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1 Introduction

The physics of many-particle and in particular solid state systems is full of fasci-
nating phenomena. The scope of the challenges one encounters can thereby range
from principle questions of quantum field theory to the very practical develop-
ment of novel types of storage media. From the theoretical point of view the
diversity of macroscopic manifestations of many-particle quantum effects might
be the most-intriguing observation. Unfortunately the many-particle character
usually leads to significant complications. For instance, the complexity can be
either due to many-particle correlations, quantum impurities interacting with the
bulk electrons, structural disorder, surface effects or many other origins. Nowa-
days, especially the coexistence of several complex properties in one material lead
to interesting fields of research and application. It is certainly one appealing as-
pect of solid state physics in general that a possible application of recent research
results is sometimes only one step in the future.

In this thesis we will investigate europium monoxide (Eu0O), as one example of
a system with competing interactions. As we will describe in detail in the next
chapter the properties of EuO are strongly determined by a magnetic exchange
interaction and by the existence of dilute quantum impurities. At room tempera-
ture stoichiometric EuO is a paramagnetic semiconductor [1] with a large energy
gap of 1.2 eV. Below the critical temperature T, = 69K it becomes one of the
very rare ferromagnetic semiconductors.

Additionally to the stoichiometric case it is in particular interesting to supply
excess charge carriers to the system. This is realized either by oxygen vacancies in
the Eu-rich compound or for instance by replacing bivalent Eu with trivalent Gd.
In both cases the physical properties are qualitatively different in comparison
to the pure compound. Namely EuO;_, as well as Gd,Eu;_,O does not only
become ferromagnetic below the critical temperature 7,.. Simultaneously the
transport properties change rapidly such that the system is metallic in the low
temperature phase [2]-[7]. In fact one can observe a resistivity drop of more than
8 orders of magnitude below T for certain samples. Additionally the free charge
carriers appear to be nearly 100 per cent spinpolarized in the metallic phase.
Furthermore, an applied external magnetic field leads to a considerable shift of
the critical temperature and therefore to a colossal magnetoresistance (CMR)
effect. Actually the CMR in EuO is one of the strongest effects of that kind
ever observed in nature. The strong interplay between magnetism and electronic
transport makes electron-doped EuO a natural candidate for many applications




1 Introduction

and basic research, for instance in the field of spintronic. All together the striking
properties mentioned above make EuO a material which is worth to be studied in
detail in order to obtain a principle theoretical understanding of this interesting
compound.

In the following we will develop a detailed theory containing the interactions
and features, which from our point of view dominate the physical properties of
europium monoxide. As usual in modern theoretical condensed matter physics
it turns out to be necessary to apply various different approximation schemes to
solve such a complex model. Each of them will be explained in the corresponding
chapters. Our approach is based on the well known Anderson impurity model
[9] in order to account properly for the crucial influence of the dilute quantum
impurities in the present case. Already at this point one encounters very basical
theoretical problems which are usually referred to as Kondo and Kondo lattice
physics. Briefly one can explain the so called Kondo effect to be due to the
strong Coulomb repulsion on the impurity site. Thus, the impurity appears to
be single occupied and therefore forms a local moment. Resonant scattering off
these local moments leads to the so called Kondo resonances in the scattering
matrix [11]. From the theoretical perspective this leads to a diverging pertur-
bation expansion and thus to a breakdown of (finite order) perturbation theory.
The first attempt to resolve that problems was made by P.W. Anderson [10] and
consists of a perturbative renormalization group approach, leading to a diverg-
ing (running) coupling constant between the local conduction electron spin and
the corresponding impurity spin, which are therefore forced to align antiparallel.
According to this the ground state of the system could be shown to form a spin
singlet. The next important step was due to K.G. Wilson, who developed a nu-
merical renormalization group (NRG, [12]) method to derive the ground state and
later also dynamical properties of the Anderson impurity model. Of course there
have also been important analytical approaches concerning the (single channel)
Kondo model [13, 14]. For details we refer for instance to [15]. Throughout this
thesis we concentrate on a diagrammatic method to solve the Anderson impurity
part of the model, namely the non crossing approximation (NCA)[16]-[21]. In
spite of its shortcomings the NCA turns out to be a convenient method in the
present case, particularly because of its diagrammatical and thus at least semi-
analytical character. Hence, a fully selfconsistent treatment which is necessary
for a model with a higher complexity than the conventional Anderson impurity
model can sufficiently be realized. The details of this method and its advantages
and disadvantages are presented in Chapter 4 of this thesis. The application
to the present model requires a slightly modified NCA which is formulated in
Chapter 5.

In addition to the impurity physics in particular the magnetic properties of
EuO are known to be essentially determined by the influence of local moments
with total spin S = 7/2 attached to the 4f7 shell of Eu. It is known [22] that




the magnetism of the 4f-moments can be conveniently described according to the
Heisenberg exchange model. Additionally, the exchange interaction between the
4f-moments and the conduction band electrons is of crucial importance since it
is responsible for the experimentally observed [6] spin dependent splitting of the
conduction band. The Heisenberg model of the 4f-moments as well as the spin
exchange between the local moments and the conduction band are treated within
mean field theory. In spite of this simplification the theory can qualitatively cover
the physical properties of the system.

In Chapter 6 we present the corresponding results, restricted to a parameter
regime, representing the physical properties of EuO. In contrast to previous stud-
ies [35] we solve the complete model selfconsistently. Furthermore, we assume the
impurity states to be singly occupied, leading to an equivalence of the Gd-doped
and the Eu-rich compound, as specified in Chapter 5. Indeed we find, that the
ferromagnetic phase transition in electron-doped EuO is accompanied by a dra-
matic change of the transport properties, what can essentially be explained by
a spin dependent shift of the conduction band under consideration of the overall
particle number conservation. Furthermore, we obtain, as a consequence of the
selfconsistency, that the strength of the shift as well as the Curie temperature is
strongly dependent on the impurity concentration. These properties are in excel-
lent agreement with various recent experimental results [6, 7]. Another possibility
to supply charge carriers to the system consists of applying an external bias volt-
age, shifting the chemical potential in the sample. We show, that in particular
the magnetic properties can indeed be switched by such a procedure, which might
provide an interesting perspective for future experiments and applications.

The competition between Kondo physics and ferromagnetism is one of the most
interesting aspects of the presented model. Although we will demonstrate that
in the EuO-regime resonant spin flip processes will be widely suppressed, we will
discuss in Chapter 7, how the influence of the Kondo effect might become more
important for different realizations of the model, away from the EuO case. In
particular, it turns out that a non-magnetic metal to insulator transition can be
observed similar to the Mott-Hubbard transition for the Hubbard model.







2 Properties of EuO

Since its discovery [1] there have been many experimental and theoretical stud-
ies concerning europium monoxide EuO. In this chapter we provide an overview
over the physical properties of EuO and its theoretical background. Therefore
we summarize the most important experimental results, leading to the current
understanding of this compound. Because of the long history of the research in
this field we can certainly not mention all the details and thus refer to the cor-
responding literature whenever it is necessary. As already mentioned before, the
physical properties of EuO are remarkable from the theoretical as well as from the
experimental point of view. In particular depending on its stoichiometry it can
experience tremendous changes in its magnetic and transport properties. Here,
we will mainly concentrate on those previous results which are related to the si-
multaneous para-to-ferromagnetic and semiconductor-metal phase transition ob-
served in Eu-rich EuO;_, or the Gd-doped compound Gd,Eu;_,O, respectively.
In the following it will be shown that this behavior is accompanied by a change
of the electronic band structure, stemming from a complex interplay between the
magnetic properties of the different constituents of the system, which we try to
identify in order to derive a convenient model description.

2.1 Electronic structure

In order to derive a model for EuO we need to know its basic structural properties.
EuO has a rocksalt structure with a lattice constant a = 5.144A. It is composed
of Eu?*O?~ and its electronic configuration is 4f75d°6s° for Eu?* and 1s522s%2p°
for O2~, respectively. The conduction band is built of the Eu 5d — 6s orbitals and
initially empty. The stoichiometry of EuO is highly influenced by the conditions
of the fabrication process, in particular by the temperature at which the crystals
are grown (usually ranging from 1000-2000 K, [23]). In the Eu-rich compound
it comes to an excess of negative charge carriers which are bound at the oxygen
vacancy sites. Hence, the existence of excess Eu provides one possibility of doping
the stoichiometric compound. Experimentally one is restricted to 1% doping
at maximum in that case. An alternative way of doping the system is given
by substituting divalent Eu by trivalent Gd. In particular Gd also obtains a
half filled 4f shell and thus one expects that it does not change the magnetic
properties of the compound. The influence of the impurity concentration on the




2 Properties of EuO
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Figure 2.1: Photoemission spectrum (taken from [6]) of EuO demonstrating
the occupied O 2p valence band and the Eu 4f states.

magnetic properties, like for instance the Curie temperature, is discussed in the
next section. However, as explained later, the model we propose in this thesis
does not distinguish between these different types of impurities and therefore can
describe the Eu-rich compound as well as the Gd-doped one.

Many properties of EuO can be studied experimentally by investigating the
electronic band structure. The O 2p and the Eu 4 f orbital are in general occupied
and can be studied using emission spectroscopy. This has been done by Steeneken
[6] and Eastman [24] and the results are presented in Fig. 2.1. Due to Hund’s
rule the 4f moments are in the S = 7/2 state and the polarization is about
100% [6], remaining very stable. The Eu 4f-states are strongly localized and
hybridize therefore only weakly with other orbitals. As a consequence they do not
contribute significantly to the electron transport in the system, which therefore
is determined by the 5d — 6s conduction band hybridizing with the O 2p level.
In Chapter 5 this is reflected by the theoretical expression we derived for the
conductivity of a model containing localized impurities. Moreover, the exchange
integral Ays_5q ~ 0.3eV between the 4f moments and the conduction band is of
crucial importance since it it responsible for the shift of the conduction band, as
it is shown below.

Since the majority of the conduction band is not occupied one usually has to
use absorption spectroscopy methods. In Fig. 2.2 we show results of a recent x-ray
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2.1 FElectronic structure
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Figure 2.2: Conduction band density of states (DOS) measured with x-ray
absorption spectroscopy (taken from [6]). In the upper panel the not spin resolved
measurement shows a significant change in the DOS below T,. The spin resolved
result in the lower panel proofs this change to be due to a spin dependent shift
of the conduction band. The small peak at 529eV in the upper panel may be an
impurity induced band (see Chapter 5, 6).
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2 Properties of EuO

absorption spectroscopy (XAS) experiment [6]. These results are very interesting
because of several reasons. First, they can clearly show that the conduction
band is shifted spin dependently below the critical temperature T, ~ 69K. The
observed deformation of the total conduction band (Fig. 2.2, upper panel) is thus
only due to the shift of the different spin directions. Hence, the coupling Ass_5q
of the conduction band and the local 4f-moment indeed leads to a splitting of
the conduction band. Furthermore the conduction electrons appear to be nearly
completely spin polarized.

2.2 Magnetism

As mentioned before, the magnetism of EuO is mainly determined by the mag-
netic moments in the half-filled Eu 4f shell which align parallel according to
Hund’s rule. As a consequence even stoichiometric EuO shows ferromagnetic be-
havior. Because an exchange interaction via free electrons is very unlikely in a
semiconductor, the existence of a ferromagnetic semiconductor or insulator has
been doubted for a long time. In fact the discovery of CrBrs [25] and EuO [1] pro-
vided the first proof of the existence of such compounds. Furthermore, there exist
several other magnetic ordering Eu chalcenogides, namely EuS, EuSe and EuTe,
which orders antiferromagnetically. However, today it has been shown by neutron
scattering experiments [26] that in particular the spin-wave spectrum of EuO can
be described conveniently in terms of the well known Heisenberg exchange model
[27]. We will comment on the particular realization of the Heisenberg model
in the Eu 4f subsystem of EuO in the next chapter. The magnetic behavior
of EuO has been investigated in various theoretical [28]-[31] and experimental
(32, 7] studies. In Fig. 2.3 [32] and Fig. 2.4 [7] the measured magnetization for
Gd-doped EuO at several doping concentrations n; is presented. It is particu-
larly remarkable that the magnetization as well as the Curie temperature clearly
depends on the impurity or doping concentration in the compound as one can see
in Fig. 2.3, lower panel. In recent experiments [33, 34], this behavior could also
be observed for Eu-rich EuO without explicit Gd-doping, which is in contradic-
tion to previous theories [35, 36]. Since the Eu 4f moments themselves contain
no information about the impurity concentration the n;-dependence of the mag-
netization and the Curie temperature 7, hints to fact that the magnetization of
the local 4f-moments and of the conduction band finally needs to be determined
selfconsistently. In our approach this will be realized by a s-f-model type coupling
between the conduction electrons and the 4f-states. We will demonstrate that the
effective field due to the conduction band magnetization influences the local Eu
4f moments and vice versa. In particular this will explain the existence of the
shoulder in the magnetization close to the Curie temperature (cf. Fig. 2.4).

12



2.2 Magnetism
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Figure 2.3: Magnetization and Curie temperature T measured for Gd-doped
EuO. The dependence of T¢- on the doping concentration is demonstrated. (taken
from [32])
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2.3 Transport properties
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Figure 2.5: Resistivity measurements under various fabrication conditions of
the EuO compounds. As mentioned before, in particular the concentration of
O-vacancies strongly depends for instance on the temperature under which the
crystals are grown. (taken from [2])

2.3 Transport properties

Besides the ferromagnetism of the semiconducting stoichiometric EuO the most
striking feature is certainly the tremendous change in the conductivity of the
electron-doped compound. In Fig. 2.5 we present various resistivity curves [2]
measured under different conditions. Thus one can observe semiconductor-like
behavior (curve 95-3) for stoichiometric or O-rich EuO. In the Eu-rich case the
resistivity above the critical temperature increases by up the 7 orders of magni-
tude (curve 66-6). We will identify the temperature 7)., at which the resistivity
reaches its maximum with the critical temperature T, All the samples behaving
like the Eu-rich case additionally show a broadened dip on the resistivity edge
slightly below the maximum of the resistivity. Later we will explain the dip to be
due to the change of the overall conduction electron number. For a long time it
has not been clear, whether the spectacular resistivity behavior of Eu-rich EuO is
also observed in the Gd-doped compound. Only very recent experiments [7, 33|

15
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Figure 2.6: Resistivity measurements for very low O-vacancy concentration
(QS - quasi-stoichiometric) and with explicit Gd-doping. Both types of electron-
doping amounts in a similar effect on the transport properties. (taken from [7])

could clarify, that Eu;_, and Gd,Eu;_,O indeed behave very similar concerning
their magnetic as well as their transport properties (cf. Fig. 2.6). In the present
work we are exploiting this property by assuming the same model for both types
of doping, as demonstrated in Chapter 5.

Besides the strong temperature dependence of the resistivity the application
of an external magnetic field leads to another spectacular effect. As one can see
in Fig. 2.7 the resistivity of a sample in the vicinity of the critical temperature
can be reduced dramatically by applying a magnetic field. In fact, this kind of
colossal magnetoresistance effect (CMR) is much larger than for instance in the
intensively studied manganates [§].

Up to now the origin of those spectacular transport properties is not finally
resolved. However, what all former approaches have in common is the idea that
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Figure 2.7: Temperature dependent resistivity measurements with various ex-
ternal magnetic fields applied. A colossal magnetoresistance effect can clearly be
observed (taken from [4])

below the critical temperature delocalized charge carriers, stemming from the
impurity sites are responsible for the transition in the resistivity. This approach is
certainly confirmed by the experimental evidence provided in the present chapter.
Thus, the importance of impurity physics for a concise theory of doped EuO can
hardly be overestimated. We will comment on quantum impurities in general
in Chapter 4, while Chapter 5 is dealing with the specific model for EuO with
Gd-doping or O-vacancies.
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3 Stoichiometric EuO - A
Heisenberg Ferromagnet

Although magnetism is a phenomenon known for a very long time it is still a
vital field in condensed matter physics. The first theoretical attempts to explain
the collective magnetism in condensed matter systems considered electrons as
interacting spins carrying a magnetic moment. However, the magnitude of the
corresponding dipole-dipole interaction is of the order 1K and hence far to small
to explain typical magnetic transition temperatures. Therefore it was realized
very early that the mechanisms giving rise to magnetism are due to fundamental
properties of the electrons. In particular the interplay between the Pauli exclusion
principle, the Coulomb repulsion between electrons at the same site and their
kinetic energy determines the magnetic properties of the system. In the following
we try to provide a brief overview over the physical principles of the collective
magnetic phenomena due to exchange interactions as they occur in EuO. For a
complete overview we refer to the corresponding literature (for instance [41, 42]).
Furthermore, we introduce the Heisenberg model [27] describing insulators and
semiconductors with magnetic order. In particular stoichiometric EuO is one
of the rare ferromagnetic semiconductors and a typical example of a Heisenberg
ferromagnet.

