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Abstract

Let V be a complete discrete valuation ring of mixed characteristic. We express the
crystalline cohomology of the special fibre of certain smooth affine V -schemes X =
Spec(R) tensored with an appropriate ring of p-adic periods as the Galois cohomology
of the fundamental group of the geometric generic fibre π1(XV̄ [1/p]) with coefficients in a
Fontaine ring constructed from R. This is based on Faltings’ approach to p-adic Hodge
theory (the theory of almost étale extensions). Using this we deduce maps from p-adic
étale cohomology to crystalline cohomology of smooth V -schemes. The results are more
general, as the semi-stable case is also considered. In the end we derive an alternative
proof of the theorem of Tsuji (the semi-stable conjecture of Fontaine-Jannsen).
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Introduction

Let p be an odd prime number. The purpose of this thesis is to make precise the
relationship between crystalline cohomology and Galois cohomology of certain Fontaine
rings occuring in Faltings’ approach to p-adic Hodge theory ([6], [7]). Let us very briefly
recall this approach. Let K+ be a complete discrete valuation ring of fraction field K
of characteristic zero and perfect residue field k of characteristic p. Let X be a proper
K+-scheme with good reduction (to simplify). One constructs a site, usually denoted
X , whose cohomology formalizes the idea of glueing π1(XK̄)-cohomology locally on X.
One sheafifies a construction of Fontaine to obtain a sheaf of rings Acrys,n on X together
with transformations

H∗(X , Z/pnZ)⊗Zp Acris → H∗(X ,Acrys,n)← H∗
crys(Xk|Wn(k),O)⊗W (k) Acris

where Acris is the ring of p-adic periods constructed by Fontaine [8], and the group on
the right denotes the crystalline cohomology of the special fibre Xk. Then one uses Falt-
ings’ theory of almost étale extensions to show that the intermediate cohomology theory
H∗(X ,Acrys,n) satisfies Poincaré duality and Künneth formula, hence by standard argu-
ments is isomorphic to crystalline cohomology. If X has good reduction then the group
on the left is canonically isomorphic to étale cohomology of XK̄ tensored with Acris and
again standard arguments based on compatibility of characteristic classes, Poincaré du-
ality, and Künneth formula allow one to conclude that the maps are isomorphisms (up
to some torsion).

In this thesis we study closely the map

H∗
crys(Xk|Wn(k),O)⊗W (k) Acris → H∗(X ,Acrys,n)

locally on X. Our main result is that this map is an almost isomorphism up to t-
torsion, where t ∈ Acris is an element which plays a role analogous to that of 2πi in
the transcendental theory of periods. Here the term ‘almost’ is used in the sense of
almost mathematics ([7], [9]). Using this, one can compare crystalline and p-adic étale
cohomology of X without an intermediate cohomology theory, thereby simplifying the
approach to p-adic Hodge theory via the theory of almost étale extensions.

Overview

§1: We begin by reviewing the various crystalline sites which we will use in this thesis.
This is mainly to fix notation. Afterwards, we review the construction by Fontaine [8]
of the final object of the crystalline site of a ring of characteristic p with surjective
(absolute) Frobenius. Such final objects are called Fontaine rings. We give the proof for
the more general log-crystalline site. Then we give some examples of Fontaine rings due
to Fontaine and Kato and we recall some of their basic properties.

§2: We first recall the notions of almost ring theory which we will use, following [9]. Then
we recall the key input which we shall need, namely Faltings’ Almost Purity Theorem
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[7]. Afterwards we apply this theorem to certain Fontaine rings, constructed as follows.
To simplify assume that K+ = W (k). Let Spec(R) be a smooth integral K+-scheme.
Let Q(R) be its field of rational functions and consider the maximal extension Q(R̄) of
Q(R) such that the normalization R̄ of R in Q(R̄) is the inductive limit of finite normal
integral R-algebras which are étale after inverting p. Then via the theory of almost
étale extensions one can show that the ring R̄/pR̄ has surjective Frobenius, hence by
Fontaine’s theorem recalled in §1, we may construct the Fontaine ring

A+ := lim
n

H0
crys(R̄/pR̄|Wn+1(k),O).

Also we can construct another Fontaine ring A+
∞ as follows. Up to localizing on Spec(R)

we may assume that it has étale local coordinates T1, ..., Td which are units. In this case,
one says that R is small. Let K̄ denote the algebraic closure of K and K̄+ its valuation
ring, i.e. the normalization of K+ in K̄. Let R̃ = R ⊗K+ K̄+ and let R̃∞ denote the
ring obtained from R̃ by adding all p-power roots of the the Ti. Define

A+
∞ := lim

n
H0

crys(R̃∞/pR̃∞|Wn+1(k),O).

Then the theory of almost étale extensions applied to these Fontaine rings implies that
the canonical homomorphism

A+
∞/pnA+

∞ → A+/pnA+

is the filtering inductive limit of almost Galois coverings and there are canonical almost
isomorphisms for each i

H i(∆∞, A+
∞/pnA+

∞) ≈−−−−→ H i(∆, A+/pnA+)

where ∆ := Gal(R̄[1/p]/R̃[1/p]) with quotient ∆∞ := Gal(R̃∞[1/p]/R̃[1/p]) ∼= Zp(1)d

(see Corollaries 2.4, 2.5). This also applies to p-adic divided power bases other than
W (k) and there is a logarithmic version for schemes with semi-stable singularities (in
fact also for schemes with toroidal singularities, cf. [7], but we have opted to restrict to
the semi-stable case in this thesis).

§3: We construct, via the formalism of crystalline cohomology, a canonical de Rham
resolution of the ring A+. We then (almost) compute the ∆-cohomology of the compo-
nents of this resolution, by reducing to the case of A+

∞. The result is the following (cf.
Theorems 3.1, 3.2)

Theorem 0.1. There is a canonical morphism of complexes in the derived category

Acris/pnAcris ⊗W (k) Ω•R/W (k) → C∗(∆, A+/pnA+)

which is an almost quasi-isomorphism up to td-torsion.

Here
Acris = lim

n
H0

crys(K̄
+/pK̄+|Wn+1(k),O)

is a ring of p-adic periods constructed by Fontaine and t is the element alluded to above.
Over an arbitrary finite extension of W (k) a similar result holds and we allow Spec(R)
to have semi-stable singularities.
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§4: We globalize our previous results. One first defines a site XF whose cohomology is
locally the Galois cohomology of the fundamental group (denoted X above). The rings
A+/pnA+ define a sheaf on this site, denoted An. Then one shows that one can almost
compute the XF-cohomology of An on a suitable syntomic site. The point here is that
the extension R̃ ⊂ R̃∞ is the inductive limit of syntomic coverings. Then one uses the
syntomic construction of crystalline cohomology of Fontaine-Messing, or rather Breuil’s
more general logarithmic version [4].

§5: We compare the log-crystalline cohomology of the special fibre of a proper semi-
stable K+-scheme to the p-adic étale cohomology of its geometric generic fibre. For this
we must generalize certain Artin-Schreier exact sequences to A+, due to Fontaine in the
case of Acris. Then we use a theorem of Faltings from [7] which gives information on the
cohomology groups H∗(XF, Z/pnZ). In the smooth case we do not need this, as we know
that the latter is canonically isomorphic to p-adic étale cohomology. Tsuji’s theorem for
proper semi-stable K+-schemes (the semi-stable conjecture of Fontaine-Jannsen) then
follows from these considerations.

Remarks on notation

• The letter p always denotes an odd prime number.

• N = 0, 1, 2, 3, ... denotes the set of natural numbers, and for any subset R ⊂ R we
write R+ (resp. R>0) for the set of elements of R which are greater than or equal
to zero (resp. greater than zero).

• By ring we mean a commutative ring with unity.

• All monoids considered will be assumed to be commutative.

• If A is a ring and M is an A-module, then we denote by ΓA(M) the divided
power polynomial A-algebra defined by M (see [1] or [2] for a construction of this
algebra). If I ⊂ A is an ideal then we denote by DA(I) the divided power hull
of A for the ideal I (loc.cit.). If A is a ring and I ⊂ A is an ideal with a divided
power structure (γn : I → A)n∈N, then we will often write x[n] := γn(x) when
it is clear which divided power structure is meant. Finally, if X1, ..., Xd denotes
indeterminates, then we write A 〈X1, ..., Xd〉 for the divided power polynomial A-
algebra in the variables X1, ..., Xd. It is the divided power hull of A[X1, ..., Xd] for
the ideal generated by X1, ..., Xd.
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1 Crystalline cohomology of rings with surjective Frobe-
nius

In this section we recall Fontaine’s construction of the final object of the crystalline site
of a ring of characteristic p > 0 with surjective Frobenius endomorphism. This will play
the role of substitute for Poincaré’s lemma in our approach to comparison of crystalline
and étale cohomology.

1.1 Reminder on crystalline sites

1.1.1. Let Z be a scheme and let Z0 ↪→ Z be a closed immersion, such that the ideal
defining the image of Z0 in Z is nilpotent and has a divided power structure (we say
that Z0 ↪→ Z is a divided power thickening). We usually use the abbreviation DP for
“divided power”. Let X be a Z0-scheme. Recall the definition of the crystalline site of a
scheme X over the DP-base Z. Its underlying category has for objects DP-thickenings

U ↪→ T

where U is an open subscheme of X and T is a Z-scheme, such that the canonical mor-
phism T → Z is a DP-morphism. Morphisms of this category are given by commutative
diagrams

U ′ −−−−→ T ′y y
U −−−−→ T

where the map U ′ → U is an open immersion and T ′ → T is a Z-DP-morphism. We
define a pretopology on this category by defining coverings to be families of morphisms

(Uα ↪→ Tα)α → (U ↪→ T )

such that (Uα)α → U and (Tα)α → T are Zariski open coverings. This defines the
crystalline site of X over the DP-base Z, denoted (X|Z)crys.

1.1.2. To give a sheaf F on (X|Z)crys is the same as giving for all (U ↪→ T ) ∈ ob(X|Z)crys

a sheaf FT on the Zariski site of T , together with a morphism

g∗F : g−1FT → FT ′

for any morphism g : (U ′ ↪→ T ′)→ (U ↪→ T ), such that the natural transitivity condition
holds for morphisms (U ′′ ↪→ T ′′) → (U ′ ↪→ T ′) → (U ↪→ T ) and moreover g∗F is
an isomorphism if g : T ′ → T is an open immersion and the square defined by g is
cartesian.

In this way we see that the presheaf defined

O(U ↪→ T ) := OT (T )

is in fact a sheaf, called the structure sheaf of (X|Z)crys.
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1.1.3. Exactly the same construction can be done by replacing the Zariski topology by
the étale topology.

1.1.4. Let (X, M)→ (Z,N) be a morphism of log-schemes (see [15]). If f : X → (Z,N)
is a morphism, then we write f∗N for the inverse image log-structure, in contrast with
the inverse image sheaf f−1N . If M is a pre-log-structure on X then we denote by Ma

the associated log-structure. If X is a log-scheme and U → X is an étale morphism,
then the restriction of the log-structure of X to U defines a natural log-structure on U
and we will always consider U as a log-scheme for this log-structure. We will assume
that the log-structure N on Z is fine and the log-structure M on X is integral. The
category of schemes with integral log-structures has finite inverse limits (cf. [15] 1.6,
2.8), and in particular fibre products exist (though these are in general different from
the fibre products of the category of schemes with log-structures). In this paper we will
only consider the category of log-schemes with integral log-structures.

1.1.5. Let (Z0, N0) ↪→ (Z,N) be an exact closed immersion, such that Z0 ↪→ Z is a
DP-thickening. The logarithmic crystalline site of (X, M) over the DP-log-base (Z,N)
is the site whose underlying category has for objects DP-thickenings U ↪→ T , where U is
an étale X-scheme, T is a log-Z-scheme such that the canonical morphism T → Z is a
DP-morphism, and the closed immersion U ↪→ T is exact. A morphism of this category
is a commutative diagram of log-schemes

U ′ −−−−→ T ′y y
U −−−−→ T

where the morphism on the left is étale and the morphism on the right is a DP-morphism.
The pretopology on this category is given by defining covering families to be families of
morphisms

(Uα ↪→ Tα)α → (U ↪→ T )

such that (Uα)α → U and (Tα)α → T are coverings for the étale topology, and such that
the squares

Uα −−−−→ Tαy y
U −−−−→ T

are cartesian. Given a covering, for any morphism (U ′ ↪→ T ′) → (U ↪→ T ), note that
the diagram

U ′ ×U Uα −−−−→ T ′ ×T Tαy y
U ′ −−−−→ T ′

is cartesian, hence (U ′×U Uα ↪→ T ′×T Tα) is an object of the logarithmic crystalline site.
This defines the log-crystalline site of X over the DP-base Z, denoted ((X, M)|(Z,N))crys

or simply by (X|Z)log-crys when it is clear which log-structures are meant for X and Z.
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1.1.6. If X = Spec(R) and Z = Spec(S) are affine schemes, then we will usually write
(R|S)log-crys instead of (X|Z)log-crys.

1.1.7. Assume in the sequel that Z is annihilated by a power of p. By [16] 2.4.2, if
f : (X, M) → (X ′,M ′) is a morphism of log-(Z,N)-schemes with M integral and M ′

fine, then f induces a morphism of log-crystalline topoi over the DP log-base (Z,N).

1.2 Fontaine’s theorem

1.2.1. We begin with a lemma, implicit in [15].

Lemma 1.1. Let i : (X0,M0) ↪→ (X, M) be a nilpotent closed immersion of log-schemes
of ideal I . Then

i∗M = i−1M/(1 + I ).

In particular, i is exact if and only if the map i−1M → M0 is surjective and locally
for all sections m,m′ of i−1M with same image in M0, there exists u ∈ O∗

X such that
m = um′.

Proof. One first shows easily that O∗
X0
∼= i−1O∗

X/(1 + I ). If L→ OX is a log-structure
on X together with a morphism of pre-log-structures

i−1M → L

then 1 + I ⊂ i−1M maps to 1 ∈ L, so the map factors (necessarily uniquely)

i−1M/(1 + I )→ L.

So the claim of the lemma will follow if we can show that i−1M/(1+I ) is a log-structure.
If α : i−1M → i−1OX is the inverse image by i of the map defining M as a log-structure
on X, then α induces an isomorphism α−1i−1O∗

X
∼= i−1O∗

X , whence an isomorphism

α−1i−1O∗
X/(1 + I ) ∼= i−1O∗

X/(1 + I )

i.e. i−1M/(1 + I )→ i−1OX/I ∼= OX0 is a log-structure on X0.

1.2.2. Assume S is a ring on which p is nilpotent, and let R be a S/pS-algebra. Let
N be an integral monoid defining a log-structure on Spec(S) and M an integral monoid
defining log-structure on Spec(R) such that we have a commutative square

N −−−−→ S/pSy y
M −−−−→ R.

Theorem 1.1. With the above notation and assumptions, if the (absolute) Frobenius is
surjective on R and on M , then the site (R|S)log-crys has a final object.
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Proof. First note that for any étale map U → Spec(R), the (absolute) Frobenius is
surjective on OU . Indeed, since the map is étale, its relative Frobenius is an isomorphism,
so this follows from the factorization of the absolute Frobenius of U as the relative
Frobenius followed by the pullback of the absolute Frobenius of Spec(R). We first define
the perfection P (R) of R as being the projective limit of the diagram

· · · F−−−−→ R
F−−−−→ R

F−−−−→ R

where F denotes the (absolute) Frobenius of R. An element of P (R) is given by a
sequence r = (r(n)) of elements of R indexed by the natural numbers, such that r(n+1)p =
r(n) for all n. P (R) is a perfect ring of characteristic p, so its ring of Witt vectors
W (P (R)) is a flat Zp-algebra. We write (r0, r1, r2, ...) ∈ W (P (R)) and ri = (r(n)

i ) for
each i = 0, 1, 2, .... Let Spec(R) ↪→ Spec(A) be an object of the site (R|S)log-crys. If
r = (r(n)) ∈ P (R) then define a lift of r(m) to A by choosing lifts r̂(n) ∈ A of r(n) for all
n and setting

r̃(m) := lim
n→∞

r̂(m+n)pn
.

Since p is nilpotent on A and Ker(A→ R) has a DP-structure, one sees easily that r̃(m)

is a lift of r(m) which is independent of the choices made. Define a map

θ : W (P (R))→ A

by sending (r0, ...) to
∑∞

i=0 pir̃
(i)
i . Since p is nilpotent on A, these are just the usual

Witt polynomials, so the map is indeed a homomorphism of rings. In the case A = R,
this map is none other than the projection (r0, ...) 7→ r

(0)
0 and in this way we obtain a

commutative diagram
W (P (R)) θ−−−−→ Ay y

R R.

We claim that the map θ is unique for the maps W (P (R)) → A making the above
diagram commute. Indeed, any map α : W (P (R)) → A is determined by it values on
[r], where [·] denotes the Teichmüller lift. If r = (r(n)), then write r(m) := (r(m+n)) as
the sequence “shifted” by m. So for all m we have

α([r]) = α([r(m)])pm

and α([r(m)]) = θ([r(m)]) + a for some a ∈ Ker(A→ R). If pmA = 0, then

α([r]) = α([r(m)])pm
= (θ([r(m)]) + a)pm

=
pm∑
i=0

(
pm

i

)
i!a[i]θ([r(m)])pm−i

= θ([r(m)])pm
= θ([r])

thus proving the uniqueness claim.
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We may extend this map to a unique homomorphism of S-algebras

W (P (R))⊗Z S → A

thereby obtaining a commutative diagram

W (P (R))⊗Z S −−−−→ Ay y
R R.

Define the perfection P (M) of M by

P (M) :=
{

(m(n)) ∈MN : m(n+1)p = m(n) ∀n ∈ N
}

.

Via the Teichmüller lift we may consider P (M) as a pre-log-structure on Spec(W (P (R))).
Consider the integral and quasi-coherent pre-log-structure

P (M)⊕N →W (P (R)).

By construction, the natural map P (M)⊕N →M induced from the projection P (M)→
M sending (m(n)) to m(0), is surjective. Let

L := Ker(P (M)gp ⊕Ngp →Mgp)

where for any integral monoid M we write Mgp for the associated group, and define

(W (P (R))⊗Z S)log := W (P (R))⊗Z S ⊗Z Z[L].

Let us show how to extend the map W (P (R))⊗Z S → A to a unique map

(W (P (R))⊗Z S)log → A.

Let MA denote the log-structure of Spec(A). By the last lemma we have

Ma = MA/(1 + I)

where I = Ker(A → R). Define a map P (M)a = P (Ma) → MA by sending (m(n))
to m̂(n)pn

, where m̂(n) is a section of MA lifting m(n) and n is any integer such that
pnA = 0. Because of the divided power structure of I it is easy to check that this section
is independent of all choices. Since the Frobenius is surjective on M , we check easily as
above that this map is unique for the maps defining a commutative square of logarithmic
algebras

W (P (R)) −−−−→ Ay y
R R.
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The map P (M) → P (M)a → MA extends uniquely to a map λA : P (M) ⊕ N → MA.
Now if l ∈ L, consider λA(l) ∈ Mgp

A . Since the image of λA(l) in Mgp is the identity
element, by exactness we deduce that λA(l) ∈ A∗. This defines the map

(W (P (R))⊗Z S)log → A

and hence we obtain a commutative diagram

(W (P (R))⊗Z S)log −−−−→ Ay y
R R.

Since the map on the right-hand side is an S-DP-morphism, it follows by the universal
property of divided power hulls that (W (P (R))⊗Z S)log → A factors over a unique
homomorphism

(W (P (R))⊗Z S)DP
log → A

where (W (P (R))⊗Z S)DP
log is the divided power hull of (W (P (R))⊗Z S)log for the kernel

of the projection onto R sending L to 1. We give

Spec (W (P (R))⊗Z S)DP
log

the log-structure associated to the pre-log-structure P (M) ⊕ N , and claim that this
makes

Spec(R) ↪→ Spec (W (P (R))⊗Z S)DP
log

into an object of (R|S)log-crys. It suffices to check that it is an exact closed immersion.
This follows by construction since the elements l ∈ L are units.

Now, if U → Spec(R) is étale, then for any affine open Spec(R′) ⊂ U we may
construct (W (P (R′))⊗Z S)DP

log by replacing R by R′ in the construction above. Then if
Spec(R′) ↪→ Spec(A′) is an S-DP-morphism we have unique maps

(W (P (R))⊗Z S)DP
log →

(
W (P (R′))⊗Z S

)DP

log
→ A′

and hence for any object U ↪→ T and any covering (Uα ↪→ Tα)α → (U ↪→ T ) we may
define unique maps

Uα −−−−→ Tαy y
Spec(R) −−−−→ Spec (W (P (R))⊗Z S)DP

log

and since the uniqueness allows us to glue, we are done.
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1.2.3. Remarks.

(a) The proof is inspired by that of Breuil in the case S = Wn in [4]. If we give all
schemes the trivial log-structure, then we recover Fontaine’s original construction
in [8]. We advise the reader unfamiliar with Fontaine’s argument first to read the
above proof assuming the log-structures to be trivial.

(b) By the uniformity of the construction and the fact that taking the divided power
hull commutes with base-change ([2] 3.20, Remark 8), we see that for any n the final
object of the crystalline site (R|S/pnS)log-crys is given by the S/pnS-DP-thickening

Spec(R) ↪→ Spec (W (P (R))⊗Z S)DP
log ⊗Z Z/pnZ.

In particular, if S is a p-adically complete ring (we say that S is p-adic base), then as
in [2] one may define a crystalline site (R|S)log-crys whose cohomology automatically
computes the derived projective limit of the cohomology of each (R|S/pnS)log-crys.
Then the proof given in the theorem also works for such S and shows that

Spec(R) ↪→ Spf
(
(W (P (R))⊗Z S)DP

log

)
ˆ

is the final object of the site (R|S)log-crys, where (·)̂ denotes the p-adic completion.

(c) It is sometimes convenient to give a slightly different construction of the final object,
as follows. Suppose pmS = 0. For any S-DP-thickening Spec(R) ↪→ Spec(A), define
a map

θ : Wm(R)→ A

by sending (r0, ..., rm−1) to
∑m−1

i=0 pir̂pm−i

i , where r̂i denotes an arbitrary lift of ri ∈ R
to A. Because of the divided power structure of Ker(A→ R), this is a well-defined
homomorphism of rings. In this way we obtain a commutative square, and to check
the uniqueness of θ for such commutative squares, we first reduce to checking it for
Teichmüller lifts and then use the fact that the Frobenius is surjective on R. Let
L = Ker(Mgp⊕Ngp →Mgp), where the map Mgp →Mgp is given by raising to the
pmth-power. Taking the divided power hull (Wm(R)⊗Z S ⊗Z Z[L])DP for the kernel
of the surjection onto R sending L to 1, we obtain the final object

Spec(R) ↪→ Spec (Wm(R)⊗Z S ⊗Z Z[L])DP

of the site (R|S)log-crys. Details are left to the interested reader (or compare with
[4], §4-5).

