
Software Security Metrics for Malware Resilience

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Hanno Langweg

aus
Bonn

Bonn 2007

2

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-
bonn.de/diss online elektronisch publiziert.

Erscheinungsjahr: 2008

1. Referent: Prof. Dr. Armin B. Cremers
2. Referent: Prof. Dr. Einar Snekkenes

Tag der Promotion: 25.02.2008

3

Software Security Metrics for Malware Resilience
by

Hanno Langweg

Submitted to the Mathematisch-Naturwissenschaftliche Fakultät
on 2007-09-26, in partial fulfillment of the

requirements for the degree of
Dr. rer. nat.

Abstract

We examine the level of resistance offered by a software product against malicious software
(malware) attacks. Analysis is performed on the software architecture. This is available
as a result of the software design process and can hence be used at an early stage in
development.

A model of a generic computer system is developed, based on the internationally rec-
ognized Common Criteria for Information Technology Security Evaluation. It is formally
specified in the Z modeling language. Malicious software attacks and security mecha-
nisms are captured by the model. A repository of generic attack methods is given and
the concept of resistance classes introduced to distinguish different levels of protection.
We assess how certain architectural properties and changes in system architecture affect
the possible resistance classes of a product.

This thesis has four main contributions: A generic model of an operating system from
a security perspective, a repository of typical attack methods, a set of resistance classes,
and an identification of software architecture metrics pertaining to ordered security levels.

Thesis Supervisor: Prof. Dr. Armin B. Cremers
Institut für Informatik III, Rheinische Friedrich-Wilhelms-Universität Bonn

Thesis Supervisor: Prof. Dr. Einar A. Snekkenes
Avdeling for informatikk og medieteknikk, Høgskolen i Gjøvik

4

5

6

Contents

1 Introduction 13
1.1 Software evaluation . 13
1.2 Architecture . 14
1.3 Scope . 14
1.4 Research questions . 15
1.5 Contributions . 15
1.6 Overview . 16

2 Previous and related work 17
2.1 Software and system architecture . 17
2.2 Software metrics . 22
2.3 Security metrics . 27
2.4 Metrics in security evaluation criteria . 34
2.5 System specification . 41

3 Software metrics for resilience 45
3.1 Ranking of security requirements . 46
3.2 Attacker capability metrics . 48
3.3 Generic attacks . 50
3.4 Resistance classes . 52
3.5 Properties of secure software architectures 53
3.6 Software architecture metrics . 57

4 Model of a generic computer system 71
4.1 Modeling approach . 71
4.2 Scope and elements of model . 74
4.3 Architectural description . 82
4.4 Example of an architectural description . 84

5 Formal model: Computer system 87
5.1 Formal specification in Z . 87
5.2 Model definition . 87
5.3 Limitations of the model . 125
Model definitions index . 127

6 Formal model: Attacks 133
6.1 Repository of generic malware attacks . 133
6.2 Security requirements . 165

7

8 CONTENTS

6.3 Attacker capabilities . 166
6.4 Resistance classes . 168

7 Architectural analysis 179
7.1 Architectural changes . 179
7.2 Homebanking with FinTS/HBCI . 179
7.3 Discussion . 189

8 Conclusions 193
8.1 Contributions . 193
8.2 Discussion . 195
8.3 Future work . 196

A Security Checklists 197

B StarMoney architecture 209

References 239

Index 249

Curriculum vitae 251

List of Figures

4-1 Computer system model based on selected Common Criteria security func-
tional requirements . 73

4-2 Executable data components and execute connectors of SCRSetup.exe . . . 85
4-3 Executable data components of SCRSetup.exe interfacing with the local

human user . 86

7-1 Dependency graph for executable modules used by StarMoney.exe, part (i) 182
7-2 Dependency graph for executable modules used by StarMoney.exe, part (ii)183
7-3 Dependency graph for executable modules used by StarMoney.exe, part (iii)184
7-4 Dependency graph for executable modules used by StarMoney.exe, part (iv)185
7-5 Executable data components and execute connectors of StartStarMoney.exe186

9

10 LIST OF FIGURES

List of Tables

2.1 Metric Detail Form according to NIST SP 800-55 [NIS03] 28
2.2 SQM security criteria definitions . 31
2.3 CCI weights for evaluation questions . 31
2.4 Classes in the TCSEC . 35
2.5 Calculation of attack potential (based on table [CEM04] B.8.3) 39
2.6 Rating of vulnerabilities (based on table [CEM04] B.8.4) 40
2.7 EALs and attack potential (based on tables [CC299c] B.19 and [CEM04]

B.8.1, B.8.2 . 40
2.8 EALs and attack potential (based on tables [CC305c] E.24 and [CEM05] B.3 41

3.1 Categories for generic attacks (cf. [CEM04]) 51
3.2 Generic malware attack methods . 52
3.3 Metric M1: Restriction of number of executable distribution sources 60
3.4 Metric M2: Restriction of number of executable components 61
3.5 Metric M3: Percentage of protected executables 62
3.6 Metric M4: Percentage of protected intermediate storage components . . . 62
3.7 Metric M5: Percentage of access control instrumentation 63
3.8 Metric M6: Conformity of access permissions 63
3.9 Metric M7: Percentage of logged invocations 64
3.10 Metric M8: Percentage of authenticity/integrity preserving connectors . . . 64
3.11 Metric M9: Percentage of unlogged security parameters 65
3.12 Metric M10: Restriction of number of components with shared responsibil-

ity (server) . 65
3.13 Metric M11: Restriction of number of components with multiple executable

extensions . 66
3.14 Metric M12: Percentage of trusted path connectors 67
3.15 Metric M13: Restriction of number of privileges 68
3.16 Metric M14: Restriction of number of processes sharing a privilege 68
3.17 Software metrics for secure architectures 69
3.18 Correspondence between architectural properties and security metrics . . . 70

4.1 Common Criteria families used to build model 74
4.2 Unused Common Criteria classes to build model 75

6.1 Necessary capabilities for attacks in repository 167

7.1 Values for security metrics applied to StarMoney 5.0 191
7.2 Comparison of metrics values for StarMoney 5.0 and 6.0 192
7.3 Tool support for Z . 192

11

12 LIST OF TABLES

Chapter 1

Introduction

When you can measure what you are speaking about,
and can express it in numbers, you know something about it;

but when you cannot measure it, when you cannot express it in numbers,
then your knowledge is of a meagre and unsatisfactory kind.

— Lord Kelvin, quoted in [She95]

This thesis has four main contributions: A generic model of an operating system from a
security perspective, a repository of typical attack methods, a set of resistance classes,
and an identification of software architecture metrics pertaining to ordered security levels.

1.1 Software evaluation

Early evaluation of the security of software-intensive systems was based on penetration
efforts by skilled individuals or groups. There was usually little structure and docu-
mentation involved in the process, and tests proved the presence of defects rather than
their absence. Checklists later helped manufacturers and operators to build and configure
systems with respect to typical security requirements.

Security evaluation criteria were developed with the aim of a structured and repeatable
process for determining whether a software system lived up to its security requirements.
Early approaches introduced a hierarchy of requirements, while later attempts focused
more on scales for how rigorous the evaluation process was. Comprehensive evaluation,
especially when done rigorously, is still expensive and requires a lot of time. Reposito-
ries of standardised software attacks barely exist – opposed to other disciplines, e.g., fire
protection or physical security. Much relies on an evaluator’s experience. Often, prod-
uct evaluations are completed when the next version of the product is announced or is
being shipped already. Requirements are often not comparable among evaluations, so an
acquirer faced with two evaluation reports only knows that both products are evaluated,
but not which product can be supposed to be more secure than the other.

State of the industry is to proclaim that ”100% security” will never be available.
While this is provably true as regards detection of computer viruses (cf. [Coh85]), it hides
which scale people have in mind. Security requirements are not a moving target, but
can be ordered. In addition, capabilities of adversaries can be ordered. It is important
to determine protection at the required level of protection against the accepted level of
adversary, in light of the possible attack methods. Under these constraints, a security
level of ”100 %” might indeed be achievable.

13

14 CHAPTER 1. INTRODUCTION

A full rigorous analysis of a software system’s protection is often not feasible. Some-
times, source code or detailed documentation is not available. Sometimes, the system
does not yet exist. Sometimes, one is interested in a class of similar systems. In these
situations an analysis of a system’s architecture provides an acceptable level of detail to
capture fundamental defects in the design.

1.2 Architecture

The architecture of a software application is a result of the application’s design process.
There is no uniform definition of the term ’architecture’. In the Random House Dictio-
nary it is defined as ”the structure of anything” (cited in [Neu00]). The Oxford English
Dictionary [Sim05] offers ”6. Computing. The conceptual structure and overall logical
organization of a computer or computer-based system from the point of view of its use
or design; a particular realization of this.” IEEE standard 1471-2000 [IEE00] on Recom-
mended Practice for Architectural Description of Software-Intensive Systems speaks of
”[t]he fundamental organization of a system embodied in its components, their relation-
ships to each other, and to the environment, and the principles guiding its design and
evolution.”

For our purposes, we define architecture as a system’s implementation-independent
structure given by its components and the relations among them and to the environment.

Architectural weaknesses are then weaknesses in the design of a system (e.g., miss-
ing/weak authentication, bypassing of controls, poor choice of parameters). They are a
mismatch between security requirements and system specification and exist regardless of
the quality of an architecture’s implementation. In contrast there happen to be errors in
an implementation (e.g., buffer overflows, validation errors) that are popular contempo-
rary attack methods.

Attacks on a system’s implementation-independent architecture may be harder to
detect and harder to correct by simple means after deployment.

1.3 Scope

Our focus is on local malicious software attacks, e.g., Trojan horse programs running on
a workstation or desktop computer. We are concerned with security-sensitive programs
used by a local human operator.

Processes might be executed with the same privileges based on a user account. Still,
an attacker can gain advantages from attacking another process. Differences are present
in data that is only available to one process, e.g., from user input, communication with
a server, or a hardware token. Connections could be limited between processes and the
user, a server, or a hardware token. A desktop firewall software could assign different
privileges to a process. The general concept here is that of a protected subsystem (cf.
[SS75]).

An adversary does not have direct physical access and attacks are carried out by other
processes on the device. We are not concerned with distributed or mobile applications;
attacks on distributed systems or via network connections are outside the scope of this
thesis. Local malicious software attacks may take place at the endpoints (nodes) of a
network, though.

1.4. RESEARCH QUESTIONS 15

1.4 Research questions

The question addressed by this dissertation is ”Can resilience against malware attacks be
assessed and rated, and if so, how?”

This leads to six sub-questions:

1. What are possible axes and scales to define a security level?

2. How can a software’s architecture be described, together with the surrounding op-
erating environment and an adversary?

3. Which properties of an architecture can be measured and related to resilience against
attacks?

4. How can attacks be enumerated against which protection is required?

5. What formal basis can be used to express and derive a security level?

6. Which metrics are significant and in which order should they be applied to evaluate
a product?

1.5 Contributions

Resilience against malware attacks can be assessed and rated at the architectural level of
a software product.

An architectural description of a product can be analysed whether it complies with
the desired security requirements in presence of a capable adversary. Metrics for certain
architectural properties can be used to determine if a product could achieve a higher
security level by applying some changes to its architecture.

We can claim that security requirements and attacker capabilities for local malware
attacks can be formally described. Our extended model of a computer system is based
on the Common Criteria for Information Technology Security Evaluation (CC). With it
we are able to describe and analyse attacks of local malicious processes on fundamental
software design vulnerabilities. A repository of generic attacks helps to check whether a
given system complies with a resistance class. Our model is flexible enough to incorporate
future attack methods that are not known today.

We are able to prove that a repository of generic attack methods allows enumeration
of possible attacks. Our derivation of this set of possible attacks on software architectural
vulnerabilities is based on a complete enumeration of attack vectors for a Turing machine.
It is cross-checked with unordered attack catalogues found in evaluation manuals.

Resistance classes are based on a hierarchy of security requirements and a hierarchy
of attacker capabilities. Both hierarchies can be expressed by a lattice. The order on
resistance classes allows to compare similar systems.

In total, 14 software security metrics are identified that represent the degree of com-
pliance of a software architecture with established security principles. The metrics are
associated with resistance classes so that they indicate where changes could be applied to
the product’s architecture to reach a higher resistance class.

16 CHAPTER 1. INTRODUCTION

1.6 Overview

We discuss relevant previous work in the next chapter. Chapter 3 defines resistance
classes and software metrics for resilience of applications against attacks. Our model of
a computer system, based on the Common Criteria for Information Technology Security
Evaluation [CC299b], is developed in chapter 4 and introduced in the formal language
Z in chapter 5. Attacks are formally specified in chapter 6. Metrics are validated and
exemplified in terms of the model in chapter 7. Chapter 8 summarises our conclusions.
The appendices contain checklists covering important mechanisms applicable to protect
against malware attacks and they contain raw data about the architecture of a sample
product.

Chapter 2

Previous and related work

Chapter summary: In this chapter we review the relevant previous work on measuring
malware resilience of software. Software security metrics in particular have not been
researched thoroughly in the past. There have been approaches to measuring properties of
software artifacts in a number of related fields: software and system architecture, software
metrics, security metrics, security evaluation criteria, specification techniques. Principles
of how to design reliable and secure software are based on several decades of experience
with software-intensive systems. Software metrics often focus on properties like software
size and complexity. Frameworks for security metrics give a structure for metrics work,
but do not offer guidance in how to find relevant metrics. Many security metrics operate
on a very abstract level (e.g., ”percentage of machines that are hardened against attacks”)
or on a very detailed level (e.g., length of cryptographic keys). Evaluation criteria offer a
good point to start development of new security metrics. Two drawbacks are that they
typically use a rough classification of adversaries (low, medium, high scale), and often only
the level of assurance is reported, i.e., the quality of the evaluation, not the quality of the
security mechanisms. There are plenty of specification techniques for formally modeling
systems and software. They introduce clarity in the presentation, remove ambiguities,
and support mathematical proofs of software properties.

In the next sections we review relevant work related to software architecture, software
and security metrics, and formal system specification. Literature is selected with a fo-
cus on malicious software and non-distributed computer systems, e.g., workstations or
personal computers.

2.1 Software and system architecture

2.1.1 Saltzer and Schroeder (1973/1975). The Protection of
Information in Computer Systems

This paper is one of the early fundamental efforts in computer security. [SS75] It was first
presented at the 1973 Symposium on Operating System Principles and later revised. It
gives an indication of the state of the art at its time. In its first part, design principles
for secure systems are given that still hold for the development of secure systems today
and have found their way into textbooks. No essentially different design principles have
arisen after this article. The value lies not in each principle itself – most had previously

17

18 CHAPTER 2. PREVIOUS AND RELATED WORK

been published – but in their collection and application to protection.
The eight principles that apply particularly well to protection mechanisms are

1. Economy of mechanism – keep the design as small and simple as possible to facilitate
evaluation and maintenance.

2. Fail-safe defaults – base access decisions on permission rather than exclusion, so
that there is no lack of protection in case of error.

3. Complete mediation – every access to every object must be checked for authority,
so that circumvention of access control is not possible.

4. Open design – the design should not have to be secret to provide security; however,
it can additionally be kept secret.

5. Separation of privilege – two or more conditions must be met before access should
be permitted, so that two or more subjects assume responsibility.

6. Least privilege – every subject should operate using the least set of privileges nec-
essary to complete the task to minimize accidental or deliberate improper use of
privileges.

7. Least common mechanism – minimize the amount of mechanism common to more
than one subject and depended on by all subjects, so that no information is shared
along this mechanism without authorization, and to ease certification of mechanisms.

8. Psychological acceptability – the human interface must be easy to use, so that users
routinely and automatically apply the protection mechanisms correctly.

Two more design principles are named that the authors consider to apply only imperfectly
to computer systems:

• Work factor – the cost of circumventing a protection mechanism, e.g., trying all
possible character combinations of a password. Many computer protection mecha-
nisms are not susceptible to direct work factor calculation, since defeating them by
systematic attack may be logically impossible.

• Compromise recording – mechanisms that reliably record that a compromise of
information has occurred instead of more elaborate mechanisms that completely
prevent loss. This is used rarely, since it is difficult to guarantee discovery once
security is broken.

The authors stress that their design principles do not present absolute rules. Their vio-
lation should indicate potential problems and trigger a careful review of the system, an
approach taken by [Hog88].

2.1.2 Gasser (1988). Building a Secure Computer System

This book on building secure computer systems [Gas88] devotes a whole chapter to princi-
ples of a security architecture. These principles are similar to a selection of the the classical
stated by [SS75]: Minimize and isolate security controls (i.e., Least common mechanism),
Enforce least privilege (i.e., Least privilege), Structure security-relevant functions (cf.
Economy of mechanism), Make security friendly (i.e., Psychological acceptability), Do
not depend on secrecy for security (i.e., Open design).

2.1. SOFTWARE AND SYSTEM ARCHITECTURE 19

2.1.3 Hogan (1988). Protection Imperfect: The Security of
Some Computing Environments

This paper [Hog88] examines the Unix operating system if it fulfils Saltzer’s and Schroed-
ers’s principles [SS75] for the design of secure systems. Of the eight principles, three are
assigned lower priority in the study. Separation of privilege is supposed not to exist in
systems owing to its difficulties in implementation. Even insecure systems are claimed to
comply with Open design and Fail-safe defaults.

As a result, numerous weaknesses in the design of Unix are exposed. Achieving a
secure system is said to be hard for users and administrators as it is hard to mitigate the
vulnerabilities shown. Designers and implementors are seen to be in the most effective
position to deal with security problems.

2.1.4 Schneider (1999). Security Architecture-Based System
Design

The architecture described in this paper [Sch99] is not really an architecture. It is more
like a security model that is very similar to a modified discretionary access control model.
[SCL00] The paper distinguishes system, software, and information architecture. The
information architecture introduces information domain, principals and structures for
information transfer between domains that can be regulated by a security policy.

2.1.5 Neumann (2000). Report on Practical Architectures for
Survivable Systems and Networks

This report [Neu00] discusses architectural properties and requirements for survivable
systems. The notion of survivability encompasses the traditional topics of computer
security, i.e., confidentiality, integrity, and availability. It is defined as the ability of an
application to satisfy and continue to satisfy critical requirements in the face of adverse
conditions.

The important section Architectures for survivability lists structural organizing prin-
ciples. These are similar to those stated in the classical paper of Saltzer and Schroeder
[SS75]. They are quite general and provide guidance of use in the design and implemen-
tation phase of a system. Their generality makes it difficult to apply them directly in an
analysis of whether they have been applied and how they influence security of a system
in detail.

The topic is then further elaborated with a consideration of architectural structures
and architectural components. The former, architectural structures, can be regarded as
concepts to structure systems and are useful at various levels of detail (the report focuses
on large systems rather than smaller application programs, though). The latter, architec-
tural components, are building blocks to build large and complex structures. Concepts
to securely structure computer systems comprise hierarchical structures, protection do-
mains, security kernels and trusted computing bases, separation kernels, isolation mech-
anisms, read-only bootstraps and backups, multilevel-security and multilevel-integrity
trusted computing bases, selective-trustworthiness architectures, thin-client end-user ar-
chitectures, explicitly compensating systems structures, minimum essential information
infrastructures, and concepts from classical control theory.

20 CHAPTER 2. PREVIOUS AND RELATED WORK

Building blocks to achieve secure structures encompass secure operating systems,
encryption and key management, authentication, trusted paths and resource integrity,
servers/services, wrappers, protocols, firewalls and routers, and monitoring. These com-
ponents might be used to partition a software under review in its elements.

It is noted in section 7.3.12 of [Neu00] that survivability and its subtended require-
ments of security and reliability are fundamentally weak-link problems. Without further
justification a collection of attack methods is provided by table 7.1: lack of correct-
ness, no reliability of lower layer, spoofing/simulation, flawed protocol design, flawed
code, poorly embedded cryptography, compromise from below/within/outside, reliance
on fixed reusable passwords, nonexistent or weak trusted paths, bypassing, alteration of
components.

In total, the report is a broad comprehensive survey of the state of the art as regards
survivability of large systems. With respect to smaller application software it might
be possible to re-use attack methods and some of the architectural components. The
architectural structures, however, seem harder to fit with smaller problem sets.

2.1.6 Bundesnetzagentur (2001/2005). Unified specification of
operating conditions for signature creation applications

The regulatory body for electronic signatures in Germany – Bundesnetzagentur, formerly
Regulierungsbehörde für Post und Telekommunikation – issued a paper [Bun05] on oper-
ating conditions for signature creation applications. It is based on a workshop convening
authorities, corporations, consumer watchdog organizations, and called in after doubts
about the current level of security of applications for electronic signatures (cf. [SCL01a]
and [SCL02]). The paper is intended as guidance for developers and evaluators of soft-
ware. According to [KF05], it is the only structured attempt known so far to establish a
hierarchical ordering of the hostility of an operating environment.

In the document, security requirements for signature creation applications are stated,
derived from their legal basis, and a short list of possible threats is given: attacks via
communication networks, attacks by manual access of unauthorized persons and data
transmission by removable media, errors and manipulations under installation, operation
and maintenance. Security measures are to be applied either by the signature component
or the operating environment.
Three classes of operating environments are distinguished:

• Unprotected working space (Ungeschützter Arbeitsbereich) Unprotected connection
to the Internet and no special security measures in the operating environment. This
is the most challenging environment defined, and is seen as a special case that only
few developers will pursue. It is likely that closed hardware solutions will fall into
this category.

• Protected working space (Geschützter Einsatzbereich) Signature software is used at
a signature workstation. Potential attacks via Internet, Intranet, manual access by
unauthorized persons, data transmission by removable media are precluded by a
combination of security measures in the application and the environment. This is
the envisioned standard case.

• Isolated working space (Isolierter Einsatzbereich) Signature software is used at a
signature workstation. At no time there exists a connection to a communications

2.1. SOFTWARE AND SYSTEM ARCHITECTURE 21

network and the operating environment ensures that there will be no manual access
by unauthorized persons and no data transmission by removable media. It could
e.g. be achieved by the use of guards limiting access to authorized persons. This
is the strongest protection offered by the environment and requires fewest security
measures in the application software. It is seen as a special case.

In the standard case – protected working space –, attacks via the Internet are to be
blocked, attacks via an Intranet and by manual access and removable media are to be
thwarted by the operating environment, the IT platform and the signature creation ap-
plication. Installation, operation and maintenance are assumed to be performed securely
by qualified and trustworthy personnel and administrative measures. The latter holds for
all the three environment classes. The three working space levels could be regarded as a
scale for adversary capabilities.

Security measures are to be applied by the operating environment and the signature
application in the standard case. They are not specified further and how responsibility is
expected to be shared is not defined in the document. This is an obligation to fulfil when
submitting an application for evaluation; then a detailed product-related specification is
necessary. The only restriction is that high security must not be accomplished by severely
limiting the permitted operating environment. A significant part has to be achieved by
constructive technical methods in the software. However, it is also granted in a footnote
that IT platform and applications have to be trustworthy, i.e., they especially have to be
free of malicious software. It might be questioned which significant threats remain apart
from attacks via an Intranet and guessing of PINs.

Since 2002, roughly a dozen certificates of conformity have been issued that relate to
this document. However, all three evaluating bodies involved use a very similar language
in defining requirements put on the operating environment. Access from the Internet
and Intranet has to be blocked by appropriate methods and it has to be confirmed that
the IT platform is free of malicious software and cannot be manipulated by unauthorized
persons. Compared to certificates issued before 2002, these conditions are equivalent to
earlier operating limits that were deemed unsatisfactory by the regulating authority.

While the approach made is respectable, it does not appear to be honoured by devel-
opers and evaluating bodies. [Lan06b]

2.1.7 Sample architectures from a security perspective

In [LG99] some well-known architectural styles are presented: layering, pipe-and-filter,
hub-and-spoke, client/server.

A collection of 25 architectural styles is listed in [SC96]. They are classified according
to their constituent parts, control and data issues, and the interaction between control
and data flows. The styles relate more to larger system architectures and are not well
applicable to single systems and malware attacks.

Problematic architecture interactions are reviewed in [DGP+01]. Interoperability prob-
lems are identified in three categories: control transfer, data transfer, and interaction ini-
tialisation. In a three-step methodology characteristics of all components are determined
and then problematic interactions marked in a bipartite conflict graph. Interactions can
be merged to simplify description. Analysis has to proceed manually, so the contribution
mainly is in taxonomy and notation.

22 CHAPTER 2. PREVIOUS AND RELATED WORK

Literature on security engineering is surveyed by [SCH04]. The authors then analyse
the qmail mail server software and how its architecture supports the security requirements
for a mail server. The main principles employed are the use of least privilege, compart-
mentalization, economy of mechanism, and no trust placed in untrustworthy input.

In a similar approach [HJA04] identifies some known design patterns (Compartmen-
talization, Distributed Responsibility, Unique Entry of Information, Recoverable Compo-
nent, Checkpointed System, Hot Standby) and derives further patterns based on qmail’s
architecture (Small Processes, Content-Independent Processing) and implementation (Safe
Data Structure).

Middleware architectures – CORBA, J2EE, .NET – are discussed with respect to their
security architecture in [GAG05]. The article focuses on specific mechanisms that fulfil
security requirements assumed for distributed systems. It could be argued whether these
are architectural questions or rather an overview of middleware security features.

2.2 Software metrics

Measurement is crucial to the progress of all sciences. Collection of data leads to ob-
servations and generalizations that allow derivation of theories and their confirmation or
refutation via hypothesis testing. In the Oxford English Dictionary [Sim05], metrics are
defined as

4. A system or standard of measurement; a criterion or set of criteria stated
in quantifiable terms.

Quality of measurements is characterised by reliability and validity. Reliability is the
consistency of measurements. One needs a good operational definition for this. Validity
is the extent to which an empirical measure reflects the real meaning of the concept
under consideration. Often, it is difficult to recognize that a certain metric is invalid in
measuring a concept.

Measurements can be hierarchically grouped into different scales: nominal, ordinal,
interval, ratio [Kan02]. Nominal scales allow to differentiate objects. Ordinal scales
define an order on objects. Interval scales allow to determine an difference between
objects. Ratio scales are interval scales that have an absolute or nonarbitrary zero point.

In [MP93] three classes of software metrics are distinguished: size, product quality,
and process quality. In addition, there exist more proposals for structural code metrics,
e.g. information flow metrics (cf. [HK81]).

2.2.1 Size and structure

Code size/complexity measures include LOC, McCabe’s cyclomatic complexity and Hal-
stead’s software science. Other approaches are e.g. based on function points. These
measures are easy to obtain, and can often be calculated by automated means.

LOC stands for lines of code. There are several different definitions for counting LOC,
among them number of source code lines, instruction statements, instruction delimiters,
non-commentary source LOC. Variations can range up to 500% for the same source code
[She95]. This measure depends on the programming language used.

McCabe’s cyclomatic complexity [McC76] is the number of regions in a programs
control flow graph. It is computed as e − n + 2p where e is the number of edges, n

2.2. SOFTWARE METRICS 23

the number of nodes, and p the number of disconnected components of the graph. It is
also equal to the number of binary decisions in a program plus 1. For good testability
and maintainability it is recommended that a program module not exceeds a cyclomatic
complexity of 10. If a significant correlation between complexity and defect level can be
established in an organisation, cyclomatic complexity can be used to identify complex
parts of a program warranting detailed inspections and to estimate programming and
service effort, as well as identify troublesome code.

Basis of Halstead’s software science is that any programming task consists of selecting
and arranging a finite number of program tokens that are basic syntactic units distinguish-
able by a compiler. All tokens in a computer program are regarded as either operators
or operands. Halstead’s measures are: n1 number of distinct operators in a program,
n2 number of distinct operands in a program, N1 number of operator occurrences, N2

number of operand occurrences. Based on these, some equations for different program
attributes are derived, including the total vocabulary, the overall program length, the
potential minimum volume for an algorithm, the actual volume (number of bits required
to specify a program), the program level (a measure of software complexity), program dif-
ficulty and other features such as development effort and the projected number of faults
in the software. The work had a significant impact on software measurement and was
instrumental in making metrics studies an issue among computer scientists. Still, software
science has been controversial since its introduction. It has been criticized for its method-
ology, derivations of equations, human memory models and others. There has been little
empirical support for the equations.

The idea of function points is to focus on the size of the requirements specification
in contrast to size of source code or executable. Hence, implementation language inde-
pendence is achieved. Five basic classes of functions are used: external input types (e.g.
file names), external output types (e.g. reports, messages), enquiries (interactive inputs
needing a response), external files (i.e. files shared with other software systems), internal
files (i.e. invisible outside the system). Each function appearing in the specification is
weighted by a factor according to its complexity (determined by counting files, record
types and data elements involved). This yields the unadjusted function count. It is mul-
tiplied by a factor based on fourteen general system characteristics. In spite of detailed
counting rules as given by e.g. [Int04], variation among analysts is likely to range around
10–30% according to [She95]. In addition, function points are a synthetic measure that is
difficult to validate and interpret. Their main application is to predict software project
effort.

Software project cost estimation aims at estimating effort and schedule to develop a
software product. These measures are often normalized by using size measures (such as
KLOC, thousands of lines of code) for implementation and other factors. A representative
for this class is Boehm’s COCOMO. [Boe81]

The COnstructive COst MOdel (COCOMO) is a model for software product cost
estimation with three levels. The first level, Basic COCOMO, is a static, single-valued
model that computes softwar edevelopment effort as a function of program size expressed
in estimated lines of code/number of delivered source instructions (DSI). The second level,
Intermediate COCOMO, computes software development effort as a function of program
size and a set of cost drivers that include subjective assessments of product, hardware,
personnel, and project attributes. The third level, Advanced COCOMO, incorporates all
characteristics of the intermediate version with an assessment of the cost drivers’s impact
on each step of the software engineering process.

24 CHAPTER 2. PREVIOUS AND RELATED WORK

As an example, Basic COCOMO estimates the development effort in person months
as Effort = A ∗KDSI B and Development time = C ∗ EffortD . The parameters A, B , C ,
D depend on the type of project, i.e., organic, semi-detached, or embedded.

• Organic projects are relatively small, simple software projects in which small teams
with good application experience work to a set of less than rigid requirements.
A = 2.4, B = 1.05, C = 2.5, D = 0.38.

• Semi-detached projects are in size and complexity intermediate software projkects
in which teams with mixed experience levels must meet a mix of rigid and less than
rigid requirements. A = 3.0, B = 1.12, C = 2.5, D = 0.35.

• Embedded projects are softwar projects that must be developed within a set of tight
hardware, software, and operational constraints. A = 3.6, B = 1.20, C = 2.5,
D = 0.32.

Levels above basic include factors for attributes of the product (e.g., required relia-
bility), hardware (e.g., performance), personnel (e.g., software engineer capability), and
project (e.g., required schedule). These factors have a multiplicative influence on the de-
velopment effort. Values for the coefficients in the formulae are derived from experience
with past software projects. It is an ongoing effort to collect data to be able to better cal-
ibrate future versions of the model. Current releases of a software for COCOMO claim to
predict correctly within 20% of actuals around 60% of the time which is said to be a good
value for effort prediction models. [Eng02] COCOMO has meanwhile been superseded by
COCOMO-II which retains the fundamental approach, but introduces new factors and
new values for model calibration.

2.2.2 Software design measurement

Design measurement is the application of measurement to design processes (all kinds
of activities) and resulting design products (all kinds of documents). [Rom90] It offers
advantages over more commonly used source code measurements. Measurement results
are available in the design phase, not only at the back end of development, i.e., mainly
coding and testing phases. Hence, it suggest a potentially high payoff since errors are
assumed to be fixed more cheaply early in the software life cycle.

Recommendations outlined in [Rom90] for design measurement emphasize that there
are many types of measurement goals, e.g., depending on object type or intended effect.
Models and measures are seen as inseparable. Different types of measures are proposed,
e.g., process and product, direct and indirect. Measurement-based analysis results should
only be viewed as good as the data they are based on. A sound experimental approach
is demanded, together with reporting measurement results in context, i.e., enabling rep-
etition of an experiment; each experimental validation is to be assessed for transferable
knowledge in future projects.

Two design steps are distinguished: architectural, or high-level, design and algorith-
mic, or low-level, design. Architectural design involves identifying software components
and their interconnection. Algorithmic design involves identifying data structures and the
control flow within the architectural components. Potential for architectural design mea-
surement is limited by the measurability of design documents, or rather the lack thereof.
This prompts the need for more formal and, hence, better measurable design processes.

2.2. SOFTWARE METRICS 25

2.2.3 Product quality

Software quality assurance collects fault data during phases of the software life-cycle, e.g.
as number of faults divided by program size, number of customer change requests divided
by program size.

Related to security faults, the total number of faults, the distribution of faults over a
product’s or version’s lifetime is recorded. The time it takes for attackers to find a security
hole and develop an exploit are related to a product’s initial availability or to the time
when knowledge of a security fault is made public. (cf., e.g., [Res04]) This can help system
administrators to adapt deployment of software patches and to choose a software vendor
with good reputation based on prior products. However, it does not help in assessing
whether a given product is more secure than another, since the measurements are historic
rather than predictive.

In addition, there are a couple of uncontrolled variables in these measurements, e.g.,
importance of a security fault, dependence on operating environment of the product,
attacker behaviour.

2.2.4 Process quality

Software development process measures use finite sequential phases of development, and
target control of resources. Resource usage and development costs are typically collected
using corporate cost accounting systems. Examples include increase in program size per
staff-day, percentage of completed planned work.

The Systems Security Engineering Capability Maturity Model (SSE-CMM) [SSE03] is
a process reference model. It defines what an organization should do to achieve a secure
software product; it does not define how the organization should do it and does not
prescribe specific processes. Eleven process areas are identified that need to be scrutinized
when developing secure software. These security best practices are:

1. Administer security controls : Ensure that intended security in system design is
achieved in system in operational state.

2. Assess impact : Identify impacts of concern and likelihood of their occuring.

3. Assess security risk : Identify security risks based on threats, vulnerabilities, and
impacts.

4. Assess threat : Identify security threats, their properties and characteristics.

5. Assess vulnerability : Identify and characterise system security vulnerabilities.

6. Build assurance argument : State assurance objectives supported by evidence.

7. Coordinate security : Assure that all parties are aware of and involved with security
engineering activities.

8. Monitor security posture: Monitor and report all breaches of security, including
attempted breaches and mistakes leading to possible breaches of security.

9. Provide security input : Transfer needed security information to system architects,
designers etc.

26 CHAPTER 2. PREVIOUS AND RELATED WORK

10. Specify security needs : Identify needs to meet all legal, policy, and organizational
requirements for security.

11. Verify and validate security : Verify and validate solutions against security require-
ments, architecture, and design using observation, demonstration, analysis, and
testing.

For all activities in the process areas capability levels can be achieved. They indicate
how well the activity is performed, whether it can be repeated in the same quality, and
if it is kept track of and its performance improved by the organization. From low to high
they range from:

1. Performed informally : Best practices of the process area are generally performed.
The performance of these base practices may not be rigorously planned and tracked.
Performance depends on individual knowledge and effort. Work products of the pro-
cess area testify to their performance. Individuals within the organization recognize
that an action should be performed, and there is general agreement that this action
is performed as and when required. There are identifiable work products for the
process.

2. Planned and tracked : Performance of the base processes in the process area is
planned and tracked. Performance according to specified procedures is verified.
Work products confirm to specified standards and requirements. Measurement is
used to track process area performance, thus enabling the organization to manage
its activities based on actual performance. The primary distinction from level one
is that the performance of the process is planned and managed.

3. Well defined : Base practices are performed according to a well-defined process us-
ing approved, tailored versions of standard, documented processes. The primary
distinction from level two is that the process is planned and managed using an
organization-wide standard process.

4. Quantitatively controlled : Detailed measures of performance are collected and anal-
ysed. This leads to a quantitative understanding of process capability and an im-
proved ability to predict performance. Performance is objectively managed, and
the quality of work products is quantitatively known. The primary distinction from
level three is that the defined process is quantitatively understood and controlled.

5. Continuously improving : Quantitative performance goals (targets) for process effec-
tiveness and efficiency are established, based on the business goals of the organiza-
tion. Continuous process improvement against these goals is enabled by quantitative
feedback from performing the defined processes and from piloting innovative ideas
and technologies. The primary distinction from level four is that the defined process
and the standard process undergo continuous refinement and improvement, based
on a quantitative understanding of the impact of changes to these processes.

SSE-CMM instructs developers to assess vulnerability of a product, but leaves it open
to them to how to assess, and what framework and tools to use.

2.3. SECURITY METRICS 27

2.3 Security metrics

Research of security metrics is a rediscovered topic. In cryptography, for instance, strength
of cryptographic algorithms has been examined for a long period. However, not always are
a system’s or a product’s attributes as easy to distinguish as the length of a cryptographic
key or the effort in man hours of a cryptographic brute force attack. Recently, there has
been renewed interest in security metrics, e.g., in form of workshops like thoose organised
by NIST CSSPAB in 2000 [Com00], ACSA in 2001 [AC01], and QoP 2005 [QoP05], 2006
[QoP06], and MetriCon 2006 [Met06].

In this section we discuss inter alia early indicators like SECURATE and CCI, work
factor, operating environment class, and attack surface metrics. Setting up a metrics
program without providing any concrete metrics is the topic of a NIST report on security
metrics. Metrics have been introduced in and by security evaluation criteria, sometimes
without explicitly mentioning these. We conclude with an overview of operational security
metrics, i.e., assessments of the vulnerability of deployed systems, often based on known
software versions for nodes in a network.

It appears that there are few product security metrics. Hence, there is a need for
research in that area.

2.3.1 NIST (2003). Special publication 800-55

Report [NIS03] – NIST SP 800-55 – introduces security metrics from a management
perspective. Metrics are recommended as ”tools designed to facilitate decision making
and improve performance and accountability through collection, analysis, and reporting
of relevant performance-related data.” Different levels of maturity of a metrics program
are defined, starting with a statement of goals and objectives, to measuring coverage of
controls implementation, to testing and integration of detailed metrics.

From a technical point of view, detailed metrics at the highest levels of maturity are
the most rewarding. Security metrics must yield quantifiable information for comparison
purposes, apply formulae for analysis, and track changes using the same points of ref-
erence. NIST SP 800-55 mentions that percentages or averages are most common, and
absolute numbers are sometimes useful, depending on the activity that is being measured.

As a help for security metrics documentation, a structured form is provided (cf. ta-
ble 2.1). It helps evaluators and managers to understand metrics applied to the system
under study. Categories in the form comprise desired results, actions to achieve the re-
sults, how to quantify completion of the objective, where to get the data upon which the
measurements are based, and how to interpret numeric values and trends.

2.3.2 Security metrics in cryptography

In cryptography, some properties of algorithms can be regarded as security metrics.
[MvOV96]

Key length, usually measured in bits, is the size of the parameter needed for encryption
or decryption. A longer key typically means more effort for a computational brute force
attack on the algorithm. Hence, the longer the key, the more secure an application
of a cryptographic algorithm is. (On the other hand, a longer key also often involves
more resources to encrypt or decrypt.) Key length is not an absolute metric. Different
algorithms may operate with different key lengths while having the same effort for a

28 CHAPTER 2. PREVIOUS AND RELATED WORK

Category Content
Performance Goal Desired results
Performance Objective Required actions to accomplish goal
Metric Definition by quantitative measurements
Purpose Insights to be gained
Implementation Evidence Proof of controls existence
Frequency Time periods for data collection to measure changes over

time
Formula Calculation to be performed; results in numeric expression
Data Source Location of data to be used
Indicators Meaning of metric and its performance trend

Table 2.1: Metric Detail Form according to NIST SP 800-55 [NIS03]

brute force attack. E.g., elliptic curve-based cryptography operates with shorter keys
than traditional RSA public-key cryptography. However, the former is regarded equally
secure with the functional advantage of employing a shorter key length. Key length is a
good metric for different applications of the same algorithm. RSA with 4,096 bit keys is
harder to attack than RSA with 1,024 bit keys.

The work factor is the minimum amount of work required to determine a crypto-
graphic key. It can typically not be determined. The historical work factor is the min-
imum amount of work required to determine a cryptographic key using the best known
algorithms at a given point in time. It can be used when searching for a lower bound on
the work factor.

Cryptographic algorithms can be empirically secure, provably secure, or uncondition-
ally secure. It is a measure of the assurance that an algorithm is secure against attacks.
Empirically secure algorithms have been scrutinised by the scientific community for an
extended period of time without someone being able to break them. It is comparable to
the assurance provided by red team exercises in computer system security (cf. section
2.3.6). Provably secure algorithms have been mathematically proven to be as hard to
attack as solving an associated mathematical problem. In addition, the difficulty of this
underlying problem can induce an ordering on several provably secure algorithms. An
unconditionally secure algorithm requires the attacker to know the cryptographic key to
successfully attack the algorithm. At present, only the One-Time-Pad algorithm is known
to possess this property.

More related to efficiency are measurements like memory usage, speed, number of clock
cycles per byte encrypted (cf. e.g. [Gre01]).

2.3.3 Clements et al. (1977). SECURATE

SECURATE ([HMC78, Cle77]) is a computer installation security evaluation and analysis
system. It is based on a model of a computer installation as a set of triples composed of
objects, threats and security features. An evaluator assigns values to objects, likelihoods
to threats, and effectiveness to security features. Assignments are valid for a triple only
and can vary across triples, e.g. a security feature may be rated differently depending on
object value and threat likelihood. Data items are given in terms of linguistic variables
of a fuzzy rating language. This yields a scale with values LOW, MEDIUM and HIGH,

2.3. SECURITY METRICS 29

adjustable by NOT, VERY, MOREORLESS, QUITE, PRETTY, SORTOF, REALLY,
EXTREMELY, INDEED and by conjunctions and relations. The linguistic variables are
later mapped to compatibility functions represented by a vector in the APL programming
language.

Measurements are done by human evaluators without tool support for automatic mea-
surement and collection. All measurements are later entered into the SECURATE tool.
It contains a model description of a typical computer system installation and allows mod-
ification of this default configuration. The largest installation evaluated by students as a
term project comprises ca. 300 single ratings expressed in the rating language.

Evaluating security of a comprehensive system can be done by different evaluation
functions (minimum, sub-set minimum, mean, mean weighted by value and threat likeli-
hood, subsection mean weighted by average value):

• Weakest Link – this will look for the weakest feature resistance and return that
as the security rating. The theory here is that the system is only as secure as its
weakest link.

• Selected Weakest Link – this produces a weakest link rating based on those triples
which satisfy the condition that either the object value or the threat likelihood is
greater than a user specified minimum. The theory here is that one would only want
to consider triples where the object is of at least a certain value or the threat is of
at least a certain likelihood.

• Fuzzy Mean – this performs a fuzzy mean on the feature resistances and returns the
result as the rating. The theory here is that a systems security is the mean of the
security of its components.

• Weighted Fuzzy Mean – this performs as fuzzy mean on the feature resistance
weighted by the greater of the object value and threat likelihood of each triple.
The theory is that of the Fuzzy Mean, with the additional assumption that the
more valuable objects and those with more likely threats should receive greater
weight in the security rating.

• Fuzzy Mean with Each Major Subsection Weighted by Maximum Object Value –
for each major subsection of the object specified, this finds the fuzzy mean of the
resistances. It then weights these fuzzy means by the maximum object value found
in the triples for each major subsection and averages these weighted means. The
theory is similar to the Weighted Fuzzy Mean, but with the assumption that the
major subsections should be weighted by their relative values, irrespective of the
number of triples they each have.

A value for the overall security of a computer system installation could be given by
SECURATE as e.g. ”(MOREORLESS MEDIUM) TO (SORTOF HIGH), LOWEST
RATING WAS GIVEN TO: OPERATING SYSTEM.”

Reliability of this metric is not very high. It depends on the abilities of the evaluator,
and different evaluators may arrive at different measurements, because there is no guidance
in this phase.

Validity on the other hand is better. The five evaluation functions to compute a
result based on measurements of components, reflect the traditional security perspectives.

30 CHAPTER 2. PREVIOUS AND RELATED WORK

Expressing the result in a rating language instead of providing a single number presumably
leads to better understanding. However, empirical evidence of the usability part is rather
anecdotal [HMC78].

2.3.4 Murine et al. (1984). Software Security Metrics

The article introduces the notion of Software Security Metrics (SSM), similar to the
then examined Software Quality Metrics. It is a method to assure security of software
systems by identifying and quantifiably measuring selected software criteria throughout
the software development process.

Desirable software properties are called factors. Each factor is measurable by quanti-
fying its constituents, called criteria. Individual elements of the criteria are derived from
countable occurrences of the software attributes. A count is then called a metric. The
elements themselves are objective (while their selection not necessarily is). Their metrics
are often expressed as a ratio of compliances (successes) to occurrences (events). Different
development phases may operate with a different selection of elements for given criteria.

Security criteria – on which security facors can be based – are shown in table 2.2
(taken from [MCC84], table 3).

Some security criteria are contrary to security quality criteria, e.g., deceptiveness vs.
self-descriptiveness, or security complexity vs. simplicity.

Unfortunately, the method is explained only along a short example of ensuring integrity
of a software system. It is unclear whether a complete set of security factors, criteria, and
elements had been developed for the identified security factors.

2.3.5 Wood et al. (1987). Control Comprehensiveness Indica-
tor/CCI

This work consists of a long checklist with hundreds of questions derived from literature,
analysis of computer systems, and communication with experts on the subject of computer
security. The authors also propose what they call a Control Comprehensiveness Indicator
(CCI). It is basically a weighted sum of questions on relevant implemented protective
controls answered with ”yes”.

Each question, e.g. 2.6.16: ”Are all changes in user privileges and in current passwords
reflected in protected systems logs? (VH),” is assigned an importance on a scale of very
low, low, medium, high, very high. These values can be adjusted with respect to the system
under evaluation and may depend on system properties, protected assets, and perceived
threats. Weights are attributed on a scale from zero to one according to the function in
table 2.3.

Questions that are not applicable are not included in the further calculations. Ques-
tions answered with ”yes” add the respective value to the achieved score, questions an-
swered with ”no” add zero. A maximum possible score is derived by adding all values
under the assumption that all relevant questions are answered with ”yes”. The CCI is
then given as the ratio of the achieved score and the maximum possible score.

Threat likelihoods or asset values are not included in the indicator, this is left to a
quantitative risk analysis. The authors acknowledge that the CCI does not provide a
means to measure an absolute level of security for a system. It might not even be possible
to compare two systems unless they are very similar as regards controls implemented for

2.3. SECURITY METRICS 31

Criteria Definitions
Access Audit Those attributes of the software that provide for an

audit of the access of software and data.
Access Control Those attributes of the software that provide for

control of the access of software and data.
Security Traceability Those security requirements of the software system

that provide a thread from the security requirements
to the implementation with respect to software
development and security environment.

Deceptiveness Those attributes of the software that provide
explanation of the implementation of a dissimilar
function.

Simplicity Those attributes of the software that provide
implementation of functions in the most
understandable manner. (Usually avoidance of
practices which increase complexity.)

Security Complexity Those attributes of the software that provide
implementation of functions in the least
understandable manner.

Inconsistency Those attributes of the software that provide random
design and implementation techniques and notation.

Perturbated Error Tolerance Those attributes of the software that provide continuity
of operation under randomly controlled conditions.

Security Completeness Those attributes of the software that provide for full
implementation of the security requirements.

Execution Efficiency Those attributes of the software that provide for
minimum processing time.

Storage Efficiency Those attributes of the software that provide for
minimum storage requirements during operation.

Table 2.2: SQM security criteria definitions

Importance Value
Very low (VL) 0.1
Low (L) 0.3
Medium (M) 0.5
High (H) 0.7
Very high (VH) 0.9

Table 2.3: CCI weights for evaluation questions

32 CHAPTER 2. PREVIOUS AND RELATED WORK

protection. It is meant to give a coarse indication of general security problems (e.g., a
CCI below 0.5) or of improvement of security posture of a system over time.

As a measuring technique, checklists and interviews are recommended. It is stated
that ”[a] number of other cost-effective ways to assess the adequacy of present controls
[. . .] are available,” alas this is not detailed.

More on the checklists can be found in appendix A.

2.3.6 Schudel et al. (2000). Adversary Work Factor

Schudel’s approach [SW00] measures adversary work factor in man hours. Measurements
are conducted by red team experiments. The work reports on a couple of red team
experiments with the aim to support or refute some information security hypotheses, i.e.,
”Adding layers has at least a cumulative impact on adversary work factor” (sometimes),
”Dynamic defense mechanisms can have a significant impact on adversary work factor”
(accepted), and ”[D]ynamic network reconfiguration effectively degrades the attacker’s
ability to map the network, and hence increases attacker work factor and improves system
assurance” (refuted).

As regards measuring, focused experiments are recommended. It can be difficult to
constrain even a cooperating adversary, so experiment setup should include realistic se-
curity mechanisms instead of hypothetical ones, where possible. Most information is seen
to be gained from relative measures where one red team performs attacks with the same
goals in different experiment setups. The authors warn that absolute values of adversary
work factor contain little valuable information, owing to different behaviours, prepara-
tion, training, and talents of different red teams. They recommend establishing a baseline
for red team and system performance, multiple runs of a given experiment, and limiting
variables between each run to counter this variation in absolute values.

2.3.7 Bundesnetzagentur (2001/2005). Unified specification of
operating conditions for signature creation applications

The regulatory body for electronic signatures in Germany issued a paper [Bun05] on
operating conditions for signature creation applications. It is intended as guidance for
developers and evaluators of software and seems to be the only structured attempt known
so far to establish a hierarchical ordering of the hostility of an operating environment.
Security requirements for signature creation applications are stated, derived from their
legal basis, and a short list of possible threats is given. Security measures are to be ap-
plied either by the signature application component or the operating environment. Three
classes of operating environments are distinguished: Unprotected working environment,
Protected working environment, and Isolated working environment.

For a detailed discussion, see section 2.1.6.

2.3.8 Howard et al. (2003). Relative Attack Surfaces

In this article [HPW03] a metric with three dimensions is defined: targets and enablers,
channels and protocols, and access rights. As a method of analysis a state machine model
is proposed where the system and the adversary/threats are modeled by intended and
actual states and transitions. A system under attack is then specified as (System ./
Threat)×Goal , where Goal is a predicate over the state. An execution is an alternating

2.3. SECURITY METRICS 33

sequence of states and action executions, the behaviour is the set of all executions of a
machine. A vulnerable system differs in actual behaviour from intended, i.e., by different
states, initial states, actions, or transitions. An attack is a sequence of action executions,
one of which involves an unintended state. It is distinguished between process targets
and data targets. A target is the aim of an attack, an enabler is used during an attack.
Channels are entry points to a system, e.g., sockets (message-passing type) or files (shared-
memory type); protocols govern the rules of information exchange along channels.

Some Microsoft security bulletins are described in terms of this state machine model
in the article, albeit a lot of natural English language is used. It is unclear how to use
the description with tools for modelling and reasoning. The attack surface of a system is
finally defined as a function from targets, enablers, channels, protocols, and access rights
to presumably a single number or a triple. This (admittedly) simplistic definition of the
attack surface function incurs the need for different functions that have to be determined
by a security analyst for a given set of systems. Most likely, additional functions and
weights will be used.

The state machine model is not used in the further presentation of an example Relative
Attack Surface Quotient (RASQ) that one of the authors (Howard) used in an earlier
MSDN (Microsoft Developer Network) publication. The authors mention problems with
simple counting and comparison of different systems. They suggest to compare only
different versions of the same system, e.g., under development or configuration.