3.1 Exchange interactions

The interaction between the magnetic moments at sites ﬁi, ﬁj in a many-particle
system often can be written as

wm- = —JZJS_;ZS_;] (31)

Here, J;; is called exchange integral, including the microscopical information
about the system. Usually one distinguishes between direct exchange processes
between neighboring lattice sites, indirect exchange processes and superexchange
processes due to virtual excitations. In the following we will introduce the basic
mechanisms and specify the exchange interaction as it appears between the local
Eu 4f moments in EuO.

19



3 Stoichiometric EuO - A Heisenberg Ferromagnet

3.1.1 Direct exchange

As an example, illustrating the underlying principles of the direct exchange mech-
anism, we consider two electrons that are localized by an external potential. Fur-
thermore, we assume a repulsive Coulomb interaction v(z1, z5) between the two
states. The two particle wave function W(zy,x2) in this case has to be antisym-
metric. If the two spins align parallel the two particles are therefore spatially
separated, thus reducing the total Coulomb energy. On the other hand the ki-
netic energy is increased. In that sense the exchange integral in this situation
counts the energy difference due to an exchange of the particles. The competition
between Coulomb repulsion and kinetic energy thus determines the sign of the
exchange integral J; o and therefore the magnetic properties of the system. In
this simplified fashion for J; o > 0 the ferromagnetic exchange interaction is com-
pletely analogous to Hund’s rule, claiming that two spins localized in energetically
closed orbitals tend to align parallel.

3.1.2 Indirect exchange between local moments

In many cases the contribution to the exchange integral J; ; stemming from the
direct exchange is negligible because the electrons are strongly localized around
the lattice sites R;, R This is in particular fulfilled in many systems containing
local magnetic moments due to not completely filled (3d,4d,4f or 5f) orbitals,
like for instance the rare earth compounds. According to Hund’s rule the electrons
in one orbital align such that their total spin is maximized. Actually, this forma-
tion of a local moment can be understood to be a special case of a ferromagnetic
exchange interaction between electrons in one shell, as we already noted above.
In spite of the local character of the magnetic moments one can often observe
a magnetic ordering that can be described in terms of an exchange interaction.
Since the direct exchange interaction between neighboring sites can be excluded,
the finite exchange integral J; ; must be induced by other constituents of the total
system. The most common example for such an interaction is certainly the so
called RKKY interaction [37, 38, 39]. Here, an effective oscillating long range
interaction between local moments is mediated by conduction band electrons.
The coupling of a local moment S, at site R; to the conduction electron spin o;
can be described by an s — d interaction

Vi = —J,S,5; (3.2)

Hence, in second order an effective interaction between two local moments g;-, S‘;
can be induced. This type of exchange interaction is often responsible for the
magnetic order observed in metallic systems.

However, in an insulator or semiconductor like EuO the situation is completely
different. Because of the empty conduction band a RKKY interaction between

20



3.2 The Heisenberg model

local moments cannot be induced. In fact there is an analogous exchange interac-
tion (BR) [40] for semiconductors with local moments. In particular for EuO [22]
it can be understood the following way. In contrast to the RK K'Y interaction the
BR interaction is due to the direct exchange between the local 4f moments po-
larizing the valence band electrons. Hence, an effective ferromagnetic interaction
is induced between the 4 f moments as a higher order process of the 4f moments
valence band interaction.

3.2 The Heisenberg model

Independent on the origin of the interaction between two magnetic moments at
sites RZ,R one can define a general effective model for such a system. The
Hamiltonian of the so called Heisenberg model yields

H=-Y ;S5 (3.3)
i\j

In fact the Heisenberg model is one of the paradigms in condensed matter and
theoretical physics in general. In spite of its simplicity it turns out to describe
a rich variety of physical phenomena. In particular the ferromagnetism of many
insulating or semiconducting systems is conveniently reflected within Eq. (3.3),
provided J;; > 0. Unfortunately, up to now there exists no exact solution for
the Heisenberg model in general. Many important aspects of Eq. (3.3) can
be understood at least qualitatively in terms of the mean field approximation,
which we therefore decide to utilize in the following chapters. In particular in
the limit of infinite coordination number the mean field approximation becomes
exact [43]. However, for completeness we will mention the shortcomings in lower
dimensions (for instance d = 3) as well. First, for low temperatures T — 0
collective excitations of the ordered spins S, at site i, so called spin waves [44, 41],
have to be taken into account. According to this one obtains the Bloch law
My — M(T) o T3 describing the magnetization M (T) relative to its value at
zero temperature. The other limit in which the mean field approximation fails
for dimensions lower than d = 4 is approached in the vicinity of the critical
temperature To. At temperatures T = T the characteristic physical quantities
are given in terms of 7 = (T¢ — T)/T¢. In particular the magnetization within
the Heisenberg model yields M o 77, where /3 is a so called critical exponent.
Comparing the experimental result § ~ 0.365 [45] for stoichiometric EuO to the
theoretical estimations [43] one can show that the critical behavior of EuO is
in excellent agreement with the Heisenberg model. Within mean field theory
is given by # = 1/2, in contradiction to the experiment. As we will show in
Chapter 6 this result is reproduced by our calculations. However, we believe that
the deviation from the exact critical behavior of the magnetization does not affect
the qualitative results too strongly.

21






4 Some Aspects of Quantum
Impurities

Over the last 30 years the physics of quantum impurities has become a paradigm
in condensed matter theory. Not only, because in a real system the existence
of quantum impurities can be an important issue. Furthermore, the problem of
correlated electrons on a lattice, which is certainly a central theme of solid state
physics turned out to be strongly related. In particular the development of the
Dynamical Mean Field Theory (DMFT) in the 90’s [46, 47, 48] led to a pursuit
for an accurate solution of the so called Anderson impurity model [9]. Within the
framework of the DMFT the initial Hubbard model [49], which is a lattice model,
as mentioned above, is mapped onto an effective impurity, selfconsistently coupled
to a surrounding bath. Thus the kernel of each DMFT calculation consists of an
impurity problem that needs to be solved. Unfortunately, until today there exists
no perfect solution of the Anderson model as it occurs in complex systems. In
the first section we will discuss the model in detail and also address the different
approaches developed over the last decades.

Furthermore, we review a selfconsistent diagrammatic method, called non-
crossing approximation (NCA) as it is utilized in this thesis. The advantages
and shortcomings are summarized with respect to the intended application. Ad-
ditionally an alternative formulation developed with A.Georges at the Ecole Poly-
technique, Palaiseau is presented in the last section of this chapter.

4.1 The Anderson impurity model

Quantum impurity models such as the single impurity Anderson model (STAM)
were discussed first in the context of magnetic impurities in metals. In these
models a spin degenerate local impurity level hybridizes with the conduction
band. Provided that the local level lies sufficiently far below the Fermi energy
and the onsite Coulomb repulsion U between two impurity electrons is strong
enough, the local level will be singly occupied and a local magnetic moment
forms. In general the hybridization between a N-fold degenerate impurity with a
M-fold conduction band can be described by the SU(N) x SU(M) multichannel
Anderson model. In the following we well restrict to the single channel (M=1)
case.
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4 Some Aspects of Quantum Impurities

4.1.1 Single channel quantum impurity model

In this section we will formulate the many-particle model corresponding to a local
impurity at level Fy; relative to the Fermi energy coupling to an arbitrary conduc-
tion band. Thus, we will consider the prototype Anderson impurity Hamiltonian

H=H.+ Hy+ Hpy (4.1)

with the conduction electron part
H. = Z ekczgckg (4.2)
ko

the local impurity Hamiltonian

Hy=E;) dide+ U nagnao (4.3)
o o<o’
and the hybridization
Hip =V <cLUdU n h.c.) (4.4)
ko

Introducing the width of the local d-level I' = 7V?N(0) with the conduction
electron density of states at the Fermi energy N(0), one can define the so called
Kondo limit by E; < 0 < E;+ U and I'/|Ey|,T'/|2E; + U| < 1. In this limit a
local magnetic moment forms on the impurity site and thus the Anderson model
can be mapped onto the so called Kondo model [50, 51]. Hence the physics
can be described by an antiferromagnetic exchange interaction between the local
conduction electron spin and the local d-electron spin mediated via the coupling
constant J = V2 (1/|Ey4| + 1/|2E4 + U|). This exchange interaction is responsible
for the Kondo effect as it is known for a long time in metals containing magnetic
impurities [52] or as it has quite recently been discovered in quantum dots [53].
The properties of these models have been intensively studied in the past using
various different approaches, like the Bethe ansatz (BA) method [13, 14] or the
Numerical Renormalization Group (NRG) [12]. In the Kondo limit the system is
governed by the low temperature scale given by the Kondo temperature

Ty = V2TD = (4.5)

where D = 1/N(0) is the high energy cutoff of the constant conduction electron
density of states. For temperatures T' 2 Tk resonant spin flip scattering of con-
duction electrons off the impurity degenerate level leads to logarithmic corrections
to the temperature dependent resistivity p(7"), such that the perturbation theory
breaks down at 7" ~ Tk . Below the Kondo temperature a many-body spin singlet
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4.1 The Anderson impurity model

state forms in which the local impurity is screened by conduction electron cloud
leaving a pure potential scattering center in the limit 7' — 0. Thus the ground
state of the single channel Anderson model can be described within Fermi liquid
theory. Despite the great success concerning the principle understanding of the
Anderson model alternative approaches instead of the Bethe ansatz or the NRG
might be favorable in some cases. In particular, if one is interested in an at least
semi-analytical formulation of the problem for an arbitrary conduction electron
density of states both approaches are not appropriate anymore. One method to
overcome this problems is provided by conserving diagrammatic approximations
as we will present later.

However, any diagrammatic approach being due to perturbation theory in V'
encounters two severe problems in the present case. The first problem consists of
the breakdown of finite order perturbation theory in the limit T" ~ T . This issue
is resolved within the non crossing approximation as it is discussed later. Fur-
thermore, the conventional quantum field theoretical methods like Wick’s theorem
and Feynman diagrams in general do not apply to a strongly correlated impurity
system.

4.1.2 Pseudo particle representation

The applicability of the standard diagrammatic calculus as it is widely used in
condensed matter theory can be recovered by the introduction of a pseudo par-
ticle representation of the impurity states [54]-[57]. The dynamics of an electron
occupying a local impurity state will be strongly determined by the impurity
occupancy, in particular in the strongly correlated limit with a large Coulomb
repulsion U on the impurity site. Therefore it is useful to divide the impurity
Hilbert space depending on the occupation number. The empty, single occupied
and double occupied states are thus created by |0) = bT|vac), |o) = fl|vac) and
|2) = a'|vac) out of the vacuum |vac). Furthermore an fermionic operator acting
on the occupation number states is defined

dh = flo+n.atf-, (4.6)

such that |o) = dl|0) and |2) = n,dl| — o) with 5, = £1 for ¢ =1,]. In
comparison to the physical impurity states the Fock space of the pseudo particles
is artificially enlarged. Therefore the subspace corresponding to the physical
impurity electrons is defined by the requirement that the impurity is in a unique
pseudo particle state, as it is expressed via

Q=) fifs+bb+ala=1 (4.7)

The operator definition Eq. (4.6) together with the constraint Eq. (4.7) can be
used to transform the Hamiltonian Eqs. (4.1-4.4).
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4 Some Aspects of Quantum Impurities

The Anderson impurity model in terms of the pseudo particle operators can finally
be rewritten

H=HAE > fifot QB+ T)alat VY [CLU <bT fotis fL,a) v h.c.] (4.8)
o ko

It is remarkable that the constraint Eq. (4.7) as well as the Hamiltonian Eq.
(4.8) is diagonal in each pseudo particle operator besides of the hybridization
part. Therefore standard perturbation theory in V' becomes applicable in the
pseudo particle space. As another consequence Eq. (4.7) can be regarded as a
statement of charge conservation. Similar to other quantum field theories this is
related to a local U(1) gauge symmetry of the field operators. According to this
Eq. (4.8) remains invariant under simultaneous transformations f, — e ®()f .
b — e®@b and a — e®q of the pseudo particle operators. In this thesis we
will restrict ourselves to the case of infinite Coulomb repulsion U and thus the
terms containing a-operators can be neglected in the Hamiltonian

H=H+EBY fif,+VY [cLJbeU + hee. (4.9)
o ko

with the modified constraint

Q=Y fif,+bb=1 (4.10)
reflecting the fact that for U — oo the impurity cannot be doubly occupied.

4.1.3 Exact projection onto the physical Fock space

The U(1) gauge symmetry of the Hamiltonian Eq. (4.8) or Eq. (4.9) guarantees
the conservation of the total particle number Q. However, the physical Fock
space is defined by ¢ = 1 and thus a appropriate projection procedure needs to
be found. Following the method proposed in [54] we consider the grand canonical

density operator:
1

PG:Z—G€

with the grand canonical partition function Zg = tr [exp(—F(H + A\Q))] and a

chemical potential . The trace is taken over the complete Fock space, including
a summation over Q. Hence the expectation value of an operator A is defined by

AH+IQ) (4.11)

~

(A)g = tr [pafl] (4.12)

in the grand canonical ensemble. The physical expectation value of A is calculated
in the canonical ensemble with () = 1 and is related to the expectation value in
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4.1 The Anderson impurity model

the grand canonical ensemble by

We =l TG = Q) (4.13)

while the equality () only holds for an operator A with A|Q = 0) = 0. This is
valid for any physically observable operator acting on the impurity. One example
is given by the physical electron operators d,,d!. In particular the physical d-
electron Green’s function is given by

Gl = fm S5

where Gy(w, A) is the Green’s function in the grand canonical ensemble. All the
upcoming derivations can be performed in the grand canonical (enlarged) Hilbert
space and thus the grand canonical Green’s function Gy(w, A) can be expressed
in terms of the pseudo particle Green’s functions

(4.14)

0 /- -1 . -1
Grp = ([Qﬂb(zwn)] - Zﬂb(zwn)) (4.15)
with the bare Green’s functions
G (iwn) = (iw, — Eg— A) ™ (4.16)
Gy (iwn) = (iwy — )™ (4.17)

Since, in the limit A — oo the energy scale of the so defined pseudo particles
scales to infinity it is useful to gauge the auxiliary particle spectrum relative to
the chemical potential A\. Thus the projected Green’s functions are given after
analytical continuation by

Gryp(w) = lim HRBEDY (4.18)

The energy scale of physical quantities, defined by the difference of the pseudo-
fermion and the slave-boson energy is not affected by this procedure. This will
be extensively exploited in the subsequent sections.

4.1.4 Disorder and dilute impurities

Up to now we were only dealing with one single Anderson impurity hybridizing
with an electron conduction band. However, in real system and in particular in
the model we are dealing with in this thesis, a dilute concentration of impurities
is randomly distributed over the solid. Thus in general it becomes necessary to
average over the impurity distribution. In this section we derive the resulting ex-
pression for the electron selfenergy. It follows immediately from the Hamiltonian
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4 Some Aspects of Quantum Impurities

T s e S S S

Figure 4.1: Diagram of the local conduction electron Green’s function (double
solid line). Solid lines represent the local, bare conduction electron propagator,
while dashed lines are d-electron Green’s functions.

Egs. (4.1)-(4.4), that the canonical local conduction electron t-matrix ¢, (iw,,)
defined by the local conduction electron Green’s function G, = GJ,. (1 + tG},.)
(cf. Fig. 4.1) yields

to(iwn) = |VI*G o (iwy,) (4.19)

Knowing the local t-matrix Eq. (4.19) the conduction electron selfenergy ¥, (iwy,)
for a dilute impurity concentration n;,,, is given by

Yo (1wn) = Nimp - to(iwn) = Nimyp - \V\QGdJ(iwn) (4.20)

This relation holds under the assumption of independent impurities, which is
fulfilled for low impurity concentrations. The derivation of Eq. (4.20) is presented
in Appendix A.