The advantage of this construction is that it does not use the perfection P (R) of
R, but on the other hand it depends on the integer m such that pmS = 0 and
is therefore not uniform and it is not true that the previous remark holds for this
object.
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(d) The existence of the final object of the site (R|S)log-crys implies that the cohomology
of any sheaf of O-modules is canonically isomorphic to the cohomology of its restric-
tion to the étale site of the final object. In particular, the crystalline cohomology of
any quasi-coherent O-module vanishes in non-zero degree and we have

H0
log-crys(R|S, O) = (W (P (R))⊗Z S)DP

log .

In the case S is a p-adic base, using a previous remark we see that

lim
n

H0
log-crys(R|S/pn+1S, O) =

(
(W (P (R))⊗Z S)DP

log

)
.̂

1.2.4. Definition. Let S be a p-adic base and let R be as in the statement of Theorem
1.1 and let

A := lim
n

H0
log-crys(R|S/pnS, O).

We define the DP-filtration F •
p on A by defining F i

pA to be the ith divided power of the
ideal F 1

p A := Ker(A → R). If R = R/pR for a p-adically complete ring R, then we
define the canonical filtration F • on A by defining F i to be the ith divided power of the
ideal F 1A := Ker(A→ R). The canonical filtration differs from the DP-filtration by the
fact that p /∈ F 1 in general, whereas p ∈ F 1

p .

1.2.5. Let R and S be as in Theorem 1.1 and let h : A → R be a homomorphism
of logarithmic S/pS-algebras, where A has a fine log-structure. Denote also by h the
associated morphism of log-crystalline sites

h : (R|S)log-crys → (A|S)log-crys.

Then for any sheaf of abelian groups F on (R|S)log-crys, the ith direct image sheaf
Rih∗F is the sheaf on (A|S)log-crys associated to the presheaf

(U ↪→ T ) H i
log-crys(Spec(R)×Spec(A) U |T,F ).

Assume that the Frobenius is surjective on R and on the integral monoid M defining
the log-structure of R. If E is a quasi-coherent sheaf of O-modules on (R|S)log-crys then
it follows immediately from Theorem 1.1 that for i 6= 0

Rih∗E = 0

and hence for all i
H i

log-crys(R|S, E ) ∼= H i
log-crys(A|S, h∗E )

which is again zero for i 6= 0.

Proposition 1.1. With the above notation and assumptions, h∗O is a quasi-coherent
crystal of O-modules on (A|S)log-crys.

13



Proof. Assume pnS = 0. Let P be the presheaf on (A|S)log-crys defined

P(U ↪→ T ) := H0
log-crys(Spec(R)×Spec(A) U |T,O).

Consider a morphism g : (U ′ ↪→ T ′)→ (U ↪→ T ) of (A|S)log-crys. Then g : T ′ → T is an
open map, and hence(

g−1P|T ⊗g−1OT
OT ′

)
(T ′) = P(g(T ′))⊗OT (g(T )) OT ′(T ′).

We claim that, up to localizing on U ′, we have

g−1P|T ⊗g−1OT
OT ′
∼= P|T ′ .

We have a commutative square

U ′ −−−−→ g(U ′)y y
T ′ −−−−→ g(T ′)

Let C be the unique g(T ′)-scheme making the following square cartesian

U ′ −−−−→ g(U ′)y y
C −−−−→ g(T ′).

Then C → g(T ′) is étale, and we have a commutative square

U ′ −−−−→ Cy y
T ′ −−−−→ g(T ′).

Since the left vertical arrow is a nilpotent thickening, there exists a unique morphism
T ′ → C making the resulting diagram commute. Hence we have a commutative diagram

U ′ U ′ −−−−→ g(U ′)y y y
T ′ −−−−→ C −−−−→ g(T ′)

and so we reduce to proving the claim in the following two cases

I. g : T ′ → g(T ′) is étale

II. g : U ′ → g(U ′) is an isomorphism.
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In case I we will use the construction of the final object given in 1.2.3 Remark (c) and
in case II we will used the construction of the final object given in the proof of Theorem
1.1. We ask the reader to refer to these parts for notation.

Let us prove the claim in case I. Let Λ be a finitely generated integral monoid defining
the log-structure on A and define

L := Ker(Mgp ⊕ Λgp →Mgp)

where the map Λ→M is the canonical one and M →M is given by raising to the pnth
power. The square

Wn(R⊗A g−1OU )⊗Z Z[L]⊗Z g−1OT −−−−→ Wn(R⊗A OU ′)⊗Z Z[L]⊗Z OT ′y y
R⊗A g−1OU −−−−→ R⊗A OU ′ .

is cocartesian, where the map

Wn(R⊗A g−1OU )⊗Z Z[L]⊗Z g−1OT → R⊗A g−1OU

(resp.
Wn(R⊗A OU ′)⊗Z Z[L]⊗Z OT ′ → R⊗A OU ′)

is the g−1OT -linear map (resp. OT ′-linear map) deduced from the map sending (r0, ..., rn−1) ∈
Wn(R ⊗A g−1OU ) (resp. ∈ Wn(R ⊗A OU ′)) to rpn

0 and L to 1. Taking divided power
hulls for the kernels of these maps and using the flatness of the map

Wn(R⊗A g−1OU )⊗Z Z[L]⊗Z g−1OT →Wn(R⊗A OU ′)⊗Z Z[L]⊗Z OT ′

we obtain
g−1P|T ⊗g−1OT

OT ′
∼= P|T ′ .

In case II, we can assume U ′ is affine (and hence so are T ′ and g(T ′)). Define

L := Ker(P (M)gp ⊕ Λgp →Mgp).

Let IT ′ (resp. Ig(T ′)) denote the ideal sheaf of U ′ in T ′ (resp. U ′ in g(T ′)). Define the
pairs

(B, I) =
(
W (P (R⊗A OU ′))⊗Z Z[L]⊗Z Og(T ′),W (P (R⊗A OU ′))⊗Z Z[L]⊗Z Ig(T ′)

)
(B′, I ′) = (W (P (R⊗A OU ′))⊗Z Z[L]⊗Z OT ′ ,W (P (R⊗A OU ′))⊗Z Z[L]⊗Z IT ′)

Note that since the ring of Witt vectors of a perfect ring of characteristic p is Z-torsion
free, I ⊂ B (resp. I ′ ⊂ B′) is an ideal. We define a divided power structure on I by
setting (x⊗ y)[i] := xi ⊗ y[i] for all x ∈W (P (R⊗A OU ′))⊗Z Z[L] and y ∈ Ig(T ′), where
the box exponent denotes the divided power structure on Ig(T ′). We extend to sums
via the binomial formula. This is a well-defined DP-structure. Similarly we define a
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DP-structure on I ′. Since Og(T ′) → OT ′ is a DP-morphism, one sees immediately that
the canonical map B → B′ is a DP-morphism. Moreover we have

B/I ∼= B′/I ′.

Define

J = Ker(B → R⊗A OU ′)
J ′ = Ker(B′ → R⊗A OU ′)

for the canonical maps. Then I ⊂ J and I ′ ⊂ J ′, and via the map B → B′, J maps to
J ′, and by definition we have B/J ∼= B′/J ′. So by [1] Ch. I, Prop. 2.8.2, we have a
canonical isomorphism

DB(J)⊗B B′ ∼= DB′(J ′)

where DB(J) denotes the divided power hull of B for the ideal J . This is precisely

g−1P|T ⊗g−1OT
OT ′
∼= P|T ′

and hence we have shown the claim.
Sheafifying we see that

h∗O|T ′ ∼= g∗ (h∗O|T )

so h∗O is a crystal of O-modules. Quasi-coherence is a special case of the proof of case
I above.

1.2.6. Let T be a topos and A a sheaf of rings on T such that we have a ringed topos
(T ,A ). Denote by Qcoh(T ,A ) the category of quasi-coherent sheaves of A -modules.
If A is a ring, then denote by Mod(A) the category of A-modules. Another useful fact
is the following

Proposition 1.2. Let R and S be as before. The global sections functor defines an
equivalence of categories

Qcoh ((R|S)log-crys,O)!Mod
(
H0

log-crys(R|S, O)
)
.

Proof. The inverse functor is defined by sending an A := H0
log-crys(R|S, O)-module M to

the log-crystalline sheaf
(U ↪→ T ) M ⊗A OT .

Now the result follows by definition of a quasi-coherent crystal.

1.3 Some Fontaine rings

Let us show that one can give an explicit description of the crystalline cohomology of
certain rings with surjective Frobenius, following the proof of Fontaine’s theorem.
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1.3.1. The first motivating example is Fontaine’s ring Acris, constructed as follows. Let
K be a complete discrete valued field of characteristic zero and of perfect residue field
k of characteristic p > 0. Denote by K+ its valuation ring (i.e. its subring of elements
of valuation at least zero). Let K̄ be the algebraic closure of K and let K̄+ be its
valuation ring. Let us construct the crystalline cohomology of the structure sheaf on the
site (K̄+/pK̄+|W )crys, where W := W (k) is a p-adic base. Define

Ainf(K+) := W (P (K̄+/pK̄+)).

As in the proof of Fontaine’s theorem, there is a canonical map

θ : Ainf(K+)→ ˆ̄K+

defined by choosing lifts, where ˆ̄K+ is the p-adic completion of K̄+. First note that
if (r(n)) ∈ Ainf(K+)/pAinf(K+) = P (K̄+/pK̄+), then, as in the proof of Fontaine’s
theorem, we may define r̃(n) ∈ ˆ̄K+ by the formula

r̃(n) := lim
m→∞

r̂(n+m)pm

where r̂(n+m) denotes an arbitrary lift of r(n+m) to ˆ̄K+. One sees easily that the as-
sociation sending (r(n)) to r̃(n) is a bijection between Ainf(K+)/pAinf(K+) and the set
of sequences (xn) of elements of ˆ̄K+ such that xp

n+1 = xn for all n. This enables us to
define a valuation on Ainf(K+)/pAinf(K+) by the rule

v(r(n)) := vp(r̃(0))

where vp is the valuation of ˆ̄K = ˆ̄K+[1/p], normalized by vp(p) = 1. Since Ainf(K+)/pAinf(K+)
is a valuation ring, it is an integral domain. Hence, if an element of its fraction field has
valuation greater than or equal to zero, it lies in Ainf(K+)/pAinf(K+), because this is
true for ˆ̄K+ ⊂ ˆ̄K. In particular, elements of valuation zero are units.

Consider the elements

p := (p, p1/p, p1/p2
, ...) ∈ Ainf(K+)/pAinf(K+)

and
1 := (1, ζp, ζp2 , ...) ∈ Ainf(K+)/pAinf(K+)

where ζpn denotes a pnth root of unity. We claim that Ker(θ) is a principal ideal, of
which ξ := [p]− p and [1]−1

[1]1/p−1
are generators. First notice that Ker(θ mod p) is the set

of elements of valuation one, so since ξ clearly has valuation one, it generates this ideal.
Also, in P (K̄+/pK̄+) we have

v

(
1− 1

11/p − 1

)
= v

(
(11/p − 1)p

11/p − 1

)
= (p− 1)v(11/p − 1) = (p− 1)

1
p− 1
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so [1]−1

[1]1/p−1
is also a generator of Ker(θ mod p). This proves the claim modulo p, hence

in general since Ainf(K+) is p-adically complete.
Taking the divided power hull of Ainf(K+) for Ker(θ) and then the p-adic completion

we obtain a “ring of p-adic periods” denoted Acris or Acris(K+). Thus elements of
Acris(K+) are represented by sequences

∑
n xnξ[n], with xn ∈ Ainf(K+) tending to zero

p-adically with n. By construction, we have

Acris(K+) = lim
n

H0
crys(K̄

+/pK̄+|Wn(k),O).

As a Fontaine ring, Acris(K+) is endowed with a canonical filtration (Def. 1.2.4)

F iAcris(K+) = (Ker(θ))[i]

(ith divided power of the ideal Ker(θ)). Define an element of F 1Acris by

t := log([1]) = −
∑
n>0

(n− 1)!(1− [1])[n].

This element plays a very important role in p-adic Hodge theory. By functoriality of
crystalline cohomology, Acris has a Frobenius endomorphism Φ. One usually writes

B+
cris := Acris(K+)[1/p]

and
Bcris := B+

cris[1/t].

The canonical filtration induces a filtration on B+
cris and we define the filtration of Bcris

by
F iBcris := ∪jt

−jF i+jB+
cris.

Since Φ(t) = pt, it follows that the action of Φ extends to Bcris in a natural way.

1.3.2. The schemes we will consider will not generally have smooth lifts to Wn(k), but
they will have smooth lifts to a formal divided power lifting Σ of K+/pK+, defined
as follows. Firstly, making a choice of uniformizer π of K+ determines a presentation
K+ = W (k)[u]/(E(u)), where E(u) is the minimal equation of π over W (k), i.e. E(u)
is an Eisenstein equation of degree e, where e is the ramification index of K+ over
W (k). So Wn(k)[u] is a canonical smooth Wn(k)-lift of K+/pK+ = k[u]/(ue). Taking
the divided power hull for the kernel of the surjection Wn(k)[u]→ K+/pK+, we obtain
Σn = Wn(k)[u] 〈ue〉. It has a lifting of the absolute Frobenius of K+/pK+ defined as
the unique homomorphism sending u to up and restricting to the canonical Frobenius
on Wn(k). Finally we define

Σ := lim
n

Σn+1.
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1.3.3. Let us compute the crystalline cohomology of K̄+/pK̄+ over the p-adic base Σ.
This reduces to computing the kernel of the canonical map

Ainf(K+)⊗Z Σ→ K̄+/pK̄+.

We claim that it is generated by ξ and [π]⊗ 1− 1⊗ u, where

π = (π, π1/p, π1/p2
, ...) ∈ Ainf(K+)/pAinf(K+).

To see this, assume
∑

i xi ⊗ ui lies in the kernel, and write∑
i

xi ⊗ ui =
∑

i

(xi ⊗ 1)(1⊗ u− [π]⊗ 1 + [π]⊗ 1)i

=
∑

i

i∑
j=0

(
i

j

)
(xi · [π]i−j ⊗ 1)(1⊗ u− [π]⊗ 1)j

=
∑

i

xi · [π]i ⊗ 1 +
∑

i

i∑
j=1

(
i

j

)
(xi · [π]i−j ⊗ 1)(1⊗ u− [π]⊗ 1)j .

Since
∑

i

∑i
j=1

(
i
j

)
(xi · [π]i−j ⊗ 1)(1⊗ u− [π]⊗ 1)j obviously maps to zero, we see that∑

i xi · [π]i ⊗ 1 must also map to zero. From the commutative diagram

Ainf(K+) −−−−→ Ainf(K+)⊗Z Σy y
ˆ̄K+ ˆ̄K+

we deduce that
∑

i xi · [π]i ∈ ξ ·Ainf(K+), thereby proving the claim.
We define B+ to be the p-adic completion of the divided power hull of Ainf(K+)⊗Z Σ

for the ideal generated by ξ and [π]− u. We have

B+ = lim
n

H0
crys(K̄

+/pK̄+|Σn,O).

B+ is endowed with the canonical filtration F defined by the divided powers of the ideal
Ker(B+ → ˆ̄K+). Its interpretation in terms of crystalline cohomology also implies that
it is endowed with a Frobenius endomorphism.

1.3.4. Warning. Do not confuse B+ with B+
cris!

1.3.5. Let us turn to the logarithmic case. Define the canonical log-structure on Σn to
be the fine log-structure associated to the pre-log-structure

L(u) : N→ Σn : 1 7→ u.

Composing this with the canonical map Σn → K+/pnK+ defines a pre-log-structure
on the latter, making it into a log-Σn-scheme. The associated log-structure is also the
inverse image of the canonical log-structure on K+ defined

K+ − {0} → K+.
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Similarly, the canonical log-structure on K̄+ is given by

K̄+ − {0} → K̄+

and we endow K̄+/pK̄+ with the inverse image log-structure. If we fix roots of π, then
it is the log-structure associated to the pre-log-structure

M : Q+ → K̄+/pK̄+ : α 7→ πα.

Note that although this pre-log-structure depends on choices of roots of π, its associated
log-structure does not, as the quotient of two choices of roots of π will be a unit of
K̄+/pK̄+. Let

L := Ker(P (M)gp ⊕ L(u)gp →Mgp).

Since P (M) consists of sequences (xn) of non-negative rational numbers such that p ·
xn+1 = xn for all n, we see that P (M)gp consists of sequences (xn) of rational numbers
such that p · xn+1 = xn for all n, i.e. P (M)gp ∼= Q. So we see that L is the kernel of the
map

Q⊕ Z→ Q : (α, m) 7→ α + m

i.e. L consists of pairs (m,−m) ∈ Z2. Note that under the map to Ainf(K+) ⊗Z Σ,
(m · p−n)n ∈ P (M) maps to [π]m⊗ 1 and m ∈ L(u) maps to 1⊗um, so one should think
of (m,−m) as [π]m ⊗ u−m.

Define
B+

log := lim
n

H0
log-crys(K̄

+/pK̄+|Σn,O).

By construction, B+
log is the p-adic completion of the divided power hull of Ainf(K+)⊗Z

Σ ⊗Z Z[L] for the kernel of the canonical surjection onto ˆ̄K+. Suppose
∑

i xi ⊗ ui ⊗ li
lies in the kernel of the canonical map

Ainf(K+)⊗Z Σ⊗Z Z[L]→ ˆ̄K+.

Then we have ∑
i

xi ⊗ ui ⊗ li =
∑

i

xi ⊗ ui ⊗ 1 +
∑

i

xi ⊗ ui ⊗ (li − 1)

so
∑

i xi⊗ ui ∈ (ξ, [π]− u) ·Ainf(K+)⊗Z Σ. Hence we deduce that
∑

i xi⊗ ui⊗ li lies in
the ideal generated by ξ, [π]− u and l − 1 as l ranges over the elements of L.

Proposition 1.3 (Kato). Every choice of sequence of roots of π determines an isomor-
phism

B+
log/pnB+

log ' A+
cris/pnA+

cris 〈X〉

where A+
cris/pnA+

cris 〈X〉 is a divided power polynomial ring in one indeterminate X over
the ring A+

cris/pnA+
cris.
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Proof. It suffices to show that A+
cris/pnA+

cris 〈X〉 has the universal property. Make

C := Ainf(K+)/pnAinf(K+)
[
X,

1
1 + X

]
in to a Wn[u]-algebra by sending u to [π] · (1 + X)−1. If (U ↪→ T ) is an affine object of
(K̄+/pK̄+|Σn)log-crys, then define a Wn[u]-algebra map

C → OT

extending the canonical map θT : Ainf(K+)/pnAinf(K+)→ OT by sending X to θT ([π]) ·
u−1 − 1 (this element exists in OT by Lemma 1.1). If we are given another map

α : C → OT

then by Wn[u]-linearity we must have α([π] · (1 + X)−1) = u. But

u = α([π] · (1 + X)−1) = α([π]) · (1 + α(X))−1 = θT ([π]) · (1 + α(X))−1

so α(X) = θT ([π]) · u−1− 1, hence the map is unique. Taking the divided power hull for
the kernel of the map in the case OT = K̄+/pK̄+ it is clear that we obtain the ring

A+
cris/pnA+

cris 〈X〉
[

1
1 + X

]
∼= A+

cris/pnA+
cris 〈X〉 .

Let us endow this ring with the pre-log-structure

P (M)⊕ L(u)→ A+
cris/pnA+

cris 〈X〉 :
(
(m(i))i∈N, n

)
7→ [π]m(0) ⊗ un

where we write u for its image [π] · (1 + X)−1 in A+
cris/pnA+

cris 〈X〉, and M is the log-
structure of K̄+/pK̄+ defined above. We need to check that it belongs to the log-
crystalline site, i.e. the closed immersion associated to the surjective homomorphism

A+
cris/pnA+

cris 〈X〉 → K̄+/pK̄+

is exact. For this it suffices to check that the elements l ∈ L := Ker(P (M)gp⊕L(u)gp →
Mgp) are units. But from the computation of L preceding the statement of the propo-
sition, we know that l = (1 + X)m for some integer m, hence everything follows.

So one should think of X as [π]⊗ u−1 − 1. B+
log is also endowed with the canonical

filtration F defined as the divided power filtration of the ideal F 1B+
log := Ker(B+

log →
ˆ̄K+) and a Frobenius endomorphism. Define the monodromy operator N on B+

log as the
unique Acris(K+)-linear derivation satisfying

N(X) = 1 + X.
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1.3.6. There is another ring B+
dR constructed by Fontaine, defined

B+
dR := lim

n

(
A+

cris(K
+)⊗W (k) K

)
/In+1

where I := Ker(A+
cris(K

+)⊗W (k) K → ˆ̄K). It is know [8] that B+
dR is a discrete valuation

ring of uniformizer t and residue field ˆ̄K, and that the natural map A+
cris(K

+)⊗W (k)K →
B+

dR is injective. We have gri
I B+

dR
∼= ˆ̄K(i) (Tate twist), where we use the logarithm

log : Zp(1)→ A+
cris(K

+) to identify ˆ̄Kti with ˆ̄K(i).

Proposition 1.4 (Fontaine). Let α ∈ Q. If p > 2, then

(i) tp−1 ∈ p · F 1A+
cris(K

+)

(ii) t·pmax(vp(α),0)

[1]α−1 ∈ A+
cris(K

+).

Proof. For (i), first recall that 1 − [1] = u · ξ · (1 − [1]1/p) for some unit u ∈ Ainf(K+).
Since (1− 11/p)p−1 ∈ Ainf(K+)/pAinf(K+) is an element of valuation one, it follows that
it lies in the ideal generated by ξ. Hence (1−1)p−1 lies in the ideal generated by ξp. But
we have ξp = p!ξ[p] in A+

cris(K
+), so we deduce that (1 − [1])p−1 ∈ p · A+

cris(K
+). Now,

we have

t = −
p∑

n=1

(n− 1)!(1− [1])[n] −
∞∑

n=p+1

(n− 1)!(1− [1])[n]

and the second sum is divisible by p, so it suffices to consider ∞∑
n=p+1

(n− 1)!(1− [1])[n]

p−1

=
∑

j1+...+jp=p−1

(p− 1)!(1− [1])
∑

i·ji

j1! · · · jp!
∏p

i=1 iji
.