2.3.9 Hunstad et al. (2004). A Method Based on Common
Criteria’s Security Functional Requirements

The approach presented in [HHA04] makes use of the CC [CC299b] to evaluate security
of systems. Security functional requirements (SFRs) found in the CC are grouped into
disjoint SFR components. For an evaluation, protection profiles are explored and relevant
SFR components are determined. It is then assessed which SFR components are covered
by the evaluated system components and each SFR component is assigned a value in the
interval [0 . . 1] reflecting its security strength. When it comes to synthesis of results for
separate components, a weight matrix can be used to prioritize some SFR components.
Final ratings are given in the dimensions CIA (confidentiality, integrity, availability) and
PDR (protect, detect, react). The idea is that values calculated for different systems help
to compare overall security level of two systems and help to assess effectiveness of security
improvements applied to a system. However, the authors state that evaluation of single
components is ”hard”. They do not provide a method for this and assume that assignment
of values is possible. It is emphasized that a system’s components and relations have to
be modelled, e.g. using UML, because SFR components can be effected by several system
components.

2.3.10 Operational security metrics

Operational security metrics deal with concrete system deployments. They focus on
known vulnerabilities in technical artefacts and on incorrect or insufficient configuration
of components. The goal is to help system administrators decide which systems to patch
or which systems have to be separated from others owing to possible attack paths. Op-
erational security metrics are applicable in the deployment and operation phase of a
software’s lifecycle. They cannot be used during specification and implementation.

34 CHAPTER 2. PREVIOUS AND RELATED WORK

A couple of approaches use a graph representation or Petri nets for attack paths.
[Dac94, DD94, SHJ+02] Data is typically obtained by repositories of known vulnerabilities
[NJOJ03] and the patch status of nodes in a network, or it is gathered by red team-style
experiments. [BOLJ94]

2.4 Metrics in security evaluation criteria

Evaluation of software products with respect to security started as an activity based on
the personal experience of the evaluator. It still relies on that experience for a large
portion. [KF05] To achieve a more reliable and repeatable process, evaluation criteria
were developed. These standardise protection goals, recommend or request methods to
check compliance of a target of evaluation with the goals, and provide levels for the
description of attacker capabilities and the strength of protection mechanisms.

2.4.1 Trusted Computer System Evaluation Criteria (TCSEC)

The TCSEC [TCS85] are the first published comprehensive criteria for security evaluation
of automatic data processing systems. They provide a hierarchy of seven (eight) classes,
ordered by security effectiveness and assurance of evaluated systems. The criteria specify
security mechanisms required for each class, as well as requirements to assurance, i.e.,
testing, verification, documentation.

Classes come in four divisions: D: Minimal protection, C: Discretionary protection, B:
Mandatory protection, A: Verified protection. Characteristics of each class are presented
in table 2.4. Higher divisions comprise all requirements of lower divisions.

Functional and assurance requirements are combined, i.e., to achieve a higher rating,
both security mechanisms and assurance efforts have to be extended. From a procurement
perspective this facilitates comparison of systems, since distinctions between classes are
clear and their number is limited.

Most commercial operating systems achieve C2 level. Some systems at higher levels
have been developed and are in use, albeit in niches.

2.4.2 German criteria for IT security (ITSK)

The early German information technology security evaluation criteria [Zen89] distinguish
between evaluation of the strength of security mechanisms and confidence in the cor-
rectness of a system. Weaknesses of security mechanisms are discussed relative to the
following aspects:

• Coverage of mechanisms to enforce the security policy

• Incorrect implementation

• Fundamental weaknesses even when implemented correctly

Fundamental weaknesses are further subdivided into weaknesses that can be reduced or
eliminated by organizational means and inherent weaknesses that cannot be eliminated by
organizational means or only with great difficulty. If they can be reduced by organizational
means, this should be taken into account in the rating.
Six ordered levels of effectiveness of mechanisms are introduced:

2.4. METRICS IN SECURITY EVALUATION CRITERIA 35

Class name Security functional characteristics (cumulative)
(Beyond A1) (No functional enhancements specified, some suggestions for

improvements in assurance given)

A1 functionally equivalent to B3

B3 Universally-invoked reference monitor, code not essential to
security policy enforcement excluded from TCB, signalling of
security-relevant events, trusted path isolated and distinguishable
from others, trusted recovery

B2 Access control for all subjects and objects, covert channel
analysis, structured TCB (Trusted computing base), principle of
least privilege applied to TCB modules, trusted path for login and
authentication

B1 Sensitivity labels for subjects and storage objects, label integrity
upon export, MAC Mandatory access control

C2 Propagation of access rights limited, objects protected from
unauthorized access, access control at single user granularity,
freshness of resources, audit trail for object accesses

C1 Separation of users and data, cooperating users, single level of
sensitivity, DAC Discretionary access control

D Evaluated, but fails to meet requirements for higher evaluation
classes

Table 2.4: Classes in the TCSEC

36 CHAPTER 2. PREVIOUS AND RELATED WORK

1. Ineffective: Mechanism not at all effective to prevent violations of the security policy.

2. Weak: Mechanism only suitable for preventing unintended violations of security
policy.

3. Moderate: Protection against deliberate violations, can be overcome with moderate
effort by persons familiar with the system.

4. Strong: Good protection against deliberate violations, can be overcome with great
effort or with extensive insider support.

5. Very strong: Good protection against deliberate violations, can be overcome with
great effort and with extensive support; if organizational measures are needed in
addition, these have to be simple in design, have a low capability to error; error
sources shall be monitored, error handling mechanisms have to be implemented by
system.

6. Virtually unbreakable: Mechanism prevents all violations of security policy; accord-
ing to present state of the art impossible to overcome; organizational measures only
allowed if completely protected against errors by internal system monitoring func-
tions.

There is no definition that distinguishes moderate effort from great effort. Apart from
the highest level – Virtually unbreakable – the levels Moderate, Strong, Very strong can
be associated with the three levels found in the ITSEC [ITS91] and Common Criteria
[CC299a]; Ineffective and Weak then indicating a level below Moderate (ITSK [Zen89])
∼ Basic/Medium (ITSEC [ITS91]) ∼ Low (CC [CC299a]).

The criteria provide general guidance to an evaluator how to examine security mech-
anisms and which questions to pose to a system under evaluation. However, only for
authentication mechanisms specific directions are given to derive a mechanism’s strength.
When rating the guarantee of uniqueness of an identity, probability intervals are asso-
ciated with an upper bound for ratings: Probability of an incorrect identification by a
possibly ambiguous identity between 1 and 10−2 leads to a rating of Weak, 10−2–10−4

Moderate, 10−4–10−6 Strong, 10−6–10−8 Very strong.
The accompanying evaluation manual [Zen90] contains exemplary guidance to assess-

ment of security mechanisms. It focuses on use of [Zen89] and does not provide more
specific advice as regards how specific vulnerabilities lead to a certain down-rating.

• A down-rating from Virtually unbreakable to Very strong can be done by showing
that a higher level is not achievable.

• A down-rating from Very strong to Strong can be performed by showing that error
monitoring and recovery are insufficient.

• Down-rating of authentication mechanisms happens by reference to probability in-
tervals in [18].

• Rating of transmission errors is proposed by help of an unsupported table of prob-
ability intervals.

2.4. METRICS IN SECURITY EVALUATION CRITERIA 37

2.4.3 Information Technology Security Evaluation Criteria (IT-
SEC)

Based on earlier national efforts in Germany, France, the U.K., and the Netherlands,
the joint European criteria for information technology security evaluation [ITS91, ITS93]
were developed. As in the German criteria [Zen89] – and contrary to the U.S.’ TCSEC –
a system’s rating distinguishes between assurance of correctness and strength of security
mechanisms.

A rating consists of two or three components. The first component is the security
target, the template containing the security requirements that a target of evaluation (TOE)
is evaluated against. The second component is a rating of the confidence one has in the
correctness of the system, expressed as E0 to E6, with E6 being the highest level of
confidence. A system that fails evaluation is awarded the lowest level: E0. In case of a
successful evaluation a third component is used to indicate the strength of the security
mechanisms employed. Strength is given as basic, medium, or high.
The criteria provide general guidance as to how strength of mechanisms is to be assigned:

• Basic: Mechanism provides protection against random accidental subversion, may
be defeated by knowledgeable attackers.

• Medium: Mechanism provides protection against attackers with limited opportuni-
ties or resources.

• High: Mechanism could be defeated only by attackers possessing a high level of ex-
pertise, opportunity and resources; successful attack is judged to be beyond normal
practicality.

Often only the E-level of confidence in the correctness is communicated in practice and
used to compare different systems. Without stating the security target used as a baseline
of the evaluation and without taking strength of mechanisms into account, the value of
that approach is dubious.

2.4.4 Canadian Trusted Computer Product Evaluation Criteria
(CTCPEC)

The CTCPEC [CTC93] were developed to provide a comparative scale for the evalua-
tion of commercial products. They distinguish between functionality and assurance by
independently and separately specifying security service requirements and assurance re-
quirements. Functional criteria (confidentiality, integrity, availability, and accountability
requirements) are composed of services, i.e., functional groupings to addres threats.
Each service contains levels. A level of service is a defined and measurable requirement for
granularity or strength; as the level of service increases, a better defence against threats is
provided. Levels of service are hierarchical in terms of protection but are not necessarily
proper subsets in all cases.

As an example the Trusted Path criteria (WT) in the Accountability section (W)
is discussed. WT-0: A level of 0 always stands for non-compliance with respect to a
functional requirement, i.e., no trusted path is present. WT-1: Trusted path for initial
identification and authentication, trusted path communication exclusively initiated by
user. WT-2: Trusted path for initial identification and authentication and at other times

38 CHAPTER 2. PREVIOUS AND RELATED WORK

when direct communication between user and TCB is needed, communication initiated by
TCB must be identifiable and requires positive user confirmation. WT-3: Trusted path
as defined by WT-2, but communication between user and TCB must always be secured
in both directions.

A rating is given as a set of functionality and assurance levels, e.g. as ”CD-2, CR-1,
AC-1, WI-1, WA-2, IS-1, T-2”. This example rating requires the product to fulfil Basic
Discretionary Confidentiality (discretionary confidentiality level 2), Object Reuse, Quo-
tas (containment availability level 1), External Identification and Authentication (I&A
accountability level 1), Security Audit (audit accountability level 2), Basic Separation of
Duties (separation of duties integrity level 1), Assurance Level 2.
To facilitate a mapping from TCSEC evaluations to CTCPEC evaluations, four security
functionality profiles are specified to reflect TCSEC C2, B1, B2, B3 functional security
requirements respectively.

In contrast to the TCSEC, the CTCPEC treats users and processes differently. The
TCSEC notion of an active subject is split up into a user and a process. Hence, mediation
of accesses can be based on security attributes of both user and process. Everything is
treated as a passive, user, or process object depending on their role in an interaction.

2.4.5 Common Criteria (CC) and Common Evaluation Method-
ology (CEM)

The approach of the Common Criteria [CC299a, CC299b, CC299c] is to present an in-
ternationally accepted framework for evaluation of IT security. It is divided into three
parts: the first part introduces the general model, the second concentrates on the security
functional requirements, and the third addresses assurance requirements.

The idea is that consumers specify their security needs in implementation-independent
protection profiles. Vendors can then develop products that meet these needs. A security
target is the implementation-specific definition of a product’s security requirements. It can
be subjected to evaluation by an independent body. Evaluators then check the provided
documents and perform tests on the product to conclude whether the target of evaluation
fulfils the desired security goals at the desired level of assurance.

Evaluation results basically consist of two pieces of information: the protection profile
or security target, and the evaluation assurance level, given as EAL1 (functionally tested)
to EAL7 (formally verified design and tested). Often, only the evaluation assurance
level (EAL) is provided when referring to an evaluated product. That omits what the
evaluation comprised, as protection profiles can greatly differ in requirements. The EAL
reflects quality and thoroughness of the evaluation process while the protection profile
defines security goals and protection mechanisms to address threats.

The result of an evaluation is binary – the evaluated product either meets the security
requirements or fails. An evaluation fails because a security mechanism is too weak or
because advanced methods on higher EAL’s fail to confirm correctness of a security mech-
anism. In the latter case, the product might still meet the defined security requirements
even if it was not possible to confirm that fact with the accuracy asked for.

Levels of security are introduced by having three classes of attackers with low, moderate
or high attack potential, respectively. Attack potential is defined as ”[t]he perceived
potential for success of an attack, should an attack be launched, expressed in terms of an
attackers expertise, resources and motivation.” However, this concept is not elaborated

2.4. METRICS IN SECURITY EVALUATION CRITERIA 39

Factor Range Identifying value Exploiting value
Elapsed Time < 0.5 hour 0 0

< 1 day 2 3
< 1 month 3 5
> 1 month 5 8
Not practical * (practically

not exploitable)
* (practically

not exploitable)
Expertise Layman 0 0

Proficient 2 2
Expert 5 4

Knowledge of TOE None 0 0
Public 2 2
Sensitive 5 4

Access to TOE < 0.5 hour, or access
undetectable

0 0

< 1 day 2 4
< 1 month 3 6
> 1 month 4 9
Not practical * (practically

not exploitable)
* (practically

not exploitable)
Equipment None 0 0

Standard 1 2
Specialised 3 4
Bespoke 5 6

Table 2.5: Calculation of attack potential (based on table [CEM04] B.8.3)

further. In the context of strength of mechanisms low attack potential is associated with
casual breaches of security, moderate with straightforward or intentional breaches, and
high attack potential with deliberately planned or organised breaches. The Common
Evaluation Methodology [CEM04] used to guide the work of the evaluator gives some
hints towards attack potential. The CEM does not define what low, moderate or high
attack potential is. It instead provides a table with points attributed to properties and
requirements of an attack. The points are summed up and then translated to attack
potential depending on the interval they belong to. The table and intervals are reproduced
in table 2.5 and table 2.6. In table 2.5 there are points for identifying a vulnerability as
well as for exploiting it. The rationale is that there could be some vulnerabilities that are
hard to find and then easy to exploit, or easy to find but hard to exploit.

Points for the five factors in columns Identifying value and Exploiting value are
summed up. The sum of the ten values is then used with table 2.6 to determine the
class of attack potential. The calculation should help the evaluator in determining the
appropriate attack potential and should provide a common basis.

In terms of metrics, reliability of this metric is estimated to be high. As regards validity
of the results, there exists only anecdotal evidence. [KF05] The tables are supposed to
have originated from a set of attacks deemed to be representative. Values for each factor
have been adjusted so that the experts present at time of decision could agree that results
of the calculations matched their intuitive assessment of attack potential. Unfortunately,

40 CHAPTER 2. PREVIOUS AND RELATED WORK

Range of values Resistant to attacker with attack potential of
< 10 No rating

10− 17 Low
18− 24 Moderate

> 24 High

Table 2.6: Rating of vulnerabilities (based on table [CEM04] B.8.4)

EAL Component Protection against attacker
with attack potential of

Insufficient protection
against attacker
with attack potential of

EAL1 – n/a (not applicable) n/a
EAL2 AVA VLA.1 Only identification of

vulnerabilities by developer
n/a

EAL3 AVA VLA.1 Only identification of
vulnerabilities by developer

n/a

EAL4 AVA VLA.2 Low Moderate
EAL5 AVA VLA.3 Moderate High
EAL6 AVA VLA.4 High n/a

(successful attack beyond
practicality)

EAL7 AVA VLA.4 High n/a
(successful attack beyond
practicality)

Table 2.7: EALs and attack potential (based on tables [CC299c] B.19 and [CEM04] B.8.1,
B.8.2

this set of representative attacks is not documented and the results can not be verified
without.

Interestingly, deviations from this method have to be justified by an evaluator; [CEM04]
states in B.8.2 (paragraph 1823): This approach should be adopted unless the evaluator
determines that it is inappropriate, in which case a rationale is required to justify the
validity of the alternative approach.

Most evaluations of commercial products are completed with EAL4 or lower. This
includes only certified resistance against vulnerabilities with low attack potential. In
table 2.7 AVA VLA stands for the component Vulnerability Assessment of the CC.

The CC and CEM in versions prior to 3.0 ([CC299a, CC299b, CC299c, CEM04])
distinguish between strength of security mechanisms and assessment of vulnerabilities.
Strength of mechanisms is analysed for all permutational or probabilistic mechanisms.
This class of mechanisms can be attacked directly (without bypassing, tampering with,
or misusing a mechanism), regardless of the quality of the implementation. In practice,
this class comprises password mechanisms, hash functions, and biometric authentication.
[KF05] Cryptographic mechanisms have always been judged separately.

Starting with the revised version 3.0 ([CC305a, CC305b, CC305c, CEM05]), however,
this distinction between strength of mechanism and assessment of vulnerabilities is no
longer made. Evaluations performed against earlier versions of the CC have shown that the

2.5. SYSTEM SPECIFICATION 41

EAL Component Protection against attacker
with attack potential of

Insufficient protection
against attacker
with attack potential of

EAL1 AVA VAN.1 Basic Extended-Basic
EAL2 AVA VAN.2 Basic Extended-Basic
EAL3 AVA VAN.2 Basic Extended-Basic
EAL4 AVA VAN.3 Extended-Basic Moderate
EAL5 AVA VAN.4 Moderate High
EAL6 AVA VAN.5 High Infeasible
EAL7 AVA VAN.5 High Infeasible

Table 2.8: EALs and attack potential (based on tables [CC305c] E.24 and [CEM05] B.3

distinction was questionable when assessing products. Hence, evaluation of the strength
of mechanisms is proposed to become a part of vulnerability analysis. Calculation of
attack potential is adjusted somewhat. New levels of attack potential are introduced –
basic and extended-basic – that replace the previous level of low. The factors to include
in an analysis stay the same. Hence, the fundamental concerns regarding this approach
still hold. The new requirements for attack potential at a certain level of assurance are
shown in table 2.8.

Part of a CC evaluation is the analysis of the architectural design of a target of eval-
uation. This can be done either at high level (major structural units, i.e., subsystems) or
low level (including the internal workings). The criteria request only that the presentation
of the design should be informal, semi-formal, or formal, and the level of detail that has
to be documented. They do not provide an explicit model to use.

This lack of an explicit model in the CC is also pointed out by [Whi01], stating ”[t]o
develop an extensible method for designing secure solutions, additional work is required
to develop: 1. A system model that is representative of the functional aspects of security
within complex solutions. 2. A systematic approach for creating security architectures
based on the Common Criteria requirements taxonomy and the corresponding security
system model.”

2.5 System specification

We survey three different methods of formally specifying a software systems. UML
(Unified Modeling Language) is an extensibe graphical notation for the specification of
software-intensive systems at varying levels of detail; it that has found broad acceptance
in industry. Data spaces are based on a significantly more rigorous mathematical founda-
tion than UML. However, tool support for this technique is next to non-existent. Z is a
standardised specification notation with a mathematical basis in set theory; tool support
is good.

2.5.1 UML and Patterns

Patterns for security [FP01] are templates for software developers to integrate security
mechanisms, e.g., authorization, role-based access control, and multilevel security. They

42 CHAPTER 2. PREVIOUS AND RELATED WORK

are relatively high-level and are not related to specific attacks. There exists some work
[YJB97] on patterns for architectural structures, namely Secure Access Layer, Single
Access Point, Check Point, Roles, Session, Limited View, and Full View With Errors.

A recent article [BWG05] – using rather uncommon terms with respect to security
research – discusses the use of security patterns to meet security objectives. Four archi-
tectural security properties are identified: Error management, Simplicity, Access Control,
and Defense in depth. These are linked to security objectives (e.g., confidentiality, in-
tegrity, availability) and to security patterns (cf. [YJB97]). Patterns guide implementa-
tion of security properties which in turn fulfil security objectives. The approach appears
fruitful, however, the architectural security properties seem quite randomly selected.

Similar to familiar use-case diagrams, specification of misuse cases is proposed by
[SO01]. They provide a method to include misuse/attacks in the software design process
and to lift awareness of security problems. However, they are rather high-level and lack
consistent semantics. Knowledge of attacks has to be brought in externally.

CORAS [COR04] offers a risk analysis and modeling language for information security.
A specialization of UML is used and based on threats, vulnerabilities, unwanted incidents,
risks, and treatments. Knowledge of vulnerabilities and possible attacks is supposed to
be gathered during the risk analysis phase. Description of scenarios can vary according
to the level of detail a developer is willing to present.

Donner [Don03] emphasizes the need for an ontology of the security field, i.e., a set
of descriptions of the most important concepts and the relationships among them. This
would be especially helpful when analysing attacks and classifying them with other similar
things. A security ontology in the context of web services security, supporting credentials
and communication protocols, is proposed by [DKF+03]. Information flow and access
control (here under the terms of secure entities and dependencies) are included in an
ontology for a framework for multi-agent systems. [MGM03]

2.5.2 Data spaces

A data space D is a triple (X , F, p), consisting of a state space X , a processor p, and a set
F of functions with a common domain X and whose ranges are value sets of data types.
[CH78a, CH78b] The set F can be interpreted as a state description, assigning values to a
state object. One could, e.g., have functions like a program counter or registers to model
a common central processing unit’s architecture.

Two important characteristics for state structures of a virtual machine are named:
completeness, i.e., states determine all their descriptor values in a unique way and states
are described by their complete set of descriptor values, and orthogonality, i.e., descriptors
do not depend on each other. Both are properties of the function set F.

Definition: A set F of functions with common domain X is complete for X if, for all
x , y ∈ X , f (x) = f (y) for all f ∈ F implies that x = y .

Definition: A set F of functions with common domain X is orthogonal (for X) if,
for every function η : F → X , there exists z in X such that for all f in F we have
f (z) = f (η (f)).

Some examples for data spaces representing simple programs in different program
languages are given in the original paper [CH78a]. This approach of an executable formal
specification had probably been presented ahead of time, since it did not lead to immediate
broad follow-up research by the community. Similar ideas were later rediscovered by other
researchers.

2.5. SYSTEM SPECIFICATION 43

More recently, data spaces have been employed to describe the FlexiBeans compo-
nent model. [Sti00]

2.5.3 Formal specification in Z

The formal specification notation Z is based on Zermelo-Fraenkel set theory and first
order predicate logic (cf. e.g. [Spi92, Jac97, PST96, BSC94, Bow96]). It has been devel-
oped by the Programming Research Group (PRG) at the Oxford University Computing
Laboratory (OUCL) and elsewhere since the late 1970s. It is now defined by an ISO
standard. [Z00]

[ASP03] presents templates to translate UML class diagrams to Z specifications.
[KC00] discusses a method to define UML models as Object-Z specifications (Object-
Z is an object-oriented enhancement to Z).

A comprehensive discussion of formalised architecture description and analysis is given
in [AAG95]. An architecture is modeled as components and connectors. Architectural
styles are defined by meaning functions assigning an interpretation to components and
connectors. The article presents examples of pipes and filters, and event systems. Prop-
erties of these styles (e.g. composability) are proved. Z is used throughout the article.

Z is also used by [SSM97] to reason about an architectural standard, in this case
COM (Component Object Model). Formalisation helped to prove that a desired software
architecture would not have been possible, i.e. violated the standard. Some properties of
COM that were not specified explicitly became clearer during the process.

Definition and refinement of a ”Message Router” architectural style is shown in [CM97].
Properties of the style, e.g. order preserving, are proved. The authors use a chemical ab-
stract machine model to analyse dynamic properties of this non-sequential system. In
[CS00] it is argued that combining a traces-based model with a state+operations style
Z specification is tedious. Z offers better tools support, so the additional effort appears
justified.

Z is used as the basis for different representations, i.e. natural English, Prolog, ad-hoc
graphical notation, Petri nets by [MS90]. It is claimed that different presentations cater
better to the needs of different audiences and increase understanding. Consistency is found
to be difficult without adequate tool support. Not one representation is found to be ”best”.
Criteria for good specifications are given in [Gra90]. Hints are provided with respect to
naming, state vs. operations, abstraction, use of implications, and close correspondence
between mathematical definitions and the accompanying readable description.

44 CHAPTER 2. PREVIOUS AND RELATED WORK

Chapter 3

Software metrics for resilience

Chapter summary: In this chapter we show how security of programs against malware
attacks can be ranked by assigning a resistance class to a program. A resistance class
is composed of a score for security requirements and a score for attacker capabilities.
Security requirements are expressed by three scales: Data integrity, Data confidentiality,
and Code integrity. Attacker capabilities are expressed by four scales: Attack initiation
capability, Available time to attack, Attack variation capability, and Influence on the local
human user. Measuring resistance of a program is performed by fourteen software security
metrics. These measure compliance of the program’s architecture with established design
principles for secure programs.

Determining the level of resilience a software product has against malware attacks is
important. Presence of malware on a computer is a real scenario (cf. spyware, viruses)
[Mye80], albeit being regularly neglected when evaluating products. The user often has
to ensure by organisational or other means, e.g. by installing antivirus software, that
the environment of the target of evaluation is free of malicious software. Otherwise, the
evaluation result is not valid and the evaluating body does not make any assumptions
about the software operating as expected. [Lan06b]

Evaluation, e.g. following the Common Criteria process, is time consuming, and is
often begun after product implementation. When it has been completed, the evaluated
version may already be functionally outdated. We want a measure based on an applica-
tion’s architectural description. This is available after the design process and allows an
early estimation of resistance against malware attacks.

To do this, we describe the system architecture, attackers’ capabilities, and attacks by
generic building blocks. Common security requirements and the desired level of resistance
are defined by resistance classes. A class contains all architectures that are resistant to
attacks with a certain potential. It can then be determined whether a concrete system
architecture is a member of a certain resistance class. By establishing an order on secu-
rity requirements and attacker capabilities, resistance classes can be ordered. A system
architecture in a higher class can then be regarded as more secure – in the presence of
malware attacks – than an architecture in a lower class.

45

46 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

3.1 Ranking of security requirements

Security is traditionally viewed as a binary property – a product either is secure or it fails
to fulfill its security requirements. Still, there is a significant variation in the possible
requirements. One product can live up to more stringent requirements than another,
hence, be a more secure product. This suggests an ordering of security requirements.

It is noted by [LABMC94] that ”[a] security flaw is a part of a program that can cause
the system to violate its security requirements. These requirements vary according to the
system and its application.” We assume a set of typical security requirements shared by
our class of security-sensitive programs. Without a definition of security requirements, no
measurement of goal completion would be possible since security would be undefined.

We are concerned with local security-sensitive programs. Even if typical access control
systems associate processes with the users who created them, not all processes of the same
user are equal. Software may be used as an intermediary to other objects or services, i.e.,
it brokers requests as a Protected Subsystem, cf. [SS75], or Unix -style suid programs.
Storage controlled by a process may contain security-relevant data, e.g., credentials or
copyright-restricted material received from a remote service.

Definition 3.1.1. A local security-sensitive program p is a program being executed on a
personal computer or similar device, performing a security-sensitive function, and being
used by a local human user. Security-sensitive functions include, but are not limited
to, protecting the confidentiality and integrity of stored data items, modifying data items
according to the intentions of the user, and reliably executing its code.

Hence, code and all data controlling its execution must be protected against modifi-
cation, replacement, or subversion. Protected in this respect means to prevent or detect
unauthorized access. Unauthorized actions are security-relevant actions occuring contrary
to the desire of the person controlling an asset.

An attacker does not have direct physical access and attacks are carried out by other
processes on the device. The security requirements state which goals must not be vio-
lated for the system to continue being regarded as secure. In our scenario we have the
following security requirements: data integrity and data confidentiality , as well as code
integrity . Data items may contain sensitive information or information that must not be
manipulated. Code integrity covers the correct performance of mechanisms. These may
operate on temporary data items or control valuable activity that does not lead to stored
data items, e.g., moving a robot actuator.

Our focus on integrity (of data and code) as the primary security requirements and
on confidentiality as secondary is supported by the observation of real threats in recent
years, cf. [MY06].

Security requirements can hence be described by three axes (data integrity, data con-
fidentiality, code integrity). Each axis is assigned a value on the following scale:

1. Attack remains undetected

2. Attack is logged and detectable (on request)

3. Attack is detected and the user is alerted (when it happens)

4. Attack is prevented

3.1. RANKING OF SECURITY REQUIREMENTS 47

A low value stands for a weak security requirement. A high value implies a strong
protection goal.

Lemma 3.1.1. A system that logs a successful attack on it is more secure than a system
that does not detect an attack.

A system that detects an attack and alerts the local human user is more secure than a
system that logs an attack, but does not alert the user.

A system that prevents an attack is more secure than a system that detects and attack,
but does not prevent it.

Proof 3.1.1 (Lemma 3.1.1). Omitted.

Applying the lemma, the scales for the three requirements data integrity, data confi-
dentiality, code integrity are interpreted as follows:

• Limit damage done to data integrity

1. Modification of data components remains undetected

2. Modification of data components is logged and detectable (on request)

3. Modification of data components is detected and the user alerted (when the
attack happens)

4. Modification of data components is prevented

• Limit damage done to data confidentiality

1. Disclosure from data components remains undetected

2. Disclosure from data components is logged and detectable (on request)

3. Disclosure from data components is detected and the user alerted (when the
attack happens)

4. Disclosure from data components is prevented

• Limit damage done to code integrity

1. Modification of code components remains undetected

2. Modification of code components is logged and detectable (on request)

3. Modification of code components is detected and the user alerted (when the
attack happens)

4. Modification of code components is prevented

Mathematically, security requirements of a local security-sensitive program are defined
as a triple:

Definition 3.1.2. Let S ⊆ N be the strength of a security requirement. The set of
security requirement levels is then defined as SecReqLevel = S × S × S. (=data integrity
× data confidentiality × code integrity)

48 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Definition 3.1.3. A security requirement level s1 = (di1, dc1, ci1) ∈ SecReqLevel is equiv-
alent to a security requirement level s2 = (di2, dc2, ci2) ∈ SecReqLevel ⇔ di1 = di2 ∧ dc1 =
dc2 ∧ ci1 = ci2. We write s1 = s2.

A security requirement level s1 = (di1, dc1, ci1) ∈ SecReqLevel is at least as strong as
a security requirement level s2 = (di2, dc2, ci2) ∈ SecReqLevel ⇔ di1 ≥ di2 ∧ dc1 ≥ dc2 ∧
ci1 ≥ ci2. We write s1 ≥ s2.

A security requirement level s1 = (di1, dc1, ci1) ∈ SecReqLevel is at most as strong as
a security requirement level s2 = (di2, dc2, ci2) ∈ SecReqLevel ⇔ di1 ≤ di2 ∧ dc1 ≤ dc2 ∧
ci1 ≤ ci2. We write s1 ≤ s2.

Definition 3.1.4. A security requirement level s1 is stronger than a security requirement
level s2 if s1 is at least as strong as s2 and s1 is not equivalent to s2. We write s1
 s2.

Weak requirements are characterised by low values for the components of their asso-
ciated security requirement levels. Strong requirements are characterised by high values
for the components of their associated security requirement levels.

3.2 Attacker capability metrics

A process (i.e., the attacker’s tool) has some inherent capabilities depending on the system
it inhabits. These generally include access to securable objects, e.g. files, according to the
access control configuration. (Contemporary discretionary access control systems assign
the same privileges to all processes bound to the same user account.)

In addition to these, attacker-specific capabilities of a malicious process can be de-
scribed along four axes: attack initiation capability, available time to attack, attack vari-
ation, influence on user :

Definition 3.2.1. Attack initiation capability is the attacker’s capability to control when
an attack is begun and whether an attack can be attempted repeatedly. Possible values in
ascending strength are Initiation by user action, Initiation by system action (automatic),
Initiation at attacker’s discretion.

Definition 3.2.2. Available time to attack is the attacker’s capability to attempt an attack
over time. Possible values in ascending strength are Once per user session, Several times
per user session, Throughout whole user session.

Available time to attack must not be confused with the window of opportunity. The
window of opportunity describes the time/interval in which an attack is possible and
depends on the system under attack. Available time to attack is based on the attacker’s
abilities to launch an attack within this window of opportunity.

Definition 3.2.3. Attack variation is the attacker’s capability to adjust an attack while
the attack is in progress. Possible values in ascending strength are Attacker cannot cus-
tomise an attack, Attacker can customise automatically apart from passing a Turing test,
Attacker can customise automatically including passing a Turing test.

Attack variation is an indication of the flexibility of the attacking process to adapt the
attack to changes in the attacked application’s modules or (user) interface. An attacking
process being able to pass a Turing test could e.g. be one with a real-time communication
channel to a human accomplice.

3.2. ATTACKER CAPABILITY METRICS 49

Definition 3.2.4. Influence on user is the influence that the attacker can exercise on the
local human user. Possible values are User cannot be influenced, User can be influenced
once during attack, User can be influenced repeatedly during attack.

It might be argued that the user should be part of the system under attack. However,
the user is part of the application’s architecture only insofar as the user is concernced
as a source of input or destination to receive output. An assessment of an application’s
resilience against malware attacks should be independent from the user’s ability to with-
stand social engineering techniques. Incorporating this ability as the attacker’s capability
to influence the user allows the rating of the system to remain constant. Raising security
awareness among users, for instance, does not change an application’s resilience. The
attacker’s capabilities, however, depend on the user’s susceptibility to social engineering.

Another option might be to remove dependability on the user from the description
of an attacker’s capabilities. We would then operate with an application’s resilience
(constant if application is not changed), attacker’s capabilities (constant if attacker is not
changed), and a user’s resilience to social engineering (constant if user is not changed).
Our compound attacker capabilities rating can be used to that purpose by projecting its
first three components as pure attacker capabilities and projecting the fourth component
as user susceptibility. We stick to the compound attacker capabilities rating for the
remainder of this thesis.

For the four attacker capabilities attack initiation, available time to attack, attack
variation, influence on user the scales are interpreted as follows:

• Attack initiation capability

1. Attack can be initiated by user action

2. Attack can be initiated automatically

3. Attacker can launch attack at own discretion

• Available time (time to carry out an attack ; in contrast to time to intrusion which
is not applicable – attacks typically fail or succeed in an instant)

1. Attacker can attempt attack only once per user session (e.g. post-condition of
attempted attack invalidates its pre-condition)

2. Attacker can attempt attacks several times during user session (e.g. when
guessing a password)

3. Attacker can carry out attack as long as user session lasts

• Attack variation

1. Attacker cannot customise attack, follows same procedure every time (e.g. uses
same script)

2. Attacker can customise attack automatically, but cannot pass Turing test

3. Attacker can customise attack interactively (process has access to human col-
laborator), can pass Turing test (e.g. can solve CAPTCHA – Completely Au-
tomated Public Turing test to tell Computers and Humans Apart [vABHL03])

• Influence on user (e.g. deception via user interface manipulation, user activates
components that are then attacked)

50 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

1. User could neither be enticed nor forced to act

2. User could be enticed or forced to act once

3. User could be enticed or forced to act repeatedly in similar manner

Mathematically, capabilities of an attacker using a locally executed process as a tool
are defined as a quadruple:

Definition 3.2.5. Let C ⊆ N be the strength of an attacker’s capability. The set of
attacker capability levels is then defined as AttCapLevel = C × C × C × C.

Definition 3.2.6. An attacker capability level c1 = (ai1, at1, av1, ui1) ∈ AttCapLevel is
equivalent to an attacker capability level s2 = (ai2, at2, av2, ui2) ∈ AttCapLevel ⇔ ai1 =
ai2 ∧ at1 = at2 ∧ av1 = av2 ∧ ui1 = ui2. We write c1 = c2.

An attacker capability level c1 = (ai1, at1, av1, ui1) ∈ AttCapLevel is at least as strong
as an attacker capability level s2 = (ai2, at2, av2, ui2) ∈ AttCapLevel ⇔ ai1 ≥ ai2 ∧ at1 ≥
at2 ∧ av1 ≥ av2 ∧ ui1 ≥ ui2. We write c1 ≥ c2.

An attacker capability level c1 = (ai1, at1, av1, ui1) ∈ AttCapLevel is as most as strong
as an attacker capability level s2 = (ai2, at2, av2, ui2) ∈ AttCapLevel ⇔ ai1 ≤ ai2 ∧ at1 ≤
at2 ∧ av1 ≤ av2 ∧ ui1 ≤ ui2. We write c1 ≤ c2.

Definition 3.2.7. An attacker capability level c1 is stronger than an attacker capability
level c2 if c1 is at least as strong as c2 and c1 is not equivalent to c2. We write c1
 c2.

Weak attackers are characterised by low values for the components of their associ-
ated attacker capability levels. Strong attackers are characterised by high values for the
components of their associated attacker capability levels.

3.3 Generic attacks

After having defined SecReqLevel and AttCapLevel we want to define resistance classes .
For this, we first need a repository of attacks, AttRepository , and a function mapping
attacks to the capabilities an attacker must possess to perform them, NecAttCap.

Malware intends to violate the protection goals of another process. To this end, it
can modify data items directly. If data items are protected, then an attack must focus on
processes that have access to the protected data items. These processes can be influenced
in one of three ways: directly, by modifying the parameters for the code, by influencing
the user. We summarise:

• Malware can directly attack integrity and confidentiality of data items directly, i.e.,
without interfering with other processes.

• Malware can attack the integrity of the code that is executed. The behaviour of the
code is hence changed directly.

• If integrity of the code is preserved, then malware can attack the integrity of the
stored or transmitted parameters the code uses to determine its execution path. The
behaviour of the code is hence changed depending on the values of the parameters.

• If integrity of the code and its parameters is preserved, then malware can influence
the operator (local human user) to misuse the process. The behaviour of the code
is hence changed according to user actions.

3.3. GENERIC ATTACKS 51

Table 3.1: Categories for generic attacks (cf. [CEM04])
Category Method
Accessing stored data
items directly

– Exploit weak access control configuration

Violating code execu-
tion integrity

– Exploiting absence of security enforcement on interfaces, e.g.
replacing internal modules
– Access to unprotected shared objects, e.g. replacing or mod-
ifying shared modules

Changing parameters – Exploiting absence of security enforcement on interfaces, e.g.
modifying scripts, configuration data
– Executing additional or unintended components, e.g. load-
ing run-time libraries, inheriting privileges
– Using components in unexpected context or for unexpected
purpose, e.g. simulating user actions
– Access to unprotected shared objects, e.g. input to process
– Modifying a component’s environment, e.g. configuration
data
– Causing extreme circumstances for components, e.g. ex-
hausting shared resources

Influencing the user – Access to unprotected shared objects that comprise the user
interface, e.g. manipulating shared desktop area

If executed code and parameters are unchanged and if the process is operated correctly
by the user, it produces the intended results. No manipulation is possible. Of course,
at a lower level of execution, e.g. by a manipulated virtual machine, an attack might be
possible. Attacks at a lower architectural level are outside the scope of this work. We
discuss attacks by malicious processes running at the same level of abstraction as the
attacked processes.

Generic attack methods to fill these four classes – direct access to data items, violating
code integrity, violating parameter integrity, influencing the user – can, among other
places, be found in the evaluation manual [CEM04] accompanying the Common Criteria.
Here, attacks are classified into bypassing of security enforcement, tampering with security
mechanisms, direct attacks on permutational (e.g. hash function) or probabilistic (e.g.
password, biometric) security mechanisms, or misuse of systems (cf. section AVA VLA
of [CEM04]). With respect to architectural security, this provides us with the repository
of typical attacks shown in table 3.1.

We identify 13 generic attack methods amenable to malware. These are listed in
table 3.2 and formally described in section 6.1.

This list of generic malware attacks is constructed with the concept of a Turing machine
in mind. Turing machines have been used in malware analysis earlier (cf. [Coh85], [Lei00]).
Consider a Turing machine (Q , Σ, δ, q0) with a set of states Q , a set of tape symbols Σ, a
transition function δ, and a start state q0. An attacking malicious process can read and
modify the output on the tape (i.e. the stored data items), can modify the transition
function δ (i.e. the executable code), can read and modify the input on the tape (i.e. the
parameters), can modify the start state q0 (i.e. influence the user operating the machine).
Hence, our categorised list of generic attacks comprises all targets accessible to malware.

52 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.2: Generic malware attack methods
Category Method
Directly violate integrity, – Modify stored data item
confidentiality of stored
data

– Retrieve contents of stored data item

Violate integrity of – Modify code in memory
executed code – Modify stored code module

– Add stored code module
– Modify reference to stored code module

Violate integrity of – Initiate communication with component and send data
parameters – Respond to component’s communication request

– Modify stored data item containing parameters
– Modify reference to stored data item
– Simulate user input

Influence user – Modify user interface object
– Modify stored data item examined by users for decisions

For each attack in the set of all generic attacks, AttRepository , the necessary capabil-
ities are recorded by NecAttCap : AttRepository → AttCapLevel . If a specific attack can
be applied in a certain system configuration depends on the attack’s preconditions. We
take NecAttCap for given for the moment. It is defined in section 6.3.1 in the context of
the formal description of generic attack methods.

3.4 Resistance classes

Metrics for security requirements and metrics for attacker capabilities lead to the definition
of resistance classes. A resistance class is defined as the set of all system states in which
an attacker with given capabilities cannot violate the given security requirements. Let
Conf be the set of all system configurations.

Definition 3.4.1. The EvalState function maps a system state to the highest security
requirements level that is possible for this state.

EvalState : Conf → SecReqLevel

The ApplyAttack function maps a system state and an attack to the resulting after-
attack state.

ApplyAttack : Conf × AttRepository → Conf

ResistanceClass is a function AttCapLevel × SecReqLevel → P Conf , mapping an at-
tacker capabilitiy level acp and a security requirements level srq to the possible system
configurations ⊆ Conf where the security requirements are met in face of attempted at-
tacks:

ResistanceClass(acp , srq) 7→
{sysconf ∈ Conf | ∀ att ∈ AttRepository •

NecAttCap(att) ≤ acp ⇒ EvalState(ApplyAttack(sysconf , att)) ≥ srq}

3.5. PROPERTIES OF SECURE SOFTWARE ARCHITECTURES 53

We write rcac,sr = ResistanceClass(ac, sr) to refer to the set of system states represent-
ing the resistance class of the given attacker capability level ac and security requirements
level sr .

The EvalState and ApplyAttack functions are formally defined in section 6.4 in terms
of the model of a generic computer system and attack repository discussed in chapters 4
and 5.

Definition 3.4.2. A resistance class rcac1,sr1 ⊆ Conf is equivalent to a resistance class
rcac2,sr2 ⊆ Conf ⇔ ac1 = ac2 ∧ sr1 = sr2. We write rcac1,sr1 = rcac2,sr2.

A resistance class rcac1,sr1 ⊆ Conf is at least as strong as a resistance class rcac2,sr2 ⊆
Conf ⇔ ac1 ≥ ac2 ∧ sr1 ≥ sr2. We write rcac1,sr1 ≥ rcac2,sr2.

A resistance class rcac1,sr1 ⊆ Conf is at most as strong as a resistance class rcac2,sr2 ⊆
Conf ⇔ ac1 ≤ ac2 ∧ sr1 ≤ sr2. We write rcac1,sr1 ≤ rcac2,sr2.

Definition 3.4.3. A resistance class rc1 is stronger than a resistance class rc2 if rc1 is
at least as strong as rc2 and rc1 is not equivalent to rc2. We write rc1
 rc2.

Strong resistance classes have high security requirements levels and allow for high
attacker capability levels.

Lemma 3.4.1. A security metric for security requirements srm or attacker capabilities acn

is meaningful if ∀ sr1, sr2 ∈ SecReqLevel ,∀ ac1, ac2 ∈ AttCapLevel : rcac1,sr1
 rcac2,sr2 ⇒
rcac1,sr1 (rcac2,sr2.

Proof 3.4.1 (Lemma 3.4.1). If a strengthening of security requirements or attacker
capabilities does not lead to a reduction in the set of secure configurations, the two values
on the security requirements or attacker capabilities scale could be merged into one without
a loss of information.

3.5 Properties of secure software architectures

Our goal is to examine the relationship between software architectures and resistance
classes as defined in the previous section. Architectural properties are studied for quan-
tifiable items that can be used in metrics. The metrics should then help to indicate
whether the program’s architecture has improved from one version to the next with re-
spect to high resistance against malware attacks.

What constitutes a good software architecture with respect to security has been re-
searched earlier, e.g., in [WBG+87, Neu96, Neu00, COR04]. We group the important
principles for secure software architecture into those that can be determined locally –
for single components or connectors – or globally, based on an architectural description.
This list is followed by attributes of minor importance and properties that are subject to
interpretation and as such not easily accessible to measurement.

Following terminology outlined in [AAG95], an application’s architecture consists of
components and connectors. Components have ports to which the connectors attach. A
component is of a type describing its functionality class, e.g., file or process. Connectors
determine how components can be coupled, e.g., by a data transfer relationship or a code
invocation relationship. Ports are the interfaces where components offer coupling. Ports
used by a connector have a role depending on the relationship defined by the type of the
connector.

54 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Our collection of properties of secure software architectures has been mainly extracted
from two sources: Wood et al.: Computer Security [WBG+87], and CORAS [COR04]. In
our list we reference a source by its name, section, and item number, e.g., ”Wood 6.87”
refers to list item 87 in section 2.6 of [WBG+87].

3.5.1 Local security properties

The twelve local security properties discussed here can be determined at the level of a
single component and its connections. A local property is independent of other compo-
nents.

1. Executable code protection – Protection for programs/processes shall be at least as
good as for the data they manage. [ACLs for executable components connected
to data components shall be at least as strict as the ACLs for the connected data
components.] Source: Wood 6.87, CORAS 4.25.

2. Storage protection – Access control is used for (intermediate) storage of data. [There
exist access restrictions for components containing (intermediate) data. No direct
modification of internal resources of components is possible via attached connectors
from other components.] Source: Wood 8.16.

3. Authenticity/Integrity preservation – Authenticity/Integrity checks are used when
data is imported/exported or when code is executed. [Connectors for import/export
or execution are used in conjunction with authenticity roles for the connecting ports.
Integrity-preserving connectors are used.] Source: Wood 2.19, 8.29, 8.30, 9.54, 9.55,
CORAS 4.47, 4.48, 7.28, 7.29.

4. Cryptographic key protection – Access control is used for storage of cryptographic
keys. [There exist access restrictions for components containing data used as a
security parameter in cryptographic operations. No direct revelation of internal
resources of components is possible via attached connectors from other components.]
Source: CORAS 4.25.

5. Complete access control – All types of access are controlled, there is no access path
without access control mechanisms. [All access ports of a component to which
connectors could attach have access control functionality.] Source: Wood 6.4, 6.6,
6.12, 6.62, 6.91, 8.36, 9.14, 9.65.

6. Log data protection – Data stored in logs is protected against unauthorized modi-
fication. [Access restrictions are in place for storage components that contain data
imported from logging mechanisms.] Source: Wood 9.77.

7. Invocation logging – Invocation of programs is logged. [All invoking connectors
include capability of logging.] Source: Wood 8.35, 9.81.

8. Sensible logging – Security parameters, e.g., passwords, are not logged. [Logging
is not enabled for connectors importing/transferring security parameters.] Source:
Wood 6.17, 6.27.

3.5. PROPERTIES OF SECURE SOFTWARE ARCHITECTURES 55

9. Process controls – Privileged operations are only available from designated pro-
cesses. [Some connectors only attach to ports of certain components. Some roles
are available only for some ports.] Source: Wood 9.25.

10. Separate input procedures – For sensitive transactions, there exist separate input
procedures that cannot be used by all processes. [There exists a trusted path for
access to sensitive components, i.e., a connector requiring a human at one port, and
a component having a port that accepts only a connector with the trusted path
ability.] Source: Wood 7.15, CORAS 7.15.

11. Human in the loop – Some actions can only be initiated by persons, in contrast to
processes. [Some connectors require a human at one port.] Source: Wood 2.16.

12. Separation of privilege – Multiple persons/Multiple processes are involved in an
operation. [Multiple connectors are attached to the same port.] Source: Wood 2.15,
2.17.

3.5.2 Global security properties

The five global security properties discussed here are emergent properties of the whole
system. They can only be determined if and when the complete configuration is taken
into account. This affects the ability to parallelize data collection and the complexity of
updating values of the metric after changes to the system.

1. Kernelized software – Software is structured as a single executable object that is not
extended by other code objects possibly under different control. [(Main) executable
component does not have invoking/importing connectors to other executable com-
ponents. There might only be a single executable component.] Source: Wood 9.58.

2. Least privilege – As few privileges as possible are assigned to processes. [Access
permissions available to a process, e.g., expressed as privileges in capability lists,
are small in number.] Source: Wood 7.26, 9.79, CORAS 7.14.

3. Least privilege sharing – As few processes as possible are assigned a privilege. [Pro-
cesses sharing an access permission, e.g., expressed as pairs in access control lists,
are small in number.] Source: Wood 2.31, 6.20, 6.84, 8.56, 9.5, 9.50, 9.72, CORAS
7.10, 8.22.

4. Consistent controls – Security mechanisms are applied similarly and consistently.
[Access permissions are applied identically for the same class of components. Com-
ponent classes can be defined by origin of components, location of components, or
invocation probability of components.] Source: Wood 2.26, 2.33, 6.3, 6.92, CORAS
7.8.

5. Central software distribution – Software is distributed centrally, i.e., from a single
source. [All connectors of an exporting/transferring type, connected to executable
components, have one component – probably even one port – in common.] Source:
Wood 9.61.

56 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

3.5.3 Model-intrinsic security properties

Model-intrinsic security properties are local or global security properties that are not prop-
erties of a particular application, but rather properties of the environment specification
or model. They are enforced regardless of applications and attacker behaviour.

1. Controls application – Access controls cannot be circumvented. All accesses for
which access restrictions exist are checked whether or not they should be permitted.
[If a component has ports with access control, then it must not be possible to
attach to ports of the components that do not support access control. Connectors
that support access control must not be replaceable with connectors that do not
support access control.] Source: Wood 9.34, 9.72, 9.73, 9.79, CORAS 3.17, 7.13,
7.18, 7.20, 7.21, 7.22.

2. Freshness of resources – Residual information is not accessible to other processes.
Providing access to a discarded resource ensures that the resource is put into a
defined state independent from its previous content. [Creation of components or
connecting to components from whose ports all connectors have been disconnected
leads to the accessed component being put into an initial state without any hints
to its previous content.] Source: Wood 6.83, 8.15, 9.21, 9.69.

3. Process segregation – Processes are segregated. They can only influence each other
via their intended interface. Access of internal storage of a process is not possible
from the outside. [No direct modification of a process’s code and internal resources
is possible by other components.] Source: Wood 6.82, CORAS 7.19.

3.5.4 Properties of minor importance

Some security properties are of lesser importance in our attack scenario (local malware
attacks). Those properties are presented for completeness’ sake in the following list, but
not used further in this thesis.

1. Redundant data entry – Data from the same source is input several times using dif-
ferent methods. It is accepted if inputs from different methods match. [A component
exposes multiple ports for the same purpose. Alternatively, multiple connectors for
the same purpose are attached to a single port.] Source: Wood 7.2, 7.3, 8.10.

2. Multifactor authentication – Authentication is performed involving different meth-
ods. [Multiple connectors with authentication ability are attached to the same port.]
Source: Wood 6.7.

3.5.5 Properties that are subject to interpretation

Not all security properties lend themselves to construction of software security metrics.
In situations where security properties depend on a specific application, no generally
applicable metrics can be achieved. These situations arise when the definition of the
security property involves knowledge of the inner workings of a component or a connector.
It is left to future work if, e.g., the introduction of port types could ameliorate this problem.
Properties that are subject to interpretation are presented in the following list, but not
used further in this thesis.