4.2 The Non Crossing Approximation

At the heart of each impurity problem is the calculation of the impurity Green’s
function as it is defined in Eq. (4.14). In particular in Eq. (4.20) in the case
of a dilute impurity concentration G4 is even influencing the full conduction
electron Green’s function. In this section we present the so called non crossing
approximation (NCA) as one efficient method to derive G for the single impurity
Anderson model in the limit of infinite local Coulomb repulsion on the impurity
states. The NCA has been pioneered by Keiter and Kimball [16] and later by
Kuramoto [18, 19, 20, 21], who was the first to recognize its conserving character.
We will not follow the historical way, but instead we directly introduce the NCA
as a conserving approximation derived from its generating functional.

4.2.1 Conserving approximations and the generating
functional

Before demonstrating the non crossing approximation as one efficient method
to solve the Anderson impurity model some general aspects on conserving ap-
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4.2 The Non Crossing Approximation

proximations (where the NCA is one example for) will be discussed. Conserving
approximations are based on selfconsistent approximations to the one-particle
Green’s function. It turns out that the intrinsic conservation laws at each ver-
tex in a diagrammatic expansion is a necessary but not sufficient condition for
the over-all conservation of particle number, momentum and energy. Therefore a
specific approximation needs to fulfill further conditions to obey the conservation
laws. It has been shown by L. Kadanoff and G. Baym [58, 59] that any conserving
approximation can be formulated in terms of a generating functional ® such that
the one-particle selfenergy yields

$(1,1') = 60/6G(1, 1) (4.21)

where 1, 1" are the space-time coordinates of the Green’s function G and ¢ denotes
the functional derivative. As an example for the conserving character of such
an approximation we proof the over-all particle number conservation due to a
selfenergy defined in that way (we follow directly [58, 59]). Under variation of G
the generating functional transforms by

/! 5(b /!
5P = /dldl maau 1) (4.22)

The first order change of ® due to the gauge transformation
G(1,1') — e*MG(1,1")e ) (4.23)

yields

0P /dldl'Z(l, )i (A1) = MD]G(1', 1)
= / d1dl' [2(1,1)G(U,1) — G(L,1)S(1, D]AL) - (4.24)
Since the generating functional @ is a functional of G and the number of incoming

and outgoing lines at each vertex are equal, the variation 0® under a gauge
transformation Eq. (4.23) must vanish. Therefore it follows

/dl’ [2(1,1)G(1,1) — G(1,1)%(1, 1)] = 0 (4.25)

Finally, the equations of motion of the Green’s function are subtracted

/dI [Go'(1,1) = 2(1,1)] G(1, 1) =6(1 - 1) (4.26)

/le(l, 1) [Gy'(1,1) = 2(1,1)] =6(1 - 1) (4.27)
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4 Some Aspects of Quantum Impurities

- O_O

Figure 4.2: Generating functional ® of the Hartree Fock approximation. The
selfenergy is obtained by cutting one Green’s function, represented by a full line.
The dashed line stands for the interaction.

with Gy'(1,1") = (i0/0t; + V2/2m)6(1 — 1) = (—id/0ty + V2 /2m)s(1 — 1').
Substituting 1’ = 17 one therefore obtains the continuity equation for the particle
number n(1) and the particle current j(1)

O(n(1)) /0t + V1 (j(1)) = 0 (4.28)

Similar relations can be derived for the other conserved quantities under the
condition that the selfenergy is defined via a generating functional ®, being a
functional of the fully renormalized Green’s functions. An example for such a
conserving approximation is given by the Hartree Fock approximation (Fig. 4.2)
or the non crossing approximation (Fig. 4.3) discussed in the next section.

4.2.2 The non crossing approximation (NCA)

Following the general discussion of the previous section we will now give an ex-
ample of a conserving approximation particularly applied to the single impurity
Anderson model Eq. (4.9) in the limit of infinite local Coulomb repulsion and
in terms of the pseudo particle operators. Hence, the generating functional ® in
this case would consist of all vacuum skeleton diagrams built of fully renormal-
ized Green’s functions Gyyp.. This leads to a set of equations representing the
selfenergy of each particle species

b fe=0P/0G e (4.29)

As before, the choice of a generating functional determines the corresponding
approximation. First, the existence of a small parameter (in the present case
V/D, where D is the conduction electron band width) implies a renormalized low
order perturbation theory approach. However, one still has to account for the
leading physical processes. In the present case the generating functional Fig. 4.3
is chosen in lowest order, renormalized perturbation theory in V//D. The physical
interpretation of this approximation can be discussed regarding the conduction
electron - pseudo fermion c-f vertex function. In terms of the generating functional
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Figure 4.3: Generating functional ® of the non crossing approximation for the
pseudo particle representation of the Anderson impurity model Eq. (4.9). Full
lines represent conduction electron, dashes lines pseudo fermion f and wavy lines
slave boson b propagators.

the irreducible c-f vertex function can be derived taking the second functional
derivative of ® with respect to the Green’s functions Gy and G.. Hence, for the
NCA the irreducible c-f vertex function is given by V2G,. Thus, the advantage of
the NCA basically consists of its relative simplicity compared to other techniques.
Evaluating the selfenergy equations, defined by Eq. (4.29) and diagrammatically
illustrated in Fig. 4.3, the selfconsistent NCA equations for the pseudo particle
selfenergies ¥, and the impurity Green’s function G4 read

(W) = p/ﬁu—f@hﬁ@muw—a (4.30)

Suw) = TY [ S HOAL @G+ (4.31)
Gir(w) = /de e PG o (w + €) Ap(€) — Ay (€)Gile — w)] (4.32)

where w is regarded as w + i0 for the retarded/advanced functions, I' = V2,
A% = £(1/7)ImG? is the bare conduction electron density of states per spin and
f(e) = 1/(exp(fe) 4+ 1) is the Fermi distribution function. The set of equations
can be evaluated numerically [19, 60] and analytically in the limit of low energies
at T = 0 [61]. In the upcoming section we will present an efficient way to treat
the Eqgs. (4.30)-(4.32) and to compute the impurity Green’s function.
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4 Some Aspects of Quantum Impurities

Figure 4.4: a) Constituent of the Bethe-Salpeter equation for the c-f vertex
function as it appears in the NCA. The full c-f vertex with NCA is given by V2G,,
where G} is the full slave boson propagator b) Spin flip scattering contribution
to the c-f vertex neglected within NCA

For U — oo the NCA reproduces correctly the Kondo energy scale. Addi-
tionally the formation of the Kondo resonance for T > Tk is qualitatively well
described. Therefore the NCA provides a convenient tool to evaluate the Ander-
son impurity model, in particular above the Kondo temperature. However, in
the low energy regime T' < Ty the NCA fails [62], leading to spurious infrared
singularities in physical quantities in contradiction to the expected Fermi liquid
behavior. Furthermore, the NCA fails in the presence of an external magnetic
field, producing a spurious resonance in the impurity Green’s function G, at
w = 0 even in the temperature regime 7' > Tk above the Kondo temperature.
The influence of these failures of the NCA on the subject of this thesis is discussed
in the corresponding chapter.

To understand the origin of the NCA shortcomings one needs to regard the
c-f vertex function as defined above. In Fig. 4.4 a) one constituent of the Bethe-
Salpeter equation for the c-f vertex function in terms of the NCA is presented.
Since the slave boson propagator G, cannot carry any spin the NCA obviously
does not account for coherent spin flip scattering processes. Similar considerations
for the c-b vertex show, that also charge transfer processes are neglected within
the NCA. However, these two processes are known to be responsible for the
coherent collective behavior below the Kondo temperature. It could be shown
by means of perturbative renormalization group [63] that indeed the missing
terms Fig. 4.4 b) are responsible for the spurious singularities mentioned above.
For completeness it should be mentioned that the shortcomings of the NCA can
be cured by including the vertex contributions like they are given in Fig. 4.4
b). Thus a new generating functional can be derived, taking into account in
particular the coherent spin flip scattering processes. However, the resulting
conserving T-matrix approximation (CTMA,[64, 65]) gives an essentially correct
description of the Anderson impurity model over the whole temperature range,
but is numerically very demanding.
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4.2 The Non Crossing Approximation

4.2.3 Evaluation of the NCA equations

Here, we present an efficient way to evaluate the NCA Eqgs. (4.30)-(4.32) even
in the low temperature regime T' < Ty. It can be shown [66] that all quantities
involving pseudo particle operators at 7' = 0 vanish for energies w < 0. In
particular the f,b spectral function behaves like

App(w) ~ |w — Eo| " 0(w — Eyp) (4.33)

at a threshold £, and with the critical exponents o, as, which can be derived for
instance within the Numerical Renormalization Group (NRG) approach [12]. In
order to solve the NCA equations numerically by iteration, the threshold behavior
needs to be sufficiently resolved. We therefore apply a method proposed in [66].
The numerical evaluation of physical expectation values like the impurity Green’s
function Gy (w, A — 00) Eq. (4.32) is non-trivial, because of two reasons. First,
at T = 0 the auxiliary functions A;,(w) according to Eq. (4.33) diverge at a
threshold Ej which is initially not known. Furthermore, the Boltzmann factor
e~ ¢ as it appears in Eq. (4.32) diverges exponentially for w < 0. The first step
to overcome the threshold problem consists of exploiting the gauge freedom of
the pseudo particle Green’s functions. The pseudo particle operators are gauged
time dependently according to f, — e'f, . b — eo'h. As mentioned before
this gauge freedom is an intrinsic property of the Anderson impurity model. For
the auxiliary particle spectral functions this procedure amounts in a shift of the
energy spectrum w — w+ Ag, such that the physical spectral functions are defined
as

Aﬂb(W) = )\h—>nc}o .Af,b(w + )\0 + )\) (434)

where Asy(v) = £(1/7) - ImG(v) for the retarded/advanced function according
to the definition Eq. (4.18) of the auxiliary particle Green’s function. Conse-
quently, the chemical potential )\g is determined within each iteration such that
the following relation holds:

/dweﬁ“

Note, that this procedure must not be mixed up with the exact projection pro-
cedure due to the limit A — oo. The introduction of \q is for purely numerical
reasons. For T' = 0 the Boltzmann factor e in Eq. (4.35) can only be com-
pensated if Ay is determined such that the threshold of the spectral functions is
at a fixed energy w &~ 0. Thus, the threshold Fy mentioned above is resolved
with each iteration. Numerically, this procedures amounts in the possibility of
choosing a fixed energy mesh with a accumulation of grid points around w = 0
for the integration of the NCA equations. This is increasing as well the speed as
the accuracy of the computation. Furthermore, the divergence of the Boltzmann

D Ape(w) + Ayw)| =1 (4.35)
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factor implies that the solution for the pseudo particle spectral functions at a
finite temperature vanishes exponentially A;(w) ~ e for negative frequencies,
confirming the threshold behavior. According to this it is convenient to formulate
the NCA equations (4.30)-(4.32) in terms of new defined functions A;,(w) and
ImY;4(w), such that

Ap(w) = f(-w) App(w) (4.36)
Im¥p(w) = f(—w)ImEs,(w) (4.37)

where the threshold behavior is completely absorbed in the prefactor f(—w). In
terms of the so defined functions the NCA equations can be formulated for the
advanced functions (w < w —i07")

ImSfy(w) = T def(_e)(l — W =) 4o () dy(w— o) (4.38)

ImSy(w) = /Zd ”*6))A0 () As(w+¢) (4.39)

G (w) = / de [f(e + ) f(=€) + f(—€ = w) ()] Ago(w + €) As(e) (4.40)

with Eq. (4.35) determining the Ay being transformed to

foro

This set of equations is solved iteratively using the explicit form of the auxiliary
functions, including the chemical potential A,

~1 (4.41)

ZAfJ )+ Ay (w)

~ 1 ImY /5 (w)
A = = Io 4.42
o) T (w4 A —i0 — By — ReXyp (w))? + ImE s, (w)? (442)

~ 1 TmYy (w)
Aw) = T (w4 Ao — i0 — ReXy(w))? 4 ImSy (w)? (4.43)

The method described in this section is capable to solve the NCA Egs. (4.38)-
(4.40) down to temperatures of T ~ 10™4T. In Fig. 4.5 we present the results for
the impurity Green’s function Gy, at various temperatures. One can clearly see
how the Kondo resonance in the imaginary part of the impurity Green’s function
Ay 18 evolving as the temperature approaches the Kondo temperature. The
Anderson impurity problem treated in this thesis is slightly modified compared
to the model presented in this section. However, the technique applied here can
easily be modified and will be presented in the next chapter.
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Figure 4.5: Imaginary part Ay (w) = (1/7)Gyr(w) of the impurity Green’s
function, plotted for kpT = {2.5,5.0,7.5,10.0} - 107*D. The parameters are
chosen such that the Kondo temperature is given by Tx ~ 7-107%D in units of
the half conduction band width.

4.3 A new slave boson formulation of the NCA

Auxiliary particle methods provide a powerful tool in condensed matter theory.
As we demonstrated in the previous sections they could be used to simplify the
Anderson impurity model significantly in order to make it capable for standard di-
agrammatic perturbation theory. Of course, the choice of a set of auxiliary parti-
cles to formulate the present Hamiltonian is not unique. In this section we present
an alternative formulation of the NCA applied to the single impurity Anderson
model. Here, the problem will be transformed utilizing Kotliar-Ruckenstein slave
bosons [67] which were initially applied to the Hubbard model. This formulation
has been suggested by Prof. A. Georges and the work has been done in his group
at the Ecole Polytechnique/Palaiseau.

4.3.1 The Anderson model in terms of Kotliar-Ruckenstein
slave bosons

Motivated by earlier works concerning a pseudo particle representation for the
Hubbard model [67] we formulate the single impurity Anderson model Egs. (4.1)-
(4.4) in terms of so called Kotliar-Ruckenstein slave bosons.Therefore we assume
four auxiliary boson fields to define the impurity states e < |0), p, <> |0), a < |2)
together with two pseudo fermion operator f,.The physical impurity operator d,
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is then defined as

dy = (e'ps + ' 0) fs (4.44)

Similar to the method of the previous sections the Hilbert space is again vastly en-
larged due to the introduction of the pseudo particles. To perform the projection
onto the physical subspace the following two constraints have to be fulfilled:

ele +a'a + pr,pa =1 (4.45)

g

f;fg = pi,pa +d'a (4.46)

Physically these conditions can be understood to guarantee the impurity to be
in a unique bosonic state Eq.(4.45). Simultaneously the overall fermion number
can assume all possible values, while it is strictly correlated to the correspond-
ing bosonic occupation number Eq.(4.46). In that sense the f-operators in this
approach must be understood as total pseudo fermion operators on the impurity
site and not only counting the single occupied states. Utilizing these constraints
the Anderson impurity Hamiltonian can be transformed the following way:

H = Z €roCh Cro + B4 Z fif, +Udla+V Z cf, (eTpg + piaa> + h.c.
o ko

ko

+ X ij,pU—I—eTe—FaTa—l

+ D N [(f1fs - plps) — dla] (4.47)

where the constraints are implemented via three Lagrange multipliers A\g, A7, act-
ing similar to an additional chemical potential for the corresponding fields. Thus
the form of the full auxiliary spectral functions yields

e T 5] R T (445)
Anle) = T R T 449)
Acw) = _%(w—)\o—Rigifu(;z+lm226(w) (4.50)
Aw) = -2 Iz (w) (4.51)

T(w—Xo+ A+ A — U —ReX, ()2 + Im?%, ()
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Figure 4.6: The generating Luttinger-Ward functional. Solid lines represent
conduction electrons ¢, dashed lines pseudo fermions f, wavy dashed lines single
occupation bosons p, wavy solid lines empty impurity bosons e, curly lines double
occupation bosons a. The lower diagrams show the auxiliary particle selfenergies.

