
Three Essays on

Unit Roots and Nonlinear

Co-Integrated Processes

Inaugural–Dissertation

zur Erlangung des Grades eines Doktors

der Wirtschafts– und Gesellschaftswissenschaften

durch die

Rechts– und Staatswissenschaftliche Fakultät

der Rheinischen Friedrich–Wilhelms–Universität Bonn

vorgelegt von

Jürgen Gaul

aus Olching

Bonn 2008



Dekan: Prof. Dr. Erik Theissen

Erstreferent: Prof. Dr. Jörg Breitung

Zweitreferent: Prof. Dr. Erik Theissen

Tag der mündlichen Prüfung: 7. Oktober 2008
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Introduction

Many macroeconomic and financial key variables such as e.g. consumption, invest-

ment, gross domestic product and interest rates, display non-stationary features such

as trends or changing variances. A non-stationary stochastic process that can be

made stationary by taking first differences, is called integrated of order one (I(1)). If

the variables in a p-dimensional vector yt = (y1,t, . . . , yp,t)
>, t = 1, . . . , T , are I(1),

then there may exist a linear combination of the variables such that the resulting pro-

cess is stationary. Integrated processes with this property are said to be cointegrated.

The concept of cointegration, introduced by Granger (1981) and Engle and Granger

(1987), allows to describe equilibrium relationships between economic variables and,

hence, bridges the gap between time series analysis and economics. For this reason,

cointegration has become a popular tool for applied econometric work, e.g. Johansen

and Juselius (1992).

In the last 25 years, both integrated and cointegrated processes have attracted a lot

of attention in theoretical and applied time series econometrics. The seminal contri-

butions by Dickey and Fuller (1979), Engle and Granger (1987), Phillips and Perron

(1988) and Johansen (1988, 1991) provided a solid basis for numerous extensions of

this field of research.

This dissertation sheds light on two important extensions of the unit root model

and the linear vector error correction model (VECM). In the first chapter, I extend

several state-of-the-art unit root tests in the presence of permanent variance changes

and compare their finite sample behavior in an extensive simulation study. In the two

remaining chapters, I concentrate on error correction models that allow for a nonlinear
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adjustment process. The second chapter is devoted to the statistical inference of a

general three regime threshold VECM. In chapter three, I explore the dynamics of

spot and future prices using a novel nonlinear error correction model.

In the next paragraphs, I present the main topics covered in this thesis in more

detail.

The first chapter1, is devoted to testing for a unit root under time-varying variances.

Recent literature find that many macroeconomic and financial variables exhibit a

change in unconditional volatility. The presence of non-stationary volatility alters the

asymptotic distribution of unit root tests and may lead to a high rejection rate of the

null hypothesis.

The aim of this chapter is to investigate the finite-sample properties of three recent

unit root tests. First, Beare (2006) suggests to scale the innovations by a nonpara-

metric estimator of their variances such that the first differences of the series are

approximately homoskedastic. Then, the Phillips-Perron test is applied to the scaled

data. Additionally, I apply the local-to-unity approach by Elliott et al. (1996) to the

test by Beare (2006) in order to de-trend the series. Second, Cavaliere and Taylor

(2008) propose to apply the wild bootstrap method to the M class of unit root tests.

Third, I extend the ML coefficient test by Boswijk (2005) to allow for deterministic

components.

The key results of the simulation study are as follows. First, the proposed detrended

version of the Phillips-Perron test by Beare (2006) improves the power substantially.

Second, empirical size and power of unit root tests requiring a nonparametric estimator

of the variance path, depend considerably on the choice of the bandwidth parameter.

Third, the ML test outperforms the remaining tests in terms of power.

In the second chapter2 of this thesis, I focus on a three-regime threshold VECM

whose dynamics are characterized by a piecewise linear VECM. The regime switches

1This chapter is based on Gaul (2008).
2This chapter is based on Gaul (2007).
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depend on the magnitude of a stationary threshold variable crossing unknown thresh-

old parameters. In contrast to previous literature, the model does not impose any

rank restrictions on the long-run impact matrix.

To estimate the parameters of the model, I employ the constrained least squares

method. I show that the estimator for the threshold parameters is consistent. Then, I

introduce an information-based selection criterion to estimate the cointegration ranks.

If the regimes are characterized by the same rank configuration, I construct an LM

test to detect threshold effects. Since the threshold parameters are not identified

under the null hypothesis, I show that the asymptotic distribution is non-standard

and, in particular, depends on moments of the data set. A parametric bootstrap

algorithm is proposed to simulate critical values.

An empirical application to the term structure of US interest rates is conducted

to highlight the approach. The results confirm the intuition that the series are not

cointegrated in the case of small deviations from the long-run equilibrium, but they

become cointegrated for large deviations. Furthermore, the model clearly outperforms

the random walk model and the linear error correction model in terms of forecast

ability.

In chapter 33, I consider the dynamics of spot and futures prices in the presence

of arbitrage. The cost-of-carry relation establishes the relationship between prices in

spot and futures markets. In a frictionless world any deviations from this relation

would be eliminated by arbitrage. In practice, however, the prices in both markets

may and do differ for several reasons. First, the existence of transactions costs makes

it unprofitable to exploit small deviations. Second, traders with access to private

information may prefer to trade in a specific market. Consequently, prices in this

market may reflect information earlier than prices in the other market.

I use a novel partially linear VECM where the adjustment process is modelled by a

non-parametric function. Estimation of the model is non-standard and employs kernel

3This chapter is based on Gaul and Theissen (2007).
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methods. The short-run dynamics are estimated by density-weighted OLS, whereas

the adjustment process is estimated by a Nadaraya-Watson estimator. To detect

whether the adjustment process is indeed nonlinear, I perform a non-parametric test

whose test statistic is asymptotically normally distributed.

The model is implemented using data on the DAX index and the DAX futures

contract. I find that the conjecture of a nonlinear adjustment is strongly supported

by the non-parametric test. The speed of price adjustment is increasing almost mono-

tonically with the magnitude of the price difference. The estimation results indicate

that the futures market leads the spot market. Furthermore, I observe that the par-

tially linear VECM clearly improves the forecasting ability compared with that of the

linear VECM.

The next three chapters each present one idea as a self-contained unit.
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Chapter 1

Unit Root Tests with

Time-Varying Variances:

A Simulation Study

1.1 Introduction

Many key variables such as gross domestic products, interest rates and exchange rates

display non-stationary behavior. Since the seminal contributions by Dickey and Fuller

(1979) and Phillips and Perron (1988) testing for a unit root has become a widely

used tool in macroeconomics and finance. However, the derivation of the asymptotic

distribution of unit root tests relies on the assumption of a constant variance of the

innovations. For example, models of heteroskedasticity involving a sudden change in

the volatility are very common in econometrics. Among others, Sensier and van Dick

(2004) find that about 80% of 214 US macroeconomic time series feature a change in

unconditional volatility.

To the author’s best knowledge, Hamori and Tokihisa (1997) were the first to show

that a single break in the variance can have a great impact on the asymptotic distribu-

tion of standard unit root tests. For this specific case, Kim, Leybourne and Newbold

(2002) suggest a modified version of the Perron (1989, 1990) unit root tests. Cavaliere
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(2004) develops a new asymptotic theory that allows for a wide class of heteroskedas-

ticity. Based on the latter contribution, different approaches for testing for a unit

root under heteroskedasticity has been proposed. In this chapter we investigate the

finite sample properties of three state-of-the-art unit root tests.

Beare (2006) proposes a modification to the Phillips-Perron test that scales the

innovations by a nonparametric estimator of their variances such that the first differ-

ences of the series are approximately homoskedastic. Then, the Phillips-Perron test

is applied to the scaled data. The main advantage of this method is that the test

statistic has the standard asymptotic distribution and hence the use of simulation

methods is not necessary. Inspired by Elliott et el. (1996) we suggest a detrended

variant of the test.

Recently, Cavaliere and Taylor (2008) analyze in the case of time-varying variances

the asymptotic distribution of the M class of unit root tests originally introduced by

Stock (1999). They show that the asymptotic distribution depends on the volatility

path and therefore general critical values are not available. They establish that the

wild bootstrap method is valid since it replicates the heteroskedasticity present in the

original shocks in the resampled data.

Boswijk (2005) derives the asymptotic power envelope of unit root tests under

heteroskedasticity when the series has no deterministic component. Furthermore,

he constructs a class of feasible test statistics whose power functions are tangent to

the power envelope at one point. Boswijk (2005) observes that the power of the

Gaussian ML coefficient test is close to the power envelope. In this chapter we allow

for deterministic components and propose to detrend the series using the local-to-unity

approach by Elliott et al. (1996). Then, we perform the Gaussian ML coefficient test

following Boswijk (2005).

The key results of the simulation study can be summarized as follows. First, the

standard unit root tests exhibit serious size distortions for several models of het-

eroskedasticity. Second, the proposed detrended version of the Phillips-Perron test

by Beare (2006) increases the power substantially. Third, empirical size and power of
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unit root tests requiring a nonparametric estimator of the variance path depend con-

siderably on the choice of the bandwidth parameter. Fourth, the ML test outperforms

the remaining tests in terms of power.

The remaining chapter is organized as follows. In section 1.2 we introduce the

model and the basic assumptions. The test by Beare (2006) and its detrended version

are outlined in section 1.3. Section 1.4 is devoted to the bootstrap M tests by Cavaliere

and Taylor (2008). We describe the modification to the ML test by Boswijk (2005)

in section 1.5. The simulation results for two different data generating processes are

reported in section 1.6. Finally, we conclude.

1.2 Model

As in Beare (2006) and Cavaliere and Taylor (2008) we suppose that the data gener-

ating process is given by the econometric model

yt = δ>zt + xt, t = 0, . . . , T (1.1)

xt = ρxt−1 + g

(
t

T

)
εt. (1.2)

In (1.1), the deterministic components of the process are collected in zt. Here, we

restrict our attention to the leading cases of a constant, i.e. zt = 1 and δ = δ0, and a

linear trend, i.e. zt = (1, t)> and δ = (δ0, δ1)
>.

The class of functions triggering heteroskedasticity is defined by the following

assumption.

Assumption V: The function g : [0, 1] → R is twice continuously differen-

tiable except at a finite number of points. Furthermore, there exists a constant

M ∈ (1,∞) such that M−1 < g(r) < M for all r ∈ [0, 1], |g′(r)| < M at which g′(r)

exists, and |g′′(r)| < M at which g′′(r) exists. Additionally, we assume that g is

right-continuous.
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It encompasses several different forms of models including non-continuous functions

with a finite number of breaks and trending functions. However, stochastic functions

such as GARCH models, near-integrated and integrated models are not covered by

our framework.

Furthermore, we suppose that the error process (εt)t=1...,T satisfies the following

condition.

Assumption E: The error process (εt)t=1...,T is a strictly stationary α-mixing

process with E(εt) = 0, E(ε2t ) = 1, E|εt|p < ∞ for some p > 4 and with mixing coef-

ficients (αm)m≥0 satisfying
∑∞

m=0 α
2(1/r−1/p)
m < ∞ for some r ∈ (2, 4]. Additionally,

we require that the long-run variance σ2 =
∑∞

j=−∞E(εtεt+j) is strictly positive and

finite.

We aim to test the null hypothesis ρ = 1 in the situation that the innovations

may be heteroskedastic.

The following lemma by Cavaliere (2004) plays a central role in order to analyze

the effect of heteroskedasticity on standard unit root tests. It extends the standard

functional central limit theorem to the heteroskedastic case.

Lemma 1.1:

Suppose Assumption V and E hold. Let ut = g
(

t
T

)
εt. As T →∞,

ST (r) = T−1/2

[Tr]∑
t=1

ut ⇒
∫ r

0

g(s)dW (s) = Wg(r),

where W (·) denotes a standard Brownian motion.

In the homoskedastic case g(s) = σ it follows that

ST (r) = T−1/2

[Tr]∑
t=1

σεt ⇒ σ

∫ r

0

dW (s) = σW (r)

8



and, hence, Lemma 1.1 coincides with the standard FCLT.

Let ρ̂ denote the least square estimator in (1.1) and (1.2) and set for simplicity

zt = 0. As shown by Cavaliere (2004), the asymptotic distribution of the standard

Dickey-Fuller coefficient test is given by

T ρ̂⇒
∫ 1

0
Wg(r)g(r)dW (r)∫ 1

0
Wg(r)2dr

. (1.3)

Note that the distribution on the right-hand side in (1.3) differs substantially from

the standard Dickey-Fuller distribution unless g(s) = σ. Therefore, we expect that

standard unit root tests fail to work under heteroskedasticity. In the subsequent

sections we describe recent adjustments to this lack of robustness, evaluate the finite

sample properties of the tests and compare them with the standard tests.

1.3 The Modified Phillips-Perron Test

1.3.1 Phillips-Perron test by Beare (2006)

Recently, Beare (2006) has developed a correction to the standard Phillips-Perron

test that allows for a very general class of heteroskedasticity. As shown by Beare

(2006), the approach offers the advantage that the test statistic possesses the standard

Dickey-Fuller distribution. The test statistic can be derived as follows. Under the null

hypothesis, ρ = 1, it follows from (1.1) and (1.2) that

∆yt = δ1 + g

(
t

T

)
εt.

Regressing ∆yt on a constant, we obtain the least square estimator δ̂1 = 1
T

∑T
t=1 ∆yt.

A nonparametric estimator of g is given by the Nadaraya-Watson estimator

ĝ(r) =

∑T
t=1K

(
t/T−r

h

)
(∆yt − δ̂1)

2∑T
t=1K

(
t/T−r

h

)
1/2

, (1.4)

9



where K : R → R denotes the kernel function and h is the bandwidth parameter.

The kernel function K and the bandwidth hT are assumed to satisfy the following

conditions.

Assumption K: The kernel function K : R → R is symmetric about 0, positive and

three times differentiable. Additionally, it satisfies
∫
K(x)dx > 0,

∫
|x|K(x)dx <∞,∫

|xK ′(x)|dx < ∞, lim|x|→∞ x2K(x) → 0 and lim|x|→∞ x4K ′(x) → 0, monotonously

for sufficiently large |x|. The Fourier transformation of K, denoted by ψ exists and

satisfies
∫
|λψ(λ)|dλ <∞.

Assumption H: The bandwidth parameter satisfies hT → 0 and Th4
T → ∞

as T →∞.

The estimator ĝ is used to construct the series

y∗t =
t∑

s=1

ys − ys−1

ĝ
(

s
T

) . (1.5)

It is important to note that the series (y∗t )t=1,...,T is constructed in such a way that its

differences are approximately homoskedastic. Then, Beare (2006) suggests to apply

the standard Phillips-Perron test to the series (y∗t )t=1,...,T . Running the regression of

y∗t on y∗t−1 and the deterministic components zt leads to least squares estimators ρ̂∗

and δ̂∗ = (δ̂∗0, δ̂
∗
1)
>. Then, it follows that the test statistic is given by

Zρ̂∗ = T · (ρ̂∗ − 1)− λ̂∗

T−2
∑T

t=1 y
∗2
t−1

,

where λ̂∗ is defined as

λ̂∗ =
m∑

j=1

K

(
j

m

)(
1

T

T−j∑
t=1

(
y∗t − δ̂∗>zt − ρ̂∗y∗t−1

)(
y∗t+j − δ̂∗>zt+j − ρ̂∗y∗t+j−1

))
.

The asymptotic distribution of the test statistic Zρ̂∗ is stated in the following theorem.

10



Theorem 1.2:

Suppose Assumptions V, E, K and H hold.

(a) Let zt = 1. As T →∞,

Zρ∗ ⇒
1
2
[W (1)2 − 1]−W (1)

∫ 1

0
W (r)dr∫ 1

0
W (r)2dr −

[∫ 1

0
W (r)dr

]2 .

(b) Let zt = (1, t)>. As T →∞,

Zρ∗ ⇒ a/
√
b,

where

a =

∫ 1

0

W (r)dW (r)−W (1)

∫ 1

0

W (r)dr

+ 12

[∫ 1

0

rW (r)dr − 1

2

∫ 1

0

W (r)dr

] [∫ 1

0

W (r)dr − 1

2
W (1)

]

and

b =

∫ 1

0

W (r)2dr − 12

(∫ 1

0

rW (r)dr

)2

+ 12

∫ 1

0

W (r)dr

∫ 1

0

rW (r)dr − 4

(∫ 1

0

W (r)

)2

.

The proof of the first part of Theorem 1.2 is given in Beare (2006). The second

part of Theorem 1.2 can be established along the lines of Beare (2006).

1.3.2 GLS Detrended Phillips-Perron Test

In this subsection we propose a slight modification to the procedure described in the

previous subsection. Let y∗t be defined as in (1.5). Inspired by Elliott et al. (1996)

11



we define

y∗c̄ =
(
y∗0, y

∗
1 −

(
1− c̄

T

)
y∗0, . . . , y

∗
T −

(
1− c̄

T

)
y∗T−1

)>
and

zc̄ =
(
z0, z1 −

(
1− c̄

T

)
z0, . . . , zT −

(
1− c̄

T

)
zT−1

)>
.

The value of c̄ depends on the deterministic components; Elliott et al. (1996) suggest

to set c̄ = 7 when zt = 1 and c̄ = 13.5 when zt = (1, t)>. Next, regress y∗c̄ on

zc̄, denote the corresponding least squares estimator by γ̂ and define the local GLS

residuals ŷ∗t = y∗t − γ̂>zt. Then, the test statistic is given by

ZGLS

ρ∗ = T · (ρ̂∗GLS − 1)− λ̂∗GLS

T−2
∑T

t=1 ŷ
∗2
t−1

, (1.6)

where ρ̂∗GLS is the least squares estimator of the regression of ŷ∗t on ŷ∗t−1 and λ̂∗GLS is

defined as

λ̂∗GLS =
m∑

j=1

K

(
j

m

)(
1

T

T−j∑
t=1

(
ŷ∗t − ρ̂∗GLSŷ

∗
t−1

) (
ŷ∗t+j − ρ̂∗GLSŷ

∗
t+j−1

))
.

The following theorem shows that the asymptotic distribution of the corrected test

coincides with the limit distribution that the uncorrected test would have if the

innovations were homoskedastic. Therefore, we are able to use the critical values

provided in Table 1 in Ng and Perron (2001, p. 1524).

Theorem 1.3:

Suppose Assumptions V, E, K and H hold.

(a) Let zt = 1. As T →∞,

ZGLS

ρ∗ ⇒
1
2
(W (1)2 − 1)∫ 1

0
W (r)2dr

,

12



where W (r) is a standard Brownian motion.

(b) Let zt = (1, t)>. As T →∞,

ZGLS

ρ∗ ⇒
1
2
(W tr(1)2 − 1)∫ 1

0
W tr(r)2dr

,

where W tr(r) := W (r) − r
(
νc̄W (1) + 3(1− νc̄)

∫ 1

0
rW (r)dr

)
and νc̄ := (1 +

c̄)/(1 + c̄+ c̄2/3).

The proof is based on Lemma 10 in Beare (2006) and follows exactly the same

steps as in Theorem 2 of Cavaliere (2004). Hence, it is omitted.

1.4 The M Class of Unit Root Tests

Most of the conventional unit root tests have a substantial size distortion when the

errors are serially correlated. For this reason, Stock (1999) proposes a class of unit

root tests (the so-called M tests) being robust to autocorrelation. Recently, Cavaliere

and Taylor (2008) extend the M tests to the case of potential heteroskedasticity. Their

approach can be described as follows.

Similar to the previous subsection, let

yc̄ =
(
y0, y1 −

(
1− c̄

T

)
y0, . . . , yT −

(
1− c̄

T

)
yT−1

)>
and

zc̄ =
(
z0, z1 −

(
1− c̄

T

)
z0, . . . , zT −

(
1− c̄

T

)
zT−1

)>
.

