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Analytic Torsion of manifolds with boundary and
conical singularities

Abstract

The analytic torsion was introduced by D.B. Ray and I.M. Singer as an ana-
lytic counterpart to the combinatorial Reidemeister torsion. In this thesis we
are concerned with analytic torsion of manifolds with boundary and conical
singularities. Our work is comprised basically of three projects.

In the first project we discuss a specific class of regular singular Sturm Liou-
ville operators with matrix coefficients. Their zeta determinants were stud-
ied by K. Kirsten, P. Loya and J. Park on the basis of the Contour integral
method, with general boundary conditions at the singularity and Dirichlet
boundary conditions at the regular boundary.

Our main result in the first project is the explicit verification that the Con-
tour integral method indeed applies in the regular singular setup, and the
generalization of the zeta determinant computations by Kirsten, Loya and
Park to generalized Neumann boundary conditions at the regular boundary.
Moreover we apply our results to Laplacians on a bounded generalized cone
with relative boundary conditions.

In the second project we derive a new formula for analytic torsion of a
bounded generalized cone, generalizing the computational methods of M.
Spreafico and using the symmetry in the de Rham complex, as established
by M. Lesch. We evaluate our result in lower dimensions and further provide
a separate computation of analytic torsion of a bounded generalized cone
over S1, since the standard cone over the sphere is simply a flat disc.

Finally, in the third project we discuss the refined analytic torsion, introduced
by M. Braverman and T. Kappeler as a canonical refinement of analytic tor-
sion on closed manifolds. Unfortunately there seems to be no canonical way
to extend their construction to compact manifolds with boundary.

We propose a different refinement of analytic torsion, similar to Braverman
and Kappeler, which does apply to compact manifolds with and without
boundary. We establish a gluing formula for our construction, which in fact
can also be viewed as a gluing law for the original definition of refined analytic
torsion by Braverman and Kappeler.
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2 Analytic Torsion

1 Introduction

1.1 The Reidemeister-Franz Torsion

Torsion invariants for manifolds which are not simply connected were intro-
duced by K. Reidemeister in [Re1, Re2] and generalized to higher dimensions
by W. Franz in [Fr]. Using the introduced torsion invariants the authors ob-
tained a full PL-classification of lens spaces. The Reidemeister-Franz torsion,
short − the Reidemeister torsion, was the first invariant of manifolds which
was not a homotopy invariant.

The Reidemeister-Franz definition of torsion invariants was extended later
to smooth manifolds by J. H. Whitehead in [Wh] and G. de Rham in [Rh].
With their construction G. de Rham further proved that a spherical Clifford-
Klein manifold is determined up to isometry by its fundamental group and
its Reidemeister torsion.

The Reidemeister-Franz torsion is a combinatorial invariant and can be con-
structed using a cell-decomposition or a triangulation of the underlying man-
ifold. The combinatorial invariance under subdivisions was established by J.
Milnor in [Mi], see also [RS]. It is therefore a topological invariant of M ,
however not a homotopy invariant.

There is a series of results relating combinatorial and analytic objects, among
them the Atiyah-Singer Index Theorem. In view of these results it is natural
to ask for the analytic counterpart of the combinatorial Reidemeister tor-
sion. Such an analytic torsion was introduced by D. B. Ray and I. M. Singer
in [RS] in form of a weighted product of zeta-regularized determinants of
Laplace operators on differential forms.

The zeta-regularized determinant of a Laplace Operator is a spectral invari-
ant which very quickly became an object of interest on its own in differential
and conformal geometry, studied in particular as a function of metrics for
appropriate geometric operators. Further it plays a role in mathematical
physics where it gives a regularization procedure of functional path integrals
(partition function), see [H].

In their work D.B. Ray and I. M. Singer provided some motivation why the
analytic torsion should equal the combinatorial invariant. The celebrated
Cheeger-Müller Theorem, established independently by J. Cheeger in [Ch]
and W. Müller in [Mu1], proved equality between the analytic Ray-Singer
torsion and the combinatorial Reidemeister torsion for any smooth closed
manifold with an orthogonal representation of its fundamental group.
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The proofs of J. Cheeger and W. Müller use different approaches. The first
author in principle studied the behaviour of the Ray-Singer torsion under
surgery. The second author used combinatorial parametrices and approxima-
tion theory of Dodziuk [Do] to reduce the problem to trivial representations,
treating this problem then by surgeries.

Note a different approach of Burghelea-Friedlander-Kappeler in [BFK] and
Bismut-Zhang in [BZ1], who obtained a new proof of the result by J. Cheeger
and W. Müller using Witten deformation of the de Rham complex via a Morse
function.

The study of the analytic torsion of Ray and Singer has taken the following
natural steps. The setup of a closed Riemannian manifold with its marking
point − the Cheeger Müller Theorem, was followed by the discussion of com-
pact manifolds with smooth boundary. In the context of smooth compact
manifolds with boundary a Cheeger-Müller type result was established in the
work of W. Lück [Lü] and S. Vishik [V].

While the first author reduced the discussion to the known Cheeger-Müller
Theorem on closed manifolds via the closed double construction, the second
author gave an independent proof of the Cheeger-Müller Theorem on smooth
compact manifolds with and without boundary by establishing gluing prop-
erty of the analytic torsion.

Both proofs work under the assumption of product metric structures near
the boundary. However by the anomaly formula in [DF] the assumption of
product metric structures can be relaxed.

1.2 Functional Determinants on a Generalized Cone

The next natural step in the study of analytic torsion is the treatment of
Riemannian manifolds with singularities. We are interested in the simplest
case, the conical singularity. The analysis and the geometry of spaces with
conical singularities were developped in the classical works of J. Cheeger
in [Ch1] and [Ch2]. This setup is modelled by a bounded generalized cone
M = (0, R]×N,R > 0 over a closed Riemannian manifold (N, gN) with the
Riemannian metric

gM = dx2 ⊕ x2gN .

In Section 3 we study natural boundary conditions for Laplacians on differen-
tial forms, relevant in the context of analytic torsion. These are the relative
or the absolute boundary conditions, arising from the maximal and minimal
closed extensions of the exterior derivative, see [BL1, Section 3]. In the case
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of a model cone they are given at the cone base explicitly by a combination
of Dirichlet and generalized Neumann boundary conditions.

The study of the relative boundary conditions at the cone singularity is in-
teresting on its own. In [BL2], among other issues, the relative extension of
the Laplacian on differential forms is shown to coincide with the Friedrich’s
extension at the cone singularity outside of the ”middle degrees”. We discuss
the relative boundary conditions for Laplace operators on differential forms
in any degree and obtain explicit results, relevant for further computations.

The main ingredient of the Ray-Singer analytic torsion is the zeta-regularized
determinant of a Laplace operator. For the computation of zeta-regularized
or so-called ”functional” determinants of de Rham Laplacians on a bounded
generalized cone it is necessary to note that the Laplacian admits a direct
sum decomposition

4 = L⊕ 4̃,

which is compatible with the relative boundary conditions, such that 4̃ is the
maximal direct sum component, subject to compatibility condition, which is
essentially self-adjoint at the cone singularity.

The direct sum component 4̃ is discussed by K. Kirsten and J.S. Dowker in
[DK] and [DK1] with general boundary conditions of Dirichlet and Neumann
type at the cone base. The other component L is a differential operator with
matrix coefficients and is addressed by K. Kirsten, P. Loya and J. Park in
[KLP1] with general boundary conditions at the cone singularity but only
with Dirichlet boundary conditions at the cone base.

The argumentation of Kirsten, Loya and Park in the preprints [KLP1] and
[KLP2] is based on the Contour integral method, which gives a specific in-
tegral representation of the zeta-function. A priori the Contour integral
method need not to apply in the regular-singular setup and is only formally
a consequence of the Argument Principle.

One of the essential results of the Section 4 is the proof that the Contour
integral method indeed applies in the regular-singular setup. Our proof is
the basis for the integral representation of the zeta-function. Otherwise the
Contour integral method would only give information on the pole structure
of the zeta-function, but no results on the zeta-determinants.

In this thesis the proof is provided in the setup of generalized Neumann
boundary conditions at the cone base, however for Dirichlet boundary con-
ditions the arguments are similar. The author intends to publish the proof
for the applicability of the Contour integral method in the regular-singular
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setup with Dirichlet boundary conditions as an appendix to [KLP2].

In view of the explicit form of the relative boundary conditions for the Laplace
operator on differential forms, we extend in Section 4 the computations of
[KLP1] to the setup of generalized Neumann boundary conditions at the
cone base. Then, using the results of Section 3, we provide finally an explicit
result for the functional determinant of L with relative boundary conditions.

1.3 Analytic Torsion of a Generalized Cone

The analytic Ray-Singer Torsion is defined as a weighted alternating product
of functional determinants of Laplacians on differential forms, with relative
or absolute boundary conditions. It is shown in [Dar] to exist on a bounded
generalized cone. Unfortunately the methods of Section 4 for the calcula-
tion of functional determinants apply only in a finite-dimensional setup, so
we could not continue to compute the analytic torsion on the basis of this
approach.

In the actual computation of the analytic torsion of a bounded generalized
cone in Section 5 we use the approach of M. Spreafico [S] together with an
observation of symmetry in the de Rham complex by M. Lesch in [L3]. More-
over we apply some computational ideas of K. Kirsten, J.S. Dowker in [DK].
The computation is performed for simplicity under an additional assumption
of a scaled metric gM , such that the form-valued Laplacians are essentially
self-adjoint at the cone singularity.

This apparent gap can be considered as closed by the preceeding discussion
of the finite-dimensional parts of the Laplacians which are not essentially
self-adjoint at the cone singularity and naturally appear in the general case.

Our explicit calculation of the analytic torsion of a bounded generalized cone
can be viewed as an attempt towards a Cheeger-Müller Theorem for com-
pact manifolds with conical singularities. Further details on this issue are
provided in Subsection 5.8.

1.4 Refined Analytic Torsion and a Gluing Formula

Finally in Section 6 we turn our attention to a recent project of M. Braver-
man and T. Kappeler [BK1, BK2] − the refinement of the analytic torsion.
In fact the Ray-Singer analytic torsion can be viewed as a norm on a deter-
minant line. The refinement is a canonical construction of an element in the
determinant line with the Ray-Singer norm one. The complex phase of the
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element is given by a rho-type invariant of the odd-signature operator.

The construction of Braverman and Kappeler essentially relies on Poincare
duality on closed manifolds and hence unfortunately does not directly apply
to manifolds with boundary. In this thesis we propose a refinement of the
analytic torsion, in the spirit of Braverman and Kappeler, which does apply
to compact manifolds with boundary.

An interesting feature of the analytic Ray-Singer Torsion is its nice be-
haviour under cut and paste operations, as established by S. Vishik in [V] for
trivial representations, see also [Lü]. This ”gluing property” is particularly
surprising in view of the non-locality of higher spectral invariants. Such a
feature of the torsion invariant is in many aspects an advantage, especially
for computational reasons.

In view of the gluing property of analytic torsion, we derive in Section 7
using the Cheeger-Müller Theorem a gluing formula for our construction,
which was natural to expect, since a refinement of the analytic torsion should
resemble the central properties of the original construction. In particular
we deduce a nice gluing formula for the scalar analytic torsion. In fact our
result can also be viewed as a gluing formula for the original refined analytic
torsion in the sense of Braverman and Kappeler.
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2 Regular-Singular Model Operators

In this section we discuss closed extensions of regular-singular model opera-
tors, (cf. [BS]) and self-adjoint extensions of the associated regular-singular
model Laplacians. The explicit identification of the relevant domains is used
later in the computation of functional determinants on a bounded generalized
cone. The arguments and results of this section are well-known, however we
give a balanced overview and adapt the presentation to later applications.
The presented calculations go back to J. Brüning, R.T. Seeley in [BS] and J.
Cheeger in [Ch1] and [Ch2]. For further reference see mainly [W], [BS] and
[KLP1], but also [C] and [M].

2.1 Closed Extensions of Model Operators

Let D : C∞0 (0, R) → C∞0 (0, R), R > 0 be a differential operator acting on
smooth C-valued functions with compact support in (0, R). The standard
Hermitian scalar product on C and the standard measure dx on R define the
natural L2-structure on C∞0 (0, R):

∀f, g ∈ C∞0 (0, R) : 〈f, g〉L2 :=

∫ R

0

〈f(x), g(x)〉dx.

Denote the completion of C∞0 (0, R) under the L2-scalar product by L2(0, R).
This defines a Hilbert space with the natural L2-Hilbert structure.

We define the maximal extension Dmax of D by

D(Dmax) := {f ∈ L2(0, R)|Df ∈ L2(0, R)}, Dmaxf := Df,

where Df ∈ L2(0, R) is understood in the distributional sense. The minimal
extension Dmin of D is defined as the graph-closure of D in L2(0, R), more
precisely:

D(Dmin) := {f ∈ L2(0, R)|∃(fn) ⊂ C∞0 (0, R) :

fn
L2

−→ f, Dfn
L2

−→ Df} ⊆ D(Dmax), Dminf := Df.

Analogously we can form the minimal and the maximal extensions of the
formal adjoint differential operator Dt. Since C∞0 (0, R) is dense in L2(0, R),
the maximal and the minimal extensions provide densely defined operators in
L2(0, R). In particular we can form their adjoints. The next result provides
a relation between the maximal and the minimal extensions of D,Dt:
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Theorem 2.1. [W, Section 3] The maximal extensions Dmax, D
t
max and the

minimal extensions Dmin, D
t
min are closed densely defined operators in the

Hilbert space L2(0, R) and are related as follows

Dmax = (Dt
min)

∗, Dt
max = (Dmin)

∗. (2.1)

The actual discussion in [W, Section 3] is in fact peformed in the setup of
symmetric operators. But the arguments there transfer analogously to not
necessarily symmetric differential operators.

Moreover we introduce the following notation. Let

C(L2(0, R))

denote the set of all closed extensions D̃ in L2(0, R) of differential operators

D acting on C∞0 (0, R), such that Dmin ⊆ D̃ ⊆ Dmax.

Below, we restrict our attention to the setup of symmetric differential oper-
ators with real coefficients. We are interested in the characterization of the
space of possible closed extensions of D in C(L2(0, R)), described by the von
Neumann space

D(Dmax)/D(Dmin).

For this purpose the following general concepts, introduced in the classical
reference [W], become relevant:

Definition 2.2. A symmetric differential operator D : C∞0 (0, R) →
C∞0 (0, R) with real coefficients is said to be

• in the limit point case (l.p.c.) at x = 0, if for any λ ∈ C there is at
least one solution u of (D − λ)u = 0 with u /∈ L2

loc[0, R).

• in the limit circle case (l.c.c.) at x = 0, if for any λ ∈ C all solutions
u of (D − λ)u = 0 are such that u ∈ L2

loc[0, R).

Here, L2
loc[0, R) denotes elements that are L2-integrable over any closed inter-

vall I ⊂ [0, R), but not necessarily L2-integrable over [0, R]. Furthermore the
result [W, Theorem 5.3] implies that if the limit point or the limit circle case
holds for one λ ∈ C, then it automatically holds for any complex number.
Hence it suffices to check l.p.c or l.c.c. at any fixed λ ∈ C. Similar definition
holds at the other boundary x = R.

The central motivation for introducing the notions of limit point and limit
circle cases is that it provides a characterization of the von Neumann space
D(Dmax)/D(Dmin) and in particular criteria for uniqueness of closed exten-
sions of D in C(L2(0, R)).
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Theorem 2.3. [W, Theorem 5.4] Let D : C∞0 (0, R) → C∞0 (0, R) be a sym-
metric differential operator with real coefficients. Let φ0, φR ∈ C∞[0, R] be
smooth cut-off functions being identically one near x = 0, x = R and identi-
cally zero near x = R, x = 0 respectively. Then

(i) If D is in the l.c.c. at x = 0, (x = R) and {uj} is the fundamental
system of solutions to Du = 0, then {φ0 · uj}, ({φR · uj}) forms modulo
D(Dmin) a linearly independent set.

(ii) We have the following four possible cases

• If D is in the l.c.c. at x = 0 and x = R, then

D(Dmax)/D(Dmin) = Lin({φ0 · uj}, {φR · uj}).

• If D is in the l.c.c. at x = 0 and l.p.c. at x = R, then

D(Dmax)/D(Dmin) = Lin({φ0 · uj}).

• If D is in the l.p.c. at x = 0 and l.c.c. at x = R, then

D(Dmax)/D(Dmin) = Lin({φR · uj}).

• If D is in the l.p.c. at x = 0 and x = R, then

D(Dmax) = D(Dmin).

The first statement in Theorem 2.3 is precisely the claim of [W, Theorem 5.4
(a)]. The second statement in Theorem 2.3 is contained in the proof of [W,
Theorem 5.4 (b)].

To simplify the language of the forthcoming discussion, we introduce at this
point a notion, which will be used throughout the presentation.

Definition 2.4. We say that two closed extensions D1, D2 of a differential
operator D : C∞0 (0, R) → C∞0 (0, R) ”coincide” at x = 0, if for any cut-off
function φ ∈ C∞[0, R] vanishing identically at x = R and being identically
one at x = 0, the following relation holds

φD(D1) = φD(D2).

In particular we say that a formally self-adjoint differential operator is ”es-
sentially self-adjoint” at x = 0 if all its self-adjoint extensions in C(L2(0, R))
coincide at x = 0.
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Similar definition holds at x = R. These definitions hold similarly for closed
operators in L2((0, R), H), where H is any Hilbert space. With the intro-
duced notation we obtain as a corollary of Theorem 2.3.

Corollary 2.5. Let D be a symmetric differential operator over C∞0 (0, R)
with real coefficients, in the limit point case at x = 0. Then all closed exten-
sions of D in C(L2(0, R)) coincide at x = 0 and in particular D is essentially
self-adjoint at x = 0.

2.2 First order Regular-Singular Model Operators

We consider the following regular-singular model operator

dp :=
d

dx
+
p

x
: C∞0 (0, R) → C∞0 (0, R), p ∈ R.

Recall, its maximal closed extension dp,max is defined by

D(dp,max) = {f ∈ L2(0, R)|dpf ∈ L2(0, R)}.

We find that any element of the maximal domain is square-integrable with
its weak derivative in L2

loc(0, R], due to regularity of the coefficients of dp at
x = R. So we have (compare [W, Theorem 3.2])

D(dp,max) ⊂ H1
loc(0, R].

Consequently elements of the maximal domain D(dp,max) are continuous at
any x ∈ (0, R]. Further we derive by solving the inhomogeneous differential
equation dpf = g ∈ L2(0, R) via the variation of constants method (the
solution to the homogeneous equation dpu = 0 is simply u(x) = c ·x−p), that
elements of the maximal domain f ∈ D(dp,max) are of the following form

f(x) = c · x−p − x−p ·
∫ R

x

yp(dpf)(y)dy. (2.2)

We now analyze the expression above in order to determine the asymptotic
behaviour at x = 0 of elements in the maximal domain of dp for different
values of p ∈ R.

Proposition 2.6. Let O(
√
x) and O(

√
x| log(x)|) refer to the asymptotic be-

haviour as x→ 0. Then the maximal domain of dp is characterized explicitly
as follows:
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(i) For p < −1/2 we have

D(dp,max) = {f ∈ H1
loc(0, R]|f(x) = O(

√
x), dpf ∈ L2(0, R)}.

(ii) For p = −1/2 we have

D(dp,max) = {f ∈ H1
loc(0, R]|f(x) = O(

√
x| log x|), dpf ∈ L2(0, R)}.

(iii) For p ∈ (−1/2; 1/2) we have

D(dp,max) = {f ∈ H1
loc(0, R]|f(x) = cfx

−p +O(
√
x), dpf ∈ L2(0, R)},

where the constants cf depend only on f .

(iv) For p ≥ 1/2 we have

D(dp,max) = {f ∈ H1
loc(0, R]|f(x) = O(

√
x), dpf ∈ L2(0, R)}.

Proof. Due to similarity of arguments we prove the first statement only, in
order to avoid repetition. Let p < −1/2 and consider any f ∈ D(dp,max). By
(2.2) this element can be expressed by

f(x) = c · x−p − x−p ·
∫ R

x

ypg(y)dy,

where g = dpf . By the Cauchy-Schwarz inequality we obtain for the second
term in the expression∣∣∣∣x−p ∫ R

x

ypg(y)dy

∣∣∣∣ ≤ x−p

√∫ R

x

y2pdy ·

√∫ R

x

g2 ≤

≤ c · x−p
√
x2p+1 −R2p+1‖g‖L2 = c ·

√
x
√

1−R2p+1x−2p−1‖g‖L2 ,

where c = 1/
√
−2p− 1. Since (−2p− 1) > 0 we obtain for the asymptotics

as x→ 0

x−p
∫ R

x

ypg(y)dy = O(
√
x).

Observe further that for p < −1/2 we also have x−p = O(
√
x). This shows

the inclusion ⊆ in the statement. To see the converse inclusion observe

{f ∈ H1
loc(0, R]|f(x) = O(

√
x), as x→ 0} ⊂ L2(0, R).

This proves the statement.
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In order to analyze the minimal closed extension dp,min of dp, we need to
derive an identity relating dp to its formal adjoint dtp, the so-called Lagrange
identity. With the notation of Proposition 2.6 we obtain the following result.

Lemma 2.7. (Lagrange-Identity) For any f ∈ D(dp,max) and g ∈ D(dtp,max)

〈dpf, g〉 −
〈
f, dtpg

〉
= f(R)g(R)− cfcg, for |p| < 1/2,

〈dpf, g〉 −
〈
f, dtpg

〉
= f(R)g(R), for |p| ≥ 1/2.

Proof.
〈dpf, g〉 −

〈
f, dtpg

〉
= f(R)g(R)− f(x) · g(x)|x→0.

Applying Proposition 2.6 to f ∈ D(dp,max) and g ∈ D(dtp,max) = D(d−p,max)
we obtain:

f(x) · g(x)|x→0 = cfcg, for |p| < 1/2,

f(x) · g(x)|x→0 = 0, for |p| ≥ 1/2,

This proves the statement of the lemma.

Proposition 2.8.

D(dp,min) = {f ∈ D(dp,max)|cf = 0, f(R) = 0}, for |p| < 1/2,

D(dp,min) = {f ∈ D(dp,max)|f(R) = 0}, for |p| ≥ 1/2,

where the coefficient cf refers to the notation in Proposition 2.6 (iii).

Proof. Fix some f ∈ D(dp,min). Then for any g ∈ D(dtp,max) we obtain using
dp,min = (dtp,max)

∗ (see Theorem 2.1) the following relation:

〈dp,minf, g〉 −
〈
f, dtp,maxg

〉
= 0.

Together with the Lagrange identity, established in Lemma 2.7 we find

f(R)g(R)− cfcg = 0, for |p| < 1/2, (2.3)

f(R)g(R) = 0, for |p| ≥ 1/2. (2.4)

Let now |p| < 1/2. Then for any c, b ∈ C there exists g ∈ D(dtp,max) such that
cg = c and g(R) = b. By arbitrariness of c, b ∈ C we conclude from (2.3)

cf = 0, f(R) = 0.

For |p| ≥ 1/2 similar arguments hold, so we get f(R) = 0. This proves
the inclusion ⊆ in the statements. For the converse inclusion consider some
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f ∈ D(dp,max) with cf = 0 (for |p| < 1/2) and f(R) = 0. Now for any
g ∈ D(dtp,max) we infer from Lemma 2.7

〈dp,maxf, g〉 −
〈
f, dtp,maxg

〉
= 0.

Thus f is automatically an element of D((dtp,max)
∗) = D(dp,min). This proves

the converse inclusion.

Now by a direct comparison of the results in Propositions 2.6 and 2.8 we
obtain the following corollary.

Corollary 2.9.

(i) For |p| ≥ 1/2 the closed extensions dp,min and dp,max coincide at x = 0.

(ii) For |p| < 1/2 the asymptotics of elements in D(dp,max) differs from the
asymptotics of elements in D(dp,min) by presence of u(x) := c · x−p,
solving dpu = 0.

Remark 2.10. The calculations and results of this subsection are the one-
dimensional analogue of the discussion in [BS]. In particular, the result of
Corollary 2.9 corresponds to [BS, Lemma 3.2].

2.3 Self-adjoint extensions of Model Laplacians

Let the model Laplacian be the following differential operator

4 := − d2

dx2
+

λ

x2
: C∞0 (0, R) → C∞0 (0, R),

where we assume λ ≥ −1/4. Put

p :=

√
λ+

1

4
− 1

2
≥ −1

2
.

In this notation we find
4 = dtpdp =: 4p.

Recall that the maximal domain D(4p,max) is defined as follows

D(4p,max) = {f ∈ L2(0, R)|4pf ∈ L2(0, R)}.

Hence any element of the maximal domain is square-integrable with its second
and thus also its first weak-derivative in L2

loc(0, R]. So we have (compare [W,
Theorem 3.2])

D(4p,max) ⊂ H2
loc(0, R]. (2.5)

We determine the maximal domain D(4p,max) explicitly, see also the classical
calculations provided in [KLP1].
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Proposition 2.11. Let O(x3/2) and O(x1/2) refer to the asymptotic be-
haviour as x → 0. Then the maximal domain D(4p,max) of the Laplace
operator 4p is characterized explicitly as follows:

(i) For p = −1/2 we have (2.6)

D(4p,max) = {f ∈ H2
loc(0, R]|f(x) = c1(f) ·

√
x+ c2(f) ·

√
x log(x)+

+ f̃(x), f̃(x) = O(x3/2), f̃ ′(x) = O(x1/2), 4pf̃(x) ∈ L2(0, R)}.

(ii) For |p| < 1/2 we have (2.7)

D(4p,max) = {f ∈ H2
loc(0, R]|, f(x) = c1(f) · xp+1 + c2(f) · x−p+

+ f̃(x), f̃(x) = O(x3/2), f̃ ′(x) = O(x1/2), 4pf̃(x) ∈ L2(0, R)}.

(iii) For p ≥ 1/2 we have (2.8)

D(4p,max) = {f ∈ H2
loc(0, R]|f(x) = O(x3/2),

f ′(x) = O(x1/2), 4pf(x) ∈ L2(0, R)}.

The constants c1(f), c2(f) depend only on the function f .

Proof. Consider any f ∈ D(4p,max), p ≥ −1/2 and note that 4p = dtpdp =
−d−pdp. Hence we have the inhomogeneous differential equation d−p(dpf) =
−g with g ≡ 4pf ∈ L2(0, R).

Analogous situation has been considered in Proposition 2.6. Repeating the
arguments there we obtain

(dpf)(x) = c · xp + A(x), (2.9)

where A(x) = O(
√
x), x→ 0 for p 6= 1/2 and A(x) = O(

√
x| log(x)|), x→ 0

for p = 1/2. Note by (2.5) that the functions dpf(x) and A(x) are contin-
uous at any x ∈ (0, R]. Applying the variation of constants method to the
differential equation in (2.9) we obtain

f(x) = const · x−p − x−p
∫ R

x

yp(dpf)(y)dy =

= const · x−p − const · x−p
∫ R

x

y2pdy − x−p
∫ R

x

ypA(y)dy =

= const · x−p − const · x−p
∫ R

x

y2pdy + x−p
∫ x

0

ypA(y)dy, (2.10)

where ”const” denotes any constant depending only on f and the last equality
follows from the fact that idp · A ∈ L1(0, R) for p ≥ −1/2, due to the
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asymptotics of A(y) as y → 0. Put

f̃(x) = x−p
∫ x

0

ypA(y)dy.

Using the asymptotic behaviour of A(y) as y → 0, we derive f̃(x) = O(x3/2)

and f̃ ′(x) = O(x1/2) as x→ 0. Evaluating now explicitly the second integral
in (2.10) for different values of p ≥ −1/2 and noting for p ≥ 1/2 the facts
that xp+1 = O(x3/2) and id−p /∈ L2(0, R), we prove the inclusion ⊆ in the
statement on the domain relations.

For the converse inclusion observe that any f ∈ H2
loc(0, R] with the asymp-

totic behaviour as x→ 0:

f(x) = c1(f) ·
√
x+ c2(f) ·

√
x log(x) +O(x3/2), for p = −1/2,

f(x) = c1(f) · xp+1 + c2(f) · x−p +O(x3/2), for |p| < 1/2,

f(x) = O(x3/2), for p ≥ 1/2,

is square integrable, f ∈ L2(0, R). It remains to observe why 4pf ∈ L2(0, R)
for any f in the domains on the right hand side of the statement. This
becomes clear, once we note that the additional terms in the asymptotics of
f other than f̃(x) are solutions to 4pu = 0.

In order to analyze the minimal closed extension 4p,min we need to derive
the Lagrange identity for 4p, see also [KLP2, (3.2)].

Lemma 2.12. [Lagrange-identity] For any f, g ∈ D(4p,max) the following
identities hold.

(i) If p = −1/2, then we have in the notation of Proposition 2.11

〈f,4pg〉L2 − 〈4pf, g〉L2 =

= [c1(f)c2(g)− c2(f)c1(g)] + [f ′(R)g(R)− f(R)g′(R)].

(ii) If |p| < 1/2, then we have in the notation of Proposition 2.11

〈f,4pg〉L2 − 〈4pf, g〉L2 =

= −(2p+ 1)[c1(f)c2(g)− c2(f)c1(g)] + [f ′(R)g(R)− f(R)g′(R)].

(iii) If p ≥ 1/2, then we have

〈f,4pg〉L2 − 〈4pf, g〉L2 = [f ′(R)g(R)− f(R)g′(R)].
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Proof. Let f, g ∈ D(4p,max) be any two elements of the maximal domain of
4p. We compute:

〈f,4pg〉L2 − 〈4pf, g〉L2 =

= lim
ε→0

∫ R

ε

[f(x)4pg(x)−4pf(x)g(x)]dx =

= lim
ε→0

∫ R

ε

d

dx
[−f(x)g′(x) + f ′(x)g(x)]dx =

= lim
ε→0

[f(ε)g′(ε)− f ′(ε)g(ε)] + [f ′(R)g(R)− f(R)g′(R)].

Now the statement follows by inserting the asymptotics at x = 0 of f, g ∈
D(4p,max) into the first summand of the expression above.

Proposition 2.13. The minimal domain of the model Laplacian 4p is given
explicitly in the notation of Proposition 2.11 as follows

D(4p,min) =

= {f ∈ D(4p,max)|c1(f) = c2(f) = 0, f(R) = f ′(R) = 0}, p ∈ [−1/2, 1/2),

D(4p,min) = {f ∈ D(4p,max)|f(R) = f ′(R) = 0}, p ≥ 1/2.

Proof. Fix some f ∈ D(4p,min). Then for any g ∈ D(4p,max) we obtain with
4p,min = 4∗

p,max (see Theorem 2.1) the following relation

〈f,4pg〉L2 − 〈4pf, g〉L2 = 0.

Together with the Lagrange-identity, established in Lemma 2.12, and the
fact that for p ∈ [−1/2, 1/2) and any arbitrary c1, c2, b1, b2 ∈ C there exists
g ∈ D(4p,max) such that

c1(g) = c1, c2(g) = c2, g(R) = b1, g
′(R) = b2,

we conclude for f ∈ D(4p,min), p ∈ [−1/2, 1/2)

c1(f) = c2(f) = 0, f(R) = f ′(R) = 0. (2.11)

Analogous arguments for f ∈ D(4p,min), p ≥ 1/2 show f(R) = f ′(R) = 0.
This proves the inclusion ⊆ in the statement. For the converse inclusion
consider any f ∈ D(4p,max), satisfying (2.11), where the condition c1(f) =
c2(f) = 0 is imposed only for p ∈ [−1/2, 1/2). Now we obtain from the
Lagrange-identity in Lemma 2.12

∀g ∈ D(4p,max) : 〈f,4pg〉L2 − 〈4pf, g〉L2 = 0.

Hence f is automatically an element of D(4∗
p.max) = D(4p,min). This proves

the converse inclusion.
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Corollary 2.14. (i) For λ ≥ 3/4, equivalently for p =
√
λ+ 1/4− 1/2 ≥

1/2, the model Laplacian 4p is in the limit point case at x = 0 and the
closed extensions 4p,max and 4p,min coincide at x = 0. In particular
4p is essentially self-adjoint at x = 0.

(ii) For λ ∈ [−1/4, 3/4), equivalently for p =
√
λ+ 1/4 − 1/2 ∈

[−1/2, 1/2), the model Laplacian 4p is in the limit circle case at x = 0
and the asymptotics at zero of the elements in D(4p,max) differ from
the asymptotics at zero of elements in D(4p,min) by presence of funda-
mental solutions to 4pu = 0.

Proof. On the one hand statements on the coincidence or the difference of
maximal and minimal domains at x = 0 follow from a direct comparison
of the results of Propositions 2.11 and 2.13. On the other hand, given the
statements on the limit point and the limit circle cases, the comparison of
the maximal and the minimal domains follows from Theorem 2.3.

It remains then to verify the limit point and the limit circle statements.
They follow by definition from the study of the fundamental solutions u1, u2 :
(0, R) → R of 4pu = 0:

For p = −1/2 u1(x) =
√
x, u2(x) =

√
x log(x), (2.12)

For p > −1/2 u1(x) = xp+1, u2(x) = x−p. (2.13)

Next, since the model Laplacian 4p is shown to be essentially self-adjoint
at x = 0 for p ≥ 1/2, we are interested in the self-adjoint extensions of
4p for p ∈ [−1/2, 1/2), since only there the boundary conditions at x = 0
are not redundant. In this subsection we determine for these values of p
the two geometrically meaningsful extensions of the model Laplacian − the
D-extension and N-extension:

4D
p := (dp,min)

∗(dp,min) = dtp,maxdp,min,

4N
p := (dp,max)

∗(dp,max) = dtp,mindp,max.

Corollary 2.15. For |p| < 1/2 we have in the notation of Proposition 2.11

D(4D
p ) = {f ∈ D(4p,max)|c2(f) = 0, f(R) = 0}, (2.14)

D(4N
p ) = {f ∈ D(4p,max)|c1(f) = 0, dpf(R) = 0}. (2.15)
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Proof. Let us consider the D−extension first. By definition D(4D
p ) ⊂

D(dp,min) and thus by Proposition 2.8 we have for any f ∈ D(4D
p )

f(x) = O(
√
x) and f(R) = 0.

Since x−p 6= O(
√
x), x→ 0 for |p| < 1/2 we find in the notation of Proposition

2.11 that the constant c2(f) must be zero for f ∈ D(4D
p ). This proves the

inclusion ⊆ in the first statement.

For the converse inclusion consider f ∈ D(4p,max) with c2(f) = 0, f(R) = 0.
By Proposition 2.8 we find f ∈ D(dp,min). Now with f ∈ D(4p,max) we obtain
dp,minf ∈ D(dtp,max) and hence

f ∈ D(4D
p ).

This proves the converse inclusion of the first statement.

For the second statement consider any f ∈ D(4N
p ) = D(dtp,mindp,max). There

exists some g ∈ D(dtp,min) such that dpf = g with the general solution of this
differential equation obtained by the variation of constants method.

f(x) = c · x−p − x−p
∫ x

0

ypg(y)dy.

Since g ∈ D(dtp,min) and thus in particular g(x) = O(
√
x), we find via the

Cauchy-inequality that the second summand in the solution above behaves
as O(x3/2) for x → 0. Hence c1(f) = 0 in the notation of Proposition 2.11.
Further dpf ∈ D(dtp,min) and thus

dpf(R) = 0.

This proves the inclusion ⊆ in the second statement.

For the converse inclusion consider an element f ∈ D(4p,max) with f(x) =

c2(f) · x−p + f̃(x), where f̃(x) = O(x3/2), f̃ ′(x) = O(
√
x), as x → 0, and

dpf(R) = 0. The inclusion f ∈ D(dp,max) is then clear by Proposition 2.6.

Now by Proposition 2.8 we have dpf = dpf̃ ∈ D(d−p,min) due to asymptotics

of f̃(x) as x→ 0 and dpf(R) = 0.

Corollary 2.16. For p = −1/2 we have in the notation of Proposition 2.11

D(4D
p ) = {f ∈ D(4p,max)|c2(f) = 0, f(R) = 0}.

D(4N
p ) = {f ∈ D(4p,max)|c2(f) = 0, dpf(R) = 0}.
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Proof. The first statement is proved by similar arguments as in Corollary
2.14. The Corollary 2.9 asserts the equality of the D-extension and the
N-extension at x = 0 in the sense of Definition 2.4. This determines the
asymptotic behaviour of f ∈ D(4N

p ) as x→ 0. For the boundary conditions
of 4N

p at x = R simply observe that for any f ∈ D(4N
p ) one has in particular

dpf ∈ D(d−p,min) and hence dpf(R) = 0.

Remark 2.17. The naming ”D-extension” and ”N-extension” coincides with
the convention chosen in [LMP, Section 2.3]. However the motivation for this
naming is given here by the type of the boundary conditions at the regular
end x = R. In fact D(4D

p ) has Dirichlet boundary conditions at x = R and
D(4D

p ) − generalized Neumann boundary conditions at x = R.

So far we considered the self-adjoint extensions of 4p = dtpdp with p :=√
λ+ 1/4− 1/2 ∈ [−1/2, 1/2). However for r = −p− 1 we have

dtrdr = dtpdp = − d2

dx2
+

λ

x2
, since r(r + 1) = p(p+ 1) = λ.

Hence for completeness it remains identify the D- and the N-extensions for
dtrdr, r = p − 1 ∈ (−3/2,−1/2] as well. Note however that for p = −1/2
we get r = p = −1/2 and the D-, N-extensions are as established before. It
remains to consider r ∈ (−3/2,−1/2).

Corollary 2.18. Let p ∈ (−1/2;−1/2). Put r = −p − 1 ∈ (−3/2,−1/2).
Then we have in the notation of Proposition 2.11

D(4D
r ) = {f ∈ D(4p,max)|c2(f) = 0, f(R) = 0},

D(4N
r ) = {f ∈ D(4p,max)|c2(f) = 0, drf(R) = 0}.

Proof. The first statement is proved by similar arguments as in Corollary
2.15. Further, Corollary 2.9 implies equality of the D-extension and the
N-extension at x = 0 in the sense of Definition 2.4. This determines the
asymptotic behaviour of f ∈ D(4N

r ) at x = 0. For the boundary conditions
of 4N

r at x = R simply observe that for any f ∈ D(4N
r ) one has in particular

drf ∈ D(d−r,min) and hence drf(R) = 0.
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3 Boundary Conditions for the de Rham

Laplacian on a Bounded Generalized Cone

In this section we discuss the geometry of a bounded generalized cone and
following [L3] decompose the associated de Rham Laplacian in a compatible
way with respect to its relative self adjoint extension. This decomposition
allows us to study the relative self-adjoint extension of the Laplace operator
explicitly and provides a basis for the computation of the associated zeta-
regularized determinants.

The question about the self-adjoint extensions of the Laplacians on differ-
ential forms of a fixed degree, on manifolds with conical singularities is ad-
dressed in [BL2, Theorems 3.7 and 3.8]. There, among many other issues,
the relative extension is shown to coincide with the Friedrich’s extension at
the cone singularity, outside of the middle degrees.

Using the decomposition of the complex we obtain further explicit results
without the degree limitations.

3.1 Regular-Singular Operators

Consider a bounded generalized cone M = (0, R]×N over a closed oriented
Riemannian manifold (N, gN) of dimension dimN = n, with the Riemannian
metric on M given by a warped product

gM = dx2 ⊕ x2gN .

The volume forms on M and N , associated to the Riemannian metrics gM

and gN , are related as follows:

vol(gM) = xndx ∧ vol(gN).

Consider as in [BS, (5.2)] the following separation of variables map, which is
linear and bijective:

Ψk : C∞0 ((0, R),Ωk−1(N)⊕ Ωk(N)) → Ωk
0(M) (3.1)

(φk−1, φk) 7→ xk−1−n/2φk−1 ∧ dx+ xk−n/2φk,

where φk, φk−1 are identified with their pullback to M under the natural
projection π : (0, R]×N → N onto the second factor, and x is the canonical
coordinate on (0, R]. Here Ωk

0(M) denotes differential forms of degree k =
0, .., n+1 with compact support in the interior of M . With respect to the L2-
scalar products, induced by the volume forms vol(gM) and vol(gN), we note
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the following relation for any (φk, φk−1), (ψk, ψk−1) ∈ C∞0 ((0, R),Ωk−1(N) ⊕
Ωk(N)):

〈Ψk(φk, φk−1),Ψk(ψk, ψk−1)〉L2(M) =

=

∫
M

x2(k−1)−ngM(φk−1, ψk−1)x
ndx ∧ vol(gN)+

+

∫
M

x2k−ngM(φk, ψk)x
ndx ∧ vol(gN) =

=

∫
M

gN(φk−1(x), ψk−1(x))dx ∧ vol(gN)+

+

∫
M

gN(φk(x), ψk(x))dx ∧ vol(gN) =

=

∫ R

0

〈φk−1(x), ψk−1(x)〉L2(N)dx =

+

∫ R

0

〈φk(x), ψk(x)〉L2(N)dx,

where we extended the Riemannian metrics to inner products on differential
forms. The relation implies that the separation of variables map Ψk extends
to an isometry on the L2-completions, proving the proposition below.

Proposition 3.1. The separation of variables map (3.1) extends to an iso-
metric identification of L2−Hilbert spaces

Ψk : L2([0, R], L2(∧k−1T ∗N ⊕ ∧kT ∗N, vol(gN)), dx) → L2(∧kT ∗M, vol(gM)).

Under this identification we obtain for the exterior derivative, as in [BS, (5.5)]

Ψ−1
k+1dkΨk =

(
0 (−1)k∂x
0 0

)
+

1

x

(
dk−1,N ck

0 dk,N

)
, (3.2)

where ck = (−1)k(k − n/2) and dk,N denotes the exterior derivative on dif-
ferential forms over N of degree k. Taking adjoints we find

Ψ−1
k dtkΨk+1 =

(
0 0

(−1)k+1∂x 0

)
+

1

x

(
dtk−1,N 0
ck dtk,N

)
. (3.3)

Consider now the Gauss-Bonnet operator D+
GB mapping forms of even degree

to forms of odd degree. The Gauss-Bonnet operator acting on forms of
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odd degree is simply the formal adjoint D−
GB = (D+

GB)t. With respect to
Ψ+ := ⊕Ψ2k and Ψ− := ⊕Ψ2k+1 the relevant operators take the following
form:

Ψ−1
− D+

GBΨ+ =
d

dx
+

1

x
S0, Ψ−1

+ D−
GBΨ− = − d

dx
+

1

x
S0, (3.4)

Ψ−1
+ 4+Ψ+ = Ψ−1

+ (D+
GB)tΨ−Ψ−1

− D+
GBΨ+ = − d2

dx2
+

1

x2
S0(S0 + 1), (3.5)

Ψ−1
− 4−Ψ− = Ψ−1

− (D−
GB)tΨ+Ψ−1

+ D−
GBΨ− = − d2

dx2
+

1

x2
S0(S0 − 1).

where S0 is a first order elliptic differential operator on Ω∗(N). It is given
explicitly by the following matrix form (cf. [BL2, (2.12)]):

S0 =


c0 dt0,N 0 · · · 0
d0,N c1 dt1,N · · · 0

... d1,N
. . . . . .

...

0 · · · . . . cn−1 dtn−1,N

0 · · · 0 dn−1,N cn

 , ck = (−1)k
(
k − n

2

)
.

The transformed Gauss-Bonnet operators in (3.4) are regular singular in the
sense of [BS] and [Br, Section 3]. Moreover, the Laplace Operator on k-forms
over M transforms to

Ψk4kΨ
−1
k = − d2

dx2
+

1

x2
Ak. (3.6)

The operator Ak denotes the restriction of S0(S0+(−1)k) to Ωk−1(N)⊕Ωk(N)
and is given explicitly by the following matrix form:

Ak =

(
4k−1,N + c2k−1 + (−1)kck−1 (ck + ck−1 + (−1)k)dtk,N
(ck + ck−1 + (−1)k)dk−1,N 4k,N + c2k + (−1)k+1ck

)
, (3.7)

where 4k,N denotes the Laplacian on differential forms of degree k over N .

Note, that under the isometric identification Ψ∗ the previous non-product
situation of the bounded generalized cone M is now incorporated in the
x-dependence of the tangential parts of the geometric Gauss-Bonnet and
Laplace operators.

Next we take boundary conditions into account and consider their behaviour
under the isometric identification Ψ∗. More precisely consider the exterior
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derivatives and their formal adjoints on differential forms with compact sup-
port in the interior of M :

dk : Ωk
0(M) → Ωk+1

0 (M),

dtk : Ωk+1
0 (M) → Ωk

0(M).

Define the minimal closed extensions dk,min and dtk,min as the graph closures
in L2(

∧∗ T ∗M, vol(gM)) of the differential operators dk and dtk respectively.

The operators dk,min and dtk,min are closed and densely defined. In particular
we can form the adjoint operators and set for the maximal extensions:

dk,max := (dtk,min)
∗, dtk,max := (dk,min)

∗.

These definitions correspond to Theorem 2.1. The following result is an easy
consequence of the definitions of the minimal and maximal extensions and
of Proposition 3.1.

Proposition 3.2.

Ψ−1
k (D(dk,min)) = D([Ψ−1

k+1dkΨk]min),

Ψ−1
k (D(dk,max)) = D([Ψ−1

k+1dkΨk]max).

Similar statements hold for the minimal and maximal extensions of the formal
adjoint operators dtk. The minimal and the maximal extensions of the exte-
rior derivative give rise to self-adjoint extensions of the associated Laplace
operator

4k = dtkdk + dk−1d
t
k−1.

It is important to note that there are self-adjoint extensions of 4k which
do not come from closed extensions of dk and dk−1, compare the notion of
”ideal boundary conditions” in [BL1]. However the most relevant self-adjoint
extensions of the Laplacian indeed seem to come from closed extensions of
the exterior derivatives.

We are interested in the relative and the absolute self-adjoint extensions of
4k, defined as follows:

4rel
k := d∗k,mindk,min + dk−1,mind

∗
k−1,min = (3.8)

= dtk,maxdk,min + dk−1,mind
t
k−1,max,

4abs
k := d∗k,maxdk,max + dk−1,maxd

∗
k−1,max = (3.9)

= dtk,mindk,max + dk−1,maxd
t
k−1,min.
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As a direct consequence of the previous proposition and Proposition 3.1 we
obtain for the relative self-adjoint extension (absolute self-adjoint extension
is discussed in a similar way):

Corollary 3.3. Consider the following two complexes

(Ω∗
0(M), dk), (C∞0 ((0, R), C∞(∧k−1T ∗N ⊕ ∧kT ∗N)), d̃k := Ψ−1

k+1dkΨk).

Then the relative self-adjoint extensions of the associated Laplacians

4rel
k = d∗k,mindk,min + dk−1,mind

∗
k−1,min,

4̃rel
k = d̃∗k,mind̃k,min + d̃k−1,mind̃

∗
k−1,min

are spectrally equivalent, with Ψ−1
k (D(4rel

k )) = D(4̃rel
k ) and

4̃rel
k = Ψ−1

k 4
rel
k Ψk.

As a consequence of Corollary 3.3 we can deal with the minimal extension
of the unitarily transformed exterior differential Ψ−1

k+1dkΨk and the relative
extension of the unitarily transformed Laplacian Ψ−1

k 4kΨk without loss of
generality. By a small abuse of notation we denote the operators again by
dk,min and 4rel

k , in order to keep the notation simple. This setup shall be
fixed up to Section 6.

3.2 Decomposition of the de Rham Laplacian

Our goal is the explicit determination of the domain of 4rel
k , k = 0, ..,m =

dimM . We restrict ourselves to the relative extension, since the absolute
extension is treated analogously.

By the convenient structure (3.6) of the Laplacian4k one is tempted to write

4k =
⊕

λ∈Sp(Ak)

− d2

dx2
+

λ

x2
,

and study the boundary conditions induced on each one-dimensional compo-
nent. However this decomposition might be incompatible with the bound-
ary conditions, so the discussion of the corresponding self-adjoint realization
might not reduce to simple one-dimensional problems. This is in fact the
case for the relative boundary conditions, which (by definition) determine
the domain of the relative extension 4rel

k .
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Nevertheless we infer from the decomposition above and (2.5) the regularity
properties for elements φ ∈ D(4k,max), needed in the formulation of Propo-
sition 3.5 below.

At the cone face {x = R} ×N the relative boundary conditions are derived
from the following trace theorem of L. Paquet:

Theorem 3.4. [P, Theorem 1.9] Let K be a compact oriented Riemannian
manifold with boundary ∂K and let ι : ∂K ↪→ K be the natural inclusion.
Then the pullback ι∗ : Ωk(K) → Ωk(∂K) with Ωk(∂K) = {0} for k = dimK,
extends continuously to the following linear surjective map:

ι∗ : D(dk,max) → D(d
−1/2
k,∂K),

where d
−1/2
k,∂K is the closure of the exterior derivative on ∂K in the Sobolev space

H−1/2(∧∗T ∗∂K) and dk,max the maximal extension of the exterior derivative

on K. The domains D(dk,max) and D(d
−1/2
k,∂K) are Hilbert spaces with respect

to the graph-norms of the corresponding operators.

Proposition 3.5. Let γ ∈ C∞[0, R] be a smooth cut-off function, vanishing
identically at x = 0 and being identically one at x = R. Then

γD(4rel
k ) = {Ψk(φk−1, φk) ∈ γD(4k,max)|φk(R) = 0,

φ′k−1(R)− (k − 1− n/2)

R
φk−1(R) = 0}.

Proof. Let r ∈ (0, R) be fixed and consider the associated natural inclusions

χ : [0, R]×N =: Mr ↪→M,

ι : {R} ×N ≡ N ↪→M,

ιr : {R} ×N ≡ N ↪→Mr.

We obviously have ι = χ ◦ ιr. The inclusions above induce pullbacks of
differential forms. The pullback map χ∗ : Ωk(M) → Ωk(Mr) is simply a
restriction and extends to a continuous linear map

χ∗ : D(dk,max) → D(drk,max),

where drk is the k−th exterior derivative on Mr ⊂ M and the domains are
endowed with the graph norms of the corresponding operators. Applying
Theorem 3.4 to the compact manifold Mr, we deduce that ι∗ = ι∗r ◦ χ∗
extends to a continuous linear map

ι∗ : D(dk,max) → D(d
−1/2
k,N ). (3.10)
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Now, continuity of ι∗ together with the definition of the minimal domain
D(dk,min) implies

γD(dk,min) ⊆ {φ ∈ γD(dk,max)|ι∗φ = 0}.

Equality in the relation above follows from the Lagrange identity for dk. We
obtain for the relative boundary conditions at the cone base:

γD(4rel
k ) = {φ ∈ γD(4k,max)|ι∗φ = 0, ι∗(dtk−1φ) = 0}.

Now the statement of the proposition follows from the explicit action of dtk−1

under the isometric identification Ψ∗ and the fact that for Ψk(φk−1, φk) ∈
D(4k,max) we have ι∗(Ψk(φk−1, φk)) = Rk−n/2φk(R).

In order to identify the relative boundary conditions at the cone singularity,
we decompose 4k into a direct sum of operators such that the decomposition
is compatible with the relative self-adjoint extension.

Compatibility of a decomposition means explicitly the following in the con-
text of our presentation.

