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Introduction

I.1 Introduction

The successful identification of key policies that foster economic growth and develop-

ment makes it possible to implement optimal growth strategies that could cut world

poverty, affect income inequalities across countries, and improve the standards of liv-

ing of individuals.1 However, we implicitly need to solve a closely related puzzle first

in order to be prepared to define the scope of such policies: Why do some countries

grow and others stagnate?

The Science magazine considers this question as one of the 125 “most compelling

puzzles and questions facing scientists today” (Science magazine (2005)). While the

importance to identify the key determinants of economic growth and development is

obvious, a unified theory that matches empirical facts is still missing. Instead, the

emergence of endogenous growth theory since the early 90s induced a vast strand of

literature covering numerous potential determinants of economic growth ranging from

macroeconomic policies over trade and industrial policies to deep-seated institutional

factors, and initial conditions. Clearly, policymakers have direct control over some of

these factors, but only limited (long-term) or no control over others.

If we have a closer look at the empirical part of the literature, the overall picture

still remains puzzling. In particular, Summers (2003) suggests three main ingredients

for growth: (i) economic integration through trade and investment, (ii) maintenance

of sustainable government finances and sound money, and (iii) an institutional en-

vironment in favor of contract enforcements and property rights. He concludes: “I

would challenge anyone to identify a country that has done all three of these things

and has not grown at a substantial rate” (Summers, 2003). Indeed, this policy mix

1Various studies confirm that conventional measures of standards of living, e.g. health, literacy,
life expectancy, etc., are highly correlated with per capita income levels across countries as well as
over time (compare, e.g., Barro and Sala-i-Martin (1995)). Moreover, Rodrik (2005) illustrates that
disparities in income across countries account for the bulk of global disparities.
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appears to be intuitively appealing. Yet, Rodrik (2005) illustrates that corresponding

inferences for policy implications are not generally consistent with empirical facts.

Figure 1 shows that Latin American countries experienced sustained growth during

the 1960s and 1970s which represent periods of import substitution policies (high bar-

riers to trade and capital flows) - e.g. El Salvador undertook tremendous reforms since

1989 in favor of macroeconomic stabilization, trade liberalization and private sector

deregulations without achieving higher growth (see Figure 2). In contrast, Figure 3

illustrates that economic growth took off in India in the early 1980s while economic

reforms did not take place before 1991. Instead, the initial growth take-off was pre-

ceded by substantial public investments in infrastructure in the late 1970s and early

1980s as well as a gradual shift towards a more “business-friendly” policy environment

at that time.2 Table 1 denote that China, Vietnam, India and Uganda have experi-

enced tremendous growth during the 1990s in the presence of major barriers to trade

and capital flows.3 Moreover, the index of overall property rights from the Frasier

Institute of Economic Freedom reports for China a index number of 6.8 in 1985 and

4.9 in 2000 which is below the one of Mali, Iran, Panama or Romania.

Consequently, it appears that we need to take some care in isolating growth-

enhancing strategies and keep in mind to incorporate country-specific conditions ac-

curately. Nevertheless, recent advances in development accounting are pointing the

way for future research. Caselli (2005) provides a comprehensive survey and various

robustness checks of contributions in development accounting. He concludes that fluc-

tuations in factor accumulation (labor, physical and human capital) account only for

1/3 of the fluctuations of income across countries. Thus, the bulk of international in-

come differences is due to variations in total factor productivity (TFP). It follows that

a successful theory needs to explain why some countries experience high productivity

growth while others lag behind.

Indeed, a closer look at some case studies supports the pivotal role of TFP-growth

as an engine of overall growth in GDP per capita. Figure 1 clearly indicates that vari-

ations in the growth rate of GDP per capita in Latin America from 1960 until 2000

are primarily due to variations in TFP-growth. The periods of high sustained growth

in the 1960s and 1970s comply with periods of high TFP-growth, while the large de-

crease in GDP-growth in the 1980s is accompanied by a sharp drop in productivity.

Moreover, Figure 3 shows that growth in India is driven primarily by TFP-growth.

2See Rodrik (2005) for a more detailed description of the growth take-off in India.

3In particular, China and Vietnam achieved sustained growth in the absence of trade liberaliza-
tions or enhancements of property rights since almost three decades.
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In particular, Figure 5 and 6 reveal that before 1980, states with a lot of manufactur-

ing activity performed generally poorly, while thereafter, growth is driven primarily

by manufacturing intensive states. Figure 4 illustrates that TFP-growth is also the

primary source of China’s ’growth-takeoff’.

The theories of endogenous growth, initiated by Romer (1990), Grossman and Help-

man (1991), and Aghion and Howitt (1992), are able to explain TFP differences due

to differences in the rate of technological progress across countries. They disclose the-

oretical mechanisms that provide incentives for firms to invest in innovative activities.

These induce new technologies or technology spill-overs. Thus, they explain endoge-

nous technical change which determines the course of TFP-growth in the long-run. It

follows that a theory of TFP needs to explain why some countries are more successful

in developing or adopting new technologies than others.4 Several causes have been

considered to induce such differences: the quality of institutions (e.g. Acemoglu et al.

(2002), Parente and Prescott (1999)), the openness to trade (e.g. Eaton and Kortum

(2002)), or the degree of financial development (e.g. Aghion et al. (2005)).

In the following, we provide supplementary approaches that help explain the incen-

tives for firms to invest in innovative activities by accounting for the interdependence

between different micro- and macroeconomic factors. We consider three complemen-

tary models which suggest new mechanisms that contribute to the explanation of

differences in TFP-growth across countries and over time. The first two reveal mi-

croeconomic mechanisms that allow for an impact of monetary policy and public

infrastructure investments on firm-level technology choices, respectively. The third

model demonstrates that part of the differences in TFP-growth across countries have

to be attributed to differences in the distribution of capital and labor across firms.

In all cases, we provide detailed empirical evidence that is consistent with the pre-

dictions of the corresponding models based on cross-country, industry, and firm-level

panel data. All approaches provide guidance in which way public policymakers can

influence the course of long-run productivity growth.

The first chapter analyzes the impact of infrastructure capital on different sources

of economic growth. The conventional literature, which is based on the growth model

of Barro (1990), predicts that infrastructure investments induce private capital accu-

mulation. However, we do not find an empirical link between (telecommunication)

infrastructure and the accumulation of physical or human capital in a dynamic panel

of 36 relatively developed countries from 1970 until 2000. This negative finding is con-

4See Barro and Sala-i-Martin (1997), Howitt (2000), or Caselli and Coleman (2005) for theoretical
contributions to international technology diffusion and technological catch-up.
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firmed by disaggregated panel data as we detect that U.S. firms do not increase capital

investments in periods of higher aggregate infrastructure investments. In contrast, we

demonstrate a link between infrastructure capital and the rate of technological change

in the country as well as the firm panel.5 We employ a threefold strategy to address

the problem of a potential endogeneity of the infrastructure variable.6 First, we rely

on internal instrumental variables as suggested by Blundell and Bond (1998). Sec-

ond, we alternatively include demographic variables as external instruments which

has been suggested by Canning (1999) and Calderon and Serven (2005). Third, the

mix of macro- and microeconomic variables allows for an inspection of causality in the

firm panel. Our empirical findings challenge the predictions of conventional models

on infrastructure and growth. Therefore, we provide an alternative theoretical mecha-

nism that justifies an impact of infrastructure capital on firm-level technology choices.

In particular, we develop an extended R&D growth model, which emphasizes a cost-

reducing feature of infrastructure capital, to demonstrate a potential link between the

level of infrastructure capital and endogenous technological change. Finally, we show

that the link between infrastructure and R&D can lead to multiple balanced growth

pathes if we endogenize the provision of infrastructure capital. That is, countries or

regions with a low initial infrastructure capital stock suffer from little R&D invest-

ments which in turn result in a low level of output. The latter implies a low demand

for infrastructure services and hence little infrastructure investments. The long-run

balanced growth rate is still strictly positive in this “low-growth scenario”, but it is

also strictly dominated by the growth rate in a “high growth scenario”.

In the second chapter, we show that inflation reduces long-run productivity growth

if financial markets are incomplete. This result is presented by means of an endogenous

growth model whose key ingredients are (i) a nominal short-run portfolio choice for

households, (ii) an agency problem which gives rise to financial market incompleteness,

(iii) a firm-level technology choice between a return-dominated but secure and a more

productive but risky project. In this framework, we show that it is optimal for firms

to hold nominal corporate liquidity (i.e. cash and marketable securities) in order to

partly insure against investments in risky projects. Accordingly, inflation involves

a costs for nominal corporate insurance and hence induces an additional cost of the

productive relative to the return-dominated investment project. Thus, inflation causes

5The rate of technological change is approximated by investments in R&D and the growth rate
of TFP.

6Moreover, we include several corporate and aggregate control variables in the estimation speci-
fications to reduce the potential for an omitted variable bias.
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long-run real effects in the aggregate due to a link from the short-run interplay between

nominal and financial frictions to a firm’s qualitative investment portfolio. It follows

that economies (time periods) that feature a higher level of inflation are predicted to

exhibit lower TFP-growth in the long-run. We confirm the robustness of this aggregate

empirical relationship by means of country panel data. Moreover, our theoretical

approach generates several model-specific predictions which are confirmed by U.S.

industry as well as firm-level panel data. Most importantly, we find that (i) firms

insure systematically against risky R&D investments by means of corporate liquidity

holdings and (ii) periods of higher inflation restrain firm-level R&D investments by

reducing corporate liquidity holdings. Thus, the disaggregated U.S. data support the

empirical relevance of our specific microeconomic mechanism.

The third chapter presents a growth model for an economy consisting of firms

which are heterogeneous in technologies and input demands. This framework makes

it possible to capture the effects of the distribution of input factors among firms

on economic growth. We show that the growth rate in this economy depends not

only on changes in the aggregate level of capital and labor, but also on changes in

the allocation of these inputs across firms. As the latter effects are neglected in

conventional growth models, they are misleadingly captured by the residual TFP

measure. In contrast, we are able to quantify the influence of these components.

Our empirical analysis, which is based on structural estimation from firm-level data,

reveals that changes in allocation of capital and labor have pronounced effects on

GDP-growth for most European countries. Further, we take cross-country differences

in the distributional effects into account to improve conventional growth accounting

exercises. In particular, we find that they explain additionally up to 17% of growth

differences among 19 European countries. Consequently, allowing for heterogeneity

in firm-level technologies and input demands increases the explanatory power of the

inputs.

The next three chapters each present one idea as a self-contained unit.
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Table 1: World Bank’s ’Star Globalizers’

Country Growth rate in the 1990s Trade policies

China 7.1% Average tariff rate 31.2%,

national trade barriers,

not a WTO member

Vietnam 5.1% Tariffs range between 30− 50%,

national trade barriers and state trading,

not a WTO member

India 3.3% Tariffs average 50.5% (2. highest in the world)

Uganda 3.0% Moderate reform

Source: Collier and Dollar (2001: 6)
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Figure 1: Sources of growth in Latin America

Figure 2: El Salvador - failure of institutional reforms
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Figure 3: India’s growth takeoff

Figure 4: China’s ’growth-takeoff’: The change in infrastructure stocks and TFP-

growth
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Figure 5: Growth and manufacturing across Indian states before 1980

Figure 6: Growth and manufacturing across Indian states after 1980
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Chapter 1

Calling for innovations -

infrastructure and sources of

growth

This chapter analyzes the impact of infrastructure capital on different
sources of economic growth. Starting with the contribution of Barro
(1990), the literature on infrastructure and growth mainly focuses on the
relationship between private and public capital investments. In contrast,
we demonstrate a link between (telecommunication) infrastructure capital
and endogenous technological change in the context of an dynamic panel
estimation applying aggregate country- as well as U.S. firm-level data.
The main empirical finding is that the increase in telecommunication in-
frastructure during the last 30 years enhanced R&D investments but did
not affect the accumulation of physical or human capital in our sample.
Moreover, we provide an extended R&D growth model, which emphasizes
a cost-reducing feature of infrastructure capital, to demonstrate a potential
link between the level of infrastructure capital and endogenous technolog-
ical change. Finally, we show that the link between infrastructure and
R&D can lead to multiple balanced growth pathes if we endogenize the
provision of infrastructure capital.

1.1 Introduction

In this chapter, we analyze the effect of (telecommunication) infrastructure capital on

different sources of economic growth. That is, we investigate whether infrastructure

investments influence the accumulation of input factors, such as private and human

11



capital, or total factor productivity (TFP) and R&D.

Several recent empirical contributions report a positive causal relationship between

infrastructure and GDP-growth for different regions and time periods.1 The main

empirical challenge in these studies is the identification of cause and effects between

infrastructure and growth. Fernald (1999) shows that the rise in road services sub-

stantially increased the productivity (TFP) across industry in the U.S. from 1953 to

1973.2 The author employs an implicit test for endogeneity by showing that produc-

tivity growth is above average in vehicle intensive industries. Roeller and Waverman

(2001) formulate a structural model for the supply and demand of telecommunication

infrastructure to separate cause and effects on aggregate production.3 They find large

positive effects of telecommunication investments on economic growth in a panel of

21 OECD countries from 1970-90. Belaid (2004) confirms the results for a panel of

37 developing countries from 1985-2000. Finally, Calderon and Serven (2005) apply

an instrumental variables approach to estimate a positive causal effect of different

infrastructure measures on GDP-growth in a panel of 121 countries from 1960-2000.

These studies highlight the importance of infrastructure investments to foster eco-

nomic growth and development. However, little is known about the explicit role of

infrastructure capital in the production process. Does it represent an additional input

factor in the production function or does it influence the technology with which other

inputs are combined? In other words, are infrastructure investments a complementary

input factor to private and human capital accumulation or do they trigger technical

change by affecting incentives for R&D? In the first case, infrastructure investments

feature temporary growth effects in the presence of fixed input factors (e.g. labor)

1Gramlich (1994) or Holtz-Eakin and Schwartz (1994) survey the earlier empirical literature on

infrastructure and growth.

2He measures a rate of return of 100% before 1973 and a negative rate from 1973-89. To put it

in the words of Fernald (1999): “the interstate highway system was very productive, but a second

one would not be”.

3The identification of cause and effects crucially hinges on the specification of demand and supply

functions and the conformance of price elasticities across the OECD countries.

12



while in the second they improve the efficiency of all other input factors and hence

long-run productivity growth. The corresponding policy implications differ substan-

tially in both settings. Moreover, in the former scenario, infrastructure capital is

expected to reflect a crucial growth determinant mainly in less developed countries

with shortages of physical capital, while it appears to be less important in R&D

driven more advanced economies. In this regard, note that the empirical evidence

above refers to developed as well as developing countries.4 Against this background,

the present chapter attempts to specify the mechanism that links infrastructure cap-

ital to economic growth in relatively developed countries by accounting for different

sources of economic growth.

Most part of the theoretical literature on infrastructure and growth suggests that

the provision of infrastructure affects economic growth by interacting simultaneously

with private capital investments. This literature is substantially influenced by the

work of Barro (1990). This approach lumps together private and infrastructure capi-

tal with intellectual capital that is accumulated by technological progress. Thus, it is

implicitly assumed that (broader) capital accumulation, which is studied by neoclas-

sical theory, and technological knowledge are one and the same. In particular, Barro

(1990) assumes a Cobb-Douglas production function that features constant returns

to scale for the accumulation of private and infrastructure capital because part of

this broader capital accumulation is supposed to reflect technological progress needed

to counteract diminishing returns. It follows that infrastructure or private capital

investments feature not only level but also growth effects in the long-run which are

only limited due to a financing by distortional taxes. The key assumption underlying

the Barro (1990) model is the link from infrastructure investments to private capital

accumulation. This approach has been generalized in several ways. Turnovsky (1997)

accounts for public capital which is subject to congestion, Kosempel (2004) for the

4Roeller and Waverman (2001) and Belaid (2004) quantify substantial elasticities of GDP with

respect to telephones per 1000 workers for advance (0.45) and developing countries (0.5) for similar

time periods using identical estimation techniques.
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case of finitely lived households, Turnovsky (2000) for an elastic labor supply, and

Ghosh and Mourmouras (2002) for an open-economy framework. An alternative ap-

proach is followed by Bougheas et al. (2000) who show that infrastructure investments

increase an economy’s degree of specialization.

The empirical part of our contribution is related the work of Fernald (1999),

Bougheas et al. (2000) and Hulten et al. (2003) who analyze the impact of infras-

tructure on productivity and product specialization in the U.S. and India, respec-

tively. In contrast to these studies, we focus on different sources of economic growth,

use different econometric techniques, and apply panels of mostly developed countries

as well as U.S. firms. We approximate the rate of technical change by investments

in R&D or TFP-growth. We address the problem of endogeneity by (i) the use of

internal as well as external instrumental variables for infrastructure capital, (ii) the

inclusion of different institutional control variables, and (iii) the mix of macro- and

microeconomic variables in the panel of U.S. firms. We detect that infrastructure

investments enhance the rate of technical change in subsequent years in the country

panel. Similarly, infrastructure capital is found to boost R&D expenses of U.S. firms.

In contrast, we do not find a significant effect on investment rates in private or human

capital. Our results refine the outcomes of earlier empirical studies outlined above

and qualify the mechanisms and policy implications of existing theories.

Moreover, we present a simple theoretical model in order to explicitly demonstrate

the link between the provision of infrastructure and technological progress. The the-

oretical distinction between the impact of infrastructure capital on private factor

accumulation and technological progress is important at least for two reasons: (i) it

relates long-run productivity/GDP-growth to the stock of infrastructure capital in-

stead of its growth rate (as in the former literature). (ii) it comprises different policy

implications than the existing models which are based on neoclassical inference. That

is, we identify policies that influence the efficiency of the R&D sector (higher edu-

cation, industrial and innovation policy) to foster growth and innovations, instead

of neoclassical policies that influence the saving behavior of households. Finally, we
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show that the link between infrastructure and R&D can lead to multiple balanced

growth pathes if we endogenize the provision of infrastructure capital.

Section 2 briefly illustrates some empirical stylized facts in favor of a positive

relationship between the provision of infrastructure and subsequent increases in TFP-

growth. Section 3 defines the empirical strategy to distinguish between cause and

effects and reports the empirical findings. In section 4, we suggests a specific mech-

anism that illustrates the impact of infrastructure capital on endogenous technical

change (R&D). Section 5 illustrates the conditions that ensure the existence of mul-

tiple strictly positive balanced growth equilibria for a given endogenous provision of

infrastructure capital. The final section concludes.

1.2 Infrastructure and TFP - some illustrations

In this section, we provide some stylized facts on the role of infrastructure investments

in the two major success stories in terms of economic growth and productivity in the

last 30 years: China and India.5

First, we refer to Rodrik (2005) to exemplify the importance of infrastructure in-

vestments for the growth take-off in India. The author reveals that the tremendous

increase in GDP/TFP-growth in India can not be explained by conventional theories.

He shows that the growth-takeoff was not accompanied by institutional reforms, trade

liberalizations or improvements of property rights. Instead, as outlined in Figure 3,

Rodrik underlines that it was preceded by substantial investments in infrastructure.

In addition, most of the growth-acceleration took place in the manufacturing sector at

that time. That is, the author suggests that the increase in the provision of infrastruc-

ture services in India before 1980 augmented the productivity in the manufacturing

sector in subsequent years. The empirical work of Hulten et al. (2003) confirms this

hypothesis for India.

5China is included in our sample of 36 developed and transition countries which we use in the

following section. It is the poorest countries in our sample.
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Figure 4, which is based on our own calculations, plots the GDP- and TFP-growth

rates together with major infrastructure indices for China.6 The graph demonstrates

that the growth-takeoff around 1980 was preceded by major infrastructure investments

in China. In particular, Figure 4 illustrates that the number of telephone mainlines per

1000 workers was relatively constant in China before 1975 and improved considerably

thereafter. These case studies suggest a link between the provision of infrastructure

and subsequent productivity improvements in the two largest developing regions. Our

empirical analysis in the following section will approve this conjecture for a panel of

developed OECD and some transition countries.7

1.3 Empirical Evidence

In this section, we provide empirical evidence for a positive relationship between

investments in telecommunication infrastructure and subsequent R&D intensities at

the aggregate and firm-level employing dynamic panel estimations. In addition, we

find no evidence for an effect on factor accumulation or human capital.

Data

The OECD provides data for “Main Science and Technology Indicators” for 36 coun-

tries from 1980 until 2004.8 We employ the “Gross Domestic Expenditure on R&D

as a percentage of GDP” to approximate the R&D intensities per country.9 To ap-

6The construction of TFP follows Caselli (2005) and is outlined in Appendix B. The infrastructure

variables are the number of telephone lines per 1000 workers (telecom) and the share of paved roads

in total roads (paved) obtained from the World Development Indicators of the World Bank.

7The poorest country in the sample is China followed by Turkey.

8The sample contains the following countries: Argentina, Australia, Austria, Belgium, Canada,

China, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland,

Israel, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Romania,

Russia, Singapore, Slovenia, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom,

United States.

9The highest fraction of R&D intensities was achieved in Israel in 2002 (5.08%) and the lowest in
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proximate a country’s infrastructure capital stock, we use the number of telephone

mainlines per 1000 workers (telewo). The series stems from the World Development

Indicator database. This database provides several different infrastructure measures.

Yet, these measures are highly correlated: the correlation coefficient between a coun-

try’s telephone mainlines per 1000 workers and power generating capacity or the share

of paved roads amount to .81 and .61, respectively. Therefore, we exclusively focus

on the role of telephone mainlines to avoid problems of collinearity.

Moreover, we consider several variables to control for institutional differences over

time and across countries. In particular, we include real GDP per capita in purchasing

power parity (rgdp), government (gov) and private investment shares (inv) relative

to real GDP, trade openness (open), the amount of private credits issued by deposit

money banks relative to the level of GDP (credit), and overall property rights (ppr).10

The first four variables are obtained from the Penn World Tables. The amount of

private credits serves as a proxy for the level of financial development and comes from

Levine et al. (2000), while the property right index stems from the Fraser Institute

of Economic Freedom database. Moreover, we use the growth rate of real GDP per

capita in purchasing power parity (gdp−growth) from the Penn World Tables and the

average years of schooling in the total population (tyr25) from Barro and Lee (1996)

as additional dependent and control variables. We consider 5-year averages to smooth

out business cycle effects.11 Overall, our unbalanced panel covers 6 time observations

for 36 countries. Figure 1.1 and 1.2 show the scatter-plots for telephone mainlines

per 1000 workers and the share of private capital investments and R&D investments,

respectively.

At the firm-level, we employ U.S. data from the Compustat database. The data

relate to the balance sheets of US nonfinancial firms and cover the time period

Greece in 1982 (0.17%). In the U.S. the fraction was roughly around 2.7% during the 1990s, which

was apart from Sweden, Israel and Japan the highest in the beginning of the 1990s.

10We measure the number of telephone mainlines and real GDP in logs. All other variables enter

in levels since they represent shares relative to GDP.

11That is, we use the following non-overlapping time averages: 1075-1979, ..., 2000-2004.
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Figure 1.1: Scatter-Plot: Private investments share and telephone mainlines

Figure 1.2: Scatter-Plot: Share of industry-financed R&D investments and telephone

mainlines
18



1970-2000. In particular, we include the following firm-level data: R&D expenses,

corporate capital investments (inv), the amount of total assets (assets), total sales

(sales), and operating income before taxes (oincome). All variables are measured

in millions of dollars. We employ once more 5-year averages since we focus on a

long-run growth frequency. Overall, we have an unbalanced panel consisting of over

3000 firms and six time observations. In addition, we investigate the effect of the

macroeconomic infrastructure variable on firm-level investment decisions.12 In order

to ensure that this aggregate variable does not capture general trends in GDP, we

also incorporate the U.S. real GDP per capita and the private investment share.

Estimation Procedure

We use different dynamic panel techniques to examine the coherence between our

infrastructure variable and different sources of economic growth. Accordingly, we

control for country or firm fixed effects to account for unobservable, time-invariant

factors that influence infrastructure as well as R&D investments (e.g. institutions,

geography). In addition, we incorporate time fixed effects in the country panel which

control for common aggregated shocks over time.

Apart from the inclusion of institutional control variables as well as country and

time fixed effects, our strategy to address the problem of a potential endogeneity

of infrastructure is threefold. First, we rely on internal instrumental variables as

suggested by Blundell and Bond (1998). These are appropriate in the absence of

autocorrelation which is shown to hold in all conclusive specifications. Second, we

alternatively include a set of external instruments provided by demographic variables.

In particular, we account for the rate of urbanization and the population density. The

use of demographic variables as external instruments is motivated by Canning (1999)

and Calderon and Serven (2005), who reveal that much of the observed variations

12We stress that our results based on the GMM difference estimator do not suffer from an aggre-

gation bias, as outlined by Moulton (1990), since we employ serial correlation robust standard errors

to avoid within-group correlation.
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in infrastructure stocks are explained by these variables. Third, the mix of macro-

and microeconomic variables allows for an inspection of causality since the marginal

investment of a single firm has no contemporaneous feedback effect on aggregate

macroeconomic infrastructure investments.

We employ the Arellano and Bond (1991) GMM difference (GMM − dif) as well

as the Blundell and Bond (1998) GMM system estimator (GMM − sys) because of

the significance of the lagged dependent variables, e.g. lagged R&D share. These

estimation procedures are based on the general method of moments (GMM) and are

constructed to yield consistent estimates in dynamic panels. In particular, Arellano

and Bond (1991) estimate a dynamic panel data model in first differences and apply

appropriate lagged levels as instruments for the first differences of the endogenous

variables. These are valid instruments if (i) the time-varying disturbance εi,t is not

serially correlated, and (ii) the explanatory variables Xi,t are weakly exogenous. In

other words, considering the following dynamic panel data model in first differences:

yi,t − yi,t−1 = α(yi,t−1 − yi,t−2) + β(Xi,t −Xi,t−1) + (εi,t − εi,t−1), i = 1, 2, ..., N, t = 3, 4, ..., T,

the basic assumptions of Arellano and Bond (1991) are:

E[yi,t−s(εi,t − εi,t−1)] = 0, for s ≥ 2; t = 3, ...T

E[Xi,t−s(εi,t − εi,t−1)] = 0, for s ≥ 2; t = 3, ...T,

where yi,t is the dependent variable, Xi,t a vector of endogenous and exogenous

explanatory variables, N the number of cross-sections, T the number of time-periods,

εi,t the error term and α and β parameters to be estimated. In addition, Blundell and

Bond (1998) apply supplementary moment restrictions on the original model in levels,

whereby lagged differences are used as additional instruments for the endogenous

and predetermined variables in levels. Given that E[yi,t, µi] is mean stationary, the

Blundell and Bond (1998) estimator incorporates the additional moment restrictions:

E[(yi,t−1 − yi,t−2)(ηi + εi,t)] = 0,

E[(Xi,t−1 −Xi,t−2)(ηi + εi,t)] = 0.
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Hence, they require the additional assumption of no correlation between the

differences of these variables and the country-specific effect. The authors show that

this procedure is more efficient if explanatory variables are persistent.13 Furthermore,

we consider all variables as potentially endogenous apart from the government share

and the overall property rights.

Results - R&D

Table 1.1 reports the effects of telephone mainlines and the institutional controls on the

R&D share. The first column reports a negative contemporaneous correlation between

telephone mainlines and the share of R&D after controlling for the institutional and

financial indicators.14 Accordingly, the negative correlation does not simply capture

an economy’s degree of financial or institutional development. In the next column, we

apply the least square dummy variable estimator to additionally control for country

fixed effects. The coefficient of infrastructure is still significant on a 1% level. Yet,

the corresponding estimates are biased in the presence of a lagged dependent variable.

Therefore, we present the results of the GMM difference estimator in column three.

Accordingly, we find that an increase in telephone mainlines by 1% enhances aggregate

R&D investments, on average, by .29% in the subsequent five years. The result is

significant on a 1% significance level. In contrast, only the level of real GDP and a

country’s degree of openness influenced aggregate R&D investments significantly. For

example, the number of telephone mainlines per 1000 workers increased in the U.S.

from 1975 until 1980 by roughly 2%. According to our estimation result, this rise

triggered an increase in the R&D share by .58% in the subsequent five years, which

amounts to 21% of the overall increase in the R&D share in that period.

13We apply heteroscedasticity-robust standard errors and cluster errors at the country or firm level

to obtain standard errors that are also robust to within group correlation.

14We include the contemporaneous values as well as the first lags of the control variables in the

OLS and the least square dummy variable estimation. We do not report the results for the first lags

in the corresponding tables.
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Table 1.1: Effect of telephone mainlines on share of R&D investments

R&D share

OLS LSDV GMM-diff GMM-sys1)

l1telewo .1870∗∗∗ .4866∗∗∗ .2915∗∗ .1838∗ .2842∗∗ .4506∗∗∗ .2406∗∗ .3598∗∗∗

(2.73) (3.61) (2.01) (1.79) (2.43) (3.06) (2.11) (2.59)

l1R&D 1.04∗∗∗ 1.08∗∗∗ .9814∗∗∗ .9828∗∗∗ .9477∗∗∗ .9875∗∗∗ .9618∗∗∗ .9929∗∗∗

(22.59) (6.83) (5.18) (11.28) (10.02) (10.15) (12.13) (12.19)

rgdp .0576 -2.73∗∗∗ -1.79∗ .0698 -.3202 .1341 -.1952

(.14) (-3.36) (-1.91) (.35) (-1.22) (.80) (-.91)

gov .0098 -.0014 -.0027 .1838 .0105 .0033 .0130∗ .0075

(1.18) (-.17) (-.40) (1.31) (1.39) (.44) (1.65) (.95)

ppr .1183∗∗∗ .0207 -.0033 .0398 .0577 .1407∗∗ .0493 .1273∗∗∗

(3.28) (.46) (-.10) (1.45) (1.19) (2.45) (1.12) (2.59)

credit .1609 .0208 .0658 -.2054 -.2877∗ -.2163 -.2993∗∗

(.93) (.20) (.38) (-1.38) (-1.78) (-1.59) (-2.10)

open .0004 .0132∗∗ .0010∗ -.0016 -.0004 -.0014 -.0009

(.08) (2.64) (1.91) (-1.37) (-.30) (-1.32) (-.73)

inv -.0157 .0203 .0077 .0113 .0140 .0110 .0109

(-.88) (1.04) (.61) (1.22) (1.54) (1.43) (1.50)

Country/Obs. 108 34/108 33/77 36/114 34/111 34/111 34/111 34/111

country FE no yes yes yes yes yes yes yes

time FE no no no no no yes no yes

2. order serial correlation .971 .855 .936 .805 .958 .734

Hansen-test .953 .164 .994 .998 .998 .998

1) In column 7-8 we instrument telewo by external instruments (urban, pop. density). In columns 5-8

we employ only first two appropriate lags of endogenous variables to reduce instruments matrix. Always

include constant term, and employ s.e. that are robust to heteroscedasticity and within group correlation.