Denote by ŷt the local GLS residuals ŷt = yt − γ̂>zt, where γ̂ is the least squares

13



estimator from the regression of yc̄ on zc̄. The M unit root statistics are given by

MZρ =
T−1ŷ2

T − s2
AR(k)

2T−2
∑T

t=1 ŷ
2
t−1

, (1.7)

MSB =

(
T−2

T∑
t=1

ŷ2
t−1/s

2
AR(k)

)1/2

, (1.8)

MZt = MZρ ·MSB, (1.9)

where

s2
AR(k) = σ̂2/

(
1− β̂(1)

)2

, (1.10)

β̂(1) =
k∑

i=1

β̂i,k. (1.11)

In (1.11), β̂i,k, i = 1, . . . , k, are estimators of the coefficients βi,k in the Dickey-Fuller

regression

∆ŷt = πŷt−1 +
k∑

i=1

βi,k∆ŷt−i + ut

and in (1.10)

σ̂2 =
1

T − k − 1

T∑
t=1

ût,

with

ût = ∆ŷt − π̂ŷt−1 +
k∑

i=1

β̂i,k∆ŷt−i (1.12)

is an estimator for σ2 = E(u2
t ), respectively.

The main result of Cavaliere and Taylor (2008) is articulated in the following

theorem. For simplicity, we focus on the case that zt = 1.
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Theorem 1.4: Suppose Assumptions V, E, K and H hold. Then, as T →∞

MZρ ⇒
1
2
(Wg(1)

2 − 1)∫ 1

0
Wg(r)2dr

=: ξ1,

MSB ⇒
(∫ 1

0

Wg(r)
2dr

)1/2

=: ξ2,

MZt ⇒ ξ1 · ξ2 =
1
2
(Wg(1)

2 − 1)(∫ 1

0
Wg(r)2dr

)1/2
.

It is evident from Theorem 1.4 that the asymptotic distribution depends on the time-

path of the variance and, hence, general critical values are not available. Cavaliere

and Taylor (2008) propose a wild bootstrap algorithm to obtain valid critical values

given the time-path of the variance. The algorithm consists of the following steps.

Step 1: Calculate the residuals ût given by (1.12) using the original sample.

Step 2: Generate the bootstrap residuals u∗t := ûtwt, where (wt)t=1,...,T denotes an

independent N(0, 1) sequence.

Step 3: The bootstrap sample is obtained by using the model under the null hypothesis

y∗t = y∗0 +
t∑

i=1

u∗i , t = 1, . . . , T

for some initial value y∗0.

Step 4: Calculate the value of the M test statistics for the bootstrap sample

(y∗t )t=1,...,T .

Step 5: Repeat steps 2-4 B times.

Step 6: Reject the null hypothesis if the value of the M test statistics based on the

original sample is smaller than an appropriate quantile of the bootstrap distribution

generated in the previous step.

Cavaliere and Taylor (2008) establish that under the null hypotheis the de-

scribed wild bootstrap algorithm leads to tests with asymptotically correct size and,
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furthermore, the procedure is consistent under the alternative.

1.5 The ML Unit Root Test

Under the assumption that the volatility of the innovations is constant, Elliott,

Rothenberg and Stock (1996) derive for standard unit root tests the asymptotic power

envelope which is an upper bound for the power function. When the volatility pro-

cess is non-stationary and deterministic components are excluded, Boswijk (2005)

characterizes the power envelope and constructs a class of feasible tests whose power

functions are tangent to the power envelope at one point.1 In particular, Boswijk

(2005) observes that the power of the Gaussian ML coefficient test is close to the

power envelope. To allow for deterministic components, we employ the local-to-unity

GLS approach by Elliott et al. (1996) and define

yc̄ =
(
y0, y1 −

(
1− c̄

T

)
y0, . . . , yT −

(
1− c̄

T

)
yT−1

)>
and

zc̄ =
(
z0, z1 −

(
1− c̄

T

)
z0, . . . , zT −

(
1− c̄

T

)
zT−1

)>
,

where c̄ is defined as in the previous section. Let ŷt = yt − γ̂>zt, where γ̂ is the

least squares estimator from the regression of yc̄ on zc̄. Similar to Boswijk (2005), we

propose the ML test statistic

ML = T (ρ̂∗GLS − 1), (1.13)

where ρ̂∗GLS = (
∑T

t=1 ŷ
∗2
t−1)

−1
∑T

t=1 ŷ
∗
t−1ŷ

∗
t =: J−1

T ST
2 is the GLS estimator of the re-

gression of ŷ∗t on ŷ∗t−1, with ŷ∗t := ŷt

ĝ( t
T )

and ĝ(·) is given by (1.4) Note that the GLS

1The derivation of the power envelope is based on the Neyman-Pearson lemma, that is the com-
parison of the log-likelihood of ρT =

(
1− c

T

)
, c > 0 with the log-likelihood of ρ = 1.

2Note that ST is the score function at ρ = 1 and JT is the Fisher Information at ρ = 1.
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estimator ρ̂∗GLS coincides with the Gaussian ML estimator. Since the asymptotic dis-

tribution depends on the variance path g(r), r ∈ [0, 1], p-values of the ML test are

obtained by simulation of ST and JT , given ĝ(·).

1.6 Finite-sample simulations

1.6.1 Setup

In this section we investigate the finite sample properties of the tests described in the

previous sections. The data are generated by the two processes

DGP 1: yt = 1 + xt

xt =
(
1− c

T

)
xt−1 + g

(
t

T

)
εt,

DGP 2: yt = 1 + t+ xt

xt =
(
1− c

T

)
xt−1 + g

(
t

T

)
εt,

where c ≥ 0. The error process (εt)t=1...,T was taken to be a Gaussian white noise

process. This allows us to focus on the effect of heteroskedasticity on the tests inde-

pendent of the effect of serial correlation. We consider ten different choices of g being

similar to Beare (2006) and Cavaliere and Taylor (2008). The choices are given in

Table 1.1.

Model 1 is homoskedastic. Models 2-4 feature a single variance break. Models

5 and 6 have two variance breaks. Models 7-10 are exponential near-integrated or

integarted stochastic volatility models. Note that the latter models are stochastic

and, hence, are not covered by our framework. To investigate the size of the tests we

set c = 0 such that the process (xt)t=1,...,T has a unit root. The nominal size is set to

α = 5%. Under the alternative we set c to 3, 6 and 9. Note that if c differs from zero,

(xt)t=1,...,T is stationary. Local power of the standard Phillips-Perron test and M tests

is computed by using the 95% empirical quantile leading to an exact size under the

null hypothesis (size-adjusted power). The bootstrap distributions of the M tests of
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Table 1.1: Models of heteroskadasticity considered in Tables 1.2 - 1.17

Model Volatility Function

1 g(r)2 = 1

2 g(r)2 = 1{r < 0.8}+ 9{r ≥ 0.8}
3 g(r)2 = 1{r < 0.2}+ 1

9
{r ≥ 0.2}

4 g(r)2 = 1{r < 0.8}+ 1
9
{r ≥ 0.8}

5 g(r)2 = 1{r < 0.2}+ 1
9
{0.2 ≥ r < 0.8}+ 1{r ≥ 0.8}

6 g(r)2 = 1{r < 0.4}+ 9{0.4 ≥ r < 0.6}+ 1{r ≥ 0.6}
7 g(r)2 = exp(4J−10(r))

8 g(r)2 = exp(9J−10(r))

9 g(r)2 = exp(4B(r))

10 g(r)2 = exp(9B(r))

section 1.3 are approximated by B = 499 replications. The nonparametric variance

estimator (1.4) is computed by using a Gaussian kernel with bandwidth h = κ ·T−0.2.

The parameter κ is set to 0.2, 0.4 and 0.6. This enables us to investigate the effect

of the bandwidth parameter on size and power of the modified Phillips-Perron test

and the ML test. Size and power are computed for the standard Phillips-Perron test

(Zρ), the modified Phillips-Perron test by Beare (Z∗
ρ,κ) with bandwidth parameter

h = κ · T−0.2, the GLS detrended version of the Phillips-Perron test (ZGLS
ρ∗,κ) with

bandwidth parameter h = κ · T−0.2, the standard M class of unit root tests (MZα,

MSB and MZt), the bootstrap M tests (MZ∗
α, MSB∗ and MZ∗

t ) and the ML test

(ML∗κ) with bandwidth parameter h = κ ·T−0.2. Two sample sizes are considered, viz

T = 100 and T = 250. All results are based on 5000 replications.

1.6.2 Results for DGP 1

Size properties

Empirical size under a nominal size of 5% is reported in Table 1.2 for the standard

Phillips-Perron test and the Phillips-Perron test by Beare (2006), in Table 1.3 for

the GLS detrended variants of the Phillips-Perron test, in Table 1.4 for the M tests
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Table 1.2: Size of standard PP test (Zρ) and PP test by Beare (Z∗
ρ), DGP 1

T=100 T=250

Model Zρ Z∗
ρ,0.2 Z∗

ρ,0.4 Z∗
ρ,0.6 Zρ Z∗

ρ,0.2 Z∗
ρ,0.4 Z∗

ρ,0.6

1 3.68 3.56 3.52 3.54 5.14 5.06 5.14 5.18

2 7.76 3.60 4.38 5.02 9.08 5.28 5.74 6.18

3 13.70 3.60 4.64 5.90 15.50 5.12 5.72 6.54

4 4.44 3.84 4.02 4.04 5.72 4.74 5.06 5.16

5 10.78 4.22 5.84 7.54 12.46 5.20 6.92 8.00

6 6.70 3.70 5.02 5.74 7.62 5.52 6.06 6.66

7 5.34 4.06 4.30 4.70 6.10 5.16 5.28 5.32

8 10.22 4.16 5.86 7.40 11.76 5.80 7.54 8.38

9 12.44 4.40 5.92 7.58 13.46 5.08 6.18 7.72

10 25.14 6.60 13.58 18.50 26.30 6.86 12.72 18.06

Table 1.3: Size of GLS detrended PP test (ZGLS
ρ ) and GLS detrended PP test based

on Beare (ZGLS
ρ∗ ), DGP 1

T=100 T=250

Model ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6 ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6

1 7.04 6.92 6.90 6.92 5.76 5.66 5.72 5.72

2 12.64 6.48 7.06 7.26 12.24 6.04 6.34 6.80

3 9.86 6.72 7.40 7.58 8.06 5.76 5.62 6.08

4 7.08 7.02 6.84 6.98 5.60 5.54 5.54 5.72

5 9.58 6.52 7.56 8.30 8.08 5.92 6.28 7.06

6 11.10 6.98 7.64 9.24 9.54 5.78 6.40 7.32

7 8.44 6.76 7.36 7.72 7.44 5.72 6.04 6.24

8 13.32 6.50 8.52 9.98 11.98 6.24 7.44 8.56

9 13.94 7.04 7.94 9.74 11.94 5.70 6.84 7.80

10 22.18 8.12 13.70 17.44 19.26 6.94 10.42 13.86
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Table 1.4: Size of standard M tests (MZα, MSB, MZt) and bootstrap M tests (MZ∗
α,

MSB∗, MZ∗
t ), DGP 1

T=100 T=250

Model MZα MSB MZt MZ∗
α MSB∗ MZ∗

t MZα MSB MZt MZ∗
α MSB∗ MZ∗

t

1 6.44 5.86 5.86 5.12 5.08 5.02 5.70 5.20 5.30 5.18 5.20 5.36

2 11.88 14.48 10.26 5.42 5.30 5.48 12.06 13.22 10.50 5.54 5.68 5.62

3 9.16 8.16 8.82 5.72 5.56 5.68 7.74 7.12 7.32 5.44 5.50 5.40

4 6.40 5.32 6.44 4.90 4.94 5.10 5.40 4.60 5.32 4.76 4.82 4.88

5 8.88 9.82 7.82 5.44 5.34 5.46 7.94 8.48 7.12 5.46 5.44 5.52

6 10.34 9.40 10.00 5.84 5.70 5.92 9.44 8.52 9.04 5.56 5.44 5.64

7 7.80 7.04 7.24 5.56 5.24 5.36 7.26 7.10 6.60 5.54 5.50 5.34

8 12.64 12.96 11.80 6.26 6.16 6.26 11.78 11.64 11.16 5.86 5.98 5.72

9 13.30 13.92 12.22 5.88 5.58 6.02 11.72 11.96 10.74 5.30 5.24 5.46

10 21.56 24.08 19.80 8.14 7.84 8.00 19.08 21.78 17.32 5.94 5.94 5.84

Table 1.5: Size of the ML test, DGP 1

T=100 T=250

Model MLGLS*
0.2 MLGLS*

0.4 MLGLS*
0.6 MLGLS*

0.2 MLGLS*
0.4 MLGLS*

0.6

1 4.34 4.76 4.88 4.72 4.92 4.98

2 4.14 4.88 5.28 5.16 5.46 5.94

3 4.14 4.46 5.00 4.24 4.68 5.08

4 4.54 4.88 4.82 4.44 4.42 4.44

5 3.96 4.70 5.78 4.26 4.90 5.70

6 4.28 5.52 7.06 4.70 5.44 6.40

7 4.38 5.12 5.44 4.80 5.24 5.62

8 4.16 6.20 7.18 4.50 5.88 7.38

9 4.08 5.18 6.42 4.56 5.62 6.62

10 3.82 6.04 9.78 3.56 5.18 8.38
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and in Table 1.5 for the ML test, respectively. The most interesting feature is that

all uncorrected versions of the tests have substantial size distortion for models 2, 3,

5, 6, 8, 9 and, in particular, model 10. Depending on the test considered the latter

model yields a size between 17.32 (MZt test when T = 250) and 26.30 (standard

Phillips-Perron test when T = 250).

Let us initially turn to the results of the Phillips-Perron test by Beare (2006). Table

1.2 shows that the selection of the bandwidth parameter has a significant effect on

the empirical size. Whereas both κ = 0.2 and κ = 0.4 lead to a size much closer to

the nominal size, the choice κ = 0.6 suffers from higher over-rejection.

The results for the GLS detrended versions of the Phillips-Perron test are essentially

comparable with those in Table 1.2. However, the results shown in Table 1.3 indicate

that the ZGLS
ρ∗ -test has generally a slightly greater size distortion than the Z∗

ρ -test.

The size properties of the standard M tests and the bootstrap M test are given

in Table 1.4. We note that the bootstrap M tests perform very well; they feature

sizes between 4% and 6% in eight of ten cases when T = 100 and in all cases when

T = 250. It is worth noting that the differences between the MZα-test, the MSB-test

and MZt-test are negligible.

Finally, consider the size properties of the ML unit root test presented in Table 1.5.

The empirical size of the ML test depends on the choice of the bandwidth parameter

similar to the Phillips-Perron test. When κ = 0.2, empirical size is very close to the

nominal size; when T = 250 size peaks at 5.16% for model 2 and reaches a low at

3.56% for model 10; results for T = 100 are similar. If κ = 0.4, sizes are between 4%

and 6% in all cases when T = 250. Setting κ = 0.6, the size distortion is more severe,

in particular for models 6, 8, 9 and 10. In these cases the size distortion is lowered by

choosing a smaller bandwidth, e.g. κ = 0.2.

Power properties

Local power results are presented in Table 1.6 for the standard Phillips-Perron test

and the Phillips-Perron test by Beare (2006), in Table 1.7 for the GLS detrended
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Table 1.6: Power of standard PP test (Zρ) and PP test by Beare (Z∗
ρ), DGP 1

T=100 T=250

Model Zρ Z∗
ρ,0.2 Z∗

ρ,0.4 Z∗
ρ,0.6 Zρ Z∗

ρ,0.2 Z∗
ρ,0.4 Z∗

ρ,0.6

1 c=3 13.64 13.62 14.02 14.08 11.12 11.18 11.26 11.18
c=6 26.66 26.82 26.90 27.08 22.00 21.82 21.98 21.74
c=9 45.86 45.56 46.04 46.32 37.90 37.08 37.74 37.94

2 c=3 11.90 12.66 11.92 12.30 12.06 10.84 11.26 11.76
c=6 21.30 25.10 23.98 23.66 21.26 20.90 21.60 22.48
c=9 33.88 42.18 40.74 40.44 33.76 35.20 36.00 37.18

3 c=3 9.72 8.64 8.58 8.70 8.18 6.34 6.44 7.20
c=6 17.42 15.56 15.94 16.42 14.38 11.78 11.82 13.00
c=9 28.82 27.90 29.04 29.70 23.80 22.02 22.50 23.80

4 c=3 13.44 12.56 13.10 13.54 11.58 11.18 11.42 11.66
c=6 26.18 24.04 25.34 26.04 22.00 21.10 22.50 22.76
c=9 42.64 40.94 42.38 42.80 38.06 35.76 38.06 38.56

5 c=3 9.80 8.26 8.46 9.02 8.72 6.76 7.26 7.56
c=6 16.82 14.42 15.30 15.86 15.54 12.14 13.14 13.62
c=9 27.66 25.54 26.48 27.28 25.00 21.26 22.58 23.28

6 c=3 12.46 13.52 13.72 13.76 11.86 11.08 12.84 12.44
c=6 23.46 24.16 26.72 26.00 21.88 20.18 24.00 24.02
c=9 37.22 38.48 43.50 41.98 35.12 31.08 38.44 38.30

7 c=3 12.70 11.84 12.50 12.40 12.28 10.90 11.72 12.16
c=6 23.32 22.02 23.02 22.98 22.34 20.72 22.06 22.82
c=9 39.44 37.44 39.16 39.24 37.98 33.96 36.84 37.94

8 c=3 10.32 10.92 11.20 10.68 9.92 8.68 11.14 11.46
c=6 17.04 18.88 19.86 18.76 17.32 14.52 18.60 19.38
c=9 26.92 29.32 32.54 30.98 26.80 22.76 30.66 31.42

9 c=3 8.02 9.78 9.38 9.48 6.80 9.28 9.16 8.34
c=6 13.76 17.96 17.92 17.24 12.04 16.90 17.56 16.16
c=9 22.90 30.80 31.14 29.30 19.92 28.20 30.22 28.30

10 c=3 5.58 5.92 5.34 4.92 4.50 5.94 4.24 3.82
c=6 7.96 9.70 9.22 7.46 6.66 9.66 7.78 6.88
c=9 10.56 16.48 14.76 12.24 9.58 15.24 13.40 11.62
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Table 1.7: Power of GLS detrended PP test (ZGLS
ρ ) and GLS detrended PP test based

on Beare (ZGLS
ρ∗ ), DGP 1

T=100 T=250

Model ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6 ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6

1 c=3 15.96 15.48 15.64 15.84 16.54 16.46 16.60 16.50
c=6 36.96 34.66 35.76 36.20 38.42 37.06 38.28 38.20
c=9 60.66 55.96 58.62 59.80 62.94 61.14 62.28 62.58

2 c=3 14.88 15.58 14.46 15.50 15.50 14.92 14.24 15.06
c=6 30.10 34.06 32.12 33.64 31.14 32.90 31.96 32.72
c=9 47.28 54.32 52.70 54.90 47.70 54.22 54.26 53.84

3 c=3 14.22 13.18 12.86 14.08 16.04 13.94 16.18 16.62
c=6 23.70 23.94 26.68 27.90 30.96 25.24 32.10 33.66
c=9 36.10 40.22 45.10 47.86 46.90 40.62 51.94 54.98

4 c=3 16.16 17.08 16.80 16.88 17.66 18.42 18.90 18.60
c=6 36.28 35.92 36.74 37.26 39.94 39.36 42.68 42.20
c=9 59.50 56.40 60.00 60.74 64.10 61.48 65.78 65.66

5 c=3 13.84 13.84 14.92 14.16 15.10 13.64 15.70 15.82
c=6 26.38 24.72 28.06 27.66 29.70 24.00 29.70 31.24
c=9 41.02 39.96 45.64 44.36 47.28 38.16 47.18 49.82

