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Introduction

According to the common position of the European Council, large installations from the energy in-

dustry and other carbon-intensive industries are part of an EU-wide greenhouse gas (GHG) emissions

trading scheme (EU ETS) that formally has entered into operation in January 2005. So far it is the

world’s largest GHG emissions trading system covering over 10,000 installations in the energy and

industrial sectors that are collectively responsible for about 50% of Europe’s CO2 emissions and 40%

of its total GHG emissions. It is considered as the cornerstone of the European Climate Change Pro-

gramme and is expected to help achieving the EU’s obligations under the United Nations Framework

Convention on Climate Change and the Kyoto Protocol in a cost-effective way. Under the Kyoto Pro-

tocol the EU has committed to reducing GHG emissions by 8% compared to the 1990 level by the

years 2008-2012.

The EU ETS is made up of consecutive trading periods. The first trading period (Phase 1) served

as a pilot phase and covers the years 2005-2007 while the second trading period from 2008-2012

constitutes the Kyoto commitment period (Phase 2). Plans for the post Kyoto trading period 2013-

2020 (Phase 3) became more concrete after the United Nations summit in Bali in December 2007.

Besides, in January 2008 the European Commission has agreed on a so called “Climate and Energy

Package”, which makes first regulatory suggestions and improvements for the continuation of action

against climate change in the EU. In the first two phases only CO2 emissions have been affected and

for Phase 3 the European Commission intends to include the GHG nitrous oxide and perfluorocarbons.

The EU ETS is organized as a cap-and-trade scheme where participating firms have to reduce the

amount of emitted CO2 and annually demonstrate that their level of European Union CO2 allowances

(EUAs) corresponds to their actual emissions. Every year, at the end of February, a certain amount of

EUAs is allocated to the compliant firms for the current trading year according to National Allocation

Plans (NAPs). On April 30 of the following year, firms have to deliver the required EUAs to the na-

tional surveillance authorities according to their actual emissions volume. Not handing in the required

1



2 INTRODUCTION

amount of EUAs is fined with an extra fee of Euro 40 (Euro 100) per missing EUA in the Phase 1

(Phase 2) additional to delivering the missing amount of EUAs. One allowance covers the equivalent

of one ton of CO2 emissions. Companies being able to keep emissions below their allocation level

are free to sell excess allowances in the market. Firms which need additional allowances to comply

with their output levels have the choice to either invest in emissions-reducing technologies, to switch

to less emissions-intensive production technologies or, if marginal abatement costs are higher than

the market price of EUAs, to buy EUAs on the European CO2 market. Within Phase 1 and Phase 2

surplus allowances could be transferred for use during the following year (banking). Banking between

Phase 1 and Phase 2 was forbidden by most of the countries. Only France and Poland allowed for

restricted banking. As allocation always takes place in February, borrowing of EUAs from the future

year is indirectly possible as the compliance date for the preceding year is April 30. However, it was

not possible to borrow EUAs between 2007 and 2008.

Allowance trading has primarily been applied in the US, where it has become a crucial policy

instrument to address air as well as nutrient pollution in water bodies at federal and state level. The

majority of publications about tradable allowances assesses the Acid Rain Program of the US En-

vironmental Protection Agency (EPA), where operators of power plants have been trading sulphur

dioxide (SO2) allowances since 1992.

The theory behind using emissions trading as environmental policy instrument dates back to Mont-

gomery (1972). Using a static model for a perfect market with pollution certificates, he was the first to

show that there exists a minimum cost equilibrium for companies facing a given environmental target.

Rubin (1996) extended his model to a dynamic setting with intertemporal transfer of the assets and

confirmed the existence of a cost efficient solution. However, Kling and Rubin (1997) showed that

in this framework the equilibrium does not coincide with the welfare maximizing first-best solution.

According to Tietenberg (1990) reaching the cost minimal equilibrium requires that the marginal cost

for abating emissions of all companies equals the market price of emission allowances. Thus, from

a theoretical perspective introducing tradable permits is considered as a cost efficient instrument for

reaching environmental targets where the initial allocation of allowances does not matter.

This dissertation sheds light on the price of CO2 emission allowances by using empirical and

experimental analysis as well as theoretical models. In particular, throughout this work I examine

the EUA price pattern that has evolved in Phase 1. For this purpose the first two chapters provide

an empirical analysis of EUA prices, with Chapter 1 studying daily spot prices and Chapter 2 high
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frequency data for futures prices. Finally in the last chapter, I analyze CO2 allowance prices that

evolve under different policy and market behavior scenarios in order to give recommendations for a

viable trading scheme in Phase 3. I present a laboratory experiment that is concerned with the annual

initial allocation process of EUAs to the participating firms where the focus is on using auctioning

as (part of the) allocation mechanism. The hypotheses for the analysis of the experimental data are

derived from a theoretical model that is in line with the experimental setup.

In the next paragraphs, I present the main topics addressed in my thesis in more detail.

The aim of the first chapter1 is to provide an in-sample analysis of the short-term spot price behav-

ior of EUAs focusing on the price dynamics and changes in the volatility of the underlying stochastic

price process. As CO2 allowances display similarities to operational materials or commodities, I adopt

commodity pricing models such as Markov switching and AR-GARCH models for stochastic model-

ing. Additionally, in this chapter I concentrate on the out-of-sample performance of the models with

respect to forecasting. In particular, I evaluate price, volatility and density forecasts for the different

approaches. Both analyses are of interest to risk managers and traders who constantly have to hedge

their positions against unexpected carbon price fluctuations. I show that the best in-sample fit to the

data is provided by a regime-switching model with an autoregressive process in the base regime and

a normal distribution for the spike regime. The results for the GARCH and normal mixture regime-

switching model are slightly worse. The comparison of one-day-ahead point and density forecasts of

the different pricing models yields that for the one-day ahead density forecasts, the AR-GARCH and

regime-switching model clearly outperform the models with constant variance.

Chapter 22 uses the end of Phase 1 in December 2007 to give a comprehensive overview of the

European carbon market development. Having access to intraday transactions data, I additionally

investigate this recent market from a microstructure angle. Since almost all trading takes place in

the futures markets, I focus on EUA futures price data supplied by ECX and Nord Pool, the two

most liquid European trading exchanges for EUA futures. I compare two microstructure issues that

are of high relevance to potential traders: liquidity and price discovery. With respect to liquidity, I

study overall trading volumes as well as the development of trading frequencies across exchanges

and estimate traded bid-ask spreads. To analyze relative price discovery on both exchanges I use a

vector error correction framework that builds on the cointegration relationship between transaction

price series. To quantify the two markets’ relative contributions to the price discovery process I apply

1This chapter is based on the paper by Benz and Trück (2008).
2This chapter is based on the paper by Benz and Klar (2008).



4 INTRODUCTION

two different measures. The results reveal that estimated transaction spreads markedly decrease on

both exchanges over time and were lower on ECX – the more liquid market – than on Nord Pool.

With respect to price discovery, I demonstrate that for the first EUA futures contracts, which expired

in December 2005 and 2006, both exchanges contribute to price discovery. However, for the most

recent futures contracts, ECX becomes the price leader, especially in phases of high market liquidity

but Nord Pool’s contribution is still present from time to time.

In the last chapter3 I motivate the importance of a properly chosen initial allocation rule for a

successful implementation of a CO2 ETS with the focus of introducing auctions. I consider a rule to

be successful if it is able to (a) generate early and reliable price signals, (b) allocate the allowances to

firms which need them most, and (c) to promote straightforward bidding, that is, firms’ participation

is as easy as possible and firms only have to take care of their own abatement costs. The objective

of the paper is on the one hand to investigate the bidding behavior of firms when buying and selling

EUAs in the auction and trading process. On the other hand, based on the behavioral results, the

paper searches for an initial allocation rule that meets best the three above mentioned criteria. In this

chapter, I compare several relevant allocation rules in a theoretical and experimental environment.

Both environments display four policy relevant initial allocation rules in combination with emissions

trading to give recommendations for a viable initial allocation mechanism for Phase 3 and beyond.

This work is in reference to the recent proposal for a new Directive by the European Commission

for Phase 3, that requires auctioning all allowances to the energy sector and to start with an initial

auctioning share of 20% in 2013 which will increase to 100% by 2020 for the industry sector. I am

able to show that the initial allocation rule that is most likely to be considered by the EU countries

for Phase 3 and other international ET schemes (i.e. gratis allocation in combination with a one-sided

uniform auction) does not meet the proposed functions. Instead I show that, depending on the amount

of auctioned allowances, an exclusive uniform auction – in case of exclusive auctioning – or a uniform

double auction – in case of partial auctioning – might be attractive candidates for Phase 3.

The next three chapters each present one idea as a self-contained unit.

3This chapter is based on the paper by Benz and Ehrhart (2008).



Chapter 1

Modeling the Price Dynamics of CO2

Emission Allowances

In this chapter we analyze the short-term spot price behavior of carbon dioxide (CO2) emis-
sion allowances of the new EU-wide CO2 emissions trading system (EU ETS). After reviewing the
stylized facts of this new class of assets we investigate several approaches for modeling the returns
of emission allowances. Due to different phases of price and volatility behavior in the returns, we
suggest the use of Markov switching and AR-GARCH models for stochastic modeling. We examine
the approaches by conducting an in-sample and out-of-sample forecasting analysis and by compar-
ing the results to alternative approaches. Our findings strongly support the adequacy of the models
capturing characteristics like skewness, excess kurtosis and in particular different phases of volatility
behavior in the returns.

1.1 Introduction

By forcing the participating companies to hold an adequate stock of allowances that corresponds to

their CO2 output, the carbon market provides new business development opportunities for market

intermediaries and service providers. Risk management consultants, brokers and traders buy and

sell emission allowances and their derivatives. Especially for these groups, the price behavior and

dynamics of this new asset class - CO2 emission allowances - is of major importance. According to the

IETA (2005) and PointCarbon (2005) previous carbon trading activities have been mostly conducted

by OTC activities and brokers.

Since allowance trading has primarily been applied in the US, the majority of publications about

price behavior of tradable emission allowances assesses the market for SO2 emissions under the Acid

Rain Program of the US Environmental Protection Agency (EPA). By using industrial organization

models they account for changes in parameters of technology (Rezek, 1999) and electricity demand

(Schennach, 2000) and their impact on the optimal equilibrium price path for SO2 permits. There is

5
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also a number of empirical investigations on ex-post market price analysis, among them Ellerman and

Montero (1998), Burtraw (1996) and Carlson, Burtraw, Cropper and Palmer (2000). For CO2 market

price simulation studies with respect to changes in market design parameters see e.g. Burtraw and

Paul (2002), Böhringer and Lange (2005), Kosobud, Stokes, Tallarico and Scott (2005) or Schleich,

Ehrhart, Hoppe and Seifert (2006). Kosobud et al. (2005) analyze monthly returns of SO2 allowances

with respect to other financial assets and find no statistically significant correlation between spot prices

in the US and returns from various financial investments.

However, literature examining the CO2 allowance prices from an econometric or risk management

angle is rather sparse. Exceptions include Daskalakis, Psychoyios and Markellos (2006); Paolella

and Taschini (2006); Seifert, Uhrig-Homburg and Wagner (2008) and Uhrig-Homburg and Wagner

(2006). While Uhrig-Homburg and Wagner (2006) investigate the success chances and optimal de-

sign of derivatives on emission allowances, Seifert et al. (2008) develop a stochastic equilibrium

model reflecting in a stylized way the most important features of the EU ETS and analyze the re-

sulting CO2 spot price dynamics. Their main findings are that an adequate CO2 process does not

necessarily have to follow any seasonal patterns. It should possess the martingale property and exhibit

a time- and price-dependent volatility structure. Paolella and Taschini (2006) provide an econometric

analysis addressing the unconditional tail behavior and the heteroskedastic dynamics in the returns

on CO2 and SO2 allowances. They find that models based on the analysis of fundamentals or on the

future-spot parity of CO2 yield implausible results due to the complexity of the market and advocate

the use of a new GARCH-type structure. Finally, examining emission allowance prices and deriva-

tives, Daskalakis et al. (2006) find some evidence that market participants adopt standard no-arbitrage

pricing.

We differ from the analysis of the mentioned papers by also concentrating on the out-of-sample

performance of the models with respect to forecasting. In particular, we evaluate price, volatility

and density forecasts for the different approaches what can be considered as a substantial issue in

managing price risk. With an increasing range of new instruments (e.g. spot, forwards, futures, etc.)

the carbon market is steadily gaining in complexity. Risk managers and traders constantly have to

hedge their positions against irregular and unexpected carbon price fluctuation. Hence, they are not

only interested in the long-term perspective of emission allowance prices but also in short-term price

dynamics of the assets. Having a reliable pricing and forecast model will allow companies, investors

and traders to realize efficient trading strategies, risk management and investment decisions in the
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carbon market.

The aim of this chapter is to provide an analysis of the short-term spot price behavior of CO2

emission allowances focusing on the price dynamics and changes in the volatility of the underlying

stochastic price process. Since CO2 emission allowances are a new trading good in the European

commodity market, there is not much historical data available. By studying the new market mech-

anism and analyzing first empirical data we consider the appropriateness of several stochastic price

processes. The suggested econometric models can be used in particular for short-term forecasting and

Value-at-Risk (VaR) calculation. Thus, they could be especially helpful for risk managers or traders in

the market, but might also enable companies to monitor the costs of CO2 emissions in their production

process.

The remainder of the chapter is organized as follows. Section 1.2 provides a brief introduction into

the new market mechanism for CO2 emission allowances and a classification of this new commod-

ity. Section 1.3 presents stochastic approaches for modeling the price dynamics of CO2 allowances,

namely regime-switching and AR-GARCH models. Section 1.4 provides results from the empiri-

cal analysis of CO2 allowance prices and returns. In an in-sample and out-of-sample analysis we

benchmark the models against other approaches, including autoregressive processes and a simple

i.i.d. Gaussian model. Section 1.5 concludes and gives suggestions for future work.

1.2 Market Mechanism and Instruments

1.2.1 The EU ETS and Classification of Emission Allowances

Generally, a company’s stock of emission allowances determines the degree of allowed plant utiliza-

tion. Thus, a lack of allowances requires from the company either some plant-specific or process

improvements, a cut- or shutdown of the emission producing plant or the purchase of additional al-

lowances and emission credits. With the latter two alternatives CO2 becomes a new member of the

European commodity trading market. There is, however, a fundamental difference between trading in

CO2 and more traditional commodities. What is actually sold is a lack or absence of the gas in ques-

tion. Sellers are expected to produce fewer emissions than they are allowed to, so they may sell the

unused allowances to someone who emits more than her allocated amount. Therefore, the emissions

become either an asset or a liability for the obligation to deliver allowances to cover those emissions

(PointCarbon, 2004).
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Benz and Trück (2006) point out the differences between emission allowances and classical stocks.

While the demand and the value of a stock is based on profit expectations of the underlying firm, the

CO2 allowance price is determined directly by the expected market scarcity induced by the current

demand and supply at the carbon market. Notably, firms by themselves are able to control market

scarcity and hence the market price by their CO2 abatement decisions. It is important to note that the

annual quantity of allocated emission allowances is limited and already specified by the EU-Directive

for all trading periods. Additionally, in case of an intertemporal ban in banking of CO2 emission

allowances, the certificates have a limited duration of validity. The value of an individual allowance

expires after each commitment period. Allowing for an intertemporal transfer, the allowances only

lose their value once used for covering CO2 emissions.

A more appropriate approach in specifying CO2 emission allowances is their consideration as a

factor of production (Fichtner, 2005). The shortage of emission allowances by reducing the emissions

cap for the commitment periods classifies the assets as ‘normal’ factors of production. They can be

‘exhausted’ for the production of CO2 and after their redemption or at the end of the commitment

period when they expire, they are removed from the market. Additionally, if there is an intertemporal

ban on banking between the commitment periods– as it was the case from the pilot phase to the CP I

– all allowances become worthless at the end of the periods and thus are non-storable. On the other

side, if banking is allowed the validity of allowances is renewed for the upcoming commitment period.

Accordingly, it seems more adequate to compare the right to emit CO2 with other operating materials

or commodities than with a traditional equity share and hence to adopt rather commodity than stock

pricing models (see Section 1.3).

1.2.2 Price Determinants of CO2 Emission Allowances

Having gained knowledge about the particularities of the new assets, it is essential for carbon market

players to learn about their price dynamics in order to realize trading strategies, risk strategies and

investment decisions. In this section, we identify the key price determinants of the CO2 emission

allowances, which an appropriate commodity pricing model should be able to display. According to

the investigation of SO2 permit prices by Burtraw (1996), we categorize the principle driving factors

of CO2 allowance prices into (i) policy and regulatory issues and (ii) market fundamentals that directly

concern the production of CO2 and thus demand and supply of CO2 allowances.

Monitoring price sources from part (i), it is reasonable to assume that they have a long-term impact
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on prices. However, for our model we are only interested in those policy issues, which additionally

have a rather low probability for an exact forecast. Changes in policy directives or regulations may

have substantial consequences on actual demand and supply and thus on short-term price behavior of

emission allowances. This is comparable with the effect that some good or bad news published on

an individual company may have on its share price. In the carbon market these could be decisions

and announcements concerning the National Allocation Plans (NAPs) that set the rules and reduction

targets (e.g. NAP revisions or cut of national emission caps). Hence, the consequences of changes in

such regulatory or policy issues may be sudden price jumps, spikes or phases of extreme volatility in

allowance prices.

Note that aspects concerning the regulatory framework like explicit trading rules (e.g. intertempo-

ral trading), the linkage of the EU ETS with the market of project-based mechanisms and/or with the

Kyoto Market in the future have an important impact on prices, too. However, they are the result of a

long discussion process whose consequences have to be studied extensively in advance, see e.g. Anger

(2008); Schleich et al. (2006) and Seifert et al. (2008). Hence, market participants might be able to

hedge themselves against these foreseen ‘price risks’ in the long term. They are not incorporated in

our econometric models focusing on short-term price behavior.

Incorporating part (ii), allowance prices may also show phases of specific price behavior due to

fluctuations in production levels. In general, CO2 production depends on a number of factors, such

as weather data (temperature, rain fall and wind speed), fuel prices and economic growth. Especially

unexpected (environmental) events1 and changes in fuel spreads will shock the demand and supply

side of CO2 allowances and consequently market prices. Cold weather increases energy consumption

and hence CO2 emissions through power and heat generation; rainfall and wind speed affect the share

of non-CO2 power generating sources and thus emission levels. A short term measure for the power

and heat sector to invest in CO2 abatement projects are the relative costs of coal and cleaner fossil

fuels such as oil and natural gas. Europe’s cheapest path is to switch from coal-fired to gas-fired power

generations, which need less than half of the allowances required by their coal-fired counterparts to

produce the same amount of electricity.2 Therefore, this source of price uncertainty may have a rather

short or medium-term impact on market liquidity of the allowances that possibly increases volatility

of the allowance prices.

1E.g. power plant breakdowns (nuclear-, coal-fired- or hydroelectric power plants) where more emission intensive power
stations have to be set up or unexpected environmental disasters (forest fire, earthquakes, etc.) shock the demand and supply
side of CO2 allowances.

2Depending on the capacity, the turning-on of gas turbines only takes several minutes (BMWT, 2006).
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Overall, we assume that allowance prices and returns will exhibit different periods of price be-

havior including price jumps or spikes as well as phases of high volatility and heteroscedasticity in

returns. It is the challenge of an appropriate stochastic model to capture such a price pattern.

1.3 Modeling the Price Dynamics of CO2 Emission Allowances

In this section we incorporate the aforementioned characteristics of CO2 allowances and their price

determinants, in particular the different phases of volatility behavior and the dependence of the vari-

ability of the time series on its own past in an adequate stochastic model. Hence, we suggest models

allowing for heteroscedasticity like ARCH, GARCH or regime-switching models. While the for-

mer two suggest a unique stochastic process but conditional variance, the latter divides the observed

stochastic behavior of a time series into several separate phases with different underlying stochastic

processes.

1.3.1 GARCH Models

While the traditional linear ARMA-type models assume homoscedasticity, i.e. a constant variance and

covariance function, the autoregressive conditional heteroskedastic (ARCH(p)) time series model of

Engle (1982) was the first formal model which successfully addressed the problem of heteroskedastic-

ity. In this model the conditional variance of the time series (yt)t≥0 is represented by an autoregressive

process (AR), namely a weighted sum of squared preceding observations:

yt = εtσt, with σ2
t = a0 +

q∑
i=1

aiy
2
t−i, (1.1)

where εt are i.i.d. with zero mean and finite variance (typically it is assumed that εt
iid∼ N(0,1)).

In practical applications to financial time series data it turns out that the order q of the calibrated

model is rather large (Pagan, 1996). However, if we let the conditional variance depend not only

on the past values of the time series but also on a moving average of past conditional variances the

resulting model allows for a more parsimonious representation of the data. This model, the generalized

autoregressive conditional heteroskedastic model (GARCH(p, q)) put forward by Bollerslev (1986)
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and Taylor (1986) is defined as

yt = εtσt, with σ2
t = α0 +

q∑
i=1

αiy
2
t−i +

p∑
j=1

βjσ
2
t−j , (1.2)

where εt are as before. The coefficients have to satisfy
∑
αi +

∑
βj < 1 and αi, βj ≥ 0, α0 > 0 to

ensure stationarity and a conditional variance that is strictly positive. Identification and estimation of

GARCH models is performed by maximum likelihood estimation, e.g. documented by Brooks, Burke

and G. (2001).

Obviously, the GARCH model is especially designed to model the conditional volatility of a time

series. However, the variance equation can be coupled for example with an AR(r) process for the

mean of the time series

yt = c+
r∑

k=1

φkyt−1 + εt, (1.3)

where φk < 1 and c denote real constants. Then the model provides a promising approach to model

both the mean and the variance of the considered time series – the AR-GARCH model. The literature

on GARCH or AR-GARCH models for analyzing financial time series is extensive. Applications to

models for commodities include Garcia, Contreras, van Akkeren and Garcia (2005); Morana (2001);

Mugele, Rachev and Trück (2005); Ramirez and Fadiga (2003).

1.3.2 Regime-Switching Models

The second class of pricing models that we suggest are the so-called regime-switching models. Hereby,

we follow the idea of Goldfeld and Quandt (1973); Hamilton (1989, 1990) who introduced regime-

switching models and successfully suggested their use for financial time series. There are also a

number of recent publications where the models are used to describe asset returns in financial mar-

kets (Kanas, 2003; Kim and Nelson, 1999; Kim, Piger and Startz, 2004; Schaller and van Norden,

1997). In the last decade the models also became especially popular for modeling electricity spot

prices (Bierbrauer, Trück and Weron, 2004; Ethier and Mount, 1998; Huisman and Mahieu, 2001;

Weron, Bierbrauer and Trück, 2004; Haldrup and Nielsen, 2004). Due to their promising features of

modeling different regimes of price and volatility behavior we suggest the approach also for modeling

CO2 emission allowances’ logreturns.
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In general, regime-switching models divide the time series into several phases that are called

regimes. For each regime one can define separate and independent underlying price processes. The

literature distinguishes between two main classes of regime-switching models (Franses and van Dijk,

2000). In the first one, the regime can be determined by an observable variable. Consequently, the

regimes that have occurred in the past and present are known with certainty. In the second class the

regime is determined by an unobservable, latent variable. In this case we can never be certain that a

particular regime has occurred at a particular point in time, but we can only assign or estimate prob-

abilities of their occurrences. In the following we will suggest to use the second class of models that

is often referred to as Markov regime-switching models. We argue that it is rather questionable to

assume that the regime-switching mechanism is simply governed by a fundamental variable or the

price process itself. As described in Section 1.2.2, spot prices or returns of CO2 emission allowances

are the outcome of a vast number of variables including fundamentals (like weather or macroeco-

nomic variables) but also the unquantifiable regulatory, policy and sociological factors that can cause

an unexpected and irrational buyout or lead to price jumps and periods of extreme volatility.

Hence we assume that the switching mechanism between the states is governed by an unobserved

random variableRt. For example, a model with two regimes follows a Markov chain with two possible

states, Rt = {1, 2}. Hereby, the spot price or return may be assumed to display either low or very

high volatility at each point in time t, depending on the regime Rt = 1 or Rt = 2. Consequently,

we have a probability law that governs the transition from one state to another, while the processes

yt,Rt for each of the two regimes are supposed to be independent from each other. Further, a transition

matrix Q contains the probabilities qij of switching from regime i at time t to regime j at time t+ 1,

for i, j = {1, 2}:

Q = (qij) =

 q11 q12

q21 q22

 =

 q11 1− q11

1− q22 q22

 . (1.4)

Due to a property of Markov chains the current state Rt only depends on the past through the most

recent value Rt−1:

P{Rt = j|Rt−1 = i, Rt−2 = k, . . .} = P{Rt = j|Rt−1 = i} = pij (1.5)

Consequently the probability of being in state j at time t+m starting from state i at time t is given

by

(P (Rt+m = j | Rt = i))i,j=1,2 = (Q′)m · ei, (1.6)
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where Q′ denotes the transpose of Q and ei denotes the ith column of the 2× 2 identity matrix. The

variation of regime-switching modelsis due to both the possibility of choosing the number of regimes

and different stochastic processes assigned to each regime. In the literature, often a mean-reverting

process with Gaussian innovations is used for the various regimes (Bierbrauer et al., 2004; Huis-

man and Mahieu, 2001) while other model specifications are possible and straightforward. Hamilton

(1989) for example suggests an autoregressive process of higher order for both regimes, while for

return modeling a white noise process for either regime may be adequate (Kim and Nelson, 1999;

Schaller and van Norden, 1997).