5-year averages, 1975-2004. t-statistics in parenthesis. ***,**,* significant at 1%, 5%, and 10%.
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Table 1.2: Effect of telephone mainlines on factor accumulation

inv-share inv-adj tyr25-growth tyr25

OLS LSDV GMM-sys GMM-sys LSDV GMM-sys

l1telewo .6641 1.46 .8675 .4716 .9220 .5507 -.0132 -.0168

(1.37) (1.53) (.52) (1.01) (1.04) (.40) (-.60) (-.20)

lag dep. var. .6532∗∗∗ .3360∗∗∗ .7184∗∗∗ .7472∗∗∗ .7039∗∗∗ .7337∗∗∗ - .8910∗∗∗

(10.70) (3.86) (8.26) (9.78) (7.54) (7.95) - (33.87)

rgdp 17.88∗∗∗ 24.23∗∗∗ -1.10 -.5412 -.5363 -.3915 -.1997∗∗∗ .1702

(5.12) (4.86) (-.77) (-.30) (-.24) (-.22) (-4.43) (1.19)

gov -.0283 -.0014 -.0302 -.0155 .0629 .0643 .0001 -.0064

(-.48) (-1.36) (-.89) (-.45) (1.34) (1.23) (.08) (-1.06)

ppr -.0404 -.3957 .3845 .2774 .3956 .3829 .0068 .0152

(-.10) (-1.00) (.76) (.48) (.71) (.72) (.55) (.30)

credit .9118 4.14∗∗∗ .2816 .2775 -.3940 -.1922 -.0005 -.0600

(.64) (3.35) (.19) (.19) (-.34) (-.17) (-.02) (-.27)

open -.0081 -.0723 .0172∗∗ .0145∗∗ .0103 .0077 .0014 -.0014∗∗∗

(-.18) (-1.46) (2.38) (2.36) (1.62) (.77) (1.33) (-2.70)

Country/Obs. 147 35/147 35/155 35/155 33/106 33/106 35/155 35/155

country FE no yes yes yes yes yes yes yes

time FE no no no yes no yes no no

2. order serial correlation .924 .993 .936 .723 .357

Hansen-test .999 .998 .972 .948 .988

in columns 3-6 and 8 we employ only the first two appropriate lags of the endogenous variables to reduce the

number of instruments. 5-year averages 1975-2004 data. all regressions include a constant term, and employ

heteroscedasticity robust s.e. in column 2-8 we include s.e. that are robust to within group correlation.

t-statistics in parenthesis. ***,**,* significant at 1%, 5%, and 10%.
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In the following columns, we apply the GMM system estimator.15 In all specifica-

tions, we find that an increase in the number of telephone mainlines promotes R&D

investments in the subsequent years. The corresponding coefficients are significant

on a 1% or 5% level, respectively. Finally, in the last two columns, we use our set

of exogenous demographic indicators to instrument for a country’s infrastructure

capital stock in a given period. That is, we drop the internal instruments for the

infrastructure variable and instead impose a country’s rate of urbanization and

its population density as exogenous instruments.16 Column eight, our preferred

estimation specification, suggests that a 1% increase in the number of telephone

mainlines per 1000 workers augments the share of aggregate R&D relative to GDP

by .24% in the subsequent five years. This effect even amounts to .35% if we

additionally impose time fixed effects. Both coefficients are significant on a 1% level,

respectively. Finally, the Hansen test and the test for second order autocorrelation

confirm the validity of our instruments in all specifications which suggests that our

models are well specified. Summing up, we find robust evidence in favor of a positive

causal effect running from a country’s stock of infrastructure to its aggregate R&D

investments.

Results - factor accumulation

In Table 1.2, we examine the impact of infrastructure capital on the input factors

of a human capital augmented production function, i.e. private and human capital.

In the first four columns, we report the effect of improvements in the number of

telephone mainlines per 1000 workers on aggregate private investments. Accordingly,

we are not able to detect a positive impact of infrastructure capital on private capital

accumulation which is significant at conventional levels. In contrast, we find that an

15Thereby, we exclusively use the first two appropriate lags of the endogenous variables to avoid

overfitting - a larger number of instruments relative to the number of cross sections (countries).

16All other endogenous variables are still instrumented by their suitable own lags (internal instru-

ments).
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increase in a country’s degree of trade openness promote private capital investments.

The specification tests do not reject that our dynamic panel data model is well

specified. Hence, improvements in telecommunication infrastructure do not affect

private capital investments if we correctly control for institutional measures or time

fixed effects in our sample of mostly developed countries. In columns five to six

of Table 1.2, we apply an alternative measure since R&D expenditures amount, by

definition, for a fraction of the overall private investments. Therefore, we construct

an adjusted measure of private capital investments, net of R&D expenditures.17 Yet,

we do not detect stimulating effects of infrastructure investments on the adjusted

variable. Finally, the last two columns of Table 1.2 show that infrastructure in-

vestments have no influence on the growth rate or the level of education in our sample.

Results - productivity growth

In the following, we investigate if the relationship between infrastructure and R&D

indeed causes productivity growth. Therefore, we estimate the effect of the lagged

values of telephone mainlines on the growth rate of real GDP per capita in purchas-

ing power parities. In line with the empirical growth literature, we include the lagged

(initial) level of GDP as a lagged dependent variable in the growth regression.18 Ac-

cordingly, we apply a dynamic panel data model. Moreover, we account for the human

capital measure as a supplementary control variable. It follows that the infrastructure

coefficient in the growth regression measures the impact on GDP-growth net of pri-

vate or human capital investments. Therefore, variations in the growth rate of GDP,

after controlling for movements in factor inputs, represent by definition variations in

TFP-growth. Table 1.3 lists the results for the growth regressions. The first two

columns report a positive correlation between the number of telephone mainlines and

17That is, we subtract the share of R&D investments from the share of overall investments to

obtain the adjusted values.

18The corresponding coefficient is negative and significant on a 1% level in all estimation specifi-

cations. Compare e.g. Calderon and Serven (2005) or Barro (1990).
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productivity growth. Column three to five display the results of the GMM difference

and system estimation. We detect a significant positive effect of telephone mainlines

on productivity growth, whereby the exogeneity of infrastructure can not be rejected.

Moreover, we find evidence that economic growth is positively related to the degree of

trade openness, the private investment share and the index of overall property rights.

In addition, we employ our exogenous demographic instruments for infrastructure in

column six of Table 1.3. Accordingly, an increase in the infrastructure capital stock

significantly enhances economic growth, net of amendments in factor inputs.

In the last three columns of Table 1.3, we include the aggregate share of R&D

instead of the infrastructure variable. Column seven reveals that an increase in the

aggregate R&D share augments economic growth. The corresponding coefficient is

significant on a 1% level. In column eight, we incorporate lagged levels and differences

of the number of telephone mainlines as an exogenous instrument for the aggregate

R&D share. That is, we test if the growth-effect of telephone mainlines is indeed

transmitted via R&D investments. In other words, if Y represents GDP, R&D the

aggregate share of R&D, I the infrastructure measure, X the control variables, ε the

error term and α0,1,2, β0,1,2 parameters, we estimate the following equation by the

GMM system estimator:

∆Yi,t = β0 + β1Yi,t−1 + β2(R&D)i,t +X
′

i,tβ3 + ηi + εi,t (1.1)

whereby we treat R&D as endogenous and model it respectively as:

(R&D)i,t = α0 + α1Ii,t +X
′

i,tα2 + ηi + εi,t (1.2)

In accordance with our previous results, column seven reveals that R&D, which is

instrumented by lagged levels and differences of the number of telephone mainlines,

promotes productivity growth. The corresponding coefficient is significant on a 1%

level. Finally, in the last column of Table 1.3, we use the exogenous infrastructure

instruments - the rate of urbanization and the population density - as instruments

for the R&D share. Again, the results suggest that the effect of infrastructure is

transmitted via adjustments in aggregate R&D. It follows that a substantial part of
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Table 1.3: Effect of telephone mainlines on productivity growth

GDP-growth

OLS LSDV GMM-diff GMM-sys1) GMM-sys2)

l1telewo .8749∗∗ .6940 1.56∗ 2.65∗∗∗ 1.68∗∗∗ 1.89∗∗

(1.98) (1.39) (1.89) (4.50) (4.83) (2.42)

l1rgdp -3.36∗∗∗ -6.52∗∗∗ -6.84∗∗∗ -4.54∗∗∗ -4.66∗∗∗ -3.18∗∗∗ -4.12∗∗∗ -4.13∗∗∗ -3.63∗∗∗

(-3.78) (-4.51) (-2.71) (-2.77) (-6.20) (-3.62) (-3.40) (-4.59) (-3.33)

gov -.0065 .0078 -.0350 .1838 -.0213 -.0245 -.0822∗∗∗ -.0831∗∗∗ -.0608∗

(-.15) (.20) (-.73) (-1.36) (-.71) (-.72) (-2.61) (-2.78) (-1.95)

ppr .2740 -.0516 .0526 .6186∗ .4907∗∗ .3338 .2251 .0162 .2567

(1.16) (-.16) (1.82) (1.45) (1.99) (1.32) (.70) (.07) (.84)

credit .1663 -1.42 .4152 .5019 .2388 1.35 1.02

(.13) (-1.19) (.29) (.19) (-1.59) (.93) (1.01)

open .0118 .1090∗∗∗ .0437∗ .0103 .0200∗∗∗ .0197∗∗∗ .0187∗∗∗

(.40) (4.55) (1.67) (1.18) (2.61) (2.75) (2.58)

inv .2490∗∗∗ .2046∗∗∗ .0725 .1257∗ .1614∗∗∗

(3.43) (2.62) (.62) (1.93) (4.02)

tyr25 .1975 -.5983 .4118 .2168

(.56) (-1.12) (.75) (1.05)

R&D 1.16∗∗∗ 1.26∗∗∗ .7419∗

(2.87) (3.63) (1.84)

Country/Obs. 147 35/147 35/118 36/158 35/153 36/158 35/142 35/142 35/142

country FE no yes yes yes yes yes yes yes yes

time FE no no no no no yes yes yes yes

2. order serial correlation .227 .367 .250 .242 .085 .103 .214

Hansen-test .702 .050 .999 .841 .932 .916 .984

1) see Table 1.1. 2) in column 8 and 9 we use first lag of telewo and demographic variables as exogenous instruments for

R&D share, respectively. 5-year averages, 1975-2004. t-statistics in parenthesis. ***,**,* significant at 1%, 5%, and 10%.
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the impact of telephone mainlines on TFP-growth can be explained by its effect on

private R&D investments.

Results - firm-level R&D investments

In Table 1.4, we report the effect of telephones mainlines on firm-level R&D invest-

ments in the U.S. The application of disaggregated data has the advantage that a

corresponding correlation between firm-level decisions and macroeconomic variables

can be interpreted as a causal effect running from the latter to the former. The first

column displays that an increase in telephone mainlines per 1000 workers augments

corporate investments in R&D after controlling for changes in corporate sales, assets,

and operating income as well as aggregate real GDP, and aggregate private invest-

ments. In the second column, we additionally control for firm-level fixed effects. The

results reveal a positive impact of telephone mainlines on firm-level R&D expenses,

however, the coefficient is biased due to the presence of the lagged dependent variable.

The third column reports the estimates for the GMM difference procedure.19 Accord-

ingly, an increase of 10 new telephone mainlines per 1000 workers induces an increase

in corporate R&D investments, on average, by 3.37 MIO$ in the same period. The

corresponding coefficient is significant on a 1% level. In the last two columns of Table

1.4, we employ firm-level investments in capital as the dependent variable. We find

that telecommunication infrastructure investments do not affect the overall capital

investments per firm. The corresponding coefficient is even negative, but not signif-

icant at conventional levels. In contrast, we detect that firms increase their capital

investments if their assets and their operating income increases or if the aggregate

level of real GDP increases. Overall, the firm-level results support the hypothesis

that infrastructure investments improve the incentives of firms to invest in R&D, but

not to invest in general capital.

Summing up, the empirical findings suggest that the relationship between infras-

19We consider the firm-level variables as endogenous and the macroeconomic variables as exoge-

nous.
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Table 1.4: Effect of telewo on firm-level R&D investments

R&D investments Capital investments

OLS LSDV GMM-diff LSDV GMM-diff

telewo .6599∗ .9840∗∗∗ .3374∗∗∗ -1.21 -2.44

(1.78) (2.67) (2.60) (-1.27) (-1.44)

lag dep. var. 1.23∗∗∗ .5415∗∗∗ .5453∗∗∗ .1624∗∗∗ .1183∗∗∗

(16.51) (3.86) (2.89) (4.35) (4.09)

assets -.0023 -.0074∗∗∗ .0082∗∗ .2164∗∗∗ .2915∗∗∗

(-1.63) (-3.90) (2.09) (5.01) (3.11)

sales .0048 .0374∗∗∗ .0308∗∗ -.0703 -.1488

(1.52) (3.29) (1.89) (-.68) (-1.33)

oper. income .0128 .0261 -.1179∗∗ 1.53∗∗∗ 1.84∗∗

(.61) (.72) (-2.26) (3.13) (2.49)

rgdp -.0085∗ -.0122∗∗∗ -.0036∗∗ .0231∗∗∗ .0404∗∗∗

(1.80) (-2.78) (-2.47) (2.73) (2.65)

aggr. inv -3.91 -.0116 2.54∗∗∗

(-1.24) (-2.45) (3.79)

Firms/Obs. 6041 3017/6041 2743/5611 2738/10989 2738/5603

country FE no yes yes yes yes

time FE no no no no no

2. order serial correlation .228 .345

Hansen-test .224 .224

5-year averages 1970-1999 data. all regressions include a constant term, and

employ heteroscedasticity robust s.e. in column 2-4 we include s.e. that are

robust to within group correlation. t-statistics in parenthesis.

***,**,* significant at 1%, 5%, and 10%.
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tructure and growth is not linked to factor accumulation in our sample. This finding

contradicts the predictions of the theoretical literature on infrastructure and growth

which typically links growth-promoting effects of infrastructure investments to a stim-

ulation of private capital investments, compare e.g. Barro (1990). Our results reject

this complementarity between public (infrastructure) and private capital investments.

Instead, we demonstrate that the provision of telecommunication infrastructure boosts

productivity growth and investments in (the adoption of) new technologies (R&D).

1.4 The basic (partial) model

In the this section, we provide a growth model of endogenous technological change

à la Romer (1990) that is extended to account for a cost-reducing feature of in-

frastructure capital for investments in innovative intermediate goods. This model

generates a link from infrastructure capital to economic growth via endogenous tech-

nical change (R&D). Alternatively, this link can be established if one allows the stock

of (telecommunication) infrastructure to directly affect the efficiency of research and

development. In this case, the infrastructure stock would enter the law of motion

for the stock of knowledge in (1.9). Alternatively, we demonstrate a mechanism that

accounts for a positive externality of infrastructure capital on the net present value

of the expected return of investment in innovative activities in equilibrium.20

Physical infrastructure deviates from other types of capital in two important ways:

it is (partly) non-excludable and (partly) non-rival. The former raises the question

of an appropriate financing since a partly excludability allows for a private provision.

The latter has important implications for economic growth and development. That is,

an increase in the infrastructure capital stock exerts an externality on all private pro-

ducers if infrastructure capital is non-rival and influences private production. In this

regard, the provision of infrastructure capital can potentially create long-run growth

20Our approach differs from the previous literature, which is based on Barro (1990), in that we

account for a general equilibrium effect of the stock of infrastructure capital on the incentives to

invest in R&D instead of private capital accumulation.
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comparable to the functioning of non-rival knowledge in the endogenous growth the-

ory.

Holtz-Eakin and Schwartz (1994) find robust empirical evidence for a negative

relationship between the costs of the establishment of a new business and the provision

of infrastructure capital in the economy. Moreover, Bougheas et al. (2000) detect a

positive relationship between infrastructure capital and the degree of specialization in

the intermediate sector for the U.S. economy. In the following, we take this empirical

relationship for granted. In particular, we suppose that the use of a large variety of

specialized intermediate goods in the production of final output creates proportional

business costs (φ) - e.g. transportation, coordination, and search costs.21 These costs

entail an additional markup on the (monopolistic) prices requested from intermediate

goods firms and are negatively related to the provision of infrastructure capital in the

economy.22

We suppose that φ is a negative, continuous, monotonic function of the infrastruc-

ture capital stock with the following properties: φ(G), φ′ < 0, φ′′ > 0, limG→∞ → 1,

limG→0 → ∞. Thus, φ is convex, approaches a lower bound if G approaches infinity

and approaches infinity if G approaches 0. The lower bound represents the constraint

that the price premium can not become negative. Moreover, in the absence of infras-

tructure capital intermediate specialization is not feasible as costs approach infinity.

We assume, in accordance with Romer (1990), that investments in R&D lead to

new varieties of intermediate products. Thus, a successful R&D project results in the

21For example, φ captures fixed entry costs which are necessary to set up a new business. In

addition it appears reasonable to assume that such entry costs are decreasing in the provision of

infrastructure capital - e.g. the appearance of high-speed telecommunication networks potentiates the

firm’s ability to sell/transmit specialized goods via internet without the need to establish a widespread

distribution system (Fernald and Ramnath, 2004). There are various additional plausible empirical

anecdotes in favor of this assumption, e.g. the construction of the interstate highway system in the

U.S. (Fernald, 1999), the disposability of electricity in the beginning of the last century (Jovanovic

and Rousseau, 2005).

22In this regard, its functioning is similar to the one of exogenous iceberg costs in trade models.
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entry of a new intermediate producer in a market that is characterized by monopolistic

competition. Therefore, φ(G) is taken as given by potential new market entrants that

base their entry decision on the net present value of the return of a potential R&D

investment. This value is shown to depend on φ(G).23 Thus, φ acts like a costly

exogenous distortion of the interactions between intermediate and final producers.

The model consists of a competitive final output sector, a intermediate goods

sector which is characterized by monopolistic competition, an infrastructure capital

goods sector, and a law of motion for the stock of technologies.

Final output sector (Y )

Competitive firms employ manufacturing labor (Ly), a (symmetric) combination of

all varieties of specialized intermediate goods (xj) and an aggregate of all varieties

of infrastructure services (G) to produce a final output good (Y ). Each specialized

intermediate good corresponds to a new technology, whereas At denotes the stock of

existing technologies. Hence final output is manufactured according to the production

function Y = Lχ
y,tG

β
t

∫ At

0
xα

j,tdj, α, β, χ > 0.

There are several assumptions underlying the specific functional form of the pro-

duction function that are worth discussing. As in the basic model of Romer (1990)

growth results from an increasing specialization of the intermediate goods sector,

whereas each new innovation (At) involves a new intermediate good. The specific

form of the production function supposes that the elasticity of substitution between

different intermediate goods or between intermediates and infrastructure capital is

equal to one (Cobb-Douglas).24

23Our qualitative results would not change if φ could be (partly) internalized by intermediate

producers as long as infrastructure capital is (partly) non-rival. The reason is that intermediate

producers do not internalize the externality of their own demand for infrastructure capital on the costs

of entry of other potential producers. The provision of infrastructure in a decentralized equilibrium

would be inefficient.

24Alternatively, we could have employed a constant elasticity of substitution (CES) production

function as in Young (1993). This does not change the functioning of the model. In this more

32



For convenience, we normalize the price of the final output good to one (py = 1).

The final producers buy the intermediate products, pay a wage (wy) for manufacturing

labor, and a price (pG) for the usage of infrastructure services in the production

process. Hence, infrastructure capital is indeed a productive input in the final output

sector which allows for the analysis of a private provision of infrastructure capital

(see section 1.5). Though, we do not impose the special case of constant returns to

scale in private and infrastructure capital (β + α < 1). As a consequence, including

G in the production function exclusively has level but not growth effects in the long-

run.25 In other words, we separate the infrastructure service in the production of final

output from its impact on potential business costs of new intermediate producers.

The representative firm in the competitive final output sector takes prices as given

and chooses its inputs to maximize instantaneous profits in t (πy,t):

πy,t = Lχ
y,tG

β
t

∫ At

0

xα
j,tdj −

∫ At

0

[1 + φ(Gt)]pI,j,txj,tdj − wy,tLy,t − pG,tGt (1.3)

where (pI,j) is the price of of an intermediate product j.

Note that infrastructure capital is partly excludable. On the one hand, the provider

can exclude final output firms from infrastructure services so that they can be charged

for their direct use. On the other hand, the provider can not control that the existence

of an infrastructure network causes a positive externality on the costs of the provision

of new intermediate goods. The final producer determines its use of xj,t, Ly,t and Gt

to maximize its profit resulting in the first-order conditions:26

general case, the equilibrium growth rate simply depends on an additional parameter measuring the

degree of substitutability in the economy.

25Thus, the growth-effect of infrastructure characterized below exclusively results exclusively from

the cost-reducing infrastructure externality φ(G).

26Note that final output firms demand the same amount of each intermediate so that xj = x,

pj = p, πj = π and Axα
j =

∫ At

0
xα

j dj hold because of symmetry.
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pI,j,t = Lχ
y,tG

β
t αx

α−1
j,t

1

1 + φ(G)
(1.4)

wy = χLχ−1
Y Gβ

t Ax
α
j (1.5)

pG,t = Lχ
Y βG

β−1
t Axα

j (1.6)

Intermediate capital goods sector (x):

Since the innovation of a specialized intermediate good creates market power, we

assume that for each intermediate j in A there exists one monopolist who produces

xj using capital (K) in terms of forgone consumption as an input. An intermediate

producer requires η units of K to produce one unit of intermediate j, so that K =

η
∫ A

0
xjdj.

27 Each monopolist chooses xj to maximize his profits (πI,j) given the

perceived inverse demand function for each intermediate (pI,j,t) and the interest rate

(r) payments per unit of capital. Thus, each intermediate producer faces constant

marginal costs (rη) if the interest rate is constant. Because of symmetry the former is

the same for all intermediates (pI,j = pI). The level of infrastructure capital is taken

as given.28 Hence, we obtain the following profit function:29

πI = pI,jxj − rηxj =
1

1 + φ(G)
Lχ

yG
βαxα

j,t − rηxj,t (1.7)

Computing the first-order condition and substituting for rη results in the following

profit function:

πI = (1− α)px (1.8)

R&D sector (A)

The rate of technological change (Ȧ) is a positive function of research labor (LR), a

productivity parameter (λ) and its stock of knowledge (A):

27We abstract from further constraints in the provision of private capital.

28At this stage, a new intermediate firm has not entered the market so that the aggregate infras-

tructure capital stock is exogenous for the potential intermediate producer.

29In the following, we concentrate on symmetric balanced growth equilibria, so that we can omit

time subscripts to simplify the notation.
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Ȧt = λLR,tAt (1.9)

It is implicitly assumed that all researchers have free access to the entire stock of

knowledge, so that each new innovation/imitation induces a positive externality on

future research. This specification is due to Romer (1990). An increase in population

raises the rate of technological change, hence it entails scale effects. We abstract

from such scale effects by setting population growth to zero (normalize L = 1).

Households

Identical, infinitely lived households maximize their utility from consumption (C)

subject to a resource constraint and No-Ponzi game conditions. The utility function

supposes a constant relative risk aversion: u(ci) =
c
(1−σ)
i −1

1−σ
, where σ is the degree of

risk-aversion. We implicitly assume an inelastic labor supply. Thus, the consumption

plan satisfies the standard Euler equation:

Ċt =
rt − ρ

σ
Ct (1.10)

where rt is the real interest rate, ρ a time-preference rate and σ the degree of

risk-aversion.

Solution for a balanced growth equilibrium

So far we have not characterized the financing structure of infrastructure capital (the

market structure in the sector). Yet, we will solve the (partial) model for a balanced

growth equilibrium, in which A, G, C and Y all grow at the same constant exponential

rate, to illustrate the mechanism of the model for a given financing structure.

The key mechanism involving technological progress is a free-entry condition into

the research sector. It is the basic assumption underlying the market structure of

monopolistic competition and translates expected future profits in the intermediate

sectors into investments in R&D.30 In particular, the free entry condition into R&D

30Hellwig and Irmen (2001) show that expected future rents due to imperfect competition are not
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ensures that the present discounted value of expected future profits from a new in-

novation equals the costs for the production of a new design. If we assume that

monopoly profits last forever the present discounted value equals π
r
, where r is the

real interest rate. The costs of a new design are productivity adjusted wages paid to

research labor (wR

λA
). Thus, the free entry condition amounts to:

π

r
=
wR

λA
(1.11)

The labor force is free to work in the manufacturing or research sector so that in

equilibrium wages in both sectors must be equal (wy = wR).31 Given the wage in

manufacturing (1.5) and the profit function (1.8) the free-entry condition is solved for

the equilibrium demand for manufacturing labor:

⇒ LY =
χr(1 + φ(G))

λα(1− α)
(1.12)

It follows from (1.9) that the equilibrium growth rate of the technology stock

amounts to γ = Ȧ
A

= λLR = λ(1− LY ). We know from the production function that

final output grows in a balanced growth equilibrium at the same rate as A. Hence,

Ċ
C

also grows at the rate γ. If we substitute for LY from (1.12) and r = γσ + ρ from

(1.10) we obtain the following growth rate for the stock of technologies:

γ =
Ȧ

A
=
α(1− α)λ− χρ(1 + φ(G))

α(1− α) + χσ(1 + φ(G))
(1.13)

We can infer from (2.20) that the growth rate of the stock of technologies is an

increasing function of the stock of infrastructure capital ( ∂γ
∂G

> 0, ∂2γ
∂2G

> 0). Since

(endogenous) technological change is the only source of GDP-growth in a balanced

growth equilibrium, GDP also grows at that rate.32

in general necessary to ensure investments in R&D since intentional actions of entrepreneurs looking

for profits can trigger such investments even in perfectly competitive markets.

31We abstract from any labor market constraints (L = LR + LY ).

32The equilibrium growth rate suggests a minor technical restriction: In order to ensure that

consumer’s preferences are finite we need to impose that the growth of current utility (1−σ)γ is less

than the discount rate ρ.
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Proposition I: Given the cost-reducing feature of infrastructure capital in the

intermediate goods sector, the assumptions underlying the production function,

and the law of motion for the stock of technologies, it follows that the rate of

technical change (and hence output growth) is an increasing function of the stock of

infrastructure capital ( ∂γ
∂G

> 0).

Intuitively, a higher provision of infrastructure reduces the business costs in the

intermediate sector (φ(G)). This cost-reducing feature of infrastructure capital aug-

ments the demand for specialized intermediate goods and hence increases the net

present value of the returns of investments in R&D. Due to the research arbitrage

(free-entry) condition this leads to a shift of resources from the manufacturing sector

(Ly) to the R&D sector (LR). Consequently, a low provision of infrastructure capi-

tal represents an impediment for economic growth because investments in R&D are

relatively unprofitable.

Besides, γ is a positive function of the exogenous productivity parameter in the

R&D sector (λ). This relationship is quite crucial since the effectiveness of the domes-

tic R&D measured by λ determines the potential scale of the positive infrastructure

externality on the incentive to invest in R&D ( ∂2γ
∂G∂λ

> 0). If λ is high, the impact

of the infrastructure externality is large. Hence, there exists a complementarity be-

tween the effect of infrastructure investments and the effectiveness of the R&D sector.

Since λ is exogenous it represents all country-specific factors that are neglected in this

model and that influence the effectiveness of the R&D sector, e.g. intellectual property

rights, tertiary education, or corruption.

It is important to note that the equilibrium growth rate is not necessarily strictly

positive. If we set (2.20) equal to 0 we can compute the threshold level for the

productivity of the R&D sector (λ∗) such that γ is positive:

λ∗ >
χρ

α(1− α)
(1 + φ(G)) (1.14)

In a zero-growth trap (λ < λ∗), the quality of the institutional framework is not
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sufficient to ensure that the returns from investments in R&D outweigh the costs of

specialization for the given level of infrastructure capital. Thus, (marginal) infras-

tructure investments have no growth effect and the long-run TFP-level (At) remains

constant. Consequently, all resources (labor) are allocated to the manufacturing sec-

tor.33 It follows that a country requires to some degree a sound domestic R&D sec-

tor to gain sustainingly from infrastructure investments. From a policy perspective

this implies that supplementary policies or institutional changes to support corporate

R&D activities should be implemented before investments in infrastructure capital

are carried out/subsidized.34

1.5 Endogenous provision of infrastructure capital

In this section, we endogenize the infrastructure capital stock (G). Ex ante, the

interaction between an endogenous infrastructure supply and economic growth

is not clear. On the one hand, infrastructure investments are costly or dissipate

scarce resources. On the other hand, higher growth facilitates the financing of

infrastructure investments due to scale effects. In this regard, our results are

based on two additional assumptions. First, investments in infrastructure require

different scarce resources than R&D investments. Second, infrastructure capital

is partly excludable so that the financing of infrastructure investments depend

on the realization of aggregate output. Both assumptions appear to be empiri-

33Note that the growth rate cannot become negative because the re-allocation of human capital

(L) from research to manufacturing is bounded by 0.

34To illustrate the analogous results for the long-run TFP-level (A) we can solve the lin-

ear differential equation (2.20). Hence, we obtain the following solution for the level of TFP:

At = A0 exp [Ω− Γ]t, where Ω = α(1−α)λ
α(1−α)+χσ(1+φ(G)) and Γ = χρ(1+φ(G))

α(1−α)+χσ(1+φ(G)) . If we take the

limit for t →∞ to approximate the TFP-level in the long-run balanced growth path, we get:

lim
t→∞

(At) =

 →∞ if Ω− Γ > 0

A0 if Ω− Γ ≤ 0


The condition Ω− Γ > 0 is of course equivalent to λ > λ∗.
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cally plausible.35 The second assumption entails a reversed causality between the

provision of infrastructure and GDP-growth implying the possibility of multiple

growth-equilibria. We illustrate the existence of multiple balanced growth equi-

libria in the presence of increasing marginal infrastructure investment costs over time.

Infrastructure capital goods sector (G)

As discussed in section 2, the assumption of a partly excludable infrastructure

capital stock allows for a private provision Gt. Conceptually, we suppose that the

infrastructure sector consists of competitive firms supplying infrastructure services

and a monopolistic network provider.36 The competitive service firms take the

perceived inverse demand function for infrastructure services (pG,t) as given and pay

a proportional rental price (rG,t) for the access to operate the infrastructure network.

Thus, as long as the infrastructure service sector is perfectly competitive, we have

pG,t = rG,t. In this case, it makes no difference if the network provider supplies infras-

tructure services himself or sells the rights to do so to competitive firms. The network

provider invests It in infrastructure capital (Gt) incurring variable (C(It, t)) and fixed

(F ) investment costs. We assume that C(It, t) is an increasing continuous, monotonic

function with C1 = ∂C
∂It

> 0, C2 = ∂C
∂t
≥ 0 and CIt,t = ∂2C

∂It∂t
≥ 0.37 Note that time enters

as an explicit argument in the costs function since we do not exclude that the cost

function depends on additional time-dependent (endogenous) variables (e.g. At or

Yt). Thus, marginal costs increase over time if the latter condition holds with equality

(e.g. strictly convex investment costs). Increasing marginal costs might be a more

realistic assumption for an economy that grows according to a balanced growth rate.38

35The former assumption reproduces that infrastructure investments are intensive in unskilled

labor while R&D is human capital intensive.

36Due to fix costs (see below) the sector displays a natural monopoly. It does not matter if the

network provider is private or public as long as she dynamically optimizes its investments.

37The assumption of constant marginal costs is not crucial but simplifies the solution of the model.

The case of a convex cost function is reported below.

38For example, we might assume that the marginal costs increase in the stock of knowledge or
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Monopolistic provider of infrastructure capital

The instantaneous profit function of the monopolist is given by the perceived inverse

demand function (pG,t), the investment and the fix costs: πG,t = pG,tGt−C(It, t)−F . It

follows that the monopolist faces a dynamic optimization problem. The depreciation

rate of the infrastructure capital stock amounts to δ, so that Ġt = It − δGt. Hence,

the private monopolist chooses It to maximize the (discounted) current value of its

expected future profits subject to Ġt = It − δGt and
∫∞

t
πG,sds ≥ F̂ .39 If the latter

condition is satisfied the monopolist faces the following maximization problem:40

max
It,Gt

∫ ∞

0

e−ρt[pG,tGt − C(It, t)− F ]dt, Ġt = It − δGt (1.15)

To solve the dynamic optimization problem we define the current value Hamilto-

nian:

H(It, Gt, λt, t) = e−ρt[pG,tGt − C(It, t)− F ]dt+ λt[It − δGt] (1.16)

Combining the first-order conditions we get the following optimality conditions:

[p′G,tGt + pG,t] = CIt

(
ρ+ δ − ĊIt

CIt

)
(1.17)

Ġt = It − δGt (1.18)

lim
t→∞

[λtIt] = 0 (1.19)

In the case of constant marginal investment costs (ĊIt =
∂CIt

∂t
= 0), the first condi-

tion states that instantaneous marginal revenue must equal marginal costs. Otherwise,

GDP to take into account that investment costs are higher if more advanced technologies are applied

or if the size of the economy increases.

39If the fix costs arise every period we have [F̂ =
∫∞

t
(F )ds]. If they arise only in the first period

we have [F̂ = F ].

40Note that we assume for simplicity that the infrastructure monopolist discounts future profits

with ρ and not r. In the latter case G = G(γ) would be a higher-order non-linear function of γ. Given

C(It, t) = µYtIt this results in three balanced growth rates whereas only two are strictly positive.

Finally, recall that we abstract from additional private capital constraints in our economy.
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the right hand side is adjusted to incorporate the dynamic effects of infrastructure

investments on future profits stemming from an increase in the shadow price of infras-

tructure capital over time. The monopolist extends the provision of G in this case.