Definition 3.6. Let D be a closed operator in a Hilbert space H. Let H1

be a closed subspace of H and H2 := H⊥
1 . We say the decomposition H =

H1 ⊕ H2 is compatible with D if D(Hj ∩ D(D)) ⊂ Hj, j = 1, 2 and for any
φ1 ⊕ φ2 ∈ D(D) we get φ1, φ2 ∈ D(D).

This definition corresponds to [W2, Exercise 5.39] where the subspaces
Hj, j = 1, 2 are called the ”reducing subspaces of D”. We have the following
result:

Proposition 3.7. [W2, Theorem 7.28] Let D be a self-adjoint operator in
a Hilbert space H. Let H1 be a closed subspace of H and H2 := H⊥

1 . Let
the decomposition H = H1 ⊕ H2 be compatible with D. Then each operator
Di := D|Hi, i = 1, 2 with domain

D(Di) := D(D) ∩Hi, i = 1, 2

is a self-adjoint operator in Hi. In other words, the induced decomposition
D = D1⊕D2 is an orthogonal decomposition of D into sum of two self-adjoint
operators.

Definition 3.8. In the setup of Proposition 3.7 we say Di, i = 1, 2 is a
self-adjoint operator ”induced” by D.
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In order to simplify notation, put:

Hk : = L2([0, R], L2(∧k−1T ∗N ⊕ ∧kT ∗N, vol(gN)), dx),

H∗ : =
⊕
k≥0

Hk,

where Hk are mutually orthogonal in H∗. The following result gives a practi-
cal condition for compatibility of a decomposition of Hk with the self-adjoint
realization 4rel

k .

Proposition 3.9. Let Hk = H1 ⊕ H2, H2 := H⊥
1 be an orthogonal de-

composition into closed subspaces, such that 4rel
k (Hj ∩ D(4rel

k )) ⊂ Hj, j =
1, 2. Assume that for D ∈ {dk, dtk, dtkdk, dk−1d

t
k−1} the images Dmax(Hj ∩

D(Dmax)), j = 1, 2 are mutually orthogonal in H∗. Then the decomposition
Hk = H1 ⊕H2 is compatible with the relative extension 4rel

k .

Proof. Consider φ = φ1 ⊕ φ2 ∈ D(4rel
k ). In particular φ ∈ D(dk,min), i.e.

there exists a sequence (φn)n∈N ⊂ C∞0 ((0, R),Ωk−1N ⊕ ΩkN) such that as
n→∞

φn
L2

−→ φ and dkφn
L2

−→ dkφ.

Under the decomposition Hk = H1 ⊕H2 we write

φn = φ1
n ⊕ φ2

n
L2

−→ φ1 ⊕ φ2 and

dkφn = dkφ
1
n ⊕ dkφ

2
n

L2

−→ dkφ1 ⊕ dkφ2.

Since the decomposition Hk = H1 ⊕ H2 is orthogonal and by assumption
orthogonality is maintained under the action of dk,max, we find

φin
L2

−→ φi and dkφ
i
n

L2

−→ dkφi, i = 1, 2.

This implies φ1, φ2 ∈ D(dk,min).

Further φ ∈ D(4rel
k ) lies in particular in D(dtk−1,max), i.e.

φ = φ1 ⊕ φ2 ∈ L2, dtk−1φ = dtk−1φ1 ⊕ dtk−1φ2 ∈ L2.

By orthogonality of the decompositions, each component must be square-
integrable individually. Hence φ1, φ2 ∈ D(dtk−1,max). Iterative application of
these arguments proves the statement.
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Now we can present, following [L3], a decomposition of H∗, compatible with
4rel
∗ . To describe the decomposition in convenient terms, we denote by

4k,ccl,N the Laplace operator on coclosed k−forms on N and introduce some
notation

Vk := {λ ∈ Spec4k,ccl,N}\{0},
Ek
λ := {ω ∈ Ωk(N)|4k,Nω = λω, dtNω = 0},

Ẽk
λ := Ek

λ ⊕ dNE
k
λ, Hk(N) := Ek

0 .

Here k = 0, .., dimN = n and the eigenvalues of 4k,ccl,N in Vk are counted
with their multiplicities, so that each single Ek

λ is a one-dimensional subspace.
The eigenvectors for a λ ∈ Vk, k = 0, .., n with multiplicity bigger than 1 are
chosen to be mutually orthogonal with respect to the L2-inner product on N .
Further let for each Hk(N) choose an orthonormal basis of harmonic forms
{uki } with i = 1, .., dimHk(N).

Then by the Hodge decomposition on N we obtain for any fixed degree
k = 0, .., n+ 1 (put Ωn+1(N) = Ω−1(N) = {0})

Ωk−1(N)⊕ Ωk(N) =

dimHk−1(N)⊕
i=1

〈uk−1
i 〉

⊕
dimHk(N)⊕

i=1

〈uki 〉

 (3.11)

⊕

 ⊕
λ∈Vk−1

Ẽk−1
λ

⊕
 ⊕
λ∈Vk−2

dNE
k−2
λ

⊕ [⊕
λ∈Vk

Ek
λ

]
.

Theorem 3.10. The decomposition (3.11) induces an orthogonal decompo-
sition of Hk, compatible with the relative extension 4rel

k .

Proof. The decomposition of Hk induced by (3.11) is orthogonal, since the
decomposition (3.11) is orthogonal with respect to the L2-inner product on
N . Applying now dk, d

t
kdk and dk−1, dk−1d

t
k−1 to each of the orthogonal com-

ponents we find that the images remain mutually orthogonal, so we obtain
with Proposition 3.9 the desired statement.

3.3 The Relative Boundary Conditions

By Proposition 3.7 the orthogonal decomposition of Hk in Theorem 3.10
corresponds to a decomposition of 4rel

k into an orthogonal sum of self-adjoint
operators. This decomposition is discussed by M. Lesch in [L3]. Using the
decomposition we can now determine explicitly the boundary conditions for
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each of the self-adjoint components, up to the self-adjoint extension induced
by 4rel

k over

L2((0, R), Ẽk−1
λ ), λ ∈ Vk−1.

We do not determine the boundary conditions for these particular self-adjoint
components. However even for these components we can reduce the zeta-
determinant calculations, which we perform in the next section, to other
well-understood problems.

Let ψ ∈ Ek
λ, λ ∈ Vk, k = 1, .., n be a fixed non-zero generator of Ek

λ. Put

ξ1 := (0, ψ) ∈ Ωk−1(N)⊕ Ωk(N),

ξ2 := (ψ, 0) ∈ Ωk(N)⊕ Ωk+1(N),

ξ3 := (0,
1√
λ
dNψ) ∈ Ωk(N)⊕ Ωk+1(N),

ξ4 := (
1√
λ
dNψ, 0) ∈ Ωk+1(N)⊕ Ωk+2(N).

Then C∞0 ((0, R), 〈ξ1, ξ2, ξ3, ξ4〉) is invariant under d, dt and we obtain a sub-
complex of the de Rham complex:

0 → C∞0 ((0, R), 〈ξ1〉)
d0−→ C∞0 ((0, R), 〈ξ2, ξ3〉)

d1−→ C∞0 ((0, R), 〈ξ4〉) → 0,
(3.12)

where d0, d1 take the following form with respect to the chosen basis:

dψ0 =

(
(−1)k∂x + ck

x

x−1
√
λ

)
, dψ1 =

(
x−1

√
λ, (−1)k+1∂x +

ck+1

x

)
.

By Proposition 3.7 and Theorem 3.10 we obtain for the induced (in the sense
of Definition 3.8) self-adjoint extensions:

D(4rel
k ) ∩ L2((0, R), Ek

λ) = D(dt0,maxd0,min) =: D(4k
0,λ),

(3.13)

D(4rel
k+2) ∩ L2((0, R), dNE

k
λ) = D(d1,mind

t
1,max) =: D(4k

2,λ),

(3.14)

D(4rel
k+1) ∩ L2((0, R), Ẽk

λ) = D(d0,mind
t
0,max + dt1,maxd1,min) =: D(4k

λ).

(3.15)

Note further that dt0d0 and d1d
t
1 both act as the following regular-singular

model Laplacian

4 := − d2

dx2
+

1

x2

(
λ+

[
k +

1

2
− n

2

]2

− 1

4

)
, (3.16)
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under the identification of any φ = f · ξi ∈ C∞0 ((0, R), 〈ξi〉), i = 1, 4 with its
scalar part f ∈ C∞0 (0, R). We continue under this identification from here
on, as asserted in the next remark.

Remark 3.11. Let V = 〈v〉 denote any one-dimensional Hilbert space. Con-
sider a particular type of a differential operator

P : C∞0 ((0, R), V ) → C∞0 ((0, R), V ),

f · v 7→ (Pf) · v,

where f ∈ C∞0 (0, R) and P is a scalar differential operator on C∞0 (0, R). We
call f and P the ”scalar parts” of f · v and P, respectively.

We can reduce without loss of generality the spectral analysis of self-adjoint
extensions of P to the spectral analysis of self-adjoint extensions of P by
identifying the V−valued functions f · v with their scalar parts. We fix this
identification henceforth.

In view of Corollary 2.14 we have to distinguish two cases. The first case is

λ+

[
k +

1

2
− n

2

]2

− 1

4
<

3

4
, (3.17)

so that 4 is in the limit circle case at x = 0. Hence (note λ ∈ Vk and so
λ 	 0)

p :=

√
λ+

[
k +

1

2
− n

2

]2

− 1

2
∈
(
−1

2
,
1

2

)
.

Then we get 4 = 4p in the notation of Subsection 2.3. Since p ∈
(−1/2, 1/2) we obtain from Proposition 2.11 for the asymptotics of elements
f ∈ D(4max):

f(x) = c1(f) · xp+1 + c2(f) · x−p +O(x3/2). (3.18)

In the second case

λ+

[
k +

1

2
− n

2

]2

− 1

4
≥ 3

4
(3.19)

the Laplacian 4 is by Corollary 2.14 in the limit point case at x = 0 and
hence in this case boundary conditions at zero are redundant. We can now
compute the domains D(4k

0,λ) and D(4k
2,λ) explicitly.
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Lemma 3.12. Identify any φ ∈ D(4k
0,λ) with its scalar part f ∈ D(4p,max).

Under this identification we obtain for 4p in the limit circle case (3.17) at
x = 0, in the notation of (3.18)

D(4k
0,λ) = {f ∈ D(4p,max)|c2(f) = 0, f(R) = 0}.

In the limit point case (3.19) at x = 0, we obtain

D(4k
0,λ) = {f ∈ D(4p,max)|f(R) = 0}.

Proof. Consider φ ∈ D(4k
0,λ) with its scalar part f ∈ D(4p,max). We begin

with the limit circle case at x = 0. Since φ ∈ D(d0,min) ⊂ D(d0,max) we
deduce from the explicit form of d0 that f ∈ D(1/x)max, where 1/x is the
obvious multiplication operator. Since with p ∈ (−1/2, 1/2)

id−p /∈ D(1/x)max

we deduce c2(f) = 0. On the other hand we infer from Proposition 3.5

f(R) = 0.

This proves the inclusion ⊂ in the first statement. Since both sides of the
inclusion define self-adjoint extensions and these are maximally symmetric,
the inclusion must be an equality.

For the limit point case at x = 0 the argumentation is similar up to the fact
that the boundary conditions at x = 0 are redundant by Corollary 2.14.

Lemma 3.13. Identify any φ ∈ D(4k
2,λ) with its scalar part f ∈ D(4p,max).

Under this identification we obtain for 4p in the limit circle case (3.17) at
x = 0, in the notation of (3.18)

D(4k
2,λ) = {f ∈ D(4p,max)|c2(f) = 0, f ′(R)− (k + 1− n/2)

R
f(R) = 0}.

In the limit point case (3.19) at x = 0, we obtain

D(4k
2,λ) = {f ∈ D(4p,max)|f ′(R)− (k + 1− n/2)

R
f(R) = 0}.

Proof. Consider φ ∈ D(4k
2,λ) with its scalar part f ∈ D(4p,max). We be-

gin with the limit circle case at x = 0. Since φ ∈ D(dt1,max) we deduce
from the explicit form of dt1 that f ∈ D(1/x)max, where 1/x is the obvious
multiplication operator. Since with p ∈ (−1/2, 1/2)

id−p /∈ D(1/x)max
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we deduce c2(f) = 0 as in the previous lemma. On the other hand we infer
from Proposition 3.5 in the degree k + 2

f ′(R)− (k + 1− n/2)

R
f(R) = 0.

This proves the inclusion ⊂ in the first statement. Since both sides of the
inclusion define self-adjoint extensions and these are maximally symmetric,
the inclusion must be an equality.

For the limit point case at x = 0 the argumentation is similar up to the fact
that the boundary conditions at x = 0 are redundant by Corollary 2.14.

In contrary to D(4k
0,λ) and D(4k

2,λ), it is not straightforward to determine

D(4k
λ) explicitly. However for the purpose of later calculations of zeta de-

terminants it is sufficient to observe that 4k
0,λ,4k

2,λ,4k
λ are Laplacians of

the complex (3.12) with relative boundary conditions and hence satisfy the
following spectral relation:

Spec(4k
λ)\{0} = Spec(4k

0,λ)\{0} t Spec(4k
2,λ)\{0},

where the eigenvalues are counted with their multiplicities.

Next consider Hk(N) with the fixed orthonormal basis {uki }, i =
1, .., dimHk(N). Observe that for any i the subspace C∞0 ((0, R), 〈0 ⊕
uki , u

k
i ⊕ 0〉) is invariant under d, dt and we obtain a subcomplex of the de

Rham complex

0 → C∞0 ((0, R), 〈0⊕uki , 〉)
d−→ C∞0 ((0, R), 〈uki ⊕ 0〉) → 0,

d = (−1)k∂x +
ck
x
,

where the action of d is of scalar type under the identification fixed in Remark
3.11. We continue under this identification. By Proposition 3.7 and Theorem
3.10 we obtain for the induced self-adjoint extensions

D(4rel
k ) ∩ L2((0, R),〈0⊕ uki 〉) = D(dtmaxdmin) =

= D
(
(−1)k+1∂x +

ck
x

)
max

(
(−1)k∂x +

ck
x

)
min

,

(3.20)

D(4rel
k+1) ∩ L2((0, R),〈uki ⊕ 0〉) = D(dmind

t
max) =

= D
(
(−1)k∂x +

ck
x

)
min

(
(−1)k+1∂x +

ck
x

)
max

.

(3.21)
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Depending on the explicit value of ck = (−1)k(k − n/2) these domains are
self-adjoint extensions of regular-singular model Laplacians in limit point or
limit circle case at x = 0. For model Laplacians in the limit circle case at
x = 0 the domains are determined in Subsection 2.3. In the limit point case
at x = 0 the boundary conditions at x = 0 are redundant by Corollary 2.14
and the boundary conditions at x = R are determined in Proposition 3.5.
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4 Functional Determinants for Regular-

Singular Sturm-Liouville Operators

Different sources have analyzed zeta-determinants of Laplace operators over
a bounded generalized cone. Under the condition that all self-adjoint exten-
sions in the L2−Hilbert space of the Laplace operator coincide at the cone
singularity, calculations are provided in the joint work of J.S. Dowker and K.
Kirsten in [DK1].

The self-adjoint extensions of the de Rham Laplacians on a bounded gen-
eralized cone however need not necessarily coincide at the cone singularity.
This situation was considered by K. Kirsten, P. Loya and J. Park in [KLP1].
In their discussion, however, only pure Dirichlet boundary conditions at the
cone base have been considered.

More precisely Kirsten, Loya and Park consider in [KLP1] a finite direct sum
of regular-singular model Laplacians in the limit circle case at the singular
end and compute their zeta-determinants for general boundary conditions at
the singular and Dirichlet boundary conditions at the regular end.

The argumentation in the preprints [KLP1] and [KLP2] is based on the Con-
tour integral method, which a priori need not to apply in the regular-singular
setup and is only formally a consequence of the Argument Principle.

We verify explicitly that the Contour integral method indeed applies in the
regular-singular setup, however for Neumann boundary conditions at the
cone base. The Dirichlet boundary conditions can be discussed in a similar
manner. The author intends to publish the proof for the applicability of the
Contour integral method in the regular-singular setup with Dirichlet bound-
ary conditions as an appendix to [KLP2].

Our proof is the basis for the integral representation of the zeta-function.
Otherwise the Contour integral method only gives information on the pole
structure of the zeta-function, but no results on the zeta-determinants.

The determinants of a more general class of operators, the regular-singular
Sturm-Liouville operators, have been discussed in scalar setup by M. Lesch
in [L].

We extend the treatment of [KLP1] to generalized Neumann boundary con-
ditions at the cone base. This allows us to compute the zeta-determinants of
the Laplace operators with the geometrically relevant relative boundary con-
ditions, by a combination of our results with the results by [L] and [KLP1].
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In view of [DK1] and [KLP1] this provides a complete picture on the Laplace
operator on a bounded generalized cone.

4.1 Self-adjoint Realizations

We consider the following model setup. Let the operator L be the following
regular-singular Sturm-Liouville operator

L = − d2

dx2
+

1

x2
A : C∞0 ((0, R),Cq) → C∞0 ((0, R),Cq),

where for any fixed q ∈ N, C∞0 ((0, R),Cq) denotes the space of smooth Cq-
valued functions with compact support in (0, R). Let the tangential operator
A be a symmetric q × q matrix and choose on Cq an orthonormal basis of
A-eigenvectors. Then we can write:

L =
⊕

λ∈Spec(A)

− d2

dx2
+

λ

x2
.

Following [KLP1, KLP2] we need a classification of boundary conditions at
x = 0 for self-adjoint realizations of L. In view of Corollary 2.14 we restrict
to the case

Spec(A) ⊂ [−1/4, 3/4),

so that L is a finite direct sum of model Laplace operators in the limit circle
case at x = 0 and x = R. In this case boundary conditions must be posed
at both boundary components.

Fix a counting on Spec(A) as follows

−1

4
= λ1 = · · · = λq0 < λq0+1 ≤ · · · ≤ λq=q0+q1 <

3

4
.

Denote by El the λl-eigenspace of A. We count the eigenvalues of A with
their multiplicities, so El is understood to be one-dimensional with El = 〈el〉.
Over C∞0 ((0, R), El), l = 1, ..., q the differential operator L reduces to a model
Laplace operator (recall the convention fixed in Remark 3.11)

− d2

dx2
+
λl
x2

: C∞0 (0, R) → C∞0 (0, R).

Consider the maximal closed extension Lmax of the differential operator L.
Any φl ∈ D(Lmax)∩L2((0, R), El), l = 1, ..., q is given by fl · el where el is the
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generator of the one-dimensional eigenspace El and by definition (see also
(2.5))

fl ∈ D
(
− d2

dx2
+
λl
x2

)
max

⊂ H2
loc(0, R].

We identify any φl with its scalar part fl and observe by Proposition 2.11
that fl(x) has the following asymptotics at x = 0:

cl
√
x+ cq+l

√
x log x+O(x3/2), as l = 1, ..., q0. (4.1)

clx
νl+

1
2 + cq+lx

−νl+
1
2 +O(x3/2), as l = q0 + 1, ..., q. (4.2)

with νl :=

√
λl +

1

4
.

A general element φ ∈ D(Lmax) decomposes into a direct sum of such φl, l =
1, ..., q, each of them of the asymptotics above. This defines a vector for any
φ ∈ D(Lmax)

~φ := (c1, ...c2q)
T ∈ C2q.

Consider now any φ, ψ ∈ D(Lmax) and the associated vectors ~φ, ~ψ. Each
of the components φl, ψl, l = 1, .., q lies in the maximal domain of the cor-
responding model Laplace operator and thus is continuous over (0, R] and
differentiable over (0, R) with the derivatives φ′l, ψ

′
l extending continuously

to x = R. We impose boundary conditions at x = R as follows

φ′(R) + αφ(R) = 0, ψ′(R) + αψ(R) = 0,

where these equations are to be read componentwise and α ∈ R.

In [KLP2, Section 3] the classical results on self-adjoint extensions are re-
viewed and based on the Lagrange identity for L (similar to Lemma 2.12)
the boundary conditions at x = 0 for the self-adjoint extensions of L are
classified in terms of Lagrangian subspaces.

As a consequence of [KLP2, Corollary 3.5, (4.2)] the self-adjoint realizations
of L with fixed generalized Neumann boundary conditions at x = R are
characterized as follows:

D(L) = {φ ∈ D(Lmax)|φ′(R) + αφ(R) = 0, (A B)~φ = 0}, (4.3)

where the matrices A,B ∈ Cq×q are fixed according to the conditions of
[KLP2, Corollary 3.5], i.e. (A B) ∈ Cq×2q is of full rank q and A′B∗ is self-
adjoint, where A′ is the matrix A with the first q0 columns multiplied by
(−1).
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Remark 4.1. Note that in general L does not decompose into a finite sum
of one-dimensional boundary value problems, since the matrices (A,B) need
not to be diagonal. Therefore the computations below do not reduce to a
one-dimensional discussion.

4.2 Functional Determinants

In this subsection we continue with the analysis of the self-adjoint realiza-
tion D(L), fixed in (4.3). Our aim is to construct explicitly the analytic
continuation of the associated zeta-function to s = 0 and to compute the
zeta-regularized determinant of L.

We follow the ideas of [KLP1, KLP2], where however only Dirichlet bound-
ary conditions at the cone base x = R have been considered. We extend their
approach to generalized Neumann boundary conditions at the cone base, in
order to apply the calculations to the relative self-adjoint extension of the
Laplace Operator on a bounded generalized cone.

Furthermore we put the arguments on a thorough footing by proving appli-
cability of the Contour integral method in the regular-singular setup.

We introduce the following q× q matrices in terms of Bessel functions of first
and second kind:

J±(µ) :=

 (
κJ±0(µR) + µ

√
RJ ′±0(µR)

)
· Idq0 0

0 diag
[
2±νlΓ(1± νl)µ

∓νl

(
κJ±νl

(µR) + µ
√
RJ ′±νl

(µR)
)] ,

where the diagonal block matrix in the right low corner has entries for l =
q0 + 1, ..., q. Further we have introduced new constants

κ :=
1

2
√
R

+ α
√
R, νl :=

√
λl +

1

4
, l = q0 + 1, ..., q,

to simplify notation. Moreover the function J−0(µR) is defined as follows:

J−0(µx) :=
π

2
Y0(µx)− (log µ− log 2 + γ)J0(µx)

with γ being the Euler constant and where we fix for the upcoming discussion
the branch of logarithm in C\R+ with 0 ≤ Im log(z) < 2π. With this
notation we can now formulate the implicit eigenvalue equation for L.
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Proposition 4.2. µ2 is an eigenvalue of L if and only if the following equa-
tion is satisfied

F (µ) := det

(
A B

J+(µ) J−(µ)

)
!
= 0.

Proof. Any µ2-eigenvector φ of L is given by a direct sum of scalar functions
φl, l = 1, .., q, which are in the λl-eigenspace of A for any fixed x ∈ (0, R].
Each φl arises as a solution to the Bessel equation

−φ′′l +
λl
x2
φl = µ2φl.

Putting νl :=
√
λl + 1/4 we can rewrite the equation as follows:

−φ′′l +
1

x2

(
νl −

1

4

)
φl = µ2φl. (4.4)

The general solution to this Bessel equation is given in terms of J∗ and Y∗,
Bessel functions of first and second kind, respectively.

For l = 1, .., q0 we have λl = −1/4 and hence νl = 0. In this case the
Bessel equation (4.4) has two linearly independent solutions,

√
xJ0(µx) and√

xY0(µx). Following [KLP2, Section 4.2] we write for the general solution

cl
√
xJ0(µx) + cq+l

√
xJ−0(µx), as l = 1, ..., q0, (4.5)

where cl, cq+l are constants and J−0(µx) = π
2
Y0(µx)−(log µ−log 2+γ)J0(µx)

with γ being the Euler constant. Note from [AS, p.360] with Hk = 1+1/2+
...+ 1/k and z ∈ C:

π

2
Y0(z) = (log z − log 2 + γ)J0(z)−

∞∑
k=1

Hk(−z2/4)k

(k!)2
,

with Hk = 1 + 1/2 + ..+ 1/k. Thus by definition we obtain

J−0(µx) = log x · J0(µx)−
∞∑
k=1

Hk(−(µx)2/4)k

(k!)2
.

For l = q0 + 1, .., q we have λl ∈ (−1/4, 3/4) and hence νl ∈ (0, 1), in
particular νl is non-integer. In this case the Bessel equation (4.4) has two
linearly independent solutions

√
xJνl

(µx) and
√
xJ−νl

(µx). Following [KLP2,
Section 4.2] we write for the general solution

cl2
νlΓ(1 + νl)µ

−νl
√
xJνl

(µx) + cq+l2
−νlΓ(1− νl)µ

νl
√
xJ−νl

(µx), (4.6)

as l = q0 + 1, ..., q.
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Now we deduce from the standard series representation of Bessel functions
[AS, p. 360] the following asymptotic behaviour as x→ 0:

√
xJ0(µx) =

√
x+

√
xO(x2), (4.7)

√
xJ−0(µx) =

√
x log x+

√
x log x ·O(x2) +

√
xO(x2), (4.8)

2±νlΓ(1± νl)µ
∓νl
√
xJ±νl

(µx) = x±νl+1/2 + x±νl+1/2O(x2), (4.9)

where O(x2) is given by power-series in (xµ)2 with no constant term. Hence
the asymptotic behaviour at x = 0 of the general solutions (4.5) and (4.6)
corresponds to the asymptotics (4.1) and (4.2), respectively. Organizing the

constants cl, cq+l, l = 1, .., q into a vector ~φ = (c1, ..., c2q), we obtain

(A,B)~φ = 0,

since by assumption, φ ∈ D(L). We now evaluate the generalized Neumann
boundary conditions at the regular boundary x = R.

φ′l(R) + αφl(R) = 0 ⇒ cl · {(
1

2
√
R

+ α
√
R)J0(µR) + µ

√
RJ ′0(µR)}+

+ cq+l · {(
1

2
√
R

+ α
√
R)J−0(µR) + µ

√
RJ ′−0(µR)} = 0, as l = 1, ..., q0.

cl · 2νlΓ(1 + νl)µ
−νl{( 1

2
√
R

+ α
√
R)Jνl

(µR) + µ
√
RJ ′νl

(µR)}+

+ cq+l · 2−νlΓ(1− νl)µ
νl{( 1

2
√
R

+ α
√
R)J−νl

(µR) + µ
√
RJ ′−νl

(µR)} = 0,

as l = q0 + 1, ..., q,

We can rewrite this system of equations in a compact form as follows

(J+(µ); J−(µ))~φ = 0,

where the matrices J±(µ) are defined above.

We obtain equations which have to be satisfied by the µ2-eigenvectors of the
self-adjoint realization L:(

A B
J+(µ) J−(µ)

)
~φ = 0.

This equation has non-trivial solutions if and only if the determinant of the
matrix in front of the vector is zero. Hence we finally arrive at the following
implicit eigenvalue equation

F (µ) := det

(
A B

J+(µ) J−(µ)

)
!
= 0.
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Proposition 4.3. With νl =
√
λl + 1/4 and κ = 1

2
√
R

+ α
√
R

F (0) = det

 A B
κIdqo 0

0 diag(κRνl + νlR
νl− 1

2 )

(κ logR + 1√
R
)Idqo 0

0 diag(κR−νl − νlR
−νl− 1

2 )


Proof. The asymptotics (4.7), (4.8) and (4.9), where O(x2) is in fact power-
series in (xµ)2 with no constant term, imply by straightforward computa-
tions:

κJ0(µR) + µ
√
RJ ′0(µR) → κ, as µ→ 0,

κJ−0(µR) + µ
√
RJ ′−0(µR) → κ · logR +

1√
R
, as µ→ 0,

2±νlΓ(1± νl)µ
∓νlJ±νl

(µR) → R±νl , as µ→ 0,

2±νlΓ(1± νl)µ
∓νlµ

√
RJ ′±νl

(µR) → ±νlR±νl− 1
2 , as µ→ 0,

where l = q0 + 1, .., q. These relations prove the statement.

The next proposition is similar to [KLP2, Proposition 4.3] and we use the
notation therein.

Proposition 4.4. Let Υ ⊂ C be a closed angle in the right half-plane. Then
as |x| → ∞, x ∈ Υ we can write

F (ix) = ρx|ν|+
q
2 eqxR(2π)−

q
2 (γ̃ − log x)qo×

p((γ̃ − log x)−1, x−1)

(
1 +O

(
1

x

))
,

where γ is the Euler constant, |ν| = νqo+1+...+νq. Moreover, as |x| → ∞ with
x ∈ Υ, O(1/x) is a power-series in x−1 with no constant term. Furthermore
we have set:

γ̃ := log 2− γ, ρ :=

q∏
l=qo+1

2−νlΓ(1− νl),

p(x, y) := det

 A B
x · Idq0 0

0 diag [τly
2νl ]

Idq

 , with τl :=
Γ(1 + νl)

Γ(1− νl)
22νl ,

where the submatrix diag [τly
2νl ] has entries for l = q0 + 1, .., q.
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Proof. We present F (ix) in terms of modified Bessel functions of first and
second kind. We use following well-known relations

(iz)−νJν(iz) = z−νIν(z), J
′
ν(z) = Jν−1(z)−

ν

z
Jν(z)

to analyze the building bricks of F (ix) where we put with l = q0 + 1, .., q

A±l := 2±νlΓ(1± νl)(ix)
∓νl

(
κJ±νl

(ixR) + ix
√
RJ ′±νl

(ixR)
)

= 2±νlΓ(1± νl)

·
(

(κ∓ νl√
R

)x∓νlI±νl
(xR) +

√
Rx∓νl+1I±νl−1(xR)

)
B := κJ0(ixR) +

√
RixJ ′0(ixR) = κI0(xR) +

√
RxI ′0(xR),

and using the identity J−0(ixR) = −(log x− γ̃)I0(xR)−K0(xR) from [KLP2,
Section 4.3, p.20] where K∗ denotes the modified Bessel function of second
kind:

C := κJ−0(ixR) +
√
RixJ ′−0(ixR) = κJ−0(ixR) +

√
R
d

dR
J−0(ixR) =

= κ(−(log x− γ̃)I0(xR)−K0(xR)) +
√
R
d

dR
(−(log x− γ̃)I0(xR)−

−K0(xR)) = κ(−(log x− γ̃)I0(xR)−K0(xR))+

+
√
R(−(log x− γ̃)xI ′0(xR)− xK ′

0(xR)).

Now in order to compute the asymptotics of F (ix) we use following property
of the Bessel functions: as x→∞ with x ∈ Υ we have by [AS, p. 377]

Iν(x), I
′
ν(x) ∼

ex√
2πx

(
1 +O(x−1)

)
⇒ Iν(xR)

I−ν(xR)
∼ 1,

I−ν−1(xR)

I−ν(xR)
∼ 1,

Iν−1(xR)

I−ν(xR)
∼ 1,

where as |x| → ∞ with x ∈ Υ, O(x−1) is a power-series in x−1 with no
constant term. From here we obtain the asymptotics of the terms A±l , B, C
as x→∞, x ∈ Υ with the same meaning for O(x−1):

A+
l = 2−νlΓ(1− νl)x

νl
exR√
2πxR

[
22νl

Γ(1 + νl)

Γ(1− νl)
x−2νl

]
×(

(κ− νl√
R

) + x
√
R

)
· (1 +O(x−1)) =

= 2−νlΓ(1− νl)x
νl+1/2 e

xR

√
2π

[
22νl

Γ(1 + νl)

Γ(1− νl)
x−2νl

]
×

(1 +O(x−1)).
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Similarly we compute

A−l = 2−νlΓ(1− νl)x
νl+1/2 e

xR

√
2π

· (1 +O(x−1)),

B =
exR√
2πxR

(κ+ x
√
R) · (1 +O(x−1)) =

√
x
exR√
2π

· (1 +O(x−1)),

C =
exR√
2πxR

(γ̃ − log x)(κ+ x
√
R) · (1 +O(x−1)) =

=
√
x
exR√
2π

(γ̃ − log x) · (1 +O(x−1)),

where we have further used the fact that by [AS, p. 378] K0(xR) is exponen-
tially decaying as |x| → ∞, x ∈ Υ. Now substitute these asymptotics into
the definition of F (ix) and obtain

F (ix) =

[
q∏

l=q0+1

2−νlΓ(1− νl)x
νl+

1
2

](
exR√
2π

)q
xq0/2(γ̃ − log x)q0×

det

 A B
(γ̃ − log x)−1Idq0 0

0 ∗ Idq

 (1 +O(x−1)),

where ∗ = diag

(
22νl

Γ(1 + νl)

Γ(1− νl)
x−2νl

)
.

Using the expansion in [KLP1, (4.9)] we evaluate the asymptotics of
p((γ̃ − log x)−1, x−1) and obtain in the notation introduced in the statement
of Proposition 4.4

F (ix) = ajoαoρx
|ν|+ q

2
−2αo

(
exR√
2π

)q
(γ̃ − log x)qo−jo (1 +G(x)) , (4.10)

where G(x) = O( 1
log(x)

) and G′(x) = O( 1
x log2(x)

) as |x| → ∞ with x inside any

fixed closed angle of the right half plane of C. The coefficients α0, j0, ajoαo are
defined in [KLP2, Section 2.1] and are characteristic values of the boundary
conditions (A,B) at the cone singularity. We recall their definition here for
convenience.

Definition 4.5. The expression p(x, y) defined in Proposition 4.4 can be
written as a finite sum

p(x, y) =
∑

ajαx
jyα.
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The characteristic values α0, j0, aαojo are defined as follows:

(i) The coefficient α0 is the smallest of all exponents α with ajα 6= 0.

(ii) The coefficient j0 is the smallest of all exponents j with ajαo 6= 0.

(iii) The coefficient ajoαo is the coefficient in the polynomial p(x, y) of the
summand xjoyαo.

Unfortunately the asymptotic expansion, obtained in Proposition 4.4, does
not hold uniformly for arguments z of F (z) in a fixed closed angle of the
positive real axis. This gap is closed by the following proposition.

Proposition 4.6. Fix any θ ∈ [0, π) and put Ω := {z ∈ C||arg(z)| ≤ θ}.
Then for |z| → ∞, z ∈ Ω we have the following uniform expansion:

F (z) =

q∏
l=q0+1

{
2−νlΓ(1− νl)z

νl+1/2

√
2

π
cos(zR +

νlπ

2
+
π

4
)

}
×

×

{√
2z

π
(log z − γ̃) cos(zR− 3

4
π)

}q0

· detM(z).

Here the matrix M(z) is given as follows:

M(z) =

 A B
b(z) · Idq0 0

0 diag [a+
l (z)]

c(z) · Idq0 0
0 diag [a−l (z)]

 ,

where for l = q0 + 1, .., q we have

a+
l (z) = 22νl

Γ(1 + νl)

Γ(1− νl)
z−2νl

cos(zR− νlπ
2

+ π
4
)

cos(zR + νlπ
2

+ π
4
)
·
(

1 +
f+
l (z)

cos(zR− νlπ
2

+ π
4
)

)
,

a−l (z) = 1 +
f−l (z)

cos(zR + νlπ
2

+ π
4
)
, b(z) =

1

γ̃ − log z
·
(

1 +
fb(z)

cos(zR− 3
4
π)

)
,

c(z) = 1 +
fc(z)

cos(zR− 3
4
π)
,

and the functions f±l (z), fb(z), fc(z) have the following asymptotic behaviour
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as |z| → ∞, z ∈ Ω

f±l (z) = e|Im(zR)|O

(
1

|z|

)
,
d

dz
f±l (z) = e|Im(zR)|O

(
1

|z|

)
,

fb(z) = e|Im(zR)|O

(
1

|z|

)
,
d

dz
fb(z) = e|Im(zR)|O

(
1

|z|

)
,

fc(z) = e|Im(zR)|O

(
1

| log z|

)
,
d

dz
fc(z) = e|Im(zR)|O

(
1

| log z|

)
.

Proof. The formulas [AS, 9.2.1, 9.2.2] provide the standard asymptotic be-
haviour of Bessel functions as |z| → ∞, z ∈ Ω

Jν(z) =

√
2

πz

(
cos(z − νπ

2
− π

4
) + f(z)

)
, f(z) = e|Im(z)|O

(
1

|z|

)
,

Yν(z) =

√
2

πz

(
sin(z − νπ

2
− π

4
) + g(z)

)
, g(z) = e|Im(z)|O

(
1

|z|

)
.

Here ν ∈ R and the expansions are uniform in the closed angle Ω. Moreover
we infer from the more explicit form of asymptotics in [GRA, 8.451]:

d

dz
f(z) = e|Im(z)|O

(
1

|z|

)
,
d

dz
g(z) = e|Im(z)|O

(
1

|z|

)
.

We apply these asymptotics in order to analyze the asymptotic behaviour as
|z| → ∞, z ∈ Ω of the following building bricks of F (z):

A±l := 2±νlΓ(1± νl)z
∓νl

(
κJ±νl

(zR) + z
√
RJ ′±νl

(zR)
)
, l = q0 + 1, .., q,

B := κJ0(zR) + z
√
RJ ′0(zR),

C := κJ−0(zR) + z
√
RJ ′−0(zR).

Straightforward application of the asymptotics for Jν(z) and Yν(z) as |z| →
∞, z ∈ Ω and furthermore the use of the well-known formulas

J ′ν(z) = Jν−1(z)−
ν

z
Jν(z),

J ′0(z) = −J1(z), Y
′
0(z) = −Y1(z),
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lead to the following intermediate results:

A+
l = 2νlΓ(1 + νl)z

−νl+1/2

√
2

π
cos(zR− νlπ

2
+
π

4
) ·
(

1 +
f+
l (z)

cos(zR− νlπ
2

+ π
4
)

)
,

A−l = 2−νlΓ(1− νl)z
νl+1/2

√
2

π
cos(zR +

νlπ

2
+
π

4
) ·
(

1 +
f−l (z)

cos(zR + νlπ
2

+ π
4
)

)
,

B = −
√

2z

π
cos(zR− 3

4
π) ·

(
1 +

fb(z)

cos(zR− 3
4
π)

)
,

C =

√
2z

π
(log z − γ̃) cos(zR− 3

4
π) ·

(
1 +

fc(z)

cos(zR− 3
4
π)

)
,

where the functions f±l (z), fb(z) and their derivatives are of the asymptotics
e|Im(zR)|O (1/|z|) as |z| → ∞, z ∈ Ω. The function fc(z) and its derivative are
of the asymptotics e|Im(zR)|O (1/| log z|), as |z| → ∞, z ∈ Ω. Recall finally
the definition of F (z):

F (z) = det

 A B
B · Idq0 0

0 diag [A+
l ]

C · Idq0 0
0 diag [A−l ]

 .

Inserting the asymptotics for A±l , B and C into the definition of F (z) we
obtain the statement of the proposition.

The following result on the spectrum of L is a corollary of Proposition 4.4
and is necessary for the definition and discussion of certain contour integrals
below.

Corollary 4.7. The self-adjoint operator L is bounded from below. The zeros
of its implicit eigenvalue function F (µ) are either real or purely imaginary,
where the number of the purely imaginary zeros is finite.

The positive eigenvalues of L are given by squares of the positive zeros of
F (µ). The negative eigenvalues of L are given by squares of the purely imag-
inary zeros of F (µ) with positive imaginary part, i.e. counting the eigenvalues
of L and zeros of F (µ) with their multiplicities we have

SpecL\{0} = {µ2 ∈ R|F (µ) = 0, µ > 0 ∧ µ = ix, x > 0} (4.11)

Proof. The relation between zeros of F (µ) and eigenvalues of L is established
in Proposition 4.2. The self-adjoint operator L has real spectrum, hence the
zeros of F (µ) are either real or purely imaginary, representing positive or
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negative eigenvalues of L, respectively.

The standard infinite series representation of Bessel functions (see [AS,
p.360]) implies that zeros of F (µ) are symmetric about the origin and any
two symmetric zeros do not correspond to two linearly independent eigen-
functions of L. Hence the non-zero eigenvalues of L are in one-to-one corre-
spondence with zeros of F (µ) at the positive real and the positive imaginary
axis.

The asymptotics (4.10) implies in particular that depending on the character-
istic values j0, q0, ajoαo of the boundary conditions (A,B), the implicit eigen-
value function F (ix) goes either to plus or minus infinity as x ∈ R, x → ∞
and cannot become zero for |x| sufficiently large. Since the zeros of the mero-
morphic function F (µ) are discrete, we deduce that F (µ) has only finitely
many purely imaginary eigenvalues. Thus in turn, L has only finitely many
negative eigenvalues, i.e. is bounded from below.

Next we fix an angle θ ∈ (0, π/2) and put for any a ∈ R+:

δ(a) := {z ∈ C|Re(z) = a, | arg(z)| ≤ θ},
ρ(a) := {z ∈ C||z| = a/ cos(θ), | arg(z)| ∈ [θ, π/2]},
γ(a) := δ(a) ∪ ρ(a),

where the contour γ(a) is oriented counter-clockwise, as in the Figure 1 be-
low:

Figure 1: The contour γ(a) for the fixed θ ∈ (0, π/2) and a ∈ R+.

Furthermore we fix the branch of logarithm in C\R+ with 0 ≤ Im log(z) <
2π. In this setup, the following result is a central application of the asymp-
totic expansions in Proposition 4.4 and Proposition 4.6.
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Proposition 4.8. There exists a sequence (an)n∈N of positive real numbers
with an → ∞ as n → ∞, such that F (an) 6= 0 for all n ∈ N and for
Re(s) > 1/2 the following integrals∫

γ(an)

z−2s d

dz
logF (z)dz, n ∈ N

are well-defined and the sequence of integrals converges to zero as n→∞.

Proof. Consider first the logarithmic form of the asymptotics (4.10)

logF (ix) = log
(
ajoαo · ρ · (2π)−q/2

)
+ (|ν|+ q

2
− 2α0) log x+ qxR+

+(q0 − j0) log(γ̃ − log x) + log(1 +G(x)),

where G(x) = O( 1
log(x)

) and G′(x) = O( 1
x log2(x)

) as |x| → ∞ with ix ∈
{z ∈ C|| arg(z)| ∈ [θ, π/2], Im(z) > 0}. Same asymptotics holds for
ix ∈ {z ∈ C|| arg(z)| ∈ [θ, π/2], Im(z) < 0}, since F (ix) = F (−ix) by
the standard infinite series representation of Bessel functions [AS, p.360]. By
straightforward calculations we see for Re(s) > 1/2:∫

ρ(an)

z−2s d

dz
logF (z)dz

n→∞−−−→ 0, (4.12)

for any sequence (an)n∈N of positive real numbers with an → ∞ as n → ∞.
Thus it remains to find a sequence (an)n∈N ⊂ R+ which goes to infinity and
further ensures that ∫

δ(an)

z−2s d

dz
logF (z)dz

n→∞−−−→ 0, (4.13)

where for each n ∈ N the integral is well-defined. In order to construct such
a sequence, fix a > 0 subject to the following conditions

cos(aR± νlπ

2
+
π

4
) 6= 0, l = q0 + 1, .., q; (4.14)

cos(aR− 3

4
π) 6= 0. (4.15)

Such a choice is always possible, due to discreteness of zeros of the holomor-
phic function cos(z). Given such an a > 0, we define

∆(a) :=
⋃
k∈N

δ(a+
2π

R
k).
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Using cos(z) = (eiz + e−iz)/2 we find for any ξ ∈ R with cos(aR + ξ) 6= 0 as
|z| → ∞, z ∈ ∆(a)

cos(zR + ξ) = e|Im(zR)|O(1), (4.16)

where |O(1)| is bounded away from zero with the bounds depending only
on the sign of Im(zR), a > 0 and ξ ∈ R. Putting ~α = (αq0+1, .., αq) ∈
{0, 1}q1 , q1 = q − q0, we obtain for the asymptotic behaviour of detM(z),
introduced in Proposition 4.6, as |z| → ∞, z ∈ ∆(a):

detM(z) =

q0∑
j=0

∑
~α∈{0,1}q1

q∑
β=0

const(j, ~α, β)

[
1

γ̃ − log z

(
1 +O

(
1

|z|

))]j
×

×
q∏

l=q0+1

[
z−2νl

cos(zR− νlπ
2

+ π
4
)

cos(zR + νlπ
2

+ π
4
)
·
(

1 +O

(
1

|z|

))]αl

·
[
1 +O

(
1

| log z|

)]β
,

where const(j, ~α, β) depends moreover on A and B. In fact one has by con-
struction ∑

~α∈Iα

q∑
β=0

const(j, ~α, β) = ajα,

where Iα = {~α ∈ {0, 1}q1|
∑q

l=qo+1 νlαl = α} and ajα are the coefficients in
the Definition 4.5. Multiplying out the expression for detM(z) we compute:

detM(z) =

q0∑
j=0

∑
~α∈{0,1}q1

q∑
β=0

const(j, ~α, β)

[
1

γ̃ − log z

]j
×

×
q∏

l=q0+1

[
z−2νl

cos(zR− νlπ
2

+ π
4
)

cos(zR + νlπ
2

+ π
4
)

]αl

· [1 + fj,~α,β(z)] , fj,~α,β(z) = O

(
1

| log z|

)
.

The asymptotic behaviour of fj,~α,β(z) under differentiation follows from
Proposition 4.6

d

dz
fj,~α,β(z) = O

(
1

| log z|

)
. (4.17)

Before we continue let us make an auxiliary observation, in the spirit of
(4.16). Under the condition (4.14) on the choice of a > 0, we have for
z ∈ ∆(a) and l = q0 + 1, .., q:

cos(zR− νlπ
2

+ π
4
)

cos(zR + νlπ
2

+ π
4
)

= C ·
(

1 +
e−2|Im(zR)|C ′

1 + e−2|Im(zR)|C ′′

)
, (4.18)
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where the constants C,C ′, C ′′ are given explicitly as follows:

C = exp (i sign[Im(z)](νlπ)) ,

C ′ = exp
(
i sign[Im(z)](2aR− νlπ +

π

2
)
)
− exp

(
i sign[Im(z)](2aR + νlπ +

π

2
)
)
,

C ′′ = exp
(
i sign[Im(z)](2aR + νlπ +

π

2
)
)
.

Note that the constants are non-zero, depend only on sign[Im(z)], the choice
of a and νl. Hence for |Im(zR)| → ∞ the quotient (4.18) tends to C 6= 0.
Therefore, due to conditions (4.14) and (4.15), there exist constants C1 > 0
and C2 > 0, depending only on a, such that for z ∈ ∆(a) and for all l =
q0 + 1, .., q we have:

C1 ≤
∣∣∣∣cos(zR− νlπ

2
+ π

4
)

cos(zR + νlπ
2

+ π
4
)

∣∣∣∣ ≤ C2. (4.19)

In particular the cosinus terms in detM(z) are not relevant for its asymptotic
behaviour as |z| → ∞, z ∈ ∆(a). Now let us consider the summands in
detM(z) of slowest decrease as |z| → ∞, z ∈ ∆(a):[

1

γ̃ − log z

]j0
z−2α0·


q∑

β=0

∑
~α∈Iαo

const(j0, ~α, β)

q∏
l=q0+1

[
cos(zR− νlπ

2
+ π

4
)

cos(zR + νlπ
2

+ π
4
)

]αl


=:

[
1

γ̃ − log z

]j0
z−2α0g(z),

where the coefficients j0, α0 correspond to those in Definition 4.5. By similar
calculus as behind (4.18) we can write

g(z) = C̃

(
1 +

e−2|Im(zR)|C ′(a, z)

1 + e−2|Im(zR)|C ′′(a, z)

)
,

where C ′(a, z), C ′′(a, z) further depend on A,B and νl, l = q0 +1, .., q. More-
over they are bounded from above independently of a > 0 and z ∈ ∆(a).

The factor C̃ is given explicitly as follows:

C̃ =
∑
~α∈Iαo

q∑
β=0

const(j0, ~α, β) · exp(i sign[Im(z)]πα0)

= ajoαo · exp(i sign[Im(z)]πα0) 6= 0,

since ajoαo 6= 0 by the definition of characteristic values in Definition 4.5.
Since g(z) is a meromorphic function with discrete zeros and poles, we can
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choose a > 0 sufficiently large, still subject to conditions (4.14) and (4.15),
such that g(z) has no zeros and poles on δ(a) and∣∣∣∣ e−2|Im(zR)|C ′(a, z)

1 + e−2|Im(zR)|C ′′(a, z)

∣∣∣∣ << 1,

for z ∈ δ(a) with the highest possible absolute value of its imaginary part, i.e.
with |Im(z)| = a · tan θ. This guarantees that there exist constants C′1 > 0
and C′2 > 0, depending only on a > 0, such that for z ∈ ∆(a)

C′1 ≤ |g(z)| ≤ C′2. (4.20)

By similar arguments we find that | d
dz
g(z)| is bounded from above for z ∈

∆(a). Using (4.20) we finally obtain for detM(z) as |z| → ∞, z ∈ ∆(a)

detM(z) =

[
1

γ̃ − log z

]j0
z−α0g(z)(1 + f(z)), f(z) = O

(
1

| log(z)|

)
,

as |z| → ∞, z ∈ ∆(a). Using (4.17), (4.19) and boundedness of g(z), g′(z)
we obtain

d

dz
f(z) = O

(
1

| log z|

)
.

In total we have derived the following asymptotic behaviour of F (z) as |z| →
∞, z ∈ ∆(a):

F (z) =

q∏
l=q0+1

{
2−νlΓ(1− νl)z

νl+1/2

√
2

π
cos(zR +

νlπ

2
+
π

4
)

}
×

×

{√
2z

π
(log z − γ̃) cos(zR− 3

4
π)

}q0 [
1

γ̃ − log z

]j0
z−α0g(z)(1 + f(z)),

where there exist positive constants C′1,C
′
2,C

′′, depending only on a > 0, such
that

C′1 ≤ |g(z)| ≤ C′2, |g′(z)| ≤ C′′,

f(z) = O

(
1

| log z|

)
,
d

dz
f(z) = O

(
1

| log z|

)
.

Note that for N ∈ N sufficiently large, the asymptotics above, together with
the conditions (4.14), (4.15) and (4.20), imply that F (a+2πk/R) 6= 0 for all
k ∈ N, k ≥ N (note also that by construction

∑q
l=qo+1 νl + q1/2 − α0 > 0).
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Putting an := a+2π(N+n)/R, n ∈ N we obtain a sequence (an)n∈N of positive
numbers, going to infinity as n → ∞ and we infer from the asymptotics of
F (z) above, that for Re(s) > 1/2∫

δ(an)

z−2s d

dz
logF (z)dz

n→∞−−−→ 0, (4.21)

where by construction for each n ∈ N we have F (an) 6= 0, and hence the inte-
grals are well-defined. Together with (4.12) this finally proves the statement
of the proposition.

Consider now the following contour

Figure 2: The contour γ. The ×’s represent the zeros of F (µ). The number
of purely imaginary zeros is finite by Corollary 4.7. The t ∈ iR is chosen
such that |t|2 is larger than the largest absolute value of negative eigenvalues
of L (if present). The contour γt ⊂ γ goes from t to −t.

The asymptotics obtained in Proposition 4.4 implies that the contour integral

1

2πi

∫
γ

µ−2s d

dµ
logF (µ)dµ

with the fixed branch of logarithm in C\R+ such that 0 ≤ Im log z < 2π and
the contour γ defined in Figure 2 above, converges for Re(s) > 1/2.

The definition of γ corresponds to [KLP1, Figure 1]. We can view the contour
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γ to be closed up at infinity on the right hand side of C. Then by construc-
tion γ encircles the relevant zeros of F (µ) in (4.11). As a consequence of
Proposition 4.8 we can apply the Argument Principle and finally arrive at

ζL(s) =
1

2πi

∫
γ

µ−2s d

dµ
logF (µ)dµ, Re(s) > 1/2.