Here each summand has p-adic valuation jp in the denominator and at least
[∑

i·ji

p−1

]
≥

jp + 1 in the numerator. This proves (i).
For (ii), we separate in two cases:

I. vp(α) ≥ 0

II. vp(α) < 0.

In case I, first assume that α ∈ Z. Then [1]α−1 ∈ Ker(Acris(K+)→ ˆ̄K+), so the divided
power series log([1]α) exists and converges to α · t. We have

[1]α − 1 = exp(α · t)− 1 = α · t ·
∑
n>0

(α · t)n−1

n!

and
tn−1

n!
=

pqn

n!
qn!(tp−1/p)[qn]trn
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where n − 1 = qn(p − 1) + rn and qn =
[
n− 1
p− 1

]
≥ vp(n!). So uα :=

∑
n>0

(α · t)n−1

n!
converges to a unit of A+

cris(K
+) for all α ∈ Z. Hence assertion (ii) in this case. If α = x

y

with x, y integers and vp(y) = 0, then [1]x−1
[1]α−1 ∈ A+

cris(K
+), so assertion (ii) holds in this

case.
In case II, write α = x

ypn with x, y coprime integers and vp(x/y) = 0. By case I we

have ([1]x − 1)−1 ∈ t−1 · A+
cris(K

+), and [1]x−1
[1]α−1 ∈ A+

cris(K
+), hence assertion (ii) in this

case.

Corollary 1.1. gri B+
cris
∼= ˆ̄K(i)

Proof. We know that gri B+
cris is generated by

(
[1]−1

[1]1/p−1

)i
as a gr0 B+

cris = ˆ̄K-module.

Since (1]1/p − 1) maps to p
1

p−1 x in ˆ̄K+ for some unit x, we deduce that gri B+
cris is

generated by ([1] − 1)i. In the proof of the last proposition, we have seen that t =
v · ([1]−1) for some unit v ∈ 1+ t ·A+

cris(K
+), so we deduce that gri B+

cris is generated by
ti as a ˆ̄K-module. Finally the logarithm log : Zp(1) → A+

cris(K
+) identifies Zp(i) with

the Zp-submodule of A+
cris(K

+) generated by ti.

Proposition 1.5. Every choice of uniformizer π ∈ K+ determines a Gal(K̄/K)-equivariant
isomorphism of ˆ̄K-modules for all n

grn B+
log
∼= grn B+[1/p] ∼= ⊕i+j=nEi · ˆ̄K(j)

where E is an Eisenstein equation for π and i, j ∈ N.

Proof. The proof for B+ works for B+
log, so consider the former. Making a choice of

uniformizer π determines an Eisenstein equation E ∈ Σ and defines a surjection Σ→ K+.
Consider the ring

B+⊗̂ΣK+.

It is a filtered B+ module via the canonical map, and clearly

gr0(B+⊗̂ΣK+) = ˆ̄K+.

Hence for all n there is a canonical surjection

grn B+[1/p] ∼= (grn B+[1/p])⊗ ˆ̄K+ gr0(B+⊗̂ΣK+)→ grn(B+⊗̂ΣK+)[1/p].

Since the completion of (B+⊗̂ΣK+)[1/p] for its filtration is clearly B+
dR, they have the

same graded, i.e.
grn(B+⊗̂ΣK+)[1/p] ∼= ˆ̄K(n).

So the surjection grn B+[1/p]→ grn(B+⊗̂ΣK+)[1/p] admits a section, namely the canon-
ical map

ˆ̄K(n) ∼= grn B+
cris → grn B+[1/p].
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Now, if E is an Eisenstein equation for π, then we have an exact sequence

0 −−−−→ (E · Σn)DP −−−−→ Σn −−−−→ K+/pnK+ −−−−→ 0

which, tensored with B+ yields and exact sequence

0 −→ (E ·B+/pnB+)DP −→ B+/pnB+ −→ B+ ⊗Σn K+/pnK+ −→ 0

Now an easy induction on r shows that we have split short exact sequences for all r

0 −→⊕i+j=r,i>0E
i · grj(B+⊗̂ΣK+)[1/p] −→grr B+[1/p] −→grr(B+⊗̂ΣK+)[1/p] −→0

as claimed.

2 Almost ring theory

The basic ideas of almost ring theory were discovered by Faltings and developed in his
papers on p-adic Hodge theory. More recently, a book devoted to the subject has been
written by O. Gabber and L. Ramero [9], thereby laying comprehensive foundations
for Faltings’ approach to p-adic Hodge theory. We begin by recalling the necessary
definitions and theorems and then apply them to the study of Fontaine rings.

2.1 Reminder on almost ring theory

2.1.1. The basic object of study in almost ring theory is the category of modules on
rings Λ (commutative with unity) together with an ideal m satisfying m2 = m. We
assume further that m is the countable union of principal ideals (xα), indexed by an
infinite additive monoid Γ ⊂ Q>0, such that xα is not a zero divisor for all α ∈ Γ and
furthermore for all α, β ∈ Γ we have

xα · xβ = u · xα+β

for some unit u ∈ Λ.
By localizing the category of Λ-modules at the subcategory of elements annihilated

by m, one obtains the category of almost Λ-modules. We’ll say that two Λ-modules
M,N are almost isomorphic if they are isomorphic as almost Λ-modules, and we write
this as M ≈ N . A morphism M → N of the category of Λ-modules is represented by a
diagram of real maps of Λ-modules

M N

≈
x ≈

y
M ′ −−−−→ N ′

where the vertical maps are descend to almost isomorphisms.
We can also define the category of almost Λ-algebras (commutative with unity). This

is done by formally inverting the homomorphisms of Λ-algebras A→ B whose kernel and
cokernel are annihilated by m. In this category morphisms admit a similar description
as the category of almost Λ-modules above, except of course that we require all maps to
be homomorphisms of Λ-algebras.
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2.1.2. The motivating example is the case Λ = K̄+, Γ = Q>0, and xε = pε for all
ε ∈ Q>0. An example of almost isomorphism of K̄+-modules is given by the canonical
homomorphism of differentials

ΩK+
∞/K+ ⊗K+

∞
K̄+ → ΩK̄+/K+

where K+
∞ denotes the normalization of K+ in the extension of K generated by all

p-power roots of unity.

2.1.3. We will always refer to morphisms in these almost categories with the adjective
“almost”, e.g. “almost homomorphism”, etc. So if we do not use the adjective “almost”
we will be referring to usual real morphisms.

2.1.4. Let A be a Λ-algebra. An A-module M is

• almost flat if the functor (−)⊗A M is almost exact

• almost faithfully flat if the functor (−)⊗A M is almost exact and faithful

• almost projective if Ext1A(M,N) ≈ 0 for any A-module N

• almost finitely generated (resp. almost finitely presented) if for all α ∈ Γ there
exists a finitely generated (resp. finitely presented) A-module N , together with
maps of A-modules fα : M → N and gα : N →M such that fα ◦gα = gα ◦fα = xα

• an almost projective module of finite rank if its is almost projective, almost finitely
generated, and there is an integer r such that ∧r+1

A M ≈ 0

• an almost projective module of rank r if it is an almost projective module of finite
rank with ∧r+1

A M ≈ 0 and L := ∧r
AM is an almost invertible A-module, i.e. the

canonical map L⊗A L∗ → A is an almost isomorphism, where N∗ := HomA(N,A)
for any A-module N .

By [9] Lemma 3.12 almost flatness, almost faithful flatness, and almost projectivity
are all preserved by arbitrary base change. By [9] Prop. 2.4.18, every almost finitely
generated projective A-module is almost finitely presented and every almost finitely
presented flat A-module is almost projective. Also, by [9] Prop. 4.3.27, for every almost
projective A-module M of finite rank, say ∧r+1

A M ≈ 0, there exists a decomposition

A ≈
r∏

i=0

Ai

such that M ⊗A Ai is an almost projective Ai-module of rank i.

2.1.5. A homomorphism of Λ-algebras A→ B is

• almost unramified if it makes B into an almost projective B ⊗A B-module

• almost étale if it makes B into an almost flat and almost unramified A-algebra
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• an almost étale covering if it is almost étale and makes B into an almost projective
A-module of finite rank.

As in the classical case, almost étale coverings form a category (see [9], §3.1).

Lemma 2.1. (i) Almost étale coverings are stable by base change.

(ii) If A→ B → C are homomorphisms such that A→ B and the composition B → C
are almost étale coverings, then so is B → C.

(iii) An almost projective module of finite rank which is everywhere of non-zero rank is
almost faithfully flat. In particular, an almost étale covering which is everywhere
of non-zero rank is almost faithfully flat.

Proof. By [9] Lemma 3.1.2, assertions (i) and (ii) are true for almost étale homomor-
phisms. For (i), note that the notions of almost flatness, almost finite generation, and
almost finite presentation are all stable by base change. Hence almost finitely generated
projectivity is also stable by base change. Finally, using that taking exterior powers
commutes with base change we obtain that almost projectivity of finite rank is stable
by base change, proving (i).

For (ii), we need to check that C is an almost projective B-module of finite rank.
Since B is almost unramified over A, by [9] Cor. 3.1.9, the canonical exact sequence

0 −−−−→ I −−−−→ B ⊗A B −−−−→ B

splits to define an almost isomorphism of B⊗AB-modules B⊕I ≈ B⊗AB. So I is almost
finitely generated as a B ⊗A B-module, and by transitivity of almost finite generation
([9] Lemma 2.4.7) I is also almost finitely generated as a B-module. Tensoring over B
with the almost flat B-module C we obtain an almost isomorphism

C ⊕ C ⊗B I ≈ C ⊗A B

hence C ≈ C⊗A B/C⊗B I. Note that C⊗A B is an almost finitely presented B-module
because A→ C is an almost étale covering. Also, C ⊗B I is almost finitely generated as
a C ⊗A B = C ⊗B (B ⊗A B)-module, so it is almost finitely generated as a B-module.
By [9] Lemma 2.3.18, it follows that C is almost finitely presented as a B-module. Since
C is also an almost étale (hence almost flat) B-algebra, we deduce that it is an almost
projective B-module. Finally, for all i the canonical map ∧i

AC → ∧i
BC is obviously

surjective, hence C is an almost projective B-module of finite rank, as required.
For (iii), it suffices to show that an almost projective A-module P of non-zero constant

rank is faithfully flat. By [9] Prop. 2.4.28, we know that the almost faithful flatness of an
A-module M is equivalent to the almost surjectivity of the canonical map M⊗AM∗ → A.
Write

EP/A := Im(P ⊗A P ∗ → A).

It is an ideal. We claim that E∧i
AP/A → EP/A is almost injective for all i > 0. To see this,

let B = A/EP/A. By [9] Prop. 2.4.28, we have EP⊗AB/A = EP/A ·B = 0, so P ⊗A B ≈ 0
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because P is almost projective. Hence E∧i
AP/A · B = E∧i

B(P⊗AB)/B ≈ 0 and the claim
follows. Now, since ∧i

AP is almost invertible for some i > 0, we have E∧i
AP ≈ A and

this completes the proof.

2.1.6. The behaviour of almost étale morphisms of Fp-algebras under the Frobenius
endomorphism is studied in some detail in [9]. We will need the following

Theorem 2.1 (Gabber-Ramero). Let A → B be an almost étale homomorphism of
Fp-algebras. Then the commutative diagram

A −−−−→ B

Φ

y Φ

y
A −−−−→ B

is almost cocartesian, where Φ denotes the (absolute) Frobenius endomorphism. In par-
ticular, the relative Frobenius of B over A is an almost isomorphism.

This is Theorem 3.5.13 of [9]. We will need the following corollary.

Corollary 2.1. If A → B is an almost étale homomorphism of Fp-algebras, then the
induced homomorphism of Witt vectors

Wn(A)→Wn(B)

is almost étale.

Proof. The proof is the same as the classical case [14]. Let us reproduce it here. By
[9] Cor. 3.2.11 (iii) an almost flat lift of an almost étale homomorphism is unique,
hence it suffices to prove that the above homomorphism is almost flat. For this, we
use the filtration of the Witt vectors given by the powers of the Verschiebung V (cf.
[14] 0., Prop. 1.5.8). For any ring A, define V iWn(A) to be the image of Wn(A)
under the i-fold iteration of the Verschiebung V . This defines a filtration of Wn(A) and
set grV Wn(A) := ⊕i≥0V

iWn(A)/V i+1Wn(A). If A is a ring of characteristic p, then
V Wn(A) is an ideal with a canonical divided power structure ([14], 0., 1.4.3) and in
particular is nilpotent, so this filtration is finite.

By [14] 0., 1.3.15, for any ring A of characteristic p we have canonical isomorphisms

grV Wn(A) ∼= ⊕m<nΦm
∗ (A)

where Φm denotes the m-fold iteration of Φ and Φm
∗ (A) denotes A considered as a module

over itself via the map Φm. From the theorem it follows that we have a canonical almost
isomorphism

B ⊗A grV Wn(A) ≈ grV Wn(B).

By the almost version of the standard flatness criterion ([3] Ch. 3, §5, no. 2, Thm. 1),
the almost flatness of Wn(A)→Wn(B) follows.
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2.1.7. If R is a ring and X is a finite set, then we write R×X for the product
∏

x∈X Rx,
where Rx = R for all x ∈ X. We say that an almost étale homomorphism A → B of
Λ-algebras is a formal almost Galois covering of group G if G is a finite group acting by
A-algebra automorphisms on B such that the canonical map

B ⊗A B → B×G

induced by the maps B → B×G : b 7→ (b, b, ..., b) and B → B×G : b 7→ (g(b))g∈G, is an
almost isomorphism.

We say that an almost étale homomorphism A→ B of Λ-algebras is an almost Galois
covering if it is a formal almost Galois covering and in addition is almost faithfully flat.

Note that a (formal) almost Galois covering is preserved under arbitrary base change.

Proposition 2.1. Let A→ B be a formal almost Galois covering of group G, and M a
B-module with semi-linear G-action. Then

(i) MG ⊗A B ≈ M

(ii) H i(G, M) ≈ 0 for all i 6= 0.

Proof. Because B is an almost projective B ⊗A B-module, there exists a B ⊗A B-linear
homomorphism B → B ⊗A B which is a section of the canonical multiplication map.
This gives a real map m⊗Λ B → B⊗A B or equivalently B → HomΛ(m, B⊗A B). Then
the image e of 1 in HomΛ(m, B⊗A B) is an idempotent. Moreover, for all ε ∈ Γ we may
consider xεe as an element of B ⊗A B, say xεe =

∑
i xi ⊗ yi. Since A→ B is an almost

Galois covering, it follows that B ⊗A B is almost isomorphic to
∏

g∈G g(e) · B with G
acting transitively on the g(e). This implies that

Tr(xεe) :=
∑
g∈G

g(xεe) = xε

and if g 6= id then g(xεe) maps to zero in B. This allows us to construct a map

s : M → B ⊗A MG

m 7→
∑

i

xi ⊗ Tr(yim).

We claim that composition either way with the natural map B ⊗A MG → M is multi-
plication by xε. One way we have

s(m) =
∑

i

∑
g∈G

xi ⊗ g(yim) =
∑

i

xi ⊗ yim +
∑
g 6=id

(∑
i

xi ⊗ g(yi)

)
· (1⊗ g(m))

= (xεe)(1⊗m) +
∑
g 6=id

g(xεe) · (1⊗ g(m)).
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So s(m) maps to zero in xε in B since g(xεe) maps to zero in B for all g 6= id. Going
the other way, let z ⊗m ∈ B ⊗A MG. Then

s(z ·m) =
∑

i

xi ⊗ Tr(yiz) =
∑

i

xi Tr(yiz)⊗m =
∑
g∈G

(∑
i

xi · g(yi)

)
· (g(z)⊗m)

and since
∑

i xi · g(yi) = 0 for g 6= id, it follows that s(z ·m) =
∑

i xiyiz ⊗m = xεm, as
required. This proves the claim and therefore also (i).

For (ii), it suffices to show that for all ε ∈ Γ we have xε = Tr(b) for some b ∈ B.
Consider the A-ideal

I := {Tr(b)|b ∈ B} .

By the above, we have xε =
∑

i xi Tr(yi) ∈ I ·B. Taking norms we find

NB/A(m ·B) ⊂ NB/A(I ·B) ⊂ I

and since mn = m for all n > 0 we deduce that m ⊂ I.

2.1.8. Let A be a Λ-algebra and I ⊂ A an ideal such that I2 = 0.

Theorem 2.2 (Faltings). The category of almost étale coverings of A/I is equivalent to
the category of almost étale coverings of A.

For the proof, see [7] 3. Theorem. More generally, we have ([9] Thms. 3.2.18, 3.2.28)

Theorem 2.3 (Gabber-Ramero). The category of almost étale homomorphisms of A/I
is equivalent to the category of almost étale homomorphisms of A.

Proposition 2.2. The equivalence in Theorem 2.3 preserves almost faithful flatness.

Proof. Following [9], one defines a functor from almost Λ-modules to real Λ-modules by

M  M! := m⊗Λ M.

Since m is a flat Λ-module, this functor is exact and M! ≈ M . Similarly, one defines a
functor from almost Λ-algebras to real Λ-algebras by the exact sequence

0 −−−−→ m −−−−→ Λ⊕B! −−−−→ B!! −−−−→ 0

where the map m → Λ ⊕ B! is given by x 7→ (x,−x ⊗ 1), and Λ ⊕ B! is given the ring
structure (x, a) · (y, b) := (x · y, x · b + y · a + a · b). Then B!! ≈ B. Moreover, A→ B is
almost faithfully flat if and only if A!! → B!! is almost faithfully flat ([9] Remark 3.1.3
(ii)). Finally note that if I ⊂ A is an ideal, then I! ⊂ A!! is an ideal and A!!/I!

∼= (A/I)!!.
Since in our case A!! → B!! is a nilpotent thickening of a faithfully flat homomorphism,
it suffices to show that A!! → B!! is flat. By the usual criterion for flatness, it suffices to
show that TorA!!

1 (B!!, (A/I)!!) = 0. But this follows from [9], Prop. 2.5.34.
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Corollary 2.2. If A → B is an almost étale covering, then it is a (formal) almost
Galois covering of group G if and only if A/I → B/I · B is a (formal) almost Galois
covering of group G.

Proof. Since almost faithful flatness is preserved under the equivalence, it suffices to
check that formal almost Galois coverings are preserved. Since the functor ⊗B(B/I ·B)
is an equivalence of the category of almost étale coverings of B with the category of
almost étale coverings of B/I · B, it follows that the canonical map B ⊗A B → B×G is
an almost isomorphism if and only the same is true after tensor product ⊗B(B/I · B),
hence the claim.

We refer to [9] for an in-depth study of almost ring theory.

2.2 Almost purity

2.2.1. Fix c ∈ {1, π} ⊂ K+, and define

O(c) := K+[T1, ..., Tr, T
±1
r+1, ..., T

±1
d+1]/(T1 · · ·Tr − c).

Following Faltings, we say that a K+-algebra R is small if there is an étale map

O(c)→ R.

Every smooth (resp. semi-stable) K+-scheme has a Zariski open covering by small
affines with c = 1 (resp. c = π). Note that with these choices of c, R is a regular ring; in
particular, it is a finite product of integrally closed domains, and we shall assume that
R is an integrally closed domain. There is a natural fine log-structure on R associated
to the pre-log-structure

Nr → R : (n1, ..., nr) 7→
r∏

i=1

Tni
i .

This makes Spec(R) → Spec(K+) into a a log-smooth morphism, where Spec(K+) is
given the trivial (resp. canonical) log-structure for c = 1 (resp. c = π).

2.2.2. Fix c ∈ {1, π}. For any n ∈ N, let Kn = K[X]/(Xpn − c). Let K+
n denote the

normalization of K+ in Kn. If R is a small K+-algebra, then we define

Rn := R⊗O(c) K+
n [T 1/pn

1 , ..., T
1/pn

d+1 ].

Note that the normalization of K+
n in Rn is unramified over K+

n because R is small. If
K ⊂ L is a finite extension, then write Ln = L ·Kn and let L+

n be the normalization of
K+ in Ln. Define

O(c)n,L := O(c)⊗K+ L+
n [X1, ..., Xd+1]/(Xpn

1 − T1, ..., X
pn

d+1 − Td+1).

Lemma 2.2. O(c)⊗K+ L+
n and O(c)n,L are integrally closed domains.
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Proof. Firstly note that O := O(c) is a regular integral domain, in particular it is a Krull
domain. Note that if the ring

On := O(c)[X1, ..., Xd+1]/(Xpn

1 − T1, ..., X
pn

d+1 − Td+1)

is normal, then it contains O(c)n,K because of the relation
∏r

i=1 Ti = c. So it suffices to
show that On is normal, because it is clear that it is integral. Since O is a Krull ring
and On is a finite free O-module, by [3] Ch. 7, §4, no. 2, Thm. 2, it follows that

On = ∩height(p)=1(On)p

where the intersection is taken over the localizations at all prime ideals p ⊂ O of height
one. So by [3] Ch. 5, §1, no. 2, Prop. 8, it suffices to show that each (On)p is
integrally closed. Hence we reduce to the case O is a discrete valuation ring. If O is
of equal characteristic zero, then On is étale over O, hence normal. If O is of mixed
characteristic, then π is a uniformizer for O and if c = π then we must have π = u · Ti

for some unit u and 1 ≤ i ≤ r. It suffices to show that

O′ = O[X]/(Xpn − Tj)

is normal for all j. If j = i and c = π, then the equation Xpn − Ti = 0 is an Eisenstein
equation, hence O′ is a discrete valuation ring ([17] Ch. I, §6, Prop. 17) and in particular
is normal. If j 6= i or c = 1, then Tj is a unit of O. Let F (X) = Xpn − Tj , and let A be
the normalization of O in Q(O′) (the fraction field of O′). Let c denote the annihilator
of A/O′. Then we have the formula ([17] Ch. III, §6, Cor. 1):

c = (F ′(T 1/pn

j )) ·D−1

where
D−1 =

{
y ∈ Q(O′) : Tr(xy) ∈ O ∀x ∈ A

}
is the codifferent. Now (F ′(T 1/pn

j )) = (pn) so it suffices to show that D ⊂ (pn). For

this we compute traces, so consider the conjugates of T
k/pn

j in a suitably large Galois

extension of Q(O). These are given by multiples ζ · T k/pn

j , where ζ is some pnth root of
unity. Hence for all 0 < k < pn we have

Tr(T k/pn

j ) = T
k/pn

j

pn−1∑
l=0

ζ l = 0.