6 c=3 14.84 14.94 16.22 15.44 15.52 15.14 16.06 15.86
c=6 30.68 28.82 34.10 32.74 32.70 29.48 33.78 35.12
c=9 48.80 45.32 53.60 52.34 53.18 45.42 53.10 55.84

7 c=3 15.96 15.00 15.88 15.80 16.00 16.46 17.86 18.18
c=6 33.60 31.08 34.30 34.10 35.18 34.60 38.10 38.08
c=9 54.62 49.20 55.32 56.02 56.60 53.74 60.50 60.96

8 c=3 12.44 13.80 14.88 14.28 14.02 12.86 14.94 15.66
c=6 23.88 24.92 29.24 28.02 26.76 23.16 29.58 31.60
c=9 37.80 38.74 47.40 44.62 42.16 35.78 47.28 49.44

9 c=3 10.78 12.44 13.40 13.12 11.40 14.08 14.92 14.06
c=6 19.26 24.58 28.54 26.32 22.60 26.34 30.24 29.94
c=9 31.00 39.66 44.16 43.20 36.10 41.46 48.50 47.96

10 c=3 7.90 7.90 8.58 7.86 8.54 7.96 8.40 8.52
c=6 11.78 13.64 15.24 13.34 13.30 12.86 15.80 15.44
c=9 16.70 22.52 25.24 20.24 19.14 19.80 25.44 24.40
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Table 1.8: Power of standard M tests (MZα, MSB, MZt) and bootstrap M tests
(MZ∗

α, MSB∗, MZ∗
t ), DGP 1

T=100 T=250

Model MZα MSB MZt MZ∗
α MSB∗ MZ∗

t MZα MSB MZt MZ∗
α MSB∗ MZ∗

t

1 c=3 15.78 14.92 16.10 16.14 15.12 16.32 16.62 16.16 16.54 17.50 16.48 18.12
c=6 36.34 33.22 36.68 36.38 33.54 37.06 38.46 36.60 37.72 39.22 37.42 39.74
c=9 60.12 56.52 60.44 59.68 56.68 60.66 62.94 60.60 62.52 64.30 61.36 64.70

2 c=3 14.84 13.78 14.50 15.68 15.04 15.80 15.48 14.26 15.56 16.94 16.48 16.94
c=6 30.16 28.36 28.88 31.60 30.46 31.20 31.10 30.52 30.70 32.90 33.32 32.30
c=9 47.30 45.10 44.90 48.70 47.50 47.26 47.80 47.90 46.60 50.16 51.96 48.80

3 c=3 13.92 13.54 14.56 15.26 14.80 15.78 15.92 15.12 16.20 16.48 15.56 16.94
c=6 22.84 22.00 23.70 26.06 24.20 26.42 30.72 28.68 31.80 31.44 29.90 32.46
c=9 34.72 32.54 36.34 37.82 36.08 39.22 46.46 43.58 48.18 47.06 44.88 48.44

4 c=3 16.08 15.10 17.08 16.50 15.48 17.28 17.60 16.24 18.02 17.32 16.24 17.82
c=6 35.88 33.34 37.82 35.64 33.80 37.44 39.94 37.48 41.38 39.26 36.80 41.00
c=9 58.60 54.92 61.74 58.40 55.56 60.70 63.96 60.42 65.76 62.60 59.70 64.50

5 c=3 13.78 12.86 13.88 15.00 13.86 15.52 14.90 14.98 14.94 16.66 16.16 16.98
c=6 25.82 23.98 25.92 27.68 25.38 28.20 29.42 28.80 29.14 31.94 30.80 32.20
c=9 39.94 37.20 39.92 41.68 39.16 41.58 46.88 45.36 45.52 49.50 48.06 48.44

6 c=3 14.48 14.14 15.22 17.04 16.46 17.18 15.50 15.26 15.34 16.58 15.90 17.04
c=6 30.44 28.80 31.90 33.70 31.84 35.02 32.62 30.80 32.88 34.58 32.52 35.48
c=9 48.26 45.44 50.60 52.50 49.82 54.04 53.04 50.88 53.22 53.88 51.72 55.10

7 c=3 16.02 15.84 16.34 16.72 15.72 17.38 15.96 15.38 16.06 17.62 16.88 17.98
c=6 33.86 33.36 34.54 35.00 33.00 35.58 35.10 33.16 36.44 37.76 35.80 37.88
c=9 54.74 53.62 55.70 56.24 52.98 57.12 56.46 53.68 56.94 59.50 56.70 59.94

8 c=3 12.56 11.92 13.26 17.46 16.24 18.08 14.00 13.44 14.32 17.00 16.32 17.32
c=6 23.90 22.44 25.08 31.94 30.52 32.88 26.74 24.56 28.12 32.42 31.24 33.20
c=9 37.86 34.76 40.00 48.12 45.88 48.96 42.16 39.64 43.78 50.04 47.78 50.80

9 c=3 10.78 9.84 11.10 15.38 14.24 15.44 11.44 10.46 11.90 14.58 13.96 14.84
c=6 19.26 17.06 19.84 27.38 26.00 27.66 22.58 20.12 24.16 28.92 28.00 29.48
c=9 30.84 27.10 31.96 41.80 40.04 42.74 36.02 32.02 37.80 44.68 43.38 45.36

10 c=3 7.76 7.00 8.10 14.76 14.12 14.74 8.52 8.22 8.26 12.06 12.02 12.34
c=6 11.44 9.82 12.52 23.04 21.82 23.22 13.28 11.98 13.04 19.94 19.42 20.48
c=9 16.40 12.60 17.78 31.56 30.14 31.42 19.12 16.58 18.96 29.44 28.80 30.12
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Table 1.9: Power of the ML test, DGP 1

T=100 T=250

Model MLGLS*
0.2 MLGLS*

0.4 MLGLS*
0.6 MLGLS*

0.2 MLGLS*
0.4 MLGLS*

0.6

1 c=3 14.12 14.94 14.96 15.84 16.48 16.68
c=6 32.50 33.98 34.50 37.20 37.90 38.20
c=9 55.22 57.00 57.84 61.20 62.54 62.44

2 c=3 12.70 14.20 15.52 14.74 15.64 16.80
c=6 28.94 31.50 33.92 34.40 35.76 37.06
c=9 49.36 52.72 54.32 56.44 57.16 58.62

3 c=3 12.92 13.94 14.44 16.46 16.60 17.00
c=6 22.48 23.66 24.86 36.36 35.28 35.38
c=9 33.10 35.22 37.34 53.82 52.38 52.12

4 c=3 15.78 16.12 16.46 17.88 17.56 17.24
c=6 36.28 36.38 36.26 43.74 41.62 40.90
c=9 59.64 59.90 59.84 69.22 65.74 64.82

5 c=3 12.32 14.32 16.24 15.40 16.18 17.92
c=6 24.12 26.98 30.84 34.62 34.64 36.06
c=9 36.88 42.08 47.62 52.72 53.50 55.56

6 c=3 15.74 18.20 21.38 16.14 17.62 19.66
c=6 36.98 38.80 42.40 40.28 40.54 43.56
c=9 61.36 62.96 64.30 68.42 66.86 67.82

7 c=3 14.54 16.06 17.22 16.74 17.80 18.62
c=6 33.22 35.92 36.62 38.48 39.66 40.60
c=9 55.80 57.98 58.92 63.10 62.86 63.32

8 c=3 15.52 19.02 21.68 18.20 19.88 21.94
c=6 37.64 38.16 40.76 47.16 43.06 43.96
c=9 59.96 59.56 60.96 72.00 65.02 64.54

9 c=3 13.64 15.30 17.70 16.74 17.04 18.68
c=6 26.60 29.40 32.38 34.68 34.50 36.64
c=9 41.04 44.26 48.08 53.16 52.10 53.86

10 c=3 18.48 16.76 20.66 28.60 22.54 21.22
c=6 27.66 26.24 32.22 39.94 32.52 34.56
c=9 33.96 35.76 43.96 45.90 42.66 47.54
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versions of the Phillips-Perron test, in Table 1.8 for the standard M tests and the

bootstrap M tests and in Table 1.9 for the ML test, respectively. It is important to

note that in general the corrected versions of the tests display a similar power as the

standard tests when the variance is constant. Hence, appealingly, the loss in power is

negligible when the corrected versions of the tests are applied to homoskedastic data.

Under heteroskedasticity the standard tests exhibit a considerably lower power than

under homoskedasticity. In particular, the power differs clearly in those cases where

the tests suffer from a high size distortion (i.e. model 9 and 10).

Focusing on T = 250 we observe that the Z∗
ρ -test exhibits a lower power than the

remaining tests. For most volatility models, the ZGLS
ρ∗ -test, the bootstrap M tests and

the MLGLS *-test are twice as powerful as the Z∗
ρ -test. Therefore, the results indicate

that the local-to-unity GLS approach increases the power substantially. Comparing

the ZGLS
ρ∗ -test with the bootstrap M tests, we observe that the results are ambiguous.

Whereas the ZGLS
ρ∗ -test appears to exhibit a slightly greater power than the bootstrap

M tests for models 3 and 4 (both with κ = 0.4), the pattern is vice versa for models

8 and 9. For model 10, we observe that the bootstrap M tests beats the ZGLS
ρ∗ -test by

ten percentage points. It appears that the power of the ML test is more robust to the

choice of the bandwidth parameter than the ZGLS
ρ∗ -test. All three tests have similar

power when the data are homoskedastic, but the ML test is superior to the ZGLS
ρ∗ -test

and the bootstrap M tests for the remaining models. In particular, the differences in

power are greater when the volatility function is stochastic (model 7-10) than for a

deterministic function (model 1-6). These results are consistent with the findings in

Boswijk (2005).

1.6.3 Results for DGP 2

Size properties

Size calculations for DGP 2 are reported in Table 1.10 for the standard Phillips-Perron

test and the Phillips-Perron test by Beare (2006), in Table 1.11 for the detrended GLS

variants of the Phillips-Perron test, in Table 1.12 for the standard M tests and the
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Table 1.10: Size of standard PP test (Zρ) and PP test by Beare (Z∗
ρ), DGP 2

T=100 T=250

Model Zρ Z∗
ρ,0.2 Z∗

ρ,0.4 Z∗
ρ,0.6 Zρ Z∗

ρ,0.2 Z∗
ρ,0.4 Z∗

ρ,0.6

1 3.54 3.18 3.34 3.32 4.94 4.34 4.62 4.68

2 7.38 2.96 3.72 4.20 9.58 3.98 4.64 5.40

3 13.52 2.68 3.52 4.36 15.36 3.88 4.62 5.36

4 4.50 2.70 3.42 3.90 5.72 3.74 4.58 4.98

5 9.46 3.14 4.18 5.98 11.06 3.92 5.28 6.70

6 7.16 2.74 4.50 5.62 8.44 3.88 5.20 6.50

7 4.72 2.56 3.46 3.92 6.70 4.62 5.36 5.64

8 9.86 2.64 5.24 6.88 11.58 3.94 5.92 7.68

9 12.14 2.06 3.42 5.04 13.46 3.16 4.06 5.14

10 24.92 1.50 4.82 8.88 25.82 1.56 3.96 7.08

Table 1.11: Size of GLS detrended PP test (ZGLS
ρ ) and GLS detrended PP test based

on Beare (ZGLS
ρ∗ ), DGP 2

T=100 T=250

Model ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6 ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6

1 5.80 5.10 5.44 5.44 4.68 4.62 4.60 4.66

2 11.00 4.28 5.24 5.90 10.54 3.86 4.42 4.76

3 13.02 4.26 5.20 5.90 8.66 3.92 4.16 4.48

4 6.30 4.22 5.16 5.68 5.40 3.80 4.42 4.76

5 10.18 4.10 5.58 6.98 7.74 3.72 4.32 5.34

6 10.24 4.54 5.96 8.50 9.90 4.38 5.40 6.50

7 7.42 4.92 5.94 6.66 6.44 4.74 5.46 5.74

8 12.72 4.46 7.04 9.10 12.30 4.02 6.16 7.82

9 13.48 3.56 4.96 6.70 10.90 2.94 3.88 5.06

10 23.78 2.44 5.58 9.96 19.66 1.52 3.88 5.96
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Table 1.12: Size of standard M tests (MZα, MSB, MZt) and bootstrap M tests
(MZ∗

α, MSB∗, MZ∗
t ), DGP 2

T=100 T=250

Model MZα MSB MZt MZ∗
α MSB∗ MZ∗

t MZα MSB MZt MZ∗
α MSB∗ MZ∗

t

1 3.00 3.26 2.98 4.84 4.84 4.76 3.70 4.00 3.70 5.14 5.24 5.02

2 7.52 8.90 7.26 6.04 5.60 6.10 9.60 10.64 8.94 5.84 5.96 5.74

3 5.86 6.00 5.96 5.96 6.02 5.82 6.44 6.52 6.62 5.30 5.48 5.34

4 3.36 3.08 3.50 4.98 5.00 4.92 4.58 4.40 4.64 5.08 5.10 5.12

5 5.38 6.00 5.10 5.72 5.56 5.66 5.82 6.70 5.60 5.04 5.16 5.08

6 7.46 7.62 7.38 6.62 6.38 6.50 8.86 8.88 8.76 5.88 5.94 5.94

7 4.40 4.66 4.28 5.48 5.34 5.54 5.62 5.84 5.66 5.48 5.50 5.64

8 9.92 10.36 9.74 7.10 7.06 7.20 11.10 11.78 10.94 6.02 6.00 6.02

9 8.92 9.54 8.46 6.58 6.54 6.60 9.28 9.82 9.14 5.46 5.60 5.40

10 17.36 18.90 16.44 8.92 8.88 8.88 17.52 18.96 17.02 6.30 6.50 6.16

Table 1.13: Size of the ML test, DGP 2

T=100 T=250

Model MLGLS*
0.2 MLGLS*

0.4 MLGLS*
0.6 MLGLS*

0.2 MLGLS*
0.4 MLGLS*

0.6

1 5.22 5.28 5.38 4.84 4.82 4.86

2 5.36 6.22 6.92 5.52 5.86 6.28

3 4.98 5.78 6.18 4.66 4.78 5.20

4 4.72 5.24 5.68 4.54 4.86 5.08

5 4.98 5.72 6.94 4.78 5.32 5.66

6 4.98 6.46 8.40 5.42 6.26 7.50

7 5.12 6.36 6.72 5.46 6.04 6.34

8 5.16 7.94 9.36 4.74 7.24 8.96

9 5.04 6.08 7.40 4.70 5.54 6.40

10 4.58 7.88 12.18 3.84 5.98 8.96
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bootstrap M tests and in Table 1.13 for the ML test, respectively. All uncorrected tests

exhibit a substantial size distortion for models 2, 3, 5, 6, 8, 9 and 10. In particular

for model 10, the standard Phillips-Perron test yields an empirical size of about 26%

when T = 250.

The most striking aspect is that the corrected Phillips-Perron tests achieve an em-

pirical size being close to the nominal size by choosing a greater bandwidth parameter

than for DGP 1. The results propose to set κ = 0.4 for both the Z∗
ρ test (κ = 0.2 for

DGP 1) and the ZGLS
ρ∗ -test (κ = 0.2 for DGP 1). When κ = 0.2, the empirical size of

the ML test is very close to the nominal size; when T = 250 sizes are between 4% and

6% in nine of ten cases; results for T = 100 are similar. If κ = 0.4, the test tends to a

slight over-rejection; when T = 250, the empirical size is about 6% in five of ten cases

and even greater when T = 100. Setting κ = 0.6, the size distortion is even worse, in

particular for models 2, 6 and 8-10. In these cases the size distortion is lowered by

choosing a smaller bandwidth.

Power properties

Simulated power of the tests is quoted in Table 1.14 for the standard Phillips-Perron

test and the Phillips-Perron test by Beare (2006), in Table 1.15 for the detrended GLS

versions of the Phillips-Perron test, in Table 1.16 for the standard M tests and the

bootstrap M tests and in Table 1.17 for the ML test, respectively.

The results show that the power of all tests is lower for DGP 1 than for DGP 2

which is consistent with the findings of Elliott et al (1996). As for DGP 1, we observe

that the Z∗
ρ -test is inferior to the ZGLS

ρ -test, the bootstrap M tests and the ML test.

Whereas the bootstrap M tests appear to be slightly more powerful than the ZGLS
ρ∗ -test

for DGP 1, Tables 1.15 and 1.16 indicate that the difference in power between the two

tests is negligible for DGP 2. For all models the ML test is superior to the ZGLS
ρ∗ -test

and the bootstrap tests.
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Table 1.14: Power of standard PP test (Zρ) and PP test by Beare (Z∗
ρ), DGP 2

T=100 T=250

Model Zρ Z∗
ρ,0.2 Z∗

ρ,0.4 Z∗
ρ,0.4 Zρ Z∗

ρ,0.2 Z∗
ρ,0.4 Z∗

ρ,0.6

1 c=3 7.28 7.30 7.40 7.48 7.04 7.28 7.34 7.40
c=6 13.32 13.02 13.18 13.24 11.72 12.06 12.00 12.12
c=9 23.06 22.22 22.80 23.10 19.24 19.42 19.74 20.06

2 c=3 7.06 7.82 7.46 6.94 7.64 7.82 7.66 7.76
c=6 11.84 13.68 13.06 12.92 12.14 12.72 12.62 12.62
c=9 19.92 23.18 22.40 21.82 19.46 20.66 20.36 20.66

3 c=3 6.86 7.04 7.24 7.34 6.22 6.90 7.04 6.96
c=6 11.34 12.24 13.30 13.08 9.82 10.92 10.92 11.46
c=9 18.26 20.52 21.94 21.28 15.06 17.40 19.06 18.76

4 c=3 6.30 6.48 6.38 6.36 5.80 5.86 5.70 5.60
c=6 11.02 11.62 11.22 11.40 10.06 9.98 9.60 9.60
c=9 18.58 20.40 19.52 19.28 16.78 17.12 16.58 16.66

5 c=3 7.48 7.16 7.40 7.32 7.28 6.78 6.96 7.14
c=6 12.96 12.70 13.10 12.94 11.64 11.06 11.58 11.12
c=9 20.98 21.40 21.24 21.40 17.98 17.84 18.98 18.62

6 c=3 6.78 6.80 6.66 6.84 6.76 7.02 7.10 6.68
c=6 11.02 11.84 11.80 11.32 10.58 11.44 11.06 11.00
c=9 17.98 19.94 20.32 19.22 16.36 18.70 19.02 18.10

7 c=3 7.34 7.06 6.92 6.82 7.02 6.96 7.20 7.02
c=6 13.04 12.88 12.46 12.44 11.64 10.94 11.44 11.74
c=9 21.42 21.54 21.26 21.32 18.76 17.32 18.30 18.76

8 c=3 6.28 7.14 7.14 6.88 6.48 6.90 7.16 6.62
c=6 9.62 11.88 11.46 11.10 9.44 11.14 11.88 10.62
c=9 14.74 19.94 18.62 17.54 14.96 17.60 19.14 16.94

9 c=3 6.26 7.66 7.40 7.68 6.74 7.30 7.96 8.06
c=6 9.04 12.78 13.00 12.34 10.18 11.38 12.62 12.56
c=9 13.42 21.02 21.46 20.62 14.48 18.82 19.78 19.98

10 c=3 5.48 6.42 6.58 6.22 5.58 6.62 7.10 7.56
c=6 6.54 10.10 10.08 9.20 6.42 10.10 11.44 12.04
c=9 8.12 15.58 15.24 13.94 7.92 15.10 17.66 17.18
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Table 1.15: Power of GLS detrended PP test (ZGLS
ρ ) and GLS detrended PP test based

on Beare (ZGLS
ρ∗ ), DGP 2

T=100 T=250

Model ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6 ZGLS
ρ ZGLS

ρ∗,0.2 ZGLS
ρ∗,0.4 ZGLS

ρ∗,0.6

1 c=3 7.38 6.80 6.80 7.08 7.70 7.84 7.94 8.08
c=6 14.12 13.54 13.74 13.96 14.56 14.54 14.46 14.90
c=9 25.58 24.60 24.88 25.30 26.26 26.04 26.64 26.78