3.6. SOFTWARE ARCHITECTURE METRICS 57

1. User notification – Notification or alert facilities exist to inform the user about a
malfunction or security breach. [Notification components exist and are connected
to the user. Connectors for relevant events are present and include monitoring
abilities.] Source: Wood 9.17, CORAS 2.8, 2.13.

2. Monitoring – Monitoring facilities exist to detect malfunctions or security breaches.
[Connectors with monitoring abilities are used for relevant events and are connected
to logging or notification components.] Source: CORAS 4.41.

3. Configuration changes logging – Changes in logging or access control configuration
are logged. [Only connectors that have logging abilities can attach to modification
ports of logging configuration data or access control configuration data.] Source:
Wood 6.21, 6.29, 6.84, 8.54, 9.78, CORAS 7.10.

4. Decentralized controls – Non-centralized control of resources is possible. [Controlling
ports for access control decisions are available at decentralized components. Not all
controlling connectors for resources must attach to a single controlling component.]
Source: Wood 6.72, CORAS 7.19, 7.20, 7.22.

3.6 Software architecture metrics

Based on the attributes of secure and architecturally sound systems we establish a set
of security metrics; these are derived from the properties of the preceding section. Each
metric measures to which degree an attribute found in architecturally sound systems is
satisfied. A value of 100% means that the attribute is fully satisfied, while a value of
0% means that it is not present. Changes in values between 0% and 100% can be used
to track progress between versions of the same system. Our metrics can be found in the
tables on the following pages. Table 3.17 provides a summary.

We present metrics for local and global security properties. Metrics for properties of
minor importance are left to future work, as well as metrics for properties that require
interpretation or adaptation to a specific application.

Using the metrics, our goals are twofold. Our first goal is to measure progress when
comparing two versions of the same product. Metrics should help to indicate whether the
program’s architecture has improved from one version to the next with respect to high
resistance against malware attacks. Our second goal is to examine the relation between
architectural properties of a software product and the resistance classes it can be placed
in. Some architectural styles might be inherently more secure than others.

Metrics have an absolute or a relative target. Those having an absolute target gauge
whether or not a specific security property has been achieved and to what degree. In
most cases the target will be 100 percent. Experience from security evaluation (cf., e.g.,
[CEM04, NIS03]) shows that metrics with absolute targets often focus on scope and
rigour of security mechanisms. These metrics can also be used to find out if there exists
a trend in improving security mechanisms when comparing different versions of the same
application over time. Given similar functional requirements, metrics with an absolute
target value may allow for comparison of the security posture of different products for the
same purpose.

Relative targets are of interest where no absolute target can be set. There might be an
upper or lower bound for the target value which depends on the functional requirements

58 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

of the software being evaluated. These metrics can be used to find out if there exists a
trend when comparing different versions of the same application over time.

In the next sections 14 metrics derived from the principles in section 3.5 are discussed
in detail in accordance with the NIST standard 800-55 [NIS03] for security metrics (see
section 2.3.1 for an introduction to the standard).

3.6.1 Metrics related to security requirements

All 14 metrics in this section aim for higher values, i.e., higher values indicate better
security (4 metrics have to be normalized contrary to an intuitive understanding first).
Most of them count the fraction of architectural components that comply with a local
architecture principle. The target for the ”best” value is always 100%.

A description of each software security metric is given in separate tables 3.3 to 3.16
in NIST standard 800-55 style.

Metrics targeting data integrity: M4–Percentage of protected intermediate storage
components (table 3.6), M5–Percentage of access control instrumentation (table 3.7), M6–
Conformity of access permissions (table 3.8), M8–Percentage of authenticity/integrity pre-
serving connectors (table 3.10), M10–Restriction of number of components with shared re-
sponsibility (server) (table 3.12), M12–Percentage of trusted path connectors (table 3.14),
M13–Restriction of number of privileges (table 3.15), M14–Restriction of number of pro-
cesses sharing a privilege (table 3.16).

Metrics targeting code integrity: M1–Restriction of number of executable distribu-
tion sources (table 3.3), M2–Restriction of number of executable components (table 3.4),
M3–Percentage of protected executables (table 3.5), M5–Percentage of access control in-
strumentation (table 3.7), M6–Conformity of access permissions (table 3.8), M7–Percentage
of logged invocations (table 3.9), M8–Percentage of authenticity/integrity preserving con-
nectors (table 3.10), M10–Restriction of number of components with shared responsibil-
ity (server) (table 3.12), M11–Restriction of number of components with multiple ex-
ecutable extensions (table 3.13), M13–Restriction of number of privileges (table 3.15),
M14–Restriction of number of processes sharing a privilege (table 3.16).

Metrics targeting data confidentiality: M4–Percentage of protected intermediate
storage components (table 3.6), M5–Percentage of access control instrumentation (ta-
ble 3.7), M6–Conformity of access permissions (table 3.8), M9–Percentage of unlogged
security parameters (table 3.11), M12–Percentage of trusted path connectors (table 3.14),
M13–Restriction of number of privileges (table 3.15), M14–Restriction of number of pro-
cesses sharing a privilege (table 3.16).

As can be seen in table 3.18, metrics that address logging and monitoring/alert ca-
pabilities are currently not available (M7 being the sole exception). These require inter-
pretation of certain architectural elements, and we regard this interpretation yet as an
act of evaluation. Results of the metrics would in that case be biased depending on this
pre-evaluation.

3.6. SOFTWARE ARCHITECTURE METRICS 59

3.6.2 Metrics related to attacker capabilities

All 12 metrics in this section aim for higher values, i.e., higher values indicate better
security (4 metrics have to be normalized contrary to an intuitive understanding first).
Most of them count the fraction of architectural components that comply with a local
architecture principle. The target for the ”best” value is always 100%.

Description of each software security metric is given in separate tables 3.3 to 3.16 and
follows NIST standard 800-55 style.

Metrics targeting attack initiation: M1–Restriction of number of executable distri-
bution sources (table 3.3), M2–Restriction of number of executable components (table 3.4),
M3–Percentage of protected executables (table 3.5), M4–Percentage of protected interme-
diate storage components (table 3.6), M5–Percentage of access control instrumentation
(table 3.7), M12–Percentage of trusted path connectors (table 3.14).

Metrics targeting available time: M1–Restriction of number of executable distribu-
tion sources (table 3.3), M3–Percentage of protected executables (table 3.5), M4–Percentage
of protected intermediate storage components (table 3.6), M7–Percentage of logged invo-
cations (table 3.9), M8–Percentage of authenticity/integrity preserving connectors (ta-
ble 3.10), M9–Percentage of unlogged security parameters (table 3.11), M11–Restriction of
number of components with multiple executable extensions (table 3.13), M12–Percentage
of trusted path connectors (table 3.14).

Metrics targeting attack variation: M1–Restriction of number of executable distri-
bution sources (table 3.3), M2–Restriction of number of executable components (table 3.4),
M3–Percentage of protected executables (table 3.5), M4–Percentage of protected interme-
diate storage components (table 3.6), M5–Percentage of access control instrumentation
(table 3.7), M8–Percentage of authenticity/integrity preserving connectors (table 3.10),
M9–Percentage of unlogged security parameters (table 3.11), M10–Restriction of number
of components with shared responsibility (server) (table 3.12), M11–Restriction of num-
ber of components with multiple executable extensions (table 3.13), M12–Percentage of
trusted path connectors (table 3.14), M13–Restriction of number of privileges (table 3.15),
M14–Restriction of number of processes sharing a privilege (table 3.16).

Metrics targeting influence on user: M7–Percentage of logged invocations (table 3.9),
M8–Percentage of authenticity/integrity preserving connectors (table 3.10), M10–Restriction
of number of components with shared responsibility (server) (table 3.12), M12–Percentage
of trusted path connectors (table 3.14).

3.6.3 Discussion

All metrics and correspondence between the selected architectural properties of struc-
turally sound and secure applications and the resulting security metrics are shown in
table 3.17 and table 3.18 respectively.

Validation in chapter 6 of the metrics will focus on their use with respect to resistance
classes. Architecture metrics should help to determine whether an evaluated product is
close to the threshold of the next higher or lower resistance class. To that end, it will be

60 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.3: Metric M1: Restriction of number of executable distribution sources
Performance
Goal

Protect code integrity, restrict available time to attack as well as
attack initiation and attack variation capability

Performance
Objective

Determine number of components from which export-
ing/transferring connectors originate to executable storage
components

Metric Number of components exporting content to executable storage
Purpose The number of executable distribution sources gives an indication

of how hard it is for an adversary to compromise an application
by compromising parts of it.

Implementation
Evidence

Executable components, connectors to these

Frequency During development, after deployment, after configuration
changes

Formula ExpConn(conn) = conn is export connector
MetricValue0 = #{c | ∃ cexe ∧ ExpConn((c, cexe))}
MetricValue = 1

MetricValue0

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 1, the highest value is only bound by the

complexity of the application’s architecture. Lower base values
are better, since they indicate a restriction in the number of attack
vectors. The metric is normalized to a 0–100 percentage scale by
using the reciprocal value.

of interest to have a closer look at the relationship between the software security metrics
and the attacker capabilities and security requirements components of a resistance class.

Some obvious relationships exist for the following metrics:

• M3–Percentage of protected executables and M4–Percentage of intermediate storage
components directly address code and data integrity.

• M7–Percentage of logged invocations directly affects the logging value on the security
requirements scales.

We expect some more relationships that lead to additional hypotheses:

• M13–Restriction of number of privileges and M14–Restriction of number of processes
sharing a privilege have a long-standing tradition as security principles. It should
be assessed if they offer useful information in our attack scenario (where a malicious
process is already executed).

• M6–Conformity of access permissions might be sufficient as an indicator and sub-
stitute M2–Limitation of number of executable components and M1–Number of ex-
ecutable distribution sources by reducing the raw number of components or distri-
bution sources to the number of classes sharing identical permissions.

Coverage-type metrics can operate on the raw number of components/connectors or
they can operate on weighted values for these sets. Weights could be assigned, e.g., based
on module usage, module importance or module value. However, these weights tend to
be highly subjective (cf. [HMC78, HHA04]) and difficult to measure.

3.6. SOFTWARE ARCHITECTURE METRICS 61

Table 3.4: Metric M2: Restriction of number of executable components
Performance
Goal

Protect code integrity, restrict attack variation capability

Performance
Objective

Determine number of code components in use by an application

Metric Number of connected executable components
Purpose The number of executable components gives an indication of how

hard it is for an adversary to compromise an application by com-
promising parts of it.

Implementation
Evidence

Executable components, connectors between these

Frequency During development, after deployment, after configuration
changes

Formula RelExeConn = {(c1, c2) | (c1, c2) is execute connector}
RelExeConnTC = RelExeConn∗

MetricValue0 = #{domRelExeConnTC ∪ ranRelExeConnTC}
MetricValue = 1

MetricValue0

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 1, the highest value is only bound by the com-

plexity of the application’s architecture. Lower base values are
better, since fewer executable components equate a lower number
of possible attack vectors. The metric is normalized to a 0–100
percentage scale by using the reciprocal value.

We object to assigning weights based on importance of modules. The velocity with
which attack paths are removed – and hence the velocity with which coverage climbs to
100% – is typically not assigned the same weights. Vulnerabilities in more important
modules are not necessarily easier or harder to remove only because their modules are
more important. In cases where the target is 100%, it is often only of interest if the value
is 0%, 100%, or some value in between and whether the trend is positive or negative when
comparing multiple versions. In lack of information about how long it takes to remove the
remaining insecurities in a product, assigning weights to modules yields arbitrary values
without significant predictive value.

Some areas are not covered by software security metrics in this thesis and are subject
to future work. These include whether a layered system per se provides better security
(cf. [Neu96, Neu00]) and whether number or percentage of applied security patterns (cf.
[FP01]) have an influence on overall security of a product.

62 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.5: Metric M3: Percentage of protected executables
Performance
Goal

Protect code integrity, restrict attack initiation and attack varia-
tion capability

Performance
Objective

Determine fraction of executable components protected against
modification by malware compared with all executable compo-
nents of an application

Metric Number of protected executable components
Number of executable components

Purpose The fraction of executable components protected against modifi-
cation gives an indication of how hard it is for an adversary to find
and manipulate an executable component and, hence, threaten its
integrity, i.e., its operating according to its intended specification.

Implementation
Evidence

Access control lists of storage objects for executable components

Frequency During deployment planning, after deployment, after configura-
tion changes

Formula ConnTo(source) = {target | (source, target) ∈ Connectors}
ConnDataTo(source) = ConnTo(source) ∩DataComponents
MetricValue = #{c|c is executable∧∀ cc∈ConnDataTo(c)•ACL(cc)⊆ACL(c)}

#{c|c is executable}
Data Source Architectural description (e.g., deployment diagrams) during de-

ployment planning, file system after deployment
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

Table 3.6: Metric M4: Percentage of protected intermediate storage components
Performance
Goal

Protect data integrity and confidentiality

Performance
Objective

Determine fraction of data components protected against modifi-
cation and disclosure by malware compared with all data compo-
nents of an application

Metric Number of protected data components
Number of data components

Purpose The fraction of data components protected against modification
and disclosure gives an indication of how hard it is for an adver-
sary to find and manipulate a data storage component and, hence,
threaten its integrity, or to retrieve sensitive information from it,
i.e., threaten its confidentiality.

Implementation
Evidence

Access control lists of storage objects for data components

Frequency During deployment planning, after deployment, after configura-
tion changes

Formula MetricValue = #{c|c is data storage∧ACL(c) 6=∅}
#{c|c is data storage}

Data Source Architectural description (e.g., deployment diagrams) during de-
ployment planning, file system after deployment

Indicators The lowest value is 0, the highest value is 100%. Higher values are
better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

3.6. SOFTWARE ARCHITECTURE METRICS 63

Table 3.7: Metric M5: Percentage of access control instrumentation
Performance
Goal

Protect code integrity and data integrity and confidentiality, re-
strict attack variation capability

Performance
Objective

Determine fraction of access ports that have access control func-
tionality

Metric Number of access ports with access control
Number of access ports

Purpose The fraction of controlled ports gives an indication of how hard it
is for an adversary to find a way around access control protection.

Implementation
Evidence

Connectors between executable and data/executable components,
ports of these components

Frequency During development, after deployment, after configuration
changes

Formula MetricValue = #{p|p is access port∧role(p)∈AccessControlRoles}
#{p|p is access port}

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

Table 3.8: Metric M6: Conformity of access permissions
Performance
Goal

Protect code integrity and data integrity and confidentiality

Performance
Objective

Determine highest percentage of identical access permissions set
for components in the same class

Metric Highest number of identical access permissions for components in a class
Number of components in a class

Purpose The conformity of access permissions gives an indication of how
hard it is for an adversary to find and manipulate a component
that is worse protected than its peers.

Implementation
Evidence

Access permissions, access control matrix

Frequency During development, after deployment, after configuration
changes

Formula CompClass ⊆ Components=̂component class of concern
ACLSet = {ACL(c) | c ∈ CompClass}
maxacl∈ACLSet(#{c | ACL(c) = acl})
MetricValue = maxacl∈ACLSet (#{c|ACL(c)=acl∧c∈CompClass})

#{c|c∈CompClass}
Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is 100%. Higher values

are better, since they indicate a similar (high) level of protection
for components of same concern and, hence, represent a lower
number of possible attack vectors.

64 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.9: Metric M7: Percentage of logged invocations
Performance
Goal

Protect data integrity and confidentiality, restrict available time
to attack

Performance
Objective

Determine fraction of invocations that have logging functionality

Metric Number of invocations that are logged
Number of invocations

Purpose The fraction of logged invocations gives an indication of how hard
it is for an adversary to execute malicious code without detection.

Implementation
Evidence

Connectors between executable and data/executable components,
ports of these components

Frequency During development, after deployment, after configuration
changes

Formula MetricValue = #{c|c is executable connector∧has logging functionality}
#{c|c is executable connector}

Data Source Architectural description, source code
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

Table 3.10: Metric M8: Percentage of authenticity/integrity preserving connectors
Performance
Goal

Protect data and code integrity, restrict available time to attack
and attack variation capability

Performance
Objective

Determine fraction of connectors used for import, export, or ex-
ecution that incorporate authenticity or integrity checks prior to
main operation

Metric Number of authenticity/integrity preserving connectors
Number of connectors

Purpose The fraction of authenticity/integrity preserving connectors gives
an indication of how hard it is for an adversary to modify or
substitute data or executable components without detection.

Implementation
Evidence

Connectors between executable and data/executable components,
ports of these components

Frequency During development, after deployment, after configuration
changes

Formula ImpExpExecConn(conn) = conn is import/export/execute connector
IntPres(conn) = conn preserves integrity
AuthPres((p1, p2)) = AuthRole(p1) ∧ AuthRole(p2)
MetricValue = #{c=(p1,p2)|ImpExpExecConn(c)∧(IntPres(c)∨AuthPres((p1,p2)))}

#{c|ImpExpExecConn(c)}
Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

3.6. SOFTWARE ARCHITECTURE METRICS 65

Table 3.11: Metric M9: Percentage of unlogged security parameters
Performance
Goal

Protect data confidentiality, restrict available time to attack and
attack variation capability

Performance
Objective

Determine fraction of transferred security parameters that are not
logged

Metric Number of transfers that are not logged
Number of transfers

Purpose The fraction of unlogged security parameters gives an indication
of how hard it is for an adversary to retrieve security parameters,
e.g., passwords, from log storage.

Implementation
Evidence

Connectors for data transfer from security sensitive data compo-
nents

Frequency During development, after deployment, after configuration
changes

Formula MetricValue = #{c|c is transferring connector∧does not have logging functionality}
#{c|c is transferring connector}

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

Table 3.12: Metric M10: Restriction of number of components with shared responsibility
(server)
Performance
Goal

Protect data integrity, restrict attack variation capability

Performance
Objective

Determine number of components with ports that are used in
execute connector instances with multiple source components

Metric Number of executable components that are targets of two or more execute connectors
Number of executable components

Purpose The number of components with shared responsibility (server)
gives an indication of how hard it is for an adversary to compro-
mise an application by compromising parts of it.

Implementation
Evidence

Ports, connector instances

Frequency During development, after deployment, after configuration
changes

Formula ClientTo(tp) = {s | (s, t) ∈ Executable conn. ∧ tp ∈ t .ports}
MetricValue0 = #{c | ∃ p ∈ c.ports • #ClientTo(p) ≥ 2}
MetricValue = 1

MetricValue0+1

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is only bound by the

complexity of the application’s architecture and its number of
executable components. Lower base values are better, since fewer
targets are easier to authenticate than more targets. The metric
is normalized to a 0–100 percentage scale by using the reciprocal
value.

66 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.13: Metric M11: Restriction of number of components with multiple executable
extensions
Performance
Goal

Protect data integrity, restrict attack variation capability

Performance
Objective

Determine number of components with ports that are used in
connector instances with multiple target components

Metric Number of executable components that are sources of two or more execute connectors
Number of executable components

Purpose The number of components with multiple code extensions gives
an indication of how hard it is for an adversary to compromise an
application by compromising parts of it.

Implementation
Evidence

Ports, connector instances

Frequency During development, after deployment, after configuration
changes

Formula SrvTo(sp) = {t | (s, t) ∈ Executable conn. ∧ sp ∈ s.ports}
MetricValue0 = #{c | ∃ p ∈ c.ports • #SrvTo(p) ≥ 2}
MetricValue = 1

MetricValue0+1

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is only bound by the

complexity of the application’s architecture and its number of ex-
ecutable components. Lower base values are better, since fewer
components executing code from multiple sources are easier to
control than more. The metric is normalized to a 0–100 percent-
age scale by using the reciprocal value.

3.6. SOFTWARE ARCHITECTURE METRICS 67

Table 3.14: Metric M12: Percentage of trusted path connectors
Performance
Goal

Protect data integrity and data confidentiality, restrict attack ini-
tiation, attack variation and user influence capability

Performance
Objective

Determine fraction of import/export/execute connectors that
have trusted path capability and connect the local human user
with a component

Metric Number of trusted path connectors
Number of connectors

Purpose The fraction of trusted path connectors gives an indication of how
hard it is for an adversary to eavesdrop on or manipulate com-
munication between a sensitive component and the local human
user.

Implementation
Evidence

Connectors for data transfer to and from security sensitive data
components

Frequency During development, after deployment, after configuration
changes

Formula ImpExpExecConn(conn) = conn is import/export/execute connector
TPCap(conn) = conn has trusted path capability
ConnUser(conn) = conn connects to user at one end
TPConn(conn) = TPCap(conn) ∧ ConnUser(conn)
MetricValue = #{cn|ImpExpExecConn(cn)∧TPConn(cn)}

#{cn|ImpExpExecConn(cn)}
Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is 100%. Higher values are

better, since they indicate a higher coverage and in turn a lower
number of possible attack vectors.

68 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.15: Metric M13: Restriction of number of privileges
Performance
Goal

Protect data integrity and code integrity, restrict attack variation
capability

Performance
Objective

Determine average number of privileges assigned to a process

Metric Number of privileges assigned to processes
Number of processes

Purpose The average number of privileges gives an indication of how hard
it is for an adversary to compromise an application once a part
of it has been attacked successfully.

Implementation
Evidence

Access permissions, capability lists, access control matrix

Frequency During development, after deployment, after configuration
changes

Formula MetricValue0 =
P

processes privileges assigned to process

#{p|p is process}
MetricValue = 1

MetricValue0+1

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 0, the highest value is only bound by the

system in which the application is executed. Lower base values
are better, since they indicate a restriction in the capabilities of
a process that could be a possible attack vector. The metric is
normalized to a 0–100 percentage scale by using the reciprocal
value.

Table 3.16: Metric M14: Restriction of number of processes sharing a privilege
Performance
Goal

Protect data integrity and code integrity, restrict attack variation
capability

Performance
Objective

Determine average number of processes assigned permissions to
objects

Metric Number of processes in ACL of storage component
Number of storage components

Purpose The average number of processes sharing a privilege gives an in-
dication of how hard it is for an adversary to compromise an
application by compromising parts of it.

Implementation
Evidence

Access control lists, access control matrix

Frequency During development, after deployment, after configuration
changes

Formula MetricValue0 = #{(proc,c,priv)|(proc,priv)∈ACL(c)∧c is storage component}
#{(c,priv)|c is storage component∧(•,priv)∈ACL(c)}

MetricValue = 1
MetricValue0

Data Source Architectural description, source code, configuration files
Indicators The lowest value is 1, the highest value is only bound by the

complexity of the application’s architecture. Lower base values
are better, since they indicate a restriction in the capabilities of
a process that could be a possible attack vector. The metric is
normalized to a 0–100 percentage scale by using the reciprocal
value.

3.6. SOFTWARE ARCHITECTURE METRICS 69

Table 3.17: Software metrics for secure architectures
Metric Formula Target
M1: Centralisation
of executable dis-
tribution sources

ExpConn(conn) = conn is export connector
MetricValue = 1

#{c|∃ cexe∧ExpConn((c,cexe))}

100%

M2: Restriction of
number of exec.
comp.

RelExeConn = {(c1, c2) | (c1, c2) is execute connector}
RelExeConnTC = RelExeConn∗

MetricValue = 1

#{domRelExeConnTC∪ranRelExeConnTC}

100%

M3: Percentage of
protected executa-
bles

ConnTo(source) = {target | (source, target) ∈ Connectors}
ConnDataTo(source) = ConnTo(source) ∩ DataComponents

MetricValue = #{c|c is executable∧∀ cc∈ConnDataTo(c)•ACL(cc)⊆ACL(c)}
#{c|c is executable}

100%

M4: Percentage of
prot. intermediate
storage comp.

MetricValue = #{c|c is data storage∧ACL(c) 6=∅}
#{c|c is data storage} 100%

M5: Percentage of
access control in-
strumentation

MetricValue = #{p|p is access port∧role(p)∈AccessControlRoles}
#{p|p is access port} 100%

M6: Conformity of
access permissions

CompClass ⊆ Components=̂componentclassofconcern
ACLSet = {ACL(c) | c ∈ CompClass}
max acl∈ACLSet(#{c | ACL(c) = acl})
MetricValue =

maxacl∈ACLSet (#{c|ACL(c)=acl∧c∈CompClass})
#{c|c∈CompClass}

100%

M7: Percentage of
logged invocations

MetricValue = #{c|c is executable connector∧has logging functionality}
#{c|c is executable connector} 100%

M8: Percentage
of auth./integrity
preserving connec-
tors

ImpExpExecConn(conn) = conn is import/export/exec. connector
IntPres(conn) = conn preserves integrity
AuthPres((p1, p2)) = AuthRole(p1) ∧ AuthRole(p2)

MetricValue = #{c=(p1,p2)|ImpExpExecConn(c)∧(IntPres(c)∨AuthPres((p1,p2)))}
#{c|ImpExpExecConn(c)}

100%

M9: Perc. of
unlogged sec.s pa-
rameters

MetricValue = #{c|c is transferring connector∧without logging functionality}
#{c|c is transferring connector} 100%

M10: Restr. of
number of comp.
with shared re-
sponsibility (srv.)

PortConnTo(sp) = {t | (s , t) ∈ Connectors} ∧ sp ∈ s .ports
MetricValue = 1

#{c|∃ p∈c.ports•PortConnTo(p)≥2}+1

100%

M11: Restr. of
number of comp.
with multiple exec.
ext.

SrvTo(sp) = {t | (s , t) ∈ Executable conn. ∧ sp ∈ s .ports}
MetricValue = 1

#{c|∃ p∈c.ports•#SrvTo(p)≥2}+1

100%

M12: Percentage of
trusted path con-
nectors

ImpExpExecConn(conn) = conn is import/export/exec. connector
TPCap(conn) = conn has trusted path capability
ConnUser(conn) = conn connects to user at one end
TPConn(conn) = TPCap(conn) ∧ ConnUser(conn)

MetricValue = #{cn|ImpExpExecConn(cn)∧TPConn(cn)}
#{cn|ImpExpExecConn(cn)}

100%

M13: Restriction of
num. of priv.

MetricValue = #{p|p is process}P
processes privileges assigned to process+1

100%

M14: Restriction of
num. of processes
sharing a priv.

MetricValue = #{(c,priv)|c is storage component∧(•,priv)∈ACL(c)}
#{(proc,c,priv)|(proc,priv)∈ACL(c)∧c is storage component} 100%

70 CHAPTER 3. SOFTWARE METRICS FOR RESILIENCE

Table 3.18: Correspondence between architectural properties and security metrics
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12M13M14

Central software distribution M1

Kernelized software M2

Executable code protection M3

Consistent controls M3 M6

Storage protection M4

Cryptographic key protection M4

Log data protection M4

Complete access control M5

Invocation logging M7

Auth./Integrity preservation M8

Sensible logging M9

Separation of privilege M10M11

Separate input procedures M12

Human in the loop M12

Least privilege M13

Least privilege sharing M14

Process controls No metric (depends on functionality)
Controls application No metric (model-intrinsic)
Freshness of resources No metric (model-intrinsic)
Process segregation No metric (model-intrinsic)
Redundant data entry No metric (minor importance)
Multifactor authentication No metric (minor importance)
User notification No metric (needs interpretation)
Monitoring No metric (needs interpretation)
Configuration protection No metric (needs interpretation)
Decentralized controls No metric (needs interpretation)

Chapter 4

Model of a generic computer system

Chapter summary: In this chapter we present an abstract model of a generic computer
system. The model is based on the terminology used in established security criteria and
research efforts. Our model consists of almost fourty types of components and connectors
and captures the operating system, data, processes, and the local human user. It is the
preparation for a formal specification of a generic computer system in the next chapter.

4.1 Modeling approach

We develop a model of a generic computer system based on the accumulated knowledge of
three established best practices documents: the Common Criteria for Information Tech-
nology Security Evaluation [CC299b], Wood et al. Computer Security [WBG+87], and
the European CORAS project [COR04]. Our scope is a single system, e.g., a workstation,
in which benign and malicious processes co-exist. This restriction points out the contrast
to large networks with many hosts – which are not our focus. The model’s purpose is
a description and analysis of attacks by malicious software on a program’s architecture
(i.e., its components and their relationships).

4.1.1 Source: Common Criteria (CC)

In a first step we derive the abstract assumptions about a computer system that the
Common Criteria are based on. The CC represent the security functional requirements
and terminology known and agreed to be of value at the time of release. This means that
we base our model on knowledge agreed upon by many experts in the field.

The resulting model is documented in UML (figure 4-1) to get an overview. We
later use the formal modeling language Z when we are concerned with a formal notation
amenable to reasoning (cf. chapter 5). Apart from these described components more
complex behaviour is captured in sequence diagrams and activity diagrams (that are not
shown).

4.1.1.1 Point of view and structure of the CC

The approach of the Common Criteria for Information Technology Security Evaluation
is to provide an internationally accepted framework for evaluation of IT security. It is
divided into three parts: the first part introduces the general model [CC299a], the second
concentrates on the security functional requirements [CC299b], and the third addresses

71

72 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

assurance requirements [CC299c]. The idea is that product acquirers specify their security
needs in implementation-independent protection profiles. Vendors can then develop prod-
ucts that meet these needs. A security target is the implementation-specific definition of
a product’s security requirements. It can be subjected to evaluation by an independent
body. Evaluators then check the provided documents and perform tests on the product to
conclude whether the target of evaluation fulfils the desired security goals at the desired
level of assurance.

The CC contain in its second part a set of constructs and language to express informa-
tion security aspects. These constructs are divided into a hierarchy of classes, families,
components, and elements with the intention to help locating specific security require-
ments.

A class is the most general group. All its members share a common focus, e.g.,
identification and authentication. Class members are called families.

A family is a group of sets of security requirements with shared objectives, differing in
emphasis or rigour, e.g., user authentication versus user-subject binding. Family members
are called components.

A component is a specific set of security requirements and the smallest selectable such
set in the CC. Components can be ordered in a family to represent levels of strength or
size of scope. Components are constructed from individual elements.

An element is the lowest level of expression of security requirements in the CC. In
security evaluations it is verified if a target of evaluation possesses the selected elements.

The language used to express security requirements in the CC is abstract compared
with specific computer systems. Hence it is possible to apply the CC to a wide range of
products. For our purposes we extract the entities used in security requirements definitions
(elements) and their relations among each other.

4.1.1.2 Relevant classes and families

With respect to attacks by malicious software (malware), some CC families are more
relevant than others. We selected 5 classes (out of 11) and 18 families (out of 66) to be
included in building our model, as shown in table 4.1. Some CC classes are not used
in this iteration of the model (cf. table 4.2). They mostly cover aspects of distributed
systems, cryptography, or non-technical aspects unrelated to architecture.

Model components are extracted from the specification of security functional require-
ments. For a couple of relations the annex to the CC has to be consulted. Some behaviour
and coupling or dependencies of components is to be discerned by the software developer.
In that case, all combinations are taken into account in the model.

4.1.1.3 Assessment of Common Criteria’s suitability

The CC leave a great degree of freedom to a system designer. E.g., they command that
there be subjects, objects, and operations, but they do not dictate specific classes of these
artifacts (cf. figure 4-1). When we tried to formulate some well-known attacks from the
literature [LABMC94], we encountered this underspecificity to be a hindrance. On the
other hand, in our attack scenario, the malicious process and the attacked process are
executed during the same session. Hence, the notion of a session is not necessary in our
model.

4.1. MODELING APPROACH 73

Figure 4-1: Computer system model based on selected Common Criteria security func-
tional requirements

4.1.2 Source: Wood et al.: Computer Security

Our studies of security best practices documents, especially [WBG+87] and [COR04],
suggest that adding a notion of files, memory, processes, (discretionary) access control,
and user interface functions is helpful in dealing with real world examples of malware
attacks (examples are presented in section 7.2). This is confirmed also by examination of,
e.g., [Neu96], [YJB97], [Neu00], [Lan06b].

The checklists contained in [WBG+87] emerged from a project carried out for the
United States Air Force in the 1980s. They were derived from a broad examination of
the then-current literature and computer systems, and from discussions with computer
security experts. Despite its age the questions raised are fundamental and still pertain
to computer systems today. In total the lists consist of 738 questions in 11 categories
pertaining to computer security. Out of these, 5 categories were selected for further
study: systems development, data and program access, input/output, processing operations,
database and systems software. As a result, 97 questions were evaluated as relevant as
regards malware and software/system architecture (cf. appendix A).

4.1.3 Source: CORAS project

The questionnaires contained in [COR04] were used in the EU research project CORAS
(A Platform for Risk Analysis of Security Critical Systems). With the list, an operator
of the risk analysis tools is aided in addressing the security aspects of the system under
evaluation. In total the lists consist of 176 questions in 8 categories pertaining to computer
security on various levels (high level management down to technical aspects). Out of these,
5 categories were selected for further study: Human, Physical, Information, Software,
Exceptional circumstances. As a result, 51 questions were evaluated as relevant as regards
malware and software/system architecture (cf. appendix A).

74 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

Table 4.1: Common Criteria families used to build model
Class Used families Unused families
FDP User data
protection

Access control policy, Access control
functions, Import from outside TSF con-
trol, Internal TOE transfer, Inter-TSF
user data confidentiality transfer protec-
tion

Other families in class un-
used because they relate
to distributed systems or
to implementation consider-
ations.

FIA Identi-
fication and
authentication

Authentication failures, User attribute
definition, User authentication, User
identification, User-subject binding

Specification of secrets
(relates to implementa-
tion considerations, not to
architecture).

FPT Protection
of the TSF

Internal TOE TSF data transfer, Do-
main separation

Other families in class un-
used because they focus on
distributed systems, imple-
mentational aspects, or do
not add new objects or rela-
tions to the model.

FTA TOE (tar-
get of evalua-
tion) access

Limitation on scope of selectable at-
tributes, Limitation on multiple concur-
rent sessions, Session locking, TOE ac-
cess history, TOE session establishment

TOE access banners (ap-
plies to human users only,
not relevant for malware).

FTP Trusted
path/channels

Trusted path Inter-TSF trusted chan-
nel (relevant only for
distributed systems).

4.2 Scope and elements of model

In general, we structure our presentation and discussion following the terminology of
[AAG95]. Architecture is described by way of typed components and connectors. This
abstract concept is fleshed out by defining component and connector types to describe
operating system parts and operations.

Components are the basic building blocks. They perform some function and have ports
to interact with other components. Interaction is modeled by connectors that attach to
ports. A port in a connection acts in a certain role, e.g., as sender or receiver. A
software or system architecture is then described as a configuration. Configurations consist
of component instantiations (binding names and components), connector instantiations
(binding names and connectors), and attachments (binding role instantiations and port
instantiations).

We present the component and connector types in the next section, while we leave the
formal description in Z of the more detailed model to chapter 5.

4.2.1 Scope

We are concerned with local security-sensitive programs. Even if typical access control
systems associate processes with the users who created them, not all processes of the
same user are equal. Software may be an intermediary to other objects or services, i.e.,
it brokers requests as a Protected Subsystem, cf. [SS75], or Unix -style suid programs.

4.2. SCOPE AND ELEMENTS OF MODEL 75

Table 4.2: Unused Common Criteria classes to build model
Class Relevancy Unused because
FAU Security
audit

Detecting malware attacks after the fact Should be included in a
later iteration

FCO Commu-
nication

Mostly for distributed systems as it ap-
plies to communication crossing product
boundaries

Out of scope

FCS Crypto-
graphic support

For implementation and distributed sys-
tems

Out of scope

FMT Security
management

Non-technical aspects Out of scope

FPR Privacy User-related Out of scope
FRU Resource
utilisation

Fault tolerance and usage quotas Out of scope

Storage controlled by a process may contain security-relevant data, e.g., credentials or
copyright-restricted material received from a remote service.

4.2.2 Operating system

Our collection of software architecture building blocks used for security evaluation stems
from several sources: the Common Criteria [CC299b], Wood et al.: Computer Security
[WBG+87], and CORAS [COR04]. In this and the subsequent sections we name an
item, describe its important properties and dependencies, and add the origin of each in
parentheses (CC = [CC299b], Wood = [WBG+87], CORAS = [COR04], followed by
section and item number). Checklists from Wood and CORAS are also documented in
appendix A.

Software architecture building blocks related to an operating system comprise access
control, integrity verification, and logging.

• 6 Component types (Components are the basic building blocks. They perform some
function and have ports to interact with other components. With respect to entity–
relationship models, components represent entities.)

1. Access control data components store parameters used by a reference monitor
in access control decisions. They might, e.g., represent an access control matrix
or parts of it, like access control lists or capability lists. These components are
typically not directly manipulated by the user and are more often read than
modified. [CC, Wood 6.21, 6.29, 6.84, 8.54, 9.78, CORAS 7.10]

2. Logging configuration data components store parameters that guide the logging
subsystem. These components are typically not directly manipulated by the
user and are more often read than modified. [CC, Wood 6.21, 6.29, 6.84, 8.54,
9.78, CORAS 7.10]

3. 4 subject component types: Subject–Adversary , Subject–Victim, Subject–Operating Sys-
tem, and Subject–Unspecified are component types that are used in conjunction
with the Ownership connector type. They represent the attacker, the studied
product, the operating system, and other stakeholders, respectively. They are

76 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

needed to distinguish the studied product from its environment and to distin-
guish the attacker from the remainder of a system. [CC]

• 11 Connector types (Interaction and some attributes are modeled by connectors that
attach to ports. With respect to entity–relationship models, connectors represent
relationships.)

1. Parameter denotes a relation between one component performing some opera-
tion and another component containing data used in a decision or calculation by
the first component. Roles Parameter processor and Parameter source specify
which component uses the data for a decision and which component provides
the data. [CC, Wood 6.17, 6.27, CORAS 4.25]

2. Security parameter is similar to Parameter : the data is used in a security
decision or calculation. The data might, e.g., represent cryptographic keys,
passwords, or tokens. [CC, Wood 6.17, 6.27, CORAS 4.25]

3. Integrity verification data denotes a relation between one component containing
original data and another containing data that can be used to establish whether
the data contained in the first component has been altered in some way. The
algorithms used could, e.g., comprise hash functions or digital signatures. Both
components must be of type Data. Roles Original and Verification data specify
which component contains the original data and which component contains the
integrity verification data. [CC, Wood 2.19, 6.17, 6.27, 8.29, 8.30, 9.54, 9.55,
CORAS 4.25, 4.47, 4.48, 7.28, 7.29]

4. Log data denotes a relation between one component containing sensitive data or
performing some operation, and another component containing log data about
an access to the first component. Roles Log data source and Log data target
specify which port triggers the logging and which component contains the log
data. [CC, Wood 2.14, 2.16, 2.18, 2.20, 2.31, 7.25, 8.33, 8.54, 9.13, 9.14, 9.81,
CORAS 4.21, 4.51, 7.10]

5. Monitor denotes a relation between one component containing data or perform-
ing some operation and another component storing data or conveying data to
the user or other components. Data is transferred along this connector when-
ever the internal state of the attached component changes based on an opera-
tion taking place at the port to which the Monitor connector is attached to.
Roles Monitor source and Monitor target specify which component is observed
for activity and which component is responsible for processing the monitoring
data. [CORAS 4.41]

6. Ownership denotes a relation between one component representing an owner
and another representing an owned component. This associates components
with an owner, i.e., adversary, victim, operating system, unspecified/other.
Roles Owner and Owned specify which component owns the other. [CC]

7. Access–observe denotes a relation between one component being accessible with
non-modifying (”observe”) access by another component. Roles Subject and
Object specify which component (acting as a subject) can exercise an access
right on the other (the object). [CC (access rules), Wood 6.3, 6.6, 6.64, 6.93,
9.9, 9.65, CORAS 3.19, 4.30, 7.8]

4.2. SCOPE AND ELEMENTS OF MODEL 77

8. Access–modify denotes a relation between one component being accessible with
modifying access by another component. Roles Subject and Object specify
which component (acting as a subject) can exercise an access right on the
other (the object). [CC (access rules), Wood 6.3, 6.6, 6.64, 6.93, 9.9, 9.65,
CORAS 3.19, 4.30, 7.8]

9. Access–append denotes a relation between one component being accessible with
partly-modifying (”append”) access by another component. Append access
adds data to a data component without modifying the data already present.
Roles Subject and Object specify which component (acting as a subject) can
exercise an access right on the other (the object). [CC (access rules), Wood
6.3, 6.6, 6.64, 6.93, 9.9, 9.65, CORAS 3.19, 4.30, 7.8]

10. Access–delete denotes a relation between one component being accessible with
modifying (”delete”) access by another component. Delete access removes a
component completely. Roles Subject and Object specify which component
(acting as a subject) can exercise an access right on the other (the object).
[CC (access rules), Wood 6.3, 6.6, 6.64, 6.93, 9.9, 9.65, CORAS 3.19, 4.30, 7.8]

11. Access–invoke denotes a relation between one component being accessible with
non-modifying (”invoke”) access by another component. Invoke access allows
the subject component to start execution of the executable data contained
in the object component. Roles Subject and Object specify which component
(acting as a subject) can exercise an access right on the other (the object).
[CC (access rules), Wood 6.3, 6.6, 6.64, 6.93, 9.9, 9.65, CORAS 3.19, 4.30, 7.8]

• Port types are not necessary, only port instances. Ports have no inherent abstract
semantics and are only needed to distinguish which roles and connectors are tied
to a component and which roles work together at the same port. The function of a
port is determined by the roles attached to a port involved in a connection.
Ports can be named, though, in an architectural description. This helps to find
vulnerable places in an application, i.e., when a vulnerability is detected at a port,
the port’s name points to the respective part of the application’s architecture.

• 12 Roles – roles can to a great extent be taken from the connector type descriptions.

1. Parameter source denotes the port of a component that provides parameter
data. It is used with the Parameter or Security parameter connector. [CC,
Wood 6.17, 6.27, CORAS 4.25]

2. Parameter processor denotes the port of a component that processes parameter
data. It is used with the Parameter or Security parameter connector. [CC
(reference monitor), Wood 6.17, 6.27, CORAS 4.25]

3. Original denotes the port of a component containing the original data. It
is used with the Integrity verification data and the Backup connectors. [CC,
Wood 2.19, 6.17, 6.27, 8.6, 8.29, 8.30, 9.54, 9.55, CORAS 4.19, 4.25, 4.47, 4.48,
7.28, 7.29]

4. Verification data denotes the port of a component containg verification data
for an integrity check. It is used with the Integrity verification data connector.
[CC, Wood 2.19, 6.17, 6.27, 8.29, 8.30, 9.54, 9.55, CORAS 4.25, 4.47, 4.48,
7.28, 7.29]

78 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

5. Log data source denotes the port of a component that exports log data. It is
used with the Log data connector. [CC, Wood 2.14, 2.16, 2.18, 2.20, 2.31, 7.25,
8.33, 8.54, 9.13, 9.14, 9.81, CORAS 4.21, 4.51, 7.10]

6. Log data target denotes the port of a component that imports or stores log
data. It is used with the Log data connector. [CC, Wood 2.14, 2.16, 2.18, 2.20,
2.31, 7.25, 8.33, 8.54, 9.13, 9.14, 9.81, CORAS 4.21, 4.51, 7.10]

7. Monitor source denotes the port of a component that generates or exports
monitoring data. It is used with the Monitor connector. [CORAS 4.41]

8. Monitor target denotes the port of a component that imports or presents mon-
itoring data. It is used with the Monitor connector. [CORAS 4.41]

9. Owner denotes the port of a component that represents a stakeholder, i.e.,
Owner–Adversary, Owner–Victim, Owner–Operating System, Owner–Unspecified.
It is used with the Ownership connector. [CC]

10. Owned denotes the port of a component that contains data or executable code.
[CC]

11. Subject denotes the port of a component that can exercise an access right on
another component. It is used with the Access-observe, Access-modify, Access-
append, Access-delete, and Access-invoke connectors. [CC (subject), Wood 6.3,
6.6, 6.64, 6.93, 9.9, 9.65, CORAS 3.19, 4.30, 7.8]

12. Object denotes the port of a component on which another component can exer-
cise an access right. It is used with the Access-observe, Access-modify, Access-
append, Access-delete, and Access-invoke connectors. [CC (object), Wood 6.3,
6.6, 6.64, 6.93, 9.9, 9.65, CORAS 3.19, 4.30, 7.8]

4.2.3 Data

Building blocks for data cover files, folders, main memory, tapes, programs, external
devices. Access control to data components is governed by operating system parts as
discussed earlier.

• 3 Component types

1. Data components store arbitrary application content processed internally or
presented to the user. They might, e.g., represent files, memory, or user inter-
face devices. [CC (object), Wood, CORAS]

2. Tamper-proof storage components store arbitrary data in an external and/or
tamper-proof module. They might, e.g., represent smart cards with security
memory or WORM (write once read multiple) media. [Wood 6.29, 8.54]
Tamper-proof storage components may also be substituted by data components
to which only observe and append access rights exist and where the access
control configuration relating to these components cannot be changed.

3. Reference components point to Data, Container, or Reference components to
which they are connected by Reference rule connectors. If a port of a Reference
component is instantiated with a Data target, Data source, or Executed role,
this role is forwarded to appropriate ports of components pointed to by the
Reference rule. [Wood 8.8, 9.76]

4.2. SCOPE AND ELEMENTS OF MODEL 79

• 6 Connector types

1. Data transfer denotes a relation between one component providing data and
another component receiving data. The data transferred can be arbitrary data.
It can also be used to represent method invocation. To do this, command data
is transferred to the component’s target port responsible for method invoca-
tion. It does not matter whether data stored in a component is modified or
if a method of that component is invoked, as both cases lead to a change
in the internal state of the component. Roles Data source and Data target
specify which component exports the data and which component imports it.
Roles Authenticated data source and Authenticated data target require that the
identity of the component be verified by the connector so that the perceived
source/target matches the real one. [CC, Wood 2.19, 6.2, 8.29, 8.30, 9.54, 9.55,
9.61, CORAS 3.18, 3.20, 4.23, 4.45, 4.47, 4.48, 7.16, 7.17, 7.26, 7.28, 7.29]

2. Backup denotes a relation between one component containing original data and
another component containing a copy of said data, created at some point in
time. Both components must be of type Data. Roles Original and Copy specify
which component contains the original data and which component contains the
backup data. [CORAS 4.19, Wood 8.6]

3. Contained–by denotes a relation between one component containing another
component. It is, e.g., used for folders or drives. Roles Container and Con-
tained tell which component is the container and which one is contained by
the container. [CC]

4. Reference rule–Static denotes a relation between a Reference component and
another component. The referencing component always points to the same
referenced component. Roles Reference source and Reference target are used
in conjunction with this connector type. [Wood 8.8, 9.76]

5. Reference rule–Search order denotes a relation between a Reference component
and another component. The referencing component points to the referenced
component unless there exists another component with the same name as the
referenced component that is contained in a Container component that pre-
cedes the Container component of the referenced component in the search
order. Roles Reference source and Reference target are used in conjunction
with this connector type. [Wood 8.8, 9.76]

6. Reference rule–Container denotes a relation between a Reference component
and a Container component. The referencing component points to all com-
ponents contained in the Container component. Roles Reference source and
Reference target are used in conjunction with this connector type. [Wood 8.8,
9.76]

• 9 additional Roles

1. Original denotes the port of a component containing the original data (see
page 77).

2. Copy denotes the port of a component containg a copy of the data of an-
other component for backup purposes. It is used with the Backup connector.
[CORAS 4.19, Wood 8.6]

80 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

3. Data source denotes the port of a component that exports data. It is used with
the Data transfer connector. [CC, Wood 2.19, 6.2, 8.29, 8.30, 9.54, 9.55, 9.61,
CORAS 3.18, 3.20, 4.23, 4.45, 4.47, 4.48, 7.16, 7.17, 7.26, 7.28, 7.29]

4. Authenticated data source denotes the port of a component that exports data.
The identity of the component must be verified by the connector. It is used
with the Data transfer connector. [CC (authentication data), Wood 2.19, 6.2,
8.29, 8.30, 9.54, 9.55, 9.61, CORAS 3.18, 3.20, 4.23, 4.45, 4.47, 4.48, 7.16, 7.17,
7.26, 7.28, 7.29]

5. Data target denotes the port of a component that imports data or stands for a
method invocation interface. It is used with the Data transfer connector. [CC,
Wood 2.19, 6.2, 8.29, 8.30, 9.54, 9.55, 9.61, CORAS 3.18, 3.20, 4.23, 4.45, 4.47,
4.48, 7.16, 7.17, 7.26, 7.28, 7.29]

6. Authenticated data target denotes the port of a component that imports data
or stands for a method invocation interface. The identity of the component
must be verified by the connector. It is used with the Data transfer connector.
[CC, Wood 2.19, 6.2, 8.29, 8.30, 9.54, 9.55, 9.61, CORAS 3.18, 3.20, 4.23, 4.45,
4.47, 4.48, 7.16, 7.17, 7.26, 7.28, 7.29]

7. Container denotes the port of a component acting as a container for other
components. It is used with the Contained–by connector. [CC]

8. Contained denotes the port of a component that is contained by another com-
ponent, the container. It is used with the Contained–by connector. [CC]

9. Reference source denotes the port of a Reference component where a reference
rule connector is attached. [Wood 8.8, 9.76]

10. Reference target denotes the port of a component where a reference rule con-
nector is attached. [Wood 8.8, 9.76]

4.2.4 Processes and IPC

Processes are executed programs, hence processes are modeled by the data components
containing the executable code. They communicate with each other and the operating
system via inter-process communication (IPC) mechanisms. Architectural building blocks
are:

• 1 additional Component type

1. Data components store arbitrary application content processed internally or
presented to the user. They might, e.g., represent an executable file (see
page 78).

2. Tamper-proof storage components store arbitrary data in an external and/or
tamper-proof module (see page 78).

3. Firmware components store executable data in a tamper-proof module. They
might, e.g., represent smart cards or EPROM, and be used to store sensitive
programs. [Wood 9.53]
Firmware components may also be substituted by data components to which
only observe access rights exist, where the access control configuration relating
to these components cannot be changed, and that are marked as executable
components.

4.2. SCOPE AND ELEMENTS OF MODEL 81

• 3 Connector types

1. Execute denotes a relation between one component executing another. Both
components must be of type Data (one can be of type User, though). Roles
Executor and Executed specify which component initiates execution of the
other. [CC, Wood 8.35, 9.81]

2. Linked denotes a relation between one (executable) component linking another
(executable). Both components must be of type Data. Role Link executor
for the executing component and roles Link executed static and Link executed
dynamic specify which component initiates execution of the other and whether
the linked component is linked statically or dynamically. [Wood 8.8, 9.76]

3. Subject binding denotes a relation between an executable component and a sub-
ject, e.g., as is the case for Unix suid programs. Access rights associated with
the subject are then granted to the executable component. Roles Subject and
Executed specify which component is the subject and which is the associated
executable component. [CC]

• 5 additional Roles

1. Data source denotes the port of a component that exports data (see page 80).

2. Authenticated data source denotes the port of a component that exports data
(see page 80).

3. Data target denotes the port of a component that imports data or stands for
a method invocation interface (see page 80).

4. Authenticated data target denotes the port of a component that imports data
or stands for a method invocation interface (see page 80).