This integral representation of the zeta-function is referred by K. Kirsten, P.
Loya and J. Park as the ”Contour integral method”. Thus, on the basis of
Proposition 4.8, we have verified applicability of the Contour integral method
in the regular-singular setup, which is the basis for further arguments in
[KLP1] and [KLP2].

Breaking the integral into three parts γ = {ix|x ≥ t} ∪ γt ∪ {ix|x ≤ −t} we
obtain as in [KLP1, (4.10)]

ζL(s) =
sin(πs)

π

∫ ∞

|t|
x−2s d

dx
logF (ix)dx+

1

2πi

∫
γt

µ−2sF
′(µ)

F (µ)
dµ. (4.22)

Analytic continuation of the first integral to s = 0, see [KLP1, (4.12)] allows
computation of the functional determinant of L after subtracting possible
logarithmic singularities. We have the following result.

Proposition 4.9. Under the assumption that kerL = {0} we obtain in the
notation of Propositions 4.3 and 4.4

exp

[
− lim

s→0+

d

ds

{
1

2πi

∫
γ

µ−2s d

dµ
logF (µ)dµ− (j0 − q0)s · log(s)

}]
=

=
(2π)q/2

ajoαo

(−2eγ)q0−j0
q∏

l=q0+1

2νl

Γ(1− νl)
×

det

 A B
κIdqo 0

0 diag(κRνl + νlR
νl− 1

2 )

(κ logR + 1√
R
)Idqo 0

0 diag(κR−νl − νlR
−νl− 1

2 )

 .

Proof. Put C := ajoαo · ρ · (2π)−q/2 and rewrite the asymptotic expansion
(4.10) for |x| → ∞ with x inside any fixed closed angle of the right half plane
of C in its logarithmic form:

logF (ix) = logC + (|ν|+ q

2
− 2α0) log x+ qxR+

+(q0 − j0) log(γ̃ − log x) + log(1 +G(x)). (4.23)
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In fact the asymptotics differs from the result in [KLP1, Proposition 4.3] only
by a presence of an additional summand:

log(x
√
R)q.

Hence the same computations as those leading to [KLP1, p.16] give:

ζ(s,L)− (j0 − q0)s log s =

=
sin πs

π

(
|ν|+ q

2
− 2α0

) |t|−2s

2s
+

sin πs

π
qR
|t|−2s+1

2s− 1
+

+
sin πs

π
(j0 − q0)g(s) +

sin πs

π

∫ ∞

|t|
x−2s d

dx
log(1 +G(x))dx+

+
1

2πi

∫
γt

µ−2sF
′(µ)

F (µ)
dµ,

where with [KLP1, (4.11)] the function g(s) is entire and g(0) = γ +
log(2(log |t| − γ̃)). Explicit differentiation at s → 0+ leads to the follow-
ing result (compare [KLP1, p.16]):

lim
s→0+

d

ds

{
1

2πi

∫
γ

µ−2s d

dµ
logF (µ)dµ− (j0 − q0)s · log(s)

}
=−

(
|ν|+ q

2
− 2α0

)
log |t| − qR|t|+ (j0 − q0) (γ + log(2(log |t| − γ̃)))

− log(1 +G(|t|))− 1

πi

∫
γt

log µ
F ′(µ)

F (µ)
dµ =: Q.

Using (4.23) we can evaluate log(1 + G(|t|)) and by inserting it into the
expression above we obtain

Q = −log

(
F (i|t|)

C(−1)qo−jo

)
+(j0 − q0)(γ + log 2)−

− 1

πi

∫
γt

log µ
F ′(µ)

F (µ)
. (4.24)

The formula above is a priori derived for t = i|t| being on the upper-half of
the imaginary axis. At this point we continue with the trick of [KLP1, Figure
2] to take |t| → 0, which works well under the assumption kerL = {0}.

The integral over the finite contour γt in (4.24) vanishes as t → 0. By
triviality of kerL we have F (0) 6= 0 and obtain

Q = −log

(
F (0)

C(−1)qo−jo

)
+(j0 − q0)(γ + log 2). (4.25)
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By Proposition 4.3 we arrive at the final result

Q = (j0 − q0)(γ + log 2) + log
[
αjoaoρ(2π)−q/2(−1)qo−jo

]
−

− log det

 A B
κIdqo 0

0 diag(κRνl + νlR
νl− 1

2 )

(κ logR + 1√
R
)Idqo 0

0 diag(κR−νl − νlR
−νl− 1

2 )

 .

Exponentiating the expression proves the statement of the proposition.

Remark 4.10. In case kerL 6= {0} we can’t apply Proposition 4.9. However
the intermediate relation (4.24) still holds. Further steps are possible if the
asymptotics of F (µ) at zero is determined.

4.3 Special Cases of Self-adjoint Extensions

We compute the zeta-regularized determinants of some particular self-adjoint
extensions of the model Laplacian4ν−1/2, ν ≥ 0 in the notation of Subsection
2.3, where we put R = 1 for simplicity:

4ν−1/2 = − d2

dx2
+

1

x2

[
ν2 − 1

4

]
: C∞0 (0, 1) → C∞0 (0, 1), ν ≥ 0.

According to Proposition 2.11 we get for the asymptotics of any f ∈
D(4ν−1/2,max) as x→ 0:

f(x) = c1(f) ·
√
x+ c2(f) ·

√
x log(x) +O(x3/2), ν = 0, (4.26)

f(x) = c1(f) · xν+
1
2 + c2(f) · x−ν+

1
2 +O(x3/2), ν ∈ (0, 1), (4.27)

f(x) =O(x3/2), ν ≥ 1. (4.28)

The results of the previous subsection apply directly to the model situation
for ν ∈ [0, 1). In order to obtain results for ν ≥ 1 as well, we need to apply [L,
Theorem 1.2]. We compute now a sequence of results on zeta-determinants
for particular self-adjoint extensions which will become relevant afterwards.

Corollary 4.11. Let D be the self-adjoint extension of 4ν−1/2, ν ≥ 0 with

D(D) := {f ∈ D(4ν−1/2,max)|f(x) = O(
√
x), x→ 0; f ′(1) + αf(1) = 0}.

Then for α 6= −ν − 1/2 the operator D is injective and

detζ(D) =
√

2π
α+ ν + 1/2

Γ(1 + ν)2ν
.
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Proof. We first consider ν ∈ [0, 1). In this case the extension D amounts to

D(D) := {f ∈ D(4ν−1/2,max)|c2(f) = 0, f ′(1) + αf(1) = 0}.

Consider the polynomial p(x, y) defined in Proposition 4.4. Its explicit form
for the given extension is

p(x, y) = −x, for ν = 0,

p(x, y) = −Γ(1 + ν)

Γ(1− ν)
22νy2ν , for ν ∈ (0, 1).

Recall the definition of characteristic values α0, j0, ajoαo in Definition 4.5. For
the given extension D we obtain

j0 = q0 = 1, q = 1, ajoαo = −1, for ν = 0,

j0 = q0 = 0, q = 1, ajoαo = −Γ(1 + ν)

Γ(1− ν)
22ν , for ν ∈ (0, 1).

Evaluating with Proposition 4.3 the corresponding implicit eigenvalue func-
tion F (µ) at µ = 0 we obtain for any ν ∈ [0, 1)

F (0) = −1

2
− α− ν.

Thus the condition α 6= −ν−1/2 guarantees F (0) 6= 0 and thus kerD = {0}.
Applying Proposition 4.9 we obtain the desired formula.

In order to obtain a result for all ν ≥ 0, we need to apply [L, Theorem 1.2].
Consider mappings φ, ψ : (0, 1) → R such that

4ν−1/2φ = 0, φ(x) = O(
√
x), x→ 0 and φ(x) = xν+1/2φ0(x), φ0(0) = 1,

4ν−1/2ψ = 0, ψ′(1) + αψ(1) = 0 and ψ(1) = 1.

These solutions exist and are uniquely determined. In the sense of [L, (1.38a),
(1.38b)] the solutions φ, ψ are ”normalized” at x = 0, x = 1, respectively. In
the present setup the normalized solution φ is given explicitly as follows

φ(x) = xν+1/2.

In particular we obtain for the Wronski determinant

W (ψ, ψ) = φ′(1)ψ(1)− φ(1)ψ′(1) = α+ ν + 1/2.

By assumption α 6= −ν − 1/2 and hence W (ψ, φ) 6= 0. Note from the
fundamental system of solutions to 4ν−1/2f = 0 in (2.12) and (2.13) that
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kerD = {0}. Thus we can apply [L, Theorem 1.2] where in the notation
therein ν0 = ν and ν1 = −1/2:

detζ D =
πW (ψ, φ)

2ν0+ν1Γ(1 + ν0)Γ(1 + ν1)
=
√

2π
α+ ν + 1/2

2νΓ(1 + ν)
.

This proves the statement.

Corollary 4.12. Let D be the self-adjoint extension of 4ν−1/2, ν ≥ 0 with

D(D) := {f ∈ D(4ν−1/2,max)|f(x) = O(
√
x), x→ 0; f(1) = 0}.

The zeta-regularized determinant of this self-adjoint realization is given by

detζ(D) =

√
2π

Γ(1 + ν)2ν
.

Proof. We first consider ν ∈ [0, 1). In this case the extension D amounts to

D(D) := {f ∈ D(4ν−1/2,max)|c2(f) = 0, f(1) = 0}.

As in the proof of Corollary 4.11 we infer for the characteristic values of the
extension D

j0 = q0 = 1, q = 1, ajoαo = −1, for ν = 0,

j0 = q0 = 0, q = 1, ajoαo = −Γ(1 + ν)

Γ(1− ν)
22ν , for ν ∈ (0, 1).

Consider now the following self-adjoint extension of 4ν−1/2:

D(4N
ν−1/2) :=

{
{f ∈ D(4ν−1/2,max)|c2(f) = 0, f(1) = 0}, ν = 0,
{f ∈ D(4ν−1/2,max)|c1(f) = 0, f(1) = 0}, ν ∈ (0, 1).

This extension is referred to as ”Neumann-extension” (with Dirichlet bound-
ary conditions at x = 1) in [KLP1] and by [KLP1, Corollary 4.7] we have:

detζ4N
ν−1/2 =

√
2π

2ν

Γ(1− ν)
, ν ∈ [0, 1).

Note that for ν = 0 we have 4N
ν−1/2 ≡ D. Hence it remains to compute

the zeta-determinant of D for ν ∈ (0, 1). Using [KLP1, Theorem 2.3], where
arbitrary extensions at the cone-singularity are expressed in terms of the
”Neumann extension”, we obtain

detζ(D) = detζ4N
p ·

(−2eγ)qo−jo

ajoαo

· det

(
0 1
1 1

)
=

√
2π

Γ(1 + ν)2ν
.

This proves the statement for ν ∈ [0, 1). In order to obtain the desired result
for all ν ≥ 0, we apply [L, Theorem 1.2] by similar means as in the previous
corollary.
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The remaining three results differ from the previous two corollaries by the
fact that the self-adjoint realizations considered there are not injective. In
this case we cannot apply [L, Theorem 1.2] and Proposition 4.9. We have to
apply the intermediate result (4.24).

Corollary 4.13. Consider a self-adjoint extension D of 4ν−1/2 with ν = 1/2

D(D) := {f ∈ D(4ν−1/2,max)|c2(f) = 0, f ′(1)− f(1) = 0}.

The zeta-regularized determinant of this self-adjoint realization is given by

detζ(D) =
2

3
.

Proof. As in the proof of Corollary 4.11 we infer for the characteristic values
of the extension D

j0 = q0 = 0, q = 1, ajoαo = −Γ(1 + ν)

Γ(1− ν)
22ν = −1.

Evaluating with Proposition 4.3 the corresponding implicit eigenvalue func-
tion F (µ) at µ = 0 we obtain as in Corollary 4.11

F (0) = −1

2
+ 1− ν = 0.

This implies kerD 6= {0} and so unfortunately we cannot apply Proposition
4.9 directly. Note however from the definition of F (µ) in Proposition 4.2

F (µ) = −
√
π

2

1
√
µ

[
−1

2
J1/2(µ) + µJ ′1/2(µ)

]
.

With J1/2(µ) =
√

2
πµ

sin(µ) we compute further

F (µ) =
sin(µ)

µ
− cos(µ).

From the Taylor expansion of sin(µ), cos(µ) around zero we get

F (µ) =
1

3
µ2 +O(µ4), as |µ| → 0.

Thus we equivalently can consider a different implicit eigenvalue function

F̃ (µ) =
F (µ)

µ2
, F̃ (0) = 1/3.
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By Remark 4.10 and the relation (4.24) we obtain with j0 − q0 = 0, R = 1

ζ ′(0, D) = −log

(
F̃ (i|t|)
C̃

)
− 1

πi

∫
γt

log µ
F̃ ′(µ)

F̃ (µ)
. (4.29)

Note that the second summand is now an entire integral over a finite curve.
Taking |t| → 0 this integral vanishes. Recall that the constant C was intro-
duced in (4.23) to describe the constant term in the asymptotics of logF (ix).
By construction we have a relation between C̃ associated to F̃ (µ) and C as-
sociated to the original F (µ)

C̃ = −C = −ajoαoρ(2π)−q/2,

where ρ is defined in the statement of Proposition 4.4, leading in the present
situation to ρ = Γ(1 − ν)2−ν =

√
π/2. Hence C̃ computes explicitly to

C̃ = 1/2. Inserting this now into (4.29) and taking |t| → 0 we obtain

ζ ′(0, D) = −log

(
F̃ (0)

C̃

)
= − log

(
2

3

)
.

This proves the statement with detζ(D) = exp(−ζ ′(0, D)).

Corollary 4.14. Consider a self-adjoint extension D of 4ν−1/2 with ν = 1/2

D(D) := {f ∈ D(4ν−1/2,max)|c1(f) = 0, f ′(1) = 0}.

The zeta-regularized determinant of this self-adjoint realization is given by

detζ(D) = 2.

Proof. Consider the polynomial p(x, y) defined in Proposition 4.4. Its explicit
form for the given extension is

p(x, y) = 1.

Thus we get for the characteristic values α0, j0, ajoαo , defined in Definition
4.5

j0 = q0 = 0, q = 1, ajoαo = 1.

Evaluating with Proposition 4.3 the corresponding implicit eigenvalue func-
tion F (µ) at µ = 0 we obtain

F (0) =
1

2
− ν = 0.
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This implies kerD 6= {0} and so unfortunately we cannot apply Proposition
4.9 directly. Note however from the definition of F (µ) in Proposition 4.2

F (µ) =

√
π

2

√
µ

[
1

2
J−1/2(µ) + µJ ′−1/2(µ)

]
.

With J−1/2(µ) =
√

2
πµ

cos(µ) we compute further

F (µ) = −µ sin(µ).

From the Taylor expansion of sin(µ) around zero we get

F (µ) = −µ2 +O(µ4), as |µ| → 0.

Thus we equivalently can consider a different implicit eigenvalue function

F̃ (µ) =
F (µ)

µ2
, F̃ (0) = −1.

By Remark 4.10 and the relation (4.24) we obtain with j0 − q0 = 0, R = 1

ζ ′(0, D) = −log

(
F̃ (i|t|)
C̃

)
− 1

πi

∫
γt

log µ
F̃ ′(µ)

F̃ (µ)
. (4.30)

Note that the second summand is now an entire integral over a finite curve.
Taking |t| → 0 this integral vanishes. As in the previous corollary we find
by construction a relation between C̃ associated to F̃ (µ) and C associated
to the original F (µ)

C̃ = −C = −ajoαoρ(2π)−q/2,

where ρ = Γ(1 − ν)2−ν =
√
π/2 is defined in the statement of Proposition

4.4. The constant C̃ computes explicitly to C̃ = −1/2. Inserting this now
into (4.30) and taking |t| → 0 we obtain

ζ ′(0, D) = −log

(
F̃ (0)

C̃

)
= − log 2.

This proves the statement with detζ(D) = exp(−ζ ′(0, D)).

Corollary 4.15. Consider a self-adjoint extension D of 4ν−1/2 with ν = 0

D(D) := {f ∈ D(4ν−1/2,max)|c2(f) = 0, f ′(1)− 1

2
f(1) = 0}.

The zeta-regularized determinant of this self-adjoint realization is given by

detζ(D) =

√
π

2
.
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Proof. Consider the polynomial p(x, y) defined in Proposition 4.4. Its explicit
form for the given extension is

p(x, y) = −x.

According to Definition 4.5 we obtain from above the characteristic values of
the extension D

j0 = q0 = 1, q = 1, ajoαo = −1.

Evaluating with Proposition 4.3 the corresponding implicit eigenvalue func-
tion F (µ) at µ = 0 we obtain

F (0) = det

(
0 1
0 1

)
= 0.

This implies kerD 6= {0} and so unfortunately we cannot apply Proposition
4.9 directly. Note however from the definition of F (µ) in Proposition 4.2

F (µ) = −µJ ′0(µ) = µJ1(µ),

where we used the identity J ′0 = J−1 = −J1. Hence as |µ| → 0 we obtain the
following asymptotics

F (µ) = µJ1(µ) ∼ µ2

2Γ(2)
=
µ2

2
.

Thus we equivalently can consider a different implicit eigenvalue function

F̃ (µ) =
F (µ)

µ2
, F̃ (0) = 1/2.

By Remark 4.10 and the relation (4.24) we obtain with j0 − q0 = 0, R = 1

ζ ′(0, D) = −log

(
F̃ (i|t|)
C̃

)
− 1

πi

∫
γt

log µ
F̃ ′(µ)

F̃ (µ)
. (4.31)

Note that the second summand is now an entire integral over a finite curve.
Taking |t| → 0 this integral vanishes. As before we find by construction a
relation between C̃ associated to F̃ (µ) and C associated to the original F (µ)

C̃ = −C = −ajoαoρ(2π)−q/2,

where ρ is defined in the statement of Proposition 4.4 and equals 1 in the
present case. The constant C̃ computes explicitly to C̃ = 1/

√
2π. Inserting

this now into (4.31) and taking |t| → 0 we obtain

ζ ′(0, D) = −log

(
F̃ (0)

C̃

)
= − log

(√
π

2

)
.

This proves the statement with detζ(D) = exp(−ζ ′(0, D)).
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4.4 Functional determinant of the Laplacian with rel-
ative Boundary Conditions

We continue in the setup and notation of Section 3 and consider the de Rham
Laplacian 4k on differential forms of degree k. Its self-adjoint extension 4rel

k

is defined in (3.8) and can be viewed as a self-adjoint operator in

Hk = L2([0, 1], L2(∧k−1T ∗N ⊕ ∧kT ∗N, vol(gN)), dx).

We want to identify in each fixed degree k a decomposition

4k = Lk ⊕ 4̃k, Hk = Hk
1 ⊕Hk

2 ,

compatible with the relative extension 4rel
k , such that 4̃k is the maximal

direct sum component, subject to compatibility condition, which is essen-
tially self-adjoint at the cone-singularity in the sense that all its self-adjoint
extensions in Hk

2 coincide at the cone-tip, in analogy to Definition 2.4.

The component 4̃k is discussed in [DK1]. In this subsection our aim is to
understand the structure of Lk and its self-adjoint extension Lrelk induced in
the sense of Definition 3.8 by the relative extension 4rel

k . In particular we
want to compute the zeta-regularized determinant of Lrelk in degrees where
it is present.

Consider the decomposition of

L2((0, 1), L2(∧k−1T ∗N ⊕ ∧kT ∗N)),

induced by (3.11). By Theorem 3.10 it is compatible with 4rel
k . Thus by

Lemma 3.7 the relative extension 4rel
k induces self-adjoint extensions of 4k

restricted to each of the orthogonal components of the decomposition. We
consider each of the components distinctly.

Proposition 4.16. The relative extension 4rel
k induces a self-adjoint exten-

sion of 4k restricted to C∞0 ((0, 1),Hk(N)). This component contributes to
Lk only for

k ∈
(m

2
− 2,

m

2

)
.

In these degrees the contribution of the component to the zeta-determinant of
Lrelk is given with ν := |k + 1−m/2| by[ √

2π

Γ(1 + ν)
2−ν

]dimHk(N)

.
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Proof. Recall from (3.20) in the convention of Remark 3.11

D(4rel
k ) ∩ L2((0, 1), 〈0⊕ uki 〉) =

= D

([
∂x +

(−1)kck
x

]t
max

[
∂x +

(−1)kck
x

]
min

)
= D(4D

(−1)kck
),

where {uki } is an orthonormal basis of Hk(N), ck = (−1)k(k − n/2) and
4D

(−1)kck
denotes the self-adjoint D-extension of 4(−1)kck , as introduced in

Subsection 2.3. Note

4(−1)kck ≡ 4k−n/2 = − d2

dx2
+

1

x2

[
(k + 1−m/2)2 − 1

4

]
= 4ν−1/2,

where we put ν := |k+ 1−m/2|. We know from Corollary 2.14 that 4ν−1/2

is in the limit circle case at x = 0 and hence not essentially self-adjoint at
x = 0 iff

ν2 − 1

4
=
[
k + 1− m

2

]2
− 1

4
<

3

4
, i.e. k ∈

(m
2
− 2,

m

2

)
.

Thus we get a contribution to Lk in these degrees only, which is the first part
of the statement.

Fix such a degree k ∈ (m/2−2,m/2). Then the contribution to Lrelk is given
by [

detζ4D
k−n/2

]dimHk(N)
.

Note that for k ∈ (m/2− 2,m/2) we have (−1)kck = k− n/2 ∈ (−3/2, 1/2).
Depending on the explicit value of (−1)kck we apply Corollaries 2.15, 2.16
and 2.18. We deduce in any case:

D(4D
k−n/2) = {f ∈ D(4ν−1/2,max)|c2(f) = 0, f(1) = 0},

where c2(f) refers to the asymptotics in Proposition 2.11 or equivalently in
(4.27).

We deduce the explicit value of detζ4D
k−n/2 from Corollary 4.12.

Proposition 4.17. The relative extension 4rel
k induces a self-adjoint exten-

sion of 4k restricted to C∞0 ((0, 1),Hk−1(N)). This component contributes to
Lk only for

k ∈
(m

2
,
m

2
+ 2
)
.
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In these degrees the contribution of the component to the zeta-determinant of
Lrelk is given by[√

π/2
]dimHk−1(N)

, if dimM = m is even, k = m/2 + 1,

[2]dimHk−1(N) , if dimM = m is odd, k = n/2 + 1,

[2/3]dimHk−1(N) , if dimM = m is odd, k = n/2 + 2.

Proof. Recall from (3.21) in the convention of Remark 3.11

D(4rel
k ) ∩ L2((0, 1), 〈uk−1

i ⊕ 0〉) =

= D

([
∂x +

(−1)kck−1

x

]t
min

[
∂x +

(−1)kck−1

x

]
max

)
= D(4N

(−1)kck−1
),

where {uk−1
i } is an orthonormal basis of Hk−1(N), ck−1 = (−1)k−1(k − 1 −

n/2) and 4N
(−1)kck−1

denotes the self-adjoint N-extension of 4(−1)kck−1
, as

introduced in Subsection 2.3. Note

4(−1)kck−1
≡ 4n/2+1−k = − d2

dx2
+

1

x2

[
(k − 1−m/2)2 − 1

4

]
= 4ν−1/2,

where we put ν := |k− 1−m/2|. We know from Corollary 2.14 that 4ν−1/2

is in the limit circle case at x = 0 and hence not essentially self-adjoint at
x = 0 iff

ν2 − 1

4
=
[
k − 1− m

2

]2
− 1

4
<

3

4
, i.e. k ∈

(m
2
,
m

2
+ 2
)
.

Thus we get a contribution to Lk in these degrees only, which is the first part
of the statement.

Fix such a degree k ∈ (m/2,m/2+1). Then the contribution to Lrelk is given
by [

detζ4N
n/2+1−k

]dimHk−1(N)
.

Unfortunately the explicit form of the domain D(4N
n/2+1−k) cannot be pre-

sented in such a homogeneous way as in the previous proposition. So we
need to discuss different cases separately.

If dimM = m is even, then the only degree k ∈ (m/2,m/2+2) is k = m/2+1.
Then n/2 + 1− k = −1/2, ν = 0 and we obtain with Corollary 2.16

D(4N
n/2+1−k) = {f ∈ D(4ν−1/2,max)|c2(f) = 0, f ′(1)− 1

2
f(1) = 0},
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where c2(f) refers to the asymptotics (4.26). The contribution to the zeta-
determinant of Lrelk follows now from Corollary 4.15.

If dimM = m is odd, then the only degrees k ∈ (m/2,m/2 + 2) are k =
n/2 + 1, n/2 + 2.

For k = n/2 + 1 we have n/2 + 1 − k = 0, ν = 1/2 and we obtain from
Corollary 2.15

D(4N
n/2+1−k) = {f ∈ D(4ν−1/2,max)|c1(f) = 0, f ′(1) = 0},

where c1(f) refers to the asymptotics (4.27). The contribution to the zeta-
determinant of Lrelk in this case follows from Corollary 4.14.

For the second case k = n/2 + 2 we have n/2 + 1− k = −1, ν = 1/2. So we
obtain from Corollary 2.18

D(4N
n/2+1−k) = {f ∈ D(4ν−1/2,max)|c2(f) = 0, f ′(1)− f(1) = 0},

where c2(f) refers to the asymptotics (4.27). The contribution to the zeta-
determinant of Lrelk in this case follows from Corollary 4.13.

Now all the possible cases are discussed and the proof is complete.

Proposition 4.18. The relative extension 4rel
k induces a self-adjoint exten-

sion of 4k restricted to C∞0 ((0, 1), {0}⊕Ek
λ) for λ ∈ Vk = Spec4k,ccl,N\{0}.

This component contributes to Lk only for

k ∈
(m

2
− 2,

m

2

)
, λ < 1−

[
k +

1

2
− n

2

]2

.

In this case the contribution of the component to the zeta-determinant of Lrelk
is given by

√
2π

Γ(1 + ν)2ν
, where ν :=

√
λ+

[
k +

1

2
− n

2

]2

.

Proof. We infer from (3.16) that 4k acts on C∞0 ((0, 1), {0}⊕Ek
λ) with λ ∈ Vk

as a rank-one model Laplacian

− d2

dx2
+

1

x2

(
λ+

[
k +

1

2
− n

2

]2

− 1

4

)
,
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under the identification of elements in C∞0 ((0, 1), {0}⊕Ek
λ) with their scalar

parts in C∞0 (0, 1) in the convention of Remark 3.11. This operator is in the
limit circle case at x = 0 and hence not essentially self-adjoint at x = 0 iff

λ+

[
k +

1

2
− n

2

]2

− 1

4
<

3

4
, i.e. k ∈

(m
2
− 2,

m

2

)
, λ < 1−

[
k +

1

2
− n

2

]2

.

This proves the first part of the statement. Fix such k and λ. Observe now
by Lemma 3.12

D(4rel
k ) ∩ L2((0, 1), {0} ⊕ Ek

λ) = {f ∈ D(4p,max)|c2(f) = 0, f(1) = 0}.

The result now follows from Corollary 4.12.

Proposition 4.19. The relative extension 4rel
k induces a self-adjoint ex-

tension of 4k restricted to C∞0 ((0, 1), dNE
k−2
λ ) ⊕ {0} for λ ∈ Vk−2 =

Spec4k−2,ccl,N\{0}. This component contributes to Lk only for

k ∈
(m

2
,
m

2
+ 2
)
, λ < 1−

[
k − 3

2
− n

2

]2

.

In this case the contribution of the component to the zeta-determinant of Lrelk
is given by

√
2π
ν +m/2 + 1− k

Γ(1 + ν) · 2ν
, where ν :=

√
λ+

[
k − 3

2
− n

2

]2

.

Proof. We infer from (3.16) that 4k acts on C∞0 ((0, 1), dNE
k−2
λ ) with λ ∈

Vk−2 as a rank-one model Laplacian

− d2

dx2
+

1

x2

(
λ+

[
k − 3

2
− n

2

]2

− 1

4

)
,

under the identification of elements with their scalar parts as before. This
operator is in the limit circle case at x = 0 and hence not essentially self-
adjoint at x = 0 iff

λ+

[
k − 3

2
− n

2

]2

− 1

4
<

3

4
, i.e. k ∈

(m
2
,
m

2
+ 2
)
, λ < 1−

[
k − 3

2
− n

2

]2

.

This proves the first part of the statement. Fix such k and λ. Observe now
by Lemma 3.13

D(4rel
k ) ∩ L2((0, 1), {0} ⊕ Ek

λ) = {f ∈ D(4p,max)|
c2(f) = 0, f ′(1)− (k − 1− n/2)f(1) = 0}.

The result now follows from Corollary 4.11.
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Proposition 4.20. The relative extension 4rel
k induces a self-adjoint

extension of 4k restricted to C∞0 ((0, 1), Ẽk−1
λ ) with λ ∈ Vk−1 =

Spec4k−1,ccl,N\{0}. This component contributes to Lk only for

k ∈
(m

2
− 2,

m

2
+ 2
)
, λ < 4−

[
k − m

2

]2
.

The contribution of the component to the zeta-determinant of Lrelk is given
by

2π
(ν − k +m/2)

Γ(1 + ν)2
2−2ν ,where ν :=

√
λ+

[
k − m

2

]2
.

Proof. The space Ẽk−1
λ , λ ∈ Vk−1 is an orthogonal sum of S0-eigenspaces to

eigenvalues (see [BL2, Section 2])

pk±(λ) :=
(−1)k

2
±
√(

k − m

2

)2

+ λ.

Put
ak±(λ) := pk±(λ) · (pk±(λ) + (−1)k).

The restriction of 4k to C∞0 ((0, 1), Ẽk−1
λ ) decomposes into(

− d2

dx2
+
ak+(λ)

x2

)
⊕
(
− d2

dx2
+
ak−(λ)

x2

)
in correspondence to the decomposition of Ẽk−1

λ into the S0-eigenspaces.
This decomposition is not compatible with the relative boundary condi-
tions, which is clear from the relative boundary conditions at the cone base.
Nevertheless we infer from the decomposition, that the restriction of 4k to
C∞0 ((0, 1), Ẽk−1

λ ) contributes to Lk only if∣∣∣k − m

2

∣∣∣ < 2, λ ≤ 4−
(
k − m

2

)2

,

since for the complementary case both ak+(λ) and ak−(λ) are ≥ 3/4. This
proves the first part of the statement. In order to compute the contribution of
the component to the determinant of Lrelk , we study as in (3.12) the associated
de Rham complex:

0→C∞0 ((0, 1), {0}⊕Ek−1
λ )

d0−→C∞0 ((0, 1), Ẽk−1
λ )

d1−→C∞0 ((0, 1), dNE
k−1
λ ⊕{0})→0.

Note that dt0d0 and d1d
t
1 both act as rank-one model Laplacians

− d2

dx2
+

1

x2

(
λ+

[
k − 1

2
− n

2

]2

− 1

4

)
,
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under the identification of elements with their scalar parts, as before. The
relative boundary conditions turn the complex into a Hilbert complex with
the corresponding self-adjoint extensions of dt0d0 and d1d

t
1 denoted by 40,

41 respectively. The contribution to the determinant of Lrelk is then given
by

detζ40 · detζ41.

We obtain with ν :=
√
λ+ (k −m/2)2

D(40) = {f ∈ D(4ν−1/2,max)|f(x) = O(
√
x), x→ 0; f(1) = 0},

D(41) = {f ∈ D(4ν−1/2,max)|f(x) = O(
√
x), x→ 0,

f ′(1)− (k − n/2)f(1) = 0}.

For ν ∈ (0, 1) these domains were determined in Lemma 3.12 and Lemma
3.13, with the asymptotics f(x) = O(

√
x), x→ 0 being expressed by c2(f) =

0. The coefficient c2(f) refers to the relation (4.27).

For ν ≥ 1 the operator 4ν−1/2 is in the limit point case, see Corollary 2.14.
So the condition on the asymptotic behaviour at x = 0 is redundant and the
domains are determined only by the relative boundary conditions at x = 1,
which are computed in Proposition 3.5.

Applying Corollaries 4.11 and 4.12 we obtain

detζ40 =

√
2π

Γ(1 + ν)2ν
,

detζ41 =
√

2π
ν − k +m/2

Γ(1 + ν)2ν
.

Multiplication of both expressions gives the result.

Before we write down an explicit expression for detζ Lrelk , let us introduce
some simplifying notation. Put:

Ak := {ν =
√
λ+ [k + 1−m/2]2|λ ∈ Spec4k,ccl,N ,

0 ≤ λ < 1− [k + 1−m/2]2}, (4.32)

Ãk := {ν =
√
λ+ [k + 1−m/2]2|λ ∈ Spec4k,ccl,N\{0},

0 < λ < 1− [k + 1−m/2]2}, (4.33)

Bk := {ν =
√
λ+ [k −m/2]2|λ ∈ Spec4k−1,ccl,N\{0},

0 < λ < 4− [k −m/2]2}. (4.34)
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Moreover we write

Pk :=


(
√
π/2)dimHk−1(N), for k = m/2 + 1 if dimM = m even,

2dimHk−1(N), for k = n/2 + 1 if dimM = n+ 1 odd,

(2/3)dimHk−1(N), for k = n/2 + 2 if dimM = n+ 1 odd.

(4.35)

The preceeding computations imply that Lk is a finite direct sum of model
Laplace operators, a regular-singular Sturm-Liouville operator with matrix
coefficients, and in fact does not occur for |k −m/2| ≥ 2. This corresponds
to the general fact, see [BL2, Theorem 3.7, Theorem 3.8] that the Laplace
operator on k−forms over a compact manifold with an isolated singularity
is ”essentially self-adjoint” at the cone tip outside of the middle degrees, i.e.
for |k −m/2| ≥ 2.

Therefore the complete determinant of Lrelk is given simply by a product
of finitely many contributions, determined in Propositions 4.16 − 4.20, de-
pending on the choice of a degree. This proves the central result of this
subsection.

Theorem 4.21. The self-adjoint operator Lrelk is non-trivial only for degrees

k ∈
(m

2
− 2,

m

2
+ 2
)
.

In these degrees the zeta-determinant of Lrelk is given as follows, where we
use the notation established in (4.32) − (4.35):

(i) For k ∈ (m/2− 2,m/2) we have

detζ Lrelk =
∏
ν∈Ak

√
2π

2νΓ(1 + ν)

∏
ν∈Bk

2π
ν − k +m/2

22νΓ(1 + ν)2
.

(ii) For k ∈ (m/2,m/2 + 2) we have

detζ Lrelk =
∏

ν∈ eAk−2

√
2π(ν +m/2 + 1− k)

2νΓ(1 + ν)

∏
ν∈Bk

2π
ν − k +m/2

22νΓ(1 + ν)2
· Pk.

(iii) For dimM = m even and k = m/2 we have

detζ Lrelk =
∏
ν∈Bk

2π
ν

22νΓ(1 + ν)2
.
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5 The Scalar Analytic Torsion of a Bounded

Generalized Cone

The analytic torsion of closed Riemannian manifolds is well-understood and
in particular the Cheeger-Müller Theorem is established. The analytic tor-
sion of singular manifolds however, in particular of a bounded generalized
cone, still lacks deep understanding.

In fact J.S. Dowker and K. Kirsten provided in [DK] some explicit results for
a bounded generalized cone M = (0, 1] × N , giving formulas which related
the zeta-determinants of form-valued Laplacians, essentially self-adjoint at
the cone singularity and with Dirichlet or generalized Neumann conditions
at the cone base, to the spectral information on the base manifold N . So, in
the manner of [Ch2], they reduced analysis on the cone to that on its base.

Theoretically these results can be composed directly into a formula for the
analytic torsion. However this approach would disregard the subtle sym-
metry of the de Rham complex of a bounded generalized cone, which was
derived by M. Lesch in [L3]. Furthermore the formulas obtained this way
turn out to be rather ineffective.

We present here an approach that does make use of the symmetry of the de
Rham complex and leads to expressions that are easier to evaluate. The cal-
culations use essentially the method of [S], combined with elements of [BKD].

The calculations are performed for any dimension ≥ 2 with an overall general
result for the analytic torsion of a bounded generalized cone. Further calcu-
lations are possible only by specifying the base manifold N . In Subsection
5.6 we provide explicit results in three and in two dimensions.

However for a bounded generalized cone of dimension two, over a one-
dimensional sphere, one needs to introduce an additional parameter in the
Riemannian cone metric in order to deal with bounded generalized cone and
not simply with a flat disc D1. There is no need to evaluate the symmetry of
the de Rham complex in this case. The calculations of [S] can be generalized
to this setup in a straightforward way, which is done in Subsection 5.7.

5.1 Decomposition of the de Rham complex

Let Mm := (0, 1] × Nn, gM = dx2 ⊕ x2gN be a bounded generalized cone of
length one over a closed oriented Riemannian manifold (N, gN) of dimension
n. The Laplace operator 4k on k-forms over M transforms under the iso-
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metric identification in Proposition 3.1 to a regular-singular operator of the
form (recall (3.6))

− d2

dx2
+

1

x2
Ak, (5.1)

where Ak is a symmetric differential operator of order two on Ωk−1(N) ⊕
Ωk(N), see (3.7). The non-product situation on the bounded generalized cone
M is pushed into the x-dependence of the tangential part of the Laplacian.

Consider the relative self-adjoint extension 4rel
k , introduced in (3.8). We

will only need the following well-known result, which is a direct application
of [L1, Proposition 1.4.7]

Theorem 5.1. The self-adjoint operator 4rel
k is discrete with the zeta-

function

ζ(s,4rel
k ) =

∑
λ∈Sp(4rel

k )\{0}

λ−s, Re(s) > m/2,

being holomorphic for Re(s) > m/2.

The meromorphic continuation of zeta-functions for general self-adjoint ex-
tensions of regular-singular operators is discussed in a series of sources, no-
tably [L1, Theorem 2.4.1], [Ch2, Theorem 4.1] and [LMP, Theorem 5.7].

For a compact oriented Riemannian manifold Xm the scalar analytic torsion
([RS]) is defined by

log T (X) :=
1

2

m∑
k=0

(−1)k · k · ζ ′k(0),

where ζk(s) denotes the zeta-function of the Laplacian on k-forms of X,
with relative or the absolute boundary conditions posed at ∂X. On compact
Riemannian manifolds the zeta-functions ζk(s) extend meromorphically to C
with s = 0 being regular, so the definition makes sense.

On the bounded generalized cone M the zeta-functions ζ(s,4rel
k ) possibly

have a simple pole at s = 0. However we have the following result of A.Dar:

Theorem 5.2. [Dar] The meromorphic function

T (M, s) :=
1

2

m∑
k=0

(−1)k · k · ζ(s,4rel
k ) (5.2)

is regular at s = 0. Thus the analytic torsion T rel(M) := exp(T ′(M, s = 0))
of a bounded generalized cone exists.
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Thus even though the zeta-functions ζ(s,4rel
k ) need not be regular at s = 0,

their residua at s = 0 cancel in the alternating weighted sum T (M, s).

Remark 5.3. One can easily check via Poincare duality that the scalar ana-
lytic torsion T rel(M) defined with respect to the relative boundary conditions
exists if and only if so does the scalar analytic torsion T abs(M), defined with
respect to the absolute boundary conditions, and

log T rel(M) = (−1)dimM+1 log T abs(M).

Hence it suffices to consider the relative boundary conditions and we put

T (M) := T rel(M).

The statement extends to general compact manifolds with isolated conical
singularities. A compact manifold with a conical singularity is a Riemannian
manifold (M1 ∪N U, g) partitioned by a compact hypersurface N , such that
M1 is a compact manifold with boundary N and U is isometric to (0, ε]×N
with the metric over U being of the following form

g|U = dx2 ⊕ x2g|N .

In this section we compute for the bounded generalized cone M the analytic
continuation of log T (M, s) to s = 0 by means of a decomposition of the de
Rham complex. We continue under the isometric identification Φ introduced
in Subsection 3.1, which preserves all the spectral properties of the operators,
as asserted by Corollary 3.3.

Following [L3], we decompose the de Rham complex of M into a direct sum
of subcomplexes of two types. The first type of the subcomplexes is given as
follows:

0 → C∞0 ((0, 1), 〈ξ1〉)
d0−→ C∞0 ((0, 1), 〈ξ2, ξ3〉)

d1−→ C∞0 ((0, 1), 〈ξ4〉) → 0, (5.3)

where ψ ∈ Ωk(N), k ≤ n − 1 is a coclosed normalized η-eigenform of 4k,N

with η > 0 and

ξ1 := (0, ψ) ∈ Ωk−1(N)⊕ Ωk(N),

ξ2 := (ψ, 0) ∈ Ωk(N)⊕ Ωk+1(N),

ξ3 := (0,
1
√
η
dNψ) ∈ Ωk(N)⊕ Ωk+1(N),

ξ4 := (
1
√
η
dNψ, 0) ∈ Ωk+1(N)⊕ Ωk+2(N).
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Observe that under the action of d and dt the subspace
C∞0 ((0, 1), 〈ξ1, ξ2, ξ3, ξ4〉) is invariant and in fact we indeed obtain a complex.

The second type of the subcomplexes comes from the harmonics on the base
manifold N and is given as follows. Consider Hk(N) and fix an orthonor-
mal basis {ui}, i = 1, .., dimHk(N) of Hk(N). Observe that for any i the
subspace C∞0 ((0, 1), 〈0⊕ ui, ui ⊕ 0〉) is invariant under d, dt and we obtain a
subcomplex of the de Rham complex

0 → C∞0 ((0, 1), 〈0 ⊕ ui, 〉)
d−→ C∞0 ((0, 1), 〈ui ⊕ 0〉) → 0. (5.4)

By the decomposition (3.11) the de Rham complex (Ω∗
0(M), d) decomposes

completely into subcomplexes of the two types above. This decomposition
gives in each degree k a compatible decomposition for 4rel

k , as observed in
Theorem 3.10. Hence the Laplacians 4rel

k are composed of the relative exten-
sions of the Laplacians of the subcomplexes. In particular each subcomplex
contributes to the function in (5.2) as follows.

The relative boundary conditions turn the complex (5.3) of the first type into
a Hilbert complex (see [BL1]) of the following general form:

0 → Hk
D−→ Hk+1

D−→ Hk+2 → 0.

By the specific form of the subcomplex we have the following relation between
the zeta-functions corresponding to the Laplacians of the subcomplex

ζk+1(s) = ζk(s) + ζk+2(s). (5.5)

From the spectral relation (5.5) we deduce that the contribution of the sub-
complex H to the function T (M, s) amounts to

(−1)k

2
[kζk(s)− (k + 1)ζk+1(s) + (k + 2)ζk+2(s)]

=
(−1)k

2
(ζk+2(s)− ζk(s)). (5.6)

Since there are in fact infinitely many subcomplexes of the first type, we first
have to add up the contributions for Re(s) large and then continue the sum
analytically to s = 0. Then the derivative at zero gives the contribution to
T (M).

For the contribution of the subcomplexes (5.4) of the second kind to the
analytic torsion, note that the relative boundary conditions turn the complex
of second type into a Hilbert complex of the following general form:

0 → Hk
D−→ Hk+1 → 0.
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There are only finitely many such subcomplexes, since dimH∗(N) < ∞.
Hence we obtain directly for the contribution to log T (M) from each of such
subcomplexes

(−1)k+1

2
ζ ′(D∗D, s = 0). (5.7)

5.2 Symmetry in the Decomposition

In this section we present a symmetry of the de Rham complex on a model
cone, as elaborated by M. Lesch in [L3]. Consider the subcomplexes (5.3) of
the first type

0 → C∞0 ((0, 1), 〈ξ1〉)
d0−→ C∞0 ((0, 1), 〈ξ2, ξ3〉)

d1−→ C∞0 ((0, 1), 〈ξ4〉) → 0.

where ψ ∈ Ωk(N), k ≤ n − 1 is a coclosed normalized η-eigenform of 4k,N

with η > 0 and

ξ1 := (0, ψ) ∈ Ωk−1(N)⊕ Ωk(N),

ξ2 := (ψ, 0) ∈ Ωk(N)⊕ Ωk+1(N),

ξ3 := (0,
1
√
η
dNψ) ∈ Ωk(N)⊕ Ωk+1(N),

ξ4 := (
1
√
η
dNψ, 0) ∈ Ωk+1(N)⊕ Ωk+2(N),

By computing explicitly the action of the exterior derivative (3.2) on the
basis elements ξi we obtain with cj := (−1)j(j − n/2), j = 0, .., n

dψ0 =

(
(−1)k∂x + ck

x

x−1√η

)
, dψ1 =

(
x−1√η, (−1)k+1∂x +

ck+1

x

)
.

Next we compute the associated Laplacians (identified with their scalar ac-
tion as in Remark 3.11)

4ψ
0 := (dψ0 )tdψ0 = −∂2

x +
1

x2

[
η +

(
k +

1

2
− n

2

)2

− 1

4

]
= dψ1 (dψ1 )t =: 4ψ

2 .

(5.8)

From the detailed discussion in Subsection 3.2 we infer that separat-
ing out the subcomplex above provides a compatible decomposition of
4rel
k ,4rel

k+1,4rel
k+2. Hence the relative boundary conditions induce self-adjoint

extensions of the Laplacians 4ψ
0 ,4

ψ
2

4ψ
0,rel = (dψ0 )tmaxd

ψ
0,min, 4ψ

2,rel = dψ1,min(d
ψ
1 )tmax
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Now we discuss the relative boundary conditions for 4ψ
0 ,4

ψ
2 . Assume that

the lowest non-zero eigenvalue η of 4k,N is η > 1. This can always be
achieved by an appropriate scaling of the metric on N

gN,c := c−2gN , c > 0 large enough. (5.9)

More precisely, the Laplacian 4c
N defined on Ω∗(N) with respect to gN,c is

related to the original Laplacian 4N as follows

4c
N = c24N .

Hence indeed for c > 0 sufficiently large we achieve that the Laplacian 4c
N

has no ”small” non-zero eigenvalues.

This guarantees in view of Corollary 2.14 that 4ψ
0 and 4ψ

2 are in the limit
point case at x = 0 and hence all their self-adjoint extensions in L2(0, 1)
coincide at x = 0. Hence we only need to consider the relative boundary
conditions at x = 1. With Proposition 3.5 (see also Lemma 3.12 and Lemma
3.13) we obtain

D(4ψ
0,rel) = {f ∈ D(4ψ

0,max)|f(1) = 0},
D(4ψ

2,rel) = {f ∈ D(4ψ
2,max)|(−1)kf ′(1) + ck+1f(1) = 0}.

The values f(1), f ′(1) are well-defined since by (2.5) we know D(4ψ
0,2,max)⊂

H2
loc(0, 1].

Remark 5.4. The assumption on the lower bound of the non-zero eigenvalues
of 4k,N can be dropped. Then the discussion of a finite direct sum of model
Laplacians in the limit circle case enters the calculations. The associated
zeta-determinants were determined in Theorem 4.21.

Next we consider the twin-subcomplex, associated to the subcomplex dis-
cussed above. Let φ := ∗Nψ ∈ Ωn−k(N). Put

ξ̃1 := (0,
1
√
η
dtNφ) ∈ Ωn−k−2(N)⊕ Ωn−k−1(N),

ξ̃2 := (
1
√
η
dtNφ, 0) ∈ Ωn−k−1(N)⊕ Ωn−k(N),

ξ̃3 := (0, φ) ∈ Ωn−k−1(N)⊕ Ωn−k(N),

ξ̃4 := (φ, 0) ∈ Ωn−k(N)⊕ Ωn−k+1(N).
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Again the subspace C∞0 ((0, 1), 〈ξ̃1, ξ̃2, ξ̃3, ξ̃4〉) is invariant under the action of
d and dt and in fact we obtain a complex

0 → C∞0 ((0, 1), 〈ξ̃1〉)
dφ
0−→ C∞0 ((0, 1), 〈ξ̃2, ξ̃3〉)

dφ
1−→ C∞0 ((0, 1), 〈ξ̃4〉) → 0.

By computing explicitly the action of the exterior derivative (3.2) on the

basis elements ξ̃i we obtain

dφ0 =

(
(−1)n−k−1∂x + cn−k−1

x

x−1√η

)
, dφ1 =

(
x−1√η, (−1)n−k∂x +

cn−k
x

)
.

As for the first subcomplex we compute the relevant Laplacians:

4φ
0 = 4φ

2 = −∂2
x +

1

x2

[
η +

(
k +

1

2
− n

2

)2

− 1

4

]
= 4ψ

0 = 4ψ
2 , (5.10)

where the operators are identified with their scalar actions. As before, sepa-
rating out the subcomplex above, we decompose 4rel

n−k±1,4rel
n−k compatibly.

Hence the relative boundary conditions induce self-adjoint extensions

4φ
0,rel = (dφ0)

t
maxd

φ
0,min, 4φ

2,rel = dφ1,min(d
φ
1)
t
max

of the Laplacians 4φ
0 ,4

φ
2 respectively. Under the scaling assumption of (5.9)

the relative boundary conditions for this pair of operators are computed to

D(4φ
0,rel) = {f ∈ D(4φ

0,max)|f(1) = 0},
D(4φ

2,rel) = {f ∈ D(4φ
2,max)|(−1)n−k+1f ′(1) + cn−kf(1) = 0},

with Proposition 3.5. As before the values f(1), f ′(1) are well-defined since
D(4φ

0,2,max) ⊂ H2
loc(0, 1].

So in total we obtain four self-adjoint operators, which differ only by their
boundary conditions. Unfortunately the differences in the domains do not
allow to cancel the contribution of the two twin-subcomplexes to the analytic
torsion. However the symmetry still allows us to perform explicit computa-
tions.

Recall that ψ was chosen to be a normalized coclosed η-eigenform on N of
degree k and φ = ∗Nψ. Denote the dependence of the generating forms ψ
and φ on the eigenvalue η by ψ(η) and φ(η). Introduce further the notation

D(k) :={λ ∈ Spec4ψ(η)
0,rel|η ∈ Spec4k,ccl,N\{0}}

={λ ∈ Spec4φ(η)
0,rel|η ∈ Spec4k,ccl,N\{0}},

N1(k) := {λ ∈ Spec4ψ(η)
2,rel|η ∈ Spec4k,ccl,N\{0}},

N2(k) := {λ ∈ Spec4φ(η)
2,rel|η ∈ Spec4k,ccl,N\{0}},
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where all eigenvalues are counted according to their multiplicities. Using this
notation we now introduce the following zeta-functions for Re(s) � 0

ζkD(s) :=
∑

λ∈D(k)

λ−s, ζkN1
(s) :=

∑
λ∈N1(k)

λ−s, ζkN2
(s) :=

∑
λ∈N2(k)

λ−s, Re(s) � 0.

The D-subscript is aimed to point out that the zeta-functions in the sum
are associated to Laplacians with Dirichlet boundary conditions at x = 1.
Similarly the N -subscripts point out the generalized Neumann boundary
conditions at x = 1, which are however different for 4φ

2 and 4ψ
2 .

The zeta-functions ζkD(s), ζkN1
(s) and ζkN2

(s) are by Theorem 5.1 holomorphic
for Re(s) sufficiently large, since they sum over eigenvalues of 4rel

∗ but with
lower multiplicities. In view of (5.6), which describes the contribution to
analytic torsion from the subcomplexes, we set for Re(s) large

Definition 5.5. ζk(s) := ζkN1
(s)− ζkD(s)) + (−1)n−1(ζkN2

(s)− ζkD(s)).