Intuitively, she anticipates that the shadow price of infrastructure capital increases in

the presence of positive balanced growth due to two reasons: (i) future investments

are more costly relative to current investments, (ii) the demand for infrastructure

capital increases. Hence, she is better off producing more infrastructure capital today

since its future value increases for him. The second condition gives the law of motion

for infrastructure capital and the third is a transversality condition.

If we substitute in (1.17) for pG,t from (1.6) and solve for Gt, we obtain:

Gt =
β2Yt

CIt(ρ+ δ −M(γ))
(1.20)

The infrastructure capital stock is increasing in the level of GDP. In addition, it is

an increasing function of the elasticity of final output with respect to infrastructure

capital as a rise in β implies a higher demand for G. In contrast, it is decreasing in the

depreciation rate (δ) and the inter-temporal elasticity of substitution (ρ). However,

we know from (2.20) that G must be constant in a balanced growth path. It then

follows from (1.20) that marginal investment costs (CIt) must grow proportional to

GDP in order to sustain balanced growth. Hence, the monopolist faces increasing

marginal investment costs. In this case, the growth rate of marginal investment costs

is a positive function of the balanced growth rate of the economy:
ĊIt

CIt
= M(γ),

M ′ > 0, M ′′ = 0. Thus, the infrastructure capital stock is an increasing function of

the equilibrium growth rate of the economy (∂G
∂γ
> 0).41

Moreover, we show in Appendix A that ∂2G
∂2γ

> 0 holds for reasonable parameter

values. Thus, the infrastructure capital stock is an increasing, convex function of

the balanced growth rate (G = G(γ), where G′ > 0, G′′ > 0). We also know from

section 2 that the balanced growth rate is in turn an increasing, convex function of

41The exact derivative is given in Appendix A. Besides, we show that a technical sufficient condition

for ∂2G
∂2γ > 0 is δ + ρ > γ.
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Figure 1.3: Multiple equilibrium growth rates

the stock of infrastructure capital (γ = γ(G), where γ′ > 0, γ′′ > 0). In addition,

both functions are monotonic and continuous. Consequently, we potentially obtain

two different equilibrium growth rates (fixed points) if we combine (2.20) and (1.20)

to solve for a general equilibrium balanced growth path. Since γ is bounded by zero,

γ(0) = 0 (due to the property that limG→0 φ(G) → ∞) and G(0) = G0 > 0 holds in

equilibrium, we infer that both growth rates are strictly larger than zero if a balanced

growth equilibrium exists. The result is illustrated in Figure 1.3.

Thus, the reversed causality between the provision of infrastructure capital and

economic growth potentially results in two equilibrium balanced growth rates. In

the high-growth scenario, the economy is characterized by a high infrastructure

capital stock and fast technological change. In the low-growth scenario, the rate

of technological change is constraint by the low provision of infrastructure capital

which lowers the incentive to invest in R&D and hence the rate of GDP-growth.

This in turn limits the demand for infrastructure investments (financing constraint).
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Hence, if the initial stock of infrastructure capital (relative to GDP) is too low, the

growth rate of the economy is constrained. This, in turn, constraints the supply of

infrastructure services so that the economy is trapped in a low-growth equilibrium.

It follows from (2.20) that the crucial initial infrastructure level, that needs to be

exceeded in order to result in the high-growth equilibrium, is declining in the quality

of (R&D-) institutions (λ). In principle, sufficient public subsidies for infrastructure

investments, which represent an external financing source in the model, can install

the high-growth scenario. Note that public subsidies do not in general induce

economic growth, but might trigger the transition to the higher balanced growth path

(depending on the financing source).42 The results of the general equilibrium model

with an endogenous supply of infrastructure capital are summarized in Proposition II.

Proposition II: Given the assumptions underlying Proposition I, a positive initial

infrastructure capital stock G0, the requirement of different input factors in the

infrastructure- and R&D sector, and the provision of partly excludable infrastructure

capital by a dynamically optimizing supplier facing increasing marginal costs

proportional to GDP, there exist two strictly positive balanced growth rates with

γ1 > γ2. The high-growth economy is characterized by fast technological change and

a high stock of infrastructure capital, while the low-growth economy by little R&D

investments and a low provision of infrastructure capital.

The proof is given in Appendix A.

In the following, we present two explicit examples for different realizations of the

cost function. First, we assume a constant marginal costs function (
∂2CIt,t

∂It∂t
= 0) and

second, we suppose that investment costs are increasing in the size of the economy

measured by GDP (
∂2CIt,t

∂It∂t
> 0).

42We do not analyze the transition path belonging to both balanced growth path, but the growth

rate during the transition from γ2 to γ1 may in principle exceed γ1. If so, it suggests that the

extraordinary growth performance of some recent economies (growth miracles) can be explained by

one-time growth effects (and its transition path) due to the accumulation of infrastructure capital.
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Constant marginal costs

In the following, we assume constant marginal infrastructure investment costs: C(It) =

µIt. In order to obtain an explicit solution we also need to impose a specific functional

form for φ(G). We assume φ(G) = 1 + (G/Y c)−1, where 0 ≤ c ≤ 1, which is in

line with the properties of φ stated in section 2. The parameter c measures the

degree of congestion in the economy. If c = 0 congestion effects are absent and if

c = 1 only the relative stock of infrastructure capital influences the business cost.

Thus, infrastructure capital is allowed to be partly excludable as well as partly rival.

Substituting C(It), φ(Gt, Yt) and (1.20) into (1.11) research arbitrage equation, we

obtain:

γcm =
Ȧ

A
=
α(1− α)β2λ− χρβ2 − χρµ(δ + ρ)Y c−1

t

α(1− α)β2 + χβ2σ + χσµ(δ + ρ)Y c−1
t

(1.21)

Thus, the long-run growth rate of the stock of technologies is increasing in the

level of GDP. Hence, if c < 1, a balanced growth path does not exist. The economy

features unbalanced, exponential growth. A positive balanced growth path only

exists if the business costs depend on the relative infrastructure capital stock (c = 1).

In this case, congestion effects completely eliminate scale effects from final output.

Note that this (intuitively appealing) special case can be derived endogenously by

assuming that in equilibrium final output firms exclusively demand infrastructure

capital to offset congestion effects in the economy. Besides, γcm is decreasing in µ,

ρ, and δ as these factors reduce the equilibrium provision of infrastructure capital

and is increasing in the share of Gt in the final output sector (β) and the exogenous

(institutional) productivity parameter of R&D (λ).

Increasing marginal costs

In the following, we assume that the marginal costs of infrastructure investments are

increasing in the level of GDP: C(It) = µYtIt.
43 This relationship is intuitively appeal-

43We et c = 0 because this cost function already captures congestion effects.

44



ing since the production costs of infrastructure services are expected to depend on the

wage level of an economy just like the production costs of final output or R&D. This

cost function can be derived endogenously by assuming that the monopolist needs to

hire unskilled labor (U) in order to produce infrastructure capital. If the wage of un-

skilled labor is proportional to the wage of skilled labor (L) the costs of infrastructure

investments are increasing in the level of GDP. The costs function satisfies the suffi-

cient conditions for multiple balanced growth equilibria outlined above. Substituting

C(It, t), φ(Gt) and (1.20) into (1.11), we get:44

γim
1 =

α(1− α)µ(λ+ δ + ρ) + β2χσ + χµ(σ(δ + ρ)− ρ) + Z1/2

2µ(α(1− α) + χσ)
(1.22)

γim
2 =

α(1− α)µ(λ+ δ + ρ) + β2χσ + χµ(σ(δ + ρ)− ρ)− Z1/2

2µ(α(1− α) + χσ)
(1.23)

where Z = [α(1−α)µ(λ+δ+ρ)+β2χσ+χµ(σ(δ+ρ)−ρ)]2−4µ[α(1−α)+χσ][α(1−

α)λµ(δ + ρ)− ρ(β2 + χµ(δ + ρ))] > 0. As long as λ > λ∗∗ = ρβ2+ρχµ(ρ+δ)
α(1−α)µ(δ+ρ)

both growth

rates are strictly positive. This conditions relates the exogenous productivity of the

R&D sector to the weighted cost of infrastructure investment/capital and ensures

that expected future profits from R&D investments are positive. Moreover, the first

regime strictly dominates the second in terms of economic growth (γ1 > γ2).

Both equilibrium growth rates are strictly increasing in λ (given λ > λ∗∗).45 In

addition, an increase in the exogenous (institutional) productivity parameter has

a larger impact on the growth rate in the high-growth regime (∂γ1

∂λ
> ∂γ2

∂λ
> 0).

This result follows directly from the fact that the return of R&D investments is

constrained by high intermediate business costs (low infrastructure capital) in the

low-growth equilibrium. Besides, γ1 is increasing in the share of infrastructure capital

in the final output sector (β). Hence, γ1 can potentially still be raised to a higher

balanced growth path by an additional external financing source.46 In contrast, the

44Note that the infrastructure provider does not internalize the static effect of an increase in Gt

on the output level in a decentralized equilibrium.

45The exact derivatives are reported in Appendix A.

46Thus, the infrastructure externality outweighs the inefficiencies from the monopolies for the
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impact of β on γ2 is indeterminate and depends on the realizations of the parameter

values.47 Finally, an increase in the constant factor of the marginal investment costs

(µ) causes a decline in γ1. Again, the impact on γ2 is indeterminate. Thus, under

certain parameter realization the positive effect of µ on the level of the shadow price

of infrastructure capital may outweigh its direct negative effects on the instantaneous

profit function of the infrastructure monopolist.

Infrastructure subsidy

The equilibrium provision of infrastructure capital in our model is socially inefficient.

The inefficiency results from the infrastructure externality as well as the monopolistic

supplies of intermediate and infrastructure capital goods. Consequently, a government

subsidy for infrastructure capital may potentially install the growth maximizing level

of infrastructure capital. We have shown above that infrastructure is undersupplied

in a decentralized equilibrium ( ∂γ
∂β
> 0). It follows that a positive government subsidy

for the infrastructure monopolist would be growth-enhancing. It might even induce

a regime shift from the lower balanced growth rate to the higher one in the case of

increasing marginal investment costs.

In general, we can compute the growth-maximizing subsidy (τ ∗) given the different

infrastructure investment cost functions. Therefore, we assume that the subsidy is

financed by an income tax. The monopolist’s period by period profit function changes

to: πG,t = pG,tGt + τYt − µC(It, t) − F . Moreover, we refer to the special case of a

Cobb-Douglas production function for final output by setting χ = 1−α−β.48 For the

purpose of illustration, we focus on the case of constant marginal investment costs and

assume that congestion eliminate scale effects. Following the procedure from above

infrastructure capital stock belonging to γ1. We discuss this result separately in the next section.

47Interestingly, the negative effect of β on the level of the shadow price of infrastructure capital

may outweigh the positive direct effect on the instantaneous profit function of the infrastructure

monopolist under certain parameter realizations.

48This specification implies constant returns to scale for the combination of labor, intermediates

and infrastructure capital in the production of final output.
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the equilibrium level of infrastructure (Gms
t ) and the growth rate (γms) are:49

Gms
t =

[(1− τ)β2 + τβ]

µ(ρ+ δ)
Yt

γms =
α(1− α)[(1− τ)2β2 + τ(1− τ)β]λ− (1− α− β)ρ(1 + µ(δ + ρ))

α(1− α)[(1− τ)2β2 + τ(1− τ)β] + (1− α− β)σ(1 + µ(ρ+ δ))
(1.24)

Setting ∂γms

∂τ
= 0 and solving for τ yields the following growth-maximizing gov-

ernment subsidy: τ ∗ = 1−2β
2(1−β)

. Not surprisingly, the growth-maximizing subsidy is

decreasing in β. Moreover, τ ∗ internalizes the growth-enhancing infrastructure exter-

nality for a given level of the distortional income tax. For example, for β = 0.3, τ ∗

is approximately equal to 0.28. For β ≥ 0.5 the growth-maximizing subsidy is 0. In

this case, the negative growth effect from an additional income tax would outweigh

the positive infrastructure externality. In general, the result shows that different

market structures in the infrastructure capital sector have different implications for

equilibrium growth.

1.6 Conclusion of Chapter 1

This article decomposes the growth effect of infrastructure investments. It suggests

that infrastructure affects innovative investments and technological change instead of

factor accumulation.

The empirical section provides evidence for a positive causal effect from infras-

tructure capital on TFP-growth from a dynamic panel estimation. We find that

investments in (telecommunication) infrastructure cause an increase in R&D invest-

ments in subsequent periods. We control for a potential endogeneity of infrastructure

by (i) including internal as well as exogenous instruments for infrastructure and (ii)

analyzing the effect of macroeconomic aggregates on firm-level investment decisions.

Moreover, we detect that infrastructure promotes TFP-growth via adjustments in ag-

49Notice that in the presence of an income tax rate the partial growth rate (2.20) amounts to:

γ′ = (1−τ)α(1−α)λ−(1−α−β)ρφ(G)
(1−τ)α(1−α)+(1−α−β)σφ(G/Y ) .
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gregate R&D. Finally, we are not able to detect a positive relationship between the

provision of infrastructure and private investments in physical or human capital.

The empirical findings are striking since they challenge conventional growth theo-

ries which link growth-promoting effects of infrastructure investments to a stimulation

of private capital investments. Our results reject this complementarity between pub-

lic (infrastructure) and private capital investments. Instead, they suggest a direct

effect of telecommunication infrastructure on technical change in relatively developed

countries which is independent from private or human capital accumulation. Second,

the impact of infrastructure on R&D features different policy implications. That is,

the growth-effect of infrastructure investments depends on factors such as intellec-

tual property rights, the degree of product market competition or tertiary education

instead of factors that influence a household’s saving decision.

In addition, we suggest a theoretical mechanism that complies with this empirical

finding. In particular, we illustrate a positive link between the provision of infras-

tructure capital and the incentives to invest in R&D. This result is based on the

assumption that infrastructure capital reduces costly distortions between the interac-

tions of the final and intermediate sector (e.g. transportation and coordination costs).

Moreover, the model implies crucial complementarities between infrastructure capital

and other factors that influence the effectiveness of the R&D sector. Finally, we show

that the link between infrastructure and R&D can lead to multiple balanced growth

pathes if we endogenize the provision of infrastructure capital.

The connection between infrastructure and technical change refines the link be-

tween infrastructure and growth and helps to explore productivity differences across

countries. The results suggest that future work on the link between infrastructure and

growth should be devoted to its effect on innovative activities and technical change.
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Chapter 2

Inflation, financial market

incompleteness and long-run

TFP-growth

This chapter demonstrates a negative relationship between inflation and
long-run productivity growth. Inflation generates long-run real effects due
to a link from the short-run interplay between nominal and financial fric-
tions to a firm’s qualitative investment portfolio. First, we employ coun-
try panel data to investigate the robustness of a negative causal effect
of inflation on long-run TFP-growth. Second, we develop an endogenous
growth model whose key ingredients are (i) a nominal short-run portfolio
choice for households, (ii) an agency problem which gives rise to finan-
cial market incompleteness, (iii) a firm-level technology choice between a
return-dominated but secure and a more productive but risky project. In
this framework, inflation increases the costs of corporate insurance against
productive but risky projects and hence a firm’s choice of technology. It
follows that economies (time periods) that feature a higher level of in-
flation are predicted to exhibit lower TFP-growth in the long-run. That
is, each level of inflation is associated with a different long-run balanced
growth path as long as financial markets are incomplete. Finally, we ap-
ply U.S. industry as well as firm-level dynamic panel data to examine the
relevance of our specific microeconomic mechanism. We find that (i) firms
insure systematically against risky R&D investments by means of corpo-
rate liquidity holdings, (ii) periods of higher inflation restrain firm-level
R&D investments by reducing corporate liquidity holdings.
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2.1 Introduction

Does inflation reduce long-run economic growth? If so, what is the key transmis-

sion mechanism relating inflation to long-run growth? To answer these questions, we

provide empirical evidence - in accordance with Fischer (1993) and others - that the

level of inflation reduces long-run productivity growth. Thereafter, we develop a novel

theoretical explanation for a long-run relationship between the two variables in the

context of an endogenous growth model with financial market frictions. Our trans-

mission mechanism relates the qualitative composition of investments, instead of their

quantity, to the level of inflation. Hence, we partly endogenize total factor productiv-

ity (TFP) by demonstrating that monetary policy is a relevant component of long-run

TFP-growth. Finally, we present micro-econometric evidence from disaggregated U.S.

sectoral and firm-level data that is consistent with our specific microeconomic mech-

anism underlying the macroeconomic monetary transmission channel.

Recent progress in development accounting have identified differences in total factor

productivity (TFP), rather than physical or human capital accumulation, as the main

factor generating cross-country income and growth differences.1 Accordingly, varia-

tions in TFP explain about 2/3 of the variations in income across countries. However,

TFP is measured as the component of output that is not explained by labor or (hu-

man) capital inputs. Therefore, Abramovitz (1956) refers to this residual measure as

the “measure of our ignorance”. Against this background, substantial efforts have

been devoted to endogenize TFP.2 The effect of nominal variables on real economic

activities, on the other hand, has been mainly analyzed in a business cycle framework.

1Caselli (2005) provides an exhaustive survey of recent contributions to development accounting

and demonstrates the robustness of this result.

2The title of a contribution by Prescott (1998) anticipates recent developments in the endogenous

growth literature: “Needed: A Theory of Total Factor Productivity”. So far, the most prominent

explanations for cross-country differences in TFP concentrate on the role of government regulations

(Prescott, 1998), human capital (Benhabid and Spiegel, 2005), or institutions (Acemoglu et al.

(2002)).
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In this respect, it is well recognized that monetary policy can influence fluctuations

in real variables in the short-run, but most theoretical contributions treat monetary

policy shocks and TFP as orthogonal in the long-run. Accordingly, the determinants

of growth and cycles are most often regarded as two separated entities.3

Our theoretical contribution takes a different route and combines elements of the

growth and business cycle literature. Specifically, we analyze the interdependence

between short-run nominal and financial frictions and its effect on long-run endoge-

nous technological change. The standard endogenous growth model is supplemented

in three dimensions. First, we incorporate a technology choice for producers. That

is, intermediate firms can channel investments into two distinct projects: a safe, but

return-dominated (“basic”) and a superior (“advanced”) project which yields higher

expected returns, but is subject to idiosyncratic liquidity shocks. We attribute invest-

ments that enhance the stock of technologies available for a firm, e.g. R&D expenses,

to the advanced projects since this type of investment is considered to be more pro-

ductive, but also more risky. Thus, (part of the) expenses for advanced technologies

generate a positive externality on the future stock of knowledge/technologies avail-

able in the economy. In contrast, investments in the basic technology reflect, e.g.,

expenses for machines of the same vintage relative to previous ones. Moreover, firms

operating the advanced technology can insure themselves against the idiosyncratic

liquidity risk by means of holding a precautionary stock of readily marketable assets;

however, due to an entrepreneurial moral hazard problem, which is the second key

building block of the model, the scope for insurance is limited. The consequence of

this friction is that financial markets are incomplete in that scarce liquidity - along

the lines of Holmstrom and Tirole (1998) - can not be efficiently provided to the pro-

ductive sector. Third, we assume that households are required to hold cash in order

3This observation is well paraphrased by Aghion et al. (2005): “The modern theory of business

cycles gives a central position to productivity shocks and the role of financial markets in the propaga-

tion of these shocks; but it takes the entire productivity process as exogenous. The modern theory of

growth, on the other hand, gives a central position to endogenous productivity growth and the role of

financial markets in the growth process; but it focuses on trends, largely ignoring shocks and cycles.”
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to consume at the end of a period. This short-run cash-in-advance constraint implies

that households have to choose between cash holdings for consumption purposes and

deposits with a financial intermediary that earn a net interest rate. It follows that

the short-run supply of nominal assets (liquidity) is costly even in an environment

of flexible prices. Taken together with the positive short-run demand for liquidity of

firms operating the advanced technology this approach involves a positive short-run

nominal interest rate that represents the cost of insurance against liquidity shocks.

That is, the nominal interest rate constitutes an additional cost of production by

means of the advanced technology relative to the basic one. This complementarity

between corporate liquidity holdings and a firm’s ability to invest in productive but

risky projects leads to a type of inflation tax on productivity-enhancing investments.

The short-run non-neutrality of monetary policy induces an investment composition

effect that is found to be associated with changes in the aggregate stock of technologies

in the long-run. Hence, the model postulates a novel aspect of monetary transmission

in that differences in the level of inflation across countries or time periods induce

long-run differences in TFP-growth as long as financial markets are incomplete.

Our empirical macroeconomic evidence demonstrates the robustness of this nega-

tive empirical relation. We apply a dynamic panel technique following Blundell and

Bond (1998) which allows some inspection of causality. Accordingly, we find that

inflation reduces long-run TFP-growth, whereby its exogeneity can not be rejected.

Furthermore, the firm-level moral hazard problem results in a constrained-efficient

contracting scheme between firms and financial intermediaries. This endogenous form

of financial market incompleteness allows for a set of empirical implications which are

specific to our model. We test these implications using disaggregated U.S. sectoral

and firm-level panel data. The results demonstrate that firms with riskier cash-flows

and higher R&D investments systematically adjust the composition of their asset and

investment portfolios in periods of higher inflation. In particular, we find that (i)

the sensitivity of TFP-growth with respect to inflation is significantly higher in more

volatile and more productive sectors, (ii) periods of higher inflation restrain firm-level
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R&D investments by reducing corporate liquidity holdings.

The rest of the chapter is organized as follows. In section 2, we review the liter-

ature on inflation and long-run economic growth. Section 3 examines the aggregate

empirical relation between inflation and long-run TFP-growth. The next two sections

describe the theoretical model as the basic structure to highlight the novel monetary

transmission mechanism. In section 6, we test model-specific implications applying

sectoral and firm-level panel data in order to identify the underlying microeconomic

mechanism empirically. A final section concludes.

2.2 Literature review

A limited number of theoretical studies allow for an impact of changes in nominal

variables on long-run economic growth. In this regard, King et al. (1998) incorporate

constant returns to capital in a real business cycle model showing that temporary

nominal shocks can have permanent effects due to a reduction in capital investments.

Similarly, Aizenman and Marion (1993) develop a negative relation between nominal

fluctuations and GDP-growth due to the existence of investment irreversibility. More

recently, Fatas (2001) relates long-run growth to short-run business cycles. He embeds

an aggregate demand externality in an endogenous growth model to show that the

coordination of productive investments across different sectors may be an important

prerequisite for aggregate economic development. In contrast to our contribution,

the permanent effects in the above models are transmitted via the aggregate quan-

tity of investments. However, Ramey and Ramey (1995) reveal that the negative

empirical correlation between nominal macroeconomic fluctuations and the trend of

GDP-growth is independent of the aggregate quantity of investments.

Aghion et al. (2005) and Angeletos (2006) focus on the link between financial

market incompleteness and business cycle fluctuations. The former examine how

(exogenous) credit constraints affect the cyclical behavior of productivity-enhancing

investment. Specifically, they distinguish between a short-term and a long-term in-

vestment project which enhances future productivity. Survival of long-term projects
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is uncertain because they are subject to idiosyncratic liquidity shocks which - for

reasons left unspecified - can only be imperfectly insured. The authors show that

sufficiently tight credit constraints result in a procyclicality of long-term investment

which amplify the business cycle. Similarly, Angeletos (2006) studies the effects of id-

iosyncratic investment risk on the aggregate level and the allocation of savings within

the framework of a non-monetary neoclassical growth model. Their key result is that

incomplete markets reduce TFP by shifting resources away from the more risky, but

also more productive private equity investment. They focus on the impact of exoge-

nous credit constraints on an economy’s cyclical productivity dynamics and not on the

evolution of the long-run trend. Moreover, Aghion et al. (2005) and Angeletos (2006)

are concerned with real general equilibrium economies; they do not address a poten-

tial interplay between nominal and financial frictions. In order to better understand

the determinants of the interdependence between nominal and financial frictions, it is

important to carefully specify the source of market incompleteness which gives rise to

uninsured idiosyncratic risk. Therefore, we embed the financial contracting problem

discussed in Holmstrom and Tirole (1998) in our model. This endogenous form of

financial market incompleteness makes it possible to derive a number of theoretical

predictions which can be examined empirically.

Acemoglu and Zilibotti (1997), among others, develop a theoretical link between

the degree of financial market development and long-term growth. Their reasoning is

based on the ability of agents to share the risk of investment projects. Thus, capital

investments in poor economies are constraint by risk diversification opportunities.

The model explains why the level and volatility of output are high in less developed

countries and decline with the degree of financial market development. Moreover,

Levine et al. (2000) provide empirical evidence in favor of a causal link from financial

development to economic growth. However, in contrast to these approaches, which

are based on real economies, incomplete financial markets transmit short-run nominal

constraints to long-run restrictions on the productivity trend in our model.

The empirical literature on inflation and growth employs cross-country (panel)
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regressions with low frequency data.4 In this context, Bruno and Easterly (1998)

and Easterly (2005) suggest that the negative relation between GDP-growth and

inflation is mainly due to inflation outliers. Assuming different threshold levels (e.g.

20%, 40%) they detect that the robustness of the negative relation depends on high-

inflation countries. In contrast, Fischer (1993) finds that the negative correlation

between inflation and TFP-growth is, if anything, larger in low-inflation (OECD-)

countries. Moreover, Fischer (1993) investigates the causal mechanism behind this

correlation in several ways. First, he examines the potential endogeneity of inflation

by considering sample variations across periods predominated by demand (1960-1972)

or supply (1973-1988) shocks.5 In line with the established literature, he starts from

the presumption that adverse supply shocks are the main source of the endogeneity

of inflation, i.e. while an adverse supply shock is inflationary, an adverse demand

shock would be deflationary. However, he finds that the correlation between inflation

and economic growth remains unchanged across periods of mainly demand or supply

shocks and therefore is led to the conclusion that inflation is exogenous with respect

to growth. Second, the author decomposes GDP growth into its components and

detects a robust negative relation between inflation the growth rate of TFP. Thus,

even after controlling for factor accumulation and employment, the negative effect

of inflation on growth persists. Similarly, De Gregorio (1993) finds that inflation

affects the productivity of investment rather than its level. It follows that there must

be some inflation-driven mechanism which records in terms of decreased aggregate

productivity growth.

4Important contributions in this branch of research include De Gregorio (1992), De Gregorio

(1993), and Barro and Lee (1996).

5The difficulty in identifying a causal relation between inflation and growth stems from the lack of

appropriate external instruments for inflation. For cross-country regressions, a possible instrumental

variable approach is due to Cukierman et al. (1993) who incorporate measures of central bank

independence as instrumental variables and detect negative correlations with economic growth. Our

own approach in Section 2.3 circumvents the problem by applying dynamic panel regressions, thus

relying on internal instruments whose validity is testable.
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The structure of the model we develop suggests that the availability of corporate

liquidity is a crucial determinant for firm-level qualitative investment decisions. To

get some guidance on the potential power of this mechanism, we relate our analysis to

the findings in Opler et al. (1999) who examine the determinants and implications of

holdings of cash and marketable securities by publicly traded non-financial U.S. firms.6

The authors establish that (i) firms with better outside financing opportunities tend

to hold a lower fraction of their total assets in the form of liquid assets, and that

(ii) firms with strong growth opportunities and riskier cash flows hold relatively high

ratios of cash to total non-cash assets.7 Moreover, there is evidence that firms retain a

relatively high fraction of their earnings as liquid reserves and that these reserves are

generally not used for capital investment, but rather tend to be depleted by operating

losses, i.e. the corporate liquidity is held as a hedge against production risk. As to

the quantitative importance of corporate cash holdings, the authors report the mean

over the firms in their sample of the ratio of cash to net assets to be 18%, while the

median amounts to 6.5%. Thus, corporate liquidity holdings are likely to constitute

a quantitatively relevant expense factor in the presence of inflation.

2.3 Inflation- TFP-growth nexus

Data and methodology: In this section, we complement the work of Fischer (1993)

and De Gregorio (1993) in that we apply a different econometric method and sup-

plementary robustness tests to investigate the inflation TFP-growth nexus. The ag-

gregate empirical analysis is based on an unbalanced panel data set consisting of 88

6The background for most theoretical and empirical studies of corporate cash holdings is the

presumption that external finance is costly and that firms hold liquid assets in order to survive

bad times and to have funds readily available if an investment opportunity arises. The benefits

of corporate liquidity must then be balanced against its costs which arises as a consequence of a

liquidity premium.

7We interpret these latter features - high growth potential and risky cash flows - as the identifying

characteristics of what we label advanced technology.
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countries from 1970-1999. We employ non-overlapping 5-year averages to smooth

out business cycle effects which reduces the time dimension to six observations per

country.8 Inflation is measured by the first difference of the natural logarithm of

the consumer price index from the World Development Indicator database (WDI). In

addition, we include various institutional and financial control variables to minimize

the potential of an omitted variable bias. In particular, we approximate a country’s

degree of financial market development by the amount of private credits relative to

GDP (credit).9 Furthermore, we account for the following control variables: the gov-

ernment and private investment shares from the Penn World Tables, the amount of

trade in goods as % of GDP (WDI), the terms of trade (WDI), an index of overall

property rights from the Fraser Institute of Economic Freedom database, and a mea-

sure of inflation uncertainty. We construct the TFP series following Caselli (2006). A

detailed description of the growth accounting methodology is provided in Appendix

B. In line with the empirical growth literature, we include the lagged level of TFP

as a lagged dependent variable in the growth regression.10 Accordingly, we apply a

dynamic panel data model. Therefore, we employ the method developed by Blundell

and Bond (1998) which is based on the general method of moments (GMM) and is

constructed to yield consistent estimates in dynamic panels.11 This procedure instru-

8Specifically, we use the following time averages: 1970-1974, 1075-1979, ..., 1995-1999.

9The proxy is obtained from from Beck and Levine (1999). We note that all of our results

are robust to the inclusion of alternative proxies from these authors such as the amount of liquid

liabilities, the rate of stock market trade, or the amount of financial deposits. The results are available

from the authors upon request.

10The corresponding coefficient is negative and significant on a 1% level in all estimation speci-

fications. Compare e.g. Caldern and Servn (2005) or Barro and Sala-i-Martin (1995), and Aghion

et al. (2005) for analogous approaches.

11In other words, considering the following dynamic panel data model in first differences:

yi,t − yi,t−1 = α(yi,t−1 − yi,t−2) + β(Xi,t −Xi,t−1) + (εi,t − εi,t−1), i = 1, 2, ..., N, t = 3, 4, ..., T,

the basic assumptions of Arellano and Bond (1991) are E[yi,t−s(εi,t − εi,t−1)] = 0, E[Xi,t−s(εi,t −

εi,t−1)] = 0 for s ≥ 2; t = 3, ...T , where yi,t is the dependent variable, Xi,t a vector of endogenous and
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ments predetermined and endogenous variables with the suitable corresponding lags

of these variables. It allows to gain inspection of causality and provides a tests of

autocorrelation and overidentifying restrictions to check for the validity of the instru-

ments.

In Figure 2.1, we plot annual data for inflation and TFP-growth using the subset

of 22 OECD countries from 1980-2000.12 The scatter-plot illustrates a negative

bivariate correlation between the two. However, this relation may be due to periods

of excessive inflation rates above 20% or 40% as suggested by Bruno and Easterly

(1998). Therefore, we focus on a smaller subset of 19 OECD countries from 1990-2000

in Figure 2.2. The highest observable inflation rate in this sample amounts to roughly

15%. Yet, the data still indicate a negative correlation between the two series. In

this respect, the simple scatter-plots already suggest that the negative aggregate

correlation between inflation and TFP-growth does not stem from inflation-outliers.

Results: In 2.1, we investigate the reduced-form relation between the two ag-

gregate series controlling for spurious correlation and endogeneity of inflation. The

first column reports a negative contemporaneous correlation between inflation and

TFP-growth after controlling for the institutional and financial indicators. Corre-

spondingly, this negative correlation does not simply capture an economy’s degree of

exogenous explanatory variables, N the number of cross-sections, T the number of time-periods, εi,t

the error term and α and β parameters to be estimated. In addition, Blundell and Bond (1998) apply

supplementary moment restrictions on the original model in levels, whereby lagged differences are

used as additional instruments for the endogenous and predetermined variables in levels. Given that

E[yi,t, µi] is mean stationary, the Blundell and Bond (1998) estimator incorporates the additional

moment restrictions E[(yi,t−1 − yi,t−2)(ηi + εi,t)] = 0, E[(Xi,t−1 − Xi,t−2)(ηi + εi,t)] = 0, which

requires the additional assumption of no correlation between the differences of these variables and

the country-specific effect. The authors show that this procedure is more efficient if explanatory

variables are persistent.