So if
∑pn−1

k=0 akT
k/pn

j denotes a typical element of Q(O′) with ak ∈ Q(O) then

Tr

(
pn−1∑
k=0

akT
k/pn

j

)
= pna0

so D = (pn). This proves that O′ is integrally closed, hence so is On.
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Now, since O(c)n,L is an integral domain, it suffices to show that it is normal. Since
Ln is a finite extension of Kn and normality is stable by étale localization, up to making
a finite unramified extension of Kn we may assume that Ln is a totally ramified extension
of Kn, in particular L+

n
∼= K+

n [X]/(f), where f is an Eisenstein polynomial ([17] Ch.
I, §6, Prop. 18). Since K+

n is a principal ideal domain, L+
n is a free K+

n -module,
and hence O(c)n,L is a finite free On-module. Since On is a Krull ring, by the same
reasoning as above we reduce to the case On is a discrete valuation ring. If On is of
equal characteristic zero, then O(c)n,L is étale over On, hence normal. If On is of mixed
characteristic, then π1/pn

is a uniformizer for On and O(c)n,L
∼= On[X]/(f). Since f is

an Eisenstein equation, by [17] Ch. I, §6, Prop. 17, O(c)n,L is a discrete valuation ring,
in particular a normal ring.

For R small, define Rn,L := R⊗O(c) O(c)n,L.

Proposition 2.3. Assume K∩R = K+. If R is an integral domain and K+ is integrally
closed in R, then Rn,L is an integrally closed domain for all n and L.

Proof. (Ramero) Since Rn,L is étale over O(c)n,L it follows that R is a normal ring. So
it suffices to show that Rn,L is an integral domain.

We first show that S := R ⊗K+ K+
n is an integral domain. Note that since K+ is

integrally closed in R we have Q(R) ∩Kn = K. Now, the kernel of the canonical map

S → R ·K+
n

is contained in the kernel of

Q(R)⊗K+ K+
n → Q(R) ·Kn

and Q(R)⊗K Kn is a finite dimensional Q(R) vector space of dimension [Kn : K]. Since
Q(R)∩Kn = K, the same is true of Q(R) ·Kn, hence the map is an isomorphism. This
proves that S is an integral domain.

We now show that Rn = Rn,K is an integral domain. It suffices to show that its
spectrum is connected. Since Rn is finite flat over S the image of a connected component
of Rn under the morphism f : Spec(Rn)→ Spec(S) is both open and closed, hence equal
to S because f is generically finite étale (in particular every connected component of
Rn dominates S). So it suffices to show that f has a single connected fibre. Let q be a
generic point of Spec(S/πS), considered as a prime ideal of S, and let p = q ∩O, where
O := O(c) ⊗K+ K+

n . Let Sh
q resp. Oh

p denote the henselization of S at q resp. O at p.
Since the prime ideals p and q have height one, these are discrete valuation rings. Let
On := O(c)n. The extension

Sh
q → Oh

p

is finite étale of degree f (say) and the extension

Oh
p → Oh

n,p
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is totally ramified of degree e (say). So the composite Sh
q ·Oh

n,p is an extension of Sh
q of

degree n = e · f . On the other hand, the canonical map

Sh
q ⊗O Oh

n,p → Sh
q ·Oh

n,p

is a surjective map of free Sh
q -modules of same rank, hence it is an isomorphism. Thus,

Sh
q ⊗O Oh

n,p
∼= Sh

q · Oh
n,p is connected, and so (since Sh

q is a henselian noetherian local
ring) has connected special fibre

(Sh
q ⊗O Oh

n,p)/q · (Sh
q ⊗O Oh

n,p) ∼= (Sq/q)⊗O On.

This implies that the fibre of Rn = S ⊗O On over q is connected, hence so is Rn.
Finally, we show that Rn,L is an integrally closed domain. The surjective map

Rn,L
∼= Rn ⊗K+

n
L+

n → Rn · L+

has kernel contained in the kernel of the map

Q(Rn)⊗Kn Ln → Q(Rn) · L

where Q(A) denotes the fraction field of A for any integral domain A. Since K+
n is

integrally closed in Rn, it follows that Ln ∩ Q(Rn) = Kn, hence Q(Rn) · L is a Q(Rn)
vector space of dimension [Ln : Kn]. Since the same is true for Q(Rn)⊗Kn Ln, it follows
that they are isomorphic, and hence Rn ⊗K+

n
L+

n
∼= Rn · L+ is an integral domain.

2.2.3. Define
K+
∞ :=

⋃
n∈N

K+
n .

We will now consider the almost ring theory of the pair (K+
∞,m∞), where m∞ ⊂ K+

∞
is the maximal ideal. Note that there is a sequence of rational numbers εn = 1

pn(p−1)

occuring as p-adic valuations of elements of K+
∞, and tending to zero with n. Namely

εn = vp(ζpn+1 − 1), where ζpn+1 denotes a primitive pn+1th root of unity. Since K+
∞ is a

valuation ring we see that we indeed have m2
∞ = m∞.

2.2.4. Let S be a finite integral R-algebra. We say that S is étale in characteristic zero
if RK → SK is étale. For all n, let S∞ be the normalization of R∞ ⊗R S, where

R∞ :=
⋃
n∈N

Rn.

The following striking theorem is the key input we will use. It is usually refered to as
the Almost Purity Theorem.

Theorem 2.4 (Faltings). If S is a finite integral normal R-algebra which is étale in
characteristic zero, then the canonical homomorphism

R∞ → S∞

is an almost étale covering of K+
∞-algebras.
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The proof of this theorem is given in [7]. If R is assumed to be classically smooth
(i.e. c = 1), then a slightly more general statement has been proven in [10].

We define
R̃ := R⊗K+ K̄+

and
R̃∞ := R∞ ⊗K+

∞
K̄+.

If K+ is integrally closed in R and p is not a unit in R, then by Proposition 2.3 these
are integrally closed domains. If S is a finite integral normal R̃-algebra which is étale
in characteristic zero, then we may write S as the direct limit of finite integral normal
R ⊗K+ L+-algebras, as L ranges over the finite field extensions of K. In this way we
see that if we define S∞ to be the normalization of R∞ ⊗R S, then R∞ → S∞ is the
filtering inductive limit of almost étale coverings. Since this homomorphism factors over
R̃∞ → S∞, then by Lemma 2.1 we deduce that R̃∞ → S∞ is the filtering inductive limit
of almost étale coverings.

Corollary 2.3. If S is a finite integral normal R̃-algebra which is étale in characteristic
zero, then the (absolute) Frobenius is surjective on S∞/pS∞.

Proof. (Faltings) If S = R, then by étaleness over

O(c)∞,K̄ := colimn,L O(c)n,L

it suffices to show that the Frobenius is surjective on the latter. But the latter is a
quotient of K̄+/pK̄+[T p−∞

i ] and every element of this ring has the form∑
vNT

n1/pm1

1 · · ·Tne/pme

e =
(∑

v
1/p
N T

n1/pm1+1

1 · · ·Tne/pme+1

e

)p

so the claim in this case is clear.
Using that the relative Frobenius of an almost étale homomorphism is almost isomor-

phism ([9] Thm. 3.5.13) we deduce that the Frobenius is almost surjective on S∞/pS∞.
This implies that for all x ∈ S∞, there exists y, z ∈ S∞ such that p1/2x = yp + pz.
But then yp = p1/2(x − p1/2), so y = p1/2pw for some w ∈ S∞ because S∞ is integrally
closed, and hence x = wp + p1/2z. Then same trick shows that z = up + p1/2v and so
x ≡ (w + p1/2pu)p mod p.

2.3 Almost étale coverings of Fontaine rings

By Corollary 2.3 we may, following Fontaine, construct the Fontaine rings

A+
∞ := lim

n
H0

crys(R̃∞/pR̃∞|Σn,O)

A+
∞(S) := lim

n
H0

crys(S∞/pS∞|Σn,O)
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where S is a finite integral normal R̃-algebra, étale in characteristic zero. Then the
canonical homomorphism

A+
∞/pnA+

∞ → A+
∞(S)/pnA+

∞(S)

is a nilpotent thickening of the almost étale homomorphism R̃∞/pR̃∞ → S∞/pS∞ and
we will show that it is an almost étale homomorphism. We first set up the almost ring
theory in this context.

2.3.1. We will consider the almost ring theory of the ring Ainf(K+) = W (P (K̂+/pK̂+))
with respect to the ideal a, union of the principal ideal [p]ε for all positive rational
exponents ε > 0. Note that [p]ε is not a zero divisor: this is true modulo p since
P (K̄+/pK̄+) is a valuation ring (hence an integral domain) and so in general since
Ainf(K+) is p-torsion free, being the ring of Witt vectors of a perfect ring of characteristic
p.

2.3.2. Let R be a small K+-algebra and S a finite integral R̃-algebra. We define the
canonical log-structure Lcan(S) on S by

Lcan(S) : (S[1/p])∗ ∩ S ⊂ S.

For S = R̃, Lcan(R̃) is the log-structure associated to the pre-log-structure

M∞ : Q+ ⊕ Nr → R̃ : (α, (n1, .., nr)) 7→ α ·
r∏

i=1

Tni
i .

Let i : Spec(S/pS) ↪→ Spec(S) be the canonical map. Define a pre-log-structure on S/pS
by

L∞(S/pS) :=
{

l ∈ i∗Lcan(S)|∃n ∈ N : lp
n ∈ Im

(
Lcan(R̃)→ S/pS

)}
By taking inductive limits, this defines a log-structure on S∞/pS∞ denoted L∞(S∞/pS∞).

Proposition 2.4. (i) L∞(R̃∞/pR̃∞) is the log-structure associated to the log-structure

Q+ ⊕ N[1/p]d+1 → R̃∞/pR̃∞ : (α, (n1, .., nd+1)) 7→ α ·
d+1∏
i=1

Tni
i .

(ii) L∞(S∞/pS∞) is the inverse image of the log-structure L∞(R̃∞/pR̃∞).

Proof. Since L∞(R̃∞/pR̃∞) is obtained from i∗Lcan(R̃) by taking p-power roots of its
elements, (i) follows from the description of i∗Lcan(R̃) given above and the fact that the
Frobenius is surjective on R̃∞/pR̃∞.

Since L∞(S∞/pS∞) is obtained by taking p-power roots of i∗Lcan(R̃) and the Frobe-
nius is surjective on R̃∞/pR̃∞, (ii) is clear.
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2.3.3. Let R be a small integral K+-algebra and let T be a p-adically complete loga-
rithmic Σ-algebra such that R/pR is a T -algebra. In practice we will have T = Σ or T
will be a formal Σ-lift of R/pR. For all n ≥ 1, write Tn := T/pnT . We assume that the
log-structure of T is integral and quasi-coherent and we denote the monoid generating it
by L(T ). Let S be a finite integral normal R̃-algebra étale in characteristic zero. Define

A+
log,∞,T := lim

n
H0

log-crys(R̃∞/pR̃∞|Tn+1,O)

A+
log,∞,T (S) := lim

n
H0

log-crys(S∞/pS∞|Tn+1,O).

Proposition 2.5. The canonical homomorphism

A+
log,∞,T /pnA+

log,∞,T → A+
log,∞,T (S)/pnA+

log,∞,T (S)

is an almost étale homomorphism.

Proof. Firstly, by Corollary 2.1 the canonical homomorphism

Wn(R̃∞/pR̃∞)→Wn(S∞/pS∞)

is almost étale. By definition (cf. 1.2.3 Remark (c)) we have

(Wn(S∞/pS∞)⊗Z Tn)log = Wn(S∞/pS∞)⊗Z Tn ⊗Z Z[L]

where L := Ker(Mgp
∞ ⊕ L(T )gp → Mgp

∞ ), where the map M∞ → M∞ is raising to the
power pn. This is exactly the same L as for R̃∞/pR̃∞, hence we see that there is a
canonical almost étale homomorphism(

Wn(R̃∞/pR̃∞)⊗Z Tn

)
log
→ (Wn(S∞/pS∞)⊗Z Tn)log .

This implies that we have an almost cocartesian square(
Wn(R̃∞/pR̃∞)⊗Z Tn

)
log
−−−−→ (Wn(S∞/pS∞)⊗Z Tn)logy y

R̃∞/pR̃∞ −−−−→ S∞/pS∞

where the vertical maps are the canonical maps, i.e. the Tn-linear maps induced from
Wn(A) → A : (a0, ..., an−1) 7→ apn

0 and sending L to 1. Hence by the next lemma we
conclude that the canonical map

A+
log,∞,T /pnA+

log,∞,T⊗(Wn(R̃∞/pR̃∞)⊗ZTn)
log

(Wn(S∞/pS∞)⊗Z Tn)log → A+
log,∞,T (S)/pnA+

log,∞,T (S)

is an almost isomorphism, thereby completing the proof.

In the proof we have made use of the following almost analogue of a well-known
result on divided power hulls.
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Lemma 2.3. Let A,B be Λ-algebras. Suppose there is a homomorphism A→ B making
B into an almost flat A-algebra. Then for any ideal I ⊂ A the canonical map

DA(I)⊗A B → DB(I ·B)

is an almost isomorphism, where DA(I) denotes the divided power hull of A for the ideal
I.

Proof. For any ring A and any module M let ΓA(M) denote the divided power algebra
generated by M (see [2] 3.9). Since B is an almost flat A-algebra, the canonical map
I ⊗A B → I ·B is an almost isomorphism, hence ΓB(I ⊗A B) ≈ ΓB(I ·B) by [9] Lemma
8.1.13. But

ΓB(I ⊗A B) ∼= ΓA(I)⊗A B

so ΓB(I · B) is an almost flat ΓA(I)-algebra. Hence if J ⊂ ΓA(I) denotes the ideal
defining DA(I), then we have J ⊗A B ∼= J ⊗ΓA(I) ΓB(I ⊗A B) ≈ J · ΓB(I · B), and
therefore

DA(I)⊗A B =
ΓA(I)⊗A B

J ⊗A B
≈

ΓB(I ·B)
J · ΓB(I ·B)

= DB(I ·B).

2.3.4. Define R̄ to be the normalization of R in the maximal extension of Q(R) which
is étale in characteristic zero. Then if K+ is integrally closed in R we have

π1(Spec(R̃[1/p])) = Gal(R̄[1/p]/R̃[1/p])

and R̃∞[1/p]→ R̄[1/p] is the inductive limit of Galois coverings of R̃∞[1/p]. Define

∆ := Gal(R̄[1/p]/R̃[1/p])

and
∆∞ := Gal(R̃∞[1/p]/R̃[1/p]).

Then ∆∞ is a quotient of ∆ and let ∆0 := Ker(∆→ ∆∞). Define

A+
log,T := lim

n
H0

log-crys(R̄/pR̄|Tn+1,O).

Lemma 2.4. If K+ is integrally closed in R, then the homomorphism R̃∞ → R̄ is the
filtering inductive limit of almost Galois coverings.

Proof. Let us first show that every non-zero almost étale covering of R̃∞ is almost
faithfully flat. More generally if A is an integral domain, then any almost étale covering
of A is almost faithfully flat. Indeed, if ϕ ∈ HomΛ(m, A) is an idempotent, then for all
ε > 0 we have

xε/2 · ϕ(xε/2) = ϕ(xε) = ϕ(xε/2) · ϕ(xε/2)

so xε/2 = ϕ(xε/2), whence ϕ = id. So A has no almost idempotents, hence every almost
projective A-module of finite rank is either almost zero or everywhere of constant non-
zero rank, hence almost faithfully flat.
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Now, let S be a finite integral normal R-algebra, such that R[1/p] → S[1/p] is a
Galois covering. Let L+ be the integral closure of K+ in S, and write L = Q(L+). Then
by the almost purity theorem, the homomorphism R∞ → S∞ is an almost étale covering
and factors over the almost étale covering R∞ → R∞,L. By Lemma 2.1 it follows that
R∞,L → S∞ is an almost étale covering. We claim that it is an almost Galois covering.
First note that R∞,L[1/p] → S∞[1/p] is a Galois covering, since it is obtained by base
change from the Galois covering RL[1/p] → S[1/p]. If e denotes the idempotent image
of 1 under a section of the multiplication map S∞[1/p] ⊗R∞,L[1/p] S∞[1/p] → S∞[1/p],
then we have a canonical isomorphism

S∞[1/p]⊗R∞,L[1/p] S∞[1/p] ∼=
∏
g∈G

g(e) · S∞[1/p].

By almost étaleness, for all ε > 0 we have pεe ∈ S∞ ⊗R∞,L
S∞, hence

HomK+
∞

(m∞, S∞ ⊗R∞,L
S∞) ∼= HomK+

∞
(m∞,

∏
g∈G

g(e) · S∞)

i.e. S∞⊗R∞,L
S∞ ≈

∏
g∈G g(e) ·S∞. This proves the claim. The same argument with S

replaced by S⊗L+ E+ for E+ the normalization of L+ in a finite Galois extensionL ⊂ E
proves that

R̃∞ → S̃∞

is the inductive limit of almost Galois coverings, where S̃ = S ⊗L K̄+.
Now we write R̄[1/p] as the inductive limit of Galois coverings of R[1/p]. For each

such Galois covering, the normalization of R in it is a finite integral R-algebra S. Up
to replacing Sn by an irreducible component (in particular finite étale) we can assume
that Sn is integral for n large enough, hence S∞ is contained in R̄. Now we clearly have

colimS S∞ = colimS S̃∞ = R̄

and the claim follows.

In particular, R̃∞ → R̄ is almost faithfully flat.

Corollary 2.4. The canonical homomorphism

A+
log,∞,T /pnA+

log,∞,T → A+
log,T /pnA+

log,T

is the filtering inductive limit of almost Galois coverings.

Proof. First note that since R̃∞/pR̃∞ → R̄/pR̄ is the filtering inductive limit of almost
Galois coverings, so is

Wn(R̃∞/pR̃∞)→Wn(R̄/pR̄).

Looking at the proof of Proposition 2.5 we note two things. Firstly, the canonical
homomorphism (

Wn(R̃∞/pR̃∞)⊗Z Tn

)
log
→
(
Wn(R̄/pR̄)⊗Z Tn

)
log
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is the inductive limit of almost Galois coverings. Secondly, we have an almost cocartesian
square (

Wn(R̃∞/pR̃∞)⊗Z Tn

)
log
−−−−→

(
Wn(R̄/pR̄)⊗Z Tn

)
logy y

R̃∞/pR̃∞ −−−−→ R̄/pR̄.

So we deduce that the canonical map

A+
log,∞,T /pnA+

log,∞,T ⊗(Wn(R̃∞/pR̃∞)⊗ZTn)
log

(
Wn(R̄/pR̄)⊗Z Tn

)
log
→ A+

log,T /pnA+
log,T

is an almost isomorphism, and since tensor product commutes with inductive limits, we
are done.

Corollary 2.5. (i) The canonical map

A+
log,∞,T /pnA+

log,∞,T →
(
A+

log,T /pnA+
log,T

)∆0

is an almost isomorphism.

(ii) A+
log,T /pnA+

log,T is a discrete ∆-module and for all i 6= 0 we have

H i(∆0, A
+
log,T /pnA+

log,T ) ≈ 0.

Proof. Part (i) follows by a limit argument from Proposition 2.1 (i) and the fact that
the homomorphism A+

log,∞,T /pnA+
log,∞,T → A+

log,T /pnA+
log,T is almost faithfully flat. For

(ii), note that A+
log,T /pnA+

log,T is the divided power hull of Wn(R̄/pR̄)⊗Z Tn⊗Z Z[L] and
hence is a discrete ∆-module. Again, a limit argument proves (ii) via Proposition 2.1
(ii).

In particular, via the Hochschild-Serre spectral sequence of Galois cohomology we
deduce canonical almost isomorphisms for all i

H i(∆∞, A+
log,∞,T /pnA+

log,∞,T ) ≈ H i(∆, A+
log,T /pnA+

log,T ).

This almost isomorphism will enable us to express the right-hand side in terms of crys-
talline cohomology.

3 Galois cohomology of Fontaine rings

In this section we construct a natural de Rham resolution of the Fontaine rings A+
log,Σn

and then we compute the Galois cohomology of its components. Assume throughout
that R is a small integral K+-algebra and that K+ is integrally closed in R.
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3.1 Canonical de Rham resolutions of Fontaine rings

3.1.1. If c = 1, then let v = 1, and if c = π then let v = u, where Σn = Wn(k)[u] 〈ue〉.
Define

Θ(c) := Σ[T1, ..., Tr, T
±1
r+1, ..., T

±1
d+1]/(T1 · · ·Tr − v).

Since R/pR is étale over O(c)/pO(c), for all n ≥ 1 there exists an étale Θ(c)/pnΘ(c)-
algebra lifting R/pR, unique up to canonical isomorphism. Denote it by Rn, and define
R := limnRn+1. Note that R/pnR = Rn. We endow Rn with log-structure associated
to

N : Nr+1 → Rn : (n0, ..., nr) 7→ un0 ·
r∏

i=1

Tni
i

thus making it into a logarithmic Σn-algebra.

3.1.2. Consider the canonical map

h : Spec(R̄/pR̄)→ Spec(R/pR)

and the associated morphism of log-crystalline topoi with respect to the DP-base Σn. By
Proposition 1.1, h∗O is a quasi-coherent crystal of O-modules on (Rn|Σn)log-crys. Since
Rn is a log-smooth lift of R/pR, by [15] Thm. 6.2, there is an integrable quasi-nilpotent
logarithmic connection d on h∗O(Rn) whose associated de Rham complex computes
the log-crystalline cohomology of R̄/pR̄ over the DP-base Σn. Since this cohomology
vanishes in non-zero degree by Theorem 1.1, it follows that the augmentation

A+
log,Σ/pnA+

log,Σ
∼= H0

log-crys(R̄/pR̄|Σn,O)→ h∗O(Rn)⊗Rn ω•Rn/Σn

is a quasi-isomorphism, where ωi
Rn/Σn

:= ∧i
Rn

ω1
Rn/Σn

and ω1
Rn/Σn

is the sheaf of log-
arithmic differentials ([15] 1.7). This quasi-isomorphism is the analogue of Poincaré’s
lemma which we will use in our comparison strategy. Our aim is to (almost) compute
the ∆-cohomology of the components of this resolution.

From now on we write
A+ := A+

log,Σ

and
M+ := lim

n
H0

log-crys(R̄/pR̄|Rn,O).

Note that M+/pnM+ ∼= h∗O(Rn).

3.1.3. Let
Õ(c)∞ :=

⋃
n,L

O(c)n,L

so that R̃∞ = R ⊗O(c) Õ(c)∞. The same argument as above can be applied to the
morphism

h∞ : Spec(Õ(c)∞/pÕ(c)∞)→ Spec(O(c)/pO(c)).
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By Proposition 1.1 the sheaf h∞,∗O is a quasi-coherent crystal of O-modules on the site
(O(c)/pO(c)|Σn)log-crys and hence we have a canonical isomorphism

h∞,∗O(Rn) ∼= h∞,∗O (Θ(c)/pnΘ(c))⊗Θ(c)/pnΘ(c) Rn.