Given the stated assumptions about the price behavior of CO2 emission allowances, applying

regime-switching modelsmay be a promising approach. It reflects the concept of having a system-

atic change between stable and unstable states which results from fluctuations in demand and supply

on markets as assumed for the CO2 allowance market in the previous section. Furthermore, the model

allows for several consecutive price jumps or extreme returns that are important when talking about

risk management and pricing of derivative instruments.

Unfortunately, parameter estimation of the two underlying processes is not straightforward since

the regime is latent and hence not directly observable. Hamilton (1990) introduced an application of

the EM algorithm by Dempster, Laird and Rubin (1977) for the estimation procedure. The regime Rt

is modeled as the outcome of an unobserved two-state Markov chain with Rt = {1, 2}. Additionally,

the estimation process needs a stochastic process for each regime yt,Rt , Rt = {1, 2}, t = 1, . . . , T

and a transition matrix Q. The EM algorithm uses an iterative procedure to collect and estimate the

parameter set θ based on an initial parameter estimate θ̂(0). Then each iteration of the EM algorithm

generates new estimates θ̂(n+1) of the unknown parameter set based on the previously calculated

vector set θ̂(n). The algorithm stops as soon as the change in the loglikelihood function (LLF) is small

enough, i.e. when the process has converged. Hamilton (1990) shows, that each iteration cycle of the

sample increases the LLF and the limit of this sequence of estimates reaches a (local) maximum of

the LLF. For a detailed technical specification refer to Dempster et al. (1977) and Hamilton (1994).
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Figure 1.1: Daily EUA Prices from August 27, 2003 - December 29, 2006
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1.4 Empirical Results

1.4.1 The Data

In this section we investigate the appropriateness of the suggested time series models for logreturns

of daily EU CO2 allowance (EUA) prices. The considered time period is from January 3, 2005 -

December 29, 2006. Hereby, the data from period January 3, 2005 - December 30, 2005 is used

for the calibration of the models, while the period January 3, 2006 - December 29, 2006 is used for

out-of-sample testing.

Figure 1.1 shows a plot of daily EUA prices for the period August 27, 2003 - December 29, 2006.

The data are provided by Spectron one of the major brokers in the energy trading industry and stems

from OTC transactions (Spectron, 2006).

The operational trade with EUAs already began in 2003, before the official agreement on the EU

ETS. In the “pre-2005” period, the traded volume was quite low, at some days even zero as the highest

bidder price was smaller than the lowest seller price. The market price then was just determined by

the mean of the two figures. Bid-ask spreads were quite large, often exceeding 4 Euro, indicating that

prices could not be considered as stemming from real trading activities. One should note, that prices

before 2005 are forward prices on a not yet traded underlying. Hence they have to be considered with
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care when they are compared to spot prices starting 2005. Ulreich (2005) points out that the pre-2005

period was more useful for setting up the infrastructure for the official start of the EU ETS in 2005

than getting important market price signals.

Having a closer look at the run of the curve in Figure 1.1, our model for EUAs’ key price drivers

from Section 1.2.2 can be verified.3 Before the EU-parliament agreed on the introduction of the EU

ETS in July 2003 and before the first suggestions for National Allocation Plans (NAPs) were published

at the end of 2003, prices were quite stable.4 Both announcements led to an increase in prices. Because

of the initially generous allocation of allowances to the countries prices calmed down again between

February and March 2004. Reviewing and accepting the NAPs in the second half of the year, prices

increased and settled down around 9 Euro. As the main framework of the trading scheme has been

defined, the price determinants became more fundamental after January 2005 (Ulreich, 2005).

The market began to respond increasingly to changes in the underlying energy markets and the

weather. We find that prices initially fell due to a quite mild climate and high supply of wind energy

from Scandinavia and North Germany. At the end of January an extreme cold snap and constant high

UK gas and oil prices, compared to relatively low coal prices, led to a drastically price increase (Point-

Carbon, 2005). This effect was boosted by an extremely dry summer in July 2005 in the southwest

of Europe. The absence of necessary rainfall prevented full utilization of hydraulic plants, especially

in Spain. Additionally, the lack of cooling water for nuclear plants led to higher emission-intensive

power plant utilization and therefore increased the demand for CO2 permits. By mid of July 2005

prices peaked at 29.15 Euro. Since then, during the last four months of 2005 prices fell and stabilized

around 22 Euro. However, in the beginning of 2006, a renewed increase in the price level could be

observed to approximately 27 Euros by the end of March. Reasons for that, once again, may be the

extremely long and cold winter in 2005/2006.

May 2006 saw the completion of the first full compliance cycle of the EU ETS with the publica-

tion of the 2005 verified emissions data. But already in April 2006, it became clear that corporate

participants had been granted around 10% more allowances than they actual needed to cover their

2005 emissions. Consequently, surplus EUAs flooded the market, prices crashed 60% within one

week, from a high of around 30 Euros per ton of CO2 to 11 Euros. Traders began to express the fear

that the emissions price would drop to zero. With so many allowances being given out, even factors

3Price data have not been available for July 2003. Consequently, the price path in Figure 1.1 starts in August 2003.
4For each commitment period, the member state have to develop a NAP that sets the reduction targets for the covered

sectors and how it is divided among the covered installations.
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Figure 1.2: Daily EUA logreturns from January 3, 2005 - December 29, 2006

The figure displays daily EUA logreturns for both calibration and test period from January 3, 2005 - December 29, 2006.
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such as the fluctuations in the use of fossil fuel associated with yearly variations in weather are now

playing havoc with demand, putting prices in doubt. Then, prices stayed volatile, especially since no

European government wanted to be the first to reduce radically the number of allowances granted to

the industry. In June and July 2006 the EUA market recovered as industrial companies started selling

EUAs to utilities and financial players and the hot, dry July in Europe led to higher demand for elec-

tricity even as hydro resources were low and nuclear resources were off-line pushing the spot price

of EUAs higher to around 16 Euros. In September, EUA spot prices declined sharply following the

collapse of spot prices of natural gas in Europe. Over the next months, the EU Commission began to

review the proposed allocation plans by Member States for Phase 2 of the EU ETS (NAPs II).

Overall, we can conclude that spot price behavior in the CO2 emission allowance market confirm

our motivation for looking at a price model that deals with volatile price processes induced by short-

term factors like the spread between fuel prices, precipitation, summer and winter temperature and

the setup of a trading environment.
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1.4.2 Analyzing Logreturns of CO2 Allowances

Figure 1.2 shows a plot of the EUA logreturns yt = log(St) − log(St−1) for the whole considered

period while a summary statistics for the EUA prices St and logreturns yt in the calibration and

forecasting period is presented in Table 1.1.

Table 1.1: Summary statistics for the EUA logreturns

The table reports the summary statistics for the EUA logreturns yt for the in-sample period January 3, 2005 - December 30,
2005 and out-of-sample period January 3, 2006 - December 29, 2006.

Series N Mean Median Min Max Std Dev Skew Kurt

In-Sample 256 0.0037 0.0046 -0.1528 0.1298 0.0319 -0.83 8.57
Out-of-Sample 253 -0.0047 -0.0017 -0.3551 0.6267 0.0653 2.06 43.13

Obviously, the data show heteroskedasticity and volatility clustering. In 2005, the calibration pe-

riod, in March as well as during the very dry summer in July the logreturns exhibit a clearly increased

volatility. As a consequence, both maximum positive and negative logreturns could be observed dur-

ing this period. The former was 0.1298 Euro on July 4, 2005 while the latter could be observed on July

14, 2005 and was −0.1528 Euro. For the logreturns we get a skewness parameter of s = −0.83 and a

kurtosis of k = 8.57 in the calibration period and s = 2.06 and k = 43.13 in the out-of-sample period.

We conclude that in both periods the logreturns exhibit skewness and excess kurtosis. However, logre-

turns are left-skewed during the calibration period and right-skewed during the out-of-sample period.

Figure 1.3 provides the empirical distribution of the logreturns for the whole period from January 3,

2005 - December 29, 3006, including a fit of the normal distribution to the data. Due to asymmetry,

excess kurtosis and heavy tails, the normal distribution doesn’t fit the data very well. Hence, alter-

native models allowing for changes in the volatility structure, asymmetry and excess kurtosis should

provide a better fit to the time series.

1.4.3 Time series Models

After examining daily logreturns of EUA, in a second step we investigate the adequacy of the sug-

gested AR-GARCH and regime-switching models for the time series. To benchmark our estimation

results, we also compare them to the results of a simple normal distribution for the logreturns as well

as to an AR(r). For the AR-GARCH models, we have to specify both the mean and variance equa-



18

Figure 1.3: Empirical distribution and Gaussian fit to EUA logreturns

The figure displays the empirical distribution obtained by kernel estimator (solid) and Gaussian (dashed) fit to daily EUA
logreturns from January 3, 2005 - December 29, 2006.
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tion. For the mean equation we chose the same AR(r) process as in Equation (1.3). However, taking

non-constant variance in the residuals into account, the noise terms are not just i.i.d. (0,σ2) but are

given by a GARCH(p, q) process. All models are estimated by using maximum likelihood estimation.

For analyzing returns of financial time series with regime-switching models, Kim and Nelson

(1999) suggest a white noise processes for both regimes, while Schaller and van Norden (1997) in-

vestigate whether stock market logreturns are drawn from Gaussian distributions with the same or

different means and variances. The structure and parameter estimation of such models have been de-

scribed in the previous section. Hence, the remaining task consists of specifying the two stochastic

processes yt,1 and yt,2. Following the literature we suggest either a white-noise process with different

mean and variance for both regimes, Rt = {1, 2} (Kim and Nelson, 1999; Schaller and van Norden,

1997) or a mean-reverting process for the ‘base regime’ (Rt = 1) (Ethier and Mount, 1998; Bierbrauer

et al., 2004) while the ‘spike regime’ (Rt = 2) is modeled by independent and identically distributed

realizations of a Gaussian distribution (Huisman and Mahieu, 2001). In summary, we are considering

the following stochastic processes for the regimes:
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For the base regime we either use

yt,1
iid∼ N(µ1, σ

2
1), t ∈ N (1.7)

in the model labeled ‘Gaussian’ or

yt,1 = φyt−1,1 + c+ εt, t ∈ N (1.8)

in the model labeled ‘Mean Reversion’ (MR), while for the spike regime we suggest

yt,2
iid∼ N(µ2, σ

2
2), t ∈ N. (1.9)

for both model specifications. The innovations εt in Equation (1.8) are assumed to be i.i.d. centered

normal (εt
iid∼ N(0, σ2)), φ < 1, c denote real constants and N displays the normal distribution with

parameters µi and σ2
i , i = {1, 2}. Process (1.8) is the discrete version of a standard Vasiček model.

We choose to specify the stochastic processes in discrete time, simplifying the estimation procedure

which is based on a discrete-time sample.

1.4.4 In-Sample Results

In the following we discuss the estimation and in-sample results for the suggested models. We first

consider the results from fitting a Gaussian distribution and an AR(r) process to the logreturns. For

the simplest model – fitting a normal distribution to the data – we obtain the parameters µ = 0.0037

and σ = 0.0319. As indicated by Schwartz (1997), many commodity prices are in general regarded

to be mean reverting. In discretized form, a mean-reverting process is then equivalent to a Gaussian

AR(1) process:

rt = c+ φrt−1 + εt, (1.10)

where φ < 1 and c denote real constants and the innovations εt are assumed to be i.i.d. normal

centered (εt
iid∼ N(0, σ2)). The parameter estimates for the AR(1) process are c = 0.0033, φ = 0.2122

and σε = 0.0313. Note that also AR processes of higher order were tested, but according to the

Schwarz Bayesian Criterion the AR(1) specification was considered as optimal. Obviously, both

model specifications provide almost the same estimate for the variance. Further, the added explanatory

power by the AR(1) process is rather limited what is also indicated by the only slightly increasing LLF
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Figure 1.4: innovations, conditional standard deviations and logreturns of AR(1)-GARCH(1,1)

The figure displays innovations, conditional standard deviations and logreturns of the estimated AR(1)-GARCH(1,1) model
for the in-sample period January 3, 2005 - December 30, 2005.
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in Table 1.4.

The residuals obtained by the fitted AR(1) process seemed to exhibit non-constant variance. Test-

ing with the Lagrange multiplier ARCH test statistics (Engle, 1982) the heteroskedastic effects are

highly significant. To capture this behavior also a GARCH(p, q) model was calibrated to the data.

Hereby, for the mean equation we chose an AR(1) process, while for the variance equation we test

different GARCH specifications. It turns out that parameter estimates for higher orders of p or q are

not significant. Thus, we obtain the simple setup of an AR(1)-GARCH(1,1) model and the following

variance equation:

εt = utσt, with σ2
t = k + αε2t−1 + βσ2

t−1, (1.11)

where ut is i.i.d. with zero mean and finite variance and k, α, β are real constants.

Note that to simplify the notation, in the following we will refer to the AR-GARCH model as

GARCH model. Estimation results of the GARCH model are provided in Table 1.2, all estimated
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coefficients of the model are significant. Figure 1.4 displays graphs of the innovation, conditional

standard deviation and the logreturn time series for the estimated model. As expected, during times of

extreme positive or negative returns, the estimated conditional variance increases substantially. While

the estimates of the conditional standard deviation are clearly below 0.05 during rather quiet periods,

they increase up to 0.1 during volatile periods like in March/April or July/August 2005. Obviously,

the GARCH model describes the data better than a simple normal distribution or an AR process and

seems more appropriate for the price dynamics of EUA logreturns.

Table 1.2: Parameter estimates of the AR(1)-GARCH(1,1) model

This table reports the parameter estimates of the AR(1)-GARCH(1,1) model for the in-sample period January 3, 2005 -
December 30, 2005.

Coefficient Std. Error t-Statistic
Mean Equation

c 0.00243 0.00129 1.881
φ 0.29713 0.06652 4.467

Variance Equation
k 3.7309e-005 1.0445e-005 3.5720
α 0.53253 0.036733 14.4973
β 0.36747 0.055515 6.6193

Finally, we estimate the two different regime-switching specifications for the in-sample period.

Parameter estimates are displayed in Table 1.3. We first compare the estimated standard deviation of

the ‘Gaussian’ model – a mixture of two normal distributions – to the simple model of a single normal

distribution for the logreturns. We find that the standard deviation of the ‘naive’ fit lies between

the two estimated standard deviations σ1 = 0.0122 for the base regime and σ2 = 0.0476 for the

spike regime. The same is true for µ being higher than the expected logreturn in the base regime

µ1 = 0.0029 but clearly lower than µ2 = 0.0050 in the spike regime. In terms of the variance of the

regimes, very similar results are obtained also for the model ‘MR’. However, here the expected value

with µ1 = 0.0040 for the base regime and µ2 = 0.0042 for the spike regime do not differ that much.

Overall, both regime-switching models seem to distinguish between two phases of logreturns: one

phase with clearly higher variance for the volatile periods, and one for the less volatile period yielding

a lower mean and variance in the returns.

Moreover, the estimated volatility in the two regimes is of special interest, since in the empirical
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Table 1.3: Estimation results with the two-state regime-switching model

Panel (a): Estimation results for logreturns with the two-state regime-switching model with a simple normal distribution in
both regimes (model ‘Gaussian’).
Panel (b): Estimation results for logreturns with a two-state regime-switching model with a mean-reversion process in the
base regime and a Gaussian distribution in the spike regime (model ‘MR’).

Panel (a): Model ‘Gaussian’

Parameter Estimates Statistics
Regime µi σi pii P (Rt = i) E(yt,i)

base (i = 1) 0.0029 0.0122 0.8768 0.5814 0.0029
spike (i = 2) 0.0050 0.0476 0.8289 0.4186 0.0050

Panel (b): Model ‘MR’

Parameter Estimates Statistics
Regime φ c µi σi pii P (Rt = i) E(yt,i)

base (i = 1) 0.2661 0.0029 - 0.0137 0.8834 0.6598 0.0040
spike (i = 2) - - 0.0042 0.0513 0.7738 0.3402 0.0042

data we observe periods of very low volatility being followed by phases of much higher volatility.

In both specifications the estimates for σ2 are approximately four times higher than σ1. This results

in a variance about 16 times higher for the spike regime than for the base regime. In both models

the probability of being in the base regime is higher, approximately 58% for the model ‘Gaussian’

and 66% for the model ‘MR’, while the spike regime has the probability of approximately 42% and

34%. Consequently, the probability for remaining in the same regime pii is higher for the base regime:

we have approximately p11 = 88% for both model specifications. This indicates that a change in the

regimes does not occur frequently. We conclude, that for the considered data the estimated parameters

are meaningful and can be interpreted in terms of an adequate distinction between the different phases

of volatility behavior. Furthermore, we find that both regime-switching specifications lead to similar

results.

Another decisive question is whether the models are able to significantly distinguish between the

regimes in terms of the assigned probabilities to either one of the two regimes. Therefore, Figure 1.5

provides a graphs that shows the original logreturn series and the corresponding estimated probability

of being in the spike regime for the model ‘Gaussian’. Note, as the results for the model ‘MR’ are
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Figure 1.5: Logreturns of EUA prices and probability of being in the spike regime

The figure displays logreturns of EUA prices from January 3, 2005 to December 30, 2005 together with the probability of
being in the spike regime
Top panel: Logreturns of EUA prices from January 3, 2005 to December 30, 2005.
Bottom panel: Probability of being in the spike regime for the defined two-regimes ‘Gaussian’ model for the same period.
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quite similar we forbear from showing these graphs. Obviously, in times of extreme volatility behavior

of the logreturns we observe analogously a clear distinction between the two regimes. Most notably,

for the periods March/April as well for June to August and November/December the model assigns

many observations to the spike regime. This behavior can be explained very well by means of the two

principle driving factors introduced in Section 1.2.2. First, at beginning of March the cold weather

forced Spanish and French firms to enter the market and thus increased the demand side. Additionally,

the sudden increase in spot prices of UK natural gas and oil in March and again at the beginning of

April increased the spot price for CO2. Besides, within the two months important decisions were made

with respect to NAPs: In the mid of March is was announced to cut the Polish and Czech NAP and at

the same time to possibly increase allocation for UK and Italy. The decision of the European Council

was published at beginning of April to reduce emissions by 15-30% until 2020 and by 60-80% by
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Figure 1.6: Logreturns of EUA prices and probability of being in the spike regime

The figure displays logreturns of EUA prices from June 1, 2005 to August 31, 2005 together with the probability of being
in the spike regime
Top panel: Logreturns of EUA prices from June 1, 2005 to August 31, 2005.
Bottom panel: Probability of being in the spike regime for the defined two-regime ‘Gaussian’ model for the same period
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2050. However, at the end of April the CO2 spot price recovered drastically and move to the base

regime due to a constantly falling oil prices on the one side and on the other side due to the launch

of organized trading platforms in May (European Climate Exchange (ECX) and PowerNext) which

made speculative trading more important.

As the distinction between the two regimes is even better for the second period from June 1,

2005 to August 31, Figure 1.6 provides a closer look: in this phase prices were mainly driven by

fundamentals. Most notably the dry summer period in July, which boasted emissions (especially in

Spain and France). Besides, over the whole period, again high oil and gas price (relative to coal)

drove the the price for CO2. At the end of 2005 the market reacted again to three important market

announcements, the World Bank’s forecast for CER supply, the drastic cut of the Italian NAP by 10

mt of CO2 and the agreement on a cap-and-trade program by seven US states, the Reginal Greenhouse
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Gas Initiative (RGGI).

To sum up, from the probabilities in Figures 1.5 and 1.6 it becomes obvious that with high prob-

ability the model assigns most of the logreturns to either one of the two regimes. This indicates the

model’s ability to distinguish between the two regimes of different volatility.

For model evaluation, we also examine the Akaike information criterion (AIC) and the Bayesian

information criterion (BIC) for the estimated models (see Table 1.4). We find that according to the

chosen parsimony model criteria our results are confirmed: the GARCH and regime-switching models

clearly outperform the approach of fitting a normal distribution or an AR(1). The results for a the

GARCH model and the regime-switching models ‘Gaussian’ and ‘MR’ are quite similar. While for

the AIC the best results are obtained for the regime-switching model with an AR process for the base

regime (‘MR’), for the BIC the GARCH model gives the best results. However, similar to the results

for the log-likelihood function, the differences between the two regime-switching and the GARCH

model are quite small. We conclude that as far as in-sample results are concerned, GARCH and

regime-switching models are adequate approaches for modeling EUA logreturns.

Table 1.4: Model evaluation by the log-likelihood and information criteria

The table reports the number of parameters k, log-likelihood, Akaike information criterion (AIC), and Bayesian information
criterion (BIC) for the estimated models.

k LLF AIC BIC
i.i.d. Normal 2 519.45 -1034.90 -1027.82
AR(1) 3 525.78 -1045.56 -1034.94
GARCH(1,1) 5 575.72 -1141.44 -1123.73
‘Gaussian’ 6 574.55 -1137.10 -1115.85
‘MR’ 7 578.96 -1143.92 -1119.13

1.4.5 Forecasting Results

We conduct an out-of-sample analysis of the models by comparing one-day-ahead point and density

forecasts for EUA logreturns for the period January 3, 2006 to December 29, 2006. Hereby, both a

static approach using the estimated models for the whole out-of-sample period as well as a recursive

and rolling window technique with reestimation of the parameters after each day were examined.

For the recursive window approach the initial estimation date is fixed and additional observations are
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added one at a time to the estimation period. For a rolling window, on the other hand, the length of

the in-sample period is fixed. In this case the start date and end date successively increase by one

observation.

Overall, reestimating the parameters on a daily basis improved the forecasting ability of the model.

The results for a recursive and rolling window technique were similar, when the length of the rolling

window was chosen to be at least nine months or longer. For shorter windows, the parameter estimates

for the GARCH and in particular for the regime-switching models showed some instability. In the

following only the results for the recursive window approach are provided. However, the results for

the static and rolling window approach are available upon request to the authors.

For point forecasts we measure the average prediction errors by computing the mean absolute error

(MAE) and mean squared error (MSE) of the one-day-ahead forecasts. The results for the different

models can be found in Table 1.5. We observe the smallest MAE for the ‘AR’ model despite the

superior in-sample fit of the GARCH or regime-switching model. On the other hand, the smallest

MSE can be observed for the regime-switching model ‘MR’ with an autoregressive term in the base

regime. We also find that for both criteria, the GARCH model yields the worst results. However, the

differences between the results for all models are rather small, since the values for MAE range from

0.0306 to 0.0310 and for MSE from 0.0042 for the regime-switching model ‘MR’ to 0.0049 for the

GARCH model. Overall, we conclude that for point forecasts the results are mixed while there are no

substantial differences between the models.

Table 1.5: Point forecast results

The table reports results for the mean absolute error (MAE) and mean-squared error (MSE) for the point forecasts of the
considered models.

MAE MSE
i.i.d. Normal 0.0307 0.0043
AR(1) 0.0306 0.0047
GARCH(1,1) 0.0310 0.0049
‘Gaussian’ 0.0308 0.0044
‘MR’ 0.0308 0.0042

In a second step we investigate the ability of the models to provide accurate forecasts of the whole

density function or intervals. Especially for risk management purposes such forecasts are highly

relevant, since traders and brokers are more interested in predicting intervals or densities for future
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price movements than in simple point estimates. The literature suggests different approaches to eval-

uate interval or density forecasts, see e.g. Christoffersen (1998); Christoffersen and Diebold (2000);

Crnkovic and Drachman (1996); Diebold, Gunther and Tay (1998). One approach (Christoffersen,

1998) is to evaluate the quality of confidence interval forecasts by comparing the nominal coverage

of the models to the true coverage in the out-of-sample period. However, tests being based on con-

fidence intervals may be unstable in the sense that they are sensitive to the choice of the confidence

level α. We overcome these deficiencies by applying a test that investigates the complete distribution

forecast, instead of a number of quantiles only. Evaluating the accuracy of the density forecasts we

perform a distributional test following Crnkovic and Drachman (1996) and Diebold et al. (1998). We

are interested in the distribution of the logreturn yt+1, t > 0, which is forecasted at time t. Further,

let f(yt+1) be the probability density and F (yt+1) =
yt+1∫
−∞

f(x)dx be the associated distribution func-

tion of yt+1. To conduct the test, we determine F̂ (yt+1) by using the parameter estimates from the

in-sample period and the observations ys, s = 0, .., t. Rosenblatt (1952) shows that if F̂ is the correct

loss distribution, the transformation of yt, namely

ut+1 =

yt+1∫
−∞

f̂(x)dx = F̂ (yt+1), (1.12)

is i.i.d. uniformly on [0, 1]. The method can be applied to test for violations of either independence or

uniformity.