Remark 5.6. Note that ζkD(s) in the definition of ζk(s) cancel for m = dimM
odd, simplifying the expression for ζk(s) considerably. Further simplifications
(notably Proposition 5.18) take place throughout the discussion, so that an
effective result can be obtained in the end.

Below we provide the analytic continuation of ζk(s) to s = 0 for any fixed
degree k < dimN − 1 and compute (−1)kζ ′k(0). The contribution coming
from the subcomplexes of the second type (5.4), induced by the harmonic
forms on the base N , is not included in ζk(s) and will be determined explicitly
in a separate discussion.

Remark 5.7. The total contribution of subcomplexes (5.3) of first type to the
logarithmic scalar analytic torsion log T (M) of the odd-dimensional bounded
generalized cone M is given by

1

2

n/2−1∑
k=0

(−1)k · ζ ′k(0).

For an even-dimensional cone M the zeta-function ζk(s) counts in the degree
k = (n−1)/2 each subcomplex of type (5.3) twice. Thus the total contribution
of subcomplexes of first type to log T (M) is given by

1

2

(n−3)/2∑
k=0

(−1)k · ζ ′k(0) +
(−1)

(n−1)
2

2
· ζ ′n−1

2
(0)

 ,

where the first sum is set to zero for dimM = n+ 1 = 2.
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5.3 Some auxiliary analysis

Fix a real number ν > 1 and consider the following differential operator

lν := − d2

dx2
+
ν2 − 1/4

x2
: C∞0 (0, 1) → C∞0 (0, 1).

By the choice ν > 1 we infer from Corollary 2.14 (i) that the maximal and
the minimal extensions of lν coincide at x = 0 and hence we only need to fix
boundary conditions at x = 1 to define a self-adjoint extension of lν . Put for
α ∈ R∗:

D(Lν(α)) := {f ∈ D(lν,max)|(α− 1/2)−1f ′(1) + f(1) = 0},

where α = ∞ defines the Dirichlet boundary conditions at x = 1 and α = 1/2
− the pure Neumann boundary conditions at x = 1.

Proposition 5.8. The self-adjoint operator Lν(α), α ∈ R∗ is discrete and
bounded from below. For α2 < ν2 and α = ∞ the operator Lν(α) is positive.

Proof. The discreteness of Lν(α) is asserted in [BS2], see also [L, Theorem
1.1] where this result is restated. For semi-boundedness of Lν(α) note that
the potential (ν2 − 1/4)/x2 is positive. Hence it suffices to discuss semi-
boundedness of −d2/dx2 under different boundary conditions. By [W2, The-
orem 8.24] all the self-adjoint extensions of

− d2

dx2
: C∞0 (0, 1) → C∞0 (0, 1)

are bounded from below, since −d2/dx2 on C∞0 (0, 1) is semi-bounded. Indeed
for any f ∈ C∞0 (0, 1)

〈−f ′′, f〉L2(0,1) = − f ′(x)f(x)
∣∣∣1
0
+

∫ 1

0

|f ′(x)|2dx ≥ 0.

Hence Lν(α) is indeed semi-bounded. It remains to identify the lower bound
in the case α2 < ν2 and α = ∞. For this consider any f ∈ D(lν,max), f 6≡ 0.
Recall the relation (2.5), which implies that f is continuously differen-
tiable at (0, 1) and f, f ′ extend continuously to x = 1. Moreover we
infer from the proof of Proposition 2.11 (iii) the asymptotic behaviour
f(x) = O(x3/2), f ′(x) = O(x1/2), as x → 0. We compute via integration
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by parts for any ε ∈ R with ε2 < ν2:

〈lνf, f〉L2(0,1) =

∫ 1

0

[(
− d

dx
+
ε− 1/2

x

)(
d

dx
+
ε− 1/2

x

)
f(x)+

+
ν2 − ε2

x2
f(x)

]
· f(x)dx = −

(
f ′(x) +

ε− 1/2

x
f(x)

)
f(x)

∣∣∣∣1
x→0+

+

+

∥∥∥∥f ′ + ε− 1/2

x
f

∥∥∥∥2

L2(0,1)

+

∥∥∥∥√ν2 − ε2

x
f

∥∥∥∥2

L2(0,1)

.

Now the asymptotics of f(x) and f ′(x) as x→ 0 implies together with f 6≡ 0:

〈lνf, f〉L2(0,1) > −f(1) · (f ′(1) + (ε− 1/2)f(1)). (5.11)

Evaluation of the conditions at x = 1 for Lν(α) with α = ∞ or α2 < ν2

proves the statement.

Corollary 5.9. Let Jν(z) denote the Bessel function of first kind and put
for any fixed α ∈ R∗

J̃αν (z) := αJν(z) + zJ ′ν(z),

where for α = ∞ we put J̃αν (z) := Jν(z). Then for ν > 1 and α = ∞
or α2 < ν2, the zeros of J̃αν (z) are real, discrete and symmetric about the
origin. The eigenvalues of the positive operator Lν(α) are simple and given

by squares of positive zeros of J̃αν (z), i.e.

SpecLν(α) = {µ2|J̃αν (µ) = 0, µ > 0}.

Proof. The general solution to lνf = µ2f, µ 6= 0 is of the following form

f(x) = c1
√
xJν(µx) + c2

√
xYν(µx),

where c1, c2 are constants and Jν , Yν denote Bessel functions of first and sec-
ond kind, respectively. For ν > 1 the asymptotic behaviour of f ∈ D(lν,max)
is given by f(x) = O(x3/2), x→ 0. Hence a solution to lνf = µ2f, µ 6= 0 with
f ∈ D(lν,max) must be of the form

f(x) = c1
√
xJν(µx).

Taking in account the boundary conditions for Lν(α) with at α = ∞ or

α2 < ν2, we deduce correspondence between zeros of J̃αν (z) and eigenvalues
of Lν(α). Hence by Proposition 5.8 we deduce the statements about the zeros

of J̃αν (z), up to the statement on the symmetry of zeros, which follows simply
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from the standard infinite series representation of Bessel functions.

Furthermore, Jν(−µx) = (−1)νJν(µx), µ 6= 0 and hence each eigenvalue µ2

of Lν(α) is simple with the unique (up to a multiplicative constant) eigen-
function f(x) =

√
xJν(µx), µ > 0 This completes the proof.

Similar statements can be deduced for more general values of α ∈ R∗, but are
not relevant in the present discussion. Finally note as a direct application
of Proposition 5.8 that the Laplacians 4ψ

0,2,rel and 4φ
0,2,rel, introduced in the

previous subsection, are positive.

Corollary 5.10. For all degrees k = 0, .., dimN we have

D(k) ⊂ R+, Ni(k) ⊂ R+, i = 1, 2.

Next consider the zeta-function ζ(s, Lν(α)), α ∈ R∗ associated to the self-
adjoint realization Lν(α) of lν . It is well-known, see [L, Theorem 1.1] that the
zeta-function extends meromorphically to C with the analytic representation
given by the Mellin transform of the heat trace:

ζ(s, Lν(α)) =
1

Γ(s)

∫ ∞

0

ts−1TrL2(e−tLν(α)P )dt,

where P is the projection on the orthogonal complement of the null space of
Lν(α). The heat operator exp(−tLν(α)) is defined by the spectral theorem
and is a bounded smoothing operator with finite trace TrL2(e−tLν(α)P ) of
standard polylogarithmic asymptotics as t→ 0+, see [Ch, Theorem 2.1]. We
can write for t > 0

Tr(e−tLν(α)) =
1

2πi

∫
Λ

e−λtTr(λ− Lν(α))−1dλ,

where the contour Λ shall encircle all non-zero eigenvalues of the semi-
bounded Lν(α), α ∈ R∗ and be counter-clockwise oriented, in analogy to
Figure 3 below.

Now, following [S], we obtain an integral representation for ζ(s, Lν(α)) in a
computationally convenient form. Introduce a numbering (λn) of the eigen-
values of Lν(α) and observe

Tr(λ− Lν(α))−1 =
∑
n

1

λ− λn
=
∑
n

d

dλ
log

(
1− λ

λn

)
,
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where we fix henceforth the branch of logarithm in C\R+ with 0 ≤ Im log z <
2π. We continue with this branch of logarithm throughout the section. In-
tegrating now by parts first in λ, then in t we obtain

ζ(s, Lν(α)) =
s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
Λ

e−λt

−λ

[
−
∑
n

log

(
1− λ

λn

)]
dλdt.

(5.12)

5.4 Contribution from the Subcomplexes I

We continue in the setting and in the notation of Section 5.2 and fix any
degree k ≤ dimN − 1. We define the following contour:

Λc := {λ ∈ C||arg(λ− c)| = π/4} (5.13)

oriented counter-clockwise, with c > 0 a fixed positive number, smaller than
the lowest non-zero eigenvalue of 4rel

∗ . The contour is visualized in the Fig-
ure 3:

Figure 3: The contour Λc. The ×’s represent the eigenvalues of 4rel
∗ .

In analogy to the constructions of [S] we obtain for the zeta-functions
ζkD(s), ζkN1

(s), ζkN2
(s) the following results.

Proposition 5.11. Let M = (0, 1] × N, gM = dx2 ⊕ x2gN be a bounded
generalized cone. Let the metric on the base manifold N be scaled as in (5.9)
such that the non-zero eigenvalues of the form-valued Laplacians on N are
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bigger than 1. Denote by 4k,ccl,N the Laplace Operator on coclosed k-forms
on N . Let

Fk := {ξ ∈ R+ | ξ2 = η + (k + 1/2− n/2)2 , η ∈ Spec4k,ccl,N\{0}}.

Then we obtain with (jν,i)i∈N being the positive zeros of the Bessel function
Jν(z)

ζkD(s) =
s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T kD(s, λ)dλdt, (5.14)

T kD(s, λ) =
∑
ν∈Fk

tD,kν (λ) ν−2s, tD,kν (λ) = −
∞∑
i=1

log

(
1− ν2λ

j2
ν,i

)
. (5.15)

Proof. Consider for η ∈ Spec4k,ccl,N\{0} the operators 4ψ(η)
0 and 4φ(η)

0 ,
defined in (5.8) and (5.10). Under the identification with their scalar parts,
as in Remark 3.11 we have

4φ(η)
0 = 4ψ(η)

0 = −∂2
x +

1

x2

[
ν2 − 1

4

]
,

where ν :=
√
η + (k + 1/2− n/2)2. By scaling of the metric on N we have

ν > 1 and hence the self-adjoint extensions 4φ(η)
0,rel and 4ψ(η)

0,rel are determined
only by their Dirichlet boundary conditions at x = 1. By Corollary 5.9 we
obtain:

ζkD(s) =
∑
ν∈Fk

∞∑
i=1

j−2s
ν,i =

∑
ν∈Fk

ν−2s

∞∑
i=1

(
jν,i
ν

)−2s

, Re(s) � 0,

where jν,i are the positive zeros of Jν(z). This series is well-defined for Re(s)

large by Theorem 5.1, since4φ(η)
0,rel(≡ 4ψ(η)

0,rel) as direct sum components of4rel
∗

have the same spectrum as 4rel
∗ , but with lower multiplicities in general.

Due to the uniform convergence of integrals and series we obtain with similar
computations as for (5.12) an integral representation for this sum:

ζkD(s) =
s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T kD(s, λ)dλdt, (5.16)

T kD(s, λ) =
∑
ν∈Fk

tD,kν (λ) ν−2s, tD,kν (λ) = −
∞∑
i=1

log

(
1− ν2λ

j2
ν,i

)
. (5.17)

Note that the contour Λc, defined in (5.13) encircles all eigenvalues of4φ(η)
0,rel ≡

4ψ(η)
0,rel by construction, since the operators are positive by Corollary 5.10.
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Proposition 5.12. Let M = (0, 1] × N, gM = dx2 ⊕ x2gN be a bounded
generalized cone. Let the metric on the base manifold N be scaled as in (5.9)
such that the non-zero eigenvalues of the form-valued Laplacians on N are
bigger than 1. Denote by 4k,ccl,N the Laplace Operator on coclosed k-forms
on N . Let

Fk := {ξ ∈ R+ | ξ2 = η + (k + 1/2− n/2)2 , η ∈ Spec4k,ccl,N\{0}}.

Then we obtain for l = 1, 2

ζkNl
(s) =

s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T kNl

(s, λ)dλdt, (5.18)

T kNl
(s, λ) =

∑
ν∈Fk

tNl,k
ν (λ) ν−2s, tNl,k

ν (λ) = −
∞∑
i=1

log

(
1− ν2λ

j̃2
ν,l,i

)
, (5.19)

where (j̃ν,l,i)i∈N are the positive zeros of J̃Nl,k
ν (z) for l = 1, 2. The functions

J̃Nl
ν (z) are defined as follows

J̃N1,k
ν (z) :=

(
1

2
+ (−1)kck+1

)
Jν(z) + zJ ′ν(z),

J̃N2,k
ν (z) :=

(
1

2
+ (−1)kck

)
Jν(z) + zJ ′ν(z).

Proof. Consider for η ∈ Spec4k,ccl,N\{0} the operators 4ψ(η)
2 and 4φ(η)

2 ,
defined in (5.8) and (5.10), which contribute to the zeta-functions ζkN1

(s) and
ζkN2

(s) correspondingly. Under the identification with their scalar parts, as
in Remark 3.11 we have

4φ(η)
2 = 4ψ(η)

2 = −∂2
x +

1

x2

[
ν2 − 1

4

]
,

where ν :=
√
η + (k + 1/2− n/2)2. By scaling of the metric on N we have

ν > 1 and hence the self-adjoint extensions 4φ(η)
2,rel and 4ψ(η)

2,rel are determined
only by their generalized Neumann boundary conditions at x = 1. Recall

D(4ψ
2,rel) = {f ∈ D(4ψ

2,max)|f ′(1) + (−1)kck+1f(1) = 0},
D(4φ

2,rel) = {f ∈ D(4φ
2,max)|f ′(1) + (−1)n−k+1cn−kf(1) = 0}.
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Observe (−1)n−k+1cn−k = (−1)kck and put

J̃N1,k
ν (µ) :=

(
1

2
+ (−1)kck+1

)
Jν(µ) + µJ ′ν(µ),

J̃N2,k
ν (µ) :=

(
1

2
+ (−1)kck

)
Jν(µ) + µJ ′ν(µ).

Note for any degree k and any ν ∈ Fk∣∣∣∣12 + (−1)kck+1

∣∣∣∣ =

∣∣∣∣12 + (−1)kck

∣∣∣∣ =

∣∣∣∣n2 − 1

2
− k

∣∣∣∣ < ν.

Hence by Corollary 5.9 we obtain for l = 1, 2:

ζkNl
(s) =

∑
ν∈Fk

∞∑
i=1

j̃−2s
ν,l,i =

∑
ν∈Fk

ν−2s

∞∑
i=1

(
j̃ν,l,i
ν

)−2s

, Re(s) � 0,

where j̃ν,l,i are the positive zeros of J̃Nl,k
ν (z) for l = 1, 2. This series is

well-defined for Re(s) large by Theorem 5.1, since 4φ(η)
2,rel,4

ψ(η)
2,rel as direct

sum components of 4rel
∗ have the same spectrum as 4rel

∗ , but with lower
multiplicities in general.

Due to the uniform convergence of integrals and series we obtain with similar
computations as for (5.12) an integral representation for this sum:

ζkNl
(s) =

s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T kNl

(s, λ)dλdt, (5.20)

T kNl
(s, λ) =

∑
ν∈Fk

tNl,k
ν (λ) ν−2s, tNl,k

ν (λ) = −
∞∑
i=1

log

(
1− ν2λ

j̃2
ν,l,i

)
. (5.21)

Note that the contour Λc encircles all the possible eigenvalues of 4φ(η)
2,rel,4

ψ(η)
2,rel

by construction, since the operators are positive by Corollary 5.10.

Corollary 5.13. Let M = (0, 1]×N, gM = dx2 ⊕ x2gN be a bounded gener-
alized cone. Let the metric on N be scaled as in (5.9) such that the non-zero
eigenvalues of the form-valued Laplacians on N are bigger than 1. Then we
obtain with Definition 5.5 in the notation of Propositions 5.11 and 5.12

ζk(s) =
s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T k(s, λ)dλdt, (5.22)
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T k(s, λ) :=
∑
ν∈Fk

tkν(λ) ν−2s,

tkν(λ) :=
[
tN1,k
ν (λ)− tD,kν (λ)) + (−1)n−1(tN2,k

ν (λ)− tD,kν (λ))
]
.

If dimM is odd we obtain with z :=
√
−λ and αk := n/2− 1/2− k

tkν(λ) =
[
− log(αkIν(νz) + νzI ′ν(νz)) + log

(
1 +

αk
ν

)
+

+ log(−αkIν(νz) + νzI ′ν(νz))− log
(
1− αk

ν

)]
.

For dimM even we compute with z :=
√
−λ

tkν(λ) =
[
− log(αkIν(νz) + νzI ′ν(νz)) + log

(
1 +

αk
ν

)
−

− log(−αkIν(νz) + νzI ′ν(νz)) + log
(
1− αk

ν

)
+

+2 log(Iν(νz)) + 2 log ν] .

Proof. Recall for convenience the definition of ζk(s) in Definition 5.5

ζk(s) := ζkN1
(s)− ζkD(s)) + (−1)n−1(ζkN2

(s)− ζkD(s)).

The integral representation and the definition of tkν(λ) are then a direct con-
sequence of Propositions 5.11 and 5.12. It remains to present tkν(λ) in terms
of special functions.

In order to simplify notation we put (recall cj := (−1)j(j − n/2))

αk :=
1

2
+ (−1)kck+1 =

n

2
− 1

2
− k = −

(
1

2
+ (−1)kck

)
.

Now we present tD,kν (λ) and tNl,k
ν (λ), l = 1, 2 in terms of special functions.

This can be done by referring to tables of Bessel functions in [GRA] or [AS].
However in the context of the paper it is more appropriate to derive the
presentation from results on zeta-regularized determinants. Here we follow
the approach of [L, Section 4.2] in a slightly different setting.

The original setting of [L, (4.22)] provides an infinite product representation
for Iν(z). We apply its approach in order to derive the corresponding result

for ĨNν (z) := αIν(z) + zI ′ν(z), with α ∈ {±αk} and ν ∈ Fk.

Consider now the following regular-singular Sturm-Liouville operator and its
self-adjoint extension with α ∈ {±αk} and ν ∈ Fk

lν := − d2

dx2
+

1

x2

(
ν2 − 1

4

)
: C∞0 (0, 1) → C∞0 (0, 1),
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D(Lν(α)) := {f ∈ D(lν,max)|f ′(1) + (α− 1/2)f(1) = 0}.

Note we have α2 < ν2 by construction and in particular α 6= −ν. Thus we
find by Corollary 4.11 or also by Proposition 5.8 that kerLν(α) = {0} and

detζ(Lν(α)) =
√

2π
α+ ν

2νΓ(ν + 1)
. (5.23)

Denote by φ(x, z), ψ(x, z) the solutions of (lν + z2)f = 0, normalized in the
sense of [L, (1.38a), (1.38b)] at x = 0 and x = 1, respectively. The general
solution to (lν + z2)f = 0 is of the following form

f(x) = c1
√
xIν(zx) + c2

√
xKν(zx).

Applying the normalizing conditions of [L, (1.38a), (1.38b)] we obtain
straightforwardly

ψ(1, z) = 1, ψ′(1, z) = 1/2− α,

φ(1, z) = 2νΓ(ν + 1)z−νIν(z) with φ(1, 0) = 1,

φ′(1, z) = 2νΓ(ν + 1)z−ν(Iν(z) · 1/2 + zI ′ν(z)) with φ′(1, 0) = ν + 1/2.

Finally by [L, Proposition 4.6] we obtain with {λn}n∈N being a counting of
the eigenvalues of Lν(α):

detζ(Lν(α) + z2) = detζ(Lν(α)) ·
∞∏
n=1

(
1 +

z2

λn

)
. (5.24)

Since kerLν(α) = {0}, for all n ∈ N we have λn 6= 0. Denote the positive

zeros of J̃Nν (z) := αJν(z) + zJ ′ν(z) by (j̃ν,i)i∈N. Note in the notation of

Proposition 5.12 that for α = αk, J̃
N
ν (z) = J̃N1,k

ν (z) and for α = −αk,
J̃Nν (z) = J̃N2,k

ν (z). Observe by Corollary 5.9:

Spec(Lν(α)) = {j̃2
ν,i|i ∈ N}.

Using the product formula (5.24) and [L, Theorem 1.2] applied to Lν(α)+z2,
we compute in view of (5.23)

∞∏
i=1

(
1 +

z2

j̃2
ν,i

)
=
W (φ(·, z);ψ(·, z))

α+ ν
=

2νΓ(ν)

zν(1 + α/ν)
(αIν(z) + zI ′ν(z))

⇒ ĨNν (z) ≡ αIν(z) + zI ′ν(z) =
zν

2νΓ(ν)

(
1 +

α

ν

) ∞∏
i=1

(
1 +

z2

j̃2
ν,i

)
.

(5.25)
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The original computations of [L, (4.22)] provide an analogous result for Iν(z)

Iν(z) =
zν

2νΓ(ν + 1)

∞∏
i=1

(
1 +

z2

j2
ν,i

)
,

where jν,i are the positive zeros of Jν(z). Finally in view of the series repre-
sentations for tD,kν (λ) and tNl,k

ν (λ), l = 1, 2 derived in Propositions 5.11 and
5.12 we obtain with z =

√
−λ

tD,kν (λ) = − log Iν(νz) + log

(
(νz)ν

2νΓ(ν + 1)

)
, (5.26)

tNl,k
ν (λ) = − log(αlIν(νz) + νzI ′ν(νz)) + log

(
(νz)ν

2νΓ(ν)

(
1 +

αl
ν

))
, (5.27)

where αl = αk if l = 1 and αl = −αk if l = 2. Putting together these two
results we obtain with Definition 5.5 the statement of the corollary.

Now we turn to the discussion of T k(s, λ). For this we introduce the following
zeta-function for Re(s) large:

ζk,N(s) :=
∑
ν∈Fk

ν−s =
∑
ν∈Fk

(ν2)−s/2,

where ν ∈ Fk are counted with their multiplicities and the second equality is
clear, since ν ∈ Fk are positive. Recall that ν ∈ Fk solves

ν2 = η + (k + 1/2− n/2)2, η ∈ Spec4k,ccl,N\{0}

and hence ζk,N(2s) is simply the zeta-function of 4k,ccl,N + (k+ 1/2−n/2)2.
By standard theory ζ(2s) extends (note that ζ(2s) can be presented by an
alternating sum of zeta functions of 4j,N + (k + 1/2 − n/2)2, j = 0, .., k)
to a meromorphic function with possible simple poles at the usual locations
{(n−p)/2|p ∈ N} and s = 0 being a regular point. Thus the 1/νr dependence
in tkν(λ) causes a non-analytic behaviour of T k(s, λ) at s = 0 for r = 1, .., n,
since ∑

ν∈Fk

ν−2s 1

νr
= ζk,N(2s+ r)

possesses possibly a pole at s = 0. Therefore the first n = dimN lead-
ing terms in the asymptotic expansion of tkν(λ) for large orders ν are to be
removed. We put

tkν(λ) =: pkν(λ) +
n∑
r=1

1

νr
fkr (λ), P k(s, λ) :=

∑
ν>1

pkν(λ) ν−2s. (5.28)
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In order to get explicit expressions for fkr (λ) we need following expansions of
Bessel-functions for large order ν, see [O, Section 9]:

Iν(νz) ∼
1√
2πν

eνη

(1 + z2)1/4

[
1 +

∞∑
r=1

ur(t)

νr

]
,

I ′ν(νz) ∼
1√
2πν

eνη

z(1 + z2)−1/4

[
1 +

∞∑
r=1

vr(t)

νr

]
,

where we put z :=
√
−λ, t := (1 + z2)−1/2 and η := 1/t + log(z/(1 + 1/t)).

Recall that λ ∈ Λc, defined in (5.13). The induced z =
√
−λ is contained

in {z ∈ C||arg(z)| < π/2} ∪ {ix|x ∈ (−1, 1)}. This is precisely the region of
validity for these asymptotic expansions, determined in [O, (7.18)].

Same expansions are quoted in [BKD, Section 3]. In particular we have as
in [BKD, (3.15)] the following expansion in terms of orders

log

[
1 +

∞∑
r=1

ur(t)

νr

]
∼

∞∑
r=1

Dr(t)

νr
, (5.29)

log

[(
1 +

∞∑
k=1

vr(t)

νr

)
± αk

ν
t

(
1 +

∞∑
r=1

ur(t)

νr

)]
∼

∞∑
r=1

Mr(t,±αk)
νr

, (5.30)

where Dr(t) and Mr(t,±αk) are polynomial in t. Using these series repre-
sentations we prove the following result.

Lemma 5.14. For dimM being odd we have with z :=
√
−λ, t := (1 +

z2)−1/2 = 1/
√

1− λ and αk = n/2− 1/2− k

fkr (λ) = Mr(t,−αk)−Mr(t,+αk) + (−1)r+1α
r
k − (−αk)r

r
.

For dimM being even we have in the same notation

fkr (λ) = −Mr(t,−αk)−Mr(t,+αk) + 2Dr(t) + (−1)r+1α
r
k + (−αk)r

r
.

Proof. We get by the series representation (5.29) and (5.30) the following
expansions for large orders ν:

log(±αkIν(νz) + νzI ′ν(νz)) ∼ log

(
ν√
2πν

eνη

z(1 + z2)−1/4

)
+

∞∑
r=1

Mr(t,±αk)
νr

,

log(Iν(νz)) ∼ log

(
1√
2πν

eνη

(1 + z2)1/4

)
+

∞∑
r=1

Dr(t)

νr
.
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Furthermore, with ν > |αk| for ν ∈ Fk we obtain

log(1± αk
ν

) =
∞∑
r=1

(−1)r+1 (±αk)r

rνr
.

Hence in total we obtain an expansion for tkν(λ) in terms of orders ν:

tkν(λ) ∼
∞∑
r=1

1

νr

(
Mr(t,−αk)−Mr(t,+αk) + (−1)r+1α

r
k − (−αk)r

r

)
,

for dimM odd,

tkν(λ) ∼
∞∑
r=1

1

νr

(
2Dr(t)−Mr(t,−αk)−Mr(t,+αk) + (−1)r+1α

r
k + (−αk)r

r

)
+ log

(
λ

λ− 1

)
, for dimM even.

From here the explicit result for fkr (λ) follows by its definition.

From the integral representation (5.22) we find that the singular behaviour
enters the zeta-function in form of

n∑
r=1

s2

Γ(s+ 1)
ζk,N(2s+ r)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
fkr (λ)dλdt.

We compute explicitly this contribution coming from fkr (λ) in terms of the
polynomial structure of Mr and Dr. It can be derived from (5.29) and (5.30),
see also [BKD, (3.7), (3.16)], that the polynomial structure of Mr and Dr is
given by

Dr(t) =
r∑
b=0

xr,bt
r+2b, Mr(t,±αk) =

r∑
b=0

zr,b(±αk)tr+2b.

Lemma 5.15. For dimM odd we obtain∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
fkr (λ)dλdt =

=
r∑
b=0

(zr,b(−αk)− zr,b(αk))
Γ(s+ b+ r/2)

sΓ(b+ r/2)
.
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For dimM even we obtain ∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
fkr (λ)dλdt =

=
r∑
b=0

(2xr,b − zr,b(−αk)− zr,b(αk))
Γ(s+ b+ r/2)

sΓ(b+ r/2)
.

Proof. Observe from [GRA, 8.353.3] by substituting the new variable x =
λ− 1, with a > 0:

1

2πi

∫
∧c

e−λt

−λ
1

(1− λ)a
dλ =

1

2πi
e−t
∫
∧c−1

− e−xt

x+ 1

1

(−x)a
dx =

=
1

π
sin(πa)Γ(1− a)Γ(a, t).

Using now the relation between the incomplete Gamma function and the
probability integral ∫ ∞

0

ts−1Γ(a, t)dt =
Γ(s+ a)

s

we obtain ∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
1

(1− λ)a
dλdt =

1

π
sin (πa) Γ(1− a)

Γ(s+ a)

s
=

Γ(s+ a)

sΓ(a)
.

Further note for t > 0
1

2πi

∫
∧c

e−λt

−λ
dλ = 0,

since the contour Λc does not encircle the pole λ = 0 of the integrand. Hence
the λ−independent part of fkr (λ) vanishes after integration. The statement
is now a direct consequence of Lemma 5.14.

Next we derive asymptotics of pkν(λ) := tkν(λ)−
∑n

r=1
1
νr f

k
r (λ) for large argu-

ments λ and fixed order ν

Proposition 5.16. For large arguments λ and fixed order ν we have the
following asymptotics

pkν(λ) = akν log(−λ) + bkν +O
(
(−λ)−1/2

)
,
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where for dimM odd

akν = 0, bkν =

(
(log

(
1 +

αk
ν

)
− log

(
1− αk

ν

)
−

n∑
r=1

(−1)r+1α
r
k − (−αk)r

rνr

)
,

and for dimM even

akν = −1, bkν =

(
log
(
1 +

αk
ν

)
+ log

(
1− αk

ν

)
−

n∑
r=1

(−1)r+1α
r
k + (−αk)r

rνr

)
.

Proof. For large argument λ we obtain

t =
1√

1 + z2
=

1√
1− λ

= O
(
(−λ)−1/2

)
.

Therefore the polynomials Mr(t,±αk) and Dr(t), having no constant terms,
are of asymptotics O

(
(−λ)−1/2

)
for large λ. Hence directly from Lemma

5.14 we obtain in odd dimensions for large λ

fkr (λ)

νr
∼ (−1)r+1 (αk)

r − (−αk)r

rνr
+O

(
(−λ)−1/2

)
. (5.31)

In even dimensions we get

fkr (λ)

νr
∼ (−1)r+1 (αk)

r + (−αk)r

rνr
+O

(
(−λ)−1/2

)
. (5.32)

It remains to identify explicitly the asymptotics of tkν(λ). Note by [AS, p.
377] the following expansions for large arguments and fixed order:

Iν(z) =
ez√
2πz

(
1 +O

(
1

z

))
, I ′ν(z) =

ez√
2πz

(
1 +O

(
1

z

))
.

These expansions hold for |arg(z)| < π/2 and in particular for z =
√
−λ

with λ ∈ Λc large, where Λc is defined in (5.13). Further observe for such
z =

√
−λ, λ ∈ Λc large:

log

(
1 +O

(
1

z

))
= O

(
(−λ)−1/2

)
,

⇒ log(±αk + νz) = log z + log ν + log
(
1± αk

νz

)
=

= log z + log ν +O
(
(−λ)−1/2

)
.
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Together with the expansions of the Bessel-functions we obtain for tkν(λ)
defined in Corollary 5.13

tkν(λ) = log
(
1 +

αk
ν

)
− log

(
1− αk

ν

)
+O

(
(−λ)−1/2

)
,

for dimM odd,

tkν(λ) = − log(−λ) + log
(
1 +

αk
ν

)
+ log

(
1− αk

ν

)
+O

(
(−λ)−1/2

)
,

for dimM even.

Recall the definition of pkν(λ) in (5.28). Combining this with (5.31) and (5.32)
we obtain the desired result.

Definition 5.17. With the coefficients akν and bkν defined in Proposition 5.16,
we set for Re(s) � 0

Ak(s) :=
∑
ν∈Fk

akν ν
−2s, Bk(s) :=

∑
ν∈Fk

bkν ν
−2s.

Now the last step towards the evaluation of the zeta-function of Corollary
5.13 is the discussion of

P k(s, λ) :=
∑
ν∈Fk

pkν(λ) ν−2s, Re(s) � 0.

At this point the advantage of taking in account the symmetry of the de
Rham complex is particularly visible:

Proposition 5.18.

P k(s, 0) = 0.

Proof. As λ→ 0 we find that t = (1−λ)−1/2 tends to 1. Since as in [BGKE,
(4.24)]

Mr(1,±αk) = Dr(1) + (−1)r+1 (±αk)r

r
(5.33)

we find with Lemma 5.14 that in both the even- and odd-dimensional case
fkr (λ) → 0 as λ → 0. Thus we simply need to study the behaviour of tkν(λ)
defined in Corollary 5.13 for small arguments. The results follow from the
asymptotic behaviour of Bessel functions of second order for small arguments
which holds without further restrictions on z

Iν(z) ∼
1

Γ(ν + 1)

(z
2

)ν
, |z| → 0.
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Using the relation I ′ν(z) = 1
2
(Iν+1(z) + Iν−1(z) we compute as |z| → 0

±αkIν(νz) + νzI ′ν(νz) ∼
ν

Γ(ν + 1)

(νz
2

)ν [
1± αk

ν
+

νz2

4(ν + 1)

]
,

νIν(νz) ∼
ν

Γ(ν + 1)

(νz
2

)ν
.

The result now follows from the explicit form of tkν(λ).

Remark 5.19. The statement of Proposition 5.18 shows an obvious advan-
tage of taking in account the symmetry of the de Rham complex.

Now we have all the ingredients together, since by analogous arguments as
in [S, Section 4.1] the total zeta-function of Corollary 5.13 is given as follows:

ζk(s) =
s

Γ(s+ 1)
[γAk(s)−Bk(s)− 1

s
Ak(s) + P k(s, 0)] +

+
n∑
r=1

s2

Γ(s+ 1)
ζk,N(2s+ r)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
fkr (λ)dλdt+

s2

Γ(s+ 1)
h(s),

where the last term vanishes with its derivative at s = 0. Simply by inserting
the results of Lemma 5.15, Proposition 5.16, Proposition 5.18 together with
Definition 5.17 into the above expression we obtain the following proposition:

Proposition 5.20. Continue in the setting of Corollary 5.13. Up to a term
of the form s2h(s)/Γ(s+ 1), which vanishes with its derivative at s = 0, the
zeta-function ζk(s) from Definition 5.5 is given in odd dimensions by

s

Γ(s+ 1)

[∑
ν∈Fk

ν−2s log
(
1− αk

ν

)
−
∑
ν∈Fk

ν−2s log
(
1 +

αk
ν

)
+

+
n∑
r=1

ζk,N(2s+ r) (−1)r+1α
r
k − (−αk)r

r

]
+

+
n∑
r=1

ζk,N(2s+ r)
s

Γ(s+ 1)

[
r∑
b=0

(zr,b(−αk)− zr,b(αk))
Γ(s+ b+ r/2)

Γ(b+ r/2)

]
.



96 Analytic Torsion

In even dimensions we obtain

s

Γ(s+ 1)

[
−
∑
ν∈Fk

ν−2s log
(
1− αk

ν

)
−
∑
ν∈Fk

ν−2s log
(
1 +

αk
ν

)
+

+
∑
ν∈Fk

ν−2s

(
1

s
− γ

)
+

n∑
r=1

ζk,N(2s+ r)(−1)r+1α
r
k + (−αk)r

r

]
+

+
n∑
r=1

ζk,N(2s+ r)
s

Γ(s+ 1)

[
r∑
b=0

(2xr,b − zr,b(−αk)−

−zr,b(αk))
Γ(s+ b+ r/2)

Γ(b+ r/2)

]
.

Corollary 5.21. With ζk,N(s, a) :=
∑

ν∈Fk
(ν + a)−s we deduce for odd di-

mensions

ζ ′k(0) = ζ ′k,N(0, αk)− ζ ′k,N(0,−αk)+

+
n∑
i=1

(−1)i+1α
i
k − (−αk)i

i
Resζk,N(i)

{
γ

2
+

Γ′(i)

Γ(i)

}
+

+
n∑
i=1

1

2
Resζk,N(i)

i∑
b=0

(zi,b(−αk)− zi,b(αk))
Γ′(b+ i/2)

Γ(b+ i/2)
.

and for even dimensions

ζ ′k(0) = ζ ′k,N(0, αk) + ζ ′k,N(0,−αk)+

+
n∑
i=1

(−1)i+1α
i
k + (−αk)i

i
Resζk,N(i)

{
γ

2
+

Γ′(i)

Γ(i)

}
+

+
n∑
i=1

1

2
Resζk,N(i)

i∑
b=0

(2xi,b − zi,b(−αk)− zi,b(αk))
Γ′(b+ i/2)

Γ(b+ i/2)
.

Proof. First we consider a major building brick of the expressions in Propo-
sition 5.20. Here we follow the approach of [BKD, Section 11]. Put for
α ∈ {±αk}

K(s) :=
∑
ν∈Fk

ν−2s

[
− log

(
1 +

α

ν

)
+

n∑
r=1

(−1)r+1 1

r

(α
ν

)r]
.

Since the zeta-function ζk,N(s) =
∑

ν∈Fk
ν−s converges absolutely for Re(s) ≥

n + 1, n = dimN , the sum above converges for s = 0. In order to evaluate
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K(0), introduce a regularization parameter z as follows:

K0(z) :=
∑
ν∈Fk

∫ ∞

0

tz−1e−νt

(
e−αt +

n∑
i=0

(−1)i+1α
iti

i!

)
dt

= Γ(z) · ζk,N(z, α) +
n∑
i=0

(−1)i+1α
i

i!
Γ(z + i)ζk,N(z + i),

where we have introduced

ζk,N(z, α) :=
1

Γ(z)

∑
ν∈Fk

∫ ∞

0

tz−1e−(ν+α)t dt.

For Re(s) large enough ζk,N(z, α) =
∑

ν∈Fk
(ν + α)−z, is holomorphic and

extends meromorphically to C, since it is the zeta-function of 4k,ccl,N + α.
Note that for α ∈ {±αk} and ν ∈ Fk we have α 6= −ν, so no zero mode
appears in the zeta function ζk,N(z, α). In particular K0(z) is meromorphic
in z ∈ C and by construction

K0(0) = K(0).

With the same arguments as in [BKD, Section 11] we arrive at

K(0) =ζ ′k,N(0, α)− ζ ′k,N(0)+

+
n∑
i=1

(−1)i+1α
i

i

[
Resζk,N(i)

{
γ +

Γ′(i)

Γ(i)

}
+ PPζk,N(i)

]
,

where PPζk,N(r) denotes the constant term in the asymptotics of ζk,N(s) near
the pole singularity s = r. This result corresponds to the result obtained in
[BKD, p.388], where the factors 1/2 in front of ζ ′k,N(0) and 2 in front of
Res ζk,N(i), as present in [BKD], do not appear here because of a different
notation: here we have set ζk,N(s) =

∑
ν−s instead of

∑
ν−2s.

In fact K(0) enters the calculations twice: with α = αk and α = −αk. In
the odd-dimensional case both expressions are subtracted from each other,
in the even-dimensional case they are added up. Furthermore we compute
straightforwardly

d

ds

∣∣∣∣
s=0

ζk,N(2s+ r)
s

Γ(s+ 1)

Γ(s+ b+ r/2)

Γ(b+ r/2)
=

=
1

2
Resζk,N(r)

[
Γ′(b+ r/2)

Γ(b+ r/2)
+ γ

]
+ PPζk,N(r).
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We infer from (5.33)

r∑
b=0

(zr,b(−αk)− zr,b(αk)) = (−1)r
αrk − (−αk)r

r
,

i∑
b=0

(2xi,b − zi,b(−αk)− zi,b(αk)) = (−1)r
αrk + (−αk)r

r
.

This leads after several cancellations to the desired result in odd dimensions.
In even dimensions the result follows by a straightforward evaluation of the
derivative at zero for the remaining component:

d

ds

∣∣∣∣
s=0

s

Γ(s+ 1)
ζk,N(2s)

(
1

s
− γ

)
= 2ζ ′k,N(0).

5.5 Contribution from the Subcomplexes II

It remains to identify the contribution to the analytic torsion coming from
the subcomplexes (5.4) of second type, induced by the harmonics on the base
manifold N . The necessary calculations are provided in [L3] and are repeated
here for completeness. Recall the explicit form of these subcomplexes

0 → C∞0 ((0, 1), 〈0 ⊕ ui〉)
d−→ C∞0 ((0, 1), 〈ui ⊕ 0〉) → 0, (5.34)

where {ui} is an orthonormal basis of dimHk(N). With respect to the gen-
erators 0⊕ ui and ui ⊕ 0 we obtain for the action of the exterior derivative

d = (−1)k∂x +
ck
x
, ck = (−1)k(k − n/2).

By compatibility of the induced decomposition we have (cf. (3.20))

D(4rel
k ) ∩ L2((0, R),〈0⊕ ui〉) = D(dtmaxdmin) =

= D
(
(−1)k+1∂x +

ck
x

)
max

(
(−1)k∂x +

ck
x

)
min

.

Consider, in the notation of Subsection 5.3, for any ν ∈ R and α ∈ R ∪
{∞} the operator lν = −∂2

x + x−2(ν2 − 1/4) with the following self-adjoint
extension:

D(Lν(α)) = {f ∈ D(lν,max)|(α− 1/2)−1f ′(1) + f(1) = 0,

f(x) = O(
√
x), x→ 0}.



Analytic Torsion 99

Here Lν(α = 1/2) denotes the self-adjoint extension of lν with pure Neumann
boundary conditions at x = 1. Furthermore Lν(∞) is the extension with
Dirichlet boundary conditions at x = 1. As a consequence of Proposition 2.8
we have (

(−1)k+1∂x +
ck
x

)
max

(
(−1)k∂x +

ck
x

)
min

= L|k−(n−1)/2|(∞).

It is well-known, see also [L, Theorem 1.1] and [L, (1.37)], that the zeta-
function of Lν(α) extends meromorphically to C and is regular at the origin.
We abbreviate

T (Lν(α)) := log detLν(α) = −ζ ′(s = 0, Lν(α)).

Put bk := dimHk(N). Then the contribution to the analytic torsion coming
from harmonics on the base manifold is given due to the formula (5.7) as
follows:

1

2

dimM∑
k=0

(−1)kbk T (L|k−(n−1)/2|(∞)) (5.35)

Proposition 5.22.
For ν ≥ 0 we have Spec(Lν(∞)) ∪ {0} = Spec(Lν+1(ν + 1)) ∪ {0}.

Proof. Put dp := ∂x + x−1p. We get

lp+1/2 = dtpdp, lp−1/2 = dpd
t
p.

By a combination of Propositions 2.6, 2.8, which determine the maximal and
the minimal domains of dp, we obtain for ν ≥ 0

D(dν+1/2,maxd
t
ν+1/2,min) = {f ∈ D(lν,max)|f(x) = O(

√
x), x→ 0, f(1) = 0},

D(dtν+1/2,mindν+1/2,max) = {f ∈ D(lν+1,max)|f(x) = O(
√
x), x→ 0,

f ′(1) + (ν + 1/2)f(1) = 0}.

Hence we find

Lν(∞) = dν+1/2,maxd
t
ν+1/2,min = dν+1/2,max(dν+1/2,max)

∗,

Lν+1(ν + 1) = dtν+1/2,mindν+1/2,max = (dν+1/2,max)
∗dν+1/2,max.

Comparing both operators we deduce the statement on the spectrum, since
all non-zero eigenvalues of the operators are simple by similar arguments as
in Corollary 5.9.
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Proposition 5.23. Let α+ ν 6= 0. Then

T (Lν(∞)) = T (Lν(α))− log(α+ ν).

Proof. The assumption α+ ν 6= 0 implies with Corollary 4.11

detζ(Lν(α)) =
√

2π
α+ ν

2νΓ(1 + ν)
.

Moreover we have by Corollary 4.12

detζ(Lν(∞)) =

√
2π

Γ(1 + ν)2ν
.

Consequently we obtain for α+ ν 6= 0

detζ(Lν(∞))

detζ(Lν(α))
=

1

α+ ν
.

Taking logarithms we get the result.

Proposition 5.24.

T (Lk+1/2(∞)) = log 2−
k∑
l=0

log(2l + 1).

Proof. Apply Proposition 5.23 to Lν+1(ν + 1), ν ≥ 0. We obtain

T (Lν+1(∞)) = T (Lν+1(ν + 1))− log(2ν + 2) = T (Lν(∞))− log(2ν + 2),

where for the second equality we used Proposition 5.22. We iterate the
equality with ν = k − 1/2 and obtain

T (Lk+1/2(∞)) = T (L1/2(∞))−
k∑
l=0

log(2l + 1).

The operator L1/2(∞) is simply −∂2
x on [0,1] with Dirichlet boundary condi-

tions. Its spectrum is given by (n2π2)n∈N. Thus we obtain with ζR(0) = −1/2
and ζ ′R(0) = −1/2 log 2π

ζL1/2(∞)(s) =
∞∑
n=1

π−2sn−2s

⇒ ζ ′L1/2(∞)(0) = −2(log π)ζR(0) + 2ζ ′R(0) = − log 2.
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Now we finally compute the contribution from harmonics on the base:

Theorem 5.25. Let M be a bounded generalized cone of length one over a
closed oriented Riemannian manifold N of dimension n. Let χ(N) denote
the Euler characteristic of N and bk := dimHk(N) be the Betti numbers.

Then the contribution to the analytic torsion coming from harmonics on the
base manifold is given as follows. For dimM odd the contribution amounts
to

log 2

2
χ(N)−

n/2−1∑
k=0

(−1)kbk

n/2−k−1∑
l=0

log(2l + 1)−

−1

2

n/2−1∑
k=0

(−1)kbk log(n− 2k + 1).

For dimM even the contribution amounts to

1

2

(n−1)/2∑
k=0

(−1)kbk log(n− 2k + 1).

Proof. We infer from (5.35) for the contribution of the harmonics on the base
manifold

1

2

dimM∑
k=0

(−1)kbk T (L|k−(n−1)/2|(∞)).

We obtain by Poincare duality on the base manifold N

For dimM = n+ 1 odd:
1

2

dimM∑
k=0

(−1)kbk T (L|k−(n−1)/2|(∞)) =

=
1

2

n/2−1∑
k=0

(−1)kbk (T (Ln/2−k−1/2(∞)) + T (Ln/2−k+1/2(∞))),

For dimM = n+ 1 even:
1

2

dimM∑
k=0

(−1)kbk T (L|k−(n−1)/2|(∞)) =

=
1

2

(n−1)/2∑
k=0

(−1)kbk (T (Ln/2−k−1/2(∞))− T (Ln/2−k+1/2(∞))).

Inserting the result of Proposition 5.24 into the expressions above, we obtain
the statement.
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5.6 Total Result and Formulas in lower Dimensions

Patching together the results of the both preceeding sections we can now
provide a complete formula for the analytic torsion of a bounded generalized
cone. In fact we simply have to add up the results of Theorem 5.25 and
Corollary 5.21. In even dimensions one has to be careful in the middle degree,
as explained in Remark 5.7.

Theorem 5.26. Let M = (0, 1] × N, gM = dx2 ⊕ x2gN be an odd-
dimensional bounded generalized cone over a closed oriented Riemannian
manifold (N, gN). Let the metric on the base manifold N be scaled such
that the non-zero eigenvalues of the form-valued Laplacians on N are big-
ger than one. Introduce the notation n = dimN, αk = (n − 1)/2 − k and
bk = dimHk(N). Put

Fk := {ξ ∈ R+ | ξ2 = η + (k + 1/2− n/2)2 , η ∈ Spec4k,ccl,N\{0}},

ζk,N(s) =
∑
ν∈Fk

ν−s, ζk,N(s, α) :=
∑
ν∈Fk

(ν + α)−s, Re(s) � 0.

Then the logarithm of the scalar analytic torsion of M is given by

log T (M) =
log 2

2
χ(N)−

n/2−1∑
k=0

(−1)kbk

n/2−k−1∑
l=0

log(2l + 1)−

−1

2

n/2−1∑
k=0

(−1)kbk log(n− 2k + 1) +

n/2−1∑
k=0

(−1)k

2
(ζ ′k,N(0, αk)− ζ ′k,N(0,−αk))+

+

n/2−1∑
k=0

(−1)k

2

n∑
i=1

(−1)i+1α
i
k − (−αk)i

i
Resζk,N(i)

{
γ

2
+

Γ′(i)

Γ(i)

}
+

+

n/2−1∑
k=0

(−1)k

2

n∑
i=1

1

2
Resζk,N(i)

i∑
b=0

(zi,b(−αk)− zi,b(αk))
Γ′(b+ i/2)

Γ(b+ i/2)
.

Theorem 5.27. Let M = (0, 1] × N, gM = dx2 ⊕ x2gN be an even-
dimensional bounded generalized cone over a closed oriented Riemannian
manifold (N, gN). Let the metric on the base manifold N be scaled such
that the non-zero eigenvalues of the form-valued Laplacians on N are big-
ger than one. Introduce the notation n = dimN, αk = (n − 1)/2 − k and
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bk = dimHk(N). Put

Fk := {ξ ∈ R+ | ξ2 =η + (k + 1/2− n/2)2 , η ∈ Spec4k,ccl,N\{0}},

ζk,N(s) :=
∑
ν∈Fk

ν−s, ζk,N(s, α) :=
∑
ν∈Fk

(ν + α)−s, Re(s) � 0.

δk :=

{
1/2 if k = (n− 1)/2,
1 otherwise.

Then the logarithm of the scalar analytic torsion of M is given by

log T (M) =

(n−1)/2∑
k=0

(−1)k

2

[
bk log(n− 2k + 1) + δkζ

′
k,N(0, αk) + δkζ

′
k,N(0,−αk)

]
+

(n−1)/2∑
k=0

(−1)k

2
δk

n∑
i=1

(−1)i+1α
i
k + (−αk)i

i
Resζk,N(i)

{
γ

2
+

Γ′(i)

Γ(i)

}
+

+

(n−1)/2∑
k=0

(−1)k

2
δk

n∑
i=1

1

2
Resζk,N(i)

i∑
b=0

(2xi,b − zi,b(−αk)−

−zi,b(αk))
Γ′(b+ i/2)

Γ(b+ i/2)
.

The formula could not be made further explicit due to presence of coefficients
xr,b and zr,b(±αk), arising from the polynomials

Dr(t) =
r∑
b=0

xr,bt
r+2b, Mr(t,±α) =

r∑
b=0

zr,b(±α)tr+2b,

which were introduced in the expansions (5.29) and (5.30). These polyno-
mials can be computed explicitly for any given order r ∈ N. To point out
the applicability of the general results we pursue explicit computations in di-
mension two and three. We continue in the notation of the theorems above.

Corollary 5.28. Let M be a two-dimensional bounded generalized cone of
length one over a closed oriented manifold N with a metric scaled as in
Theorem 5.27. Then the analytic torsion of M is given by

log T (M) =
1

2
dimH0(N) log 2 +

1

2
ζ ′0,N(0)− 1

4
Resζ0,N(s = 1).

In the special case of N = S1 we obtain

log T (M) =
1

2
(− log π − 1) .
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Proof. In the two-dimensional case the general formula of Theorem 5.27 re-
duces to the following expression:

log T (M) =
1

2
dimH0(N) log 2 +

1

4
ζ ′0,N(0, α0) +

1

4
ζ ′0,N(0,−α0)+

+
1

8
Res ζ0,N(1)

[
1∑
b=0

(2x1,b − z1,b(−αk)− z1,b(αk))
Γ′(b+ 1/2)

Γ(b+ 1/2)

]
.

Now we evaluate the combinatorial factor of Res ζ0,N(1) by considering the
following formulas, encountered in [BGKE, Section 2-3]

D1(t) =
1∑
b=0

x1,bt
1+2b =

1

8
t− 5

24
t3,

M1(t, α) =
1∑
b=0

z1,b(±α)t1+2b =

(
−3

8
+ α

)
t+

7

24
t3. (5.36)

Further one needs the following values (calculated from the known properties
of Gamma functions)

Γ′(1/2)

Γ(1/2)
= −(γ + 2 log 2),

Γ′(3/2)

Γ(3/2)
= 2− (γ + 2 log 2).

