄−β̄)(n̄−ᾱ)+(σ−β)(n−α)]. (D.32)

Also the genus two theta function fulfills the translation invariance properties
(D.26) and (D.27). The genus two theta function on the winding mode lattice
is defined by

θW

[
β
α

]
(σ|τ) =

∑
w∈ΛW

e2iτ |w−β|2+i(w̄−β̄)(2σ−ᾱ)+(w−β)(2σ̄−α). (D.33)

The relation between θK and θW is given by

θK

[
α
β

]
(σ|τ) = Vol

2π

−iτ
ei(− 2

τ
|σ|2+αβ+ᾱβ̄) θW
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β
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. (D.34)

This is obtained by Poisson resummation on the torus

1

VolW

∑
n∈ΛK

ei(nz+n̄z̄) =
∑

w∈ΛW

1

2
δ2(z − w), z ∈ C, (D.35)

1

VolK

∑
w∈Λw

ei(wp+w̄p̄) =
∑

n∈ΛK

2 δ2(p − n), p ∈ C, (D.36)

where

δ2(p) =
1

2
δ(p5)δ(p6), δ2(z) = 2 δ(x5)δ(x6). (D.37)

Therefore, in the case τ = 2it
μ2 , α = sl, and σ = β = 0

θK

[
sl
0

](
0|2it

μ2

)
= Vol

(
πμ2

t

)D−d
2

θW

[
0

−sl
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0| iμ2

2t
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(D.38)

holds both for the theta functions on the circle and on the torus.



Bibliography

[1] J. Wess and J. Bagger Supersymmetry and supergravity. Princeton, USA:
Univ. Pr. (1992) 259 p.

[2] S. Weinberg The quantum theory of fields. Vol. 3: Supersymmetry.
Cambridge, UK: Univ. Pr. (2000) 419 p.

[3] D. Bailin and A. Love Supersymmetric gauge field theory and string theory.
Bristol, UK: IOP (1994) 322 p. (Graduate student series in physics).

[4] P. C. West Introduction to supersymmetry and supergravity. Singapore,
Singapore: World Scientific (1990) 425 p.

[5] S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel “Superspace, or one
thousand and one lessons in supersymmetry” Front. Phys. 58 (1983)
1–548 [hep-th/0108200].

[6] H. P. Nilles “Supersymmetry, supergravity and particle physics” Phys.
Rept. 110 (1984) 1.

[7] H. E. Haber and G. L. Kane “The search for supersymmetry: Probing
physics beyond the standard model” Phys. Rept. 117 (1985) 75.

[8] H. E. Haber “Introductory low-energy supersymmetry” [hep-ph/9306207].

[9] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali “The hierarchy
problem and new dimensions at a millimeter” Phys. Lett. B429 (1998)
263–272 [hep-ph/9803315].

[10] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali “New
dimensions at a millimeter to a fermi and superstrings at a TeV” Phys.
Lett. B436 (1998) 257–263 [hep-ph/9804398].

[11] C. Csaki “Tasi lectures on extra dimensions and branes”
[hep-ph/0404096].

[12] G. D. Kribs “Phenomenology of extra dimensions” [hep-ph/0605325].

143



144 BIBLIOGRAPHY

[13] N. Marcus, A. Sagnotti, and W. Siegel “Ten-dimensional supersymmetric
Yang-Mills theory in terms of four-dimensional superfields” Nucl. Phys.
B224 (1983) 159.

[14] E. A. Mirabelli and M. E. Peskin “Transmission of supersymmetry
breaking from a 4-dimensional boundary” Phys. Rev. D58 (1998) 065002
[hep-th/9712214].

[15] N. Arkani-Hamed, T. Gregoire, and J. Wacker “Higher dimensional
supersymmetry in 4D superspace” JHEP 03 (2002) 055 [hep-th/0101233].

[16] A. Hebecker “5D super Yang-Mills theory in 4D superspace, superfield
brane operators, and applications to orbifold GUTs” Nucl. Phys. B632
(2002) 101–113 [hep-ph/0112230].

[17] T. Flacke “Covariant quantisation of N = 1, D = 5 supersymmetric Yang-
Mills theories in 4D superfield formalism”. DESY-THESIS-2003-047.

[18] J. Scherk and J. H. Schwarz “Dual models for nonhadrons” Nucl. Phys.
B81 (1974) 118–144.

[19] M. B. Green, J. H. Schwarz, and E. Witten Superstring Theory. Vol. 1:
Introduction. Cambridge, Uk: Univ. Pr. (1987) 469 p. (Cambridge
Monographs On Mathematical Physics).

[20] M. B. Green, J. H. Schwarz, and E. Witten Superstring theory. Vol. 2:
Loop amplitudes, anomalies and phenomenology. Cambridge, Uk: Univ.
Pr. (1987) 596 p. (Cambridge Monographs On Mathematical Physics).

[21] D. Lust and S. Theisen “Lectures on string theory” Lect. Notes Phys. 346
(1989) 1–346.

[22] J. Polchinski String theory. Vol. 1: An introduction to the bosonic string.
Cambridge, UK: Univ. Pr. (1998) 402 p. (Cambridge Monographs On
Mathematical Physics).