Figure 1.7 presents the corresponding probability integral transforms of the one-day ahead fore-

casts based on the ‘naive’ model of a simple normal distribution, the AR(1) model, the GARCH

model and the regime-switching model specification ‘MR’. It turns out that the observations for ut of

the models with a simple normal distribution and the AR(1) process for the logreturns are far from

being uniformly distributed. A very high fraction of the probability integral transforms lies in the two

central quartiles between 0.25 and 0.75, indicating that using a simple normal distribution or AR(1)

model, very often the forecasted confidence intervals for the next day are too wide. This is also con-

firmed by Figure 1.8, displaying the observed logreturns and predicted 95%-confidence intervals for

the different models from July 3, 2006 to December 29, 2006. For the GARCH and regime-switching

models we obtain significantly better results. The corresponding probability integral transforms are

closer to a uniform distribution. As Figure 1.8 indicates, the width of the confidence intervals varies

with the conditional variance of the density forecast, such that during periods of higher volatility the
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Figure 1.7: One-day ahead forecast results

The figure displays histograms of the probability integral transforms of the one-day ahead forecasts for logreturns of CO2

emission allowances for January 1 2006 - May 31, 2006. Results for the ‘naive’ model of a simple normal distribution
(Upper left panel), AR(1) model (Upper right panel), the GARCH(1,1) model (Lower left panel) and the ‘MR’ regime-
switching model (Lower right panel).
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intervals become wider. However, both for the GARCH and regime-switching models there is a high

number of observations with probability integral transforms close to zero. This may be due to the

fact that substantial price shocks like in April 2006 are rather difficult to predict with an econometric

model. As a consequence, several of the large negative returns could not be captured despite the use

of models with conditional variance and resulting wider confidence intervals for these periods.

Testing for uniformity, Crnkovic and Drachman (1996) suggest to use a test that is based on the

distance between the empirical and the theoretical cumulative distribution function of the uniform
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Figure 1.8: Logreturns of EUA prices and predicted 95%-confidence intervals

The figures display logreturns of EUA prices and predicted 95%-confidence intervals for the different models from July 3,
2006 to December 29, 2006. Results for the ‘naive’ model of a simple normal distribution (Upper left panel), AR(1) model
(Upper right panel), the GARCH(1,1) model (Lower left panel) and the ‘MR’ regime-switching model (Lower right panel).
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distribution. This may be done using e.g. the Kolmogorov-Smirnov (KS) or Kuiper statistic. The

former is usually denoted by DKS = max{D+, D−} while the latter is DKuiper = D+ +D− with

D+ = sup{Fn(u) − F̂ (u)} and D− = sup{F̂ (u) − Fn(u)}. Hereby Fn(u) denotes the empirical

distribution function for the probability integral transforms of the one-day ahead forecasts and F̂ (u)

is the cdf of the uniform distribution.

Table 1.6 presents the test results for the models. We find, that the ‘naive’ model of a simple normal

distribution for the logreturns gives the worst results. Probability integral transforms of the one-day
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ahead forecasts are non-uniformly distributed. Both tests reject the hypothesis of a uniform distribu-

tion even at the 1% level. Similar results are obtained for the AR model. The KS and Kuiper test

statistics also significantly reject the assumption of uniformity at the 1% level. The results obtained

for the GARCH and regime switching models are clearly superior. As indicated by Figure 1.7 the

probability integral transforms are much closer to uniformity in comparison to the normal distribution

and the AR model. For all three models, the assumption of uniformity cannot be rejected even at the

10% significance level. The best results for the KS test are obtained for the regime-switching ‘MR’

model. However, the results for the other regime-switching and GARCH model are only slightly

worse. For the Kuiper test, the GARCH model outperforms all its competitors, but the distance for the

two regime-switching models is in a similar range. So despite the fact that the GARCH and regime-

switching models have some difficulties in forecasting a number of extreme negative price shocks, the

density forecasts using these models seem to be adequate.

Overall, in terms of density forecasting, the GARCH and regime-switching models significantly

outperform the models with constant variance. This suggests the models as particularly useful for risk

management purposes and short-term forecasting of future price ranges for emission allowances.

Table 1.6: Results for Kolmogorov-Smirnov and Kuiper statistics

The table reports the results for the Kolmogorov-Smirnov and Kuiper statistics. Best results are highlighted in bold. The
asterix further denote rejection of the model at the 1% ***, 5% ** or 10% * level, for n=253 observations.

KS Kuiper
i.i.d. Normal 0.1760*** 0.2620***
AR(1) 0.1750*** 0.2591***
GARCH 0.0748 0.0828
‘Gaussian’ 0.0712 0.0893
‘MR’ 0.0709 0.0885

1.4.6 Comparison with results from other papers

Daskalakis et al. (2006) suggests that CO2 emission allowance price levels are non-stationary and

exhibit abrupt discontinuous shifts. For logarithmic returns they find that the distribution is clearly

non-normal and characterized by heavy tails. They further find that the best model fit for allowance

prices in terms of likelihood and parsimony is obtained by a geometric Brownian motion with an
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additional jump-diffusion component. This model is also able to produce the discontinuous shifts

in the underlying diffusion that are observed in the CO2 emission allowances prices. Although our

approach differs from their analysis, we find a superior performance of the models with non-constant

variance like GARCH or regime-switching confirming the non-normality and heavy-tails in the logre-

turns. The models not only provide the best in-sample fit but also outperform alternative approaches

with constant variance in density and volatility forecasting. Hence, similar to Daskalakis et al. (2006),

we find that issues like shifts in prices, non-normality or short periods of extreme volatility have to be

incorporated into adequate pricing or forecasting models for CO2 allowances or returns.

Paolella and Taschini (2006) examine the performance of different GARCH models for CO2 and

SO2 certificates. Similar to our results, they observe heteroskedasticity in the returns and obtain an

adequate fit for models with conditional variance. They conclude that for sound risk management,

hedging or purchasing strategies the choice of an adequate statistical model is a crucial task. Finally,

Seifert et al. (2008) develop a stochastic equilibrium model in order to analyze the dynamic behav-

ior of CO2 emission allowances spot prices for the European emissions market. According to their

analysis, spot prices must always be positive and bounded by the penalty cost plus the cost of having

to deliver any lacking allowances. As far as volatility is concerned, they argued that a steep increase

will occur when the end of the trading period is approaching. This also recommends the use of mod-

els with conditional variance to capture the fact whether the market is in period of higher or lower

volatility.

1.5 Summary and Conclusion

In this chapter we examine the spot price dynamics of CO2 emission allowances in the EU ETS. Short-

term dynamics of the new asset are of particular interest for market participants like risk managers

or traders, but also for CO2 emitting companies, as they must model the behavior of their production

costs. We find that the logreturns exhibit skewness, excess kurtosis and different phases of volatility

behavior coming from fluctuations in demand for CO2 allowances. The best in-sample fit to the data is

provided by a regime-switching model with an autoregressive process in the base regime and a normal

distribution for the spike regime. Results for the GARCH and normal mixture regime-switching

models are only slightly worse while the fit of the models with constant variance like a Gaussian

distribution and an AR(1) process is clearly inferior. We also provide an out-of-sample forecasting
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analysis for the CO2 allowance logreturns. In terms of point forecasts we observe only very small

differences between the models for the evaluated MAE and MSE measures. We also conduct an

analysis on density and interval forecasts which is more relevant for risk managers than simple point

forecasts. For one-day ahead density forecasts, the AR-GARCH and regime-switching models clearly

outperform the models with constant variance. The adequacy of a simple normal distribution or AR

process is significantly rejected.

The superior performance of the models with conditional variance can be explained to a high

extend by the relationship between allowance prices, regulatory factors and fundamental variables.

In particular, political issues like the over-allocation of certificates or the following insecurity about

whether the EU would decide to reduce the number of allowances granted to the industry should be

named here: consequences were prices dropping substantially and a following phase of high volatility

what is captured much better by the GARCH and regime-switching models. Also periods of un-

expected weather like cold snaps or extremely hot and dry summer months lead to phases of price

behavior that favors the more flexible models with conditional volatility. The suggested models can

be used in particular for Value-at-Risk purposes. Modeling the short-term price behavior of emission

allowances will be especially helpful for risk managers, brokers or traders in the market, but might

also enable companies to monitor the costs of CO2 emissions in their production process. Our re-

sults strongly support the use of AR-GARCH or regime-switching models for modeling the returns

of CO2 emission allowances. The models may also be used for the pricing of relates derivatives

on emission allowances. For further references on option and derivative pricing with GARCH and

regime-switching models we refer e.g. to Huisman and De Jong (2003)and Duan (1995). Overall, we

suggest further investigating the use of these models for this new class of assets in future work when

more empirical data is available.



Chapter 2

Liquidity and Price Discovery in the CO2

Futures Market: An Intraday Analysis

European Union CO2 allowances (EUAs) are traded on several markets with increasing intensity.
We provide an intraday data analysis of the EUA futures market for the complete first trading period
2005-2007. To investigate the trading process in this young market, we compare the two main
trading platforms ECX and Nord Pool with respect to liquidity and price discovery. Both are of
high relevance to traders. We analyze liquidity by estimating traded bid-ask spreads following the
approach of Madhavan, Richardson and Roomans (1997) and study price discovery using the VECM
framework of Engle and Granger (1987). We find that while estimated transaction costs are always
lower on the larger exchange ECX, the less liquid platform Nord Pool also contributes to price
discovery, especially during the first months of trading. Overall, results indicate that from 2005 to
2007 liquidity in the European CO2 futures market has markedly increased and organized trading
has rapidly expanded.

2.1 Introduction

With the official start of the European Union Greenhouse Gas Emission Trading Scheme (EU ETS)

in January 2005, a new European commodity market has been created. In the market for European

Union Allowances (EUAs), purchasing one EUA entitles the holder to emit one ton of CO2 equivalent

greenhouse gases. With an increasing range of new instruments (e.g. spot, forwards, futures and

options) the carbon market has steadily gained complexity. Currently, the EU ETS is the largest CO2

trading scheme world wide. While prices from the OTC market have served as reference prices at

the beginning of the EU ETS, their importance has declined with the development of standardized

carbon products on distinct trading platforms. During the first trading period (Phase 1), which lasted

from 2005 to 2007, organized allowance trading has been fragmented across five trading platforms:

33
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European Climate Exchange (ECX), Nord Pool, Powernext, European Energy Exchange (EEX) and

Energy Exchange Austria (EXAA). Since the underlying asset is equal on all exchanges, questions

with respect to liquidity migration and price discovery across trading platforms are important factors

to investigate.

The end of the first trading period of the EU ETS in December 2007 provides an excellent opportu-

nity to address these questions and to give a comprehensive overview of the European carbon market

development. Being the first to have access to intraday transactions data, we are able to complement

the existing literature by investigating this very recent market from a microstructure angle. Since al-

most all trading takes place in the futures markets, we focus on futures price data supplied by ECX and

Nord Pool, the two most liquid European trading exchanges for futures EUAs. The aim of this chap-

ter is twofold. Apart from providing an overview of the development of trading on both exchanges,

we compare two microstructure issues that are of high relevance to potential traders: liquidity and

price discovery. With respect to liquidity, we start by comparing overall trading volumes as well as

the development of trading frequencies across exchanges. We then estimate traded bid-ask spreads

following the approach of Madhavan et al. (1997) that allows the estimation of spreads when no quote

data but only transaction data and a trade indicator variable are available. Applying this procedure

has the advantage that it enables us to infer main causes of trading frictions and, hence, transaction

costs. To analyze relative price discovery on both exchanges we use the VECM framework by Engle

and Granger (1987) building on the cointegration relationship between transaction price series. To

quantify the two markets’ relative contributions to the price discovery process we apply two different

measures: common factor weights proposed by Schwarz and Szakmary (1994) and information shares

as introduced by Hasbrouck (1995).

Our analysis is related to a vast body of market microstructure literature that investigates liquidity

and price discovery on financial markets. Regarding the European carbon market, there is no literature

analyzing bid-ask spreads. A few studies have addressed the question of price discovery between spot

and futures markets (Seifert, Uhrig-Homburg and Wagner, 2006; Daskalakis et al., 2006; Milunovich

and Joyeux, 2007), but no work has investigated price discovery between futures prices on distinct

exchanges. Since almost all trading volume takes place in futures markets, we believe our study to be

of high relevance. Furthermore, the mentioned studies only use daily data, possibly blurring results of

price leadership if price discovery takes place at finer trading intervals.

We believe that our results are of interest for regulatory authorities that are in charge of the design
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of the upcoming commitment periods, for operators of exchange platforms, for researchers interested

in the application of microstructure tools to new markets and, equally important, for agents who trade

actively in the market like market makers, brokers, arbitrageurs, etc. It is also possible to use our

results in order to evaluate the relative development of the markets. From the public, a lot of criticism

has been raised about the market in Phase 1 mainly due to the significant over-allocation of EUAs.

Academic work like Daskalakis and Markellos (2007) and Milunovich and Joyeux (2007), using data

until the end of 2006, conclude that weak form informational efficiency in the European CO2 market

is violated. However, Uhrig-Homburg and Wagner (2007) found evidence in favor of a cost-of-carry

pricing mechanism for futures expiring within Phase 1 of the market. Our evidence shows that trading

frictions in forms of transaction costs have decreased over the first trading phase, trading volume has

increased and price discovery takes place across exchanges. Hence, it appears that from a trading

perspective, the market has made a lot of progress since its operational start in January 2005.

The remainder of the chapter is organized as follows. Section 2.3 introduces the reader briefly to

the organization of the European carbon market and to the institutional details that are relevant for the

data collection procedure. Section 2.4 describes the methodology of the bid-ask spread analysis and its

econometric application. The price discovery process using an error correction model is explained in

Section 2.5. Estimation results for both types of analysis are displayed subsequent to the description

of the methodology. The chapter ends with an interpretation of the results and a conclusion with

respect to the future of the organized carbon market in Section 2.6.

2.2 Market Structure and Data

2.2.1 Market Structure of Carbon Exchanges

2.3 Market Structure and Data

2.3.1 Institutional Background

The EU ETS started in January 2005 as a central instrument for member states of the European Union

to achieve the emission reduction targets of the Kyoto Protocol in a cost-effective way.1 It covers over

10,000 installations in the energy and industrial sectors that are collectively responsible for about 50%

1On an EU-wide level, emissions have to be reduced by 8% in the first Kyoto commitment period 2008-2012 relative to
the output level of 1990.
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of European CO2 emissions. Trading is organized in several stages. The first trading period served

as a pilot phase and covers the years 2005-2007 while the second trading period from 2008-2012

constitutes the Kyoto commitment period (Phase 2). Plans for the post Kyoto trading period 2013-

2020 (Phase 3) became more concrete after the United Nations summit in Bali in December 2007.

Besides, in January 2008 the European Commission has agreed on a so called “Climate and Energy

Package”, which makes first regulatory suggestions and improvements for the continuation of action

against climate change in the EU.

The EU ETS is organized as a cap-and-trade scheme where participating firms have to reduce the

amount of emitted CO2 and annually demonstrate that their level of EUAs corresponds to their actual

emissions. Every year, at the end of February, a certain amount of EUAs is allocated to the compliant

firms for the current trading year according to National Allocation Plans (NAPs). On April 30 of

the following year, firms have to deliver the required EUAs to the national surveillance authorities

according to their actual emissions volume. Not handing in the required amount of emissions is fined

with an extra fee of Euro 40 (Euro 100) per missing EUA in the pilot period (Phase 2) additional to

delivering the missing amount of EUAs.

Companies being able to keep emissions below their allocation level are free to sell excess al-

lowances in the market. Firms which need additional allowances to comply with their output lev-

els have the choice to either invest in emissions-reducing technologies, to switch to less emissions-

intensive production technologies or, if marginal abatement costs are higher than the market price of

EUAs, to buy EUAs on the European CO2 market.

Within Phase 1 and Phase 2 surplus allowances can be transferred for use during the following year

(banking). Banking between Phase 1 and Phase 2 was forbidden by most of the countries. Only France

and Poland allowed for restricted banking. As allocation always takes place in February, borrowing of

EUAs from the future year is indirectly possible as the compliance date for the preceding year is April

30. However, it was not possible to borrow EUAs between 2007 and 2008.2 Trading is organized

as bilateral, over-the-counter (OTC) and organized exchange trading. It takes the form of agency or

proprietary trading and may be for compliance, speculative or arbitrage purposes.

To get an overview of how many allowances have been exchanged among market agents, Table

2.1 displays the total trading volumes split into futures and spot activities since the EU ETS has been

operating and includes both OTC and exchange trading. It can be seen that overall trading volume

2Note that consequently there exist essentially two spot markets, one for Phase 1 and one for Phase 2 (Seifert et al.,
2006).
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Table 2.1: Overall trading volume of the EUA spot and futures market in Phase 1

The table depicts overall trading volume of the EUA spot and futures market in the Phase 1 (2005-2007) in Million tons of
CO2.

Year Spot [Mio t of CO2] Futures [Mio t of CO2]
2005 10.25 110.82
2006 49.53 508.29
2007 60.26 1 062.42
Source: Own calculations.

markedly increased from 121 Mio tons of CO2 in 2005 to 1 123 Mio tons of CO2 in 2007. The share

of spot relative to overall trading volume declined from 8.5% to 5.4%.

2.3.2 Market Structure of Carbon Exchanges

In Phase 1, organized EUA trading took place at five exchange platforms. ECX only offers futures,

Powernext and EXAA only offer spot trading whereas on EEX and Nord Pool both instrument types

can be traded. In the following analysis we focus on the two main trading venues ECX and Nord Pool

which comprise by far the largest exchange traded futures volume: In 2006, ECX being a member of

the Climate Exchange Plc group possessed a market share of 86.5%. The Norwegian platform Nord

Pool had a share of 12.5%, see also Daskalakis et al. (2006). In terms of overall market share, in early

2007 ECX accounted for 56% of EUA trading volume, being followed by OTC trading volume with

42%.

The traded futures instruments on both platforms are standardized contracts giving the holder the

right and the obligation to buy or sell a certain amount of EUAs at a certain date in the future at a

pre-determined price. On both exchanges, one futures contract (‘lot’) corresponds to 1 000 EUAs and

hence delivers the right to emit 1 000 tons of CO2 equivalent. The contracts allow to lock in prices

for delivery of EUAs at given dates in the future with delivery guaranteed by the respective clearing

house. Counterparty risk is mitigated by specific margin requirements. The contracts are supposed

to facilitate trading, risk management, hedging and physical delivery of EUAs. While contracts with

monthly expiry and annual contracts with expiry in March exist, we focus on the by far most liquid

annual contracts with expiry in December. These contracts expire on the first business day of Decem-
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ber on Nord Pool and on the last Monday of December on ECX.3 Settlement is three days after the

last trading day.

On both exchanges, trading is organized as continuous trading and takes place anonymously on

electronic platforms. Exchange hours are from 08:00 to 18:00 CET on ECX and from 08:00 to 15:30

CET on Nord Pool.4 On ECX the trading period is preceded by a pre-opening session from 07:45 to

07:59 CET. No actual trading takes place during this period, traders can only input orders that they

wish to execute once trading begins at 08:00 CET. The daily closing period lasts from 17:00 to 17:15

CET. On Nord Pool, daily closing prices are determined between 15:20 and 15:30 CET at a randomly

selected point in time. On both exchanges trading is not interrupted by intraday auctions. Currently,

ECX has 92 and Nord Pool has 97 members engaging in EUA trading.

With respect to order processing, both exchanges do not show markable differences. Incoming

orders are binding until the end of the trading day if they have not been executed, changed or can-

celed. Order types include order book (limit) orders, market orders and stop orders. Matching occurs

according to price and time priority. Initially, the minimum tick size for ECX futures was Euro 0.05

per CO2 emission allowances. Since March 27, 2007 it is reduced to Euro 0.01. On Nord Pool the

minimum tick size is always Euro 0.01 per CO2 emission allowance. Currently, trading and clearing

fees per contract amount to Euro 3.50 on ECX and to Euro 3.00 on Nord Pool for members.5 The

annual fee for full members is Euro 2 500 on ECX and Euro 3 000 on Nord Pool.

Both exchanges have introduced market makers to boost liquidity. Until June 18, 2006, EdF Trad-

ing Limited was active as a market maker for the EUA market on Nord Pool. On January 9, 2007,

the new market maker Alfa Kraft AB started to operate. As a minimum requirement, market makers

have to quote prices from 08:30 to 10:00 CET and from 13:00 to 15:30 CET. Before 2007, the mini-

mum quoting periods were from 10:30 to 12:00 and from 14:00 to 15:30. Restrictions with respect to

maximum spreads and minimum volumes apply. While the minimum offered volume is 5 000 tons,

maximum spreads are EUR 0.50 for the nearest December contract and EUR 0.75 for the following

December contract. As another method to enhance liquidity and to promote electronic trading, Nord

Pool has launched a so-called initiator/aggressor fee model in January 2006. Electronically incoming

quotes from “initiators” can be executed free of trading charges such that only clearing fees remain.
3If there is a public holiday in the respective trading week, the prior Monday is taken. The procedure continues until

there is no public holiday in the trading week.
4On Nord Pool, trading hours were extended in June 2005 from 09:00 (10:00) to 15:30 CET in March (February) 2005.
5On ECX, trading and clearing fees, as for e.g. order routing customers and client business, amount to Euro 4.00 per

contract. Note that fees have decreased over time. For instance on Nord Pool trading and clearing fees amounted to Euro
70.00 per contract at the launch of EUA trading before gradually declining to Euro 3.00 in December 2006.
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“Aggressors” (price takers) have to pay the ordinary trading fees.

ECX launched a market maker program in July 2007. Currently, Fortis Bank Global Clearing and

Jane Street Global Trading are active as market makers. Requirements are stricter compared to Nord

Pool in that both bid and ask prices must be quoted for at least 85% of the trading time between 09:00

to 18:00 CET. Spreads may not exceed Euro 0.15 for the December 2008 contract and Euro 0.25

for the other Phase 2 contracts. The minimum quoting volume corresponds to 10 000 tons. Market

makers have to respond to quote requests within five minutes.6

Overall, we believe that differences in the market organization of both markets do not allow us to

predict a clear pattern for differences in bid-ask spreads and price discovery across exchanges. The

main features of the trading process are similar on both markets. Regarding differences, traders on

Nord Pool have to pay lower transaction costs compared to ECX which may however be offset by a

higher annual fee. Furthermore, while we could not obtain historical fee data for ECX, we know that

trading costs on Nord Pool were markedly higher in the beginning. Hence, it may be the case that

trading fees on ECX were lower compared to Nord Pool before the end of 2006. While market makers

have been introduced earlier on Nord Pool than on ECX, maximum applicable spreads are markedly

tighter on ECX. In the initiator/aggressor model trading costs are waived for the initial price quoters.

This may attract additional liquidity suppliers on Nord Pool whose competition might narrow spreads

on this platform. Finally, the possibility to trade longer on ECX may be one reason to favor trading

on ECX over trading on Nord Pool. The data reveal that 20% of daily ECX trades occur within the

last 2.5 trading hours (from 15:30 to 18:00 CET), that is after trading on Nord Pool has finished.

2.3.3 Data Set and Summary Statistics

In the following analysis we use intraday transaction data for annual standardized EUA futures and

forward contracts being traded from April 22, 2005 to December 28, 2007 on ECX and from February

11, 2005 to December 28, 2007 on Nord Pool. After providing some summary statistics to show the

market development on both platforms, we briefly address some data collection issues that result from

investigating data from two distinct markets.

Table 2.2 depicts trading volumes (without OTC) of EUA futures with expiry in December for

both platforms disaggregated by years and contracts. It can be seen that trading volume has markedly

increased both over years and over contracts, but to a higher extent on ECX compared to Nord Pool.
6Information is obtained from the official websites www.europeanclimateexchange.com and www.nordpool.no in July

2008.
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Table 2.2: trading volumes (without OTC) of EUA futures with expiry in December

The table depicts trading volumes (without OTC) of EUA futures with expiry in December on ECX and Nord Pool broken
down into contract and year.

Year Contract ECX Nord Pool
Mio t of CO2 Mio Euro Mio t of CO2 Mio Euro

2005 Dec05 22.96 522.79 6.76 139.89
Dec06 6.78 151.88 1.91 41.86
Dec07 1.93 43.91 1.05 23.39
Dec08 0.49 10.46 0 0
Dec09-Dec12 0.02 0.43 0 0
Sum 32.18 729.47 9.72 205.14

2006 Dec06 93.77 1 763.93 9.92 182.47
Dec07 35.25 520.51 1.25 19.66
Dec08 29.56 540.10 0.37 6.87
Dec09-Dec12 0.46 9.16 0 0
Sum 159.04 2 833.7 11.54 209

2007 Dec07 50.24 65.22 3.10 4.03
Dec08 258.96 5 237.18 18.38 380.78
Dec09-Dec12 29.44 652.86 0.25 5.41
Sum 338.64 5 955.26 21.73 390.22

Highest trading activity takes place in the nearby futures contract. The development of the Dec07

contract in 2007 is an exception and is due to the publication of the large EUA over-allocation in

April 2006, which led to a marked price decline (compare also Figure 2.1 showing the development

of futures prices on ECX for Phase 1). Due to lack of liquidity, for the rest of the chapter we only

consider the Dec05 to Dec08 contracts and disregard those with later expiry, i.e. the Dec09 to Dec12

contracts.

Figures 2.2 and 2.3 depict the daily transaction frequencies and the average monthly standard

deviation of daily returns for each platform and contract. Again, it can be inferred that transaction

frequencies are highest for the nearby contract and hence markedly increase in December of the year

prior to expiry. If we compare volatility across contracts and exchanges we observe high volatility in

the market where the respective contract is launched first. For the Dec05 and Dec06 contracts there

are two peaks that disturb the relatively smooth volatility pattern; one in July 2005 for the Dec05

contract and one in April/May 2006 for Dec06 contract. The first one probably relates to large price

fluctuations as a consequence of unexpected selling in the market by some Eastern European countries
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Figure 2.1: EUA futures prices in Phase 1

The figure displays EUA futures prices for the Dec05 to Dec08 contracts in Phase 1 on ECX.
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that succeeded to obtain access to the carbon market earlier than anticipated. Maybe it also reflects

overall uncertainty with respect to price drivers as a consequence of the terrorist attacks in London

in July 2005. The second peak can be clearly linked to the market breakdown when the significant

over-allocation of EUAs became public at the end of April 2006.7 Consequently, the Dec07 contract

became worthless to the firms as they were not allowed to transfer excess EUAs from 2007 into 2008.