Note that in the notation of the previous section we have

h∞,∗O(Rn) = A+
log,∞,R/pnA+

log,∞,R.

Also, since Rn is a log-smooth Σn-lift of R/pR, there is an integrable quasi-nilpotent log-
arithmic connection d on h∞,∗O (Rn) whose associated de Rham complex is a resolution
of

A+
log,∞,Σ/pnA+

log,∞,Σ.

Define
A+
∞ = A+

∞(R) := A+
log,∞,Σ

and
M+
∞ = M+

∞(R) := lim
n

h∞,∗O(Rn).

3.1.4. Note that, in the notation of §2.3, we have

M+
∞ = A+

log,∞,R

M+ = A+
log,R

in particular, the canonical map M+
∞/pnM+

∞ → M+/pnM+ is the inductive limit of
almost Galois coverings, M+

∞/pnM+
∞ ≈ (M+/pnM+)∆0 , and we have canonical almost

isomorphisms for all i

H i(∆∞,M+
∞/pnM+

∞) ≈ H i(∆,M+/pnM+).

3.1.5. Define

Acris,∞(R) := lim
n

H0
crys(R̃∞/pR̃∞|Wn+1(k),O)

Acris(R) := lim
n

H0
crys(R̄/pR̄|Wn+1(k),O)

This is just the classical crystalline cohomology, i.e. we ignore the log-structures.

Lemma 3.1. Let A be an integrally closed domain of characteristic zero such that the
Frobenius is surjective on A/pA. Assume that A contains all p-power roots of p. Let

θ : W (P (A/pA))→ Â

denote the canonical map constructed in the proof of Theorem 1.1. Then Ker(θ) is a
principal ideal generated by ξ := [p]− p, where

p := (p, p1/p, p1/p2
, ...) ∈ P (A/pA).
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Proof. We assume x ∈ Ker(θ mod p). Write x = (x(n))n with x(n+1)p = x(n) for all n.
Then we have x(1)p = 0. Let x̂(1) ∈ A be a lift of x(1). Then x̂(1)p = py for some y ∈ A

so x̂(1)

p1/p ∈ A because A is integrally closed. Hence x(1) ∈ p1/p · A/pA. Continuing in
this manner we find that x ∈ p · P (A/pA). This proves the claim modulo p, and since
W (P (A/pA)) is p-adically complete and Â is p-torsion free the lemma follows.

Proposition 3.1. In the case R = O(c), every choice of p-power roots of π, T1, ..., Td+1

determines an isomorphism

M+
∞/pnM+

∞ '
Acris,∞(R)/pnAcris,∞(R) 〈X, X1, ..., Xd+1〉

(1 + X(c)−
∏r

i=1(1 + Xi))

where the X, X1, ..., Xd+1 are indeterminates and X(c) = 0 if c = 1, X(c) = X if c = π.

Proof. We check the universal property. Given a sequence of p-power roots of Ti, define

Ti := (Ti, T
1/p
i , T

1/p2

i , ...) ∈ P (R̃∞/pR̃∞).

Consider the ring

C :=
Wn(P (R̃∞/pR̃∞))

[
X, 1

1+X , X1,
1

1+X1
, ..., Xd+1,

1
1+Xd+1

]
(1 + X(c)−

∏r
i=1(1 + Xi))

.

Make C into a Wn[u][T1, ..., Tr, T
±1
r+1, ..., T

±1
d+1]/(

∏r
i=1 Ti − u)-algebra by sending u to

[π] · (1 + X)−1 and Ti to [Ti] · (1 + Xi)−1. For an affine object (U ↪→ T ) of the site
(R̃∞/pR̃∞|Θ(c)/pnΘ(c))log-crys define a map

C → OT

extending the canonical map θT : Wn(P (R̃∞/pR̃∞))→ OT by sending X to θT ([π])·u−1−
1 and Xi to θT ([Ti]) ·T−1

i −1 (note that by Lemma 1.1 these elements exist in OT ). One
checks easily that this is the unique map of Wn[u][T1, ..., Tr, T

±1
r+1, ..., T

±1
d+1]/(

∏r
i=1 Ti−u)-

algebras extending θT . It follows from Lemma 3.1 that the kernel of the map to C →
R̃∞/pR̃∞ is the ideal generated by ξ and X, X1, ..., Xd+1. So the divided power hull
CDP of C for this ideal is precisely the ring in the statement of the proposition. By
the uniqueness of θT we see that it suffices now to show that CDP defines an object
of (R̃∞/pR̃∞|Θ(c)/pnΘ(c))log-crys. This reduces to showing that the closed immersion
associated to the surjection CDP → R̃∞/pR̃∞ is exact, where we endow CDP with the
log-structure associated to

P (L∞(R̃∞/pR̃∞))⊕N ⊕ L(u)→ C

induced from the maps P (L∞(R̃∞/pR̃∞)) → C :
(
m(n)

)
7→ [(m(n))] and N ⊕ L(u) →

Θ(c)/pnΘ(c)→ C. By Lemma 1.1, this reduces to showing that

L := Ker
(
P (L∞(R̃∞/pR̃∞))gp ⊕N gp → L∞(R̃∞/pR̃∞)gp

)
42



corresponds to units of CDP. Recall that

L∞(R̃∞/pR̃∞) : Q+ ⊕ N[1/p]r → R̃∞/pR̃∞

(α, (n1, ..., nr)) 7→ α ·
r∏

i=1

Tni
i .

So L is the kernel of the map

P (Q+ ⊕ N[1/p]r)gp ⊕ Zr+1 → Q⊕ Z[1/p]r+1(
(α · p−n)n, (x1 · p−n)n, ..., (xr · p−n)n, (n0, ..., nr)

)
7→

(
α(0) + n0, x1 + n1, ..., xr + nr

)
with α ∈ Q and x1, ..., xr, n0, ..., nr ∈ N. That is, L consists of the 2(r + 1)-tuples
((n0 · p−n)n, (n1 · p−n)n, ..., (nr · p−n)n, (−n0, ...,−nr)). Note that

X, X1, ..., Xr ∈ Ker(CDP → R̃∞/pR̃∞)

and hence 1 + X, 1 + X1, ..., 1 + Xr are units of CDP. Define a map

L → CDP(
(n0 · p−n)n, (n1 · p−n)n, ..., (nr · p−n)n, (−n0, ...,−nr)

)
7→ (1 + X)n0

r∏
i=1

(1 + Xi)ni .

It is easy to see that this map is compatible with the pre-log-structure of CDP, and hence
we are done.

A simple adaptation of the above proof shows the following. We leave the details to
the interested reader.

Proposition 3.2. Every choice of p-power roots of π determines isomorphisms

A+
∞/pnA+

∞ ' Acris,∞(R)/pnAcris,∞(R) 〈X〉
A+/pnA+ ' Acris(R)/pnAcris(R) 〈X〉

where the X is an indeterminate.

Morally, X = [π]⊗u−1−1. We define the monodromy operator N on A+/pnA+ (resp.
A+
∞/pnA+

∞) as the unique Acris(R)-linear (resp. Acris,∞(R)-linear) derivation satisfying

N(X) = 1 + X.

3.2 Computations in Galois cohomology

3.2.1. Note that making a choice of p-power roots of the local coordinates Ti defines an
element

Ti = (Ti, T
1/p
i , T

1/p2

i , ...) ∈ P (R̃∞/pR̃∞).
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Lemma 3.2. Assume R = O(c) and make a choice of roots of the Ti. Every element of
Acris,∞(R)/pnAcris,∞(R) can be written as a finite sum of the form∑

k≥0

xkξ
[k]

with xk ∈Wn(P (R̃∞/pR̃∞)) of the form

∑
m

pmvm

d+1∏
i=1

[Ti]αi,m

where αi,m ∈ N[1/p] for 1 ≤ i ≤ r and αi,m ∈ Z[1/p] for r + 1 ≤ i ≤ d + 1 and
vm ∈ Ainf(K+).

Proof. The lemma will follow from Lemma 3.1 once we show that we can get the xk in
the desired form. Since the ring of Witt vectors Wn(A) of a ring A of characteristic p is
equal to its subring of elements of the form

∑
m pm[am], where am ∈ A and [·] denotes

the Teichmüller lift, it suffices to prove the claim modulo p. By definition, we obtain an
element of P (R̃∞/pR̃∞) by taking roots of r ∈ R̃∞/pR̃∞. We may write

r =
∑
N

vN

d+1∏
i=1

Tni
i

where vN ∈ K̄+/pK̄+ and ni ∈ N[1/p]. Make a choice of p-power roots of elements of
K̄+/pK̄+ (this will not affect the statement of the lemma). Define

r :=
∑
N

vN

d+1∏
i=1

Ti
ni .

Taking pth roots of r we get

r(1) =
∑
N

v
1/p
N

d+1∏
i=1

T
ni/p
i + pa1/pr1

r(2) =
∑
N

v
1/p2

N

d+1∏
i=1

T
ni/p2

i + pa1/p2
r
p/p2

1 + pa2p/p2
r2

· · ·
(r(n)) = r + pa1r1 + pa2pr2 + ...

where ai ∈ N. Now recall that p has divided powers in Acris,∞(R)/pAcris,∞(R) so we get

(r(n)) = r + pa1r1.

The lemma follows.
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Note that ∆∞ ∼= Zp(1)d. Let σ2, ..., σd+1 be a choice of topological generators of ∆∞.
For each 2 ≤ i ≤ d + 1, make a choice of roots of Ti such that σi(T

1/pn

i ) = ζpnT
1/pn

i for
a pnth root of unity ζpn . Define

1 := (1, ζp, ζpn , ...) ∈ P (K̄+/K̄+)

so that σ(Ti) = 1 · Ti. Furthermore, define

t := log([1]).

Proposition 3.3. Assume R = O(c). The subring(
A+
∞/pnA+

∞
)∆∞ ⊂ A+

∞/pnA+
∞

consists of elements which can be written
∑

k,j xk,jξ
[k]X [j] with xk,j ∈Wn(P (R̃∞/pR̃∞))

of the form ∑
m

pmvm

d+1∏
i=1

[Ti]αi,m

where vp(αi,m) ≥ n−m and vm ∈ Ainf(K+). In particular(
A+
∞
)∆∞ ∼= B+.

Proof. We have (
A+
∞/pnA+

∞
)∆∞ =

⋂
i

Ker(σi − 1).

From the exact sequences

0 −−−−→ pn−1A+
∞/pnA+

∞ −−−−→ A+
∞/pnA+

∞ −−−−→ A+
∞/pn−1A+

∞ −−−−→ 0

we see that it suffices to prove the assertion for A+
∞/pA+

∞. Note that if vp(α) > 0, then
α ∈ Z and

1α − 1 = (1− 1 + 1)α − 1 =
∑
r>0

α(α− 1) · · · (α− r + 1)(1− 1)[r] = 0

so
(σi − 1)Ti

α = (1α − 1)Ti
α = 0.

It follows easily from this that
⋂

i Ker(σi − 1) consists of the elements in the statement
of the proposition.

Corollary 3.1. The canonical map(
A+
∞(O(c))/pnA+

∞(O(c))
)∆∞ →

(
M+
∞(O(c))/pnM+

∞(O(c))
)∆∞

has image in B+
log/pnB+

log ⊗Σn Θ(c)/pnΘ(c).

Proof. Since we have made a choice of roots of Ti we have Xi = [Ti] ⊗ T−1
i − 1. If

α ∈ Z[1/p] with vp(α) ≥ n, then α ∈ Z and we have

[Ti]α = Tα
i ([Ti]⊗ T−1

i − 1 + 1)α = Tα
i +

∑
r>0

α(α− 1) · · · (α− r + 1)X [r]
i = Tα

i

so [Ti]α ∈ Θ(c)/pnΘ(c) as required.
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3.2.2. Recall that R is a small integral K+ with K+ integrally closed in R, and Rn is
the étale Θ(c)/pnΘ(c)-algebra lifting R/pR.

Theorem 3.1. We have

t ·
(
F i

pM
+
∞(R)/pnF i

pM
+
∞(R)

)∆∞ = t · F i
pB

+
log/pnF i

pB
+
log ⊗Σn Rn.

Proof. By dévissage in p it suffices to prove the statement modulo p. The proof for i = 0
will work for all i, so we assume i = 0. Recall that by quasi-coherence of h∞,∗O, we
have a canonical isomorphism

M+
∞(R)/pnM+

∞(R) ∼= M+
∞(O(c))/pnM+

∞(O(c))⊗Θ(c)/pnΘ(c) Rn.

Since the invariants under ∆∞ are the elements in
⋂

i Ker(σi − 1), we see that we may
assume that R = O(c). In this case, by Proposition 3.1 we have

M+
∞/pnM+

∞
∼=

A+
∞/pnA+

∞ 〈X1, ..., Xd+1〉
(1 + X(c)−

∏r
i=1(1 + Xi))

.

Let Yi := −Xi
1+Xi

for i = 1, ..., d + 1. Then

M+
∞/pnM+

∞
∼=

A+
∞/pnA+

∞ 〈Y1, ..., Yd+1〉
((1 + X(c))−1 −

∏r
i=1(1 + Yi))

.

Note that the connection d on M+
∞ acts by Ti

∂
∂Ti

(Y [n+1]
i ) = Y

[n]
i because Yi = [Ti]−1 ⊗

Ti − 1. For all 2 ≤ i ≤ d + 1, define an “integration” map∫
i
: M+

∞ →M+
∞

to be the unique morphism of A+
∞-modules sending Y

[n]
i to ([Ti]⊗ 1) · Y [n+1]

i and fixing
the other Y

[m]
j . It is a one-sided inverse of ∂i := ∂

∂Ti
, hence ∆∞-equivariant up to adding

terms in Ker(∂i). Note that if
∫
i m ∈ A+

∞, then m = ∂i

∫
i m = 0. From the above

description, it is clear that every element of M+
∞/pM+

∞ can be written as a finite sum of
the form

m = x0 +
∫

i
x1 +

∫
i

∫
i
x2 + ... +

∫ ×n

i
xn

with xj ∈ Ker(∂i). We will prove by induction on n that if m ∈ Ker(σi− 1), then t ·m ∈
t (Ker(∂i))

σi=1 [Ti]. By Ker(∂i)σi=1[Ti] we mean the sub-algebra of M+
∞(O(c))/pM+

∞(O(c))
generated by Ker(∂i)σi=1 and Ti (not the polynomial algebra!). This will prove the the-
orem, as⋂
i

Ker(∂i)σi=1[Ti] ⊂
(
A+
∞(O(c))/pA+

∞(O(c))
)∆∞ [T1, ..., Td+1] ⊂ B+

log/pB+
log⊗Σ1Θ(c)/pΘ(c).
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For n = 0 this is trivial, so assume the result known for n− 1. We have

m = σi(m) = σi

n∑
j=0

∫ ×j

i
xj = a + σi(x0) +

n∑
j=1

∫
i
σi

∫ ×j−1

i
xj

for some a ∈ Ker(∂i), and hence

0 = a + σi(x0)− x0 +
n∑

j=1

∫
i
(σi − 1)

∫ ×j−1

i
xj .

Applying ∂i we get
n∑

j=1

(σi − 1)
∫ ×j−1

i
xj = 0

so by induction we deduce that

t
n∑

j=1

∫ ×j−1

i
xj ∈ t · (Ker(∂i))

σi=1 [Ti].

Hence we have
tm = tx0 + t

∫
i
x

for some x ∈ t · (Ker(∂i))
σi=1 [Ti]. We may write

x =
∑

n

bnTn
i

with bn ∈ (Ker(∂i))
σi=1. We have

Tn
i =

n∑
r=0

n!
r!

Y
[n−r]
i

so ∫
i
Tn

i = [Ti]n+1
n∑

r=0

n!
r!

Y
[n+1−r]
i .

Lifting to M+
∞[1/p], by substituting the above series expressions for Tn+1

i we find∫
i
Tn

i =
Tn+1

i

n + 1
−

[Ti]n+1

n + 1

and hence

(σi − 1)
∫

i
Tn

i =
1− [1]n+1

n + 1
[Ti]n+1.
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Recall (cf. the proof of the Proposition 1.4) that

1− [1]n+1 = 1− exp((n + 1)t) = −(n + 1)t
∑
m≥0

((n + 1)t)m

(m + 1)!

where vn+1 :=
∑

m≥0

((n + 1)t)m

(m + 1)!
is a unit of Acris(K+). So we obtain

(σi − 1)x0 = −
∑

n

bn(σi − 1)
∫

i
Tn

i =
∑

n

bnvn+1tTi
n+1. (1)

On the other hand, we can write x0 =
∑

n cnTi
n with cn ∈ (Ker(∂i))

σi=1, so

(σi − 1)x0 =
∑

n

cn(1n − 1)Ti
n =

∑
vp(n)=0

ncnvntTi
n. (2)

Since by Proposition 3.3 we know that bn and cn can only have powers of Ti divisible by
p, on comparing equations 1 and 2 we see that

t
∑

vp(n+1)≥1

bnTi
n+1 =

∑
vp(n+1)≥1

bnvn+1tTi
n+1 = 0

where in the first equality we have used that vn+1 ≡ 1 mod p if n + 1 ≡ 0 mod p. But

t
∑

vp(n+1)≥1

bnTi
n+1 = t

∑
vp(n+1)≥1

bnTn+1
i

n+1∑
r=0

(n + 1)!
(n + 1− r)!

X
[r]
i

= t
∑

vp(n+1)≥1

bnTn+1
i

so
t

∑
vp(n+1)≥1

bnTn+1
i = 0

and we may write

t

∫
i
x = t

∑
n,vp(n+1)=0

bn

n + 1
(Tn+1

i − Ti
n+1)

hence

tm = t
∑

n,vp(n+1)=0

(
bn

n + 1
Tn+1

i +
(n + 1)cn+1 − bn

n + 1
Ti

n+1

)
+t

∑
n,vp(n+1)≥1

cn+1T
n+1
i .

Here we have used that if vp(n + 1) > 0 then Tn+1
i = Ti

n+1. Note that

(σi − 1)
∑

n,vp(n+1)=0

cn+1Ti
n+1 = (σi − 1)x0
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and
(σi − 1)

∑
n,vp(n+1)=0

bn

n + 1
Ti

n+1 = (σi − 1)x0

hence
(σi − 1)

∑
n,vp(n+1)=0

(n + 1)cn+1 − bn

n + 1
Ti

n+1 = 0.

Thus we indeed get that
tm ∈ t (Ker(∂i))

σi=1 [Ti]

thereby completing the induction and therefore the proof.

The previous theorem, together with the following one, constitute the core results of
this paper.

Theorem 3.2. For all i 6= 0, the B+-module

H i(∆∞, F j
p M+

∞/pnF j
p M+

∞)

is annihilated by td.

Proof. We give the proof for j = 0 to simplify, but the same proof works for any j. Also
assume that c = π, since the case c = 1 is similar but simpler. Firstly, by Corollary 2.5,
M+
∞/pnM+

∞ is a discrete p-torsion ∆∞-module, so we have canonical isomorphisms for
all i

Exti
Zp[[∆∞]](Zp,M

+
∞/pnM+

∞) ∼= H i(∆∞,M+
∞/pnM+

∞).

where the Ext-group is taken in the category of topological Zp[[∆∞]]-modules. Since
∆∞ ∼= Zp(1)d, we have an isomorphism of rings

Zp[[∆∞]] ' Zp[[σ2 − 1, ..., σd+1 − 1]].

This implies that the Koszul complex L := ⊗Zp[[∆∞]]Li, where Li is the complex defined

0 −−−−→ Zp[[∆∞]] σi−1−−−−→ Zp[[∆∞]] −−−−→ 0,

is a homological resolution of Zp by free compact Zp[[∆∞]]-modules. Since this resolution
is free compact and M+

∞/pnM+
∞ is discrete, we clearly have

HomZp[[∆∞]](L,M+
∞/pnM+

∞) ∼= L⊗Zp[[∆∞]] M+
∞/pnM+

∞.

We first show that for all i and all m ∈ M+
∞/pnM+

∞, t ·m lies in the image of the
endomorphism σi− 1, and from this we will deduce the statement of the theorem. Since

M+
∞(R)/pnM+

∞(R) ∼= M+
∞(O(c))/pnM+

∞(O(c))⊗Θ(c)/pnΘ(c) Rn
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we can assume that R = O(c). Fix some 2 ≤ i ≤ d+1. Define Yi = −Xi
1+Xi

= [Ti
−1]⊗Ti−1.

Every element of M+
∞(O(c))/pnM+

∞(O(c)) is the sum of monomials of the form

µ(c) = x[cT−1
i ]αY

[n]
i , or µ = x[T i]

αY
[n]
i

with x invariant under σi and α ∈ N[1/p]. For m = µ(c), µ, we will show that tm =
(σi − 1)fi(m) for some fi(m) by induction on n. If n = 0, then we distinguish three
cases: α = 0, vp(α) ≥ 0, and vp(α) < 0. If α = 0 then take

fi(m) = m log(Xi − 1).

Since σi log(Xi− 1) = log([1](Xi− 1)) = t+log(Xi− 1) we obtain the claim in this case.
If vp(α) ≥ 0 then α ∈ N and

[πT−1
i ]α = (uT−1

i )α([πT i]⊗ u−1Ti − 1 + 1)α

= (uT−1
i )α

(
1 +

α∑
r=0

α!
(α− r)!

([πT i]⊗ u−1Ti − 1)[r]
)

so

([1]α − 1)[πT−1
i ]α = (σi − 1)[πT−1

i ]α

= (uT−1
i )α(σi − 1)

(
α∑

r=1

α!
(α− r)!

([πT i]⊗ u−1Ti − 1)[r]
)

= (σi − 1)

(
α · (uT−1

i )α

(
α∑

r=1

(α− 1)!
(α− r)!

([πT i]⊗ u−1Ti − 1)[r]
))

and hence

t[πT−1
i ]α = (σi − 1)

(
tα

[1]α − 1
(uT−1

i )α

(
α∑

r=1

(α− 1)!
(α− r)!

([πT i]⊗ u−1Ti − 1)[r]
))

(recall that
tα

[1]α − 1
∈ Acris(K+) by Proposition 1.4). Similarly we have

t[T i]
α = (σi − 1)

(
tα

[1]α − 1
Tα

i

(
α∑

r=1

(α− 1)!
(α− r)!

([T i]⊗ T−1
i − 1)[r]

))
.