12The informational value of the scatterplot is very limited if we exploit the entire panel of 88

countries since most inflation-observations are within the same range apart from some extreme

outliers due to periods of hyperinflation.
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Figure 2.1: Scatter-plot: Panel of 22 OECD countries 1980-2000
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Figure 2.2: Scatter-plot: Panel of 19 OECD countries 1990-2000
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financial or institutional development. In the next column, we apply the least square

dummy variable estimator to additionally control for country fixed effects. The coef-

ficient of inflation is still significant on a 1% level. Yet, the corresponding estimates

are biased in the presence of a lagged dependent variable. Therefore, we present our

preferred specification based on the method of Blundell and Bond (1998) in column

three. Accordingly, inflation, which is instrumented by its suitable own lags, reduces

TFP-growth. The corresponding coefficient is significant on a 1% level.13 Thus, our

results suggest that causation is running from inflation to TFP-growth. Moreover,

TFP-growth is decreasing in the lagged level of TFP and increasing in the measure of

overall property rights. The Hansen test and the test of second order autocorrelation

signalize that the validity of the instruments can not be rejected.

In the remaining columns of 2.1, we conduct several robustness checks for our

basic specification. Column four reveals that an increase in the private investment

share enhances TFP-growth. However, the corresponding coefficient of inflation is

still significant on a 5% level even after controlling for the fluctuations in aggregate

investments. We infer that the transmission channel of inflation is independent from

private factor accumulation. This result affirms our conjecture that inflation affects

the quality (composition) of private investments instead of their quantity.14 Column

five shows that our results are robust to the inclusion of time fixed effects which control

for aggregate shocks that are common for all countries in each time period. In column

six and seven, we try to discriminate empirically between level and uncertainty effects

of inflation. Therefore, we incorporate the standard deviation of inflation as a proxy

13We stress that the average effect of a 1% point increase is relatively small since some countries

experienced excessive inflation rates. In particular, inflation varies from 0-6000% while TFP-growth

varies from -10-10% in our sample. This reduces the average marginal effect of a 1% point increase

substantially. We outline below that the average marginal effects are much larger if we focus on the

OECD sub-sample or U.S. time series data.

14This result is in line with the earlier findings of Ramey and Ramey (1995) and Aghion et al.

(2005) on (nominal) volatility and GDP-growth.
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for inflation uncertainty.15 The standard deviation significantly reduces TFP-growth

if we abstract from level effects. Yet, we exclusively find a significant negative effect of

the level of inflation if we account for both uncertainty and level effects. However, we

note that the level and the standard deviation of inflation are highly correlated in our

sample. Nevertheless, these results suggest that the distorting impact of inflation is

due to movements in the level of inflation instead of changes in inflation uncertainty.

Finally, the last column of 2.1 displays the results for the sub-sample of 22 OECD

countries. Accordingly, a 5% increase in inflation reduces TFP-growth in this sub-set

of developed economies, on average, by .35% in the same time period.16 The negative

coefficient is significant on a 1% level. The coefficient in the OECD sub-set is more

pronounced since many countries suffered from periods of excessive inflation. This

reduces the marginal effect of a 1% point increase in inflation if we consider the full

sample. The result supports the hypothesis that inflation reduces TFP-growth even

in regions/periods of moderate or low inflation. Summing up, the aggregate results

highlight a negative empirical relation between inflation and TFP-growth in the data

with causality running from the former to the latter.

2.4 The model

In this section, we introduce an endogenous growth model which accounts for short-run

nominal and financial frictions to illuminate the long-run negative causation running

from inflation to TFP-growth. The economy is populated by two sets of agents,

households and entrepreneurs, each of unit mass. Moreover, there are a financial

intermediation and a productive sector. The latter is organized in decentralized firms,

15Uncertainty is measured as the average annual standard deviation for a corresponding 5-year-

interval.

16A 1% increase in inflation reduces the average annual U.S. TFP-growth by .4% if we exclusively

focus on yearly U.S. time series data from 1975-2000. In this case, we employ the first two lags of

inflation as instruments for the contemporaneous levels. The results are available from the authors

upon request.
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Table 2.1: Aggregate data: 5-year-averages: Inflation & TFP growth

TFP growth

OLS LSDV GMM-sys GMM-sys GMM-sys GMM-sys GMM-sys GMM-sys

infl -.0014∗∗∗ -.0009∗∗∗ -.0020∗∗∗ -.0016∗∗ -.0022∗∗∗ -.0059∗∗ -.0646∗∗∗

(-7.33) (-4.17) (-2.74) (-2.44) (-2.96) (-2.05) (-2.85)

infl-vol -.0009∗∗ .0026∗

(-2.01) (1.66)

credit .2479 -.7932 .7770 -.5247 .8965 .7517 .0139 .4846

(.54) (-.93) (.69) (-.46) (.81) (.66) (.01) (.58)

trade .0021 .0154 .0066 .0027 .0047 .0079 .0076

(.82) (.96) (1.05) (.35) (.87) (1.22) (1.38)

ki .1309∗∗∗

(2.21)

ppr .3130∗∗∗ .1759 .4452∗∗∗ .3656∗∗ .4182∗∗ .4294∗∗ .4779∗∗∗ -.2293∗

(3.58) (1.26) (2.94) (2.53) (2.81) (2.92) (3.32) (-1.71)

kg -.0113 -.0687 -.0243 -.0145 -.0214 -.0257 -.0145 -.0606

(-.59) (-.79) (-.87) (-.54) (-.81) (-.95) (-.54) (-1.07)

tot -.0066 -.0013 -.0055 -.0164 -.0058 -.0062 -.0047 .2247∗∗

(-.87) (-.12) (-.59) (-1.54) (-.66) (-.67) (-.51) (2.18)

lag dep. var. -.0049∗∗∗ -.0229∗∗∗ -.0180∗∗∗ -.0183∗∗∗ -.0162∗∗∗ -.0171∗∗∗ -.0151∗∗∗ -.6202∗∗∗

(-3.24) (-5.28) (-5.53) (-5.07) (-5.52) (-5.41) (-5.65) (-4.20)

time-FE - - - - yes - -

Cou./Obs. 86/363 86/363 86/363 86/363 86/363 86/362 86/362 22/107

2. auto-cor. - - 0.127 0.129 0.175 0.113 0.211 0.385

Hansen-test - - 0.122 0.287 0.161 0.108 0.195 0.939

We specify inflation, inflation-volatility, credit, trade and the investment share as endogenous and property rights,

government share and terms of trade as exogenous variables in the GMM system estimation. Inflation volatility

is measured by the average standard deviation of yearly inflation rates. Predetermined lagged level of TFP as

lagged dependent variable.
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which have access to two distinct technologies: a basic technology which is return-

dominated but risk-free and a more productive but risky advanced technology.17 There

exist various interpretations of what the two types of investments represent. For

example, the basic project might reflect investments in machines of the same vintage

relative to previous ones, while the advanced project might represent investments in

R&D, the learning a new skill, or the adoption of a new technology.18 The timing

structure underlying our model is as follows. Time is discrete, and within each period

t, there are three points in time: one at the beginning of the period when government

policy materializes and information about it is revealed, denoted t−, one at an interim

stage, and finally one at the end of the period, denoted t+. Monetary policy, which is

perfectly observable before individual decisions are realized each period, is the only

source of aggregate uncertainty since we focus on the inflation-growth nexus. Apart,

there exist purely idiosyncratic liquidity shocks ξi
t to the subset of firms operating

the advanced technology. We now turn to a detailed description of the environment

in which the economy’s agents interact and define their relevant decision problems as

well as the long-run balanced growth path of the economy.

2.4.1 Households

The economy is populated by a unit mass of infinitely-lived, risk averse households.19

Households enter a given period t with a nominal wealth position Mt. At time t−,

households divide their nominal wealth into resources Qt disposable for consumption

later in the period and deposits Mt−Qt with a financial intermediary that earn a net

17As a general rule, variables pertaining to the basic sector are indicated by the variable/superscript

k, while z is the relevant indicator for the advanced sector.

18Similarly, the basic project might be putting money into the current business, while the advanced

reflects the start-up of a new business. See Aghion et al. (2005) for further discussion.

19Where necessary, variables pertaining to the household sector will be denoted with a superscript

H.
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interest rate (R̃t − 1).20 Thus, there is a cash constraint on the goods market with

the consequence that the household’s current expenditure for consumption cHt must

be covered by the resources Qt. After aggregate shocks have unfolded, households

rent out their sector-specific physical capital to the firms which operate a portfolio

of projects using the basic and advanced technology, respectively. Moreover, they

supply their labor inelastically. That is, each household is endowed with a constant

amount of labor which can be used for either of the two intermediate sectors, whereby

households are indifferent as to the sectoral composition of their labor supply. Hence,

the constant aggregate supply of household labor amounts to: h
H

= hH
t = hk,H

t +hz,H
t .

Since households are indifferent as to where their labor is employed the sectoral wage

rates must be identical in equilibrium, i.e. W k,H
t = W z,H

t = WH
t . At time t+,

households receive the returns from labor (W k,z
t ) and capital (Rk,z

t ) and make their

consumption decisions. The household has preferences over sequences of consumption;

hence, the household problem is to maximize lifetime utility:

E0−

∞∑
t=0

βtu(cHt ) (2.1a)

subject to the cash constraint:

Qt ≥ Pt

[
cHt + xt

]
, (2.1b)

and an equation describing the evolution of nominal assets:

Mt+1 = Qt − Ptc
H
t + R̃t[Mt −Qt + Jt] + Υt

+ W k,H
t hk,H

t +W z,H
t hz,H

t +Rk
t kt +Rz

t zt, (2.1c)

20This timing convention is standard in monetary models which feature a cash-in-advance con-

straint on the household side; compare e.g. Lucas (1990). Our timing convention necessitates a

careful treatment of the information sets relevant to the household when it takes decisions. Specifi-

cally, there is a distinction between expectation operators at the beginning of a period (time t−) and

at the end of a period (time t+).
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where Jt are cash injections into the financial market on behalf of the government

and Υt are nominal resources redistributed in a lump sum fashion among the con-

sumers at the end of the period, and subject to a law of motion for physical capital

xt = kt + zt, which accounts for depreciation:

xt = (kt+1 + zt+1)− (1− δ)(kt + zt) (2.1d)

The solution to the household problem can be summarized by a set of optimality

conditions which characterize the household’s equilibrium behavior. The first one is

the Euler equation describing the optimal inter-temporal allocation of nominal wealth:

Et−

{
uc(c

H
t )

Pt

− βR̃t

uc(c
H
t+1)

Pt+1

}
= 0 (2.2)

Equation (2.2) implies a type of Fisher relation in that the nominal interest rate is

a function of the rate of inflation and the real interest rate in equilibrium. The latter

is in turn governed by the balanced growth rate of consumption and parameters of the

utility function. Next, there are two Euler equations which determine the sequence of

dynamic decisions between consumption and sector-specific investments; for i = k, z:

uc(c
H
t ) = βEt

{
uc(c

H
t+1)

[
(1− δ) +

ri
t+1

R̃t+1

]}
, (2.3)

where ri
t+1 =

Ri
t+1

Pt+1
is the real rental rate of capital in sector i in period (t + 1). An

immediate implication of the two equations (2.3) is that the sector-specific rental rates

must be equal in expectation, i.e. Et{rk
t+1} = Et{rz

t+1} = Et{rt+1}.

2.4.2 Entrepreneurs

Apart from households, there is a unit mass of risk neutral entrepreneurs, each one

capable of running a specific project associated with the advanced production tech-

nology.21 At the beginning of each period, a mass (1− η) of new-born entrepreneurs

21Apart from the fact that investments in the advanced project might represent investments in

human capital, we do not consider limitations in that production factor. Yet, a straightforward
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enters the economy without any initial wealth and replaces an equal measure of re-

tiring entrepreneurs.22 The remaining measure η of incumbent entrepreneurs stays

active. An individual entrepreneur arrives in period t with an amount Ai
t of nominal

wealth. Then, if she receives a random exit signal, she waits until the end of the

period to simply consume her accumulated wealth such that Ai
t = Ptc

E,i
t . In con-

trast, new entrants and entrepreneurs who have not received the exit signal have no

consumption motive; rather, each active entrepreneur inelastically supplies her (unit)

labor endowment hE
t = hk,E

t + hz,E
t = 1 and thus augments her nominal wealth Ai

t by

her current wage earnings WE
t . Hence, an individual entrepreneur’s effective wealth

position is Ei
t = Ai

t + WE
t . This position Ei

t constitutes the entrepreneur’s necessary

private equity stake when she applies for funding of an advanced sector project with

the financial intermediary.

2.4.3 Financial intermediary

The financial intermediary (equivalently, a perfectly competitive financial sector) re-

ceives the time t− financial deposits Mt−Qt from the households as well as lump sum

cash injections Jt from the monetary authority. These funds are supplied to the loan

market at a gross nominal interest rate R̃t. At the loan market, this supply meets the

demand for nominal financial assets coming from the demand for liquidity Dt of firms

operating the advanced technology. Hence, financial market clearing requires:

Mt −Qt + Jt = Dt (2.4)

This condition simply stipulates that the equilibrium interest rate R̃t balances the

supply of loans with the corporate demand for funds due to its need for liquidity. The

financial intermediary operates after monetary policy is resolved and lends liquidity to

way to think about restrictions in the economy’s endowment of human capital (in our model) is an

endogenous mass of risk neutral entrepreneurs, which are capable of running the advanced project.

22Where necessary, variables pertaining to the entrepreneurial sector will be denoted with a su-

perscript E.
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the advanced sector firms. Yet, the provision of funds to advanced projects is compli-

cated by an entrepreneurial moral hazard problem which is dealt with by a financial

contract described in Section 2.4.5. Two key implication of that contracting scheme

are that firm bankruptcy is an equilibrium phenomenon and that the intermediary

must commit funds to individual advanced sector projects before these projects’ re-

spective liquidity needs are known. Therefore, it is important to recognize that the

financial intermediary is able to pool idiosyncratic risks across the advanced sector

firms. As a consequence, it is sufficient for the financial intermediary to break even

on an individual credit relationship in expectation. At the end of the period, the

intermediary receives the returns on its lending and financial investment activity and

pays the amount R̃t[Mt −Qt + Jt] to the households in return for their deposits.

2.4.4 Firms

In our economy, production activities proceed in two different steps. First, investments

in basic and advanced technologies results in two different types of intermediate goods

(yk
t , y

z
t ). Second, the two types of intermediates are combined to produce the final

market good (yt) that is used for consumption purposes. In all three goods markets,

firms face perfect competition.

Market good

The market good producers employ the following CES aggregation technology:

yt =
(
ζ

1
ρyk

t

ρ−1
ρ + (1− ζ)

1
ρyz

t

ρ−1
ρ

) ρ
ρ−1

, (2.5)

where the two parameters 0 < ζ < 1 and ρ > 0 determine the share of each interme-

diate good in producing the aggregate market good and the elasticity of substitution

of the two factors.

Productive efficiency pins down the minimum cost combination of the final good

firms’ demands for intermediate input goods to be functions of the relative prices for

the relevant intermediate input P j
t , j = k, z and for the final output Pt:
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yk
t = ζ

(
P k

t

Pt

)−ρ

yt and yz
t = (1− ζ)

(
P z

t

Pt

)−ρ

yt (2.6)

By perfect competition on the final goods market, the aggregate price level is

determined by marginal costs, i.e. the intermediate good prices, which are constant

from the final good firm’s perspective. Consequently, zero profits imply:

Pt =
(
ζP k

t

1−ρ
+ (1− ζ)P z

t
1−ρ
) 1

1−ρ
(2.7)

Intermediate goods

There are two perfectly competitive sectors producing intermediate goods. Both

sectors employ capital as well as labor as input goods, but are characterized by

different technologies. On the one hand, there is a safe, but return-dominated (basic)

technology; the other (advanced) technology yields a higher potential return, but is

subject to idiosyncratic liquidity shocks. The scope for an individual advanced firm’s

insurance against this idiosyncratic liquidity risk is endogenously determined via

the financial contract described in Section 2.4.5. The need for this insurance arises

as a consequence of an entrepreneurial moral hazard problem which prevents the

efficient refinancing of advanced projects and calls for the commitment of liquidity

at an ex ante, rather than an ex post stage. A natural way to think about advanced

technology projects are investments in R&D or the adoption of new (foreign)

technologies. We assume, in accordance with the literature on endogenous growth,

that investments in the advanced technology involve spill-overs to the future stock

of knowledge (Tt).
23 Consequently, aggregate productivity has two components: an

exogenous and an endogenous one. The exogenous productivity parameters differ

in both sectors, whereby the productivity of the advanced technology is strictly

larger than the basic one by definition (V > A). We abstract from variations in the

23Compare Romer (1990) or Aghion and Howitt (1992). It does not matter in our framework if the

spill-overs reflect actual investments in R&D or the scope of the advanced technology for accidental

learning-by-doing.
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exogenous productivity parameters over time since we focus on the growth-effect

of short-run nominal fluctuations instead of technology-induced cycles. In addition

to the exogenous components of productivity, there is an endogenous one. The

endogenous component Tt, which we call the level of knowledge, augments the

productivity of both projects; the determination of Tt will be described later. Note

that the advanced sector is characterized by perfect competition. Hence, investments

in R&D take place not because of a monopolistic market structure, but due to the

incentives for firms to optimize the composition of their investments. That is, the risk

associated with R&D investments combined with the financial market incompleteness

limit the capacity of R&D ex ante. Consequently, as opposed to the endogenous

growth literature à la Romer (1990) or Aghion and Howitt (1992), the key feature of

R&D is not the creation of monopoly rents, but its superior productivity combined

with the risk associated to it.

Basic sector: Firms in the basic sector seek to maximize time t+ profits by hiring

labor and capital inputs {lkt , kt}, whereby the vector of prices {P k
t ,W

k
t , R

k
t , R̃t} is taken

as given. A Cobb-Douglas aggregator converts household and entrepreneurial labor

inputs into their effective composite, and similarly agent-specific wages aggregate to

a sectoral wage rate:

lkt =
(hk,H

t )Ω(hk,E
t )(1−Ω)

(Ω)Ω(1− Ω)(1−Ω)
and W k

t = (W k,H
t )Ω(W k,E

t )(1−Ω)

The technology characterizing the basic intermediate sector is assumed to be ho-

mogenous of degree one. For simplicity, we employ the Cobb-Douglas form:

ϕ(kt, l
k
t ) = (kt)

α (lkt )1−α

Hence, the problem of a representative firm operating the basic technology is:
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max
{kt,lkt }

Πk
t = P k

t

(
TtAϕ(kt, l

k
t )
)
−W k

t l
k
t −Rk

t kt

= P k
t y

k
t − C(W k

t , R
k
t ; yk

t ) (2.8)

By constant returns to scale, efficient factor employment implies that marginal costs

are independent of the quantity produced, i.e. C(W k
t , R

k
t ; yk

t ) = MCk
t (W k

t , R
k
t ; 1)yk

t .

Then, from the assumption of perfectly competitive intermediate goods markets, it

follows that the price of the basic intermediate good equals marginal costs, i.e. P k
t =

MCk
t (W k

t , R
k
t ). Using the Cobb-Douglas specification of ϕ(kt, l

k
t ), the optimal factor

demands in the basic sector read:

kt =
αP k

t y
k
t

Rk
t

and lkt =
(1− α)P k

t y
k
t

W k
t

(2.9)

Finally, the price for the basic intermediate good is:

P k
t =

1

TtA

(
Rk

t

α

)α(
W k

t

(1− α)

)(1−α)

(2.10)

Advanced sector: The problem of firms operating the advanced technology is

complicated by the risk that their production plan is hit by a liquidity shock24 which

may trigger the termination of productive projects before they yield any return. We

assume that all advanced projects feature an ex post positive net present value if

the entrepreneur has exerted effort. As in the basic sector, there is a Cobb-Douglas

24The liquidity shock admits a variety of interpretations. It can be thought of a simple cost

overrun, as a shortfall of revenue at an interim stage which could have been used as an internal

source of refinancing, as adverse information relating to the project’s end-of-period profitability, an

extra cost to familiarize the workers with the new technologies, or as an extra costs necessary for

the new technology to be adapted to domestic market conditions once the new technology has been

adopted. Hence, we stress that our notion of liquidity shock is consistent with what Opler et al.

(1999) empirically summarize under the heading of operating losses.
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aggregation of the respective labor inputs by households and entrepreneurs, and the

technology in the advanced sector is also given by a Cobb-Douglas production function

under constant returns to scale:

φ(zt, l
z
t ) = (zt)

α (lzt )1−α

Each advanced firm is run by an individual entrepreneur who brings the amount Ei
t

as private equity into the firm. The firm’s production plan and its hedge against liq-

uidity shocks ξi
t, which are distributed according to a continuous distribution function

G(ξi
t) with associated (strictly positive) density g(ξi

t), are then determined as part of

a constrained-efficient contract between the entrepreneur and the financial intermedi-

ary. In particular, the liquidity provision stipulated by the financial contract will be

seen to pin down a threshold value ξ̂∗t up to which liquidity shocks are covered; this

threshold, in turn, determines an individual advanced firm’s ex ante survival prob-

ability G(ξ̂∗t ). Since the financial contract, derived in Section 2.4.5, turns out to be

linear in Ei
t , the distribution of equity across entrepreneurs does not matter and exact

aggregation is possible.25 Hence, we anticipate results and note in analogy to the

basic sector that the price level for the intermediate goods produced in the advanced

sector is:

P z
t =

1

R̃t

∫ ξ̂∗t
0
G(ξt)dξt

1

TtV

(
Rz

t

α

)α(
W z

t

(1− α)

)(1−α)

(2.11)

The details of the financial contract are described in the next section.

2.4.5 Financial contracting

Following Holmstrom and Tirole (1998), we now turn to a detailed analysis of the

contracting problem which is specific to the advanced technology. In principle, all

investment projects might face constraint financing opportunities. In this respect,

25From now on, we will therefore drop the superscript i.
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the exact identifying assumption in our model is that the riskiness of an investment

project is, on average, increasing in its productivity. However, we separate the tech-

nology choices into two classes according to their productiveness whereas the riskiness

of less productive projects is normalized to zero to simplify the analysis of our model.

The sequencing of events underlying an individual advanced firm’s within-period con-

tracting problem can be decomposed into three stages.26

At stage one, after information about monetary policy (Jt) is unveiled, each ad-

vanced firm, run by an entrepreneur holding an equity position Et in the firm, con-

tracts with the financial intermediary to pin down its production plan and refinanc-

ing provisions.27 In particular, the refinancing provisions determine the degree of

insurance against idiosyncratic liquidity risk.28 Thereafter, a contract between the

financial intermediary (outside investor) and the entrepreneur (firm) holding equity

Et prescribes (i) the scale of production as determined by factor employment zt, l
z
t ,

(ii) a state contingent continuation rule Γt(ξt), and (iii) a state contingent trans-

fer τt(ξt) from the firm to the investor. Hence, a generic contract takes the form

Ct = {zt, l
z
t ,Γt(ξt), τt(ξt)}. A constraint on the contract is that it is written under

limited liability, i.e. in case of project termination factors must be remunerated by

the outside investor. At a subsequent interim stage (stage two) after the factor em-

ployment decisions have been made, the firm is hit by an idiosyncratic liquidity shock

ξt. If the shock is met by appropriate refinancing to be provided by the intermedi-

26Although the firm’s production plan is conditional on the predetermined entrepreneurial eq-

uity position Et, the firm problem itself is not dynamic because entrepreneurial asset accumulation

proceeds mechanically and there is no inter-temporal incentive provision.

27We assume that entrepreneurial self-financing is not possible; a sufficient condition for this to be

the case is derived in Appendix B.

28It is important to realize that the financial contract is negotiated after fresh cash Jt has been

injected into the economy. Consequently, the results of monetary policy that we will develop in the

sequel do not stem from an implicit nominal rigidity. On the contrary, our concept of corporate

liquidity is entirely real; what is affected by nominal fluctuations, however, is the price of such

liquidity.

72



ary, the firm can continue; otherwise the firm is liquidated.29 After the continuation

decision, there is scope for moral hazard on the part of the entrepreneur in that she

can exert effort to affect the distribution of production outcomes. Specifically, we

define that, conditional on continuation, exerting effort guarantees a gross return of

P z
t TtVf(zt, l

z
t ) = P z

t ỹ
z
t to production activity, while shirking leads to zero output,

but generates a private (non-monetary) benefit Bt. We assume that the private ben-

efit is proportional to firm revenue conditional on survival; in particular, we have:

Bt = bP z
t TtVf(zt, l

z
t ) = bP z

t ỹ
z
t with 0 < b < 1.30 Finally, at stage three, the revenue

from production accrues and payoffs are realized according to the rules stipulated in

the financial contract. The financial intermediary engages in a continuum of contracts

with advanced sector firms; hence, since liquidity risk is idiosyncratic, the interme-

diary is able to pool the risk inherent in the investments across individual firms’

projects. As an implication, we can completely abstract from the effects of idiosyn-

cratic uncertainty on the investor’s evaluation of payoffs. Similarly, the entrepreneur

who is exposed to her uninsured private equity risk is risk neutral and cares only

about expected profits as long as she is active.

Hypothetically abstracting from both the entrepreneurial incentive constraint and

the cost of obtaining liquidity at the interim stage, it is easy to see that there exists

a unique cutoff value of one corresponding to a continuation policy which prescribes

project continuation if and only if the liquidity shock is such that ξ ≤ 1. The reason

is that the stage one investment is sunk; hence, at the interim stage, it is optimal

to refinance up to the full value of what can be generated in terms of revenue at the

final stage. However, the need to take into account the incentive constraint and the

costs of liquidity provision implies that the constrained-efficient continuation policy

will take the form:

29We assume that the liquidity shock is verifiable, but it is shown in Holmstrom and Tirole (1998)

that nothing changes if only the firm observes the shock as long as the firm does not benefit from

diverting resources.

30Note, however, that the specific value of b > 0 will not matter as long as the contract to be

derived below delivers an interior solution.
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Γt(ξt) =

 1, if ξt ≤ ξ̂t

0, if ξt > ξ̂t

for some cutoff value ξ̂t < 1. Hence, Γt(ξt) is a simple indicator function with

Γt(ξt) = 1 in case of continuation and Γt(ξt) = 0 in case of termination.

A constrained-efficient contract Ct = {zt, l
z
t ,Γt(ξt), τt(ξt)} with (zt, l

z
t ) determining

the scale of production, and Γt(ξt) and τt(ξt) pinning down the state contingent poli-

cies for project continuation and transfers per unit of production costs C (W z
t , R

z
t ; ỹz

t ),

respectively, then solves the following second best program of maximizing the en-

trepreneur’s net return:

max
Ct

∫
{Γt(ξt)P

z
t ỹ

z
t − τt(ξt)C (W z

t , R
z
t ; ỹz

t )} dG(ξt)− Et (2.12a)

subject to a participation constraint for the investor that requires him to break

even in expectation:

∫ {
τt(ξt)C (W z

t , R
z
t ; ỹz

t )− Γt(ξt)ξtR̃tP
z
t ỹ

z
t

}
dG(ξt) ≥ C (W z

t , R
z
t ; ỹz

t )− Et (2.12b)

and a state-by-state incentive compatibility constraint for the entrepreneur:

Γt(ξt)P
z
t ỹ

z
t − τt(ξt)C (W z

t , R
z
t ; ỹz

t ) ≥ Γt(ξt)bP
z
t ỹ

z
t ∀ ξt, (2.12c)

where:

ỹz
t = TtV (zt)

α (lzt )1−α

is firm-level output conditional on survival and:

C (W z
t , R

z
t ; ỹz

t ) = W z
t l

z
t +Rz

t zt
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are the associated total costs which accrue when a output level of ỹz
t is targeted in

case of survival.

Note how the specification of this problem, by means of the participation constraint

(2.12b), incorporates the requirement that the investor who bears the risk of project

failure be willing to finance the firm, whereby the outside investor commits both the

factor remuneration and the interim resources needed to meet the liquidity shock.

The cost of providing liquidity at the interim stage, which has to be obtained in the

financial market at the financial rate R̃t, will be key in shaping the solution to problem

(2.12).

The algebraic solution to the optimal contract defined in (2.12) is provided in

Appendix B. Intuitively, the constraint optimal contract implies that the firm is the

residual claimer of the return of investment given that the outside investor breaks even

in expectations. Thus, the firm wants to maximize the initial scale of investment. If

we define ξ̂0
t = 1−b

R̃t
as the cutoff value that maximizes the expected marginal return to

outside investors, it follows that the optimal cutoff value, which defines the equilibrium

provision of liquidity at the interim stage, must be in the interval ξ̂∗t ∈ [ξ̂0
t , ξ̂

FB
t ]. That

is, if ξt < ξ̂0
t , then both parties prefer to continue ex post because both parties can

realize gains on the investment in the sunk stage one; if ξt > ξ̂FB
t , then both parties

prefer to abandon the project because the net social marginal return of continuing is

negative. Within the interval [ξ̂0
t , ξ̂

FB
t ], there emerges a trade-off: On the one hand,

increasing ξ̂t implies that continuation is possible in more contingencies, and thus

the marginal net social return λt(ξ̂t) on each unit of initial investment is increased.

On the other hand, decreasing ξ̂t allows to increase the amount of initial investment

MCz
t (·)ỹz

t .

The solution of the constraint efficient contract results in an the optimal continu-

ation value ξ̂∗t that satisfies the optimality condition:

∫ ξ̂∗t

0

G(ξt)dξt =
MCz

t (·)
P z

t

1

R̃t

(2.13)

This condition reflects that the maximum equilibrium provision of liquidity must
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coincide with the adjusted markup on advanced sector output prices, whereas the

adjustment represents the cost of providing liquidity which is given by the nominal

interest rate (R̃t).

Hence, second best contracting is indeed consistent with liquidity holdings at the

firm-level, whereby the nominal interest rate R̃t reflects the shadow price for such

scarce liquidity. Moreover, we can derive a measures of aggregate liquidity demand

under financial intermediation by aggregating over the advanced sector firms:

D∗
t =

[∫ ξ̂∗t

0

ξtg(ξt)dξt

]
P z

t ỹ
z
t < D̄t (2.14)

Thus, the second best liquidity demand under financial intermediation, which effi-

ciently economizes on the use of scarce liquidity by pooling liquidity risk across firms,

falls below the demand that results from a policy which disregards the scope for risk

sharing across firms.

2.4.6 Empirical implications

As an immediate consequence of optimal financial contracting as derived in Section

2.4.5 and B.1, we put on record the following empirical implications of optimal fi-

nancial contracting as governed by equation (2.13), which will be subject of our later

empirical analysis of industry and firm-level panel data.

• H1: Ceteris paribus31, an increase in R̃t leads to a lower cutoff ξ̂∗t :

dξ̂∗t
dR̃t

= −
∫ ξ̂∗t

0
G(ξt)dξt

R̃tG(ξ̂∗t )
< 0, (2.15)

31The claimed result obtains if, to a first approximation, MCz
t (·)

P z
t

remains constant. That is, the

results derived in the following are valid from a partial equilibrium perspective; taking into account

general equilibrium effects does not change the qualitative (sign) properties of the relevant derivatives.

However, to obtain a closed-form solution, we have to determine a functional form of G(ξ). It is

shown in Appendix B that the general equilibrium effect is negative if G′ > 0.
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which follows from total differentiation of condition (2.13).

Thus, quite intuitively, higher nominal interest rates R̃t lead to smaller hedging

against idiosyncratic liquidity shocks because the intermediary’s participation con-

straint gets tighter in line with the increased costs of providing liquidity. In order to

examine the effects of other changes in the economic environment on firms’ liquidity

demand, we establish two auxiliary results.