4.3.2 Formulation of the NCA equations

Analogous the the former auxiliary particle formulation we develop the NCA in
terms of a generating functional ® for the Kotliar-Ruckenstein fields, such that
the selfenergies are derived according to

Eipea=02/0Gfpca (4.52)

Hence, a non crossing approximation for the Hamiltonian Eq. (4.47) leads to
the generating functional and selfenergies, which are presented in Fig. 4.6. The
most striking feature of the NCA diagrams in terms of Kotliar-Ruckenstein slave
particles is due to the fact that each hybridization term in the Hamiltonian Eq.
(4.47) consists of four different operators. As a consequence the lowest (2"?)
order diagram of ® consists of four pseudo particle propagators. Therefore the
pseudo particle selfenergies contain three propagators in each diagram, which is
in particular inconvenient since it results in a two dimensional integration for
the selfenergies. As in the previous section we derive the imaginary part of the

37



4 Some Aspects of Quantum Impurities

> -~
-
, ~ 0' -~ N , c \
f \ / \
d(s { 5 < o
I:._‘ rJr AT - c ~?
‘”‘!—-‘-g,“vrd ..-‘\"\ﬁi A":—J

Figure 4.7: The physical impurity Green’s function is derived via cutting the
(bare) conduction electron line in the Luttinger-Ward functional Fig.4.6. The
proportionality factor is discussed below.

advanced selfenergies Eqs. (4.53)-(4.56), while the corresponding real part can
be obtained by a Kramers-Kronig relation. Finally we therefore obtain

Siw) = T [ deddAcs()A,() Al +¢ — )
U + ble + € = w)) - (o(€) + (€ — w))]
T / dede' Aoy (€) Au(€) Ay (€ — € + )
[(F(O) +ble — € =) (B() + F(€ +w)] (453)
Sy (@) = T [ dedeAun() Apa(€) Al +-¢ — )
[(F() + ble — € —w)) - (F(¢ +w) — [())]
+ T / dede' Ap—y(€)Ay_p () Ap(w — € + ¢)
C[(fO+be— W) (F€—w) = fE€)]  (454)
mS,@) = T3 [ dede Aun()Agol¢) Ayl € =

[(f() + (e =€ —w)) - (f(€ +w) = f()] (4.55)
Im¥e(w) = T Z / dede' Aep(€) A gy (€) Apo(w — € +€)

[(f(e) +ble =€ +w)) - (f(€ —w) = f(€)] (4.56)

where as usual f(€) denotes the Fermi distribution function and b(e) = 1/(ef¢—1)
is the Bose distribution function.

From the auxiliary particle spectral functions one can finally derive the physical
impurity Green’s function. Diagrammatically the result is obtained by cutting
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4.3 A new slave boson formulation of the NCA

the (bare) conduction electron in the Luttinger-Ward functional Fig.4.6, leading
to the diagram in Fig.4.7.

Aw(w) = % dede' Ao (€) Aa(€) Ap_oe + € — w)

[(f() +b(e+ € —w)) - (b(€) + f(€ —w))]
- /dede'AfJ(e)Ae(e')Apg(e' —e+w)
[(f(e) +ble =€ —w)) - (b(€) + f(' +w))] (4.57)

The set of Eqgs. (4.53)-(4.56) can be solved iteratively. Within each iteration the
Lagrange multipliers A\, A are determined such that the particle number con-
straints Eqs. (4.45),(4.46) are obeyed on average. In Fig. 4.8 the results for the
pseudo particle spectral functions are presented for a particular set of parameters.
The change of sign at w = 0 is a characteristic feature of the bosonic spectral func-
tions in order to provide a positive particle number. It has been argued previously
[68], that spurious Bose condensation is inhibited by the negative bosonic spectral
weight for w < 0. In the symmetric case where |2E;| = U the double occupancy
spectral function A, and the empty impurity function A, are supposed to be equal,
as it is confirmed in Fig. 4.8 b). According to Eq. (4.57) the physical impurity
spectral function is given by a convolution of the pseudo particle spectral func-
tions. In contrast to the previous auxiliary particle approaches in the present case
it is necessary to normalize the impurity spectral function A,, via a normalization
factor. This can be understood the following way. Transforming the impurity
occupation number yields: did, = flf, - (pf,pa +ata + plpsete + piap_aaTa)
The exact implementation of the constraints Eqs.(4.45),(4.46) reproduces the ex-
pected result did, = flf,. In the present case the result differs in general from
that due to the averaged realization of the constraints. Therefore a normaliza-
tion factor ay needs to be introduced in front of the conventual impurity diagram
such that f dwAg, = 1 holds. It turns out that the normalization factor indeed
yields ay &~ (pLp, +ata+plpsete+p'  p_,did), hence lifting the deviation of the
physical electron occupation number due to the averaged projection procedure.
In Fig. 4.9 we present an example of the physical impurity spectral function in
comparison to the corresponding function obtained utilizing the pseudo particle
representation introduced in the previous sections. Concerning the Kondo reso-
nance the agreement of both method turns out to be reasonably good, while the
one particle peaks at w ~ +0.4D differ significantly due to the different projection
methods. The technical applicability of the NCA formulation developed in this
section is certainly hindered by the high computational effort that is needed to
evaluate the NCA Eqgs. (4.53)-(4.56). However, it might be useful to investigate
the principle properties of the Kotliar-Ruckenstein representation and compare
the results to the existing mean field approximation.
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Figure 4.8: The auxiliary particles spectral functions. a) black line: f-fermion,
red line: p-boson. b) black line: e-boson, red line: d-boson. The e- and d-
boson are equal when |2E,;| = U. The system parameters are: E; = —0.35D,,
U =0.7TDy, I' = 0.1Dy, temperature T" = 0.005D
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Figure 4.9: The physical impurity spectral function, obtained by the Kotliar-
Ruckenstein NCA-method (KR), and the auxiliary particle NCA with exact pro-
jection (EP), described in the previous sections. The system parameters are:
Ey;=—-0.35Dy, U =0.7Dy, I' =0.1D; at a temperature 7' = 0.005D,
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5 An Impurity Model for EuO

After the general remarks on quantum impurity models in the previous chap-
ter, now we will come back to the real physical system provided by oxygen-
depleted europium monoxide EuO;_, or the Gd-doped compound Gd,Eu;_,O
respectively. As we stated in the introduction in particular the transport proper-
ties are tremendously influenced by the existence of impurities, embedded in the
off-stoichiometric compound. In the following we define the circumstances un-
der which a model consisting of dilute Anderson impurities coupled to an electron
conduction band can exhibit the experimentally observed behavior. Furthermore,
the magnetic properties coinciding with those features have to be taken into ac-
count. Additionally we want to investigate the principle theoretical properties
of the model. Especially the interplay between coherent spin flip scattering pro-
cesses, leading to the well known Kondo effect and the magnetic phase transition,
being of crucial importance for EuQ, is of great theoretical interest.

Due to the complexity of the model it becomes necessary to utilize various
approximations. We will comment on the technical details of the calculation as
well as on the validity and the limits of the chosen approximations. Therefore we
refer to the methods described in the previous chapters and demonstrate how they
need to be modified in the present case. Our main remark will be on magnetic as
well as on the transport properties. Thus we will derive the necessary expression
for the resistivity and the conductance of the electronic system.

5.1 A Hamiltonian representing EuO

As mentioned before, we first want to refer strongly to the specific system EuO,
before we come to the general properties of the presented model. Therefore it
is useful to summarize the main ingredients which are experimentally known to
determine the properties of this compound and to include them systematically in
the theoretical approach. The main experimental observations about EuO are:

a) Stoichiometric EuO is a ferromagnetic semiconductor with a Curie temper-
ature of T ~ 69K

b) Inserting impurities into the system leads to a simultaneous semiconductor-
metal transition for T' < T¢
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5 An Impurity Model for EuO

The first feature a) is basically reflected by two properties. First, the electron
conduction band of EuO, consisting of the Eu 5d — 6p orbitals is initially empty.
The free electron Hamiltonian is given by

H.= Z(ek — p)el Cro (5.1)
ko

with a chemical potential p. The initially empty conduction band is represented
by a semi-elliptical band with half width Dy

NO(e) = %\/1 _ (EBOAO)Q (5.2)

where Ag > Dy + p guarantees that the lower band edge is above the chemical
potential. Later, the electron conduction band will be further modified due to
the selfenergy in the interacting system, in particular in the off-stoichiometric
or Gd-doped regime. As mentioned in the introduction the ferromagnetism of
stoichiometric EuO can reasonably be described in terms of a Heisenberg model
representing the exchange interaction between the local Eu 4 f moments arranged
on a lattice

Hyp=—YJi ;58 (5.3)
irj
where S; represents a 4f-spin at site ¢ and J; ; is the exchange integral between two
spins at sites 7, 7. Furthermore, we add an exchange interaction with the strength
Jes between the local conduction electron spin &; = (1/2)>__, cjaﬁ,a/cw/, with
Cio = » . exp(ikx;) cko and T, the vector of Pauli matrices, at site 4 and the
corresponding Eu 4 f moment. Thus, one obtains

Hy = Z(Ek - /'L)CJILUCICU - Z JZ,J‘S_;Z‘S_;J - ch Z 6:15'; (54)

ko %,J

It has been shown [28] that this Hamiltonian together with ab initio band
structure calculations, taking into account the full electronic band can successfully
describe the magnetic phase transition in stoichiometric EuO, leading to a good
agreement with the experiment. However, the so defined system is known to
remain in the semiconducting phase for all temperatures. This is due to the fact
that there are no free charge carriers at zero temperature, even in the interacting
system. Let A% (e, ) be the interacting conduction electron density of states
according to the Hamiltonian given in Eq. (5.4). In the stoichiometric case the
chemical potential y is determined such that the total number of free electrons

in the low temperature limit yields

> [ dertazten =0 (5.5)
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Bare Model
T>Te

Band Splitting
T<T;
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Figure 5.1: Sketch of the band structure shifted spin dependently due the the
coupling between the conduction band and the Eu 4f moments. The chemical
potential (7") is determined for each temperature 7" such that the total particle
number is conserved.

Although the conduction band certainly splits, according to Fig. 5.1, spin depen-
dently below the Curie temperature 7., no overlap with the chemical potential
could be generated without violating particle number conservation.Therefore the
whole magnetization must be carried by valence band electrons, which are not
contributing to the transport in the system.

The situation changes completely when impurities are incorporated into the
system. According to b) in that case EuO turns into a metal below the critical
temperature 7T,.. In the model, proposed in the following this fact is reflected by
two features. First, dilute Anderson impurities (d;,) at site ¢ hybridizing with the
corresponding conduction electron states are added to the stoichiometric model
Eq. (5.4). Hence, we obtain the full Hamiltonian of Eu0;_, or Gd,Eu;_,0 with
an impurity concentration n; = x and the hybridization matrix element V'

H= Z(ek — p)eh cre + Heg + Hep (5.6)
ko
Heyy=EgY dldic +V Y (cdig+he)+ U didgdldy (5.7)

He=— Z Jugzgj — Jes Z@‘g@' (5.8)
i i

In Eq. 5.7 we assume an infinite onsite Coulomb repulsion U on the impurity
site. Hence, the impurity finally appears to be singly occupied even for EuO;_,
where each O-vacancy provides two excess electrons (compared to only one when
replacing bivalent Eu by trivalent Gd). Therefore we claim that the particle
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Figure 5.2: Sketch of the spin dependent band structure due the the coupling
between the conduction band and the Eu 4f moments in the presence of a finite
impurity density of states (red). Again, the chemical potential p(7T') is determined
for each temperature T such that the total particle number is conserved. But here,
spin split impurity states may be transferred into free charge carriers.

number constraint for EuO;_, as well as for Gd,Eu;_,O transforms into
S [ det(€) Lates ) + s Aunle 0] = s (5.9)

where A, (€, 1) is the full conduction electron and Ay, (€, p) the full impurity
density of states. The meaning of this condition is illustrated in Fig. 5.2, where
we sketch the possible exchange process of spectral weight between the impurity
states and the electron conduction band. In that sense the low temperature phase
of the system can become metallic. At least the limit n; — 0 is clearly determined
by Eq. (5.9), leading analytically to the corresponding expression Eq. (5.5) of
the stoichiometric case and hence to the semiconducting compound. Of course,
the dynamics of the impurity states at finite impurity concentrations leads to
a complicated selforganized interaction between impurity states and conduction
band electrons, including the whole variety of possible physical processes.

5.2 Approximations and physical interpretation

The model Hamiltonian, as given in Egs. (5.6)-(5.8) provides many different com-
plications. In particular the electron conduction band is coupled to dilute Ander-
son impurities, represented by Eq. (5.7). As stated in Chapter 4, a Hamiltonian
like this usually leads directly to strongly correlated electron physics. Thus, one
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5.2 Approximations and physical interpretation

can expect the system to be widely dominated by the occurrence of collective
behavior leading for instance to a Kondo resonance in the impurity Green’s func-
tion. Additionally, the conduction band is coupled to the local Eu 4f moment
system. Strictly, the Hamiltonian H.; amounts in a Kondo lattice problem. Thus
it is in fact very similar to the problem defined by H.4, including the possibility
of resonant spin flip scattering processes. In the present approach we decided to
treat the Kondo lattice problem H,.f only in terms of a mean field theory. Within
this approximation the local Eu 4f moment should only provide the effective
magnetic field, shifting the spin states of the conduction band. We hope that this
approximation describes the ferromagnetic phase transition at least qualitatively
correct.

According to feature b) given in the previous section we treat the influence
of the doping impurities more concisely. Since the existence of these impurities
strongly affects the transport properties, in particular the impurity density of
states at the Fermi energy can be of crucial importance, including eventually
occurring Kondo resonances. Therefore we will treat the H.4 part of the Hamil-
tonian Egs. (5.6)-(5.8) within the non-crossing approximation.

Since we want to derive the electronic conductance and the magnetization of the
conduction band, we need to derive the full interacting conduction band density
of state A.p(w) = (1/7)ImG ., (w) for each spin direction. Therefore we first have
to obtain the interacting conduction band Green’s function

Geo(k,w) = [w= pt — € — Beg(W)] " (5.10)

The electronic selfenergy Y., (w) consists of two parts. First, there is a contri-
bution from the dilute impurities, as described in Chapter 4, stemming from the
local conduction electron t-matrix. This part is proportional to the impurity con-
centration n; and hence responsible for the formation of an impurity side band
as sketched in Fig. 5.2. The second part consists of the coupling to the effective
field (S) built of the local 4f moments. Finally one therefore obtains

Yeo(w) = nf|VPGyp(w) — Jop(S)o (5.11)

We will see below that this relation implies a fully selfconsistent problem, since
in the present case G4, as well as (S) depends on the electron Green’s functions
G and hence on the selfenergy Eq. (5.11) itself. In that sense Eq. (5.11) is very
similar to the well known DMFT equation [46] for the local conduction electron
selfenergy. Additionally, the local Eu 4f moment (S) appears to be responsible
for the lifting of the spin degeneracy in Eq. (5.11) and hence for the magnetization
of the conduction band. It is one of the most interesting questions of the present
model, whether the phase transition is dominated by strongly correlated physics
due to the hybridization of the conduction band and the local impurity states, or
by the band shift induced by the 4 f moments. In particular the decoupled system
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5 An Impurity Model for EuO

with J.; = 0 might show as well a metal-insulator transition (MIT), driven by
the Kondo resonance of the impurity spectral function GG4,. Thus, the present
model Egs. (5.6)-(5.8) implies two completely different types of MIT. The energy
scale of the magnetic phase transition is given by the Curie temperature T which
will in general be much larger than the Kondo temperature Tk determining the
other type of MIT. Furthermore these two types are obviously competing, since
the occurrence of a Kondo resonance is due to resonant spin flip scattering of
conduction band states off the impurity. Hence, these processes are suppressed
by a conduction band polarization of nearly 100 per cent as it is experimentally
known for EuO.