5. Executor denotes the port of a component executing another component con-
taing executable data. It is used with the Execute connector. [Wood 8.35,
9.81]

6. Executed denotes the port of a component containg executable data and being
executed by another component. It is used with the Execute connector. [Wood
8.35, 9.81]

7. Link executor denotes the port of a component linking and executing another
component containg executable data. It is used with the Linked connector.
[Wood 8.8, 9.76]

8. Link executed static denotes the port of a component containg executable data
and being statically linked and executed by another component. It is used with
the Linked connector. [Wood 8.8, 9.76]

9. Link executed dynamic denotes the port of a component containg executable
data and being dynamically linked and executed by another component. It is
used with the Execute connector. [Wood 8.8, 9.76]

4.2.5 User

The user of the local machine interacts with processes and the operating system via the
user interface. While the interface can be modeled by special data components, we need
another component type that stands for the user.

82 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

• 3 additional Component types

1. Local human user components represent the user of a program. Local human
user components are typically connected to UI Output components responsible
for conveying information to and from the user. [CC (user), Wood 2.16]

2. UI Output components are user interface (UI) components that display data
which can be captured by the local human user. [CC (user), Wood 2.16]
UI Output components may also be substituted by data components to which
the local human user has observe access rights and that transfer data to the
user.

3. UI Input components are user interface (UI) components that receive data
provided by the local human user. [CC (user), Wood 2.16]
UI Input components may also be substituted by data components to which
the local human user has append access rights and that transfer data from the
user.

4. Data components store arbitrary produced by or presented to the user (see
page 78).

Some of the data presented to the user can be categorized into security parameters,
log data, or data monitored by the user. The user can also execute programs before an
attack begins.

• 3 Connector types

1. Security parameter specifies that data is used in a security decision or calcu-
lation. It might influence the user in making a security-relevant decision (see
page 76).

2. Log data specifies that the data presented to the user is data about the perfor-
mance and completion of an operation. It might influence the user in making
a security-relevant decision or it might aid the user in detecting an attack (see
page 76).

3. Monitor expresses that the user might be informed about some operations in
real time. It might influence the user in making a security-relevant decision or
it might aid the user in detecting an ongoing attack (see page 76).

4. Execute denotes a relation between one component executing another (see
page 81).

4.3 Architectural description

A configuration consists of component instantiations (binding names and components),
connector instantiations (binding names and connectors), and attachments (binding role
instantiations and port instantiations).

Architectures in the CC Part of a CC evaluation is the analysis of the architectural
design of a target of evaluation. This can be done either at high level (major structural
units, i.e., subsystems) or low level (including the internal workings). The criteria request

4.3. ARCHITECTURAL DESCRIPTION 83

only that the presentation of the design should be informal, semi-formal, or formal, and
the level of detail that has to be documented. They do not provide an explicit model to
use.

This lack of an explicit model in the CC is also pointed out by [Whi01], stating that
”[t]o develop an extensible method for designing secure solutions, additional work is re-
quired to develop: 1. A system model that is representative of the functional aspects of
security within complex solutions. 2. A systematic approach for creating security archi-
tectures based on the Common Criteria requirements taxonomy and the corresponding
security system model.”

There are two computer system models contained in the CC: monolithic and dis-
tributed products.

• A monolithic product (cf. [CC299b] figure 1.1) contains all security attributes and
resources inside the scope of control of its security functions. Human users and
remote information technology products are outside and can access the product
only via the security functions’ interface.

• A distributed product (cf. [CC299b] figure 1.2) transfers data to and from untrusted
information technology products, and uses remote functions of remote products
outside the security functions’ interface. It consists of multiple separated parts, all
connected through internal communication channels.

Other architectures are not considered explicitly in the CC documentation. However,
they are implicitly supported by the security functional requirements.

Our attack scenario is probably closer to the monolithic product architecture. Differ-
ences are that some resources may lie outside the scope of control of the product under
attack.

4.3.1 Configured and installed product

An architectural description of a configured and installed product consists of a collection
of data storage and executable data components, connectors for data transfer and execu-
tion dependencies, and an access control configuration. The access control configuration
contains the subjects and the access connectors to the components of the product.

4.3.2 Attacker

An attacker consists of a malicious program – a process while being executed – and
probably some data components. The process might exchange data with a user interface,
and is bound to a subject identity from which access permissions to other components
can be derived.

The target components of an attacker are typically one or several data components
or an executable component, in accordance with the security requirements discussed in
section 3.1. An attacker aims to violate these security requirements.

4.3.3 Malware attack on a process

In addition to the architectural description of the configured and installed product, and the
attacker, we need a specification of the involved operating system components. Attacks

84 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

as listed in section 3.3 and formally defined in section 6.1 define the rules by which the
state of the system is attempted to be modified. I.e., an attack description details how
components and connectors can be added to a system and which connectors are employed
by the attacker.

4.4 Example of an architectural description

To show our model in action, we give a sample architectural description in our syntax.
As an example, we use the homebanking application StarMoney 5.0 by Star Finanz –
Software Entwicklung und Vertriebs GmbH. We expose the software structure based on
analysis without knowledge of the source code or internal design documentation. The full
analysis is documented in section 7.2.

4.4.1 Components

Homebanking transactions are prepared at a local machine where they are signed by
help of a smart card and then transmitted to the bank’s server. Architecturally, the
homebanking application with a total size of ca. 50 MB consists of three small executable
modules, StartStarMoney.exe [60 KB] for preparing the start of the main executable
StarMoney.exe [172 KB], and SCRSetup.exe [132 KB] for configuring smart card read-
ers attached to the system. (five additional executable modules perform peripheral
functionality: Conversion of older versions’ data (smkonv.exe), T-Online Classic access
(CLGate32.exe, sfkclgateslave.exe, sfktonac.exe), remote support (NetViewer.exe))

The executable modules are supported by 89 executable library files that extend the
functionality of the main executable along 6 function groups: Core banking, Smart card
communication, Database access, Communication, User interface, Miscellaneous.

4.4.2 Configuration: interaction and dependencies

We present the architectural description of the SCRSetup.exe utility software as a sample.
This includes executable and data components, execute and data transfer connectors, and
parts of the access control configuration.

In addition to the single executable file SCRSetup.exe, more than a dozen files are
linked at runtime. These are 14 files provided by the manufacturer that are stored in the
same folder as the main application, 2 third party files (ct32.dll and np*.dll), as well
as 16 files that belong to the operating system (two of which are shown in the figures:
winscard.dll and scarddlg.dll).

Some configuration data influences the execution of the application. It is stored in
three files and imported by several modules.

Figure 4-2 shows executable data components and executable connectors of applica-
tion SCRSetup.exe, i.e., its call graph. In the upper right-hand part of a component
rectangle the container in which the component resides is shown. An arrowhead repre-
sents a LinkExecuted role, the tail of an arrow stands for a LinkExecutor role. Operating
system data components that are linked are not shown in the figure. They do not of-
fer an additional attack surface and are stored in operating system locations where they
are protected by access rights against modification by malicious software with standard
user rights. The only exceptions here are scarddlg.dll that interfaces with the local

4.4. EXAMPLE OF AN ARCHITECTURAL DESCRIPTION 85

Figure 4-2: Executable data components and execute connectors of SCRSetup.exe

86 CHAPTER 4. MODEL OF A GENERIC COMPUTER SYSTEM

Figure 4-3: Executable data components of SCRSetup.exe interfacing with the local hu-
man user

human user and winscard.dll that could be substituted when linked with an incomplete
reference. Strictly speaking, the arrows in the figure are an abbreviation for a reference
connector with a reference component as target pointing a Reference rule–Search order to
an executable data component. In addition, a filled circle represents a Data target role,
a simple circle stands for a Data source role. There are no special access permissions set
for these data components.

In figure 4-3 we present which components of the application communicate with the
local human user via a shared user interface. Since the shared user interface does not offer
protection against interference by other processes, each of the components can possibly
receive malformed or forged input and must implement validation routines for the input
it receives. An arrowhead represents a data target role. Dotted lines represent executable
connectors, i.e., the call graph from figure 4-2.

The complete access control configuration is not shown for this sample. All components
of the application enjoy the same level of protection, being either Access-observe ∧ Access-
invoke or Access-modify ∧ Access-observe ∧ Access-invoke for standard users, depending
on the location selected during install in the Microsoft Windows operating system file
system.

A comprehensive architectural description of StarMoney can be found in section 7.2.

Chapter 5

Formal model of generic computer
system

Chapter summary: In this chapter we present our model of a generic computer system
and malware attacks in the formal specification notation Z . We develop our formal model
based on the model derived from the Common Criteria security functional requirements in
chapter 4. Its scope is a single system, e.g., a workstation in which benign and malicious
applications co-exist. This restriction points out the contrast to large networks with many
hosts – which are not the focus of this work. The formal model contains all the structures
needed to capture a program’s architecture (i.e., its components and their relationships)
and a malicious process attempting to violate security requirements of the program.

We start with a justification for the use of Z , followed by a bottom-up presentation of
our formal model. We adhere to established Z style, i.e., we start the specification with
given sets and global constants, followed by a definition of state, initial state, and finally
operations. The last section discusses limitations of the model.

5.1 Formal specification in Z

The formal specification notation Z is based on Zermelo-Fraenkel set theory and first
order predicate logic (cf. e.g. [Spi92], [Jac97], [PST96], [BSC94], [Bow96]). It has been
developed by the Programming Research Group (PRG) at the Oxford University Com-
puting Laboratory (OUCL) and elsewhere since the late 1970s. It is now defined by an
ISO standard. [Z00]

More on Z and its applications to formal (security) and software architecture mod-
eling can be found in section 2.5.3. We model a program’s architecture according to
[AAG95]. An architecture is modeled as components and connectors. The structure of
our model presentation follows the established Z style of starting with given sets and
global constants, then defining state, initial state, and finally operations.

The reader is advised that there is an index of all types and schema definitions on
page 127. It can be used when browsing the specification to easily retrieve the location
of used types and schemas.

5.2 Model definition

87

88 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

Our model of a generic computer and operating system – as presented in section 4.2
– consists of seven parts: a file system, a memory subsystem, user interface functions, a
process subsystem, access control and monitoring facilities, inter-process communication
capability, and the user interface.

5.2.1 Given sets and global constants

An application’s architecture consists of components and connectors. Components have
ports to which the connectors attach. A component is of a type describing its functionality
class, e.g., a data storage component or a subject component. Connectors determine how
components can be coupled, e.g., by a data transfer relationship or a code invocation
relationship. Ports are the interfaces where components offer coupling. Ports used by a
connector have a role depending on the relationship defined by the type of the connector.
Component, connector, and role types of the architectural state model are explained in
section 4.2.2.

COMPTYPE ::=
CTACONFDATA | CTLCONFDATA |
CTSUBJECTADVERSARY | CTSUBJECTVICTIM |
CTSUBJECTOS | CTSUBJECTUNSPECIFIED |
CTDATA | CTTAMPERPROOFSTORAGE | CTFIRMWARE |
CTREFERENCE |
CTHUMANUSER | CTUIOUTPUT | CTUIINPUT

MappableComponentTypes is the set of component types that comprise the range of
the mapping functions that relate our model to an architectural description.

MappableComponentTypes : P COMPTYPE

MappableComponentTypes = {
CTSUBJECTADVERSARY ,CTSUBJECTVICTIM ,CTSUBJECTOS ,
CTSUBJECTUNSPECIFIED ,CTDATA,CTUIOUTPUT ,CTUIINPUT}

CONNTYPE ::=
CNDATATRANSFER |
CNACCESSOBSERVE | CNACCESSMODIFY |
CNACCESSAPPEND | CNACCESSDELETE |
CNACCESSINVOKE |
CNLOGDATA | CNMONITOR | CNSECPARAM |
CNINTEGRITYVERIFICATIONDATA |
CNBACKUP | CNCONTAINEDBY |
CNREFERENCERULESTATIC |
CNREFERENCERULESEARCHORDER |
CNREFERENCERULECONTAINER |
CNPARAM |
CNEXECUTE | CNLINKEDEXEC |
CNSUBJECTBINDING | CNOWNER

5.2. MODEL DEFINITION 89

[PORT]

ROLE ::=
RODATASOURCE | ROAUTHENTICATEDDATASOURCE |
RODATATARGET | ROAUTHENTICATEDDATATARGET |
ROSUBJECT | ROOBJECT |
ROLOGDATASOURCE | ROLOGDATATARGET |
ROMONITORSOURCE | ROMONITORTARGET |
ROPARAMSOURCE | ROPARAMPROCESSOR |
ROORIGINAL | ROVERIFICATIONDATA | ROCOPY |
ROCONTAINER | ROCONTAINED |
ROREFERENCESOURCE | ROREFERENCETARGET |
ROEXECUTOR | ROEXECUTED |
ROLINKEXECUTOR |
ROLINKEXECUTEDSTATIC |
ROLINKEXECUTEDDYNAMIC |
ROOWNER | ROOWNED

Objects like files etc. can be named. Names are taken from the given set NAME which
includes the names of the component instances of the architecture model. Connector
instances are also named.

[NAME ,CONNNAME]
COMPNAME : P NAME

An architectural description comprises instantiations of the component and connector
types with their associated ports and roles (for terminology refer to [AAG95]). Compo-
nents and connectors are named to distinguish instantiations of the same type.

PORTINST == COMPNAME × PORT
ROLEINST == CONNNAME × ROLE

Besides its functional requirements, an information system has non-functional security
requirements. With respect to security, the ultimate goal of the system is the protec-
tion of data against unauthorized access by malicious processes. The internal structure
of the data does not matter. We hence define DATA as a given set here. The con-
stant CONTENT EMPTY denotes a data item without content, whereas CONTENT
EXECUTABLE denotes data that could be executed, e.g., a program. Data or code
under control of the adversary is marked as being of attacker’s choice. When a variable
assumes a value of the set CONTENT ATTACKERS CHOICE , it represents a situation

90 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

where the adversary is able to discern the variable’s value.

[DATA]
CONTENT EMPTY : P DATA
CONTENT EXECUTABLE : P DATA
CONTENT ATTACKERS CHOICE : P DATA

Since we are not interested in the internal structure of the data, we need a way to
compare two data items with each other. The relation appended associates data items
with those that result from appending data to the first.

appended : DATA ↔ DATA

Communication via IPC (inter-process communication) mechanisms is modeled as
a function mapping input data to output data. IPC-enabled components are assigned a
function of the IPCResponse type. A change in behaviour is then represented by a change
in the assigned function. The function becomes part of the IPC-enabled component’s
state.

IPCResponse == DATA → DATA

The access control subsystem regulates access of subjects to objects. Subjects are spe-
cial objects, typically associated with active entities like users or processes. Four subjects
are special: SUBJECT ADVERSARY represents the adversary, SUBJECT VICTIM
represents the process under attack, SUBJECT OS represents the operating system, and
SUBJECT UNSPECIFIED is used for subjects where it does not matter whom they
represent.

[OBJECT]
SUBJECT : P OBJECT
SUBJECT ADVERSARY ,
SUBJECT VICTIM ,
SUBJECT OS ,
SUBJECT UNSPECIFIED : SUBJECT

We introduce subjectComponentTypes and subjectComponentTypeToSUBJECT to map
subjects in the model to subject type components in an architectural description.

subjectComponentTypes : P COMPTYPE

subjectComponentTypes = {CTSUBJECTADVERSARY ,CTSUBJECTVICTIM ,
CTSUBJECTOS ,CTSUBJECTUNSPECIFIED}

subjectComponentTypeToSUBJECT : subjectComponentTypes → SUBJECT

subjectComponentTypeToSUBJECT = {
(CTSUBJECTADVERSARY , SUBJECT ADVERSARY),
(CTSUBJECTVICTIM , SUBJECT VICTIM),
(CTSUBJECTOS , SUBJECT OS),
(CTSUBJECTUNSPECIFIED , SUBJECT UNSPECIFIED)}

5.2. MODEL DEFINITION 91

Supported types of access are creation of objects, observing the content of an object,
modifying an object, an object by appending data to its content, deleting an object,
invoking an (executable) object (or a method thereof).

ACCESSMODE ::=
ACCESS CREATE | ACCESS OBSERVE |
ACCESS MODIFY | ACCESS APPEND |
ACCESS DELETE | ACCESS INVOKE

ACCESS GENERIC ALL denotes the set of all access modes. Its purpose is to facil-
itate access checks by having to test only for set membership.

ACCESS GENERIC ALL : P ACCESSMODE

ACCESS GENERIC ALL = {
ACCESS CREATE ,ACCESS OBSERVE ,ACCESS MODIFY ,
ACCESS APPEND ,ACCESS DELETE ,ACCESS INVOKE}

We introduce accessConnectorTypes and accessConnectorTypeToACCESSMODE to
map access modes in the model to access type connectors in an architectural description.

accessConnectorTypes : P CONNTYPE

accessConnectorTypes = {
CNACCESSOBSERVE ,CNACCESSMODIFY ,CNACCESSAPPEND ,
CNACCESSDELETE ,CNACCESSINVOKE}

accessConnectorTypeToACCESSMODE : accessConnectorTypes → ACCESSMODE

accessConnectorTypeToACCESSMODE = {
(CNACCESSOBSERVE ,ACCESS OBSERVE),
(CNACCESSMODIFY ,ACCESS MODIFY),
(CNACCESSAPPEND ,ACCESS APPEND),
(CNACCESSDELETE ,ACCESS DELETE),
(CNACCESSINVOKE ,ACCESS INVOKE)}

An access control matrix specifies whether a specific accessmode is allowed for a certain
subject/object combination. The access control policy is later specified based on an access
control matrix.

ACM == (SUBJECT ×OBJECT) → P ACCESSMODE

Operations during a system’s lifetime are recorded in a system history. This is a log
of which subject components and target components were involved in a system event. A
system history consists of a sequence of system events. Supported events are creation
of components, observation of a component’s content, modifying components, renaming
components, appending data to a component’s content, deleting components, and invoking

92 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

a component (or a method thereof).

[EVENTACTION]
SYSTEMEVENT ==

COMPTYPE × COMPNAME × EVENTACTION

EVENT ACCESS CREATE ,
EVENT ACCESS OBSERVE ,
EVENT ACCESS MODIFY ,
EVENT ACCESS RENAME ,
EVENT ACCESS APPEND ,
EVENT ACCESS DELETE ,
EVENT ACCESS INVOKE : EVENTACTION

The file system is organised as nodes, representing folders and files. A path name is a
sequence of file and folder names to uniquely identify a file or folder in a tree structure.

[FSNODE]
PATHNAME == seqNAME

Some objects have unique identifiers that are called handles. This applies inter alia to
processes and memory areas.

[HANDLE]

5.2.2 State

The system state comprises the file system’s state, the state of the computer’s main mem-
ory, the user interface, processes and their extensions, and the access control configuration.

5.2.2.1 File system

Files are components that can be used to store data. Folders are components that contain
files and other folders – subfolders. Files and folders form a tree structure, the file system.

We first show a general tree defined by the following five schemas, starting with a
directed graph as described in [BSC94].

digraph[X] is the set of directed graphs over X . A directed graph is a set of nodes
and a relation describing the directed edges connecting some of these nodes.

digraph[X] == {n : P X ; e : X ↔ X | (dom e ∪ ran e) ⊆ n}

dag [X] is the set of directed acyclic graphs over X . These are digraphs that contain
no cycles, i.e., the transitive closure of the edge relation does not include any vertices that
are mapped to themselves.

dag [X] == {n : P X ; e : X ↔ X | (n, e) ∈ digraph[X] ∧ disjoint〈e+, idX 〉}

condag [X] is the set of connected directed acyclic graphs. Every node is joined to

5.2. MODEL DEFINITION 93

every other node, in one direction or the other.

condag [X] == {n : P X ; e : X ↔ X | (n, e) ∈ dag [X] ∧ (e ∪ e∼)∗ = n × n}

tree[X] is the set of trees. These are connected dags where each element is related to
at most one other, its parent.

tree[X] == {n : P X ; e : X ↔ X | (n, e) ∈ condag [X] ∧ e ∈ X 7→ X }

The generic schema Tree[N] is applicable for any node type N . The desired type of
node is supplied when the schema is used.

The tree t consists of a non-empty set node of nodes, and a directed edge function,
parent . Those nodes not in the range of parent are the leaf nodes; they have no descen-
dants. The root node is the single node that has no parent. For reasons of convenience
the inverse to the parent function is defined: the child relation.

Tree [N]
t : tree[N]
parent : N 7→ N
node, leaf : P1 N
child : N ↔ N
root : N

(node, parent) = t
leaf = node \ ran parent
{root} = node \ dom parent
child = parent∼

This concludes the tree definition taken from [BSC94]. We are now going to use a tree
to build up a file system, i.e., a tree with folders as the inner nodes and files as the leaf
nodes.

Files are components that have a file name for reference purposes and store content
(of the given set DATA). Files are stored in the file system at a location identified by
FSNODE .

File
filename : NAME
content : DATA
location : FSNODE

Folders are components that have a folder name for reference purposes and contain
files (of schema File) and folders (of schema Folder). Files are stored directly with their
folder. Subfolders are not stored in the schema Folder ; they are accessible via the function
Subfolder of the FileSystem schema that retrieves subfolders of a given folder. Folders

94 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

are stored in the file system at a location identified by FSNODE .
All file names of files in the same folder must be unique. The same holds for subfolders;

all folder names of folders in the same parent folder must be unique. Subfolders and files
in the same parent folder may have the same name, though. The requirement of unique
names for files in a folder is not a property of the Folder schema, it is a property of the
FileSystem schema.

Folder
foldername : NAME
files : P File
location : FSNODE

The operating system works with a small number of designated folders where it stores
its core files and where third parties might store extensions to the operating system,
probably in the form of libraries. These folders are OSFolder and OSSysFolder . There is
not made a distinction between these other than that OSFolder is more likely to contain
program files for interaction with the user, and OSSysFolder is more likely to contain
library files for process extension.

The search path is an ordered set of complete folder names specifying where the op-
erating system should try to locate files when it is instructed to load files referenced by a
filename and without a foldername.

OSFolder : PATHNAME
OSSysFolder : PATHNAME
SearchPath : seqPATHNAME

The FileSystem schema consists of a Tree with nodes of type FSNODE and auxiliary
functions to retrieve node attributes and to map nodes to files and folders.

Folders form a tree structure, i.e., starting from the root folder at the top, each folder
may contain subfolders as well as files. A folder cannot be contained in one of its sub-
folders, i.e., cycles are not allowed. All file names of files in the same folder must be
unique. The same holds for subfolders; all folder names of folders in the same parent
folder must be unique. Subfolders and files in the same parent folder may have the same
name, though.

The schema includes functions mapping nodes to their corresponding file or folder
schema. nodeName retrieves the file name or folder name of the corresponding file system
tree node. nodeData retrieves the content of the file associated with the corresponding
file system tree node. nodeFile retrieves the file associated with the corresponding file
system tree node. nodeFolder retrieves the folder associated with the corresponding file
system tree node.

subfolders is a function mapping a folder to its contained subfolders. nodeByFullName
locates the file system tree node referenced by a sequence of folder names and up to
one file name. fileByFullName fulfils the same purpose, alas resulting in a file schema
corresponding to the file system tree node. folderByFullName retrieves a folder schema,
accordingly. fullNameByNode constructs the sequence of folder names (starting with the
root folder) and up to one file name corresponding to the specified file system tree node.

5.2. MODEL DEFINITION 95

FileSystem
FSTree : Tree[FSNODE]
nodeName : FSNODE 7→ NAME
nodeData : FSNODE 7→ DATA
nodeFile : FSNODE 7→ File
nodeFolder : FSNODE 7→ Folder
subfolders : Folder 7→ P Folder
nodeByFullName : PATHNAME 7→ FSNODE
fileByFullName : PATHNAME 7→ File
folderByFullName : PATHNAME 7→ Folder
fullNameByNode : FSNODE 7→ PATHNAME
fileToComponent : File 7→ COMPNAME
folderToComponent : Folder 7→ COMPNAME

dom nodeName = FSTree.node
FSTree.root 6∈ dom nodeData ⊆ FSTree.leaf
∀ n : FSTree.node • (∀ c, d : FSTree.child(| {n} |) | c 6= d

• nodeName c 6= nodeName d)
nodeFile = {n : FSTree.node; f : File | n ∈ dom nodeData ∧

f .filename = nodeName n ∧
f .content = nodeData n ∧
f .location = n
• n 7→ f }

nodeFolder = {n : FSTree.node; fd : Folder | n 6∈ dom nodeData ∧
fd .foldername = nodeName n ∧
fd .files = nodeFile(| (FSTree.child(| {n} |)) |) ∧
fd .location = n
• n 7→ fd}

subfolders = {fd : Folder | fd .location ∈ FSTree.node \ dom nodeData
• fd 7→ nodeFolder(| (FSTree.child(| {fd .location} |)) |)}

nodeByFullName = {path : seqFSNODE | head path = FSTree.root ∧
(∀ i , j : dom path | j = i + 1 •
(path i 7→ path j) ∈ FSTree.child)
• path o

9 nodeName 7→ last path}
fileByFullName = nodeByFullName o

9 nodeFile
folderByFullName = nodeByFullName o

9 nodeFolder
fullNameByNode = nodeByFullName∼

5.2.2.2 Memory

The memory subsystem is responsible for providing and regulating access to storage in
main memory.

Memory is divided in memory areas. Each such area has a unique identifier – a handle

96 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

– and stores some content. A memory area is associated with a process that is called
its owner . Memory is private to a process; to share memory between processes, the
appropriate access control entries must be present in the access control configuration of
the system.

MemoryArea
handle : HANDLE
content : DATA
owner : HANDLE

The Memory schema consists of a set areas of the memory areas in use by processes
in the system. It provides access via the areaByHandle function to a memory area by
specifying the area’s handle. There is no restriction as regards how much memory can be
consumed or is available in total.

Memory
memoryAreas : P MemoryArea
areaByHandle : HANDLE 7→ MemoryArea
memoryAreaToComponent : MemoryArea 7→ COMPNAME

areaByHandle = {h : HANDLE ; p : MemoryArea |
p ∈ memoryAreas ∧ p.handle = h • h 7→ p}

∀m, n : MemoryArea | m ∈ memoryAreas ∧ n ∈ memoryAreas ∧
m 6= n • m.handle 6= n.handle

5.2.2.3 User and user interface

The user interface subsystem manages the data displayed to the local human user and
processes input generated by the user or simulated by processes.

The UIOutputDevices and UIInputDevices schemas represent the user interface. Each
modeled device is identified by a handle. An output device displays the same data until
that is changed.

UIOutputDevices
displayedData : HANDLE → DATA
uiOutputDeviceToComponent : HANDLE 7→ COMPNAME

An input device has a queue of input events.

5.2. MODEL DEFINITION 97

UIInputDevices
inputEvents : HANDLE → seq DATA
uiInputDeviceToComponent : HANDLE 7→ COMPNAME

The complete user interface is the combination of output and input devices. Access re-
strictions to the user interface may be defined in the system’s access control configuration.

UserInterface
UIOutputDevices
UIInputDevices

5.2.2.4 Processes and IPC

The process subsystem manages all running processes, including creation and access con-
trol.

An executable library consists of executable code, stored in a file. It is referenced by
a handle. Some parts of a library may contain non-executable data.

LinkedLibraries
libraryFile : HANDLE → File

A process is based on a file (the program) whose contents are loaded into main memory
and then executed. It is assigned an identifier (handle). A process can be extended by
runtime modules, e.g., executable libraries. For logging, accounting, and access control
purposes, a subject is associated with each process.

The Processes schema references the Memory and UI input/output schemas and con-
sists of a set of running processes, a relation associating processes with executable libraries
loaded by these processes – processLibraries , the set of all loaded libraries in the system,
a relation associating processes with the memory areas they have allocated, and a relation
associating processes with the input queues they subscribe to.

98 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

Processes
Memory
UIOutputDevices
UIInputDevices
runningProcesses : P HANDLE
processFile : HANDLE → File
processLibraries : HANDLE ↔ HANDLE
processSubject : HANDLE → SUBJECT
loadedLibraries : P HANDLE
processIPCResponse : HANDLE → IPCResponse
processIPCQueue : HANDLE → seqDATA
processMemory : HANDLE ↔ MemoryArea
processOutput : HANDLE ↔ HANDLE
processInput : HANDLE ↔ HANDLE

dom processLibraries ⊆ runningProcesses
loadedLibraries = ran processLibraries
dom processIPCResponse ⊆ runningProcesses
dom processMemory ⊆ runningProcesses
ran processMemory ⊆ memoryAreas
dom processOutput ⊆ runningProcesses
ran processOutput ⊆ dom displayedData
dom processInput ⊆ runningProcesses
ran processInput ⊆ dom inputEvents

5.2.2.5 Access control

The schema AccessControlPolicy represents the access control policy of the system. It ref-
erences FileSystem and Memory . The policy is stored as an access matrix, ACP , consist-
ing of ACE s (access control entries). Half a dozen auxiliary functions map securable sys-
tem components to objects of the access control policy: subjectToObject , fsnodeToObject ,
fileToObject , folderToObject , memoryAreaToObject , UIAreaToObject , processToObject .

Instead of using the access matrix, a shorter notation for checking access rights is
available in the form of ACLs (access control lists including all subjects that have access
rights for the specified object and their respective rights) and CAPs (capability lists
including all objects for which the specified subject has access rights and the respective
rights). ACLs can bee seen as the columns of the access matrix, and CAPs represent the
rows of the access matrix.

5.2. MODEL DEFINITION 99

AccessControlPolicy
FileSystem
Memory
ACP : ACM
subjectToObject : SUBJECT � OBJECT
fsnodeToObject : FSNODE � OBJECT
fileToObject : File � OBJECT
folderToObject : Folder � OBJECT
memoryAreaToObject : MemoryArea � OBJECT
UIOutputDeviceToObject : HANDLE � OBJECT
UIInputDeviceToObject : HANDLE � OBJECT
processToObject : HANDLE � OBJECT
ACL : OBJECT → (SUBJECT → P ACCESSMODE)
CAP : SUBJECT → (OBJECT → P ACCESSMODE)

fileToObject = {f : File; n : FSTree.node | nodeFile n = f
• f 7→ fsnodeToObject n}

folderToObject = {fd : Folder ; n : FSTree.node | nodeFolder n = fd
• fd 7→ fsnodeToObject n}

〈ran subjectToObject , ran fileToObject , ran folderToObject ,
ranmemoryAreaToObject ,
ranUIOutputDeviceToObject , ranUIInputDeviceToObject ,
ran processToObject〉
partitionOBJECT

ACL = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE |
((s , o),m) ∈ ACP • (o,

{u : SUBJECT | u ∈ dom((domACP) B {o})
• (u,ACP (u, o))})}

CAP = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE |
((s , o),m) ∈ ACP • (s ,

{b : OBJECT | b ∈ ran({s}C (domACP))
• (b,ACP (s , b))})}

The schema SystemHistory provides a protocol for all relevant actions of an ad-
versary and other processes in the system. These are recorded as an ordered set of
SYSTEMEVENT s.

SystemHistory
history : seq SYSTEMEVENT

100 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

5.2.2.6 Application architecture

Some terms are used throughout the analysis: OS (=Operating System), adversary/attacker
and victim/process under attack. These are used to indicate ownership of components. In
our specification we introduce them as a given set.

OWNER ::= OS | ADVERSARY | VICTIM | UNSPECIFIED

An architectural description comprises components and connectors, relating compo-
nents to each other. A component is of a certain type, e.g., it can be a data storage
component. The component’s type determines its importance and behaviour. Compo-
nents communicate with other components via ports . Connectors attach to these ports.

Component
ports : P PORT
componentType : COMPTYPE
owner : OWNER

Connectors govern the way components interact with each other. Communication
depends on the type of the connection, e.g., modifying another component’s content or
invoking another component’s method. The ports to which a connector attaches act
according to roles dependent on the connection’s type, e.g., one port can act as a sender,
the other as a receiver.

Connector
roles : P ROLE
connectionType : CONNTYPE

The Configuration schema represents an architectural description of the system. It
assembles instances of components and connectors . Components and connectors are iden-
tified by their names. An attachment couples a role instance with a port instance. A role
instance is defined by a connection name and a role for one end of the connection. A port
instance is defined by a component name and a port of that component. An attachment
then maps the connections’s roles to the components’s ports, e.g., assigning the invoker
role to a port of a process component and the invokee role to a port of a file compo-
nent. typesAndComponents and componentsOfType are auxiliary relations for retrieving
components of a vertain component type.

5.2. MODEL DEFINITION 101

Configuration
components : COMPNAME 7→ Component
connectors : CONNNAME 7→ Connector
attachment : ROLEINST 7→ PORTINST
typeComponents : COMPTYPE ↔ COMPNAME

∀ cn : CONNNAME ; r : ROLE | (cn, r) ∈ dom attachment
• cn ∈ dom connectors ∧ r ∈ (connectors(cn)).roles

∀ cn : COMPNAME ; p : PORT | (cn, p) ∈ ran attachment
• cn ∈ dom components ∧ p ∈ (components(cn)).ports

typeComponents = {
ct : COMPTYPE ; cn : COMPNAME ; cp : Component |
(cn, cp) ∈ components ∧ cp.componentType = ct • (ct , cn)}

5.2.3 Initial state

The EmptyState schema defines the initial state of the system in which no components
and connectors exist. The system is subsequently populated with files, folders, processes
etc.

EmptyState
FileSystem
UIOutputDevices
UIInputDevices
Processes
AccessControlPolicy

FSTree.node 6= ∅[FSNODE]
ranFSTree.parent = ∅[FSNODE]
dom displayedData = ∅[HANDLE]
dom inputEvents = ∅[HANDLE]
runningProcesses = ∅[HANDLE]

Initial states for the several sub systems of our abstracted operating system are defined
by their own schemas. For every object in the operating system model that belongs to our
application, there must be a corresponding component or connector in the architecture
model.

InitialFileSystem is the initial configuration of the file system. For every file and folder
there is a corresponding data or container component in the architecture model.

102 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

InitialFileSystem
FileSystem
Configuration

∀ fileNode : FSNODE | fileNode ∈ FSTree.node ∧ fileNode ∈ dom nodeFile •
∃ compname : COMPNAME | compname ∈ dom components ∧

(components compname).componentType = CTDATA •
∃ contcompname : COMPNAME | contcompname ∈ dom components ∧

(components contcompname).componentType = CTDATA •
∃ connname : CONNNAME | connname ∈ dom connectors ∧

(connectors connname).connectionType = CNCONTAINEDBY •
∃ compport : PORT • ∃ contport : PORT •

((connname,ROCONTAINER), (contcompname, contport)) ∈
attachment ∧

((connname,ROCONTAINED), (compname, compport)) ∈
attachment ∧

((nodeFile fileNode), compname) ∈ fileToComponent
∀ folderNode : FSNODE | folderNode ∈ FSTree.node ∧

folderNode ∈ dom nodeFolder •
∃ contcompname : COMPNAME | contcompname ∈ dom components ∧

(components contcompname).componentType = CTDATA •
∃ compname : COMPNAME | compname ∈ dom components ∧

(components compname).componentType = CTDATA •
∃ connname : CONNNAME | connname ∈ dom connectors ∧

(connectors connname).connectionType = CNCONTAINEDBY •
∃ contport : PORT • ∃ compport : PORT •

((connname,ROCONTAINER), (contcompname, contport)) ∈
attachment ∧

((connname,ROCONTAINED), (compname, compport)) ∈
attachment ∧

((nodeFolder folderNode), compname) ∈ folderToComponent
∀ f , fd : FSNODE | (f , fd) ∈ FSTree.child • ∃ connname : CONNNAME •

(connectors connname).connectionType = CNCONTAINEDBY ∧
∃ contcompname : COMPNAME • ∃ contport : PORT •

contport ∈ (components contcompname).ports ∧
∃ compname : COMPNAME • ∃ compport : PORT •

compport ∈ (components compname).ports ∧
((connname,ROCONTAINER), (contcompname, contport)) ∈

attachment ∧
((connname,ROCONTAINED), (compname, compport)) ∈

attachment

InitialMemory is the initial configuration of the memory subsystem. For every memory
area there is a corresponding data component in the architecture model.

5.2. MODEL DEFINITION 103

InitialMemory
Memory
Configuration

∀m : MemoryArea •
m ∈ memoryAreas ∧
∃ compname : COMPNAME •

compname ∈ dom components ∧
(components compname).componentType = CTDATA ∧
(m, compname) ∈ memoryAreaToComponent

InitialUI is the initial configuration of the user interface devices. For every user
interface device there is a corresponding UI output or input component in the architecture
model.

InitialUI
UIOutputDevices
UIInputDevices
Configuration

∀ u : HANDLE |
u ∈ dom displayedData •
∃ compname : COMPNAME •

(compname ∈ dom components ∧
(components compname).componentType = CTUIOUTPUT ∧
(u, compname) ∈ uiOutputDeviceToComponent)

∀ u : HANDLE |
u ∈ dom inputEvents •
∃ compname : COMPNAME •

(compname ∈ dom components ∧
(components compname).componentType = CTUIINPUT ∧
(u, compname) ∈ uiInputDeviceToComponent)

ProcessLibraryCorrespondence defines the relation correspondingLibraries that con-
nects components representing processes and the libraries linked to them.

104 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

ProcessLibraryCorrespondence
Configuration
FileSystem
Processes
correspondingLibraries : COMPNAME ↔ HANDLE

correspondingLibraries = {compname : COMPNAME ; lib : HANDLE |
∃ libcompname : COMPNAME •
∃ fn : FSNODE •
(fileToComponent (nodeFile fn)) = libcompname ∧
∃ procport : PORT ; libport : PORT •
∃ connname : CONNNAME •
(connectors connname).connectionType = CNLINKEDEXEC ∧
((connname,ROLINKEXECUTOR), (compname, procport)) ∈ attachment ∧
((((connname,ROLINKEXECUTEDSTATIC),

(libcompname, libport)) ∈ attachment) ∨
(((connname,ROLINKEXECUTEDDYNAMIC),

(libcompname, libport)) ∈ attachment)) •
(compname, lib)}

ProcessMemoryCorrespondence defines the relation correspondingMemoryAreas that
connects components representing processes and the memory areas used by them.

ProcessMemoryCorrespondence
Configuration
FileSystem
Memory
Processes
correspondingMemoryAreas : COMPNAME ↔ MemoryArea

correspondingMemoryAreas = {compname : COMPNAME ; ma : MemoryArea |
∃macompname : COMPNAME •
∃ fn : FSNODE •
(fileToComponent (nodeFile fn)) = macompname ∧
∃ procport : PORT ; maport : PORT •
∃ connname : CONNNAME •
(connectors connname).connectionType = CNDATATRANSFER ∧
((connname,RODATATARGET), (compname, procport)) ∈ attachment ∧
((((connname,RODATASOURCE), (macompname,maport)) ∈ attachment) ∨
(((connname,ROAUTHENTICATEDDATASOURCE),

(macompname,maport)) ∈ attachment)) •
(compname,ma)}

5.2. MODEL DEFINITION 105

ProcessUIOutputCorrespondence defines the relation correspondingUIOutput that con-
nects components representing processes and the UI output devices used by them.

ProcessUIOutputCorrespondence
Configuration
UserInterface
Processes
correspondingUIOutput : COMPNAME ↔ HANDLE

correspondingUIOutput = {compname : COMPNAME ; uio : HANDLE |
∃ uiocompname : COMPNAME •
(uiOutputDeviceToComponent uio) = uiocompname ∧
∃ procport : PORT ; uioport : PORT •
∃ connname : CONNNAME •
(connectors connname).connectionType = CNDATATRANSFER ∧
((((connname,RODATASOURCE), (compname, procport)) ∈ attachment) ∨
((connname,ROAUTHENTICATEDDATASOURCE),

(compname, procport)) ∈ attachment) ∧
((((connname,RODATATARGET), (uiocompname, uioport)) ∈ attachment) ∨
(((connname,ROAUTHENTICATEDDATATARGET),

(uiocompname, uioport)) ∈ attachment)) •
(compname, uio)}

ProcessUIInputCorrespondence defines the relation correspondingUIInput that con-
nects components representing processes and the UI input devices used by them.

ProcessUIInputCorrespondence
Configuration
UserInterface
Processes
correspondingUIInput : COMPNAME ↔ HANDLE

correspondingUIInput = {compname : COMPNAME ; uii : HANDLE |
∃ uiicompname : COMPNAME •
(uiInputDeviceToComponent uii) = uiicompname ∧
∃ procport : PORT ; uiiport : PORT •
∃ connname : CONNNAME •
(connectors connname).connectionType = CNDATATRANSFER ∧
((((connname,RODATATARGET), (compname, procport)) ∈ attachment) ∨
((connname,ROAUTHENTICATEDDATATARGET),

(compname, procport)) ∈ attachment) ∧
((((connname,RODATASOURCE), (uiicompname, uiiport)) ∈ attachment) ∨
(((connname,ROAUTHENTICATEDDATASOURCE),

(uiicompname, uiiport)) ∈ attachment)) •
(compname, uii)}

106 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

The initially running processes are given by InitialProcesses . Only processes exe-
cuted by the local human user are considered. Processes launched automatically, e.g.,
by a mechanism of the operating system, are left to future work. For every process all
linked libraries and allocated memory are mapped to corresponding components in the
architectural description, as well as output and input devices of the user interface.

InitialProcesses
Processes
FileSystem
UserInterface
Configuration
ProcessLibraryCorrespondence
ProcessMemoryCorrespondence
ProcessUIOutputCorrespondence
ProcessUIInputCorrespondence

∀ proc : HANDLE |
proc ∈ runningProcesses •
∃ compname : COMPNAME •
compname ∈ dom components ∧
fileToComponent (processFile proc) = compname ∧
processSubject proc = SUBJECT VICTIM ∧

(∃ usercompname : COMPNAME •
∃ procport : PORT ; userport : PORT •
(components usercompname).componentType = CTHUMANUSER ∧
∃ connname : CONNNAME •
(connectors connname).connectionType = CNEXECUTE ∧
((connname,ROEXECUTOR), (usercompname, userport)) ∈ attachment ∧
((connname,ROEXECUTED), (compname, procport)) ∈ attachment) ∧

(∀ lib : HANDLE •
lib ∈ ran processLibraries ⇒
(compname, lib) ∈ correspondingLibraries) ∧

(∀ma : MemoryArea •
ma ∈ ran processMemory ⇒
(compname,ma) ∈ correspondingMemoryAreas) ∧

(∀ uio : HANDLE •
uio ∈ ran processOutput ⇒
(compname, uio) ∈ correspondingUIOutput) ∧

(∀ uii : HANDLE •
uii ∈ ran processInput ⇒
(compname, uii) ∈ correspondingUIInput)

The initial access matrix is built up from a set of access control entries (object ×
×subject × access mode). For every securable object and for every subject there is a
corresponding component in the architectural description. Access modes are determined

5.2. MODEL DEFINITION 107

by corresponding connector types between components connected to subject type compo-
nents.

InitialConfigurationACE
Configuration
FileSystem
Memory
UserInterface
AccessControlPolicy
InitialACE : (OBJECT × SUBJECT) → ACCESSMODE

InitialACE = {
objcompname : COMPNAME ; subjcompname : COMPNAME ;
obj : OBJECT ; subj : SUBJECT ;
fn : FSNODE ; ma : MemoryArea;
uio : HANDLE ; uii : HANDLE ;
connname : CONNNAME ;
objport : PORT ; subjport : PORT |

((fn ∈ FSTree.node ∧
(objcompname = (fileToComponent (nodeFile fn))) ∧
obj = fsnodeToObject fn) ∨

(fn ∈ FSTree.node ∧
(objcompname = (folderToComponent (nodeFolder fn))) ∧
obj = fsnodeToObject fn) ∨

(ma ∈ memoryAreas ∧
(objcompname = (memoryAreaToComponent ma)) ∧
obj = memoryAreaToObject ma) ∨

(uio ∈ dom uiOutputDeviceToComponent ∧
(objcompname = (uiOutputDeviceToComponent uio)) ∧
obj = UIOutputDeviceToObject uio) ∨

(uii ∈ dom uiInputDeviceToComponent ∧
(objcompname = (uiInputDeviceToComponent uii)) ∧
obj = UIInputDeviceToObject uii)) ∧

(components subjcompname).componentType ∈
subjectComponentTypes ∧

subj = (subjectComponentTypeToSUBJECT (
components subjcompname).componentType) ∧

(connectors connname).connectionType ∈ accessConnectorTypes ∧
((connname,ROOBJECT), (objcompname, objport)) ∈ attachment ∧
((connname,ROSUBJECT), (subjcompname, subjport)) ∈ attachment •

((obj , subj), (accessConnectorTypeToACCESSMODE (
connectors connname).connectionType))}

Combining the initial access control entries leads to the initial access matrix ACP .

108 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

InitialAccessControlPolicy
InitialConfigurationACE
AccessControlPolicy

ACP = {
obj : OBJECT ; subj : SUBJECT •
((subj , obj), InitialACE (| {(obj , subj)} |))

}

All components in the architectural description shall be covered by files, folders, mem-
ory etc. in the model. This is expressed with the AllComponentsCoveredSchema.

AllComponentsCovered
Configuration
FileSystem
Memory
UserInterface

typeComponents(| MappableComponentTypes |) =
(ran fileToComponent)∪
(ran folderToComponent)∪
(ranmemoryAreaToComponent)∪
(ran uiOutputDeviceToComponent)∪
(ran uiInputDeviceToComponent)

The initial state is composed of the initial states of the subsystems and is constrained
by that there be an entity in the model for every relevant component in the architectural
description.

InitialStateCorrespondence
InitialFileSystem
InitialMemory
InitialUI
InitialProcesses
InitialAccessControlPolicy
AllComponentsCovered

5.2.4 Operations

When using schemas, we adhere to the convention that ∆schema name denotes a schema
where state changes may take place.

5.2. MODEL DEFINITION 109

∆SchemaName
SchemaName
SchemaName ′

In a similar way we use the established convention to write Ξschema name for schema
inclusion where the state is left unchanged.

ΞSchemaName
∆SchemaName

θSchemaName ′ = θSchemaName

The usual naming style for input variables is to decorate them with a question mark
(?), and to decorate output variables with an exclamation mark (!).

5.2.4.1 File system

The file system supports creation, reading, modification, appending, and deletion of files
and folders.

The CreateFile schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . File creation requires provision of the name of the file to be created,
the (existing) folder in which it shall be placed, the owner of the newly created file, and
the access rights for that owner to enable the creation of an ACE of the new file.

Precondition for this operation is that the folder exists. If the precondition is met, a
new file with content CONTENT EMPTY is created and assigned an unused FSNODE
in the file system. It is placed in the file system tree with the specified folder as its parent
node. The access control configuration is updated with an ACE for the new file. File
creation is logged in the system history.

110 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

CreateFile
∆FileSystem
∆AccessControlPolicy
∆SystemHistory
newFilename? : PATHNAME
newFileAccessMode? : P(SUBJECT × P ACCESSMODE)
requestingSubject? : SUBJECT

(nodeByFullName (front newFilename?)) ∈ FSTree.node \ dom nodeData
∃ f : File |

f .filename = last newFilename? ∧
f .content ∈ CONTENT EMPTY ∧
f .location 6∈ FSTree.node ∧
ACCESS MODIFY ∈

((ACL (fsnodeToObject (FSTree.parent f .location))) requestingSubject?)
• FSTree ′.node = FSTree.node ∪ {f .location} ∧

(FSTree ′).parent = FSTree.parent⊕
{f .location 7→ nodeByFullName (front newFilename?)} ∧

nodeName ′ = nodeName ⊕ {f .location 7→ f .filename} ∧
nodeData ′ = nodeData ⊕ {f .location 7→ f .content} ∧
ACP ′ = ACP ⊕ {s : SUBJECT ; m : P ACCESSMODE |

(s ,m) ∈ newFileAccessMode? • ((s , fileToObject f),m)} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent f ,EVENT ACCESS CREATE)}

The ReadFile schema includes the FileSystem and AccessControlPolicy schemas with-
out state changes, and the SystemHistory schema. Reading a file’s content requires pro-
vision of the name of the file to be read, and the subject attempting to access the data.
Read content is stored in the filecontent ! schema variable.

Precondition for this operation is that the file exists and that the access control con-
figuration includes observe access for the requesting subject. The file access is logged in
the system history.

5.2. MODEL DEFINITION 111

ReadFile
ΞFileSystem
ΞAccessControlPolicy
∆SystemHistory
filename? : PATHNAME
filecontent ! : DATA
requestingSubject? : SUBJECT

∃ f : File •
f = nodeFile (nodeByFullName filename?) ∧
f .content = filecontent ! ∧
ACCESS OBSERVE ∈ ((ACL (fileToObject f)) requestingSubject?) ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent f ,EVENT ACCESS OBSERVE)}

The UpdateFile schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . Updating a file’s content requires provision of the name of the file to
be updated, the new content of the file, and the subject attempting to update the file’s
content.

Precondition for this operation is that the file exists and that the access control con-
figuration includes modify access for the requesting subject. The file access is logged in
the system history.

UpdateFile
∆FileSystem
ΞAccessControlPolicy
∆SystemHistory
filename? : PATHNAME
filecontent? : DATA
requestingSubject? : SUBJECT

∃ f : File |
f = nodeFile (nodeByFullName filename?) ∧
f .content = filecontent? ∧
ACCESS MODIFY ∈ ((ACL (fileToObject f)) requestingSubject?)

• nodeData ′ = nodeData ⊕ {f .location 7→ f .content} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent f ,EVENT ACCESS MODIFY)}

The RenameFile schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . Renaming a file requires provision of the name of the file to be
renamed, the desired new name of the file, and the subject attempting to rename the file.

112 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

Precondition for this operation is that the file referenced by the old name exists and
that the access control configuration includes modify access for the requesting subject on
the folder where the file is located. Renaming is logged in the system history. There may
be global constraints defined in the FileSystem schema that restrict names depending on
other files residing in the same folder. A file can only be given a new name by RenameFile.
It cannot be moved to a different folder by that operation. For this purpose, MoveFile
should be used instead.

RenameFile
∆FileSystem
ΞAccessControlPolicy
∆SystemHistory
oldFilename? : PATHNAME
newFilename? : NAME
requestingSubject? : SUBJECT

∃ f : File |
f = nodeFile (nodeByFullName oldFilename?) ∧
ACCESS MODIFY ∈

((ACL (fsnodeToObject (FSTree.parent f .location))) requestingSubject?)
• nodeName ′ = nodeName ⊕ {f .location 7→ newFilename?} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent f ,EVENT ACCESS RENAME)}

The AppendFile schema represents the operation of updating a file’s content by adding
data to it at the end. It includes the UpdateFile schema since appending is a special case
of updating. Appending to a file requires provision of the file name, the new content,
and the subject attempting to append to the file’s content. The format of the data is not
relevant; whether the new file content is result of an append operation is determined by
membership in the appended relation.

Precondition for this operation is – in accordance with the precondition for the UpdateFile
operation – that the file exists and that the access control configuration includes modify
access for the requesting subject. The file access is logged in the system history.

AppendFile
UpdateFile

filecontent? ∈ appended (| {nodeData (nodeByFullName filename?)} |)

The CopyFile schema represents the operation of copying a file. Copying a file can
be composed of creating an empty new file, reading from the source file, and updating
the new target file with the source file’s content. Copying a file requires provision of
the names of the source file, filename?, and the target file, newFilename?, as well as the

5.2. MODEL DEFINITION 113

subject attempting to copy the file.