This price decline translates into high return volatility in the year 2007, especially in the last months

of trading when price variations of 0.01 Euro were very high compared to a price level of about 0.03

Euro. Finally, for the Dec08 contract, except for the high volatility at the launch of the contract at both

platforms, the volatility pattern is smooth. Comparing the two figures, it can be observed that often

trading intensity and market volatility move in the same direction.

7Compare the weekly newsletter at www.climatecorp.com.
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Figure 2.2: Monthly transaction frequencies in Phase 1

The figure displays monthly transaction frequencies for the Dec05 to Dec08 contracts in Phase 1 on Nord Pool (top panel)
and ECX (bottom panel).
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Data Collection

When investigating the development of bid-ask spreads and price discovery on both exchanges, we

have to address some issues related to the differences in trading protocols and contract specifications

as well as some standard high frequency issues. To start with, for both types of analysis we omit

overnight returns that could induce heteroskedasticity into our data set. Then, for comparing bid-ask

spreads across exchanges over the whole trading period of contracts, we omit non-overlapping trading

intervals and focus only on periods when the respective contract was traded on both exchanges. We

furthermore aggregate all trades within the same second that have the same trade indicator to account

for price effects of orders walking up or down the book. Finally, we only include data from continuous

trading periods into our analysis and hence exclude pre-opening and post-closing prices.

Regarding the price discovery analysis, some further re-organization of the data set is necessary
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Figure 2.3: Monthly average return standard deviation

The figure displays monthly average return standard deviation at Nord Pool and ECX for the respective trading period of
each contract, Dec05 to Dec08.
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prior to estimation. First, in order to synchronize trading hours we delete ECX trades that occur

after 15:30. Thus, throughout the chapter we only use data from 08:00 until 15:30 CET. Second,

in our price discovery analysis we postulate a one-to-one relationship between the prices of futures

contracts traded on different markets. However, that relationship does not exactly hold due to differing

expiration dates on both exchanges. Hence, we discount all contracts to their present value at the

respective trading day.8 The third and probably most important aspect that has to be considered is the

question of price synchronization. Transactions do not occur at regular intervals, nor do transactions

in the two parallel trading platforms take place simultaneously. Explicitly, our data includes much

more transaction prices for ECX than for Nord Pool. Thus several futures prices have to be eliminated

8We mainly use monthly interest rates for discounting and linearly interpolate interest rates between months. Interest
rate data is obtained from Datastream. For very short discounting horizons, we use EONIA interest rates, for horizons up to
a year we use Euribor interest rates and for horizons of more than one year we employ European monthly corporate interest
swap rates.
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from the series. To synchronize the two price series we form three different data sets of matched

trade pairs. First, beginning at the start of each trading day, for every transaction price on Nord Pool

we identify the most recent transaction price at ECX. These pairs are saved and generate the price

series for our model (NP-Match). This method favors Nord Pool, the less liquid exchange. Estimation

results that systematically use “stale” prices of ECX are likely to underestimate the role of ECX and

are hence a very conservative measure for price leadership of ECX. If, contrary to expectations, we

find a large share of price discovery on Nord Pool, these results might stem from the fact that we

systematically favor Nord Pool. It is easy to inquire the robustness of these findings by applying

an analogous synchronization procedure favoring ECX (ECX-Match). A third possibility not clearly

favoring one exchange over the other has been suggested by Harris, McInish, Shoesmith and Wood

(1995).9 The authors synchronize the data as follows. Beginning at the start of each trading day,

as soon as a trade has taken place on both exchanges the trade which has occurred latest in time is

matched with the most recent trade on the other exchange. This pair is saved and a new matched trade

pair is formed in the same manner for the whole data sample (Harris-Match).10 Obviously, for the

Harris-Match the frequency of the data is determined by the market with the fewest trades, which is

in our analysis Nord Pool.

Since we expect price discovery to take place at the larger and more liquid trading platform ECX,

we opt for choosing the NP-Match disfavoring ECX as a benchmark and refer to other matching

algorithms as a robustness check.

2.4 Spread Analysis

In this section, we investigate the development of transaction costs on both exchanges for Phase 1. We

measure transaction costs by estimating bid-ask spreads, which are defined as the difference between

the best quoted ask and the best quoted bid price in the market. This measure can be interpreted as

the costs of trading a round-trip (i.e. costs paid by a liquidity demander to a liquidity supplier for an

instantaneous buy and sell transaction) or alternatively as the price concession that it takes to induce

9Another possibility of synchronization is the use of equidistant time intervals. This procedure consists of matching
the last observed prices at the end of pre-specified time intervals (e.g. 5 minutes, 30 minutes) in each market. If no price
updating has taken place within one time interval, the most recent price in the respective market is used for the matching. In
our analysis we do not consider this matching approach as the probability that the most recent price comes from the more
liquid market ECX is high. Consequently, ECX would be favored compared to Nord Pool as a relatively new ECX trade
would be probably matched with an older Nord Pool price.

10Compare Harris et al. (1995), pp. 566. This matching procedure is referred to as “REPLACE ALL”.
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an agent waiting in the market to transact immediately instead of waiting until prices move in her

favor. The existence of a bid-ask spread and hence of trading frictions is typically explained with the

existence of order processing costs, inventory costs or asymmetric information costs.11

As examples for the latter in the carbon market, one can think of firms’ private decisions that

concern for instance the start-up, closure or expansion of new and old installations as well as pri-

vate news about market entrants. Furthermore, market participants might have different incentives

and possibilities to acquire information about e.g. market developments (current and future market

scarcity, abatement costs and potential of other firms) and about regulatory issues (National Alloca-

tion Plans for upcoming trading phases, development of CER market, incorporation of other trading

schemes into the EU ETS). It is reasonable to assume that big companies that are more affected by the

ETS have better sources of information than smaller firms. This asymmetric information and the re-

lated uncertainty influence market scarcity and thus the market price for EUAs or project based EUAs

(CERs).12

Since we do not have access to best ask and bid quotes, bid-ask spreads cannot be calculated

immediately from the data. Fortunately however, the market microstructure literature has proposed

a variety of procedures to estimate the spread and its components. Given that our data set identifies

transactions as either buyer-initiated or seller-initiated, we can use a so called trade indicator model

to estimate and compare traded spreads on ECX and Nord Pool.

2.4.1 Methodology

Trade indicator models assume that information about the underlying asset is contained in the order

flow. They use this variable in form of a binary trade initiation indicator to model short-run dynamics

of quotes and transaction prices and to estimate traded spreads. Trade indicator models have been

proposed by e.g. Glosten and Harris (1988), Huang and Stoll (1997) and Madhavan et al. (1997).

Since we observe a significant degree of autocorrelation in our trade initiation variable, we opt for

the GMM-approach suggested by Madhavan et al. (1997) that does not restrict autocorrelation in the

order flow to be zero. One potential drawback of this approach is the assumption of a constant trade

11Order processing costs include costs like telecommunications costs or exchange fees that have to be paid by the liquidity
provider. Inventory costs arise for risk-averse liquidity suppliers that bear the risk of having to build up unwanted inventory
positions to accommodate public order flow. Asymmetric information costs arise if traders with private information are
active in the market and trade on their information. In order to balance losses to informed traders, liquidity providers may
charge a spread. Compare also the surveys by Madhavan (2000) and Biais, Glosten and Spatt (2005).

12Additional to EUAs, a market for Certified Emissions Reductions (CERs) - assets, which arise from energy-reducing
projects in developing countries - has been created.
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size. Since median trade size is equal across exchanges, we believe that the model can be applied to

our setup.

Let Pt denote the transaction price of our underlying futures contract at time t, xt is a trade indi-

cator variable with xt = 1 if the transaction at time t is buyer-initiated and xt = −1 if it is seller-

initiated.13 We assume that purchases and sales are (unconditionally) equally likely, so that E[xt]=0

and Var[xt]=1. We assume that beliefs about the asset value might change due to new public infor-

mation announcements that are not associated with the trading process and due to the order flow that

provides a noisy signal about the future value of the underlying asset. The innovation in beliefs be-

tween t− 1 and t from dissemination of public information is denoted by ηt which is an i.i.d. random

variable with mean zero and variance σ2
η . Buy (sell) orders are considered as a noisy signal about an

upward (downward) revision in beliefs given that there are some traders with private information in

the market. We assume that the revision in beliefs (or price impact) θ ≥ 0 is positively correlated

with the innovation in order flow xt −E[xt|xt−1], such that the change in beliefs due to order flow is

θ(xt−E[xt|xt−1]). Finally, let µt stand for the post-trade expectation of the “true” value of the stock

conditional on public information and on the information revealed by the trade initiation variable. µt

evolves according to

µt = µt−1 + θ(xt − E[xt|xt−1]) + ηt. (2.1)

We assume that the price generating process Pt is determined from the unobserved process (2.1) by

adjusting for the costs of providing liquidity services φt (order processing costs, baseline inventory

costs or mark-ups from non-competitive pricing). φ captures the non-permanent (transitory) effect of

order flow on prices. Quotes are ex-post rational and are conditional on the trade initiation variable

being a buy or a sell order, such that a bid-ask spread emerges (P at = [Pt|xt = 1] > P bt = [Pt|xt =

−1]):
Pt = µt + φxt + ξt = µt−1 + θ(xt − E[xt|xt−1]) + φxt + ηt + ξt, (2.2)

with ξt being an independent and identically distributed random variable with mean zero. To estimate

Equation (2.2), we need to make assumptions about the dynamic behavior of the order flow. We

assume a general Markov process for the trade indicator variable where γ = Pr[xt = xt−1|xt−1]

denotes the probability that a trade at the ask (bid) follows a trade at the ask (bid). Positive serial

correlation in the order flow arises for a variety of reasons such as the breaking up of orders or price

continuity rules, leading to γ > 0.5. Let ρ denote first order autocorrelation of the stationary trade

13Compare Madhavan et al. (1997), pp. 1039.
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indicator variable xt, i.e. ρ = E[xtxt−1]/V ar[xt]. It is straightforward to show that ρ = 2γ − 1 such

that autocorrelation in the order flow is an increasing function of the probability of a continuation.

In order to estimate Equation (2.2), we need to compute E[xt|xt−1], i.e. the conditional expectation

of the trade initiation variable given public information. It can be easily seen that E[xt|xt−1] =

ρxt−1.14 Now we only have to substitute out the unobservable belief µt−1 of Equation (2.2) to obtain

an estimable equation. We can do so by noting that µt−1 = Pt−1 − φxt−1 − ξt−1 and obtain

Pt − Pt−1 = (φ+ θ)xt − (φ+ ρθ)xt−1 + et, (2.3)

where et = ηt + ξt − ξt−1. In the absence of asymmetric information and transaction costs, the price

follows a random walk process. In the presence of frictions, movements in the price Pt reflect order

flow and noise induced by price discreteness as well as public information news. From Equation (2.3),

we see that the implied bid-ask spread at time t is equal to P at − P bt = 2(φ+ θ).15

2.4.2 Estimation Approach

Analog to Madhavan et al. (1997), we estimate Equation (2.3) by GMM as an elegant way to account

for autocorrelation of the error term and for possible conditional heteroskedasticity. We estimate the

model using standard orthogonality conditions and make use of the definition of the autocorrelation

parameter ρ = E[xtxt−1]/V ar[xt] as an additional constraint to separately identify our two parame-

ters of interest θ (asymmetric information component) and φ (transitory spread component).16

2.4.3 Estimation Results

This section contains the results of GMM estimations of Equation (2.3) for the different contracts

traded on ECX and Nord Pool. In order to obtain comparable results for the complete trading peri-

ods, we estimate the model using observations starting from the calender month, in which we have

observations for both exchanges until the last common trading day of the contracts. As stated before,

we also exclude overnight returns.17 We furthermore only report results for estimations with at least

100 observations. To get a first intuition on liquidity at both exchanges at the contract level, Table 2.3
14Since E[xt|xt−1 = 1] = Pr[xt = 1|xt1 = 1] − Pr[xt = −1|xt1 = 1] = γ − (1 − γ) = ρ and analogously

E[xt|xt−1 = −1] = −ρ.
15P a

t − P b
t = (φ+ θ) · 1 − (φ+ θ) · (−1) = 2(φ+ θ).

16Note that the GMM estimation parameters are identical with OLS parameters.
17The exclusion of overnight returns drastically reduces the number of observations especially for the least liquid Dec07

contract on Nord Pool. Results from including overnight returns are similar.
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Table 2.3: Estimated half spreads for the common sample periods

The table depicts estimated half spreads ŝ/2 = φ̂ + θ̂ in Euro and percent for the four contracts on ECX and Nord Pool.
Results are obtained by GMM estimation of Equation (2.3) under the given moment conditions. Estimation periods for the
Dec05, Dec06, Dec07, Dec08 contracts are 05/01/2005-12/01/2005, 07/01/2005-12/01/2006, 06/01/2005-12/03/2007 and
05/01/2006-12/28/2007, respectively.

Contract ECX Nord Pool t-stat.
ŝ/2 Adj. R2 Obs. ŝ/2 Adj. R2 Obs.

Dec05 0.0624 0.21 2 256 0.0750 0.18 501 -0.98
Dec06 0.0531 0.17 8 011 0.0877 0.09 1 266 -3.06∗∗∗

Dec07 0.0323 0.06 5 197 0.0487 0.12 296 -1.79∗

Dec08 0.0284 0.17 23 482 0.0582 0.25 2 248 -9.38∗∗∗

provides an overview of estimated half spreads in Euro, ŝ/2 = φ̂ + θ̂, for each instrument estimated

over the whole common sample period.

It can be seen that for each contract estimated half spreads on ECX are significantly lower than

on Nord Pool except for the Dec05 contract.18 As 2005 was the initial trading year for both trading

platforms, the finding of no significant differences in the first traded contract, Dec05, might not be

surprising. The subsequent gradual decrease in spread magnitude for the following contracts on ECX

is consistent with a maturing and expanding market. Interestingly, the pattern is slightly different

on Nord Pool. While for the Dec05 contract spreads are of similar magnitudes, the relative distance

increases over Phase 1. Additionally, absolute estimated half spreads do not monotonically decrease

over the differing contracts. Since it seems plausible to detect more frequent price updating on the

exchange with lower bid-ask spreads, we expect ECX to be the leader with respect to price discovery,

the second part of our study. However, if differences in bid-ask spreads stem from the presence of a

higher probability of informed trading on Nord Pool relative to ECX, results might be the other way

around.19

To improve our understanding about how liquidity measured by traded bid-ask spreads has de-

18As estimates are based on non synchronized data, i.e. on different trading frequencies, it is not possible to directly
compare spread magnitudes in a statistical sense. In order to be able to make a statement, we conduct a t-test of equality
of estimated half spreads across exchanges. For the t-test, we assume independent samples with a different sample size and
variance. The t-statistic is computed as

t =
ŝ/2ECX − ŝ/2NordPoolp

σ̂2
ECX + σ̂2

NordPool

,

where σ̂2 is the variance of the estimated half spread for the respective market. *,**, and *** denote statistical rejection at
the 10, 5, and 1 percent levels, respectively.

19Compare also Hasbrouck (1995), p. 1184.
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Table 2.4: Estimated half spreads for the most liquid years and its quarters

The table depicts estimated half spreads ŝ/2 = φ̂ + θ̂ in Euro and percent for the four contracts on ECX and Nord Pool
by the most liquid years and by its calendar quarters. Results are obtained by GMM estimation of Equation (2.3) under the
given moment conditions. Percentage spreads are obtained by dividing the estimated half spread by the median price level
of the estimation period. Estimation periods are as indicated with e.g. Q3 2006 denoting July to September 2006. For Nord
Pool and ECX, the last estimations for the Dec05 contract are from September to December of the respective year. For ECX,
estimates for the third quarter 2007 (Q3 2007) are from June to September 2007. Results with less than 100 observations
are not depicted.

Contract ECX Nord Pool
ŝ/2 in % Adj. R2 Obs. ŝ/2 in % Adj. R2 Obs. t-stat.

Dec05 2005 0.0624 0.27 0.21 2 256 0.0750 0.33 0.18 501 -0.98
Q2 0.0614 0.31 0.29 445 0.0594 0.31 0.20 206 0.17
Q3 0.0769 0.34 0.24 1 240 0.0933 0.40 0.18 270 -0.76
Q4 0.0418 0.19 0.14 1 093 0.0657 0.29 0.24 156 -1.99∗∗

Dec06 2006 0.0512 0.31 0.18 7 832 0.0890 0.54 0.08 1 140 -3.21∗∗∗

Q1 0.0448 0.17 0.24 2 032 0.0810 0.30 0.28 223 -3.34∗∗∗

Q2 0.0797 0.50 0.20 2 625 0.1252 0.79 0.07 503 -1.74∗

Q3 0.0362 0.22 0.25 1 493 0.0587 0.36 0.25 286 -3.20∗∗∗

Q4 0.0303 0.32 0.14 1 682 0.0347 0.32 0.16 128 -0.52

Dec07 2007 0.0178 1.42 0.21 2 412 0.0246 2.05 0.10 184 -1.06
Q1 0.0213 1.02 0.23 1 636 0.0322 1.34 0.12 122 -1.30
Q2 0.0118 2.19 0.22 572
Q3 0.0059 4.53 0.18 154

Dec08 2007 0.0266 0.13 0.26 21 292 0.0563 0.26 0.25 216 -9.67∗∗∗

Q1 0.0404 0.27 0.30 3 333 0.0775 0.50 0.31 263 -4.05∗∗∗

Q2 0.0321 0.15 0.27 4 944 0.0696 0.31 0.28 722 -6.09∗∗∗

Q3 0.0216 0.11 0.27 7 303 0.0608 0.30 0.28 507 -6.86∗∗∗

Q4 0.0205 0.09 0.27 5 712 0.0315 0.14 0.20 724 -4.27∗∗∗

veloped over time we subdivide the estimation periods into finer time intervals. Table 2.4 shows the

development of estimated half spreads in Euro and percent for the most liquid trading year and its

calendar quarters. In case that there are less than 100 observations, the preceding month is included

into the analysis as indicated at the bottom of the table. If there are still not enough observations, no

estimation results are reported.

At the very beginning of trading (Q2 and Q3 of 2005), the relative difference of spreads for the

Dec05 contract on Nord Pool and ECX is small. In the fourth quarter (Q4) of 2005 spreads start

to differ significantly. Estimated transaction costs on ECX are lower than on Nord Pool, except for

the Dec07, the least liquid futures contract. It can be observed that spreads vary over time on both

exchanges. The decreasing trend in absolute terms for all contracts is only broken twice. A temporary

increase in the third quarter 2005 might be linked to the surge in oil and gas prices related to damages
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caused by the hurricanes Katrina and Rita in September 2005 and it may be related to the volatility

increase in the market in July 2005. The increase in the second quarter (Q2) 2006, the quarter with the

highest absolute and percentage spreads for all contracts traded at that time, can be clearly linked to

the market breakdown when the significant over-allocation of EUAs became public at the end of April

2006.20 Percentage half spreads that are reported in columns 4 and 8 of Table 2.4 generally move in

line with absolute spread magnitudes. Only for the Dec07 contract percentage spreads are increasing

while absolute spreads decrease since the market price fell to almost zero.

As our model allows us to decompose the estimated spreads into an asymmetric information (θt)

and a transitory component (φt), Table A.12 in Appendix A.1 provides the decomposition of the

spreads that are displayed in Table 2.4. We observe that for both exchanges the asymmetric informa-

tion component θ̂ is significantly positive and constitutes by far the larger share of the traded spread.

Note that the transitory component φ̂ is very small and sometimes even negative, especially for the

Nord Pool contracts. Often it is not significantly different from zero.21 One possibility to circumvent

the negative sign of φ̂ is to set ρ and hence E[xt|xt−1] equal to zero and thus ignore autocorrelation

as other trade indicator models do (see e.g. Glosten and Harris (1988)). Thereby, the magnitude of

estimated half spreads does not change and we observe positive transitory components that are in most

of the cases significant. However, the permanent component still accounts for the much larger share

of the estimated half spread. Thus, both approaches yield qualitatively similar results such that the

assumption about the conditional expectation does not alter our conclusions.

For all contracts there is a (local) peak in the permanent share in the second quarter of 2006. Hence,

it appears that bid-ask spreads charged by liquidity providers in the European CO2 market are mainly

charged as a protection against losses to informed traders (see e.g. Bagehot (1971) or Glosten and

Milgrom (1985)) and only to a marginal extent as a compensation for order processing or inventory

costs. Given the extensive amount of uncertainty in the market about the development of price drivers

as energy and fuel prices or about regulatory issues concerning future National Allocation Plans and

the use of project based EUAs (CERs) as well as private news on the installation level, this result is

not surprising.

As a last exercise, we assess the intraday pattern of estimated bid-ask spreads. Figure 2.4 plots

intraday half spreads for both platforms again estimated over the full common sample period against

20Quarterly results for ECX for the Dec07 and Dec08 contract are available from the authors upon request.
21Note that estimating the model by OLS and accounting for serial correlation by the use of Newey-West standard errors,

significance levels slightly increase.
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Figure 2.4: Intraday pattern of estimated half spreads

The figure displays intraday pattern of estimated half spreads on ECX and Nord Pool separated by the four contracts.
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trading hours. The intervals of the day that we use for estimations are from 08:00 to 09:59, from 10:00

to 11:59, from 12:00 to 13:59, and from 14:00 to 15:29 for ECX and Nord Pool. Since trading on

ECX takes place until 18:00 CET, for ECX the last intraday estimates are from 15:30 to 18:00.22 If

the market processes information or resolves uncertainty during the trading day, we would expect to

see spreads decline in the course of trading as observed in other markets.23 Investigating the patterns

in Figure 2.4, we observe that half spreads for the first two trading hours are always higher than for

the last trading interval at the respective exchange. Considering e.g. the Dec06 contract, on average,

the trading day on ECX (Nord Pool) starts with an estimated half spread of 0.06 Euro(0.10 Euro) and

closes with a half spread of 0.05 Euro (0.07 Euro).

Regarding the share of the permanent spread component relative to the total spread, we find on

ECX that except for the Dec07 contract, asymmetric information costs charged by liquidity providers

decline over the course of the trading day.24 For Nord Pool, however, no clear-cut picture emerges.

22Note that results are not affected by the choice of time intervals.
23See e.g. Madhavan et al. (1997) and the discussion in Biais et al. (2005)
24Results are available from the authors upon request.
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If the market development continues and overall uncertainty decreases in the future, we expect bid-

ask spreads to decrease over the next trading phase 2008-2012 to levels close to 0.01 Euro. Overall,

the development of transaction costs speaks in favor of a maturing market, in which traded volumes

and trading intensity increase over time while transaction costs fall. Continuing from very low spread

levels at the end of 2007, the EU ETS seems to be on a good way with respect to the functioning of

organized EUA trading.

2.5 Price Discovery

In this section we want to determine which exchange is the first to process incoming information into

prices. Note that the econometric model that we are going to apply in this section is not related to

the bid-ask spread analysis from the previous section. However, the previous results may give some

intuition for the expected outcomes with respect to price discovery.

Following common practice in the literature on financial and commodity markets, we approach

the question of price discovery by specifying a vector error correction model (VECM). We proceed

by describing the econometric methodology before applying it to the EUA futures market making

use of high frequency data. As detailed above, observing lower transaction costs and higher trading

volumes on the platform ECX, our prior is to expect a leading role for ECX. Correspondingly, before

specifying an ECM, we use a conservative matching method that disfavors ECX, which we labeled

earlier as NP-Match, in order to be sure that results are not driven by the use of newer ECX prices

compared to Nord Pool.

Generally, the use of high frequency data is only more appropriate compared to daily data if events

in the market under examination are also of high frequency. To obtain an intuition on whether this

is the case, we compute the fraction of zero returns from one matched transaction in one market to

the next one. For the matching approach favoring Nord Pool (NP-match), the fraction of zero returns

for Nord Pool ranges from 0.19 to 0.34 for the different contracts. For ECX values are higher and

range from 0.38 to 0.45. Compared to more mature markets, these figures are rather high. However,

apparently there is more information in intraday data compared to daily data such that there is reason

to use data of highest frequency.25

25Considering e.g. our third matching approach as suggested by Harris et al. (1995), figures are lower and range from
0.15 to 0.29 for Nord Pool and from 0.10 to 0.18 for ECX. These magnitudes can also be found on more mature financial
markets.
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2.5.1 Methodology

Cointegration and Error Correction

Generally, price discovery is the process by which markets attempt to find (discover) equilibrium

prices by incorporating new information.26 In case that an identical asset is traded at the same time in

several markets, due to no-arbitrage arguments there should be no significant price differences across

the markets. Formally, this means that there is an equilibrium price of the asset, which is common

to all markets, and the sources of its price variation are attributed to different markets. While market

efficiency implies that new information is impounded instantaneously into prices, markets process and

interpret news at different rates (e.g. due to institutional factors such as transaction costs) and thus

disequilibria occur, especially in an immature market like the EU ETS.

Explicitly, in our case of two markets this means that the two prices may be driven in a fundamental

sense by one market, which is the price leader whereas the other market acts as a price taker. The price

leader thus incorporates news faster into prices than the other market. Hence, returns on this market

should lead the returns on the other market.