5.2.1 Magnetization and mean field approximations

In mean field approximation the expectation value (S) of the local 4f moment
(which is independent on the lattice site ¢ in the isotropic case) yields

ZS Sefﬁ(2J4f<S>+chm)S
(S) = Zs e—B(2Jas(S)+Jcpm)S

m= [ dof) Aa() - A w) (5.13)

(5.12)

Hence, the conduction electron magnetization m influences the local 4 f moment
similar to an external magnetic field and vice versa. The effective exchange cou-
plings Juy = >, Jij = >_;Jij and J.; determine the magnetization of the 4f
system and the splitting of the conduction band respectively. In the case of sto-
ichiometric EuO the magnetization m of the (empty) conduction band vanishes.
Thus Eq. (5.12) is decoupled from the conduction band and can be solved sep-
arately. In Fig. 5.3 we present the result for (S) and various different exchange
couplings Jyr.To obtain a Curie temperature of T, ~ 69K corresponding to stoi-
chiometric EuO we have chosen Jyr =7 - 107°Dy ~ 6.5k K, where Dy = 8eV is
approximately the half bandwidth of EuO and kg is the Boltzmann factor. Ex-
perimentally the exchange integrals are given by J;/kp = 0.606 K for the nearest
neighbor and Jy/kp = 0.119K for the next nearest neighbor exchange. For a fcc
lattice this yields J;;"/kp ~ 7.75K for the mean field exchange integral. Since we
are not specifically interested in a quantitative correct description of the magnetic
phase transition the agreement with the experimental result is sufficient.

As soon as impurities are incorporated in the system Eq. (5.12) and Eq. (5.13)
are non-trivially coupled. However, already at this point one can estimate the
influence of the conduction band on the local 4f moments. Actually, the term
Jegm appearing in Eq. (5.12) acts similar to an external magnetic field. In
Fig. 5.4 we investigate (S) assuming constant contributions By = J.pm. As
expected, the additional term increases the Curie temperature significantly even
for low values of the field By. For the selfconsistent solution one might further
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Figure 5.3: Local Eu 4f moment for stoichiometric EuO at various different

exchange couplings Jy; = {8,16,24,...,72,80}10 °eV. The red line corresponds

to Jyr = 5.6 - 107%eV and a Curie temperature T, ~ 69K according to EuO.

Experimentally one obtains Jy; &~ 6.6 - 10~%eV/, which is in sufficient agreement
for our purpose.
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Figure 5.4: Local Eu 4f moment for stoichiometric EuO at Jy; = 5.6 - 10~V
and a Curie temperature T, ~ 69K according to EuO. We applied a constant
magnetic field By = J.ym = {8,16,24,32,40,48}10 %V in Eq. (5.12) to esti-
mate the influence of the conduction band magnetization m on the 4f moment
formation. Therefore we expect an increasing Curie temperature due the exis-
tence of excess free charge carriers in the doped compound.
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Figure 5.5: Selfconsistence loop, representing the coupled Eqgs. (5.10)-(5.16).
Additionally the particle number constraint Eq. (5.9) has to be obeyed.

expect that (S) will not vanish as an asymptotic tail. Instead, the non-magnetic
limit m = 0, (S) = 0, which is always a solution of Eqgs. (5.12), (5.13) should
be approached selfconsistently below a certain value of the two magnetizations.
This is in contrast to the application of a constant external field.

5.2.2 Moadified non-crossing approximation

After deriving the mean field equations for the magnetization Eq. (5.12), (5.13)
we still need to solve the impurity part of Eq. (5.11). Therefore we have to
evaluate the quantum impurity problem. Here, we use the NCA as impurity
solver according to the description in Chapter 4. As before, we choose a pseudo
particle representation of the system and we regard the limit U — oo of infinite
local Coulomb repulsion. Hence, one obtains the following set of equations

Syalw) =T [ % 11= £ Aul0Ga(w - (5.14)

™

Yp(w) = FZ / %f(e)Aw(e)GfU(w +€) (5.15)

Go(w) = j de e [G 1o (w + €)Ap(€) — Apo(€)Gi(e —w)]  (5.16)

There is one remarkable difference compared to the conventional NCA equations,
given in Eqs. (4.30)-(4.32). In contrast to the single impurity case, where the
full conduction electron propagator reduces to the bare one, in the present case
the Egs. (5.15)-(5.15) contain the full interacting A.,(w) = (1/7)ImG .y (w). This
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5.2 Approximations and physical interpretation

is due to the finite impurity concentration entering via impurity averaging into
the conduction band selfenergy. All together the Egs. (5.10)-(5.16) form a fully
selfconsistent set of equations, yielding the conduction electron density of states.
We present a sketch of these equations in Fig. 5.5 to emphasize the selfconsistence.
At this point we want to stress again the importance of the particle number
constraint Eq. (5.9), which has to be obeyed within the selfconsistent set of
equations.

5.2.3 Numerical remarks

We want to comment briefly on the technical aspects concerning the numerical
solution of the system of equations Eqs. (5.10)-(5.16) including the particle num-
ber constraint Eq. (5.9). The kernel of the selfconsistence loop Fig. 5.5 consist
of an impurity problem, which we solve, following the procedure presented in the
previous chapter. In particular we stick to the A\g gauge transformation in order
to fix the auxiliary spectral functions at w ~ 0. Therefore we start the selfconsis-
tence loop, assuming a magnetization m and the pseudo particle selfenergies > ¢,
and determining the corresponding spectral functions

1 Im¥ s, (w)
Ap(w) = - 5.17
f (CU) v (w + % + )\0 —10 — Ed — RGZfU(W))Q -+ ImeJ(w)z ( )

1 Im¥,(w)
Alw) = T (w =+ Ao — i0 — ReXy(w))? + ImEy (w)? (5.18)

where the chemical potential p and the gauge potential \y are determined via a
bisection method, obeying the condition Eq. (4.41) and the particle number con-
straint Eq. (5.9), respectively. Here, it must be emphasized that the application
of the bisection method is possible for two reasons. First, we utilize the exact

relation
> [ o @anw) = Y [ dor@)Aue) (519

in order to replace the Ay, in Eq. (5.9) by the pseudo fermion function Ay,. At
least for the converged solution this must be valid. Furthermore, A4, is inde-
pendent on Ay, as we have shown in Chapter 4. Hence, u does not depend on
Ao and a coupled bisection for both variables can be applied. In particular for
those parameters representing the paramagnetic phase of EuO it turned out to
be necessary to add a small constant contribution to the imaginary part of the
pseudo particle selfenergies. This is due to the gap, appearing in the conduc-
tion band density of states. As a consequence a slight deviation (n; — 0.998n;)
from the particle number constraint Eq. (5.9) is enforced, in order to keep the
chemical potential lying in center of the gap in the paramagnetic phase. Having
determined p and A\g we can finally derive the impurity Green’s function Gjy.
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5.3 Transport properties and resistivity of impurity
models

Besides the semiconductor-metal transition indicated by the temperature depen-
dent conduction band density of states, we also want to derive the transport
properties of our model. In particular we are interested in the conductivity and
the resistivity, respectively. For convenience we evaluate the conductivity within
linear response theory. Hence we apply the Kubo formula [69], where the con-
ductivity tensor 0®? is given by an integral over the current-current correlation
function

/ d/\/ dt (57 (0)5%(t + i\))e et (5.20)

In a cubic system 0®’(w) = d,p - o(w) the diagonal components are equal, while
the off-diagonal components vanish. To derive an expression for the current j
appearing in Eq. (5.20) we start with the continuity equation for the particle
current J and the particle density p

0
() + VT (7 1) =0 (5.21)
In the Heisenberg picture one therefore obtains after Fourier transforming to
momentum space the following equation for the electrical current j = —eJ, with
the elementary charge e
H > € o

Transforming into the conventional Schrodinger picture and assuming without
loss of generality ¢ and j to point into z-direction, one obtains for the integrated
total current

o = =l 5 [0(a), ) (529

Because of the cubic symmetry of EuO, we can assume an isotropic current.
Hence the current into each spatial direction is derived from the commutator of
the total charge operator p(q) of the system with the full Hamiltonian Eqgs. (5.6)-
(5.8). Performing these calculations, which are presented in Appendix B, leads
to the remarkably simple result (compare [70, 71])

aek

Jz = h ak, ka k;a (524)

In particular, the total current is obv1ous1y provided only by conduction electron
states, and not by impurity electrons. This is not surprising, since all electrons
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besides the ones in the conduction band are local states. If there would be
a hopping between different d-electron states included in the Hamiltonian, the
impurities would contribute to the total current. In the present case the situation
is the same as for the Hubbard model within DMFT where the conduction electron
selfenergy is momentum independent as well. Hence, we can use the expression
for the conductance derived in [72, 73]. Additionally we averaged over the spatial
directions, such that o = (04, + 0y + 0..)/3

g fe(Deno(5) e

where f(w) is the Fermi distribution function. The conduction electron spectral
function A, (k,w) is proportional to the imaginary part of Eq. (5.10), and is
therefore obtained within our calculations. The dispersion relation Jej/0k is
taken with respect to the absolute value of the momentum k = (k, + k, + k.)/2.
Assuming ¢, to depend only on the absolute value k one can obtain Oe/0k
according to the bare conduction electron density of states Eq. (5.2) N(e) =

N(e) = 2(1—(e— A0)2)1/2 with the energy e in units of the half bandwidth

Dy. In this case one can replace any k summation by an integral like

L B O PR SR T S L g 5.26
Z—(%)g ﬁ o2t T eN(e) = g(e) (5.26)

Ap—1

where V = a? is the volume corresponding to one lattice site and a is the lattice
constant. Hence one can derive the dispersion relation as

de . 3a g*3e)
75 = G N

(5.27)

Finally, the conductivity yields

o= (%)1/3;—22; / dwde( gf ) A2 (e, )g;zi? (5.28)

As one can see, the conductivity o at low temperatures is essentially determined
by the spectral function A.,(k,w = p) in the vicinity of the chemical potential.
In that sense it can be compared to the Drude conductivity which is basically
given by the density of states at the Fermi energy. In the next chapter we use
Eq. (5.28) to derive the resistivity p = 1/0 within the present model.
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6 Analysis of the EuO Model

In the following we discuss the solution of the EuO model introduced in the
previous chapter. As mentioned before the theoretical phase space of the present
model is very large, leading to many different physical manifestations. In this
chapter we restrict ourselves to one set of model parameters, which is typical
for stoichiometric EuO. Furthermore we vary the temperature 71" systematically
and add different impurity or doping concentrations n; to the model. Hence, we
regard the EuO phase transition as being driven by either the temperature or
the impurity concentration. Finally, we compare the most important quantities
namely the conduction band magnetization m(T"), the 4f-moment (S), and the
resistivity p(T') to the experimental results.

6.1 Band structure and particle numbers

From various experiments [6] it is known that a spin dependent band splitting is
of crucial importance for the phase transitions in EuO. Additionally we already
sketched in the previous chapter that the particle number conservation between
impurity and conduction electrons is the precondition for the physical model and
can even explain the stoichiometric limit exactly. Therefore we will first present
the results for these to properties.

6.1.1 Conduction band density of states

As mentioned before we assumed a semi-elliptical bare density of states (Eq.
(5.2)). According to the conduction electron selfenergy ¥.(w) Eq. (5.11) one
can conclude that the semi-elliptical shape is conserved for energies where the
imaginary part of the impurity density of states G4(w) becomes small. This turns
out to be the case for w > p. In this energy regime 3.(w) becomes basically
real leading to a shift of the conduction electron spectrum. At those energies
where ImG4(w) is finite we expect an additional structure to be induced to the
conduction band. In Fig. 6.1 we present the results for the conduction band
density of states at various impurity concentrations. In the upper panel the
system is in the paramagnetic phase T" 2 To. Hence, both spin directions are
degenerate, lying onto each other. Furthermore, additionally to the upper semi-
elliptical conduction band at w — g > 0 one can clearly observe an impurity
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induced side band at w—pu ~ —0.017D,. The width of the side band is determined
by the hybridization I' = 7V2, the impurity concentration n; and the difference
Ao — E4 between the bare conduction band and the impurity level Ey. If Ag— Ey
is sufficiently large a gap between the to components of the conduction band
opens like in Fig. 6.1. The width of the gap Ag &~ 0.02D; in the present case is of
the order of the critical temperature kg1 ~ 0.01D,. Hence, one can assume the
system to be in an insulating state, as it will be quantified later. At this point, we
want to emphasize that in Fig. 6.1 the band difference Ay — Ey = Dy is chosen in
such a way that it cannot be the only reason for the existence of a gap, assuming
a finite width of the impurity Green’s function G4(w). Hence the formation of
the gap is supported by the real part of the conduction band selfenergy due to
the hybridization between the conduction electrons with the impurity states.

Below the critical temperature the spin degeneracy of the conduction band is
broken. Depending on the strength of the coupling J.; between the conduction
band and the Eu 4f moments the band structure of the two spin directions splits
into two components. We demonstrate in Fig. 6.1 that due to a finite overlap of
one conduction band component with the chemical potential at w — pu = 0 the
system obviously becomes (half-)metallic. The precondition for the appearance
of a finite density of states at w = p can be formulated in terms of the effective
gap A, in the paramagnetic phase, which has to be significantly lower than the
maximum splitting of the conduction band. In mean field approximation this
splitting is proportional to the average 4f magnetic moment (Sy). Hence one
obtains approximately the criterion

kBTC < Ag < 7/2 . ch (61)

for the appearance of a sufficient metal to insulator transition. Although T as
well as A, are determined selfconsistently they can be adjusted by modifying the
exchange coupling J4y and the bare interval Ay — Ej, respectively. In particular
the upper limit should actually be A, < 7/2 - J.f, because for a very small but
finite overlap between the impurity and the conduction band states, the density of
states at w = p is very low due to a Fano resonance of the conduction band with
the impurity states. This can be seen in Fig. 6.2 where we present the evolution of
the conduction band at a given impurity concentration when the temperature is
approaching its critical value. The spin splitting is lifted as T" — T accompanied
by a lowered density of states N (i) at the chemical potential. If N(u) remains
small even for low temperature T' < T we expect the conductance to be very low
as well. Additionally, this usually leads to significant numerical problems. In the
present case we have chosen the exchange coupling J;; = 7-107° Dy according to
the Curie temperature T = 69K of stoichiometric EuO and J.y = 0.05D, , with
Dy = 8eV such that 7/2 - J.; =~ leV according to the experiment. With these
parameters and Ay — E; = Dy the constraint Eq. (6.1) is sufficiently fulfilled.
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Figure 6.1: Conduction electron density of states relative to the chemical po-
tential p for temperatures T' > T (upper panel) and 7' < T (lower panel). The
system parameters are E; = —0.4Dg, I' = 7V? = 0.05D2, Jyy = 7 107°Dy,
Jep = 0.05Dg, Ay = 0.6Dy, Dy = 8eV at an impurity concentration n;. In the
paramagnetic phase above T¢ an n; dependent gap opens between the impurity
induced side band and the bare conduction band (w > 0). Below T the spin
degeneracy is lifted and a band splitting of the order J.;(S4f) can be observed.
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Figure 6.2: Evolution of the conduction electron density of states relative to the
chemical potential p for various temperatures 7' — T approaching the critical
temperature T ~ 99.4K. (Parameters like in Fig. 6.1)

6.1.2 Impurity density of states

The origin of the side band induced to the electron conduction band is provided by
the hybridization with the impurity states. The impurity density of states Ay(w)
is presented in Fig. 6.3. Above the critical temperature A,;(w) is forming a spin
degenerate band below the chemical potential. The width of the impurity band
is thereby selfconsistently determined from the pseudo particle Green’s functions
and the conduction band density of states A, (w). One can estimate the width
of the impurity induced conduction side band to be of the order n;I"A'** where
A7 i the maximum of A4(w). Hence, the conduction side band as well as the
impurity band becomes more narrow for vanishing n;. Due to the infinite local
Coulomb repulsion the impurity states obtain a local moment. For T < Ty the
spin degeneracy is therefore lifted. Hence, the minority component Ay (w) forms
a peak above the chemical potential which also induces a peak to the conduction
band at the same position. The majority component Ay (w) is centered around
1, leading to a Fano dip in the conduction band. Consequently a relatively large
amount of impurity spectral weight is transferred into the conduction band in the
ferromagnetic phase, what will be responsible for the increased Curie temperature
in the electron-doped compound. In particular close to T the spin splitting is
small, enforcing a finite density of state at the Fermi energy. Hence, the rising
magnetization is expected to be accompanied by an increasing conductivity.
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Figure 6.3: Impurity density of states relative to the chemical potential p for
temperatures 7' > T (upper panel) and T' < T (lower panel). In the param-
agnetic case the impurity density of states is getting more narrow for vanishing
impurity concentration. Below the critical temperature the majority spin compo-
nent is centered around the chemical potential, while the minority band is shifted
above p. (All parameters and temperatures are equal to Fig. 6.1)
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Figure 6.4: Temperature dependent conduction electron N, and impurity Ng4
particle numbers for different impurity concentrations. The impurity states are
discharged into the conduction band with lowering temperature.(Parameters like
in Fig. 6.1)