Precondition for this operation is – in accordance with the preconditions for the
CreateFile, ReadFile, and UpdateFile operations – that the file exists and that the access
control configuration includes observe and modify access for the requesting subject. Ac-
cess permissions for the target file are the same as those for the requesting subject for the
source file. The file access is logged in the system history.

CopyFile == [CreateFile; ReadFile |
newFileAccessMode? = ACL (fileToObject (fileByFullName filename?))

] ∧
UpdateFile[newFilename?/filename?, filecontent !/filecontent?]

The DeleteFile schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . Deleting a file requires provision of the name of the file to be deleted
and the subject attempting to delete the file.

Precondition for this operation is that the file exists and that the access control config-
uration includes delete access for the requesting subject. Deletion is logged in the system
history. After deletion the file and its content are no longer available in the system.

DeleteFile
∆FileSystem
∆AccessControlPolicy
∆SystemHistory
filename? : PATHNAME
requestingSubject? : SUBJECT

∃ f : File |
f = nodeFile (nodeByFullName filename?) ∧
f .location = nodeByFullName filename? ∧
ACCESS MODIFY ∈

((ACL (fsnodeToObject (FSTree.parent f .location))) requestingSubject?) ∧
ACCESS DELETE ∈ ((ACL (fileToObject f)) requestingSubject?)

• nodeData ′ = {f .location} −C nodeData ∧
nodeName ′ = {f .location} −C nodeName ∧
FSTree ′.parent = {f .location} −C FSTree.parent ∧
FSTree ′.node = FSTree.node \ {f .location} ∧
ACP ′ = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE |

((s , o),m) ∈ ACP ∧ o 6= fileToObject f • ((s , o),m)} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent f ,EVENT ACCESS DELETE)}

The MoveFile schema represents the operation of moving a file to a new location.
Moving a file can be composed of copying the source file to the new destination and delet-
ing the source file. Moving requires provision of the names of the source file, filename?,
the target file, newFilename?, and the subject attempting to move the file.

114 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

Precondition for this operation is – in accordance with the preconditions for the
CopyFile and DeleteFile operations – that the file exists and that the access control
configuration includes observe, modify and delete access for the requesting subject. Ac-
cess permissions for the target file are the same as those for the requesting subject for the
source file. The file access is logged in the system history.

MoveFile == CopyFile ∧ DeleteFile

The CreateFolder schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . Folder creation requires provision of the name of the folder to be
created, the (existing) folder under which it shall be placed, the owner of the newly
created folder, and the access rights for that owner to enable the creation of an ACE of
the new folder.

Precondition for this operation is that the parent folder exists. If the precondition
is met, a new folder is created and assigned an unused FSNODE in the file system. It
is placed in the file system tree with the specified parentfolder? as its parent node. The
access control configuration is updated with an ACE for the new folder. Folder creation
is logged in the system history.

CreateFolder
∆FileSystem
∆AccessControlPolicy
∆SystemHistory
parentfolder? : PATHNAME
newFoldername? : NAME
newFolderOwner? : SUBJECT
newFolderAccessMode? : P(SUBJECT × P ACCESSMODE)
requestingSubject? : SUBJECT

nodeByFullName parentfolder? ∈ FSTree.node \ dom nodeData
∃ fd : Folder |

fd .foldername = newFoldername? ∧
fd .location 6∈ FSTree.node ∧
ACCESS MODIFY ∈

((ACL (fsnodeToObject (nodeByFullName parentfolder?))) requestingSubject?)
• FSTree ′.node = FSTree.node ∪ {fd .location} ∧
FSTree ′.parent = FSTree.parent⊕

{fd .location 7→ nodeByFullName parentfolder?} ∧
nodeName ′ = nodeName ⊕ {fd .location 7→ fd .foldername} ∧
nodeData ′ = {fd .location} −C nodeData ∧
ACP ′ = ACP ⊕ {s : SUBJECT ; m : P ACCESSMODE |

(s ,m) ∈ newFolderAccessMode? • ((s , folderToObject fd),m)} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
folderToComponent fd ,EVENT ACCESS CREATE)}

5.2. MODEL DEFINITION 115

The DeleteFolder schema includes the three schemas FileSystem, AccessControlPolicy ,
and SystemHistory . Folder deletion requires provision of the name of the folder to be
deleted and the subject attempting to delete the folder.

Precondition for this operation is that the folder exists and that the access control
configuration includes delete access for the requesting subject. It is only possible to
delete a folder if it does not contain any files or subfolders. If the precondition is met, the
FSNODE associated with the folder is removed from the file system tree and is no longer
available in the system. Folder deletion is logged in the system history.

(As an aside, to model the behaviour of the Unix rm -r command, one could recur-
sively apply DeleteFile and DeleteFolder to all subfolders and files contained in the folder
to be deleted.)

DeleteFolder
∆FileSystem
∆AccessControlPolicy
∆SystemHistory
foldername? : PATHNAME
requestingSubject? : SUBJECT

∃ fd : Folder |
fd = nodeFolder (nodeByFullName foldername?) ∧
fd .files = ∅[File] ∧
ACCESS DELETE ∈

((ACL (folderToObject fd)) requestingSubject?)
• nodeName ′ = {fd .location} −C nodeName ∧
FSTree ′.parent = {fd .location} −C FSTree.parent ∧
FSTree ′.node = FSTree.node \ {fd .location} ∧
ACP ′ = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE |

((s , o),m) ∈ ACP ∧ o 6= folderToObject fd • ((s , o),m)} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
folderToComponent fd ,EVENT ACCESS DELETE)}

5.2.4.2 Processes and IPC

Processes can be created and terminated, they may load libraries during execution, and
they communicate via IPC mechanisms (inter-process communication).

The CreateProcess schema includes the FileSystem, Processes , AccessControlPolicy ,
and SystemHistory schemas. Process creation requires provision of the name of the pro-
gram (executable file) on which the process is based, the subject to be associated with
the new process, and the process attempting to create a new process.

Precondition for this operation is that the program exists, that the requesting subject
is allowed to execute the program and that the subject is allowed to create a new process.
If the precondition is met, a new process based on the program is created and the subject
associated with the new process (not to be confused with the subject requesting the

116 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

creation) is granted full control access for the process object. No libraries, memory areas,
or input queues are associated with the newly created process. Process creation is logged
in the system history.

CreateProcess
ΞFileSystem
∆Processes
∆AccessControlPolicy
∆SystemHistory
program? : PATHNAME
processSubject? : SUBJECT
requestingSubject? : SUBJECT

∃ p : HANDLE •
p 6∈ runningProcesses ∧
ACCESS INVOKE ∈

((ACL (fileToObject (fileByFullName program?))) requestingSubject?) ∧
ACCESS CREATE ∈ ((ACL (processToObject p)) requestingSubject?) ∧
runningProcesses ′ = runningProcesses ∪ {p} ∧
processFile ′ = processFile ∪ {(p 7→ (fileByFullName program?))} ∧
processLibraries ′ = {p} −C processLibraries ∧
processMemory ′ = {p} −C processMemory ∧
processOutput ′ = {p} −C processOutput ∧
processInput ′ = {p} −C processInput ∧
processSubject ′ = processSubject ∪ {(p, processSubject?)} ∧
ACP ′ = ACP∪

{((processSubject p, processToObject p),ACCESS GENERIC ALL)} ∧
history ′ = historya

{1 7→ ((((subjectComponentTypeToSUBJECT)∼)requestingSubject?),
fileToComponent (processFile p),EVENT ACCESS INVOKE)}

The TerminateProcess schema includes the three schemas Processes , AccessControlPolicy ,
and SystemHistory . Process termination requires provision of the process to be termi-
nated and the subject attempting to terminate the process.

Precondition for this operation is that the process exists and that the subject is allowed
to terminate the process according to the current access control configuration. If the
precondition is met, the process is removed from the set of running processes and all
associations with libraries loaded by the process, memory areas available to the process,
and input queues to which the process is attached, are removed. Process termination is
not logged in the system history.

5.2. MODEL DEFINITION 117

TerminateProcess
∆Processes
∆AccessControlPolicy
process? : HANDLE
requestingSubject? : SUBJECT

process? ∈ runningProcesses
ACCESS DELETE ∈ ((ACL (processToObject process?)) requestingSubject?)
runningProcesses ′ = runningProcesses \ {process?}
processLibraries ′ = {process?} −C processLibraries
processMemory ′ = {process?} −C processMemory
processInput ′ = {process?} −C processInput
ACP ′ = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE | ((s , o),m) ∈ ACP ∧

o 6= processToObject process? • ((s , o),m)}

The LoadLibrary schema controls process functionality extension and includes the
FileSystem, Processes , AccessControlPolicy , and SystemHistory schemas. Loading of
libraries requires provision of the name of the file to be created, the (existing) folder in
which it shall be placed, the owner of the newly created file, and the access rights for that
owner to enable the creation of an ACE of the new file.

Precondition for this operation is that there is at least one file matching the specifi-
cation of the given library filename. If the full path is not specified, the operating system
attempts to find a matching file in the following folders: the folder of the program for
the loading process, the system folder, the main operating system folder, folders in the
SearchPath. If more than one matching file exists, the first file in this order is loaded.
Loading of libraries is logged in the system history.

118 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

LoadLibrary
ΞFileSystem
∆Processes
∆LinkedLibraries
ΞAccessControlPolicy
∆SystemHistory
process? : HANDLE
LibraryFilename? : PATHNAME
possibleFiles : seqFile

(((1 7→ fileByFullName LibraryFilename?) ∈ possibleFiles
∧ #LibraryFilename? > 1) ∨

(1 6∈ dom possibleFiles ∧ #LibraryFilename? = 1)) ∧
((2 7→ fileByFullName (OSSysFolder a {1 7→ last LibraryFilename?}))

∈ possibleFiles ∧
#LibraryFilename? = 1) ∧

((3 7→ fileByFullName (OSFolder a {1 7→ last LibraryFilename?}))
∈ possibleFiles ∧
#LibraryFilename? = 1) ∧

((4 7→ fileByFullName ((front (fullNameByNode (processFile process?).location))a

{1 7→ last LibraryFilename?})) ∈ possibleFiles ∧
#LibraryFilename? = 1) ∧

({n : N; pn : PATHNAME | (n 7→ pn) ∈ squash SearchPath •
(n + 4 7→ fileByFullName (pn a {1 7→ last LibraryFilename?}))}
⊆ possibleFiles ∧
#LibraryFilename? = 1) ∧

∃ f : File; l : HANDLE •
f = head (squash (possibleFiles � ran nodeFile)) ∧
libraryFile l = f ∧
processLibraries ′ = processLibraries ∪ {process? 7→ l} ∧
ACCESS INVOKE ∈ ((ACL (fileToObject f)) (processSubject process?)) ∧
history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)(processSubject process?),
fileToComponent f ,EVENT ACCESS INVOKE)}

A process can send data to another process via an IPC mechanism. This is represented
by the InvokeIPC schema. Data received by the target process is stored in its IPC queue
for processing.

5.2. MODEL DEFINITION 119

InvokeIPC
∆Processes
FileSystem
∆SystemHistory
sourceProcess : HANDLE
targetProcess : HANDLE
sendData : DATA

processIPCQueue ′ = processIPCQueue⊕
{(targetProcess 7→ ((processIPCQueue targetProcess) a {1 7→ sendData}))}

history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)(processSubject sourceProcess),
fileToComponent (processFile targetProcess),EVENT ACCESS INVOKE)}

5.2.4.3 Memory

A process can store data in main memory. Memory can be allocated and deallocated.
Data can be transferred between memory and memory or files. Memory areas can also
be shared explicitly among processes.

Memory is allocated by a process in a part of main memory that is not in use by
another process. To get access to another process’s memory, AttachMemory has to be
used. A memory area is guaranteed not to contain data when it is first used (i.e. freshness
of resources applies).

The AllocateMemory schema includes the Memory , Processes , AccessControlPolicy ,
and SystemHistory schemas. Memory allocation requires provision of the process request-
ing a memory area. The allocated memory area is returned as allocatedMemory !.

There are no explicit preconditions for this operation. A so far unused memory area
is associated with the requesting process. The subject executing the process is given full
control access to the new memory area. Memory allocation is not logged in the system
history.

120 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

AllocateMemory
∆Memory
∆Processes
∆AccessControlPolicy
process? : HANDLE
allocatedMemory ! : MemoryArea

∃ p : MemoryArea | p ∈ memoryAreas ∧
p.handle = allocatedMemory !.handle ∧
allocatedMemory ! 6∈ ran processMemory ∧
allocatedMemory !.content ∈ CONTENT EMPTY ∧
allocatedMemory !.owner = process?
• memoryAreas ′ = memoryAreas \ {p} ∪ {allocatedMemory !} ∧
processMemory ′ = processMemory ∪ {process? 7→ allocatedMemory !} ∧
ACP ′ = ACP ∪ {((processSubject process?,memoryAreaToObject allocatedMemory !),

ACCESS GENERIC ALL)}

The ReadMemory schema includes the Processes and SystemHistory schemas. Reading
data from a memory area requires provision of the process and of the handle of the memory
area from which data is to be retrieved. Observing the data requires no special access
permissions. The observed data is returned as dataFromMemory !.

Precondition for this operation is that the process is associated with the memory area
from which data is to be read. If the precondition is met, the data is returned. Memory
observation is logged in the system history.

ReadMemory
ΞProcesses
∆SystemHistory
process? : HANDLE
memoryHandle? : HANDLE
dataFromMemory ! : DATA

∃ p : MemoryArea | p.handle = memoryHandle? ∧
p ∈ processMemory(| {process?} |)
• dataFromMemory ! = p.content ∧
history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)(processSubject process?),
memoryAreaToComponent p,EVENT ACCESS OBSERVE)}

The UpdateMemory schema includes the Processes and SystemHistory schemas. Up-
dating data in a memory area requires provision of the process, the handle of the memory
area that is to be altered, and the new data to be put into the memory area. Modifying
the data requires no special access permissions.

Precondition for this operation is that the process is associated with the memory area

5.2. MODEL DEFINITION 121

that is to be updated. If the precondition is met, the memory page is modified to contain
the new data supplied. Memory updates are logged in the system history.

UpdateMemory
∆Processes
∆SystemHistory
process? : HANDLE
memoryHandle? : HANDLE
newMemoryData? : DATA

∃ p : MemoryArea; q : MemoryArea | p ∈ processMemory(| {process?} |) ∧
p.handle = memoryHandle? ∧
q .handle = p.handle ∧
q .owner = p.owner ∧
q .content = newMemoryData?
• processMemory ′ = processMemory o

9 {p 7→ q} ∧
history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)(processSubject process?),
memoryAreaToComponent p,EVENT ACCESS MODIFY)}

The ReadFileToMemory schema represents loading the contents of a file into an exist-
ing memory area associated with a process. It includes the ReadFile and UpdateMemory
schemas. Data transfer to memory requires provision of the name of the file to be read,
the memory area where it is to be stored, and a process associated with that memory
area.

Precondition for this operation is that the file exists and that the requesting subject
associated with the process has observe access to the file. If the precondition is met, the
file’s content is transferred to the memory area associated with the process. Data transfer
to memory is logged in the system history.

ReadFileToMemory == ReadFile[newMemoryData?/filecontent !] ∧
[UpdateMemory ; requestingSubject? : SUBJECT |
processSubject process? = requestingSubject?]

The UpdateFileFromMemory schema represents exporting the contents of a memory
area to an existing file. It includes the UpdateFile and ReadMemory schemas. Data
transfer from memory requires provision of the memory area to be read from, a process
associated with it, and a file where the data is to be stored.

Precondition for this operation is that the file exists and that the requesting subject
associated with the process has modify access to the file. If the precondition is met, the
memory area’s content is transferred to the file. Data transfer from memory is logged in
the system history.

UpdateFileFromMemory == UpdateFile[dataFromMemory !/filecontent?] ∧
[ReadMemory ; requestingSubject? : SUBJECT |
processSubject process? = requestingSubject?]

122 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

The CopyMemoryContent schema represents transfer from one memory area to an-
other, and includes the ReadMemory and UpdateMemory schemas. Data transfer in
memory requires provision of the memory area to be read from and the memory area
where the data is to be stored.

Precondition for this operation is that the memory areas are both associated with the
process attempting the data transfer. If the precondition is met, the source memory area’s
content is transferred to the target memory area. Data transfer in memory is logged in
the system history.

CopyMemoryContent ==
ReadMemory ∧
UpdateMemory [dataFromMemory !/newMemoryData?,

targetMemoryHandle?/memoryHandle?]

The AttachMemory schema includes the Processes and AccessControlPolicy schemas.
Attaching additional memory areas to a process requires provision of the process and the
handle of the memory area to attach to.

Precondition for this operation is that the memory area referenced by its handle exists
and that the access permissions allow observation and modification of the referenced
memory area by the requesting subject associated with the process. If the precondition is
met, the memory area is associated with the process so that access by, e.g., ReadMemory
is made possible. Attachment of memory areas to processes is not logged in the system
history, but accesses to attached memory areas are.

AttachMemory
∆Processes
ΞAccessControlPolicy
process? : HANDLE
memoryHandle? : HANDLE

∃m : MemoryArea | m ∈ ran processMemory ∧
m.handle = memoryHandle? ∧
({ACCESS OBSERVE ,ACCESS MODIFY }

⊆ ((ACL (memoryAreaToObject m)) (processSubject process?)))
• processMemory ′ = processMemory ∪ {process? 7→ m}

The DetachMemory schema includes the Processes schema. Detaching from a memory
area does not require special permissions by the subject associated with the processes
currently associated with the memory area in question.

Precondition for this operation is that the referenced memory area exists and is as-
sociated with the process requesting the disassociation. If the precondition is met, the
association between the process and the memory area is removed. If no other processes are
associated with that memory area, its contents are no longer available to any process in
the system. Reallocation will return a memory area with empty content, and attachment
is only possible to memory areas associated with processes. Detaching from a memory
area is not logged in the system history.

5.2. MODEL DEFINITION 123

DetachMemory
∆Processes
process? : HANDLE
memoryHandle? : HANDLE

∃ p : MemoryArea | p.handle = memoryHandle? ∧
p ∈ processMemory(| {process?} |)
• processMemory ′ = processMemory \ {process? 7→ p}

The DeallocateMemory schema includes the three schemas Processes , AccessControlPolicy ,
and SystemHistory . Deallocating a memory area requires provision of the handle of the
memory area to be deallocated and the process attempting to deallocate.

Preconditions for this operation are that the memory area exists and that it is as-
sociated with the process attempting to deallocate. In addition, the subject executing
the process needs delete access to the memory area in question. If the precondition is
met, all associations between processes and the memory area are removed. The memory
area’s contents are no longer available to any process in the system. Reallocation will
return a memory area with empty content, and attachment is only possible to memory
areas associated with processes. Deallocating a memory area is not logged in the system
history.

DeallocateMemory
∆Processes
∆AccessControlPolicy
process? : HANDLE
memoryHandle? : HANDLE

∃ p : MemoryArea | p.handle = memoryHandle? ∧
p ∈ processMemory(| {process?} |) ∧
ACCESS DELETE ∈ ((ACL (memoryAreaToObject p)) (processSubject process?))
• processMemory ′ = processMemory −B {p} ∧

ACP ′ = {s : SUBJECT ; o : OBJECT ; m : P ACCESSMODE |
((s , o),m) ∈ ACP ∧ o 6= memoryAreaToObject p • ((s , o),m)}

5.2.4.4 Access control

We treat all access rights as fixed in this version of the model for two reasons. First, we
need to keep the process model simple and compatible to a large number of operating
systems. It is not given that an ordinary user (and hence, an attacker) can modify
access rights. Second, computing the transitive closure of non-monotonic access control
configurations has been shown to be NP − complete (cf. [HRU76]). This might impair
our ability to reason about states in the model.

Extension of our model by adding schemas for explicit changes in the access control

124 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

configuration is nevertheless possible and left for future work.

5.2.4.5 User and user interface

Processes can observe and modify the output devices of the user interface, provided they
have the necessary access permissions. Precondition for this operation is that the output
device exists (referenced by its handle).

ReadUIOutput
ΞUIOutputDevices
ΞAccessControlPolicy
∆SystemHistory
requestingSubject? : SUBJECT
outputDevice : HANDLE
UIData : DATA

UIData = displayedData outputDevice ∧
ACCESS OBSERVE ∈ ((ACL (UIOutputDeviceToObject outputDevice)) requestingSubject?)

history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)requestingSubject?,
uiOutputDeviceToComponent outputDevice,EVENT ACCESS OBSERVE)}

WriteUIOutput
∆UIOutputDevices
ΞAccessControlPolicy
∆SystemHistory
requestingSubject? : SUBJECT
outputDevice : HANDLE
UIData : DATA

displayedData ′ = displayedData ⊕ {(outputDevice,UIData)} ∧
ACCESS MODIFY ∈ ((ACL (UIOutputDeviceToObject outputDevice)) requestingSubject?)

history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)requestingSubject?,
uiOutputDeviceToComponent outputDevice,EVENT ACCESS MODIFY)}

Capturing and synthesizing user input is performed by the two schemas ReadUIInput
and WriteUIInput . Precondition for this operation is that the output device exists (ref-
erenced by its handle). An input event is removed from the input queue after it has been
read.

5.3. LIMITATIONS OF THE MODEL 125

ReadUIInput
∆UIInputDevices
ΞAccessControlPolicy
∆SystemHistory
requestingSubject? : SUBJECT
inputDevice : HANDLE
UIData : DATA

UIData = head (inputEvents inputDevice) ∧
inputEvents ′ inputDevice = tail (inputEvents inputDevice) ∧
ACCESS OBSERVE ∈ ((ACL (UIInputDeviceToObject inputDevice)) requestingSubject?)

history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)requestingSubject?,
uiInputDeviceToComponent inputDevice,EVENT ACCESS OBSERVE)}

WriteUIInput
∆UIInputDevices
ΞAccessControlPolicy
∆SystemHistory
requestingSubject? : SUBJECT
inputDevice : HANDLE
UIData : DATA

inputEvents ′ = inputEvents ⊕ {(inputDevice, (inputEvents inputDevice)a

{1 7→ UIData})} ∧
ACCESS MODIFY ∈ ((ACL (UIInputDeviceToObject inputDevice)) requestingSubject?)

history ′ = historya

{1 7→ (((subjectComponentTypeToSUBJECT)∼)requestingSubject?,
uiInputDeviceToComponent inputDevice,EVENT ACCESS MODIFY)}

5.3 Limitations of the model

Of course, one often wishes to have an all-encompassing model to explain each and every
facet of a problem. The accompanying danger is to overspecify and to recreate a whole
operating system for real systems without the necessary abstraction needed to deal with
the architectural security of a program. It is easy to misuse Z as an arcane assembly
language for that purpose.

You do not have a product if you do not define what you are not going to do. In that
sense, some areas of our model of a generic operating system are left to future work.

This encompasses, but is not limited to the following:

• Tamper-proof storage can be specified in an architectural description, but is cur-

126 CHAPTER 5. FORMAL MODEL: COMPUTER SYSTEM

rently not handled in the operating system model. It is possible to use a common
data component and explicitly specify appropriate access rights instead of relying
on the implicit access restriction of a tamper-proof storage component.

• ACCESS CREATE connectors are not mapped from an architectural description
to operating system entities. The CreateFile schema does not take into account
the owner of a new file depending on the container component of the corresponding
architectural description.

• Access control configuration data and logging configuration data are not present as
objects in the operating system model.

• References to files and folders can be specified in an architectural description, but
are currently not handled in the operating system model.

• Processes launched automatically, e.g., by a mechanism of the operating system, are
not supported.

• Inter-process communication could be handled differently depending on whether or
not it is based on an authenticated data transfer connector in the corresponding
architectural description.

• Monitoring of operations and alerting the local human user is currently not express-
ible in the operating system model.

Model definitions index

!, 109
∆schema name, 108
Ξschema name, 109
?, 109

ACCESS APPEND (constant), 91
ACCESS CREATE (constant), 91
ACCESS DELETE (constant), 91
ACCESS GENERIC ALL (constant), 91
ACCESS INVOKE (constant), 91
ACCESS MODIFY (constant), 91
ACCESS OBSERVE (constant), 91
accessConnectorTypes (set), 91
AccessControlPolicy (schema), 98
accessLogged (schema variable), 167
ACCESSMODE (given set), 91
accessMonitored (schema variable), 167
ACL (function), 98
ACM (given set), 91
ACM (relation), 91
AddExecutableFileInFolder, 140
AddExecutableFileInFolder (schema), 139
adversarialProcess (schema variable), 147
AllComponentsCovered (schema), 108
allocatedMemory! (schema variable), 119
AllocateMemory (schema), 119
appended (relation), 90, 112
AppendFile (schema), 112
areaByHandle (function), 96
AttachMemory (schema), 122
attachment (function), 100
AttackAddStoredCodeModule (schema),

140
AttackAddStoredCodeModulePrologue (schema),

138
Attacker (schema), 162
AttackerCapabilities (relation), 161
AttackingProcess (schema variable), 128,

132, 134, 138, 141, 144, 151, 155
AttackingProcess (schema), 153

AttackInitiateCommunicationAndSendData
(schema), 146

AttackInitiateCommunicationAndSendData-
Prologue (schema), 144

AttackModifyCodeInMemory (schema), 135
AttackModifyCodeInMemoryPrologue (schema),

134
AttackModifyReferenceToStoredCodeModule

(schema), 143
AttackModifyReferenceToStoredCodeModule-

Prologue (schema), 141
AttackModifyReferenceToStoredParameters

(schema), 152
AttackModifyReferenceToStoredParameters-

Prologue (schema), 151
AttackModifyStoredCodeModule (schema),

137
AttackModifyStoredDataComponent (schema),

131
AttackModifyStoredDataComponentForDecisions

(schema), 157
AttackModifyStoredDataComponentPrologue

(schema), 128
AttackModifyStoredParameters (schema),

150
AttackModifyUserInterfaceObject (schema),

156
AttackModifyUserInterfaceObjectPrologue

(schema), 155
AttackObserveStoredDataComponent (schema),

133
AttackObserveStoredDataComponentPrologue

(schema), 132
AttackRespondCommunicationAndSendData

(schema), 148
AttackSimulateUserInput (schema), 154
AttackSimulateUserInputPrologue (schema),

153
AttCapInit (given set), 160
AttCapTime (given set), 160

127

128 MODEL DEFINITIONS INDEX

AttCapUser (given set), 161
AttCapVariation (given set), 160
AttemptAttackAddStoredCodeModule (schema),

164, 167
AttemptAttackInitiateCommunicationAnd-

SendData (schema), 164, 167
AttemptAttackModifyCodeInMemory (schema),

163, 167
AttemptAttackModifyReferenceToStored-

CodeModule (schema), 164, 167
AttemptAttackModifyReferenceToStored-

Parameters (schema), 165, 167
AttemptAttackModifyStoredCodeModule

(schema), 163, 167
AttemptAttackModifyStoredDataComponent

(schema), 162, 167
AttemptAttackModifyStoredDataComponent-

ForDecisions (schema), 166, 167
AttemptAttackModifyStoredParameters (schema),

165, 167
AttemptAttackModifyUserInterfaceObject

(schema), 166, 167
AttemptAttackObserveStoredDataComponent

(schema), 163, 167
AttemptAttackRespondCommunicationAnd-

SendData (schema), 164, 167
AttemptAttacks (schema), 167
AttemptAttackSimulateUserInput (schema),

165, 167

CAP (function), 98
capabilities (schema variable), 162
child (schema variable), 93
COMPNAME (given set), 89
Component (schema), 100
components (function), 100
componentType (schema variable), 100
COMPTYPE (given set), 88
condag (set), 93
Configuration (schema), 100
connectionType (schema variable), 100
Connector (schema), 100
connectors (function), 100
CONNNAME (given set), 89
CONNTYPE (given set), 88
ContainerComponent (schema variable),

138, 139
content (schema variable), 93, 96

CONTENT ATTACKERS CHOICE (con-
stant), 90

CONTENT EMPTY (constant), 90
CONTENT EXECUTABLE (constant), 90
CopyFile (schema), 113
CopyMemoryContent (schema), 122
correspondingLibraries (relation), 103
correspondingMemoryAreas (relation), 104
correspondingUIInput (relation), 105
correspondingUIOutput (relation), 105
CreateFile (schema), 109
CreateFileAsAttacker (schema), 130
CreateFolder (schema), 114
CreateProcess (schema), 116
currentAccessMode (function), 130

dag (set), 92
DATA (given set), 90
DataComponent (schema variable), 129,

130, 132, 136, 137, 149, 157
dataFromMemory

(schema variable), 121
dataFromMemory! (schema variable), 120,

122
DeallocateMemory (schema), 123
DeleteFile (schema), 113
DeleteFolder (schema), 115
DeleteStoredDataComponent (schema), 129
DesiredSecurityRequirements (schema vari-

able), 172, 181
DetachMemory (schema), 122
DetermineResistanceClass (schema), 172,

181
digraph (set), 92
displayedData (function), 96

EmptyState (schema), 101
EvaluateAttackedSystem (schema), 172
EvaluateCodeIntegrity (schema), 170
EvaluateDataConfigentiality (schema), 169
EvaluateDataIntegrity (schema), 168
EvaluateSystemState (schema), 172
EVENT ACCESS APPEND (constant),

92
EVENT ACCESS CREATE (constant), 92
EVENT ACCESS DELETE (constant), 92
EVENT ACCESS INVOKE (constant), 92
EVENT ACCESS MODIFY (constant), 92

MODEL DEFINITIONS INDEX 129

EVENT ACCESS OBSERVE (constant),
92

EVENT ACCESS RENAME (constant),
92

EVENTACTION (given set), 92

File (schema), 93
fileByFullName (function), 95
filecontent! (schema variable), 110, 121,

133
filecontent? (schema variable), 111, 112,

121, 131, 137
filename (schema variable), 93
filename? (schema variable), 110–113
files (schema variable), 94
FileSystem (schema), 95
fileToComponent (function), 95
fileToObject (function), 98
FindContainer (schema), 138
FindExecutableFileOfAdversarialProcess-

Modules (schema), 147
FindExecutableFileOfVictimProcessModules

(schema), 144
FindIPCComponentOfAdversarialProcess

(schema), 148
FindIPCComponentOfVictimProcess (schema),

145
FindReference (schema), 141
FindStoredDataComponent (schema), 129
FindVictimMemoryArea (schema), 135
FindVictimProcess (schema), 135
FindVictimUIInputQueue (schema), 153
FindVictimUIOutputDevice (schema), 155
Folder (schema), 94
folderByFullName (function), 95
foldername (schema variable), 94
foldername? (schema variable), 115
folderToComponent (function), 95
folderToObject (function), 98
FSNODE (given set), 92
fsnodeToObject (function), 98
fullNameByNode (function), 95

HANDLE (given set), 92
handle (schema variable), 96
HighestSatisfiableSecurityRequirements (schema

variable), 168–170
history (schema variable), 99

InitialAccessControlPolicy (schema), 107
InitialACE (function), 107
InitialConfigurationACE (schema), 107
InitialFileSystem (schema), 101
InitialMemory (schema), 102
InitialProcesses (schema), 106
InitialStateCorrespondence (schema), 108
InitialUI (schema), 103
inputDevice (schema variable), 124, 125
inputEvents (function), 96
InvokeIPC (schema), 118
IPCResponse (function), 90
IsContainerUsedInExecutionReference (schema),

139
IsReferenceToCodeModule (schema), 142
IsReferenceToParameters (schema), 151
IsStoredDataComponentExecutable (schema),

136
IsStoredDataComponentUsedInDecision (schema),

157
IsVictimMemoryAreaExecutable (schema),

135

leaf (schema variable), 93
libraryFile (function), 97
LibraryFilename? (schema variable), 117
LinkedLibraries (schema), 97
loadedLibraries (schema variable), 97
LoadLibrary (schema), 117
location (schema variable), 93, 94
LoggedComponents (schema), 167

MappableComponentTypes (set), 88
Memory (schema), 96
MemoryArea (schema), 96
memoryAreas (schema variable), 96
memoryAreaToComponent (function), 96
memoryAreaToObject (function), 98
memoryHandle? (schema variable), 120–

123
ModifyReference (schema), 142
MonitoredComponents (schema), 167
MoveFile (schema), 114

NAME (given set), 89
newFileAccessMode? (schema variable),

109
newFilename? (schema variable), 109, 112,

113

130 MODEL DEFINITIONS INDEX

newFolderAccessMode? (schema variable),
114

newFoldername? (schema variable), 114
newFolderOwner? (schema variable), 114
newMemoryData? (schema variable), 121,

122, 135
node (schema variable), 93
nodeByFullName (function), 95
nodeData (function), 95
nodeFile (function), 95
nodeFolder (function), 95
nodeName (function), 95

OBJECT (given set), 90
oldFilename? (schema variable), 112
OSFolder (constant), 94
OSSysFolder (constant), 94
outputDevice (schema variable), 124
OWNER (given set), 100
owner (schema variable), 96, 100

parent (schema variable), 93
parentfolder? (schema variable), 114
PATHNAME (sequence), 92
PORT (given set), 89
PORTINST (given set), 89
PORTINST (relation), 89
ports (schema variable), 100
possibleFiles? (schema variable), 117
process? (schema variable), 116, 117, 119–

123
Processes (schema), 97
processFile (function), 97
processInput (relation), 97
processIPCQueue (function), 97
processIPCResponse (function), 97
processLibraries (relation), 97
ProcessLibraryCorrespondence (schema),

103
processMemory (relation), 97
ProcessMemoryCorrespondence (schema),

104
processOutput (relation), 97
processSubject (function), 97
processSubject? (schema variable), 116
processToObject (function), 98
ProcessUIInputCorrespondence (schema),

105

ProcessUIOutputCorrespondence (schema),
105

ProductSecurityStatus (schema variable),
172

program? (schema variable), 116

ReadFile (schema), 110
ReadFileToMemory (schema), 121
ReadMemory (schema), 120
ReadUIInput (schema), 124
ReadUIOutput (schema), 124
ReferenceComponent (schema variable),

141, 142, 151
RenameFile (schema), 112
ReplaceStoredDataComponent (schema),

131
ReplaceStoredDataComponentPrologue (schema),

130
requestingSubject? (schema variable), 109–

116, 121, 124, 125, 130, 131, 133,
140, 143, 152, 154, 156

ResistanceClass (schema variable), 172
RetrieveStoredDataComponent (schema),

132
ROLE (given set), 89
ROLEINST (given set), 89
ROLEINST (relation), 89
roles (schema variable), 100
root (schema variable), 93
runningProcesses (schema variable), 97

SatisfyingSecurityRequirements (relation),
171

SearchPath (given set), 94, 117
SecReqCodeInt (given set), 159
SecReqCodeInt (relation), 168
SecReqDataConf (given set), 159
SecReqDataConf (relation), 168
SecReqDataInt (given set), 159
SecReqDataInt (relation), 168
SecurityRequirements (relation), 159
SecurityRequirementsRestriction (schema),

168
SECURITYSTATUS (given set), 172
sendData (schema variable), 118
sourceProcess (schema variable), 118
StoredDataComponentContainsParameters

(schema), 149

MODEL DEFINITIONS INDEX 131

subfolders (function), 95
SUBJECT (given set), 90
SUBJECT ADVERSARY (constant), 90
SUBJECT OS (constant), 90
SUBJECT UNSPECIFIED (constant), 90
SUBJECT VICTIM (constant), 90
subjectComponentTypes (set), 90
subjectComponentTypeToSUBJECT (func-

tion), 90, 91
subjectToObject (function), 98
SufficientCapabilities (relation), 162
SYSTEMEVENT (given set), 92
SystemHistory (schema), 99

t: tree[N] (schema variable), 93
TargetComponent (schema variable), 141
targetMemoryHandle? (schema variable),

122
targetProcess (schema variable), 118
TerminateProcess (schema), 116
Tree (schema), 93
tree (set), 93
typesAndComponents (function), 100

UIData (schema variable), 124, 125
uiInputDeviceComponent (function), 96
UIInputDevices (schema), 96
UIInputDeviceToObject (function), 98
uiOutputDeviceComponent (function), 96
UIOutputDevices (schema), 96
UIOutputDeviceToObject (function), 98
UpdateFile (schema), 111
UpdateFileFromMemory (schema), 121
UpdateMemory (schema), 121
UpdateStoredDataComponent (schema),

129
UserInterface (schema), 97

VictimMemoryArea (schema variable), 135
VictimProcess (schema variable), 135
victimProcess (schema variable), 144
victimUIInputQueue (schema variable), 153
victimUIOutputDevice (schema variable),

155

WriteUIInput (schema), 125
WriteUIOutput (schema), 124

132 MODEL DEFINITIONS INDEX

Chapter 6

Formal model of generic attacks

Chapter summary: In this chapter we formally specify the repository of generic at-
tack methods developed in chapter 3. Attacks are formulated in terms of our model of
a generic computer system, presented in the previous chapters. The attack repository
is complemented by a formal specification of the metrics for security requirements and
attacker capabilities. We show how an evaluator can verify whether a given architectural
description complies with a desired resistance class for a product.

6.1 Repository of generic malware attacks

In chapter 3 we identified 13 generic attack methods available to local malware (cf. ta-
ble 3.2). They are now presented together with a formal specification in Z .

Local malware attacks can be categorised as one of the following:

Direct violation of integrity, confidentiality of stored data: Modify stored data
component, Retrieve contents of stored data component

Violation of integrity of executed code: Modify code in memory, Modify stored
code module, Add stored code module, Modify reference to stored code module

Violation of integrity of parameters: Initiate communication with component and
send data, Respond to component’s communication request and send data, Modify stored
data item containing parameters, Modify reference to stored data item containing param-
eters, Simulate user input

Influence on user: Modify user interface object, Modify stored data item examined
by users as basis for decisions

The reader is advised that there is an index of all types and schema definitions on
page 127. It can be used when browsing the attack specifications to easily retrieve the
location of used types and schemas.

133

134 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.1 Direct violation of integrity, confidentiality of stored data

Attacks in this class comprise methods by which an attacker modifies, deletes, or replaces
stored data components or retrieves data from stored data components, using the proce-
dures offered by the operating system, and doing so without cooperation of or dependence
on the process under attack.

6.1.1.1 Modify stored data component

Attack description The attacker tries to modify, delete, or replace a stored data com-
ponent. The attacker has to be able to identify a data component of the victim. Success of
the attack depends on the data component existing and its modification by the attacking
process not being restricted by access rights. Only the interfaces of the operating system
intended for modification of data components are used.

Preconditions

1. The attacker must be able to find a victim’s stored data component (any).

2. The data component must exist.

3. The access control configuration must permit modification.

Postconditions

1. The data component is modified, i.e., it contains data of the attacker’s choice.

Architectural structures
Attacking process, data component, access control configuration.

Metrics
M5 Percentage of access control instrumentation (table 3.7 on page 63) focuses on protec-
tion of all entry points to a component, M6 Conformity of access permissions (table 3.8
on page 63) focuses on identical permissions to ease correct administration.

Specification in Z
All attack methods – modifying, deleting, replacing – are performed by an adversarial
process. This process must be among the running processes; otherwise, the adversary
would have no means to attack with. We remind the reader that we focus on local
malware attacks.

AttackModifyStoredDataComponentPrologue

ΞProcesses
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 135

An attacked stored data component must be identifiable as belonging to the program
the adversary wants to attack. This is achieved by checking the owner property of the
component. A stored data component is associated with a file in the file system.

FindStoredDataComponent
ΞConfiguration
FileSystem
DataComponent : COMPNAME

(components DataComponent).componentType = CTDATA
(∃ connname : CONNNAME •
∃ ocn : COMPNAME • ∃ ocp : PORT • ∃ cp : PORT •

(connectors connname).connectionType = CNOWNER ∧
(components ocn).componentType = CTSUBJECTVICTIM ∧
((connname,ROSUBJECT), (ocn, ocp)) ∈ attachment ∧
((connname,ROOBJECT), (DataComponent , cp)) ∈ attachment)

∃ f : File • fileToComponent f = DataComponent ∧
f .location ∈ FSTree.node

If a component of interest can be found, the UpdateFile operation can be applied to
the file, modifying the content of the file based on the attacker’s choice. Whether this
succeeds or triggers an alarm, depends on the predicate part of UpdateFile (cf. page 111).

UpdateStoredDataComponent
ΞConfiguration
UpdateFile
DataComponent : COMPNAME

filecontent? ∈ CONTENT ATTACKERS CHOICE
∃ f : File •

(fileByFullName filename? = f ∧
fileToComponent f = DataComponent)

Alternatively, if a component of interest can be found, the DeleteFile operation can
be applied to it, removing the file and its content from the file system. Whether this
succeeds or triggers an alarm, depends on the predicate part of DeleteFile (cf. page 113).

136 CHAPTER 6. FORMAL MODEL: ATTACKS

DeleteStoredDataComponent
ΞConfiguration
DeleteFile
DataComponent : COMPNAME

∃ f : File •
(fileByFullName filename? = f ∧
fileToComponent f = DataComponent)

If a component of interest can be found, it can also be replaced by deleting the file
and creating a new one with the same name, but content based on the attacker’s choice.
First, the current access rights for the file are captured so that they can be restored for
the file to be created.

ReplaceStoredDataComponentPrologue

ΞConfiguration
AccessControlPolicy
DataComponent : COMPNAME
currentAccessMode : SUBJECT → P ACCESSMODE
requestingSubject? : SUBJECT

∃ f : File •
fileToComponent f = DataComponent ∧
currentAccessMode = (ACL (fileToObject f))

A new file is created by the adversarial process and access rights are set according to
the saved ones.

CreateFileAsAttacker
ΞConfiguration
CreateFile[filename?/newFilename?]
currentAccessMode : SUBJECT → P ACCESSMODE
requestingSubject? : SUBJECT

newFileAccessMode? = currentAccessMode

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 137

Replacing a stored data component can then be expressed as the composition of dele-
tion, creation, and update.

ReplaceStoredDataComponent ==
ReplaceStoredDataComponentPrologue ∧ (DeleteStoredDataComponento9
CreateFileAsAttacker)o9
[Configuration; UpdateFile |

filecontent? ∈ CONTENT ATTACKERS CHOICE]

An attack on the integrity of a stored data component consists of finding a suitable
component to attack, composed with the disjunction of update, deletion, and replacement.

AttackModifyStoredDataComponent ==
[AttackModifyStoredDataComponentPrologue ∧ FindStoredDataComponent ∧
(UpdateStoredDataComponent ∨ DeleteStoredDataComponent

∨ ReplaceStoredDataComponent)
| requestingSubject? = processSubject AttackingProcess]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

138 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.1.2 Retrieve contents of stored data component

Attack description The attacker tries to retrieve the content of a stored data compo-
nent. The attacker has to be able to identify a data component of the victim. Success of
the attack depends on the data component existing and its observation by the attacking
process not being restricted by access rights. Only the interfaces of the operating system
intended for observation of data components are used.

Preconditions

1. The attacker must be able to find a victim’s stored data component (any).

2. The data component must exist.

3. The access control configuration must permit observation.

Postconditions

1. The content of the data component is known to the attacking process.

Architectural structures
Attacking process, data component, access control configuration.

Metrics
M5 Percentage of access control instrumentation (table 3.7 on page 63) focuses on protec-
tion of all entry points to a component, M6 Conformity of access permissions (table 3.8
on page 63) focuses on identical permissions to ease correct administration.

Specification in Z
Observation is performed by an adversarial process. This process must be among the
running processes.

AttackObserveStoredDataComponentPrologue

∆Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

If a component of interest can be found, the ReadFile operation can be applied to it,
retrieving the content of the file based on the attacker’s choice. Whether this succeeds or
triggers an alarm, depends on the predicate part of ReadFile (cf. page 110).

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 139

RetrieveStoredDataComponent
ΞConfiguration
ReadFile
DataComponent : COMPNAME

∃ f : File •
(fileToComponent f = DataComponent ∧
fileByFullName filename? = f)

An attack on the confidentiality of a stored data component consists of finding a
suitable component to attack, followed by a read operation.

AttackObserveStoredDataComponent ==
[AttackObserveStoredDataComponentPrologue ∧ FindStoredDataComponent ∧
RetrieveStoredDataComponent
| requestingSubject? = processSubject AttackingProcess ∧
∃ma : MemoryArea • ma.content = filecontent ! ∧

(AttackingProcess ,ma) ∈ processMemory ′]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

140 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.2 Violation of integrity of executed code

The attacker tries to modify, delete, or replace a component containing executable code.
The attacker has to be able to identify a code component of the victim process and to
find it in the data store. Success of the attack depends on the code component existing
and its modification by the attacking process not being restricted by access rights.

6.1.2.1 Modify code in memory

Attack description Like 6.1.1.1, but the attacker’s process must know the attacked
process und must have access to the attacked process’s memory according to the access
permissions.

Preconditions

1. The attacker must be able to find a victim’s code component in memory (any).

2. The code component must exist.

3. The access control configuration must permit modification.

Postconditions

1. The memory area of the victim’s process containing executable content is modified,
i.e., it then contains executable content of the attacker’s choice.

Architectural structures
Processes, memory, access control configuration, files.

Metrics
M2 Limitation of number of executable components (table 3.4 on page 61) focuses on
reducing the number of entry points for an attacker, M4 Percentage of protected interme-
diate storage components (table 3.6 on page 62) also focuses on reducing the number of
entry points for an attacker, M5 Percentage of access control instrumentation (table 3.7
on page 63) focuses on protection of all entry points to a component, M6 Conformity of
access permissions (table 3.8 on page 63) focuses on identical permissions to ease correct
administration, M10 Number of components with shared responsibility (server) (table 3.12
on page 65) focuses on reducing the number of targets acting as a force multiplier.

Specification in Z Observation is performed by an adversarial process. This process
must be among the running processes.

AttackModifyCodeInMemoryPrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 141

The victim process is one of the running processes of the victim, i.e., the local human
user’s.

FindVictimProcess
Processes
VictimProcess : HANDLE

VictimProcess ∈ runningProcesses
processSubject VictimProcess = SUBJECT VICTIM

The targeted memory area must belong to the victim process.

FindVictimMemoryArea
Processes
VictimProcess : HANDLE
VictimMemoryArea : MemoryArea

(VictimProcess ,VictimMemoryArea) ∈ processMemory

The memory area must also contain executable code.

IsVictimMemoryAreaExecutable
VictimMemoryArea : MemoryArea

VictimMemoryArea.content ∈ CONTENT EXECUTABLE

AttackModifyCodeInMemory ==
[AttackModifyCodeInMemoryPrologue ∧
FindVictimProcess ∧ FindVictimMemoryArea ∧
IsVictimMemoryAreaExecutable ∧
UpdateMemory | process? = AttackingProcess ∧
memoryHandle? = VictimMemoryArea.handle ∧
newMemoryData? ∈ CONTENT ATTACKERS CHOICE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

142 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.2.2 Modify stored code module

Attack description The attacker tries to modify, delete, or replace a stored code
module. The attacker has to be able to identify a code module of the victim. Success
of the attack depends on the code module existing and its modification by the attacking
process not being restricted by access rights. Only the interfaces of the operating system
intended for modification of code modules are used.

Preconditions

1. The attacker must be able to find stored code modules a victim.

2. The code module must exist.

3. The access control configuration must permit modification.

Postconditions

1. The code module is modified, i.e., it contains executable content of the attacker’s
choice.

Architectural structures
Attacking process, data component code module, access control configuration.

Metrics
M1 Centralisation of executable distribution sources (table 3.3 on page 60) focuses on re-
ducing the number of entry points for an attacker, M2 Limitation of number of executable
components (table 3.4 on page 61) also focuses on reducing the number of entry points
for an attacker, M3 Percentage of protected executables (table 3.5 on page 62) focuses
on reducing the vulnerability of possible entry points for an attacker, M4 Percentage of
protected intermediate storage components (table 3.6 on page 62) also focuses on reducing
the number of entry points for an attacker, M5 Percentage of access control instrumen-
tation (table 3.7 on page 63) focuses on protection of all entry points to a component,
M6 Conformity of access permissions (table 3.8 on page 63) focuses on identical permis-
sions to ease correct administration, M7 Percentage of logged invocations (table 3.9 on
page 64) focuses on detection/monitoring of attacks.

Specification in Z Modifying a stored code module is similar to modifying a stored
data component directly, one difference being the content of the modified component
being executable.

IsStoredDataComponentExecutable
FileSystem
DataComponent : COMPNAME

∃ f : File •
fileToComponent f = DataComponent ∧
f .content ∈ CONTENT EXECUTABLE

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 143

AttackModifyStoredCodeModule ==
[AttackModifyStoredDataComponent ∧
IsStoredDataComponentExecutable |
DataComponent ∈ (ran fileToComponent) ∧
filecontent? ∈ CONTENT EXECUTABLE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

144 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.2.3 Add stored code module

Attack description The attacker tries to add a new executable module with code of the
attacker’s choice to a container. The victim process executes components in the container
and, hence, executes the added executable component. Success of the attack depends on
adding the code module not being restricted by access rights. Only the interfaces of the
operating system intended for adding a code module to a container are used.

Preconditions

1. The attacker must be able to find a container that is referenced by the victim.

2. The victim must execute code modules stored in the container.

3. The access control configuration must permit adding components to the container.

Postconditions

1. The container holds a new code module of the attacker’s choice that can be executed
by the victim process.

Architectural structures
Container, data storage, reference, processes.

Metrics
M1 Centralisation of executable distribution sources (table 3.3 on page 60) focuses on
reducing the number of entry points for an attacker, M2 Limitation of number of exe-
cutable components (table 3.4 on page 61) also focuses on reducing the number of entry
points for an attacker, M5 Percentage of access control instrumentation (table 3.7 on
page 63) focuses on protection of all entry points to a component, M6 Conformity of
access permissions (table 3.8 on page 63) focuses on identical permissions to ease correct
administration, M7 Percentage of logged invocations (table 3.9 on page 64) focuses on
detection/monitoring of attacks, M11 Number of components with multiple executable
extensions (table 3.13 on page 66) focuses on reducing the vulnerability of possible entry
points for an attacker.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackAddStoredCodeModulePrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

First, containers are identified in the file system.

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 145

FindContainer
Configuration
FileSystem
ContainerComponent : COMPNAME

(components ContainerComponent).componentType = CTDATA
∃ connname : CONNNAME ; cp : PORT ; fd : Folder •

(connectors connname).connectionType = CNCONTAINEDBY ∧
((connname,ROCONTAINER), (ContainerComponent , cp)) ∈ attachment ∧
folderToComponent fd = ContainerComponent

The selection of containers is restricted to those being referenced as containing exe-
cutable modules.

IsContainerUsedInExecutionReference
Configuration
Processes
FileSystem
ContainerComponent : COMPNAME

∃ proc : HANDLE ; proccomp : COMPNAME •
∃ReferenceComponent : COMPNAME •
∃ dtconn : CONNNAME ; refconn : CONNNAME •
∃ prsp : PORT ; prtp : PORT ; rcsp : PORT ; rctp : PORT •

(fileToComponent (processFile proc)) = proccomp ∧
((connectors dtconn).connectionType = CNLINKEDEXEC ∨
(connectors dtconn).connectionType = CNEXECUTE) ∧
((dtconn,ROEXECUTOR), (proccomp, prsp)) ∈ attachment ∧
((dtconn,ROEXECUTED), (ReferenceComponent , prtp)) ∈ attachment ∧
((refconn,ROREFERENCESOURCE),

(ReferenceComponent , rcsp)) ∈ attachment ∧
((refconn,ROREFERENCETARGET),

(ContainerComponent , rctp)) ∈ attachment ∧
∃ ownercomp : COMPNAME ; oconn : CONNNAME ; onp : PORT ; odp : PORT •

(components ownercomp).componentType = CTSUBJECTVICTIM ∧
(connectors oconn).connectionType = CNOWNER ∧
((oconn,ROOWNER), (ownercomp, onp)) ∈ attachment ∧
((oconn,ROOWNED), (proccomp, odp)) ∈ attachment

A new executable module is added to the container.