If vp(α) < 0, then

t[πTi
−1]α = (σi − 1)

(
t

[1]α − 1
[πTi

−1]α
)

and

t[Ti]α = (σi − 1)
(

t

[1]α − 1
[Ti]α

)
.
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This begins the induction. As in the proof of Theorem 3.1, for each i we define the
“integration” map ∫

i
: M+

∞ →M+
∞

to be the unique homomorphism of A+
∞-modules sending Y

[n]
i to [Ti]Y

[n+1]
i and fixing

Y
[m]
j for j 6= i. We have

σi

∫
i
([Ti

−1]⊗ Ti − 1)[n] = [1][Ti]([1]−1[Ti
−1]⊗ Ti − 1)[n+1]

=
n+1∑
r=0

[1]1−(n+1−r)[Ti]([Ti
−1]⊗ Ti − 1)[n+1−r]([1]−1 − 1)[r].

Also ∫
i
σi([Ti

−1]⊗ Ti − 1)[n] =
∫

i

n∑
r=0

[1]−(n−r)([Ti
−1]⊗ Ti − 1)[n−r]([1]−1 − 1)[r]

=
n∑

r=0

[1]−(n−r)([Ti
−1]⊗ Ti − 1)[n+1−r]([1]−1 − 1)[r]

hence

σi

∫
i
([Ti

−1]⊗ Ti − 1)[n] −
∫

i
σi([Ti

−1]⊗ Ti − 1)[n] = [1][Ti]([1]−1 − 1)[n+1].

So we find

σi

∫
i
µ(c)−

∫
i
σiµ(c) = xσi([πTi

−1]α)
(

σi

∫
i
Y

[n]
i −

∫
i
σiY

[n]
i

)
= x[πTi

−1]α[1]1−α[Ti]([1]−1 − 1)[n+1]

and

σi

∫
i
µ−

∫
i
σiµ = xσi([Ti]α)

(
σi

∫
i
Y

[n]
i −

∫
i
σiY

[n]
i

)
= x[Ti]α[1]1+α[Ti]([1]−1 − 1)[n+1].

But ([1]−1 − 1)[n+1] = (tv)[n+1] = t
vn+1tn

(n + 1)!
for some unit v ∈ Acris(K+), and

tn

(n + 1)!
∈

Acris(K+) (see Proposition 1.4 and its proof). So, for m = µ(c), µ we have that

σi

∫
i
tm−

∫
i
σitm = (σi − 1)m′

for some m′ and by induction hypothesis tm = (σi − 1)fi(m), hence∫
i
tm =

∫
i
(σi − 1)fi(m) = (σi − 1)

∫
i
fi(m)−

(
σi

∫
i
fi(m)−

∫
i
σifi(m)

)
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lies in the image of σi − 1. This completes the induction, and proves that for all i

H0(Li ⊗Zp[[∆∞]] M+
∞/pnM+

∞)

is annihilated by t.
Now, consider the Koszul complex L = ⊗Zp[[∆∞]]Li. For any complex K of Zp[[∆∞]]-

modules we have short exact sequences

0 −→H0(Li ⊗Zp[[∆∞]] Hp(K)) −→Hp(Li ⊗Zp[[∆∞]] K) −→H1(Li ⊗Zp[[∆∞]] Hp−1(K)) −→0.

Applying this inductively to K = L≤e ⊗Zp[[∆∞]] M+
∞/pnM+

∞, with L≤e := ⊗i≤eLi the
theorem follows.

3.2.3. Finally, we would like the resolution

A+/pnA+ →M+/pnM+ ⊗Rn ω•Rn/Σn

to be filtered. This probably follows from a general filtered crystalline Poincaré lemma
but we can prove this directly.

Proposition 3.4. For all i we have H iF r
p (M+/pnM+ ⊗Rn ω•Rn/Σn

) = 0.

Proof. We claim that every element of F r
p M+/pF r

p M+ can be written as a Wn(P (R̄/pR̄))-
linear combination of monomials of the form

µ := x0 ·
∏

i

(1⊗ xi − [x̄i]⊗ 1)[mi]

with x0 ∈ F r−m
p Acris(K+)/pnF r−m

p Acris(K+) where m =
∑

i mi, and xi ∈ Rn, x̄i the
image of xi in R/pR and x̄i ∈ P (R̄/pR̄) a sequence of p-power roots of x̄i. To see this,
consider the canonical map

θR : Wn(P (R̄/pR̄))⊗Z Rn → R̄/pR̄.

If θR(
∑

i ai ⊗ xi) = 0, then write∑
i

ai ⊗ xi =
∑

i

(ai ⊗ 1)(1⊗ xi − [x̄i]⊗ 1) +
∑

i

ai[x̄i]⊗ 1.

Since we must have
∑

i ai[x̄i] ∈ Ker(θ) = (ξ, p), where θ is the canonical map

θ : Wn(P (R̄/pR̄))→ R̄/pR̄

this proves the claim.
Now, if T2, ..., Td+1 denote étale local coordinates on Rn, then we have

∂µ

∂Tk
= x0

∑
i

(1⊗ ∂xi

∂Tk
)(1⊗ xi − [x̄i]⊗ 1)[mi−1] ·

∏
j 6=i

(1⊗ xj − [x̄j ]⊗ 1)[mj ]
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so
∂

∂Tk
(F r

p M+/pnF r
p M+) ⊂ F r−1

p M+/pnF r−1M+ (Griffiths transversality). Define op-

erators on differential forms

hk(xdTk) :=
∞∑

n=0

(−1)n+1 ∂nx

∂Tn
k

(1⊗ Tk − [Tk]⊗ 1)[n+1].

Note that this is a finite sum by quasi-nilpotence of the connection d. One checks easily
that

hk : F r
p M+/pnF r

p M+ · dTk → F r+1
p M+/pnF r+1

p M+

is a homomorphism of abelian groups for all k. We extend this to a all differential forms
of order at least 1 by

Hk(xdTi1 ∧ · · · ∧ dTin) := (−1)j−1hk(xdTk)dTi1 ∧ · · · ∧ d̂Tij ∧ · · · ∧ dTin

if k = ij for some 1 ≤ j ≤ n and otherwise we define Hk(xdTi1 ∧ · · · ∧ dTin) = 0. Define
another operator on differential forms by

∂

∂Tk
(xdTi1 ∧ · · · ∧ dTin) ∧ dTk :=

∂x

∂Tk
dTk ∧ dTi1 ∧ · · · ∧ dTin

so that for any differential form η we have∑
k

∂η

∂Tk
∧ dTk = dη.

Note that if k 6= l, then Hk

(
∂η

∂Tl
∧ Tl

)
=

∂Hk(η)
∂Tl

∧ Tl. Let η = xdTi1 ∧ · · · ∧ dTin . If

k = ij for some j we have

dHk(η) = η +
∑

l /∈{i1,...,in}

∂Hk(η)
∂Tl

∧ Tl

= η −
∑

l /∈{i1,...,in}

Hk

(
∂η

∂Tl
∧ Tl

)

so that
dHk(η) + Hk(dη) = η.

In general, write η =
∑

I xIdTI , where I ⊂ {2, ..., d + 1}, ]I = n for some fixed n, and
dTI := ∧i∈IdTi. This is well-defined up to sign, which will not matter in the sequel.
Moreover, we may and will assume that no two I’s are equal. For all such η, choose a
smallest possible subset Jη ⊂ ∪II such that for all I there exists some jI ∈ Jη ∩ I. Since
Jη is smallest possible we see that for all I there is a single {jI} = Jη ∩ I. With these
choices, we define

HJη(η) :=
∑
j∈Jη

Hj(η).
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Since we have
d(xIdTI) =

∑
l /∈I

∂xI

dTl
dTl ∧ dTI

is it clear that Jdη ⊂ Jη. Then

HJη(η) =
∑

I

∑
j∈Jη∩I

Hj(xIdTI) =
∑

I

HjI (xIdTI)

hence
dHJη(η) =

∑
I

dHjI (xIdTI) = η −
∑

I

HjI d(xIdTI) = η −HJηd(η).

So if in particular η is closed, then η = dHJη(η).

3.3 Application to Hodge-Tate cohomology

If we replace Σ everywhere in the above by K+, then we obtain similar results which
can be applied to recover Galois cohomology computations of Faltings.

3.3.1. The case where Σ is replaced with K+ is a de Rham theory, rather than a
crystalline one.

Lemma 3.3. We have canonical isomorphisms

A+/pnA+ ⊗Σn K+/pnK+ ∼= H0
log-crys(R̄/pR̄|K+/pnK+,O)

M+/pnM+ ⊗Σn K+/pnK+ ∼= H0
log-crys(R̄/pR̄|R/pnR,O)

and similarly when we replace R̄ by R̃∞.

Proof. Let Tn be one of Σn or Rn. In the latter case note that Rn ⊗Σn K+/pnK+ ∼=
R/pnR by very definition of Rn. Let S be one of R̄/pR̄ or R̃∞/pR̃∞. Making a choice
of uniformizer π of K+ defines a surjection Σ→ K+. We have a short exact sequence

0 −−−−→ E −−−−→ Tn
u 7→π−−−−→ Tn ⊗Σn K+/pnK+ −−−−→ 0

and tensoring with the flat abelian group W (P (S)) we obtain a short exact sequence

0 −→ W (P (S))⊗Z E −→ W (P (S))⊗Z Tn −→ W (P (S))⊗Z Tn ⊗Σn K+/pnK+ −→ 0

so I := W (P (S)) ⊗Z E ⊂ W (P (S)) ⊗Z Tn is an ideal. It has a DP-structure defined
(x⊗y)[r] = xr⊗y[r] for all x ∈W (P (S)) and all y ∈ E, where the box exponent denotes
the DP-structure on I, and then extended to sums via the binomial formula. Let M be
an integral monoid defining the log-structure on S, and define

L := Ker(P (M)gp ⊕N →Mgp)
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where N → Tn is a fine monoid defining the pre-log-structure. By definition N also
induces the pre-log-structure on Tn ⊗Σn K+/pnK+. Define

B := W (P (S))⊗Z Tn ⊗Z Z[L]
B′ := W (P (S))⊗Z Tn ⊗Σn K+/pnK+ ⊗Z Z[L].

Then the homomorphism B → B′ is a DP-morphism, where the ideal I ′ := 0 ⊂ B′

is given the canonical DP-structure, and B/I = B′/I ′. Define J := Ker(B → S),
J ′ := Ker(B′ → S). Then I ⊂ J and I ′ ⊂ J ′ and we have B/J = B′/J ′. So by [1] Ch. I
Prop. 2.8.2, there is a canonical isomorphism of divided power hulls

DB(J)⊗B B′ ∼= DB′(J ′)

which is precisely what we wanted to show.

3.3.2. Now the previous results hold with Σn replaced by K+/pnK+: the augmentation

A+/pnA+ ⊗Σn K+/pnK+ →M+/pnM+ ⊗Σn K+/pnK+ ⊗R ω•R/K+

is a filtered quasi-isomorphism and for i 6= 0 we have

tdH i(∆, F r
p M+/pnF r

p M+ ⊗Σn K+/pnK+) ≈ 0

and moreover

tH0(∆, F r
p M+/pnF r

p M+ ⊗Σn K+/pnK+) ≈ F r
p B+/pnF r

p B+ ⊗Σn R/pnR.

3.3.3. Let us compute the graded of A+⊗̂ΣK+[1/p] for the canonical filtration.

Lemma 3.4. Let R1 → R2 be a flat homomorphism of Fp-algebras. If the Frobenius is
surjective on Ri for i = 1, 2, then the homomorphism

Wn(P (R1))→Wn(P (R2))

is flat.

Proof. Let I be a finite index set, and let
(
(x(n)

i )n

)
i∈I

(resp.
(
(y(n)

i )n

)
i∈I

) be a family

of elements of P (R1) (resp. P (R2)) indexed by I. Assume that∑
i

(x(n)
i )n · (y(n)

i )n = 0

Then we must have
∑

i x
(n)
i ·y

(n)
i = 0 for all n, hence

∑
i x

(n)
i ⊗y

(n)
i = 0 in

〈
x

(n)
i

〉
⊗R1 R2,

where
〈
x

(n)
i

〉
denotes the ideal of R2 generated by the x

(n)
i . This implies that

∑
i(x

(n)
i )n⊗

(y(n)
i )n = 0 in

〈
(x(n)

i )n

〉
⊗P (R1) P (R2), which proves the flatness of P (R1)→ P (R2).
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Now, since P1 := P (R1) and P2 := P (R2) are perfect rings of characteristic p, the
Wn := Wn(Fp)-modules Wn(P1) and Wn(P2) are flat. In particular, since (p) = p ·Wn

is a flat Wn-module, p ·Wn(P1) ∼= (p) ⊗Wn Wn(P1) is a flat Wn(P1)-module and hence
we have a resolution of P1 by flat Wn(P1)-modules

0→ (p)⊗Wn Wn(P1)→Wn(P1)→ P1 → 0

Tensoring with Wn(P2) we obtain an exact sequence

0→ TorWn(P1)
1 (Wn(P2), P1)→ (p)⊗Wn Wn(P2)→Wn(P2)

hence TorWn(P1)
1 (Wn(P2), P1) = 0. By the standard flatness criterion, this implies that

Wn(P1)→Wn(P2)

is flat.

Now, since the map W (P (K̄+/pK̄+))→W (P (R̄/pR̄)) is flat it follows that

A+ ⊗Σ K+/pnK+ ∼= W (P (R̄/pR̄))⊗W (P (K̄+/pK̄+)) B+
log ⊗Σ K+/pnK+

so A+ ⊗Σ K+/pnK+ is a flat B+
log ⊗Σ K+/pnK+-algebra and hence

gri(A+ ⊗Σ K+/pnK+) ∼= R̄/pnR̄⊗K̄+/pnK̄+ gri(B+
log ⊗Σ K+/pnK+).

Since B+
log⊗̂ΣK+ ⊂ B+

dR it follows that

gri(B+
log⊗̂ΣK+)[1/p] ∼= ˆ̄K(i)

and hence
gri(A+⊗̂ΣK+)[1/p] ∼= ˆ̄R(i)[1/p].

3.3.4. Let G be a filtered Acris(K+)-module. We endow

G⊗Acris(K+) Bcris

with the tensor product filtration. Assume in addition that G is p-adically complete and
G/pnG is a discrete ∆-module for all n ≥ 1 and that the ∆-action is Acris(K+)-linear.
Then we define

H∗(∆, F r(G⊗Acris(K+) Bcris)) := colims H∗(∆, F r+sG)⊗Acris(K+) F−sBcris.

This is a cohomological functor because Acris(K+)→ Bcris is flat. Define

Blog⊗̂ΣK+ := B+
log⊗̂ΣK+ ⊗Acris(K+) Bcris

A⊗̂ΣK+ := A+⊗̂ΣK+ ⊗Acris(K+) Bcris

M⊗̂ΣK+ := M+⊗̂ΣK+ ⊗Acris(K+) Bcris.
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It follows from our computations that for any r ∈ Z and all i 6= 0 we have

H i(∆, F rM⊗̂ΣK+) ≈ 0

and H0(∆, F rM⊗̂ΣK+) ≈ F rBlog⊗̂ΣK+⊗̂K+R̂, so we deduce that H∗(∆, grr A⊗̂ΣK+)
is almost represented by the de Rham complex

· · · → ωi
R/K+⊗̂R

ˆ̃R(r − i)[1/p]→ ωi+1
R/K+⊗̂R

ˆ̃R(r − i− 1)[1/p]→ · · ·

Since by a theorem of Tate [18] there are no Gal(K̄/K)-equivariant homomorphisms
ˆ̄K(i)→ ˆ̄K(j) for i 6= j we see that this is a complex with differential zero, hence

H i(∆, grr A⊗̂ΣK+) ∼= ωi
R/K+⊗̂R

ˆ̃R(r − i)[1/p].

Noting that by definition we have

H i(∆, gr0 A⊗̂ΣK+) = H i(∆, ˆ̄R)⊗Acris(K+) Bcris

= H i(∆, ˆ̄R)⊗Acris(K+) gr0 Bcris = H i(∆, ˆ̄R)[1/p]

we recover the Galois cohomology computations of Faltings [7], albeit without any in-
formation on the p-torsion.

3.3.5. We can recover the p-torsion information as follows. Using the logarithm log :
Zp(1)→ B+

log we identify Zp(i) with Zpt
i ⊂ B+

log and this defines an injective map

K̄+/pnK̄+(i)→ gri B+
log ⊗Σ K+/pnK+

whose cokernel it annihilated by i! · ([1]1/p − 1)i because up to units we have

ti = ([1]1/p − 1)ii!ξ[i].

Recall that by Tate there are almost no Gal(K̄/K)-equivariant homomorphisms

K̄+/pnK̄+(i)→ K̄+/pnK̄+(j)

unless i = j. There is a commutative square of complexes

F d+1
(
B+

log/pnB+
log ⊗Σ ω•R/K+

)
−−−−→ F d

(
B+

log/pnB+
log ⊗Σ ω•R/K+

)
y y

C∗(∆, F d+1A+ ⊗Σ K+/pnK+) −−−−→ C∗(∆, F dA+ ⊗Σ K+/pnK+)

hence a morphism on cokernels

grd
(
B+

log/pnB+
log ⊗Σ ω•R/K+

)
→ C∗(∆, grd A+ ⊗Σ K+/pnK+).

Up to d! · ([1]1/p − 1)d-torsion the de Rham complex on the left-hand side has zero
differential, hence up to torsion for all i we get a map

ωi
R/K+ ⊗K+ K̄+/pnK̄+(d− i)→ H i(∆, R̄/pnR̄(d)).

This map is an almost isomorphism up to d! · ([1]1/p − 1)d-torsion, as can be checked by
computing the right-hand side.
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4 Globalization

In this section we globalize our previous results. We begin by the defining a site which will
enable us to glue Galois cohomology, following Faltings. Then we review the construction
by Fontaine-Messing of the syntomic crystalline site and its logarithmic generalization
by Breuil. Finally we link the two constructions to express crystalline cohomology as
the cohomology of a sheaf on the Faltings site.

4.1 Faltings cohomology

4.1.1. Let X be a scheme of finite type over a field k. Denote by Xét the étale site of
X and by XFét the site whose underlying category consists of finite étale morphisms.
There is a canonical continuous morphism of sites

ρ : Xét → XFét.

Recall that a scheme of finite type is said to be a K(π, 1) if the adjunction map

L→ Rρ∗ρ
∗L

is a quasi-isomorphism for all locally constant constructive sheaves L of order prime to
the characteristic of k. M. Artin has proved in SGA 4, Exp. XI, that every smooth
scheme over an algebraically closed field is locally (for the Zariski topology) a K(π, 1).

Theorem 4.1 (Faltings). If X is a smooth K+-scheme, then every point of X has a
neighbourhood U such that UK̄ is a K(π, 1).

See [5] 2.1 Lemma for the proof.

4.1.2. Let X be a normal K+-scheme of finite type. Define a site XF as follows. The
category underlying XF has for objects the pairs (U, V ), where U → X is étale and
V → UK̄ is finite étale. A morphism (U ′, V ′) → (U, V ) is given by a commutative
diagram of étale morphisms

U ′ −−−−→ V ′y y
U −−−−→ V.

Coverings are given by families of morphisms (Uα, Vα)α → (U, V ) such that
∐

α Uα → U
and

∐
α Vα → V are surjective.

Let x̄ be a geometric point of X, Xx̄ ⊗ K̄ := Spec(OX,x̄ ⊗K+ K̄), and let ȳ be a
geometric point of Xx̄ ⊗ K̄. The points of the topos XF are given by the fibre functors

F(x̄,ȳ) := colimY→Xx̄⊗K̄ F (Y )

where the inductive limit is taken over all finite étale neighbourhoods of ȳ. By a finite
étale neighbourhood of a geometric point x̄ → X we mean a finite étale morphism
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Y → X and a morphism x̄→ Y such the composition x̄→ Y → X is the original map.
We will usually refer to (x̄, ȳ) as the point of the topos XF. This topos has enough points
and the cohomology of quasi-compact X commutes with filtering inductive limits ([7],
3.).

4.1.3. Examples of sheaves on XF include the constant sheaf Z/pnZ and the sheaf Ōn

defined
Ōn(U, V ) := O(V ν/pnV ν)

where V ν denotes the integral closure of U in the quasi-coherent R(U)-algebra R(V )
(for any scheme X we denote by R(X) its sheaf of algebras of rational functions, i.e. the
product of its local rings at its generic points, see [12] II, 6.3, for details about R(X)).

Define a sheaf A +
n as the sheaf associated to the presheaf

(U, V ) H0
log-crys(V

ν ⊗Z Fp|Σn,O).

4.1.4. Let us show how to locally compute the cohomology of XF. There is a canonical
continuous morphism of sites

β : XF → XK̄,Fét

induced by the functor sending a finite étale cover Y → XK̄ to the object (X, Y ) of XF.

Proposition 4.1. Suppose X is a normal strictly local K+-scheme, x̄ → X its closed
point, and let XK̄ =

∐
Yi be its decomposition into irreducible components.

(i) β∗ is an exact and faithful functor.

(ii) For any choice of geometric points ȳi → Yi, any sheaf of abelian groups F on XF,
and any n we have

Hn(XF,F ) ∼=
∏

i

Hn(π1(Yi, ȳi),F(x̄,ȳi)).

Proof. For (i), let ȳ → XK̄ be a geometric point. By definition we see that

(β∗F )ȳ = colimY (β∗F )(Y ) = colimY F (Y ) = F(x̄,ȳ).

This proves that β∗ is exact and faithful.
(ii) follows from (i) because by [11] we have

Hn(XK̄,Fét, β∗F ) ∼=
∏

i

Hn(π1(Yi, ȳi),F(x̄,ȳi)).

The natural functor XF → XK̄,ét sending (U, V ) to V induces a continuous morphism
of sites denoted

α : XK̄,ét → XF.
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Proposition 4.2. Suppose X is a smooth K+-scheme. Then for any locally constant
constructible sheaf L on XK̄,Fét, the adjunction map

β∗L→ Rα∗α
∗β∗L

is a quasi-isomorphism.

Proof. The claim is local on X, so we can assume that X is strictly local and XK̄ is
a K(π, 1). Let x̄ be the closed point of X. First note that if L is a locally constant
constructible sheaf then it is representable by a finite étale covering Z of XK̄ , hence for
any finite étale covering Y of XK̄ we have (β∗L)(Y ) = HomXK̄,Fét

(Y, Z) = L(Y ). In
particular, for any geometric point ȳ → XK̄ we have

(β∗β∗L)ȳ = (β∗L)(x̄,ȳ) = colimY (β∗L)(Y ) = colimY L(Y ) = Lȳ

so L ∼= β∗β
∗L. Now, we have a commutative diagram of sites

XK̄,ét
α−−−−→ XF

ρ

y β

y
XK̄,Fét XK̄,Fét

so
Rα∗α

∗β∗L = Rα∗ρ
∗L

and
L ∼= β∗β

∗L→ β∗Rα∗ρ
∗L ∼= Rβ∗Rα∗ρ

∗L ∼= Rρ∗ρ
∗L ∼= L.