6.1.3 Particle number conservation

We already emphasized the importance of the particle number constraint Eq.
(5.9) for the present system. We determine the chemical potential such that the
total electron number N; + N. = n; equals the impurity concentration. The
question remains how the particle density n; is distributed over the impurity
and the conduction electrons, respectively. In Fig. 6.4 we show the temperature
dependent particle numbers at different impurity concentrations for the same
set of parameters as in Fig. 6.1. Besides the obviously fulfilled particle number
constraint, it is remarkable that the exchange of particle density between the
two species of electrons already reflects the metal to insulator transition. As
the temperature is lowered the impurity states are discharged into conduction
electron states. Actually this is no proof for the metallic state of the system
at low temperatures, but together with the information of the previous sections
about the interacting conduction band, it hints to a metallic low temperature
phase and to an insulating state above the critical temperature.
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Figure 6.5: Left: Temperature dependent relative magnetization of the con-
duction band. The system parameters are By = —0.4Dy, ' = 7V? = 0.05D%,
Jop =17 1075D, Jep = 0.05Dg, Ay = 0.6Dg, Dy = 8eV at various impurity con-
centrations n;. Right: Experimental relative magnetization at various Gd-doping
concentrations [7]

6.2 Magnetization

As mentioned before, stoichiometric EuO can be regarded as an archetype for
a Heisenberg ferromagnet. Although the presence of O-vacancies or doped Gd
impurities does not influence the magnetic as strongly as the transport proper-
ties, we still expect a remarkable effect, particularly on the critical temperature.
Nowadays, this is confirmed in various experiments [6, 7], which determined the
Curie temperature to be increasing with higher impurity concentrations (at least
for low n7). In contrast to previous theories [35], a fully selfconsistent study like
in the present work should be able to reproduce these results. In Fig. 6.5 we com-
pare the relative conduction band magnetization m(7")/m(0) at various impurity
concentrations obtained by our calculations to recent experimental results for the
total magnetization of Gd-doped EuO [7]. Furthermore, the Eu 4f moment and
the absolute conduction band magnetization is presented in Fig. 6.6. We obtain
a qualitatively good agreement between the theory and the experiment. In par-
ticular the principle dependence of the magnetic phase transition on n; turns out
to be consistent.
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Figure 6.6: Temperature dependent magnetization of the Eu 4f moments (upper
panel) and the conduction band (lower panel) at various impurity concentrations
(Parameters like in Fig. 6.5)
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110

Figure 6.7: Temperature dependent polarization of the conduction band cor-
responding to the magnetization in Fig. 6.6. The high degree of the polarization
up to temperatures 7" < T is a remarkable property of EuO.(Parameters like in
Fig. 6.5)

As predicted in the previous section, the interaction with the magnetic moments
of the conduction band deforms the magnetization of the Eu 4f moments in the
vicinity of the Curie temperature and vice versa. This behavior is indeed very
similar to the magnetization of the Heisenberg model in a constant magnetic field.
But in the present case the mean field provided by the conduction band electrons
and the local moments is generated selfconsistently. Hence it is not clear at this
point if the unique origin of the deformation in the magnetizations close to T¢ is
mainly due to the 4f moments or the conduction band.

In Fig. 6.7 we present the temperature dependent polarization m(7")/N.(T) of
EuO within our model. In recent experiments [6] it could be shown that EuO is
very highly (nearly 100 per cent) polarized in the metallic phase. The high degree
of the polarization is one of the most interesting properties of EuO in particular
in the context of a possible spintronic application. The experimental behavior is
confirmed within our calculations, as one can clearly see in Fig. 6.7. Furthermore
the existence of the shoulder in the conduction band and the Eu 4f moment
magnetization is not reproduced in the polarization and can hence be shown to be
due to the conduction band occupation number N.(7'). The total magnetization
can therefore be understood as a superposition of a mean field Heisenberg model
for the Eu 4f moment and the condction band with a temperature dependent
occupation number, enlarging the Curie temperature depending on n;.
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6.3 Transport properties

The most striking property of EuO is the strong colossal magneto resistance effect
observed for the Eu-rich compound. We already demonstrated that the conduc-
tion band Fig. 6.1 and its temperature dependent occupation number Fig. 6.4
hints to a metal to insulator transition in our model. We also claimed that the
system parameters are to be chosen such that the condition Eq. 6.1 is fulfilled if
one wants to observe a convenient change in the conductance with varying tem-
perature. In particular the difference between the bare conduction band and the
impurity level Aqg — Ey is thereby to be adjusted such that a sufficiently large
gap can occur in the high temperature phase. As in the previous sections we
have chosen the system parameters to be E; = —0.4Dy, T' = 7V? = 0.05D2,
Jag=T- 1075D,, Jep = 0.05Dg, Ay = 0.6Dy, Dy = 8eV according to the experi-
mental values. We investigate the resistivity in comparison to the experiment as a
function of temperature and of the impurity concentration. Thereby we will show
that there exist two characteristic types of metal to insulator transitions in the
present model, driven by either the temperature 7" or the impurity concentration
ny. In the next chapter we will show that there might even be a third type of
metal to insulator transition contained in the present model without magnetic 4f
moiments.

6.3.1 Temperature dependence of the resistivity

At first, we want to discuss the temperature dependence of the resistivity at
different impurity concentrations n;. We calculate the resistivity as the inverse
p(T) =1/0(T) of the conductivity o(7T") derived by Eq. 5.28. The corresponding
results are demonstrated in Fig. 6.8 in comparison to the experiment [6]. Indeed,
for properly chosen parameters we can observe a very large jump in the resistivity
of up to seven orders of magnitude when the temperature 7T is crossing its criti-
cal value. Comparing the strength of the resistivity change to the corresponding
quantity in the experimental curves 66-6 in Fig. 2.5 and Fig. 6.8 b) we find a
sufficient agreement. Also the principle shape of the resistivity curves is qualita-
tively reproduced. In particular we can also observe the change of the curvature
on the rising edge of the resistivity. This behavior is also seen in Fig. 2.5 but
not in Fig. 6.8 b), which may be due to an insufficient experimental resolution
on the edge. We can identify this feature with the breakdown of polarization. Its
appearance namely coincides with the temperature region where the induced im-
purity band of the minority spin conduction band in Fig. 6.2 is heading towards
the chemical potential. Hence, the resistivity in this region is slightly lowered,
leading to a change of its curvature on the narrow resistivity edge. Furthermore,
we regard the strength of the observed resistivity jump in dependence on the im-
purity concentration. The lower n; becomes the stronger gets the change in p(7)
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Figure 6.8: Temperature dependent resistivity. a) Theory with the parameters:
E;=—04Dy, I' = 7V? = 0.05D3, Jyy = 7-107°Dy, Jey = 0.05Dg, Ay = 0.6D,
Dy = 8¢V and n; = 0.3% b) experiment [6] and c) theory for various impurity
concentrations
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at the critical temperature. Although the resistivity at T — 0K gets lower as
well with increasing n; (which we well discuss in the subsequent section) the de-
creasing width of the gap in the paramagnetic phase (cf. Fig. 6.1) is the dominant
contribution. In fact the height of the resistivity step has experimentally often
been used as a measure of the impurity concentration. All together we can show
that the relevant experimental features of the temperature dependent resistivity
are reproduced within our model for a realistic set of system parameters.

6.3.2 Impurity concentration dependence of the conductivity -
a quantum critical phase transition

The low temperature behavior of the resistivity in Fig. 6.8 raises the question
after the dependence of the conductivity or(n;) on the impurity concentration.
In particular far below the critical temperature or(ny) is only weakly temperature
dependent while its value is mainly determined by the impurity concentration n;.
Furthermore, due to the particle number constraint Eq. (5.9) the limit

lim op(ny) =0 (6.2)

nr—0
can analytically be predicted. In fact, this limit even leads to a really vanish-
ing conductivity, while the conductivity for finite impurity concentrations might
become very small but finite, due to a finite semiconducting gap in the high
temperature phase. In Fig. 6.9 we present the conductivity op(n;) at various
temperatures T as a function of n;. For numerical reasons we can solve the sys-
tem only for impurity concentrations down to n; ~ 0.1% and for temperatures
T =~ 0.0001Dy. Therefore, we added the data point o7 (0) = 0 by hand, according
to the analytical limit Eq. (6.2). Furthermore we will show that the temperature
dependence of the conductivity for low impurity concentrations saturates quite
early. At a temperatures T' = 72K and T = 80K above the critical tempera-
ture T2 = 69K of stoichiometric EuO (n;=0) the system can be above the Curie
temperature for finite impurity concentrations. Hence the vanishing conductivity
corresponds the the paramagnetic semiconducting phase characterized by a gap
in the conduction band density of states. The impurity concentration n§ at which
the conductivity is about to vanish is thereby determined by the n;-dependent
critical temperature T¢(ny). The corresponding condition yields T (n§) = 72K
and T (ng) = 80K, respectively.

For temperatures T' < T2 the situation is completely different. As one can
see in Fig. 6.9 in this regime the conductivity remains finite even at very low
impurity concentrations. Furthermore, for low values of n; the conductivity ba-
sically depends on n; and will vanish in the limit n; — 0. Hence, we predict a
quantum critical (at temperature 7' = 0) phase transition at a critical impurity
concentration n;y = 0 within our model. Note, that at temperature T' = 0 the
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Figure 6.9: Impurity concentration dependence of the conductivity or(n;) at
various temperatures 7. The data points o7(0) = 0 are added according to
the analytical limit Eq. (6.2). For temperature sufficiently below the critical
temperature T2 = 69K of stoichiometric EuO and for low impurity concentrations
or(ny) mainly depends on n;.

present model is always in the ferromagnetic phase. Therefore, in contrast to the
temperature dependent the n;-dependent quantum critical conductivity phase
transition obviously does not coincide with a change of the magnetic properties.

Actually one should strongly distinguish the two different phase transitions
since the corresponding microscopical mechanisms are completely different. First,
there is a transition leading to a gapped high temperature phase with a finite
number of conduction band electrons. In the other case the system is always
ferromagnetic, while the free charge carriers are gradually removed. Of course,
the second type is experimentally more difficult to investigate, since it is com-
plicated to adjust the impurity concentration of the sample. Unfortunately, to
our knowledge there are no systematical studies, investigating the impurity con-
centration dependence of the physical properties of EuO for a sufficiently large
number of different impurity concentrations, such that we could compare the re-
sults to Fig. 6.9. However, the few experiments [32, 7] concerning this issue are
in qualitative agreement with our findings.
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6.4 Simultaneity and Critical Temperature

Up to now, we have not yet discussed the simultaneity of the magnetic phase
transition and the dramatic change of the transport properties as a function of
temperature. In particular we need to have a closer look at the specific char-
acter of the magnetic phase transition at the Curie temperature Ty and the
transition in the resistivity p(7"). First, we recognize that it is not obvious how
one can define a critical temperature characterizing the conductivity transition.
The resistivity p(7T') in Fig. 6.8 contains a well resolved maximum at a temper-
ature 7T, ... In table 6.1 and Fig. 6.10 we compare 7T}, . to the magnetic Curie
temperature Teoyrie. It turns out that both temperatures coincide with a suf-
ficient accuracy as long as the impurity concentration n; is finite. This result
corresponds to the observation that the gap in the conduction band density of
states obtains its maximum width as soon as the magnetization has completely
vanished. Hence we define a critical temperature T as

TC = TCurie =T,

Pmazx

(6.3)

In that sense one can regard the two phase transition to be simultaneous in agree-
ment with the experimental results. At vanishing impurity concentration ny =0

ng 100]03]06[09]12] 15 | 1.8
Touwie[ K] | 69 | 79.8[87.894.4]99.4(103.6 | 107.8
(K] | - [79.6]88.0[94.2[99.2|104.0| 107.6

pma;c

Table 6.1: Critical temperatures at various impurity concentrations. We com-
pare the magnetic Curie temperature Ty of the Eu 4f system to the tempera-
ture T, .. at which the resistivity reaches its maximum. This definition fails at

vanishing impurity concentrations n; = 0. The numerical error is AT = +0.4K.

the conductivity is zero at low temperatures. Hence the resistivity maximum
can not anymore serve as a sufficient definition of the critical temperature. As
mentioned before, one therefore has to distinguish between the quantum critical
phase transition as n; — 0 and the temperature dependence of the conductiv-
ity. In contrast to the magnetization, the temperature dependent conductivity
cannot serve as the order parameter of a phase transition, because it remains
finite at all temperatures and can only become zero for vanishing impurity con-
centration.Strictly, one should therefore understand the temperature dependent
evolution of the present system as a magnetic phase transition accompanied by a
strong change of the electrical transport properties, instead of the interpretation
as two simultaneous phase transitions.
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Figure 6.10: Curie temperature T as a function of the impurity concentration
ny compared to the temperature 7, .. at which the resistivity reaches its max-
imum value. The simultaneity of the magnetic and the conductivity transition
is confirmed. At least for impurity concentrations n; < 4% the results are in
good agreement with the experiment [32]. In contrast to previous studies [36] we

reproduce the n;-dependent of the Curie temperature.
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Figure 6.11: Total Fermion number N.+ Ny —n; as a function of the chemical
potential i . Above a certain p the overall fermion number increases due to bare
conduction band states which become occupied in this regime (see inset). For
lower p the impurity states are shifted gradually above the chemical potential.
The system parameters are: E; = —0.4D,, I' = V2 = 0.05D2, Jyy = 7-107° Dy,
Jef = 0.05Dg, Ag = 0.6Dy, Dy = 8eV , n; = 0.9% leading to Tz ~ 94.4K.

6.5 Controlling the physical properties

In the previous sections we derived the principle behavior of our model in partic-
ular as a function of temperature and impurity concentration. We have demon-
strated the essentially good agreement with the experimentally observed proper-
ties of EuO. Thereby the modification of the impurity concentration is experi-
mentally difficult to achieve since it depends basically on the fabrication process
of the compound. In particular for eventual applications it is desirable to have
a possibility to adjust the physical properties that can more easily be handled.
The canonical approach therefore consists in applying a bias voltage perpendicu-
lar to the transport direction of the compound. Thus, the chemical potential i in
the sample can be adjusted. Concerning our model this amounts in a deviation
from the particle number constraint Eq. (5.9). It can certainly be expected that
the magnetic and transport properties strongly depend on the overall fermion
number.
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Figure 6.12: Magnetization of the Eu 4f moments and the conduction band
(inset) for the parameters as in Fig. 6.11. As expected the increasing conduction
electron number can increase the critical temperature such that the magnetization
at a given temperature is enhanced.

We investigated the particle number, the magnetization and conductivity as a
function of the chemical potential at the temperatures T'= T, T = T £0.05T¢.
In Fig. 6.11 we present the total fermion number N, + Ny — n; as a function of
i at an impurity concentration n; = 0.9%. In this case the critical temperature
is To = 944K (assuming a conduction band width of Dy = 8¢V'). One can
clearly observe a plateau around the chemical potential py ~ —0.41Dq for each
investigated temperature. For p < 1 the total fermion number decreases because
the impurity states are shifted above the chemical potential. On the other hand
if © > po the upper conduction band overlaps with p leading to an enhanced
conduction electron number. This behavior is confirmed in the inset of Fig. 6.11
for T' = T, where the specific occupation number N, 4 are presented. From the
previous results we know that the critical temperature increases with the total
fermion number. Although the origin of the increasing particle number is different
in this section we expect the same behavior again. Hence the magnetization at a
given temperature should essentially follow Fig. 6.11. We present the calculated
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Eu 4f moment magnetization my4; and the conduction band magnetization m
(inset) in Fig. 6.12 for the same parameters as in Fig. 6.11. Indeed we obtain a
strong p dependence of the magnetic properties. For temperatures T' < T one
can thus turnoff the sample magnetization, while for T > T the sample becomes
ferromagnetic above a certain chemical potential.