Finally one observes α0 = 0 in this setting. This easily leads to the first
formula in the statement of corollary. The second formula follows from the
first by

ζ0,N(s) = 2ζR(s),

where the factor 2 comes from the fact that the eigenvalues n2 of the Lapla-
cian 4k=0,S1 are of multiplicity two for n 6= 0. The Riemann zeta function
has the following special values

ζ ′R(0) = −1

2
log 2π, Res ζR(1) = 1,

which gives the second formula.

Corollary 5.29. Let M be a three-dimensional bounded generalized cone
of length one over a closed oriented manifold N with a metric scaled as in
Theorem 5.26. Then the analytic torsion of M is given by

log T (M) =
log 2

2
χ(N)− log 3

2
dimH0(N) +

1

2
ζ ′0,N(0, 1/2)−

−1

2
ζ ′0,N(0,−1/2) +

log 2

2
Res ζ0,N(1) +

1

16
Res ζ0,N(2).
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Proof. In the three-dimensional case the general formula of Theorem 5.26
reduces to the following expression:

log T (M) =
log 2

2
χ(N)− log 3

2
dimH0(N)+

+
1

2

(
ζ ′0,N(0, α0)− ζ ′0,N(0,−α0)

)
+ α0Res ζ0,N(1)

[
γ

2
+

Γ′(1)

Γ(1)

]
+

+
1

4

2∑
i=1

Res ζ0,N(i)
i∑

b=0

(zi,b(−αk)− zi,b(αk))
Γ′(b+ i/2)

Γ(b+ i/2)
.

Now we simply evaluate the last combinatorial sum by considering formulas
from [BGKE, (3.6), (3.7)]

M1(t, α) =
1∑
b=0

z1,b(±α)t1+2b =

(
−3

8
+ α

)
t+

7

24
t3,

M2(t, α) =
2∑
b=0

z2,b(±α)t2+2b =

(
− 3

16
+
α

2
− α2

2

)
t2 +

(
5

8
− α

2

)
t4 − 7

16
t6.

We further need the values

Γ′(1)

Γ(1)
= −γ, Γ′(1/2)

Γ(1/2)
= −(γ + 2 log 2),

Γ′(2)

Γ(2)
= 1− γ,

Γ′(3/2)

Γ(3/2)
= 2− (γ + 2 log 2).

This leads together with α0 = 1/2 in the three-dimensional case to the fol-
lowing formula

log T (M) =
log 2

2
χ(N)− log 3

2
dimH0(N)+

+
1

2

(
ζ ′0,N(0, 1/2)− ζ ′0,N(0,−1/2)

)
− γ

4
Res ζ0,N(1)+

+
1

4

(
Res ζ0,N(1)[γ + 2 log 2] +

1

4
Res ζ0,N(2)

)
. (5.37)

Obvious cancellations in the formula above prove the result.

5.7 Analytic torsion of a cone over S1

The preceeding computations reduce in the two-dimensional case simply to
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the computation of the analytic torsion of a disc. In order to deal with a
generalized bounded cone in two dimensions, which is not simply a flat disc,
we need to introduce an additional parameter in the Riemannian metric. So
in two dimensions the setup is as follows.

Let M := (0, R]× S1 with

gM = dx2 ⊕ ν−2x2gS
1

be a bounded generalized cone over S1 of angle arcsec(ν) and length 1, with
a fixed orientation and with a fixed parameter ν ≥ 1.

Figure 4: A bounded cone of angle arcsec(ν), ν ≥ 1 and length R.

The main result of our discussion in this part of the presentation is then the
following theorem:

Theorem 5.30. The analytic torsion T (M) of a bounded generalized cone
M of length R and angle arcsec ν > 0 over S1 is given by

2 log T (M) = − log(πR2) + log ν − 1

ν
.

This result corresponds precisely to the result obtained in Corollary 5.28 for
the special case ν = 1 (for R = 1). In fact this result can also be derived from
[BGKE, Section 5]. This setup was considered by Spreafico in [S]. However
[S] deals only with Dirichlet boundary conditions at the cone base. So we
extend his approach to the Neumann boundary conditions in order to obtain
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an overall result for the analytic torsion of this specific cone manifold. We
proceed as follows.

Denote forms with compact support in the interior of M by Ω∗
0(M). The

associated de Rham complex is given by

0 → Ω0
0(M)

d0−→ Ω1
0(M)

d1−→ Ω2
0(M) → 0.

Consider the following maps

Ψ0 : C∞0 ((0, R),Ω0(S1)) → Ω0
0(M),

φ 7→ x−1/2φ.

Ψ2 : C∞0 ((0, R),Ω1(S1)) → Ω2
0(M),

φ 7→ x1/2φ ∧ dx,

where φ is identified with its pullback to M under the natural projection
π : (0, R]×N → N onto the second factor, and x is the canonical coordinate
on (0, R]. We find

40 := Ψ−1
0 dt0d0Ψ0 = − d2

dx2
+

1

x2

(
−ν2∂2

θ −
1

4

)
on C∞0 ((0, R),Ω0(S1)),

42 := Ψ−1
2 d1d

t
1Ψ2 = − d2

dx2
+

1

x2

(
−ν2∂2

θ −
1

4

)
on C∞0 ((0, R),Ω1(S1)).

where θ is the local variable on the one-dimensional sphere. In fact both
maps Ψ0 and Ψ2 extend to isometries on the L2−completion of the spaces,
by similar arguments as behind Proposition 3.1. Now consider the minimal
extensionsDk := dk,min of the boundary operators dk in the de Rham complex
(Ω∗

0(M), d). This defines by [BL1, Lemma 3.1] a Hilbert complex

(D, D), with Dk := D(Dk).

Put

40
rel := Ψ−1

0 D∗
0D0Ψ0,

42
rel := Ψ−1

2 D1D
∗
1Ψ2.

The Laplacians 40
rel,42

rel are spectrally equivalent to D∗
0D0, D1D

∗
1, respec-

tively. The boundary conditions for 40
rel and 42

rel at the cone base {1} × S1

are determined in Proposition 3.5.
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In order to identify the boundary conditions for 40
rel and 42

rel at the cone sin-
gularity, observe that by [BL2, Theorem 3.7] the ideal boundary conditions
for the de Rham complex are uniquely determined at the cone singularity.
Further [BL2, Lemma 3.1] shows that the corresponding extension coincides
with the Friedrich’s extension at the cone singularity. We infer from [BS3,
Theorem 6.1] that the elements in the domain of the Friedrich’s extension
are of the asymptotics O(

√
x) as x→ 0. Hence we find

D(40
rel) =

={φ ∈ H2
loc((0, R]× S1)|φ(R) = 0, φ(x) = O(

√
x) as x→ 0},

D(42
rel) =

={φ ∈ H2
loc((0, R]× S1)|φ′(R)− 1

2R
φ(R) = 0, φ(x) = O(

√
x) as x→ 0}.

The first operator with Dirichlet boundary conditions at the cone base is
already elaborated in [S]. We adapt their approach to deal with the second
operator with generalized Neumann boundary conditions at the cone base.
The scalar analytic torsion of the bounded generalized cone is then given in
terms of both results

2 log T (M) = ζ ′42
rel

(0)− ζ ′40
rel

(0).

Note that the Laplacian (−∂2
θ ) on S1 has a discrete spectrum n2, n ∈ Z,

where the eigenvalues n2 are of multiplicity two, up to the eigenvalue n2 = 0
of multiplicity one.

Consider now a µ-eigenform φ of 42
rel. Since eigenforms of (−∂2

θ ) on S1 are
smooth, the projection of φ for any fixed x ∈ (0, R] onto some n2−eigenspace
of (−∂2

θ ) maps again toH2
loc((0, R]×S1), still satisfies the boundary conditions

for D(42
2,rel) and hence gives again an eigenform of D(42

2,rel).

Hence for the purpose of spectrum computation we can assume without loss
of generality the µ−eigenform φ to lie in a n2−eigenspace of (−∂2

θ ) for any
fixed x ∈ (0, R]. This element φ, identified with its scalar part as in Remark
3.11, is a solution to

− d2

dx2
φ(x) +

1

x2

(
ν2n2 − 1

4

)
φ(x) = µ2φ(x),

subject to the relative boundary conditions. The general solution to the
equation above is

φ(x) = c1
√
xJνn(µx) + c2

√
xYνn(µx),
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where Jνn(z) and Yνn(z) denote the Bessel functions of first and second kind.
The boundary conditions at x = 0 are given by φ(x) = O(

√
x) as x→ 0 and

consequently c2 = 0. The boundary conditions at the cone base give

φ′(R)− 1

2R
φ(R) = c1µ

√
RJ ′νn(µR) = 0.

Since we are not interested in zero-eigenvalues, the relevant eigenvalues are
by Corollary 5.9 given as follows:

λn,k =

(
j̃νn,k
R

)2

with j̃νn,k being the positive zeros of J ′νn(z). We obtain in view of the mul-
tiplicities of the n2−eigenvalues of (−∂2

θ ) on S1 for the zeta-function

ζ42
rel

(s) =
∞∑
k=1

λ−s0,k + 2
∞∑

n,k=1

λ−sn,k =

=
∞∑
k=1

(
j̃0,k
R

)−2s

+ 2R2s

∞∑
n,k=1

j̃−2s
νn,k.

The derivative at zero for the first summand follows by a direct application
of [S, Section 3]:

Lemma 5.31.

K :=
d

ds

∣∣∣∣
0

∞∑
k=1

(
j̃0,k/R

)−2s

= −1

2
log 2π − 3

2
logR + log 2.

Proof. The values j̃0,k are zeros of J ′0(z). Since J ′0(z) = −J1(z) they are also
zeros of J1(z). Using [S, Lemma 1 (b)] and its application on [S, p.361] we
obtain in the notation therein

d

ds

∣∣∣∣
0

∞∑
k=1

(
j̃0,k/R

)−2s

= −B(1) + T (0, 1)

= −1

2
log 2π − 3

2
logR + log 2.
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Now we turn to the discussion of the second summand. We put z(s) =∑∞
n,k=1 j̃

−2s
νn,k for Re(s) � 0. This series is well-defined for Re(s) sufficiently

large by the general result in Theorem 5.1. Due to uniform convergence
of integrals and series we obtain with computations similar to (5.12) the
following integral representation

z(s) =
s2

Γ(s+ 1)

∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
T (s, λ)dλdt, (5.38)

T (s, λ) =
∞∑
n=1

(νn)−2stn(λ), tn(λ) = −
∞∑
k=1

log

(
1− (νn)2λ

j̃2
νn,k

)
, (5.39)

where Λc := {λ ∈ C||arg(λ− c)| = π/4} with c > 0 being any fixed positive
number, smaller than the lowest non-zero eigenvalue of 42

rel.

We proceed with explicit calculations by presenting tn(λ) in terms of special
functions. Using the infinite product expansion (5.25) we obtain the following
result for the derivative of the modified Bessel function of first kind:

I ′νn(νnz) =
(νnz)νn−1

2νnΓ(νn)

∞∏
k=1

(
1 +

(νnz)2

j̃2
νn,k

)
,

where j̃νn,k denotes the positive zeros of J ′νn(z). Putting z =
√
−λ we get

tn(λ) = −
∞∑
k=1

log

(
1− (νn)2λ

j̃2
νn,k

)
= − log

[
∞∏
k=1

(
1 +

(νnz)2

j̃2
νn,k

)]
= − log I ′νn(νnz) + log(νnz)νn−1 − log 2νnΓ(νn). (5.40)

The associated function T (s, λ) from (5.39) is however not analytic at s = 0.
The 1/νn-dependence in tn(λ) causes non-analytic behaviour. We put

tn(λ) =: pn(λ) +
1

νn
f(λ), P (s, λ) =

∞∑
n=1

(νn)−2spn(λ). (5.41)

To get explicit expressions for P (s, λ) and f(λ) we use asymptotic expansion
of the Bessel-functions for large order from [O], in analogy to Lemma 5.14.
We obtain in the notation of (5.30) with z =

√
−λ and t = 1/

√
1− λ:

f(λ) = −M1(t, 0) =
3

8
t− 7

24
t3,
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where we inferred the explicit form of M1(t, 0) from (5.36). We obtain for
pn(λ)

pn(λ) = − log I ′νn(νnz) + log(νnz)νn−1 − log 2νnΓ(νn)−

− 1

νn

(
3

8
t− 7

24
t3
)
. (5.42)

As in Lemma 5.15 we compute the contribution coming from f(λ).

Lemma 5.32.∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
f(λ)dλdt =

1

12
√
π

Γ

(
s+

1

2

)(
1

s
− 7

)
.

Proof. Observe from [GRA, 8.353.3] by substituting the new variable x =
λ− 1

1

2πi

∫
∧c

e−λt

−λ
1

(1− λ)a
dλ =

1

2πi
e−t
∫
∧c−1

− e−xt

x+ 1

1

(−x)a
dx =

=
1

π
sin(πa)Γ(1− a)Γ(a, t).

Using now the relation between the incomplete Gamma function and the
probability integral ∫ ∞

0

ts−1Γ(a, t)dt =
Γ(s+ a)

s

we finally obtain ∫ ∞

0

ts−1 1

2πi

∫
∧c

e−λt

−λ
f(λ)dλdt

=
3

8π
sin
(π

2

)
Γ

(
1− 1

2

)
Γ (s+ 1/2)

s
−

− 7

24π
sin

(
3π

2

)
Γ

(
1− 3

2

)
Γ (s+ 3/2)

s

=
3

8
√
π

Γ (s+ 1/2)

s
− 7

12
√
π

Γ (s+ 3/2)

s
=

=
1√
π

Γ

(
s+

1

2

){
3

8s
+

7

12s

(
s+

1

2

)}
=

=
1

12
√
π

Γ

(
s+

1

2

)(
1

s
− 7

)
.
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By classical asymptotics of Bessel functions for large arguments and fixed
order

I ′νn(νnz) =
eνnz√
2πνnz

(
1 +O

(
1

z

))
,

where the region of validity is preserved (see the discussion in the higher-
dimensional case in Proposition 5.16), we obtain for pn(λ) from (5.42)

pn(λ) = −νn
√
λ+

(
1

4
+ (νn− 1)

1

2

)
log(−λ) +

1

2
log 2πνn

+(νn− 1) log νn− log(2νnΓ(νn)) +O((−λ)−1/2).

Following [S, Section 4.2] we reorder the summands in the above expression
to get

pn(λ) = −νn
√
λ+ an log(−λ) + bn +O((−λ)−1/2),

where the interesting terms are clear from above. We set

A(s) :=
∞∑
n=1

(νn)−2san =
1

2
ν−2s+1ζR(2s− 1)− 1

4
ν−2sζR(2s),

B(s) :=
∞∑
n=1

(νn)−2sbn =
1

2
ν−2s log

(
2π

ν

)
ζR(2s)+

+ν−2s+1 log
(ν

2

)
ζR(2s− 1)− ν−2s+1ζ ′R(2s− 1)+

+
1

2
ν−2sζ ′R(2s)−

∞∑
n=1

(νn)−2s log Γ(νn).

Following the approach of M. Spreafico it remains to evaluate P (s, 0) defined
in (5.41) in order to obtain a closed expression for the function z(s).

Lemma 5.33.

P (s, 0) = − 1

12
ν−2s−1ζR(2s+ 1).

Proof. Recall the asymptotic behaviour of Bessel functions of second order
for small arguments

Iνn(x) ∼
1

Γ(νn+ 1)

(x
2

)νn
⇒ I ′νn(x) ∼

νn

2Γ(νn+ 1)

(x
2

)νn−1

.

Further observe that as λ→ 0 we obtain with z =
√
−λ and t = 1/

√
1 + z2

M1(t, 0) = −3

8
t+

7

24
t3

λ→0−−→ −3

8
+

7

24
= − 1

12
.
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Using these two facts we obtain from (5.42) for pn(0)

pn(0) = − log νn+ log Γ(νn+ 1)− log Γ(νn)− 1

12νn
= − 1

12νn

⇒ P (s, 0) =
∞∑
n=1

(νn)−2spn(0) = − 1

12
ν−2s−1ζR(2s+ 1).

Now we have all the ingredients together, since by [S, p. 366] and Lemma
5.32 the function z(s) is given as follows:

z(s) =
s

Γ(s+ 1)
[γA(s)−B(s)− 1

s
A(s) + P (s, 0)] +

+
s2

Γ(s+ 1)
ν−2s−1ζR(2s+ 1)

1

12
√
π

Γ

(
s+

1

2

)(
1

s
− 7

)
+

s2

Γ(s+ 1)
h(s),

where the last term vanishes with its derivative at s = 0. We are interested
in the value of the function itself z(0) and its derivative z′(0). In order to
compute the value of z(0) recall the fact that close to 1 the Riemann zeta
function behaves as follows

ζR(2s+ 1) =
1

2s
+ γ + o(s), s→ 0.

This implies

s2

Γ(s+ 1)
ν−2s−1ζR(2s+ 1)

1

12
√
π

Γ

(
s+

1

2

)(
1

s
− 7

)
→ 1

24ν
, s→ 0.

Furthermore note that the function

η(s, ν) :=
∞∑
n=1

(νn)−2s log Γ(νn+ 1)− 1

12
ν−2s−1ζR(2s+ 1),

introduced in [S, p.366] is regular at s = 0, cf. [S, Section 4.3]. Hence
γA(s)−B(s) + P (s, 0) is regular at s = 0 and we obtain straightforwardly:

z(0) = −A(0) +
1

24ν
= −1

2
νζR(−1) +

1

4
ζR(0) +

1

24ν
.

In view of the explict values ζR(−1) = − 1
12

and ζR(0) = −1
2

we find

z(0) =
ν

24
+

1

24ν
− 1

8
. (5.43)
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Lemma 5.34.

z′(0) = η(0, ν) +
1

2
log ν − 1

4
log 2π − 1

12
ν log 2 +

1

12ν
(γ − log 2ν − 7

2
),

where η(s, ν) =
∑∞

n=1(νn)−2s log Γ(νn+ 1)− 1
12
ν−2s−1ζR(2s+ 1).

Proof. We compute z′(0) from the above expression for z(s), using

Γ′(1/2) = −
√
π(γ + 2 log 2).

Straightforward computations lead to:

z′(0) = P (0, 0)− A′(0)−B(0) +
1

12ν
(γ − log 2ν − 7

2
). (5.44)

The statement follows with η(s, ν) being defined precisely as in [S, Section
4.2].

Now we are able to provide a result for the derivative of the zeta function
ζ ′42

rel
(0). Recall

ζ42
rel

(s) =
∞∑
k=1

(
j̃0,k
R

)−2s

+ 2R2s

∞∑
νn,k=1

j̃−2s
νn,k.

With K defined in Lemma 5.31 and z(s) =
∑∞

n,k=1 j̃
−2s
νn,k we get

ζ ′42
rel

(0) = K + 4z(0) logR + 2z′(0).

It remains to compare each summand to the corresponding results for ζ ′40
rel

(0)

obtained in [S]. Using Lemma 5.31, (5.43) and (5.34) we finally arrive after
several cancellations at Theorem 5.30

2 log T (M) = ζ ′42
rel

(0)− ζ ′40
rel

(0) = − log(πR2) + log ν − 1

ν
.

5.8 Open Problems

The presented computation of analytic torsion on a bounded generalized
cone solves problem posed in [L, Problem 5.3]. We have provided the general
answer to the question in Theorems 5.26 and 5.27 and obtained as an example
explicit results in two and in three dimensions in Corollaries 5.28 and 5.29.

The question of [L, Problem 5.3] is motivated by the vision of a Cheeger-
Müller Theorem for compact manifolds with conical singularities. The idea
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is to reduce via the gluing formula of Vishik [V] the comparison of Ray-
Singer and p̄-Reidemeister torsion (intersection torsion, cf. [Dar]) on compact
manifolds with conical singularities to a comparison on a bounded generalized
cone.

After the computation of the analytic torsion of a bounded generalized cone
one faces the problem of comparing it to the intersection torsion in the ”right”
perversity p̄. However the complex form of the result for the analytic torsion
at least complicates the comparison with the topological counterpart.
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6 Refined Analytic Torsion

The refined analytic torsion, defined by M. Braverman and T. Kappeler in
[BK1] and [BK2] on closed manifolds, can be viewed as a refinement of the
Ray-Singer torsion, since it is a canonical choice of an element with Ray-
Singer norm one, in case of unitary representations.

The complex phase of the refinement is given by the rho-invariant of the
odd-signature operator. Hence one can expect the refined analytic torsion to
give more geometric information than the Ray-Singer torsion.

Indeed, let us consider the setup of lens spaces with explicit formulas for the
associated Ray-Singer torsion and eta-invariants, see [RH, Section 5] and the
references therein. Then it is easy to find explicit examples of lens spaces
which are not distinguished by the Ray-Singer torsion, however have different
rho-invariants of the associated odd-signature operators.

An important property of the Ray-Singer torsion norm is its gluing property,
as established by W. Lück in [Lü] and S. Vishik in [V]. It is natural to expect
a refinement of the Ray-Singer torsion to admit an analogous gluing prop-
erty.

Unfortunately there seems to be no canonical way to extend the construc-
tion of Braverman and Kappeler to compact manifolds with boundary. In
particular a gluing formula seems to be out of reach.

We propose a different refinement of analytic torsion, similar to Braverman
and Kappeler, which does apply to compact manifolds with and without
boundary. We establish a gluing formula for our construction, which in fact
can also be viewed as a gluing law for the original definition of refined ana-
lytic torsion by Braverman and Kappeler.

The presented construction is analogous to the definition in [BK1] and [BK2],
but applies to any smooth compact Riemannian manifold, with or without
boundary. For closed manifolds the construction differs from the original
definition in [BK2]. Nevertheless we still refer to our concept as ”refined
analytic torsion” within the present discussion.

6.1 Motivation for the generalized construction

The essential ingredient in the definition of the refined analytic torsion in
[BK2] is the twisted de Rham complex with a chirality operator and the
elliptic odd-signature operator associated to the complex, viewed as a map
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between the even forms. Hence in the case of a manifold with boundary we
are left with the task of finding elliptic boundary conditions for the odd-
signature operator which preserve the complex structure and provide a Fred-
holm complex, in the sense of [BL1].

The notions of a Hilbert and a Fredholm complex were studied systematically
in [BL1] and will be provided for convenience in the forthcoming section. The
boundary conditions, that give rise to a Hilbert complex are referred to as
”ideal boundary conditions”. It is important to note that the most common
self-adjoint extensions of the odd-signature operator between the even forms
do not come from ideal boundary conditions.

The existence and explicit determination of elliptic boundary conditions for
the odd-signature operator between the even forms, arising from ideal bound-
ary conditions, is an open question. However, it is clear that the absolute
and relative boundary conditions do not satisfy these requirements.

On the other hand the gluing formula in [V] and [Lü] for the Ray-Singer
torsion makes essential use of the relative and absolute boundary conditions.
Since the establishment of a corresponding gluing formula for the refined an-
alytic torsion is a motivation for our discussion, these boundary conditions
seem to be natural choices.

We are left with a dilemma, since neither the relative nor the absolute bound-
ary conditions are invariant under the Hodge operator. We resolve this
dilemma by combining the relative and absolute boundary conditions. This
allows us to apply the concepts of [BK2] in a new setting and to establish
the desired gluing formula.

6.2 Definition of Refined analytic torsion

Let (Mm, gM) be a smooth compact connected odd-dimensional oriented Rie-
mannian manifold with boundary ∂M , which may be empty. Let (E,∇, hE)
be a flat complex vector bundle with any fixed Hermitian metric hE, which
need not to be flat with respect to ∇.

The flat covariant derivative ∇ is a first order differential operator

∇ : Γ(E) → Γ(T ∗M ⊗ E),

satisfying the Leibniz rule

∇X(fs) = (Xf)s+ f∇Xs, s ∈ Γ(E), X ∈ Γ(TM), f ∈ C∞(M).
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The covariant derivative∇ extends by the Leibniz rule to the twisted exterior
differential ∇ : Ωk

0(M,E) → Ωk+1
0 (M,E) on E−valued differential forms

with compact support in the interior of the manifold Ωk
0(M,E). The exterior

differential satisfies the (generalized) Leibniz rule

∇X(w ∧ η) = (∇Xw) ∧ η + (−1)pw ∧∇Xη,

for any w ∈ Ωp
0(M), η ∈ Ωq

0(M,E), X ∈ Γ(TM).

Due to flatness of (E,∇) the twisted exterior differential gives rise to the
twisted de Rham complex (Ω∗

0(M,E),∇). The metrics gM , hE induce an
L2−inner product on Ω∗

0(M,E). We denote the L2−completion of Ω∗
0(M,E)

by L2
∗(M,E).

Next we introduce the notion of the dual covariant derivative∇′. It is defined
by requiring:

dhE(u, v)[X] = hE(∇Xu, v) + hE(u,∇′
Xv), (6.1)

to hold for all u, v ∈ C∞(M,E) and X ∈ Γ(TM). In the special case that the
Hermitian metric hE is flat with respect to ∇, the dual ∇′ and the original
covariant derivative ∇ coincide. More precisely the Hermitian metric hE can
be viewed as a section of E∗ ⊗ E∗. The covariant derivative ∇ on E gives
rise to a covariant derivative on the tensor bundle E∗ ⊗E∗, also denoted by
∇ by a minor abuse of notation.

For u, v,X as above one has:

∇hE(u, v)[X] = dhE(u, v)[X]− hE(∇Xu, v)− hE(u,∇Xv).

In view of (6.1) we find

∇hE = 0 ⇔ ∇ = ∇′.

As before, the dual ∇′ gives rise to a twisted de Rham complex. Consider
the differential operators ∇,∇′ and their formal adjoint differential operators
∇t,∇′t. The associated minimal closed extensions ∇min,∇′

min and ∇t
min,∇′t

min

are defined as the graph-closures in L2
∗(M,E) of the respective differential

operators. The maximal closed extensions are defined by

∇max := (∇t
min)

∗, ∇′
max := (∇′t

min)
∗.

The definition of the maximal and the minimal closed extensions of course
corresponds to the discussion in Subsection 2.1. These extensions define
Hilbert complexes in the following sense, as introduced in [BL1].
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Definition 6.1. [BL1] Let the Hilbert spaces Hi, i = 0, ..,m,Hm+1 = {0} be
mutually orthogonal. For each i = 0, ..,m let Di ∈ C(Hi, Hi+1) be a closed
operator with domain D(Di) dense in Hi and range in Hi+1. Put Di := D(Di)
and Ri := Di(Di) and assume

Ri ⊆ Di+1, Di+1 ◦Di = 0.

This defines a complex (D, D)

0 → D0
D0−→ D1

D1−→ · · · Dm−1−−−→ Dm → 0.

Such a complex is called a Hilbert complex. If the homology of the complex
is finite, i.e. if Ri is closed and kerDi/imDi−1 is finite-dimensional for all
i = 0, ...,m, the complex is referred to as a Fredholm complex.

Indeed, by [BL1, Lemma 3.1] the extensions define Hilbert complexes as
follows

(Dmin,∇min), where Dmin := D(∇min),

(Dmax,∇max), where Dmax := D(∇max)

(D′
min,∇′

min), where D′
min := D(∇′

min),

(D′
max,∇′

max), where D′
max := D(∇′

max).

Note the following well-known central result on these complexes.

Theorem 6.2. The Hilbert complexes (Dmin,∇min) and (Dmax,∇max) are
Fredholm with the associated Laplacians 4rel and 4abs being strongly elliptic
in the sense of [Gi]. The de Rham isomorphism identifies the homology of
the complexes with the relative and absolute cohomology with coefficients:

H∗(Dmin,∇min) ∼= H∗(M,∂M,E),

H∗(Dmax,∇max) ∼= H∗(M,E).

Furthermore the cohomology of the Fredholm complexes (Dmin,∇min) and
(Dmax,∇max) can be computed from the following smooth subcomplexes,

(Ω∗
min(M,E),∇), Ω∗

min(M,E) := {ω ∈ Ω∗(M,E)|ι∗(ω) = 0},
(Ω∗

max(M,E),∇), Ω∗
max(M,E) := Ω∗(M,E),

respectively, where we denote by ι : ∂M ↪→ M the natural inclusion of the
boundary.
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In the untwisted setup this theorem is essentially the statement of [BL1,
Theorem 4.1]. The theorem remains true in the general setup. An analogue
of the trace theorem [P, Theorem 1.9], in case of flat vector bundles, allows
an explicit computation of the boundary conditions for 4rel and 4abs. Then
[Gi, Lemma 1.11.1] implies strong ellipticity of the Laplacians. Note that this
result in the reference [Gi] is proved explicitly, even though other aspects of
[Gi, Section 1.11] are rather expository.

By strong ellipticity the Laplacians 4rel and 4abs are Fredholm and by [BL1,
Theorem 2.4] the complexes (Dmin,∇min) and (Dmax,∇max) are Fredholm as
well. By [BL1, Theorem 3.5] their cohomology indeed can be computed
from the smooth subcomplexes (Ω∗

min(M,E),∇) and (Ω∗
max(M,E),∇), re-

spectively.

Finally, the relation to the relative and absolute cohomolgy (the twisted de
Rham theorem) is proved in [RS, Section 4] for flat Hermitian metrics, but
an analogous proof works in the general case. Corresponding results hold
also for the complexes associated to the dual connection ∇′.

Furthermore, the Riemannian metric gM and the fixed orientation on M give
rise to the Hodge-star operator for any k = 0, ..,m = dimM :

∗ : Ωk(M,E) → Ωm−k(M,E).

Define

Γ := ir(−1)
k(k+1)

2 ∗ : Ωk(M,E) → Ωm−k(M,E), r := (dimM + 1)/2.

This operator extends to a well-defined self-adjoint involution on L2
∗(M,E),

which we also denote by Γ. The following properties of Γ are essential for
the later construction.

Lemma 6.3. The self-adjoint involution Γ relates the minimal and maximal
closed extensions of ∇ and ∇′ as follows

Γ∇minΓ = (∇′
max)

∗, Γ∇maxΓ = (∇′
min)

∗.

Proof. One first checks explicitly, cf. [BGV, Proposition 3.58]

Γ∇Γ = (∇′)t, Γ∇′Γ = ∇t.

Recall that the maximal domain of ∇,∇′ can also be characterized as a
subspace of L2

∗(M,E) with its image under ∇,∇′ being again in L2
∗(M,E).

Since Γ gives an involution on L2
∗(M,E), we obtain:

Γ∇maxΓ = (∇′)tmax, Γ∇′
maxΓ = ∇t

max,

i.e. Γ∇maxΓ = (∇′
min)

∗, Γ∇′
maxΓ = ∇∗

min.
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Taking adjoints on both sides of the last relation, we obtain the full statement
of the lemma, since Γ is self-adjoint.

Now we can introduce the following central concepts.

Definition 6.4. (D̃, ∇̃) := (Dmin,∇min)⊕ (Dmax,∇max). The chirality oper-

ator Γ̃ on (D̃, ∇̃) by definition acts anti-diagonally with respect to the direct
sum of the components

Γ̃ :=

(
0 Γ
Γ 0

)
. (6.2)

The Fredholm complex (D̃, ∇̃) with the chirality operator Γ̃ is in case of a
flat Hermitian metric a complex with Poincare duality, in the sense of [BL1,
Lemma 2.16], i.e.

∇hE = 0 ⇒ Γ̃∇̃ = ∇̃∗Γ̃,

which follows directly from Lemma 6.3. We now apply the concepts of Braver-
man and Kappeler to our new setup.

Definition 6.5. The odd-signature operator of the Hilbert complex (D̃, ∇̃) is
defined as follows

B := Γ̃∇̃+ ∇̃Γ̃.

Before we can state some basic properties of the odd signature operator,
let us recall the notions of the Gauss-Bonnet operator and its relative and
absolute self-adjoint extensions. The Gauss-Bonnet operator

DGB := ∇+∇t,

admits two natural self-adjoint extensions

DGB
rel = ∇min +∇∗

min, D
GB
abs = ∇max +∇∗

max, (6.3)

respectively called the relative and the absolute self-adjoint extensions. Their
squares are correspondingly the relative and the absolute Laplace operators:

4rel = (DGB
rel )∗DGB

rel , 4abs = (DGB
abs )

∗DGB
abs .

Similar definitions, of course, hold for the Gauss-Bonnet Operator associated
to the dual covariant derivative ∇′. Now we can state the following basic
result.
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Lemma 6.6. The leading symbols of B and Γ̃
(
DGB

rel ⊕D′GB
abs

)
coincide and

moreover
D(B) = D

(
DGB

rel ⊕D′GB
abs

)
.

Proof. First recall the relations

Γ∇Γ = (∇′)t, Γ∇tΓ = ∇′.

All connections differ by an endomorphism-valued differential form of degree
one, which can be viewed as a differential operator of order zero. This implies
the statement on the leading symbol of B and Γ̃

(
DGB

rel ⊕D′GB
abs

)
A differential operator of zero order naturally extends to a bounded operator
on the L2-Hilbert space, and hence does not pose additional restrictions on
the domain, in particular we obtain (compare Lemma 6.3)

D(∇∗
min) = D(Γ∇maxΓ), D(∇∗

max) = D(Γ∇minΓ).

Using these domain relations we find:

D(B) = D
(
Γ̃(DGB

rel ⊕D′GB
abs )

)
= D

(
DGB

rel ⊕D′GB
abs

)
.

Note by the arguments of the lemma above that B is a bounded perturbation
of a closed operator Γ̃

(
DGB

rel ⊕D′GB
abs

)
and hence is closed, as well. Before we

continue analyzing the spectral properties of the odd-signature operator B,
let us introduce some concepts and notation.

Definition 6.7. Let D be a closed operator in a separable Hilbert space. An
angle θ ∈ [0, 2π) is called an ”Agmon angle” for D, if for Rθ ⊂ C being the
cut in C corresponding to θ

Rθ := {z ∈ C|z = |z| · eiθ}

we have the following spectral relation

Rθ ∩ Spec(D)\{0} = ∅.

Theorem 6.8. [S. Agmon, R. Seeley] Let (K, gK) be a smooth compact ori-
ented Riemannian manifold with boundary ∂K. Let (F, hF ) be a Hermitian
vector bundle over K. The metric structures (gK , hF ) define an L2-inner
product. Let

D : C∞(K,F ) → C∞(K,F )

be a differential operator of order ω such that ω · rankF is even. Consider a
boundary value problem (D,B) strongly elliptic with respect to C\R∗ in the
sense of [Gi]. Then
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(i) DB is a Fredholm operator with compact resolvent and discrete spectrum
of eigenvalues of finite (algebraic) multiplicity, accumulating only at
infinity.

(ii) The operator DB admits an Agmon angle θ ∈ (−π, 0) and the associated
zeta-function

ζ(s,DB) :=
∑

λ∈Spec(DB)\{0}

m(λ) · λ−sθ , Re(s) >
dimK

ω
,

where λ−sθ := exp(−s · logθ λ) and m(λ) denotes the multiplicity of
the eigenvalue λ, is holomorphic for Re(s) > dimK/ω and admits a
meromorphic extension to the whole complex plane C with s = 0 being
a regular point.

For the proof of the theorem note that the notion of strong ellipticity in the
sense of [Gi] in fact combines ellipticity with Agmon’s conditions, as in the
treatment of elliptic boundary conditions by R.T. Seeley in [Se1, Se2]. The
statement of the theorem above follows then from [Ag] and [Se1, Se2].

Remark 6.9. The definition of a zeta-function, as in Theorem 6.8 (ii), also
applies to any operator D with finite spectrum {λ1, .., λn} and finite respective
multiplicities {m1, ..,mn}. For a given Agmon angle θ ∈ [0, 2π) the associated
zeta-function

ζθ(s,D) :=
n∑

i=1,λi 6=0

mi · (λi)−sθ

is holomorphic for all s ∈ C, since the sum is finite and the eigenvalue zero
is excluded.

Now we return to our specific setup. The following result is important in
view of the relation between B and the Gauss-Bonnet operators with relative
and absolute boundary conditions, as established in Lemma 6.6.

Proposition 6.10. The operators

D = Γ̃(DGB
rel ⊕D′GB

abs ), D2 = 4rel ⊕4′
abs

are strongly elliptic with respect to C\R∗ and C\R+, respectively, in the sense
of P. Gilkey [Gi].
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The fact that D2 = 4rel ⊕4′
rel is strongly elliptic with respect to C\R+ is

already encountered in Theorem 6.2. The strong ellipticity of D now follows
from [Gi, Lemma 1.11.2]. Note that this result in the reference [Gi] is proved
explicitly, even though other aspects of [Gi, Section 1.11] are rather exposi-
tory.

Since Lemma 6.6 asserts the equality between the leading symbols of the dif-
ferential operators B, D and moreover the equality of the associated bound-
ary conditions, the odd signature operator B and its square B2 are strongly
elliptic as well. This proves together with Theorem 6.8 the next proposition.

Proposition 6.11. The operators B and B2 are strongly elliptic with respect
to C\R∗ and C\R+, respectively, in the sense of P. Gilkey [Gi]. The operators
B,B2 are discrete with their spectrum accumulating only at infinity.

Let now λ ≥ 0 be any non-negative real number. Denote by ΠB2,[0,λ] the
spectral projection of B2 onto eigenspaces with eigenvalues of absolute value
in the interval [0, λ]:

ΠB2,[0,λ] :=
i

2π

∫
C(λ)

(B2 − x)−1dx,

with C(λ) being any closed counterclockwise circle surrounding eigenvalues
of absolute value in [0, λ] with no other eigenvalue inside. One finds using
the analytic Fredholm theorem that the range of the projection lies in the
domain of B2 and that the projection commutes with B2.

Since B2 is discrete, the spectral projection ΠB2,[0,λ] is of finite rank, i.e. with
a finite-dimensional image. In particular ΠB2,[0,λ] is a bounded operator in
L2
∗(M,E ⊕ E). Hence with [K, Section 4, p.155] the decomposition

L2
∗(M,E ⊕ E) = ImageΠB2,[0,λ] ⊕ Image(1− ΠB2,[0,λ]), (6.4)

is a direct sum decomposition into closed subspaces of the Hilbert space
L2
∗(M,E ⊕ E).

Note that if B2 is self-adjoint, the decomposition is orthogonal with respect to
the fixed L2−Hilbert structure, i.e. the projection ΠB2,[0,λ] is an orthogonal
projection, which is the case only if the Hermitian metric hE is flat with
respect to ∇.

The decomposition induces by restriction a decomposition of D̃, which was
introduced in Definition 6.4:

D̃ = D̃[0,λ] ⊕ D̃(λ,∞).
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Since ∇̃ commutes with B,B2 and hence also with ΠB2,[0,λ], we find that the
decomposition above is in fact a decomposition into subcomplexes:

(D̃, ∇̃) = (D̃[0,λ], ∇̃[0,λ])⊕ (D̃(λ,∞), ∇̃(λ,∞))

where ∇̃I := ∇̃| eDI for I = [0, λ] or (λ,∞). (6.5)

Further Γ̃ also commutes with B,B2 and hence also with ΠB2,[0,λ]. Thus as
above we obtain

Γ̃ = Γ̃[0,λ] ⊕ Γ̃(λ,∞).

Consequently the odd-signature operator of the complex (D̃, ∇̃) decomposes
correspondingly

B = B[0,λ] ⊕ B(λ,∞)

where BI := Γ̃I∇̃I + ∇̃IΓ̃I for I = [0, λ] or (λ,∞). (6.6)

The closedness of the subspace Image(1− ΠB2,[0,λ]) implies that the domain
of B(λ,∞)

D(B(λ,∞)) := D(B) ∩ Image(1− ΠB2,[0,λ])

is closed under the graph-norm, hence the operator B(λ,∞) is a closed operator
in the Hilbert space Image(1− ΠB2,[0,λ]).

We need to analyze the direct sum component B(λ,∞). For this we proceed
with the following general functional analytic observations.

Proposition 6.12. Let D be a closed operator in a separable Hilbert space
(H, 〈·, ·〉). The domain D(D) is a Hilbert space with the graph-norm

〈x, y〉D = 〈x, y〉+ 〈Dx,Dy〉

for any x, y ∈ D(D). Let ResD 6= ∅. Then the following statements are
equivalent
1) The inclusion ι : D(D) ↪→ H is a compact operator
2) D has a compact resolvent, i.e. for some (and thus for all) z ∈ Res(D)
the resolvent operator (D − z)−1 is a compact operator on H.

Proof. Assume first that the inclusion ι : D(D) ↪→ H is a compact operator.
Since SpecD 6= C the resolvent set Res(D) is not empty. For any z ∈ Res(D)
the resolvent operator

(D − z)−1 : H → D(D)

exists and is bounded, by definition of the resolvent set. With the inclusion
ι being a compact operator we find directly that (D− z)−1 is compact as an



126 Analytic Torsion

operator from H to H. Finally, if (D−z)−1 is compact for some z ∈ Res(D),
then by the second resolvent identity it is compact for all z ∈ Res(D), see
also [K, p.187].

Conversely assume that for some (and therefore for all) z ∈ Res(D) the
resolvent operator (D − z)−1 is compact as an operator from H into H.
Observe

ι = (D − z)−1 ◦ (D − z) : D(D) ↪→ H.

By compactness of the resolvent operator, ι is compact as an operator be-
tween the Hilbert spaces D(D) and H.

Proposition 6.13. Let D be a closed operator in a separable Hilbert space
H with Res(D) 6= ∅ and compact resolvent. Then D is a Fredholm operator
with

indexD = 0.

Proof. By closedness of D the domain D(D) turns into a Hilbert space
equipped with the graph norm. By Proposition 6.12 the natural inclusion

ι : D(D) ↪→ H

is a compact operator. Therefore, viewing D(D) as a subspace of H, i.e.
endowed with the inner-product of H, the inclusion

ι : D(D) ⊂ H ↪→ H

is relatively D-compact in the sense of [K, Section 4.3, p.194]. More precisely
this means, that if for a sequence {un} ⊂ D(D) both {un} and {Dun} are
bounded sequences in H, then {ι(un)} ⊂ H has a convergent subsequence.

Now for any λ ∈ C\Spec(D) the operator

(D − λι) : D(D) ⊂ H → H

is invertible and hence trivially a Fredholm operator with trivial kernel and
closed range H. In particular

index(D − λι) = 0.

Now, from stability of the Fredholm index under relatively compact pertur-
bations (see [K, Theorem 5.26] and the references therein) we infer with the
inclusion ι being relatively compact, that D is a Fredholm operator of zero
index:

indexD = index(D − λι) = 0.



Analytic Torsion 127

Corollary 6.14. The operator B(λ,∞) : D(B(λ,∞)) → Image(1 − ΠB2,[0,λ]) of

the complex (D̃(λ,∞), ∇̃(λ,∞)) with λ ≥ 0 is bijective.

Proof. Consider any λ ∈ C\SpecB. By the strong ellipticity of B, the oper-
ator

(B − λ) : D(B) → L2
∗(M,E ⊕ E)

is bijective with compact inverse. Hence we immediately find that the re-
striction

(B(λ,∞) − λ) ≡ (B − λ) � Im(1− ΠB2,[0,λ]) : D(B(λ,∞)) → Im(1− ΠB2,[0,λ])

is bijective with compact inverse, as well. Now we deduce from Proposition
6.13 that B(λ,∞) is Fredholm with

indexB(λ,∞) = 0.

The operator B(λ,∞) is injective, by definition. Combining injectivity with
the vanishing of the index, we derive surjectivity of B(λ,∞). This proves the
statement.

Note, that in case of a flat Hermitian metric the assertion of the previous
corollary is simply the general fact that a self-adjoint Fredholm operator is
invertible if and only if its kernel is trivial.

Corollary 6.15. The subcomplex (D̃(λ,∞), ∇̃(λ,∞)) is acyclic and

H∗((D̃[0,λ], ∇̃[0,λ])) ∼= H∗(D̃, ∇̃).

Proof. Corollary 6.14 allows us to apply the purely algebraic result [BK2,

Lemma 5.8]. Consequently (D̃(λ,∞), ∇̃(λ,∞)) is an acyclic complex. Together
with the decomposition (6.5) this proves the assertion.

Observe that since the spectrum of B2 is discrete accumulating only at in-
finity, (D̃[0,λ], ∇̃[0,λ]) is a complex of finite-dimensional complex vector spaces

with Γ̃[0,λ] : D̃k
[0,λ] → D̃m−k

[0,λ] being the chirality operator on the complex in

the sense of [BK2, Section 1.1].

We also use the notion of determinant lines of finite dimensional complexes
in [BK2, Section 1.1], which are given for any finite complex of finite-
dimensional vector spaces (C∗, ∂∗) as follows:

DetH∗(C∗, ∂∗) =
⊗
k

detHk(C∗, ∂∗)
(−1)k

,
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where detHk(C∗, ∂∗) is the top exterior power of Hk(C∗, ∂∗) and
detHk(C∗, ∂∗)

−1 ≡ detHk(C∗, ∂∗)
∗. We follow [BK2, Section 1.1] and

form the ”refined torsion” (note the difference to ”refined analytic torsion”)

of the complex (D̃[0,λ], ∇̃[0,λ])

ρ[0,λ] := c0 ⊗ (c1)
−1 ⊗ · · · ⊗ (cr)

(−1)r ⊗ (Γ̃[0,λ]cr)
(−1)r+1 ⊗ · · · (6.7)

· · · ⊗ (Γ̃[0,λ]c1)⊗ (Γ̃[0,λ]c0)
(−1) ∈ Det(H∗(D̃[0,λ], ∇̃[0,λ])),

where ck ∈ detHk(D̃[0,λ], ∇̃[0,λ]) are arbitrary elements of the determi-

nant lines, Γ̃[0,λ] denotes the chirality operator Γ̃[0,λ] : D̃•
[0,λ] → D̃m−•

[0,λ] ex-

tended to determinant lines and for any v ∈ detHk(D̃[0,λ], ∇̃[0,λ]) the dual

v−1 ∈ detHk(D̃[0,λ], ∇̃[0,λ])
−1 ≡ detHk(D̃[0,λ], ∇̃[0,λ])

∗ is the unique element
such that v−1(v) = 1.

By Corollary 6.15 we can view ρ[0,λ] canonically as an element of

Det(H∗(D̃, ∇̃)), which we do henceforth.

The second part of the construction is the graded determinant. The opera-
tor B(λ,∞), λ ≥ 0 is bijective by Corollary 6.14 and hence by injectivity (put
I = (λ,∞) to simplify the notation)

ker(∇̃IΓ̃I) ∩ ker(Γ̃I∇̃I) = {0}. (6.8)

Further the complex (D̃I , ∇̃I) is acyclic by Corollary 6.15 and due to Γ̃I
being an involution on Im(1− ΠB2,[0,λ]) we have

ker(∇̃IΓ̃I) = Γ̃Iker(∇̃I) = Γ̃IIm(∇̃I) = Im(Γ̃I∇̃I), (6.9)

ker(Γ̃I∇̃I) = ker(∇̃I) = Im(∇̃I) = Im(∇̃IΓ̃I). (6.10)

We have Im(Γ̃I∇̃I)+Im(∇̃IΓ̃I) = Im(BI) and by surjectivity of BI we obtain
from the last three relations above

Im(1− ΠB2,[0,λ]) = ker(∇̃IΓ̃I)⊕ ker(Γ̃I∇̃I). (6.11)

Note that B leaves ker(∇̃Γ̃) and ker(Γ̃∇̃) invariant. Put

B+,(λ,∞)
even := B(λ,∞) � D̃even ∩ ker(∇̃Γ̃),

B−,(λ,∞)
even := B(λ,∞) � D̃even ∩ ker(Γ̃∇̃).

We obtain a direct sum decomposition

B(λ,∞)
even = B+,(λ,∞)

even ⊕ B−,(λ,∞)
even .
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As a consequence of Theorem 6.8 (ii) and Proposition 6.11 there exists an
Agmon angle θ ∈ (−π, 0) for B, which is clearly an Agmon angle for the
restrictions above, as well.

By Theorem 6.8 and Proposition 6.11 the zeta function ζθ(s,B) is holomor-

phic for Re(s) sufficiently large. The zeta-functions ζθ(s,B±,(λ,∞)
even ) of B±,(λ,∞)

even ,
defined with respect to the given Agmon angle θ, are holomorphic for Re(s)
large as well, since the restricted operators have the same spectrum as B but
in general with lower or at most the same multiplicities.

We define the graded zeta-function

ζgr,θ(s,B(λ,∞)
even ) := ζθ(s,B+,(λ,∞)

even )− ζθ(s,−B−,(λ,∞)
even ), Re(s) � 0.

In the next subsection we prove in Theorem 6.21 that the graded zeta-
function extends meromorphically to C and is regular at s = 0. For the
time being we shall assume regularity at zero and define the graded determi-
nant.

Definition 6.16. [Graded determinant] Let θ ∈ (−π, 0) be an Agmon an-
gle for B(λ,∞). Then the ”graded determinant” associated to B(λ,∞) and its
Agmon angle θ is defined as follows:

detgr,θ(B(λ,∞)
even ) := exp(− d

ds

∣∣∣∣
s=0

ζgr,θ(s,B(λ,∞)
even )).

Proposition 6.17. The element

ρ(∇, gM , hE) := detgr,θ(B(λ,∞)
even ) · ρ[0,λ] ∈ Det(H∗(D̃, ∇̃))

is independent of the choice of λ ≥ 0 and choice of Agmon angle θ ∈ (−π, 0)
for the odd-signature operator B(λ,∞).

Proof. Let 0 ≤ λ < µ < ∞. We obtain D̃[0,µ] = D̃[0,λ] ⊕ D̃(λ,µ] and also

D̃(λ,∞) = D̃(λ,µ] ⊕ D̃(µ,∞). Since the odd-signature operator respects this
spectral direct sum decomposition (see (6.6)), we obtain

detgr(B(λ,∞)
even ) = detgr(B(µ,∞)

even ) · detgr(B(λ,µ]
even ).

Further the purely algebraic discussion behind [BK2, Proposition 5.10] im-
plies

ρ[0,µ] = detgr(B(λ,µ]
even ) · ρ[0,λ].
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This proves the following equality

detgr(B(λ,∞)
even ) · ρ[0,λ] = detgr(B(µ,∞)

even ) · ρ[0,µ].

To see independence of θ ∈ (−π, 0) note that the strongly elliptic operator
(cf. Lemma 6.6)

D := Γ̃(DGB
rel ⊕D′GB

abs )

is self-adjoint and B differs from D by a bounded perturbation. By a
Neumann-series argument and the asymptotics of the resolvent for D (see
[Se1, Lemma 15]) we get:

∀θ ∈ (−π, 0) : Spec(B) ∩Rθ is finite. (6.12)

By discreteness of B we deduce that if θ, θ′ ∈ (−π, 0) are both Agmon angles
for B(λ,∞), there are only finitely many eigenvalues of B(λ,∞) in the solid angle
between θ and θ′. Hence

d

ds

∣∣∣∣
s=0

ζgr,θ(s,B(λ,∞)
even )) ≡ d

ds

∣∣∣∣
s=0

ζgr,θ′(s,B(λ,∞)
even )) mod 2πi,

and therefore detgr,θ(B(λ,∞)
even ) = detgr,θ′(B(λ,∞)

even ).

This proves independence of the choice of θ ∈ (−π, 0) and completes the
proof.