2 c=3 7.18 8.10 7.74 7.88 7.78 8.42 8.40 8.54
c=6 13.08 15.14 13.82 14.10 14.04 15.58 15.30 15.36
c=9 22.94 26.54 24.74 24.96 23.18 26.94 26.44 25.70

3 c=3 7.10 7.16 7.04 7.20 6.88 7.12 7.16 7.16
c=6 12.52 13.32 13.04 13.50 12.60 13.40 13.96 14.02
c=9 20.68 24.60 24.06 24.92 21.34 24.78 25.88 25.86

4 c=3 6.62 6.28 6.24 6.44 6.48 6.42 6.26 6.38
c=6 12.12 11.96 11.66 11.76 12.28 12.78 12.32 12.38
c=9 22.96 23.70 22.92 22.68 22.46 23.88 23.02 22.66

5 c=3 7.42 7.66 7.48 7.58 8.04 7.76 7.50 7.54
c=6 12.94 14.62 14.38 13.78 14.34 15.04 14.60 14.14
c=9 22.26 24.84 24.76 24.16 24.26 26.92 26.04 24.68

6 c=3 6.98 7.22 7.70 7.24 7.20 6.90 6.72 6.80
c=6 12.04 13.22 13.64 13.26 11.76 12.68 13.06 12.62
c=9 19.76 23.30 24.04 22.06 19.68 22.26 22.72 21.50

7 c=3 7.24 7.16 7.22 7.00 7.22 6.90 7.04 7.32
c=6 13.08 13.50 13.70 13.16 13.28 13.14 13.10 13.54
c=9 23.20 24.20 24.64 24.20 23.22 23.60 23.50 23.78

8 c=3 6.20 6.94 6.90 7.16 6.48 7.36 6.96 7.10
c=6 9.92 13.10 12.76 11.84 10.66 12.74 12.64 12.58
c=9 15.60 22.34 20.78 19.78 16.88 21.74 21.98 20.86

9 c=3 6.38 7.70 7.72 7.44 7.44 8.18 7.58 7.72
c=6 10.38 13.94 14.14 13.26 12.78 14.12 14.06 13.84
c=9 16.04 23.74 24.14 23.04 19.18 24.48 24.28 23.88

10 c=3 5.96 6.82 6.20 6.14 6.42 7.22 7.36 7.74
c=6 7.64 10.90 10.74 9.68 9.14 11.02 12.56 12.54
c=9 9.64 17.58 16.68 15.02 11.98 17.46 20.00 19.58
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Table 1.16: Power of standard M tests (MZα, MSB, MZt) and bootstrap M tests
(MZ∗

α, MSB∗, MZ∗
t ), DGP 2

T=100 T=250

Model MZα MSB MZt MZ∗
α MSB∗ MZ∗

t MZα MSB MZt MZ∗
α MSB∗ MZ∗

t

1 c=3 7.30 7.32 7.52 7.36 7.42 7.32 7.54 7.64 7.66 7.76 8.02 7.70
c=6 14.22 13.92 14.54 14.04 13.74 13.92 14.40 13.88 14.56 14.68 14.24 14.62
c=9 25.56 25.42 26.26 25.20 24.74 25.16 26.18 25.22 26.54 26.62 25.84 26.86

2 c=3 7.16 7.30 7.36 8.86 8.68 8.90 7.72 7.68 7.84 9.00 9.22 8.98
c=6 12.92 13.08 13.00 15.32 14.68 15.24 14.00 14.08 14.22 15.76 15.80 15.78
c=9 22.70 22.88 22.72 25.98 25.72 25.62 22.96 22.58 23.68 25.86 26.02 25.66

3 c=3 6.96 6.98 7.28 8.42 8.22 8.44 6.82 6.84 7.12 7.64 7.60 7.60
c=6 12.16 11.98 12.68 13.92 13.50 14.26 12.54 12.72 12.82 13.34 13.48 13.42
c=9 19.92 19.48 20.50 22.44 21.94 22.60 21.24 21.00 21.96 22.36 22.02 22.50

4 c=3 6.68 6.76 6.34 6.44 6.66 6.50 6.56 6.46 6.68 6.66 6.70 6.70
c=6 12.72 12.62 12.32 12.34 12.04 12.22 12.36 12.10 12.62 12.64 12.66 12.62
c=9 23.42 22.84 23.24 22.34 21.92 22.64 22.60 21.96 23.10 22.94 22.40 23.20

5 c=3 7.56 7.60 7.32 8.54 8.24 8.40 8.16 8.04 8.12 8.46 8.28 8.38
c=6 13.66 13.38 13.62 15.02 14.50 15.10 14.32 14.00 14.34 14.18 14.12 14.28
c=9 22.68 22.40 22.50 24.64 23.82 24.56 24.22 24.12 24.76 24.60 24.12 24.72

6 c=3 7.14 7.10 6.90 8.88 8.72 8.70 7.18 7.20 7.14 8.26 8.12 8.30
c=6 12.22 12.04 12.30 14.64 14.24 14.76 11.76 11.94 11.84 13.56 13.64 13.56
c=9 19.80 19.62 20.32 22.78 22.46 22.92 19.70 19.70 19.78 22.56 22.34 22.66

7 c=3 7.20 6.80 7.04 7.68 7.38 7.58 7.38 7.14 7.12 8.24 8.24 8.20
c=6 13.00 12.24 13.34 14.12 13.42 14.26 13.28 12.66 12.96 14.42 14.52 14.58
c=9 23.56 22.56 24.00 24.56 24.16 25.00 23.34 22.12 22.88 25.48 25.44 25.38

8 c=3 6.26 6.22 6.30 9.40 9.42 9.38 6.48 6.66 6.70 8.34 8.50 8.42
c=6 9.90 10.00 10.00 15.56 15.02 15.62 10.60 11.10 11.06 13.72 13.78 13.82
c=9 15.74 15.30 15.64 23.72 23.32 24.06 16.80 17.22 17.44 21.52 21.36 21.68

9 c=3 6.68 6.58 6.86 9.08 9.00 9.18 7.30 7.32 7.58 7.66 7.72 7.60
c=6 10.60 10.54 10.62 14.72 14.48 14.96 12.82 12.56 12.68 13.50 13.40 13.48
c=9 16.60 16.22 17.02 23.46 22.76 23.60 19.42 18.88 19.50 21.86 21.90 21.88

10 c=3 6.28 6.02 6.12 10.94 11.04 10.86 6.58 6.52 6.62 8.66 8.60 8.54
c=6 8.12 7.76 8.04 14.88 14.90 14.86 9.40 9.00 9.48 12.78 12.78 12.88
c=9 11.02 10.24 11.08 20.12 20.08 20.06 12.20 11.76 12.64 18.24 18.10 18.14
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Table 1.17: Power of the ML test, DGP 2

T=100 T=250

Model MLGLS*
0.2 MLGLS*

0.4 MLGLS*
0.6 MLGLS*

0.2 MLGLS*
0.4 MLGLS*

0.6

1 c=3 7.04 7.64 7.72 7.70 8.06 8.12
c=6 13.88 14.80 14.88 14.38 15.06 14.96
c=9 25.04 26.14 26.76 25.90 26.56 26.50

2 c=3 8.06 9.32 10.22 8.84 9.38 10.02
c=6 14.80 16.54 17.72 15.96 16.90 17.70
c=9 26.00 28.34 30.64 26.96 28.62 29.78

3 c=3 7.10 8.14 8.94 7.24 7.30 7.78
c=6 13.32 15.32 16.68 14.04 14.50 15.18
c=9 25.74 27.94 29.74 26.92 27.60 27.84

4 c=3 6.04 6.82 7.12 5.98 6.12 6.68
c=6 11.52 12.90 13.72 11.86 12.16 12.82
c=9 22.10 23.94 24.96 22.14 22.80 23.64

5 c=3 7.54 8.36 10.38 8.16 8.46 9.02
c=6 14.52 16.02 18.62 15.46 15.56 16.62
c=9 26.24 28.96 32.66 27.68 27.90 28.56

6 c=3 7.72 9.60 11.96 7.70 8.94 10.60
c=6 13.96 16.90 19.34 14.44 15.98 18.04
c=9 25.78 28.50 30.78 25.74 26.96 29.64

7 c=3 7.34 8.50 9.00 7.40 8.76 9.04
c=6 13.92 15.76 16.56 14.24 15.82 16.94
c=9 25.86 27.94 28.98 26.48 27.96 28.88

8 c=3 7.88 10.80 12.92 7.48 10.46 12.54
c=6 14.28 18.70 21.12 14.66 18.32 20.92
c=9 24.84 30.08 32.74 25.90 29.80 33.24

9 c=3 7.92 9.44 11.24 7.48 8.72 10.04
c=6 14.22 16.86 19.06 14.30 15.86 17.50
c=9 24.78 27.98 30.66 25.78 27.90 29.62

10 c=3 6.68 11.38 16.00 6.78 9.42 13.66
c=6 11.04 17.52 23.78 11.66 15.08 20.96
c=9 17.34 25.68 33.12 17.00 22.16 29.94
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1.7 Conclusion

In this chapter we show that the heteroskadastic innovations may affect the asymp-

totic distribution of unit root tests. We consider three recent adjustments to correct

this problem. We suggest a detrended version of the Phillips-Perron test by Beare

(2006) and propose an extension of the ML test by Boswijk (2005) to allow for de-

terministic components. To investigate the finite sample properties of the unit root

tests we perform a simulation study with two different specifications of the determin-

istic components of the data generating process. The key results of the simulation

study can be summarized as follows. First, the proposed detrended variant of the

Phillips-Perron by Beare (2006) clearly outperforms the conventional test by Beare

(2006). Second, the choice of the bandwidth parameter h has a significant effect

on the empirical size and the power of the tests. Third, the ML test is superior to

the remaining tests in terms of power. However, one has to bear in mind that the

ML test requires nonparametric estimation of the volatility function and simulation

methods to obtain critical values. Therefore, the computational effort is much more

time-consuming than for both the bootstrap M tests and, in particular, the detrended

version of the test by Beare (2006).
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Chapter 2

Estimation and Testing in a

Three-Regime Vector Error

Correction Model

2.1 Introduction

Since its methodical foundation by Engle and Granger (1987) cointegration is one of

the most important research areas in applied as well as theoretical time series analysis.

An appropriate framework for the analysis of cointegration has been proved to be the

linear vector error correction model (VECM). Its mathematical and statistical theory

has been developed amongst others by Engle and Granger (1987) and Johansen (1988,

1991). However, an essential shortcoming of the linear VECM is that deviations from

the long-run equilibrium are corrected by the same strength being independent of

the magnitude of the equilibrium error. As this is often a questionable assumption

(e.g. the validity of the purchasing power parity is questionable due to transaction

costs), vector error correction models with nonlinear adjustment have been suggested

recently.

van Dijk and Franses (2000) suggest a smooth transition vector error correction

model in which the strength of adjustment increases gradually as the equilibrium error
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gets larger. They consider interest rate series for the Netherlands consisting of one-

and twelve month interbank rates. They find that the smooth transition vector error

correction model captures the dynamics clearly better than the linear vector error

correction model.

An alternative model, the threshold vector error correction model introduced by

Balke and Fomby (1997) and Lo and Zivot (2001), has attracted much more attention

than the smooth transition vector error correction model. In this model, the adjust-

ment speed changes depending on the value of the error correction term or another

exogenous variable. In particular, it is possible that the variables evolve independently

if the deviation from the long-run equilibrium is small, but the variables become coin-

tegrated if the deviation exceeds a threshold. Most of the theoretical work focuses

on the two-regime model. Bec and Rahbek (2004) examine the stability of the two-

regime model and show that ∆yt and β>yt are geometrically ergodic processes under

suitable assumptions. Hansen and Seo (2002) provide a full statistical treatment in

a two-regime vector error correction model. In particular, they construct a LM test

for threshold effects and show that the asymptotic distribution depends on moments

of the data set. Hence, bootstrap methods are necessary to obtain critical values.

However, Hansen and Seo (2002) assume that it is known a priori that the system is

cointegrated with a single cointegrating vector. Furthermore, Seo (2004) develops a

test for cointegration in the presence of possible threshold effects. Recently, Gonzalo

and Pitarakis (2006) consider a two-regime threshold vector error correction model

without imposing rank restrictions on the long-run impact matrices. However, they

assume that lagged dependent variables and constants do not enter the model. In

this setting, they construct a Wald test against threshold effects and show that the

asymptotic distribution is nuisance-free and independent of the absence or presence

of unit roots and cointegration.

The present chapter contributes to this line of research. We consider a general

three-regime threshold vector error correction model that does not impose any rank

restrictions on the long-run impact matrices. We prove consistency of the threshold es-
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timators obtained by minimizing the determinant of the estimated covariance matrix.

An information-based selection procedure is introduced to estimate the cointegration

ranks. A supLM test for linearity is suggested that takes advantage of the statistical

properties of the process. It is shown that the asymptotic distribution depends on

moments of the data set. Hence, we propose a parametric bootstrap method to ob-

tain critical values. Finally, we apply the proposed econometric methodology to the

term structure of interest rates. We find strong evidence for threshold effects. The

results confirm the intuition that the series are not cointegrated in the case of small

deviations from the long-run equilibrium, but that they become cointegrated for large

deviations. Furthermore, the model clearly outperforms the random walk model and

the linear error correction model in terms of forecast ability.

The chapter is organized as follows. In section 2.2 we introduce the three-regime

threshold VECM and give different examples illustrating the flexibility of the model.

Section 2.3 is devoted to the estimation of the threshold parameters. The problem

of selecting an appropriate rank configuration is discussed in section 2.4. A supLM

test against threshold effects is suggested in section 2.5. The results of the empirical

application are presented in section 2.6. Finally, we conclude. All mathematical

proofs are postponed to the appendix.

2.2 The Three-Regime Threshold VECM

In the following we consider the model

∆yt =

(
µ1 + Π1yt−1 +

k∑
i=1

Γ1,i∆yt−i

)
I(qt−1 ≤ γ1)

+

(
µ2 + Π2yt−1 +

k∑
i=1

Γ2,i∆yt−i

)
I(γ1 < qt−1 ≤ γ2)

+

(
µ3 + Π3yt−1 +

k∑
i=1

Γ3,i∆yt−i

)
I(qt−1 > γ2) + ut, (2.1)
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where ∆ is the difference operator, (yt)t=1,...,T =
(
(y1,t, . . . , yp,t)

>)
t=1,...,T

is a p-

dimensional process and I(·) is the indicator function being 1 if the statement

in brackets is true and being 0 else. The parameters µ1, µ2, µ3 and Γl,1, . . . ,Γl,k,

l = 1, 2, 3, are unknown p×1 and p×p-matrices, respectively. The long-run impact ma-

trices Π1,Π2 and Π3 are possibly of reduced rank denoted by 0 ≤ Rank(Πl) = rl ≤ p.

It is important to emphasize that the cointegrating vectors, if they exist, are assumed

to be constant throughout all regimes. Therefore, Πl is decomposed into Πl = αlβ
>.

The thresholds γ1 and γ2 are unknown real numbers with γ1 < γ2. Finally, (ut)t=1,...,T

denotes a p-dimensional error process. In order to illustrate the rich dynamics of

model (2.1), we discuss two basic models. We exclude lagged dependent variables

and constants to keep the examples simple.

Example 1:

We consider a bivariate system of cointegrated I(1) variables. We set

Π2 =

 0 0

0 0

 ,Π1 = Π3 =

 −0.6 0.6

0.7 −0.7


and qt = β>yt = (1,−1)>yt. Since the rank of both Π1 and Π3 is one, we decompose

them into Πl = αβ> (l = 1, 3) with α = (−0.6, 0.7)> and β = (1,−1)>. If β>yt ∈

(γ1, γ2], yt and β>yt follow a random walk and, hence, the components of yt are not

cointegrated. Furthermore, if β>yt is smaller than γ1 or larger than γ2, β
>yt follows

the stationary AR(1)-process

β>yt = −0.3β>yt−1 + ηt,

with ηt = β>εt. Hence, the components of yt are cointegrated.

38



Example 2:

Now we consider a bivariate system of stationary variables. We set

Πi =

 ρ
(l)
11 0

0 ρ
(i)
22

 , l = 1, 2, 3.

Hence, we have

y1,t = δ
(1)
11 y1,t−1I(qt−1 <= γ1) + δ

(2)
11 y1,t−1I(γ1 < qt−1 <= γ2) + δ

(3)
11 y1,t−1I(qt−1 > γ2) + ε1,t

y2,t = δ
(1)
22 y2,t−1I(qt−1 <= γ1) + δ

(2)
22 y2,t−1I(γ1 < qt−1 <= γ2) + δ

(3)
22 y2,t−1I(qt−1 > γ2) + ε2,t,

with δ
(l)
jj = ρ

(l)
jj + 1, l = 1, 2, 3 and j = 1, 2. According to Theorem 4.2 in Fan and

Yao (2003), (yj,t)t=1,...,T (j = 1, 2) is stationary if max1≤i≤3 |δ(i)
jj | < 1.

For convenience, we re-write (2.1) by

∆Y = A1Z1 + A2Z2 + A3Z3 + U, (2.2)

where Al, l = 1, 2, 3, denotes a matrix of the form

Al = (µl,Πl,Γl,1, . . . ,Γl,k)

and the matrices ∆Y , Zl, l = 1, 2, 3, and U are defined as

∆Y = (∆y1, . . . ,∆yT ) ,

Zl(γl−1, γl) = (ξ0I(γl−1 < q0 ≤ γl), . . . , ξT−1I(γl−1 < qT−1 ≤ γl)) ,

U = (u1, . . . , uT ),

where

ξt−1 =
(
1, y>t−1,∆y

>
t−1, . . . ,∆y

>
t−k

)>
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is a p ·m-dimensional vector with m = (k+1)p+1, and we set γ0 = −∞ and γ3 = ∞.

Note that Zi and Zj (i, j = 1, 2, 3; i 6= j) are orthogonal by definition, i.e. ZiZ
>
j = 0

(i 6= j), and Z = (ξ0, . . . , ξT−1) = Z1(γ1) + Z2(γ1, γ2) + Z3(γ3). In the following

we suppress their dependence on γ1 and γ2, i.e. Z1 = Z1(γ1), Z2 = Z2(γ1, γ2) and

Z3 = Z3(γ2).

Under the assumption that the errors ut are i.i.d. Gaussian (0,Ω), we suggest

estimation of model (2.2) by maximum likelihood. The log-likelihood function is

given by

L(A1, A2, A3,Ω, γ1, γ2) = −Tp
2

ln(2π)− T

2
ln |Ω| − 1

2

T∑
t=1

u>t Ω−1ut

= −Tp
2

ln(2π)− T

2
ln |Ω|

− 1

2
tr
{
(∆Y − A1Z1 − A2Z2 − A3Z3)

>Ω−1

· (∆Y − A1Z1 − A2Z2 − A3Z3)} . (2.3)

For given γ1 and γ2, (2.3) is maximized by the estimators

Â1(γ1) = ∆Y Z>
1 (Z1Z

>
1 )−1, (2.4)

Â2(γ1, γ2) = ∆Y Z>
2 (Z2Z

>
2 )−1, (2.5)

Â3(γ2) = ∆Y Z>
3 (Z3Z

>
3 )−1, (2.6)

Ω̂(γ1, γ2) =
1

T
Û(γ1, γ2)Û(γ1, γ2)>, (2.7)

with Û(γ1, γ2) = ∆Y − Â1(γ1)Z1− Â2(γ1, γ2)Z2− Â3(γ2)Z3. Note that the estimators

(2.4)-(2.7) coincide with the estimators obtained by OLS. For further use, we define

the vectorised versions of (2.4), (2.5) and (2.6), i.e.

vec Â1 = [(Z1Z
>
1 )−1Z1 ⊗ Ip]vec ∆Y, (2.8)

vec Â2 = [(Z2Z
>
2 )−1Z2 ⊗ Ip]vec ∆Y, (2.9)

vec Â3 = [(Z3Z
>
3 )−1Z3 ⊗ Ip]vec ∆Y, (2.10)
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where ⊗ is the Kronecker product operator.