Previously we already clarified that the most remarkable feature of EuO con-
sists in the interplay of magnetic and transport properties. Hence, we expect the
1 dependence of the magnetization to be accompanied a drastic change in the
conductivity. The result is presented in Fig. 6.13. First, one can see, that the
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Figure 6.13: Conductivity of the model (parameters like in Fig. 6.11). The
dependence of the magnetization is accompanied by a very strong change of the
conductivity or(u) at a given temperature. The conductivity as a function of the
chemical potential basically corresponds to the conduction band summed over
both spin directions. The inset shows the conductivity on a logarithmic scale. In
the gap or(u) depends exponentially on f.

conductivity o7 (u) as a function of the chemical potential basically corresponds
to the conduction band summed over both spin directions. Thus, at the critical
temperature 1" = T we observe a gap in the conductivity or (i) as well. More-
over, in the logarithmic plot (inset of Fig. 6.13) it turns out that the conductivity
in the gap depends exponentially on p, as expected for a semiconductor. At a
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certain pc > po there seems to be a jump in or(u) which coincides with the
onset of the magnetization in Fig. 6.12. We interpret this behavior to be due to
the infinite slope at the band edges of the bare conduction band, increasing the
conductivity rapidly as soon as the chemical potential is shifted into the band.
According to this the u dependent as well as the temperature T dependent phase
transition would be of 2"¢ order type. Regarding the technical aspect it is remark-
able that it is possible to drive such a strong simultaneous phase transition by
changing the chemical potential, which can be done in a controlled manner. This
may be an interesting perspective for future experiments. The crucial question
concerning an eventual application is, if the Curie temperature can be further
increased in the voltage-controlled case.

We want to close our investigation of the EuO model with these remarks.
As mentioned at the very beginning we strongly focused on the experimentally
known properties of EuO and thus we restricted ourselves to the corresponding
parameters. In the next chapter we will investigate another possible realization of
the general model, which will in particular be paramagnetic at all temperatures.
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7 A Paramagnetic Model

In any physical model that, as defined in Egs. (5.6) - (5.8) contains quantum
impurities with strong onsite Coulomb repulsion, a serious influence of local mo-
ment physics can be expected. In the standard Anderson model this is expressed
particularly by the appearance of a Kondo resonance in the impurity density of
states at temperatures below the Kondo temperature Tx. The physical origin
can thereby be traced back to resonant spin flip scattering processes between
local conduction band and impurity spin states. We already argued that in the
parameter regime reflecting the physical properties of EuO, which is highly spin
polarized, we do not expect strong signatures of Kondo behavior.

In the case of a lower conduction band splitting the situation might be com-
pletely different. In particular in the limit J.; — 0 where the Eu 4f moments and
the conduction band electrons are completely decoupled, the spin degeneracy is
recovered . Hence, the resulting Hamiltonian reads

H=Y eclycro+Eq Y didig+ VY (chdig+hc)+ U didydd;y (7.1)
ko 10 e i

As in the previous chapter, we regard the limit U — oo, leading to a single
occupied impurity and the total particle number is conserved according to Eq.
(5.9). As in the EuO case we want to emphasize the importance of this condition
for the physical properties of the model. In particular in the limit n; — 0 the
system is a perfect insulator at temperature 7" = 0K. The conduction band
selfenergy for J.y = 0

Yeo (W) = nf|V?Gao (W) (7.2)

is thereby identical to the corresponding quantity Eq. (5.11) in the EuO model
with a vanishing 4f moment (S). Hence, the high temperature phase of the non-
magnetic model Eq. (7.1) should be equivalent to the paramagnetic phase of the
corresponding EuO model, provided that all parameters instead of J.; are the
same. As before one might therefore choose the center A of the bare conduction
band and the impurity level E,; such that a gap in the high temperature phase
can be observed. However, the low temperature phase will obviously not be
ferromagnetic anymore. So far one would therefore assume the conductivity of
the system to behave completely like in a semiconductor. In the following we will
show that according to our model this will not be the case. At least for a proper
choice of the system parameters one can observe a strong metal to insulator
transition even in the non-magnetic model.

75



7 A Paramagnetic Model

7.1 Density of states

We start our investigation with the conduction band and the impurity density
of states, respectively. Since, in the present case the two spin directions are
degenerate we restrict ourselves to the investigation of only one spin direction.
The system parameters in this section are Ey = —0.4Dy, I' = 7V? = 0.05D2,
n; = 5.0% with a varying Ay = 0.573..0.576 Dy, adjusting the overlap of the im-
purity induced side band and the bare conduction band. Hence, compared to the
EuO model we have chosen a larger impurity concentration and a lower Ay. Thus
we expect the gap in the high temperature phase to be smaller than before. In
fact it turns out that for those parameters we obtain a small but finite conduction
band density of states A.,(w = p) = Ny at the chemical potential in the high
temperature regime. For numerical reasons we need to choose the parameters
such that a finite Ny is provided at low temperatures, since the non crossing ap-
proximation leads to singularities in the pseudo particle Green’s functions as soon
as Ny vanishes. We find, that this breakdown of the NCA equations in the low
temperature regime coincides with the occurrence of a gap at high temperatures.
Hence, we are forced to choose a sufficiently small Agy. In the following we try
to approach the upper numerically possible limit of Ay in order to observe an
eventual metal to insulator transition as a function of temperature.

First, we regard the temperature dependence of the conduction band density
of states A.,(w) at the maximum of the numerically possible Ag. The result is
presented in Fig. 7.1. As predicted the high temperature phase exhibits a deep
dip around the chemical potential, already indicating a low conductivity. The
difference Ay — Ey is thereby obviously not large enough to give rise to a real gap.
With decreasing temperature we observe a very strong peak emerging around
the chemical potential which could not be found in the polarized EuO case. To
explain the origin of the peak in A.,(w) we compare it to the impurity density
of states Ay, (w), which is presented in Fig. 7.2. One can clearly see a Kondo
resonance emerging in Ay, (w) simultaneously with the conduction band peak at
the chemical potential. Regarding the conduction band selfenergy Eq. (7.2) we
conclude that the Kondo resonance in Ay, (w) is induced to the conduction band in
the same way like the already discussed side band structure. Thus, one can proof
the finite low temperature conduction band density of state A, (w = p) = Ny
at the chemical potential to be due to a resonant spin flip interaction between
the conduction band and the impurity states. On the other hand one knows that
the Kondo temperature Tk which provides the dominant energy scale for those
processes is exponentially suppressed with vanishing Ny. Therefore one could
not observe a Kondo peak in the impurity density of states without the peak in
A.r(w) and vice versa. In that sense on can understand the Kondo resonance
in the present case to be self-organized or at least self-amplified, meaning that it
creates its own density of states at the Fermi energy.
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7.1 Density of states
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Figure 7.1: Conduction band density of states A.,(w) at several temperatures
relative to the chemical potential x in units of half conduction band width. The
parameters are Fy = —0.4Dy, I' = 7V? = 0.05D3, n; = 5.0%, A¢ = 0.576Dy. A
narrow resonance at w & p occurs in the (metallic) low temperature regime.
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Figure 7.2: Impurity density of states Ay, (w) at several temperatures relative
to the chemical potential . The system parameters are as in Fig. 7.1. We observe
a Kondo resonance at w = p corresponding to the central peak in A, (w).
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7.1 Density of states

In the following we have to discuss under which circumstances such a selfcon-
sistent Kondo resonance like in Fig. 7.1 and Fig. 7.2 can occur. The most striking
question is, how low Ny is allowed to be in the high temperature phase if one
wants to observe a Kondo resonance at low temperatures. Therefore we inves-
tigate the Ag dependence of the Kondo resonance. The results are presented in
Fig. 7.3 and Fig. 7.4 | where we calculate the conduction band and the impu-
rity density of states at kgT = 1.0Dq for various Ay. All other parameters are
chosen as in Fig. 7.1. The Kondo resonance at w — u = 0 obviously decreases

02— Ao =0.573 -
| |— A,=0.574 _
— A,=0575
0.157 | A,=0576 .
g
o}
< 01
0.05

-0.|003 0 0.003
((’O_I’L) / DO

-$o09 20.006

Figure 7.3: Conduction band density of states at kgT = 1.0D; related to the
chemical potential y. The impurity induced Kondo resonance at w — p =~ 0 can
be observed for various Ag.

with increasing Ag. Regarding the impurity density of states A4, (w) in Fig. 7.4
it becomes particularly clear that besides the physical property of vanishing con-
duction band density of states one encounters severe numerical problems. Namely
Ao (w) becomes successively narrower the larger Ag gets. In that case the pseudo
particle Green’s function Ay,(w) defined in Chapter 4 are numerically very dif-
ficult to resolve at low temperatures. Finally, this leads to a breakdown of the
selfconsistence loop at a certain Ay = A,,... However, our numerical results
suggest the assumption that A,,,, corresponds to the point where the overlap
between the impurity induced side band and the upper conduction band is van-
ishing, leading to a gap in the high temperature phase. A finite overlap would
lead to a low but finite density of states at the chemical potential as it is observed
in Fig. 7.1. Consequently, we propose that the existence of a Kondo resonance
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Figure 7.4: Impurity density of states at kT = 1.0D, related to the chemical
potential p. The Kondo resonance at w — p ~ 0 is decreasing with increasing A.

in the low temperature regime is only possible for a bare conduction band cen-
tered at Ag < A4z, While a gap in the high temperature phase would open at
Ay > Ajae. Therefore the system is expected to obtain a gap at all temperatures
(Ag > Apaz), while in the complementary parameter regime (Ag < A,,q,) the
density of states Ny at the chemical potential remains finite.

7.2 Conductivity

In the case Ay > A, the conductivity behaves like in a semiconductor. We
calculate the conductivity for Ag < A4, using Eq. (5.28). Since the conduction
band density of states at the chemical potential Ny exhibits a pronounced peak at
low temperatures in this regime, the conductivity is expected to be considerable
large. Although the high temperature phase will obtain no gap in the conduction
band, we expect a strong reduction of the conductivity, compared to the low
temperature regime, since Ny remains finite, but can at least be very low (cf.
Fig. 7.1). In Fig. 7.5 we present the temperature dependent conductivity o(7T)
for various different Ay. One can clearly observe a minimum of o(7") at a critical
temperature Tk, which we identify with the Kondo temperature. Below Tk
the system is clearly in a metallic phase, while the minimum o(7T%) is up to
three orders of magnitude below its maximum value. As expected the depth of
the minimum thereby depends on A, where we obtain the numerical maximum
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7.2 Conductivity
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Figure 7.5: Temperature dependent conductivity o(7’) for various different Ay.
A strong drop of o(T") can be observed with increasing temperature 7" — Tk,
which we identify with the Kondo temperature. At Tk the Kondo resonance in
Fig. 7.1 and Fig. 7.2 breaks down, coinciding with the minimum of o (7).

Az = 0.576 Dy for the chosen set of parameters. One should emphasize, that one
might obtain a better approximation of A,,., by means of different techniques
instead of the NCA. For the future the paramagnetic model, as described in
the present chapter may be worth to be treated from a principle point of view,
employing for instance NRG-methods, which is not done in the present thesis since
we are mainly dealing with the EuO-regime. However, we have demonstrated that
in addition to the magnetic phase transition in EuO parameter regime, the general
model contains a parameter subspace where a metal to insulator (or at least bad
metal) transition can be observed. The underlying physics of this second type of
transition is thereby in principle different from the previous one. In particular in
the limit Ay ~ A,,4, the change in the conductivity is sufficiently large to predict
an experimentally observable effect.
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8 Summary

In the present thesis we investigate the ferromagnetic semiconductor europium
monoxide in the off-stoichiometric EuO;_, and in the Gd-doped case Gd,Eu;_,0O.
Both compounds are known to possess spectacular physical properties. While the
high temperature phase corresponds to a paramagnetic semiconductor, one ob-
serves a ferromagnetic phase below the Curie temperature accompanied by a
tremendously increasing conductivity. The corresponding electrical current ap-
pears to be nearly 100 % spin polarized. The strength of the resistivity change
as well as the Curie temperature thereby strongly depend on the doping concen-
tration. From x-ray absorption spectroscopy experiments it is well know that the
magnetic phase transition causes a spin dependent band splitting of the Eu 5d
conduction band.

The EuO model:

We develop a detailed theory containing what we consider the major constituents
of these compounds. The model we propose consists of two subsystems coupled
to a conduction band of Bloch electrons. The magnetic behavior turns out to
be determined by the Eu 4f moments forming a Heisenberg ferromagnet, where
the indirect exchange coupling is basically due to an induced magnetization of
the valence band (Bloembergen-Rowland exchange). Furthermore the 4f spins
with S=7/2 are coupled to the conduction band via an s-d type exchange inter-
action. For the Eu-rich EuO;_, and for Gd, Eu;_,O we need to supply a dilute
concentration of impurities, providing excess charge carriers to the system. The-
oretically this effect is incorporated by adding a second subsystem consisting of
dilute Anderson impurities with an infinity local Coulomb repulsion acting on
each impurity site. Hence, we conclude that the impurity level induced by the
O-vacancies (each providing two excess electrons) as well as the trivalent Gd-
state replacing a divalent Eu finally are only singly occupied. Due to the fact
that the stoichiometric compound is a semiconductor with a large energy gap of
1.2 eV we conclude that the overall electron number must solely be provided by
the excess charge carriers stemming from the dilute impurities. Together with the
single occupancy we therefore claim that the total number of free electrons must
be equal to the impurity concentration n; = z. Note, that the limit n; — 0 is
therefore included in a natural way within our model.
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8 Summary

The goal of our project was to find a microscopic model that explains in par-
ticular the simultaneity of the magnetic phase transition and the change of the
transport properties on the same footing. Hence, the model needs to be treated
fully selfconsistently, in contrast to previous theoretical studies. Because of the
complexity of each single constituent we decided to treat the magnetic part of
the Hamiltonian within mean field approximation. The resulting physical inter-
pretation turns out to be appealingly simple. Namely the local 4f moment are
aligned by an effective magnetic field due to the conduction band magnetization
acting on the Eu 4f Heisenberg ferromagnet and vice versa. Thereby the strength
of the total conduction band magnetization obviously scales with the total elec-
tron number and hence with the impurity concentration. According to this the
n; dependence of the Curie temperature is simply explained by the increasing
electron number. This effect is even enhance by the polarization of the impurity
states, forming local moments due to a strong onsite Coulomb repulsion.

The second effect of the finite impurity concentration amounts in the change of
the transport properties in the low temperature phase. We solved the Anderson
impurity part of the Hamiltonian by means of an impurity averaged non cross-
ing approximation. In this case the impurities on the neighboring sites induce
an additional side band around the single impurity level to the conduction band
density of states. If the splitting of the conduction band which is induced by the
polarized Eu 4f moments is large enough, its majority spin components finally
has to overlap with the impurity induced side band. In this case the chemical
potential has to be located somewhere in the conduction band because of particle
number conservation. Hence, the low temperature phase needs to be metallic
amounting in a finite conductivity which we calculate within linear response the-
ory. The results we obtain according to the described procedure turn out to be in
remarkable good agreement with the experiments. In particular we confirm the
simultaneity of the phase transition and we reproduce the principle shape of the
temperature dependent magnetization and resistivity. At least for low impurity
concentrations n; < 4% we find the Curie temperature increasing with ny, while
for larger concentration the model probably needs to be extended. However, the
comparison to the experiment is still quite difficult because it is experimentally
complicated to determine the correct impurity concentration.

As a perspective for future experiments and applications we also investigated
the physical properties at different chemical potentials, starting from the value
corresponding to the particle number constraint. We obtain, that the conductiv-
ity and the magnetization can be tuned via an applied gate voltage determining
the chemical potential and hence the band filling. As a consequence we can either
increase or decrease the Curie temperature at a given impurity concentration. To
our knowledge there are no experiments up to now, investigating this behavior
systematically. In particular for possible spintronics applications a voltage driven
polarized metal to semiconductor metal would be of great interest.
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The paramagnetic model:

Furthermore, we took a closer look at the non-magnetic model one obtains when
decoupling the Eu 4f moment and the conduction band. Although this model
does not describe EuO anymore it might be of principle interest. Physically it
describes a conduction band coupled to dilute Anderson impurity with the chem-
ical potential in the vicinity of the lower (bare) conduction band edge. As before
we observe the formation of an impurity induced side band. Additionally we
can clearly observe a Kondo resonance in the low temperature regime, which is
emerging in the conduction band at the Fermi energy. Since the Kondo temper-
ature Tk is increasing with the density of states at the Fermi energy one can
consider the observed effect to be self-amplified. As expected the Kondo reso-
nance vanishes in the high temperature regime leaving a dip in the conduction
band at the chemical potential. The depth of the dip depends on the distance
between the bare conduction band and the impurity level. Hence, we obtain a
high temperature phase with a conductivity that is up to 3 orders of magnitude
below its maximum value at temperatures T' < Tk.