[23] J. Polchinski String theory. Vol. 2: Superstring theory and beyond.
Cambridge, UK: Univ. Pr. (1998) 531 p. (Cambridge Monographs On
Mathematical Physics).

[24] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm “The heterotic
string” Phys. Rev. Lett. 54 (1985) 502–505.

[25] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm “Heterotic string
theory. 1. the free heterotic string” Nucl. Phys. B256 (1985) 253.



BIBLIOGRAPHY 145

[26] D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm “Heterotic string
theory. 2. the interacting heterotic string” Nucl. Phys. B267 (1986) 75.

[27] P. Ramond “Dual theory for free fermions” Phys. Rev. D3 (1971)
2415–2418.

[28] A. Neveu and J. H. Schwarz “Factorizable dual model of pions” Nucl.
Phys. B31 (1971) 86–112.

[29] F. Gliozzi, J. Scherk, and D. I. Olive “Supersymmetry, supergravity
theories and the dual spinor model” Nucl. Phys. B122 (1977) 253–290.

[30] F. Gliozzi, J. Scherk, and D. I. Olive “Supergravity and the spinor dual
model” Phys. Lett. B65 (1976) 282.

[31] M. B. Green and J. H. Schwarz “Anomaly cancellation in supersymmetric
d=10 gauge theory and superstring theory” Phys. Lett. B149 (1984)
117–122.

[32] J. Dai, R. G. Leigh, and J. Polchinski “New connections between string
theories” Mod. Phys. Lett. A4 (1989) 2073–2083.

[33] A. Giveon, M. Porrati, and E. Rabinovici “Target space duality in string
theory” Phys. Rept. 244 (1994) 77–202 [hep-th/9401139].

[34] E. Cremmer, B. Julia, and J. Scherk “Supergravity theory in 11
dimensions” Phys. Lett. B76 (1978) 409–412.

[35] W. Nahm “Supersymmetries and their representations” Nucl. Phys. B135
(1978) 149.

[36] P. Horava and E. Witten “Heterotic and type I string dynamics from
eleven dimensions” Nucl. Phys. B460 (1996) 506–524 [hep-th/9510209].

[37] P. Horava and E. Witten “Eleven-dimensional supergravity on a manifold
with boundary” Nucl. Phys. B475 (1996) 94–114 [hep-th/9603142].

[38] M. B. Green, J. H. Schwarz, and L. Brink “N=4 Yang-Mills and N=8
supergravity as limits of string theories” Nucl. Phys. B198 (1982)
474–492.

[39] P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten “Vacuum
configurations for superstrings” Nucl. Phys. B258 (1985) 46–74.

[40] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten “Strings on orbifolds”
Nucl. Phys. B261 (1985) 678–686.



146 BIBLIOGRAPHY

[41] L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten “Strings on orbifolds. 2”
Nucl. Phys. B274 (1986) 285–314.

[42] A. Pomarol and M. Quiros “The standard model from extra dimensions”
Phys. Lett. B438 (1998) 255–260 [hep-ph/9806263].

[43] A. Delgado, A. Pomarol, and M. Quiros “Supersymmetry and electroweak
breaking from extra dimensions at the TeV-scale” Phys. Rev. D60 (1999)
095008 [hep-ph/9812489].

[44] Y. Kawamura “Gauge symmetry reduction from the extra space s(1)/z(2)”
Prog. Theor. Phys. 103 (2000) 613–619 [hep-ph/9902423].

[45] Y. Kawamura “Triplet-doublet splitting, proton stability and extra
dimension” Prog. Theor. Phys. 105 (2001) 999–1006 [hep-ph/0012125].

[46] N. Arkani-Hamed, A. G. Cohen, and H. Georgi “Anomalies on orbifolds”
Phys. Lett. B516 (2001) 395–402 [hep-th/0103135].

[47] F. Gmeiner, S. Groot Nibbelink, H. P. Nilles, M. Olechowski, and
M. G. A. Walter “Localized anomalies in heterotic orbifolds” Nucl. Phys.
B648 (2003) 35–68 [hep-th/0208146].

[48] S. Groot Nibbelink, M. Hillenbach, T. Kobayashi, and M. G. A. Walter
“Localization of heterotic anomalies on various hyper surfaces of
T(6)/Z(4)” Phys. Rev. D69 (2004) 046001 [hep-th/0308076].

[49] T. Kobayashi, S. Raby, and R.-J. Zhang “Constructing 5d orbifold grand
unified theories from heterotic strings” Phys. Lett. B593 (2004) 262–270
[hep-ph/0403065].

[50] S. Forste, H. P. Nilles, P. K. S. Vaudrevange, and A. Wingerter “Heterotic
brane world” Phys. Rev. D70 (2004) 106008 [hep-th/0406208].

[51] T. Kobayashi, S. Raby, and R.-J. Zhang “Searching for realistic 4d string
models with a pati-salam symmetry: Orbifold grand unified theories from
heterotic string compactification on a Z(6) orbifold” Nucl. Phys. B704
(2005) 3–55 [hep-ph/0409098].