To investigate leadership in the EUA futures market, we apply two relative measures of price

discovery which both use the VECM as their basis. Hence, we elaborate on the procedure by Engle

and Granger (1987) showing that a VECM framework is appropriate for cointegrated time series.27

The idea behind cointegration is that while two (or more) time series are non-stationary I(1) processes,

they do not drift too far away from each other, such that their difference will be stationary. In that

case, a proportion of the deviation from the equilibrium path in one period is corrected in the next

period – the EC mechanism.28 Thus formally, returns should be represented by a VECM of the form

∆pt = µ+
K∑
k=1

Γk∆pt−k + αβ′pt−1 + εt (2.4)

where pt = (pECXt , pNPt ) are the log futures prices on ECX and Nord Pool, µ and α are (2×1) vectors

of parameters, Γk are (2×2) matrices of parameters, andK is the lag-length, which will be determined

by the Schwarz criterion. εt is a (2×1) error vector with mean zero and variance-covariance matrix

26It has been argued that the process of price discovery in security markets is one of the most important products of a
security market (cf. Hasbrouck (1995), p. 1175.)

27Note this approach is equivalent to estimating a VAR model of log returns on both exchanges augmented by a so called
error correction (EC) term, i.e. a term including the difference between lagged prices on both exchanges.

28The relationship between ECM and cointegration was first pointed out in Granger (1981). A theorem showing precisely
that cointegrated series can be represented by an ECM was originally stated and proved by Granger (1983).
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Ω, ∆ is the difference operator (e.g. ∆pt = pt− pt−1) and β is the (2×1) cointegrating vector, which

is in our case equal to (1 -1)’.29 In this model the current returns are then explained by (i) the past

returns on both markets (short-run dynamics induced by market imperfections), and (ii) the deviation

from the no-arbitrage equilibrium (long-run dynamics between the price series), i.e. pECXt − pNPt .30

Consequently, the cointegrating vector defines the long-run equilibrium, while the EC dynamics char-

acterize the price discovery process. Note that the coefficient vector of the EC term δ = (δECX δNP )

is (by construction) orthogonal to the EC coefficient vector α. This coefficient vector is needed to

compute the following two common factor measures for price discovery.

Common Factor Measures

One measure has been introduced by Schwarz and Szakmary (1994) and only regards the EC process,

i.e. only δ is relevant. The other measure has been suggested by Hasbrouck (1995) and additionally

takes into account the variance of the innovations to the common factors of the price series.31

Common Factor Weights (CFW)

Schwarz and Szakmary (1994) argue that the coefficients δECX and δNP in the VECM in Equation

(2.4) represent the permanent effect that a shock to one of the variables has on the system. Therefore

they propose to use the relative magnitude of these coefficients to assess the contributions of the two

trading systems to price discovery.32 Specifically, they propose the measure

CFWECX =
δNP

δNP − δECX
; CFWNP =

−δECX

δNP − δECX
. (2.5)

A high magnitude of δi (i = ECX, NP) in the respective market corresponds to slow information

dissemination. Apart from describing adjustment dynamics, the coefficients measure the speed of

assimilation to discrepancies between the markets. Thus, the common factor weights quantify the

share of total reaction being attributable to one market.

29We did not explicitly estimate but rather pre-specified the cointegration vector since the long-run equilibrium is given
by pECX

t − pNP
t = 0, see e.g. Theissen (2002). This relation holds for our case as we are using discounted price series.

30Compare also Baillie, Booth, Tse and Zabotina (2002), p. 311.
31For a comparison of both measures, see the discussion by De Jong (2002); Baillie et al. (2002).
32A formal justification can be derived from the work of Gonzalo and Granger (1995).
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Information Shares (IS)

The information share approach of Hasbrouck (1995) relates the contribution of an individual market’s

innovation to the total innovation of the common efficient price instead of only focusing on coefficients

of the deviation term. To derive the IS formula, Hasbrouck transforms Equation (2.4) into a vector

moving average (VMA)

∆pt = Ψ(L)et. (2.6)

Its integrated form can be written as

pt = p0 + Ψ(1)
t∑

s=1

es + Ψ∗(L)et, (2.7)

where p0 is a vector of constant initial values, Ψ(L) and Ψ∗(L) are matrix polynomials in the lag

operator, L, and the (2× 2) matrix Ψ(1) is the sum of the moving average coefficients. It is called the

impact matrix as Ψ(1)es (for s = 1, ..., t) measures the long-run impact of an innovation on each of

the prices. Due to the pre-specified cointegration vector β=(1 -1)’ the long-run impact is the same for

both prices. This translates into an impact matrix whose rows are identical. With ψ = (ψ1 ψ2) being

the common (1× 2) row vector of Ψ(1), Equation (2.7) becomes

pt = p0 + ι(ψ
t∑

s=1

es) + Ψ∗(L)et, (2.8)

where ι=(1 1)’ is a column vector of ones. While Ψ∗(L)et simply denotes the transitory portion

of the price change, Hasbrouck defines the first part of Equation (2.8) – the random-walk component

– as the common factor component or the common efficient price in the two markets.33 The common

factor innovations (increments) ψet (for s = 1, ..., t) are the components of the price change that are

permanently impounded into the price and that are presumably due to new information. Thus, we are

interested in this part when analyzing the process of price discovery.

33His specification is closely related to the common trend representation of prices from different markets in Stock and
Watson (1988).
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We observe that the innovations’ covariance matrix Ω is not diagonal as price innovations are

correlated across the two markets. To investigate the proportion of the total variance in the common

efficient price that is attributable to innovations in one of the two markets (hence, its information

share), the variance of the common factor innovations Var(ψet) = ψΩψ′ has to be decomposed. The

Cholesky factorization of Ω = MM ′ can be applied to minimize contemporaneous correlation, where

M is a lower triangular (2× 2) matrix.34 The information shares are given as follows:

Sj =
([ψM ]j)2

ψΩψ′
. (2.9)

There are many different factorizations of Ω. Due to the nature of the Cholesky decomposition, the

lower triangular factorization maximizes the information share of the first market and consequently

minimizes the share of the second market. Thus, by permuting ψ and Ω, upper and lower bounds

for each market’s information share are obtained. Following the literature, we use the mean of the

upper and the lower bound as a unique measure of a market’s information share. As formally justified

by e.g. Martens (1998) and Theissen (2002), the common row vector ψ is directly related to the

coefficient vector of the EC term δ, i.e. ψ1

ψ2
= δ1

δ2
. Together with Equation (2.9) and by noting that

SECX + SNP = 1 the IS can be rewritten as

S1 =
(δ1m11 + δ2m21)2

(δ1m11 + δ2m21)2 + (δ2m2
22)

(2.10)

S2 =
(δ2m22)2

(δ1m11 + δ2m21)2 + (δ2m2
22)

. (2.11)

Both equations show that the IS only depend on the vector α (or its orthogonal vector δ) and Ω.35

They also show that the factorization imposes a greater IS on the price of the first market (unless

m21 = 0, i.e. no correlation between market innovations exists).

34Hasbrouck (1995) states that most of the contemporaneous correlation comes from time aggregation as in practice,
market prices usually change sequentially. As one way to minimize the correlation, he suggests to shorten the interval of
observation and to synchronize the data. However, as this will only lessen but not eliminate the contemporaneous correlation,
he additionally proposes the triangularization of the covariance matrix.

35Note that we use a different matrix indexing than Baillie et al. (2002). With m21 we denote the entry of the second line
in the first column of the matrix M .
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2.5.2 Estimation Results

After applying stationarity and cointegration tests to our price series, we present the estimation re-

sults of price discovery in two parts. The first part describes the results of the VECM estimations,

the second part the information shares and the common factor weights. Note that we applied the

methodology to each data synchronization scheme. As the NP-Match is of highest interest for our

study, we explicitly report its estimation results and only verbally describe deviations from the other

two matches.

Stationarity and Cointegration Tests

Proper interpretation of cointegration models requires that all futures prices contain a single unit root

implying non-stationarity. To test for stationarity we apply the well-known Augmented Dickey-Fuller

(ADF) unit root test as well as the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) stationarity test.36

For both tests the truncation parameter to select the autocorrelation lag length is chosen according to

the Schwarz information criterion. Table 2.5 presents the results of the unit root tests for the whole

sample period for the NP-Match (April 2005 to December 2007).37 For the Dec05 and Dec08 contract

we do not explicitly consider a trend in the unit root test as a visual inspection of the data fails to

provide an indication of a trend (see e.g. Uhrig-Homburg and Wagner (2007)).

With respect to the log price series, ADF tests reject the null hypothesis of a unit root only for

the Dec08 contract on both exchanges. The KPSS tests reject the assumption of stationarity for all

contracts except for Dec06. We conclude that the evidence is in favor of non-stationarity as indicated

by the mostly insignificant ADF and significant KPSS tests, respectively. For the first-differenced

series both tests are almost completely in favor of stationarity, only on ECX stationarity is rejected at

the 10% level for the Dec05 contract. Note that applying the unit root tests to the ECX-Match we get

the same picture as for the NP-Match. For the Harris-Match, the tests clearly indicate non-stationarity

of the log prices and of stationarity for the first differences. Testing for cointegration, we use the

likelihood ratio test procedure proposed by Johansen (1988, 1991). The results indicate that the time

series from Nord Pool and ECX are cointegrated.

36While the null hypothesis for the ADF test is the existence of a unit root, the KPSS test assumes a stationary time series.
37Note that futures trading on Nord Pool started in February 2005, while ECX trading was launched in April 2005.
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Table 2.5: Results for stationarity tests

The table presents the test statistics from Augmented Dickey Fuller (ADF) tests and Kwiatkowski-Phillips-Schmidt-Shin
tests (KPSS) applied to both price levels and the first differences of the time series on ECX (upper panel) and Nord Pool
(lower panel).*,**, and *** stand for rejection at the 10, 5, and 1 per cent levels.

ECX level first difference
ADF KPSS ADF KPSS

log(Dec05) -2.058 0.632∗∗ -25.371∗∗∗ 0.365∗

log(Dec06) -2.444 0.269 -35.306∗∗∗ 0.068
log(Dec07) -1.624 0.318∗ -22.028∗∗∗ 0.076
log(Dec08) -3.340∗∗∗ 3.67∗∗∗ -66.800∗∗∗ 0.224

NP level first difference
ADF KPSS ADF KPSS

log(Dec05) -2.013 0.648∗∗ -25.403∗∗∗ 0.299
log(Dec06) -2.567 0.269 -36.878∗∗∗ 0.068
log(Dec07) -1.613 0.339∗ -21.718∗∗∗ 0.068
log(Dec08) -3.536∗∗∗ 3.690∗∗∗ -69.522∗∗∗ 0.225

Error Correction Model

We apply the VECM derived above to the synchronized high frequency EUA futures log price series.

The VECM in Equation (2.4) can be written as

∆pECXt = αECX +
K∑
k=1

γ11,k∆pECXt−k +
K∑
k=1

γ12,k∆pNPt−k + δECX(pECXt−1 − pNPt−1) + εECXt (2.12)

∆pNPt = αNP +
K∑
k

γ21,k∆pECXt−k +
K∑
k

γ22,k∆pNPt−k + δNP (pECXt−1 − pNPt−1) + εNPt .

The coefficients δECX and δNP determine the speed of adjustment of the respective price towards

the long-run equilibrium levels, which is assured by the no-arbitrage argument. If ECX incorporates

information faster, we expect δECX to be insignificant, while δNP should be significant and bear a

positive sign.

Table 2.6 presents estimated common factor measures of the VECM estimation of the NP-Match
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Table 2.6: Estimation results of the VECM for Phase 1

The table presents the CFW for both markets and for all contracts together with the information shares for ECX. We report
the mean of the upper and lower bound and the corresponding range (difference between upper and lower bound). A ‘++’
or ‘+’ indicates that the coefficients of the error correction vector (δ̂ECX δ̂NP ) are significantly different from 0 at the 5%
or 10% level, respectively. For the Dec08 contract, we only use transaction prices from the year 2007.

Contract EC CFW IS for ECX Obs.
δECX δNP ECX NP Mean Range

Dec05 ++ ++ 0.593 0.407 0.546 0.790 615
Dec06 + ++ 0.811 0.189 0.623 0.725 1433
Dec07 ++ 0.830 0.170 0.714 0.513 413
Dec08 ++ 0.847 0.153 0.644 0.693 2402

for all four futures contracts and covers the common sample period.38 To conserve space, we do not

display the coefficients of the EC term (δECX , δNP ) and of the VAR terms γij,k, and only report the

CFW for both markets. The coefficients’ level of significance is marked by ‘++’ or ‘+’, which indicates

that they are significantly different from 0 at the 5% or 10% level, respectively. Furthermore, the table

depicts information shares for ECX. It reports the mean of the upper and lower bound and the range

(difference between upper and lower bound). Remember that upper and lower bounds are obtained

from changing the ordering in the Cholesky factorization. For the Dec05 contract we include 2 lags,

and for Dec06/ Dec07/ Dec08 we take 8/ 1/ 3 lags, respectively.39

We find that for all contracts in both equations of (2.12) the coefficient of the EC term has the

expected sign and is significant at least in one of the markets. Thus, price discovery takes place.

Apparently, for Dec05 and Dec06 both markets contribute to the process of price discovery. However,

ECX is the clear price leader for the Dec07 and Dec08 contracts. Measuring the markets’ contribution

to price discovery both measures tend in the same direction. We find that for later expiration dates

price discovery increasingly takes place on ECX. These results are in line with the development of

the EUA futures market. As stated in the introduction, Nord Pool was the first platform which started

to trade EUA futures and is thus expected to be the more experienced market for the first months of

trading. ECX joined some time later and managed to attract more liquidity in the course of the time.

To counteract critique of analyzing a too long data sample and to account for structural breaks, we

38As for Dec08 trading activity was very low in 2006, we start the analysis in January 2007.
39We applied the Schwarz information criterion for the whole sample period as well as for three-month intervals displayed

in Table 2.7. As final lag-length we took the maximum.
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zoom into the most liquid trading phase of each contract and divide it into calendar quarters. Note that

due to the lack of observations we start the analysis for the Dec05 contract with the second quarter

and we remove the Dec07 contract from the quarterly analysis.40 The results in Table 2.7 reveal

the following interesting pattern for price discovery: Both measures indicate that ECX’s contribution

peaks in the second (Q2) and third quarter (Q3) compared to the first (Q1) and last (Q4) quarter.

An exception constitutes the Dec05 contract, where in the second quarter price discovery still takes

place on both platforms. To find possible explanations for this behavior, we analyze quarterly trading

activity measured by the average number of daily transaction frequencies and average daily trading

volume. Apparently, Table 2.7 states that the observed price discovery pattern is mostly in line with

the one for trading activity: whenever liquidity is increasing ECX mostly leads the price whereas

Nord Pool’s contribution becomes again observable when transaction frequencies and trading volumes

decline. An exception is the sharp decrease in liquidity after the second quarter for the Dec06 contract,

which did not lead to a change in the CFW. As was stated, this behavior reflects the announcement of

an considerable over-allocation of EUAs at the end of April, which led to a substantial drop in demand

for EUAs and thus to a drop in spot and futures prices. Furthermore, it might be the case that findings

for the last quarter are related to an earlier expiry of Nord Pool contracts compared to ECX futures.

When interpreting our results it should be kept in mind that the construction of our dataset, NP-

Match, puts ECX at a disadvantage and thus favors the less liquid market Nord Pool. Hence our results

are likely to even understate the role of ECX in the process of price discovery. To check the robustness

of our results we estimate the VECM of Equation (2.12) also for the ECX- and Harris-Match. While

results from both matches are even more in favor of ECX they also show that Nord Pool significantly

contributes to price discovery in the first and last quarters of the most active trading year. We hence

conclude that while ECX is the clear price leader in the EUA futures market, our null hypothesis of

no contribution to price discovery by Nord Pool has to be rejected.

2.6 Conclusion

In our chapter we analyzed high frequency data for European Union Emissions Allowance (EUA)

futures for the whole first trading period. Data has been provided by the two most liquid trading

platforms ECX and Nord Pool. After having given a short market overview we addressed the issue

40In case that there are less than 190 observations, the preceding month is included into the analysis as indicated at the
bottom of the table.
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Table 2.7: Estimation results of the VECM for a restricted period, daily transaction frequencies, and
trading volume

The table presents the CFW for both markets and for all contracts together with the information shares for ECX for the
quarters of the most liquid trading year. We report the mean of the upper and lower bound and the corresponding range
(difference between upper and lower bound). A ‘++’ or ‘+’ indicates that the coefficients on the error correction vector
(δ̂ECX δ̂NP ) are significantly different from 0 at the 5% or 10% level, respectively. Furthermore, daily transaction frequen-
cies (TA), and the trading volume are presented. In Q4 for the Dec05 and Dec06 contracts the September is included as
there are less than 150 observations.

Contract EC CFW IS for ECX TA Volume Obs.
δECX δNP ECX NP Mean Range ECX NP ECX NP

Dec05 Q2 2005 + + 0.513 0.487 0.513 0.824 11 4 79.8 34.5 179
Q3 ++ 0.611 0.389 0.563 0.744 23 5 171.7 42.4 326
Q4 ++ 0.133 0.867 0.452 0.897 17 3 141.4 25.8 199

Dec06 Q1 2006 0.565 0.435 0.508 0.940 41 5 415.2 26.2 269
Q2 ++ 0.785 0.215 0.624 0.706 57 9 517.2 68.3 540
Q3 ++ 0.794 0.206 0.626 0.712 30 6 248.3 41.3 340
Q4 + 0.688 0.312 0.547 0.866 47 5 313.0 34.0 278

Dec08 Q1 2007 0.367 0.633 0.485 0.932 77 6 675.2 38.1 307
Q2 ++ 0.920 0.080 0.765 0.461 145 13 966.7 78.5 775
Q3 ++ 0.929 0.071 0.734 0.526 178 10 1296.7 71.3 556
Q4 + ++ 0.683 0.317 0.555 0.831 177 13 1087.4 98.1 764

of market liquidity. We conducted a spread analysis by applying a trade-indicator model. Having

two cointegrated price series we were able to measure the process of price discovery by estimating a

vector error correction model.

Our results revealed that estimated transaction spreads markedly decreased on both exchanges over

time and were lower on ECX than on Nord Pool. With respect to price discovery, we demonstrated that

for the first EUA futures contracts, Dec05 and Dec06, both exchanges contributed to price discovery.

However, for the most recent contracts, Dec07 and Dec08, the more liquid market ECX became the

price leader, especially in phases of high market liquidity but Nord Pool’s contribution was still present

in times of lower transaction frequencies and volumes.

Obviously, our results are not only of academic interest. They indirectly give several market rec-

ommendations. First and most obviously, in order to remain (as second competitive platform) in the

market and not to lose further market share to ECX, Nord Pool should take some action to attract

liquidity. The same is true for other existing market competitors, especially given the large (but de-

creasing) extent of competition from the OTC market. Besides, the sharp increase in trading volumes

over time in this very young market reveals that there may be a lot of profits for other trading platforms

and market participants from entering the (futures) market.
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The development potential of the EUA market is extremely high since the EUA can be considered

as an European and – depending on future regulatory decisions with respect to additional member

states – as a global asset. Low correlations with other financial assets and commodities together with

an increasing range of derivative products have furthermore increased the attractiveness of EUAs as

an asset class. Hence we would expect to see rapidly increasing interest from the banking as well as

the mutual and hedge fund industries in the market such that in the future, compliance trading may no

longer constitute the largest share of EUA trading.

Summing up, together with a rapid expansion of the market for EUAs and CERs, in the near future

we expect to observe an increasing number of platforms that try to participate in the growing and

promising market before seeing a phase of consolidation after which some main trading platforms

will emerge.

Recent developments in the carbon market support these statements. In December 2007 Nord Pool

has announced to merge with the Nordic exchange OMX to attract further liquidity. Besides, EEX

started a cooperation with EUREX in order to increase their market share in EUA futures trading for

the Phase 2 and beyond. Not only already established platforms aimed to expand, also new market

platforms decided to join the market. In spring 2008 the US American Green Exchange, a cooper-

ation of NYMEX and the environmental broker EvolutionMarkets, launched EUA and CER futures

contracts for the years 2008 to 2012. BlueNext, a cooperation between NYSE Euronext and Caisse

des Depots was formed in December 2007. It only specializes in carbon related products that have

been acquired from Powernext.

Thus, carbon indeed becomes an internationally traded commodity and there is awareness of this

steadily growing market. Consequently, the importance of a well functioning market and the guarantee

of smooth trading systems are essential. The instruments we are using in our analysis give evidence

that after having some difficulties at the beginning, the carbon market is now able to fulfill these

requirements. It is possible to track the process of price discovery with the development of the market

and to identify the market platform, which is informationally dominant. Besides, bid-ask spreads can

be used as a benchmark for liquidity. As our study is the first that includes the additional trading year

2007 in which liquidity has increased significantly and that provides intraday transaction prices, we

have the advantage to obtain a more detailed insight into trading patterns compared to prior studies,

which we can use and to investigate efficiency measures.

We conclude that as the design for EUA market platforms seems to work and as at least some form



2.6. CONCLUSION 63

of “operational efficiency” has been achieved in the market, the regulatory authorities can concentrate

more on issues like the initial allocation process for the EU ETS that have not yet been solved for the

upcoming post Kyoto trading period.
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Chapter 3

The Initial Allocation of CO2 Emission

Allowances: An Experimental Study

This chapter seeks an appropriately designed initial allocation mechanism of CO2 allowances
for the third trading period (2013-2020) of the European greenhouse gas emissions trading scheme.
We consider grandfathering, auctions, and combinations thereof and postulate three main criteria
for a viable initial allocation mechanism: information efficiency, allocation efficiency, and incentive
compatibility. Keeping these criteria in mind, we analyze and evaluate four policy-relevant allocation
rules both theoretically and experimentally. Assuming that participating firms engage in myopic
bidding behavior, we demonstrate that only two initial allocation rules fulfill these criteria. For the
two allocation rules that employ grandfathering, a uniform double auction proves to be superior to
a uniform one-sided auction. However, for a rule based solely on auctioning, a uniform one-sided
auction is also an appropriate mechanism, provided that firms do not possess any allowances at the
time of the auction.

3.1 Introduction

The EU-wide greenhouse gas emissions trading scheme (EU ETS) was formally launched in January

2005. Affecting about 50% of Europe’s CO2 emissions and 40% of its total greenhouse gas emissions,

the scheme is predicated upon a finite number of tradable emissions allowances that are allocated

among firms on an annual basis. One allowance entitles the holder to emit one ton of CO2 greenhouse

gases. Firms in possession of more allowances than they need to cover their emissions may sell them

to firms that do not have enough. This mechanism gives firms an incentive to abate emissions where

it is cheapest to do so and thereby the required level of emissions can be reached at the lowest cost.

The scheme consists of trading phases and entails an annual allocation of allowances to participat-

ing firms for the current trading year. Implementing a politically viable initial allocation rule consti-

65
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tutes a major challenge for the scheme’s regulator, which is the European Commission. Currently, the

Commissions is concerned with creating an initial allocation rule for the third trading period of the

EU ETS, also known as Phase 3, which will run from 2013 to 2020.

Our objective is to recommend a viable initial allocation process for Phase 3. To this end, we

examine and evaluate several policy-relevant initial allocation mechanisms for the EU ETS and rate

them according to their conformance to three main criteria: Information efficiency, i.e. the genera-

tion of early and reliable allowance price signals, helps firms to make correct abatement decisions.

Allocation efficiency entails that the firms with the greatest need, i.e. those with the highest abate-

ment costs, receive the allowances. Incentive compatibility means that firms need only consider their

own abatement costs when formulating their individual bidding strategies. Although additional crite-

ria like revenue maximization, political feasibility, and social acceptance also have to be considered,

they are secondary from the firms’ point of view and thus do not constitute the focus of our analysis.

Using both theoretical and experimental frameworks, we compare four different allocation rules in

combination with a secondary market. Our experimental analysis reveals that subjects tend to behave

myopically when deciding on buying or selling allowances in that they only take their own abatement

costs into consideration. Under this bidding behavior, two of the four allocation rules under investiga-

tion fulfill all three criteria: grandfathering (gratis allocation) plus a double uniform auction (in which

firms may act as both buyers and sellers) and an exclusive one-sided uniform auction (buying position

only). The other two allocation rules, i.e. grandfathering plus a one-sided uniform auction, which is

the top contender for Phase 3, and exclusive grandfathering, which was mostly used for Phase 1 and

continued for Phase 2 of the EU ETS, fail to conform to the criteria. Note that the mechanism of a

double auction, whose total auction supply is the sum of the supply issued by the government and

the firms, is principally equivalent to a continuous trading scheme, in which the governmental sup-

ply is offered on trading platforms for allowances at regular and publicly announced time intervals.

The German government uses this modified form of auctioning in order to auction 8.8% of the total

national allowance budget for the years 2008 and 2009 of Phase 2 (Zuteilungsgesetz, 2007).