First, increased volatility of the liquidity shock distribution G(·) in the sense of

a mean-preserving spread implies a lower cutoff value ξ̂∗t ; formally
dξ̂∗t
dσξ

< 0.32 The

intuition behind this result is that increased risk makes the option to terminate the

project more valuable. The empirical prediction therefore is that firms operating in a

more volatile environment are insured to a smaller degree.

• H2: Increased production risk (in the form of a mean-preserving spread of the

distribution G(·)) accentuates the negative effect of R̃t on the cutoff ξ̂∗t :

d

dσξ

(
dξ̂∗t
dR̃t

)
=
dξ̂∗t
dσξ

d

dξ̂∗t

(
dξ̂∗t
dR̃t

)
< 0, (2.16)

where the inequality follows from the fact that ξ̂∗t is decreasing in the volatil-

ity of the shock distribution and differentiation of expression (2.15) with respect to ξ̂∗t .

Second, situations where production by means of the advanced technology is more

profitable, i.e. situations characterized by lower ratios
MCz

t (·)
P z

t
, are predicted to feature

a lower ξ̂∗t ; formally
dξ̂∗t

d(MCz
t /P z

t )
> 0.33 The reason for the poorer insurance of more

profitable projects is the contracting trade-off underlying the choice of ξ̂∗t : While

a more generous provision with liquidity has the advantage of withstanding larger

32Variations in the standard deviation σξ need to be restricted to mean-preserving spreads, the

result then obtains by partial integration; compare Mas-Colell, Whinston and Green (1995), chapter

6.

33This follows from total differentiation of condition (2.13), for given R̃t.
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shocks, it necessarily implies a lower stage one investment volume. Thus, for highly

profitable projects, both contracting parties prefer to cut ξ̂∗t in order to expand the

project size. Based on these results, we can derive two additional hypotheses relating

to the sensitivity of specific firms (or industries) to fluctuations in the nominal interest

rate.

• H3: Increased profitability accentuates the negative effect of R̃t on the cutoff

ξ̂∗t :

d

d(MCz
t /P

z
t )

(
dξ̂∗t
dR̃t

)
=

dξ̂∗t
d(MCz

t /P
z
t )

d

dξ̂∗t

(
dξ̂∗t
dR̃t

)
> 0, (2.17)

where the inequality follows from the fact that ξ̂∗t is increasing in the marginal-

cost-to-price ratio and differentiation of expression (2.15) with respect to ξ̂∗t .

2.4.7 Endogenous technical change

In this section, we describe the endogenous part of the productivity processes - the dy-

namics of Tt. As mentioned above, we assume that the advanced projects (yz
t ) generate

spill-overs on the future stock of knowledge since they embody investments in R&D,

skills or the adoption of new technologies. Thus, the stock of knowledge/technologies

is characterized by the difference equation:

Tt+1 = Tt

(
1 + ε

∫ 1

0

yz
t,idi

)
= Tt

(
1 + ε

∫ 1

0

G(ξ̂∗t )ỹz
t,idi

)
(2.18a)

where 0 < ε ≤ 1 represents the fraction of investments in the advanced technology

that involve knowledge spill-overs.

The law of motion specifies that productivity growth is increasing in productivity-

enhancing investments, whereby we suppose that only successful advanced investment
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projects create productivity spill-overs proportional to the contemporaneous stock of

knowledge.34 Note that the specification in (2.18a) is essentially the same as the

corresponding ones in the endogenous growth literature: the rate of technical change

is governed by investments in R&D, which, in our model, are part of the investments

in the advanced sector.35 In particular, we suppose that investments in R&D consist

of expenses for research labor and capital (e.g. research lab) which are combined

in a Cobb-Douglas fashion. Hence, given V , A and an initial level T0, the current

realization of the TFP-level depends on all successful past realizations of advanced

investment projects. Consequently, it depends on past realizations of inflation if

financial markets are incomplete.

Note that an increase in the stock of knowledge/technology (T ) enhances the pro-

ductivity in both sectors since we suppose that the new technology is not skill biased

- it can be adopted for both types of projects.

2.4.8 Government policy

In order to close the model, a specification for government policy is needed. We

suppose that government policy is governed by an exogenous process which consists

of periodic injections Jt of money in the financial market. Jt is implicitly defined

as Jt = (emgt − 1) (Mt + At), where mgt is the gross rate of money growth. Hence,

the aggregate of nominal wealth held by households and entrepreneurs is updated

according to:

(Mt+1 + At+1) = emgt (Mt + At) .

34Note that terminated advanced projects are liquidated before the entrepreneur exerts any effort

(moral hazard). Thus, it is assumed that these failed projects do not cause any knowledge externality.

35Compare, e.g., Romer (1990) or Aghion and Howitt (1992).
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2.5 Long-run balanced growth path

In this section, we demonstrate that the equilibrium growth rate along the long-run

balanced growth path is negatively related to the inflation rate. The important result

of the analysis shows that this is due to a compositional effect between investment

into the basic sector and investment into the advanced project.

Our setup allows to define a set of aggregate relations characterizing a competitive

equilibrium in each period. The definition of a competitive equilibrium in our economy

and the corresponding equilibrium relations are reported in Appendix B. Moreover,

(2.18a) concatenates a sequence of competitive equilibria. The long-run dynamics

of the model are fully governed by the law of motion of the endogenous stock of

technologies in (2.18a) because technological progress is the only source of endogenous

growth in this model:

γ = ε

∫ 1

0

G(ξ̂∗)ỹz
i di = εyz, (2.20)

where yz = ỹzG(ξ̂∗) is the aggregate level of (realized) output in the advanced

sector.36 As a consequence, we need to solve for the impact of the variables in our

model on the scale of successful advanced investment projects in order to analyze

the determinants of the long-run balanced growth path. The analysis of the impact

of inflation on the growth rate is carried out in three steps: First, we show that a

drop in the cutoff value for the optimal liquidity provision ξ̂∗ leads to a compositional

change of aggregate output towards the good produced in the basic sector. Second,

as already emphasized by hypothesis (H1), an increase in the nominal interest rate

reduces the optimal cutoff value and hence the insurance provided against idiosyn-

cratic liquidity risk in the advanced sector. Moreover, because the real rental rate of

capital is increasing in the nominal interest rate, the aggregate output level in the

advanced sector is strictly falling in the nominal interest rate. Third, it is shown that

36In the discussion of the balanced growth path, we leave out time subscripts for notational con-

venience.
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the equilibrium level of the nominal interest rate itself is increasing in the inflation

rate.

Along the balanced growth path, the rental rates of capital and the wages in both

sectors must be equal. Consequently, since both the basic technology and the advance

technology employ the identical composition of capital and labor as input factors, the

associated total costs in the advanced sector, which accrue when an output level of

ỹz is targeted in case of survival, amount to V · M̃C
z

= A ·MCk. Making use of

the optimal input factor demands and noting that MCk = P k in the basic sector, we

obtain:

yz

yk
=

V

A
G(ξ̂∗) (2.21)

In other words, the markup of prices over marginal costs in the advanced sector is

zero due to perfect competition if we abstract from the liquidation risk in the advanced

sector. Hence, the productivity adjusted marginal costs in both sectors are equal in

this case. If we differentiate (2.21) with respect to the cutoff-value (ξ̂∗), we obtain

the responsiveness of the intermediate output ratio with respect to changes in the

insurance of corporate liquidity shocks in the advanced sector:

d
(

yz

yk

)
dξ̂∗

=
V

A
g(ξ̂∗) > 0 (2.22)

Hence, the equilibrium ratio of investments in the advanced sector relative to the

basic sector is increasing in corporate liquidity holdings (ξ̂∗). Intuitively, lower cor-

porate liquidity holdings induce, on average, relatively more failure of advanced in-

vestment projects. In addition, this also leads to a reduction of investment into the

advanced technology as the advanced projects loose attractiveness in terms of ex-

pected revenues as compared to the basic technology. Moreover, it follows from H1

that this ratio is decreasing in the nominal interest rate R̃. That is, less liquidity is

devoted to the insurance of the advanced projects since the costs of liquidity holdings

increase.
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Finally, we know that the aggregated output level (y) is decreasing in the financial

rate (R̃) since on the one hand the real rental rate of capital increases in the financial

rate R̃ and on the other hand labor is constant.37 Because the nominal interest rate

R̃ reduces both, the ratio ( yz

yk ) and the aggregate output level, it immediately follows

that it reduces production in the advanced sector, i.e.:

dyz

dR̃
< 0 (2.23)

Therefore, taken together with (2.20), we infer that the equilibrium balanced

growth rate is strictly increasing in the provision of liquidity according to the fi-

nancial contract. An increase in the amount of corporate liquidity holdings enhances

economic growth ( dγ

dξ̂∗
> 0). It follows from (H1) that the long-run balanced growth

rate is decreasing in the nominal interest rate (R̃). In fact, each equilibrium level of

the nominal interest rate implies a different long-run balanced growth rate: γ = γ(R̃).

Importantly, this link between a nominal variable and TFP-growth in the case of in-

complete financial markets is due to firm-level heterogeneity of investment projects.

The highlighted tradeoff between risk and productivity in our framework yields an

investment composition effects that results lower aggregate growth rates for higher

levels of the nominal interest rate as emphasized in the following implication:

• I1: An increase in R̃ leads to a lower long-run balanced growth rate γ by

reducing the liquidity holdings of firms in equilibrium:

dγ

dR̃
= ε

dyz

dR̃
< 0 (2.24)

Moreover, (2.2) implies a type of Fisher equation in equilibrium between the nom-

inal interest rate and the level of inflation. In particular, we can re-write (2.2) as

follows if the economy is in a balanced growth equilibrium:

37This can be easily demonstrated by making use of the two inter-temporal Euler equations for

nominal wealth (2.2) and physical capital accumulation (2.3).
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R̃ = πφ(γ) (2.25)

In (2.25), π = P ′

P
where P ′ denotes the price level in the next period. The de-

terministic function φ(γ) = uc(cH)
βuc(c′H)

depicts the marginal rate of substitution along

the long-run balanced growth path. For a standard (strictly concave) utility function

u(cH), φγ > 0. Total differentiation of condition (2.25) yields:

dR̃

dπ
=

φ

1− εφγ
dyz

dR̃

> 0, (2.26)

which is strictly positive by I1. It follows that higher rates of inflation induce a

higher nominal interest rate if the economy is in a long-run balanced growth equilib-

rium. Consequently, economies that feature a higher level of (trend) inflation suffer

from reduced long-run productivity growth. Similarly, periods of high inflation within

a country reduce productivity growth while low-inflation periods cause a transition

to a higher balanced growth path.

• I2: An increase in the inflation rate π leads to a lower long-run balanced growth

rate γ:

dγ

dπ̃
= ε

dyz

dR̃

dR̃

dπ
< 0 (2.27)

Note that (2.20) implies that there exists a single long-run balanced growth rate

in the (first-best) case of complete financial markets (b = 0). In this case, the ex ante

pledgeable unit return complies with the ex post pledgeable unit return (ξ̂FB
t = ξ̂∗t ), so

that all investments projects in the advanced sector are re-financed:
∫ ξ̂∗t

o
G(ξ)dξ = 1.

Not surprisingly, it follows that the long-run balanced growth rate in a complete finan-

cial market economy dominates the growth rate in an economy that is characterized

by incomplete markets. Yet, the empirical firm-level evidence from Opler et al. (1999)

suggests that firms require liquidity holdings in order to invest in productive and risky

projects even in the U.S. economy.
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2.6 Empirical analysis

In this section, we employ disaggregate U.S. data to examine the specific microe-

conomic mechanism underlying our model. We do so in two steps, first exploiting

industry-level data and then firm-level data.

2.6.1 Sectoral level

Data and methodology: Our model provides a set of firm-level predictions (H1

- H3). It is straightforward to extend our one-sector model to a multi-sector setup,

whereby each individual industrial sector is a replica of the representative production

structure described in Section 4. The economy-wide TFP measure T can then be in-

terpreted as industry-specific productivity measures, and the contracting implications

H1 - H3 do apply not only for individual firms, but also for industrial sectors. Hence,

we can empirically test our hypotheses by means of industry-level data. As an impli-

cation of H2, we hypothesize that the response in terms of the cutoff ξ̂∗ to movements

in the nominal interest rate is stronger for firms operating in more volatile industries.

A positive correlation between the rate of inflation and nominal interest rates in equi-

librium (compare equation 2.26) and the fact that a lower ξ̂∗ ceteris paribus leads to

lower TFP-growth (compare equation (2.23)) then together imply that the negative

relation between TFP-growth and inflation is expected to be stronger in more volatile

sectors. In addition, we presume that firms operating in more productive sectors in

terms of their historically realized TFP-growth have had access and are more exposed

to superior investment opportunities. For given R̃, inspection of equation (B.2) re-

veals a link between the technology V available to a firm and its profitability P z

MCz in

case of survival; the intuitive implication is that high productivity growth goes along

with high potential profitability. Hence, from H3, profitable firms operating in indus-

tries with high realized productivity growth are expected to react more sensitively to

higher inflation.

We apply 3-digit industry-level data for the U.S. to investigate these hypotheses.

The productivity of U.S. industrial sectors is measured by the yearly growth rate of
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real value added per industry from the UNIDO (2002) industrial statistics database.

The yearly data are available for 28 industries from 1963-2000.38 The classification of

3-digit U.S. industries with respect to average volatility (standard deviation) and av-

erage growth of productivity in our sample are reported in Table 2.2. The correlation

coefficient between these two rankings is positive 0.23 (s.e.=0.03) and significantly dif-

ferent from zero at a 1% level according to Spearman’s rank correlation test. Hence,

an independence of both rankings is rejected confirming that more volatile sectors

are characterized by higher average productivity growth.39 Therefore, identifying (i)

volatile and (ii) strongly growing sectors with industries that are highly exposed to

the advanced technology, we divide the sample according to the median, the first

and the fourth quartile of both measures. According to our theoretical model, the

differential impact of inflation on TFP-growth across the relevant sub-samples should

result from the different sensitivity of corporate liquidity holdings in response to higher

inflation and is expected to be more pronounced in the 14 (7) industries whose volatil-

ity/average productivity growth is above the median (in the first quartile).

We control for industry specific fixed effects in all estimations. Since the first lag

of the growth rate (or level) of value added is not significant at conventional levels

in any specification, we employ a static panel estimation. That is, we estimate the

following model:

yi,t = α+ β1Πt−1 + β2(Πt−1 ∗DVi) + β3Xt + ηi + εi,t, i = 1, 2, ..., N, t = 1, 2, ..., T

(2.28)

where yi,t is the growth rate of real value added per industry, Πt−1 the first lag of

inflation, DVi a dummy which amounts to one for industries with an above median

(first quartile) volatility/mean, Xt a vector of aggregate control variables, N = 28

38We deflate the value added series in each sector with the economy-wide GDP-deflator.

39Among the ten most volatile sectors, we find industries such as professional & scientific equip-

ment, petroleum refineries, plastic products, industrial chemicals, iron and steel or non-ferrous met-

als. In contrast, the four least volatile sectors are food products, other chemicals, beverages and

printing and publishing.
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the number of cross-sections, T = 38 the number of time-periods, ηi industry specific

fixed effects, ε the error term, and α and β parameters to be estimated.40

We cluster the error terms at the industry level so that the standard errors are

robust to within group (serial) correlation.41 Inflation is measured by the first differ-

ence of the natural logarithm of the economy-wide consumer price index. We include

the first lag of inflation (L.infl) due to the potential endogeneity of contemporaneous

measures. Apart, we include the contemporaneous level and the first lag of the

growth rate of GDP (GDP − growth), the private investment share (inv − share)

and the amount of overall credit (credit) as control variables. The latter variable

is often used as a proxy for the degree of financial market development in the literature.

Results: The first column in 2.3 reports the correlation between the first lag

of inflation and the growth rate of real value added for the full sample. We find

that an 1% increase in the economy-wide rate of inflation triggers, on average, a

drop in the sectoral growth rate of real value added by .96% after controlling for

changes in (lagged) GDP-growth, the private investment share and the overall supply

of credits. The next two columns, contrast the sensitivity of value added growth

with respect to inflation in high and low volatility sectors (above/below median). In

accordance with H2, we detect that the negative impact of inflation is significant in

both sub-samples, but on average 40% higher in the 14 highly volatile sectors. In

order to test for a statistical significance of the difference between both coefficient,

we interact the lag of inflation with a dummy variable which amounts to one for

high volatility industries (according to the median) and zero otherwise. Column four

reveals that the interaction is negative and significant on a 10% level. That is, the

distorting impact of an 1% increase in inflation aggravates, on average, by .32% if we

focus on high volatility as opposed to low volatility sectors. This effect is even more

pronounced if we compare the sensitivity in the seven most volatile sectors with the

40We also included a linear time trend, but it is not significant at conventional levels.

41Consequently, our results are not subject to the caveat raised by Moulton (1990).
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Table 2.2: USA: Sectoral volatility and mean of growth in value added per worker

Industries volatility ranking average growth ranking

Petroleum refineries 22.41135418 1 8.718858009 4

Non-ferrous metals 14.82056985 2 6.70920077 14

Iron and Steel 13.20761732 3 4.28101271 26

Wood products, except furniture 12.33161156 4 7.080945619 13

Professional & scientific equipment 11.82739193 5 9.520253349 3

Leather products 10.80728372 6 3.355740195 28

Industrial chemicals 9.80919931 7 6.565964224 17

Tobacco 9.466520079 8 9.765847611 2

Plastic products 9.047342577 9 11.40471846 1

Misc. Petroleum and coal products 8.966026705 10 7.523389904 8

Transport equipment 8.93003486 11 6.708187212 15

Pottery, china, earthenware 8.753001453 12 6.344808742 18

Machinery, except electrical 8.447901686 13 7.217618028 11

Footwear, except rubber or plastic 7.94506906 14 0.592402327 29

Machinery, electric 7.771043776 15 7.865959786 6

Furniture, except metal 7.139279992 16 7.311662001 10

Paper and products 7.022639071 17 7.458034007 9

Other non-metallic mineral products 6.880040345 18 5.97226836 23

Textiles 6.602291836 19 5.229363677 25

Rubber products 6.212744352 20 5.399295643 24

Other manufacturing products 5.895932472 21 6.204043301 20

Glass and products 5.803579219 22 6.009918041 22

Wearing apparel, except footwear 5.515015898 23 3.865111854 27

Fabricated metal products 5.513984278 24 6.108224644 21

Total manufacturing 5.035217269 25 7.183158099 12

Printing and publishing 4.634205085 26 8.18032749 5

Beverages 4.122690753 27 6.238331092 19

Other chemicals 3.660652642 28 7.535671621 7

Food products 2.840748937 29 6.661717672 16
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one in the residual 21 sectors. In particular, the sensitivity of value added growth

per industry with respect to inflation is, on average, 76% higher in the seven most

volatile sectors (.62/.81). The difference is significant on a 5% level. Thus, we are

able to link the inflation-sensitivity of sectoral TFP-growth to the average sectoral

volatility of productivity growth per industry. This systematic variation in the data is

consistent with the prediction of our model summarized in H2. Columns six to seven

of 2.3 classify the impact of inflation on productivity growth according to the median

and first quartile of the observed average productivity growth of a given industry in

the sample. In accordance with H3, column six reports that the negative impact

of inflation is more pronounced in industries whose average productivity growth is

above the sample median. Yet, the difference is not significant at conventional levels.

Moreover, the coefficient not significant and even positive if we focus on the seven

sectors that experienced the highest average productivity increase in the sample.

Overall, the results emerging from the analysis of industry-level corroborate our

theoretical predictions that the negative effect of inflation on TFP-growth varies sys-

tematically with the riskiness as measured by the sectoral volatility of value added

growth (H2) of investment portfolios across sectors. In particular, we interpret these

findings as supportive for our theoretical model’s distinction between the basic tech-

nology, which is normalized to be free of liquidity risk, and the advanced technology,

where idiosyncratic liquidity shocks give rise to a corporate demand for (partial) insur-

ance against such risk. In the next subsection, we will revisit the specific implications

arising from this setup on the basis of firm-level data.

2.6.2 Firm-level

Data and methodology: Microeconomic data on firm-level behavior allow for a

straightforward test of our specific theoretical mechanism. That is, our model pre-

dicts that corporate liquidity holdings are associated with investments in superior

technologies. Moreover, firms react to an increase in inflation (the nominal interest

rate) by reducing their liquidity holdings and by shifting their portfolio towards more
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Table 2.3: Inflation-sensitivity in volatile/high-growth vs. non-volatile/low-growth sectors

Growth rate of value added

full sample vol>med vol<1.qua full sample full sample full sample full sample

inflation -.9632∗∗∗ -1.19∗∗ -.7390∗∗∗ -.8014∗∗∗ -.8107∗∗∗ -.8700∗∗∗ -1.02∗∗∗

(-4.20) (-2.69) (-5.83) (-3.84) (-3.73) (-3.51) (-4.25)

infl∗dvol -.3235∗ -.6167∗∗

(-1.65) (-2.58)

infl∗dmean -.1981 .2379

(-.97) (1.14)

GDP-growth 1.20∗∗∗ 1.29∗∗ 1.10∗∗∗ 1.19∗∗∗ 1.19∗∗∗ 1.20∗∗∗ 1.19∗∗∗

(4.36) (2.67) (3.92) (4.36) (4.34) (4.36) (4.35)

L.GDP-growth -.7851∗∗∗ -.8938∗ -.6764∗∗∗ -.7851∗∗∗ -.7869∗∗∗ -.7839∗∗∗ -.7858∗∗∗

(-2.92) (-1.71) (-4.11) (-2.92) (-2.93) (-2.92) (-2.92)

credit -11.46∗∗∗ -15.01∗∗ -7.91∗∗∗ -11.46∗∗∗ -11.52∗∗∗ -11.42∗∗∗ -11.49∗∗∗

(-3.26) (-2.23) (3.86) (-3.26) (3.27) (3.52) (-3.27)

inv-share .5734∗∗ .8181 .3287 -.6305 .5734∗∗ .5720∗∗ .5741∗∗

(2.04) (1.55) (1.64) (2.04) (2.05) (2.03) (2.04)

Ind./Obs. 28/946 14/473 14/473 28/946 28/946 28/946 28/946

The correlation coefficient between the volatility- and mean rankings amounts to .23 (s.e. 0.03) according to

Spearman’s rank correlation test. 1963-2000 yearly data. Always include a constant. Heteroscedasticity- and

serial correlation robust s.e. t-statistics in parenthesis. ***,**,* significant at 1%, 5%, 10%.
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secure investments (H1). In order to test these hypotheses we employ U.S. firm-level

data from Compustat. The data relate to the balance sheets of U.S. nonfinancial firms

and cover the time period 1970-2000. We consider annual data since we expect that

firms frequently adjust their liquidity and investment portfolios to changes in the cost

of insurance.42 Overall, we have an unbalanced panel consisting of over 8000 firms.

We include the following firm-level data: R&D expenses, the amount of cash and mar-

ketable securities (corp.liquidity), the amount of total assets (assets), the operating

income (opincome), and the amount of retained earnings (reearn). All variables are

measured in millions of dollars. Corporate R&D investments are used as a proxy for

investments in superior technologies. The amount of cash and marketable securities

approximate a firm’s corporate liquidity holdings. The other measures serve as control

variables. In particular, we expect that investments in advanced technologies increase

with the size of a firm (assets), its operating income and its retained earnings. In

addition, we use the rate of inflation measured by the first difference of the natural

logarithm of the economy-wide consumer price index to investigate the effect of this

macroeconomic variable on firm-level liquidity and investment portfolios.43 We em-

ploy the GMM system estimator following Blundell and Bond (1998). Note that the

mix of macro- and microeconomic data allows for a direct inspection of causality. In

particular, the coefficient of inflation reflects the causal impact on (marginal) R&D

expenses of a single firm since the latter has no feedback-effect on the aggregate level

of inflation.

We point out that the empirical evidence provided by Opler et al. (1999), which

42As our model demonstrates, these frequent corporate portfolio adjustments have long-run em-

pirical implications for the relationship between inflation and TFP-growth which we confirm in our

aggregate empirical analysis in section 2.3. Moreover, we obtain qualitatively similar firm-level re-

sults if we focus on longer or shorter time horizons by applying 5-year averages or quarterly data,

respectively. The results are available from the authors upon request.

43We stress that our results based on the GMM system estimator do not suffer from an aggregation

bias, as outlined by Moulton (1990), since we employ heteroscedasticity- and serial correlation robust

standard errors to avoid within-group correlation.
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we outlined in section 2.2, already supports part of our specific microeconomic

mechanism. That is, the authors reveal that U.S. firms with higher growth opportu-

nities, which are approximated by a firm’s market-to-book value as well as its R&D

expenses, hold on average more liquid assets (cash and marketable securities) relative

to total assets. We see these empirical findings as strongly supportive of the relevance

of corporate liquidity holdings for the purpose of insuring superior production

activities. In this regard, we extend the analysis in Opler et al. (1999) by investi-

gating the impact of inflation on corporate cash holdings and firm-level R&D expenses.

Results: The first two columns of 2.4 confirm H1 which states that inflation

reduces corporate liquidity holdings. Accordingly, a 1% point increase in inflation

reduces corporate liquidity holdings, on average, by 2.4 million US dollar in the same

year. The corresponding coefficient is significant on a 1% level if we employ the

GMM system estimator. Note that the long-run effect is even more pronounced in

this dynamic model since a reduction in the lagged dependent variable further re-

duces future realization of corporate liquidity holdings. The corresponding long-run

effect of a 1% point increase in inflation amounts to -9.74 million US dollar.44 The

negative effect of an increase in inflation is independent of variations in total assets,

operating income, retained earnings or firm fixed effects. Column three and four of

2.4 display a negative correlation between inflation and firm-level R&D expenses after

controlling for the other firm-level variables. Note that the coefficient of inflation de-

clines substantially if we additionally control for corporate liquidity holdings. Column

five and six report our preferred estimation specification following Blundell and Bond

(1998). We find that firms reduce their investments in R&D significantly in years

of higher inflation. Accordingly, a 1% point increase in inflation reduces corporate

R&D expenses, on average, by .19 million US dollar in the same year and by 8.8

million US dollar in the long-run. This distorting impact declines, on average, by

44If β1 = 2.36 denotes the coefficient of inflation and ρ = .7578 the one of the lagged dependent

variable the long-run effect approximately amounts to β1
1−ρ .
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Table 2.4: U.S. firm-level yearly data: R&D versus investments

Corporate liquidity R&D inv

OLS GMM-sys OLS OLS GMM-sys GMM-sys GMM-sys GMM-sys

inflation -1.73∗∗∗ -2.36∗∗∗ -.1692∗∗∗ -.1291∗∗∗ -.1919∗ -.0612 .1771 -.5942

(-7.45) (-4.88) (-3.82) (-3.03) (-1.69) (-.66) (.14) (-.40)

corp. liquidity .0173∗∗∗ .0470∗∗∗ -.1099

(3.65) (2.95) (-.66)

assets .0056 .0055 -.0009∗∗ -.0011∗∗∗ -.0018∗ -.0019∗∗ -.0109 -.0063

(1.56) (.74) (-2.05) (-2.79) (-1.84) (-1.95) (-.40) (-.25)

opincome .0034 -.0003 .0115∗∗∗ .0109∗∗∗ .0298∗∗∗ .0225∗∗∗ .5931∗∗∗ .6211∗∗∗

(.09) (-.03) (3.65) (3.36) (3.39) (2.90) (4.27) (4.07)

reearn .0213 .0749∗∗ .0009 -.0001 .0011 -.0033 -.0418 -.0257

(1.49) (2.14) (.72) (-.09) (.48) (-1.03) (-.47) (-.32)

lag-dep.-var. .898∗∗∗ .7578∗∗∗ 1.03 1.00 .9782 .9248 .9773 .9634

(29.11) (9.44) (75.78) (59.16) (21.1) (14.8) (12.7) (13.6)

Firms 8285 8285 8287 8287 8287 8287 8276 8276

Observations 64681 64681 64708 64703 64708 64703 64494 64494

2. auto-cor. .479 .899 .854 .743 .771

Hansen-test .160 .046 .272 .109 .100

The maximum lag is restricted to 10 years in order to reduce the size of the IV matrix. 1970-2000 yearly data.

Heteroscedasticity robust s.e. t-statistics in parenthesis. ***,**,* significant at 1%, 5%, 10%.
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68% if we additionally control for corporate liquidity holdings. The resulting inflation

coefficient is no longer significant at conventional levels. Thus, the negative effect of

inflation disappears once we control for changes in corporate liquidity holdings. This

finding reveals that the negative impact of inflation on firm-level R&D investments

is transmitted via fluctuations in corporate liquidity holdings just like our theoretical

mechanism suggest, compare H1 and I2. Moreover, in accordance with Opler et al.

(1999), we detect a strong positive correlation between corporate liquidity holdings

and R&D which is significant at a 1% level. We reject the presence of second order

autocorrelation in all estimation specifications and the Hansen test of overidentifying

restrictions supports the validity of the instruments. Hence, the estimation speci-

fications appears to be well specified.45 In the last two columns of 2.4, we include

the corporate level of overall capital investments instead of specific R&D investments

as the dependent variable. Recall that our model predicts that only investments in

the advanced technology are negatively affected by inflation or a reduction in corpo-

rate liquidity holdings. Indeed, the results show that inflation does not influence the

overall quantity of corporate investments. Similarly, they are also not affected by the

level of corporate liquidity holdings. Thus, the distorting impact of inflation is specific

to investments in advanced technologies. Finally, note that the systematic pattern of

correlation between R&D specific corporate investments and inflation after controlling

for other firm characteristics clearly suggests that the negative inflation coefficient is

not just picking up time effects.46 Instead, there appears to be a systematic variation

in the data supporting our hypotheses.

Summing up, the firm-level results show that inflation has a negative impact on

firm-level R&D expenses. However, this effect disappears if we correctly control for

corporate holdings of cash and marketable securities. Thus, the impact of inflation

on firm-level investments in superior technologies is due to variations in corporate

45Inflation is considered as an exogenous variable (see above). The microeconomic variables are

considered as (potentially) endogenous.

46We also included a linear time trend, but it is not significant at conventional levels.
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liquidity holdings. This empirical result directly approves the microeconomic mecha-

nism underlying our theoretical derivations of a negative aggregate relation between

inflation and long-run TFP-growth.

2.7 Conclusion of Chapter 2

The present chapter presents an endogenous growth model that combines elements

of the growth and business cycle literature: it considers financial markets frictions

and their interaction with short-run nominal constraints and endogenizes the pro-

ductivity process via an endogenous technology choice which is catalyzed by these

frictions. We demonstrate that inflation reduces long-run productivity growth in this

framework. Thus, TFP-growth is partially endogenized by relating changes in the

long-run balanced growth path of TFP to changes in monetary policy. The model

replicates the negative empirical long-run relationship between inflation and TFP-

growth as observed by Fischer (1993) and others adequately. In the empirical analy-

sis, we present micro-econometric evidence from disaggregated sectoral and firm-level

data that is consistent with our specific microeconomic mechanism underlying the

macroeconomic monetary transmission channel. In particular, we detect at the in-

dustry level that the negative effect of inflation on productivity-growth per sector

varies systematically with the riskiness (volatility) of investments in a sector (H2).

The firm-level data reveal that an increase in inflation is associated with reduced cor-

porate liquidity holdings in the U.S. economy (H1). In addition, aggregate inflation

has a negative impact on firm-level R&D expenses, whereas we are able to show that

the effect is due to fluctuations in corporate liquidity holdings just as the theoreti-

cal model suggests. Therefore, the general equilibrium implications of the constraint

optimal financial contracting scheme are consistent with micro-econometric empirical

evidence. In fact, the disaggregated empirical results confirm the relevance of our

specific monetary transmission channel even in developed countries such as the USA.