The element ρ(∇, gM , hE) is well-defined but a priori not independent of the
choice of metrics gM , hE and so does not provide a differential invariant.
In the next subsection we determine the metric anomaly of ρ(∇, gM , hE) in
order to construct a differential invariant, which will be called the refined
analytic torsion.

6.3 Metric Anomaly and Refined Analytic Torsion

We introduce the notion of the eta-function leading to the notion of the
eta-invariant of an elliptic operator. The eta-invariant was first introduced
by Atiyah-Patodi-Singer in [APS] as the boundary correction term in their
index formula.

Theorem 6.18. [P.B. Gilkey, L. Smith] Let (K, gK) be a smooth compact
oriented Riemannian manifold with boundary ∂K. Let (F, hF ) be a Hermi-
tian vector bundle and let the metric structures (gK , hF ) define an L2−scalar
product. Let

D : C∞(K,F ) → C∞(K,F )
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be a differential operator of order ω such that ω · rankF is even. Let a
boundary value problem (D,B) be strongly elliptic with respect to C\R∗ and
an Agmon angle θ ∈ (−π, 0). Then we have

(i) DB is a discrete Fredholm operator in the Hilbert space L2(K,F ) and
its eta-function

ηθ(s,DB) :=
∑

Re(λ)>0

m(λ) · λ−sθ −
∑

Re(λ)<0

m(λ) · (−λ)−sθ ,

where m(λ) denotes the finite (algebraic) multiplicity of the eigenvalue
λ , is holomorphic for Re(s) large and extends meromorphically to C
with at most simple poles.

(ii) If D is of order one with the leading symbol σD(x, ξ), x ∈ K, ξ ∈ T ∗xK
satisfying

σD(x, ξ)2 = |ξ|2 · I,

where I is rankF × rankF identity matrix, and the boundary condition
B is of order zero, then the meromorphic extension of ηθ(s,DB) is
regular at s = 0.

The proof of the theorem follows from the results in [GS1] and [GS2] on
the eta-function of strongly elliptic boundary value problems. The fact
that ηθ(s,DB) is holomorphic for Re(s) sufficiently large is asserted in [GS1,
Lemma 2.3 (c)]. The meromorphic continuation with at most isolated simple
poles is asserted in [GS1, Theorem 2.7].

The fact that s = 0 is a regular point of the eta-function is highly non-trivial
and cannot be proved by local arguments. Using homotopy invariance of the
residue at zero for the eta-function, P. Gilkey and L. Smith [GS2] reduced
the discussion to a certain class of operators with constant coefficients in the
collar neighborhood of the boundary and applied the closed double manifold
argument. The reduction works for differential operators of order one with
0-th order boundary conditions under the assumption on the leading symbol
of the operator as in the second statement of the theorem. The regularity
statement of Theorem 6.18 follows directly from [GS2, Theorem 2.3.5] and
[GS2, Lemma 2.3.4].

Remark 6.19. The definition of an eta-function, as in Theorem 6.18 (i),
also applies to any operator D with finite spectrum {λ1, .., λn} and finite
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respective multiplicities {m1, ..,mn}. For a given Agmon angle θ ∈ [0, 2π)
the associated eta-function

ηθ(s,D) :=
∑

Re(λ)>0

m(λ) · λ−sθ −
∑

Re(λ)<0

m(λ) · (−λ)−sθ ,

is holomorphic for all s ∈ C, since the sum is finite and the zero-eigenvalue
is excluded.

Proposition 6.20. The eta-function ηθ(s,Beven) associated to the even part
Beven of the odd-signature operator and its Agmon angle θ ∈ (−π, 0), is holo-
morphic for Re(s) large and extends meromorphically to C with s = 0 being
a regular point.

The statement of the proposition on the meromorphic extension of the eta-
function is a direct consequence of Theorem 6.18 (i) and Proposition 6.11.
The regularity statement follows from Theorem 6.18 (ii) and an explicit com-
putation of the leading symbol of the odd-signature operator, compare also
[GS2, Example 2.2.4].

Using Proposition 6.20 we can define the eta-invariant in the manner of [BK2]
for Beven:

η(Beven) :=
1

2
(ηθ(s = 0,Beven) +m+ −m− +m0) , (6.13)

wherem± is the number of Beven−eigenvalues on the positive, respectively the
negative part of the imaginary axis andm0 is the dimension of the generalized
zero-eigenspace of Beven.

Implicit in the notation is also the fact, that η(Beven) does not depend on
the Agmon angle θ ∈ (−π, 0). This is due to the fact that, given a different
Agmon angle θ′ ∈ (−π, 0), there are by (6.12) and discreteness of B only
finitely many eigenvalues of Beven in the acute angle between θ and θ′.

Similarly we define the eta-invariants of B(λ,∞)
even and B[0,λ]

even and in particular
we get

η(Beven) = η(B(λ,∞)
even ) + η(B[0,λ]

even).

Before we prove the next central result, let us make the following observation.

Consider the imaginary axis iR ⊂ C. By (6.12) there are only finitely many
eigenvalues of B on iR. Further by the discreteness of B small rotation of the
imaginary axis does not hit any further eigenvalue of B and in particular of
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B(λ,∞)
even , λ ≥ 0. More precisely this means that there exists an ε > 0 sufficiently

small such that the angle

θ := −π
2

+ ε

is an Agmon angle for B(λ,∞)
even and the solid angles

L(−π/2,θ] := {z ∈ C|z = |z| · eiφ, φ ∈ (−π/2, θ]},
L(π/2,θ+π] := {z ∈ C|z = |z| · eiφ, φ ∈ (π/2, θ + π]}

do not contain eigenvalues of B(λ,∞)
even . With this observation we can state the

following central result:

Theorem 6.21. Let θ ∈ (−π/2, 0) be an Agmon angle for B(λ,∞)
even such that

there are no eigenvalues of B(λ,∞)
even in the solid angles L(−π/2,θ] and L(−π/2,θ+π].

Then 2θ is an Agmon angle for (B(λ,∞)
even )2. Then the graded zeta-function

ζgr,θ(s,B(λ,∞)
even ), Re(s) � 0 extends meromorphically to C and is regular at

s = 0 with the following derivative at zero:

d

ds

∣∣∣∣
s=0

ζgr,θ(s,B(λ,∞)
even )) =

1

2

m∑
k=0

(−1)k+1 · k · d
ds

∣∣∣∣
s=0

ζ2θ(s,B2 � D̃k
(λ,∞))+

+
iπ

2

m∑
k=0

(−1)k · k · ζ2θ(0,B2 � D̃k
(λ,∞)) + iπη(B(λ,∞)

even ).

Proof. For Re(s) � 0 the general identities [BK1 (4.10), (4.11)] imply the
following relation between holomorphic functions:

ζgr,θ(s,B(λ,∞)
even )) =

1 + e−iπs

2

[
ζ2θ

(s
2
,
(
B+,(λ,∞)

even

)2)− ζ2θ

(s
2
,
(
B−,(λ,∞)

even

)2)]
+

+
1

2
(1− e−iπs)

[
η(s,B(λ,∞)

even ) + f(s)
]
,

where f(s) is a holomorphic function (combination of zeta-functions associ-
ated to finite-dimensional operators) with

f(0) = m+(B(λ,∞)
even )−m−(B(λ,∞)

even ),

where m±(·) denotes the number of eigenvalues of the operator in brackets,
lying on the positive, respectively the negative part of the imaginary axis.

Put I = (λ,∞) to simplify notation. Recall (6.10) and show that

∇̃I : ker(∇̃IΓ̃I) → ker(Γ̃I∇̃I) = Im(∇̃IΓ̃I) (6.14)
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is bijective. Indeed, injectivity is clear by (6.8). For surjectivity let x =

∇̃IΓ̃Iv ∈ Im(∇̃IΓ̃I) with (recall (6.11))

v = v′ ⊕ v′′ ∈ Im(∇̃IΓ̃I)⊕ Im(Γ̃I∇̃I) = Im(1− ΠB2,[0,λ]).

In particular v′′ ∈ Im(Γ̃I∇̃I) = ker ∇̃IΓ̃I and v′ = ∇̃IΓ̃Iω for some ω. Hence
we obtain

x = ∇̃IΓ̃Iv = ∇̃IΓ̃Iv
′ = ∇̃IΓ̃I∇̃IΓ̃Iω,

and Γ̃I∇̃IΓ̃Iω ∈ ker ∇̃IΓ̃I .

In other words we have found a preimage of any x ∈ Im(∇̃IΓ̃I) under ∇̃I .

This proves bijectivity of the map in (6.14) and consequently, since ∇̃I com-
mutes with BI and (BI)2, we obtain in any degree k = 0, ..,m

ζ2θ(s, (B+,I)2 � D̃k) = ζ2θ(s, (B−,I)2 � D̃k+1). (6.15)

Using this relation we compute straightforwardly for Re(s) sufficiently large:

ζ2θ(s, (B+,I
even)

2)− ζ2θ(s, (B−,Ieven)
2) =

m∑
k=0

(−1)k+1 · k · ζ2θ(s, (BI)2 � D̃k).

(6.16)

We arive at the following preliminary result for Re(s) � 0

ζgr,θ(s,BIeven)) =
1

2
(1 + e−iπs)

m∑
k=0

(−1)k+1 · k · ζ2θ(s, (BI)2 � D̃k)+ (6.17)

+
1

2
(1− e−iπs)

[
η(s,BIeven) + f(s)

]
.

We find with Theorem 6.8 and Proposition 6.20 that the right hand side of
the equality above is a meromorphic function on the entire complex plane
and is regular at s = 0. Hence the left hand side of the equality, the graded
zeta-function, is meromorphic on C and regular at s = 0, as claimed and as
anticipated in Definition 6.16. Computing the derivative at zero, we obtain
the statement of the theorem.
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As a consequence of the theorem above, we obtain for the element
ρ(∇, gM , hE) defined in Proposition 6.17 the following relation

ρ(∇, gM , hE) = eξλ(∇,gM )e−iπξ
′
λ(∇,gM )e−iπη(B

(λ,∞)
even (gM )) · ρ[0,λ], (6.18)

ξλ(∇, gM) =
1

2

m∑
k=0

(−1)k · k · d
ds

∣∣∣∣
s=0

ζ2θ(s, (B2 � D̃k
(λ,∞))) (6.19)

ξ′λ(∇, gM) =
1

2

m∑
k=0

(−1)k · k · ζ2θ(s = 0, (B2 � D̃k
(λ,∞))). (6.20)

Now we can identify explicitly the metric dependence of ρ(∇, gM , hE) using
the formula (6.18).

First note that the construction is in fact independent of the choice of a
Hermitian metric hE. Indeed, a variation of hE does not change the odd-
signature operator B as a differential operator. However it enters a priori the
definition of D(B), since hE defines the L2−Hilbert space.

Recall that different Hermitian metrics give rise to equivalent L2−norms over
compact manifolds. Hence a posteriori the domain D(B) is indeed indepen-
dent of the particular choice of hE.

Independence of the choice of a Hermitian metric hE is essential, since for
non-unitary flat vector bundles there is no canonical choice of hE and Her-
mitian metric is fixed arbitrarily.

Consider a smooth family gM(t), t ∈ R of Riemannian metrics on M . De-

note by Γ̃t the corresponding chirality operator in the sence of Definition
6.2 and denote the associated refined torsion (recall (6.7)) of the complex

(D̃t,[0,λ], ∇̃t,[0,λ]) by ρt,[0,λ].

Let B(t) = B(∇, gM(t)) be the odd-signature operator corresponding to the
Riemannian metric gM(t). Fix t0 ∈ R and choose λ ≥ 0 such that there are
no eigenvalues of B(t0)

2 of absolute value λ. Then there exists δ > 0 small
enough such that the same holds for the spectrum of B(t)2 for |t − t0| < δ.
Under this setup we obtain:

Proposition 6.22. Let the family gM(t) vary only in a compact subset of
the interior of M . Then exp(ξλ(∇, gM(t))) · ρt,[0,λ] is independent of t ∈
(t0 − δ, t0 + δ).

Proof. The arguments of [BK2, Lemma 9.2] are of local nature and transfer
ad verbatim to the present situation for metric variations in the interior of
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the manifold. Hence the assertion follows for Riemannian metric remaining
fixed in an open neighborhood of the boundary.

Proposition 6.23. Denote the trivial connection on the trivial line bundle
M × C by ∇trivial. Consider the even part of the associated odd-signature
operator (recall Definition 6.5)

Btrivial = Beven(∇trivial).

Indicate the metric dependence by Btrivial(t) := Btrivial(g
M). Then

η(B(λ,∞)
even (t))− rank(E)η(Btrivial(t)) mod Z

is independent of t ∈ (t0 − δ, t0 + δ).

Proof. Indicate the dependence of D̃∗
[0,λ] on gM(t) by

D̃k
[0,λ](t) := Image ΠB(t)2,[0,λ] ∩ D̃k.

Note first the by the choice of δ > 0

dim D̃k
[0,λ](t) = const, t ∈ (t0 − δ, t0 + δ).

Since B[0,λ]
even(t) is finite-dimensional, we infer from the definition of the eta-

invariant (cf. [BK2, (9.11)])

η(B[0,λ]
even(t)) ≡

1

2
dim D̃k

[0,λ](t) ≡ const mod Z, t ∈ (t0 − δ, t0 + δ). (6.21)

By construction

η(Beven(t)) = η(B(λ,∞)
even (t)) + η(B[0,λ]

even(t)).

Hence, in view of (6.21), it suffices (modulo Z) to study the metric depen-
dence of the eta-invariant of η(Beven(t)).

View Beven(t) as a pair of a differential operator PE(t) with its bound-
ary conditions QE(t). Similarly view Btrivial(t) as a pair (PC(t), QC(t)).
Note that by construction the pair (PE(t), QE(t)) is locally isomorphic to
(PC(t), QC(t))× 1k, since the flat connection ∇ is locally trivial in appropri-
ate local trivializations.

Since the variation of the eta-invariants is computed from the local informa-
tion of the symbols (cf. [GS1, Theorem 2.8, Lemma 2.9]), we find that the
difference

η(Beven(t))− rank(E)η(Btrivial(t)) =

= η(PE(t), QE(t))− rank(E)η(PC(t), QC(t))
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is independent of t ∈ R modulo Z. The modulo Z reduction is needed to an-
nihilate discontinuity jumps arising from eigenvalues crossing the imaginary
axis. This proves the statement of the proposition.

Proposition 6.24. Let B(∇trivial) denote the odd-signature operator (Defini-
tion 6.5) associated to the trivial line bundle M×C with the trivial connection
∇trivial. Consider in correspondence to (6.20) the expression

ξ′(∇trivial, g
M(t)) =

1

2

m∑
k=0

(−1)k · k · ζ2θ(s = 0, (B(∇trivial, g
M(t))2 � D̃k).

Then
ξ′λ(∇, gM(t))− rank(E) · ξ′(∇trivial, g

M(t)) mod Z

is independent of t ∈ R.

Proof. We show first that modulo Z it suffices to study the metric dependence
of

ξ′(∇, gM(t)) :=
1

2

m∑
k=0

(−1)k · k · ζ2θ(s = 0, (B(∇, gM(t))2 � D̃k).

Indeed, by construction we have

ξ′(∇, gM(t)) = ξ′λ(∇, gM(t)) +
1

2

m∑
k=0

(−1)k · k · dim D̃k
(0,λ](t).

Anticipating the auxiliary result of Lemma 6.25 (iii) below, we obtain

ξ′(∇, gM(t)) ≡ ξ′λ(∇, gM(t)) mod Z.

Recall that B(∇trivial, g
M) × 1rkE and B(∇, gM) are locally isomorphic, as

already encountered in the proof of Proposition 6.23. Now the statement of
the proposition follows from the fact that the value of a zeta function at zero
is given, modulo Z in order to avoid dim kerB(t) ∈ Z, by integrands of local
invariants of the operator and its boundary conditions.

Lemma 6.25. Let I ⊂ R denote any bounded intervall. Then

(i) 1
2

∑m
k=0(−1)k+1 · k · dim D̃k

I ≡ dimM
2

dim D̃even
I mod 2Z.

(ii) If 0 /∈ I, then dim D̃even
I ≡ 0 mod 2Z,

(iii) If 0 /∈ I, then 1
2

∑m
k=0(−1)k+1 · k · dim D̃k

I ≡ 0 mod Z.
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Proof. Note first the following relation

B2
k = Γ̃ ◦ B2

m−k ◦ Γ̃.

Hence with r = (m+ 1)/2 we obtain:

1

2

m∑
k=0

(−1)k+1 · k · dim D̃k
I =

1

2

r−1∑
k=0

(m− 4k) · dim D̃2k
I = (6.22)

=
m

2
dim D̃even

I − 2
r−1∑
k=0

k · dim D̃2k
I . (6.23)

This proves the first statement. For the second statement assume 0 /∈ I till
the end of the proof. Consider the operators

B+,I
k = Γ̃I∇̃I : D̃k

I ∩ ker(∇̃IΓ̃I) → D̃m−k−1
I ∩ ker(∇̃IΓ̃I), (6.24)

B−,Ik = ∇̃IΓ̃I : D̃k
I ∩ ker(Γ̃I∇̃I) → D̃m−k+1

I ∩ ker(Γ̃I∇̃I). (6.25)

Since 0 /∈ I, the maps B±,Ik are isomorphisms by bijectivity of the map in
(6.14). Furthermore they commute with (B±,I)2 in the following way

B±,Ik ◦ [(B±,I)2 � D̃k] = [(B±,I)2 � D̃m−k∓1] ◦ B±,Ik . (6.26)

Hence we obtain with D̃±,k
I denoting the span of generalized eigenforms of

(B±,I)2 � D̃k the following relations

dim D̃+,k
I = dim D̃+,m−k−1

I ,

dim D̃−,k
I = dim D̃−,m−k+1

I .

Due to dim D̃even
I = dim D̃+,even

I + dim D̃−,even
I this implies (recall M is odd-

dimensional)

dim D̃even
I ≡ dim D̃+,2p

I mod 2Z, if dimM = 4p+ 1, (6.27)

dim D̃even
I ≡ dim D̃−,2p

I mod 2Z, if dimM = 4p− 1. (6.28)

Finally recall the explicit form of (B±)2:

(B+)2 =

(
Γ∇maxΓ∇min 0

0 Γ∇minΓ∇max

)
=:

(
D+

1 0
0 D+

2

)
,

(B−)2 =

(
∇minΓ∇maxΓ 0

0 ∇maxΓ∇minΓ

)
=:

(
D−

1 0
0 D−

2

)
.
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Moreover we put
(B±,I)2 � D̃k = D±,I

1,k ⊕D±,I
2,k .

Note the following relations

(Γ∇min) ◦D+
1 = D+

2 ◦ (Γ∇min),

D+
1 ◦ (Γ∇max) = (Γ∇max) ◦D+

2 ;

(∇maxΓ) ◦D−
1 = D−

2 ◦ (∇maxΓ),

D−
1 ◦ (∇minΓ) = (∇minΓ) ◦D−

2 .

Due to 0 /∈ I these relations imply, similarly to (6.26), spectral equivalence of
D±,I

1,k and D±,I
2,k in the middle degree k = 2p for dimM = 4p±1, respectively.

This finally yields the desired relations

dim D̃even
I ≡ dim D̃+,2p

I ≡ 0 mod 2Z, if dimM = 4p+ 1,

dim D̃even
I ≡ dim D̃−,2p

I ≡ 0 mod 2Z, if dimM = 4p− 1.

Propositions 6.22, 6.23 and 6.24 determine together the metric anomaly of
ρ(∇, gM , hE) up to a sign and we deduce the following central corollary.

Corollary 6.26. Let M be an odd-dimensional oriented compact Rieman-
nian manifold. Let (E,∇, hE) be a flat complex vector bundle over M . De-
note by ∇trivial the trivial connection on M×C and let Btrivial denote the even
part of the associated odd-signature operator. Then

ρan(∇) := ρ(∇, gM , hE) · exp
[
iπ rk(E)(η(Btrivial(g

M)) + ξ′(∇trivial, g
M))
]

is modulo sign independent of the choice of gM in the interior of M .

In view of the corollary above we can now define the ”refined analytic tor-
sion”. It will be a differential invariant in the sense, that even though defined
by geometric data in form of the metric structures, it is shown to be inde-
pendent of their form in the interior of the manifold.

Definition 6.27. Let M be an odd-dimensional oriented Riemannian man-
ifold. Let (E,∇) be a flat complex vector bundle over M . Then the refined
analytic torsion is defined as the equivalence class of ρan(∇) modulo multi-
plication by exp[iπ]:

ρan(M,E) := ρan(∇)/eiπ .

Note that the sign indeterminacy is also present in the original construction
by Braverman and Kappeler, see [BK2, Remark 9.9 and Remark 9.10]. In
the presentation below, we refer to the representative ρan(∇) of the class
ρan(M,E) as refined analytic torsion, as well.
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6.4 Ray-Singer norm of Refined analytic torsion

Recall first the construction of the Ray-Singer torsion as a norm on the
determinant line bundle for compact oriented Riemannian manifolds. Let
(M, gM) and (E,∇, hE) be as in Subsection 6.2.

Let 4rel be the Laplacian associated to the Fredholm complex (Dmin,∇min)
defined at the beginning of Section 6.2. As in (6.5) in case of the squared
odd-signature operator B2, it induces a spectral decomposition into a direct
sum of subcomplexes for any λ ≥ 0.

(Dmin,∇min) = (D[0,λ]
min ,∇

[0,λ]
min )⊕ (D(λ,∞)

min ,∇(λ,∞)
min ).

The scalar product on D[0,λ]
min induced by gM and hE, induces a norm on the

determinant line Det(D[0,λ]
min ,∇

[0,λ]
min ) (we use the notation of determinant lines

of finite dimensional complexes in [BK2, Section 1.1]). There is a canonical
isomorphism

φλ : Det(D[0,λ]
min ,∇

[0,λ]
min ) → DetH∗(Dmin,∇min),

induced by the Hodge-decomposition in finite-dimensional complexes.
Choose on DetH∗(Dmin,∇min) the norm ‖ · ‖rel

λ such that φλ becomes
an isometry. Further denote by TRS(λ,∞)(∇min) the scalar analytic torsion

associated to the complex (D(λ,∞)
min ,∇(λ,∞)

min ):

TRS(λ,∞)(∇min) := exp

(
1

2

m∑
k=1

(−1)k+1 · k · ζ ′(s = 0,4(λ,∞)
k,rel )

)
,

where 4(λ,∞)
rel is the Laplacian associated to the complex (D(λ,∞)

min ,∇(λ,∞)
min ).

Note the difference to the sign convention of [RS]. However we are consistent
with [BK2].

The Ray-Singer norm on DetH∗(Dmin,∇min) is then defined by

‖ · ‖RSDetH∗(Dmin,∇min) := ‖ · ‖rel
λ · TRS(λ,∞)(∇min). (6.29)

With a completely analogous construction we obtain the Ray-Singer norm
on the determinant line DetH∗(Dmax,∇max)

‖ · ‖RSDetH∗(Dmax,∇max) := ‖ · ‖abs
λ · TRS(λ,∞)(∇max). (6.30)

Both constructions turn out to be independent of the choice of λ ≥ 0, which
follows from arguments analogous to those in the proof of Proposition 6.17.
In fact we get for 0 ≤ λ < µ:

‖ · ‖rel/abs
µ = ‖ · ‖rel/abs

λ · TRS(λ,µ](∇min/max),
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which implies that the Ray-Singer norms are well-defined. Furthermore by
the arguments in [Mu, Theorem 2.6] the norms do not depend on the metric
structures in the interior of the manifold.

Remark 6.28. Note that the Ray-Singer analytic torsion considered in [V]
and [Lü] differs from our setup in the sign convention and by the absence of
factor 1/2.

We can apply the same construction to the Laplacian of the complex (D̃, ∇̃)
introduced in Definition 6.4

(D̃, ∇̃) = (Dmin,∇min)⊕ (Dmax,∇max).

Similarly we obtain

‖ · ‖RS
DetH∗( eD,e∇)

:= ‖ · ‖λ · TRS(λ,∞)(∇̃). (6.31)

This ”doubled” Ray-Singer norm is naturally related to the previous two
norms in (6.29) and (6.30). There is a canonical ”fusion isomorphism”, cf.
[BK2, (2.18)] for general complexes of finite dimensional vector spaces

µ : DetH∗(Dmin,∇min)⊕DetH∗(Dmax,∇max) → DetH∗(D̃, ∇̃),

such that ‖µ(h1 ⊗ h2)‖λ = ‖h1‖rel
λ · ‖h2‖abs

λ , (6.32)

where we recall (D̃, ∇̃) = (Dmin,∇min)⊕ (Dmax,∇max) by definition. Further

we have by the definition of (D̃, ∇̃) following relation between the scalar
analytic torsions:

TRS(λ,∞)(∇̃) = TRS(λ,∞)(∇min) · TRS(λ,∞)(∇max). (6.33)

Combining (6.32) and (6.33) we end up with a relation between norms

‖µ(h1 ⊗ h2)‖RSDetH∗( eD,e∇)
= ‖h1‖RSDetH∗(Dmin,∇min) · ‖h2‖RSDetH∗(Dmax,∇max). (6.34)

The next theorem provides a motivation for viewing ρan(∇) as a refinement
of the Ray-Singer torsion.

Theorem 6.29. Let M be a smooth compact odd-dimensional oriented Rie-
mannian manifold. Let (E,∇, hE) be a flat complex vector bundle over M
with a flat Hermitian metric hE. Then

‖ρan(∇)‖RS
DetH∗( eD,e∇)

= 1.
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Proof. Recall from the assertion of Theorem 6.21

detgr(B(λ,∞)
even ) = eξλ(∇,gM ) · e−iπξ′λ(∇,gM ) · e−iπη(Beven),

Flatness of hE implies by construction that B2 = 4rel ⊕4abs and hence

ξλ(∇, gM) = − log TRS(λ,∞)(∇̃).

Further Beven is self-adjoint and thus has a real spectrum. Hence η(Beven)
and ξ′λ(∇, gM) are real-valued, as well. Thus we derive∣∣detgr(B(λ,∞)

even )
∣∣ =

1

TRS(λ,∞)(∇̃)
. (6.35)

Furthermore we know from [BK2, Lemma 4.5], which is a general result for
complexes of finite-dimensional vector spaces,

‖ρ[0,λ]‖λ = 1. (6.36)

Now the assertion follows by combining the definition of the refined analytic
torsion with (6.35), (6.36) and the fact that the additional terms annihilating
the metric anomaly are all of norm one. In fact we have:

‖ρan(∇)‖RS
DetH∗( eD,e∇)

=
∣∣detgr(B(λ,∞)

even )
∣∣ · TRS(λ,∞)(∇̃) · ‖ρ[0,λ]‖λ = 1.

If the Hermitian metric is not flat, the situation becomes harder. In the setup
of closed manifolds M. Braverman and T. Kappeler performed a deformation
procedure in [BK2, Section 11] and proved in this way the relation between
the Ray-Singer norm and the refined analytic torsion in [BK2, Theorem 11.3].

Unfortunately the deformation argument is not local and the arguments in
[BK2] do not apply in the setup of manifolds with boundary. Nevertheless we
can derive appropriate result by relating our discussion to the closed double
manifold.

Assume the metric structures (gM , hE) to be product near the boundary
∂M . The issues related to the product structures are discussed in detail in
[BLZ, Section 2]. More precisely, we identify using the inward geodesic flow
a collar neighborhood U ⊂ M of the boundary ∂M diffeomorphically with
[0, ε)× ∂M, ε > 0. Explicitly we have the diffeomorphism

φ−1 : [0, ε)× ∂M → U,

(t, p) 7→ γp(t),
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where γp is the geodesic flow starting at p ∈ ∂M and γp(t) is the geodesics
from p of length t ∈ [0, ε). The metric gM is product near the boundary, if
over U it is given under the diffeomorphism φ : U → [0, ε)× ∂M by

φ∗g
M |U = dx2 ⊕ gM |∂M . (6.37)

The diffeomorphism U ∼= [0, ε) × ∂M shall be covered by a bundle isomor-

phism φ̃ : E|U → [0, ε) × E|∂M . The fiber metric hE is product near the
boundary, if it is preserved by the bundle isomorphism, i.e.

φ̃∗h
E|{x}×∂M = hE|∂M . (6.38)

The assumption of product structures guarantees that the closed double man-
ifold

M = M ∪∂M M

is a smooth closed Riemannian manifold and the Hermitian vector bundle
(E, hE) extends to a smooth Hermitian vector bundle (E, hE) over the man-
ifold M.

Moreover we assume the flat connection ∇ on E to be in temporal gauge.
The precise definition of a connection in temporal gauge and the proof of
the fact that each flat connection is gauge-equivalent to a flat connection in
temporal gauge, are provided in Subsection 7.2.

The assumption on ∇ to be a flat connection in temporal gauge is required in
the present context to guarantee that ∇ extends to a smooth flat connection
D on E, with

D|M = ∇.

Theorem 6.30. Let (Mm, gM) be an odd-dimensional oriented and compact
smooth Riemannian manifold with boundary ∂M . Let (E,∇, hE) be a flat
Hermitian vector bundle with the Hermitian metric hE, not necessarily flat.

Assume the metric structures (gM , hE) to be product and the flat connection
∇ to be in temporal gauge near the boundary ∂M . Then

‖ρan(∇)‖RS
detH∗( eD,e∇)

= exp[πIm η(Beven(g
M))].

Proof. By assumption we obtain a closed Riemannian double manifold
(M, gM) and a flat Hermitian vector bundle (E,D, hE) over M with a flat
Hermitian metric hE. Denote by (D,D) the unique boundary conditions (see
[BL1]) of the twisted de Rham complex (Ω∗(M,E),D). Denote the closure
of Ω∗(M,E) with respect to the L2−scalar product defined by gM and hE, by
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L2
∗(M,E).

The Riemannian metric gM gives rise to the Hodge star operator ∗ and we
set

G := ir(−1)
k(k+1)

2 ∗ : Ωk(M,E) → Ωk−1(M,E), r := (dimM + 1)/2

which extends to a self-adjoint involution on L2
∗(M,E). We define the odd

signature operator B of the Hilbert complex (D,D):

B := GD + DG.

This is precisely the odd-signature operator associated to the closed manifold
M, as used in the construction of [BK1, BK2].

Note that we now have two triples: the triple (D,G,B) associated to the

closed manifold M and the triple (∇̃, Γ̃,B) associated to (M,∂M), as defined
in Subsection 6.2.

Consider now the diffeomorphic involution on the closed double

α : M → M,

interchanging the two copies of M . It gives rise to an isomorphism of Hilbert
complexes

α∗ : (D,D) → (D,D),

which is an involution as well. We get a decomposition of (D,D) into the
(±1)-eigenspaces of α∗, which form subcomplexes of the total complex:

(D,D) = (D+,D+)⊕ (D−,D−), (6.39)

where the upper-indices ± refer to the (±1)-eigenspaces of α∗, respectively.

The central property of the decomposition, by similar arguments as in [BL1,
Theorem 4.1], lies in the following observation

D+|M = Dmax, D−|M = Dmin. (6.40)

By the symmetry of the elements in D± we obtain the following natural
isomorphism of complexes:

Φ : (D,D) = (D+,D+)⊕ (D−,D−) → (Dmax,∇max)⊕ (Dmin,∇min),

ω = ω+ ⊕ ω− 7→ 2ω+|M ⊕ 2ω−|M ,
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which extends to an isometry with respect to the natural L2−structures.
Using the relations

Φ ◦ D ◦ Φ−1 = ∇̃, Φ ◦G ◦ Φ−1 = Γ̃, (6.41)

we obtain with ∆ and 4̃, denoting respectively the Laplacians of the com-
plexes (D,D) and (D̃, ∇̃) ≡ (Dmin,∇min)⊕ (Dmax,∇max):

ΦD(B) = D(B), Φ ◦ B ◦ Φ−1 = B,
ΦD(∆) = D(4̃), Φ ◦∆ ◦ Φ−1 = 4̃.

Hence the odd-signature operators B,B as well as the Laplacians ∆, 4̃
are spectrally equivalent. Consider the spectral projections ΠB2,[0,λ] and
ΠB2,[0,λ], λ ≥ 0 of B and B respectively, associated to eigenvalues of abso-
lute value in [0, λ]. By the spectral equivalence B and B we find

Φ ◦ ΠB2,[0,λ] = ΠB2,[0,λ] ◦ Φ.

Hence the isomorphism Φ reduces to an isomorphism of finite-dimensional
complexes:

Φλ : (D[0,λ],D[0,λ])
∼−→ (D̃[0,λ], ∇̃[0,λ]),

where D[0,λ] := D ∩ ImageΠB2,[0,λ],

D̃[0,λ] := D̃ ∩ ImageΠB2,[0,λ].

Moreover Φλ induces an isometric identification of the corresponding deter-
minant lines, which we denote again by Φλ, by a minor abuse of notation

Φλ : det(D[0,λ],D[0,λ])
∼−→ det(D̃[0,λ], ∇̃[0,λ]),

where we use the notation for determinant lines of finite-dimensional com-
plexes in [BK2, Section 1.1]. By Corollary 6.15 we have the canonical iden-
tifications of determinant lines

det(D[0,λ],D[0,λ]) ∼= detH∗(D,D), (6.42)

det(D̃[0,λ], ∇̃[0,λ]) ∼= detH∗(D̃, ∇̃), (6.43)

The determinant lines on the left hand side of both identifications carry
the natural L2−Hilbert structure. Denote the norms on detH∗(D,D) and

detH∗(D̃, ∇̃) which turn both identifications into isometries, by ‖ · ‖λ and
‖ · ‖∼λ , respectively. Then we can view Φλ as

Φλ : detH∗(D,D)
∼−→ detH∗(D̃, ∇̃),
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isometric with respect to the Hilbert structures induced by ‖ · ‖λ and ‖ · ‖∼λ .

Finally, consider the refined torsion elements (not the refined analytic tor-
sion) of the determinant lines, as defined in [BK2, Section 1.1], see also (6.7)

ρG
[0,λ] ∈ det(D[0,λ],D[0,λ]) ∼= detH∗(D,D),

ρ
eΓ
[0,λ] ∈ det(D̃[0,λ], ∇̃[0,λ]) ∼= detH∗(D̃, ∇̃).

We infer from (6.41) the following relation:

Φλ

(
ρG

[0,λ]

)
= ρ

eΓ
[0,λ], hence: ‖ρG

[0,λ]‖λ = ‖ρeΓ
[0,λ]‖∼λ .

Together with spectral equivalence of ∆ and 4̃, as well as of B and B, with
similar statements for constructions on trivial line bundles M×C and M×C,
we finally obtain

‖ρan(D)‖RSdetH∗(D,D) = ‖ρan(∇)‖RS
detH∗( eD,e∇)

, (6.44)

where ρan(D) denotes the refined analytic torsion as defined by M. Braverman
and T. Kappeler in [BK2] and ρan(∇) denotes the refined analytic torsion in
the sense of the present discussion.

The statement now follows from [BK2, Theorem 11.3].

In the setup of the previous theorem we can improve the sign indeterminacy
of ρan(∇) as follows:

Proposition 6.31. Let M be an odd-dimensional oriented compact Rieman-
nian manifold. Let (E,∇, hE) be a flat complex vector bundle over M . De-
note by ∇trivial the trivial connection on M×C and let Btrivial denote the even
part of the associated odd-signature operator.

Assume the metric structures (gM , hE) to be product and the flat connection
∇ to be in temporal gauge near the boundary ∂M . Then

ρan(∇) = ρ(∇, gM , hE) · exp
[
iπ rk(E)(η(Btrivial(g

M)) + ξ′(∇trivial, g
M))
]

is independent of the choice of gM in the interior of M , up to multiplication
by

exp[iπrank(E)].

In particular it is independent of gM in the interior of M for E being a
complex vector bundle of even rank.
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Proof. Consider a smooth family gM(t), t ∈ R of Riemannian metrics, variing
only in the interior of M and being of fixed product structure near ∂M .
By arguments in Theorem 6.30 we can relate B(gM(t)) to operators on the
closed double M and deduce from [BK1, Theorem 5.7] that ρ(∇, gM(t), hE)
is continuous in t. However

exp
[
iπ rk(E)η(Btrivial(g

M(t)))
]

is continuous in t ∈ R only up to multiplication by eiπrkE. Hence the element
ρan(∇), where we denote the a priori metric dependence by ρan(∇, gM(t)),
is continuous in t only modulo multiplication by eiπrk(E). For gM(t) varying
only in the interior of M and any t0, t1 ∈ R we infer from the mod Z metric
anomaly considerations in Propositions 6.23 and 6.24:

ρan(∇, gM(t0)) = ±ρan(∇, gM(t1)).

For rk(E) odd this is already the desired statement, since exp(iπrk(E)) = −1.
For rk(E) even, ρan(∇, gM(t)) is continuous in t and nowhere vanishing, so
the sign in the last relation must be positive. This proves the statement.

In view of the corollary above we can re-define the refined analytic torsion in
the setup of product metric structures and flat connection in temporal gauge
as follows:

ρan(M,E) := ρan(∇)/eiπrank(E) . (6.45)

Remark 6.32. The interdeterminacy of ρan(∇) modulo multiplication by
the factor eiπrkE in fact corresponds and is even finer than the general inde-
terminacy in the construction of M. Braverman and T. Kappeler on closed
manifolds, see [BK2, Remark 9.9 and Remark 9.10].

6.5 Open Problems

Ideal Boundary Conditions

As explained in the introduction, the approach of Braverman and Kappeler
in [BK1, BK2] requires ideal boundary conditions for the twisted de Rham
complex, which turn it into a Fredholm complex with Poincare duality and
further provide elliptic boundary conditions for the associated odd-signature
operator, viewed as a map between the even forms. In our construction we
pursued a different strategy, however the question about existence of such
boundary conditions remains.
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This question was partly discussed in [BL1]. In view of [BL1, Lemma 4.3] it
is not even clear whether ideal boundary conditions exist, satisfying Poincare
duality and providing a Fredholm complex. For the approach of Braverman
and Kappeler we need even more: the ideal boundary conditions need to pro-
vide elliptic boundary conditions for the odd-signature operator. We arrive
at the natural open question, whether such boundary conditions exist.

Conical Singularities

Another possible direction for the discussion of refined analytic torsion is the
setup of compact manifolds with conical singularities. At the conical singu-
larity the question of appropriate boundary conditions is discussed in [Ch2],
as well as in [BL2].

It turns out that on odd-dimensional manifolds with conical singularities the
topological obstruction is given by Hν(N), where N is the base of the cone
and ν = dimN/2. If

Hν(N) = 0

then all ideal boundary conditions coincide and the construction of Braver-
man and Kappeler [BK1, BK2] goes through. Otherwise, see [Ch2, p.580]
for the choice of ideal boundary conditions satisfying Poincare duality.

Combinatorial Counterpart

Let us recall that the definition of the refined analytic torsion in [BK1, BK2]
was partly motivated by providing analytic counterpart of the refined com-
binatorial torsion, introduced by V. Turaev in [Tu1].

In his work V. Turaev introduced the notion of Euler structures and showed
how it is applied to refine the concept of Reidemeister torsion by removing
the ambiguities in choosing bases needed for construction. Moreover, Turaev
observed in [Tu2] that on three-manifolds a choice of an Euler structure is
equivalent to a choice of a Spinc-structure.

Both, the Turaev-torsion and the Braverman-Kappeler refined torsion are
holomorphic functions on the space of representations of the fundamental
group on GL(n,C), which is a finite-dimensional algebraic variety. Using
methods of complex analysis, Braverman and Kappeler computed the quo-
tient between their and Turaev’s construction.

A natural question is whether this procedure has an appropriate equivalent
for our proposed refined analytic torsion on manifolds with boundary. In our
view this question can be answered affirmatively.
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Indeed, by similar arguments as in [BK1, BK2] the proposed refined analytic
torsion on manifolds with boundary can also be viewed as an analytic func-
tion on the finite-dimensional variety of representations of the fundamental
group.

For the combinatorial counterpart note that M. Farber introduced in [Fa]
the concept of Poincare-Reidemeister metric, where using Poincare-duality
in the similar spirit as in our construction, he constructed an invariantly de-
fined Reidemeister torsion norm for non-unimodular representations. Further
M. Farber and V. Turaev elaborated jointly in [FaTu] the relation between
their concepts and introduced the refinement of the Poincare-Reidemeister
scalar product.

The construction in [Fa] extends naturally to manifolds with boundary by
similar means as in our definition of refined analytic torsion. This provides a
combinatorial torsion norm on compact manifolds, well-defined without uni-
modularity assumption. It can then be refined in the spirit of [FaTu]. This
would naturally provide the combinatorial counterpart for the presented re-
fined analytic torsion.
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7 Gluing Formula for Refined Analytic Tor-

sion

In this section we turn to the main motivation for the proposed construction
of refined analytic torsion − a gluing formula. A gluing formula allows to
compute the torsion invariant by cutting the manifold into elementary pieces
and performing computations on each component. Certainly, the general fact
of existence of such gluing formulas is remarkable from the analytic point of
view, since the secondary spectral invariants are uppermost non-local.

We establish a gluing formula for the refined analytic torsion in three steps.
First we establish a splitting formula for the eta-invariant of the even part of
the odd-signature operator. This is essentially an application of the results
in [KL].

Secondly we establish a splitting formula for the refined torsion ρ[0,λ] in the
special case λ = 0. This is the most intricate part and is done by a careful
analysis of long exact sequences in cohomology und the Poincare duality on
manifolds with boundary. The discussion is subdivided into several subsec-
tions.

Finally we are in the position to establish the desired gluing formula for the
refined analytic torsion, as a consequence of the Cheeger-Müller Theorem
and a gluing formula for the combinatorial torsion by M. Lesch [L2]. As a
byproduct we also obtain a splitting formula for the scalar analytic torsion
in terms of combinatorial torsion of a long exact sequence on cohomology.

In our discussion we do not rely on the gluing formula of S. Vishik in [V],
where only the case of trivial representations is treated. In particular we
use a different isomorphism between the determinant lines, which is more
convenient in the present setup.

We perform the proof under the assumption of a flat Hermitian metric, in
other words in case of unitary representations. This is done partly because
the Cheeger-Müller Theorem for manifolds with boundary and unimodular
representations is not explicitly established for the time being. It seems,
however, that the appropriate result can be established by an adaptation of
arguments in [Lü] and [Mu].

Finally it should be emphasized that the result of this section can also be
viewed as a gluing formula for the refined analytic torsion in the sense of
Braverman and Kappeler.
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7.1 Setup for the Gluing Formula

Let M = M1 ∪N M2 be an odd-dimensional oriented closed Riemannian
manifold where N is an embedded closed hypersurface of codimension one
which separates M into two pieces M1 and M2 such that Mj, j = 1, 2 are
compact bounded Riemannian manifolds with ∂Mj = N and orientations
induced from M . The setup is visualized in the Figure 5 below:

Figure 5: A compact closed split-manifold M = M1 ∪N M2.

Let ρ : π1(M) → U(n,C) be a unitary representation of the fundamental

group of M . Denote by M̃ the universal cover of M . It is a principal
bundle over M with the structure group π1(M), cf. [KN, Proposition 5.9 (2)].

Consider the complex vector bundle E associated to the principal bundle M̃
via the representation ρ.

E = M̃ ×ρ Cn.

The vector bundle is naturally endowed with a canonical flat connection ∇,
induced by the exterior derivative on M̃ . The holonomy representation of ∇
is given by the representation ρ.

Note that all flat vector bundles arise this way. In fact flatness of a given
connection on a vector bundle implies that the associated holonomy map
gives rise to a well-defined representation of the fundamental group of the
base manifold, and the representation is related to the vector bundle as above.

By unitariness of the representation ρ the standard Hermitian inner product
on Cn gives rise to a smooth Hermitian metric hE on E, compatible with the
flat connection ∇. In other words the canonically induced Hermitian metric
hE is flat.

Assume the metric structures (gM , hE) to be product near the hypersurface
N . The issues related to the product structures are discussed in detail in
[BLZ, Section 2]. More precisely, we identify using the inward geodesic flow
an open collar neighborhood U ⊂M of the hypersurface N diffeomorphically
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with (−ε, ε)×N, ε > 0, where the hypersurface N is identified with {0}×N .
The metric gM is product over the collar neighborhood of N , if over U it is
given under the diffeomorphism φ : U → (−ε, ε)× ∂M by

φ∗g
M |U = dx2 ⊕ gM |N . (7.1)

The diffeomorphism U ∼= (−ε, ε) × N shall be covered by a bundle iso-

morphism φ̃ : E|U → (−ε, ε) × E|N . The fiber metric hE is product near
the boundary, if it is preserved by the bundle isomorphism, i.e. if for all
x ∈ (−ε, ε)

φ̃∗h
E|{x}×N = hE|N . (7.2)

The restrictive assumption of product metric structures is necessary to apply
the splitting formula of [KL] to our setup, which works only on Dirac type
operators in product form over the collar with constant tangential part.

Furthermore we use the product metric structures in order to apply the
Cheeger-Müller Theorem for manifolds with boundary, ( cf. [Lü], [V]). How-
ever with the anomaly formulas in [BZ1] and [DF] the product structures are
not essential here.

By Leibniz rule the connection ∇ gives rise to flat twisted exterior differ-
ential on smooth E-valued differential forms. The restrictions of (E,∇) to
Mj, j = 1, 2 give rise to twisted de Rham complexes (Ω∗

0(Mj, E),∇j). Ac-
cording to notation of Subsection 6.2 we denote their minimal and maximal
extensions by

(Dj,min /max,∇j,min /max),

respectively. By Theorem 6.2 these complexes are Fredholm and their coho-
mologies can be computed from smooth subcomplexes as follows. Consider
for j = 1, 2 the natural inclusions ιj : N ↪→Mj and put

Ω∗
min(Mj, E) := {ω ∈ Ω∗(M,E)|ι∗jω = 0},

Ω∗
max(Mj, E) := Ω∗(M,E).

The operators ∇j yield exterior derivatives on Ω∗
min(Mj, E) and Ω∗

max(Mj, E).
The complexes (Ω∗

min / max(Mj, E),∇j) are by Theorem 6.2 smooth subcom-

plexes of the Fredholm complexes (Dj,min /max,∇j,min /max) with

H∗
rel / abs(Mj, E) := H∗(Ω∗

min /max(Mj, E),∇j)

∼= H∗(Dj,min /max,∇j,min /max), j = 1, 2.
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Finally corresponding to Definition 6.5 we define for j = 1, 2

(D̃j, ∇̃j) := (Dj,min,∇j,min)⊕ (Dj,max,∇j,max),

(D̃, ∇̃) := (D,∇)⊕ (D,∇),

where (D,∇) denotes the unique ideal boundary conditions of (Ω∗(M,E),∇).
We denote the associated odd-signature operators of the complexes by Bj, j =
1, 2 and B respectively. The upper index j will not pose any confusion with
the square of the odd signature operator, since the squared odd-signature
operator does not appear in the arguments below.

The presented notation remains fixed throughout the discussion below, unless
stated otherwise. However for convenience, some setup and notation will be
repeated for clarification.

7.2 Temporal Gauge Transformation

Consider the closed oriented Riemannian split-manifold (M, gM) and the flat
Hermitian vector bundle (E,∇, hE) with the structure group G := U(n,C)
as introduced in Subsection 7.1. Denote the principal G-bundle associated
to E by P . G acts on P from the right.

Consider U ∼= (−ε, ε)×N the collar neighborhood of the splitting hypersur-
face N . We view the restrictions P |U , P |N as G-bundles, where the structure
group can possibly be reduced to a subgroup of G.

By the setup of Subsection 7.1 the bundle structures are product over U .
More precisely let π : (−ε, ε)× ∂X → ∂X be the natural projection onto the
second component. We have a bundle isomorphisms E|U ∼= π∗E|N and for
the associated principal bundles

P |U ∼= π∗P |N
f−→ P |N ,

where f is the principal bundle homomorphism, covering π, with the asso-
ciated homomorphism of the structure groups G → G being the identity
automorphism.

Now let ωN denote a flat connection one-form on P |N . Then

ωU := f ∗ωN

gives a connection one-form on P |U which is flat again.

In order to understand the structure of ωU = f ∗ωN , let {Ũα, Φ̃α} be a set of
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local trivializations for P |N . Then P |U ∼= π∗P |N is equipped with a set of

naturally induced local trivializations {Uα := (−ε, ε) × Ũα,Φα}. The local

trivializations define local sections s̃α and sα as follows. For any p ∈ Ũα,
normal variable x ∈ (−ε, ε) and for e ∈ G being the identity matrix we put

s̃α(p) := Φ̃−1
α (p, e),

sα(x, p) := Φ−1
α ((x, p), e).

We use the local sections to obtain local representations for the connection
one-forms ωU and ωN :

ω̃α := s̃∗αωN ∈ Ω1(Ũα,G),

ωα := s∗αωU ∈ Ω1(Uα,G),

where G denotes the Lie Algebra of G. By construction both local repre-
sentations are related as follows. Let (x, y) = (x, y1, .., yn) denote the local

coordinates on Uα = (−ε, ε)× Ũα with x ∈ (−ε, ε) being the normal coordi-

nate and y denoting the local coordinates on Ũα. Then

ω̃α =
n∑
i=1

ωαi (y)dyi,

ωα = ωα0 (x, y)dx+
n∑
i=1

ωαi (x, y)dyi,

with ωα0 ≡ 0, and ωαi (x, y) ≡ ωαi (y). (7.3)

We call a flat connection ω on P a connection in temporal gauge, if there
exists a flat connection ωN on PN such that over the collar neighborhood U

ω|U = f ∗ωN .

The local properties of a connection in temporal gauge and in particular its
independence of the normal variable x ∈ (−ε, ε) are discussed in (7.3). Our
aim is to show that any flat connection one-form on a principal bundle P can
be gauge transformed to a flat connection in temporal gauge. Recall that a
gauge-transformation of P is a principal bundle automorphism g ∈ Aut(P )
covering identity on M with g(p · u) = g(p) · u for any u ∈ G and p ∈ P .

A gauge transformation can be viewed interchangedly as a transformation
from one system of local trivializations into another. Hence the action of a
gauge transformation on a connection one-form is determined by the trans-
formation law for connections under change of coordinates.

We have the following result.
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Proposition 7.1. Any flat connection on the principal bundle P is gauge
equivalent to a flat connection in temporal gauge.

Proof. By a partition of unity argument it suffices to discuss the problem
locally over a trivializing neighborhood (Uα := (−ε, ε)× Ũα,Φα).

Let ω be a flat connection on P |U . Let g be any gauge transformation on
P |U . Denote the gauge transform of ω under g by ωg.

Over the trivializing neighborhood Uα the connections ω, ωg and the gauge
tranformation g are given by local G-valued one-forms ωα, ωαg and a G-
automorphism gα respectively. They are related in correspondence to the
transformation law of connections as follows

ωαg = (gα)−1 ◦ ωα ◦ gα + (gα)−1dgα,

where the action ◦ is the concatenation of matrices (G ⊂ GL(n,C)), after
evaluation at a local vector field and a base point in Uα. The local one form
ωα writes as

ωα = ωα0 (x, y)dx+
n∑
i=1

wαi (x, y)dyi.