Since β∗ is exact and faithful this completes the proof.

Corollary 4.1. If X is a smooth K+-scheme and L a locally constant constructible
sheaf on XK̄,Fét, then for all i we have canonical isomorphisms

H i
ét(XK̄ , L) ∼= H i(XF, β∗L).

4.1.5. Assume X is a proper semi-stable K+-scheme. Let us compute the cohomology

of the sheaf ˆ̄O := limn Ōn+1 on XF up to p-torsion. For this we use the Leray spectral
sequence

Ei,j
2 = H i

ét(X, Rju∗Ōn+1) =⇒ H i+j(XF, Ōn+1)

where u : XF → Xét is the projection onto the étale site. Recall (cf. §3.3) that

Rju∗Ōn+1
∼= ωj

R/K+ ⊗ K̄+/pnK̄+(−j)⊕ (d!(ζ − 1)d-torsion)

where ζ denotes a p-th root of unity. Hence, taking the projective limit of the spectral
sequence and inverting p we obtain a spectral sequence

Ei,j
2 = H i(X, ωj

X/K+)⊗K+
ˆ̄K(−j) =⇒ H i+j(XF, ˆ̄O)[1/p]

which degenerates at E2 because of the Tate twists, i.e.

H i+j(XF, ˆ̄O)[1/p] ∼= ⊕i,jH
i(X, ωj

X/K+)⊗K+
ˆ̄K(−j).
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4.2 Syntomic cohomology

4.2.1. Recall that a morphism of schemes X → Y is syntomic if locally X = Spec(B)
and Y = Spec(A) with

B = A[X1, ..., Xn]/(f1, ..., fm)

for a regular sequence (f1, ..., fm) in A[X1, ..., Xn] and A[X1, ..., Xn]/(f1, ..., fi) is flat as
an A-module for all i. Locally here can mean either for the Zariski or étale topologies.

For example, the homomorphism R→ Rn is syntomic, because the equations Xpn

1 −
T1, ..., X

pn

d+1 − Td+1 have no common roots. Hence R̃ → R̃∞ is the inductive limit of
syntomic homomorphisms. It is well-known that syntomic morphisms are stable by base
change and composition. Thus we may speak of the syntomic topology.

Following Breuil, we want to consider a crystalline site in which we localise for the
syntomic topology rather than the étale topology. We also need a logarithmic version.
For this we must restrict to logarithmic syntomic morphisms which lift locally, the so-
called log-syntomic morphisms of [4].

4.2.2. If M is an integral monoid and m ∈ Mgp, one say that m is simplifiable in
M if there exists n, n′ ∈ M such that m = n/n′ and for all p, p′ ∈ M such that
m = p/p′ there exists m0 ∈ M such that p = n0n and p′ = n0n

′; one then says that
m = n/n′ is a simplified expression for m (“écriture simplifiée” in French). One says
that m is regular in M if m is simplifiable in M and of infinite order in Mgp. Let
m1, ...,mr ∈ Mgp and let Mi = 〈m1, ...,mi〉 be the subgroup of Mgp generated by
m1, ...,mi, M0 = 0. We say that (m1, ...,mr) is a regular sequence in M if mi is regular
in M/Mi−1 := Im(M →Mgp/Mi−1) for 1 ≤ i ≤ r. The sequence (m1, ...,mr) is regular
if and only (n1 − n′1, ..., nr − n′r) is a regular sequence in Z[M ], where mi = ni/n′i is a
simplified expression for mi for all i, in which case the canonical map

Z[M ]/(n1 − n′1, ..., ni − n′i)→ Z[M/Mi]

is an isomorphism for all i ([4], Prop. 2.1.8).
Finally, one defines a morphism of integral monoids M → N to be syntomic if it is

injective and if we can write N = (M ⊕ NX1 ⊕ · · · ⊕ NXr)/ 〈x1, ..., xs〉 for some regular
sequence (x1, ..., xs) in M ⊕ NX1 ⊕ · · · ⊕ NXr and moreover the morphism M → N is
universally integral. This last condition means that for any morphism integral monoids
M → M ′ the push out of N ← M → M ′ is integral. By [15] Prop. 4.1, M → N is
universally integral if and only if Z[M ] → Z[N ] is flat. This condition ensures that if
M → N is syntomic then so is Z[M ]→ Z[N ].

4.2.3. Define a morphism of fine log-schemes f : (X, M) → (Y, N) to be log-syntomic
if it is flat and locally for the étale topology it is standard log-syntomic, i.e. we have
X = Spec(A) and Y = Spec(B), MA = P a and NB = Qa, and a commutative diagram

Q −−−−→ By y
P −−−−→ A
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such that Q → P is syntomic and B ⊗Z[Q] Z[P ] → A is syntomic. Log-syntomic mor-
phisms are stable under base change by a morphism of fine log-schemes and the compo-
sition of two log-syntomic morphisms is again log-syntomic. This enables us, for every
fine log-scheme X, to define the log-syntomic site Xsyn whose objects are log-syntomic
morphisms U → X and whose coverings are given by families of log-syntomic morphisms
Uα → U such that

∐
Uα → U is surjective.

Let X be a fine Z0-scheme. Define the log-syntomic crystalline site of X, denoted
(Xsyn|Zn)log-crys, by taking the category whose objects are log-DP-Zn-thickenings (U ↪→
T ) with U → X log-syntomic. Morphisms are given by the usual commutative diagrams
of DP-morphisms. Coverings are given by families of morphisms

((Uα ↪→ Tα)→ (U ↪→ T ))α

such that (Tα → T )α is a log-syntomic covering and the commutative squares

Uα −−−−→ Tαy y
U −−−−→ T

are cartesian.

4.2.4. The reason for introducing log-syntomic morphisms is the fact that they locally lift
over nilpotent thickenings, see [4] Lemme 3.2.2. This makes the log-syntomic crystalline
site particularly useful. We thank C. Breuil for indicating to us the idea of proof of the
following proposition, and we take the opportunity to give a complete proof which we
have not seen in the literature but is well-known to the experts (cf. [4] Cor. 3.2.3).

Proposition 4.3. For any sheaf F on (Xsyn|Zn)log-crys, the presheaf F log-crys on Xsyn

defined
F log-crys(U) := H0

log-crys(U |Zn,F )

is a sheaf.

Proof. Let (Uα → U)α be a log-syntomic covering. We claim that for every object (Uα ↪→
Tα) of the log-crystalline site of Uα over the DP-log-base Zn there exists a cartesian
square

Uα −−−−→ Tαy y
U −−−−→ T

with (U ↪→ T ) an object of the log-crystalline site of U over Zn and Tα → T a logarithmic
DP-Zn-morphism (not necessarily syntomic). Up to localizing for the étale topology we
may assume that each Uα → U is standard log-syntomic given by the square

Q −−−−→ OUy y
P −−−−→ OUα
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with Q → P and OU ⊗Z[Q] Z[P ] → OUα syntomic. Up to further localization (cf. [4]
Lemme 2.2.1.2) we may assume that the log-structure of Tα is given by a fine monoid P̂
and we have a commutative diagram

P̂ −−−−→ OTαy y
P −−−−→ OUα .

Define
OT := OTα ×OUα

OU .

It is naturally endowed with the pre-log-structure given by the monoid Q̂ := P̂ ×P Q.
We claim that T := Spec(OT ) makes the obvious commutative square cartesian, i.e. we
claim that the canonical map

OTα ⊗OT
OU → OUα

is an isomorphism. It is clearly surjective, hence it suffices to prove that it is injective.
Suppose

∑
i xi⊗ yi lies in its kernel. Let ŷi be a lift to OTα of the image of yi in OUα for

all i. Then
1⊗ yi = ŷi ⊗ 1

by definition of OT . Then
∑

i xi⊗yi = (
∑

i xiŷi)⊗1 and z :=
∑

i xiŷi ∈ Ker(OTα → OUα).
But then we must have z ⊗ 1 = 1 ⊗ 0 = 0, again by the very definition of OT . This
proves the claim. Moreover, it follows from classical arguments (cf. [2] 5.11 Lemma)
that (U ↪→ T ) is an object of the log-crystalline site of U over Zn and that Tα → T is a
log-DP-morphism, thereby proving the claim.

Now, the natural map Q̂→ P̂ may not be syntomic, but we may modify P̂ in order
to make it syntomic, as follows. Since Q→ P is syntomic we may write

P =
Q⊕ NX1 ⊕ · · · ⊕ NXr

〈g1, ..., gs〉
.

Let z1, .., zr denote a choice of lifts to P̂ of X1, ..., Xr ∈ P . This defines a map

Q̂⊕ NZ1 ⊕ · · · ⊕ NZr → P̂ : Zi 7→ zi.

Clearly, the kernel of this map consists of lifts of elements of 〈g1, ..., gs〉. Let ĝi be a
choice of lift of gi lying in this kernel. Then the map factors over

P̂ ′ :=
Q̂⊕ NZ1 ⊕ · · · ⊕ NZr

〈ĝ1, ..., ĝs〉
→ P̂

and the natural homomorphism Q̂→ P̂ ′ is syntomic by construction.
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Now, write OUα = OU ⊗Z[Q] Z[P ][Xi]/(fj) for a regular sequence (fj). Let xi denote
the image of Xi in OUα for all i and let x̂i denote a choice of lifts to OTα . Define an
OT -algebra homomorphism

OT ⊗Z[Q̂] Z[P̂ ′][Xi]→ OTα : Xi 7→ x̂i.

Note that this map is surjective, i.e. OTα is generated by the x̂i as an OT ⊗Z[Q̂] Z[P̂ ′]-
algebra. This is true modulo a nilpotent ideal generated by elements in the image of
the canonical map OT ⊗Z[Q̂] Z[P̂ ′] → OTα , hence must be true in general. Moreover, it
is clear that the kernel I of the map consists of lifts of elements of the elements of the
ideal (fj). For all j, choose a lift f̂j ∈ OT ⊗Z[Q̂] Z[P̂ ′][Xi] of fj lying in I, and define

OT ′α :=
OT ⊗Z[Q̂] Z[P̂ ′][Xi]

(f̂j)
T ′α := Spec(OT ′α).

Then we have a commutative diagram of DP-Zn-morphisms

Uα −−−−→ Tα∥∥∥ y
Uα −−−−→ T ′αy y
U −−−−→ T

in which the lower square is cartesian and the map T ′α → T is log-syntomic by construc-
tion. In other words, we have shown that for any (Uα ↪→ Tα) as above, there exists
(U ↪→ T ) and a lifting T ′α → T of the log-syntomic morphism Uα → U together with a
morphism of the log-crystalline site of Uα over Zn

Uα −−−−→ Tα∥∥∥ y
Uα −−−−→ T ′α.

This implies that the projective limit

F log-crys(Uα) = lim
(Uα↪→Tα)

F (Tα)

can be computed over the subcategory of the log-crystalline site of Uα consisting of
(Uα ↪→ Tα) which are lifts of (U ↪→ T ) for some T . In other words, F log-crys(U) is the
equalizer of the double arrow∏

α F log-crys(Uα)
//
//
∏

α,β F log-crys(Uα ×U Uβ)

as required.
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4.2.5. Let X be a fine log-K+-scheme and K ⊂ L a finite field extension. Define a site
XF−syn,L as follows. Objects are given by pairs (U, V ), where

• U → X is étale

• V → UL+ is a log-syntomic morphism such that the pair (U, V ×Spec(L+) Spec(K̄))
belongs to XF.

A morphism (U ′, V ′)→ (U, V ) is given by a commutative diagram

V ′ −−−−→ U ′y y
V −−−−→ U

where U ′ → U is étale and V ′ → V is and log-syntomic. Coverings are given by families of
morphisms (Uα, Vα)→ (U, V ) such that (Uα → U)α is an étale covering, and (Vα → V )α

is a surjective family of log-syntomic morphisms.
The natural functor sending (U, V ) to (U, V ⊗L+ K̄) defines a continuous morphism

of sites
sL : XF → XF−syn,L.

Lemma 4.1. For all i 6= 0 and all r we have RisL,∗F
r
p An ≈ 0.

Proof. Clearly, RisL,∗F
j
p An is associated to the presheaf

(U, V ) H i(XF(U,V ), F
j
p An)

where XF(U,V ) is the site consisting of pairs (U ′, V ′) of XF with a morphism (U ′, V ′)→
(U, V ). By Proposition 4.1 this is the same as the sheaf associated to the presheaf

(U, V ) H i(VFét, F
j
p An).

If we take U = Spec(R) where R is a small integral K+-algebra with K+ integrally closed
in R, and V = Spec(R̃∞), then V → U is the filtering inductive limit of log-syntomic
coverings and V → Spec(R̄) is the filtering inductive limit of almost Galois coverings,
hence by Corollary 2.4 and Proposition 2.1 for i 6= 0 we have

H i(VFét, F
j
p An) ∼= H i(Gal(R̄[1/p]/R̃∞[1/p]), F j

p An(R̄[1/p])) ≈ 0.

4.2.6. For any fine log-Z0-scheme Y , let Ysyn denote the log-syntomic site and (Ysyn|Zn)log-crys

the syntomic log-crystalline site. Define a sheaf of ideals I on (Ysyn|Zn)log-crys by

I (U ↪→ T ) := Ker(OT → OU ).

It has a canonical divided power structure and we will write I [r] for its rth divided
power.
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By Proposition 4.3, the presheaf I [r],log-crys on Ysyn defined

I [r],log-crys(U) = H0
log-crys(Y |Zn,I [r])

is a sheaf and, by arguments of [4] §3.3, there are canonical isomorphisms for all i

H i(Ysyn,I
[r],log-crys) ∼= H i

log-crys(Y |Zn,I [r]).

Now, the functor sending (U, V ) to (V/pV → UL+/pL+) defines a continuous morphism
of sites

aL : XL+/pL+,syn → XF−syn,L

Lemma 4.2. For all i 6= 0 we have RiaL,∗I
[r],log-crys = 0.

Proof. Clearly, RiaL,∗I
[r],log-crys is the sheaf associated to the presheaf

(U, V ) H i((V/pV )syn,I
[r],log-crys) ∼= H i

log-crys(V/pV |Zn,I [r])

and if U = Spec(R) with R small integral and V = Spec(S) then the ind-log-syntomic
covering V∞ := Spec(S̃∞)→ V has no log-crystalline cohomology in non-zero degree by
Proposition 2.3 and Theorem 1.1.

Clearly, there is a canonical morphism of sheaves on XF−syn,L

aL,∗I
[r],log-crys → sL,∗F

r
p An.

Let
uL : XF−syn,L → Xét

be the projection onto the étale site of X. Our Galois cohomology computations from
the last section can be reformulated as follows.

Theorem 4.2. For all i the canonical morphisms

colimL RiuL,∗aL,∗I
[r],log-crys → colimL RiuL,∗sL,∗F

r
p An

have kernel and cokernel almost annihilated by td.

Proof. This is a reformulation of our Theorems 3.1 and 3.2.

Corollary 4.2. For all i there is a canonical homomorphism

H i
log-crys(XK+/pK+ |Σn,O)⊗Σn B+

log/pnB+
log → H i(XF,An)

which is a filtered almost isomorphism up to td-torsion.

Proof. This follows from Theorem 4.2, using the flatness of B+
log/pnB+

log over Σn ([16]
Prop. 3.3).
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5 Comparison of étale and crystalline cohomology

In this section we compare étale and crystalline cohomology theories. We denote by X
a semi-stable K+-scheme throughout.

5.1 Chern classes

The key ingredient in the comparison of cohomology theories is Poincaré duality. For this
we must compare characteristic classes, which on regular schemes reduces to comparing
Chern classes.

5.1.1. Let us begin by defining Chern classes in Faltings cohomology. If L is a line
bundle on X, then it defines a class in [L ] ∈ H1(X, O∗

X) which maps to H1(XF, Ō∗
n),

where Ō∗
n denotes the sheaf of units of the sheaf of rings Ōn. Via the Kummer sequence

0 −−−−→ Z/pnZ(1) −−−−→ Ō∗
n

pn

−−−−→ Ō∗
n −−−−→ 0

we define the first Chern class c1(L ) ∈ H2(XF, Z/pnZ(1)) as the image of [L ] under the
composition H1(X, O∗

X) → H1(XF, Ō∗
n) → H2(XF, Z/pnZ(1)). Note that by construc-

tion it is clear that under the canonical map to p-adic étale cohomology H2
ét(XK̄ , Z/pnZ(1)),

c1(L ) maps to cét
1 (α∗L ), where

cét
1 : H1(X, O∗

X)→ H2
ét(XK̄ , Z/pnZ(1))

is the cycle class map. We also have a crystalline cycle class map

ccrys
1 : H1(X, O∗

X)→ H2
log-crys(XK+/pK+ |Σn,O).

5.1.2. Let H be a cohomology theory with a theory of Chern classes satisfying the
projective bundle formula. Recall that the splitting principle for H means that we can
find a proper smooth surjective morphism f : X ′ → X such that f∗E has a filtration
with line bundle subquotients and f∗ : H(X) → H(X ′) injective. It is trivial for rank
1 vector bundles and is constructed by induction on the rank r of E . Consider the
canonical morphism π : P(E ) → X. By the projective bundle formula, we know that
π∗ is injective on cohomology and the vector bundle π∗E /O(1) has rank r − 1, so by
induction there exists a morphism g : X ′ → P(E ) with the required properties. Then
the composition

f : X ′ g−−−−→ P(E ) π−−−−→ X

does the job. Moreover, if X is a proper semi-stable (resp. smooth) K+-scheme, then
so is X ′. If α is a Chern root of E , then f∗(α) is the Chern class of a line bundle on X ′.
This reduces the checking of properties of Chern classes of vector bundles to that of line
bundles.
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5.1.3. Using the logarithm log : Z/pnZ(1)→ Acris(K+)/pnAcris(K+) we define maps for
all i, j ∈ Z

H i(XF, Z/pnZ)⊗Z/pnZ Z/pnZ(j)→ H i(XF, Z/pnZ)⊗Z/pnZ Acris(K+)/pnAcris(K+).

Recall that by Corollary 4.2 we have defined a canonical transformation

H i
log-crys(XK+/pK+ |Σn,O)→ H i(XF,An).

Proposition 5.1. Let L be a vector bundle on X. The transformation

H i(XF, Z/pnZ)⊗Z/pnZ Acris(K+)/pnAcris(K+)→ H i(XF,An)

sends the Chern class c1(L ) to ccrys
1 (L ⊗−1) = −ccrys

1 (L ).

Proof. Let U = ∪iUi be an affine open covering of X trivializing L . Up to further
localization we may assume that Ui = Spec(Ri) with Ri small integral K+-algebra. Let
Ui,j = Ui ∩ Uj and let fi,j ∈ O∗

Ui,j
be a set of trivializing functions for L . For all i

let Zi be the étale Θ(c)/pnΘ(c)-algebra lifting Ri ⊗ Fp and let Zi,j = Zi ⊗Θ(c) Zj . Let
f̂i,j be a lift of fi,j mod p to Zi,j . Let Di and Di,j be the divided power hulls for the
respective closed immersions. Note that by étaleness over Θ(c)/pnΘ(c), these closed
immersions are exact, hence the logarithmic and classical divided power hulls coincide.
The crystalline Chern class ccrys

1 (L ) is represented by the 1-cocycle

dlog(f̂i,j) ∈ Č1(U, Di,j ⊗Zi,j ω1
Zi,j/Σ).

On the other hand, we defined c1(L ) to be the image of the class of L in the Picard
group under the coboundary map arising from the Kummer exact sequence, i.e. it is
represented by the 1-cocycle

fp−n

i,j ∈ Č1(U, C1(∆, Z/pnZ(1)))

and under the logarithm log : Z/pnZ(1)→ An it maps to

log
(
fp−n

i,j

)
∈ Č1(U, C1(∆, A+/pnA+)).

So it suffices to show that for all i, j, dlog(f̂i,j) maps to log
(
fp−n

i,j

)
up to coboundaries,

so we can restrict to a single Ui,j = Spec(R). We have morphisms of complexes

C∗(∆, A+/pnA+) ∼−→ C∗(∆,M+/pnM+ ⊗Rn ω•Rn/Σn
) ←− B+

log/pnB+
log ⊗Σn ω•Rn/Σn

and dlog(f̂i,j) is the image under d of log
([

fp−n

i,j

]−1
⊗ f̂i,j

)
∈ C0(∆,M+/pnM+) and

the latter has image log
(
f−p−n

i,j

)
= − log

(
fp−n

i,j

)
∈ C1(∆,M+/pnM+).
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5.2 Artin-Schreier theory for Fontaine rings

In this section we work locally on the special fibre of X, so we my assume that R is a
local ring of X at a point of the special fibre Xk. In particular p lies in the Jacobson
radical of R. As usual, define

A+ := lim
n

H0
log-crys(R̄/pR̄|Σn+1,O).

Let Φ denote the Frobenius endomorphism of A+ lifting the absolute Frobenius of
A+/pA+.

Lemma 5.1. For all n we have an exact sequence

0 −−−−→ Z/pnZ −−−−→ A+/pnA+ Φ−1−−−−→ A+/pnA+ −−−−→ 0.

Proof. For all x ∈ A+/pnA+, the equation Φ(X) − X = x defines an étale covering
of A+/pnA+, so it suffices to show that it induces the trivial covering of R̄/pR̄. This
reduces to showing the statement with A+/pnA+ replaced by R̄/pR̄. It suffices to show
that for all x ∈ R̄ the equation Xp −X = x is soluble in X. We can assume that x ∈ S
for S a finite normal domain such that R→ S is étale in characteristic zero. Then S is
a semi-local ring whose Jacobson radical contains p. Let f(X) = Xp−X −x. We claim
that f(X) = 0 defines a finite étale cover of S. Indeed, f ′(X) = pXp−1 − 1 is a unit of
S[X]/(f(X)) since p lies in the Jacobson radical. So f(X) = 0 is finite étale over S, in
particular has a root in R̄.

Define

Ainf(R) := W (P (R̄/pR̄))
Acris(R) := lim

n
H0

crys(R̄/pR̄|Wn+1(k),O).

Let Φ denote the canonical Frobenius-lifts of Ainf(R) and Acris(R). Recall that t :=
log([1]) and by Proposition 1.4 we have tp−1 ∈ p · F 1Acris(K+), so for all n we have

tn

(n + 1)!
=

pqq!
(n + 1)!

(
tp−1

p

)[q]

tr

where n = q(p− 1) + r and q =
[

n

p− 1

]
≥ vp((n + 1)!). Hence we may define for all n

t{n} :=
tn

pq · r! · q!
∈ Acris(K+).

The following theorem is a generalization of Thm. 5.37 of [8]. Its proof is based on
one given in a course by Faltings in the case R = K+.