[52] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz “Dual models of
gauge unification in various dimensions” Nucl. Phys. B712 (2005) 139–156
[hep-ph/0412318].

[53] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz
“Supersymmetric standard model from the heterotic string” Phys. Rev.
Lett. 96 (2006) 121602 [hep-ph/0511035].



BIBLIOGRAPHY 147

[54] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz “Local grand
unification” [hep-ph/0512326].

[55] W. Buchmuller, K. Hamaguchi, O. Lebedev, and M. Ratz
“Supersymmetric standard model from the heterotic string (II).”
[hep-th/0606187].

[56] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S.
Vaudrevange, and A. Wingerter “A mini-landscape of exact MSSM spectra
in heterotic orbifolds” Phys. Lett. B645 (2007) 88–94 [hep-th/0611095].

[57] K. R. Dienes, E. Dudas, and T. Gherghetta “Extra spacetime dimensions
and unification” Phys. Lett. B436 (1998) 55–65 [hep-ph/9803466].

[58] K. R. Dienes, E. Dudas, and T. Gherghetta “Grand unification at
intermediate mass scales through extra dimensions” Nucl. Phys. B537
(1999) 47–108 [hep-ph/9806292].

[59] R. Contino, L. Pilo, R. Rattazzi, and E. Trincherini “Running and
matching from 5 to 4 dimensions” Nucl. Phys. B622 (2002) 227–239
[hep-ph/0108102].

[60] K.-W. Choi, H. D. Kim, and I.-W. Kim “Gauge coupling renormalization
in orbifold field theories” JHEP 11 (2002) 033 [hep-ph/0202257].

[61] L. J. Hall and Y. Nomura “SO(10) and SU(6) unified theories on an
elongated rectangle” Nucl. Phys. B703 (2004) 217–235 [hep-ph/0207079].

[62] A. Hebecker and A. Westphal “Power-like threshold corrections to gauge
unification in extra dimensions” Ann. Phys. 305 (2003) 119–136
[hep-ph/0212175].

[63] A. Hebecker and A. Westphal “Gauge unification in extra dimensions:
Power corrections vs. higher-dimension operators” Nucl. Phys. B701
(2004) 273–298 [hep-th/0407014].

[64] A. Westphal “Higher-dimension operators in higher-dimensional field
theories”. DESY-THESIS-2005-021.

[65] J. F. Oliver, J. Papavassiliou, and A. Santamaria “Can power corrections
be reliably computed in models with extra dimensions?” Phys. Rev. D67
(2003) 125004 [hep-ph/0302083].

[66] D. M. Ghilencea “Compact dimensions and their radiative mixing” Phys.
Rev. D70 (2004) 045018 [hep-ph/0311264].



148 BIBLIOGRAPHY

[67] D. M. Ghilencea “Higher derivative operators as loop counterterms in one-
dimensional field theory orbifolds” [hep-ph/0409214].

[68] D. M. Ghilencea and H. M. Lee “Higher derivative operators from
transmission of supersymmetry breaking on S(1)/Z(2)” JHEP 09 (2005)
024 [hep-ph/0505187].

[69] D. M. Ghilencea and H. M. Lee “Higher derivative operators from
Scherk-Schwarz supersymmetry breaking on T 2/Z2” [hep-ph/0508221].

[70] H. Georgi, A. K. Grant, and G. Hailu “Brane couplings from bulk loops”
Phys. Lett. B506 (2001) 207–214 [hep-ph/0012379].

[71] S. Groot Nibbelink and M. Hillenbach “Renormalization of
supersymmetric gauge theories on orbifolds: Brane gauge couplings and
higher derivative operators” Phys. Lett. B616 (2005) 125–134
[hep-th/0503153].

[72] S. Groot Nibbelink and M. Hillenbach “Quantum corrections to
non-Abelian SUSY theories on orbifolds” Nucl. Phys. B748 (2006) 60–97
[hep-th/0602155].

[73] D. Marti and A. Pomarol “Supersymmetric theories with compact extra
dimensions in N = 1 superfields” Phys. Rev. D64 (2001) 105025
[hep-th/0106256].

[74] S. J. Gates, S. Penati, and G. Tartaglino-Mazzucchelli “6D
supersymmetry, projective superspace and 4D, N = 1 superfields”
[hep-th/0508187].

[75] H.-C. Cheng, K. T. Matchev, and M. Schmaltz “Radiative corrections to
Kaluza-Klein masses” Phys. Rev. D66 (2002) 036005 [hep-ph/0204342].

[76] D. M. Ghilencea, H. M. Lee, and K. Schmidt-Hoberg “Higher derivatives
and brane-localised kinetic terms in gauge theories on orbifolds” JHEP 08
(2006) 009 [hep-ph/0604215].

[77] M. G. A. Walter Local Anomaly Cancellation in Heterotic E(8) x E(8)
Orbifold Compactifications with Wilson Line Backgrounds. Ph.D. thesis
(2004) 132 p.

[78] M. Carena, T. M. P. Tait, and C. E. M. Wagner “Branes and orbifolds are
opaque” Acta Phys. Polon. B33 (2002) 2355 [hep-ph/0207056].



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