In order to gauge-transform ω into temporal gauge, we need to annihilate ωα0
and the x-dependence in ωαi . For this reason we consider the following initial

value problem with parameter y ∈ Ũα

∂xg
α(x, y) = −ωα0 (x, y)gα(x, y),

gα(0, y) = 1 ∈ GL(n,C). (7.4)

In order to identify the solution to (7.4) consider for any fixed y ∈ Ũα the
following x−time dependent vector field V α

x,y, x ∈ (−ε, ε) on G:

∀u ∈ G V α
x,yu := −(Ru)∗ω

α
0 (x, y) = −ωα0 (x, y) · u,

where Ru is the right multiplication on G and the second equality follows
from the fact that G ∈ GL(n,C) is a matrix Lie group.

Let g̃α(x, y) be the unique integral curve of the time-dependent vector field
V α
x,y with g̃α(0, y) = 1 ∈ G. It satisfies

∂xg̃
α(x, y) = V α

x,yg̃
α(x, y) = −ωα0 (x, y)g̃α(x, y).

Hence the integral curve g̃α(x, y) solves (7.4). By the fundamental theorem
for ordinary linear differential equations (cf. [KN, Appendix 1]) we know that
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the initial value problem (7.4) has a unique solution, smooth in x ∈ (−ε, ε)
and y ∈ Ũα. Since g̃α(x, y) solves (7.4) we find that the solution is moreover
G−valued.

With gauge transformation g being locally the solution to (7.4) we find for
the gauge transformed connection ωg

ωαg = (gα)−1 ◦ ωα ◦ gα + (gα)−1dgα =

= (gα)−1 ◦ ωα0 ◦ gαdx+
n∑
i=1

(gα)−1 ◦ ωαi ◦ gαdyi+

+(gα)−1∂xg
αdx+

n∑
i=1

(gα)−1∂yi
gαdyi =

=
n∑
i=1

(gα)−1 ◦ ωαi ◦ gαdyi +
n∑
i=1

(gα)−1∂yi
gαdyi.

where in the last equality we cancelled two summands due to gα being the
solution to (7.4). So far we didn’t use the fact that ω is a flat connection. A
gauge transformation preserves flatness, so ωg is flat again. Put

ωαg = ωαg,0(x, y)dx+
n∑
i=1

ωαg,i(x, y)dyi,

where by the previous calculation

ωαg,0 ≡ 0, ωαg,i ≡ (gα)−1 ◦ ωαi ◦ gα + (gα)−1∂yi
gα.

Flatness of ωg implies

∂xω
α
g,i(x, y) = ∂yi

ωαg,0(x, y) = 0.

Hence the gauge transformed connection is indeed in temporal gauge. This
completes the proof.

A gauge transformation, viewed so far as a principal bundle automorphism
on the G−principal bundle P , can equivalently be viewed as a G−valued
bundle automorphism on the vector bundle E associated to P . We adopt
this point of view for the forthcoming discussion.

Take the given flat connection∇ on the Hermitian vector bundle (E, hE) with
the structure group G = U(n,C) and the canonical metric hE induced by the
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standard inner product on Cn. Proposition 7.1 asserts existence of a tem-
poral gauge transformation g ∈ AutG(E) such that the gauge transformed
covariant derivative g∇g−1 is in temporal gauge (a covariant derivative is said
to be in temporal gauge if the associated connection one-form is in temporal
gauge).

The temporal gauge transformation g gives rise to a map on sections in a
natural way

G : Ω∗(M,E ⊗ E) → Ω∗(M,E ⊗ E).

Due to the fact that g takes locally values in U(n,C) and the Hermitian
metric hE is canonically induced by the standard inner product on Cn, we
obtain the following result:

Proposition 7.2. G extends to a unitary transformation

G : L2
∗(M,E ⊗ E, gM , hE) → L2

∗(M,E ⊗ E, gM , hE).

Corollary 7.3. The odd-signature operators B = B(∇) and Bj =
Bj(∇j), j = 1, 2 are spectrally equivalent to B(g∇g−1) and Bj(g∇g−1|Mj

), j =
1, 2 respectively.

The statement of the corollary above follows from invariance of minimal and
maximal extensions under unitary transformations and from the fact that
unitary transformations preserve spectral properties of operators, compare
also Proposition 3.2 and Corollary 3.3.

The statement of the corollary implies that in the setup of this section (for
unitary vector bundles) the assumption of temporal gauge is done without
loss of generality, which we do henceforth. In this particular geometric setup
we obtain the following specific result for refined analytic torsion.

Proposition 7.4. Let TRS(∇̃) and TRS(∇̃j), j = 1, 2 denote the scalar ana-

lytic torsions associated to the complexes (D̃, ∇̃), (D̃j, ∇̃j), respectively. Fur-
thermore let ρΓ(M,E) and ρΓ(Mj, E) denote the associated refined torsion
elements in the sense of (6.7) for λ = 0. Then we have

ρan(∇) =
1

TRS(∇̃)
· exp [−iπη(Beven) + iπrk(E)η(Btrivial)]×

× exp

[
−iπm− 1

2
dim kerBeven + iπrk(E)

m

2
dim kerBtrivial

]
ρΓ(M,E),

ρan(∇j) =
1

TRS(∇̃j)
· exp

[
−iπη(Bjeven) + iπrk(E)η(Bjtrivial)

]
×

× exp

[
−iπm− 1

2
dim kerBjeven + iπrk(E)

m

2
dim kerBjtrivial

]
ρΓ(Mj, E).
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Proof. Recall from the definition of refined analytic torsion in Corollary 6.26

ρan(∇) = eξλ(∇) exp[−iπ(η(B(λ,∞)
even ) + ξ′λ(∇))]×

exp[+iπrk(E)(η(Btrivial) + ξ′(∇trivial))] · ρ[0,λ],

ρan(∇j) = eξλ(∇j) exp[−iπ(η(Bj,(λ,∞)
even ) + ξ′λ(∇j))]×

exp[+iπrk(E)(η(Bjtrivial) + ξ′(∇j,trivial))] · ρj[0,λ], j = 1, 2.

The assumption of product metric structures and the temporal gauge allow
a reduction to closed double manifolds, as performed explicitly in Theorem
6.30. This yields by similar arguments, as in [BK2, Proposition 6.5]:

ξ′λ(∇) =
1

2

m∑
k=0

(−1)k+1 · k · dim D̃k
[0,λ],

ξ′λ(∇j) =
1

2

m∑
k=0

(−1)k+1 · k · dim D̃k
j,[0,λ].

Now, via Lemma 6.25 we obtain

ξ′λ(∇) ≡ m

2
dim D̃even

[0,λ] mod 2Z,

ξ′λ(∇j) ≡
m

2
dim D̃even

j,[0,λ] mod 2Z.

Similar arguments show

ξ′(∇trivial) ≡
m

2
dim kerBtrivial mod 2Z,

ξ′(∇j,trivial) ≡
m

2
dim kerBjtrivial mod 2Z.

Fix λ = 0 and observe for j = 1, 2 from (6.21):

η(B(0,∞)
even ) + ξ′0(∇) ≡ η(Beven) +

m− 1

2
dim kerBeven mod 2Z,

η(Bj,(0,∞)
even ) + ξ′0(∇j) ≡ η(Bjeven) +

m− 1

2
dim kerBjeven mod 2Z.

Now the statement of the proposition follows from the fact that flatness of
the Hermitian metric hE implies equality between the squared odd-signature
operator and the Laplacians of the corresponding complexes, and hence

eξ0(∇) =
1

TRS(∇̃)
, eξ0(∇j) =

1

TRS(∇̃j)
.

This proves the proposition.
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7.3 Splitting formula for the eta-invariant

This subsection is an application of [KL, Theorem 7.7]. For the setup of
that result consider U ⊂ M the collar neighborhood of the hypersurface N
together with a mapping

Φ : C∞(U , F |U) → C∞((−ε, ε), C∞(N,F |N)),

where F is any Hermitian vector bundle overM and Φ extends to an isometry
on the L2−completions of the spaces. Now let D be a self-adjoint operator
of Dirac-type with the following product form over the collar neighborhood:

Φ ◦D|U ◦ Φ−1 = γ

[
d

dx
+ A

]
,

where γ is a bundle homomorphism on C∞(N,F |N) and the tangential oper-
ator A is a self-adjoint operator of Dirac-type over C∞(N,F |N). The essence
of the product form lies in the x-independence of the coefficients γ and A.
Moreover we assume

γ2 = −I, γ∗ = −γ, γA = −Aγ. (7.5)

By restriction to M1,M2 we obtain Dirac operators D1, D2 with product
structure (under the identification of Φ) as above over the collar neighbor-
hoods U ∩Mj of the boundaries ∂Mj = N, j = 1, 2.

Let P : L2(N,F |N) → L2(N,F |N) satisfy the following conditions:

• P is pseudo-differential of order zero, (7.6)

• P is an orthogonal projection, i.e. P ∗ = P, P 2 = P , (7.7)

• γPγ∗ = I − P , (7.8)

• (P>0, P ) form a Fredholm pair, i.e. P>0|imP is Fredholm. (7.9)

Here P>0 denotes the positive spectral projection associated to the self-
adjoint tangential operator A. The boundary value problems (Dj, P ), j = 1, 2
are well-posed in the sense of R. T. Seeley, by [BL3, Theorem 7.2]. We know,
see [KL, Theorem 3.1] and the references therein, that the eta-functions
η(Dj

P , s) extend meromorphically to C. Assume for simplicity that the eta-
functions are regular at s = 0 and set for j = 1, 2:

η(Dj
P ) :=

1

2

[
η(Dj

P , s = 0) + dim kerDj
P

]
,

η(D) :=
1

2
[η(D, s = 0) + dim kerD] .
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This definition coincides with (6.13) for Dj
P = Bjeven and D = Beven, since in

the setup of the present section the odd-signature operators are self-adjoint,
hence have real spectrum.

The same holds for Dj
I−P as well, and the splitting formula in the version of

[KL, Theorem 7.7] is given as follows:

η(D) = η(D1
P ) + η(D2

I−P )− τµ(I − P1, P, P1), (7.10)

where P1 denotes the Calderon projector for D1, which is the orthogonal
projection of sections in F |N onto the Cauchy-data space of D1 consisting of
the traces at N of elements in the kernel of D1. For further details see [BW].

The third summand τµ in (7.10) refers to the Maslov triple index defined
in [KL, Definition 6.8]. The Maslov triple index is integer-valued and thus
the result above leads in particular to a mod Z splitting formula for eta-
invariants.

Leaving for the moment these general constructions aside, we continue in the
setup of the Subsection 7.1. We adapt the constructions of [KL, Section 8.1]
to the present situation. Let ι : N ↪→M denote the inclusion of the splitting
hypersurface N into the closed split-manifold M . Define the restriction map:

R : Ωeven(M,E ⊕ E) → Ω∗(N, (E ⊕ E)|N),

β 7→ ι∗(β) + ι∗(∗̃β),

where ∗̃ is the Hodge-star operator on the oriented Riemannian manifold M
acting antidiagonally on E ⊕ E with the following matrix form:

∗̃ =

(
0 ∗
∗ 0

)
.

It is further related as follows to the chirality operator Γ̃ of the Hilbert
complex (D̃, ∇̃) (see Definition 6.4):

Γ̃ := ir(−1)
k(k+1)

2 ∗̃ : Ωk(M,E ⊕ E) → Ωm−k(M,E ⊕ E),

where r := (dimM + 1)/2.

The restriction map R induces with U ∼= (−ε, ε) × N the following identifi-
cation:

Φ : Ωeven(U , (E ⊕ E)|U) → C∞((−ε, ε),Ω∗(N, (E ⊕ E)|N)),

which extends to an isometry on the L2−completions of the spaces due to the
product structure of the metrics. The isometric transformation preserves the
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spectral properties of the transformed operators. Hence we can equivalently
deal with the even part Beven of the odd-signature operator associated to the
Hilbert complex (D̃, ∇̃) over M , under the isometric transformation Φ.

The assumption of temporal gauge for the connection ∇ implies with the
same calculations as in [KL, Section 8.1]:

Φ ◦ Beven ◦ Φ−1 = γ

[
d

dx
+ A

]
, (7.11)

where the operators γ and A are of the following form (compare [KL, Section
8.1]):

γ(β) =

{
ir(−1)p−1∗̃Nβ, if β ∈ Ω2p(N, (E ⊕ E)|N),
ir(−1)r−p−1∗̃Nβ, if β ∈ Ω2p+1(N, (E ⊕ E)|N).

A(β) =

{
−(∇̃N ∗̃N + ∗̃N∇̃N)β, if β ∈ Ω2p(N, (E ⊕ E)|N),

(∇̃N ∗̃N + ∗̃N∇̃N)β, if β ∈ Ω2p+1(N, (E ⊕ E)|N).

Here ∇̃N = ∇N⊕∇N where ∇N is the flat connection on E|N whose pullback
to E|U gives ∇|U . Further ∗̃N is the Hodge-star operator on N acting anti-
diagonally on (E ⊕ E)|N . We write

∇̃N =

(
∇N 0
0 ∇N

)
, ∗̃N =

(
0 ∗N
∗N 0

)
.

Consider next the odd signature operators Bjeven, j = 1, 2 viewed as boundary
value problems for Beven|Mj

, j = 1, 2 where the boundary conditions are to
be identified. To visualize the structure involved, we distinguish notationally
each direct sum component in E ⊕ E:

E ⊕ E ≡ E+ ⊕ E−.

Decompose now Ω∗(N, (E ⊕ E)|N) as follows:

Ω∗(N, (E ⊕ E)|N) = (7.12)[
Ωeven(N,E+|N)⊕ Ωodd(N,E+|N)

]
⊕
[
Ωeven(N,E−|N)⊕ Ωodd(N,E−|N)

]
.

The restriction map R acts with respect to this decomposition as follows:

R(β+ ⊕ β−) = [ι∗(β+)⊕ ι∗(∗β−)]⊕ [ι∗(β−)⊕ ι∗(∗β+)], (7.13)

where β+ ⊕ β− ∈ Ωeven(M,E+ ⊕ E−).
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Furthermore with respect to this decomposition operators γ and A are given
by the following matrix form:

γ =

(
0 γ
γ 0

)
, A =

(
0 A
A 0

)
, (7.14)

γ(β) =

{
ir(−1)p−1 ∗N β, if β ∈ Ω2p(N,E|N),
ir(−1)r−p−1 ∗N β, if β ∈ Ω2p+1(N,E|N).

A(β) =

{
−(∇N ∗N + ∗N ∇N)β, if β ∈ Ω2p(N,E|N),
(∇N ∗N + ∗N ∇N)β, if β ∈ Ω2p+1(N,E|N).

Note that γ and A satisfy the conditions (7.5). Recall now from Lemma 6.6

D(Bj) = D
(
DGB
j,rel ⊕DGB

j,abs

)
,

where DGB
j is the Gauss-Bonnet operator on Mj associated to the connection

∇j. Hence the boundary conditions for Bjeven are given as follows (see [BL1,
Theorem 4.1], where the arguments are performed in the untwisted setup, but
transfer analogously to the twisted case, provided product metric structures
and a flat connection in temporal gauge)

β = β+ ⊕ β− ∈ D(Bjeven) ∩ Ωeven(Mj, E
+ ⊕ E−),

hence β+ ∈ D(DGB
rel ), β− ∈ D(DGB

abs ),

hence ι∗j(β
+) = 0, ι∗j(∗β−) = 0.

According to (7.13) we obtain under the isometric identification Φ over U∩Mj

and with respect to the decomposition (7.12) the following matrix form for
the boundary operators of Bjeven

P =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 . (7.15)

Note that (I − P ) again provides boundary conditions for Bjeven with the
components E+, E− interchanged. The boundary operator P obviously ex-
tends to a pseudo-differential operator of order zero. One checks explicitly
by matrix calculations that P satisfies the conditions (7.7) and (7.8). The
condition (7.9) remains to be verified.

Being elliptic and self-adjoint, A has discrete real spectrum with finite mul-
tiplicities. Discreteness of A together with self-adjointness of Bjeven implies
with [BL3, Corollary 4.6 and Theorem 5.6] that P indeed satisfies (7.9).
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Thus the conditions for the application of (7.10) are satisfied and we obtain

η(Beven) = η(B1
even) + η(B2

even)− τµ(I − P1, P, P1), (7.16)

where the operators B1
even,B2

even denote the even parts of the odd-signature
operators associated in the sense of Definition 6.5 to the Hilbert complexes
(D̃1, ∇̃1), (D̃2, ∇̃2) respectively. Equivalently they are the self-adjoint real-
izations of the differential operators Beven|M1 ,Beven|M2 with the boundary
conditions P and (I−P ) respectively. Further P1 denotes the Calderon pro-
jector of B1

even and τµ the Maslov triple index.

Due to self-adjointness of the odd-signature operator, the notion of (reduced)
eta-invariant in [KL] for Beven and Bjeven, j = 1, 2 coincides with the setup of
(6.13).

We obtain an analogous splitting formula in case of a trivial line bundle
M × C in the notation of Proposition 6.23:

η(Btrivial) = η(B1
trivial) + η(B2

trivial)− τµ(I − P1,trivial, Ptrivial, P1,trivial), (7.17)

with the obvious notation. This formula will be necessary in order to obtain
a splitting for the metric-anomaly term in refined analytic torsion.

In other words, the phase of refined analytic torsion is given in part by
the rho invariant of Beven, which is defined (cf. [KL, Definition 8.17]) as
the eta-invariant of the operator minus the metric anomaly correction term.
The results (7.16) and (7.17) give together a splitting formula for the rho-
invariant, which constitutes to the complex phase of refined analytic torsion.

7.4 Poincare Duality for manifolds with boundary

We continue in the setup and the notation, fixed in Subsection 7.1. Denote
by 4j,rel/abs the Laplacians of the Hilbert complexes (Dj,min/max,∇j,min/max)
respectively. The coefficient j refers to the base manifold Mj, j = 1, 2. Con-
sider the Hodge star operator ∗ on M and the associated chirality operator

Γ := ir(−1)
k(k+1)

2 ∗ : Ωk(M,E) → Ωm−k(M,E), r := (dimM + 1)/2.

By the properties of the chirality operator Γ (we do not indicate the restric-
tion of Γ to Mj, j = 1, 2 by a subscript j, since it will always be clear from
the action), established in Lemma 6.3, we infer:

4j,abs/rel = Γ ◦ 4j,rel/abs ◦ Γ, (7.18)

and hence Γ : ker4j,rel/abs →̃ ker4j,abs/rel. (7.19)
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Note the Hodge isomorphisms

ker4j,rel/abs →̃ H∗
rel/abs(Mj, E), φ 7−→ [φ],

where H∗
rel/abs(Mj, E) denote the de Rham cohomologies of the Fredholm

complexes (Dj,min/max,∇j,min/max), j = 1, 2 respectively. Hence the chiral-
ity operator induces under the Hodge isomorphisms the so-called Poincare
duality on manifolds with boundary:

Γ : Hk
rel/abs(Mj, E) →̃ Hm−k

abs/rel(Mj, E), k = 0, ..,m = dimM.

Next we introduce two pairings. Let ω1 = s1 ⊗ χ1 and ω2 = s2 ⊗ χ2 be two
differential forms in Ω∗(Mj, E) with s1, s2 ∈ C∞(Mj, E) and χ1, χ2 ∈ Ω∗(Mj).
Put:

hE(ω1 ∧ ω2) := hE(s1, s2) · χ1 ∧ χ2.

This action extends by linearity to arbitrary differential forms in Ω∗(Mj, E).
With this notation we define a pairing, which is the Hilbert structure on
H∗

rel/abs(Mj, E) induced by the L2−structure on the harmonic forms:

〈· , ·〉L2
j

: Hk
rel/abs(Mj, E)×Hk

rel/abs(Mj, E) → C

[ω], [η] 7−→
∫
Mj

hE(ω ∧ ∗η), (7.20)

where ω and η are the harmonic representatives of [ω] and [η] respectively.
The second pairing is the Poincare duality on Riemannian manifolds with
boundary and is in fact independent of a choice of representatives:

〈· , ·〉Pj
: Hk

rel/abs(Mj, E)×Hm−k
abs/rel(Mj, E) → C

[ω], [η] 7−→
∫
Mj

hE(ω ∧ η). (7.21)

Both pairings are non-degenerate and induce canonical identifications be-
tween cohomology and its dual:

#L2
j

: Hk
rel/abs(Mj, E)→̃

(
Hk

rel/abs(Mj, E)
)∗
, [ω] 7−→ 〈· , [ω]〉L2

j
,

#Pj
: Hk

rel/abs(Mj, E)→̃
(
Hm−k

abs/rel(Mj, E)
)∗
, [ω] 7−→ 〈· , [ω]〉Pj

.

Both maps are linear, with the Hermitian metric hE set to be linear in the
second component. The next proposition puts the constructions above into
relation:
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Proposition 7.5. The action of #L2
j
◦Γ and #Pj

on Hk
rel/abs(Mj, E) satisfies

#L2
j
◦ Γ = ir(−1)

k(k+1)
2 #Pj

, r = (dimM + 1)/2.

Proof. Let [ω] ∈ Hk
rel/abs(Mj, E) and [η] ∈ Hk

abs/rel(Mj, E) with ω, η being the

harmonic representatives of [ω], [η] respectively. Using Γ2 = 1 we get

∗Γω = i−r(−1)
(m−k)(m−k+1)

2 Γ ◦ Γω =

= i−r(−1)
k(k+1)

2
+

m(m+1)
2 ω = ir(−1)

k(k+1)
2 ω.

Due to linearity of the Hermitian metric in the second component we finally
obtain:

(#L2
j
◦ Γ)([ω])[η] = 〈[η],Γ[ω]〉L2

j
=

∫
Mj

hE(η ∧ ∗Γω) =

= ir(−1)
k(k+1)

2

∫
Mj

hE(η ∧ ω) = ir(−1)
k(k+1)

2 #Pj
([ω])[η].

A similar discussion works also on the closed Riemannian split manifold M .
In particular we obtain as before the pairings 〈· , ·〉L2 and 〈· , ·〉P with the
associated identifications #L2 and #P respectively, over the manifold M . As
in Proposition 7.5 we obtain for the action of #L2 ◦ Γ and #P on Hk(M,E)
the following relation

#L2 ◦ Γ = ir(−1)
k(k+1)

2 #P , r = (dimM + 1)/2. (7.22)

Next we consider a complex, that takes the splitting M = M1 ∪N M2 into
account. Let ιj : N ↪→Mj, j = 1, 2 be the natural inclusions. Put

Ω∗(M1#M2, E) := {(ω1, ω2) ∈ Ω∗(M1, E)⊕ Ω∗(M2, E)|ι∗1ω1 = ι∗2ω2}.

Denote the restrictions of the flat connection ∇ to Mj, j = 1, 2 by ∇j,
and extend the restrictions by Leibniz rule to operators on the complexes
Ω∗(Mj, E), j = 1, 2. We put further

∇S(ω1, ω2) := (∇1ω1,∇2ω2).

This operation respects the transmission condition of Ω∗(M1#M2, E) and
further its square is obviously zero. Therefore ∇S turns the graded vector
space Ω∗(M1#M2, E) into a complex, denoted by

(Ω∗(M1#M2, E),∇S). (7.23)
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The natural L2−structure on Ω∗(M1, E)⊕Ω∗(M2, E), induced by the metrics
gM and hE is defined on any ω = (ω1, ω2), η = (η1, η2) as follows

〈ω, η〉L2 :=
2∑
j=1

〈ωj, ηj〉L2
j
. (7.24)

In order to analyze the associated Laplace operators, consider first the adjoint
to ∇S operator ∇∗

S in Ω∗(M1, E) ⊕ Ω∗(M2, E) with domain of definition
D(∇∗

S) consisting of elements ω = (ω1, ω2) ∈ Ω∗(M1, E) ⊕ Ω∗(M2, E) such
that the respective linear functionals on any η = (η1, η2) ∈ Ω∗(M1#M2, E)

Lω(η) = 〈ω,∇Sη〉L2

are continuous in Ω∗(M1#M2, E) with respect to the natural L2−norm of η.
As a consequence of Stokes’ formula we find for such elements ω ∈ D(∇∗

S)
that the following transmission condition has to hold

∗ω = (∗ω1, ∗ω2) ∈ Ω∗(M1#M2, E), (7.25)

where ∗ also denotes the restrictions of the usual Hodge star operator on M
to M1 and M2. The Laplace operator 4S = ∇∗

S∇S +∇S∇∗
S of the complex

(7.23) acts on the obvious domain of definition

D(4S) = {ω ∈ Ω∗(M1#M2, E)| (7.26)

ω ∈ D(∇∗
S),∇Sω ∈ D(∇∗

S),∇∗
Sω ∈ Ω∗(M1#M2, E)}.

The Dom(4S) is defined as the completion of D(4S) with respect to the
graph topology norm. The Laplacian 4S with domain Dom(4S) is a self-
adjoint operator in the L2−completion of Ω∗(M1, E)⊕ Ω∗(M2, E).

For the spectrum of4S we refer to the theorem below, established essentially
by S. Vishik in [V, Proposition 1.1] in the untwisted setup.

Theorem 7.6. The generalized eigenforms of the Laplacian 4S and the gen-
eralized eigenforms of the Laplacian 4 associated to the twisted de Rham
complex (Ω∗(M,E),∇) coincide.

Proof. The conditions for (ω1, ω2) ∈ D(4S) translate with (7.25) equivalently
to

ι∗1ω1 = ι∗2ω2, ι∗1(∗ω1) = ι∗2(∗ω2),

ι∗1(∗∇1ω1) = ι∗2(∗∇2ω2), ι∗1(∇t
1ω1) = ι∗2(∇t

2ω2). (7.27)
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Any eigenform ω of4 is smooth and thus (ω|M1 , ω|M2) satisfies the conditions
(7.27). Thus any eigenform ω ≡ (ω|M1 , ω|M2) of 4 belongs to D(4S) and
hence is an eigenform of 4S. We need to show the converse statement.

Let (ω1, ω2) ∈ D(4S) be an eigenform of 4S. Then for any k ∈ N the
element (4k

1ω1,4k
2ω2) satisfies the conditions (7.27). Fix local coordinates

(x, y) in the collar neighborhood (−ε, ε) × N of N ⊂ M with x ∈ (−ε, ε)
being the normal coordinate and y ∈ N the local coordinates on N . Then
the conditions (7.27) imply for k = 1

∂ω1(x = 0, y)

∂x
=
∂ω2(x = 0, y)

∂x
.

Iterative application of the conditions (7.27) to (4k
1ω1,4k

2ω2) for k ∈ N shows

∀k ∈ N :
∂kω1(x = 0, y)

∂xk
=
∂kω2(x = 0, y)

∂xk
. (7.28)

The eigenform (ω1, ω2) consists of smooth eigenforms ωj over Mj, j = 1, 2.
The result (7.28) shows smoothness on N ⊂M . Thus (ω1, ω2) can be viewed
as a smooth differential form over M and so lies in D(4) and hence is an
eigenform of 4 as well. This proves the theorem.

Corollary 7.7. The Laplacian 4S on Dom(4S) is a Fredholm operator and

H∗(M1#M2, E) := H∗(Ω∗(M1#M2, E),∇S) ∼= H∗
dR(M,E).

The corollary is an obvious consequence of Theorem 7.6 and the Hodge-
isomorphism. Therefore the pairings 〈· , ·〉L2 and 〈· , ·〉 with the associated
identifications #L2 and #P respectively, over the manifold M give rise to
pairings and maps on H∗(M1#M2, E). We do not introduce a distinguished
notation for these induced constructions

〈· , ·〉L2 : Hk(M1#M2, E)×Hk(M1#M2, E) → C

[(ω1, ω2)], [(η1, η2)] 7−→
2∑
j=1

∫
Mj

hE(ωj ∧ ∗ηj), (7.29)

〈· , ·〉P : Hk(M1#M2, E)×Hm−k(M1#M2, E) → C

[(ω1, ω2)], [(η1, η2)] 7−→
2∑
j=1

∫
Mj

hE(ωj ∧ ηj), (7.30)

where (ω1, ω2), (η1, η2) are a priori harmonic representatives of the corre-
sponding cohomology classes, due to the Hodge isomorphisms applied in the
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identification of Corollary 7.7. A posteriori we find by the next lemma that
the pairing 〈· , ·〉P like the pairings 〈· , ·〉Pj

, j = 1, 2 is well-defined on coho-
mology classes, i.e. need not be evaluated on harmonic representatives only.

Lemma 7.8. The pairing 〈·, ·〉P is a well-defined pairing on cohomology.

Proof. Let [(ω1, ω2)] ∈ Hk(M1#M2, E) be a cohomology class with a repre-
sentative (ω1, ω2)+∇S(γ1, γ2) where (ω1, ω2) ∈ ker∇S and (ω1, ω2), (γ1, γ2) ∈
Ω∗(M1#M2, E), in particular

ι∗1ω1 = ι∗2ω2, ι
∗
1γ1 = ι∗2γ2.

Similarly let [(η1, η2)] ∈ Hm−k(M1#M2, E). Choose a representa-
tive (η1, η2) + ∇S(ξ1, ξ2) with (η1, η2) ∈ ker∇S and (η1, η2), (ξ1, ξ2) ∈
Ω∗(M1#M2, E). We compute

2∑
j=1

∫
Mj

hE((ωj +∇jγj) ∧ (ηj +∇jξj))−
2∑
j=1

∫
Mj

hE(ωj ∧ ηj) =

=
2∑
j=1

∫
Mj

hE(∇jγj ∧ ηj) +
2∑
j=1

∫
Mj

hE(ωj ∧∇jξj)+

+
2∑
j=1

∫
Mj

hE(∇jγj ∧∇jξj). (7.31)

In order to verify that the pairing 〈· , ·〉P is a well-defined pairing on co-
homology we need to show that the last three summands in (7.31) are zero.
Consider the first summand, the other two are dealt with analogously. Under
the assumption of flatness of ∇ we get

dhE(γj ∧ ηj) = hE(∇jγj ∧ η) + (−1)k−1hE(γj ∧∇jη) = hE(∇jγj ∧ η)

⇒
2∑
j=1

∫
Mj

hE(∇jγj ∧ ηj) =
2∑
j=1

∫
Mj

dhE(γj ∧ ηj) =

=
2∑
j=1

∫
∂Mj

ι∗jh
E(γj ∧ ηj).

Since ι∗1γ1 = ι∗2γ2 and ι∗1η1 = ι∗2η2 we find

ι∗1h
E(γ1 ∧ η1) = ι∗2h

E(γ2 ∧ η2).

However the orientations on N = ∂M1 = ∂M2 induced from M1 and M2 are
opposite. Hence the two integrals over M1 and M2 cancel. This completes
the argumentation.
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7.5 Commutative diagramms in cohomological algebra

Consider the short exact sequences of complexes:

0 → (Ω∗
min(M1, E),∇1)

α−→ (Ω∗(M1#M2, E),∇S)
β−→ (Ω∗

max(M2, E),∇2) → 0,

0 → (Ω∗
min(M2, E),∇2)

α′−→ (Ω∗(M1#M2, E),∇S)
β′−→ (Ω∗

max(M1, E),∇1) → 0,

where α(ω) = (ω, 0), α′(ω) = (0, ω) and β(ω1, ω2) = ω2, β
′(ω1, ω2) = ω1. The

exactness at the first and the second complex of both sequences is clear by
construction. The surjectivity of β and β′ is clear, since Ω∗

max(Mj, E), j = 1, 2
consists of smooth differential forms over Mj which are in particular smooth
at the boundary. These short exact sequences of complexes induce long exact
sequences on cohomology:

H : ...Hk
rel(M1, E)

α∗−→ Hk(M1#M2, E)
β∗−→ Hk

abs(M2, E)
δ∗−→ Hk+1

rel (M1, E)...

H′ : ..Hk
rel(M2, E)

α′∗−→ Hk(M1#M2, E)
β′∗−→ Hk

abs(M1, E)
δ′∗−→ Hk+1

rel (M2, E)

(7.32)

The first long exact sequence is related to the dual of the second long exact
sequence by the diagramm below, where α′∗, β

′
∗, δ

′
∗ denote the dualizations of

α′∗, β′∗, δ′∗ respectively.

Hk
rel(M1, E) α∗−→ Hk(M1#M2, E)

β∗−→ Hk
abs(M2, E) δ∗−→ Hk+1

rel (M1, E)

#L2
1
◦ Γ ↓ #L2 ◦ Γ ↓ #L2

2
◦ Γ ↓ #L2

1
◦ Γ ↓

Hm−k
abs (M1, E)∗

β′∗−→Hm−k(M1#M2, E)∗
α′∗−→Hm−k

rel (M2, E)∗
δ′∗−→Hm−k−1

abs (M1, E)∗

(7.33)

Theorem 7.9. The diagramm (7.33) is commutative.

Proof. We need to verify commutativity of three types of squares in the
diagramm. Consider the first type of squares:

Hk
rel(M1, E)

α∗ //

#
L2

1
◦Γ

��

Hk(M1#M2, E)

#L2◦Γ
��

Hm−k
abs (M1, E)∗

β′∗

// Hm−k(M1#M2, E)∗.
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Let [ω] ∈ Hk
rel(M1, E). Recall

#L2
1
◦ Γ = ir(−1)

k(k+1)
2 #P1 on Hk

rel(M1, E),

#L2 ◦ Γ = ir(−1)
k(k+1)

2 #P on Hk(M1#M2, E).

The maps #P1 ,#P are well-defined identifications on cohomology, due to
Lemma 7.8. Let [(η1, η2)] ∈ Hm−k(M1#M2, E) and compute:

(β′∗ ◦#L2
1
◦ Γ)[ω]([η1, η2])− (#L2 ◦ Γ ◦ α∗)[ω]([η1, η2]) =

=ir(−1)
k(k+1)

2 {〈β′(η1, η2), ω〉P1 − 〈(η1, η2), αω〉P} =

=ir(−1)
k(k+1)

2

{∫
M1

hE(η1 ∧ ω)−
∫
M1

hE(η1 ∧ ω)

}
= 0.

Consider now the second type of squares in the diagramm (7.33).

Hk(M1#M2, E)
β∗ //

#L2◦Γ
��

Hk
abs(M2, E)

#
L2

2
◦Γ

��
Hm−k(M1#M2, E)∗

α′∗ // Hm−k
rel (M2, E)∗.

Let [(ω1, ω2)] ∈ Hk(M1#M2, E) and [η] ∈ Hm−k
rel (M2, E). As before the maps

in the diagramm are independent of particular choices of representatives, so
we compute:

(α′∗ ◦#L2 ◦ Γ)[(ω1, ω2)]([η])− (#L2
2
◦ Γ ◦ β∗)[(ω1, ω2)]([η]) =

= ir(−1)
k(k+1)

2 {〈α′η, (ω1, ω2)〉P − 〈η, β(ω1, ω2)〉P2} =

= ir(−1)
k(k+1)

2

{∫
M2

hE(η ∧ ω2)−
∫
M2

hE(η ∧ ω2)

}
= 0.

Consider finally the third type of squares.

Hk
abs(M2, E)

δ∗ //

#
L2

2
◦Γ

��

Hk+1
rel (M1, E)

#
L2

1
◦Γ

��
Hm−k

rel (M2, E)∗
δ′∗ // Hm−k−1

abs (M1, E)∗.

(7.34)

To prove commutativity of this diagramm, we need a precise understanding of
the connecting homomorphisms δ∗, δ′∗. Note for this the following diagramm
of short exact sequences of complexes:
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0→ (Ω∗
min(M1, E),∇1)

α−→ (Ω∗(M1#M2, E),∇S)
β−→ (Ω∗

max(M2, E),∇2)→ 0

‖ ‖ βπ ↑

0→ (Ω∗
min(M1, E),∇1)

α−→ (Ω∗(M1#M2, E),∇S)
π−→ (Ω∗

max(M2, E),∇2)→ 0.

(7.35)

The complex (Ω∗
max(M2, E),∇2) in the lower short exact sequence is the

natural quotient of complexes

(Ω∗
max(M2, E),∇2) :=

(Ω∗(M1#M2, E),∇S)

α(Ω∗
min(M1, E),∇1)

.

The complex map π is the natural projection. The map βπ is an isomorphism
of complexes:

βπ : (Ω∗
max(M2, E),∇2) → (Ω∗

max(M2, E),∇2)

[(ω1, ω2)] 7→ β(ω1, ω2) = ω2.

The diagramm (7.35) of short exact sequences of complexes obviously com-
mutes. Hence the associated diagramm of long exact sequences on cohomol-
ogy is also commutative and in particular we obtain the following commuta-
tive diagramm:

Hk
abs(M2, E)

δ∗ // Hk+1
rel (M1, E)

Hk((Ω∗
max(M2, E),∇2))

d∗ //

β∗π

OO

Hk+1
rel (M1, E).

(7.36)

The vertical map β∗π is the isomorphism induced by βπ and δ∗, d∗ are the
connecting homomorphisms of the long exact sequences associated to the
lower and upper short exact sequence of complexes of (7.35), respectively.

The connecting homorphism d∗ is easily defined. Let namely [(ω1, ω2)] ∈
Hk((Ω∗

max(M2, E),∇2)). Any of its representatives (ω1, ω2) ∈ Ωk(M1#M2, E)
satisfies ∇S(ω1, ω2) = (∇ω1, 0) ∈ α(Ω∗

min(M1, E),∇1) by definition. Then

d∗[(ω1, ω2)] = [∇1ω1] ∈ Hk+1
rel (M1, E).
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Consider now the next diagramm of short exact sequences of complexes:

0→ (Ω∗
min(M2, E),∇2)

α′−→ (Ω∗(M1#M2, E),∇S)
β′−→ (Ω∗

max(M1, E),∇1)→ 0

‖ ‖ β′π ↑

0→ (Ω∗
min(M2, E),∇2)

α′−→ (Ω∗(M1#M2, E),∇S)
π′−→ (Ω∗

max(M1, E),∇1)→ 0.

(7.37)

The complex (Ω∗
max(M1, E),∇1) in the lower short exact sequence is the

natural quotient of complexes

(Ω∗
max(M1, E),∇1) :=

(Ω∗(M1#M2, E),∇S)

α(Ω∗
min(M2, E),∇2)

.

The complex map π′ is the natural projection. The map β′π is an isomorphism
of complexes:

β′π : (Ω∗
max(M1, E),∇1) → (Ω∗

max(M1, E),∇1)

[(ω1, ω2)] 7→ β′(ω1, ω2) = ω1.

The diagramm (7.37) of short exact sequences of complexes obviously com-
mutes. Hence the associated diagramm of long exact sequences on cohomol-
ogy is also commutative and in particular we obtain the following commuta-
tive diagramm:

Hk
abs(M1, E)

δ′∗ // Hk+1
rel (M2, E)

Hk((Ω∗
max(M1, E),∇1))

d′∗ //

β′∗π

OO

Hk+1
rel (M2, E).

(7.38)

The vertical map β′∗π is the isomorphism induced by β′π and δ′∗, d′∗ are the
connecting homomorphisms of the long exact sequences associated to the
lower and upper short exact sequence of complexes of (7.37), respectively.

The connecting homomorphism d′∗ is easily defined. Let namely any
[(η1, η2)] ∈ Hm−k−1((Ω∗

max(M1, E),∇1)). For any representative (η1, η2) ∈
Ωm−k−1(M1#M2, E) we have

∇S(η1, η2) = (0,∇2η2) ∈ α′(Ω∗
min(M2, E),∇2)

by definition. We obtain for the connecting homomorphism d′∗

d′∗[(η1, η2)] = [∇2η2] ∈ Hm−k
rel (M2, E).
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Now the pairings 〈· , ·〉P1 , 〈· , ·〉P2 , introduced in Section 7.4 induce via the
isomorphisms on cohomology β∗π, β

′∗
π the analogous pairings:

〈· , ·〉P2
:= 〈· , β∗π(·)〉P2 : Hm−k

rel (M2, E)×Hk((Ω∗
max(M2, E),∇2)) → C,

〈· , ·〉P1
:= 〈β′∗π (·) , ·〉P1 : Hm−k−1((Ω∗

max(M1, E),∇1))×Hk+1
rel (M1, E) → C.

These pairings induce the following identifications

#P2
: Hk((Ω∗

max(M2, E),∇2))→̃
(
Hm−k

rel (M2, E)
)∗
,

[ω] 7−→ 〈· , [ω]〉P2
≡ 〈· , β∗π([ω])〉P2 ,

#P1
: Hk+1

rel (M1, E)→̃
(
Hm−k−1((Ω∗

max(M1, E),∇1))
)∗
,

[ω] 7−→ 〈· , [ω]〉P1
≡ 〈β′∗π (·) , [ω]〉P1 .

Due to commutativity of the previous two diagramms (7.36) and (7.38),
the commutativity of (7.34) is equivalent to commutativity of the following
diagramm:

Hk((Ω∗
max(M2, E),∇2))

d∗ //

ir(−1)
k(k+1)

2 #P2 ��

Hk+1
rel (M1, E)

ir(−1)
(k+1)(k+2)

2 #P1��

Hm−k
rel (M2, E)∗

d′∗// Hm−k−1((Ω∗
max(M1, E),∇1))

∗.

(7.39)

Using the explicit form of the connecting homomorphisms d∗ and d′∗ we
finally compute for any [(ω1, ω2)] ∈ Hk((Ω∗

max(M2, E),∇2)) and [(η1, η2)] ∈
Hm−k−1((Ω∗

max(M1, E),∇1)):(
ir(−1)

(k+1)(k+2)
2 #P1

◦ d∗
)
[(ω1, ω2)]([(η1, η2)])−(

ir(−1)
k(k+1)

2 d′∗ ◦#P2

)
[(ω1, ω2)]([(η1, η2)]) =

=ir(−1)
(k+1)(k+2)

2 〈β′∗π [(η1, η2)], d
∗[(ω1, ω2)]〉P1−

ir(−1)
k(k+1)

2 〈d′∗[(η1, η2)], β
∗
π[(ω1, ω2)]〉P2 =

=ir(−1)
(k+1)(k+2)

2

∫
M1

hE(η1 ∧∇1ω1)−

−ir(−1)
k(k+1)

2

∫
M2

hE(∇2η2 ∧ ω2) =: A.

Now we apply the following formula for j = 1, 2:

dhE(ηj ∧ ωj) = hE(∇jηj ∧ ωj) + (−1)m−k−1hE(ηj ∧∇jωj).
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Since ∇1η1 = 0 and ∇2ω2 = 0 we find

A = ir(−1)
(k+1)(k+2)

2

∫
M1

(−1)m−k−1dhE(η1 ∧ ω1)−

ir(−1)
k(k+1)

2

∫
M2

dhE(η2 ∧ ω2) =

ir(−1)
(k+1)(k+2)

2 (−1)m−k−1

∫
∂M1

ι∗1h
E(η1 ∧ ω1)−

ir(−1)
k(k+1)

2

∫
∂M2

ι∗2h
E(η2 ∧ ω2).

Note (−1)m−k−1 = (−1)−k since m is odd. Further

(k + 1)(k + 2)

2
− k =

k(k + 1)

2
.

Hence we compute further

A = ir(−1)
k(k+1)

2
+1

[∫
∂M1

ι∗1h
E(η1 ∧ ω1) +

∫
∂M2

ι∗2h
E(η2 ∧ ω2)

]
. (7.40)

Since ι∗1ω1 = ι∗2ω2 and ι∗1η1 = ι∗2η2 by construction, we find

ι∗1h
E(η1 ∧ ω1) = ι∗2h

E(η2 ∧ ω2).

However the orientations on N = ∂M1 = ∂M2 induced from M1 and M2 are
opposite, thus the two integrals in (7.40) cancel. This shows commutativity
of (7.39) and completes the proof of the theorem.

7.6 Canonical Isomorphisms associated to Long Exact
Sequences

We first introduce some concepts and notations on finite-dimensional vector
spaces. Let V be an finite-dimensional complex vector space. Given a basis
{v} := {v1, .., vn}, n = dimV , denote the induced element of the determinant
line detV as follows

[v] := v1 ∧ .. ∧ vn ∈ detV.

Given any two bases {v} := {v1, .., vn} and {w} := {w1, .., wn} of V , we have
the corresponding coordinate change matrix

vi =
n∑
j=1

lijwj, L := (lij).
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We put

[v/w] := detL ∈ C,

and obtain the following relation

[v] = [v/w][w]. (7.41)

In general the determinant is a complex number (we don’t take the mode),
but later it will be convenient to have a relation between bases such that the
determinant of the coordinate change matrix is real-valued and positive. We
will use the result of the following lemma.

Lemma 7.10. Let V be a complex finite-dimensional Hilbert space and {v}
any fixed basis, not necessarily orthogonal. Let V = W⊕W⊥ be an orthogonal
decomposition into Hilbert subspaces. Then there exist orthonormal bases
{w} ≡ {w1, ..wdimW}, {u} ≡ {u1, ..udimW⊥} of W,W⊥ respectively, such that
the determinant of the coordinate change matrix between {w, u} and {v} is
positive, i.e.

[w, u/v] ∈ R+.

Proof. Consider any orthonormal bases {w} and {u} of W and W⊥, respec-
tively. This gives us two bases {v} and {w, u} of V . Denote the corresponding
coordinate change matrix by L. We have

[w, u/v] = detL = eiφ| detL|,

for some φ ∈ [0, 2π). We replace {w} and {u} by new bases

{wv} ≡ {wv1 , .., wvdimW}, wvi := wi · exp

(
−iφ

dimV

)
,

{uv} ≡ {uv1, .., uvdimW⊥}, uvi := ui · exp

(
−iφ

dimV

)
.

Note that {wv} and {uv} are still orthonormal bases of complex Hilbert
spaces W and W⊥, respectively. By construction [wv, uv/w, u] = exp(−iφ)
and

[wv, uv/v] = [wv, uv/w, u][w, u/v] = e−iφ · eiφ| detL| = | detL| ∈ R+.

Thus {wv, uv} indeed provides the desired example of an orthonormal basis of
V , respecting the given orthogonal decomposition, with positive determinant
of the coordinate change [wv, uv/v] relative to any given basis {v}.
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The decomposition V = W⊕W⊥ in the lemma above is of course not essential
for the statement itself. However we presented the result precisely in the form
how it will be applied later. We will also need the following purely algebraic
result:

Proposition 7.11. Let V and W be two finite-dimensional Hilbert spaces
with some orthonormal bases {v} and {w} respectively. Let f : V → W be
an isomorphism of vector spaces. Then {f(v)} is also a basis of W , not nec-
essarily orthonormal. As Hilbert spaces V and W are canonically identified
with their duals V ∗ and W ∗. Then {v∗}, {w∗} are bases of V ∗,W ∗ respec-
tively and {f ∗(w∗)} is another basis of V ∗. Under this setup the following
relation holds

[f(v)/w] = [f ∗(w∗)/v∗].

Proof. Denote the scalar products on the Hilbert spaces V and W by 〈· , ·〉V
and 〈· , ·〉W , respectively. Let the scalar products be linear in the second
component. They induce scalar products on detV and detW , denoted by
〈· , ·〉detV and 〈· , ·〉detW respectively. Since the bases {v}, {w} are orthonor-
mal, we obtain for the elements [v], [w] of the determinant lines detV, detW

〈[v], [v]〉detV = 〈[w], [w]〉detW = 1.

The dual bases {v∗}, {w∗} induce elements on the determinant lines detV ∗ ∼=
(detV )∗, and detW ∗ ∼= (detW )∗ and under these identifications we have

[v∗] = [v]∗ = 〈[v], ·〉detV ,

[w∗] = [w]∗ = 〈[w], ·〉detW .

Now we compute

[f ∗(w∗)]([v]) = 〈[w], [f(v)]〉detW = [f(v)/w]〈[w], [w]〉detW =

= [f(v)/w] · 1 = [f(v)/w] · [v∗]([v]),
⇒ [f ∗(w∗)] = [f(v)/w][v∗].

This implies the statement of the proposition.

Next we consider the long exact sequences (7.32), introduced in Subsection
7.5.

H : ...Hk
rel(M1, E)

α∗k−→ Hk(M1#M2, E)
β∗k−→ Hk

abs(M2, E)
δ∗k−→ Hk+1

rel (M1, E)...

H′ : ..Hk
rel(M2, E)

α′∗k−→ Hk(M1#M2, E)
β′∗k−→ Hk

abs(M1, E)
δ′∗k−→ Hk+1

rel (M2, E)...
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The long exact sequences induce isomorphisms on determinant lines (cf.
[Nic]) in a canonical way

Φ : detH∗
rel(M1, E)⊗ detH∗

abs(M2, E)⊗ [detH∗(M1#M2, E)]−1 → C,
(7.42)

Φ′ : detH∗
rel(M2, E)⊗ detH∗

abs(M1, E)⊗ [detH∗(M1#M2, E)]−1 → C.
(7.43)

More precisely , the action of the isomorphisms Φ,Φ′ is explicitly given as
follows. Fix any bases {ãk}, {b̃k} and {c̃k} of Imδ∗k−1, Imα∗k and Imβ∗k respec-
tively. Here the lower index k indexes the entire basis and is not a counting of
the elements in the set. Choose now any linearly independent elements {ak},
{bk} and {ck} such that {ãk} = δ∗k−1(ck−1), {b̃k} = α∗k(ak) and {c̃k} = β∗k(bk).

We make the same choices on the long exact sequence H′. The notation is
the same up to an additional apostroph. Since the sequences H,H′ are exact,
the choices above provide us with bases of the cohomology spaces.

Under the Knudson-Mumford sign convention [KM] we define the action of
the isomorphisms Φ and Φ′ as follows:

Φ

{(
m⊗
k=0

[ak, ãk]
(−1)k

)
⊗

(
m⊗
k=0

[ck, c̃k]
(−1)k

)
⊗

(
m⊗
k=0

[bk, b̃k]
(−1)k+1

)}
7→ (−1)ν ,

(7.44)

Φ′

{(
m⊗
k=0

[a′k, ã
′
k]

(−1)k

)
⊗

(
m⊗
k=0

[c′k, c̃
′
k]

(−1)k

)
⊗

(
m⊗
k=0

[b′k, b̃
′
k]

(−1)k+1

)}
7→ (−1)ν

′
.

(7.45)

The definition turns out to be independent of choices. The numbers ν, ν ′

count the pairwise reorderings in the definition of the isomorphisms. They
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are given explicitly by the following formula:

ν =
1

2

m∑
k=0

(
dim Imα∗k · (dim Imα∗k + (−1)k)

)
+

1

2

m∑
k=0

(
dim Imβ∗k · (dim Imβ∗k + (−1)k)

)
+

1

2

m∑
k=0

(
dim Imδ∗k · (dim Imδ∗k + (−1)k)

)
+

m∑
k=0

(
dimHk

rel(M1, E) ·
k−1∑
i=0

dimH i(M1#M2, E)

)
+

m∑
k=0

(
dimHk

rel(M1, E) ·
k−1∑
i=0

dimH i
abs(M2, E)

)
+

m∑
k=0

(
dimH i

abs(M2, E) ·
k−1∑
i=0

dimH i
abs(M2, E)

)
. (7.46)

The first three lines in the formula are standard terms for ”cancellations” of
images and cokernels of the homomorphisms in an acyclic sequence of vector
spaces. The last three lines are due to reordering of the cohomology groups
into determinant lines. The number ν ′ is given by an analogous formula as
ν. As a consequence of Theorem 7.9 which relates both sequences H and H′

we have

ν = ν ′.