2.3 Estimation of the threshold parameters

We start by suggesting an estimation procedure of the thresholds γ1 and γ2. According

to the least square approach, the estimators of the threshold parameters are obtained

by minimizing the determinant of the covariance matrix Ω̂(γ1, γ2) being defined by

(2.7), i.e.

(γ̂1, γ̂2) = argminγ1,γ2∈Γ

∣∣∣Û(γ1, γ2)Û(γ1, γ2)
>
∣∣∣ . (2.11)

For the subsequent analysis we make the following assumptions

(A1) The process wt := (∆yt, qt) is L4r-bounded, strictly stationary and β-mixing

with mixing coefficient βm = O(m−A) where A > ν/(ν − 1) and r > ν > 1.

(A2) The process (ut)t=1,...,T is a p-dimensional vector white noise sequence satisfying

E(ut) = 0 and E(utu
>
t ) = Ω, where Ω is a symmetric and positive definite

matrix.

(A3) The process (qt)t=1,...,T is strictly stationary, ergodic and independent of the

process (ut)t=1,...,T . We assume that the process (qt)t=1,...,T has a distribution F

being continuous everywhere. Furthermore, we set r = F (γ) such that I(qt−1 ≤

γ) = I(φt−1 ≤ r) where φt−1 = F (qt−1).

(A4) The thresholds γ1 and γ2 are contained in Γ = [γL, γU ], a closed and bounded

subset of R.

Recall that the β-mixing coefficient βm is defined as

βm = sup
t
E

[
sup

A∈F∞t+m

|P (A)− P (A|F t
∞)|

]
,
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where F t
s denotes the σ-algebra generated by (ws, . . . , wt) for s ≤ t.

It is well-known that the β-mixing condition in Condition (A1) holds for many

processes such as stationary ARMA processes and ARCH models, see Mokkadem

(1988) and Masry and Tjostheim (1995), respectively. Note that a strong (weak)

moment restriction on wt leads to weak (strong) condition on the convergence speed

of βm.

Condition (A2) ensures that appropriate central limit theorems are applicable.

However, it may be relaxed to the assumption of a martingale difference sequence.

Condition (A3) ensures that the process (qt)t=1,...,T is well-behaved and to exclude

that it is I(1) itself.

Finally, condition (A4) is a standard assumption. Following Andrews (1993), suit-

able choices of γL and γU satisfy P (qt−1 ≤ γL) > θ, P (γL < qt−1 ≤ γU) > θ and

P (qt−1 > γU) > θ with θ usually chosen to be 0.1 or 0.15.

Under these assumptions, the following proposition establishes the consistency of

γ̂1 and γ̂2. In particular, we have

Theorem 2.1:

Under Assumptions (A1)-(A4), γ̂1 and γ̂2 satisfying (2.11) are consistent estimators

for γ1 and γ2, i.e. γ̂1 →p γ1 and γ̂2 →p γ2 as T →∞.

In order to examine the finite-sample behaviour of the estimators, we perform a

simulation study. In the following we consider a stationary process and a cointegrated

process. In both configurations we exclude the constant and lags of ∆yt and set the

threshold parameters to γ1 = −0.5 and γ2 = 0.5. The threshold variable qt is taken to

be a standard normal iid random variable. The simulation experiments are conducted

for both T = 200 and T = 300. The number of replications is chosen to be N = 1000.

Furthermore, we set θ = 0.15. The empirical means and the standard deviations of

both estimators are presented in Table 2.1. We note that the estimation procedure
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Table 2.1: Empirical means and standard deviations of γ̂1 and γ̂2 (joint estimation)

γ1 = −0.5 γ2 = 0.5

Mean(γ̂1) Std(γ̂1) Mean(γ̂2) Std(γ̂2)

Cointegrated DGP

T=200 -0.5104 0.0524 0.4902 0.0462

T=300 -0.5084 0.0330 0.4948 0.0327

Stationary DGP

T=200 -0.5047 0.1093 0.4881 0.1073

T=300 -0.5050 0.0626 0.4969 0.0626

works very well under both configurations. The bias of the estimators as well as

the standard deviation decline with the sample size. Since the computation time 1

increases with the sample size at high rate, Bai (1997) suggests a sequential estimation

procedure. Following Bai (1997), the estimation procedure involves two steps. On the

first stage a misspecified two-regime threshold model is estimated. Bai (1997) shows

that the obtained estimator γ̂ is consistent for one of the two thresholds (γ1, γ2).

At a second stage, a three-regime threshold model is estimated under the constraint

that one element of (γ1, γ2) equals γ̂. In order to see the enormous computational

savings of this procedure, let us denote the number of evaluations by N . Then it

is obvious that instead of N2 evaluations only N + 2N evaluations are involved.

The results using the sequential estimation procedure are presented in Table 2.2.

Comparing the empirical means of both estimation procedures we note that the latter

suffer from a higher, but still moderate bias. Furthermore, the estimates obtained

by using the sequential procedure are more volatile demonstrated by higher standard

deviations. However, the sequential procedure is predominantly used in practice due

to the enormous computational savings 2.

1The computation time is about 1.5 hours when T = 200 and about eight hours when T = 300.
2The computation time is about 40 seconds when T = 200 and about two minutes when T = 300.
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Table 2.2: Empirical means and standard deviations of γ̂1 and γ̂2 (seq. estimation)

γ1 = −0.5 γ2 = 0.5

Mean(γ̂1) Std(γ̂1) Mean(γ̂2) Std(γ̂2)

Cointegrated DGP

T=200 -0.5252 0.0645 0.5045 0.0684

T=300 -0.5204 0.0490 0.5061 0.0470

Stationary DGP

T=200 -0.5411 0.1164 0.5158 0.1259

T=300 -0.5249 0.0769 0.5179 0.0839

2.4 Estimation of the cointegration rank

Having estimated the threshold parameters the next step involves the determination

of the cointegration ranks of the long-run impact matrices Π1, Π2 and Π3. Following

Phillips and Chao (1999) and Gonzalo and Pitarakis (2006) we use an information-

based selection approach. In the spirit of the usual information criterions (see e.g.

Lütkepohl, 2006) we optimize an objective function balancing the goodness-of-fit and

the number of estimated parameters. We define the matrices

∆̂Yl = (∆y1I(γ̂l−1 < q0 ≤ γ̂l), . . . ,∆yT I(γ̂l−1 < qT−1 ≤ γ̂l)),

Ŷl,−1 = (y0I(γ̂l−1 < q0 ≤ γ̂l), . . . , yT−1I(γ̂l−1 < qT−1 ≤ γ̂l)),

Ẑl = (ξ0I(γ̂l−1 < q0 ≤ γ̂l), . . . , ξT−1I(γ̂l−1 < qT−1 ≤ γ̂l)),

Ẑl,−1 = (ζ0I(γ̂l−1 < q0 ≤ γ̂l), . . . , ζT−1I(γ̂l−1 < qT−1 ≤ γ̂l)),

ζt−1 = (1,∆y>t−1, . . . ,∆y
>
t−k−1)

>,

Ûl = ∆̂Yl − ÂlẐl,

Ω̂l = T−1ÛlÛ
>
l

with l = 1, 2, 3 and γ̂0 = −∞ and γ̂3 = ∞. Regressing ∆̂Yl and Ŷl,−1 on Ẑl,−1,

we obtain the residuals Rl,0 and Rl,1, respectively. Next, we introduce the product
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moment matrices

Sl,00 = T−1Rl,0R
>
l,0,

Sl,11 = T−1Rl,1R
>
l,1,

Sl,01 = T−1Rl,0R
>
l,1,

Sl,10 = S>l,01,

with l = 1, 2, 3. Note that Ω̂l = Sl,00 − Sl,01 (Sl,11)
−1 Sl,10 by direct calculation. In the

following Ω̂l(rl) denotes the sample covariance matrix of regime l assuming

rank (Πl) = rl. Our estimator is defined as

r̂l = argminrl∈{0,...,p}IC
∗
l (rl),

where

IC∗
l (rl) = ln

∣∣∣Ω̂l(rl)
∣∣∣+ cT

T
m(rl),

with m(rl) denotes the number of estimated parameters and cT is a deterministic

penalty term depending on T . Using standard arguments we get

ln
∣∣∣Ω̂l(rl)

∣∣∣ = ln (Sl,00) +

rl∑
i=1

ln (1− λl,i) , (2.12)

where λl,i denotes the i-th eigenvalue of (Sl,00)
−1 Sl,01 (Sl,11)

−1 Sl,10. Since Sl,00 is

independent of the value of rl, it is sufficient to optimize

ICl(rl) =

rl∑
i=1

ln (1− λl,i) +
cT
T

(2prl − r2
l ),

with 1 > λl,1 > · · · > λl,p. The following proposition states the asymptotic properties

of the described model selection approach. We omit its proof since it follows exactly

the same steps as the proof of Proposition 6 in Gonzalo and Pitarakis (2006).
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Theorem 2.2:

Under the assumptions (i) cT → ∞ and (ii) cT

T
→ 0, the estimator r̂l defined as in

(2.12) converges in probability to its true value as T → ∞, i.e. r̂l →p rl, where rl

denotes the true rank of Πl, l = 1, 2, 3.

In the following simulation study and the empirical application we use cT = lnT

satisfying both (i) and (ii). This corresponds to the well-known Bayesian Information

Criterion (BIC).

In order to evaluate the finite sample properties of the model selection approach,

we perform a simulation study. The data are generated according to three different

processes; the rank configuration of DGP I is r1 = 1, r2 = 0 and r3 = 1, that of

DGP II is r1 = 1, r2 = 1 and r3 = 1, and that of DGP III is r1 = 2, r2 = 2 and

r3 = 2. Throughout all DGPs the threshold variable is a standard normally distributed

random variable, the threshold parameters are set to γ1 = −0.5 and γ2 = 0.5. These

choices ensure that the number of observations is approximately equal in each regime.

The results based on N = 3000 replications are shown in Table 2.3.

The data indicate good finite sample properties of the model selection approach.

The decision frequency reaches a low of 46.20 % for DGP III when T = 100, of 59.37

% for DGP III when T = 300 and of 75.10 % when for DGP II when T = 500.

2.5 A test against threshold effects

It is obvious that regimes featuring different ranks are subject to threshold effects.

The aim of this section is to construct a test that enables us to detect threshold

effects between regimes which are characterized by the same rank 0 ≤ r ≤ p. Since

the need for estimating the cointegrating vectors only occurs when 0 < r < p− 1, we

discuss this situation in detail. Extensions covering the situations r = 0 and r = p

are provided at the end of the section.
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Table 2.3: Decision frequencies of the model selection approach, cT = lnT

r̂1 = 0 r̂1 = 1 r̂1 = 2 r̂2 = 0 r̂2 = 1 r̂2 = 2 r̂3 = 0 r̂3 = 1 r̂3 = 2

DGP I: r1 = 1, r2 = 0, r3 = 1

T=100 1.13 63.74 35.13 53.07 33.27 13.66 0.93 63.24 35.83

T=300 0.00 75.00 25.00 80.10 17.23 2.67 0.00 78.03 21.97

T=500 0.00 79.43 20.57 86.20 12.30 1.50 0.00 81.77 18.23

DGP II: r1 = 1, r2 = 1, r3 = 1

T=100 1.10 61.27 37.63 15.33 53.77 30.90 1.40 60.80 37.80

T=300 0.00 69.70 30.30 8.07 73.40 18.53 0.00 72.27 27.73

T=500 0.00 75.10 24.90 1.27 83.27 15.46 0.00 77.63 22.37

DGP III: r1 = 2, r2 = 2, r3 = 2

T=100 1.93 20.07 78.00 15.13 38.67 46.20 2.13 19.70 78.17

T=300 0.00 1.47 98.53 12.27 28.36 59.37 0.03 1.87 98.10

T=500 0.00 0.10 99.90 5.00 18.60 76.40 0.00 0.33 99.67

47



2.5.1 Test statistic

Using the rank restriction 0 < r < p, model (2.2) can be re-written as

∆Y = AαZβ̂ + δα1Z1,β̂ + δα3Z3,β̂ + U,

with

Al,α = (µ, αl,Γl,1, . . . ,Γl,k)

Zβ̂ =
(
ξ0,β̂, . . . , ξT−1,β̂

)
,

Zl,β̂ =
(
ξ0,β̂I(γl−1 < q0 ≤ γl), . . . , ξT−1,β̂I(γl−1 < qT−1 ≤ γl)

)
,

ξt−1,β̂ =
(
1, y>t−1β̂,∆y

>
t−1, . . . ,∆y

>
t−k

)>
and Aα = A2,α, δ1,α = A1,α −Aα and δ3,α = A3,α −Aα. Hence, the hypotheses we are

interested in can be expressed as

H0 : vec δ1,α = vec δ3,α = 0 against

H1 : ⇁ H0.

The standard expression for the LM-statistic is given by

LM(γ1, γ2) = vec

 δ̂1,α

δ̂3,α

> [
MT (γ1, γ2)

−1 ⊗ Ω̃−1
]

vec

 δ̂1,α

δ̂3,α

 , (2.13)

where MT (γ1, γ2) denotes a covariance estimator of vec(δ̂>1,α, δ̂
>
3,α)>. In particular, the

estimator is of the form

MT (γ1, γ2) =

 (Z1,β̂Z
>
1,β̂

)−1 + (Z2,β̂Z
>
2,β̂

)−1 (Z2,β̂Z
>
2,β̂

)−1

(Z2,β̂Z
>
2,β̂

)−1 (Z2,β̂Z
>
2,β̂

)−1 + (Z3,β̂Z
>
3,β̂

)−1


and Ω̃ = ŨŨ>

T
is an estimator for Ω using the residuals under the null hypothesis.

If the threshold parameters were known, then (2.13) would be asymptotically
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χ2(2p + 2pr + 2p2k) distributed. Since we will not assume that the thresholds are

known, standard distribution theory is not applicable. In particular, the so-called

“Davies problem” occurs namely when the thresholds γ1 and γ2 are not identified

under the null hypothesis. Here, we follow Davies (1987) by taking the supremum

of (2.13) with respect to the thresholds. Although Andrews and Ploberger (1994)

argue that the power of the test can be improved by using exponentially weighted

averages of (2.13), we restrict our analysis to taking the supremum. It is important

to note that the values of γ1 and γ2 which maximize the test statistic (2.13) will be

in general different from γ̂1 and γ̂2 presented in section 2.3. The reason for this is

that (2.13) is an LM test, and is therefore based on parameter estimates obtained

under the null hypothesis rather than the alternative. The asymptotic distribution is

given in the following theorem.

Theorem 2.3:

Suppose Assumptions (A1)-(A4) hold. Then as T →∞

supLM ⇒ sup
θ≤r1,r2≤1−θ

J(r1, r2)
> [M(r1, r2)⊗ Ω−1

]
J(r1, r2), (2.14)

where J(r1, r2) and M(r1, r2) are defined in the appendix.

It is important to emphasize that both J(r1, r2) and M(r1, r2) depend on

E[1(rl−1 < φt−1 ≤ rl)ξt−1,βξ
>
t−1,β], l = 1, 2, 3; this means that the asymptotic

distribution depends on moments of the data set and hence critical values have to be

simulated for each data set. Here, we use the parametric residual bootstrap method.

The steps of computing the bootstrap distribution are given as follows.

Step 1: Estimate the linear model given the rank restriction rk(Π) = r, yielding

estimates Â∗α and empirical residuals ũ∗t .

Step 2: Draw from the residual vectors ũ∗t and create the vector series ∆y∗t and ξ∗t−1,β

by recursion given Â∗α.

Step 3: Compute the test statistic supLM∗ using ∆y∗t and ξ∗t−1,β.
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Step 4: Repeat Steps 1-3 B times and obtain the empirical distribution of the B test

statistics of supLM.

Step 5: Let supLM∗
1−α be the 1− α percentile of the empirical distribution obtained

in the previous step. Reject the null hypothesis if supLM > supLM∗
1−α.

We now turn to the cases r = 0 and r = p. If r = 0, we have

ξt−1 =
(
1,∆y>t−1, . . . ,∆y

>
t−k

)>
and if r = p, we have

ξt−1 =
(
1, yt−1,∆y

>
t−1, . . . ,∆y

>
t−k

)>
It is obvious that ξt−1 contains only stationary variables in both cases. Therefore,

the previous analysis can be used to cover both situations.

In order to evaluate the empirical size of the proposed test we perform a small

simulation study. The data are generated according to three different bivariate

processes, a stationary system, a non-stationary system without cointegration and

a cointegrated system. The long-run matrix of the stationary system is of rank

two, that of the non-stationary system of rank zero and that of the cointegrated

system of rank one. In all three cases, we include one lag. To achieve an accurate

approximation of the bootstrap distribution, we set B = 500. We perform N = 1000

replications with sample size T = 50. The results of the simulation study are shown

in Table 2.4. The results show that the empirical size of the supLM test is very close

to the nominal size, even for the small sample size T = 50.

2.5.2 The case without lags of ∆yt and intercept

In this subsection we consider the important case that lags of ∆yt and intercept are

not included in model (2.1), that is Γl,i = 0 and µl = 0, l = 1, 2, 3 and i = 1, . . . , k. In
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Table 2.4: Empirical size (in percent) of the supLM test, θ = 0.15

T = 50

α = 10% α = 5% α = 1%

Stationary DGP 10.90 5.30 1.50

Non-stationary DGP 10.60 4.30 0.70

Cointegated DGP 10.10 5.70 1.40

this situation, we are able to simulate critical values being valid independent of the

data set. The following simulation aims to provide critical values.

Throughout all our experiments the error process ut is two-dimensional standard

normally distributed with covariance matrix I2. Furthermore, the threshold variable

qt follows a normally distributed white noise process. We perform 10000 replications

with a sample size of T = 400. The results are presented for θ = 0.1 and θ = 0.15 in

Table 2.5 and Table 2.6, respectively.

Table 2.5: Critical values of the supLM test (p=2, θ = 0.1)

90% 95% 97.5% 99%

Stationary DGP 27.715 30.513 32.912 36.572

Nonstationary DGP 27.697 30.472 32.724 36.424

Cointegrated DGP 27.685 30.598 32.906 36.611

Table 2.6: Critical values of the supLM test (p=2, θ = 0.15)

90% 95% 97.5% 99%

Stationary DGP 25.255 27.866 30.264 33.427

Nonstationary DGP 25.333 27.989 30.393 33.322

Cointegrated DGP 25.122 27.647 30.184 33.171

The results in Table 2.5 and 2.6 clearly show that the critical values are very

similar independent of the stochastic properties of the VECM. This enables us to test

51



for threshold effects without having knowledge about the absence or presence of unit

roots and cointegration.

2.6 Application to the term structure of interest

rates

In this section we apply the proposed econometric methodology to the term structure

of interest rates. Due to the existence of transaction costs linear adjustment is not

implied by the theory of the term structure.

In section 2.6.1 we briefly re-state the arguments by Campbell and Shiller (1987)

that interest rates on bonds with different maturities are cointegrated. Section 2.6.2 is

devoted to the description of the data. The empirical results are presented in section

2.6.3.