Conducting a laboratory experiment is a powerful tool to study the economic effects of different

initial allocation mechanisms for CO2 allowances that focus on auctioning. The most important ad-

vantage is that institutions for emission allocation are exogenously changed. Thus, it is possible to

observe the ET market before and then after auctions are introduced into the allocation process, hold-

ing everything else constant. This methodology allows controlling for crucial aspects of the economic
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environment, such as information conditions, market structures or economic trends. This helps to

disentangle the impact of a change in institutions. Besides, control over the decisions environment

makes it possible to identify the theoretically optimal level of abatement (theoretical optimum) in an

experimental ET market and, given those theoretical predictions, to analyze the impact of institutions

on micro behavior. Thus, with a laboratory experiment we can study initial allocation rules that do

not yet exist, at relatively low costs.1

The remainder of the chapter paper is organized as follows. In Section 3.2 we introduce policy-

relevant initial allocation rules and describe the three criteria that they are supposed to meet. Then,

we briefly integrate our study into the existing (experimental) ET literature in Section 3.3. Section

3.4 describes the experimental setup and Section 3.5 formulates theoretical considerations towards

the three criteria. They build the basis of the experimental analysis in Section 3.6, where results are

analyzed, and discussed in detail in terms of compliance with the criteria. The paper ends with a brief

conclusion in Section 3.7.

3.2 Initial Allocation Rules and Criteria

At the end of every February, a certain amount of allowances, i.e. the initial allocation, is allocated

to participating firms for the current trading year according to so-called “National Allocation Plans”.

Typically two types of allocation rules are employed, auctioning and grandfathering (gratis allocation

in proportion to historical emissions), either alone (exclusive scenarios) or in combination (hybrid

scenarios). The EU ETS consists of consecutive trading periods, Phase 1 (2005-2007), Phase 2 (2008-

2012), and Phase 3 (2013-2020). The initial allocation rules for the first two phases are stipulated in

the “ETS Directive”. Accordingly, EU Member States were permitted to auction off up to 5% of their

total allowances in Phase 1 and up to 10% in Phase 2. Four Member States permitted auctioning in

Phase 1, and eight countries are allowing auctioning in Phase 2; in any case, the shares to be auctioned

are well below the allowed maximum shares. A recent proposal for a new Directive by the European

Commission for Phase 3 implies that about two thirds of the total allowances will be auctioned off

initially. Explicitly, operators of energy installations will have to purchase all of their allowances,

whereas industrial installations will probably start with an initial auctioning share of 20% in 2013, to

1For experimental literature with respect to other market institutions than ET, such as labor or financial markets, see
e.g. Falk and Huffman (2007) or Ackert and Church (2001), Ehrhart (2001), respectively. Holt (1989) for example studies
market power in laboratory market institutions.
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be increased to 100% by 2020.

With respect to the auction design itself, it is very likely that authorities will decide in favor of a

one-sided auction mechanism because it is both the most common and easiest format for auctioning

homogenous goods. For instance, in Phase 1 of the EU ETS, Hungary and Ireland conducted static

one-sided auctions; meanwhile, dynamic one-sided auctions have already been applied by the US

market for NOx and by the UK ETS for CO2 allowances. However, in all these markets, the sole

reason for auctioning was to raise revenue to finance administrative costs (Evans and Peck, 2007).

Furthermore, Holt, Shobe, Burtraw, Palmer and Goeree (2007) propose a one-sided auction format to

allocate allowances for the Regional Greenhouse Gas Initiative (RGGI) in the US starting in 2009.2

However, the US Acid Rain Program for SO2 permits – the most prominent ETS before the EU ETS–

conducts static double auctions in order to generate price signals and achieve an efficient allocation

(Cason, 1993; Schmalensee, Joskow, Ellerman, Montero and Baily, 1998). Consequently, a closer

look at the SO2 auctions might be a good source of inspiration for developing an appropriate EU

carbon auction design.

The initial allocation determines the firms’ stock of allowances and consequently influences which

activities the firms will undertake in order to comply with their individual CO2 reduction targets.

Therefore, a viable initial allocation rule should enable firms to abate emissions at different prices

(costs); also, buying and selling allowances at competitive prices should be relatively easy and trans-

action costs ought to be low. The ideal allocation rule should therefore fulfill the following three

criteria (C1 to C3).

(C1) Information efficiency

This criterion is associated with early and “reliable” price signals, which allow firms to prof-

itably invest in cost-efficient abatement measures. A price signal is said to be reliable if it re-

flects the true scarcity of emission allowances in the system. Criterion C1 can only be satisfied

by allocation rules that incorporate auctioning because auctions generate price signals whereas

grandfathering does not. The criterion of correct price signals is essential for planning and re-

alizing abatement projects. Most emissions-reducing investment projects, especially those with

a high degree of energy efficiency, are costly and involve long implementation times. These

projects thus require a long-term planning horizon. Therefore, the initial allocation mechanism

2RGGI is a cooperative effort by Northeastern and Mid-Atlantic states to reduce CO2 emissions in the electricity sector
by means of ET. This program has already agreed to auction at least 25% of the emission allowances in 2008.
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should ideally facilitate and support the generation of early and reliable price signals.3

(C2) Allocation efficiency

This criterion stipulates that the firms with the highest willingness to pay (derived from their

abatement costs) should receive the allowances. In other words, allowances are to be allocated

to these firms above all others needing allowances to comply with their commitment. Since the

allocator is not aware of individual needs and grandfathering does not take them into account,

Criterion C2 can only be satisfied by allocation rules that incorporate auctioning. In addition,

an allocationally efficient auction reduces the necessity for allowance trading, resulting in lower

trading costs, another criterion mentioned e.g. by Stavins (1994) and Cramton and Kerr (2002).4

Ideally, no trading activities are necessary if auctions are implemented by the initial allocation

mechanism only.5 Therefore, the initial allocation mechanism should be designed to support

the generation of an allocationally efficient outcome, which will automatically lowers trading

costs.

(C3) Incentive compatibility

This criterion entails that the initial allocation mechanism should ultimately strive to be incen-

tive compatible, i.e. a firm ought to be able to arrange its buying and selling strategies strictly

according to its marginal abatement costs (MAC), which describe the firm’s private valuation for

one emission allowance. We call this bidding behavior “straightforward” or “myopic”. Firms

that engage in this type of behavior have no incentive to change their bidding strategy, because

they observe the same price level during the auction and trading process. This additional crite-

rion, which we call “stability”, holds automatically when C3 is fulfilled. Obviously, it applies to

auctions only. As a criterion, incentive compatibility is basic and desirable, especially when one

considers that for the majority of firms, participating in the ETS plays a relatively minor role in

their daily business. Thus, successful participation in the ETS should be possible without any

outside knowledge (e.g. about other firms’ characteristics or total scarcity conditions).

3Apart from auctions, the prices generated on the futures markets for CO2 emission allowances can also be considered
as price signals. As auctions might be more relevant to smaller firms that do not have the capacity to speculate in the futures
markets for CO2 allowances, we study carbon auctions only.

4The authors argue that auctions pose an attractive allowance allocation mechanism in the presence of trading costs, as
regular participation in the secondary market incurs higher transaction costs for the firms than sporadic auction participation.

5Moreover, there is evidence that markets are not perfect and that a “helping hand model” is needed to allocate scarce
resources. Ehrhart, Hoppe and Schleich (2006) show that the degree of cost-efficiency in ETS depends on the initial
allocation: the more allowances are initially allocated to the firms that need them most (i.e. the firms with the highest
abatement costs), the higher the degree of efficiency will be.



70 3. INITIAL ALLOCATION OF CO2 ALLOWANCES

3.3 Related Literature

Though the experimental economics literature about ETS is comprehensive, the initial allocation rule

has not been analyzed extensively as an experimental treatment variable. To our knowledge, there

are no experimental studies that address the EU ETS. Early studies observed the performance of

different trading institutions compared to command-and-control instruments in order to determine

whether tradable emission schemes should be implemented or not. In these studies, however, the initial

allocation rule is always treated as a given parameter and never as the object of investigation (e.g.,

Klaassen, Nentjes and Smith (2001); Mestelman, Moir and Muller (1999); Muller and Mestelman

(1994, 1998); Plott (1983)). Later studies concentrated on the implementation of trading schemes with

respect to the initial distribution of allowances among participants when grandfathering is applied

(Ehrhart et al., 2006) or considered the implications of a ban on the banking of allowances (e.g.,

Godby, Mestelman, Muller and Welland (1997); Cronshaw and Brown-Kruse (1999); Cason, Elliott

and Van Boening (1999)). Except for Ehrhart et al. (2006), none of the studies captures the unique

institutional design of the EU ETS.

Of the literature on the SO2 trading scheme, the work by Cason (1993, 1995) is very useful.

He studies the allocation process of SO2 permits via annual sealed bid/sealed offer discriminatory

auctions with the auction rule of a “low-offer-to-high-bid” matching system. By means of a theoretical

model and an experiment, he demonstrates that the implemented discriminatory price rule induces

sellers and buyers to misrepresent their true values of the emission permits (cost for emission control)

and to state lower asking and bid prices, because this increases their trading priority.6 Conducting an

experiment for testing the EPA auction with uniform pricing, Cason and Plott (1996) obtain a higher

efficiency level, a more truthful revelation of underlying values and costs, and thus more accurate price

information. The most recent auction experiments come from Porter, Rassenti, Shobe, Smith and

Winn (2006) for the NOx auctions in Virginia and from Holt et al. (2007) for the US RGGI. They test

several one-sided auction setups. They only analyze the mechanisms with respect to revenue raising

and partially measure allocation efficiency. However, in the aforementioned experimental literature,

which addresses allocation rules for ETS, subjects do not acquire allowances to produce or to satisfy an

exogenously imposed compliance cap. The authors employ a simplified, abstract commodity trading

environment and ignore the opportunity of a resale market after the initial allocation process and the

6The lower the stated bid, the less likely it is that any other seller has a lower bid, which increases the probability of
winning, i.e. sellers’ bids only determine their probability of winning.
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relevance of the existence of an initial allowance endowment (via grandfathering or banking) when

auctions are involved. Furthermore, they do not address the importance of price signals generated by

the different auctions and overlook the importance of an incentive compatible mechanism.

With our analysis we fill the gab in the literature by studying CO2 initial allocation mechanisms

that are embedded in a complete trading system. This holistic approach enables us to account for

the temporal interaction of all of the system’s components: initial allocation, trading, and abatement

decision. Theoretically and experimentally, we provide a situation in which subjects act as profit-

maximizing firms that have to decide on strategies in a stylized trading environment modeled on the

EU ETS.

3.4 Experimental Design

Our experimental design embodies the main features of the EU ETS with some simplifications to

prevent the system from becoming too complex to be controlled. As stated in the introduction, we

analyze a system of initial allocation and trading.7 We conduct four different variations of the initial

allocation rule. All variants are based on the same ET game, which is described below. The four

treatments are presented afterwards.

3.4.1 Emissions Trading Game

One period in our ET game consists of two stages. In stage 1 subjects can buy and sell CO2 allowances

in an auction with an exogenous auction supply and in stage 2 subjects can trade CO2 allowances on

the market. Each subject represents a committed firm that has constant business-as-usual emissions of

CO2 in every period. It is the task of each firm to cover each ton of emissions with the same amount

of CO2 allowances. To do so, each firm has three possibilities: participating in stage 1 and/or stage 2

and/or switching to a more energy efficient technology to abate CO2 emissions (abatement measure).

Each firm has one abatement measure that is characterized by a maximum abatement volume of CO2

and constant marginal abatement costs (MAC). Firms differ with respect to their MAC such that there

are low-, middle-, and high-cost abatement technologies. To be able to participate in the auction

and trading processes at the beginning of the period, each subject is given an individual monetary

7This reflects the situation of Phase 3 in the EU ETS but also other future CO2 markets from countries that have signed
the Kyoto Protocol but so far do not participate in CO2 ET (e.g., Australia, Canada, New Zealand) as well as in voluntary
markets that have been established in e.g. the US, such as the RGGI.
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endowment measured in Experimental Currency Units (ExCU). Additionally, when grandfathering is

part of the initial allocation rule, firms possess an initial stock of CO2 allowances.

Note that if by the end of the period a firm lacks sufficient allowances to meet its CO2 commitment

(level of business-as-usual emissions), the firm’s abatement measure is automatically implemented

to cover any remaining emissions. The abatement costs per lacking ton are given by the subject’s

individual MAC. We decided in favor of automatic abatement in order to simplify the participation

process for the subjects; otherwise, they would have been confronted with an additional decision

problem, i.e. whether to purchase additional allowances or to initiate an abatement strategy. When the

experiment is structured this way, the only decisions the subjects have to make concerns their activity

in stages 1 and 2. This decision situation is repeated five times, i.e. the game consists of five periods,

which are independent of each other. In addition, the game is played by groups consisting of six

participants each. The treatments and subjects’ characteristics are described in detail in the following

section.

3.4.2 Treatments

The treatments differ with respect to the allocation process that takes place at the beginning of every

period. This process regulates how to allocate an exogenously given total quantity of allowances

among the six firms forming one group. Note that this total quantity of allowances represents the

group’s total emissions cap. These allowances are allocated free of charge (grandfathering) and/or

via either a dynamic one-sided auction or a dynamic double auction, both with uniform pricing.8

To determine which allocation configuration meets best the criteria described in Section 3.2, we test

two hybrid scenarios and two single scenarios. The former utilize a combination of grandfathering

(GF ) plus either of the two auction types, i.e. the dynamic one-sided auction (A) or the dynamic

double auction (DA). In the latter two scenarios, allocation is achieved by either grandfathering or

the one-sided auction. All four scenarios are described in more detail below.

Hybrid Scenarios In TreatmentsGF+A andGF+DA, the total quantity of allowances is allocated

via a combination of grandfathering and auctioning. In both scenarios, subjects receive an initial

stock of allowances by means of grandfathering. Then, in stage 1, each subject can acquire additional

allowances by participating in an auction, either a one-sided auction (GF + A), where subjects can

8In the following, the term auction refers to the dynamic uniform auction.



3.4. EXPERIMENTAL DESIGN 73

only buy allowances, or via a double auction (GF + DA), where subjects can both buy and sell

allowances.

Single Scenarios In Treatment GF , the total quantity of allowances is completely allocated by

means of grandfathering at the beginning of the period. In Treatment A, firms acquire allowances

solely by a one-sided auction. Thus, because there is no auction in Treatment GF , the game starts

directly with stage 2 (the market trading process), and in Treatment A, subjects are not granted an

initial stock of allowances.

The requirement of comparability between the treatments is met by having the same total allocated

quantity of allowances per period in all treatments. In the first period 1110 allowances are allocated,

which decreases by 120 allowances in each successive period. Thus, in the fifth (last) period there

are only 630 allowances left to allocate. Each subject emits 200 tons of CO2 in every period. Thus,

for each group of six participants, the total business-as-usual emissions sum up to 1200 tons of CO2.

Consequently, the total required abatement of allowances (i.e. the difference between total business-

as-usual emissions and total allocated quantity) is the same per period in all treatments; in the first

period the amount is 90 tons of CO2, which increases to 570 tons of CO2 in the last period. Thus, in

every period all subjects face the same scarcity situation in all treatments (see Table 3.1).

Table 3.1: Basic characteristics for all treatments

Period 1 2 3 4 5
Total business-as-usual emissions [tons of CO2] 1200 1200 1200 1200 1200
Total allocated quantity [CO2 allowances] 1110 990 870 750 630
Total required abatement [tons of CO2] 90 210 330 450 570

Note that we decided to change (reduce) the total allocated quantity from period to period in order

to prevent subjects from deducing the scarcity conditions, which would be obvious if the total allo-

cated quantity was the same in every period. Table 3.2 displays the breakdown of the total allowances

allocated by grandfathering and/or auctioning according to the different treatments per period.

For the first period of the two hybrid treatments, i.e. GF +A and GF +DA, 960 of the 1110 total

allowances are grandfathered and the remaining 150 represent the exogenous auction supply. While

the auction supply stays constant (150 allowances) over the course of the experiment, the grandfa-

thered amount decreases by 120 in each successive period.
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Table 3.2: Total allocated quantities via grandfathering and auctioning [in CO2 allowances]

Period
Treatment 1 2 3 4 5

Grandfathering GF +A 960 840 720 600 480
GF +DA 960 840 720 600 480
GF 1110 990 870 750 630
A 0 0 0 0 0

Auctioning GF +A 150 150 150 150 150
GF +DA 150 150 150 150 150
GF 0 0 0 0 0
A 1110 990 870 750 630

The double auction (stage 1 of TreatmentGF+DA) and trading process (stage 2 in all treatments)

are both implemented as a dynamic uniform double auction where participants can act as buyers or

sellers with the activity rule of a Japanese auction. That is, the auctioneer continuously raises the price

until demand meets supply. At every price, participants have to signal their willingness to stay in the

auction and to pay (receive) the current price for their demanded (offered) quantity.9 The one-sided

auction (stage 1 of TreatmentGF +A) is implemented analogously but with a demand side, only. For

the detailed implementation of the mechanisms we refer the reader to Appendix B.1.

3.4.3 Subjects’ Characteristics

Table 3.3 summarizes the subjects’ characteristics per period in all treatments. The individual charac-

teristics for the two hybrid scenarios, Treatments GF +A and GF +DA, do not differ.

As stated already, in every period all six subjects of a group face a given emissions commitment

(business-as-usual emissions) of 200 tons of CO2 (for a total of 1200 tons per group) that has to

be covered by CO2 allowances. Besides, except for Treatment A, the individual initial stock of al-

lowances per period is determined by splitting the total grandfathered quantities equally among the

six subjects of a group. For example, in the first period of Treatments GF + A and GF + DA, the

960 grandfathered allowances yield an initial stock of 160 allowances per subject, which reduces to

80 allowances in the last period. Each subject also has an initial monetary endowment that increases

over the course of the experiment, one abatement measure with a maximum abatement volume of

9This definition differs from Friedman (1991). He defines the double auction market as an institution, in which partici-
pants can as an institution in which make and accept public offers to buy (bids) and to sell (asks).
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Table 3.3: Subjects’ characteristics in the treatments

The table depicts subjects’ characteristics per period in the treatments. Single entries denote that the respective characteristic
stays constant in the course of the experiment, whereas a five dimensional entry represents the characteristic values for the
first to the fifth period.

Treatment Business-as-usual
emissions per
period [tons of
CO2]

Initial stock of CO2 al-
lowances from first to last
period

Initial money endowment from
first to last period [ExCU]

Abatement volume
per period [tons of
CO2]

GF + A,
GF +DA

200 160, 140, 120, 100, 80 800, 1200, 1600, 2000, 2400 200

GF 200 185, 165, 145, 125, 105 300, 700, 1100, 1500, 1900 200
A 200 0 800, 1200, 1600, 2000, 2400 200

200 tons of CO2, and constant MAC. In every period, the commonly known MAC distribution of

{3, 6, 9, 12, 15, 18} [ExCU per ton of CO2] is assigned to the six subjects of a group such that in

every period every number is only assigned once. Additionally, the MAC are reassigned from period

to period such that each subject has different MAC in every period.10

With respect to the subjects’ information structure, we distinguish between private and common

information to stay as close as possible to the information structure of firms that participate in the

EU ETS. The subjects’ characteristics, i.e. their initial stock of allowances, monetary endowment,

and MAC, are private information and change in every period.11 All subjects know the size of their

group and the number of periods, the total emissions commitment (total business-as-usual emissions)

in every period, the total initial stock of allowances, the exogenous auction supply (if part of the

allocation), and the distribution of the individual MAC. Individual and common characteristics are

announced at the beginning of every period.12

The subjects’ objective is to maximize their profit in every period. A subject’s profit per period

is given by his individual monetary endowment minus (plus) the value of the allowances purchased

10The individual monetary endowments are calculated such that they were sufficient for firms to acquire the number
of allowances necessary to cover their emissions at the beginning of every period, i.e. only by abatement at the maximal
possible MAC of 18 ExCU and without having to take part in the trading or auction processes. The distribution of individual
MAC was designed to give all subjects approximately the same total abatement costs for the five periods so that they would
receive approximately the same total profit in the theoretical overall cost minimum. Hence, each subject ends up in profitable
situations with relatively cheap as well as with relatively expensive MAC, which is less profitable.

11Because we have modified the distribution of the MAC and the total allocated quantity, we cannot control for learning
effects over the course of the experiment.

12This information structure basically enables participants to calculate bidding and abatement behavior in the cost mini-
mum, i.e. according to the theoretical reference point; see Section 3.5.
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(sold) in the trading and/or auction process minus abatement costs. Note that surplus allowances

become worthless at the end of every period. A subject’s total profit in the game is determined by

summing up his or her profits from every period.

3.4.4 Organization of the Experiment

We conducted the experiment at the University of Karlsruhe, Germany, where 156 students from

various disciplines were randomly selected as participants. 18 subjects took part in each experimental

session. Thus, for each treatment, we ran two sessions with three groups each (see Table 3.4). The

experiment was computerized. Subjects received common written instructions, which were also read

aloud by an instructor. Before the experiment started, each subject had to answer several questions

about the instructions at his or her computer terminal. At the end of a session, subjects were paid in

cash according to their total profits. For the instructions we refer to the Appendix B.3.

Table 3.4: Organization of the experiment

Treatment Number of
groups

Number of firms in
each group

Initial allocation process of total quantity of al-
lowances

GF +A 6 6 Grandfathering followed by a one-sided uni-
form auction

GF +DA 6 6 Grandfathering followed by a double uniform
auction

GF 6 6 Exclusive grandfathering
A 6 6 Exclusive one-sided uniform auction

3.5 Theoretical Considerations

In Appendix B.2 we provide the theoretical framework for the derivation of theoretical reference

points for our experimental game. For this purpose, we develop a general two-stage model, which

also includes our experimental design. Here, we distinguish between two behavior hypotheses: first,

the firms play sophisticated equilibrium strategies, i.e. they take the whole process of grandfathering,

auctioning, and trading into account and are able to correctly estimate the true market scarcity price;

second, all firms behave myopically in the sense that they align their bidding strategies with their

own MAC. Within this theoretical framework, we test our considered allocation rules with respect to
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their compliance with Criteria C1 to C3. Setting the focus on auctioning, we additionally distinguish

between national auctions with a relatively small number of participants and one large (e.g. EU-wide)

auction with many participants, in which a single firm’s impact on the auction price can be disregarded.

In the following we present the results of our theoretical analysis only. For a detailed elaboration we

refer to Appendix B.2. The first result refers to the characteristics of equilibria strategies, whereas the

second one refers to myopic bidding behavior only. For the equilibrium of the two-stage game, we

can state the following result.

Proposition 1 Neither national (one-sided or double) auctions nor large (one-sided or double) auc-

tions generate equilibria capable of fulfilling Criteria C1, C2, and C3 at the same time. However, in

a large double auction in which participants engage in myopic bidding, an additional equilibrium is

generated that simultaneously fulfills C1, C2, and C3. A large one-sided auction is also capable of

fulfilling all three criteria at once, but only if firms do not possess any allowances at the time of the

auction (i.e. no grandfathering or banking).

In other words, whereas national auctions of any sort fail to meet our criteria, certain kinds of

large auctions are capable of fulfilling all three criteria. These include large double auctions in which

myopic bidding strategies occur as well as large one-sided auctions in which firms do not possess any

allowances at the time of the auction. However, none of the allocation rules under consideration is able

to fulfill all criteria if firms play sophisticated equilibrium strategies, which take the entire form of the

game (an auction followed by trading) into consideration. Since the derivation of these equilibrium

strategies is a complex task for the firms, we additionally simplify the game by assuming myopic

behavior.13 That is, we now ask how things might turn out if we were to restrict firms to myopic

bidding strategies, i.e. to straightforward bidding according to their individual MAC as postulated by

Criterion C3. Our theoretical considerations in Appendix B.2 lead us to the following conclusion.

Proposition 2 If firms bid myopically, the one-sided as well as the double auction are expected to

meet Criteria C1, C2, and C3 at the same time so long as the firms are not in possession of allowances.

However, if firms possess allowances at the time of the auction (e.g. via grandfathering or banking),

C1 to C3 are only fulfilled if the double auction format is applied. Both results are independent of the

size of the auction.

13Myopic bidding behavior is also supported by experimental studies, e.g., by Ehrhart et al. (2006).
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Table 3.5 summarizes the compliance of the allocation rules applied in the four treatments with

Criteria C1 to C3 in case of equilibrium and myopic bidding behavior. The presence of a dash instead

of a check mark indicates that the respective criterion cannot be met unconditionally by the allocation

rule. Note that as the criteria effectively concern the auction process only, no inferences can be made

for Treatment GF .

Table 3.5: Evaluation of initial allocation rules

The table displays the evaluation of initial allocation rules with respect to the criteria information efficiency (C1), allocation
efficiency (C2), and incentive compatibility (C3) in the presence of equilibrium and myopic bidding behavior.

Treatment equilibrium myopic
C1 C2 C3 C1 C2 C3

GF +A X - - - X -
GF +DA X X* X* X X X
A X X* X* X X X

* This applies to large auctions with many participants only, in which a single firm’s impact of on the auction price can be
disregarded.

With respect to the stability criterion for the auction process, the allocation mechanism GF + A

obviously has to be considered unstable if subjects bid myopically. In this case the auction price

exaggerates the true market scarcity price, which is also assumed to be the price on the secondary

market. If subjects realize that they have paid too much in the auction, it is assumed that they will

adjust their bids in the next auction. In contrast, for the mechanisms GF +DA and A, subjects notice

that the price in the auction is equal to the one in the trading process and thus there is no incentive to

change bidding strategies. Hence, both allocation rules are considered stable.

Table 3.6 summarizes the theoretical reference prices derived from Propositions 1 and 2. With

respect to information efficiency (C1), we conclude for the hybrid allocations GF +A and GF +DA

that the double auction has to be considered superior to a one-sided auction because it generates

correct price signals even if firms bid myopically. A one-sided auction format is only expected to

yield good price signals if firms do not possess any allowances at the time of the auction (Treatment

A).