146 CHAPTER 6. FORMAL MODEL: ATTACKS

AddExecutableFileInFolder
∆AccessControlPolicy
CreateFile
ContainerComponent : COMPNAME

∃ fn : PATHNAME •
fn = newFilename? ∧
folderToComponent (nodeFolder (nodeByFullName (front fn))) =

ContainerComponent ∧
fn 6∈ dom nodeByFullName ∧
(SUBJECT VICTIM , {ACCESS INVOKE}) ∈ newFileAccessMode?

The attack consists of finding an appropriate container and adding an executable
module to it.

AttackAddStoredCodeModule ==
[AttackAddStoredCodeModulePrologue ∧
FindContainer ∧
IsContainerUsedInExecutionReference ∧
AddExecutableFileInFolder | requestingSubject? = processSubject AttackingProcess]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to wait for the victim process to execute the
added code module
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 147

6.1.2.4 Modify reference to stored code module

Attack description Modify reference to existing data component, labelled as exe-
cutable, to point to a different (existing) executable data component, belonging to the
attacked process or another process not under attacker’s control (rearranging the execu-
tion path) or to the attacker’s process (controlling what code is to be executed in detail).

Preconditions

1. The attacker must be able to find a reference used by the victim.

2. The victim must execute code via the reference.

3. The access control configuration must permit modifying the reference.

Postconditions

1. The reference points to a different executable module that contains executable data
of the attacker’s choice.

Architectural structures
Reference, data storage, processes.

Metrics
M2 Limitation of number of executable components (table 3.4 on page 61) focuses on
reducing the number of entry points for an attacker, M3 Percentage of protected exe-
cutables (table 3.5 on page 62) focuses on reducing the vulnerability of possible entry
points for an attacker, M5 Percentage of access control instrumentation (table 3.7 on
page 63) focuses on protection of all entry points to a component, M6 Conformity of
access permissions (table 3.8 on page 63) focuses on identical permissions to ease correct
administration, M7 Percentage of logged invocations (table 3.9 on page 64) focuses on
detection/monitoring of attacks, M11 Number of components with multiple executable
extensions (table 3.13 on page 66) focuses on reducing the vulnerability of possible entry
points for an attacker.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackModifyReferenceToStoredCodeModulePrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

A reference needs to be identified.

148 CHAPTER 6. FORMAL MODEL: ATTACKS

FindReference
Configuration
FileSystem
ReferenceComponent : COMPNAME
TargetComponent : COMPNAME

(components ReferenceComponent).componentType = CTDATA
(components TargetComponent).componentType = CTDATA
∃ connname : CONNNAME ; cp : PORT ; f : File •

((connectors connname).connectionType = CNREFERENCERULESTATIC ∨
(connectors connname).connectionType = CNREFERENCERULESEARCHORDER) ∧
((connname,ROREFERENCESOURCE), (ReferenceComponent , cp)) ∈ attachment ∧
((connname,ROREFERENCETARGET), (fileToComponent f , cp)) ∈ attachment

The set of references is restricted to those of the victim process pointing to executable
modules.

IsReferenceToCodeModule
Configuration
Processes
FileSystem
ReferenceComponent : COMPNAME

∃ proc : HANDLE ; proccomp : COMPNAME •
∃CodeComponent : COMPNAME •
∃ dtconn : CONNNAME ; refconn : CONNNAME •
∃ prsp : PORT ; prtp : PORT ; rcsp : PORT ; rctp : PORT •

(fileToComponent (processFile proc)) = proccomp ∧
((connectors dtconn).connectionType = CNLINKEDEXEC ∨
(connectors dtconn).connectionType = CNEXECUTE) ∧
((dtconn,ROEXECUTOR), (proccomp, prsp)) ∈ attachment ∧
((dtconn,ROEXECUTED), (ReferenceComponent , prtp)) ∈ attachment ∧
((refconn,ROREFERENCESOURCE), (ReferenceComponent , rcsp)) ∈ attachment ∧
((refconn,ROREFERENCETARGET), (CodeComponent , rctp)) ∈ attachment ∧
∃ ownercomp : COMPNAME ; oconn : CONNNAME ; onp : PORT ; odp : PORT •

(components ownercomp).componentType = CTSUBJECTVICTIM ∧
(connectors oconn).connectionType = CNOWNER ∧
((oconn,ROOWNER), (ownercomp, onp)) ∈ attachment ∧
((oconn,ROOWNED), (proccomp, odp)) ∈ attachment

The reference is modified to point to a component of the attacker’s choice.

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 149

ModifyReference
Configuration
UpdateFile
ReferenceComponent : COMPNAME

filecontent? ∈ CONTENT ATTACKERS CHOICE
∃ f : File •

fileByFullName filename? = f ∧
fileToComponent f = ReferenceComponent

The attack consists of finding a reference to an executable module and the modifying
the reference.

AttackModifyReferenceToStoredCodeModule ==
[AttackModifyReferenceToStoredCodeModulePrologue ∧
FindReference ∧
IsReferenceToCodeModule ∧
ModifyReference | requestingSubject? = processSubject AttackingProcess]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to wait for the victim process to execute the
referenced code module
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

150 CHAPTER 6. FORMAL MODEL: ATTACKS

6.1.3 Violation of integrity of parameters

The attacker tries to modify or replace a component containing parameters imported by
connectors to code components. The attacker has to be able to identify a component con-
taining parameters for the victim process. Success of the attack depends on the parameter
component existing and its modification by the attacking process not being restricted by
access rights.

6.1.3.1 Initiate communication with component and send data

Attack description Start communication via IPC mechanism and send data from
attacker’s process to attacked process. May need to create/start attacked process, based
on stored data components labelled as executable and as belonging to attacked process.

Preconditions

1. The attacker must be able to find an IPC interface of the victim process.

2. Data transferred via the interface must be interpreted as a parameter by the victim.

Postconditions

1. The victim process bases its execution on parameters of the attacker’s choice.

Architectural structures
Data storage, data transfer, parameters, processes.

Metrics
M7 Percentage of logged invocations (table 3.9 on page 64) focuses on detection/monitoring
of attacks, M8 Percentage of authenticity/integrity preserving connectors (table 3.10 on
page 64) focuses on prevention of attacks.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackInitiateCommunicationAndSendDataPrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

The attacker needs to determine if the victim process possesses IPC interfaces.

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 151

FindExecutableFileOfVictimProcessModules
Configuration
FileSystem
Processes
LinkedLibraries
victimProcess : HANDLE

∃ executableFile : File •
(∃ ownercomp : COMPNAME ; oconn : CONNNAME ; onp : PORT ; odp : PORT •

(components ownercomp).componentType = CTSUBJECTVICTIM ∧
(connectors oconn).connectionType = CNOWNER ∧
((oconn,ROOWNER), (ownercomp, onp)) ∈ attachment ∧
((oconn,ROOWNED), (fileToComponent executableFile, odp)) ∈ attachment) ∧

((processFile victimProcess = executableFile) ∨
∃ l : HANDLE •

(victimProcess , l) ∈ processLibraries ∧
libraryFile l = executableFile)

Data received via an IPC mechanism must be interpreted as a parameter to become
a target for the adversary.

FindIPCComponentOfVictimProcess
Configuration
FileSystem
Processes
FindExecutableFileOfVictimProcessModules

∃ proccomp : COMPNAME ; ipcdatacomp : COMPNAME •
∃ ipcconn : CONNNAME ; paramconn : CONNNAME •
∃ procipcp : PORT ; ipcdatap : PORT •

fileToComponent (processFile victimProcess) = proccomp ∧
(components ipcdatacomp).componentType = CTDATA ∧
(connectors ipcconn).connectionType = CNDATATRANSFER ∧
(connectors paramconn).connectionType = CNPARAM ∧
((ipcconn,RODATATARGET), (proccomp, procipcp)) ∈ attachment ∧
((ipcconn,RODATASOURCE), (ipcdatacomp, ipcdatap)) ∈ attachment ∧
((paramconn,ROPARAMSOURCE), (proccomp, procipcp)) ∈ attachment

152 CHAPTER 6. FORMAL MODEL: ATTACKS

The attack consists of finding a relevant IPC interface and then sending data of the
attacker’s choice via the interface.

AttackInitiateCommunicationAndSendData ==
[AttackInitiateCommunicationAndSendDataPrologue ∧
FindIPCComponentOfVictimProcess ∧
InvokeIPC | sourceProcess = AttackingProcess ∧
targetProcess = victimProcess ∧
sendData ∈ CONTENT ATTACKERS CHOICE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack several times per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 153

6.1.3.2 Respond to component’s communication request and send data

Attack description Wait for attacked process to use IPC mechanisms of attacker’s
process. Attacker’s process may need to be created first. Then send data to attacked
process via IPC mechanism. Alternatively, have data avilable for the attacked process to
request.

Preconditions

1. The attacker must be able to position itself as the target of a communication request
by the victim process via an IPC interface.

2. Data transferred via the interface must be interpreted as a parameter by the victim.

Postconditions

1. The victim process bases its execution on parameters of the attacker’s choice.

Architectural structures
Data storage, data transfer, parameters, processes.

Metrics
M7 Percentage of logged invocations (table 3.9 on page 64) focuses on detection/monitoring
of attacks, M8 Percentage of authenticity/integrity preserving connectors (table 3.10 on
page 64) focuses on prevention of attacks.

Specification in Z An adversarial process must be among the running processes to
perform the attack and the process must be able to become a target of IPC communication
with the victim process.

FindExecutableFileOfAdversarialProcessModules
Configuration
FileSystem
Processes
LinkedLibraries
adversarialProcess : HANDLE

∃ executableFile : File •
adversarialProcess ∈ runningProcesses ∧
(∃ ownercomp : COMPNAME ; oconn : CONNNAME ; onp : PORT ; odp : PORT •

((components ownercomp).componentType = CTSUBJECTADVERSARY ∨
(components ownercomp).componentType = CTSUBJECTUNSPECIFIED) ∧
(connectors oconn).connectionType = CNOWNER ∧
((oconn,ROOWNER), (ownercomp, onp)) ∈ attachment ∧
((oconn,ROOWNED), (fileToComponent executableFile, odp)) ∈ attachment) ∧

((processFile adversarialProcess = executableFile) ∨
∃ l : HANDLE •

(adversarialProcess , l) ∈ processLibraries ∧
libraryFile l = executableFile)

154 CHAPTER 6. FORMAL MODEL: ATTACKS

Data communicated to the victim process must be interpreted as parameters.

FindIPCComponentOfAdversarialProcess
Configuration
FileSystem
Processes
FindExecutableFileOfAdversarialProcessModules

∃ proccomp : COMPNAME ; ipcdatacomp : COMPNAME •
∃ ipcconn : CONNNAME ; paramconn : CONNNAME •
∃ procipcp : PORT ; ipcdatap : PORT •

fileToComponent (processFile adversarialProcess) = proccomp ∧
(components ipcdatacomp).componentType = CTDATA ∧
(connectors ipcconn).connectionType = CNDATATRANSFER ∧
(connectors paramconn).connectionType = CNPARAM ∧
((ipcconn,RODATATARGET), (proccomp, procipcp)) ∈ attachment ∧
((ipcconn,RODATASOURCE), (ipcdatacomp, ipcdatap)) ∈ attachment ∧
((paramconn,ROPARAMSOURCE), (proccomp, procipcp)) ∈ attachment

The attack consists of positioning the adversarial process as target of IPC commu-
nication initiated by the victim process and providing data of the attacker’s choice on
request.

AttackRespondCommunicationAndSendData ==
[FindExecutableFileOfVictimProcessModules ∧
FindIPCComponentOfAdversarialProcess ∧
InvokeIPC | sourceProcess = victimProcess ∧
targetProcess = adversarialProcess ∧
sendData ∈ dom(processIPCResponse victimProcess) ∧
ran(processIPCResponse adversarialProcess) ⊆ CONTENT ATTACKERS CHOICE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to wait for the victim process to execute the
referenced code module
Available time to attack: Attacker needs to be able to carry out attack several times per
user session
Attack variation: Attacker needs to be able to customise the attack, but does not need
to simulate human behaviour
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 155

6.1.3.3 Modify stored data component containing parameters

Attack description Like 6.1.1.1, but data component is labelled as containing param-
eters/labelled as content being used as parameter(s).

Preconditions

1. The attacker must be able to find a victim’s stored parameters (any).

2. The component containing the parameters must exist.

3. The access control configuration must permit modification.

Postconditions

1. The parameters are modified, i.e., they are of the attacker’s choice.

Architectural structures
Attacking process, stored parameters, access control configuration.

Metrics
M5 Percentage of access control instrumentation (table 3.7 on page 63) focuses on protec-
tion of all entry points to a component, M6 Conformity of access permissions (table 3.8
on page 63) focuses on identical permissions to ease correct administration.

Specification in Z Modifying a stored code module is similar to modifying a stored
data component directly, one difference being the content of the modified component
being used as parameters by the victim.

StoredDataComponentContainsParameters
Configuration
FileSystem
DataComponent : COMPNAME

(components DataComponent).componentType = CTDATA
(∃ connname : CONNNAME •
∃ ocn : COMPNAME • ∃ ocp : PORT • ∃ cp : PORT •

(connectors connname).connectionType = CNOWNER ∧
(components ocn).componentType = CTSUBJECTVICTIM ∧
((connname,ROSUBJECT), (ocn, ocp)) ∈ attachment ∧
((connname,ROOBJECT), (DataComponent , cp)) ∈ attachment)

(∃ connname : CONNNAME •
∃ ocn : COMPNAME • ∃ ocp : PORT • ∃ cp : PORT •

(connectors connname).connectionType = CNPARAM ∧
((connname,ROPARAMPROCESSOR), (ocn, ocp)) ∈ attachment ∧
((connname,ROPARAMSOURCE), (DataComponent , cp)) ∈ attachment)

∃ f : File • fileToComponent f = DataComponent

156 CHAPTER 6. FORMAL MODEL: ATTACKS

The attack consists of identifying a data component being used as parameters and
then modifying the component with data of the attacker’s choice.

AttackModifyStoredParameters ==
[AttackModifyStoredDataComponent ∧
StoredDataComponentContainsParameters |
DataComponent ∈ (ran fileToComponent)]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 157

6.1.3.4 Modify reference to stored data component containing parameters

Attack description The attacker tries to modify a reference to an existing data com-
ponent labelled as being used as parameter(s).

Preconditions

1. The attacker must be able to find a reference used by the victim.

2. The victim must interpret data received via the reference as parameters.

3. The access control configuration must permit modifying the reference.

Postconditions

1. The reference points to a different data component containing data of the attacker’s
choice.

Architectural structures
Reference, data storage, parameters, processes.

Metrics
M4 Percentage of protected intermediate storage components (table 3.6 on page 62) fo-
cuses on reducing the number of entry points for an attacker, M5 Percentage of access
control instrumentation (table 3.7 on page 63) focuses on protection of all entry points to
a component, M6 Conformity of access permissions (table 3.8 on page 63) focuses on iden-
tical permissions to ease correct administration, M8 Percentage of authenticity/integrity
preserving connectors (table 3.10 on page 64) focuses on prevention of attacks.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackModifyReferenceToStoredParametersPrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

The attacker needs to identify a reference component that points to a data component
that is being treated as parameters by the victim process.

158 CHAPTER 6. FORMAL MODEL: ATTACKS

IsReferenceToParameters
Configuration
Processes
FileSystem
ReferenceComponent : COMPNAME

∃ proc : HANDLE ; proccomp : COMPNAME •
∃ParamComponent : COMPNAME •
∃ dtconn : CONNNAME ; refconn : CONNNAME ; paramconn : CONNNAME •
∃ prsp : PORT ; prtp : PORT ; rcsp : PORT ; rctp : PORT •

(fileToComponent (processFile proc)) = proccomp ∧
(connectors paramconn).connectionType = CNPARAM ∧
((paramconn,ROPARAMSOURCE), (proccomp, prsp)) ∈ attachment ∧
(connectors dtconn).connectionType = CNDATATRANSFER ∧
((dtconn,RODATATARGET), (proccomp, prsp)) ∈ attachment ∧
((dtconn,RODATASOURCE), (ReferenceComponent , prtp)) ∈ attachment ∧
((refconn,ROREFERENCESOURCE), (ReferenceComponent , rcsp)) ∈ attachment ∧
((refconn,ROREFERENCETARGET), (ParamComponent , rctp)) ∈ attachment ∧
∃ ownercomp : COMPNAME ; oconn : CONNNAME ; onp : PORT ; odp : PORT •

(components ownercomp).componentType = CTSUBJECTVICTIM ∧
(connectors oconn).connectionType = CNOWNER ∧
((oconn,ROOWNER), (ownercomp, onp)) ∈ attachment ∧
((oconn,ROOWNED), (proccomp, odp)) ∈ attachment

The attack consists of identifying an appropriate reference and then modifying the
reference with content of the attacker’s choice.

AttackModifyReferenceToStoredParameters ==
[AttackModifyReferenceToStoredParametersPrologue ∧
FindReference ∧
IsReferenceToParameters ∧
ModifyReference | requestingSubject? = processSubject AttackingProcess]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to wait for the victim process to obtain data
from the referenced data component
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 159

6.1.3.5 Simulate user input

Attack description Modify/create user interface input data, i.e., data components
labelled as user input, depending on access permissions to user interface objects and their
containers (if any).

Preconditions

1. Attacker must be able to identify input queues used by victim process.

2. The access control configuration must permit modifying the queue.

Postconditions

1. The input queue of the victim process contains data of the attacker’s choice that is
interpreted as having originated from the local human user.

Architectural structures
Process, user input.

Metrics
M12 Percentage of trusted path connectors (table 3.14 on page 67) focuses on prevention
and detection of attacks on a user interface.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackSimulateUserInputPrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

An input queue belonging to the victim process must be identified.

FindVictimUIInputQueue
Processes
victimUIInputQueue : HANDLE

∃ proc : HANDLE •
processSubject proc = SUBJECT VICTIM ∧
(proc, victimUIInputQueue) ∈ processInput

160 CHAPTER 6. FORMAL MODEL: ATTACKS

The attack consists of finding an input queue of the victim process and then appending
data of the attacker’s choice to the queue.

AttackSimulateUserInput ==
[AttackSimulateUserInputPrologue ∧
FindVictimUIInputQueue ∧
WriteUIInput | inputDevice = victimUIInputQueue ∧
requestingSubject? = processSubject AttackingProcess ∧
UIData ∈ CONTENT ATTACKERS CHOICE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack several times per
user session
Attack variation: Attacker needs to be able to customise the attack, and may need to be
able to simulate human behaviour
Influence on user: Attacker needs not to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 161

6.1.4 Influence on user

The attacker tries to modify, delete, or replace information that the user bases a security-
relevant decision on. This comprises user interface components as well as, e.g., logging
data.

6.1.4.1 Modify user interface object

Attack description Modify/create user interface output data, i.e., data components
labelled as output to user, depending on access permissions to user interface objects.

Preconditions

1. Attacker must be able to identify output devices used by victim process.

2. The access control configuration must permit modifying the device content.

Postconditions

1. The output device contains data of the attacker’s choice that is used by the local
human user in security-relevant decisions.

Architectural structures
Process, user output.

Metrics
M12 Percentage of trusted path connectors (table 3.14 on page 67) focuses on prevention
and detection of attacks on a user interface.

Specification in Z An adversarial process must be among the running processes to
perform the attack.

AttackModifyUserInterfaceObjectPrologue

Processes
AttackingProcess : HANDLE

AttackingProcess ∈ runningProcesses

The attacker has to determine which output devices are used by the victim process to
present security-relevant data to the local human user.

162 CHAPTER 6. FORMAL MODEL: ATTACKS

FindVictimUIOutputDevice
Configuration
UIOutputDevices
Processes
victimUIOutputDevice : HANDLE

∃ proc : HANDLE •
processSubject proc = SUBJECT VICTIM ∧
(proc, victimUIOutputDevice) ∈ processOutput ∧
∃ uiocomp : COMPNAME ; uioconn : CONNNAME ; uiop : PORT •

uiOutputDeviceToComponent victimUIOutputDevice = uiocomp ∧
(((uioconn,ROLOGDATATARGET), (uiocomp, uiop)) ∈ attachment ∨
((uioconn,ROMONITORTARGET), (uiocomp, uiop)) ∈ attachment)

The attack consists of finding the relevant output devices and then modifying their
contents.

AttackModifyUserInterfaceObject ==
[AttackModifyUserInterfaceObjectPrologue ∧
FindVictimUIOutputDevice ∧
WriteUIOutput | outputDevice = victimUIOutputDevice ∧
requestingSubject? = processSubject AttackingProcess ∧
UIData ∈ CONTENT ATTACKERS CHOICE]

Necessary attacker capabilities
Attack initiation capability: Attacker needs to wait for the local human user to determine
the moment to start the attack
Available time to attack: Attacker needs to be able to carry out attack several times per
user session, sometimes permanently
Attack variation: Attacker needs to be able to customise the attack, but does not need
to be able to simulate human behaviour
Influence on user: Attacker needs to be able to influence the user

6.1. REPOSITORY OF GENERIC MALWARE ATTACKS 163

6.1.4.2 Modify stored data component examined by users as basis for deci-
sions

Attack description Like 6.1.1.1, but data component labelled as evidence/support
for user decisions, depending on access permissions to user interface objects and their
containers (if any).

Preconditions

1. The attacker must be able to find a victim’s stored data component (any).

2. The data component must exist.

3. The access control configuration must permit modification.

Postconditions

1. The data component is modified, i.e., it contains data of the attacker’s choice.

Architectural structures
Attacking process, data component, access control configuration.

Metrics
M5 Percentage of access control instrumentation (table 3.7 on page 63) focuses on protec-
tion of all entry points to a component, M6 Conformity of access permissions (table 3.8
on page 63) focuses on identical permissions to ease correct administration.

Specification in Z Modifying a stored data component used in decision making is a
special case of modifying an arbitrary stored data component directly. In the current
version of our model we have logging data, monitoring data, and integrity verification
data as data that security-relevant decisions can be based on.

IsStoredDataComponentUsedInDecision
Configuration
DataComponent : COMPNAME

∃ dcconn : CONNNAME ; dcp : PORT •
((dcconn,ROLOGDATATARGET), (DataComponent , dcp)) ∈ attachment ∨
((dcconn,ROMONITORTARGET), (DataComponent , dcp)) ∈ attachment ∨
((dcconn,ROVERIFICATIONDATA), (DataComponent , dcp)) ∈ attachment

The attack consists of identifying a stored data component containing decision support
data and then modifying the component.

AttackModifyStoredDataComponentForDecisions ==
AttackModifyStoredDataComponent ∧
IsStoredDataComponentUsedInDecision

164 CHAPTER 6. FORMAL MODEL: ATTACKS

Necessary attacker capabilities
Attack initiation capability: Attacker needs to be able to launch attack at own discretion
Available time to attack: Attacker needs to be able to carry out attack at least once per
user session
Attack variation: Attacker needs not to be able to customise attack
Influence on user: Attacker needs not to be able to influence the user

6.2. SECURITY REQUIREMENTS 165

6.2 Security requirements

The metrics for security requirements form a lattice by construction. A value of the metric
is a triple with its components taken from four inverse sequences, respectively. We recall
the three axes from section 3.1 on page 46 and define the according sequences.

1. Limit damage done to data integrity : Attacks on the integrity of data items can
remain undetected, can be logged, can be monitored and the user alerted, can be
prevented.

GenericSecReq ::=
Undetected | Log | Alert | Prevent

SecReqDataInt == GenericSecReq
GenericSecReqLevel == {

(Undetected 7→ 1), (Log 7→ 2), (Alert 7→ 3), (Prevent 7→ 4)}
SecReqDataIntLevel == GenericSecReqLevel

2. Limit damage done to data confidentiality : Attacks on the confidentiality of data
items can remain undetected, can be logged, can be monitored and the user alerted,
can be prevented.

SecReqDataConf == GenericSecReq
SecReqDataConfLevel == GenericSecReqLevel

3. Limit damage done to code integrity : Attacks on the integrity of executable code
can remain undetected, can be logged, can be monitored and the user alerted, can
be prevented.

SecReqCodeInt == GenericSecReq
SecReqCodeIntLevel == GenericSecReqLevel

SecurityRequirements == SecReqDataInt × SecReqDataConf × SecReqCodeInt

This leaves us with a total of 43 = 64 combinations of security requirements. When
comparing two requirements pairs, we have 64×64 = 4, 096 combinations. Of these 1,936
pairs are comparable (=, >, <) and 2,160 pairs are incomparable.

We do not expect this to be a significant problem. Security requirements are typically
fixed for a product’s use, so there is rather a lower bound on the requirements a product
must comply with. Variations are expected to occur then mostly along one or two axes,
or by the general addition of logging or alert capabilities.

166 CHAPTER 6. FORMAL MODEL: ATTACKS

6.3 Attacker capabilities

The metrics for necessary attacker capabilities also form a lattice by construction. A
value of the metric is a four-tuple with its components taken from four inverse sequences,
respectively. We recall the four axes from section 3.2 on page 48 and define the according
sequences.

1. Attack initiation capability : control when an attack is begun and whether it can be
attempted repeatedly.

AttCapInit ::=
InitByUser | InitAutomatically | InitByAttacker

AttCapInitLevel == {
(InitByUser 7→ 1),
(InitAutomatically 7→ 2),
(InitByAttacker 7→ 3)}

2. Available time to attack : capability to attempt attack over time.

AttCapTime ::=
TimeOnce | TimeSeveral | TimeThroughout

AttCapTimeLevel == {
(TimeOnce 7→ 1),
(TimeSeveral 7→ 2),
(TimeThroughout 7→ 3)}

3. Attack variation: adjust attack while in progress.

AttCapVariation ::=
CustomiseNot | CustomiseNoTuring | CustomiseTuring

AttCapVariationLevel == {
(CustomiseNot 7→ 1),
(CustomiseNoTuring 7→ 2),
(CustomiseTuring 7→ 3)}

4. Influence on user : exercise influence on local human user.

6.3. ATTACKER CAPABILITIES 167

Table 6.1: Necessary capabilities for attacks in repository
Generic Attack Initiation Time Variation User
Modify stored data item 3 1 1 1
Retrieve stored data item 3 1 1 1
Modify code in memory 3 1 1 1
Modify stored code module 3 1 1 1
Add stored code module 2 1 1 1
Modify reference to code 2 1 1 1
Initiate, send data 3 2 1 1
Respond, send data 2 2 2 1
Modify parameters 3 1 1 1
Modify reference to data 2 1 1 1
Simulate user input 3 2 1–3 1
Modify user interface 1 2–3 2 2–3
Modify data for decisions 3 1 1 1

AttCapUser ::=
UserNot | UserOnce | UserRepeatedly

AttCapUserLevel == {
(UserNot 7→ 1),
(UserOnce 7→ 2),
(UserRepeatedly 7→ 3)}

The complete level of attacker capability is the four-tuple composed of values on the
four base scales:

AttackerCapabilities == AttCapInit × AttCapTime × AttCapVariation × AttCapUser

6.3.1 Necessary attacker capabilities

The capabilities needed by an attacker to perform an attack in the repository are shown
in table 6.1. We require that an attacker is able to reliably perform an attack once its pre-
requisites are met. Probabilistic success, i.e., attacks that may or may not succeed, is not
in the domain of attacker capabilities. We cover it by distinguishing between undetected,
detected, and immediately detected attacks on our scale for security requirements.

Looking at table 6.1, we see that the attacks related to IPC and user interface are
among the hardest to perform, and that the attacks involving references require least
capabilities of an adversary.

Most often required capabilities are attack initiation by the adversary and being able
to perform an attack at least once. Influence on the user is used least often. Because an
architectural description is fixed, it is not surprising that generic attacks on an applica-
tion’s architecture do not need much customizing. And only where the local human user
is involved, influence on the user is of relevance.

168 CHAPTER 6. FORMAL MODEL: ATTACKS

There are some combinations of values of the attacker capabilities metric for which no
attack exists in the repository. This could be an indication that there are undiscovered
attacks, e.g., attacks that are launched only based on user action and require several
attempts and simulation of human behaviour (1–2–3–1).

6.4 Resistance classes

Finally, we combine security requirement levels, attacker capability levels and the attack
repository as outlined in chapter 3. We determine to which resistance class a software
product belongs, expressed by its architectural description.

An attacker is described by the capabilities possessed.

Attacker
capabilities : AttackerCapabilities

The relation SufficientCapabilities contains pairs of attacker capabilities that are com-
parable and of which the first is on a higher or equal level compared with the second.

SufficientCapabilities : P(AttackerCapabilities × AttackerCapabilities)

SufficientCapabilities = {
ci1 : AttCapInit ; ci2 : AttCapInit ;
ct1 : AttCapTime; ct2 : AttCapTime;
cv1 : AttCapVariation; cv2 : AttCapVariation;
cu1 : AttCapUser ; cu2 : AttCapUser |
((AttCapInitLevel ci1) ≥ (AttCapInitLevel ci2)) ∧
((AttCapTimeLevel ct1) ≥ (AttCapTimeLevel ct2)) ∧
((AttCapVariationLevel cv1) ≥ (AttCapVariationLevel cv2)) ∧
((AttCapUserLevel cu1) ≥ (AttCapUserLevel cu2)) •
((ci1, ct1, cv1, cu1), (ci2, ct2, cv2, cu2))}

For each of the 13 attacks in the attack repository we add a schema conditioning
application of the attack upon the capabilities of an attacker needed to perform the
attack. An overview of these capabilities is given in table 6.1.

Construction of the schemas is straightforward: Attacker and an attack schema are
combined, and the predicate part is based on the necessary attacker capabilities that are
included in the attack description in the repository and repeated in table 6.1. That way,
an attack is only attempted if its prerequisites are met.

For the first attack, refer to the attack description on page 134.

6.4. RESISTANCE CLASSES 169

AttemptAttackModifyStoredDataComponent
Attacker
AttackModifyStoredDataComponent

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 138.

AttemptAttackObserveStoredDataComponent
Attacker
AttackObserveStoredDataComponent

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 140.

AttemptAttackModifyCodeInMemory
Attacker
AttackModifyCodeInMemory

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 142.

AttemptAttackModifyStoredCodeModule
Attacker
AttackModifyStoredCodeModule

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

170 CHAPTER 6. FORMAL MODEL: ATTACKS

The following attack can be found in the attack repository on page 144.

AttemptAttackAddStoredCodeModule
Attacker
AttackAddStoredCodeModule

(capabilities ,
((AttCapInitLevel∼)2, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 147.

AttemptAttackModifyReferenceToStoredCodeModule
Attacker
AttackModifyReferenceToStoredCodeModule

(capabilities ,
((AttCapInitLevel∼)2, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 150.

AttemptAttackInitiateCommunicationAndSendData
Attacker
AttackInitiateCommunicationAndSendData

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 153.

6.4. RESISTANCE CLASSES 171

AttemptAttackRespondCommunicationAndSendData
Attacker
AttackRespondCommunicationAndSendData

(capabilities ,
((AttCapInitLevel∼)2, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 155.

AttemptAttackModifyStoredParameters
Attacker
AttackModifyStoredParameters

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 157.

AttemptAttackModifyReferenceToStoredParameters
Attacker
AttackModifyReferenceToStoredParameters

(capabilities ,
((AttCapInitLevel∼)2, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The following attack can be found in the attack repository on page 159.

172 CHAPTER 6. FORMAL MODEL: ATTACKS

AttemptAttackSimulateUserInput
Attacker
AttackSimulateUserInput

((capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities) ∨

((capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)1))
∈ SufficientCapabilities) ∨

((capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)3, (AttCapUserLevel∼)1))
∈ SufficientCapabilities)

The following attack can be found in the attack repository on page 161.

AttemptAttackModifyUserInterfaceObject
Attacker
AttackModifyUserInterfaceObject

((capabilities ,
((AttCapInitLevel∼)1, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)2))
∈ SufficientCapabilities) ∨

((capabilities ,
((AttCapInitLevel∼)1, (AttCapTimeLevel∼)3,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)2))
∈ SufficientCapabilities) ∨

((capabilities ,
((AttCapInitLevel∼)1, (AttCapTimeLevel∼)2,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)3))
∈ SufficientCapabilities) ∨

((capabilities ,
((AttCapInitLevel∼)1, (AttCapTimeLevel∼)3,
(AttCapVariationLevel∼)2, (AttCapUserLevel∼)3))
∈ SufficientCapabilities)

This last attack method can be found in the attack repository on page 163.

6.4. RESISTANCE CLASSES 173

AttemptAttackModifyStoredDataComponentForDecisions
Attacker
AttackModifyStoredDataComponentForDecisions

(capabilities ,
((AttCapInitLevel∼)3, (AttCapTimeLevel∼)1,
(AttCapVariationLevel∼)1, (AttCapUserLevel∼)1))
∈ SufficientCapabilities

The AttemptAttacks schema combines all conditioned attacks from the attack reposi-
tory.

AttemptAttacks
AttemptAttackModifyStoredDataComponent
AttemptAttackObserveStoredDataComponent
AttemptAttackModifyCodeInMemory
AttemptAttackModifyStoredCodeModule
AttemptAttackAddStoredCodeModule
AttemptAttackModifyReferenceToStoredCodeModule
AttemptAttackInitiateCommunicationAndSendData
AttemptAttackRespondCommunicationAndSendData
AttemptAttackModifyStoredParameters
AttemptAttackModifyReferenceToStoredParameters
AttemptAttackSimulateUserInput
AttemptAttackModifyUserInterfaceObject
AttemptAttackModifyStoredDataComponentForDecisions

The LoggedComponents schema defines a set accessLogged of components to which
accesses are logged.

LoggedComponents
Configuration
accessLogged : P COMPNAME

accessLogged = {
comp : COMPNAME ; conn : CONNNAME ; cport : PORT ; cprole : ROLE |
((conn, cprole), (comp, cport)) ∈ attachment ∧
cprole = ROLOGDATASOURCE
• comp}

The MonitoredComponents schema defines a set accessMonitored of components to
which accesses are monitored.

174 CHAPTER 6. FORMAL MODEL: ATTACKS

MonitoredComponents
Configuration
accessMonitored : P COMPNAME

accessMonitored = {
comp : COMPNAME ; conn : CONNNAME ; cport : PORT ; cprole : ROLE |
((conn, cprole), (comp, cport)) ∈ attachment ∧
cprole = ROMONITORSOURCE
• comp}

The SecurityRequirementsRestriction schema offers three technical relations to express
an upper bound of components in a security requirements level.

SecurityRequirementsRestriction
MaxSecReqDataInt : SecReqDataInt ↔ SecurityRequirements
MaxSecReqDataConf : SecReqDataConf ↔ SecurityRequirements
MaxSecReqCodeInt : SecReqCodeInt ↔ SecurityRequirements

MaxSecReqDataInt = {
srdi : SecReqDataInt ; srdc : SecReqDataConf ; srci : SecReqCodeInt •
srdi 7→ (srdi , srdc, srci)}

MaxSecReqDataConf = {
srdi : SecReqDataInt ; srdc : SecReqDataConf ; srci : SecReqCodeInt •
srdc 7→ (srdi , srdc, srci)}

MaxSecReqCodeInt = {
srdi : SecReqDataInt ; srdc : SecReqDataConf ; srci : SecReqCodeInt •
srci 7→ (srdi , srdc, srci)}

If no data components are modified, the highest data integrity level (4) is achievable.
If some data components are modified and monitored, the next highest level (3) is pos-
sible. Detected modification leads to a lower level (2), and undetected modification of
data components forces the lowest level for data integrity (1). This is expressed by the
EvaluateDataIntegrity schema.

6.4. RESISTANCE CLASSES 175

EvaluateDataIntegrity
Configuration
LoggedComponents
MonitoredComponents
SystemHistory
SecurityRequirementsRestriction
HighestSatisfiableSecurityRequirements : SecurityRequirements

(((SecReqDataIntLevel∼)4),
HighestSatisfiableSecurityRequirements) ∈ MaxSecReqDataInt

∃ ct : COMPTYPE ; cn : COMPNAME ; ev : EVENTACTION •
(ct , cn, ev) ∈ ran history ∧

((ev = EVENT ACCESS MODIFY) ∨
(ev = EVENT ACCESS DELETE) ∨
(ev = EVENT ACCESS RENAME)) ∧

ct = CTSUBJECTADVERSARY ∧
(components cn).owner = VICTIM ∧
(components cn).componentType = CTDATA ∧

(((SecReqDataIntLevel∼)1),HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataInt ∨

((cn ∈ accessLogged) ∧ (((SecReqDataIntLevel∼)2),
HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataInt) ∨

((cn ∈ accessMonitored) ∧ (((SecReqDataIntLevel∼)3),
HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataInt)

If the contents of all data components are kept secret against an adversary, the high-
est data confidentiality level (4) is achievable. If content of some data components is
revealed, but access is monitored, the next highest level (3) is possible. Detected ob-
servation leads to a lower level (2), and undetected violation of confidentiality of data
components forces the lowest level for data confidentiality (1). This is expressed by the
EvaluateDataConfidentiality schema.

176 CHAPTER 6. FORMAL MODEL: ATTACKS

EvaluateDataConfidentiality
Configuration
LoggedComponents
MonitoredComponents
SystemHistory
SecurityRequirementsRestriction
HighestSatisfiableSecurityRequirements : SecurityRequirements

(((SecReqDataConfLevel∼)4),
HighestSatisfiableSecurityRequirements) ∈ MaxSecReqDataConf

∃ ct : COMPTYPE ; cn : COMPNAME ; ev : EVENTACTION •
(ct , cn, ev) ∈ ran history ∧
ev = EVENT ACCESS OBSERVE ∧
ct = CTSUBJECTADVERSARY ∧
(components cn).owner = VICTIM ∧
(components cn).componentType = CTDATA ∧

(((SecReqDataConfLevel∼)1),HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataConf ∨

((cn ∈ accessLogged) ∧ (((SecReqDataConfLevel∼)2),
HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataConf) ∨

((cn ∈ accessMonitored) ∧ (((SecReqDataConfLevel∼)3),
HighestSatisfiableSecurityRequirements)
∈ MaxSecReqDataConf)

Code integrity is similar to data integrity. In addition, some invoke operations must
be checked.

6.4. RESISTANCE CLASSES 177

EvaluateCodeIntegrity
Configuration
LoggedComponents
MonitoredComponents
SystemHistory
SecurityRequirementsRestriction
HighestSatisfiableSecurityRequirements : SecurityRequirements

(((SecReqCodeIntLevel∼)4),
HighestSatisfiableSecurityRequirements) ∈ MaxSecReqCodeInt

∃ ct : COMPTYPE ; cn : COMPNAME ; ev : EVENTACTION •
(ct , cn, ev) ∈ ran history ∧
((ct = CTSUBJECTADVERSARY ∧

((ev = EVENT ACCESS MODIFY) ∨
(ev = EVENT ACCESS DELETE) ∨
(ev = EVENT ACCESS RENAME)) ∧
(components cn).owner = VICTIM) ∨

(ct = CTSUBJECTVICTIM ∧
ev = EVENT ACCESS INVOKE ∧
(components cn).owner = ADVERSARY)) ∧

(components cn).componentType = CTDATA ∧
(((SecReqCodeIntLevel∼)1),HighestSatisfiableSecurityRequirements)

∈ MaxSecReqCodeInt ∨
((cn ∈ accessLogged) ∧ (((SecReqCodeIntLevel∼)2),

HighestSatisfiableSecurityRequirements)
∈ MaxSecReqCodeInt) ∨

((cn ∈ accessMonitored) ∧ (((SecReqCodeIntLevel∼)3),
HighestSatisfiableSecurityRequirements)
∈ MaxSecReqCodeInt)

The relation SatisfyingSecurityRequirements contains pairs of security requirement
levels that are comparable and of which the first is on a higher or equal level compared
with the second.

SatisfyingSecurityRequirements : P(SecurityRequirements × SecurityRequirements)

SatisfyingSecurityRequirements = {
di1 : SecReqDataInt ; di2 : SecReqDataInt ;
dc1 : SecReqDataConf ; dc2 : SecReqDataConf ;
ci1 : SecReqCodeInt ; ci2 : SecReqCodeInt |
((SecReqDataIntLevel di1) ≥ (SecReqDataIntLevel di2)) ∧
((SecReqDataConfLevel dc1) ≥ (SecReqDataConfLevel dc2)) ∧
((SecReqCodeIntLevel ci1) ≥ (SecReqCodeIntLevel ci2)) •
((di1, dc1, ci1), (di2, dc2, ci2))
}

The SECURITYSTATUS of an evaluated architectural description/configuration in-

178 CHAPTER 6. FORMAL MODEL: ATTACKS

dicates whether it fulfils the desired security requirements if faced with an adversary
possessing the accepted capabilities.

SECURITYSTATUS ::= SecureEnough | NotSecureEnough

With the EvaluateSystemState schema we check an architectural description against
a desired security requirements level. The ProductSecurityStatus variable provides the
result of the check.

EvaluateSystemState
EvaluateDataIntegrity
EvaluateDataConfidentiality
EvaluateCodeIntegrity
DesiredSecurityRequirements : SecurityRequirements
ProductSecurityStatus : SECURITYSTATUS

(HighestSatisfiableSecurityRequirements ,DesiredSecurityRequirements)
∈ SatisfyingSecurityRequirements ⇔

ProductSecurityStatus = SecureEnough

Determination of the membership of a software product in a resistance class is then
done by a post-hoc evaluation of the system state after all possible simulated attacks on
the architecture of a program.

EvaluateAttackedSystem ==
(((Configuration ∧ InitialStateCorrespondence ∧
Attacker ∧ AttemptAttacks)�
(Configuration ∧ ∆SystemHistory))o9

EvaluateSystemState)

The level of resistance is reported by the ResistanceClass variable and consists of an
attacker capability level and a security requirements level.

DetermineResistanceClass
Attacker
EvaluateAttackedSystem
ResistanceClass : AttackerCapabilities × SecurityRequirements

ResistanceClass = (capabilities ,DesiredSecurityRequirements)
ProductSecurityStatus = SecureEnough

Chapter 7

Analysis of architectural differences
and their influence on effectiveness
of counter-measures

Chapter summary: In this chapter we show how an architectural description of a
program can be analysed with our methods. Our example is a homebanking application.
We compare two versions of the product: both are in the same resistance class, but our
metrics reveal a negative trend that could lead to further vulnerability in the future.
Based on our results, we propose improvements in the software architecture.

7.1 Architectural changes

An architecture is a system’s implementation-independent structure given by its compo-
nents and the relations among them and to the environment. Architectural weaknesses
are weaknesses in the design of a system (e.g., missing/weak authentication, bypassing of
controls, poor choice of parameters). They are a mismatch between security requirements
and system specification and exist regardless of the quality of an architecture’s implemen-
tation. Attacks on a system’s implementation-independent architecture may be harder to
detect and harder to correct by simple means after deployment, compared with errors in
an implementation.

Change requests for functional requirements can lead to a change in system design.
This in turn can influence whether the system still complies with the security requirements.
In the following sections we compare the resistance classes of the software architecture of
different versions of the same product.

7.2 Homebanking with FinTS/HBCI

Owing to a recent rise of social engineering – phishing – attacks on internet banking
systems, homebanking applications are pushed as a means to combat this threat. Trans-
actions can be prepared at a local machine where they are signed and then transmitted
encrypted to the bank’s server. No transaction numbers are involved, and hence, data
for authorization of transactions cannot be captured and used by an adversary. A smart
card issued by the bank and employed by the local user contains cryptographic keys to
authenticate users and their transactions to the bank. Electronic signatures are computed

179

180 CHAPTER 7. ARCHITECTURAL ANALYSIS

inside the card, and transactions are encrypted so that the bank is able to establish their
authenticity, integrity, and their not being known to an adversary.

Access to the smart card is regulated by a personal identification number (PIN). It
can be input locally to be relayed by the banking software to the card reader and the card.
In many systems, locally input data is also available to other processes on the machine.
A malicious process could thus eavesdrop on the input and retrieve the PIN for the card.
As a standard counter measure the use of class 2 card readers is recommended. These
integrate a PIN pad and are capable of transmitting a PIN input at that PIN pad directly
to the card. Since the PIN is never transmitted from the card reader to the PC, it cannot
be obtained by other processes.

In this scenario, the existence of a local malicious process is hence assumed. In addition
to eavesdropping on local input, that process has more capabilities for trying to influence
the execution of the homebanking application (cf. sections 3.3 and 6.1 and also [SCL02],
[Lan06b]).

The situation is comparable to the creation of electronic signatures by way of a smart
card. In the homebanking case, the data to be signed is simpler and is always prepared by
the application accessing the card. The data is only used for banking transactions and not
for legally binding general purpose electronic signatures. The receiver of the data is the
bank that in most cases also issues the card and recommends the banking software. The
standard used by most German banks for their homebanking is FinTS/HBCI. [HBC00,
Fin04]

As there are no publicly known cases outside the laboratory to date where there have
been manipulations of bank transactions when using HBCI, banks tend to put responsi-
bility for correct creation of transactions on the customer. As an example, we evaluate
the homebanking application StarMoney 5.0 by Star Finanz – Software Entwicklung und
Vertriebs GmbH. They claim to have a market share of ca. 50% of the German market
at present. A comparison with products of other manufacturers can be found in [LS07].

We expose the software structure based on analysis without knowledge of the source
code or internal design documentation.

7.2.1 High-level architecture

Architecturally, the homebanking application with a total size of ca. 50 MB consists of
2 small executable modules, StartStarMoney.exe [60 KB] for preparing the start of
the main executable StarMoney.exe [172 KB]. (6 additional executable modules per-
form peripheral functionality: Configuring smart card readers attached to the system
(SCRSetup.exe), conversion of older versions’ data (smkonv.exe), T-Online Classic access
(CLGate32.exe, sfkclgateslave.exe, sfktonac.exe), remote support (NetViewer.exe))

The executable modules are supported by 89 executable library files that extend the
functionality of the main executable. They can be partitioned into 6 function groups:
Core banking (18 libraries), Smart card communication (4 libraries), Database access
(11 libraries), Communication (17 libraries), User interface (24 libraries), Miscellaneous
(15 libraries). We list size, name, and purpose of each identified module and state the
dependency relations among the executable modules and with data files in appendix B.

Execution dependency graphs for StarMoney.exe and StartStarMoney.exe are shown
in figures 7-1 through 7-4 and 7-5. These two programs are used most often compared to
the others and our analysis will henceforth focus on the two.

7.2. HOMEBANKING WITH FINTS/HBCI 181

For enhanced clarity of the presentation, only data and executable components are
included that stand for file with a DLL, EXE, or INI extension. Database and temporary
files are left out as well as user interface components. These are nevertheless taken into
account in our later metrics calculations.

Not shown in the figures are operating system libraries that are loaded before the
invocation of StarMoney. When they are referenced incompletely, libraries with the same
base name may be mapped into the address space of the new process. Nevertheless, a
substitution of dynamically linked libraries does not have an effect in this case, because
the references are resolved to the libraries already in memory.

A component is shown as a rectangle with a component name and a location (a related
container) and connected to other components by lines. Simple arrows point from a host
component to an executable component executed in the address space of the host. Double
arrows point from an executable component to another component executed as a separated
process. A line between an executable (DLL, EXE) and a non-executable (INI) component
represents a data transfer connector. The circle end denotes the data component and the
filled circle end denotes the executable.

The execution connectors are organized in a graph. It is acyclic which means that there
are no cyclic dependencies of executable components on each other. Some components
are referenced by many others, making them attractive targets, because code of these
components will be executed with a high probability. Components also depend on many
other executable components, either directly or indirectly. Hence, there are many possible
vectors to introduce code in their address space.

In the upper right hand corner of the rectangle of an executable component we find its
location. In our example case there are three groups of locations: operating system folders
(%WINDIR%), application folders (%INSTDIR%), third party folder (?). Each location has the
same access control configuration for the components it contains, but access control may
vary across location groups. Operating system locations are well protected, third party
locations are not under control, application locations are in the manufacturer’s domain.

7.2.2 Metrics

With respect to StarMoney’s architecture, our software security metrics from chapter 3
have the values shown in table 7.1. Measurements are performed by counting components
and connectors of specific types and then relating the counts to each other. The formulae
used are documented in the metrics definitions in chapter 3.

For metrics M4, M5, M10, M11 values could not be obtained for all three programs,
owing to a lack of detailed design documentation. It might be possible to reconstruct
these values by spending more effort on advanced architecture discovery methods, e.g.,
reverse engineering, but this is left to future work. For StarMoney.exe, the values are
complete. Upon availability of the successor version 6.0 examination was conducted to
find out about changes in the program’s architecture and changes in the corresponding
metrics. We compare results in table 7.2.

StarMoney receives perfect scores for metrics M9, M14, and almost perfect values for
metrics M3 and M6. Interestingly, the latter two metrics indicate a negative trend when
comparing version 5.0 and 6.0. M3 (Percentage of protected executables) goes down from
97% to 30%, and M6 (Conformity of access permissions) goes down from 97% to 67%.
Very low values are reported for 6 of 14 metrics for both versions.

182 CHAPTER 7. ARCHITECTURAL ANALYSIS

Figure 7-1: Dependency graph for executable modules used by StarMoney.exe, part (i)

7.2. HOMEBANKING WITH FINTS/HBCI 183

Figure 7-2: Dependency graph for executable modules used by StarMoney.exe, part (ii)

184 CHAPTER 7. ARCHITECTURAL ANALYSIS

Figure 7-3: Dependency graph for executable modules used by StarMoney.exe, part (iii)

7.2. HOMEBANKING WITH FINTS/HBCI 185

Figure 7-4: Dependency graph for executable modules used by StarMoney.exe, part (iv)

186 CHAPTER 7. ARCHITECTURAL ANALYSIS

Figure 7-5: Executable data components and execute connectors of StartStarMoney.exe

Closer inspection reveals areas of concern. Intermediate data is not protected during
operation, and the user interface lacks any protection against attacks on its integrity
and confidentiality. There are many executable components that have a large number of
dependencies among them.

Reason for the negative trend observed with respect to the latest product version is
the removal of protection on installed application components by default and the intro-
duction of more unprotected references to data components containing parameters. The
application’s architecture as a whole has not been changed much.

The single most important metric useful as an indicator is M3 (Percentage of protected
executables). Component coupling and management of connections is covered by M2, M5,
M8, M10, M11, M12, and is the second most important indicator. If an application scores
badly on these metrics, one does not need to investigate further metrics, because the
unprotected attack surface provides ample opportunity for an attacker.

Metrics M13 and M14 do not seem to add information to the picture. This owes to our
theoretical model where we do have only limited support of subject privileges and it owes
to our case study with only a single process being executed to run the application.

Metric M6 is a good indicator for the deployment planning phase and for installed
products. It can reveal deviations in protection levels. These are not problems per se,
but they require heightened management attention.