2.6.1 Expectations hypothesis

The expectations hypothesis asserts that the long-term interest rate Rt with a matu-

rity of N is determined by the average of current and expected future returns on the

bond with a maturity of one period, denoted by rt. Hence, we obtain

Rt =
1

N

N∑
i=1

Et(rt+i−1) =
1

N

[
N−1∑
i=1

Et(rt+i) + rt

]
. (2.15)

Obviously, it holds that

Et(rt+i) =
i∑

j=1

Et(∆rt+j) + rt. (2.16)

Combining (2.15) and (2.16) leads to

st = Rt − rt =
1

N

N−1∑
i=1

i∑
j=1

Et(∆rt+j).
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Figure 2.1: 5-Year interest rate and 3-Month interest rate (Jan. 1976 to Aug. 2006)

If we assume that the expected future change of the short-term interest rate is sta-

tionary, the term spread st is stationary. According to the definition of cointegration,

the long-term interest rate Rt and the short-term interest rate rt are cointegrated by

the cointegrating vector β> = (1,−1)>.

2.6.2 Data

In our empirical application we use the monthly interest rate on the 3-month treasury

bill as the short-term rate and the 5-year treasury constant maturity rate as the long-

term rate. The sample period runs from January 1976 to August 2006. The data is

extracted from the St. Louis federal reserve data base. Both series are depicted in

Figure 2.1.
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2.6.3 Empirical results

We start our analysis with the basic linear error correction model. The VAR lag-

length selection is carried out by using the Akaike Information Criterion (AIC) and

the Bayesian Information Criterion (BIC). Table 2.7 shows the results for the range

k = 1 to k = 5.

Table 2.7: Lag-length selection using AIC and BIC

AIC BIC

k=1 -744.31 -739.80

k=2 -761.27∗ -754.52∗

k=3 -759.32 -750.34

k=4 -756.13 -744.93

k=5 -749.91 -736.50

Table 2.7 shows that both Information Criteria suggest to choose k = 2. Next, we

perform Johansen’s (1988) cointegration test to determine the number of cointegrating

relationships. Since we include an unrestricted constant in the model, the critical

values of the test are chosen according to Table 15.3 in Johansen (1995). The results

are given in the following table.

Table 2.8: Results of the trace test by Johansen (1995)

Null hypothesis Test statistic 5% critical value

Rank=0 18.63 15.34

Rank=1 2.34 3.84

The results shown in Table 2.8 clearly indicate that a long-run relationship exists

between the short-term interest rate and the long-term interest rate. The estimation

results of the linear error correction model are presented in Table 2.9. Standard

errors are based on the heteroskedasticity-robust covariance estimator. Due to space

constraints we do not report the results of the lagged dependent variables. The
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Table 2.9: Estimation results of the linear VECM (Jan. 1976 - Aug. 2006)

Long-term interest rate Short-term interest rate

β -1.011

α -0.032 0.035

s.e.(α) 0.024 0.040

cointegrating vector is estimated to be close to 1. The adjustment coefficient of the

short-term rate is positive but not significant and hence, the long-run relationship

does not provide significant information on the future change in the short rate. This

finding is consistent with the results of Mankiw and Miron (1986). The adjustment

coefficient of the long-term rate is not significant as well.

Due to the existence of transaction costs we conjecture that a threshold error correc-

tion model may provide a better empirical description. The estimates of the threshold

parameters are γ̂1 = 0.090 and γ̂2 = 2.430. Next, we estimate the cointgration rank

rl of regime l (l = 1, 2, 3). Using the information-based selection approach we obtain

the results presented in Table 2.10.

Table 2.10: Choice of the cointegration rank

Rank Regime 1 Regime 2 Regime 3

λ1 0.452 0.030 0.345

λ2 0.016 0.002 0.011

IC(r=0) 0 0∗ 0

IC(r=1) -0.553 ∗ 0.017 -0.376 ∗

IC(r=2) -0.552 0.031 -0.371

The eigenvalue λ1 is substantially different for the outer regimes, whereas λ1 is close

to zero for the middle regime. The eigenvalue λ2 is close to zero for all regimes. Hence,

the information-based approach suggests a cointegration rank of one for regime 1 and

regime 3, and a cointegration rank of zero for regime 2. Given these rank restrictions

we estimate a threshold error correction model whose estimation results are displayed
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in Table 2.11. Standard errors are calculated from the heteroskedasticity-robust co-

variance estimator. The trimming parameter θ is set at 0.1.

Table 2.11: Estimation results of the threshold VECM (Jan. 1976 - Aug. 2006)

Long-term interest rate Short-term interest rate

β -1.025

α1 -0.074 0.578

s.e.(α1) 0.216 0.248

α3 -0.650 -0.193

s.e.(α3) 0.175 0.228

γ = (γ1, γ2) 0.090, 2.430

Regime 1 contains 10.1% of the observations and covers the case that the dif-

ference between the short-term rate and the long-term rate is low. The short-term

rate responds by a strong positive adjustment whereas the long-term rate does not

respond reflected by a negative but insignificant adjustment coefficient. Regime 3

contains 17.8% of the observations. The adjustment coefficient of the short-term rate

is negative, but insignificant. The long-term rate responds by a strong negative and

significant adjustment coefficient.

In order to compare the forecasting ability of the threshold model with that of the

random walk model and the linear model, we calculate the root mean squared error

(RMSE) and mean absolute error (MAE) for all three models. The RMSE and the

MAE are defined as

RMSE =

√√√√1/(T − k)
T∑

t=k

(Êt−1rt − rt)2,

MAE = 1/(T − k)
T∑

t=k

|Êt−1rt − rt|.

We set k = 50 to ensure that the parameter estimates are based on a sufficiently
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Table 2.12: Comparison of the prediction ability of the random walk model, the linear
VECM and the threshold VECM

Random walk (A) Linear VECM (B, B/A) Threshold VECM (C, C/A)

RMSE 0.522 0.424 (0.812) 0.330 (0.632)

MAE 0.264 0.256 (0.970) 0.208 (0.788)

large number of observations. The results are shown in Table 2.12. The root mean

squared error (RMSE) of the threshold VECM is about 35% lower than the random

walk model while the linear VECM reduces the RMSE by about 20%. The mean

absolute error (MAE) of the linear model is similar to the random walk model while

the threshold VECM reduces the MAE by about 20%. Thus, the threshold VECM

clearly improves the prediction ability.

2.7 Conclusion

In this chapter we examine a three-regime threshold error correction model being

widely used in applications. In contradiction to previous contributions we do not

make assumptions involving the stochastic properties of the process. In this gen-

eral framework we propose to estimate the threshold parameters by minimizing the

determinant of the residual covariance matrix and establish the consistency of the

estimators. Since a joint optimization is computationally burdensome we introduce

a sequential estimation procedure similar to Bai (1997). We propose an information-

based approach balancing the goodness of fit and the number of estimated parameters

to determine the rank configuration of the regimes. For the situation that the regimes

are characterized by the same rank, we propose a supLM test to detect threshold

effects. It turns out that the asymptotic distribution depends on moments of the

data set and, hence, bootstrap methods are necessary to obtain critical values. In

a simulation study it appears that the test shows low size distortion, even for small

sample sizes. Finally, we apply the suggested econometric methodology to the term
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structure of interest rates. We find strong evidence for threshold effects. Our model

clearly outperforms the random walk model and the linear error correction model in

terms of forecasting ability.

However, many issues remain for future research. Among others, working out a

distribution theory for the parameter estimates is probably challenging due to the non-

standard distribution of the threshold estimators, see e.g. Chan (1993) and Hansen

(2000). Furthermore, estimation and testing methods for deterministic components

is an important issue. Finally, we would need a test to decide between a two-regime

model and a three-regime model.

Appendix

Preliminary Lemmata

Lemma 2.1:

Suppose Assumptions (A1)-(A4) hold. Then as T →∞

(a)
ZβZ>β

T
→p E[ξt−1,βξ

>
t−1,β] ≡ Q,

(b)
Z1,βZ>1,β

T
→p E[1(φt−1 ≤ r)ξt−1,βξ

>
t−1,β] ≡ Q1(r),

(c)
Z3,βZ>3,β

T
→p E[1(φt−1 > r)ξt−1,βξ

>
t−1,β] ≡ Q3(r),

(d)
Z2,βZ>2,β

T
→p E[1(r1 < φt−1 ≤ r2)ξt−1,βξ

>
t−1,β] ≡ Q2(r1, r2),

(e) Ω̃ →p Ω,

where Q,Q1(r), Q2(r1, r2) and Q3(r2) are positive definite (p ·k+r+1)× (p ·k+r+1)

matrices. Note that Q = Q1(1).

Proof:

Observe that all processes in ξt are stationary. Then, part (a) and (e) follow

directly from the ergodic theorem. Part (b) and (c) follow from Theorem 3 in
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Hansen (1996). Next, we show part (d). Using ZiZ
>
j = 0 (i 6= j), we have

ZZ> = Z1Z
>
1 + Z2Z

>
2 + Z3Z

>
3 . By part (a), (b) and (c), we have

Z2,βZ
>
2,β

T
=

ZβZ
>
β

T
−
Z1,βZ

>
1,β

T
−
Z3,βZ

>
3,β

T

→p E[ξt−1,βξ
>
t−1,β]− E[1(φt−1 ≤ r1)ξt−1,βξ

>
t−1,β]− E[1(φt−1 > r2)ξt−1,βξ

>
t−1,β]

= E[1(r1 < φt−1 ≤ r2)ξt−1,βξ
>
t−1,β] ≡ Q2(r1, r2).

by the Continuous Mapping Theorem.

Define

H1,T (r1) ≡ 1√
T

(Z1,β ⊗ Ip)vec U,

H2,T (r1, r2) ≡ 1√
T

(Z2,β ⊗ Ip)vec U,

H3,T (r2) ≡ 1√
T

(Z3,β ⊗ Ip)vec U

Lemma 2.2:

Suppose Assumptions (A1)-(A4) hold. Then as T →∞

(a) H1,T (r1) ⇒ H1(r1), where H1(r1) is a p(p · k + r + 1)-dimensional zero mean

Gaussian process with covariance kernel Q1

(
r
(1)
1 ∧ r(2)

1

)
⊗ Ω,

(b) H2,T (r1, r2) ⇒ H2(r1, r2), where H2(r1, r2) is a p(p · k + r + 1)-dimensional zero

mean Gaussian process with covariance kernel Q2

(
r
(1)
1 ∨ r(2)

1 , r
(1)
2 ∧ r(2)

2

)
⊗ Ω,

(c) H3,T (r2) ⇒ H3(r2), where H3(r2) is a p(p · k + r + 1)-dimensional zero mean

Gaussian process with covariance kernel Q3

(
r
(1)
2 ∨ r(2)

2

)
⊗ Ω,

where ∨ and ∧ denotes the max- and min-operator, respectively.

Proof:

Note that (ut ⊗ ξt−11(·))t=1,...,T is a p(p · k + r + 1)-dimensional martingale difference
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sequence. By applying the central limit theorem for vector martingale difference se-

quences (e.g. see Hamilton, 1994, p. 194), we get the finite dimensional distributional

convergence. It is well known that this is not sufficient to get weak convergence.

Stochastic equicontinuity (see e.g. Andrews, 1994) is established by following the

same steps as in Hansen (1996, Theorem 1). Stochastic equicontinuity, combined

with the finite dimensional distributional convergence leads to weak convergence.

Next, we consider the case that yt is nonstationary. We decompose

Z∗
l (rl−1, rl) =

(
Z∗

1,l(rl−1, rl), Z
∗
2,l(rl−1, rl)

)
where

Z∗
1,l ≡ Z∗

1,l(rl−1, rl) = (ξ1,01(rl−1 < φ0 ≤ rl), . . . , ξ1,T−11(rl−1 < φT−1 ≤ rl)) ,

Z∗
2,l ≡ Z∗

2,l(rl−1, rl) = (ξ2,01(rl−1 < φ0 ≤ rl), . . . , ξ2,T−11(rl−1 < φT−1 ≤ rl)) ,

ξ1,t−1 = (1, T−1/2Ω−1/2C(1)y>t−1)
>,

ξ2,t−1 = (∆y>t−1, . . . ,∆y
>
t−k)

>.

Note that under the null hypothesis yt is generated by the stochastic process

∆yt = C(L)ut where C(L) = C(1) + C1(L)(1− L).

Lemma 2.3:

Under Assumptions (A1)-(A4), on r1, r2 ∈ [0, 1], r1 < r2,

(a)
Z∗2,1Z∗>2,1

T
→p E

(
1(φt−1 ≤ r1)ξ2,t−1ξ

>
2,t−1

)
≡ Q22,1(r1),

(b)
Z∗2,3Z∗>2,3

T
→p E

(
1(φt−1 > r2)ξ2,t−1ξ

>
2,t−1

)
≡ Q22,3(r2),

(c)
Z∗2,2Z∗>2,2

T
→p E

(
1(r1 < φt−1 ≤ r2)ξ2,t−1ξ

>
2,t−1

)
≡ Q22,2(r1, r2),

as T →∞.

Proof:

Note that Assumption 2 in Caner and Hansen (2001) is directly implied by Assump-

tions (A1)-(A4). Part (a) follows from the second part of Theorem 3 in Caner and
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Hansen (2001). Next, we prove part (b). From the ergodic theorem and part (a) we

get

Z∗
2,3Z

∗>
2,3

T
=

Z∗
2Z

∗>
2

T
−
Z∗

2,1(r2)Z
∗>
2,1(r2)

T

→p E
(
ξ2,t−1ξ

>
2,t−1

)
− E

(
1(φt−1 ≤ r2)ξ2,t−1ξ

>
2,t−1

)
= E

(
1(φt−1 > r2)ξ2,t−1ξ

>
2,t−1

)
,

where Z∗
2 = (ξ2,0, . . . , ξ2,T−1). Finally, part (c) is shown in a similar way as part (b)

by using the previous parts.

Lemma 2.4:

Let X(s) = (1,W (s)>)>, where W (s) is a p-dimensional Brownian motion. Then,

under Assumptions (A1)-(A4), on r1, r2 ∈ [0, 1], r1 < r2,

(a)
Z∗1,1Z∗>2,1

T
⇒ E (1(φt−1 ≤ r1)ξ2,t−1)

∫ 1

0
X(s)>ds ≡ Q12,1(r1),

(b)
Z∗1,3Z∗>2,3

T
⇒ E (1(φt−1 > r2)ξ2,t−1)

∫ 1

0
X(s)>ds ≡ Q12,3(r2),

(c)
Z∗1,2Z∗>2,2

T
⇒ E (1(r1 < φt−1 ≤ r2)ξ2,t−1)

∫ 1

0
X(s)>ds

≡ Q12,2(r1, r2),

as T →∞.

Proof:

The first part of Theorem 3 in Caner and Hansen (2001) leads to

λ>
Z∗

1,1Z
∗>
2,1

T
⇒ λ>E (1(φt−1 ≤ r1)ξ2,t−1)

∫ 1

0

X(s)>ds,

where λ ∈ Rp and λ>λ = 1. Then, the result follows by the functional Cramér-Wold

device, see e.g. Wooldridge and White (1988), Proposition 4.1. Next, we show part
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(b). Observe that

Z∗
1,3Z

∗>
2,3

T
=

Z∗
1Z

∗>
2

T
−
Z∗

1,1(r2)Z
∗>
2,1(r2)

T

⇒ E (ξ2,t−1)

∫ 1

0

X(s)>ds− E (1(φt−1 ≤ r2)ξ2,t−1)

∫ 1

0

X(s)>ds

= E (1(φt−1 > r2)ξ2,t−1)

∫ 1

0

X(s)>ds,

with Z∗
1 := (ξ1,0, . . . , ξ1,T−1). Weak convergence follows from Phillips and Durlauf

(1986) and part (a). Finally, part (c) is shown in a similar way as part (b) by using

the previous parts.

Lemma 2.5:

Under Assumptions (A1)-(A4), on r1, r2 ∈ [0, 1], r1 < r2,

(a)
Z∗1,1Z∗>1,1

T
⇒ r1

∫ 1

0
X(s)X(s)>ds ≡ Q11,1(r1),

(b)
Z∗1,3Z∗>1,3

T
⇒ (1− r2)

∫ 1

0
X(s)X(s)>ds ≡ Q11,3(r2),

(c)
Z∗1,2Z∗>1,2

T
⇒ (r2 − r1)

∫ 1

0
X(s)X(s)>ds ≡ Q11,2(r1, r2),

as T →∞.

Proof:

The third part of Theorem 3 in Caner and Hansen (2001) leads to

λ>
Z∗

1,1Z
∗>
1,1

T
⇒ r1λ

>
∫ 1

0

X(s)X(s)>ds,

where λ ∈ Rp+1 and λ>λ = 1. Then, the result follows by the functional Cramér-Wold

device, see e.g. Wooldridge and White (1988), Proposition 4.1. Next, we show part
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(b). Observe that

Z∗
1,3Z

∗>
1,3

T
=

Z∗
1Z

∗>
1

T
−
Z∗

1,1(r2)Z
∗>
1,1(r2)

T

⇒
∫ 1

0

X(s)X(s)>ds− r2

∫ 1

0

X(s)X(s)>ds

= (1− r2)

∫ 1

0

X(s)X(s)>ds,

where Z∗
1 is defined as in the proof of Lemma 2.4. Weak convergence follows from

Phillips and Durlauf (1986) and part (a). Finally, part (c) is shown in a similar way

as part (b) by using the previous parts.

Applying Lemma 2.3-2.5 we obtain

Z∗
l (rl−1, rl)Z

∗
l (rl−1, rl)

> = (Z∗
1,l(rl−1, rl), Z

∗
2,l(rl−1, rl))

 Z∗
1,l(rl−1, rl)

>

Z∗
2,l(rl−1, rl)

>


=

 Z∗
1,l(rl−1, rl)Z

∗
1,l(rl−1, rl)

> Z∗
2,l(rl−1, rl)Z

∗
1,l(rl−1, rl)

>

Z∗
1,l(rl−1, rl)Z

∗
2,l(rl−1, rl)

> Z∗
2,l(rl−1, rl)Z

∗
2,l(rl−1, rl)

>


⇒

 Q11,l(rl−1, rl) Q12,l(rl−1, rl)

Q12,l(rl−1, rl) Q22,l(rl−1, rl)

 ≡ Q∗
l (rl−1, rl).

with l = 1, 2, 3.
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Proof of Theorem 2.1

We define the empirical residuals

Û(γ1, γ2) = ∆Y − Π̂1Z1 − Π̂2Z2 − Π̂3Z3.

In view to (2.11) we have

Û(γ1, γ2)Û(γ1, γ2)
> = (∆Y − Π̂1Z1 − Π̂2Z2 − Π̂3Z3)(∆Y

> − Z>
1 Π̂>

1 − Z>
2 Π̂>

2 − Z>
3 Π̂>

3 )

= ∆Y∆Y > −∆Y Z>
1 Π̂>

1 −∆Y Z>
2 Π̂>

2 −∆Y Z>
3 Π̂>

3

− Π̂1Z1∆Y
> + Π̂1Z1Z

>
1 Π̂>

1 + Π̂1Z1Z
>
2 Π̂>

2 + Π̂1Z1Z
>
3 Π̂>

3

− Π̂2Z2∆Y
> + Π̂2Z2Z

>
1 Π̂>

1 + Π̂2Z2Z
>
2 Π̂>

2 + Π̂2Z2Z
>
3 Π̂>

3

− Π̂3Z3∆Y
> + Π̂3Z3Z

>
1 Π̂>

1 + Π̂3Z3Z
>
2 Π̂>

2 + Π̂3Z3Z
>
3 Π̂>

3

Using the orthogonality of Zi and Zj (i 6= j), i.e. ZiZ
>
j = 0, Π̂1 = ∆Y Z>

i (ZiZ
>
i )−1

(i = 1, 2, 3), (see (2.4)-(2.6)) and introducing the projection matrix Mi :=

Z>
i (ZiZ

>
i )−1Zi (i = 1, 2, 3), we get

Û(γ1, γ2)Û(γ1, γ2)
> = ∆Y∆Y > −∆YM1∆Y

> −∆YM2∆Y
> −∆YM3∆Y

>.