These microeconomic interactions lead to the key insight: the short-run interplay be-

tween inflation, the financial market friction and a firm’s compositional investment
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decision involve long-run consequences for TFP-growth. Hence, the model postulates

a novel aspect of monetary transmission in that movements in inflation are associated

with changes in the long-run growth path of TFP. Since differences in TFP explain

roughly 2/3 of cross-country income fluctuations, differences in trend inflation across

countries represent an important factor to account for these fluctuations. This re-

sult entails strong policy implications for some (emerging) economies since changes in

monetary policy regimes represent a relatively inexpensive way to catch up in terms

of TFP and to encourage private sector development.
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Chapter 3

Distributional effects of capital and

labor on economic growth

In the following, we propose a growth model for an economy consisting
of firms which are heterogeneous in technologies and input demands. We
show that the growth rate in this economy depends not only on changes
in the aggregate level of capital and labor, but also on changes in the al-
location of these inputs across firms. As the latter effects are neglected in
conventional growth models, they are misleadingly captured by the resid-
ual TFP measure. In contrast, we are able to quantify the influence of
these components. Our empirical analysis, which is based on structural
estimation from firm-level data, reveals that changes in allocation of capi-
tal and labor have pronounced effects on GDP-growth for most European
countries. Further, we take cross-country differences in the distributional
effects into account to improve conventional growth accounting exercises.
In particular, we find that they explain additionally up to 17% of growth
differences among 19 European countries. Consequently, allowing for het-
erogeneity in firm-level technologies and input demands increases the ex-
planatory power of the inputs.

3.1 Introduction

In the following, we propose a growth model for an economy consisting of firms which

are heterogeneous in technologies and input demands. We show that the growth rate

in this economy depends not only on changes in the aggregate level of capital and

labor, but also on changes in the allocation of these inputs across firms. As the latter
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effects are neglected in conventional growth models, they are misleadingly captured

by the residual measure, referred to as total factor productivity (TFP). In contrast,

we are able to quantify the influence of these components by structural estimation

from firm-level data. Further, we take cross-country differences in the distributional

effects into account to improve conventional growth accounting exercises.

Why do some countries grow and others stagnate?1 This question initiated the

growth accounting literature, which assigns cross-country differences in growth or

income to differences in physical and human capital as well as the unobservable effi-

ciency with which input factors are combined. The consensus view in this literature is

that only approximately one third of the cross-country growth or income differences is

explained by differences in input factors. The residual two thirds are left unexplained

and attributed to differences in the unobservable efficiency which is referred to as total

factor productivity (TFP).2 In this context, Abramovitz (1956) refers to TFP as the

measure of our ignorance.

The fact that TFP is unobservable and at the same time explains the major part

of cross-country differences triggered tremendous efforts to identify its determinants

in recent years.3 However, we show in this chapter that the above growth accounting

results have to be revised if one consistently aggregates over heterogeneous firms. In

order to illustrate the relevance of aggregation for growth models we briefly discuss

fundamental results of the aggregation literature.

The pillar of every macroeconomic growth model is an aggregate production func-

tion F , which relates aggregate capital K̄ and labor L̄ to aggregate output Ȳ , i.e.,

Ȳ = F (K̄, L̄). However, although there exists a well developed microeconomic the-

ory of production for a single firm, there is no corresponding theoretical foundation

for the entire economy. In fact, the aggregate production function suffers from two

1The Science magazine considers this question as one of the 125 “most compelling puzzles and

questions facing scientists today” (Science, 2005).

2See, for example, Caselli (2005), Hall and Jones (1999) or Jorgenson (2005).

3This issue is best summarized by the title of a recent paper by Prescott (1998) “Needed: A

Theory of Total Factor Productivity.”
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types of aggregation problems. The first, often referred to as the “measurement prob-

lem,” involves the aggregation of different types of capital, labor, and output within

a firm into one capital and labor input and one output. The second is concerned

with aggregation of heterogeneous technologies and input demands across firms into

their aggregate counterpart. These problems have been dealt with extensively in the

aggregation literature. Early works by Nataf (1948), Gorman (1953), and a series of

papers by Franklin Fisher (collected in Fisher (1993))4 have shown that in the absence

of perfect competition and perfect factor mobility the aggregate production function

F cannot be linked to microeconomic production functions unless all firms operate

according to identical and constant returns to scale technologies.

A frequent short-cut that circumvents the problem of aggregation over heteroge-

neous technologies is the assumption that the production function of an entire econ-

omy complies with the one of a single representative firm. Although the above theo-

retical results show that this link is only possible under very restrictive assumption,

it is often applied in theoretical and empirical analysis due to its simplicity. However,

from a practical point of view, growth models that ignore consistent aggregation over

heterogeneous firms will suffer from serious drawbacks:5 they neglect growth effects

of (i) changes in the allocation of inputs6 and (ii) changes in the pattern of economic

interactions between firms. Yet, it is reasonable to expect that these factors affect

4For a comprehensive survey on aggregation of production functions, see Felipe and Fisher (2003).

5Hopenhayn (1992) initiated a literature on the effect of firm heterogeneity on industry dynamics.

His approach was extended, e.g., by Melitz (2003) to analyze the impact of trade liberalization on

the aggregate productivity of an economy. In these models firms are heterogeneous in productivity

which is included in a way such that the impact of the productivity distribution on aggregate demand

for inputs is fully determined by the average productivity. Consequently, under this parsimonious

aggregation rule, aggregate output depends on average productivity and average input demands but

not on the allocation of inputs across firms. That is, once the average productivity level is determined

the model yields identical aggregate outcomes as a model based on a representative firm.

6Empirical studies document that these changes are substantial in developed and developing

countries. For example, Roberts and Tybout (1997) quantify the rate of labor reallocation among

manufacturing firms between 25 and 30 percent.
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growth substantially, since they represent changes in growth due to changes in the

market structure. For example, differences in the degree of competition in different

industries as well as different incentives to innovate for small, medium, and large firms

are found to affect technological change (see, e.g., Aghion and Griffith (2005)). Where

are these effects in the growth literature? As they are not assigned to the levels of

aggregate capital or labor, they are assigned to the unobserved efficiency. Therefore,

they are misleadingly captured by the residual TFP measure.

In order to assess the impact of changes in the allocation of capital and labor on

growth, we apply the aggregation procedure established by Hildenbrand and Kneip

(2005). Our main result is that the growth rate of aggregate output depends on

changes in the levels of aggregate capital and labor as well as changes in the distri-

bution of capital and labor in the economy. We quantify the growth effect of each

component by means of structural estimation based on firm-level data. These effects

are estimated separately for each of 20 European countries. Our main findings are that

distributional effects are significant in all countries. Further they are as large as the

corresponding level effects in most countries. Finally, we exploit the information on

the different distributional changes across countries to conduct a growth accounting

exercise. More precisely, we assess the explanatory power of the distributional changes

with respect to cross-country growth differences. It turns out that these effects ex-

plain additionally up to 17%. Accordingly, an aggregation approach that consistently

accounts for firm heterogeneity can help explain the growth path of a single country

as well as cross-country growth differences. Hence, the role of capital and labor in

explaining the growth path of a single country or growth differences across countries

is understated.

In the next section, we present our growth model for an economy consisting of

heterogeneous firms. In Section 3, we describe the data, the empirical strategy, and

discuss our results. Section 4 presents the growth accounting exercise, whereas the

final section concludes.

100



3.2 The Model

Assume that in period t each firm j from a heterogeneous population of firms Jt

produces according to the firm-specific production function f j
t (·) defined by:

Y j
t = f j

t (Kj
t , L

j
t),

where Y j
t denotes the output level, Kj

t the capital stock and Lj
t the labor demand.7

Further, we assume that the heterogeneity in production functions f j
t , i.e., in tech-

nologies and input demands, can be parameterized by a vector of parameters V j
t . In

general, V j
t is unobservable. Then one can write:

Y j
t = f(Kj

t , L
j
t , V

j
t ) (3.1)

Hence, technological changes over time translate into changes in the distribution

of V j
t across Jt. The function f can therefore, without loss of generality, be regarded

as time-invariant and equal for all individuals. In the simplest scenario, f could be a

Cobb-Douglas production function with V j
t = (V j

1,t, V
j
2,t) such that Y j

t = V j
1,t ·K

j
t

V j
2,t ·

Lj
t

1−V j
2,t . However, in order to establish our main result at the aggregate level, an

explicit parametric specification of f is not required.

In the above setup, we define aggregate output Ȳt in period t as:

Ȳt =

∫
f(K,L, V ) dGt,KLV , (3.2)

where K, L, and V are generic random variables corresponding to capital, labor,

and unobservable productivity parameters of a randomly chosen firm, respectively,

and Gt,KLV is the joint distribution of (K,L, V ) across the population Jt. Thus,

GKLV is the explanatory variable for aggregate output. However, we do not need to

model GKLV but only its changes over time, since our objective is to determine the

growth rate instead of the level of aggregate output.

In order to impose a structure on the evolution of the unobservable distribution of

V , we introduce a set of observable firm specific attributes Aj
t with the corresponding

7One can easily extend the model to the case of multiple capital and labor inputs.
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random variable A, which are expected to be correlated with V : the age of a firm, the

region or industry in which it operates, its ownership structure, and its legal form.

Further, we use A to decompose Gt,KLV into the distributions Gt,V |KLA, Gt,A|KL,

and Gt,KL. The first term is the conditional distribution of V given (K,L,A), the

second is the conditional distribution of A given (K,L), and the third is the joint

distribution of (K,L). We write:

Ȳt =
∫ [∫ (∫

f(K, L, V ) dGt,V |KLA

)
dGt,A|KL

]
dGt,KL =

∫ (∫
f̄t(K, L, A) dGt,A|KL

)
dGt,KL,

(3.3)

where f̄t(K,L,A) is the conditional mean of output Y given (K,L,A) in period t.

Thus, it is a regression function of Y on (K,L,A), which can be estimated from a

cross-section of firms in period t.

From (3.3) we infer that assumptions on changes in GV |KLA, GA|KL, and GKL are

required in order to model output growth. It is easier to model the evolution of a

distribution if it is symmetric, because a symmetric distribution can be well-described

by its first few moments, like its mean and variance. Since the distributions of capital

and labor are right-skewed in all countries, we formulate the model assumptions in

terms of log capital kj
t := logKj

t and log labor ljt := logLj
t with the corresponding

random variables k and l. Further, we define k̄t and l̄t as the mean of k and l across

Jt and σk
t and σl

t as the corresponding standard deviations. By analogy to GV |KLA,

GA|KL, and GKL, we define GV |klA, GA|kl, and Gkl, respectively. In addition, Gk and

Gl represent marginal distributions of log capital and log labor. Finally, let Gk̃l denote

a component-wise standardized joint distribution of (k, l), which is defined as a joint

distribution of (k̃, l̃), where k̃ := k−k̄
σk and l̃ := l−l̄

σl .

In line with the aggregation approach of Hildenbrand and Kneip (2005), we impose

the following assumptions.

Assumption 1: (“Structural stability”8 of Gkl) The component-wise standardized

8The concept of structural stability of a distribution relies on an empirical regularity that dis-
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joint distribution of log capital and log labor Gk̃l is approximately equal for two con-

secutive periods t and t− 1, i.e., Gt,k̃l ≈ Gt−1,k̃l.

It is important to note that Gk̃l refers to a standardized distribution. That is, if

Assumption 1 holds, the entire change in Gkl over two consecutive periods is fully

captured by the changes in means and the variances of kj
t and ljt .

9

In order to impose the assumption on the evolution of GA|kl we define kt,τ as the

τ -quantile of the distribution Gt,k and lt,η as the η-quantile of the distribution Gt,l,

respectively.

Assumption 2: The conditional distribution of A given k = kτ and l = lη denoted by

GA|kτ lη is approximately equal for two consecutive periods t and t− 1, i.e., Gt,A|kτ lη ≈

Gt−1,A|kτ lη .

tributions of individual variables across large populations of economic agents change very slowly

over time. It has been first noticed by Pareto (1896) and introduced into macroeconomic models

by Malinvaud (1993). More precisely, for a distribution of a certain parametric form, for example,

the normal distribution, structural stability holds, if its normal structure prevails and its entire

evolution is captured by changes in its mean and its variance. However, this concept of structural

stability cannot be applied to distributions which are poorly approximated by a parametric form. In

this context, Hildenbrand and Kneip (2005) proposed a nonparametric counterpart of Malinvaud’s

idea. Instead of keeping the parametric structure constant and allowing for changes over time in

few parameters, one can keep these parameters constant and allow the shape of the distribution to

vary over time. This can be achieved by simple transformations of the distribution like centering

(constant mean) or standardizing (constant mean and variance). Accordingly, structural stability as

defined by Hildenbrand and Kneip (2005) holds, if a centered or standardized distribution does not

change over two consecutive periods.

9To be more precise, Hildenbrand and Kneip (2005) model the evolution of Gkl in terms of a

distribution which is standardized by a full covariance matrix Σt :=

 (σk
t )2 σkl

t

σkl
t (σl

t)
2

, instead of a

component-wise standardized one, which uses the matrix Σ̃t =

 (σk
t )2 0

0 (σl
t)

2

. Our version of the

assumption is more stringent, as it requires that the correlation between log capital and log labor

does not change significantly over two consecutive periods. The main advantage of our formulation

(see Proposition and Appendix C) is the possibility to separate growth effects of changes in σk from

growth effects of changes in σl.
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Assumption 2 refers to the distribution of A across firms with log capital and log

labor in the same quantile position (τ, η) of Gkl in period t and t− 1, instead of firms

with the same values of k and l. We employ the former specification since it increases

the likelihood that we condition on the same group of firms in both periods. That is,

if Gkl shifts over time due to a common trend, we refer to the same group of firms in

both periods by conditioning on the quantile position as opposed to conditioning on

the same values of k and l.

Note that one is able to verify Assumptions 1 and 2, since Gkl and GA|kl are

observable in firm-level data. We document in the Appendix C that both assumptions

are supported by our data. In contrast, one is not able to falsify the following two

assumptions on GV |klA as they concern a distribution of unobservable variables.

Let Jt(k, l, A) denote the subpopulation of firms with capital k, labor l, and at-

tributes A and V̄t(k, l, A) denote the mean of V across Jt(k, l, A). Further, GṼ |klA

denotes the centered distribution of V across Jt(k, l, A), whereby Ṽ corresponds to

the centered variable Ṽ := V − V̄t(k, l, A).

Assumption 3: The distribution GṼ |klA is approximately equal for two periods t and

t − 1, i.e., Gt,Ṽ |klA ≈ Gt−1,Ṽ |klA. Note that Assumption 3 is a very mild assumption

since we allow for any form of heterogeneity in V across firms with different capital

stocks, labor stocks, or firm characteristics, i.e. Assumption 3 refers to the conditional

distribution of Ṽ given k, l, and A. Furthermore, we even allow for heterogeneity in

V across firms with the same capital stock, labor stock, and firm characteristics, as

long as changes in GV |klA are captured by changes in the conditional mean V̄ (k, l, A).

In this case, we assume that V̄t(k, l, A) is additively separable in (k, l) and t. More

precisely,

Assumption 4: V̄t(k, l, A), can be additively factorized by V̄t(k, l, A) = ϕ(k, l, A) +

ψ(t, A), where the function ϕ is continuously differentiable in k and l.

Proposition: (Hildenbrand and Kneip (2005)) If Assumptions 1-4 hold, the growth

rate of aggregate output in the economy, gt := Ȳt−Ȳt−1

Ȳt−1
, is given by:
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gt = βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1) (3.4)

+ γk
t−1

(σk
t − σk

t−1

σk
t−1

)
+ γl

t−1

(σl
t − σl

t−1

σl
t−1

)
(3.5)

+ (effects due to changes in V̄t−1(k, l, A))

+ (second order terms of the Taylor expansion).

The coefficients βk
t−1, β

l
t−1, γ

k
t−1, and γl

t−1 are defined in terms of partial derivatives

of the regression function f̄t−1(k, l, A). For s = {k, l} and S = {K,L}, βs
t−1, γ

s
t−1 are

defined by

βs
t−1 =

1
Ȳt−1

∫
∂sf̄t−1(k, l, A) dGt−1,klA, (3.6)

γs
t−1 =

1
Ȳt−1

∫
(s− s̄t−1)∂sf̄t−1(k, l, A) dGt−1,klA −

βs
t−1

S̄t−1

∫
(s− s̄t−1) exp(s)dGt−1,s (3.7)

Remark 1: The proof is given in Hildenbrand and Kneip (2005). However, the above

Proposition differs from the one in Hildenbrand and Kneip (2005) in two aspects.

First, our Assumption 1 relies on a component-wise standardization which makes it

possible to separate growth effects of changes in σk from growth effects of changes in

σl. Second, we model the aggregate relation in terms of the logarithm of aggregate

variables, i.e., log K̄ and log L̄ and not the aggregates of the logarithms of individual

variables, i.e., k̄ and l̄. This distinction yields different definitions of γk
t−1 and γl

t−1 and

is essential to compare our model with conventional growth models, which are based

on (the logarithm of) aggregate variables. See Appendix C for the corresponding

derivations.

From the above representation we infer that the growth rate g of aggregate output

does not only depend on changes in aggregate capital and aggregate labor (term (3.4)).

It also depends on changes in the allocation of inputs (term (3.5)) measured by the

standard deviation of log capital and log labor across firms.
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The aggregate coefficients (βk
t−1, γ

k
t−1) and (βl

t−1, γ
l
t−1) depend on the derivatives of

the regression function f̄t−1 with respect to k and l, respectively. All other variables

in (3.7) are observable. The derivatives ∂kf̄t−1(k, l, A) and ∂lf̄t−1(k, l, A) can be es-

timated using a cross-section of firms in period t − 1. Hence, they can be estimated

independently of each other in each time period. It is important to note that in

the estimation of our representation of the growth rate no time-series model fitting

takes place, which would require to include all potential growth determinants. Our

estimation procedure does not require information on the growth rate of aggregate

capital and labor nor the corresponding standard deviations, since the computation

of aggregate coefficents is based on the estimation from a single cross-section of firms.

In contrast, we are able to quantify the growth effect of changes in the distribution

of inputs without specifying an exhaustive model for the aggregate growth rate. We

describe the estimation methodology for these coefficients in more detail in Section

3.3.2.

Remark 2: Under Assumption 1 coefficients βk
t−1 and βl

t−1 can be interpreted as

elasticities of aggregate output with respect to aggregate capital and aggregate labor,

respectively. Accordingly, γk
t−1 and γl

t−1 are elasticities of aggregate output with re-

spect to σk and σl, respectively.10 One expects βk
t−1 and βl

t−1 to be positive. However,

to draw conclusions on the expected sign of γk
t−1 and γl

t−1 one needs to impose addi-

tional assumptions on the impact of changes in the market structure on the standard

deviation of inputs. For example, if a higher degree of product market competition

leads to more similarity in firm size, negative γk
t−1 and γl

t−1 indicate a positive relation-

ship between growth and competition. Alternatively, we outlined above that changes

in the standard deviation represent changes in the pattern of economic interactions

between firms. These interactions comprise, for instance, technology spill-overs be-

tween firms. If technology diffusion is stronger among more similar firms, we expect a

negative relation between spill-overs and the standard deviation of inputs and, hence,

10See Hildenbrand and Kneip (2005) for a detailed discussion on the interpretation of the coeffi-

cients.
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negative γk
t−1 and γl

t−1.

Our theoretical result has an important implication for growth accounting. To

illustrate this point, let us hypothetically claim that all variables in our model other

than capital and labor do not change over time. Then, in a classical growth model,

changes in Ȳ would be in part attributed to changes in the mean of capital and

labor (K̄ and L̄). However, a part of the change in Ȳ , which is not captured by

the effect of changes in K̄ and L̄, would be attributed to changes in aggregate TFP.

Such a conclusion, however, would be misleading, since we assumed that TFP did

not change. From the Proposition we know that it is the effect of changes in the

distribution of inputs, which is erroneously attributed to changes in TFP. Obviously,

the correct conclusion in this framework is only possible in models which allow for

input heterogeneity of firms.

3.3 Empirical Analysis

In the following, we structurally estimate the effects of changes in the level and allo-

cation of capital and labor on growth separately for each of 20 European countries in

our sample.

3.3.1 Data

The analysis is based on European firm-level data from 2002 until 2004.11 The data

stem from the Bureau van Dijk’s AMADEUS database. It contains information from

firm balance sheets and covers all firms in each country. We measure output as real12

value added. Capital and labor are measured as real fixed tangible assets and the real

11We estimate the corresponding coefficients exclusively for 2003. Yet, we need additional obser-

vations in 2002 for the Olley and Pakes (1996) estimation procedure and in 2004 for the growth

accounting exercise.

12Real variables are obtained by deflating by the national output price deflators. Unfortunately,

price deflators were not available at the industry level for most of the 20 European countries.
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total cost of employees, respectively.13 Our procedure requires that the firms have

non-missing observations in 2003. Moreover, we only include countries in which data

for at least 200 firms are available.

Furthermore, we include firm’s age and other control variables to control for differ-

ences in economic environment across firms. In particular, we account for industry-

specific and region-specific fixed effects, in that we distinguish sectors by means of two

digit NACE codes and include regional dummies. Moreover, we incorporate dummy

variables that capture the ownership status of a firm: (i) quoted takes value 1 if a

firm is publicly quoted and 0 if not, while (ii) indep1- indep9 correspond to inde-

pendence indicators (defined in the AMADEUS database) which represent different

shareholder structures. Finally, we include gross investment, measured by the change

in the capital stock plus depreciation, which is employed as an instrument for the un-

observable technology shock in the estimation procedure of Olley and Pakes (1996).

The descriptive statistics of the variables for each country in 2003 and 2004 are

listed in Table 3.1. The first column indicates that the number of observations used

for estimation varies substantially across countries in our sample. These differences

can be attributed to different filing regulations of individual countries. For example,

German companies are not legally obliged to reveal some information from their bal-

ance sheets. Hence, although the full sample for Germany covers over 800,000 firms

in 2003, joint information on value added, fixed tangible assets and the number of

employees is available for only roughly 6,000 German firms. In contrast, the corre-

sponding information is available for most companies in the Spanish or Italian sample

which contain about 360,000 and 117,000 observations in 2003, respectively. Analog,

13We define labor in this way in order to account, to a certain extent, for differences in the quality

of employees, i.e., human capital, across firms. These differences are captured by the total cost of

employees, as long as firms that are characterized by the same capital stock, number of employees,

and the same attribute profile A, (that is, the same industry, region, age, ownership structure, etc.)

but a higher human capital stock pay higher wages. We emphasize that the qualitative results do

not change if we define labor as the number of employees. These results are available from authors

upon request.
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means and variances of the variables differ noticeably across countries. We observe

relatively large firms in Germany, the Netherlands, Austria, Great Britain and Por-

tugal, whereas the sample covers many small firms in Romania, Spain, Italy, and

Sweden. Accordingly, we also observe analog differences in the standard deviations.

In all, the date reveals a substantial amount of heterogeneity both across firms within

a country as well as across countries.
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Table 3.1: Descriptive statistics of AMADEUS data

country n2003 Ȳ2003 K̄2003 L̄2003 n2004 Ȳ2004 K̄2004 L̄2004

Austria 1071 23.766 (112.158) 27.059 (127.479) 18.098 (62.713) 1364 23.883 (113.935) 27.296 (130.298) 14.039 (43.775)

Belgium 10980 12.159 (123.637) 6.708 (32.035) 4.652 (13.922) 11036 12.146 (123.736) 6.720 (31.395) 5.156 (15.683)

Bosnia & H. 2573 0.420 (2.806) 1.358 (9.766) 0.118 (0.353) 2862 0.399 (2.643) 1.215 (7.586) 0.132 (0.380)

Bulgaria 5818 0.311 (2.734) 0.755 (4.083) 0.156 (0.591) 5955 0.308 (2.738) 0.776 (4.029) 0.175 (0.658)

Czech R. 11494 1.258 (14.420) 1.995 (9.655) 0.622 (1.614) 15799 1.270 (13.455) 2.003 (9.833) 0.615 (1.671)

Denmark 20426 2.915 (78.919) 1.359 (7.839) 1.173 (4.930) 21782 2.981 (77.818) 1.370 (7.804) 1.181 (4.778)

Estonia 7666 0.232 (1.799) 0.239 (0.966) 0.097 (0.243) 8083 0.235 (1.811) 0.257 (1.060) 0.112 (0.299)

Finland 32401 1.695 (39.112) 0.795 (5.318) 0.673 (2.848) 30328 1.700 (39.318) 0.730 (4.813) 0.785 (3.215)

France 157141 1.914 (49.716) 0.739 (4.914) 1.154 (4.081) 168079 2.045 (52.413) 0.731 (4.788) 1.214 (4.354)

Germany 6076 71.486 (840.303) 61.754 (273.698) 45.140 (188.750) 7623 68.272 (778.787) 62.813 (296.033) 34.938 (130.982)

Great Britain 41649 18.927 (263.407) 13.435 (88.357) 8.671 (34.791) 37666 19.163 (269.775) 14.751 (98.518) 11.578 (46.104)

Italy 117111 2.385 (86.508) 1.462 (6.618) 1.059 (3.622) 75392 1.976 (24.330) 1.561 (7.379) 1.984 (6.541)

Netherlands 7365 24.505 (329.132) 19.989 (109.564) 16.695 (71.049) 7375 25.337 (347.447) 20.302 (115.710) 17.977 (78.165)

Norway 12051 1.416 (45.918) 1.792 (9.647) 0.540 (1.295) 14299 1.432 (46.209) 1.747 (9.624) 0.679 (1.981)

Poland 10571 2.612 (26.125) 3.338 (13.321) 0.920 (2.119) 11188 2.551 (25.342) 3.823 (14.851) 1.101 (2.535)

Portugal 1451 9.958 (84.895) 19.793 (147.204) 6.114 (25.616) 1487 9.325 (84.477) 21.399 (154.907) 6.003 (25.167)

Romania 49018 0.102 (2.354) 0.102 (0.446) 0.046 (0.164) 66230 0.102 (2.403) 0.120 (0.505) 0.042 (0.141)

Slovakia 2042 1.626 (11.354) 4.157 (30.283) 0.842 (2.302) 2557 2.413 (22.984) 3.231 (23.581) 0.828 (2.489)

Spain 357410 0.956 (34.631) 0.492 (2.250) 0.313 (1.071) 360517 1.003 (37.231) 0.519 (2.374) 0.340 (1.175)

Sweden 123058 1.555 (42.467) 0.731 (5.522) 0.401 (1.776) 125725 1.474 (38.704) 0.735 (5.553) 0.437 (1.906)

All values in millions of EUR.
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3.3.2 Estimation strategy

The aggregate coefficients βs
t and γs

t , s ∈ {k, l} can be estimated as (suitably weighted)

average derivatives in the regression of value added Y j
t on log capital kj

t , log labor ljt ,

and a vector of firm specific attributes Aj
t , i.e., in the model:

Y j
t = f̄t(k

j
t , l

j
t , A

j
t ; ζ) + uj

t , (3.8)

where ζ is the vector of parameters to be estimated and uj
t is the error term

with E(uj
t) = 0. Hence, according to (3.6) and (3.7), once consistent estimates

̂∂sf̄t(k, l, A; ζ), s ∈ {k, l}, are obtained, one can estimate aggregate coefficients by:

β̂k
t =

∑
j∈Jt

̂∂kf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

, β̂l
t =

∑
j∈Jt

̂∂lf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

, (3.9)

γ̂k
t =

∑
j∈Jt

(kj
t − ˆ̄kt)

̂∂kf̄t(k
j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

− β̂k
t

K̄t

∑
j∈Jt

(kj
t − ˆ̄kt)K

j
t , and (3.10)

γ̂l
t =

∑
j∈Jt

(ljt − ˆ̄lt)
̂∂lf̄t(k

j
t , l

j
t , A

j
t)∑

j∈Jt
Y j

t

− β̂l
t

L̄t

∑
j∈Jt

(ljt − ˆ̄lt)L
j
t (3.11)

Our empirical strategy is focused on the model specification and estimation for f̄t.

However, our analysis revealed that a regression of yj
t := log Y j

t on (kj
t , l

j
t , A

j
t) provides

a significantly better model fit and stability of results, as compared to the regression

of Y j
t on (kj

t , l
j
t , A

j
t). Consequently, we estimate derivatives of f̄t from the model:

yj
t = h̄t(k

j
t , l

j
t , A

j
t ; θ) + εj

t , (3.12)

where θ is the vector of parameters to be estimated and εj
t is the error term with

E(εj
t) = 0. In doing so, we use the fact that ∂sf̄t(k

j
t , l

j
t , A

j
t ; ζ̂) = Y j

t ∂sh̄t(k
j
t , l

j
t , A

j
t ; θ̂),

if ζ̂ and θ̂ are consistent estimates of ζ and θ, respectively. Our basic specification

for h̄t is linear in (k, l, A) and can be estimated using OLS. Further, we analyze the

robustness of our results in two ways. First, we control for possible simultaneity

between εj
t and (k, l) using the Olley and Pakes (1996) method. Second, we extend
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our analysis to a partially linear specification of h̄t, in which the relationship between

y and (k, l) is modelled nonparametrically. The latter procedure avoids a parametric

misspecification of h̄t.

The loglinear model

Our basic specification for h̄t is the loglinear model, i.e.:

yj
t = θ0 + θkkj

t + θlljt + θ′AA
j
t + εj

t , (3.13)

which implies that ̂∂kf̄t(k
j
t , l

j
t , A

j
t) = θ̂kY j

t and ̂∂lf̄t(k
j
t , l

j
t , A

j
t) = θ̂lY j

t .14 These

quantities are then imputed into (3.9) - (3.11), in order to calculate aggregate param-

eters.

In the simplest case, (3.13) can be estimated by the OLS method from a single

cross-section in 2003. However, the vast literature on estimation of production func-

tions from firm-level data points out that OLS may suffer from a simultaneity problem.

This problem arises if there is a contemporaneous correlation between the demand for

inputs kj
t , ljt and the realization of the unobservable technology shock contained in

εj
t . In such a case, estimates θ̂k and θ̂l, and, hence, β̂k and β̂l would be biased. There

are several approaches to correct for simultaneity between (kj
t , l

j
t ) and εj

t and all of

them put additional restrictions on the data. For instance, Olley and Pakes (1996)

propose a method, which uses changes in firm’s investment decision as a proxy for the

productivity shock. However, only firms with non-missing data for 2002 and 2003 on

value added, capital, labor, and investment can be used for estimation. Depending on

the country, this requirement involves an elimination of up to 70% of the companies

from our sample of firms with non missing data on value added, capital, and labor in

2003. Following the same idea, Levinsohn and Petrin (2003) suggest the use of inter-

mediate inputs instead of the investment variable as a proxy.15 Finally, as described

14Note that in this model, β̂k = θ̂k and β̂l = θ̂l.

15They motivate their choice by weaker data requirements and argue that an adjustment in inter-

mediate inputs is likely to have better properties as an instrument for a technology shock than an

adjustment in investment. Interestingly, the approach of Levinsohn and Petrin (2003) requires even
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in Blundell and Bond (2000), the simultaneity problem in estimation of production

function can also be bypassed by a GMM system estimator, though it requires a long

time-series of cross-sections and is therefore not attractive for our analysis. Moreover,

OLS may introduce a sample selection bias, if dropping out of the sample between

2002 and 2003 is non-random.

Being aware of the problems mentioned above, we consistently estimate (3.13) fol-

lowing Olley and Pakes (1996) in controlling for both simultaneity bias and sample

attrition. The method is based on a two-step procedure and requires the following

assumptions: (i) labor is the only input which contemporaneously responds to a tech-

nology shock, (ii) the capital stock is predetermined and hence uncorrelated with a

contemporary technology shock, (iii) changes in corporate investment decisions de-

pend on the contemporaneous technology shock, the age and the capital stock of

a firm, (iv) investments are monotonically increasing in the technology shock for a

given value of age and capital. Under these assumptions, the technology shock can

be instrumented as a function of capital, age, and investment. The estimation of this

function is carried out by a series estimator.

Semiparametric model

In order avoid a misspecification of the relationship between y and (k, l, A) we model

h̄t semiparametrically and include an interaction term, i.e.:

yj
t = θ0 + h̄k

t (kj
t ) + h̄l

t(l
j
t ) + θklkj

t l
j
t + θ′AA

j
t + εj

t , (3.14)

where h̄k
t and h̄l

t are differentiable in k and l, respectively. We model h̄k
t as a

quadratic splines function with Dk knots dk
1 < dk

2 < · · · < dk
Dk . Defining basis

functions bki (k) = max{0, k − dk
i }2, we obtain h̄k

t (k) = θk
1k + θk

2k
2 +

∑Dk

i=1 θ
k
3,ib

k
i (k).