Let the cohomology spaces in the long exact sequences H and H′ be endowed
with Hilbert structures naturally induced by the L2−scalar products on har-
monic elements. We have an orthogonal decomposition of each cohomology
space in the long exact sequences:

Hk
rel(M1, E) = Imδ∗k−1 ⊕ (Imδ∗k−1)

⊥,

Hk(M1#M2, E) = Imα∗k ⊕ (Imα∗k)
⊥,

Hk
abs(M2, E) = Imβ∗k ⊕ (Imβ∗k)

⊥,

Hk
rel(M2, E) = Imδ′∗k−1 ⊕ (Imδ′∗k−1)

⊥,

Hk(M1#M2, E) = Imα′∗k ⊕ (Imα′∗k )⊥,

Hk
abs(M1, E) = Imβ′∗k ⊕ (Imβ′∗k )⊥.

(7.47)
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We can assume the bases {ak, ãk}, {bk, b̃k}, {ck, c̃k} on H as well as the cor-
responding bases on H′ to respect the orthogonal decomposition above, i.e.
with respect to the orthogonal decompositions in (7.47) we have

Hk
rel(M1, E) = 〈{ãk}〉 ⊕ 〈{ak}〉,

Hk(M1#M2, E) = 〈{b̃k}〉 ⊕ 〈{bk}〉,
Hk

abs(M2, E) = 〈{c̃k}〉 ⊕ 〈{ck}〉,
Hk

rel(M2, E) = 〈{ã′k}〉 ⊕ 〈{a′k}〉,
Hk(M1#M2, E) = 〈{b̃′k}〉 ⊕ 〈{b′k}〉,
Hk

abs(M1, E) = 〈{c̃′k}〉 ⊕ 〈{c′k}〉.

By Lemma 7.10 we can choose for any k = 0, .., dimM orthonormal bases
of Hk

rel(M1, E), Hk(M1#M2, E), Hk
abs(M2, E) with respect to orthogonal de-

composition (7.47)

Hk
rel(M1, E) = 〈{ṽk}〉 ⊕ 〈{vk}〉,

Hk(M1#M2, E) = 〈{w̃k}〉 ⊕ 〈{wk}〉,
Hk

abs(M2, E) = 〈{ũk}〉 ⊕ 〈{uk}〉,
(7.48)

such that

[vk, ṽk/ak, ãk], [uk, ũk/ck, c̃k], [wk, w̃k/bk, b̃k] ∈ R+. (7.49)

These bases induce bases of the cohomology spaces of the sequence H′ by
the action of the Poincare duality map Γ. Since the map is an isometry,
the induced bases are still orthonormal. Furthermore commutativity of the
diagramm (7.33), established in Theorem 7.9 implies that the induced bases
still respect the orthogonal decomposition (7.47) of the cohomology spaces.

Hm−k
rel (M2, E) = 〈{Γuk}〉 ⊕ 〈{Γũk}〉,

Hm−k(M1#M2, E) = 〈{Γwk}〉 ⊕ 〈{Γw̃k}〉,
Hm−k

abs (M1, E) = 〈{Γvk}〉 ⊕ 〈{Γṽk}〉.

We obtain for the action of the canonical isomorphisms on the elements
induced by these orthonormal bases the following central result, which relates
the action of the isomorphisms to the combinatorial torsion of the long exact
sequences.
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Theorem 7.12.

Φ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[wk, w̃k]
(−1)k+1

)}
=

Φ′

{(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)
⊗

⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)m−k+1

)}
= (−1)ν · τ(H) = (−1)ντ(H′).

Remark 7.13. The statement of the theorem corresponds to the fact that
the combinatorial torsions τ(H), τ(H′) are defined as modes of the complex
numbers obtained by the action of the isomorphisms Φ,Φ′ on the volume el-
ements, induced by the Hilbert structures.

However the value of the theorem for our purposes is firstly the equality
τ(H) = τ(H′) and most importantly the fact that it provides explicit volume
elements on the determinant lines, which are mapped to the real-valued posi-
tive combinatorial torsions without additional undetermined complex factors
of the form eiφ.

Proof of Theorem 7.12. Consider first the action of the canonical isomorphism
Φ. By the action (7.44) we obtain

Φ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[wk, w̃k]
(−1)k+1

)}
=

(−1)ν
m∏
k=0

[vk, ṽk/ak, ãk]
(−1)k · [uk, ũk/ck, c̃k](−1)k · [wk, w̃k/bk, b̃k](−1)k+1

=

= (−1)ντ(H),
(7.50)

where the second equality follows from the definition of combinatorial torsion
and the particular choice of bases such that (7.49) holds. On the other hand
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we can rewrite the action of Φ as follows:

Φ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[wk, w̃k]
(−1)k+1

)}
=

(−1)ν
m∏
k=0

[vk, ṽk/ak, ãk]
(−1)k · [uk, ũk/ck, c̃k](−1)k · [wk, w̃k/bk, b̃k](−1)k+1

=

(−1)ν
m∏
k=0

[vk/ak]
(−1)k

[ṽk/ãk]
(−1)k · [uk/ck](−1)k · [ũk/c̃k](−1)k

·[wk/bk](−1)k+1 · [w̃k/b̃k](−1)k+1

.
(7.51)

Observe now the following useful relations:

[α∗k(vk)] = [α∗k(vk)/α
∗
k(ak)][α

∗
k(ak)] = [vk/ak][̃bk] =

[vk/ak]

[w̃k/b̃k]
· [w̃k]

and hence [α∗k(vk)/w̃k] =
[vk/ak]

[w̃k/b̃k]
,

[β∗k(wk)/ũk] =
[wk/bk]

[ũk/c̃k]
,

[δ∗k(uk)/ṽk+1] =
[uk/ck]

[ṽk+1/ãk+1]
,

where the last two identities are derived in the similar manner as the first
one. With these relations we can rewrite the action (7.51) of Φ as follows:

Φ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[wk, w̃k]
(−1)k+1

)}
=

(−1)ν
m∏
k=0

[α∗k(vk)/w̃k]
(−1)k · [β∗k(wk)/ũk](−1)k+1 · [δ∗k(uk)/ṽk+1]

(−1)k

.

(7.52)
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Analogous argumentation for the canonical isomorphism Φ′ shows

Φ′

{(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
⊗ (7.53)

⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)
⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)k

)}

= (−1)ν
m∏
k=0

[α′∗m−k(Γũk)/Γwk]
(−1)m−k · [β′∗m−k(Γw̃k)/Γvk](−1)k

·[δ′∗m−k(Γṽk)/Γuk−1]
(−1)m−k

.

(7.54)

Now using the fact that the diagramm (7.33) is commutative with vertical
maps being linear, we obtain

[δ∗k(uk)/ṽk+1] = [(#L2
1
◦ Γ)δ∗k(uk)/(#L2

1
◦ Γ)ṽk+1] = [δ′m−k∗ (Γuk)

∗/(Γṽk+1)
∗],

[α∗k(vk)/w̃k] = [β′m−k∗ (Γvk)
∗/(Γw̃k)

∗],

[β∗k(wk)/ũk] = [α′m−k∗ (Γwk)
∗/(Γũk)

∗],

where the last two identities are derived in a similar manner as the first one.
Now with the following purely algebraic result of Proposition 7.11 we obtain

[δ∗k(uk)/ṽk+1] = [δ′m−k∗ (Γuk)
∗/(Γṽk+1)

∗] = [δ′∗m−k(Γṽk+1)/(Γuk)],

[α∗k(vk)/w̃k] = [β′m−k∗ (Γvk)
∗/(Γw̃k)

∗] = [β′∗m−k(Γw̃k)/(Γvk)],

[β∗k(wk)/ũk] = [α′m−k∗ (Γwk)
∗/(Γũk)

∗] = [α′∗m−k(Γũk)/(Γwk)].

These identities allow us to compare the actions (7.52) and (7.54) and derive
the equality:

Φ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[wk, w̃k]
(−1)k+1

)}
=

=Φ′

{(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)
⊗

⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)m−k+1

)}
= (−1)ν · τ(H). (7.55)

On the other hand, since Γ is an isometry, we have in (7.55) the Φ′-action on a
volume element, induced by the Hilbert structures on H′. The combinatorial
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torsion τ(H′) is defined as the mode of the complex-valued Φ′-image of the
volume element. Hence

Φ′

{(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
⊗ (7.56)

⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)
⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)k

)}
= (−1)νeiψ · τ(H′). (7.57)

The phase eiψ can be viewed as the total rotation angle needed to rotate the
orthonormal bases {Γṽk,Γvk}, {Γũk,Γuk}, {Γw̃k,Γwk} to orthonormal bases
with positive determinants of coordinate change matrices with respect to
bases fixed in (7.45) (cf. Lemma 7.10).

Since the combinatorial torsions are positive real numbers, comparison of
(7.57) with (7.55) leads to

τ(H) = τ(H′).

This completes the statement of the theorem. �

The canonical isomorphisms Φ,Φ′ induce isomorphisms

Ψ : detH∗
rel(M1, E)⊗ detH∗

abs(M2, E) → detH∗(M1#M2, E), (7.58)

Ψ′ : detH∗
rel(M2, E)⊗ detH∗

abs(M1, E) → detH∗(M1#M2, E) (7.59)

by the following formula. Consider any x ∈ detH∗
rel(M1, E), y ∈

detH∗
abs(M2, E) and z ∈ detH∗(M1#M2, E). Then we set

Ψ(x⊗ y) := Φ(x⊗ y ⊗ z−1)z.

The definition of Ψ′ is analogous. Then with the result and notation of
Theorem 7.12 we obtain:

Corollary 7.14.

Ψ

{(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)}
=

= (−1)ντ(H)

(
m⊗
k=0

[wk, w̃k]
(−1)k

)
,

Ψ′

{(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)}
=

= (−1)ντ(H)

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)m−k

)
.
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7.7 Splitting formula for Refined Torsion of complexes

We continue in the setup of Subsection 7.1. Consider the refined analytic
torsions of the manifolds Mj, j = 1, 2 and the split manifold M = M1∪NM2.
According to Proposition 7.4 we can write for the refined analytic torsions

ρan(∇) =
1

TRS(∇̃)
· exp [−iπη(Beven) + iπrk(E)η(Btrivial)]

× exp

[
−iπm− 1

2
dim kerBeven + iπrk(E)

m

2
dim kerBtrivial

]
ρΓ(M,E),

ρan(∇j) =
1

TRS(∇̃j)
· exp

[
−iπη(Bjeven) + iπrk(E)η(Bjtrivial)

]
× exp

[
−iπm− 1

2
dim kerBjeven + iπrk(E)

m

2
dim kerBjtrivial

]
ρΓ(Mj, E),

where j = 1, 2 and TRS(∇̃), TRS(∇̃j) denote the scalar analytic torsions

associated to the complexes (D̃, ∇̃), (D̃j, ∇̃j) respectively. Furthermore
ρΓ(M,E), ρΓ(Mj, E) denote the respective refined torsion elements in the
sense of (6.7) for λ = 0. The refined torsion elements are elements of the
determinant lines:

ρΓ(M1, E) ∈ det(H∗
rel(M1, E)⊕H∗

abs(M1, E)),

ρΓ(M2, E) ∈ det(H∗
rel(M2, E)⊕H∗

abs(M2, E)),

ρΓ(M,E) ∈ det(H∗(M,E)⊕H∗(M,E)).

These elements are in the sense of [BK2, Section 4] the refined torsions
ρ[0,λ], λ = 0 (see also (6.7)) of the corresponding complexes:

H∗
rel(M1, E)⊕H∗

abs(M1, E),

H∗
rel(M2, E)⊕H∗

abs(M2, E),

H∗(M,E)⊕H∗(M,E).

Note that up to the identification of Corollary 7.7 the refined torsion
ρΓ(M,E) corresponds to the refined torsion of the complex H∗(M1#M2, E)⊕
H∗(M1#M2, E)

ρΓ(M1#M2, E) ∈ det(H∗(M1#M2, E)⊕H∗(M1#M2, E)). (7.60)

With the preceeding three sections we can now relate the refined torsions
ρΓ(M1, E), ρΓ(M2, E) and ρΓ(M1#M2, E) together. For this we first rewrite
the refined torsions in convenient terms. We restrict the neccessary argu-
ments to ρΓ(M1, E), since the discussion of the other elements is completely
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analogous.

Let for k = 0, .., dimM the sets {ek} and {θk} be the bases for Hk
rel(M1, E)

and Hk
abs(M1, E) respectively. Then the refined torsion element ρΓ(M1, E) is

given by:

ρΓ(M1, E) = (−1)R1([e0] ∧ [θ0])⊗ ([e1] ∧ [θ1])
(−1) ⊗ ...

...⊗ ([er−1] ∧ [θr−1])
(−1)r−1 ⊗ ([Γθr−1] ∧ [Γer−1])

(−1)r ⊗ ...

...⊗ ([Γθ1] ∧ [Γe1])⊗ ([Γθ0] ∧ [Γe0])
(−1), (7.61)

where r = (dimM + 1)/2. The sign R1 is given according to [BK2, (4.2)] by

R1 =
1

2

r−1∑
k=0

(dimHk
rel(M1, E) + dimHk

abs(M1, E))·

·
(
dimHk

rel(M1, E) + dimHk
abs(M1, E) + (−1)r−k

)
.

The formula for ρΓ(M1, E) is independent of the particular choice of bases
{ek} and {θk}. Hence, since {Γek} is also a basis of Hm−k

abs (M1, E) for any k,
we can write equivalently, replacing in the formula (7.61) the basis {θk} by
{Γem−k}:

ρΓ(M1, E) = (−1)R1([e0] ∧ [Γem])⊗ ([e1] ∧ [Γem−1])
(−1) ⊗ ...

...⊗ (em−1] ∧ [Γe1])⊗ ([em] ∧ [Γe0])
(−1).

With the ”fusion isomorphism” for graded vector spaces (cf. [BK2, (2.18)])

µ(M1,E) : detH∗
rel(M1, E)⊗ detH∗

abs(M1, E)
∼−→ det(H∗

rel(M1, E)⊕ detH∗
abs(M1, E))

we obtain

µ
(−1)
(M1,E) (ρΓ(M1, E)) =

(
m⊗
k=0

[ek]
(−1)k

)
⊗

(
m⊗
k=0

[Γek]
(−1)m−k

)
· (−1)M(M1,E)+R1 ,

where with [BK2, (2.19)]

M(M1, E) =
∑

0≤k<i≤m

dimH i
rel(M1, E) · dimHk

abs(M1, E).

Analogous result holds for the refined torsions ρΓ(M2, E) and ρΓ(M1#M2, E),
where the analogous quantities R,R2 and M(M,E) and M(M2, E) are in-
troduced respectively. Using now the fact that the refined torsion elements
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are independent of choices, we find with bases, fixed in (7.48):

µ
(−1)
(M1,E) (ρΓ(M1, E)) =

= (−1)M(M1,E)+R1

(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[Γṽk,Γvk]
(−1)m−k

)
,

µ
(−1)
(M2,E) (ρΓ(M2, E)) =

= (−1)M(M2,E)+R2

(
m⊗
k=0

[uk, ũk]
(−1)k

)
⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)m−k

)
,

µ
(−1)
(M1#M2,E) (ρΓ(M1#M2, E)) =

= (−1)M(M1#M2,E)+R

(
m⊗
k=0

[wk, w̃k]
(−1)k

)
⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)m−k

)
.

Now combine the canonical isomorphisms Ψ,Ψ′, introduced in (7.58) and
(7.59), together with the fusion isomorphisms into one single canonical iso-
morphism:

Ω :=µ(M1#M2,E) ◦ (Ψ⊗Ψ′) ◦ (µ−1
(M1,E) ⊗ µ−1

(M2,E)) : (7.62)

det(H∗
rel(M1, E)⊕H∗

abs(M1, E))⊗
det(H∗

rel(M2, E)⊕H∗
abs(M2, E)) →
→ det(H∗(M1#M2, E)⊕H∗(M1#M2, E)),

where we employed implicitly flip-isomorphisms in order to reorder the de-
terminant lines appropriately. Due to the Knudson-Momford sign convention
this leads to an additional sign. We obtain by Corollary 7.14 for the action
of this canonical isomorphism

Ω(ρΓ(M1, E)⊗ ρΓ(M2, E)) = (−1)M(M1,E)+M(M2,E)+R1+R2+1×

µ(M1#M2,E)

(
Ψ

[(
m⊗
k=0

[vk, ṽk]
(−1)k

)
⊗

(
m⊗
k=0

[uk, ũk]
(−1)k

)]
⊗

Ψ′

[(
m⊗
k=0

[Γṽk,Γvk]
(−1)k+1

)
⊗

(
m⊗
k=0

[Γũk,Γuk]
(−1)k+1

)])
=

= (−1)M(M1,E)+M(M2,E)+R1+R2+1τ(H)2×

µ(M1#M2,E)

(
m⊗
k=0

[wk, w̃k]
(−1)k

)
⊗

(
m⊗
k=0

[Γw̃k,Γwk]
(−1)k+1

)
=

= (−1)signτ(H)2ρΓ(M1#M2, E),
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where we have set

sign := M(M1, E) +M(M2, E)−M(M1#M2, E) +R1 +R2 −R + 1.
(7.63)

Summarizing, we have derived a relation between the refined torsion elements
of the splitting problem under the canonical isomorphism Ω:

Proposition 7.15.

Ω(ρΓ(M1, E)⊗ ρΓ(M2, E)) = (−1)signτ(H)2ρΓ(M1#M2, E).

This is an important result in the derivation of the actual gluing formula for
refined analytic torsion and the final outcome of the preceeding three sections
on cohomological algebra.

7.8 Combinatorial complexes

Before we finally prove a gluing formula for refined analytic torsion, consider
a general situation with Z being a smooth compact manifold and Y ⊂ Z a
smooth compact submanifold with the natural inclusion ι : Y ↪→ Z. The
inclusion induces a group homomorphism

ι∗ : π1(Y ) → π1(Z).

Fix any representation ρ : π1(Z) → GL(n,C). It naturally gives rise to
further two representations

ρY := ρ ◦ ι∗ : π1(Y ) → GL(n,C),

ρ̄Y :
π1(Y )

ker ι∗
∼= im ι∗ → GL(n,C), [γ] 7→ ρY (γ),

where the second map is well-defined since by construction ρY � ker ι∗ ≡ id.

Denote by Z̃ and Ỹ the universal covering spaces of Z and Y respectively,
which are (cf. [KN, Proposition 5.9 (2)]) principal bundles over Z, Y with
respective structure groups π1(Z), π1(Y ). Denote by pZ the bundle projection

of the principal bundle Z̃ over Z. By locality the covering space p−1
Z (Y ) over

Y is a principal bundle over Y with the structure group im ι∗. Hence the
universal cover Ỹ is a principal bundle over p−1

Z (Y ) with the structure group
ker ι∗. Summarizing we have:

p−1
Z (Y )

im ι∗
∼= Y,

Ỹ

ker ι∗
∼= p−1

Z (Y ). (7.64)
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Next we consider any triangulation Z of Z, such that it leaves Y invariant, i.e.
Y := Z∩Y provides a triangulation of the submanifold Y . Fix an embedding
of Z into Z̃ as the fundamental domain. Then we obtain a triangulation Z̃
of Z̃ by applying deck transformations of π1(Z) to Z. Put

p−1
Z (Y) := Z̃ ∩ p−1

Z (Y )

which gives a triangulation of p−1
Z (Y ) invariant under deck transformations of

im ι∗. Embed p−1
Z (Y ) into its universal cover Ỹ as the fundamental domain.

By applying deck transformations of ker ι∗ to p−1
Z (Y) we get a triangulation

Ỹ of Ỹ . Note by construction, in analogy to (7.64)

p−1
Z (Y)

im ι∗
∼= Y , Ỹ

ker ι∗
∼= p−1

Z (Y). (7.65)

We form now the combinatorial chain complexes C∗(.) of the triangulations
and arrive at the central result of this subsection.

Theorem 7.16. Consider the following combinatorial cochain complexes

HomρY
(C∗(Ỹ),Cn) := {f ∈ Hom(C∗(Ỹ),Cn)|
∀x ∈ C∗(Ỹ), γ ∈ π1(Y ) : f(x · γ) = ρY (γ)−1f(x)},

Homρ̄Y
(C∗(p

−1
Z (Y)),Cn) := {f ∈ Hom(C∗(p

−1
Z (Y)),Cn)|

∀x ∈ C∗(p−1
Z (Y)), γ ∈ im ι∗ : f(x · γ) = ρ̄Y (γ)−1f(x)}.

These complexes are isomorphic:

HomρY
(C∗(Ỹ),Cn) ∼= Homρ̄Y

(C∗(p
−1
Z (Y)),Cn).

Proof. The relations in (7.65) imply in particular

C∗(p
−1
Z (Y)) ∼= C∗(Ỹ)/ ker ι∗.

Hence to any x ∈ C∗(Ỹ) we can associate its equivalence class [x] ∈
C∗(p

−1
Z (Y)) and define

φ : HomρY
(C∗(Ỹ),Cn) → Hom(C∗(p

−1
Z (Y)),Cn),

f 7→ φf, φf [x] := f(x).

This construction is well-defined, since for any other representative x′ ∈ [x]

there exists γ ∈ ker ι∗ with x′ = x · γ and since f ∈ HomρY
(C∗(Ỹ),Cn) we

get
f(x′) = ρY (γ)−1f(x) = [ρ ◦ ι∗(γ)]−1f(x) = f(x).
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Note further with f and x as above and [γ] ∈ π1(Y )/ ker ι∗ ∼= im ι∗:

(φf)([x] · [γ]) = (φf)[x · γ] = f(x · γ) =

= ρY (γ)−1f(x) = ρ̄Y ([γ])−1(φf)[x].

Hence in fact we have a well-defined map:

φ : HomρY
(C∗(Ỹ),Cn) → Homρ̄Y

(C∗(p
−1
Z (Y)),Cn).

Now we denote the boundary operators on C∗(Ỹ) and C∗(p
−1
Z (Y)) by δ̃ and δ

respectively. They give rise to coboundary operators d̃ and d on the cochain
complexes. Observe

d(φf)[x] = (φf)(δ[x]) = (φf)[δ̃x] =

= f(δ̃x) = d̃f(x) = (φd̃f)[x].

This shows
dφ = φd̃.

Thus φ is a well-defined homomorphism of complexes. It is surjective by
construction. Injectivity of φ is also obvious. Thus φ is an isomorphism of
complexes, as desired.

7.9 Gluing formula for Refined Analytic Torsion

We now finally are in the position to derive a gluing formula for refined
analytic torsion. As a byproduct we obtain a splitting formula for the scalar
analytic torsion in terms of combinatorial torsions of long exact sequences.

We derive the gluing formula by relating the Ray-Singer analytic torsion
norm to the Reidemeister combinatorial torsion norm and applying the gluing
formula on the combinatorial side, established by M. Lesch in [L2]. This
makes it necessary to use the Cheeger-Müller Theorem on manifolds with
and without boundary.

Continue in the setup of Subsection 7.1. Consider a smooth triangulation X
of the closed smooth split manifold

M = M1 ∪N M2

that leaves the compact submanifolds M1,M2, N invariant, i.e. with Xj :=
X ∩Mj, j = 1, 2 and W := Xj ∩ N we have subcomplexes of X providing
smooth triangulations of Mj, j = 1, 2 and N respectively, and

X = X1 ∪W X2.
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Denote by M̃j the universal covering spaces of Mj, j = 1, 2. Fix embed-

dings of Mj into M̃j as fundamental domains. Then the triangulation Xj

of Mj induces under the action of π1(Mj), viewed as the group of deck-

transformations of M̃j, smooth triangulation X̃j of the universal cover M̃j

for each j = 1, 2.

The complex chain group C∗(X̃j) is generated by simplices of X̃j and is a
module over the group algebra C[π1(Xj)]. The simplices of Xj form a pre-

ferred base for C∗(X̃j) as a C[π1(Xj)]-module.

Furthermore the given unitary representation ρ : π1(M) → U(n,C) gives
rise to the associated unitary representations ρj := ρ ◦ ι∗j of the fundamental
groups π1(Mj), where ι∗j : π1(Mj) → π1(M) are the natural group homomor-
phisms induced by the inclusions ιj : Mj ↪→ M, j = 1, 2. We can now define
for each j

C∗(Xj, ρj) := Homρj
(C∗(X̃j),Cn) =

{f ∈ Hom(C∗(X̃j),Cn)|∀x ∈ C∗(X̃j), γ ∈ π1(Mj) : f(x · γ) = ρj(γ)
−1f(x)}

∼= C∗(X̃j)⊗C[π1(Mj)] Cn,

where the C[π1(Mj)]-module structure of C∗(X̃j) comes from the module

structure of the dual space C∗(X̃j) and the C[π1(Mj)] module structure on
Cn is obtained via the representation ρj.

The boundary operator on C∗(X̃j) induces a coboundary operator on

C∗(Xj, ρj). Further the preferred base on C∗(X̃j) together with a fixed vol-
ume on Cn yields a Hilbert structure on C∗(Xj, ρj). So C∗(Xj, ρj) becomes
a finite Hilbert complex.

Next we consider again the universal coverings pj : M̃j → Mj. Then the

preimage p−1
j (N) ⊂ M̃j is a covering space of N with the group of deck

transformations
im(π1(N)

ι∗−→ π1(Mj)) ⊂ π1(Mj).

Here ι∗ is the natural homomorphism of groups induced by the inclusion
N ↪→Mj. We do not distinguish the inclusions of N into Mj, j = 1, 2 at this
point, since it will always be clear from the context.

The triangulation W ⊂ Xj induces with a fixed embedding of Mj into M̃j

a triangulation p−1
j (W ) of p−1

j (N) by the deck tranformations of ι∗π1(N) ⊂
π1(Mj). The chain complex C∗(p

−1
j (W )) is generated by simplices of p−1

j (W )
and is a module over the group subalgebra C[ι∗π1(N)] ⊂ C[π1(Mj)]. It is a
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subcomplex of C∗(X̃j).

The following observation follows from Theorem 7.16 and is central for the
later constructions:

f ∈ Homρj
(C∗(X̃j),Cn)

⇒f |C∗(p−1
j (W )) ∈ Homρ̄N

(C∗(p
−1
j (W )),Cn) ∼= C∗(W, ρN), (7.66)

where ρN = ρj ◦ ι∗ : π1(N) → U(n,C) is the natural representation of π1(N).
It is induced by ρ and is trivial over ker ι∗ by definition. The homomorphism
ρ̄N is obtained from ρN by dividing out the trivial part:

ρ̄N :
π1(N)

ker ι∗
∼= im ι∗ → U(n,C).

The isomorphism in (7.66) in particular implies that we can compare the
restrictions to C∗(p

−1
j (W )) for elements of both complexes C∗(Xj, ρj), j =

1, 2. We can now define:

C∗(Xj,W, ρj) := {f ∈ Homρ(C∗(X̃j),Cn)|f |C∗(p−1
j (W )) = 0},

C∗(X1#X2, ρ) := {(f, g) ∈ C∗(X1, ρ1)⊕ C∗(X2, ρ2)|f |C∗(p−1
j (W )) = g|C∗(p−1

j (W ))}.

These complexes inherit structure of finite Hilbert complexes from C∗(Xj, ρj)
for j = 1, 2. Fix the naturally induced Hilbert structure on the cohomology,
which gives rise to norms on the determinant lines of cohomology, and define
the combinatorial Reidemeister norms

‖ · ‖RdetH∗(C∗(X1#X2,ρ))
:= τ(C∗(X1#X2, ρ))

−1‖ · ‖detH∗(C∗(X1#X2,ρ)),

‖ · ‖RdetH∗(C∗(Xj ,W,ρ))
:= τ(C∗(Xj,W, ρ))

−1‖ · ‖detH∗(C∗(Xj ,W,ρ)),

‖ · ‖RdetH∗(C∗(Xj ,ρ))
:= τ(C∗(Xj, ρ))

−1‖ · ‖detH∗(C∗(Xj ,ρ)),

where we have put for any finite Hilbert complex (C∗, ∂∗) with the natu-
rally induced Hilbert structure on cohomology H∗(C∗, ∂∗) and the associated
Laplacians denoted by 4∗:

log τ(C∗, ∂∗) =
1

2

∑
j

(−1)j · j · ζ ′(0,4j).

This definition corresponds to the sign convention for the Ray-Singer norms
in Subsection 6.4. The Reidemeister norms do not depend on choices made
for the construction and are in particular invariant under subdivisions, see
[Mi, Theorem 7.1] and [RS, Section 4]. Since any two smooth triangulations
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admit a common subdivision, see [Mun], the Reidemeister norms do not
depend on the choice of a smooth triangulation X.

Consider now the following short exact sequences of finite Hilbert complexes:

0 → C∗(X1,W, ρ)
αc−→ C∗(X1#X2, ρ)

βc−→ C∗(X2, ρ) → 0, (7.67)

0 → C∗(X2,W, ρ)
α′c−→ C∗(X1#X2, ρ)

β′c−→ C∗(X1, ρ) → 0, (7.68)

where αc, α
′
c are the natural inclusions and βc, β

′
c the natural restrictions.

Both sequences are exact by definition of the corresponding homomorphisms
of complexes. The associated long exact sequences in cohomology, with the
Hilbert structures being naturally induced by the Hilbert structures of the
combinatorial complexes as defined above, shall be denoted by Hc and H′

c

respectively.

Consider further the following complexes

0 → (Ω∗
min(M1, E),∇1)

α−→ (Ω∗(M1#M2, E),∇S)
β−→ (Ω∗

max(M2, E),∇2) → 0,

0 → (Ω∗
min(M2, E),∇2)

α′−→ (Ω∗(M1#M2, E),∇S)
β′−→ (Ω∗

max(M1, E),∇1) → 0,

which were already introduced in Subsection 7.5. Their associated long exact
sequences (cf. (7.32)) are denoted by H and H′ respectively. The short exact
sequences commute under the de Rham maps with the short exact sequences
(7.67) and (7.68), respectively.

Thus the corresponding diagramms of the long exact sequences H,Hc and
H′,H′

c commute. The de Rham maps induce isomorphisms on cohomology, as
established in [RS, Section 4] with arguments for orthogonal representations
which work for unitary representations as well:

H∗
abs(Mj, E) ∼= H∗(C∗(Xj, ρj)), H

∗
rel(Mj, E) ∼= H∗(C∗(Xj,W, ρj)). (7.69)

From these identifications we obtain with the five-lemma in algebra applied
to the commutative diagramms of long exact sequences H and Hc or H′ and
H′
c:

H∗(M1#M2, E) ∼= H∗(C∗(X1#X2, ρ)), (7.70)

induced by the de Rham integration maps as well. Thus under the de Rham
isomorphisms the long exact sequences Hc,H′

c correspond to H,H′ respec-
tively, and differ only in the fixed Hilbert structures.

Furthermore the long exact sequences Hc,H′
c give rise to isomorphisms on
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determinant lines in a canonical way (recall the definition of Ψ,Ψ′ in (7.58)
and (7.59))

Ψc : detH∗(C∗(X1,W, ρ))⊗ detH∗(C∗(X2, ρ)) → detH∗(C∗(X1#X2, ρ)),

Ψ′
c : detH∗(C∗(X2,W, ρ))⊗ detH∗(C∗(X1, ρ)) → detH∗(C∗(X1#X2, ρ)).

These maps correspond to the canonical identifications Ψ,Ψ′ introduced in
Subsection 7.6 up to the de Rham isomorphisms. We can now prove an
appropriate gluing result for the combinatorial Reidemeister norms.

Theorem 7.17.
Let x, y be elements of detH∗(C∗(X1,W, ρ)), detH∗(C∗(X2, ρ)) and x′, y′ ele-
ments of detH∗(C∗(X2,W, ρ)), detH∗(C∗(X1, ρ)), respectively. Then we ob-
tain for the combinatorial Reidemeister norms the following relation:

‖Ψc(x⊗ y)‖RdetH∗(C∗(X1#X2,ρ))
= (7.71)

=2χ(N)/2‖x‖RdetH∗(C∗(X1,W,ρ))
‖y‖RdetH∗(C∗(X2,ρ))

,

‖Ψ′
c(x

′ ⊗ y′)‖RdetH∗(C∗(X1#X2,ρ))
= (7.72)

=2χ(N)/2‖x′‖RdetH∗(C∗(X2,W,ρ))
‖y′‖RdetH∗(C∗(X1,ρ))

.

Proof. First apply the gluing formula in [L2], derived by introducing trans-
mission boundary conditions depending on a parameter, in the spirit of [V]:

τ(C∗(X1#X2, ρ)) = τ(C∗(X1,W, ρ)) · τ(C∗(X2, ρ)) · τ(Hc) · 2−χ(N)/2,
(7.73)

τ(C∗(X1#X2, ρ)) = τ(C∗(X2,W, ρ)) · τ(C∗(X1, ρ)) · τ(H′
c) · 2−χ(N)/2.

(7.74)

By the definition of the combinatorial torsions τ(Hc) and τ(H′
c) we obtain

the following relation to the action of Φc,Φ
′
c, by an appropriate version of

Corollary 7.14:

‖Ψc(x⊗ y)‖detH∗(C∗(X1#X2,ρ)) = (7.75)

=τ(Hc) · ‖x‖detH∗(C∗(X1,W,ρ))‖y‖detH∗(C∗(X2,ρ)),

‖Ψ′
c(x

′ ⊗ y′)‖detH∗(C∗(X1#X2,ρ)) = (7.76)

=τ(H′
c) · ‖x′‖detH∗(C∗(X2,W,ρ))‖y′‖detH∗(C∗(X1,ρ)).

Now a combination of the relations above, together with the gluing formulas
(7.73) and (7.74) gives the desired statement.

We can now prove the following gluing result for the analytic Ray-Singer
torsion norms.
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Theorem 7.18. Let Ω be the canonical isomorphism of determinant lines,
defined in (7.62).

Ω : detH∗(D̃1, ∇̃1)⊗ detH∗(D̃2, ∇̃2) →
det(H∗(M1#M2, E)⊕H∗(M1#M2, E)).

For any γ1, γ2 in detH∗(D̃1, ∇̃1), detH∗(D̃2, ∇̃2) respectively, we have in
terms of the analytic Ray-Singer torsion norms on the determinant lines:

‖Ω(γ1 ⊗ γ2)‖RSdet(H∗(M1#M2,E)⊕H∗(M1#M2,E)) =

=2χ(N)‖γ1‖RSdetH∗( eD1,e∇1)
‖γ2‖RSdetH∗( eD2,e∇2)

.

Proof. Under the de Rham isomorphisms we can relate the combinatorial
Reidemeister norms to the analytic Ray-Singer torsion norms. We get by an
appropriate version of [Lü]

‖ · ‖RdetH∗(C∗(Xj ,ρ))
= 2χ(N)/4‖ · ‖RSdetH∗

abs(Mj ,E),

‖ · ‖RdetH∗(C∗(Xj ,W,ρ))
= 2χ(N)/4‖ · ‖RSdetH∗

rel(Mj ,E), (7.77)

where χ(N) is the Euler characteristic of the closed manifold N with the
representation ρN of its fundamental group, hence defined in terms of the
twisted cohomology groups H∗(N,E|N). Furthermore we need the following
relation:

‖ · ‖RdetH∗(C∗(X1#X2,ρ))
= 2χ(N)/2‖ · ‖RSdetH∗(M1#M2,E). (7.78)

This result is proved for trivial representations in [V, Theorem 1.5]. This
is done by discussing a family of elliptic transmission value problems and
doesn’t rely on the Cheeger-Müller theorem. However in the setup of the
present discussion we provide below in Proposition 7.19 a simple proof for
general unitary representations, using the Cheeger-Müller Theorem on closed
manifolds

It is important to note that the Ray-Singer analytic and combinatorial torsion
considered in [V] and [Lü] are squares of the torsion norms in our convention
and further differ in the sign convention (we adopted the sign convention of
[BK2, Section 11.2]). Therefore we get factors 2χ(N)/4, 2χ(N)/2 in (7.77) and
(7.78) respectively, instead of 2−χ(N)/2, 2−χ(N) as asserted in [Lü, Theorem
4.5] and [V, Theorem 1.5].

By definition the canonical maps Ψc and Ψ′
c correspond under the de Rham
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isomorphism to the canonical maps Ψ and Ψ′ respectively. In view of Theo-
rem 7.17, the identities (7.77) and the relation (7.78) we obtain the following
gluing formulas:

‖Ψ(x⊗ y)‖RSdetH∗(M1#M2,E)) = (7.79)

=2χ(N)/2‖x‖RSdetH∗
rel(M1,E))‖y‖RSdetH∗

abs(M2,E)),

‖Ψ′(x′ ⊗ y′)‖RSdetH∗(M1#M2,E)) = (7.80)

=2χ(N)/2‖x′‖RSdetH∗
rel(M2,E))‖y′‖RSdetH∗

abs(M1,E)).

The fusion isomorphisms µ(M1,E), µ(M2,E) and µ(M1#M2,E), used in the con-
struction of the canonical isomorphism Ω, are by construction isometries
with respect to the analytic Ray-Singer norms and hence in total we obtain
for any γ1, γ2 in detH∗(D̃1, ∇̃1), detH∗(D̃2, ∇̃2) respectively,

‖Ω(γ1 ⊗ γ2)‖RSdet(H∗(M1#M2,E)⊕H∗(M1#M2,E) =

= 2χ(N)‖γ1‖RSdetH∗( eD1,e∇1)
‖γ2‖RSdetH∗( eD2,e∇2)

,

where we recall the following facts by construction:

H∗(D̃1, ∇̃1) = H∗
rel(M1, E)⊕H∗

abs(M1, E),

H∗(D̃2, ∇̃2) = H∗
rel(M2, E)⊕H∗

abs(M2, E).

This proves the statement of the theorem.

Now we prove the result (7.78) on comparison of the torsion norms, antici-
pated in the argumentation above. The proof uses ideas behind [V, Theorem
1.5].

Proposition 7.19.

‖ · ‖RdetH∗(C∗(X1#X2,ρ))
= 2χ(N)/2‖ · ‖RSdetH∗(M1#M2,E).

Proof. Consider the following short exact sequence of finite Hilbert complexes
(recall that the Hilbert structures on the complexes were induced by the
triangulation X and the fixed volume on Cn)

0 →
2⊕
j=1

C∗(Xj,W, ρj)
α−→ C∗(X1#X2, ρ)

β−→ C∗(W, ρN) → 0,
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with α(ω1 ⊕ ω2) = (ω1, ω2) and β(ω1, ω2) = 1√
2
(ω1|C∗(fW ) + ω2|C∗(fW )). Note

further

θ : C∗(W, ρN) → C∗(X1#X2, ρ), θ(ω) =
1√
2
(ω, ω)

is an isometry between C∗(W, ρN) and Imθ, where Imθ is moreover the
orthogonal complement in C∗(X1#X2, ρ) to the image of α. Furthermore
β ◦ θ = id. Hence β is an isometry between the orthogonal complement of
its kernel and C∗(W, ρN). Here a volume on Cn is fixed for all combinatorial
complexes.

The map of complexes α is also an isometry onto its image and hence the
induced identification

φR# : detH∗(C∗(X1#X2, ρ)) →
2⊗
j=1

detH∗(C∗(Xj,W, ρj))⊗detH∗(C∗(W, ρN))

is an isometry of combinatorial Reidemeister norms. Similarly we consider
the next short exact sequence of finite complexes:

0 →
2⊕
j=1

C∗(Xj,W, ρj)
α−→ C∗(X, ρ)

r−→ C∗(W, ρN) → 0,

where the third arow is the restriction as in (7.66). By similar arguments as
before the induced identification

φR : detH∗(C∗(X, ρ)) →
2⊗
j=1

detH∗(C∗(Xj,W, ρj))⊗ detH∗(C∗(W, ρN))

is an isometry of combinatorial Reidemeister norms. Now we consider the
following commutative diagramms of short exact sequences.

0 →
⊕2

j=1 Ω∗
min(Mj, E) ↪→ Ω∗(M1#M2, E)

√
2ι∗N−−−→ Ω∗(N,E) → 0

↓ R ↓ R ↓ R

0 →
2⊕
j=1

C∗(Xj,W, ρj)
α−→ C∗(X, ρ)

√
2r−−→ C∗(W, ρN) → 0,

where R denotes the natural de Rham integration quasi-isomorphisms. The
second commutative diagramm is as follows:

0 →
⊕2

j=1 Ω∗
min(Mj, E) ↪→ Ω∗(M1#M2, E)

√
2ι∗N−−−→ Ω∗(N,E) → 0

↓ R ↓ R# ↓ R

0 →
2⊕
j=1

C∗(Xj,W, ρj)
α−→ C∗(X1#X2, ρ)

β−→ C∗(W, ρN) → 0,
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with the vertical maps as before given by the natural de Rham integration
quasi-isomorphisms. Note that R# is a quasi-isomorphism as well, which
is clear from the five-lemma applied to the commutative diagramm of the
associated long exact sequences.

The lower sequences in both of the diagramms were discussed above. The
upper short exact sequence in both diagramms induces the identification:

φRS# : detH∗(M1#M2, E) →
2⊗
j=1

detH∗
rel(Mj, E)⊗ detH∗(N,E).

By commutativity of the two diagramms we obtain:

2χ(N)/2φR ◦R = R ◦ φRS# , (7.81)

φR# ◦R# = R ◦ φRS# . (7.82)

Now let x ∈ detH∗(M1#M2, E) be an arbitrary element, identified via Corol-
lary 7.7 with x ∈ detH∗(M,E). We compute:

‖x‖RSdetH∗(M1#M2,E) = ‖x‖RSdetH∗(M,E) = ‖R(x)‖RdetH∗(X,ρ) =

= ‖φR ◦R(x)‖ = 2−χ(N)/2‖R ◦ φRS# (x)‖ =

= 2−χ(N)/2‖φR# ◦R#(x)‖ = 2−χ(N)/2‖R#(x)‖RdetH∗(C∗(X1#X2,ρ))
,

where we have put

‖ · ‖ := ‖ · ‖RdetH∗(C∗(X1,W,ρ1)) · ‖ · ‖RdetH∗(C∗(X2,W,ρ2)) · ‖ · ‖RdetH∗(C∗(W,ρN )).

The steps in the sequence of equalities need to be clarified. The first equation
is due to Theorem 7.6 on the spectral equivalence of 4S and 4. The second
equation is simply the Cheeger-Müller Theorem for closed Riemannian man-
ifolds. The third equation is a consequence of the fact that φR is an isometry
with respect to the combinatorial Reidemeister norms. Now the fourth and
the fifth equation are consequences of (7.81) and (7.82) respectively. Using in
the last equation again the isometry φR# we obtain the result. The sequence
of equalities proves in total:

‖x‖RSdetH∗(M1#M2,E) = 2−χ(N)/2‖R#(x)‖RdetH∗(C∗(X1#X2,ρ))
.

Next we recall that by Theorem 7.6 the complexes Ω∗(M,E)⊕Ω∗(M,E) and
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Ω∗(M1#M2, E)⊕Ω∗(M1#M2, E) have spectrally equivalent Laplacians with
identifyable eigenforms. This implies

TRS(Ω∗(M,E)⊕ Ω∗(M,E)) = TRS(Ω∗(M1#M2, E)⊕ Ω∗(M1#M2, E)),

H∗(Ω∗(M,E)⊕ Ω∗(M,E)) ∼= H∗(Ω∗(M1#M2, E)⊕ Ω∗(M1#M2, E)).
(7.83)

The identification (7.83) is in fact an isometry with respect to the natural
Hilbert structures, since in both cases the Hilbert structure is induced by
the L2−scalar product on harmonic forms and the harmonic forms of both
complexes coincide, see Theorem 7.6. This implies

‖ · ‖RSdet(H∗(M1#M2,E)⊕H∗(M1#M2,E)) =

‖ · ‖RSdet(H∗(M,E)⊕H∗(M,E)) ≡ ‖ · ‖RS
detH∗( eD,e∇)

.

Moreover under the identification (7.83) we can view the canonical isomor-
phism Ω as

Ω : detH∗(D̃1, ∇̃1)⊗ detH∗(D̃2, ∇̃2) → detH∗(D̃, ∇̃).

Then we obtain as a corollary of Theorem 7.18:

Corollary 7.20. Denote by ρan(∇) and ρan(∇j), j = 1, 2 the refined analytic
torsions on M and Mj, j = 1, 2 respectively. There exists some φ ∈ [0, 2π)
such that

Ω(ρan(∇1)⊗ ρan(∇2)) = eiφ2χ(N)ρan(∇).

Proof. Applying Theorem 7.18 to ρan(∇1) ⊗ ρan(∇2), we obtain with the
identification (7.83) and Theorem 6.29:

‖Ω(ρan(∇1)⊗ ρan(∇2))‖RSdet(H∗( eD,e∇)
= 2χ(N)×

×‖ρan(∇1)‖RSdetH∗( eD1,e∇1)
‖ρan(∇2)‖RSdetH∗( eD2,e∇2)

= 2χ(N).

On the other hand we have again by Theorem 6.29

‖ρan(∇)‖RS
det(H∗( eD,e∇)

= 1.

This proves the corollary.

In order to establish a gluing formula it remains to identify this phase
φ explicitly. Under the identification of Corollary 7.7 the refined torsion
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ρΓ(M1#M2, E) corresponds to the refined torsion element ρΓ(M,E), as al-
ready encountered in (7.60). Hence with Proposition 7.15 we can write

Ω(ρΓ(M1, E)⊗ ρΓ(M2, E)) = (−1)signτ(H)2ρΓ(M,E).

Consequently we obtain using the splitting formulas (7.16) and (7.17) for the
eta-invariants and using Proposition 7.4

Ω(ρan(∇1)⊗ ρan(∇2)) =
TRS(D̃, ∇̃)

TRS(D̃1, ∇̃1)TRS(D̃2, ∇̃2)
×

exp (−iπ · Errη(Beven) + iπ · rank(E)Errη(Btrivial))×
(−1)signτ(H)2 · ρan(∇), (7.84)

where we have put

Errη(Beven) :=τµ(I − P1, P, P1)+ (7.85)

+
m− 1

2

(
dim kerB1

even + dim kerB2
even − dim kerBeven

)
,

Errη(Btrivial) :=τµ(I − P1,trivial, Ptrivial, P1,trivial)+ (7.86)

+
m

2

(
dim kerB1

trivial + dim kerB2
trivial − dim kerBtrivial

)
.

Comparing this relation with the statement of Corollary 7.20 we obtain for
the phase φ in Corollary 7.20:

φ = π [−Errη(Beven) + rank(E)Errη(Btrivial) + sign] .

Due to the definition of the refined analytic torsion in (6.45), it makes sense
to reduce the phase φ modulo πrank(E)Z.

Lemma 7.21.

φ ≡ π [sign− Errη(Beven)] mod πrank(E)Z.

Proof. We need to verify

Errη(Btrivial) ≡ 0 mod Z.

Denote the Laplace operators of the complexes (Ω∗
min/max(Mj),∇j,trivial)

by 4j
rel/abs, respectively. Let 4 denote the Laplacian of the complex

(Ω∗(M),∇trivial). We have by construction

B(∇trivial)
2 = 4⊕4,

B(∇j,trivial)
2 = 4j

rel ⊕4
j
abs.
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Since the Maslov-triple index τµ is integer-valued, we obtain via Lemma 6.25
the following mod Z calculation:

Errη(Btrivial) =
1

2

m∑
k=0

(−1)k+1 · k · (dim ker41
k,rel + dim ker41

k,abs)+

+
1

2

m∑
k=0

(−1)k+1 · k · (dim ker42
k,rel + dim ker42

k,abs)−

−1

2

m∑
k=0

(−1)k+1 · k · (dim ker4k + dim ker41
k).

The Poincare duality implies:

dim ker4j
k,rel = dim ker4j

m−k,abs,

dim ker4k = dim ker4m−k.

Hence we compute further modulo Z

Errη(Btrivial) =
m

2

m∑
k=0

(−1)k dim ker41
k,rel+

+
m

2

m∑
k=0

(−1)k dim ker42
k,abs −

m

2

m∑
k=0

(−1)k dim ker4k.

Finally, exactness of the long exact sequence H in (7.32) (in the setup of a
trivial line bundle) implies Errη(Btrivial) ≡ 0 mod Z.

We finally arrive at the following central result: a gluing formula for refined
analytic torsion.

Theorem 7.22. [Gluing formula for Refined Analytic Torsion]
Let M = M1∪NM2 be an odd-dimensional oriented closed Riemannian split-
manifold where Mj, j = 1, 2 are compact bounded Riemannian manifolds with
∂Mj = N and orientation induced from M . Denote by (E,∇, hE) a complex
flat vector bundle induced by an unitary representation ρ : π1(M) → U(n,C).
Assume product structure for the metrics and the vector bundle. Set:

(D̃j, ∇̃j) := (Dj,min,∇j,min)⊕ (Dj,max,∇j,max), j = 1, 2,

(D̃, ∇̃) := (Ω∗(M,E),∇)⊕ (Ω∗(M,E),∇).

The canonical isomorphism

Ω : detH∗(D̃1, ∇̃1)⊗ detH∗(D̃2, ∇̃2) → detH∗(D̃, ∇̃)
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is induced by the long exact sequences on cohomologies

H : ...Hk
rel(M1, E) → Hk(M,E) → Hk

abs(M2, E) → Hk+1
rel (M1, E)...

H′ : ...Hk
rel(M2, E) → Hk(M,E) → Hk

abs(M1, E) → Hk+1
rel (M2, E)...

and fusion isomorphisms. The isomorphism Ω is linear, hence well-defined
on equivalence classes modulo multiplication by exp[iπrkE]. Then the gluing
formula for refined analytic torsion in (6.45) is given as follows:

Ω(ρan(M1, E)⊗ ρan(M2, E)) = K(M,M1,M2, ρ) · ρan(M,E),

K(M,M1,M2, ρ) := 2χ(N) exp(iφ),

φ := π(sign− Errη(Beven)).

The term Errη(Beven) is an error term in the gluing formula for eta-invariants

Errη(Beven) :=τµ(I − P1, P, P1)+

+
m− 1

2

(
dim kerB1

even + dim kerB2
even − dim kerBeven

)
,

where B and Bj, j = 1, 2 are the odd-signature operators associated to the
Fredholm complexes (D̃, ∇̃) and (D̃j, ∇̃j), j = 1, 2 respectively. Further P, P1

denote the boundary conditions and the Calderon projector associated to
B1

even, respectively. τµ is the Maslov triple index.

The sign ∈ {±1} is a combinatorial sign, explicitly defined in (7.63).

Corollary 7.23. [Gluing formula for scalar analytic torsion]

TRS(M,E)

TRSrel (M1, E) · TRSabs (M2, E)
= τ(H)−1 · 2χ(N)/2.

Proof. Comparison of the statement of Corollary 7.20 with the relation (7.84)
we obtain along the result of Theorem 7.22 the following formula as a byprod-
uct:

TRS(D̃, ∇̃)

TRS(D̃1, ∇̃1)TRS(D̃2, ∇̃2)
= τ(H)−2 · 2χ(N).

By construction and the Poincare duality on odd-dimensional manifolds with
or without boundary (7.18) we know

TRS(D̃1, ∇̃1) = TRSrel (M1, E) · TRSabs (M1, E) = TRSrel (M1, E)2,

TRS(D̃2, ∇̃2) = TRSabs (M2, E) · TRSrel (M2, E) = TRSabs (M2, E)2,

TRS(D̃, ∇̃) = TRS(M,E)2.

Taking now square-roots gives the result.
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Note that this result refines the result of [Lee, Theorem 1.7 (2)] on the
adiabatic decomposition of the scalar analytic torsion.

Note finally that in view of Theorem 6.30 the gluing formula in Theorem 7.22
can be viewed as a gluing formula for refined analytic torsion in the version
of Braverman-Kappeler.
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