Next, we denote the true threshold parameters by γ0
1 and γ0

2 and write the model

evaluated at γ0
1 and γ0

2 as ∆Y = Π1Z
0
1 + Π2Z

0
2 + Π3Z

0
3 + U , with Z0

1 = (ξ0I(q0 ≤

γ0
1), . . . , ξT−1I(qT−1 ≤ γ0

1)), Z
0
2 = (ξ0I(γ

0
1 < q0 ≤ γ0

2), . . . , ξT−1I(γ
0
1 < qT−1 ≤ γ0

2)) and

Z3 = (ξ0I(q0 > γ0
2), . . . , ξT−1I(qT−1 > γ0

2)). Hence, it follows

Û(γ1, γ2)Û(γ1, γ2)
> = (Π1Z

0
1 + Π2Z

0
2 + Π3Z

0
3 + U)(Π1Z

0
1 + Π2Z

0
2 + Π3Z

0
3 + U)>

− (Π1Z
0
1 + Π2Z

0
2 + Π3Z

0
3 + U)M1(Π1Z

0
1 + Π2Z

0
2 + Π3Z

0
3 + U)>

− (Π1Z
0
1 + Π2Z

0
2 + Π3Z

0
3 + U)M2(Π1Z

0
1 + Π2Z

0
2 + Π3Z

0
3 + U)>

− (Π1Z
0
1 + Π2Z

0
2 + Π3Z

0
3 + U)M3(Π1Z

0
1 + Π2Z

0
2 + Π3Z

0
3 + U)>.

64



It remains to show that the objective function converges uniformly in probability

to a nonstochastic limit that is uniquely minimized at (γ1, γ2) =: γ = γ0 := (γ0
1 , γ

0
2).

Under the restrictions γ1 < γ2 and γ0
1 < γ0

2 , it is sufficient to consider the following

six cases. Consider first the case that yt is stationary. Applying appropriate

normalizations, we obtain by Lemma 2.1 after some lengthy calculations

Case (1): γ1 < γ0
1 < γ2 < γ0

2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q2(γ1, γ

0
1)Q

−1
2 (γ1, γ2)Q2(γ

0
1 , γ2)(Π1 − Π2)

>

+ (Π2 − Π3)Q2(γ2, γ
0
2)Q

−1
3 (γ2)Q3(γ

0
2)(Π2 − Π3)

> + Ω

> Ω,

Case (2): γ1 < γ0
1 < γ0

2 < γ2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q2(γ1, γ

0
1)Q

−1
2 (γ1, γ2)Q2(γ

0
1 , γ

0
2)(Π1 − Π2)

>

+ (Π1 − Π3)Q2(γ1, γ
0
1)Q

−1
2 (γ1, γ2)Q2(γ

0
2 , γ2)(Π1 − Π3)

>

+ (Π2 − Π3)Q2(γ
0
1 , γ

0
2)Q

−1
2 (γ1, γ2)Q2(γ

0
2 , γ2)(Π2 − Π3)

> + Ω

> Ω,

Case (3): γ0
1 < γ1 < γ2 < γ0

2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q1(γ

0
1)Q

−1
1 (γ1)Q2(γ

0
1 , γ1)(Π1 − Π2)

>

+ (Π2 − Π3)Q2(γ2, γ
0
2)Q

−1
3 (γ2)Q3(γ

0
2)(Π2 − Π3)

> + Ω

> Ω,
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Case (4): γ0
1 < γ1 < γ0

2 < γ2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q1(γ

0
1)Q

−1
1 (γ1)Q2(γ

0
1 , γ1)(Π1 − Π2)

>

+ (Π2 − Π3)Q2(γ1, γ
0
2)Q

−1
2 (γ1, γ2)Q2(γ

0
2 , γ2)(Π2 − Π3)

> + Ω

> Ω,

Case (5): γ1 < γ2 < γ0
1 < γ0

2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q2(γ2, γ

0
1)Q

−1
3 (γ2)Q2(γ

0
1 , γ

0
2)(Π1 − Π2)

>

+ (Π2 − Π3)Q2(γ
0
1 , γ

0
2)Q

−1
3 (γ2)Q3(γ

0
2)(Π2 − Π3)

> + Ω

> Ω,

Case (6): γ0
1 < γ0

2 < γ1 < γ2

Û(γ1, γ2)Û(γ1, γ2)
>

T
→p (Π1 − Π2)Q1(γ

0
1)Q

−1
1 (γ1)Q2(γ

0
1 , γ

0
2)(Π1 − Π2)

>

+ (Π1 − Π3)Q1(γ
0
1)Q

−1
1 (γ1)Q2(γ

0
2 , γ1)(Π1 − Π3)

>

+ (Π2 − Π3)Q2(γ
0
1 , γ

0
2)Q

−1
1 (γ1)Q2(γ

0
2 , γ1)(Π2 − Π3)

> + Ω

> Ω,

If yt is nonstationary, the results continue to be valid by replacing Ql(γl−1, γl) by

Q∗
l (γl−1, γl).
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An alternative representation of the supLM statistic

First, we derive an alternative algebraic representation of vec(δ̂>1 , δ̂
>
3 )> being an es-

sential building block of the supLM statistic. This representation will enable us to

apply Lemma 2.1 and Lemma 2.2 to prove Theorem 2.3.

Let Ũ = ∆Y − ÂαZβ̂ = ∆Y −∆Y Z>
β̂

(Zβ̂Z
>
β̂

)−1Zβ̂ the residuals under H0. Then,

we have

vec δ̂1,α = vec (Â1,α − Â2,α)

= [(Z1,β̂Z
>
1,β̂

)−1 ⊗ Ip][Z1,β̂ ⊗ Ip]vec ∆Y − [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z2,β̂ ⊗ Ip]vec ∆Y

= [(Z1,β̂Z
>
1,β̂

)−1 ⊗ Ip][Z1,β̂ ⊗ Ip]vec Ũ + [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z1,β̂ ⊗ Ip]vec Ũ

+ [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z3,β̂ ⊗ Ip]vec Ũ

and

vec δ̂3,α = vec (Â3,α − Â2,α)

= [(Z3,β̂Z
>
3,β̂

)−1 ⊗ Ip][Z3,β̂ ⊗ Ip]vec ∆Y − [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z2,β̂ ⊗ Ip]vec ∆Y

= [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z1,β̂ ⊗ Ip]vec Ũ + [(Z2,β̂Z
>
2,β̂

)−1 ⊗ Ip][Z3,β̂ ⊗ Ip]vec Ũ

+ [(Z3,β̂Z
>
3,β̂

)−1 ⊗ Ip][Z3,β̂ ⊗ Ip]vec Ũ .

This can be written as

vec

 Â1,α − Â2,α

Â3,α − Â2,α

 =

 [(Z1,β̂Z
>
1,β̂

)−1 + (Z2,β̂Z
>
2,β̂

)−1] (Z2,β̂Z
>
2,β̂

)−1

(Z2,β̂Z
>
2,β̂

)−1 [(Z2,β̂Z
>
2,β̂

)−1 + (Z3,β̂Z
>
3,β̂

)−1]

⊗ Ip

·

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec Ũ

= (MT (r1, r2)⊗ Ip)

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec Ũ . (2.17)
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Using Ũ = ∆Y − ÂαZβ̂ = ∆Y − ∆Y Z>
β̂

(Zβ̂Z
>
β̂

)−1Zβ̂, we get for the second term

in (2.17)

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec Ũ =

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec (∆Y −∆Y Z>
β̂

(Zβ̂Z
>
β̂

)−1Zβ̂)

=

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec ∆Y

−

 Z1,β̂Z
>
1,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

Z3,β̂Z
>
3,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

 (Zβ̂ ⊗ Ip)vec ∆Y.

For l = 1, 2, 3 we note that

I(γl−1 < qt−1 ≤ γl) = I(rl−1 < φt−1 ≤ rl)

with φt−1 := F (qt−1). Then, we replace I(γl−1 < qt−1 ≤ γl) by I(rl−1 < φt−1 ≤ rl) in

the definition of Zl,β̂ and define

supLM = sup
θ≤r1,r2≤1−θ

LM(r1, r2).

Under H0, it holds that ∆Y = AαZβ + U . Hence, we obtain,

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec Ũ =

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec (AαZβ + U)

−

 Z1,β̂Z
>
1,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

Z3,β̂Z
>
3,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

 (Zβ̂ ⊗ Ip)vec (AαZβ + U)

=

 Z1,β̂ ⊗ Ip

Z3,β̂ ⊗ Ip

 vec U

−

 Z1,β̂Z
>
1,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

Z3,β̂Z
>
3,β̂

(Zβ̂Z
>
β̂

)−1 ⊗ Ip

 (Zβ̂ ⊗ Ip)vec U

=: JT (r1, r2). (2.18)
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Hence, we have by (2.17) and (2.18)

vec

 Â1,α − Â2,α

Â3,α − Â2,α

 = (MT (r1, r2)⊗ Ip)JT (r1, r2).

Proof of Theorem 2.3

Since (β̂−β) = Op(T
−1) observe that |ξt,β̂−ξt,β| = |y>t (β̂−β)| = Op(T

−1/2), where | · |

denotes an arbitrary norm. Therefore, we can replace in the remainder of the proof

Zβ̂ by Zβ. Consider the matrix MT (r1, r2). By applying Lemma 2.1, we get

T ·MT (r1, r2) = T ·

 (Z1,βZ
>
1,β)−1 + (Z2,βZ

>
2,β)−1 (Z2,βZ

>
2,β)−1

(Z2,βZ
>
2,β)−1 (Z2,βZ

>
2,β)−1 + (Z3,βZ

>
3,β)−1


=

 (T−1 · Z1,βZ
>
1,β)−1 + (T−1 · Z2,βZ

>
2,β)−1 (T−1 · Z2,βZ

>
2,β)−1

(T−1 · Z2,βZ
>
2,β)−1 (T−1 · Z2,βZ

>
2 )−1 + (T−1 · Z3,βZ

>
3,β)−1


→p

 Q1(r1)
−1 +Q2(r1, r2)

−1 Q2(r1, r2)
−1

Q2(r1, r2)
−1 Q2(r1, r2)

−1 +Q3(r2)
−1


=: M(r1, r2) (2.19)

Next, consider the term JT (r1, r2). By introducing the
√
T -normalization, we obtain

the distributional result

1√
T
JT (r1, r2) =

1√
T

 Z1,β ⊗ Ip

Z3,β ⊗ Ip

 vec Ũ =
1√
T

 Z1,β ⊗ Ip

Z3,β ⊗ Ip

 vec U

−

 T−1Z1,βZ
>
1,β(T−1ZβZ

>
β )−1 ⊗ Ip

T−1Z3,βZ
>
3,β(T−1ZβZ

>
β )−1 ⊗ Ip

 1√
T

(Zβ ⊗ Ip)vec U

⇒

 H1(r1)

H3(r2)


−

 Q1(r1)Q
−1 ⊗ Ip

Q3(r2)Q
−1 ⊗ Ip

H1(1) ≡ J(r1, r2) (2.20)
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Finally, note that by (2.19)

T ·MT (r1, r2)⊗ Ω̃ →p

 Q1(r1)
−1 +Q2(r1, r2)

−1 Q2(r1, r2)
−1

Q2(r1, r2)
−1 Q2(r1, r2)

−1 +Q3(r2)
−1

⊗ Ω

≡ M(r1, r2)⊗ Ω

by using Lemma 2.1, part (e) and (2.19). It follows by the continuous mapping

theorem that

(T ·MT (r1, r2))
−1 ⊗ Ω̃−1 →p M(r1, r2)

−1 ⊗ Ω−1. (2.21)

Combining (2.19), (2.20) and (2.21) leads to

J(r1, r2)
>(M(r1, r2)⊗ Ip)(M(r1, r2)

−1 ⊗ Ω−1)(M(r1, r2)⊗ Ip)J(r1, r2)

= J(r1, r2)
> [M(r1, r2)⊗ Ω−1

]
J(r1, r2)

as claimed in Theorem 2.3.
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Chapter 3

A Partially Linear Approach to

Modelling the Dynamics of Spot

and Futures Prices

3.1 Introduction

Prices in spot and futures markets are linked through the cost-of-carry relation. In

a frictionless world arbitrage would eliminate any deviations from this relation. In

practice, however, such deviations may and do occur for several reasons. First, the ex-

istence of transactions costs makes it unprofitable to exploit small deviations. Second,

traders with access to private information may prefer to trade in a specific market.

Consequently, prices in this market may reflect information earlier than prices in the

other market. As transaction costs tend to be lower in the futures market (e.g. Berk-

mann et al. 2005) informed traders may prefer to trade in this market and it thus

might reflect the information earlier than the spot market. The opposite may also

occur, however. Consider a trader with information on the value of an individual

stock. The trader can trade on that information in the spot market. In the futures

market, on the other hand, he is restricted to trading a basket of securities (i.e., an

index futures contract). Therefore, firm-specific information may be reflected in the
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spot market first.

The question of which market impounds new information faster is thus an empirical

one, and it has been subject to academic research for about two decades.1 The

empirical methods have been considerably refined since the early work of Kawaller

et al. (1987) and others. VAR models were introduced (e.g. Stoll and Whaley

1990) and soon thereafter replaced by error correction (ECM) models. A standard

ECM implicitly assumes that deviations of prices from their long-run equilibrium (the

pricing errors) are reduced at a speed that is independent of the magnitude of the

price deviation. This is unlikely to be the case, however. Whenever the deviations

are sufficiently large to allow for profitable arbitrage, the speed of adjustment should

increase.2 Some authors (e.g. Yadav et al. 1994, Dwyer et al. 1996 and Martens

et al. 1998) have employed threshold error correction (TECM) models to address

this issue. A TECM assumes a non-continuous transition function and allows for a

discrete number of different speed of adjustment coefficients. If all traders would face

identical transaction costs, a TECM with two different adjustment coefficients (i.e., a

no-arbitrage regime and an arbitrage regime) would be a reasonable choice. If, on the

other hand, traders are heterogeneous with respect to the transaction costs they face,

a less restrictive model is warranted. An obvious candidate is a smooth transition

error correction (STECM) model as applied by Taylor et al. (2000), Anderson and

Vahid (2001) and Tse (2001).

A shortcoming of the STECM models is that the transition function must be exoge-

nously specified, and there is no theory to guide the specification of the model. The

researcher also has to decide for a symmetric transition function or one that allows

for asymmetry. Such asymmetries may arise because short sales in the spot market

are more expensive than short sales in the futures market.

The contribution of this chapter is to propose a more flexible modelling frame-

1Given the nature of our empirical analysis we restrict the brief survey of the literature to papers
analyzing the relation between stock price indices and stock index futures contracts.

2The width of the arbitrage bounds is likely to depend on the liquidity of the market. In a recent
paper Roll et al. (2007) have documented a relation between liquidity and the futures-cash basis for
the NYSE composite index futures contract over the period 1988-2002.
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work. We estimate a partially linear ECM where the adjustment process is modelled

non-parametrically. The short-run dynamics are estimated by density-weighted OLS

based on the approach proposed by Fan and Li (1999a). The non-parametric function

modelling the adjustment process is estimated by a Nadaraya-Watson estimator. The

modelling approach that we use was proposed by Gaul (2005) but has as yet not been

applied.

We implement our model using data from the German stock market. Specifically,

we analyze the dynamics of the DAX index and the DAX futures contract. The

results suggest that the speed of adjustment is indeed monotonically increasing in the

magnitude of the price deviation. We test our specification against a standard ECM

and clearly reject the latter. Estimates of the parameters governing the short-run

dynamics are similar in the standard ECM and in our model.

These results have several implications. First, they confirm the intuition that the

speed of adjustments of prices to deviations from equilibrium is increasing in the

magnitude of the deviation. Second, they imply that a standard ECM as well as a

TECM is unable to fully capture the dynamics of the adjustment process. Third, the

form of the non-parametric adjustment function may guide the choice for a functional

form in STECM models.

The remainder of the chapter is organized as follows. Section 3.2 provides a de-

scription of the data set. In section 3.3 we describe the estimation procedure. In

section 3.4 we describe a test for linearity. Section 3.5 is devoted to the presentation

of the results, section 3.6 concludes.

3.2 Market Structure and Data

Our analysis uses DAX index level data and bid and ask quotes from the DAX index

futures contract traded on Eurex. The DAX is a value-weighted index calculated

from the prices of the 30 largest German stocks. The prices are taken from Xetra, the
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most liquid market for German stocks.3 Index values are published in intervals of 15

seconds. The DAX is a performance index, i.e., the calculation of the index is based

on the presumption that dividends are reinvested. As a consequence, the expected

dividend yield does not enter the cost of carry relation. Besides an index calculated

from the most recent transaction prices the exchange also calculates an index from

the current best ask prices (ADAX) and an index calculated from the current best

bid prices (BDAX). These indices are value-weighted averages of the inside quotes,

and their mean is equivalent to a value-weighted average of the quote midpoints of

the component stocks.

Futures contracts on the DAX are traded on the EUREX. The contracts are cash-

settled and trade on a quarterly cycle. They mature on the third Friday of the months

March, June, September, and December. The DAX futures contract is a highly liquid

instrument. In the first quarter of 1999 (our sample period), more than 1,150,000

transactions were recorded. The open interest at the end of the quarter was more

than 290,000 contracts.

Both Xetra and EUREX are electronic open limit order books. Therefore, the

results of our empirical analysis are unlikely to be affected by differences in market

structure. The trading hours in the two markets are different, though. Trading in

Xetra starts with a call auction held between 8.25 am and 8:30 am. After the opening

auction, continuous trading starts and extends until 5 pm, interrupted by an intraday

auction which takes place between 1:00 pm and 1:02 pm. Trading of the DAX futures

contract starts at 9 am and extends until 5 pm.

We obtained all data from Bloomberg. Our sample period is the first quarter of

1999 and extends over 61 trading days. For this period we obtained the values of the

DAX index and the two quote-based indices ADAX and BDAX at a frequency of 15

seconds. From the quote-based indices we calculate the midquote index MQDAXt =

ADAXt+BDAXt

2
. We further obtained a time series of all bid and ask quotes and all

transaction prices of the nearby DAX futures contract. We only use data for the period

3The DAX stocks are traded on Xetra, on the floor of the Frankfurt Stock Exchange and on
several regional exchanges. The market share of Xetra amounted to 90% during our sample period.
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of simultaneous operation of both markets. We further discard all observations before

9 am and from 4:55 pm onwards. We also discard all observations within 5 minutes

from the time of the intraday call auction (held between 1:00 pm and 1:02 pm). After

these adjustments the sample consists of 100188 observations.

All estimations are based on quote midpoints. They are preferred to transaction

prices because the use of midpoints alleviates the infrequent trading problem.4 We

match each index level observation whith the bid and ask quotes in the futures market

that were in effect at the time the index level information was published.

The cost-of-carry relation implies that the cash index and the futures contract are

cointegrated. In order to eliminate the time-variation of the cointegrating relation we

discount the futures prices using daily observations on the one-month interbank rate

as published by Deutsche Bundesbank.5

As a prerequisite for our empirical analysis we have to establish that the time series

are I(1) and are cointegrated. Table 3.1 presents the results of augmented Dickey-

Fuller tests and Phillips-Perron tests applied to pt and ∆pt. pt denotes a log price

series observed at date t and the indices X and F identify observations relating to the

cash market (X, Xetra) and the futures market (F ), respectively. ∆ is the difference

operator. The results of the stationarity tests clearly suggest that all series are I(1).

In equilibrium spot and futures prices are linked through the cost-of-carry relation.