Analog, we model h̄l
t as h̄l

t(l) = θl
1l+ θl

2l
2 +
∑Dl

i=1 θ
l
3,ib

l
i(l). All coefficients in (3.14) can

more firms to be eliminated from our sample due to the very large number of firms with missing

data on the use of materials.
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be estimated by the OLS method. Accordingly, ∂kf̄t(k
j
t , l

j
t , A

j
t) can be estimated as:

̂∂kf̄t(k
j
t , l

j
t , A

j
t) =

(
θ̂k
1 + 2θ̂k

2k
j
t + θ̂klljt + 2

Dk∑
i=1

θ̂k
3,i max{0, kj

t − dk
i }
)
Y j

t

Similarly, one obtains ̂∂lf̄t(k
j
t , l

j
t , A

j
t) = (θ̂l

1 + 2θ̂l
2l

j
t + θ̂klkj

t + 2
∑Dl

i=1 θ̂
l
3,i max{0, ljt −

dl
i})Y

j
t . The optimal number of knots and their position is obtained by the minimiza-

tion of the Mallows’ Cp criterion (see Mallows (1973)) using the knot deletion method

as described by Fan and Gijbels (1996).16

Statistical significance of the aggregate coefficients

Condifence intervals for the aggregate coefficients as well as standard errors of the esti-

mates are determined by bootstrap. For i.i.d. bootstrap resamples (Y j∗
t , kj∗

t , l
j∗
t , A

j∗
t ),

the distribution of (β̂k
t − βk

t ) is approximated by the conditional distribution of

(β̂k∗
t − β̂k

t ) given (Y j
t , k

j
t , l

j
t , A

j
t), where β̂k∗

t is the estimate of βk
t based on the bootstrap

sample. We asses the significance of βk
t on the basis of the 95% confidence interval,

[β̂k
t − q∗0.975, β̂

k
t − q∗0.025], where q∗α is the α-quantile of the distribution of (β̂k∗

t − β̂k
t ).

Analog, we compute confidence intervals for βl
t, γ

k
t , and γl

t. Distributional effects are

statistically significant, if the condifence interval for γk
t or γl

t does not include zero.

The consistency proof of such a naive bootstrap in the context of average derivative

estimation can be found in Härdle and Hart (1992).

16Knot deletion is an iterative procedure. We start with a large number D̄k of initial knots for k,

i.e., dk
1 < dk

2 < · · · < dk
D̄k , which divide the domain of k into intervals [dk

i , dk
i+1] with approximately

equal number of observations. Similarly, we determine the corresponding D̄l initial knots for l. In

step 0, we estimate (3.14) by the OLS method and obtain D̄ = D̄k + D̄l estimated spline coefficients

θ̂k
3,1, . . . , θ̂

k
3,D̄k , θ̂l

3,1, . . . , θ̂
l
3,D̄l with the corresponding t-values, t := θ̂/SE(θ̂). At step 1, we delete the

knot with the lowest absolute t-value at step 0 and reestimate (3.14) using D̄ − 1 knots. We repeat

this process D̄ times until no knots are left. At each step r, 0 6 r 6 D̄, we compute the residual

sum of squares RRSr =
∑n

j=1(ε̂
j
t )2. Finally, we choose the model with the lowest value for Mallows’

Cp defined by Cr := RSSr + 3(D̄ + 6 + nA − r)σ̂2
0 , where nA is the number of attributes in Aj

t and

σ̂0 is the estimated standard deviation of εj
t at the 0th model.
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Table 3.2: Aggregate coefficients based on OLS production function estimation

country β̂k β̂l γ̂k γ̂l

Austria 0.151 (0.016) 0.788 (0.025) -0.190 (0.034)* -0.037 (0.054)

Belgium 0.140 (0.006) 0.749 (0.008) -0.293 (0.020)* -0.250 (0.030)*

Bosnia & H. 0.212 (0.011) 0.581 (0.015) -0.351 (0.039)* -0.166 (0.036)*

Bulgaria 0.234 (0.009) 0.639 (0.010) -0.268 (0.027)* -0.190 (0.063)*

Czech R. 0.140 (0.004) 0.811 (0.007) -0.183 (0.011)* 0.035 (0.026)

Denmark 0.116 (0.004) 0.747 (0.006) -0.181 (0.012)* -0.149 (0.024)*

Estonia 0.185 (0.008) 0.715 (0.009) -0.278 (0.019)* -0.210 (0.029)*

Finland 0.147 (0.002) 0.778 (0.003) -0.299 (0.014)* -0.090 (0.011)*

France 0.111 (0.001) 0.854 (0.002) -0.232 (0.005)* -0.038 (0.007)*

Germany 0.136 (0.007) 0.803 (0.011) -0.130 (0.017)* -0.107 (0.037)*

Great Britain 0.132 (0.003) 0.783 (0.004) -0.248 (0.010)* -0.057 (0.016)*

Italy 0.131 (0.002) 0.732 (0.002) -0.179 (0.004)* -0.058 (0.007)*

Netherlands 0.119 (0.007) 0.832 (0.010) -0.171 (0.017)* -0.158 (0.035)*

Norway 0.091 (0.003) 0.804 (0.006) -0.210 (0.011)* -0.123 (0.018)*

Poland 0.152 (0.006) 0.774 (0.009) -0.213 (0.012)* -0.077 (0.021)*

Portugal 0.130 (0.017) 0.818 (0.022) -0.170 (0.032)* 0.132 (0.060)*

Romania 0.252 (0.003) 0.667 (0.004) -0.241 (0.008)* -0.319 (0.010)*

Slovakia 0.156 (0.013) 0.743 (0.020) -0.193 (0.037)* 0.136 (0.086)

Spain 0.115 (0.001) 0.841 (0.001) -0.181 (0.003)* -0.103 (0.006)*

Sweden 0.148 (0.001) 0.766 (0.002) -0.351 (0.008)* -0.089 (0.012)*

Bootstrapped standard errors in parentheses. Asterisks denote statistical significance of

distributional effects at 5% level.
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3.3.3 Empirical results

In the following, we present the results for the estimation of βk, βl, γk, and γl. We re-

port results based on the OLS estimation of (3.13) in Table 3.2. The first two columns

reveal that, as expected, changes in the levels of aggregate capital and labor have a

positive significant effect on growth in all countries. Further, the capital coefficient

appears to be higher for transition than for developed countries. Overall, the esti-

mated aggregate output elasticities with respect to aggregate capital and labor, i.e.,

β̂k and β̂l, are comparable with those obtained by other studies.17 More interestingly,

we find that distributional effects of capital or labor, associated with γk and γl, are

significant at 1% level in all countries. These coefficients are displayed in the last two

columns of Table 3.2. Further, the distributional effects of capital are negative and

generally higher (in absolute value) than the corresponding level effects associated

with βk. As for distributional effects of labor, they turn out to be negative and signif-

icant at 1% level for all countries except from Austria, Czech Republic, Portugal and

Slovakia. For Portugal they are positive and significant at the 5% level. Summing up,

distributional effects of capital and labor, which have been overlooked in the growth

literature so far, are statistically and economically significant.

We investigate the robustness of this finding, in that we control for potential simul-

taneity and misspecification of the functional form. Table 3.3 reports the estimation

results according to the Olley and Pakes (1996) method. Overall, the estimates are

similar to the OLS estimates but exhibit higher standard errors. We infer that the

simultaneity problem is of less importance in our sample. In particular, γk is still neg-

ative and significant for all countries. Moreover, apart from Germany and Romania,

the distributional effects of capital are again stronger (in absolute value) than the cor-

responding level effect. The distributional effects of labor are negative and significant

in 13 out of 20 countries. The results for the semiparametric estimation are reported

17Recall that under this specification β̂k = θ̂k and β̂l = θ̂l. Hence, we can compare our estimates

with those obtained in studies on production function estimation from the firm-level data, e.g., Olley

and Pakes (1996), Levinsohn and Petrin (2003), and Blundell and Bond (2000).
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in Table 3.4. We observe that the estimates of βk exceed the corresponding OLS esti-

mates in most countries. In contrast, β̂l are comparable to the OLS counterparts. At

least one of the distributional effects, i.e., γk or γl, is significant in all countries apart

from the Czech Republic and Slovakia. Interestingly, accounting for a more flexible

functional form yields positive significant distributional effect of capital in Denmark,

Italy and Norway. In contrast, γk is negative significant for eleven countries. Besides,

the distributional effects of capital are lower than the ones resulting from the loglinear

model. As opposed to previous models, they are also lower than the corresponding

level effects. As for distributional effects of labor, they are negative significant in ten

countries and positive significant in Portugal. Summing up, the importance of the dis-

tributional effects, which are the main focus of this chapter, is robust to simultaneity

and parametric misspecification.

The negative impact of changes in the standard deviation of inputs in most coun-

tries supports the intuition outlined in Remark 2. First, under the assumption that

a higher degree of product market competition among firms is associated with more

similarity in firm size, i.e., smaller standard deviations of capital and labor, we find a

positive relationship between competition and economic growth. This positive relation

is also found in the literature, for instance, by Nicoletti and Scarpetta (2003).

Second, changes in the distribution of inputs capture changes in the pattern of eco-

nomic interactions between firms. In particular, the literature on economic growth em-

phasizes the importance of technology spill-overs among firms in developed economies.

A standard assumption in the literature is that technology spill-overs are more likely

between firms that are more similar in terms of the inputs they use in the produc-

tion process.18 Accordingly, an increase in the standard deviation of capital or labor

corresponds to less intensive technology spill-overs and, hence, to lower growth rates.

18Theoretical models by Basu and Weil (1998) and Acemoglu and Zilibotti (2001) show that

international technology diffusion is stronger if firms employ more similar capital-labor ratios in

production. An empirical evidence in favor of this result is provided by Keller (2004).
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Table 3.3: Aggregate coefficients based on Olley and Pakes (1996) method

country β̂k β̂l γ̂k γ̂l

Austria 0.165 (0.067) 0.795 (0.087) -0.240 (0.127)* -0.010 (0.062)

Belgium 0.159 (0.029) 0.715 (0.009) -0.298 (0.057)* -0.184 (0.037)*

Bosnia & H. 0.266 (0.076) 0.509 (0.020) -0.195 (0.86)* -0.260 (0.068)*

Bulgaria 0.286 (0.042) 0.560 (0.017) -0.304 (0.062)* -0.089 (0.072)

Czech R. 0.111 (0.045) 0.752 (0.014) -0.124 (0.051)* 0.029 (0.040)

Denmark 0.121 (0.039) 0.760 (0.008) -0.166 (0.053)* -0.095 (0.017)*

Estonia 0.185 (0.020) 0.685 (0.012) -0.209 (0.025)* -0.080 (0.034)*

Finland 0.156 (0.017) 0.763 (0.005) -0.282 (0.035)* -0.067 (0.013)*

France 0.119 (0.009) 0.829 (0.003) -0.228 (0.018)* -0.031 (0.008)*

Germany 0.117 (0.038) 0.744 (0.016) -0.081 (0.035)* -0.020 (0.044)

Great Britain 0.155 (0.035) 0.782 (0.005) -0.285 (0.067)* -0.038 (0.019)*

Italy 0.163 (0.017) 0.705 (0.003) -0.173 (0.018)* -0.061 (0.007)*

Netherlands 0.180 (0.031) 0.758 (0.013) -0.213 (0.041)* -0.051 (0.034)

Norway 0.064 (0.007) 0.835 (0.008) -0.109 (0.012)* -0.059 (0.006)*

Poland 0.123 (0.046) 0.741 (0.011) -0.164 (0.065)* -0.091 (0.032)*

Portugal 0.126 (0.051) 0.832 (0.041) -0.236 (0.101)* 0.007 (0.062)

Romania 0.147 (0.044) 0.629 (0.006) -0.101 (0.030)* -0.252 (0.014)*

Slovakia 0.158 (0.053) 0.682 (0.028) -0.186 (0.072)* 0.234 (0.135)

Spain 0.121 (0.010) 0.817 (0.002) -0.173 (0.015)* -0.063 (0.007)*

Sweden 0.154 (0.007) 0.759 (0.002) -0.353 (0.018)* -0.070 (0.012)*

Bootstrapped standard errors in parentheses. Asterisks denote statistical significance of

distributional effects at 5% level.
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Table 3.4: Aggregate coefficients based on semiparametric specification

country β̂k β̂l γ̂k γ̂l

Austria 0.171 (0.030) 0.779 (0.035) -0.095 (0.045)* -0.212 (0.061)*

Belgium 0.142 (0.011) 0.813 (0.014) -0.097 (0.018)* -0.231 (0.041)*

Bosnia & H. 0.240 (0.047) 0.729 (0.040) -0.340 (0.057)* 0.109 (0.077)

Bulgaria 0.295 (0.036) 0.725 (0.041) -0.095 (0.053)* -0.050 (0.087)

Czech R. 0.257 (0.025) 0.793 (0.020) -0.024 (0.039) 0.067 (0.038)

Denmark 0.174 (0.015) 0.796 (0.013) 0.038 (0.022)* -0.220 (0.034)*

Estonia 0.187 (0.016) 0.775 (0.020) -0.119 (0.025)* -0.109 (0.043)

Finland 0.160 (0.010) 0.833 (0.010) -0.095 (0.017)* -0.090 (0.021)*

France 0.119 (0.003) 0.870 (0.004) -0.059 (0.006)* -0.024 (0.011)*

Germany 0.178 (0.013) 0.815 (0.016) -0.006 (0.020) -0.100 (0.044)*

Great Britain 0.211 (0.008) 0.797 (0.009) -0.066 (0.012)* -0.125 (0.021)*

Italy 0.153 (0.007) 0.820 (0.006) -0.027 (0.021) -0.063 (0.013)*

Netherlands 0.170 (0.019) 0.829 (0.022) -0.002 (0.038) -0.115 (0.050)*

Norway 0.141 (0.010) 0.856 (0.011) 0.060 (0.016)* -0.050 (0.027)

Poland 0.156 (0.017) 0.856 (0.017) -0.130 (0.031)* -0.024 (0.033)

Portugal 0.231 (0.058) 0.805 (0.074) -0.045 (0.037) 0.149 (0.084)*

Romania 0.209 (0.009) 0.693 (0.008) -0.264 (0.018)* -0.206 (0.014)*

Slovakia 0.309 (0.060) 0.730 (0.053) -0.082 (0.089) 0.141 (0.103)

Spain 0.164 (0.004) 0.831 (0.003) -0.001 (0.006) -0.142 (0.009)*

Sweden 0.173 (0.004) 0.820 (0.005) -0.095 (0.008)* -0.047 (0.014)*

Bootstrapped standard errors in parentheses. Asterisks denote statistical significance of

distributional effects at 5% level.
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3.4 Growth Accounting

We exploit the economic significance of the distributional effects outlined above to

refine conventional growth accounting exercises. That is, we explore whether cross-

country growth differences can be explained by differences in changes in the allocation

of capital and labor. Their explanatory power depends on the cross-country hetero-

geneity in γk and γl as well as the heterogeneity in the growth rates of the standard

deviations of the inputs.

To measure the success of a model in explaining cross-country growth differences

we follow the tradition of variance decomposition. That is, analog to Caselli (2005),

we compute the explanatory power of the changes in the aggregate input levels as:

S1 =
var(ĝ1,t)

var(gt)
(3.15)

where

ĝ1,t = β̂k
t−1(log K̄t − log K̄t−1) + β̂l

t−1(log L̄t − log L̄t−1).

The residual of this indicator, 1 − S1, is the explanatory power of changes in TFP.

However, we know from the above Proposition that part of the residual changes should

not be associated to changes in the production technology (TFP), but instead, to

changes in the higher moments of the distribution of capital and labor across firms.

Accordingly, our approach which takes firm-level heterogeneity in the inputs into

account leads to a different growth accounting model:

S2 =
var(ĝ2,t)

var(gt)
, (3.16)

where

ĝ2,t = β̂k
t−1(log K̄t−log K̄t−1)+β̂

l
t−1(log L̄t−log L̄t−1)+γ̂

k
t−1

(σk
t − σk

t−1

σk
t−1

)
+γ̂l

t−1

(σl
t − σl

t−1

σl
t−1

)
.

In addition to the estimated aggregate coefficients, growth accounting requires data

on the growth rate of aggregate output, aggregate capital, aggregate labor, and the

standard deviations of log capital and log labor. Since the estimation of coefficients
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relies on data in 2003 (corresponding to t − 1) we focus on growth rates from 2003

to 2004. All of the required information is available in the AMADEUS database.

However, the computation of aggregate output and inputs from the cross-section of

firms yields implausibly high growth rates in some countries as is displayed in Table

3.1. Therefore, we employ information on aggregate growth rates from the standard

cross-country data sets. In particular, we employ Penn World Tables and follow

Caselli (2005) in measuring output as real GDP per capita in PPP and computing the

aggregate capital stock from the corresponding investment series using the perpetual

inventory method by assuming a yearly depreciation rate of 6%. Since aggregate labor

in 2004 is not available in the Penn World Tables, we measure aggregate labor as the

total number of employees from the Eurostat database. Obviously, the information on

the standard deviations of log capital and log labor has to be obtained from the firm-

level database. Unfortunately, required aggregate data for Bosnia and Herzegovina

are not available and we are forced to omit this country in our analysis. The growth

rates of the variables employed in the growth accounting exercise are reported in Table

3.5.

We derive S1 and S2 based on the three different estimators outlined in the last

section. In particular, we find that the aggregate capital and labor explain 28% of

the cross-country growth differences based on the OLS estimates (S1OLS = 0.28),

29% based on the Olley and Pakes (1996) method (S1OP = 0.29), and 40% based

on the semiparametric model (S1SP = 0.40). These results are consistent with the

corresponding findings in the conventional growth accounting literature. If we addi-

tionally take the distributional effects into consideration, we are able to explain an

additional 17%, 13%, and 6% of the growth differences across countries, respectively

(S2OLS = 0.45, S2OP = 0.42, S2SP = 0.46). Recall that our aggregate coefficients are

not estimated by fitting changes in aggregate levels and standard deviations to out-

put growth rates, but are computed from a structural estimation based on firm-level

data. Hence, in contrast to standard goodness-of-fit measures, the explanatory power

could drop if we additionally account for distributional effects. This would be the
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Table 3.5: Growth accounting: growth rates in 2004 (in %)

country g04 log K̄04

K̄03
log L̄04

L̄03

σk
04−σk

03

σk
03

σl
04−σl

03

σl
03

Austria 2.14 -1.31 0.57 -2.46 -1.89

Belgium 2.46 3.52 0.65 0.61 -0.76

Bosnia & H. - - - -5.14 -6.20

Bulgaria 5.02 10.02 2.59 -0.62 -1.38

Czech R. 3.10 4.73 -0.28 -0.43 2.33

Denmark 1.71 2.22 0.00 0.79 -1.00

Estonia 7.73 -0.54 0.25 1.24 0.48

Finland 3.47 2.75 0.41 -3.33 -0.22

France 1.97 5.03 0.05 0.46 0.38

Germany 1.66 1.13 0.42 1.22 0.27

Great Britain 2.75 1.93 1.00 1.52 0.56

Italy 1.09 0.28 0.37 3.78 10.14

Netherlands 1.23 2.25 -1.42 -0.21 1.79

Norway 2.20 9.26 0.47 0.83 1.39

Poland 5.31 6.36 1.31 -0.28 0.66

Portugal 0.38 1.26 0.09 0.22 3.50

Romania 8.68 1.64 0.39 -5.42 1.86

Slovakia 3.50 9.25 0.27 -10.04 -4.29

Spain 1.61 1.95 3.42 0.06 -0.92

Sweden 3.58 -1.27 -0.57 1.61 1.04
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case if the changes in σk and σl were negatively correlated with omitted factors that

explain GDP-growth. Consequently, distributional effects of capital and labor across

firms help to explain a significant part of variation in growth across the 19 European

countries.

We analyze the robustness of the above result in two different ways. First, we redo

the growth accounting exercise by excluding one country at a time. We repeat this

procedure for all countries. Doing this, we obtain very similar results as the ones from

the unrestricted sample. Second, we extend the sample period to 2002-2004, which

virtually does not change our results. In all, the growth accounting results are robust

to variations in the cross-section as well as in the time-series dimension.

Overall, we conclude that accounting for distributional effects of capital and labor

helps explain an additional 6-17% of the cross-country variation in output growth

among the 19 European countries. Thus, a growth accounting model which is based

on the correct treatment of firm heterogeneity improves the explanatory power of the

production inputs and reduces the relevance of the residual TFP measure.

3.5 Conclusion of Chapter 3

In this chapter, we propose a growth model to examine the effect of distributional

changes of capital and labor on economic growth. We show that the growth rate

of an economy depends not only on changes in the aggregate level of capital and

labor, but also on changes in the allocation of these inputs across firms, which we

measure by standard deviations of capital and labor. Our empirical analysis, based

on European firm-level data, reveals that changes in the allocation of capital and labor

due to firm-level heterogeneity have economically and statistically significant effects

on GDP-growth in almost all of the 20 European countries. This striking result revises

the rather unimportant role of capital and labor distributions in explaining income

and growth differences across countries as documented, for instance, by Caselli (2005).

Moreover, it suggests that conventional TFP measures misleadingly capture growth

effects stemming from changes in the standard deviations of capital and labor. In fact,
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our framework allows to assess the explanatory power of higher moments of the input

distributions and, therefore, reassess the explanatory power of TFP. In this regard,

we refine conventional growth accounting exercises by controlling for cross-country

differences in aggregate input levels and input allocations.

We find that higher standard deviations in labor and capital have negative effects

on output growth. This finding is consistent with a positive relationship between

competition and growth if more competition is associated with more similarity in firm

size and, hence, lower standard deviations in capital and labor among firms. Our

findings are also consistent with the hypothesis that technology spill-overs are more

intensive if firms are becoming more similar.

Finally, in a growth accounting exercises we show that distributional effects of

capital and labor help explain an additional 6-17% of cross-country growth differences

among the 19 European countries.
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Concluding remarks

This dissertation contributes to the explanation of differences in total factor produc-

tivity growth across countries or over time. It presents new mechanisms that help

explain firm-level technology choices by taking the interdependence between different

micro- and macroeconomic factors into account. In the following, we briefly sum-

marize the most important results particularly with regard to their implications for

policymakers in developed or emerging economies.

The first chapter demonstrates that the provision of infrastructure capital influ-

ences corporate investments in R&D if one accounts for the effect of infrastructure on

the costs of using a large variety of intermediate goods in final production. Therefore,

the model is able to explain the positive empirical relationship between infrastructure

and R&D investments which we detect in the panel of 36 relatively developed countries

as well as a panel of U.S. firms. Instead, we do not find a positive relationship between

the provision of infrastructure and private capital investments at the country- or firm-

level. The empirical findings are striking since they challenge conventional growth

theories which are based on a complementarity between infrastructure and private

capital investments. Moreover, we define relatively mild conditions which involve the

existence of multiple strictly positive balanced growth pathes if one considers an en-

dogenous financing of infrastructure investments. The interdependence of R&D and

infrastructure investments in relatively developed countries refines our understanding

of the link between infrastructure and growth. It implies that the growth-effect of

infrastructure investments depends on factors such as intellectual property rights, the

degree of product market competition, or tertiary education instead of factors that
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influence a household’s saving decision. Thus, policymakers in the 36 countries of our

sample are recommended, on average, to invest in infrastructure in regions with high

R&D investments. Otherwise, the financing or subsidizing of regional infrastructure

projects should be accompanied by simultaneous support of local R&D activities. We

emphasize that our analysis represents only a first step to explain the relation be-

tween infrastructure and growth and future work should be devoted to its effect on

innovative activities and technical change.

The second chapter reveals that the interdependence between the degree of fi-

nancial development and the level of inflation affects the composition of corporate

investments in an economy. It follows that the level of inflation influences long-run

aggregate TFP-growth in a world of incomplete financial markets as long as more

productive investments are also more risky. We underpin the general equilibrium

implications of our model with sound empirical evidence based on dynamic panel es-

timations at the country-, industry-, and firm-level. This novel aspect of monetary

transmission entails strong policy implications. In particular, a low inflation policy

represents a relatively inexpensive way to foster long-run TFP-growth and to encour-

age private sector innovations. This policy implication is the more important for some

emerging economies that suffer from underdeveloped financial markets and high infla-

tion. Moreover, the potential long-run impact of the level of inflation on TFP-growth

implies that monetary authorities should be cautious to use expansionary monetary

policy as a tool to stimulate the economy in the short-run. In this regard, there exists

up to a certain extend a tradeoff between short-run stabilization policy and long-run

productivity growth.

The third chapter presents an endogenous growth model that accounts for a het-

erogeneity in firm-level technologies and input demands. This framework makes it

possible to account for growth-effects stemming from (higher moments of) the distri-

bution of input factors across firms. It is shown that up to 17% of the differences in

TFP-growth across countries have to be attributed to differences in the distribution of

capital and labor. A reduction in the standard deviation of capital or labor induces, on
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average, a positive growth effect in most of the 20 European countries in our sample.

This effect is consistent with a positive relationship between competition and growth

if more competition is associated with more similarity in input demands among firms.

It is also consistent with the empirical prediction that technology spill-overs are more

intensive among more similar firms. Policymakers can potentially affect the distribu-

tion of capital and labor across firms by means of industrial policies, i.e. competition

policy or asymmetric regulations for different firm sizes. We emphasize, however, that

the main purpose of this chapter of the dissertation is to demonstrate the impact of

distributional effects on economic growth and to refine conventional growth account-

ing methods. A more pronounced policy evaluation requires a separate analysis of

distributional growth effects at the industry level. The above model is well-suited

to aggregate among heterogenous firms in each sector separately for a given country.

This approach would accentuate differences in distributional effect across different

industries and thus allow for appropriate industry-specific policy measures. There-

fore, we consider the aggregation across heterogenous firms at the industry level as

important future research.

In sum, this dissertation addresses several new determinants of total factor produc-

tivity growth. Thereby, it refines the scope for macroeconomic or industrial policies

to foster long-run economic growth and development and to reduce income differences

across countries.
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A Appendix

A.1 Proof of Proposition II

Given the assumptions underlying Proposition I, we know that the balanced growth

rate is a continuous, monotonic, increasing function of the stock of infrastructure

capital (assuming λ > λ∗∗ = ρβ2+ρχµ(ρ+δ)
α(1−α)µ(δ+ρ)

). Since we assume φ′(G) < 0, φ′′(G) > 0

and λ > λ∗∗, we can infer from (2.20):

∂γ

∂G
=

∂γ

∂φ(G)

∂φ(G)

∂G
=

(
−χρ[a+ χσφ(G)]− χσλ̂

[a+ χσφ(G)]2

)
φ′(G) > 0

∂2γ

∂2G
=

∂2γ

∂2φ(G)

∂2φ(G)

∂2G
=

(
χ2ρσ[a+ χσφ(G)]2 + 2χ2σ2[a+ χσφ(G)]λ̂

[a+ χσφ(G)]3

)
φ′′(G) > 0

where λ̂ = aλ− χσφ(G) > 0 and a = α(1− α) > 0.

Hence, the balanced growth rate is a strictly convex function of the stock of infras-

tructure capital: γ = γ(G), γ′(G) > 0, γ′′(G) > 0.

The equilibrium provision of infrastructure capital is given in (1.20). The marginal

variable investment costs are a continuous, monotonic, increasing function of time

(
∂CIt

∂t
¿0). In order to sustain (positive) balanced growth, we assume that marginal

infrastructure investment costs increase proportional to the GDP-level in the economy

(It = δGt), but can not exceed it.19 It follows from (1.17) that infrastructure capital

is a continuous, monotonic function of the balanced growth rate in equilibrium. This

19Note that this is a necessary but not a sufficient condition for the existence of a balanced

growth equilibrium. In order to obtain a sufficient condition, we would need to impose quantitative

assumptions on φ(Gt) and C(It, t) relative to Yt.
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allows us to define N(t) = Yt

CIt
, where N ′(t) ≥ 0, N ′′(t) ≥ 0. We also defined

ĊIt

CIt t
=

M(t), where M ′(t) > 0 and M ′′(t) = 0 in a balanced growth equilibrium. Thus, we

can infer from (1.20):

∂G

∂γ
=

β2N ′[δ + ρ−M(γ)] + β2N(γ)M ′

[δ + ρ−M(γ)]2
> 0

∂2G

∂2γ
=

[β2N ′′[δ + ρ−M(γ)]− β2N ′M ′][δ + ρ−M(γ)] + [β2N ′[δ + ρ−M(γ)]M ′]

[δ + ρ−M(γ)]3

+
[β2N ′F ′ + β2N(γ)M ′′][δ + ρ−M(γ)] + β2N(γ)M ′M ′

[δ + ρ−M(γ)]3
> 0

The first derivative is always positive. A sufficient condition for the second deriva-

tive to be positive is δ+ρ−M(γ) > 0, which we assume. Hence, we do not allow that

the growth rate of the marginal (variable) infrastructure investment costs exceeds the

summation of the depreciation rate for infrastructure capital and the intertemporal

elasticity of substitution. A violation of this condition is empirically irrelevant so that

the restriction is rather technical. Hence, the infrastructure capital stock is a strictly

convex function of the balanced growth rate: G = G(γ), G′(γ) > 0, G′′(γ) > 0.

In addition, we know that γ = γ(0) = 0 since limG→0 φ(G) → ∞ and

G = G(0) = G0 > 0 holds by assumption. Consequently, given a balanced growth

path exists, it features two strictly positive balanced growth rates γ1 and γ2 with

γ1 > γ2.
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A.2 Marginal investment costs increase in Yt:

In the following, we report the partial derivatives of γ1 and γ2 (from (1.22) and (1.23))

with respect to λ, β and µ:

∂γ1

∂λ
= aµ

(
1 +

aµ(δ + ρ− λ) + χ(µ(ρ+ σ(δ + ρ))− βσ)

Z1/2

)
> 0

∂γ2

∂λ
= aµ

(
1− aµ(δ + ρ− λ) + χ(µ(ρ+ σ(δ + ρ))− βσ)

Z1/2

)
> 0

∂γ1

∂β
= 2βχ

(
σ +

aµ(2ρ+ σ(δ + λ+ ρ)) + σχ(β2σ + µ(ρ+ σ(δ + ρ))

Z1/2

)
> 0

∂γ2

∂β
= 2βχ

(
σ − aµ(2ρ+ σ(δ + λ+ ρ)) + σχ(β2σ + µ(ρ+ σ(δ + ρ))

Z1/2

)
<> 0

∂γ1

∂µ
= −β

2χ(αµ(2ρ+ σ(δ + λ+ ρ)) + σ(β2σχ+ χµ(ρ+ σ(δ + ρ))− σZ1/2))

2µ2(a+ σρ)Z1/2
< 0

∂γ2

∂µ
=

β2χ(αµ(2ρ+ σ(δ + λ+ ρ)) + σχ(β2σ + µ(ρ+ σ(δ + ρ))) + Z1/2)

2µ2(a+ σρ)Z1/2
<> 0

where Z = [aµ(λ+ δ + ρ) + β2χσ + χµ(σ(δ + ρ)− ρ)]2 − 4µ[a+ χσ][aλµ(δ + ρ)−

ρ(β2 + χµ(δ + ρ))] > 0 and a = α(1− α).
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B Appendix

B.1 Financial contract

In the following, we provide the algebraic solution of the financial contract Ct =

{zt, l
z
t ,Γt(ξt), τt(ξt)} defined in (2.12).

Optimal factor input ratio and the cost function: Obviously, part of the

optimal contract must be to use factor inputs in a cost minimizing combination.

However, since factor demands are determined via the contract Ct, they will not only

reflect the firm’s profit maximization objective, but also the intermediary’s need to

break even in expectation. With our Cobb-Douglas specification, the possibility of

project failure then requires that factors earn constant shares not of firm revenue,

but of the total costs C (W z
t , R

z
t ; ỹz

t ) associated with a targeted production scale ỹz
t .