For the analysis of our experimental data, the values in Table 3.6 serve as theoretical reference

points for the auction and the market prices in every period. The derivation of the reference prices is

illustrated in detail for the first period in Appendix B.2.
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Table 3.6: Sequence of reference prices in the treatments

Period 1 2 3 4 5
Scarcity price p∗ 3 6 6 9 9
Trading price in all treatments 3 6 6 9 9
“Myopic” auction price in Treatment GF +A 9 12 15 15 15
“Myopic” auction price in Treatments GF +DA and A 3 6 6 9 9
Equilibrium auction price in all treatments 3 6 6 9 9

3.6 Experimental Results

In the following analysis we apply different statistical tests to our experimental data in order to assess

the compliance of the four initial allocation rules with our stipulated Criteria C1 to C3. In Section

3.6.1 we compare prices and volumes in the auction and trading processes as well as abatement costs

to investigate information efficiency (C1), the level of trading costs, and allocation efficiency (C2).14

To investigate stability, in Section 3.6.2 we examine the incentive compatibility (C3) of the allocation

mechanisms by analyzing subjects’ bidding behavior.

3.6.1 Prices, Volumes, and Allocation Efficiency

Prices

When we analyze experimental prices, the relationship with the scarcity price p∗, which is based upon

our hypothetical reference points in Section 5, comes to the fore. In the following, we calculate aver-

age prices by taking the mean of the prices in the five periods of all six groups per treatment. Figure

3.1 presents the sequence of average observed auction and trading prices together with the trajectory

of the scarcity price p∗ (see Table 3.6). An evident deviation from p∗ can only be recognized in Treat-

ment GF + A, where the price of the one-sided uniform auction exaggerates p∗. The exaggeration,

however, tends to decrease over time.15 The trading prices of all treatments stay relatively close to the

sequence of p∗.

To analyze the quality of the observed prices we measure their deviations from the true market

scarcity price p∗ and test if they are significantly different from zero. Table 3.7 summarizes the

14Note that in the experiment we did not explicitly model transfer costs. Thus, we can only take the traded volume as an
indicator for the degree of trading costs.

15A plausible explanation might be that subjects observed that they paid more in the auction than in the trading phase and
thus bid more defensively in the next auction round. However, as mentioned in Section 3.4.2, our experimental design does
not allow us to control for learning effects.
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Figure 3.1: Average observed prices for each treatment

The figure displays average observed auction prices pA, trading prices pT , and scarcity prices p∗ for each treatment.
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Table 3.7: Average observed prices and deviations from the cost minimum

The table depicts average observed auction and trading prices and their deviations from p∗ in ExCU and percent (figures in
brackets) for each treatment.

Treatment Average Price Deviation from p∗

[ExCU per allowance] [ExCU]
p∗ pA pT Auction Trading

GF +A 6.6 10.27 8.13 3.67 (56%) 1.53 (23%)
GF +DA 6.6 6.6 7.80 0.00 (0%) 1.20 (18%)
GF 6.6 - 7.63 - 1.03 (16%)
A 6.6 6.8 7.50 0.20 (3%) 0.90 (14%)

average observed auction and trading prices together with their deviations from p∗, whereas deviations

are presented both absolutely and relatively. The average auction prices in Treatments GF +DA and

A are good price signals for p∗: the average auction price in GF + DA exactly meets p∗ and there

is only a marginal deviation of 0.2 ExCU in Treatment A. Using the Wilcoxon rank-sum test, we

find that neither deviation is significantly different from zero (p > 0.45 for GF +DA and p > 0.25
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for A).16 In Treatment GF + A, however, we observe a statistically significant positive deviation

of 3.67 ExCU (Wilcoxon rank-sum test: p < 0.001). When we compare the price deviations of the

treatments, we obtain significantly higher auction prices in Treatment GF + A than in Treatments

GF + DA and A (Kruskal-Wallis test: p < 0.001; Tukey test: p < 0.05 for both pairwise tests).

Auction prices in Treatment GF +DA do not differ significantly from those in Treatment A (Tukey

test: p >0.05).

With respect to average trading prices, we observe significant deviations from the scarcity price p∗

in all treatments except for Treatment A (Wilcoxon rank-sum test: p > 0.08). However, compared to

the auction price deviation inGF +A, these deviations are rather small (1.53 ExCU forGF +A, 1.20

ExCU for GF + DA, and 1.03 ExCU for GF ,) which is also evident from the relative deviations.

The trading prices of the four treatments do not show significant differences (Kruskal-Wallis test:

p > 0.08).

Result 1 The auction design matters with respect to information efficiency. Only Treatments GF +

DA and A are able to create reliable price signals in the auction and thus meet Criterion C1.

Volumes

Table 3.8 displays the average observed trading volumes in the auction and trading processes together

with the optimal volumes (figures in brackets), which are given by the lowest trading levels needed

to achieve the optimum. Again, we average the five periods for all six groups. Because the auction

volumes are exogenously given in Treatments GF + A and A, we need only analyze the volumes in

the trading process. We observe that significantly more allowances are traded in Treatments GF +A

and GF than in Treatment GF + DA (Kruskal-Wallis test: p < 0.001; Tukey test: p < 0.01 for

both pairwise tests). The argument that the regular participation in the trading process induces higher

transaction costs to the firms than occasional bidding in an auction Cramton and Kerr (2002); see also

Criterion C2) thus constitutes an additional advantage of an allocation rule that stipulates a double

auction such as Treatment GF +DA.

16To receive statistically independent observations, we calculated the average of five periods of one group. As each
treatment is played by six groups, we obtain a sample sizes of six units per treatment for the following statistical tests.



82 3. INITIAL ALLOCATION OF CO2 ALLOWANCES

Table 3.8: Average observed and optimal volumes

The table depicts the average observed and optimal (figures in brackets) volumes in the auction and trading processes.

Treatment Auction Trading
GF +A 150 (150) 163 (154)
GF +DA 265 (154) 90 (0)
GF - 185 (199)
A 870 (870) 145 (0)

Allocation efficiency

Criterion C2 requires allocation efficiency only for auctions. However, as we are studying ETS, we are

also interested in the cost savings created by the possibility of trading emission allowances. For this

purpose, we define indicator ψ as a general measure for allocation efficiency to control for Criterion

C2 and to explore the extent to which the treatments realize cost savings compared to a system that

does not permit the trading of allowances.

ψ =
AC(without ET) - AC(actual)

AC(without ET) - AC(optimum)
=

actual cost savings
maximum cost savings

(3.1)

AC(without ET) denotes the minimum total abatement costs in the theoretical solution without

ET, i.e. firms have to achieve their emissions commitment individually. AC(actual) is the sum of the

actual ET abatement costs, and AC(optimum) represents the total abatement costs in the overall ET

optimum. Thus, ψ is given by the ratio of actual and maximum cost savings and hence is an indicator

for the achieved degree of efficiency in a group.17 Therefore, the higher the value of ψ is, the higher

the degree of cost-efficiency will be.18

For our analysis we calculate ψ after the auction and again after trading in order to determine

whether cost savings have increased. We assume that abatement takes place immediately after the

auction and calculate the values hypothetically. The results are displayed in Table 3.9. Since in

Treatment GF + A only some of the allowances are available in the auctions, the figures in brackets

17The cost-efficiency measure ψ is a well-established measure typically used in ET experiments. For a survey of experi-
mental ET efficiency values, see Muller and Mestelman (1998), p. 230, Table 2.

18The maximum value (= 1) is reached in the overall optimum, where 100% of the potential cost savings are achieved.
A negative value indicates that the group performs worse than in the theoretical solution without ET.
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additionally state the percentage of efficiently allocated allowances within the auction supply, i.e. the

percentage of the auction supply that is bought by those subjects with the highest MAC.

Table 3.9: Degree of cost-efficiency

The table depicts the degree of cost-efficiency ψ in every period after the auction and after trading in all treatments.

Treatment Measured Period Average
after 1 2 3 4 5

GF +A Auction -0.13 0.05 0.13 0.31 0.16 0.10
(-0.17) (0.10) (0.29) (0.80) (0.41) (0.29)

Trading 0.19 0.63 0.87 0.75 0.89 0.67
GF +DA Auction 0.34 -0.10 0.23 0.24 0.69 0.28

Trading 0.47 0.28 0.67 0.60 0.95 0.59
GF Trading -0.12 0.58 0.77 0.82 0.80 0.57
A Auction -2.39 -0.64 0.17 0.47 0.61 -0.35

Trading -0.91 0.38 0.73 0.88 0.82 0.38
Average Auction -0.73 -0.23 0.18 0.34 0.49 0.01

Trading -0.09 0.47 0.76 0.76 0.87 0.55

Taking the average of all six groups and all five periods, the degree of efficiency ψ after the auction

(trading) is equal to 0.01 (0.55), while the values range from -2.39 to 0.69 (-0.91 to 0.95).19 In all

treatments ψ increases from auction to trading and across the periods, and on average, slightly more

than half of the potential cost savings are realized after the trading stage. In the last period after

the trading stage all treatments achieve at least 80% of the potential cost savings. This suggest that

subjects tend to become acquainted with the ETS during the experiment. Consequently, we believe

that Period 5 ought to be considered the most representative period: at that point, subjects can be

assumed to have become familiar with the ET game, and furthermore, the subjects have to exert the

most activity in this period in order to reach their total emissions commitment. Thus, the following

result is derived.

Result 2 Emissions trading leads to greater cost savings compared to the theoretical solution without

emissions trading. In the last period, a large part of these savings is already achieved by the auction

in Treatments GF +DA (69%) and A (61%), as required by Criterion C2.
19Note that a negative degree of efficiency after the auction (especially in Treatment A) does not necessarily imply an

inefficient allocation mechanism. Due to the construction of the measure 3.1, subjects’ excess allowances do not figure into
the calculation. In other words, for those subjects possessing more allowances than necessary for their CO2 commitment
after the auction, we are not able to distinguish between subjects who intend to speculate by selling these excess allowances
later in the secondary market and those who simply misunderstand the ET game and thus cause inefficiencies.
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3.6.2 Bidding Strategies

We now analyze subjects’ bidding behavior with respect to the reservation price for their buying

and selling strategies in the auction and trading stages. According to our hypothesis in Section 3.5,

subjects who play the equilibrium strategy are expected to be geared towards the scarcity price p∗,

while myopically behaving subjects bid according to their individual MAC. First, we study the price

when buyers decide to abandon the buyer position in the auction, i.e. when they drop out. Second, we

investigate if sellers offer allowances at a market price that is above their individual MAC or above

p∗.

Buyer Dropouts

We call the price at which subjects decide to stop submitting a purchase bid the dropout price. Since

a subject in the seller position is locked into this role and cannot abandon it, this analysis focuses on

buyers only. Dropouts are defined as subjects who either quit the process altogether or switch from

the buyer to the seller position.

When utilizing the myopic strategy, a subject drops out of the auction when the current auction

price reaches his or her MAC or MAC+1. At these prices, he or she is indifferent between buying

allowances in the auction and abating emissions. Dropping out at price p∗ or p∗ + 1 characterizes

the equilibrium bidding strategy, because the subject expects to buy or sell allowances at p∗ in the

after market. Figure 3.2 displays histograms of the absolute deviations of the dropout price p from the

two different reservation prices for the auction in Treatments GF + A, GF +DA and A. A glance

reveals that there is always a higher peak at MAC than at p∗. Moreover, the variance is higher for the

equilibrium reference point p∗.

Table 3.10: Percentage of dropouts in the auction that are consistent with individual MAC and p∗

Treatment Auction [%] Trading [%]
MAC p∗ MAC

GF +A 43 27 52
GF +DA 35 15 54
GF - - 63
A 47 38 47
Average 42 27 54
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Figure 3.2: Histograms of dropout prices in the auction

The figure displays histograms of absolute deviations of dropout price p from individual MAC, i.e. MAC-p (upper graphs
a–c) and from p∗, i.e. p∗-p (lower graphs d–f ) in the auctions.
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(f) Treatment A

The second and third columns in Table 3.10 show the percentage of dropouts in the auctions that

are consistent with MAC and p∗. In Treatment GF + A, 43% of the dropout decisions in the auction

are in line with the individual MAC (at MAC or MAC+1), whereas 27% of the dropouts are based on

p∗ (at p∗ or p∗ + 1). As the table indicates, the other treatments show similar results. By statistically

comparing the percentages we find that in Treatments GF + A and GF + DA significantly more

decisions are in line with the MAC than with p∗ (Wilcoxon rank-sum test, p < 0.05).

Additionally, the last column of the table shows the percentage of dropout decisions according to

MAC in the trading process, which constitutes an equilibrium strategy if a single buyer’s impact on

the market price is negligible. It can be seen that on average, more than half of all dropouts in the

trading process are consistent with subjects’ MAC.

Result 3 In the auction and trading processes the majority of subjects initially submits purchase bids

according to individual MAC rather than to the scarcity price p∗.
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Sellers in the Double Auction and Trading

We analyze the behavior of subjects who intend to sell allowances in the double auction of Treatment

GF +DA. We begin by considering the price at which a subject submits a selling offer for the first

time, which is then valid until the end of the process. This price reflects the subject’s willingness to

accept.

As in the previous analysis, we consider a subject’s strategy to be myopic if the offer is submitted

for the first time at a price level of MAC or MAC+1. Analogously, the equilibrium bidding strategy

is characterized by first selling offers set at p∗ or p∗ + 1. Figure 3.3 shows histograms of the absolute

deviations of the price of the first selling offer p from the two different reservation prices for the

double auction in Treatment GF +DA. Again, the graphs clearly suggest myopic selling behavior.

Figure 3.3: Histograms of first selling offers in the auction

The figure displays histograms of absolute deviations from the price of the first selling offer p to individual MAC, i.e.
MAC-p (left graph) and from p∗, i.e. p∗-p (right graph) in the auctions.
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Table 3.11 gives the percentage of the first-time offers that are consistent with the two reference

prices for the double auction in Treatment GF +DA and for the trading phase (stage 2) in all treat-

ments. With respect to the double auction, the statistical analysis confirms the conclusion drawn from

the graphs: the percentage of MAC-based offers (37%) is statistically higher than the percentage of

p∗-based offers (21%) (Wilcoxon rank-sum test: p < 0.05).

Looking at the trading process, we observe that on average, 35% of the subjects start to offer
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Table 3.11: Distribution of submitted offer prices

The table displays the distribution of submitted offer prices p that are consistent with MAC and p∗.

Treatment Auction [%] Trading [%]
MAC p∗ MAC

GF +A - - 42
GF +DA 37 21 38
GF - - 44
A - - 15
Average 37 21 35

at their own MAC. However, we find that many selling bids are submitted at a price level below

the individual MAC. In Treatment A, for example, such bids constitute more than half of the offers

(52%). To shed some light on this phenomenon, we additionally differentiate between sellers who still

require allowances to fulfill their emissions commitment when entering the trading stage and those

who don’t. This gives us a clearer picture: most of the sellers who offer at a price below their MAC

have already fulfilled their emissions commitment in the auction and thus possess more allowances

than they actually need (81%). Since these allowances become worthless after trading, these subjects

have a strong incentive to sell them at any price, even at a price that is lower than their MAC. Most of

the subjects who still require allowances after the auction (only) sell at a price above or equal to their

MAC (90%).

Result 4 In the double auction the majority of subjects submits selling bids according to their indi-

vidual MAC. In the trading process, subjects tend to try to minimize their losses by offering surplus

allowances at any price, even at prices that are lower than their MAC.

Results 3 and 4 strongly support the hypothesis of myopic bidding behavior in the auction process.

When these two results are combined with Result 1, which shows that in TreatmentsGF +DA andA

the auction prices do not differ significantly from the scarcity prices p∗, we conclude that subjects do

not have an incentive to deviate from their myopic bidding strategy over the course of the experiment,

i.e. the two allocation mechanisms are considered to be stable. Thus, Criteria C3, i.e. incentive

compatibility, is indirectly supported. However, this does not hold for Treatment GF + A, where

subjects observe auction prices that significantly exaggerate p∗.
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3.7 Conclusion

In our paper we emphasized the importance of a properly chosen initial allocation rule for the success-

ful implementation of the EU ETS and other future CO2 trading schemes. We believe the implemen-

tation will be successful if the allocation rule meets three criteria: information efficiency, allocation

efficiency, and incentive compatibility. Information efficiency (C1), or the creation of early and reli-

able signals, helps firms to make correct abatement decisions. Allocation efficiency (C2) leads to the

funneling of allowances to the firms that need them most, i.e. to the firms with the highest abatement

costs. Finally, incentive compatibility (C3) enables firms to simply base their bidding strategies on

their own abatement costs. The objective of this paper was to find an initial allocation rule for Phase

3 of the EU ETS that embodies these three criteria. We obtained our results by comparing several

relevant allocation rules in a theoretical and experimental framework.

The most outstanding result of our theoretical and experimental analysis is that the allocation rule

favored by most EU countries for Phase 3 and by other international ET schemes, i.e. grandfathering in

combination with a one-sided uniform auction, does not in fact fulfill the proposed criteria. This rule

does not promote the straightforward bidding postulated by C3. Instead, it encourages behavior that

results in auction prices that exceed the scarcity price and thus does not create reliable signals. Reliable

signals can only be generated if firms take the whole process into consideration. However, participa-

tion then becomes even more complex, and additionally, the postulate of cost-efficiency would likely

be violated. Besides, if there is no complete positive correlation between individual MAC and signals,

the auction allocation is not expected to be efficient. Since exclusive gratis allocation (grandfathering)

also yields inefficiencies, we proposed the following two allocation rules: If grandfathering is to be

part of the allocation process – as planned for the industry sector in Phase 3 – the regulator might be

on the “safe side” by applying a uniform double auction. If exclusive auctioning is possible – as might

be the case for the electricity sector after 2012 – then a uniform price one-sided auction is feasible.

If we assume firms to behave myopically, as observed in the laboratory experiment, both rules fulfill

Criteria C1 and C2. In addition, since the stability criterion holds for both rules, we consider Criteria

C3 to be met also. Thus, we argue that among a pool of several initial allocation mechanisms, these

two scored well and seem to be attractive candidates for Phase 3.

Additionally, with respect to double auctions, our result may also be used as an argument for the

German implementation of allowed auctioning for the years 2008 and 2009 of Phase 2. Here, the

governmental auction supply is offered in equal portions every day on the trading platforms of the
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secondary market at the market price. Obviously, when it comes to practice, the advantages and

disadvantages of both institutions need to be evaluated and tested experimentally in more detail.
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Appendix

A Appendix to Chapter 2

A.1 Components of Estimated Half Spreads

Table A.12: Components of estimated half spreads

The table depicts the estimated transitory component φ̂ and permanent component θ̂ in Euro for ECX and Nord Pool
obtained by GMM estimation of Equation (2.3) under the given moment conditions. Estimation periods are as indicated
with e.g. Q3 2006 denoting July to September 2006. For Nord Pool and ECX, the last estimations for the Dec05 contract are
from September to December of the respective year. For ECX, estimates for the third quarter 2007 (Q3 2007) are from June
to September 2007. Results with less than 100 observations are not depicted. ∗,∗∗, and ∗∗∗ denote statistical significance at
the 10, 5, and 1 percent levels, respectively.

Contract ECX Nord Pool
φ̂ t-stat. θ̂ t-stat. φ̂ t-stat. θ̂ t-stat.

Dec05 2005 -0.0024 -0.60 0.0648∗∗∗ 13.95 -0.0110 -1.10 0.0860∗∗∗ 7.36
Q2 -0.0153∗∗ -2.14 0.0767∗∗∗ 9.08 -0.0113 -1.01 0.0708∗∗∗ 5.59
Q3 -0.0010 -0.17 0.0780∗∗∗ 11.23 -0.0104 -0.68 0.1037∗∗∗ 5.78
Q4 -0.0005 -0.11 0.0423∗∗∗ 8.97 -0.0078 -0.72 0.0735∗∗∗ 5.17

Dec06 2006 0.0016 0.94 0.0496∗∗∗ 20.20 -0.0008 -0.07 0.0898∗∗∗ 7.89
Q1 0.0036 1.62 0.0412∗∗∗ 15.75 -0.0135 -1.32 0.0945∗∗∗ 7.19
Q2 -0.0037 -0.78 0.0834∗∗∗ 13.23 0.0095 0.35 0.1157∗∗∗ 4.79
Q3 0.0019 0.93 0.0342∗∗∗ 13.61 0.0103 1.60 0.0484∗∗∗ 5.20
Q4 0.0059∗∗∗ 2.92 0.0243∗∗∗ 9.14 -0.0213∗∗ -2.22 0.0560∗∗∗ 4.35

Dec07 2007 0.0018∗ 1.80 0.0159∗∗∗ 13.02 0.0015 0.20 0.0231∗∗∗ 3.63
Q1 0.0004 0.28 0.0210∗∗∗ 12.96 -0.0010 -0.10 0.0332∗∗∗ 3.83
Q2 0.0043∗∗∗ 3.03 0.0075∗∗∗ 5.59
Q3 0.0031∗∗ 2.53 0.0028∗∗∗ 2.75

Dec08 2007 0.0025∗∗∗ 5.85 0.0241∗∗∗ 46.30 -0.0064∗∗ -2.20 0.0628∗∗∗ 17.04
Q1 0.0054∗∗∗ 3.76 0.0350∗∗∗ 21.62 -0.0075 -0.77 0.0851∗∗∗ 7.87
Q2 0.0009 0.82 0.0312∗∗∗ 25.39 -0.0123∗∗ -2.16 0.0819∗∗∗ 11.28
Q3 0.0027∗∗∗ 4.76 0.0188∗∗∗ 28.36 0.0052 0.87 0.0556∗∗∗ 7.61
Q4 0.0020∗∗∗ 3.51 0.0186∗∗∗ 28.36 -0.0091∗∗ -2.39 0.0407∗∗∗ 10.28
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B Appendix to Chapter 3

B.1 Design of Dynamic Uniform Double Auction

In the experiment the trading and auction process are implemented as a dynamic uniform double

auction. Players simultaneously submit their supply or demand bids of units in the form of a quantity

bid at an initial price p = 1 ExCU. If the total demand bids exceed the total supply bids, the current

price is increased by 1 ExCU and a new bidding round starts. The bidding continues until total demand

is less or equal than total supply. The units are then allocated at the price of the last or the round before

last. This depends on whether total demand in the last round was equal or smaller than total supply.

Those buyers are rationed who reduced their quantity in the last round. The activity rule says that

each buyer cannot increase and each seller cannot decrease his quantity as the price rises. Hereby we

already equip subjects with monotone bidding strategies which help to bid rationally and prevent from

absurd bidding behavior. During the trading process a buyer can always switch to a seller position or

drop out completely from the trading process whereas this is not possible for the seller position. Once

a selling bit is submitted it is valid until the auction and trading process is over.

B.2 Two-Stage Model

Let us consider a representative country with n committed risk-neutral firms.20 Firm i ∈ {1, . . . , n}

produces business-as-usual emissions (i.e. without abatement activity) of ei > 0 and possesses an

initial stock of allowances si ≥ 0. Let e =
∑

i ei denote the total emission volume and s =
∑

i si

the total stock of allowances. Note that the case of grandfathering is covered by s > 0. Thus, all

statements that refer to a constellation with grandfathering (i.e. Treatments GF + A and GF +DA)

also apply to situations where firms enter the auction with allowances in their possession, e.g. by

banking.

Firms are able to abate emissions and to trade allowances in an auction and on the market. If

firm i abates volume ai , it suffers costs according to its individual abatement costs functions ci(ai)

for which the common properties apply: ci(0) = 0 and ci(ai) > 0 for ai > 0 as well as c′i(ai) =

∂ci(ai)/∂ai ≥ 0 and c′′i (ai) = ∂2ci(ai)/∂a2
i ≥ 0 for all ai ≥ 0.

We use a two-stage model. In stage 1, allowances are traded in an auction with an exogenous

supply of q allowances, where qi denotes the number of allowances traded by firm i in the auction,

20Since we consider an international competitive trading environment, we restrict the analysis to one representative coun-
try.
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∑
i qi = q .21 Several kinds of auctions are possible: e.g. national auctions in each member state or

even one EU-wide auction. In stage 2, firms trade allowances on the international market and decide

on their abatement volume. Thus, the market price is uncertain at stage 1. This model is in line with

the experimental setup. Solving the game by backward induction yields the following optimization

problem.

In stage 2, ET takes place in an international competitive market where the firms are assumed to

act as price takers and trade the allowances at a price p∗. Let zi := ei − si − qi denote the proportion

of firm i’s emissions volume that is not covered by allowances before trading, and di the quantity of

allowances firm i trades on the market, where di > 0 indicates buying and di < 0 selling allowances,

respectively. Hence, firm i’s abatement requirement is given by ai = zi − di . Minimizing i’s costs

ci(ai) + (zi − ai) p∗ yields the first order condition

c′i(ai) = p∗ , (B.1)

which represents the well-known condition that all firms’ MAC are equal to the equilibrium market

price p∗ in a competitive market (e.g., Dales (1968); Montgomery (1972)). Price p∗ expresses the

international scarcity of allowances, and we additionally assume that p∗ also reflects the scarcity

conditions on the national market of our representative country. Firm i’s optimal abatement volume

at p∗, derived from condition (B.1), is denoted by ai(p∗) .