Theorem 5.1. (i) For x ∈ Ainf(R), x ∈ ([1] − 1) · Ainf(R) if and only if Φn(x) ∈
ξ ·Ainf(R) for all n.
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(ii) If x ∈ FmAcris(R) and Φ(x) = pmtx, then x ∈ Zpt
{m}.

(iii) The following sequence is exact for all m

0 −−−−→ Zpt
{m} −−−−→ FmAcris(R)

p−mΦ−1−−−−−→ 1
pm Acris(R)

and Coker(FmAcris(R)→ 1
pm

Acris(R)) is annihilated by p2m.

Proof. (i): Let θ : Ainf(R)→ ˆ̄R be the canonical map. Write x = ξx0. We have

θ(Φ(ξ)) = θ([p]p − p) = p(pp−1 − 1) 6= 0

hence θ(Φ(x0)) = 0 since ˆ̄R is p-torsion free. So we can write Φ(x0) = ξx1 and
x0 = Φ−1(ξ)Φ−1(x1). The same argument for all n ≥ 1 implies that x is divisible
by ξΦ−1(ξ)Φ−2(ξ) · · ·Φ−n(ξ) for all n. Reducing modulo p, we have ξ = p so we see that
x is divisible by

p
∑

n≥0 p−n

= p
p

p−1 .

Now recall that P (K̄+/pK̄+) is a valuation ring and v(1 − 1) = p
p−1 = v

(
p

p
p−1

)
so

p
p

p−1 = u · (1 − 1) for some unit u ∈ P (K̄+/pK̄+). This proves (i) modulo p, hence in

general since Ainf(R) is p-adically complete and ˆ̄R is p-torsion free.
(ii): We first claim that every element of Acris(R) can be written as a sum

∞∑
n=0

ant{n}

where an ∈ Ainf(R) converges p-adically. It suffices to prove this modulo p, where
tp−1

p = u · ξp

p . Now write n = ap + b with 0 ≤ b < p. Note that vp(n!) ≤ a + vp(a!), so
we can write

ξ[n] =
(ξp/p)a

a!
ξb paa!

n!
= t{a(p−1)}ξb paa!

n!
and the claim follows. Now suppose that x ∈ FmAcris(R), Φ(x) = pmx. By Lemma 5.1
the claim is true for m = 0, so assume that m ≥ 1. Write x =

∑
ant{n}. We claim

that we may assume that an = 0 for all n < m. Since Φn(a0) ∈ ξ · Ainf(R) for all n,
hence a0 ∈ ([1] − 1) · Acris(R) = t · Acris(R). So we may assume that a0 = 0. If m = 1
we are done, so assume m > 1. Then Φn(a1t) ∈ F 2Acris(R). Since t = ([1] − 1) · v
for some unit v we have Φn(a1t) = pntΦn(a1) = vpn([1] − 1)Φn(a1) ∈ F 2Acris(R), so
pn([1] − 1)Φn(a1) ∈ F 2Acris(R) ∩ Ainf(R) = F 2Ainf(R), hence we must have Φn(a1) ∈
F 1Ainf(R) for all n, whence we can assume that a1 = 0. Continuing in this manner we
see that we may assume that x =

∑
n≥m ant{n}. Since Φn(x) = pmnx for all n we have

x =
Φn(x)
pmn

=
∑
n≥m

Φn(an)pn−mt{n} ≡ Φm(am)t{m} mod pn.
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So x = x0t
{m}, where x0 = Φm(am). But then Φ(x0) = x0, hence x0 ∈ Zp, thereby

proving (ii).
(iii): First observe that if a′ =

∑
n>m ant{m}, then

a′ ≡ a′ − p−mΦ(a′) mod p

so it suffices to show that for all a ∈ Ainf(R) and n0 ≤ m there exists x ∈ pmFmAcris(R)
and b =

∑
n>n0

bnt{n} with bn ∈ Ainf(R) such that

p−mΦ(x)− x = at{n0} + b.

Recall that ζ :=
[1]− 1

[1]1/p − 1
is a generator of the principal ideal F 1Ainf(R). Set x =

Xζm−n0t{n0} for X an indeterminate. We have

p−mΦ(x)− x = p−mΦ(X)Φ(ζ)m−n0pn0t{n0} −Xζm−n0t{n0}.

Recall that [1]− 1 = v · t, where v =
∑∞

n=0
tn

(n+1)! is a unit of Acris(K+) (cf. the proof of
Proposition 1.4). Hence we have

Φ(ζ) =
ptΦ(v)

tv
= p

Φ(v)
v

and w := Φ(v)
v ∈ 1 + t ·Acris(K+) is a unit. Substituting, we find

p−mΦ(x)− x = wm−n0Φ(X)t{n0} −Xζm−n0t{n0} = t{n0}(Φ(X)−Xζm−n0) + b

where b is of the form b =
∑

n>n0
bnt{n} with bn ∈ Ainf(R). So it suffices find a solution

in Ainf(R) to the equation
Φ(X)−Xζm−n0 = a.

Since Ainf(R) is p-adically complete, it suffices to find a solution modulo p, i.e. it suffices,
for all n, to find a solution in R̄/pR̄ to the equation

Xp − unp
m−n0

pn X = an

where (an)n = a mod p and (un)n =
(
ζ/p
)m−n0 is a unit of P (K̄+/pK̄+). Let m0 =

m−n0. Note that if m0 ≥ pn, then this equation reads Xp = a and has a solution since
the Frobenius is surjective on R̄/pR̄. So we may assume that m0 < pn. Let ûn and
ân be lifts of un and an respectively to R̄. Note that ûn is a unit because p lies in the
Jacobson radical of R̄. We claim that the equation

Xp − ûnp
m0
pn X = ân

has a solution in R̄. Equivalently, if S denotes a finite integral normal R-algebra contain-
ing ûn,ân and pp−n

, then we claim that the equation F (X) := Xp − ûnp
m0
pn X = ân = 0

defines a finite étale covering of S[1/p]. Indeed, we have

F ′(X) = pXp−1 − ûnp
m0
pn = ûnp

m0
pn (û−1

n p
1−m0

pn Xp−1 − 1)
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and û−1
n p

1−m0
pn Xp−1 − 1 is a unit of S[X]/(F (X)) because

(
p
1−m0

pn

)pn

= ppn−m0 ∈ pS

lies in the Jacobson radical of S, hence so does p
1−m0

pn . So S[X]
(F (X)) [1/p] is a finite étale

covering of S[1/p], and in particular the equation F (X) = 0 has a solution in R̄.

Let T := log(X + 1) ∈ B+
log, where X is as in Proposition 1.3.

Corollary 5.1. For any r ≥ 0, the sequence

0 −−−−→ ⊕a∈NZpt
aT r−a −−−−→ F rA+ p−rΦ−1−−−−−→ 1

pr A+ −−−−→ 0

is exact up to torsion annihilated by a fixed p-power depending only on r.

Proof. We have already shown the claim for r = 0, and we will show it by induction
on r. We have just shown the analogous claim for Acris(R). We claim to have exact
sequences for all r, n ≥ 1

0 −→ F rAcris(R)/pnF rAcris(R) −→ F rA+/pnF rA+ N−→ F r−1A+/pnF r−1A+ −→ 0

where N is the monodromy operator. This is essentially shown in [4] Prop. 6.2.1. Let
us give the argument. Recall that A+/pnA+ is DP-polynomial ring in one variable X
over Acris(R)/pnAcris(R) (Prop. 3.2). Let x =

∑
i xiX

[i] with xi ∈ Acris(R). Then

N(x) =

∑
i6=0

xiX
[i]

 (1 + X).

If N(x) = 0, then since 1 + X is a unit we have
∑

i6=0 xiX
[i] = 0, whence xi = 0 for

all i 6= 0, so x ∈ Acris(R). It remains to see that N is surjective. It suffices to show
that each X [i] lies in the image of N . If i = 0, then 1 = N(log(X + 1)). We have
N(X [i+1]) = X [i] +(i+1)X [i+1], so it suffices to show that (i+1)X [i+1] lies in the image
of N . Repeating this we see that it suffices to show that (i + 1)(i + 2) · · · (i + j)X [i+j]

lies in the image of N for some j ∈ N. But for j large enough this is zero.
Since N satisfies NΦ = pΦN , for all r ≥ 1 we obtain commutative diagrams with

exact rows

0 −−−−→ F rAcris(R)[1/p] −−−−→ F rA+[1/p] N−−−−→ F r−1A+[1/p] −−−−→ 0

p−rΦ−1

y p−rΦ−1

y p−(r−1)Φ−1

y
0 −−−−→ Acris(R)[1/p] −−−−→ A+[1/p] N−−−−→ A+[1/p] −−−−→ 0.

By induction on r, we may assume that the right vertical arrow is surjective. Since the
left vertical arrow is surjective, it follows that the middle vertical arrow is surjective. So
by the snake lemma it remains to prove the exactness of the sequence

0 −−−−→ Qp(r) −−−−→ ⊕a∈NQpt
aT r−a N−−−−→ ⊕a∈NQpt

aT r−1−a −−−−→ 0

but N(taT b) = btaT b−1 so this is clear.
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5.3 Finiteness of Faltings cohomology

Assume in this section that X is a proper semi-stable K+-scheme.

5.3.1. Recall that we have defined a sheaf of rings Ō1 on the topos XF. The absolute
Frobenius F is surjective on Ō1 and so we may consider the projective limit P (Ō1) of

· · · F−−−−→ Ō1
F−−−−→ Ō1

F−−−−→ Ō1.

Define
Ainf,n := Wn(P (Ō1)).

The following theorem of Faltings is the key to obtaining information about the coho-
mology groups H i(XF, Z/pnZ).

Theorem 5.2 (Faltings). For all i and any n ≥ 1 we have canonical almost isomor-
phisms

H i(XF,Ainf,n) ≈ H i(XF, Z/pnZ)⊗Z Ainf(K+)/pnAinf(K+).

Let us recall the main ideas of the proof ([7], p. 223-227). Firstly, recall that the
kernel of the canonical map

Ainf,1 → Ō1

is generated by ξ = [p] − p. Using duality, one shows that the cohomology groups
H i(XF, Ō1) – essentially Hodge cohomology – are almost finitely presented K̄+/pK̄+-
modules. Then, by dévissage in ξ, one derives that H i := H i(XF,Ainf,1) are almost
finitely presented Ainf(K+)/pAinf(K+)-modules, in fact almost projective of constant
rank r (loc.cit. p. 223-226). This is the crucial step in showing that

HomΦ,Ainf(K+)(H
i, Ainf(K+)/pAinf(K+))

is an Fp-vector space of dimension r. Here the homomorphisms are Frobenius-linear
almost maps of Ainf(K+)-modules. Then one chooses 0 < ε < 1, a := pε, and one
considers the short exact sequences (on the special fibre of X)

0 −−−−→ Fp −−−−→ Ainf,1
Φ−a−−−−→ Ainf,1 −−−−→ 0.

Using that this sequence is exact for variable a enables one to show that almost Frobenius
invariants of H i coincide with Frobenius invariants, so that H i is almost generated by
real Frobenius invariants, thereby proving the theorem modulo p.

For all i, consider the Qp-vector space

H i(XF, Qp) :=
(
lim
n

H i(XF, Z/pn+1Z)
)
⊗Zp Qp.

Corollary 5.2. For all i we have dimQp H i(XF, Qp) = dimK H i
dR(XK/K).

Proof. If we let Ainf := limn Ainf,n+1 and ˆ̄O := limn Ōn+1 then

H i(XF, Zp)⊗Zp
ˆ̄K ∼= H i(XF,Ainf/ξAinf)[1/p] = H i(XF, ˆ̄O)[1/p]

is the Hodge cohomology of X ⊗K+
ˆ̄K so the result follows from the degenerescence of

the Hodge spectral sequence by descent.
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5.3.2. Note that if X is a smooth K+-scheme, then by Corollary 4.1 we already know
that

H i(XF, Z/pnZ) ∼= H i
ét(XK̄ , Z/pnZ)

so that in this case we do not have to resort to these difficult computations.

5.4 Comparison

In this section we assume that X is a proper semi-stable K+-scheme. We will put all of
the previous theory together to show that the log-crystalline cohomology of the special
fibre of X is an admissible filtered (ϕ, N)-module in the sense of Fontaine. From this we
will deduce a comparison map to p-adic étale cohomology of the geometric generic fibre
of X.

5.4.1. Recall that we have defined a sheaf of rings An on XF. As a sheaf of Fontaine
rings, it is endowed with both the DP-filtration, denoted F •

p , and the canonical filtration
denoted F • (Def. 1.2.4). Define

H i(XF,A +) := lim
n

H i(XF,An+1).

It has a filtration defined

F rH i(XF,An) := Im(H i(XF, F rAn)→ H i(XF,An)).

We define
H i(XF,A ) := H i(XF,A +)⊗Acris(K+) Bcris

and endow it with the tensor product filtration.

5.4.2. Define a complex of sheaves Ln(r) on XF by the distinguished triangle

Ln(r) −−−−→ F rAn
Φ−pr

−−−−→ An.

Note that by Corollary 5.1 there is a canonical morphism of complexes

Ln(r) := ⊕a∈N(Z/pnZ)taT r−a → Ln(r).

Setting L+(r) := limn Ln+1(r) and L +(r) := limn Ln+1(r) we deduce a canonical iso-
morphism

H i(XF, L+(r))⊗Zp Qp
∼= H i(XF,L +(r))⊗Zp Qp

and of course we have H i(XF, L+(r))⊗Zp Qp
∼= H i(XF, Qp)⊗Zp L+(r).

5.4.3. Let B+
st := B+

cris[T ] with T := log(1 + X) as before. Note that by Proposition 1.3
we know that B+

st = B+
log[1/p]N−nil is the subring of monodromy nilpotent elements of

B+
log[1/p]. As usual, write Bst = B+

st [1/t].

74



5.4.4. Let L(u) be the pre-log-structure on Σn. Its inverse image to Spec(k) defines a
pre-log-structure

L(π) : N→ k

and composing with the Teichmüller lift [·] : k →Wn(k) this defines a pre-log-structure
on Wn(k), denoted L(π). Consider the log-crystalline site of Xk over Wn(k) with the
latter endowed with the log-structure associated to L(π). Define

H i
log-crys(Xk|W (k)) := lim

n
H i

log-crys(Xk|Wn+1(k),O)

H i
log-crys(XK+/pK+ |Σ) := lim

n
H i

log-crys(XK+/pK+ |Σn+1,O).

Recall that by [13] Lemma 5.2, for all i we have canonical isomorphisms

H i
log-crys(Xk|W (k))⊗W (k) Σ[1/p] ∼= H i

log-crys(XK+/pK+ |Σ)[1/p].

The Frobenius Φ on the finite W (k)-module H i
log-crys(Xk|W (k)) is related to the mon-

odromy N by the relation NΦ = pΦN . Since Φ is an isogeny on H i
log-crys(Xk|W (k)),

it follows that N is nilpotent. Hence, the set of monodromy nilpotent elements of
H i

log-crys(Xk|W (k))⊗W (k) Blog is precisely H i
log-crys(Xk|W (k))⊗W (k) Bst.

5.4.5. It follows from Corollary 4.2 that there are canonical almost isomorphisms for all
i

H i
log-crys(Xk|W (k))⊗W (k) Blog ≈ H i(XF,A ).

Since Bst ⊂ BdR and the latter is a field, it follows that Bst is an integral domain and
hence the map

H i
log-crys(Xk|W (k))⊗W (k) Bst → H i(XF,A )

is injective. So we can define a filtration

F r(H i
log-crys(Xk|W (k))⊗W (k) Bst) := H i

log-crys(Xk|W (k))⊗W (k) Bst ∩ F rH i(XF,A ).

This filtration is clearly exhaustive.

Lemma 5.2. This filtration on H i
log-crys(Xk|W (k))⊗W (k) Bst induces the same filtration

on H i
log-crys(Xk|W (k))⊗W (k) Bst⊗W (k) K+ as the filtration F •

H induced by the canonical
filtration on Bst and the Hodge filtration on H i

log-crys(Xk|W (k))⊗W (k) K.

Proof. Note that the canonical map Bst⊗W (k) K+ → Blog⊗̂ΣK is filtered for the canon-
ical filtration on both sides and induces an isomorphism on gradeds, so it suffices to
prove that the Hodge filtration coincides with the canonical filtration on

H i
log-crys(Xk|W (k))⊗W (k) Blog⊗̂ΣK ≈ H i(XF,A ⊗̂ΣK)

induced from the canonical filtration on the sheaf of Fontaine rings

A ⊗̂ΣK := A +⊗̂ΣK+ ⊗Acris(K+) Bcris.
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We claim that the spectral sequence

Ei,j
1 = H i+j(XF, grj A + ⊗Σ K+/pnK+) =⇒ grj H i+j(XF,A + ⊗Σ K+/pnK+)

degenerates up to p-torsion independent of n. Indeed, up to p-torsion independent of n
we have

Ei,j
1 = H i+j(XF, Ōn(j)) = ⊕mH i+j−m(X, ωm

X/K+ ⊗K+ K̄+/pnK̄+)(j −m)

and by looking at the Tate twists one sees easily that the differentials of the spectral
sequence must be zero up to p-torsion independent of n. This proves that

grj H i+j(XF,A ⊗̂ΣK) ∼= ⊕mH i+j−m(X, ωm
X/K+)⊗K+

ˆ̄K(j −m)

which is visibly the same as grj
H(H i+j

log-crys(Xk|W (k))⊗W (k) Blog⊗̂ΣK).

5.4.6. Let D := H i
log-crys(Xk|W (k))[1/p]. Define L(r) := ⊕a+b=r,b≥0Qpt

aT b. Let

H̃ i(XF, Zp) := Im
(
H i(XF, Zp)→ H i(XF,A +)

)
.

Then it follows from the above that

H̃ i(XF, Zp)⊗Zp L+(r)[1/p] = F rH i(XF,A +)[1/p]Φ=pr

hence, inverting t we deduce

H̃ i(XF, Zp)⊗Zp L(r) = F rH i(XF,A )Φ=pr
.

Intersecting with D ⊗W (k)[1/p] Bst we get

H̃ i(XF, Zp)⊗Zp L(r) ∩D ⊗W (k)[1/p] Bst = F r(D ⊗W (k)[1/p] Bst)Φ=pr
.

Recall that Fontaine’s functor Vst(−) on filtered (ϕ, N)-modules E is defined

Vst(E) := (E ⊗W (k)[1/p] Bst)Φ=1,N=0 ∩ F 0(E ⊗W (k)[1/p] Bst ⊗W (k) K+).

Using the fact that L(0)N=0 = Qp, from Lemma 5.2 we deduce that

Vst(D) = H̃ i(XF, Qp) ∩D ⊗W (k)[1/p] Bst

and hence
dimQp Vst(D) ≤ dimQp H i(XF, Qp) = dimW (k)[1/p] D.

Let us prove the reverse inequality. We have a commutative diagram

H i(XF, Qp) −−−−→ H i(XF, Zp)⊗Zp Ainf(V )[1/p] −−−−→ F 0H i(XF,A ⊗̂ΣK)∥∥∥ y y
H i(XF, Qp) −−−−→ H i(XF, Zp)⊗Zp

ˆ̄K
∼=−−−−→ gr0 H i(XF,A ⊗̂ΣK).
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from which we see that H i(XF, Qp) injects into the Frobenius invariants of F 0H i(XF,A ⊗̂ΣK)
and injects also into gr0 H i(XF,A ⊗̂ΣK) = gr0(D⊗Wn(k)[1/p] Bst⊗Wn(k) K+). Hence we
deduce that it must inject into D ⊗Wn(k)[1/p] Bst, i.e. we have the inequality

dimQpVst(D) ≥ dimQpH
i(XF, Qp)

thereby proving the following

Theorem 5.3. D := H i
log-crys(Xk|W (k))[1/p] is an admissible filtered (ϕ, N)-module

and Vst(D) = H i(XF, Qp).

5.4.7. By Theorem 5.3 there is a canonical map

D ⊗W (k)[1/p] Bst
∼= H i(XF, Qp)⊗Qp Bst → H i

ét(XK̄ , Qp)⊗Qp Bst.

We call it the comparison transformation. It is compatible with Gal(K̄/K)-action, cup
products, Frobenius, monodromy, and filtrations after tensor product ⊗W (k)[1/p]K.

Proposition 5.2. The comparison transformation is compatible with cycle class maps
up to sign.

Proof. Firstly, since X is regular, every coherent sheaf on X has a finite resolution by
vector bundles, hence it suffices to check that the comparison tranformation is compatible
with Chern classes up to sign. Since both log-crystalline cohomology and the p-adic étale
cohomology satisfy the projective bundle formula, by the splitting principle this reduces
to showing that the comparison transformation is compatible with the first Chern class
of a line bundle up to sign, which has already been checked in Proposition 5.1.

Theorem 5.4. The comparison transformation is an isomorphism.

Proof. Write H i
log-crys := H i

log-crys(Xk|W (k)) and H i
ét = H i

ét(XK̄ , Qp). By Zariski’s con-
nectedness theorem and [11] Exp. X, Prop. 1.2, up to replacing K+ by a finite étale
covering, we may assume that X → Spec(K+) has geometrically irreducible fibres of
dimension d. Since the comparison transformation is compatible with cycle class maps
up to sign, we obtain a diagram which is commutative up to sign

H i
log-crys ⊗W (k) H2d−i

log-crys ⊗W (k)[1/p] Bst
∪−−−−→ H2d

log-crys ⊗W (k)[1/p] Bst
∼−−−−→ Bsty y ∥∥∥

H i
ét ⊗Qp H2d−i

ét ⊗Qp Bst
∪−−−−→ H2d

ét ⊗Qp Bst
∼−−−−→ Bst

so by Poincaré duality we obtain a one-sided inverse to the comparison transformation

H i
ét(XK̄ , Qp)⊗Qp Bst → H i

log-crys(Xk|W (k))⊗W (k)[1/p] Bst.

If this transformation commutes with cup products then the same argument gives it a
one-sided inverse and hence the theorem will follow. Let

δ : X ↪→ X ×X
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be the diagonal immersion. Cup products in both cohomology theories are defined by
the composition

H i(X)⊗Hj(X) −−−−→ H i+j(X ×X) δ∗−−−−→ H i+j(X)

where the first map is induced by the Künneth decomposition. Since the transformation
is compatible with Künneth decompositions, by duality we see that the dual transforma-
tion commutes with cup products if and only if the comparison transformation commutes
with δ∗. But δ∗ is characterized by TrX×X(δ∗(x) ∪ y) = TrX(x ∪ δ∗(y)), where Tr de-
note the trace maps, so compatibility with δ∗ follows from the compatibility with cup
products and characteristic classes.
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