Hence, the demands for capital and labor are:

zt =
αzP z

t ỹ
z
t

Rz
t

and lzt =
(1− αzP z

t ỹ
z
t )

W z
t

(B.1)

Furthermore, from constant returns to scale and the Cobb-Douglas specification of

the technology, we can write:

C (W z
t , R

z
t ; ỹz

t ) = MCz
t (Wt, R

z
t ) ỹz

t =
1

TtV

(
Rt

α

)α(
W z

t

(1− α)

)(1−α)

ỹz
t (B.2)

where MCz
t (·) are the per unit costs of producing a targeted output level ỹz

t ;

since the technology displays constant returns to scale, these per unit costs coincide

with marginal costs. Note that, as a consequence, the program to find the optimal

contract is linear in the project size ỹz
t .

First best - the socially optimal contract: First look at the first best contract

where b = 0 such that the entrepreneurial moral hazard problem plays no role (but

liquidity is scarce and has an opportunity cost R̃t). The questions asked here are,

what is the maximum overall return on investment, and how does the corresponding

socially optimal contract look like? Suppose for the moment a binding participation
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constraint for the investor; indeed, we will later verify that this is the case in a well-

specified problem.20 Substituting from the binding participation constraint (2.12b)

into the entrepreneur’s net return (2.12a) yields:

ΠF
t =

[∫
Γt(ξt)

P z
t

MCz
t (·)

(
1− ξtR̃t

)
dG(ξt)− 1

]
MCz

t (·)ỹz
t

Let ξ̂t denote the cutoff value for the liquidity shock such that the project is con-

tinued if and only if ξt ≤ ξ̂t; using this rule for the indicator function then allows to

rewrite the entrepreneur’s net return as:

ΠF
t (ξ̂t) = λt(ξ̂t)MCz

t (·)ỹz
t , (B.3a)

where:

λt(ξ̂t) ≡

[∫ ξ̂t

0

P z
t

MCz
t (·)

(
1− ξtR̃t

)
dG(ξt)− 1

]
(B.3b)

In definition (B.3b), λt(ξ̂t) denotes the net social marginal return on one unit

invested in an individual advanced sector project, given a cutoff value ξ̂t. Since

P z
t

MCz
t (·) > 0, λ(ξ̂t) is maximized at the socially optimal cutoff value ξ̂FB

t = 1
R̃t

.

Moreover, from (B.3a), it is clear that the entrepreneur is the residual claimant and

receives the full social surplus from the project.

Second best - entrepreneurial moral hazard: Now consider the case where

b > 0. First of all note that general equilibrium considerations imply that the marginal

net social return under both the first and the second best solution must be positive.21

Then, given a positive value for λt(ξ̂t), the entrepreneur will seek to maximize ΠF
t (ξ̂t)

20By well-specified, we mean (i) that there is no self-financing by the firms, and (ii) that the

solution to the constrained-optimal contract features a finite investment level.

21To see this, suppose to the contrary that λ(ξ̂FB
t ) ≤ 0 such that the optimal contract would

prescribe zt = lzt = 0, i.e. zero investment for any level of entrepreneurial equity Et. However, this

implies ỹz
t = 0 which contradicts a general equilibrium with positive consumption and investment,
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by choosing the maximum investment volume MCz
t (·)ỹz

t that still guarantees investor

participation. But from (2.12b), this is achieved by maximizing the state contin-

gent per unit transfer τt(ξt) to the investor. Accordingly, the second best contract

prescribes to retain the minimum amount of profits in the firm that is still consis-

tent with incentive compatibility. Hence, the entrepreneur’s incentive compatibility

constraint (2.12c) is binding at the maximum pledgeable unit return:

τt(ξt) =
Γt(ξt)(1− b)P z

t ỹ
z
t

MCz
t (·)ỹz

t

(B.4)

We can now solve for the largest investment volume MCz
t (·)ỹz

t that is compatible

with both the investor’s participation constraint and the entrepreneur’s incentive con-

straint by substituting the maximum pledgeable unit return (B.4) into the investor’s

participation constraint (2.12b) to obtain:

[
1−

∫
Γ(ξt)

(
(1− b)− ξtR̃t

) P z
t

MCz
t (·)

dG(ξt)

]
MCz

t (·)ỹz
t = Et (B.5)

Here, the expression in squared brackets represents the difference between marginal

cost of investment to an outside investor and the expected marginal return to such out-

side investment. Let ξ̂0
t ≡

(1−b)

R̃t
denote the cutoff value that maximizes the expected

marginal return to outside investors, and note that equation (B.5) implies that, given

some Et > 0, the expected (subject to idiosyncratic liquidity shocks) marginal return

on outside investment is strictly smaller than one.22

and the price of the advanced intermediate good would adjust such as to guarantee a positive marginal

net social return. By the same token, the second best solution must also involve a cutoff rule ξ̂t with

positive marginal net social return.

22Indeed, if this was not the case, investment would be self-financing and there would be no demand

for liquidity at all in that the investor’s participation constraint would be non-binding. A sufficient

condition for ruling out self-financing is:

∫ ξ̂0
t

0

(
(1− b)− ξtR̃t

) P z
t

MCz
t (·)

dG(ξt) < 1
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Solving equation (B.5) for the maximum investment volume conditional on a given

cutoff value ξ̂t, allows to write the firm’s investment capacity as:

MCz
t (·)ỹz

t = µt(ξ̂t)Et, (B.6a)

where:

µt(ξ̂t) ≡ 1

1−
∫ ξ̂t

0

(
(1− b)− ξtR̃t

)
P z

t

MCz
t (·)dG(ξt)

(B.6b)

is an equity multiplier, whose denominator specifies the amount of internal funds

that the firm has to contribute per unit of investment in order to compensate the

outside investor for the shortfall implied by the expression in squared brackets in (B.5).

Finally, using (B.3a) and (B.6a), the entrepreneur’s expected net payoff becomes:

ΠF
t (ξ̂t) = λt(ξ̂t)µt(ξ̂t)Et (B.7)

It now remains to determine the second best continuation threshold, to be denoted

ξ̂∗t . Given an entrepreneurial equity position Et, the second best cutoff ξ̂∗t maximizes

(B.7). It is clear that ξ̂∗t ∈ [ξ̂0
t , ξ̂

FB
t ]. Within this interval there emerges a trade-off

since, on the one hand, increasing ξ̂t implies that continuation is possible in more

contingencies and, on the other hand, decreasing ξ̂t allows to increase the amount of

initial investment MCz
t (·)ỹz

t by increasing the equity multiplier µt(ξ̂t). After substi-

tution from the definitions (B.3b) and (B.6b) into (B.7), it is straightforward to show

that the optimal continuation value ξ̂∗t can be found as the solution to the following

problem:

min
ξ̂t

R̃t

∫ ξ̂t

0
ξtdG(ξt) +

MCz
t (·)

P z
t

G(ξ̂t)
(B.8)

Observe that rewriting this condition yields λt(ξ̂0
t ) < b

P z
t

MCz
t (·)G(ξ̂0

t ); then, it is apparent that

ξ̂FB
t = ξ̂0

t if b = 0, which leads to the conclusion that, in order to rule out self-financing, a positive

wedge ξ̂FB
t − ξ̂0

t > 0 and therefore b > 0 are essential.
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which has the interpretation that the second best cutoff value minimizes the ex-

pected unit cost of total expected investment. The first order condition to this problem

is:

∫ ξ̂∗t

0

G(ξt)dξt =
MCz

t (·)
P z

t

1

R̃t

(B.9)

Finally, using the optimality condition for the cutoff value allows to rewrite the

entrepreneur’s expected net return in the following compact form:

ΠF
t (ξ̂∗t ) =

1
R̃t
− ξ̂∗t

ξ̂∗t −
(1−b)

R̃t

Et =
ξ̂FB
t − ξ̂∗t

ξ̂∗t − ξ̂0
t

Et (B.10)

Observe how this expression reflects the trade-off underlying the choice of ξ̂∗t ∈

[ξ̂0
t , ξ̂

FB
t ]. For future reference, we define the expected net return per unit of en-

trepreneurial equity Et as:

Π̃F
t (ξ̂∗t ) ≡

1
R̃t
− ξ̂∗t

ξ̂∗t −
(1−b)

R̃t

Implementation and aggregate liquidity demand: In order to cover liquidity

shocks up to the second best cutoff ξ̂∗t , it is necessary that outside investors commit

funds at the initial contracting stage (stage one). The reason is that, by issuing

corporate claims at the interim stage (stage two), it is not possible to raise enough

funds because the entrepreneurial commitment problem limits the maximum return

pledgeable to outside investors at ξ̂0
t < ξ̂∗t . It is then an natural question to ask how

the second best policy can actually be implemented at the initial contracting stage;

moreover, in view of our modelling hypothesis that an economy’s physical investment

portfolio is affected by the degree to which firms can insure their activities by means

of holding corporate liquidity, there arises the related question of whether there is a

second best policy that features firms (rather than the intermediary) holding liquidity.
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Aggregating over the advanced sector firms, we can derive two measures of aggre-

gate liquidity demand. The first one is relevant if the second best policy should be

feasible for each individual firm, but liquidity provision is organized in a way that

disregards the scope for risk sharing across firms:

D̄t = ξ̂∗tP
z
t ỹ

z
t (B.11a)

In contrast, the second measure of overall liquidity demand is relevant if liquidity risk

can be pooled across firms:

D∗
t =

[∫ ξ̂∗t

0

ξtg(ξt)dξt

]
P z

t ỹ
z
t < D̄t (B.11b)

It is clear that this latter concept requires some form of financial intermediation.

Now, drawing on Holmstrom and Tirole (1998), we turn to the institutional details

supporting the implementation of the second best policy derived in Section 2.4.5. One

possibility is to have the financial intermediary initially extend the amountMCz
t (·)ỹz

t−

Et to the entrepreneur together with an irrevocable line of credit of maximum size

ξ̂∗tP
z
t ỹ

z
t to be drawn from as needed at the interim stage. Given our assumptions on the

details of the moral hazard problem which does not envisage distraction of resources on

the part of the entrepreneur, this line of credit implements the second best solution as

long as the credit line, irrespective of the amount ξtP
z
t ỹ

z
t ≤ ξ̂∗tP

z
t ỹ

z
t of liquidity actually

requested, is provided free of charge. Since the firms’ liquidity shocks are independent,

the aggregate amount of resources needed to cover the advanced sector’s refinancing

needs at the interim stage is then given by D∗
t . At the level of an individual advanced

sector firm, an alternative would be via a liquidity covenant which involves the financial

intermediary initially extending the amount [1 + (P z
t /MCz

t (·))ξ̂∗t ]MCz
t (·)ỹz

t − Et to

the entrepreneur, whereby the requirement is imposed that the amount ξ̂∗tP
z
t ỹ

z
t is not

sunk in the project but kept in the form of readily marketable assets. However, at

the aggregate level across all advanced sector firms, implementation of the second

best policy via liquidity covenants is seen to require strictly more resources D̄t > D∗
t

because liquidity is kept separately at each firm, thus forgoing the potential to pool
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liquidity across firms.23

Given our empirical interest, the question arises whether there is a second best pol-

icy that features firms (rather than the intermediary) holding liquidity. We now give

an example for such a policy. For that purpose, first define a number ξ̌t which is implic-

itly given by D∗
t = ξ̌tP

z
t ỹ

z
t ; then, a policy of the desired kind is constructed as follows:

At stage one, the intermediary extends the amount [1+(P z
t /MCz

t (·))ξ̌t]MCz
t (·)ỹz

t −Et

to the entrepreneur. The financial contract further stipulates that the amount ξ̌tP
z
t ỹ

z
t

must be held in the form of liquid assets. The firm will then invest up to the maximum

admissible scale MCz
t (·)ỹz

t −Et and deposit its liquid assets with the intermediary (at

zero interest). Now, at stage two, when hit by a liquidity shock ξt, the firm must first

use up its own asset position of ξ̌tP
z
t ỹ

z
t ; only then can it approach the intermediary

for additional funds, which the latter will residually provide up to the second best

quantity ξ̂∗tP
z
t ỹ

z
t . The intermediary is able to provide this liquidity by calling idle

funds from those firms who receive shocks ξt < ξ̌t. Obviously, this policy replicates

the second best in terms of both the initial investment scale and the cutoff ξ̂∗t . Thus,

it only remains to check whether above arrangement is feasible, which is the case

since, from the definition of ξ̌t, the supply of and demand for liquidity are equal at

the aggregate level: P z
t ỹ

z
t ξ̌t = D∗

t = P z
t ỹ

z
t

∫ ξ̂∗t
0
ξtg(ξt)dξt. Further variations on the

institutional structure implementing the second best, involving advanced sector firms

holding assets other than cash (e.g. corporate debt issued by the basic sector firms)

as well as liquid assets earning non-zero rates of return, are possible.

23In the benchmark section of their paper which features an exogenous supply of liquidity, Holm-

strom and Tirole (1998) establish equivalence of the two methods of providing liquidity. This result

stems from the fact that their economy allows for a technology (“cash”) to transfer wealth across the

stages of the financial contracting problem and the additional assumption that cash is not scarce.

Conversely, in our economy cash is available, but its (limited) supply is determined in general equi-

librium via households’ financial deposits and monetary policy. Importantly then, liquidity is costly

(it has a price R̃t > 1), and agents have an incentive to economize on its usage. The consequence is

that intermediated credit lines and liquidity holdings on behalf of the firms are no longer equivalent.
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B.2 Competitive equilibrium relations

We can derive a set of relations that characterize a competitive equilibrium at the

aggregate level. Specifically, for R̃t > 1, the household’s cash constraint (2.1b) is

binding and we can aggregate over households and entrepreneurs to obtain a condition

relating aggregate consumption and investment to agents’ nominal asset holdings:

Qt + (1− η)At = Ptct, (B.12)

where ct = cHt +(1−η)cEt . Then, the evolution of nominal wealth held by households

is determined via the nominal budget constraint (2.1c) and the binding cash constraint

(2.1b):

Mt+1 = R̃t[Mt −Qt + Jt] + Υt +Rk
t kt +Rz

t zt +W k,H
t hk,H

t +W z,H
t hz,H

t , (B.13)

where we note that Υt = Dt + Et. This relation stipulates that, at the end of

any given period, the nominal resources Dt + Et lost due to liquidity shocks are

re-channelled to the household sector. Accordingly then, while the termination of

projects implies that the production of real output is curbed, the amount of nominal

resources (“money”) circulating is unaffected by liquidity shocks. Now, making use (i)

of a zero-profit condition for firms in the basic sector, firms in the advanced sector (net

of entrepreneurial rents Π̃F
t (ξ̂∗t )Et) and the financial intermediary, (ii) of the financial

market clearing condition (2.4), and (iii) of the aggregate cash constraint (B.12), one

obtains:

Mt+1 = Mt + Jt +
{

(1− η)At − [W k,E
t hk,E

t +W z,E
t hz,E

t + (Π̃F
t (ξ̂∗t )− 1)Et]

}
(B.14)

This relation has the intuitive interpretation that the evolution of nominal house-

hold wealth is governed by cash injections Jt and the net cash flow from the en-

trepreneurial sector (entrepreneurial consumption expenditure minus retained earn-

ings) to the household sector. The evolution of nominal wealth in the entrepreneurial

sector itself follows:
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At+1 = Π̃F
t (ξ̂∗t )Et +W k,E

t hk,E
t +W z,E

t hz,E
t , (B.15)

where Et = ηAt. In order to derive a convenient expression for the evolution of

aggregate wealth, we add equations (B.13) and (B.15) and employ the zero-profit

condition mentioned above as well as condition (2.4) to obtain:

Mt+1 + At+1 − (Dt + Et) = Ptyt, (B.16)

which gives immediately rise to a modified quantity relation:

Pt =
Mt+1 + At+1 − (Dt + Et)

yt

(B.17)

Again, this equation allows for an intuitive interpretation, namely that the con-

temporaneous price level Pt is determined as the ratio of nominal resources channelled

through the goods market to aggregate output.24

B.3 Equilibrium

Definition 1. (Competitive Equilibrium) Given initial conditions {k0, z0, A0,M0}

and realizations of monetary policy {Jt}∞t=0 and idiosyncratic shocks {ξi
t}∞t=0, a

competitive equilibrium is a list of allocations {cHt , h
k,H
t , hz,H

t , kt, zt, Qt,Mt+1}∞t=0

to households and {cE,i
t , hk,E

t , hz,E
t , Ei

t , A
i
t+1}∞t=0∀i to entrepreneurs, of sec-

toral and economy-wide aggregates {ct, lkt , lzt , L,K, yk
t , y

z
t , yt}∞t=0 and of prices

{Pt, P
z
t , P

k
t ,Wt,W

k
t ,W

k,H
t ,W k,E

t ,W z
t ,W

z,H
t ,W z,E

t , Rt, R
k
t , R

z
t , R̃t}∞t=0 such that:

1. given prices, the allocation solves the household problem (2.1) as well as the

basic and advanced firm problems (2.8) and (2.12);

24To see this, note that the agents’ end-of-period wealth Mt+1 + At+1 is effectively generated

via firm profits whose generation requires transactions on the goods market; from this amount, the

nominal resources which are absorbed by liquidity needs and later redistributed to the household

sector must be deduced.
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2. entrepreneurs follow their behavioral rules and the financial intermediary breaks

even;

3. aggregation across agents and sectors as well as among the entrepreneurs ob-

tains, i.e. for a generic variable vE,i
t belonging to the allocation to entrepreneurs:∫

i
vE,i

t di = vE
t ;

4. the financial market as well as the markets for final goods, intermediate goods

and factor inputs clear.

Note that the competitive equilibrium is not efficient due to the entrepreneurial

moral hazard problem that leads to the termination of ex-post efficient projects and

the externality of knowledge on the future productivity of investment projects.

B.4 The responsiveness of corporate liquidity to changes in

the financial rate (H1)

In the following, we demonstrate that the general equilibrium effect of the financial

rate (R̃t) on the corporate provision of liquidity ξ̂∗t is negative as summarized in H1.

Therefore, we assume a specific functional form for the distribution of liquidity shocks:

G(ξ) = ξ
1
φ , φ > 0. Hence, in accordance with Aghion et al. (2005), we assume that

the distribution of liquidity shocks is monotonically increasing in ξ.

Moreover, the relative demand for both intermediates given by (2.6) leads to the

following equilibrium condition:
yz

t

yk
t

= 1−ζ
ζ

(
P z

t

P k
t

)−ρ

. If we substitute for the price ratio

by
P z

t

P k
t

= A
V

1

R̃t
R ξ̂∗t
0 G(ξ)dξ

from (2.21), we get:

G(ξ̂∗t ) =
1− ζ

ζ

(
A

V

)1−ρ
(
R̃t

∫ ξ̂∗t

0

G(ξ)dξ

)ρ

(B.18)

Taking the total derivative of (B.18) and noting that the functional form for the

distribution of liquidity shocks implies that
dG(ξ̂∗t )

dξ̂∗t

ξ̂∗t
G(ξ̂∗t )

= 1
φ

and
d

R ξ̂∗t
0 G(ξ)dξ

dξ̂∗t

ξ̂∗tR ξ̂∗t
0 G(ξ)dξ

=

1+φ
φ

, we obtain:
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dξ̂∗t
dR̃t

=
R̃t

ξ̂∗t

ρφ

1− ρ(1 + φ)
< 0 (B.19)

Thus, given that the functional form for the distribution of liquidity shocks is

monotonically increasing in ξ, the general equilibrium provision of corporate liquidity

is decreasing in the nominal financial rate R̃ as stated in H1.

B.5 Construction of the TFP measure

We construct the series of aggregate TFP-growth, as a residual from the human

capital augmented Solow-model.25 We follow the basic specification in Caselli (2005)

who computes TFP levels across countries for the year 1996. That is, we employ the

production function: yt = Atk
α
t h

1−α
t , where A is the level of TFP, y the real GDP

per worker in international dollars, k the physical capital stock per worker and h the

human capital stock per worker. The first measures stem from the Penn World Tables

(PWT) and the latter from Barro and Lee (2001), respectively. The capital stock (K)

is computed with the perpetual inventory method, whereby the depreciation rate (δ)

is set to 6% and the initial capital stock is computed as K0 = I0
g+δ

. g is the average

geometric growth rate for the investment series between the first year with available

data and 1970.26 The stock of human capital is derived according to Hall and Jones

(1999): h = expφ(s), where s is the average years of schooling in the population

over 25 year old and the function φ(s) is piecewise linear with slope 0.13 for s ≤ 4,

0.10 for 4 < s ≤ 8 and 0.07 for 8 < s. We incorporate a share of private capital

per worker of 1/3 (α = 1/3). Caselli (2005) provides a comprehensive discussion of

various robustness tests to this procedure in a development accounting framework.

He shows that the explanatory power of the TFP-series (2/3) to explain variations in

25The inclusion of various control variables reduces the effective size of the panel to a minimum of

68 countries in some estimations.

26The investment series starts for 54 countries in 1950, for 17 in 1955 and for the remaining 17 in

1960.
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GDP is robust to the inclusion of different measures for the quality of human capital

or different estimation procedures for k.27 Therefore, we follow his basic specification.

We compute the TFP series for 88 countries from 1970-1980. Our TFP-series complies

with Caselli (2005) for 1996. We drop the TFP-measure for the first ten observations

and start the series in 1980 in order to minimize the influence of the initial capital

stock on our results. The rankings of the TFP-measures across countries and years

yield plausible results.28

27We note that this explanatory power decreases significantly if α exceeds 0.5, which, however,

does not comply with existing empirical estimates.

28The five highest (log-) TFP level exhibit Ireland in 2000-1997, respectively, and Italy in 1999.

The 50 lowest TFP-levels are measured in Zaire, Malawi, Romania, Zambia, Rwanda, Lesotho and

China for different time periods, respectively. The complete ranking is available from the authors on

request.
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C Appendix

C.1 Empirical verification of Assumption 1

We aim to analyze whether the standardized joint distribution of log capital and

log labor, i.e., Gk̃l, changes sufficiently slowly over time, so that it can be regarded

as approximately equal for two 2003 and 2004. In order to answer this question,

we apply a nonparametric kernel-based test of closeness between two distribution

functions as proposed by Li (1996). Under the null hypothesis that two distribu-

tions are equal the test statistic T , which relies on the integrated squared differ-

ence between G2003,k̃l and G2004,k̃l, has a standard normal distribution. However,

the asymptotic distribution of T under the null hypothesis has a slow rate of con-

vergence to the the standard normal distribution. In order to account for this fi-

nite sample bias, we perform the bootstrap procedure to approximate the distribu-

tion of T . We repeat the following procedure B = 500 times: Out of the pooled

sample {(k1
2003, l

1
2003), . . . , (k

n2003
2003 , l

n2003
2003 ); (k1

2004, l
1
2004), . . . , (k

n2004
2004 , l

n2004
2004 )} two samples

{(k∗1, l∗1), . . . , (k∗n2003 , l
∗n2003) and {(k∗1, l∗1), . . . , (k∗n2004 , l

∗n2004) are randomly drawn

with replacement. Then, based on the new samples the test statistic T ∗
b is computed.

The empirical distribution of T under the null hypothesis is then estimated from the

sample {T ∗
1 , . . . , T

∗
B}. The consistency of the bootstrap in this context is proven by Li

et al. (2007). Moreover, bandwidth parameters used for testing were obtained through

the Sheather and Jones (1991) method.

Assumption 1 is well supported by the Amadeus data. The test results for 20

countries are given in Table 6. They indicate that changes in Gk̃l from 2003 to

2004 can be indeed regarded as statistically insignificant for 17 out of 20 countries

in our sample. We reject equality of G2003,k̃l and G2004,k̃l only for Finland, Italy, and

Romania.
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Table C.6: Empirical verification of Assumption 1

country test stat. emp. p-value as. p-value

Austria -1.741 0.950 0.959

Belgium -0.454 0.591 0.675

Bosnia & H. -2.069 0.976 0.981

Bulgaria 0.047 0.456 0.481

Czech R. -1.659 0.922 0.951

Denmark 0.259 0.310 0.398

Estonia -1.231 0.856 0.891

Finland 3.973∗ 0.001 0.000

France -0.193 0.502 0.577

Germany 1.343 0.057 0.090

Great Britain 1.512 0.077 0.065

Italy 12.522∗ 0.000 0.000

Netherlands -1.966 0.951 0.975

Norway -0.565 0.696 0.714

Poland -1.970 0.975 0.976

Portugal -1.889 0.970 0.971

Romania 3.161∗ 0.013 0.001

Slovakia -0.892 0.733 0.814

Spain -1.067 0.823 0.857

Sweden 1.562 0.072 0.059

Apply Li (1996) test for equality of distributions. Asterisks

denote that changes in the (coordinate-wise) standardized

joint distribution of log capital and log labor from 2003

to 2004 were statistically significant at the 5% level.
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C.2 Empirical verification of Assumption 2

Recall that we denote by kt,τ the τ -quantile of the distribution Gt,k and by lt,η the η-

quantile of the distribution Gt,l. We analyze whether for all 0 < τ < 1 and 0 < η < 1

the conditional distribution of attributes given k = kτ and l = lη, i.e., GA|kτ ,lη changed

significantly from 2003 to 2004.

In our analysis Aj
t contains company age, industry and regional dummies, inde-

pendence indicators and a dummy for being publicly quoted. Since among these

variables solely the age of a company age is a continuous variable, while veri-

fying Hypothesis 2, we concentrate on the evolution of the conditional distribu-

tion of age, i.e., Gage|kτ lη . We study the evolution this distribution for (τ, η) ∈

{(0.1, 0.1), (0.25, 0.25), (0.5, 0.5), (0.75, 0.75), (0.9, 0.9)}.29 In order to assess the sig-

nificance of changes in Gage|kτ lη from 2003 to 2004 we perform the nonparametric

Kolmogorov-Smirnov test, the results of which are given in Table 7. We conclude

that changes over time in Gage|kτ lη at most quantile positions (τ, η) are statistically

significant in only four countries: the Czech Republic, Italy, Romania, and Spain.

Moreover, for Bosnia and Herzegovina, France, Germany, Norway, Portugal, and Slo-

vakia changes in Gage|kτ lη are significant at only one quantile position. Finally, Gage|kτ lη

did not change significantly at any quantile position in the remaining ten countries.

29In fact, when analyzing the evolution of Gt,age|kτ lη we focus on the distribution of firm age for

firms with kj
t ∈ [kt,τ−0.025, kt,τ+0.025] and ljt ∈ [lt,η−0.025, lt,η+0.025].

146



Table C.7: Test of equality of G2003,age|kτ lη and G2004,age|kτ lη

country τ = η = 0.1 τ = η = 0.25 τ = η = 0.5 τ = η = 0.75 τ = η = 0.9

Austria 0.243 0.107 0.616 0.561 0.862

Belgium 0.794 0.703 0.772 0.416 0.978

Bosnia & H. 0.059 0.058 0.827 0.473 0.003∗

Bulgaria 0.548 0.980 0.730 0.884 0.382

Czech R. 0.011∗ 0.956 0.244 0.028∗ 0.001∗

Denmark 0.952 0.999 0.114 0.808 0.723

Estonia 0.149 0.087 0.595 0.781 0.439

Finland 0.597 0.487 0.124 0.422 0.600

France 0.708 0.825 0.740 0.029∗ 0.996

Germany 0.532 0.032∗ 0.497 0.977 0.853

Great Britain 0.266 0.546 0.215 0.753 0.235

Italy 0.000∗ 0.001∗ 0.000∗ 0.672 0.474

Netherlands 0.876 0.913 0.720 0.879 0.888

Norway 0.116 0.436 0.373 0.064 0.000∗

Poland 0.213 0.083 0.334 0.496 0.998

Portugal 0.499 0.029∗ 0.121 0.768 0.995

Romania 0.000∗ 0.001∗ 0.001∗ 0.000∗ 0.000∗

Slovakia 0.957 0.021∗ 0.649 0.974 0.305

Spain 0.000∗ 0.000∗ 0.020∗ 0.000∗ 0.053

Sweden 0.167 0.679 0.115 0.238 0.464

Apply Kolmogorov-Smirnov test of equality of G2003,age|kτ lη and G2004,age|kτ lη for different

quantile positions τ and η. Asterisks correspond to p-values smaller than 0.05 and indicate

that changes in the distribution were statistically significant at the 5% level.
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C.3 Derivation of the aggregate relation in terms of log K̄ and

log L̄

Let xj
t = (kj

t , l
j
t )
′ denote the observable firm-specific explanatory variables with the

corresponding mean vector x̄t. Further, Σt =

 (σk
t )2 σkl

t

σkl
t (σl

t)
2

 denotes the covari-

ance matrix of xj
t across Jt. According to Hildenbrand and Kneip (2005) the growth

rate gt of the aggregate response variable is given by:

gt = β′t−1(x̄t − x̄t−1) + tr[∆t−1(Σ
1/2
t Σ

−1/2
t−1 − I)] + other effects, (C.1)

where I is the identity matrix, βt−1 = (βk
t−1, β

l
t−1)

′ is a vector and ∆t−1 = δk
t−1 δkl

t−1

δkl
t−1 δl

t−1

 is a matrix of coefficients. Under coordinate-wise standardization

(in Assumption 1) Σt is replaced by Σ̃t =

 (σk
t )2 0

0 (σl
t)

2

 and the first two rhs

terms in (C.1) simplify to:

βk
t−1(k̄t − k̄t−1) + βl

t−1(l̄t − l̄t−1) + δk
t−1(

σk
t − σk

t−1

σk
t−1

) + δl
t−1(

σl
t − σl

t−1

σl
t−1

), (C.2)

where

δk
t−1 =

1

Ȳt−1

∫
(k − k̄t−1)∂kf̄t−1(k, l, A) dGt−1,klA

and

δl
t−1 =

1

Ȳt−1

∫
(l − l̄t−1)∂lf̄t−1(k, l, A) dGt−1,klA.

For the sake of comparability with conventional growth models, we are interested in

a relationship like (C.1) but in terms of changes in aggregate levels K̄ and L̄ rather

than in terms of aggregate log levels k̄ and l̄. More specifically, we want to arrive at

a relationship for the growth rate containing:

βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1)

We start30 with the definition of log K̄t:

30The derivation for log L̄t can be carried out analogously.

148



log K̄t = log
[ ∫

KdGt,K

]
= log

[ ∫
exp(k)dGt,k

]
(C.3)

For two periods t and t− 1 Assumption 1 (Structural stability of Gkl) implies:

Gt−1,k

( σk
t

σk
t−1

(k − k̄t−1) + k̄t

)
= Gt,k(k)

Hence, we can rewrite (C.3) by:

log K̄t = log
[ ∫

exp
( σk

t

σk
t−1

(k − k̄t−1) + k̄t

)
dGt−1,k

]
= k̄t + log

[ ∫
exp

( σk
t

σk
t−1

(k − k̄t−1)
)
dGt−1,l

]
Now, we define a function q from R+ to R such that:

q(σk) := log
[ ∫

exp
( σk

σk
t−1

(k − k̄t−1)
)
dGt−1,k

]
By the definition of q we have q(σk

t ) = log K̄t− k̄t and simple algebra yields q(σk
t−1) =

log K̄t−1 − k̄t−1. From these properties of q it follows that:

k̄t − k̄t−1 = log K̄t − log K̄t−1 − [q(σk
t )− q(σk

t−1)]

Further, by the first order Taylor approximation of q(σk) at σk
t−1 we obtain:

q(σk
t ) ≈ q(σk

t−1) + ∂σkq(σk)
∣∣
σk=σk

t−1
· (σk

t − σk
t−1)

= q(σk
t−1) +

1

σk
t−1K̄t−1

∫
(k − k̄t−1) exp(k)dGt−1,k · (σk

t − σk
t−1)

Consequently,

βk
t−1(k̄t−k̄t−1) = βk

t−1(log K̄t−log K̄t−1)−
βk

t−1

K̄t−1

∫
(k−k̄t−1) exp(k)dGt−1,k·

(σk
t − σk

t−1

σk
t−1

)
.

Doing analogous derivations for log L̄t, we obtain:

gt = βk
t−1(log K̄t − log K̄t−1) + βl

t−1(log L̄t − log L̄t−1)

+ γk
t−1

(σk
t − σk

t−1

σk
t−1

)
+ γl

t−1

(σl
t − σl

t−1

σl
t−1

)
+ other effects,
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where

γk
t−1 = δk

t−1 −
βk

t−1

K̄t−1

∫
(k − k̄t−1) exp(k)dGt−1,k

and

γl
t−1 = δl

t−1 −
βl

t−1

L̄t−1

∫
(l − l̄t−1) exp(l)dGt−1,l.
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