7.2. HOMEBANKING WITH FINTS/HBCI 187

7.2.3 Resistance class

The resistance class of StarMoney 5.0 is as follows:

(
(

AttCapInit : InitByAttacker ,
AttCapTime : TimeThroughout ,
AttCapVariation : CustomiseNot ,
AttCapUser : UserOnce

),
(

SecReqDataInt : Alert ,
SecReqDataConf : Undetected ,
SecReqCodeInt : Prevent

)
)

This means that violations of data integrity can be detected during operation while
data confidentiality is not guaranteed and code integrity is only achieved if third-party
components are adequately protected. The security requirements are met in the presence
of an adversarial process on the target machine that is able to operate multiple times and
at its own discretion. The attacking process must not be able to adapt the attack like a
human adversary, and the attacker does not need to be able to influence the user more than
once. These capabilities can typically be assumed in malware attacks on homebanking
applications.

Formally, the resistance class is determined by proving that there is a model instance
for the given configuration of the product and the DesiredSecurityRequirements schema
variable used in conjunction with the DetermineResistanceClass schema. That proof is
not included in our case study and left to future work.

The negative trend in metrics M3, M6, and M8 indicates that future versions of Star-
Money might only be members of lower resistance classes, e.g., by dropping from Prevent
to Undetected for the Code integrity part.

7.2.4 Tool support

While architectural descriptions of small systems can be evaluated by hand, this can
take a long time and become practically infeasible with large systems. Here, support by
(automated) tools can reduce time spent on evaluation.

We surveyed several such tools to support the use of Z . Criteria in the initial selection
process were functionality – we consider a type checker, typesetting support, and (inter-
active) proof facilities to be necessary –, availability of documentation and maintenance,
and price. Seven programs were examined in the process:

• CADiZ is a collection of programs around Z , among them a type checker, typesetting
macros in connection with LATEX, an interactive browser for typeset and typechecked
specifications, interactive proof support with its own language of proof tactics. It
can be used with Linux or Windows NT with Cygwin. CADiZ is maintained and
distributed freely by Ian Toyn of the University of York, UK.

188 CHAPTER 7. ARCHITECTURAL ANALYSIS

• Proof Power is a collection of programs to support specification and proof with
theIsabelle/HOL tool and in Z notation. It can be used with Linux or MacOS X.
It can be obtained free of charge for academic use from Lemma 1 Ltd. It is in-
dustrial strength software with a user community and maintenance by a for-profit
organization.

• MOBY/OZ is a graphical editor to construct Z specifications. It can be used
with Linux and is freely distributed by the University of Oldenburg. Maintenance
depends on the PhD students currently available and familiar with the tool. Corre-
spondence suggested that use of LATEX and a Z symbol translation chart would do
almost equally well.

• ZTC is a type checker for Z . It can be used with Windows NT or Linux. The
program is developed and distributed freely by DePaul University.

• ROZ is a program to translate annotated UML class diagrams to Z specifications. It
can be used with Windows NT or Linux and is available from LSR-IMAG Grenoble.

• Z Browser is able to present Z specifications, especially for teaching. It can be
used with Windows NT. ORA Canada distributes, but not maintains the product.
Academic licences are available on an individual basis, otherwise there is a 14 days
free evaluation period. There are unclear legal issues as to what usage restrictions
apply.

• Zeus-Z is an editor and syntax checker for Z . It needs FrameMaker and Z/EVES.
Software is available free of charge by ORA Canada, alas their homepage notes:
”Distribution by ORA ceased as of 2005-06-03”.

An overview of the tools and their functionality is given in table 7.3. A cross in a
column indicates that the respective product supports the respective functionality denoted
by the column heading.

Editor is the capability of editing Z specifications without writing typesetting source
code (e.g., LATEX). Browser refers to the ability of a tool to display a specification and
allow navigation depending on variable definitions and types. Type checker is a tool’s
capability of checking a Z specifition for compliance with Z ’s type model and verifying
whether a given specification is syntactically correct. Proof support states if there is
software support for (semi-)automatically proving properties of a specification. Specials
is a column for significant functionality not fitting into one of the previous columns.

As a result of our examination we settle with CADiZ for type-checking and browsing
our specification. It is also used for proof support. Proof Power might offer industrial
strength proof support, but CADiZ allows to reuse our typeset specifications and integrates
better with LATEX. This spares us the preparation of separate input files for processing
with our support tool.

MOBY/OZ does not offer significant help as soon as one is familiar with the Z
LATEXmacros and CADiZ. Both CADiZ and Proof Power are supported by user groups
and can be used freely. ROZ offers too much ”syntactic sugar”, Z Browser and Zeus-Z
do not offer stable distribution and licensing.

7.3. DISCUSSION 189

7.2.5 Possible architectural improvements

Based on our findings we have some suggestions for architectural improvements to yield
a higher resistance class for future StarMoney.

Higher data integrity could be achieved by greater coverage of integrity verification
mechanisms for data transfer. This is measured by M4, M5, and M8.

Higher code integrity could be achieved by greater coverage and more uniformity of
access permissions for executable components. This is measured by M1, M3, and M6.

Higher requirements for attack variability could be achieved by limiting simulata-
bility of user actions. This is measured by M7, M9, and M12.

Higher requirements for ability to influence the user could be achieved by higher
integrity for output displayed to the user on which the user makes decisions. This is
measured by M7 and M12.

These recommendations are based on the technical vulnerability analysis of the prod-
uct. They do not take into account non-technical measures, e.g., law enforcement. In
addition, a rational adversary might prefer alternate approaches to attack homebanking
accounts that are easier or cost less to perform at present, e.g., setting up a fake web
server and directing clients to it.

7.3 Discussion

The effort to measure a product’s security status proved to be reasonable. After collecting
the raw data, the actual counting was a matter of hours by hand. A lot more time was
spent to gather the raw data. In an ideal world, every product was accompanied by
standardised machine-readable design documentation. Component types and attributes,
call graphs and deployment diagrams could then be processed automatically. In our case
study we had to proceed without source code or internal design documentation for the
product. This required several days of skilled scrutiny and is unlikely to be feasible for
industrial use.

Our 14 software security metrics were developed with design principles in mind. We
can claim that all relevant aspects (expressed by the security requirements) are covered
by the metrics. A correspondence argument for metrics and security requirements is also
shown in table 3.18. If one were to build a relevancy-tree to decide which metrics to apply
first and when to stop based on enough measurements, we suggest M3 as the root node.
Also high in the tree would be M2, M5, M6, M8, M10, M11, and M12, while M13 and M14

would be on lower branches.
In our example we could have arrived at the conclusion that there are serious archi-

tectural vulnerabilities in StarMoney by evaluating M3, M6, M12, and M8 alone.
All metrics are normalized to a 0–100 scale. However, measurement results should

not be combined simply by using arithmetical operations on these values. An aggregated
value does not have any semantics here. It is possible to detect trends among product
versions, and it is possible to distinguish values 0, 100, and below 100.

190 CHAPTER 7. ARCHITECTURAL ANALYSIS

Validity of software security metrics in general is another recurring theme. Each metric
can be gamed, i.e., some developers tend to adapt their products so that they get a good
score on the software metrics while neglecting other design principles. With our approach
to metrics development as explained in chapter 3 we have constructively embedded secure
design principles in the metrics. A relevancy-tree involving an incomplete set of our 14
software security metrics might be susceptible to validation challenges, and this is left as
an open question to future work.

7.3. DISCUSSION 191

Table 7.1: Values for security metrics applied to StarMoney 5.0
Metric StarMoney.exe StartStarMoney.exe SCRSetup.exe

M1: Centralisation of
executable distribu-
tion sources

50% 50% 50%

M2: Restriction of
number of executable
components

1% [1/(66+25+3)] 9% [1/(3+8+0)] 3% [1/(15+15+3)]

M3: Percentage of
protected executables

97% (66+25
66+25+3

) 73% (8/11) 45% (15/33)

M4: Percentage
of protected in-
termediate storage
components

0% n/a n/a

M5: Percentage of
access control instru-
mentation

28% [7/(16+9)] n/a n/a

M6: Conformity of ac-
cess permissions

97% 100% 91%

M7: Percentage of
logged invocations

0% 0% 0%

M8: Percentage of
authenticity/integrity
preserving connectors

16% [7/(16+27)] 0% 0%

M9: Percentage of
unlogged security pa-
rameters

100% 100% 100%

M10: Restriction of
number of compo-
nents with shared
responsibility (server)

3% (1/37) n/a n/a

M11: Restriction of
number of compo-
nents with multiple
executable extensions

2% (1/49) n/a n/a

M12: Percentage of
trusted path connec-
tors

0% 0% 0%

M13: Restriction of
number of privileges

25% 25% 25%

M14: Restriction of
number of processes
sharing a privilege

100% 100% 100%

192 CHAPTER 7. ARCHITECTURAL ANALYSIS

Table 7.2: Comparison of metrics values for StarMoney 5.0 and 6.0
Metric StarMoney.exe 5.0 StarMoney.exe 6.0
M1: Centralisation of executable distri-
bution sources

50% 50%

M2: Restriction of number of executable
components

1% [1/(66+25+3)] 1% [1/(66+28+3)]

M3: Percentage of protected executables 97% (66+25
66+25+3

) 30% (28+1
66+28+3

)

M4: Percentage of protected intermedi-
ate storage components

0% 0%

M5: Percentage of access control instru-
mentation

28% [7/(16+9)] 28% [7/(16+9)]

M6: Conformity of access permissions 97% 67%
M7: Percentage of logged invocations 0% 0%
M8: Percentage of authenticity/integrity
preserving connectors

16% [7/(16+27)] 15% [7/(16+30)]

M9: Percentage of unlogged security pa-
rameters

100% 100%

M10: Restriction of number of compo-
nents with shared responsibility (server)

3% (1/37) 3% (1/37)

M11: Restriction of number of compo-
nents with multiple executable exten-
sions

2% (1/49) 2% (1/49)

M12: Percentage of trusted path connec-
tors

0% 0%

M13: Restriction of number of privileges 25% 25%
M14: Restriction of number of processes
sharing a privilege

100% 100%

Editor Browser Type checker Proof support Specials
CADiZ (x) X X X -
Proof Power - - - X -
MOBY/OZ X - - - -
ZTC - - X - -
ROZ - - - - Convert UML
Z Browser - X - - -
Zeus-Z X - - - -

Table 7.3: Tool support for Z

Chapter 8

Conclusions

Not everything that can be counted counts,
and not everything that counts can be counted.

— Frequently attributed to Albert Einstein

Software security metrics are to a large extent still an uncharted territory, elevated by its
having been named among the grand research challenges in information systems by the
Computing Research Association in 2003. [Ass03]

We have shown how security requirements and attacker capabilities for local malware
attacks can be formally described. Our extended model of a computer system is based
on the Common Criteria for Information Technology Security Evaluation (CC). With it
we are able to describe and analyse attacks of local malicious processes on fundamental
software design vulnerabilities. A repository of generic attacks helps to check whether
some given systems lie in the same resistance class. The lattice order on resistance classes
allows comparison of similar systems. Our model is flexible enough to incorporate future
attack methods that are not known today.

8.1 Contributions

This dissertation has four main contributions: A generic model of an operating system
from a security perspective, a repository of typical attack methods, a set of resistance
classes, and an identification of software architecture metrics pertaining to ordered secu-
rity levels.

Attacks on a software’s architecture have been little explored previously. We look at
the relationship between software structure, attacks, and resulting resilience of software.
A generic model of an operating system, compatible with the established Common Cri-
teria for information technology security evaluation [CC299b], allows the expression of
software architecture from a security perspective. The software in question, adversarial
processes, and their capabilities can be analysed using a single consistent syntax and
semantics. Such a generic model has not been found in the open literature. Alas, it
might have been developed in secret by government or industrial bodies involved with
security assessment. Evaluation on the architectural level can be done more easily than
evaluating the complete source code of a project. It could be regarded as evaluation of
a formal high-level design (e.g., component ADV HLD.5 at EAL 7 with respect to the
Common Criteria). Architectural evaluation is also possible at an early stage in develop-
ment where the source code does not yet exist. In some cases, design information is not

193

194 CHAPTER 8. CONCLUSIONS

shared owing to unwillingness (e.g., licencing restrictions) or unability (e.g., where the
original manufacturer is out of business).

A repository of generic attack methods allows enumeration of all possible attacks at
the level of abstraction and in the scenario of choice. Our scope is a single system, e.g.,
a workstation, in which benign and malicious processes co-exist. This restriction points
out the contrast to large networks with many hosts – which are not our focus. Our
derivation of this set of possible attacks on software architectural vulnerabilities is based
on a complete enumeration of attack vectors for a Turing machine. It is cross-checked
with unordered attack catalogues found in evaluation manuals, i.e., [ITS93] and [CEM04].
Introducing the theoretically derived attack repository allows enumeration of generalised
attack methods that in the past have often existed as unordered lists or as experiential
knowledge of evaluators.

Our framework consists of more than 50 Z schemas for modeling operating system
structures and behaviour. In addition, we have almost as many schemas defining generic
attack methods in our repository, representing approaches available to an adversary for
exploiting a software’s architectural vulnerabilities. (What constitutes a security breach
is defined by a selection of typical security policies.) An architecural description varies in
size. Our largest studied sample comprises on the order of 100 components and several
hundred connectors.

Resistance classes are based on a hierarchy of security requirements and a hierarchy
of attacker capabilities. Both hierarchies can be expressed by a lattice. Vulnerability is a
function of risk (with resilience being the opposite of vulnerability). Following the widely
adopted textbook definition (cf., e.g., [Gol05]), risk is a function of probability of an event
occurring that leads to losses, and of the amount of possible loss. Vulnerability metrics
must help to address the probability part, i.e., reducing threat (e.g., the more powerful
an adversary needs to be, the less likely the threat becomes), and must help to address
the losses part, i.e., reducing impact (e.g., the higher the accomplished/accomplishable
security goals are, the lower the losses). Hence, attacker capabilities and security require-
ments chosen as a vulnerability/resilience metric is a good choice, accepted by the risk
analysis and security metrics communities.

Metrics of architectural properties of software products have been extracted from es-
tablished design principles and have been used in a case study. Most of the metrics are
relevant in that they highlight problem areas in software development and deployment.
Achieving a perfect score on a number of these metrics is a prerequisite for advancing a
product to a higher resistance class. It has been demonstrated by help of the metrics that
the security level of a commercial product had deteriorated from one version to the next.

We have validated usability and usefulness of our framework with data about real
world attacks, including samples from [LABMC94], [Lan06b], and [LS07].

The best architectural style with respect to our metrics is a monolithic software prod-
uct with a clear perimeter. Anecdotal evidence from past systems suggests that policing
the perimeter is easier for a monolithic product compared to one aggregated from many
distributed components.

Recalling our original research question – ”Can resilience against malware attacks be
assessed and rated, and if so, how?” –, we are now able to answer this question with ”yes”
and its six sub-questions.

What are possible axes and scales to define a security level? – We use two axes:
attacker capabilities and security requirements, detailed in chapter 3.

How can a software’s architecture be described, together with the surrounding operating

8.2. DISCUSSION 195

environment and an adversary? – We use a model of a generic computer system, detailed
in chapter 4.

Which properties of an architecture can be measured and related to resilience against
attacks? – We use a collection of 14 metrics that measure compliance of an architecture
with established design principles for secure systems, detailed in chapter 3.

How can attacks be enumerated against which protection is required? – We use a
repository of generic attacks, extracted from established evaluation criteria and we show
completeness by a Turing machine approach, detailed in chapter 3.

What formal basis can be used to express and derive a security level? – We use a
Z specification of our model of a generic computer system and of our attack repository,
detailed in chapters 5 and 6.

Which metrics are significant and in which order should they be applied to evaluate a
product? – We find that coverage of access control mechanisms, conformity of permissions,
percentage of integrity-preserving operations, and coverage of trusted path mechanisms
are among the more significant metrics in our collection and should be evaluated before
other metrics. We validate our metrics collection with a case study, detailed in chapter 7.

8.2 Discussion

Few product security metrics have been found in previous work. With our framework for
malware resilience metrics we fill a gap by ordering knowledge about software structure
and attack methods and prepare it for standardisation.

Using the theoretical apparatus lead to a systematic revelation of security vulnerabil-
ities in existing products. These could have been found without our method. However,
we can claim that our analysis is comprehensive and does not leave out any architectural
vulnerability of importance. Owing to the scarce information about software evaluation
in its current niche market and challenged by limited repeatability and documentation of
evaluation processes, it is hard to determine whether our method could speed up the soft-
ware evaluation process. It takes time to create an architectural description based on an
existing product; having one up front in development would reduce time spent evaluating.

Not all software vulnerabilities are expressible in the current version of the generic op-
erating system model. Race conditions, i.e., timing problems in access control or resource
reference resolution, are not adequately addressed. This probably owes to the atomic
nature of Z schema operations. These ensure that parallel operations do not interfere
with other processes.

Tool support for typechecking and proving revealed errors in the first versions of the
specification. The type checker lead to rigour in the specification. What looked correct at
first glance turned out to be subtly incorrect when compared with the ISO standard for Z .
[Z00] Attempting to prove invariants of some operations, side effects of operations were
revealed (and henceforth corrected). The specification became easier to use and easier to
digest.

Using a freely available tool, i.e., CADiZ, has advantages and disadvantages. Contact
with the author of the tool was easy and a fix was supplied fast for a problem detected
when installing und using the tool for the first time. Extensive documentation is available
online. No restrictions are experienced as regards licensing (and costs) as well as using
the results produced with the tool. On the downside, there is a clear lack of a large
and demanding customer base. Installation is tedious, use does not conform to standard

196 CHAPTER 8. CONCLUSIONS

user interface guidelines and experience. We would have preferred a tool like ProofPower,
enhanced by the use of standard LATEX files and better support for typesetting Z . Docu-
mentation of CADiZ seems more oriented towards people interested in the technical details
of the tool itself. It could benefit from more examples, explicit documentation of how to
type Z specifications in LATEX. Error messages of the tool are a pain in the neck and would
not have been tolerated in a commercial version. However, one supposedly gets what one
pays for. So, for zero direct costs the advantages by far outweigh the disadvantages.

8.3 Future work

Our work could be extended in several directions. The nature of the presented framework
allows for incremental enhancements.

Security requirements could be specified at a finer level, e.g., distinguishing between
protection of user data, person-related data, configuration data, and exported data along
the confidentiality and integrity dimensions. However, this might lead to difficulties when
comparing combined security requirement levels.

The generic operating system model could be modified to include more connector types,
e.g., to lock access to components involved in an operation (locking as an alternative to
explicit access control). New component types could be used as decoys to reflect such
protection mechanisms as local honey pot components. These could make it harder for
an attacker to find the correct target without being detected.

A larger number of generic attack methods in the repository, especially multi-step at-
tacks performed over a longer time period, would yield a more comprehensive picture of
the tools available to an adversary. Timing aspects, e.g., changes in access control config-
uration applied immediately or delayed, temporally restricted access rights, or treatment
of race conditions seem like a worthwhile extension.

Measurement should be automated to gather more data more reliably in short time and
at lower expense. Software architecture could be extracted from architecture design tools
where available, and then transformed to fit into the structures of our model. It might
also be possible to use annotated syntax trees (recovered from source code) to derive an
architectural description of an application.

Graph kernel methods as outlined in [NB05] could be used to measure similarity of
architectures. This could be studied in connection with changes in the level of resilience
of the two architectures against malware attacks.

Availability of better tools for the use of formal methods for architectural analysis
would be an advantage. The wish list comprises easy installation, ease of use, integration
with LATEX interoperability between tools, and documentation aimed at skilled users, not
tool developers or tool experts.

Appendix A

Checklists Used to Derive Software
Architecture Properties

C.C. Wood, W.W. Banks, S.B. Guarro, V.E. Ham-

pel, and H.P. Sartorio. Computer security: a com-

prehensive controls checklist. J. Wiley & Sons, 1987

([WBG+87])

The checklists contained in [WBG+87] emerged from a project carried out for the United
States Air Force in the 1980s. They were derived from a broad examination of the then
current literature and computer systems, and from discussions with computer security
experts. Despite its age the questions raised are fundamental and still pertain to computer
systems today.

In total the lists consist of 738 questions in 11 categories pertaining to computer secu-
rity. Out of these, 5 categories were selected for further study: Systems development,
Data and program access, Input/output, Processing operations, Database and systems
software. As a result, 97 questions were evaluated as relevant as regards malware and
software/system architecture. They are used in the development of software metrics for
malware resistance in chapter 3. These days, computer systems do not necessarily exhibit
the strong separation between development and production systems as of the time when
these lists were introduced.
Relevant checklists (sections numbered as in referenced document):

• 2.2 – Systems Development

• 2.6 – Data and Program Access

• 2.7 – Input/Output

• 2.8 – Processing Operations

• 2.9 – Database and Systems Software

Relevant checklist items Items are trailed by an estimation of the lists’ authors how
important they are to be followed: VL Very Low, L Low, M Medium, H High, VH Very
High.

197

198 APPENDIX A. SECURITY CHECKLISTS

2.2 – Systems Development Checklist

10. Are production programs segregated from those programs in development and in
testing such that the personnel involved in these activities cannot modify, replace,
or otherwise affect production programs? (VH)

14. If emergency changes to production programs are made, are such emergency changes
logged, and subsequently justified and supported by appropriate documentation and
management approval? (VH)

15. Are nonemergency requests for both new applications and modifications to existing
programs screened by data processing management to determine their legitimacy
and relative importance? (M)

16. Are all nonemergency changes to production programs initiated by and traceable to
user request, management directive, or auditor recommendation? (L)

17. Are tests of vendor supplied upgrades in software performed prior to using such new
software with production data? (M)

18. Are all changes to production systems accompanied by appropriate updates to ex-
isting documentation? (M)

19. Are source code compare programs or other mechanisms (such as total hash checks)
used to detect unauthorized production program changes employed? (M)

20. Are all changes to production programs recorded in a protected log that reflects the
content of the change, the date, and the initiating person? (H)

21. Is the ability to effect changes to production program libraries restricted to a few
authorized individuals? (H)

26. Is program maintenance subject to stringent controls comparable to those found in
original program development? (H)

30. Are all permanent program changes (except those provided by vendors) generated
from source rather than object code? (L)

31. Are modifications to vendor software made by in-house staff kept to a minimum and
completely documented? (L)

33. Are systems under development coordinated via a data dictionary (sometimes called
a data directory) so that controls are consistently applied to data wherever that data
may reside? (A data dictionary is a master index to data throughout an organi-
zation, not just specific application systems, computer systems, or organizational
subunits.) (H)

199

2.6 – Data and Program Access

2. Is the identity of all computers making connection to the systems being examined,
positively validated with message authentication codes, passwords, or some other
similar mechanism? [Message authentication codes are cryptographically derived
quantities appended to messages that are used to verify that the messages have not
been modified (or in some cases deleted) in transit.] (H)

3. Are all accesses to sensitive files, databases, and programs granted only after the
requesting user, process, or external system has been identified and has had its
permission to access such resources verified? (VH)

4. Are all accesses to sensitive files, databases, and programs restricted by a scheme
that enforces the various types of access such as read, write, delete, copy, rename,
allocate, catalog, and execute (H)?

5. Is an execute-only access condition available for sensitive programs that are not to
be read, copied, or otherwise used? (M)

6. Are user-created or user-controlled files, databases, and programs segregated so
that no other user can access these files without first having such access specifically
enabled (”superuser” or privileged user accounts excepted)? (VH)

7. Is a second identity validation control point, separate from the initial log-in identity
validation, used to check file, database, and program access privileges? (The initial
log-in password or other identification validation routine might be operating system
based, whereas a second level of password oriented identification validation might
be application supported.) (H)

10. Are sensitive nondata and nonprogram systems resources (such as terminals) con-
trolled by passwords unique to individuals? (H)

12. Is the ability to initiate sensitive transactions controlled via an access control pack-
age or application-based control program? (H)

17. Does the actual readable (cleartext) value of passwords and other security parame-
ters never appear in systems logs, applications logs, or other logs? (VH)

20. Are the commands to turn off or disable security-related logs strictly limited to
those users with a need to invoke such commands? (H)

21. Will the turning off or disabling of security-related logs result in an entry in such
logs? (H)

25. Is the file containing user passwords encrypted using a cryptographic algorithm with
a high work factor (i.e., using a highly secure algorithm)? (VH)

26. If encryption is used to protect passwords in storage, is the key for the encryption
process either encrypted, not on the system, or in a tamperproof security module?
(To have the key in main memory in unencrypted form exposes the system to a
number of very serious potential attacks.) (H)

200 APPENDIX A. SECURITY CHECKLISTS

27. Are passwords in security files encrypted with one-way functions such that cleartext
(readable) password values cannot be recovered? (H)

29. Are files containing user passwords, authorization (access control) bits in records
and files, authorization tables, or other mechanisms used to control user access to
data and programs prevented from being modified by unauthorized users? (H)

62. Are jobs sent from one system to another controlled by user-IDs, passwords, en-
cryption keys, message authentication codes, or other mechanisms used as access
control identifiers and identity validation codes? (H)

64. If a database is used, are parts of the database restricted according to user or
program privileges? (H)

69. Are access controls implemented using rules that define user privileges with regard
to sensitive system resources (e.g., as a member of a given group of users, a certain
user may have access to certain data by default)? (Rules that apply to several users
facilitate the administration of access controls over systems resources.) (M)

72. Is the assignment of and maintenance of access constraints over files and other sen-
sitive resources, to a large extent, handled by users rather than centralized security
administrators? (In a large-scale system, centralized control of resources such as
files, via security administrators, may be onerous and difficult to maintain.) (H)

82. Are user jobs prevented from reading or writing outside their assigned storage areas
in main memory, on disks, and so on? (H)

83. Does the operating system erase (zeroize) all scratch space assigned to a sensitive
job after the normal or abnormal termination of the job (also known as residue
protection)? (H)

84. Are all mechanisms to disable access control programs (RACFTM, SECURETM,
TOP SECRETTM, GUARDIANTM, etc.) restricted to privileged users, and does
the invocation of such mechanisms result in an entry in a protected log? (VH)

85. Will a failure on the part of access control programs prevent users from accessing
the system rather than no longer controlling access? (M)

87. Are computer programs that safeguard or handle sensitive information themselves
safeguarded with the same or greater control than the information they apply to?
(M)

91. Are microcomputers and other small computers protected with logical access control
packages somewhat like RACFTM and ACF2TM? (Often smaller machines have no
such software available and/or the users mistakenly believe that it is not necessary
for these machines.) (H)

92. Within the organization, is one standard access control package used on all large-
scale machines running the same or similar operating systems? (Secure transfer of
sensitive files and other controlled systems resources will be significantly facilitated
if this is the case.) (H)

201

93. Is access to particular sensitive files or databases restricted by allowing only certain
authorized programs to access such files or databases? (Some call this ”restricted
paths” to the data.) (M)

98. Did the installation of the access control package in use, such as RACFTM and
ACF2TM, not require that the operating system be modified? (Operating system
modification may unwittingly open up additional vulnerabilities.) (L)

99. Does the access control package in use have a control philosophy that all resources
(tapes, files, etc.) are restricted by default rather than unrestricted by default? (If
restrictions are forgotten for a sensitive resource, this philosophy will mean that the
resource is protected, whereas with the countervailing philosophy, the resource will
not be protected.) (VH)

101. Does the access control package in use provide access protection (read, write, exe-
cute, delete, etc.) for separate files resident on tape? (Some access control packages
protect only the tape volume, not the specific files contained on the tape volume.)
(M)

103. Does the access control package in use have the ability to protect catalogs (directories
of locations of files and libraries) rather than just files? (Program change control
processes and certain other controls may be supported by such a facility.) (H)

105. Can changes in the access control system’s rules and passwords be made without
re-IPLing (again initial program loading) the system? (Some systems require that
the system come down and then be regenerated to change these critical parameters,
although it is preferable to be able to do it as operations continue.) (M)

2.7 – Input/Output

1. Do application programs include input edit routines such as character type checks,
limit checks, validity checks, sequence check, reasonableness checks, consistency
checks, or other similar types of checks? (VH)

2. Is redundant entry of data by another operator (e.g., verification of keypunching or
keytaping) performed as a means to reduce errors in input data? (M)

3. Are the operators inputting data required to enter critical fields twice as a means
of ensuring the correctness of such data? (M)

15. Are critical or very sensitive input transactions removed from the normal flow of
input and handled with special procedures, such as separate input item serial num-
bers? (H)

25. Is the work of all persons involved in data input and output traceable to such
individuals? (VH)

26. Are the types of transactions that users can input restricted to those directly related
to their job duties? (H)

202 APPENDIX A. SECURITY CHECKLISTS

2.8 – Processing Operations

6. Are protected copies of recently outdated production programs kept conveniently
available such that they may be used in the event that newer versions do not run
properly? (L)

8. Are production programs statically linked together so that dynamic linkages at
run time do not represent an opportunity for unauthorized replacement of some
of these programs? (The interfaces and calls between production programs should
not be subject to modification at program invocation time, to do so is to open up
the possibility that one of these production programs could be replaced with an
unauthorized program.) (M)

10. Are control totals that balance the entire system, or non-application resources
therein, used (e.g., balancing between systems and balancing/reconciling files)?
(These control totals are particularly important when several interdependent ap-
plications are run sequentially.) (VH)

15. Are procedures for blanking or purging intermediate storage (including scratch tapes
and disks) always carried out following jobs using sensitive information? (VH)

16. Is the reading of scratch tapes and other intermediate storage prohibited unless
the same job/user has previously written to the same tape or intermediate storage
media? (M)

29. Are special routines used to periodically recalculate hash totals of production pro-
grams to ensure that unauthorized modifications have not been made? (A hash total
in this instance serves as a file authentication code in that it is a number resulting
from a calculation that includes the entire production program as input.) (M)

30. To detect unauthorized modifications, is a program that compares controlled dupli-
cates of production programs with the current on-the-system production programs
used? (M)

31. If the system handles very sensitive data, is it run only during those hours when
management is on the premises to supervise? (M)

33. Is a system in effect that controls changes to production programs and that logs
all changes to production applications software, operations software, and operating
systems software? (VH)

35. Is invocation of the programs in privileged libraries always followed by an entry in
a secure log? (VH)

36. Are access restrictions in effect on systems utilities (such as Superzap or Disk An-
alyzer) that might be used to manipulate the system or otherwise circumvent con-
trols? (VH)

46. Are all programs required to be run under the control of an operating system that
automatically and consistently records their use on the console log? (M)

54. Is a secure log of all changes to security tables (such as the tables that permit users
to access certain system resources) kept? (VH)

203

56. Are master commands, such as boot the system, restricted to a small number of
terminals and a small number of operators? (H)

57. To protect sensitive information held in main memory from inadvertent disclosure
(as might take place when a memory dump occurs), are these data cryptographically
protected at least part of the time? (H)

59. Are the job assignments of computer operations personnel rotated periodically? (H)

2.9 – Database and Systems Software

5. Is access to both databases and data dictionaries restricted to users and processes
that have a need to know? (VH)

9. Are authorization tables, profiles, or some similar method used to restrict the access
of users and processes to only those transactions for which they have been specifically
authorized? (VH)

13. Are all inquiries and updates to databases recorded in secure logs (i.e., are audit
trails provided)? (VH)

14. Does the database’s logging system record all deleted data, all new data, the origin
of all transactions, application utilization of certain databases, user utilization of
certain databases, security violations, and various related accounting information?
(H)

17. If an attempt to perform unauthorized actions is in progress, will a DBA [database
administrator] or some other staff member in a position to take action be notified
in real time? (M)

21. Does database software clear buffers after transaction processing to prevent unau-
thorized access to the contents of such buffers? (L)

22. Are sensitive database fields encrypted to prevent unauthorized access? (H)

25. When special DBMS utilities or DBA-privileged commands are being invoked, will
these instructions be followed only if entered from a specific master terminal? (L)

34. When databases are not under the control of DBMS routines, are there mechanisms
to prevent access to such databases (particularly to protect against unauthorized
copying)? (M)

45. Are compilers, interpreters, and other language translators that may facilitate pro-
gram development not resident on computers that are used for production jobs only?
(M)

46. Are text editors and other utilities that might be used to make unauthorized mod-
ifications to software not resident on computers that are used for production jobs
only? (M)

50. Is access to sensitive systems utilities strictly controlled such that only systems
programmers and others with a need are granted such access? (VH)

204 APPENDIX A. SECURITY CHECKLISTS

53. To make unauthorized modification extremely difficult, are particularly sensitive
programs implemented in firmware as opposed to software? (Firmware cannot be
modified except with sophisticated equipment, and even then may have to be re-
moved from the device that houses it.) (M)

54. To detect unauthorized modification of systems software, are comparator programs
used to compare system resident copies of sensitive software with copies securely
maintained elsewhere (may be used for both object and source copies)? (L)

55. To detect unauthorized modification of important software, are check-sum counts of
the bits contained in software packages compared, or are hash totals of such software
packages compared? (L)

56. Are check-sums, hash totals, cryptographic authentications, or some other technique
used to ensure that sensitive internal tables are not tampered with?

58. Does the operating system use kernelized software (restricted access software for
which special security validation work has been done)? (VH)

59. Does the systems software support multilevel security, that is, are users with differ-
ent security clearances and data with different sensitivity classifications concurrently
handled in such a way that proper separation is maintained? (VH)

61. To initiate a new processing day, and to assure that no unauthorized changes to
sensitive software have been made, is such software down-line loaded from a central
to remote sites? (VL)

65. Does systems software or hardware prevent one user from gaining access to another
user’s storage space in buffers, main memory, disks, and so on? (H)

68. Is encryption used to safeguard particularly sensitive systems software and data?
(H)

69. If a computer system is to be subsequently used by another party with lower-level
clearance or privileges, must internal memory be erased, all sensitive storage media
removed, and all proprietary systems and otherwise sensitive software removed?
(M)

70. If a communications circuit fails, or if some other event severs a connection with an
on-line process/user, will system software require full identification and authentica-
tion from the next process/user coming in on that line/port? (M)

72. Is the ability to invoke mechanisms, used to bypass security software(e.g., use of
disk error analysis routines to bypass file access control software) strictly limited to
authorized persons? (VH)

73. Will an abend (abnormal ending) to a program that utilizes sensitive information
protected by access control software be prevented from resulting in a dump of such
sensitive information? (M)

205

76. Does policy prohibit system programmers from placing ”hooks” (e.g., places where
an unauthorized program might be called or where an unauthorized transaction
might be initiated) in their programs that may later be used to compromise pro-
duction program security? (M)

77. Is the operating system log (also called an audit trail) protected such that unautho-
rized modification is exceedingly difficult? (VH)

78. Are commands that turn off operating system logs very strictly controlled, and does
invocation of such a command also result in an entry in these logs? (VH)

79. Is the use of abort and cancel instructions limited so that users cannot thereby enter
executive (privileged) mode? (On certain systems these commands may be used to
exit application programs, and thereby to circumvent the control provided by such
application systems.) (H)

81. Is a program library management system used to control modifications to and usage
of systems software? (M)

CORAS methodology. [modified 2004-10-17, down-loaded

2005-05-23]. http://coras.sourceforge.net/, 2004 ([COR04])

The questionnaires contained in [COR04] were used in the EU research project CORAS
(A Platform for Risk Analysis of Security Critical Systems). Here, model-based risk
assessment was supported by a UML-based specification language, a library with collected
experiences, a software tool, and an XML-based specification for data exchange about
security-critical systems. With the list, an operator of the tools is aided in addressing the
security aspects of the system under evaluation.

In total the lists consist of 176 questions in 8 categories pertaining to computer secu-
rity on various levels (high level management down to technical aspects). Out of these, 5
categories were selected for further study: Human, Physical, Information, Software, Ex-
ceptional circumstances. As a result, 51 questions were evaluated as relevant as regards
malware and software/system architecture. They are used in the development of software
metrics for malware resistance in chapter 3.
Relevant questionnaires (sections numbered as in referenced document):

• 2 – Human

• 3 – Physical

• 4 – Information

• 7 – Software

• 8 – Exceptional circumstances

Relevant questionnaire questions

206 APPENDIX A. SECURITY CHECKLISTS

2 – Vulnerability-questionnaire: Human

8. How will a user recognize a security breach or security anomaly?

12. Are there any procedures or routines for testing that security handling is functioning
and effective?

13. Are there routines for reporting software malfunctions?

3 Vulnerability-questionnaire: Physical

17. Is access to computer resources restricted at the operating system level?

18. Is terminal identification used to authenticate connections to specific locations?

19. Are there secure log-on procedures in order to avoid unauthorised users to access
information services?

20. Are users identified and authenticated?

22. Is the use of system utilities restricted to authorized personnel?

23. Are users automatically logged off after a certain time of inactivity?

24. Are there limitations on connection times for high-risk applications?

4 Vulnerability-questionnaire: Information

19. Are backups of information taken on a regular and scheduled basis and stored with
an appropriate level of physical and environmental protection?

21. Are system faults logged?

22. Is encryption used in order to protect highly sensitive data?

23. Is message authentication (by use of digital signatures or otherwise) used for appli-
cations, which involve the transmission of sensitive data?

25. Are cryptographic keys properly protected and managed?

30. Are there mechanisms that prevent users from installing software that is downloaded
from unprotected or untrustworthy sources?

41. Are systems monitored in order to detect unauthorised activities?

43. Are input data validated?

44. Are data processed by application systems validated?

45. Is message authentication used to detect unauthorised changes to or corruption of
the contents of a transmitted electronic message?

46. Is data output from an application system validated?

47. Are there control routines for protection and verification of system files?

207

48. Are there control routines for protection and verification of software on operational
systems?

49. Are there formal procedures for change control in development and support pro-
cesses?

51. Are there procedures to document modifications of software packages or deployment
of new packages?

52. Are there procedures in place to ensure that a deployed system is used in the same
manner as the designers thought it would be used?

7 Vulnerability-questionnaire: Software

8. Are there formal procedures controlling the access to information systems and ser-
vices?

10. Are allocation and use of privileges restricted and controlled?

13. Are all connections to network services controlled?

14. Is a users network access limited as to give access only to services that are strictly
needed?

15. Is the route from a users terminal to the computer service controlled?

16. Are users that are using external connections adequately authenticated?

17. Are external terminals or systems connected to the host system adequately authen-
ticated?

18. Are diagnostic/remote maintenance ports and systems securely protected?

19. Is the network divided into sub networks in order to provide added protection?

20. Are business application access control policies reflected in limitations on network
connections?

21. Are unnecessary network services disabled or monitored?

22. Is access to software and application appropriately controlled?

24. Are input data to application systems validated?

25. Are data processed by application systems validated?

26. Is message authentication used to detect unauthorised changes to or corruption of
the contents of a transmitted electronic messages?

27. Is data output from an application system validated?

28. Are there control routines for protection and verification of system files?

29. Are there control routines for protection and verification of software on operational
systems?

208 APPENDIX A. SECURITY CHECKLISTS

30. Are there formal procedures for change control in development and support pro-
cesses?

31. Are the pre-conditions for the provided interfaces and post-conditions of the required
interfaces documented?

32. Does the component verify that the pre-conditions are met before executing the
functionality? Has any pre-condition verification been tested?

33. Were invariants identified and documented? Were invariants verified during testing
with assertions?

34. Are there Exception Handling provisions for software components? Are unhandled
exceptions documented for each component that throws them? Are the available
exception handlers tested?

8 Vulnerability-questionnaire: Exceptional circumstances

9. To what extent can the TOE function autonomously (in whole or in part) with
respect to the environment (e.g. without a WAN, if law and order breaks down,
during massive and prolonged power outages, if all key personnel are disabled etc.)?

11. To what extent is the TOE designed to be fail-soft in exceptional circumstances?

12. What are the trigger criteria that will cause the TOE to fail-safe, i.e. enter a
stable/safe/static/known state? How will the fail-safe state be achieved?

Appendix B

StarMoney architecture

StarMoney 5.0 consists of more than 2,000 individual files comprising stand-alone exe-
cutables, dynamically linked libraries, user interface definition files, configuration files,
database files. In addition, some configuration data is stored in the system registry.

Architecturally, the homebanking application StarMoney 5.0 with a total size of ca.
50 MB consists of 3 small executable modules, StartStarMoney.exe [60 KB] for prepar-
ing the start of the main executable StarMoney.exe [172 KB], and SCRSetup.exe for
configuring smart card readers attached to the system. (5 additional executable mod-
ules perform peripheral functionality: Conversion of older versions’ data (smkonv.exe),
T-Online Classic access (CLGate32.exe, sfkclgateslave.exe, sfktonac.exe), remote
support (NetViewer.exe))

Dependencies between modules are extracted by syntactic analysis of the binaries by
own tools and semantic analysis of fixed run-time bindings, e.g., using the Dependency

Walker tool for Microsoft Windows executables (included, e.g., with Visual Studio). Fixed
bindings are decided at compile time by partial reference, i.e. filename only, and resolved
at run time. Resolution out of control of the application may lead to executables being
loaded that were not intended. Dynamic bindings are under control of the application,
i.e., it can decide whether to operate with complete path information to a file or to defer
resolution to the operating system. Here, we can use, e.g., FileMon and RegMon tools to
obtain information about the bindings. These tools are provided by sysinternals.com.

The executable modules are supported by 89 executable library files that extend the
functionality of the main executable. They can be partitioned into 6 function groups:
Core banking (18 libraries), Smart card communication (4 libraries), Database access (11
libraries), Communication (17 libraries), User interface (24 libraries), Miscellaneous (15
libraries). We list size, name, and purpose of each identified module.

Core banking 18 files
94,208 sfkcepthdl.dll T-Online CEPT communication

221,184 sfkhbcihdl.dll HBCI routines
110,592 sfkhbcipthdl.dll HBCI protocol handler
90,112 sfkhbcitranslator.dll HBCI protocol routines
36,864 sfkinternalreqhdl.dll Securities trading
81,920 sfkkernel.dll HBCI kernel
28,672 sfkmp940.dll SWIFT MT 940 parser
28,672 sfkmpapo.dll MT 940 parser APO bank
28,672 sfkmpizb.dll MT 940 parser IZB computing center

209

210 APPENDIX B. STARMONEY ARCHITECTURE

28,672 sfkmpkordob.dll MT 940 parser Kordoba Payment Systems
28,672 sfkmpvbv.dll MT 940 parser VBV
65,536 sfkmtbase.dll SWIFT message types parser
45,056 sfkparameterdatahdl.dll Bank parameter data handler

200,704 sfkparser.dll Transaction content parser
73,728 sfksmgatewayhdl.dll Banking gateway

503,808 sfmcorecoapp.dll Application coordination
688,128 sfmcorecostock.dll Stock trading
139,264 sfmcorecotimedep.dll Time deposits

Smart card communication and smart card reader 4 files
20,480 pcsckrnlini.dll PC/SC configuration for HBCI

139,264 sfkctapicard.dll CT-API compatible card reader
135,168 sfkpcscard.dll PC/SC compatible card reader
196,608 sfksecmod.dll Security module creation

Database access 11 files
503,808 sfbsdb.dll Application database access
53,248 sfmcorecosystemdb.dll System database access

327,680 sfmcoredb.dll Application database access
221,184 sfmcoreimex.dll Data import/export
49,152 sfmcoreimporterimpl.dll Import coordination
90,112 sfmcoreimportersc2.dll Data import S-Connect

135,168 sfmcoreimporterzvlight.dll Data import ZV light
204,800 sfmpreconvzvl.dll Data conversion ZV light
331,776 sfmuidetailadmin.dll Application database administration
163,840 sfmuidetailbadmin.dll Application database administration
135,168 sfmuidetailimex.dll Data import/export

Communication 17 files
336,384 aol32.dll AOL connection — 3rd party
49,152 sfbcore.dll Character encoding/conversion

118,784 sfbcrypto.dll Cryptographic operations
286,720 sfbinet.dll Internet data transfer
53,248 sfbosl.dll IPC and network communication

225,280 sfbtoolsn.dll File and network access
94,208 sfbvos.dll Socket communication
24,576 sfkclgateaccess.dll T-Online gateway connection
65,536 sfkprotocolhdl.dll HTTP protocol handler
28,672 sfktonac.dll T-Online controller
73,728 sfktonlinedec.dll T-Online macro processor

147,456 sfkwebbankinghdl.dll Screen scraping engine
147,456 sfkwebengine.dll Web engine
172,032 sfkwebenginecmd.dll Web engine commands

211

32,768 sfkxmlhttprequest.dll HTTP request factory
507,904 CATClient\cptdll32.dll T-Online CEPT
90,112 CATClient\TrpS2032.dll T-Online Transport/S

User interface 24 files
57,344 iecontr.dll IE Hosting

188,416 libtidy.dll Tidy HTML routines — 3rd party
461,864 olch2d32.dll Chart control — 3rd party [signed]
856,064 sfbsv.dll Starview control handling

1,183,744 sfbsvtools.dll JPEG image handling
2,117,632 sfmcorecobasic.dll User interface coordination

90,112 sfmcorere.dll Reporting routines
950,272 sfmuicontrol.dll Web browser control host

1,740,800 sfmuidetailaccount.dll Account details and dispatch
1,028,096 sfmuidetailbasic.dll High-level dispatcher

430,080 sfmuidetailcommon.dll Shared dialogs
131,072 sfmuidetailhbauto.dll Transaction automation
397,312 sfmuidetailoverview.dll Account details
397,312 sfmuidetailreport.dll Report configuration
675,840 sfmuidetailstock.dll Securities trading
180,224 sfmuidetailtimedep.dll Time deposits
978,944 sfmuidetailtransfer.dll Money transfer
53,248 sfmuief.dll Browser properties wrapper
32,768 sfmuihtmlhelp.dll HTML Help loader
40,960 sfmuiie.dll Browser methods wrapper
45,056 sfmuiimporterimpl.dll Data import
49,152 sfmuiimportersc2.dll Data import S-Connect
36,864 sfmuiimportershare.dll Data import shared dialogs
36,864 sfmuiimporterzvlight.dll Data import ZV light

Miscellaneous 15 files
401,462 msvcp60.dll MS C++ Runtime Library — 3rd party
202,240 patchw32.dll Software updates — 3rd party
36,864 sfbmsutil.dll Stream conversions
28,672 sfbsolar.dll Intra-memory data handling

151,552 sfbtoolso.dll Languages and format conversion routines
57,344 sfbunzip.dll Data compression
24,576 sfbversioninfo.dll File version information
45,056 sfbxmlutil.dll XML parser

335,872 sfktools.dll Routines collection
77,824 sfkupdatehdl.dll Software updates
57,344 sfkxinclude.dll XML routines
32,768 sfkxsltscripthdl.dll XSLT script handler

139,264 sfmcoremisc.dll Diverse routines
237,568 sfmuionlactiv.dll Online activation

212 APPENDIX B. STARMONEY ARCHITECTURE

81,920 sfmuisvbrbx.dll Browse box

Where we omit file extensions in our list, the extension is .dll. The first column
gives the module loading another. A host module in parentheses is one loaded by the
initial host module. The second column gives the loaded module and its location. Usual
abbreviations for folders are used, e.g. %WINSYSDIR% for the main operating system folder
for libraries. Subsequent files in the same folder are shown indented. The third column
states if loading happens with a complete or incomplete reference (omitted in cases where
the operating system is responsible for sequences of loaded system libraries). The fourth
and final column shows the entity responsible for resolving an incomplete reference, and
can be the operating system – OS – or the application.