In stage 1, q allowances are offered in a national or international auction. In the (one-sided or

double) auction, firm i carries out its bidding function bi : R+ → R+, which indicates the quantity

bi(p) firm i wants to buy (sell) at a certain auction price p . We impose the restrictions bi(·) ∈ [0, q̄] in

a one-sided auction and bi(·) ∈ [−q̄, q̄] in a double auction, q̄ > 0.

Equilibrium Bidding Behavior

In the following, we provide a general game-theoretic approach for the analysis of our extensive form

game, in which an initial auction is followed by a perfect secondary market. This approach allows for

the evaluation of the considered initial allocation rules with respect to Criteria C1 to C3.

By deriving its equilibrium strategy, a firm takes the whole process of grandfathering, auctioning,

and trading into account. In the (single or double) auction, which is followed by trading, firm i’s

bidding strategy bi together with the combination of other firms’ bidding strategies b−i determines
21We assume that the whole exogenous auction supply is sold in the auction.
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the quantity of allowances traded by firm i and its payment in the auction, denoted by q(bi, b−i) and

r(bi, b−i) , respectively. Since the market price p∗ is unknown at the time of the auction, firm i’s

expected total costs TC(·) are given by

E[TC(bi, b−i)] = E[r(bi, b−i) + ci(ai(p∗)) + (ei − si − ai(p∗)− q(bi, b−i)) · p∗] . (B.2)

Sorting Equation (B.2) with respect to bi leads to

E[TC(bi, b−i)] = E[r(bi, b−i)− q(bi, b−i) · p∗] + E[K] (B.3)

with K := ci(ai(p∗)) + (ei − si − ai(p∗)) · p∗.

Generally, a (Bayesian) equilibrium of the auction is characterized by a combination of bidding

functions (b∗1, . . . , b
∗
n), which simultaneously minimize each firm’s expected costs. Formula (B.3) re-

veals two important properties. First, the solution of the cost minimization problem and thus a firm’s

equilibrium bidding strategy does not (directly) depend on the firm’s abatement costs. Second, there

is a direct dependency on the future market price p∗, which is the same for all firms and unknown at

the time of the auction. Thus, the allowances in the auction take on the properties of a common value

good, which has to be taken into consideration by the firms.22 Calculating the Bayesian equilibrium

presupposes assumptions about bidders’ information structure, i.e. the distribution of individual in-

formation (signals) about the scarcity price p∗ (see, for example, Milgrom (1981); Pesendorfer and

Swinkels (1997)). However, it will become clear in the following that our general model (B.2) already

suffices to evaluate the allocation mechanisms with respect to the three criteria. We find one plausi-

ble property of bidding strategies that applies to our approach and helps to evaluate the allocation

mechanism: if a symmetric Bayesian equilibrium consisting of monotonic bid functions (with respect

to the individual signals) exists, then an efficient auction outcome (C2) presupposes that signals and

MAC are completely positively correlated, e.g. a firm’s signal is equal to its MAC. However, playing

a Bayesian equilibrium would present the firms with a big challenge as it requires outside knowledge,

which is not incentive compatible (C3).

We assume that in addition to knowing their own MAC, the firms have access to other valuable

information that at least allows them to determine if their abatement costs are e.g. above or below

22As a matter of course, emission allowances have the characteristics of private value goods. However, taking into account
the resale opportunity on the market, the value of the allowance is determined by the market price, which is the same for all
firms.
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average. In our stylized experimental framework, each firm is informed about the distribution of MAC

and the scarcity condition, i.e. the difference between the total emission volume without abatement

and the total allocated quantity of allowances. Hence, the bidder is in principle able to compute the

scarcity price p∗, which serves as the best signal for all firms, independent of their own MAC. In

this game there exists a symmetric Bayesian equilibrium where all bidders apply the same bidding

function b∗(·), which stipulates bidding b∗(p) = q̄ for all p ≤ p∗ and, in case of a double auction,

b∗(p) = −q̄ for all p > p∗. On the one hand, these equilibrium strategies are simple and since the

auction price is expected to meet the scarcity price, the equilibrium is expected to generate a reliable

price signal. On the other hand, although carrying out the equilibrium strategies seems to be an easy

task, the firms in fact encounter difficulty in computing their guiding value p∗ because since a lot of

information has to be gathered and processed (distribution of MAC, total market scarcity). Since this

process and the strategies themselves are assumed to be (largely) independent of bidders’ individual

MAC, the incentive compatibility criterion C3 is considered to be unmet. As a result, the auction

mechanism is generally incapable of providing an efficient allocation (C2).

Our theoretical analysis is summarized by Proposition 1 in Section 3.5. Proposition 1 states that

the equilibrium of a (one-sided or double) auction generally cannot fulfill Criteria C1, C2, and C3

at the same time. However, there is one exception (see also next paragraph): in the case of a large

double or exclusive one-sided auction with many participants, in which the impact of a single firm on

the auction price can be neglected, there exists an additional equilibrium in myopic bidding strategies

(i.e. straightforward bidding according to individual MAC).

Myopic Bidding Behavior

A myopically bidding firm behaves in the auction in the same manner as on the market in stage 2,

i.e. it restricts its bidding strategy to its individual MAC. In other words, it uses its MAC as a reserve

bidding price. As a consequence, if all firms behave in this way, the auction already provides for an

efficient outcome (C2). Hence, we have to test for information efficiency (C1). Additionally, we test

for incentive compatibility (C3) in an indirect and weak form in the sense of the stability criterion by

examining a firm’s incentive to deviate from myopic bidding behavior.

We illustrate myopic bidding in our experimental framework, where each firm has one abatement

measure with constant MAC. A myopic firm demands its whole shortage (i.e. the difference between

its emission volume and its stock of allowances) as long as the price is below its MAC. If the price
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exceeds its MAC, the firm stops bidding in the one-sided auction or switches to offering its whole

stock of allowances in the double auction, respectively.

Let us exemplarily consider the first period of our experimental game (Table B.13). Here, a total

of 90 tons of CO2 (the difference between the business-as-usual emissions of 1200 tons of CO2 and

the total allocation quantity of 1110 tons of CO2) have to be abated. Since the maximum abatement

volume of each measure equals 200 tons, the target is achieved cost-efficiently by the cheapest abate-

ment measure (owned by subject 6). Thus, the lowest MAC determine the scarcity price, i.e. p∗ = 3

ExCU per ton of CO2.

What prices arise when firms bid myopically? In the two hybrid systems, each of the six firms

is endowed with 160 allowances (i.e. 960 grandfathered allowances in total), and an additional 150

allowances are offered in the auction, which bring the total sum to 1110. In Treatment A this amount

is exclusively sold via the one-sided auction. If subjects bid myopically by taking their individual

MAC as reservation price, this yields the following outcomes:

• In Treatment GF + A, each firm i bids for ei − si = 40 allowances as long as the price is

below its MAC, which leads to an auction price of pA = 9 ExCU per allowance. The auction

supply of 150 allowances is then allocated to firms 1, 2, 3 (each receives qi = 40 allowances),

and 4 (which receives q4 = 30). Firm 4 then determines the auction price pA > p∗. Note

that if the firms consider pA = 9 as a correct market price signal, firms 4, 5, and 6 have an

incentive to abate their missing quantities after the auction (i.e. a4 = 10, a5 = 40, a6 = 40)

at their individual MAC of 9, 6, and 3 ExCU per ton, respectively. This behavior prevents

cost-efficiency, which is only achieved when firm 6 single-handedly abates the remaining 90

tons.

• In GF + DA, the auction supply of 150 allowances is allocated as before to firms 1, 2, 3,

and 4. Additionally, firm 6, with the cheapest abatement technology, offers its whole stock of

allowances when the price reaches its MAC of 3 ExCU and thus sells 50 allowances to firms 4

and 5 (q4 = 40, q5 = 10), which leads to pA = p∗ = 3.

• In TreatmentA, each firm demands 200 allowances as long as the price is below its MAC, which

leads to pA = 3 . The auction supply of 1110 tons is allocated to firms 1 through 5 (qi = 200)

and 6 (q6 = 110). Firm 6 then determines the auction price.

To summarize, myopic bidding provides for an efficient auction outcome (C2) for all auction for-
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Table B.13: Example of myopic bidding behavior

The table depicts auction price pA , initial stock of allowances si , purchasing auction volume qi , and abatement volume ai

of myopically bidding firms in the first period of Treatments GF +A, GF +DA, and A

Firm GF +A GF +DA A
i ei MACi si qi ai si qi ai si qi ai
1 200 18 160 40 0 160 40 0 0 200 0
2 200 15 160 40 0 160 40 0 0 200 0
3 200 12 160 40 0 160 40 0 0 200 0
4 200 9 160 30 10 160 40 0 0 200 0
5 200 6 160 0 40 160 40 0 0 200 0
6 200 3 160 0 40 160 -50 90 0 110 90
Auction price pA 9 3 3

mats independently of whether firms dispose of allowances or not at the time of the auction. However,

the reliability of the price signal (C1) crucially depends on the latter condition. If the firms do not pos-

sess allowances at the time of the auction (i.e. all emission allowances are allocated via the auction),

this requirement is met for a one-sided as well for a double auction. Otherwise (e.g. with grandfa-

thering before the auction), this is only true for the double auction, whereas the signal of its one-sided

counterpart is expected to exaggerate the scarcity price p∗ .

It is also helpful for our analysis to consider a case in which firms are sufficiently small and a

single firm’s impact on the auction price can be disregarded. This would in fact occur if the European

Commission were to decide on one EU-wide auction. If in this case all other firms bid myopically

in the double auction, a single firm’s set of best reply strategies also contains the myopic bidding

strategy (as well as the equilibrium strategy described in Section B.2), independent of the firm’s stock

of allowances (Treatment GF + DA). In this case a myopically bidding firm has no incentive to

unilaterally deviate from this strategy. Thus, myopic bidding constitutes an additional symmetric

equilibrium, in which allowances are uniformly traded at price p∗ . On this account, we generally

consider the format of the double auction as (almost) incentive compatible (C3). These arguments

also apply to the one-sided auction, but only if it is exclusively used for allocation (Treatment A). If

firms possess allowances at the time of a one-sided auction (Treatment GF + A), myopic bidding

leads to a higher price than p∗, and thus a firm with MAC > p∗ has an incentive to bid less than its

MAC. Thus, the stability criterion has to be considered as violated and Criterion C3 is not fulfilled.

Recapitulating, these considerations allow us to draw the conclusion that under the assumption of
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myopic bidding, the one-sided as well the double auction are expected to meet Criteria C1, C2, and

C3 at the same time so long as the firms are not in possession of allowances. However, if firms possess

allowances at the time of the auction (e.g. via grandfathering), C1 to C3 are only fulfilled if the double

auction format is applied. This result is presented as Proposition 2 in Section 3.5.

B.3 Instructions

In the following we provide the instructions for Treatment GF +A only, as the three other treatments

simply consist of elements of this treatment: trading (stage 2) is organized equally in all treatments

as a dynamic uniform double auction (see Appendix B). Consequently, the instructions for the double

auction in Treatment GF +DA is analog to the one for the trading process. Obviously, at the end of

the auction process subjects pay the auction price instead of the market clearing price.

In designing our experiment we decide against using ecological terms. We introduce a “neutral

good”, labeled by X , and replace the firms’ CO2 emissions commitment by a delivery commitment

of a given quantity of X . The units of X can be traded among the participants. Displaying the initial

allocation process, we either endow firms with X , which is analogous to the initial stock of allowance

in case of grandfathering, and/or conduct an auction. In order to capture the emission abatement

possibility, we allow each firm to produce units of X by itself.
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Anleitung

Sie nehmen an einem Experiment teil, in dem Sie abhängend von Ihren Entscheidungen und den
Entscheidungen der anderen Teilnehmer bares Geld verdienen können, das Ihnen am Ende des Ex-
periments in Euro und anonym ausbezahlt wird. Die Recheneinheiten in diesem Experiment sind
sogenannte Geldeinheiten (GE), wobei 250 GE einem Euro entsprechen. Jeder Teilnehmer trifft
seine Entscheidungen unabhängig von den anderen Teilnehmern an seinem Computerterminal. Kom-
munikation zwischen den Teilnehmern ist nicht erlaubt.

Ausgangssituation

Sie bilden zusammen mit fünf weiteren Teilnehmern eine Sechsergruppe. Die Zusammensetzung der
Gruppe bleibt für den ganzen Verlauf des Experiments dieselbe und es gibt keine Interaktion zwischen
den Gruppen. Das Experiment läuft über 5 Perioden. In jeder Periode stehen Sie und die anderen 5
Teilnehmer der gleichen Entscheidungssituation gegenüber.

In jeder der 5 Perioden repräsentieren Sie sowie auch jeder andere Teilnehmer in Ihrer Gruppe
ein Unternehmen. Am Ende einer jeden Periode haben Sie die Verpflichtung, insgesamt 200 Men-
geneinheiten (ME) eines Gutes X an Ihre Kunden auszuliefern. Zu Beginn einer jeden Periode
verfügen Sie bereits über einen Anfangsbestand des Gutes X. Um die Lieferverpflichtung zu erfüllen,
können Sie zusätzliche ME entweder kaufen oder selbst produzieren. Sie können jedoch auch ME
verkaufen:

• Zunächst haben Sie in einer Auktion die Möglichkeit, zusätzliche ME des Gutes X zu kaufen.

• Im Anschluss an die Auktion findet ein Handel statt, in dem alle 6 Teilnehmer untereinander
handeln können. D.h. Sie können ME des Gutes X von anderen Teilnehmern kaufen bzw. an
andere Teilnehmer verkaufen.

• Nach dem Handel haben Sie die Möglichkeit, das Gut X in Eigenproduktion selbst zu pro-
duzieren. Dies geschieht zu Ihrem individuellen Produktionspreis je ME. Dieser wird Ihnen zu
Beginn einer jeden Periode auf Ihrem Bildschirm bekannt gegeben. Ihre Firma verfügt in jeder
Periode über eine Produktionskapazität von 200 ME des Gutes X

Bitte beachten Sie, sollte ihr gesamter Produktionsbestand am Ende einer Periode die auszuliefer-
nde Menge von 200 ME übersteigen, so hat dies keine Konsequenzen für Sie. Jedoch werden die
überschüssigen ME für Sie wertlos.

In jeder der 5 Perioden verfügen Sie über eine finanzielle Grundausstattung. Diese ermöglicht
Ihnen, in der Auktion und im Handel ME des Gutes X zu kaufen bzw. in Eigenproduktion selbst zu
produzieren.

Im Folgenden wird der eben zusammengefasste Ablauf des Experiments detailliert beschrieben.

Anfangsbestand und finanzielle Grundausstattung

Zu Beginn einer jeden Periode verfügen Sie über einen Anfangsbestand des Gutes X (in ME) und
eine finanzielle Grundausstattung (in GE). Der folgenden Tabelle können Sie für jede der 5 Peri-
oden Ihre Lieferverpflichtung, Ihren Anfangsbestand, Ihren Bedarf an ME des Gutes X sowie Ihre
finanzielle Grundausstattung entnehmen:

Ihre Lieferverpflichtung beträgt in jeder Periode 200 ME des Gutes X.
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Periode 1 2 3 4 5
Lieferverpflichtung 200 ME 200 ME 200 ME 200 ME 200 ME
Anfangsbestand 160 ME 140 ME 120 ME 100 ME 80 ME
Bedarf 40 ME 60 ME 80 ME 100 ME 120 ME
Finanz. Grundausstattung 800 GE 1200 GE 1600 GE 2000 GE 2400 GE

Ihr Anfangsbestand in der ersten Periode beträgt 160 ME des Gutes X. Somit ist Ihr Bedarf 40
ME. In jeder weiteren Periode ist Ihr Anfangsbestand um 20 ME niedriger als in der Vorperiode und
somit erhöht sich in jeder weiteren Periode Ihr Bedarf um 20 ME im Vergleich zur Vorperiode.

Ihre finanzielle Grundausstattung beträgt in der ersten Periode 800 GE und ist in jeder weiteren
Periode 400 GE höher als in der Vorperiode.

Ablauf einer Periode

1. In einer Auktion können Sie ME des Gutes X kaufen.

2. Danach können Sie in einem Handel ME des Gutes X kaufen bzw. verkaufen.

3. Am Ende stellen Sie in Eigenproduktion die noch benötigten ME des Gutes X selbst her, zu
einem Ihnen bekannten, individuellen Produktionspreis.

Im Folgenden werden die einzelnen Punkte detailliert beschrieben.

1. Auktion

In jeder Periode werden 150 ME des Gutes X in einer Auktion versteigert (Auktionsangebot).
Dadurch haben Sie die Möglichkeit, zusätzliche ME zu erwerben.

Die Auktion beginnt mit dem Preis p = 1 GE je ME. Zu diesem Preis können Sie ein Kaufgebot
abgeben. Das Gebot besteht aus einer Menge, die angibt, wie viele ME von X Sie zu dem vorgegebe-
nen Preis p kaufen möchten. Die Summe aller von den Teilnehmern abgegebenen Kaufgebote wird
als Gesamtnachfrage bezeichnet. Ist die Gesamtnachfrage nicht größer als das Auktionsangebot, so
endet die Auktion. Übersteigt die Gesamtnachfrage das Auktionsangebot, wird der Preis p um 1 GE
erhöht und es startet eine neue Auktionsrunde, in der Sie erneut ein Gebot abgeben können. Dies
wiederholt sich so lange bis die Gesamtnachfrage das Auktionsangebot nicht mehr übersteigt. Dann
endet die Auktion und es wird jede ME des Auktionsangebots zum einheitlichen Zuschlagspreis p∗
verkauft.

Der Zuschlagspreis p∗ ist entweder der Preis der a) letzten oder der b) vorletzten Auktionsrunde,
je nachdem ob in der letzten Auktionsrunde die Gesamtnachfrage a) gleich oder b) kleiner dem
Auktionsangebot war. Im Fall a) wird Ihr zuletzt abgegebenes Kaufgebot in voller Höhe bedient.
Im Fall b) wird die Menge des Gutes X, die Sie erhalten, durch Ihr vorletztes Kaufgebot bestimmt.
Dieses wird, abhängig vom überschüssigen Auktionsangebot, vollständig oder teilweise bedient.

Bei der Abgabe Ihres Kaufgebotes ist folgendes zu beachten:

• Als Menge ist nur ein positiver, ganzzahliger Wert zugelassen.

• Von einer zur nächsten Auktionsrunde dürfen Sie Ihre nachgefragte Menge nach Gut X in Ihrem
Kaufgebot nicht erhöhen. Bitte beachten Sie, sollten Sie in einer Runde kein Gebot abgeben,
dürfen Sie in der aktuellen Auktion nicht mehr mitbieten.
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• Ihr Kaufgebot darf das Auktionsangebot, also 150 ME, nicht übersteigen.

2. Handel

Im Anschluss an die Auktion können die Teilnehmer das Gut X untereinander handeln, d.h. Sie
können ME des Gutes X von anderen Teilnehmern kaufen bzw. an andere Teilnehmer verkaufen. Der
Handel läuft analog zu der zuvor beschriebenen Auktion ab. Im Handel können allerdings zusätzlich
zu den Kaufgeboten auch Verkaufsgebote eingereicht werden.

Der Handel beginnt mit dem Preis p = 1 GE je ME. Zu diesem Preis können Sie entweder ein
Kaufgebot oder ein Verkaufsgebot abgeben.

Wie zuvor geben Sie mit Ihrem Kaufgebot an, wie viele ME von dem Gut X Sie zu dem vorgegebe-
nen Preis p kaufen möchten. Die Summe aller von den Teilnehmern abgegebenen Kaufgebote wird
als Gesamtnachfrage bezeichnet. Dementsprechend geben Sie mit Ihrem Verkaufsgebot an, wie
viele ME von X aus Ihrem aktuellen Bestand Sie zu dem vorgegebenen Preis p verkaufen möchten.
Die Summe aller von den Teilnehmern abgegebenen Verkaufsgebote wird als Gesamtangebot beze-
ichnet.

Ist die Gesamtnachfrage nicht größer als das Gesamtangebot, so endet der Handel. Übersteigt
die Gesamtnachfrage das Gesamtangebot, wird der Preis p um 1 GE erhöht und es startet eine neue
Handelsrunde, in der Sie erneut ein Gebot abgeben können. Dies wiederholt sich so lange, bis die
Gesamtnachfrage das Gesamtangebot nicht mehr übersteigt. Dann endet der Handel und es wird jede
ME des Gesamtangebots zum einheitlichen Handelspreis p∗ verkauft.

Der Handelspreis p∗ ermittelt sich analog dem Zuschlagspreis in der Auktion. D.h. p∗ ist entweder
der Preis der letzten oder der vorletzten Handelsrunde, je nachdem ob in der letzten Handelsrunde
die Gesamtnachfrage gleich oder kleiner dem Gesamtangebot war. Im zweiten Fall wird, wie in
der Auktion, Ihre gekaufte bzw. verkaufte Menge durch Ihr vorletztes Kauf- bzw. Verkaufsgebot
bestimmt.

Bei der Abgabe Ihres Kauf- bzw. Verkaufsgebotes ist folgendes zu beachten:

1. Als Menge ist nur ein positiver, ganzzahliger Wert zugelassen.

2. In jeder Handelsrunde dürfen Sie entweder ein Kauf- oder Verkaufsgebot abgeben.

3. Für ein Kaufgebot gilt:

• Von einer zur nächsten Handelsrunde dürfen Sie die nachgefragte Menge nach Gut X in
Ihrem Kaufgebot nicht erhöhen.

• Ihr Kaufgebot darf 200 ME nicht übersteigen.

• Während des Handels ist es möglich, von der Käuferposition in die Verkäuferposition zu
wechseln. Umgekehrt ist dies nicht möglich.

4. Für ein Verkaufsgebot gilt:

• Von einer zur nächsten Handelsrunde dürfen Sie die Menge in Ihrem Verkaufsgebot nicht
verringern. Das bedeutet natürlich auch, dass Sie in dieser Periode nicht mehr aus dem
Handel aussteigen können.

• Ihr Verkaufsgebot darf ihren momentanen Bestand an ME des Gutes X nicht übersteigen,
d.h. Sie dürfen nicht mehr ME anbieten als Sie besitzen.



102 APPENDIX

• Während dem Handel ist es nicht möglich, von der Verkäuferposition in die Käuferposition
zu wechseln.

• Die Verkäuferposition können sie während dem Handel immer einnehmen, auch wenn Sie
in den vorangegangenen Handelsrunden nicht aktiv waren.

3. Eigenproduktion

Am Ende einer jeden Periode müssen Sie 200 ME des Gutes X ausliefern. Falls Sie dafür nach dem
Handel nicht genügend ME des Gutes X besitzen, produzieren Sie automatisch die fehlenden ME zu
einem fest vorgegebenen individuellen Produktionspreis q [GE je ME] selbst. Ihre Produktion-
skapazität für das Gut X beträgt 200 ME. Das heißt, dass Sie jede von Ihnen benötigte Menge
zwischen 1 und 200 ME des Gutes X zu dem fest vorgegeben Preis q je ME selbst produzieren
können. Somit haben Sie also auch die Möglichkeit, ihre Lieferverpflichtung zu erfüllen, ohne an der
Auktion bzw. am Handel teilzunehmen.

Bitte beachten Sie, in jeder Periode besitzt jeder Teilnehmer in Ihrer Gruppe einen anderen Pro-
duktionspreis q, wobei die unterschiedlichen Preise aus der Menge 3,6,9,12,15,18 [GE je ME] gezo-
gen werden. Ihr Preis q wird Ihnen zu Beginn einer jeden Periode auf Ihrem Bildschirm bekannt
gegeben. Ihr Preis q kann sich jedoch von Periode zu Periode ändern.

Auszahlung

Ihr Periodenergebnis berechnet sich wie folgt:

Ihre finanzielle Grundausstattung in dieser Periode
- Ausgaben für die in der Auktion erworbenen ME des Gutes X
- Ausgaben für den Einkauf von ME des Gutes X beim Handel
+ Einnahmen aus dem Verkauf von ME des Gutes X beim Handel
- Produktionskosten

Ihr Gesamtgewinn berechnet sich aus der Summe Ihrer Periodenergebnisse aus allen 5 Perio-
den. Ihr Gesamtgewinn wird in Euro umgerechnet und Ihnen im Anschluss an das Experiment bar
ausbezahlt.

Zusammenfassung

Zusammenfassend sei nun noch einmal kurz der gesamte Ablauf beschrieben:

• Ihr Unternehmen hat in jeder der 5 Perioden eine Lieferverpflichtung von 200 ME.

• Zu Beginn jeder Periode verfügen Sie über einen Anfangsbestand des Gutes X sowie über eine
finanzielle Grundausstattung.

• Der Ablauf einer jeden Periode ist wie folgt:

1. Zuerst wird eine Auktion durchgeführt, in der Sie ME von X erwerben können.

2. Im Anschluss daran findet ein Handel statt, bei dem die ME des Gutes X unter den Teil-
nehmern gehandelt werden können.
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3. In Eigenproduktion produzieren Sie die noch benötigten ME des Gutes X zu einem
vorgegebenen Preis q je ME selbst.

• Von Ihnen in einer Periode zu viel erworbene ME des Gutes X werden für Sie wertlos.

• Am Ende wird Ihnen Ihr Gesamtgewinn bar ausbezahlt.

Bevor das Experiment beginnt, werden Ihnen auf dem Bildschirm einige Fragen zu den Regeln

gestellt. Damit möchten wir sicher gehen, dass alle Teilnehmer die Anleitung verstanden haben.
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