Consequently, the DAX index level and the discounted futures price should be equal in

equilibrium, and their difference should be stationary. We test the latter hypothesis

using both an augmented Dickey-Fuller test and a Phillips-Perron test and clearly

reject the null of a unit root (p-value 0.0000 and 0.0001, respectively). This result

4Spot market index levels are calculated using the last available transaction price for each of the
component stocks. As stocks do not trade simultaneously, some of the prices used to calculate the
index are stale. This may induce positive serial correlation in the index returns. Quote midpoints, on
the other hand, are based on tradable bid and ask prices and should be less affected by the infrequent
trading problem. See Shyy et al. (1996) or Theissen (2005).

5Given the margin requirements in the futures market, the rate for overnight deposits is an
alternative choice. However, the time series of overnight deposit rates exhibits peaks which may be
due to bank reserve requirements. Besides, the term structure at the short end was essentially flat
during the sample period, making the choice of the interest rate less important.
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Table 3.1: Results of the unit root tests for XDAX and FDAX

Level First Difference

Augmented DF Phillips / Perron Augmented DF Phillips / Perron

pX 0.5773 0.6395 0.0001 0.0001

pF 0.3964 0.4113 0.0001 0.0001

confirms the theoretical prediciton that spot and futures prices are cointegrated with

the cointegrating vector being (1,−1)>. We use this pre-specified cointegrating vector

in our estimation.

3.3 Estimation procedure

For the reasons exposed in the Introduction, our model is characterized by a nonpara-

metric function for the pricing error. In particular, we propose to use the model

∆yt =
k∑

i=1

Γi∆yt−i + F (β>yt−1) + εt, t=1,. . .,T, (3.1)

where yt denotes a vector process containing the variables pX
t and pF

t . The coin-

tegrating vector is denoted by β and is pre-specified to (1,−1)>. The adjustment

process is described by the unknown nonparametric function F : R → R2 and εt is a

two-dimensional error process. By introducing the 2× 2k-matrix Γ := (Γ1 . . .Γk) and

the 2k-dimensional vector ξt−1 :=
(
∆y>t−1 . . .∆y

>
t−k

)>
, model (3.1) can be written as

∆yt = Γξt−1 + F (β>yt−1) + εt. (3.2)

Note that model (3.2) contains the linear VECM (Engle and Granger, 1987; Johansen,

1988), the threshold VECM (Hansen and Seo, 2002) and the smooth transition VECM

(van Dijk and Franses, 2000) as special cases.

The estimation procedure described in the following involves two stages. First, we

estimate the matrix Γ, then the function F .
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3.3.1 Estimation of Γ

Taking expectations in (3.2) conditional on β>yt−1, we have

E(∆yt|β>yt−1) = ΓE(ξt−1|β>yt−1) + F (β>yt−1), (3.3)

using E(εt|β>yt−1) = 0. Subtracting (3.3) from (3.2) leads to

∆yt − E(∆yt|β>yt−1) = Γ(ξt−1 − E(ξt−1|β>yt−1)) + εt, (3.4)

which has the following form

∆y∗t = Γξ∗t−1 + εt, (3.5)

where ∆y∗t := ∆yt − E(∆yt|β>yt−1) and ξ∗t−1 := ξt−1 − E(ξt−1|β>yt−1). If

E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) were known, Γ could be estimated by OLS. Since

E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) are usually unknown, an estimator based on ∆y∗t

and ξ∗t−1 is not feasible. To obtain a feasible estimator, we will use the nonparametric

kernel method, similar to Robinson (1988) and Fan and Li (1999a). In particular, the

conditional means E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) are estimated by the Nadaraya-

Watson estimator

Ê(∆yt|β>yt−1) =
1

Th

T∑
j=1

∆yjK

(
β>yt−1 − β>yj−1

h

)
/f̂(β>yt−1),

Ê(ξt−1|β>yt−1) =
1

Th

T∑
j=1

ξj−1K

(
β>yt−1 − β>yj−1

h

)
/f̂(β>yt−1),

where

f̂(β>yt−1) =
1

Th

T∑
j=1

K

(
β>yt−1 − β>yj−1

h

)
(3.6)

is the kernel density estimator for f(β>yt−1), K(·) is a kernel function and h is a

bandwidth parameter.

77



To avoid the random denominator problem in kernel estimation (i.e. the occurrence

of small values of the estimated density function), we use density weighted estimates,

similar to Fan and Li (1999a). Thus, we multiply (3.5) by f(β>yt−1), the density

function of β>yt−1, and obtain

f(β>yt−1)∆y
∗
t = Γf(β>yt−1)ξ

∗
t−1 + f(β>yt−1)εt. (3.7)

We replace E(∆yt|β>yt−1), E(ξt−1|β>yt−1) and f(β>yt−1) in (3.7) by their estimates.

This leads to the feasible estimator

Γ̂OLS =

[
T∑

t=1

∆ŷ∗t ξ̂
∗>
t−1f̂(β>yt−1)

2

][
T∑

t=1

ξ̂∗t−1ξ̂
∗>
t−1f(β>yt−1)

2

]−1

, (3.8)

with ∆ŷ∗t := ∆yt − Ê(∆yt|β>yt−1) and ξ̂∗t−1 := ξt−1 − Ê(ξt−1|β>yt−1). Besides some

technical assumptions, we assume that (∆yt, β
>yt−1) is β-mixing, Th2 → ∞ and

Th8 → 0 for T →∞. Similar to Fan and Li (1999a), it can be shown that vec (Γ̂OLS−

Γ) is
√
T consistent and asymptotically normally distributed.

3.3.2 Estimation of F

Substituting Γ̂OLS for Γ in model (3.2), one obtains the nonparametric model

∆ỹt = F (β>yt−1) + ut, (3.9)

where ∆ỹt := ∆yt − Γ̂OLSξt−1. Applying the Nadaraya-Watson estimator to (3.9), i.e.

F̂ (z) =

∑T
t=1 ∆ỹtK

(
z−β>yt−1

h

)
∑T

t=1K
(

z−β>yt−1

h

) , (3.10)

we get an estimator for the function F. It is well known that F̂ (·) has the same

asymptotic distribution as if Γ were known. Later, we will use this statement for

constructing pointwise confidence intervals.
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3.3.3 Bandwidth Selection

In empirical applications we have to choose both the kernel function and the band-

width parameter h. Whereas the influence of the kernel function is negligible, the

choice of the bandwidth parameter plays a crucial role. Due to our enormous sam-

ple size, standard bandwidth selection procedures like cross-validation, are no longer

applicable as the computational time increases at quadratic rate with the number of

observations. In order to determine the bandwidth parameter h we use the method of

Weighted Averaging of Rounded Points (WARPing) developed by Härdle and Scott

(1992). This technique is based on discretizing the data first into a finite grid of bins,

then smoothing the binned data and finally selecting the optimal bandwidth using

the binned data. The main advantage of WARPing is the substantial gain of com-

putational efficiency. In particular, Härdle (1991) and Härdle and Scott (1992) show

that the number of iterations increases at linear rate with the number of observations

rather than quadratic.

In our application we determine the optimal bandwidth by using four different

criteria, namely cross-validation, the Shibata’s Model Selector, Akaike’s Information

Criterion and Final Prediction Error Criterion. For a detailed discussion of them,

we refer to Härdle, Müller, Sperlich and Werwatz (2004). The lower limit for h for

the grid search is set to 0.000332, the upper to 0.005307 and the bindwidth d to

6.634 ·10−5. The number of equidistant grid points is chosen to be 100. The analysis

is carried out by using the software package XploRe. The results are given in the

following table.

Table 3.2: Results of bandwidth selection

Bandwidth selection procedure XDAX FDAX

Cross Validation 0.000371 0.000492

Shibata’s Model Selector 0.000351 0.000492

Akaike’s Information Criterion 0.000361 0.000492

Final Prediction Error 0.000361 0.000492
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The table shows that all methods lead to very similar results for the XDAX series.

According to Akaike’s Information Criterion and Final Prediction Error we choose

hX = 0.000361. For the FDAX series, all methods yield the same result. Hence, we

choose hF = 0.000492.

3.4 Test for linearity

The linear vector error correction model

∆yt = Γξt−1 + αβ>yt−1 + εt (3.11)

may be considered the baseline model in cointegration analysis. We now provide a

statistical single-equation test to examine the hypothesis whether model (3.11) is as

accurate a description of the data as model (3.1). Formally, we are interested in

testing the hypotheses

H0 : E(∆yit|ξt−1, β
>yt−1) = Γiξt−1 + αiβ

>yt−1 for some Γi and αi against

H1 : E(∆yit|ξt−1, β
>yt−1) = Γiξt−1 +Fi(β

>yt−1) with P (Fi(β
>yt−1) = αiβ

>yt−1) < 1)

for any αi ∈ R.

To motivate an appropriate test statistic, we consider (3.2) with Γ = 0. Denote

uit := ∆yit − αiβ
>yt−1 the residuals under H0. Following Zheng (1996) and Li and

Wang (1998), our test is based on E
[
uitE[uit|β>yt−1]f(β>yt−1)

]
. Then under H0, it

follows

E
[
uitE[uit|β>yt−1]f(β>yt−1)

]
= 0, (3.12)

since E[uit|β>yt−1] = 0. Under H1, we have E[uit|β>yt−1] = Fi(β
>yt−1) − αiβ

>yt−1.

Using the law of iterated expectations, we obtain under H1

E
[
uitE[uit|β>yt−1]f(β>yt−1)

]
> 0. (3.13)
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Due to (3.12) and (3.13) it is obvious to use the sample analogue of

E
[
uitE[uit|β>yt−1]f(β>yt−1)

]
as the test statistic. The outer expected value is re-

placed by its mean, the inner expected value by the Nadaraya-Watson estimator

Ê(uit|β>yt−1) =
1

(T − 1)h

T∑
j=1j 6=t

K

(
β>yt−1 − β>yj−1

h

)
uij/f̂(β>yt−1), (3.14)

the density function f(·) by the kernel density estimator (3.6) and the residuals uit

by the empirical residuals under the null hypothesis, i.e. ũit = ∆yit − α̂iβ
>yt−1.

Taking the lagged dependent values into account we substitute for ũit the residuals

ûit = ∆yit − Γ̂OLS
i ξt−1 − α̂iβ

>yt−1, where Γ̂OLS
i denotes the estimator of the i-th row of

Γ given by (3.8) and α̂i is the estimator of the i-th row of α under the null hypothesis.

Thus, the test statistic is of the form

Ii :=
1

T (T − 1)h

T∑
t=1

T∑
j=1j 6=t

K

(
β>yt−1 − β>yj−1

h

)
ûitûij, i = 1, . . . , p

To derive the asymptotic distribution, it is important to note that Ii is a degenerate,

second-order U-statistic. Combining the ideas of Fan and Li (1999b) and Li and Wang

(1998), it can be shown that Ii is asymptotically normally distributed by applying a

central limit theorem for U-statistics of β-mixing processes. Furthermore,

σ̂2
i :=

2

T (T − 1)h

T∑
t=1

T∑
j=1j 6=t

K2

(
β>yt−1 − β>yj−1

h

)
û2

itû
2
ij, i = 1, . . . , p

is a consistent estimator for σ2
i , the asymptotic variance of Th1/2Ii. It is well known

that the convergence speed to the normal distribution is quite low. Therefore, boot-

strap methods are suggested to approximate the finite sample distribution, see e.g.

Li and Wang (1998). Due to the enormous sample size it seems reasonable to rely on

the asymptotic approximation given through the asymptotic distribution.
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3.5 Results

We present the results in two steps. The starting point is the linear benchmark case.

We then proceed to the partially linear model and also present the results for the test

of linearity described in the previous section.

3.5.1 Linear error correction model

The following table shows the estimation results of the linear error correction model

rF
t = µF +

20∑
i=1

γF
1ir

F
t−i +

20∑
i=1

γX
1i r

X
t−i + αF (pX

t−1 − pF
t−1) + εFt

rX
t = µX +

20∑
i=1

γX
2i r

X
t−i +

20∑
i=1

γF
2ir

F
t−i + αX(pX

t−1 − pF
t−1) + εXt ,

where p denotes the log prices and r denotes a log return. The index X identifies

variables and coefficients relating to the spot market (X, Xetra), the index F identifies

variables (adjusted by a discount factor according to the cost-of-carry relation) and

coefficients relating to the futures market. The cointegrating vector is pre-specified to

(1,−1)>. The model is estimated by OLS with 20 lags, but to save space we present

only the coefficients for lags 1-4. Standard errors are based on the heteroskedasticity-

robust covariance estimator. The model is estimated based on quote midpoints and

100188 observations. The results are given in Table 3.3.

Considering the short-run dynamics first, we find that the DAX returns depend

negatively on their own lagged values but depend positively on lagged futures returns.

Returns in the futures markets exhibit a similar pattern. There is one exception, how-

ever, as the coefficient on the first lag of the futures returns is positive and significant.

The results of F-tests (not shown in the table) indicate that there is bivariate Granger

causality.
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Table 3.3: Estimation results of the linear ECM

XDAX FDAX

Estimates t-statistic Estimates t-statistic

Constant 3.385E-6 4.95 -4.427E-6 -3.80

EC -0.0087 -14.85 0.0047 5.42

XDAX(-1) -0.0876 -16.36 0.0542 7.36

XDAX(-2) -0.0773 -16.22 0.0534 7.83

XDAX(-3) -0.0632 -14.80 0.0573 7.69

XDAX(-4) -0.0522 -12.14 0.0489 6.76

FDAX(-1) 0.2107 68.32 0.0358 7.97

FDAX(-2) 0.1572 58.18 -0.0166 -3.81

FDAX(-3) 0.1215 46.31 -0.0173 -3.97

FDAX(-4) 0.0989 37.38 -0.0079 -1.78

R2 0.2244 0.0070

The coefficients on the error correction term have the expected signs (negative for

the spot market and positive for the futures market) and are both highly significant.

The estimates can be used to construct the common factor weights

θX = αF

αF−αX ; θF =
(
1− θX

)
= −αX

αF−αX

The common factor weights measure the contributions of the two markets to the

process of price discovery. The measure builds on Gonzalo and Granger (1995) and is

discussed in more detail in Booth et a. (2002), deB Harris et al. (2002) and Theissen

(2002). In our linear error correction model the common factor weights are 0.3507

for the spot market and 0.6493 for the futures market. The futures market thus

dominates in the process of price discovery. This result is consistent with previous

findings.

3.5.2 Partially linear error correction model

Applying the test for linearity developed in section 3.4, we obtain IF = 3.265 and

IX = 2.937. We thus clearly reject the linear benchmark model in favor of our
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non-parametric specification. For the test we choose the bandwidth parameter to be

h = 2σ̂T−0.2. The following table shows the estimation results of the partially linear

error correction model

rF
t =

20∑
i=1

γF
1ir

F
t−i +

20∑
i=1

γX
1i r

X
t−i + F (pX

t−1 − pF
t−1) + εFt

rX
t =

20∑
i=1

γX
2i r

X
t−i +

20∑
i=1

γF
2ir

F
t−i + F (pX

t−1 − pF
t−1) + εXt ,

where the notation is as in the linear model. We estimate the model by the procedure

described in section 3.3. Again, we use 20 lags, but only the coefficients for lags 1-4 are

shown. Again, standard errors are based on the heteroskedasticity-robust covariance

estimator. The cointegrating vector is pre-specified to (1,−1)>.

Table 3.4: Estimation results of the partially linear ECM (h = 2σ̂T−0.2)

XDAX FDAX

Estimates t-statistic Estimates t-statistic

XDAX(-1) -0.0873 -15.25 0.0389 4.79

XDAX(-2) -0.0693 -14.90 0.0475 6.15

XDAX(-3) -0.0564 -13.57 0.0491 5.78

XDAX(-4) -0.0435 -10.76 0.0449 5.54

FDAX(-1) 0.1571 70.98 0.0558 11.39

FDAX(-2) 0.1351 58.79 0.0020 0.39

FDAX(-3) 0.1063 47.14 -0.0053 -1.05

FDAX(-4) 0.0882 39.27 -0.0028 -0.54

The results for the short-run dynamics are similar to those in the linear model.

The spot market returns depend positively on their own lagged values and negatively

on the lagged futures returns. Futures returns, on the other hand, depend positively

on the lagged spot market returns. They also depend positively on their first lag.

Coefficients for higher lags are insignificant.

Figure 3.1 presents the results for the adjustment process. The figure plots the

value of the adjustment function F against the pricing error β>yt−1.
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Figure 3.1: Estimated adjustment process (solid line) and pointwise 95% confidence
interval (dashed line) for FDAX (upper panel) and XDAX (lower panel) as a function
of the error correction term pX − pF . A Gaussian kernel and the bandwidths hF =
0.000492 and hX = 0.000361 have been used.
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It also depicts the 95% confidence intervals. The upper panel shows the results for

the futures market, the lower panel those for the spot market.The adjustment process

is estimated very precisely, as evidenced by the narrow confidence intervals. In the

outer regions (i.e., when pricing errors are large) estimation is less precise. This is a

natural consequence of the low number of observations in these regions.

The speed of adjustment is almost monotonically related to the magnitude of the

pricing error. This shape of the adjustment function is clearly at odds with a threshold

error correction model. Adjustment is slow for small pricing errors, as is evidenced by

the small slope of the adjustment function. When the pricing error becomes larger,

the speed of adjustment increases sharply. This is consistent with arbitrage activities.

There is an asymmetry with respect to the level of the pricing error that triggers

arbitrage. When the pricing error is negative (i.e., when the adjusted futures price

is larger than the spot price) the trigger level is about -0.001. When the pricing

error is positive, on the other hand, the trigger level is approximately 0.003. This

pattern is explained by slight, but systematic deviations of prices from the cost-of-

carry relation. On average, the difference between the discounted futures price and

the DAX index is -2.8 index points. This pattern has been documented in previous

research (e.g. Bühler and Kempf, 1995), and the most likely explanation is differential

tax treatment of dividends in the spot and the futures market (see McDonald, 2001

for a detailed discussion).

In order to compare the predictive ability of the partially linear VECM with that

of the linear VECM, the root mean squared error (RMSE) and the mean absolute

error (MAE) are calculated for both models.6 The RMSE and the MAE are defined

6We restrict the analysis of the forecasting errors to the XDAX equation. This equation lends
itself to forecasting because of the large and significant coefficients on the lagged futures returns
documented in table 3.4.
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for one-step ahead forecast errors by

RMSE =

√√√√ T∑
t=k

(
Êt−1pX

t − pX
t

)2

,

MAE =
T∑

t=k

∣∣∣Êt−1p
X
t − pX

t

∣∣∣ .
We set k = 80000 to ensure that the parameter estimates are based on a sufficiently

large numbers of observations. The results are given in Table 3.5.

Table 3.5: Prediction ability of the linear VECM and the partially linear VECM

Linear VECM (A) Partially Linear VECM (B, B/A)

RMSE 0.025 0.023 (0.919)

MAE 2.276 2.067 (0.908)

Table 3.5 shows that the root mean squared error (RMSE) of the partially linear

VECM is about 10% lower than the linear VECM. A similar result is obtained for the

mean absolute error (MAE). Hence, the partially linear VECM clearly improves the

forecasting ability.

3.6 Conclusion

The present chapter extends the literature on the joint dynamics of prices in spot and

futures markets by modelling the price-adjustment process non-parametrically using

the methodology developed in Gaul (2005).

We apply our partially linear error correction model to data for the German blue

chip index DAX and the DAX futures contract traded on the EUREX. We find that

the adjustment process is indeed nonlinear. The linear benchmark case is rejected

at all reasonable levels of significance. Consistent with economic intuition, the speed

of adjustment is almost monotonically increasing in the magnitude of the pricing

error (the deviation between discounted futures price and spot price). This pattern
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is inconsistent with a simple threshold error correction model. It is consistent with a

smooth transition model, and in fact the shape of the adjustment process in our non-

parametric model may guide the choice of the transition function in future empirical

research.
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