Outlook:

Finally, the investigated model turns out to include two possible metal to in-
sulator transitions. Both are caused by the dilute Anderson impurities but with
a completely different origin. While the EuO phase transition is basically due to
the magnetism of the 4f moments, the Kondo driven transition is dynamically
generated between the impurity and the conduction band states. Even more,
the two transitions appear to be in competition with each other. Namely a fi-
nite magnetization in the conduction band suppresses possible spin flip scattering
processes leading to a Kondo resonance. For further investigations we suggest to
consider systematically the crossover from the one regime to the other, using
appropriate techniques, like for instance the NRG method.
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9 Deutschsprachige
Zusammenfassung

In der vorliegenden Arbeit untersuchen wir den ferromagnetischen Halbleiter
Europiummonoxid. Im Mittelpunkt des Interesses stehen hierbei die Doping-
Abhéangigkeit, einmal fiir das nicht-stochiometrische EuO;_, und desweitern fiir
Gd,Eu;_,0O. In beiden Fallen lassen sich hierbei sehr eindrucksvolle physikalische
Eigenschaften beobachten. Wie im stochiometrischen Fall besteht die Hochtem-
peraturphase aus einem paramagnetischen Halbleiter. Unterhalb der kritischen
Temperatur vollzieht das System einen magnetischen Phaseniibergang der von
einem dramatischen Abfall des spezifischen elektrischen Widerstands begleitet
wird. Desweiteren ist der resultierende elektrische Strom zu fast 100 % spin-
polarisiert. Sowohl die Intensitit des Ubergangs als auch die Curie-Temperatur
héangen hierbei stark von der Storstellenkonzentration ab. Aus spektroskopischen
Messungen der Bandstruktur ist bekannt, dass das Eu 5d Leitungsband unterhalb
Te in zwei Spinkomponenten aufspaltet.

Das EuO Modell:

Ausgehend von den experimentellen Resultaten entwickeln wir ein theoretisches
Model. Hierbei beriicksichtigen wir insbesondere zwei Teilsysteme, die an ein
elektronisches Leitungsband ankoppeln. Die magnetischen Eigenschaften sollen
reproduziert werden durch die Kopplung an die lokalen Eu 4f-Momente, die
mittels eines ferromagnetischen Heisenberg-Modells beschrieben werden. Die
zugehorige 4f-Austauschwechselwirkung kann auf die lokale Magnetisierung des
Valenzbandes (Bloembergen-Rowland Austausch) zurtickgefithrt werden. Die po-
larisierten 4f-Momente koppeln weiterhin effektiv an das elektronische Leitungs-
band. Sowohl fir das sauerstoffverarmte EuO;_, als auch fir Gd,Eu;_,O muss
zusatzlich eine endliche Konzentration ny = = an Storstellen in das System einge-
bracht werden, damit freie Ladungstrager zur Verfligung gestellt werden.
Diesem Effekt wird durch das Ankoppeln einer verdiinnten Konzentration aus
Anderson -Storstellen Rechnung getragen, wobei die lokale Coulomb-Abstoflung
auf jeder Storstelle als unendlich stark angenommen wird. Demzufolge konnen
wir sowohl fiir EuO,_, als auch fiir Gd,Eu;_,0O jede Storstelle als einfach besetzt
annehmen. Hieraus und aus dem Verschwinden des Metal-Halbleiter Ubergangs
im stochiometrischen Fall ohne Storstellen folgern wir, dass die totale Beset-
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9 Deutschsprachige Zusammenfassung

zungszahl pro Gitterplatz von Elektronen im Leitungsband gleich der zugehorigen
Storstellendichte sein muss. Insbesondere der Grenzfall des stochiometrischen
EuO ist hierdurch auf natiirliche Weise gewahrleistet.

Das wesentliche Ziel der vorliegenden Arbeit war es, ein mikroskopisches Modell
zu entwickeln, das die experimentell beobachteten simultanen Phaseniibergange
in gedopten EuO im vollen Umfang selbskonsistent behandelt. Aufgrund der
Komplexitat des Gesamtsystems behandeln wir die Eu-4f Momente und deren
Kopplung an das Leitungsband im Rahmen einer Molekularfeldtheorie. Die
physikalische Interpretation erweist sich hierbei als sehr instruktiv, indem die
Eu-4f Momente und die Spins des Leitungsbandes wechselseitig in dem effektiven
Magnetfeld des jeweils anderen Systems ausgerichtet werden. Da die Starke der
gesamten Leitungsband-Magnetisierung mit der Storstellenkonzentration skaliert,
lasst sich so das Verhalten der Curie-Temperatur in Abhéangigkeit von n; erklaren.
Neben den magnetischen werden insbesondere die Transporteigenschaften durch
eine endliche Storstellenkonzentration beeinfluit. Der Anderson-Storstellen Hamil-
tonian wird mittels der sogenannten Non-Crossing-Approximation diagramma-
tisch behandelt. Aufgrund der selbstkonsistenten Kopplung an die benachbarten
Storstellen wird ein zusatzliches Seitenband auf Hohe der Storstellenniveaus in
der Leitungsband-Zustandsdichte induziert. Fiir den Fall, dass die spinabhangige
Aufspaltung des Leitungsbandes stark genug ist, kommt es zu einem Uberlapp
zwischen dem Majoritatsspin-Band und dem induzierten Seitenband. Folglich
muss das chemische Potential aufgrund der Teilchenzahlerhaltung im Leitungs-
band liegen. Demzufolge ist die magnetische Tieftemperaturphase metallisch,
was sich in der mittels Linear Response Theory berechneten Leitfahigkeit wider-
spiegelt. Die so erhaltenen Resultate fiir die Magnetisierung und den elektrischen
Widerstand sind qualitativ in sehr guter Ubereinstimmung mit den Experimenten.
Insbesondere das simultane Auftreten der Phaseniibergéange wird aufgrund des zu-
grundeliegenden Prinzips erklart. Fiir nicht zu grofie Storstellenkonzentrationen
ny < 4% finden wir eine mit n; ansteigende Curie-Temperatur, analog zu den ex-
perimentellen Befunden. Im Falle grofierer n; ist zu erwarten, dass unser Modell
erweitert werden muss, obwohl aufgrund der experimentell komplizierten Bestim-
mung der Storstellenkonzentration noch keine sehr genauen Daten existieren.

Zusétzlich zu den bisherigen Betrachtungen haben wir die Anderung der mag-
netischen und der Transporteigenschaften unter Anwendung einer Gate-Spannung
untersucht. Hierdurch kann experimentell das chemische Potential in der Probe
verandert werden. Dies entspricht einer Anderung der Bandfiillung, wodurch ins-
besondere die oben erwahnte Teilchenzahlbedingung nicht mehr erfiillt sein muss.
Als Konsequenz kann sowohl die Magnetisierung als auch die Leitfahigkeit, die
immer noch an die magnetischen Eigenschaften gekoppelt ist spannungsabhangig
gesteuert werden. Ausgehend von dieser Vorhersage mochten wir eine experi-
mentelle Untersuchung dieses Effekts anregen, insbesondere in Hinblick auf die
eventuelle Anwendbarkeit im Bereich der Spintronic.
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Das paramagnetische Modell:

Neben dem EuO Modell betrachten wir ein paramagnetisches Modell, ausge-
hend von dem selben Hamiltonian, wobei die Eu 4f-Momente entkoppelt wer-
den. Obwohl das so definierte Modell nicht mehr EuO beschreibt, ist die Un-
tersuchung von grundsatzlichem Interesse. Wir untersuchen also ein System
in dem verdiinnte Anderson-Storstellen an ein Leitungsband gekoppelt werden,
wobei die Storstellenniveaus in der Umgebung der unteren Kante des ungestorten
Leitungsbandes liegen. Wie erwartet beobachten wir demzufolge die Formierung
eines storstelleninduzierten Seitenbandes. Fiir tiefe Temperaturen beobachten
wir zusatzlich das Auftreten einer Kondo-Resonanz an der Fermienergie, sowohl
in der Green’s Funktion der Storstelle als auch in der des Leitungsbandes. Da
die Kondo-Temperatur direkt von der Leitungsbandzustandsdichte an der Fer-
mienergie abhangt, kann man die Resonanz als sich selbst erzeugend betrachten.
Fir Temperaturen oberhalb der Kondo-Temperatur verschwindet die Kondo-
Resonanz wie erwartet. Als Konsequenz erhalten wir ein lokales Minimum der
Zustandsdichte an der Fermienergie, dessen Wert unmittelbar durch den Ab-
stand zwischen ungestortem Leitungsband und Storstellenniveau bestimmt wird.
Im besten Fall beobachten wir ein Anwachsen der Leitfahigkeit um bis zu 3
Groflenordnungen fiir tiefe Temperaturen.

Ausblick:

Insgesamt gibt es im betrachteten Modell einen magnetischen Phaseniibergang,
der direkt an einen Ubergang in den Transporteigenschaften des Systems gekop-
pelt ist. Desweiteren gibt es einen Metal-Isolator Ubergang der zwar ebenso
an die Existenz von Storstellen gebunden ist, aber dem ein prinzipiell anderer
Mechanismus zugrunde liegt. Es ist sogar so, dass, aufgrund des polarisierten
Leitungsbandes und der dadurch verminderten Spin-Flip Streuung, die endliche
Magnetierung eine mogliche Kondo-Resonanz unterdriickt . Fiir zukiinftige Un-
tersuchungen wire es interessant den Ubergang zwischen beiden Modellen mit
geeigneten Methoden (z.B. Numerical Renormalization Group, etc. ) systema-
tisch zu untersuchen.
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A Impurity averaged conduction
electron selfenergy

In Chapter 3 we showed that the conduction electron selfenergy for a dilute
impurity concentration yields

Yko(iwn) = ny - to(iw,) = ng - \V|2Gd0(iwn) (A.1)

To derive the selfenergy we calculate the impurity averaged second summand of
the Dyson equation, sketched in Fig. A.l, using ¢; = t¢,(iw,) and G the bare
electron propagator

(imp = H/dsz;tia(}zi,x)a(x',m) (A.2)

N N ; ’
ng‘ GZRi(kik) ik ik'x!
- 11/ Y e e GG (A.3)
j=1 i=1 k!
- = ) —ik(z—a’) _ 2V 2 —ik(z—z')
- V;jl;[z/—v t;:Gre = VtZ;er (A.4)

The prefactor of the squared Green’s function yields the electron selfenergy ac-
cording to Eq. (A.1), since N is the total impurity number and V is the corre-
sponding volume.
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Figure A.1: Diagrammatic expansion of the conduction electron Green’s func-
tion with impurity scattering at sites R;.
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B Derivation of the current
operator

In Chapter 5 we derived the current Eq. (5.24), using the commutator [H, p(q)] of
the Hamiltonian and the total charge density. Here, we present the contributing
constituents in detail.

H:Hc+Hd+thb+H4f—}-Hc4f (Bl)

H. =) (& — 1)chyCho (B.2)

Hy=E;Y di,di;  Hpy = VZ I dig + h.c.) (B.3)

H4f = Z JZJS S Hc4f = —J¢f ZO’Z i (B4)
(%]

The total charge density operator is given by
p(q) = ch 4.0Cko T+ Ze Z‘IRﬂalT (B.5)
N o

where the j summation runs over the impurity distribution and the 7-summation
over the local conduction electron states at site R; in the corresponding basis.
Thus, all commutators including only local particle number operators vanish

[0(9), Hal = [p(q), Hagl = [p(q), Heas) = 0 (B.7)

In the following we will derive the remaining two commutators.

(@) H) = 3 el gothor chatir| (0 = 1)

kp,oT

— E ' _ 1 —
(Ck qockgc rCpr cpTcpTcquockU (617 M)

kp,oT
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B Derivation of the current operator

= Z <C1I;fqa(5pk570>cp7 + ClzquCLTcpTckU - C;TcpTclzfqackU> (GP - M)

kp,oT
=l gona (e = 1) = D2 el { ey e v (60— 1)
ko kp,oT
Hence the contribution of the free electron Hamiltonian yields
[p((j)7 HC] = Z (ek - ek—q) CquUCkU (BS)
ko

The commutator due to the hybridization Hamiltonian reads

p(D), Hhp] = V Z et Z |:C;'raciaa ch dj + d;TCjT]

JT

+ VY ey [d}adjo, ol dir + d;c”}
jo T

Therefore one has to evaluate
[CIUCZ?T’ C;de7i| = CIO'CZ‘UC}Td]‘T - C}Tdﬁ'czaci(f

o {cl-a, c}T} d;r = c;radjT(Sij(STa

Utilizing the relation [A, BT} = [B,AT}T for two operators A, B and by inter-
changing d, ¢ one can obtain all relations needed

= [CTJCW,CT d-T} = ¢l d;.0ijoro [c;ra

! 1, cw,d;chT] = —d;TcZ-U(%jéTU

[d}adja,d;c”] = di ¢, 6ijoro [d}odja,clldh} = —cl dydijoro

Hence one obtains for the commutator including the hybridization term

[p(@), Hpyp] = 0 (B.9)

Consequently the total commutator is given by

(@), H] =) (e — €h—g) ch_gCho (B.10)

ko

reflecting the fact that the current in the system is only carried by the conduction
electron states.
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C Pseudo particle spectral
functions

Previously, we restricted ourselves to the presentation of the physical electron
Green’s function G4(w) which is derived via a convolution of pseudo particle
Green’s functions Aj(w) yielding

1 Im¥ ¢, (w)
Ay = = C.1
ro () T (w+p+ X —i0 — Eg — ReX, (w))? + Im¥, (w)? (C-1)
1 Im¥, (w)

Aw) = T (w+ Ao — i0 — ReXy(w))? + ImSy (w)? (€2)

where the corresponding selfenergies are obtained by the NCA Egs. (5.15)-(5.16).
For completeness we will therefore present the pseudo particle spectral function
in the following. We choose the same set of parameter like in Chapter 6 at a
constant impurity concentration n; = 0.9%.

As before, we distinguish between the ferromagnetic and the paramagnetic
phase for the EuO model. The pseudo fermion Green’s function is either spin
dependent (T' < T¢) or degenerate (T > T¢). It is remarkable that in the high
temperature regime Ay, appears to be very narrow around the chemical potential,
while A, (Fig. C.2) possesses a peak at wy &~ —(Ey— )+ X (wp) corresponding to
the renormalized impurity level relative to the chemical potential. Furthermore,
no Kondo resonance is observed at w — p =~ 0 , implying that the critical tem-
perature T > T is well above the Kondo temperature Tx. For T' < Te: Ay, is
broadened as compared to the high temperature regime and obtains its maximum
value at wy &~ —(Ey—p) + 2, (wo). The slave boson function A, is located around
the chemical potential. The latter is due to the particle number condition Eq.
(5.9) enforcing the physical Green’s function to energies in the vicinity of the
chemical potential. Physically this can be understood by the depopulation of the
impurity d-level in the low temperature regime. Hence, the d-Green’s function
must obtain a significant overlap with the chemical potential. As a result of the
convolution between Ay, and A, the slave boson function therefore also exhibits
a similar behavior.
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C Pseudo particle spectral functions
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Figure C.1: Imaginary part of the pseudo fermion Green’s function for both spin
directions. The impurity concentration is n; = 0.9%. Spin degeneracy is lifted
below the Curie temperature. In the paramagnetic phase Ay, is spin degenerate
and sharply centered close to the chemical potential.
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Figure C.2: Imaginary part of the slave boson Green’s function. Below the
critical temperature the slave bosons are centered in a narrow peak around the
chemical potential. In the paramagnetic peak A, is broadened and located around
the negative renormalized impurity level.
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