The discovered module dependencies of StarMoney are:

Main executables 8 files
Host module Hosted/imported module Reference Resolution

StartStarMoney.exe %WINSYSDIR%\kernel32 incomplete OS

(kernel32) %WINSYSDIR%\ntdll (OS)

%WINSYSDIR%\user32 incomplete OS

(user32) %WINSYSDIR%\gdi32 (OS)

(user32) %WINSYSDIR%\kernel32 (OS)

(user32) %WINSYSDIR%\ntdll (OS)

%WINSYSDIR%\advapi32 incomplete OS

(advapi32) %WINSYSDIR%\ntdll (OS)

(advapi32) %WINSYSDIR%\kernel32 (OS)

(advapi32) %WINSYSDIR%\rpcrt4 (OS)

(rpcrt4) %WINSYSDIR%\ntdll (OS)

(rpcrt4) %WINSYSDIR%\kernel32 (OS)

(rpcrt4) %WINSYSDIR%\advapi32 (OS)

%WINSYSDIR%\ole32 incomplete OS

(ole32) %WINSYSDIR%\advapi32 (OS)

(ole32) %WINSYSDIR%\gdi32 (OS)

(ole32) %WINSYSDIR%\kernel32 (OS)

(ole32) %WINSYSDIR%\msvcrt (OS)

(ole32) %WINSYSDIR%\ntdll (OS)

(ole32) %WINSYSDIR%\rpcrt4 (OS)

(ole32) %WINSYSDIR%\user32 (OS)

%WINSYSDIR%\gdi32 incomplete OS

(gdi32) %WINSYSDIR%\kernel32 (OS)

(gdi32) %WINSYSDIR%\ntdll (OS)

(gdi32) %WINSYSDIR%\user32 (OS)

%WINSYSDIR%\msvcrt incomplete OS

(msvcrt) %WINSYSDIR%\kernel32 (OS)

(msvcrt) %WINSYSDIR%\ntdll (OS)

%INSTDIR%\msvcp60 incomplete OS

(msvcp60) %WINSYSDIR%\msvcrt incomplete OS

(msvcp60) %WINSYSDIR%\kernel32 incomplete OS

%INSTDIR%\sfbunzip incomplete OS

213

(sfbunzip) %WINSYSDIR%\msvcrt incomplete OS

(sfbunzip) %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\wsock32 incomplete OS

%INSTDIR%\StarMoney.exe incorrect Application

smoney.ini complete Application

ouext.ini complete Application

bootload.lst complete Application

banner.ini unknown

pocket.ini unknown

setup.exe unknown

We found that operating system libraries that are loaded upon module execution, are
always referenced by their file name only, omitting path information. In the following,
we will not list these recursively for brevity reasons. Hence, dependencies on operating
system modules are only listed for the modules originally loaded by StarMoney. Libraries
in turn loaded with incomplete reference by operating system libraries are not shown.
These have to be determined by analysing the internal dependencies of operating system
files, especially those stored in the %WINSYSDIR% folder.
Host module Hosted/imported module Reference Resolution

StarMoney.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuief incomplete OS

sfmuiie incomplete OS

sfmcoremisc incomplete OS

%INSTDIR%_sm.exe unknown

%INSTDIR%\netviewer.exe unknown

sfmuibpdview incomplete OS

sfmuidbview incomplete OS

%IEDIR%\iexplore.exe unknown

%INSTDIR%\euro.rat complete Application

%INSTDIR%\smoney.ini complete Application

.\agent\smosetup.ini complete Application

%INSTDIR%\sfmuilang49 unknown

214 APPENDIX B. STARMONEY ARCHITECTURE

instances.ini unknown

ouext.ini unknown

pocket.ini unknown

Host module Hosted/imported module Reference Resolution

SCRSetup.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbtoolso incomplete OS

sfbsv incomplete OS

sfbsvtools incomplete OS

sfktools incomplete OS

pcsckrnlini incomplete OS

sfkpcscard incomplete OS

sfkctapicard incomplete OS

%WINDIR%\hbcikrnl.ini complete Application

Host module Hosted/imported module Reference Resolution

smkonv.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmuiimporterimpl incomplete OS

Host module Hosted/imported module Reference Resolution

CLGate32.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\comctl32 incomplete OS

%WINSYSDIR%\comdlg32 incomplete OS

%INSTDIR%\CATClient\CptDll32 incomplete OS

Host module Hosted/imported module Reference Resolution

sfkclgateslave.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%INSTDIR%\CATClient\CLGate32.exe unknown

215

Host module Hosted/imported module Reference Resolution

sfktonac.exe %INSTDIR%\CATClient\sfktonac incomplete OS

%WINSYSDIR%\krnl386.exe incomplete OS

Host module Hosted/imported module Reference Resolution

NetViewer.exe %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\version incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\comctl32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\winmm incomplete OS

%WINSYSDIR%\wsock32 incomplete OS

Core banking 18 files
Host module Hosted/imported module Reference Resolution

sfkcepthdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfktools incomplete OS

sfbtoolsn incomplete OS

sfkhbcitranslator incomplete OS

sfbvos incomplete OS

sfkhbcihdl incomplete OS

sfkprotocolhdl incomplete OS

sfktonlinedec incomplete OS

sfkcepthdl incomplete OS

sfkmeide incomplete OS

Host module Hosted/imported module Reference Resolution

sfkhbcihdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfkhbcitranslator incomplete OS

sfktools incomplete OS

sfkprotocolhdl incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

sfkctapicard incomplete OS

sfksecmodrm incomplete OS

sfksecmod incomplete OS

sfkpcscard incomplete OS

216 APPENDIX B. STARMONEY ARCHITECTURE

connect.ini unknown

versions.ini unknown

creader.ini unknown

Host module Hosted/imported module Reference Resolution

sfkhbcipthdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfkhbcitranslator incomplete OS

sfktools incomplete OS

sfkprotocolhdl incomplete OS

sfbtoolsn incomplete OS

sfkhbcihdl incomplete OS

%INSTDIR%\smoney.ini complete Application

Host module Hosted/imported module Reference Resolution

sfkhbcitranslator.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfktools incomplete OS

sfbtoolsn incomplete OS

sfbcore incomplete OS

sfbcrypto incomplete OS

sfbvos incomplete OS

sfkmeide incomplete OS

Host module Hosted/imported module Reference Resolution

sfkinternalreqhdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfkprotocolhdl incomplete OS

sfbtoolsn incomplete OS

Host module Hosted/imported module Reference Resolution

sfkkernel.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

sfbinet incomplete OS

sfbsolar incomplete OS

sfkparameterdatahdl incomplete OS

sfkparser incomplete OS

sfktonlinedec incomplete OS

sfkwebbankinghdl incomplete OS

217

sfkinternalreqhdl incomplete OS

sfkcepthdl incomplete OS

sfksmgatewayhdl incomplete OS

sfkhbcipthdl incomplete OS

sfkhbcihdl incomplete OS

sfkupdatehdl incomplete OS

%WINSYSDIR%\rasapi32 incomplete OS

aol.exe unknown

aolhb32.exe unknown

%INSTDIR%\aol32 incomplete OS

connect.ini unknown

Host module Hosted/imported module Reference Resolution

sfkmp940.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfkmtbase incomplete OS

Host module Hosted/imported module Reference Resolution

sfkmpapo.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfkmtbase incomplete OS

Host module Hosted/imported module Reference Resolution

sfkmpizb.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfkmtbase incomplete OS

Host module Hosted/imported module Reference Resolution

sfkmpkordob.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfkmtbase incomplete OS

Host module Hosted/imported module Reference Resolution

sfkmpvbv.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfkmtbase incomplete OS

218 APPENDIX B. STARMONEY ARCHITECTURE

Host module Hosted/imported module Reference Resolution

sfkmtbase.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

Host module Hosted/imported module Reference Resolution

sfkparameterdatahdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcore incomplete OS

sfkhbcitranslator incomplete OS

sfktools incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

sfbmsutil incomplete OS

bpdhandler.ini complete Application

Host module Hosted/imported module Reference Resolution

sfkparser.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfktools incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

Host module Hosted/imported module Reference Resolution

sfksmgatewayhdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfkhbcitranslator incomplete OS

sfktools incomplete OS

sfkprotocolhdl incomplete OS

sfbtoolsn incomplete OS

sfkhbcihdl incomplete OS

sfbsolar incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcorecoapp.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

219

sfbcrypto incomplete OS

sfmcorecobasic incomplete OS

sfmcorecosystemdb incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmcorecostock incomplete OS

sfmcorecotimedep incomplete OS

%WINSYSDIR%\wsock32 incomplete OS

%INSTDIR%\smoney.ini complete Application

%INSTDIR%\agent\onlineup.ini unknown

\Banner\banner.ini unknown

\Banner\rpdid.ini unknown

Host module Hosted/imported module Reference Resolution

sfmcorecostock.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfkkernel incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcorecotimedep.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

Smart card communication and smart card reader 4 files
Host module Hosted/imported module Reference Resolution

pcsckrnlini.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%WINSYSDIR%\scarddlg incomplete OS

%WINSYSDIR%\winscard incomplete OS

%WINDIR%\hbcikrnl.ini complete Application

220 APPENDIX B. STARMONEY ARCHITECTURE

Host module Hosted/imported module Reference Resolution

sfkctapicard.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfktools incomplete OS

sfbvos incomplete OS

sfbtoolsn incomplete OS

sfbcrypto incomplete OS

ct32 incomplete OS

Host module Hosted/imported module Reference Resolution

sfkpcscard.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbcrypto incomplete OS

%WINSYSDIR%\winscard incomplete OS

Host module Hosted/imported module Reference Resolution

sfksecmod.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcrypto incomplete OS

sfktools incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

sfkparameterdatahdl incomplete OS

sfkpcscard incomplete OS

sfkctapicard incomplete OS

sfkremotecard incomplete OS

creader.ini unknown

connect.ini unknown

Database access 11 files
Host module Hosted/imported module Reference Resolution

sfbsdb.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%WINSYSDIR%\odbc32 incomplete OS

%WINSYSDIR%\odbccp32 incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

221

sfbtoolsn incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

%INSTDIR%\smoney.ini complete Application

Host module Hosted/imported module Reference Resolution

sfmcorecosystemdb.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmcorecobasic incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcoredb.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbsdb incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcoremisc incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcoreimex.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsv incomplete OS

sfbsdb incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcoreimporterimpl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

222 APPENDIX B. STARMONEY ARCHITECTURE

sfktools incomplete OS

sfbsv incomplete OS

sfbsdb incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

*.ini complete User

Host module Hosted/imported module Reference Resolution

sfmcoreimportersc2.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoremisc incomplete OS

sfmcorecotimedep incomplete OS

sfmcorecostock incomplete OS

sfmcorecoapp incomplete OS

sfmcoredb incomplete OS

sfmcoreimporterimpl incomplete OS

Host module Hosted/imported module Reference Resolution

sfmcoreimporterzvlight.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoremisc incomplete OS

sfmcorecoapp incomplete OS

sfmcoredb incomplete OS

sfmcoreimporterimpl incomplete OS

sfmpreconvzvl incomplete OS

Host module Hosted/imported module Reference Resolution

sfmpreconvzvl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

223

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\comctl32 incomplete OS

%WINSYSDIR%\comdlg32 incomplete OS

*.ini complete User

Host module Hosted/imported module Reference Resolution

sfmuidetailadmin.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuisvbrbx incomplete OS

sfmuidetailbasic incomplete OS

oflagent.exe unknown

Host module Hosted/imported module Reference Resolution

sfmuidetailbadmin.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcorecosystemdb incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailimex.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

224 APPENDIX B. STARMONEY ARCHITECTURE

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcoredb incomplete OS

sfmcoreimex incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuiie incomplete OS

Communication 17 files
Host module Hosted/imported module Reference Resolution

aol32.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\comctl32 incomplete OS

%WINSYSDIR%\lz32 incomplete OS

aolhb32 unknown

%WINSYSDIR%\imm32 incomplete OS

vcltest3 unknown

%WINSYSDIR%\psapi unknown

%WINSYSDIR%\vdmdbg incomplete OS

%WINSYSDIR%\ntvdm.exe unknown

waol.exe unknown

aol.exe complete Application

%WINDIR%\win.ini complete Application

Host module Hosted/imported module Reference Resolution

sfbcore.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbvos incomplete OS

sfbosl incomplete OS

Host module Hosted/imported module Reference Resolution

sfbcrypto.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

sfbinet.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcrypto incomplete OS

225

sfbosl incomplete OS

sfbsolar incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

Host module Hosted/imported module Reference Resolution

sfbosl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%WINSYSDIR%\wsock32 incomplete OS

%WINSYSDIR%\mpr incomplete OS

Host module Hosted/imported module Reference Resolution

sfbtoolsn.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\mpr incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbvos incomplete OS

Host module Hosted/imported module Reference Resolution

sfbvos.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbosl incomplete OS

Host module Hosted/imported module Reference Resolution

sfkclgateaccess.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfkclgateslave.exe unknown

Host module Hosted/imported module Reference Resolution

sfkprotocolhdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

sfktools incomplete OS

sfbinet incomplete OS

sfbsolar incomplete OS

sfbtoolsn incomplete OS

226 APPENDIX B. STARMONEY ARCHITECTURE

Host module Hosted/imported module Reference Resolution

sfktonac.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%INSTDIR%\sfktonac.exe incomplete OS

Host module Hosted/imported module Reference Resolution

sfktonlinedec.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfktools incomplete OS

sfbsolar incomplete OS

sfbtoolsn incomplete OS

sfbvos incomplete OS

sfktonac incomplete OS

sfkclgateaccess incomplete OS

%INSTDIR%\CATClient\CLGate32.exe unknown

versions.ini unknown

passwort.ini unknown

dbserver.ini unknown

connect.ini unknown

Host module Hosted/imported module Reference Resolution

sfkwebbankinghdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\wininet incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfkhbcihdl incomplete OS

sfkprotocolhdl incomplete OS

sfktools incomplete OS

sfbtoolsn incomplete OS

sfbxmlutil incomplete OS

sfbmsutil incomplete OS

sfbvos incomplete OS

sfkhbcitranslator incomplete OS

sfkxsltscripthdl incomplete OS

sfkwebengine incomplete OS

sfbcore incomplete OS

227

Host module Hosted/imported module Reference Resolution

sfkwebengine.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\wininet incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcore incomplete OS

sfbxmlutil incomplete OS

sfbosl incomplete OS

sfbvos incomplete OS

sfbmsutil incomplete OS

sfkwebenginecmd incomplete OS

sfktools incomplete OS

sfkxsltscripthdl incomplete OS

Host module Hosted/imported module Reference Resolution

sfkwebenginecmd.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\wininet incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcore incomplete OS

sfbosl incomplete OS

sfbvos incomplete OS

sfbxmlutil incomplete OS

sfkxsltscripthdl incomplete OS

sfbmsutil incomplete OS

sfbtoolsn incomplete OS

sfkxmlhttprequest incomplete OS

sfktools incomplete OS

Host module Hosted/imported module Reference Resolution

sfkxmlhttprequest.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\wininet incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbmsutil incomplete OS

sfktools incomplete OS

Host module Hosted/imported module Reference Resolution

CATClient\cptdll32.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

228 APPENDIX B. STARMONEY ARCHITECTURE

%WINSYSDIR%\comctl32 incomplete OS

%WINSYSDIR%\comdlg32 incomplete OS

%WINSYSDIR%\wsock32 incomplete OS

%WINSYSDIR%\version incomplete OS

kitdll32 unknown

Host module Hosted/imported module Reference Resolution

CATClient\TrpS2032.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

User interface 24 files
Host module Hosted/imported module Reference Resolution

iecontr.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

Host module Hosted/imported module Reference Resolution

libtidy.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

olch2d32.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\comdlg32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

sfbsv.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\comdlg32 incomplete OS

%WINSYSDIR%\sage incomplete OS

%WINSYSDIR%\winmm incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbtoolso incomplete OS

229

Host module Hosted/imported module Reference Resolution

sfbsvtools.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

%WINSYSDIR%\twain_32 incomplete OS

%WINSYSDIR%\version incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbtoolso incomplete OS

sfbsv incomplete OS

np*.dll unknown

ipc.ini unknown

sgf.ini unknown

Host module Hosted/imported module Reference Resolution

sfmcorecobasic.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfkkernel incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfbunzip incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

%WINDIR%\notepad.exe unknown

%WINDIR%\hh.exe unknown

shelp.exe unknown

Host module Hosted/imported module Reference Resolution

sfmcorere.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuicontrol.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\gdi32 incomplete OS

230 APPENDIX B. STARMONEY ARCHITECTURE

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\riched20 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfbvos incomplete OS

olch2d32 incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcorecosystemdb incomplete OS

sfmcoredb incomplete OS

sfmcoreimex incomplete OS

sfmcoremisc incomplete OS

sfmuief incomplete OS

sfmuihtmlhelp incomplete OS

sfmuiie incomplete OS

sfmuisvbrbx incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailaccount.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

sfmuiie incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailbasic.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbsdb incomplete OS

231

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfbvos incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcorecosystemdb incomplete OS

sfmcorecotimedep incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuief incomplete OS

sfmuiie incomplete OS

sfmuisvbrbx incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailcommon.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbcore incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfbosl incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

sfmuiie incomplete OS

sfmuihtmlhelp incomplete OS

sfmcorecostock incomplete OS

onlineup.ini unknown

ouext.ini unknown

Host module Hosted/imported module Reference Resolution

sfmuidetailhbauto.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

232 APPENDIX B. STARMONEY ARCHITECTURE

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmuicontrol incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailoverview.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

olch2d32 incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcorecotimedep incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuiie incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailreport.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcoredb incomplete OS

sfmcorere incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuiie incomplete OS

sfmuisvbrbx incomplete OS

sfmcoremisc incomplete OS

233

Host module Hosted/imported module Reference Resolution

sfmuidetailstock.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfmcorecobasic incomplete OS

sfmcorecostock incomplete OS

sfmcoredb incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

sfmcoremisc incomplete OS

sfmuiie incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailtimedep.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcorecotimedep incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

sfmcoredb incomplete OS

sfmuiie incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuidetailtransfer.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfkkernel incomplete OS

sfmcorecobasic incomplete OS

sfmcorecotimedep incomplete OS

234 APPENDIX B. STARMONEY ARCHITECTURE

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuicontrol incomplete OS

sfmuidetailbasic incomplete OS

sfmuisvbrbx incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuief.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuihtmlhelp.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

sfmcoremisc incomplete OS

%INSTDIR%\smoney.ini unknown

Host module Hosted/imported module Reference Resolution

sfmuiie.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolsn incomplete OS

sfbsv incomplete OS

sfmcorecobasic incomplete OS

iecontr incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuiimporterimpl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

%INSTDIR%\smoney.ini complete Application

235

Host module Hosted/imported module Reference Resolution

sfmuiimportersc2.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsv incomplete OS

sfmuiimporterimpl incomplete OS

sfmuiimportershare incomplete OS

%INSTDIR%\smkonv.ini complete Application

Host module Hosted/imported module Reference Resolution

sfmuiimportershare.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbsv incomplete OS

sfmuiimporterimpl incomplete OS

Host module Hosted/imported module Reference Resolution

sfmuiimporterzvlight.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsv incomplete OS

sfmuiimportershare incomplete OS

sfmuiimporterimpl incomplete OS

omikron.ini complete Application

Miscellaneous 15 files
Host module Hosted/imported module Reference Resolution

msvcp60.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

patchw32.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\mpr incomplete OS

rtpmsi32 unknown

%WINSYSDIR%\version incomplete OS

wininit.ini complete Application

236 APPENDIX B. STARMONEY ARCHITECTURE

Host module Hosted/imported module Reference Resolution

sfbmsutil.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolsn incomplete OS

Host module Hosted/imported module Reference Resolution

sfbsolar.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\user32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

sfbvos incomplete OS

Host module Hosted/imported module Reference Resolution

sfbtoolso.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\sfbtoolsn incomplete OS

Host module Hosted/imported module Reference Resolution

sfbunzip.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

sfbversioninfo.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\version incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

Host module Hosted/imported module Reference Resolution

sfbxmlutil.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

libtidy incomplete OS

sfbcore incomplete OS

sfbmsutil incomplete OS

237

Host module Hosted/imported module Reference Resolution

sfktools.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcrypto incomplete OS

sfbvos incomplete OS

sfbsolar incomplete OS

sfbtoolsn incomplete OS

sfbcore incomplete OS

Host module Hosted/imported module Reference Resolution

sfkupdatehdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

patchw32 incomplete OS

sfktools incomplete OS

sfbsolar incomplete OS

sfbtoolsn incomplete OS

sfkprotocolhdl incomplete OS

sfbinet incomplete OS

sfbcore incomplete OS

sfbversioninfo incomplete OS

sfkupdat.ini unknown

Host module Hosted/imported module Reference Resolution

sfkxinclude.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\ole32 incomplete OS

%WINSYSDIR%\oleaut32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbmsutil incomplete OS

sfbxmlutil incomplete OS

Host module Hosted/imported module Reference Resolution

sfkxsltscripthdl.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\shlwapi incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbcore incomplete OS

sfbmsutil incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfkxinclude incomplete OS

238 APPENDIX B. STARMONEY ARCHITECTURE

Host module Hosted/imported module Reference Resolution

sfmcoremisc.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\advapi32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbcore incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

%WINDIR%\win.ini complete Application

Host module Hosted/imported module Reference Resolution

sfmuionlactiv.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\shell32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfktools incomplete OS

sfbsvtools incomplete OS

sfbsv incomplete OS

sfmcorecoapp incomplete OS

sfmcorecobasic incomplete OS

sfmcoredb incomplete OS

sfmcoremisc incomplete OS

sfmuidetailbasic incomplete OS

sfmuicontrol incomplete OS

sfmuiie incomplete OS

sfmuisvbrbx incomplete OS

%IEDIR%\iexplore.exe unknown

Host module Hosted/imported module Reference Resolution

sfmuisvbrbx.dll %WINSYSDIR%\kernel32 incomplete OS

%WINSYSDIR%\msvcrt incomplete OS

%INSTDIR%\msvcp60 incomplete OS

sfbtoolso incomplete OS

sfbtoolsn incomplete OS

sfbsv incomplete OS

References

[AAG95] G.D. Abowd, R. Allen, and D. Garlan. Formalizing style to understand
descriptions of software architecture. ACM Transactions on Software Engi-
neering and Methodology, 4(4):319–364, 1995.

[AC01] ACSA and The MITRE Corporation, editors. Proceedings of ACSA Work-
shop on Information Security System Scoring and Ranking, Williamsburg,
VA, U.S.A., May 21–23, 2001. Applied Computer Security Associates, 2001.

[ASP03] N. Amálio, S. Stepney, and F. Polack. Modular UML semantics: Interpreta-
tion in Z based on templates and generics. In H.D. Van and Z. Liu, editors,
FACS’03 Workshop on Formal Aspects of Component Software, volume 284
of UNU/IIST Technical Report, pages 81–100, 2003.

[Ass03] Computing Research Association. Grand research challenges in information
systems. http://www.cra.org/reports/gc.systems.pdf, 2003.

[Boe81] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[BOLJ94] S. Brocklehurst, T. Olovsson, B. Littlewood, and E. Jonsson. On measure-
ment of operational security. pdcs no. 160. Technical report, CEC ESPRIT
Programme Basic Research Action Project 6362, PDCS 2 (Predictably De-
pendable Computing Systems 2), 1994.

[Bow96] J. Bowen. Formal Specification and Documentation using Z: A Case Study
Approach. International Thomson Computer Press, 1996.

[BSC94] R. Barden, S. Stepney, and D. Cooper. Z in Practice. Prentice Hall, 1994.

[Bun05] Bundesnetzagentur. Einheitliche Spezifizierung der Einsatzbedingun-
gen für Signaturanwendungskomponenten. Arbeitsgrundlage für Entwick-
ler/Hersteller und Prüf-/Bestätigungsstellen, Version 1.4, 2005-07-19.
http://www.bundesnetzagentur.de/media/archive/2648.pdf, 2005.

[BWG05] M.A. Babar, X. Wang, and I. Gorton. Supporting security sensitive architec-
ture design. In R. Reussner, J. Mayer, J.A. Stafford, S. Overhage, S. Becker,
and P.J. Schroeder, editors, Quality of Software Architectures and Software
Quality, First International Conference on the Quality of Software Architec-
tures, QoSA 2005 and Second International Workshop on Software Quality,
SOQUA 2005, Erfurt, Germany, September 20-22, 2005, LNCS 3712, pages
140–154. Springer, 2005.

239

240 REFERENCES

[CC299a] ISO 15408-1:1999, Evaluation criteria for IT security – part 1: Introduction
and general model [Common Criteria for information technology security
evaluation, version 2.1 part 1, ”CC”], 1999.

[CC299b] ISO 15408-2:1999, Evaluation criteria for IT security – part 2: Security
functional requirements, 1999.

[CC299c] ISO 15408-3:1999, Evaluation criteria for IT security – part 3: Security
assurance requirements, 1999.

[CC305a] Common Criteria for information technology security evaluation, version 3.0,
revision 2, June 2005. part 1: Introduction and general model, 2005.

[CC305b] Common Criteria for information technology security evaluation, version 3.0,
revision 2, July 2005. part 2: Functional security components, 2005.

[CC305c] Common Criteria for information technology security evaluation, version 3.0,
revision 2, July 2005. part 3: Security assurance components, 2005.

[CEM04] ISO 18045:2004, Methodology for IT security evaluation [Common Evalua-
tion Methodology, version 2.2, ”CEM”], 2004.

[CEM05] Common Methodology for information technology security evaluation, ver-
sion 3.0, revision 2, July 2005, 2005.

[CH78a] A.B. Cremers and T.N. Hibbard. Formal modeling of virtual machines. IEEE
Transactions on Software Engineering, 4(5):426–436, 1978.

[CH78b] A.B. Cremers and T.N. Hibbard. Functional behavior in data spaces. Acta
Informatica, 9:293–307, 1978.

[Cle77] D.P. Clements. Fuzzy Ratings for Computer Security Evaluation. PhD thesis,
University of California, Berkeley, 1977.

[CM97] P. Ciancarini and C. Mascolo. Analyzing and refining an architectural style.
In J.P. Bowen, M.G. Hinchey, and D. Till, editors, ZUM ’97: The Z For-
mal Specification Notation, 10th International Conference of Z Users, LNCS
1212, pages 349–368. Springer, 1997.

[Coh85] F. Cohen. Computer Viruses. PhD thesis, University of Southern California,
1985.

[Com00] Computer System Security and Privacy Advisory Board, editor. Report of
NIST CSSPAB workshop on security metrics, Gaithersburg, MD, U.S.A.,
June 13–14, 2000. NIST, 2000.

[COR04] CORAS methodology. [modified 2004-10-17, down-loaded 2005-05-23].
http://coras.sourceforge.net/, 2004.

[CS00] D. Cooper and S. Stepney. Segregation with communication. In J.P. Bowen,
S. Dunne, A. Galloway, and S. King, editors, ZB 2000: Formal Specification
and Development in Z and B, First International Conference of B and Z
Users, LNCS 1878, pages 451–470. Springer, 2000.

REFERENCES 241

[CSL01] A.B. Cremers, A. Spalka, and H. Langweg. Vermeidung und Abwehr von An-
griffen Trojanischer Pferde auf Digitale Signaturen. In Bundesamt für Sicher-
heit in der Informationstechnik, editor, ’2001 - Odyssee im Cyberspace?
Sicherheit im Internet!’ Tagungsband 7. Deutscher IT-Sicherheitskongress
des BSI, pages 113–125. SecuMedia Verlag, 2001.

[CTC93] CTCPEC: The Canadian Trusted Computer Product Evaluation Criteria.
Version 3.0e. Canadian System Security Centre, 1993.

[Dac94] M. Dacier. Vers une évaluation quantitative de la sécurité informatique.
PhD thesis, Institut National Polytechnique de Toulouse, 1994.

[DD94] M. Dacier and Y. Deswarte. Privilege graph: an extension to the typed
access matrix model. In Proceedings of the 1994 European Symposium on
Research in Computer Security. LNCS 875, pages 319–334. Springer, 1994.

[DGP+01] L. Davis, R. Gamble, J. Payton, G. Jónsdóttir, and D. Underwood. A
notation for problematic architecture interactions. In Proceedings of the 8th
European software engineering conference, pages 132–141. ACM, 2001.

[DKF+03] G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara. Security for
DAML web services: Annotation and matchmaking. In Proceedings of 2nd
International Semantic Web Conference, ISWC2003, LNCS 2870, pages
335–350, 2003.

[Don03] M. Donner. Toward a security ontology. IEEE Security & Privacy, 1(3):6–7,
2003.

[Eng02] University of Southern California Center for Software Engineering. Cocomo.
http://sunset.usc.edu/research/COCOMOII/index.html, 2002.

[Fin04] FinTS Financial Transaction Services Version 4.0. Bundesverband
deutscher Banken e.V., Deutscher Sparkassen- und Giroverband e.V., Bun-
desverband der Deutschen Volksbanken und Raiffeisenbanken e.V., Bun-
desverband Öffentlicher Banken Deutschlands e.V., 2004.

[FP01] E.B. Fernandez and R. Pan. A pattern language for security models. In 8th
Conference on Pattern Languages for Programs, 2001.

[GAG05] G. Gousios, E. Aivaloglou, and S. Gritzalis. Distributed component archi-
tectures security issues. Computer Standards & Interfaces, 27(3):269–284,
2005.

[Gas88] M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold,
1988.

[Gol05] D. Gollmann. Computer Security. John Wiley & Sons, second edition, 2005.

[Gra90] A. Gravell. What is a good formal specification? In J.E. Nicholls, editor,
Z User Workshop. Proceedings of the Fifth Annual Z User Meeting, pages
137–150. Springer, 1990.

242 REFERENCES

[Gre01] S.J. Greenwald. How i lost and then regained my faith in metrics. In Position
paper submitted to Workshop on Information-Security-System Rating and
Ranking. Applied Computer Security Associates (ACSA) and The MITRE
Corporation, 2001.

[HBC00] HBCI Homebanking Computer Interface Version 2.2. Bundesverband
deutscher Banken e.V., Deutscher Sparkassen- und Giroverband e.V., Bun-
desverband der Deutschen Volksbanken und Raiffeisenbanken e.V., Bun-
desverband Öffentlicher Banken Deutschlands e.V., 2000.

[HHA04] A. Hunstad, J. Hallberg, and R. Andersson. Measuring IT security – a
method based on common criteria’s security functional requirements. In
Proceedings of the 2004 IEEE Workshop on Information Assurance, pages
226–233. IEEE Computer Society, 2004.

[HJA04] M. Hafiz, R.E. Johnson, and R. Afandi. The security architecture of qmail.
In 11th Conference on Pattern Languages of Programs, 2004.

[HK81] S.M. Henry and D. Kafura. Software structure metrics based on information
flow. IEEE Transactions on Software Engineering, 7(SE):510–518, 1981.
Reference given in [Kan02].

[HMC78] L.J. Hoffman, E.H. Michelman, and D. Clements. Securate – security eval-
uation and analysis using fuzzy metrics. In Proceedings of 1978 National
Computer Conference, pages 531–540, 1978.

[Hog88] C.B. Hogan. Protection imperfect: The security of some computing envi-
ronments. Operating Systems Review, 22(3):7–27, 1988.

[HPW03] M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces.
In Proceedings of Workshop on Advanced Developments in Software and Sys-
tems Security, Taipei, Taiwan, December 2003, 2003.

[HRU76] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating sys-
tems. Communications of the ACM, 19(8):461–471, 1976.

[IEE00] IEEE Recommended practice for architectural description of software-
intensive systems. IEEE Standard 1471-2000, 2000.

[Int04] International Function Point Users Group. IFPUG web site,
http://www.ifpug.org, 2004.

[ITS91] Information Technology Security Evaluation Criteria (ITSEC). Version 1.2,
28.06.1991. Commission of the European Communities, 1991.

[ITS93] Information Technology Security Evaluation Manual (ITSEM). Version 1.0,
10.09.1993. Commission of the European Communities, 1993.

[Jac97] J. Jacky. The way of Z. Cambridge University Press, 1997.

[Kan02] S.H. Kan. Metrics and Models in Software Quality Engineering. Addison–
Wesley, second edition, 2002.

REFERENCES 243

[KC00] S. Kim and D. Carrington. A formal mapping between UML models
and Object-Z specifications. In J.P. Bowen, S. Dunne, A. Galloway, and
S. King, editors, ZB 2000: Formal Specification and Development in Z and
B, First International Conference of B and Z Users, LNCS 1878, pages 2–21.
Springer, 2000.

[KF05] B. Krüger and D. Feldhusen (SRC Security Research and Consulting GmbH).
Personal communication, 2005.

[LABMC94] C.E. Landwehr, A.R. A.R. Bull, J.P. McDermott, and W.S. Choi. A tax-
onomy of computer program security flaws. ACM Computing Surveys,
26(3):211–254, 1994.

[Lan02] H. Langweg. With gaming technology towards secure user interfaces. In Pro-
ceedings of 18th Annual Computer Security Applications Conference, pages
44–50. IEEE Computer Society, 2002.

[Lan03a] H. Langweg. Sichere Benutzeroberflächen mittels Spieletechnologie. Pre-
sented at 8. Deutscher IT-Sicherheitskongress des BSI, 2003.

[Lan03b] H. Langweg. Sicherere Benutzeroberflächen mittels DirectX. In R. Grimm,
H.B. Keller, and K. Rannenberg, editors, ’Informatik 2003. Mit Sicher-
heit Informatik.’ Tagungsband Jahrestagung der Gesellschaft für Infor-
matik, Schwerpunkt ’Sicherheit - Schutz und Zuverlässigkeit’, pages 227–236.
Gesellschaft für Informatik, 2003.

[Lan04a] H. Langweg. Building a trusted path for applications using COTS compo-
nents. In Proceedings of NATO RTO IST Panel Symposium on Adaptive
Defence in Unclassified Networks, pages 21–1–21–14, 2004.

[Lan04b] H. Langweg. If you stretch it too far, it breaks – challenges of biased tech-
nology. In P. Duquenoy, S. Fischer-Hübner, J. Holvast, and A. Zuccato,
editors, Risks and Challenges of the Network Society – Proceedings of the
Second IFIP 9.2, 9.6/11.7 Summer School 4–8 August 2003, volume 2004:35
of Karlstad University Studies, pages 236–241, 2004.

[Lan05] H. Langweg. Eine CC-basierte Ontologie zur Analyse architektureller
Schwachstellen. Presented at 9. Deutscher IT-Sicherheitskongress des BSI,
2005.

[Lan06a] H. Langweg. Framework for malware resistance metrics. In Proceedings of
13th ACM Conference on Computer and Communications Security, Second
Workshop on Quality of Protection, Alexandria, VA, U.S.A., October 30th,
2006, pages 39–44. ACM, 2006.

[Lan06b] H. Langweg. Malware attacks on electronic signatures revisited. In
J. Dittmann, editor, ’Sicherheit 2006’. Konferenzband der 3. Jahresta-
gung Fachbereich Sicherheit der Gesellschaft für Informatik., pages 244–255.
Gesellschaft für Informatik, 2006.

244 REFERENCES

[Lei00] F. Leitold. Mathematical model of computer viruses. In U.E. Gattiker,
editor, EICAR 2000 Best Paper Proceedings, Annual Meeting of European
Institute for Computer Antivirus Research, Brussels, Belgium, March 4-7,
2000, pages 194–217, 2000.

[LG99] P.T.L. Lloyd and G.M. Galambos. Technical reference architectures. IBM
Systems Journal, 38(1):51–75, 1999.

[LK06] H. Langweg and T. Kristiansen. Securing the weak link in client-server
interaction. In arXiv Computing Research Repository, cs.CR/0611102, 2006.

[LS04] H. Langweg and E. Snekkenes. A classification of malicious software attacks.
In Proceedings of 23rd IEEE International Performance, Computing, and
Communications Conference, pages 827–832. IEEE Computer Society, 2004.

[LS07] H. Langweg and J. Schwenk. Schutz von FinTS/HBCI-Clients gegenüber
Malware. In P. Horster, editor, Proceedings of D-A-CH Security, pages 227–
238, 2007.

[McC76] T.J. McCabe. A complexity measure. IEEE Transactions on Software En-
gineering, 2(4):308–320, 1976. Reference given in [She95].

[MCC84] G.E. Murine and Jr. C.L. Carpenter. Measuring computer system security
using software security metrics. In J.H. Finch and E.G. Dougall, editors,
Computer Security: A Global Challenge, Proceedings of the Second IFIP In-
ternational Conference on Computer Security, IFIP/SEC’84, Toronto, On-
tario, Canada, September 10-12, 1984, pages 207–215. Elsevier, 1984.

[Met06] Proceedings of 1st Workshop on Security Metrics (MetriCon 1.0), affiliated
with 15th USENIX Security Symposium, Vancouver, BC, Canada, July 31st,
2006. USENIX, 2006.

[MGM03] H. Mouratidis, P. Giorgini, and G. Manson. An ontology for modelling se-
curity: The tropos approach. In Proceedings of Knowledge-Based Intelligent
Information and Engineering Systems: 7th International Conference, KES
2003, LNCS 2773, pages 1387–1394, 2003.

[MP93] K.H. Möller and D.J. Paulish. Software Metrics. A Practitioner’s Guide to
Improved Product Development. Chapman & Hall, 1993.

[MS90] J.D. Moffett and M.S. Sloman. A case study in representing a model: To Z
or not to Z. In J.E. Nicholls, editor, Z User Workshop. Proceedings of the
Fifth Annual Z User Meeting, pages 254–268. Springer, 1990.

[MvOV96] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[MY06] S. Myagmar and W. Yurcik. Why johnny can hack: The mismatch between
vulnerabilities and security protection standards. In IEEE International
Symposium on Secure Software Engineering (ISSSE), McLean, VA, U.S.A.,
2006.

REFERENCES 245

[Mye80] P. Myers. Subversion: The Neglected Aspect of Computer Security. MSc
thesis, Naval Postgraduate School, 1980.

[NB05] T. Nakamura and V.R. Basili. Metrics of software architecture changes
based on structural distance. In Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS 2005), pages 8.1–8.10. IEEE, 2005.

[Neu96] P.G. Neumann. Architectures and formal representations for secure sys-
tems. final report sri project 6401 deliverable a002. Technical report, SRI
International, 1996.

[Neu00] P.G. Neumann. Practical architectures for survivable systems and networks
(phase-two final report). Technical report, SRI International, 2000.

[NIS03] Security Metrics Guide for Information Technology Systems. NIST Special
Publication 800-55, 2003.

[NJOJ03] S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost net-
work hardening via exploit dependency graphs. In Proceedings of 19th An-
nual Computer Security Applications Conference, pages 86–95. IEEE Com-
puter Society, 2003.

[PST96] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification
and Z. Prentice Hall, second edition, 1996.

[QoP05] Proceedings of 1st QoP Workshop on Quality of Protection, affiliated with
10th European Symposium of Research in Computer Security and 11th IEEE
International Software Metrics Symposium, Milano, Italy, September 15th,
2005. Kluwer, 2005.

[QoP06] Proceedings of 2nd QoP Workshop on Quality of Protection, affiliated with
13th ACM Conference on Computer and Communications Security, Alexan-
dria, VA, U.S.A., October 30th, 2006. ACM, 2006.

[Res04] E. Rescorla. Is finding security holes a good idea? In The Third Annual
Workshop on Economics and Information Security (WEIS04), 2004.

[Rom90] H.D. Rombach. Design measurement: Some lessons learned. IEEE Software,
7(2):17–25, 1990.

[SC96] M. Shaw and P. Clements. Toward boxology: Preliminary classification of
architectural styles. In Proceedings of Second International Software Archi-
tecture Workshop (ISAW-2), pages 50–54. ACM, 1996.

[Sch99] E.A. Schneider. Security architecture-based system design. In Proceedings
of New Security Paradigms Workshop 1999, pages 25–31, 1999.

[SCH04] A. Sachitano, R.O. Chapman, and J.A. Hamilton. Security in software ar-
chitecture: A case study. In Proceedings of the 2004 IEEE Workshop on
Information Assurance, pages 370–376. IEEE Computer Society, 2004.

246 REFERENCES

[SCL00] A. Spalka, A.B. Cremers, and H. Lehmler. Protecting confidentiality against
trojan horse programs in discretionary access control system. In Proceedings
of the 5th Australasian Conference on Information Security and Privacy,
LNCS 1841, pages 1–17. Springer, 2000.

[SCL01a] A. Spalka, A.B. Cremers, and H. Langweg. The fairy tale of ’what you see
is what you sign’ - trojan horse attacks on software for digital signatures. In
S. Fischer-Hübner, D. Olejar, and K. Rannenberg, editors, Security & Con-
trol of IT in Society – II (SCITS–II). Proceedings of the IFIP WG 9.6/11.7
Working Conference, pages 75–86, 2001.

[SCL01b] A. Spalka, A.B. Cremers, and H. Langweg. Protecting the creation of digital
signatures with trusted computing platform technology against attacks by
trojan horse programs. In M. Dupuy and P. Paradinas, editors, Trusted In-
formation. The New Decade Challenge. Proceedings of IFIP/SEC’01, pages
403–419. Kluwer, 2001.

[SCL02] A. Spalka, A.B. Cremers, and H. Langweg. Trojan horse attacks on software
for electronic signatures. Informatica, Special Issue ’Security and Protection’,
26(2):191–204, 2002.

[She95] M. Shepperd. Foundations of software measurement. Prentice Hall, 1995.

[SHJ+02] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy, pages 273–284. IEEE Computer Soci-
ety, 2002.

[Sim05] J. Simpson, editor. The Oxford English Dictionary. Oxford University Press,
online edition, 2005.

[SL02a] A. Spalka and H. Langweg. Notes on program-orientated access control. In
Proceedings of International Workshop on Trust and Privacy in Digital Busi-
ness (TrustBus 2002) held in conjunction with 13th International Workshop
on Database and Expert Systems Applications (DEXA 2002), pages 451–455.
IEEE Computer Society, 2002.

[SL02b] A. Spalka and H. Langweg. Protecting the user from the data: Security
and privacy aspects of public web access. In Proceedings of 2nd Interna-
tional Conference on Adaptive Hypermedia and Adaptive Web Based Systems
(AH’02), LNCS 2347, pages 440–443. Springer, 2002.

[SO01] G. Sindre and A.L. Opdahl. Templates for misuse case description. In
7th International Workshop on Requirements Engineering, Foundation for
Software Quality (REFSQ 2001), 2001.

[Spi92] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, second
edition, 1992.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

REFERENCES 247

[SSE03] Systems Security Engineering Capability Maturity Model (SSE-CMM),
Model Description Document, Version 3.0. SSE-CMM Project, 2003.

[SSM97] K.J. Sullivan, J. Socha, and M. Marchukov. Using formal methods to rea-
son about architectural standards. In Proceedings of the 19th international
conference on Software engineering, pages 503–513. ACM, 1997.

[Sti00] O. Stiemerling. Component-Based Tailorability. PhD thesis, Rheinische
Friedrich-Wilhelms-Universität Bonn, 2000.

[SW00] G. Schudel and B. Wood. Adversary work factor as a metric for information
assurance. In Proceedings of New Security Paradigms Workshop 2000, pages
23–30. ACM, 2000.

[TCS85] TCSEC: DoD 5200.28-STD Department of Defense Trusted Computer Sys-
tem Evaluation Criteria. Department of Defense, 1985.

[vABHL03] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Telling hu-
mans and computers apart. In E. Biham, editor, Advances in Cryptology –
EUROCRYPT 2003: International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003, LNCS
2656, pages 294–311. Springer, 2003.

[WBG+87] C.C. Wood, W.W. Banks, S.B. Guarro, V.E. Hampel, and H.P. Sartorio.
Computer security: a comprehensive controls checklist. J. Wiley & Sons,
1987.

[WCLS02] M. Winandy, A.B. Cremers, H. Langweg, and A. Spalka. Protecting java
component integrity against trojan horse programs. In M. Gertz, editor,
Proceedings of Integrity and Internal Control in Information Systems (IICIS
2002), pages 99–113. Kluwer, 2002.

[Whi01] J.J. Whitmore. A method for designing secure solutions. IBM Systems
Journal, 40(3):747–768, 2001.

[YJB97] J. Yoder and J. J. Barcalow. Architectural patterns for enabling application
security. In 4th Pattern Languages of Programming Conference, Washington
University Technical Report 97-34, 1997.

[Z00] ISO 13568:2000, Formal specification – Z notation – syntax, type and se-
mantics, 2000.

[Zen89] Zentralstelle für Sicherheit in der Informationstechnik. Kriterien für die
Bewertung der Sicherheit von Systemen der Informationstechnik (IT) – IT-
Sicherheitskriterien – 1. Fassung vom 11.01.1989. In GMBl [Gemeinsames
Ministerialblatt], volume 40, pages 278–390. Bundesminister des Innern,
1989.

[Zen90] Zentralstelle für Sicherheit in der Informationstechnik. Handbuch für die
Prüfung der Sicherheit von Systemen der Informationstechnik (IT) – IT-
Evaluationshandbuch – 1. Fassung vom 22.02.1990. In GMBl [Gemeinsames
Ministerialblatt], volume 41, pages 430–536. Bundesminister des Innern,
1990.

248 REFERENCES

Index

Architecture, 45, 53, 173, 174, 183
Attacker capabilities, 48, 160

Attack initiation, 48, 49
Attack variation, 48, 49
Available time to attack, 48, 49
Influence on user, 49
Level, 50

Attacks
Generic, 50, 127
Repository, 51, 127

Common Criteria, 37, 71
Component type

Access control data, 75
Data, 78, 80, 82
Firmware, 80
Local human user, 82
Logging configuration data, 75
Reference, 78
Subject–Adversary, 75
Subject–Operating System, 75
Subject–Unspecified, 75
Subject–Victim, 75
Tamper-proof storage, 78, 80
UI Input, 82
UI Output, 82

Connector type
Access–append, 77
Access–delete, 77
Access–invoke, 77
Access–modify, 77
Access–observe, 76
Backup, 79
Contained–by, 79
Data transfer, 79
Execute, 81, 82
Integrity verification data, 76
Linked, 81
Log data, 76, 82
Monitor, 76, 82
Ownership, 76

Parameter, 76
Reference rule–Container, 79
Reference rule–Search order, 79
Reference rule–Static, 79
Security parameter, 76, 82
Subject binding, 81

CORAS, 41, 73, 199

Evaluation, 45

Formal model, 87
Architecture, 88, 100
Given sets, 88
Global constants, 88
Initial state, 101
Operations, 108
State, 92

Generic attacks
Add stored code module, 138
Initiate communication and send data,

144
Modify code in memory, 134
Modify reference to stored code mod-

ule, 141
Modify reference to stored data com-

ponent containing parameters, 151
Modify stored code module, 136
Modify stored data component, 128
Modify stored data component used

for decisions, 157
Modify stored parameters, 149
Modify user interface object, 155
Observe contents of stored data com-

ponent, 132
Respond to communication and send

data, 147
Simulate user input, 153

Metrics, 46, 48, 57, 69, 175
Conformity of access permissions, 63

249

250 INDEX

Percentage of access control instru-
mentation, 63

Percentage of authenticity/integrity pre-
serving connectors, 64

Percentage of logged invocations, 64
Percentage of protected executables,

62
Percentage of protected intermediate

storage components, 62
Percentage of trusted path connectors,

67
Percentage of unlogged security pa-

rameters, 65
Restriction of number of components

with multiple executable extensions,
66

Restriction of number of components
with shared responsibility (server),
65

Restriction of number of executable
components, 61

Restriction of number of executable
distribution sources, 60

Restriction of number of privileges,
68

Restriction of number of processes shar-
ing a privilege, 68

Resistance class, 52, 162, 181
Role

Authenticated data source, 80, 81
Authenticated data target, 80, 81
Contained, 80
Container, 80
Copy, 79
Data source, 80, 81
Data target, 80, 81
Executed, 81
Executor, 81
Link executed dynamic, 81
Link executed static, 81
Link executor, 81
Log data source, 78
Log data target, 78
Monitor source, 78
Monitor target, 78
Object, 78
Original, 77, 79

Owned, 78
Owner, 78
Parameter processor, 77
Reference source, 80
Reference target, 80
Security data source, 77
Subject, 78
Verification data, 77

Security evaluation, see Evaluation
Security requirements, 46, 159

Code integrity, 46, 47
Data confidentiality, 46, 47
Data integrity, 46, 47
Level, 47

Curriculum vitae

01/2007–present eQ-3 Entwicklung GmbH, Leer; Product Development Time
and Attendance, Physical Access Control

10/2003–12/2006 PhD scholarship, Høgskolen i Gjøvik, Norway

01/2002–present PhD student, Rheinische Friedrich-Wilhelms-Universität
Bonn

01/2002–09/2003 Research Assistant, Department of Computer Science III,
Rheinische Friedrich-Wilhelms-Universität Bonn

10/1995–12/2001 Studies of Computer Science (Diplom-Informatiker),
Physical Geography, Law, and Norwegian at Rheinische
Friedrich-Wilhelms-Universität Bonn

List of peer-reviewed publications

Articles in journals

1. A. Spalka, A.B. Cremers, and H. Langweg. Trojan horse attacks on software for elec-
tronic signatures. Informatica, Special Issue ’Security and Protection’, 26(2):191–
204, 2002

Articles in peer-reviewed conference proceedings

1. H. Langweg and J. Schwenk. Schutz von FinTS/HBCI-Clients gegenüber Malware.
In P. Horster, editor, Proceedings of D-A-CH Security, pages 227–238, 2007

2. H. Langweg. Framework for malware resistance metrics. In Proceedings of 13th
ACM Conference on Computer and Communications Security, Second Workshop
on Quality of Protection, Alexandria, VA, U.S.A., October 30th, 2006, pages 39–44.
ACM, 2006

3. H. Langweg. Malware attacks on electronic signatures revisited. In J. Dittmann,
editor, ’Sicherheit 2006’. Konferenzband der 3. Jahrestagung Fachbereich Sicherheit
der Gesellschaft für Informatik., pages 244–255. Gesellschaft für Informatik, 2006

251

252 CURRICULUM VITAE

4. H. Langweg. Building a trusted path for applications using COTS components. In
Proceedings of NATO RTO IST Panel Symposium on Adaptive Defence in Unclas-
sified Networks, pages 21–1–21–14, 2004

5. H. Langweg and E. Snekkenes. A classification of malicious software attacks. In
Proceedings of 23rd IEEE International Performance, Computing, and Communi-
cations Conference, pages 827–832. IEEE Computer Society, 2004

6. H. Langweg. If you stretch it too far, it breaks – challenges of biased technology.
In P. Duquenoy, S. Fischer-Hübner, J. Holvast, and A. Zuccato, editors, Risks and
Challenges of the Network Society – Proceedings of the Second IFIP 9.2, 9.6/11.7
Summer School 4–8 August 2003, volume 2004:35 of Karlstad University Studies,
pages 236–241, 2004

7. H. Langweg. Sicherere Benutzeroberflächen mittels DirectX. In R. Grimm, H.B.
Keller, and K. Rannenberg, editors, ’Informatik 2003. Mit Sicherheit Informatik.’
Tagungsband Jahrestagung der Gesellschaft für Informatik, Schwerpunkt ’Sicherheit
- Schutz und Zuverlässigkeit’, pages 227–236. Gesellschaft für Informatik, 2003

8. H. Langweg. With gaming technology towards secure user interfaces. In Proceed-
ings of 18th Annual Computer Security Applications Conference, pages 44–50. IEEE
Computer Society, 2002

9. M. Winandy, A.B. Cremers, H. Langweg, and A. Spalka. Protecting java component
integrity against trojan horse programs. In M. Gertz, editor, Proceedings of Integrity
and Internal Control in Information Systems (IICIS 2002), pages 99–113. Kluwer,
2002

10. A. Spalka and H. Langweg. Notes on program-orientated access control. In Proceed-
ings of International Workshop on Trust and Privacy in Digital Business (TrustBus
2002) held in conjunction with 13th International Workshop on Database and Ex-
pert Systems Applications (DEXA 2002), pages 451–455. IEEE Computer Society,
2002

11. A. Spalka and H. Langweg. Protecting the user from the data: Security and privacy
aspects of public web access. In Proceedings of 2nd International Conference on
Adaptive Hypermedia and Adaptive Web Based Systems (AH’02), LNCS 2347, pages
440–443. Springer, 2002

12. A. Spalka, A.B. Cremers, and H. Langweg. Protecting the creation of digital signa-
tures with trusted computing platform technology against attacks by trojan horse
programs. In M. Dupuy and P. Paradinas, editors, Trusted Information. The New
Decade Challenge. Proceedings of IFIP/SEC’01, pages 403–419. Kluwer, 2001

13. A. Spalka, A.B. Cremers, and H. Langweg. The fairy tale of ’what you see is what
you sign’ - trojan horse attacks on software for digital signatures. In S. Fischer-
Hübner, D. Olejar, and K. Rannenberg, editors, Security & Control of IT in Society
– II (SCITS–II). Proceedings of the IFIP WG 9.6/11.7 Working Conference, pages
75–86, 2001

253

14. A.B. Cremers, A. Spalka, and H. Langweg. Vermeidung und Abwehr von Angriffen
Trojanischer Pferde auf Digitale Signaturen. In Bundesamt für Sicherheit in der In-
formationstechnik, editor, ’2001 - Odyssee im Cyberspace? Sicherheit im Internet!’
Tagungsband 7. Deutscher IT-Sicherheitskongress des BSI, pages 113–125. SecuMe-
dia Verlag, 2001

Poster presentations

1. H. Langweg. Eine CC-basierte Ontologie zur Analyse architektureller Schwach-
stellen. Presented at 9. Deutscher IT-Sicherheitskongress des BSI, 2005

2. H. Langweg. Sichere Benutzeroberflächen mittels Spieletechnologie. Presented at 8.
Deutscher IT-Sicherheitskongress des BSI, 2003

Technical reports or archival repositories without peer review

1. H. Langweg and T. Kristiansen. Securing the weak link in client-server interaction.
In arXiv Computing Research Repository, cs.CR/0611102, 2006

	1 Introduction
	1.1 Software evaluation
	1.2 Architecture
	1.3 Scope
	1.4 Research questions
	1.5 Contributions
	1.6 Overview

	2 Previous and related work
	2.1 Software and system architecture
	2.2 Software metrics
	2.3 Security metrics
	2.4 Metrics in security evaluation criteria
	2.5 System specification

	3 Software metrics for resilience
	3.1 Ranking of security requirements
	3.2 Attacker capability metrics
	3.3 Generic attacks
	3.4 Resistance classes
	3.5 Properties of secure software architectures
	3.6 Software architecture metrics

	4 Model of a generic computer system
	4.1 Modeling approach
	4.2 Scope and elements of model
	4.3 Architectural description
	4.4 Example of an architectural description

	5 Formal model: Computer system
	5.1 Formal specification in Z
	5.2 Model definition
	5.3 Limitations of the model
	Model definitions index

	6 Formal model: Attacks
	6.1 Repository of generic malware attacks
	6.2 Security requirements
	6.3 Attacker capabilities
	6.4 Resistance classes

	7 Architectural analysis
	7.1 Architectural changes
	7.2 Homebanking with FinTS/HBCI
	7.3 Discussion

	8 Conclusions
	8.1 Contributions
	8.2 Discussion
	8.3 Future work

	A Security Checklists
	B StarMoney architecture
	References
	Index
	Curriculum vitae

